xref: /linux/mm/memcontrol.c (revision 791d3ef2e11100449837dc0b6fe884e60ca3a484)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 #define MEM_CGROUP_RECLAIM_RETRIES	5
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account		0
95 #endif
96 
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102 
103 static const char *const mem_cgroup_lru_names[] = {
104 	"inactive_anon",
105 	"active_anon",
106 	"inactive_file",
107 	"active_file",
108 	"unevictable",
109 };
110 
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET	1024
114 
115 /*
116  * Cgroups above their limits are maintained in a RB-Tree, independent of
117  * their hierarchy representation
118  */
119 
120 struct mem_cgroup_tree_per_node {
121 	struct rb_root rb_root;
122 	struct rb_node *rb_rightmost;
123 	spinlock_t lock;
124 };
125 
126 struct mem_cgroup_tree {
127 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128 };
129 
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131 
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 	struct list_head list;
135 	struct eventfd_ctx *eventfd;
136 };
137 
138 /*
139  * cgroup_event represents events which userspace want to receive.
140  */
141 struct mem_cgroup_event {
142 	/*
143 	 * memcg which the event belongs to.
144 	 */
145 	struct mem_cgroup *memcg;
146 	/*
147 	 * eventfd to signal userspace about the event.
148 	 */
149 	struct eventfd_ctx *eventfd;
150 	/*
151 	 * Each of these stored in a list by the cgroup.
152 	 */
153 	struct list_head list;
154 	/*
155 	 * register_event() callback will be used to add new userspace
156 	 * waiter for changes related to this event.  Use eventfd_signal()
157 	 * on eventfd to send notification to userspace.
158 	 */
159 	int (*register_event)(struct mem_cgroup *memcg,
160 			      struct eventfd_ctx *eventfd, const char *args);
161 	/*
162 	 * unregister_event() callback will be called when userspace closes
163 	 * the eventfd or on cgroup removing.  This callback must be set,
164 	 * if you want provide notification functionality.
165 	 */
166 	void (*unregister_event)(struct mem_cgroup *memcg,
167 				 struct eventfd_ctx *eventfd);
168 	/*
169 	 * All fields below needed to unregister event when
170 	 * userspace closes eventfd.
171 	 */
172 	poll_table pt;
173 	wait_queue_head_t *wqh;
174 	wait_queue_entry_t wait;
175 	struct work_struct remove;
176 };
177 
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180 
181 /* Stuffs for move charges at task migration. */
182 /*
183  * Types of charges to be moved.
184  */
185 #define MOVE_ANON	0x1U
186 #define MOVE_FILE	0x2U
187 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188 
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 	spinlock_t	  lock; /* for from, to */
192 	struct mm_struct  *mm;
193 	struct mem_cgroup *from;
194 	struct mem_cgroup *to;
195 	unsigned long flags;
196 	unsigned long precharge;
197 	unsigned long moved_charge;
198 	unsigned long moved_swap;
199 	struct task_struct *moving_task;	/* a task moving charges */
200 	wait_queue_head_t waitq;		/* a waitq for other context */
201 } mc = {
202 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 };
205 
206 /*
207  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208  * limit reclaim to prevent infinite loops, if they ever occur.
209  */
210 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212 
213 enum charge_type {
214 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 	MEM_CGROUP_CHARGE_TYPE_ANON,
216 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
217 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 	NR_CHARGE_TYPE,
219 };
220 
221 /* for encoding cft->private value on file */
222 enum res_type {
223 	_MEM,
224 	_MEMSWAP,
225 	_OOM_TYPE,
226 	_KMEM,
227 	_TCP,
228 };
229 
230 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
231 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val)	((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL		(0)
235 
236 /* Some nice accessors for the vmpressure. */
237 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238 {
239 	if (!memcg)
240 		memcg = root_mem_cgroup;
241 	return &memcg->vmpressure;
242 }
243 
244 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245 {
246 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247 }
248 
249 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250 {
251 	return (memcg == root_mem_cgroup);
252 }
253 
254 #ifndef CONFIG_SLOB
255 /*
256  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257  * The main reason for not using cgroup id for this:
258  *  this works better in sparse environments, where we have a lot of memcgs,
259  *  but only a few kmem-limited. Or also, if we have, for instance, 200
260  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
261  *  200 entry array for that.
262  *
263  * The current size of the caches array is stored in memcg_nr_cache_ids. It
264  * will double each time we have to increase it.
265  */
266 static DEFINE_IDA(memcg_cache_ida);
267 int memcg_nr_cache_ids;
268 
269 /* Protects memcg_nr_cache_ids */
270 static DECLARE_RWSEM(memcg_cache_ids_sem);
271 
272 void memcg_get_cache_ids(void)
273 {
274 	down_read(&memcg_cache_ids_sem);
275 }
276 
277 void memcg_put_cache_ids(void)
278 {
279 	up_read(&memcg_cache_ids_sem);
280 }
281 
282 /*
283  * MIN_SIZE is different than 1, because we would like to avoid going through
284  * the alloc/free process all the time. In a small machine, 4 kmem-limited
285  * cgroups is a reasonable guess. In the future, it could be a parameter or
286  * tunable, but that is strictly not necessary.
287  *
288  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289  * this constant directly from cgroup, but it is understandable that this is
290  * better kept as an internal representation in cgroup.c. In any case, the
291  * cgrp_id space is not getting any smaller, and we don't have to necessarily
292  * increase ours as well if it increases.
293  */
294 #define MEMCG_CACHES_MIN_SIZE 4
295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296 
297 /*
298  * A lot of the calls to the cache allocation functions are expected to be
299  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300  * conditional to this static branch, we'll have to allow modules that does
301  * kmem_cache_alloc and the such to see this symbol as well
302  */
303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304 EXPORT_SYMBOL(memcg_kmem_enabled_key);
305 
306 struct workqueue_struct *memcg_kmem_cache_wq;
307 
308 #endif /* !CONFIG_SLOB */
309 
310 /**
311  * mem_cgroup_css_from_page - css of the memcg associated with a page
312  * @page: page of interest
313  *
314  * If memcg is bound to the default hierarchy, css of the memcg associated
315  * with @page is returned.  The returned css remains associated with @page
316  * until it is released.
317  *
318  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319  * is returned.
320  */
321 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322 {
323 	struct mem_cgroup *memcg;
324 
325 	memcg = page->mem_cgroup;
326 
327 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 		memcg = root_mem_cgroup;
329 
330 	return &memcg->css;
331 }
332 
333 /**
334  * page_cgroup_ino - return inode number of the memcg a page is charged to
335  * @page: the page
336  *
337  * Look up the closest online ancestor of the memory cgroup @page is charged to
338  * and return its inode number or 0 if @page is not charged to any cgroup. It
339  * is safe to call this function without holding a reference to @page.
340  *
341  * Note, this function is inherently racy, because there is nothing to prevent
342  * the cgroup inode from getting torn down and potentially reallocated a moment
343  * after page_cgroup_ino() returns, so it only should be used by callers that
344  * do not care (such as procfs interfaces).
345  */
346 ino_t page_cgroup_ino(struct page *page)
347 {
348 	struct mem_cgroup *memcg;
349 	unsigned long ino = 0;
350 
351 	rcu_read_lock();
352 	memcg = READ_ONCE(page->mem_cgroup);
353 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 		memcg = parent_mem_cgroup(memcg);
355 	if (memcg)
356 		ino = cgroup_ino(memcg->css.cgroup);
357 	rcu_read_unlock();
358 	return ino;
359 }
360 
361 static struct mem_cgroup_per_node *
362 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363 {
364 	int nid = page_to_nid(page);
365 
366 	return memcg->nodeinfo[nid];
367 }
368 
369 static struct mem_cgroup_tree_per_node *
370 soft_limit_tree_node(int nid)
371 {
372 	return soft_limit_tree.rb_tree_per_node[nid];
373 }
374 
375 static struct mem_cgroup_tree_per_node *
376 soft_limit_tree_from_page(struct page *page)
377 {
378 	int nid = page_to_nid(page);
379 
380 	return soft_limit_tree.rb_tree_per_node[nid];
381 }
382 
383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 					 struct mem_cgroup_tree_per_node *mctz,
385 					 unsigned long new_usage_in_excess)
386 {
387 	struct rb_node **p = &mctz->rb_root.rb_node;
388 	struct rb_node *parent = NULL;
389 	struct mem_cgroup_per_node *mz_node;
390 	bool rightmost = true;
391 
392 	if (mz->on_tree)
393 		return;
394 
395 	mz->usage_in_excess = new_usage_in_excess;
396 	if (!mz->usage_in_excess)
397 		return;
398 	while (*p) {
399 		parent = *p;
400 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401 					tree_node);
402 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
403 			p = &(*p)->rb_left;
404 			rightmost = false;
405 		}
406 
407 		/*
408 		 * We can't avoid mem cgroups that are over their soft
409 		 * limit by the same amount
410 		 */
411 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 			p = &(*p)->rb_right;
413 	}
414 
415 	if (rightmost)
416 		mctz->rb_rightmost = &mz->tree_node;
417 
418 	rb_link_node(&mz->tree_node, parent, p);
419 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 	mz->on_tree = true;
421 }
422 
423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 					 struct mem_cgroup_tree_per_node *mctz)
425 {
426 	if (!mz->on_tree)
427 		return;
428 
429 	if (&mz->tree_node == mctz->rb_rightmost)
430 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
431 
432 	rb_erase(&mz->tree_node, &mctz->rb_root);
433 	mz->on_tree = false;
434 }
435 
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 				       struct mem_cgroup_tree_per_node *mctz)
438 {
439 	unsigned long flags;
440 
441 	spin_lock_irqsave(&mctz->lock, flags);
442 	__mem_cgroup_remove_exceeded(mz, mctz);
443 	spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445 
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 	unsigned long nr_pages = page_counter_read(&memcg->memory);
449 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 	unsigned long excess = 0;
451 
452 	if (nr_pages > soft_limit)
453 		excess = nr_pages - soft_limit;
454 
455 	return excess;
456 }
457 
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 	unsigned long excess;
461 	struct mem_cgroup_per_node *mz;
462 	struct mem_cgroup_tree_per_node *mctz;
463 
464 	mctz = soft_limit_tree_from_page(page);
465 	if (!mctz)
466 		return;
467 	/*
468 	 * Necessary to update all ancestors when hierarchy is used.
469 	 * because their event counter is not touched.
470 	 */
471 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 		mz = mem_cgroup_page_nodeinfo(memcg, page);
473 		excess = soft_limit_excess(memcg);
474 		/*
475 		 * We have to update the tree if mz is on RB-tree or
476 		 * mem is over its softlimit.
477 		 */
478 		if (excess || mz->on_tree) {
479 			unsigned long flags;
480 
481 			spin_lock_irqsave(&mctz->lock, flags);
482 			/* if on-tree, remove it */
483 			if (mz->on_tree)
484 				__mem_cgroup_remove_exceeded(mz, mctz);
485 			/*
486 			 * Insert again. mz->usage_in_excess will be updated.
487 			 * If excess is 0, no tree ops.
488 			 */
489 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
490 			spin_unlock_irqrestore(&mctz->lock, flags);
491 		}
492 	}
493 }
494 
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496 {
497 	struct mem_cgroup_tree_per_node *mctz;
498 	struct mem_cgroup_per_node *mz;
499 	int nid;
500 
501 	for_each_node(nid) {
502 		mz = mem_cgroup_nodeinfo(memcg, nid);
503 		mctz = soft_limit_tree_node(nid);
504 		if (mctz)
505 			mem_cgroup_remove_exceeded(mz, mctz);
506 	}
507 }
508 
509 static struct mem_cgroup_per_node *
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511 {
512 	struct mem_cgroup_per_node *mz;
513 
514 retry:
515 	mz = NULL;
516 	if (!mctz->rb_rightmost)
517 		goto done;		/* Nothing to reclaim from */
518 
519 	mz = rb_entry(mctz->rb_rightmost,
520 		      struct mem_cgroup_per_node, tree_node);
521 	/*
522 	 * Remove the node now but someone else can add it back,
523 	 * we will to add it back at the end of reclaim to its correct
524 	 * position in the tree.
525 	 */
526 	__mem_cgroup_remove_exceeded(mz, mctz);
527 	if (!soft_limit_excess(mz->memcg) ||
528 	    !css_tryget_online(&mz->memcg->css))
529 		goto retry;
530 done:
531 	return mz;
532 }
533 
534 static struct mem_cgroup_per_node *
535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536 {
537 	struct mem_cgroup_per_node *mz;
538 
539 	spin_lock_irq(&mctz->lock);
540 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
541 	spin_unlock_irq(&mctz->lock);
542 	return mz;
543 }
544 
545 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
546 				      int event)
547 {
548 	return atomic_long_read(&memcg->events[event]);
549 }
550 
551 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
552 					 struct page *page,
553 					 bool compound, int nr_pages)
554 {
555 	/*
556 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
557 	 * counted as CACHE even if it's on ANON LRU.
558 	 */
559 	if (PageAnon(page))
560 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
561 	else {
562 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
563 		if (PageSwapBacked(page))
564 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
565 	}
566 
567 	if (compound) {
568 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
569 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
570 	}
571 
572 	/* pagein of a big page is an event. So, ignore page size */
573 	if (nr_pages > 0)
574 		__count_memcg_events(memcg, PGPGIN, 1);
575 	else {
576 		__count_memcg_events(memcg, PGPGOUT, 1);
577 		nr_pages = -nr_pages; /* for event */
578 	}
579 
580 	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
581 }
582 
583 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
584 					   int nid, unsigned int lru_mask)
585 {
586 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
587 	unsigned long nr = 0;
588 	enum lru_list lru;
589 
590 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
591 
592 	for_each_lru(lru) {
593 		if (!(BIT(lru) & lru_mask))
594 			continue;
595 		nr += mem_cgroup_get_lru_size(lruvec, lru);
596 	}
597 	return nr;
598 }
599 
600 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
601 			unsigned int lru_mask)
602 {
603 	unsigned long nr = 0;
604 	int nid;
605 
606 	for_each_node_state(nid, N_MEMORY)
607 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
608 	return nr;
609 }
610 
611 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
612 				       enum mem_cgroup_events_target target)
613 {
614 	unsigned long val, next;
615 
616 	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
617 	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
618 	/* from time_after() in jiffies.h */
619 	if ((long)(next - val) < 0) {
620 		switch (target) {
621 		case MEM_CGROUP_TARGET_THRESH:
622 			next = val + THRESHOLDS_EVENTS_TARGET;
623 			break;
624 		case MEM_CGROUP_TARGET_SOFTLIMIT:
625 			next = val + SOFTLIMIT_EVENTS_TARGET;
626 			break;
627 		case MEM_CGROUP_TARGET_NUMAINFO:
628 			next = val + NUMAINFO_EVENTS_TARGET;
629 			break;
630 		default:
631 			break;
632 		}
633 		__this_cpu_write(memcg->stat_cpu->targets[target], next);
634 		return true;
635 	}
636 	return false;
637 }
638 
639 /*
640  * Check events in order.
641  *
642  */
643 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
644 {
645 	/* threshold event is triggered in finer grain than soft limit */
646 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
647 						MEM_CGROUP_TARGET_THRESH))) {
648 		bool do_softlimit;
649 		bool do_numainfo __maybe_unused;
650 
651 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
652 						MEM_CGROUP_TARGET_SOFTLIMIT);
653 #if MAX_NUMNODES > 1
654 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
655 						MEM_CGROUP_TARGET_NUMAINFO);
656 #endif
657 		mem_cgroup_threshold(memcg);
658 		if (unlikely(do_softlimit))
659 			mem_cgroup_update_tree(memcg, page);
660 #if MAX_NUMNODES > 1
661 		if (unlikely(do_numainfo))
662 			atomic_inc(&memcg->numainfo_events);
663 #endif
664 	}
665 }
666 
667 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
668 {
669 	/*
670 	 * mm_update_next_owner() may clear mm->owner to NULL
671 	 * if it races with swapoff, page migration, etc.
672 	 * So this can be called with p == NULL.
673 	 */
674 	if (unlikely(!p))
675 		return NULL;
676 
677 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
678 }
679 EXPORT_SYMBOL(mem_cgroup_from_task);
680 
681 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
682 {
683 	struct mem_cgroup *memcg = NULL;
684 
685 	rcu_read_lock();
686 	do {
687 		/*
688 		 * Page cache insertions can happen withou an
689 		 * actual mm context, e.g. during disk probing
690 		 * on boot, loopback IO, acct() writes etc.
691 		 */
692 		if (unlikely(!mm))
693 			memcg = root_mem_cgroup;
694 		else {
695 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 			if (unlikely(!memcg))
697 				memcg = root_mem_cgroup;
698 		}
699 	} while (!css_tryget_online(&memcg->css));
700 	rcu_read_unlock();
701 	return memcg;
702 }
703 
704 /**
705  * mem_cgroup_iter - iterate over memory cgroup hierarchy
706  * @root: hierarchy root
707  * @prev: previously returned memcg, NULL on first invocation
708  * @reclaim: cookie for shared reclaim walks, NULL for full walks
709  *
710  * Returns references to children of the hierarchy below @root, or
711  * @root itself, or %NULL after a full round-trip.
712  *
713  * Caller must pass the return value in @prev on subsequent
714  * invocations for reference counting, or use mem_cgroup_iter_break()
715  * to cancel a hierarchy walk before the round-trip is complete.
716  *
717  * Reclaimers can specify a node and a priority level in @reclaim to
718  * divide up the memcgs in the hierarchy among all concurrent
719  * reclaimers operating on the same node and priority.
720  */
721 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
722 				   struct mem_cgroup *prev,
723 				   struct mem_cgroup_reclaim_cookie *reclaim)
724 {
725 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
726 	struct cgroup_subsys_state *css = NULL;
727 	struct mem_cgroup *memcg = NULL;
728 	struct mem_cgroup *pos = NULL;
729 
730 	if (mem_cgroup_disabled())
731 		return NULL;
732 
733 	if (!root)
734 		root = root_mem_cgroup;
735 
736 	if (prev && !reclaim)
737 		pos = prev;
738 
739 	if (!root->use_hierarchy && root != root_mem_cgroup) {
740 		if (prev)
741 			goto out;
742 		return root;
743 	}
744 
745 	rcu_read_lock();
746 
747 	if (reclaim) {
748 		struct mem_cgroup_per_node *mz;
749 
750 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
751 		iter = &mz->iter[reclaim->priority];
752 
753 		if (prev && reclaim->generation != iter->generation)
754 			goto out_unlock;
755 
756 		while (1) {
757 			pos = READ_ONCE(iter->position);
758 			if (!pos || css_tryget(&pos->css))
759 				break;
760 			/*
761 			 * css reference reached zero, so iter->position will
762 			 * be cleared by ->css_released. However, we should not
763 			 * rely on this happening soon, because ->css_released
764 			 * is called from a work queue, and by busy-waiting we
765 			 * might block it. So we clear iter->position right
766 			 * away.
767 			 */
768 			(void)cmpxchg(&iter->position, pos, NULL);
769 		}
770 	}
771 
772 	if (pos)
773 		css = &pos->css;
774 
775 	for (;;) {
776 		css = css_next_descendant_pre(css, &root->css);
777 		if (!css) {
778 			/*
779 			 * Reclaimers share the hierarchy walk, and a
780 			 * new one might jump in right at the end of
781 			 * the hierarchy - make sure they see at least
782 			 * one group and restart from the beginning.
783 			 */
784 			if (!prev)
785 				continue;
786 			break;
787 		}
788 
789 		/*
790 		 * Verify the css and acquire a reference.  The root
791 		 * is provided by the caller, so we know it's alive
792 		 * and kicking, and don't take an extra reference.
793 		 */
794 		memcg = mem_cgroup_from_css(css);
795 
796 		if (css == &root->css)
797 			break;
798 
799 		if (css_tryget(css))
800 			break;
801 
802 		memcg = NULL;
803 	}
804 
805 	if (reclaim) {
806 		/*
807 		 * The position could have already been updated by a competing
808 		 * thread, so check that the value hasn't changed since we read
809 		 * it to avoid reclaiming from the same cgroup twice.
810 		 */
811 		(void)cmpxchg(&iter->position, pos, memcg);
812 
813 		if (pos)
814 			css_put(&pos->css);
815 
816 		if (!memcg)
817 			iter->generation++;
818 		else if (!prev)
819 			reclaim->generation = iter->generation;
820 	}
821 
822 out_unlock:
823 	rcu_read_unlock();
824 out:
825 	if (prev && prev != root)
826 		css_put(&prev->css);
827 
828 	return memcg;
829 }
830 
831 /**
832  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
833  * @root: hierarchy root
834  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
835  */
836 void mem_cgroup_iter_break(struct mem_cgroup *root,
837 			   struct mem_cgroup *prev)
838 {
839 	if (!root)
840 		root = root_mem_cgroup;
841 	if (prev && prev != root)
842 		css_put(&prev->css);
843 }
844 
845 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
846 {
847 	struct mem_cgroup *memcg = dead_memcg;
848 	struct mem_cgroup_reclaim_iter *iter;
849 	struct mem_cgroup_per_node *mz;
850 	int nid;
851 	int i;
852 
853 	while ((memcg = parent_mem_cgroup(memcg))) {
854 		for_each_node(nid) {
855 			mz = mem_cgroup_nodeinfo(memcg, nid);
856 			for (i = 0; i <= DEF_PRIORITY; i++) {
857 				iter = &mz->iter[i];
858 				cmpxchg(&iter->position,
859 					dead_memcg, NULL);
860 			}
861 		}
862 	}
863 }
864 
865 /*
866  * Iteration constructs for visiting all cgroups (under a tree).  If
867  * loops are exited prematurely (break), mem_cgroup_iter_break() must
868  * be used for reference counting.
869  */
870 #define for_each_mem_cgroup_tree(iter, root)		\
871 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
872 	     iter != NULL;				\
873 	     iter = mem_cgroup_iter(root, iter, NULL))
874 
875 #define for_each_mem_cgroup(iter)			\
876 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
877 	     iter != NULL;				\
878 	     iter = mem_cgroup_iter(NULL, iter, NULL))
879 
880 /**
881  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
882  * @memcg: hierarchy root
883  * @fn: function to call for each task
884  * @arg: argument passed to @fn
885  *
886  * This function iterates over tasks attached to @memcg or to any of its
887  * descendants and calls @fn for each task. If @fn returns a non-zero
888  * value, the function breaks the iteration loop and returns the value.
889  * Otherwise, it will iterate over all tasks and return 0.
890  *
891  * This function must not be called for the root memory cgroup.
892  */
893 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
894 			  int (*fn)(struct task_struct *, void *), void *arg)
895 {
896 	struct mem_cgroup *iter;
897 	int ret = 0;
898 
899 	BUG_ON(memcg == root_mem_cgroup);
900 
901 	for_each_mem_cgroup_tree(iter, memcg) {
902 		struct css_task_iter it;
903 		struct task_struct *task;
904 
905 		css_task_iter_start(&iter->css, 0, &it);
906 		while (!ret && (task = css_task_iter_next(&it)))
907 			ret = fn(task, arg);
908 		css_task_iter_end(&it);
909 		if (ret) {
910 			mem_cgroup_iter_break(memcg, iter);
911 			break;
912 		}
913 	}
914 	return ret;
915 }
916 
917 /**
918  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
919  * @page: the page
920  * @pgdat: pgdat of the page
921  *
922  * This function is only safe when following the LRU page isolation
923  * and putback protocol: the LRU lock must be held, and the page must
924  * either be PageLRU() or the caller must have isolated/allocated it.
925  */
926 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
927 {
928 	struct mem_cgroup_per_node *mz;
929 	struct mem_cgroup *memcg;
930 	struct lruvec *lruvec;
931 
932 	if (mem_cgroup_disabled()) {
933 		lruvec = &pgdat->lruvec;
934 		goto out;
935 	}
936 
937 	memcg = page->mem_cgroup;
938 	/*
939 	 * Swapcache readahead pages are added to the LRU - and
940 	 * possibly migrated - before they are charged.
