xref: /linux/mm/memcontrol.c (revision 779923bc40e123976bb0bee07b1c6a47d2858137)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55 
56 #include <asm/uaccess.h>
57 
58 #include <trace/events/vmscan.h>
59 
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES	5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63 
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67 
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74 
75 #else
76 #define do_swap_account		(0)
77 #endif
78 
79 
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84 	/*
85 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 	 */
87 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 	MEM_CGROUP_STAT_NSTATS,
94 };
95 
96 enum mem_cgroup_events_index {
97 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
98 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99 	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
101 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 	MEM_CGROUP_EVENTS_NSTATS,
103 };
104 /*
105  * Per memcg event counter is incremented at every pagein/pageout. With THP,
106  * it will be incremated by the number of pages. This counter is used for
107  * for trigger some periodic events. This is straightforward and better
108  * than using jiffies etc. to handle periodic memcg event.
109  */
110 enum mem_cgroup_events_target {
111 	MEM_CGROUP_TARGET_THRESH,
112 	MEM_CGROUP_TARGET_SOFTLIMIT,
113 	MEM_CGROUP_TARGET_NUMAINFO,
114 	MEM_CGROUP_NTARGETS,
115 };
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET	(1024)
119 
120 struct mem_cgroup_stat_cpu {
121 	long count[MEM_CGROUP_STAT_NSTATS];
122 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 	unsigned long targets[MEM_CGROUP_NTARGETS];
124 };
125 
126 struct mem_cgroup_reclaim_iter {
127 	/* css_id of the last scanned hierarchy member */
128 	int position;
129 	/* scan generation, increased every round-trip */
130 	unsigned int generation;
131 };
132 
133 /*
134  * per-zone information in memory controller.
135  */
136 struct mem_cgroup_per_zone {
137 	struct lruvec		lruvec;
138 	unsigned long		count[NR_LRU_LISTS];
139 
140 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141 
142 	struct zone_reclaim_stat reclaim_stat;
143 	struct rb_node		tree_node;	/* RB tree node */
144 	unsigned long long	usage_in_excess;/* Set to the value by which */
145 						/* the soft limit is exceeded*/
146 	bool			on_tree;
147 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
148 						/* use container_of	   */
149 };
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
152 
153 struct mem_cgroup_per_node {
154 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155 };
156 
157 struct mem_cgroup_lru_info {
158 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159 };
160 
161 /*
162  * Cgroups above their limits are maintained in a RB-Tree, independent of
163  * their hierarchy representation
164  */
165 
166 struct mem_cgroup_tree_per_zone {
167 	struct rb_root rb_root;
168 	spinlock_t lock;
169 };
170 
171 struct mem_cgroup_tree_per_node {
172 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173 };
174 
175 struct mem_cgroup_tree {
176 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177 };
178 
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180 
181 struct mem_cgroup_threshold {
182 	struct eventfd_ctx *eventfd;
183 	u64 threshold;
184 };
185 
186 /* For threshold */
187 struct mem_cgroup_threshold_ary {
188 	/* An array index points to threshold just below usage. */
189 	int current_threshold;
190 	/* Size of entries[] */
191 	unsigned int size;
192 	/* Array of thresholds */
193 	struct mem_cgroup_threshold entries[0];
194 };
195 
196 struct mem_cgroup_thresholds {
197 	/* Primary thresholds array */
198 	struct mem_cgroup_threshold_ary *primary;
199 	/*
200 	 * Spare threshold array.
201 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 	 * It must be able to store at least primary->size - 1 entries.
203 	 */
204 	struct mem_cgroup_threshold_ary *spare;
205 };
206 
207 /* for OOM */
208 struct mem_cgroup_eventfd_list {
209 	struct list_head list;
210 	struct eventfd_ctx *eventfd;
211 };
212 
213 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215 
216 /*
217  * The memory controller data structure. The memory controller controls both
218  * page cache and RSS per cgroup. We would eventually like to provide
219  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220  * to help the administrator determine what knobs to tune.
221  *
222  * TODO: Add a water mark for the memory controller. Reclaim will begin when
223  * we hit the water mark. May be even add a low water mark, such that
224  * no reclaim occurs from a cgroup at it's low water mark, this is
225  * a feature that will be implemented much later in the future.
226  */
227 struct mem_cgroup {
228 	struct cgroup_subsys_state css;
229 	/*
230 	 * the counter to account for memory usage
231 	 */
232 	struct res_counter res;
233 	/*
234 	 * the counter to account for mem+swap usage.
235 	 */
236 	struct res_counter memsw;
237 	/*
238 	 * Per cgroup active and inactive list, similar to the
239 	 * per zone LRU lists.
240 	 */
241 	struct mem_cgroup_lru_info info;
242 	int last_scanned_node;
243 #if MAX_NUMNODES > 1
244 	nodemask_t	scan_nodes;
245 	atomic_t	numainfo_events;
246 	atomic_t	numainfo_updating;
247 #endif
248 	/*
249 	 * Should the accounting and control be hierarchical, per subtree?
250 	 */
251 	bool use_hierarchy;
252 
253 	bool		oom_lock;
254 	atomic_t	under_oom;
255 
256 	atomic_t	refcnt;
257 
258 	int	swappiness;
259 	/* OOM-Killer disable */
260 	int		oom_kill_disable;
261 
262 	/* set when res.limit == memsw.limit */
263 	bool		memsw_is_minimum;
264 
265 	/* protect arrays of thresholds */
266 	struct mutex thresholds_lock;
267 
268 	/* thresholds for memory usage. RCU-protected */
269 	struct mem_cgroup_thresholds thresholds;
270 
271 	/* thresholds for mem+swap usage. RCU-protected */
272 	struct mem_cgroup_thresholds memsw_thresholds;
273 
274 	/* For oom notifier event fd */
275 	struct list_head oom_notify;
276 
277 	/*
278 	 * Should we move charges of a task when a task is moved into this
279 	 * mem_cgroup ? And what type of charges should we move ?
280 	 */
281 	unsigned long 	move_charge_at_immigrate;
282 	/*
283 	 * percpu counter.
284 	 */
285 	struct mem_cgroup_stat_cpu *stat;
286 	/*
287 	 * used when a cpu is offlined or other synchronizations
288 	 * See mem_cgroup_read_stat().
289 	 */
290 	struct mem_cgroup_stat_cpu nocpu_base;
291 	spinlock_t pcp_counter_lock;
292 
293 #ifdef CONFIG_INET
294 	struct tcp_memcontrol tcp_mem;
295 #endif
296 };
297 
298 /* Stuffs for move charges at task migration. */
299 /*
300  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301  * left-shifted bitmap of these types.
302  */
303 enum move_type {
304 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 	NR_MOVE_TYPE,
307 };
308 
309 /* "mc" and its members are protected by cgroup_mutex */
310 static struct move_charge_struct {
311 	spinlock_t	  lock; /* for from, to */
312 	struct mem_cgroup *from;
313 	struct mem_cgroup *to;
314 	unsigned long precharge;
315 	unsigned long moved_charge;
316 	unsigned long moved_swap;
317 	struct task_struct *moving_task;	/* a task moving charges */
318 	wait_queue_head_t waitq;		/* a waitq for other context */
319 } mc = {
320 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322 };
323 
324 static bool move_anon(void)
325 {
326 	return test_bit(MOVE_CHARGE_TYPE_ANON,
327 					&mc.to->move_charge_at_immigrate);
328 }
329 
330 static bool move_file(void)
331 {
332 	return test_bit(MOVE_CHARGE_TYPE_FILE,
333 					&mc.to->move_charge_at_immigrate);
334 }
335 
336 /*
337  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338  * limit reclaim to prevent infinite loops, if they ever occur.
339  */
340 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
341 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
342 
343 enum charge_type {
344 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
348 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
349 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 	NR_CHARGE_TYPE,
351 };
352 
353 /* for encoding cft->private value on file */
354 #define _MEM			(0)
355 #define _MEMSWAP		(1)
356 #define _OOM_TYPE		(2)
357 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
358 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
359 #define MEMFILE_ATTR(val)	((val) & 0xffff)
360 /* Used for OOM nofiier */
361 #define OOM_CONTROL		(0)
362 
363 /*
364  * Reclaim flags for mem_cgroup_hierarchical_reclaim
365  */
366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
367 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
369 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370 
371 static void mem_cgroup_get(struct mem_cgroup *memcg);
372 static void mem_cgroup_put(struct mem_cgroup *memcg);
373 
374 /* Writing them here to avoid exposing memcg's inner layout */
375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376 #include <net/sock.h>
377 #include <net/ip.h>
378 
379 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
380 void sock_update_memcg(struct sock *sk)
381 {
382 	if (mem_cgroup_sockets_enabled) {
383 		struct mem_cgroup *memcg;
384 
385 		BUG_ON(!sk->sk_prot->proto_cgroup);
386 
387 		/* Socket cloning can throw us here with sk_cgrp already
388 		 * filled. It won't however, necessarily happen from
389 		 * process context. So the test for root memcg given
390 		 * the current task's memcg won't help us in this case.
391 		 *
392 		 * Respecting the original socket's memcg is a better
393 		 * decision in this case.
394 		 */
395 		if (sk->sk_cgrp) {
396 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
397 			mem_cgroup_get(sk->sk_cgrp->memcg);
398 			return;
399 		}
400 
401 		rcu_read_lock();
402 		memcg = mem_cgroup_from_task(current);
403 		if (!mem_cgroup_is_root(memcg)) {
404 			mem_cgroup_get(memcg);
405 			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
406 		}
407 		rcu_read_unlock();
408 	}
409 }
410 EXPORT_SYMBOL(sock_update_memcg);
411 
412 void sock_release_memcg(struct sock *sk)
413 {
414 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
415 		struct mem_cgroup *memcg;
416 		WARN_ON(!sk->sk_cgrp->memcg);
417 		memcg = sk->sk_cgrp->memcg;
418 		mem_cgroup_put(memcg);
419 	}
420 }
421 
422 #ifdef CONFIG_INET
423 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424 {
425 	if (!memcg || mem_cgroup_is_root(memcg))
426 		return NULL;
427 
428 	return &memcg->tcp_mem.cg_proto;
429 }
430 EXPORT_SYMBOL(tcp_proto_cgroup);
431 #endif /* CONFIG_INET */
432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433 
434 static void drain_all_stock_async(struct mem_cgroup *memcg);
435 
436 static struct mem_cgroup_per_zone *
437 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438 {
439 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 }
441 
442 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443 {
444 	return &memcg->css;
445 }
446 
447 static struct mem_cgroup_per_zone *
448 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449 {
450 	int nid = page_to_nid(page);
451 	int zid = page_zonenum(page);
452 
453 	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 }
455 
456 static struct mem_cgroup_tree_per_zone *
457 soft_limit_tree_node_zone(int nid, int zid)
458 {
459 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460 }
461 
462 static struct mem_cgroup_tree_per_zone *
463 soft_limit_tree_from_page(struct page *page)
464 {
465 	int nid = page_to_nid(page);
466 	int zid = page_zonenum(page);
467 
468 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469 }
470 
471 static void
472 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473 				struct mem_cgroup_per_zone *mz,
474 				struct mem_cgroup_tree_per_zone *mctz,
475 				unsigned long long new_usage_in_excess)
476 {
477 	struct rb_node **p = &mctz->rb_root.rb_node;
478 	struct rb_node *parent = NULL;
479 	struct mem_cgroup_per_zone *mz_node;
480 
481 	if (mz->on_tree)
482 		return;
483 
484 	mz->usage_in_excess = new_usage_in_excess;
485 	if (!mz->usage_in_excess)
486 		return;
487 	while (*p) {
488 		parent = *p;
489 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 					tree_node);
491 		if (mz->usage_in_excess < mz_node->usage_in_excess)
492 			p = &(*p)->rb_left;
493 		/*
494 		 * We can't avoid mem cgroups that are over their soft
495 		 * limit by the same amount
496 		 */
497 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 			p = &(*p)->rb_right;
499 	}
500 	rb_link_node(&mz->tree_node, parent, p);
501 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 	mz->on_tree = true;
503 }
504 
505 static void
506 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 				struct mem_cgroup_per_zone *mz,
508 				struct mem_cgroup_tree_per_zone *mctz)
509 {
510 	if (!mz->on_tree)
511 		return;
512 	rb_erase(&mz->tree_node, &mctz->rb_root);
513 	mz->on_tree = false;
514 }
515 
516 static void
517 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 				struct mem_cgroup_per_zone *mz,
519 				struct mem_cgroup_tree_per_zone *mctz)
520 {
521 	spin_lock(&mctz->lock);
522 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 	spin_unlock(&mctz->lock);
524 }
525 
526 
527 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528 {
529 	unsigned long long excess;
530 	struct mem_cgroup_per_zone *mz;
531 	struct mem_cgroup_tree_per_zone *mctz;
532 	int nid = page_to_nid(page);
533 	int zid = page_zonenum(page);
534 	mctz = soft_limit_tree_from_page(page);
535 
536 	/*
537 	 * Necessary to update all ancestors when hierarchy is used.
538 	 * because their event counter is not touched.
539 	 */
540 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 		excess = res_counter_soft_limit_excess(&memcg->res);
543 		/*
544 		 * We have to update the tree if mz is on RB-tree or
545 		 * mem is over its softlimit.
546 		 */
547 		if (excess || mz->on_tree) {
548 			spin_lock(&mctz->lock);
549 			/* if on-tree, remove it */
550 			if (mz->on_tree)
551 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552 			/*
553 			 * Insert again. mz->usage_in_excess will be updated.
554 			 * If excess is 0, no tree ops.
555 			 */
556 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 			spin_unlock(&mctz->lock);
558 		}
559 	}
560 }
561 
562 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 {
564 	int node, zone;
565 	struct mem_cgroup_per_zone *mz;
566 	struct mem_cgroup_tree_per_zone *mctz;
567 
568 	for_each_node(node) {
569 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571 			mctz = soft_limit_tree_node_zone(node, zone);
572 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 		}
574 	}
575 }
576 
577 static struct mem_cgroup_per_zone *
578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579 {
580 	struct rb_node *rightmost = NULL;
581 	struct mem_cgroup_per_zone *mz;
582 
583 retry:
584 	mz = NULL;
585 	rightmost = rb_last(&mctz->rb_root);
586 	if (!rightmost)
587 		goto done;		/* Nothing to reclaim from */
588 
589 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590 	/*
591 	 * Remove the node now but someone else can add it back,
592 	 * we will to add it back at the end of reclaim to its correct
593 	 * position in the tree.
594 	 */
595 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 		!css_tryget(&mz->mem->css))
598 		goto retry;
599 done:
600 	return mz;
601 }
602 
603 static struct mem_cgroup_per_zone *
604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605 {
606 	struct mem_cgroup_per_zone *mz;
607 
608 	spin_lock(&mctz->lock);
609 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 	spin_unlock(&mctz->lock);
611 	return mz;
612 }
613 
614 /*
615  * Implementation Note: reading percpu statistics for memcg.
616  *
617  * Both of vmstat[] and percpu_counter has threshold and do periodic
618  * synchronization to implement "quick" read. There are trade-off between
619  * reading cost and precision of value. Then, we may have a chance to implement
620  * a periodic synchronizion of counter in memcg's counter.
621  *
622  * But this _read() function is used for user interface now. The user accounts
623  * memory usage by memory cgroup and he _always_ requires exact value because
624  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625  * have to visit all online cpus and make sum. So, for now, unnecessary
626  * synchronization is not implemented. (just implemented for cpu hotplug)
627  *
628  * If there are kernel internal actions which can make use of some not-exact
629  * value, and reading all cpu value can be performance bottleneck in some
630  * common workload, threashold and synchonization as vmstat[] should be
631  * implemented.
632  */
633 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634 				 enum mem_cgroup_stat_index idx)
635 {
636 	long val = 0;
637 	int cpu;
638 
639 	get_online_cpus();
640 	for_each_online_cpu(cpu)
641 		val += per_cpu(memcg->stat->count[idx], cpu);
642 #ifdef CONFIG_HOTPLUG_CPU
643 	spin_lock(&memcg->pcp_counter_lock);
644 	val += memcg->nocpu_base.count[idx];
645 	spin_unlock(&memcg->pcp_counter_lock);
646 #endif
647 	put_online_cpus();
648 	return val;
649 }
650 
651 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 					 bool charge)
653 {
654 	int val = (charge) ? 1 : -1;
655 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 }
657 
658 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 					    enum mem_cgroup_events_index idx)
660 {
661 	unsigned long val = 0;
662 	int cpu;
663 
664 	for_each_online_cpu(cpu)
665 		val += per_cpu(memcg->stat->events[idx], cpu);
666 #ifdef CONFIG_HOTPLUG_CPU
667 	spin_lock(&memcg->pcp_counter_lock);
668 	val += memcg->nocpu_base.events[idx];
669 	spin_unlock(&memcg->pcp_counter_lock);
670 #endif
671 	return val;
672 }
673 
674 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675 					 bool file, int nr_pages)
676 {
677 	preempt_disable();
678 
679 	if (file)
680 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681 				nr_pages);
682 	else
683 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684 				nr_pages);
685 
686 	/* pagein of a big page is an event. So, ignore page size */
687 	if (nr_pages > 0)
688 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689 	else {
690 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 		nr_pages = -nr_pages; /* for event */
692 	}
693 
694 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695 
696 	preempt_enable();
697 }
698 
699 unsigned long
700 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701 			unsigned int lru_mask)
702 {
703 	struct mem_cgroup_per_zone *mz;
704 	enum lru_list l;
705 	unsigned long ret = 0;
706 
707 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 
709 	for_each_lru(l) {
710 		if (BIT(l) & lru_mask)
711 			ret += MEM_CGROUP_ZSTAT(mz, l);
712 	}
713 	return ret;
714 }
715 
716 static unsigned long
717 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 			int nid, unsigned int lru_mask)
719 {
720 	u64 total = 0;
721 	int zid;
722 
723 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 		total += mem_cgroup_zone_nr_lru_pages(memcg,
725 						nid, zid, lru_mask);
726 
727 	return total;
728 }
729 
730 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731 			unsigned int lru_mask)
732 {
733 	int nid;
734 	u64 total = 0;
735 
736 	for_each_node_state(nid, N_HIGH_MEMORY)
737 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738 	return total;
739 }
740 
741 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742 				       enum mem_cgroup_events_target target)
743 {
744 	unsigned long val, next;
745 
746 	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747 	next = __this_cpu_read(memcg->stat->targets[target]);
748 	/* from time_after() in jiffies.h */
749 	if ((long)next - (long)val < 0) {
750 		switch (target) {
751 		case MEM_CGROUP_TARGET_THRESH:
752 			next = val + THRESHOLDS_EVENTS_TARGET;
753 			break;
754 		case MEM_CGROUP_TARGET_SOFTLIMIT:
755 			next = val + SOFTLIMIT_EVENTS_TARGET;
756 			break;
757 		case MEM_CGROUP_TARGET_NUMAINFO:
758 			next = val + NUMAINFO_EVENTS_TARGET;
759 			break;
760 		default:
761 			break;
762 		}
763 		__this_cpu_write(memcg->stat->targets[target], next);
764 		return true;
765 	}
766 	return false;
767 }
768 
769 /*
770  * Check events in order.
771  *
772  */
773 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774 {
775 	preempt_disable();
776 	/* threshold event is triggered in finer grain than soft limit */
777 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
778 						MEM_CGROUP_TARGET_THRESH))) {
779 		bool do_softlimit;
780 		bool do_numainfo __maybe_unused;
781 
782 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
783 						MEM_CGROUP_TARGET_SOFTLIMIT);
784 #if MAX_NUMNODES > 1
785 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
786 						MEM_CGROUP_TARGET_NUMAINFO);
787 #endif
788 		preempt_enable();
789 
790 		mem_cgroup_threshold(memcg);
791 		if (unlikely(do_softlimit))
792 			mem_cgroup_update_tree(memcg, page);
793 #if MAX_NUMNODES > 1
794 		if (unlikely(do_numainfo))
795 			atomic_inc(&memcg->numainfo_events);
796 #endif
797 	} else
798 		preempt_enable();
799 }
800 
801 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
802 {
803 	return container_of(cgroup_subsys_state(cont,
804 				mem_cgroup_subsys_id), struct mem_cgroup,
805 				css);
806 }
807 
808 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
809 {
810 	/*
811 	 * mm_update_next_owner() may clear mm->owner to NULL
812 	 * if it races with swapoff, page migration, etc.
813 	 * So this can be called with p == NULL.
