xref: /linux/mm/memcontrol.c (revision 79bd9814e5ec9a288d6599f53aeac0b548fdfe52)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmalloc.h>
53 #include <linux/vmpressure.h>
54 #include <linux/mm_inline.h>
55 #include <linux/page_cgroup.h>
56 #include <linux/cpu.h>
57 #include <linux/oom.h>
58 #include <linux/lockdep.h>
59 #include <linux/file.h>
60 #include "internal.h"
61 #include <net/sock.h>
62 #include <net/ip.h>
63 #include <net/tcp_memcontrol.h>
64 
65 #include <asm/uaccess.h>
66 
67 #include <trace/events/vmscan.h>
68 
69 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
70 EXPORT_SYMBOL(mem_cgroup_subsys);
71 
72 #define MEM_CGROUP_RECLAIM_RETRIES	5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78 
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata = 0;
84 #endif
85 
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 
91 static const char * const mem_cgroup_stat_names[] = {
92 	"cache",
93 	"rss",
94 	"rss_huge",
95 	"mapped_file",
96 	"writeback",
97 	"swap",
98 };
99 
100 enum mem_cgroup_events_index {
101 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
102 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
104 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 	MEM_CGROUP_EVENTS_NSTATS,
106 };
107 
108 static const char * const mem_cgroup_events_names[] = {
109 	"pgpgin",
110 	"pgpgout",
111 	"pgfault",
112 	"pgmajfault",
113 };
114 
115 static const char * const mem_cgroup_lru_names[] = {
116 	"inactive_anon",
117 	"active_anon",
118 	"inactive_file",
119 	"active_file",
120 	"unevictable",
121 };
122 
123 /*
124  * Per memcg event counter is incremented at every pagein/pageout. With THP,
125  * it will be incremated by the number of pages. This counter is used for
126  * for trigger some periodic events. This is straightforward and better
127  * than using jiffies etc. to handle periodic memcg event.
128  */
129 enum mem_cgroup_events_target {
130 	MEM_CGROUP_TARGET_THRESH,
131 	MEM_CGROUP_TARGET_SOFTLIMIT,
132 	MEM_CGROUP_TARGET_NUMAINFO,
133 	MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET	1024
138 
139 struct mem_cgroup_stat_cpu {
140 	long count[MEM_CGROUP_STAT_NSTATS];
141 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 	unsigned long nr_page_events;
143 	unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145 
146 struct mem_cgroup_reclaim_iter {
147 	/*
148 	 * last scanned hierarchy member. Valid only if last_dead_count
149 	 * matches memcg->dead_count of the hierarchy root group.
150 	 */
151 	struct mem_cgroup *last_visited;
152 	unsigned long last_dead_count;
153 
154 	/* scan generation, increased every round-trip */
155 	unsigned int generation;
156 };
157 
158 /*
159  * per-zone information in memory controller.
160  */
161 struct mem_cgroup_per_zone {
162 	struct lruvec		lruvec;
163 	unsigned long		lru_size[NR_LRU_LISTS];
164 
165 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166 
167 	struct rb_node		tree_node;	/* RB tree node */
168 	unsigned long long	usage_in_excess;/* Set to the value by which */
169 						/* the soft limit is exceeded*/
170 	bool			on_tree;
171 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172 						/* use container_of	   */
173 };
174 
175 struct mem_cgroup_per_node {
176 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178 
179 /*
180  * Cgroups above their limits are maintained in a RB-Tree, independent of
181  * their hierarchy representation
182  */
183 
184 struct mem_cgroup_tree_per_zone {
185 	struct rb_root rb_root;
186 	spinlock_t lock;
187 };
188 
189 struct mem_cgroup_tree_per_node {
190 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192 
193 struct mem_cgroup_tree {
194 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196 
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198 
199 struct mem_cgroup_threshold {
200 	struct eventfd_ctx *eventfd;
201 	u64 threshold;
202 };
203 
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 	/* An array index points to threshold just below or equal to usage. */
207 	int current_threshold;
208 	/* Size of entries[] */
209 	unsigned int size;
210 	/* Array of thresholds */
211 	struct mem_cgroup_threshold entries[0];
212 };
213 
214 struct mem_cgroup_thresholds {
215 	/* Primary thresholds array */
216 	struct mem_cgroup_threshold_ary *primary;
217 	/*
218 	 * Spare threshold array.
219 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 	 * It must be able to store at least primary->size - 1 entries.
221 	 */
222 	struct mem_cgroup_threshold_ary *spare;
223 };
224 
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 	struct list_head list;
228 	struct eventfd_ctx *eventfd;
229 };
230 
231 /*
232  * cgroup_event represents events which userspace want to receive.
233  */
234 struct cgroup_event {
235 	/*
236 	 * css which the event belongs to.
237 	 */
238 	struct cgroup_subsys_state *css;
239 	/*
240 	 * Control file which the event associated.
241 	 */
242 	struct cftype *cft;
243 	/*
244 	 * eventfd to signal userspace about the event.
245 	 */
246 	struct eventfd_ctx *eventfd;
247 	/*
248 	 * Each of these stored in a list by the cgroup.
249 	 */
250 	struct list_head list;
251 	/*
252 	 * All fields below needed to unregister event when
253 	 * userspace closes eventfd.
254 	 */
255 	poll_table pt;
256 	wait_queue_head_t *wqh;
257 	wait_queue_t wait;
258 	struct work_struct remove;
259 };
260 
261 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
262 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
263 
264 /*
265  * The memory controller data structure. The memory controller controls both
266  * page cache and RSS per cgroup. We would eventually like to provide
267  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
268  * to help the administrator determine what knobs to tune.
269  *
270  * TODO: Add a water mark for the memory controller. Reclaim will begin when
271  * we hit the water mark. May be even add a low water mark, such that
272  * no reclaim occurs from a cgroup at it's low water mark, this is
273  * a feature that will be implemented much later in the future.
274  */
275 struct mem_cgroup {
276 	struct cgroup_subsys_state css;
277 	/*
278 	 * the counter to account for memory usage
279 	 */
280 	struct res_counter res;
281 
282 	/* vmpressure notifications */
283 	struct vmpressure vmpressure;
284 
285 	/*
286 	 * the counter to account for mem+swap usage.
287 	 */
288 	struct res_counter memsw;
289 
290 	/*
291 	 * the counter to account for kernel memory usage.
292 	 */
293 	struct res_counter kmem;
294 	/*
295 	 * Should the accounting and control be hierarchical, per subtree?
296 	 */
297 	bool use_hierarchy;
298 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
299 
300 	bool		oom_lock;
301 	atomic_t	under_oom;
302 	atomic_t	oom_wakeups;
303 
304 	int	swappiness;
305 	/* OOM-Killer disable */
306 	int		oom_kill_disable;
307 
308 	/* set when res.limit == memsw.limit */
309 	bool		memsw_is_minimum;
310 
311 	/* protect arrays of thresholds */
312 	struct mutex thresholds_lock;
313 
314 	/* thresholds for memory usage. RCU-protected */
315 	struct mem_cgroup_thresholds thresholds;
316 
317 	/* thresholds for mem+swap usage. RCU-protected */
318 	struct mem_cgroup_thresholds memsw_thresholds;
319 
320 	/* For oom notifier event fd */
321 	struct list_head oom_notify;
322 
323 	/*
324 	 * Should we move charges of a task when a task is moved into this
325 	 * mem_cgroup ? And what type of charges should we move ?
326 	 */
327 	unsigned long move_charge_at_immigrate;
328 	/*
329 	 * set > 0 if pages under this cgroup are moving to other cgroup.
330 	 */
331 	atomic_t	moving_account;
332 	/* taken only while moving_account > 0 */
333 	spinlock_t	move_lock;
334 	/*
335 	 * percpu counter.
336 	 */
337 	struct mem_cgroup_stat_cpu __percpu *stat;
338 	/*
339 	 * used when a cpu is offlined or other synchronizations
340 	 * See mem_cgroup_read_stat().
341 	 */
342 	struct mem_cgroup_stat_cpu nocpu_base;
343 	spinlock_t pcp_counter_lock;
344 
345 	atomic_t	dead_count;
346 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
347 	struct tcp_memcontrol tcp_mem;
348 #endif
349 #if defined(CONFIG_MEMCG_KMEM)
350 	/* analogous to slab_common's slab_caches list. per-memcg */
351 	struct list_head memcg_slab_caches;
352 	/* Not a spinlock, we can take a lot of time walking the list */
353 	struct mutex slab_caches_mutex;
354         /* Index in the kmem_cache->memcg_params->memcg_caches array */
355 	int kmemcg_id;
356 #endif
357 
358 	int last_scanned_node;
359 #if MAX_NUMNODES > 1
360 	nodemask_t	scan_nodes;
361 	atomic_t	numainfo_events;
362 	atomic_t	numainfo_updating;
363 #endif
364 
365 	struct mem_cgroup_per_node *nodeinfo[0];
366 	/* WARNING: nodeinfo must be the last member here */
367 };
368 
369 static size_t memcg_size(void)
370 {
371 	return sizeof(struct mem_cgroup) +
372 		nr_node_ids * sizeof(struct mem_cgroup_per_node);
373 }
374 
375 /* internal only representation about the status of kmem accounting. */
376 enum {
377 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
378 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
379 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
380 };
381 
382 /* We account when limit is on, but only after call sites are patched */
383 #define KMEM_ACCOUNTED_MASK \
384 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
385 
386 #ifdef CONFIG_MEMCG_KMEM
387 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
388 {
389 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
390 }
391 
392 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
393 {
394 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
395 }
396 
397 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
398 {
399 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
400 }
401 
402 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
403 {
404 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
405 }
406 
407 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
408 {
409 	/*
410 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
411 	 * will call css_put() if it sees the memcg is dead.
412 	 */
413 	smp_wmb();
414 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
415 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
416 }
417 
418 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
419 {
420 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
421 				  &memcg->kmem_account_flags);
422 }
423 #endif
424 
425 /* Stuffs for move charges at task migration. */
426 /*
427  * Types of charges to be moved. "move_charge_at_immitgrate" and
428  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
429  */
430 enum move_type {
431 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
432 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
433 	NR_MOVE_TYPE,
434 };
435 
436 /* "mc" and its members are protected by cgroup_mutex */
437 static struct move_charge_struct {
438 	spinlock_t	  lock; /* for from, to */
439 	struct mem_cgroup *from;
440 	struct mem_cgroup *to;
441 	unsigned long immigrate_flags;
442 	unsigned long precharge;
443 	unsigned long moved_charge;
444 	unsigned long moved_swap;
445 	struct task_struct *moving_task;	/* a task moving charges */
446 	wait_queue_head_t waitq;		/* a waitq for other context */
447 } mc = {
448 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
449 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
450 };
451 
452 static bool move_anon(void)
453 {
454 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
455 }
456 
457 static bool move_file(void)
458 {
459 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
460 }
461 
462 /*
463  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
464  * limit reclaim to prevent infinite loops, if they ever occur.
465  */
466 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
467 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
468 
469 enum charge_type {
470 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
471 	MEM_CGROUP_CHARGE_TYPE_ANON,
472 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
473 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
474 	NR_CHARGE_TYPE,
475 };
476 
477 /* for encoding cft->private value on file */
478 enum res_type {
479 	_MEM,
480 	_MEMSWAP,
481 	_OOM_TYPE,
482 	_KMEM,
483 };
484 
485 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
486 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
487 #define MEMFILE_ATTR(val)	((val) & 0xffff)
488 /* Used for OOM nofiier */
489 #define OOM_CONTROL		(0)
490 
491 /*
492  * Reclaim flags for mem_cgroup_hierarchical_reclaim
493  */
494 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
495 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
496 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
497 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
498 
499 /*
500  * The memcg_create_mutex will be held whenever a new cgroup is created.
501  * As a consequence, any change that needs to protect against new child cgroups
502  * appearing has to hold it as well.
503  */
504 static DEFINE_MUTEX(memcg_create_mutex);
505 
506 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
507 {
508 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
509 }
510 
511 /* Some nice accessors for the vmpressure. */
512 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
513 {
514 	if (!memcg)
515 		memcg = root_mem_cgroup;
516 	return &memcg->vmpressure;
517 }
518 
519 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
520 {
521 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
522 }
523 
524 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
525 {
526 	return &mem_cgroup_from_css(css)->vmpressure;
527 }
528 
529 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
530 {
531 	return (memcg == root_mem_cgroup);
532 }
533 
534 /* Writing them here to avoid exposing memcg's inner layout */
535 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
536 
537 void sock_update_memcg(struct sock *sk)
538 {
539 	if (mem_cgroup_sockets_enabled) {
540 		struct mem_cgroup *memcg;
541 		struct cg_proto *cg_proto;
542 
543 		BUG_ON(!sk->sk_prot->proto_cgroup);
544 
545 		/* Socket cloning can throw us here with sk_cgrp already
546 		 * filled. It won't however, necessarily happen from
547 		 * process context. So the test for root memcg given
548 		 * the current task's memcg won't help us in this case.
549 		 *
550 		 * Respecting the original socket's memcg is a better
551 		 * decision in this case.
552 		 */
553 		if (sk->sk_cgrp) {
554 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
555 			css_get(&sk->sk_cgrp->memcg->css);
556 			return;
557 		}
558 
559 		rcu_read_lock();
560 		memcg = mem_cgroup_from_task(current);
561 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
562 		if (!mem_cgroup_is_root(memcg) &&
563 		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
564 			sk->sk_cgrp = cg_proto;
565 		}
566 		rcu_read_unlock();
567 	}
568 }
569 EXPORT_SYMBOL(sock_update_memcg);
570 
571 void sock_release_memcg(struct sock *sk)
572 {
573 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
574 		struct mem_cgroup *memcg;
575 		WARN_ON(!sk->sk_cgrp->memcg);
576 		memcg = sk->sk_cgrp->memcg;
577 		css_put(&sk->sk_cgrp->memcg->css);
578 	}
579 }
580 
581 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
582 {
583 	if (!memcg || mem_cgroup_is_root(memcg))
584 		return NULL;
585 
586 	return &memcg->tcp_mem.cg_proto;
587 }
588 EXPORT_SYMBOL(tcp_proto_cgroup);
589 
590 static void disarm_sock_keys(struct mem_cgroup *memcg)
591 {
592 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
593 		return;
594 	static_key_slow_dec(&memcg_socket_limit_enabled);
595 }
596 #else
597 static void disarm_sock_keys(struct mem_cgroup *memcg)
598 {
599 }
600 #endif
601 
602 #ifdef CONFIG_MEMCG_KMEM
603 /*
604  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
605  * There are two main reasons for not using the css_id for this:
606  *  1) this works better in sparse environments, where we have a lot of memcgs,
607  *     but only a few kmem-limited. Or also, if we have, for instance, 200
608  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
609  *     200 entry array for that.
610  *
611  *  2) In order not to violate the cgroup API, we would like to do all memory
612  *     allocation in ->create(). At that point, we haven't yet allocated the
613  *     css_id. Having a separate index prevents us from messing with the cgroup
614  *     core for this
615  *
616  * The current size of the caches array is stored in
617  * memcg_limited_groups_array_size.  It will double each time we have to
618  * increase it.
619  */
620 static DEFINE_IDA(kmem_limited_groups);
621 int memcg_limited_groups_array_size;
622 
623 /*
624  * MIN_SIZE is different than 1, because we would like to avoid going through
625  * the alloc/free process all the time. In a small machine, 4 kmem-limited
626  * cgroups is a reasonable guess. In the future, it could be a parameter or
627  * tunable, but that is strictly not necessary.
628  *
629  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
630  * this constant directly from cgroup, but it is understandable that this is
631  * better kept as an internal representation in cgroup.c. In any case, the
632  * css_id space is not getting any smaller, and we don't have to necessarily
633  * increase ours as well if it increases.
634  */
635 #define MEMCG_CACHES_MIN_SIZE 4
636 #define MEMCG_CACHES_MAX_SIZE 65535
637 
638 /*
639  * A lot of the calls to the cache allocation functions are expected to be
640  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
641  * conditional to this static branch, we'll have to allow modules that does
642  * kmem_cache_alloc and the such to see this symbol as well
643  */
644 struct static_key memcg_kmem_enabled_key;
645 EXPORT_SYMBOL(memcg_kmem_enabled_key);
646 
647 static void disarm_kmem_keys(struct mem_cgroup *memcg)
648 {
649 	if (memcg_kmem_is_active(memcg)) {
650 		static_key_slow_dec(&memcg_kmem_enabled_key);
651 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
652 	}
653 	/*
654 	 * This check can't live in kmem destruction function,
655 	 * since the charges will outlive the cgroup
656 	 */
657 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
658 }
659 #else
660 static void disarm_kmem_keys(struct mem_cgroup *memcg)
661 {
662 }
663 #endif /* CONFIG_MEMCG_KMEM */
664 
665 static void disarm_static_keys(struct mem_cgroup *memcg)
666 {
667 	disarm_sock_keys(memcg);
668 	disarm_kmem_keys(memcg);
669 }
670 
671 static void drain_all_stock_async(struct mem_cgroup *memcg);
672 
673 static struct mem_cgroup_per_zone *
674 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
675 {
676 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
677 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
678 }
679 
680 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
681 {
682 	return &memcg->css;
683 }
684 
685 static struct mem_cgroup_per_zone *
686 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
687 {
688 	int nid = page_to_nid(page);
689 	int zid = page_zonenum(page);
690 
691 	return mem_cgroup_zoneinfo(memcg, nid, zid);
692 }
693 
694 static struct mem_cgroup_tree_per_zone *
695 soft_limit_tree_node_zone(int nid, int zid)
696 {
697 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
698 }
699 
700 static struct mem_cgroup_tree_per_zone *
701 soft_limit_tree_from_page(struct page *page)
702 {
703 	int nid = page_to_nid(page);
704 	int zid = page_zonenum(page);
705 
706 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
707 }
708 
709 static void
710 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
711 				struct mem_cgroup_per_zone *mz,
712 				struct mem_cgroup_tree_per_zone *mctz,
713 				unsigned long long new_usage_in_excess)
714 {
715 	struct rb_node **p = &mctz->rb_root.rb_node;
716 	struct rb_node *parent = NULL;
717 	struct mem_cgroup_per_zone *mz_node;
718 
719 	if (mz->on_tree)
720 		return;
721 
722 	mz->usage_in_excess = new_usage_in_excess;
723 	if (!mz->usage_in_excess)
724 		return;
725 	while (*p) {
726 		parent = *p;
727 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
728 					tree_node);
729 		if (mz->usage_in_excess < mz_node->usage_in_excess)
730 			p = &(*p)->rb_left;
731 		/*
732 		 * We can't avoid mem cgroups that are over their soft
733 		 * limit by the same amount
734 		 */
735 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
736 			p = &(*p)->rb_right;
737 	}
738 	rb_link_node(&mz->tree_node, parent, p);
739 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
740 	mz->on_tree = true;
741 }
742 
743 static void
744 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
745 				struct mem_cgroup_per_zone *mz,
746 				struct mem_cgroup_tree_per_zone *mctz)
747 {
748 	if (!mz->on_tree)
749 		return;
750 	rb_erase(&mz->tree_node, &mctz->rb_root);
751 	mz->on_tree = false;
752 }
753 
754 static void
755 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
756 				struct mem_cgroup_per_zone *mz,
757 				struct mem_cgroup_tree_per_zone *mctz)
758 {
759 	spin_lock(&mctz->lock);
760 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
761 	spin_unlock(&mctz->lock);
762 }
763 
764 
765 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
766 {
767 	unsigned long long excess;
768 	struct mem_cgroup_per_zone *mz;
769 	struct mem_cgroup_tree_per_zone *mctz;
770 	int nid = page_to_nid(page);
771 	int zid = page_zonenum(page);
772 	mctz = soft_limit_tree_from_page(page);
773 
774 	/*
775 	 * Necessary to update all ancestors when hierarchy is used.
776 	 * because their event counter is not touched.
777 	 */
778 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
779 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
780 		excess = res_counter_soft_limit_excess(&memcg->res);
781 		/*
782 		 * We have to update the tree if mz is on RB-tree or
783 		 * mem is over its softlimit.
784 		 */
785 		if (excess || mz->on_tree) {
786 			spin_lock(&mctz->lock);
787 			/* if on-tree, remove it */
788 			if (mz->on_tree)
789 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
790 			/*
791 			 * Insert again. mz->usage_in_excess will be updated.
792 			 * If excess is 0, no tree ops.
793 			 */
794 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
795 			spin_unlock(&mctz->lock);
796 		}
797 	}
798 }
799 
800 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
801 {
802 	int node, zone;
803 	struct mem_cgroup_per_zone *mz;
804 	struct mem_cgroup_tree_per_zone *mctz;
805 
806 	for_each_node(node) {
807 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
808 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
809 			mctz = soft_limit_tree_node_zone(node, zone);
810 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
811 		}
812 	}
813 }
814 
815 static struct mem_cgroup_per_zone *
816 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
817 {
818 	struct rb_node *rightmost = NULL;
819 	struct mem_cgroup_per_zone *mz;
820 
821 retry:
822 	mz = NULL;
823 	rightmost = rb_last(&mctz->rb_root);
824 	if (!rightmost)
825 		goto done;		/* Nothing to reclaim from */
826 
827 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
828 	/*
829 	 * Remove the node now but someone else can add it back,
830 	 * we will to add it back at the end of reclaim to its correct
831 	 * position in the tree.
832 	 */
833 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
834 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
835 		!css_tryget(&mz->memcg->css))
836 		goto retry;
837 done:
838 	return mz;
839 }
840 
841 static struct mem_cgroup_per_zone *
842 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
843 {
844 	struct mem_cgroup_per_zone *mz;
845 
846 	spin_lock(&mctz->lock);
847 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
848 	spin_unlock(&mctz->lock);
849 	return mz;
850 }
851 
852 /*
853  * Implementation Note: reading percpu statistics for memcg.
854  *
855  * Both of vmstat[] and percpu_counter has threshold and do periodic
856  * synchronization to implement "quick" read. There are trade-off between
857  * reading cost and precision of value. Then, we may have a chance to implement
858  * a periodic synchronizion of counter in memcg's counter.
859  *
860  * But this _read() function is used for user interface now. The user accounts
861  * memory usage by memory cgroup and he _always_ requires exact value because
862  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
863  * have to visit all online cpus and make sum. So, for now, unnecessary
864  * synchronization is not implemented. (just implemented for cpu hotplug)
865  *
866  * If there are kernel internal actions which can make use of some not-exact
867  * value, and reading all cpu value can be performance bottleneck in some
868  * common workload, threashold and synchonization as vmstat[] should be
869  * implemented.
870  */
871 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
872 				 enum mem_cgroup_stat_index idx)
873 {
874 	long val = 0;
875 	int cpu;
876 
877 	get_online_cpus();
878 	for_each_online_cpu(cpu)
879 		val += per_cpu(memcg->stat->count[idx], cpu);
880 #ifdef CONFIG_HOTPLUG_CPU
881 	spin_lock(&memcg->pcp_counter_lock);
882 	val += memcg->nocpu_base.count[idx];
883 	spin_unlock(&memcg->pcp_counter_lock);
884 #endif
885 	put_online_cpus();
886 	return val;
887 }
888 
889 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
890 					 bool charge)
891 {
892 	int val = (charge) ? 1 : -1;
893 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
894 }
895 
896 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
897 					    enum mem_cgroup_events_index idx)
898 {
899 	unsigned long val = 0;
900 	int cpu;
901 
902 	get_online_cpus();
903 	for_each_online_cpu(cpu)
904 		val += per_cpu(memcg->stat->events[idx], cpu);
905 #ifdef CONFIG_HOTPLUG_CPU
906 	spin_lock(&memcg->pcp_counter_lock);
907 	val += memcg->nocpu_base.events[idx];
908 	spin_unlock(&memcg->pcp_counter_lock);
909 #endif
910 	put_online_cpus();
911 	return val;
912 }
913 
914 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
915 					 struct page *page,
916 					 bool anon, int nr_pages)
917 {
918 	preempt_disable();
919 
920 	/*
921 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
922 	 * counted as CACHE even if it's on ANON LRU.
923 	 */
924 	if (anon)
925 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
926 				nr_pages);
927 	else
928 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
929 				nr_pages);
930 
931 	if (PageTransHuge(page))
932 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
933 				nr_pages);
934 
935 	/* pagein of a big page is an event. So, ignore page size */
936 	if (nr_pages > 0)
937 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
938 	else {
939 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
940 		nr_pages = -nr_pages; /* for event */
941 	}
942 
943 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
944 
945 	preempt_enable();
946 }
947 
948 unsigned long
949 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
950 {
951 	struct mem_cgroup_per_zone *mz;
952 
953 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
954 	return mz->lru_size[lru];
955 }
956 
957 static unsigned long
958 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
959 			unsigned int lru_mask)
960 {
961 	struct mem_cgroup_per_zone *mz;
962 	enum lru_list lru;
963 	unsigned long ret = 0;
964 
965 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
966 
967 	for_each_lru(lru) {
968 		if (BIT(lru) & lru_mask)
969 			ret += mz->lru_size[lru];
970 	}
971 	return ret;
972 }
973 
974 static unsigned long
975 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
976 			int nid, unsigned int lru_mask)
977 {
978 	u64 total = 0;
979 	int zid;
980 
981 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
982 		total += mem_cgroup_zone_nr_lru_pages(memcg,
983 						nid, zid, lru_mask);
984 
985 	return total;
986 }
987 
988 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
989 			unsigned int lru_mask)
990 {
991 	int nid;
992 	u64 total = 0;
993 
994 	for_each_node_state(nid, N_MEMORY)
995 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
996 	return total;
997 }
998 
999 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1000 				       enum mem_cgroup_events_target target)
1001 {
1002 	unsigned long val, next;
1003 
1004 	val = __this_cpu_read(memcg->stat->nr_page_events);
1005 	next = __this_cpu_read(memcg->stat->targets[target]);
1006 	/* from time_after() in jiffies.h */
1007 	if ((long)next - (long)val < 0) {
1008 		switch (target) {
1009 		case MEM_CGROUP_TARGET_THRESH:
1010 			next = val + THRESHOLDS_EVENTS_TARGET;
1011 			break;
1012 		case MEM_CGROUP_TARGET_SOFTLIMIT:
1013 			next = val + SOFTLIMIT_EVENTS_TARGET;
1014 			break;
1015 		case MEM_CGROUP_TARGET_NUMAINFO:
1016 			next = val + NUMAINFO_EVENTS_TARGET;
1017 			break;
1018 		default:
1019 			break;
1020 		}
1021 		__this_cpu_write(memcg->stat->targets[target], next);
1022 		return true;
1023 	}
1024 	return false;
1025 }
1026 
1027 /*
1028  * Check events in order.
1029  *
1030  */
1031 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1032 {
1033 	preempt_disable();
1034 	/* threshold event is triggered in finer grain than soft limit */
1035 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1036 						MEM_CGROUP_TARGET_THRESH))) {
1037 		bool do_softlimit;
1038 		bool do_numainfo __maybe_unused;
1039 
1040 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1041 						MEM_CGROUP_TARGET_SOFTLIMIT);
1042 #if MAX_NUMNODES > 1
1043 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1044 						MEM_CGROUP_TARGET_NUMAINFO);
1045 #endif
1046 		preempt_enable();
1047 
1048 		mem_cgroup_threshold(memcg);
1049 		if (unlikely(do_softlimit))
1050 			mem_cgroup_update_tree(memcg, page);
1051 #if MAX_NUMNODES > 1
1052 		if (unlikely(do_numainfo))
1053 			atomic_inc(&memcg->numainfo_events);
1054 #endif
1055 	} else
1056 		preempt_enable();
1057 }
1058 
1059 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1060 {
1061 	/*
1062 	 * mm_update_next_owner() may clear mm->owner to NULL
1063 	 * if it races with swapoff, page migration, etc.
