1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 */ 23 24 #include <linux/res_counter.h> 25 #include <linux/memcontrol.h> 26 #include <linux/cgroup.h> 27 #include <linux/mm.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagemap.h> 30 #include <linux/smp.h> 31 #include <linux/page-flags.h> 32 #include <linux/backing-dev.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/rcupdate.h> 35 #include <linux/limits.h> 36 #include <linux/export.h> 37 #include <linux/mutex.h> 38 #include <linux/rbtree.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swapops.h> 42 #include <linux/spinlock.h> 43 #include <linux/eventfd.h> 44 #include <linux/sort.h> 45 #include <linux/fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/vmalloc.h> 48 #include <linux/mm_inline.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/cpu.h> 51 #include <linux/oom.h> 52 #include "internal.h" 53 #include <net/sock.h> 54 #include <net/tcp_memcontrol.h> 55 56 #include <asm/uaccess.h> 57 58 #include <trace/events/vmscan.h> 59 60 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 61 #define MEM_CGROUP_RECLAIM_RETRIES 5 62 struct mem_cgroup *root_mem_cgroup __read_mostly; 63 64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 66 int do_swap_account __read_mostly; 67 68 /* for remember boot option*/ 69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED 70 static int really_do_swap_account __initdata = 1; 71 #else 72 static int really_do_swap_account __initdata = 0; 73 #endif 74 75 #else 76 #define do_swap_account (0) 77 #endif 78 79 80 /* 81 * Statistics for memory cgroup. 82 */ 83 enum mem_cgroup_stat_index { 84 /* 85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 86 */ 87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */ 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */ 93 MEM_CGROUP_STAT_NSTATS, 94 }; 95 96 enum mem_cgroup_events_index { 97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */ 100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 102 MEM_CGROUP_EVENTS_NSTATS, 103 }; 104 /* 105 * Per memcg event counter is incremented at every pagein/pageout. With THP, 106 * it will be incremated by the number of pages. This counter is used for 107 * for trigger some periodic events. This is straightforward and better 108 * than using jiffies etc. to handle periodic memcg event. 109 */ 110 enum mem_cgroup_events_target { 111 MEM_CGROUP_TARGET_THRESH, 112 MEM_CGROUP_TARGET_SOFTLIMIT, 113 MEM_CGROUP_TARGET_NUMAINFO, 114 MEM_CGROUP_NTARGETS, 115 }; 116 #define THRESHOLDS_EVENTS_TARGET (128) 117 #define SOFTLIMIT_EVENTS_TARGET (1024) 118 #define NUMAINFO_EVENTS_TARGET (1024) 119 120 struct mem_cgroup_stat_cpu { 121 long count[MEM_CGROUP_STAT_NSTATS]; 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 123 unsigned long targets[MEM_CGROUP_NTARGETS]; 124 }; 125 126 struct mem_cgroup_reclaim_iter { 127 /* css_id of the last scanned hierarchy member */ 128 int position; 129 /* scan generation, increased every round-trip */ 130 unsigned int generation; 131 }; 132 133 /* 134 * per-zone information in memory controller. 135 */ 136 struct mem_cgroup_per_zone { 137 struct lruvec lruvec; 138 unsigned long count[NR_LRU_LISTS]; 139 140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 141 142 struct zone_reclaim_stat reclaim_stat; 143 struct rb_node tree_node; /* RB tree node */ 144 unsigned long long usage_in_excess;/* Set to the value by which */ 145 /* the soft limit is exceeded*/ 146 bool on_tree; 147 struct mem_cgroup *mem; /* Back pointer, we cannot */ 148 /* use container_of */ 149 }; 150 /* Macro for accessing counter */ 151 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) 152 153 struct mem_cgroup_per_node { 154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 155 }; 156 157 struct mem_cgroup_lru_info { 158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 159 }; 160 161 /* 162 * Cgroups above their limits are maintained in a RB-Tree, independent of 163 * their hierarchy representation 164 */ 165 166 struct mem_cgroup_tree_per_zone { 167 struct rb_root rb_root; 168 spinlock_t lock; 169 }; 170 171 struct mem_cgroup_tree_per_node { 172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 173 }; 174 175 struct mem_cgroup_tree { 176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 177 }; 178 179 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 180 181 struct mem_cgroup_threshold { 182 struct eventfd_ctx *eventfd; 183 u64 threshold; 184 }; 185 186 /* For threshold */ 187 struct mem_cgroup_threshold_ary { 188 /* An array index points to threshold just below usage. */ 189 int current_threshold; 190 /* Size of entries[] */ 191 unsigned int size; 192 /* Array of thresholds */ 193 struct mem_cgroup_threshold entries[0]; 194 }; 195 196 struct mem_cgroup_thresholds { 197 /* Primary thresholds array */ 198 struct mem_cgroup_threshold_ary *primary; 199 /* 200 * Spare threshold array. 201 * This is needed to make mem_cgroup_unregister_event() "never fail". 202 * It must be able to store at least primary->size - 1 entries. 203 */ 204 struct mem_cgroup_threshold_ary *spare; 205 }; 206 207 /* for OOM */ 208 struct mem_cgroup_eventfd_list { 209 struct list_head list; 210 struct eventfd_ctx *eventfd; 211 }; 212 213 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 215 216 /* 217 * The memory controller data structure. The memory controller controls both 218 * page cache and RSS per cgroup. We would eventually like to provide 219 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 220 * to help the administrator determine what knobs to tune. 221 * 222 * TODO: Add a water mark for the memory controller. Reclaim will begin when 223 * we hit the water mark. May be even add a low water mark, such that 224 * no reclaim occurs from a cgroup at it's low water mark, this is 225 * a feature that will be implemented much later in the future. 226 */ 227 struct mem_cgroup { 228 struct cgroup_subsys_state css; 229 /* 230 * the counter to account for memory usage 231 */ 232 struct res_counter res; 233 /* 234 * the counter to account for mem+swap usage. 235 */ 236 struct res_counter memsw; 237 /* 238 * Per cgroup active and inactive list, similar to the 239 * per zone LRU lists. 240 */ 241 struct mem_cgroup_lru_info info; 242 int last_scanned_node; 243 #if MAX_NUMNODES > 1 244 nodemask_t scan_nodes; 245 atomic_t numainfo_events; 246 atomic_t numainfo_updating; 247 #endif 248 /* 249 * Should the accounting and control be hierarchical, per subtree? 250 */ 251 bool use_hierarchy; 252 253 bool oom_lock; 254 atomic_t under_oom; 255 256 atomic_t refcnt; 257 258 int swappiness; 259 /* OOM-Killer disable */ 260 int oom_kill_disable; 261 262 /* set when res.limit == memsw.limit */ 263 bool memsw_is_minimum; 264 265 /* protect arrays of thresholds */ 266 struct mutex thresholds_lock; 267 268 /* thresholds for memory usage. RCU-protected */ 269 struct mem_cgroup_thresholds thresholds; 270 271 /* thresholds for mem+swap usage. RCU-protected */ 272 struct mem_cgroup_thresholds memsw_thresholds; 273 274 /* For oom notifier event fd */ 275 struct list_head oom_notify; 276 277 /* 278 * Should we move charges of a task when a task is moved into this 279 * mem_cgroup ? And what type of charges should we move ? 280 */ 281 unsigned long move_charge_at_immigrate; 282 /* 283 * percpu counter. 284 */ 285 struct mem_cgroup_stat_cpu *stat; 286 /* 287 * used when a cpu is offlined or other synchronizations 288 * See mem_cgroup_read_stat(). 289 */ 290 struct mem_cgroup_stat_cpu nocpu_base; 291 spinlock_t pcp_counter_lock; 292 293 #ifdef CONFIG_INET 294 struct tcp_memcontrol tcp_mem; 295 #endif 296 }; 297 298 /* Stuffs for move charges at task migration. */ 299 /* 300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 301 * left-shifted bitmap of these types. 302 */ 303 enum move_type { 304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 306 NR_MOVE_TYPE, 307 }; 308 309 /* "mc" and its members are protected by cgroup_mutex */ 310 static struct move_charge_struct { 311 spinlock_t lock; /* for from, to */ 312 struct mem_cgroup *from; 313 struct mem_cgroup *to; 314 unsigned long precharge; 315 unsigned long moved_charge; 316 unsigned long moved_swap; 317 struct task_struct *moving_task; /* a task moving charges */ 318 wait_queue_head_t waitq; /* a waitq for other context */ 319 } mc = { 320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 322 }; 323 324 static bool move_anon(void) 325 { 326 return test_bit(MOVE_CHARGE_TYPE_ANON, 327 &mc.to->move_charge_at_immigrate); 328 } 329 330 static bool move_file(void) 331 { 332 return test_bit(MOVE_CHARGE_TYPE_FILE, 333 &mc.to->move_charge_at_immigrate); 334 } 335 336 /* 337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 338 * limit reclaim to prevent infinite loops, if they ever occur. 339 */ 340 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100) 341 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2) 342 343 enum charge_type { 344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 345 MEM_CGROUP_CHARGE_TYPE_MAPPED, 346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 350 NR_CHARGE_TYPE, 351 }; 352 353 /* for encoding cft->private value on file */ 354 #define _MEM (0) 355 #define _MEMSWAP (1) 356 #define _OOM_TYPE (2) 357 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) 358 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) 359 #define MEMFILE_ATTR(val) ((val) & 0xffff) 360 /* Used for OOM nofiier */ 361 #define OOM_CONTROL (0) 362 363 /* 364 * Reclaim flags for mem_cgroup_hierarchical_reclaim 365 */ 366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 367 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 369 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 370 371 static void mem_cgroup_get(struct mem_cgroup *memcg); 372 static void mem_cgroup_put(struct mem_cgroup *memcg); 373 374 /* Writing them here to avoid exposing memcg's inner layout */ 375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM 376 #include <net/sock.h> 377 #include <net/ip.h> 378 379 static bool mem_cgroup_is_root(struct mem_cgroup *memcg); 380 void sock_update_memcg(struct sock *sk) 381 { 382 if (mem_cgroup_sockets_enabled) { 383 struct mem_cgroup *memcg; 384 385 BUG_ON(!sk->sk_prot->proto_cgroup); 386 387 /* Socket cloning can throw us here with sk_cgrp already 388 * filled. It won't however, necessarily happen from 389 * process context. So the test for root memcg given 390 * the current task's memcg won't help us in this case. 391 * 392 * Respecting the original socket's memcg is a better 393 * decision in this case. 394 */ 395 if (sk->sk_cgrp) { 396 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 397 mem_cgroup_get(sk->sk_cgrp->memcg); 398 return; 399 } 400 401 rcu_read_lock(); 402 memcg = mem_cgroup_from_task(current); 403 if (!mem_cgroup_is_root(memcg)) { 404 mem_cgroup_get(memcg); 405 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg); 406 } 407 rcu_read_unlock(); 408 } 409 } 410 EXPORT_SYMBOL(sock_update_memcg); 411 412 void sock_release_memcg(struct sock *sk) 413 { 414 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 415 struct mem_cgroup *memcg; 416 WARN_ON(!sk->sk_cgrp->memcg); 417 memcg = sk->sk_cgrp->memcg; 418 mem_cgroup_put(memcg); 419 } 420 } 421 422 #ifdef CONFIG_INET 423 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 424 { 425 if (!memcg || mem_cgroup_is_root(memcg)) 426 return NULL; 427 428 return &memcg->tcp_mem.cg_proto; 429 } 430 EXPORT_SYMBOL(tcp_proto_cgroup); 431 #endif /* CONFIG_INET */ 432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */ 433 434 static void drain_all_stock_async(struct mem_cgroup *memcg); 435 436 static struct mem_cgroup_per_zone * 437 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 438 { 439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 440 } 441 442 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 443 { 444 return &memcg->css; 445 } 446 447 static struct mem_cgroup_per_zone * 448 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 449 { 450 int nid = page_to_nid(page); 451 int zid = page_zonenum(page); 452 453 return mem_cgroup_zoneinfo(memcg, nid, zid); 454 } 455 456 static struct mem_cgroup_tree_per_zone * 457 soft_limit_tree_node_zone(int nid, int zid) 458 { 459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 460 } 461 462 static struct mem_cgroup_tree_per_zone * 463 soft_limit_tree_from_page(struct page *page) 464 { 465 int nid = page_to_nid(page); 466 int zid = page_zonenum(page); 467 468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 469 } 470 471 static void 472 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 473 struct mem_cgroup_per_zone *mz, 474 struct mem_cgroup_tree_per_zone *mctz, 475 unsigned long long new_usage_in_excess) 476 { 477 struct rb_node **p = &mctz->rb_root.rb_node; 478 struct rb_node *parent = NULL; 479 struct mem_cgroup_per_zone *mz_node; 480 481 if (mz->on_tree) 482 return; 483 484 mz->usage_in_excess = new_usage_in_excess; 485 if (!mz->usage_in_excess) 486 return; 487 while (*p) { 488 parent = *p; 489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 490 tree_node); 491 if (mz->usage_in_excess < mz_node->usage_in_excess) 492 p = &(*p)->rb_left; 493 /* 494 * We can't avoid mem cgroups that are over their soft 495 * limit by the same amount 496 */ 497 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 498 p = &(*p)->rb_right; 499 } 500 rb_link_node(&mz->tree_node, parent, p); 501 rb_insert_color(&mz->tree_node, &mctz->rb_root); 502 mz->on_tree = true; 503 } 504 505 static void 506 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 507 struct mem_cgroup_per_zone *mz, 508 struct mem_cgroup_tree_per_zone *mctz) 509 { 510 if (!mz->on_tree) 511 return; 512 rb_erase(&mz->tree_node, &mctz->rb_root); 513 mz->on_tree = false; 514 } 515 516 static void 517 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 518 struct mem_cgroup_per_zone *mz, 519 struct mem_cgroup_tree_per_zone *mctz) 520 { 521 spin_lock(&mctz->lock); 522 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 523 spin_unlock(&mctz->lock); 524 } 525 526 527 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 528 { 529 unsigned long long excess; 530 struct mem_cgroup_per_zone *mz; 531 struct mem_cgroup_tree_per_zone *mctz; 532 int nid = page_to_nid(page); 533 int zid = page_zonenum(page); 534 mctz = soft_limit_tree_from_page(page); 535 536 /* 537 * Necessary to update all ancestors when hierarchy is used. 538 * because their event counter is not touched. 539 */ 540 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 541 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 542 excess = res_counter_soft_limit_excess(&memcg->res); 543 /* 544 * We have to update the tree if mz is on RB-tree or 545 * mem is over its softlimit. 546 */ 547 if (excess || mz->on_tree) { 548 spin_lock(&mctz->lock); 549 /* if on-tree, remove it */ 550 if (mz->on_tree) 551 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 552 /* 553 * Insert again. mz->usage_in_excess will be updated. 554 * If excess is 0, no tree ops. 555 */ 556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 557 spin_unlock(&mctz->lock); 558 } 559 } 560 } 561 562 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 563 { 564 int node, zone; 565 struct mem_cgroup_per_zone *mz; 566 struct mem_cgroup_tree_per_zone *mctz; 567 568 for_each_node(node) { 569 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 570 mz = mem_cgroup_zoneinfo(memcg, node, zone); 571 mctz = soft_limit_tree_node_zone(node, zone); 572 mem_cgroup_remove_exceeded(memcg, mz, mctz); 573 } 574 } 575 } 576 577 static struct mem_cgroup_per_zone * 578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 579 { 580 struct rb_node *rightmost = NULL; 581 struct mem_cgroup_per_zone *mz; 582 583 retry: 584 mz = NULL; 585 rightmost = rb_last(&mctz->rb_root); 586 if (!rightmost) 587 goto done; /* Nothing to reclaim from */ 588 589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 590 /* 591 * Remove the node now but someone else can add it back, 592 * we will to add it back at the end of reclaim to its correct 593 * position in the tree. 594 */ 595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 596 if (!res_counter_soft_limit_excess(&mz->mem->res) || 597 !css_tryget(&mz->mem->css)) 598 goto retry; 599 done: 600 return mz; 601 } 602 603 static struct mem_cgroup_per_zone * 604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 605 { 606 struct mem_cgroup_per_zone *mz; 607 608 spin_lock(&mctz->lock); 609 mz = __mem_cgroup_largest_soft_limit_node(mctz); 610 spin_unlock(&mctz->lock); 611 return mz; 612 } 613 614 /* 615 * Implementation Note: reading percpu statistics for memcg. 616 * 617 * Both of vmstat[] and percpu_counter has threshold and do periodic 618 * synchronization to implement "quick" read. There are trade-off between 619 * reading cost and precision of value. Then, we may have a chance to implement 620 * a periodic synchronizion of counter in memcg's counter. 621 * 622 * But this _read() function is used for user interface now. The user accounts 623 * memory usage by memory cgroup and he _always_ requires exact value because 624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 625 * have to visit all online cpus and make sum. So, for now, unnecessary 626 * synchronization is not implemented. (just implemented for cpu hotplug) 627 * 628 * If there are kernel internal actions which can make use of some not-exact 629 * value, and reading all cpu value can be performance bottleneck in some 630 * common workload, threashold and synchonization as vmstat[] should be 631 * implemented. 632 */ 633 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 634 enum mem_cgroup_stat_index idx) 635 { 636 long val = 0; 637 int cpu; 638 639 get_online_cpus(); 640 for_each_online_cpu(cpu) 641 val += per_cpu(memcg->stat->count[idx], cpu); 642 #ifdef CONFIG_HOTPLUG_CPU 643 spin_lock(&memcg->pcp_counter_lock); 644 val += memcg->nocpu_base.count[idx]; 645 spin_unlock(&memcg->pcp_counter_lock); 646 #endif 647 put_online_cpus(); 648 return val; 649 } 650 651 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 652 bool charge) 653 { 654 int val = (charge) ? 1 : -1; 655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); 656 } 657 658 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 659 enum mem_cgroup_events_index idx) 660 { 661 unsigned long val = 0; 662 int cpu; 663 664 for_each_online_cpu(cpu) 665 val += per_cpu(memcg->stat->events[idx], cpu); 666 #ifdef CONFIG_HOTPLUG_CPU 667 spin_lock(&memcg->pcp_counter_lock); 668 val += memcg->nocpu_base.events[idx]; 669 spin_unlock(&memcg->pcp_counter_lock); 670 #endif 671 return val; 672 } 673 674 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 675 bool file, int nr_pages) 676 { 677 preempt_disable(); 678 679 if (file) 680 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 681 nr_pages); 682 else 683 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 684 nr_pages); 685 686 /* pagein of a big page is an event. So, ignore page size */ 687 if (nr_pages > 0) 688 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 689 else { 690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 691 nr_pages = -nr_pages; /* for event */ 692 } 693 694 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages); 695 696 preempt_enable(); 697 } 698 699 unsigned long 700 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 701 unsigned int lru_mask) 702 { 703 struct mem_cgroup_per_zone *mz; 704 enum lru_list l; 705 unsigned long ret = 0; 706 707 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 708 709 for_each_lru(l) { 710 if (BIT(l) & lru_mask) 711 ret += MEM_CGROUP_ZSTAT(mz, l); 712 } 713 return ret; 714 } 715 716 static unsigned long 717 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 718 int nid, unsigned int lru_mask) 719 { 720 u64 total = 0; 721 int zid; 722 723 for (zid = 0; zid < MAX_NR_ZONES; zid++) 724 total += mem_cgroup_zone_nr_lru_pages(memcg, 725 nid, zid, lru_mask); 726 727 return total; 728 } 729 730 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 731 unsigned int lru_mask) 732 { 733 int nid; 734 u64 total = 0; 735 736 for_each_node_state(nid, N_HIGH_MEMORY) 737 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 738 return total; 739 } 740 741 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 742 enum mem_cgroup_events_target target) 743 { 744 unsigned long val, next; 745 746 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]); 747 next = __this_cpu_read(memcg->stat->targets[target]); 748 /* from time_after() in jiffies.h */ 749 if ((long)next - (long)val < 0) { 750 switch (target) { 751 case MEM_CGROUP_TARGET_THRESH: 752 next = val + THRESHOLDS_EVENTS_TARGET; 753 break; 754 case MEM_CGROUP_TARGET_SOFTLIMIT: 755 next = val + SOFTLIMIT_EVENTS_TARGET; 756 break; 757 case MEM_CGROUP_TARGET_NUMAINFO: 758 next = val + NUMAINFO_EVENTS_TARGET; 759 break; 760 default: 761 break; 762 } 763 __this_cpu_write(memcg->stat->targets[target], next); 764 return true; 765 } 766 return false; 767 } 768 769 /* 770 * Check events in order. 