814 	 */
815 	if (unlikely(!p))
816 		return NULL;
817 
818 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
819 				struct mem_cgroup, css);
820 }
821 
822 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
823 {
824 	struct mem_cgroup *memcg = NULL;
825 
826 	if (!mm)
827 		return NULL;
828 	/*
829 	 * Because we have no locks, mm->owner's may be being moved to other
830 	 * cgroup. We use css_tryget() here even if this looks
831 	 * pessimistic (rather than adding locks here).
832 	 */
833 	rcu_read_lock();
834 	do {
835 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
836 		if (unlikely(!memcg))
837 			break;
838 	} while (!css_tryget(&memcg->css));
839 	rcu_read_unlock();
840 	return memcg;
841 }
842 
843 /**
844  * mem_cgroup_iter - iterate over memory cgroup hierarchy
845  * @root: hierarchy root
846  * @prev: previously returned memcg, NULL on first invocation
847  * @reclaim: cookie for shared reclaim walks, NULL for full walks
848  *
849  * Returns references to children of the hierarchy below @root, or
850  * @root itself, or %NULL after a full round-trip.
851  *
852  * Caller must pass the return value in @prev on subsequent
853  * invocations for reference counting, or use mem_cgroup_iter_break()
854  * to cancel a hierarchy walk before the round-trip is complete.
855  *
856  * Reclaimers can specify a zone and a priority level in @reclaim to
857  * divide up the memcgs in the hierarchy among all concurrent
858  * reclaimers operating on the same zone and priority.
859  */
860 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
861 				   struct mem_cgroup *prev,
862 				   struct mem_cgroup_reclaim_cookie *reclaim)
863 {
864 	struct mem_cgroup *memcg = NULL;
865 	int id = 0;
866 
867 	if (mem_cgroup_disabled())
868 		return NULL;
869 
870 	if (!root)
871 		root = root_mem_cgroup;
872 
873 	if (prev && !reclaim)
874 		id = css_id(&prev->css);
875 
876 	if (prev && prev != root)
877 		css_put(&prev->css);
878 
879 	if (!root->use_hierarchy && root != root_mem_cgroup) {
880 		if (prev)
881 			return NULL;
882 		return root;
883 	}
884 
885 	while (!memcg) {
886 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
887 		struct cgroup_subsys_state *css;
888 
889 		if (reclaim) {
890 			int nid = zone_to_nid(reclaim->zone);
891 			int zid = zone_idx(reclaim->zone);
892 			struct mem_cgroup_per_zone *mz;
893 
894 			mz = mem_cgroup_zoneinfo(root, nid, zid);
895 			iter = &mz->reclaim_iter[reclaim->priority];
896 			if (prev && reclaim->generation != iter->generation)
897 				return NULL;
898 			id = iter->position;
899 		}
900 
901 		rcu_read_lock();
902 		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
903 		if (css) {
904 			if (css == &root->css || css_tryget(css))
905 				memcg = container_of(css,
906 						     struct mem_cgroup, css);
907 		} else
908 			id = 0;
909 		rcu_read_unlock();
910 
911 		if (reclaim) {
912 			iter->position = id;
913 			if (!css)
914 				iter->generation++;
915 			else if (!prev && memcg)
916 				reclaim->generation = iter->generation;
917 		}
918 
919 		if (prev && !css)
920 			return NULL;
921 	}
922 	return memcg;
923 }
924 
925 /**
926  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
927  * @root: hierarchy root
928  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
929  */
930 void mem_cgroup_iter_break(struct mem_cgroup *root,
931 			   struct mem_cgroup *prev)
932 {
933 	if (!root)
934 		root = root_mem_cgroup;
935 	if (prev && prev != root)
936 		css_put(&prev->css);
937 }
938 
939 /*
940  * Iteration constructs for visiting all cgroups (under a tree).  If
941  * loops are exited prematurely (break), mem_cgroup_iter_break() must
942  * be used for reference counting.
943  */
944 #define for_each_mem_cgroup_tree(iter, root)		\
945 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
946 	     iter != NULL;				\
947 	     iter = mem_cgroup_iter(root, iter, NULL))
948 
949 #define for_each_mem_cgroup(iter)			\
950 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
951 	     iter != NULL;				\
952 	     iter = mem_cgroup_iter(NULL, iter, NULL))
953 
954 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
955 {
956 	return (memcg == root_mem_cgroup);
957 }
958 
959 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
960 {
961 	struct mem_cgroup *memcg;
962 
963 	if (!mm)
964 		return;
965 
966 	rcu_read_lock();
967 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
968 	if (unlikely(!memcg))
969 		goto out;
970 
971 	switch (idx) {
972 	case PGFAULT:
973 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
974 		break;
975 	case PGMAJFAULT:
976 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
977 		break;
978 	default:
979 		BUG();
980 	}
981 out:
982 	rcu_read_unlock();
983 }
984 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
985 
986 /**
987  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
988  * @zone: zone of the wanted lruvec
989  * @mem: memcg of the wanted lruvec
990  *
991  * Returns the lru list vector holding pages for the given @zone and
992  * @mem.  This can be the global zone lruvec, if the memory controller
993  * is disabled.
994  */
995 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
996 				      struct mem_cgroup *memcg)
997 {
998 	struct mem_cgroup_per_zone *mz;
999 
1000 	if (mem_cgroup_disabled())
1001 		return &zone->lruvec;
1002 
1003 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1004 	return &mz->lruvec;
1005 }
1006 
1007 /*
1008  * Following LRU functions are allowed to be used without PCG_LOCK.
1009  * Operations are called by routine of global LRU independently from memcg.
1010  * What we have to take care of here is validness of pc->mem_cgroup.
1011  *
1012  * Changes to pc->mem_cgroup happens when
1013  * 1. charge
1014  * 2. moving account
1015  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1016  * It is added to LRU before charge.
1017  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1018  * When moving account, the page is not on LRU. It's isolated.
1019  */
1020 
1021 /**
1022  * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1023  * @zone: zone of the page
1024  * @page: the page
1025  * @lru: current lru
1026  *
1027  * This function accounts for @page being added to @lru, and returns
1028  * the lruvec for the given @zone and the memcg @page is charged to.
1029  *
1030  * The callsite is then responsible for physically linking the page to
1031  * the returned lruvec->lists[@lru].
1032  */
1033 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1034 				       enum lru_list lru)
1035 {
1036 	struct mem_cgroup_per_zone *mz;
1037 	struct mem_cgroup *memcg;
1038 	struct page_cgroup *pc;
1039 
1040 	if (mem_cgroup_disabled())
1041 		return &zone->lruvec;
1042 
1043 	pc = lookup_page_cgroup(page);
1044 	memcg = pc->mem_cgroup;
1045 
1046 	/*
1047 	 * Surreptitiously switch any uncharged page to root:
1048 	 * an uncharged page off lru does nothing to secure
1049 	 * its former mem_cgroup from sudden removal.
1050 	 *
1051 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1052 	 * under page_cgroup lock: between them, they make all uses
1053 	 * of pc->mem_cgroup safe.
1054 	 */
1055 	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1056 		pc->mem_cgroup = memcg = root_mem_cgroup;
1057 
1058 	mz = page_cgroup_zoneinfo(memcg, page);
1059 	/* compound_order() is stabilized through lru_lock */
1060 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1061 	return &mz->lruvec;
1062 }
1063 
1064 /**
1065  * mem_cgroup_lru_del_list - account for removing an lru page
1066  * @page: the page
1067  * @lru: target lru
1068  *
1069  * This function accounts for @page being removed from @lru.
1070  *
1071  * The callsite is then responsible for physically unlinking
1072  * @page->lru.
1073  */
1074 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1075 {
1076 	struct mem_cgroup_per_zone *mz;
1077 	struct mem_cgroup *memcg;
1078 	struct page_cgroup *pc;
1079 
1080 	if (mem_cgroup_disabled())
1081 		return;
1082 
1083 	pc = lookup_page_cgroup(page);
1084 	memcg = pc->mem_cgroup;
1085 	VM_BUG_ON(!memcg);
1086 	mz = page_cgroup_zoneinfo(memcg, page);
1087 	/* huge page split is done under lru_lock. so, we have no races. */
1088 	VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1089 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1090 }
1091 
1092 void mem_cgroup_lru_del(struct page *page)
1093 {
1094 	mem_cgroup_lru_del_list(page, page_lru(page));
1095 }
1096 
1097 /**
1098  * mem_cgroup_lru_move_lists - account for moving a page between lrus
1099  * @zone: zone of the page
1100  * @page: the page
1101  * @from: current lru
1102  * @to: target lru
1103  *
1104  * This function accounts for @page being moved between the lrus @from
1105  * and @to, and returns the lruvec for the given @zone and the memcg
1106  * @page is charged to.
1107  *
1108  * The callsite is then responsible for physically relinking
1109  * @page->lru to the returned lruvec->lists[@to].
1110  */
1111 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1112 					 struct page *page,
1113 					 enum lru_list from,
1114 					 enum lru_list to)
1115 {
1116 	/* XXX: Optimize this, especially for @from == @to */
1117 	mem_cgroup_lru_del_list(page, from);
1118 	return mem_cgroup_lru_add_list(zone, page, to);
1119 }
1120 
1121 /*
1122  * Checks whether given mem is same or in the root_mem_cgroup's
1123  * hierarchy subtree
1124  */
1125 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1126 		struct mem_cgroup *memcg)
1127 {
1128 	if (root_memcg != memcg) {
1129 		return (root_memcg->use_hierarchy &&
1130 			css_is_ancestor(&memcg->css, &root_memcg->css));
1131 	}
1132 
1133 	return true;
1134 }
1135 
1136 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1137 {
1138 	int ret;
1139 	struct mem_cgroup *curr = NULL;
1140 	struct task_struct *p;
1141 
1142 	p = find_lock_task_mm(task);
1143 	if (p) {
1144 		curr = try_get_mem_cgroup_from_mm(p->mm);
1145 		task_unlock(p);
1146 	} else {
1147 		/*
1148 		 * All threads may have already detached their mm's, but the oom
1149 		 * killer still needs to detect if they have already been oom
1150 		 * killed to prevent needlessly killing additional tasks.
1151 		 */
1152 		task_lock(task);
1153 		curr = mem_cgroup_from_task(task);
1154 		if (curr)
1155 			css_get(&curr->css);
1156 		task_unlock(task);
1157 	}
1158 	if (!curr)
1159 		return 0;
1160 	/*
1161 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1162 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1163 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1164 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1165 	 */
1166 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1167 	css_put(&curr->css);
1168 	return ret;
1169 }
1170 
1171 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1172 {
1173 	unsigned long inactive_ratio;
1174 	int nid = zone_to_nid(zone);
1175 	int zid = zone_idx(zone);
1176 	unsigned long inactive;
1177 	unsigned long active;
1178 	unsigned long gb;
1179 
1180 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1181 						BIT(LRU_INACTIVE_ANON));
1182 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1183 					      BIT(LRU_ACTIVE_ANON));
1184 
1185 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1186 	if (gb)
1187 		inactive_ratio = int_sqrt(10 * gb);
1188 	else
1189 		inactive_ratio = 1;
1190 
1191 	return inactive * inactive_ratio < active;
1192 }
1193 
1194 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1195 {
1196 	unsigned long active;
1197 	unsigned long inactive;
1198 	int zid = zone_idx(zone);
1199 	int nid = zone_to_nid(zone);
1200 
1201 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1202 						BIT(LRU_INACTIVE_FILE));
1203 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1204 					      BIT(LRU_ACTIVE_FILE));
1205 
1206 	return (active > inactive);
1207 }
1208 
1209 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1210 						      struct zone *zone)
1211 {
1212 	int nid = zone_to_nid(zone);
1213 	int zid = zone_idx(zone);
1214 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1215 
1216 	return &mz->reclaim_stat;
1217 }
1218 
1219 struct zone_reclaim_stat *
1220 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1221 {
1222 	struct page_cgroup *pc;
1223 	struct mem_cgroup_per_zone *mz;
1224 
1225 	if (mem_cgroup_disabled())
1226 		return NULL;
1227 
1228 	pc = lookup_page_cgroup(page);
1229 	if (!PageCgroupUsed(pc))
1230 		return NULL;
1231 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1232 	smp_rmb();
1233 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1234 	return &mz->reclaim_stat;
1235 }
1236 
1237 #define mem_cgroup_from_res_counter(counter, member)	\
1238 	container_of(counter, struct mem_cgroup, member)
1239 
1240 /**
1241  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1242  * @mem: the memory cgroup
1243  *
1244  * Returns the maximum amount of memory @mem can be charged with, in
1245  * pages.
1246  */
1247 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1248 {
1249 	unsigned long long margin;
1250 
1251 	margin = res_counter_margin(&memcg->res);
1252 	if (do_swap_account)
1253 		margin = min(margin, res_counter_margin(&memcg->memsw));
1254 	return margin >> PAGE_SHIFT;
1255 }
1256 
1257 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1258 {
1259 	struct cgroup *cgrp = memcg->css.cgroup;
1260 
1261 	/* root ? */
1262 	if (cgrp->parent == NULL)
1263 		return vm_swappiness;
1264 
1265 	return memcg->swappiness;
1266 }
1267 
1268 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1269 {
1270 	int cpu;
1271 
1272 	get_online_cpus();
1273 	spin_lock(&memcg->pcp_counter_lock);
1274 	for_each_online_cpu(cpu)
1275 		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1276 	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1277 	spin_unlock(&memcg->pcp_counter_lock);
1278 	put_online_cpus();
1279 
1280 	synchronize_rcu();
1281 }
1282 
1283 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1284 {
1285 	int cpu;
1286 
1287 	if (!memcg)
1288 		return;
1289 	get_online_cpus();
1290 	spin_lock(&memcg->pcp_counter_lock);
1291 	for_each_online_cpu(cpu)
1292 		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1293 	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1294 	spin_unlock(&memcg->pcp_counter_lock);
1295 	put_online_cpus();
1296 }
1297 /*
1298  * 2 routines for checking "mem" is under move_account() or not.
1299  *
1300  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1301  *			  for avoiding race in accounting. If true,
1302  *			  pc->mem_cgroup may be overwritten.
1303  *
1304  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1305  *			  under hierarchy of moving cgroups. This is for
1306  *			  waiting at hith-memory prressure caused by "move".
1307  */
1308 
1309 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1310 {
1311 	VM_BUG_ON(!rcu_read_lock_held());
1312 	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1313 }
1314 
1315 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1316 {
1317 	struct mem_cgroup *from;
1318 	struct mem_cgroup *to;
1319 	bool ret = false;
1320 	/*
1321 	 * Unlike task_move routines, we access mc.to, mc.from not under
1322 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1323 	 */
1324 	spin_lock(&mc.lock);
1325 	from = mc.from;
1326 	to = mc.to;
1327 	if (!from)
1328 		goto unlock;
1329 
1330 	ret = mem_cgroup_same_or_subtree(memcg, from)
1331 		|| mem_cgroup_same_or_subtree(memcg, to);
1332 unlock:
1333 	spin_unlock(&mc.lock);
1334 	return ret;
1335 }
1336 
1337 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1338 {
1339 	if (mc.moving_task && current != mc.moving_task) {
1340 		if (mem_cgroup_under_move(memcg)) {
1341 			DEFINE_WAIT(wait);
1342 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1343 			/* moving charge context might have finished. */
1344 			if (mc.moving_task)
1345 				schedule();
1346 			finish_wait(&mc.waitq, &wait);
1347 			return true;
1348 		}
1349 	}
1350 	return false;
1351 }
1352 
1353 /**
1354  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1355  * @memcg: The memory cgroup that went over limit
1356  * @p: Task that is going to be killed
1357  *
1358  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1359  * enabled
1360  */
1361 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1362 {
1363 	struct cgroup *task_cgrp;
1364 	struct cgroup *mem_cgrp;
1365 	/*
1366 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1367 	 * on the assumption that OOM is serialized for memory controller.
1368 	 * If this assumption is broken, revisit this code.
1369 	 */
1370 	static char memcg_name[PATH_MAX];
1371 	int ret;
1372 
1373 	if (!memcg || !p)
1374 		return;
1375 
1376 
1377 	rcu_read_lock();
1378 
1379 	mem_cgrp = memcg->css.cgroup;
1380 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1381 
1382 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1383 	if (ret < 0) {
1384 		/*
1385 		 * Unfortunately, we are unable to convert to a useful name
1386 		 * But we'll still print out the usage information
1387 		 */
1388 		rcu_read_unlock();
1389 		goto done;
1390 	}
1391 	rcu_read_unlock();
1392 
1393 	printk(KERN_INFO "Task in %s killed", memcg_name);
1394 
1395 	rcu_read_lock();
1396 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1397 	if (ret < 0) {
1398 		rcu_read_unlock();
1399 		goto done;
1400 	}
1401 	rcu_read_unlock();
1402 
1403 	/*
1404 	 * Continues from above, so we don't need an KERN_ level
1405 	 */
1406 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1407 done:
1408 
1409 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1410 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1411 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1412 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1413 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1414 		"failcnt %llu\n",
1415 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1416 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1417 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1418 }
1419 
1420 /*
1421  * This function returns the number of memcg under hierarchy tree. Returns
1422  * 1(self count) if no children.
1423  */
1424 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1425 {
1426 	int num = 0;
1427 	struct mem_cgroup *iter;
1428 
1429 	for_each_mem_cgroup_tree(iter, memcg)
1430 		num++;
1431 	return num;
1432 }
1433 
1434 /*
1435  * Return the memory (and swap, if configured) limit for a memcg.
1436  */
1437 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1438 {
1439 	u64 limit;
1440 	u64 memsw;
1441 
1442 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1443 	limit += total_swap_pages << PAGE_SHIFT;
1444 
1445 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1446 	/*
1447 	 * If memsw is finite and limits the amount of swap space available
1448 	 * to this memcg, return that limit.
1449 	 */
1450 	return min(limit, memsw);
1451 }
1452 
1453 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1454 					gfp_t gfp_mask,
1455 					unsigned long flags)
1456 {
1457 	unsigned long total = 0;
1458 	bool noswap = false;
1459 	int loop;
1460 
1461 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1462 		noswap = true;
1463 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1464 		noswap = true;
1465 
1466 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1467 		if (loop)
1468 			drain_all_stock_async(memcg);
1469 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1470 		/*
1471 		 * Allow limit shrinkers, which are triggered directly
1472 		 * by userspace, to catch signals and stop reclaim
1473 		 * after minimal progress, regardless of the margin.
1474 		 */
1475 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1476 			break;
1477 		if (mem_cgroup_margin(memcg))
1478 			break;
1479 		/*
1480 		 * If nothing was reclaimed after two attempts, there
1481 		 * may be no reclaimable pages in this hierarchy.
1482 		 */
1483 		if (loop && !total)
1484 			break;
1485 	}
1486 	return total;
1487 }
1488 
1489 /**
1490  * test_mem_cgroup_node_reclaimable
1491  * @mem: the target memcg
1492  * @nid: the node ID to be checked.
1493  * @noswap : specify true here if the user wants flle only information.
1494  *
1495  * This function returns whether the specified memcg contains any
1496  * reclaimable pages on a node. Returns true if there are any reclaimable
1497  * pages in the node.
1498  */
1499 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1500 		int nid, bool noswap)
1501 {
1502 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1503 		return true;
1504 	if (noswap || !total_swap_pages)
1505 		return false;
1506 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1507 		return true;
1508 	return false;
1509 
1510 }
1511 #if MAX_NUMNODES > 1
1512 
1513 /*
1514  * Always updating the nodemask is not very good - even if we have an empty
1515  * list or the wrong list here, we can start from some node and traverse all
1516  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1517  *
1518  */
1519 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1520 {
1521 	int nid;
1522 	/*
1523 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1524 	 * pagein/pageout changes since the last update.
1525 	 */
1526 	if (!atomic_read(&memcg->numainfo_events))
1527 		return;
1528 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1529 		return;
1530 
1531 	/* make a nodemask where this memcg uses memory from */
1532 	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1533 
1534 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1535 
1536 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1537 			node_clear(nid, memcg->scan_nodes);
1538 	}
1539 
1540 	atomic_set(&memcg->numainfo_events, 0);
1541 	atomic_set(&memcg->numainfo_updating, 0);
1542 }
1543 
1544 /*
1545  * Selecting a node where we start reclaim from. Because what we need is just
1546  * reducing usage counter, start from anywhere is O,K. Considering
1547  * memory reclaim from current node, there are pros. and cons.
1548  *
1549  * Freeing memory from current node means freeing memory from a node which
1550  * we'll use or we've used. So, it may make LRU bad. And if several threads
1551  * hit limits, it will see a contention on a node. But freeing from remote
1552  * node means more costs for memory reclaim because of memory latency.