1064 	 * So this can be called with p == NULL.
1065 	 */
1066 	if (unlikely(!p))
1067 		return NULL;
1068 
1069 	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1070 }
1071 
1072 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1073 {
1074 	struct mem_cgroup *memcg = NULL;
1075 
1076 	if (!mm)
1077 		return NULL;
1078 	/*
1079 	 * Because we have no locks, mm->owner's may be being moved to other
1080 	 * cgroup. We use css_tryget() here even if this looks
1081 	 * pessimistic (rather than adding locks here).
1082 	 */
1083 	rcu_read_lock();
1084 	do {
1085 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1086 		if (unlikely(!memcg))
1087 			break;
1088 	} while (!css_tryget(&memcg->css));
1089 	rcu_read_unlock();
1090 	return memcg;
1091 }
1092 
1093 /*
1094  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1095  * ref. count) or NULL if the whole root's subtree has been visited.
1096  *
1097  * helper function to be used by mem_cgroup_iter
1098  */
1099 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1100 		struct mem_cgroup *last_visited)
1101 {
1102 	struct cgroup_subsys_state *prev_css, *next_css;
1103 
1104 	prev_css = last_visited ? &last_visited->css : NULL;
1105 skip_node:
1106 	next_css = css_next_descendant_pre(prev_css, &root->css);
1107 
1108 	/*
1109 	 * Even if we found a group we have to make sure it is
1110 	 * alive. css && !memcg means that the groups should be
1111 	 * skipped and we should continue the tree walk.
1112 	 * last_visited css is safe to use because it is
1113 	 * protected by css_get and the tree walk is rcu safe.
1114 	 */
1115 	if (next_css) {
1116 		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1117 
1118 		if (css_tryget(&mem->css))
1119 			return mem;
1120 		else {
1121 			prev_css = next_css;
1122 			goto skip_node;
1123 		}
1124 	}
1125 
1126 	return NULL;
1127 }
1128 
1129 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1130 {
1131 	/*
1132 	 * When a group in the hierarchy below root is destroyed, the
1133 	 * hierarchy iterator can no longer be trusted since it might
1134 	 * have pointed to the destroyed group.  Invalidate it.
1135 	 */
1136 	atomic_inc(&root->dead_count);
1137 }
1138 
1139 static struct mem_cgroup *
1140 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1141 		     struct mem_cgroup *root,
1142 		     int *sequence)
1143 {
1144 	struct mem_cgroup *position = NULL;
1145 	/*
1146 	 * A cgroup destruction happens in two stages: offlining and
1147 	 * release.  They are separated by a RCU grace period.
1148 	 *
1149 	 * If the iterator is valid, we may still race with an
1150 	 * offlining.  The RCU lock ensures the object won't be
1151 	 * released, tryget will fail if we lost the race.
1152 	 */
1153 	*sequence = atomic_read(&root->dead_count);
1154 	if (iter->last_dead_count == *sequence) {
1155 		smp_rmb();
1156 		position = iter->last_visited;
1157 		if (position && !css_tryget(&position->css))
1158 			position = NULL;
1159 	}
1160 	return position;
1161 }
1162 
1163 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1164 				   struct mem_cgroup *last_visited,
1165 				   struct mem_cgroup *new_position,
1166 				   int sequence)
1167 {
1168 	if (last_visited)
1169 		css_put(&last_visited->css);
1170 	/*
1171 	 * We store the sequence count from the time @last_visited was
1172 	 * loaded successfully instead of rereading it here so that we
1173 	 * don't lose destruction events in between.  We could have
1174 	 * raced with the destruction of @new_position after all.
1175 	 */
1176 	iter->last_visited = new_position;
1177 	smp_wmb();
1178 	iter->last_dead_count = sequence;
1179 }
1180 
1181 /**
1182  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1183  * @root: hierarchy root
1184  * @prev: previously returned memcg, NULL on first invocation
1185  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1186  *
1187  * Returns references to children of the hierarchy below @root, or
1188  * @root itself, or %NULL after a full round-trip.
1189  *
1190  * Caller must pass the return value in @prev on subsequent
1191  * invocations for reference counting, or use mem_cgroup_iter_break()
1192  * to cancel a hierarchy walk before the round-trip is complete.
1193  *
1194  * Reclaimers can specify a zone and a priority level in @reclaim to
1195  * divide up the memcgs in the hierarchy among all concurrent
1196  * reclaimers operating on the same zone and priority.
1197  */
1198 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1199 				   struct mem_cgroup *prev,
1200 				   struct mem_cgroup_reclaim_cookie *reclaim)
1201 {
1202 	struct mem_cgroup *memcg = NULL;
1203 	struct mem_cgroup *last_visited = NULL;
1204 
1205 	if (mem_cgroup_disabled())
1206 		return NULL;
1207 
1208 	if (!root)
1209 		root = root_mem_cgroup;
1210 
1211 	if (prev && !reclaim)
1212 		last_visited = prev;
1213 
1214 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1215 		if (prev)
1216 			goto out_css_put;
1217 		return root;
1218 	}
1219 
1220 	rcu_read_lock();
1221 	while (!memcg) {
1222 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1223 		int uninitialized_var(seq);
1224 
1225 		if (reclaim) {
1226 			int nid = zone_to_nid(reclaim->zone);
1227 			int zid = zone_idx(reclaim->zone);
1228 			struct mem_cgroup_per_zone *mz;
1229 
1230 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1231 			iter = &mz->reclaim_iter[reclaim->priority];
1232 			if (prev && reclaim->generation != iter->generation) {
1233 				iter->last_visited = NULL;
1234 				goto out_unlock;
1235 			}
1236 
1237 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1238 		}
1239 
1240 		memcg = __mem_cgroup_iter_next(root, last_visited);
1241 
1242 		if (reclaim) {
1243 			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1244 
1245 			if (!memcg)
1246 				iter->generation++;
1247 			else if (!prev && memcg)
1248 				reclaim->generation = iter->generation;
1249 		}
1250 
1251 		if (prev && !memcg)
1252 			goto out_unlock;
1253 	}
1254 out_unlock:
1255 	rcu_read_unlock();
1256 out_css_put:
1257 	if (prev && prev != root)
1258 		css_put(&prev->css);
1259 
1260 	return memcg;
1261 }
1262 
1263 /**
1264  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1265  * @root: hierarchy root
1266  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1267  */
1268 void mem_cgroup_iter_break(struct mem_cgroup *root,
1269 			   struct mem_cgroup *prev)
1270 {
1271 	if (!root)
1272 		root = root_mem_cgroup;
1273 	if (prev && prev != root)
1274 		css_put(&prev->css);
1275 }
1276 
1277 /*
1278  * Iteration constructs for visiting all cgroups (under a tree).  If
1279  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1280  * be used for reference counting.
1281  */
1282 #define for_each_mem_cgroup_tree(iter, root)		\
1283 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1284 	     iter != NULL;				\
1285 	     iter = mem_cgroup_iter(root, iter, NULL))
1286 
1287 #define for_each_mem_cgroup(iter)			\
1288 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1289 	     iter != NULL;				\
1290 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1291 
1292 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1293 {
1294 	struct mem_cgroup *memcg;
1295 
1296 	rcu_read_lock();
1297 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1298 	if (unlikely(!memcg))
1299 		goto out;
1300 
1301 	switch (idx) {
1302 	case PGFAULT:
1303 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1304 		break;
1305 	case PGMAJFAULT:
1306 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1307 		break;
1308 	default:
1309 		BUG();
1310 	}
1311 out:
1312 	rcu_read_unlock();
1313 }
1314 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1315 
1316 /**
1317  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1318  * @zone: zone of the wanted lruvec
1319  * @memcg: memcg of the wanted lruvec
1320  *
1321  * Returns the lru list vector holding pages for the given @zone and
1322  * @mem.  This can be the global zone lruvec, if the memory controller
1323  * is disabled.
1324  */
1325 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1326 				      struct mem_cgroup *memcg)
1327 {
1328 	struct mem_cgroup_per_zone *mz;
1329 	struct lruvec *lruvec;
1330 
1331 	if (mem_cgroup_disabled()) {
1332 		lruvec = &zone->lruvec;
1333 		goto out;
1334 	}
1335 
1336 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1337 	lruvec = &mz->lruvec;
1338 out:
1339 	/*
1340 	 * Since a node can be onlined after the mem_cgroup was created,
1341 	 * we have to be prepared to initialize lruvec->zone here;
1342 	 * and if offlined then reonlined, we need to reinitialize it.
1343 	 */
1344 	if (unlikely(lruvec->zone != zone))
1345 		lruvec->zone = zone;
1346 	return lruvec;
1347 }
1348 
1349 /*
1350  * Following LRU functions are allowed to be used without PCG_LOCK.
1351  * Operations are called by routine of global LRU independently from memcg.
1352  * What we have to take care of here is validness of pc->mem_cgroup.
1353  *
1354  * Changes to pc->mem_cgroup happens when
1355  * 1. charge
1356  * 2. moving account
1357  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1358  * It is added to LRU before charge.
1359  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1360  * When moving account, the page is not on LRU. It's isolated.
1361  */
1362 
1363 /**
1364  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1365  * @page: the page
1366  * @zone: zone of the page
1367  */
1368 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1369 {
1370 	struct mem_cgroup_per_zone *mz;
1371 	struct mem_cgroup *memcg;
1372 	struct page_cgroup *pc;
1373 	struct lruvec *lruvec;
1374 
1375 	if (mem_cgroup_disabled()) {
1376 		lruvec = &zone->lruvec;
1377 		goto out;
1378 	}
1379 
1380 	pc = lookup_page_cgroup(page);
1381 	memcg = pc->mem_cgroup;
1382 
1383 	/*
1384 	 * Surreptitiously switch any uncharged offlist page to root:
1385 	 * an uncharged page off lru does nothing to secure
1386 	 * its former mem_cgroup from sudden removal.
1387 	 *
1388 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1389 	 * under page_cgroup lock: between them, they make all uses
1390 	 * of pc->mem_cgroup safe.
1391 	 */
1392 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1393 		pc->mem_cgroup = memcg = root_mem_cgroup;
1394 
1395 	mz = page_cgroup_zoneinfo(memcg, page);
1396 	lruvec = &mz->lruvec;
1397 out:
1398 	/*
1399 	 * Since a node can be onlined after the mem_cgroup was created,
1400 	 * we have to be prepared to initialize lruvec->zone here;
1401 	 * and if offlined then reonlined, we need to reinitialize it.
1402 	 */
1403 	if (unlikely(lruvec->zone != zone))
1404 		lruvec->zone = zone;
1405 	return lruvec;
1406 }
1407 
1408 /**
1409  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1410  * @lruvec: mem_cgroup per zone lru vector
1411  * @lru: index of lru list the page is sitting on
1412  * @nr_pages: positive when adding or negative when removing
1413  *
1414  * This function must be called when a page is added to or removed from an
1415  * lru list.
1416  */
1417 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1418 				int nr_pages)
1419 {
1420 	struct mem_cgroup_per_zone *mz;
1421 	unsigned long *lru_size;
1422 
1423 	if (mem_cgroup_disabled())
1424 		return;
1425 
1426 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1427 	lru_size = mz->lru_size + lru;
1428 	*lru_size += nr_pages;
1429 	VM_BUG_ON((long)(*lru_size) < 0);
1430 }
1431 
1432 /*
1433  * Checks whether given mem is same or in the root_mem_cgroup's
1434  * hierarchy subtree
1435  */
1436 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1437 				  struct mem_cgroup *memcg)
1438 {
1439 	if (root_memcg == memcg)
1440 		return true;
1441 	if (!root_memcg->use_hierarchy || !memcg)
1442 		return false;
1443 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1444 }
1445 
1446 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1447 				       struct mem_cgroup *memcg)
1448 {
1449 	bool ret;
1450 
1451 	rcu_read_lock();
1452 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1453 	rcu_read_unlock();
1454 	return ret;
1455 }
1456 
1457 bool task_in_mem_cgroup(struct task_struct *task,
1458 			const struct mem_cgroup *memcg)
1459 {
1460 	struct mem_cgroup *curr = NULL;
1461 	struct task_struct *p;
1462 	bool ret;
1463 
1464 	p = find_lock_task_mm(task);
1465 	if (p) {
1466 		curr = try_get_mem_cgroup_from_mm(p->mm);
1467 		task_unlock(p);
1468 	} else {
1469 		/*
1470 		 * All threads may have already detached their mm's, but the oom
1471 		 * killer still needs to detect if they have already been oom
1472 		 * killed to prevent needlessly killing additional tasks.
1473 		 */
1474 		rcu_read_lock();
1475 		curr = mem_cgroup_from_task(task);
1476 		if (curr)
1477 			css_get(&curr->css);
1478 		rcu_read_unlock();
1479 	}
1480 	if (!curr)
1481 		return false;
1482 	/*
1483 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1484 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1485 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1486 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1487 	 */
1488 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1489 	css_put(&curr->css);
1490 	return ret;
1491 }
1492 
1493 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1494 {
1495 	unsigned long inactive_ratio;
1496 	unsigned long inactive;
1497 	unsigned long active;
1498 	unsigned long gb;
1499 
1500 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1501 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1502 
1503 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1504 	if (gb)
1505 		inactive_ratio = int_sqrt(10 * gb);
1506 	else
1507 		inactive_ratio = 1;
1508 
1509 	return inactive * inactive_ratio < active;
1510 }
1511 
1512 #define mem_cgroup_from_res_counter(counter, member)	\
1513 	container_of(counter, struct mem_cgroup, member)
1514 
1515 /**
1516  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1517  * @memcg: the memory cgroup
1518  *
1519  * Returns the maximum amount of memory @mem can be charged with, in
1520  * pages.
1521  */
1522 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1523 {
1524 	unsigned long long margin;
1525 
1526 	margin = res_counter_margin(&memcg->res);
1527 	if (do_swap_account)
1528 		margin = min(margin, res_counter_margin(&memcg->memsw));
1529 	return margin >> PAGE_SHIFT;
1530 }
1531 
1532 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1533 {
1534 	/* root ? */
1535 	if (!css_parent(&memcg->css))
1536 		return vm_swappiness;
1537 
1538 	return memcg->swappiness;
1539 }
1540 
1541 /*
1542  * memcg->moving_account is used for checking possibility that some thread is
1543  * calling move_account(). When a thread on CPU-A starts moving pages under
1544  * a memcg, other threads should check memcg->moving_account under
1545  * rcu_read_lock(), like this:
1546  *
1547  *         CPU-A                                    CPU-B
1548  *                                              rcu_read_lock()
1549  *         memcg->moving_account+1              if (memcg->mocing_account)
1550  *                                                   take heavy locks.
1551  *         synchronize_rcu()                    update something.
1552  *                                              rcu_read_unlock()
1553  *         start move here.
1554  */
1555 
1556 /* for quick checking without looking up memcg */
1557 atomic_t memcg_moving __read_mostly;
1558 
1559 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1560 {
1561 	atomic_inc(&memcg_moving);
1562 	atomic_inc(&memcg->moving_account);
1563 	synchronize_rcu();
1564 }
1565 
1566 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1567 {
1568 	/*
1569 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1570 	 * We check NULL in callee rather than caller.
1571 	 */
1572 	if (memcg) {
1573 		atomic_dec(&memcg_moving);
1574 		atomic_dec(&memcg->moving_account);
1575 	}
1576 }
1577 
1578 /*
1579  * 2 routines for checking "mem" is under move_account() or not.
1580  *
1581  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1582  *			  is used for avoiding races in accounting.  If true,
1583  *			  pc->mem_cgroup may be overwritten.
1584  *
1585  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1586  *			  under hierarchy of moving cgroups. This is for
1587  *			  waiting at hith-memory prressure caused by "move".
1588  */
1589 
1590 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1591 {
1592 	VM_BUG_ON(!rcu_read_lock_held());
1593 	return atomic_read(&memcg->moving_account) > 0;
1594 }
1595 
1596 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1597 {
1598 	struct mem_cgroup *from;
1599 	struct mem_cgroup *to;
1600 	bool ret = false;
1601 	/*
1602 	 * Unlike task_move routines, we access mc.to, mc.from not under
1603 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1604 	 */
1605 	spin_lock(&mc.lock);
1606 	from = mc.from;
1607 	to = mc.to;
1608 	if (!from)
1609 		goto unlock;
1610 
1611 	ret = mem_cgroup_same_or_subtree(memcg, from)
1612 		|| mem_cgroup_same_or_subtree(memcg, to);
1613 unlock:
1614 	spin_unlock(&mc.lock);
1615 	return ret;
1616 }
1617 
1618 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1619 {
1620 	if (mc.moving_task && current != mc.moving_task) {
1621 		if (mem_cgroup_under_move(memcg)) {
1622 			DEFINE_WAIT(wait);
1623 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1624 			/* moving charge context might have finished. */
1625 			if (mc.moving_task)
1626 				schedule();
1627 			finish_wait(&mc.waitq, &wait);
1628 			return true;
1629 		}
1630 	}
1631 	return false;
1632 }
1633 
1634 /*
1635  * Take this lock when
1636  * - a code tries to modify page's memcg while it's USED.
1637  * - a code tries to modify page state accounting in a memcg.
1638  * see mem_cgroup_stolen(), too.
1639  */
1640 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1641 				  unsigned long *flags)
1642 {
1643 	spin_lock_irqsave(&memcg->move_lock, *flags);
1644 }
1645 
1646 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1647 				unsigned long *flags)
1648 {
1649 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1650 }
1651 
1652 #define K(x) ((x) << (PAGE_SHIFT-10))
1653 /**
1654  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1655  * @memcg: The memory cgroup that went over limit
1656  * @p: Task that is going to be killed
1657  *
1658  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1659  * enabled
1660  */
1661 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1662 {
1663 	struct cgroup *task_cgrp;
1664 	struct cgroup *mem_cgrp;
1665 	/*
1666 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1667 	 * on the assumption that OOM is serialized for memory controller.
1668 	 * If this assumption is broken, revisit this code.
1669 	 */
1670 	static char memcg_name[PATH_MAX];
1671 	int ret;
1672 	struct mem_cgroup *iter;
1673 	unsigned int i;
1674 
1675 	if (!p)
1676 		return;
1677 
1678 	rcu_read_lock();
1679 
1680 	mem_cgrp = memcg->css.cgroup;
1681 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1682 
1683 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1684 	if (ret < 0) {
1685 		/*
1686 		 * Unfortunately, we are unable to convert to a useful name
1687 		 * But we'll still print out the usage information
1688 		 */
1689 		rcu_read_unlock();
1690 		goto done;
1691 	}
1692 	rcu_read_unlock();
1693 
1694 	pr_info("Task in %s killed", memcg_name);
1695 
1696 	rcu_read_lock();
1697 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1698 	if (ret < 0) {
1699 		rcu_read_unlock();
1700 		goto done;
1701 	}
1702 	rcu_read_unlock();
1703 
1704 	/*
1705 	 * Continues from above, so we don't need an KERN_ level
1706 	 */
1707 	pr_cont(" as a result of limit of %s\n", memcg_name);
1708 done:
1709 
1710 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1711 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1712 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1713 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1714 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1715 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1716 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1717 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1718 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1719 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1720 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1721 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1722 
1723 	for_each_mem_cgroup_tree(iter, memcg) {
1724 		pr_info("Memory cgroup stats");
1725 
1726 		rcu_read_lock();
1727 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1728 		if (!ret)
1729 			pr_cont(" for %s", memcg_name);
1730 		rcu_read_unlock();
1731 		pr_cont(":");
1732 
1733 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1734 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1735 				continue;
1736 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1737 				K(mem_cgroup_read_stat(iter, i)));
1738 		}
1739 
1740 		for (i = 0; i < NR_LRU_LISTS; i++)
1741 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1742 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1743 
1744 		pr_cont("\n");
1745 	}
1746 }
1747 
1748 /*
1749  * This function returns the number of memcg under hierarchy tree. Returns
1750  * 1(self count) if no children.
1751  */
1752 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1753 {
1754 	int num = 0;
1755 	struct mem_cgroup *iter;
1756 
1757 	for_each_mem_cgroup_tree(iter, memcg)
1758 		num++;
1759 	return num;
1760 }
1761 
1762 /*
1763  * Return the memory (and swap, if configured) limit for a memcg.
1764  */
1765 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1766 {
1767 	u64 limit;
1768 
1769 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1770 
1771 	/*
1772 	 * Do not consider swap space if we cannot swap due to swappiness
1773 	 */
1774 	if (mem_cgroup_swappiness(memcg)) {
1775 		u64 memsw;
1776 
1777 		limit += total_swap_pages << PAGE_SHIFT;
1778 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1779 
1780 		/*
1781 		 * If memsw is finite and limits the amount of swap space
1782 		 * available to this memcg, return that limit.
1783 		 */
1784 		limit = min(limit, memsw);
1785 	}
1786 
1787 	return limit;
1788 }
1789 
1790 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1791 				     int order)
1792 {
1793 	struct mem_cgroup *iter;
1794 	unsigned long chosen_points = 0;
1795 	unsigned long totalpages;
1796 	unsigned int points = 0;
1797 	struct task_struct *chosen = NULL;
1798 
1799 	/*
1800 	 * If current has a pending SIGKILL or is exiting, then automatically
1801 	 * select it.  The goal is to allow it to allocate so that it may
1802 	 * quickly exit and free its memory.
1803 	 */
1804 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1805 		set_thread_flag(TIF_MEMDIE);
1806 		return;
1807 	}
1808 
1809 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1810 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1811 	for_each_mem_cgroup_tree(iter, memcg) {
1812 		struct css_task_iter it;
1813 		struct task_struct *task;
1814 
1815 		css_task_iter_start(&iter->css, &it);
1816 		while ((task = css_task_iter_next(&it))) {
1817 			switch (oom_scan_process_thread(task, totalpages, NULL,
1818 							false)) {
1819 			case OOM_SCAN_SELECT:
1820 				if (chosen)
1821 					put_task_struct(chosen);
1822 				chosen = task;
1823 				chosen_points = ULONG_MAX;
1824 				get_task_struct(chosen);
1825 				/* fall through */
1826 			case OOM_SCAN_CONTINUE:
1827 				continue;
1828 			case OOM_SCAN_ABORT:
1829 				css_task_iter_end(&it);
1830 				mem_cgroup_iter_break(memcg, iter);
1831 				if (chosen)
1832 					put_task_struct(chosen);
1833 				return;
1834 			case OOM_SCAN_OK:
1835 				break;
1836 			};
1837 			points = oom_badness(task, memcg, NULL, totalpages);
1838 			if (points > chosen_points) {
1839 				if (chosen)
1840 					put_task_struct(chosen);
1841 				chosen = task;
1842 				chosen_points = points;
1843 				get_task_struct(chosen);
1844 			}
1845 		}
1846 		css_task_iter_end(&it);
1847 	}
1848 
1849 	if (!chosen)
1850 		return;
1851 	points = chosen_points * 1000 / totalpages;
1852 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1853 			 NULL, "Memory cgroup out of memory");
1854 }
1855 
1856 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1857 					gfp_t gfp_mask,
1858 					unsigned long flags)
1859 {
1860 	unsigned long total = 0;
1861 	bool noswap = false;
1862 	int loop;
1863 
1864 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1865 		noswap = true;
1866 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1867 		noswap = true;
1868 
1869 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1870 		if (loop)
1871 			drain_all_stock_async(memcg);
1872 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1873 		/*
1874 		 * Allow limit shrinkers, which are triggered directly
1875 		 * by userspace, to catch signals and stop reclaim
1876 		 * after minimal progress, regardless of the margin.
1877 		 */
1878 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1879 			break;
1880 		if (mem_cgroup_margin(memcg))
1881 			break;
1882 		/*
1883 		 * If nothing was reclaimed after two attempts, there
1884 		 * may be no reclaimable pages in this hierarchy.
1885 		 */
1886 		if (loop && !total)
1887 			break;
1888 	}
1889 	return total;
1890 }
1891 
1892 /**
1893  * test_mem_cgroup_node_reclaimable
1894  * @memcg: the target memcg
1895  * @nid: the node ID to be checked.
1896  * @noswap : specify true here if the user wants flle only information.
1897  *
1898  * This function returns whether the specified memcg contains any
1899  * reclaimable pages on a node. Returns true if there are any reclaimable
1900  * pages in the node.
1901  */
1902 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1903 		int nid, bool noswap)
1904 {
1905 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1906 		return true;
1907 	if (noswap || !total_swap_pages)
1908 		return false;
1909 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1910 		return true;
1911 	return false;
1912 
1913 }
1914 #if MAX_NUMNODES > 1
1915 
1916 /*
1917  * Always updating the nodemask is not very good - even if we have an empty
1918  * list or the wrong list here, we can start from some node and traverse all
1919  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1920  *
1921  */
1922 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1923 {
1924 	int nid;
1925 	/*
1926 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1927 	 * pagein/pageout changes since the last update.
1928 	 */
1929 	if (!atomic_read(&memcg->numainfo_events))
1930 		return;
1931 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1932 		return;
1933 
1934 	/* make a nodemask where this memcg uses memory from */
1935 	memcg->scan_nodes = node_states[N_MEMORY];
1936 
1937 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1938 
1939 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1940 			node_clear(nid, memcg->scan_nodes);
1941 	}
1942 
1943 	atomic_set(&memcg->numainfo_events, 0);
1944 	atomic_set(&memcg->numainfo_updating, 0);
1945 }
1946 
1947 /*
1948  * Selecting a node where we start reclaim from. Because what we need is just
1949  * reducing usage counter, start from anywhere is O,K. Considering
1950  * memory reclaim from current node, there are pros. and cons.
1951  *
1952  * Freeing memory from current node means freeing memory from a node which
1953  * we'll use or we've used. So, it may make LRU bad. And if several threads
1954  * hit limits, it will see a contention on a node. But freeing from remote
1955  * node means more costs for memory reclaim because of memory latency.
1956  *
1957  * Now, we use round-robin. Better algorithm is welcomed.
1958  */
1959 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1960 {
1961 	int node;
1962 
1963 	mem_cgroup_may_update_nodemask(memcg);
1964 	node = memcg->last_scanned_node;
1965 
1966 	node = next_node(node, memcg->scan_nodes);
1967 	if (node == MAX_NUMNODES)
1968 		node = first_node(memcg->scan_nodes);
1969 	/*
1970 	 * We call this when we hit limit, not when pages are added to LRU.
1971 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1972 	 * memcg is too small and all pages are not on LRU. In that case,
1973 	 * we use curret node.
1974 	 */
1975 	if (unlikely(node == MAX_NUMNODES))
1976 		node = numa_node_id();
1977 
1978 	memcg->last_scanned_node = node;
1979 	return node;
1980 }
1981 
1982 /*
1983  * Check all nodes whether it contains reclaimable pages or not.
1984  * For quick scan, we make use of scan_nodes. This will allow us to skip
1985  * unused nodes. But scan_nodes is lazily updated and may not cotain
1986  * enough new information. We need to do double check.
1987  */
1988 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1989 {
1990 	int nid;
1991 
1992 	/*
1993 	 * quick check...making use of scan_node.
1994 	 * We can skip unused nodes.
1995 	 */
1996 	if (!nodes_empty(memcg->scan_nodes)) {
1997 		for (nid = first_node(memcg->scan_nodes);
1998 		     nid < MAX_NUMNODES;
1999 		     nid = next_node(nid, memcg->scan_nodes)) {
2000 
2001 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2002 				return true;
2003 		}
2004 	}
2005 	/*
2006 	 * Check rest of nodes.