941 	 */
942 	if (!memcg)
943 		memcg = root_mem_cgroup;
944 
945 	mz = mem_cgroup_page_nodeinfo(memcg, page);
946 	lruvec = &mz->lruvec;
947 out:
948 	/*
949 	 * Since a node can be onlined after the mem_cgroup was created,
950 	 * we have to be prepared to initialize lruvec->zone here;
951 	 * and if offlined then reonlined, we need to reinitialize it.
952 	 */
953 	if (unlikely(lruvec->pgdat != pgdat))
954 		lruvec->pgdat = pgdat;
955 	return lruvec;
956 }
957 
958 /**
959  * mem_cgroup_update_lru_size - account for adding or removing an lru page
960  * @lruvec: mem_cgroup per zone lru vector
961  * @lru: index of lru list the page is sitting on
962  * @zid: zone id of the accounted pages
963  * @nr_pages: positive when adding or negative when removing
964  *
965  * This function must be called under lru_lock, just before a page is added
966  * to or just after a page is removed from an lru list (that ordering being
967  * so as to allow it to check that lru_size 0 is consistent with list_empty).
968  */
969 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
970 				int zid, int nr_pages)
971 {
972 	struct mem_cgroup_per_node *mz;
973 	unsigned long *lru_size;
974 	long size;
975 
976 	if (mem_cgroup_disabled())
977 		return;
978 
979 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
980 	lru_size = &mz->lru_zone_size[zid][lru];
981 
982 	if (nr_pages < 0)
983 		*lru_size += nr_pages;
984 
985 	size = *lru_size;
986 	if (WARN_ONCE(size < 0,
987 		"%s(%p, %d, %d): lru_size %ld\n",
988 		__func__, lruvec, lru, nr_pages, size)) {
989 		VM_BUG_ON(1);
990 		*lru_size = 0;
991 	}
992 
993 	if (nr_pages > 0)
994 		*lru_size += nr_pages;
995 }
996 
997 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
998 {
999 	struct mem_cgroup *task_memcg;
1000 	struct task_struct *p;
1001 	bool ret;
1002 
1003 	p = find_lock_task_mm(task);
1004 	if (p) {
1005 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1006 		task_unlock(p);
1007 	} else {
1008 		/*
1009 		 * All threads may have already detached their mm's, but the oom
1010 		 * killer still needs to detect if they have already been oom
1011 		 * killed to prevent needlessly killing additional tasks.
1012 		 */
1013 		rcu_read_lock();
1014 		task_memcg = mem_cgroup_from_task(task);
1015 		css_get(&task_memcg->css);
1016 		rcu_read_unlock();
1017 	}
1018 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1019 	css_put(&task_memcg->css);
1020 	return ret;
1021 }
1022 
1023 /**
1024  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1025  * @memcg: the memory cgroup
1026  *
1027  * Returns the maximum amount of memory @mem can be charged with, in
1028  * pages.
1029  */
1030 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1031 {
1032 	unsigned long margin = 0;
1033 	unsigned long count;
1034 	unsigned long limit;
1035 
1036 	count = page_counter_read(&memcg->memory);
1037 	limit = READ_ONCE(memcg->memory.max);
1038 	if (count < limit)
1039 		margin = limit - count;
1040 
1041 	if (do_memsw_account()) {
1042 		count = page_counter_read(&memcg->memsw);
1043 		limit = READ_ONCE(memcg->memsw.max);
1044 		if (count <= limit)
1045 			margin = min(margin, limit - count);
1046 		else
1047 			margin = 0;
1048 	}
1049 
1050 	return margin;
1051 }
1052 
1053 /*
1054  * A routine for checking "mem" is under move_account() or not.
1055  *
1056  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057  * moving cgroups. This is for waiting at high-memory pressure
1058  * caused by "move".
1059  */
1060 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1061 {
1062 	struct mem_cgroup *from;
1063 	struct mem_cgroup *to;
1064 	bool ret = false;
1065 	/*
1066 	 * Unlike task_move routines, we access mc.to, mc.from not under
1067 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1068 	 */
1069 	spin_lock(&mc.lock);
1070 	from = mc.from;
1071 	to = mc.to;
1072 	if (!from)
1073 		goto unlock;
1074 
1075 	ret = mem_cgroup_is_descendant(from, memcg) ||
1076 		mem_cgroup_is_descendant(to, memcg);
1077 unlock:
1078 	spin_unlock(&mc.lock);
1079 	return ret;
1080 }
1081 
1082 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1083 {
1084 	if (mc.moving_task && current != mc.moving_task) {
1085 		if (mem_cgroup_under_move(memcg)) {
1086 			DEFINE_WAIT(wait);
1087 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1088 			/* moving charge context might have finished. */
1089 			if (mc.moving_task)
1090 				schedule();
1091 			finish_wait(&mc.waitq, &wait);
1092 			return true;
1093 		}
1094 	}
1095 	return false;
1096 }
1097 
1098 static const unsigned int memcg1_stats[] = {
1099 	MEMCG_CACHE,
1100 	MEMCG_RSS,
1101 	MEMCG_RSS_HUGE,
1102 	NR_SHMEM,
1103 	NR_FILE_MAPPED,
1104 	NR_FILE_DIRTY,
1105 	NR_WRITEBACK,
1106 	MEMCG_SWAP,
1107 };
1108 
1109 static const char *const memcg1_stat_names[] = {
1110 	"cache",
1111 	"rss",
1112 	"rss_huge",
1113 	"shmem",
1114 	"mapped_file",
1115 	"dirty",
1116 	"writeback",
1117 	"swap",
1118 };
1119 
1120 #define K(x) ((x) << (PAGE_SHIFT-10))
1121 /**
1122  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1123  * @memcg: The memory cgroup that went over limit
1124  * @p: Task that is going to be killed
1125  *
1126  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1127  * enabled
1128  */
1129 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1130 {
1131 	struct mem_cgroup *iter;
1132 	unsigned int i;
1133 
1134 	rcu_read_lock();
1135 
1136 	if (p) {
1137 		pr_info("Task in ");
1138 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1139 		pr_cont(" killed as a result of limit of ");
1140 	} else {
1141 		pr_info("Memory limit reached of cgroup ");
1142 	}
1143 
1144 	pr_cont_cgroup_path(memcg->css.cgroup);
1145 	pr_cont("\n");
1146 
1147 	rcu_read_unlock();
1148 
1149 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150 		K((u64)page_counter_read(&memcg->memory)),
1151 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1152 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153 		K((u64)page_counter_read(&memcg->memsw)),
1154 		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1155 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156 		K((u64)page_counter_read(&memcg->kmem)),
1157 		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1158 
1159 	for_each_mem_cgroup_tree(iter, memcg) {
1160 		pr_info("Memory cgroup stats for ");
1161 		pr_cont_cgroup_path(iter->css.cgroup);
1162 		pr_cont(":");
1163 
1164 		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1165 			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1166 				continue;
1167 			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168 				K(memcg_page_state(iter, memcg1_stats[i])));
1169 		}
1170 
1171 		for (i = 0; i < NR_LRU_LISTS; i++)
1172 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1173 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1174 
1175 		pr_cont("\n");
1176 	}
1177 }
1178 
1179 /*
1180  * Return the memory (and swap, if configured) limit for a memcg.
1181  */
1182 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1183 {
1184 	unsigned long max;
1185 
1186 	max = memcg->memory.max;
1187 	if (mem_cgroup_swappiness(memcg)) {
1188 		unsigned long memsw_max;
1189 		unsigned long swap_max;
1190 
1191 		memsw_max = memcg->memsw.max;
1192 		swap_max = memcg->swap.max;
1193 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1194 		max = min(max + swap_max, memsw_max);
1195 	}
1196 	return max;
1197 }
1198 
1199 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1200 				     int order)
1201 {
1202 	struct oom_control oc = {
1203 		.zonelist = NULL,
1204 		.nodemask = NULL,
1205 		.memcg = memcg,
1206 		.gfp_mask = gfp_mask,
1207 		.order = order,
1208 	};
1209 	bool ret;
1210 
1211 	mutex_lock(&oom_lock);
1212 	ret = out_of_memory(&oc);
1213 	mutex_unlock(&oom_lock);
1214 	return ret;
1215 }
1216 
1217 #if MAX_NUMNODES > 1
1218 
1219 /**
1220  * test_mem_cgroup_node_reclaimable
1221  * @memcg: the target memcg
1222  * @nid: the node ID to be checked.
1223  * @noswap : specify true here if the user wants flle only information.
1224  *
1225  * This function returns whether the specified memcg contains any
1226  * reclaimable pages on a node. Returns true if there are any reclaimable
1227  * pages in the node.
1228  */
1229 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230 		int nid, bool noswap)
1231 {
1232 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1233 		return true;
1234 	if (noswap || !total_swap_pages)
1235 		return false;
1236 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1237 		return true;
1238 	return false;
1239 
1240 }
1241 
1242 /*
1243  * Always updating the nodemask is not very good - even if we have an empty
1244  * list or the wrong list here, we can start from some node and traverse all
1245  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1246  *
1247  */
1248 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1249 {
1250 	int nid;
1251 	/*
1252 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253 	 * pagein/pageout changes since the last update.
1254 	 */
1255 	if (!atomic_read(&memcg->numainfo_events))
1256 		return;
1257 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1258 		return;
1259 
1260 	/* make a nodemask where this memcg uses memory from */
1261 	memcg->scan_nodes = node_states[N_MEMORY];
1262 
1263 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1264 
1265 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1266 			node_clear(nid, memcg->scan_nodes);
1267 	}
1268 
1269 	atomic_set(&memcg->numainfo_events, 0);
1270 	atomic_set(&memcg->numainfo_updating, 0);
1271 }
1272 
1273 /*
1274  * Selecting a node where we start reclaim from. Because what we need is just
1275  * reducing usage counter, start from anywhere is O,K. Considering
1276  * memory reclaim from current node, there are pros. and cons.
1277  *
1278  * Freeing memory from current node means freeing memory from a node which
1279  * we'll use or we've used. So, it may make LRU bad. And if several threads
1280  * hit limits, it will see a contention on a node. But freeing from remote
1281  * node means more costs for memory reclaim because of memory latency.
1282  *
1283  * Now, we use round-robin. Better algorithm is welcomed.
1284  */
1285 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1286 {
1287 	int node;
1288 
1289 	mem_cgroup_may_update_nodemask(memcg);
1290 	node = memcg->last_scanned_node;
1291 
1292 	node = next_node_in(node, memcg->scan_nodes);
1293 	/*
1294 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295 	 * last time it really checked all the LRUs due to rate limiting.
1296 	 * Fallback to the current node in that case for simplicity.
1297 	 */
1298 	if (unlikely(node == MAX_NUMNODES))
1299 		node = numa_node_id();
1300 
1301 	memcg->last_scanned_node = node;
1302 	return node;
1303 }
1304 #else
1305 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1306 {
1307 	return 0;
1308 }
1309 #endif
1310 
1311 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1312 				   pg_data_t *pgdat,
1313 				   gfp_t gfp_mask,
1314 				   unsigned long *total_scanned)
1315 {
1316 	struct mem_cgroup *victim = NULL;
1317 	int total = 0;
1318 	int loop = 0;
1319 	unsigned long excess;
1320 	unsigned long nr_scanned;
1321 	struct mem_cgroup_reclaim_cookie reclaim = {
1322 		.pgdat = pgdat,
1323 		.priority = 0,
1324 	};
1325 
1326 	excess = soft_limit_excess(root_memcg);
1327 
1328 	while (1) {
1329 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1330 		if (!victim) {
1331 			loop++;
1332 			if (loop >= 2) {
1333 				/*
1334 				 * If we have not been able to reclaim
1335 				 * anything, it might because there are
1336 				 * no reclaimable pages under this hierarchy
1337 				 */
1338 				if (!total)
1339 					break;
1340 				/*
1341 				 * We want to do more targeted reclaim.
1342 				 * excess >> 2 is not to excessive so as to
1343 				 * reclaim too much, nor too less that we keep
1344 				 * coming back to reclaim from this cgroup
1345 				 */
1346 				if (total >= (excess >> 2) ||
1347 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1348 					break;
1349 			}
1350 			continue;
1351 		}
1352 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353 					pgdat, &nr_scanned);
1354 		*total_scanned += nr_scanned;
1355 		if (!soft_limit_excess(root_memcg))
1356 			break;
1357 	}
1358 	mem_cgroup_iter_break(root_memcg, victim);
1359 	return total;
1360 }
1361 
1362 #ifdef CONFIG_LOCKDEP
1363 static struct lockdep_map memcg_oom_lock_dep_map = {
1364 	.name = "memcg_oom_lock",
1365 };
1366 #endif
1367 
1368 static DEFINE_SPINLOCK(memcg_oom_lock);
1369 
1370 /*
1371  * Check OOM-Killer is already running under our hierarchy.
1372  * If someone is running, return false.
1373  */
1374 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1375 {
1376 	struct mem_cgroup *iter, *failed = NULL;
1377 
1378 	spin_lock(&memcg_oom_lock);
1379 
1380 	for_each_mem_cgroup_tree(iter, memcg) {
1381 		if (iter->oom_lock) {
1382 			/*
1383 			 * this subtree of our hierarchy is already locked
1384 			 * so we cannot give a lock.
1385 			 */
1386 			failed = iter;
1387 			mem_cgroup_iter_break(memcg, iter);
1388 			break;
1389 		} else
1390 			iter->oom_lock = true;
1391 	}
1392 
1393 	if (failed) {
1394 		/*
1395 		 * OK, we failed to lock the whole subtree so we have
1396 		 * to clean up what we set up to the failing subtree
1397 		 */
1398 		for_each_mem_cgroup_tree(iter, memcg) {
1399 			if (iter == failed) {
1400 				mem_cgroup_iter_break(memcg, iter);
1401 				break;
1402 			}
1403 			iter->oom_lock = false;
1404 		}
1405 	} else
1406 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1407 
1408 	spin_unlock(&memcg_oom_lock);
1409 
1410 	return !failed;
1411 }
1412 
1413 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1414 {
1415 	struct mem_cgroup *iter;
1416 
1417 	spin_lock(&memcg_oom_lock);
1418 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419 	for_each_mem_cgroup_tree(iter, memcg)
1420 		iter->oom_lock = false;
1421 	spin_unlock(&memcg_oom_lock);
1422 }
1423 
1424 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1425 {
1426 	struct mem_cgroup *iter;
1427 
1428 	spin_lock(&memcg_oom_lock);
1429 	for_each_mem_cgroup_tree(iter, memcg)
1430 		iter->under_oom++;
1431 	spin_unlock(&memcg_oom_lock);
1432 }
1433 
1434 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1435 {
1436 	struct mem_cgroup *iter;
1437 
1438 	/*
1439 	 * When a new child is created while the hierarchy is under oom,
1440 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1441 	 */
1442 	spin_lock(&memcg_oom_lock);
1443 	for_each_mem_cgroup_tree(iter, memcg)
1444 		if (iter->under_oom > 0)
1445 			iter->under_oom--;
1446 	spin_unlock(&memcg_oom_lock);
1447 }
1448 
1449 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1450 
1451 struct oom_wait_info {
1452 	struct mem_cgroup *memcg;
1453 	wait_queue_entry_t	wait;
1454 };
1455 
1456 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1457 	unsigned mode, int sync, void *arg)
1458 {
1459 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1460 	struct mem_cgroup *oom_wait_memcg;
1461 	struct oom_wait_info *oom_wait_info;
1462 
1463 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464 	oom_wait_memcg = oom_wait_info->memcg;
1465 
1466 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1467 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1468 		return 0;
1469 	return autoremove_wake_function(wait, mode, sync, arg);
1470 }
1471 
1472 static void memcg_oom_recover(struct mem_cgroup *memcg)
1473 {
1474 	/*
1475 	 * For the following lockless ->under_oom test, the only required
1476 	 * guarantee is that it must see the state asserted by an OOM when
1477 	 * this function is called as a result of userland actions
1478 	 * triggered by the notification of the OOM.  This is trivially
1479 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1480 	 * triggering notification.
1481 	 */
1482 	if (memcg && memcg->under_oom)
1483 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1484 }
1485 
1486 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1487 {
1488 	if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1489 		return;
1490 	/*
1491 	 * We are in the middle of the charge context here, so we
1492 	 * don't want to block when potentially sitting on a callstack
1493 	 * that holds all kinds of filesystem and mm locks.
1494 	 *
1495 	 * Also, the caller may handle a failed allocation gracefully
1496 	 * (like optional page cache readahead) and so an OOM killer
1497 	 * invocation might not even be necessary.
1498 	 *
1499 	 * That's why we don't do anything here except remember the
1500 	 * OOM context and then deal with it at the end of the page
1501 	 * fault when the stack is unwound, the locks are released,
1502 	 * and when we know whether the fault was overall successful.
1503 	 */
1504 	css_get(&memcg->css);
1505 	current->memcg_in_oom = memcg;
1506 	current->memcg_oom_gfp_mask = mask;
1507 	current->memcg_oom_order = order;
1508 }
1509 
1510 /**
1511  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512  * @handle: actually kill/wait or just clean up the OOM state
1513  *
1514  * This has to be called at the end of a page fault if the memcg OOM
1515  * handler was enabled.
1516  *
1517  * Memcg supports userspace OOM handling where failed allocations must
1518  * sleep on a waitqueue until the userspace task resolves the
1519  * situation.  Sleeping directly in the charge context with all kinds
1520  * of locks held is not a good idea, instead we remember an OOM state
1521  * in the task and mem_cgroup_oom_synchronize() has to be called at
1522  * the end of the page fault to complete the OOM handling.
1523  *
1524  * Returns %true if an ongoing memcg OOM situation was detected and
1525  * completed, %false otherwise.
1526  */
1527 bool mem_cgroup_oom_synchronize(bool handle)
1528 {
1529 	struct mem_cgroup *memcg = current->memcg_in_oom;
1530 	struct oom_wait_info owait;
1531 	bool locked;
1532 
1533 	/* OOM is global, do not handle */
1534 	if (!memcg)
1535 		return false;
1536 
1537 	if (!handle)
1538 		goto cleanup;
1539 
1540 	owait.memcg = memcg;
1541 	owait.wait.flags = 0;
1542 	owait.wait.func = memcg_oom_wake_function;
1543 	owait.wait.private = current;
1544 	INIT_LIST_HEAD(&owait.wait.entry);
1545 
1546 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547 	mem_cgroup_mark_under_oom(memcg);
1548 
1549 	locked = mem_cgroup_oom_trylock(memcg);
1550 
1551 	if (locked)
1552 		mem_cgroup_oom_notify(memcg);
1553 
1554 	if (locked && !memcg->oom_kill_disable) {
1555 		mem_cgroup_unmark_under_oom(memcg);
1556 		finish_wait(&memcg_oom_waitq, &owait.wait);
1557 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1558 					 current->memcg_oom_order);
1559 	} else {
1560 		schedule();
1561 		mem_cgroup_unmark_under_oom(memcg);
1562 		finish_wait(&memcg_oom_waitq, &owait.wait);
1563 	}
1564 
1565 	if (locked) {
1566 		mem_cgroup_oom_unlock(memcg);
1567 		/*
1568 		 * There is no guarantee that an OOM-lock contender
1569 		 * sees the wakeups triggered by the OOM kill
1570 		 * uncharges.  Wake any sleepers explicitely.
1571 		 */
1572 		memcg_oom_recover(memcg);
1573 	}
1574 cleanup:
1575 	current->memcg_in_oom = NULL;
1576 	css_put(&memcg->css);
1577 	return true;
1578 }
1579 
1580 /**
1581  * lock_page_memcg - lock a page->mem_cgroup binding
1582  * @page: the page
1583  *
1584  * This function protects unlocked LRU pages from being moved to
1585  * another cgroup.
1586  *
1587  * It ensures lifetime of the returned memcg. Caller is responsible
1588  * for the lifetime of the page; __unlock_page_memcg() is available
1589  * when @page might get freed inside the locked section.
1590  */
1591 struct mem_cgroup *lock_page_memcg(struct page *page)
1592 {
1593 	struct mem_cgroup *memcg;
1594 	unsigned long flags;
1595 
1596 	/*
1597 	 * The RCU lock is held throughout the transaction.  The fast
1598 	 * path can get away without acquiring the memcg->move_lock
1599 	 * because page moving starts with an RCU grace period.
1600 	 *
1601 	 * The RCU lock also protects the memcg from being freed when
1602 	 * the page state that is going to change is the only thing
1603 	 * preventing the page itself from being freed. E.g. writeback
1604 	 * doesn't hold a page reference and relies on PG_writeback to
1605 	 * keep off truncation, migration and so forth.
1606          */
1607 	rcu_read_lock();
1608 
1609 	if (mem_cgroup_disabled())
1610 		return NULL;
1611 again:
1612 	memcg = page->mem_cgroup;
1613 	if (unlikely(!memcg))
1614 		return NULL;
1615 
1616 	if (atomic_read(&memcg->moving_account) <= 0)
1617 		return memcg;
1618 
1619 	spin_lock_irqsave(&memcg->move_lock, flags);
1620 	if (memcg != page->mem_cgroup) {
1621 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1622 		goto again;
1623 	}
1624 
1625 	/*
1626 	 * When charge migration first begins, we can have locked and
1627 	 * unlocked page stat updates happening concurrently.  Track
1628 	 * the task who has the lock for unlock_page_memcg().
1629 	 */
1630 	memcg->move_lock_task = current;
1631 	memcg->move_lock_flags = flags;
1632 
1633 	return memcg;
1634 }
1635 EXPORT_SYMBOL(lock_page_memcg);
1636 
1637 /**
1638  * __unlock_page_memcg - unlock and unpin a memcg
1639  * @memcg: the memcg
1640  *
1641  * Unlock and unpin a memcg returned by lock_page_memcg().
1642  */
1643 void __unlock_page_memcg(struct mem_cgroup *memcg)
1644 {
1645 	if (memcg && memcg->move_lock_task == current) {
1646 		unsigned long flags = memcg->move_lock_flags;
1647 
1648 		memcg->move_lock_task = NULL;
1649 		memcg->move_lock_flags = 0;
1650 
1651 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1652 	}
1653 
1654 	rcu_read_unlock();
1655 }
1656 
1657 /**
1658  * unlock_page_memcg - unlock a page->mem_cgroup binding
1659  * @page: the page
1660  */
1661 void unlock_page_memcg(struct page *page)
1662 {
1663 	__unlock_page_memcg(page->mem_cgroup);
1664 }
1665 EXPORT_SYMBOL(unlock_page_memcg);
1666 
1667 struct memcg_stock_pcp {
1668 	struct mem_cgroup *cached; /* this never be root cgroup */
1669 	unsigned int nr_pages;
1670 	struct work_struct work;
1671 	unsigned long flags;
1672 #define FLUSHING_CACHED_CHARGE	0
1673 };
1674 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675 static DEFINE_MUTEX(percpu_charge_mutex);
1676 
1677 /**
1678  * consume_stock: Try to consume stocked charge on this cpu.
1679  * @memcg: memcg to consume from.
1680  * @nr_pages: how many pages to charge.
1681  *
1682  * The charges will only happen if @memcg matches the current cpu's memcg
1683  * stock, and at least @nr_pages are available in that stock.  Failure to
1684  * service an allocation will refill the stock.
1685  *
1686  * returns true if successful, false otherwise.
1687  */
1688 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1689 {
1690 	struct memcg_stock_pcp *stock;
1691 	unsigned long flags;
1692 	bool ret = false;
1693 
1694 	if (nr_pages > MEMCG_CHARGE_BATCH)
1695 		return ret;
1696 
1697 	local_irq_save(flags);
1698 
1699 	stock = this_cpu_ptr(&memcg_stock);
1700 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701 		stock->nr_pages -= nr_pages;
1702 		ret = true;
1703 	}
1704 
1705 	local_irq_restore(flags);
1706 
1707 	return ret;
1708 }
1709 
1710 /*
1711  * Returns stocks cached in percpu and reset cached information.