1553  *
1554  * Now, we use round-robin. Better algorithm is welcomed.
1555  */
1556 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1557 {
1558 	int node;
1559 
1560 	mem_cgroup_may_update_nodemask(memcg);
1561 	node = memcg->last_scanned_node;
1562 
1563 	node = next_node(node, memcg->scan_nodes);
1564 	if (node == MAX_NUMNODES)
1565 		node = first_node(memcg->scan_nodes);
1566 	/*
1567 	 * We call this when we hit limit, not when pages are added to LRU.
1568 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1569 	 * memcg is too small and all pages are not on LRU. In that case,
1570 	 * we use curret node.
1571 	 */
1572 	if (unlikely(node == MAX_NUMNODES))
1573 		node = numa_node_id();
1574 
1575 	memcg->last_scanned_node = node;
1576 	return node;
1577 }
1578 
1579 /*
1580  * Check all nodes whether it contains reclaimable pages or not.
1581  * For quick scan, we make use of scan_nodes. This will allow us to skip
1582  * unused nodes. But scan_nodes is lazily updated and may not cotain
1583  * enough new information. We need to do double check.
1584  */
1585 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1586 {
1587 	int nid;
1588 
1589 	/*
1590 	 * quick check...making use of scan_node.
1591 	 * We can skip unused nodes.
1592 	 */
1593 	if (!nodes_empty(memcg->scan_nodes)) {
1594 		for (nid = first_node(memcg->scan_nodes);
1595 		     nid < MAX_NUMNODES;
1596 		     nid = next_node(nid, memcg->scan_nodes)) {
1597 
1598 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1599 				return true;
1600 		}
1601 	}
1602 	/*
1603 	 * Check rest of nodes.
1604 	 */
1605 	for_each_node_state(nid, N_HIGH_MEMORY) {
1606 		if (node_isset(nid, memcg->scan_nodes))
1607 			continue;
1608 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1609 			return true;
1610 	}
1611 	return false;
1612 }
1613 
1614 #else
1615 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1616 {
1617 	return 0;
1618 }
1619 
1620 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1621 {
1622 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1623 }
1624 #endif
1625 
1626 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1627 				   struct zone *zone,
1628 				   gfp_t gfp_mask,
1629 				   unsigned long *total_scanned)
1630 {
1631 	struct mem_cgroup *victim = NULL;
1632 	int total = 0;
1633 	int loop = 0;
1634 	unsigned long excess;
1635 	unsigned long nr_scanned;
1636 	struct mem_cgroup_reclaim_cookie reclaim = {
1637 		.zone = zone,
1638 		.priority = 0,
1639 	};
1640 
1641 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1642 
1643 	while (1) {
1644 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1645 		if (!victim) {
1646 			loop++;
1647 			if (loop >= 2) {
1648 				/*
1649 				 * If we have not been able to reclaim
1650 				 * anything, it might because there are
1651 				 * no reclaimable pages under this hierarchy
1652 				 */
1653 				if (!total)
1654 					break;
1655 				/*
1656 				 * We want to do more targeted reclaim.
1657 				 * excess >> 2 is not to excessive so as to
1658 				 * reclaim too much, nor too less that we keep
1659 				 * coming back to reclaim from this cgroup
1660 				 */
1661 				if (total >= (excess >> 2) ||
1662 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1663 					break;
1664 			}
1665 			continue;
1666 		}
1667 		if (!mem_cgroup_reclaimable(victim, false))
1668 			continue;
1669 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1670 						     zone, &nr_scanned);
1671 		*total_scanned += nr_scanned;
1672 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1673 			break;
1674 	}
1675 	mem_cgroup_iter_break(root_memcg, victim);
1676 	return total;
1677 }
1678 
1679 /*
1680  * Check OOM-Killer is already running under our hierarchy.
1681  * If someone is running, return false.
1682  * Has to be called with memcg_oom_lock
1683  */
1684 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1685 {
1686 	struct mem_cgroup *iter, *failed = NULL;
1687 
1688 	for_each_mem_cgroup_tree(iter, memcg) {
1689 		if (iter->oom_lock) {
1690 			/*
1691 			 * this subtree of our hierarchy is already locked
1692 			 * so we cannot give a lock.
1693 			 */
1694 			failed = iter;
1695 			mem_cgroup_iter_break(memcg, iter);
1696 			break;
1697 		} else
1698 			iter->oom_lock = true;
1699 	}
1700 
1701 	if (!failed)
1702 		return true;
1703 
1704 	/*
1705 	 * OK, we failed to lock the whole subtree so we have to clean up
1706 	 * what we set up to the failing subtree
1707 	 */
1708 	for_each_mem_cgroup_tree(iter, memcg) {
1709 		if (iter == failed) {
1710 			mem_cgroup_iter_break(memcg, iter);
1711 			break;
1712 		}
1713 		iter->oom_lock = false;
1714 	}
1715 	return false;
1716 }
1717 
1718 /*
1719  * Has to be called with memcg_oom_lock
1720  */
1721 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1722 {
1723 	struct mem_cgroup *iter;
1724 
1725 	for_each_mem_cgroup_tree(iter, memcg)
1726 		iter->oom_lock = false;
1727 	return 0;
1728 }
1729 
1730 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1731 {
1732 	struct mem_cgroup *iter;
1733 
1734 	for_each_mem_cgroup_tree(iter, memcg)
1735 		atomic_inc(&iter->under_oom);
1736 }
1737 
1738 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1739 {
1740 	struct mem_cgroup *iter;
1741 
1742 	/*
1743 	 * When a new child is created while the hierarchy is under oom,
1744 	 * mem_cgroup_oom_lock() may not be called. We have to use
1745 	 * atomic_add_unless() here.
1746 	 */
1747 	for_each_mem_cgroup_tree(iter, memcg)
1748 		atomic_add_unless(&iter->under_oom, -1, 0);
1749 }
1750 
1751 static DEFINE_SPINLOCK(memcg_oom_lock);
1752 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1753 
1754 struct oom_wait_info {
1755 	struct mem_cgroup *mem;
1756 	wait_queue_t	wait;
1757 };
1758 
1759 static int memcg_oom_wake_function(wait_queue_t *wait,
1760 	unsigned mode, int sync, void *arg)
1761 {
1762 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1763 			  *oom_wait_memcg;
1764 	struct oom_wait_info *oom_wait_info;
1765 
1766 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1767 	oom_wait_memcg = oom_wait_info->mem;
1768 
1769 	/*
1770 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1771 	 * Then we can use css_is_ancestor without taking care of RCU.
1772 	 */
1773 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1774 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1775 		return 0;
1776 	return autoremove_wake_function(wait, mode, sync, arg);
1777 }
1778 
1779 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1780 {
1781 	/* for filtering, pass "memcg" as argument. */
1782 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1783 }
1784 
1785 static void memcg_oom_recover(struct mem_cgroup *memcg)
1786 {
1787 	if (memcg && atomic_read(&memcg->under_oom))
1788 		memcg_wakeup_oom(memcg);
1789 }
1790 
1791 /*
1792  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1793  */
1794 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1795 {
1796 	struct oom_wait_info owait;
1797 	bool locked, need_to_kill;
1798 
1799 	owait.mem = memcg;
1800 	owait.wait.flags = 0;
1801 	owait.wait.func = memcg_oom_wake_function;
1802 	owait.wait.private = current;
1803 	INIT_LIST_HEAD(&owait.wait.task_list);
1804 	need_to_kill = true;
1805 	mem_cgroup_mark_under_oom(memcg);
1806 
1807 	/* At first, try to OOM lock hierarchy under memcg.*/
1808 	spin_lock(&memcg_oom_lock);
1809 	locked = mem_cgroup_oom_lock(memcg);
1810 	/*
1811 	 * Even if signal_pending(), we can't quit charge() loop without
1812 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1813 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1814 	 */
1815 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1816 	if (!locked || memcg->oom_kill_disable)
1817 		need_to_kill = false;
1818 	if (locked)
1819 		mem_cgroup_oom_notify(memcg);
1820 	spin_unlock(&memcg_oom_lock);
1821 
1822 	if (need_to_kill) {
1823 		finish_wait(&memcg_oom_waitq, &owait.wait);
1824 		mem_cgroup_out_of_memory(memcg, mask);
1825 	} else {
1826 		schedule();
1827 		finish_wait(&memcg_oom_waitq, &owait.wait);
1828 	}
1829 	spin_lock(&memcg_oom_lock);
1830 	if (locked)
1831 		mem_cgroup_oom_unlock(memcg);
1832 	memcg_wakeup_oom(memcg);
1833 	spin_unlock(&memcg_oom_lock);
1834 
1835 	mem_cgroup_unmark_under_oom(memcg);
1836 
1837 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1838 		return false;
1839 	/* Give chance to dying process */
1840 	schedule_timeout_uninterruptible(1);
1841 	return true;
1842 }
1843 
1844 /*
1845  * Currently used to update mapped file statistics, but the routine can be
1846  * generalized to update other statistics as well.
1847  *
1848  * Notes: Race condition
1849  *
1850  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1851  * it tends to be costly. But considering some conditions, we doesn't need
1852  * to do so _always_.
1853  *
1854  * Considering "charge", lock_page_cgroup() is not required because all
1855  * file-stat operations happen after a page is attached to radix-tree. There
1856  * are no race with "charge".
1857  *
1858  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1859  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1860  * if there are race with "uncharge". Statistics itself is properly handled
1861  * by flags.
1862  *
1863  * Considering "move", this is an only case we see a race. To make the race
1864  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1865  * possibility of race condition. If there is, we take a lock.
1866  */
1867 
1868 void mem_cgroup_update_page_stat(struct page *page,
1869 				 enum mem_cgroup_page_stat_item idx, int val)
1870 {
1871 	struct mem_cgroup *memcg;
1872 	struct page_cgroup *pc = lookup_page_cgroup(page);
1873 	bool need_unlock = false;
1874 	unsigned long uninitialized_var(flags);
1875 
1876 	if (mem_cgroup_disabled())
1877 		return;
1878 
1879 	rcu_read_lock();
1880 	memcg = pc->mem_cgroup;
1881 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1882 		goto out;
1883 	/* pc->mem_cgroup is unstable ? */
1884 	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1885 		/* take a lock against to access pc->mem_cgroup */
1886 		move_lock_page_cgroup(pc, &flags);
1887 		need_unlock = true;
1888 		memcg = pc->mem_cgroup;
1889 		if (!memcg || !PageCgroupUsed(pc))
1890 			goto out;
1891 	}
1892 
1893 	switch (idx) {
1894 	case MEMCG_NR_FILE_MAPPED:
1895 		if (val > 0)
1896 			SetPageCgroupFileMapped(pc);
1897 		else if (!page_mapped(page))
1898 			ClearPageCgroupFileMapped(pc);
1899 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1900 		break;
1901 	default:
1902 		BUG();
1903 	}
1904 
1905 	this_cpu_add(memcg->stat->count[idx], val);
1906 
1907 out:
1908 	if (unlikely(need_unlock))
1909 		move_unlock_page_cgroup(pc, &flags);
1910 	rcu_read_unlock();
1911 	return;
1912 }
1913 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1914 
1915 /*
1916  * size of first charge trial. "32" comes from vmscan.c's magic value.
1917  * TODO: maybe necessary to use big numbers in big irons.
1918  */
1919 #define CHARGE_BATCH	32U
1920 struct memcg_stock_pcp {
1921 	struct mem_cgroup *cached; /* this never be root cgroup */
1922 	unsigned int nr_pages;
1923 	struct work_struct work;
1924 	unsigned long flags;
1925 #define FLUSHING_CACHED_CHARGE	(0)
1926 };
1927 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1928 static DEFINE_MUTEX(percpu_charge_mutex);
1929 
1930 /*
1931  * Try to consume stocked charge on this cpu. If success, one page is consumed
1932  * from local stock and true is returned. If the stock is 0 or charges from a
1933  * cgroup which is not current target, returns false. This stock will be
1934  * refilled.
1935  */
1936 static bool consume_stock(struct mem_cgroup *memcg)
1937 {
1938 	struct memcg_stock_pcp *stock;
1939 	bool ret = true;
1940 
1941 	stock = &get_cpu_var(memcg_stock);
1942 	if (memcg == stock->cached && stock->nr_pages)
1943 		stock->nr_pages--;
1944 	else /* need to call res_counter_charge */
1945 		ret = false;
1946 	put_cpu_var(memcg_stock);
1947 	return ret;
1948 }
1949 
1950 /*
1951  * Returns stocks cached in percpu to res_counter and reset cached information.
1952  */
1953 static void drain_stock(struct memcg_stock_pcp *stock)
1954 {
1955 	struct mem_cgroup *old = stock->cached;
1956 
1957 	if (stock->nr_pages) {
1958 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1959 
1960 		res_counter_uncharge(&old->res, bytes);
1961 		if (do_swap_account)
1962 			res_counter_uncharge(&old->memsw, bytes);
1963 		stock->nr_pages = 0;
1964 	}
1965 	stock->cached = NULL;
1966 }
1967 
1968 /*
1969  * This must be called under preempt disabled or must be called by
1970  * a thread which is pinned to local cpu.
1971  */
1972 static void drain_local_stock(struct work_struct *dummy)
1973 {
1974 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1975 	drain_stock(stock);
1976 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1977 }
1978 
1979 /*
1980  * Cache charges(val) which is from res_counter, to local per_cpu area.
1981  * This will be consumed by consume_stock() function, later.
1982  */
1983 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1984 {
1985 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1986 
1987 	if (stock->cached != memcg) { /* reset if necessary */
1988 		drain_stock(stock);
1989 		stock->cached = memcg;
1990 	}
1991 	stock->nr_pages += nr_pages;
1992 	put_cpu_var(memcg_stock);
1993 }
1994 
1995 /*
1996  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1997  * of the hierarchy under it. sync flag says whether we should block
1998  * until the work is done.
1999  */
2000 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2001 {
2002 	int cpu, curcpu;
2003 
2004 	/* Notify other cpus that system-wide "drain" is running */
2005 	get_online_cpus();
2006 	curcpu = get_cpu();
2007 	for_each_online_cpu(cpu) {
2008 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2009 		struct mem_cgroup *memcg;
2010 
2011 		memcg = stock->cached;
2012 		if (!memcg || !stock->nr_pages)
2013 			continue;
2014 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2015 			continue;
2016 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2017 			if (cpu == curcpu)
2018 				drain_local_stock(&stock->work);
2019 			else
2020 				schedule_work_on(cpu, &stock->work);
2021 		}
2022 	}
2023 	put_cpu();
2024 
2025 	if (!sync)
2026 		goto out;
2027 
2028 	for_each_online_cpu(cpu) {
2029 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2030 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2031 			flush_work(&stock->work);
2032 	}
2033 out:
2034  	put_online_cpus();
2035 }
2036 
2037 /*
2038  * Tries to drain stocked charges in other cpus. This function is asynchronous
2039  * and just put a work per cpu for draining localy on each cpu. Caller can
2040  * expects some charges will be back to res_counter later but cannot wait for
2041  * it.
2042  */
2043 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2044 {
2045 	/*
2046 	 * If someone calls draining, avoid adding more kworker runs.
2047 	 */
2048 	if (!mutex_trylock(&percpu_charge_mutex))
2049 		return;
2050 	drain_all_stock(root_memcg, false);
2051 	mutex_unlock(&percpu_charge_mutex);
2052 }
2053 
2054 /* This is a synchronous drain interface. */
2055 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2056 {
2057 	/* called when force_empty is called */
2058 	mutex_lock(&percpu_charge_mutex);
2059 	drain_all_stock(root_memcg, true);
2060 	mutex_unlock(&percpu_charge_mutex);
2061 }
2062 
2063 /*
2064  * This function drains percpu counter value from DEAD cpu and
2065  * move it to local cpu. Note that this function can be preempted.
2066  */
2067 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2068 {
2069 	int i;
2070 
2071 	spin_lock(&memcg->pcp_counter_lock);
2072 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2073 		long x = per_cpu(memcg->stat->count[i], cpu);
2074 
2075 		per_cpu(memcg->stat->count[i], cpu) = 0;
2076 		memcg->nocpu_base.count[i] += x;
2077 	}
2078 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2079 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2080 
2081 		per_cpu(memcg->stat->events[i], cpu) = 0;
2082 		memcg->nocpu_base.events[i] += x;
2083 	}
2084 	/* need to clear ON_MOVE value, works as a kind of lock. */
2085 	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2086 	spin_unlock(&memcg->pcp_counter_lock);
2087 }
2088 
2089 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2090 {
2091 	int idx = MEM_CGROUP_ON_MOVE;
2092 
2093 	spin_lock(&memcg->pcp_counter_lock);
2094 	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2095 	spin_unlock(&memcg->pcp_counter_lock);
2096 }
2097 
2098 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2099 					unsigned long action,
2100 					void *hcpu)
2101 {
2102 	int cpu = (unsigned long)hcpu;
2103 	struct memcg_stock_pcp *stock;
2104 	struct mem_cgroup *iter;
2105 
2106 	if ((action == CPU_ONLINE)) {
2107 		for_each_mem_cgroup(iter)
2108 			synchronize_mem_cgroup_on_move(iter, cpu);
2109 		return NOTIFY_OK;
2110 	}
2111 
2112 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2113 		return NOTIFY_OK;
2114 
2115 	for_each_mem_cgroup(iter)
2116 		mem_cgroup_drain_pcp_counter(iter, cpu);
2117 
2118 	stock = &per_cpu(memcg_stock, cpu);
2119 	drain_stock(stock);
2120 	return NOTIFY_OK;
2121 }
2122 
2123 
2124 /* See __mem_cgroup_try_charge() for details */
2125 enum {
2126 	CHARGE_OK,		/* success */
2127 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2128 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2129 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2130 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2131 };
2132 
2133 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2134 				unsigned int nr_pages, bool oom_check)
2135 {
2136 	unsigned long csize = nr_pages * PAGE_SIZE;
2137 	struct mem_cgroup *mem_over_limit;
2138 	struct res_counter *fail_res;
2139 	unsigned long flags = 0;
2140 	int ret;
2141 
2142 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2143 
2144 	if (likely(!ret)) {
2145 		if (!do_swap_account)
2146 			return CHARGE_OK;
2147 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2148 		if (likely(!ret))
2149 			return CHARGE_OK;
2150 
2151 		res_counter_uncharge(&memcg->res, csize);
2152 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2153 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2154 	} else
2155 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2156 	/*
2157 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2158 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2159 	 *
2160 	 * Never reclaim on behalf of optional batching, retry with a
2161 	 * single page instead.
2162 	 */
2163 	if (nr_pages == CHARGE_BATCH)
2164 		return CHARGE_RETRY;
2165 
2166 	if (!(gfp_mask & __GFP_WAIT))
2167 		return CHARGE_WOULDBLOCK;
2168 
2169 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2170 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2171 		return CHARGE_RETRY;
2172 	/*
2173 	 * Even though the limit is exceeded at this point, reclaim
2174 	 * may have been able to free some pages.  Retry the charge
2175 	 * before killing the task.
2176 	 *
2177 	 * Only for regular pages, though: huge pages are rather
2178 	 * unlikely to succeed so close to the limit, and we fall back
2179 	 * to regular pages anyway in case of failure.
2180 	 */
2181 	if (nr_pages == 1 && ret)
2182 		return CHARGE_RETRY;
2183 
2184 	/*
2185 	 * At task move, charge accounts can be doubly counted. So, it's
2186 	 * better to wait until the end of task_move if something is going on.
2187 	 */
2188 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2189 		return CHARGE_RETRY;
2190 
2191 	/* If we don't need to call oom-killer at el, return immediately */
2192 	if (!oom_check)
2193 		return CHARGE_NOMEM;
2194 	/* check OOM */
2195 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2196 		return CHARGE_OOM_DIE;
2197 
2198 	return CHARGE_RETRY;
2199 }
2200 
2201 /*
2202  * __mem_cgroup_try_charge() does
2203  * 1. detect memcg to be charged against from passed *mm and *ptr,
2204  * 2. update res_counter
2205  * 3. call memory reclaim if necessary.
2206  *
2207  * In some special case, if the task is fatal, fatal_signal_pending() or
2208  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2209  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2210  * as possible without any hazards. 2: all pages should have a valid
2211  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2212  * pointer, that is treated as a charge to root_mem_cgroup.
2213  *
2214  * So __mem_cgroup_try_charge() will return
2215  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2216  *  -ENOMEM ...  charge failure because of resource limits.
