1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include <linux/sched/isolation.h> 67 #include <linux/kmemleak.h> 68 #include "internal.h" 69 #include <net/sock.h> 70 #include <net/ip.h> 71 #include "slab.h" 72 #include "swap.h" 73 74 #include <linux/uaccess.h> 75 76 #include <trace/events/vmscan.h> 77 78 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 79 EXPORT_SYMBOL(memory_cgrp_subsys); 80 81 struct mem_cgroup *root_mem_cgroup __read_mostly; 82 83 /* Active memory cgroup to use from an interrupt context */ 84 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 85 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 86 87 /* Socket memory accounting disabled? */ 88 static bool cgroup_memory_nosocket __ro_after_init; 89 90 /* Kernel memory accounting disabled? */ 91 static bool cgroup_memory_nokmem __ro_after_init; 92 93 /* BPF memory accounting disabled? */ 94 static bool cgroup_memory_nobpf __ro_after_init; 95 96 #ifdef CONFIG_CGROUP_WRITEBACK 97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 98 #endif 99 100 /* Whether legacy memory+swap accounting is active */ 101 static bool do_memsw_account(void) 102 { 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys); 104 } 105 106 #define THRESHOLDS_EVENTS_TARGET 128 107 #define SOFTLIMIT_EVENTS_TARGET 1024 108 109 /* 110 * Cgroups above their limits are maintained in a RB-Tree, independent of 111 * their hierarchy representation 112 */ 113 114 struct mem_cgroup_tree_per_node { 115 struct rb_root rb_root; 116 struct rb_node *rb_rightmost; 117 spinlock_t lock; 118 }; 119 120 struct mem_cgroup_tree { 121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 122 }; 123 124 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 125 126 /* for OOM */ 127 struct mem_cgroup_eventfd_list { 128 struct list_head list; 129 struct eventfd_ctx *eventfd; 130 }; 131 132 /* 133 * cgroup_event represents events which userspace want to receive. 134 */ 135 struct mem_cgroup_event { 136 /* 137 * memcg which the event belongs to. 138 */ 139 struct mem_cgroup *memcg; 140 /* 141 * eventfd to signal userspace about the event. 142 */ 143 struct eventfd_ctx *eventfd; 144 /* 145 * Each of these stored in a list by the cgroup. 146 */ 147 struct list_head list; 148 /* 149 * register_event() callback will be used to add new userspace 150 * waiter for changes related to this event. Use eventfd_signal() 151 * on eventfd to send notification to userspace. 152 */ 153 int (*register_event)(struct mem_cgroup *memcg, 154 struct eventfd_ctx *eventfd, const char *args); 155 /* 156 * unregister_event() callback will be called when userspace closes 157 * the eventfd or on cgroup removing. This callback must be set, 158 * if you want provide notification functionality. 159 */ 160 void (*unregister_event)(struct mem_cgroup *memcg, 161 struct eventfd_ctx *eventfd); 162 /* 163 * All fields below needed to unregister event when 164 * userspace closes eventfd. 165 */ 166 poll_table pt; 167 wait_queue_head_t *wqh; 168 wait_queue_entry_t wait; 169 struct work_struct remove; 170 }; 171 172 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 174 175 /* Stuffs for move charges at task migration. */ 176 /* 177 * Types of charges to be moved. 178 */ 179 #define MOVE_ANON 0x1U 180 #define MOVE_FILE 0x2U 181 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 182 183 /* "mc" and its members are protected by cgroup_mutex */ 184 static struct move_charge_struct { 185 spinlock_t lock; /* for from, to */ 186 struct mm_struct *mm; 187 struct mem_cgroup *from; 188 struct mem_cgroup *to; 189 unsigned long flags; 190 unsigned long precharge; 191 unsigned long moved_charge; 192 unsigned long moved_swap; 193 struct task_struct *moving_task; /* a task moving charges */ 194 wait_queue_head_t waitq; /* a waitq for other context */ 195 } mc = { 196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 198 }; 199 200 /* 201 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft 202 * limit reclaim to prevent infinite loops, if they ever occur. 203 */ 204 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 205 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 206 207 /* for encoding cft->private value on file */ 208 enum res_type { 209 _MEM, 210 _MEMSWAP, 211 _KMEM, 212 _TCP, 213 }; 214 215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 217 #define MEMFILE_ATTR(val) ((val) & 0xffff) 218 219 /* 220 * Iteration constructs for visiting all cgroups (under a tree). If 221 * loops are exited prematurely (break), mem_cgroup_iter_break() must 222 * be used for reference counting. 223 */ 224 #define for_each_mem_cgroup_tree(iter, root) \ 225 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 226 iter != NULL; \ 227 iter = mem_cgroup_iter(root, iter, NULL)) 228 229 #define for_each_mem_cgroup(iter) \ 230 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 231 iter != NULL; \ 232 iter = mem_cgroup_iter(NULL, iter, NULL)) 233 234 static inline bool task_is_dying(void) 235 { 236 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 237 (current->flags & PF_EXITING); 238 } 239 240 /* Some nice accessors for the vmpressure. */ 241 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 242 { 243 if (!memcg) 244 memcg = root_mem_cgroup; 245 return &memcg->vmpressure; 246 } 247 248 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 249 { 250 return container_of(vmpr, struct mem_cgroup, vmpressure); 251 } 252 253 #define CURRENT_OBJCG_UPDATE_BIT 0 254 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 255 256 #ifdef CONFIG_MEMCG_KMEM 257 static DEFINE_SPINLOCK(objcg_lock); 258 259 bool mem_cgroup_kmem_disabled(void) 260 { 261 return cgroup_memory_nokmem; 262 } 263 264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 265 unsigned int nr_pages); 266 267 static void obj_cgroup_release(struct percpu_ref *ref) 268 { 269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 270 unsigned int nr_bytes; 271 unsigned int nr_pages; 272 unsigned long flags; 273 274 /* 275 * At this point all allocated objects are freed, and 276 * objcg->nr_charged_bytes can't have an arbitrary byte value. 277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 278 * 279 * The following sequence can lead to it: 280 * 1) CPU0: objcg == stock->cached_objcg 281 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 282 * PAGE_SIZE bytes are charged 283 * 3) CPU1: a process from another memcg is allocating something, 284 * the stock if flushed, 285 * objcg->nr_charged_bytes = PAGE_SIZE - 92 286 * 5) CPU0: we do release this object, 287 * 92 bytes are added to stock->nr_bytes 288 * 6) CPU0: stock is flushed, 289 * 92 bytes are added to objcg->nr_charged_bytes 290 * 291 * In the result, nr_charged_bytes == PAGE_SIZE. 292 * This page will be uncharged in obj_cgroup_release(). 293 */ 294 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 296 nr_pages = nr_bytes >> PAGE_SHIFT; 297 298 if (nr_pages) 299 obj_cgroup_uncharge_pages(objcg, nr_pages); 300 301 spin_lock_irqsave(&objcg_lock, flags); 302 list_del(&objcg->list); 303 spin_unlock_irqrestore(&objcg_lock, flags); 304 305 percpu_ref_exit(ref); 306 kfree_rcu(objcg, rcu); 307 } 308 309 static struct obj_cgroup *obj_cgroup_alloc(void) 310 { 311 struct obj_cgroup *objcg; 312 int ret; 313 314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 315 if (!objcg) 316 return NULL; 317 318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 319 GFP_KERNEL); 320 if (ret) { 321 kfree(objcg); 322 return NULL; 323 } 324 INIT_LIST_HEAD(&objcg->list); 325 return objcg; 326 } 327 328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 329 struct mem_cgroup *parent) 330 { 331 struct obj_cgroup *objcg, *iter; 332 333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 334 335 spin_lock_irq(&objcg_lock); 336 337 /* 1) Ready to reparent active objcg. */ 338 list_add(&objcg->list, &memcg->objcg_list); 339 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 340 list_for_each_entry(iter, &memcg->objcg_list, list) 341 WRITE_ONCE(iter->memcg, parent); 342 /* 3) Move already reparented objcgs to the parent's list */ 343 list_splice(&memcg->objcg_list, &parent->objcg_list); 344 345 spin_unlock_irq(&objcg_lock); 346 347 percpu_ref_kill(&objcg->refcnt); 348 } 349 350 /* 351 * A lot of the calls to the cache allocation functions are expected to be 352 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 353 * conditional to this static branch, we'll have to allow modules that does 354 * kmem_cache_alloc and the such to see this symbol as well 355 */ 356 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 357 EXPORT_SYMBOL(memcg_kmem_online_key); 358 359 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 360 EXPORT_SYMBOL(memcg_bpf_enabled_key); 361 #endif 362 363 /** 364 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 365 * @folio: folio of interest 366 * 367 * If memcg is bound to the default hierarchy, css of the memcg associated 368 * with @folio is returned. The returned css remains associated with @folio 369 * until it is released. 370 * 371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 372 * is returned. 373 */ 374 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 375 { 376 struct mem_cgroup *memcg = folio_memcg(folio); 377 378 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 379 memcg = root_mem_cgroup; 380 381 return &memcg->css; 382 } 383 384 /** 385 * page_cgroup_ino - return inode number of the memcg a page is charged to 386 * @page: the page 387 * 388 * Look up the closest online ancestor of the memory cgroup @page is charged to 389 * and return its inode number or 0 if @page is not charged to any cgroup. It 390 * is safe to call this function without holding a reference to @page. 391 * 392 * Note, this function is inherently racy, because there is nothing to prevent 393 * the cgroup inode from getting torn down and potentially reallocated a moment 394 * after page_cgroup_ino() returns, so it only should be used by callers that 395 * do not care (such as procfs interfaces). 396 */ 397 ino_t page_cgroup_ino(struct page *page) 398 { 399 struct mem_cgroup *memcg; 400 unsigned long ino = 0; 401 402 rcu_read_lock(); 403 /* page_folio() is racy here, but the entire function is racy anyway */ 404 memcg = folio_memcg_check(page_folio(page)); 405 406 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 407 memcg = parent_mem_cgroup(memcg); 408 if (memcg) 409 ino = cgroup_ino(memcg->css.cgroup); 410 rcu_read_unlock(); 411 return ino; 412 } 413 414 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 415 struct mem_cgroup_tree_per_node *mctz, 416 unsigned long new_usage_in_excess) 417 { 418 struct rb_node **p = &mctz->rb_root.rb_node; 419 struct rb_node *parent = NULL; 420 struct mem_cgroup_per_node *mz_node; 421 bool rightmost = true; 422 423 if (mz->on_tree) 424 return; 425 426 mz->usage_in_excess = new_usage_in_excess; 427 if (!mz->usage_in_excess) 428 return; 429 while (*p) { 430 parent = *p; 431 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 432 tree_node); 433 if (mz->usage_in_excess < mz_node->usage_in_excess) { 434 p = &(*p)->rb_left; 435 rightmost = false; 436 } else { 437 p = &(*p)->rb_right; 438 } 439 } 440 441 if (rightmost) 442 mctz->rb_rightmost = &mz->tree_node; 443 444 rb_link_node(&mz->tree_node, parent, p); 445 rb_insert_color(&mz->tree_node, &mctz->rb_root); 446 mz->on_tree = true; 447 } 448 449 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 450 struct mem_cgroup_tree_per_node *mctz) 451 { 452 if (!mz->on_tree) 453 return; 454 455 if (&mz->tree_node == mctz->rb_rightmost) 456 mctz->rb_rightmost = rb_prev(&mz->tree_node); 457 458 rb_erase(&mz->tree_node, &mctz->rb_root); 459 mz->on_tree = false; 460 } 461 462 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 463 struct mem_cgroup_tree_per_node *mctz) 464 { 465 unsigned long flags; 466 467 spin_lock_irqsave(&mctz->lock, flags); 468 __mem_cgroup_remove_exceeded(mz, mctz); 469 spin_unlock_irqrestore(&mctz->lock, flags); 470 } 471 472 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 473 { 474 unsigned long nr_pages = page_counter_read(&memcg->memory); 475 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 476 unsigned long excess = 0; 477 478 if (nr_pages > soft_limit) 479 excess = nr_pages - soft_limit; 480 481 return excess; 482 } 483 484 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 485 { 486 unsigned long excess; 487 struct mem_cgroup_per_node *mz; 488 struct mem_cgroup_tree_per_node *mctz; 489 490 if (lru_gen_enabled()) { 491 if (soft_limit_excess(memcg)) 492 lru_gen_soft_reclaim(memcg, nid); 493 return; 494 } 495 496 mctz = soft_limit_tree.rb_tree_per_node[nid]; 497 if (!mctz) 498 return; 499 /* 500 * Necessary to update all ancestors when hierarchy is used. 501 * because their event counter is not touched. 502 */ 503 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 504 mz = memcg->nodeinfo[nid]; 505 excess = soft_limit_excess(memcg); 506 /* 507 * We have to update the tree if mz is on RB-tree or 508 * mem is over its softlimit. 509 */ 510 if (excess || mz->on_tree) { 511 unsigned long flags; 512 513 spin_lock_irqsave(&mctz->lock, flags); 514 /* if on-tree, remove it */ 515 if (mz->on_tree) 516 __mem_cgroup_remove_exceeded(mz, mctz); 517 /* 518 * Insert again. mz->usage_in_excess will be updated. 519 * If excess is 0, no tree ops. 520 */ 521 __mem_cgroup_insert_exceeded(mz, mctz, excess); 522 spin_unlock_irqrestore(&mctz->lock, flags); 523 } 524 } 525 } 526 527 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 528 { 529 struct mem_cgroup_tree_per_node *mctz; 530 struct mem_cgroup_per_node *mz; 531 int nid; 532 533 for_each_node(nid) { 534 mz = memcg->nodeinfo[nid]; 535 mctz = soft_limit_tree.rb_tree_per_node[nid]; 536 if (mctz) 537 mem_cgroup_remove_exceeded(mz, mctz); 538 } 539 } 540 541 static struct mem_cgroup_per_node * 542 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 543 { 544 struct mem_cgroup_per_node *mz; 545 546 retry: 547 mz = NULL; 548 if (!mctz->rb_rightmost) 549 goto done; /* Nothing to reclaim from */ 550 551 mz = rb_entry(mctz->rb_rightmost, 552 struct mem_cgroup_per_node, tree_node); 553 /* 554 * Remove the node now but someone else can add it back, 555 * we will to add it back at the end of reclaim to its correct 556 * position in the tree. 557 */ 558 __mem_cgroup_remove_exceeded(mz, mctz); 559 if (!soft_limit_excess(mz->memcg) || 560 !css_tryget(&mz->memcg->css)) 561 goto retry; 562 done: 563 return mz; 564 } 565 566 static struct mem_cgroup_per_node * 567 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 568 { 569 struct mem_cgroup_per_node *mz; 570 571 spin_lock_irq(&mctz->lock); 572 mz = __mem_cgroup_largest_soft_limit_node(mctz); 573 spin_unlock_irq(&mctz->lock); 574 return mz; 575 } 576 577 /* Subset of vm_event_item to report for memcg event stats */ 578 static const unsigned int memcg_vm_event_stat[] = { 579 PGPGIN, 580 PGPGOUT, 581 PGSCAN_KSWAPD, 582 PGSCAN_DIRECT, 583 PGSCAN_KHUGEPAGED, 584 PGSTEAL_KSWAPD, 585 PGSTEAL_DIRECT, 586 PGSTEAL_KHUGEPAGED, 587 PGFAULT, 588 PGMAJFAULT, 589 PGREFILL, 590 PGACTIVATE, 591 PGDEACTIVATE, 592 PGLAZYFREE, 593 PGLAZYFREED, 594 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 595 ZSWPIN, 596 ZSWPOUT, 597 ZSWPWB, 598 #endif 599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 600 THP_FAULT_ALLOC, 601 THP_COLLAPSE_ALLOC, 602 THP_SWPOUT, 603 THP_SWPOUT_FALLBACK, 604 #endif 605 }; 606 607 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 608 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 609 610 static void init_memcg_events(void) 611 { 612 int i; 613 614 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 615 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; 616 } 617 618 static inline int memcg_events_index(enum vm_event_item idx) 619 { 620 return mem_cgroup_events_index[idx] - 1; 621 } 622 623 struct memcg_vmstats_percpu { 624 /* Local (CPU and cgroup) page state & events */ 625 long state[MEMCG_NR_STAT]; 626 unsigned long events[NR_MEMCG_EVENTS]; 627 628 /* Delta calculation for lockless upward propagation */ 629 long state_prev[MEMCG_NR_STAT]; 630 unsigned long events_prev[NR_MEMCG_EVENTS]; 631 632 /* Cgroup1: threshold notifications & softlimit tree updates */ 633 unsigned long nr_page_events; 634 unsigned long targets[MEM_CGROUP_NTARGETS]; 635 636 /* Stats updates since the last flush */ 637 unsigned int stats_updates; 638 }; 639 640 struct memcg_vmstats { 641 /* Aggregated (CPU and subtree) page state & events */ 642 long state[MEMCG_NR_STAT]; 643 unsigned long events[NR_MEMCG_EVENTS]; 644 645 /* Non-hierarchical (CPU aggregated) page state & events */ 646 long state_local[MEMCG_NR_STAT]; 647 unsigned long events_local[NR_MEMCG_EVENTS]; 648 649 /* Pending child counts during tree propagation */ 650 long state_pending[MEMCG_NR_STAT]; 651 unsigned long events_pending[NR_MEMCG_EVENTS]; 652 653 /* Stats updates since the last flush */ 654 atomic64_t stats_updates; 655 }; 656 657 /* 658 * memcg and lruvec stats flushing 659 * 660 * Many codepaths leading to stats update or read are performance sensitive and 661 * adding stats flushing in such codepaths is not desirable. So, to optimize the 662 * flushing the kernel does: 663 * 664 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 665 * rstat update tree grow unbounded. 666 * 667 * 2) Flush the stats synchronously on reader side only when there are more than 668 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 669 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 670 * only for 2 seconds due to (1). 671 */ 672 static void flush_memcg_stats_dwork(struct work_struct *w); 673 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 674 static u64 flush_last_time; 675 676 #define FLUSH_TIME (2UL*HZ) 677 678 /* 679 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 680 * not rely on this as part of an acquired spinlock_t lock. These functions are 681 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 682 * is sufficient. 683 */ 684 static void memcg_stats_lock(void) 685 { 686 preempt_disable_nested(); 687 VM_WARN_ON_IRQS_ENABLED(); 688 } 689 690 static void __memcg_stats_lock(void) 691 { 692 preempt_disable_nested(); 693 } 694 695 static void memcg_stats_unlock(void) 696 { 697 preempt_enable_nested(); 698 } 699 700 701 static bool memcg_should_flush_stats(struct mem_cgroup *memcg) 702 { 703 return atomic64_read(&memcg->vmstats->stats_updates) > 704 MEMCG_CHARGE_BATCH * num_online_cpus(); 705 } 706 707 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 708 { 709 int cpu = smp_processor_id(); 710 unsigned int x; 711 712 if (!val) 713 return; 714 715 cgroup_rstat_updated(memcg->css.cgroup, cpu); 716 717 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 718 x = __this_cpu_add_return(memcg->vmstats_percpu->stats_updates, 719 abs(val)); 720 721 if (x < MEMCG_CHARGE_BATCH) 722 continue; 723 724 /* 725 * If @memcg is already flush-able, increasing stats_updates is 726 * redundant. Avoid the overhead of the atomic update. 727 */ 728 if (!memcg_should_flush_stats(memcg)) 729 atomic64_add(x, &memcg->vmstats->stats_updates); 730 __this_cpu_write(memcg->vmstats_percpu->stats_updates, 0); 731 } 732 } 733 734 static void do_flush_stats(struct mem_cgroup *memcg) 735 { 736 if (mem_cgroup_is_root(memcg)) 737 WRITE_ONCE(flush_last_time, jiffies_64); 738 739 cgroup_rstat_flush(memcg->css.cgroup); 740 } 741 742 /* 743 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 744 * @memcg: root of the subtree to flush 745 * 746 * Flushing is serialized by the underlying global rstat lock. There is also a 747 * minimum amount of work to be done even if there are no stat updates to flush. 748 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 749 * avoids unnecessary work and contention on the underlying lock. 750 */ 751 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 752 { 753 if (mem_cgroup_disabled()) 754 return; 755 756 if (!memcg) 757 memcg = root_mem_cgroup; 758 759 if (memcg_should_flush_stats(memcg)) 760 do_flush_stats(memcg); 761 } 762 763 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 764 { 765 /* Only flush if the periodic flusher is one full cycle late */ 766 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 767 mem_cgroup_flush_stats(memcg); 768 } 769 770 static void flush_memcg_stats_dwork(struct work_struct *w) 771 { 772 /* 773 * Deliberately ignore memcg_should_flush_stats() here so that flushing 774 * in latency-sensitive paths is as cheap as possible. 775 */ 776 do_flush_stats(root_mem_cgroup); 777 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 778 } 779 780 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 781 { 782 long x = READ_ONCE(memcg->vmstats->state[idx]); 783 #ifdef CONFIG_SMP 784 if (x < 0) 785 x = 0; 786 #endif 787 return x; 788 } 789 790 static int memcg_page_state_unit(int item); 791 792 /* 793 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 794 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 795 */ 796 static int memcg_state_val_in_pages(int idx, int val) 797 { 798 int unit = memcg_page_state_unit(idx); 799 800 if (!val || unit == PAGE_SIZE) 801 return val; 802 else 803 return max(val * unit / PAGE_SIZE, 1UL); 804 } 805 806 /** 807 * __mod_memcg_state - update cgroup memory statistics 808 * @memcg: the memory cgroup 809 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 810 * @val: delta to add to the counter, can be negative 811 */ 812 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 813 { 814 if (mem_cgroup_disabled()) 815 return; 816 817 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 818 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 819 } 820 821 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 822 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 823 { 824 long x = READ_ONCE(memcg->vmstats->state_local[idx]); 825 826 #ifdef CONFIG_SMP 827 if (x < 0) 828 x = 0; 829 #endif 830 return x; 831 } 832 833 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 834 int val) 835 { 836 struct mem_cgroup_per_node *pn; 837 struct mem_cgroup *memcg; 838 839 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 840 memcg = pn->memcg; 841 842 /* 843 * The caller from rmap relies on disabled preemption because they never 844 * update their counter from in-interrupt context. For these two 845 * counters we check that the update is never performed from an 846 * interrupt context while other caller need to have disabled interrupt. 847 */ 848 __memcg_stats_lock(); 849 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 850 switch (idx) { 851 case NR_ANON_MAPPED: 852 case NR_FILE_MAPPED: 853 case NR_ANON_THPS: 854 case NR_SHMEM_PMDMAPPED: 855 case NR_FILE_PMDMAPPED: 856 WARN_ON_ONCE(!in_task()); 857 break; 858 default: 859 VM_WARN_ON_IRQS_ENABLED(); 860 } 861 } 862 863 /* Update memcg */ 864 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 865 866 /* Update lruvec */ 867 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 868 869 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 870 memcg_stats_unlock(); 871 } 872 873 /** 874 * __mod_lruvec_state - update lruvec memory statistics 875 * @lruvec: the lruvec 876 * @idx: the stat item 877 * @val: delta to add to the counter, can be negative 878 * 879 * The lruvec is the intersection of the NUMA node and a cgroup. This 880 * function updates the all three counters that are affected by a 881 * change of state at this level: per-node, per-cgroup, per-lruvec. 882 */ 883 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 884 int val) 885 { 886 /* Update node */ 887 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 888 889 /* Update memcg and lruvec */ 890 if (!mem_cgroup_disabled()) 891 __mod_memcg_lruvec_state(lruvec, idx, val); 892 } 893 894 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 895 int val) 896 { 897 struct mem_cgroup *memcg; 898 pg_data_t *pgdat = folio_pgdat(folio); 899 struct lruvec *lruvec; 900 901 rcu_read_lock(); 902 memcg = folio_memcg(folio); 903 /* Untracked pages have no memcg, no lruvec. Update only the node */ 904 if (!memcg) { 905 rcu_read_unlock(); 906 __mod_node_page_state(pgdat, idx, val); 907 return; 908 } 909 910 lruvec = mem_cgroup_lruvec(memcg, pgdat); 911 __mod_lruvec_state(lruvec, idx, val); 912 rcu_read_unlock(); 913 } 914 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 915 916 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 917 { 918 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 919 struct mem_cgroup *memcg; 920 struct lruvec *lruvec; 921 922 rcu_read_lock(); 923 memcg = mem_cgroup_from_slab_obj(p); 924 925 /* 926 * Untracked pages have no memcg, no lruvec. Update only the 927 * node. If we reparent the slab objects to the root memcg, 928 * when we free the slab object, we need to update the per-memcg 929 * vmstats to keep it correct for the root memcg. 930 */ 931 if (!memcg) { 932 __mod_node_page_state(pgdat, idx, val); 933 } else { 934 lruvec = mem_cgroup_lruvec(memcg, pgdat); 935 __mod_lruvec_state(lruvec, idx, val); 936 } 937 rcu_read_unlock(); 938 } 939 940 /** 941 * __count_memcg_events - account VM events in a cgroup 942 * @memcg: the memory cgroup 943 * @idx: the event item 944 * @count: the number of events that occurred 945 */ 946 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 947 unsigned long count) 948 { 949 int index = memcg_events_index(idx); 950 951 if (mem_cgroup_disabled() || index < 0) 952 return; 953 954 memcg_stats_lock(); 955 __this_cpu_add(memcg->vmstats_percpu->events[index], count); 956 memcg_rstat_updated(memcg, count); 957 memcg_stats_unlock(); 958 } 959 960 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 961 { 962 int index = memcg_events_index(event); 963 964 if (index < 0) 965 return 0; 966 return READ_ONCE(memcg->vmstats->events[index]); 967 } 968 969 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 970 { 971 int index = memcg_events_index(event); 972 973 if (index < 0) 974 return 0; 975 976 return READ_ONCE(memcg->vmstats->events_local[index]); 977 } 978 979 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 980 int nr_pages) 981 { 982 /* pagein of a big page is an event. So, ignore page size */ 983 if (nr_pages > 0) 984 __count_memcg_events(memcg, PGPGIN, 1); 985 else { 986 __count_memcg_events(memcg, PGPGOUT, 1); 987 nr_pages = -nr_pages; /* for event */ 988 } 989 990 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 991 } 992 993 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 994 enum mem_cgroup_events_target target) 995 { 996 unsigned long val, next; 997 998 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 999 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 1000 /* from time_after() in jiffies.h */ 1001 if ((long)(next - val) < 0) { 1002 switch (target) { 1003 case MEM_CGROUP_TARGET_THRESH: 1004 next = val + THRESHOLDS_EVENTS_TARGET; 1005 break; 1006 case MEM_CGROUP_TARGET_SOFTLIMIT: 1007 next = val + SOFTLIMIT_EVENTS_TARGET; 1008 break; 1009 default: 1010 break; 1011 } 1012 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 1013 return true; 1014 } 1015 return false; 1016 } 1017 1018 /* 1019 * Check events in order. 