1712  */
1713 static void drain_stock(struct memcg_stock_pcp *stock)
1714 {
1715 	struct mem_cgroup *old = stock->cached;
1716 
1717 	if (stock->nr_pages) {
1718 		page_counter_uncharge(&old->memory, stock->nr_pages);
1719 		if (do_memsw_account())
1720 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1721 		css_put_many(&old->css, stock->nr_pages);
1722 		stock->nr_pages = 0;
1723 	}
1724 	stock->cached = NULL;
1725 }
1726 
1727 static void drain_local_stock(struct work_struct *dummy)
1728 {
1729 	struct memcg_stock_pcp *stock;
1730 	unsigned long flags;
1731 
1732 	/*
1733 	 * The only protection from memory hotplug vs. drain_stock races is
1734 	 * that we always operate on local CPU stock here with IRQ disabled
1735 	 */
1736 	local_irq_save(flags);
1737 
1738 	stock = this_cpu_ptr(&memcg_stock);
1739 	drain_stock(stock);
1740 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1741 
1742 	local_irq_restore(flags);
1743 }
1744 
1745 /*
1746  * Cache charges(val) to local per_cpu area.
1747  * This will be consumed by consume_stock() function, later.
1748  */
1749 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1750 {
1751 	struct memcg_stock_pcp *stock;
1752 	unsigned long flags;
1753 
1754 	local_irq_save(flags);
1755 
1756 	stock = this_cpu_ptr(&memcg_stock);
1757 	if (stock->cached != memcg) { /* reset if necessary */
1758 		drain_stock(stock);
1759 		stock->cached = memcg;
1760 	}
1761 	stock->nr_pages += nr_pages;
1762 
1763 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1764 		drain_stock(stock);
1765 
1766 	local_irq_restore(flags);
1767 }
1768 
1769 /*
1770  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771  * of the hierarchy under it.
1772  */
1773 static void drain_all_stock(struct mem_cgroup *root_memcg)
1774 {
1775 	int cpu, curcpu;
1776 
1777 	/* If someone's already draining, avoid adding running more workers. */
1778 	if (!mutex_trylock(&percpu_charge_mutex))
1779 		return;
1780 	/*
1781 	 * Notify other cpus that system-wide "drain" is running
1782 	 * We do not care about races with the cpu hotplug because cpu down
1783 	 * as well as workers from this path always operate on the local
1784 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1785 	 */
1786 	curcpu = get_cpu();
1787 	for_each_online_cpu(cpu) {
1788 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789 		struct mem_cgroup *memcg;
1790 
1791 		memcg = stock->cached;
1792 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1793 			continue;
1794 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1795 			css_put(&memcg->css);
1796 			continue;
1797 		}
1798 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1799 			if (cpu == curcpu)
1800 				drain_local_stock(&stock->work);
1801 			else
1802 				schedule_work_on(cpu, &stock->work);
1803 		}
1804 		css_put(&memcg->css);
1805 	}
1806 	put_cpu();
1807 	mutex_unlock(&percpu_charge_mutex);
1808 }
1809 
1810 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1811 {
1812 	struct memcg_stock_pcp *stock;
1813 	struct mem_cgroup *memcg;
1814 
1815 	stock = &per_cpu(memcg_stock, cpu);
1816 	drain_stock(stock);
1817 
1818 	for_each_mem_cgroup(memcg) {
1819 		int i;
1820 
1821 		for (i = 0; i < MEMCG_NR_STAT; i++) {
1822 			int nid;
1823 			long x;
1824 
1825 			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1826 			if (x)
1827 				atomic_long_add(x, &memcg->stat[i]);
1828 
1829 			if (i >= NR_VM_NODE_STAT_ITEMS)
1830 				continue;
1831 
1832 			for_each_node(nid) {
1833 				struct mem_cgroup_per_node *pn;
1834 
1835 				pn = mem_cgroup_nodeinfo(memcg, nid);
1836 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1837 				if (x)
1838 					atomic_long_add(x, &pn->lruvec_stat[i]);
1839 			}
1840 		}
1841 
1842 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1843 			long x;
1844 
1845 			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1846 			if (x)
1847 				atomic_long_add(x, &memcg->events[i]);
1848 		}
1849 	}
1850 
1851 	return 0;
1852 }
1853 
1854 static void reclaim_high(struct mem_cgroup *memcg,
1855 			 unsigned int nr_pages,
1856 			 gfp_t gfp_mask)
1857 {
1858 	do {
1859 		if (page_counter_read(&memcg->memory) <= memcg->high)
1860 			continue;
1861 		memcg_memory_event(memcg, MEMCG_HIGH);
1862 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 	} while ((memcg = parent_mem_cgroup(memcg)));
1864 }
1865 
1866 static void high_work_func(struct work_struct *work)
1867 {
1868 	struct mem_cgroup *memcg;
1869 
1870 	memcg = container_of(work, struct mem_cgroup, high_work);
1871 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1872 }
1873 
1874 /*
1875  * Scheduled by try_charge() to be executed from the userland return path
1876  * and reclaims memory over the high limit.
1877  */
1878 void mem_cgroup_handle_over_high(void)
1879 {
1880 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881 	struct mem_cgroup *memcg;
1882 
1883 	if (likely(!nr_pages))
1884 		return;
1885 
1886 	memcg = get_mem_cgroup_from_mm(current->mm);
1887 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 	css_put(&memcg->css);
1889 	current->memcg_nr_pages_over_high = 0;
1890 }
1891 
1892 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 		      unsigned int nr_pages)
1894 {
1895 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897 	struct mem_cgroup *mem_over_limit;
1898 	struct page_counter *counter;
1899 	unsigned long nr_reclaimed;
1900 	bool may_swap = true;
1901 	bool drained = false;
1902 
1903 	if (mem_cgroup_is_root(memcg))
1904 		return 0;
1905 retry:
1906 	if (consume_stock(memcg, nr_pages))
1907 		return 0;
1908 
1909 	if (!do_memsw_account() ||
1910 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912 			goto done_restock;
1913 		if (do_memsw_account())
1914 			page_counter_uncharge(&memcg->memsw, batch);
1915 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916 	} else {
1917 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918 		may_swap = false;
1919 	}
1920 
1921 	if (batch > nr_pages) {
1922 		batch = nr_pages;
1923 		goto retry;
1924 	}
1925 
1926 	/*
1927 	 * Unlike in global OOM situations, memcg is not in a physical
1928 	 * memory shortage.  Allow dying and OOM-killed tasks to
1929 	 * bypass the last charges so that they can exit quickly and
1930 	 * free their memory.
1931 	 */
1932 	if (unlikely(tsk_is_oom_victim(current) ||
1933 		     fatal_signal_pending(current) ||
1934 		     current->flags & PF_EXITING))
1935 		goto force;
1936 
1937 	/*
1938 	 * Prevent unbounded recursion when reclaim operations need to
1939 	 * allocate memory. This might exceed the limits temporarily,
1940 	 * but we prefer facilitating memory reclaim and getting back
1941 	 * under the limit over triggering OOM kills in these cases.
1942 	 */
1943 	if (unlikely(current->flags & PF_MEMALLOC))
1944 		goto force;
1945 
1946 	if (unlikely(task_in_memcg_oom(current)))
1947 		goto nomem;
1948 
1949 	if (!gfpflags_allow_blocking(gfp_mask))
1950 		goto nomem;
1951 
1952 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
1953 
1954 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1955 						    gfp_mask, may_swap);
1956 
1957 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1958 		goto retry;
1959 
1960 	if (!drained) {
1961 		drain_all_stock(mem_over_limit);
1962 		drained = true;
1963 		goto retry;
1964 	}
1965 
1966 	if (gfp_mask & __GFP_NORETRY)
1967 		goto nomem;
1968 	/*
1969 	 * Even though the limit is exceeded at this point, reclaim
1970 	 * may have been able to free some pages.  Retry the charge
1971 	 * before killing the task.
1972 	 *
1973 	 * Only for regular pages, though: huge pages are rather
1974 	 * unlikely to succeed so close to the limit, and we fall back
1975 	 * to regular pages anyway in case of failure.
1976 	 */
1977 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1978 		goto retry;
1979 	/*
1980 	 * At task move, charge accounts can be doubly counted. So, it's
1981 	 * better to wait until the end of task_move if something is going on.
1982 	 */
1983 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1984 		goto retry;
1985 
1986 	if (nr_retries--)
1987 		goto retry;
1988 
1989 	if (gfp_mask & __GFP_NOFAIL)
1990 		goto force;
1991 
1992 	if (fatal_signal_pending(current))
1993 		goto force;
1994 
1995 	memcg_memory_event(mem_over_limit, MEMCG_OOM);
1996 
1997 	mem_cgroup_oom(mem_over_limit, gfp_mask,
1998 		       get_order(nr_pages * PAGE_SIZE));
1999 nomem:
2000 	if (!(gfp_mask & __GFP_NOFAIL))
2001 		return -ENOMEM;
2002 force:
2003 	/*
2004 	 * The allocation either can't fail or will lead to more memory
2005 	 * being freed very soon.  Allow memory usage go over the limit
2006 	 * temporarily by force charging it.
2007 	 */
2008 	page_counter_charge(&memcg->memory, nr_pages);
2009 	if (do_memsw_account())
2010 		page_counter_charge(&memcg->memsw, nr_pages);
2011 	css_get_many(&memcg->css, nr_pages);
2012 
2013 	return 0;
2014 
2015 done_restock:
2016 	css_get_many(&memcg->css, batch);
2017 	if (batch > nr_pages)
2018 		refill_stock(memcg, batch - nr_pages);
2019 
2020 	/*
2021 	 * If the hierarchy is above the normal consumption range, schedule
2022 	 * reclaim on returning to userland.  We can perform reclaim here
2023 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2025 	 * not recorded as it most likely matches current's and won't
2026 	 * change in the meantime.  As high limit is checked again before
2027 	 * reclaim, the cost of mismatch is negligible.
2028 	 */
2029 	do {
2030 		if (page_counter_read(&memcg->memory) > memcg->high) {
2031 			/* Don't bother a random interrupted task */
2032 			if (in_interrupt()) {
2033 				schedule_work(&memcg->high_work);
2034 				break;
2035 			}
2036 			current->memcg_nr_pages_over_high += batch;
2037 			set_notify_resume(current);
2038 			break;
2039 		}
2040 	} while ((memcg = parent_mem_cgroup(memcg)));
2041 
2042 	return 0;
2043 }
2044 
2045 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2046 {
2047 	if (mem_cgroup_is_root(memcg))
2048 		return;
2049 
2050 	page_counter_uncharge(&memcg->memory, nr_pages);
2051 	if (do_memsw_account())
2052 		page_counter_uncharge(&memcg->memsw, nr_pages);
2053 
2054 	css_put_many(&memcg->css, nr_pages);
2055 }
2056 
2057 static void lock_page_lru(struct page *page, int *isolated)
2058 {
2059 	struct zone *zone = page_zone(page);
2060 
2061 	spin_lock_irq(zone_lru_lock(zone));
2062 	if (PageLRU(page)) {
2063 		struct lruvec *lruvec;
2064 
2065 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2066 		ClearPageLRU(page);
2067 		del_page_from_lru_list(page, lruvec, page_lru(page));
2068 		*isolated = 1;
2069 	} else
2070 		*isolated = 0;
2071 }
2072 
2073 static void unlock_page_lru(struct page *page, int isolated)
2074 {
2075 	struct zone *zone = page_zone(page);
2076 
2077 	if (isolated) {
2078 		struct lruvec *lruvec;
2079 
2080 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081 		VM_BUG_ON_PAGE(PageLRU(page), page);
2082 		SetPageLRU(page);
2083 		add_page_to_lru_list(page, lruvec, page_lru(page));
2084 	}
2085 	spin_unlock_irq(zone_lru_lock(zone));
2086 }
2087 
2088 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2089 			  bool lrucare)
2090 {
2091 	int isolated;
2092 
2093 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2094 
2095 	/*
2096 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2098 	 */
2099 	if (lrucare)
2100 		lock_page_lru(page, &isolated);
2101 
2102 	/*
2103 	 * Nobody should be changing or seriously looking at
2104 	 * page->mem_cgroup at this point:
2105 	 *
2106 	 * - the page is uncharged
2107 	 *
2108 	 * - the page is off-LRU
2109 	 *
2110 	 * - an anonymous fault has exclusive page access, except for
2111 	 *   a locked page table
2112 	 *
2113 	 * - a page cache insertion, a swapin fault, or a migration
2114 	 *   have the page locked
2115 	 */
2116 	page->mem_cgroup = memcg;
2117 
2118 	if (lrucare)
2119 		unlock_page_lru(page, isolated);
2120 }
2121 
2122 #ifndef CONFIG_SLOB
2123 static int memcg_alloc_cache_id(void)
2124 {
2125 	int id, size;
2126 	int err;
2127 
2128 	id = ida_simple_get(&memcg_cache_ida,
2129 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2130 	if (id < 0)
2131 		return id;
2132 
2133 	if (id < memcg_nr_cache_ids)
2134 		return id;
2135 
2136 	/*
2137 	 * There's no space for the new id in memcg_caches arrays,
2138 	 * so we have to grow them.
2139 	 */
2140 	down_write(&memcg_cache_ids_sem);
2141 
2142 	size = 2 * (id + 1);
2143 	if (size < MEMCG_CACHES_MIN_SIZE)
2144 		size = MEMCG_CACHES_MIN_SIZE;
2145 	else if (size > MEMCG_CACHES_MAX_SIZE)
2146 		size = MEMCG_CACHES_MAX_SIZE;
2147 
2148 	err = memcg_update_all_caches(size);
2149 	if (!err)
2150 		err = memcg_update_all_list_lrus(size);
2151 	if (!err)
2152 		memcg_nr_cache_ids = size;
2153 
2154 	up_write(&memcg_cache_ids_sem);
2155 
2156 	if (err) {
2157 		ida_simple_remove(&memcg_cache_ida, id);
2158 		return err;
2159 	}
2160 	return id;
2161 }
2162 
2163 static void memcg_free_cache_id(int id)
2164 {
2165 	ida_simple_remove(&memcg_cache_ida, id);
2166 }
2167 
2168 struct memcg_kmem_cache_create_work {
2169 	struct mem_cgroup *memcg;
2170 	struct kmem_cache *cachep;
2171 	struct work_struct work;
2172 };
2173 
2174 static void memcg_kmem_cache_create_func(struct work_struct *w)
2175 {
2176 	struct memcg_kmem_cache_create_work *cw =
2177 		container_of(w, struct memcg_kmem_cache_create_work, work);
2178 	struct mem_cgroup *memcg = cw->memcg;
2179 	struct kmem_cache *cachep = cw->cachep;
2180 
2181 	memcg_create_kmem_cache(memcg, cachep);
2182 
2183 	css_put(&memcg->css);
2184 	kfree(cw);
2185 }
2186 
2187 /*
2188  * Enqueue the creation of a per-memcg kmem_cache.
2189  */
2190 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2191 					       struct kmem_cache *cachep)
2192 {
2193 	struct memcg_kmem_cache_create_work *cw;
2194 
2195 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2196 	if (!cw)
2197 		return;
2198 
2199 	css_get(&memcg->css);
2200 
2201 	cw->memcg = memcg;
2202 	cw->cachep = cachep;
2203 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2204 
2205 	queue_work(memcg_kmem_cache_wq, &cw->work);
2206 }
2207 
2208 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2209 					     struct kmem_cache *cachep)
2210 {
2211 	/*
2212 	 * We need to stop accounting when we kmalloc, because if the
2213 	 * corresponding kmalloc cache is not yet created, the first allocation
2214 	 * in __memcg_schedule_kmem_cache_create will recurse.
2215 	 *
2216 	 * However, it is better to enclose the whole function. Depending on
2217 	 * the debugging options enabled, INIT_WORK(), for instance, can
2218 	 * trigger an allocation. This too, will make us recurse. Because at
2219 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220 	 * the safest choice is to do it like this, wrapping the whole function.
2221 	 */
2222 	current->memcg_kmem_skip_account = 1;
2223 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2224 	current->memcg_kmem_skip_account = 0;
2225 }
2226 
2227 static inline bool memcg_kmem_bypass(void)
2228 {
2229 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2230 		return true;
2231 	return false;
2232 }
2233 
2234 /**
2235  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236  * @cachep: the original global kmem cache
2237  *
2238  * Return the kmem_cache we're supposed to use for a slab allocation.
2239  * We try to use the current memcg's version of the cache.
2240  *
2241  * If the cache does not exist yet, if we are the first user of it, we
2242  * create it asynchronously in a workqueue and let the current allocation
2243  * go through with the original cache.
2244  *
2245  * This function takes a reference to the cache it returns to assure it
2246  * won't get destroyed while we are working with it. Once the caller is
2247  * done with it, memcg_kmem_put_cache() must be called to release the
2248  * reference.
2249  */
2250 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2251 {
2252 	struct mem_cgroup *memcg;
2253 	struct kmem_cache *memcg_cachep;
2254 	int kmemcg_id;
2255 
2256 	VM_BUG_ON(!is_root_cache(cachep));
2257 
2258 	if (memcg_kmem_bypass())
2259 		return cachep;
2260 
2261 	if (current->memcg_kmem_skip_account)
2262 		return cachep;
2263 
2264 	memcg = get_mem_cgroup_from_mm(current->mm);
2265 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2266 	if (kmemcg_id < 0)
2267 		goto out;
2268 
2269 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270 	if (likely(memcg_cachep))
2271 		return memcg_cachep;
2272 
2273 	/*
2274 	 * If we are in a safe context (can wait, and not in interrupt
2275 	 * context), we could be be predictable and return right away.
2276 	 * This would guarantee that the allocation being performed
2277 	 * already belongs in the new cache.
2278 	 *
2279 	 * However, there are some clashes that can arrive from locking.
2280 	 * For instance, because we acquire the slab_mutex while doing
2281 	 * memcg_create_kmem_cache, this means no further allocation
2282 	 * could happen with the slab_mutex held. So it's better to
2283 	 * defer everything.
2284 	 */
2285 	memcg_schedule_kmem_cache_create(memcg, cachep);
2286 out:
2287 	css_put(&memcg->css);
2288 	return cachep;
2289 }
2290 
2291 /**
2292  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293  * @cachep: the cache returned by memcg_kmem_get_cache
2294  */
2295 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2296 {
2297 	if (!is_root_cache(cachep))
2298 		css_put(&cachep->memcg_params.memcg->css);
2299 }
2300 
2301 /**
2302  * memcg_kmem_charge_memcg: charge a kmem page
2303  * @page: page to charge
2304  * @gfp: reclaim mode
2305  * @order: allocation order
2306  * @memcg: memory cgroup to charge
2307  *
2308  * Returns 0 on success, an error code on failure.
2309  */
2310 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2311 			    struct mem_cgroup *memcg)
2312 {
2313 	unsigned int nr_pages = 1 << order;
2314 	struct page_counter *counter;
2315 	int ret;
2316 
2317 	ret = try_charge(memcg, gfp, nr_pages);
2318 	if (ret)
2319 		return ret;
2320 
2321 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2322 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2323 		cancel_charge(memcg, nr_pages);
2324 		return -ENOMEM;
2325 	}
2326 
2327 	page->mem_cgroup = memcg;
2328 
2329 	return 0;
2330 }
2331 
2332 /**
2333  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334  * @page: page to charge
2335  * @gfp: reclaim mode
2336  * @order: allocation order
2337  *
2338  * Returns 0 on success, an error code on failure.
2339  */
2340 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341 {
2342 	struct mem_cgroup *memcg;
2343 	int ret = 0;
2344 
2345 	if (memcg_kmem_bypass())
2346 		return 0;
2347 
2348 	memcg = get_mem_cgroup_from_mm(current->mm);
2349 	if (!mem_cgroup_is_root(memcg)) {
2350 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351 		if (!ret)
2352 			__SetPageKmemcg(page);
2353 	}
2354 	css_put(&memcg->css);
2355 	return ret;
2356 }
2357 /**
2358  * memcg_kmem_uncharge: uncharge a kmem page
2359  * @page: page to uncharge
2360  * @order: allocation order
2361  */
2362 void memcg_kmem_uncharge(struct page *page, int order)
2363 {
2364 	struct mem_cgroup *memcg = page->mem_cgroup;
2365 	unsigned int nr_pages = 1 << order;
2366 
2367 	if (!memcg)
2368 		return;
2369 
2370 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2371 
2372 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373 		page_counter_uncharge(&memcg->kmem, nr_pages);
2374 
2375 	page_counter_uncharge(&memcg->memory, nr_pages);
2376 	if (do_memsw_account())
2377 		page_counter_uncharge(&memcg->memsw, nr_pages);
2378 
2379 	page->mem_cgroup = NULL;
2380 
2381 	/* slab pages do not have PageKmemcg flag set */
2382 	if (PageKmemcg(page))
2383 		__ClearPageKmemcg(page);
2384 
2385 	css_put_many(&memcg->css, nr_pages);
2386 }
2387 #endif /* !CONFIG_SLOB */
2388 
2389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2390 
2391 /*
2392  * Because tail pages are not marked as "used", set it. We're under
2393  * zone_lru_lock and migration entries setup in all page mappings.
2394  */
2395 void mem_cgroup_split_huge_fixup(struct page *head)
2396 {
2397 	int i;
2398 
2399 	if (mem_cgroup_disabled())
2400 		return;
2401 
2402 	for (i = 1; i < HPAGE_PMD_NR; i++)
2403 		head[i].mem_cgroup = head->mem_cgroup;
2404 
2405 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2406 }
2407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2408 
2409 #ifdef CONFIG_MEMCG_SWAP
2410 /**
2411  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412  * @entry: swap entry to be moved
2413  * @from:  mem_cgroup which the entry is moved from
2414  * @to:  mem_cgroup which the entry is moved to
2415  *
2416  * It succeeds only when the swap_cgroup's record for this entry is the same
2417  * as the mem_cgroup's id of @from.
2418  *
2419  * Returns 0 on success, -EINVAL on failure.
2420  *
2421  * The caller must have charged to @to, IOW, called page_counter_charge() about
2422  * both res and memsw, and called css_get().
2423  */
2424 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425 				struct mem_cgroup *from, struct mem_cgroup *to)
2426 {
2427 	unsigned short old_id, new_id;
2428 
2429 	old_id = mem_cgroup_id(from);
2430 	new_id = mem_cgroup_id(to);
2431 
2432 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433 		mod_memcg_state(from, MEMCG_SWAP, -1);
2434 		mod_memcg_state(to, MEMCG_SWAP, 1);
2435 		return 0;
2436 	}
2437 	return -EINVAL;
2438 }
2439 #else
2440 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441 				struct mem_cgroup *from, struct mem_cgroup *to)
2442 {
2443 	return -EINVAL;
2444 }
2445 #endif
2446 
2447 static DEFINE_MUTEX(memcg_max_mutex);
2448 
2449 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2450 				 unsigned long max, bool memsw)
2451 {
2452 	bool enlarge = false;
2453 	bool drained = false;
2454 	int ret;
2455 	bool limits_invariant;
2456 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2457 
2458 	do {
2459 		if (signal_pending(current)) {
2460 			ret = -EINTR;
2461 			break;
2462 		}
2463 
2464 		mutex_lock(&memcg_max_mutex);
2465 		/*
2466 		 * Make sure that the new limit (memsw or memory limit) doesn't
2467 		 * break our basic invariant rule memory.max <= memsw.max.
