1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/sched/mm.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/hugetlb.h> 41 #include <linux/pagemap.h> 42 #include <linux/smp.h> 43 #include <linux/page-flags.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bit_spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/limits.h> 48 #include <linux/export.h> 49 #include <linux/mutex.h> 50 #include <linux/rbtree.h> 51 #include <linux/slab.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/spinlock.h> 55 #include <linux/eventfd.h> 56 #include <linux/poll.h> 57 #include <linux/sort.h> 58 #include <linux/fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/vmpressure.h> 61 #include <linux/mm_inline.h> 62 #include <linux/swap_cgroup.h> 63 #include <linux/cpu.h> 64 #include <linux/oom.h> 65 #include <linux/lockdep.h> 66 #include <linux/file.h> 67 #include <linux/tracehook.h> 68 #include "internal.h" 69 #include <net/sock.h> 70 #include <net/ip.h> 71 #include "slab.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 #define MEM_CGROUP_RECLAIM_RETRIES 5 83 84 /* Socket memory accounting disabled? */ 85 static bool cgroup_memory_nosocket; 86 87 /* Kernel memory accounting disabled? */ 88 static bool cgroup_memory_nokmem; 89 90 /* Whether the swap controller is active */ 91 #ifdef CONFIG_MEMCG_SWAP 92 int do_swap_account __read_mostly; 93 #else 94 #define do_swap_account 0 95 #endif 96 97 /* Whether legacy memory+swap accounting is active */ 98 static bool do_memsw_account(void) 99 { 100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 101 } 102 103 static const char *const mem_cgroup_lru_names[] = { 104 "inactive_anon", 105 "active_anon", 106 "inactive_file", 107 "active_file", 108 "unevictable", 109 }; 110 111 #define THRESHOLDS_EVENTS_TARGET 128 112 #define SOFTLIMIT_EVENTS_TARGET 1024 113 #define NUMAINFO_EVENTS_TARGET 1024 114 115 /* 116 * Cgroups above their limits are maintained in a RB-Tree, independent of 117 * their hierarchy representation 118 */ 119 120 struct mem_cgroup_tree_per_node { 121 struct rb_root rb_root; 122 struct rb_node *rb_rightmost; 123 spinlock_t lock; 124 }; 125 126 struct mem_cgroup_tree { 127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 128 }; 129 130 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 131 132 /* for OOM */ 133 struct mem_cgroup_eventfd_list { 134 struct list_head list; 135 struct eventfd_ctx *eventfd; 136 }; 137 138 /* 139 * cgroup_event represents events which userspace want to receive. 140 */ 141 struct mem_cgroup_event { 142 /* 143 * memcg which the event belongs to. 144 */ 145 struct mem_cgroup *memcg; 146 /* 147 * eventfd to signal userspace about the event. 148 */ 149 struct eventfd_ctx *eventfd; 150 /* 151 * Each of these stored in a list by the cgroup. 152 */ 153 struct list_head list; 154 /* 155 * register_event() callback will be used to add new userspace 156 * waiter for changes related to this event. Use eventfd_signal() 157 * on eventfd to send notification to userspace. 158 */ 159 int (*register_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd, const char *args); 161 /* 162 * unregister_event() callback will be called when userspace closes 163 * the eventfd or on cgroup removing. This callback must be set, 164 * if you want provide notification functionality. 165 */ 166 void (*unregister_event)(struct mem_cgroup *memcg, 167 struct eventfd_ctx *eventfd); 168 /* 169 * All fields below needed to unregister event when 170 * userspace closes eventfd. 171 */ 172 poll_table pt; 173 wait_queue_head_t *wqh; 174 wait_queue_entry_t wait; 175 struct work_struct remove; 176 }; 177 178 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 180 181 /* Stuffs for move charges at task migration. */ 182 /* 183 * Types of charges to be moved. 184 */ 185 #define MOVE_ANON 0x1U 186 #define MOVE_FILE 0x2U 187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 188 189 /* "mc" and its members are protected by cgroup_mutex */ 190 static struct move_charge_struct { 191 spinlock_t lock; /* for from, to */ 192 struct mm_struct *mm; 193 struct mem_cgroup *from; 194 struct mem_cgroup *to; 195 unsigned long flags; 196 unsigned long precharge; 197 unsigned long moved_charge; 198 unsigned long moved_swap; 199 struct task_struct *moving_task; /* a task moving charges */ 200 wait_queue_head_t waitq; /* a waitq for other context */ 201 } mc = { 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 204 }; 205 206 /* 207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 208 * limit reclaim to prevent infinite loops, if they ever occur. 209 */ 210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 212 213 enum charge_type { 214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 215 MEM_CGROUP_CHARGE_TYPE_ANON, 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 218 NR_CHARGE_TYPE, 219 }; 220 221 /* for encoding cft->private value on file */ 222 enum res_type { 223 _MEM, 224 _MEMSWAP, 225 _OOM_TYPE, 226 _KMEM, 227 _TCP, 228 }; 229 230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 232 #define MEMFILE_ATTR(val) ((val) & 0xffff) 233 /* Used for OOM nofiier */ 234 #define OOM_CONTROL (0) 235 236 /* Some nice accessors for the vmpressure. */ 237 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 238 { 239 if (!memcg) 240 memcg = root_mem_cgroup; 241 return &memcg->vmpressure; 242 } 243 244 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 245 { 246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 247 } 248 249 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 250 { 251 return (memcg == root_mem_cgroup); 252 } 253 254 #ifndef CONFIG_SLOB 255 /* 256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 257 * The main reason for not using cgroup id for this: 258 * this works better in sparse environments, where we have a lot of memcgs, 259 * but only a few kmem-limited. Or also, if we have, for instance, 200 260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 261 * 200 entry array for that. 262 * 263 * The current size of the caches array is stored in memcg_nr_cache_ids. It 264 * will double each time we have to increase it. 265 */ 266 static DEFINE_IDA(memcg_cache_ida); 267 int memcg_nr_cache_ids; 268 269 /* Protects memcg_nr_cache_ids */ 270 static DECLARE_RWSEM(memcg_cache_ids_sem); 271 272 void memcg_get_cache_ids(void) 273 { 274 down_read(&memcg_cache_ids_sem); 275 } 276 277 void memcg_put_cache_ids(void) 278 { 279 up_read(&memcg_cache_ids_sem); 280 } 281 282 /* 283 * MIN_SIZE is different than 1, because we would like to avoid going through 284 * the alloc/free process all the time. In a small machine, 4 kmem-limited 285 * cgroups is a reasonable guess. In the future, it could be a parameter or 286 * tunable, but that is strictly not necessary. 287 * 288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 289 * this constant directly from cgroup, but it is understandable that this is 290 * better kept as an internal representation in cgroup.c. In any case, the 291 * cgrp_id space is not getting any smaller, and we don't have to necessarily 292 * increase ours as well if it increases. 293 */ 294 #define MEMCG_CACHES_MIN_SIZE 4 295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 296 297 /* 298 * A lot of the calls to the cache allocation functions are expected to be 299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 300 * conditional to this static branch, we'll have to allow modules that does 301 * kmem_cache_alloc and the such to see this symbol as well 302 */ 303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 304 EXPORT_SYMBOL(memcg_kmem_enabled_key); 305 306 struct workqueue_struct *memcg_kmem_cache_wq; 307 308 #endif /* !CONFIG_SLOB */ 309 310 /** 311 * mem_cgroup_css_from_page - css of the memcg associated with a page 312 * @page: page of interest 313 * 314 * If memcg is bound to the default hierarchy, css of the memcg associated 315 * with @page is returned. The returned css remains associated with @page 316 * until it is released. 317 * 318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 319 * is returned. 320 */ 321 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 322 { 323 struct mem_cgroup *memcg; 324 325 memcg = page->mem_cgroup; 326 327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 328 memcg = root_mem_cgroup; 329 330 return &memcg->css; 331 } 332 333 /** 334 * page_cgroup_ino - return inode number of the memcg a page is charged to 335 * @page: the page 336 * 337 * Look up the closest online ancestor of the memory cgroup @page is charged to 338 * and return its inode number or 0 if @page is not charged to any cgroup. It 339 * is safe to call this function without holding a reference to @page. 340 * 341 * Note, this function is inherently racy, because there is nothing to prevent 342 * the cgroup inode from getting torn down and potentially reallocated a moment 343 * after page_cgroup_ino() returns, so it only should be used by callers that 344 * do not care (such as procfs interfaces). 345 */ 346 ino_t page_cgroup_ino(struct page *page) 347 { 348 struct mem_cgroup *memcg; 349 unsigned long ino = 0; 350 351 rcu_read_lock(); 352 memcg = READ_ONCE(page->mem_cgroup); 353 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 354 memcg = parent_mem_cgroup(memcg); 355 if (memcg) 356 ino = cgroup_ino(memcg->css.cgroup); 357 rcu_read_unlock(); 358 return ino; 359 } 360 361 static struct mem_cgroup_per_node * 362 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 363 { 364 int nid = page_to_nid(page); 365 366 return memcg->nodeinfo[nid]; 367 } 368 369 static struct mem_cgroup_tree_per_node * 370 soft_limit_tree_node(int nid) 371 { 372 return soft_limit_tree.rb_tree_per_node[nid]; 373 } 374 375 static struct mem_cgroup_tree_per_node * 376 soft_limit_tree_from_page(struct page *page) 377 { 378 int nid = page_to_nid(page); 379 380 return soft_limit_tree.rb_tree_per_node[nid]; 381 } 382 383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 384 struct mem_cgroup_tree_per_node *mctz, 385 unsigned long new_usage_in_excess) 386 { 387 struct rb_node **p = &mctz->rb_root.rb_node; 388 struct rb_node *parent = NULL; 389 struct mem_cgroup_per_node *mz_node; 390 bool rightmost = true; 391 392 if (mz->on_tree) 393 return; 394 395 mz->usage_in_excess = new_usage_in_excess; 396 if (!mz->usage_in_excess) 397 return; 398 while (*p) { 399 parent = *p; 400 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 401 tree_node); 402 if (mz->usage_in_excess < mz_node->usage_in_excess) { 403 p = &(*p)->rb_left; 404 rightmost = false; 405 } 406 407 /* 408 * We can't avoid mem cgroups that are over their soft 409 * limit by the same amount 410 */ 411 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 412 p = &(*p)->rb_right; 413 } 414 415 if (rightmost) 416 mctz->rb_rightmost = &mz->tree_node; 417 418 rb_link_node(&mz->tree_node, parent, p); 419 rb_insert_color(&mz->tree_node, &mctz->rb_root); 420 mz->on_tree = true; 421 } 422 423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 424 struct mem_cgroup_tree_per_node *mctz) 425 { 426 if (!mz->on_tree) 427 return; 428 429 if (&mz->tree_node == mctz->rb_rightmost) 430 mctz->rb_rightmost = rb_prev(&mz->tree_node); 431 432 rb_erase(&mz->tree_node, &mctz->rb_root); 433 mz->on_tree = false; 434 } 435 436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 437 struct mem_cgroup_tree_per_node *mctz) 438 { 439 unsigned long flags; 440 441 spin_lock_irqsave(&mctz->lock, flags); 442 __mem_cgroup_remove_exceeded(mz, mctz); 443 spin_unlock_irqrestore(&mctz->lock, flags); 444 } 445 446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 447 { 448 unsigned long nr_pages = page_counter_read(&memcg->memory); 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 450 unsigned long excess = 0; 451 452 if (nr_pages > soft_limit) 453 excess = nr_pages - soft_limit; 454 455 return excess; 456 } 457 458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 459 { 460 unsigned long excess; 461 struct mem_cgroup_per_node *mz; 462 struct mem_cgroup_tree_per_node *mctz; 463 464 mctz = soft_limit_tree_from_page(page); 465 if (!mctz) 466 return; 467 /* 468 * Necessary to update all ancestors when hierarchy is used. 469 * because their event counter is not touched. 470 */ 471 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 472 mz = mem_cgroup_page_nodeinfo(memcg, page); 473 excess = soft_limit_excess(memcg); 474 /* 475 * We have to update the tree if mz is on RB-tree or 476 * mem is over its softlimit. 477 */ 478 if (excess || mz->on_tree) { 479 unsigned long flags; 480 481 spin_lock_irqsave(&mctz->lock, flags); 482 /* if on-tree, remove it */ 483 if (mz->on_tree) 484 __mem_cgroup_remove_exceeded(mz, mctz); 485 /* 486 * Insert again. mz->usage_in_excess will be updated. 487 * If excess is 0, no tree ops. 488 */ 489 __mem_cgroup_insert_exceeded(mz, mctz, excess); 490 spin_unlock_irqrestore(&mctz->lock, flags); 491 } 492 } 493 } 494 495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 496 { 497 struct mem_cgroup_tree_per_node *mctz; 498 struct mem_cgroup_per_node *mz; 499 int nid; 500 501 for_each_node(nid) { 502 mz = mem_cgroup_nodeinfo(memcg, nid); 503 mctz = soft_limit_tree_node(nid); 504 if (mctz) 505 mem_cgroup_remove_exceeded(mz, mctz); 506 } 507 } 508 509 static struct mem_cgroup_per_node * 510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 511 { 512 struct mem_cgroup_per_node *mz; 513 514 retry: 515 mz = NULL; 516 if (!mctz->rb_rightmost) 517 goto done; /* Nothing to reclaim from */ 518 519 mz = rb_entry(mctz->rb_rightmost, 520 struct mem_cgroup_per_node, tree_node); 521 /* 522 * Remove the node now but someone else can add it back, 523 * we will to add it back at the end of reclaim to its correct 524 * position in the tree. 525 */ 526 __mem_cgroup_remove_exceeded(mz, mctz); 527 if (!soft_limit_excess(mz->memcg) || 528 !css_tryget_online(&mz->memcg->css)) 529 goto retry; 530 done: 531 return mz; 532 } 533 534 static struct mem_cgroup_per_node * 535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 536 { 537 struct mem_cgroup_per_node *mz; 538 539 spin_lock_irq(&mctz->lock); 540 mz = __mem_cgroup_largest_soft_limit_node(mctz); 541 spin_unlock_irq(&mctz->lock); 542 return mz; 543 } 544 545 static unsigned long memcg_sum_events(struct mem_cgroup *memcg, 546 int event) 547 { 548 return atomic_long_read(&memcg->events[event]); 549 } 550 551 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 552 struct page *page, 553 bool compound, int nr_pages) 554 { 555 /* 556 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 557 * counted as CACHE even if it's on ANON LRU. 558 */ 559 if (PageAnon(page)) 560 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 561 else { 562 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 563 if (PageSwapBacked(page)) 564 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 565 } 566 567 if (compound) { 568 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 569 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 570 } 571 572 /* pagein of a big page is an event. So, ignore page size */ 573 if (nr_pages > 0) 574 __count_memcg_events(memcg, PGPGIN, 1); 575 else { 576 __count_memcg_events(memcg, PGPGOUT, 1); 577 nr_pages = -nr_pages; /* for event */ 578 } 579 580 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages); 581 } 582 583 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 584 int nid, unsigned int lru_mask) 585 { 586 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 587 unsigned long nr = 0; 588 enum lru_list lru; 589 590 VM_BUG_ON((unsigned)nid >= nr_node_ids); 591 592 for_each_lru(lru) { 593 if (!(BIT(lru) & lru_mask)) 594 continue; 595 nr += mem_cgroup_get_lru_size(lruvec, lru); 596 } 597 return nr; 598 } 599 600 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 601 unsigned int lru_mask) 602 { 603 unsigned long nr = 0; 604 int nid; 605 606 for_each_node_state(nid, N_MEMORY) 607 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 608 return nr; 609 } 610 611 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 612 enum mem_cgroup_events_target target) 613 { 614 unsigned long val, next; 615 616 val = __this_cpu_read(memcg->stat_cpu->nr_page_events); 617 next = __this_cpu_read(memcg->stat_cpu->targets[target]); 618 /* from time_after() in jiffies.h */ 619 if ((long)(next - val) < 0) { 620 switch (target) { 621 case MEM_CGROUP_TARGET_THRESH: 622 next = val + THRESHOLDS_EVENTS_TARGET; 623 break; 624 case MEM_CGROUP_TARGET_SOFTLIMIT: 625 next = val + SOFTLIMIT_EVENTS_TARGET; 626 break; 627 case MEM_CGROUP_TARGET_NUMAINFO: 628 next = val + NUMAINFO_EVENTS_TARGET; 629 break; 630 default: 631 break; 632 } 633 __this_cpu_write(memcg->stat_cpu->targets[target], next); 634 return true; 635 } 636 return false; 637 } 638 639 /* 640 * Check events in order. 641 * 642 */ 643 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 644 { 645 /* threshold event is triggered in finer grain than soft limit */ 646 if (unlikely(mem_cgroup_event_ratelimit(memcg, 647 MEM_CGROUP_TARGET_THRESH))) { 648 bool do_softlimit; 649 bool do_numainfo __maybe_unused; 650 651 do_softlimit = mem_cgroup_event_ratelimit(memcg, 652 MEM_CGROUP_TARGET_SOFTLIMIT); 653 #if MAX_NUMNODES > 1 654 do_numainfo = mem_cgroup_event_ratelimit(memcg, 655 MEM_CGROUP_TARGET_NUMAINFO); 656 #endif 657 mem_cgroup_threshold(memcg); 658 if (unlikely(do_softlimit)) 659 mem_cgroup_update_tree(memcg, page); 660 #if MAX_NUMNODES > 1 661 if (unlikely(do_numainfo)) 662 atomic_inc(&memcg->numainfo_events); 663 #endif 664 } 665 } 666 667 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 668 { 669 /* 670 * mm_update_next_owner() may clear mm->owner to NULL 671 * if it races with swapoff, page migration, etc. 672 * So this can be called with p == NULL. 673 */ 674 if (unlikely(!p)) 675 return NULL; 676 677 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 678 } 679 EXPORT_SYMBOL(mem_cgroup_from_task); 680 681 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 682 { 683 struct mem_cgroup *memcg = NULL; 684 685 rcu_read_lock(); 686 do { 687 /* 688 * Page cache insertions can happen withou an 689 * actual mm context, e.g. during disk probing 690 * on boot, loopback IO, acct() writes etc. 691 */ 692 if (unlikely(!mm)) 693 memcg = root_mem_cgroup; 694 else { 695 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 696 if (unlikely(!memcg)) 697 memcg = root_mem_cgroup; 698 } 699 } while (!css_tryget_online(&memcg->css)); 700 rcu_read_unlock(); 701 return memcg; 702 } 703 704 /** 705 * mem_cgroup_iter - iterate over memory cgroup hierarchy 706 * @root: hierarchy root 707 * @prev: previously returned memcg, NULL on first invocation 708 * @reclaim: cookie for shared reclaim walks, NULL for full walks 709 * 710 * Returns references to children of the hierarchy below @root, or 711 * @root itself, or %NULL after a full round-trip. 712 * 713 * Caller must pass the return value in @prev on subsequent 714 * invocations for reference counting, or use mem_cgroup_iter_break() 715 * to cancel a hierarchy walk before the round-trip is complete. 716 * 717 * Reclaimers can specify a node and a priority level in @reclaim to 718 * divide up the memcgs in the hierarchy among all concurrent 719 * reclaimers operating on the same node and priority. 720 */ 721 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 722 struct mem_cgroup *prev, 723 struct mem_cgroup_reclaim_cookie *reclaim) 724 { 725 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 726 struct cgroup_subsys_state *css = NULL; 727 struct mem_cgroup *memcg = NULL; 728 struct mem_cgroup *pos = NULL; 729 730 if (mem_cgroup_disabled()) 731 return NULL; 732 733 if (!root) 734 root = root_mem_cgroup; 735 736 if (prev && !reclaim) 737 pos = prev; 738 739 if (!root->use_hierarchy && root != root_mem_cgroup) { 740 if (prev) 741 goto out; 742 return root; 743 } 744 745 rcu_read_lock(); 746 747 if (reclaim) { 748 struct mem_cgroup_per_node *mz; 749 750 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 751 iter = &mz->iter[reclaim->priority]; 752 753 if (prev && reclaim->generation != iter->generation) 754 goto out_unlock; 755 756 while (1) { 757 pos = READ_ONCE(iter->position); 758 if (!pos || css_tryget(&pos->css)) 759 break; 760 /* 761 * css reference reached zero, so iter->position will 762 * be cleared by ->css_released. However, we should not 763 * rely on this happening soon, because ->css_released 764 * is called from a work queue, and by busy-waiting we 765 * might block it. So we clear iter->position right 766 * away. 767 */ 768 (void)cmpxchg(&iter->position, pos, NULL); 769 } 770 } 771 772 if (pos) 773 css = &pos->css; 774 775 for (;;) { 776 css = css_next_descendant_pre(css, &root->css); 777 if (!css) { 778 /* 779 * Reclaimers share the hierarchy walk, and a 780 * new one might jump in right at the end of 781 * the hierarchy - make sure they see at least 782 * one group and restart from the beginning. 783 */ 784 if (!prev) 785 continue; 786 break; 787 } 788 789 /* 790 * Verify the css and acquire a reference. The root 791 * is provided by the caller, so we know it's alive 792 * and kicking, and don't take an extra reference. 793 */ 794 memcg = mem_cgroup_from_css(css); 795 796 if (css == &root->css) 797 break; 798 799 if (css_tryget(css)) 800 break; 801 802 memcg = NULL; 803 } 804 805 if (reclaim) { 806 /* 807 * The position could have already been updated by a competing 808 * thread, so check that the value hasn't changed since we read 809 * it to avoid reclaiming from the same cgroup twice. 810 */ 811 (void)cmpxchg(&iter->position, pos, memcg); 812 813 if (pos) 814 css_put(&pos->css); 815 816 if (!memcg) 817 iter->generation++; 818 else if (!prev) 819 reclaim->generation = iter->generation; 820 } 821 822 out_unlock: 823 rcu_read_unlock(); 824 out: 825 if (prev && prev != root) 826 css_put(&prev->css); 827 828 return memcg; 829 } 830 831 /** 832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 833 * @root: hierarchy root 834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 835 */ 836 void mem_cgroup_iter_break(struct mem_cgroup *root, 837 struct mem_cgroup *prev) 838 { 839 if (!root) 840 root = root_mem_cgroup; 841 if (prev && prev != root) 842 css_put(&prev->css); 843 } 844 845 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 846 { 847 struct mem_cgroup *memcg = dead_memcg; 848 struct mem_cgroup_reclaim_iter *iter; 849 struct mem_cgroup_per_node *mz; 850 int nid; 851 int i; 852 853 while ((memcg = parent_mem_cgroup(memcg))) { 854 for_each_node(nid) { 855 mz = mem_cgroup_nodeinfo(memcg, nid); 856 for (i = 0; i <= DEF_PRIORITY; i++) { 857 iter = &mz->iter[i]; 858 cmpxchg(&iter->position, 859 dead_memcg, NULL); 860 } 861 } 862 } 863 } 864 865 /* 866 * Iteration constructs for visiting all cgroups (under a tree). If 867 * loops are exited prematurely (break), mem_cgroup_iter_break() must 868 * be used for reference counting. 