1020 * 1021 */ 1022 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 1023 { 1024 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1025 return; 1026 1027 /* threshold event is triggered in finer grain than soft limit */ 1028 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1029 MEM_CGROUP_TARGET_THRESH))) { 1030 bool do_softlimit; 1031 1032 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1033 MEM_CGROUP_TARGET_SOFTLIMIT); 1034 mem_cgroup_threshold(memcg); 1035 if (unlikely(do_softlimit)) 1036 mem_cgroup_update_tree(memcg, nid); 1037 } 1038 } 1039 1040 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1041 { 1042 /* 1043 * mm_update_next_owner() may clear mm->owner to NULL 1044 * if it races with swapoff, page migration, etc. 1045 * So this can be called with p == NULL. 1046 */ 1047 if (unlikely(!p)) 1048 return NULL; 1049 1050 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1051 } 1052 EXPORT_SYMBOL(mem_cgroup_from_task); 1053 1054 static __always_inline struct mem_cgroup *active_memcg(void) 1055 { 1056 if (!in_task()) 1057 return this_cpu_read(int_active_memcg); 1058 else 1059 return current->active_memcg; 1060 } 1061 1062 /** 1063 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1064 * @mm: mm from which memcg should be extracted. It can be NULL. 1065 * 1066 * Obtain a reference on mm->memcg and returns it if successful. If mm 1067 * is NULL, then the memcg is chosen as follows: 1068 * 1) The active memcg, if set. 1069 * 2) current->mm->memcg, if available 1070 * 3) root memcg 1071 * If mem_cgroup is disabled, NULL is returned. 1072 */ 1073 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1074 { 1075 struct mem_cgroup *memcg; 1076 1077 if (mem_cgroup_disabled()) 1078 return NULL; 1079 1080 /* 1081 * Page cache insertions can happen without an 1082 * actual mm context, e.g. during disk probing 1083 * on boot, loopback IO, acct() writes etc. 1084 * 1085 * No need to css_get on root memcg as the reference 1086 * counting is disabled on the root level in the 1087 * cgroup core. See CSS_NO_REF. 1088 */ 1089 if (unlikely(!mm)) { 1090 memcg = active_memcg(); 1091 if (unlikely(memcg)) { 1092 /* remote memcg must hold a ref */ 1093 css_get(&memcg->css); 1094 return memcg; 1095 } 1096 mm = current->mm; 1097 if (unlikely(!mm)) 1098 return root_mem_cgroup; 1099 } 1100 1101 rcu_read_lock(); 1102 do { 1103 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1104 if (unlikely(!memcg)) 1105 memcg = root_mem_cgroup; 1106 } while (!css_tryget(&memcg->css)); 1107 rcu_read_unlock(); 1108 return memcg; 1109 } 1110 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1111 1112 /** 1113 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 1114 */ 1115 struct mem_cgroup *get_mem_cgroup_from_current(void) 1116 { 1117 struct mem_cgroup *memcg; 1118 1119 if (mem_cgroup_disabled()) 1120 return NULL; 1121 1122 again: 1123 rcu_read_lock(); 1124 memcg = mem_cgroup_from_task(current); 1125 if (!css_tryget(&memcg->css)) { 1126 rcu_read_unlock(); 1127 goto again; 1128 } 1129 rcu_read_unlock(); 1130 return memcg; 1131 } 1132 1133 /** 1134 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1135 * @root: hierarchy root 1136 * @prev: previously returned memcg, NULL on first invocation 1137 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1138 * 1139 * Returns references to children of the hierarchy below @root, or 1140 * @root itself, or %NULL after a full round-trip. 1141 * 1142 * Caller must pass the return value in @prev on subsequent 1143 * invocations for reference counting, or use mem_cgroup_iter_break() 1144 * to cancel a hierarchy walk before the round-trip is complete. 1145 * 1146 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1147 * in the hierarchy among all concurrent reclaimers operating on the 1148 * same node. 1149 */ 1150 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1151 struct mem_cgroup *prev, 1152 struct mem_cgroup_reclaim_cookie *reclaim) 1153 { 1154 struct mem_cgroup_reclaim_iter *iter; 1155 struct cgroup_subsys_state *css = NULL; 1156 struct mem_cgroup *memcg = NULL; 1157 struct mem_cgroup *pos = NULL; 1158 1159 if (mem_cgroup_disabled()) 1160 return NULL; 1161 1162 if (!root) 1163 root = root_mem_cgroup; 1164 1165 rcu_read_lock(); 1166 1167 if (reclaim) { 1168 struct mem_cgroup_per_node *mz; 1169 1170 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1171 iter = &mz->iter; 1172 1173 /* 1174 * On start, join the current reclaim iteration cycle. 1175 * Exit when a concurrent walker completes it. 1176 */ 1177 if (!prev) 1178 reclaim->generation = iter->generation; 1179 else if (reclaim->generation != iter->generation) 1180 goto out_unlock; 1181 1182 while (1) { 1183 pos = READ_ONCE(iter->position); 1184 if (!pos || css_tryget(&pos->css)) 1185 break; 1186 /* 1187 * css reference reached zero, so iter->position will 1188 * be cleared by ->css_released. However, we should not 1189 * rely on this happening soon, because ->css_released 1190 * is called from a work queue, and by busy-waiting we 1191 * might block it. So we clear iter->position right 1192 * away. 1193 */ 1194 (void)cmpxchg(&iter->position, pos, NULL); 1195 } 1196 } else if (prev) { 1197 pos = prev; 1198 } 1199 1200 if (pos) 1201 css = &pos->css; 1202 1203 for (;;) { 1204 css = css_next_descendant_pre(css, &root->css); 1205 if (!css) { 1206 /* 1207 * Reclaimers share the hierarchy walk, and a 1208 * new one might jump in right at the end of 1209 * the hierarchy - make sure they see at least 1210 * one group and restart from the beginning. 1211 */ 1212 if (!prev) 1213 continue; 1214 break; 1215 } 1216 1217 /* 1218 * Verify the css and acquire a reference. The root 1219 * is provided by the caller, so we know it's alive 1220 * and kicking, and don't take an extra reference. 1221 */ 1222 if (css == &root->css || css_tryget(css)) { 1223 memcg = mem_cgroup_from_css(css); 1224 break; 1225 } 1226 } 1227 1228 if (reclaim) { 1229 /* 1230 * The position could have already been updated by a competing 1231 * thread, so check that the value hasn't changed since we read 1232 * it to avoid reclaiming from the same cgroup twice. 1233 */ 1234 (void)cmpxchg(&iter->position, pos, memcg); 1235 1236 if (pos) 1237 css_put(&pos->css); 1238 1239 if (!memcg) 1240 iter->generation++; 1241 } 1242 1243 out_unlock: 1244 rcu_read_unlock(); 1245 if (prev && prev != root) 1246 css_put(&prev->css); 1247 1248 return memcg; 1249 } 1250 1251 /** 1252 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1253 * @root: hierarchy root 1254 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1255 */ 1256 void mem_cgroup_iter_break(struct mem_cgroup *root, 1257 struct mem_cgroup *prev) 1258 { 1259 if (!root) 1260 root = root_mem_cgroup; 1261 if (prev && prev != root) 1262 css_put(&prev->css); 1263 } 1264 1265 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1266 struct mem_cgroup *dead_memcg) 1267 { 1268 struct mem_cgroup_reclaim_iter *iter; 1269 struct mem_cgroup_per_node *mz; 1270 int nid; 1271 1272 for_each_node(nid) { 1273 mz = from->nodeinfo[nid]; 1274 iter = &mz->iter; 1275 cmpxchg(&iter->position, dead_memcg, NULL); 1276 } 1277 } 1278 1279 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1280 { 1281 struct mem_cgroup *memcg = dead_memcg; 1282 struct mem_cgroup *last; 1283 1284 do { 1285 __invalidate_reclaim_iterators(memcg, dead_memcg); 1286 last = memcg; 1287 } while ((memcg = parent_mem_cgroup(memcg))); 1288 1289 /* 1290 * When cgroup1 non-hierarchy mode is used, 1291 * parent_mem_cgroup() does not walk all the way up to the 1292 * cgroup root (root_mem_cgroup). So we have to handle 1293 * dead_memcg from cgroup root separately. 1294 */ 1295 if (!mem_cgroup_is_root(last)) 1296 __invalidate_reclaim_iterators(root_mem_cgroup, 1297 dead_memcg); 1298 } 1299 1300 /** 1301 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1302 * @memcg: hierarchy root 1303 * @fn: function to call for each task 1304 * @arg: argument passed to @fn 1305 * 1306 * This function iterates over tasks attached to @memcg or to any of its 1307 * descendants and calls @fn for each task. If @fn returns a non-zero 1308 * value, the function breaks the iteration loop. Otherwise, it will iterate 1309 * over all tasks and return 0. 1310 * 1311 * This function must not be called for the root memory cgroup. 1312 */ 1313 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1314 int (*fn)(struct task_struct *, void *), void *arg) 1315 { 1316 struct mem_cgroup *iter; 1317 int ret = 0; 1318 1319 BUG_ON(mem_cgroup_is_root(memcg)); 1320 1321 for_each_mem_cgroup_tree(iter, memcg) { 1322 struct css_task_iter it; 1323 struct task_struct *task; 1324 1325 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1326 while (!ret && (task = css_task_iter_next(&it))) 1327 ret = fn(task, arg); 1328 css_task_iter_end(&it); 1329 if (ret) { 1330 mem_cgroup_iter_break(memcg, iter); 1331 break; 1332 } 1333 } 1334 } 1335 1336 #ifdef CONFIG_DEBUG_VM 1337 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1338 { 1339 struct mem_cgroup *memcg; 1340 1341 if (mem_cgroup_disabled()) 1342 return; 1343 1344 memcg = folio_memcg(folio); 1345 1346 if (!memcg) 1347 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1348 else 1349 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1350 } 1351 #endif 1352 1353 /** 1354 * folio_lruvec_lock - Lock the lruvec for a folio. 1355 * @folio: Pointer to the folio. 1356 * 1357 * These functions are safe to use under any of the following conditions: 1358 * - folio locked 1359 * - folio_test_lru false 1360 * - folio_memcg_lock() 1361 * - folio frozen (refcount of 0) 1362 * 1363 * Return: The lruvec this folio is on with its lock held. 1364 */ 1365 struct lruvec *folio_lruvec_lock(struct folio *folio) 1366 { 1367 struct lruvec *lruvec = folio_lruvec(folio); 1368 1369 spin_lock(&lruvec->lru_lock); 1370 lruvec_memcg_debug(lruvec, folio); 1371 1372 return lruvec; 1373 } 1374 1375 /** 1376 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1377 * @folio: Pointer to the folio. 1378 * 1379 * These functions are safe to use under any of the following conditions: 1380 * - folio locked 1381 * - folio_test_lru false 1382 * - folio_memcg_lock() 1383 * - folio frozen (refcount of 0) 1384 * 1385 * Return: The lruvec this folio is on with its lock held and interrupts 1386 * disabled. 1387 */ 1388 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1389 { 1390 struct lruvec *lruvec = folio_lruvec(folio); 1391 1392 spin_lock_irq(&lruvec->lru_lock); 1393 lruvec_memcg_debug(lruvec, folio); 1394 1395 return lruvec; 1396 } 1397 1398 /** 1399 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1400 * @folio: Pointer to the folio. 1401 * @flags: Pointer to irqsave flags. 1402 * 1403 * These functions are safe to use under any of the following conditions: 1404 * - folio locked 1405 * - folio_test_lru false 1406 * - folio_memcg_lock() 1407 * - folio frozen (refcount of 0) 1408 * 1409 * Return: The lruvec this folio is on with its lock held and interrupts 1410 * disabled. 1411 */ 1412 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1413 unsigned long *flags) 1414 { 1415 struct lruvec *lruvec = folio_lruvec(folio); 1416 1417 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1418 lruvec_memcg_debug(lruvec, folio); 1419 1420 return lruvec; 1421 } 1422 1423 /** 1424 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1425 * @lruvec: mem_cgroup per zone lru vector 1426 * @lru: index of lru list the page is sitting on 1427 * @zid: zone id of the accounted pages 1428 * @nr_pages: positive when adding or negative when removing 1429 * 1430 * This function must be called under lru_lock, just before a page is added 1431 * to or just after a page is removed from an lru list. 1432 */ 1433 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1434 int zid, int nr_pages) 1435 { 1436 struct mem_cgroup_per_node *mz; 1437 unsigned long *lru_size; 1438 long size; 1439 1440 if (mem_cgroup_disabled()) 1441 return; 1442 1443 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1444 lru_size = &mz->lru_zone_size[zid][lru]; 1445 1446 if (nr_pages < 0) 1447 *lru_size += nr_pages; 1448 1449 size = *lru_size; 1450 if (WARN_ONCE(size < 0, 1451 "%s(%p, %d, %d): lru_size %ld\n", 1452 __func__, lruvec, lru, nr_pages, size)) { 1453 VM_BUG_ON(1); 1454 *lru_size = 0; 1455 } 1456 1457 if (nr_pages > 0) 1458 *lru_size += nr_pages; 1459 } 1460 1461 /** 1462 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1463 * @memcg: the memory cgroup 1464 * 1465 * Returns the maximum amount of memory @mem can be charged with, in 1466 * pages. 1467 */ 1468 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1469 { 1470 unsigned long margin = 0; 1471 unsigned long count; 1472 unsigned long limit; 1473 1474 count = page_counter_read(&memcg->memory); 1475 limit = READ_ONCE(memcg->memory.max); 1476 if (count < limit) 1477 margin = limit - count; 1478 1479 if (do_memsw_account()) { 1480 count = page_counter_read(&memcg->memsw); 1481 limit = READ_ONCE(memcg->memsw.max); 1482 if (count < limit) 1483 margin = min(margin, limit - count); 1484 else 1485 margin = 0; 1486 } 1487 1488 return margin; 1489 } 1490 1491 /* 1492 * A routine for checking "mem" is under move_account() or not. 1493 * 1494 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1495 * moving cgroups. This is for waiting at high-memory pressure 1496 * caused by "move". 1497 */ 1498 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1499 { 1500 struct mem_cgroup *from; 1501 struct mem_cgroup *to; 1502 bool ret = false; 1503 /* 1504 * Unlike task_move routines, we access mc.to, mc.from not under 1505 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1506 */ 1507 spin_lock(&mc.lock); 1508 from = mc.from; 1509 to = mc.to; 1510 if (!from) 1511 goto unlock; 1512 1513 ret = mem_cgroup_is_descendant(from, memcg) || 1514 mem_cgroup_is_descendant(to, memcg); 1515 unlock: 1516 spin_unlock(&mc.lock); 1517 return ret; 1518 } 1519 1520 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1521 { 1522 if (mc.moving_task && current != mc.moving_task) { 1523 if (mem_cgroup_under_move(memcg)) { 1524 DEFINE_WAIT(wait); 1525 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1526 /* moving charge context might have finished. */ 1527 if (mc.moving_task) 1528 schedule(); 1529 finish_wait(&mc.waitq, &wait); 1530 return true; 1531 } 1532 } 1533 return false; 1534 } 1535 1536 struct memory_stat { 1537 const char *name; 1538 unsigned int idx; 1539 }; 1540 1541 static const struct memory_stat memory_stats[] = { 1542 { "anon", NR_ANON_MAPPED }, 1543 { "file", NR_FILE_PAGES }, 1544 { "kernel", MEMCG_KMEM }, 1545 { "kernel_stack", NR_KERNEL_STACK_KB }, 1546 { "pagetables", NR_PAGETABLE }, 1547 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1548 { "percpu", MEMCG_PERCPU_B }, 1549 { "sock", MEMCG_SOCK }, 1550 { "vmalloc", MEMCG_VMALLOC }, 1551 { "shmem", NR_SHMEM }, 1552 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1553 { "zswap", MEMCG_ZSWAP_B }, 1554 { "zswapped", MEMCG_ZSWAPPED }, 1555 #endif 1556 { "file_mapped", NR_FILE_MAPPED }, 1557 { "file_dirty", NR_FILE_DIRTY }, 1558 { "file_writeback", NR_WRITEBACK }, 1559 #ifdef CONFIG_SWAP 1560 { "swapcached", NR_SWAPCACHE }, 1561 #endif 1562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1563 { "anon_thp", NR_ANON_THPS }, 1564 { "file_thp", NR_FILE_THPS }, 1565 { "shmem_thp", NR_SHMEM_THPS }, 1566 #endif 1567 { "inactive_anon", NR_INACTIVE_ANON }, 1568 { "active_anon", NR_ACTIVE_ANON }, 1569 { "inactive_file", NR_INACTIVE_FILE }, 1570 { "active_file", NR_ACTIVE_FILE }, 1571 { "unevictable", NR_UNEVICTABLE }, 1572 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1573 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1574 1575 /* The memory events */ 1576 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1577 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1578 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1579 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1580 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1581 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1582 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1583 }; 1584 1585 /* The actual unit of the state item, not the same as the output unit */ 1586 static int memcg_page_state_unit(int item) 1587 { 1588 switch (item) { 1589 case MEMCG_PERCPU_B: 1590 case MEMCG_ZSWAP_B: 1591 case NR_SLAB_RECLAIMABLE_B: 1592 case NR_SLAB_UNRECLAIMABLE_B: 1593 return 1; 1594 case NR_KERNEL_STACK_KB: 1595 return SZ_1K; 1596 default: 1597 return PAGE_SIZE; 1598 } 1599 } 1600 1601 /* Translate stat items to the correct unit for memory.stat output */ 1602 static int memcg_page_state_output_unit(int item) 1603 { 1604 /* 1605 * Workingset state is actually in pages, but we export it to userspace 1606 * as a scalar count of events, so special case it here. 1607 */ 1608 switch (item) { 1609 case WORKINGSET_REFAULT_ANON: 1610 case WORKINGSET_REFAULT_FILE: 1611 case WORKINGSET_ACTIVATE_ANON: 1612 case WORKINGSET_ACTIVATE_FILE: 1613 case WORKINGSET_RESTORE_ANON: 1614 case WORKINGSET_RESTORE_FILE: 1615 case WORKINGSET_NODERECLAIM: 1616 return 1; 1617 default: 1618 return memcg_page_state_unit(item); 1619 } 1620 } 1621 1622 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1623 int item) 1624 { 1625 return memcg_page_state(memcg, item) * 1626 memcg_page_state_output_unit(item); 1627 } 1628 1629 static inline unsigned long memcg_page_state_local_output( 1630 struct mem_cgroup *memcg, int item) 1631 { 1632 return memcg_page_state_local(memcg, item) * 1633 memcg_page_state_output_unit(item); 1634 } 1635 1636 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1637 { 1638 int i; 1639 1640 /* 1641 * Provide statistics on the state of the memory subsystem as 1642 * well as cumulative event counters that show past behavior. 1643 * 1644 * This list is ordered following a combination of these gradients: 1645 * 1) generic big picture -> specifics and details 1646 * 2) reflecting userspace activity -> reflecting kernel heuristics 1647 * 1648 * Current memory state: 1649 */ 1650 mem_cgroup_flush_stats(memcg); 1651 1652 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1653 u64 size; 1654 1655 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1656 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1657 1658 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1659 size += memcg_page_state_output(memcg, 1660 NR_SLAB_RECLAIMABLE_B); 1661 seq_buf_printf(s, "slab %llu\n", size); 1662 } 1663 } 1664 1665 /* Accumulated memory events */ 1666 seq_buf_printf(s, "pgscan %lu\n", 1667 memcg_events(memcg, PGSCAN_KSWAPD) + 1668 memcg_events(memcg, PGSCAN_DIRECT) + 1669 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1670 seq_buf_printf(s, "pgsteal %lu\n", 1671 memcg_events(memcg, PGSTEAL_KSWAPD) + 1672 memcg_events(memcg, PGSTEAL_DIRECT) + 1673 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1674 1675 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1676 if (memcg_vm_event_stat[i] == PGPGIN || 1677 memcg_vm_event_stat[i] == PGPGOUT) 1678 continue; 1679 1680 seq_buf_printf(s, "%s %lu\n", 1681 vm_event_name(memcg_vm_event_stat[i]), 1682 memcg_events(memcg, memcg_vm_event_stat[i])); 1683 } 1684 1685 /* The above should easily fit into one page */ 1686 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1687 } 1688 1689 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s); 1690 1691 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1692 { 1693 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1694 memcg_stat_format(memcg, s); 1695 else 1696 memcg1_stat_format(memcg, s); 1697 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1698 } 1699 1700 /** 1701 * mem_cgroup_print_oom_context: Print OOM information relevant to 1702 * memory controller. 1703 * @memcg: The memory cgroup that went over limit 1704 * @p: Task that is going to be killed 1705 * 1706 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1707 * enabled 1708 */ 1709 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1710 { 1711 rcu_read_lock(); 1712 1713 if (memcg) { 1714 pr_cont(",oom_memcg="); 1715 pr_cont_cgroup_path(memcg->css.cgroup); 1716 } else 1717 pr_cont(",global_oom"); 1718 if (p) { 1719 pr_cont(",task_memcg="); 1720 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1721 } 1722 rcu_read_unlock(); 1723 } 1724 1725 /** 1726 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1727 * memory controller. 1728 * @memcg: The memory cgroup that went over limit 1729 */ 1730 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1731 { 1732 /* Use static buffer, for the caller is holding oom_lock. */ 1733 static char buf[PAGE_SIZE]; 1734 struct seq_buf s; 1735 1736 lockdep_assert_held(&oom_lock); 1737 1738 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1739 K((u64)page_counter_read(&memcg->memory)), 1740 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1741 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1742 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1743 K((u64)page_counter_read(&memcg->swap)), 1744 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1745 else { 1746 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1747 K((u64)page_counter_read(&memcg->memsw)), 1748 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1749 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1750 K((u64)page_counter_read(&memcg->kmem)), 1751 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1752 } 1753 1754 pr_info("Memory cgroup stats for "); 1755 pr_cont_cgroup_path(memcg->css.cgroup); 1756 pr_cont(":"); 1757 seq_buf_init(&s, buf, sizeof(buf)); 1758 memory_stat_format(memcg, &s); 1759 seq_buf_do_printk(&s, KERN_INFO); 1760 } 1761 1762 /* 1763 * Return the memory (and swap, if configured) limit for a memcg. 1764 */ 1765 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1766 { 1767 unsigned long max = READ_ONCE(memcg->memory.max); 1768 1769 if (do_memsw_account()) { 1770 if (mem_cgroup_swappiness(memcg)) { 1771 /* Calculate swap excess capacity from memsw limit */ 1772 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1773 1774 max += min(swap, (unsigned long)total_swap_pages); 1775 } 1776 } else { 1777 if (mem_cgroup_swappiness(memcg)) 1778 max += min(READ_ONCE(memcg->swap.max), 1779 (unsigned long)total_swap_pages); 1780 } 1781 return max; 1782 } 1783 1784 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1785 { 1786 return page_counter_read(&memcg->memory); 1787 } 1788 1789 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1790 int order) 1791 { 1792 struct oom_control oc = { 1793 .zonelist = NULL, 1794 .nodemask = NULL, 1795 .memcg = memcg, 1796 .gfp_mask = gfp_mask, 1797 .order = order, 1798 }; 1799 bool ret = true; 1800 1801 if (mutex_lock_killable(&oom_lock)) 1802 return true; 1803 1804 if (mem_cgroup_margin(memcg) >= (1 << order)) 1805 goto unlock; 1806 1807 /* 1808 * A few threads which were not waiting at mutex_lock_killable() can 1809 * fail to bail out. Therefore, check again after holding oom_lock. 1810 */ 1811 ret = task_is_dying() || out_of_memory(&oc); 1812 1813 unlock: 1814 mutex_unlock(&oom_lock); 1815 return ret; 1816 } 1817 1818 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1819 pg_data_t *pgdat, 1820 gfp_t gfp_mask, 1821 unsigned long *total_scanned) 1822 { 1823 struct mem_cgroup *victim = NULL; 1824 int total = 0; 1825 int loop = 0; 1826 unsigned long excess; 1827 unsigned long nr_scanned; 1828 struct mem_cgroup_reclaim_cookie reclaim = { 1829 .pgdat = pgdat, 1830 }; 1831 1832 excess = soft_limit_excess(root_memcg); 1833 1834 while (1) { 1835 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1836 if (!victim) { 1837 loop++; 1838 if (loop >= 2) { 1839 /* 1840 * If we have not been able to reclaim 1841 * anything, it might because there are 1842 * no reclaimable pages under this hierarchy 1843 */ 1844 if (!total) 1845 break; 1846 /* 1847 * We want to do more targeted reclaim. 1848 * excess >> 2 is not to excessive so as to 1849 * reclaim too much, nor too less that we keep 1850 * coming back to reclaim from this cgroup 1851 */ 1852 if (total >= (excess >> 2) || 1853 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1854 break; 1855 } 1856 continue; 1857 } 1858 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1859 pgdat, &nr_scanned); 1860 *total_scanned += nr_scanned; 1861 if (!soft_limit_excess(root_memcg)) 1862 break; 1863 } 1864 mem_cgroup_iter_break(root_memcg, victim); 1865 return total; 1866 } 1867 1868 #ifdef CONFIG_LOCKDEP 1869 static struct lockdep_map memcg_oom_lock_dep_map = { 1870 .name = "memcg_oom_lock", 1871 }; 1872 #endif 1873 1874 static DEFINE_SPINLOCK(memcg_oom_lock); 1875 1876 /* 1877 * Check OOM-Killer is already running under our hierarchy. 1878 * If someone is running, return false. 