2468 		 */
2469 		limits_invariant = memsw ? max >= memcg->memory.max :
2470 					   max <= memcg->memsw.max;
2471 		if (!limits_invariant) {
2472 			mutex_unlock(&memcg_max_mutex);
2473 			ret = -EINVAL;
2474 			break;
2475 		}
2476 		if (max > counter->max)
2477 			enlarge = true;
2478 		ret = page_counter_set_max(counter, max);
2479 		mutex_unlock(&memcg_max_mutex);
2480 
2481 		if (!ret)
2482 			break;
2483 
2484 		if (!drained) {
2485 			drain_all_stock(memcg);
2486 			drained = true;
2487 			continue;
2488 		}
2489 
2490 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2491 					GFP_KERNEL, !memsw)) {
2492 			ret = -EBUSY;
2493 			break;
2494 		}
2495 	} while (true);
2496 
2497 	if (!ret && enlarge)
2498 		memcg_oom_recover(memcg);
2499 
2500 	return ret;
2501 }
2502 
2503 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2504 					    gfp_t gfp_mask,
2505 					    unsigned long *total_scanned)
2506 {
2507 	unsigned long nr_reclaimed = 0;
2508 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2509 	unsigned long reclaimed;
2510 	int loop = 0;
2511 	struct mem_cgroup_tree_per_node *mctz;
2512 	unsigned long excess;
2513 	unsigned long nr_scanned;
2514 
2515 	if (order > 0)
2516 		return 0;
2517 
2518 	mctz = soft_limit_tree_node(pgdat->node_id);
2519 
2520 	/*
2521 	 * Do not even bother to check the largest node if the root
2522 	 * is empty. Do it lockless to prevent lock bouncing. Races
2523 	 * are acceptable as soft limit is best effort anyway.
2524 	 */
2525 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2526 		return 0;
2527 
2528 	/*
2529 	 * This loop can run a while, specially if mem_cgroup's continuously
2530 	 * keep exceeding their soft limit and putting the system under
2531 	 * pressure
2532 	 */
2533 	do {
2534 		if (next_mz)
2535 			mz = next_mz;
2536 		else
2537 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2538 		if (!mz)
2539 			break;
2540 
2541 		nr_scanned = 0;
2542 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2543 						    gfp_mask, &nr_scanned);
2544 		nr_reclaimed += reclaimed;
2545 		*total_scanned += nr_scanned;
2546 		spin_lock_irq(&mctz->lock);
2547 		__mem_cgroup_remove_exceeded(mz, mctz);
2548 
2549 		/*
2550 		 * If we failed to reclaim anything from this memory cgroup
2551 		 * it is time to move on to the next cgroup
2552 		 */
2553 		next_mz = NULL;
2554 		if (!reclaimed)
2555 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2556 
2557 		excess = soft_limit_excess(mz->memcg);
2558 		/*
2559 		 * One school of thought says that we should not add
2560 		 * back the node to the tree if reclaim returns 0.
2561 		 * But our reclaim could return 0, simply because due
2562 		 * to priority we are exposing a smaller subset of
2563 		 * memory to reclaim from. Consider this as a longer
2564 		 * term TODO.
2565 		 */
2566 		/* If excess == 0, no tree ops */
2567 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2568 		spin_unlock_irq(&mctz->lock);
2569 		css_put(&mz->memcg->css);
2570 		loop++;
2571 		/*
2572 		 * Could not reclaim anything and there are no more
2573 		 * mem cgroups to try or we seem to be looping without
2574 		 * reclaiming anything.
2575 		 */
2576 		if (!nr_reclaimed &&
2577 			(next_mz == NULL ||
2578 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2579 			break;
2580 	} while (!nr_reclaimed);
2581 	if (next_mz)
2582 		css_put(&next_mz->memcg->css);
2583 	return nr_reclaimed;
2584 }
2585 
2586 /*
2587  * Test whether @memcg has children, dead or alive.  Note that this
2588  * function doesn't care whether @memcg has use_hierarchy enabled and
2589  * returns %true if there are child csses according to the cgroup
2590  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2591  */
2592 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2593 {
2594 	bool ret;
2595 
2596 	rcu_read_lock();
2597 	ret = css_next_child(NULL, &memcg->css);
2598 	rcu_read_unlock();
2599 	return ret;
2600 }
2601 
2602 /*
2603  * Reclaims as many pages from the given memcg as possible.
2604  *
2605  * Caller is responsible for holding css reference for memcg.
2606  */
2607 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2608 {
2609 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2610 
2611 	/* we call try-to-free pages for make this cgroup empty */
2612 	lru_add_drain_all();
2613 
2614 	drain_all_stock(memcg);
2615 
2616 	/* try to free all pages in this cgroup */
2617 	while (nr_retries && page_counter_read(&memcg->memory)) {
2618 		int progress;
2619 
2620 		if (signal_pending(current))
2621 			return -EINTR;
2622 
2623 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2624 							GFP_KERNEL, true);
2625 		if (!progress) {
2626 			nr_retries--;
2627 			/* maybe some writeback is necessary */
2628 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2629 		}
2630 
2631 	}
2632 
2633 	return 0;
2634 }
2635 
2636 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2637 					    char *buf, size_t nbytes,
2638 					    loff_t off)
2639 {
2640 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2641 
2642 	if (mem_cgroup_is_root(memcg))
2643 		return -EINVAL;
2644 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2645 }
2646 
2647 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2648 				     struct cftype *cft)
2649 {
2650 	return mem_cgroup_from_css(css)->use_hierarchy;
2651 }
2652 
2653 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2654 				      struct cftype *cft, u64 val)
2655 {
2656 	int retval = 0;
2657 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2658 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2659 
2660 	if (memcg->use_hierarchy == val)
2661 		return 0;
2662 
2663 	/*
2664 	 * If parent's use_hierarchy is set, we can't make any modifications
2665 	 * in the child subtrees. If it is unset, then the change can
2666 	 * occur, provided the current cgroup has no children.
2667 	 *
2668 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2669 	 * set if there are no children.
2670 	 */
2671 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2672 				(val == 1 || val == 0)) {
2673 		if (!memcg_has_children(memcg))
2674 			memcg->use_hierarchy = val;
2675 		else
2676 			retval = -EBUSY;
2677 	} else
2678 		retval = -EINVAL;
2679 
2680 	return retval;
2681 }
2682 
2683 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2684 {
2685 	struct mem_cgroup *iter;
2686 	int i;
2687 
2688 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2689 
2690 	for_each_mem_cgroup_tree(iter, memcg) {
2691 		for (i = 0; i < MEMCG_NR_STAT; i++)
2692 			stat[i] += memcg_page_state(iter, i);
2693 	}
2694 }
2695 
2696 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2697 {
2698 	struct mem_cgroup *iter;
2699 	int i;
2700 
2701 	memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2702 
2703 	for_each_mem_cgroup_tree(iter, memcg) {
2704 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2705 			events[i] += memcg_sum_events(iter, i);
2706 	}
2707 }
2708 
2709 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2710 {
2711 	unsigned long val = 0;
2712 
2713 	if (mem_cgroup_is_root(memcg)) {
2714 		struct mem_cgroup *iter;
2715 
2716 		for_each_mem_cgroup_tree(iter, memcg) {
2717 			val += memcg_page_state(iter, MEMCG_CACHE);
2718 			val += memcg_page_state(iter, MEMCG_RSS);
2719 			if (swap)
2720 				val += memcg_page_state(iter, MEMCG_SWAP);
2721 		}
2722 	} else {
2723 		if (!swap)
2724 			val = page_counter_read(&memcg->memory);
2725 		else
2726 			val = page_counter_read(&memcg->memsw);
2727 	}
2728 	return val;
2729 }
2730 
2731 enum {
2732 	RES_USAGE,
2733 	RES_LIMIT,
2734 	RES_MAX_USAGE,
2735 	RES_FAILCNT,
2736 	RES_SOFT_LIMIT,
2737 };
2738 
2739 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2740 			       struct cftype *cft)
2741 {
2742 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2743 	struct page_counter *counter;
2744 
2745 	switch (MEMFILE_TYPE(cft->private)) {
2746 	case _MEM:
2747 		counter = &memcg->memory;
2748 		break;
2749 	case _MEMSWAP:
2750 		counter = &memcg->memsw;
2751 		break;
2752 	case _KMEM:
2753 		counter = &memcg->kmem;
2754 		break;
2755 	case _TCP:
2756 		counter = &memcg->tcpmem;
2757 		break;
2758 	default:
2759 		BUG();
2760 	}
2761 
2762 	switch (MEMFILE_ATTR(cft->private)) {
2763 	case RES_USAGE:
2764 		if (counter == &memcg->memory)
2765 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2766 		if (counter == &memcg->memsw)
2767 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2768 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2769 	case RES_LIMIT:
2770 		return (u64)counter->max * PAGE_SIZE;
2771 	case RES_MAX_USAGE:
2772 		return (u64)counter->watermark * PAGE_SIZE;
2773 	case RES_FAILCNT:
2774 		return counter->failcnt;
2775 	case RES_SOFT_LIMIT:
2776 		return (u64)memcg->soft_limit * PAGE_SIZE;
2777 	default:
2778 		BUG();
2779 	}
2780 }
2781 
2782 #ifndef CONFIG_SLOB
2783 static int memcg_online_kmem(struct mem_cgroup *memcg)
2784 {
2785 	int memcg_id;
2786 
2787 	if (cgroup_memory_nokmem)
2788 		return 0;
2789 
2790 	BUG_ON(memcg->kmemcg_id >= 0);
2791 	BUG_ON(memcg->kmem_state);
2792 
2793 	memcg_id = memcg_alloc_cache_id();
2794 	if (memcg_id < 0)
2795 		return memcg_id;
2796 
2797 	static_branch_inc(&memcg_kmem_enabled_key);
2798 	/*
2799 	 * A memory cgroup is considered kmem-online as soon as it gets
2800 	 * kmemcg_id. Setting the id after enabling static branching will
2801 	 * guarantee no one starts accounting before all call sites are
2802 	 * patched.
2803 	 */
2804 	memcg->kmemcg_id = memcg_id;
2805 	memcg->kmem_state = KMEM_ONLINE;
2806 	INIT_LIST_HEAD(&memcg->kmem_caches);
2807 
2808 	return 0;
2809 }
2810 
2811 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2812 {
2813 	struct cgroup_subsys_state *css;
2814 	struct mem_cgroup *parent, *child;
2815 	int kmemcg_id;
2816 
2817 	if (memcg->kmem_state != KMEM_ONLINE)
2818 		return;
2819 	/*
2820 	 * Clear the online state before clearing memcg_caches array
2821 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2822 	 * guarantees that no cache will be created for this cgroup
2823 	 * after we are done (see memcg_create_kmem_cache()).
2824 	 */
2825 	memcg->kmem_state = KMEM_ALLOCATED;
2826 
2827 	memcg_deactivate_kmem_caches(memcg);
2828 
2829 	kmemcg_id = memcg->kmemcg_id;
2830 	BUG_ON(kmemcg_id < 0);
2831 
2832 	parent = parent_mem_cgroup(memcg);
2833 	if (!parent)
2834 		parent = root_mem_cgroup;
2835 
2836 	/*
2837 	 * Change kmemcg_id of this cgroup and all its descendants to the
2838 	 * parent's id, and then move all entries from this cgroup's list_lrus
2839 	 * to ones of the parent. After we have finished, all list_lrus
2840 	 * corresponding to this cgroup are guaranteed to remain empty. The
2841 	 * ordering is imposed by list_lru_node->lock taken by
2842 	 * memcg_drain_all_list_lrus().
2843 	 */
2844 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2845 	css_for_each_descendant_pre(css, &memcg->css) {
2846 		child = mem_cgroup_from_css(css);
2847 		BUG_ON(child->kmemcg_id != kmemcg_id);
2848 		child->kmemcg_id = parent->kmemcg_id;
2849 		if (!memcg->use_hierarchy)
2850 			break;
2851 	}
2852 	rcu_read_unlock();
2853 
2854 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2855 
2856 	memcg_free_cache_id(kmemcg_id);
2857 }
2858 
2859 static void memcg_free_kmem(struct mem_cgroup *memcg)
2860 {
2861 	/* css_alloc() failed, offlining didn't happen */
2862 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2863 		memcg_offline_kmem(memcg);
2864 
2865 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2866 		memcg_destroy_kmem_caches(memcg);
2867 		static_branch_dec(&memcg_kmem_enabled_key);
2868 		WARN_ON(page_counter_read(&memcg->kmem));
2869 	}
2870 }
2871 #else
2872 static int memcg_online_kmem(struct mem_cgroup *memcg)
2873 {
2874 	return 0;
2875 }
2876 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2877 {
2878 }
2879 static void memcg_free_kmem(struct mem_cgroup *memcg)
2880 {
2881 }
2882 #endif /* !CONFIG_SLOB */
2883 
2884 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
2885 				 unsigned long max)
2886 {
2887 	int ret;
2888 
2889 	mutex_lock(&memcg_max_mutex);
2890 	ret = page_counter_set_max(&memcg->kmem, max);
2891 	mutex_unlock(&memcg_max_mutex);
2892 	return ret;
2893 }
2894 
2895 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
2896 {
2897 	int ret;
2898 
2899 	mutex_lock(&memcg_max_mutex);
2900 
2901 	ret = page_counter_set_max(&memcg->tcpmem, max);
2902 	if (ret)
2903 		goto out;
2904 
2905 	if (!memcg->tcpmem_active) {
2906 		/*
2907 		 * The active flag needs to be written after the static_key
2908 		 * update. This is what guarantees that the socket activation
2909 		 * function is the last one to run. See mem_cgroup_sk_alloc()
2910 		 * for details, and note that we don't mark any socket as
2911 		 * belonging to this memcg until that flag is up.
2912 		 *
2913 		 * We need to do this, because static_keys will span multiple
2914 		 * sites, but we can't control their order. If we mark a socket
2915 		 * as accounted, but the accounting functions are not patched in
2916 		 * yet, we'll lose accounting.
2917 		 *
2918 		 * We never race with the readers in mem_cgroup_sk_alloc(),
2919 		 * because when this value change, the code to process it is not
2920 		 * patched in yet.
2921 		 */
2922 		static_branch_inc(&memcg_sockets_enabled_key);
2923 		memcg->tcpmem_active = true;
2924 	}
2925 out:
2926 	mutex_unlock(&memcg_max_mutex);
2927 	return ret;
2928 }
2929 
2930 /*
2931  * The user of this function is...
2932  * RES_LIMIT.
2933  */
2934 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2935 				char *buf, size_t nbytes, loff_t off)
2936 {
2937 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2938 	unsigned long nr_pages;
2939 	int ret;
2940 
2941 	buf = strstrip(buf);
2942 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2943 	if (ret)
2944 		return ret;
2945 
2946 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2947 	case RES_LIMIT:
2948 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2949 			ret = -EINVAL;
2950 			break;
2951 		}
2952 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2953 		case _MEM:
2954 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
2955 			break;
2956 		case _MEMSWAP:
2957 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
2958 			break;
2959 		case _KMEM:
2960 			ret = memcg_update_kmem_max(memcg, nr_pages);
2961 			break;
2962 		case _TCP:
2963 			ret = memcg_update_tcp_max(memcg, nr_pages);
2964 			break;
2965 		}
2966 		break;
2967 	case RES_SOFT_LIMIT:
2968 		memcg->soft_limit = nr_pages;
2969 		ret = 0;
2970 		break;
2971 	}
2972 	return ret ?: nbytes;
2973 }
2974 
2975 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2976 				size_t nbytes, loff_t off)
2977 {
2978 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2979 	struct page_counter *counter;
2980 
2981 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
2982 	case _MEM:
2983 		counter = &memcg->memory;
2984 		break;
2985 	case _MEMSWAP:
2986 		counter = &memcg->memsw;
2987 		break;
2988 	case _KMEM:
2989 		counter = &memcg->kmem;
2990 		break;
2991 	case _TCP:
2992 		counter = &memcg->tcpmem;
2993 		break;
2994 	default:
2995 		BUG();
2996 	}
2997 
2998 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2999 	case RES_MAX_USAGE:
3000 		page_counter_reset_watermark(counter);
3001 		break;
3002 	case RES_FAILCNT:
3003 		counter->failcnt = 0;
3004 		break;
3005 	default:
3006 		BUG();
3007 	}
3008 
3009 	return nbytes;
3010 }
3011 
3012 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3013 					struct cftype *cft)
3014 {
3015 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3016 }
3017 
3018 #ifdef CONFIG_MMU
3019 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3020 					struct cftype *cft, u64 val)
3021 {
3022 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3023 
3024 	if (val & ~MOVE_MASK)
3025 		return -EINVAL;
3026 
3027 	/*
3028 	 * No kind of locking is needed in here, because ->can_attach() will
3029 	 * check this value once in the beginning of the process, and then carry
3030 	 * on with stale data. This means that changes to this value will only
3031 	 * affect task migrations starting after the change.
3032 	 */
3033 	memcg->move_charge_at_immigrate = val;
3034 	return 0;
3035 }
3036 #else
3037 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3038 					struct cftype *cft, u64 val)
3039 {
3040 	return -ENOSYS;
3041 }
3042 #endif
3043 
3044 #ifdef CONFIG_NUMA
3045 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3046 {
3047 	struct numa_stat {
3048 		const char *name;
3049 		unsigned int lru_mask;
3050 	};
3051 
3052 	static const struct numa_stat stats[] = {
3053 		{ "total", LRU_ALL },
3054 		{ "file", LRU_ALL_FILE },
3055 		{ "anon", LRU_ALL_ANON },
3056 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3057 	};
3058 	const struct numa_stat *stat;
3059 	int nid;
3060 	unsigned long nr;
3061 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3062 
3063 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3064 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3065 		seq_printf(m, "%s=%lu", stat->name, nr);
3066 		for_each_node_state(nid, N_MEMORY) {
3067 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3068 							  stat->lru_mask);
3069 			seq_printf(m, " N%d=%lu", nid, nr);
3070 		}
3071 		seq_putc(m, '\n');
3072 	}
3073 
3074 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3075 		struct mem_cgroup *iter;
3076 
3077 		nr = 0;
3078 		for_each_mem_cgroup_tree(iter, memcg)
3079 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3080 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3081 		for_each_node_state(nid, N_MEMORY) {
3082 			nr = 0;
3083 			for_each_mem_cgroup_tree(iter, memcg)
3084 				nr += mem_cgroup_node_nr_lru_pages(
3085 					iter, nid, stat->lru_mask);
3086 			seq_printf(m, " N%d=%lu", nid, nr);
3087 		}
3088 		seq_putc(m, '\n');
3089 	}
3090 
3091 	return 0;
3092 }
3093 #endif /* CONFIG_NUMA */
3094 
3095 /* Universal VM events cgroup1 shows, original sort order */
3096 static const unsigned int memcg1_events[] = {
3097 	PGPGIN,
3098 	PGPGOUT,
3099 	PGFAULT,
3100 	PGMAJFAULT,
3101 };
3102 
3103 static const char *const memcg1_event_names[] = {
3104 	"pgpgin",
3105 	"pgpgout",
3106 	"pgfault",
3107 	"pgmajfault",
3108 };
3109 
3110 static int memcg_stat_show(struct seq_file *m, void *v)
3111 {
3112 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3113 	unsigned long memory, memsw;
3114 	struct mem_cgroup *mi;
3115 	unsigned int i;
3116 
3117 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3118 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3119 
3120 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3121 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3122 			continue;
3123 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3124 			   memcg_page_state(memcg, memcg1_stats[i]) *
3125 			   PAGE_SIZE);
3126 	}
3127 
3128 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3129 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3130 			   memcg_sum_events(memcg, memcg1_events[i]));
3131 
3132 	for (i = 0; i < NR_LRU_LISTS; i++)
3133 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3134 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3135 
3136 	/* Hierarchical information */
3137 	memory = memsw = PAGE_COUNTER_MAX;
3138 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3139 		memory = min(memory, mi->memory.max);
3140 		memsw = min(memsw, mi->memsw.max);
3141 	}
3142 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3143 		   (u64)memory * PAGE_SIZE);
3144 	if (do_memsw_account())
3145 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3146 			   (u64)memsw * PAGE_SIZE);
3147 
3148 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3149 		unsigned long long val = 0;
3150 
3151 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3152 			continue;
3153 		for_each_mem_cgroup_tree(mi, memcg)
3154 			val += memcg_page_state(mi, memcg1_stats[i]) *
3155 			PAGE_SIZE;
3156 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3157 	}
3158 
3159 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3160 		unsigned long long val = 0;
3161 
3162 		for_each_mem_cgroup_tree(mi, memcg)
3163 			val += memcg_sum_events(mi, memcg1_events[i]);
3164 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3165 	}
3166 
3167 	for (i = 0; i < NR_LRU_LISTS; i++) {
3168 		unsigned long long val = 0;
3169 
3170 		for_each_mem_cgroup_tree(mi, memcg)
3171 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3172 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3173 	}
3174 
3175 #ifdef CONFIG_DEBUG_VM
3176 	{
3177 		pg_data_t *pgdat;
3178 		struct mem_cgroup_per_node *mz;
3179 		struct zone_reclaim_stat *rstat;
3180 		unsigned long recent_rotated[2] = {0, 0};
3181 		unsigned long recent_scanned[2] = {0, 0};
3182 
3183 		for_each_online_pgdat(pgdat) {
3184 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3185 			rstat = &mz->lruvec.reclaim_stat;
3186 
3187 			recent_rotated[0] += rstat->recent_rotated[0];
3188 			recent_rotated[1] += rstat->recent_rotated[1];
3189 			recent_scanned[0] += rstat->recent_scanned[0];
3190 			recent_scanned[1] += rstat->recent_scanned[1];
3191 		}
3192 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3193 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3194 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3195 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3196 	}
3197 #endif
3198 
3199 	return 0;
3200 }
3201 
3202 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3203 				      struct cftype *cft)
3204 {
3205 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3206 
3207 	return mem_cgroup_swappiness(memcg);
3208 }
3209 
3210 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3211 				       struct cftype *cft, u64 val)
3212 {
3213 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3214 
3215 	if (val > 100)
3216 		return -EINVAL;
3217 
3218 	if (css->parent)
3219 		memcg->swappiness = val;
3220 	else
3221 		vm_swappiness = val;
3222 
3223 	return 0;
3224 }
3225 
3226 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3227 {
3228 	struct mem_cgroup_threshold_ary *t;
3229 	unsigned long usage;
3230 	int i;
3231 
3232 	rcu_read_lock();
3233 	if (!swap)
3234 		t = rcu_dereference(memcg->thresholds.primary);
3235 	else
3236 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3237 
3238 	if (!t)
3239 		goto unlock;
3240 
3241 	usage = mem_cgroup_usage(memcg, swap);
3242 
3243 	/*
3244 	 * current_threshold points to threshold just below or equal to usage.
3245 	 * If it's not true, a threshold was crossed after last
3246 	 * call of __mem_cgroup_threshold().
3247 	 */
3248 	i = t->current_threshold;
3249 
3250 	/*
3251 	 * Iterate backward over array of thresholds starting from
3252 	 * current_threshold and check if a threshold is crossed.
3253 	 * If none of thresholds below usage is crossed, we read
3254 	 * only one element of the array here.
3255 	 */
3256 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3257 		eventfd_signal(t->entries[i].eventfd, 1);
3258 
3259 	/* i = current_threshold + 1 */
3260 	i++;
3261 
3262 	/*
3263 	 * Iterate forward over array of thresholds starting from
3264 	 * current_threshold+1 and check if a threshold is crossed.
3265 	 * If none of thresholds above usage is crossed, we read
3266 	 * only one element of the array here.