869 */ 870 #define for_each_mem_cgroup_tree(iter, root) \ 871 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 872 iter != NULL; \ 873 iter = mem_cgroup_iter(root, iter, NULL)) 874 875 #define for_each_mem_cgroup(iter) \ 876 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 877 iter != NULL; \ 878 iter = mem_cgroup_iter(NULL, iter, NULL)) 879 880 /** 881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 882 * @memcg: hierarchy root 883 * @fn: function to call for each task 884 * @arg: argument passed to @fn 885 * 886 * This function iterates over tasks attached to @memcg or to any of its 887 * descendants and calls @fn for each task. If @fn returns a non-zero 888 * value, the function breaks the iteration loop and returns the value. 889 * Otherwise, it will iterate over all tasks and return 0. 890 * 891 * This function must not be called for the root memory cgroup. 892 */ 893 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 894 int (*fn)(struct task_struct *, void *), void *arg) 895 { 896 struct mem_cgroup *iter; 897 int ret = 0; 898 899 BUG_ON(memcg == root_mem_cgroup); 900 901 for_each_mem_cgroup_tree(iter, memcg) { 902 struct css_task_iter it; 903 struct task_struct *task; 904 905 css_task_iter_start(&iter->css, 0, &it); 906 while (!ret && (task = css_task_iter_next(&it))) 907 ret = fn(task, arg); 908 css_task_iter_end(&it); 909 if (ret) { 910 mem_cgroup_iter_break(memcg, iter); 911 break; 912 } 913 } 914 return ret; 915 } 916 917 /** 918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 919 * @page: the page 920 * @pgdat: pgdat of the page 921 * 922 * This function is only safe when following the LRU page isolation 923 * and putback protocol: the LRU lock must be held, and the page must 924 * either be PageLRU() or the caller must have isolated/allocated it. 925 */ 926 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 927 { 928 struct mem_cgroup_per_node *mz; 929 struct mem_cgroup *memcg; 930 struct lruvec *lruvec; 931 932 if (mem_cgroup_disabled()) { 933 lruvec = &pgdat->lruvec; 934 goto out; 935 } 936 937 memcg = page->mem_cgroup; 938 /* 939 * Swapcache readahead pages are added to the LRU - and 940 * possibly migrated - before they are charged. 941 */ 942 if (!memcg) 943 memcg = root_mem_cgroup; 944 945 mz = mem_cgroup_page_nodeinfo(memcg, page); 946 lruvec = &mz->lruvec; 947 out: 948 /* 949 * Since a node can be onlined after the mem_cgroup was created, 950 * we have to be prepared to initialize lruvec->zone here; 951 * and if offlined then reonlined, we need to reinitialize it. 952 */ 953 if (unlikely(lruvec->pgdat != pgdat)) 954 lruvec->pgdat = pgdat; 955 return lruvec; 956 } 957 958 /** 959 * mem_cgroup_update_lru_size - account for adding or removing an lru page 960 * @lruvec: mem_cgroup per zone lru vector 961 * @lru: index of lru list the page is sitting on 962 * @zid: zone id of the accounted pages 963 * @nr_pages: positive when adding or negative when removing 964 * 965 * This function must be called under lru_lock, just before a page is added 966 * to or just after a page is removed from an lru list (that ordering being 967 * so as to allow it to check that lru_size 0 is consistent with list_empty). 968 */ 969 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 970 int zid, int nr_pages) 971 { 972 struct mem_cgroup_per_node *mz; 973 unsigned long *lru_size; 974 long size; 975 976 if (mem_cgroup_disabled()) 977 return; 978 979 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 980 lru_size = &mz->lru_zone_size[zid][lru]; 981 982 if (nr_pages < 0) 983 *lru_size += nr_pages; 984 985 size = *lru_size; 986 if (WARN_ONCE(size < 0, 987 "%s(%p, %d, %d): lru_size %ld\n", 988 __func__, lruvec, lru, nr_pages, size)) { 989 VM_BUG_ON(1); 990 *lru_size = 0; 991 } 992 993 if (nr_pages > 0) 994 *lru_size += nr_pages; 995 } 996 997 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 998 { 999 struct mem_cgroup *task_memcg; 1000 struct task_struct *p; 1001 bool ret; 1002 1003 p = find_lock_task_mm(task); 1004 if (p) { 1005 task_memcg = get_mem_cgroup_from_mm(p->mm); 1006 task_unlock(p); 1007 } else { 1008 /* 1009 * All threads may have already detached their mm's, but the oom 1010 * killer still needs to detect if they have already been oom 1011 * killed to prevent needlessly killing additional tasks. 1012 */ 1013 rcu_read_lock(); 1014 task_memcg = mem_cgroup_from_task(task); 1015 css_get(&task_memcg->css); 1016 rcu_read_unlock(); 1017 } 1018 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1019 css_put(&task_memcg->css); 1020 return ret; 1021 } 1022 1023 /** 1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1025 * @memcg: the memory cgroup 1026 * 1027 * Returns the maximum amount of memory @mem can be charged with, in 1028 * pages. 1029 */ 1030 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1031 { 1032 unsigned long margin = 0; 1033 unsigned long count; 1034 unsigned long limit; 1035 1036 count = page_counter_read(&memcg->memory); 1037 limit = READ_ONCE(memcg->memory.max); 1038 if (count < limit) 1039 margin = limit - count; 1040 1041 if (do_memsw_account()) { 1042 count = page_counter_read(&memcg->memsw); 1043 limit = READ_ONCE(memcg->memsw.max); 1044 if (count <= limit) 1045 margin = min(margin, limit - count); 1046 else 1047 margin = 0; 1048 } 1049 1050 return margin; 1051 } 1052 1053 /* 1054 * A routine for checking "mem" is under move_account() or not. 1055 * 1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1057 * moving cgroups. This is for waiting at high-memory pressure 1058 * caused by "move". 1059 */ 1060 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1061 { 1062 struct mem_cgroup *from; 1063 struct mem_cgroup *to; 1064 bool ret = false; 1065 /* 1066 * Unlike task_move routines, we access mc.to, mc.from not under 1067 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1068 */ 1069 spin_lock(&mc.lock); 1070 from = mc.from; 1071 to = mc.to; 1072 if (!from) 1073 goto unlock; 1074 1075 ret = mem_cgroup_is_descendant(from, memcg) || 1076 mem_cgroup_is_descendant(to, memcg); 1077 unlock: 1078 spin_unlock(&mc.lock); 1079 return ret; 1080 } 1081 1082 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1083 { 1084 if (mc.moving_task && current != mc.moving_task) { 1085 if (mem_cgroup_under_move(memcg)) { 1086 DEFINE_WAIT(wait); 1087 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1088 /* moving charge context might have finished. */ 1089 if (mc.moving_task) 1090 schedule(); 1091 finish_wait(&mc.waitq, &wait); 1092 return true; 1093 } 1094 } 1095 return false; 1096 } 1097 1098 static const unsigned int memcg1_stats[] = { 1099 MEMCG_CACHE, 1100 MEMCG_RSS, 1101 MEMCG_RSS_HUGE, 1102 NR_SHMEM, 1103 NR_FILE_MAPPED, 1104 NR_FILE_DIRTY, 1105 NR_WRITEBACK, 1106 MEMCG_SWAP, 1107 }; 1108 1109 static const char *const memcg1_stat_names[] = { 1110 "cache", 1111 "rss", 1112 "rss_huge", 1113 "shmem", 1114 "mapped_file", 1115 "dirty", 1116 "writeback", 1117 "swap", 1118 }; 1119 1120 #define K(x) ((x) << (PAGE_SHIFT-10)) 1121 /** 1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1123 * @memcg: The memory cgroup that went over limit 1124 * @p: Task that is going to be killed 1125 * 1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1127 * enabled 1128 */ 1129 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1130 { 1131 struct mem_cgroup *iter; 1132 unsigned int i; 1133 1134 rcu_read_lock(); 1135 1136 if (p) { 1137 pr_info("Task in "); 1138 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1139 pr_cont(" killed as a result of limit of "); 1140 } else { 1141 pr_info("Memory limit reached of cgroup "); 1142 } 1143 1144 pr_cont_cgroup_path(memcg->css.cgroup); 1145 pr_cont("\n"); 1146 1147 rcu_read_unlock(); 1148 1149 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1150 K((u64)page_counter_read(&memcg->memory)), 1151 K((u64)memcg->memory.max), memcg->memory.failcnt); 1152 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1153 K((u64)page_counter_read(&memcg->memsw)), 1154 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1155 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1156 K((u64)page_counter_read(&memcg->kmem)), 1157 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1158 1159 for_each_mem_cgroup_tree(iter, memcg) { 1160 pr_info("Memory cgroup stats for "); 1161 pr_cont_cgroup_path(iter->css.cgroup); 1162 pr_cont(":"); 1163 1164 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 1165 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account) 1166 continue; 1167 pr_cont(" %s:%luKB", memcg1_stat_names[i], 1168 K(memcg_page_state(iter, memcg1_stats[i]))); 1169 } 1170 1171 for (i = 0; i < NR_LRU_LISTS; i++) 1172 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1173 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1174 1175 pr_cont("\n"); 1176 } 1177 } 1178 1179 /* 1180 * Return the memory (and swap, if configured) limit for a memcg. 1181 */ 1182 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1183 { 1184 unsigned long max; 1185 1186 max = memcg->memory.max; 1187 if (mem_cgroup_swappiness(memcg)) { 1188 unsigned long memsw_max; 1189 unsigned long swap_max; 1190 1191 memsw_max = memcg->memsw.max; 1192 swap_max = memcg->swap.max; 1193 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1194 max = min(max + swap_max, memsw_max); 1195 } 1196 return max; 1197 } 1198 1199 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1200 int order) 1201 { 1202 struct oom_control oc = { 1203 .zonelist = NULL, 1204 .nodemask = NULL, 1205 .memcg = memcg, 1206 .gfp_mask = gfp_mask, 1207 .order = order, 1208 }; 1209 bool ret; 1210 1211 mutex_lock(&oom_lock); 1212 ret = out_of_memory(&oc); 1213 mutex_unlock(&oom_lock); 1214 return ret; 1215 } 1216 1217 #if MAX_NUMNODES > 1 1218 1219 /** 1220 * test_mem_cgroup_node_reclaimable 1221 * @memcg: the target memcg 1222 * @nid: the node ID to be checked. 1223 * @noswap : specify true here if the user wants flle only information. 1224 * 1225 * This function returns whether the specified memcg contains any 1226 * reclaimable pages on a node. Returns true if there are any reclaimable 1227 * pages in the node. 1228 */ 1229 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1230 int nid, bool noswap) 1231 { 1232 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1233 return true; 1234 if (noswap || !total_swap_pages) 1235 return false; 1236 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1237 return true; 1238 return false; 1239 1240 } 1241 1242 /* 1243 * Always updating the nodemask is not very good - even if we have an empty 1244 * list or the wrong list here, we can start from some node and traverse all 1245 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1246 * 1247 */ 1248 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1249 { 1250 int nid; 1251 /* 1252 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1253 * pagein/pageout changes since the last update. 1254 */ 1255 if (!atomic_read(&memcg->numainfo_events)) 1256 return; 1257 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1258 return; 1259 1260 /* make a nodemask where this memcg uses memory from */ 1261 memcg->scan_nodes = node_states[N_MEMORY]; 1262 1263 for_each_node_mask(nid, node_states[N_MEMORY]) { 1264 1265 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1266 node_clear(nid, memcg->scan_nodes); 1267 } 1268 1269 atomic_set(&memcg->numainfo_events, 0); 1270 atomic_set(&memcg->numainfo_updating, 0); 1271 } 1272 1273 /* 1274 * Selecting a node where we start reclaim from. Because what we need is just 1275 * reducing usage counter, start from anywhere is O,K. Considering 1276 * memory reclaim from current node, there are pros. and cons. 1277 * 1278 * Freeing memory from current node means freeing memory from a node which 1279 * we'll use or we've used. So, it may make LRU bad. And if several threads 1280 * hit limits, it will see a contention on a node. But freeing from remote 1281 * node means more costs for memory reclaim because of memory latency. 1282 * 1283 * Now, we use round-robin. Better algorithm is welcomed. 1284 */ 1285 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1286 { 1287 int node; 1288 1289 mem_cgroup_may_update_nodemask(memcg); 1290 node = memcg->last_scanned_node; 1291 1292 node = next_node_in(node, memcg->scan_nodes); 1293 /* 1294 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1295 * last time it really checked all the LRUs due to rate limiting. 1296 * Fallback to the current node in that case for simplicity. 1297 */ 1298 if (unlikely(node == MAX_NUMNODES)) 1299 node = numa_node_id(); 1300 1301 memcg->last_scanned_node = node; 1302 return node; 1303 } 1304 #else 1305 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1306 { 1307 return 0; 1308 } 1309 #endif 1310 1311 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1312 pg_data_t *pgdat, 1313 gfp_t gfp_mask, 1314 unsigned long *total_scanned) 1315 { 1316 struct mem_cgroup *victim = NULL; 1317 int total = 0; 1318 int loop = 0; 1319 unsigned long excess; 1320 unsigned long nr_scanned; 1321 struct mem_cgroup_reclaim_cookie reclaim = { 1322 .pgdat = pgdat, 1323 .priority = 0, 1324 }; 1325 1326 excess = soft_limit_excess(root_memcg); 1327 1328 while (1) { 1329 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1330 if (!victim) { 1331 loop++; 1332 if (loop >= 2) { 1333 /* 1334 * If we have not been able to reclaim 1335 * anything, it might because there are 1336 * no reclaimable pages under this hierarchy 1337 */ 1338 if (!total) 1339 break; 1340 /* 1341 * We want to do more targeted reclaim. 1342 * excess >> 2 is not to excessive so as to 1343 * reclaim too much, nor too less that we keep 1344 * coming back to reclaim from this cgroup 1345 */ 1346 if (total >= (excess >> 2) || 1347 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1348 break; 1349 } 1350 continue; 1351 } 1352 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1353 pgdat, &nr_scanned); 1354 *total_scanned += nr_scanned; 1355 if (!soft_limit_excess(root_memcg)) 1356 break; 1357 } 1358 mem_cgroup_iter_break(root_memcg, victim); 1359 return total; 1360 } 1361 1362 #ifdef CONFIG_LOCKDEP 1363 static struct lockdep_map memcg_oom_lock_dep_map = { 1364 .name = "memcg_oom_lock", 1365 }; 1366 #endif 1367 1368 static DEFINE_SPINLOCK(memcg_oom_lock); 1369 1370 /* 1371 * Check OOM-Killer is already running under our hierarchy. 1372 * If someone is running, return false. 1373 */ 1374 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1375 { 1376 struct mem_cgroup *iter, *failed = NULL; 1377 1378 spin_lock(&memcg_oom_lock); 1379 1380 for_each_mem_cgroup_tree(iter, memcg) { 1381 if (iter->oom_lock) { 1382 /* 1383 * this subtree of our hierarchy is already locked 1384 * so we cannot give a lock. 1385 */ 1386 failed = iter; 1387 mem_cgroup_iter_break(memcg, iter); 1388 break; 1389 } else 1390 iter->oom_lock = true; 1391 } 1392 1393 if (failed) { 1394 /* 1395 * OK, we failed to lock the whole subtree so we have 1396 * to clean up what we set up to the failing subtree 1397 */ 1398 for_each_mem_cgroup_tree(iter, memcg) { 1399 if (iter == failed) { 1400 mem_cgroup_iter_break(memcg, iter); 1401 break; 1402 } 1403 iter->oom_lock = false; 1404 } 1405 } else 1406 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1407 1408 spin_unlock(&memcg_oom_lock); 1409 1410 return !failed; 1411 } 1412 1413 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1414 { 1415 struct mem_cgroup *iter; 1416 1417 spin_lock(&memcg_oom_lock); 1418 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1419 for_each_mem_cgroup_tree(iter, memcg) 1420 iter->oom_lock = false; 1421 spin_unlock(&memcg_oom_lock); 1422 } 1423 1424 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1425 { 1426 struct mem_cgroup *iter; 1427 1428 spin_lock(&memcg_oom_lock); 1429 for_each_mem_cgroup_tree(iter, memcg) 1430 iter->under_oom++; 1431 spin_unlock(&memcg_oom_lock); 1432 } 1433 1434 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1435 { 1436 struct mem_cgroup *iter; 1437 1438 /* 1439 * When a new child is created while the hierarchy is under oom, 1440 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1441 */ 1442 spin_lock(&memcg_oom_lock); 1443 for_each_mem_cgroup_tree(iter, memcg) 1444 if (iter->under_oom > 0) 1445 iter->under_oom--; 1446 spin_unlock(&memcg_oom_lock); 1447 } 1448 1449 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1450 1451 struct oom_wait_info { 1452 struct mem_cgroup *memcg; 1453 wait_queue_entry_t wait; 1454 }; 1455 1456 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1457 unsigned mode, int sync, void *arg) 1458 { 1459 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1460 struct mem_cgroup *oom_wait_memcg; 1461 struct oom_wait_info *oom_wait_info; 1462 1463 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1464 oom_wait_memcg = oom_wait_info->memcg; 1465 1466 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1467 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1468 return 0; 1469 return autoremove_wake_function(wait, mode, sync, arg); 1470 } 1471 1472 static void memcg_oom_recover(struct mem_cgroup *memcg) 1473 { 1474 /* 1475 * For the following lockless ->under_oom test, the only required 1476 * guarantee is that it must see the state asserted by an OOM when 1477 * this function is called as a result of userland actions 1478 * triggered by the notification of the OOM. This is trivially 1479 * achieved by invoking mem_cgroup_mark_under_oom() before 1480 * triggering notification. 1481 */ 1482 if (memcg && memcg->under_oom) 1483 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1484 } 1485 1486 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1487 { 1488 if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER) 1489 return; 1490 /* 1491 * We are in the middle of the charge context here, so we 1492 * don't want to block when potentially sitting on a callstack 1493 * that holds all kinds of filesystem and mm locks. 1494 * 1495 * Also, the caller may handle a failed allocation gracefully 1496 * (like optional page cache readahead) and so an OOM killer 1497 * invocation might not even be necessary. 1498 * 1499 * That's why we don't do anything here except remember the 1500 * OOM context and then deal with it at the end of the page 1501 * fault when the stack is unwound, the locks are released, 1502 * and when we know whether the fault was overall successful. 1503 */ 1504 css_get(&memcg->css); 1505 current->memcg_in_oom = memcg; 1506 current->memcg_oom_gfp_mask = mask; 1507 current->memcg_oom_order = order; 1508 } 1509 1510 /** 1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1512 * @handle: actually kill/wait or just clean up the OOM state 1513 * 1514 * This has to be called at the end of a page fault if the memcg OOM 1515 * handler was enabled. 1516 * 1517 * Memcg supports userspace OOM handling where failed allocations must 1518 * sleep on a waitqueue until the userspace task resolves the 1519 * situation. Sleeping directly in the charge context with all kinds 1520 * of locks held is not a good idea, instead we remember an OOM state 1521 * in the task and mem_cgroup_oom_synchronize() has to be called at 1522 * the end of the page fault to complete the OOM handling. 1523 * 1524 * Returns %true if an ongoing memcg OOM situation was detected and 1525 * completed, %false otherwise. 1526 */ 1527 bool mem_cgroup_oom_synchronize(bool handle) 1528 { 1529 struct mem_cgroup *memcg = current->memcg_in_oom; 1530 struct oom_wait_info owait; 1531 bool locked; 1532 1533 /* OOM is global, do not handle */ 1534 if (!memcg) 1535 return false; 1536 1537 if (!handle) 1538 goto cleanup; 1539 1540 owait.memcg = memcg; 1541 owait.wait.flags = 0; 1542 owait.wait.func = memcg_oom_wake_function; 1543 owait.wait.private = current; 1544 INIT_LIST_HEAD(&owait.wait.entry); 1545 1546 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1547 mem_cgroup_mark_under_oom(memcg); 1548 1549 locked = mem_cgroup_oom_trylock(memcg); 1550 1551 if (locked) 1552 mem_cgroup_oom_notify(memcg); 1553 1554 if (locked && !memcg->oom_kill_disable) { 1555 mem_cgroup_unmark_under_oom(memcg); 1556 finish_wait(&memcg_oom_waitq, &owait.wait); 1557 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1558 current->memcg_oom_order); 1559 } else { 1560 schedule(); 1561 mem_cgroup_unmark_under_oom(memcg); 1562 finish_wait(&memcg_oom_waitq, &owait.wait); 1563 } 1564 1565 if (locked) { 1566 mem_cgroup_oom_unlock(memcg); 1567 /* 1568 * There is no guarantee that an OOM-lock contender 1569 * sees the wakeups triggered by the OOM kill 1570 * uncharges. Wake any sleepers explicitely. 1571 */ 1572 memcg_oom_recover(memcg); 1573 } 1574 cleanup: 1575 current->memcg_in_oom = NULL; 1576 css_put(&memcg->css); 1577 return true; 1578 } 1579 1580 /** 1581 * lock_page_memcg - lock a page->mem_cgroup binding 1582 * @page: the page 1583 * 1584 * This function protects unlocked LRU pages from being moved to 1585 * another cgroup. 1586 * 1587 * It ensures lifetime of the returned memcg. Caller is responsible 1588 * for the lifetime of the page; __unlock_page_memcg() is available 1589 * when @page might get freed inside the locked section. 1590 */ 1591 struct mem_cgroup *lock_page_memcg(struct page *page) 1592 { 1593 struct mem_cgroup *memcg; 1594 unsigned long flags; 1595 1596 /* 1597 * The RCU lock is held throughout the transaction. The fast 1598 * path can get away without acquiring the memcg->move_lock 1599 * because page moving starts with an RCU grace period. 1600 * 1601 * The RCU lock also protects the memcg from being freed when 1602 * the page state that is going to change is the only thing 1603 * preventing the page itself from being freed. E.g. writeback 1604 * doesn't hold a page reference and relies on PG_writeback to 1605 * keep off truncation, migration and so forth. 1606 */ 1607 rcu_read_lock(); 1608 1609 if (mem_cgroup_disabled()) 1610 return NULL; 1611 again: 1612 memcg = page->mem_cgroup; 1613 if (unlikely(!memcg)) 1614 return NULL; 1615 1616 if (atomic_read(&memcg->moving_account) <= 0) 1617 return memcg; 1618 1619 spin_lock_irqsave(&memcg->move_lock, flags); 1620 if (memcg != page->mem_cgroup) { 1621 spin_unlock_irqrestore(&memcg->move_lock, flags); 1622 goto again; 1623 } 1624 1625 /* 1626 * When charge migration first begins, we can have locked and 1627 * unlocked page stat updates happening concurrently. Track 1628 * the task who has the lock for unlock_page_memcg(). 1629 */ 1630 memcg->move_lock_task = current; 1631 memcg->move_lock_flags = flags; 1632 1633 return memcg; 1634 } 1635 EXPORT_SYMBOL(lock_page_memcg); 1636 1637 /** 1638 * __unlock_page_memcg - unlock and unpin a memcg 1639 * @memcg: the memcg 1640 * 1641 * Unlock and unpin a memcg returned by lock_page_memcg(). 