2217  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2218  *
2219  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2220  * the oom-killer can be invoked.
2221  */
2222 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2223 				   gfp_t gfp_mask,
2224 				   unsigned int nr_pages,
2225 				   struct mem_cgroup **ptr,
2226 				   bool oom)
2227 {
2228 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2229 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2230 	struct mem_cgroup *memcg = NULL;
2231 	int ret;
2232 
2233 	/*
2234 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2235 	 * in system level. So, allow to go ahead dying process in addition to
2236 	 * MEMDIE process.
2237 	 */
2238 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2239 		     || fatal_signal_pending(current)))
2240 		goto bypass;
2241 
2242 	/*
2243 	 * We always charge the cgroup the mm_struct belongs to.
2244 	 * The mm_struct's mem_cgroup changes on task migration if the
2245 	 * thread group leader migrates. It's possible that mm is not
2246 	 * set, if so charge the init_mm (happens for pagecache usage).
2247 	 */
2248 	if (!*ptr && !mm)
2249 		*ptr = root_mem_cgroup;
2250 again:
2251 	if (*ptr) { /* css should be a valid one */
2252 		memcg = *ptr;
2253 		VM_BUG_ON(css_is_removed(&memcg->css));
2254 		if (mem_cgroup_is_root(memcg))
2255 			goto done;
2256 		if (nr_pages == 1 && consume_stock(memcg))
2257 			goto done;
2258 		css_get(&memcg->css);
2259 	} else {
2260 		struct task_struct *p;
2261 
2262 		rcu_read_lock();
2263 		p = rcu_dereference(mm->owner);
2264 		/*
2265 		 * Because we don't have task_lock(), "p" can exit.
2266 		 * In that case, "memcg" can point to root or p can be NULL with
2267 		 * race with swapoff. Then, we have small risk of mis-accouning.
2268 		 * But such kind of mis-account by race always happens because
2269 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2270 		 * small race, here.
2271 		 * (*) swapoff at el will charge against mm-struct not against
2272 		 * task-struct. So, mm->owner can be NULL.
2273 		 */
2274 		memcg = mem_cgroup_from_task(p);
2275 		if (!memcg)
2276 			memcg = root_mem_cgroup;
2277 		if (mem_cgroup_is_root(memcg)) {
2278 			rcu_read_unlock();
2279 			goto done;
2280 		}
2281 		if (nr_pages == 1 && consume_stock(memcg)) {
2282 			/*
2283 			 * It seems dagerous to access memcg without css_get().
2284 			 * But considering how consume_stok works, it's not
2285 			 * necessary. If consume_stock success, some charges
2286 			 * from this memcg are cached on this cpu. So, we
2287 			 * don't need to call css_get()/css_tryget() before
2288 			 * calling consume_stock().
2289 			 */
2290 			rcu_read_unlock();
2291 			goto done;
2292 		}
2293 		/* after here, we may be blocked. we need to get refcnt */
2294 		if (!css_tryget(&memcg->css)) {
2295 			rcu_read_unlock();
2296 			goto again;
2297 		}
2298 		rcu_read_unlock();
2299 	}
2300 
2301 	do {
2302 		bool oom_check;
2303 
2304 		/* If killed, bypass charge */
2305 		if (fatal_signal_pending(current)) {
2306 			css_put(&memcg->css);
2307 			goto bypass;
2308 		}
2309 
2310 		oom_check = false;
2311 		if (oom && !nr_oom_retries) {
2312 			oom_check = true;
2313 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2314 		}
2315 
2316 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2317 		switch (ret) {
2318 		case CHARGE_OK:
2319 			break;
2320 		case CHARGE_RETRY: /* not in OOM situation but retry */
2321 			batch = nr_pages;
2322 			css_put(&memcg->css);
2323 			memcg = NULL;
2324 			goto again;
2325 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2326 			css_put(&memcg->css);
2327 			goto nomem;
2328 		case CHARGE_NOMEM: /* OOM routine works */
2329 			if (!oom) {
2330 				css_put(&memcg->css);
2331 				goto nomem;
2332 			}
2333 			/* If oom, we never return -ENOMEM */
2334 			nr_oom_retries--;
2335 			break;
2336 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2337 			css_put(&memcg->css);
2338 			goto bypass;
2339 		}
2340 	} while (ret != CHARGE_OK);
2341 
2342 	if (batch > nr_pages)
2343 		refill_stock(memcg, batch - nr_pages);
2344 	css_put(&memcg->css);
2345 done:
2346 	*ptr = memcg;
2347 	return 0;
2348 nomem:
2349 	*ptr = NULL;
2350 	return -ENOMEM;
2351 bypass:
2352 	*ptr = root_mem_cgroup;
2353 	return -EINTR;
2354 }
2355 
2356 /*
2357  * Somemtimes we have to undo a charge we got by try_charge().
2358  * This function is for that and do uncharge, put css's refcnt.
2359  * gotten by try_charge().
2360  */
2361 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2362 				       unsigned int nr_pages)
2363 {
2364 	if (!mem_cgroup_is_root(memcg)) {
2365 		unsigned long bytes = nr_pages * PAGE_SIZE;
2366 
2367 		res_counter_uncharge(&memcg->res, bytes);
2368 		if (do_swap_account)
2369 			res_counter_uncharge(&memcg->memsw, bytes);
2370 	}
2371 }
2372 
2373 /*
2374  * A helper function to get mem_cgroup from ID. must be called under
2375  * rcu_read_lock(). The caller must check css_is_removed() or some if
2376  * it's concern. (dropping refcnt from swap can be called against removed
2377  * memcg.)
2378  */
2379 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2380 {
2381 	struct cgroup_subsys_state *css;
2382 
2383 	/* ID 0 is unused ID */
2384 	if (!id)
2385 		return NULL;
2386 	css = css_lookup(&mem_cgroup_subsys, id);
2387 	if (!css)
2388 		return NULL;
2389 	return container_of(css, struct mem_cgroup, css);
2390 }
2391 
2392 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2393 {
2394 	struct mem_cgroup *memcg = NULL;
2395 	struct page_cgroup *pc;
2396 	unsigned short id;
2397 	swp_entry_t ent;
2398 
2399 	VM_BUG_ON(!PageLocked(page));
2400 
2401 	pc = lookup_page_cgroup(page);
2402 	lock_page_cgroup(pc);
2403 	if (PageCgroupUsed(pc)) {
2404 		memcg = pc->mem_cgroup;
2405 		if (memcg && !css_tryget(&memcg->css))
2406 			memcg = NULL;
2407 	} else if (PageSwapCache(page)) {
2408 		ent.val = page_private(page);
2409 		id = lookup_swap_cgroup_id(ent);
2410 		rcu_read_lock();
2411 		memcg = mem_cgroup_lookup(id);
2412 		if (memcg && !css_tryget(&memcg->css))
2413 			memcg = NULL;
2414 		rcu_read_unlock();
2415 	}
2416 	unlock_page_cgroup(pc);
2417 	return memcg;
2418 }
2419 
2420 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2421 				       struct page *page,
2422 				       unsigned int nr_pages,
2423 				       struct page_cgroup *pc,
2424 				       enum charge_type ctype,
2425 				       bool lrucare)
2426 {
2427 	struct zone *uninitialized_var(zone);
2428 	bool was_on_lru = false;
2429 
2430 	lock_page_cgroup(pc);
2431 	if (unlikely(PageCgroupUsed(pc))) {
2432 		unlock_page_cgroup(pc);
2433 		__mem_cgroup_cancel_charge(memcg, nr_pages);
2434 		return;
2435 	}
2436 	/*
2437 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2438 	 * accessed by any other context at this point.
2439 	 */
2440 
2441 	/*
2442 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2443 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2444 	 */
2445 	if (lrucare) {
2446 		zone = page_zone(page);
2447 		spin_lock_irq(&zone->lru_lock);
2448 		if (PageLRU(page)) {
2449 			ClearPageLRU(page);
2450 			del_page_from_lru_list(zone, page, page_lru(page));
2451 			was_on_lru = true;
2452 		}
2453 	}
2454 
2455 	pc->mem_cgroup = memcg;
2456 	/*
2457 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2458 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2459 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2460 	 * before USED bit, we need memory barrier here.
2461 	 * See mem_cgroup_add_lru_list(), etc.
2462  	 */
2463 	smp_wmb();
2464 	switch (ctype) {
2465 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2466 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2467 		SetPageCgroupCache(pc);
2468 		SetPageCgroupUsed(pc);
2469 		break;
2470 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2471 		ClearPageCgroupCache(pc);
2472 		SetPageCgroupUsed(pc);
2473 		break;
2474 	default:
2475 		break;
2476 	}
2477 
2478 	if (lrucare) {
2479 		if (was_on_lru) {
2480 			VM_BUG_ON(PageLRU(page));
2481 			SetPageLRU(page);
2482 			add_page_to_lru_list(zone, page, page_lru(page));
2483 		}
2484 		spin_unlock_irq(&zone->lru_lock);
2485 	}
2486 
2487 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2488 	unlock_page_cgroup(pc);
2489 
2490 	/*
2491 	 * "charge_statistics" updated event counter. Then, check it.
2492 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2493 	 * if they exceeds softlimit.
2494 	 */
2495 	memcg_check_events(memcg, page);
2496 }
2497 
2498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2499 
2500 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2501 			(1 << PCG_MIGRATION))
2502 /*
2503  * Because tail pages are not marked as "used", set it. We're under
2504  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2505  * charge/uncharge will be never happen and move_account() is done under
2506  * compound_lock(), so we don't have to take care of races.
2507  */
2508 void mem_cgroup_split_huge_fixup(struct page *head)
2509 {
2510 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2511 	struct page_cgroup *pc;
2512 	int i;
2513 
2514 	if (mem_cgroup_disabled())
2515 		return;
2516 	for (i = 1; i < HPAGE_PMD_NR; i++) {
2517 		pc = head_pc + i;
2518 		pc->mem_cgroup = head_pc->mem_cgroup;
2519 		smp_wmb();/* see __commit_charge() */
2520 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2521 	}
2522 }
2523 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2524 
2525 /**
2526  * mem_cgroup_move_account - move account of the page
2527  * @page: the page
2528  * @nr_pages: number of regular pages (>1 for huge pages)
2529  * @pc:	page_cgroup of the page.
2530  * @from: mem_cgroup which the page is moved from.
2531  * @to:	mem_cgroup which the page is moved to. @from != @to.
2532  * @uncharge: whether we should call uncharge and css_put against @from.
2533  *
2534  * The caller must confirm following.
2535  * - page is not on LRU (isolate_page() is useful.)
2536  * - compound_lock is held when nr_pages > 1
2537  *
2538  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2539  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2540  * true, this function does "uncharge" from old cgroup, but it doesn't if
2541  * @uncharge is false, so a caller should do "uncharge".
2542  */
2543 static int mem_cgroup_move_account(struct page *page,
2544 				   unsigned int nr_pages,
2545 				   struct page_cgroup *pc,
2546 				   struct mem_cgroup *from,
2547 				   struct mem_cgroup *to,
2548 				   bool uncharge)
2549 {
2550 	unsigned long flags;
2551 	int ret;
2552 
2553 	VM_BUG_ON(from == to);
2554 	VM_BUG_ON(PageLRU(page));
2555 	/*
2556 	 * The page is isolated from LRU. So, collapse function
2557 	 * will not handle this page. But page splitting can happen.
2558 	 * Do this check under compound_page_lock(). The caller should
2559 	 * hold it.
2560 	 */
2561 	ret = -EBUSY;
2562 	if (nr_pages > 1 && !PageTransHuge(page))
2563 		goto out;
2564 
2565 	lock_page_cgroup(pc);
2566 
2567 	ret = -EINVAL;
2568 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2569 		goto unlock;
2570 
2571 	move_lock_page_cgroup(pc, &flags);
2572 
2573 	if (PageCgroupFileMapped(pc)) {
2574 		/* Update mapped_file data for mem_cgroup */
2575 		preempt_disable();
2576 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2577 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2578 		preempt_enable();
2579 	}
2580 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2581 	if (uncharge)
2582 		/* This is not "cancel", but cancel_charge does all we need. */
2583 		__mem_cgroup_cancel_charge(from, nr_pages);
2584 
2585 	/* caller should have done css_get */
2586 	pc->mem_cgroup = to;
2587 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2588 	/*
2589 	 * We charges against "to" which may not have any tasks. Then, "to"
2590 	 * can be under rmdir(). But in current implementation, caller of
2591 	 * this function is just force_empty() and move charge, so it's
2592 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2593 	 * status here.
2594 	 */
2595 	move_unlock_page_cgroup(pc, &flags);
2596 	ret = 0;
2597 unlock:
2598 	unlock_page_cgroup(pc);
2599 	/*
2600 	 * check events
2601 	 */
2602 	memcg_check_events(to, page);
2603 	memcg_check_events(from, page);
2604 out:
2605 	return ret;
2606 }
2607 
2608 /*
2609  * move charges to its parent.
2610  */
2611 
2612 static int mem_cgroup_move_parent(struct page *page,
2613 				  struct page_cgroup *pc,
2614 				  struct mem_cgroup *child,
2615 				  gfp_t gfp_mask)
2616 {
2617 	struct cgroup *cg = child->css.cgroup;
2618 	struct cgroup *pcg = cg->parent;
2619 	struct mem_cgroup *parent;
2620 	unsigned int nr_pages;
2621 	unsigned long uninitialized_var(flags);
2622 	int ret;
2623 
2624 	/* Is ROOT ? */
2625 	if (!pcg)
2626 		return -EINVAL;
2627 
2628 	ret = -EBUSY;
2629 	if (!get_page_unless_zero(page))
2630 		goto out;
2631 	if (isolate_lru_page(page))
2632 		goto put;
2633 
2634 	nr_pages = hpage_nr_pages(page);
2635 
2636 	parent = mem_cgroup_from_cont(pcg);
2637 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2638 	if (ret)
2639 		goto put_back;
2640 
2641 	if (nr_pages > 1)
2642 		flags = compound_lock_irqsave(page);
2643 
2644 	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2645 	if (ret)
2646 		__mem_cgroup_cancel_charge(parent, nr_pages);
2647 
2648 	if (nr_pages > 1)
2649 		compound_unlock_irqrestore(page, flags);
2650 put_back:
2651 	putback_lru_page(page);
2652 put:
2653 	put_page(page);
2654 out:
2655 	return ret;
2656 }
2657 
2658 /*
2659  * Charge the memory controller for page usage.
2660  * Return
2661  * 0 if the charge was successful
2662  * < 0 if the cgroup is over its limit
2663  */
2664 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2665 				gfp_t gfp_mask, enum charge_type ctype)
2666 {
2667 	struct mem_cgroup *memcg = NULL;
2668 	unsigned int nr_pages = 1;
2669 	struct page_cgroup *pc;
2670 	bool oom = true;
2671 	int ret;
2672 
2673 	if (PageTransHuge(page)) {
2674 		nr_pages <<= compound_order(page);
2675 		VM_BUG_ON(!PageTransHuge(page));
2676 		/*
2677 		 * Never OOM-kill a process for a huge page.  The
2678 		 * fault handler will fall back to regular pages.
2679 		 */
2680 		oom = false;
2681 	}
2682 
2683 	pc = lookup_page_cgroup(page);
2684 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2685 	if (ret == -ENOMEM)
2686 		return ret;
2687 	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2688 	return 0;
2689 }
2690 
2691 int mem_cgroup_newpage_charge(struct page *page,
2692 			      struct mm_struct *mm, gfp_t gfp_mask)
2693 {
2694 	if (mem_cgroup_disabled())
2695 		return 0;
2696 	VM_BUG_ON(page_mapped(page));
2697 	VM_BUG_ON(page->mapping && !PageAnon(page));
2698 	VM_BUG_ON(!mm);
2699 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2700 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2701 }
2702 
2703 static void
2704 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2705 					enum charge_type ctype);
2706 
2707 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2708 				gfp_t gfp_mask)
2709 {
2710 	struct mem_cgroup *memcg = NULL;
2711 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2712 	int ret;
2713 
2714 	if (mem_cgroup_disabled())
2715 		return 0;
2716 	if (PageCompound(page))
2717 		return 0;
2718 
2719 	if (unlikely(!mm))
2720 		mm = &init_mm;
2721 	if (!page_is_file_cache(page))
2722 		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2723 
2724 	if (!PageSwapCache(page))
2725 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2726 	else { /* page is swapcache/shmem */
2727 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2728 		if (!ret)
2729 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2730 	}
2731 	return ret;
2732 }
2733 
2734 /*
2735  * While swap-in, try_charge -> commit or cancel, the page is locked.
2736  * And when try_charge() successfully returns, one refcnt to memcg without
2737  * struct page_cgroup is acquired. This refcnt will be consumed by
2738  * "commit()" or removed by "cancel()"
2739  */
2740 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2741 				 struct page *page,
2742 				 gfp_t mask, struct mem_cgroup **memcgp)
2743 {
2744 	struct mem_cgroup *memcg;
2745 	int ret;
2746 
2747 	*memcgp = NULL;
2748 
2749 	if (mem_cgroup_disabled())
2750 		return 0;
2751 
2752 	if (!do_swap_account)
2753 		goto charge_cur_mm;
2754 	/*
2755 	 * A racing thread's fault, or swapoff, may have already updated
2756 	 * the pte, and even removed page from swap cache: in those cases
2757 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2758 	 * KSM case which does need to charge the page.
2759 	 */
2760 	if (!PageSwapCache(page))
2761 		goto charge_cur_mm;
2762 	memcg = try_get_mem_cgroup_from_page(page);
2763 	if (!memcg)
2764 		goto charge_cur_mm;
2765 	*memcgp = memcg;
2766 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2767 	css_put(&memcg->css);
2768 	if (ret == -EINTR)
2769 		ret = 0;
2770 	return ret;
2771 charge_cur_mm:
2772 	if (unlikely(!mm))
2773 		mm = &init_mm;
2774 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2775 	if (ret == -EINTR)
2776 		ret = 0;
2777 	return ret;
2778 }
2779 
2780 static void
2781 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2782 					enum charge_type ctype)
2783 {
2784 	struct page_cgroup *pc;
2785 
2786 	if (mem_cgroup_disabled())
2787 		return;
2788 	if (!memcg)
2789 		return;
2790 	cgroup_exclude_rmdir(&memcg->css);
2791 
2792 	pc = lookup_page_cgroup(page);
2793 	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2794 	/*
2795 	 * Now swap is on-memory. This means this page may be
2796 	 * counted both as mem and swap....double count.
2797 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2798 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2799 	 * may call delete_from_swap_cache() before reach here.
2800 	 */
2801 	if (do_swap_account && PageSwapCache(page)) {
2802 		swp_entry_t ent = {.val = page_private(page)};
2803 		struct mem_cgroup *swap_memcg;
2804 		unsigned short id;
2805 
2806 		id = swap_cgroup_record(ent, 0);
2807 		rcu_read_lock();
2808 		swap_memcg = mem_cgroup_lookup(id);
2809 		if (swap_memcg) {
2810 			/*
2811 			 * This recorded memcg can be obsolete one. So, avoid
2812 			 * calling css_tryget
2813 			 */
2814 			if (!mem_cgroup_is_root(swap_memcg))
2815 				res_counter_uncharge(&swap_memcg->memsw,
2816 						     PAGE_SIZE);
2817 			mem_cgroup_swap_statistics(swap_memcg, false);
2818 			mem_cgroup_put(swap_memcg);
2819 		}
2820 		rcu_read_unlock();
2821 	}
2822 	/*
2823 	 * At swapin, we may charge account against cgroup which has no tasks.
2824 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2825 	 * In that case, we need to call pre_destroy() again. check it here.
2826 	 */
2827 	cgroup_release_and_wakeup_rmdir(&memcg->css);
2828 }
2829 
2830 void mem_cgroup_commit_charge_swapin(struct page *page,
2831 				     struct mem_cgroup *memcg)
2832 {
2833 	__mem_cgroup_commit_charge_swapin(page, memcg,
2834 					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
2835 }
2836 
2837 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2838 {
2839 	if (mem_cgroup_disabled())
2840 		return;
2841 	if (!memcg)
2842 		return;
2843 	__mem_cgroup_cancel_charge(memcg, 1);
2844 }
2845 
2846 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2847 				   unsigned int nr_pages,
2848 				   const enum charge_type ctype)
2849 {
2850 	struct memcg_batch_info *batch = NULL;
2851 	bool uncharge_memsw = true;
2852 
2853 	/* If swapout, usage of swap doesn't decrease */
2854 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2855 		uncharge_memsw = false;
2856 
2857 	batch = &current->memcg_batch;
2858 	/*
2859 	 * In usual, we do css_get() when we remember memcg pointer.
