xref: /linux/mm/memcontrol.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/pagevec.h>
37 #include <linux/vm_event_item.h>
38 #include <linux/smp.h>
39 #include <linux/page-flags.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bit_spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/limits.h>
44 #include <linux/export.h>
45 #include <linux/list.h>
46 #include <linux/mutex.h>
47 #include <linux/rbtree.h>
48 #include <linux/slab.h>
49 #include <linux/swapops.h>
50 #include <linux/spinlock.h>
51 #include <linux/fs.h>
52 #include <linux/seq_file.h>
53 #include <linux/parser.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71 
72 #include <linux/uaccess.h>
73 
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/memcg.h>
76 #undef CREATE_TRACE_POINTS
77 
78 #include <trace/events/vmscan.h>
79 
80 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81 EXPORT_SYMBOL(memory_cgrp_subsys);
82 
83 struct mem_cgroup *root_mem_cgroup __read_mostly;
84 
85 /* Active memory cgroup to use from an interrupt context */
86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88 
89 /* Socket memory accounting disabled? */
90 static bool cgroup_memory_nosocket __ro_after_init;
91 
92 /* Kernel memory accounting disabled? */
93 static bool cgroup_memory_nokmem __ro_after_init;
94 
95 /* BPF memory accounting disabled? */
96 static bool cgroup_memory_nobpf __ro_after_init;
97 
98 #ifdef CONFIG_CGROUP_WRITEBACK
99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100 #endif
101 
102 static inline bool task_is_dying(void)
103 {
104 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
105 		(current->flags & PF_EXITING);
106 }
107 
108 /* Some nice accessors for the vmpressure. */
109 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
110 {
111 	if (!memcg)
112 		memcg = root_mem_cgroup;
113 	return &memcg->vmpressure;
114 }
115 
116 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
117 {
118 	return container_of(vmpr, struct mem_cgroup, vmpressure);
119 }
120 
121 #define SEQ_BUF_SIZE SZ_4K
122 #define CURRENT_OBJCG_UPDATE_BIT 0
123 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
124 
125 static DEFINE_SPINLOCK(objcg_lock);
126 
127 bool mem_cgroup_kmem_disabled(void)
128 {
129 	return cgroup_memory_nokmem;
130 }
131 
132 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
133 				      unsigned int nr_pages);
134 
135 static void obj_cgroup_release(struct percpu_ref *ref)
136 {
137 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
138 	unsigned int nr_bytes;
139 	unsigned int nr_pages;
140 	unsigned long flags;
141 
142 	/*
143 	 * At this point all allocated objects are freed, and
144 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
145 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
146 	 *
147 	 * The following sequence can lead to it:
148 	 * 1) CPU0: objcg == stock->cached_objcg
149 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
150 	 *          PAGE_SIZE bytes are charged
151 	 * 3) CPU1: a process from another memcg is allocating something,
152 	 *          the stock if flushed,
153 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
154 	 * 5) CPU0: we do release this object,
155 	 *          92 bytes are added to stock->nr_bytes
156 	 * 6) CPU0: stock is flushed,
157 	 *          92 bytes are added to objcg->nr_charged_bytes
158 	 *
159 	 * In the result, nr_charged_bytes == PAGE_SIZE.
160 	 * This page will be uncharged in obj_cgroup_release().
161 	 */
162 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
163 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
164 	nr_pages = nr_bytes >> PAGE_SHIFT;
165 
166 	if (nr_pages)
167 		obj_cgroup_uncharge_pages(objcg, nr_pages);
168 
169 	spin_lock_irqsave(&objcg_lock, flags);
170 	list_del(&objcg->list);
171 	spin_unlock_irqrestore(&objcg_lock, flags);
172 
173 	percpu_ref_exit(ref);
174 	kfree_rcu(objcg, rcu);
175 }
176 
177 static struct obj_cgroup *obj_cgroup_alloc(void)
178 {
179 	struct obj_cgroup *objcg;
180 	int ret;
181 
182 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
183 	if (!objcg)
184 		return NULL;
185 
186 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
187 			      GFP_KERNEL);
188 	if (ret) {
189 		kfree(objcg);
190 		return NULL;
191 	}
192 	INIT_LIST_HEAD(&objcg->list);
193 	return objcg;
194 }
195 
196 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
197 				  struct mem_cgroup *parent)
198 {
199 	struct obj_cgroup *objcg, *iter;
200 
201 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
202 
203 	spin_lock_irq(&objcg_lock);
204 
205 	/* 1) Ready to reparent active objcg. */
206 	list_add(&objcg->list, &memcg->objcg_list);
207 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
208 	list_for_each_entry(iter, &memcg->objcg_list, list)
209 		WRITE_ONCE(iter->memcg, parent);
210 	/* 3) Move already reparented objcgs to the parent's list */
211 	list_splice(&memcg->objcg_list, &parent->objcg_list);
212 
213 	spin_unlock_irq(&objcg_lock);
214 
215 	percpu_ref_kill(&objcg->refcnt);
216 }
217 
218 /*
219  * A lot of the calls to the cache allocation functions are expected to be
220  * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
221  * conditional to this static branch, we'll have to allow modules that does
222  * kmem_cache_alloc and the such to see this symbol as well
223  */
224 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
225 EXPORT_SYMBOL(memcg_kmem_online_key);
226 
227 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
228 EXPORT_SYMBOL(memcg_bpf_enabled_key);
229 
230 /**
231  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
232  * @folio: folio of interest
233  *
234  * If memcg is bound to the default hierarchy, css of the memcg associated
235  * with @folio is returned.  The returned css remains associated with @folio
236  * until it is released.
237  *
238  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
239  * is returned.
240  */
241 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
242 {
243 	struct mem_cgroup *memcg = folio_memcg(folio);
244 
245 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
246 		memcg = root_mem_cgroup;
247 
248 	return &memcg->css;
249 }
250 
251 /**
252  * page_cgroup_ino - return inode number of the memcg a page is charged to
253  * @page: the page
254  *
255  * Look up the closest online ancestor of the memory cgroup @page is charged to
256  * and return its inode number or 0 if @page is not charged to any cgroup. It
257  * is safe to call this function without holding a reference to @page.
258  *
259  * Note, this function is inherently racy, because there is nothing to prevent
260  * the cgroup inode from getting torn down and potentially reallocated a moment
261  * after page_cgroup_ino() returns, so it only should be used by callers that
262  * do not care (such as procfs interfaces).
263  */
264 ino_t page_cgroup_ino(struct page *page)
265 {
266 	struct mem_cgroup *memcg;
267 	unsigned long ino = 0;
268 
269 	rcu_read_lock();
270 	/* page_folio() is racy here, but the entire function is racy anyway */
271 	memcg = folio_memcg_check(page_folio(page));
272 
273 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
274 		memcg = parent_mem_cgroup(memcg);
275 	if (memcg)
276 		ino = cgroup_ino(memcg->css.cgroup);
277 	rcu_read_unlock();
278 	return ino;
279 }
280 
281 /* Subset of node_stat_item for memcg stats */
282 static const unsigned int memcg_node_stat_items[] = {
283 	NR_INACTIVE_ANON,
284 	NR_ACTIVE_ANON,
285 	NR_INACTIVE_FILE,
286 	NR_ACTIVE_FILE,
287 	NR_UNEVICTABLE,
288 	NR_SLAB_RECLAIMABLE_B,
289 	NR_SLAB_UNRECLAIMABLE_B,
290 	WORKINGSET_REFAULT_ANON,
291 	WORKINGSET_REFAULT_FILE,
292 	WORKINGSET_ACTIVATE_ANON,
293 	WORKINGSET_ACTIVATE_FILE,
294 	WORKINGSET_RESTORE_ANON,
295 	WORKINGSET_RESTORE_FILE,
296 	WORKINGSET_NODERECLAIM,
297 	NR_ANON_MAPPED,
298 	NR_FILE_MAPPED,
299 	NR_FILE_PAGES,
300 	NR_FILE_DIRTY,
301 	NR_WRITEBACK,
302 	NR_SHMEM,
303 	NR_SHMEM_THPS,
304 	NR_FILE_THPS,
305 	NR_ANON_THPS,
306 	NR_KERNEL_STACK_KB,
307 	NR_PAGETABLE,
308 	NR_SECONDARY_PAGETABLE,
309 #ifdef CONFIG_SWAP
310 	NR_SWAPCACHE,
311 #endif
312 #ifdef CONFIG_NUMA_BALANCING
313 	PGPROMOTE_SUCCESS,
314 #endif
315 	PGDEMOTE_KSWAPD,
316 	PGDEMOTE_DIRECT,
317 	PGDEMOTE_KHUGEPAGED,
318 #ifdef CONFIG_HUGETLB_PAGE
319 	NR_HUGETLB,
320 #endif
321 };
322 
323 static const unsigned int memcg_stat_items[] = {
324 	MEMCG_SWAP,
325 	MEMCG_SOCK,
326 	MEMCG_PERCPU_B,
327 	MEMCG_VMALLOC,
328 	MEMCG_KMEM,
329 	MEMCG_ZSWAP_B,
330 	MEMCG_ZSWAPPED,
331 };
332 
333 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
334 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
335 			   ARRAY_SIZE(memcg_stat_items))
336 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
337 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
338 
339 static void init_memcg_stats(void)
340 {
341 	u8 i, j = 0;
342 
343 	BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
344 
345 	memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
346 
347 	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
348 		mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
349 
350 	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
351 		mem_cgroup_stats_index[memcg_stat_items[i]] = j;
352 }
353 
354 static inline int memcg_stats_index(int idx)
355 {
356 	return mem_cgroup_stats_index[idx];
357 }
358 
359 struct lruvec_stats_percpu {
360 	/* Local (CPU and cgroup) state */
361 	long state[NR_MEMCG_NODE_STAT_ITEMS];
362 
363 	/* Delta calculation for lockless upward propagation */
364 	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
365 };
366 
367 struct lruvec_stats {
368 	/* Aggregated (CPU and subtree) state */
369 	long state[NR_MEMCG_NODE_STAT_ITEMS];
370 
371 	/* Non-hierarchical (CPU aggregated) state */
372 	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
373 
374 	/* Pending child counts during tree propagation */
375 	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
376 };
377 
378 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
379 {
380 	struct mem_cgroup_per_node *pn;
381 	long x;
382 	int i;
383 
384 	if (mem_cgroup_disabled())
385 		return node_page_state(lruvec_pgdat(lruvec), idx);
386 
387 	i = memcg_stats_index(idx);
388 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
389 		return 0;
390 
391 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
392 	x = READ_ONCE(pn->lruvec_stats->state[i]);
393 #ifdef CONFIG_SMP
394 	if (x < 0)
395 		x = 0;
396 #endif
397 	return x;
398 }
399 
400 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
401 				      enum node_stat_item idx)
402 {
403 	struct mem_cgroup_per_node *pn;
404 	long x;
405 	int i;
406 
407 	if (mem_cgroup_disabled())
408 		return node_page_state(lruvec_pgdat(lruvec), idx);
409 
410 	i = memcg_stats_index(idx);
411 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
412 		return 0;
413 
414 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
415 	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
416 #ifdef CONFIG_SMP
417 	if (x < 0)
418 		x = 0;
419 #endif
420 	return x;
421 }
422 
423 /* Subset of vm_event_item to report for memcg event stats */
424 static const unsigned int memcg_vm_event_stat[] = {
425 #ifdef CONFIG_MEMCG_V1
426 	PGPGIN,
427 	PGPGOUT,
428 #endif
429 	PSWPIN,
430 	PSWPOUT,
431 	PGSCAN_KSWAPD,
432 	PGSCAN_DIRECT,
433 	PGSCAN_KHUGEPAGED,
434 	PGSTEAL_KSWAPD,
435 	PGSTEAL_DIRECT,
436 	PGSTEAL_KHUGEPAGED,
437 	PGFAULT,
438 	PGMAJFAULT,
439 	PGREFILL,
440 	PGACTIVATE,
441 	PGDEACTIVATE,
442 	PGLAZYFREE,
443 	PGLAZYFREED,
444 #ifdef CONFIG_SWAP
445 	SWPIN_ZERO,
446 	SWPOUT_ZERO,
447 #endif
448 #ifdef CONFIG_ZSWAP
449 	ZSWPIN,
450 	ZSWPOUT,
451 	ZSWPWB,
452 #endif
453 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
454 	THP_FAULT_ALLOC,
455 	THP_COLLAPSE_ALLOC,
456 	THP_SWPOUT,
457 	THP_SWPOUT_FALLBACK,
458 #endif
459 #ifdef CONFIG_NUMA_BALANCING
460 	NUMA_PAGE_MIGRATE,
461 	NUMA_PTE_UPDATES,
462 	NUMA_HINT_FAULTS,
463 #endif
464 };
465 
466 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
467 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
468 
469 static void init_memcg_events(void)
470 {
471 	u8 i;
472 
473 	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
474 
475 	memset(mem_cgroup_events_index, U8_MAX,
476 	       sizeof(mem_cgroup_events_index));
477 
478 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
479 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
480 }
481 
482 static inline int memcg_events_index(enum vm_event_item idx)
483 {
484 	return mem_cgroup_events_index[idx];
485 }
486 
487 struct memcg_vmstats_percpu {
488 	/* Stats updates since the last flush */
489 	unsigned int			stats_updates;
490 
491 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
492 	struct memcg_vmstats_percpu	*parent;
493 	struct memcg_vmstats		*vmstats;
494 
495 	/* The above should fit a single cacheline for memcg_rstat_updated() */
496 
497 	/* Local (CPU and cgroup) page state & events */
498 	long			state[MEMCG_VMSTAT_SIZE];
499 	unsigned long		events[NR_MEMCG_EVENTS];
500 
501 	/* Delta calculation for lockless upward propagation */
502 	long			state_prev[MEMCG_VMSTAT_SIZE];
503 	unsigned long		events_prev[NR_MEMCG_EVENTS];
504 } ____cacheline_aligned;
505 
506 struct memcg_vmstats {
507 	/* Aggregated (CPU and subtree) page state & events */
508 	long			state[MEMCG_VMSTAT_SIZE];
509 	unsigned long		events[NR_MEMCG_EVENTS];
510 
511 	/* Non-hierarchical (CPU aggregated) page state & events */
512 	long			state_local[MEMCG_VMSTAT_SIZE];
513 	unsigned long		events_local[NR_MEMCG_EVENTS];
514 
515 	/* Pending child counts during tree propagation */
516 	long			state_pending[MEMCG_VMSTAT_SIZE];
517 	unsigned long		events_pending[NR_MEMCG_EVENTS];
518 
519 	/* Stats updates since the last flush */
520 	atomic64_t		stats_updates;
521 };
522 
523 /*
524  * memcg and lruvec stats flushing
525  *
526  * Many codepaths leading to stats update or read are performance sensitive and
527  * adding stats flushing in such codepaths is not desirable. So, to optimize the
528  * flushing the kernel does:
529  *
530  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
531  *    rstat update tree grow unbounded.
532  *
533  * 2) Flush the stats synchronously on reader side only when there are more than
534  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
535  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
536  *    only for 2 seconds due to (1).
537  */
538 static void flush_memcg_stats_dwork(struct work_struct *w);
539 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
540 static u64 flush_last_time;
541 
542 #define FLUSH_TIME (2UL*HZ)
543 
544 /*
545  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
546  * not rely on this as part of an acquired spinlock_t lock. These functions are
547  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
548  * is sufficient.
549  */
550 static void memcg_stats_lock(void)
551 {
552 	preempt_disable_nested();
553 	VM_WARN_ON_IRQS_ENABLED();
554 }
555 
556 static void __memcg_stats_lock(void)
557 {
558 	preempt_disable_nested();
559 }
560 
561 static void memcg_stats_unlock(void)
562 {
563 	preempt_enable_nested();
564 }
565 
566 
567 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
568 {
569 	return atomic64_read(&vmstats->stats_updates) >
570 		MEMCG_CHARGE_BATCH * num_online_cpus();
571 }
572 
573 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
574 {
575 	struct memcg_vmstats_percpu *statc;
576 	int cpu = smp_processor_id();
577 	unsigned int stats_updates;
578 
579 	if (!val)
580 		return;
581 
582 	cgroup_rstat_updated(memcg->css.cgroup, cpu);
583 	statc = this_cpu_ptr(memcg->vmstats_percpu);
584 	for (; statc; statc = statc->parent) {
585 		stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
586 		WRITE_ONCE(statc->stats_updates, stats_updates);
587 		if (stats_updates < MEMCG_CHARGE_BATCH)
588 			continue;
589 
590 		/*
591 		 * If @memcg is already flush-able, increasing stats_updates is
592 		 * redundant. Avoid the overhead of the atomic update.
593 		 */
594 		if (!memcg_vmstats_needs_flush(statc->vmstats))
595 			atomic64_add(stats_updates,
596 				     &statc->vmstats->stats_updates);
597 		WRITE_ONCE(statc->stats_updates, 0);
598 	}
599 }
600 
601 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
602 {
603 	bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
604 
605 	trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates),
606 		force, needs_flush);
607 
608 	if (!force && !needs_flush)
609 		return;
610 
611 	if (mem_cgroup_is_root(memcg))
612 		WRITE_ONCE(flush_last_time, jiffies_64);
613 
614 	cgroup_rstat_flush(memcg->css.cgroup);
615 }
616 
617 /*
618  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
619  * @memcg: root of the subtree to flush
620  *
621  * Flushing is serialized by the underlying global rstat lock. There is also a
622  * minimum amount of work to be done even if there are no stat updates to flush.
623  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
624  * avoids unnecessary work and contention on the underlying lock.
625  */
626 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
627 {
628 	if (mem_cgroup_disabled())
629 		return;
630 
631 	if (!memcg)
632 		memcg = root_mem_cgroup;
633 
634 	__mem_cgroup_flush_stats(memcg, false);
635 }
636 
637 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
638 {
639 	/* Only flush if the periodic flusher is one full cycle late */
640 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
641 		mem_cgroup_flush_stats(memcg);
642 }
643 
644 static void flush_memcg_stats_dwork(struct work_struct *w)
645 {
646 	/*
647 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
648 	 * in latency-sensitive paths is as cheap as possible.
649 	 */
650 	__mem_cgroup_flush_stats(root_mem_cgroup, true);
651 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
652 }
653 
654 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
655 {
656 	long x;
657 	int i = memcg_stats_index(idx);
658 
659 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
660 		return 0;
661 
662 	x = READ_ONCE(memcg->vmstats->state[i]);
663 #ifdef CONFIG_SMP
664 	if (x < 0)
665 		x = 0;
666 #endif
667 	return x;
668 }
669 
670 static int memcg_page_state_unit(int item);
671 
672 /*
673  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
674  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
675  */
676 static int memcg_state_val_in_pages(int idx, int val)
677 {
678 	int unit = memcg_page_state_unit(idx);
679 
680 	if (!val || unit == PAGE_SIZE)
681 		return val;
682 	else
683 		return max(val * unit / PAGE_SIZE, 1UL);
684 }
685 
686 /**
687  * __mod_memcg_state - update cgroup memory statistics
688  * @memcg: the memory cgroup
689  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
690  * @val: delta to add to the counter, can be negative
691  */
692 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
693 		       int val)
694 {
695 	int i = memcg_stats_index(idx);
696 
697 	if (mem_cgroup_disabled())
698 		return;
699 
700 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
701 		return;
702 
703 	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
704 	val = memcg_state_val_in_pages(idx, val);
705 	memcg_rstat_updated(memcg, val);
706 	trace_mod_memcg_state(memcg, idx, val);
707 }
708 
709 /* idx can be of type enum memcg_stat_item or node_stat_item. */
710 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
711 {
712 	long x;
713 	int i = memcg_stats_index(idx);
714 
715 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
716 		return 0;
717 
718 	x = READ_ONCE(memcg->vmstats->state_local[i]);
719 #ifdef CONFIG_SMP
720 	if (x < 0)
721 		x = 0;
722 #endif
723 	return x;
724 }
725 
726 static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
727 				     enum node_stat_item idx,
728 				     int val)
729 {
730 	struct mem_cgroup_per_node *pn;
731 	struct mem_cgroup *memcg;
732 	int i = memcg_stats_index(idx);
733 
734 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
735 		return;
736 
737 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
738 	memcg = pn->memcg;
739 
740 	/*
741 	 * The caller from rmap relies on disabled preemption because they never
742 	 * update their counter from in-interrupt context. For these two
743 	 * counters we check that the update is never performed from an
744 	 * interrupt context while other caller need to have disabled interrupt.