1642 */ 1643 void __unlock_page_memcg(struct mem_cgroup *memcg) 1644 { 1645 if (memcg && memcg->move_lock_task == current) { 1646 unsigned long flags = memcg->move_lock_flags; 1647 1648 memcg->move_lock_task = NULL; 1649 memcg->move_lock_flags = 0; 1650 1651 spin_unlock_irqrestore(&memcg->move_lock, flags); 1652 } 1653 1654 rcu_read_unlock(); 1655 } 1656 1657 /** 1658 * unlock_page_memcg - unlock a page->mem_cgroup binding 1659 * @page: the page 1660 */ 1661 void unlock_page_memcg(struct page *page) 1662 { 1663 __unlock_page_memcg(page->mem_cgroup); 1664 } 1665 EXPORT_SYMBOL(unlock_page_memcg); 1666 1667 struct memcg_stock_pcp { 1668 struct mem_cgroup *cached; /* this never be root cgroup */ 1669 unsigned int nr_pages; 1670 struct work_struct work; 1671 unsigned long flags; 1672 #define FLUSHING_CACHED_CHARGE 0 1673 }; 1674 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1675 static DEFINE_MUTEX(percpu_charge_mutex); 1676 1677 /** 1678 * consume_stock: Try to consume stocked charge on this cpu. 1679 * @memcg: memcg to consume from. 1680 * @nr_pages: how many pages to charge. 1681 * 1682 * The charges will only happen if @memcg matches the current cpu's memcg 1683 * stock, and at least @nr_pages are available in that stock. Failure to 1684 * service an allocation will refill the stock. 1685 * 1686 * returns true if successful, false otherwise. 1687 */ 1688 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1689 { 1690 struct memcg_stock_pcp *stock; 1691 unsigned long flags; 1692 bool ret = false; 1693 1694 if (nr_pages > MEMCG_CHARGE_BATCH) 1695 return ret; 1696 1697 local_irq_save(flags); 1698 1699 stock = this_cpu_ptr(&memcg_stock); 1700 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1701 stock->nr_pages -= nr_pages; 1702 ret = true; 1703 } 1704 1705 local_irq_restore(flags); 1706 1707 return ret; 1708 } 1709 1710 /* 1711 * Returns stocks cached in percpu and reset cached information. 1712 */ 1713 static void drain_stock(struct memcg_stock_pcp *stock) 1714 { 1715 struct mem_cgroup *old = stock->cached; 1716 1717 if (stock->nr_pages) { 1718 page_counter_uncharge(&old->memory, stock->nr_pages); 1719 if (do_memsw_account()) 1720 page_counter_uncharge(&old->memsw, stock->nr_pages); 1721 css_put_many(&old->css, stock->nr_pages); 1722 stock->nr_pages = 0; 1723 } 1724 stock->cached = NULL; 1725 } 1726 1727 static void drain_local_stock(struct work_struct *dummy) 1728 { 1729 struct memcg_stock_pcp *stock; 1730 unsigned long flags; 1731 1732 /* 1733 * The only protection from memory hotplug vs. drain_stock races is 1734 * that we always operate on local CPU stock here with IRQ disabled 1735 */ 1736 local_irq_save(flags); 1737 1738 stock = this_cpu_ptr(&memcg_stock); 1739 drain_stock(stock); 1740 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1741 1742 local_irq_restore(flags); 1743 } 1744 1745 /* 1746 * Cache charges(val) to local per_cpu area. 1747 * This will be consumed by consume_stock() function, later. 1748 */ 1749 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1750 { 1751 struct memcg_stock_pcp *stock; 1752 unsigned long flags; 1753 1754 local_irq_save(flags); 1755 1756 stock = this_cpu_ptr(&memcg_stock); 1757 if (stock->cached != memcg) { /* reset if necessary */ 1758 drain_stock(stock); 1759 stock->cached = memcg; 1760 } 1761 stock->nr_pages += nr_pages; 1762 1763 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 1764 drain_stock(stock); 1765 1766 local_irq_restore(flags); 1767 } 1768 1769 /* 1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1771 * of the hierarchy under it. 1772 */ 1773 static void drain_all_stock(struct mem_cgroup *root_memcg) 1774 { 1775 int cpu, curcpu; 1776 1777 /* If someone's already draining, avoid adding running more workers. */ 1778 if (!mutex_trylock(&percpu_charge_mutex)) 1779 return; 1780 /* 1781 * Notify other cpus that system-wide "drain" is running 1782 * We do not care about races with the cpu hotplug because cpu down 1783 * as well as workers from this path always operate on the local 1784 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1785 */ 1786 curcpu = get_cpu(); 1787 for_each_online_cpu(cpu) { 1788 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1789 struct mem_cgroup *memcg; 1790 1791 memcg = stock->cached; 1792 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 1793 continue; 1794 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 1795 css_put(&memcg->css); 1796 continue; 1797 } 1798 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1799 if (cpu == curcpu) 1800 drain_local_stock(&stock->work); 1801 else 1802 schedule_work_on(cpu, &stock->work); 1803 } 1804 css_put(&memcg->css); 1805 } 1806 put_cpu(); 1807 mutex_unlock(&percpu_charge_mutex); 1808 } 1809 1810 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1811 { 1812 struct memcg_stock_pcp *stock; 1813 struct mem_cgroup *memcg; 1814 1815 stock = &per_cpu(memcg_stock, cpu); 1816 drain_stock(stock); 1817 1818 for_each_mem_cgroup(memcg) { 1819 int i; 1820 1821 for (i = 0; i < MEMCG_NR_STAT; i++) { 1822 int nid; 1823 long x; 1824 1825 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0); 1826 if (x) 1827 atomic_long_add(x, &memcg->stat[i]); 1828 1829 if (i >= NR_VM_NODE_STAT_ITEMS) 1830 continue; 1831 1832 for_each_node(nid) { 1833 struct mem_cgroup_per_node *pn; 1834 1835 pn = mem_cgroup_nodeinfo(memcg, nid); 1836 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 1837 if (x) 1838 atomic_long_add(x, &pn->lruvec_stat[i]); 1839 } 1840 } 1841 1842 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 1843 long x; 1844 1845 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0); 1846 if (x) 1847 atomic_long_add(x, &memcg->events[i]); 1848 } 1849 } 1850 1851 return 0; 1852 } 1853 1854 static void reclaim_high(struct mem_cgroup *memcg, 1855 unsigned int nr_pages, 1856 gfp_t gfp_mask) 1857 { 1858 do { 1859 if (page_counter_read(&memcg->memory) <= memcg->high) 1860 continue; 1861 memcg_memory_event(memcg, MEMCG_HIGH); 1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1863 } while ((memcg = parent_mem_cgroup(memcg))); 1864 } 1865 1866 static void high_work_func(struct work_struct *work) 1867 { 1868 struct mem_cgroup *memcg; 1869 1870 memcg = container_of(work, struct mem_cgroup, high_work); 1871 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 1872 } 1873 1874 /* 1875 * Scheduled by try_charge() to be executed from the userland return path 1876 * and reclaims memory over the high limit. 1877 */ 1878 void mem_cgroup_handle_over_high(void) 1879 { 1880 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1881 struct mem_cgroup *memcg; 1882 1883 if (likely(!nr_pages)) 1884 return; 1885 1886 memcg = get_mem_cgroup_from_mm(current->mm); 1887 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1888 css_put(&memcg->css); 1889 current->memcg_nr_pages_over_high = 0; 1890 } 1891 1892 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1893 unsigned int nr_pages) 1894 { 1895 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1897 struct mem_cgroup *mem_over_limit; 1898 struct page_counter *counter; 1899 unsigned long nr_reclaimed; 1900 bool may_swap = true; 1901 bool drained = false; 1902 1903 if (mem_cgroup_is_root(memcg)) 1904 return 0; 1905 retry: 1906 if (consume_stock(memcg, nr_pages)) 1907 return 0; 1908 1909 if (!do_memsw_account() || 1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1911 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1912 goto done_restock; 1913 if (do_memsw_account()) 1914 page_counter_uncharge(&memcg->memsw, batch); 1915 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1916 } else { 1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1918 may_swap = false; 1919 } 1920 1921 if (batch > nr_pages) { 1922 batch = nr_pages; 1923 goto retry; 1924 } 1925 1926 /* 1927 * Unlike in global OOM situations, memcg is not in a physical 1928 * memory shortage. Allow dying and OOM-killed tasks to 1929 * bypass the last charges so that they can exit quickly and 1930 * free their memory. 1931 */ 1932 if (unlikely(tsk_is_oom_victim(current) || 1933 fatal_signal_pending(current) || 1934 current->flags & PF_EXITING)) 1935 goto force; 1936 1937 /* 1938 * Prevent unbounded recursion when reclaim operations need to 1939 * allocate memory. This might exceed the limits temporarily, 1940 * but we prefer facilitating memory reclaim and getting back 1941 * under the limit over triggering OOM kills in these cases. 1942 */ 1943 if (unlikely(current->flags & PF_MEMALLOC)) 1944 goto force; 1945 1946 if (unlikely(task_in_memcg_oom(current))) 1947 goto nomem; 1948 1949 if (!gfpflags_allow_blocking(gfp_mask)) 1950 goto nomem; 1951 1952 memcg_memory_event(mem_over_limit, MEMCG_MAX); 1953 1954 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1955 gfp_mask, may_swap); 1956 1957 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1958 goto retry; 1959 1960 if (!drained) { 1961 drain_all_stock(mem_over_limit); 1962 drained = true; 1963 goto retry; 1964 } 1965 1966 if (gfp_mask & __GFP_NORETRY) 1967 goto nomem; 1968 /* 1969 * Even though the limit is exceeded at this point, reclaim 1970 * may have been able to free some pages. Retry the charge 1971 * before killing the task. 1972 * 1973 * Only for regular pages, though: huge pages are rather 1974 * unlikely to succeed so close to the limit, and we fall back 1975 * to regular pages anyway in case of failure. 1976 */ 1977 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 1978 goto retry; 1979 /* 1980 * At task move, charge accounts can be doubly counted. So, it's 1981 * better to wait until the end of task_move if something is going on. 1982 */ 1983 if (mem_cgroup_wait_acct_move(mem_over_limit)) 1984 goto retry; 1985 1986 if (nr_retries--) 1987 goto retry; 1988 1989 if (gfp_mask & __GFP_NOFAIL) 1990 goto force; 1991 1992 if (fatal_signal_pending(current)) 1993 goto force; 1994 1995 memcg_memory_event(mem_over_limit, MEMCG_OOM); 1996 1997 mem_cgroup_oom(mem_over_limit, gfp_mask, 1998 get_order(nr_pages * PAGE_SIZE)); 1999 nomem: 2000 if (!(gfp_mask & __GFP_NOFAIL)) 2001 return -ENOMEM; 2002 force: 2003 /* 2004 * The allocation either can't fail or will lead to more memory 2005 * being freed very soon. Allow memory usage go over the limit 2006 * temporarily by force charging it. 2007 */ 2008 page_counter_charge(&memcg->memory, nr_pages); 2009 if (do_memsw_account()) 2010 page_counter_charge(&memcg->memsw, nr_pages); 2011 css_get_many(&memcg->css, nr_pages); 2012 2013 return 0; 2014 2015 done_restock: 2016 css_get_many(&memcg->css, batch); 2017 if (batch > nr_pages) 2018 refill_stock(memcg, batch - nr_pages); 2019 2020 /* 2021 * If the hierarchy is above the normal consumption range, schedule 2022 * reclaim on returning to userland. We can perform reclaim here 2023 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2024 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2025 * not recorded as it most likely matches current's and won't 2026 * change in the meantime. As high limit is checked again before 2027 * reclaim, the cost of mismatch is negligible. 2028 */ 2029 do { 2030 if (page_counter_read(&memcg->memory) > memcg->high) { 2031 /* Don't bother a random interrupted task */ 2032 if (in_interrupt()) { 2033 schedule_work(&memcg->high_work); 2034 break; 2035 } 2036 current->memcg_nr_pages_over_high += batch; 2037 set_notify_resume(current); 2038 break; 2039 } 2040 } while ((memcg = parent_mem_cgroup(memcg))); 2041 2042 return 0; 2043 } 2044 2045 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2046 { 2047 if (mem_cgroup_is_root(memcg)) 2048 return; 2049 2050 page_counter_uncharge(&memcg->memory, nr_pages); 2051 if (do_memsw_account()) 2052 page_counter_uncharge(&memcg->memsw, nr_pages); 2053 2054 css_put_many(&memcg->css, nr_pages); 2055 } 2056 2057 static void lock_page_lru(struct page *page, int *isolated) 2058 { 2059 struct zone *zone = page_zone(page); 2060 2061 spin_lock_irq(zone_lru_lock(zone)); 2062 if (PageLRU(page)) { 2063 struct lruvec *lruvec; 2064 2065 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2066 ClearPageLRU(page); 2067 del_page_from_lru_list(page, lruvec, page_lru(page)); 2068 *isolated = 1; 2069 } else 2070 *isolated = 0; 2071 } 2072 2073 static void unlock_page_lru(struct page *page, int isolated) 2074 { 2075 struct zone *zone = page_zone(page); 2076 2077 if (isolated) { 2078 struct lruvec *lruvec; 2079 2080 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2081 VM_BUG_ON_PAGE(PageLRU(page), page); 2082 SetPageLRU(page); 2083 add_page_to_lru_list(page, lruvec, page_lru(page)); 2084 } 2085 spin_unlock_irq(zone_lru_lock(zone)); 2086 } 2087 2088 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2089 bool lrucare) 2090 { 2091 int isolated; 2092 2093 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2094 2095 /* 2096 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2097 * may already be on some other mem_cgroup's LRU. Take care of it. 2098 */ 2099 if (lrucare) 2100 lock_page_lru(page, &isolated); 2101 2102 /* 2103 * Nobody should be changing or seriously looking at 2104 * page->mem_cgroup at this point: 2105 * 2106 * - the page is uncharged 2107 * 2108 * - the page is off-LRU 2109 * 2110 * - an anonymous fault has exclusive page access, except for 2111 * a locked page table 2112 * 2113 * - a page cache insertion, a swapin fault, or a migration 2114 * have the page locked 2115 */ 2116 page->mem_cgroup = memcg; 2117 2118 if (lrucare) 2119 unlock_page_lru(page, isolated); 2120 } 2121 2122 #ifndef CONFIG_SLOB 2123 static int memcg_alloc_cache_id(void) 2124 { 2125 int id, size; 2126 int err; 2127 2128 id = ida_simple_get(&memcg_cache_ida, 2129 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2130 if (id < 0) 2131 return id; 2132 2133 if (id < memcg_nr_cache_ids) 2134 return id; 2135 2136 /* 2137 * There's no space for the new id in memcg_caches arrays, 2138 * so we have to grow them. 2139 */ 2140 down_write(&memcg_cache_ids_sem); 2141 2142 size = 2 * (id + 1); 2143 if (size < MEMCG_CACHES_MIN_SIZE) 2144 size = MEMCG_CACHES_MIN_SIZE; 2145 else if (size > MEMCG_CACHES_MAX_SIZE) 2146 size = MEMCG_CACHES_MAX_SIZE; 2147 2148 err = memcg_update_all_caches(size); 2149 if (!err) 2150 err = memcg_update_all_list_lrus(size); 2151 if (!err) 2152 memcg_nr_cache_ids = size; 2153 2154 up_write(&memcg_cache_ids_sem); 2155 2156 if (err) { 2157 ida_simple_remove(&memcg_cache_ida, id); 2158 return err; 2159 } 2160 return id; 2161 } 2162 2163 static void memcg_free_cache_id(int id) 2164 { 2165 ida_simple_remove(&memcg_cache_ida, id); 2166 } 2167 2168 struct memcg_kmem_cache_create_work { 2169 struct mem_cgroup *memcg; 2170 struct kmem_cache *cachep; 2171 struct work_struct work; 2172 }; 2173 2174 static void memcg_kmem_cache_create_func(struct work_struct *w) 2175 { 2176 struct memcg_kmem_cache_create_work *cw = 2177 container_of(w, struct memcg_kmem_cache_create_work, work); 2178 struct mem_cgroup *memcg = cw->memcg; 2179 struct kmem_cache *cachep = cw->cachep; 2180 2181 memcg_create_kmem_cache(memcg, cachep); 2182 2183 css_put(&memcg->css); 2184 kfree(cw); 2185 } 2186 2187 /* 2188 * Enqueue the creation of a per-memcg kmem_cache. 2189 */ 2190 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2191 struct kmem_cache *cachep) 2192 { 2193 struct memcg_kmem_cache_create_work *cw; 2194 2195 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2196 if (!cw) 2197 return; 2198 2199 css_get(&memcg->css); 2200 2201 cw->memcg = memcg; 2202 cw->cachep = cachep; 2203 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2204 2205 queue_work(memcg_kmem_cache_wq, &cw->work); 2206 } 2207 2208 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2209 struct kmem_cache *cachep) 2210 { 2211 /* 2212 * We need to stop accounting when we kmalloc, because if the 2213 * corresponding kmalloc cache is not yet created, the first allocation 2214 * in __memcg_schedule_kmem_cache_create will recurse. 2215 * 2216 * However, it is better to enclose the whole function. Depending on 2217 * the debugging options enabled, INIT_WORK(), for instance, can 2218 * trigger an allocation. This too, will make us recurse. Because at 2219 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2220 * the safest choice is to do it like this, wrapping the whole function. 2221 */ 2222 current->memcg_kmem_skip_account = 1; 2223 __memcg_schedule_kmem_cache_create(memcg, cachep); 2224 current->memcg_kmem_skip_account = 0; 2225 } 2226 2227 static inline bool memcg_kmem_bypass(void) 2228 { 2229 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2230 return true; 2231 return false; 2232 } 2233 2234 /** 2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2236 * @cachep: the original global kmem cache 2237 * 2238 * Return the kmem_cache we're supposed to use for a slab allocation. 2239 * We try to use the current memcg's version of the cache. 2240 * 2241 * If the cache does not exist yet, if we are the first user of it, we 2242 * create it asynchronously in a workqueue and let the current allocation 2243 * go through with the original cache. 2244 * 2245 * This function takes a reference to the cache it returns to assure it 2246 * won't get destroyed while we are working with it. Once the caller is 2247 * done with it, memcg_kmem_put_cache() must be called to release the 2248 * reference. 2249 */ 2250 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2251 { 2252 struct mem_cgroup *memcg; 2253 struct kmem_cache *memcg_cachep; 2254 int kmemcg_id; 2255 2256 VM_BUG_ON(!is_root_cache(cachep)); 2257 2258 if (memcg_kmem_bypass()) 2259 return cachep; 2260 2261 if (current->memcg_kmem_skip_account) 2262 return cachep; 2263 2264 memcg = get_mem_cgroup_from_mm(current->mm); 2265 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2266 if (kmemcg_id < 0) 2267 goto out; 2268 2269 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2270 if (likely(memcg_cachep)) 2271 return memcg_cachep; 2272 2273 /* 2274 * If we are in a safe context (can wait, and not in interrupt 2275 * context), we could be be predictable and return right away. 2276 * This would guarantee that the allocation being performed 2277 * already belongs in the new cache. 2278 * 2279 * However, there are some clashes that can arrive from locking. 2280 * For instance, because we acquire the slab_mutex while doing 2281 * memcg_create_kmem_cache, this means no further allocation 2282 * could happen with the slab_mutex held. So it's better to 2283 * defer everything. 2284 */ 2285 memcg_schedule_kmem_cache_create(memcg, cachep); 2286 out: 2287 css_put(&memcg->css); 2288 return cachep; 2289 } 2290 2291 /** 2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2293 * @cachep: the cache returned by memcg_kmem_get_cache 2294 */ 2295 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2296 { 2297 if (!is_root_cache(cachep)) 2298 css_put(&cachep->memcg_params.memcg->css); 2299 } 2300 2301 /** 2302 * memcg_kmem_charge_memcg: charge a kmem page 2303 * @page: page to charge 2304 * @gfp: reclaim mode 2305 * @order: allocation order 2306 * @memcg: memory cgroup to charge 2307 * 2308 * Returns 0 on success, an error code on failure. 2309 */ 2310 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2311 struct mem_cgroup *memcg) 2312 { 2313 unsigned int nr_pages = 1 << order; 2314 struct page_counter *counter; 2315 int ret; 2316 2317 ret = try_charge(memcg, gfp, nr_pages); 2318 if (ret) 2319 return ret; 2320 2321 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2322 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2323 cancel_charge(memcg, nr_pages); 2324 return -ENOMEM; 2325 } 2326 2327 page->mem_cgroup = memcg; 2328 2329 return 0; 2330 } 2331 2332 /** 2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2334 * @page: page to charge 2335 * @gfp: reclaim mode 2336 * @order: allocation order 2337 * 2338 * Returns 0 on success, an error code on failure. 2339 */ 2340 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2341 { 2342 struct mem_cgroup *memcg; 2343 int ret = 0; 2344 2345 if (memcg_kmem_bypass()) 2346 return 0; 2347 2348 memcg = get_mem_cgroup_from_mm(current->mm); 2349 if (!mem_cgroup_is_root(memcg)) { 2350 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2351 if (!ret) 2352 __SetPageKmemcg(page); 2353 } 2354 css_put(&memcg->css); 2355 return ret; 2356 } 2357 /** 2358 * memcg_kmem_uncharge: uncharge a kmem page 2359 * @page: page to uncharge 2360 * @order: allocation order 2361 */ 2362 void memcg_kmem_uncharge(struct page *page, int order) 2363 { 2364 struct mem_cgroup *memcg = page->mem_cgroup; 2365 unsigned int nr_pages = 1 << order; 2366 2367 if (!memcg) 2368 return; 2369 2370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2371 2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2373 page_counter_uncharge(&memcg->kmem, nr_pages); 2374 2375 page_counter_uncharge(&memcg->memory, nr_pages); 2376 if (do_memsw_account()) 2377 page_counter_uncharge(&memcg->memsw, nr_pages); 2378 2379 page->mem_cgroup = NULL; 2380 2381 /* slab pages do not have PageKmemcg flag set */ 2382 if (PageKmemcg(page)) 2383 __ClearPageKmemcg(page); 2384 2385 css_put_many(&memcg->css, nr_pages); 2386 } 2387 #endif /* !CONFIG_SLOB */ 2388 2389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2390 2391 /* 2392 * Because tail pages are not marked as "used", set it. We're under 2393 * zone_lru_lock and migration entries setup in all page mappings. 2394 */ 2395 void mem_cgroup_split_huge_fixup(struct page *head) 2396 { 2397 int i; 2398 2399 if (mem_cgroup_disabled()) 2400 return; 2401 2402 for (i = 1; i < HPAGE_PMD_NR; i++) 2403 head[i].mem_cgroup = head->mem_cgroup; 2404 2405 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2406 } 2407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2408 2409 #ifdef CONFIG_MEMCG_SWAP 2410 /** 2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2412 * @entry: swap entry to be moved 2413 * @from: mem_cgroup which the entry is moved from 2414 * @to: mem_cgroup which the entry is moved to 2415 * 2416 * It succeeds only when the swap_cgroup's record for this entry is the same 2417 * as the mem_cgroup's id of @from. 2418 * 2419 * Returns 0 on success, -EINVAL on failure. 2420 * 2421 * The caller must have charged to @to, IOW, called page_counter_charge() about 2422 * both res and memsw, and called css_get(). 