3267 	 */
3268 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3269 		eventfd_signal(t->entries[i].eventfd, 1);
3270 
3271 	/* Update current_threshold */
3272 	t->current_threshold = i - 1;
3273 unlock:
3274 	rcu_read_unlock();
3275 }
3276 
3277 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3278 {
3279 	while (memcg) {
3280 		__mem_cgroup_threshold(memcg, false);
3281 		if (do_memsw_account())
3282 			__mem_cgroup_threshold(memcg, true);
3283 
3284 		memcg = parent_mem_cgroup(memcg);
3285 	}
3286 }
3287 
3288 static int compare_thresholds(const void *a, const void *b)
3289 {
3290 	const struct mem_cgroup_threshold *_a = a;
3291 	const struct mem_cgroup_threshold *_b = b;
3292 
3293 	if (_a->threshold > _b->threshold)
3294 		return 1;
3295 
3296 	if (_a->threshold < _b->threshold)
3297 		return -1;
3298 
3299 	return 0;
3300 }
3301 
3302 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3303 {
3304 	struct mem_cgroup_eventfd_list *ev;
3305 
3306 	spin_lock(&memcg_oom_lock);
3307 
3308 	list_for_each_entry(ev, &memcg->oom_notify, list)
3309 		eventfd_signal(ev->eventfd, 1);
3310 
3311 	spin_unlock(&memcg_oom_lock);
3312 	return 0;
3313 }
3314 
3315 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3316 {
3317 	struct mem_cgroup *iter;
3318 
3319 	for_each_mem_cgroup_tree(iter, memcg)
3320 		mem_cgroup_oom_notify_cb(iter);
3321 }
3322 
3323 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3324 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3325 {
3326 	struct mem_cgroup_thresholds *thresholds;
3327 	struct mem_cgroup_threshold_ary *new;
3328 	unsigned long threshold;
3329 	unsigned long usage;
3330 	int i, size, ret;
3331 
3332 	ret = page_counter_memparse(args, "-1", &threshold);
3333 	if (ret)
3334 		return ret;
3335 
3336 	mutex_lock(&memcg->thresholds_lock);
3337 
3338 	if (type == _MEM) {
3339 		thresholds = &memcg->thresholds;
3340 		usage = mem_cgroup_usage(memcg, false);
3341 	} else if (type == _MEMSWAP) {
3342 		thresholds = &memcg->memsw_thresholds;
3343 		usage = mem_cgroup_usage(memcg, true);
3344 	} else
3345 		BUG();
3346 
3347 	/* Check if a threshold crossed before adding a new one */
3348 	if (thresholds->primary)
3349 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3350 
3351 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3352 
3353 	/* Allocate memory for new array of thresholds */
3354 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3355 			GFP_KERNEL);
3356 	if (!new) {
3357 		ret = -ENOMEM;
3358 		goto unlock;
3359 	}
3360 	new->size = size;
3361 
3362 	/* Copy thresholds (if any) to new array */
3363 	if (thresholds->primary) {
3364 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3365 				sizeof(struct mem_cgroup_threshold));
3366 	}
3367 
3368 	/* Add new threshold */
3369 	new->entries[size - 1].eventfd = eventfd;
3370 	new->entries[size - 1].threshold = threshold;
3371 
3372 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3373 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3374 			compare_thresholds, NULL);
3375 
3376 	/* Find current threshold */
3377 	new->current_threshold = -1;
3378 	for (i = 0; i < size; i++) {
3379 		if (new->entries[i].threshold <= usage) {
3380 			/*
3381 			 * new->current_threshold will not be used until
3382 			 * rcu_assign_pointer(), so it's safe to increment
3383 			 * it here.
3384 			 */
3385 			++new->current_threshold;
3386 		} else
3387 			break;
3388 	}
3389 
3390 	/* Free old spare buffer and save old primary buffer as spare */
3391 	kfree(thresholds->spare);
3392 	thresholds->spare = thresholds->primary;
3393 
3394 	rcu_assign_pointer(thresholds->primary, new);
3395 
3396 	/* To be sure that nobody uses thresholds */
3397 	synchronize_rcu();
3398 
3399 unlock:
3400 	mutex_unlock(&memcg->thresholds_lock);
3401 
3402 	return ret;
3403 }
3404 
3405 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3406 	struct eventfd_ctx *eventfd, const char *args)
3407 {
3408 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3409 }
3410 
3411 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3412 	struct eventfd_ctx *eventfd, const char *args)
3413 {
3414 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3415 }
3416 
3417 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3418 	struct eventfd_ctx *eventfd, enum res_type type)
3419 {
3420 	struct mem_cgroup_thresholds *thresholds;
3421 	struct mem_cgroup_threshold_ary *new;
3422 	unsigned long usage;
3423 	int i, j, size;
3424 
3425 	mutex_lock(&memcg->thresholds_lock);
3426 
3427 	if (type == _MEM) {
3428 		thresholds = &memcg->thresholds;
3429 		usage = mem_cgroup_usage(memcg, false);
3430 	} else if (type == _MEMSWAP) {
3431 		thresholds = &memcg->memsw_thresholds;
3432 		usage = mem_cgroup_usage(memcg, true);
3433 	} else
3434 		BUG();
3435 
3436 	if (!thresholds->primary)
3437 		goto unlock;
3438 
3439 	/* Check if a threshold crossed before removing */
3440 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3441 
3442 	/* Calculate new number of threshold */
3443 	size = 0;
3444 	for (i = 0; i < thresholds->primary->size; i++) {
3445 		if (thresholds->primary->entries[i].eventfd != eventfd)
3446 			size++;
3447 	}
3448 
3449 	new = thresholds->spare;
3450 
3451 	/* Set thresholds array to NULL if we don't have thresholds */
3452 	if (!size) {
3453 		kfree(new);
3454 		new = NULL;
3455 		goto swap_buffers;
3456 	}
3457 
3458 	new->size = size;
3459 
3460 	/* Copy thresholds and find current threshold */
3461 	new->current_threshold = -1;
3462 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3463 		if (thresholds->primary->entries[i].eventfd == eventfd)
3464 			continue;
3465 
3466 		new->entries[j] = thresholds->primary->entries[i];
3467 		if (new->entries[j].threshold <= usage) {
3468 			/*
3469 			 * new->current_threshold will not be used
3470 			 * until rcu_assign_pointer(), so it's safe to increment
3471 			 * it here.
3472 			 */
3473 			++new->current_threshold;
3474 		}
3475 		j++;
3476 	}
3477 
3478 swap_buffers:
3479 	/* Swap primary and spare array */
3480 	thresholds->spare = thresholds->primary;
3481 
3482 	rcu_assign_pointer(thresholds->primary, new);
3483 
3484 	/* To be sure that nobody uses thresholds */
3485 	synchronize_rcu();
3486 
3487 	/* If all events are unregistered, free the spare array */
3488 	if (!new) {
3489 		kfree(thresholds->spare);
3490 		thresholds->spare = NULL;
3491 	}
3492 unlock:
3493 	mutex_unlock(&memcg->thresholds_lock);
3494 }
3495 
3496 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3497 	struct eventfd_ctx *eventfd)
3498 {
3499 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3500 }
3501 
3502 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3503 	struct eventfd_ctx *eventfd)
3504 {
3505 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3506 }
3507 
3508 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3509 	struct eventfd_ctx *eventfd, const char *args)
3510 {
3511 	struct mem_cgroup_eventfd_list *event;
3512 
3513 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3514 	if (!event)
3515 		return -ENOMEM;
3516 
3517 	spin_lock(&memcg_oom_lock);
3518 
3519 	event->eventfd = eventfd;
3520 	list_add(&event->list, &memcg->oom_notify);
3521 
3522 	/* already in OOM ? */
3523 	if (memcg->under_oom)
3524 		eventfd_signal(eventfd, 1);
3525 	spin_unlock(&memcg_oom_lock);
3526 
3527 	return 0;
3528 }
3529 
3530 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3531 	struct eventfd_ctx *eventfd)
3532 {
3533 	struct mem_cgroup_eventfd_list *ev, *tmp;
3534 
3535 	spin_lock(&memcg_oom_lock);
3536 
3537 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3538 		if (ev->eventfd == eventfd) {
3539 			list_del(&ev->list);
3540 			kfree(ev);
3541 		}
3542 	}
3543 
3544 	spin_unlock(&memcg_oom_lock);
3545 }
3546 
3547 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3548 {
3549 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3550 
3551 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3552 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3553 	seq_printf(sf, "oom_kill %lu\n",
3554 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3555 	return 0;
3556 }
3557 
3558 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3559 	struct cftype *cft, u64 val)
3560 {
3561 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3562 
3563 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3564 	if (!css->parent || !((val == 0) || (val == 1)))
3565 		return -EINVAL;
3566 
3567 	memcg->oom_kill_disable = val;
3568 	if (!val)
3569 		memcg_oom_recover(memcg);
3570 
3571 	return 0;
3572 }
3573 
3574 #ifdef CONFIG_CGROUP_WRITEBACK
3575 
3576 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3577 {
3578 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3579 }
3580 
3581 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3582 {
3583 	wb_domain_exit(&memcg->cgwb_domain);
3584 }
3585 
3586 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3587 {
3588 	wb_domain_size_changed(&memcg->cgwb_domain);
3589 }
3590 
3591 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3592 {
3593 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3594 
3595 	if (!memcg->css.parent)
3596 		return NULL;
3597 
3598 	return &memcg->cgwb_domain;
3599 }
3600 
3601 /**
3602  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3603  * @wb: bdi_writeback in question
3604  * @pfilepages: out parameter for number of file pages
3605  * @pheadroom: out parameter for number of allocatable pages according to memcg
3606  * @pdirty: out parameter for number of dirty pages
3607  * @pwriteback: out parameter for number of pages under writeback
3608  *
3609  * Determine the numbers of file, headroom, dirty, and writeback pages in
3610  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3611  * is a bit more involved.
3612  *
3613  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3614  * headroom is calculated as the lowest headroom of itself and the
3615  * ancestors.  Note that this doesn't consider the actual amount of
3616  * available memory in the system.  The caller should further cap
3617  * *@pheadroom accordingly.
3618  */
3619 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3620 			 unsigned long *pheadroom, unsigned long *pdirty,
3621 			 unsigned long *pwriteback)
3622 {
3623 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3624 	struct mem_cgroup *parent;
3625 
3626 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3627 
3628 	/* this should eventually include NR_UNSTABLE_NFS */
3629 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3630 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3631 						     (1 << LRU_ACTIVE_FILE));
3632 	*pheadroom = PAGE_COUNTER_MAX;
3633 
3634 	while ((parent = parent_mem_cgroup(memcg))) {
3635 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3636 		unsigned long used = page_counter_read(&memcg->memory);
3637 
3638 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3639 		memcg = parent;
3640 	}
3641 }
3642 
3643 #else	/* CONFIG_CGROUP_WRITEBACK */
3644 
3645 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3646 {
3647 	return 0;
3648 }
3649 
3650 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3651 {
3652 }
3653 
3654 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3655 {
3656 }
3657 
3658 #endif	/* CONFIG_CGROUP_WRITEBACK */
3659 
3660 /*
3661  * DO NOT USE IN NEW FILES.
3662  *
3663  * "cgroup.event_control" implementation.
3664  *
3665  * This is way over-engineered.  It tries to support fully configurable
3666  * events for each user.  Such level of flexibility is completely
3667  * unnecessary especially in the light of the planned unified hierarchy.
3668  *
3669  * Please deprecate this and replace with something simpler if at all
3670  * possible.
3671  */
3672 
3673 /*
3674  * Unregister event and free resources.
3675  *
3676  * Gets called from workqueue.
3677  */
3678 static void memcg_event_remove(struct work_struct *work)
3679 {
3680 	struct mem_cgroup_event *event =
3681 		container_of(work, struct mem_cgroup_event, remove);
3682 	struct mem_cgroup *memcg = event->memcg;
3683 
3684 	remove_wait_queue(event->wqh, &event->wait);
3685 
3686 	event->unregister_event(memcg, event->eventfd);
3687 
3688 	/* Notify userspace the event is going away. */
3689 	eventfd_signal(event->eventfd, 1);
3690 
3691 	eventfd_ctx_put(event->eventfd);
3692 	kfree(event);
3693 	css_put(&memcg->css);
3694 }
3695 
3696 /*
3697  * Gets called on EPOLLHUP on eventfd when user closes it.
3698  *
3699  * Called with wqh->lock held and interrupts disabled.
3700  */
3701 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3702 			    int sync, void *key)
3703 {
3704 	struct mem_cgroup_event *event =
3705 		container_of(wait, struct mem_cgroup_event, wait);
3706 	struct mem_cgroup *memcg = event->memcg;
3707 	__poll_t flags = key_to_poll(key);
3708 
3709 	if (flags & EPOLLHUP) {
3710 		/*
3711 		 * If the event has been detached at cgroup removal, we
3712 		 * can simply return knowing the other side will cleanup
3713 		 * for us.
3714 		 *
3715 		 * We can't race against event freeing since the other
3716 		 * side will require wqh->lock via remove_wait_queue(),
3717 		 * which we hold.
3718 		 */
3719 		spin_lock(&memcg->event_list_lock);
3720 		if (!list_empty(&event->list)) {
3721 			list_del_init(&event->list);
3722 			/*
3723 			 * We are in atomic context, but cgroup_event_remove()
3724 			 * may sleep, so we have to call it in workqueue.
3725 			 */
3726 			schedule_work(&event->remove);
3727 		}
3728 		spin_unlock(&memcg->event_list_lock);
3729 	}
3730 
3731 	return 0;
3732 }
3733 
3734 static void memcg_event_ptable_queue_proc(struct file *file,
3735 		wait_queue_head_t *wqh, poll_table *pt)
3736 {
3737 	struct mem_cgroup_event *event =
3738 		container_of(pt, struct mem_cgroup_event, pt);
3739 
3740 	event->wqh = wqh;
3741 	add_wait_queue(wqh, &event->wait);
3742 }
3743 
3744 /*
3745  * DO NOT USE IN NEW FILES.
3746  *
3747  * Parse input and register new cgroup event handler.
3748  *
3749  * Input must be in format '<event_fd> <control_fd> <args>'.
3750  * Interpretation of args is defined by control file implementation.
3751  */
3752 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3753 					 char *buf, size_t nbytes, loff_t off)
3754 {
3755 	struct cgroup_subsys_state *css = of_css(of);
3756 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3757 	struct mem_cgroup_event *event;
3758 	struct cgroup_subsys_state *cfile_css;
3759 	unsigned int efd, cfd;
3760 	struct fd efile;
3761 	struct fd cfile;
3762 	const char *name;
3763 	char *endp;
3764 	int ret;
3765 
3766 	buf = strstrip(buf);
3767 
3768 	efd = simple_strtoul(buf, &endp, 10);
3769 	if (*endp != ' ')
3770 		return -EINVAL;
3771 	buf = endp + 1;
3772 
3773 	cfd = simple_strtoul(buf, &endp, 10);
3774 	if ((*endp != ' ') && (*endp != '\0'))
3775 		return -EINVAL;
3776 	buf = endp + 1;
3777 
3778 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3779 	if (!event)
3780 		return -ENOMEM;
3781 
3782 	event->memcg = memcg;
3783 	INIT_LIST_HEAD(&event->list);
3784 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3785 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3786 	INIT_WORK(&event->remove, memcg_event_remove);
3787 
3788 	efile = fdget(efd);
3789 	if (!efile.file) {
3790 		ret = -EBADF;
3791 		goto out_kfree;
3792 	}
3793 
3794 	event->eventfd = eventfd_ctx_fileget(efile.file);
3795 	if (IS_ERR(event->eventfd)) {
3796 		ret = PTR_ERR(event->eventfd);
3797 		goto out_put_efile;
3798 	}
3799 
3800 	cfile = fdget(cfd);
3801 	if (!cfile.file) {
3802 		ret = -EBADF;
3803 		goto out_put_eventfd;
3804 	}
3805 
3806 	/* the process need read permission on control file */
3807 	/* AV: shouldn't we check that it's been opened for read instead? */
3808 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3809 	if (ret < 0)
3810 		goto out_put_cfile;
3811 
3812 	/*
3813 	 * Determine the event callbacks and set them in @event.  This used
3814 	 * to be done via struct cftype but cgroup core no longer knows
3815 	 * about these events.  The following is crude but the whole thing
3816 	 * is for compatibility anyway.
3817 	 *
3818 	 * DO NOT ADD NEW FILES.
3819 	 */
3820 	name = cfile.file->f_path.dentry->d_name.name;
3821 
3822 	if (!strcmp(name, "memory.usage_in_bytes")) {
3823 		event->register_event = mem_cgroup_usage_register_event;
3824 		event->unregister_event = mem_cgroup_usage_unregister_event;
3825 	} else if (!strcmp(name, "memory.oom_control")) {
3826 		event->register_event = mem_cgroup_oom_register_event;
3827 		event->unregister_event = mem_cgroup_oom_unregister_event;
3828 	} else if (!strcmp(name, "memory.pressure_level")) {
3829 		event->register_event = vmpressure_register_event;
3830 		event->unregister_event = vmpressure_unregister_event;
3831 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3832 		event->register_event = memsw_cgroup_usage_register_event;
3833 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3834 	} else {
3835 		ret = -EINVAL;
3836 		goto out_put_cfile;
3837 	}
3838 
3839 	/*
3840 	 * Verify @cfile should belong to @css.  Also, remaining events are
3841 	 * automatically removed on cgroup destruction but the removal is
3842 	 * asynchronous, so take an extra ref on @css.
3843 	 */
3844 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3845 					       &memory_cgrp_subsys);
3846 	ret = -EINVAL;
3847 	if (IS_ERR(cfile_css))
3848 		goto out_put_cfile;
3849 	if (cfile_css != css) {
3850 		css_put(cfile_css);
3851 		goto out_put_cfile;
3852 	}
3853 
3854 	ret = event->register_event(memcg, event->eventfd, buf);
3855 	if (ret)
3856 		goto out_put_css;
3857 
3858 	vfs_poll(efile.file, &event->pt);
3859 
3860 	spin_lock(&memcg->event_list_lock);
3861 	list_add(&event->list, &memcg->event_list);
3862 	spin_unlock(&memcg->event_list_lock);
3863 
3864 	fdput(cfile);
3865 	fdput(efile);
3866 
3867 	return nbytes;
3868 
3869 out_put_css:
3870 	css_put(css);
3871 out_put_cfile:
3872 	fdput(cfile);
3873 out_put_eventfd:
3874 	eventfd_ctx_put(event->eventfd);
3875 out_put_efile:
3876 	fdput(efile);
3877 out_kfree:
3878 	kfree(event);
3879 
3880 	return ret;
3881 }
3882 
3883 static struct cftype mem_cgroup_legacy_files[] = {
3884 	{
3885 		.name = "usage_in_bytes",
3886 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3887 		.read_u64 = mem_cgroup_read_u64,
3888 	},
3889 	{
3890 		.name = "max_usage_in_bytes",
3891 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3892 		.write = mem_cgroup_reset,
3893 		.read_u64 = mem_cgroup_read_u64,
3894 	},
3895 	{
3896 		.name = "limit_in_bytes",
3897 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3898 		.write = mem_cgroup_write,
3899 		.read_u64 = mem_cgroup_read_u64,
3900 	},
3901 	{
3902 		.name = "soft_limit_in_bytes",
3903 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3904 		.write = mem_cgroup_write,
3905 		.read_u64 = mem_cgroup_read_u64,
3906 	},
3907 	{
3908 		.name = "failcnt",
3909 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3910 		.write = mem_cgroup_reset,
3911 		.read_u64 = mem_cgroup_read_u64,
3912 	},
3913 	{
3914 		.name = "stat",
3915 		.seq_show = memcg_stat_show,
3916 	},
3917 	{
3918 		.name = "force_empty",
3919 		.write = mem_cgroup_force_empty_write,
3920 	},
3921 	{
3922 		.name = "use_hierarchy",
3923 		.write_u64 = mem_cgroup_hierarchy_write,
3924 		.read_u64 = mem_cgroup_hierarchy_read,
3925 	},
3926 	{
3927 		.name = "cgroup.event_control",		/* XXX: for compat */
3928 		.write = memcg_write_event_control,
3929 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3930 	},
3931 	{
3932 		.name = "swappiness",
3933 		.read_u64 = mem_cgroup_swappiness_read,
3934 		.write_u64 = mem_cgroup_swappiness_write,
3935 	},
3936 	{
3937 		.name = "move_charge_at_immigrate",
3938 		.read_u64 = mem_cgroup_move_charge_read,
3939 		.write_u64 = mem_cgroup_move_charge_write,
3940 	},
3941 	{
3942 		.name = "oom_control",
3943 		.seq_show = mem_cgroup_oom_control_read,
3944 		.write_u64 = mem_cgroup_oom_control_write,
3945 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3946 	},
3947 	{
3948 		.name = "pressure_level",
3949 	},
3950 #ifdef CONFIG_NUMA
3951 	{
3952 		.name = "numa_stat",
3953 		.seq_show = memcg_numa_stat_show,
3954 	},
3955 #endif
3956 	{
3957 		.name = "kmem.limit_in_bytes",
3958 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3959 		.write = mem_cgroup_write,
3960 		.read_u64 = mem_cgroup_read_u64,
3961 	},
3962 	{
3963 		.name = "kmem.usage_in_bytes",
3964 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3965 		.read_u64 = mem_cgroup_read_u64,
3966 	},
3967 	{
3968 		.name = "kmem.failcnt",
3969 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3970 		.write = mem_cgroup_reset,
3971 		.read_u64 = mem_cgroup_read_u64,
3972 	},
3973 	{
3974 		.name = "kmem.max_usage_in_bytes",
3975 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3976 		.write = mem_cgroup_reset,
3977 		.read_u64 = mem_cgroup_read_u64,
3978 	},
3979 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
3980 	{
3981 		.name = "kmem.slabinfo",
3982 		.seq_start = memcg_slab_start,
3983 		.seq_next = memcg_slab_next,
3984 		.seq_stop = memcg_slab_stop,
3985 		.seq_show = memcg_slab_show,
3986 	},
3987 #endif
3988 	{
3989 		.name = "kmem.tcp.limit_in_bytes",
3990 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
3991 		.write = mem_cgroup_write,
3992 		.read_u64 = mem_cgroup_read_u64,
3993 	},
3994 	{
3995 		.name = "kmem.tcp.usage_in_bytes",
3996 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
3997 		.read_u64 = mem_cgroup_read_u64,
3998 	},
3999 	{
4000 		.name = "kmem.tcp.failcnt",
4001 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4002 		.write = mem_cgroup_reset,
4003 		.read_u64 = mem_cgroup_read_u64,
4004 	},
4005 	{
4006 		.name = "kmem.tcp.max_usage_in_bytes",
4007 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4008 		.write = mem_cgroup_reset,
4009 		.read_u64 = mem_cgroup_read_u64,
4010 	},
4011 	{ },	/* terminate */
4012 };
4013 
4014 /*
4015  * Private memory cgroup IDR
4016  *
4017  * Swap-out records and page cache shadow entries need to store memcg
4018  * references in constrained space, so we maintain an ID space that is
4019  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4020  * memory-controlled cgroups to 64k.
4021  *
4022  * However, there usually are many references to the oflline CSS after
4023  * the cgroup has been destroyed, such as page cache or reclaimable
4024  * slab objects, that don't need to hang on to the ID. We want to keep
4025  * those dead CSS from occupying IDs, or we might quickly exhaust the
4026  * relatively small ID space and prevent the creation of new cgroups
4027  * even when there are much fewer than 64k cgroups - possibly none.
4028  *
4029  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4030  * be freed and recycled when it's no longer needed, which is usually
4031  * when the CSS is offlined.
4032  *
4033  * The only exception to that are records of swapped out tmpfs/shmem
4034  * pages that need to be attributed to live ancestors on swapin. But
4035  * those references are manageable from userspace.