745 	 */
746 	__memcg_stats_lock();
747 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
748 		switch (idx) {
749 		case NR_ANON_MAPPED:
750 		case NR_FILE_MAPPED:
751 		case NR_ANON_THPS:
752 			WARN_ON_ONCE(!in_task());
753 			break;
754 		default:
755 			VM_WARN_ON_IRQS_ENABLED();
756 		}
757 	}
758 
759 	/* Update memcg */
760 	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
761 
762 	/* Update lruvec */
763 	__this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
764 
765 	val = memcg_state_val_in_pages(idx, val);
766 	memcg_rstat_updated(memcg, val);
767 	trace_mod_memcg_lruvec_state(memcg, idx, val);
768 	memcg_stats_unlock();
769 }
770 
771 /**
772  * __mod_lruvec_state - update lruvec memory statistics
773  * @lruvec: the lruvec
774  * @idx: the stat item
775  * @val: delta to add to the counter, can be negative
776  *
777  * The lruvec is the intersection of the NUMA node and a cgroup. This
778  * function updates the all three counters that are affected by a
779  * change of state at this level: per-node, per-cgroup, per-lruvec.
780  */
781 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
782 			int val)
783 {
784 	/* Update node */
785 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
786 
787 	/* Update memcg and lruvec */
788 	if (!mem_cgroup_disabled())
789 		__mod_memcg_lruvec_state(lruvec, idx, val);
790 }
791 
792 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
793 			     int val)
794 {
795 	struct mem_cgroup *memcg;
796 	pg_data_t *pgdat = folio_pgdat(folio);
797 	struct lruvec *lruvec;
798 
799 	rcu_read_lock();
800 	memcg = folio_memcg(folio);
801 	/* Untracked pages have no memcg, no lruvec. Update only the node */
802 	if (!memcg) {
803 		rcu_read_unlock();
804 		__mod_node_page_state(pgdat, idx, val);
805 		return;
806 	}
807 
808 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
809 	__mod_lruvec_state(lruvec, idx, val);
810 	rcu_read_unlock();
811 }
812 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
813 
814 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
815 {
816 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
817 	struct mem_cgroup *memcg;
818 	struct lruvec *lruvec;
819 
820 	rcu_read_lock();
821 	memcg = mem_cgroup_from_slab_obj(p);
822 
823 	/*
824 	 * Untracked pages have no memcg, no lruvec. Update only the
825 	 * node. If we reparent the slab objects to the root memcg,
826 	 * when we free the slab object, we need to update the per-memcg
827 	 * vmstats to keep it correct for the root memcg.
828 	 */
829 	if (!memcg) {
830 		__mod_node_page_state(pgdat, idx, val);
831 	} else {
832 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
833 		__mod_lruvec_state(lruvec, idx, val);
834 	}
835 	rcu_read_unlock();
836 }
837 
838 /**
839  * __count_memcg_events - account VM events in a cgroup
840  * @memcg: the memory cgroup
841  * @idx: the event item
842  * @count: the number of events that occurred
843  */
844 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
845 			  unsigned long count)
846 {
847 	int i = memcg_events_index(idx);
848 
849 	if (mem_cgroup_disabled())
850 		return;
851 
852 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
853 		return;
854 
855 	memcg_stats_lock();
856 	__this_cpu_add(memcg->vmstats_percpu->events[i], count);
857 	memcg_rstat_updated(memcg, count);
858 	trace_count_memcg_events(memcg, idx, count);
859 	memcg_stats_unlock();
860 }
861 
862 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
863 {
864 	int i = memcg_events_index(event);
865 
866 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
867 		return 0;
868 
869 	return READ_ONCE(memcg->vmstats->events[i]);
870 }
871 
872 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
873 {
874 	int i = memcg_events_index(event);
875 
876 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
877 		return 0;
878 
879 	return READ_ONCE(memcg->vmstats->events_local[i]);
880 }
881 
882 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
883 {
884 	/*
885 	 * mm_update_next_owner() may clear mm->owner to NULL
886 	 * if it races with swapoff, page migration, etc.
887 	 * So this can be called with p == NULL.
888 	 */
889 	if (unlikely(!p))
890 		return NULL;
891 
892 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
893 }
894 EXPORT_SYMBOL(mem_cgroup_from_task);
895 
896 static __always_inline struct mem_cgroup *active_memcg(void)
897 {
898 	if (!in_task())
899 		return this_cpu_read(int_active_memcg);
900 	else
901 		return current->active_memcg;
902 }
903 
904 /**
905  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
906  * @mm: mm from which memcg should be extracted. It can be NULL.
907  *
908  * Obtain a reference on mm->memcg and returns it if successful. If mm
909  * is NULL, then the memcg is chosen as follows:
910  * 1) The active memcg, if set.
911  * 2) current->mm->memcg, if available
912  * 3) root memcg
913  * If mem_cgroup is disabled, NULL is returned.
914  */
915 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
916 {
917 	struct mem_cgroup *memcg;
918 
919 	if (mem_cgroup_disabled())
920 		return NULL;
921 
922 	/*
923 	 * Page cache insertions can happen without an
924 	 * actual mm context, e.g. during disk probing
925 	 * on boot, loopback IO, acct() writes etc.
926 	 *
927 	 * No need to css_get on root memcg as the reference
928 	 * counting is disabled on the root level in the
929 	 * cgroup core. See CSS_NO_REF.
930 	 */
931 	if (unlikely(!mm)) {
932 		memcg = active_memcg();
933 		if (unlikely(memcg)) {
934 			/* remote memcg must hold a ref */
935 			css_get(&memcg->css);
936 			return memcg;
937 		}
938 		mm = current->mm;
939 		if (unlikely(!mm))
940 			return root_mem_cgroup;
941 	}
942 
943 	rcu_read_lock();
944 	do {
945 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
946 		if (unlikely(!memcg))
947 			memcg = root_mem_cgroup;
948 	} while (!css_tryget(&memcg->css));
949 	rcu_read_unlock();
950 	return memcg;
951 }
952 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
953 
954 /**
955  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
956  */
957 struct mem_cgroup *get_mem_cgroup_from_current(void)
958 {
959 	struct mem_cgroup *memcg;
960 
961 	if (mem_cgroup_disabled())
962 		return NULL;
963 
964 again:
965 	rcu_read_lock();
966 	memcg = mem_cgroup_from_task(current);
967 	if (!css_tryget(&memcg->css)) {
968 		rcu_read_unlock();
969 		goto again;
970 	}
971 	rcu_read_unlock();
972 	return memcg;
973 }
974 
975 /**
976  * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
977  * @folio: folio from which memcg should be extracted.
978  */
979 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
980 {
981 	struct mem_cgroup *memcg = folio_memcg(folio);
982 
983 	if (mem_cgroup_disabled())
984 		return NULL;
985 
986 	rcu_read_lock();
987 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
988 		memcg = root_mem_cgroup;
989 	rcu_read_unlock();
990 	return memcg;
991 }
992 
993 /**
994  * mem_cgroup_iter - iterate over memory cgroup hierarchy
995  * @root: hierarchy root
996  * @prev: previously returned memcg, NULL on first invocation
997  * @reclaim: cookie for shared reclaim walks, NULL for full walks
998  *
999  * Returns references to children of the hierarchy below @root, or
1000  * @root itself, or %NULL after a full round-trip.
1001  *
1002  * Caller must pass the return value in @prev on subsequent
1003  * invocations for reference counting, or use mem_cgroup_iter_break()
1004  * to cancel a hierarchy walk before the round-trip is complete.
1005  *
1006  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1007  * in the hierarchy among all concurrent reclaimers operating on the
1008  * same node.
1009  */
1010 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1011 				   struct mem_cgroup *prev,
1012 				   struct mem_cgroup_reclaim_cookie *reclaim)
1013 {
1014 	struct mem_cgroup_reclaim_iter *iter;
1015 	struct cgroup_subsys_state *css;
1016 	struct mem_cgroup *pos;
1017 	struct mem_cgroup *next;
1018 
1019 	if (mem_cgroup_disabled())
1020 		return NULL;
1021 
1022 	if (!root)
1023 		root = root_mem_cgroup;
1024 
1025 	rcu_read_lock();
1026 restart:
1027 	next = NULL;
1028 
1029 	if (reclaim) {
1030 		int gen;
1031 		int nid = reclaim->pgdat->node_id;
1032 
1033 		iter = &root->nodeinfo[nid]->iter;
1034 		gen = atomic_read(&iter->generation);
1035 
1036 		/*
1037 		 * On start, join the current reclaim iteration cycle.
1038 		 * Exit when a concurrent walker completes it.
1039 		 */
1040 		if (!prev)
1041 			reclaim->generation = gen;
1042 		else if (reclaim->generation != gen)
1043 			goto out_unlock;
1044 
1045 		pos = READ_ONCE(iter->position);
1046 	} else
1047 		pos = prev;
1048 
1049 	css = pos ? &pos->css : NULL;
1050 
1051 	while ((css = css_next_descendant_pre(css, &root->css))) {
1052 		/*
1053 		 * Verify the css and acquire a reference.  The root
1054 		 * is provided by the caller, so we know it's alive
1055 		 * and kicking, and don't take an extra reference.
1056 		 */
1057 		if (css == &root->css || css_tryget(css))
1058 			break;
1059 	}
1060 
1061 	next = mem_cgroup_from_css(css);
1062 
1063 	if (reclaim) {
1064 		/*
1065 		 * The position could have already been updated by a competing
1066 		 * thread, so check that the value hasn't changed since we read
1067 		 * it to avoid reclaiming from the same cgroup twice.
1068 		 */
1069 		if (cmpxchg(&iter->position, pos, next) != pos) {
1070 			if (css && css != &root->css)
1071 				css_put(css);
1072 			goto restart;
1073 		}
1074 
1075 		if (!next) {
1076 			atomic_inc(&iter->generation);
1077 
1078 			/*
1079 			 * Reclaimers share the hierarchy walk, and a
1080 			 * new one might jump in right at the end of
1081 			 * the hierarchy - make sure they see at least
1082 			 * one group and restart from the beginning.
1083 			 */
1084 			if (!prev)
1085 				goto restart;
1086 		}
1087 	}
1088 
1089 out_unlock:
1090 	rcu_read_unlock();
1091 	if (prev && prev != root)
1092 		css_put(&prev->css);
1093 
1094 	return next;
1095 }
1096 
1097 /**
1098  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099  * @root: hierarchy root
1100  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101  */
1102 void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 			   struct mem_cgroup *prev)
1104 {
1105 	if (!root)
1106 		root = root_mem_cgroup;
1107 	if (prev && prev != root)
1108 		css_put(&prev->css);
1109 }
1110 
1111 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 					struct mem_cgroup *dead_memcg)
1113 {
1114 	struct mem_cgroup_reclaim_iter *iter;
1115 	struct mem_cgroup_per_node *mz;
1116 	int nid;
1117 
1118 	for_each_node(nid) {
1119 		mz = from->nodeinfo[nid];
1120 		iter = &mz->iter;
1121 		cmpxchg(&iter->position, dead_memcg, NULL);
1122 	}
1123 }
1124 
1125 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126 {
1127 	struct mem_cgroup *memcg = dead_memcg;
1128 	struct mem_cgroup *last;
1129 
1130 	do {
1131 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1132 		last = memcg;
1133 	} while ((memcg = parent_mem_cgroup(memcg)));
1134 
1135 	/*
1136 	 * When cgroup1 non-hierarchy mode is used,
1137 	 * parent_mem_cgroup() does not walk all the way up to the
1138 	 * cgroup root (root_mem_cgroup). So we have to handle
1139 	 * dead_memcg from cgroup root separately.
1140 	 */
1141 	if (!mem_cgroup_is_root(last))
1142 		__invalidate_reclaim_iterators(root_mem_cgroup,
1143 						dead_memcg);
1144 }
1145 
1146 /**
1147  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148  * @memcg: hierarchy root
1149  * @fn: function to call for each task
1150  * @arg: argument passed to @fn
1151  *
1152  * This function iterates over tasks attached to @memcg or to any of its
1153  * descendants and calls @fn for each task. If @fn returns a non-zero
1154  * value, the function breaks the iteration loop. Otherwise, it will iterate
1155  * over all tasks and return 0.
1156  *
1157  * This function must not be called for the root memory cgroup.
1158  */
1159 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 			   int (*fn)(struct task_struct *, void *), void *arg)
1161 {
1162 	struct mem_cgroup *iter;
1163 	int ret = 0;
1164 
1165 	BUG_ON(mem_cgroup_is_root(memcg));
1166 
1167 	for_each_mem_cgroup_tree(iter, memcg) {
1168 		struct css_task_iter it;
1169 		struct task_struct *task;
1170 
1171 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172 		while (!ret && (task = css_task_iter_next(&it)))
1173 			ret = fn(task, arg);
1174 		css_task_iter_end(&it);
1175 		if (ret) {
1176 			mem_cgroup_iter_break(memcg, iter);
1177 			break;
1178 		}
1179 	}
1180 }
1181 
1182 #ifdef CONFIG_DEBUG_VM
1183 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1184 {
1185 	struct mem_cgroup *memcg;
1186 
1187 	if (mem_cgroup_disabled())
1188 		return;
1189 
1190 	memcg = folio_memcg(folio);
1191 
1192 	if (!memcg)
1193 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1194 	else
1195 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1196 }
1197 #endif
1198 
1199 /**
1200  * folio_lruvec_lock - Lock the lruvec for a folio.
1201  * @folio: Pointer to the folio.
1202  *
1203  * These functions are safe to use under any of the following conditions:
1204  * - folio locked
1205  * - folio_test_lru false
1206  * - folio frozen (refcount of 0)
1207  *
1208  * Return: The lruvec this folio is on with its lock held.
1209  */
1210 struct lruvec *folio_lruvec_lock(struct folio *folio)
1211 {
1212 	struct lruvec *lruvec = folio_lruvec(folio);
1213 
1214 	spin_lock(&lruvec->lru_lock);
1215 	lruvec_memcg_debug(lruvec, folio);
1216 
1217 	return lruvec;
1218 }
1219 
1220 /**
1221  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1222  * @folio: Pointer to the folio.
1223  *
1224  * These functions are safe to use under any of the following conditions:
1225  * - folio locked
1226  * - folio_test_lru false
1227  * - folio frozen (refcount of 0)
1228  *
1229  * Return: The lruvec this folio is on with its lock held and interrupts
1230  * disabled.
1231  */
1232 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1233 {
1234 	struct lruvec *lruvec = folio_lruvec(folio);
1235 
1236 	spin_lock_irq(&lruvec->lru_lock);
1237 	lruvec_memcg_debug(lruvec, folio);
1238 
1239 	return lruvec;
1240 }
1241 
1242 /**
1243  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1244  * @folio: Pointer to the folio.
1245  * @flags: Pointer to irqsave flags.
1246  *
1247  * These functions are safe to use under any of the following conditions:
1248  * - folio locked
1249  * - folio_test_lru false
1250  * - folio frozen (refcount of 0)
1251  *
1252  * Return: The lruvec this folio is on with its lock held and interrupts
1253  * disabled.
1254  */
1255 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1256 		unsigned long *flags)
1257 {
1258 	struct lruvec *lruvec = folio_lruvec(folio);
1259 
1260 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1261 	lruvec_memcg_debug(lruvec, folio);
1262 
1263 	return lruvec;
1264 }
1265 
1266 /**
1267  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1268  * @lruvec: mem_cgroup per zone lru vector
1269  * @lru: index of lru list the page is sitting on
1270  * @zid: zone id of the accounted pages
1271  * @nr_pages: positive when adding or negative when removing
1272  *
1273  * This function must be called under lru_lock, just before a page is added
1274  * to or just after a page is removed from an lru list.
1275  */
1276 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1277 				int zid, int nr_pages)
1278 {
1279 	struct mem_cgroup_per_node *mz;
1280 	unsigned long *lru_size;
1281 	long size;
1282 
1283 	if (mem_cgroup_disabled())
1284 		return;
1285 
1286 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1287 	lru_size = &mz->lru_zone_size[zid][lru];
1288 
1289 	if (nr_pages < 0)
1290 		*lru_size += nr_pages;
1291 
1292 	size = *lru_size;
1293 	if (WARN_ONCE(size < 0,
1294 		"%s(%p, %d, %d): lru_size %ld\n",
1295 		__func__, lruvec, lru, nr_pages, size)) {
1296 		VM_BUG_ON(1);
1297 		*lru_size = 0;
1298 	}
1299 
1300 	if (nr_pages > 0)
1301 		*lru_size += nr_pages;
1302 }
1303 
1304 /**
1305  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1306  * @memcg: the memory cgroup
1307  *
1308  * Returns the maximum amount of memory @mem can be charged with, in
1309  * pages.
1310  */
1311 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1312 {
1313 	unsigned long margin = 0;
1314 	unsigned long count;
1315 	unsigned long limit;
1316 
1317 	count = page_counter_read(&memcg->memory);
1318 	limit = READ_ONCE(memcg->memory.max);
1319 	if (count < limit)
1320 		margin = limit - count;
1321 
1322 	if (do_memsw_account()) {
1323 		count = page_counter_read(&memcg->memsw);
1324 		limit = READ_ONCE(memcg->memsw.max);
1325 		if (count < limit)
1326 			margin = min(margin, limit - count);
1327 		else
1328 			margin = 0;
1329 	}
1330 
1331 	return margin;
1332 }
1333 
1334 struct memory_stat {
1335 	const char *name;
1336 	unsigned int idx;
1337 };
1338 
1339 static const struct memory_stat memory_stats[] = {
1340 	{ "anon",			NR_ANON_MAPPED			},
1341 	{ "file",			NR_FILE_PAGES			},
1342 	{ "kernel",			MEMCG_KMEM			},
1343 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1344 	{ "pagetables",			NR_PAGETABLE			},
1345 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1346 	{ "percpu",			MEMCG_PERCPU_B			},
1347 	{ "sock",			MEMCG_SOCK			},
1348 	{ "vmalloc",			MEMCG_VMALLOC			},
1349 	{ "shmem",			NR_SHMEM			},
1350 #ifdef CONFIG_ZSWAP
1351 	{ "zswap",			MEMCG_ZSWAP_B			},
1352 	{ "zswapped",			MEMCG_ZSWAPPED			},
1353 #endif
1354 	{ "file_mapped",		NR_FILE_MAPPED			},
1355 	{ "file_dirty",			NR_FILE_DIRTY			},
1356 	{ "file_writeback",		NR_WRITEBACK			},
1357 #ifdef CONFIG_SWAP
1358 	{ "swapcached",			NR_SWAPCACHE			},
1359 #endif
1360 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1361 	{ "anon_thp",			NR_ANON_THPS			},
1362 	{ "file_thp",			NR_FILE_THPS			},
1363 	{ "shmem_thp",			NR_SHMEM_THPS			},
1364 #endif
1365 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1366 	{ "active_anon",		NR_ACTIVE_ANON			},
1367 	{ "inactive_file",		NR_INACTIVE_FILE		},
1368 	{ "active_file",		NR_ACTIVE_FILE			},
1369 	{ "unevictable",		NR_UNEVICTABLE			},
1370 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1371 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1372 #ifdef CONFIG_HUGETLB_PAGE
1373 	{ "hugetlb",			NR_HUGETLB			},
1374 #endif
1375 
1376 	/* The memory events */
1377 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1378 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1379 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1380 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1381 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1382 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1383 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1384 
1385 	{ "pgdemote_kswapd",		PGDEMOTE_KSWAPD		},
1386 	{ "pgdemote_direct",		PGDEMOTE_DIRECT		},
1387 	{ "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	},
1388 #ifdef CONFIG_NUMA_BALANCING
1389 	{ "pgpromote_success",		PGPROMOTE_SUCCESS	},
1390 #endif
1391 };
1392 
1393 /* The actual unit of the state item, not the same as the output unit */
1394 static int memcg_page_state_unit(int item)
1395 {
1396 	switch (item) {
1397 	case MEMCG_PERCPU_B:
1398 	case MEMCG_ZSWAP_B:
1399 	case NR_SLAB_RECLAIMABLE_B:
1400 	case NR_SLAB_UNRECLAIMABLE_B:
1401 		return 1;
1402 	case NR_KERNEL_STACK_KB:
1403 		return SZ_1K;
1404 	default:
1405 		return PAGE_SIZE;
1406 	}
1407 }
1408 
1409 /* Translate stat items to the correct unit for memory.stat output */
1410 static int memcg_page_state_output_unit(int item)
1411 {
1412 	/*
1413 	 * Workingset state is actually in pages, but we export it to userspace
1414 	 * as a scalar count of events, so special case it here.
1415 	 *
1416 	 * Demotion and promotion activities are exported in pages, consistent
1417 	 * with their global counterparts.