771 * 772 */ 773 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 774 { 775 preempt_disable(); 776 /* threshold event is triggered in finer grain than soft limit */ 777 if (unlikely(mem_cgroup_event_ratelimit(memcg, 778 MEM_CGROUP_TARGET_THRESH))) { 779 bool do_softlimit; 780 bool do_numainfo __maybe_unused; 781 782 do_softlimit = mem_cgroup_event_ratelimit(memcg, 783 MEM_CGROUP_TARGET_SOFTLIMIT); 784 #if MAX_NUMNODES > 1 785 do_numainfo = mem_cgroup_event_ratelimit(memcg, 786 MEM_CGROUP_TARGET_NUMAINFO); 787 #endif 788 preempt_enable(); 789 790 mem_cgroup_threshold(memcg); 791 if (unlikely(do_softlimit)) 792 mem_cgroup_update_tree(memcg, page); 793 #if MAX_NUMNODES > 1 794 if (unlikely(do_numainfo)) 795 atomic_inc(&memcg->numainfo_events); 796 #endif 797 } else 798 preempt_enable(); 799 } 800 801 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 802 { 803 return container_of(cgroup_subsys_state(cont, 804 mem_cgroup_subsys_id), struct mem_cgroup, 805 css); 806 } 807 808 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 809 { 810 /* 811 * mm_update_next_owner() may clear mm->owner to NULL 812 * if it races with swapoff, page migration, etc. 813 * So this can be called with p == NULL. 814 */ 815 if (unlikely(!p)) 816 return NULL; 817 818 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 819 struct mem_cgroup, css); 820 } 821 822 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 823 { 824 struct mem_cgroup *memcg = NULL; 825 826 if (!mm) 827 return NULL; 828 /* 829 * Because we have no locks, mm->owner's may be being moved to other 830 * cgroup. We use css_tryget() here even if this looks 831 * pessimistic (rather than adding locks here). 832 */ 833 rcu_read_lock(); 834 do { 835 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 836 if (unlikely(!memcg)) 837 break; 838 } while (!css_tryget(&memcg->css)); 839 rcu_read_unlock(); 840 return memcg; 841 } 842 843 /** 844 * mem_cgroup_iter - iterate over memory cgroup hierarchy 845 * @root: hierarchy root 846 * @prev: previously returned memcg, NULL on first invocation 847 * @reclaim: cookie for shared reclaim walks, NULL for full walks 848 * 849 * Returns references to children of the hierarchy below @root, or 850 * @root itself, or %NULL after a full round-trip. 851 * 852 * Caller must pass the return value in @prev on subsequent 853 * invocations for reference counting, or use mem_cgroup_iter_break() 854 * to cancel a hierarchy walk before the round-trip is complete. 855 * 856 * Reclaimers can specify a zone and a priority level in @reclaim to 857 * divide up the memcgs in the hierarchy among all concurrent 858 * reclaimers operating on the same zone and priority. 859 */ 860 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 861 struct mem_cgroup *prev, 862 struct mem_cgroup_reclaim_cookie *reclaim) 863 { 864 struct mem_cgroup *memcg = NULL; 865 int id = 0; 866 867 if (mem_cgroup_disabled()) 868 return NULL; 869 870 if (!root) 871 root = root_mem_cgroup; 872 873 if (prev && !reclaim) 874 id = css_id(&prev->css); 875 876 if (prev && prev != root) 877 css_put(&prev->css); 878 879 if (!root->use_hierarchy && root != root_mem_cgroup) { 880 if (prev) 881 return NULL; 882 return root; 883 } 884 885 while (!memcg) { 886 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 887 struct cgroup_subsys_state *css; 888 889 if (reclaim) { 890 int nid = zone_to_nid(reclaim->zone); 891 int zid = zone_idx(reclaim->zone); 892 struct mem_cgroup_per_zone *mz; 893 894 mz = mem_cgroup_zoneinfo(root, nid, zid); 895 iter = &mz->reclaim_iter[reclaim->priority]; 896 if (prev && reclaim->generation != iter->generation) 897 return NULL; 898 id = iter->position; 899 } 900 901 rcu_read_lock(); 902 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 903 if (css) { 904 if (css == &root->css || css_tryget(css)) 905 memcg = container_of(css, 906 struct mem_cgroup, css); 907 } else 908 id = 0; 909 rcu_read_unlock(); 910 911 if (reclaim) { 912 iter->position = id; 913 if (!css) 914 iter->generation++; 915 else if (!prev && memcg) 916 reclaim->generation = iter->generation; 917 } 918 919 if (prev && !css) 920 return NULL; 921 } 922 return memcg; 923 } 924 925 /** 926 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 927 * @root: hierarchy root 928 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 929 */ 930 void mem_cgroup_iter_break(struct mem_cgroup *root, 931 struct mem_cgroup *prev) 932 { 933 if (!root) 934 root = root_mem_cgroup; 935 if (prev && prev != root) 936 css_put(&prev->css); 937 } 938 939 /* 940 * Iteration constructs for visiting all cgroups (under a tree). If 941 * loops are exited prematurely (break), mem_cgroup_iter_break() must 942 * be used for reference counting. 943 */ 944 #define for_each_mem_cgroup_tree(iter, root) \ 945 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 946 iter != NULL; \ 947 iter = mem_cgroup_iter(root, iter, NULL)) 948 949 #define for_each_mem_cgroup(iter) \ 950 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 951 iter != NULL; \ 952 iter = mem_cgroup_iter(NULL, iter, NULL)) 953 954 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 955 { 956 return (memcg == root_mem_cgroup); 957 } 958 959 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 960 { 961 struct mem_cgroup *memcg; 962 963 if (!mm) 964 return; 965 966 rcu_read_lock(); 967 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 968 if (unlikely(!memcg)) 969 goto out; 970 971 switch (idx) { 972 case PGFAULT: 973 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 974 break; 975 case PGMAJFAULT: 976 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 977 break; 978 default: 979 BUG(); 980 } 981 out: 982 rcu_read_unlock(); 983 } 984 EXPORT_SYMBOL(mem_cgroup_count_vm_event); 985 986 /** 987 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 988 * @zone: zone of the wanted lruvec 989 * @mem: memcg of the wanted lruvec 990 * 991 * Returns the lru list vector holding pages for the given @zone and 992 * @mem. This can be the global zone lruvec, if the memory controller 993 * is disabled. 994 */ 995 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 996 struct mem_cgroup *memcg) 997 { 998 struct mem_cgroup_per_zone *mz; 999 1000 if (mem_cgroup_disabled()) 1001 return &zone->lruvec; 1002 1003 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1004 return &mz->lruvec; 1005 } 1006 1007 /* 1008 * Following LRU functions are allowed to be used without PCG_LOCK. 1009 * Operations are called by routine of global LRU independently from memcg. 1010 * What we have to take care of here is validness of pc->mem_cgroup. 1011 * 1012 * Changes to pc->mem_cgroup happens when 1013 * 1. charge 1014 * 2. moving account 1015 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1016 * It is added to LRU before charge. 1017 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1018 * When moving account, the page is not on LRU. It's isolated. 1019 */ 1020 1021 /** 1022 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec 1023 * @zone: zone of the page 1024 * @page: the page 1025 * @lru: current lru 1026 * 1027 * This function accounts for @page being added to @lru, and returns 1028 * the lruvec for the given @zone and the memcg @page is charged to. 1029 * 1030 * The callsite is then responsible for physically linking the page to 1031 * the returned lruvec->lists[@lru]. 1032 */ 1033 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page, 1034 enum lru_list lru) 1035 { 1036 struct mem_cgroup_per_zone *mz; 1037 struct mem_cgroup *memcg; 1038 struct page_cgroup *pc; 1039 1040 if (mem_cgroup_disabled()) 1041 return &zone->lruvec; 1042 1043 pc = lookup_page_cgroup(page); 1044 memcg = pc->mem_cgroup; 1045 1046 /* 1047 * Surreptitiously switch any uncharged page to root: 1048 * an uncharged page off lru does nothing to secure 1049 * its former mem_cgroup from sudden removal. 1050 * 1051 * Our caller holds lru_lock, and PageCgroupUsed is updated 1052 * under page_cgroup lock: between them, they make all uses 1053 * of pc->mem_cgroup safe. 1054 */ 1055 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1056 pc->mem_cgroup = memcg = root_mem_cgroup; 1057 1058 mz = page_cgroup_zoneinfo(memcg, page); 1059 /* compound_order() is stabilized through lru_lock */ 1060 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page); 1061 return &mz->lruvec; 1062 } 1063 1064 /** 1065 * mem_cgroup_lru_del_list - account for removing an lru page 1066 * @page: the page 1067 * @lru: target lru 1068 * 1069 * This function accounts for @page being removed from @lru. 1070 * 1071 * The callsite is then responsible for physically unlinking 1072 * @page->lru. 1073 */ 1074 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru) 1075 { 1076 struct mem_cgroup_per_zone *mz; 1077 struct mem_cgroup *memcg; 1078 struct page_cgroup *pc; 1079 1080 if (mem_cgroup_disabled()) 1081 return; 1082 1083 pc = lookup_page_cgroup(page); 1084 memcg = pc->mem_cgroup; 1085 VM_BUG_ON(!memcg); 1086 mz = page_cgroup_zoneinfo(memcg, page); 1087 /* huge page split is done under lru_lock. so, we have no races. */ 1088 VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page))); 1089 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page); 1090 } 1091 1092 void mem_cgroup_lru_del(struct page *page) 1093 { 1094 mem_cgroup_lru_del_list(page, page_lru(page)); 1095 } 1096 1097 /** 1098 * mem_cgroup_lru_move_lists - account for moving a page between lrus 1099 * @zone: zone of the page 1100 * @page: the page 1101 * @from: current lru 1102 * @to: target lru 1103 * 1104 * This function accounts for @page being moved between the lrus @from 1105 * and @to, and returns the lruvec for the given @zone and the memcg 1106 * @page is charged to. 1107 * 1108 * The callsite is then responsible for physically relinking 1109 * @page->lru to the returned lruvec->lists[@to]. 1110 */ 1111 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone, 1112 struct page *page, 1113 enum lru_list from, 1114 enum lru_list to) 1115 { 1116 /* XXX: Optimize this, especially for @from == @to */ 1117 mem_cgroup_lru_del_list(page, from); 1118 return mem_cgroup_lru_add_list(zone, page, to); 1119 } 1120 1121 /* 1122 * Checks whether given mem is same or in the root_mem_cgroup's 1123 * hierarchy subtree 1124 */ 1125 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1126 struct mem_cgroup *memcg) 1127 { 1128 if (root_memcg != memcg) { 1129 return (root_memcg->use_hierarchy && 1130 css_is_ancestor(&memcg->css, &root_memcg->css)); 1131 } 1132 1133 return true; 1134 } 1135 1136 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1137 { 1138 int ret; 1139 struct mem_cgroup *curr = NULL; 1140 struct task_struct *p; 1141 1142 p = find_lock_task_mm(task); 1143 if (p) { 1144 curr = try_get_mem_cgroup_from_mm(p->mm); 1145 task_unlock(p); 1146 } else { 1147 /* 1148 * All threads may have already detached their mm's, but the oom 1149 * killer still needs to detect if they have already been oom 1150 * killed to prevent needlessly killing additional tasks. 1151 */ 1152 task_lock(task); 1153 curr = mem_cgroup_from_task(task); 1154 if (curr) 1155 css_get(&curr->css); 1156 task_unlock(task); 1157 } 1158 if (!curr) 1159 return 0; 1160 /* 1161 * We should check use_hierarchy of "memcg" not "curr". Because checking 1162 * use_hierarchy of "curr" here make this function true if hierarchy is 1163 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1164 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1165 */ 1166 ret = mem_cgroup_same_or_subtree(memcg, curr); 1167 css_put(&curr->css); 1168 return ret; 1169 } 1170 1171 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone) 1172 { 1173 unsigned long inactive_ratio; 1174 int nid = zone_to_nid(zone); 1175 int zid = zone_idx(zone); 1176 unsigned long inactive; 1177 unsigned long active; 1178 unsigned long gb; 1179 1180 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, 1181 BIT(LRU_INACTIVE_ANON)); 1182 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, 1183 BIT(LRU_ACTIVE_ANON)); 1184 1185 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1186 if (gb) 1187 inactive_ratio = int_sqrt(10 * gb); 1188 else 1189 inactive_ratio = 1; 1190 1191 return inactive * inactive_ratio < active; 1192 } 1193 1194 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone) 1195 { 1196 unsigned long active; 1197 unsigned long inactive; 1198 int zid = zone_idx(zone); 1199 int nid = zone_to_nid(zone); 1200 1201 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, 1202 BIT(LRU_INACTIVE_FILE)); 1203 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, 1204 BIT(LRU_ACTIVE_FILE)); 1205 1206 return (active > inactive); 1207 } 1208 1209 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, 1210 struct zone *zone) 1211 { 1212 int nid = zone_to_nid(zone); 1213 int zid = zone_idx(zone); 1214 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 1215 1216 return &mz->reclaim_stat; 1217 } 1218 1219 struct zone_reclaim_stat * 1220 mem_cgroup_get_reclaim_stat_from_page(struct page *page) 1221 { 1222 struct page_cgroup *pc; 1223 struct mem_cgroup_per_zone *mz; 1224 1225 if (mem_cgroup_disabled()) 1226 return NULL; 1227 1228 pc = lookup_page_cgroup(page); 1229 if (!PageCgroupUsed(pc)) 1230 return NULL; 1231 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ 1232 smp_rmb(); 1233 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); 1234 return &mz->reclaim_stat; 1235 } 1236 1237 #define mem_cgroup_from_res_counter(counter, member) \ 1238 container_of(counter, struct mem_cgroup, member) 1239 1240 /** 1241 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1242 * @mem: the memory cgroup 1243 * 1244 * Returns the maximum amount of memory @mem can be charged with, in 1245 * pages. 1246 */ 1247 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1248 { 1249 unsigned long long margin; 1250 1251 margin = res_counter_margin(&memcg->res); 1252 if (do_swap_account) 1253 margin = min(margin, res_counter_margin(&memcg->memsw)); 1254 return margin >> PAGE_SHIFT; 1255 } 1256 1257 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1258 { 1259 struct cgroup *cgrp = memcg->css.cgroup; 1260 1261 /* root ? */ 1262 if (cgrp->parent == NULL) 1263 return vm_swappiness; 1264 1265 return memcg->swappiness; 1266 } 1267 1268 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1269 { 1270 int cpu; 1271 1272 get_online_cpus(); 1273 spin_lock(&memcg->pcp_counter_lock); 1274 for_each_online_cpu(cpu) 1275 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1; 1276 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1; 1277 spin_unlock(&memcg->pcp_counter_lock); 1278 put_online_cpus(); 1279 1280 synchronize_rcu(); 1281 } 1282 1283 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1284 { 1285 int cpu; 1286 1287 if (!memcg) 1288 return; 1289 get_online_cpus(); 1290 spin_lock(&memcg->pcp_counter_lock); 1291 for_each_online_cpu(cpu) 1292 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1; 1293 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1; 1294 spin_unlock(&memcg->pcp_counter_lock); 1295 put_online_cpus(); 1296 } 1297 /* 1298 * 2 routines for checking "mem" is under move_account() or not. 1299 * 1300 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used 1301 * for avoiding race in accounting. If true, 1302 * pc->mem_cgroup may be overwritten. 1303 * 1304 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1305 * under hierarchy of moving cgroups. This is for 1306 * waiting at hith-memory prressure caused by "move". 1307 */ 1308 1309 static bool mem_cgroup_stealed(struct mem_cgroup *memcg) 1310 { 1311 VM_BUG_ON(!rcu_read_lock_held()); 1312 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0; 1313 } 1314 1315 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1316 { 1317 struct mem_cgroup *from; 1318 struct mem_cgroup *to; 1319 bool ret = false; 1320 /* 1321 * Unlike task_move routines, we access mc.to, mc.from not under 1322 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1323 */ 1324 spin_lock(&mc.lock); 1325 from = mc.from; 1326 to = mc.to; 1327 if (!from) 1328 goto unlock; 1329 1330 ret = mem_cgroup_same_or_subtree(memcg, from) 1331 || mem_cgroup_same_or_subtree(memcg, to); 1332 unlock: 1333 spin_unlock(&mc.lock); 1334 return ret; 1335 } 1336 1337 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1338 { 1339 if (mc.moving_task && current != mc.moving_task) { 1340 if (mem_cgroup_under_move(memcg)) { 1341 DEFINE_WAIT(wait); 1342 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1343 /* moving charge context might have finished. */ 1344 if (mc.moving_task) 1345 schedule(); 1346 finish_wait(&mc.waitq, &wait); 1347 return true; 1348 } 1349 } 1350 return false; 1351 } 1352 1353 /** 1354 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1355 * @memcg: The memory cgroup that went over limit 1356 * @p: Task that is going to be killed 1357 * 1358 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1359 * enabled 1360 */ 1361 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1362 { 1363 struct cgroup *task_cgrp; 1364 struct cgroup *mem_cgrp; 1365 /* 1366 * Need a buffer in BSS, can't rely on allocations. The code relies 1367 * on the assumption that OOM is serialized for memory controller. 1368 * If this assumption is broken, revisit this code. 1369 */ 1370 static char memcg_name[PATH_MAX]; 1371 int ret; 1372 1373 if (!memcg || !p) 1374 return; 1375 1376 1377 rcu_read_lock(); 1378 1379 mem_cgrp = memcg->css.cgroup; 1380 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1381 1382 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1383 if (ret < 0) { 1384 /* 1385 * Unfortunately, we are unable to convert to a useful name 1386 * But we'll still print out the usage information 1387 */ 1388 rcu_read_unlock(); 1389 goto done; 1390 } 1391 rcu_read_unlock(); 1392 1393 printk(KERN_INFO "Task in %s killed", memcg_name); 1394 1395 rcu_read_lock(); 1396 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1397 if (ret < 0) { 1398 rcu_read_unlock(); 1399 goto done; 1400 } 1401 rcu_read_unlock(); 1402 1403 /* 1404 * Continues from above, so we don't need an KERN_ level 1405 */ 1406 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1407 done: 1408 1409 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1410 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1411 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1412 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1413 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1414 "failcnt %llu\n", 1415 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1416 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1417 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1418 } 1419 1420 /* 1421 * This function returns the number of memcg under hierarchy tree. Returns 1422 * 1(self count) if no children. 