4036  */
4037 
4038 static DEFINE_IDR(mem_cgroup_idr);
4039 
4040 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4041 {
4042 	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4043 	atomic_add(n, &memcg->id.ref);
4044 }
4045 
4046 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4047 {
4048 	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4049 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4050 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4051 		memcg->id.id = 0;
4052 
4053 		/* Memcg ID pins CSS */
4054 		css_put(&memcg->css);
4055 	}
4056 }
4057 
4058 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4059 {
4060 	mem_cgroup_id_get_many(memcg, 1);
4061 }
4062 
4063 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4064 {
4065 	mem_cgroup_id_put_many(memcg, 1);
4066 }
4067 
4068 /**
4069  * mem_cgroup_from_id - look up a memcg from a memcg id
4070  * @id: the memcg id to look up
4071  *
4072  * Caller must hold rcu_read_lock().
4073  */
4074 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4075 {
4076 	WARN_ON_ONCE(!rcu_read_lock_held());
4077 	return idr_find(&mem_cgroup_idr, id);
4078 }
4079 
4080 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4081 {
4082 	struct mem_cgroup_per_node *pn;
4083 	int tmp = node;
4084 	/*
4085 	 * This routine is called against possible nodes.
4086 	 * But it's BUG to call kmalloc() against offline node.
4087 	 *
4088 	 * TODO: this routine can waste much memory for nodes which will
4089 	 *       never be onlined. It's better to use memory hotplug callback
4090 	 *       function.
4091 	 */
4092 	if (!node_state(node, N_NORMAL_MEMORY))
4093 		tmp = -1;
4094 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4095 	if (!pn)
4096 		return 1;
4097 
4098 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4099 	if (!pn->lruvec_stat_cpu) {
4100 		kfree(pn);
4101 		return 1;
4102 	}
4103 
4104 	lruvec_init(&pn->lruvec);
4105 	pn->usage_in_excess = 0;
4106 	pn->on_tree = false;
4107 	pn->memcg = memcg;
4108 
4109 	memcg->nodeinfo[node] = pn;
4110 	return 0;
4111 }
4112 
4113 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4114 {
4115 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4116 
4117 	if (!pn)
4118 		return;
4119 
4120 	free_percpu(pn->lruvec_stat_cpu);
4121 	kfree(pn);
4122 }
4123 
4124 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4125 {
4126 	int node;
4127 
4128 	for_each_node(node)
4129 		free_mem_cgroup_per_node_info(memcg, node);
4130 	free_percpu(memcg->stat_cpu);
4131 	kfree(memcg);
4132 }
4133 
4134 static void mem_cgroup_free(struct mem_cgroup *memcg)
4135 {
4136 	memcg_wb_domain_exit(memcg);
4137 	__mem_cgroup_free(memcg);
4138 }
4139 
4140 static struct mem_cgroup *mem_cgroup_alloc(void)
4141 {
4142 	struct mem_cgroup *memcg;
4143 	size_t size;
4144 	int node;
4145 
4146 	size = sizeof(struct mem_cgroup);
4147 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4148 
4149 	memcg = kzalloc(size, GFP_KERNEL);
4150 	if (!memcg)
4151 		return NULL;
4152 
4153 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4154 				 1, MEM_CGROUP_ID_MAX,
4155 				 GFP_KERNEL);
4156 	if (memcg->id.id < 0)
4157 		goto fail;
4158 
4159 	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4160 	if (!memcg->stat_cpu)
4161 		goto fail;
4162 
4163 	for_each_node(node)
4164 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4165 			goto fail;
4166 
4167 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4168 		goto fail;
4169 
4170 	INIT_WORK(&memcg->high_work, high_work_func);
4171 	memcg->last_scanned_node = MAX_NUMNODES;
4172 	INIT_LIST_HEAD(&memcg->oom_notify);
4173 	mutex_init(&memcg->thresholds_lock);
4174 	spin_lock_init(&memcg->move_lock);
4175 	vmpressure_init(&memcg->vmpressure);
4176 	INIT_LIST_HEAD(&memcg->event_list);
4177 	spin_lock_init(&memcg->event_list_lock);
4178 	memcg->socket_pressure = jiffies;
4179 #ifndef CONFIG_SLOB
4180 	memcg->kmemcg_id = -1;
4181 #endif
4182 #ifdef CONFIG_CGROUP_WRITEBACK
4183 	INIT_LIST_HEAD(&memcg->cgwb_list);
4184 #endif
4185 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4186 	return memcg;
4187 fail:
4188 	if (memcg->id.id > 0)
4189 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4190 	__mem_cgroup_free(memcg);
4191 	return NULL;
4192 }
4193 
4194 static struct cgroup_subsys_state * __ref
4195 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4196 {
4197 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4198 	struct mem_cgroup *memcg;
4199 	long error = -ENOMEM;
4200 
4201 	memcg = mem_cgroup_alloc();
4202 	if (!memcg)
4203 		return ERR_PTR(error);
4204 
4205 	memcg->high = PAGE_COUNTER_MAX;
4206 	memcg->soft_limit = PAGE_COUNTER_MAX;
4207 	if (parent) {
4208 		memcg->swappiness = mem_cgroup_swappiness(parent);
4209 		memcg->oom_kill_disable = parent->oom_kill_disable;
4210 	}
4211 	if (parent && parent->use_hierarchy) {
4212 		memcg->use_hierarchy = true;
4213 		page_counter_init(&memcg->memory, &parent->memory);
4214 		page_counter_init(&memcg->swap, &parent->swap);
4215 		page_counter_init(&memcg->memsw, &parent->memsw);
4216 		page_counter_init(&memcg->kmem, &parent->kmem);
4217 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4218 	} else {
4219 		page_counter_init(&memcg->memory, NULL);
4220 		page_counter_init(&memcg->swap, NULL);
4221 		page_counter_init(&memcg->memsw, NULL);
4222 		page_counter_init(&memcg->kmem, NULL);
4223 		page_counter_init(&memcg->tcpmem, NULL);
4224 		/*
4225 		 * Deeper hierachy with use_hierarchy == false doesn't make
4226 		 * much sense so let cgroup subsystem know about this
4227 		 * unfortunate state in our controller.
4228 		 */
4229 		if (parent != root_mem_cgroup)
4230 			memory_cgrp_subsys.broken_hierarchy = true;
4231 	}
4232 
4233 	/* The following stuff does not apply to the root */
4234 	if (!parent) {
4235 		root_mem_cgroup = memcg;
4236 		return &memcg->css;
4237 	}
4238 
4239 	error = memcg_online_kmem(memcg);
4240 	if (error)
4241 		goto fail;
4242 
4243 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4244 		static_branch_inc(&memcg_sockets_enabled_key);
4245 
4246 	return &memcg->css;
4247 fail:
4248 	mem_cgroup_free(memcg);
4249 	return ERR_PTR(-ENOMEM);
4250 }
4251 
4252 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4253 {
4254 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4255 
4256 	/* Online state pins memcg ID, memcg ID pins CSS */
4257 	atomic_set(&memcg->id.ref, 1);
4258 	css_get(css);
4259 	return 0;
4260 }
4261 
4262 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4263 {
4264 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4265 	struct mem_cgroup_event *event, *tmp;
4266 
4267 	/*
4268 	 * Unregister events and notify userspace.
4269 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4270 	 * directory to avoid race between userspace and kernelspace.
4271 	 */
4272 	spin_lock(&memcg->event_list_lock);
4273 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4274 		list_del_init(&event->list);
4275 		schedule_work(&event->remove);
4276 	}
4277 	spin_unlock(&memcg->event_list_lock);
4278 
4279 	page_counter_set_min(&memcg->memory, 0);
4280 	page_counter_set_low(&memcg->memory, 0);
4281 
4282 	memcg_offline_kmem(memcg);
4283 	wb_memcg_offline(memcg);
4284 
4285 	mem_cgroup_id_put(memcg);
4286 }
4287 
4288 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4289 {
4290 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4291 
4292 	invalidate_reclaim_iterators(memcg);
4293 }
4294 
4295 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4296 {
4297 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4298 
4299 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4300 		static_branch_dec(&memcg_sockets_enabled_key);
4301 
4302 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4303 		static_branch_dec(&memcg_sockets_enabled_key);
4304 
4305 	vmpressure_cleanup(&memcg->vmpressure);
4306 	cancel_work_sync(&memcg->high_work);
4307 	mem_cgroup_remove_from_trees(memcg);
4308 	memcg_free_kmem(memcg);
4309 	mem_cgroup_free(memcg);
4310 }
4311 
4312 /**
4313  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4314  * @css: the target css
4315  *
4316  * Reset the states of the mem_cgroup associated with @css.  This is
4317  * invoked when the userland requests disabling on the default hierarchy
4318  * but the memcg is pinned through dependency.  The memcg should stop
4319  * applying policies and should revert to the vanilla state as it may be
4320  * made visible again.
4321  *
4322  * The current implementation only resets the essential configurations.
4323  * This needs to be expanded to cover all the visible parts.
4324  */
4325 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4326 {
4327 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4328 
4329 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4330 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4331 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4332 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4333 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4334 	page_counter_set_min(&memcg->memory, 0);
4335 	page_counter_set_low(&memcg->memory, 0);
4336 	memcg->high = PAGE_COUNTER_MAX;
4337 	memcg->soft_limit = PAGE_COUNTER_MAX;
4338 	memcg_wb_domain_size_changed(memcg);
4339 }
4340 
4341 #ifdef CONFIG_MMU
4342 /* Handlers for move charge at task migration. */
4343 static int mem_cgroup_do_precharge(unsigned long count)
4344 {
4345 	int ret;
4346 
4347 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4348 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4349 	if (!ret) {
4350 		mc.precharge += count;
4351 		return ret;
4352 	}
4353 
4354 	/* Try charges one by one with reclaim, but do not retry */
4355 	while (count--) {
4356 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4357 		if (ret)
4358 			return ret;
4359 		mc.precharge++;
4360 		cond_resched();
4361 	}
4362 	return 0;
4363 }
4364 
4365 union mc_target {
4366 	struct page	*page;
4367 	swp_entry_t	ent;
4368 };
4369 
4370 enum mc_target_type {
4371 	MC_TARGET_NONE = 0,
4372 	MC_TARGET_PAGE,
4373 	MC_TARGET_SWAP,
4374 	MC_TARGET_DEVICE,
4375 };
4376 
4377 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4378 						unsigned long addr, pte_t ptent)
4379 {
4380 	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4381 
4382 	if (!page || !page_mapped(page))
4383 		return NULL;
4384 	if (PageAnon(page)) {
4385 		if (!(mc.flags & MOVE_ANON))
4386 			return NULL;
4387 	} else {
4388 		if (!(mc.flags & MOVE_FILE))
4389 			return NULL;
4390 	}
4391 	if (!get_page_unless_zero(page))
4392 		return NULL;
4393 
4394 	return page;
4395 }
4396 
4397 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4398 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4399 			pte_t ptent, swp_entry_t *entry)
4400 {
4401 	struct page *page = NULL;
4402 	swp_entry_t ent = pte_to_swp_entry(ptent);
4403 
4404 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4405 		return NULL;
4406 
4407 	/*
4408 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4409 	 * a device and because they are not accessible by CPU they are store
4410 	 * as special swap entry in the CPU page table.
4411 	 */
4412 	if (is_device_private_entry(ent)) {
4413 		page = device_private_entry_to_page(ent);
4414 		/*
4415 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4416 		 * a refcount of 1 when free (unlike normal page)
4417 		 */
4418 		if (!page_ref_add_unless(page, 1, 1))
4419 			return NULL;
4420 		return page;
4421 	}
4422 
4423 	/*
4424 	 * Because lookup_swap_cache() updates some statistics counter,
4425 	 * we call find_get_page() with swapper_space directly.
4426 	 */
4427 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4428 	if (do_memsw_account())
4429 		entry->val = ent.val;
4430 
4431 	return page;
4432 }
4433 #else
4434 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4435 			pte_t ptent, swp_entry_t *entry)
4436 {
4437 	return NULL;
4438 }
4439 #endif
4440 
4441 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4442 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4443 {
4444 	struct page *page = NULL;
4445 	struct address_space *mapping;
4446 	pgoff_t pgoff;
4447 
4448 	if (!vma->vm_file) /* anonymous vma */
4449 		return NULL;
4450 	if (!(mc.flags & MOVE_FILE))
4451 		return NULL;
4452 
4453 	mapping = vma->vm_file->f_mapping;
4454 	pgoff = linear_page_index(vma, addr);
4455 
4456 	/* page is moved even if it's not RSS of this task(page-faulted). */
4457 #ifdef CONFIG_SWAP
4458 	/* shmem/tmpfs may report page out on swap: account for that too. */
4459 	if (shmem_mapping(mapping)) {
4460 		page = find_get_entry(mapping, pgoff);
4461 		if (radix_tree_exceptional_entry(page)) {
4462 			swp_entry_t swp = radix_to_swp_entry(page);
4463 			if (do_memsw_account())
4464 				*entry = swp;
4465 			page = find_get_page(swap_address_space(swp),
4466 					     swp_offset(swp));
4467 		}
4468 	} else
4469 		page = find_get_page(mapping, pgoff);
4470 #else
4471 	page = find_get_page(mapping, pgoff);
4472 #endif
4473 	return page;
4474 }
4475 
4476 /**
4477  * mem_cgroup_move_account - move account of the page
4478  * @page: the page
4479  * @compound: charge the page as compound or small page
4480  * @from: mem_cgroup which the page is moved from.
4481  * @to:	mem_cgroup which the page is moved to. @from != @to.
4482  *
4483  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4484  *
4485  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4486  * from old cgroup.
4487  */
4488 static int mem_cgroup_move_account(struct page *page,
4489 				   bool compound,
4490 				   struct mem_cgroup *from,
4491 				   struct mem_cgroup *to)
4492 {
4493 	unsigned long flags;
4494 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4495 	int ret;
4496 	bool anon;
4497 
4498 	VM_BUG_ON(from == to);
4499 	VM_BUG_ON_PAGE(PageLRU(page), page);
4500 	VM_BUG_ON(compound && !PageTransHuge(page));
4501 
4502 	/*
4503 	 * Prevent mem_cgroup_migrate() from looking at
4504 	 * page->mem_cgroup of its source page while we change it.
4505 	 */
4506 	ret = -EBUSY;
4507 	if (!trylock_page(page))
4508 		goto out;
4509 
4510 	ret = -EINVAL;
4511 	if (page->mem_cgroup != from)
4512 		goto out_unlock;
4513 
4514 	anon = PageAnon(page);
4515 
4516 	spin_lock_irqsave(&from->move_lock, flags);
4517 
4518 	if (!anon && page_mapped(page)) {
4519 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4520 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4521 	}
4522 
4523 	/*
4524 	 * move_lock grabbed above and caller set from->moving_account, so
4525 	 * mod_memcg_page_state will serialize updates to PageDirty.
4526 	 * So mapping should be stable for dirty pages.
4527 	 */
4528 	if (!anon && PageDirty(page)) {
4529 		struct address_space *mapping = page_mapping(page);
4530 
4531 		if (mapping_cap_account_dirty(mapping)) {
4532 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4533 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4534 		}
4535 	}
4536 
4537 	if (PageWriteback(page)) {
4538 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4539 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4540 	}
4541 
4542 	/*
4543 	 * It is safe to change page->mem_cgroup here because the page
4544 	 * is referenced, charged, and isolated - we can't race with
4545 	 * uncharging, charging, migration, or LRU putback.
4546 	 */
4547 
4548 	/* caller should have done css_get */
4549 	page->mem_cgroup = to;
4550 	spin_unlock_irqrestore(&from->move_lock, flags);
4551 
4552 	ret = 0;
4553 
4554 	local_irq_disable();
4555 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4556 	memcg_check_events(to, page);
4557 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4558 	memcg_check_events(from, page);
4559 	local_irq_enable();
4560 out_unlock:
4561 	unlock_page(page);
4562 out:
4563 	return ret;
4564 }
4565 
4566 /**
4567  * get_mctgt_type - get target type of moving charge
4568  * @vma: the vma the pte to be checked belongs
4569  * @addr: the address corresponding to the pte to be checked
4570  * @ptent: the pte to be checked
4571  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4572  *
4573  * Returns
4574  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4575  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4576  *     move charge. if @target is not NULL, the page is stored in target->page
4577  *     with extra refcnt got(Callers should handle it).
4578  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4579  *     target for charge migration. if @target is not NULL, the entry is stored
4580  *     in target->ent.
4581  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4582  *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4583  *     For now we such page is charge like a regular page would be as for all
4584  *     intent and purposes it is just special memory taking the place of a
4585  *     regular page.
4586  *
4587  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4588  *
4589  * Called with pte lock held.
4590  */
4591 
4592 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4593 		unsigned long addr, pte_t ptent, union mc_target *target)
4594 {
4595 	struct page *page = NULL;
4596 	enum mc_target_type ret = MC_TARGET_NONE;
4597 	swp_entry_t ent = { .val = 0 };
4598 
4599 	if (pte_present(ptent))
4600 		page = mc_handle_present_pte(vma, addr, ptent);
4601 	else if (is_swap_pte(ptent))
4602 		page = mc_handle_swap_pte(vma, ptent, &ent);
4603 	else if (pte_none(ptent))
4604 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4605 
4606 	if (!page && !ent.val)
4607 		return ret;
4608 	if (page) {
4609 		/*
4610 		 * Do only loose check w/o serialization.
4611 		 * mem_cgroup_move_account() checks the page is valid or
4612 		 * not under LRU exclusion.
4613 		 */
4614 		if (page->mem_cgroup == mc.from) {
4615 			ret = MC_TARGET_PAGE;
4616 			if (is_device_private_page(page) ||
4617 			    is_device_public_page(page))
4618 				ret = MC_TARGET_DEVICE;
4619 			if (target)
4620 				target->page = page;
4621 		}
4622 		if (!ret || !target)
4623 			put_page(page);
4624 	}
4625 	/*
4626 	 * There is a swap entry and a page doesn't exist or isn't charged.
4627 	 * But we cannot move a tail-page in a THP.
4628 	 */
4629 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4630 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4631 		ret = MC_TARGET_SWAP;
4632 		if (target)
4633 			target->ent = ent;
4634 	}
4635 	return ret;
4636 }
4637 
4638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4639 /*
4640  * We don't consider PMD mapped swapping or file mapped pages because THP does
4641  * not support them for now.
4642  * Caller should make sure that pmd_trans_huge(pmd) is true.
4643  */
4644 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4645 		unsigned long addr, pmd_t pmd, union mc_target *target)
4646 {
4647 	struct page *page = NULL;
4648 	enum mc_target_type ret = MC_TARGET_NONE;
4649 
4650 	if (unlikely(is_swap_pmd(pmd))) {
4651 		VM_BUG_ON(thp_migration_supported() &&
4652 				  !is_pmd_migration_entry(pmd));
4653 		return ret;
4654 	}
4655 	page = pmd_page(pmd);
4656 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4657 	if (!(mc.flags & MOVE_ANON))
4658 		return ret;
4659 	if (page->mem_cgroup == mc.from) {
4660 		ret = MC_TARGET_PAGE;
4661 		if (target) {
4662 			get_page(page);
4663 			target->page = page;
4664 		}
4665 	}
4666 	return ret;
4667 }
4668 #else
4669 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4670 		unsigned long addr, pmd_t pmd, union mc_target *target)
4671 {
4672 	return MC_TARGET_NONE;
4673 }
4674 #endif
4675 
4676 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4677 					unsigned long addr, unsigned long end,
4678 					struct mm_walk *walk)
4679 {
4680 	struct vm_area_struct *vma = walk->vma;
4681 	pte_t *pte;
4682 	spinlock_t *ptl;
4683 
4684 	ptl = pmd_trans_huge_lock(pmd, vma);
4685 	if (ptl) {
4686 		/*
4687 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
4688 		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4689 		 * MEMORY_DEVICE_PRIVATE but this might change.
4690 		 */
4691 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4692 			mc.precharge += HPAGE_PMD_NR;
4693 		spin_unlock(ptl);
4694 		return 0;
4695 	}
4696 
4697 	if (pmd_trans_unstable(pmd))
4698 		return 0;
4699 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4700 	for (; addr != end; pte++, addr += PAGE_SIZE)
4701 		if (get_mctgt_type(vma, addr, *pte, NULL))
4702 			mc.precharge++;	/* increment precharge temporarily */
4703 	pte_unmap_unlock(pte - 1, ptl);
4704 	cond_resched();
4705 
4706 	return 0;
4707 }
4708 
4709 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4710 {
4711 	unsigned long precharge;
4712 
4713 	struct mm_walk mem_cgroup_count_precharge_walk = {
4714 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4715 		.mm = mm,
4716 	};
4717 	down_read(&mm->mmap_sem);
4718 	walk_page_range(0, mm->highest_vm_end,
4719 			&mem_cgroup_count_precharge_walk);
4720 	up_read(&mm->mmap_sem);
4721 
4722 	precharge = mc.precharge;
4723 	mc.precharge = 0;
4724 
4725 	return precharge;
4726 }
4727 
4728 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4729 {
4730 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4731 
4732 	VM_BUG_ON(mc.moving_task);
4733 	mc.moving_task = current;
4734 	return mem_cgroup_do_precharge(precharge);
4735 }
4736 
4737 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4738 static void __mem_cgroup_clear_mc(void)
4739 {
4740 	struct mem_cgroup *from = mc.from;
4741 	struct mem_cgroup *to = mc.to;
4742 
4743 	/* we must uncharge all the leftover precharges from mc.to */
4744 	if (mc.precharge) {
4745 		cancel_charge(mc.to, mc.precharge);
4746 		mc.precharge = 0;
4747 	}
4748 	/*
4749 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4750 	 * we must uncharge here.
4751 	 */
4752 	if (mc.moved_charge) {
4753 		cancel_charge(mc.from, mc.moved_charge);
4754 		mc.moved_charge = 0;
4755 	}
4756 	/* we must fixup refcnts and charges */
4757 	if (mc.moved_swap) {
4758 		/* uncharge swap account from the old cgroup */
4759 		if (!mem_cgroup_is_root(mc.from))
4760 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4761 
4762 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4763 
4764 		/*
4765 		 * we charged both to->memory and to->memsw, so we
4766 		 * should uncharge to->memory.
4767 		 */
4768 		if (!mem_cgroup_is_root(mc.to))
4769 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4770 
4771 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4772 		css_put_many(&mc.to->css, mc.moved_swap);
4773 
4774 		mc.moved_swap = 0;
4775 	}
4776 	memcg_oom_recover(from);
4777 	memcg_oom_recover(to);
4778 	wake_up_all(&mc.waitq);
4779 }
4780 
4781 static void mem_cgroup_clear_mc(void)
4782 {
4783 	struct mm_struct *mm = mc.mm;
4784 
4785 	/*
4786 	 * we must clear moving_task before waking up waiters at the end of
4787 	 * task migration.
4788 	 */
4789 	mc.moving_task = NULL;
4790 	__mem_cgroup_clear_mc();
4791 	spin_lock(&mc.lock);
4792 	mc.from = NULL;
4793 	mc.to = NULL;
4794 	mc.mm = NULL;
4795 	spin_unlock(&mc.lock);
4796 
4797 	mmput(mm);
4798 }
4799 
4800 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4801 {
4802 	struct cgroup_subsys_state *css;
4803 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4804 	struct mem_cgroup *from;
4805 	struct task_struct *leader, *p;
4806 	struct mm_struct *mm;
4807 	unsigned long move_flags;
4808 	int ret = 0;
4809 
4810 	/* charge immigration isn't supported on the default hierarchy */
4811 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4812 		return 0;
4813 
4814 	/*
4815 	 * Multi-process migrations only happen on the default hierarchy
4816 	 * where charge immigration is not used.  Perform charge
4817 	 * immigration if @tset contains a leader and whine if there are
4818 	 * multiple.