2423 */ 2424 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2425 struct mem_cgroup *from, struct mem_cgroup *to) 2426 { 2427 unsigned short old_id, new_id; 2428 2429 old_id = mem_cgroup_id(from); 2430 new_id = mem_cgroup_id(to); 2431 2432 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2433 mod_memcg_state(from, MEMCG_SWAP, -1); 2434 mod_memcg_state(to, MEMCG_SWAP, 1); 2435 return 0; 2436 } 2437 return -EINVAL; 2438 } 2439 #else 2440 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2441 struct mem_cgroup *from, struct mem_cgroup *to) 2442 { 2443 return -EINVAL; 2444 } 2445 #endif 2446 2447 static DEFINE_MUTEX(memcg_max_mutex); 2448 2449 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2450 unsigned long max, bool memsw) 2451 { 2452 bool enlarge = false; 2453 bool drained = false; 2454 int ret; 2455 bool limits_invariant; 2456 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2457 2458 do { 2459 if (signal_pending(current)) { 2460 ret = -EINTR; 2461 break; 2462 } 2463 2464 mutex_lock(&memcg_max_mutex); 2465 /* 2466 * Make sure that the new limit (memsw or memory limit) doesn't 2467 * break our basic invariant rule memory.max <= memsw.max. 2468 */ 2469 limits_invariant = memsw ? max >= memcg->memory.max : 2470 max <= memcg->memsw.max; 2471 if (!limits_invariant) { 2472 mutex_unlock(&memcg_max_mutex); 2473 ret = -EINVAL; 2474 break; 2475 } 2476 if (max > counter->max) 2477 enlarge = true; 2478 ret = page_counter_set_max(counter, max); 2479 mutex_unlock(&memcg_max_mutex); 2480 2481 if (!ret) 2482 break; 2483 2484 if (!drained) { 2485 drain_all_stock(memcg); 2486 drained = true; 2487 continue; 2488 } 2489 2490 if (!try_to_free_mem_cgroup_pages(memcg, 1, 2491 GFP_KERNEL, !memsw)) { 2492 ret = -EBUSY; 2493 break; 2494 } 2495 } while (true); 2496 2497 if (!ret && enlarge) 2498 memcg_oom_recover(memcg); 2499 2500 return ret; 2501 } 2502 2503 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2504 gfp_t gfp_mask, 2505 unsigned long *total_scanned) 2506 { 2507 unsigned long nr_reclaimed = 0; 2508 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2509 unsigned long reclaimed; 2510 int loop = 0; 2511 struct mem_cgroup_tree_per_node *mctz; 2512 unsigned long excess; 2513 unsigned long nr_scanned; 2514 2515 if (order > 0) 2516 return 0; 2517 2518 mctz = soft_limit_tree_node(pgdat->node_id); 2519 2520 /* 2521 * Do not even bother to check the largest node if the root 2522 * is empty. Do it lockless to prevent lock bouncing. Races 2523 * are acceptable as soft limit is best effort anyway. 2524 */ 2525 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 2526 return 0; 2527 2528 /* 2529 * This loop can run a while, specially if mem_cgroup's continuously 2530 * keep exceeding their soft limit and putting the system under 2531 * pressure 2532 */ 2533 do { 2534 if (next_mz) 2535 mz = next_mz; 2536 else 2537 mz = mem_cgroup_largest_soft_limit_node(mctz); 2538 if (!mz) 2539 break; 2540 2541 nr_scanned = 0; 2542 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2543 gfp_mask, &nr_scanned); 2544 nr_reclaimed += reclaimed; 2545 *total_scanned += nr_scanned; 2546 spin_lock_irq(&mctz->lock); 2547 __mem_cgroup_remove_exceeded(mz, mctz); 2548 2549 /* 2550 * If we failed to reclaim anything from this memory cgroup 2551 * it is time to move on to the next cgroup 2552 */ 2553 next_mz = NULL; 2554 if (!reclaimed) 2555 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2556 2557 excess = soft_limit_excess(mz->memcg); 2558 /* 2559 * One school of thought says that we should not add 2560 * back the node to the tree if reclaim returns 0. 2561 * But our reclaim could return 0, simply because due 2562 * to priority we are exposing a smaller subset of 2563 * memory to reclaim from. Consider this as a longer 2564 * term TODO. 2565 */ 2566 /* If excess == 0, no tree ops */ 2567 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2568 spin_unlock_irq(&mctz->lock); 2569 css_put(&mz->memcg->css); 2570 loop++; 2571 /* 2572 * Could not reclaim anything and there are no more 2573 * mem cgroups to try or we seem to be looping without 2574 * reclaiming anything. 2575 */ 2576 if (!nr_reclaimed && 2577 (next_mz == NULL || 2578 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2579 break; 2580 } while (!nr_reclaimed); 2581 if (next_mz) 2582 css_put(&next_mz->memcg->css); 2583 return nr_reclaimed; 2584 } 2585 2586 /* 2587 * Test whether @memcg has children, dead or alive. Note that this 2588 * function doesn't care whether @memcg has use_hierarchy enabled and 2589 * returns %true if there are child csses according to the cgroup 2590 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2591 */ 2592 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2593 { 2594 bool ret; 2595 2596 rcu_read_lock(); 2597 ret = css_next_child(NULL, &memcg->css); 2598 rcu_read_unlock(); 2599 return ret; 2600 } 2601 2602 /* 2603 * Reclaims as many pages from the given memcg as possible. 2604 * 2605 * Caller is responsible for holding css reference for memcg. 2606 */ 2607 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2608 { 2609 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2610 2611 /* we call try-to-free pages for make this cgroup empty */ 2612 lru_add_drain_all(); 2613 2614 drain_all_stock(memcg); 2615 2616 /* try to free all pages in this cgroup */ 2617 while (nr_retries && page_counter_read(&memcg->memory)) { 2618 int progress; 2619 2620 if (signal_pending(current)) 2621 return -EINTR; 2622 2623 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2624 GFP_KERNEL, true); 2625 if (!progress) { 2626 nr_retries--; 2627 /* maybe some writeback is necessary */ 2628 congestion_wait(BLK_RW_ASYNC, HZ/10); 2629 } 2630 2631 } 2632 2633 return 0; 2634 } 2635 2636 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2637 char *buf, size_t nbytes, 2638 loff_t off) 2639 { 2640 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2641 2642 if (mem_cgroup_is_root(memcg)) 2643 return -EINVAL; 2644 return mem_cgroup_force_empty(memcg) ?: nbytes; 2645 } 2646 2647 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2648 struct cftype *cft) 2649 { 2650 return mem_cgroup_from_css(css)->use_hierarchy; 2651 } 2652 2653 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2654 struct cftype *cft, u64 val) 2655 { 2656 int retval = 0; 2657 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2658 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2659 2660 if (memcg->use_hierarchy == val) 2661 return 0; 2662 2663 /* 2664 * If parent's use_hierarchy is set, we can't make any modifications 2665 * in the child subtrees. If it is unset, then the change can 2666 * occur, provided the current cgroup has no children. 2667 * 2668 * For the root cgroup, parent_mem is NULL, we allow value to be 2669 * set if there are no children. 2670 */ 2671 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2672 (val == 1 || val == 0)) { 2673 if (!memcg_has_children(memcg)) 2674 memcg->use_hierarchy = val; 2675 else 2676 retval = -EBUSY; 2677 } else 2678 retval = -EINVAL; 2679 2680 return retval; 2681 } 2682 2683 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2684 { 2685 struct mem_cgroup *iter; 2686 int i; 2687 2688 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2689 2690 for_each_mem_cgroup_tree(iter, memcg) { 2691 for (i = 0; i < MEMCG_NR_STAT; i++) 2692 stat[i] += memcg_page_state(iter, i); 2693 } 2694 } 2695 2696 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2697 { 2698 struct mem_cgroup *iter; 2699 int i; 2700 2701 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS); 2702 2703 for_each_mem_cgroup_tree(iter, memcg) { 2704 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 2705 events[i] += memcg_sum_events(iter, i); 2706 } 2707 } 2708 2709 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2710 { 2711 unsigned long val = 0; 2712 2713 if (mem_cgroup_is_root(memcg)) { 2714 struct mem_cgroup *iter; 2715 2716 for_each_mem_cgroup_tree(iter, memcg) { 2717 val += memcg_page_state(iter, MEMCG_CACHE); 2718 val += memcg_page_state(iter, MEMCG_RSS); 2719 if (swap) 2720 val += memcg_page_state(iter, MEMCG_SWAP); 2721 } 2722 } else { 2723 if (!swap) 2724 val = page_counter_read(&memcg->memory); 2725 else 2726 val = page_counter_read(&memcg->memsw); 2727 } 2728 return val; 2729 } 2730 2731 enum { 2732 RES_USAGE, 2733 RES_LIMIT, 2734 RES_MAX_USAGE, 2735 RES_FAILCNT, 2736 RES_SOFT_LIMIT, 2737 }; 2738 2739 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2740 struct cftype *cft) 2741 { 2742 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2743 struct page_counter *counter; 2744 2745 switch (MEMFILE_TYPE(cft->private)) { 2746 case _MEM: 2747 counter = &memcg->memory; 2748 break; 2749 case _MEMSWAP: 2750 counter = &memcg->memsw; 2751 break; 2752 case _KMEM: 2753 counter = &memcg->kmem; 2754 break; 2755 case _TCP: 2756 counter = &memcg->tcpmem; 2757 break; 2758 default: 2759 BUG(); 2760 } 2761 2762 switch (MEMFILE_ATTR(cft->private)) { 2763 case RES_USAGE: 2764 if (counter == &memcg->memory) 2765 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2766 if (counter == &memcg->memsw) 2767 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2768 return (u64)page_counter_read(counter) * PAGE_SIZE; 2769 case RES_LIMIT: 2770 return (u64)counter->max * PAGE_SIZE; 2771 case RES_MAX_USAGE: 2772 return (u64)counter->watermark * PAGE_SIZE; 2773 case RES_FAILCNT: 2774 return counter->failcnt; 2775 case RES_SOFT_LIMIT: 2776 return (u64)memcg->soft_limit * PAGE_SIZE; 2777 default: 2778 BUG(); 2779 } 2780 } 2781 2782 #ifndef CONFIG_SLOB 2783 static int memcg_online_kmem(struct mem_cgroup *memcg) 2784 { 2785 int memcg_id; 2786 2787 if (cgroup_memory_nokmem) 2788 return 0; 2789 2790 BUG_ON(memcg->kmemcg_id >= 0); 2791 BUG_ON(memcg->kmem_state); 2792 2793 memcg_id = memcg_alloc_cache_id(); 2794 if (memcg_id < 0) 2795 return memcg_id; 2796 2797 static_branch_inc(&memcg_kmem_enabled_key); 2798 /* 2799 * A memory cgroup is considered kmem-online as soon as it gets 2800 * kmemcg_id. Setting the id after enabling static branching will 2801 * guarantee no one starts accounting before all call sites are 2802 * patched. 2803 */ 2804 memcg->kmemcg_id = memcg_id; 2805 memcg->kmem_state = KMEM_ONLINE; 2806 INIT_LIST_HEAD(&memcg->kmem_caches); 2807 2808 return 0; 2809 } 2810 2811 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2812 { 2813 struct cgroup_subsys_state *css; 2814 struct mem_cgroup *parent, *child; 2815 int kmemcg_id; 2816 2817 if (memcg->kmem_state != KMEM_ONLINE) 2818 return; 2819 /* 2820 * Clear the online state before clearing memcg_caches array 2821 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2822 * guarantees that no cache will be created for this cgroup 2823 * after we are done (see memcg_create_kmem_cache()). 2824 */ 2825 memcg->kmem_state = KMEM_ALLOCATED; 2826 2827 memcg_deactivate_kmem_caches(memcg); 2828 2829 kmemcg_id = memcg->kmemcg_id; 2830 BUG_ON(kmemcg_id < 0); 2831 2832 parent = parent_mem_cgroup(memcg); 2833 if (!parent) 2834 parent = root_mem_cgroup; 2835 2836 /* 2837 * Change kmemcg_id of this cgroup and all its descendants to the 2838 * parent's id, and then move all entries from this cgroup's list_lrus 2839 * to ones of the parent. After we have finished, all list_lrus 2840 * corresponding to this cgroup are guaranteed to remain empty. The 2841 * ordering is imposed by list_lru_node->lock taken by 2842 * memcg_drain_all_list_lrus(). 2843 */ 2844 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 2845 css_for_each_descendant_pre(css, &memcg->css) { 2846 child = mem_cgroup_from_css(css); 2847 BUG_ON(child->kmemcg_id != kmemcg_id); 2848 child->kmemcg_id = parent->kmemcg_id; 2849 if (!memcg->use_hierarchy) 2850 break; 2851 } 2852 rcu_read_unlock(); 2853 2854 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2855 2856 memcg_free_cache_id(kmemcg_id); 2857 } 2858 2859 static void memcg_free_kmem(struct mem_cgroup *memcg) 2860 { 2861 /* css_alloc() failed, offlining didn't happen */ 2862 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2863 memcg_offline_kmem(memcg); 2864 2865 if (memcg->kmem_state == KMEM_ALLOCATED) { 2866 memcg_destroy_kmem_caches(memcg); 2867 static_branch_dec(&memcg_kmem_enabled_key); 2868 WARN_ON(page_counter_read(&memcg->kmem)); 2869 } 2870 } 2871 #else 2872 static int memcg_online_kmem(struct mem_cgroup *memcg) 2873 { 2874 return 0; 2875 } 2876 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2877 { 2878 } 2879 static void memcg_free_kmem(struct mem_cgroup *memcg) 2880 { 2881 } 2882 #endif /* !CONFIG_SLOB */ 2883 2884 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 2885 unsigned long max) 2886 { 2887 int ret; 2888 2889 mutex_lock(&memcg_max_mutex); 2890 ret = page_counter_set_max(&memcg->kmem, max); 2891 mutex_unlock(&memcg_max_mutex); 2892 return ret; 2893 } 2894 2895 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 2896 { 2897 int ret; 2898 2899 mutex_lock(&memcg_max_mutex); 2900 2901 ret = page_counter_set_max(&memcg->tcpmem, max); 2902 if (ret) 2903 goto out; 2904 2905 if (!memcg->tcpmem_active) { 2906 /* 2907 * The active flag needs to be written after the static_key 2908 * update. This is what guarantees that the socket activation 2909 * function is the last one to run. See mem_cgroup_sk_alloc() 2910 * for details, and note that we don't mark any socket as 2911 * belonging to this memcg until that flag is up. 2912 * 2913 * We need to do this, because static_keys will span multiple 2914 * sites, but we can't control their order. If we mark a socket 2915 * as accounted, but the accounting functions are not patched in 2916 * yet, we'll lose accounting. 2917 * 2918 * We never race with the readers in mem_cgroup_sk_alloc(), 2919 * because when this value change, the code to process it is not 2920 * patched in yet. 2921 */ 2922 static_branch_inc(&memcg_sockets_enabled_key); 2923 memcg->tcpmem_active = true; 2924 } 2925 out: 2926 mutex_unlock(&memcg_max_mutex); 2927 return ret; 2928 } 2929 2930 /* 2931 * The user of this function is... 2932 * RES_LIMIT. 2933 */ 2934 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2935 char *buf, size_t nbytes, loff_t off) 2936 { 2937 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2938 unsigned long nr_pages; 2939 int ret; 2940 2941 buf = strstrip(buf); 2942 ret = page_counter_memparse(buf, "-1", &nr_pages); 2943 if (ret) 2944 return ret; 2945 2946 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2947 case RES_LIMIT: 2948 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2949 ret = -EINVAL; 2950 break; 2951 } 2952 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2953 case _MEM: 2954 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 2955 break; 2956 case _MEMSWAP: 2957 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 2958 break; 2959 case _KMEM: 2960 ret = memcg_update_kmem_max(memcg, nr_pages); 2961 break; 2962 case _TCP: 2963 ret = memcg_update_tcp_max(memcg, nr_pages); 2964 break; 2965 } 2966 break; 2967 case RES_SOFT_LIMIT: 2968 memcg->soft_limit = nr_pages; 2969 ret = 0; 2970 break; 2971 } 2972 return ret ?: nbytes; 2973 } 2974 2975 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 2976 size_t nbytes, loff_t off) 2977 { 2978 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2979 struct page_counter *counter; 2980 2981 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2982 case _MEM: 2983 counter = &memcg->memory; 2984 break; 2985 case _MEMSWAP: 2986 counter = &memcg->memsw; 2987 break; 2988 case _KMEM: 2989 counter = &memcg->kmem; 2990 break; 2991 case _TCP: 2992 counter = &memcg->tcpmem; 2993 break; 2994 default: 2995 BUG(); 2996 } 2997 2998 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2999 case RES_MAX_USAGE: 3000 page_counter_reset_watermark(counter); 3001 break; 3002 case RES_FAILCNT: 3003 counter->failcnt = 0; 3004 break; 3005 default: 3006 BUG(); 3007 } 3008 3009 return nbytes; 3010 } 3011 3012 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3013 struct cftype *cft) 3014 { 3015 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3016 } 3017 3018 #ifdef CONFIG_MMU 3019 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3020 struct cftype *cft, u64 val) 3021 { 3022 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3023 3024 if (val & ~MOVE_MASK) 3025 return -EINVAL; 3026 3027 /* 3028 * No kind of locking is needed in here, because ->can_attach() will 3029 * check this value once in the beginning of the process, and then carry 3030 * on with stale data. This means that changes to this value will only 3031 * affect task migrations starting after the change. 3032 */ 3033 memcg->move_charge_at_immigrate = val; 3034 return 0; 3035 } 3036 #else 3037 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3038 struct cftype *cft, u64 val) 3039 { 3040 return -ENOSYS; 3041 } 3042 #endif 3043 3044 #ifdef CONFIG_NUMA 3045 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3046 { 3047 struct numa_stat { 3048 const char *name; 3049 unsigned int lru_mask; 3050 }; 3051 3052 static const struct numa_stat stats[] = { 3053 { "total", LRU_ALL }, 3054 { "file", LRU_ALL_FILE }, 3055 { "anon", LRU_ALL_ANON }, 3056 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3057 }; 3058 const struct numa_stat *stat; 3059 int nid; 3060 unsigned long nr; 3061 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3062 3063 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3064 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3065 seq_printf(m, "%s=%lu", stat->name, nr); 3066 for_each_node_state(nid, N_MEMORY) { 3067 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3068 stat->lru_mask); 3069 seq_printf(m, " N%d=%lu", nid, nr); 3070 } 3071 seq_putc(m, '\n'); 3072 } 3073 3074 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3075 struct mem_cgroup *iter; 3076 3077 nr = 0; 3078 for_each_mem_cgroup_tree(iter, memcg) 3079 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3080 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3081 for_each_node_state(nid, N_MEMORY) { 3082 nr = 0; 3083 for_each_mem_cgroup_tree(iter, memcg) 3084 nr += mem_cgroup_node_nr_lru_pages( 3085 iter, nid, stat->lru_mask); 3086 seq_printf(m, " N%d=%lu", nid, nr); 3087 } 3088 seq_putc(m, '\n'); 3089 } 3090 3091 return 0; 3092 } 3093 #endif /* CONFIG_NUMA */ 3094 3095 /* Universal VM events cgroup1 shows, original sort order */ 3096 static const unsigned int memcg1_events[] = { 3097 PGPGIN, 3098 PGPGOUT, 3099 PGFAULT, 3100 PGMAJFAULT, 3101 }; 3102 3103 static const char *const memcg1_event_names[] = { 3104 "pgpgin", 3105 "pgpgout", 3106 "pgfault", 3107 "pgmajfault", 3108 }; 3109 3110 static int memcg_stat_show(struct seq_file *m, void *v) 3111 { 3112 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3113 unsigned long memory, memsw; 3114 struct mem_cgroup *mi; 3115 unsigned int i; 3116 3117 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3118 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3119 3120 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3121 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3122 continue; 3123 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3124 memcg_page_state(memcg, memcg1_stats[i]) * 3125 PAGE_SIZE); 3126 } 3127 3128 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3129 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3130 memcg_sum_events(memcg, memcg1_events[i])); 3131 3132 for (i = 0; i < NR_LRU_LISTS; i++) 3133 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3134 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3135 3136 /* Hierarchical information */ 3137 memory = memsw = PAGE_COUNTER_MAX; 3138 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3139 memory = min(memory, mi->memory.max); 3140 memsw = min(memsw, mi->memsw.max); 3141 } 3142 seq_printf(m, "hierarchical_memory_limit %llu\n", 3143 (u64)memory * PAGE_SIZE); 3144 if (do_memsw_account()) 3145 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3146 (u64)memsw * PAGE_SIZE); 3147 3148 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3149 unsigned long long val = 0; 3150 3151 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3152 continue; 3153 for_each_mem_cgroup_tree(mi, memcg) 3154 val += memcg_page_state(mi, memcg1_stats[i]) * 3155 PAGE_SIZE; 3156 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val); 3157 } 3158 3159 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) { 3160 unsigned long long val = 0; 3161 3162 for_each_mem_cgroup_tree(mi, memcg) 3163 val += memcg_sum_events(mi, memcg1_events[i]); 3164 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val); 3165 } 3166 3167 for (i = 0; i < NR_LRU_LISTS; i++) { 3168 unsigned long long val = 0; 3169 3170 for_each_mem_cgroup_tree(mi, memcg) 3171 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3172 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3173 } 3174 3175 #ifdef CONFIG_DEBUG_VM 3176 { 3177 pg_data_t *pgdat; 3178 struct mem_cgroup_per_node *mz; 3179 struct zone_reclaim_stat *rstat; 3180 unsigned long recent_rotated[2] = {0, 0}; 3181 unsigned long recent_scanned[2] = {0, 0}; 3182 3183 for_each_online_pgdat(pgdat) { 3184 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3185 rstat = &mz->lruvec.reclaim_stat; 3186 3187 recent_rotated[0] += rstat->recent_rotated[0]; 3188 recent_rotated[1] += rstat->recent_rotated[1]; 3189 recent_scanned[0] += rstat->recent_scanned[0]; 3190 recent_scanned[1] += rstat->recent_scanned[1]; 3191 } 3192 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3193 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3194 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3195 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3196 } 3197 #endif 3198 3199 return 0; 3200 } 3201 3202 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3203 struct cftype *cft) 3204 { 3205 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3206 3207 return mem_cgroup_swappiness(memcg); 3208 } 3209 3210 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3211 struct cftype *cft, u64 val) 3212 { 3213 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3214 3215 if (val > 100) 3216 return -EINVAL; 3217 3218 if (css->parent) 3219 memcg->swappiness = val; 3220 else 3221 vm_swappiness = val; 3222 3223 return 0; 3224 } 3225 3226 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3227 { 3228 struct mem_cgroup_threshold_ary *t; 3229 unsigned long usage; 3230 int i; 3231 3232 rcu_read_lock(); 3233 if (!swap) 3234 t = rcu_dereference(memcg->thresholds.primary); 3235 else 3236 t = rcu_dereference(memcg->memsw_thresholds.primary); 3237 3238 if (!t) 3239 goto unlock; 3240 3241 usage = mem_cgroup_usage(memcg, swap); 3242 3243 /* 3244 * current_threshold points to threshold just below or equal to usage. 3245 * If it's not true, a threshold was crossed after last 3246 * call of __mem_cgroup_threshold(). 3247 */ 3248 i = t->current_threshold; 3249 3250 /* 3251 * Iterate backward over array of thresholds starting from 3252 * current_threshold and check if a threshold is crossed. 