1418 	 */
1419 	switch (item) {
1420 	case WORKINGSET_REFAULT_ANON:
1421 	case WORKINGSET_REFAULT_FILE:
1422 	case WORKINGSET_ACTIVATE_ANON:
1423 	case WORKINGSET_ACTIVATE_FILE:
1424 	case WORKINGSET_RESTORE_ANON:
1425 	case WORKINGSET_RESTORE_FILE:
1426 	case WORKINGSET_NODERECLAIM:
1427 	case PGDEMOTE_KSWAPD:
1428 	case PGDEMOTE_DIRECT:
1429 	case PGDEMOTE_KHUGEPAGED:
1430 #ifdef CONFIG_NUMA_BALANCING
1431 	case PGPROMOTE_SUCCESS:
1432 #endif
1433 		return 1;
1434 	default:
1435 		return memcg_page_state_unit(item);
1436 	}
1437 }
1438 
1439 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1440 {
1441 	return memcg_page_state(memcg, item) *
1442 		memcg_page_state_output_unit(item);
1443 }
1444 
1445 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1446 {
1447 	return memcg_page_state_local(memcg, item) *
1448 		memcg_page_state_output_unit(item);
1449 }
1450 
1451 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1452 {
1453 	int i;
1454 
1455 	/*
1456 	 * Provide statistics on the state of the memory subsystem as
1457 	 * well as cumulative event counters that show past behavior.
1458 	 *
1459 	 * This list is ordered following a combination of these gradients:
1460 	 * 1) generic big picture -> specifics and details
1461 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1462 	 *
1463 	 * Current memory state:
1464 	 */
1465 	mem_cgroup_flush_stats(memcg);
1466 
1467 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1468 		u64 size;
1469 
1470 #ifdef CONFIG_HUGETLB_PAGE
1471 		if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1472 		    !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
1473 			continue;
1474 #endif
1475 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1476 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1477 
1478 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1479 			size += memcg_page_state_output(memcg,
1480 							NR_SLAB_RECLAIMABLE_B);
1481 			seq_buf_printf(s, "slab %llu\n", size);
1482 		}
1483 	}
1484 
1485 	/* Accumulated memory events */
1486 	seq_buf_printf(s, "pgscan %lu\n",
1487 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1488 		       memcg_events(memcg, PGSCAN_DIRECT) +
1489 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1490 	seq_buf_printf(s, "pgsteal %lu\n",
1491 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1492 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1493 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1494 
1495 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1496 #ifdef CONFIG_MEMCG_V1
1497 		if (memcg_vm_event_stat[i] == PGPGIN ||
1498 		    memcg_vm_event_stat[i] == PGPGOUT)
1499 			continue;
1500 #endif
1501 		seq_buf_printf(s, "%s %lu\n",
1502 			       vm_event_name(memcg_vm_event_stat[i]),
1503 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1504 	}
1505 }
1506 
1507 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1508 {
1509 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1510 		memcg_stat_format(memcg, s);
1511 	else
1512 		memcg1_stat_format(memcg, s);
1513 	if (seq_buf_has_overflowed(s))
1514 		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1515 }
1516 
1517 /**
1518  * mem_cgroup_print_oom_context: Print OOM information relevant to
1519  * memory controller.
1520  * @memcg: The memory cgroup that went over limit
1521  * @p: Task that is going to be killed
1522  *
1523  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1524  * enabled
1525  */
1526 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1527 {
1528 	rcu_read_lock();
1529 
1530 	if (memcg) {
1531 		pr_cont(",oom_memcg=");
1532 		pr_cont_cgroup_path(memcg->css.cgroup);
1533 	} else
1534 		pr_cont(",global_oom");
1535 	if (p) {
1536 		pr_cont(",task_memcg=");
1537 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1538 	}
1539 	rcu_read_unlock();
1540 }
1541 
1542 /**
1543  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1544  * memory controller.
1545  * @memcg: The memory cgroup that went over limit
1546  */
1547 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1548 {
1549 	/* Use static buffer, for the caller is holding oom_lock. */
1550 	static char buf[SEQ_BUF_SIZE];
1551 	struct seq_buf s;
1552 
1553 	lockdep_assert_held(&oom_lock);
1554 
1555 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1556 		K((u64)page_counter_read(&memcg->memory)),
1557 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1558 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1559 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1560 			K((u64)page_counter_read(&memcg->swap)),
1561 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1562 #ifdef CONFIG_MEMCG_V1
1563 	else {
1564 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1565 			K((u64)page_counter_read(&memcg->memsw)),
1566 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1567 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1568 			K((u64)page_counter_read(&memcg->kmem)),
1569 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1570 	}
1571 #endif
1572 
1573 	pr_info("Memory cgroup stats for ");
1574 	pr_cont_cgroup_path(memcg->css.cgroup);
1575 	pr_cont(":");
1576 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1577 	memory_stat_format(memcg, &s);
1578 	seq_buf_do_printk(&s, KERN_INFO);
1579 }
1580 
1581 /*
1582  * Return the memory (and swap, if configured) limit for a memcg.
1583  */
1584 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1585 {
1586 	unsigned long max = READ_ONCE(memcg->memory.max);
1587 
1588 	if (do_memsw_account()) {
1589 		if (mem_cgroup_swappiness(memcg)) {
1590 			/* Calculate swap excess capacity from memsw limit */
1591 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1592 
1593 			max += min(swap, (unsigned long)total_swap_pages);
1594 		}
1595 	} else {
1596 		if (mem_cgroup_swappiness(memcg))
1597 			max += min(READ_ONCE(memcg->swap.max),
1598 				   (unsigned long)total_swap_pages);
1599 	}
1600 	return max;
1601 }
1602 
1603 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1604 {
1605 	return page_counter_read(&memcg->memory);
1606 }
1607 
1608 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1609 				     int order)
1610 {
1611 	struct oom_control oc = {
1612 		.zonelist = NULL,
1613 		.nodemask = NULL,
1614 		.memcg = memcg,
1615 		.gfp_mask = gfp_mask,
1616 		.order = order,
1617 	};
1618 	bool ret = true;
1619 
1620 	if (mutex_lock_killable(&oom_lock))
1621 		return true;
1622 
1623 	if (mem_cgroup_margin(memcg) >= (1 << order))
1624 		goto unlock;
1625 
1626 	/*
1627 	 * A few threads which were not waiting at mutex_lock_killable() can
1628 	 * fail to bail out. Therefore, check again after holding oom_lock.
1629 	 */
1630 	ret = task_is_dying() || out_of_memory(&oc);
1631 
1632 unlock:
1633 	mutex_unlock(&oom_lock);
1634 	return ret;
1635 }
1636 
1637 /*
1638  * Returns true if successfully killed one or more processes. Though in some
1639  * corner cases it can return true even without killing any process.
1640  */
1641 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1642 {
1643 	bool locked, ret;
1644 
1645 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1646 		return false;
1647 
1648 	memcg_memory_event(memcg, MEMCG_OOM);
1649 
1650 	if (!memcg1_oom_prepare(memcg, &locked))
1651 		return false;
1652 
1653 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1654 
1655 	memcg1_oom_finish(memcg, locked);
1656 
1657 	return ret;
1658 }
1659 
1660 /**
1661  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1662  * @victim: task to be killed by the OOM killer
1663  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1664  *
1665  * Returns a pointer to a memory cgroup, which has to be cleaned up
1666  * by killing all belonging OOM-killable tasks.
1667  *
1668  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1669  */
1670 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1671 					    struct mem_cgroup *oom_domain)
1672 {
1673 	struct mem_cgroup *oom_group = NULL;
1674 	struct mem_cgroup *memcg;
1675 
1676 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1677 		return NULL;
1678 
1679 	if (!oom_domain)
1680 		oom_domain = root_mem_cgroup;
1681 
1682 	rcu_read_lock();
1683 
1684 	memcg = mem_cgroup_from_task(victim);
1685 	if (mem_cgroup_is_root(memcg))
1686 		goto out;
1687 
1688 	/*
1689 	 * If the victim task has been asynchronously moved to a different
1690 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1691 	 * In this case it's better to ignore memory.group.oom.
1692 	 */
1693 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1694 		goto out;
1695 
1696 	/*
1697 	 * Traverse the memory cgroup hierarchy from the victim task's
1698 	 * cgroup up to the OOMing cgroup (or root) to find the
1699 	 * highest-level memory cgroup with oom.group set.
1700 	 */
1701 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1702 		if (READ_ONCE(memcg->oom_group))
1703 			oom_group = memcg;
1704 
1705 		if (memcg == oom_domain)
1706 			break;
1707 	}
1708 
1709 	if (oom_group)
1710 		css_get(&oom_group->css);
1711 out:
1712 	rcu_read_unlock();
1713 
1714 	return oom_group;
1715 }
1716 
1717 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1718 {
1719 	pr_info("Tasks in ");
1720 	pr_cont_cgroup_path(memcg->css.cgroup);
1721 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1722 }
1723 
1724 struct memcg_stock_pcp {
1725 	local_lock_t stock_lock;
1726 	struct mem_cgroup *cached; /* this never be root cgroup */
1727 	unsigned int nr_pages;
1728 
1729 	struct obj_cgroup *cached_objcg;
1730 	struct pglist_data *cached_pgdat;
1731 	unsigned int nr_bytes;
1732 	int nr_slab_reclaimable_b;
1733 	int nr_slab_unreclaimable_b;
1734 
1735 	struct work_struct work;
1736 	unsigned long flags;
1737 #define FLUSHING_CACHED_CHARGE	0
1738 };
1739 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1740 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
1741 };
1742 static DEFINE_MUTEX(percpu_charge_mutex);
1743 
1744 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1745 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1746 				     struct mem_cgroup *root_memcg);
1747 
1748 /**
1749  * consume_stock: Try to consume stocked charge on this cpu.
1750  * @memcg: memcg to consume from.
1751  * @nr_pages: how many pages to charge.
1752  *
1753  * The charges will only happen if @memcg matches the current cpu's memcg
1754  * stock, and at least @nr_pages are available in that stock.  Failure to
1755  * service an allocation will refill the stock.
1756  *
1757  * returns true if successful, false otherwise.
1758  */
1759 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1760 {
1761 	struct memcg_stock_pcp *stock;
1762 	unsigned int stock_pages;
1763 	unsigned long flags;
1764 	bool ret = false;
1765 
1766 	if (nr_pages > MEMCG_CHARGE_BATCH)
1767 		return ret;
1768 
1769 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1770 
1771 	stock = this_cpu_ptr(&memcg_stock);
1772 	stock_pages = READ_ONCE(stock->nr_pages);
1773 	if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1774 		WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1775 		ret = true;
1776 	}
1777 
1778 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1779 
1780 	return ret;
1781 }
1782 
1783 /*
1784  * Returns stocks cached in percpu and reset cached information.
1785  */
1786 static void drain_stock(struct memcg_stock_pcp *stock)
1787 {
1788 	unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1789 	struct mem_cgroup *old = READ_ONCE(stock->cached);
1790 
1791 	if (!old)
1792 		return;
1793 
1794 	if (stock_pages) {
1795 		page_counter_uncharge(&old->memory, stock_pages);
1796 		if (do_memsw_account())
1797 			page_counter_uncharge(&old->memsw, stock_pages);
1798 
1799 		WRITE_ONCE(stock->nr_pages, 0);
1800 	}
1801 
1802 	css_put(&old->css);
1803 	WRITE_ONCE(stock->cached, NULL);
1804 }
1805 
1806 static void drain_local_stock(struct work_struct *dummy)
1807 {
1808 	struct memcg_stock_pcp *stock;
1809 	struct obj_cgroup *old = NULL;
1810 	unsigned long flags;
1811 
1812 	/*
1813 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1814 	 * drain_stock races is that we always operate on local CPU stock
1815 	 * here with IRQ disabled
1816 	 */
1817 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1818 
1819 	stock = this_cpu_ptr(&memcg_stock);
1820 	old = drain_obj_stock(stock);
1821 	drain_stock(stock);
1822 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1823 
1824 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1825 	obj_cgroup_put(old);
1826 }
1827 
1828 /*
1829  * Cache charges(val) to local per_cpu area.
1830  * This will be consumed by consume_stock() function, later.
1831  */
1832 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1833 {
1834 	struct memcg_stock_pcp *stock;
1835 	unsigned int stock_pages;
1836 
1837 	stock = this_cpu_ptr(&memcg_stock);
1838 	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1839 		drain_stock(stock);
1840 		css_get(&memcg->css);
1841 		WRITE_ONCE(stock->cached, memcg);
1842 	}
1843 	stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1844 	WRITE_ONCE(stock->nr_pages, stock_pages);
1845 
1846 	if (stock_pages > MEMCG_CHARGE_BATCH)
1847 		drain_stock(stock);
1848 }
1849 
1850 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1851 {
1852 	unsigned long flags;
1853 
1854 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1855 	__refill_stock(memcg, nr_pages);
1856 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1857 }
1858 
1859 /*
1860  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1861  * of the hierarchy under it.
1862  */
1863 void drain_all_stock(struct mem_cgroup *root_memcg)
1864 {
1865 	int cpu, curcpu;
1866 
1867 	/* If someone's already draining, avoid adding running more workers. */
1868 	if (!mutex_trylock(&percpu_charge_mutex))
1869 		return;
1870 	/*
1871 	 * Notify other cpus that system-wide "drain" is running
1872 	 * We do not care about races with the cpu hotplug because cpu down
1873 	 * as well as workers from this path always operate on the local
1874 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1875 	 */
1876 	migrate_disable();
1877 	curcpu = smp_processor_id();
1878 	for_each_online_cpu(cpu) {
1879 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1880 		struct mem_cgroup *memcg;
1881 		bool flush = false;
1882 
1883 		rcu_read_lock();
1884 		memcg = READ_ONCE(stock->cached);
1885 		if (memcg && READ_ONCE(stock->nr_pages) &&
1886 		    mem_cgroup_is_descendant(memcg, root_memcg))
1887 			flush = true;
1888 		else if (obj_stock_flush_required(stock, root_memcg))
1889 			flush = true;
1890 		rcu_read_unlock();
1891 
1892 		if (flush &&
1893 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1894 			if (cpu == curcpu)
1895 				drain_local_stock(&stock->work);
1896 			else if (!cpu_is_isolated(cpu))
1897 				schedule_work_on(cpu, &stock->work);
1898 		}
1899 	}
1900 	migrate_enable();
1901 	mutex_unlock(&percpu_charge_mutex);
1902 }
1903 
1904 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1905 {
1906 	struct memcg_stock_pcp *stock;
1907 
1908 	stock = &per_cpu(memcg_stock, cpu);
1909 	drain_stock(stock);
1910 
1911 	return 0;
1912 }
1913 
1914 static unsigned long reclaim_high(struct mem_cgroup *memcg,
1915 				  unsigned int nr_pages,
1916 				  gfp_t gfp_mask)
1917 {
1918 	unsigned long nr_reclaimed = 0;
1919 
1920 	do {
1921 		unsigned long pflags;
1922 
1923 		if (page_counter_read(&memcg->memory) <=
1924 		    READ_ONCE(memcg->memory.high))
1925 			continue;
1926 
1927 		memcg_memory_event(memcg, MEMCG_HIGH);
1928 
1929 		psi_memstall_enter(&pflags);
1930 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1931 							gfp_mask,
1932 							MEMCG_RECLAIM_MAY_SWAP,
1933 							NULL);
1934 		psi_memstall_leave(&pflags);
1935 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1936 		 !mem_cgroup_is_root(memcg));
1937 
1938 	return nr_reclaimed;
1939 }
1940 
1941 static void high_work_func(struct work_struct *work)
1942 {
1943 	struct mem_cgroup *memcg;
1944 
1945 	memcg = container_of(work, struct mem_cgroup, high_work);
1946 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1947 }
1948 
1949 /*
1950  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1951  * enough to still cause a significant slowdown in most cases, while still
1952  * allowing diagnostics and tracing to proceed without becoming stuck.
1953  */
1954 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1955 
1956 /*
1957  * When calculating the delay, we use these either side of the exponentiation to
1958  * maintain precision and scale to a reasonable number of jiffies (see the table
1959  * below.
1960  *
1961  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
1962  *   overage ratio to a delay.
1963  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
1964  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
1965  *   to produce a reasonable delay curve.
1966  *
1967  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
1968  * reasonable delay curve compared to precision-adjusted overage, not
1969  * penalising heavily at first, but still making sure that growth beyond the
1970  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
1971  * example, with a high of 100 megabytes:
1972  *
1973  *  +-------+------------------------+
1974  *  | usage | time to allocate in ms |
1975  *  +-------+------------------------+
1976  *  | 100M  |                      0 |
1977  *  | 101M  |                      6 |
1978  *  | 102M  |                     25 |
1979  *  | 103M  |                     57 |
1980  *  | 104M  |                    102 |
1981  *  | 105M  |                    159 |
1982  *  | 106M  |                    230 |
1983  *  | 107M  |                    313 |
1984  *  | 108M  |                    409 |
1985  *  | 109M  |                    518 |
1986  *  | 110M  |                    639 |
1987  *  | 111M  |                    774 |
1988  *  | 112M  |                    921 |
1989  *  | 113M  |                   1081 |
1990  *  | 114M  |                   1254 |
1991  *  | 115M  |                   1439 |
1992  *  | 116M  |                   1638 |
1993  *  | 117M  |                   1849 |
1994  *  | 118M  |                   2000 |
1995  *  | 119M  |                   2000 |
1996  *  | 120M  |                   2000 |
1997  *  +-------+------------------------+
1998  */
1999  #define MEMCG_DELAY_PRECISION_SHIFT 20
2000  #define MEMCG_DELAY_SCALING_SHIFT 14
2001 
2002 static u64 calculate_overage(unsigned long usage, unsigned long high)
2003 {
2004 	u64 overage;
2005 
2006 	if (usage <= high)
2007 		return 0;
2008 
2009 	/*
2010 	 * Prevent division by 0 in overage calculation by acting as if
2011 	 * it was a threshold of 1 page
2012 	 */
2013 	high = max(high, 1UL);
2014 
2015 	overage = usage - high;
2016 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2017 	return div64_u64(overage, high);
2018 }
2019 
2020 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2021 {
2022 	u64 overage, max_overage = 0;
2023 
2024 	do {
2025 		overage = calculate_overage(page_counter_read(&memcg->memory),
2026 					    READ_ONCE(memcg->memory.high));
2027 		max_overage = max(overage, max_overage);
2028 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2029 		 !mem_cgroup_is_root(memcg));
2030 
2031 	return max_overage;
2032 }
2033 
2034 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2035 {
2036 	u64 overage, max_overage = 0;
2037 
2038 	do {
2039 		overage = calculate_overage(page_counter_read(&memcg->swap),
2040 					    READ_ONCE(memcg->swap.high));
2041 		if (overage)
2042 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2043 		max_overage = max(overage, max_overage);
2044 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2045 		 !mem_cgroup_is_root(memcg));
2046 
2047 	return max_overage;
2048 }
2049 
2050 /*
2051  * Get the number of jiffies that we should penalise a mischievous cgroup which
2052  * is exceeding its memory.high by checking both it and its ancestors.
2053  */
2054 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2055 					  unsigned int nr_pages,
2056 					  u64 max_overage)
2057 {
2058 	unsigned long penalty_jiffies;
2059 
2060 	if (!max_overage)
2061 		return 0;
2062 
2063 	/*
2064 	 * We use overage compared to memory.high to calculate the number of
2065 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2066 	 * fairly lenient on small overages, and increasingly harsh when the
2067 	 * memcg in question makes it clear that it has no intention of stopping
2068 	 * its crazy behaviour, so we exponentially increase the delay based on
2069 	 * overage amount.
2070 	 */
2071 	penalty_jiffies = max_overage * max_overage * HZ;
2072 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2073 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2074 
2075 	/*
2076 	 * Factor in the task's own contribution to the overage, such that four
2077 	 * N-sized allocations are throttled approximately the same as one
2078 	 * 4N-sized allocation.
2079 	 *
2080 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2081 	 * larger the current charge patch is than that.
2082 	 */
2083 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2084 }
2085 
2086 /*
2087  * Reclaims memory over the high limit. Called directly from
2088  * try_charge() (context permitting), as well as from the userland
2089  * return path where reclaim is always able to block.
2090  */
2091 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2092 {
2093 	unsigned long penalty_jiffies;
2094 	unsigned long pflags;
2095 	unsigned long nr_reclaimed;
2096 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2097 	int nr_retries = MAX_RECLAIM_RETRIES;
2098 	struct mem_cgroup *memcg;
2099 	bool in_retry = false;
2100 
2101 	if (likely(!nr_pages))
2102 		return;
2103 
2104 	memcg = get_mem_cgroup_from_mm(current->mm);
2105 	current->memcg_nr_pages_over_high = 0;
2106 
2107 retry_reclaim:
2108 	/*
2109 	 * Bail if the task is already exiting. Unlike memory.max,
2110 	 * memory.high enforcement isn't as strict, and there is no
2111 	 * OOM killer involved, which means the excess could already
2112 	 * be much bigger (and still growing) than it could for
2113 	 * memory.max; the dying task could get stuck in fruitless
2114 	 * reclaim for a long time, which isn't desirable.