4819 	 */
4820 	p = NULL;
4821 	cgroup_taskset_for_each_leader(leader, css, tset) {
4822 		WARN_ON_ONCE(p);
4823 		p = leader;
4824 		memcg = mem_cgroup_from_css(css);
4825 	}
4826 	if (!p)
4827 		return 0;
4828 
4829 	/*
4830 	 * We are now commited to this value whatever it is. Changes in this
4831 	 * tunable will only affect upcoming migrations, not the current one.
4832 	 * So we need to save it, and keep it going.
4833 	 */
4834 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4835 	if (!move_flags)
4836 		return 0;
4837 
4838 	from = mem_cgroup_from_task(p);
4839 
4840 	VM_BUG_ON(from == memcg);
4841 
4842 	mm = get_task_mm(p);
4843 	if (!mm)
4844 		return 0;
4845 	/* We move charges only when we move a owner of the mm */
4846 	if (mm->owner == p) {
4847 		VM_BUG_ON(mc.from);
4848 		VM_BUG_ON(mc.to);
4849 		VM_BUG_ON(mc.precharge);
4850 		VM_BUG_ON(mc.moved_charge);
4851 		VM_BUG_ON(mc.moved_swap);
4852 
4853 		spin_lock(&mc.lock);
4854 		mc.mm = mm;
4855 		mc.from = from;
4856 		mc.to = memcg;
4857 		mc.flags = move_flags;
4858 		spin_unlock(&mc.lock);
4859 		/* We set mc.moving_task later */
4860 
4861 		ret = mem_cgroup_precharge_mc(mm);
4862 		if (ret)
4863 			mem_cgroup_clear_mc();
4864 	} else {
4865 		mmput(mm);
4866 	}
4867 	return ret;
4868 }
4869 
4870 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4871 {
4872 	if (mc.to)
4873 		mem_cgroup_clear_mc();
4874 }
4875 
4876 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4877 				unsigned long addr, unsigned long end,
4878 				struct mm_walk *walk)
4879 {
4880 	int ret = 0;
4881 	struct vm_area_struct *vma = walk->vma;
4882 	pte_t *pte;
4883 	spinlock_t *ptl;
4884 	enum mc_target_type target_type;
4885 	union mc_target target;
4886 	struct page *page;
4887 
4888 	ptl = pmd_trans_huge_lock(pmd, vma);
4889 	if (ptl) {
4890 		if (mc.precharge < HPAGE_PMD_NR) {
4891 			spin_unlock(ptl);
4892 			return 0;
4893 		}
4894 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4895 		if (target_type == MC_TARGET_PAGE) {
4896 			page = target.page;
4897 			if (!isolate_lru_page(page)) {
4898 				if (!mem_cgroup_move_account(page, true,
4899 							     mc.from, mc.to)) {
4900 					mc.precharge -= HPAGE_PMD_NR;
4901 					mc.moved_charge += HPAGE_PMD_NR;
4902 				}
4903 				putback_lru_page(page);
4904 			}
4905 			put_page(page);
4906 		} else if (target_type == MC_TARGET_DEVICE) {
4907 			page = target.page;
4908 			if (!mem_cgroup_move_account(page, true,
4909 						     mc.from, mc.to)) {
4910 				mc.precharge -= HPAGE_PMD_NR;
4911 				mc.moved_charge += HPAGE_PMD_NR;
4912 			}
4913 			put_page(page);
4914 		}
4915 		spin_unlock(ptl);
4916 		return 0;
4917 	}
4918 
4919 	if (pmd_trans_unstable(pmd))
4920 		return 0;
4921 retry:
4922 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4923 	for (; addr != end; addr += PAGE_SIZE) {
4924 		pte_t ptent = *(pte++);
4925 		bool device = false;
4926 		swp_entry_t ent;
4927 
4928 		if (!mc.precharge)
4929 			break;
4930 
4931 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4932 		case MC_TARGET_DEVICE:
4933 			device = true;
4934 			/* fall through */
4935 		case MC_TARGET_PAGE:
4936 			page = target.page;
4937 			/*
4938 			 * We can have a part of the split pmd here. Moving it
4939 			 * can be done but it would be too convoluted so simply
4940 			 * ignore such a partial THP and keep it in original
4941 			 * memcg. There should be somebody mapping the head.
4942 			 */
4943 			if (PageTransCompound(page))
4944 				goto put;
4945 			if (!device && isolate_lru_page(page))
4946 				goto put;
4947 			if (!mem_cgroup_move_account(page, false,
4948 						mc.from, mc.to)) {
4949 				mc.precharge--;
4950 				/* we uncharge from mc.from later. */
4951 				mc.moved_charge++;
4952 			}
4953 			if (!device)
4954 				putback_lru_page(page);
4955 put:			/* get_mctgt_type() gets the page */
4956 			put_page(page);
4957 			break;
4958 		case MC_TARGET_SWAP:
4959 			ent = target.ent;
4960 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4961 				mc.precharge--;
4962 				/* we fixup refcnts and charges later. */
4963 				mc.moved_swap++;
4964 			}
4965 			break;
4966 		default:
4967 			break;
4968 		}
4969 	}
4970 	pte_unmap_unlock(pte - 1, ptl);
4971 	cond_resched();
4972 
4973 	if (addr != end) {
4974 		/*
4975 		 * We have consumed all precharges we got in can_attach().
4976 		 * We try charge one by one, but don't do any additional
4977 		 * charges to mc.to if we have failed in charge once in attach()
4978 		 * phase.
4979 		 */
4980 		ret = mem_cgroup_do_precharge(1);
4981 		if (!ret)
4982 			goto retry;
4983 	}
4984 
4985 	return ret;
4986 }
4987 
4988 static void mem_cgroup_move_charge(void)
4989 {
4990 	struct mm_walk mem_cgroup_move_charge_walk = {
4991 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4992 		.mm = mc.mm,
4993 	};
4994 
4995 	lru_add_drain_all();
4996 	/*
4997 	 * Signal lock_page_memcg() to take the memcg's move_lock
4998 	 * while we're moving its pages to another memcg. Then wait
4999 	 * for already started RCU-only updates to finish.
5000 	 */
5001 	atomic_inc(&mc.from->moving_account);
5002 	synchronize_rcu();
5003 retry:
5004 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5005 		/*
5006 		 * Someone who are holding the mmap_sem might be waiting in
5007 		 * waitq. So we cancel all extra charges, wake up all waiters,
5008 		 * and retry. Because we cancel precharges, we might not be able
5009 		 * to move enough charges, but moving charge is a best-effort
5010 		 * feature anyway, so it wouldn't be a big problem.
5011 		 */
5012 		__mem_cgroup_clear_mc();
5013 		cond_resched();
5014 		goto retry;
5015 	}
5016 	/*
5017 	 * When we have consumed all precharges and failed in doing
5018 	 * additional charge, the page walk just aborts.
5019 	 */
5020 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5021 
5022 	up_read(&mc.mm->mmap_sem);
5023 	atomic_dec(&mc.from->moving_account);
5024 }
5025 
5026 static void mem_cgroup_move_task(void)
5027 {
5028 	if (mc.to) {
5029 		mem_cgroup_move_charge();
5030 		mem_cgroup_clear_mc();
5031 	}
5032 }
5033 #else	/* !CONFIG_MMU */
5034 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5035 {
5036 	return 0;
5037 }
5038 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5039 {
5040 }
5041 static void mem_cgroup_move_task(void)
5042 {
5043 }
5044 #endif
5045 
5046 /*
5047  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5048  * to verify whether we're attached to the default hierarchy on each mount
5049  * attempt.
5050  */
5051 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5052 {
5053 	/*
5054 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5055 	 * guarantees that @root doesn't have any children, so turning it
5056 	 * on for the root memcg is enough.
5057 	 */
5058 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5059 		root_mem_cgroup->use_hierarchy = true;
5060 	else
5061 		root_mem_cgroup->use_hierarchy = false;
5062 }
5063 
5064 static u64 memory_current_read(struct cgroup_subsys_state *css,
5065 			       struct cftype *cft)
5066 {
5067 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5068 
5069 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5070 }
5071 
5072 static int memory_min_show(struct seq_file *m, void *v)
5073 {
5074 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5075 	unsigned long min = READ_ONCE(memcg->memory.min);
5076 
5077 	if (min == PAGE_COUNTER_MAX)
5078 		seq_puts(m, "max\n");
5079 	else
5080 		seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5081 
5082 	return 0;
5083 }
5084 
5085 static ssize_t memory_min_write(struct kernfs_open_file *of,
5086 				char *buf, size_t nbytes, loff_t off)
5087 {
5088 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5089 	unsigned long min;
5090 	int err;
5091 
5092 	buf = strstrip(buf);
5093 	err = page_counter_memparse(buf, "max", &min);
5094 	if (err)
5095 		return err;
5096 
5097 	page_counter_set_min(&memcg->memory, min);
5098 
5099 	return nbytes;
5100 }
5101 
5102 static int memory_low_show(struct seq_file *m, void *v)
5103 {
5104 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5105 	unsigned long low = READ_ONCE(memcg->memory.low);
5106 
5107 	if (low == PAGE_COUNTER_MAX)
5108 		seq_puts(m, "max\n");
5109 	else
5110 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5111 
5112 	return 0;
5113 }
5114 
5115 static ssize_t memory_low_write(struct kernfs_open_file *of,
5116 				char *buf, size_t nbytes, loff_t off)
5117 {
5118 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5119 	unsigned long low;
5120 	int err;
5121 
5122 	buf = strstrip(buf);
5123 	err = page_counter_memparse(buf, "max", &low);
5124 	if (err)
5125 		return err;
5126 
5127 	page_counter_set_low(&memcg->memory, low);
5128 
5129 	return nbytes;
5130 }
5131 
5132 static int memory_high_show(struct seq_file *m, void *v)
5133 {
5134 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5135 	unsigned long high = READ_ONCE(memcg->high);
5136 
5137 	if (high == PAGE_COUNTER_MAX)
5138 		seq_puts(m, "max\n");
5139 	else
5140 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5141 
5142 	return 0;
5143 }
5144 
5145 static ssize_t memory_high_write(struct kernfs_open_file *of,
5146 				 char *buf, size_t nbytes, loff_t off)
5147 {
5148 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5149 	unsigned long nr_pages;
5150 	unsigned long high;
5151 	int err;
5152 
5153 	buf = strstrip(buf);
5154 	err = page_counter_memparse(buf, "max", &high);
5155 	if (err)
5156 		return err;
5157 
5158 	memcg->high = high;
5159 
5160 	nr_pages = page_counter_read(&memcg->memory);
5161 	if (nr_pages > high)
5162 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5163 					     GFP_KERNEL, true);
5164 
5165 	memcg_wb_domain_size_changed(memcg);
5166 	return nbytes;
5167 }
5168 
5169 static int memory_max_show(struct seq_file *m, void *v)
5170 {
5171 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 	unsigned long max = READ_ONCE(memcg->memory.max);
5173 
5174 	if (max == PAGE_COUNTER_MAX)
5175 		seq_puts(m, "max\n");
5176 	else
5177 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5178 
5179 	return 0;
5180 }
5181 
5182 static ssize_t memory_max_write(struct kernfs_open_file *of,
5183 				char *buf, size_t nbytes, loff_t off)
5184 {
5185 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5186 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5187 	bool drained = false;
5188 	unsigned long max;
5189 	int err;
5190 
5191 	buf = strstrip(buf);
5192 	err = page_counter_memparse(buf, "max", &max);
5193 	if (err)
5194 		return err;
5195 
5196 	xchg(&memcg->memory.max, max);
5197 
5198 	for (;;) {
5199 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5200 
5201 		if (nr_pages <= max)
5202 			break;
5203 
5204 		if (signal_pending(current)) {
5205 			err = -EINTR;
5206 			break;
5207 		}
5208 
5209 		if (!drained) {
5210 			drain_all_stock(memcg);
5211 			drained = true;
5212 			continue;
5213 		}
5214 
5215 		if (nr_reclaims) {
5216 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5217 							  GFP_KERNEL, true))
5218 				nr_reclaims--;
5219 			continue;
5220 		}
5221 
5222 		memcg_memory_event(memcg, MEMCG_OOM);
5223 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5224 			break;
5225 	}
5226 
5227 	memcg_wb_domain_size_changed(memcg);
5228 	return nbytes;
5229 }
5230 
5231 static int memory_events_show(struct seq_file *m, void *v)
5232 {
5233 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5234 
5235 	seq_printf(m, "low %lu\n",
5236 		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5237 	seq_printf(m, "high %lu\n",
5238 		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5239 	seq_printf(m, "max %lu\n",
5240 		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5241 	seq_printf(m, "oom %lu\n",
5242 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5243 	seq_printf(m, "oom_kill %lu\n",
5244 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5245 
5246 	return 0;
5247 }
5248 
5249 static int memory_stat_show(struct seq_file *m, void *v)
5250 {
5251 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5252 	unsigned long stat[MEMCG_NR_STAT];
5253 	unsigned long events[NR_VM_EVENT_ITEMS];
5254 	int i;
5255 
5256 	/*
5257 	 * Provide statistics on the state of the memory subsystem as
5258 	 * well as cumulative event counters that show past behavior.
5259 	 *
5260 	 * This list is ordered following a combination of these gradients:
5261 	 * 1) generic big picture -> specifics and details
5262 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5263 	 *
5264 	 * Current memory state:
5265 	 */
5266 
5267 	tree_stat(memcg, stat);
5268 	tree_events(memcg, events);
5269 
5270 	seq_printf(m, "anon %llu\n",
5271 		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5272 	seq_printf(m, "file %llu\n",
5273 		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5274 	seq_printf(m, "kernel_stack %llu\n",
5275 		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5276 	seq_printf(m, "slab %llu\n",
5277 		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
5278 			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5279 	seq_printf(m, "sock %llu\n",
5280 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5281 
5282 	seq_printf(m, "shmem %llu\n",
5283 		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5284 	seq_printf(m, "file_mapped %llu\n",
5285 		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5286 	seq_printf(m, "file_dirty %llu\n",
5287 		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5288 	seq_printf(m, "file_writeback %llu\n",
5289 		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5290 
5291 	for (i = 0; i < NR_LRU_LISTS; i++) {
5292 		struct mem_cgroup *mi;
5293 		unsigned long val = 0;
5294 
5295 		for_each_mem_cgroup_tree(mi, memcg)
5296 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5297 		seq_printf(m, "%s %llu\n",
5298 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5299 	}
5300 
5301 	seq_printf(m, "slab_reclaimable %llu\n",
5302 		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5303 	seq_printf(m, "slab_unreclaimable %llu\n",
5304 		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5305 
5306 	/* Accumulated memory events */
5307 
5308 	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5309 	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5310 
5311 	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5312 	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5313 		   events[PGSCAN_DIRECT]);
5314 	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5315 		   events[PGSTEAL_DIRECT]);
5316 	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5317 	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5318 	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5319 	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5320 
5321 	seq_printf(m, "workingset_refault %lu\n",
5322 		   stat[WORKINGSET_REFAULT]);
5323 	seq_printf(m, "workingset_activate %lu\n",
5324 		   stat[WORKINGSET_ACTIVATE]);
5325 	seq_printf(m, "workingset_nodereclaim %lu\n",
5326 		   stat[WORKINGSET_NODERECLAIM]);
5327 
5328 	return 0;
5329 }
5330 
5331 static struct cftype memory_files[] = {
5332 	{
5333 		.name = "current",
5334 		.flags = CFTYPE_NOT_ON_ROOT,
5335 		.read_u64 = memory_current_read,
5336 	},
5337 	{
5338 		.name = "min",
5339 		.flags = CFTYPE_NOT_ON_ROOT,
5340 		.seq_show = memory_min_show,
5341 		.write = memory_min_write,
5342 	},
5343 	{
5344 		.name = "low",
5345 		.flags = CFTYPE_NOT_ON_ROOT,
5346 		.seq_show = memory_low_show,
5347 		.write = memory_low_write,
5348 	},
5349 	{
5350 		.name = "high",
5351 		.flags = CFTYPE_NOT_ON_ROOT,
5352 		.seq_show = memory_high_show,
5353 		.write = memory_high_write,
5354 	},
5355 	{
5356 		.name = "max",
5357 		.flags = CFTYPE_NOT_ON_ROOT,
5358 		.seq_show = memory_max_show,
5359 		.write = memory_max_write,
5360 	},
5361 	{
5362 		.name = "events",
5363 		.flags = CFTYPE_NOT_ON_ROOT,
5364 		.file_offset = offsetof(struct mem_cgroup, events_file),
5365 		.seq_show = memory_events_show,
5366 	},
5367 	{
5368 		.name = "stat",
5369 		.flags = CFTYPE_NOT_ON_ROOT,
5370 		.seq_show = memory_stat_show,
5371 	},
5372 	{ }	/* terminate */
5373 };
5374 
5375 struct cgroup_subsys memory_cgrp_subsys = {
5376 	.css_alloc = mem_cgroup_css_alloc,
5377 	.css_online = mem_cgroup_css_online,
5378 	.css_offline = mem_cgroup_css_offline,
5379 	.css_released = mem_cgroup_css_released,
5380 	.css_free = mem_cgroup_css_free,
5381 	.css_reset = mem_cgroup_css_reset,
5382 	.can_attach = mem_cgroup_can_attach,
5383 	.cancel_attach = mem_cgroup_cancel_attach,
5384 	.post_attach = mem_cgroup_move_task,
5385 	.bind = mem_cgroup_bind,
5386 	.dfl_cftypes = memory_files,
5387 	.legacy_cftypes = mem_cgroup_legacy_files,
5388 	.early_init = 0,
5389 };
5390 
5391 /**
5392  * mem_cgroup_protected - check if memory consumption is in the normal range
5393  * @root: the top ancestor of the sub-tree being checked
5394  * @memcg: the memory cgroup to check
5395  *
5396  * WARNING: This function is not stateless! It can only be used as part
5397  *          of a top-down tree iteration, not for isolated queries.
5398  *
5399  * Returns one of the following:
5400  *   MEMCG_PROT_NONE: cgroup memory is not protected
5401  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
5402  *     an unprotected supply of reclaimable memory from other cgroups.
5403  *   MEMCG_PROT_MIN: cgroup memory is protected
5404  *
5405  * @root is exclusive; it is never protected when looked at directly
5406  *
5407  * To provide a proper hierarchical behavior, effective memory.min/low values
5408  * are used. Below is the description of how effective memory.low is calculated.
5409  * Effective memory.min values is calculated in the same way.
5410  *
5411  * Effective memory.low is always equal or less than the original memory.low.
5412  * If there is no memory.low overcommittment (which is always true for
5413  * top-level memory cgroups), these two values are equal.
5414  * Otherwise, it's a part of parent's effective memory.low,
5415  * calculated as a cgroup's memory.low usage divided by sum of sibling's
5416  * memory.low usages, where memory.low usage is the size of actually
5417  * protected memory.
5418  *
5419  *                                             low_usage
5420  * elow = min( memory.low, parent->elow * ------------------ ),
5421  *                                        siblings_low_usage
5422  *
5423  *             | memory.current, if memory.current < memory.low
5424  * low_usage = |
5425 	       | 0, otherwise.
5426  *
5427  *
5428  * Such definition of the effective memory.low provides the expected
5429  * hierarchical behavior: parent's memory.low value is limiting
5430  * children, unprotected memory is reclaimed first and cgroups,
5431  * which are not using their guarantee do not affect actual memory
5432  * distribution.
5433  *
5434  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5435  *
5436  *     A      A/memory.low = 2G, A/memory.current = 6G
5437  *    //\\
5438  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
5439  *            C/memory.low = 1G  C/memory.current = 2G
5440  *            D/memory.low = 0   D/memory.current = 2G
5441  *            E/memory.low = 10G E/memory.current = 0
5442  *
5443  * and the memory pressure is applied, the following memory distribution
5444  * is expected (approximately):
5445  *
5446  *     A/memory.current = 2G
5447  *
5448  *     B/memory.current = 1.3G
5449  *     C/memory.current = 0.6G
5450  *     D/memory.current = 0
5451  *     E/memory.current = 0
5452  *
5453  * These calculations require constant tracking of the actual low usages
5454  * (see propagate_protected_usage()), as well as recursive calculation of
5455  * effective memory.low values. But as we do call mem_cgroup_protected()
5456  * path for each memory cgroup top-down from the reclaim,
5457  * it's possible to optimize this part, and save calculated elow
5458  * for next usage. This part is intentionally racy, but it's ok,
5459  * as memory.low is a best-effort mechanism.
5460  */
5461 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5462 						struct mem_cgroup *memcg)
5463 {
5464 	struct mem_cgroup *parent;
5465 	unsigned long emin, parent_emin;
5466 	unsigned long elow, parent_elow;
5467 	unsigned long usage;
5468 
5469 	if (mem_cgroup_disabled())
5470 		return MEMCG_PROT_NONE;
5471 
5472 	if (!root)
5473 		root = root_mem_cgroup;
5474 	if (memcg == root)
5475 		return MEMCG_PROT_NONE;
5476 
5477 	usage = page_counter_read(&memcg->memory);
5478 	if (!usage)
5479 		return MEMCG_PROT_NONE;
5480 
5481 	emin = memcg->memory.min;
5482 	elow = memcg->memory.low;
5483 
5484 	parent = parent_mem_cgroup(memcg);
5485 	/* No parent means a non-hierarchical mode on v1 memcg */
5486 	if (!parent)
5487 		return MEMCG_PROT_NONE;
5488 
5489 	if (parent == root)
5490 		goto exit;
5491 
5492 	parent_emin = READ_ONCE(parent->memory.emin);
5493 	emin = min(emin, parent_emin);
5494 	if (emin && parent_emin) {
5495 		unsigned long min_usage, siblings_min_usage;
5496 
5497 		min_usage = min(usage, memcg->memory.min);
5498 		siblings_min_usage = atomic_long_read(
5499 			&parent->memory.children_min_usage);
5500 
5501 		if (min_usage && siblings_min_usage)
5502 			emin = min(emin, parent_emin * min_usage /
5503 				   siblings_min_usage);
5504 	}
5505 
5506 	parent_elow = READ_ONCE(parent->memory.elow);
5507 	elow = min(elow, parent_elow);
5508 	if (elow && parent_elow) {
5509 		unsigned long low_usage, siblings_low_usage;
5510 
5511 		low_usage = min(usage, memcg->memory.low);
5512 		siblings_low_usage = atomic_long_read(
5513 			&parent->memory.children_low_usage);
5514 
5515 		if (low_usage && siblings_low_usage)
5516 			elow = min(elow, parent_elow * low_usage /
5517 				   siblings_low_usage);
5518 	}
5519 
5520 exit:
5521 	memcg->memory.emin = emin;
5522 	memcg->memory.elow = elow;
5523 
5524 	if (usage <= emin)
5525 		return MEMCG_PROT_MIN;
5526 	else if (usage <= elow)
5527 		return MEMCG_PROT_LOW;
5528 	else
5529 		return MEMCG_PROT_NONE;
5530 }
5531 
5532 /**
5533  * mem_cgroup_try_charge - try charging a page
5534  * @page: page to charge
5535  * @mm: mm context of the victim
5536  * @gfp_mask: reclaim mode
5537  * @memcgp: charged memcg return
5538  * @compound: charge the page as compound or small page
5539  *
5540  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5541  * pages according to @gfp_mask if necessary.
5542  *
5543  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5544  * Otherwise, an error code is returned.
5545  *
5546  * After page->mapping has been set up, the caller must finalize the
5547  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5548  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5549  */
5550 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5551 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5552 			  bool compound)
5553 {
5554 	struct mem_cgroup *memcg = NULL;
5555 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5556 	int ret = 0;
5557 
5558 	if (mem_cgroup_disabled())
5559 		goto out;
5560 
5561 	if (PageSwapCache(page)) {
5562 		/*
5563 		 * Every swap fault against a single page tries to charge the
5564 		 * page, bail as early as possible.  shmem_unuse() encounters
5565 		 * already charged pages, too.  The USED bit is protected by
5566 		 * the page lock, which serializes swap cache removal, which
5567 		 * in turn serializes uncharging.