2007 	 */
2008 	for_each_node_state(nid, N_MEMORY) {
2009 		if (node_isset(nid, memcg->scan_nodes))
2010 			continue;
2011 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2012 			return true;
2013 	}
2014 	return false;
2015 }
2016 
2017 #else
2018 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2019 {
2020 	return 0;
2021 }
2022 
2023 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2024 {
2025 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2026 }
2027 #endif
2028 
2029 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2030 				   struct zone *zone,
2031 				   gfp_t gfp_mask,
2032 				   unsigned long *total_scanned)
2033 {
2034 	struct mem_cgroup *victim = NULL;
2035 	int total = 0;
2036 	int loop = 0;
2037 	unsigned long excess;
2038 	unsigned long nr_scanned;
2039 	struct mem_cgroup_reclaim_cookie reclaim = {
2040 		.zone = zone,
2041 		.priority = 0,
2042 	};
2043 
2044 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2045 
2046 	while (1) {
2047 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2048 		if (!victim) {
2049 			loop++;
2050 			if (loop >= 2) {
2051 				/*
2052 				 * If we have not been able to reclaim
2053 				 * anything, it might because there are
2054 				 * no reclaimable pages under this hierarchy
2055 				 */
2056 				if (!total)
2057 					break;
2058 				/*
2059 				 * We want to do more targeted reclaim.
2060 				 * excess >> 2 is not to excessive so as to
2061 				 * reclaim too much, nor too less that we keep
2062 				 * coming back to reclaim from this cgroup
2063 				 */
2064 				if (total >= (excess >> 2) ||
2065 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2066 					break;
2067 			}
2068 			continue;
2069 		}
2070 		if (!mem_cgroup_reclaimable(victim, false))
2071 			continue;
2072 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2073 						     zone, &nr_scanned);
2074 		*total_scanned += nr_scanned;
2075 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2076 			break;
2077 	}
2078 	mem_cgroup_iter_break(root_memcg, victim);
2079 	return total;
2080 }
2081 
2082 #ifdef CONFIG_LOCKDEP
2083 static struct lockdep_map memcg_oom_lock_dep_map = {
2084 	.name = "memcg_oom_lock",
2085 };
2086 #endif
2087 
2088 static DEFINE_SPINLOCK(memcg_oom_lock);
2089 
2090 /*
2091  * Check OOM-Killer is already running under our hierarchy.
2092  * If someone is running, return false.
2093  */
2094 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2095 {
2096 	struct mem_cgroup *iter, *failed = NULL;
2097 
2098 	spin_lock(&memcg_oom_lock);
2099 
2100 	for_each_mem_cgroup_tree(iter, memcg) {
2101 		if (iter->oom_lock) {
2102 			/*
2103 			 * this subtree of our hierarchy is already locked
2104 			 * so we cannot give a lock.
2105 			 */
2106 			failed = iter;
2107 			mem_cgroup_iter_break(memcg, iter);
2108 			break;
2109 		} else
2110 			iter->oom_lock = true;
2111 	}
2112 
2113 	if (failed) {
2114 		/*
2115 		 * OK, we failed to lock the whole subtree so we have
2116 		 * to clean up what we set up to the failing subtree
2117 		 */
2118 		for_each_mem_cgroup_tree(iter, memcg) {
2119 			if (iter == failed) {
2120 				mem_cgroup_iter_break(memcg, iter);
2121 				break;
2122 			}
2123 			iter->oom_lock = false;
2124 		}
2125 	} else
2126 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2127 
2128 	spin_unlock(&memcg_oom_lock);
2129 
2130 	return !failed;
2131 }
2132 
2133 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2134 {
2135 	struct mem_cgroup *iter;
2136 
2137 	spin_lock(&memcg_oom_lock);
2138 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2139 	for_each_mem_cgroup_tree(iter, memcg)
2140 		iter->oom_lock = false;
2141 	spin_unlock(&memcg_oom_lock);
2142 }
2143 
2144 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2145 {
2146 	struct mem_cgroup *iter;
2147 
2148 	for_each_mem_cgroup_tree(iter, memcg)
2149 		atomic_inc(&iter->under_oom);
2150 }
2151 
2152 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2153 {
2154 	struct mem_cgroup *iter;
2155 
2156 	/*
2157 	 * When a new child is created while the hierarchy is under oom,
2158 	 * mem_cgroup_oom_lock() may not be called. We have to use
2159 	 * atomic_add_unless() here.
2160 	 */
2161 	for_each_mem_cgroup_tree(iter, memcg)
2162 		atomic_add_unless(&iter->under_oom, -1, 0);
2163 }
2164 
2165 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2166 
2167 struct oom_wait_info {
2168 	struct mem_cgroup *memcg;
2169 	wait_queue_t	wait;
2170 };
2171 
2172 static int memcg_oom_wake_function(wait_queue_t *wait,
2173 	unsigned mode, int sync, void *arg)
2174 {
2175 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2176 	struct mem_cgroup *oom_wait_memcg;
2177 	struct oom_wait_info *oom_wait_info;
2178 
2179 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2180 	oom_wait_memcg = oom_wait_info->memcg;
2181 
2182 	/*
2183 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2184 	 * Then we can use css_is_ancestor without taking care of RCU.
2185 	 */
2186 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2187 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2188 		return 0;
2189 	return autoremove_wake_function(wait, mode, sync, arg);
2190 }
2191 
2192 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2193 {
2194 	atomic_inc(&memcg->oom_wakeups);
2195 	/* for filtering, pass "memcg" as argument. */
2196 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2197 }
2198 
2199 static void memcg_oom_recover(struct mem_cgroup *memcg)
2200 {
2201 	if (memcg && atomic_read(&memcg->under_oom))
2202 		memcg_wakeup_oom(memcg);
2203 }
2204 
2205 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2206 {
2207 	if (!current->memcg_oom.may_oom)
2208 		return;
2209 	/*
2210 	 * We are in the middle of the charge context here, so we
2211 	 * don't want to block when potentially sitting on a callstack
2212 	 * that holds all kinds of filesystem and mm locks.
2213 	 *
2214 	 * Also, the caller may handle a failed allocation gracefully
2215 	 * (like optional page cache readahead) and so an OOM killer
2216 	 * invocation might not even be necessary.
2217 	 *
2218 	 * That's why we don't do anything here except remember the
2219 	 * OOM context and then deal with it at the end of the page
2220 	 * fault when the stack is unwound, the locks are released,
2221 	 * and when we know whether the fault was overall successful.
2222 	 */
2223 	css_get(&memcg->css);
2224 	current->memcg_oom.memcg = memcg;
2225 	current->memcg_oom.gfp_mask = mask;
2226 	current->memcg_oom.order = order;
2227 }
2228 
2229 /**
2230  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2231  * @handle: actually kill/wait or just clean up the OOM state
2232  *
2233  * This has to be called at the end of a page fault if the memcg OOM
2234  * handler was enabled.
2235  *
2236  * Memcg supports userspace OOM handling where failed allocations must
2237  * sleep on a waitqueue until the userspace task resolves the
2238  * situation.  Sleeping directly in the charge context with all kinds
2239  * of locks held is not a good idea, instead we remember an OOM state
2240  * in the task and mem_cgroup_oom_synchronize() has to be called at
2241  * the end of the page fault to complete the OOM handling.
2242  *
2243  * Returns %true if an ongoing memcg OOM situation was detected and
2244  * completed, %false otherwise.
2245  */
2246 bool mem_cgroup_oom_synchronize(bool handle)
2247 {
2248 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2249 	struct oom_wait_info owait;
2250 	bool locked;
2251 
2252 	/* OOM is global, do not handle */
2253 	if (!memcg)
2254 		return false;
2255 
2256 	if (!handle)
2257 		goto cleanup;
2258 
2259 	owait.memcg = memcg;
2260 	owait.wait.flags = 0;
2261 	owait.wait.func = memcg_oom_wake_function;
2262 	owait.wait.private = current;
2263 	INIT_LIST_HEAD(&owait.wait.task_list);
2264 
2265 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2266 	mem_cgroup_mark_under_oom(memcg);
2267 
2268 	locked = mem_cgroup_oom_trylock(memcg);
2269 
2270 	if (locked)
2271 		mem_cgroup_oom_notify(memcg);
2272 
2273 	if (locked && !memcg->oom_kill_disable) {
2274 		mem_cgroup_unmark_under_oom(memcg);
2275 		finish_wait(&memcg_oom_waitq, &owait.wait);
2276 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2277 					 current->memcg_oom.order);
2278 	} else {
2279 		schedule();
2280 		mem_cgroup_unmark_under_oom(memcg);
2281 		finish_wait(&memcg_oom_waitq, &owait.wait);
2282 	}
2283 
2284 	if (locked) {
2285 		mem_cgroup_oom_unlock(memcg);
2286 		/*
2287 		 * There is no guarantee that an OOM-lock contender
2288 		 * sees the wakeups triggered by the OOM kill
2289 		 * uncharges.  Wake any sleepers explicitely.
2290 		 */
2291 		memcg_oom_recover(memcg);
2292 	}
2293 cleanup:
2294 	current->memcg_oom.memcg = NULL;
2295 	css_put(&memcg->css);
2296 	return true;
2297 }
2298 
2299 /*
2300  * Currently used to update mapped file statistics, but the routine can be
2301  * generalized to update other statistics as well.
2302  *
2303  * Notes: Race condition
2304  *
2305  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2306  * it tends to be costly. But considering some conditions, we doesn't need
2307  * to do so _always_.
2308  *
2309  * Considering "charge", lock_page_cgroup() is not required because all
2310  * file-stat operations happen after a page is attached to radix-tree. There
2311  * are no race with "charge".
2312  *
2313  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2314  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2315  * if there are race with "uncharge". Statistics itself is properly handled
2316  * by flags.
2317  *
2318  * Considering "move", this is an only case we see a race. To make the race
2319  * small, we check mm->moving_account and detect there are possibility of race
2320  * If there is, we take a lock.
2321  */
2322 
2323 void __mem_cgroup_begin_update_page_stat(struct page *page,
2324 				bool *locked, unsigned long *flags)
2325 {
2326 	struct mem_cgroup *memcg;
2327 	struct page_cgroup *pc;
2328 
2329 	pc = lookup_page_cgroup(page);
2330 again:
2331 	memcg = pc->mem_cgroup;
2332 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2333 		return;
2334 	/*
2335 	 * If this memory cgroup is not under account moving, we don't
2336 	 * need to take move_lock_mem_cgroup(). Because we already hold
2337 	 * rcu_read_lock(), any calls to move_account will be delayed until
2338 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2339 	 */
2340 	if (!mem_cgroup_stolen(memcg))
2341 		return;
2342 
2343 	move_lock_mem_cgroup(memcg, flags);
2344 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2345 		move_unlock_mem_cgroup(memcg, flags);
2346 		goto again;
2347 	}
2348 	*locked = true;
2349 }
2350 
2351 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2352 {
2353 	struct page_cgroup *pc = lookup_page_cgroup(page);
2354 
2355 	/*
2356 	 * It's guaranteed that pc->mem_cgroup never changes while
2357 	 * lock is held because a routine modifies pc->mem_cgroup
2358 	 * should take move_lock_mem_cgroup().
2359 	 */
2360 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2361 }
2362 
2363 void mem_cgroup_update_page_stat(struct page *page,
2364 				 enum mem_cgroup_stat_index idx, int val)
2365 {
2366 	struct mem_cgroup *memcg;
2367 	struct page_cgroup *pc = lookup_page_cgroup(page);
2368 	unsigned long uninitialized_var(flags);
2369 
2370 	if (mem_cgroup_disabled())
2371 		return;
2372 
2373 	VM_BUG_ON(!rcu_read_lock_held());
2374 	memcg = pc->mem_cgroup;
2375 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2376 		return;
2377 
2378 	this_cpu_add(memcg->stat->count[idx], val);
2379 }
2380 
2381 /*
2382  * size of first charge trial. "32" comes from vmscan.c's magic value.
2383  * TODO: maybe necessary to use big numbers in big irons.
2384  */
2385 #define CHARGE_BATCH	32U
2386 struct memcg_stock_pcp {
2387 	struct mem_cgroup *cached; /* this never be root cgroup */
2388 	unsigned int nr_pages;
2389 	struct work_struct work;
2390 	unsigned long flags;
2391 #define FLUSHING_CACHED_CHARGE	0
2392 };
2393 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2394 static DEFINE_MUTEX(percpu_charge_mutex);
2395 
2396 /**
2397  * consume_stock: Try to consume stocked charge on this cpu.
2398  * @memcg: memcg to consume from.
2399  * @nr_pages: how many pages to charge.
2400  *
2401  * The charges will only happen if @memcg matches the current cpu's memcg
2402  * stock, and at least @nr_pages are available in that stock.  Failure to
2403  * service an allocation will refill the stock.
2404  *
2405  * returns true if successful, false otherwise.
2406  */
2407 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2408 {
2409 	struct memcg_stock_pcp *stock;
2410 	bool ret = true;
2411 
2412 	if (nr_pages > CHARGE_BATCH)
2413 		return false;
2414 
2415 	stock = &get_cpu_var(memcg_stock);
2416 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2417 		stock->nr_pages -= nr_pages;
2418 	else /* need to call res_counter_charge */
2419 		ret = false;
2420 	put_cpu_var(memcg_stock);
2421 	return ret;
2422 }
2423 
2424 /*
2425  * Returns stocks cached in percpu to res_counter and reset cached information.
2426  */
2427 static void drain_stock(struct memcg_stock_pcp *stock)
2428 {
2429 	struct mem_cgroup *old = stock->cached;
2430 
2431 	if (stock->nr_pages) {
2432 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2433 
2434 		res_counter_uncharge(&old->res, bytes);
2435 		if (do_swap_account)
2436 			res_counter_uncharge(&old->memsw, bytes);
2437 		stock->nr_pages = 0;
2438 	}
2439 	stock->cached = NULL;
2440 }
2441 
2442 /*
2443  * This must be called under preempt disabled or must be called by
2444  * a thread which is pinned to local cpu.
2445  */
2446 static void drain_local_stock(struct work_struct *dummy)
2447 {
2448 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2449 	drain_stock(stock);
2450 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2451 }
2452 
2453 static void __init memcg_stock_init(void)
2454 {
2455 	int cpu;
2456 
2457 	for_each_possible_cpu(cpu) {
2458 		struct memcg_stock_pcp *stock =
2459 					&per_cpu(memcg_stock, cpu);
2460 		INIT_WORK(&stock->work, drain_local_stock);
2461 	}
2462 }
2463 
2464 /*
2465  * Cache charges(val) which is from res_counter, to local per_cpu area.
2466  * This will be consumed by consume_stock() function, later.
2467  */
2468 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2469 {
2470 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2471 
2472 	if (stock->cached != memcg) { /* reset if necessary */
2473 		drain_stock(stock);
2474 		stock->cached = memcg;
2475 	}
2476 	stock->nr_pages += nr_pages;
2477 	put_cpu_var(memcg_stock);
2478 }
2479 
2480 /*
2481  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2482  * of the hierarchy under it. sync flag says whether we should block
2483  * until the work is done.
2484  */
2485 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2486 {
2487 	int cpu, curcpu;
2488 
2489 	/* Notify other cpus that system-wide "drain" is running */
2490 	get_online_cpus();
2491 	curcpu = get_cpu();
2492 	for_each_online_cpu(cpu) {
2493 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2494 		struct mem_cgroup *memcg;
2495 
2496 		memcg = stock->cached;
2497 		if (!memcg || !stock->nr_pages)
2498 			continue;
2499 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2500 			continue;
2501 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2502 			if (cpu == curcpu)
2503 				drain_local_stock(&stock->work);
2504 			else
2505 				schedule_work_on(cpu, &stock->work);
2506 		}
2507 	}
2508 	put_cpu();
2509 
2510 	if (!sync)
2511 		goto out;
2512 
2513 	for_each_online_cpu(cpu) {
2514 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2515 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2516 			flush_work(&stock->work);
2517 	}
2518 out:
2519 	put_online_cpus();
2520 }
2521 
2522 /*
2523  * Tries to drain stocked charges in other cpus. This function is asynchronous
2524  * and just put a work per cpu for draining localy on each cpu. Caller can
2525  * expects some charges will be back to res_counter later but cannot wait for
2526  * it.
2527  */
2528 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2529 {
2530 	/*
2531 	 * If someone calls draining, avoid adding more kworker runs.
2532 	 */
2533 	if (!mutex_trylock(&percpu_charge_mutex))
2534 		return;
2535 	drain_all_stock(root_memcg, false);
2536 	mutex_unlock(&percpu_charge_mutex);
2537 }
2538 
2539 /* This is a synchronous drain interface. */
2540 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2541 {
2542 	/* called when force_empty is called */
2543 	mutex_lock(&percpu_charge_mutex);
2544 	drain_all_stock(root_memcg, true);
2545 	mutex_unlock(&percpu_charge_mutex);
2546 }
2547 
2548 /*
2549  * This function drains percpu counter value from DEAD cpu and
2550  * move it to local cpu. Note that this function can be preempted.
2551  */
2552 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2553 {
2554 	int i;
2555 
2556 	spin_lock(&memcg->pcp_counter_lock);
2557 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2558 		long x = per_cpu(memcg->stat->count[i], cpu);
2559 
2560 		per_cpu(memcg->stat->count[i], cpu) = 0;
2561 		memcg->nocpu_base.count[i] += x;
2562 	}
2563 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2564 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2565 
2566 		per_cpu(memcg->stat->events[i], cpu) = 0;
2567 		memcg->nocpu_base.events[i] += x;
2568 	}
2569 	spin_unlock(&memcg->pcp_counter_lock);
2570 }
2571 
2572 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2573 					unsigned long action,
2574 					void *hcpu)
2575 {
2576 	int cpu = (unsigned long)hcpu;
2577 	struct memcg_stock_pcp *stock;
2578 	struct mem_cgroup *iter;
2579 
2580 	if (action == CPU_ONLINE)
2581 		return NOTIFY_OK;
2582 
2583 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2584 		return NOTIFY_OK;
2585 
2586 	for_each_mem_cgroup(iter)
2587 		mem_cgroup_drain_pcp_counter(iter, cpu);
2588 
2589 	stock = &per_cpu(memcg_stock, cpu);
2590 	drain_stock(stock);
2591 	return NOTIFY_OK;
2592 }
2593 
2594 
2595 /* See __mem_cgroup_try_charge() for details */
2596 enum {
2597 	CHARGE_OK,		/* success */
2598 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2599 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2600 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2601 };
2602 
2603 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2604 				unsigned int nr_pages, unsigned int min_pages,
2605 				bool invoke_oom)
2606 {
2607 	unsigned long csize = nr_pages * PAGE_SIZE;
2608 	struct mem_cgroup *mem_over_limit;
2609 	struct res_counter *fail_res;
2610 	unsigned long flags = 0;
2611 	int ret;
2612 
2613 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2614 
2615 	if (likely(!ret)) {
2616 		if (!do_swap_account)
2617 			return CHARGE_OK;
2618 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2619 		if (likely(!ret))
2620 			return CHARGE_OK;
2621 
2622 		res_counter_uncharge(&memcg->res, csize);
2623 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2624 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2625 	} else
2626 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2627 	/*
2628 	 * Never reclaim on behalf of optional batching, retry with a
2629 	 * single page instead.
2630 	 */
2631 	if (nr_pages > min_pages)
2632 		return CHARGE_RETRY;
2633 
2634 	if (!(gfp_mask & __GFP_WAIT))
2635 		return CHARGE_WOULDBLOCK;
2636 
2637 	if (gfp_mask & __GFP_NORETRY)
2638 		return CHARGE_NOMEM;
2639 
2640 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2641 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2642 		return CHARGE_RETRY;
2643 	/*
2644 	 * Even though the limit is exceeded at this point, reclaim
2645 	 * may have been able to free some pages.  Retry the charge
2646 	 * before killing the task.
2647 	 *
2648 	 * Only for regular pages, though: huge pages are rather
2649 	 * unlikely to succeed so close to the limit, and we fall back
2650 	 * to regular pages anyway in case of failure.
2651 	 */
2652 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2653 		return CHARGE_RETRY;
2654 
2655 	/*
2656 	 * At task move, charge accounts can be doubly counted. So, it's
2657 	 * better to wait until the end of task_move if something is going on.
2658 	 */
2659 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2660 		return CHARGE_RETRY;
2661 
2662 	if (invoke_oom)
2663 		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2664 
2665 	return CHARGE_NOMEM;
2666 }
2667 
2668 /*
2669  * __mem_cgroup_try_charge() does
2670  * 1. detect memcg to be charged against from passed *mm and *ptr,
2671  * 2. update res_counter
2672  * 3. call memory reclaim if necessary.
2673  *
2674  * In some special case, if the task is fatal, fatal_signal_pending() or
2675  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2676  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2677  * as possible without any hazards. 2: all pages should have a valid
2678  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2679  * pointer, that is treated as a charge to root_mem_cgroup.
2680  *
2681  * So __mem_cgroup_try_charge() will return
2682  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2683  *  -ENOMEM ...  charge failure because of resource limits.
2684  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2685  *
2686  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2687  * the oom-killer can be invoked.
2688  */
2689 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2690 				   gfp_t gfp_mask,
2691 				   unsigned int nr_pages,
2692 				   struct mem_cgroup **ptr,
2693 				   bool oom)
2694 {
2695 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2696 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2697 	struct mem_cgroup *memcg = NULL;
2698 	int ret;
2699 
2700 	/*
2701 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2702 	 * in system level. So, allow to go ahead dying process in addition to
2703 	 * MEMDIE process.
2704 	 */
2705 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2706 		     || fatal_signal_pending(current)))
2707 		goto bypass;
2708 
2709 	if (unlikely(task_in_memcg_oom(current)))
2710 		goto bypass;
2711 
2712 	/*
2713 	 * We always charge the cgroup the mm_struct belongs to.
2714 	 * The mm_struct's mem_cgroup changes on task migration if the
2715 	 * thread group leader migrates. It's possible that mm is not
2716 	 * set, if so charge the root memcg (happens for pagecache usage).
2717 	 */
2718 	if (!*ptr && !mm)
2719 		*ptr = root_mem_cgroup;
2720 again:
2721 	if (*ptr) { /* css should be a valid one */
2722 		memcg = *ptr;
2723 		if (mem_cgroup_is_root(memcg))
2724 			goto done;
2725 		if (consume_stock(memcg, nr_pages))
2726 			goto done;
2727 		css_get(&memcg->css);
2728 	} else {
2729 		struct task_struct *p;
2730 
2731 		rcu_read_lock();
2732 		p = rcu_dereference(mm->owner);
2733 		/*
2734 		 * Because we don't have task_lock(), "p" can exit.
2735 		 * In that case, "memcg" can point to root or p can be NULL with
2736 		 * race with swapoff. Then, we have small risk of mis-accouning.
2737 		 * But such kind of mis-account by race always happens because
2738 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2739 		 * small race, here.
2740 		 * (*) swapoff at el will charge against mm-struct not against
2741 		 * task-struct. So, mm->owner can be NULL.
2742 		 */
2743 		memcg = mem_cgroup_from_task(p);
2744 		if (!memcg)
2745 			memcg = root_mem_cgroup;
2746 		if (mem_cgroup_is_root(memcg)) {
2747 			rcu_read_unlock();
2748 			goto done;
2749 		}
2750 		if (consume_stock(memcg, nr_pages)) {
2751 			/*
2752 			 * It seems dagerous to access memcg without css_get().
2753 			 * But considering how consume_stok works, it's not
2754 			 * necessary. If consume_stock success, some charges
2755 			 * from this memcg are cached on this cpu. So, we
2756 			 * don't need to call css_get()/css_tryget() before
2757 			 * calling consume_stock().
2758 			 */
2759 			rcu_read_unlock();
2760 			goto done;
2761 		}
2762 		/* after here, we may be blocked. we need to get refcnt */
2763 		if (!css_tryget(&memcg->css)) {
2764 			rcu_read_unlock();
2765 			goto again;
2766 		}
2767 		rcu_read_unlock();
2768 	}
2769 
2770 	do {
2771 		bool invoke_oom = oom && !nr_oom_retries;
2772 
2773 		/* If killed, bypass charge */
2774 		if (fatal_signal_pending(current)) {
2775 			css_put(&memcg->css);
2776 			goto bypass;
2777 		}
2778 
2779 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2780 					   nr_pages, invoke_oom);
2781 		switch (ret) {
2782 		case CHARGE_OK:
2783 			break;
2784 		case CHARGE_RETRY: /* not in OOM situation but retry */
2785 			batch = nr_pages;
2786 			css_put(&memcg->css);
2787 			memcg = NULL;
2788 			goto again;
2789 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2790 			css_put(&memcg->css);
2791 			goto nomem;
2792 		case CHARGE_NOMEM: /* OOM routine works */
2793 			if (!oom || invoke_oom) {
2794 				css_put(&memcg->css);
2795 				goto nomem;
2796 			}
2797 			nr_oom_retries--;
2798 			break;
2799 		}
2800 	} while (ret != CHARGE_OK);
2801 
2802 	if (batch > nr_pages)
2803 		refill_stock(memcg, batch - nr_pages);
2804 	css_put(&memcg->css);
2805 done:
2806 	*ptr = memcg;
2807 	return 0;
2808 nomem:
2809 	if (!(gfp_mask & __GFP_NOFAIL)) {
2810 		*ptr = NULL;
2811 		return -ENOMEM;
2812 	}
2813 bypass:
2814 	*ptr = root_mem_cgroup;
2815 	return -EINTR;
2816 }
2817 
2818 /*
2819  * Somemtimes we have to undo a charge we got by try_charge().
2820  * This function is for that and do uncharge, put css's refcnt.
2821  * gotten by try_charge().
2822  */
2823 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2824 				       unsigned int nr_pages)
2825 {
2826 	if (!mem_cgroup_is_root(memcg)) {
2827 		unsigned long bytes = nr_pages * PAGE_SIZE;
2828 
2829 		res_counter_uncharge(&memcg->res, bytes);
2830 		if (do_swap_account)
2831 			res_counter_uncharge(&memcg->memsw, bytes);
2832 	}
2833 }
2834 
2835 /*
2836  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2837  * This is useful when moving usage to parent cgroup.
2838  */
2839 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2840 					unsigned int nr_pages)
2841 {
2842 	unsigned long bytes = nr_pages * PAGE_SIZE;
2843 
2844 	if (mem_cgroup_is_root(memcg))
2845 		return;
2846 
2847 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2848 	if (do_swap_account)
2849 		res_counter_uncharge_until(&memcg->memsw,
2850 						memcg->memsw.parent, bytes);
2851 }
2852 
2853 /*
2854  * A helper function to get mem_cgroup from ID. must be called under
2855  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2856  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2857  * called against removed memcg.)