2860 	 * But in this case, we keep res->usage until end of a series of
2861 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2862 	 */
2863 	if (!batch->memcg)
2864 		batch->memcg = memcg;
2865 	/*
2866 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2867 	 * In those cases, all pages freed continuously can be expected to be in
2868 	 * the same cgroup and we have chance to coalesce uncharges.
2869 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2870 	 * because we want to do uncharge as soon as possible.
2871 	 */
2872 
2873 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2874 		goto direct_uncharge;
2875 
2876 	if (nr_pages > 1)
2877 		goto direct_uncharge;
2878 
2879 	/*
2880 	 * In typical case, batch->memcg == mem. This means we can
2881 	 * merge a series of uncharges to an uncharge of res_counter.
2882 	 * If not, we uncharge res_counter ony by one.
2883 	 */
2884 	if (batch->memcg != memcg)
2885 		goto direct_uncharge;
2886 	/* remember freed charge and uncharge it later */
2887 	batch->nr_pages++;
2888 	if (uncharge_memsw)
2889 		batch->memsw_nr_pages++;
2890 	return;
2891 direct_uncharge:
2892 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2893 	if (uncharge_memsw)
2894 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2895 	if (unlikely(batch->memcg != memcg))
2896 		memcg_oom_recover(memcg);
2897 	return;
2898 }
2899 
2900 /*
2901  * uncharge if !page_mapped(page)
2902  */
2903 static struct mem_cgroup *
2904 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2905 {
2906 	struct mem_cgroup *memcg = NULL;
2907 	unsigned int nr_pages = 1;
2908 	struct page_cgroup *pc;
2909 
2910 	if (mem_cgroup_disabled())
2911 		return NULL;
2912 
2913 	if (PageSwapCache(page))
2914 		return NULL;
2915 
2916 	if (PageTransHuge(page)) {
2917 		nr_pages <<= compound_order(page);
2918 		VM_BUG_ON(!PageTransHuge(page));
2919 	}
2920 	/*
2921 	 * Check if our page_cgroup is valid
2922 	 */
2923 	pc = lookup_page_cgroup(page);
2924 	if (unlikely(!PageCgroupUsed(pc)))
2925 		return NULL;
2926 
2927 	lock_page_cgroup(pc);
2928 
2929 	memcg = pc->mem_cgroup;
2930 
2931 	if (!PageCgroupUsed(pc))
2932 		goto unlock_out;
2933 
2934 	switch (ctype) {
2935 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2936 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2937 		/* See mem_cgroup_prepare_migration() */
2938 		if (page_mapped(page) || PageCgroupMigration(pc))
2939 			goto unlock_out;
2940 		break;
2941 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2942 		if (!PageAnon(page)) {	/* Shared memory */
2943 			if (page->mapping && !page_is_file_cache(page))
2944 				goto unlock_out;
2945 		} else if (page_mapped(page)) /* Anon */
2946 				goto unlock_out;
2947 		break;
2948 	default:
2949 		break;
2950 	}
2951 
2952 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
2953 
2954 	ClearPageCgroupUsed(pc);
2955 	/*
2956 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2957 	 * freed from LRU. This is safe because uncharged page is expected not
2958 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2959 	 * special functions.
2960 	 */
2961 
2962 	unlock_page_cgroup(pc);
2963 	/*
2964 	 * even after unlock, we have memcg->res.usage here and this memcg
2965 	 * will never be freed.
2966 	 */
2967 	memcg_check_events(memcg, page);
2968 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2969 		mem_cgroup_swap_statistics(memcg, true);
2970 		mem_cgroup_get(memcg);
2971 	}
2972 	if (!mem_cgroup_is_root(memcg))
2973 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2974 
2975 	return memcg;
2976 
2977 unlock_out:
2978 	unlock_page_cgroup(pc);
2979 	return NULL;
2980 }
2981 
2982 void mem_cgroup_uncharge_page(struct page *page)
2983 {
2984 	/* early check. */
2985 	if (page_mapped(page))
2986 		return;
2987 	VM_BUG_ON(page->mapping && !PageAnon(page));
2988 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2989 }
2990 
2991 void mem_cgroup_uncharge_cache_page(struct page *page)
2992 {
2993 	VM_BUG_ON(page_mapped(page));
2994 	VM_BUG_ON(page->mapping);
2995 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2996 }
2997 
2998 /*
2999  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3000  * In that cases, pages are freed continuously and we can expect pages
3001  * are in the same memcg. All these calls itself limits the number of
3002  * pages freed at once, then uncharge_start/end() is called properly.
3003  * This may be called prural(2) times in a context,
3004  */
3005 
3006 void mem_cgroup_uncharge_start(void)
3007 {
3008 	current->memcg_batch.do_batch++;
3009 	/* We can do nest. */
3010 	if (current->memcg_batch.do_batch == 1) {
3011 		current->memcg_batch.memcg = NULL;
3012 		current->memcg_batch.nr_pages = 0;
3013 		current->memcg_batch.memsw_nr_pages = 0;
3014 	}
3015 }
3016 
3017 void mem_cgroup_uncharge_end(void)
3018 {
3019 	struct memcg_batch_info *batch = &current->memcg_batch;
3020 
3021 	if (!batch->do_batch)
3022 		return;
3023 
3024 	batch->do_batch--;
3025 	if (batch->do_batch) /* If stacked, do nothing. */
3026 		return;
3027 
3028 	if (!batch->memcg)
3029 		return;
3030 	/*
3031 	 * This "batch->memcg" is valid without any css_get/put etc...
3032 	 * bacause we hide charges behind us.
3033 	 */
3034 	if (batch->nr_pages)
3035 		res_counter_uncharge(&batch->memcg->res,
3036 				     batch->nr_pages * PAGE_SIZE);
3037 	if (batch->memsw_nr_pages)
3038 		res_counter_uncharge(&batch->memcg->memsw,
3039 				     batch->memsw_nr_pages * PAGE_SIZE);
3040 	memcg_oom_recover(batch->memcg);
3041 	/* forget this pointer (for sanity check) */
3042 	batch->memcg = NULL;
3043 }
3044 
3045 #ifdef CONFIG_SWAP
3046 /*
3047  * called after __delete_from_swap_cache() and drop "page" account.
3048  * memcg information is recorded to swap_cgroup of "ent"
3049  */
3050 void
3051 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3052 {
3053 	struct mem_cgroup *memcg;
3054 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3055 
3056 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3057 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3058 
3059 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3060 
3061 	/*
3062 	 * record memcg information,  if swapout && memcg != NULL,
3063 	 * mem_cgroup_get() was called in uncharge().
3064 	 */
3065 	if (do_swap_account && swapout && memcg)
3066 		swap_cgroup_record(ent, css_id(&memcg->css));
3067 }
3068 #endif
3069 
3070 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3071 /*
3072  * called from swap_entry_free(). remove record in swap_cgroup and
3073  * uncharge "memsw" account.
3074  */
3075 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3076 {
3077 	struct mem_cgroup *memcg;
3078 	unsigned short id;
3079 
3080 	if (!do_swap_account)
3081 		return;
3082 
3083 	id = swap_cgroup_record(ent, 0);
3084 	rcu_read_lock();
3085 	memcg = mem_cgroup_lookup(id);
3086 	if (memcg) {
3087 		/*
3088 		 * We uncharge this because swap is freed.
3089 		 * This memcg can be obsolete one. We avoid calling css_tryget
3090 		 */
3091 		if (!mem_cgroup_is_root(memcg))
3092 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3093 		mem_cgroup_swap_statistics(memcg, false);
3094 		mem_cgroup_put(memcg);
3095 	}
3096 	rcu_read_unlock();
3097 }
3098 
3099 /**
3100  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3101  * @entry: swap entry to be moved
3102  * @from:  mem_cgroup which the entry is moved from
3103  * @to:  mem_cgroup which the entry is moved to
3104  * @need_fixup: whether we should fixup res_counters and refcounts.
3105  *
3106  * It succeeds only when the swap_cgroup's record for this entry is the same
3107  * as the mem_cgroup's id of @from.
3108  *
3109  * Returns 0 on success, -EINVAL on failure.
3110  *
3111  * The caller must have charged to @to, IOW, called res_counter_charge() about
3112  * both res and memsw, and called css_get().
3113  */
3114 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3115 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3116 {
3117 	unsigned short old_id, new_id;
3118 
3119 	old_id = css_id(&from->css);
3120 	new_id = css_id(&to->css);
3121 
3122 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3123 		mem_cgroup_swap_statistics(from, false);
3124 		mem_cgroup_swap_statistics(to, true);
3125 		/*
3126 		 * This function is only called from task migration context now.
3127 		 * It postpones res_counter and refcount handling till the end
3128 		 * of task migration(mem_cgroup_clear_mc()) for performance
3129 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3130 		 * because if the process that has been moved to @to does
3131 		 * swap-in, the refcount of @to might be decreased to 0.
3132 		 */
3133 		mem_cgroup_get(to);
3134 		if (need_fixup) {
3135 			if (!mem_cgroup_is_root(from))
3136 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3137 			mem_cgroup_put(from);
3138 			/*
3139 			 * we charged both to->res and to->memsw, so we should
3140 			 * uncharge to->res.
3141 			 */
3142 			if (!mem_cgroup_is_root(to))
3143 				res_counter_uncharge(&to->res, PAGE_SIZE);
3144 		}
3145 		return 0;
3146 	}
3147 	return -EINVAL;
3148 }
3149 #else
3150 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3151 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3152 {
3153 	return -EINVAL;
3154 }
3155 #endif
3156 
3157 /*
3158  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3159  * page belongs to.
3160  */
3161 int mem_cgroup_prepare_migration(struct page *page,
3162 	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3163 {
3164 	struct mem_cgroup *memcg = NULL;
3165 	struct page_cgroup *pc;
3166 	enum charge_type ctype;
3167 	int ret = 0;
3168 
3169 	*memcgp = NULL;
3170 
3171 	VM_BUG_ON(PageTransHuge(page));
3172 	if (mem_cgroup_disabled())
3173 		return 0;
3174 
3175 	pc = lookup_page_cgroup(page);
3176 	lock_page_cgroup(pc);
3177 	if (PageCgroupUsed(pc)) {
3178 		memcg = pc->mem_cgroup;
3179 		css_get(&memcg->css);
3180 		/*
3181 		 * At migrating an anonymous page, its mapcount goes down
3182 		 * to 0 and uncharge() will be called. But, even if it's fully
3183 		 * unmapped, migration may fail and this page has to be
3184 		 * charged again. We set MIGRATION flag here and delay uncharge
3185 		 * until end_migration() is called
3186 		 *
3187 		 * Corner Case Thinking
3188 		 * A)
3189 		 * When the old page was mapped as Anon and it's unmap-and-freed
3190 		 * while migration was ongoing.
3191 		 * If unmap finds the old page, uncharge() of it will be delayed
3192 		 * until end_migration(). If unmap finds a new page, it's
3193 		 * uncharged when it make mapcount to be 1->0. If unmap code
3194 		 * finds swap_migration_entry, the new page will not be mapped
3195 		 * and end_migration() will find it(mapcount==0).
3196 		 *
3197 		 * B)
3198 		 * When the old page was mapped but migraion fails, the kernel
3199 		 * remaps it. A charge for it is kept by MIGRATION flag even
3200 		 * if mapcount goes down to 0. We can do remap successfully
3201 		 * without charging it again.
3202 		 *
3203 		 * C)
3204 		 * The "old" page is under lock_page() until the end of
3205 		 * migration, so, the old page itself will not be swapped-out.
3206 		 * If the new page is swapped out before end_migraton, our
3207 		 * hook to usual swap-out path will catch the event.
3208 		 */
3209 		if (PageAnon(page))
3210 			SetPageCgroupMigration(pc);
3211 	}
3212 	unlock_page_cgroup(pc);
3213 	/*
3214 	 * If the page is not charged at this point,
3215 	 * we return here.
3216 	 */
3217 	if (!memcg)
3218 		return 0;
3219 
3220 	*memcgp = memcg;
3221 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3222 	css_put(&memcg->css);/* drop extra refcnt */
3223 	if (ret) {
3224 		if (PageAnon(page)) {
3225 			lock_page_cgroup(pc);
3226 			ClearPageCgroupMigration(pc);
3227 			unlock_page_cgroup(pc);
3228 			/*
3229 			 * The old page may be fully unmapped while we kept it.
3230 			 */
3231 			mem_cgroup_uncharge_page(page);
3232 		}
3233 		/* we'll need to revisit this error code (we have -EINTR) */
3234 		return -ENOMEM;
3235 	}
3236 	/*
3237 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3238 	 * is called before end_migration, we can catch all events on this new
3239 	 * page. In the case new page is migrated but not remapped, new page's
3240 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3241 	 */
3242 	pc = lookup_page_cgroup(newpage);
3243 	if (PageAnon(page))
3244 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3245 	else if (page_is_file_cache(page))
3246 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3247 	else
3248 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3249 	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3250 	return ret;
3251 }
3252 
3253 /* remove redundant charge if migration failed*/
3254 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3255 	struct page *oldpage, struct page *newpage, bool migration_ok)
3256 {
3257 	struct page *used, *unused;
3258 	struct page_cgroup *pc;
3259 
3260 	if (!memcg)
3261 		return;
3262 	/* blocks rmdir() */
3263 	cgroup_exclude_rmdir(&memcg->css);
3264 	if (!migration_ok) {
3265 		used = oldpage;
3266 		unused = newpage;
3267 	} else {
3268 		used = newpage;
3269 		unused = oldpage;
3270 	}
3271 	/*
3272 	 * We disallowed uncharge of pages under migration because mapcount
3273 	 * of the page goes down to zero, temporarly.
3274 	 * Clear the flag and check the page should be charged.
3275 	 */
3276 	pc = lookup_page_cgroup(oldpage);
3277 	lock_page_cgroup(pc);
3278 	ClearPageCgroupMigration(pc);
3279 	unlock_page_cgroup(pc);
3280 
3281 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3282 
3283 	/*
3284 	 * If a page is a file cache, radix-tree replacement is very atomic
3285 	 * and we can skip this check. When it was an Anon page, its mapcount
3286 	 * goes down to 0. But because we added MIGRATION flage, it's not
3287 	 * uncharged yet. There are several case but page->mapcount check
3288 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3289 	 * check. (see prepare_charge() also)
3290 	 */
3291 	if (PageAnon(used))
3292 		mem_cgroup_uncharge_page(used);
3293 	/*
3294 	 * At migration, we may charge account against cgroup which has no
3295 	 * tasks.
3296 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3297 	 * In that case, we need to call pre_destroy() again. check it here.
3298 	 */
3299 	cgroup_release_and_wakeup_rmdir(&memcg->css);
3300 }
3301 
3302 /*
3303  * At replace page cache, newpage is not under any memcg but it's on
3304  * LRU. So, this function doesn't touch res_counter but handles LRU
3305  * in correct way. Both pages are locked so we cannot race with uncharge.
3306  */
3307 void mem_cgroup_replace_page_cache(struct page *oldpage,
3308 				  struct page *newpage)
3309 {
3310 	struct mem_cgroup *memcg;
3311 	struct page_cgroup *pc;
3312 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3313 
3314 	if (mem_cgroup_disabled())
3315 		return;
3316 
3317 	pc = lookup_page_cgroup(oldpage);
3318 	/* fix accounting on old pages */
3319 	lock_page_cgroup(pc);
3320 	memcg = pc->mem_cgroup;
3321 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3322 	ClearPageCgroupUsed(pc);
3323 	unlock_page_cgroup(pc);
3324 
3325 	if (PageSwapBacked(oldpage))
3326 		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3327 
3328 	/*
3329 	 * Even if newpage->mapping was NULL before starting replacement,
3330 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3331 	 * LRU while we overwrite pc->mem_cgroup.
3332 	 */
3333 	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3334 }
3335 
3336 #ifdef CONFIG_DEBUG_VM
3337 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3338 {
3339 	struct page_cgroup *pc;
3340 
3341 	pc = lookup_page_cgroup(page);
3342 	/*
3343 	 * Can be NULL while feeding pages into the page allocator for
3344 	 * the first time, i.e. during boot or memory hotplug;
3345 	 * or when mem_cgroup_disabled().
3346 	 */
3347 	if (likely(pc) && PageCgroupUsed(pc))
3348 		return pc;
3349 	return NULL;
3350 }
3351 
3352 bool mem_cgroup_bad_page_check(struct page *page)
3353 {
3354 	if (mem_cgroup_disabled())
3355 		return false;
3356 
3357 	return lookup_page_cgroup_used(page) != NULL;
3358 }
3359 
3360 void mem_cgroup_print_bad_page(struct page *page)
3361 {
3362 	struct page_cgroup *pc;
3363 
3364 	pc = lookup_page_cgroup_used(page);
3365 	if (pc) {
3366 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3367 		       pc, pc->flags, pc->mem_cgroup);
3368 	}
3369 }
3370 #endif
3371 
3372 static DEFINE_MUTEX(set_limit_mutex);
3373 
3374 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3375 				unsigned long long val)
3376 {
3377 	int retry_count;
3378 	u64 memswlimit, memlimit;
3379 	int ret = 0;
3380 	int children = mem_cgroup_count_children(memcg);
3381 	u64 curusage, oldusage;
3382 	int enlarge;
3383 
3384 	/*
3385 	 * For keeping hierarchical_reclaim simple, how long we should retry
3386 	 * is depends on callers. We set our retry-count to be function
3387 	 * of # of children which we should visit in this loop.
3388 	 */
3389 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3390 
3391 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3392 
3393 	enlarge = 0;
3394 	while (retry_count) {
3395 		if (signal_pending(current)) {
3396 			ret = -EINTR;
3397 			break;
3398 		}
3399 		/*
3400 		 * Rather than hide all in some function, I do this in
3401 		 * open coded manner. You see what this really does.
3402 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3403 		 */
3404 		mutex_lock(&set_limit_mutex);
3405 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3406 		if (memswlimit < val) {
3407 			ret = -EINVAL;
3408 			mutex_unlock(&set_limit_mutex);
3409 			break;
3410 		}
3411 
3412 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3413 		if (memlimit < val)
3414 			enlarge = 1;
3415 
3416 		ret = res_counter_set_limit(&memcg->res, val);
3417 		if (!ret) {
3418 			if (memswlimit == val)
3419 				memcg->memsw_is_minimum = true;
3420 			else
3421 				memcg->memsw_is_minimum = false;
3422 		}
3423 		mutex_unlock(&set_limit_mutex);
3424 
3425 		if (!ret)
3426 			break;
3427 
3428 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3429 				   MEM_CGROUP_RECLAIM_SHRINK);
3430 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3431 		/* Usage is reduced ? */
3432   		if (curusage >= oldusage)
3433 			retry_count--;
3434 		else
3435 			oldusage = curusage;
3436 	}
3437 	if (!ret && enlarge)
3438 		memcg_oom_recover(memcg);
3439 
3440 	return ret;
3441 }
3442 
3443 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3444 					unsigned long long val)
3445 {
3446 	int retry_count;
3447 	u64 memlimit, memswlimit, oldusage, curusage;
3448 	int children = mem_cgroup_count_children(memcg);
3449 	int ret = -EBUSY;
3450 	int enlarge = 0;
3451 
3452 	/* see mem_cgroup_resize_res_limit */
3453  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3454 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3455 	while (retry_count) {
3456 		if (signal_pending(current)) {
3457 			ret = -EINTR;
3458 			break;
3459 		}
3460 		/*
3461 		 * Rather than hide all in some function, I do this in
3462 		 * open coded manner. You see what this really does.