1879 */ 1880 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1881 { 1882 struct mem_cgroup *iter, *failed = NULL; 1883 1884 spin_lock(&memcg_oom_lock); 1885 1886 for_each_mem_cgroup_tree(iter, memcg) { 1887 if (iter->oom_lock) { 1888 /* 1889 * this subtree of our hierarchy is already locked 1890 * so we cannot give a lock. 1891 */ 1892 failed = iter; 1893 mem_cgroup_iter_break(memcg, iter); 1894 break; 1895 } else 1896 iter->oom_lock = true; 1897 } 1898 1899 if (failed) { 1900 /* 1901 * OK, we failed to lock the whole subtree so we have 1902 * to clean up what we set up to the failing subtree 1903 */ 1904 for_each_mem_cgroup_tree(iter, memcg) { 1905 if (iter == failed) { 1906 mem_cgroup_iter_break(memcg, iter); 1907 break; 1908 } 1909 iter->oom_lock = false; 1910 } 1911 } else 1912 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1913 1914 spin_unlock(&memcg_oom_lock); 1915 1916 return !failed; 1917 } 1918 1919 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1920 { 1921 struct mem_cgroup *iter; 1922 1923 spin_lock(&memcg_oom_lock); 1924 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1925 for_each_mem_cgroup_tree(iter, memcg) 1926 iter->oom_lock = false; 1927 spin_unlock(&memcg_oom_lock); 1928 } 1929 1930 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1931 { 1932 struct mem_cgroup *iter; 1933 1934 spin_lock(&memcg_oom_lock); 1935 for_each_mem_cgroup_tree(iter, memcg) 1936 iter->under_oom++; 1937 spin_unlock(&memcg_oom_lock); 1938 } 1939 1940 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1941 { 1942 struct mem_cgroup *iter; 1943 1944 /* 1945 * Be careful about under_oom underflows because a child memcg 1946 * could have been added after mem_cgroup_mark_under_oom. 1947 */ 1948 spin_lock(&memcg_oom_lock); 1949 for_each_mem_cgroup_tree(iter, memcg) 1950 if (iter->under_oom > 0) 1951 iter->under_oom--; 1952 spin_unlock(&memcg_oom_lock); 1953 } 1954 1955 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1956 1957 struct oom_wait_info { 1958 struct mem_cgroup *memcg; 1959 wait_queue_entry_t wait; 1960 }; 1961 1962 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1963 unsigned mode, int sync, void *arg) 1964 { 1965 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1966 struct mem_cgroup *oom_wait_memcg; 1967 struct oom_wait_info *oom_wait_info; 1968 1969 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1970 oom_wait_memcg = oom_wait_info->memcg; 1971 1972 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1973 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1974 return 0; 1975 return autoremove_wake_function(wait, mode, sync, arg); 1976 } 1977 1978 static void memcg_oom_recover(struct mem_cgroup *memcg) 1979 { 1980 /* 1981 * For the following lockless ->under_oom test, the only required 1982 * guarantee is that it must see the state asserted by an OOM when 1983 * this function is called as a result of userland actions 1984 * triggered by the notification of the OOM. This is trivially 1985 * achieved by invoking mem_cgroup_mark_under_oom() before 1986 * triggering notification. 1987 */ 1988 if (memcg && memcg->under_oom) 1989 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1990 } 1991 1992 /* 1993 * Returns true if successfully killed one or more processes. Though in some 1994 * corner cases it can return true even without killing any process. 1995 */ 1996 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1997 { 1998 bool locked, ret; 1999 2000 if (order > PAGE_ALLOC_COSTLY_ORDER) 2001 return false; 2002 2003 memcg_memory_event(memcg, MEMCG_OOM); 2004 2005 /* 2006 * We are in the middle of the charge context here, so we 2007 * don't want to block when potentially sitting on a callstack 2008 * that holds all kinds of filesystem and mm locks. 2009 * 2010 * cgroup1 allows disabling the OOM killer and waiting for outside 2011 * handling until the charge can succeed; remember the context and put 2012 * the task to sleep at the end of the page fault when all locks are 2013 * released. 2014 * 2015 * On the other hand, in-kernel OOM killer allows for an async victim 2016 * memory reclaim (oom_reaper) and that means that we are not solely 2017 * relying on the oom victim to make a forward progress and we can 2018 * invoke the oom killer here. 2019 * 2020 * Please note that mem_cgroup_out_of_memory might fail to find a 2021 * victim and then we have to bail out from the charge path. 2022 */ 2023 if (READ_ONCE(memcg->oom_kill_disable)) { 2024 if (current->in_user_fault) { 2025 css_get(&memcg->css); 2026 current->memcg_in_oom = memcg; 2027 current->memcg_oom_gfp_mask = mask; 2028 current->memcg_oom_order = order; 2029 } 2030 return false; 2031 } 2032 2033 mem_cgroup_mark_under_oom(memcg); 2034 2035 locked = mem_cgroup_oom_trylock(memcg); 2036 2037 if (locked) 2038 mem_cgroup_oom_notify(memcg); 2039 2040 mem_cgroup_unmark_under_oom(memcg); 2041 ret = mem_cgroup_out_of_memory(memcg, mask, order); 2042 2043 if (locked) 2044 mem_cgroup_oom_unlock(memcg); 2045 2046 return ret; 2047 } 2048 2049 /** 2050 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2051 * @handle: actually kill/wait or just clean up the OOM state 2052 * 2053 * This has to be called at the end of a page fault if the memcg OOM 2054 * handler was enabled. 2055 * 2056 * Memcg supports userspace OOM handling where failed allocations must 2057 * sleep on a waitqueue until the userspace task resolves the 2058 * situation. Sleeping directly in the charge context with all kinds 2059 * of locks held is not a good idea, instead we remember an OOM state 2060 * in the task and mem_cgroup_oom_synchronize() has to be called at 2061 * the end of the page fault to complete the OOM handling. 2062 * 2063 * Returns %true if an ongoing memcg OOM situation was detected and 2064 * completed, %false otherwise. 2065 */ 2066 bool mem_cgroup_oom_synchronize(bool handle) 2067 { 2068 struct mem_cgroup *memcg = current->memcg_in_oom; 2069 struct oom_wait_info owait; 2070 bool locked; 2071 2072 /* OOM is global, do not handle */ 2073 if (!memcg) 2074 return false; 2075 2076 if (!handle) 2077 goto cleanup; 2078 2079 owait.memcg = memcg; 2080 owait.wait.flags = 0; 2081 owait.wait.func = memcg_oom_wake_function; 2082 owait.wait.private = current; 2083 INIT_LIST_HEAD(&owait.wait.entry); 2084 2085 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2086 mem_cgroup_mark_under_oom(memcg); 2087 2088 locked = mem_cgroup_oom_trylock(memcg); 2089 2090 if (locked) 2091 mem_cgroup_oom_notify(memcg); 2092 2093 schedule(); 2094 mem_cgroup_unmark_under_oom(memcg); 2095 finish_wait(&memcg_oom_waitq, &owait.wait); 2096 2097 if (locked) 2098 mem_cgroup_oom_unlock(memcg); 2099 cleanup: 2100 current->memcg_in_oom = NULL; 2101 css_put(&memcg->css); 2102 return true; 2103 } 2104 2105 /** 2106 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2107 * @victim: task to be killed by the OOM killer 2108 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2109 * 2110 * Returns a pointer to a memory cgroup, which has to be cleaned up 2111 * by killing all belonging OOM-killable tasks. 2112 * 2113 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2114 */ 2115 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2116 struct mem_cgroup *oom_domain) 2117 { 2118 struct mem_cgroup *oom_group = NULL; 2119 struct mem_cgroup *memcg; 2120 2121 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2122 return NULL; 2123 2124 if (!oom_domain) 2125 oom_domain = root_mem_cgroup; 2126 2127 rcu_read_lock(); 2128 2129 memcg = mem_cgroup_from_task(victim); 2130 if (mem_cgroup_is_root(memcg)) 2131 goto out; 2132 2133 /* 2134 * If the victim task has been asynchronously moved to a different 2135 * memory cgroup, we might end up killing tasks outside oom_domain. 2136 * In this case it's better to ignore memory.group.oom. 2137 */ 2138 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2139 goto out; 2140 2141 /* 2142 * Traverse the memory cgroup hierarchy from the victim task's 2143 * cgroup up to the OOMing cgroup (or root) to find the 2144 * highest-level memory cgroup with oom.group set. 2145 */ 2146 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2147 if (READ_ONCE(memcg->oom_group)) 2148 oom_group = memcg; 2149 2150 if (memcg == oom_domain) 2151 break; 2152 } 2153 2154 if (oom_group) 2155 css_get(&oom_group->css); 2156 out: 2157 rcu_read_unlock(); 2158 2159 return oom_group; 2160 } 2161 2162 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2163 { 2164 pr_info("Tasks in "); 2165 pr_cont_cgroup_path(memcg->css.cgroup); 2166 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2167 } 2168 2169 /** 2170 * folio_memcg_lock - Bind a folio to its memcg. 2171 * @folio: The folio. 2172 * 2173 * This function prevents unlocked LRU folios from being moved to 2174 * another cgroup. 2175 * 2176 * It ensures lifetime of the bound memcg. The caller is responsible 2177 * for the lifetime of the folio. 2178 */ 2179 void folio_memcg_lock(struct folio *folio) 2180 { 2181 struct mem_cgroup *memcg; 2182 unsigned long flags; 2183 2184 /* 2185 * The RCU lock is held throughout the transaction. The fast 2186 * path can get away without acquiring the memcg->move_lock 2187 * because page moving starts with an RCU grace period. 2188 */ 2189 rcu_read_lock(); 2190 2191 if (mem_cgroup_disabled()) 2192 return; 2193 again: 2194 memcg = folio_memcg(folio); 2195 if (unlikely(!memcg)) 2196 return; 2197 2198 #ifdef CONFIG_PROVE_LOCKING 2199 local_irq_save(flags); 2200 might_lock(&memcg->move_lock); 2201 local_irq_restore(flags); 2202 #endif 2203 2204 if (atomic_read(&memcg->moving_account) <= 0) 2205 return; 2206 2207 spin_lock_irqsave(&memcg->move_lock, flags); 2208 if (memcg != folio_memcg(folio)) { 2209 spin_unlock_irqrestore(&memcg->move_lock, flags); 2210 goto again; 2211 } 2212 2213 /* 2214 * When charge migration first begins, we can have multiple 2215 * critical sections holding the fast-path RCU lock and one 2216 * holding the slowpath move_lock. Track the task who has the 2217 * move_lock for folio_memcg_unlock(). 2218 */ 2219 memcg->move_lock_task = current; 2220 memcg->move_lock_flags = flags; 2221 } 2222 2223 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2224 { 2225 if (memcg && memcg->move_lock_task == current) { 2226 unsigned long flags = memcg->move_lock_flags; 2227 2228 memcg->move_lock_task = NULL; 2229 memcg->move_lock_flags = 0; 2230 2231 spin_unlock_irqrestore(&memcg->move_lock, flags); 2232 } 2233 2234 rcu_read_unlock(); 2235 } 2236 2237 /** 2238 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2239 * @folio: The folio. 2240 * 2241 * This releases the binding created by folio_memcg_lock(). This does 2242 * not change the accounting of this folio to its memcg, but it does 2243 * permit others to change it. 2244 */ 2245 void folio_memcg_unlock(struct folio *folio) 2246 { 2247 __folio_memcg_unlock(folio_memcg(folio)); 2248 } 2249 2250 struct memcg_stock_pcp { 2251 local_lock_t stock_lock; 2252 struct mem_cgroup *cached; /* this never be root cgroup */ 2253 unsigned int nr_pages; 2254 2255 #ifdef CONFIG_MEMCG_KMEM 2256 struct obj_cgroup *cached_objcg; 2257 struct pglist_data *cached_pgdat; 2258 unsigned int nr_bytes; 2259 int nr_slab_reclaimable_b; 2260 int nr_slab_unreclaimable_b; 2261 #endif 2262 2263 struct work_struct work; 2264 unsigned long flags; 2265 #define FLUSHING_CACHED_CHARGE 0 2266 }; 2267 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2268 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2269 }; 2270 static DEFINE_MUTEX(percpu_charge_mutex); 2271 2272 #ifdef CONFIG_MEMCG_KMEM 2273 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2274 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2275 struct mem_cgroup *root_memcg); 2276 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2277 2278 #else 2279 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2280 { 2281 return NULL; 2282 } 2283 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2284 struct mem_cgroup *root_memcg) 2285 { 2286 return false; 2287 } 2288 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2289 { 2290 } 2291 #endif 2292 2293 /** 2294 * consume_stock: Try to consume stocked charge on this cpu. 2295 * @memcg: memcg to consume from. 2296 * @nr_pages: how many pages to charge. 2297 * 2298 * The charges will only happen if @memcg matches the current cpu's memcg 2299 * stock, and at least @nr_pages are available in that stock. Failure to 2300 * service an allocation will refill the stock. 2301 * 2302 * returns true if successful, false otherwise. 2303 */ 2304 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2305 { 2306 struct memcg_stock_pcp *stock; 2307 unsigned long flags; 2308 bool ret = false; 2309 2310 if (nr_pages > MEMCG_CHARGE_BATCH) 2311 return ret; 2312 2313 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2314 2315 stock = this_cpu_ptr(&memcg_stock); 2316 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) { 2317 stock->nr_pages -= nr_pages; 2318 ret = true; 2319 } 2320 2321 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2322 2323 return ret; 2324 } 2325 2326 /* 2327 * Returns stocks cached in percpu and reset cached information. 2328 */ 2329 static void drain_stock(struct memcg_stock_pcp *stock) 2330 { 2331 struct mem_cgroup *old = READ_ONCE(stock->cached); 2332 2333 if (!old) 2334 return; 2335 2336 if (stock->nr_pages) { 2337 page_counter_uncharge(&old->memory, stock->nr_pages); 2338 if (do_memsw_account()) 2339 page_counter_uncharge(&old->memsw, stock->nr_pages); 2340 stock->nr_pages = 0; 2341 } 2342 2343 css_put(&old->css); 2344 WRITE_ONCE(stock->cached, NULL); 2345 } 2346 2347 static void drain_local_stock(struct work_struct *dummy) 2348 { 2349 struct memcg_stock_pcp *stock; 2350 struct obj_cgroup *old = NULL; 2351 unsigned long flags; 2352 2353 /* 2354 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2355 * drain_stock races is that we always operate on local CPU stock 2356 * here with IRQ disabled 2357 */ 2358 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2359 2360 stock = this_cpu_ptr(&memcg_stock); 2361 old = drain_obj_stock(stock); 2362 drain_stock(stock); 2363 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2364 2365 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2366 if (old) 2367 obj_cgroup_put(old); 2368 } 2369 2370 /* 2371 * Cache charges(val) to local per_cpu area. 2372 * This will be consumed by consume_stock() function, later. 2373 */ 2374 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2375 { 2376 struct memcg_stock_pcp *stock; 2377 2378 stock = this_cpu_ptr(&memcg_stock); 2379 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 2380 drain_stock(stock); 2381 css_get(&memcg->css); 2382 WRITE_ONCE(stock->cached, memcg); 2383 } 2384 stock->nr_pages += nr_pages; 2385 2386 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2387 drain_stock(stock); 2388 } 2389 2390 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2391 { 2392 unsigned long flags; 2393 2394 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2395 __refill_stock(memcg, nr_pages); 2396 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2397 } 2398 2399 /* 2400 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2401 * of the hierarchy under it. 2402 */ 2403 static void drain_all_stock(struct mem_cgroup *root_memcg) 2404 { 2405 int cpu, curcpu; 2406 2407 /* If someone's already draining, avoid adding running more workers. */ 2408 if (!mutex_trylock(&percpu_charge_mutex)) 2409 return; 2410 /* 2411 * Notify other cpus that system-wide "drain" is running 2412 * We do not care about races with the cpu hotplug because cpu down 2413 * as well as workers from this path always operate on the local 2414 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2415 */ 2416 migrate_disable(); 2417 curcpu = smp_processor_id(); 2418 for_each_online_cpu(cpu) { 2419 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2420 struct mem_cgroup *memcg; 2421 bool flush = false; 2422 2423 rcu_read_lock(); 2424 memcg = READ_ONCE(stock->cached); 2425 if (memcg && stock->nr_pages && 2426 mem_cgroup_is_descendant(memcg, root_memcg)) 2427 flush = true; 2428 else if (obj_stock_flush_required(stock, root_memcg)) 2429 flush = true; 2430 rcu_read_unlock(); 2431 2432 if (flush && 2433 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2434 if (cpu == curcpu) 2435 drain_local_stock(&stock->work); 2436 else if (!cpu_is_isolated(cpu)) 2437 schedule_work_on(cpu, &stock->work); 2438 } 2439 } 2440 migrate_enable(); 2441 mutex_unlock(&percpu_charge_mutex); 2442 } 2443 2444 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2445 { 2446 struct memcg_stock_pcp *stock; 2447 2448 stock = &per_cpu(memcg_stock, cpu); 2449 drain_stock(stock); 2450 2451 return 0; 2452 } 2453 2454 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2455 unsigned int nr_pages, 2456 gfp_t gfp_mask) 2457 { 2458 unsigned long nr_reclaimed = 0; 2459 2460 do { 2461 unsigned long pflags; 2462 2463 if (page_counter_read(&memcg->memory) <= 2464 READ_ONCE(memcg->memory.high)) 2465 continue; 2466 2467 memcg_memory_event(memcg, MEMCG_HIGH); 2468 2469 psi_memstall_enter(&pflags); 2470 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2471 gfp_mask, 2472 MEMCG_RECLAIM_MAY_SWAP); 2473 psi_memstall_leave(&pflags); 2474 } while ((memcg = parent_mem_cgroup(memcg)) && 2475 !mem_cgroup_is_root(memcg)); 2476 2477 return nr_reclaimed; 2478 } 2479 2480 static void high_work_func(struct work_struct *work) 2481 { 2482 struct mem_cgroup *memcg; 2483 2484 memcg = container_of(work, struct mem_cgroup, high_work); 2485 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2486 } 2487 2488 /* 2489 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2490 * enough to still cause a significant slowdown in most cases, while still 2491 * allowing diagnostics and tracing to proceed without becoming stuck. 2492 */ 2493 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2494 2495 /* 2496 * When calculating the delay, we use these either side of the exponentiation to 2497 * maintain precision and scale to a reasonable number of jiffies (see the table 2498 * below. 2499 * 2500 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2501 * overage ratio to a delay. 2502 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2503 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2504 * to produce a reasonable delay curve. 2505 * 2506 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2507 * reasonable delay curve compared to precision-adjusted overage, not 2508 * penalising heavily at first, but still making sure that growth beyond the 2509 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2510 * example, with a high of 100 megabytes: 2511 * 2512 * +-------+------------------------+ 2513 * | usage | time to allocate in ms | 2514 * +-------+------------------------+ 2515 * | 100M | 0 | 2516 * | 101M | 6 | 2517 * | 102M | 25 | 2518 * | 103M | 57 | 2519 * | 104M | 102 | 2520 * | 105M | 159 | 2521 * | 106M | 230 | 2522 * | 107M | 313 | 2523 * | 108M | 409 | 2524 * | 109M | 518 | 2525 * | 110M | 639 | 2526 * | 111M | 774 | 2527 * | 112M | 921 | 2528 * | 113M | 1081 | 2529 * | 114M | 1254 | 2530 * | 115M | 1439 | 2531 * | 116M | 1638 | 2532 * | 117M | 1849 | 2533 * | 118M | 2000 | 2534 * | 119M | 2000 | 2535 * | 120M | 2000 | 2536 * +-------+------------------------+ 2537 */ 2538 #define MEMCG_DELAY_PRECISION_SHIFT 20 2539 #define MEMCG_DELAY_SCALING_SHIFT 14 2540 2541 static u64 calculate_overage(unsigned long usage, unsigned long high) 2542 { 2543 u64 overage; 2544 2545 if (usage <= high) 2546 return 0; 2547 2548 /* 2549 * Prevent division by 0 in overage calculation by acting as if 2550 * it was a threshold of 1 page 2551 */ 2552 high = max(high, 1UL); 2553 2554 overage = usage - high; 2555 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2556 return div64_u64(overage, high); 2557 } 2558 2559 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2560 { 2561 u64 overage, max_overage = 0; 2562 2563 do { 2564 overage = calculate_overage(page_counter_read(&memcg->memory), 2565 READ_ONCE(memcg->memory.high)); 2566 max_overage = max(overage, max_overage); 2567 } while ((memcg = parent_mem_cgroup(memcg)) && 2568 !mem_cgroup_is_root(memcg)); 2569 2570 return max_overage; 2571 } 2572 2573 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2574 { 2575 u64 overage, max_overage = 0; 2576 2577 do { 2578 overage = calculate_overage(page_counter_read(&memcg->swap), 2579 READ_ONCE(memcg->swap.high)); 2580 if (overage) 2581 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2582 max_overage = max(overage, max_overage); 2583 } while ((memcg = parent_mem_cgroup(memcg)) && 2584 !mem_cgroup_is_root(memcg)); 2585 2586 return max_overage; 2587 } 2588 2589 /* 2590 * Get the number of jiffies that we should penalise a mischievous cgroup which 2591 * is exceeding its memory.high by checking both it and its ancestors. 2592 */ 2593 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2594 unsigned int nr_pages, 2595 u64 max_overage) 2596 { 2597 unsigned long penalty_jiffies; 2598 2599 if (!max_overage) 2600 return 0; 2601 2602 /* 2603 * We use overage compared to memory.high to calculate the number of 2604 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2605 * fairly lenient on small overages, and increasingly harsh when the 2606 * memcg in question makes it clear that it has no intention of stopping 2607 * its crazy behaviour, so we exponentially increase the delay based on 2608 * overage amount. 2609 */ 2610 penalty_jiffies = max_overage * max_overage * HZ; 2611 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2612 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2613 2614 /* 2615 * Factor in the task's own contribution to the overage, such that four 2616 * N-sized allocations are throttled approximately the same as one 2617 * 4N-sized allocation. 2618 * 2619 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2620 * larger the current charge patch is than that. 2621 */ 2622 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2623 } 2624 2625 /* 2626 * Reclaims memory over the high limit. Called directly from 2627 * try_charge() (context permitting), as well as from the userland 2628 * return path where reclaim is always able to block. 2629 */ 2630 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2631 { 2632 unsigned long penalty_jiffies; 2633 unsigned long pflags; 2634 unsigned long nr_reclaimed; 2635 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2636 int nr_retries = MAX_RECLAIM_RETRIES; 2637 struct mem_cgroup *memcg; 2638 bool in_retry = false; 2639 2640 if (likely(!nr_pages)) 2641 return; 2642 2643 memcg = get_mem_cgroup_from_mm(current->mm); 2644 current->memcg_nr_pages_over_high = 0; 2645 2646 retry_reclaim: 2647 /* 2648 * Bail if the task is already exiting. Unlike memory.max, 2649 * memory.high enforcement isn't as strict, and there is no 2650 * OOM killer involved, which means the excess could already 2651 * be much bigger (and still growing) than it could for 2652 * memory.max; the dying task could get stuck in fruitless 2653 * reclaim for a long time, which isn't desirable. 2654 */ 2655 if (task_is_dying()) 2656 goto out; 2657 2658 /* 2659 * The allocating task should reclaim at least the batch size, but for 2660 * subsequent retries we only want to do what's necessary to prevent oom 2661 * or breaching resource isolation. 2662 * 2663 * This is distinct from memory.max or page allocator behaviour because 2664 * memory.high is currently batched, whereas memory.max and the page 2665 * allocator run every time an allocation is made. 2666 */ 2667 nr_reclaimed = reclaim_high(memcg, 2668 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2669 gfp_mask); 2670 2671 /* 2672 * memory.high is breached and reclaim is unable to keep up. Throttle 2673 * allocators proactively to slow down excessive growth. 2674 */ 2675 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2676 mem_find_max_overage(memcg)); 2677 2678 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2679 swap_find_max_overage(memcg)); 2680 2681 /* 2682 * Clamp the max delay per usermode return so as to still keep the 2683 * application moving forwards and also permit diagnostics, albeit 2684 * extremely slowly. 2685 */ 2686 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2687 2688 /* 2689 * Don't sleep if the amount of jiffies this memcg owes us is so low 2690 * that it's not even worth doing, in an attempt to be nice to those who 2691 * go only a small amount over their memory.high value and maybe haven't 2692 * been aggressively reclaimed enough yet. 2693 */ 2694 if (penalty_jiffies <= HZ / 100) 2695 goto out; 2696 2697 /* 2698 * If reclaim is making forward progress but we're still over 2699 * memory.high, we want to encourage that rather than doing allocator 2700 * throttling. 2701 */ 2702 if (nr_reclaimed || nr_retries--) { 2703 in_retry = true; 2704 goto retry_reclaim; 2705 } 2706 2707 /* 2708 * Reclaim didn't manage to push usage below the limit, slow 2709 * this allocating task down. 2710 * 2711 * If we exit early, we're guaranteed to die (since 2712 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2713 * need to account for any ill-begotten jiffies to pay them off later. 2714 */ 2715 psi_memstall_enter(&pflags); 2716 schedule_timeout_killable(penalty_jiffies); 2717 psi_memstall_leave(&pflags); 2718 2719 out: 2720 css_put(&memcg->css); 2721 } 2722 2723 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2724 unsigned int nr_pages) 2725 { 2726 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2727 int nr_retries = MAX_RECLAIM_RETRIES; 2728 struct mem_cgroup *mem_over_limit; 2729 struct page_counter *counter; 2730 unsigned long nr_reclaimed; 2731 bool passed_oom = false; 2732 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2733 bool drained = false; 2734 bool raised_max_event = false; 2735 unsigned long pflags; 2736 2737 retry: 2738 if (consume_stock(memcg, nr_pages)) 2739 return 0; 2740 2741 if (!do_memsw_account() || 2742 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2743 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2744 goto done_restock; 2745 if (do_memsw_account()) 2746 page_counter_uncharge(&memcg->memsw, batch); 2747 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2748 } else { 2749 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2750 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2751 } 2752 2753 if (batch > nr_pages) { 2754 batch = nr_pages; 2755 goto retry; 2756 } 2757 2758 /* 2759 * Prevent unbounded recursion when reclaim operations need to 2760 * allocate memory. This might exceed the limits temporarily, 2761 * but we prefer facilitating memory reclaim and getting back 2762 * under the limit over triggering OOM kills in these cases. 