2858  */
2859 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2860 {
2861 	struct cgroup_subsys_state *css;
2862 
2863 	/* ID 0 is unused ID */
2864 	if (!id)
2865 		return NULL;
2866 	css = css_lookup(&mem_cgroup_subsys, id);
2867 	if (!css)
2868 		return NULL;
2869 	return mem_cgroup_from_css(css);
2870 }
2871 
2872 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2873 {
2874 	struct mem_cgroup *memcg = NULL;
2875 	struct page_cgroup *pc;
2876 	unsigned short id;
2877 	swp_entry_t ent;
2878 
2879 	VM_BUG_ON(!PageLocked(page));
2880 
2881 	pc = lookup_page_cgroup(page);
2882 	lock_page_cgroup(pc);
2883 	if (PageCgroupUsed(pc)) {
2884 		memcg = pc->mem_cgroup;
2885 		if (memcg && !css_tryget(&memcg->css))
2886 			memcg = NULL;
2887 	} else if (PageSwapCache(page)) {
2888 		ent.val = page_private(page);
2889 		id = lookup_swap_cgroup_id(ent);
2890 		rcu_read_lock();
2891 		memcg = mem_cgroup_lookup(id);
2892 		if (memcg && !css_tryget(&memcg->css))
2893 			memcg = NULL;
2894 		rcu_read_unlock();
2895 	}
2896 	unlock_page_cgroup(pc);
2897 	return memcg;
2898 }
2899 
2900 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2901 				       struct page *page,
2902 				       unsigned int nr_pages,
2903 				       enum charge_type ctype,
2904 				       bool lrucare)
2905 {
2906 	struct page_cgroup *pc = lookup_page_cgroup(page);
2907 	struct zone *uninitialized_var(zone);
2908 	struct lruvec *lruvec;
2909 	bool was_on_lru = false;
2910 	bool anon;
2911 
2912 	lock_page_cgroup(pc);
2913 	VM_BUG_ON(PageCgroupUsed(pc));
2914 	/*
2915 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2916 	 * accessed by any other context at this point.
2917 	 */
2918 
2919 	/*
2920 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2921 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2922 	 */
2923 	if (lrucare) {
2924 		zone = page_zone(page);
2925 		spin_lock_irq(&zone->lru_lock);
2926 		if (PageLRU(page)) {
2927 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2928 			ClearPageLRU(page);
2929 			del_page_from_lru_list(page, lruvec, page_lru(page));
2930 			was_on_lru = true;
2931 		}
2932 	}
2933 
2934 	pc->mem_cgroup = memcg;
2935 	/*
2936 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2937 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2938 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2939 	 * before USED bit, we need memory barrier here.
2940 	 * See mem_cgroup_add_lru_list(), etc.
2941 	 */
2942 	smp_wmb();
2943 	SetPageCgroupUsed(pc);
2944 
2945 	if (lrucare) {
2946 		if (was_on_lru) {
2947 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2948 			VM_BUG_ON(PageLRU(page));
2949 			SetPageLRU(page);
2950 			add_page_to_lru_list(page, lruvec, page_lru(page));
2951 		}
2952 		spin_unlock_irq(&zone->lru_lock);
2953 	}
2954 
2955 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2956 		anon = true;
2957 	else
2958 		anon = false;
2959 
2960 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2961 	unlock_page_cgroup(pc);
2962 
2963 	/*
2964 	 * "charge_statistics" updated event counter. Then, check it.
2965 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2966 	 * if they exceeds softlimit.
2967 	 */
2968 	memcg_check_events(memcg, page);
2969 }
2970 
2971 static DEFINE_MUTEX(set_limit_mutex);
2972 
2973 #ifdef CONFIG_MEMCG_KMEM
2974 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2975 {
2976 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2977 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2978 }
2979 
2980 /*
2981  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2982  * in the memcg_cache_params struct.
2983  */
2984 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2985 {
2986 	struct kmem_cache *cachep;
2987 
2988 	VM_BUG_ON(p->is_root_cache);
2989 	cachep = p->root_cache;
2990 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2991 }
2992 
2993 #ifdef CONFIG_SLABINFO
2994 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2995 				    struct cftype *cft, struct seq_file *m)
2996 {
2997 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2998 	struct memcg_cache_params *params;
2999 
3000 	if (!memcg_can_account_kmem(memcg))
3001 		return -EIO;
3002 
3003 	print_slabinfo_header(m);
3004 
3005 	mutex_lock(&memcg->slab_caches_mutex);
3006 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3007 		cache_show(memcg_params_to_cache(params), m);
3008 	mutex_unlock(&memcg->slab_caches_mutex);
3009 
3010 	return 0;
3011 }
3012 #endif
3013 
3014 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3015 {
3016 	struct res_counter *fail_res;
3017 	struct mem_cgroup *_memcg;
3018 	int ret = 0;
3019 	bool may_oom;
3020 
3021 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3022 	if (ret)
3023 		return ret;
3024 
3025 	/*
3026 	 * Conditions under which we can wait for the oom_killer. Those are
3027 	 * the same conditions tested by the core page allocator
3028 	 */
3029 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3030 
3031 	_memcg = memcg;
3032 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3033 				      &_memcg, may_oom);
3034 
3035 	if (ret == -EINTR)  {
3036 		/*
3037 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
3038 		 * OOM kill or fatal signal.  Since our only options are to
3039 		 * either fail the allocation or charge it to this cgroup, do
3040 		 * it as a temporary condition. But we can't fail. From a
3041 		 * kmem/slab perspective, the cache has already been selected,
3042 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3043 		 * our minds.
3044 		 *
3045 		 * This condition will only trigger if the task entered
3046 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
3047 		 * __mem_cgroup_try_charge() above. Tasks that were already
3048 		 * dying when the allocation triggers should have been already
3049 		 * directed to the root cgroup in memcontrol.h
3050 		 */
3051 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
3052 		if (do_swap_account)
3053 			res_counter_charge_nofail(&memcg->memsw, size,
3054 						  &fail_res);
3055 		ret = 0;
3056 	} else if (ret)
3057 		res_counter_uncharge(&memcg->kmem, size);
3058 
3059 	return ret;
3060 }
3061 
3062 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3063 {
3064 	res_counter_uncharge(&memcg->res, size);
3065 	if (do_swap_account)
3066 		res_counter_uncharge(&memcg->memsw, size);
3067 
3068 	/* Not down to 0 */
3069 	if (res_counter_uncharge(&memcg->kmem, size))
3070 		return;
3071 
3072 	/*
3073 	 * Releases a reference taken in kmem_cgroup_css_offline in case
3074 	 * this last uncharge is racing with the offlining code or it is
3075 	 * outliving the memcg existence.
3076 	 *
3077 	 * The memory barrier imposed by test&clear is paired with the
3078 	 * explicit one in memcg_kmem_mark_dead().
3079 	 */
3080 	if (memcg_kmem_test_and_clear_dead(memcg))
3081 		css_put(&memcg->css);
3082 }
3083 
3084 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3085 {
3086 	if (!memcg)
3087 		return;
3088 
3089 	mutex_lock(&memcg->slab_caches_mutex);
3090 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3091 	mutex_unlock(&memcg->slab_caches_mutex);
3092 }
3093 
3094 /*
3095  * helper for acessing a memcg's index. It will be used as an index in the
3096  * child cache array in kmem_cache, and also to derive its name. This function
3097  * will return -1 when this is not a kmem-limited memcg.
3098  */
3099 int memcg_cache_id(struct mem_cgroup *memcg)
3100 {
3101 	return memcg ? memcg->kmemcg_id : -1;
3102 }
3103 
3104 /*
3105  * This ends up being protected by the set_limit mutex, during normal
3106  * operation, because that is its main call site.
3107  *
3108  * But when we create a new cache, we can call this as well if its parent
3109  * is kmem-limited. That will have to hold set_limit_mutex as well.
3110  */
3111 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3112 {
3113 	int num, ret;
3114 
3115 	num = ida_simple_get(&kmem_limited_groups,
3116 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3117 	if (num < 0)
3118 		return num;
3119 	/*
3120 	 * After this point, kmem_accounted (that we test atomically in
3121 	 * the beginning of this conditional), is no longer 0. This
3122 	 * guarantees only one process will set the following boolean
3123 	 * to true. We don't need test_and_set because we're protected
3124 	 * by the set_limit_mutex anyway.
3125 	 */
3126 	memcg_kmem_set_activated(memcg);
3127 
3128 	ret = memcg_update_all_caches(num+1);
3129 	if (ret) {
3130 		ida_simple_remove(&kmem_limited_groups, num);
3131 		memcg_kmem_clear_activated(memcg);
3132 		return ret;
3133 	}
3134 
3135 	memcg->kmemcg_id = num;
3136 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3137 	mutex_init(&memcg->slab_caches_mutex);
3138 	return 0;
3139 }
3140 
3141 static size_t memcg_caches_array_size(int num_groups)
3142 {
3143 	ssize_t size;
3144 	if (num_groups <= 0)
3145 		return 0;
3146 
3147 	size = 2 * num_groups;
3148 	if (size < MEMCG_CACHES_MIN_SIZE)
3149 		size = MEMCG_CACHES_MIN_SIZE;
3150 	else if (size > MEMCG_CACHES_MAX_SIZE)
3151 		size = MEMCG_CACHES_MAX_SIZE;
3152 
3153 	return size;
3154 }
3155 
3156 /*
3157  * We should update the current array size iff all caches updates succeed. This
3158  * can only be done from the slab side. The slab mutex needs to be held when
3159  * calling this.
3160  */
3161 void memcg_update_array_size(int num)
3162 {
3163 	if (num > memcg_limited_groups_array_size)
3164 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3165 }
3166 
3167 static void kmem_cache_destroy_work_func(struct work_struct *w);
3168 
3169 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3170 {
3171 	struct memcg_cache_params *cur_params = s->memcg_params;
3172 
3173 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3174 
3175 	if (num_groups > memcg_limited_groups_array_size) {
3176 		int i;
3177 		ssize_t size = memcg_caches_array_size(num_groups);
3178 
3179 		size *= sizeof(void *);
3180 		size += offsetof(struct memcg_cache_params, memcg_caches);
3181 
3182 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3183 		if (!s->memcg_params) {
3184 			s->memcg_params = cur_params;
3185 			return -ENOMEM;
3186 		}
3187 
3188 		s->memcg_params->is_root_cache = true;
3189 
3190 		/*
3191 		 * There is the chance it will be bigger than
3192 		 * memcg_limited_groups_array_size, if we failed an allocation
3193 		 * in a cache, in which case all caches updated before it, will
3194 		 * have a bigger array.
3195 		 *
3196 		 * But if that is the case, the data after
3197 		 * memcg_limited_groups_array_size is certainly unused
3198 		 */
3199 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3200 			if (!cur_params->memcg_caches[i])
3201 				continue;
3202 			s->memcg_params->memcg_caches[i] =
3203 						cur_params->memcg_caches[i];
3204 		}
3205 
3206 		/*
3207 		 * Ideally, we would wait until all caches succeed, and only
3208 		 * then free the old one. But this is not worth the extra
3209 		 * pointer per-cache we'd have to have for this.
3210 		 *
3211 		 * It is not a big deal if some caches are left with a size
3212 		 * bigger than the others. And all updates will reset this
3213 		 * anyway.
3214 		 */
3215 		kfree(cur_params);
3216 	}
3217 	return 0;
3218 }
3219 
3220 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3221 			 struct kmem_cache *root_cache)
3222 {
3223 	size_t size;
3224 
3225 	if (!memcg_kmem_enabled())
3226 		return 0;
3227 
3228 	if (!memcg) {
3229 		size = offsetof(struct memcg_cache_params, memcg_caches);
3230 		size += memcg_limited_groups_array_size * sizeof(void *);
3231 	} else
3232 		size = sizeof(struct memcg_cache_params);
3233 
3234 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3235 	if (!s->memcg_params)
3236 		return -ENOMEM;
3237 
3238 	if (memcg) {
3239 		s->memcg_params->memcg = memcg;
3240 		s->memcg_params->root_cache = root_cache;
3241 		INIT_WORK(&s->memcg_params->destroy,
3242 				kmem_cache_destroy_work_func);
3243 	} else
3244 		s->memcg_params->is_root_cache = true;
3245 
3246 	return 0;
3247 }
3248 
3249 void memcg_release_cache(struct kmem_cache *s)
3250 {
3251 	struct kmem_cache *root;
3252 	struct mem_cgroup *memcg;
3253 	int id;
3254 
3255 	/*
3256 	 * This happens, for instance, when a root cache goes away before we
3257 	 * add any memcg.
3258 	 */
3259 	if (!s->memcg_params)
3260 		return;
3261 
3262 	if (s->memcg_params->is_root_cache)
3263 		goto out;
3264 
3265 	memcg = s->memcg_params->memcg;
3266 	id  = memcg_cache_id(memcg);
3267 
3268 	root = s->memcg_params->root_cache;
3269 	root->memcg_params->memcg_caches[id] = NULL;
3270 
3271 	mutex_lock(&memcg->slab_caches_mutex);
3272 	list_del(&s->memcg_params->list);
3273 	mutex_unlock(&memcg->slab_caches_mutex);
3274 
3275 	css_put(&memcg->css);
3276 out:
3277 	kfree(s->memcg_params);
3278 }
3279 
3280 /*
3281  * During the creation a new cache, we need to disable our accounting mechanism
3282  * altogether. This is true even if we are not creating, but rather just
3283  * enqueing new caches to be created.
3284  *
3285  * This is because that process will trigger allocations; some visible, like
3286  * explicit kmallocs to auxiliary data structures, name strings and internal
3287  * cache structures; some well concealed, like INIT_WORK() that can allocate
3288  * objects during debug.
3289  *
3290  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3291  * to it. This may not be a bounded recursion: since the first cache creation
3292  * failed to complete (waiting on the allocation), we'll just try to create the
3293  * cache again, failing at the same point.
3294  *
3295  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3296  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3297  * inside the following two functions.
3298  */
3299 static inline void memcg_stop_kmem_account(void)
3300 {
3301 	VM_BUG_ON(!current->mm);
3302 	current->memcg_kmem_skip_account++;
3303 }
3304 
3305 static inline void memcg_resume_kmem_account(void)
3306 {
3307 	VM_BUG_ON(!current->mm);
3308 	current->memcg_kmem_skip_account--;
3309 }
3310 
3311 static void kmem_cache_destroy_work_func(struct work_struct *w)
3312 {
3313 	struct kmem_cache *cachep;
3314 	struct memcg_cache_params *p;
3315 
3316 	p = container_of(w, struct memcg_cache_params, destroy);
3317 
3318 	cachep = memcg_params_to_cache(p);
3319 
3320 	/*
3321 	 * If we get down to 0 after shrink, we could delete right away.
3322 	 * However, memcg_release_pages() already puts us back in the workqueue
3323 	 * in that case. If we proceed deleting, we'll get a dangling
3324 	 * reference, and removing the object from the workqueue in that case
3325 	 * is unnecessary complication. We are not a fast path.
3326 	 *
3327 	 * Note that this case is fundamentally different from racing with
3328 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3329 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3330 	 * into the queue, but doing so from inside the worker racing to
3331 	 * destroy it.
3332 	 *
3333 	 * So if we aren't down to zero, we'll just schedule a worker and try
3334 	 * again
3335 	 */
3336 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3337 		kmem_cache_shrink(cachep);
3338 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3339 			return;
3340 	} else
3341 		kmem_cache_destroy(cachep);
3342 }
3343 
3344 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3345 {
3346 	if (!cachep->memcg_params->dead)
3347 		return;
3348 
3349 	/*
3350 	 * There are many ways in which we can get here.
3351 	 *
3352 	 * We can get to a memory-pressure situation while the delayed work is
3353 	 * still pending to run. The vmscan shrinkers can then release all
3354 	 * cache memory and get us to destruction. If this is the case, we'll
3355 	 * be executed twice, which is a bug (the second time will execute over
3356 	 * bogus data). In this case, cancelling the work should be fine.
3357 	 *
3358 	 * But we can also get here from the worker itself, if
3359 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3360 	 * get the page count to 0. In this case, we'll deadlock if we try to
3361 	 * cancel the work (the worker runs with an internal lock held, which
3362 	 * is the same lock we would hold for cancel_work_sync().)
3363 	 *
3364 	 * Since we can't possibly know who got us here, just refrain from
3365 	 * running if there is already work pending
3366 	 */
3367 	if (work_pending(&cachep->memcg_params->destroy))
3368 		return;
3369 	/*
3370 	 * We have to defer the actual destroying to a workqueue, because
3371 	 * we might currently be in a context that cannot sleep.
3372 	 */
3373 	schedule_work(&cachep->memcg_params->destroy);
3374 }
3375 
3376 /*
3377  * This lock protects updaters, not readers. We want readers to be as fast as
3378  * they can, and they will either see NULL or a valid cache value. Our model
3379  * allow them to see NULL, in which case the root memcg will be selected.
3380  *
3381  * We need this lock because multiple allocations to the same cache from a non
3382  * will span more than one worker. Only one of them can create the cache.
3383  */
3384 static DEFINE_MUTEX(memcg_cache_mutex);
3385 
3386 /*
3387  * Called with memcg_cache_mutex held
3388  */
3389 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3390 					 struct kmem_cache *s)
3391 {
3392 	struct kmem_cache *new;
3393 	static char *tmp_name = NULL;
3394 
3395 	lockdep_assert_held(&memcg_cache_mutex);
3396 
3397 	/*
3398 	 * kmem_cache_create_memcg duplicates the given name and
3399 	 * cgroup_name for this name requires RCU context.
3400 	 * This static temporary buffer is used to prevent from
3401 	 * pointless shortliving allocation.
3402 	 */
3403 	if (!tmp_name) {
3404 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3405 		if (!tmp_name)
3406 			return NULL;
3407 	}
3408 
3409 	rcu_read_lock();
3410 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3411 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3412 	rcu_read_unlock();
3413 
3414 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3415 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3416 
3417 	if (new)
3418 		new->allocflags |= __GFP_KMEMCG;
3419 
3420 	return new;
3421 }
3422 
3423 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3424 						  struct kmem_cache *cachep)
3425 {
3426 	struct kmem_cache *new_cachep;
3427 	int idx;
3428 
3429 	BUG_ON(!memcg_can_account_kmem(memcg));
3430 
3431 	idx = memcg_cache_id(memcg);
3432 
3433 	mutex_lock(&memcg_cache_mutex);
3434 	new_cachep = cachep->memcg_params->memcg_caches[idx];
3435 	if (new_cachep) {
3436 		css_put(&memcg->css);
3437 		goto out;
3438 	}
3439 
3440 	new_cachep = kmem_cache_dup(memcg, cachep);
3441 	if (new_cachep == NULL) {
3442 		new_cachep = cachep;
3443 		css_put(&memcg->css);
3444 		goto out;
3445 	}
3446 
3447 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3448 
3449 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3450 	/*
3451 	 * the readers won't lock, make sure everybody sees the updated value,
3452 	 * so they won't put stuff in the queue again for no reason
3453 	 */
3454 	wmb();
3455 out:
3456 	mutex_unlock(&memcg_cache_mutex);
3457 	return new_cachep;
3458 }
3459 
3460 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3461 {
3462 	struct kmem_cache *c;
3463 	int i;
3464 
3465 	if (!s->memcg_params)
3466 		return;
3467 	if (!s->memcg_params->is_root_cache)
3468 		return;
3469 
3470 	/*
3471 	 * If the cache is being destroyed, we trust that there is no one else
3472 	 * requesting objects from it. Even if there are, the sanity checks in
3473 	 * kmem_cache_destroy should caught this ill-case.
3474 	 *
3475 	 * Still, we don't want anyone else freeing memcg_caches under our
3476 	 * noses, which can happen if a new memcg comes to life. As usual,
3477 	 * we'll take the set_limit_mutex to protect ourselves against this.
3478 	 */
3479 	mutex_lock(&set_limit_mutex);
3480 	for (i = 0; i < memcg_limited_groups_array_size; i++) {
3481 		c = s->memcg_params->memcg_caches[i];
3482 		if (!c)
3483 			continue;
3484 
3485 		/*
3486 		 * We will now manually delete the caches, so to avoid races
3487 		 * we need to cancel all pending destruction workers and
3488 		 * proceed with destruction ourselves.
3489 		 *
3490 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3491 		 * and that could spawn the workers again: it is likely that
3492 		 * the cache still have active pages until this very moment.
3493 		 * This would lead us back to mem_cgroup_destroy_cache.
3494 		 *
3495 		 * But that will not execute at all if the "dead" flag is not
3496 		 * set, so flip it down to guarantee we are in control.
3497 		 */
3498 		c->memcg_params->dead = false;
3499 		cancel_work_sync(&c->memcg_params->destroy);
3500 		kmem_cache_destroy(c);
3501 	}
3502 	mutex_unlock(&set_limit_mutex);
3503 }
3504 
3505 struct create_work {
3506 	struct mem_cgroup *memcg;
3507 	struct kmem_cache *cachep;
3508 	struct work_struct work;
3509 };
3510 
3511 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3512 {
3513 	struct kmem_cache *cachep;
3514 	struct memcg_cache_params *params;
3515 
3516 	if (!memcg_kmem_is_active(memcg))
3517 		return;
3518 
3519 	mutex_lock(&memcg->slab_caches_mutex);
3520 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3521 		cachep = memcg_params_to_cache(params);
3522 		cachep->memcg_params->dead = true;
3523 		schedule_work(&cachep->memcg_params->destroy);
3524 	}
3525 	mutex_unlock(&memcg->slab_caches_mutex);
3526 }
3527 
3528 static void memcg_create_cache_work_func(struct work_struct *w)
3529 {
3530 	struct create_work *cw;
3531 
3532 	cw = container_of(w, struct create_work, work);
3533 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3534 	kfree(cw);
3535 }
3536 
3537 /*
3538  * Enqueue the creation of a per-memcg kmem_cache.
3539  */
3540 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3541 					 struct kmem_cache *cachep)
3542 {
3543 	struct create_work *cw;
3544 
3545 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3546 	if (cw == NULL) {
3547 		css_put(&memcg->css);
3548 		return;
3549 	}
3550 
3551 	cw->memcg = memcg;
3552 	cw->cachep = cachep;
3553 
3554 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3555 	schedule_work(&cw->work);
3556 }
3557 
3558 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3559 				       struct kmem_cache *cachep)
3560 {
3561 	/*
3562 	 * We need to stop accounting when we kmalloc, because if the
3563 	 * corresponding kmalloc cache is not yet created, the first allocation
3564 	 * in __memcg_create_cache_enqueue will recurse.
3565 	 *
3566 	 * However, it is better to enclose the whole function. Depending on
3567 	 * the debugging options enabled, INIT_WORK(), for instance, can
3568 	 * trigger an allocation. This too, will make us recurse. Because at
3569 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3570 	 * the safest choice is to do it like this, wrapping the whole function.
3571 	 */
3572 	memcg_stop_kmem_account();
3573 	__memcg_create_cache_enqueue(memcg, cachep);
3574 	memcg_resume_kmem_account();
3575 }
3576 /*
3577  * Return the kmem_cache we're supposed to use for a slab allocation.
3578  * We try to use the current memcg's version of the cache.
3579  *
3580  * If the cache does not exist yet, if we are the first user of it,
3581  * we either create it immediately, if possible, or create it asynchronously
3582  * in a workqueue.
3583  * In the latter case, we will let the current allocation go through with
3584  * the original cache.
3585  *
3586  * Can't be called in interrupt context or from kernel threads.
3587  * This function needs to be called with rcu_read_lock() held.
3588  */
3589 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3590 					  gfp_t gfp)
3591 {
3592 	struct mem_cgroup *memcg;
3593 	int idx;
3594 
3595 	VM_BUG_ON(!cachep->memcg_params);
3596 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3597 
3598 	if (!current->mm || current->memcg_kmem_skip_account)
3599 		return cachep;
3600 
3601 	rcu_read_lock();
3602 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3603 
3604 	if (!memcg_can_account_kmem(memcg))
3605 		goto out;
3606 
3607 	idx = memcg_cache_id(memcg);
3608 
3609 	/*
3610 	 * barrier to mare sure we're always seeing the up to date value.  The
3611 	 * code updating memcg_caches will issue a write barrier to match this.
3612 	 */
3613 	read_barrier_depends();
3614 	if (likely(cachep->memcg_params->memcg_caches[idx])) {
3615 		cachep = cachep->memcg_params->memcg_caches[idx];
3616 		goto out;
3617 	}
3618 
3619 	/* The corresponding put will be done in the workqueue. */
3620 	if (!css_tryget(&memcg->css))
3621 		goto out;
3622 	rcu_read_unlock();
3623 
3624 	/*
3625 	 * If we are in a safe context (can wait, and not in interrupt
3626 	 * context), we could be be predictable and return right away.
3627 	 * This would guarantee that the allocation being performed
3628 	 * already belongs in the new cache.
3629 	 *
3630 	 * However, there are some clashes that can arrive from locking.
3631 	 * For instance, because we acquire the slab_mutex while doing
3632 	 * kmem_cache_dup, this means no further allocation could happen
3633 	 * with the slab_mutex held.
3634 	 *
3635 	 * Also, because cache creation issue get_online_cpus(), this
3636 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3637 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3638 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3639 	 * better to defer everything.
3640 	 */
3641 	memcg_create_cache_enqueue(memcg, cachep);
3642 	return cachep;
3643 out:
3644 	rcu_read_unlock();
3645 	return cachep;
3646 }
3647 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3648 
3649 /*
3650  * We need to verify if the allocation against current->mm->owner's memcg is
3651  * possible for the given order. But the page is not allocated yet, so we'll
3652  * need a further commit step to do the final arrangements.
3653  *
3654  * It is possible for the task to switch cgroups in this mean time, so at
3655  * commit time, we can't rely on task conversion any longer.  We'll then use
3656  * the handle argument to return to the caller which cgroup we should commit
3657  * against. We could also return the memcg directly and avoid the pointer
3658  * passing, but a boolean return value gives better semantics considering
3659  * the compiled-out case as well.
3660  *
3661  * Returning true means the allocation is possible.
3662  */
3663 bool
3664 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3665 {
3666 	struct mem_cgroup *memcg;
3667 	int ret;
3668 
3669 	*_memcg = NULL;
3670 
3671 	/*
3672 	 * Disabling accounting is only relevant for some specific memcg
3673 	 * internal allocations. Therefore we would initially not have such
3674 	 * check here, since direct calls to the page allocator that are marked
3675 	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3676 	 * concerned with cache allocations, and by having this test at
3677 	 * memcg_kmem_get_cache, we are already able to relay the allocation to
3678 	 * the root cache and bypass the memcg cache altogether.
3679 	 *
3680 	 * There is one exception, though: the SLUB allocator does not create
3681 	 * large order caches, but rather service large kmallocs directly from
3682 	 * the page allocator. Therefore, the following sequence when backed by
3683 	 * the SLUB allocator:
3684 	 *
3685 	 *	memcg_stop_kmem_account();
3686 	 *	kmalloc(<large_number>)
3687 	 *	memcg_resume_kmem_account();
3688 	 *
3689 	 * would effectively ignore the fact that we should skip accounting,
3690 	 * since it will drive us directly to this function without passing
3691 	 * through the cache selector memcg_kmem_get_cache. Such large
3692 	 * allocations are extremely rare but can happen, for instance, for the
3693 	 * cache arrays. We bring this test here.
3694 	 */
3695 	if (!current->mm || current->memcg_kmem_skip_account)
3696 		return true;
3697 
3698 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3699 
3700 	/*
3701 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3702 	 * isn't much we can do without complicating this too much, and it would
3703 	 * be gfp-dependent anyway. Just let it go
3704 	 */
3705 	if (unlikely(!memcg))
3706 		return true;
3707 
3708 	if (!memcg_can_account_kmem(memcg)) {
3709 		css_put(&memcg->css);
3710 		return true;
3711 	}
3712 
3713 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3714 	if (!ret)
3715 		*_memcg = memcg;
3716 
3717 	css_put(&memcg->css);
3718 	return (ret == 0);
3719 }
3720 
3721 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3722 			      int order)
3723 {
3724 	struct page_cgroup *pc;
3725 
3726 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3727 
3728 	/* The page allocation failed. Revert */
3729 	if (!page) {
3730 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3731 		return;
3732 	}
3733 
3734 	pc = lookup_page_cgroup(page);
3735 	lock_page_cgroup(pc);
3736 	pc->mem_cgroup = memcg;
3737 	SetPageCgroupUsed(pc);
3738 	unlock_page_cgroup(pc);
3739 }
3740 
3741 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3742 {
3743 	struct mem_cgroup *memcg = NULL;
3744 	struct page_cgroup *pc;
3745 
3746 
3747 	pc = lookup_page_cgroup(page);
3748 	/*
3749 	 * Fast unlocked return. Theoretically might have changed, have to
3750 	 * check again after locking.