3463 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3464 		 */
3465 		mutex_lock(&set_limit_mutex);
3466 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3467 		if (memlimit > val) {
3468 			ret = -EINVAL;
3469 			mutex_unlock(&set_limit_mutex);
3470 			break;
3471 		}
3472 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3473 		if (memswlimit < val)
3474 			enlarge = 1;
3475 		ret = res_counter_set_limit(&memcg->memsw, val);
3476 		if (!ret) {
3477 			if (memlimit == val)
3478 				memcg->memsw_is_minimum = true;
3479 			else
3480 				memcg->memsw_is_minimum = false;
3481 		}
3482 		mutex_unlock(&set_limit_mutex);
3483 
3484 		if (!ret)
3485 			break;
3486 
3487 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3488 				   MEM_CGROUP_RECLAIM_NOSWAP |
3489 				   MEM_CGROUP_RECLAIM_SHRINK);
3490 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3491 		/* Usage is reduced ? */
3492 		if (curusage >= oldusage)
3493 			retry_count--;
3494 		else
3495 			oldusage = curusage;
3496 	}
3497 	if (!ret && enlarge)
3498 		memcg_oom_recover(memcg);
3499 	return ret;
3500 }
3501 
3502 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3503 					    gfp_t gfp_mask,
3504 					    unsigned long *total_scanned)
3505 {
3506 	unsigned long nr_reclaimed = 0;
3507 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3508 	unsigned long reclaimed;
3509 	int loop = 0;
3510 	struct mem_cgroup_tree_per_zone *mctz;
3511 	unsigned long long excess;
3512 	unsigned long nr_scanned;
3513 
3514 	if (order > 0)
3515 		return 0;
3516 
3517 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3518 	/*
3519 	 * This loop can run a while, specially if mem_cgroup's continuously
3520 	 * keep exceeding their soft limit and putting the system under
3521 	 * pressure
3522 	 */
3523 	do {
3524 		if (next_mz)
3525 			mz = next_mz;
3526 		else
3527 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3528 		if (!mz)
3529 			break;
3530 
3531 		nr_scanned = 0;
3532 		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3533 						    gfp_mask, &nr_scanned);
3534 		nr_reclaimed += reclaimed;
3535 		*total_scanned += nr_scanned;
3536 		spin_lock(&mctz->lock);
3537 
3538 		/*
3539 		 * If we failed to reclaim anything from this memory cgroup
3540 		 * it is time to move on to the next cgroup
3541 		 */
3542 		next_mz = NULL;
3543 		if (!reclaimed) {
3544 			do {
3545 				/*
3546 				 * Loop until we find yet another one.
3547 				 *
3548 				 * By the time we get the soft_limit lock
3549 				 * again, someone might have aded the
3550 				 * group back on the RB tree. Iterate to
3551 				 * make sure we get a different mem.
3552 				 * mem_cgroup_largest_soft_limit_node returns
3553 				 * NULL if no other cgroup is present on
3554 				 * the tree
3555 				 */
3556 				next_mz =
3557 				__mem_cgroup_largest_soft_limit_node(mctz);
3558 				if (next_mz == mz)
3559 					css_put(&next_mz->mem->css);
3560 				else /* next_mz == NULL or other memcg */
3561 					break;
3562 			} while (1);
3563 		}
3564 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3565 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3566 		/*
3567 		 * One school of thought says that we should not add
3568 		 * back the node to the tree if reclaim returns 0.
3569 		 * But our reclaim could return 0, simply because due
3570 		 * to priority we are exposing a smaller subset of
3571 		 * memory to reclaim from. Consider this as a longer
3572 		 * term TODO.
3573 		 */
3574 		/* If excess == 0, no tree ops */
3575 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3576 		spin_unlock(&mctz->lock);
3577 		css_put(&mz->mem->css);
3578 		loop++;
3579 		/*
3580 		 * Could not reclaim anything and there are no more
3581 		 * mem cgroups to try or we seem to be looping without
3582 		 * reclaiming anything.
3583 		 */
3584 		if (!nr_reclaimed &&
3585 			(next_mz == NULL ||
3586 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3587 			break;
3588 	} while (!nr_reclaimed);
3589 	if (next_mz)
3590 		css_put(&next_mz->mem->css);
3591 	return nr_reclaimed;
3592 }
3593 
3594 /*
3595  * This routine traverse page_cgroup in given list and drop them all.
3596  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3597  */
3598 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3599 				int node, int zid, enum lru_list lru)
3600 {
3601 	struct mem_cgroup_per_zone *mz;
3602 	unsigned long flags, loop;
3603 	struct list_head *list;
3604 	struct page *busy;
3605 	struct zone *zone;
3606 	int ret = 0;
3607 
3608 	zone = &NODE_DATA(node)->node_zones[zid];
3609 	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3610 	list = &mz->lruvec.lists[lru];
3611 
3612 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3613 	/* give some margin against EBUSY etc...*/
3614 	loop += 256;
3615 	busy = NULL;
3616 	while (loop--) {
3617 		struct page_cgroup *pc;
3618 		struct page *page;
3619 
3620 		ret = 0;
3621 		spin_lock_irqsave(&zone->lru_lock, flags);
3622 		if (list_empty(list)) {
3623 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3624 			break;
3625 		}
3626 		page = list_entry(list->prev, struct page, lru);
3627 		if (busy == page) {
3628 			list_move(&page->lru, list);
3629 			busy = NULL;
3630 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3631 			continue;
3632 		}
3633 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3634 
3635 		pc = lookup_page_cgroup(page);
3636 
3637 		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3638 		if (ret == -ENOMEM || ret == -EINTR)
3639 			break;
3640 
3641 		if (ret == -EBUSY || ret == -EINVAL) {
3642 			/* found lock contention or "pc" is obsolete. */
3643 			busy = page;
3644 			cond_resched();
3645 		} else
3646 			busy = NULL;
3647 	}
3648 
3649 	if (!ret && !list_empty(list))
3650 		return -EBUSY;
3651 	return ret;
3652 }
3653 
3654 /*
3655  * make mem_cgroup's charge to be 0 if there is no task.
3656  * This enables deleting this mem_cgroup.
3657  */
3658 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3659 {
3660 	int ret;
3661 	int node, zid, shrink;
3662 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3663 	struct cgroup *cgrp = memcg->css.cgroup;
3664 
3665 	css_get(&memcg->css);
3666 
3667 	shrink = 0;
3668 	/* should free all ? */
3669 	if (free_all)
3670 		goto try_to_free;
3671 move_account:
3672 	do {
3673 		ret = -EBUSY;
3674 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3675 			goto out;
3676 		ret = -EINTR;
3677 		if (signal_pending(current))
3678 			goto out;
3679 		/* This is for making all *used* pages to be on LRU. */
3680 		lru_add_drain_all();
3681 		drain_all_stock_sync(memcg);
3682 		ret = 0;
3683 		mem_cgroup_start_move(memcg);
3684 		for_each_node_state(node, N_HIGH_MEMORY) {
3685 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3686 				enum lru_list l;
3687 				for_each_lru(l) {
3688 					ret = mem_cgroup_force_empty_list(memcg,
3689 							node, zid, l);
3690 					if (ret)
3691 						break;
3692 				}
3693 			}
3694 			if (ret)
3695 				break;
3696 		}
3697 		mem_cgroup_end_move(memcg);
3698 		memcg_oom_recover(memcg);
3699 		/* it seems parent cgroup doesn't have enough mem */
3700 		if (ret == -ENOMEM)
3701 			goto try_to_free;
3702 		cond_resched();
3703 	/* "ret" should also be checked to ensure all lists are empty. */
3704 	} while (memcg->res.usage > 0 || ret);
3705 out:
3706 	css_put(&memcg->css);
3707 	return ret;
3708 
3709 try_to_free:
3710 	/* returns EBUSY if there is a task or if we come here twice. */
3711 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3712 		ret = -EBUSY;
3713 		goto out;
3714 	}
3715 	/* we call try-to-free pages for make this cgroup empty */
3716 	lru_add_drain_all();
3717 	/* try to free all pages in this cgroup */
3718 	shrink = 1;
3719 	while (nr_retries && memcg->res.usage > 0) {
3720 		int progress;
3721 
3722 		if (signal_pending(current)) {
3723 			ret = -EINTR;
3724 			goto out;
3725 		}
3726 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3727 						false);
3728 		if (!progress) {
3729 			nr_retries--;
3730 			/* maybe some writeback is necessary */
3731 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3732 		}
3733 
3734 	}
3735 	lru_add_drain();
3736 	/* try move_account...there may be some *locked* pages. */
3737 	goto move_account;
3738 }
3739 
3740 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3741 {
3742 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3743 }
3744 
3745 
3746 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3747 {
3748 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3749 }
3750 
3751 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3752 					u64 val)
3753 {
3754 	int retval = 0;
3755 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3756 	struct cgroup *parent = cont->parent;
3757 	struct mem_cgroup *parent_memcg = NULL;
3758 
3759 	if (parent)
3760 		parent_memcg = mem_cgroup_from_cont(parent);
3761 
3762 	cgroup_lock();
3763 	/*
3764 	 * If parent's use_hierarchy is set, we can't make any modifications
3765 	 * in the child subtrees. If it is unset, then the change can
3766 	 * occur, provided the current cgroup has no children.
3767 	 *
3768 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3769 	 * set if there are no children.
3770 	 */
3771 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3772 				(val == 1 || val == 0)) {
3773 		if (list_empty(&cont->children))
3774 			memcg->use_hierarchy = val;
3775 		else
3776 			retval = -EBUSY;
3777 	} else
3778 		retval = -EINVAL;
3779 	cgroup_unlock();
3780 
3781 	return retval;
3782 }
3783 
3784 
3785 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3786 					       enum mem_cgroup_stat_index idx)
3787 {
3788 	struct mem_cgroup *iter;
3789 	long val = 0;
3790 
3791 	/* Per-cpu values can be negative, use a signed accumulator */
3792 	for_each_mem_cgroup_tree(iter, memcg)
3793 		val += mem_cgroup_read_stat(iter, idx);
3794 
3795 	if (val < 0) /* race ? */
3796 		val = 0;
3797 	return val;
3798 }
3799 
3800 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3801 {
3802 	u64 val;
3803 
3804 	if (!mem_cgroup_is_root(memcg)) {
3805 		if (!swap)
3806 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3807 		else
3808 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3809 	}
3810 
3811 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3812 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3813 
3814 	if (swap)
3815 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3816 
3817 	return val << PAGE_SHIFT;
3818 }
3819 
3820 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3821 {
3822 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3823 	u64 val;
3824 	int type, name;
3825 
3826 	type = MEMFILE_TYPE(cft->private);
3827 	name = MEMFILE_ATTR(cft->private);
3828 	switch (type) {
3829 	case _MEM:
3830 		if (name == RES_USAGE)
3831 			val = mem_cgroup_usage(memcg, false);
3832 		else
3833 			val = res_counter_read_u64(&memcg->res, name);
3834 		break;
3835 	case _MEMSWAP:
3836 		if (name == RES_USAGE)
3837 			val = mem_cgroup_usage(memcg, true);
3838 		else
3839 			val = res_counter_read_u64(&memcg->memsw, name);
3840 		break;
3841 	default:
3842 		BUG();
3843 		break;
3844 	}
3845 	return val;
3846 }
3847 /*
3848  * The user of this function is...
3849  * RES_LIMIT.
3850  */
3851 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3852 			    const char *buffer)
3853 {
3854 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3855 	int type, name;
3856 	unsigned long long val;
3857 	int ret;
3858 
3859 	type = MEMFILE_TYPE(cft->private);
3860 	name = MEMFILE_ATTR(cft->private);
3861 	switch (name) {
3862 	case RES_LIMIT:
3863 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3864 			ret = -EINVAL;
3865 			break;
3866 		}
3867 		/* This function does all necessary parse...reuse it */
3868 		ret = res_counter_memparse_write_strategy(buffer, &val);
3869 		if (ret)
3870 			break;
3871 		if (type == _MEM)
3872 			ret = mem_cgroup_resize_limit(memcg, val);
3873 		else
3874 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3875 		break;
3876 	case RES_SOFT_LIMIT:
3877 		ret = res_counter_memparse_write_strategy(buffer, &val);
3878 		if (ret)
3879 			break;
3880 		/*
3881 		 * For memsw, soft limits are hard to implement in terms
3882 		 * of semantics, for now, we support soft limits for
3883 		 * control without swap
3884 		 */
3885 		if (type == _MEM)
3886 			ret = res_counter_set_soft_limit(&memcg->res, val);
3887 		else
3888 			ret = -EINVAL;
3889 		break;
3890 	default:
3891 		ret = -EINVAL; /* should be BUG() ? */
3892 		break;
3893 	}
3894 	return ret;
3895 }
3896 
3897 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3898 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3899 {
3900 	struct cgroup *cgroup;
3901 	unsigned long long min_limit, min_memsw_limit, tmp;
3902 
3903 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3904 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3905 	cgroup = memcg->css.cgroup;
3906 	if (!memcg->use_hierarchy)
3907 		goto out;
3908 
3909 	while (cgroup->parent) {
3910 		cgroup = cgroup->parent;
3911 		memcg = mem_cgroup_from_cont(cgroup);
3912 		if (!memcg->use_hierarchy)
3913 			break;
3914 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3915 		min_limit = min(min_limit, tmp);
3916 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3917 		min_memsw_limit = min(min_memsw_limit, tmp);
3918 	}
3919 out:
3920 	*mem_limit = min_limit;
3921 	*memsw_limit = min_memsw_limit;
3922 	return;
3923 }
3924 
3925 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3926 {
3927 	struct mem_cgroup *memcg;
3928 	int type, name;
3929 
3930 	memcg = mem_cgroup_from_cont(cont);
3931 	type = MEMFILE_TYPE(event);
3932 	name = MEMFILE_ATTR(event);
3933 	switch (name) {
3934 	case RES_MAX_USAGE:
3935 		if (type == _MEM)
3936 			res_counter_reset_max(&memcg->res);
3937 		else
3938 			res_counter_reset_max(&memcg->memsw);
3939 		break;
3940 	case RES_FAILCNT:
3941 		if (type == _MEM)
3942 			res_counter_reset_failcnt(&memcg->res);
3943 		else
3944 			res_counter_reset_failcnt(&memcg->memsw);
3945 		break;
3946 	}
3947 
3948 	return 0;
3949 }
3950 
3951 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3952 					struct cftype *cft)
3953 {
3954 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3955 }
3956 
3957 #ifdef CONFIG_MMU
3958 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3959 					struct cftype *cft, u64 val)
3960 {
3961 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3962 
3963 	if (val >= (1 << NR_MOVE_TYPE))
3964 		return -EINVAL;
3965 	/*
3966 	 * We check this value several times in both in can_attach() and
3967 	 * attach(), so we need cgroup lock to prevent this value from being
3968 	 * inconsistent.
3969 	 */
3970 	cgroup_lock();
3971 	memcg->move_charge_at_immigrate = val;
3972 	cgroup_unlock();
3973 
3974 	return 0;
3975 }
3976 #else
3977 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3978 					struct cftype *cft, u64 val)
3979 {
3980 	return -ENOSYS;
3981 }
3982 #endif
3983 
3984 
3985 /* For read statistics */
3986 enum {
3987 	MCS_CACHE,
3988 	MCS_RSS,
3989 	MCS_FILE_MAPPED,
3990 	MCS_PGPGIN,
3991 	MCS_PGPGOUT,
3992 	MCS_SWAP,
3993 	MCS_PGFAULT,
3994 	MCS_PGMAJFAULT,
3995 	MCS_INACTIVE_ANON,
3996 	MCS_ACTIVE_ANON,
3997 	MCS_INACTIVE_FILE,
3998 	MCS_ACTIVE_FILE,
3999 	MCS_UNEVICTABLE,
4000 	NR_MCS_STAT,
4001 };
4002 
4003 struct mcs_total_stat {
4004 	s64 stat[NR_MCS_STAT];
4005 };
4006 
4007 struct {
4008 	char *local_name;
4009 	char *total_name;
4010 } memcg_stat_strings[NR_MCS_STAT] = {
4011 	{"cache", "total_cache"},
4012 	{"rss", "total_rss"},
4013 	{"mapped_file", "total_mapped_file"},
4014 	{"pgpgin", "total_pgpgin"},
4015 	{"pgpgout", "total_pgpgout"},
4016 	{"swap", "total_swap"},
4017 	{"pgfault", "total_pgfault"},
4018 	{"pgmajfault", "total_pgmajfault"},
4019 	{"inactive_anon", "total_inactive_anon"},
4020 	{"active_anon", "total_active_anon"},
4021 	{"inactive_file", "total_inactive_file"},
4022 	{"active_file", "total_active_file"},
4023 	{"unevictable", "total_unevictable"}
4024 };
4025 
4026 
4027 static void
4028 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4029 {
4030 	s64 val;
4031 
4032 	/* per cpu stat */
4033 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4034 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4035 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4036 	s->stat[MCS_RSS] += val * PAGE_SIZE;
4037 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4038 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4039 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4040 	s->stat[MCS_PGPGIN] += val;
4041 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4042 	s->stat[MCS_PGPGOUT] += val;
4043 	if (do_swap_account) {
4044 		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4045 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4046 	}
4047 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4048 	s->stat[MCS_PGFAULT] += val;
4049 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4050 	s->stat[MCS_PGMAJFAULT] += val;
4051 
4052 	/* per zone stat */
4053 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4054 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4055 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4056 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4057 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4058 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4059 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4060 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4061 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4062 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4063 }
4064 
4065 static void
4066 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4067 {
4068 	struct mem_cgroup *iter;
4069 
4070 	for_each_mem_cgroup_tree(iter, memcg)
4071 		mem_cgroup_get_local_stat(iter, s);
4072 }
4073 
4074 #ifdef CONFIG_NUMA
4075 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4076 {
4077 	int nid;
4078 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4079 	unsigned long node_nr;
4080 	struct cgroup *cont = m->private;
4081 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4082 
4083 	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4084 	seq_printf(m, "total=%lu", total_nr);
4085 	for_each_node_state(nid, N_HIGH_MEMORY) {
4086 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4087 		seq_printf(m, " N%d=%lu", nid, node_nr);
4088 	}
4089 	seq_putc(m, '\n');
4090 
4091 	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4092 	seq_printf(m, "file=%lu", file_nr);
4093 	for_each_node_state(nid, N_HIGH_MEMORY) {
4094 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4095 				LRU_ALL_FILE);
4096 		seq_printf(m, " N%d=%lu", nid, node_nr);
4097 	}
4098 	seq_putc(m, '\n');
4099 
4100 	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4101 	seq_printf(m, "anon=%lu", anon_nr);
4102 	for_each_node_state(nid, N_HIGH_MEMORY) {
4103 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4104 				LRU_ALL_ANON);
4105 		seq_printf(m, " N%d=%lu", nid, node_nr);
4106 	}
4107 	seq_putc(m, '\n');
4108 
4109 	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4110 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4111 	for_each_node_state(nid, N_HIGH_MEMORY) {
4112 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4113 				BIT(LRU_UNEVICTABLE));
4114 		seq_printf(m, " N%d=%lu", nid, node_nr);
4115 	}
4116 	seq_putc(m, '\n');
4117 	return 0;
4118 }
4119 #endif /* CONFIG_NUMA */
4120 
4121 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4122 				 struct cgroup_map_cb *cb)
4123 {
4124 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4125 	struct mcs_total_stat mystat;
4126 	int i;
4127 
4128 	memset(&mystat, 0, sizeof(mystat));
4129 	mem_cgroup_get_local_stat(mem_cont, &mystat);
4130 
4131 
4132 	for (i = 0; i < NR_MCS_STAT; i++) {
4133 		if (i == MCS_SWAP && !do_swap_account)
4134 			continue;
4135 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4136 	}
4137 
4138 	/* Hierarchical information */
4139 	{
4140 		unsigned long long limit, memsw_limit;
4141 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4142 		cb->fill(cb, "hierarchical_memory_limit", limit);
4143 		if (do_swap_account)
4144 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4145 	}
4146 
4147 	memset(&mystat, 0, sizeof(mystat));
4148 	mem_cgroup_get_total_stat(mem_cont, &mystat);
4149 	for (i = 0; i < NR_MCS_STAT; i++) {
4150 		if (i == MCS_SWAP && !do_swap_account)
4151 			continue;
4152 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4153 	}
4154 
4155 #ifdef CONFIG_DEBUG_VM
4156 	{
4157 		int nid, zid;
4158 		struct mem_cgroup_per_zone *mz;
4159 		unsigned long recent_rotated[2] = {0, 0};
4160 		unsigned long recent_scanned[2] = {0, 0};
4161 
4162 		for_each_online_node(nid)
4163 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4164 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4165 
4166 				recent_rotated[0] +=
4167 					mz->reclaim_stat.recent_rotated[0];
4168 				recent_rotated[1] +=
4169 					mz->reclaim_stat.recent_rotated[1];
4170 				recent_scanned[0] +=
4171 					mz->reclaim_stat.recent_scanned[0];
4172 				recent_scanned[1] +=
4173 					mz->reclaim_stat.recent_scanned[1];
4174 			}
4175 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4176 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4177 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4178 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4179 	}
4180 #endif
4181 
4182 	return 0;
4183 }
4184 
4185 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4186 {
4187 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4188 
4189 	return mem_cgroup_swappiness(memcg);
4190 }
4191 
4192 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4193 				       u64 val)
4194 {
4195 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4196 	struct mem_cgroup *parent;
4197 
4198 	if (val > 100)
4199 		return -EINVAL;
4200 
4201 	if (cgrp->parent == NULL)
4202 		return -EINVAL;
4203 
4204 	parent = mem_cgroup_from_cont(cgrp->parent);
4205 
4206 	cgroup_lock();
4207 
4208 	/* If under hierarchy, only empty-root can set this value */
4209 	if ((parent->use_hierarchy) ||
4210 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4211 		cgroup_unlock();
4212 		return -EINVAL;
4213 	}
4214 
4215 	memcg->swappiness = val;
4216 
4217 	cgroup_unlock();
4218 
4219 	return 0;
4220 }
4221 
4222 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4223 {
4224 	struct mem_cgroup_threshold_ary *t;
4225 	u64 usage;
4226 	int i;
4227 
4228 	rcu_read_lock();
4229 	if (!swap)
4230 		t = rcu_dereference(memcg->thresholds.primary);
4231 	else
4232 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4233 
4234 	if (!t)
4235 		goto unlock;
4236 
4237 	usage = mem_cgroup_usage(memcg, swap);
4238 
4239 	/*
4240 	 * current_threshold points to threshold just below usage.