3253 * If none of thresholds below usage is crossed, we read 3254 * only one element of the array here. 3255 */ 3256 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3257 eventfd_signal(t->entries[i].eventfd, 1); 3258 3259 /* i = current_threshold + 1 */ 3260 i++; 3261 3262 /* 3263 * Iterate forward over array of thresholds starting from 3264 * current_threshold+1 and check if a threshold is crossed. 3265 * If none of thresholds above usage is crossed, we read 3266 * only one element of the array here. 3267 */ 3268 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3269 eventfd_signal(t->entries[i].eventfd, 1); 3270 3271 /* Update current_threshold */ 3272 t->current_threshold = i - 1; 3273 unlock: 3274 rcu_read_unlock(); 3275 } 3276 3277 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3278 { 3279 while (memcg) { 3280 __mem_cgroup_threshold(memcg, false); 3281 if (do_memsw_account()) 3282 __mem_cgroup_threshold(memcg, true); 3283 3284 memcg = parent_mem_cgroup(memcg); 3285 } 3286 } 3287 3288 static int compare_thresholds(const void *a, const void *b) 3289 { 3290 const struct mem_cgroup_threshold *_a = a; 3291 const struct mem_cgroup_threshold *_b = b; 3292 3293 if (_a->threshold > _b->threshold) 3294 return 1; 3295 3296 if (_a->threshold < _b->threshold) 3297 return -1; 3298 3299 return 0; 3300 } 3301 3302 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3303 { 3304 struct mem_cgroup_eventfd_list *ev; 3305 3306 spin_lock(&memcg_oom_lock); 3307 3308 list_for_each_entry(ev, &memcg->oom_notify, list) 3309 eventfd_signal(ev->eventfd, 1); 3310 3311 spin_unlock(&memcg_oom_lock); 3312 return 0; 3313 } 3314 3315 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3316 { 3317 struct mem_cgroup *iter; 3318 3319 for_each_mem_cgroup_tree(iter, memcg) 3320 mem_cgroup_oom_notify_cb(iter); 3321 } 3322 3323 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3324 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3325 { 3326 struct mem_cgroup_thresholds *thresholds; 3327 struct mem_cgroup_threshold_ary *new; 3328 unsigned long threshold; 3329 unsigned long usage; 3330 int i, size, ret; 3331 3332 ret = page_counter_memparse(args, "-1", &threshold); 3333 if (ret) 3334 return ret; 3335 3336 mutex_lock(&memcg->thresholds_lock); 3337 3338 if (type == _MEM) { 3339 thresholds = &memcg->thresholds; 3340 usage = mem_cgroup_usage(memcg, false); 3341 } else if (type == _MEMSWAP) { 3342 thresholds = &memcg->memsw_thresholds; 3343 usage = mem_cgroup_usage(memcg, true); 3344 } else 3345 BUG(); 3346 3347 /* Check if a threshold crossed before adding a new one */ 3348 if (thresholds->primary) 3349 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3350 3351 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3352 3353 /* Allocate memory for new array of thresholds */ 3354 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3355 GFP_KERNEL); 3356 if (!new) { 3357 ret = -ENOMEM; 3358 goto unlock; 3359 } 3360 new->size = size; 3361 3362 /* Copy thresholds (if any) to new array */ 3363 if (thresholds->primary) { 3364 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3365 sizeof(struct mem_cgroup_threshold)); 3366 } 3367 3368 /* Add new threshold */ 3369 new->entries[size - 1].eventfd = eventfd; 3370 new->entries[size - 1].threshold = threshold; 3371 3372 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3373 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3374 compare_thresholds, NULL); 3375 3376 /* Find current threshold */ 3377 new->current_threshold = -1; 3378 for (i = 0; i < size; i++) { 3379 if (new->entries[i].threshold <= usage) { 3380 /* 3381 * new->current_threshold will not be used until 3382 * rcu_assign_pointer(), so it's safe to increment 3383 * it here. 3384 */ 3385 ++new->current_threshold; 3386 } else 3387 break; 3388 } 3389 3390 /* Free old spare buffer and save old primary buffer as spare */ 3391 kfree(thresholds->spare); 3392 thresholds->spare = thresholds->primary; 3393 3394 rcu_assign_pointer(thresholds->primary, new); 3395 3396 /* To be sure that nobody uses thresholds */ 3397 synchronize_rcu(); 3398 3399 unlock: 3400 mutex_unlock(&memcg->thresholds_lock); 3401 3402 return ret; 3403 } 3404 3405 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3406 struct eventfd_ctx *eventfd, const char *args) 3407 { 3408 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3409 } 3410 3411 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3412 struct eventfd_ctx *eventfd, const char *args) 3413 { 3414 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3415 } 3416 3417 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3418 struct eventfd_ctx *eventfd, enum res_type type) 3419 { 3420 struct mem_cgroup_thresholds *thresholds; 3421 struct mem_cgroup_threshold_ary *new; 3422 unsigned long usage; 3423 int i, j, size; 3424 3425 mutex_lock(&memcg->thresholds_lock); 3426 3427 if (type == _MEM) { 3428 thresholds = &memcg->thresholds; 3429 usage = mem_cgroup_usage(memcg, false); 3430 } else if (type == _MEMSWAP) { 3431 thresholds = &memcg->memsw_thresholds; 3432 usage = mem_cgroup_usage(memcg, true); 3433 } else 3434 BUG(); 3435 3436 if (!thresholds->primary) 3437 goto unlock; 3438 3439 /* Check if a threshold crossed before removing */ 3440 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3441 3442 /* Calculate new number of threshold */ 3443 size = 0; 3444 for (i = 0; i < thresholds->primary->size; i++) { 3445 if (thresholds->primary->entries[i].eventfd != eventfd) 3446 size++; 3447 } 3448 3449 new = thresholds->spare; 3450 3451 /* Set thresholds array to NULL if we don't have thresholds */ 3452 if (!size) { 3453 kfree(new); 3454 new = NULL; 3455 goto swap_buffers; 3456 } 3457 3458 new->size = size; 3459 3460 /* Copy thresholds and find current threshold */ 3461 new->current_threshold = -1; 3462 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3463 if (thresholds->primary->entries[i].eventfd == eventfd) 3464 continue; 3465 3466 new->entries[j] = thresholds->primary->entries[i]; 3467 if (new->entries[j].threshold <= usage) { 3468 /* 3469 * new->current_threshold will not be used 3470 * until rcu_assign_pointer(), so it's safe to increment 3471 * it here. 3472 */ 3473 ++new->current_threshold; 3474 } 3475 j++; 3476 } 3477 3478 swap_buffers: 3479 /* Swap primary and spare array */ 3480 thresholds->spare = thresholds->primary; 3481 3482 rcu_assign_pointer(thresholds->primary, new); 3483 3484 /* To be sure that nobody uses thresholds */ 3485 synchronize_rcu(); 3486 3487 /* If all events are unregistered, free the spare array */ 3488 if (!new) { 3489 kfree(thresholds->spare); 3490 thresholds->spare = NULL; 3491 } 3492 unlock: 3493 mutex_unlock(&memcg->thresholds_lock); 3494 } 3495 3496 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3497 struct eventfd_ctx *eventfd) 3498 { 3499 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3500 } 3501 3502 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3503 struct eventfd_ctx *eventfd) 3504 { 3505 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3506 } 3507 3508 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3509 struct eventfd_ctx *eventfd, const char *args) 3510 { 3511 struct mem_cgroup_eventfd_list *event; 3512 3513 event = kmalloc(sizeof(*event), GFP_KERNEL); 3514 if (!event) 3515 return -ENOMEM; 3516 3517 spin_lock(&memcg_oom_lock); 3518 3519 event->eventfd = eventfd; 3520 list_add(&event->list, &memcg->oom_notify); 3521 3522 /* already in OOM ? */ 3523 if (memcg->under_oom) 3524 eventfd_signal(eventfd, 1); 3525 spin_unlock(&memcg_oom_lock); 3526 3527 return 0; 3528 } 3529 3530 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3531 struct eventfd_ctx *eventfd) 3532 { 3533 struct mem_cgroup_eventfd_list *ev, *tmp; 3534 3535 spin_lock(&memcg_oom_lock); 3536 3537 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3538 if (ev->eventfd == eventfd) { 3539 list_del(&ev->list); 3540 kfree(ev); 3541 } 3542 } 3543 3544 spin_unlock(&memcg_oom_lock); 3545 } 3546 3547 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3548 { 3549 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3550 3551 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3552 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3553 seq_printf(sf, "oom_kill %lu\n", 3554 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 3555 return 0; 3556 } 3557 3558 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3559 struct cftype *cft, u64 val) 3560 { 3561 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3562 3563 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3564 if (!css->parent || !((val == 0) || (val == 1))) 3565 return -EINVAL; 3566 3567 memcg->oom_kill_disable = val; 3568 if (!val) 3569 memcg_oom_recover(memcg); 3570 3571 return 0; 3572 } 3573 3574 #ifdef CONFIG_CGROUP_WRITEBACK 3575 3576 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3577 { 3578 return wb_domain_init(&memcg->cgwb_domain, gfp); 3579 } 3580 3581 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3582 { 3583 wb_domain_exit(&memcg->cgwb_domain); 3584 } 3585 3586 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3587 { 3588 wb_domain_size_changed(&memcg->cgwb_domain); 3589 } 3590 3591 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3592 { 3593 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3594 3595 if (!memcg->css.parent) 3596 return NULL; 3597 3598 return &memcg->cgwb_domain; 3599 } 3600 3601 /** 3602 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3603 * @wb: bdi_writeback in question 3604 * @pfilepages: out parameter for number of file pages 3605 * @pheadroom: out parameter for number of allocatable pages according to memcg 3606 * @pdirty: out parameter for number of dirty pages 3607 * @pwriteback: out parameter for number of pages under writeback 3608 * 3609 * Determine the numbers of file, headroom, dirty, and writeback pages in 3610 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3611 * is a bit more involved. 3612 * 3613 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3614 * headroom is calculated as the lowest headroom of itself and the 3615 * ancestors. Note that this doesn't consider the actual amount of 3616 * available memory in the system. The caller should further cap 3617 * *@pheadroom accordingly. 3618 */ 3619 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3620 unsigned long *pheadroom, unsigned long *pdirty, 3621 unsigned long *pwriteback) 3622 { 3623 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3624 struct mem_cgroup *parent; 3625 3626 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3627 3628 /* this should eventually include NR_UNSTABLE_NFS */ 3629 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3630 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3631 (1 << LRU_ACTIVE_FILE)); 3632 *pheadroom = PAGE_COUNTER_MAX; 3633 3634 while ((parent = parent_mem_cgroup(memcg))) { 3635 unsigned long ceiling = min(memcg->memory.max, memcg->high); 3636 unsigned long used = page_counter_read(&memcg->memory); 3637 3638 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3639 memcg = parent; 3640 } 3641 } 3642 3643 #else /* CONFIG_CGROUP_WRITEBACK */ 3644 3645 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3646 { 3647 return 0; 3648 } 3649 3650 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3651 { 3652 } 3653 3654 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3655 { 3656 } 3657 3658 #endif /* CONFIG_CGROUP_WRITEBACK */ 3659 3660 /* 3661 * DO NOT USE IN NEW FILES. 3662 * 3663 * "cgroup.event_control" implementation. 3664 * 3665 * This is way over-engineered. It tries to support fully configurable 3666 * events for each user. Such level of flexibility is completely 3667 * unnecessary especially in the light of the planned unified hierarchy. 3668 * 3669 * Please deprecate this and replace with something simpler if at all 3670 * possible. 3671 */ 3672 3673 /* 3674 * Unregister event and free resources. 3675 * 3676 * Gets called from workqueue. 3677 */ 3678 static void memcg_event_remove(struct work_struct *work) 3679 { 3680 struct mem_cgroup_event *event = 3681 container_of(work, struct mem_cgroup_event, remove); 3682 struct mem_cgroup *memcg = event->memcg; 3683 3684 remove_wait_queue(event->wqh, &event->wait); 3685 3686 event->unregister_event(memcg, event->eventfd); 3687 3688 /* Notify userspace the event is going away. */ 3689 eventfd_signal(event->eventfd, 1); 3690 3691 eventfd_ctx_put(event->eventfd); 3692 kfree(event); 3693 css_put(&memcg->css); 3694 } 3695 3696 /* 3697 * Gets called on EPOLLHUP on eventfd when user closes it. 3698 * 3699 * Called with wqh->lock held and interrupts disabled. 3700 */ 3701 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 3702 int sync, void *key) 3703 { 3704 struct mem_cgroup_event *event = 3705 container_of(wait, struct mem_cgroup_event, wait); 3706 struct mem_cgroup *memcg = event->memcg; 3707 __poll_t flags = key_to_poll(key); 3708 3709 if (flags & EPOLLHUP) { 3710 /* 3711 * If the event has been detached at cgroup removal, we 3712 * can simply return knowing the other side will cleanup 3713 * for us. 3714 * 3715 * We can't race against event freeing since the other 3716 * side will require wqh->lock via remove_wait_queue(), 3717 * which we hold. 3718 */ 3719 spin_lock(&memcg->event_list_lock); 3720 if (!list_empty(&event->list)) { 3721 list_del_init(&event->list); 3722 /* 3723 * We are in atomic context, but cgroup_event_remove() 3724 * may sleep, so we have to call it in workqueue. 3725 */ 3726 schedule_work(&event->remove); 3727 } 3728 spin_unlock(&memcg->event_list_lock); 3729 } 3730 3731 return 0; 3732 } 3733 3734 static void memcg_event_ptable_queue_proc(struct file *file, 3735 wait_queue_head_t *wqh, poll_table *pt) 3736 { 3737 struct mem_cgroup_event *event = 3738 container_of(pt, struct mem_cgroup_event, pt); 3739 3740 event->wqh = wqh; 3741 add_wait_queue(wqh, &event->wait); 3742 } 3743 3744 /* 3745 * DO NOT USE IN NEW FILES. 3746 * 3747 * Parse input and register new cgroup event handler. 3748 * 3749 * Input must be in format '<event_fd> <control_fd> <args>'. 3750 * Interpretation of args is defined by control file implementation. 3751 */ 3752 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3753 char *buf, size_t nbytes, loff_t off) 3754 { 3755 struct cgroup_subsys_state *css = of_css(of); 3756 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3757 struct mem_cgroup_event *event; 3758 struct cgroup_subsys_state *cfile_css; 3759 unsigned int efd, cfd; 3760 struct fd efile; 3761 struct fd cfile; 3762 const char *name; 3763 char *endp; 3764 int ret; 3765 3766 buf = strstrip(buf); 3767 3768 efd = simple_strtoul(buf, &endp, 10); 3769 if (*endp != ' ') 3770 return -EINVAL; 3771 buf = endp + 1; 3772 3773 cfd = simple_strtoul(buf, &endp, 10); 3774 if ((*endp != ' ') && (*endp != '\0')) 3775 return -EINVAL; 3776 buf = endp + 1; 3777 3778 event = kzalloc(sizeof(*event), GFP_KERNEL); 3779 if (!event) 3780 return -ENOMEM; 3781 3782 event->memcg = memcg; 3783 INIT_LIST_HEAD(&event->list); 3784 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3785 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3786 INIT_WORK(&event->remove, memcg_event_remove); 3787 3788 efile = fdget(efd); 3789 if (!efile.file) { 3790 ret = -EBADF; 3791 goto out_kfree; 3792 } 3793 3794 event->eventfd = eventfd_ctx_fileget(efile.file); 3795 if (IS_ERR(event->eventfd)) { 3796 ret = PTR_ERR(event->eventfd); 3797 goto out_put_efile; 3798 } 3799 3800 cfile = fdget(cfd); 3801 if (!cfile.file) { 3802 ret = -EBADF; 3803 goto out_put_eventfd; 3804 } 3805 3806 /* the process need read permission on control file */ 3807 /* AV: shouldn't we check that it's been opened for read instead? */ 3808 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3809 if (ret < 0) 3810 goto out_put_cfile; 3811 3812 /* 3813 * Determine the event callbacks and set them in @event. This used 3814 * to be done via struct cftype but cgroup core no longer knows 3815 * about these events. The following is crude but the whole thing 3816 * is for compatibility anyway. 3817 * 3818 * DO NOT ADD NEW FILES. 3819 */ 3820 name = cfile.file->f_path.dentry->d_name.name; 3821 3822 if (!strcmp(name, "memory.usage_in_bytes")) { 3823 event->register_event = mem_cgroup_usage_register_event; 3824 event->unregister_event = mem_cgroup_usage_unregister_event; 3825 } else if (!strcmp(name, "memory.oom_control")) { 3826 event->register_event = mem_cgroup_oom_register_event; 3827 event->unregister_event = mem_cgroup_oom_unregister_event; 3828 } else if (!strcmp(name, "memory.pressure_level")) { 3829 event->register_event = vmpressure_register_event; 3830 event->unregister_event = vmpressure_unregister_event; 3831 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3832 event->register_event = memsw_cgroup_usage_register_event; 3833 event->unregister_event = memsw_cgroup_usage_unregister_event; 3834 } else { 3835 ret = -EINVAL; 3836 goto out_put_cfile; 3837 } 3838 3839 /* 3840 * Verify @cfile should belong to @css. Also, remaining events are 3841 * automatically removed on cgroup destruction but the removal is 3842 * asynchronous, so take an extra ref on @css. 3843 */ 3844 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3845 &memory_cgrp_subsys); 3846 ret = -EINVAL; 3847 if (IS_ERR(cfile_css)) 3848 goto out_put_cfile; 3849 if (cfile_css != css) { 3850 css_put(cfile_css); 3851 goto out_put_cfile; 3852 } 3853 3854 ret = event->register_event(memcg, event->eventfd, buf); 3855 if (ret) 3856 goto out_put_css; 3857 3858 vfs_poll(efile.file, &event->pt); 3859 3860 spin_lock(&memcg->event_list_lock); 3861 list_add(&event->list, &memcg->event_list); 3862 spin_unlock(&memcg->event_list_lock); 3863 3864 fdput(cfile); 3865 fdput(efile); 3866 3867 return nbytes; 3868 3869 out_put_css: 3870 css_put(css); 3871 out_put_cfile: 3872 fdput(cfile); 3873 out_put_eventfd: 3874 eventfd_ctx_put(event->eventfd); 3875 out_put_efile: 3876 fdput(efile); 3877 out_kfree: 3878 kfree(event); 3879 3880 return ret; 3881 } 3882 3883 static struct cftype mem_cgroup_legacy_files[] = { 3884 { 3885 .name = "usage_in_bytes", 3886 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3887 .read_u64 = mem_cgroup_read_u64, 3888 }, 3889 { 3890 .name = "max_usage_in_bytes", 3891 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3892 .write = mem_cgroup_reset, 3893 .read_u64 = mem_cgroup_read_u64, 3894 }, 3895 { 3896 .name = "limit_in_bytes", 3897 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3898 .write = mem_cgroup_write, 3899 .read_u64 = mem_cgroup_read_u64, 3900 }, 3901 { 3902 .name = "soft_limit_in_bytes", 3903 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3904 .write = mem_cgroup_write, 3905 .read_u64 = mem_cgroup_read_u64, 3906 }, 3907 { 3908 .name = "failcnt", 3909 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3910 .write = mem_cgroup_reset, 3911 .read_u64 = mem_cgroup_read_u64, 3912 }, 3913 { 3914 .name = "stat", 3915 .seq_show = memcg_stat_show, 3916 }, 3917 { 3918 .name = "force_empty", 3919 .write = mem_cgroup_force_empty_write, 3920 }, 3921 { 3922 .name = "use_hierarchy", 3923 .write_u64 = mem_cgroup_hierarchy_write, 3924 .read_u64 = mem_cgroup_hierarchy_read, 3925 }, 3926 { 3927 .name = "cgroup.event_control", /* XXX: for compat */ 3928 .write = memcg_write_event_control, 3929 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3930 }, 3931 { 3932 .name = "swappiness", 3933 .read_u64 = mem_cgroup_swappiness_read, 3934 .write_u64 = mem_cgroup_swappiness_write, 3935 }, 3936 { 3937 .name = "move_charge_at_immigrate", 3938 .read_u64 = mem_cgroup_move_charge_read, 3939 .write_u64 = mem_cgroup_move_charge_write, 3940 }, 3941 { 3942 .name = "oom_control", 3943 .seq_show = mem_cgroup_oom_control_read, 3944 .write_u64 = mem_cgroup_oom_control_write, 3945 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3946 }, 3947 { 3948 .name = "pressure_level", 3949 }, 3950 #ifdef CONFIG_NUMA 3951 { 3952 .name = "numa_stat", 3953 .seq_show = memcg_numa_stat_show, 3954 }, 3955 #endif 3956 { 3957 .name = "kmem.limit_in_bytes", 3958 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 3959 .write = mem_cgroup_write, 3960 .read_u64 = mem_cgroup_read_u64, 3961 }, 3962 { 3963 .name = "kmem.usage_in_bytes", 3964 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 3965 .read_u64 = mem_cgroup_read_u64, 3966 }, 3967 { 3968 .name = "kmem.failcnt", 3969 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 3970 .write = mem_cgroup_reset, 3971 .read_u64 = mem_cgroup_read_u64, 3972 }, 3973 { 3974 .name = "kmem.max_usage_in_bytes", 3975 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 3976 .write = mem_cgroup_reset, 3977 .read_u64 = mem_cgroup_read_u64, 3978 }, 3979 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 3980 { 3981 .name = "kmem.slabinfo", 3982 .seq_start = memcg_slab_start, 3983 .seq_next = memcg_slab_next, 3984 .seq_stop = memcg_slab_stop, 3985 .seq_show = memcg_slab_show, 3986 }, 3987 #endif 3988 { 3989 .name = "kmem.tcp.limit_in_bytes", 3990 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 3991 .write = mem_cgroup_write, 3992 .read_u64 = mem_cgroup_read_u64, 3993 }, 3994 { 3995 .name = "kmem.tcp.usage_in_bytes", 3996 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 3997 .read_u64 = mem_cgroup_read_u64, 3998 }, 3999 { 4000 .name = "kmem.tcp.failcnt", 4001 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4002 .write = mem_cgroup_reset, 4003 .read_u64 = mem_cgroup_read_u64, 4004 }, 4005 { 4006 .name = "kmem.tcp.max_usage_in_bytes", 4007 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4008 .write = mem_cgroup_reset, 4009 .read_u64 = mem_cgroup_read_u64, 4010 }, 4011 { }, /* terminate */ 4012 }; 4013 4014 /* 4015 * Private memory cgroup IDR 4016 * 4017 * Swap-out records and page cache shadow entries need to store memcg 4018 * references in constrained space, so we maintain an ID space that is 4019 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4020 * memory-controlled cgroups to 64k. 4021 * 4022 * However, there usually are many references to the oflline CSS after 4023 * the cgroup has been destroyed, such as page cache or reclaimable 4024 * slab objects, that don't need to hang on to the ID. We want to keep 4025 * those dead CSS from occupying IDs, or we might quickly exhaust the 4026 * relatively small ID space and prevent the creation of new cgroups 4027 * even when there are much fewer than 64k cgroups - possibly none. 4028 * 4029 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4030 * be freed and recycled when it's no longer needed, which is usually 4031 * when the CSS is offlined. 4032 * 4033 * The only exception to that are records of swapped out tmpfs/shmem 4034 * pages that need to be attributed to live ancestors on swapin. But 4035 * those references are manageable from userspace. 