3751 	 */
3752 	if (!PageCgroupUsed(pc))
3753 		return;
3754 
3755 	lock_page_cgroup(pc);
3756 	if (PageCgroupUsed(pc)) {
3757 		memcg = pc->mem_cgroup;
3758 		ClearPageCgroupUsed(pc);
3759 	}
3760 	unlock_page_cgroup(pc);
3761 
3762 	/*
3763 	 * We trust that only if there is a memcg associated with the page, it
3764 	 * is a valid allocation
3765 	 */
3766 	if (!memcg)
3767 		return;
3768 
3769 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3770 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3771 }
3772 #else
3773 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3774 {
3775 }
3776 #endif /* CONFIG_MEMCG_KMEM */
3777 
3778 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3779 
3780 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3781 /*
3782  * Because tail pages are not marked as "used", set it. We're under
3783  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3784  * charge/uncharge will be never happen and move_account() is done under
3785  * compound_lock(), so we don't have to take care of races.
3786  */
3787 void mem_cgroup_split_huge_fixup(struct page *head)
3788 {
3789 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3790 	struct page_cgroup *pc;
3791 	struct mem_cgroup *memcg;
3792 	int i;
3793 
3794 	if (mem_cgroup_disabled())
3795 		return;
3796 
3797 	memcg = head_pc->mem_cgroup;
3798 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3799 		pc = head_pc + i;
3800 		pc->mem_cgroup = memcg;
3801 		smp_wmb();/* see __commit_charge() */
3802 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3803 	}
3804 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3805 		       HPAGE_PMD_NR);
3806 }
3807 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3808 
3809 static inline
3810 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3811 					struct mem_cgroup *to,
3812 					unsigned int nr_pages,
3813 					enum mem_cgroup_stat_index idx)
3814 {
3815 	/* Update stat data for mem_cgroup */
3816 	preempt_disable();
3817 	__this_cpu_sub(from->stat->count[idx], nr_pages);
3818 	__this_cpu_add(to->stat->count[idx], nr_pages);
3819 	preempt_enable();
3820 }
3821 
3822 /**
3823  * mem_cgroup_move_account - move account of the page
3824  * @page: the page
3825  * @nr_pages: number of regular pages (>1 for huge pages)
3826  * @pc:	page_cgroup of the page.
3827  * @from: mem_cgroup which the page is moved from.
3828  * @to:	mem_cgroup which the page is moved to. @from != @to.
3829  *
3830  * The caller must confirm following.
3831  * - page is not on LRU (isolate_page() is useful.)
3832  * - compound_lock is held when nr_pages > 1
3833  *
3834  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3835  * from old cgroup.
3836  */
3837 static int mem_cgroup_move_account(struct page *page,
3838 				   unsigned int nr_pages,
3839 				   struct page_cgroup *pc,
3840 				   struct mem_cgroup *from,
3841 				   struct mem_cgroup *to)
3842 {
3843 	unsigned long flags;
3844 	int ret;
3845 	bool anon = PageAnon(page);
3846 
3847 	VM_BUG_ON(from == to);
3848 	VM_BUG_ON(PageLRU(page));
3849 	/*
3850 	 * The page is isolated from LRU. So, collapse function
3851 	 * will not handle this page. But page splitting can happen.
3852 	 * Do this check under compound_page_lock(). The caller should
3853 	 * hold it.
3854 	 */
3855 	ret = -EBUSY;
3856 	if (nr_pages > 1 && !PageTransHuge(page))
3857 		goto out;
3858 
3859 	lock_page_cgroup(pc);
3860 
3861 	ret = -EINVAL;
3862 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3863 		goto unlock;
3864 
3865 	move_lock_mem_cgroup(from, &flags);
3866 
3867 	if (!anon && page_mapped(page))
3868 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3869 			MEM_CGROUP_STAT_FILE_MAPPED);
3870 
3871 	if (PageWriteback(page))
3872 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3873 			MEM_CGROUP_STAT_WRITEBACK);
3874 
3875 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3876 
3877 	/* caller should have done css_get */
3878 	pc->mem_cgroup = to;
3879 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3880 	move_unlock_mem_cgroup(from, &flags);
3881 	ret = 0;
3882 unlock:
3883 	unlock_page_cgroup(pc);
3884 	/*
3885 	 * check events
3886 	 */
3887 	memcg_check_events(to, page);
3888 	memcg_check_events(from, page);
3889 out:
3890 	return ret;
3891 }
3892 
3893 /**
3894  * mem_cgroup_move_parent - moves page to the parent group
3895  * @page: the page to move
3896  * @pc: page_cgroup of the page
3897  * @child: page's cgroup
3898  *
3899  * move charges to its parent or the root cgroup if the group has no
3900  * parent (aka use_hierarchy==0).
3901  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3902  * mem_cgroup_move_account fails) the failure is always temporary and
3903  * it signals a race with a page removal/uncharge or migration. In the
3904  * first case the page is on the way out and it will vanish from the LRU
3905  * on the next attempt and the call should be retried later.
3906  * Isolation from the LRU fails only if page has been isolated from
3907  * the LRU since we looked at it and that usually means either global
3908  * reclaim or migration going on. The page will either get back to the
3909  * LRU or vanish.
3910  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3911  * (!PageCgroupUsed) or moved to a different group. The page will
3912  * disappear in the next attempt.
3913  */
3914 static int mem_cgroup_move_parent(struct page *page,
3915 				  struct page_cgroup *pc,
3916 				  struct mem_cgroup *child)
3917 {
3918 	struct mem_cgroup *parent;
3919 	unsigned int nr_pages;
3920 	unsigned long uninitialized_var(flags);
3921 	int ret;
3922 
3923 	VM_BUG_ON(mem_cgroup_is_root(child));
3924 
3925 	ret = -EBUSY;
3926 	if (!get_page_unless_zero(page))
3927 		goto out;
3928 	if (isolate_lru_page(page))
3929 		goto put;
3930 
3931 	nr_pages = hpage_nr_pages(page);
3932 
3933 	parent = parent_mem_cgroup(child);
3934 	/*
3935 	 * If no parent, move charges to root cgroup.
3936 	 */
3937 	if (!parent)
3938 		parent = root_mem_cgroup;
3939 
3940 	if (nr_pages > 1) {
3941 		VM_BUG_ON(!PageTransHuge(page));
3942 		flags = compound_lock_irqsave(page);
3943 	}
3944 
3945 	ret = mem_cgroup_move_account(page, nr_pages,
3946 				pc, child, parent);
3947 	if (!ret)
3948 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3949 
3950 	if (nr_pages > 1)
3951 		compound_unlock_irqrestore(page, flags);
3952 	putback_lru_page(page);
3953 put:
3954 	put_page(page);
3955 out:
3956 	return ret;
3957 }
3958 
3959 /*
3960  * Charge the memory controller for page usage.
3961  * Return
3962  * 0 if the charge was successful
3963  * < 0 if the cgroup is over its limit
3964  */
3965 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3966 				gfp_t gfp_mask, enum charge_type ctype)
3967 {
3968 	struct mem_cgroup *memcg = NULL;
3969 	unsigned int nr_pages = 1;
3970 	bool oom = true;
3971 	int ret;
3972 
3973 	if (PageTransHuge(page)) {
3974 		nr_pages <<= compound_order(page);
3975 		VM_BUG_ON(!PageTransHuge(page));
3976 		/*
3977 		 * Never OOM-kill a process for a huge page.  The
3978 		 * fault handler will fall back to regular pages.
3979 		 */
3980 		oom = false;
3981 	}
3982 
3983 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3984 	if (ret == -ENOMEM)
3985 		return ret;
3986 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3987 	return 0;
3988 }
3989 
3990 int mem_cgroup_newpage_charge(struct page *page,
3991 			      struct mm_struct *mm, gfp_t gfp_mask)
3992 {
3993 	if (mem_cgroup_disabled())
3994 		return 0;
3995 	VM_BUG_ON(page_mapped(page));
3996 	VM_BUG_ON(page->mapping && !PageAnon(page));
3997 	VM_BUG_ON(!mm);
3998 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3999 					MEM_CGROUP_CHARGE_TYPE_ANON);
4000 }
4001 
4002 /*
4003  * While swap-in, try_charge -> commit or cancel, the page is locked.
4004  * And when try_charge() successfully returns, one refcnt to memcg without
4005  * struct page_cgroup is acquired. This refcnt will be consumed by
4006  * "commit()" or removed by "cancel()"
4007  */
4008 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4009 					  struct page *page,
4010 					  gfp_t mask,
4011 					  struct mem_cgroup **memcgp)
4012 {
4013 	struct mem_cgroup *memcg;
4014 	struct page_cgroup *pc;
4015 	int ret;
4016 
4017 	pc = lookup_page_cgroup(page);
4018 	/*
4019 	 * Every swap fault against a single page tries to charge the
4020 	 * page, bail as early as possible.  shmem_unuse() encounters
4021 	 * already charged pages, too.  The USED bit is protected by
4022 	 * the page lock, which serializes swap cache removal, which
4023 	 * in turn serializes uncharging.
4024 	 */
4025 	if (PageCgroupUsed(pc))
4026 		return 0;
4027 	if (!do_swap_account)
4028 		goto charge_cur_mm;
4029 	memcg = try_get_mem_cgroup_from_page(page);
4030 	if (!memcg)
4031 		goto charge_cur_mm;
4032 	*memcgp = memcg;
4033 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4034 	css_put(&memcg->css);
4035 	if (ret == -EINTR)
4036 		ret = 0;
4037 	return ret;
4038 charge_cur_mm:
4039 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4040 	if (ret == -EINTR)
4041 		ret = 0;
4042 	return ret;
4043 }
4044 
4045 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4046 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4047 {
4048 	*memcgp = NULL;
4049 	if (mem_cgroup_disabled())
4050 		return 0;
4051 	/*
4052 	 * A racing thread's fault, or swapoff, may have already
4053 	 * updated the pte, and even removed page from swap cache: in
4054 	 * those cases unuse_pte()'s pte_same() test will fail; but
4055 	 * there's also a KSM case which does need to charge the page.
4056 	 */
4057 	if (!PageSwapCache(page)) {
4058 		int ret;
4059 
4060 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4061 		if (ret == -EINTR)
4062 			ret = 0;
4063 		return ret;
4064 	}
4065 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4066 }
4067 
4068 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4069 {
4070 	if (mem_cgroup_disabled())
4071 		return;
4072 	if (!memcg)
4073 		return;
4074 	__mem_cgroup_cancel_charge(memcg, 1);
4075 }
4076 
4077 static void
4078 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4079 					enum charge_type ctype)
4080 {
4081 	if (mem_cgroup_disabled())
4082 		return;
4083 	if (!memcg)
4084 		return;
4085 
4086 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4087 	/*
4088 	 * Now swap is on-memory. This means this page may be
4089 	 * counted both as mem and swap....double count.
4090 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4091 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4092 	 * may call delete_from_swap_cache() before reach here.
4093 	 */
4094 	if (do_swap_account && PageSwapCache(page)) {
4095 		swp_entry_t ent = {.val = page_private(page)};
4096 		mem_cgroup_uncharge_swap(ent);
4097 	}
4098 }
4099 
4100 void mem_cgroup_commit_charge_swapin(struct page *page,
4101 				     struct mem_cgroup *memcg)
4102 {
4103 	__mem_cgroup_commit_charge_swapin(page, memcg,
4104 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4105 }
4106 
4107 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4108 				gfp_t gfp_mask)
4109 {
4110 	struct mem_cgroup *memcg = NULL;
4111 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4112 	int ret;
4113 
4114 	if (mem_cgroup_disabled())
4115 		return 0;
4116 	if (PageCompound(page))
4117 		return 0;
4118 
4119 	if (!PageSwapCache(page))
4120 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4121 	else { /* page is swapcache/shmem */
4122 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4123 						     gfp_mask, &memcg);
4124 		if (!ret)
4125 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4126 	}
4127 	return ret;
4128 }
4129 
4130 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4131 				   unsigned int nr_pages,
4132 				   const enum charge_type ctype)
4133 {
4134 	struct memcg_batch_info *batch = NULL;
4135 	bool uncharge_memsw = true;
4136 
4137 	/* If swapout, usage of swap doesn't decrease */
4138 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4139 		uncharge_memsw = false;
4140 
4141 	batch = &current->memcg_batch;
4142 	/*
4143 	 * In usual, we do css_get() when we remember memcg pointer.
4144 	 * But in this case, we keep res->usage until end of a series of
4145 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4146 	 */
4147 	if (!batch->memcg)
4148 		batch->memcg = memcg;
4149 	/*
4150 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4151 	 * In those cases, all pages freed continuously can be expected to be in
4152 	 * the same cgroup and we have chance to coalesce uncharges.
4153 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4154 	 * because we want to do uncharge as soon as possible.
4155 	 */
4156 
4157 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4158 		goto direct_uncharge;
4159 
4160 	if (nr_pages > 1)
4161 		goto direct_uncharge;
4162 
4163 	/*
4164 	 * In typical case, batch->memcg == mem. This means we can
4165 	 * merge a series of uncharges to an uncharge of res_counter.
4166 	 * If not, we uncharge res_counter ony by one.
4167 	 */
4168 	if (batch->memcg != memcg)
4169 		goto direct_uncharge;
4170 	/* remember freed charge and uncharge it later */
4171 	batch->nr_pages++;
4172 	if (uncharge_memsw)
4173 		batch->memsw_nr_pages++;
4174 	return;
4175 direct_uncharge:
4176 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4177 	if (uncharge_memsw)
4178 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4179 	if (unlikely(batch->memcg != memcg))
4180 		memcg_oom_recover(memcg);
4181 }
4182 
4183 /*
4184  * uncharge if !page_mapped(page)
4185  */
4186 static struct mem_cgroup *
4187 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4188 			     bool end_migration)
4189 {
4190 	struct mem_cgroup *memcg = NULL;
4191 	unsigned int nr_pages = 1;
4192 	struct page_cgroup *pc;
4193 	bool anon;
4194 
4195 	if (mem_cgroup_disabled())
4196 		return NULL;
4197 
4198 	if (PageTransHuge(page)) {
4199 		nr_pages <<= compound_order(page);
4200 		VM_BUG_ON(!PageTransHuge(page));
4201 	}
4202 	/*
4203 	 * Check if our page_cgroup is valid
4204 	 */
4205 	pc = lookup_page_cgroup(page);
4206 	if (unlikely(!PageCgroupUsed(pc)))
4207 		return NULL;
4208 
4209 	lock_page_cgroup(pc);
4210 
4211 	memcg = pc->mem_cgroup;
4212 
4213 	if (!PageCgroupUsed(pc))
4214 		goto unlock_out;
4215 
4216 	anon = PageAnon(page);
4217 
4218 	switch (ctype) {
4219 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4220 		/*
4221 		 * Generally PageAnon tells if it's the anon statistics to be
4222 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4223 		 * used before page reached the stage of being marked PageAnon.
4224 		 */
4225 		anon = true;
4226 		/* fallthrough */
4227 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4228 		/* See mem_cgroup_prepare_migration() */
4229 		if (page_mapped(page))
4230 			goto unlock_out;
4231 		/*
4232 		 * Pages under migration may not be uncharged.  But
4233 		 * end_migration() /must/ be the one uncharging the
4234 		 * unused post-migration page and so it has to call
4235 		 * here with the migration bit still set.  See the
4236 		 * res_counter handling below.
4237 		 */
4238 		if (!end_migration && PageCgroupMigration(pc))
4239 			goto unlock_out;
4240 		break;
4241 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4242 		if (!PageAnon(page)) {	/* Shared memory */
4243 			if (page->mapping && !page_is_file_cache(page))
4244 				goto unlock_out;
4245 		} else if (page_mapped(page)) /* Anon */
4246 				goto unlock_out;
4247 		break;
4248 	default:
4249 		break;
4250 	}
4251 
4252 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4253 
4254 	ClearPageCgroupUsed(pc);
4255 	/*
4256 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4257 	 * freed from LRU. This is safe because uncharged page is expected not
4258 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4259 	 * special functions.
4260 	 */
4261 
4262 	unlock_page_cgroup(pc);
4263 	/*
4264 	 * even after unlock, we have memcg->res.usage here and this memcg
4265 	 * will never be freed, so it's safe to call css_get().
4266 	 */
4267 	memcg_check_events(memcg, page);
4268 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4269 		mem_cgroup_swap_statistics(memcg, true);
4270 		css_get(&memcg->css);
4271 	}
4272 	/*
4273 	 * Migration does not charge the res_counter for the
4274 	 * replacement page, so leave it alone when phasing out the
4275 	 * page that is unused after the migration.
4276 	 */
4277 	if (!end_migration && !mem_cgroup_is_root(memcg))
4278 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4279 
4280 	return memcg;
4281 
4282 unlock_out:
4283 	unlock_page_cgroup(pc);
4284 	return NULL;
4285 }
4286 
4287 void mem_cgroup_uncharge_page(struct page *page)
4288 {
4289 	/* early check. */
4290 	if (page_mapped(page))
4291 		return;
4292 	VM_BUG_ON(page->mapping && !PageAnon(page));
4293 	/*
4294 	 * If the page is in swap cache, uncharge should be deferred
4295 	 * to the swap path, which also properly accounts swap usage
4296 	 * and handles memcg lifetime.
4297 	 *
4298 	 * Note that this check is not stable and reclaim may add the
4299 	 * page to swap cache at any time after this.  However, if the
4300 	 * page is not in swap cache by the time page->mapcount hits
4301 	 * 0, there won't be any page table references to the swap
4302 	 * slot, and reclaim will free it and not actually write the
4303 	 * page to disk.
4304 	 */
4305 	if (PageSwapCache(page))
4306 		return;
4307 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4308 }
4309 
4310 void mem_cgroup_uncharge_cache_page(struct page *page)
4311 {
4312 	VM_BUG_ON(page_mapped(page));
4313 	VM_BUG_ON(page->mapping);
4314 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4315 }
4316 
4317 /*
4318  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4319  * In that cases, pages are freed continuously and we can expect pages
4320  * are in the same memcg. All these calls itself limits the number of
4321  * pages freed at once, then uncharge_start/end() is called properly.
4322  * This may be called prural(2) times in a context,
4323  */
4324 
4325 void mem_cgroup_uncharge_start(void)
4326 {
4327 	current->memcg_batch.do_batch++;
4328 	/* We can do nest. */
4329 	if (current->memcg_batch.do_batch == 1) {
4330 		current->memcg_batch.memcg = NULL;
4331 		current->memcg_batch.nr_pages = 0;
4332 		current->memcg_batch.memsw_nr_pages = 0;
4333 	}
4334 }
4335 
4336 void mem_cgroup_uncharge_end(void)
4337 {
4338 	struct memcg_batch_info *batch = &current->memcg_batch;
4339 
4340 	if (!batch->do_batch)
4341 		return;
4342 
4343 	batch->do_batch--;
4344 	if (batch->do_batch) /* If stacked, do nothing. */
4345 		return;
4346 
4347 	if (!batch->memcg)
4348 		return;
4349 	/*
4350 	 * This "batch->memcg" is valid without any css_get/put etc...
4351 	 * bacause we hide charges behind us.
4352 	 */
4353 	if (batch->nr_pages)
4354 		res_counter_uncharge(&batch->memcg->res,
4355 				     batch->nr_pages * PAGE_SIZE);
4356 	if (batch->memsw_nr_pages)
4357 		res_counter_uncharge(&batch->memcg->memsw,
4358 				     batch->memsw_nr_pages * PAGE_SIZE);
4359 	memcg_oom_recover(batch->memcg);
4360 	/* forget this pointer (for sanity check) */
4361 	batch->memcg = NULL;
4362 }
4363 
4364 #ifdef CONFIG_SWAP
4365 /*
4366  * called after __delete_from_swap_cache() and drop "page" account.
4367  * memcg information is recorded to swap_cgroup of "ent"
4368  */
4369 void
4370 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4371 {
4372 	struct mem_cgroup *memcg;
4373 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4374 
4375 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4376 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4377 
4378 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4379 
4380 	/*
4381 	 * record memcg information,  if swapout && memcg != NULL,
4382 	 * css_get() was called in uncharge().
4383 	 */
4384 	if (do_swap_account && swapout && memcg)
4385 		swap_cgroup_record(ent, css_id(&memcg->css));
4386 }
4387 #endif
4388 
4389 #ifdef CONFIG_MEMCG_SWAP
4390 /*
4391  * called from swap_entry_free(). remove record in swap_cgroup and
4392  * uncharge "memsw" account.
4393  */
4394 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4395 {
4396 	struct mem_cgroup *memcg;
4397 	unsigned short id;
4398 
4399 	if (!do_swap_account)
4400 		return;
4401 
4402 	id = swap_cgroup_record(ent, 0);
4403 	rcu_read_lock();
4404 	memcg = mem_cgroup_lookup(id);
4405 	if (memcg) {
4406 		/*
4407 		 * We uncharge this because swap is freed.
4408 		 * This memcg can be obsolete one. We avoid calling css_tryget
4409 		 */
4410 		if (!mem_cgroup_is_root(memcg))
4411 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4412 		mem_cgroup_swap_statistics(memcg, false);
4413 		css_put(&memcg->css);
4414 	}
4415 	rcu_read_unlock();
4416 }
4417 
4418 /**
4419  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4420  * @entry: swap entry to be moved
4421  * @from:  mem_cgroup which the entry is moved from
4422  * @to:  mem_cgroup which the entry is moved to
4423  *
4424  * It succeeds only when the swap_cgroup's record for this entry is the same
4425  * as the mem_cgroup's id of @from.
4426  *
4427  * Returns 0 on success, -EINVAL on failure.
4428  *
4429  * The caller must have charged to @to, IOW, called res_counter_charge() about
4430  * both res and memsw, and called css_get().
4431  */
4432 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4433 				struct mem_cgroup *from, struct mem_cgroup *to)
4434 {
4435 	unsigned short old_id, new_id;
4436 
4437 	old_id = css_id(&from->css);
4438 	new_id = css_id(&to->css);
4439 
4440 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4441 		mem_cgroup_swap_statistics(from, false);
4442 		mem_cgroup_swap_statistics(to, true);
4443 		/*
4444 		 * This function is only called from task migration context now.
4445 		 * It postpones res_counter and refcount handling till the end
4446 		 * of task migration(mem_cgroup_clear_mc()) for performance
4447 		 * improvement. But we cannot postpone css_get(to)  because if
4448 		 * the process that has been moved to @to does swap-in, the
4449 		 * refcount of @to might be decreased to 0.
4450 		 *
4451 		 * We are in attach() phase, so the cgroup is guaranteed to be
4452 		 * alive, so we can just call css_get().
4453 		 */
4454 		css_get(&to->css);
4455 		return 0;
4456 	}
4457 	return -EINVAL;
4458 }
4459 #else
4460 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4461 				struct mem_cgroup *from, struct mem_cgroup *to)
4462 {
4463 	return -EINVAL;
4464 }
4465 #endif
4466 
4467 /*
4468  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4469  * page belongs to.
4470  */
4471 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4472 				  struct mem_cgroup **memcgp)
4473 {
4474 	struct mem_cgroup *memcg = NULL;
4475 	unsigned int nr_pages = 1;
4476 	struct page_cgroup *pc;
4477 	enum charge_type ctype;
4478 
4479 	*memcgp = NULL;
4480 
4481 	if (mem_cgroup_disabled())
4482 		return;
4483 
4484 	if (PageTransHuge(page))
4485 		nr_pages <<= compound_order(page);
4486 
4487 	pc = lookup_page_cgroup(page);
4488 	lock_page_cgroup(pc);
4489 	if (PageCgroupUsed(pc)) {
4490 		memcg = pc->mem_cgroup;
4491 		css_get(&memcg->css);
4492 		/*
4493 		 * At migrating an anonymous page, its mapcount goes down
4494 		 * to 0 and uncharge() will be called. But, even if it's fully
4495 		 * unmapped, migration may fail and this page has to be
4496 		 * charged again. We set MIGRATION flag here and delay uncharge
4497 		 * until end_migration() is called
4498 		 *
4499 		 * Corner Case Thinking
4500 		 * A)
4501 		 * When the old page was mapped as Anon and it's unmap-and-freed
4502 		 * while migration was ongoing.
4503 		 * If unmap finds the old page, uncharge() of it will be delayed
4504 		 * until end_migration(). If unmap finds a new page, it's
4505 		 * uncharged when it make mapcount to be 1->0. If unmap code
4506 		 * finds swap_migration_entry, the new page will not be mapped
4507 		 * and end_migration() will find it(mapcount==0).
4508 		 *
4509 		 * B)
4510 		 * When the old page was mapped but migraion fails, the kernel
4511 		 * remaps it. A charge for it is kept by MIGRATION flag even
4512 		 * if mapcount goes down to 0. We can do remap successfully
4513 		 * without charging it again.
4514 		 *
4515 		 * C)
4516 		 * The "old" page is under lock_page() until the end of
4517 		 * migration, so, the old page itself will not be swapped-out.
4518 		 * If the new page is swapped out before end_migraton, our
4519 		 * hook to usual swap-out path will catch the event.
4520 		 */
4521 		if (PageAnon(page))
4522 			SetPageCgroupMigration(pc);
4523 	}
4524 	unlock_page_cgroup(pc);
4525 	/*
4526 	 * If the page is not charged at this point,
4527 	 * we return here.
4528 	 */
4529 	if (!memcg)
4530 		return;
4531 
4532 	*memcgp = memcg;
4533 	/*
4534 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4535 	 * is called before end_migration, we can catch all events on this new
4536 	 * page. In the case new page is migrated but not remapped, new page's
4537 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4538 	 */
4539 	if (PageAnon(page))
4540 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4541 	else
4542 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4543 	/*
4544 	 * The page is committed to the memcg, but it's not actually
4545 	 * charged to the res_counter since we plan on replacing the
4546 	 * old one and only one page is going to be left afterwards.
4547 	 */
4548 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4549 }
4550 
4551 /* remove redundant charge if migration failed*/
4552 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4553 	struct page *oldpage, struct page *newpage, bool migration_ok)
4554 {
4555 	struct page *used, *unused;
4556 	struct page_cgroup *pc;
4557 	bool anon;
4558 
4559 	if (!memcg)
4560 		return;
4561 
4562 	if (!migration_ok) {
4563 		used = oldpage;
4564 		unused = newpage;
4565 	} else {
4566 		used = newpage;
4567 		unused = oldpage;
4568 	}
4569 	anon = PageAnon(used);
4570 	__mem_cgroup_uncharge_common(unused,
4571 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4572 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4573 				     true);
4574 	css_put(&memcg->css);
4575 	/*
4576 	 * We disallowed uncharge of pages under migration because mapcount
4577 	 * of the page goes down to zero, temporarly.
4578 	 * Clear the flag and check the page should be charged.
4579 	 */
4580 	pc = lookup_page_cgroup(oldpage);
4581 	lock_page_cgroup(pc);
4582 	ClearPageCgroupMigration(pc);
4583 	unlock_page_cgroup(pc);
4584 
4585 	/*
4586 	 * If a page is a file cache, radix-tree replacement is very atomic
4587 	 * and we can skip this check. When it was an Anon page, its mapcount
4588 	 * goes down to 0. But because we added MIGRATION flage, it's not
4589 	 * uncharged yet. There are several case but page->mapcount check
4590 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4591 	 * check. (see prepare_charge() also)
4592 	 */
4593 	if (anon)
4594 		mem_cgroup_uncharge_page(used);
4595 }
4596 
4597 /*
4598  * At replace page cache, newpage is not under any memcg but it's on
4599  * LRU. So, this function doesn't touch res_counter but handles LRU
4600  * in correct way. Both pages are locked so we cannot race with uncharge.