1423 */ 1424 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1425 { 1426 int num = 0; 1427 struct mem_cgroup *iter; 1428 1429 for_each_mem_cgroup_tree(iter, memcg) 1430 num++; 1431 return num; 1432 } 1433 1434 /* 1435 * Return the memory (and swap, if configured) limit for a memcg. 1436 */ 1437 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1438 { 1439 u64 limit; 1440 u64 memsw; 1441 1442 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1443 limit += total_swap_pages << PAGE_SHIFT; 1444 1445 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1446 /* 1447 * If memsw is finite and limits the amount of swap space available 1448 * to this memcg, return that limit. 1449 */ 1450 return min(limit, memsw); 1451 } 1452 1453 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1454 gfp_t gfp_mask, 1455 unsigned long flags) 1456 { 1457 unsigned long total = 0; 1458 bool noswap = false; 1459 int loop; 1460 1461 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1462 noswap = true; 1463 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1464 noswap = true; 1465 1466 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1467 if (loop) 1468 drain_all_stock_async(memcg); 1469 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1470 /* 1471 * Allow limit shrinkers, which are triggered directly 1472 * by userspace, to catch signals and stop reclaim 1473 * after minimal progress, regardless of the margin. 1474 */ 1475 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1476 break; 1477 if (mem_cgroup_margin(memcg)) 1478 break; 1479 /* 1480 * If nothing was reclaimed after two attempts, there 1481 * may be no reclaimable pages in this hierarchy. 1482 */ 1483 if (loop && !total) 1484 break; 1485 } 1486 return total; 1487 } 1488 1489 /** 1490 * test_mem_cgroup_node_reclaimable 1491 * @mem: the target memcg 1492 * @nid: the node ID to be checked. 1493 * @noswap : specify true here if the user wants flle only information. 1494 * 1495 * This function returns whether the specified memcg contains any 1496 * reclaimable pages on a node. Returns true if there are any reclaimable 1497 * pages in the node. 1498 */ 1499 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1500 int nid, bool noswap) 1501 { 1502 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1503 return true; 1504 if (noswap || !total_swap_pages) 1505 return false; 1506 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1507 return true; 1508 return false; 1509 1510 } 1511 #if MAX_NUMNODES > 1 1512 1513 /* 1514 * Always updating the nodemask is not very good - even if we have an empty 1515 * list or the wrong list here, we can start from some node and traverse all 1516 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1517 * 1518 */ 1519 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1520 { 1521 int nid; 1522 /* 1523 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1524 * pagein/pageout changes since the last update. 1525 */ 1526 if (!atomic_read(&memcg->numainfo_events)) 1527 return; 1528 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1529 return; 1530 1531 /* make a nodemask where this memcg uses memory from */ 1532 memcg->scan_nodes = node_states[N_HIGH_MEMORY]; 1533 1534 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { 1535 1536 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1537 node_clear(nid, memcg->scan_nodes); 1538 } 1539 1540 atomic_set(&memcg->numainfo_events, 0); 1541 atomic_set(&memcg->numainfo_updating, 0); 1542 } 1543 1544 /* 1545 * Selecting a node where we start reclaim from. Because what we need is just 1546 * reducing usage counter, start from anywhere is O,K. Considering 1547 * memory reclaim from current node, there are pros. and cons. 1548 * 1549 * Freeing memory from current node means freeing memory from a node which 1550 * we'll use or we've used. So, it may make LRU bad. And if several threads 1551 * hit limits, it will see a contention on a node. But freeing from remote 1552 * node means more costs for memory reclaim because of memory latency. 1553 * 1554 * Now, we use round-robin. Better algorithm is welcomed. 1555 */ 1556 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1557 { 1558 int node; 1559 1560 mem_cgroup_may_update_nodemask(memcg); 1561 node = memcg->last_scanned_node; 1562 1563 node = next_node(node, memcg->scan_nodes); 1564 if (node == MAX_NUMNODES) 1565 node = first_node(memcg->scan_nodes); 1566 /* 1567 * We call this when we hit limit, not when pages are added to LRU. 1568 * No LRU may hold pages because all pages are UNEVICTABLE or 1569 * memcg is too small and all pages are not on LRU. In that case, 1570 * we use curret node. 1571 */ 1572 if (unlikely(node == MAX_NUMNODES)) 1573 node = numa_node_id(); 1574 1575 memcg->last_scanned_node = node; 1576 return node; 1577 } 1578 1579 /* 1580 * Check all nodes whether it contains reclaimable pages or not. 1581 * For quick scan, we make use of scan_nodes. This will allow us to skip 1582 * unused nodes. But scan_nodes is lazily updated and may not cotain 1583 * enough new information. We need to do double check. 1584 */ 1585 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1586 { 1587 int nid; 1588 1589 /* 1590 * quick check...making use of scan_node. 1591 * We can skip unused nodes. 1592 */ 1593 if (!nodes_empty(memcg->scan_nodes)) { 1594 for (nid = first_node(memcg->scan_nodes); 1595 nid < MAX_NUMNODES; 1596 nid = next_node(nid, memcg->scan_nodes)) { 1597 1598 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1599 return true; 1600 } 1601 } 1602 /* 1603 * Check rest of nodes. 1604 */ 1605 for_each_node_state(nid, N_HIGH_MEMORY) { 1606 if (node_isset(nid, memcg->scan_nodes)) 1607 continue; 1608 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1609 return true; 1610 } 1611 return false; 1612 } 1613 1614 #else 1615 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1616 { 1617 return 0; 1618 } 1619 1620 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1621 { 1622 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1623 } 1624 #endif 1625 1626 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1627 struct zone *zone, 1628 gfp_t gfp_mask, 1629 unsigned long *total_scanned) 1630 { 1631 struct mem_cgroup *victim = NULL; 1632 int total = 0; 1633 int loop = 0; 1634 unsigned long excess; 1635 unsigned long nr_scanned; 1636 struct mem_cgroup_reclaim_cookie reclaim = { 1637 .zone = zone, 1638 .priority = 0, 1639 }; 1640 1641 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1642 1643 while (1) { 1644 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1645 if (!victim) { 1646 loop++; 1647 if (loop >= 2) { 1648 /* 1649 * If we have not been able to reclaim 1650 * anything, it might because there are 1651 * no reclaimable pages under this hierarchy 1652 */ 1653 if (!total) 1654 break; 1655 /* 1656 * We want to do more targeted reclaim. 1657 * excess >> 2 is not to excessive so as to 1658 * reclaim too much, nor too less that we keep 1659 * coming back to reclaim from this cgroup 1660 */ 1661 if (total >= (excess >> 2) || 1662 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1663 break; 1664 } 1665 continue; 1666 } 1667 if (!mem_cgroup_reclaimable(victim, false)) 1668 continue; 1669 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1670 zone, &nr_scanned); 1671 *total_scanned += nr_scanned; 1672 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1673 break; 1674 } 1675 mem_cgroup_iter_break(root_memcg, victim); 1676 return total; 1677 } 1678 1679 /* 1680 * Check OOM-Killer is already running under our hierarchy. 1681 * If someone is running, return false. 1682 * Has to be called with memcg_oom_lock 1683 */ 1684 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1685 { 1686 struct mem_cgroup *iter, *failed = NULL; 1687 1688 for_each_mem_cgroup_tree(iter, memcg) { 1689 if (iter->oom_lock) { 1690 /* 1691 * this subtree of our hierarchy is already locked 1692 * so we cannot give a lock. 1693 */ 1694 failed = iter; 1695 mem_cgroup_iter_break(memcg, iter); 1696 break; 1697 } else 1698 iter->oom_lock = true; 1699 } 1700 1701 if (!failed) 1702 return true; 1703 1704 /* 1705 * OK, we failed to lock the whole subtree so we have to clean up 1706 * what we set up to the failing subtree 1707 */ 1708 for_each_mem_cgroup_tree(iter, memcg) { 1709 if (iter == failed) { 1710 mem_cgroup_iter_break(memcg, iter); 1711 break; 1712 } 1713 iter->oom_lock = false; 1714 } 1715 return false; 1716 } 1717 1718 /* 1719 * Has to be called with memcg_oom_lock 1720 */ 1721 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1722 { 1723 struct mem_cgroup *iter; 1724 1725 for_each_mem_cgroup_tree(iter, memcg) 1726 iter->oom_lock = false; 1727 return 0; 1728 } 1729 1730 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1731 { 1732 struct mem_cgroup *iter; 1733 1734 for_each_mem_cgroup_tree(iter, memcg) 1735 atomic_inc(&iter->under_oom); 1736 } 1737 1738 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1739 { 1740 struct mem_cgroup *iter; 1741 1742 /* 1743 * When a new child is created while the hierarchy is under oom, 1744 * mem_cgroup_oom_lock() may not be called. We have to use 1745 * atomic_add_unless() here. 1746 */ 1747 for_each_mem_cgroup_tree(iter, memcg) 1748 atomic_add_unless(&iter->under_oom, -1, 0); 1749 } 1750 1751 static DEFINE_SPINLOCK(memcg_oom_lock); 1752 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1753 1754 struct oom_wait_info { 1755 struct mem_cgroup *mem; 1756 wait_queue_t wait; 1757 }; 1758 1759 static int memcg_oom_wake_function(wait_queue_t *wait, 1760 unsigned mode, int sync, void *arg) 1761 { 1762 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg, 1763 *oom_wait_memcg; 1764 struct oom_wait_info *oom_wait_info; 1765 1766 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1767 oom_wait_memcg = oom_wait_info->mem; 1768 1769 /* 1770 * Both of oom_wait_info->mem and wake_mem are stable under us. 1771 * Then we can use css_is_ancestor without taking care of RCU. 1772 */ 1773 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 1774 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 1775 return 0; 1776 return autoremove_wake_function(wait, mode, sync, arg); 1777 } 1778 1779 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 1780 { 1781 /* for filtering, pass "memcg" as argument. */ 1782 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1783 } 1784 1785 static void memcg_oom_recover(struct mem_cgroup *memcg) 1786 { 1787 if (memcg && atomic_read(&memcg->under_oom)) 1788 memcg_wakeup_oom(memcg); 1789 } 1790 1791 /* 1792 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1793 */ 1794 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask) 1795 { 1796 struct oom_wait_info owait; 1797 bool locked, need_to_kill; 1798 1799 owait.mem = memcg; 1800 owait.wait.flags = 0; 1801 owait.wait.func = memcg_oom_wake_function; 1802 owait.wait.private = current; 1803 INIT_LIST_HEAD(&owait.wait.task_list); 1804 need_to_kill = true; 1805 mem_cgroup_mark_under_oom(memcg); 1806 1807 /* At first, try to OOM lock hierarchy under memcg.*/ 1808 spin_lock(&memcg_oom_lock); 1809 locked = mem_cgroup_oom_lock(memcg); 1810 /* 1811 * Even if signal_pending(), we can't quit charge() loop without 1812 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1813 * under OOM is always welcomed, use TASK_KILLABLE here. 1814 */ 1815 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1816 if (!locked || memcg->oom_kill_disable) 1817 need_to_kill = false; 1818 if (locked) 1819 mem_cgroup_oom_notify(memcg); 1820 spin_unlock(&memcg_oom_lock); 1821 1822 if (need_to_kill) { 1823 finish_wait(&memcg_oom_waitq, &owait.wait); 1824 mem_cgroup_out_of_memory(memcg, mask); 1825 } else { 1826 schedule(); 1827 finish_wait(&memcg_oom_waitq, &owait.wait); 1828 } 1829 spin_lock(&memcg_oom_lock); 1830 if (locked) 1831 mem_cgroup_oom_unlock(memcg); 1832 memcg_wakeup_oom(memcg); 1833 spin_unlock(&memcg_oom_lock); 1834 1835 mem_cgroup_unmark_under_oom(memcg); 1836 1837 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1838 return false; 1839 /* Give chance to dying process */ 1840 schedule_timeout_uninterruptible(1); 1841 return true; 1842 } 1843 1844 /* 1845 * Currently used to update mapped file statistics, but the routine can be 1846 * generalized to update other statistics as well. 1847 * 1848 * Notes: Race condition 1849 * 1850 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1851 * it tends to be costly. But considering some conditions, we doesn't need 1852 * to do so _always_. 1853 * 1854 * Considering "charge", lock_page_cgroup() is not required because all 1855 * file-stat operations happen after a page is attached to radix-tree. There 1856 * are no race with "charge". 1857 * 1858 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1859 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1860 * if there are race with "uncharge". Statistics itself is properly handled 1861 * by flags. 1862 * 1863 * Considering "move", this is an only case we see a race. To make the race 1864 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are 1865 * possibility of race condition. If there is, we take a lock. 1866 */ 1867 1868 void mem_cgroup_update_page_stat(struct page *page, 1869 enum mem_cgroup_page_stat_item idx, int val) 1870 { 1871 struct mem_cgroup *memcg; 1872 struct page_cgroup *pc = lookup_page_cgroup(page); 1873 bool need_unlock = false; 1874 unsigned long uninitialized_var(flags); 1875 1876 if (mem_cgroup_disabled()) 1877 return; 1878 1879 rcu_read_lock(); 1880 memcg = pc->mem_cgroup; 1881 if (unlikely(!memcg || !PageCgroupUsed(pc))) 1882 goto out; 1883 /* pc->mem_cgroup is unstable ? */ 1884 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) { 1885 /* take a lock against to access pc->mem_cgroup */ 1886 move_lock_page_cgroup(pc, &flags); 1887 need_unlock = true; 1888 memcg = pc->mem_cgroup; 1889 if (!memcg || !PageCgroupUsed(pc)) 1890 goto out; 1891 } 1892 1893 switch (idx) { 1894 case MEMCG_NR_FILE_MAPPED: 1895 if (val > 0) 1896 SetPageCgroupFileMapped(pc); 1897 else if (!page_mapped(page)) 1898 ClearPageCgroupFileMapped(pc); 1899 idx = MEM_CGROUP_STAT_FILE_MAPPED; 1900 break; 1901 default: 1902 BUG(); 1903 } 1904 1905 this_cpu_add(memcg->stat->count[idx], val); 1906 1907 out: 1908 if (unlikely(need_unlock)) 1909 move_unlock_page_cgroup(pc, &flags); 1910 rcu_read_unlock(); 1911 return; 1912 } 1913 EXPORT_SYMBOL(mem_cgroup_update_page_stat); 1914 1915 /* 1916 * size of first charge trial. "32" comes from vmscan.c's magic value. 1917 * TODO: maybe necessary to use big numbers in big irons. 1918 */ 1919 #define CHARGE_BATCH 32U 1920 struct memcg_stock_pcp { 1921 struct mem_cgroup *cached; /* this never be root cgroup */ 1922 unsigned int nr_pages; 1923 struct work_struct work; 1924 unsigned long flags; 1925 #define FLUSHING_CACHED_CHARGE (0) 1926 }; 1927 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1928 static DEFINE_MUTEX(percpu_charge_mutex); 1929 1930 /* 1931 * Try to consume stocked charge on this cpu. If success, one page is consumed 1932 * from local stock and true is returned. If the stock is 0 or charges from a 1933 * cgroup which is not current target, returns false. This stock will be 1934 * refilled. 1935 */ 1936 static bool consume_stock(struct mem_cgroup *memcg) 1937 { 1938 struct memcg_stock_pcp *stock; 1939 bool ret = true; 1940 1941 stock = &get_cpu_var(memcg_stock); 1942 if (memcg == stock->cached && stock->nr_pages) 1943 stock->nr_pages--; 1944 else /* need to call res_counter_charge */ 1945 ret = false; 1946 put_cpu_var(memcg_stock); 1947 return ret; 1948 } 1949 1950 /* 1951 * Returns stocks cached in percpu to res_counter and reset cached information. 1952 */ 1953 static void drain_stock(struct memcg_stock_pcp *stock) 1954 { 1955 struct mem_cgroup *old = stock->cached; 1956 1957 if (stock->nr_pages) { 1958 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 1959 1960 res_counter_uncharge(&old->res, bytes); 1961 if (do_swap_account) 1962 res_counter_uncharge(&old->memsw, bytes); 1963 stock->nr_pages = 0; 1964 } 1965 stock->cached = NULL; 1966 } 1967 1968 /* 1969 * This must be called under preempt disabled or must be called by 1970 * a thread which is pinned to local cpu. 1971 */ 1972 static void drain_local_stock(struct work_struct *dummy) 1973 { 1974 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 1975 drain_stock(stock); 1976 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1977 } 1978 1979 /* 1980 * Cache charges(val) which is from res_counter, to local per_cpu area. 1981 * This will be consumed by consume_stock() function, later. 1982 */ 1983 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1984 { 1985 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1986 1987 if (stock->cached != memcg) { /* reset if necessary */ 1988 drain_stock(stock); 1989 stock->cached = memcg; 1990 } 1991 stock->nr_pages += nr_pages; 1992 put_cpu_var(memcg_stock); 1993 } 1994 1995 /* 1996 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1997 * of the hierarchy under it. sync flag says whether we should block 1998 * until the work is done. 1999 */ 2000 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2001 { 2002 int cpu, curcpu; 2003 2004 /* Notify other cpus that system-wide "drain" is running */ 2005 get_online_cpus(); 2006 curcpu = get_cpu(); 2007 for_each_online_cpu(cpu) { 2008 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2009 struct mem_cgroup *memcg; 2010 2011 memcg = stock->cached; 2012 if (!memcg || !stock->nr_pages) 2013 continue; 2014 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2015 continue; 2016 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2017 if (cpu == curcpu) 2018 drain_local_stock(&stock->work); 2019 else 2020 schedule_work_on(cpu, &stock->work); 2021 } 2022 } 2023 put_cpu(); 2024 2025 if (!sync) 2026 goto out; 2027 2028 for_each_online_cpu(cpu) { 2029 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2030 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2031 flush_work(&stock->work); 2032 } 2033 out: 2034 put_online_cpus(); 2035 } 2036 2037 /* 2038 * Tries to drain stocked charges in other cpus. This function is asynchronous 2039 * and just put a work per cpu for draining localy on each cpu. Caller can 2040 * expects some charges will be back to res_counter later but cannot wait for 2041 * it. 2042 */ 2043 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2044 { 2045 /* 2046 * If someone calls draining, avoid adding more kworker runs. 2047 */ 2048 if (!mutex_trylock(&percpu_charge_mutex)) 2049 return; 2050 drain_all_stock(root_memcg, false); 2051 mutex_unlock(&percpu_charge_mutex); 2052 } 2053 2054 /* This is a synchronous drain interface. */ 2055 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2056 { 2057 /* called when force_empty is called */ 2058 mutex_lock(&percpu_charge_mutex); 2059 drain_all_stock(root_memcg, true); 2060 mutex_unlock(&percpu_charge_mutex); 2061 } 2062 2063 /* 2064 * This function drains percpu counter value from DEAD cpu and 2065 * move it to local cpu. Note that this function can be preempted. 