2763 */ 2764 if (unlikely(current->flags & PF_MEMALLOC)) 2765 goto force; 2766 2767 if (unlikely(task_in_memcg_oom(current))) 2768 goto nomem; 2769 2770 if (!gfpflags_allow_blocking(gfp_mask)) 2771 goto nomem; 2772 2773 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2774 raised_max_event = true; 2775 2776 psi_memstall_enter(&pflags); 2777 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2778 gfp_mask, reclaim_options); 2779 psi_memstall_leave(&pflags); 2780 2781 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2782 goto retry; 2783 2784 if (!drained) { 2785 drain_all_stock(mem_over_limit); 2786 drained = true; 2787 goto retry; 2788 } 2789 2790 if (gfp_mask & __GFP_NORETRY) 2791 goto nomem; 2792 /* 2793 * Even though the limit is exceeded at this point, reclaim 2794 * may have been able to free some pages. Retry the charge 2795 * before killing the task. 2796 * 2797 * Only for regular pages, though: huge pages are rather 2798 * unlikely to succeed so close to the limit, and we fall back 2799 * to regular pages anyway in case of failure. 2800 */ 2801 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2802 goto retry; 2803 /* 2804 * At task move, charge accounts can be doubly counted. So, it's 2805 * better to wait until the end of task_move if something is going on. 2806 */ 2807 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2808 goto retry; 2809 2810 if (nr_retries--) 2811 goto retry; 2812 2813 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2814 goto nomem; 2815 2816 /* Avoid endless loop for tasks bypassed by the oom killer */ 2817 if (passed_oom && task_is_dying()) 2818 goto nomem; 2819 2820 /* 2821 * keep retrying as long as the memcg oom killer is able to make 2822 * a forward progress or bypass the charge if the oom killer 2823 * couldn't make any progress. 2824 */ 2825 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2826 get_order(nr_pages * PAGE_SIZE))) { 2827 passed_oom = true; 2828 nr_retries = MAX_RECLAIM_RETRIES; 2829 goto retry; 2830 } 2831 nomem: 2832 /* 2833 * Memcg doesn't have a dedicated reserve for atomic 2834 * allocations. But like the global atomic pool, we need to 2835 * put the burden of reclaim on regular allocation requests 2836 * and let these go through as privileged allocations. 2837 */ 2838 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2839 return -ENOMEM; 2840 force: 2841 /* 2842 * If the allocation has to be enforced, don't forget to raise 2843 * a MEMCG_MAX event. 2844 */ 2845 if (!raised_max_event) 2846 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2847 2848 /* 2849 * The allocation either can't fail or will lead to more memory 2850 * being freed very soon. Allow memory usage go over the limit 2851 * temporarily by force charging it. 2852 */ 2853 page_counter_charge(&memcg->memory, nr_pages); 2854 if (do_memsw_account()) 2855 page_counter_charge(&memcg->memsw, nr_pages); 2856 2857 return 0; 2858 2859 done_restock: 2860 if (batch > nr_pages) 2861 refill_stock(memcg, batch - nr_pages); 2862 2863 /* 2864 * If the hierarchy is above the normal consumption range, schedule 2865 * reclaim on returning to userland. We can perform reclaim here 2866 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2867 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2868 * not recorded as it most likely matches current's and won't 2869 * change in the meantime. As high limit is checked again before 2870 * reclaim, the cost of mismatch is negligible. 2871 */ 2872 do { 2873 bool mem_high, swap_high; 2874 2875 mem_high = page_counter_read(&memcg->memory) > 2876 READ_ONCE(memcg->memory.high); 2877 swap_high = page_counter_read(&memcg->swap) > 2878 READ_ONCE(memcg->swap.high); 2879 2880 /* Don't bother a random interrupted task */ 2881 if (!in_task()) { 2882 if (mem_high) { 2883 schedule_work(&memcg->high_work); 2884 break; 2885 } 2886 continue; 2887 } 2888 2889 if (mem_high || swap_high) { 2890 /* 2891 * The allocating tasks in this cgroup will need to do 2892 * reclaim or be throttled to prevent further growth 2893 * of the memory or swap footprints. 2894 * 2895 * Target some best-effort fairness between the tasks, 2896 * and distribute reclaim work and delay penalties 2897 * based on how much each task is actually allocating. 2898 */ 2899 current->memcg_nr_pages_over_high += batch; 2900 set_notify_resume(current); 2901 break; 2902 } 2903 } while ((memcg = parent_mem_cgroup(memcg))); 2904 2905 /* 2906 * Reclaim is set up above to be called from the userland 2907 * return path. But also attempt synchronous reclaim to avoid 2908 * excessive overrun while the task is still inside the 2909 * kernel. If this is successful, the return path will see it 2910 * when it rechecks the overage and simply bail out. 2911 */ 2912 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2913 !(current->flags & PF_MEMALLOC) && 2914 gfpflags_allow_blocking(gfp_mask)) 2915 mem_cgroup_handle_over_high(gfp_mask); 2916 return 0; 2917 } 2918 2919 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2920 unsigned int nr_pages) 2921 { 2922 if (mem_cgroup_is_root(memcg)) 2923 return 0; 2924 2925 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2926 } 2927 2928 /** 2929 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. 2930 * @memcg: memcg previously charged. 2931 * @nr_pages: number of pages previously charged. 2932 */ 2933 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2934 { 2935 if (mem_cgroup_is_root(memcg)) 2936 return; 2937 2938 page_counter_uncharge(&memcg->memory, nr_pages); 2939 if (do_memsw_account()) 2940 page_counter_uncharge(&memcg->memsw, nr_pages); 2941 } 2942 2943 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2944 { 2945 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2946 /* 2947 * Any of the following ensures page's memcg stability: 2948 * 2949 * - the page lock 2950 * - LRU isolation 2951 * - folio_memcg_lock() 2952 * - exclusive reference 2953 * - mem_cgroup_trylock_pages() 2954 */ 2955 folio->memcg_data = (unsigned long)memcg; 2956 } 2957 2958 /** 2959 * mem_cgroup_commit_charge - commit a previously successful try_charge(). 2960 * @folio: folio to commit the charge to. 2961 * @memcg: memcg previously charged. 2962 */ 2963 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2964 { 2965 css_get(&memcg->css); 2966 commit_charge(folio, memcg); 2967 2968 local_irq_disable(); 2969 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio)); 2970 memcg_check_events(memcg, folio_nid(folio)); 2971 local_irq_enable(); 2972 } 2973 2974 #ifdef CONFIG_MEMCG_KMEM 2975 /* 2976 * The allocated objcg pointers array is not accounted directly. 2977 * Moreover, it should not come from DMA buffer and is not readily 2978 * reclaimable. So those GFP bits should be masked off. 2979 */ 2980 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 2981 __GFP_ACCOUNT | __GFP_NOFAIL) 2982 2983 /* 2984 * mod_objcg_mlstate() may be called with irq enabled, so 2985 * mod_memcg_lruvec_state() should be used. 2986 */ 2987 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2988 struct pglist_data *pgdat, 2989 enum node_stat_item idx, int nr) 2990 { 2991 struct mem_cgroup *memcg; 2992 struct lruvec *lruvec; 2993 2994 rcu_read_lock(); 2995 memcg = obj_cgroup_memcg(objcg); 2996 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2997 mod_memcg_lruvec_state(lruvec, idx, nr); 2998 rcu_read_unlock(); 2999 } 3000 3001 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 3002 gfp_t gfp, bool new_slab) 3003 { 3004 unsigned int objects = objs_per_slab(s, slab); 3005 unsigned long memcg_data; 3006 void *vec; 3007 3008 gfp &= ~OBJCGS_CLEAR_MASK; 3009 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 3010 slab_nid(slab)); 3011 if (!vec) 3012 return -ENOMEM; 3013 3014 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 3015 if (new_slab) { 3016 /* 3017 * If the slab is brand new and nobody can yet access its 3018 * memcg_data, no synchronization is required and memcg_data can 3019 * be simply assigned. 3020 */ 3021 slab->memcg_data = memcg_data; 3022 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 3023 /* 3024 * If the slab is already in use, somebody can allocate and 3025 * assign obj_cgroups in parallel. In this case the existing 3026 * objcg vector should be reused. 3027 */ 3028 kfree(vec); 3029 return 0; 3030 } 3031 3032 kmemleak_not_leak(vec); 3033 return 0; 3034 } 3035 3036 static __always_inline 3037 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 3038 { 3039 /* 3040 * Slab objects are accounted individually, not per-page. 3041 * Memcg membership data for each individual object is saved in 3042 * slab->memcg_data. 3043 */ 3044 if (folio_test_slab(folio)) { 3045 struct obj_cgroup **objcgs; 3046 struct slab *slab; 3047 unsigned int off; 3048 3049 slab = folio_slab(folio); 3050 objcgs = slab_objcgs(slab); 3051 if (!objcgs) 3052 return NULL; 3053 3054 off = obj_to_index(slab->slab_cache, slab, p); 3055 if (objcgs[off]) 3056 return obj_cgroup_memcg(objcgs[off]); 3057 3058 return NULL; 3059 } 3060 3061 /* 3062 * folio_memcg_check() is used here, because in theory we can encounter 3063 * a folio where the slab flag has been cleared already, but 3064 * slab->memcg_data has not been freed yet 3065 * folio_memcg_check() will guarantee that a proper memory 3066 * cgroup pointer or NULL will be returned. 3067 */ 3068 return folio_memcg_check(folio); 3069 } 3070 3071 /* 3072 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3073 * 3074 * A passed kernel object can be a slab object, vmalloc object or a generic 3075 * kernel page, so different mechanisms for getting the memory cgroup pointer 3076 * should be used. 3077 * 3078 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 3079 * can not know for sure how the kernel object is implemented. 3080 * mem_cgroup_from_obj() can be safely used in such cases. 3081 * 3082 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3083 * cgroup_mutex, etc. 3084 */ 3085 struct mem_cgroup *mem_cgroup_from_obj(void *p) 3086 { 3087 struct folio *folio; 3088 3089 if (mem_cgroup_disabled()) 3090 return NULL; 3091 3092 if (unlikely(is_vmalloc_addr(p))) 3093 folio = page_folio(vmalloc_to_page(p)); 3094 else 3095 folio = virt_to_folio(p); 3096 3097 return mem_cgroup_from_obj_folio(folio, p); 3098 } 3099 3100 /* 3101 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3102 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 3103 * allocated using vmalloc(). 3104 * 3105 * A passed kernel object must be a slab object or a generic kernel page. 3106 * 3107 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3108 * cgroup_mutex, etc. 3109 */ 3110 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 3111 { 3112 if (mem_cgroup_disabled()) 3113 return NULL; 3114 3115 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 3116 } 3117 3118 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 3119 { 3120 struct obj_cgroup *objcg = NULL; 3121 3122 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3123 objcg = rcu_dereference(memcg->objcg); 3124 if (likely(objcg && obj_cgroup_tryget(objcg))) 3125 break; 3126 objcg = NULL; 3127 } 3128 return objcg; 3129 } 3130 3131 static struct obj_cgroup *current_objcg_update(void) 3132 { 3133 struct mem_cgroup *memcg; 3134 struct obj_cgroup *old, *objcg = NULL; 3135 3136 do { 3137 /* Atomically drop the update bit. */ 3138 old = xchg(¤t->objcg, NULL); 3139 if (old) { 3140 old = (struct obj_cgroup *) 3141 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 3142 if (old) 3143 obj_cgroup_put(old); 3144 3145 old = NULL; 3146 } 3147 3148 /* If new objcg is NULL, no reason for the second atomic update. */ 3149 if (!current->mm || (current->flags & PF_KTHREAD)) 3150 return NULL; 3151 3152 /* 3153 * Release the objcg pointer from the previous iteration, 3154 * if try_cmpxcg() below fails. 3155 */ 3156 if (unlikely(objcg)) { 3157 obj_cgroup_put(objcg); 3158 objcg = NULL; 3159 } 3160 3161 /* 3162 * Obtain the new objcg pointer. The current task can be 3163 * asynchronously moved to another memcg and the previous 3164 * memcg can be offlined. So let's get the memcg pointer 3165 * and try get a reference to objcg under a rcu read lock. 3166 */ 3167 3168 rcu_read_lock(); 3169 memcg = mem_cgroup_from_task(current); 3170 objcg = __get_obj_cgroup_from_memcg(memcg); 3171 rcu_read_unlock(); 3172 3173 /* 3174 * Try set up a new objcg pointer atomically. If it 3175 * fails, it means the update flag was set concurrently, so 3176 * the whole procedure should be repeated. 3177 */ 3178 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 3179 3180 return objcg; 3181 } 3182 3183 __always_inline struct obj_cgroup *current_obj_cgroup(void) 3184 { 3185 struct mem_cgroup *memcg; 3186 struct obj_cgroup *objcg; 3187 3188 if (in_task()) { 3189 memcg = current->active_memcg; 3190 if (unlikely(memcg)) 3191 goto from_memcg; 3192 3193 objcg = READ_ONCE(current->objcg); 3194 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 3195 objcg = current_objcg_update(); 3196 /* 3197 * Objcg reference is kept by the task, so it's safe 3198 * to use the objcg by the current task. 3199 */ 3200 return objcg; 3201 } 3202 3203 memcg = this_cpu_read(int_active_memcg); 3204 if (unlikely(memcg)) 3205 goto from_memcg; 3206 3207 return NULL; 3208 3209 from_memcg: 3210 objcg = NULL; 3211 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3212 /* 3213 * Memcg pointer is protected by scope (see set_active_memcg()) 3214 * and is pinning the corresponding objcg, so objcg can't go 3215 * away and can be used within the scope without any additional 3216 * protection. 3217 */ 3218 objcg = rcu_dereference_check(memcg->objcg, 1); 3219 if (likely(objcg)) 3220 break; 3221 } 3222 3223 return objcg; 3224 } 3225 3226 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 3227 { 3228 struct obj_cgroup *objcg; 3229 3230 if (!memcg_kmem_online()) 3231 return NULL; 3232 3233 if (folio_memcg_kmem(folio)) { 3234 objcg = __folio_objcg(folio); 3235 obj_cgroup_get(objcg); 3236 } else { 3237 struct mem_cgroup *memcg; 3238 3239 rcu_read_lock(); 3240 memcg = __folio_memcg(folio); 3241 if (memcg) 3242 objcg = __get_obj_cgroup_from_memcg(memcg); 3243 else 3244 objcg = NULL; 3245 rcu_read_unlock(); 3246 } 3247 return objcg; 3248 } 3249 3250 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3251 { 3252 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 3253 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3254 if (nr_pages > 0) 3255 page_counter_charge(&memcg->kmem, nr_pages); 3256 else 3257 page_counter_uncharge(&memcg->kmem, -nr_pages); 3258 } 3259 } 3260 3261 3262 /* 3263 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3264 * @objcg: object cgroup to uncharge 3265 * @nr_pages: number of pages to uncharge 3266 */ 3267 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3268 unsigned int nr_pages) 3269 { 3270 struct mem_cgroup *memcg; 3271 3272 memcg = get_mem_cgroup_from_objcg(objcg); 3273 3274 memcg_account_kmem(memcg, -nr_pages); 3275 refill_stock(memcg, nr_pages); 3276 3277 css_put(&memcg->css); 3278 } 3279 3280 /* 3281 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3282 * @objcg: object cgroup to charge 3283 * @gfp: reclaim mode 3284 * @nr_pages: number of pages to charge 3285 * 3286 * Returns 0 on success, an error code on failure. 3287 */ 3288 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3289 unsigned int nr_pages) 3290 { 3291 struct mem_cgroup *memcg; 3292 int ret; 3293 3294 memcg = get_mem_cgroup_from_objcg(objcg); 3295 3296 ret = try_charge_memcg(memcg, gfp, nr_pages); 3297 if (ret) 3298 goto out; 3299 3300 memcg_account_kmem(memcg, nr_pages); 3301 out: 3302 css_put(&memcg->css); 3303 3304 return ret; 3305 } 3306 3307 /** 3308 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3309 * @page: page to charge 3310 * @gfp: reclaim mode 3311 * @order: allocation order 3312 * 3313 * Returns 0 on success, an error code on failure. 3314 */ 3315 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3316 { 3317 struct obj_cgroup *objcg; 3318 int ret = 0; 3319 3320 objcg = current_obj_cgroup(); 3321 if (objcg) { 3322 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3323 if (!ret) { 3324 obj_cgroup_get(objcg); 3325 page->memcg_data = (unsigned long)objcg | 3326 MEMCG_DATA_KMEM; 3327 return 0; 3328 } 3329 } 3330 return ret; 3331 } 3332 3333 /** 3334 * __memcg_kmem_uncharge_page: uncharge a kmem page 3335 * @page: page to uncharge 3336 * @order: allocation order 3337 */ 3338 void __memcg_kmem_uncharge_page(struct page *page, int order) 3339 { 3340 struct folio *folio = page_folio(page); 3341 struct obj_cgroup *objcg; 3342 unsigned int nr_pages = 1 << order; 3343 3344 if (!folio_memcg_kmem(folio)) 3345 return; 3346 3347 objcg = __folio_objcg(folio); 3348 obj_cgroup_uncharge_pages(objcg, nr_pages); 3349 folio->memcg_data = 0; 3350 obj_cgroup_put(objcg); 3351 } 3352 3353 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3354 enum node_stat_item idx, int nr) 3355 { 3356 struct memcg_stock_pcp *stock; 3357 struct obj_cgroup *old = NULL; 3358 unsigned long flags; 3359 int *bytes; 3360 3361 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3362 stock = this_cpu_ptr(&memcg_stock); 3363 3364 /* 3365 * Save vmstat data in stock and skip vmstat array update unless 3366 * accumulating over a page of vmstat data or when pgdat or idx 3367 * changes. 3368 */ 3369 if (READ_ONCE(stock->cached_objcg) != objcg) { 3370 old = drain_obj_stock(stock); 3371 obj_cgroup_get(objcg); 3372 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3373 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3374 WRITE_ONCE(stock->cached_objcg, objcg); 3375 stock->cached_pgdat = pgdat; 3376 } else if (stock->cached_pgdat != pgdat) { 3377 /* Flush the existing cached vmstat data */ 3378 struct pglist_data *oldpg = stock->cached_pgdat; 3379 3380 if (stock->nr_slab_reclaimable_b) { 3381 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3382 stock->nr_slab_reclaimable_b); 3383 stock->nr_slab_reclaimable_b = 0; 3384 } 3385 if (stock->nr_slab_unreclaimable_b) { 3386 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3387 stock->nr_slab_unreclaimable_b); 3388 stock->nr_slab_unreclaimable_b = 0; 3389 } 3390 stock->cached_pgdat = pgdat; 3391 } 3392 3393 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3394 : &stock->nr_slab_unreclaimable_b; 3395 /* 3396 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3397 * cached locally at least once before pushing it out. 3398 */ 3399 if (!*bytes) { 3400 *bytes = nr; 3401 nr = 0; 3402 } else { 3403 *bytes += nr; 3404 if (abs(*bytes) > PAGE_SIZE) { 3405 nr = *bytes; 3406 *bytes = 0; 3407 } else { 3408 nr = 0; 3409 } 3410 } 3411 if (nr) 3412 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3413 3414 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3415 if (old) 3416 obj_cgroup_put(old); 3417 } 3418 3419 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3420 { 3421 struct memcg_stock_pcp *stock; 3422 unsigned long flags; 3423 bool ret = false; 3424 3425 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3426 3427 stock = this_cpu_ptr(&memcg_stock); 3428 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 3429 stock->nr_bytes -= nr_bytes; 3430 ret = true; 3431 } 3432 3433 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3434 3435 return ret; 3436 } 3437 3438 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3439 { 3440 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 3441 3442 if (!old) 3443 return NULL; 3444 3445 if (stock->nr_bytes) { 3446 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3447 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3448 3449 if (nr_pages) { 3450 struct mem_cgroup *memcg; 3451 3452 memcg = get_mem_cgroup_from_objcg(old); 3453 3454 memcg_account_kmem(memcg, -nr_pages); 3455 __refill_stock(memcg, nr_pages); 3456 3457 css_put(&memcg->css); 3458 } 3459 3460 /* 3461 * The leftover is flushed to the centralized per-memcg value. 3462 * On the next attempt to refill obj stock it will be moved 3463 * to a per-cpu stock (probably, on an other CPU), see 3464 * refill_obj_stock(). 3465 * 3466 * How often it's flushed is a trade-off between the memory 3467 * limit enforcement accuracy and potential CPU contention, 3468 * so it might be changed in the future. 3469 */ 3470 atomic_add(nr_bytes, &old->nr_charged_bytes); 3471 stock->nr_bytes = 0; 3472 } 3473 3474 /* 3475 * Flush the vmstat data in current stock 3476 */ 3477 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3478 if (stock->nr_slab_reclaimable_b) { 3479 mod_objcg_mlstate(old, stock->cached_pgdat, 3480 NR_SLAB_RECLAIMABLE_B, 3481 stock->nr_slab_reclaimable_b); 3482 stock->nr_slab_reclaimable_b = 0; 3483 } 3484 if (stock->nr_slab_unreclaimable_b) { 3485 mod_objcg_mlstate(old, stock->cached_pgdat, 3486 NR_SLAB_UNRECLAIMABLE_B, 3487 stock->nr_slab_unreclaimable_b); 3488 stock->nr_slab_unreclaimable_b = 0; 3489 } 3490 stock->cached_pgdat = NULL; 3491 } 3492 3493 WRITE_ONCE(stock->cached_objcg, NULL); 3494 /* 3495 * The `old' objects needs to be released by the caller via 3496 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3497 */ 3498 return old; 3499 } 3500 3501 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3502 struct mem_cgroup *root_memcg) 3503 { 3504 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 3505 struct mem_cgroup *memcg; 3506 3507 if (objcg) { 3508 memcg = obj_cgroup_memcg(objcg); 3509 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3510 return true; 3511 } 3512 3513 return false; 3514 } 3515 3516 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3517 bool allow_uncharge) 3518 { 3519 struct memcg_stock_pcp *stock; 3520 struct obj_cgroup *old = NULL; 3521 unsigned long flags; 3522 unsigned int nr_pages = 0; 3523 3524 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3525 3526 stock = this_cpu_ptr(&memcg_stock); 3527 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 3528 old = drain_obj_stock(stock); 3529 obj_cgroup_get(objcg); 3530 WRITE_ONCE(stock->cached_objcg, objcg); 3531 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3532 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3533 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3534 } 3535 stock->nr_bytes += nr_bytes; 3536 3537 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3538 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3539 stock->nr_bytes &= (PAGE_SIZE - 1); 3540 } 3541 3542 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3543 if (old) 3544 obj_cgroup_put(old); 3545 3546 if (nr_pages) 3547 obj_cgroup_uncharge_pages(objcg, nr_pages); 3548 } 3549 3550 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3551 { 3552 unsigned int nr_pages, nr_bytes; 3553 int ret; 3554 3555 if (consume_obj_stock(objcg, size)) 3556 return 0; 3557 3558 /* 3559 * In theory, objcg->nr_charged_bytes can have enough 3560 * pre-charged bytes to satisfy the allocation. However, 3561 * flushing objcg->nr_charged_bytes requires two atomic 3562 * operations, and objcg->nr_charged_bytes can't be big. 3563 * The shared objcg->nr_charged_bytes can also become a 3564 * performance bottleneck if all tasks of the same memcg are 3565 * trying to update it. So it's better to ignore it and try 3566 * grab some new pages. The stock's nr_bytes will be flushed to 3567 * objcg->nr_charged_bytes later on when objcg changes. 3568 * 3569 * The stock's nr_bytes may contain enough pre-charged bytes 3570 * to allow one less page from being charged, but we can't rely 3571 * on the pre-charged bytes not being changed outside of 3572 * consume_obj_stock() or refill_obj_stock(). So ignore those 3573 * pre-charged bytes as well when charging pages. To avoid a 3574 * page uncharge right after a page charge, we set the 3575 * allow_uncharge flag to false when calling refill_obj_stock() 3576 * to temporarily allow the pre-charged bytes to exceed the page 3577 * size limit. The maximum reachable value of the pre-charged 3578 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3579 * race. 3580 */ 3581 nr_pages = size >> PAGE_SHIFT; 3582 nr_bytes = size & (PAGE_SIZE - 1); 3583 3584 if (nr_bytes) 3585 nr_pages += 1; 3586 3587 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3588 if (!ret && nr_bytes) 3589 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3590 3591 return ret; 3592 } 3593 3594 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3595 { 3596 refill_obj_stock(objcg, size, true); 3597 } 3598 3599 #endif /* CONFIG_MEMCG_KMEM */ 3600 3601 /* 3602 * Because page_memcg(head) is not set on tails, set it now. 3603 */ 3604 void split_page_memcg(struct page *head, unsigned int nr) 3605 { 3606 struct folio *folio = page_folio(head); 3607 struct mem_cgroup *memcg = folio_memcg(folio); 3608 int i; 3609 3610 if (mem_cgroup_disabled() || !memcg) 3611 return; 3612 3613 for (i = 1; i < nr; i++) 3614 folio_page(folio, i)->memcg_data = folio->memcg_data; 3615 3616 if (folio_memcg_kmem(folio)) 3617 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3618 else 3619 css_get_many(&memcg->css, nr - 1); 3620 } 3621 3622 #ifdef CONFIG_SWAP 3623 /** 3624 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3625 * @entry: swap entry to be moved 3626 * @from: mem_cgroup which the entry is moved from 3627 * @to: mem_cgroup which the entry is moved to 3628 * 3629 * It succeeds only when the swap_cgroup's record for this entry is the same 3630 * as the mem_cgroup's id of @from. 3631 * 3632 * Returns 0 on success, -EINVAL on failure. 