5568 		 */
5569 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5570 		if (compound_head(page)->mem_cgroup)
5571 			goto out;
5572 
5573 		if (do_swap_account) {
5574 			swp_entry_t ent = { .val = page_private(page), };
5575 			unsigned short id = lookup_swap_cgroup_id(ent);
5576 
5577 			rcu_read_lock();
5578 			memcg = mem_cgroup_from_id(id);
5579 			if (memcg && !css_tryget_online(&memcg->css))
5580 				memcg = NULL;
5581 			rcu_read_unlock();
5582 		}
5583 	}
5584 
5585 	if (!memcg)
5586 		memcg = get_mem_cgroup_from_mm(mm);
5587 
5588 	ret = try_charge(memcg, gfp_mask, nr_pages);
5589 
5590 	css_put(&memcg->css);
5591 out:
5592 	*memcgp = memcg;
5593 	return ret;
5594 }
5595 
5596 /**
5597  * mem_cgroup_commit_charge - commit a page charge
5598  * @page: page to charge
5599  * @memcg: memcg to charge the page to
5600  * @lrucare: page might be on LRU already
5601  * @compound: charge the page as compound or small page
5602  *
5603  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5604  * after page->mapping has been set up.  This must happen atomically
5605  * as part of the page instantiation, i.e. under the page table lock
5606  * for anonymous pages, under the page lock for page and swap cache.
5607  *
5608  * In addition, the page must not be on the LRU during the commit, to
5609  * prevent racing with task migration.  If it might be, use @lrucare.
5610  *
5611  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5612  */
5613 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5614 			      bool lrucare, bool compound)
5615 {
5616 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5617 
5618 	VM_BUG_ON_PAGE(!page->mapping, page);
5619 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5620 
5621 	if (mem_cgroup_disabled())
5622 		return;
5623 	/*
5624 	 * Swap faults will attempt to charge the same page multiple
5625 	 * times.  But reuse_swap_page() might have removed the page
5626 	 * from swapcache already, so we can't check PageSwapCache().
5627 	 */
5628 	if (!memcg)
5629 		return;
5630 
5631 	commit_charge(page, memcg, lrucare);
5632 
5633 	local_irq_disable();
5634 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5635 	memcg_check_events(memcg, page);
5636 	local_irq_enable();
5637 
5638 	if (do_memsw_account() && PageSwapCache(page)) {
5639 		swp_entry_t entry = { .val = page_private(page) };
5640 		/*
5641 		 * The swap entry might not get freed for a long time,
5642 		 * let's not wait for it.  The page already received a
5643 		 * memory+swap charge, drop the swap entry duplicate.
5644 		 */
5645 		mem_cgroup_uncharge_swap(entry, nr_pages);
5646 	}
5647 }
5648 
5649 /**
5650  * mem_cgroup_cancel_charge - cancel a page charge
5651  * @page: page to charge
5652  * @memcg: memcg to charge the page to
5653  * @compound: charge the page as compound or small page
5654  *
5655  * Cancel a charge transaction started by mem_cgroup_try_charge().
5656  */
5657 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5658 		bool compound)
5659 {
5660 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5661 
5662 	if (mem_cgroup_disabled())
5663 		return;
5664 	/*
5665 	 * Swap faults will attempt to charge the same page multiple
5666 	 * times.  But reuse_swap_page() might have removed the page
5667 	 * from swapcache already, so we can't check PageSwapCache().
5668 	 */
5669 	if (!memcg)
5670 		return;
5671 
5672 	cancel_charge(memcg, nr_pages);
5673 }
5674 
5675 struct uncharge_gather {
5676 	struct mem_cgroup *memcg;
5677 	unsigned long pgpgout;
5678 	unsigned long nr_anon;
5679 	unsigned long nr_file;
5680 	unsigned long nr_kmem;
5681 	unsigned long nr_huge;
5682 	unsigned long nr_shmem;
5683 	struct page *dummy_page;
5684 };
5685 
5686 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5687 {
5688 	memset(ug, 0, sizeof(*ug));
5689 }
5690 
5691 static void uncharge_batch(const struct uncharge_gather *ug)
5692 {
5693 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5694 	unsigned long flags;
5695 
5696 	if (!mem_cgroup_is_root(ug->memcg)) {
5697 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5698 		if (do_memsw_account())
5699 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5700 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5701 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5702 		memcg_oom_recover(ug->memcg);
5703 	}
5704 
5705 	local_irq_save(flags);
5706 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5707 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5708 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5709 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5710 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5711 	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5712 	memcg_check_events(ug->memcg, ug->dummy_page);
5713 	local_irq_restore(flags);
5714 
5715 	if (!mem_cgroup_is_root(ug->memcg))
5716 		css_put_many(&ug->memcg->css, nr_pages);
5717 }
5718 
5719 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5720 {
5721 	VM_BUG_ON_PAGE(PageLRU(page), page);
5722 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5723 			!PageHWPoison(page) , page);
5724 
5725 	if (!page->mem_cgroup)
5726 		return;
5727 
5728 	/*
5729 	 * Nobody should be changing or seriously looking at
5730 	 * page->mem_cgroup at this point, we have fully
5731 	 * exclusive access to the page.
5732 	 */
5733 
5734 	if (ug->memcg != page->mem_cgroup) {
5735 		if (ug->memcg) {
5736 			uncharge_batch(ug);
5737 			uncharge_gather_clear(ug);
5738 		}
5739 		ug->memcg = page->mem_cgroup;
5740 	}
5741 
5742 	if (!PageKmemcg(page)) {
5743 		unsigned int nr_pages = 1;
5744 
5745 		if (PageTransHuge(page)) {
5746 			nr_pages <<= compound_order(page);
5747 			ug->nr_huge += nr_pages;
5748 		}
5749 		if (PageAnon(page))
5750 			ug->nr_anon += nr_pages;
5751 		else {
5752 			ug->nr_file += nr_pages;
5753 			if (PageSwapBacked(page))
5754 				ug->nr_shmem += nr_pages;
5755 		}
5756 		ug->pgpgout++;
5757 	} else {
5758 		ug->nr_kmem += 1 << compound_order(page);
5759 		__ClearPageKmemcg(page);
5760 	}
5761 
5762 	ug->dummy_page = page;
5763 	page->mem_cgroup = NULL;
5764 }
5765 
5766 static void uncharge_list(struct list_head *page_list)
5767 {
5768 	struct uncharge_gather ug;
5769 	struct list_head *next;
5770 
5771 	uncharge_gather_clear(&ug);
5772 
5773 	/*
5774 	 * Note that the list can be a single page->lru; hence the
5775 	 * do-while loop instead of a simple list_for_each_entry().
5776 	 */
5777 	next = page_list->next;
5778 	do {
5779 		struct page *page;
5780 
5781 		page = list_entry(next, struct page, lru);
5782 		next = page->lru.next;
5783 
5784 		uncharge_page(page, &ug);
5785 	} while (next != page_list);
5786 
5787 	if (ug.memcg)
5788 		uncharge_batch(&ug);
5789 }
5790 
5791 /**
5792  * mem_cgroup_uncharge - uncharge a page
5793  * @page: page to uncharge
5794  *
5795  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5796  * mem_cgroup_commit_charge().
5797  */
5798 void mem_cgroup_uncharge(struct page *page)
5799 {
5800 	struct uncharge_gather ug;
5801 
5802 	if (mem_cgroup_disabled())
5803 		return;
5804 
5805 	/* Don't touch page->lru of any random page, pre-check: */
5806 	if (!page->mem_cgroup)
5807 		return;
5808 
5809 	uncharge_gather_clear(&ug);
5810 	uncharge_page(page, &ug);
5811 	uncharge_batch(&ug);
5812 }
5813 
5814 /**
5815  * mem_cgroup_uncharge_list - uncharge a list of page
5816  * @page_list: list of pages to uncharge
5817  *
5818  * Uncharge a list of pages previously charged with
5819  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5820  */
5821 void mem_cgroup_uncharge_list(struct list_head *page_list)
5822 {
5823 	if (mem_cgroup_disabled())
5824 		return;
5825 
5826 	if (!list_empty(page_list))
5827 		uncharge_list(page_list);
5828 }
5829 
5830 /**
5831  * mem_cgroup_migrate - charge a page's replacement
5832  * @oldpage: currently circulating page
5833  * @newpage: replacement page
5834  *
5835  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5836  * be uncharged upon free.
5837  *
5838  * Both pages must be locked, @newpage->mapping must be set up.
5839  */
5840 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5841 {
5842 	struct mem_cgroup *memcg;
5843 	unsigned int nr_pages;
5844 	bool compound;
5845 	unsigned long flags;
5846 
5847 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5848 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5849 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5850 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5851 		       newpage);
5852 
5853 	if (mem_cgroup_disabled())
5854 		return;
5855 
5856 	/* Page cache replacement: new page already charged? */
5857 	if (newpage->mem_cgroup)
5858 		return;
5859 
5860 	/* Swapcache readahead pages can get replaced before being charged */
5861 	memcg = oldpage->mem_cgroup;
5862 	if (!memcg)
5863 		return;
5864 
5865 	/* Force-charge the new page. The old one will be freed soon */
5866 	compound = PageTransHuge(newpage);
5867 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5868 
5869 	page_counter_charge(&memcg->memory, nr_pages);
5870 	if (do_memsw_account())
5871 		page_counter_charge(&memcg->memsw, nr_pages);
5872 	css_get_many(&memcg->css, nr_pages);
5873 
5874 	commit_charge(newpage, memcg, false);
5875 
5876 	local_irq_save(flags);
5877 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5878 	memcg_check_events(memcg, newpage);
5879 	local_irq_restore(flags);
5880 }
5881 
5882 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5883 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5884 
5885 void mem_cgroup_sk_alloc(struct sock *sk)
5886 {
5887 	struct mem_cgroup *memcg;
5888 
5889 	if (!mem_cgroup_sockets_enabled)
5890 		return;
5891 
5892 	/*
5893 	 * Socket cloning can throw us here with sk_memcg already
5894 	 * filled. It won't however, necessarily happen from
5895 	 * process context. So the test for root memcg given
5896 	 * the current task's memcg won't help us in this case.
5897 	 *
5898 	 * Respecting the original socket's memcg is a better
5899 	 * decision in this case.
5900 	 */
5901 	if (sk->sk_memcg) {
5902 		css_get(&sk->sk_memcg->css);
5903 		return;
5904 	}
5905 
5906 	rcu_read_lock();
5907 	memcg = mem_cgroup_from_task(current);
5908 	if (memcg == root_mem_cgroup)
5909 		goto out;
5910 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5911 		goto out;
5912 	if (css_tryget_online(&memcg->css))
5913 		sk->sk_memcg = memcg;
5914 out:
5915 	rcu_read_unlock();
5916 }
5917 
5918 void mem_cgroup_sk_free(struct sock *sk)
5919 {
5920 	if (sk->sk_memcg)
5921 		css_put(&sk->sk_memcg->css);
5922 }
5923 
5924 /**
5925  * mem_cgroup_charge_skmem - charge socket memory
5926  * @memcg: memcg to charge
5927  * @nr_pages: number of pages to charge
5928  *
5929  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5930  * @memcg's configured limit, %false if the charge had to be forced.
5931  */
5932 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5933 {
5934 	gfp_t gfp_mask = GFP_KERNEL;
5935 
5936 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5937 		struct page_counter *fail;
5938 
5939 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5940 			memcg->tcpmem_pressure = 0;
5941 			return true;
5942 		}
5943 		page_counter_charge(&memcg->tcpmem, nr_pages);
5944 		memcg->tcpmem_pressure = 1;
5945 		return false;
5946 	}
5947 
5948 	/* Don't block in the packet receive path */
5949 	if (in_softirq())
5950 		gfp_mask = GFP_NOWAIT;
5951 
5952 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5953 
5954 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5955 		return true;
5956 
5957 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5958 	return false;
5959 }
5960 
5961 /**
5962  * mem_cgroup_uncharge_skmem - uncharge socket memory
5963  * @memcg: memcg to uncharge
5964  * @nr_pages: number of pages to uncharge
5965  */
5966 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5967 {
5968 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5969 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5970 		return;
5971 	}
5972 
5973 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5974 
5975 	refill_stock(memcg, nr_pages);
5976 }
5977 
5978 static int __init cgroup_memory(char *s)
5979 {
5980 	char *token;
5981 
5982 	while ((token = strsep(&s, ",")) != NULL) {
5983 		if (!*token)
5984 			continue;
5985 		if (!strcmp(token, "nosocket"))
5986 			cgroup_memory_nosocket = true;
5987 		if (!strcmp(token, "nokmem"))
5988 			cgroup_memory_nokmem = true;
5989 	}
5990 	return 0;
5991 }
5992 __setup("cgroup.memory=", cgroup_memory);
5993 
5994 /*
5995  * subsys_initcall() for memory controller.
5996  *
5997  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5998  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5999  * basically everything that doesn't depend on a specific mem_cgroup structure
6000  * should be initialized from here.
6001  */
6002 static int __init mem_cgroup_init(void)
6003 {
6004 	int cpu, node;
6005 
6006 #ifndef CONFIG_SLOB
6007 	/*
6008 	 * Kmem cache creation is mostly done with the slab_mutex held,
6009 	 * so use a workqueue with limited concurrency to avoid stalling
6010 	 * all worker threads in case lots of cgroups are created and
6011 	 * destroyed simultaneously.
6012 	 */
6013 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6014 	BUG_ON(!memcg_kmem_cache_wq);
6015 #endif
6016 
6017 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6018 				  memcg_hotplug_cpu_dead);
6019 
6020 	for_each_possible_cpu(cpu)
6021 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6022 			  drain_local_stock);
6023 
6024 	for_each_node(node) {
6025 		struct mem_cgroup_tree_per_node *rtpn;
6026 
6027 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6028 				    node_online(node) ? node : NUMA_NO_NODE);
6029 
6030 		rtpn->rb_root = RB_ROOT;
6031 		rtpn->rb_rightmost = NULL;
6032 		spin_lock_init(&rtpn->lock);
6033 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6034 	}
6035 
6036 	return 0;
6037 }
6038 subsys_initcall(mem_cgroup_init);
6039 
6040 #ifdef CONFIG_MEMCG_SWAP
6041 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6042 {
6043 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
6044 		/*
6045 		 * The root cgroup cannot be destroyed, so it's refcount must
6046 		 * always be >= 1.
6047 		 */
6048 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6049 			VM_BUG_ON(1);
6050 			break;
6051 		}
6052 		memcg = parent_mem_cgroup(memcg);
6053 		if (!memcg)
6054 			memcg = root_mem_cgroup;
6055 	}
6056 	return memcg;
6057 }
6058 
6059 /**
6060  * mem_cgroup_swapout - transfer a memsw charge to swap
6061  * @page: page whose memsw charge to transfer
6062  * @entry: swap entry to move the charge to
6063  *
6064  * Transfer the memsw charge of @page to @entry.
6065  */
6066 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6067 {
6068 	struct mem_cgroup *memcg, *swap_memcg;
6069 	unsigned int nr_entries;
6070 	unsigned short oldid;
6071 
6072 	VM_BUG_ON_PAGE(PageLRU(page), page);
6073 	VM_BUG_ON_PAGE(page_count(page), page);
6074 
6075 	if (!do_memsw_account())
6076 		return;
6077 
6078 	memcg = page->mem_cgroup;
6079 
6080 	/* Readahead page, never charged */
6081 	if (!memcg)
6082 		return;
6083 
6084 	/*
6085 	 * In case the memcg owning these pages has been offlined and doesn't
6086 	 * have an ID allocated to it anymore, charge the closest online
6087 	 * ancestor for the swap instead and transfer the memory+swap charge.
6088 	 */
6089 	swap_memcg = mem_cgroup_id_get_online(memcg);
6090 	nr_entries = hpage_nr_pages(page);
6091 	/* Get references for the tail pages, too */
6092 	if (nr_entries > 1)
6093 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6094 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6095 				   nr_entries);
6096 	VM_BUG_ON_PAGE(oldid, page);
6097 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6098 
6099 	page->mem_cgroup = NULL;
6100 
6101 	if (!mem_cgroup_is_root(memcg))
6102 		page_counter_uncharge(&memcg->memory, nr_entries);
6103 
6104 	if (memcg != swap_memcg) {
6105 		if (!mem_cgroup_is_root(swap_memcg))
6106 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6107 		page_counter_uncharge(&memcg->memsw, nr_entries);
6108 	}
6109 
6110 	/*
6111 	 * Interrupts should be disabled here because the caller holds the
6112 	 * i_pages lock which is taken with interrupts-off. It is
6113 	 * important here to have the interrupts disabled because it is the
6114 	 * only synchronisation we have for updating the per-CPU variables.
6115 	 */
6116 	VM_BUG_ON(!irqs_disabled());
6117 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6118 				     -nr_entries);
6119 	memcg_check_events(memcg, page);
6120 
6121 	if (!mem_cgroup_is_root(memcg))
6122 		css_put_many(&memcg->css, nr_entries);
6123 }
6124 
6125 /**
6126  * mem_cgroup_try_charge_swap - try charging swap space for a page
6127  * @page: page being added to swap
6128  * @entry: swap entry to charge
6129  *
6130  * Try to charge @page's memcg for the swap space at @entry.
6131  *
6132  * Returns 0 on success, -ENOMEM on failure.
6133  */
6134 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6135 {
6136 	unsigned int nr_pages = hpage_nr_pages(page);
6137 	struct page_counter *counter;
6138 	struct mem_cgroup *memcg;
6139 	unsigned short oldid;
6140 
6141 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6142 		return 0;
6143 
6144 	memcg = page->mem_cgroup;
6145 
6146 	/* Readahead page, never charged */
6147 	if (!memcg)
6148 		return 0;
6149 
6150 	if (!entry.val) {
6151 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6152 		return 0;
6153 	}
6154 
6155 	memcg = mem_cgroup_id_get_online(memcg);
6156 
6157 	if (!mem_cgroup_is_root(memcg) &&
6158 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6159 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6160 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6161 		mem_cgroup_id_put(memcg);
6162 		return -ENOMEM;
6163 	}
6164 
6165 	/* Get references for the tail pages, too */
6166 	if (nr_pages > 1)
6167 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6168 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6169 	VM_BUG_ON_PAGE(oldid, page);
6170 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6171 
6172 	return 0;
6173 }
6174 
6175 /**
6176  * mem_cgroup_uncharge_swap - uncharge swap space
6177  * @entry: swap entry to uncharge
6178  * @nr_pages: the amount of swap space to uncharge
6179  */
6180 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6181 {
6182 	struct mem_cgroup *memcg;
6183 	unsigned short id;
6184 
6185 	if (!do_swap_account)
6186 		return;
6187 
6188 	id = swap_cgroup_record(entry, 0, nr_pages);
6189 	rcu_read_lock();
6190 	memcg = mem_cgroup_from_id(id);
6191 	if (memcg) {
6192 		if (!mem_cgroup_is_root(memcg)) {
6193 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6194 				page_counter_uncharge(&memcg->swap, nr_pages);
6195 			else
6196 				page_counter_uncharge(&memcg->memsw, nr_pages);
6197 		}
6198 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6199 		mem_cgroup_id_put_many(memcg, nr_pages);
6200 	}
6201 	rcu_read_unlock();
6202 }
6203 
6204 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6205 {
6206 	long nr_swap_pages = get_nr_swap_pages();
6207 
6208 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6209 		return nr_swap_pages;
6210 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6211 		nr_swap_pages = min_t(long, nr_swap_pages,
6212 				      READ_ONCE(memcg->swap.max) -
6213 				      page_counter_read(&memcg->swap));
6214 	return nr_swap_pages;
6215 }
6216 
6217 bool mem_cgroup_swap_full(struct page *page)
6218 {
6219 	struct mem_cgroup *memcg;
6220 
6221 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6222 
6223 	if (vm_swap_full())
6224 		return true;
6225 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6226 		return false;
6227 
6228 	memcg = page->mem_cgroup;
6229 	if (!memcg)
6230 		return false;
6231 
6232 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6233 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6234 			return true;
6235 
6236 	return false;
6237 }
6238 
6239 /* for remember boot option*/
6240 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6241 static int really_do_swap_account __initdata = 1;
6242 #else
6243 static int really_do_swap_account __initdata;
6244 #endif
6245 
6246 static int __init enable_swap_account(char *s)
6247 {
6248 	if (!strcmp(s, "1"))
6249 		really_do_swap_account = 1;
6250 	else if (!strcmp(s, "0"))
6251 		really_do_swap_account = 0;
6252 	return 1;
6253 }
6254 __setup("swapaccount=", enable_swap_account);
6255 
6256 static u64 swap_current_read(struct cgroup_subsys_state *css,
6257 			     struct cftype *cft)
6258 {
6259 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6260 
6261 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6262 }
6263 
6264 static int swap_max_show(struct seq_file *m, void *v)
6265 {
6266 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6267 	unsigned long max = READ_ONCE(memcg->swap.max);
6268 
6269 	if (max == PAGE_COUNTER_MAX)
6270 		seq_puts(m, "max\n");
6271 	else
6272 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6273 
6274 	return 0;
6275 }
6276 
6277 static ssize_t swap_max_write(struct kernfs_open_file *of,
6278 			      char *buf, size_t nbytes, loff_t off)
6279 {
6280 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6281 	unsigned long max;
6282 	int err;
6283 
6284 	buf = strstrip(buf);
6285 	err = page_counter_memparse(buf, "max", &max);
6286 	if (err)
6287 		return err;
6288 
6289 	xchg(&memcg->swap.max, max);
6290 
6291 	return nbytes;
6292 }
6293 
6294 static int swap_events_show(struct seq_file *m, void *v)
6295 {
6296 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6297 
6298 	seq_printf(m, "max %lu\n",
6299 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6300 	seq_printf(m, "fail %lu\n",
6301 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6302 
6303 	return 0;
6304 }
6305 
6306 static struct cftype swap_files[] = {
6307 	{
6308 		.name = "swap.current",
6309 		.flags = CFTYPE_NOT_ON_ROOT,
6310 		.read_u64 = swap_current_read,
6311 	},
6312 	{
6313 		.name = "swap.max",
6314 		.flags = CFTYPE_NOT_ON_ROOT,
6315 		.seq_show = swap_max_show,
6316 		.write = swap_max_write,
6317 	},
6318 	{
6319 		.name = "swap.events",
6320 		.flags = CFTYPE_NOT_ON_ROOT,
6321 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
6322 		.seq_show = swap_events_show,
6323 	},
6324 	{ }	/* terminate */
6325 };
6326 
6327 static struct cftype memsw_cgroup_files[] = {
6328 	{
6329 		.name = "memsw.usage_in_bytes",
6330 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6331 		.read_u64 = mem_cgroup_read_u64,
6332 	},
6333 	{
6334 		.name = "memsw.max_usage_in_bytes",
6335 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6336 		.write = mem_cgroup_reset,
6337 		.read_u64 = mem_cgroup_read_u64,
6338 	},
6339 	{
6340 		.name = "memsw.limit_in_bytes",
6341 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6342 		.write = mem_cgroup_write,
6343 		.read_u64 = mem_cgroup_read_u64,
6344 	},
6345 	{
6346 		.name = "memsw.failcnt",
6347 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6348 		.write = mem_cgroup_reset,
6349 		.read_u64 = mem_cgroup_read_u64,
6350 	},
6351 	{ },	/* terminate */
6352 };
6353 
6354 static int __init mem_cgroup_swap_init(void)
6355 {
6356 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6357 		do_swap_account = 1;
6358 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6359 					       swap_files));
6360 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6361 						  memsw_cgroup_files));
6362 	}
6363 	return 0;
6364 }
6365 subsys_initcall(mem_cgroup_swap_init);
6366 
6367 #endif /* CONFIG_MEMCG_SWAP */
6368