2066 */ 2067 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2068 { 2069 int i; 2070 2071 spin_lock(&memcg->pcp_counter_lock); 2072 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) { 2073 long x = per_cpu(memcg->stat->count[i], cpu); 2074 2075 per_cpu(memcg->stat->count[i], cpu) = 0; 2076 memcg->nocpu_base.count[i] += x; 2077 } 2078 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2079 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2080 2081 per_cpu(memcg->stat->events[i], cpu) = 0; 2082 memcg->nocpu_base.events[i] += x; 2083 } 2084 /* need to clear ON_MOVE value, works as a kind of lock. */ 2085 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0; 2086 spin_unlock(&memcg->pcp_counter_lock); 2087 } 2088 2089 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu) 2090 { 2091 int idx = MEM_CGROUP_ON_MOVE; 2092 2093 spin_lock(&memcg->pcp_counter_lock); 2094 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx]; 2095 spin_unlock(&memcg->pcp_counter_lock); 2096 } 2097 2098 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2099 unsigned long action, 2100 void *hcpu) 2101 { 2102 int cpu = (unsigned long)hcpu; 2103 struct memcg_stock_pcp *stock; 2104 struct mem_cgroup *iter; 2105 2106 if ((action == CPU_ONLINE)) { 2107 for_each_mem_cgroup(iter) 2108 synchronize_mem_cgroup_on_move(iter, cpu); 2109 return NOTIFY_OK; 2110 } 2111 2112 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN) 2113 return NOTIFY_OK; 2114 2115 for_each_mem_cgroup(iter) 2116 mem_cgroup_drain_pcp_counter(iter, cpu); 2117 2118 stock = &per_cpu(memcg_stock, cpu); 2119 drain_stock(stock); 2120 return NOTIFY_OK; 2121 } 2122 2123 2124 /* See __mem_cgroup_try_charge() for details */ 2125 enum { 2126 CHARGE_OK, /* success */ 2127 CHARGE_RETRY, /* need to retry but retry is not bad */ 2128 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2129 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2130 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2131 }; 2132 2133 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2134 unsigned int nr_pages, bool oom_check) 2135 { 2136 unsigned long csize = nr_pages * PAGE_SIZE; 2137 struct mem_cgroup *mem_over_limit; 2138 struct res_counter *fail_res; 2139 unsigned long flags = 0; 2140 int ret; 2141 2142 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2143 2144 if (likely(!ret)) { 2145 if (!do_swap_account) 2146 return CHARGE_OK; 2147 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2148 if (likely(!ret)) 2149 return CHARGE_OK; 2150 2151 res_counter_uncharge(&memcg->res, csize); 2152 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2153 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2154 } else 2155 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2156 /* 2157 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch 2158 * of regular pages (CHARGE_BATCH), or a single regular page (1). 2159 * 2160 * Never reclaim on behalf of optional batching, retry with a 2161 * single page instead. 2162 */ 2163 if (nr_pages == CHARGE_BATCH) 2164 return CHARGE_RETRY; 2165 2166 if (!(gfp_mask & __GFP_WAIT)) 2167 return CHARGE_WOULDBLOCK; 2168 2169 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2170 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2171 return CHARGE_RETRY; 2172 /* 2173 * Even though the limit is exceeded at this point, reclaim 2174 * may have been able to free some pages. Retry the charge 2175 * before killing the task. 2176 * 2177 * Only for regular pages, though: huge pages are rather 2178 * unlikely to succeed so close to the limit, and we fall back 2179 * to regular pages anyway in case of failure. 2180 */ 2181 if (nr_pages == 1 && ret) 2182 return CHARGE_RETRY; 2183 2184 /* 2185 * At task move, charge accounts can be doubly counted. So, it's 2186 * better to wait until the end of task_move if something is going on. 2187 */ 2188 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2189 return CHARGE_RETRY; 2190 2191 /* If we don't need to call oom-killer at el, return immediately */ 2192 if (!oom_check) 2193 return CHARGE_NOMEM; 2194 /* check OOM */ 2195 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) 2196 return CHARGE_OOM_DIE; 2197 2198 return CHARGE_RETRY; 2199 } 2200 2201 /* 2202 * __mem_cgroup_try_charge() does 2203 * 1. detect memcg to be charged against from passed *mm and *ptr, 2204 * 2. update res_counter 2205 * 3. call memory reclaim if necessary. 2206 * 2207 * In some special case, if the task is fatal, fatal_signal_pending() or 2208 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2209 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2210 * as possible without any hazards. 2: all pages should have a valid 2211 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2212 * pointer, that is treated as a charge to root_mem_cgroup. 2213 * 2214 * So __mem_cgroup_try_charge() will return 2215 * 0 ... on success, filling *ptr with a valid memcg pointer. 2216 * -ENOMEM ... charge failure because of resource limits. 2217 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2218 * 2219 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2220 * the oom-killer can be invoked. 2221 */ 2222 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2223 gfp_t gfp_mask, 2224 unsigned int nr_pages, 2225 struct mem_cgroup **ptr, 2226 bool oom) 2227 { 2228 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2229 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2230 struct mem_cgroup *memcg = NULL; 2231 int ret; 2232 2233 /* 2234 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2235 * in system level. So, allow to go ahead dying process in addition to 2236 * MEMDIE process. 2237 */ 2238 if (unlikely(test_thread_flag(TIF_MEMDIE) 2239 || fatal_signal_pending(current))) 2240 goto bypass; 2241 2242 /* 2243 * We always charge the cgroup the mm_struct belongs to. 2244 * The mm_struct's mem_cgroup changes on task migration if the 2245 * thread group leader migrates. It's possible that mm is not 2246 * set, if so charge the init_mm (happens for pagecache usage). 2247 */ 2248 if (!*ptr && !mm) 2249 *ptr = root_mem_cgroup; 2250 again: 2251 if (*ptr) { /* css should be a valid one */ 2252 memcg = *ptr; 2253 VM_BUG_ON(css_is_removed(&memcg->css)); 2254 if (mem_cgroup_is_root(memcg)) 2255 goto done; 2256 if (nr_pages == 1 && consume_stock(memcg)) 2257 goto done; 2258 css_get(&memcg->css); 2259 } else { 2260 struct task_struct *p; 2261 2262 rcu_read_lock(); 2263 p = rcu_dereference(mm->owner); 2264 /* 2265 * Because we don't have task_lock(), "p" can exit. 2266 * In that case, "memcg" can point to root or p can be NULL with 2267 * race with swapoff. Then, we have small risk of mis-accouning. 2268 * But such kind of mis-account by race always happens because 2269 * we don't have cgroup_mutex(). It's overkill and we allo that 2270 * small race, here. 2271 * (*) swapoff at el will charge against mm-struct not against 2272 * task-struct. So, mm->owner can be NULL. 2273 */ 2274 memcg = mem_cgroup_from_task(p); 2275 if (!memcg) 2276 memcg = root_mem_cgroup; 2277 if (mem_cgroup_is_root(memcg)) { 2278 rcu_read_unlock(); 2279 goto done; 2280 } 2281 if (nr_pages == 1 && consume_stock(memcg)) { 2282 /* 2283 * It seems dagerous to access memcg without css_get(). 2284 * But considering how consume_stok works, it's not 2285 * necessary. If consume_stock success, some charges 2286 * from this memcg are cached on this cpu. So, we 2287 * don't need to call css_get()/css_tryget() before 2288 * calling consume_stock(). 2289 */ 2290 rcu_read_unlock(); 2291 goto done; 2292 } 2293 /* after here, we may be blocked. we need to get refcnt */ 2294 if (!css_tryget(&memcg->css)) { 2295 rcu_read_unlock(); 2296 goto again; 2297 } 2298 rcu_read_unlock(); 2299 } 2300 2301 do { 2302 bool oom_check; 2303 2304 /* If killed, bypass charge */ 2305 if (fatal_signal_pending(current)) { 2306 css_put(&memcg->css); 2307 goto bypass; 2308 } 2309 2310 oom_check = false; 2311 if (oom && !nr_oom_retries) { 2312 oom_check = true; 2313 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2314 } 2315 2316 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); 2317 switch (ret) { 2318 case CHARGE_OK: 2319 break; 2320 case CHARGE_RETRY: /* not in OOM situation but retry */ 2321 batch = nr_pages; 2322 css_put(&memcg->css); 2323 memcg = NULL; 2324 goto again; 2325 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2326 css_put(&memcg->css); 2327 goto nomem; 2328 case CHARGE_NOMEM: /* OOM routine works */ 2329 if (!oom) { 2330 css_put(&memcg->css); 2331 goto nomem; 2332 } 2333 /* If oom, we never return -ENOMEM */ 2334 nr_oom_retries--; 2335 break; 2336 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2337 css_put(&memcg->css); 2338 goto bypass; 2339 } 2340 } while (ret != CHARGE_OK); 2341 2342 if (batch > nr_pages) 2343 refill_stock(memcg, batch - nr_pages); 2344 css_put(&memcg->css); 2345 done: 2346 *ptr = memcg; 2347 return 0; 2348 nomem: 2349 *ptr = NULL; 2350 return -ENOMEM; 2351 bypass: 2352 *ptr = root_mem_cgroup; 2353 return -EINTR; 2354 } 2355 2356 /* 2357 * Somemtimes we have to undo a charge we got by try_charge(). 2358 * This function is for that and do uncharge, put css's refcnt. 2359 * gotten by try_charge(). 2360 */ 2361 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2362 unsigned int nr_pages) 2363 { 2364 if (!mem_cgroup_is_root(memcg)) { 2365 unsigned long bytes = nr_pages * PAGE_SIZE; 2366 2367 res_counter_uncharge(&memcg->res, bytes); 2368 if (do_swap_account) 2369 res_counter_uncharge(&memcg->memsw, bytes); 2370 } 2371 } 2372 2373 /* 2374 * A helper function to get mem_cgroup from ID. must be called under 2375 * rcu_read_lock(). The caller must check css_is_removed() or some if 2376 * it's concern. (dropping refcnt from swap can be called against removed 2377 * memcg.) 2378 */ 2379 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2380 { 2381 struct cgroup_subsys_state *css; 2382 2383 /* ID 0 is unused ID */ 2384 if (!id) 2385 return NULL; 2386 css = css_lookup(&mem_cgroup_subsys, id); 2387 if (!css) 2388 return NULL; 2389 return container_of(css, struct mem_cgroup, css); 2390 } 2391 2392 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2393 { 2394 struct mem_cgroup *memcg = NULL; 2395 struct page_cgroup *pc; 2396 unsigned short id; 2397 swp_entry_t ent; 2398 2399 VM_BUG_ON(!PageLocked(page)); 2400 2401 pc = lookup_page_cgroup(page); 2402 lock_page_cgroup(pc); 2403 if (PageCgroupUsed(pc)) { 2404 memcg = pc->mem_cgroup; 2405 if (memcg && !css_tryget(&memcg->css)) 2406 memcg = NULL; 2407 } else if (PageSwapCache(page)) { 2408 ent.val = page_private(page); 2409 id = lookup_swap_cgroup_id(ent); 2410 rcu_read_lock(); 2411 memcg = mem_cgroup_lookup(id); 2412 if (memcg && !css_tryget(&memcg->css)) 2413 memcg = NULL; 2414 rcu_read_unlock(); 2415 } 2416 unlock_page_cgroup(pc); 2417 return memcg; 2418 } 2419 2420 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2421 struct page *page, 2422 unsigned int nr_pages, 2423 struct page_cgroup *pc, 2424 enum charge_type ctype, 2425 bool lrucare) 2426 { 2427 struct zone *uninitialized_var(zone); 2428 bool was_on_lru = false; 2429 2430 lock_page_cgroup(pc); 2431 if (unlikely(PageCgroupUsed(pc))) { 2432 unlock_page_cgroup(pc); 2433 __mem_cgroup_cancel_charge(memcg, nr_pages); 2434 return; 2435 } 2436 /* 2437 * we don't need page_cgroup_lock about tail pages, becase they are not 2438 * accessed by any other context at this point. 2439 */ 2440 2441 /* 2442 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2443 * may already be on some other mem_cgroup's LRU. Take care of it. 2444 */ 2445 if (lrucare) { 2446 zone = page_zone(page); 2447 spin_lock_irq(&zone->lru_lock); 2448 if (PageLRU(page)) { 2449 ClearPageLRU(page); 2450 del_page_from_lru_list(zone, page, page_lru(page)); 2451 was_on_lru = true; 2452 } 2453 } 2454 2455 pc->mem_cgroup = memcg; 2456 /* 2457 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2458 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2459 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2460 * before USED bit, we need memory barrier here. 2461 * See mem_cgroup_add_lru_list(), etc. 2462 */ 2463 smp_wmb(); 2464 switch (ctype) { 2465 case MEM_CGROUP_CHARGE_TYPE_CACHE: 2466 case MEM_CGROUP_CHARGE_TYPE_SHMEM: 2467 SetPageCgroupCache(pc); 2468 SetPageCgroupUsed(pc); 2469 break; 2470 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2471 ClearPageCgroupCache(pc); 2472 SetPageCgroupUsed(pc); 2473 break; 2474 default: 2475 break; 2476 } 2477 2478 if (lrucare) { 2479 if (was_on_lru) { 2480 VM_BUG_ON(PageLRU(page)); 2481 SetPageLRU(page); 2482 add_page_to_lru_list(zone, page, page_lru(page)); 2483 } 2484 spin_unlock_irq(&zone->lru_lock); 2485 } 2486 2487 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages); 2488 unlock_page_cgroup(pc); 2489 2490 /* 2491 * "charge_statistics" updated event counter. Then, check it. 2492 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2493 * if they exceeds softlimit. 2494 */ 2495 memcg_check_events(memcg, page); 2496 } 2497 2498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2499 2500 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\ 2501 (1 << PCG_MIGRATION)) 2502 /* 2503 * Because tail pages are not marked as "used", set it. We're under 2504 * zone->lru_lock, 'splitting on pmd' and compound_lock. 2505 * charge/uncharge will be never happen and move_account() is done under 2506 * compound_lock(), so we don't have to take care of races. 2507 */ 2508 void mem_cgroup_split_huge_fixup(struct page *head) 2509 { 2510 struct page_cgroup *head_pc = lookup_page_cgroup(head); 2511 struct page_cgroup *pc; 2512 int i; 2513 2514 if (mem_cgroup_disabled()) 2515 return; 2516 for (i = 1; i < HPAGE_PMD_NR; i++) { 2517 pc = head_pc + i; 2518 pc->mem_cgroup = head_pc->mem_cgroup; 2519 smp_wmb();/* see __commit_charge() */ 2520 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 2521 } 2522 } 2523 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2524 2525 /** 2526 * mem_cgroup_move_account - move account of the page 2527 * @page: the page 2528 * @nr_pages: number of regular pages (>1 for huge pages) 2529 * @pc: page_cgroup of the page. 2530 * @from: mem_cgroup which the page is moved from. 2531 * @to: mem_cgroup which the page is moved to. @from != @to. 2532 * @uncharge: whether we should call uncharge and css_put against @from. 2533 * 2534 * The caller must confirm following. 2535 * - page is not on LRU (isolate_page() is useful.) 2536 * - compound_lock is held when nr_pages > 1 2537 * 2538 * This function doesn't do "charge" nor css_get to new cgroup. It should be 2539 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is 2540 * true, this function does "uncharge" from old cgroup, but it doesn't if 2541 * @uncharge is false, so a caller should do "uncharge". 2542 */ 2543 static int mem_cgroup_move_account(struct page *page, 2544 unsigned int nr_pages, 2545 struct page_cgroup *pc, 2546 struct mem_cgroup *from, 2547 struct mem_cgroup *to, 2548 bool uncharge) 2549 { 2550 unsigned long flags; 2551 int ret; 2552 2553 VM_BUG_ON(from == to); 2554 VM_BUG_ON(PageLRU(page)); 2555 /* 2556 * The page is isolated from LRU. So, collapse function 2557 * will not handle this page. But page splitting can happen. 2558 * Do this check under compound_page_lock(). The caller should 2559 * hold it. 2560 */ 2561 ret = -EBUSY; 2562 if (nr_pages > 1 && !PageTransHuge(page)) 2563 goto out; 2564 2565 lock_page_cgroup(pc); 2566 2567 ret = -EINVAL; 2568 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 2569 goto unlock; 2570 2571 move_lock_page_cgroup(pc, &flags); 2572 2573 if (PageCgroupFileMapped(pc)) { 2574 /* Update mapped_file data for mem_cgroup */ 2575 preempt_disable(); 2576 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2577 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2578 preempt_enable(); 2579 } 2580 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages); 2581 if (uncharge) 2582 /* This is not "cancel", but cancel_charge does all we need. */ 2583 __mem_cgroup_cancel_charge(from, nr_pages); 2584 2585 /* caller should have done css_get */ 2586 pc->mem_cgroup = to; 2587 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages); 2588 /* 2589 * We charges against "to" which may not have any tasks. Then, "to" 2590 * can be under rmdir(). But in current implementation, caller of 2591 * this function is just force_empty() and move charge, so it's 2592 * guaranteed that "to" is never removed. So, we don't check rmdir 2593 * status here. 2594 */ 2595 move_unlock_page_cgroup(pc, &flags); 2596 ret = 0; 2597 unlock: 2598 unlock_page_cgroup(pc); 2599 /* 2600 * check events 2601 */ 2602 memcg_check_events(to, page); 2603 memcg_check_events(from, page); 2604 out: 2605 return ret; 2606 } 2607 2608 /* 2609 * move charges to its parent. 2610 */ 2611 2612 static int mem_cgroup_move_parent(struct page *page, 2613 struct page_cgroup *pc, 2614 struct mem_cgroup *child, 2615 gfp_t gfp_mask) 2616 { 2617 struct cgroup *cg = child->css.cgroup; 2618 struct cgroup *pcg = cg->parent; 2619 struct mem_cgroup *parent; 2620 unsigned int nr_pages; 2621 unsigned long uninitialized_var(flags); 2622 int ret; 2623 2624 /* Is ROOT ? */ 2625 if (!pcg) 2626 return -EINVAL; 2627 2628 ret = -EBUSY; 2629 if (!get_page_unless_zero(page)) 2630 goto out; 2631 if (isolate_lru_page(page)) 2632 goto put; 2633 2634 nr_pages = hpage_nr_pages(page); 2635 2636 parent = mem_cgroup_from_cont(pcg); 2637 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false); 2638 if (ret) 2639 goto put_back; 2640 2641 if (nr_pages > 1) 2642 flags = compound_lock_irqsave(page); 2643 2644 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true); 2645 if (ret) 2646 __mem_cgroup_cancel_charge(parent, nr_pages); 2647 2648 if (nr_pages > 1) 2649 compound_unlock_irqrestore(page, flags); 2650 put_back: 2651 putback_lru_page(page); 2652 put: 2653 put_page(page); 2654 out: 2655 return ret; 2656 } 2657 2658 /* 2659 * Charge the memory controller for page usage. 2660 * Return 2661 * 0 if the charge was successful 2662 * < 0 if the cgroup is over its limit 2663 */ 2664 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2665 gfp_t gfp_mask, enum charge_type ctype) 2666 { 2667 struct mem_cgroup *memcg = NULL; 2668 unsigned int nr_pages = 1; 2669 struct page_cgroup *pc; 2670 bool oom = true; 2671 int ret; 2672 2673 if (PageTransHuge(page)) { 2674 nr_pages <<= compound_order(page); 2675 VM_BUG_ON(!PageTransHuge(page)); 2676 /* 2677 * Never OOM-kill a process for a huge page. The 2678 * fault handler will fall back to regular pages. 2679 */ 2680 oom = false; 2681 } 2682 2683 pc = lookup_page_cgroup(page); 2684 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 2685 if (ret == -ENOMEM) 2686 return ret; 2687 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false); 2688 return 0; 2689 } 2690 2691 int mem_cgroup_newpage_charge(struct page *page, 2692 struct mm_struct *mm, gfp_t gfp_mask) 2693 { 2694 if (mem_cgroup_disabled()) 2695 return 0; 2696 VM_BUG_ON(page_mapped(page)); 2697 VM_BUG_ON(page->mapping && !PageAnon(page)); 2698 VM_BUG_ON(!mm); 2699 return mem_cgroup_charge_common(page, mm, gfp_mask, 2700 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2701 } 2702 2703 static void 2704 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 2705 enum charge_type ctype); 2706 2707 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2708 gfp_t gfp_mask) 2709 { 2710 struct mem_cgroup *memcg = NULL; 2711 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 2712 int ret; 2713 2714 if (mem_cgroup_disabled()) 2715 return 0; 2716 if (PageCompound(page)) 2717 return 0; 2718 2719 if (unlikely(!mm)) 2720 mm = &init_mm; 2721 if (!page_is_file_cache(page)) 2722 type = MEM_CGROUP_CHARGE_TYPE_SHMEM; 2723 2724 if (!PageSwapCache(page)) 2725 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 2726 else { /* page is swapcache/shmem */ 2727 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg); 2728 if (!ret) 2729 __mem_cgroup_commit_charge_swapin(page, memcg, type); 2730 } 2731 return ret; 2732 } 2733 2734 /* 2735 * While swap-in, try_charge -> commit or cancel, the page is locked. 