4036 */ 4037 4038 static DEFINE_IDR(mem_cgroup_idr); 4039 4040 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4041 { 4042 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0); 4043 atomic_add(n, &memcg->id.ref); 4044 } 4045 4046 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4047 { 4048 VM_BUG_ON(atomic_read(&memcg->id.ref) < n); 4049 if (atomic_sub_and_test(n, &memcg->id.ref)) { 4050 idr_remove(&mem_cgroup_idr, memcg->id.id); 4051 memcg->id.id = 0; 4052 4053 /* Memcg ID pins CSS */ 4054 css_put(&memcg->css); 4055 } 4056 } 4057 4058 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4059 { 4060 mem_cgroup_id_get_many(memcg, 1); 4061 } 4062 4063 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4064 { 4065 mem_cgroup_id_put_many(memcg, 1); 4066 } 4067 4068 /** 4069 * mem_cgroup_from_id - look up a memcg from a memcg id 4070 * @id: the memcg id to look up 4071 * 4072 * Caller must hold rcu_read_lock(). 4073 */ 4074 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4075 { 4076 WARN_ON_ONCE(!rcu_read_lock_held()); 4077 return idr_find(&mem_cgroup_idr, id); 4078 } 4079 4080 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4081 { 4082 struct mem_cgroup_per_node *pn; 4083 int tmp = node; 4084 /* 4085 * This routine is called against possible nodes. 4086 * But it's BUG to call kmalloc() against offline node. 4087 * 4088 * TODO: this routine can waste much memory for nodes which will 4089 * never be onlined. It's better to use memory hotplug callback 4090 * function. 4091 */ 4092 if (!node_state(node, N_NORMAL_MEMORY)) 4093 tmp = -1; 4094 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4095 if (!pn) 4096 return 1; 4097 4098 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4099 if (!pn->lruvec_stat_cpu) { 4100 kfree(pn); 4101 return 1; 4102 } 4103 4104 lruvec_init(&pn->lruvec); 4105 pn->usage_in_excess = 0; 4106 pn->on_tree = false; 4107 pn->memcg = memcg; 4108 4109 memcg->nodeinfo[node] = pn; 4110 return 0; 4111 } 4112 4113 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4114 { 4115 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4116 4117 if (!pn) 4118 return; 4119 4120 free_percpu(pn->lruvec_stat_cpu); 4121 kfree(pn); 4122 } 4123 4124 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4125 { 4126 int node; 4127 4128 for_each_node(node) 4129 free_mem_cgroup_per_node_info(memcg, node); 4130 free_percpu(memcg->stat_cpu); 4131 kfree(memcg); 4132 } 4133 4134 static void mem_cgroup_free(struct mem_cgroup *memcg) 4135 { 4136 memcg_wb_domain_exit(memcg); 4137 __mem_cgroup_free(memcg); 4138 } 4139 4140 static struct mem_cgroup *mem_cgroup_alloc(void) 4141 { 4142 struct mem_cgroup *memcg; 4143 size_t size; 4144 int node; 4145 4146 size = sizeof(struct mem_cgroup); 4147 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4148 4149 memcg = kzalloc(size, GFP_KERNEL); 4150 if (!memcg) 4151 return NULL; 4152 4153 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4154 1, MEM_CGROUP_ID_MAX, 4155 GFP_KERNEL); 4156 if (memcg->id.id < 0) 4157 goto fail; 4158 4159 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu); 4160 if (!memcg->stat_cpu) 4161 goto fail; 4162 4163 for_each_node(node) 4164 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4165 goto fail; 4166 4167 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4168 goto fail; 4169 4170 INIT_WORK(&memcg->high_work, high_work_func); 4171 memcg->last_scanned_node = MAX_NUMNODES; 4172 INIT_LIST_HEAD(&memcg->oom_notify); 4173 mutex_init(&memcg->thresholds_lock); 4174 spin_lock_init(&memcg->move_lock); 4175 vmpressure_init(&memcg->vmpressure); 4176 INIT_LIST_HEAD(&memcg->event_list); 4177 spin_lock_init(&memcg->event_list_lock); 4178 memcg->socket_pressure = jiffies; 4179 #ifndef CONFIG_SLOB 4180 memcg->kmemcg_id = -1; 4181 #endif 4182 #ifdef CONFIG_CGROUP_WRITEBACK 4183 INIT_LIST_HEAD(&memcg->cgwb_list); 4184 #endif 4185 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4186 return memcg; 4187 fail: 4188 if (memcg->id.id > 0) 4189 idr_remove(&mem_cgroup_idr, memcg->id.id); 4190 __mem_cgroup_free(memcg); 4191 return NULL; 4192 } 4193 4194 static struct cgroup_subsys_state * __ref 4195 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4196 { 4197 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4198 struct mem_cgroup *memcg; 4199 long error = -ENOMEM; 4200 4201 memcg = mem_cgroup_alloc(); 4202 if (!memcg) 4203 return ERR_PTR(error); 4204 4205 memcg->high = PAGE_COUNTER_MAX; 4206 memcg->soft_limit = PAGE_COUNTER_MAX; 4207 if (parent) { 4208 memcg->swappiness = mem_cgroup_swappiness(parent); 4209 memcg->oom_kill_disable = parent->oom_kill_disable; 4210 } 4211 if (parent && parent->use_hierarchy) { 4212 memcg->use_hierarchy = true; 4213 page_counter_init(&memcg->memory, &parent->memory); 4214 page_counter_init(&memcg->swap, &parent->swap); 4215 page_counter_init(&memcg->memsw, &parent->memsw); 4216 page_counter_init(&memcg->kmem, &parent->kmem); 4217 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4218 } else { 4219 page_counter_init(&memcg->memory, NULL); 4220 page_counter_init(&memcg->swap, NULL); 4221 page_counter_init(&memcg->memsw, NULL); 4222 page_counter_init(&memcg->kmem, NULL); 4223 page_counter_init(&memcg->tcpmem, NULL); 4224 /* 4225 * Deeper hierachy with use_hierarchy == false doesn't make 4226 * much sense so let cgroup subsystem know about this 4227 * unfortunate state in our controller. 4228 */ 4229 if (parent != root_mem_cgroup) 4230 memory_cgrp_subsys.broken_hierarchy = true; 4231 } 4232 4233 /* The following stuff does not apply to the root */ 4234 if (!parent) { 4235 root_mem_cgroup = memcg; 4236 return &memcg->css; 4237 } 4238 4239 error = memcg_online_kmem(memcg); 4240 if (error) 4241 goto fail; 4242 4243 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4244 static_branch_inc(&memcg_sockets_enabled_key); 4245 4246 return &memcg->css; 4247 fail: 4248 mem_cgroup_free(memcg); 4249 return ERR_PTR(-ENOMEM); 4250 } 4251 4252 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4253 { 4254 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4255 4256 /* Online state pins memcg ID, memcg ID pins CSS */ 4257 atomic_set(&memcg->id.ref, 1); 4258 css_get(css); 4259 return 0; 4260 } 4261 4262 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4263 { 4264 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4265 struct mem_cgroup_event *event, *tmp; 4266 4267 /* 4268 * Unregister events and notify userspace. 4269 * Notify userspace about cgroup removing only after rmdir of cgroup 4270 * directory to avoid race between userspace and kernelspace. 4271 */ 4272 spin_lock(&memcg->event_list_lock); 4273 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4274 list_del_init(&event->list); 4275 schedule_work(&event->remove); 4276 } 4277 spin_unlock(&memcg->event_list_lock); 4278 4279 page_counter_set_min(&memcg->memory, 0); 4280 page_counter_set_low(&memcg->memory, 0); 4281 4282 memcg_offline_kmem(memcg); 4283 wb_memcg_offline(memcg); 4284 4285 mem_cgroup_id_put(memcg); 4286 } 4287 4288 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4289 { 4290 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4291 4292 invalidate_reclaim_iterators(memcg); 4293 } 4294 4295 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4296 { 4297 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4298 4299 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4300 static_branch_dec(&memcg_sockets_enabled_key); 4301 4302 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4303 static_branch_dec(&memcg_sockets_enabled_key); 4304 4305 vmpressure_cleanup(&memcg->vmpressure); 4306 cancel_work_sync(&memcg->high_work); 4307 mem_cgroup_remove_from_trees(memcg); 4308 memcg_free_kmem(memcg); 4309 mem_cgroup_free(memcg); 4310 } 4311 4312 /** 4313 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4314 * @css: the target css 4315 * 4316 * Reset the states of the mem_cgroup associated with @css. This is 4317 * invoked when the userland requests disabling on the default hierarchy 4318 * but the memcg is pinned through dependency. The memcg should stop 4319 * applying policies and should revert to the vanilla state as it may be 4320 * made visible again. 4321 * 4322 * The current implementation only resets the essential configurations. 4323 * This needs to be expanded to cover all the visible parts. 4324 */ 4325 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4326 { 4327 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4328 4329 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 4330 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 4331 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 4332 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 4333 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 4334 page_counter_set_min(&memcg->memory, 0); 4335 page_counter_set_low(&memcg->memory, 0); 4336 memcg->high = PAGE_COUNTER_MAX; 4337 memcg->soft_limit = PAGE_COUNTER_MAX; 4338 memcg_wb_domain_size_changed(memcg); 4339 } 4340 4341 #ifdef CONFIG_MMU 4342 /* Handlers for move charge at task migration. */ 4343 static int mem_cgroup_do_precharge(unsigned long count) 4344 { 4345 int ret; 4346 4347 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4348 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4349 if (!ret) { 4350 mc.precharge += count; 4351 return ret; 4352 } 4353 4354 /* Try charges one by one with reclaim, but do not retry */ 4355 while (count--) { 4356 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4357 if (ret) 4358 return ret; 4359 mc.precharge++; 4360 cond_resched(); 4361 } 4362 return 0; 4363 } 4364 4365 union mc_target { 4366 struct page *page; 4367 swp_entry_t ent; 4368 }; 4369 4370 enum mc_target_type { 4371 MC_TARGET_NONE = 0, 4372 MC_TARGET_PAGE, 4373 MC_TARGET_SWAP, 4374 MC_TARGET_DEVICE, 4375 }; 4376 4377 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4378 unsigned long addr, pte_t ptent) 4379 { 4380 struct page *page = _vm_normal_page(vma, addr, ptent, true); 4381 4382 if (!page || !page_mapped(page)) 4383 return NULL; 4384 if (PageAnon(page)) { 4385 if (!(mc.flags & MOVE_ANON)) 4386 return NULL; 4387 } else { 4388 if (!(mc.flags & MOVE_FILE)) 4389 return NULL; 4390 } 4391 if (!get_page_unless_zero(page)) 4392 return NULL; 4393 4394 return page; 4395 } 4396 4397 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 4398 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4399 pte_t ptent, swp_entry_t *entry) 4400 { 4401 struct page *page = NULL; 4402 swp_entry_t ent = pte_to_swp_entry(ptent); 4403 4404 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4405 return NULL; 4406 4407 /* 4408 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 4409 * a device and because they are not accessible by CPU they are store 4410 * as special swap entry in the CPU page table. 4411 */ 4412 if (is_device_private_entry(ent)) { 4413 page = device_private_entry_to_page(ent); 4414 /* 4415 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 4416 * a refcount of 1 when free (unlike normal page) 4417 */ 4418 if (!page_ref_add_unless(page, 1, 1)) 4419 return NULL; 4420 return page; 4421 } 4422 4423 /* 4424 * Because lookup_swap_cache() updates some statistics counter, 4425 * we call find_get_page() with swapper_space directly. 4426 */ 4427 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4428 if (do_memsw_account()) 4429 entry->val = ent.val; 4430 4431 return page; 4432 } 4433 #else 4434 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4435 pte_t ptent, swp_entry_t *entry) 4436 { 4437 return NULL; 4438 } 4439 #endif 4440 4441 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4442 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4443 { 4444 struct page *page = NULL; 4445 struct address_space *mapping; 4446 pgoff_t pgoff; 4447 4448 if (!vma->vm_file) /* anonymous vma */ 4449 return NULL; 4450 if (!(mc.flags & MOVE_FILE)) 4451 return NULL; 4452 4453 mapping = vma->vm_file->f_mapping; 4454 pgoff = linear_page_index(vma, addr); 4455 4456 /* page is moved even if it's not RSS of this task(page-faulted). */ 4457 #ifdef CONFIG_SWAP 4458 /* shmem/tmpfs may report page out on swap: account for that too. */ 4459 if (shmem_mapping(mapping)) { 4460 page = find_get_entry(mapping, pgoff); 4461 if (radix_tree_exceptional_entry(page)) { 4462 swp_entry_t swp = radix_to_swp_entry(page); 4463 if (do_memsw_account()) 4464 *entry = swp; 4465 page = find_get_page(swap_address_space(swp), 4466 swp_offset(swp)); 4467 } 4468 } else 4469 page = find_get_page(mapping, pgoff); 4470 #else 4471 page = find_get_page(mapping, pgoff); 4472 #endif 4473 return page; 4474 } 4475 4476 /** 4477 * mem_cgroup_move_account - move account of the page 4478 * @page: the page 4479 * @compound: charge the page as compound or small page 4480 * @from: mem_cgroup which the page is moved from. 4481 * @to: mem_cgroup which the page is moved to. @from != @to. 4482 * 4483 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4484 * 4485 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4486 * from old cgroup. 4487 */ 4488 static int mem_cgroup_move_account(struct page *page, 4489 bool compound, 4490 struct mem_cgroup *from, 4491 struct mem_cgroup *to) 4492 { 4493 unsigned long flags; 4494 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4495 int ret; 4496 bool anon; 4497 4498 VM_BUG_ON(from == to); 4499 VM_BUG_ON_PAGE(PageLRU(page), page); 4500 VM_BUG_ON(compound && !PageTransHuge(page)); 4501 4502 /* 4503 * Prevent mem_cgroup_migrate() from looking at 4504 * page->mem_cgroup of its source page while we change it. 4505 */ 4506 ret = -EBUSY; 4507 if (!trylock_page(page)) 4508 goto out; 4509 4510 ret = -EINVAL; 4511 if (page->mem_cgroup != from) 4512 goto out_unlock; 4513 4514 anon = PageAnon(page); 4515 4516 spin_lock_irqsave(&from->move_lock, flags); 4517 4518 if (!anon && page_mapped(page)) { 4519 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 4520 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 4521 } 4522 4523 /* 4524 * move_lock grabbed above and caller set from->moving_account, so 4525 * mod_memcg_page_state will serialize updates to PageDirty. 4526 * So mapping should be stable for dirty pages. 4527 */ 4528 if (!anon && PageDirty(page)) { 4529 struct address_space *mapping = page_mapping(page); 4530 4531 if (mapping_cap_account_dirty(mapping)) { 4532 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 4533 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 4534 } 4535 } 4536 4537 if (PageWriteback(page)) { 4538 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 4539 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 4540 } 4541 4542 /* 4543 * It is safe to change page->mem_cgroup here because the page 4544 * is referenced, charged, and isolated - we can't race with 4545 * uncharging, charging, migration, or LRU putback. 4546 */ 4547 4548 /* caller should have done css_get */ 4549 page->mem_cgroup = to; 4550 spin_unlock_irqrestore(&from->move_lock, flags); 4551 4552 ret = 0; 4553 4554 local_irq_disable(); 4555 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4556 memcg_check_events(to, page); 4557 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4558 memcg_check_events(from, page); 4559 local_irq_enable(); 4560 out_unlock: 4561 unlock_page(page); 4562 out: 4563 return ret; 4564 } 4565 4566 /** 4567 * get_mctgt_type - get target type of moving charge 4568 * @vma: the vma the pte to be checked belongs 4569 * @addr: the address corresponding to the pte to be checked 4570 * @ptent: the pte to be checked 4571 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4572 * 4573 * Returns 4574 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4575 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4576 * move charge. if @target is not NULL, the page is stored in target->page 4577 * with extra refcnt got(Callers should handle it). 4578 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4579 * target for charge migration. if @target is not NULL, the entry is stored 4580 * in target->ent. 4581 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC 4582 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru). 4583 * For now we such page is charge like a regular page would be as for all 4584 * intent and purposes it is just special memory taking the place of a 4585 * regular page. 4586 * 4587 * See Documentations/vm/hmm.txt and include/linux/hmm.h 4588 * 4589 * Called with pte lock held. 4590 */ 4591 4592 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4593 unsigned long addr, pte_t ptent, union mc_target *target) 4594 { 4595 struct page *page = NULL; 4596 enum mc_target_type ret = MC_TARGET_NONE; 4597 swp_entry_t ent = { .val = 0 }; 4598 4599 if (pte_present(ptent)) 4600 page = mc_handle_present_pte(vma, addr, ptent); 4601 else if (is_swap_pte(ptent)) 4602 page = mc_handle_swap_pte(vma, ptent, &ent); 4603 else if (pte_none(ptent)) 4604 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4605 4606 if (!page && !ent.val) 4607 return ret; 4608 if (page) { 4609 /* 4610 * Do only loose check w/o serialization. 4611 * mem_cgroup_move_account() checks the page is valid or 4612 * not under LRU exclusion. 4613 */ 4614 if (page->mem_cgroup == mc.from) { 4615 ret = MC_TARGET_PAGE; 4616 if (is_device_private_page(page) || 4617 is_device_public_page(page)) 4618 ret = MC_TARGET_DEVICE; 4619 if (target) 4620 target->page = page; 4621 } 4622 if (!ret || !target) 4623 put_page(page); 4624 } 4625 /* 4626 * There is a swap entry and a page doesn't exist or isn't charged. 4627 * But we cannot move a tail-page in a THP. 4628 */ 4629 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 4630 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4631 ret = MC_TARGET_SWAP; 4632 if (target) 4633 target->ent = ent; 4634 } 4635 return ret; 4636 } 4637 4638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4639 /* 4640 * We don't consider PMD mapped swapping or file mapped pages because THP does 4641 * not support them for now. 4642 * Caller should make sure that pmd_trans_huge(pmd) is true. 4643 */ 4644 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4645 unsigned long addr, pmd_t pmd, union mc_target *target) 4646 { 4647 struct page *page = NULL; 4648 enum mc_target_type ret = MC_TARGET_NONE; 4649 4650 if (unlikely(is_swap_pmd(pmd))) { 4651 VM_BUG_ON(thp_migration_supported() && 4652 !is_pmd_migration_entry(pmd)); 4653 return ret; 4654 } 4655 page = pmd_page(pmd); 4656 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4657 if (!(mc.flags & MOVE_ANON)) 4658 return ret; 4659 if (page->mem_cgroup == mc.from) { 4660 ret = MC_TARGET_PAGE; 4661 if (target) { 4662 get_page(page); 4663 target->page = page; 4664 } 4665 } 4666 return ret; 4667 } 4668 #else 4669 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4670 unsigned long addr, pmd_t pmd, union mc_target *target) 4671 { 4672 return MC_TARGET_NONE; 4673 } 4674 #endif 4675 4676 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4677 unsigned long addr, unsigned long end, 4678 struct mm_walk *walk) 4679 { 4680 struct vm_area_struct *vma = walk->vma; 4681 pte_t *pte; 4682 spinlock_t *ptl; 4683 4684 ptl = pmd_trans_huge_lock(pmd, vma); 4685 if (ptl) { 4686 /* 4687 * Note their can not be MC_TARGET_DEVICE for now as we do not 4688 * support transparent huge page with MEMORY_DEVICE_PUBLIC or 4689 * MEMORY_DEVICE_PRIVATE but this might change. 4690 */ 4691 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4692 mc.precharge += HPAGE_PMD_NR; 4693 spin_unlock(ptl); 4694 return 0; 4695 } 4696 4697 if (pmd_trans_unstable(pmd)) 4698 return 0; 4699 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4700 for (; addr != end; pte++, addr += PAGE_SIZE) 4701 if (get_mctgt_type(vma, addr, *pte, NULL)) 4702 mc.precharge++; /* increment precharge temporarily */ 4703 pte_unmap_unlock(pte - 1, ptl); 4704 cond_resched(); 4705 4706 return 0; 4707 } 4708 4709 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4710 { 4711 unsigned long precharge; 4712 4713 struct mm_walk mem_cgroup_count_precharge_walk = { 4714 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4715 .mm = mm, 4716 }; 4717 down_read(&mm->mmap_sem); 4718 walk_page_range(0, mm->highest_vm_end, 4719 &mem_cgroup_count_precharge_walk); 4720 up_read(&mm->mmap_sem); 4721 4722 precharge = mc.precharge; 4723 mc.precharge = 0; 4724 4725 return precharge; 4726 } 4727 4728 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4729 { 4730 unsigned long precharge = mem_cgroup_count_precharge(mm); 4731 4732 VM_BUG_ON(mc.moving_task); 4733 mc.moving_task = current; 4734 return mem_cgroup_do_precharge(precharge); 4735 } 4736 4737 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4738 static void __mem_cgroup_clear_mc(void) 4739 { 4740 struct mem_cgroup *from = mc.from; 4741 struct mem_cgroup *to = mc.to; 4742 4743 /* we must uncharge all the leftover precharges from mc.to */ 4744 if (mc.precharge) { 4745 cancel_charge(mc.to, mc.precharge); 4746 mc.precharge = 0; 4747 } 4748 /* 4749 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4750 * we must uncharge here. 4751 */ 4752 if (mc.moved_charge) { 4753 cancel_charge(mc.from, mc.moved_charge); 4754 mc.moved_charge = 0; 4755 } 4756 /* we must fixup refcnts and charges */ 4757 if (mc.moved_swap) { 4758 /* uncharge swap account from the old cgroup */ 4759 if (!mem_cgroup_is_root(mc.from)) 4760 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4761 4762 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 4763 4764 /* 4765 * we charged both to->memory and to->memsw, so we 4766 * should uncharge to->memory. 4767 */ 4768 if (!mem_cgroup_is_root(mc.to)) 4769 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4770 4771 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 4772 css_put_many(&mc.to->css, mc.moved_swap); 4773 4774 mc.moved_swap = 0; 4775 } 4776 memcg_oom_recover(from); 4777 memcg_oom_recover(to); 4778 wake_up_all(&mc.waitq); 4779 } 4780 4781 static void mem_cgroup_clear_mc(void) 4782 { 4783 struct mm_struct *mm = mc.mm; 4784 4785 /* 4786 * we must clear moving_task before waking up waiters at the end of 4787 * task migration. 4788 */ 4789 mc.moving_task = NULL; 4790 __mem_cgroup_clear_mc(); 4791 spin_lock(&mc.lock); 4792 mc.from = NULL; 4793 mc.to = NULL; 4794 mc.mm = NULL; 4795 spin_unlock(&mc.lock); 4796 4797 mmput(mm); 4798 } 4799 4800 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4801 { 4802 struct cgroup_subsys_state *css; 4803 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4804 struct mem_cgroup *from; 4805 struct task_struct *leader, *p; 4806 struct mm_struct *mm; 4807 unsigned long move_flags; 4808 int ret = 0; 4809 4810 /* charge immigration isn't supported on the default hierarchy */ 4811 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4812 return 0; 4813 4814 /* 4815 * Multi-process migrations only happen on the default hierarchy 4816 * where charge immigration is not used. Perform charge 4817 * immigration if @tset contains a leader and whine if there are 4818 * multiple. 