4601  */
4602 void mem_cgroup_replace_page_cache(struct page *oldpage,
4603 				  struct page *newpage)
4604 {
4605 	struct mem_cgroup *memcg = NULL;
4606 	struct page_cgroup *pc;
4607 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4608 
4609 	if (mem_cgroup_disabled())
4610 		return;
4611 
4612 	pc = lookup_page_cgroup(oldpage);
4613 	/* fix accounting on old pages */
4614 	lock_page_cgroup(pc);
4615 	if (PageCgroupUsed(pc)) {
4616 		memcg = pc->mem_cgroup;
4617 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4618 		ClearPageCgroupUsed(pc);
4619 	}
4620 	unlock_page_cgroup(pc);
4621 
4622 	/*
4623 	 * When called from shmem_replace_page(), in some cases the
4624 	 * oldpage has already been charged, and in some cases not.
4625 	 */
4626 	if (!memcg)
4627 		return;
4628 	/*
4629 	 * Even if newpage->mapping was NULL before starting replacement,
4630 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4631 	 * LRU while we overwrite pc->mem_cgroup.
4632 	 */
4633 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4634 }
4635 
4636 #ifdef CONFIG_DEBUG_VM
4637 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4638 {
4639 	struct page_cgroup *pc;
4640 
4641 	pc = lookup_page_cgroup(page);
4642 	/*
4643 	 * Can be NULL while feeding pages into the page allocator for
4644 	 * the first time, i.e. during boot or memory hotplug;
4645 	 * or when mem_cgroup_disabled().
4646 	 */
4647 	if (likely(pc) && PageCgroupUsed(pc))
4648 		return pc;
4649 	return NULL;
4650 }
4651 
4652 bool mem_cgroup_bad_page_check(struct page *page)
4653 {
4654 	if (mem_cgroup_disabled())
4655 		return false;
4656 
4657 	return lookup_page_cgroup_used(page) != NULL;
4658 }
4659 
4660 void mem_cgroup_print_bad_page(struct page *page)
4661 {
4662 	struct page_cgroup *pc;
4663 
4664 	pc = lookup_page_cgroup_used(page);
4665 	if (pc) {
4666 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4667 			 pc, pc->flags, pc->mem_cgroup);
4668 	}
4669 }
4670 #endif
4671 
4672 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4673 				unsigned long long val)
4674 {
4675 	int retry_count;
4676 	u64 memswlimit, memlimit;
4677 	int ret = 0;
4678 	int children = mem_cgroup_count_children(memcg);
4679 	u64 curusage, oldusage;
4680 	int enlarge;
4681 
4682 	/*
4683 	 * For keeping hierarchical_reclaim simple, how long we should retry
4684 	 * is depends on callers. We set our retry-count to be function
4685 	 * of # of children which we should visit in this loop.
4686 	 */
4687 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4688 
4689 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4690 
4691 	enlarge = 0;
4692 	while (retry_count) {
4693 		if (signal_pending(current)) {
4694 			ret = -EINTR;
4695 			break;
4696 		}
4697 		/*
4698 		 * Rather than hide all in some function, I do this in
4699 		 * open coded manner. You see what this really does.
4700 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4701 		 */
4702 		mutex_lock(&set_limit_mutex);
4703 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4704 		if (memswlimit < val) {
4705 			ret = -EINVAL;
4706 			mutex_unlock(&set_limit_mutex);
4707 			break;
4708 		}
4709 
4710 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4711 		if (memlimit < val)
4712 			enlarge = 1;
4713 
4714 		ret = res_counter_set_limit(&memcg->res, val);
4715 		if (!ret) {
4716 			if (memswlimit == val)
4717 				memcg->memsw_is_minimum = true;
4718 			else
4719 				memcg->memsw_is_minimum = false;
4720 		}
4721 		mutex_unlock(&set_limit_mutex);
4722 
4723 		if (!ret)
4724 			break;
4725 
4726 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4727 				   MEM_CGROUP_RECLAIM_SHRINK);
4728 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4729 		/* Usage is reduced ? */
4730 		if (curusage >= oldusage)
4731 			retry_count--;
4732 		else
4733 			oldusage = curusage;
4734 	}
4735 	if (!ret && enlarge)
4736 		memcg_oom_recover(memcg);
4737 
4738 	return ret;
4739 }
4740 
4741 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4742 					unsigned long long val)
4743 {
4744 	int retry_count;
4745 	u64 memlimit, memswlimit, oldusage, curusage;
4746 	int children = mem_cgroup_count_children(memcg);
4747 	int ret = -EBUSY;
4748 	int enlarge = 0;
4749 
4750 	/* see mem_cgroup_resize_res_limit */
4751 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4752 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4753 	while (retry_count) {
4754 		if (signal_pending(current)) {
4755 			ret = -EINTR;
4756 			break;
4757 		}
4758 		/*
4759 		 * Rather than hide all in some function, I do this in
4760 		 * open coded manner. You see what this really does.
4761 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4762 		 */
4763 		mutex_lock(&set_limit_mutex);
4764 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4765 		if (memlimit > val) {
4766 			ret = -EINVAL;
4767 			mutex_unlock(&set_limit_mutex);
4768 			break;
4769 		}
4770 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4771 		if (memswlimit < val)
4772 			enlarge = 1;
4773 		ret = res_counter_set_limit(&memcg->memsw, val);
4774 		if (!ret) {
4775 			if (memlimit == val)
4776 				memcg->memsw_is_minimum = true;
4777 			else
4778 				memcg->memsw_is_minimum = false;
4779 		}
4780 		mutex_unlock(&set_limit_mutex);
4781 
4782 		if (!ret)
4783 			break;
4784 
4785 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4786 				   MEM_CGROUP_RECLAIM_NOSWAP |
4787 				   MEM_CGROUP_RECLAIM_SHRINK);
4788 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4789 		/* Usage is reduced ? */
4790 		if (curusage >= oldusage)
4791 			retry_count--;
4792 		else
4793 			oldusage = curusage;
4794 	}
4795 	if (!ret && enlarge)
4796 		memcg_oom_recover(memcg);
4797 	return ret;
4798 }
4799 
4800 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4801 					    gfp_t gfp_mask,
4802 					    unsigned long *total_scanned)
4803 {
4804 	unsigned long nr_reclaimed = 0;
4805 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4806 	unsigned long reclaimed;
4807 	int loop = 0;
4808 	struct mem_cgroup_tree_per_zone *mctz;
4809 	unsigned long long excess;
4810 	unsigned long nr_scanned;
4811 
4812 	if (order > 0)
4813 		return 0;
4814 
4815 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4816 	/*
4817 	 * This loop can run a while, specially if mem_cgroup's continuously
4818 	 * keep exceeding their soft limit and putting the system under
4819 	 * pressure
4820 	 */
4821 	do {
4822 		if (next_mz)
4823 			mz = next_mz;
4824 		else
4825 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4826 		if (!mz)
4827 			break;
4828 
4829 		nr_scanned = 0;
4830 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4831 						    gfp_mask, &nr_scanned);
4832 		nr_reclaimed += reclaimed;
4833 		*total_scanned += nr_scanned;
4834 		spin_lock(&mctz->lock);
4835 
4836 		/*
4837 		 * If we failed to reclaim anything from this memory cgroup
4838 		 * it is time to move on to the next cgroup
4839 		 */
4840 		next_mz = NULL;
4841 		if (!reclaimed) {
4842 			do {
4843 				/*
4844 				 * Loop until we find yet another one.
4845 				 *
4846 				 * By the time we get the soft_limit lock
4847 				 * again, someone might have aded the
4848 				 * group back on the RB tree. Iterate to
4849 				 * make sure we get a different mem.
4850 				 * mem_cgroup_largest_soft_limit_node returns
4851 				 * NULL if no other cgroup is present on
4852 				 * the tree
4853 				 */
4854 				next_mz =
4855 				__mem_cgroup_largest_soft_limit_node(mctz);
4856 				if (next_mz == mz)
4857 					css_put(&next_mz->memcg->css);
4858 				else /* next_mz == NULL or other memcg */
4859 					break;
4860 			} while (1);
4861 		}
4862 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4863 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4864 		/*
4865 		 * One school of thought says that we should not add
4866 		 * back the node to the tree if reclaim returns 0.
4867 		 * But our reclaim could return 0, simply because due
4868 		 * to priority we are exposing a smaller subset of
4869 		 * memory to reclaim from. Consider this as a longer
4870 		 * term TODO.
4871 		 */
4872 		/* If excess == 0, no tree ops */
4873 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4874 		spin_unlock(&mctz->lock);
4875 		css_put(&mz->memcg->css);
4876 		loop++;
4877 		/*
4878 		 * Could not reclaim anything and there are no more
4879 		 * mem cgroups to try or we seem to be looping without
4880 		 * reclaiming anything.
4881 		 */
4882 		if (!nr_reclaimed &&
4883 			(next_mz == NULL ||
4884 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4885 			break;
4886 	} while (!nr_reclaimed);
4887 	if (next_mz)
4888 		css_put(&next_mz->memcg->css);
4889 	return nr_reclaimed;
4890 }
4891 
4892 /**
4893  * mem_cgroup_force_empty_list - clears LRU of a group
4894  * @memcg: group to clear
4895  * @node: NUMA node
4896  * @zid: zone id
4897  * @lru: lru to to clear
4898  *
4899  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4900  * reclaim the pages page themselves - pages are moved to the parent (or root)
4901  * group.
4902  */
4903 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4904 				int node, int zid, enum lru_list lru)
4905 {
4906 	struct lruvec *lruvec;
4907 	unsigned long flags;
4908 	struct list_head *list;
4909 	struct page *busy;
4910 	struct zone *zone;
4911 
4912 	zone = &NODE_DATA(node)->node_zones[zid];
4913 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4914 	list = &lruvec->lists[lru];
4915 
4916 	busy = NULL;
4917 	do {
4918 		struct page_cgroup *pc;
4919 		struct page *page;
4920 
4921 		spin_lock_irqsave(&zone->lru_lock, flags);
4922 		if (list_empty(list)) {
4923 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4924 			break;
4925 		}
4926 		page = list_entry(list->prev, struct page, lru);
4927 		if (busy == page) {
4928 			list_move(&page->lru, list);
4929 			busy = NULL;
4930 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4931 			continue;
4932 		}
4933 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4934 
4935 		pc = lookup_page_cgroup(page);
4936 
4937 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4938 			/* found lock contention or "pc" is obsolete. */
4939 			busy = page;
4940 			cond_resched();
4941 		} else
4942 			busy = NULL;
4943 	} while (!list_empty(list));
4944 }
4945 
4946 /*
4947  * make mem_cgroup's charge to be 0 if there is no task by moving
4948  * all the charges and pages to the parent.
4949  * This enables deleting this mem_cgroup.
4950  *
4951  * Caller is responsible for holding css reference on the memcg.
4952  */
4953 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4954 {
4955 	int node, zid;
4956 	u64 usage;
4957 
4958 	do {
4959 		/* This is for making all *used* pages to be on LRU. */
4960 		lru_add_drain_all();
4961 		drain_all_stock_sync(memcg);
4962 		mem_cgroup_start_move(memcg);
4963 		for_each_node_state(node, N_MEMORY) {
4964 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4965 				enum lru_list lru;
4966 				for_each_lru(lru) {
4967 					mem_cgroup_force_empty_list(memcg,
4968 							node, zid, lru);
4969 				}
4970 			}
4971 		}
4972 		mem_cgroup_end_move(memcg);
4973 		memcg_oom_recover(memcg);
4974 		cond_resched();
4975 
4976 		/*
4977 		 * Kernel memory may not necessarily be trackable to a specific
4978 		 * process. So they are not migrated, and therefore we can't
4979 		 * expect their value to drop to 0 here.
4980 		 * Having res filled up with kmem only is enough.
4981 		 *
4982 		 * This is a safety check because mem_cgroup_force_empty_list
4983 		 * could have raced with mem_cgroup_replace_page_cache callers
4984 		 * so the lru seemed empty but the page could have been added
4985 		 * right after the check. RES_USAGE should be safe as we always
4986 		 * charge before adding to the LRU.
4987 		 */
4988 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4989 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4990 	} while (usage > 0);
4991 }
4992 
4993 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4994 {
4995 	lockdep_assert_held(&memcg_create_mutex);
4996 	/*
4997 	 * The lock does not prevent addition or deletion to the list
4998 	 * of children, but it prevents a new child from being
4999 	 * initialized based on this parent in css_online(), so it's
5000 	 * enough to decide whether hierarchically inherited
5001 	 * attributes can still be changed or not.
5002 	 */
5003 	return memcg->use_hierarchy &&
5004 		!list_empty(&memcg->css.cgroup->children);
5005 }
5006 
5007 /*
5008  * Reclaims as many pages from the given memcg as possible and moves
5009  * the rest to the parent.
5010  *
5011  * Caller is responsible for holding css reference for memcg.
5012  */
5013 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5014 {
5015 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5016 	struct cgroup *cgrp = memcg->css.cgroup;
5017 
5018 	/* returns EBUSY if there is a task or if we come here twice. */
5019 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5020 		return -EBUSY;
5021 
5022 	/* we call try-to-free pages for make this cgroup empty */
5023 	lru_add_drain_all();
5024 	/* try to free all pages in this cgroup */
5025 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5026 		int progress;
5027 
5028 		if (signal_pending(current))
5029 			return -EINTR;
5030 
5031 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5032 						false);
5033 		if (!progress) {
5034 			nr_retries--;
5035 			/* maybe some writeback is necessary */
5036 			congestion_wait(BLK_RW_ASYNC, HZ/10);
5037 		}
5038 
5039 	}
5040 	lru_add_drain();
5041 	mem_cgroup_reparent_charges(memcg);
5042 
5043 	return 0;
5044 }
5045 
5046 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5047 					unsigned int event)
5048 {
5049 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5050 
5051 	if (mem_cgroup_is_root(memcg))
5052 		return -EINVAL;
5053 	return mem_cgroup_force_empty(memcg);
5054 }
5055 
5056 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5057 				     struct cftype *cft)
5058 {
5059 	return mem_cgroup_from_css(css)->use_hierarchy;
5060 }
5061 
5062 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5063 				      struct cftype *cft, u64 val)
5064 {
5065 	int retval = 0;
5066 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5067 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5068 
5069 	mutex_lock(&memcg_create_mutex);
5070 
5071 	if (memcg->use_hierarchy == val)
5072 		goto out;
5073 
5074 	/*
5075 	 * If parent's use_hierarchy is set, we can't make any modifications
5076 	 * in the child subtrees. If it is unset, then the change can
5077 	 * occur, provided the current cgroup has no children.
5078 	 *
5079 	 * For the root cgroup, parent_mem is NULL, we allow value to be
5080 	 * set if there are no children.
5081 	 */
5082 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5083 				(val == 1 || val == 0)) {
5084 		if (list_empty(&memcg->css.cgroup->children))
5085 			memcg->use_hierarchy = val;
5086 		else
5087 			retval = -EBUSY;
5088 	} else
5089 		retval = -EINVAL;
5090 
5091 out:
5092 	mutex_unlock(&memcg_create_mutex);
5093 
5094 	return retval;
5095 }
5096 
5097 
5098 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5099 					       enum mem_cgroup_stat_index idx)
5100 {
5101 	struct mem_cgroup *iter;
5102 	long val = 0;
5103 
5104 	/* Per-cpu values can be negative, use a signed accumulator */
5105 	for_each_mem_cgroup_tree(iter, memcg)
5106 		val += mem_cgroup_read_stat(iter, idx);
5107 
5108 	if (val < 0) /* race ? */
5109 		val = 0;
5110 	return val;
5111 }
5112 
5113 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5114 {
5115 	u64 val;
5116 
5117 	if (!mem_cgroup_is_root(memcg)) {
5118 		if (!swap)
5119 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5120 		else
5121 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5122 	}
5123 
5124 	/*
5125 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5126 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5127 	 */
5128 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5129 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5130 
5131 	if (swap)
5132 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5133 
5134 	return val << PAGE_SHIFT;
5135 }
5136 
5137 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5138 			       struct cftype *cft, struct file *file,
5139 			       char __user *buf, size_t nbytes, loff_t *ppos)
5140 {
5141 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5142 	char str[64];
5143 	u64 val;
5144 	int name, len;
5145 	enum res_type type;
5146 
5147 	type = MEMFILE_TYPE(cft->private);
5148 	name = MEMFILE_ATTR(cft->private);
5149 
5150 	switch (type) {
5151 	case _MEM:
5152 		if (name == RES_USAGE)
5153 			val = mem_cgroup_usage(memcg, false);
5154 		else
5155 			val = res_counter_read_u64(&memcg->res, name);
5156 		break;
5157 	case _MEMSWAP:
5158 		if (name == RES_USAGE)
5159 			val = mem_cgroup_usage(memcg, true);
5160 		else
5161 			val = res_counter_read_u64(&memcg->memsw, name);
5162 		break;
5163 	case _KMEM:
5164 		val = res_counter_read_u64(&memcg->kmem, name);
5165 		break;
5166 	default:
5167 		BUG();
5168 	}
5169 
5170 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5171 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5172 }
5173 
5174 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5175 {
5176 	int ret = -EINVAL;
5177 #ifdef CONFIG_MEMCG_KMEM
5178 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5179 	/*
5180 	 * For simplicity, we won't allow this to be disabled.  It also can't
5181 	 * be changed if the cgroup has children already, or if tasks had
5182 	 * already joined.
5183 	 *
5184 	 * If tasks join before we set the limit, a person looking at
5185 	 * kmem.usage_in_bytes will have no way to determine when it took
5186 	 * place, which makes the value quite meaningless.
5187 	 *
5188 	 * After it first became limited, changes in the value of the limit are
5189 	 * of course permitted.
5190 	 */
5191 	mutex_lock(&memcg_create_mutex);
5192 	mutex_lock(&set_limit_mutex);
5193 	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5194 		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5195 			ret = -EBUSY;
5196 			goto out;
5197 		}
5198 		ret = res_counter_set_limit(&memcg->kmem, val);
5199 		VM_BUG_ON(ret);
5200 
5201 		ret = memcg_update_cache_sizes(memcg);
5202 		if (ret) {
5203 			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5204 			goto out;
5205 		}
5206 		static_key_slow_inc(&memcg_kmem_enabled_key);
5207 		/*
5208 		 * setting the active bit after the inc will guarantee no one
5209 		 * starts accounting before all call sites are patched
5210 		 */
5211 		memcg_kmem_set_active(memcg);
5212 	} else
5213 		ret = res_counter_set_limit(&memcg->kmem, val);
5214 out:
5215 	mutex_unlock(&set_limit_mutex);
5216 	mutex_unlock(&memcg_create_mutex);
5217 #endif
5218 	return ret;
5219 }
5220 
5221 #ifdef CONFIG_MEMCG_KMEM
5222 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5223 {
5224 	int ret = 0;
5225 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5226 	if (!parent)
5227 		goto out;
5228 
5229 	memcg->kmem_account_flags = parent->kmem_account_flags;
5230 	/*
5231 	 * When that happen, we need to disable the static branch only on those
5232 	 * memcgs that enabled it. To achieve this, we would be forced to
5233 	 * complicate the code by keeping track of which memcgs were the ones
5234 	 * that actually enabled limits, and which ones got it from its
5235 	 * parents.
5236 	 *
5237 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5238 	 * that is accounted.
5239 	 */
5240 	if (!memcg_kmem_is_active(memcg))
5241 		goto out;
5242 
5243 	/*
5244 	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5245 	 * memcg is active already. If the later initialization fails then the
5246 	 * cgroup core triggers the cleanup so we do not have to do it here.
5247 	 */
5248 	static_key_slow_inc(&memcg_kmem_enabled_key);
5249 
5250 	mutex_lock(&set_limit_mutex);
5251 	memcg_stop_kmem_account();
5252 	ret = memcg_update_cache_sizes(memcg);
5253 	memcg_resume_kmem_account();
5254 	mutex_unlock(&set_limit_mutex);
5255 out:
5256 	return ret;
5257 }
5258 #endif /* CONFIG_MEMCG_KMEM */
5259 
5260 /*
5261  * The user of this function is...
5262  * RES_LIMIT.
5263  */
5264 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5265 			    const char *buffer)
5266 {
5267 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5268 	enum res_type type;
5269 	int name;
5270 	unsigned long long val;
5271 	int ret;
5272 
5273 	type = MEMFILE_TYPE(cft->private);
5274 	name = MEMFILE_ATTR(cft->private);
5275 
5276 	switch (name) {
5277 	case RES_LIMIT:
5278 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5279 			ret = -EINVAL;
5280 			break;
5281 		}
5282 		/* This function does all necessary parse...reuse it */
5283 		ret = res_counter_memparse_write_strategy(buffer, &val);
5284 		if (ret)
5285 			break;
5286 		if (type == _MEM)
5287 			ret = mem_cgroup_resize_limit(memcg, val);
5288 		else if (type == _MEMSWAP)
5289 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5290 		else if (type == _KMEM)
5291 			ret = memcg_update_kmem_limit(css, val);
5292 		else
5293 			return -EINVAL;
5294 		break;
5295 	case RES_SOFT_LIMIT:
5296 		ret = res_counter_memparse_write_strategy(buffer, &val);
5297 		if (ret)
5298 			break;
5299 		/*
5300 		 * For memsw, soft limits are hard to implement in terms
5301 		 * of semantics, for now, we support soft limits for
5302 		 * control without swap
5303 		 */
5304 		if (type == _MEM)
5305 			ret = res_counter_set_soft_limit(&memcg->res, val);
5306 		else
5307 			ret = -EINVAL;
5308 		break;
5309 	default:
5310 		ret = -EINVAL; /* should be BUG() ? */
5311 		break;
5312 	}
5313 	return ret;
5314 }
5315 
5316 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5317 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5318 {
5319 	unsigned long long min_limit, min_memsw_limit, tmp;
5320 
5321 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5322 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5323 	if (!memcg->use_hierarchy)
5324 		goto out;
5325 
5326 	while (css_parent(&memcg->css)) {
5327 		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5328 		if (!memcg->use_hierarchy)
5329 			break;
5330 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5331 		min_limit = min(min_limit, tmp);
5332 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5333 		min_memsw_limit = min(min_memsw_limit, tmp);
5334 	}
5335 out:
5336 	*mem_limit = min_limit;
5337 	*memsw_limit = min_memsw_limit;
5338 }
5339 
5340 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5341 {
5342 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5343 	int name;
5344 	enum res_type type;
5345 
5346 	type = MEMFILE_TYPE(event);
5347 	name = MEMFILE_ATTR(event);
5348 
5349 	switch (name) {
5350 	case RES_MAX_USAGE:
5351 		if (type == _MEM)
5352 			res_counter_reset_max(&memcg->res);
5353 		else if (type == _MEMSWAP)
5354 			res_counter_reset_max(&memcg->memsw);
5355 		else if (type == _KMEM)
5356 			res_counter_reset_max(&memcg->kmem);
5357 		else
5358 			return -EINVAL;
5359 		break;
5360 	case RES_FAILCNT:
5361 		if (type == _MEM)
5362 			res_counter_reset_failcnt(&memcg->res);
5363 		else if (type == _MEMSWAP)
5364 			res_counter_reset_failcnt(&memcg->memsw);
5365 		else if (type == _KMEM)
5366 			res_counter_reset_failcnt(&memcg->kmem);
5367 		else
5368 			return -EINVAL;
5369 		break;
5370 	}
5371 
5372 	return 0;
5373 }
5374 
5375 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5376 					struct cftype *cft)
5377 {
5378 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5379 }
5380 
5381 #ifdef CONFIG_MMU
5382 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5383 					struct cftype *cft, u64 val)
5384 {
5385 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5386 
5387 	if (val >= (1 << NR_MOVE_TYPE))
5388 		return -EINVAL;
5389 
5390 	/*
5391 	 * No kind of locking is needed in here, because ->can_attach() will
5392 	 * check this value once in the beginning of the process, and then carry
5393 	 * on with stale data. This means that changes to this value will only
5394 	 * affect task migrations starting after the change.
5395 	 */
5396 	memcg->move_charge_at_immigrate = val;
5397 	return 0;
5398 }
5399 #else
5400 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5401 					struct cftype *cft, u64 val)
5402 {
5403 	return -ENOSYS;
5404 }
5405 #endif
5406 
5407 #ifdef CONFIG_NUMA
5408 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5409 				struct cftype *cft, struct seq_file *m)
5410 {
5411 	int nid;
5412 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5413 	unsigned long node_nr;
5414 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5415 
5416 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5417 	seq_printf(m, "total=%lu", total_nr);
5418 	for_each_node_state(nid, N_MEMORY) {
5419 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5420 		seq_printf(m, " N%d=%lu", nid, node_nr);
5421 	}
5422 	seq_putc(m, '\n');
5423 
5424 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5425 	seq_printf(m, "file=%lu", file_nr);
5426 	for_each_node_state(nid, N_MEMORY) {
5427 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5428 				LRU_ALL_FILE);
5429 		seq_printf(m, " N%d=%lu", nid, node_nr);
5430 	}
5431 	seq_putc(m, '\n');
5432 
5433 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5434 	seq_printf(m, "anon=%lu", anon_nr);
5435 	for_each_node_state(nid, N_MEMORY) {
5436 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5437 				LRU_ALL_ANON);
5438 		seq_printf(m, " N%d=%lu", nid, node_nr);
5439 	}
5440 	seq_putc(m, '\n');
5441 
5442 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5443 	seq_printf(m, "unevictable=%lu", unevictable_nr);
5444 	for_each_node_state(nid, N_MEMORY) {
5445 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5446 				BIT(LRU_UNEVICTABLE));
5447 		seq_printf(m, " N%d=%lu", nid, node_nr);
5448 	}
5449 	seq_putc(m, '\n');
5450 	return 0;
5451 }
5452 #endif /* CONFIG_NUMA */
5453 
5454 static inline void mem_cgroup_lru_names_not_uptodate(void)
5455 {
5456 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5457 }
5458 
5459 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5460 				 struct seq_file *m)
5461 {
5462 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5463 	struct mem_cgroup *mi;
5464 	unsigned int i;
5465 
5466 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5467 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5468 			continue;
5469 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5470 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5471 	}
5472 
5473 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5474 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5475 			   mem_cgroup_read_events(memcg, i));
5476 
5477 	for (i = 0; i < NR_LRU_LISTS; i++)
5478 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5479 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5480 
5481 	/* Hierarchical information */
5482 	{
5483 		unsigned long long limit, memsw_limit;
5484 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5485 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5486 		if (do_swap_account)
5487 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5488 				   memsw_limit);
5489 	}
5490 
5491 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5492 		long long val = 0;
5493 
5494 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5495 			continue;
5496 		for_each_mem_cgroup_tree(mi, memcg)
5497 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5498 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5499 	}
5500 
5501 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5502 		unsigned long long val = 0;
5503 
5504 		for_each_mem_cgroup_tree(mi, memcg)
5505 			val += mem_cgroup_read_events(mi, i);
5506 		seq_printf(m, "total_%s %llu\n",
5507 			   mem_cgroup_events_names[i], val);
5508 	}
5509 
5510 	for (i = 0; i < NR_LRU_LISTS; i++) {
5511 		unsigned long long val = 0;
5512 
5513 		for_each_mem_cgroup_tree(mi, memcg)
5514 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5515 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5516 	}
5517 
5518 #ifdef CONFIG_DEBUG_VM
5519 	{
5520 		int nid, zid;
5521 		struct mem_cgroup_per_zone *mz;
5522 		struct zone_reclaim_stat *rstat;
5523 		unsigned long recent_rotated[2] = {0, 0};
5524 		unsigned long recent_scanned[2] = {0, 0};
5525 
5526 		for_each_online_node(nid)
5527 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5528 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5529 				rstat = &mz->lruvec.reclaim_stat;
5530 
5531 				recent_rotated[0] += rstat->recent_rotated[0];
5532 				recent_rotated[1] += rstat->recent_rotated[1];
5533 				recent_scanned[0] += rstat->recent_scanned[0];
5534 				recent_scanned[1] += rstat->recent_scanned[1];
5535 			}
5536 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5537 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5538 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5539 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5540 	}
5541 #endif
5542 
5543 	return 0;
5544 }
5545 
5546 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5547 				      struct cftype *cft)
5548 {
5549 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5550 
5551 	return mem_cgroup_swappiness(memcg);
5552 }
5553 
5554 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5555 				       struct cftype *cft, u64 val)
5556 {
5557 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5558 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5559 
5560 	if (val > 100 || !parent)
5561 		return -EINVAL;
5562 
5563 	mutex_lock(&memcg_create_mutex);
5564 
5565 	/* If under hierarchy, only empty-root can set this value */
5566 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5567 		mutex_unlock(&memcg_create_mutex);
5568 		return -EINVAL;
5569 	}
5570 
5571 	memcg->swappiness = val;
5572 
5573 	mutex_unlock(&memcg_create_mutex);
5574 
5575 	return 0;
5576 }
5577 
5578 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5579 {
5580 	struct mem_cgroup_threshold_ary *t;
5581 	u64 usage;
5582 	int i;
5583 
5584 	rcu_read_lock();
5585 	if (!swap)
5586 		t = rcu_dereference(memcg->thresholds.primary);
5587 	else
5588 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5589 
5590 	if (!t)
5591 		goto unlock;
5592 
5593 	usage = mem_cgroup_usage(memcg, swap);
5594 
5595 	/*
5596 	 * current_threshold points to threshold just below or equal to usage.