2736 * And when try_charge() successfully returns, one refcnt to memcg without 2737 * struct page_cgroup is acquired. This refcnt will be consumed by 2738 * "commit()" or removed by "cancel()" 2739 */ 2740 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2741 struct page *page, 2742 gfp_t mask, struct mem_cgroup **memcgp) 2743 { 2744 struct mem_cgroup *memcg; 2745 int ret; 2746 2747 *memcgp = NULL; 2748 2749 if (mem_cgroup_disabled()) 2750 return 0; 2751 2752 if (!do_swap_account) 2753 goto charge_cur_mm; 2754 /* 2755 * A racing thread's fault, or swapoff, may have already updated 2756 * the pte, and even removed page from swap cache: in those cases 2757 * do_swap_page()'s pte_same() test will fail; but there's also a 2758 * KSM case which does need to charge the page. 2759 */ 2760 if (!PageSwapCache(page)) 2761 goto charge_cur_mm; 2762 memcg = try_get_mem_cgroup_from_page(page); 2763 if (!memcg) 2764 goto charge_cur_mm; 2765 *memcgp = memcg; 2766 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 2767 css_put(&memcg->css); 2768 if (ret == -EINTR) 2769 ret = 0; 2770 return ret; 2771 charge_cur_mm: 2772 if (unlikely(!mm)) 2773 mm = &init_mm; 2774 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 2775 if (ret == -EINTR) 2776 ret = 0; 2777 return ret; 2778 } 2779 2780 static void 2781 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 2782 enum charge_type ctype) 2783 { 2784 struct page_cgroup *pc; 2785 2786 if (mem_cgroup_disabled()) 2787 return; 2788 if (!memcg) 2789 return; 2790 cgroup_exclude_rmdir(&memcg->css); 2791 2792 pc = lookup_page_cgroup(page); 2793 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true); 2794 /* 2795 * Now swap is on-memory. This means this page may be 2796 * counted both as mem and swap....double count. 2797 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2798 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2799 * may call delete_from_swap_cache() before reach here. 2800 */ 2801 if (do_swap_account && PageSwapCache(page)) { 2802 swp_entry_t ent = {.val = page_private(page)}; 2803 struct mem_cgroup *swap_memcg; 2804 unsigned short id; 2805 2806 id = swap_cgroup_record(ent, 0); 2807 rcu_read_lock(); 2808 swap_memcg = mem_cgroup_lookup(id); 2809 if (swap_memcg) { 2810 /* 2811 * This recorded memcg can be obsolete one. So, avoid 2812 * calling css_tryget 2813 */ 2814 if (!mem_cgroup_is_root(swap_memcg)) 2815 res_counter_uncharge(&swap_memcg->memsw, 2816 PAGE_SIZE); 2817 mem_cgroup_swap_statistics(swap_memcg, false); 2818 mem_cgroup_put(swap_memcg); 2819 } 2820 rcu_read_unlock(); 2821 } 2822 /* 2823 * At swapin, we may charge account against cgroup which has no tasks. 2824 * So, rmdir()->pre_destroy() can be called while we do this charge. 2825 * In that case, we need to call pre_destroy() again. check it here. 2826 */ 2827 cgroup_release_and_wakeup_rmdir(&memcg->css); 2828 } 2829 2830 void mem_cgroup_commit_charge_swapin(struct page *page, 2831 struct mem_cgroup *memcg) 2832 { 2833 __mem_cgroup_commit_charge_swapin(page, memcg, 2834 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2835 } 2836 2837 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 2838 { 2839 if (mem_cgroup_disabled()) 2840 return; 2841 if (!memcg) 2842 return; 2843 __mem_cgroup_cancel_charge(memcg, 1); 2844 } 2845 2846 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 2847 unsigned int nr_pages, 2848 const enum charge_type ctype) 2849 { 2850 struct memcg_batch_info *batch = NULL; 2851 bool uncharge_memsw = true; 2852 2853 /* If swapout, usage of swap doesn't decrease */ 2854 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2855 uncharge_memsw = false; 2856 2857 batch = ¤t->memcg_batch; 2858 /* 2859 * In usual, we do css_get() when we remember memcg pointer. 2860 * But in this case, we keep res->usage until end of a series of 2861 * uncharges. Then, it's ok to ignore memcg's refcnt. 2862 */ 2863 if (!batch->memcg) 2864 batch->memcg = memcg; 2865 /* 2866 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2867 * In those cases, all pages freed continuously can be expected to be in 2868 * the same cgroup and we have chance to coalesce uncharges. 2869 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2870 * because we want to do uncharge as soon as possible. 2871 */ 2872 2873 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2874 goto direct_uncharge; 2875 2876 if (nr_pages > 1) 2877 goto direct_uncharge; 2878 2879 /* 2880 * In typical case, batch->memcg == mem. This means we can 2881 * merge a series of uncharges to an uncharge of res_counter. 2882 * If not, we uncharge res_counter ony by one. 2883 */ 2884 if (batch->memcg != memcg) 2885 goto direct_uncharge; 2886 /* remember freed charge and uncharge it later */ 2887 batch->nr_pages++; 2888 if (uncharge_memsw) 2889 batch->memsw_nr_pages++; 2890 return; 2891 direct_uncharge: 2892 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 2893 if (uncharge_memsw) 2894 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 2895 if (unlikely(batch->memcg != memcg)) 2896 memcg_oom_recover(memcg); 2897 return; 2898 } 2899 2900 /* 2901 * uncharge if !page_mapped(page) 2902 */ 2903 static struct mem_cgroup * 2904 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 2905 { 2906 struct mem_cgroup *memcg = NULL; 2907 unsigned int nr_pages = 1; 2908 struct page_cgroup *pc; 2909 2910 if (mem_cgroup_disabled()) 2911 return NULL; 2912 2913 if (PageSwapCache(page)) 2914 return NULL; 2915 2916 if (PageTransHuge(page)) { 2917 nr_pages <<= compound_order(page); 2918 VM_BUG_ON(!PageTransHuge(page)); 2919 } 2920 /* 2921 * Check if our page_cgroup is valid 2922 */ 2923 pc = lookup_page_cgroup(page); 2924 if (unlikely(!PageCgroupUsed(pc))) 2925 return NULL; 2926 2927 lock_page_cgroup(pc); 2928 2929 memcg = pc->mem_cgroup; 2930 2931 if (!PageCgroupUsed(pc)) 2932 goto unlock_out; 2933 2934 switch (ctype) { 2935 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2936 case MEM_CGROUP_CHARGE_TYPE_DROP: 2937 /* See mem_cgroup_prepare_migration() */ 2938 if (page_mapped(page) || PageCgroupMigration(pc)) 2939 goto unlock_out; 2940 break; 2941 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 2942 if (!PageAnon(page)) { /* Shared memory */ 2943 if (page->mapping && !page_is_file_cache(page)) 2944 goto unlock_out; 2945 } else if (page_mapped(page)) /* Anon */ 2946 goto unlock_out; 2947 break; 2948 default: 2949 break; 2950 } 2951 2952 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages); 2953 2954 ClearPageCgroupUsed(pc); 2955 /* 2956 * pc->mem_cgroup is not cleared here. It will be accessed when it's 2957 * freed from LRU. This is safe because uncharged page is expected not 2958 * to be reused (freed soon). Exception is SwapCache, it's handled by 2959 * special functions. 2960 */ 2961 2962 unlock_page_cgroup(pc); 2963 /* 2964 * even after unlock, we have memcg->res.usage here and this memcg 2965 * will never be freed. 2966 */ 2967 memcg_check_events(memcg, page); 2968 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 2969 mem_cgroup_swap_statistics(memcg, true); 2970 mem_cgroup_get(memcg); 2971 } 2972 if (!mem_cgroup_is_root(memcg)) 2973 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 2974 2975 return memcg; 2976 2977 unlock_out: 2978 unlock_page_cgroup(pc); 2979 return NULL; 2980 } 2981 2982 void mem_cgroup_uncharge_page(struct page *page) 2983 { 2984 /* early check. */ 2985 if (page_mapped(page)) 2986 return; 2987 VM_BUG_ON(page->mapping && !PageAnon(page)); 2988 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); 2989 } 2990 2991 void mem_cgroup_uncharge_cache_page(struct page *page) 2992 { 2993 VM_BUG_ON(page_mapped(page)); 2994 VM_BUG_ON(page->mapping); 2995 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); 2996 } 2997 2998 /* 2999 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 3000 * In that cases, pages are freed continuously and we can expect pages 3001 * are in the same memcg. All these calls itself limits the number of 3002 * pages freed at once, then uncharge_start/end() is called properly. 3003 * This may be called prural(2) times in a context, 3004 */ 3005 3006 void mem_cgroup_uncharge_start(void) 3007 { 3008 current->memcg_batch.do_batch++; 3009 /* We can do nest. */ 3010 if (current->memcg_batch.do_batch == 1) { 3011 current->memcg_batch.memcg = NULL; 3012 current->memcg_batch.nr_pages = 0; 3013 current->memcg_batch.memsw_nr_pages = 0; 3014 } 3015 } 3016 3017 void mem_cgroup_uncharge_end(void) 3018 { 3019 struct memcg_batch_info *batch = ¤t->memcg_batch; 3020 3021 if (!batch->do_batch) 3022 return; 3023 3024 batch->do_batch--; 3025 if (batch->do_batch) /* If stacked, do nothing. */ 3026 return; 3027 3028 if (!batch->memcg) 3029 return; 3030 /* 3031 * This "batch->memcg" is valid without any css_get/put etc... 3032 * bacause we hide charges behind us. 3033 */ 3034 if (batch->nr_pages) 3035 res_counter_uncharge(&batch->memcg->res, 3036 batch->nr_pages * PAGE_SIZE); 3037 if (batch->memsw_nr_pages) 3038 res_counter_uncharge(&batch->memcg->memsw, 3039 batch->memsw_nr_pages * PAGE_SIZE); 3040 memcg_oom_recover(batch->memcg); 3041 /* forget this pointer (for sanity check) */ 3042 batch->memcg = NULL; 3043 } 3044 3045 #ifdef CONFIG_SWAP 3046 /* 3047 * called after __delete_from_swap_cache() and drop "page" account. 3048 * memcg information is recorded to swap_cgroup of "ent" 3049 */ 3050 void 3051 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 3052 { 3053 struct mem_cgroup *memcg; 3054 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 3055 3056 if (!swapout) /* this was a swap cache but the swap is unused ! */ 3057 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 3058 3059 memcg = __mem_cgroup_uncharge_common(page, ctype); 3060 3061 /* 3062 * record memcg information, if swapout && memcg != NULL, 3063 * mem_cgroup_get() was called in uncharge(). 3064 */ 3065 if (do_swap_account && swapout && memcg) 3066 swap_cgroup_record(ent, css_id(&memcg->css)); 3067 } 3068 #endif 3069 3070 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 3071 /* 3072 * called from swap_entry_free(). remove record in swap_cgroup and 3073 * uncharge "memsw" account. 3074 */ 3075 void mem_cgroup_uncharge_swap(swp_entry_t ent) 3076 { 3077 struct mem_cgroup *memcg; 3078 unsigned short id; 3079 3080 if (!do_swap_account) 3081 return; 3082 3083 id = swap_cgroup_record(ent, 0); 3084 rcu_read_lock(); 3085 memcg = mem_cgroup_lookup(id); 3086 if (memcg) { 3087 /* 3088 * We uncharge this because swap is freed. 3089 * This memcg can be obsolete one. We avoid calling css_tryget 3090 */ 3091 if (!mem_cgroup_is_root(memcg)) 3092 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 3093 mem_cgroup_swap_statistics(memcg, false); 3094 mem_cgroup_put(memcg); 3095 } 3096 rcu_read_unlock(); 3097 } 3098 3099 /** 3100 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3101 * @entry: swap entry to be moved 3102 * @from: mem_cgroup which the entry is moved from 3103 * @to: mem_cgroup which the entry is moved to 3104 * @need_fixup: whether we should fixup res_counters and refcounts. 3105 * 3106 * It succeeds only when the swap_cgroup's record for this entry is the same 3107 * as the mem_cgroup's id of @from. 3108 * 3109 * Returns 0 on success, -EINVAL on failure. 3110 * 3111 * The caller must have charged to @to, IOW, called res_counter_charge() about 3112 * both res and memsw, and called css_get(). 3113 */ 3114 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3115 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) 3116 { 3117 unsigned short old_id, new_id; 3118 3119 old_id = css_id(&from->css); 3120 new_id = css_id(&to->css); 3121 3122 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3123 mem_cgroup_swap_statistics(from, false); 3124 mem_cgroup_swap_statistics(to, true); 3125 /* 3126 * This function is only called from task migration context now. 3127 * It postpones res_counter and refcount handling till the end 3128 * of task migration(mem_cgroup_clear_mc()) for performance 3129 * improvement. But we cannot postpone mem_cgroup_get(to) 3130 * because if the process that has been moved to @to does 3131 * swap-in, the refcount of @to might be decreased to 0. 3132 */ 3133 mem_cgroup_get(to); 3134 if (need_fixup) { 3135 if (!mem_cgroup_is_root(from)) 3136 res_counter_uncharge(&from->memsw, PAGE_SIZE); 3137 mem_cgroup_put(from); 3138 /* 3139 * we charged both to->res and to->memsw, so we should 3140 * uncharge to->res. 3141 */ 3142 if (!mem_cgroup_is_root(to)) 3143 res_counter_uncharge(&to->res, PAGE_SIZE); 3144 } 3145 return 0; 3146 } 3147 return -EINVAL; 3148 } 3149 #else 3150 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3151 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) 3152 { 3153 return -EINVAL; 3154 } 3155 #endif 3156 3157 /* 3158 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 3159 * page belongs to. 3160 */ 3161 int mem_cgroup_prepare_migration(struct page *page, 3162 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask) 3163 { 3164 struct mem_cgroup *memcg = NULL; 3165 struct page_cgroup *pc; 3166 enum charge_type ctype; 3167 int ret = 0; 3168 3169 *memcgp = NULL; 3170 3171 VM_BUG_ON(PageTransHuge(page)); 3172 if (mem_cgroup_disabled()) 3173 return 0; 3174 3175 pc = lookup_page_cgroup(page); 3176 lock_page_cgroup(pc); 3177 if (PageCgroupUsed(pc)) { 3178 memcg = pc->mem_cgroup; 3179 css_get(&memcg->css); 3180 /* 3181 * At migrating an anonymous page, its mapcount goes down 3182 * to 0 and uncharge() will be called. But, even if it's fully 3183 * unmapped, migration may fail and this page has to be 3184 * charged again. We set MIGRATION flag here and delay uncharge 3185 * until end_migration() is called 3186 * 3187 * Corner Case Thinking 3188 * A) 3189 * When the old page was mapped as Anon and it's unmap-and-freed 3190 * while migration was ongoing. 3191 * If unmap finds the old page, uncharge() of it will be delayed 3192 * until end_migration(). If unmap finds a new page, it's 3193 * uncharged when it make mapcount to be 1->0. If unmap code 3194 * finds swap_migration_entry, the new page will not be mapped 3195 * and end_migration() will find it(mapcount==0). 3196 * 3197 * B) 3198 * When the old page was mapped but migraion fails, the kernel 3199 * remaps it. A charge for it is kept by MIGRATION flag even 3200 * if mapcount goes down to 0. We can do remap successfully 3201 * without charging it again. 3202 * 3203 * C) 3204 * The "old" page is under lock_page() until the end of 3205 * migration, so, the old page itself will not be swapped-out. 3206 * If the new page is swapped out before end_migraton, our 3207 * hook to usual swap-out path will catch the event. 3208 */ 3209 if (PageAnon(page)) 3210 SetPageCgroupMigration(pc); 3211 } 3212 unlock_page_cgroup(pc); 3213 /* 3214 * If the page is not charged at this point, 3215 * we return here. 3216 */ 3217 if (!memcg) 3218 return 0; 3219 3220 *memcgp = memcg; 3221 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false); 3222 css_put(&memcg->css);/* drop extra refcnt */ 3223 if (ret) { 3224 if (PageAnon(page)) { 3225 lock_page_cgroup(pc); 3226 ClearPageCgroupMigration(pc); 3227 unlock_page_cgroup(pc); 3228 /* 3229 * The old page may be fully unmapped while we kept it. 3230 */ 3231 mem_cgroup_uncharge_page(page); 3232 } 3233 /* we'll need to revisit this error code (we have -EINTR) */ 3234 return -ENOMEM; 3235 } 3236 /* 3237 * We charge new page before it's used/mapped. So, even if unlock_page() 3238 * is called before end_migration, we can catch all events on this new 3239 * page. In the case new page is migrated but not remapped, new page's 3240 * mapcount will be finally 0 and we call uncharge in end_migration(). 3241 */ 3242 pc = lookup_page_cgroup(newpage); 3243 if (PageAnon(page)) 3244 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; 3245 else if (page_is_file_cache(page)) 3246 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 3247 else 3248 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 3249 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false); 3250 return ret; 3251 } 3252 3253 /* remove redundant charge if migration failed*/ 3254 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 3255 struct page *oldpage, struct page *newpage, bool migration_ok) 3256 { 3257 struct page *used, *unused; 3258 struct page_cgroup *pc; 3259 3260 if (!memcg) 3261 return; 3262 /* blocks rmdir() */ 3263 cgroup_exclude_rmdir(&memcg->css); 3264 if (!migration_ok) { 3265 used = oldpage; 3266 unused = newpage; 3267 } else { 3268 used = newpage; 3269 unused = oldpage; 3270 } 3271 /* 3272 * We disallowed uncharge of pages under migration because mapcount 3273 * of the page goes down to zero, temporarly. 3274 * Clear the flag and check the page should be charged. 3275 */ 3276 pc = lookup_page_cgroup(oldpage); 3277 lock_page_cgroup(pc); 3278 ClearPageCgroupMigration(pc); 3279 unlock_page_cgroup(pc); 3280 3281 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); 3282 3283 /* 3284 * If a page is a file cache, radix-tree replacement is very atomic 3285 * and we can skip this check. When it was an Anon page, its mapcount 3286 * goes down to 0. But because we added MIGRATION flage, it's not 3287 * uncharged yet. There are several case but page->mapcount check 3288 * and USED bit check in mem_cgroup_uncharge_page() will do enough 3289 * check. (see prepare_charge() also) 3290 */ 3291 if (PageAnon(used)) 3292 mem_cgroup_uncharge_page(used); 3293 /* 3294 * At migration, we may charge account against cgroup which has no 3295 * tasks. 3296 * So, rmdir()->pre_destroy() can be called while we do this charge. 3297 * In that case, we need to call pre_destroy() again. check it here. 3298 */ 3299 cgroup_release_and_wakeup_rmdir(&memcg->css); 3300 } 3301 3302 /* 3303 * At replace page cache, newpage is not under any memcg but it's on 3304 * LRU. So, this function doesn't touch res_counter but handles LRU 3305 * in correct way. Both pages are locked so we cannot race with uncharge. 3306 */ 3307 void mem_cgroup_replace_page_cache(struct page *oldpage, 3308 struct page *newpage) 3309 { 3310 struct mem_cgroup *memcg; 3311 struct page_cgroup *pc; 3312 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3313 3314 if (mem_cgroup_disabled()) 3315 return; 3316 3317 pc = lookup_page_cgroup(oldpage); 3318 /* fix accounting on old pages */ 3319 lock_page_cgroup(pc); 3320 memcg = pc->mem_cgroup; 3321 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1); 3322 ClearPageCgroupUsed(pc); 3323 unlock_page_cgroup(pc); 3324 3325 if (PageSwapBacked(oldpage)) 3326 type = MEM_CGROUP_CHARGE_TYPE_SHMEM; 3327 3328 /* 3329 * Even if newpage->mapping was NULL before starting replacement, 3330 * the newpage may be on LRU(or pagevec for LRU) already. We lock 3331 * LRU while we overwrite pc->mem_cgroup. 3332 */ 3333 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true); 3334 } 3335 3336 #ifdef CONFIG_DEBUG_VM 3337 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 3338 { 3339 struct page_cgroup *pc; 3340 3341 pc = lookup_page_cgroup(page); 3342 /* 3343 * Can be NULL while feeding pages into the page allocator for 3344 * the first time, i.e. during boot or memory hotplug; 3345 * or when mem_cgroup_disabled(). 3346 */ 3347 if (likely(pc) && PageCgroupUsed(pc)) 3348 return pc; 3349 return NULL; 3350 } 3351 3352 bool mem_cgroup_bad_page_check(struct page *page) 3353 { 3354 if (mem_cgroup_disabled()) 3355 return false; 3356 3357 return lookup_page_cgroup_used(page) != NULL; 3358 } 3359 3360 void mem_cgroup_print_bad_page(struct page *page) 3361 { 3362 struct page_cgroup *pc; 3363 3364 pc = lookup_page_cgroup_used(page); 3365 if (pc) { 3366 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 3367 pc, pc->flags, pc->mem_cgroup); 3368 } 3369 } 3370 #endif 3371 3372 static DEFINE_MUTEX(set_limit_mutex); 3373 3374 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 3375 unsigned long long val) 3376 { 3377 int retry_count; 3378 u64 memswlimit, memlimit; 3379 int ret = 0; 3380 int children = mem_cgroup_count_children(memcg); 3381 u64 curusage, oldusage; 3382 int enlarge; 3383 3384 /* 3385 * For keeping hierarchical_reclaim simple, how long we should retry 3386 * is depends on callers. We set our retry-count to be function 3387 * of # of children which we should visit in this loop. 3388 */ 3389 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 3390 3391 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3392 3393 enlarge = 0; 3394 while (retry_count) { 3395 if (signal_pending(current)) { 3396 ret = -EINTR; 3397 break; 3398 } 3399 /* 3400 * Rather than hide all in some function, I do this in 3401 * open coded manner. You see what this really does. 3402 * We have to guarantee memcg->res.limit < memcg->memsw.limit. 