4819 */ 4820 p = NULL; 4821 cgroup_taskset_for_each_leader(leader, css, tset) { 4822 WARN_ON_ONCE(p); 4823 p = leader; 4824 memcg = mem_cgroup_from_css(css); 4825 } 4826 if (!p) 4827 return 0; 4828 4829 /* 4830 * We are now commited to this value whatever it is. Changes in this 4831 * tunable will only affect upcoming migrations, not the current one. 4832 * So we need to save it, and keep it going. 4833 */ 4834 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4835 if (!move_flags) 4836 return 0; 4837 4838 from = mem_cgroup_from_task(p); 4839 4840 VM_BUG_ON(from == memcg); 4841 4842 mm = get_task_mm(p); 4843 if (!mm) 4844 return 0; 4845 /* We move charges only when we move a owner of the mm */ 4846 if (mm->owner == p) { 4847 VM_BUG_ON(mc.from); 4848 VM_BUG_ON(mc.to); 4849 VM_BUG_ON(mc.precharge); 4850 VM_BUG_ON(mc.moved_charge); 4851 VM_BUG_ON(mc.moved_swap); 4852 4853 spin_lock(&mc.lock); 4854 mc.mm = mm; 4855 mc.from = from; 4856 mc.to = memcg; 4857 mc.flags = move_flags; 4858 spin_unlock(&mc.lock); 4859 /* We set mc.moving_task later */ 4860 4861 ret = mem_cgroup_precharge_mc(mm); 4862 if (ret) 4863 mem_cgroup_clear_mc(); 4864 } else { 4865 mmput(mm); 4866 } 4867 return ret; 4868 } 4869 4870 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4871 { 4872 if (mc.to) 4873 mem_cgroup_clear_mc(); 4874 } 4875 4876 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4877 unsigned long addr, unsigned long end, 4878 struct mm_walk *walk) 4879 { 4880 int ret = 0; 4881 struct vm_area_struct *vma = walk->vma; 4882 pte_t *pte; 4883 spinlock_t *ptl; 4884 enum mc_target_type target_type; 4885 union mc_target target; 4886 struct page *page; 4887 4888 ptl = pmd_trans_huge_lock(pmd, vma); 4889 if (ptl) { 4890 if (mc.precharge < HPAGE_PMD_NR) { 4891 spin_unlock(ptl); 4892 return 0; 4893 } 4894 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4895 if (target_type == MC_TARGET_PAGE) { 4896 page = target.page; 4897 if (!isolate_lru_page(page)) { 4898 if (!mem_cgroup_move_account(page, true, 4899 mc.from, mc.to)) { 4900 mc.precharge -= HPAGE_PMD_NR; 4901 mc.moved_charge += HPAGE_PMD_NR; 4902 } 4903 putback_lru_page(page); 4904 } 4905 put_page(page); 4906 } else if (target_type == MC_TARGET_DEVICE) { 4907 page = target.page; 4908 if (!mem_cgroup_move_account(page, true, 4909 mc.from, mc.to)) { 4910 mc.precharge -= HPAGE_PMD_NR; 4911 mc.moved_charge += HPAGE_PMD_NR; 4912 } 4913 put_page(page); 4914 } 4915 spin_unlock(ptl); 4916 return 0; 4917 } 4918 4919 if (pmd_trans_unstable(pmd)) 4920 return 0; 4921 retry: 4922 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4923 for (; addr != end; addr += PAGE_SIZE) { 4924 pte_t ptent = *(pte++); 4925 bool device = false; 4926 swp_entry_t ent; 4927 4928 if (!mc.precharge) 4929 break; 4930 4931 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4932 case MC_TARGET_DEVICE: 4933 device = true; 4934 /* fall through */ 4935 case MC_TARGET_PAGE: 4936 page = target.page; 4937 /* 4938 * We can have a part of the split pmd here. Moving it 4939 * can be done but it would be too convoluted so simply 4940 * ignore such a partial THP and keep it in original 4941 * memcg. There should be somebody mapping the head. 4942 */ 4943 if (PageTransCompound(page)) 4944 goto put; 4945 if (!device && isolate_lru_page(page)) 4946 goto put; 4947 if (!mem_cgroup_move_account(page, false, 4948 mc.from, mc.to)) { 4949 mc.precharge--; 4950 /* we uncharge from mc.from later. */ 4951 mc.moved_charge++; 4952 } 4953 if (!device) 4954 putback_lru_page(page); 4955 put: /* get_mctgt_type() gets the page */ 4956 put_page(page); 4957 break; 4958 case MC_TARGET_SWAP: 4959 ent = target.ent; 4960 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4961 mc.precharge--; 4962 /* we fixup refcnts and charges later. */ 4963 mc.moved_swap++; 4964 } 4965 break; 4966 default: 4967 break; 4968 } 4969 } 4970 pte_unmap_unlock(pte - 1, ptl); 4971 cond_resched(); 4972 4973 if (addr != end) { 4974 /* 4975 * We have consumed all precharges we got in can_attach(). 4976 * We try charge one by one, but don't do any additional 4977 * charges to mc.to if we have failed in charge once in attach() 4978 * phase. 4979 */ 4980 ret = mem_cgroup_do_precharge(1); 4981 if (!ret) 4982 goto retry; 4983 } 4984 4985 return ret; 4986 } 4987 4988 static void mem_cgroup_move_charge(void) 4989 { 4990 struct mm_walk mem_cgroup_move_charge_walk = { 4991 .pmd_entry = mem_cgroup_move_charge_pte_range, 4992 .mm = mc.mm, 4993 }; 4994 4995 lru_add_drain_all(); 4996 /* 4997 * Signal lock_page_memcg() to take the memcg's move_lock 4998 * while we're moving its pages to another memcg. Then wait 4999 * for already started RCU-only updates to finish. 5000 */ 5001 atomic_inc(&mc.from->moving_account); 5002 synchronize_rcu(); 5003 retry: 5004 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5005 /* 5006 * Someone who are holding the mmap_sem might be waiting in 5007 * waitq. So we cancel all extra charges, wake up all waiters, 5008 * and retry. Because we cancel precharges, we might not be able 5009 * to move enough charges, but moving charge is a best-effort 5010 * feature anyway, so it wouldn't be a big problem. 5011 */ 5012 __mem_cgroup_clear_mc(); 5013 cond_resched(); 5014 goto retry; 5015 } 5016 /* 5017 * When we have consumed all precharges and failed in doing 5018 * additional charge, the page walk just aborts. 5019 */ 5020 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5021 5022 up_read(&mc.mm->mmap_sem); 5023 atomic_dec(&mc.from->moving_account); 5024 } 5025 5026 static void mem_cgroup_move_task(void) 5027 { 5028 if (mc.to) { 5029 mem_cgroup_move_charge(); 5030 mem_cgroup_clear_mc(); 5031 } 5032 } 5033 #else /* !CONFIG_MMU */ 5034 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5035 { 5036 return 0; 5037 } 5038 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5039 { 5040 } 5041 static void mem_cgroup_move_task(void) 5042 { 5043 } 5044 #endif 5045 5046 /* 5047 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5048 * to verify whether we're attached to the default hierarchy on each mount 5049 * attempt. 5050 */ 5051 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5052 { 5053 /* 5054 * use_hierarchy is forced on the default hierarchy. cgroup core 5055 * guarantees that @root doesn't have any children, so turning it 5056 * on for the root memcg is enough. 5057 */ 5058 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5059 root_mem_cgroup->use_hierarchy = true; 5060 else 5061 root_mem_cgroup->use_hierarchy = false; 5062 } 5063 5064 static u64 memory_current_read(struct cgroup_subsys_state *css, 5065 struct cftype *cft) 5066 { 5067 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5068 5069 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5070 } 5071 5072 static int memory_min_show(struct seq_file *m, void *v) 5073 { 5074 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5075 unsigned long min = READ_ONCE(memcg->memory.min); 5076 5077 if (min == PAGE_COUNTER_MAX) 5078 seq_puts(m, "max\n"); 5079 else 5080 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE); 5081 5082 return 0; 5083 } 5084 5085 static ssize_t memory_min_write(struct kernfs_open_file *of, 5086 char *buf, size_t nbytes, loff_t off) 5087 { 5088 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5089 unsigned long min; 5090 int err; 5091 5092 buf = strstrip(buf); 5093 err = page_counter_memparse(buf, "max", &min); 5094 if (err) 5095 return err; 5096 5097 page_counter_set_min(&memcg->memory, min); 5098 5099 return nbytes; 5100 } 5101 5102 static int memory_low_show(struct seq_file *m, void *v) 5103 { 5104 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5105 unsigned long low = READ_ONCE(memcg->memory.low); 5106 5107 if (low == PAGE_COUNTER_MAX) 5108 seq_puts(m, "max\n"); 5109 else 5110 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5111 5112 return 0; 5113 } 5114 5115 static ssize_t memory_low_write(struct kernfs_open_file *of, 5116 char *buf, size_t nbytes, loff_t off) 5117 { 5118 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5119 unsigned long low; 5120 int err; 5121 5122 buf = strstrip(buf); 5123 err = page_counter_memparse(buf, "max", &low); 5124 if (err) 5125 return err; 5126 5127 page_counter_set_low(&memcg->memory, low); 5128 5129 return nbytes; 5130 } 5131 5132 static int memory_high_show(struct seq_file *m, void *v) 5133 { 5134 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5135 unsigned long high = READ_ONCE(memcg->high); 5136 5137 if (high == PAGE_COUNTER_MAX) 5138 seq_puts(m, "max\n"); 5139 else 5140 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5141 5142 return 0; 5143 } 5144 5145 static ssize_t memory_high_write(struct kernfs_open_file *of, 5146 char *buf, size_t nbytes, loff_t off) 5147 { 5148 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5149 unsigned long nr_pages; 5150 unsigned long high; 5151 int err; 5152 5153 buf = strstrip(buf); 5154 err = page_counter_memparse(buf, "max", &high); 5155 if (err) 5156 return err; 5157 5158 memcg->high = high; 5159 5160 nr_pages = page_counter_read(&memcg->memory); 5161 if (nr_pages > high) 5162 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5163 GFP_KERNEL, true); 5164 5165 memcg_wb_domain_size_changed(memcg); 5166 return nbytes; 5167 } 5168 5169 static int memory_max_show(struct seq_file *m, void *v) 5170 { 5171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5172 unsigned long max = READ_ONCE(memcg->memory.max); 5173 5174 if (max == PAGE_COUNTER_MAX) 5175 seq_puts(m, "max\n"); 5176 else 5177 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5178 5179 return 0; 5180 } 5181 5182 static ssize_t memory_max_write(struct kernfs_open_file *of, 5183 char *buf, size_t nbytes, loff_t off) 5184 { 5185 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5186 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5187 bool drained = false; 5188 unsigned long max; 5189 int err; 5190 5191 buf = strstrip(buf); 5192 err = page_counter_memparse(buf, "max", &max); 5193 if (err) 5194 return err; 5195 5196 xchg(&memcg->memory.max, max); 5197 5198 for (;;) { 5199 unsigned long nr_pages = page_counter_read(&memcg->memory); 5200 5201 if (nr_pages <= max) 5202 break; 5203 5204 if (signal_pending(current)) { 5205 err = -EINTR; 5206 break; 5207 } 5208 5209 if (!drained) { 5210 drain_all_stock(memcg); 5211 drained = true; 5212 continue; 5213 } 5214 5215 if (nr_reclaims) { 5216 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5217 GFP_KERNEL, true)) 5218 nr_reclaims--; 5219 continue; 5220 } 5221 5222 memcg_memory_event(memcg, MEMCG_OOM); 5223 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5224 break; 5225 } 5226 5227 memcg_wb_domain_size_changed(memcg); 5228 return nbytes; 5229 } 5230 5231 static int memory_events_show(struct seq_file *m, void *v) 5232 { 5233 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5234 5235 seq_printf(m, "low %lu\n", 5236 atomic_long_read(&memcg->memory_events[MEMCG_LOW])); 5237 seq_printf(m, "high %lu\n", 5238 atomic_long_read(&memcg->memory_events[MEMCG_HIGH])); 5239 seq_printf(m, "max %lu\n", 5240 atomic_long_read(&memcg->memory_events[MEMCG_MAX])); 5241 seq_printf(m, "oom %lu\n", 5242 atomic_long_read(&memcg->memory_events[MEMCG_OOM])); 5243 seq_printf(m, "oom_kill %lu\n", 5244 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 5245 5246 return 0; 5247 } 5248 5249 static int memory_stat_show(struct seq_file *m, void *v) 5250 { 5251 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5252 unsigned long stat[MEMCG_NR_STAT]; 5253 unsigned long events[NR_VM_EVENT_ITEMS]; 5254 int i; 5255 5256 /* 5257 * Provide statistics on the state of the memory subsystem as 5258 * well as cumulative event counters that show past behavior. 5259 * 5260 * This list is ordered following a combination of these gradients: 5261 * 1) generic big picture -> specifics and details 5262 * 2) reflecting userspace activity -> reflecting kernel heuristics 5263 * 5264 * Current memory state: 5265 */ 5266 5267 tree_stat(memcg, stat); 5268 tree_events(memcg, events); 5269 5270 seq_printf(m, "anon %llu\n", 5271 (u64)stat[MEMCG_RSS] * PAGE_SIZE); 5272 seq_printf(m, "file %llu\n", 5273 (u64)stat[MEMCG_CACHE] * PAGE_SIZE); 5274 seq_printf(m, "kernel_stack %llu\n", 5275 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024); 5276 seq_printf(m, "slab %llu\n", 5277 (u64)(stat[NR_SLAB_RECLAIMABLE] + 5278 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5279 seq_printf(m, "sock %llu\n", 5280 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5281 5282 seq_printf(m, "shmem %llu\n", 5283 (u64)stat[NR_SHMEM] * PAGE_SIZE); 5284 seq_printf(m, "file_mapped %llu\n", 5285 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE); 5286 seq_printf(m, "file_dirty %llu\n", 5287 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE); 5288 seq_printf(m, "file_writeback %llu\n", 5289 (u64)stat[NR_WRITEBACK] * PAGE_SIZE); 5290 5291 for (i = 0; i < NR_LRU_LISTS; i++) { 5292 struct mem_cgroup *mi; 5293 unsigned long val = 0; 5294 5295 for_each_mem_cgroup_tree(mi, memcg) 5296 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5297 seq_printf(m, "%s %llu\n", 5298 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5299 } 5300 5301 seq_printf(m, "slab_reclaimable %llu\n", 5302 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE); 5303 seq_printf(m, "slab_unreclaimable %llu\n", 5304 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5305 5306 /* Accumulated memory events */ 5307 5308 seq_printf(m, "pgfault %lu\n", events[PGFAULT]); 5309 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]); 5310 5311 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]); 5312 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] + 5313 events[PGSCAN_DIRECT]); 5314 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] + 5315 events[PGSTEAL_DIRECT]); 5316 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]); 5317 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]); 5318 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]); 5319 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]); 5320 5321 seq_printf(m, "workingset_refault %lu\n", 5322 stat[WORKINGSET_REFAULT]); 5323 seq_printf(m, "workingset_activate %lu\n", 5324 stat[WORKINGSET_ACTIVATE]); 5325 seq_printf(m, "workingset_nodereclaim %lu\n", 5326 stat[WORKINGSET_NODERECLAIM]); 5327 5328 return 0; 5329 } 5330 5331 static struct cftype memory_files[] = { 5332 { 5333 .name = "current", 5334 .flags = CFTYPE_NOT_ON_ROOT, 5335 .read_u64 = memory_current_read, 5336 }, 5337 { 5338 .name = "min", 5339 .flags = CFTYPE_NOT_ON_ROOT, 5340 .seq_show = memory_min_show, 5341 .write = memory_min_write, 5342 }, 5343 { 5344 .name = "low", 5345 .flags = CFTYPE_NOT_ON_ROOT, 5346 .seq_show = memory_low_show, 5347 .write = memory_low_write, 5348 }, 5349 { 5350 .name = "high", 5351 .flags = CFTYPE_NOT_ON_ROOT, 5352 .seq_show = memory_high_show, 5353 .write = memory_high_write, 5354 }, 5355 { 5356 .name = "max", 5357 .flags = CFTYPE_NOT_ON_ROOT, 5358 .seq_show = memory_max_show, 5359 .write = memory_max_write, 5360 }, 5361 { 5362 .name = "events", 5363 .flags = CFTYPE_NOT_ON_ROOT, 5364 .file_offset = offsetof(struct mem_cgroup, events_file), 5365 .seq_show = memory_events_show, 5366 }, 5367 { 5368 .name = "stat", 5369 .flags = CFTYPE_NOT_ON_ROOT, 5370 .seq_show = memory_stat_show, 5371 }, 5372 { } /* terminate */ 5373 }; 5374 5375 struct cgroup_subsys memory_cgrp_subsys = { 5376 .css_alloc = mem_cgroup_css_alloc, 5377 .css_online = mem_cgroup_css_online, 5378 .css_offline = mem_cgroup_css_offline, 5379 .css_released = mem_cgroup_css_released, 5380 .css_free = mem_cgroup_css_free, 5381 .css_reset = mem_cgroup_css_reset, 5382 .can_attach = mem_cgroup_can_attach, 5383 .cancel_attach = mem_cgroup_cancel_attach, 5384 .post_attach = mem_cgroup_move_task, 5385 .bind = mem_cgroup_bind, 5386 .dfl_cftypes = memory_files, 5387 .legacy_cftypes = mem_cgroup_legacy_files, 5388 .early_init = 0, 5389 }; 5390 5391 /** 5392 * mem_cgroup_protected - check if memory consumption is in the normal range 5393 * @root: the top ancestor of the sub-tree being checked 5394 * @memcg: the memory cgroup to check 5395 * 5396 * WARNING: This function is not stateless! It can only be used as part 5397 * of a top-down tree iteration, not for isolated queries. 5398 * 5399 * Returns one of the following: 5400 * MEMCG_PROT_NONE: cgroup memory is not protected 5401 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 5402 * an unprotected supply of reclaimable memory from other cgroups. 5403 * MEMCG_PROT_MIN: cgroup memory is protected 5404 * 5405 * @root is exclusive; it is never protected when looked at directly 5406 * 5407 * To provide a proper hierarchical behavior, effective memory.min/low values 5408 * are used. Below is the description of how effective memory.low is calculated. 5409 * Effective memory.min values is calculated in the same way. 5410 * 5411 * Effective memory.low is always equal or less than the original memory.low. 5412 * If there is no memory.low overcommittment (which is always true for 5413 * top-level memory cgroups), these two values are equal. 5414 * Otherwise, it's a part of parent's effective memory.low, 5415 * calculated as a cgroup's memory.low usage divided by sum of sibling's 5416 * memory.low usages, where memory.low usage is the size of actually 5417 * protected memory. 5418 * 5419 * low_usage 5420 * elow = min( memory.low, parent->elow * ------------------ ), 5421 * siblings_low_usage 5422 * 5423 * | memory.current, if memory.current < memory.low 5424 * low_usage = | 5425 | 0, otherwise. 5426 * 5427 * 5428 * Such definition of the effective memory.low provides the expected 5429 * hierarchical behavior: parent's memory.low value is limiting 5430 * children, unprotected memory is reclaimed first and cgroups, 5431 * which are not using their guarantee do not affect actual memory 5432 * distribution. 5433 * 5434 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 5435 * 5436 * A A/memory.low = 2G, A/memory.current = 6G 5437 * //\\ 5438 * BC DE B/memory.low = 3G B/memory.current = 2G 5439 * C/memory.low = 1G C/memory.current = 2G 5440 * D/memory.low = 0 D/memory.current = 2G 5441 * E/memory.low = 10G E/memory.current = 0 5442 * 5443 * and the memory pressure is applied, the following memory distribution 5444 * is expected (approximately): 5445 * 5446 * A/memory.current = 2G 5447 * 5448 * B/memory.current = 1.3G 5449 * C/memory.current = 0.6G 5450 * D/memory.current = 0 5451 * E/memory.current = 0 5452 * 5453 * These calculations require constant tracking of the actual low usages 5454 * (see propagate_protected_usage()), as well as recursive calculation of 5455 * effective memory.low values. But as we do call mem_cgroup_protected() 5456 * path for each memory cgroup top-down from the reclaim, 5457 * it's possible to optimize this part, and save calculated elow 5458 * for next usage. This part is intentionally racy, but it's ok, 5459 * as memory.low is a best-effort mechanism. 5460 */ 5461 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 5462 struct mem_cgroup *memcg) 5463 { 5464 struct mem_cgroup *parent; 5465 unsigned long emin, parent_emin; 5466 unsigned long elow, parent_elow; 5467 unsigned long usage; 5468 5469 if (mem_cgroup_disabled()) 5470 return MEMCG_PROT_NONE; 5471 5472 if (!root) 5473 root = root_mem_cgroup; 5474 if (memcg == root) 5475 return MEMCG_PROT_NONE; 5476 5477 usage = page_counter_read(&memcg->memory); 5478 if (!usage) 5479 return MEMCG_PROT_NONE; 5480 5481 emin = memcg->memory.min; 5482 elow = memcg->memory.low; 5483 5484 parent = parent_mem_cgroup(memcg); 5485 /* No parent means a non-hierarchical mode on v1 memcg */ 5486 if (!parent) 5487 return MEMCG_PROT_NONE; 5488 5489 if (parent == root) 5490 goto exit; 5491 5492 parent_emin = READ_ONCE(parent->memory.emin); 5493 emin = min(emin, parent_emin); 5494 if (emin && parent_emin) { 5495 unsigned long min_usage, siblings_min_usage; 5496 5497 min_usage = min(usage, memcg->memory.min); 5498 siblings_min_usage = atomic_long_read( 5499 &parent->memory.children_min_usage); 5500 5501 if (min_usage && siblings_min_usage) 5502 emin = min(emin, parent_emin * min_usage / 5503 siblings_min_usage); 5504 } 5505 5506 parent_elow = READ_ONCE(parent->memory.elow); 5507 elow = min(elow, parent_elow); 5508 if (elow && parent_elow) { 5509 unsigned long low_usage, siblings_low_usage; 5510 5511 low_usage = min(usage, memcg->memory.low); 5512 siblings_low_usage = atomic_long_read( 5513 &parent->memory.children_low_usage); 5514 5515 if (low_usage && siblings_low_usage) 5516 elow = min(elow, parent_elow * low_usage / 5517 siblings_low_usage); 5518 } 5519 5520 exit: 5521 memcg->memory.emin = emin; 5522 memcg->memory.elow = elow; 5523 5524 if (usage <= emin) 5525 return MEMCG_PROT_MIN; 5526 else if (usage <= elow) 5527 return MEMCG_PROT_LOW; 5528 else 5529 return MEMCG_PROT_NONE; 5530 } 5531 5532 /** 5533 * mem_cgroup_try_charge - try charging a page 5534 * @page: page to charge 5535 * @mm: mm context of the victim 5536 * @gfp_mask: reclaim mode 5537 * @memcgp: charged memcg return 5538 * @compound: charge the page as compound or small page 5539 * 5540 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5541 * pages according to @gfp_mask if necessary. 5542 * 5543 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5544 * Otherwise, an error code is returned. 5545 * 5546 * After page->mapping has been set up, the caller must finalize the 5547 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5548 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5549 */ 5550 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5551 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5552 bool compound) 5553 { 5554 struct mem_cgroup *memcg = NULL; 5555 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5556 int ret = 0; 5557 5558 if (mem_cgroup_disabled()) 5559 goto out; 5560 5561 if (PageSwapCache(page)) { 5562 /* 5563 * Every swap fault against a single page tries to charge the 5564 * page, bail as early as possible. shmem_unuse() encounters 5565 * already charged pages, too. The USED bit is protected by 5566 * the page lock, which serializes swap cache removal, which 5567 * in turn serializes uncharging. 