2115 	 */
2116 	if (task_is_dying())
2117 		goto out;
2118 
2119 	/*
2120 	 * The allocating task should reclaim at least the batch size, but for
2121 	 * subsequent retries we only want to do what's necessary to prevent oom
2122 	 * or breaching resource isolation.
2123 	 *
2124 	 * This is distinct from memory.max or page allocator behaviour because
2125 	 * memory.high is currently batched, whereas memory.max and the page
2126 	 * allocator run every time an allocation is made.
2127 	 */
2128 	nr_reclaimed = reclaim_high(memcg,
2129 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2130 				    gfp_mask);
2131 
2132 	/*
2133 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2134 	 * allocators proactively to slow down excessive growth.
2135 	 */
2136 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2137 					       mem_find_max_overage(memcg));
2138 
2139 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2140 						swap_find_max_overage(memcg));
2141 
2142 	/*
2143 	 * Clamp the max delay per usermode return so as to still keep the
2144 	 * application moving forwards and also permit diagnostics, albeit
2145 	 * extremely slowly.
2146 	 */
2147 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2148 
2149 	/*
2150 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2151 	 * that it's not even worth doing, in an attempt to be nice to those who
2152 	 * go only a small amount over their memory.high value and maybe haven't
2153 	 * been aggressively reclaimed enough yet.
2154 	 */
2155 	if (penalty_jiffies <= HZ / 100)
2156 		goto out;
2157 
2158 	/*
2159 	 * If reclaim is making forward progress but we're still over
2160 	 * memory.high, we want to encourage that rather than doing allocator
2161 	 * throttling.
2162 	 */
2163 	if (nr_reclaimed || nr_retries--) {
2164 		in_retry = true;
2165 		goto retry_reclaim;
2166 	}
2167 
2168 	/*
2169 	 * Reclaim didn't manage to push usage below the limit, slow
2170 	 * this allocating task down.
2171 	 *
2172 	 * If we exit early, we're guaranteed to die (since
2173 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2174 	 * need to account for any ill-begotten jiffies to pay them off later.
2175 	 */
2176 	psi_memstall_enter(&pflags);
2177 	schedule_timeout_killable(penalty_jiffies);
2178 	psi_memstall_leave(&pflags);
2179 
2180 out:
2181 	css_put(&memcg->css);
2182 }
2183 
2184 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2185 		     unsigned int nr_pages)
2186 {
2187 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2188 	int nr_retries = MAX_RECLAIM_RETRIES;
2189 	struct mem_cgroup *mem_over_limit;
2190 	struct page_counter *counter;
2191 	unsigned long nr_reclaimed;
2192 	bool passed_oom = false;
2193 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2194 	bool drained = false;
2195 	bool raised_max_event = false;
2196 	unsigned long pflags;
2197 
2198 retry:
2199 	if (consume_stock(memcg, nr_pages))
2200 		return 0;
2201 
2202 	if (!do_memsw_account() ||
2203 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2204 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2205 			goto done_restock;
2206 		if (do_memsw_account())
2207 			page_counter_uncharge(&memcg->memsw, batch);
2208 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2209 	} else {
2210 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2211 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2212 	}
2213 
2214 	if (batch > nr_pages) {
2215 		batch = nr_pages;
2216 		goto retry;
2217 	}
2218 
2219 	/*
2220 	 * Prevent unbounded recursion when reclaim operations need to
2221 	 * allocate memory. This might exceed the limits temporarily,
2222 	 * but we prefer facilitating memory reclaim and getting back
2223 	 * under the limit over triggering OOM kills in these cases.
2224 	 */
2225 	if (unlikely(current->flags & PF_MEMALLOC))
2226 		goto force;
2227 
2228 	if (unlikely(task_in_memcg_oom(current)))
2229 		goto nomem;
2230 
2231 	if (!gfpflags_allow_blocking(gfp_mask))
2232 		goto nomem;
2233 
2234 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2235 	raised_max_event = true;
2236 
2237 	psi_memstall_enter(&pflags);
2238 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2239 						    gfp_mask, reclaim_options, NULL);
2240 	psi_memstall_leave(&pflags);
2241 
2242 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2243 		goto retry;
2244 
2245 	if (!drained) {
2246 		drain_all_stock(mem_over_limit);
2247 		drained = true;
2248 		goto retry;
2249 	}
2250 
2251 	if (gfp_mask & __GFP_NORETRY)
2252 		goto nomem;
2253 	/*
2254 	 * Even though the limit is exceeded at this point, reclaim
2255 	 * may have been able to free some pages.  Retry the charge
2256 	 * before killing the task.
2257 	 *
2258 	 * Only for regular pages, though: huge pages are rather
2259 	 * unlikely to succeed so close to the limit, and we fall back
2260 	 * to regular pages anyway in case of failure.
2261 	 */
2262 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2263 		goto retry;
2264 
2265 	if (nr_retries--)
2266 		goto retry;
2267 
2268 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2269 		goto nomem;
2270 
2271 	/* Avoid endless loop for tasks bypassed by the oom killer */
2272 	if (passed_oom && task_is_dying())
2273 		goto nomem;
2274 
2275 	/*
2276 	 * keep retrying as long as the memcg oom killer is able to make
2277 	 * a forward progress or bypass the charge if the oom killer
2278 	 * couldn't make any progress.
2279 	 */
2280 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2281 			   get_order(nr_pages * PAGE_SIZE))) {
2282 		passed_oom = true;
2283 		nr_retries = MAX_RECLAIM_RETRIES;
2284 		goto retry;
2285 	}
2286 nomem:
2287 	/*
2288 	 * Memcg doesn't have a dedicated reserve for atomic
2289 	 * allocations. But like the global atomic pool, we need to
2290 	 * put the burden of reclaim on regular allocation requests
2291 	 * and let these go through as privileged allocations.
2292 	 */
2293 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2294 		return -ENOMEM;
2295 force:
2296 	/*
2297 	 * If the allocation has to be enforced, don't forget to raise
2298 	 * a MEMCG_MAX event.
2299 	 */
2300 	if (!raised_max_event)
2301 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2302 
2303 	/*
2304 	 * The allocation either can't fail or will lead to more memory
2305 	 * being freed very soon.  Allow memory usage go over the limit
2306 	 * temporarily by force charging it.
2307 	 */
2308 	page_counter_charge(&memcg->memory, nr_pages);
2309 	if (do_memsw_account())
2310 		page_counter_charge(&memcg->memsw, nr_pages);
2311 
2312 	return 0;
2313 
2314 done_restock:
2315 	if (batch > nr_pages)
2316 		refill_stock(memcg, batch - nr_pages);
2317 
2318 	/*
2319 	 * If the hierarchy is above the normal consumption range, schedule
2320 	 * reclaim on returning to userland.  We can perform reclaim here
2321 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2322 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2323 	 * not recorded as it most likely matches current's and won't
2324 	 * change in the meantime.  As high limit is checked again before
2325 	 * reclaim, the cost of mismatch is negligible.
2326 	 */
2327 	do {
2328 		bool mem_high, swap_high;
2329 
2330 		mem_high = page_counter_read(&memcg->memory) >
2331 			READ_ONCE(memcg->memory.high);
2332 		swap_high = page_counter_read(&memcg->swap) >
2333 			READ_ONCE(memcg->swap.high);
2334 
2335 		/* Don't bother a random interrupted task */
2336 		if (!in_task()) {
2337 			if (mem_high) {
2338 				schedule_work(&memcg->high_work);
2339 				break;
2340 			}
2341 			continue;
2342 		}
2343 
2344 		if (mem_high || swap_high) {
2345 			/*
2346 			 * The allocating tasks in this cgroup will need to do
2347 			 * reclaim or be throttled to prevent further growth
2348 			 * of the memory or swap footprints.
2349 			 *
2350 			 * Target some best-effort fairness between the tasks,
2351 			 * and distribute reclaim work and delay penalties
2352 			 * based on how much each task is actually allocating.
2353 			 */
2354 			current->memcg_nr_pages_over_high += batch;
2355 			set_notify_resume(current);
2356 			break;
2357 		}
2358 	} while ((memcg = parent_mem_cgroup(memcg)));
2359 
2360 	/*
2361 	 * Reclaim is set up above to be called from the userland
2362 	 * return path. But also attempt synchronous reclaim to avoid
2363 	 * excessive overrun while the task is still inside the
2364 	 * kernel. If this is successful, the return path will see it
2365 	 * when it rechecks the overage and simply bail out.
2366 	 */
2367 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2368 	    !(current->flags & PF_MEMALLOC) &&
2369 	    gfpflags_allow_blocking(gfp_mask))
2370 		mem_cgroup_handle_over_high(gfp_mask);
2371 	return 0;
2372 }
2373 
2374 /**
2375  * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2376  * @memcg: memcg previously charged.
2377  * @nr_pages: number of pages previously charged.
2378  */
2379 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2380 {
2381 	if (mem_cgroup_is_root(memcg))
2382 		return;
2383 
2384 	page_counter_uncharge(&memcg->memory, nr_pages);
2385 	if (do_memsw_account())
2386 		page_counter_uncharge(&memcg->memsw, nr_pages);
2387 }
2388 
2389 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2390 {
2391 	VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2392 	/*
2393 	 * Any of the following ensures page's memcg stability:
2394 	 *
2395 	 * - the page lock
2396 	 * - LRU isolation
2397 	 * - exclusive reference
2398 	 */
2399 	folio->memcg_data = (unsigned long)memcg;
2400 }
2401 
2402 /**
2403  * mem_cgroup_commit_charge - commit a previously successful try_charge().
2404  * @folio: folio to commit the charge to.
2405  * @memcg: memcg previously charged.
2406  */
2407 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2408 {
2409 	css_get(&memcg->css);
2410 	commit_charge(folio, memcg);
2411 	memcg1_commit_charge(folio, memcg);
2412 }
2413 
2414 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2415 				       struct pglist_data *pgdat,
2416 				       enum node_stat_item idx, int nr)
2417 {
2418 	struct mem_cgroup *memcg;
2419 	struct lruvec *lruvec;
2420 
2421 	rcu_read_lock();
2422 	memcg = obj_cgroup_memcg(objcg);
2423 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2424 	__mod_memcg_lruvec_state(lruvec, idx, nr);
2425 	rcu_read_unlock();
2426 }
2427 
2428 static __always_inline
2429 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2430 {
2431 	/*
2432 	 * Slab objects are accounted individually, not per-page.
2433 	 * Memcg membership data for each individual object is saved in
2434 	 * slab->obj_exts.
2435 	 */
2436 	if (folio_test_slab(folio)) {
2437 		struct slabobj_ext *obj_exts;
2438 		struct slab *slab;
2439 		unsigned int off;
2440 
2441 		slab = folio_slab(folio);
2442 		obj_exts = slab_obj_exts(slab);
2443 		if (!obj_exts)
2444 			return NULL;
2445 
2446 		off = obj_to_index(slab->slab_cache, slab, p);
2447 		if (obj_exts[off].objcg)
2448 			return obj_cgroup_memcg(obj_exts[off].objcg);
2449 
2450 		return NULL;
2451 	}
2452 
2453 	/*
2454 	 * folio_memcg_check() is used here, because in theory we can encounter
2455 	 * a folio where the slab flag has been cleared already, but
2456 	 * slab->obj_exts has not been freed yet
2457 	 * folio_memcg_check() will guarantee that a proper memory
2458 	 * cgroup pointer or NULL will be returned.
2459 	 */
2460 	return folio_memcg_check(folio);
2461 }
2462 
2463 /*
2464  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2465  * It is not suitable for objects allocated using vmalloc().
2466  *
2467  * A passed kernel object must be a slab object or a generic kernel page.
2468  *
2469  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2470  * cgroup_mutex, etc.
2471  */
2472 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2473 {
2474 	if (mem_cgroup_disabled())
2475 		return NULL;
2476 
2477 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2478 }
2479 
2480 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2481 {
2482 	struct obj_cgroup *objcg = NULL;
2483 
2484 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2485 		objcg = rcu_dereference(memcg->objcg);
2486 		if (likely(objcg && obj_cgroup_tryget(objcg)))
2487 			break;
2488 		objcg = NULL;
2489 	}
2490 	return objcg;
2491 }
2492 
2493 static struct obj_cgroup *current_objcg_update(void)
2494 {
2495 	struct mem_cgroup *memcg;
2496 	struct obj_cgroup *old, *objcg = NULL;
2497 
2498 	do {
2499 		/* Atomically drop the update bit. */
2500 		old = xchg(&current->objcg, NULL);
2501 		if (old) {
2502 			old = (struct obj_cgroup *)
2503 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2504 			obj_cgroup_put(old);
2505 
2506 			old = NULL;
2507 		}
2508 
2509 		/* If new objcg is NULL, no reason for the second atomic update. */
2510 		if (!current->mm || (current->flags & PF_KTHREAD))
2511 			return NULL;
2512 
2513 		/*
2514 		 * Release the objcg pointer from the previous iteration,
2515 		 * if try_cmpxcg() below fails.
2516 		 */
2517 		if (unlikely(objcg)) {
2518 			obj_cgroup_put(objcg);
2519 			objcg = NULL;
2520 		}
2521 
2522 		/*
2523 		 * Obtain the new objcg pointer. The current task can be
2524 		 * asynchronously moved to another memcg and the previous
2525 		 * memcg can be offlined. So let's get the memcg pointer
2526 		 * and try get a reference to objcg under a rcu read lock.
2527 		 */
2528 
2529 		rcu_read_lock();
2530 		memcg = mem_cgroup_from_task(current);
2531 		objcg = __get_obj_cgroup_from_memcg(memcg);
2532 		rcu_read_unlock();
2533 
2534 		/*
2535 		 * Try set up a new objcg pointer atomically. If it
2536 		 * fails, it means the update flag was set concurrently, so
2537 		 * the whole procedure should be repeated.
2538 		 */
2539 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
2540 
2541 	return objcg;
2542 }
2543 
2544 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2545 {
2546 	struct mem_cgroup *memcg;
2547 	struct obj_cgroup *objcg;
2548 
2549 	if (in_task()) {
2550 		memcg = current->active_memcg;
2551 		if (unlikely(memcg))
2552 			goto from_memcg;
2553 
2554 		objcg = READ_ONCE(current->objcg);
2555 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2556 			objcg = current_objcg_update();
2557 		/*
2558 		 * Objcg reference is kept by the task, so it's safe
2559 		 * to use the objcg by the current task.
2560 		 */
2561 		return objcg;
2562 	}
2563 
2564 	memcg = this_cpu_read(int_active_memcg);
2565 	if (unlikely(memcg))
2566 		goto from_memcg;
2567 
2568 	return NULL;
2569 
2570 from_memcg:
2571 	objcg = NULL;
2572 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2573 		/*
2574 		 * Memcg pointer is protected by scope (see set_active_memcg())
2575 		 * and is pinning the corresponding objcg, so objcg can't go
2576 		 * away and can be used within the scope without any additional
2577 		 * protection.
2578 		 */
2579 		objcg = rcu_dereference_check(memcg->objcg, 1);
2580 		if (likely(objcg))
2581 			break;
2582 	}
2583 
2584 	return objcg;
2585 }
2586 
2587 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2588 {
2589 	struct obj_cgroup *objcg;
2590 
2591 	if (!memcg_kmem_online())
2592 		return NULL;
2593 
2594 	if (folio_memcg_kmem(folio)) {
2595 		objcg = __folio_objcg(folio);
2596 		obj_cgroup_get(objcg);
2597 	} else {
2598 		struct mem_cgroup *memcg;
2599 
2600 		rcu_read_lock();
2601 		memcg = __folio_memcg(folio);
2602 		if (memcg)
2603 			objcg = __get_obj_cgroup_from_memcg(memcg);
2604 		else
2605 			objcg = NULL;
2606 		rcu_read_unlock();
2607 	}
2608 	return objcg;
2609 }
2610 
2611 /*
2612  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2613  * @objcg: object cgroup to uncharge
2614  * @nr_pages: number of pages to uncharge
2615  */
2616 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2617 				      unsigned int nr_pages)
2618 {
2619 	struct mem_cgroup *memcg;
2620 
2621 	memcg = get_mem_cgroup_from_objcg(objcg);
2622 
2623 	mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2624 	memcg1_account_kmem(memcg, -nr_pages);
2625 	refill_stock(memcg, nr_pages);
2626 
2627 	css_put(&memcg->css);
2628 }
2629 
2630 /*
2631  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2632  * @objcg: object cgroup to charge
2633  * @gfp: reclaim mode
2634  * @nr_pages: number of pages to charge
2635  *
2636  * Returns 0 on success, an error code on failure.
2637  */
2638 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2639 				   unsigned int nr_pages)
2640 {
2641 	struct mem_cgroup *memcg;
2642 	int ret;
2643 
2644 	memcg = get_mem_cgroup_from_objcg(objcg);
2645 
2646 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2647 	if (ret)
2648 		goto out;
2649 
2650 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2651 	memcg1_account_kmem(memcg, nr_pages);
2652 out:
2653 	css_put(&memcg->css);
2654 
2655 	return ret;
2656 }
2657 
2658 /**
2659  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2660  * @page: page to charge
2661  * @gfp: reclaim mode
2662  * @order: allocation order
2663  *
2664  * Returns 0 on success, an error code on failure.
2665  */
2666 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2667 {
2668 	struct obj_cgroup *objcg;
2669 	int ret = 0;
2670 
2671 	objcg = current_obj_cgroup();
2672 	if (objcg) {
2673 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2674 		if (!ret) {
2675 			obj_cgroup_get(objcg);
2676 			page->memcg_data = (unsigned long)objcg |
2677 				MEMCG_DATA_KMEM;
2678 			return 0;
2679 		}
2680 	}
2681 	return ret;
2682 }
2683 
2684 /**
2685  * __memcg_kmem_uncharge_page: uncharge a kmem page
2686  * @page: page to uncharge
2687  * @order: allocation order
2688  */
2689 void __memcg_kmem_uncharge_page(struct page *page, int order)
2690 {
2691 	struct folio *folio = page_folio(page);
2692 	struct obj_cgroup *objcg;
2693 	unsigned int nr_pages = 1 << order;
2694 
2695 	if (!folio_memcg_kmem(folio))
2696 		return;
2697 
2698 	objcg = __folio_objcg(folio);
2699 	obj_cgroup_uncharge_pages(objcg, nr_pages);
2700 	folio->memcg_data = 0;
2701 	obj_cgroup_put(objcg);
2702 }
2703 
2704 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2705 		     enum node_stat_item idx, int nr)
2706 {
2707 	struct memcg_stock_pcp *stock;
2708 	struct obj_cgroup *old = NULL;
2709 	unsigned long flags;
2710 	int *bytes;
2711 
2712 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2713 	stock = this_cpu_ptr(&memcg_stock);
2714 
2715 	/*
2716 	 * Save vmstat data in stock and skip vmstat array update unless
2717 	 * accumulating over a page of vmstat data or when pgdat or idx
2718 	 * changes.
2719 	 */
2720 	if (READ_ONCE(stock->cached_objcg) != objcg) {
2721 		old = drain_obj_stock(stock);
2722 		obj_cgroup_get(objcg);
2723 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2724 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2725 		WRITE_ONCE(stock->cached_objcg, objcg);
2726 		stock->cached_pgdat = pgdat;
2727 	} else if (stock->cached_pgdat != pgdat) {
2728 		/* Flush the existing cached vmstat data */
2729 		struct pglist_data *oldpg = stock->cached_pgdat;
2730 
2731 		if (stock->nr_slab_reclaimable_b) {
2732 			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2733 					  stock->nr_slab_reclaimable_b);
2734 			stock->nr_slab_reclaimable_b = 0;
2735 		}
2736 		if (stock->nr_slab_unreclaimable_b) {
2737 			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2738 					  stock->nr_slab_unreclaimable_b);
2739 			stock->nr_slab_unreclaimable_b = 0;
2740 		}
2741 		stock->cached_pgdat = pgdat;
2742 	}
2743 
2744 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2745 					       : &stock->nr_slab_unreclaimable_b;
2746 	/*
2747 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2748 	 * cached locally at least once before pushing it out.