3633 * 3634 * The caller must have charged to @to, IOW, called page_counter_charge() about 3635 * both res and memsw, and called css_get(). 3636 */ 3637 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3638 struct mem_cgroup *from, struct mem_cgroup *to) 3639 { 3640 unsigned short old_id, new_id; 3641 3642 old_id = mem_cgroup_id(from); 3643 new_id = mem_cgroup_id(to); 3644 3645 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3646 mod_memcg_state(from, MEMCG_SWAP, -1); 3647 mod_memcg_state(to, MEMCG_SWAP, 1); 3648 return 0; 3649 } 3650 return -EINVAL; 3651 } 3652 #else 3653 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3654 struct mem_cgroup *from, struct mem_cgroup *to) 3655 { 3656 return -EINVAL; 3657 } 3658 #endif 3659 3660 static DEFINE_MUTEX(memcg_max_mutex); 3661 3662 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3663 unsigned long max, bool memsw) 3664 { 3665 bool enlarge = false; 3666 bool drained = false; 3667 int ret; 3668 bool limits_invariant; 3669 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3670 3671 do { 3672 if (signal_pending(current)) { 3673 ret = -EINTR; 3674 break; 3675 } 3676 3677 mutex_lock(&memcg_max_mutex); 3678 /* 3679 * Make sure that the new limit (memsw or memory limit) doesn't 3680 * break our basic invariant rule memory.max <= memsw.max. 3681 */ 3682 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3683 max <= memcg->memsw.max; 3684 if (!limits_invariant) { 3685 mutex_unlock(&memcg_max_mutex); 3686 ret = -EINVAL; 3687 break; 3688 } 3689 if (max > counter->max) 3690 enlarge = true; 3691 ret = page_counter_set_max(counter, max); 3692 mutex_unlock(&memcg_max_mutex); 3693 3694 if (!ret) 3695 break; 3696 3697 if (!drained) { 3698 drain_all_stock(memcg); 3699 drained = true; 3700 continue; 3701 } 3702 3703 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3704 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { 3705 ret = -EBUSY; 3706 break; 3707 } 3708 } while (true); 3709 3710 if (!ret && enlarge) 3711 memcg_oom_recover(memcg); 3712 3713 return ret; 3714 } 3715 3716 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3717 gfp_t gfp_mask, 3718 unsigned long *total_scanned) 3719 { 3720 unsigned long nr_reclaimed = 0; 3721 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3722 unsigned long reclaimed; 3723 int loop = 0; 3724 struct mem_cgroup_tree_per_node *mctz; 3725 unsigned long excess; 3726 3727 if (lru_gen_enabled()) 3728 return 0; 3729 3730 if (order > 0) 3731 return 0; 3732 3733 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3734 3735 /* 3736 * Do not even bother to check the largest node if the root 3737 * is empty. Do it lockless to prevent lock bouncing. Races 3738 * are acceptable as soft limit is best effort anyway. 3739 */ 3740 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3741 return 0; 3742 3743 /* 3744 * This loop can run a while, specially if mem_cgroup's continuously 3745 * keep exceeding their soft limit and putting the system under 3746 * pressure 3747 */ 3748 do { 3749 if (next_mz) 3750 mz = next_mz; 3751 else 3752 mz = mem_cgroup_largest_soft_limit_node(mctz); 3753 if (!mz) 3754 break; 3755 3756 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3757 gfp_mask, total_scanned); 3758 nr_reclaimed += reclaimed; 3759 spin_lock_irq(&mctz->lock); 3760 3761 /* 3762 * If we failed to reclaim anything from this memory cgroup 3763 * it is time to move on to the next cgroup 3764 */ 3765 next_mz = NULL; 3766 if (!reclaimed) 3767 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3768 3769 excess = soft_limit_excess(mz->memcg); 3770 /* 3771 * One school of thought says that we should not add 3772 * back the node to the tree if reclaim returns 0. 3773 * But our reclaim could return 0, simply because due 3774 * to priority we are exposing a smaller subset of 3775 * memory to reclaim from. Consider this as a longer 3776 * term TODO. 3777 */ 3778 /* If excess == 0, no tree ops */ 3779 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3780 spin_unlock_irq(&mctz->lock); 3781 css_put(&mz->memcg->css); 3782 loop++; 3783 /* 3784 * Could not reclaim anything and there are no more 3785 * mem cgroups to try or we seem to be looping without 3786 * reclaiming anything. 3787 */ 3788 if (!nr_reclaimed && 3789 (next_mz == NULL || 3790 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3791 break; 3792 } while (!nr_reclaimed); 3793 if (next_mz) 3794 css_put(&next_mz->memcg->css); 3795 return nr_reclaimed; 3796 } 3797 3798 /* 3799 * Reclaims as many pages from the given memcg as possible. 3800 * 3801 * Caller is responsible for holding css reference for memcg. 3802 */ 3803 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3804 { 3805 int nr_retries = MAX_RECLAIM_RETRIES; 3806 3807 /* we call try-to-free pages for make this cgroup empty */ 3808 lru_add_drain_all(); 3809 3810 drain_all_stock(memcg); 3811 3812 /* try to free all pages in this cgroup */ 3813 while (nr_retries && page_counter_read(&memcg->memory)) { 3814 if (signal_pending(current)) 3815 return -EINTR; 3816 3817 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3818 MEMCG_RECLAIM_MAY_SWAP)) 3819 nr_retries--; 3820 } 3821 3822 return 0; 3823 } 3824 3825 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3826 char *buf, size_t nbytes, 3827 loff_t off) 3828 { 3829 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3830 3831 if (mem_cgroup_is_root(memcg)) 3832 return -EINVAL; 3833 return mem_cgroup_force_empty(memcg) ?: nbytes; 3834 } 3835 3836 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3837 struct cftype *cft) 3838 { 3839 return 1; 3840 } 3841 3842 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3843 struct cftype *cft, u64 val) 3844 { 3845 if (val == 1) 3846 return 0; 3847 3848 pr_warn_once("Non-hierarchical mode is deprecated. " 3849 "Please report your usecase to linux-mm@kvack.org if you " 3850 "depend on this functionality.\n"); 3851 3852 return -EINVAL; 3853 } 3854 3855 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3856 { 3857 unsigned long val; 3858 3859 if (mem_cgroup_is_root(memcg)) { 3860 /* 3861 * Approximate root's usage from global state. This isn't 3862 * perfect, but the root usage was always an approximation. 3863 */ 3864 val = global_node_page_state(NR_FILE_PAGES) + 3865 global_node_page_state(NR_ANON_MAPPED); 3866 if (swap) 3867 val += total_swap_pages - get_nr_swap_pages(); 3868 } else { 3869 if (!swap) 3870 val = page_counter_read(&memcg->memory); 3871 else 3872 val = page_counter_read(&memcg->memsw); 3873 } 3874 return val; 3875 } 3876 3877 enum { 3878 RES_USAGE, 3879 RES_LIMIT, 3880 RES_MAX_USAGE, 3881 RES_FAILCNT, 3882 RES_SOFT_LIMIT, 3883 }; 3884 3885 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3886 struct cftype *cft) 3887 { 3888 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3889 struct page_counter *counter; 3890 3891 switch (MEMFILE_TYPE(cft->private)) { 3892 case _MEM: 3893 counter = &memcg->memory; 3894 break; 3895 case _MEMSWAP: 3896 counter = &memcg->memsw; 3897 break; 3898 case _KMEM: 3899 counter = &memcg->kmem; 3900 break; 3901 case _TCP: 3902 counter = &memcg->tcpmem; 3903 break; 3904 default: 3905 BUG(); 3906 } 3907 3908 switch (MEMFILE_ATTR(cft->private)) { 3909 case RES_USAGE: 3910 if (counter == &memcg->memory) 3911 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3912 if (counter == &memcg->memsw) 3913 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3914 return (u64)page_counter_read(counter) * PAGE_SIZE; 3915 case RES_LIMIT: 3916 return (u64)counter->max * PAGE_SIZE; 3917 case RES_MAX_USAGE: 3918 return (u64)counter->watermark * PAGE_SIZE; 3919 case RES_FAILCNT: 3920 return counter->failcnt; 3921 case RES_SOFT_LIMIT: 3922 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; 3923 default: 3924 BUG(); 3925 } 3926 } 3927 3928 /* 3929 * This function doesn't do anything useful. Its only job is to provide a read 3930 * handler for a file so that cgroup_file_mode() will add read permissions. 3931 */ 3932 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, 3933 __always_unused void *v) 3934 { 3935 return -EINVAL; 3936 } 3937 3938 #ifdef CONFIG_MEMCG_KMEM 3939 static int memcg_online_kmem(struct mem_cgroup *memcg) 3940 { 3941 struct obj_cgroup *objcg; 3942 3943 if (mem_cgroup_kmem_disabled()) 3944 return 0; 3945 3946 if (unlikely(mem_cgroup_is_root(memcg))) 3947 return 0; 3948 3949 objcg = obj_cgroup_alloc(); 3950 if (!objcg) 3951 return -ENOMEM; 3952 3953 objcg->memcg = memcg; 3954 rcu_assign_pointer(memcg->objcg, objcg); 3955 obj_cgroup_get(objcg); 3956 memcg->orig_objcg = objcg; 3957 3958 static_branch_enable(&memcg_kmem_online_key); 3959 3960 memcg->kmemcg_id = memcg->id.id; 3961 3962 return 0; 3963 } 3964 3965 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3966 { 3967 struct mem_cgroup *parent; 3968 3969 if (mem_cgroup_kmem_disabled()) 3970 return; 3971 3972 if (unlikely(mem_cgroup_is_root(memcg))) 3973 return; 3974 3975 parent = parent_mem_cgroup(memcg); 3976 if (!parent) 3977 parent = root_mem_cgroup; 3978 3979 memcg_reparent_objcgs(memcg, parent); 3980 3981 /* 3982 * After we have finished memcg_reparent_objcgs(), all list_lrus 3983 * corresponding to this cgroup are guaranteed to remain empty. 3984 * The ordering is imposed by list_lru_node->lock taken by 3985 * memcg_reparent_list_lrus(). 3986 */ 3987 memcg_reparent_list_lrus(memcg, parent); 3988 } 3989 #else 3990 static int memcg_online_kmem(struct mem_cgroup *memcg) 3991 { 3992 return 0; 3993 } 3994 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3995 { 3996 } 3997 #endif /* CONFIG_MEMCG_KMEM */ 3998 3999 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 4000 { 4001 int ret; 4002 4003 mutex_lock(&memcg_max_mutex); 4004 4005 ret = page_counter_set_max(&memcg->tcpmem, max); 4006 if (ret) 4007 goto out; 4008 4009 if (!memcg->tcpmem_active) { 4010 /* 4011 * The active flag needs to be written after the static_key 4012 * update. This is what guarantees that the socket activation 4013 * function is the last one to run. See mem_cgroup_sk_alloc() 4014 * for details, and note that we don't mark any socket as 4015 * belonging to this memcg until that flag is up. 4016 * 4017 * We need to do this, because static_keys will span multiple 4018 * sites, but we can't control their order. If we mark a socket 4019 * as accounted, but the accounting functions are not patched in 4020 * yet, we'll lose accounting. 4021 * 4022 * We never race with the readers in mem_cgroup_sk_alloc(), 4023 * because when this value change, the code to process it is not 4024 * patched in yet. 4025 */ 4026 static_branch_inc(&memcg_sockets_enabled_key); 4027 memcg->tcpmem_active = true; 4028 } 4029 out: 4030 mutex_unlock(&memcg_max_mutex); 4031 return ret; 4032 } 4033 4034 /* 4035 * The user of this function is... 4036 * RES_LIMIT. 4037 */ 4038 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 4039 char *buf, size_t nbytes, loff_t off) 4040 { 4041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4042 unsigned long nr_pages; 4043 int ret; 4044 4045 buf = strstrip(buf); 4046 ret = page_counter_memparse(buf, "-1", &nr_pages); 4047 if (ret) 4048 return ret; 4049 4050 switch (MEMFILE_ATTR(of_cft(of)->private)) { 4051 case RES_LIMIT: 4052 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 4053 ret = -EINVAL; 4054 break; 4055 } 4056 switch (MEMFILE_TYPE(of_cft(of)->private)) { 4057 case _MEM: 4058 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 4059 break; 4060 case _MEMSWAP: 4061 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 4062 break; 4063 case _KMEM: 4064 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 4065 "Writing any value to this file has no effect. " 4066 "Please report your usecase to linux-mm@kvack.org if you " 4067 "depend on this functionality.\n"); 4068 ret = 0; 4069 break; 4070 case _TCP: 4071 ret = memcg_update_tcp_max(memcg, nr_pages); 4072 break; 4073 } 4074 break; 4075 case RES_SOFT_LIMIT: 4076 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4077 ret = -EOPNOTSUPP; 4078 } else { 4079 WRITE_ONCE(memcg->soft_limit, nr_pages); 4080 ret = 0; 4081 } 4082 break; 4083 } 4084 return ret ?: nbytes; 4085 } 4086 4087 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 4088 size_t nbytes, loff_t off) 4089 { 4090 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4091 struct page_counter *counter; 4092 4093 switch (MEMFILE_TYPE(of_cft(of)->private)) { 4094 case _MEM: 4095 counter = &memcg->memory; 4096 break; 4097 case _MEMSWAP: 4098 counter = &memcg->memsw; 4099 break; 4100 case _KMEM: 4101 counter = &memcg->kmem; 4102 break; 4103 case _TCP: 4104 counter = &memcg->tcpmem; 4105 break; 4106 default: 4107 BUG(); 4108 } 4109 4110 switch (MEMFILE_ATTR(of_cft(of)->private)) { 4111 case RES_MAX_USAGE: 4112 page_counter_reset_watermark(counter); 4113 break; 4114 case RES_FAILCNT: 4115 counter->failcnt = 0; 4116 break; 4117 default: 4118 BUG(); 4119 } 4120 4121 return nbytes; 4122 } 4123 4124 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 4125 struct cftype *cft) 4126 { 4127 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 4128 } 4129 4130 #ifdef CONFIG_MMU 4131 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4132 struct cftype *cft, u64 val) 4133 { 4134 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4135 4136 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 4137 "Please report your usecase to linux-mm@kvack.org if you " 4138 "depend on this functionality.\n"); 4139 4140 if (val & ~MOVE_MASK) 4141 return -EINVAL; 4142 4143 /* 4144 * No kind of locking is needed in here, because ->can_attach() will 4145 * check this value once in the beginning of the process, and then carry 4146 * on with stale data. This means that changes to this value will only 4147 * affect task migrations starting after the change. 4148 */ 4149 memcg->move_charge_at_immigrate = val; 4150 return 0; 4151 } 4152 #else 4153 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4154 struct cftype *cft, u64 val) 4155 { 4156 return -ENOSYS; 4157 } 4158 #endif 4159 4160 #ifdef CONFIG_NUMA 4161 4162 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 4163 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 4164 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 4165 4166 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 4167 int nid, unsigned int lru_mask, bool tree) 4168 { 4169 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4170 unsigned long nr = 0; 4171 enum lru_list lru; 4172 4173 VM_BUG_ON((unsigned)nid >= nr_node_ids); 4174 4175 for_each_lru(lru) { 4176 if (!(BIT(lru) & lru_mask)) 4177 continue; 4178 if (tree) 4179 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 4180 else 4181 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 4182 } 4183 return nr; 4184 } 4185 4186 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 4187 unsigned int lru_mask, 4188 bool tree) 4189 { 4190 unsigned long nr = 0; 4191 enum lru_list lru; 4192 4193 for_each_lru(lru) { 4194 if (!(BIT(lru) & lru_mask)) 4195 continue; 4196 if (tree) 4197 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 4198 else 4199 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 4200 } 4201 return nr; 4202 } 4203 4204 static int memcg_numa_stat_show(struct seq_file *m, void *v) 4205 { 4206 struct numa_stat { 4207 const char *name; 4208 unsigned int lru_mask; 4209 }; 4210 4211 static const struct numa_stat stats[] = { 4212 { "total", LRU_ALL }, 4213 { "file", LRU_ALL_FILE }, 4214 { "anon", LRU_ALL_ANON }, 4215 { "unevictable", BIT(LRU_UNEVICTABLE) }, 4216 }; 4217 const struct numa_stat *stat; 4218 int nid; 4219 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4220 4221 mem_cgroup_flush_stats(memcg); 4222 4223 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4224 seq_printf(m, "%s=%lu", stat->name, 4225 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4226 false)); 4227 for_each_node_state(nid, N_MEMORY) 4228 seq_printf(m, " N%d=%lu", nid, 4229 mem_cgroup_node_nr_lru_pages(memcg, nid, 4230 stat->lru_mask, false)); 4231 seq_putc(m, '\n'); 4232 } 4233 4234 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4235 4236 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4237 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4238 true)); 4239 for_each_node_state(nid, N_MEMORY) 4240 seq_printf(m, " N%d=%lu", nid, 4241 mem_cgroup_node_nr_lru_pages(memcg, nid, 4242 stat->lru_mask, true)); 4243 seq_putc(m, '\n'); 4244 } 4245 4246 return 0; 4247 } 4248 #endif /* CONFIG_NUMA */ 4249 4250 static const unsigned int memcg1_stats[] = { 4251 NR_FILE_PAGES, 4252 NR_ANON_MAPPED, 4253 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4254 NR_ANON_THPS, 4255 #endif 4256 NR_SHMEM, 4257 NR_FILE_MAPPED, 4258 NR_FILE_DIRTY, 4259 NR_WRITEBACK, 4260 WORKINGSET_REFAULT_ANON, 4261 WORKINGSET_REFAULT_FILE, 4262 #ifdef CONFIG_SWAP 4263 MEMCG_SWAP, 4264 NR_SWAPCACHE, 4265 #endif 4266 }; 4267 4268 static const char *const memcg1_stat_names[] = { 4269 "cache", 4270 "rss", 4271 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4272 "rss_huge", 4273 #endif 4274 "shmem", 4275 "mapped_file", 4276 "dirty", 4277 "writeback", 4278 "workingset_refault_anon", 4279 "workingset_refault_file", 4280 #ifdef CONFIG_SWAP 4281 "swap", 4282 "swapcached", 4283 #endif 4284 }; 4285 4286 /* Universal VM events cgroup1 shows, original sort order */ 4287 static const unsigned int memcg1_events[] = { 4288 PGPGIN, 4289 PGPGOUT, 4290 PGFAULT, 4291 PGMAJFAULT, 4292 }; 4293 4294 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 4295 { 4296 unsigned long memory, memsw; 4297 struct mem_cgroup *mi; 4298 unsigned int i; 4299 4300 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4301 4302 mem_cgroup_flush_stats(memcg); 4303 4304 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4305 unsigned long nr; 4306 4307 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); 4308 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); 4309 } 4310 4311 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4312 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), 4313 memcg_events_local(memcg, memcg1_events[i])); 4314 4315 for (i = 0; i < NR_LRU_LISTS; i++) 4316 seq_buf_printf(s, "%s %lu\n", lru_list_name(i), 4317 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4318 PAGE_SIZE); 4319 4320 /* Hierarchical information */ 4321 memory = memsw = PAGE_COUNTER_MAX; 4322 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4323 memory = min(memory, READ_ONCE(mi->memory.max)); 4324 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4325 } 4326 seq_buf_printf(s, "hierarchical_memory_limit %llu\n", 4327 (u64)memory * PAGE_SIZE); 4328 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", 4329 (u64)memsw * PAGE_SIZE); 4330 4331 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4332 unsigned long nr; 4333 4334 nr = memcg_page_state_output(memcg, memcg1_stats[i]); 4335 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], 4336 (u64)nr); 4337 } 4338 4339 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4340 seq_buf_printf(s, "total_%s %llu\n", 4341 vm_event_name(memcg1_events[i]), 4342 (u64)memcg_events(memcg, memcg1_events[i])); 4343 4344 for (i = 0; i < NR_LRU_LISTS; i++) 4345 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), 4346 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4347 PAGE_SIZE); 4348 4349 #ifdef CONFIG_DEBUG_VM 4350 { 4351 pg_data_t *pgdat; 4352 struct mem_cgroup_per_node *mz; 4353 unsigned long anon_cost = 0; 4354 unsigned long file_cost = 0; 4355 4356 for_each_online_pgdat(pgdat) { 4357 mz = memcg->nodeinfo[pgdat->node_id]; 4358 4359 anon_cost += mz->lruvec.anon_cost; 4360 file_cost += mz->lruvec.file_cost; 4361 } 4362 seq_buf_printf(s, "anon_cost %lu\n", anon_cost); 4363 seq_buf_printf(s, "file_cost %lu\n", file_cost); 4364 } 4365 #endif 4366 } 4367 4368 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4369 struct cftype *cft) 4370 { 4371 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4372 4373 return mem_cgroup_swappiness(memcg); 4374 } 4375 4376 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4377 struct cftype *cft, u64 val) 4378 { 4379 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4380 4381 if (val > 200) 4382 return -EINVAL; 4383 4384 if (!mem_cgroup_is_root(memcg)) 4385 WRITE_ONCE(memcg->swappiness, val); 4386 else 4387 WRITE_ONCE(vm_swappiness, val); 4388 4389 return 0; 4390 } 4391 4392 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4393 { 4394 struct mem_cgroup_threshold_ary *t; 4395 unsigned long usage; 4396 int i; 4397 4398 rcu_read_lock(); 4399 if (!swap) 4400 t = rcu_dereference(memcg->thresholds.primary); 4401 else 4402 t = rcu_dereference(memcg->memsw_thresholds.primary); 4403 4404 if (!t) 4405 goto unlock; 4406 4407 usage = mem_cgroup_usage(memcg, swap); 4408 4409 /* 4410 * current_threshold points to threshold just below or equal to usage. 4411 * If it's not true, a threshold was crossed after last 4412 * call of __mem_cgroup_threshold(). 4413 */ 4414 i = t->current_threshold; 4415 4416 /* 4417 * Iterate backward over array of thresholds starting from 4418 * current_threshold and check if a threshold is crossed. 4419 * If none of thresholds below usage is crossed, we read 4420 * only one element of the array here. 4421 */ 4422 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4423 eventfd_signal(t->entries[i].eventfd); 4424 4425 /* i = current_threshold + 1 */ 4426 i++; 4427 4428 /* 4429 * Iterate forward over array of thresholds starting from 4430 * current_threshold+1 and check if a threshold is crossed. 4431 * If none of thresholds above usage is crossed, we read 4432 * only one element of the array here. 4433 */ 4434 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4435 eventfd_signal(t->entries[i].eventfd); 4436 4437 /* Update current_threshold */ 4438 t->current_threshold = i - 1; 4439 unlock: 4440 rcu_read_unlock(); 4441 } 4442 4443 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4444 { 4445 while (memcg) { 4446 __mem_cgroup_threshold(memcg, false); 4447 if (do_memsw_account()) 4448 __mem_cgroup_threshold(memcg, true); 4449 4450 memcg = parent_mem_cgroup(memcg); 4451 } 4452 } 4453 4454 static int compare_thresholds(const void *a, const void *b) 4455 { 4456 const struct mem_cgroup_threshold *_a = a; 4457 const struct mem_cgroup_threshold *_b = b; 4458 4459 if (_a->threshold > _b->threshold) 4460 return 1; 4461 4462 if (_a->threshold < _b->threshold) 4463 return -1; 4464 4465 return 0; 4466 } 4467 4468 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4469 { 4470 struct mem_cgroup_eventfd_list *ev; 4471 4472 spin_lock(&memcg_oom_lock); 4473 4474 list_for_each_entry(ev, &memcg->oom_notify, list) 4475 eventfd_signal(ev->eventfd); 4476 4477 spin_unlock(&memcg_oom_lock); 4478 return 0; 4479 } 4480 4481 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4482 { 4483 struct mem_cgroup *iter; 4484 4485 for_each_mem_cgroup_tree(iter, memcg) 4486 mem_cgroup_oom_notify_cb(iter); 4487 } 4488 4489 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4490 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4491 { 4492 struct mem_cgroup_thresholds *thresholds; 4493 struct mem_cgroup_threshold_ary *new; 4494 unsigned long threshold; 4495 unsigned long usage; 4496 int i, size, ret; 4497 4498 ret = page_counter_memparse(args, "-1", &threshold); 4499 if (ret) 4500 return ret; 4501 4502 mutex_lock(&memcg->thresholds_lock); 4503 4504 if (type == _MEM) { 4505 thresholds = &memcg->thresholds; 4506 usage = mem_cgroup_usage(memcg, false); 4507 } else if (type == _MEMSWAP) { 4508 thresholds = &memcg->memsw_thresholds; 4509 usage = mem_cgroup_usage(memcg, true); 4510 } else 4511 BUG(); 4512 4513 /* Check if a threshold crossed before adding a new one */ 4514 if (thresholds->primary) 4515 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4516 4517 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4518 4519 /* Allocate memory for new array of thresholds */ 4520 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4521 if (!new) { 4522 ret = -ENOMEM; 4523 goto unlock; 4524 } 4525 new->size = size; 4526 4527 /* Copy thresholds (if any) to new array */ 4528 if (thresholds->primary) 4529 memcpy(new->entries, thresholds->primary->entries, 4530 flex_array_size(new, entries, size - 1)); 4531 4532 /* Add new threshold */ 4533 new->entries[size - 1].eventfd = eventfd; 4534 new->entries[size - 1].threshold = threshold; 4535 4536 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4537 sort(new->entries, size, sizeof(*new->entries), 4538 compare_thresholds, NULL); 4539 4540 /* Find current threshold */ 4541 new->current_threshold = -1; 4542 for (i = 0; i < size; i++) { 4543 if (new->entries[i].threshold <= usage) { 4544 /* 4545 * new->current_threshold will not be used until 4546 * rcu_assign_pointer(), so it's safe to increment 4547 * it here. 4548 */ 4549 ++new->current_threshold; 4550 } else 4551 break; 4552 } 4553 4554 /* Free old spare buffer and save old primary buffer as spare */ 4555 kfree(thresholds->spare); 4556 thresholds->spare = thresholds->primary; 4557 4558 rcu_assign_pointer(thresholds->primary, new); 4559 4560 /* To be sure that nobody uses thresholds */ 4561 synchronize_rcu(); 4562 4563 unlock: 4564 mutex_unlock(&memcg->thresholds_lock); 4565 4566 return ret; 4567 } 4568 4569 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4570 struct eventfd_ctx *eventfd, const char *args) 4571 { 4572 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4573 } 4574 4575 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4576 struct eventfd_ctx *eventfd, const char *args) 4577 { 4578 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4579 } 4580 4581 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4582 struct eventfd_ctx *eventfd, enum res_type type) 4583 { 4584 struct mem_cgroup_thresholds *thresholds; 4585 struct mem_cgroup_threshold_ary *new; 4586 unsigned long usage; 4587 int i, j, size, entries; 4588 4589 mutex_lock(&memcg->thresholds_lock); 4590 4591 if (type == _MEM) { 4592 thresholds = &memcg->thresholds; 4593 usage = mem_cgroup_usage(memcg, false); 4594 } else if (type == _MEMSWAP) { 4595 thresholds = &memcg->memsw_thresholds; 4596 usage = mem_cgroup_usage(memcg, true); 4597 } else 4598 BUG(); 4599 4600 if (!thresholds->primary) 4601 goto unlock; 4602 4603 /* Check if a threshold crossed before removing */ 4604 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4605 4606 /* Calculate new number of threshold */ 4607 size = entries = 0; 4608 for (i = 0; i < thresholds->primary->size; i++) { 4609 if (thresholds->primary->entries[i].eventfd != eventfd) 4610 size++; 4611 else 4612 entries++; 4613 } 4614 4615 new = thresholds->spare; 4616 4617 /* If no items related to eventfd have been cleared, nothing to do */ 4618 if (!entries) 4619 goto unlock; 4620 4621 /* Set thresholds array to NULL if we don't have thresholds */ 4622 if (!size) { 4623 kfree(new); 4624 new = NULL; 4625 goto swap_buffers; 4626 } 4627 4628 new->size = size; 4629 4630 /* Copy thresholds and find current threshold */ 4631 new->current_threshold = -1; 4632 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4633 if (thresholds->primary->entries[i].eventfd == eventfd) 4634 continue; 4635 4636 new->entries[j] = thresholds->primary->entries[i]; 4637 if (new->entries[j].threshold <= usage) { 4638 /* 4639 * new->current_threshold will not be used 4640 * until rcu_assign_pointer(), so it's safe to increment 4641 * it here. 4642 */ 4643 ++new->current_threshold; 4644 } 4645 j++; 4646 } 4647 4648 swap_buffers: 4649 /* Swap primary and spare array */ 4650 thresholds->spare = thresholds->primary; 4651 4652 rcu_assign_pointer(thresholds->primary, new); 4653 4654 /* To be sure that nobody uses thresholds */ 4655 synchronize_rcu(); 4656 4657 /* If all events are unregistered, free the spare array */ 4658 if (!new) { 4659 kfree(thresholds->spare); 4660 thresholds->spare = NULL; 4661 } 4662 unlock: 4663 mutex_unlock(&memcg->thresholds_lock); 4664 } 4665 4666 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4667 struct eventfd_ctx *eventfd) 4668 { 4669 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4670 } 4671 4672 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4673 struct eventfd_ctx *eventfd) 4674 { 4675 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4676 } 4677 4678 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4679 struct eventfd_ctx *eventfd, const char *args) 4680 { 4681 struct mem_cgroup_eventfd_list *event; 4682 4683 event = kmalloc(sizeof(*event), GFP_KERNEL); 4684 if (!event) 4685 return -ENOMEM; 4686 4687 spin_lock(&memcg_oom_lock); 4688 4689 event->eventfd = eventfd; 4690 list_add(&event->list, &memcg->oom_notify); 4691 4692 /* already in OOM ? */ 4693 if (memcg->under_oom) 4694 eventfd_signal(eventfd); 4695 spin_unlock(&memcg_oom_lock); 4696 4697 return 0; 4698 } 4699 4700 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4701 struct eventfd_ctx *eventfd) 4702 { 4703 struct mem_cgroup_eventfd_list *ev, *tmp; 4704 4705 spin_lock(&memcg_oom_lock); 4706 4707 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4708 if (ev->eventfd == eventfd) { 4709 list_del(&ev->list); 4710 kfree(ev); 4711 } 4712 } 4713 4714 spin_unlock(&memcg_oom_lock); 4715 } 4716 4717 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4718 { 4719 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4720 4721 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); 4722 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4723 seq_printf(sf, "oom_kill %lu\n", 4724 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4725 return 0; 4726 } 4727 4728 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4729 struct cftype *cft, u64 val) 4730 { 4731 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4732 4733 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4734 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4735 return -EINVAL; 4736 4737 WRITE_ONCE(memcg->oom_kill_disable, val); 4738 if (!val) 4739 memcg_oom_recover(memcg); 4740 4741 return 0; 4742 } 4743 4744 #ifdef CONFIG_CGROUP_WRITEBACK 4745 4746 #include <trace/events/writeback.h> 4747 4748 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4749 { 4750 return wb_domain_init(&memcg->cgwb_domain, gfp); 4751 } 4752 4753 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4754 { 4755 wb_domain_exit(&memcg->cgwb_domain); 4756 } 4757 4758 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4759 { 4760 wb_domain_size_changed(&memcg->cgwb_domain); 4761 } 4762 4763 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4764 { 4765 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4766 4767 if (!memcg->css.parent) 4768 return NULL; 4769 4770 return &memcg->cgwb_domain; 4771 } 4772 4773 /** 4774 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4775 * @wb: bdi_writeback in question 4776 * @pfilepages: out parameter for number of file pages 4777 * @pheadroom: out parameter for number of allocatable pages according to memcg 4778 * @pdirty: out parameter for number of dirty pages 4779 * @pwriteback: out parameter for number of pages under writeback 4780 * 4781 * Determine the numbers of file, headroom, dirty, and writeback pages in 4782 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4783 * is a bit more involved. 4784 * 4785 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4786 * headroom is calculated as the lowest headroom of itself and the 4787 * ancestors. Note that this doesn't consider the actual amount of 4788 * available memory in the system. The caller should further cap 4789 * *@pheadroom accordingly. 4790 */ 4791 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4792 unsigned long *pheadroom, unsigned long *pdirty, 4793 unsigned long *pwriteback) 4794 { 4795 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4796 struct mem_cgroup *parent; 4797 4798 mem_cgroup_flush_stats(memcg); 4799 4800 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4801 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4802 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4803 memcg_page_state(memcg, NR_ACTIVE_FILE); 4804 4805 *pheadroom = PAGE_COUNTER_MAX; 4806 while ((parent = parent_mem_cgroup(memcg))) { 4807 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4808 READ_ONCE(memcg->memory.high)); 4809 unsigned long used = page_counter_read(&memcg->memory); 4810 4811 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4812 memcg = parent; 4813 } 4814 } 4815 4816 /* 4817 * Foreign dirty flushing 4818 * 4819 * There's an inherent mismatch between memcg and writeback. The former 4820 * tracks ownership per-page while the latter per-inode. This was a 4821 * deliberate design decision because honoring per-page ownership in the 4822 * writeback path is complicated, may lead to higher CPU and IO overheads 4823 * and deemed unnecessary given that write-sharing an inode across 4824 * different cgroups isn't a common use-case. 4825 * 4826 * Combined with inode majority-writer ownership switching, this works well 4827 * enough in most cases but there are some pathological cases. For 4828 * example, let's say there are two cgroups A and B which keep writing to 4829 * different but confined parts of the same inode. B owns the inode and 4830 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4831 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4832 * triggering background writeback. A will be slowed down without a way to 4833 * make writeback of the dirty pages happen. 4834 * 4835 * Conditions like the above can lead to a cgroup getting repeatedly and 4836 * severely throttled after making some progress after each 4837 * dirty_expire_interval while the underlying IO device is almost 4838 * completely idle. 4839 * 4840 * Solving this problem completely requires matching the ownership tracking 4841 * granularities between memcg and writeback in either direction. However, 4842 * the more egregious behaviors can be avoided by simply remembering the 4843 * most recent foreign dirtying events and initiating remote flushes on 4844 * them when local writeback isn't enough to keep the memory clean enough. 4845 * 4846 * The following two functions implement such mechanism. When a foreign 4847 * page - a page whose memcg and writeback ownerships don't match - is 4848 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4849 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4850 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4851 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4852 * foreign bdi_writebacks which haven't expired. Both the numbers of 4853 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4854 * limited to MEMCG_CGWB_FRN_CNT. 4855 * 4856 * The mechanism only remembers IDs and doesn't hold any object references. 4857 * As being wrong occasionally doesn't matter, updates and accesses to the 4858 * records are lockless and racy. 4859 */ 4860 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4861 struct bdi_writeback *wb) 4862 { 4863 struct mem_cgroup *memcg = folio_memcg(folio); 4864 struct memcg_cgwb_frn *frn; 4865 u64 now = get_jiffies_64(); 4866 u64 oldest_at = now; 4867 int oldest = -1; 4868 int i; 4869 4870 trace_track_foreign_dirty(folio, wb); 4871 4872 /* 4873 * Pick the slot to use. If there is already a slot for @wb, keep 4874 * using it. If not replace the oldest one which isn't being 4875 * written out. 4876 */ 4877 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4878 frn = &memcg->cgwb_frn[i]; 4879 if (frn->bdi_id == wb->bdi->id && 4880 frn->memcg_id == wb->memcg_css->id) 4881 break; 4882 if (time_before64(frn->at, oldest_at) && 4883 atomic_read(&frn->done.cnt) == 1) { 4884 oldest = i; 4885 oldest_at = frn->at; 4886 } 4887 } 4888 4889 if (i < MEMCG_CGWB_FRN_CNT) { 4890 /* 4891 * Re-using an existing one. Update timestamp lazily to 4892 * avoid making the cacheline hot. We want them to be 4893 * reasonably up-to-date and significantly shorter than 4894 * dirty_expire_interval as that's what expires the record. 4895 * Use the shorter of 1s and dirty_expire_interval / 8. 4896 */ 4897 unsigned long update_intv = 4898 min_t(unsigned long, HZ, 4899 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4900 4901 if (time_before64(frn->at, now - update_intv)) 4902 frn->at = now; 4903 } else if (oldest >= 0) { 4904 /* replace the oldest free one */ 4905 frn = &memcg->cgwb_frn[oldest]; 4906 frn->bdi_id = wb->bdi->id; 4907 frn->memcg_id = wb->memcg_css->id; 4908 frn->at = now; 4909 } 4910 } 4911 4912 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4913 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4914 { 4915 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4916 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4917 u64 now = jiffies_64; 4918 int i; 4919 4920 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4921 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4922 4923 /* 4924 * If the record is older than dirty_expire_interval, 4925 * writeback on it has already started. No need to kick it 4926 * off again. Also, don't start a new one if there's 4927 * already one in flight. 4928 */ 4929 if (time_after64(frn->at, now - intv) && 4930 atomic_read(&frn->done.cnt) == 1) { 4931 frn->at = 0; 4932 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4933 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4934 WB_REASON_FOREIGN_FLUSH, 4935 &frn->done); 4936 } 4937 } 4938 } 4939 4940 #else /* CONFIG_CGROUP_WRITEBACK */ 4941 4942 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4943 { 4944 return 0; 4945 } 4946 4947 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4948 { 4949 } 4950 4951 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4952 { 4953 } 4954 4955 #endif /* CONFIG_CGROUP_WRITEBACK */ 4956 4957 /* 4958 * DO NOT USE IN NEW FILES. 4959 * 4960 * "cgroup.event_control" implementation. 4961 * 4962 * This is way over-engineered. It tries to support fully configurable 4963 * events for each user. Such level of flexibility is completely 4964 * unnecessary especially in the light of the planned unified hierarchy. 4965 * 4966 * Please deprecate this and replace with something simpler if at all 4967 * possible. 4968 */ 4969 4970 /* 4971 * Unregister event and free resources. 4972 * 4973 * Gets called from workqueue. 4974 */ 4975 static void memcg_event_remove(struct work_struct *work) 4976 { 4977 struct mem_cgroup_event *event = 4978 container_of(work, struct mem_cgroup_event, remove); 4979 struct mem_cgroup *memcg = event->memcg; 4980 4981 remove_wait_queue(event->wqh, &event->wait); 4982 4983 event->unregister_event(memcg, event->eventfd); 4984 4985 /* Notify userspace the event is going away. */ 4986 eventfd_signal(event->eventfd); 4987 4988 eventfd_ctx_put(event->eventfd); 4989 kfree(event); 4990 css_put(&memcg->css); 4991 } 4992 4993 /* 4994 * Gets called on EPOLLHUP on eventfd when user closes it. 4995 * 4996 * Called with wqh->lock held and interrupts disabled. 4997 */ 4998 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4999 int sync, void *key) 5000 { 5001 struct mem_cgroup_event *event = 5002 container_of(wait, struct mem_cgroup_event, wait); 5003 struct mem_cgroup *memcg = event->memcg; 5004 __poll_t flags = key_to_poll(key); 5005 5006 if (flags & EPOLLHUP) { 5007 /* 5008 * If the event has been detached at cgroup removal, we 5009 * can simply return knowing the other side will cleanup 5010 * for us. 5011 * 5012 * We can't race against event freeing since the other 5013 * side will require wqh->lock via remove_wait_queue(), 5014 * which we hold. 5015 */ 5016 spin_lock(&memcg->event_list_lock); 5017 if (!list_empty(&event->list)) { 5018 list_del_init(&event->list); 5019 /* 5020 * We are in atomic context, but cgroup_event_remove() 5021 * may sleep, so we have to call it in workqueue. 5022 */ 5023 schedule_work(&event->remove); 5024 } 5025 spin_unlock(&memcg->event_list_lock); 5026 } 5027 5028 return 0; 5029 } 5030 5031 static void memcg_event_ptable_queue_proc(struct file *file, 5032 wait_queue_head_t *wqh, poll_table *pt) 5033 { 5034 struct mem_cgroup_event *event = 5035 container_of(pt, struct mem_cgroup_event, pt); 5036 5037 event->wqh = wqh; 5038 add_wait_queue(wqh, &event->wait); 5039 } 5040 5041 /* 5042 * DO NOT USE IN NEW FILES. 5043 * 5044 * Parse input and register new cgroup event handler. 5045 * 5046 * Input must be in format '<event_fd> <control_fd> <args>'. 5047 * Interpretation of args is defined by control file implementation. 5048 */ 5049 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 5050 char *buf, size_t nbytes, loff_t off) 5051 { 5052 struct cgroup_subsys_state *css = of_css(of); 5053 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5054 struct mem_cgroup_event *event; 5055 struct cgroup_subsys_state *cfile_css; 5056 unsigned int efd, cfd; 5057 struct fd efile; 5058 struct fd cfile; 5059 struct dentry *cdentry; 5060 const char *name; 5061 char *endp; 5062 int ret; 5063 5064 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 5065 return -EOPNOTSUPP; 5066 5067 buf = strstrip(buf); 5068 5069 efd = simple_strtoul(buf, &endp, 10); 5070 if (*endp != ' ') 5071 return -EINVAL; 5072 buf = endp + 1; 5073 5074 cfd = simple_strtoul(buf, &endp, 10); 5075 if ((*endp != ' ') && (*endp != '\0')) 5076 return -EINVAL; 5077 buf = endp + 1; 5078 5079 event = kzalloc(sizeof(*event), GFP_KERNEL); 5080 if (!event) 5081 return -ENOMEM; 5082 5083 event->memcg = memcg; 5084 INIT_LIST_HEAD(&event->list); 5085 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 5086 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 5087 INIT_WORK(&event->remove, memcg_event_remove); 5088 5089 efile = fdget(efd); 5090 if (!efile.file) { 5091 ret = -EBADF; 5092 goto out_kfree; 5093 } 5094 5095 event->eventfd = eventfd_ctx_fileget(efile.file); 5096 if (IS_ERR(event->eventfd)) { 5097 ret = PTR_ERR(event->eventfd); 5098 goto out_put_efile; 5099 } 5100 5101 cfile = fdget(cfd); 5102 if (!cfile.file) { 5103 ret = -EBADF; 5104 goto out_put_eventfd; 5105 } 5106 5107 /* the process need read permission on control file */ 5108 /* AV: shouldn't we check that it's been opened for read instead? */ 5109 ret = file_permission(cfile.file, MAY_READ); 5110 if (ret < 0) 5111 goto out_put_cfile; 5112 5113 /* 5114 * The control file must be a regular cgroup1 file. As a regular cgroup 5115 * file can't be renamed, it's safe to access its name afterwards. 5116 */ 5117 cdentry = cfile.file->f_path.dentry; 5118 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 5119 ret = -EINVAL; 5120 goto out_put_cfile; 5121 } 5122 5123 /* 5124 * Determine the event callbacks and set them in @event. This used 5125 * to be done via struct cftype but cgroup core no longer knows 5126 * about these events. The following is crude but the whole thing 5127 * is for compatibility anyway. 5128 * 5129 * DO NOT ADD NEW FILES. 5130 */ 5131 name = cdentry->d_name.name; 5132 5133 if (!strcmp(name, "memory.usage_in_bytes")) { 5134 event->register_event = mem_cgroup_usage_register_event; 5135 event->unregister_event = mem_cgroup_usage_unregister_event; 5136 } else if (!strcmp(name, "memory.oom_control")) { 5137 event->register_event = mem_cgroup_oom_register_event; 5138 event->unregister_event = mem_cgroup_oom_unregister_event; 5139 } else if (!strcmp(name, "memory.pressure_level")) { 5140 event->register_event = vmpressure_register_event; 5141 event->unregister_event = vmpressure_unregister_event; 5142 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 5143 event->register_event = memsw_cgroup_usage_register_event; 5144 event->unregister_event = memsw_cgroup_usage_unregister_event; 5145 } else { 5146 ret = -EINVAL; 5147 goto out_put_cfile; 5148 } 5149 5150 /* 5151 * Verify @cfile should belong to @css. Also, remaining events are 5152 * automatically removed on cgroup destruction but the removal is 5153 * asynchronous, so take an extra ref on @css. 5154 */ 5155 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 5156 &memory_cgrp_subsys); 5157 ret = -EINVAL; 5158 if (IS_ERR(cfile_css)) 5159 goto out_put_cfile; 5160 if (cfile_css != css) { 5161 css_put(cfile_css); 5162 goto out_put_cfile; 5163 } 5164 5165 ret = event->register_event(memcg, event->eventfd, buf); 5166 if (ret) 5167 goto out_put_css; 5168 5169 vfs_poll(efile.file, &event->pt); 5170 5171 spin_lock_irq(&memcg->event_list_lock); 5172 list_add(&event->list, &memcg->event_list); 5173 spin_unlock_irq(&memcg->event_list_lock); 5174 5175 fdput(cfile); 5176 fdput(efile); 5177 5178 return nbytes; 5179 5180 out_put_css: 5181 css_put(css); 5182 out_put_cfile: 5183 fdput(cfile); 5184 out_put_eventfd: 5185 eventfd_ctx_put(event->eventfd); 5186 out_put_efile: 5187 fdput(efile); 5188 out_kfree: 5189 kfree(event); 5190 5191 return ret; 5192 } 5193 5194 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG) 5195 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 5196 { 5197 /* 5198 * Deprecated. 5199 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 5200 */ 5201 return 0; 5202 } 5203 #endif 5204 5205 static int memory_stat_show(struct seq_file *m, void *v); 5206 5207 static struct cftype mem_cgroup_legacy_files[] = { 5208 { 5209 .name = "usage_in_bytes", 5210 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5211 .read_u64 = mem_cgroup_read_u64, 5212 }, 5213 { 5214 .name = "max_usage_in_bytes", 5215 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5216 .write = mem_cgroup_reset, 5217 .read_u64 = mem_cgroup_read_u64, 5218 }, 5219 { 5220 .name = "limit_in_bytes", 5221 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5222 .write = mem_cgroup_write, 5223 .read_u64 = mem_cgroup_read_u64, 5224 }, 5225 { 5226 .name = "soft_limit_in_bytes", 5227 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5228 .write = mem_cgroup_write, 5229 .read_u64 = mem_cgroup_read_u64, 5230 }, 5231 { 5232 .name = "failcnt", 5233 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5234 .write = mem_cgroup_reset, 5235 .read_u64 = mem_cgroup_read_u64, 5236 }, 5237 { 5238 .name = "stat", 5239 .seq_show = memory_stat_show, 5240 }, 5241 { 5242 .name = "force_empty", 5243 .write = mem_cgroup_force_empty_write, 5244 }, 5245 { 5246 .name = "use_hierarchy", 5247 .write_u64 = mem_cgroup_hierarchy_write, 5248 .read_u64 = mem_cgroup_hierarchy_read, 5249 }, 5250 { 5251 .name = "cgroup.event_control", /* XXX: for compat */ 5252 .write = memcg_write_event_control, 5253 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5254 }, 5255 { 5256 .name = "swappiness", 5257 .read_u64 = mem_cgroup_swappiness_read, 5258 .write_u64 = mem_cgroup_swappiness_write, 5259 }, 5260 { 5261 .name = "move_charge_at_immigrate", 5262 .read_u64 = mem_cgroup_move_charge_read, 5263 .write_u64 = mem_cgroup_move_charge_write, 5264 }, 5265 { 5266 .name = "oom_control", 5267 .seq_show = mem_cgroup_oom_control_read, 5268 .write_u64 = mem_cgroup_oom_control_write, 5269 }, 5270 { 5271 .name = "pressure_level", 5272 .seq_show = mem_cgroup_dummy_seq_show, 5273 }, 5274 #ifdef CONFIG_NUMA 5275 { 5276 .name = "numa_stat", 5277 .seq_show = memcg_numa_stat_show, 5278 }, 5279 #endif 5280 { 5281 .name = "kmem.limit_in_bytes", 5282 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5283 .write = mem_cgroup_write, 5284 .read_u64 = mem_cgroup_read_u64, 5285 }, 5286 { 5287 .name = "kmem.usage_in_bytes", 5288 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5289 .read_u64 = mem_cgroup_read_u64, 5290 }, 5291 { 5292 .name = "kmem.failcnt", 5293 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5294 .write = mem_cgroup_reset, 5295 .read_u64 = mem_cgroup_read_u64, 5296 }, 5297 { 5298 .name = "kmem.max_usage_in_bytes", 5299 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5300 .write = mem_cgroup_reset, 5301 .read_u64 = mem_cgroup_read_u64, 5302 }, 5303 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG) 5304 { 5305 .name = "kmem.slabinfo", 5306 .seq_show = mem_cgroup_slab_show, 5307 }, 5308 #endif 5309 { 5310 .name = "kmem.tcp.limit_in_bytes", 5311 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5312 .write = mem_cgroup_write, 5313 .read_u64 = mem_cgroup_read_u64, 5314 }, 5315 { 5316 .name = "kmem.tcp.usage_in_bytes", 5317 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5318 .read_u64 = mem_cgroup_read_u64, 5319 }, 5320 { 5321 .name = "kmem.tcp.failcnt", 5322 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5323 .write = mem_cgroup_reset, 5324 .read_u64 = mem_cgroup_read_u64, 5325 }, 5326 { 5327 .name = "kmem.tcp.max_usage_in_bytes", 5328 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5329 .write = mem_cgroup_reset, 5330 .read_u64 = mem_cgroup_read_u64, 5331 }, 5332 { }, /* terminate */ 5333 }; 5334 5335 /* 5336 * Private memory cgroup IDR 5337 * 5338 * Swap-out records and page cache shadow entries need to store memcg 5339 * references in constrained space, so we maintain an ID space that is 5340 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5341 * memory-controlled cgroups to 64k. 5342 * 5343 * However, there usually are many references to the offline CSS after 5344 * the cgroup has been destroyed, such as page cache or reclaimable 5345 * slab objects, that don't need to hang on to the ID. We want to keep 5346 * those dead CSS from occupying IDs, or we might quickly exhaust the 5347 * relatively small ID space and prevent the creation of new cgroups 5348 * even when there are much fewer than 64k cgroups - possibly none. 5349 * 5350 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5351 * be freed and recycled when it's no longer needed, which is usually 5352 * when the CSS is offlined. 5353 * 5354 * The only exception to that are records of swapped out tmpfs/shmem 5355 * pages that need to be attributed to live ancestors on swapin. But 5356 * those references are manageable from userspace. 5357 */ 5358 5359 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 5360 static DEFINE_IDR(mem_cgroup_idr); 5361 5362 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5363 { 5364 if (memcg->id.id > 0) { 5365 idr_remove(&mem_cgroup_idr, memcg->id.id); 5366 memcg->id.id = 0; 5367 } 5368 } 5369 5370 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5371 unsigned int n) 5372 { 5373 refcount_add(n, &memcg->id.ref); 5374 } 5375 5376 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5377 { 5378 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5379 mem_cgroup_id_remove(memcg); 5380 5381 /* Memcg ID pins CSS */ 5382 css_put(&memcg->css); 5383 } 5384 } 5385 5386 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5387 { 5388 mem_cgroup_id_put_many(memcg, 1); 5389 } 5390 5391 /** 5392 * mem_cgroup_from_id - look up a memcg from a memcg id 5393 * @id: the memcg id to look up 5394 * 5395 * Caller must hold rcu_read_lock(). 