5568 */ 5569 VM_BUG_ON_PAGE(!PageLocked(page), page); 5570 if (compound_head(page)->mem_cgroup) 5571 goto out; 5572 5573 if (do_swap_account) { 5574 swp_entry_t ent = { .val = page_private(page), }; 5575 unsigned short id = lookup_swap_cgroup_id(ent); 5576 5577 rcu_read_lock(); 5578 memcg = mem_cgroup_from_id(id); 5579 if (memcg && !css_tryget_online(&memcg->css)) 5580 memcg = NULL; 5581 rcu_read_unlock(); 5582 } 5583 } 5584 5585 if (!memcg) 5586 memcg = get_mem_cgroup_from_mm(mm); 5587 5588 ret = try_charge(memcg, gfp_mask, nr_pages); 5589 5590 css_put(&memcg->css); 5591 out: 5592 *memcgp = memcg; 5593 return ret; 5594 } 5595 5596 /** 5597 * mem_cgroup_commit_charge - commit a page charge 5598 * @page: page to charge 5599 * @memcg: memcg to charge the page to 5600 * @lrucare: page might be on LRU already 5601 * @compound: charge the page as compound or small page 5602 * 5603 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5604 * after page->mapping has been set up. This must happen atomically 5605 * as part of the page instantiation, i.e. under the page table lock 5606 * for anonymous pages, under the page lock for page and swap cache. 5607 * 5608 * In addition, the page must not be on the LRU during the commit, to 5609 * prevent racing with task migration. If it might be, use @lrucare. 5610 * 5611 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5612 */ 5613 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5614 bool lrucare, bool compound) 5615 { 5616 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5617 5618 VM_BUG_ON_PAGE(!page->mapping, page); 5619 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5620 5621 if (mem_cgroup_disabled()) 5622 return; 5623 /* 5624 * Swap faults will attempt to charge the same page multiple 5625 * times. But reuse_swap_page() might have removed the page 5626 * from swapcache already, so we can't check PageSwapCache(). 5627 */ 5628 if (!memcg) 5629 return; 5630 5631 commit_charge(page, memcg, lrucare); 5632 5633 local_irq_disable(); 5634 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5635 memcg_check_events(memcg, page); 5636 local_irq_enable(); 5637 5638 if (do_memsw_account() && PageSwapCache(page)) { 5639 swp_entry_t entry = { .val = page_private(page) }; 5640 /* 5641 * The swap entry might not get freed for a long time, 5642 * let's not wait for it. The page already received a 5643 * memory+swap charge, drop the swap entry duplicate. 5644 */ 5645 mem_cgroup_uncharge_swap(entry, nr_pages); 5646 } 5647 } 5648 5649 /** 5650 * mem_cgroup_cancel_charge - cancel a page charge 5651 * @page: page to charge 5652 * @memcg: memcg to charge the page to 5653 * @compound: charge the page as compound or small page 5654 * 5655 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5656 */ 5657 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5658 bool compound) 5659 { 5660 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5661 5662 if (mem_cgroup_disabled()) 5663 return; 5664 /* 5665 * Swap faults will attempt to charge the same page multiple 5666 * times. But reuse_swap_page() might have removed the page 5667 * from swapcache already, so we can't check PageSwapCache(). 5668 */ 5669 if (!memcg) 5670 return; 5671 5672 cancel_charge(memcg, nr_pages); 5673 } 5674 5675 struct uncharge_gather { 5676 struct mem_cgroup *memcg; 5677 unsigned long pgpgout; 5678 unsigned long nr_anon; 5679 unsigned long nr_file; 5680 unsigned long nr_kmem; 5681 unsigned long nr_huge; 5682 unsigned long nr_shmem; 5683 struct page *dummy_page; 5684 }; 5685 5686 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 5687 { 5688 memset(ug, 0, sizeof(*ug)); 5689 } 5690 5691 static void uncharge_batch(const struct uncharge_gather *ug) 5692 { 5693 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 5694 unsigned long flags; 5695 5696 if (!mem_cgroup_is_root(ug->memcg)) { 5697 page_counter_uncharge(&ug->memcg->memory, nr_pages); 5698 if (do_memsw_account()) 5699 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 5700 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 5701 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 5702 memcg_oom_recover(ug->memcg); 5703 } 5704 5705 local_irq_save(flags); 5706 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 5707 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 5708 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 5709 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 5710 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 5711 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages); 5712 memcg_check_events(ug->memcg, ug->dummy_page); 5713 local_irq_restore(flags); 5714 5715 if (!mem_cgroup_is_root(ug->memcg)) 5716 css_put_many(&ug->memcg->css, nr_pages); 5717 } 5718 5719 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 5720 { 5721 VM_BUG_ON_PAGE(PageLRU(page), page); 5722 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 5723 !PageHWPoison(page) , page); 5724 5725 if (!page->mem_cgroup) 5726 return; 5727 5728 /* 5729 * Nobody should be changing or seriously looking at 5730 * page->mem_cgroup at this point, we have fully 5731 * exclusive access to the page. 5732 */ 5733 5734 if (ug->memcg != page->mem_cgroup) { 5735 if (ug->memcg) { 5736 uncharge_batch(ug); 5737 uncharge_gather_clear(ug); 5738 } 5739 ug->memcg = page->mem_cgroup; 5740 } 5741 5742 if (!PageKmemcg(page)) { 5743 unsigned int nr_pages = 1; 5744 5745 if (PageTransHuge(page)) { 5746 nr_pages <<= compound_order(page); 5747 ug->nr_huge += nr_pages; 5748 } 5749 if (PageAnon(page)) 5750 ug->nr_anon += nr_pages; 5751 else { 5752 ug->nr_file += nr_pages; 5753 if (PageSwapBacked(page)) 5754 ug->nr_shmem += nr_pages; 5755 } 5756 ug->pgpgout++; 5757 } else { 5758 ug->nr_kmem += 1 << compound_order(page); 5759 __ClearPageKmemcg(page); 5760 } 5761 5762 ug->dummy_page = page; 5763 page->mem_cgroup = NULL; 5764 } 5765 5766 static void uncharge_list(struct list_head *page_list) 5767 { 5768 struct uncharge_gather ug; 5769 struct list_head *next; 5770 5771 uncharge_gather_clear(&ug); 5772 5773 /* 5774 * Note that the list can be a single page->lru; hence the 5775 * do-while loop instead of a simple list_for_each_entry(). 5776 */ 5777 next = page_list->next; 5778 do { 5779 struct page *page; 5780 5781 page = list_entry(next, struct page, lru); 5782 next = page->lru.next; 5783 5784 uncharge_page(page, &ug); 5785 } while (next != page_list); 5786 5787 if (ug.memcg) 5788 uncharge_batch(&ug); 5789 } 5790 5791 /** 5792 * mem_cgroup_uncharge - uncharge a page 5793 * @page: page to uncharge 5794 * 5795 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5796 * mem_cgroup_commit_charge(). 5797 */ 5798 void mem_cgroup_uncharge(struct page *page) 5799 { 5800 struct uncharge_gather ug; 5801 5802 if (mem_cgroup_disabled()) 5803 return; 5804 5805 /* Don't touch page->lru of any random page, pre-check: */ 5806 if (!page->mem_cgroup) 5807 return; 5808 5809 uncharge_gather_clear(&ug); 5810 uncharge_page(page, &ug); 5811 uncharge_batch(&ug); 5812 } 5813 5814 /** 5815 * mem_cgroup_uncharge_list - uncharge a list of page 5816 * @page_list: list of pages to uncharge 5817 * 5818 * Uncharge a list of pages previously charged with 5819 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5820 */ 5821 void mem_cgroup_uncharge_list(struct list_head *page_list) 5822 { 5823 if (mem_cgroup_disabled()) 5824 return; 5825 5826 if (!list_empty(page_list)) 5827 uncharge_list(page_list); 5828 } 5829 5830 /** 5831 * mem_cgroup_migrate - charge a page's replacement 5832 * @oldpage: currently circulating page 5833 * @newpage: replacement page 5834 * 5835 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5836 * be uncharged upon free. 5837 * 5838 * Both pages must be locked, @newpage->mapping must be set up. 5839 */ 5840 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5841 { 5842 struct mem_cgroup *memcg; 5843 unsigned int nr_pages; 5844 bool compound; 5845 unsigned long flags; 5846 5847 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5848 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5849 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5850 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5851 newpage); 5852 5853 if (mem_cgroup_disabled()) 5854 return; 5855 5856 /* Page cache replacement: new page already charged? */ 5857 if (newpage->mem_cgroup) 5858 return; 5859 5860 /* Swapcache readahead pages can get replaced before being charged */ 5861 memcg = oldpage->mem_cgroup; 5862 if (!memcg) 5863 return; 5864 5865 /* Force-charge the new page. The old one will be freed soon */ 5866 compound = PageTransHuge(newpage); 5867 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5868 5869 page_counter_charge(&memcg->memory, nr_pages); 5870 if (do_memsw_account()) 5871 page_counter_charge(&memcg->memsw, nr_pages); 5872 css_get_many(&memcg->css, nr_pages); 5873 5874 commit_charge(newpage, memcg, false); 5875 5876 local_irq_save(flags); 5877 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5878 memcg_check_events(memcg, newpage); 5879 local_irq_restore(flags); 5880 } 5881 5882 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5883 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5884 5885 void mem_cgroup_sk_alloc(struct sock *sk) 5886 { 5887 struct mem_cgroup *memcg; 5888 5889 if (!mem_cgroup_sockets_enabled) 5890 return; 5891 5892 /* 5893 * Socket cloning can throw us here with sk_memcg already 5894 * filled. It won't however, necessarily happen from 5895 * process context. So the test for root memcg given 5896 * the current task's memcg won't help us in this case. 5897 * 5898 * Respecting the original socket's memcg is a better 5899 * decision in this case. 5900 */ 5901 if (sk->sk_memcg) { 5902 css_get(&sk->sk_memcg->css); 5903 return; 5904 } 5905 5906 rcu_read_lock(); 5907 memcg = mem_cgroup_from_task(current); 5908 if (memcg == root_mem_cgroup) 5909 goto out; 5910 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5911 goto out; 5912 if (css_tryget_online(&memcg->css)) 5913 sk->sk_memcg = memcg; 5914 out: 5915 rcu_read_unlock(); 5916 } 5917 5918 void mem_cgroup_sk_free(struct sock *sk) 5919 { 5920 if (sk->sk_memcg) 5921 css_put(&sk->sk_memcg->css); 5922 } 5923 5924 /** 5925 * mem_cgroup_charge_skmem - charge socket memory 5926 * @memcg: memcg to charge 5927 * @nr_pages: number of pages to charge 5928 * 5929 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5930 * @memcg's configured limit, %false if the charge had to be forced. 5931 */ 5932 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5933 { 5934 gfp_t gfp_mask = GFP_KERNEL; 5935 5936 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5937 struct page_counter *fail; 5938 5939 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5940 memcg->tcpmem_pressure = 0; 5941 return true; 5942 } 5943 page_counter_charge(&memcg->tcpmem, nr_pages); 5944 memcg->tcpmem_pressure = 1; 5945 return false; 5946 } 5947 5948 /* Don't block in the packet receive path */ 5949 if (in_softirq()) 5950 gfp_mask = GFP_NOWAIT; 5951 5952 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 5953 5954 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5955 return true; 5956 5957 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5958 return false; 5959 } 5960 5961 /** 5962 * mem_cgroup_uncharge_skmem - uncharge socket memory 5963 * @memcg: memcg to uncharge 5964 * @nr_pages: number of pages to uncharge 5965 */ 5966 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5967 { 5968 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5969 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5970 return; 5971 } 5972 5973 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 5974 5975 refill_stock(memcg, nr_pages); 5976 } 5977 5978 static int __init cgroup_memory(char *s) 5979 { 5980 char *token; 5981 5982 while ((token = strsep(&s, ",")) != NULL) { 5983 if (!*token) 5984 continue; 5985 if (!strcmp(token, "nosocket")) 5986 cgroup_memory_nosocket = true; 5987 if (!strcmp(token, "nokmem")) 5988 cgroup_memory_nokmem = true; 5989 } 5990 return 0; 5991 } 5992 __setup("cgroup.memory=", cgroup_memory); 5993 5994 /* 5995 * subsys_initcall() for memory controller. 5996 * 5997 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5998 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5999 * basically everything that doesn't depend on a specific mem_cgroup structure 6000 * should be initialized from here. 6001 */ 6002 static int __init mem_cgroup_init(void) 6003 { 6004 int cpu, node; 6005 6006 #ifndef CONFIG_SLOB 6007 /* 6008 * Kmem cache creation is mostly done with the slab_mutex held, 6009 * so use a workqueue with limited concurrency to avoid stalling 6010 * all worker threads in case lots of cgroups are created and 6011 * destroyed simultaneously. 6012 */ 6013 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6014 BUG_ON(!memcg_kmem_cache_wq); 6015 #endif 6016 6017 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6018 memcg_hotplug_cpu_dead); 6019 6020 for_each_possible_cpu(cpu) 6021 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6022 drain_local_stock); 6023 6024 for_each_node(node) { 6025 struct mem_cgroup_tree_per_node *rtpn; 6026 6027 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6028 node_online(node) ? node : NUMA_NO_NODE); 6029 6030 rtpn->rb_root = RB_ROOT; 6031 rtpn->rb_rightmost = NULL; 6032 spin_lock_init(&rtpn->lock); 6033 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6034 } 6035 6036 return 0; 6037 } 6038 subsys_initcall(mem_cgroup_init); 6039 6040 #ifdef CONFIG_MEMCG_SWAP 6041 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6042 { 6043 while (!atomic_inc_not_zero(&memcg->id.ref)) { 6044 /* 6045 * The root cgroup cannot be destroyed, so it's refcount must 6046 * always be >= 1. 6047 */ 6048 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6049 VM_BUG_ON(1); 6050 break; 6051 } 6052 memcg = parent_mem_cgroup(memcg); 6053 if (!memcg) 6054 memcg = root_mem_cgroup; 6055 } 6056 return memcg; 6057 } 6058 6059 /** 6060 * mem_cgroup_swapout - transfer a memsw charge to swap 6061 * @page: page whose memsw charge to transfer 6062 * @entry: swap entry to move the charge to 6063 * 6064 * Transfer the memsw charge of @page to @entry. 6065 */ 6066 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6067 { 6068 struct mem_cgroup *memcg, *swap_memcg; 6069 unsigned int nr_entries; 6070 unsigned short oldid; 6071 6072 VM_BUG_ON_PAGE(PageLRU(page), page); 6073 VM_BUG_ON_PAGE(page_count(page), page); 6074 6075 if (!do_memsw_account()) 6076 return; 6077 6078 memcg = page->mem_cgroup; 6079 6080 /* Readahead page, never charged */ 6081 if (!memcg) 6082 return; 6083 6084 /* 6085 * In case the memcg owning these pages has been offlined and doesn't 6086 * have an ID allocated to it anymore, charge the closest online 6087 * ancestor for the swap instead and transfer the memory+swap charge. 6088 */ 6089 swap_memcg = mem_cgroup_id_get_online(memcg); 6090 nr_entries = hpage_nr_pages(page); 6091 /* Get references for the tail pages, too */ 6092 if (nr_entries > 1) 6093 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6094 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6095 nr_entries); 6096 VM_BUG_ON_PAGE(oldid, page); 6097 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6098 6099 page->mem_cgroup = NULL; 6100 6101 if (!mem_cgroup_is_root(memcg)) 6102 page_counter_uncharge(&memcg->memory, nr_entries); 6103 6104 if (memcg != swap_memcg) { 6105 if (!mem_cgroup_is_root(swap_memcg)) 6106 page_counter_charge(&swap_memcg->memsw, nr_entries); 6107 page_counter_uncharge(&memcg->memsw, nr_entries); 6108 } 6109 6110 /* 6111 * Interrupts should be disabled here because the caller holds the 6112 * i_pages lock which is taken with interrupts-off. It is 6113 * important here to have the interrupts disabled because it is the 6114 * only synchronisation we have for updating the per-CPU variables. 6115 */ 6116 VM_BUG_ON(!irqs_disabled()); 6117 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6118 -nr_entries); 6119 memcg_check_events(memcg, page); 6120 6121 if (!mem_cgroup_is_root(memcg)) 6122 css_put_many(&memcg->css, nr_entries); 6123 } 6124 6125 /** 6126 * mem_cgroup_try_charge_swap - try charging swap space for a page 6127 * @page: page being added to swap 6128 * @entry: swap entry to charge 6129 * 6130 * Try to charge @page's memcg for the swap space at @entry. 6131 * 6132 * Returns 0 on success, -ENOMEM on failure. 6133 */ 6134 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6135 { 6136 unsigned int nr_pages = hpage_nr_pages(page); 6137 struct page_counter *counter; 6138 struct mem_cgroup *memcg; 6139 unsigned short oldid; 6140 6141 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6142 return 0; 6143 6144 memcg = page->mem_cgroup; 6145 6146 /* Readahead page, never charged */ 6147 if (!memcg) 6148 return 0; 6149 6150 if (!entry.val) { 6151 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6152 return 0; 6153 } 6154 6155 memcg = mem_cgroup_id_get_online(memcg); 6156 6157 if (!mem_cgroup_is_root(memcg) && 6158 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6159 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6160 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6161 mem_cgroup_id_put(memcg); 6162 return -ENOMEM; 6163 } 6164 6165 /* Get references for the tail pages, too */ 6166 if (nr_pages > 1) 6167 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6168 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6169 VM_BUG_ON_PAGE(oldid, page); 6170 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6171 6172 return 0; 6173 } 6174 6175 /** 6176 * mem_cgroup_uncharge_swap - uncharge swap space 6177 * @entry: swap entry to uncharge 6178 * @nr_pages: the amount of swap space to uncharge 6179 */ 6180 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6181 { 6182 struct mem_cgroup *memcg; 6183 unsigned short id; 6184 6185 if (!do_swap_account) 6186 return; 6187 6188 id = swap_cgroup_record(entry, 0, nr_pages); 6189 rcu_read_lock(); 6190 memcg = mem_cgroup_from_id(id); 6191 if (memcg) { 6192 if (!mem_cgroup_is_root(memcg)) { 6193 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6194 page_counter_uncharge(&memcg->swap, nr_pages); 6195 else 6196 page_counter_uncharge(&memcg->memsw, nr_pages); 6197 } 6198 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6199 mem_cgroup_id_put_many(memcg, nr_pages); 6200 } 6201 rcu_read_unlock(); 6202 } 6203 6204 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6205 { 6206 long nr_swap_pages = get_nr_swap_pages(); 6207 6208 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6209 return nr_swap_pages; 6210 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6211 nr_swap_pages = min_t(long, nr_swap_pages, 6212 READ_ONCE(memcg->swap.max) - 6213 page_counter_read(&memcg->swap)); 6214 return nr_swap_pages; 6215 } 6216 6217 bool mem_cgroup_swap_full(struct page *page) 6218 { 6219 struct mem_cgroup *memcg; 6220 6221 VM_BUG_ON_PAGE(!PageLocked(page), page); 6222 6223 if (vm_swap_full()) 6224 return true; 6225 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6226 return false; 6227 6228 memcg = page->mem_cgroup; 6229 if (!memcg) 6230 return false; 6231 6232 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6233 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 6234 return true; 6235 6236 return false; 6237 } 6238 6239 /* for remember boot option*/ 6240 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6241 static int really_do_swap_account __initdata = 1; 6242 #else 6243 static int really_do_swap_account __initdata; 6244 #endif 6245 6246 static int __init enable_swap_account(char *s) 6247 { 6248 if (!strcmp(s, "1")) 6249 really_do_swap_account = 1; 6250 else if (!strcmp(s, "0")) 6251 really_do_swap_account = 0; 6252 return 1; 6253 } 6254 __setup("swapaccount=", enable_swap_account); 6255 6256 static u64 swap_current_read(struct cgroup_subsys_state *css, 6257 struct cftype *cft) 6258 { 6259 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6260 6261 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6262 } 6263 6264 static int swap_max_show(struct seq_file *m, void *v) 6265 { 6266 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6267 unsigned long max = READ_ONCE(memcg->swap.max); 6268 6269 if (max == PAGE_COUNTER_MAX) 6270 seq_puts(m, "max\n"); 6271 else 6272 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 6273 6274 return 0; 6275 } 6276 6277 static ssize_t swap_max_write(struct kernfs_open_file *of, 6278 char *buf, size_t nbytes, loff_t off) 6279 { 6280 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6281 unsigned long max; 6282 int err; 6283 6284 buf = strstrip(buf); 6285 err = page_counter_memparse(buf, "max", &max); 6286 if (err) 6287 return err; 6288 6289 xchg(&memcg->swap.max, max); 6290 6291 return nbytes; 6292 } 6293 6294 static int swap_events_show(struct seq_file *m, void *v) 6295 { 6296 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6297 6298 seq_printf(m, "max %lu\n", 6299 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 6300 seq_printf(m, "fail %lu\n", 6301 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 6302 6303 return 0; 6304 } 6305 6306 static struct cftype swap_files[] = { 6307 { 6308 .name = "swap.current", 6309 .flags = CFTYPE_NOT_ON_ROOT, 6310 .read_u64 = swap_current_read, 6311 }, 6312 { 6313 .name = "swap.max", 6314 .flags = CFTYPE_NOT_ON_ROOT, 6315 .seq_show = swap_max_show, 6316 .write = swap_max_write, 6317 }, 6318 { 6319 .name = "swap.events", 6320 .flags = CFTYPE_NOT_ON_ROOT, 6321 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 6322 .seq_show = swap_events_show, 6323 }, 6324 { } /* terminate */ 6325 }; 6326 6327 static struct cftype memsw_cgroup_files[] = { 6328 { 6329 .name = "memsw.usage_in_bytes", 6330 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6331 .read_u64 = mem_cgroup_read_u64, 6332 }, 6333 { 6334 .name = "memsw.max_usage_in_bytes", 6335 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6336 .write = mem_cgroup_reset, 6337 .read_u64 = mem_cgroup_read_u64, 6338 }, 6339 { 6340 .name = "memsw.limit_in_bytes", 6341 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6342 .write = mem_cgroup_write, 6343 .read_u64 = mem_cgroup_read_u64, 6344 }, 6345 { 6346 .name = "memsw.failcnt", 6347 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6348 .write = mem_cgroup_reset, 6349 .read_u64 = mem_cgroup_read_u64, 6350 }, 6351 { }, /* terminate */ 6352 }; 6353 6354 static int __init mem_cgroup_swap_init(void) 6355 { 6356 if (!mem_cgroup_disabled() && really_do_swap_account) { 6357 do_swap_account = 1; 6358 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6359 swap_files)); 6360 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6361 memsw_cgroup_files)); 6362 } 6363 return 0; 6364 } 6365 subsys_initcall(mem_cgroup_swap_init); 6366 6367 #endif /* CONFIG_MEMCG_SWAP */ 6368