2749 	 */
2750 	if (!*bytes) {
2751 		*bytes = nr;
2752 		nr = 0;
2753 	} else {
2754 		*bytes += nr;
2755 		if (abs(*bytes) > PAGE_SIZE) {
2756 			nr = *bytes;
2757 			*bytes = 0;
2758 		} else {
2759 			nr = 0;
2760 		}
2761 	}
2762 	if (nr)
2763 		__mod_objcg_mlstate(objcg, pgdat, idx, nr);
2764 
2765 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2766 	obj_cgroup_put(old);
2767 }
2768 
2769 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2770 {
2771 	struct memcg_stock_pcp *stock;
2772 	unsigned long flags;
2773 	bool ret = false;
2774 
2775 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2776 
2777 	stock = this_cpu_ptr(&memcg_stock);
2778 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2779 		stock->nr_bytes -= nr_bytes;
2780 		ret = true;
2781 	}
2782 
2783 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2784 
2785 	return ret;
2786 }
2787 
2788 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2789 {
2790 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2791 
2792 	if (!old)
2793 		return NULL;
2794 
2795 	if (stock->nr_bytes) {
2796 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2797 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2798 
2799 		if (nr_pages) {
2800 			struct mem_cgroup *memcg;
2801 
2802 			memcg = get_mem_cgroup_from_objcg(old);
2803 
2804 			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2805 			memcg1_account_kmem(memcg, -nr_pages);
2806 			__refill_stock(memcg, nr_pages);
2807 
2808 			css_put(&memcg->css);
2809 		}
2810 
2811 		/*
2812 		 * The leftover is flushed to the centralized per-memcg value.
2813 		 * On the next attempt to refill obj stock it will be moved
2814 		 * to a per-cpu stock (probably, on an other CPU), see
2815 		 * refill_obj_stock().
2816 		 *
2817 		 * How often it's flushed is a trade-off between the memory
2818 		 * limit enforcement accuracy and potential CPU contention,
2819 		 * so it might be changed in the future.
2820 		 */
2821 		atomic_add(nr_bytes, &old->nr_charged_bytes);
2822 		stock->nr_bytes = 0;
2823 	}
2824 
2825 	/*
2826 	 * Flush the vmstat data in current stock
2827 	 */
2828 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2829 		if (stock->nr_slab_reclaimable_b) {
2830 			__mod_objcg_mlstate(old, stock->cached_pgdat,
2831 					  NR_SLAB_RECLAIMABLE_B,
2832 					  stock->nr_slab_reclaimable_b);
2833 			stock->nr_slab_reclaimable_b = 0;
2834 		}
2835 		if (stock->nr_slab_unreclaimable_b) {
2836 			__mod_objcg_mlstate(old, stock->cached_pgdat,
2837 					  NR_SLAB_UNRECLAIMABLE_B,
2838 					  stock->nr_slab_unreclaimable_b);
2839 			stock->nr_slab_unreclaimable_b = 0;
2840 		}
2841 		stock->cached_pgdat = NULL;
2842 	}
2843 
2844 	WRITE_ONCE(stock->cached_objcg, NULL);
2845 	/*
2846 	 * The `old' objects needs to be released by the caller via
2847 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
2848 	 */
2849 	return old;
2850 }
2851 
2852 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2853 				     struct mem_cgroup *root_memcg)
2854 {
2855 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2856 	struct mem_cgroup *memcg;
2857 
2858 	if (objcg) {
2859 		memcg = obj_cgroup_memcg(objcg);
2860 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2861 			return true;
2862 	}
2863 
2864 	return false;
2865 }
2866 
2867 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2868 			     bool allow_uncharge)
2869 {
2870 	struct memcg_stock_pcp *stock;
2871 	struct obj_cgroup *old = NULL;
2872 	unsigned long flags;
2873 	unsigned int nr_pages = 0;
2874 
2875 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2876 
2877 	stock = this_cpu_ptr(&memcg_stock);
2878 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2879 		old = drain_obj_stock(stock);
2880 		obj_cgroup_get(objcg);
2881 		WRITE_ONCE(stock->cached_objcg, objcg);
2882 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2883 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2884 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
2885 	}
2886 	stock->nr_bytes += nr_bytes;
2887 
2888 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2889 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2890 		stock->nr_bytes &= (PAGE_SIZE - 1);
2891 	}
2892 
2893 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2894 	obj_cgroup_put(old);
2895 
2896 	if (nr_pages)
2897 		obj_cgroup_uncharge_pages(objcg, nr_pages);
2898 }
2899 
2900 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2901 {
2902 	unsigned int nr_pages, nr_bytes;
2903 	int ret;
2904 
2905 	if (consume_obj_stock(objcg, size))
2906 		return 0;
2907 
2908 	/*
2909 	 * In theory, objcg->nr_charged_bytes can have enough
2910 	 * pre-charged bytes to satisfy the allocation. However,
2911 	 * flushing objcg->nr_charged_bytes requires two atomic
2912 	 * operations, and objcg->nr_charged_bytes can't be big.
2913 	 * The shared objcg->nr_charged_bytes can also become a
2914 	 * performance bottleneck if all tasks of the same memcg are
2915 	 * trying to update it. So it's better to ignore it and try
2916 	 * grab some new pages. The stock's nr_bytes will be flushed to
2917 	 * objcg->nr_charged_bytes later on when objcg changes.
2918 	 *
2919 	 * The stock's nr_bytes may contain enough pre-charged bytes
2920 	 * to allow one less page from being charged, but we can't rely
2921 	 * on the pre-charged bytes not being changed outside of
2922 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
2923 	 * pre-charged bytes as well when charging pages. To avoid a
2924 	 * page uncharge right after a page charge, we set the
2925 	 * allow_uncharge flag to false when calling refill_obj_stock()
2926 	 * to temporarily allow the pre-charged bytes to exceed the page
2927 	 * size limit. The maximum reachable value of the pre-charged
2928 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2929 	 * race.
2930 	 */
2931 	nr_pages = size >> PAGE_SHIFT;
2932 	nr_bytes = size & (PAGE_SIZE - 1);
2933 
2934 	if (nr_bytes)
2935 		nr_pages += 1;
2936 
2937 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2938 	if (!ret && nr_bytes)
2939 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2940 
2941 	return ret;
2942 }
2943 
2944 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
2945 {
2946 	refill_obj_stock(objcg, size, true);
2947 }
2948 
2949 static inline size_t obj_full_size(struct kmem_cache *s)
2950 {
2951 	/*
2952 	 * For each accounted object there is an extra space which is used
2953 	 * to store obj_cgroup membership. Charge it too.
2954 	 */
2955 	return s->size + sizeof(struct obj_cgroup *);
2956 }
2957 
2958 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2959 				  gfp_t flags, size_t size, void **p)
2960 {
2961 	struct obj_cgroup *objcg;
2962 	struct slab *slab;
2963 	unsigned long off;
2964 	size_t i;
2965 
2966 	/*
2967 	 * The obtained objcg pointer is safe to use within the current scope,
2968 	 * defined by current task or set_active_memcg() pair.
2969 	 * obj_cgroup_get() is used to get a permanent reference.
2970 	 */
2971 	objcg = current_obj_cgroup();
2972 	if (!objcg)
2973 		return true;
2974 
2975 	/*
2976 	 * slab_alloc_node() avoids the NULL check, so we might be called with a
2977 	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
2978 	 * the whole requested size.
2979 	 * return success as there's nothing to free back
2980 	 */
2981 	if (unlikely(*p == NULL))
2982 		return true;
2983 
2984 	flags &= gfp_allowed_mask;
2985 
2986 	if (lru) {
2987 		int ret;
2988 		struct mem_cgroup *memcg;
2989 
2990 		memcg = get_mem_cgroup_from_objcg(objcg);
2991 		ret = memcg_list_lru_alloc(memcg, lru, flags);
2992 		css_put(&memcg->css);
2993 
2994 		if (ret)
2995 			return false;
2996 	}
2997 
2998 	if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
2999 		return false;
3000 
3001 	for (i = 0; i < size; i++) {
3002 		slab = virt_to_slab(p[i]);
3003 
3004 		if (!slab_obj_exts(slab) &&
3005 		    alloc_slab_obj_exts(slab, s, flags, false)) {
3006 			obj_cgroup_uncharge(objcg, obj_full_size(s));
3007 			continue;
3008 		}
3009 
3010 		off = obj_to_index(s, slab, p[i]);
3011 		obj_cgroup_get(objcg);
3012 		slab_obj_exts(slab)[off].objcg = objcg;
3013 		mod_objcg_state(objcg, slab_pgdat(slab),
3014 				cache_vmstat_idx(s), obj_full_size(s));
3015 	}
3016 
3017 	return true;
3018 }
3019 
3020 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3021 			    void **p, int objects, struct slabobj_ext *obj_exts)
3022 {
3023 	for (int i = 0; i < objects; i++) {
3024 		struct obj_cgroup *objcg;
3025 		unsigned int off;
3026 
3027 		off = obj_to_index(s, slab, p[i]);
3028 		objcg = obj_exts[off].objcg;
3029 		if (!objcg)
3030 			continue;
3031 
3032 		obj_exts[off].objcg = NULL;
3033 		obj_cgroup_uncharge(objcg, obj_full_size(s));
3034 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3035 				-obj_full_size(s));
3036 		obj_cgroup_put(objcg);
3037 	}
3038 }
3039 
3040 /*
3041  * Because folio_memcg(head) is not set on tails, set it now.
3042  */
3043 void split_page_memcg(struct page *head, int old_order, int new_order)
3044 {
3045 	struct folio *folio = page_folio(head);
3046 	int i;
3047 	unsigned int old_nr = 1 << old_order;
3048 	unsigned int new_nr = 1 << new_order;
3049 
3050 	if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3051 		return;
3052 
3053 	for (i = new_nr; i < old_nr; i += new_nr)
3054 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3055 
3056 	if (folio_memcg_kmem(folio))
3057 		obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3058 	else
3059 		css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1);
3060 }
3061 
3062 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3063 {
3064 	unsigned long val;
3065 
3066 	if (mem_cgroup_is_root(memcg)) {
3067 		/*
3068 		 * Approximate root's usage from global state. This isn't
3069 		 * perfect, but the root usage was always an approximation.
3070 		 */
3071 		val = global_node_page_state(NR_FILE_PAGES) +
3072 			global_node_page_state(NR_ANON_MAPPED);
3073 		if (swap)
3074 			val += total_swap_pages - get_nr_swap_pages();
3075 	} else {
3076 		if (!swap)
3077 			val = page_counter_read(&memcg->memory);
3078 		else
3079 			val = page_counter_read(&memcg->memsw);
3080 	}
3081 	return val;
3082 }
3083 
3084 static int memcg_online_kmem(struct mem_cgroup *memcg)
3085 {
3086 	struct obj_cgroup *objcg;
3087 
3088 	if (mem_cgroup_kmem_disabled())
3089 		return 0;
3090 
3091 	if (unlikely(mem_cgroup_is_root(memcg)))
3092 		return 0;
3093 
3094 	objcg = obj_cgroup_alloc();
3095 	if (!objcg)
3096 		return -ENOMEM;
3097 
3098 	objcg->memcg = memcg;
3099 	rcu_assign_pointer(memcg->objcg, objcg);
3100 	obj_cgroup_get(objcg);
3101 	memcg->orig_objcg = objcg;
3102 
3103 	static_branch_enable(&memcg_kmem_online_key);
3104 
3105 	memcg->kmemcg_id = memcg->id.id;
3106 
3107 	return 0;
3108 }
3109 
3110 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3111 {
3112 	struct mem_cgroup *parent;
3113 
3114 	if (mem_cgroup_kmem_disabled())
3115 		return;
3116 
3117 	if (unlikely(mem_cgroup_is_root(memcg)))
3118 		return;
3119 
3120 	parent = parent_mem_cgroup(memcg);
3121 	if (!parent)
3122 		parent = root_mem_cgroup;
3123 
3124 	memcg_reparent_list_lrus(memcg, parent);
3125 
3126 	/*
3127 	 * Objcg's reparenting must be after list_lru's, make sure list_lru
3128 	 * helpers won't use parent's list_lru until child is drained.
3129 	 */
3130 	memcg_reparent_objcgs(memcg, parent);
3131 }
3132 
3133 #ifdef CONFIG_CGROUP_WRITEBACK
3134 
3135 #include <trace/events/writeback.h>
3136 
3137 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3138 {
3139 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3140 }
3141 
3142 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3143 {
3144 	wb_domain_exit(&memcg->cgwb_domain);
3145 }
3146 
3147 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3148 {
3149 	wb_domain_size_changed(&memcg->cgwb_domain);
3150 }
3151 
3152 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3153 {
3154 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3155 
3156 	if (!memcg->css.parent)
3157 		return NULL;
3158 
3159 	return &memcg->cgwb_domain;
3160 }
3161 
3162 /**
3163  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3164  * @wb: bdi_writeback in question
3165  * @pfilepages: out parameter for number of file pages
3166  * @pheadroom: out parameter for number of allocatable pages according to memcg
3167  * @pdirty: out parameter for number of dirty pages
3168  * @pwriteback: out parameter for number of pages under writeback
3169  *
3170  * Determine the numbers of file, headroom, dirty, and writeback pages in
3171  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3172  * is a bit more involved.
3173  *
3174  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3175  * headroom is calculated as the lowest headroom of itself and the
3176  * ancestors.  Note that this doesn't consider the actual amount of
3177  * available memory in the system.  The caller should further cap
3178  * *@pheadroom accordingly.
3179  */
3180 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3181 			 unsigned long *pheadroom, unsigned long *pdirty,
3182 			 unsigned long *pwriteback)
3183 {
3184 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3185 	struct mem_cgroup *parent;
3186 
3187 	mem_cgroup_flush_stats_ratelimited(memcg);
3188 
3189 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3190 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3191 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3192 			memcg_page_state(memcg, NR_ACTIVE_FILE);
3193 
3194 	*pheadroom = PAGE_COUNTER_MAX;
3195 	while ((parent = parent_mem_cgroup(memcg))) {
3196 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3197 					    READ_ONCE(memcg->memory.high));
3198 		unsigned long used = page_counter_read(&memcg->memory);
3199 
3200 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3201 		memcg = parent;
3202 	}
3203 }
3204 
3205 /*
3206  * Foreign dirty flushing
3207  *
3208  * There's an inherent mismatch between memcg and writeback.  The former
3209  * tracks ownership per-page while the latter per-inode.  This was a
3210  * deliberate design decision because honoring per-page ownership in the
3211  * writeback path is complicated, may lead to higher CPU and IO overheads
3212  * and deemed unnecessary given that write-sharing an inode across
3213  * different cgroups isn't a common use-case.
3214  *
3215  * Combined with inode majority-writer ownership switching, this works well
3216  * enough in most cases but there are some pathological cases.  For
3217  * example, let's say there are two cgroups A and B which keep writing to
3218  * different but confined parts of the same inode.  B owns the inode and
3219  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
3220  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3221  * triggering background writeback.  A will be slowed down without a way to
3222  * make writeback of the dirty pages happen.
3223  *
3224  * Conditions like the above can lead to a cgroup getting repeatedly and
3225  * severely throttled after making some progress after each
3226  * dirty_expire_interval while the underlying IO device is almost
3227  * completely idle.
3228  *
3229  * Solving this problem completely requires matching the ownership tracking
3230  * granularities between memcg and writeback in either direction.  However,
3231  * the more egregious behaviors can be avoided by simply remembering the
3232  * most recent foreign dirtying events and initiating remote flushes on
3233  * them when local writeback isn't enough to keep the memory clean enough.
3234  *
3235  * The following two functions implement such mechanism.  When a foreign
3236  * page - a page whose memcg and writeback ownerships don't match - is
3237  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3238  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
3239  * decides that the memcg needs to sleep due to high dirty ratio, it calls
3240  * mem_cgroup_flush_foreign() which queues writeback on the recorded
3241  * foreign bdi_writebacks which haven't expired.  Both the numbers of
3242  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3243  * limited to MEMCG_CGWB_FRN_CNT.
3244  *
3245  * The mechanism only remembers IDs and doesn't hold any object references.
3246  * As being wrong occasionally doesn't matter, updates and accesses to the
3247  * records are lockless and racy.
3248  */
3249 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3250 					     struct bdi_writeback *wb)
3251 {
3252 	struct mem_cgroup *memcg = folio_memcg(folio);
3253 	struct memcg_cgwb_frn *frn;
3254 	u64 now = get_jiffies_64();
3255 	u64 oldest_at = now;
3256 	int oldest = -1;
3257 	int i;
3258 
3259 	trace_track_foreign_dirty(folio, wb);
3260 
3261 	/*
3262 	 * Pick the slot to use.  If there is already a slot for @wb, keep
3263 	 * using it.  If not replace the oldest one which isn't being
3264 	 * written out.
3265 	 */
3266 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3267 		frn = &memcg->cgwb_frn[i];
3268 		if (frn->bdi_id == wb->bdi->id &&
3269 		    frn->memcg_id == wb->memcg_css->id)
3270 			break;
3271 		if (time_before64(frn->at, oldest_at) &&
3272 		    atomic_read(&frn->done.cnt) == 1) {
3273 			oldest = i;
3274 			oldest_at = frn->at;
3275 		}
3276 	}
3277 
3278 	if (i < MEMCG_CGWB_FRN_CNT) {
3279 		/*
3280 		 * Re-using an existing one.  Update timestamp lazily to
3281 		 * avoid making the cacheline hot.  We want them to be
3282 		 * reasonably up-to-date and significantly shorter than
3283 		 * dirty_expire_interval as that's what expires the record.
3284 		 * Use the shorter of 1s and dirty_expire_interval / 8.
3285 		 */
3286 		unsigned long update_intv =
3287 			min_t(unsigned long, HZ,
3288 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3289 
3290 		if (time_before64(frn->at, now - update_intv))
3291 			frn->at = now;
3292 	} else if (oldest >= 0) {
3293 		/* replace the oldest free one */
3294 		frn = &memcg->cgwb_frn[oldest];
3295 		frn->bdi_id = wb->bdi->id;
3296 		frn->memcg_id = wb->memcg_css->id;
3297 		frn->at = now;
3298 	}
3299 }
3300 
3301 /* issue foreign writeback flushes for recorded foreign dirtying events */
3302 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3303 {
3304 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3305 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3306 	u64 now = jiffies_64;
3307 	int i;
3308 
3309 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3310 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3311 
3312 		/*
3313 		 * If the record is older than dirty_expire_interval,
3314 		 * writeback on it has already started.  No need to kick it
3315 		 * off again.  Also, don't start a new one if there's
3316 		 * already one in flight.
3317 		 */
3318 		if (time_after64(frn->at, now - intv) &&
3319 		    atomic_read(&frn->done.cnt) == 1) {
3320 			frn->at = 0;
3321 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3322 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3323 					       WB_REASON_FOREIGN_FLUSH,
3324 					       &frn->done);
3325 		}
3326 	}
3327 }
3328 
3329 #else	/* CONFIG_CGROUP_WRITEBACK */
3330 
3331 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3332 {
3333 	return 0;
3334 }
3335 
3336 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3337 {
3338 }
3339 
3340 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3341 {
3342 }
3343 
3344 #endif	/* CONFIG_CGROUP_WRITEBACK */
3345 
3346 /*
3347  * Private memory cgroup IDR
3348  *
3349  * Swap-out records and page cache shadow entries need to store memcg
3350  * references in constrained space, so we maintain an ID space that is
3351  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3352  * memory-controlled cgroups to 64k.
3353  *
3354  * However, there usually are many references to the offline CSS after
3355  * the cgroup has been destroyed, such as page cache or reclaimable
3356  * slab objects, that don't need to hang on to the ID. We want to keep
3357  * those dead CSS from occupying IDs, or we might quickly exhaust the
3358  * relatively small ID space and prevent the creation of new cgroups
3359  * even when there are much fewer than 64k cgroups - possibly none.
3360  *
3361  * Maintain a private 16-bit ID space for memcg, and allow the ID to
3362  * be freed and recycled when it's no longer needed, which is usually
3363  * when the CSS is offlined.
3364  *
3365  * The only exception to that are records of swapped out tmpfs/shmem
3366  * pages that need to be attributed to live ancestors on swapin. But
3367  * those references are manageable from userspace.
3368  */
3369 
3370 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3371 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3372 
3373 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3374 {
3375 	if (memcg->id.id > 0) {
3376 		xa_erase(&mem_cgroup_ids, memcg->id.id);
3377 		memcg->id.id = 0;
3378 	}
3379 }
3380 
3381 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3382 					   unsigned int n)
3383 {
3384 	refcount_add(n, &memcg->id.ref);
3385 }
3386 
3387 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3388 {
3389 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
3390 		mem_cgroup_id_remove(memcg);
3391 
3392 		/* Memcg ID pins CSS */
3393 		css_put(&memcg->css);
3394 	}
3395 }
3396 
3397 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3398 {
3399 	mem_cgroup_id_put_many(memcg, 1);
3400 }
3401 
3402 /**
3403  * mem_cgroup_from_id - look up a memcg from a memcg id
3404  * @id: the memcg id to look up
3405  *
3406  * Caller must hold rcu_read_lock().