3403 */ 3404 mutex_lock(&set_limit_mutex); 3405 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3406 if (memswlimit < val) { 3407 ret = -EINVAL; 3408 mutex_unlock(&set_limit_mutex); 3409 break; 3410 } 3411 3412 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3413 if (memlimit < val) 3414 enlarge = 1; 3415 3416 ret = res_counter_set_limit(&memcg->res, val); 3417 if (!ret) { 3418 if (memswlimit == val) 3419 memcg->memsw_is_minimum = true; 3420 else 3421 memcg->memsw_is_minimum = false; 3422 } 3423 mutex_unlock(&set_limit_mutex); 3424 3425 if (!ret) 3426 break; 3427 3428 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3429 MEM_CGROUP_RECLAIM_SHRINK); 3430 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3431 /* Usage is reduced ? */ 3432 if (curusage >= oldusage) 3433 retry_count--; 3434 else 3435 oldusage = curusage; 3436 } 3437 if (!ret && enlarge) 3438 memcg_oom_recover(memcg); 3439 3440 return ret; 3441 } 3442 3443 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3444 unsigned long long val) 3445 { 3446 int retry_count; 3447 u64 memlimit, memswlimit, oldusage, curusage; 3448 int children = mem_cgroup_count_children(memcg); 3449 int ret = -EBUSY; 3450 int enlarge = 0; 3451 3452 /* see mem_cgroup_resize_res_limit */ 3453 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3454 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3455 while (retry_count) { 3456 if (signal_pending(current)) { 3457 ret = -EINTR; 3458 break; 3459 } 3460 /* 3461 * Rather than hide all in some function, I do this in 3462 * open coded manner. You see what this really does. 3463 * We have to guarantee memcg->res.limit < memcg->memsw.limit. 3464 */ 3465 mutex_lock(&set_limit_mutex); 3466 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3467 if (memlimit > val) { 3468 ret = -EINVAL; 3469 mutex_unlock(&set_limit_mutex); 3470 break; 3471 } 3472 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3473 if (memswlimit < val) 3474 enlarge = 1; 3475 ret = res_counter_set_limit(&memcg->memsw, val); 3476 if (!ret) { 3477 if (memlimit == val) 3478 memcg->memsw_is_minimum = true; 3479 else 3480 memcg->memsw_is_minimum = false; 3481 } 3482 mutex_unlock(&set_limit_mutex); 3483 3484 if (!ret) 3485 break; 3486 3487 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3488 MEM_CGROUP_RECLAIM_NOSWAP | 3489 MEM_CGROUP_RECLAIM_SHRINK); 3490 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3491 /* Usage is reduced ? */ 3492 if (curusage >= oldusage) 3493 retry_count--; 3494 else 3495 oldusage = curusage; 3496 } 3497 if (!ret && enlarge) 3498 memcg_oom_recover(memcg); 3499 return ret; 3500 } 3501 3502 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3503 gfp_t gfp_mask, 3504 unsigned long *total_scanned) 3505 { 3506 unsigned long nr_reclaimed = 0; 3507 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3508 unsigned long reclaimed; 3509 int loop = 0; 3510 struct mem_cgroup_tree_per_zone *mctz; 3511 unsigned long long excess; 3512 unsigned long nr_scanned; 3513 3514 if (order > 0) 3515 return 0; 3516 3517 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3518 /* 3519 * This loop can run a while, specially if mem_cgroup's continuously 3520 * keep exceeding their soft limit and putting the system under 3521 * pressure 3522 */ 3523 do { 3524 if (next_mz) 3525 mz = next_mz; 3526 else 3527 mz = mem_cgroup_largest_soft_limit_node(mctz); 3528 if (!mz) 3529 break; 3530 3531 nr_scanned = 0; 3532 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone, 3533 gfp_mask, &nr_scanned); 3534 nr_reclaimed += reclaimed; 3535 *total_scanned += nr_scanned; 3536 spin_lock(&mctz->lock); 3537 3538 /* 3539 * If we failed to reclaim anything from this memory cgroup 3540 * it is time to move on to the next cgroup 3541 */ 3542 next_mz = NULL; 3543 if (!reclaimed) { 3544 do { 3545 /* 3546 * Loop until we find yet another one. 3547 * 3548 * By the time we get the soft_limit lock 3549 * again, someone might have aded the 3550 * group back on the RB tree. Iterate to 3551 * make sure we get a different mem. 3552 * mem_cgroup_largest_soft_limit_node returns 3553 * NULL if no other cgroup is present on 3554 * the tree 3555 */ 3556 next_mz = 3557 __mem_cgroup_largest_soft_limit_node(mctz); 3558 if (next_mz == mz) 3559 css_put(&next_mz->mem->css); 3560 else /* next_mz == NULL or other memcg */ 3561 break; 3562 } while (1); 3563 } 3564 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 3565 excess = res_counter_soft_limit_excess(&mz->mem->res); 3566 /* 3567 * One school of thought says that we should not add 3568 * back the node to the tree if reclaim returns 0. 3569 * But our reclaim could return 0, simply because due 3570 * to priority we are exposing a smaller subset of 3571 * memory to reclaim from. Consider this as a longer 3572 * term TODO. 3573 */ 3574 /* If excess == 0, no tree ops */ 3575 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess); 3576 spin_unlock(&mctz->lock); 3577 css_put(&mz->mem->css); 3578 loop++; 3579 /* 3580 * Could not reclaim anything and there are no more 3581 * mem cgroups to try or we seem to be looping without 3582 * reclaiming anything. 3583 */ 3584 if (!nr_reclaimed && 3585 (next_mz == NULL || 3586 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3587 break; 3588 } while (!nr_reclaimed); 3589 if (next_mz) 3590 css_put(&next_mz->mem->css); 3591 return nr_reclaimed; 3592 } 3593 3594 /* 3595 * This routine traverse page_cgroup in given list and drop them all. 3596 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 3597 */ 3598 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 3599 int node, int zid, enum lru_list lru) 3600 { 3601 struct mem_cgroup_per_zone *mz; 3602 unsigned long flags, loop; 3603 struct list_head *list; 3604 struct page *busy; 3605 struct zone *zone; 3606 int ret = 0; 3607 3608 zone = &NODE_DATA(node)->node_zones[zid]; 3609 mz = mem_cgroup_zoneinfo(memcg, node, zid); 3610 list = &mz->lruvec.lists[lru]; 3611 3612 loop = MEM_CGROUP_ZSTAT(mz, lru); 3613 /* give some margin against EBUSY etc...*/ 3614 loop += 256; 3615 busy = NULL; 3616 while (loop--) { 3617 struct page_cgroup *pc; 3618 struct page *page; 3619 3620 ret = 0; 3621 spin_lock_irqsave(&zone->lru_lock, flags); 3622 if (list_empty(list)) { 3623 spin_unlock_irqrestore(&zone->lru_lock, flags); 3624 break; 3625 } 3626 page = list_entry(list->prev, struct page, lru); 3627 if (busy == page) { 3628 list_move(&page->lru, list); 3629 busy = NULL; 3630 spin_unlock_irqrestore(&zone->lru_lock, flags); 3631 continue; 3632 } 3633 spin_unlock_irqrestore(&zone->lru_lock, flags); 3634 3635 pc = lookup_page_cgroup(page); 3636 3637 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL); 3638 if (ret == -ENOMEM || ret == -EINTR) 3639 break; 3640 3641 if (ret == -EBUSY || ret == -EINVAL) { 3642 /* found lock contention or "pc" is obsolete. */ 3643 busy = page; 3644 cond_resched(); 3645 } else 3646 busy = NULL; 3647 } 3648 3649 if (!ret && !list_empty(list)) 3650 return -EBUSY; 3651 return ret; 3652 } 3653 3654 /* 3655 * make mem_cgroup's charge to be 0 if there is no task. 3656 * This enables deleting this mem_cgroup. 3657 */ 3658 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) 3659 { 3660 int ret; 3661 int node, zid, shrink; 3662 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3663 struct cgroup *cgrp = memcg->css.cgroup; 3664 3665 css_get(&memcg->css); 3666 3667 shrink = 0; 3668 /* should free all ? */ 3669 if (free_all) 3670 goto try_to_free; 3671 move_account: 3672 do { 3673 ret = -EBUSY; 3674 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3675 goto out; 3676 ret = -EINTR; 3677 if (signal_pending(current)) 3678 goto out; 3679 /* This is for making all *used* pages to be on LRU. */ 3680 lru_add_drain_all(); 3681 drain_all_stock_sync(memcg); 3682 ret = 0; 3683 mem_cgroup_start_move(memcg); 3684 for_each_node_state(node, N_HIGH_MEMORY) { 3685 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3686 enum lru_list l; 3687 for_each_lru(l) { 3688 ret = mem_cgroup_force_empty_list(memcg, 3689 node, zid, l); 3690 if (ret) 3691 break; 3692 } 3693 } 3694 if (ret) 3695 break; 3696 } 3697 mem_cgroup_end_move(memcg); 3698 memcg_oom_recover(memcg); 3699 /* it seems parent cgroup doesn't have enough mem */ 3700 if (ret == -ENOMEM) 3701 goto try_to_free; 3702 cond_resched(); 3703 /* "ret" should also be checked to ensure all lists are empty. */ 3704 } while (memcg->res.usage > 0 || ret); 3705 out: 3706 css_put(&memcg->css); 3707 return ret; 3708 3709 try_to_free: 3710 /* returns EBUSY if there is a task or if we come here twice. */ 3711 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3712 ret = -EBUSY; 3713 goto out; 3714 } 3715 /* we call try-to-free pages for make this cgroup empty */ 3716 lru_add_drain_all(); 3717 /* try to free all pages in this cgroup */ 3718 shrink = 1; 3719 while (nr_retries && memcg->res.usage > 0) { 3720 int progress; 3721 3722 if (signal_pending(current)) { 3723 ret = -EINTR; 3724 goto out; 3725 } 3726 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 3727 false); 3728 if (!progress) { 3729 nr_retries--; 3730 /* maybe some writeback is necessary */ 3731 congestion_wait(BLK_RW_ASYNC, HZ/10); 3732 } 3733 3734 } 3735 lru_add_drain(); 3736 /* try move_account...there may be some *locked* pages. */ 3737 goto move_account; 3738 } 3739 3740 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3741 { 3742 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3743 } 3744 3745 3746 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3747 { 3748 return mem_cgroup_from_cont(cont)->use_hierarchy; 3749 } 3750 3751 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3752 u64 val) 3753 { 3754 int retval = 0; 3755 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3756 struct cgroup *parent = cont->parent; 3757 struct mem_cgroup *parent_memcg = NULL; 3758 3759 if (parent) 3760 parent_memcg = mem_cgroup_from_cont(parent); 3761 3762 cgroup_lock(); 3763 /* 3764 * If parent's use_hierarchy is set, we can't make any modifications 3765 * in the child subtrees. If it is unset, then the change can 3766 * occur, provided the current cgroup has no children. 3767 * 3768 * For the root cgroup, parent_mem is NULL, we allow value to be 3769 * set if there are no children. 3770 */ 3771 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3772 (val == 1 || val == 0)) { 3773 if (list_empty(&cont->children)) 3774 memcg->use_hierarchy = val; 3775 else 3776 retval = -EBUSY; 3777 } else 3778 retval = -EINVAL; 3779 cgroup_unlock(); 3780 3781 return retval; 3782 } 3783 3784 3785 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 3786 enum mem_cgroup_stat_index idx) 3787 { 3788 struct mem_cgroup *iter; 3789 long val = 0; 3790 3791 /* Per-cpu values can be negative, use a signed accumulator */ 3792 for_each_mem_cgroup_tree(iter, memcg) 3793 val += mem_cgroup_read_stat(iter, idx); 3794 3795 if (val < 0) /* race ? */ 3796 val = 0; 3797 return val; 3798 } 3799 3800 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3801 { 3802 u64 val; 3803 3804 if (!mem_cgroup_is_root(memcg)) { 3805 if (!swap) 3806 return res_counter_read_u64(&memcg->res, RES_USAGE); 3807 else 3808 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 3809 } 3810 3811 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 3812 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 3813 3814 if (swap) 3815 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT); 3816 3817 return val << PAGE_SHIFT; 3818 } 3819 3820 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 3821 { 3822 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3823 u64 val; 3824 int type, name; 3825 3826 type = MEMFILE_TYPE(cft->private); 3827 name = MEMFILE_ATTR(cft->private); 3828 switch (type) { 3829 case _MEM: 3830 if (name == RES_USAGE) 3831 val = mem_cgroup_usage(memcg, false); 3832 else 3833 val = res_counter_read_u64(&memcg->res, name); 3834 break; 3835 case _MEMSWAP: 3836 if (name == RES_USAGE) 3837 val = mem_cgroup_usage(memcg, true); 3838 else 3839 val = res_counter_read_u64(&memcg->memsw, name); 3840 break; 3841 default: 3842 BUG(); 3843 break; 3844 } 3845 return val; 3846 } 3847 /* 3848 * The user of this function is... 3849 * RES_LIMIT. 3850 */ 3851 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3852 const char *buffer) 3853 { 3854 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3855 int type, name; 3856 unsigned long long val; 3857 int ret; 3858 3859 type = MEMFILE_TYPE(cft->private); 3860 name = MEMFILE_ATTR(cft->private); 3861 switch (name) { 3862 case RES_LIMIT: 3863 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3864 ret = -EINVAL; 3865 break; 3866 } 3867 /* This function does all necessary parse...reuse it */ 3868 ret = res_counter_memparse_write_strategy(buffer, &val); 3869 if (ret) 3870 break; 3871 if (type == _MEM) 3872 ret = mem_cgroup_resize_limit(memcg, val); 3873 else 3874 ret = mem_cgroup_resize_memsw_limit(memcg, val); 3875 break; 3876 case RES_SOFT_LIMIT: 3877 ret = res_counter_memparse_write_strategy(buffer, &val); 3878 if (ret) 3879 break; 3880 /* 3881 * For memsw, soft limits are hard to implement in terms 3882 * of semantics, for now, we support soft limits for 3883 * control without swap 3884 */ 3885 if (type == _MEM) 3886 ret = res_counter_set_soft_limit(&memcg->res, val); 3887 else 3888 ret = -EINVAL; 3889 break; 3890 default: 3891 ret = -EINVAL; /* should be BUG() ? */ 3892 break; 3893 } 3894 return ret; 3895 } 3896 3897 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 3898 unsigned long long *mem_limit, unsigned long long *memsw_limit) 3899 { 3900 struct cgroup *cgroup; 3901 unsigned long long min_limit, min_memsw_limit, tmp; 3902 3903 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3904 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3905 cgroup = memcg->css.cgroup; 3906 if (!memcg->use_hierarchy) 3907 goto out; 3908 3909 while (cgroup->parent) { 3910 cgroup = cgroup->parent; 3911 memcg = mem_cgroup_from_cont(cgroup); 3912 if (!memcg->use_hierarchy) 3913 break; 3914 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 3915 min_limit = min(min_limit, tmp); 3916 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3917 min_memsw_limit = min(min_memsw_limit, tmp); 3918 } 3919 out: 3920 *mem_limit = min_limit; 3921 *memsw_limit = min_memsw_limit; 3922 return; 3923 } 3924 3925 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 3926 { 3927 struct mem_cgroup *memcg; 3928 int type, name; 3929 3930 memcg = mem_cgroup_from_cont(cont); 3931 type = MEMFILE_TYPE(event); 3932 name = MEMFILE_ATTR(event); 3933 switch (name) { 3934 case RES_MAX_USAGE: 3935 if (type == _MEM) 3936 res_counter_reset_max(&memcg->res); 3937 else 3938 res_counter_reset_max(&memcg->memsw); 3939 break; 3940 case RES_FAILCNT: 3941 if (type == _MEM) 3942 res_counter_reset_failcnt(&memcg->res); 3943 else 3944 res_counter_reset_failcnt(&memcg->memsw); 3945 break; 3946 } 3947 3948 return 0; 3949 } 3950 3951 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 3952 struct cftype *cft) 3953 { 3954 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 3955 } 3956 3957 #ifdef CONFIG_MMU 3958 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 3959 struct cftype *cft, u64 val) 3960 { 3961 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3962 3963 if (val >= (1 << NR_MOVE_TYPE)) 3964 return -EINVAL; 3965 /* 3966 * We check this value several times in both in can_attach() and 3967 * attach(), so we need cgroup lock to prevent this value from being 3968 * inconsistent. 3969 */ 3970 cgroup_lock(); 3971 memcg->move_charge_at_immigrate = val; 3972 cgroup_unlock(); 3973 3974 return 0; 3975 } 3976 #else 3977 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 3978 struct cftype *cft, u64 val) 3979 { 3980 return -ENOSYS; 3981 } 3982 #endif 3983 3984 3985 /* For read statistics */ 3986 enum { 3987 MCS_CACHE, 3988 MCS_RSS, 3989 MCS_FILE_MAPPED, 3990 MCS_PGPGIN, 3991 MCS_PGPGOUT, 3992 MCS_SWAP, 3993 MCS_PGFAULT, 3994 MCS_PGMAJFAULT, 3995 MCS_INACTIVE_ANON, 3996 MCS_ACTIVE_ANON, 3997 MCS_INACTIVE_FILE, 3998 MCS_ACTIVE_FILE, 3999 MCS_UNEVICTABLE, 4000 NR_MCS_STAT, 4001 }; 4002 4003 struct mcs_total_stat { 4004 s64 stat[NR_MCS_STAT]; 4005 }; 4006 4007 struct { 4008 char *local_name; 4009 char *total_name; 4010 } memcg_stat_strings[NR_MCS_STAT] = { 4011 {"cache", "total_cache"}, 4012 {"rss", "total_rss"}, 4013 {"mapped_file", "total_mapped_file"}, 4014 {"pgpgin", "total_pgpgin"}, 4015 {"pgpgout", "total_pgpgout"}, 4016 {"swap", "total_swap"}, 4017 {"pgfault", "total_pgfault"}, 4018 {"pgmajfault", "total_pgmajfault"}, 4019 {"inactive_anon", "total_inactive_anon"}, 4020 {"active_anon", "total_active_anon"}, 4021 {"inactive_file", "total_inactive_file"}, 4022 {"active_file", "total_active_file"}, 4023 {"unevictable", "total_unevictable"} 4024 }; 4025 4026 4027 static void 4028 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s) 4029 { 4030 s64 val; 4031 4032 /* per cpu stat */ 4033 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE); 4034 s->stat[MCS_CACHE] += val * PAGE_SIZE; 4035 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS); 4036 s->stat[MCS_RSS] += val * PAGE_SIZE; 4037 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 4038 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; 4039 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN); 4040 s->stat[MCS_PGPGIN] += val; 4041 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT); 4042 s->stat[MCS_PGPGOUT] += val; 4043 if (do_swap_account) { 4044 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT); 4045 s->stat[MCS_SWAP] += val * PAGE_SIZE; 4046 } 4047 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT); 4048 s->stat[MCS_PGFAULT] += val; 4049 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT); 4050 s->stat[MCS_PGMAJFAULT] += val; 4051 4052 /* per zone stat */ 4053 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON)); 4054 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; 4055 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON)); 4056 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; 4057 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE)); 4058 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; 4059 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE)); 4060 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; 4061 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 4062 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; 4063 } 4064 4065 static void 4066 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s) 4067 { 4068 struct mem_cgroup *iter; 4069 4070 for_each_mem_cgroup_tree(iter, memcg) 4071 mem_cgroup_get_local_stat(iter, s); 4072 } 4073 4074 #ifdef CONFIG_NUMA 4075 static int mem_control_numa_stat_show(struct seq_file *m, void *arg) 4076 { 4077 int nid; 4078 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 4079 unsigned long node_nr; 4080 struct cgroup *cont = m->private; 4081 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 4082 4083 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL); 4084 seq_printf(m, "total=%lu", total_nr); 4085 for_each_node_state(nid, N_HIGH_MEMORY) { 4086 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL); 4087 seq_printf(m, " N%d=%lu", nid, node_nr); 4088 } 4089 seq_putc(m, '\n'); 4090 4091 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE); 4092 seq_printf(m, "file=%lu", file_nr); 4093 for_each_node_state(nid, N_HIGH_MEMORY) { 4094 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, 4095 LRU_ALL_FILE); 4096 seq_printf(m, " N%d=%lu", nid, node_nr); 4097 } 4098 seq_putc(m, '\n'); 4099 4100 