5597 	 * If it's not true, a threshold was crossed after last
5598 	 * call of __mem_cgroup_threshold().
5599 	 */
5600 	i = t->current_threshold;
5601 
5602 	/*
5603 	 * Iterate backward over array of thresholds starting from
5604 	 * current_threshold and check if a threshold is crossed.
5605 	 * If none of thresholds below usage is crossed, we read
5606 	 * only one element of the array here.
5607 	 */
5608 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5609 		eventfd_signal(t->entries[i].eventfd, 1);
5610 
5611 	/* i = current_threshold + 1 */
5612 	i++;
5613 
5614 	/*
5615 	 * Iterate forward over array of thresholds starting from
5616 	 * current_threshold+1 and check if a threshold is crossed.
5617 	 * If none of thresholds above usage is crossed, we read
5618 	 * only one element of the array here.
5619 	 */
5620 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5621 		eventfd_signal(t->entries[i].eventfd, 1);
5622 
5623 	/* Update current_threshold */
5624 	t->current_threshold = i - 1;
5625 unlock:
5626 	rcu_read_unlock();
5627 }
5628 
5629 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5630 {
5631 	while (memcg) {
5632 		__mem_cgroup_threshold(memcg, false);
5633 		if (do_swap_account)
5634 			__mem_cgroup_threshold(memcg, true);
5635 
5636 		memcg = parent_mem_cgroup(memcg);
5637 	}
5638 }
5639 
5640 static int compare_thresholds(const void *a, const void *b)
5641 {
5642 	const struct mem_cgroup_threshold *_a = a;
5643 	const struct mem_cgroup_threshold *_b = b;
5644 
5645 	if (_a->threshold > _b->threshold)
5646 		return 1;
5647 
5648 	if (_a->threshold < _b->threshold)
5649 		return -1;
5650 
5651 	return 0;
5652 }
5653 
5654 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5655 {
5656 	struct mem_cgroup_eventfd_list *ev;
5657 
5658 	list_for_each_entry(ev, &memcg->oom_notify, list)
5659 		eventfd_signal(ev->eventfd, 1);
5660 	return 0;
5661 }
5662 
5663 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5664 {
5665 	struct mem_cgroup *iter;
5666 
5667 	for_each_mem_cgroup_tree(iter, memcg)
5668 		mem_cgroup_oom_notify_cb(iter);
5669 }
5670 
5671 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5672 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5673 {
5674 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5675 	struct mem_cgroup_thresholds *thresholds;
5676 	struct mem_cgroup_threshold_ary *new;
5677 	enum res_type type = MEMFILE_TYPE(cft->private);
5678 	u64 threshold, usage;
5679 	int i, size, ret;
5680 
5681 	ret = res_counter_memparse_write_strategy(args, &threshold);
5682 	if (ret)
5683 		return ret;
5684 
5685 	mutex_lock(&memcg->thresholds_lock);
5686 
5687 	if (type == _MEM)
5688 		thresholds = &memcg->thresholds;
5689 	else if (type == _MEMSWAP)
5690 		thresholds = &memcg->memsw_thresholds;
5691 	else
5692 		BUG();
5693 
5694 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5695 
5696 	/* Check if a threshold crossed before adding a new one */
5697 	if (thresholds->primary)
5698 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5699 
5700 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5701 
5702 	/* Allocate memory for new array of thresholds */
5703 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5704 			GFP_KERNEL);
5705 	if (!new) {
5706 		ret = -ENOMEM;
5707 		goto unlock;
5708 	}
5709 	new->size = size;
5710 
5711 	/* Copy thresholds (if any) to new array */
5712 	if (thresholds->primary) {
5713 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5714 				sizeof(struct mem_cgroup_threshold));
5715 	}
5716 
5717 	/* Add new threshold */
5718 	new->entries[size - 1].eventfd = eventfd;
5719 	new->entries[size - 1].threshold = threshold;
5720 
5721 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5722 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5723 			compare_thresholds, NULL);
5724 
5725 	/* Find current threshold */
5726 	new->current_threshold = -1;
5727 	for (i = 0; i < size; i++) {
5728 		if (new->entries[i].threshold <= usage) {
5729 			/*
5730 			 * new->current_threshold will not be used until
5731 			 * rcu_assign_pointer(), so it's safe to increment
5732 			 * it here.
5733 			 */
5734 			++new->current_threshold;
5735 		} else
5736 			break;
5737 	}
5738 
5739 	/* Free old spare buffer and save old primary buffer as spare */
5740 	kfree(thresholds->spare);
5741 	thresholds->spare = thresholds->primary;
5742 
5743 	rcu_assign_pointer(thresholds->primary, new);
5744 
5745 	/* To be sure that nobody uses thresholds */
5746 	synchronize_rcu();
5747 
5748 unlock:
5749 	mutex_unlock(&memcg->thresholds_lock);
5750 
5751 	return ret;
5752 }
5753 
5754 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5755 	struct cftype *cft, struct eventfd_ctx *eventfd)
5756 {
5757 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5758 	struct mem_cgroup_thresholds *thresholds;
5759 	struct mem_cgroup_threshold_ary *new;
5760 	enum res_type type = MEMFILE_TYPE(cft->private);
5761 	u64 usage;
5762 	int i, j, size;
5763 
5764 	mutex_lock(&memcg->thresholds_lock);
5765 	if (type == _MEM)
5766 		thresholds = &memcg->thresholds;
5767 	else if (type == _MEMSWAP)
5768 		thresholds = &memcg->memsw_thresholds;
5769 	else
5770 		BUG();
5771 
5772 	if (!thresholds->primary)
5773 		goto unlock;
5774 
5775 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5776 
5777 	/* Check if a threshold crossed before removing */
5778 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5779 
5780 	/* Calculate new number of threshold */
5781 	size = 0;
5782 	for (i = 0; i < thresholds->primary->size; i++) {
5783 		if (thresholds->primary->entries[i].eventfd != eventfd)
5784 			size++;
5785 	}
5786 
5787 	new = thresholds->spare;
5788 
5789 	/* Set thresholds array to NULL if we don't have thresholds */
5790 	if (!size) {
5791 		kfree(new);
5792 		new = NULL;
5793 		goto swap_buffers;
5794 	}
5795 
5796 	new->size = size;
5797 
5798 	/* Copy thresholds and find current threshold */
5799 	new->current_threshold = -1;
5800 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5801 		if (thresholds->primary->entries[i].eventfd == eventfd)
5802 			continue;
5803 
5804 		new->entries[j] = thresholds->primary->entries[i];
5805 		if (new->entries[j].threshold <= usage) {
5806 			/*
5807 			 * new->current_threshold will not be used
5808 			 * until rcu_assign_pointer(), so it's safe to increment
5809 			 * it here.
5810 			 */
5811 			++new->current_threshold;
5812 		}
5813 		j++;
5814 	}
5815 
5816 swap_buffers:
5817 	/* Swap primary and spare array */
5818 	thresholds->spare = thresholds->primary;
5819 	/* If all events are unregistered, free the spare array */
5820 	if (!new) {
5821 		kfree(thresholds->spare);
5822 		thresholds->spare = NULL;
5823 	}
5824 
5825 	rcu_assign_pointer(thresholds->primary, new);
5826 
5827 	/* To be sure that nobody uses thresholds */
5828 	synchronize_rcu();
5829 unlock:
5830 	mutex_unlock(&memcg->thresholds_lock);
5831 }
5832 
5833 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5834 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5835 {
5836 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5837 	struct mem_cgroup_eventfd_list *event;
5838 	enum res_type type = MEMFILE_TYPE(cft->private);
5839 
5840 	BUG_ON(type != _OOM_TYPE);
5841 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5842 	if (!event)
5843 		return -ENOMEM;
5844 
5845 	spin_lock(&memcg_oom_lock);
5846 
5847 	event->eventfd = eventfd;
5848 	list_add(&event->list, &memcg->oom_notify);
5849 
5850 	/* already in OOM ? */
5851 	if (atomic_read(&memcg->under_oom))
5852 		eventfd_signal(eventfd, 1);
5853 	spin_unlock(&memcg_oom_lock);
5854 
5855 	return 0;
5856 }
5857 
5858 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5859 	struct cftype *cft, struct eventfd_ctx *eventfd)
5860 {
5861 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5862 	struct mem_cgroup_eventfd_list *ev, *tmp;
5863 	enum res_type type = MEMFILE_TYPE(cft->private);
5864 
5865 	BUG_ON(type != _OOM_TYPE);
5866 
5867 	spin_lock(&memcg_oom_lock);
5868 
5869 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5870 		if (ev->eventfd == eventfd) {
5871 			list_del(&ev->list);
5872 			kfree(ev);
5873 		}
5874 	}
5875 
5876 	spin_unlock(&memcg_oom_lock);
5877 }
5878 
5879 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5880 	struct cftype *cft,  struct cgroup_map_cb *cb)
5881 {
5882 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5883 
5884 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5885 
5886 	if (atomic_read(&memcg->under_oom))
5887 		cb->fill(cb, "under_oom", 1);
5888 	else
5889 		cb->fill(cb, "under_oom", 0);
5890 	return 0;
5891 }
5892 
5893 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5894 	struct cftype *cft, u64 val)
5895 {
5896 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5897 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5898 
5899 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5900 	if (!parent || !((val == 0) || (val == 1)))
5901 		return -EINVAL;
5902 
5903 	mutex_lock(&memcg_create_mutex);
5904 	/* oom-kill-disable is a flag for subhierarchy. */
5905 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5906 		mutex_unlock(&memcg_create_mutex);
5907 		return -EINVAL;
5908 	}
5909 	memcg->oom_kill_disable = val;
5910 	if (!val)
5911 		memcg_oom_recover(memcg);
5912 	mutex_unlock(&memcg_create_mutex);
5913 	return 0;
5914 }
5915 
5916 #ifdef CONFIG_MEMCG_KMEM
5917 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5918 {
5919 	int ret;
5920 
5921 	memcg->kmemcg_id = -1;
5922 	ret = memcg_propagate_kmem(memcg);
5923 	if (ret)
5924 		return ret;
5925 
5926 	return mem_cgroup_sockets_init(memcg, ss);
5927 }
5928 
5929 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5930 {
5931 	mem_cgroup_sockets_destroy(memcg);
5932 }
5933 
5934 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5935 {
5936 	if (!memcg_kmem_is_active(memcg))
5937 		return;
5938 
5939 	/*
5940 	 * kmem charges can outlive the cgroup. In the case of slab
5941 	 * pages, for instance, a page contain objects from various
5942 	 * processes. As we prevent from taking a reference for every
5943 	 * such allocation we have to be careful when doing uncharge
5944 	 * (see memcg_uncharge_kmem) and here during offlining.
5945 	 *
5946 	 * The idea is that that only the _last_ uncharge which sees
5947 	 * the dead memcg will drop the last reference. An additional
5948 	 * reference is taken here before the group is marked dead
5949 	 * which is then paired with css_put during uncharge resp. here.
5950 	 *
5951 	 * Although this might sound strange as this path is called from
5952 	 * css_offline() when the referencemight have dropped down to 0
5953 	 * and shouldn't be incremented anymore (css_tryget would fail)
5954 	 * we do not have other options because of the kmem allocations
5955 	 * lifetime.
5956 	 */
5957 	css_get(&memcg->css);
5958 
5959 	memcg_kmem_mark_dead(memcg);
5960 
5961 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5962 		return;
5963 
5964 	if (memcg_kmem_test_and_clear_dead(memcg))
5965 		css_put(&memcg->css);
5966 }
5967 #else
5968 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5969 {
5970 	return 0;
5971 }
5972 
5973 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5974 {
5975 }
5976 
5977 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5978 {
5979 }
5980 #endif
5981 
5982 /*
5983  * Unregister event and free resources.
5984  *
5985  * Gets called from workqueue.
5986  */
5987 static void cgroup_event_remove(struct work_struct *work)
5988 {
5989 	struct cgroup_event *event = container_of(work, struct cgroup_event,
5990 			remove);
5991 	struct cgroup_subsys_state *css = event->css;
5992 
5993 	remove_wait_queue(event->wqh, &event->wait);
5994 
5995 	event->cft->unregister_event(css, event->cft, event->eventfd);
5996 
5997 	/* Notify userspace the event is going away. */
5998 	eventfd_signal(event->eventfd, 1);
5999 
6000 	eventfd_ctx_put(event->eventfd);
6001 	kfree(event);
6002 	css_put(css);
6003 }
6004 
6005 /*
6006  * Gets called on POLLHUP on eventfd when user closes it.
6007  *
6008  * Called with wqh->lock held and interrupts disabled.
6009  */
6010 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
6011 		int sync, void *key)
6012 {
6013 	struct cgroup_event *event = container_of(wait,
6014 			struct cgroup_event, wait);
6015 	struct cgroup *cgrp = event->css->cgroup;
6016 	unsigned long flags = (unsigned long)key;
6017 
6018 	if (flags & POLLHUP) {
6019 		/*
6020 		 * If the event has been detached at cgroup removal, we
6021 		 * can simply return knowing the other side will cleanup
6022 		 * for us.
6023 		 *
6024 		 * We can't race against event freeing since the other
6025 		 * side will require wqh->lock via remove_wait_queue(),
6026 		 * which we hold.
6027 		 */
6028 		spin_lock(&cgrp->event_list_lock);
6029 		if (!list_empty(&event->list)) {
6030 			list_del_init(&event->list);
6031 			/*
6032 			 * We are in atomic context, but cgroup_event_remove()
6033 			 * may sleep, so we have to call it in workqueue.
6034 			 */
6035 			schedule_work(&event->remove);
6036 		}
6037 		spin_unlock(&cgrp->event_list_lock);
6038 	}
6039 
6040 	return 0;
6041 }
6042 
6043 static void cgroup_event_ptable_queue_proc(struct file *file,
6044 		wait_queue_head_t *wqh, poll_table *pt)
6045 {
6046 	struct cgroup_event *event = container_of(pt,
6047 			struct cgroup_event, pt);
6048 
6049 	event->wqh = wqh;
6050 	add_wait_queue(wqh, &event->wait);
6051 }
6052 
6053 /*
6054  * Parse input and register new cgroup event handler.
6055  *
6056  * Input must be in format '<event_fd> <control_fd> <args>'.
6057  * Interpretation of args is defined by control file implementation.
6058  */
6059 static int cgroup_write_event_control(struct cgroup_subsys_state *dummy_css,
6060 				      struct cftype *cft, const char *buffer)
6061 {
6062 	struct cgroup *cgrp = dummy_css->cgroup;
6063 	struct cgroup_event *event;
6064 	struct cgroup_subsys_state *cfile_css;
6065 	unsigned int efd, cfd;
6066 	struct fd efile;
6067 	struct fd cfile;
6068 	char *endp;
6069 	int ret;
6070 
6071 	efd = simple_strtoul(buffer, &endp, 10);
6072 	if (*endp != ' ')
6073 		return -EINVAL;
6074 	buffer = endp + 1;
6075 
6076 	cfd = simple_strtoul(buffer, &endp, 10);
6077 	if ((*endp != ' ') && (*endp != '\0'))
6078 		return -EINVAL;
6079 	buffer = endp + 1;
6080 
6081 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6082 	if (!event)
6083 		return -ENOMEM;
6084 
6085 	INIT_LIST_HEAD(&event->list);
6086 	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
6087 	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
6088 	INIT_WORK(&event->remove, cgroup_event_remove);
6089 
6090 	efile = fdget(efd);
6091 	if (!efile.file) {
6092 		ret = -EBADF;
6093 		goto out_kfree;
6094 	}
6095 
6096 	event->eventfd = eventfd_ctx_fileget(efile.file);
6097 	if (IS_ERR(event->eventfd)) {
6098 		ret = PTR_ERR(event->eventfd);
6099 		goto out_put_efile;
6100 	}
6101 
6102 	cfile = fdget(cfd);
6103 	if (!cfile.file) {
6104 		ret = -EBADF;
6105 		goto out_put_eventfd;
6106 	}
6107 
6108 	/* the process need read permission on control file */
6109 	/* AV: shouldn't we check that it's been opened for read instead? */
6110 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
6111 	if (ret < 0)
6112 		goto out_put_cfile;
6113 
6114 	event->cft = __file_cft(cfile.file);
6115 	if (IS_ERR(event->cft)) {
6116 		ret = PTR_ERR(event->cft);
6117 		goto out_put_cfile;
6118 	}
6119 
6120 	if (!event->cft->ss) {
6121 		ret = -EBADF;
6122 		goto out_put_cfile;
6123 	}
6124 
6125 	/*
6126 	 * Determine the css of @cfile, verify it belongs to the same
6127 	 * cgroup as cgroup.event_control, and associate @event with it.
6128 	 * Remaining events are automatically removed on cgroup destruction
6129 	 * but the removal is asynchronous, so take an extra ref.
6130 	 */
6131 	rcu_read_lock();
6132 
6133 	ret = -EINVAL;
6134 	event->css = cgroup_css(cgrp, event->cft->ss);
6135 	cfile_css = css_from_dir(cfile.file->f_dentry->d_parent, event->cft->ss);
6136 	if (event->css && event->css == cfile_css && css_tryget(event->css))
6137 		ret = 0;
6138 
6139 	rcu_read_unlock();
6140 	if (ret)
6141 		goto out_put_cfile;
6142 
6143 	if (!event->cft->register_event || !event->cft->unregister_event) {
6144 		ret = -EINVAL;
6145 		goto out_put_css;
6146 	}
6147 
6148 	ret = event->cft->register_event(event->css, event->cft,
6149 			event->eventfd, buffer);
6150 	if (ret)
6151 		goto out_put_css;
6152 
6153 	efile.file->f_op->poll(efile.file, &event->pt);
6154 
6155 	spin_lock(&cgrp->event_list_lock);
6156 	list_add(&event->list, &cgrp->event_list);
6157 	spin_unlock(&cgrp->event_list_lock);
6158 
6159 	fdput(cfile);
6160 	fdput(efile);
6161 
6162 	return 0;
6163 
6164 out_put_css:
6165 	css_put(event->css);
6166 out_put_cfile:
6167 	fdput(cfile);
6168 out_put_eventfd:
6169 	eventfd_ctx_put(event->eventfd);
6170 out_put_efile:
6171 	fdput(efile);
6172 out_kfree:
6173 	kfree(event);
6174 
6175 	return ret;
6176 }
6177 
6178 static struct cftype mem_cgroup_files[] = {
6179 	{
6180 		.name = "usage_in_bytes",
6181 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6182 		.read = mem_cgroup_read,
6183 		.register_event = mem_cgroup_usage_register_event,
6184 		.unregister_event = mem_cgroup_usage_unregister_event,
6185 	},
6186 	{
6187 		.name = "max_usage_in_bytes",
6188 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6189 		.trigger = mem_cgroup_reset,
6190 		.read = mem_cgroup_read,
6191 	},
6192 	{
6193 		.name = "limit_in_bytes",
6194 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6195 		.write_string = mem_cgroup_write,
6196 		.read = mem_cgroup_read,
6197 	},
6198 	{
6199 		.name = "soft_limit_in_bytes",
6200 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6201 		.write_string = mem_cgroup_write,
6202 		.read = mem_cgroup_read,
6203 	},
6204 	{
6205 		.name = "failcnt",
6206 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6207 		.trigger = mem_cgroup_reset,
6208 		.read = mem_cgroup_read,
6209 	},
6210 	{
6211 		.name = "stat",
6212 		.read_seq_string = memcg_stat_show,
6213 	},
6214 	{
6215 		.name = "force_empty",
6216 		.trigger = mem_cgroup_force_empty_write,
6217 	},
6218 	{
6219 		.name = "use_hierarchy",
6220 		.flags = CFTYPE_INSANE,
6221 		.write_u64 = mem_cgroup_hierarchy_write,
6222 		.read_u64 = mem_cgroup_hierarchy_read,
6223 	},
6224 	{
6225 		.name = "cgroup.event_control",
6226 		.write_string = cgroup_write_event_control,
6227 		.flags = CFTYPE_NO_PREFIX,
6228 		.mode = S_IWUGO,
6229 	},
6230 	{
6231 		.name = "swappiness",
6232 		.read_u64 = mem_cgroup_swappiness_read,
6233 		.write_u64 = mem_cgroup_swappiness_write,
6234 	},
6235 	{
6236 		.name = "move_charge_at_immigrate",
6237 		.read_u64 = mem_cgroup_move_charge_read,
6238 		.write_u64 = mem_cgroup_move_charge_write,
6239 	},
6240 	{
6241 		.name = "oom_control",
6242 		.read_map = mem_cgroup_oom_control_read,
6243 		.write_u64 = mem_cgroup_oom_control_write,
6244 		.register_event = mem_cgroup_oom_register_event,
6245 		.unregister_event = mem_cgroup_oom_unregister_event,
6246 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6247 	},
6248 	{
6249 		.name = "pressure_level",
6250 		.register_event = vmpressure_register_event,
6251 		.unregister_event = vmpressure_unregister_event,
6252 	},
6253 #ifdef CONFIG_NUMA
6254 	{
6255 		.name = "numa_stat",
6256 		.read_seq_string = memcg_numa_stat_show,
6257 	},
6258 #endif
6259 #ifdef CONFIG_MEMCG_KMEM
6260 	{
6261 		.name = "kmem.limit_in_bytes",
6262 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6263 		.write_string = mem_cgroup_write,
6264 		.read = mem_cgroup_read,
6265 	},
6266 	{
6267 		.name = "kmem.usage_in_bytes",
6268 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6269 		.read = mem_cgroup_read,
6270 	},
6271 	{
6272 		.name = "kmem.failcnt",
6273 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6274 		.trigger = mem_cgroup_reset,
6275 		.read = mem_cgroup_read,
6276 	},
6277 	{
6278 		.name = "kmem.max_usage_in_bytes",
6279 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6280 		.trigger = mem_cgroup_reset,
6281 		.read = mem_cgroup_read,
6282 	},
6283 #ifdef CONFIG_SLABINFO
6284 	{
6285 		.name = "kmem.slabinfo",
6286 		.read_seq_string = mem_cgroup_slabinfo_read,
6287 	},
6288 #endif
6289 #endif
6290 	{ },	/* terminate */
6291 };
6292 
6293 #ifdef CONFIG_MEMCG_SWAP
6294 static struct cftype memsw_cgroup_files[] = {
6295 	{
6296 		.name = "memsw.usage_in_bytes",
6297 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6298 		.read = mem_cgroup_read,
6299 		.register_event = mem_cgroup_usage_register_event,
6300 		.unregister_event = mem_cgroup_usage_unregister_event,
6301 	},
6302 	{
6303 		.name = "memsw.max_usage_in_bytes",
6304 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6305 		.trigger = mem_cgroup_reset,
6306 		.read = mem_cgroup_read,
6307 	},
6308 	{
6309 		.name = "memsw.limit_in_bytes",
6310 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6311 		.write_string = mem_cgroup_write,
6312 		.read = mem_cgroup_read,
6313 	},
6314 	{
6315 		.name = "memsw.failcnt",
6316 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6317 		.trigger = mem_cgroup_reset,
6318 		.read = mem_cgroup_read,
6319 	},
6320 	{ },	/* terminate */
6321 };
6322 #endif
6323 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6324 {
6325 	struct mem_cgroup_per_node *pn;
6326 	struct mem_cgroup_per_zone *mz;
6327 	int zone, tmp = node;
6328 	/*
6329 	 * This routine is called against possible nodes.
6330 	 * But it's BUG to call kmalloc() against offline node.
6331 	 *
6332 	 * TODO: this routine can waste much memory for nodes which will
6333 	 *       never be onlined. It's better to use memory hotplug callback
6334 	 *       function.
6335 	 */
6336 	if (!node_state(node, N_NORMAL_MEMORY))
6337 		tmp = -1;
6338 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6339 	if (!pn)
6340 		return 1;
6341 
6342 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6343 		mz = &pn->zoneinfo[zone];
6344 		lruvec_init(&mz->lruvec);
6345 		mz->usage_in_excess = 0;
6346 		mz->on_tree = false;
6347 		mz->memcg = memcg;
6348 	}
6349 	memcg->nodeinfo[node] = pn;
6350 	return 0;
6351 }
6352 
6353 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6354 {
6355 	kfree(memcg->nodeinfo[node]);
6356 }
6357 
6358 static struct mem_cgroup *mem_cgroup_alloc(void)
6359 {
6360 	struct mem_cgroup *memcg;
6361 	size_t size = memcg_size();
6362 
6363 	/* Can be very big if nr_node_ids is very big */
6364 	if (size < PAGE_SIZE)
6365 		memcg = kzalloc(size, GFP_KERNEL);
6366 	else
6367 		memcg = vzalloc(size);
6368 
6369 	if (!memcg)
6370 		return NULL;
6371 
6372 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6373 	if (!memcg->stat)
6374 		goto out_free;
6375 	spin_lock_init(&memcg->pcp_counter_lock);
6376 	return memcg;
6377 
6378 out_free:
6379 	if (size < PAGE_SIZE)
6380 		kfree(memcg);
6381 	else
6382 		vfree(memcg);
6383 	return NULL;
6384 }
6385 
6386 /*
6387  * At destroying mem_cgroup, references from swap_cgroup can remain.
6388  * (scanning all at force_empty is too costly...)
6389  *
6390  * Instead of clearing all references at force_empty, we remember
6391  * the number of reference from swap_cgroup and free mem_cgroup when
6392  * it goes down to 0.
6393  *
6394  * Removal of cgroup itself succeeds regardless of refs from swap.