3407  */
3408 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3409 {
3410 	WARN_ON_ONCE(!rcu_read_lock_held());
3411 	return xa_load(&mem_cgroup_ids, id);
3412 }
3413 
3414 #ifdef CONFIG_SHRINKER_DEBUG
3415 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3416 {
3417 	struct cgroup *cgrp;
3418 	struct cgroup_subsys_state *css;
3419 	struct mem_cgroup *memcg;
3420 
3421 	cgrp = cgroup_get_from_id(ino);
3422 	if (IS_ERR(cgrp))
3423 		return ERR_CAST(cgrp);
3424 
3425 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3426 	if (css)
3427 		memcg = container_of(css, struct mem_cgroup, css);
3428 	else
3429 		memcg = ERR_PTR(-ENOENT);
3430 
3431 	cgroup_put(cgrp);
3432 
3433 	return memcg;
3434 }
3435 #endif
3436 
3437 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3438 {
3439 	struct mem_cgroup_per_node *pn;
3440 
3441 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
3442 	if (!pn)
3443 		return false;
3444 
3445 	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3446 					GFP_KERNEL_ACCOUNT, node);
3447 	if (!pn->lruvec_stats)
3448 		goto fail;
3449 
3450 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3451 						   GFP_KERNEL_ACCOUNT);
3452 	if (!pn->lruvec_stats_percpu)
3453 		goto fail;
3454 
3455 	lruvec_init(&pn->lruvec);
3456 	pn->memcg = memcg;
3457 
3458 	memcg->nodeinfo[node] = pn;
3459 	return true;
3460 fail:
3461 	kfree(pn->lruvec_stats);
3462 	kfree(pn);
3463 	return false;
3464 }
3465 
3466 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3467 {
3468 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3469 
3470 	if (!pn)
3471 		return;
3472 
3473 	free_percpu(pn->lruvec_stats_percpu);
3474 	kfree(pn->lruvec_stats);
3475 	kfree(pn);
3476 }
3477 
3478 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3479 {
3480 	int node;
3481 
3482 	obj_cgroup_put(memcg->orig_objcg);
3483 
3484 	for_each_node(node)
3485 		free_mem_cgroup_per_node_info(memcg, node);
3486 	memcg1_free_events(memcg);
3487 	kfree(memcg->vmstats);
3488 	free_percpu(memcg->vmstats_percpu);
3489 	kfree(memcg);
3490 }
3491 
3492 static void mem_cgroup_free(struct mem_cgroup *memcg)
3493 {
3494 	lru_gen_exit_memcg(memcg);
3495 	memcg_wb_domain_exit(memcg);
3496 	__mem_cgroup_free(memcg);
3497 }
3498 
3499 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3500 {
3501 	struct memcg_vmstats_percpu *statc, *pstatc;
3502 	struct mem_cgroup *memcg;
3503 	int node, cpu;
3504 	int __maybe_unused i;
3505 	long error;
3506 
3507 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
3508 	if (!memcg)
3509 		return ERR_PTR(-ENOMEM);
3510 
3511 	error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3512 			 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3513 	if (error)
3514 		goto fail;
3515 	error = -ENOMEM;
3516 
3517 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3518 				 GFP_KERNEL_ACCOUNT);
3519 	if (!memcg->vmstats)
3520 		goto fail;
3521 
3522 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3523 						 GFP_KERNEL_ACCOUNT);
3524 	if (!memcg->vmstats_percpu)
3525 		goto fail;
3526 
3527 	if (!memcg1_alloc_events(memcg))
3528 		goto fail;
3529 
3530 	for_each_possible_cpu(cpu) {
3531 		if (parent)
3532 			pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3533 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3534 		statc->parent = parent ? pstatc : NULL;
3535 		statc->vmstats = memcg->vmstats;
3536 	}
3537 
3538 	for_each_node(node)
3539 		if (!alloc_mem_cgroup_per_node_info(memcg, node))
3540 			goto fail;
3541 
3542 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3543 		goto fail;
3544 
3545 	INIT_WORK(&memcg->high_work, high_work_func);
3546 	vmpressure_init(&memcg->vmpressure);
3547 	INIT_LIST_HEAD(&memcg->memory_peaks);
3548 	INIT_LIST_HEAD(&memcg->swap_peaks);
3549 	spin_lock_init(&memcg->peaks_lock);
3550 	memcg->socket_pressure = jiffies;
3551 	memcg1_memcg_init(memcg);
3552 	memcg->kmemcg_id = -1;
3553 	INIT_LIST_HEAD(&memcg->objcg_list);
3554 #ifdef CONFIG_CGROUP_WRITEBACK
3555 	INIT_LIST_HEAD(&memcg->cgwb_list);
3556 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3557 		memcg->cgwb_frn[i].done =
3558 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3559 #endif
3560 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3561 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3562 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3563 	memcg->deferred_split_queue.split_queue_len = 0;
3564 #endif
3565 	lru_gen_init_memcg(memcg);
3566 	return memcg;
3567 fail:
3568 	mem_cgroup_id_remove(memcg);
3569 	__mem_cgroup_free(memcg);
3570 	return ERR_PTR(error);
3571 }
3572 
3573 static struct cgroup_subsys_state * __ref
3574 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3575 {
3576 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3577 	struct mem_cgroup *memcg, *old_memcg;
3578 
3579 	old_memcg = set_active_memcg(parent);
3580 	memcg = mem_cgroup_alloc(parent);
3581 	set_active_memcg(old_memcg);
3582 	if (IS_ERR(memcg))
3583 		return ERR_CAST(memcg);
3584 
3585 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3586 	memcg1_soft_limit_reset(memcg);
3587 #ifdef CONFIG_ZSWAP
3588 	memcg->zswap_max = PAGE_COUNTER_MAX;
3589 	WRITE_ONCE(memcg->zswap_writeback, true);
3590 #endif
3591 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3592 	if (parent) {
3593 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3594 
3595 		page_counter_init(&memcg->memory, &parent->memory, true);
3596 		page_counter_init(&memcg->swap, &parent->swap, false);
3597 #ifdef CONFIG_MEMCG_V1
3598 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3599 		page_counter_init(&memcg->kmem, &parent->kmem, false);
3600 		page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3601 #endif
3602 	} else {
3603 		init_memcg_stats();
3604 		init_memcg_events();
3605 		page_counter_init(&memcg->memory, NULL, true);
3606 		page_counter_init(&memcg->swap, NULL, false);
3607 #ifdef CONFIG_MEMCG_V1
3608 		page_counter_init(&memcg->kmem, NULL, false);
3609 		page_counter_init(&memcg->tcpmem, NULL, false);
3610 #endif
3611 		root_mem_cgroup = memcg;
3612 		return &memcg->css;
3613 	}
3614 
3615 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3616 		static_branch_inc(&memcg_sockets_enabled_key);
3617 
3618 	if (!cgroup_memory_nobpf)
3619 		static_branch_inc(&memcg_bpf_enabled_key);
3620 
3621 	return &memcg->css;
3622 }
3623 
3624 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3625 {
3626 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3627 
3628 	if (memcg_online_kmem(memcg))
3629 		goto remove_id;
3630 
3631 	/*
3632 	 * A memcg must be visible for expand_shrinker_info()
3633 	 * by the time the maps are allocated. So, we allocate maps
3634 	 * here, when for_each_mem_cgroup() can't skip it.
3635 	 */
3636 	if (alloc_shrinker_info(memcg))
3637 		goto offline_kmem;
3638 
3639 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3640 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3641 				   FLUSH_TIME);
3642 	lru_gen_online_memcg(memcg);
3643 
3644 	/* Online state pins memcg ID, memcg ID pins CSS */
3645 	refcount_set(&memcg->id.ref, 1);
3646 	css_get(css);
3647 
3648 	/*
3649 	 * Ensure mem_cgroup_from_id() works once we're fully online.
3650 	 *
3651 	 * We could do this earlier and require callers to filter with
3652 	 * css_tryget_online(). But right now there are no users that
3653 	 * need earlier access, and the workingset code relies on the
3654 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3655 	 * publish it here at the end of onlining. This matches the
3656 	 * regular ID destruction during offlining.
3657 	 */
3658 	xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3659 
3660 	return 0;
3661 offline_kmem:
3662 	memcg_offline_kmem(memcg);
3663 remove_id:
3664 	mem_cgroup_id_remove(memcg);
3665 	return -ENOMEM;
3666 }
3667 
3668 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3669 {
3670 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3671 
3672 	memcg1_css_offline(memcg);
3673 
3674 	page_counter_set_min(&memcg->memory, 0);
3675 	page_counter_set_low(&memcg->memory, 0);
3676 
3677 	zswap_memcg_offline_cleanup(memcg);
3678 
3679 	memcg_offline_kmem(memcg);
3680 	reparent_shrinker_deferred(memcg);
3681 	wb_memcg_offline(memcg);
3682 	lru_gen_offline_memcg(memcg);
3683 
3684 	drain_all_stock(memcg);
3685 
3686 	mem_cgroup_id_put(memcg);
3687 }
3688 
3689 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3690 {
3691 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3692 
3693 	invalidate_reclaim_iterators(memcg);
3694 	lru_gen_release_memcg(memcg);
3695 }
3696 
3697 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3698 {
3699 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3700 	int __maybe_unused i;
3701 
3702 #ifdef CONFIG_CGROUP_WRITEBACK
3703 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3704 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3705 #endif
3706 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3707 		static_branch_dec(&memcg_sockets_enabled_key);
3708 
3709 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3710 		static_branch_dec(&memcg_sockets_enabled_key);
3711 
3712 	if (!cgroup_memory_nobpf)
3713 		static_branch_dec(&memcg_bpf_enabled_key);
3714 
3715 	vmpressure_cleanup(&memcg->vmpressure);
3716 	cancel_work_sync(&memcg->high_work);
3717 	memcg1_remove_from_trees(memcg);
3718 	free_shrinker_info(memcg);
3719 	mem_cgroup_free(memcg);
3720 }
3721 
3722 /**
3723  * mem_cgroup_css_reset - reset the states of a mem_cgroup
3724  * @css: the target css
3725  *
3726  * Reset the states of the mem_cgroup associated with @css.  This is
3727  * invoked when the userland requests disabling on the default hierarchy
3728  * but the memcg is pinned through dependency.  The memcg should stop
3729  * applying policies and should revert to the vanilla state as it may be
3730  * made visible again.
3731  *
3732  * The current implementation only resets the essential configurations.
3733  * This needs to be expanded to cover all the visible parts.
3734  */
3735 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3736 {
3737 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3738 
3739 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3740 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3741 #ifdef CONFIG_MEMCG_V1
3742 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3743 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3744 #endif
3745 	page_counter_set_min(&memcg->memory, 0);
3746 	page_counter_set_low(&memcg->memory, 0);
3747 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3748 	memcg1_soft_limit_reset(memcg);
3749 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3750 	memcg_wb_domain_size_changed(memcg);
3751 }
3752 
3753 struct aggregate_control {
3754 	/* pointer to the aggregated (CPU and subtree aggregated) counters */
3755 	long *aggregate;
3756 	/* pointer to the non-hierarchichal (CPU aggregated) counters */
3757 	long *local;
3758 	/* pointer to the pending child counters during tree propagation */
3759 	long *pending;
3760 	/* pointer to the parent's pending counters, could be NULL */
3761 	long *ppending;
3762 	/* pointer to the percpu counters to be aggregated */
3763 	long *cstat;
3764 	/* pointer to the percpu counters of the last aggregation*/
3765 	long *cstat_prev;
3766 	/* size of the above counters */
3767 	int size;
3768 };
3769 
3770 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3771 {
3772 	int i;
3773 	long delta, delta_cpu, v;
3774 
3775 	for (i = 0; i < ac->size; i++) {
3776 		/*
3777 		 * Collect the aggregated propagation counts of groups
3778 		 * below us. We're in a per-cpu loop here and this is
3779 		 * a global counter, so the first cycle will get them.
3780 		 */
3781 		delta = ac->pending[i];
3782 		if (delta)
3783 			ac->pending[i] = 0;
3784 
3785 		/* Add CPU changes on this level since the last flush */
3786 		delta_cpu = 0;
3787 		v = READ_ONCE(ac->cstat[i]);
3788 		if (v != ac->cstat_prev[i]) {
3789 			delta_cpu = v - ac->cstat_prev[i];
3790 			delta += delta_cpu;
3791 			ac->cstat_prev[i] = v;
3792 		}
3793 
3794 		/* Aggregate counts on this level and propagate upwards */
3795 		if (delta_cpu)
3796 			ac->local[i] += delta_cpu;
3797 
3798 		if (delta) {
3799 			ac->aggregate[i] += delta;
3800 			if (ac->ppending)
3801 				ac->ppending[i] += delta;
3802 		}
3803 	}
3804 }
3805 
3806 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
3807 {
3808 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3809 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3810 	struct memcg_vmstats_percpu *statc;
3811 	struct aggregate_control ac;
3812 	int nid;
3813 
3814 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3815 
3816 	ac = (struct aggregate_control) {
3817 		.aggregate = memcg->vmstats->state,
3818 		.local = memcg->vmstats->state_local,
3819 		.pending = memcg->vmstats->state_pending,
3820 		.ppending = parent ? parent->vmstats->state_pending : NULL,
3821 		.cstat = statc->state,
3822 		.cstat_prev = statc->state_prev,
3823 		.size = MEMCG_VMSTAT_SIZE,
3824 	};
3825 	mem_cgroup_stat_aggregate(&ac);
3826 
3827 	ac = (struct aggregate_control) {
3828 		.aggregate = memcg->vmstats->events,
3829 		.local = memcg->vmstats->events_local,
3830 		.pending = memcg->vmstats->events_pending,
3831 		.ppending = parent ? parent->vmstats->events_pending : NULL,
3832 		.cstat = statc->events,
3833 		.cstat_prev = statc->events_prev,
3834 		.size = NR_MEMCG_EVENTS,
3835 	};
3836 	mem_cgroup_stat_aggregate(&ac);
3837 
3838 	for_each_node_state(nid, N_MEMORY) {
3839 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3840 		struct lruvec_stats *lstats = pn->lruvec_stats;
3841 		struct lruvec_stats *plstats = NULL;
3842 		struct lruvec_stats_percpu *lstatc;
3843 
3844 		if (parent)
3845 			plstats = parent->nodeinfo[nid]->lruvec_stats;
3846 
3847 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
3848 
3849 		ac = (struct aggregate_control) {
3850 			.aggregate = lstats->state,
3851 			.local = lstats->state_local,
3852 			.pending = lstats->state_pending,
3853 			.ppending = plstats ? plstats->state_pending : NULL,
3854 			.cstat = lstatc->state,
3855 			.cstat_prev = lstatc->state_prev,
3856 			.size = NR_MEMCG_NODE_STAT_ITEMS,
3857 		};
3858 		mem_cgroup_stat_aggregate(&ac);
3859 
3860 	}
3861 	WRITE_ONCE(statc->stats_updates, 0);
3862 	/* We are in a per-cpu loop here, only do the atomic write once */
3863 	if (atomic64_read(&memcg->vmstats->stats_updates))
3864 		atomic64_set(&memcg->vmstats->stats_updates, 0);
3865 }
3866 
3867 static void mem_cgroup_fork(struct task_struct *task)
3868 {
3869 	/*
3870 	 * Set the update flag to cause task->objcg to be initialized lazily
3871 	 * on the first allocation. It can be done without any synchronization
3872 	 * because it's always performed on the current task, so does
3873 	 * current_objcg_update().
3874 	 */
3875 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
3876 }
3877 
3878 static void mem_cgroup_exit(struct task_struct *task)
3879 {
3880 	struct obj_cgroup *objcg = task->objcg;
3881 
3882 	objcg = (struct obj_cgroup *)
3883 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3884 	obj_cgroup_put(objcg);
3885 
3886 	/*
3887 	 * Some kernel allocations can happen after this point,
3888 	 * but let's ignore them. It can be done without any synchronization
3889 	 * because it's always performed on the current task, so does
3890 	 * current_objcg_update().
3891 	 */
3892 	task->objcg = NULL;
3893 }
3894 
3895 #ifdef CONFIG_LRU_GEN
3896 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
3897 {
3898 	struct task_struct *task;
3899 	struct cgroup_subsys_state *css;
3900 
3901 	/* find the first leader if there is any */
3902 	cgroup_taskset_for_each_leader(task, css, tset)
3903 		break;
3904 
3905 	if (!task)
3906 		return;
3907 
3908 	task_lock(task);
3909 	if (task->mm && READ_ONCE(task->mm->owner) == task)
3910 		lru_gen_migrate_mm(task->mm);
3911 	task_unlock(task);
3912 }
3913 #else
3914 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3915 #endif /* CONFIG_LRU_GEN */
3916 
3917 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
3918 {
3919 	struct task_struct *task;
3920 	struct cgroup_subsys_state *css;
3921 
3922 	cgroup_taskset_for_each(task, css, tset) {
3923 		/* atomically set the update bit */
3924 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
3925 	}
3926 }
3927 
3928 static void mem_cgroup_attach(struct cgroup_taskset *tset)
3929 {
3930 	mem_cgroup_lru_gen_attach(tset);
3931 	mem_cgroup_kmem_attach(tset);
3932 }
3933 
3934 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3935 {
3936 	if (value == PAGE_COUNTER_MAX)
3937 		seq_puts(m, "max\n");
3938 	else
3939 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
3940 
3941 	return 0;
3942 }
3943 
3944 static u64 memory_current_read(struct cgroup_subsys_state *css,
3945 			       struct cftype *cft)
3946 {
3947 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3948 
3949 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3950 }
3951 
3952 #define OFP_PEAK_UNSET (((-1UL)))
3953 
3954 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
3955 {
3956 	struct cgroup_of_peak *ofp = of_peak(sf->private);
3957 	u64 fd_peak = READ_ONCE(ofp->value), peak;
3958 
3959 	/* User wants global or local peak? */
3960 	if (fd_peak == OFP_PEAK_UNSET)
3961 		peak = pc->watermark;
3962 	else
3963 		peak = max(fd_peak, READ_ONCE(pc->local_watermark));
3964 
3965 	seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
3966 	return 0;
3967 }
3968 
3969 static int memory_peak_show(struct seq_file *sf, void *v)
3970 {
3971 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3972 
3973 	return peak_show(sf, v, &memcg->memory);
3974 }
3975 
3976 static int peak_open(struct kernfs_open_file *of)
3977 {
3978 	struct cgroup_of_peak *ofp = of_peak(of);
3979 
3980 	ofp->value = OFP_PEAK_UNSET;
3981 	return 0;
3982 }
3983 
3984 static void peak_release(struct kernfs_open_file *of)
3985 {
3986 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3987 	struct cgroup_of_peak *ofp = of_peak(of);
3988 
3989 	if (ofp->value == OFP_PEAK_UNSET) {
3990 		/* fast path (no writes on this fd) */
3991 		return;
3992 	}
3993 	spin_lock(&memcg->peaks_lock);
3994 	list_del(&ofp->list);
3995 	spin_unlock(&memcg->peaks_lock);
3996 }
3997 
3998 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
3999 			  loff_t off, struct page_counter *pc,
4000 			  struct list_head *watchers)
4001 {
4002 	unsigned long usage;
4003 	struct cgroup_of_peak *peer_ctx;
4004 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4005 	struct cgroup_of_peak *ofp = of_peak(of);
4006 
4007 	spin_lock(&memcg->peaks_lock);
4008 
4009 	usage = page_counter_read(pc);
4010 	WRITE_ONCE(pc->local_watermark, usage);
4011 
4012 	list_for_each_entry(peer_ctx, watchers, list)
4013 		if (usage > peer_ctx->value)
4014 			WRITE_ONCE(peer_ctx->value, usage);
4015 
4016 	/* initial write, register watcher */
4017 	if (ofp->value == -1)
4018 		list_add(&ofp->list, watchers);
4019 
4020 	WRITE_ONCE(ofp->value, usage);
4021 	spin_unlock(&memcg->peaks_lock);
4022 
4023 	return nbytes;
4024 }
4025 
4026 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4027 				 size_t nbytes, loff_t off)
4028 {
4029 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4030 
4031 	return peak_write(of, buf, nbytes, off, &memcg->memory,
4032 			  &memcg->memory_peaks);
4033 }
4034 
4035 #undef OFP_PEAK_UNSET
4036 
4037 static int memory_min_show(struct seq_file *m, void *v)
4038 {
4039 	return seq_puts_memcg_tunable(m,
4040 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4041 }
4042 
4043 static ssize_t memory_min_write(struct kernfs_open_file *of,
4044 				char *buf, size_t nbytes, loff_t off)
4045 {
4046 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4047 	unsigned long min;
4048 	int err;
4049 
4050 	buf = strstrip(buf);
4051 	err = page_counter_memparse(buf, "max", &min);
4052 	if (err)
4053 		return err;
4054 
4055 	page_counter_set_min(&memcg->memory, min);
4056 
4057 	return nbytes;
4058 }
4059 
4060 static int memory_low_show(struct seq_file *m, void *v)
4061 {
4062 	return seq_puts_memcg_tunable(m,
4063 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4064 }
4065 
4066 static ssize_t memory_low_write(struct kernfs_open_file *of,
4067 				char *buf, size_t nbytes, loff_t off)
4068 {
4069 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4070 	unsigned long low;
4071 	int err;
4072 
4073 	buf = strstrip(buf);
4074 	err = page_counter_memparse(buf, "max", &low);
4075 	if (err)
4076 		return err;
4077 
4078 	page_counter_set_low(&memcg->memory, low);
4079 
4080 	return nbytes;
4081 }
4082 
4083 static int memory_high_show(struct seq_file *m, void *v)
4084 {
4085 	return seq_puts_memcg_tunable(m,
4086 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4087 }
4088 
4089 static ssize_t memory_high_write(struct kernfs_open_file *of,
4090 				 char *buf, size_t nbytes, loff_t off)
4091 {
4092 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4093 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4094 	bool drained = false;
4095 	unsigned long high;
4096 	int err;
4097 
4098 	buf = strstrip(buf);
4099 	err = page_counter_memparse(buf, "max", &high);
4100 	if (err)
4101 		return err;
4102 
4103 	page_counter_set_high(&memcg->memory, high);
4104 
4105 	for (;;) {
4106 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4107 		unsigned long reclaimed;
4108 
4109 		if (nr_pages <= high)
4110 			break;
4111 
4112 		if (signal_pending(current))
4113 			break;
4114 
4115 		if (!drained) {
4116 			drain_all_stock(memcg);
4117 			drained = true;
4118 			continue;
4119 		}
4120 
4121 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4122 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4123 
4124 		if (!reclaimed && !nr_retries--)
4125 			break;
4126 	}
4127 
4128 	memcg_wb_domain_size_changed(memcg);
4129 	return nbytes;
4130 }
4131 
4132 static int memory_max_show(struct seq_file *m, void *v)
4133 {
4134 	return seq_puts_memcg_tunable(m,
4135 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4136 }
4137 
4138 static ssize_t memory_max_write(struct kernfs_open_file *of,
4139 				char *buf, size_t nbytes, loff_t off)
4140 {
4141 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4142 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4143 	bool drained = false;
4144 	unsigned long max;
4145 	int err;
4146 
4147 	buf = strstrip(buf);
4148 	err = page_counter_memparse(buf, "max", &max);
4149 	if (err)
4150 		return err;
4151 
4152 	xchg(&memcg->memory.max, max);
4153 
4154 	for (;;) {
4155 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4156 
4157 		if (nr_pages <= max)
4158 			break;
4159 
4160 		if (signal_pending(current))
4161 			break;
4162 
4163 		if (!drained) {
4164 			drain_all_stock(memcg);
4165 			drained = true;
4166 			continue;
4167 		}
4168 
4169 		if (nr_reclaims) {
4170 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4171 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4172 				nr_reclaims--;
4173 			continue;
4174 		}
4175 
4176 		memcg_memory_event(memcg, MEMCG_OOM);
4177 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4178 			break;
4179 	}
4180 
4181 	memcg_wb_domain_size_changed(memcg);
4182 	return nbytes;
4183 }
4184 
4185 /*
4186  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4187  * if any new events become available.