5396 */ 5397 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5398 { 5399 WARN_ON_ONCE(!rcu_read_lock_held()); 5400 return idr_find(&mem_cgroup_idr, id); 5401 } 5402 5403 #ifdef CONFIG_SHRINKER_DEBUG 5404 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5405 { 5406 struct cgroup *cgrp; 5407 struct cgroup_subsys_state *css; 5408 struct mem_cgroup *memcg; 5409 5410 cgrp = cgroup_get_from_id(ino); 5411 if (IS_ERR(cgrp)) 5412 return ERR_CAST(cgrp); 5413 5414 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5415 if (css) 5416 memcg = container_of(css, struct mem_cgroup, css); 5417 else 5418 memcg = ERR_PTR(-ENOENT); 5419 5420 cgroup_put(cgrp); 5421 5422 return memcg; 5423 } 5424 #endif 5425 5426 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5427 { 5428 struct mem_cgroup_per_node *pn; 5429 5430 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5431 if (!pn) 5432 return 1; 5433 5434 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5435 GFP_KERNEL_ACCOUNT); 5436 if (!pn->lruvec_stats_percpu) { 5437 kfree(pn); 5438 return 1; 5439 } 5440 5441 lruvec_init(&pn->lruvec); 5442 pn->memcg = memcg; 5443 5444 memcg->nodeinfo[node] = pn; 5445 return 0; 5446 } 5447 5448 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5449 { 5450 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5451 5452 if (!pn) 5453 return; 5454 5455 free_percpu(pn->lruvec_stats_percpu); 5456 kfree(pn); 5457 } 5458 5459 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5460 { 5461 int node; 5462 5463 if (memcg->orig_objcg) 5464 obj_cgroup_put(memcg->orig_objcg); 5465 5466 for_each_node(node) 5467 free_mem_cgroup_per_node_info(memcg, node); 5468 kfree(memcg->vmstats); 5469 free_percpu(memcg->vmstats_percpu); 5470 kfree(memcg); 5471 } 5472 5473 static void mem_cgroup_free(struct mem_cgroup *memcg) 5474 { 5475 lru_gen_exit_memcg(memcg); 5476 memcg_wb_domain_exit(memcg); 5477 __mem_cgroup_free(memcg); 5478 } 5479 5480 static struct mem_cgroup *mem_cgroup_alloc(void) 5481 { 5482 struct mem_cgroup *memcg; 5483 int node; 5484 int __maybe_unused i; 5485 long error = -ENOMEM; 5486 5487 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5488 if (!memcg) 5489 return ERR_PTR(error); 5490 5491 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5492 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5493 if (memcg->id.id < 0) { 5494 error = memcg->id.id; 5495 goto fail; 5496 } 5497 5498 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL); 5499 if (!memcg->vmstats) 5500 goto fail; 5501 5502 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5503 GFP_KERNEL_ACCOUNT); 5504 if (!memcg->vmstats_percpu) 5505 goto fail; 5506 5507 for_each_node(node) 5508 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5509 goto fail; 5510 5511 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5512 goto fail; 5513 5514 INIT_WORK(&memcg->high_work, high_work_func); 5515 INIT_LIST_HEAD(&memcg->oom_notify); 5516 mutex_init(&memcg->thresholds_lock); 5517 spin_lock_init(&memcg->move_lock); 5518 vmpressure_init(&memcg->vmpressure); 5519 INIT_LIST_HEAD(&memcg->event_list); 5520 spin_lock_init(&memcg->event_list_lock); 5521 memcg->socket_pressure = jiffies; 5522 #ifdef CONFIG_MEMCG_KMEM 5523 memcg->kmemcg_id = -1; 5524 INIT_LIST_HEAD(&memcg->objcg_list); 5525 #endif 5526 #ifdef CONFIG_CGROUP_WRITEBACK 5527 INIT_LIST_HEAD(&memcg->cgwb_list); 5528 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5529 memcg->cgwb_frn[i].done = 5530 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5531 #endif 5532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5533 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5534 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5535 memcg->deferred_split_queue.split_queue_len = 0; 5536 #endif 5537 lru_gen_init_memcg(memcg); 5538 return memcg; 5539 fail: 5540 mem_cgroup_id_remove(memcg); 5541 __mem_cgroup_free(memcg); 5542 return ERR_PTR(error); 5543 } 5544 5545 static struct cgroup_subsys_state * __ref 5546 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5547 { 5548 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5549 struct mem_cgroup *memcg, *old_memcg; 5550 5551 old_memcg = set_active_memcg(parent); 5552 memcg = mem_cgroup_alloc(); 5553 set_active_memcg(old_memcg); 5554 if (IS_ERR(memcg)) 5555 return ERR_CAST(memcg); 5556 5557 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5558 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5559 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5560 memcg->zswap_max = PAGE_COUNTER_MAX; 5561 WRITE_ONCE(memcg->zswap_writeback, 5562 !parent || READ_ONCE(parent->zswap_writeback)); 5563 #endif 5564 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5565 if (parent) { 5566 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 5567 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 5568 5569 page_counter_init(&memcg->memory, &parent->memory); 5570 page_counter_init(&memcg->swap, &parent->swap); 5571 page_counter_init(&memcg->kmem, &parent->kmem); 5572 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5573 } else { 5574 init_memcg_events(); 5575 page_counter_init(&memcg->memory, NULL); 5576 page_counter_init(&memcg->swap, NULL); 5577 page_counter_init(&memcg->kmem, NULL); 5578 page_counter_init(&memcg->tcpmem, NULL); 5579 5580 root_mem_cgroup = memcg; 5581 return &memcg->css; 5582 } 5583 5584 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5585 static_branch_inc(&memcg_sockets_enabled_key); 5586 5587 #if defined(CONFIG_MEMCG_KMEM) 5588 if (!cgroup_memory_nobpf) 5589 static_branch_inc(&memcg_bpf_enabled_key); 5590 #endif 5591 5592 return &memcg->css; 5593 } 5594 5595 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5596 { 5597 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5598 5599 if (memcg_online_kmem(memcg)) 5600 goto remove_id; 5601 5602 /* 5603 * A memcg must be visible for expand_shrinker_info() 5604 * by the time the maps are allocated. So, we allocate maps 5605 * here, when for_each_mem_cgroup() can't skip it. 5606 */ 5607 if (alloc_shrinker_info(memcg)) 5608 goto offline_kmem; 5609 5610 if (unlikely(mem_cgroup_is_root(memcg))) 5611 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5612 FLUSH_TIME); 5613 lru_gen_online_memcg(memcg); 5614 5615 /* Online state pins memcg ID, memcg ID pins CSS */ 5616 refcount_set(&memcg->id.ref, 1); 5617 css_get(css); 5618 5619 /* 5620 * Ensure mem_cgroup_from_id() works once we're fully online. 5621 * 5622 * We could do this earlier and require callers to filter with 5623 * css_tryget_online(). But right now there are no users that 5624 * need earlier access, and the workingset code relies on the 5625 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 5626 * publish it here at the end of onlining. This matches the 5627 * regular ID destruction during offlining. 5628 */ 5629 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5630 5631 return 0; 5632 offline_kmem: 5633 memcg_offline_kmem(memcg); 5634 remove_id: 5635 mem_cgroup_id_remove(memcg); 5636 return -ENOMEM; 5637 } 5638 5639 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5640 { 5641 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5642 struct mem_cgroup_event *event, *tmp; 5643 5644 /* 5645 * Unregister events and notify userspace. 5646 * Notify userspace about cgroup removing only after rmdir of cgroup 5647 * directory to avoid race between userspace and kernelspace. 5648 */ 5649 spin_lock_irq(&memcg->event_list_lock); 5650 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5651 list_del_init(&event->list); 5652 schedule_work(&event->remove); 5653 } 5654 spin_unlock_irq(&memcg->event_list_lock); 5655 5656 page_counter_set_min(&memcg->memory, 0); 5657 page_counter_set_low(&memcg->memory, 0); 5658 5659 zswap_memcg_offline_cleanup(memcg); 5660 5661 memcg_offline_kmem(memcg); 5662 reparent_shrinker_deferred(memcg); 5663 wb_memcg_offline(memcg); 5664 lru_gen_offline_memcg(memcg); 5665 5666 drain_all_stock(memcg); 5667 5668 mem_cgroup_id_put(memcg); 5669 } 5670 5671 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5672 { 5673 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5674 5675 invalidate_reclaim_iterators(memcg); 5676 lru_gen_release_memcg(memcg); 5677 } 5678 5679 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5680 { 5681 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5682 int __maybe_unused i; 5683 5684 #ifdef CONFIG_CGROUP_WRITEBACK 5685 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5686 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5687 #endif 5688 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5689 static_branch_dec(&memcg_sockets_enabled_key); 5690 5691 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5692 static_branch_dec(&memcg_sockets_enabled_key); 5693 5694 #if defined(CONFIG_MEMCG_KMEM) 5695 if (!cgroup_memory_nobpf) 5696 static_branch_dec(&memcg_bpf_enabled_key); 5697 #endif 5698 5699 vmpressure_cleanup(&memcg->vmpressure); 5700 cancel_work_sync(&memcg->high_work); 5701 mem_cgroup_remove_from_trees(memcg); 5702 free_shrinker_info(memcg); 5703 mem_cgroup_free(memcg); 5704 } 5705 5706 /** 5707 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5708 * @css: the target css 5709 * 5710 * Reset the states of the mem_cgroup associated with @css. This is 5711 * invoked when the userland requests disabling on the default hierarchy 5712 * but the memcg is pinned through dependency. The memcg should stop 5713 * applying policies and should revert to the vanilla state as it may be 5714 * made visible again. 5715 * 5716 * The current implementation only resets the essential configurations. 5717 * This needs to be expanded to cover all the visible parts. 5718 */ 5719 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5720 { 5721 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5722 5723 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5724 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5725 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5726 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5727 page_counter_set_min(&memcg->memory, 0); 5728 page_counter_set_low(&memcg->memory, 0); 5729 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5730 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5731 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5732 memcg_wb_domain_size_changed(memcg); 5733 } 5734 5735 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5736 { 5737 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5738 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5739 struct memcg_vmstats_percpu *statc; 5740 long delta, delta_cpu, v; 5741 int i, nid; 5742 5743 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5744 5745 for (i = 0; i < MEMCG_NR_STAT; i++) { 5746 /* 5747 * Collect the aggregated propagation counts of groups 5748 * below us. We're in a per-cpu loop here and this is 5749 * a global counter, so the first cycle will get them. 5750 */ 5751 delta = memcg->vmstats->state_pending[i]; 5752 if (delta) 5753 memcg->vmstats->state_pending[i] = 0; 5754 5755 /* Add CPU changes on this level since the last flush */ 5756 delta_cpu = 0; 5757 v = READ_ONCE(statc->state[i]); 5758 if (v != statc->state_prev[i]) { 5759 delta_cpu = v - statc->state_prev[i]; 5760 delta += delta_cpu; 5761 statc->state_prev[i] = v; 5762 } 5763 5764 /* Aggregate counts on this level and propagate upwards */ 5765 if (delta_cpu) 5766 memcg->vmstats->state_local[i] += delta_cpu; 5767 5768 if (delta) { 5769 memcg->vmstats->state[i] += delta; 5770 if (parent) 5771 parent->vmstats->state_pending[i] += delta; 5772 } 5773 } 5774 5775 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 5776 delta = memcg->vmstats->events_pending[i]; 5777 if (delta) 5778 memcg->vmstats->events_pending[i] = 0; 5779 5780 delta_cpu = 0; 5781 v = READ_ONCE(statc->events[i]); 5782 if (v != statc->events_prev[i]) { 5783 delta_cpu = v - statc->events_prev[i]; 5784 delta += delta_cpu; 5785 statc->events_prev[i] = v; 5786 } 5787 5788 if (delta_cpu) 5789 memcg->vmstats->events_local[i] += delta_cpu; 5790 5791 if (delta) { 5792 memcg->vmstats->events[i] += delta; 5793 if (parent) 5794 parent->vmstats->events_pending[i] += delta; 5795 } 5796 } 5797 5798 for_each_node_state(nid, N_MEMORY) { 5799 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5800 struct mem_cgroup_per_node *ppn = NULL; 5801 struct lruvec_stats_percpu *lstatc; 5802 5803 if (parent) 5804 ppn = parent->nodeinfo[nid]; 5805 5806 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5807 5808 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5809 delta = pn->lruvec_stats.state_pending[i]; 5810 if (delta) 5811 pn->lruvec_stats.state_pending[i] = 0; 5812 5813 delta_cpu = 0; 5814 v = READ_ONCE(lstatc->state[i]); 5815 if (v != lstatc->state_prev[i]) { 5816 delta_cpu = v - lstatc->state_prev[i]; 5817 delta += delta_cpu; 5818 lstatc->state_prev[i] = v; 5819 } 5820 5821 if (delta_cpu) 5822 pn->lruvec_stats.state_local[i] += delta_cpu; 5823 5824 if (delta) { 5825 pn->lruvec_stats.state[i] += delta; 5826 if (ppn) 5827 ppn->lruvec_stats.state_pending[i] += delta; 5828 } 5829 } 5830 } 5831 statc->stats_updates = 0; 5832 /* We are in a per-cpu loop here, only do the atomic write once */ 5833 if (atomic64_read(&memcg->vmstats->stats_updates)) 5834 atomic64_set(&memcg->vmstats->stats_updates, 0); 5835 } 5836 5837 #ifdef CONFIG_MMU 5838 /* Handlers for move charge at task migration. */ 5839 static int mem_cgroup_do_precharge(unsigned long count) 5840 { 5841 int ret; 5842 5843 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5844 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5845 if (!ret) { 5846 mc.precharge += count; 5847 return ret; 5848 } 5849 5850 /* Try charges one by one with reclaim, but do not retry */ 5851 while (count--) { 5852 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5853 if (ret) 5854 return ret; 5855 mc.precharge++; 5856 cond_resched(); 5857 } 5858 return 0; 5859 } 5860 5861 union mc_target { 5862 struct page *page; 5863 swp_entry_t ent; 5864 }; 5865 5866 enum mc_target_type { 5867 MC_TARGET_NONE = 0, 5868 MC_TARGET_PAGE, 5869 MC_TARGET_SWAP, 5870 MC_TARGET_DEVICE, 5871 }; 5872 5873 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5874 unsigned long addr, pte_t ptent) 5875 { 5876 struct page *page = vm_normal_page(vma, addr, ptent); 5877 5878 if (!page) 5879 return NULL; 5880 if (PageAnon(page)) { 5881 if (!(mc.flags & MOVE_ANON)) 5882 return NULL; 5883 } else { 5884 if (!(mc.flags & MOVE_FILE)) 5885 return NULL; 5886 } 5887 get_page(page); 5888 5889 return page; 5890 } 5891 5892 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5893 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5894 pte_t ptent, swp_entry_t *entry) 5895 { 5896 struct page *page = NULL; 5897 swp_entry_t ent = pte_to_swp_entry(ptent); 5898 5899 if (!(mc.flags & MOVE_ANON)) 5900 return NULL; 5901 5902 /* 5903 * Handle device private pages that are not accessible by the CPU, but 5904 * stored as special swap entries in the page table. 5905 */ 5906 if (is_device_private_entry(ent)) { 5907 page = pfn_swap_entry_to_page(ent); 5908 if (!get_page_unless_zero(page)) 5909 return NULL; 5910 return page; 5911 } 5912 5913 if (non_swap_entry(ent)) 5914 return NULL; 5915 5916 /* 5917 * Because swap_cache_get_folio() updates some statistics counter, 5918 * we call find_get_page() with swapper_space directly. 5919 */ 5920 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5921 entry->val = ent.val; 5922 5923 return page; 5924 } 5925 #else 5926 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5927 pte_t ptent, swp_entry_t *entry) 5928 { 5929 return NULL; 5930 } 5931 #endif 5932 5933 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5934 unsigned long addr, pte_t ptent) 5935 { 5936 unsigned long index; 5937 struct folio *folio; 5938 5939 if (!vma->vm_file) /* anonymous vma */ 5940 return NULL; 5941 if (!(mc.flags & MOVE_FILE)) 5942 return NULL; 5943 5944 /* folio is moved even if it's not RSS of this task(page-faulted). */ 5945 /* shmem/tmpfs may report page out on swap: account for that too. */ 5946 index = linear_page_index(vma, addr); 5947 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 5948 if (IS_ERR(folio)) 5949 return NULL; 5950 return folio_file_page(folio, index); 5951 } 5952 5953 /** 5954 * mem_cgroup_move_account - move account of the page 5955 * @page: the page 5956 * @compound: charge the page as compound or small page 5957 * @from: mem_cgroup which the page is moved from. 5958 * @to: mem_cgroup which the page is moved to. @from != @to. 5959 * 5960 * The page must be locked and not on the LRU. 5961 * 5962 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5963 * from old cgroup. 5964 */ 5965 static int mem_cgroup_move_account(struct page *page, 5966 bool compound, 5967 struct mem_cgroup *from, 5968 struct mem_cgroup *to) 5969 { 5970 struct folio *folio = page_folio(page); 5971 struct lruvec *from_vec, *to_vec; 5972 struct pglist_data *pgdat; 5973 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5974 int nid, ret; 5975 5976 VM_BUG_ON(from == to); 5977 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5978 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5979 VM_BUG_ON(compound && !folio_test_large(folio)); 5980 5981 ret = -EINVAL; 5982 if (folio_memcg(folio) != from) 5983 goto out; 5984 5985 pgdat = folio_pgdat(folio); 5986 from_vec = mem_cgroup_lruvec(from, pgdat); 5987 to_vec = mem_cgroup_lruvec(to, pgdat); 5988 5989 folio_memcg_lock(folio); 5990 5991 if (folio_test_anon(folio)) { 5992 if (folio_mapped(folio)) { 5993 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5994 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5995 if (folio_test_pmd_mappable(folio)) { 5996 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5997 -nr_pages); 5998 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5999 nr_pages); 6000 } 6001 } 6002 } else { 6003 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 6004 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 6005 6006 if (folio_test_swapbacked(folio)) { 6007 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 6008 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 6009 } 6010 6011 if (folio_mapped(folio)) { 6012 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 6013 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 6014 } 6015 6016 if (folio_test_dirty(folio)) { 6017 struct address_space *mapping = folio_mapping(folio); 6018 6019 if (mapping_can_writeback(mapping)) { 6020 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 6021 -nr_pages); 6022 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 6023 nr_pages); 6024 } 6025 } 6026 } 6027 6028 #ifdef CONFIG_SWAP 6029 if (folio_test_swapcache(folio)) { 6030 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 6031 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 6032 } 6033 #endif 6034 if (folio_test_writeback(folio)) { 6035 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 6036 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 6037 } 6038 6039 /* 6040 * All state has been migrated, let's switch to the new memcg. 6041 * 6042 * It is safe to change page's memcg here because the page 6043 * is referenced, charged, isolated, and locked: we can't race 6044 * with (un)charging, migration, LRU putback, or anything else 6045 * that would rely on a stable page's memory cgroup. 6046 * 6047 * Note that folio_memcg_lock is a memcg lock, not a page lock, 6048 * to save space. As soon as we switch page's memory cgroup to a 6049 * new memcg that isn't locked, the above state can change 6050 * concurrently again. Make sure we're truly done with it. 6051 */ 6052 smp_mb(); 6053 6054 css_get(&to->css); 6055 css_put(&from->css); 6056 6057 folio->memcg_data = (unsigned long)to; 6058 6059 __folio_memcg_unlock(from); 6060 6061 ret = 0; 6062 nid = folio_nid(folio); 6063 6064 local_irq_disable(); 6065 mem_cgroup_charge_statistics(to, nr_pages); 6066 memcg_check_events(to, nid); 6067 mem_cgroup_charge_statistics(from, -nr_pages); 6068 memcg_check_events(from, nid); 6069 local_irq_enable(); 6070 out: 6071 return ret; 6072 } 6073 6074 /** 6075 * get_mctgt_type - get target type of moving charge 6076 * @vma: the vma the pte to be checked belongs 6077 * @addr: the address corresponding to the pte to be checked 6078 * @ptent: the pte to be checked 6079 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6080 * 6081 * Context: Called with pte lock held. 6082 * Return: 6083 * * MC_TARGET_NONE - If the pte is not a target for move charge. 6084 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for 6085 * move charge. If @target is not NULL, the page is stored in target->page 6086 * with extra refcnt taken (Caller should release it). 6087 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a 6088 * target for charge migration. If @target is not NULL, the entry is 6089 * stored in target->ent. 6090 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and 6091 * thus not on the lru. For now such page is charged like a regular page 6092 * would be as it is just special memory taking the place of a regular page. 6093 * See Documentations/vm/hmm.txt and include/linux/hmm.h 6094 */ 6095 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6096 unsigned long addr, pte_t ptent, union mc_target *target) 6097 { 6098 struct page *page = NULL; 6099 enum mc_target_type ret = MC_TARGET_NONE; 6100 swp_entry_t ent = { .val = 0 }; 6101 6102 if (pte_present(ptent)) 6103 page = mc_handle_present_pte(vma, addr, ptent); 6104 else if (pte_none_mostly(ptent)) 6105 /* 6106 * PTE markers should be treated as a none pte here, separated 6107 * from other swap handling below. 6108 */ 6109 page = mc_handle_file_pte(vma, addr, ptent); 6110 else if (is_swap_pte(ptent)) 6111 page = mc_handle_swap_pte(vma, ptent, &ent); 6112 6113 if (target && page) { 6114 if (!trylock_page(page)) { 6115 put_page(page); 6116 return ret; 6117 } 6118 /* 6119 * page_mapped() must be stable during the move. This 6120 * pte is locked, so if it's present, the page cannot 6121 * become unmapped. If it isn't, we have only partial 6122 * control over the mapped state: the page lock will 6123 * prevent new faults against pagecache and swapcache, 6124 * so an unmapped page cannot become mapped. However, 6125 * if the page is already mapped elsewhere, it can 6126 * unmap, and there is nothing we can do about it. 6127 * Alas, skip moving the page in this case. 6128 */ 6129 if (!pte_present(ptent) && page_mapped(page)) { 6130 unlock_page(page); 6131 put_page(page); 6132 return ret; 6133 } 6134 } 6135 6136 if (!page && !ent.val) 6137 return ret; 6138 if (page) { 6139 /* 6140 * Do only loose check w/o serialization. 6141 * mem_cgroup_move_account() checks the page is valid or 6142 * not under LRU exclusion. 6143 */ 6144 if (page_memcg(page) == mc.from) { 6145 ret = MC_TARGET_PAGE; 6146 if (is_device_private_page(page) || 6147 is_device_coherent_page(page)) 6148 ret = MC_TARGET_DEVICE; 6149 if (target) 6150 target->page = page; 6151 } 6152 if (!ret || !target) { 6153 if (target) 6154 unlock_page(page); 6155 put_page(page); 6156 } 6157 } 6158 /* 6159 * There is a swap entry and a page doesn't exist or isn't charged. 6160 * But we cannot move a tail-page in a THP. 6161 */ 6162 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 6163 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 6164 ret = MC_TARGET_SWAP; 6165 if (target) 6166 target->ent = ent; 6167 } 6168 return ret; 6169 } 6170 6171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6172 /* 6173 * We don't consider PMD mapped swapping or file mapped pages because THP does 6174 * not support them for now. 6175 * Caller should make sure that pmd_trans_huge(pmd) is true. 6176 */ 6177 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6178 unsigned long addr, pmd_t pmd, union mc_target *target) 6179 { 6180 struct page *page = NULL; 6181 enum mc_target_type ret = MC_TARGET_NONE; 6182 6183 if (unlikely(is_swap_pmd(pmd))) { 6184 VM_BUG_ON(thp_migration_supported() && 6185 !is_pmd_migration_entry(pmd)); 6186 return ret; 6187 } 6188 page = pmd_page(pmd); 6189 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 6190 if (!(mc.flags & MOVE_ANON)) 6191 return ret; 6192 if (page_memcg(page) == mc.from) { 6193 ret = MC_TARGET_PAGE; 6194 if (target) { 6195 get_page(page); 6196 if (!trylock_page(page)) { 6197 put_page(page); 6198 return MC_TARGET_NONE; 6199 } 6200 target->page = page; 6201 } 6202 } 6203 return ret; 6204 } 6205 #else 6206 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6207 unsigned long addr, pmd_t pmd, union mc_target *target) 6208 { 6209 return MC_TARGET_NONE; 6210 } 6211 #endif 6212 6213 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6214 unsigned long addr, unsigned long end, 6215 struct mm_walk *walk) 6216 { 6217 struct vm_area_struct *vma = walk->vma; 6218 pte_t *pte; 6219 spinlock_t *ptl; 6220 6221 ptl = pmd_trans_huge_lock(pmd, vma); 6222 if (ptl) { 6223 /* 6224 * Note their can not be MC_TARGET_DEVICE for now as we do not 6225 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 6226 * this might change. 6227 */ 6228 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6229 mc.precharge += HPAGE_PMD_NR; 6230 spin_unlock(ptl); 6231 return 0; 6232 } 6233 6234 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6235 if (!pte) 6236 return 0; 6237 for (; addr != end; pte++, addr += PAGE_SIZE) 6238 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL)) 6239 mc.precharge++; /* increment precharge temporarily */ 6240 pte_unmap_unlock(pte - 1, ptl); 6241 cond_resched(); 6242 6243 return 0; 6244 } 6245 6246 static const struct mm_walk_ops precharge_walk_ops = { 6247 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6248 .walk_lock = PGWALK_RDLOCK, 6249 }; 6250 6251 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6252 { 6253 unsigned long precharge; 6254 6255 mmap_read_lock(mm); 6256 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 6257 mmap_read_unlock(mm); 6258 6259 precharge = mc.precharge; 6260 mc.precharge = 0; 6261 6262 return precharge; 6263 } 6264 6265 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6266 { 6267 unsigned long precharge = mem_cgroup_count_precharge(mm); 6268 6269 VM_BUG_ON(mc.moving_task); 6270 mc.moving_task = current; 6271 return mem_cgroup_do_precharge(precharge); 6272 } 6273 6274 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6275 static void __mem_cgroup_clear_mc(void) 6276 { 6277 struct mem_cgroup *from = mc.from; 6278 struct mem_cgroup *to = mc.to; 6279 6280 /* we must uncharge all the leftover precharges from mc.to */ 6281 if (mc.precharge) { 6282 mem_cgroup_cancel_charge(mc.to, mc.precharge); 6283 mc.precharge = 0; 6284 } 6285 /* 6286 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6287 * we must uncharge here. 6288 */ 6289 if (mc.moved_charge) { 6290 mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6291 mc.moved_charge = 0; 6292 } 6293 /* we must fixup refcnts and charges */ 6294 if (mc.moved_swap) { 6295 /* uncharge swap account from the old cgroup */ 6296 if (!mem_cgroup_is_root(mc.from)) 6297 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 6298 6299 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 6300 6301 /* 6302 * we charged both to->memory and to->memsw, so we 6303 * should uncharge to->memory. 