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON); 4101 seq_printf(m, "anon=%lu", anon_nr); 4102 for_each_node_state(nid, N_HIGH_MEMORY) { 4103 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, 4104 LRU_ALL_ANON); 4105 seq_printf(m, " N%d=%lu", nid, node_nr); 4106 } 4107 seq_putc(m, '\n'); 4108 4109 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE)); 4110 seq_printf(m, "unevictable=%lu", unevictable_nr); 4111 for_each_node_state(nid, N_HIGH_MEMORY) { 4112 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, 4113 BIT(LRU_UNEVICTABLE)); 4114 seq_printf(m, " N%d=%lu", nid, node_nr); 4115 } 4116 seq_putc(m, '\n'); 4117 return 0; 4118 } 4119 #endif /* CONFIG_NUMA */ 4120 4121 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 4122 struct cgroup_map_cb *cb) 4123 { 4124 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 4125 struct mcs_total_stat mystat; 4126 int i; 4127 4128 memset(&mystat, 0, sizeof(mystat)); 4129 mem_cgroup_get_local_stat(mem_cont, &mystat); 4130 4131 4132 for (i = 0; i < NR_MCS_STAT; i++) { 4133 if (i == MCS_SWAP && !do_swap_account) 4134 continue; 4135 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); 4136 } 4137 4138 /* Hierarchical information */ 4139 { 4140 unsigned long long limit, memsw_limit; 4141 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); 4142 cb->fill(cb, "hierarchical_memory_limit", limit); 4143 if (do_swap_account) 4144 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); 4145 } 4146 4147 memset(&mystat, 0, sizeof(mystat)); 4148 mem_cgroup_get_total_stat(mem_cont, &mystat); 4149 for (i = 0; i < NR_MCS_STAT; i++) { 4150 if (i == MCS_SWAP && !do_swap_account) 4151 continue; 4152 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); 4153 } 4154 4155 #ifdef CONFIG_DEBUG_VM 4156 { 4157 int nid, zid; 4158 struct mem_cgroup_per_zone *mz; 4159 unsigned long recent_rotated[2] = {0, 0}; 4160 unsigned long recent_scanned[2] = {0, 0}; 4161 4162 for_each_online_node(nid) 4163 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4164 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 4165 4166 recent_rotated[0] += 4167 mz->reclaim_stat.recent_rotated[0]; 4168 recent_rotated[1] += 4169 mz->reclaim_stat.recent_rotated[1]; 4170 recent_scanned[0] += 4171 mz->reclaim_stat.recent_scanned[0]; 4172 recent_scanned[1] += 4173 mz->reclaim_stat.recent_scanned[1]; 4174 } 4175 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); 4176 cb->fill(cb, "recent_rotated_file", recent_rotated[1]); 4177 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); 4178 cb->fill(cb, "recent_scanned_file", recent_scanned[1]); 4179 } 4180 #endif 4181 4182 return 0; 4183 } 4184 4185 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 4186 { 4187 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4188 4189 return mem_cgroup_swappiness(memcg); 4190 } 4191 4192 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 4193 u64 val) 4194 { 4195 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4196 struct mem_cgroup *parent; 4197 4198 if (val > 100) 4199 return -EINVAL; 4200 4201 if (cgrp->parent == NULL) 4202 return -EINVAL; 4203 4204 parent = mem_cgroup_from_cont(cgrp->parent); 4205 4206 cgroup_lock(); 4207 4208 /* If under hierarchy, only empty-root can set this value */ 4209 if ((parent->use_hierarchy) || 4210 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4211 cgroup_unlock(); 4212 return -EINVAL; 4213 } 4214 4215 memcg->swappiness = val; 4216 4217 cgroup_unlock(); 4218 4219 return 0; 4220 } 4221 4222 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4223 { 4224 struct mem_cgroup_threshold_ary *t; 4225 u64 usage; 4226 int i; 4227 4228 rcu_read_lock(); 4229 if (!swap) 4230 t = rcu_dereference(memcg->thresholds.primary); 4231 else 4232 t = rcu_dereference(memcg->memsw_thresholds.primary); 4233 4234 if (!t) 4235 goto unlock; 4236 4237 usage = mem_cgroup_usage(memcg, swap); 4238 4239 /* 4240 * current_threshold points to threshold just below usage. 4241 * If it's not true, a threshold was crossed after last 4242 * call of __mem_cgroup_threshold(). 4243 */ 4244 i = t->current_threshold; 4245 4246 /* 4247 * Iterate backward over array of thresholds starting from 4248 * current_threshold and check if a threshold is crossed. 4249 * If none of thresholds below usage is crossed, we read 4250 * only one element of the array here. 4251 */ 4252 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4253 eventfd_signal(t->entries[i].eventfd, 1); 4254 4255 /* i = current_threshold + 1 */ 4256 i++; 4257 4258 /* 4259 * Iterate forward over array of thresholds starting from 4260 * current_threshold+1 and check if a threshold is crossed. 4261 * If none of thresholds above usage is crossed, we read 4262 * only one element of the array here. 4263 */ 4264 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4265 eventfd_signal(t->entries[i].eventfd, 1); 4266 4267 /* Update current_threshold */ 4268 t->current_threshold = i - 1; 4269 unlock: 4270 rcu_read_unlock(); 4271 } 4272 4273 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4274 { 4275 while (memcg) { 4276 __mem_cgroup_threshold(memcg, false); 4277 if (do_swap_account) 4278 __mem_cgroup_threshold(memcg, true); 4279 4280 memcg = parent_mem_cgroup(memcg); 4281 } 4282 } 4283 4284 static int compare_thresholds(const void *a, const void *b) 4285 { 4286 const struct mem_cgroup_threshold *_a = a; 4287 const struct mem_cgroup_threshold *_b = b; 4288 4289 return _a->threshold - _b->threshold; 4290 } 4291 4292 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4293 { 4294 struct mem_cgroup_eventfd_list *ev; 4295 4296 list_for_each_entry(ev, &memcg->oom_notify, list) 4297 eventfd_signal(ev->eventfd, 1); 4298 return 0; 4299 } 4300 4301 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4302 { 4303 struct mem_cgroup *iter; 4304 4305 for_each_mem_cgroup_tree(iter, memcg) 4306 mem_cgroup_oom_notify_cb(iter); 4307 } 4308 4309 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 4310 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4311 { 4312 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4313 struct mem_cgroup_thresholds *thresholds; 4314 struct mem_cgroup_threshold_ary *new; 4315 int type = MEMFILE_TYPE(cft->private); 4316 u64 threshold, usage; 4317 int i, size, ret; 4318 4319 ret = res_counter_memparse_write_strategy(args, &threshold); 4320 if (ret) 4321 return ret; 4322 4323 mutex_lock(&memcg->thresholds_lock); 4324 4325 if (type == _MEM) 4326 thresholds = &memcg->thresholds; 4327 else if (type == _MEMSWAP) 4328 thresholds = &memcg->memsw_thresholds; 4329 else 4330 BUG(); 4331 4332 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4333 4334 /* Check if a threshold crossed before adding a new one */ 4335 if (thresholds->primary) 4336 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4337 4338 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4339 4340 /* Allocate memory for new array of thresholds */ 4341 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 4342 GFP_KERNEL); 4343 if (!new) { 4344 ret = -ENOMEM; 4345 goto unlock; 4346 } 4347 new->size = size; 4348 4349 /* Copy thresholds (if any) to new array */ 4350 if (thresholds->primary) { 4351 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4352 sizeof(struct mem_cgroup_threshold)); 4353 } 4354 4355 /* Add new threshold */ 4356 new->entries[size - 1].eventfd = eventfd; 4357 new->entries[size - 1].threshold = threshold; 4358 4359 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4360 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4361 compare_thresholds, NULL); 4362 4363 /* Find current threshold */ 4364 new->current_threshold = -1; 4365 for (i = 0; i < size; i++) { 4366 if (new->entries[i].threshold < usage) { 4367 /* 4368 * new->current_threshold will not be used until 4369 * rcu_assign_pointer(), so it's safe to increment 4370 * it here. 4371 */ 4372 ++new->current_threshold; 4373 } 4374 } 4375 4376 /* Free old spare buffer and save old primary buffer as spare */ 4377 kfree(thresholds->spare); 4378 thresholds->spare = thresholds->primary; 4379 4380 rcu_assign_pointer(thresholds->primary, new); 4381 4382 /* To be sure that nobody uses thresholds */ 4383 synchronize_rcu(); 4384 4385 unlock: 4386 mutex_unlock(&memcg->thresholds_lock); 4387 4388 return ret; 4389 } 4390 4391 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 4392 struct cftype *cft, struct eventfd_ctx *eventfd) 4393 { 4394 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4395 struct mem_cgroup_thresholds *thresholds; 4396 struct mem_cgroup_threshold_ary *new; 4397 int type = MEMFILE_TYPE(cft->private); 4398 u64 usage; 4399 int i, j, size; 4400 4401 mutex_lock(&memcg->thresholds_lock); 4402 if (type == _MEM) 4403 thresholds = &memcg->thresholds; 4404 else if (type == _MEMSWAP) 4405 thresholds = &memcg->memsw_thresholds; 4406 else 4407 BUG(); 4408 4409 /* 4410 * Something went wrong if we trying to unregister a threshold 4411 * if we don't have thresholds 4412 */ 4413 BUG_ON(!thresholds); 4414 4415 if (!thresholds->primary) 4416 goto unlock; 4417 4418 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4419 4420 /* Check if a threshold crossed before removing */ 4421 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4422 4423 /* Calculate new number of threshold */ 4424 size = 0; 4425 for (i = 0; i < thresholds->primary->size; i++) { 4426 if (thresholds->primary->entries[i].eventfd != eventfd) 4427 size++; 4428 } 4429 4430 new = thresholds->spare; 4431 4432 /* Set thresholds array to NULL if we don't have thresholds */ 4433 if (!size) { 4434 kfree(new); 4435 new = NULL; 4436 goto swap_buffers; 4437 } 4438 4439 new->size = size; 4440 4441 /* Copy thresholds and find current threshold */ 4442 new->current_threshold = -1; 4443 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4444 if (thresholds->primary->entries[i].eventfd == eventfd) 4445 continue; 4446 4447 new->entries[j] = thresholds->primary->entries[i]; 4448 if (new->entries[j].threshold < usage) { 4449 /* 4450 * new->current_threshold will not be used 4451 * until rcu_assign_pointer(), so it's safe to increment 4452 * it here. 4453 */ 4454 ++new->current_threshold; 4455 } 4456 j++; 4457 } 4458 4459 swap_buffers: 4460 /* Swap primary and spare array */ 4461 thresholds->spare = thresholds->primary; 4462 rcu_assign_pointer(thresholds->primary, new); 4463 4464 /* To be sure that nobody uses thresholds */ 4465 synchronize_rcu(); 4466 unlock: 4467 mutex_unlock(&memcg->thresholds_lock); 4468 } 4469 4470 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 4471 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4472 { 4473 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4474 struct mem_cgroup_eventfd_list *event; 4475 int type = MEMFILE_TYPE(cft->private); 4476 4477 BUG_ON(type != _OOM_TYPE); 4478 event = kmalloc(sizeof(*event), GFP_KERNEL); 4479 if (!event) 4480 return -ENOMEM; 4481 4482 spin_lock(&memcg_oom_lock); 4483 4484 event->eventfd = eventfd; 4485 list_add(&event->list, &memcg->oom_notify); 4486 4487 /* already in OOM ? */ 4488 if (atomic_read(&memcg->under_oom)) 4489 eventfd_signal(eventfd, 1); 4490 spin_unlock(&memcg_oom_lock); 4491 4492 return 0; 4493 } 4494 4495 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 4496 struct cftype *cft, struct eventfd_ctx *eventfd) 4497 { 4498 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4499 struct mem_cgroup_eventfd_list *ev, *tmp; 4500 int type = MEMFILE_TYPE(cft->private); 4501 4502 BUG_ON(type != _OOM_TYPE); 4503 4504 spin_lock(&memcg_oom_lock); 4505 4506 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4507 if (ev->eventfd == eventfd) { 4508 list_del(&ev->list); 4509 kfree(ev); 4510 } 4511 } 4512 4513 spin_unlock(&memcg_oom_lock); 4514 } 4515 4516 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4517 struct cftype *cft, struct cgroup_map_cb *cb) 4518 { 4519 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4520 4521 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 4522 4523 if (atomic_read(&memcg->under_oom)) 4524 cb->fill(cb, "under_oom", 1); 4525 else 4526 cb->fill(cb, "under_oom", 0); 4527 return 0; 4528 } 4529 4530 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4531 struct cftype *cft, u64 val) 4532 { 4533 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4534 struct mem_cgroup *parent; 4535 4536 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4537 if (!cgrp->parent || !((val == 0) || (val == 1))) 4538 return -EINVAL; 4539 4540 parent = mem_cgroup_from_cont(cgrp->parent); 4541 4542 cgroup_lock(); 4543 /* oom-kill-disable is a flag for subhierarchy. */ 4544 if ((parent->use_hierarchy) || 4545 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4546 cgroup_unlock(); 4547 return -EINVAL; 4548 } 4549 memcg->oom_kill_disable = val; 4550 if (!val) 4551 memcg_oom_recover(memcg); 4552 cgroup_unlock(); 4553 return 0; 4554 } 4555 4556 #ifdef CONFIG_NUMA 4557 static const struct file_operations mem_control_numa_stat_file_operations = { 4558 .read = seq_read, 4559 .llseek = seq_lseek, 4560 .release = single_release, 4561 }; 4562 4563 static int mem_control_numa_stat_open(struct inode *unused, struct file *file) 4564 { 4565 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata; 4566 4567 file->f_op = &mem_control_numa_stat_file_operations; 4568 return single_open(file, mem_control_numa_stat_show, cont); 4569 } 4570 #endif /* CONFIG_NUMA */ 4571 4572 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM 4573 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss) 4574 { 4575 /* 4576 * Part of this would be better living in a separate allocation 4577 * function, leaving us with just the cgroup tree population work. 4578 * We, however, depend on state such as network's proto_list that 4579 * is only initialized after cgroup creation. I found the less 4580 * cumbersome way to deal with it to defer it all to populate time 4581 */ 4582 return mem_cgroup_sockets_init(cont, ss); 4583 }; 4584 4585 static void kmem_cgroup_destroy(struct cgroup_subsys *ss, 4586 struct cgroup *cont) 4587 { 4588 mem_cgroup_sockets_destroy(cont, ss); 4589 } 4590 #else 4591 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss) 4592 { 4593 return 0; 4594 } 4595 4596 static void kmem_cgroup_destroy(struct cgroup_subsys *ss, 4597 struct cgroup *cont) 4598 { 4599 } 4600 #endif 4601 4602 static struct cftype mem_cgroup_files[] = { 4603 { 4604 .name = "usage_in_bytes", 4605 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4606 .read_u64 = mem_cgroup_read, 4607 .register_event = mem_cgroup_usage_register_event, 4608 .unregister_event = mem_cgroup_usage_unregister_event, 4609 }, 4610 { 4611 .name = "max_usage_in_bytes", 4612 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4613 .trigger = mem_cgroup_reset, 4614 .read_u64 = mem_cgroup_read, 4615 }, 4616 { 4617 .name = "limit_in_bytes", 4618 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4619 .write_string = mem_cgroup_write, 4620 .read_u64 = mem_cgroup_read, 4621 }, 4622 { 4623 .name = "soft_limit_in_bytes", 4624 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4625 .write_string = mem_cgroup_write, 4626 .read_u64 = mem_cgroup_read, 4627 }, 4628 { 4629 .name = "failcnt", 4630 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4631 .trigger = mem_cgroup_reset, 4632 .read_u64 = mem_cgroup_read, 4633 }, 4634 { 4635 .name = "stat", 4636 .read_map = mem_control_stat_show, 4637 }, 4638 { 4639 .name = "force_empty", 4640 .trigger = mem_cgroup_force_empty_write, 4641 }, 4642 { 4643 .name = "use_hierarchy", 4644 .write_u64 = mem_cgroup_hierarchy_write, 4645 .read_u64 = mem_cgroup_hierarchy_read, 4646 }, 4647 { 4648 .name = "swappiness", 4649 .read_u64 = mem_cgroup_swappiness_read, 4650 .write_u64 = mem_cgroup_swappiness_write, 4651 }, 4652 { 4653 .name = "move_charge_at_immigrate", 4654 .read_u64 = mem_cgroup_move_charge_read, 4655 .write_u64 = mem_cgroup_move_charge_write, 4656 }, 4657 { 4658 .name = "oom_control", 4659 .read_map = mem_cgroup_oom_control_read, 4660 .write_u64 = mem_cgroup_oom_control_write, 4661 .register_event = mem_cgroup_oom_register_event, 4662 .unregister_event = mem_cgroup_oom_unregister_event, 4663 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4664 }, 4665 #ifdef CONFIG_NUMA 4666 { 4667 .name = "numa_stat", 4668 .open = mem_control_numa_stat_open, 4669 .mode = S_IRUGO, 4670 }, 4671 #endif 4672 }; 4673 4674 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4675 static struct cftype memsw_cgroup_files[] = { 4676 { 4677 .name = "memsw.usage_in_bytes", 4678 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4679 .read_u64 = mem_cgroup_read, 4680 .register_event = mem_cgroup_usage_register_event, 4681 .unregister_event = mem_cgroup_usage_unregister_event, 4682 }, 4683 { 4684 .name = "memsw.max_usage_in_bytes", 4685 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4686 .trigger = mem_cgroup_reset, 4687 .read_u64 = mem_cgroup_read, 4688 }, 4689 { 4690 .name = "memsw.limit_in_bytes", 4691 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4692 .write_string = mem_cgroup_write, 4693 .read_u64 = mem_cgroup_read, 4694 }, 4695 { 4696 .name = "memsw.failcnt", 4697 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4698 .trigger = mem_cgroup_reset, 4699 .read_u64 = mem_cgroup_read, 4700 }, 4701 }; 4702 4703 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 4704 { 4705 if (!do_swap_account) 4706 return 0; 4707 return cgroup_add_files(cont, ss, memsw_cgroup_files, 4708 ARRAY_SIZE(memsw_cgroup_files)); 4709 }; 4710 #else 4711 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 4712 { 4713 return 0; 4714 } 4715 #endif 4716 4717 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4718 { 4719 struct mem_cgroup_per_node *pn; 4720 struct mem_cgroup_per_zone *mz; 4721 enum lru_list l; 4722 int zone, tmp = node; 4723 /* 4724 * This routine is called against possible nodes. 4725 * But it's BUG to call kmalloc() against offline node. 4726 * 4727 * TODO: this routine can waste much memory for nodes which will 4728 * never be onlined. It's better to use memory hotplug callback 4729 * function. 4730 */ 4731 if (!node_state(node, N_NORMAL_MEMORY)) 4732 tmp = -1; 4733 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4734 if (!pn) 4735 return 1; 4736 4737 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4738 mz = &pn->zoneinfo[zone]; 4739 for_each_lru(l) 4740 INIT_LIST_HEAD(&mz->lruvec.lists[l]); 4741 mz->usage_in_excess = 0; 4742 mz->on_tree = false; 4743 mz->mem = memcg; 4744 } 4745 memcg->info.nodeinfo[node] = pn; 4746 return 0; 4747 } 4748 4749 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4750 { 4751 kfree(memcg->info.nodeinfo[node]); 4752 } 4753 4754 static struct mem_cgroup *mem_cgroup_alloc(void) 4755 { 4756 struct mem_cgroup *mem; 4757 int size = sizeof(struct mem_cgroup); 4758 4759 /* Can be very big if MAX_NUMNODES is very big */ 4760 if (size < PAGE_SIZE) 4761 mem = kzalloc(size, GFP_KERNEL); 4762 else 4763 mem = vzalloc(size); 4764 4765 if (!mem) 4766 return NULL; 4767 4768 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4769 if (!mem->stat) 4770 goto out_free; 4771 spin_lock_init(&mem->pcp_counter_lock); 4772 return mem; 4773 4774 out_free: 4775 if (size < PAGE_SIZE) 4776 kfree(mem); 4777 else 4778 vfree(mem); 4779 return NULL; 4780 } 4781 4782 /* 4783 * At destroying mem_cgroup, references from swap_cgroup can remain. 4784 * (scanning all at force_empty is too costly...) 4785 * 4786 * Instead of clearing all references at force_empty, we remember 4787 * the number of reference from swap_cgroup and free mem_cgroup when 4788 * it goes down to 0. 