4188  */
4189 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4190 {
4191 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4192 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4193 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4194 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4195 	seq_printf(m, "oom_kill %lu\n",
4196 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
4197 	seq_printf(m, "oom_group_kill %lu\n",
4198 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4199 }
4200 
4201 static int memory_events_show(struct seq_file *m, void *v)
4202 {
4203 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4204 
4205 	__memory_events_show(m, memcg->memory_events);
4206 	return 0;
4207 }
4208 
4209 static int memory_events_local_show(struct seq_file *m, void *v)
4210 {
4211 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4212 
4213 	__memory_events_show(m, memcg->memory_events_local);
4214 	return 0;
4215 }
4216 
4217 int memory_stat_show(struct seq_file *m, void *v)
4218 {
4219 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4220 	char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4221 	struct seq_buf s;
4222 
4223 	if (!buf)
4224 		return -ENOMEM;
4225 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4226 	memory_stat_format(memcg, &s);
4227 	seq_puts(m, buf);
4228 	kfree(buf);
4229 	return 0;
4230 }
4231 
4232 #ifdef CONFIG_NUMA
4233 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4234 						     int item)
4235 {
4236 	return lruvec_page_state(lruvec, item) *
4237 		memcg_page_state_output_unit(item);
4238 }
4239 
4240 static int memory_numa_stat_show(struct seq_file *m, void *v)
4241 {
4242 	int i;
4243 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4244 
4245 	mem_cgroup_flush_stats(memcg);
4246 
4247 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4248 		int nid;
4249 
4250 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4251 			continue;
4252 
4253 		seq_printf(m, "%s", memory_stats[i].name);
4254 		for_each_node_state(nid, N_MEMORY) {
4255 			u64 size;
4256 			struct lruvec *lruvec;
4257 
4258 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4259 			size = lruvec_page_state_output(lruvec,
4260 							memory_stats[i].idx);
4261 			seq_printf(m, " N%d=%llu", nid, size);
4262 		}
4263 		seq_putc(m, '\n');
4264 	}
4265 
4266 	return 0;
4267 }
4268 #endif
4269 
4270 static int memory_oom_group_show(struct seq_file *m, void *v)
4271 {
4272 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4273 
4274 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4275 
4276 	return 0;
4277 }
4278 
4279 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4280 				      char *buf, size_t nbytes, loff_t off)
4281 {
4282 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4283 	int ret, oom_group;
4284 
4285 	buf = strstrip(buf);
4286 	if (!buf)
4287 		return -EINVAL;
4288 
4289 	ret = kstrtoint(buf, 0, &oom_group);
4290 	if (ret)
4291 		return ret;
4292 
4293 	if (oom_group != 0 && oom_group != 1)
4294 		return -EINVAL;
4295 
4296 	WRITE_ONCE(memcg->oom_group, oom_group);
4297 
4298 	return nbytes;
4299 }
4300 
4301 enum {
4302 	MEMORY_RECLAIM_SWAPPINESS = 0,
4303 	MEMORY_RECLAIM_NULL,
4304 };
4305 
4306 static const match_table_t tokens = {
4307 	{ MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4308 	{ MEMORY_RECLAIM_NULL, NULL },
4309 };
4310 
4311 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4312 			      size_t nbytes, loff_t off)
4313 {
4314 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4315 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4316 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
4317 	int swappiness = -1;
4318 	unsigned int reclaim_options;
4319 	char *old_buf, *start;
4320 	substring_t args[MAX_OPT_ARGS];
4321 
4322 	buf = strstrip(buf);
4323 
4324 	old_buf = buf;
4325 	nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4326 	if (buf == old_buf)
4327 		return -EINVAL;
4328 
4329 	buf = strstrip(buf);
4330 
4331 	while ((start = strsep(&buf, " ")) != NULL) {
4332 		if (!strlen(start))
4333 			continue;
4334 		switch (match_token(start, tokens, args)) {
4335 		case MEMORY_RECLAIM_SWAPPINESS:
4336 			if (match_int(&args[0], &swappiness))
4337 				return -EINVAL;
4338 			if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4339 				return -EINVAL;
4340 			break;
4341 		default:
4342 			return -EINVAL;
4343 		}
4344 	}
4345 
4346 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4347 	while (nr_reclaimed < nr_to_reclaim) {
4348 		/* Will converge on zero, but reclaim enforces a minimum */
4349 		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4350 		unsigned long reclaimed;
4351 
4352 		if (signal_pending(current))
4353 			return -EINTR;
4354 
4355 		/*
4356 		 * This is the final attempt, drain percpu lru caches in the
4357 		 * hope of introducing more evictable pages for
4358 		 * try_to_free_mem_cgroup_pages().
4359 		 */
4360 		if (!nr_retries)
4361 			lru_add_drain_all();
4362 
4363 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
4364 					batch_size, GFP_KERNEL,
4365 					reclaim_options,
4366 					swappiness == -1 ? NULL : &swappiness);
4367 
4368 		if (!reclaimed && !nr_retries--)
4369 			return -EAGAIN;
4370 
4371 		nr_reclaimed += reclaimed;
4372 	}
4373 
4374 	return nbytes;
4375 }
4376 
4377 static struct cftype memory_files[] = {
4378 	{
4379 		.name = "current",
4380 		.flags = CFTYPE_NOT_ON_ROOT,
4381 		.read_u64 = memory_current_read,
4382 	},
4383 	{
4384 		.name = "peak",
4385 		.flags = CFTYPE_NOT_ON_ROOT,
4386 		.open = peak_open,
4387 		.release = peak_release,
4388 		.seq_show = memory_peak_show,
4389 		.write = memory_peak_write,
4390 	},
4391 	{
4392 		.name = "min",
4393 		.flags = CFTYPE_NOT_ON_ROOT,
4394 		.seq_show = memory_min_show,
4395 		.write = memory_min_write,
4396 	},
4397 	{
4398 		.name = "low",
4399 		.flags = CFTYPE_NOT_ON_ROOT,
4400 		.seq_show = memory_low_show,
4401 		.write = memory_low_write,
4402 	},
4403 	{
4404 		.name = "high",
4405 		.flags = CFTYPE_NOT_ON_ROOT,
4406 		.seq_show = memory_high_show,
4407 		.write = memory_high_write,
4408 	},
4409 	{
4410 		.name = "max",
4411 		.flags = CFTYPE_NOT_ON_ROOT,
4412 		.seq_show = memory_max_show,
4413 		.write = memory_max_write,
4414 	},
4415 	{
4416 		.name = "events",
4417 		.flags = CFTYPE_NOT_ON_ROOT,
4418 		.file_offset = offsetof(struct mem_cgroup, events_file),
4419 		.seq_show = memory_events_show,
4420 	},
4421 	{
4422 		.name = "events.local",
4423 		.flags = CFTYPE_NOT_ON_ROOT,
4424 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
4425 		.seq_show = memory_events_local_show,
4426 	},
4427 	{
4428 		.name = "stat",
4429 		.seq_show = memory_stat_show,
4430 	},
4431 #ifdef CONFIG_NUMA
4432 	{
4433 		.name = "numa_stat",
4434 		.seq_show = memory_numa_stat_show,
4435 	},
4436 #endif
4437 	{
4438 		.name = "oom.group",
4439 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4440 		.seq_show = memory_oom_group_show,
4441 		.write = memory_oom_group_write,
4442 	},
4443 	{
4444 		.name = "reclaim",
4445 		.flags = CFTYPE_NS_DELEGATABLE,
4446 		.write = memory_reclaim,
4447 	},
4448 	{ }	/* terminate */
4449 };
4450 
4451 struct cgroup_subsys memory_cgrp_subsys = {
4452 	.css_alloc = mem_cgroup_css_alloc,
4453 	.css_online = mem_cgroup_css_online,
4454 	.css_offline = mem_cgroup_css_offline,
4455 	.css_released = mem_cgroup_css_released,
4456 	.css_free = mem_cgroup_css_free,
4457 	.css_reset = mem_cgroup_css_reset,
4458 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
4459 	.attach = mem_cgroup_attach,
4460 	.fork = mem_cgroup_fork,
4461 	.exit = mem_cgroup_exit,
4462 	.dfl_cftypes = memory_files,
4463 #ifdef CONFIG_MEMCG_V1
4464 	.legacy_cftypes = mem_cgroup_legacy_files,
4465 #endif
4466 	.early_init = 0,
4467 };
4468 
4469 /**
4470  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4471  * @root: the top ancestor of the sub-tree being checked
4472  * @memcg: the memory cgroup to check
4473  *
4474  * WARNING: This function is not stateless! It can only be used as part
4475  *          of a top-down tree iteration, not for isolated queries.
4476  */
4477 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4478 				     struct mem_cgroup *memcg)
4479 {
4480 	bool recursive_protection =
4481 		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4482 
4483 	if (mem_cgroup_disabled())
4484 		return;
4485 
4486 	if (!root)
4487 		root = root_mem_cgroup;
4488 
4489 	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4490 }
4491 
4492 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4493 			gfp_t gfp)
4494 {
4495 	int ret;
4496 
4497 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4498 	if (ret)
4499 		goto out;
4500 
4501 	mem_cgroup_commit_charge(folio, memcg);
4502 out:
4503 	return ret;
4504 }
4505 
4506 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4507 {
4508 	struct mem_cgroup *memcg;
4509 	int ret;
4510 
4511 	memcg = get_mem_cgroup_from_mm(mm);
4512 	ret = charge_memcg(folio, memcg, gfp);
4513 	css_put(&memcg->css);
4514 
4515 	return ret;
4516 }
4517 
4518 /**
4519  * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
4520  * @memcg: memcg to charge.
4521  * @gfp: reclaim mode.
4522  * @nr_pages: number of pages to charge.
4523  *
4524  * This function is called when allocating a huge page folio to determine if
4525  * the memcg has the capacity for it. It does not commit the charge yet,
4526  * as the hugetlb folio itself has not been obtained from the hugetlb pool.
4527  *
4528  * Once we have obtained the hugetlb folio, we can call
4529  * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
4530  * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
4531  * of try_charge().
4532  *
4533  * Returns 0 on success. Otherwise, an error code is returned.
4534  */
4535 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
4536 			long nr_pages)
4537 {
4538 	/*
4539 	 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
4540 	 * but do not attempt to commit charge later (or cancel on error) either.
4541 	 */
4542 	if (mem_cgroup_disabled() || !memcg ||
4543 		!cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
4544 		!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
4545 		return -EOPNOTSUPP;
4546 
4547 	if (try_charge(memcg, gfp, nr_pages))
4548 		return -ENOMEM;
4549 
4550 	return 0;
4551 }
4552 
4553 /**
4554  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4555  * @folio: folio to charge.
4556  * @mm: mm context of the victim
4557  * @gfp: reclaim mode
4558  * @entry: swap entry for which the folio is allocated
4559  *
4560  * This function charges a folio allocated for swapin. Please call this before
4561  * adding the folio to the swapcache.
4562  *
4563  * Returns 0 on success. Otherwise, an error code is returned.
4564  */
4565 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4566 				  gfp_t gfp, swp_entry_t entry)
4567 {
4568 	struct mem_cgroup *memcg;
4569 	unsigned short id;
4570 	int ret;
4571 
4572 	if (mem_cgroup_disabled())
4573 		return 0;
4574 
4575 	id = lookup_swap_cgroup_id(entry);
4576 	rcu_read_lock();
4577 	memcg = mem_cgroup_from_id(id);
4578 	if (!memcg || !css_tryget_online(&memcg->css))
4579 		memcg = get_mem_cgroup_from_mm(mm);
4580 	rcu_read_unlock();
4581 
4582 	ret = charge_memcg(folio, memcg, gfp);
4583 
4584 	css_put(&memcg->css);
4585 	return ret;
4586 }
4587 
4588 /*
4589  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4590  * @entry: the first swap entry for which the pages are charged
4591  * @nr_pages: number of pages which will be uncharged
4592  *
4593  * Call this function after successfully adding the charged page to swapcache.
4594  *
4595  * Note: This function assumes the page for which swap slot is being uncharged
4596  * is order 0 page.
4597  */
4598 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
4599 {
4600 	/*
4601 	 * Cgroup1's unified memory+swap counter has been charged with the
4602 	 * new swapcache page, finish the transfer by uncharging the swap
4603 	 * slot. The swap slot would also get uncharged when it dies, but
4604 	 * it can stick around indefinitely and we'd count the page twice
4605 	 * the entire time.
4606 	 *
4607 	 * Cgroup2 has separate resource counters for memory and swap,
4608 	 * so this is a non-issue here. Memory and swap charge lifetimes
4609 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
4610 	 * page to memory here, and uncharge swap when the slot is freed.
4611 	 */
4612 	if (!mem_cgroup_disabled() && do_memsw_account()) {
4613 		/*
4614 		 * The swap entry might not get freed for a long time,
4615 		 * let's not wait for it.  The page already received a
4616 		 * memory+swap charge, drop the swap entry duplicate.
4617 		 */
4618 		mem_cgroup_uncharge_swap(entry, nr_pages);
4619 	}
4620 }
4621 
4622 struct uncharge_gather {
4623 	struct mem_cgroup *memcg;
4624 	unsigned long nr_memory;
4625 	unsigned long pgpgout;
4626 	unsigned long nr_kmem;
4627 	int nid;
4628 };
4629 
4630 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4631 {
4632 	memset(ug, 0, sizeof(*ug));
4633 }
4634 
4635 static void uncharge_batch(const struct uncharge_gather *ug)
4636 {
4637 	if (ug->nr_memory) {
4638 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
4639 		if (do_memsw_account())
4640 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4641 		if (ug->nr_kmem) {
4642 			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4643 			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4644 		}
4645 		memcg1_oom_recover(ug->memcg);
4646 	}
4647 
4648 	memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4649 
4650 	/* drop reference from uncharge_folio */
4651 	css_put(&ug->memcg->css);
4652 }
4653 
4654 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4655 {
4656 	long nr_pages;
4657 	struct mem_cgroup *memcg;
4658 	struct obj_cgroup *objcg;
4659 
4660 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4661 
4662 	/*
4663 	 * Nobody should be changing or seriously looking at
4664 	 * folio memcg or objcg at this point, we have fully
4665 	 * exclusive access to the folio.
4666 	 */
4667 	if (folio_memcg_kmem(folio)) {
4668 		objcg = __folio_objcg(folio);
4669 		/*
4670 		 * This get matches the put at the end of the function and
4671 		 * kmem pages do not hold memcg references anymore.
4672 		 */
4673 		memcg = get_mem_cgroup_from_objcg(objcg);
4674 	} else {
4675 		memcg = __folio_memcg(folio);
4676 	}
4677 
4678 	if (!memcg)
4679 		return;
4680 
4681 	if (ug->memcg != memcg) {
4682 		if (ug->memcg) {
4683 			uncharge_batch(ug);
4684 			uncharge_gather_clear(ug);
4685 		}
4686 		ug->memcg = memcg;
4687 		ug->nid = folio_nid(folio);
4688 
4689 		/* pairs with css_put in uncharge_batch */
4690 		css_get(&memcg->css);
4691 	}
4692 
4693 	nr_pages = folio_nr_pages(folio);
4694 
4695 	if (folio_memcg_kmem(folio)) {
4696 		ug->nr_memory += nr_pages;
4697 		ug->nr_kmem += nr_pages;
4698 
4699 		folio->memcg_data = 0;
4700 		obj_cgroup_put(objcg);
4701 	} else {
4702 		/* LRU pages aren't accounted at the root level */
4703 		if (!mem_cgroup_is_root(memcg))
4704 			ug->nr_memory += nr_pages;
4705 		ug->pgpgout++;
4706 
4707 		WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4708 		folio->memcg_data = 0;
4709 	}
4710 
4711 	css_put(&memcg->css);
4712 }
4713 
4714 void __mem_cgroup_uncharge(struct folio *folio)
4715 {
4716 	struct uncharge_gather ug;
4717 
4718 	/* Don't touch folio->lru of any random page, pre-check: */
4719 	if (!folio_memcg_charged(folio))
4720 		return;
4721 
4722 	uncharge_gather_clear(&ug);
4723 	uncharge_folio(folio, &ug);
4724 	uncharge_batch(&ug);
4725 }
4726 
4727 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4728 {
4729 	struct uncharge_gather ug;
4730 	unsigned int i;
4731 
4732 	uncharge_gather_clear(&ug);
4733 	for (i = 0; i < folios->nr; i++)
4734 		uncharge_folio(folios->folios[i], &ug);
4735 	if (ug.memcg)
4736 		uncharge_batch(&ug);
4737 }
4738 
4739 /**
4740  * mem_cgroup_replace_folio - Charge a folio's replacement.
4741  * @old: Currently circulating folio.
4742  * @new: Replacement folio.
4743  *
4744  * Charge @new as a replacement folio for @old. @old will
4745  * be uncharged upon free.