4241 	 * If it's not true, a threshold was crossed after last
4242 	 * call of __mem_cgroup_threshold().
4243 	 */
4244 	i = t->current_threshold;
4245 
4246 	/*
4247 	 * Iterate backward over array of thresholds starting from
4248 	 * current_threshold and check if a threshold is crossed.
4249 	 * If none of thresholds below usage is crossed, we read
4250 	 * only one element of the array here.
4251 	 */
4252 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4253 		eventfd_signal(t->entries[i].eventfd, 1);
4254 
4255 	/* i = current_threshold + 1 */
4256 	i++;
4257 
4258 	/*
4259 	 * Iterate forward over array of thresholds starting from
4260 	 * current_threshold+1 and check if a threshold is crossed.
4261 	 * If none of thresholds above usage is crossed, we read
4262 	 * only one element of the array here.
4263 	 */
4264 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4265 		eventfd_signal(t->entries[i].eventfd, 1);
4266 
4267 	/* Update current_threshold */
4268 	t->current_threshold = i - 1;
4269 unlock:
4270 	rcu_read_unlock();
4271 }
4272 
4273 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4274 {
4275 	while (memcg) {
4276 		__mem_cgroup_threshold(memcg, false);
4277 		if (do_swap_account)
4278 			__mem_cgroup_threshold(memcg, true);
4279 
4280 		memcg = parent_mem_cgroup(memcg);
4281 	}
4282 }
4283 
4284 static int compare_thresholds(const void *a, const void *b)
4285 {
4286 	const struct mem_cgroup_threshold *_a = a;
4287 	const struct mem_cgroup_threshold *_b = b;
4288 
4289 	return _a->threshold - _b->threshold;
4290 }
4291 
4292 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4293 {
4294 	struct mem_cgroup_eventfd_list *ev;
4295 
4296 	list_for_each_entry(ev, &memcg->oom_notify, list)
4297 		eventfd_signal(ev->eventfd, 1);
4298 	return 0;
4299 }
4300 
4301 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4302 {
4303 	struct mem_cgroup *iter;
4304 
4305 	for_each_mem_cgroup_tree(iter, memcg)
4306 		mem_cgroup_oom_notify_cb(iter);
4307 }
4308 
4309 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4310 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4311 {
4312 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4313 	struct mem_cgroup_thresholds *thresholds;
4314 	struct mem_cgroup_threshold_ary *new;
4315 	int type = MEMFILE_TYPE(cft->private);
4316 	u64 threshold, usage;
4317 	int i, size, ret;
4318 
4319 	ret = res_counter_memparse_write_strategy(args, &threshold);
4320 	if (ret)
4321 		return ret;
4322 
4323 	mutex_lock(&memcg->thresholds_lock);
4324 
4325 	if (type == _MEM)
4326 		thresholds = &memcg->thresholds;
4327 	else if (type == _MEMSWAP)
4328 		thresholds = &memcg->memsw_thresholds;
4329 	else
4330 		BUG();
4331 
4332 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4333 
4334 	/* Check if a threshold crossed before adding a new one */
4335 	if (thresholds->primary)
4336 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4337 
4338 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4339 
4340 	/* Allocate memory for new array of thresholds */
4341 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4342 			GFP_KERNEL);
4343 	if (!new) {
4344 		ret = -ENOMEM;
4345 		goto unlock;
4346 	}
4347 	new->size = size;
4348 
4349 	/* Copy thresholds (if any) to new array */
4350 	if (thresholds->primary) {
4351 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4352 				sizeof(struct mem_cgroup_threshold));
4353 	}
4354 
4355 	/* Add new threshold */
4356 	new->entries[size - 1].eventfd = eventfd;
4357 	new->entries[size - 1].threshold = threshold;
4358 
4359 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4360 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4361 			compare_thresholds, NULL);
4362 
4363 	/* Find current threshold */
4364 	new->current_threshold = -1;
4365 	for (i = 0; i < size; i++) {
4366 		if (new->entries[i].threshold < usage) {
4367 			/*
4368 			 * new->current_threshold will not be used until
4369 			 * rcu_assign_pointer(), so it's safe to increment
4370 			 * it here.
4371 			 */
4372 			++new->current_threshold;
4373 		}
4374 	}
4375 
4376 	/* Free old spare buffer and save old primary buffer as spare */
4377 	kfree(thresholds->spare);
4378 	thresholds->spare = thresholds->primary;
4379 
4380 	rcu_assign_pointer(thresholds->primary, new);
4381 
4382 	/* To be sure that nobody uses thresholds */
4383 	synchronize_rcu();
4384 
4385 unlock:
4386 	mutex_unlock(&memcg->thresholds_lock);
4387 
4388 	return ret;
4389 }
4390 
4391 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4392 	struct cftype *cft, struct eventfd_ctx *eventfd)
4393 {
4394 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4395 	struct mem_cgroup_thresholds *thresholds;
4396 	struct mem_cgroup_threshold_ary *new;
4397 	int type = MEMFILE_TYPE(cft->private);
4398 	u64 usage;
4399 	int i, j, size;
4400 
4401 	mutex_lock(&memcg->thresholds_lock);
4402 	if (type == _MEM)
4403 		thresholds = &memcg->thresholds;
4404 	else if (type == _MEMSWAP)
4405 		thresholds = &memcg->memsw_thresholds;
4406 	else
4407 		BUG();
4408 
4409 	/*
4410 	 * Something went wrong if we trying to unregister a threshold
4411 	 * if we don't have thresholds
4412 	 */
4413 	BUG_ON(!thresholds);
4414 
4415 	if (!thresholds->primary)
4416 		goto unlock;
4417 
4418 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4419 
4420 	/* Check if a threshold crossed before removing */
4421 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4422 
4423 	/* Calculate new number of threshold */
4424 	size = 0;
4425 	for (i = 0; i < thresholds->primary->size; i++) {
4426 		if (thresholds->primary->entries[i].eventfd != eventfd)
4427 			size++;
4428 	}
4429 
4430 	new = thresholds->spare;
4431 
4432 	/* Set thresholds array to NULL if we don't have thresholds */
4433 	if (!size) {
4434 		kfree(new);
4435 		new = NULL;
4436 		goto swap_buffers;
4437 	}
4438 
4439 	new->size = size;
4440 
4441 	/* Copy thresholds and find current threshold */
4442 	new->current_threshold = -1;
4443 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4444 		if (thresholds->primary->entries[i].eventfd == eventfd)
4445 			continue;
4446 
4447 		new->entries[j] = thresholds->primary->entries[i];
4448 		if (new->entries[j].threshold < usage) {
4449 			/*
4450 			 * new->current_threshold will not be used
4451 			 * until rcu_assign_pointer(), so it's safe to increment
4452 			 * it here.
4453 			 */
4454 			++new->current_threshold;
4455 		}
4456 		j++;
4457 	}
4458 
4459 swap_buffers:
4460 	/* Swap primary and spare array */
4461 	thresholds->spare = thresholds->primary;
4462 	rcu_assign_pointer(thresholds->primary, new);
4463 
4464 	/* To be sure that nobody uses thresholds */
4465 	synchronize_rcu();
4466 unlock:
4467 	mutex_unlock(&memcg->thresholds_lock);
4468 }
4469 
4470 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4471 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4472 {
4473 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4474 	struct mem_cgroup_eventfd_list *event;
4475 	int type = MEMFILE_TYPE(cft->private);
4476 
4477 	BUG_ON(type != _OOM_TYPE);
4478 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4479 	if (!event)
4480 		return -ENOMEM;
4481 
4482 	spin_lock(&memcg_oom_lock);
4483 
4484 	event->eventfd = eventfd;
4485 	list_add(&event->list, &memcg->oom_notify);
4486 
4487 	/* already in OOM ? */
4488 	if (atomic_read(&memcg->under_oom))
4489 		eventfd_signal(eventfd, 1);
4490 	spin_unlock(&memcg_oom_lock);
4491 
4492 	return 0;
4493 }
4494 
4495 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4496 	struct cftype *cft, struct eventfd_ctx *eventfd)
4497 {
4498 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4499 	struct mem_cgroup_eventfd_list *ev, *tmp;
4500 	int type = MEMFILE_TYPE(cft->private);
4501 
4502 	BUG_ON(type != _OOM_TYPE);
4503 
4504 	spin_lock(&memcg_oom_lock);
4505 
4506 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4507 		if (ev->eventfd == eventfd) {
4508 			list_del(&ev->list);
4509 			kfree(ev);
4510 		}
4511 	}
4512 
4513 	spin_unlock(&memcg_oom_lock);
4514 }
4515 
4516 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4517 	struct cftype *cft,  struct cgroup_map_cb *cb)
4518 {
4519 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4520 
4521 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4522 
4523 	if (atomic_read(&memcg->under_oom))
4524 		cb->fill(cb, "under_oom", 1);
4525 	else
4526 		cb->fill(cb, "under_oom", 0);
4527 	return 0;
4528 }
4529 
4530 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4531 	struct cftype *cft, u64 val)
4532 {
4533 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4534 	struct mem_cgroup *parent;
4535 
4536 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4537 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4538 		return -EINVAL;
4539 
4540 	parent = mem_cgroup_from_cont(cgrp->parent);
4541 
4542 	cgroup_lock();
4543 	/* oom-kill-disable is a flag for subhierarchy. */
4544 	if ((parent->use_hierarchy) ||
4545 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4546 		cgroup_unlock();
4547 		return -EINVAL;
4548 	}
4549 	memcg->oom_kill_disable = val;
4550 	if (!val)
4551 		memcg_oom_recover(memcg);
4552 	cgroup_unlock();
4553 	return 0;
4554 }
4555 
4556 #ifdef CONFIG_NUMA
4557 static const struct file_operations mem_control_numa_stat_file_operations = {
4558 	.read = seq_read,
4559 	.llseek = seq_lseek,
4560 	.release = single_release,
4561 };
4562 
4563 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4564 {
4565 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4566 
4567 	file->f_op = &mem_control_numa_stat_file_operations;
4568 	return single_open(file, mem_control_numa_stat_show, cont);
4569 }
4570 #endif /* CONFIG_NUMA */
4571 
4572 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4573 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4574 {
4575 	/*
4576 	 * Part of this would be better living in a separate allocation
4577 	 * function, leaving us with just the cgroup tree population work.
4578 	 * We, however, depend on state such as network's proto_list that
4579 	 * is only initialized after cgroup creation. I found the less
4580 	 * cumbersome way to deal with it to defer it all to populate time
4581 	 */
4582 	return mem_cgroup_sockets_init(cont, ss);
4583 };
4584 
4585 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4586 				struct cgroup *cont)
4587 {
4588 	mem_cgroup_sockets_destroy(cont, ss);
4589 }
4590 #else
4591 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4592 {
4593 	return 0;
4594 }
4595 
4596 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4597 				struct cgroup *cont)
4598 {
4599 }
4600 #endif
4601 
4602 static struct cftype mem_cgroup_files[] = {
4603 	{
4604 		.name = "usage_in_bytes",
4605 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4606 		.read_u64 = mem_cgroup_read,
4607 		.register_event = mem_cgroup_usage_register_event,
4608 		.unregister_event = mem_cgroup_usage_unregister_event,
4609 	},
4610 	{
4611 		.name = "max_usage_in_bytes",
4612 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4613 		.trigger = mem_cgroup_reset,
4614 		.read_u64 = mem_cgroup_read,
4615 	},
4616 	{
4617 		.name = "limit_in_bytes",
4618 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4619 		.write_string = mem_cgroup_write,
4620 		.read_u64 = mem_cgroup_read,
4621 	},
4622 	{
4623 		.name = "soft_limit_in_bytes",
4624 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4625 		.write_string = mem_cgroup_write,
4626 		.read_u64 = mem_cgroup_read,
4627 	},
4628 	{
4629 		.name = "failcnt",
4630 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4631 		.trigger = mem_cgroup_reset,
4632 		.read_u64 = mem_cgroup_read,
4633 	},
4634 	{
4635 		.name = "stat",
4636 		.read_map = mem_control_stat_show,
4637 	},
4638 	{
4639 		.name = "force_empty",
4640 		.trigger = mem_cgroup_force_empty_write,
4641 	},
4642 	{
4643 		.name = "use_hierarchy",
4644 		.write_u64 = mem_cgroup_hierarchy_write,
4645 		.read_u64 = mem_cgroup_hierarchy_read,
4646 	},
4647 	{
4648 		.name = "swappiness",
4649 		.read_u64 = mem_cgroup_swappiness_read,
4650 		.write_u64 = mem_cgroup_swappiness_write,
4651 	},
4652 	{
4653 		.name = "move_charge_at_immigrate",
4654 		.read_u64 = mem_cgroup_move_charge_read,
4655 		.write_u64 = mem_cgroup_move_charge_write,
4656 	},
4657 	{
4658 		.name = "oom_control",
4659 		.read_map = mem_cgroup_oom_control_read,
4660 		.write_u64 = mem_cgroup_oom_control_write,
4661 		.register_event = mem_cgroup_oom_register_event,
4662 		.unregister_event = mem_cgroup_oom_unregister_event,
4663 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4664 	},
4665 #ifdef CONFIG_NUMA
4666 	{
4667 		.name = "numa_stat",
4668 		.open = mem_control_numa_stat_open,
4669 		.mode = S_IRUGO,
4670 	},
4671 #endif
4672 };
4673 
4674 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4675 static struct cftype memsw_cgroup_files[] = {
4676 	{
4677 		.name = "memsw.usage_in_bytes",
4678 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4679 		.read_u64 = mem_cgroup_read,
4680 		.register_event = mem_cgroup_usage_register_event,
4681 		.unregister_event = mem_cgroup_usage_unregister_event,
4682 	},
4683 	{
4684 		.name = "memsw.max_usage_in_bytes",
4685 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4686 		.trigger = mem_cgroup_reset,
4687 		.read_u64 = mem_cgroup_read,
4688 	},
4689 	{
4690 		.name = "memsw.limit_in_bytes",
4691 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4692 		.write_string = mem_cgroup_write,
4693 		.read_u64 = mem_cgroup_read,
4694 	},
4695 	{
4696 		.name = "memsw.failcnt",
4697 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4698 		.trigger = mem_cgroup_reset,
4699 		.read_u64 = mem_cgroup_read,
4700 	},
4701 };
4702 
4703 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4704 {
4705 	if (!do_swap_account)
4706 		return 0;
4707 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4708 				ARRAY_SIZE(memsw_cgroup_files));
4709 };
4710 #else
4711 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4712 {
4713 	return 0;
4714 }
4715 #endif
4716 
4717 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4718 {
4719 	struct mem_cgroup_per_node *pn;
4720 	struct mem_cgroup_per_zone *mz;
4721 	enum lru_list l;
4722 	int zone, tmp = node;
4723 	/*
4724 	 * This routine is called against possible nodes.
4725 	 * But it's BUG to call kmalloc() against offline node.
4726 	 *
4727 	 * TODO: this routine can waste much memory for nodes which will
4728 	 *       never be onlined. It's better to use memory hotplug callback
4729 	 *       function.
4730 	 */
4731 	if (!node_state(node, N_NORMAL_MEMORY))
4732 		tmp = -1;
4733 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4734 	if (!pn)
4735 		return 1;
4736 
4737 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4738 		mz = &pn->zoneinfo[zone];
4739 		for_each_lru(l)
4740 			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4741 		mz->usage_in_excess = 0;
4742 		mz->on_tree = false;
4743 		mz->mem = memcg;
4744 	}
4745 	memcg->info.nodeinfo[node] = pn;
4746 	return 0;
4747 }
4748 
4749 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4750 {
4751 	kfree(memcg->info.nodeinfo[node]);
4752 }
4753 
4754 static struct mem_cgroup *mem_cgroup_alloc(void)
4755 {
4756 	struct mem_cgroup *mem;
4757 	int size = sizeof(struct mem_cgroup);
4758 
4759 	/* Can be very big if MAX_NUMNODES is very big */
4760 	if (size < PAGE_SIZE)
4761 		mem = kzalloc(size, GFP_KERNEL);
4762 	else
4763 		mem = vzalloc(size);
4764 
4765 	if (!mem)
4766 		return NULL;
4767 
4768 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4769 	if (!mem->stat)
4770 		goto out_free;
4771 	spin_lock_init(&mem->pcp_counter_lock);
4772 	return mem;
4773 
4774 out_free:
4775 	if (size < PAGE_SIZE)
4776 		kfree(mem);
4777 	else
4778 		vfree(mem);
4779 	return NULL;
4780 }
4781 
4782 /*
4783  * At destroying mem_cgroup, references from swap_cgroup can remain.
4784  * (scanning all at force_empty is too costly...)
4785  *
4786  * Instead of clearing all references at force_empty, we remember
4787  * the number of reference from swap_cgroup and free mem_cgroup when
4788  * it goes down to 0.
4789  *
4790  * Removal of cgroup itself succeeds regardless of refs from swap.
4791  */
4792 
4793 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4794 {
4795 	int node;
4796 
4797 	mem_cgroup_remove_from_trees(memcg);
4798 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4799 
4800 	for_each_node(node)
4801 		free_mem_cgroup_per_zone_info(memcg, node);
4802 
4803 	free_percpu(memcg->stat);
4804 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4805 		kfree(memcg);
4806 	else
4807 		vfree(memcg);
4808 }
4809 
4810 static void mem_cgroup_get(struct mem_cgroup *memcg)
4811 {
4812 	atomic_inc(&memcg->refcnt);
4813 }
4814 
4815 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4816 {
4817 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4818 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4819 		__mem_cgroup_free(memcg);
4820 		if (parent)
4821 			mem_cgroup_put(parent);
4822 	}
4823 }
4824 
4825 static void mem_cgroup_put(struct mem_cgroup *memcg)
4826 {
4827 	__mem_cgroup_put(memcg, 1);
4828 }
4829 
4830 /*
4831  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4832  */
4833 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4834 {
4835 	if (!memcg->res.parent)
4836 		return NULL;
4837 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4838 }
4839 EXPORT_SYMBOL(parent_mem_cgroup);
4840 
4841 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4842 static void __init enable_swap_cgroup(void)
4843 {
4844 	if (!mem_cgroup_disabled() && really_do_swap_account)
4845 		do_swap_account = 1;
4846 }
4847 #else
4848 static void __init enable_swap_cgroup(void)
4849 {
4850 }
4851 #endif
4852 
4853 static int mem_cgroup_soft_limit_tree_init(void)
4854 {
4855 	struct mem_cgroup_tree_per_node *rtpn;
4856 	struct mem_cgroup_tree_per_zone *rtpz;
4857 	int tmp, node, zone;
4858 
4859 	for_each_node(node) {
4860 		tmp = node;
4861 		if (!node_state(node, N_NORMAL_MEMORY))
4862 			tmp = -1;
4863 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4864 		if (!rtpn)
4865 			goto err_cleanup;
4866 
4867 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4868 
4869 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4870 			rtpz = &rtpn->rb_tree_per_zone[zone];
4871 			rtpz->rb_root = RB_ROOT;
4872 			spin_lock_init(&rtpz->lock);
4873 		}
4874 	}
4875 	return 0;
4876 
4877 err_cleanup:
4878 	for_each_node(node) {
4879 		if (!soft_limit_tree.rb_tree_per_node[node])
4880 			break;
4881 		kfree(soft_limit_tree.rb_tree_per_node[node]);
4882 		soft_limit_tree.rb_tree_per_node[node] = NULL;
4883 	}
4884 	return 1;
4885 
4886 }
4887 
4888 static struct cgroup_subsys_state * __ref
4889 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4890 {
4891 	struct mem_cgroup *memcg, *parent;
4892 	long error = -ENOMEM;
4893 	int node;
4894 
4895 	memcg = mem_cgroup_alloc();
4896 	if (!memcg)
4897 		return ERR_PTR(error);
4898 
4899 	for_each_node(node)
4900 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4901 			goto free_out;
4902 
4903 	/* root ? */
4904 	if (cont->parent == NULL) {
4905 		int cpu;
4906 		enable_swap_cgroup();
4907 		parent = NULL;
4908 		if (mem_cgroup_soft_limit_tree_init())
4909 			goto free_out;
4910 		root_mem_cgroup = memcg;
4911 		for_each_possible_cpu(cpu) {
4912 			struct memcg_stock_pcp *stock =
4913 						&per_cpu(memcg_stock, cpu);
4914 			INIT_WORK(&stock->work, drain_local_stock);
4915 		}
4916 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4917 	} else {
4918 		parent = mem_cgroup_from_cont(cont->parent);
4919 		memcg->use_hierarchy = parent->use_hierarchy;
4920 		memcg->oom_kill_disable = parent->oom_kill_disable;
4921 	}
4922 
4923 	if (parent && parent->use_hierarchy) {
4924 		res_counter_init(&memcg->res, &parent->res);
4925 		res_counter_init(&memcg->memsw, &parent->memsw);
4926 		/*
4927 		 * We increment refcnt of the parent to ensure that we can
4928 		 * safely access it on res_counter_charge/uncharge.