4789 * 4790 * Removal of cgroup itself succeeds regardless of refs from swap. 4791 */ 4792 4793 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4794 { 4795 int node; 4796 4797 mem_cgroup_remove_from_trees(memcg); 4798 free_css_id(&mem_cgroup_subsys, &memcg->css); 4799 4800 for_each_node(node) 4801 free_mem_cgroup_per_zone_info(memcg, node); 4802 4803 free_percpu(memcg->stat); 4804 if (sizeof(struct mem_cgroup) < PAGE_SIZE) 4805 kfree(memcg); 4806 else 4807 vfree(memcg); 4808 } 4809 4810 static void mem_cgroup_get(struct mem_cgroup *memcg) 4811 { 4812 atomic_inc(&memcg->refcnt); 4813 } 4814 4815 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 4816 { 4817 if (atomic_sub_and_test(count, &memcg->refcnt)) { 4818 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4819 __mem_cgroup_free(memcg); 4820 if (parent) 4821 mem_cgroup_put(parent); 4822 } 4823 } 4824 4825 static void mem_cgroup_put(struct mem_cgroup *memcg) 4826 { 4827 __mem_cgroup_put(memcg, 1); 4828 } 4829 4830 /* 4831 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4832 */ 4833 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 4834 { 4835 if (!memcg->res.parent) 4836 return NULL; 4837 return mem_cgroup_from_res_counter(memcg->res.parent, res); 4838 } 4839 EXPORT_SYMBOL(parent_mem_cgroup); 4840 4841 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4842 static void __init enable_swap_cgroup(void) 4843 { 4844 if (!mem_cgroup_disabled() && really_do_swap_account) 4845 do_swap_account = 1; 4846 } 4847 #else 4848 static void __init enable_swap_cgroup(void) 4849 { 4850 } 4851 #endif 4852 4853 static int mem_cgroup_soft_limit_tree_init(void) 4854 { 4855 struct mem_cgroup_tree_per_node *rtpn; 4856 struct mem_cgroup_tree_per_zone *rtpz; 4857 int tmp, node, zone; 4858 4859 for_each_node(node) { 4860 tmp = node; 4861 if (!node_state(node, N_NORMAL_MEMORY)) 4862 tmp = -1; 4863 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4864 if (!rtpn) 4865 goto err_cleanup; 4866 4867 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4868 4869 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4870 rtpz = &rtpn->rb_tree_per_zone[zone]; 4871 rtpz->rb_root = RB_ROOT; 4872 spin_lock_init(&rtpz->lock); 4873 } 4874 } 4875 return 0; 4876 4877 err_cleanup: 4878 for_each_node(node) { 4879 if (!soft_limit_tree.rb_tree_per_node[node]) 4880 break; 4881 kfree(soft_limit_tree.rb_tree_per_node[node]); 4882 soft_limit_tree.rb_tree_per_node[node] = NULL; 4883 } 4884 return 1; 4885 4886 } 4887 4888 static struct cgroup_subsys_state * __ref 4889 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 4890 { 4891 struct mem_cgroup *memcg, *parent; 4892 long error = -ENOMEM; 4893 int node; 4894 4895 memcg = mem_cgroup_alloc(); 4896 if (!memcg) 4897 return ERR_PTR(error); 4898 4899 for_each_node(node) 4900 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4901 goto free_out; 4902 4903 /* root ? */ 4904 if (cont->parent == NULL) { 4905 int cpu; 4906 enable_swap_cgroup(); 4907 parent = NULL; 4908 if (mem_cgroup_soft_limit_tree_init()) 4909 goto free_out; 4910 root_mem_cgroup = memcg; 4911 for_each_possible_cpu(cpu) { 4912 struct memcg_stock_pcp *stock = 4913 &per_cpu(memcg_stock, cpu); 4914 INIT_WORK(&stock->work, drain_local_stock); 4915 } 4916 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4917 } else { 4918 parent = mem_cgroup_from_cont(cont->parent); 4919 memcg->use_hierarchy = parent->use_hierarchy; 4920 memcg->oom_kill_disable = parent->oom_kill_disable; 4921 } 4922 4923 if (parent && parent->use_hierarchy) { 4924 res_counter_init(&memcg->res, &parent->res); 4925 res_counter_init(&memcg->memsw, &parent->memsw); 4926 /* 4927 * We increment refcnt of the parent to ensure that we can 4928 * safely access it on res_counter_charge/uncharge. 4929 * This refcnt will be decremented when freeing this 4930 * mem_cgroup(see mem_cgroup_put). 4931 */ 4932 mem_cgroup_get(parent); 4933 } else { 4934 res_counter_init(&memcg->res, NULL); 4935 res_counter_init(&memcg->memsw, NULL); 4936 } 4937 memcg->last_scanned_node = MAX_NUMNODES; 4938 INIT_LIST_HEAD(&memcg->oom_notify); 4939 4940 if (parent) 4941 memcg->swappiness = mem_cgroup_swappiness(parent); 4942 atomic_set(&memcg->refcnt, 1); 4943 memcg->move_charge_at_immigrate = 0; 4944 mutex_init(&memcg->thresholds_lock); 4945 return &memcg->css; 4946 free_out: 4947 __mem_cgroup_free(memcg); 4948 return ERR_PTR(error); 4949 } 4950 4951 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 4952 struct cgroup *cont) 4953 { 4954 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4955 4956 return mem_cgroup_force_empty(memcg, false); 4957 } 4958 4959 static void mem_cgroup_destroy(struct cgroup_subsys *ss, 4960 struct cgroup *cont) 4961 { 4962 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4963 4964 kmem_cgroup_destroy(ss, cont); 4965 4966 mem_cgroup_put(memcg); 4967 } 4968 4969 static int mem_cgroup_populate(struct cgroup_subsys *ss, 4970 struct cgroup *cont) 4971 { 4972 int ret; 4973 4974 ret = cgroup_add_files(cont, ss, mem_cgroup_files, 4975 ARRAY_SIZE(mem_cgroup_files)); 4976 4977 if (!ret) 4978 ret = register_memsw_files(cont, ss); 4979 4980 if (!ret) 4981 ret = register_kmem_files(cont, ss); 4982 4983 return ret; 4984 } 4985 4986 #ifdef CONFIG_MMU 4987 /* Handlers for move charge at task migration. */ 4988 #define PRECHARGE_COUNT_AT_ONCE 256 4989 static int mem_cgroup_do_precharge(unsigned long count) 4990 { 4991 int ret = 0; 4992 int batch_count = PRECHARGE_COUNT_AT_ONCE; 4993 struct mem_cgroup *memcg = mc.to; 4994 4995 if (mem_cgroup_is_root(memcg)) { 4996 mc.precharge += count; 4997 /* we don't need css_get for root */ 4998 return ret; 4999 } 5000 /* try to charge at once */ 5001 if (count > 1) { 5002 struct res_counter *dummy; 5003 /* 5004 * "memcg" cannot be under rmdir() because we've already checked 5005 * by cgroup_lock_live_cgroup() that it is not removed and we 5006 * are still under the same cgroup_mutex. So we can postpone 5007 * css_get(). 5008 */ 5009 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 5010 goto one_by_one; 5011 if (do_swap_account && res_counter_charge(&memcg->memsw, 5012 PAGE_SIZE * count, &dummy)) { 5013 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 5014 goto one_by_one; 5015 } 5016 mc.precharge += count; 5017 return ret; 5018 } 5019 one_by_one: 5020 /* fall back to one by one charge */ 5021 while (count--) { 5022 if (signal_pending(current)) { 5023 ret = -EINTR; 5024 break; 5025 } 5026 if (!batch_count--) { 5027 batch_count = PRECHARGE_COUNT_AT_ONCE; 5028 cond_resched(); 5029 } 5030 ret = __mem_cgroup_try_charge(NULL, 5031 GFP_KERNEL, 1, &memcg, false); 5032 if (ret) 5033 /* mem_cgroup_clear_mc() will do uncharge later */ 5034 return ret; 5035 mc.precharge++; 5036 } 5037 return ret; 5038 } 5039 5040 /** 5041 * is_target_pte_for_mc - check a pte whether it is valid for move charge 5042 * @vma: the vma the pte to be checked belongs 5043 * @addr: the address corresponding to the pte to be checked 5044 * @ptent: the pte to be checked 5045 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5046 * 5047 * Returns 5048 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5049 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5050 * move charge. if @target is not NULL, the page is stored in target->page 5051 * with extra refcnt got(Callers should handle it). 5052 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5053 * target for charge migration. if @target is not NULL, the entry is stored 5054 * in target->ent. 5055 * 5056 * Called with pte lock held. 5057 */ 5058 union mc_target { 5059 struct page *page; 5060 swp_entry_t ent; 5061 }; 5062 5063 enum mc_target_type { 5064 MC_TARGET_NONE, /* not used */ 5065 MC_TARGET_PAGE, 5066 MC_TARGET_SWAP, 5067 }; 5068 5069 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5070 unsigned long addr, pte_t ptent) 5071 { 5072 struct page *page = vm_normal_page(vma, addr, ptent); 5073 5074 if (!page || !page_mapped(page)) 5075 return NULL; 5076 if (PageAnon(page)) { 5077 /* we don't move shared anon */ 5078 if (!move_anon() || page_mapcount(page) > 2) 5079 return NULL; 5080 } else if (!move_file()) 5081 /* we ignore mapcount for file pages */ 5082 return NULL; 5083 if (!get_page_unless_zero(page)) 5084 return NULL; 5085 5086 return page; 5087 } 5088 5089 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5090 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5091 { 5092 int usage_count; 5093 struct page *page = NULL; 5094 swp_entry_t ent = pte_to_swp_entry(ptent); 5095 5096 if (!move_anon() || non_swap_entry(ent)) 5097 return NULL; 5098 usage_count = mem_cgroup_count_swap_user(ent, &page); 5099 if (usage_count > 1) { /* we don't move shared anon */ 5100 if (page) 5101 put_page(page); 5102 return NULL; 5103 } 5104 if (do_swap_account) 5105 entry->val = ent.val; 5106 5107 return page; 5108 } 5109 5110 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5111 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5112 { 5113 struct page *page = NULL; 5114 struct inode *inode; 5115 struct address_space *mapping; 5116 pgoff_t pgoff; 5117 5118 if (!vma->vm_file) /* anonymous vma */ 5119 return NULL; 5120 if (!move_file()) 5121 return NULL; 5122 5123 inode = vma->vm_file->f_path.dentry->d_inode; 5124 mapping = vma->vm_file->f_mapping; 5125 if (pte_none(ptent)) 5126 pgoff = linear_page_index(vma, addr); 5127 else /* pte_file(ptent) is true */ 5128 pgoff = pte_to_pgoff(ptent); 5129 5130 /* page is moved even if it's not RSS of this task(page-faulted). */ 5131 page = find_get_page(mapping, pgoff); 5132 5133 #ifdef CONFIG_SWAP 5134 /* shmem/tmpfs may report page out on swap: account for that too. */ 5135 if (radix_tree_exceptional_entry(page)) { 5136 swp_entry_t swap = radix_to_swp_entry(page); 5137 if (do_swap_account) 5138 *entry = swap; 5139 page = find_get_page(&swapper_space, swap.val); 5140 } 5141 #endif 5142 return page; 5143 } 5144 5145 static int is_target_pte_for_mc(struct vm_area_struct *vma, 5146 unsigned long addr, pte_t ptent, union mc_target *target) 5147 { 5148 struct page *page = NULL; 5149 struct page_cgroup *pc; 5150 int ret = 0; 5151 swp_entry_t ent = { .val = 0 }; 5152 5153 if (pte_present(ptent)) 5154 page = mc_handle_present_pte(vma, addr, ptent); 5155 else if (is_swap_pte(ptent)) 5156 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 5157 else if (pte_none(ptent) || pte_file(ptent)) 5158 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5159 5160 if (!page && !ent.val) 5161 return 0; 5162 if (page) { 5163 pc = lookup_page_cgroup(page); 5164 /* 5165 * Do only loose check w/o page_cgroup lock. 5166 * mem_cgroup_move_account() checks the pc is valid or not under 5167 * the lock. 5168 */ 5169 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5170 ret = MC_TARGET_PAGE; 5171 if (target) 5172 target->page = page; 5173 } 5174 if (!ret || !target) 5175 put_page(page); 5176 } 5177 /* There is a swap entry and a page doesn't exist or isn't charged */ 5178 if (ent.val && !ret && 5179 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 5180 ret = MC_TARGET_SWAP; 5181 if (target) 5182 target->ent = ent; 5183 } 5184 return ret; 5185 } 5186 5187 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5188 unsigned long addr, unsigned long end, 5189 struct mm_walk *walk) 5190 { 5191 struct vm_area_struct *vma = walk->private; 5192 pte_t *pte; 5193 spinlock_t *ptl; 5194 5195 split_huge_page_pmd(walk->mm, pmd); 5196 5197 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5198 for (; addr != end; pte++, addr += PAGE_SIZE) 5199 if (is_target_pte_for_mc(vma, addr, *pte, NULL)) 5200 mc.precharge++; /* increment precharge temporarily */ 5201 pte_unmap_unlock(pte - 1, ptl); 5202 cond_resched(); 5203 5204 return 0; 5205 } 5206 5207 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5208 { 5209 unsigned long precharge; 5210 struct vm_area_struct *vma; 5211 5212 down_read(&mm->mmap_sem); 5213 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5214 struct mm_walk mem_cgroup_count_precharge_walk = { 5215 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5216 .mm = mm, 5217 .private = vma, 5218 }; 5219 if (is_vm_hugetlb_page(vma)) 5220 continue; 5221 walk_page_range(vma->vm_start, vma->vm_end, 5222 &mem_cgroup_count_precharge_walk); 5223 } 5224 up_read(&mm->mmap_sem); 5225 5226 precharge = mc.precharge; 5227 mc.precharge = 0; 5228 5229 return precharge; 5230 } 5231 5232 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5233 { 5234 unsigned long precharge = mem_cgroup_count_precharge(mm); 5235 5236 VM_BUG_ON(mc.moving_task); 5237 mc.moving_task = current; 5238 return mem_cgroup_do_precharge(precharge); 5239 } 5240 5241 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5242 static void __mem_cgroup_clear_mc(void) 5243 { 5244 struct mem_cgroup *from = mc.from; 5245 struct mem_cgroup *to = mc.to; 5246 5247 /* we must uncharge all the leftover precharges from mc.to */ 5248 if (mc.precharge) { 5249 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 5250 mc.precharge = 0; 5251 } 5252 /* 5253 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5254 * we must uncharge here. 5255 */ 5256 if (mc.moved_charge) { 5257 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 5258 mc.moved_charge = 0; 5259 } 5260 /* we must fixup refcnts and charges */ 5261 if (mc.moved_swap) { 5262 /* uncharge swap account from the old cgroup */ 5263 if (!mem_cgroup_is_root(mc.from)) 5264 res_counter_uncharge(&mc.from->memsw, 5265 PAGE_SIZE * mc.moved_swap); 5266 __mem_cgroup_put(mc.from, mc.moved_swap); 5267 5268 if (!mem_cgroup_is_root(mc.to)) { 5269 /* 5270 * we charged both to->res and to->memsw, so we should 5271 * uncharge to->res. 5272 */ 5273 res_counter_uncharge(&mc.to->res, 5274 PAGE_SIZE * mc.moved_swap); 5275 } 5276 /* we've already done mem_cgroup_get(mc.to) */ 5277 mc.moved_swap = 0; 5278 } 5279 memcg_oom_recover(from); 5280 memcg_oom_recover(to); 5281 wake_up_all(&mc.waitq); 5282 } 5283 5284 static void mem_cgroup_clear_mc(void) 5285 { 5286 struct mem_cgroup *from = mc.from; 5287 5288 /* 5289 * we must clear moving_task before waking up waiters at the end of 5290 * task migration. 5291 */ 5292 mc.moving_task = NULL; 5293 __mem_cgroup_clear_mc(); 5294 spin_lock(&mc.lock); 5295 mc.from = NULL; 5296 mc.to = NULL; 5297 spin_unlock(&mc.lock); 5298 mem_cgroup_end_move(from); 5299 } 5300 5301 static int mem_cgroup_can_attach(struct cgroup_subsys *ss, 5302 struct cgroup *cgroup, 5303 struct cgroup_taskset *tset) 5304 { 5305 struct task_struct *p = cgroup_taskset_first(tset); 5306 int ret = 0; 5307 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 5308 5309 if (memcg->move_charge_at_immigrate) { 5310 struct mm_struct *mm; 5311 struct mem_cgroup *from = mem_cgroup_from_task(p); 5312 5313 VM_BUG_ON(from == memcg); 5314 5315 mm = get_task_mm(p); 5316 if (!mm) 5317 return 0; 5318 /* We move charges only when we move a owner of the mm */ 5319 if (mm->owner == p) { 5320 VM_BUG_ON(mc.from); 5321 VM_BUG_ON(mc.to); 5322 VM_BUG_ON(mc.precharge); 5323 VM_BUG_ON(mc.moved_charge); 5324 VM_BUG_ON(mc.moved_swap); 5325 mem_cgroup_start_move(from); 5326 spin_lock(&mc.lock); 5327 mc.from = from; 5328 mc.to = memcg; 5329 spin_unlock(&mc.lock); 5330 /* We set mc.moving_task later */ 5331 5332 ret = mem_cgroup_precharge_mc(mm); 5333 if (ret) 5334 mem_cgroup_clear_mc(); 5335 } 5336 mmput(mm); 5337 } 5338 return ret; 5339 } 5340 5341 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, 5342 struct cgroup *cgroup, 5343 struct cgroup_taskset *tset) 5344 { 5345 mem_cgroup_clear_mc(); 5346 } 5347 5348 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5349 unsigned long addr, unsigned long end, 5350 struct mm_walk *walk) 5351 { 5352 int ret = 0; 5353 struct vm_area_struct *vma = walk->private; 5354 pte_t *pte; 5355 spinlock_t *ptl; 5356 5357 split_huge_page_pmd(walk->mm, pmd); 5358 retry: 5359 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5360 for (; addr != end; addr += PAGE_SIZE) { 5361 pte_t ptent = *(pte++); 5362 union mc_target target; 5363 int type; 5364 struct page *page; 5365 struct page_cgroup *pc; 5366 swp_entry_t ent; 5367 5368 if (!mc.precharge) 5369 break; 5370 5371 type = is_target_pte_for_mc(vma, addr, ptent, &target); 5372 switch (type) { 5373 case MC_TARGET_PAGE: 5374 page = target.page; 5375 if (isolate_lru_page(page)) 5376 goto put; 5377 pc = lookup_page_cgroup(page); 5378 if (!mem_cgroup_move_account(page, 1, pc, 5379 mc.from, mc.to, false)) { 5380 mc.precharge--; 5381 /* we uncharge from mc.from later. */ 5382 mc.moved_charge++; 5383 } 5384 putback_lru_page(page); 5385 put: /* is_target_pte_for_mc() gets the page */ 5386 put_page(page); 5387 break; 5388 case MC_TARGET_SWAP: 5389 ent = target.ent; 5390 if (!mem_cgroup_move_swap_account(ent, 5391 mc.from, mc.to, false)) { 5392 mc.precharge--; 5393 /* we fixup refcnts and charges later. */ 5394 mc.moved_swap++; 5395 } 5396 break; 5397 default: 5398 break; 5399 } 5400 } 5401 pte_unmap_unlock(pte - 1, ptl); 5402 cond_resched(); 5403 5404 if (addr != end) { 5405 /* 5406 * We have consumed all precharges we got in can_attach(). 5407 * We try charge one by one, but don't do any additional 5408 * charges to mc.to if we have failed in charge once in attach() 5409 * phase. 5410 */ 5411 ret = mem_cgroup_do_precharge(1); 5412 if (!ret) 5413 goto retry; 5414 } 5415 5416 return ret; 5417 } 5418 5419 static void mem_cgroup_move_charge(struct mm_struct *mm) 5420 { 5421 struct vm_area_struct *vma; 5422 5423 lru_add_drain_all(); 5424 retry: 5425 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5426 /* 5427 * Someone who are holding the mmap_sem might be waiting in 5428 * waitq. So we cancel all extra charges, wake up all waiters, 5429 * and retry. Because we cancel precharges, we might not be able 5430 * to move enough charges, but moving charge is a best-effort 5431 * feature anyway, so it wouldn't be a big problem. 5432 */ 5433 __mem_cgroup_clear_mc(); 5434 cond_resched(); 5435 goto retry; 5436 } 5437 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5438 int ret; 5439 struct mm_walk mem_cgroup_move_charge_walk = { 5440 .pmd_entry = mem_cgroup_move_charge_pte_range, 5441 .mm = mm, 5442 .private = vma, 5443 }; 5444 if (is_vm_hugetlb_page(vma)) 5445 continue; 5446 ret = walk_page_range(vma->vm_start, vma->vm_end, 5447 &mem_cgroup_move_charge_walk); 5448 if (ret) 5449 /* 5450 * means we have consumed all precharges and failed in 5451 * doing additional charge. Just abandon here. 5452 */ 5453 break; 5454 } 5455 up_read(&mm->mmap_sem); 5456 } 5457 5458 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 5459 struct cgroup *cont, 5460 struct cgroup_taskset *tset) 5461 { 5462 struct task_struct *p = cgroup_taskset_first(tset); 5463 struct mm_struct *mm = get_task_mm(p); 5464 5465 if (mm) { 5466 if (mc.to) 5467 mem_cgroup_move_charge(mm); 5468 put_swap_token(mm); 5469 mmput(mm); 5470 } 5471 if (mc.to) 5472 mem_cgroup_clear_mc(); 5473 } 5474 #else /* !CONFIG_MMU */ 5475 static int mem_cgroup_can_attach(struct cgroup_subsys *ss, 5476 struct cgroup *cgroup, 5477 struct cgroup_taskset *tset) 5478 { 5479 return 0; 5480 } 5481 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, 5482 struct cgroup *cgroup, 5483 struct cgroup_taskset *tset) 5484 { 5485 } 5486 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 5487 struct cgroup *cont, 5488 struct cgroup_taskset *tset) 5489 { 5490 } 5491 #endif 5492 5493 struct cgroup_subsys mem_cgroup_subsys = { 5494 .name = "memory", 5495 .subsys_id = mem_cgroup_subsys_id, 5496 .create = mem_cgroup_create, 5497 .pre_destroy = mem_cgroup_pre_destroy, 5498 .destroy = mem_cgroup_destroy, 5499 .populate = mem_cgroup_populate, 5500 .can_attach = mem_cgroup_can_attach, 5501 .cancel_attach = mem_cgroup_cancel_attach, 5502 .attach = mem_cgroup_move_task, 5503 .early_init = 0, 5504 .use_id = 1, 5505 }; 5506 5507 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 5508 static int __init enable_swap_account(char *s) 5509 { 5510 /* consider enabled if no parameter or 1 is given */ 5511 if (!strcmp(s, "1")) 5512 really_do_swap_account = 1; 5513 else if (!strcmp(s, "0")) 5514 really_do_swap_account = 0; 5515 return 1; 5516 } 5517 __setup("swapaccount=", enable_swap_account); 5518 5519 #endif 5520