4746  *
4747  * Both folios must be locked, @new->mapping must be set up.
4748  */
4749 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4750 {
4751 	struct mem_cgroup *memcg;
4752 	long nr_pages = folio_nr_pages(new);
4753 
4754 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4755 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4756 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4757 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4758 
4759 	if (mem_cgroup_disabled())
4760 		return;
4761 
4762 	/* Page cache replacement: new folio already charged? */
4763 	if (folio_memcg_charged(new))
4764 		return;
4765 
4766 	memcg = folio_memcg(old);
4767 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4768 	if (!memcg)
4769 		return;
4770 
4771 	/* Force-charge the new page. The old one will be freed soon */
4772 	if (!mem_cgroup_is_root(memcg)) {
4773 		page_counter_charge(&memcg->memory, nr_pages);
4774 		if (do_memsw_account())
4775 			page_counter_charge(&memcg->memsw, nr_pages);
4776 	}
4777 
4778 	css_get(&memcg->css);
4779 	commit_charge(new, memcg);
4780 	memcg1_commit_charge(new, memcg);
4781 }
4782 
4783 /**
4784  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4785  * @old: Currently circulating folio.
4786  * @new: Replacement folio.
4787  *
4788  * Transfer the memcg data from the old folio to the new folio for migration.
4789  * The old folio's data info will be cleared. Note that the memory counters
4790  * will remain unchanged throughout the process.
4791  *
4792  * Both folios must be locked, @new->mapping must be set up.
4793  */
4794 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4795 {
4796 	struct mem_cgroup *memcg;
4797 
4798 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4799 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4800 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4801 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4802 	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4803 
4804 	if (mem_cgroup_disabled())
4805 		return;
4806 
4807 	memcg = folio_memcg(old);
4808 	/*
4809 	 * Note that it is normal to see !memcg for a hugetlb folio.
4810 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4811 	 * was not selected.
4812 	 */
4813 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4814 	if (!memcg)
4815 		return;
4816 
4817 	/* Transfer the charge and the css ref */
4818 	commit_charge(new, memcg);
4819 
4820 	/* Warning should never happen, so don't worry about refcount non-0 */
4821 	WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4822 	old->memcg_data = 0;
4823 }
4824 
4825 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4826 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4827 
4828 void mem_cgroup_sk_alloc(struct sock *sk)
4829 {
4830 	struct mem_cgroup *memcg;
4831 
4832 	if (!mem_cgroup_sockets_enabled)
4833 		return;
4834 
4835 	/* Do not associate the sock with unrelated interrupted task's memcg. */
4836 	if (!in_task())
4837 		return;
4838 
4839 	rcu_read_lock();
4840 	memcg = mem_cgroup_from_task(current);
4841 	if (mem_cgroup_is_root(memcg))
4842 		goto out;
4843 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4844 		goto out;
4845 	if (css_tryget(&memcg->css))
4846 		sk->sk_memcg = memcg;
4847 out:
4848 	rcu_read_unlock();
4849 }
4850 
4851 void mem_cgroup_sk_free(struct sock *sk)
4852 {
4853 	if (sk->sk_memcg)
4854 		css_put(&sk->sk_memcg->css);
4855 }
4856 
4857 /**
4858  * mem_cgroup_charge_skmem - charge socket memory
4859  * @memcg: memcg to charge
4860  * @nr_pages: number of pages to charge
4861  * @gfp_mask: reclaim mode
4862  *
4863  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4864  * @memcg's configured limit, %false if it doesn't.
4865  */
4866 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4867 			     gfp_t gfp_mask)
4868 {
4869 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4870 		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
4871 
4872 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4873 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4874 		return true;
4875 	}
4876 
4877 	return false;
4878 }
4879 
4880 /**
4881  * mem_cgroup_uncharge_skmem - uncharge socket memory
4882  * @memcg: memcg to uncharge
4883  * @nr_pages: number of pages to uncharge
4884  */
4885 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4886 {
4887 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4888 		memcg1_uncharge_skmem(memcg, nr_pages);
4889 		return;
4890 	}
4891 
4892 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4893 
4894 	refill_stock(memcg, nr_pages);
4895 }
4896 
4897 static int __init cgroup_memory(char *s)
4898 {
4899 	char *token;
4900 
4901 	while ((token = strsep(&s, ",")) != NULL) {
4902 		if (!*token)
4903 			continue;
4904 		if (!strcmp(token, "nosocket"))
4905 			cgroup_memory_nosocket = true;
4906 		if (!strcmp(token, "nokmem"))
4907 			cgroup_memory_nokmem = true;
4908 		if (!strcmp(token, "nobpf"))
4909 			cgroup_memory_nobpf = true;
4910 	}
4911 	return 1;
4912 }
4913 __setup("cgroup.memory=", cgroup_memory);
4914 
4915 /*
4916  * subsys_initcall() for memory controller.
4917  *
4918  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4919  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4920  * basically everything that doesn't depend on a specific mem_cgroup structure
4921  * should be initialized from here.
4922  */
4923 static int __init mem_cgroup_init(void)
4924 {
4925 	int cpu;
4926 
4927 	/*
4928 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4929 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
4930 	 * to work fine, we should make sure that the overfill threshold can't
4931 	 * exceed S32_MAX / PAGE_SIZE.
4932 	 */
4933 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
4934 
4935 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4936 				  memcg_hotplug_cpu_dead);
4937 
4938 	for_each_possible_cpu(cpu)
4939 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4940 			  drain_local_stock);
4941 
4942 	return 0;
4943 }
4944 subsys_initcall(mem_cgroup_init);
4945 
4946 #ifdef CONFIG_SWAP
4947 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4948 {
4949 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
4950 		/*
4951 		 * The root cgroup cannot be destroyed, so it's refcount must
4952 		 * always be >= 1.
4953 		 */
4954 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
4955 			VM_BUG_ON(1);
4956 			break;
4957 		}
4958 		memcg = parent_mem_cgroup(memcg);
4959 		if (!memcg)
4960 			memcg = root_mem_cgroup;
4961 	}
4962 	return memcg;
4963 }
4964 
4965 /**
4966  * mem_cgroup_swapout - transfer a memsw charge to swap
4967  * @folio: folio whose memsw charge to transfer
4968  * @entry: swap entry to move the charge to
4969  *
4970  * Transfer the memsw charge of @folio to @entry.
4971  */
4972 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
4973 {
4974 	struct mem_cgroup *memcg, *swap_memcg;
4975 	unsigned int nr_entries;
4976 	unsigned short oldid;
4977 
4978 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4979 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
4980 
4981 	if (mem_cgroup_disabled())
4982 		return;
4983 
4984 	if (!do_memsw_account())
4985 		return;
4986 
4987 	memcg = folio_memcg(folio);
4988 
4989 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
4990 	if (!memcg)
4991 		return;
4992 
4993 	/*
4994 	 * In case the memcg owning these pages has been offlined and doesn't
4995 	 * have an ID allocated to it anymore, charge the closest online
4996 	 * ancestor for the swap instead and transfer the memory+swap charge.
4997 	 */
4998 	swap_memcg = mem_cgroup_id_get_online(memcg);
4999 	nr_entries = folio_nr_pages(folio);
5000 	/* Get references for the tail pages, too */
5001 	if (nr_entries > 1)
5002 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5003 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5004 				   nr_entries);
5005 	VM_BUG_ON_FOLIO(oldid, folio);
5006 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5007 
5008 	folio_unqueue_deferred_split(folio);
5009 	folio->memcg_data = 0;
5010 
5011 	if (!mem_cgroup_is_root(memcg))
5012 		page_counter_uncharge(&memcg->memory, nr_entries);
5013 
5014 	if (memcg != swap_memcg) {
5015 		if (!mem_cgroup_is_root(swap_memcg))
5016 			page_counter_charge(&swap_memcg->memsw, nr_entries);
5017 		page_counter_uncharge(&memcg->memsw, nr_entries);
5018 	}
5019 
5020 	memcg1_swapout(folio, memcg);
5021 	css_put(&memcg->css);
5022 }
5023 
5024 /**
5025  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5026  * @folio: folio being added to swap
5027  * @entry: swap entry to charge
5028  *
5029  * Try to charge @folio's memcg for the swap space at @entry.
5030  *
5031  * Returns 0 on success, -ENOMEM on failure.
5032  */
5033 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5034 {
5035 	unsigned int nr_pages = folio_nr_pages(folio);
5036 	struct page_counter *counter;
5037 	struct mem_cgroup *memcg;
5038 	unsigned short oldid;
5039 
5040 	if (do_memsw_account())
5041 		return 0;
5042 
5043 	memcg = folio_memcg(folio);
5044 
5045 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5046 	if (!memcg)
5047 		return 0;
5048 
5049 	if (!entry.val) {
5050 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5051 		return 0;
5052 	}
5053 
5054 	memcg = mem_cgroup_id_get_online(memcg);
5055 
5056 	if (!mem_cgroup_is_root(memcg) &&
5057 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5058 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5059 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5060 		mem_cgroup_id_put(memcg);
5061 		return -ENOMEM;
5062 	}
5063 
5064 	/* Get references for the tail pages, too */
5065 	if (nr_pages > 1)
5066 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5067 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5068 	VM_BUG_ON_FOLIO(oldid, folio);
5069 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5070 
5071 	return 0;
5072 }
5073 
5074 /**
5075  * __mem_cgroup_uncharge_swap - uncharge swap space
5076  * @entry: swap entry to uncharge
5077  * @nr_pages: the amount of swap space to uncharge
5078  */
5079 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5080 {
5081 	struct mem_cgroup *memcg;
5082 	unsigned short id;
5083 
5084 	id = swap_cgroup_record(entry, 0, nr_pages);
5085 	rcu_read_lock();
5086 	memcg = mem_cgroup_from_id(id);
5087 	if (memcg) {
5088 		if (!mem_cgroup_is_root(memcg)) {
5089 			if (do_memsw_account())
5090 				page_counter_uncharge(&memcg->memsw, nr_pages);
5091 			else
5092 				page_counter_uncharge(&memcg->swap, nr_pages);
5093 		}
5094 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5095 		mem_cgroup_id_put_many(memcg, nr_pages);
5096 	}
5097 	rcu_read_unlock();
5098 }
5099 
5100 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5101 {
5102 	long nr_swap_pages = get_nr_swap_pages();
5103 
5104 	if (mem_cgroup_disabled() || do_memsw_account())
5105 		return nr_swap_pages;
5106 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5107 		nr_swap_pages = min_t(long, nr_swap_pages,
5108 				      READ_ONCE(memcg->swap.max) -
5109 				      page_counter_read(&memcg->swap));
5110 	return nr_swap_pages;
5111 }
5112 
5113 bool mem_cgroup_swap_full(struct folio *folio)
5114 {
5115 	struct mem_cgroup *memcg;
5116 
5117 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5118 
5119 	if (vm_swap_full())
5120 		return true;
5121 	if (do_memsw_account())
5122 		return false;
5123 
5124 	memcg = folio_memcg(folio);
5125 	if (!memcg)
5126 		return false;
5127 
5128 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5129 		unsigned long usage = page_counter_read(&memcg->swap);
5130 
5131 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5132 		    usage * 2 >= READ_ONCE(memcg->swap.max))
5133 			return true;
5134 	}
5135 
5136 	return false;
5137 }
5138 
5139 static int __init setup_swap_account(char *s)
5140 {
5141 	bool res;
5142 
5143 	if (!kstrtobool(s, &res) && !res)
5144 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
5145 			     "in favor of configuring swap control via cgroupfs. "
5146 			     "Please report your usecase to linux-mm@kvack.org if you "
5147 			     "depend on this functionality.\n");
5148 	return 1;
5149 }
5150 __setup("swapaccount=", setup_swap_account);
5151 
5152 static u64 swap_current_read(struct cgroup_subsys_state *css,
5153 			     struct cftype *cft)
5154 {
5155 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5156 
5157 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5158 }
5159 
5160 static int swap_peak_show(struct seq_file *sf, void *v)
5161 {
5162 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5163 
5164 	return peak_show(sf, v, &memcg->swap);
5165 }
5166 
5167 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5168 			       size_t nbytes, loff_t off)
5169 {
5170 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5171 
5172 	return peak_write(of, buf, nbytes, off, &memcg->swap,
5173 			  &memcg->swap_peaks);
5174 }
5175 
5176 static int swap_high_show(struct seq_file *m, void *v)
5177 {
5178 	return seq_puts_memcg_tunable(m,
5179 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5180 }
5181 
5182 static ssize_t swap_high_write(struct kernfs_open_file *of,
5183 			       char *buf, size_t nbytes, loff_t off)
5184 {
5185 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5186 	unsigned long high;
5187 	int err;
5188 
5189 	buf = strstrip(buf);
5190 	err = page_counter_memparse(buf, "max", &high);
5191 	if (err)
5192 		return err;
5193 
5194 	page_counter_set_high(&memcg->swap, high);
5195 
5196 	return nbytes;
5197 }
5198 
5199 static int swap_max_show(struct seq_file *m, void *v)
5200 {
5201 	return seq_puts_memcg_tunable(m,
5202 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5203 }
5204 
5205 static ssize_t swap_max_write(struct kernfs_open_file *of,
5206 			      char *buf, size_t nbytes, loff_t off)
5207 {
5208 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5209 	unsigned long max;
5210 	int err;
5211 
5212 	buf = strstrip(buf);
5213 	err = page_counter_memparse(buf, "max", &max);
5214 	if (err)
5215 		return err;
5216 
5217 	xchg(&memcg->swap.max, max);
5218 
5219 	return nbytes;
5220 }
5221 
5222 static int swap_events_show(struct seq_file *m, void *v)
5223 {
5224 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5225 
5226 	seq_printf(m, "high %lu\n",
5227 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5228 	seq_printf(m, "max %lu\n",
5229 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5230 	seq_printf(m, "fail %lu\n",
5231 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5232 
5233 	return 0;
5234 }
5235 
5236 static struct cftype swap_files[] = {
5237 	{
5238 		.name = "swap.current",
5239 		.flags = CFTYPE_NOT_ON_ROOT,
5240 		.read_u64 = swap_current_read,
5241 	},
5242 	{
5243 		.name = "swap.high",
5244 		.flags = CFTYPE_NOT_ON_ROOT,
5245 		.seq_show = swap_high_show,
5246 		.write = swap_high_write,
5247 	},
5248 	{
5249 		.name = "swap.max",
5250 		.flags = CFTYPE_NOT_ON_ROOT,
5251 		.seq_show = swap_max_show,
5252 		.write = swap_max_write,
5253 	},
5254 	{
5255 		.name = "swap.peak",
5256 		.flags = CFTYPE_NOT_ON_ROOT,
5257 		.open = peak_open,
5258 		.release = peak_release,
5259 		.seq_show = swap_peak_show,
5260 		.write = swap_peak_write,
5261 	},
5262 	{
5263 		.name = "swap.events",
5264 		.flags = CFTYPE_NOT_ON_ROOT,
5265 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
5266 		.seq_show = swap_events_show,
5267 	},
5268 	{ }	/* terminate */
5269 };
5270 
5271 #ifdef CONFIG_ZSWAP
5272 /**
5273  * obj_cgroup_may_zswap - check if this cgroup can zswap
5274  * @objcg: the object cgroup
5275  *
5276  * Check if the hierarchical zswap limit has been reached.
5277  *
5278  * This doesn't check for specific headroom, and it is not atomic
5279  * either. But with zswap, the size of the allocation is only known
5280  * once compression has occurred, and this optimistic pre-check avoids
5281  * spending cycles on compression when there is already no room left
5282  * or zswap is disabled altogether somewhere in the hierarchy.
5283  */
5284 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5285 {
5286 	struct mem_cgroup *memcg, *original_memcg;
5287 	bool ret = true;
5288 
5289 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5290 		return true;
5291 
5292 	original_memcg = get_mem_cgroup_from_objcg(objcg);
5293 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5294 	     memcg = parent_mem_cgroup(memcg)) {
5295 		unsigned long max = READ_ONCE(memcg->zswap_max);
5296 		unsigned long pages;
5297 
5298 		if (max == PAGE_COUNTER_MAX)
5299 			continue;
5300 		if (max == 0) {
5301 			ret = false;
5302 			break;
5303 		}
5304 
5305 		/* Force flush to get accurate stats for charging */
5306 		__mem_cgroup_flush_stats(memcg, true);
5307 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5308 		if (pages < max)
5309 			continue;
5310 		ret = false;
5311 		break;
5312 	}
5313 	mem_cgroup_put(original_memcg);
5314 	return ret;
5315 }
5316 
5317 /**
5318  * obj_cgroup_charge_zswap - charge compression backend memory
5319  * @objcg: the object cgroup
5320  * @size: size of compressed object
5321  *
5322  * This forces the charge after obj_cgroup_may_zswap() allowed
5323  * compression and storage in zwap for this cgroup to go ahead.
5324  */
5325 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5326 {
5327 	struct mem_cgroup *memcg;
5328 
5329 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5330 		return;
5331 
5332 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5333 
5334 	/* PF_MEMALLOC context, charging must succeed */
5335 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5336 		VM_WARN_ON_ONCE(1);
5337 
5338 	rcu_read_lock();
5339 	memcg = obj_cgroup_memcg(objcg);
5340 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5341 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5342 	rcu_read_unlock();
5343 }
5344 
5345 /**
5346  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5347  * @objcg: the object cgroup
5348  * @size: size of compressed object
5349  *
5350  * Uncharges zswap memory on page in.
5351  */
5352 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5353 {
5354 	struct mem_cgroup *memcg;
5355 
5356 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5357 		return;
5358 
5359 	obj_cgroup_uncharge(objcg, size);
5360 
5361 	rcu_read_lock();
5362 	memcg = obj_cgroup_memcg(objcg);
5363 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5364 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5365 	rcu_read_unlock();
5366 }
5367 
5368 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5369 {
5370 	/* if zswap is disabled, do not block pages going to the swapping device */
5371 	if (!zswap_is_enabled())
5372 		return true;
5373 
5374 	for (; memcg; memcg = parent_mem_cgroup(memcg))
5375 		if (!READ_ONCE(memcg->zswap_writeback))
5376 			return false;
5377 
5378 	return true;
5379 }
5380 
5381 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5382 			      struct cftype *cft)
5383 {
5384 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5385 
5386 	mem_cgroup_flush_stats(memcg);
5387 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5388 }
5389 
5390 static int zswap_max_show(struct seq_file *m, void *v)
5391 {
5392 	return seq_puts_memcg_tunable(m,
5393 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5394 }
5395 
5396 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5397 			       char *buf, size_t nbytes, loff_t off)
5398 {
5399 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5400 	unsigned long max;
5401 	int err;
5402 
5403 	buf = strstrip(buf);
5404 	err = page_counter_memparse(buf, "max", &max);
5405 	if (err)
5406 		return err;
5407 
5408 	xchg(&memcg->zswap_max, max);
5409 
5410 	return nbytes;
5411 }
5412 
5413 static int zswap_writeback_show(struct seq_file *m, void *v)
5414 {
5415 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5416 
5417 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5418 	return 0;
5419 }
5420 
5421 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5422 				char *buf, size_t nbytes, loff_t off)
5423 {
5424 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5425 	int zswap_writeback;
5426 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5427 
5428 	if (parse_ret)
5429 		return parse_ret;
5430 
5431 	if (zswap_writeback != 0 && zswap_writeback != 1)
5432 		return -EINVAL;
5433 
5434 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5435 	return nbytes;
5436 }
5437 
5438 static struct cftype zswap_files[] = {
5439 	{
5440 		.name = "zswap.current",
5441 		.flags = CFTYPE_NOT_ON_ROOT,
5442 		.read_u64 = zswap_current_read,
5443 	},
5444 	{
5445 		.name = "zswap.max",
5446 		.flags = CFTYPE_NOT_ON_ROOT,
5447 		.seq_show = zswap_max_show,
5448 		.write = zswap_max_write,
5449 	},
5450 	{
5451 		.name = "zswap.writeback",
5452 		.seq_show = zswap_writeback_show,
5453 		.write = zswap_writeback_write,
5454 	},
5455 	{ }	/* terminate */
5456 };
5457 #endif /* CONFIG_ZSWAP */
5458 
5459 static int __init mem_cgroup_swap_init(void)
5460 {
5461 	if (mem_cgroup_disabled())
5462 		return 0;
5463 
5464 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5465 #ifdef CONFIG_MEMCG_V1
5466 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5467 #endif
5468 #ifdef CONFIG_ZSWAP
5469 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5470 #endif
5471 	return 0;
5472 }
5473 subsys_initcall(mem_cgroup_swap_init);
5474 
5475 #endif /* CONFIG_SWAP */
5476