6395  */
6396 
6397 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6398 {
6399 	int node;
6400 	size_t size = memcg_size();
6401 
6402 	mem_cgroup_remove_from_trees(memcg);
6403 	free_css_id(&mem_cgroup_subsys, &memcg->css);
6404 
6405 	for_each_node(node)
6406 		free_mem_cgroup_per_zone_info(memcg, node);
6407 
6408 	free_percpu(memcg->stat);
6409 
6410 	/*
6411 	 * We need to make sure that (at least for now), the jump label
6412 	 * destruction code runs outside of the cgroup lock. This is because
6413 	 * get_online_cpus(), which is called from the static_branch update,
6414 	 * can't be called inside the cgroup_lock. cpusets are the ones
6415 	 * enforcing this dependency, so if they ever change, we might as well.
6416 	 *
6417 	 * schedule_work() will guarantee this happens. Be careful if you need
6418 	 * to move this code around, and make sure it is outside
6419 	 * the cgroup_lock.
6420 	 */
6421 	disarm_static_keys(memcg);
6422 	if (size < PAGE_SIZE)
6423 		kfree(memcg);
6424 	else
6425 		vfree(memcg);
6426 }
6427 
6428 /*
6429  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6430  */
6431 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6432 {
6433 	if (!memcg->res.parent)
6434 		return NULL;
6435 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6436 }
6437 EXPORT_SYMBOL(parent_mem_cgroup);
6438 
6439 static void __init mem_cgroup_soft_limit_tree_init(void)
6440 {
6441 	struct mem_cgroup_tree_per_node *rtpn;
6442 	struct mem_cgroup_tree_per_zone *rtpz;
6443 	int tmp, node, zone;
6444 
6445 	for_each_node(node) {
6446 		tmp = node;
6447 		if (!node_state(node, N_NORMAL_MEMORY))
6448 			tmp = -1;
6449 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6450 		BUG_ON(!rtpn);
6451 
6452 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6453 
6454 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6455 			rtpz = &rtpn->rb_tree_per_zone[zone];
6456 			rtpz->rb_root = RB_ROOT;
6457 			spin_lock_init(&rtpz->lock);
6458 		}
6459 	}
6460 }
6461 
6462 static struct cgroup_subsys_state * __ref
6463 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6464 {
6465 	struct mem_cgroup *memcg;
6466 	long error = -ENOMEM;
6467 	int node;
6468 
6469 	memcg = mem_cgroup_alloc();
6470 	if (!memcg)
6471 		return ERR_PTR(error);
6472 
6473 	for_each_node(node)
6474 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6475 			goto free_out;
6476 
6477 	/* root ? */
6478 	if (parent_css == NULL) {
6479 		root_mem_cgroup = memcg;
6480 		res_counter_init(&memcg->res, NULL);
6481 		res_counter_init(&memcg->memsw, NULL);
6482 		res_counter_init(&memcg->kmem, NULL);
6483 	}
6484 
6485 	memcg->last_scanned_node = MAX_NUMNODES;
6486 	INIT_LIST_HEAD(&memcg->oom_notify);
6487 	memcg->move_charge_at_immigrate = 0;
6488 	mutex_init(&memcg->thresholds_lock);
6489 	spin_lock_init(&memcg->move_lock);
6490 	vmpressure_init(&memcg->vmpressure);
6491 
6492 	return &memcg->css;
6493 
6494 free_out:
6495 	__mem_cgroup_free(memcg);
6496 	return ERR_PTR(error);
6497 }
6498 
6499 static int
6500 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6501 {
6502 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6503 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6504 	int error = 0;
6505 
6506 	if (!parent)
6507 		return 0;
6508 
6509 	mutex_lock(&memcg_create_mutex);
6510 
6511 	memcg->use_hierarchy = parent->use_hierarchy;
6512 	memcg->oom_kill_disable = parent->oom_kill_disable;
6513 	memcg->swappiness = mem_cgroup_swappiness(parent);
6514 
6515 	if (parent->use_hierarchy) {
6516 		res_counter_init(&memcg->res, &parent->res);
6517 		res_counter_init(&memcg->memsw, &parent->memsw);
6518 		res_counter_init(&memcg->kmem, &parent->kmem);
6519 
6520 		/*
6521 		 * No need to take a reference to the parent because cgroup
6522 		 * core guarantees its existence.
6523 		 */
6524 	} else {
6525 		res_counter_init(&memcg->res, NULL);
6526 		res_counter_init(&memcg->memsw, NULL);
6527 		res_counter_init(&memcg->kmem, NULL);
6528 		/*
6529 		 * Deeper hierachy with use_hierarchy == false doesn't make
6530 		 * much sense so let cgroup subsystem know about this
6531 		 * unfortunate state in our controller.
6532 		 */
6533 		if (parent != root_mem_cgroup)
6534 			mem_cgroup_subsys.broken_hierarchy = true;
6535 	}
6536 
6537 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6538 	mutex_unlock(&memcg_create_mutex);
6539 	return error;
6540 }
6541 
6542 /*
6543  * Announce all parents that a group from their hierarchy is gone.
6544  */
6545 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6546 {
6547 	struct mem_cgroup *parent = memcg;
6548 
6549 	while ((parent = parent_mem_cgroup(parent)))
6550 		mem_cgroup_iter_invalidate(parent);
6551 
6552 	/*
6553 	 * if the root memcg is not hierarchical we have to check it
6554 	 * explicitely.
6555 	 */
6556 	if (!root_mem_cgroup->use_hierarchy)
6557 		mem_cgroup_iter_invalidate(root_mem_cgroup);
6558 }
6559 
6560 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6561 {
6562 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6563 	struct cgroup *cgrp = css->cgroup;
6564 	struct cgroup_event *event, *tmp;
6565 
6566 	/*
6567 	 * Unregister events and notify userspace.
6568 	 * Notify userspace about cgroup removing only after rmdir of cgroup
6569 	 * directory to avoid race between userspace and kernelspace.
6570 	 */
6571 	spin_lock(&cgrp->event_list_lock);
6572 	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
6573 		list_del_init(&event->list);
6574 		schedule_work(&event->remove);
6575 	}
6576 	spin_unlock(&cgrp->event_list_lock);
6577 
6578 	kmem_cgroup_css_offline(memcg);
6579 
6580 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6581 	mem_cgroup_reparent_charges(memcg);
6582 	mem_cgroup_destroy_all_caches(memcg);
6583 	vmpressure_cleanup(&memcg->vmpressure);
6584 }
6585 
6586 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6587 {
6588 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6589 
6590 	memcg_destroy_kmem(memcg);
6591 	__mem_cgroup_free(memcg);
6592 }
6593 
6594 #ifdef CONFIG_MMU
6595 /* Handlers for move charge at task migration. */
6596 #define PRECHARGE_COUNT_AT_ONCE	256
6597 static int mem_cgroup_do_precharge(unsigned long count)
6598 {
6599 	int ret = 0;
6600 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6601 	struct mem_cgroup *memcg = mc.to;
6602 
6603 	if (mem_cgroup_is_root(memcg)) {
6604 		mc.precharge += count;
6605 		/* we don't need css_get for root */
6606 		return ret;
6607 	}
6608 	/* try to charge at once */
6609 	if (count > 1) {
6610 		struct res_counter *dummy;
6611 		/*
6612 		 * "memcg" cannot be under rmdir() because we've already checked
6613 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6614 		 * are still under the same cgroup_mutex. So we can postpone
6615 		 * css_get().
6616 		 */
6617 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6618 			goto one_by_one;
6619 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6620 						PAGE_SIZE * count, &dummy)) {
6621 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6622 			goto one_by_one;
6623 		}
6624 		mc.precharge += count;
6625 		return ret;
6626 	}
6627 one_by_one:
6628 	/* fall back to one by one charge */
6629 	while (count--) {
6630 		if (signal_pending(current)) {
6631 			ret = -EINTR;
6632 			break;
6633 		}
6634 		if (!batch_count--) {
6635 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6636 			cond_resched();
6637 		}
6638 		ret = __mem_cgroup_try_charge(NULL,
6639 					GFP_KERNEL, 1, &memcg, false);
6640 		if (ret)
6641 			/* mem_cgroup_clear_mc() will do uncharge later */
6642 			return ret;
6643 		mc.precharge++;
6644 	}
6645 	return ret;
6646 }
6647 
6648 /**
6649  * get_mctgt_type - get target type of moving charge
6650  * @vma: the vma the pte to be checked belongs
6651  * @addr: the address corresponding to the pte to be checked
6652  * @ptent: the pte to be checked
6653  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6654  *
6655  * Returns
6656  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6657  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6658  *     move charge. if @target is not NULL, the page is stored in target->page
6659  *     with extra refcnt got(Callers should handle it).
6660  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6661  *     target for charge migration. if @target is not NULL, the entry is stored
6662  *     in target->ent.
6663  *
6664  * Called with pte lock held.
6665  */
6666 union mc_target {
6667 	struct page	*page;
6668 	swp_entry_t	ent;
6669 };
6670 
6671 enum mc_target_type {
6672 	MC_TARGET_NONE = 0,
6673 	MC_TARGET_PAGE,
6674 	MC_TARGET_SWAP,
6675 };
6676 
6677 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6678 						unsigned long addr, pte_t ptent)
6679 {
6680 	struct page *page = vm_normal_page(vma, addr, ptent);
6681 
6682 	if (!page || !page_mapped(page))
6683 		return NULL;
6684 	if (PageAnon(page)) {
6685 		/* we don't move shared anon */
6686 		if (!move_anon())
6687 			return NULL;
6688 	} else if (!move_file())
6689 		/* we ignore mapcount for file pages */
6690 		return NULL;
6691 	if (!get_page_unless_zero(page))
6692 		return NULL;
6693 
6694 	return page;
6695 }
6696 
6697 #ifdef CONFIG_SWAP
6698 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6699 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6700 {
6701 	struct page *page = NULL;
6702 	swp_entry_t ent = pte_to_swp_entry(ptent);
6703 
6704 	if (!move_anon() || non_swap_entry(ent))
6705 		return NULL;
6706 	/*
6707 	 * Because lookup_swap_cache() updates some statistics counter,
6708 	 * we call find_get_page() with swapper_space directly.
6709 	 */
6710 	page = find_get_page(swap_address_space(ent), ent.val);
6711 	if (do_swap_account)
6712 		entry->val = ent.val;
6713 
6714 	return page;
6715 }
6716 #else
6717 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6718 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6719 {
6720 	return NULL;
6721 }
6722 #endif
6723 
6724 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6725 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6726 {
6727 	struct page *page = NULL;
6728 	struct address_space *mapping;
6729 	pgoff_t pgoff;
6730 
6731 	if (!vma->vm_file) /* anonymous vma */
6732 		return NULL;
6733 	if (!move_file())
6734 		return NULL;
6735 
6736 	mapping = vma->vm_file->f_mapping;
6737 	if (pte_none(ptent))
6738 		pgoff = linear_page_index(vma, addr);
6739 	else /* pte_file(ptent) is true */
6740 		pgoff = pte_to_pgoff(ptent);
6741 
6742 	/* page is moved even if it's not RSS of this task(page-faulted). */
6743 	page = find_get_page(mapping, pgoff);
6744 
6745 #ifdef CONFIG_SWAP
6746 	/* shmem/tmpfs may report page out on swap: account for that too. */
6747 	if (radix_tree_exceptional_entry(page)) {
6748 		swp_entry_t swap = radix_to_swp_entry(page);
6749 		if (do_swap_account)
6750 			*entry = swap;
6751 		page = find_get_page(swap_address_space(swap), swap.val);
6752 	}
6753 #endif
6754 	return page;
6755 }
6756 
6757 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6758 		unsigned long addr, pte_t ptent, union mc_target *target)
6759 {
6760 	struct page *page = NULL;
6761 	struct page_cgroup *pc;
6762 	enum mc_target_type ret = MC_TARGET_NONE;
6763 	swp_entry_t ent = { .val = 0 };
6764 
6765 	if (pte_present(ptent))
6766 		page = mc_handle_present_pte(vma, addr, ptent);
6767 	else if (is_swap_pte(ptent))
6768 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6769 	else if (pte_none(ptent) || pte_file(ptent))
6770 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6771 
6772 	if (!page && !ent.val)
6773 		return ret;
6774 	if (page) {
6775 		pc = lookup_page_cgroup(page);
6776 		/*
6777 		 * Do only loose check w/o page_cgroup lock.
6778 		 * mem_cgroup_move_account() checks the pc is valid or not under
6779 		 * the lock.
6780 		 */
6781 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6782 			ret = MC_TARGET_PAGE;
6783 			if (target)
6784 				target->page = page;
6785 		}
6786 		if (!ret || !target)
6787 			put_page(page);
6788 	}
6789 	/* There is a swap entry and a page doesn't exist or isn't charged */
6790 	if (ent.val && !ret &&
6791 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6792 		ret = MC_TARGET_SWAP;
6793 		if (target)
6794 			target->ent = ent;
6795 	}
6796 	return ret;
6797 }
6798 
6799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6800 /*
6801  * We don't consider swapping or file mapped pages because THP does not
6802  * support them for now.
6803  * Caller should make sure that pmd_trans_huge(pmd) is true.
6804  */
6805 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6806 		unsigned long addr, pmd_t pmd, union mc_target *target)
6807 {
6808 	struct page *page = NULL;
6809 	struct page_cgroup *pc;
6810 	enum mc_target_type ret = MC_TARGET_NONE;
6811 
6812 	page = pmd_page(pmd);
6813 	VM_BUG_ON(!page || !PageHead(page));
6814 	if (!move_anon())
6815 		return ret;
6816 	pc = lookup_page_cgroup(page);
6817 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6818 		ret = MC_TARGET_PAGE;
6819 		if (target) {
6820 			get_page(page);
6821 			target->page = page;
6822 		}
6823 	}
6824 	return ret;
6825 }
6826 #else
6827 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6828 		unsigned long addr, pmd_t pmd, union mc_target *target)
6829 {
6830 	return MC_TARGET_NONE;
6831 }
6832 #endif
6833 
6834 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6835 					unsigned long addr, unsigned long end,
6836 					struct mm_walk *walk)
6837 {
6838 	struct vm_area_struct *vma = walk->private;
6839 	pte_t *pte;
6840 	spinlock_t *ptl;
6841 
6842 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6843 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6844 			mc.precharge += HPAGE_PMD_NR;
6845 		spin_unlock(&vma->vm_mm->page_table_lock);
6846 		return 0;
6847 	}
6848 
6849 	if (pmd_trans_unstable(pmd))
6850 		return 0;
6851 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6852 	for (; addr != end; pte++, addr += PAGE_SIZE)
6853 		if (get_mctgt_type(vma, addr, *pte, NULL))
6854 			mc.precharge++;	/* increment precharge temporarily */
6855 	pte_unmap_unlock(pte - 1, ptl);
6856 	cond_resched();
6857 
6858 	return 0;
6859 }
6860 
6861 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6862 {
6863 	unsigned long precharge;
6864 	struct vm_area_struct *vma;
6865 
6866 	down_read(&mm->mmap_sem);
6867 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6868 		struct mm_walk mem_cgroup_count_precharge_walk = {
6869 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6870 			.mm = mm,
6871 			.private = vma,
6872 		};
6873 		if (is_vm_hugetlb_page(vma))
6874 			continue;
6875 		walk_page_range(vma->vm_start, vma->vm_end,
6876 					&mem_cgroup_count_precharge_walk);
6877 	}
6878 	up_read(&mm->mmap_sem);
6879 
6880 	precharge = mc.precharge;
6881 	mc.precharge = 0;
6882 
6883 	return precharge;
6884 }
6885 
6886 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6887 {
6888 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6889 
6890 	VM_BUG_ON(mc.moving_task);
6891 	mc.moving_task = current;
6892 	return mem_cgroup_do_precharge(precharge);
6893 }
6894 
6895 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6896 static void __mem_cgroup_clear_mc(void)
6897 {
6898 	struct mem_cgroup *from = mc.from;
6899 	struct mem_cgroup *to = mc.to;
6900 	int i;
6901 
6902 	/* we must uncharge all the leftover precharges from mc.to */
6903 	if (mc.precharge) {
6904 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6905 		mc.precharge = 0;
6906 	}
6907 	/*
6908 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6909 	 * we must uncharge here.
6910 	 */
6911 	if (mc.moved_charge) {
6912 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6913 		mc.moved_charge = 0;
6914 	}
6915 	/* we must fixup refcnts and charges */
6916 	if (mc.moved_swap) {
6917 		/* uncharge swap account from the old cgroup */
6918 		if (!mem_cgroup_is_root(mc.from))
6919 			res_counter_uncharge(&mc.from->memsw,
6920 						PAGE_SIZE * mc.moved_swap);
6921 
6922 		for (i = 0; i < mc.moved_swap; i++)
6923 			css_put(&mc.from->css);
6924 
6925 		if (!mem_cgroup_is_root(mc.to)) {
6926 			/*
6927 			 * we charged both to->res and to->memsw, so we should
6928 			 * uncharge to->res.
6929 			 */
6930 			res_counter_uncharge(&mc.to->res,
6931 						PAGE_SIZE * mc.moved_swap);
6932 		}
6933 		/* we've already done css_get(mc.to) */
6934 		mc.moved_swap = 0;
6935 	}
6936 	memcg_oom_recover(from);
6937 	memcg_oom_recover(to);
6938 	wake_up_all(&mc.waitq);
6939 }
6940 
6941 static void mem_cgroup_clear_mc(void)
6942 {
6943 	struct mem_cgroup *from = mc.from;
6944 
6945 	/*
6946 	 * we must clear moving_task before waking up waiters at the end of
6947 	 * task migration.
6948 	 */
6949 	mc.moving_task = NULL;
6950 	__mem_cgroup_clear_mc();
6951 	spin_lock(&mc.lock);
6952 	mc.from = NULL;
6953 	mc.to = NULL;
6954 	spin_unlock(&mc.lock);
6955 	mem_cgroup_end_move(from);
6956 }
6957 
6958 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6959 				 struct cgroup_taskset *tset)
6960 {
6961 	struct task_struct *p = cgroup_taskset_first(tset);
6962 	int ret = 0;
6963 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6964 	unsigned long move_charge_at_immigrate;
6965 
6966 	/*
6967 	 * We are now commited to this value whatever it is. Changes in this
6968 	 * tunable will only affect upcoming migrations, not the current one.
6969 	 * So we need to save it, and keep it going.
6970 	 */
6971 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6972 	if (move_charge_at_immigrate) {
6973 		struct mm_struct *mm;
6974 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6975 
6976 		VM_BUG_ON(from == memcg);
6977 
6978 		mm = get_task_mm(p);
6979 		if (!mm)
6980 			return 0;
6981 		/* We move charges only when we move a owner of the mm */
6982 		if (mm->owner == p) {
6983 			VM_BUG_ON(mc.from);
6984 			VM_BUG_ON(mc.to);
6985 			VM_BUG_ON(mc.precharge);
6986 			VM_BUG_ON(mc.moved_charge);
6987 			VM_BUG_ON(mc.moved_swap);
6988 			mem_cgroup_start_move(from);
6989 			spin_lock(&mc.lock);
6990 			mc.from = from;
6991 			mc.to = memcg;
6992 			mc.immigrate_flags = move_charge_at_immigrate;
6993 			spin_unlock(&mc.lock);
6994 			/* We set mc.moving_task later */
6995 
6996 			ret = mem_cgroup_precharge_mc(mm);
6997 			if (ret)
6998 				mem_cgroup_clear_mc();
6999 		}
7000 		mmput(mm);
7001 	}
7002 	return ret;
7003 }
7004 
7005 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7006 				     struct cgroup_taskset *tset)
7007 {
7008 	mem_cgroup_clear_mc();
7009 }
7010 
7011 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7012 				unsigned long addr, unsigned long end,
7013 				struct mm_walk *walk)
7014 {
7015 	int ret = 0;
7016 	struct vm_area_struct *vma = walk->private;
7017 	pte_t *pte;
7018 	spinlock_t *ptl;
7019 	enum mc_target_type target_type;
7020 	union mc_target target;
7021 	struct page *page;
7022 	struct page_cgroup *pc;
7023 
7024 	/*
7025 	 * We don't take compound_lock() here but no race with splitting thp
7026 	 * happens because:
7027 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7028 	 *    under splitting, which means there's no concurrent thp split,
7029 	 *  - if another thread runs into split_huge_page() just after we
7030 	 *    entered this if-block, the thread must wait for page table lock
7031 	 *    to be unlocked in __split_huge_page_splitting(), where the main
7032 	 *    part of thp split is not executed yet.
7033 	 */
7034 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
7035 		if (mc.precharge < HPAGE_PMD_NR) {
7036 			spin_unlock(&vma->vm_mm->page_table_lock);
7037 			return 0;
7038 		}
7039 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7040 		if (target_type == MC_TARGET_PAGE) {
7041 			page = target.page;
7042 			if (!isolate_lru_page(page)) {
7043 				pc = lookup_page_cgroup(page);
7044 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7045 							pc, mc.from, mc.to)) {
7046 					mc.precharge -= HPAGE_PMD_NR;
7047 					mc.moved_charge += HPAGE_PMD_NR;
7048 				}
7049 				putback_lru_page(page);
7050 			}
7051 			put_page(page);
7052 		}
7053 		spin_unlock(&vma->vm_mm->page_table_lock);
7054 		return 0;
7055 	}
7056 
7057 	if (pmd_trans_unstable(pmd))
7058 		return 0;
7059 retry:
7060 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7061 	for (; addr != end; addr += PAGE_SIZE) {
7062 		pte_t ptent = *(pte++);
7063 		swp_entry_t ent;
7064 
7065 		if (!mc.precharge)
7066 			break;
7067 
7068 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
7069 		case MC_TARGET_PAGE:
7070 			page = target.page;
7071 			if (isolate_lru_page(page))
7072 				goto put;
7073 			pc = lookup_page_cgroup(page);
7074 			if (!mem_cgroup_move_account(page, 1, pc,
7075 						     mc.from, mc.to)) {
7076 				mc.precharge--;
7077 				/* we uncharge from mc.from later. */
7078 				mc.moved_charge++;
7079 			}
7080 			putback_lru_page(page);
7081 put:			/* get_mctgt_type() gets the page */
7082 			put_page(page);
7083 			break;
7084 		case MC_TARGET_SWAP:
7085 			ent = target.ent;
7086 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7087 				mc.precharge--;
7088 				/* we fixup refcnts and charges later. */
7089 				mc.moved_swap++;
7090 			}
7091 			break;
7092 		default:
7093 			break;
7094 		}
7095 	}
7096 	pte_unmap_unlock(pte - 1, ptl);
7097 	cond_resched();
7098 
7099 	if (addr != end) {
7100 		/*
7101 		 * We have consumed all precharges we got in can_attach().
7102 		 * We try charge one by one, but don't do any additional
7103 		 * charges to mc.to if we have failed in charge once in attach()
7104 		 * phase.
7105 		 */
7106 		ret = mem_cgroup_do_precharge(1);
7107 		if (!ret)
7108 			goto retry;
7109 	}
7110 
7111 	return ret;
7112 }
7113 
7114 static void mem_cgroup_move_charge(struct mm_struct *mm)
7115 {
7116 	struct vm_area_struct *vma;
7117 
7118 	lru_add_drain_all();
7119 retry:
7120 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7121 		/*
7122 		 * Someone who are holding the mmap_sem might be waiting in
7123 		 * waitq. So we cancel all extra charges, wake up all waiters,
7124 		 * and retry. Because we cancel precharges, we might not be able
7125 		 * to move enough charges, but moving charge is a best-effort
7126 		 * feature anyway, so it wouldn't be a big problem.
7127 		 */
7128 		__mem_cgroup_clear_mc();
7129 		cond_resched();
7130 		goto retry;
7131 	}
7132 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7133 		int ret;
7134 		struct mm_walk mem_cgroup_move_charge_walk = {
7135 			.pmd_entry = mem_cgroup_move_charge_pte_range,
7136 			.mm = mm,
7137 			.private = vma,
7138 		};
7139 		if (is_vm_hugetlb_page(vma))
7140 			continue;
7141 		ret = walk_page_range(vma->vm_start, vma->vm_end,
7142 						&mem_cgroup_move_charge_walk);
7143 		if (ret)
7144 			/*
7145 			 * means we have consumed all precharges and failed in
7146 			 * doing additional charge. Just abandon here.
7147 			 */
7148 			break;
7149 	}
7150 	up_read(&mm->mmap_sem);
7151 }
7152 
7153 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7154 				 struct cgroup_taskset *tset)
7155 {
7156 	struct task_struct *p = cgroup_taskset_first(tset);
7157 	struct mm_struct *mm = get_task_mm(p);
7158 
7159 	if (mm) {
7160 		if (mc.to)
7161 			mem_cgroup_move_charge(mm);
7162 		mmput(mm);
7163 	}
7164 	if (mc.to)
7165 		mem_cgroup_clear_mc();
7166 }
7167 #else	/* !CONFIG_MMU */
7168 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7169 				 struct cgroup_taskset *tset)
7170 {
7171 	return 0;
7172 }
7173 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7174 				     struct cgroup_taskset *tset)
7175 {
7176 }
7177 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7178 				 struct cgroup_taskset *tset)
7179 {
7180 }
7181 #endif
7182 
7183 /*
7184  * Cgroup retains root cgroups across [un]mount cycles making it necessary
7185  * to verify sane_behavior flag on each mount attempt.
7186  */
7187 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7188 {
7189 	/*
7190 	 * use_hierarchy is forced with sane_behavior.  cgroup core
7191 	 * guarantees that @root doesn't have any children, so turning it
7192 	 * on for the root memcg is enough.
7193 	 */
7194 	if (cgroup_sane_behavior(root_css->cgroup))
7195 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7196 }
7197 
7198 struct cgroup_subsys mem_cgroup_subsys = {
7199 	.name = "memory",
7200 	.subsys_id = mem_cgroup_subsys_id,
7201 	.css_alloc = mem_cgroup_css_alloc,
7202 	.css_online = mem_cgroup_css_online,
7203 	.css_offline = mem_cgroup_css_offline,
7204 	.css_free = mem_cgroup_css_free,
7205 	.can_attach = mem_cgroup_can_attach,
7206 	.cancel_attach = mem_cgroup_cancel_attach,
7207 	.attach = mem_cgroup_move_task,
7208 	.bind = mem_cgroup_bind,
7209 	.base_cftypes = mem_cgroup_files,
7210 	.early_init = 0,
7211 	.use_id = 1,
7212 };
7213 
7214 #ifdef CONFIG_MEMCG_SWAP
7215 static int __init enable_swap_account(char *s)
7216 {
7217 	if (!strcmp(s, "1"))
7218 		really_do_swap_account = 1;
7219 	else if (!strcmp(s, "0"))
7220 		really_do_swap_account = 0;
7221 	return 1;
7222 }
7223 __setup("swapaccount=", enable_swap_account);
7224 
7225 static void __init memsw_file_init(void)
7226 {
7227 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7228 }
7229 
7230 static void __init enable_swap_cgroup(void)
7231 {
7232 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7233 		do_swap_account = 1;
7234 		memsw_file_init();
7235 	}
7236 }
7237 
7238 #else
7239 static void __init enable_swap_cgroup(void)
7240 {
7241 }
7242 #endif
7243 
7244 /*
7245  * subsys_initcall() for memory controller.
7246  *
7247  * Some parts like hotcpu_notifier() have to be initialized from this context
7248  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7249  * everything that doesn't depend on a specific mem_cgroup structure should
7250  * be initialized from here.
7251  */
7252 static int __init mem_cgroup_init(void)
7253 {
7254 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7255 	enable_swap_cgroup();
7256 	mem_cgroup_soft_limit_tree_init();
7257 	memcg_stock_init();
7258 	return 0;
7259 }
7260 subsys_initcall(mem_cgroup_init);
7261