4929 		 * This refcnt will be decremented when freeing this
4930 		 * mem_cgroup(see mem_cgroup_put).
4931 		 */
4932 		mem_cgroup_get(parent);
4933 	} else {
4934 		res_counter_init(&memcg->res, NULL);
4935 		res_counter_init(&memcg->memsw, NULL);
4936 	}
4937 	memcg->last_scanned_node = MAX_NUMNODES;
4938 	INIT_LIST_HEAD(&memcg->oom_notify);
4939 
4940 	if (parent)
4941 		memcg->swappiness = mem_cgroup_swappiness(parent);
4942 	atomic_set(&memcg->refcnt, 1);
4943 	memcg->move_charge_at_immigrate = 0;
4944 	mutex_init(&memcg->thresholds_lock);
4945 	return &memcg->css;
4946 free_out:
4947 	__mem_cgroup_free(memcg);
4948 	return ERR_PTR(error);
4949 }
4950 
4951 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4952 					struct cgroup *cont)
4953 {
4954 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4955 
4956 	return mem_cgroup_force_empty(memcg, false);
4957 }
4958 
4959 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4960 				struct cgroup *cont)
4961 {
4962 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4963 
4964 	kmem_cgroup_destroy(ss, cont);
4965 
4966 	mem_cgroup_put(memcg);
4967 }
4968 
4969 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4970 				struct cgroup *cont)
4971 {
4972 	int ret;
4973 
4974 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4975 				ARRAY_SIZE(mem_cgroup_files));
4976 
4977 	if (!ret)
4978 		ret = register_memsw_files(cont, ss);
4979 
4980 	if (!ret)
4981 		ret = register_kmem_files(cont, ss);
4982 
4983 	return ret;
4984 }
4985 
4986 #ifdef CONFIG_MMU
4987 /* Handlers for move charge at task migration. */
4988 #define PRECHARGE_COUNT_AT_ONCE	256
4989 static int mem_cgroup_do_precharge(unsigned long count)
4990 {
4991 	int ret = 0;
4992 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4993 	struct mem_cgroup *memcg = mc.to;
4994 
4995 	if (mem_cgroup_is_root(memcg)) {
4996 		mc.precharge += count;
4997 		/* we don't need css_get for root */
4998 		return ret;
4999 	}
5000 	/* try to charge at once */
5001 	if (count > 1) {
5002 		struct res_counter *dummy;
5003 		/*
5004 		 * "memcg" cannot be under rmdir() because we've already checked
5005 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5006 		 * are still under the same cgroup_mutex. So we can postpone
5007 		 * css_get().
5008 		 */
5009 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5010 			goto one_by_one;
5011 		if (do_swap_account && res_counter_charge(&memcg->memsw,
5012 						PAGE_SIZE * count, &dummy)) {
5013 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5014 			goto one_by_one;
5015 		}
5016 		mc.precharge += count;
5017 		return ret;
5018 	}
5019 one_by_one:
5020 	/* fall back to one by one charge */
5021 	while (count--) {
5022 		if (signal_pending(current)) {
5023 			ret = -EINTR;
5024 			break;
5025 		}
5026 		if (!batch_count--) {
5027 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5028 			cond_resched();
5029 		}
5030 		ret = __mem_cgroup_try_charge(NULL,
5031 					GFP_KERNEL, 1, &memcg, false);
5032 		if (ret)
5033 			/* mem_cgroup_clear_mc() will do uncharge later */
5034 			return ret;
5035 		mc.precharge++;
5036 	}
5037 	return ret;
5038 }
5039 
5040 /**
5041  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5042  * @vma: the vma the pte to be checked belongs
5043  * @addr: the address corresponding to the pte to be checked
5044  * @ptent: the pte to be checked
5045  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5046  *
5047  * Returns
5048  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5049  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5050  *     move charge. if @target is not NULL, the page is stored in target->page
5051  *     with extra refcnt got(Callers should handle it).
5052  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5053  *     target for charge migration. if @target is not NULL, the entry is stored
5054  *     in target->ent.
5055  *
5056  * Called with pte lock held.
5057  */
5058 union mc_target {
5059 	struct page	*page;
5060 	swp_entry_t	ent;
5061 };
5062 
5063 enum mc_target_type {
5064 	MC_TARGET_NONE,	/* not used */
5065 	MC_TARGET_PAGE,
5066 	MC_TARGET_SWAP,
5067 };
5068 
5069 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5070 						unsigned long addr, pte_t ptent)
5071 {
5072 	struct page *page = vm_normal_page(vma, addr, ptent);
5073 
5074 	if (!page || !page_mapped(page))
5075 		return NULL;
5076 	if (PageAnon(page)) {
5077 		/* we don't move shared anon */
5078 		if (!move_anon() || page_mapcount(page) > 2)
5079 			return NULL;
5080 	} else if (!move_file())
5081 		/* we ignore mapcount for file pages */
5082 		return NULL;
5083 	if (!get_page_unless_zero(page))
5084 		return NULL;
5085 
5086 	return page;
5087 }
5088 
5089 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5090 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5091 {
5092 	int usage_count;
5093 	struct page *page = NULL;
5094 	swp_entry_t ent = pte_to_swp_entry(ptent);
5095 
5096 	if (!move_anon() || non_swap_entry(ent))
5097 		return NULL;
5098 	usage_count = mem_cgroup_count_swap_user(ent, &page);
5099 	if (usage_count > 1) { /* we don't move shared anon */
5100 		if (page)
5101 			put_page(page);
5102 		return NULL;
5103 	}
5104 	if (do_swap_account)
5105 		entry->val = ent.val;
5106 
5107 	return page;
5108 }
5109 
5110 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5111 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5112 {
5113 	struct page *page = NULL;
5114 	struct inode *inode;
5115 	struct address_space *mapping;
5116 	pgoff_t pgoff;
5117 
5118 	if (!vma->vm_file) /* anonymous vma */
5119 		return NULL;
5120 	if (!move_file())
5121 		return NULL;
5122 
5123 	inode = vma->vm_file->f_path.dentry->d_inode;
5124 	mapping = vma->vm_file->f_mapping;
5125 	if (pte_none(ptent))
5126 		pgoff = linear_page_index(vma, addr);
5127 	else /* pte_file(ptent) is true */
5128 		pgoff = pte_to_pgoff(ptent);
5129 
5130 	/* page is moved even if it's not RSS of this task(page-faulted). */
5131 	page = find_get_page(mapping, pgoff);
5132 
5133 #ifdef CONFIG_SWAP
5134 	/* shmem/tmpfs may report page out on swap: account for that too. */
5135 	if (radix_tree_exceptional_entry(page)) {
5136 		swp_entry_t swap = radix_to_swp_entry(page);
5137 		if (do_swap_account)
5138 			*entry = swap;
5139 		page = find_get_page(&swapper_space, swap.val);
5140 	}
5141 #endif
5142 	return page;
5143 }
5144 
5145 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5146 		unsigned long addr, pte_t ptent, union mc_target *target)
5147 {
5148 	struct page *page = NULL;
5149 	struct page_cgroup *pc;
5150 	int ret = 0;
5151 	swp_entry_t ent = { .val = 0 };
5152 
5153 	if (pte_present(ptent))
5154 		page = mc_handle_present_pte(vma, addr, ptent);
5155 	else if (is_swap_pte(ptent))
5156 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5157 	else if (pte_none(ptent) || pte_file(ptent))
5158 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5159 
5160 	if (!page && !ent.val)
5161 		return 0;
5162 	if (page) {
5163 		pc = lookup_page_cgroup(page);
5164 		/*
5165 		 * Do only loose check w/o page_cgroup lock.
5166 		 * mem_cgroup_move_account() checks the pc is valid or not under
5167 		 * the lock.
5168 		 */
5169 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5170 			ret = MC_TARGET_PAGE;
5171 			if (target)
5172 				target->page = page;
5173 		}
5174 		if (!ret || !target)
5175 			put_page(page);
5176 	}
5177 	/* There is a swap entry and a page doesn't exist or isn't charged */
5178 	if (ent.val && !ret &&
5179 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5180 		ret = MC_TARGET_SWAP;
5181 		if (target)
5182 			target->ent = ent;
5183 	}
5184 	return ret;
5185 }
5186 
5187 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5188 					unsigned long addr, unsigned long end,
5189 					struct mm_walk *walk)
5190 {
5191 	struct vm_area_struct *vma = walk->private;
5192 	pte_t *pte;
5193 	spinlock_t *ptl;
5194 
5195 	split_huge_page_pmd(walk->mm, pmd);
5196 
5197 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5198 	for (; addr != end; pte++, addr += PAGE_SIZE)
5199 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5200 			mc.precharge++;	/* increment precharge temporarily */
5201 	pte_unmap_unlock(pte - 1, ptl);
5202 	cond_resched();
5203 
5204 	return 0;
5205 }
5206 
5207 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5208 {
5209 	unsigned long precharge;
5210 	struct vm_area_struct *vma;
5211 
5212 	down_read(&mm->mmap_sem);
5213 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5214 		struct mm_walk mem_cgroup_count_precharge_walk = {
5215 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5216 			.mm = mm,
5217 			.private = vma,
5218 		};
5219 		if (is_vm_hugetlb_page(vma))
5220 			continue;
5221 		walk_page_range(vma->vm_start, vma->vm_end,
5222 					&mem_cgroup_count_precharge_walk);
5223 	}
5224 	up_read(&mm->mmap_sem);
5225 
5226 	precharge = mc.precharge;
5227 	mc.precharge = 0;
5228 
5229 	return precharge;
5230 }
5231 
5232 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5233 {
5234 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5235 
5236 	VM_BUG_ON(mc.moving_task);
5237 	mc.moving_task = current;
5238 	return mem_cgroup_do_precharge(precharge);
5239 }
5240 
5241 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5242 static void __mem_cgroup_clear_mc(void)
5243 {
5244 	struct mem_cgroup *from = mc.from;
5245 	struct mem_cgroup *to = mc.to;
5246 
5247 	/* we must uncharge all the leftover precharges from mc.to */
5248 	if (mc.precharge) {
5249 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5250 		mc.precharge = 0;
5251 	}
5252 	/*
5253 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5254 	 * we must uncharge here.
5255 	 */
5256 	if (mc.moved_charge) {
5257 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5258 		mc.moved_charge = 0;
5259 	}
5260 	/* we must fixup refcnts and charges */
5261 	if (mc.moved_swap) {
5262 		/* uncharge swap account from the old cgroup */
5263 		if (!mem_cgroup_is_root(mc.from))
5264 			res_counter_uncharge(&mc.from->memsw,
5265 						PAGE_SIZE * mc.moved_swap);
5266 		__mem_cgroup_put(mc.from, mc.moved_swap);
5267 
5268 		if (!mem_cgroup_is_root(mc.to)) {
5269 			/*
5270 			 * we charged both to->res and to->memsw, so we should
5271 			 * uncharge to->res.
5272 			 */
5273 			res_counter_uncharge(&mc.to->res,
5274 						PAGE_SIZE * mc.moved_swap);
5275 		}
5276 		/* we've already done mem_cgroup_get(mc.to) */
5277 		mc.moved_swap = 0;
5278 	}
5279 	memcg_oom_recover(from);
5280 	memcg_oom_recover(to);
5281 	wake_up_all(&mc.waitq);
5282 }
5283 
5284 static void mem_cgroup_clear_mc(void)
5285 {
5286 	struct mem_cgroup *from = mc.from;
5287 
5288 	/*
5289 	 * we must clear moving_task before waking up waiters at the end of
5290 	 * task migration.
5291 	 */
5292 	mc.moving_task = NULL;
5293 	__mem_cgroup_clear_mc();
5294 	spin_lock(&mc.lock);
5295 	mc.from = NULL;
5296 	mc.to = NULL;
5297 	spin_unlock(&mc.lock);
5298 	mem_cgroup_end_move(from);
5299 }
5300 
5301 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5302 				struct cgroup *cgroup,
5303 				struct cgroup_taskset *tset)
5304 {
5305 	struct task_struct *p = cgroup_taskset_first(tset);
5306 	int ret = 0;
5307 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5308 
5309 	if (memcg->move_charge_at_immigrate) {
5310 		struct mm_struct *mm;
5311 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5312 
5313 		VM_BUG_ON(from == memcg);
5314 
5315 		mm = get_task_mm(p);
5316 		if (!mm)
5317 			return 0;
5318 		/* We move charges only when we move a owner of the mm */
5319 		if (mm->owner == p) {
5320 			VM_BUG_ON(mc.from);
5321 			VM_BUG_ON(mc.to);
5322 			VM_BUG_ON(mc.precharge);
5323 			VM_BUG_ON(mc.moved_charge);
5324 			VM_BUG_ON(mc.moved_swap);
5325 			mem_cgroup_start_move(from);
5326 			spin_lock(&mc.lock);
5327 			mc.from = from;
5328 			mc.to = memcg;
5329 			spin_unlock(&mc.lock);
5330 			/* We set mc.moving_task later */
5331 
5332 			ret = mem_cgroup_precharge_mc(mm);
5333 			if (ret)
5334 				mem_cgroup_clear_mc();
5335 		}
5336 		mmput(mm);
5337 	}
5338 	return ret;
5339 }
5340 
5341 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5342 				struct cgroup *cgroup,
5343 				struct cgroup_taskset *tset)
5344 {
5345 	mem_cgroup_clear_mc();
5346 }
5347 
5348 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5349 				unsigned long addr, unsigned long end,
5350 				struct mm_walk *walk)
5351 {
5352 	int ret = 0;
5353 	struct vm_area_struct *vma = walk->private;
5354 	pte_t *pte;
5355 	spinlock_t *ptl;
5356 
5357 	split_huge_page_pmd(walk->mm, pmd);
5358 retry:
5359 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5360 	for (; addr != end; addr += PAGE_SIZE) {
5361 		pte_t ptent = *(pte++);
5362 		union mc_target target;
5363 		int type;
5364 		struct page *page;
5365 		struct page_cgroup *pc;
5366 		swp_entry_t ent;
5367 
5368 		if (!mc.precharge)
5369 			break;
5370 
5371 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5372 		switch (type) {
5373 		case MC_TARGET_PAGE:
5374 			page = target.page;
5375 			if (isolate_lru_page(page))
5376 				goto put;
5377 			pc = lookup_page_cgroup(page);
5378 			if (!mem_cgroup_move_account(page, 1, pc,
5379 						     mc.from, mc.to, false)) {
5380 				mc.precharge--;
5381 				/* we uncharge from mc.from later. */
5382 				mc.moved_charge++;
5383 			}
5384 			putback_lru_page(page);
5385 put:			/* is_target_pte_for_mc() gets the page */
5386 			put_page(page);
5387 			break;
5388 		case MC_TARGET_SWAP:
5389 			ent = target.ent;
5390 			if (!mem_cgroup_move_swap_account(ent,
5391 						mc.from, mc.to, false)) {
5392 				mc.precharge--;
5393 				/* we fixup refcnts and charges later. */
5394 				mc.moved_swap++;
5395 			}
5396 			break;
5397 		default:
5398 			break;
5399 		}
5400 	}
5401 	pte_unmap_unlock(pte - 1, ptl);
5402 	cond_resched();
5403 
5404 	if (addr != end) {
5405 		/*
5406 		 * We have consumed all precharges we got in can_attach().
5407 		 * We try charge one by one, but don't do any additional
5408 		 * charges to mc.to if we have failed in charge once in attach()
5409 		 * phase.
5410 		 */
5411 		ret = mem_cgroup_do_precharge(1);
5412 		if (!ret)
5413 			goto retry;
5414 	}
5415 
5416 	return ret;
5417 }
5418 
5419 static void mem_cgroup_move_charge(struct mm_struct *mm)
5420 {
5421 	struct vm_area_struct *vma;
5422 
5423 	lru_add_drain_all();
5424 retry:
5425 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5426 		/*
5427 		 * Someone who are holding the mmap_sem might be waiting in
5428 		 * waitq. So we cancel all extra charges, wake up all waiters,
5429 		 * and retry. Because we cancel precharges, we might not be able
5430 		 * to move enough charges, but moving charge is a best-effort
5431 		 * feature anyway, so it wouldn't be a big problem.
5432 		 */
5433 		__mem_cgroup_clear_mc();
5434 		cond_resched();
5435 		goto retry;
5436 	}
5437 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5438 		int ret;
5439 		struct mm_walk mem_cgroup_move_charge_walk = {
5440 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5441 			.mm = mm,
5442 			.private = vma,
5443 		};
5444 		if (is_vm_hugetlb_page(vma))
5445 			continue;
5446 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5447 						&mem_cgroup_move_charge_walk);
5448 		if (ret)
5449 			/*
5450 			 * means we have consumed all precharges and failed in
5451 			 * doing additional charge. Just abandon here.
5452 			 */
5453 			break;
5454 	}
5455 	up_read(&mm->mmap_sem);
5456 }
5457 
5458 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5459 				struct cgroup *cont,
5460 				struct cgroup_taskset *tset)
5461 {
5462 	struct task_struct *p = cgroup_taskset_first(tset);
5463 	struct mm_struct *mm = get_task_mm(p);
5464 
5465 	if (mm) {
5466 		if (mc.to)
5467 			mem_cgroup_move_charge(mm);
5468 		put_swap_token(mm);
5469 		mmput(mm);
5470 	}
5471 	if (mc.to)
5472 		mem_cgroup_clear_mc();
5473 }
5474 #else	/* !CONFIG_MMU */
5475 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5476 				struct cgroup *cgroup,
5477 				struct cgroup_taskset *tset)
5478 {
5479 	return 0;
5480 }
5481 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5482 				struct cgroup *cgroup,
5483 				struct cgroup_taskset *tset)
5484 {
5485 }
5486 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5487 				struct cgroup *cont,
5488 				struct cgroup_taskset *tset)
5489 {
5490 }
5491 #endif
5492 
5493 struct cgroup_subsys mem_cgroup_subsys = {
5494 	.name = "memory",
5495 	.subsys_id = mem_cgroup_subsys_id,
5496 	.create = mem_cgroup_create,
5497 	.pre_destroy = mem_cgroup_pre_destroy,
5498 	.destroy = mem_cgroup_destroy,
5499 	.populate = mem_cgroup_populate,
5500 	.can_attach = mem_cgroup_can_attach,
5501 	.cancel_attach = mem_cgroup_cancel_attach,
5502 	.attach = mem_cgroup_move_task,
5503 	.early_init = 0,
5504 	.use_id = 1,
5505 };
5506 
5507 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5508 static int __init enable_swap_account(char *s)
5509 {
5510 	/* consider enabled if no parameter or 1 is given */
5511 	if (!strcmp(s, "1"))
5512 		really_do_swap_account = 1;
5513 	else if (!strcmp(s, "0"))
5514 		really_do_swap_account = 0;
5515 	return 1;
5516 }
5517 __setup("swapaccount=", enable_swap_account);
5518 
5519 #endif
5520