6304 */ 6305 if (!mem_cgroup_is_root(mc.to)) 6306 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 6307 6308 mc.moved_swap = 0; 6309 } 6310 memcg_oom_recover(from); 6311 memcg_oom_recover(to); 6312 wake_up_all(&mc.waitq); 6313 } 6314 6315 static void mem_cgroup_clear_mc(void) 6316 { 6317 struct mm_struct *mm = mc.mm; 6318 6319 /* 6320 * we must clear moving_task before waking up waiters at the end of 6321 * task migration. 6322 */ 6323 mc.moving_task = NULL; 6324 __mem_cgroup_clear_mc(); 6325 spin_lock(&mc.lock); 6326 mc.from = NULL; 6327 mc.to = NULL; 6328 mc.mm = NULL; 6329 spin_unlock(&mc.lock); 6330 6331 mmput(mm); 6332 } 6333 6334 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6335 { 6336 struct cgroup_subsys_state *css; 6337 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 6338 struct mem_cgroup *from; 6339 struct task_struct *leader, *p; 6340 struct mm_struct *mm; 6341 unsigned long move_flags; 6342 int ret = 0; 6343 6344 /* charge immigration isn't supported on the default hierarchy */ 6345 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6346 return 0; 6347 6348 /* 6349 * Multi-process migrations only happen on the default hierarchy 6350 * where charge immigration is not used. Perform charge 6351 * immigration if @tset contains a leader and whine if there are 6352 * multiple. 6353 */ 6354 p = NULL; 6355 cgroup_taskset_for_each_leader(leader, css, tset) { 6356 WARN_ON_ONCE(p); 6357 p = leader; 6358 memcg = mem_cgroup_from_css(css); 6359 } 6360 if (!p) 6361 return 0; 6362 6363 /* 6364 * We are now committed to this value whatever it is. Changes in this 6365 * tunable will only affect upcoming migrations, not the current one. 6366 * So we need to save it, and keep it going. 6367 */ 6368 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6369 if (!move_flags) 6370 return 0; 6371 6372 from = mem_cgroup_from_task(p); 6373 6374 VM_BUG_ON(from == memcg); 6375 6376 mm = get_task_mm(p); 6377 if (!mm) 6378 return 0; 6379 /* We move charges only when we move a owner of the mm */ 6380 if (mm->owner == p) { 6381 VM_BUG_ON(mc.from); 6382 VM_BUG_ON(mc.to); 6383 VM_BUG_ON(mc.precharge); 6384 VM_BUG_ON(mc.moved_charge); 6385 VM_BUG_ON(mc.moved_swap); 6386 6387 spin_lock(&mc.lock); 6388 mc.mm = mm; 6389 mc.from = from; 6390 mc.to = memcg; 6391 mc.flags = move_flags; 6392 spin_unlock(&mc.lock); 6393 /* We set mc.moving_task later */ 6394 6395 ret = mem_cgroup_precharge_mc(mm); 6396 if (ret) 6397 mem_cgroup_clear_mc(); 6398 } else { 6399 mmput(mm); 6400 } 6401 return ret; 6402 } 6403 6404 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6405 { 6406 if (mc.to) 6407 mem_cgroup_clear_mc(); 6408 } 6409 6410 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6411 unsigned long addr, unsigned long end, 6412 struct mm_walk *walk) 6413 { 6414 int ret = 0; 6415 struct vm_area_struct *vma = walk->vma; 6416 pte_t *pte; 6417 spinlock_t *ptl; 6418 enum mc_target_type target_type; 6419 union mc_target target; 6420 struct page *page; 6421 6422 ptl = pmd_trans_huge_lock(pmd, vma); 6423 if (ptl) { 6424 if (mc.precharge < HPAGE_PMD_NR) { 6425 spin_unlock(ptl); 6426 return 0; 6427 } 6428 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6429 if (target_type == MC_TARGET_PAGE) { 6430 page = target.page; 6431 if (isolate_lru_page(page)) { 6432 if (!mem_cgroup_move_account(page, true, 6433 mc.from, mc.to)) { 6434 mc.precharge -= HPAGE_PMD_NR; 6435 mc.moved_charge += HPAGE_PMD_NR; 6436 } 6437 putback_lru_page(page); 6438 } 6439 unlock_page(page); 6440 put_page(page); 6441 } else if (target_type == MC_TARGET_DEVICE) { 6442 page = target.page; 6443 if (!mem_cgroup_move_account(page, true, 6444 mc.from, mc.to)) { 6445 mc.precharge -= HPAGE_PMD_NR; 6446 mc.moved_charge += HPAGE_PMD_NR; 6447 } 6448 unlock_page(page); 6449 put_page(page); 6450 } 6451 spin_unlock(ptl); 6452 return 0; 6453 } 6454 6455 retry: 6456 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6457 if (!pte) 6458 return 0; 6459 for (; addr != end; addr += PAGE_SIZE) { 6460 pte_t ptent = ptep_get(pte++); 6461 bool device = false; 6462 swp_entry_t ent; 6463 6464 if (!mc.precharge) 6465 break; 6466 6467 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6468 case MC_TARGET_DEVICE: 6469 device = true; 6470 fallthrough; 6471 case MC_TARGET_PAGE: 6472 page = target.page; 6473 /* 6474 * We can have a part of the split pmd here. Moving it 6475 * can be done but it would be too convoluted so simply 6476 * ignore such a partial THP and keep it in original 6477 * memcg. There should be somebody mapping the head. 6478 */ 6479 if (PageTransCompound(page)) 6480 goto put; 6481 if (!device && !isolate_lru_page(page)) 6482 goto put; 6483 if (!mem_cgroup_move_account(page, false, 6484 mc.from, mc.to)) { 6485 mc.precharge--; 6486 /* we uncharge from mc.from later. */ 6487 mc.moved_charge++; 6488 } 6489 if (!device) 6490 putback_lru_page(page); 6491 put: /* get_mctgt_type() gets & locks the page */ 6492 unlock_page(page); 6493 put_page(page); 6494 break; 6495 case MC_TARGET_SWAP: 6496 ent = target.ent; 6497 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6498 mc.precharge--; 6499 mem_cgroup_id_get_many(mc.to, 1); 6500 /* we fixup other refcnts and charges later. */ 6501 mc.moved_swap++; 6502 } 6503 break; 6504 default: 6505 break; 6506 } 6507 } 6508 pte_unmap_unlock(pte - 1, ptl); 6509 cond_resched(); 6510 6511 if (addr != end) { 6512 /* 6513 * We have consumed all precharges we got in can_attach(). 6514 * We try charge one by one, but don't do any additional 6515 * charges to mc.to if we have failed in charge once in attach() 6516 * phase. 6517 */ 6518 ret = mem_cgroup_do_precharge(1); 6519 if (!ret) 6520 goto retry; 6521 } 6522 6523 return ret; 6524 } 6525 6526 static const struct mm_walk_ops charge_walk_ops = { 6527 .pmd_entry = mem_cgroup_move_charge_pte_range, 6528 .walk_lock = PGWALK_RDLOCK, 6529 }; 6530 6531 static void mem_cgroup_move_charge(void) 6532 { 6533 lru_add_drain_all(); 6534 /* 6535 * Signal folio_memcg_lock() to take the memcg's move_lock 6536 * while we're moving its pages to another memcg. Then wait 6537 * for already started RCU-only updates to finish. 6538 */ 6539 atomic_inc(&mc.from->moving_account); 6540 synchronize_rcu(); 6541 retry: 6542 if (unlikely(!mmap_read_trylock(mc.mm))) { 6543 /* 6544 * Someone who are holding the mmap_lock might be waiting in 6545 * waitq. So we cancel all extra charges, wake up all waiters, 6546 * and retry. Because we cancel precharges, we might not be able 6547 * to move enough charges, but moving charge is a best-effort 6548 * feature anyway, so it wouldn't be a big problem. 6549 */ 6550 __mem_cgroup_clear_mc(); 6551 cond_resched(); 6552 goto retry; 6553 } 6554 /* 6555 * When we have consumed all precharges and failed in doing 6556 * additional charge, the page walk just aborts. 6557 */ 6558 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 6559 mmap_read_unlock(mc.mm); 6560 atomic_dec(&mc.from->moving_account); 6561 } 6562 6563 static void mem_cgroup_move_task(void) 6564 { 6565 if (mc.to) { 6566 mem_cgroup_move_charge(); 6567 mem_cgroup_clear_mc(); 6568 } 6569 } 6570 6571 #else /* !CONFIG_MMU */ 6572 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6573 { 6574 return 0; 6575 } 6576 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6577 { 6578 } 6579 static void mem_cgroup_move_task(void) 6580 { 6581 } 6582 #endif 6583 6584 #ifdef CONFIG_MEMCG_KMEM 6585 static void mem_cgroup_fork(struct task_struct *task) 6586 { 6587 /* 6588 * Set the update flag to cause task->objcg to be initialized lazily 6589 * on the first allocation. It can be done without any synchronization 6590 * because it's always performed on the current task, so does 6591 * current_objcg_update(). 6592 */ 6593 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 6594 } 6595 6596 static void mem_cgroup_exit(struct task_struct *task) 6597 { 6598 struct obj_cgroup *objcg = task->objcg; 6599 6600 objcg = (struct obj_cgroup *) 6601 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 6602 if (objcg) 6603 obj_cgroup_put(objcg); 6604 6605 /* 6606 * Some kernel allocations can happen after this point, 6607 * but let's ignore them. It can be done without any synchronization 6608 * because it's always performed on the current task, so does 6609 * current_objcg_update(). 6610 */ 6611 task->objcg = NULL; 6612 } 6613 #endif 6614 6615 #ifdef CONFIG_LRU_GEN 6616 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 6617 { 6618 struct task_struct *task; 6619 struct cgroup_subsys_state *css; 6620 6621 /* find the first leader if there is any */ 6622 cgroup_taskset_for_each_leader(task, css, tset) 6623 break; 6624 6625 if (!task) 6626 return; 6627 6628 task_lock(task); 6629 if (task->mm && READ_ONCE(task->mm->owner) == task) 6630 lru_gen_migrate_mm(task->mm); 6631 task_unlock(task); 6632 } 6633 #else 6634 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 6635 #endif /* CONFIG_LRU_GEN */ 6636 6637 #ifdef CONFIG_MEMCG_KMEM 6638 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 6639 { 6640 struct task_struct *task; 6641 struct cgroup_subsys_state *css; 6642 6643 cgroup_taskset_for_each(task, css, tset) { 6644 /* atomically set the update bit */ 6645 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 6646 } 6647 } 6648 #else 6649 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {} 6650 #endif /* CONFIG_MEMCG_KMEM */ 6651 6652 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) 6653 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6654 { 6655 mem_cgroup_lru_gen_attach(tset); 6656 mem_cgroup_kmem_attach(tset); 6657 } 6658 #endif 6659 6660 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6661 { 6662 if (value == PAGE_COUNTER_MAX) 6663 seq_puts(m, "max\n"); 6664 else 6665 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6666 6667 return 0; 6668 } 6669 6670 static u64 memory_current_read(struct cgroup_subsys_state *css, 6671 struct cftype *cft) 6672 { 6673 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6674 6675 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6676 } 6677 6678 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6679 struct cftype *cft) 6680 { 6681 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6682 6683 return (u64)memcg->memory.watermark * PAGE_SIZE; 6684 } 6685 6686 static int memory_min_show(struct seq_file *m, void *v) 6687 { 6688 return seq_puts_memcg_tunable(m, 6689 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6690 } 6691 6692 static ssize_t memory_min_write(struct kernfs_open_file *of, 6693 char *buf, size_t nbytes, loff_t off) 6694 { 6695 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6696 unsigned long min; 6697 int err; 6698 6699 buf = strstrip(buf); 6700 err = page_counter_memparse(buf, "max", &min); 6701 if (err) 6702 return err; 6703 6704 page_counter_set_min(&memcg->memory, min); 6705 6706 return nbytes; 6707 } 6708 6709 static int memory_low_show(struct seq_file *m, void *v) 6710 { 6711 return seq_puts_memcg_tunable(m, 6712 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6713 } 6714 6715 static ssize_t memory_low_write(struct kernfs_open_file *of, 6716 char *buf, size_t nbytes, loff_t off) 6717 { 6718 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6719 unsigned long low; 6720 int err; 6721 6722 buf = strstrip(buf); 6723 err = page_counter_memparse(buf, "max", &low); 6724 if (err) 6725 return err; 6726 6727 page_counter_set_low(&memcg->memory, low); 6728 6729 return nbytes; 6730 } 6731 6732 static int memory_high_show(struct seq_file *m, void *v) 6733 { 6734 return seq_puts_memcg_tunable(m, 6735 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6736 } 6737 6738 static ssize_t memory_high_write(struct kernfs_open_file *of, 6739 char *buf, size_t nbytes, loff_t off) 6740 { 6741 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6742 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6743 bool drained = false; 6744 unsigned long high; 6745 int err; 6746 6747 buf = strstrip(buf); 6748 err = page_counter_memparse(buf, "max", &high); 6749 if (err) 6750 return err; 6751 6752 page_counter_set_high(&memcg->memory, high); 6753 6754 for (;;) { 6755 unsigned long nr_pages = page_counter_read(&memcg->memory); 6756 unsigned long reclaimed; 6757 6758 if (nr_pages <= high) 6759 break; 6760 6761 if (signal_pending(current)) 6762 break; 6763 6764 if (!drained) { 6765 drain_all_stock(memcg); 6766 drained = true; 6767 continue; 6768 } 6769 6770 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6771 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); 6772 6773 if (!reclaimed && !nr_retries--) 6774 break; 6775 } 6776 6777 memcg_wb_domain_size_changed(memcg); 6778 return nbytes; 6779 } 6780 6781 static int memory_max_show(struct seq_file *m, void *v) 6782 { 6783 return seq_puts_memcg_tunable(m, 6784 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6785 } 6786 6787 static ssize_t memory_max_write(struct kernfs_open_file *of, 6788 char *buf, size_t nbytes, loff_t off) 6789 { 6790 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6791 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6792 bool drained = false; 6793 unsigned long max; 6794 int err; 6795 6796 buf = strstrip(buf); 6797 err = page_counter_memparse(buf, "max", &max); 6798 if (err) 6799 return err; 6800 6801 xchg(&memcg->memory.max, max); 6802 6803 for (;;) { 6804 unsigned long nr_pages = page_counter_read(&memcg->memory); 6805 6806 if (nr_pages <= max) 6807 break; 6808 6809 if (signal_pending(current)) 6810 break; 6811 6812 if (!drained) { 6813 drain_all_stock(memcg); 6814 drained = true; 6815 continue; 6816 } 6817 6818 if (nr_reclaims) { 6819 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6820 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) 6821 nr_reclaims--; 6822 continue; 6823 } 6824 6825 memcg_memory_event(memcg, MEMCG_OOM); 6826 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6827 break; 6828 } 6829 6830 memcg_wb_domain_size_changed(memcg); 6831 return nbytes; 6832 } 6833 6834 /* 6835 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 6836 * if any new events become available. 6837 */ 6838 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6839 { 6840 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6841 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6842 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6843 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6844 seq_printf(m, "oom_kill %lu\n", 6845 atomic_long_read(&events[MEMCG_OOM_KILL])); 6846 seq_printf(m, "oom_group_kill %lu\n", 6847 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6848 } 6849 6850 static int memory_events_show(struct seq_file *m, void *v) 6851 { 6852 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6853 6854 __memory_events_show(m, memcg->memory_events); 6855 return 0; 6856 } 6857 6858 static int memory_events_local_show(struct seq_file *m, void *v) 6859 { 6860 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6861 6862 __memory_events_show(m, memcg->memory_events_local); 6863 return 0; 6864 } 6865 6866 static int memory_stat_show(struct seq_file *m, void *v) 6867 { 6868 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6869 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 6870 struct seq_buf s; 6871 6872 if (!buf) 6873 return -ENOMEM; 6874 seq_buf_init(&s, buf, PAGE_SIZE); 6875 memory_stat_format(memcg, &s); 6876 seq_puts(m, buf); 6877 kfree(buf); 6878 return 0; 6879 } 6880 6881 #ifdef CONFIG_NUMA 6882 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6883 int item) 6884 { 6885 return lruvec_page_state(lruvec, item) * 6886 memcg_page_state_output_unit(item); 6887 } 6888 6889 static int memory_numa_stat_show(struct seq_file *m, void *v) 6890 { 6891 int i; 6892 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6893 6894 mem_cgroup_flush_stats(memcg); 6895 6896 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6897 int nid; 6898 6899 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6900 continue; 6901 6902 seq_printf(m, "%s", memory_stats[i].name); 6903 for_each_node_state(nid, N_MEMORY) { 6904 u64 size; 6905 struct lruvec *lruvec; 6906 6907 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6908 size = lruvec_page_state_output(lruvec, 6909 memory_stats[i].idx); 6910 seq_printf(m, " N%d=%llu", nid, size); 6911 } 6912 seq_putc(m, '\n'); 6913 } 6914 6915 return 0; 6916 } 6917 #endif 6918 6919 static int memory_oom_group_show(struct seq_file *m, void *v) 6920 { 6921 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6922 6923 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 6924 6925 return 0; 6926 } 6927 6928 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6929 char *buf, size_t nbytes, loff_t off) 6930 { 6931 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6932 int ret, oom_group; 6933 6934 buf = strstrip(buf); 6935 if (!buf) 6936 return -EINVAL; 6937 6938 ret = kstrtoint(buf, 0, &oom_group); 6939 if (ret) 6940 return ret; 6941 6942 if (oom_group != 0 && oom_group != 1) 6943 return -EINVAL; 6944 6945 WRITE_ONCE(memcg->oom_group, oom_group); 6946 6947 return nbytes; 6948 } 6949 6950 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6951 size_t nbytes, loff_t off) 6952 { 6953 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6954 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6955 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6956 unsigned int reclaim_options; 6957 int err; 6958 6959 buf = strstrip(buf); 6960 err = page_counter_memparse(buf, "", &nr_to_reclaim); 6961 if (err) 6962 return err; 6963 6964 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 6965 while (nr_reclaimed < nr_to_reclaim) { 6966 unsigned long reclaimed; 6967 6968 if (signal_pending(current)) 6969 return -EINTR; 6970 6971 /* 6972 * This is the final attempt, drain percpu lru caches in the 6973 * hope of introducing more evictable pages for 6974 * try_to_free_mem_cgroup_pages(). 6975 */ 6976 if (!nr_retries) 6977 lru_add_drain_all(); 6978 6979 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6980 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX), 6981 GFP_KERNEL, reclaim_options); 6982 6983 if (!reclaimed && !nr_retries--) 6984 return -EAGAIN; 6985 6986 nr_reclaimed += reclaimed; 6987 } 6988 6989 return nbytes; 6990 } 6991 6992 static struct cftype memory_files[] = { 6993 { 6994 .name = "current", 6995 .flags = CFTYPE_NOT_ON_ROOT, 6996 .read_u64 = memory_current_read, 6997 }, 6998 { 6999 .name = "peak", 7000 .flags = CFTYPE_NOT_ON_ROOT, 7001 .read_u64 = memory_peak_read, 7002 }, 7003 { 7004 .name = "min", 7005 .flags = CFTYPE_NOT_ON_ROOT, 7006 .seq_show = memory_min_show, 7007 .write = memory_min_write, 7008 }, 7009 { 7010 .name = "low", 7011 .flags = CFTYPE_NOT_ON_ROOT, 7012 .seq_show = memory_low_show, 7013 .write = memory_low_write, 7014 }, 7015 { 7016 .name = "high", 7017 .flags = CFTYPE_NOT_ON_ROOT, 7018 .seq_show = memory_high_show, 7019 .write = memory_high_write, 7020 }, 7021 { 7022 .name = "max", 7023 .flags = CFTYPE_NOT_ON_ROOT, 7024 .seq_show = memory_max_show, 7025 .write = memory_max_write, 7026 }, 7027 { 7028 .name = "events", 7029 .flags = CFTYPE_NOT_ON_ROOT, 7030 .file_offset = offsetof(struct mem_cgroup, events_file), 7031 .seq_show = memory_events_show, 7032 }, 7033 { 7034 .name = "events.local", 7035 .flags = CFTYPE_NOT_ON_ROOT, 7036 .file_offset = offsetof(struct mem_cgroup, events_local_file), 7037 .seq_show = memory_events_local_show, 7038 }, 7039 { 7040 .name = "stat", 7041 .seq_show = memory_stat_show, 7042 }, 7043 #ifdef CONFIG_NUMA 7044 { 7045 .name = "numa_stat", 7046 .seq_show = memory_numa_stat_show, 7047 }, 7048 #endif 7049 { 7050 .name = "oom.group", 7051 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 7052 .seq_show = memory_oom_group_show, 7053 .write = memory_oom_group_write, 7054 }, 7055 { 7056 .name = "reclaim", 7057 .flags = CFTYPE_NS_DELEGATABLE, 7058 .write = memory_reclaim, 7059 }, 7060 { } /* terminate */ 7061 }; 7062 7063 struct cgroup_subsys memory_cgrp_subsys = { 7064 .css_alloc = mem_cgroup_css_alloc, 7065 .css_online = mem_cgroup_css_online, 7066 .css_offline = mem_cgroup_css_offline, 7067 .css_released = mem_cgroup_css_released, 7068 .css_free = mem_cgroup_css_free, 7069 .css_reset = mem_cgroup_css_reset, 7070 .css_rstat_flush = mem_cgroup_css_rstat_flush, 7071 .can_attach = mem_cgroup_can_attach, 7072 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) 7073 .attach = mem_cgroup_attach, 7074 #endif 7075 .cancel_attach = mem_cgroup_cancel_attach, 7076 .post_attach = mem_cgroup_move_task, 7077 #ifdef CONFIG_MEMCG_KMEM 7078 .fork = mem_cgroup_fork, 7079 .exit = mem_cgroup_exit, 7080 #endif 7081 .dfl_cftypes = memory_files, 7082 .legacy_cftypes = mem_cgroup_legacy_files, 7083 .early_init = 0, 7084 }; 7085 7086 /* 7087 * This function calculates an individual cgroup's effective 7088 * protection which is derived from its own memory.min/low, its 7089 * parent's and siblings' settings, as well as the actual memory 7090 * distribution in the tree. 7091 * 7092 * The following rules apply to the effective protection values: 7093 * 7094 * 1. At the first level of reclaim, effective protection is equal to 7095 * the declared protection in memory.min and memory.low. 7096 * 7097 * 2. To enable safe delegation of the protection configuration, at 7098 * subsequent levels the effective protection is capped to the 7099 * parent's effective protection. 7100 * 7101 * 3. To make complex and dynamic subtrees easier to configure, the 7102 * user is allowed to overcommit the declared protection at a given 7103 * level. If that is the case, the parent's effective protection is 7104 * distributed to the children in proportion to how much protection 7105 * they have declared and how much of it they are utilizing. 7106 * 7107 * This makes distribution proportional, but also work-conserving: 7108 * if one cgroup claims much more protection than it uses memory, 7109 * the unused remainder is available to its siblings. 7110 * 7111 * 4. Conversely, when the declared protection is undercommitted at a 7112 * given level, the distribution of the larger parental protection 7113 * budget is NOT proportional. A cgroup's protection from a sibling 7114 * is capped to its own memory.min/low setting. 7115 * 7116 * 5. However, to allow protecting recursive subtrees from each other 7117 * without having to declare each individual cgroup's fixed share 7118 * of the ancestor's claim to protection, any unutilized - 7119 * "floating" - protection from up the tree is distributed in 7120 * proportion to each cgroup's *usage*. This makes the protection 7121 * neutral wrt sibling cgroups and lets them compete freely over 7122 * the shared parental protection budget, but it protects the 7123 * subtree as a whole from neighboring subtrees. 7124 * 7125 * Note that 4. and 5. are not in conflict: 4. is about protecting 7126 * against immediate siblings whereas 5. is about protecting against 7127 * neighboring subtrees. 7128 */ 7129 static unsigned long effective_protection(unsigned long usage, 7130 unsigned long parent_usage, 7131 unsigned long setting, 7132 unsigned long parent_effective, 7133 unsigned long siblings_protected) 7134 { 7135 unsigned long protected; 7136 unsigned long ep; 7137 7138 protected = min(usage, setting); 7139 /* 7140 * If all cgroups at this level combined claim and use more 7141 * protection than what the parent affords them, distribute 7142 * shares in proportion to utilization. 7143 * 7144 * We are using actual utilization rather than the statically 7145 * claimed protection in order to be work-conserving: claimed 7146 * but unused protection is available to siblings that would 7147 * otherwise get a smaller chunk than what they claimed. 7148 */ 7149 if (siblings_protected > parent_effective) 7150 return protected * parent_effective / siblings_protected; 7151 7152 /* 7153 * Ok, utilized protection of all children is within what the 7154 * parent affords them, so we know whatever this child claims 7155 * and utilizes is effectively protected. 7156 * 7157 * If there is unprotected usage beyond this value, reclaim 7158 * will apply pressure in proportion to that amount. 7159 * 7160 * If there is unutilized protection, the cgroup will be fully 7161 * shielded from reclaim, but we do return a smaller value for 7162 * protection than what the group could enjoy in theory. This 7163 * is okay. With the overcommit distribution above, effective 7164 * protection is always dependent on how memory is actually 7165 * consumed among the siblings anyway. 7166 */ 7167 ep = protected; 7168 7169 /* 7170 * If the children aren't claiming (all of) the protection 7171 * afforded to them by the parent, distribute the remainder in 7172 * proportion to the (unprotected) memory of each cgroup. That 7173 * way, cgroups that aren't explicitly prioritized wrt each 7174 * other compete freely over the allowance, but they are 7175 * collectively protected from neighboring trees. 7176 * 7177 * We're using unprotected memory for the weight so that if 7178 * some cgroups DO claim explicit protection, we don't protect 7179 * the same bytes twice. 7180 * 7181 * Check both usage and parent_usage against the respective 7182 * protected values. One should imply the other, but they 7183 * aren't read atomically - make sure the division is sane. 7184 */ 7185 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 7186 return ep; 7187 if (parent_effective > siblings_protected && 7188 parent_usage > siblings_protected && 7189 usage > protected) { 7190 unsigned long unclaimed; 7191 7192 unclaimed = parent_effective - siblings_protected; 7193 unclaimed *= usage - protected; 7194 unclaimed /= parent_usage - siblings_protected; 7195 7196 ep += unclaimed; 7197 } 7198 7199 return ep; 7200 } 7201 7202 /** 7203 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 7204 * @root: the top ancestor of the sub-tree being checked 7205 * @memcg: the memory cgroup to check 7206 * 7207 * WARNING: This function is not stateless! It can only be used as part 7208 * of a top-down tree iteration, not for isolated queries. 7209 */ 7210 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 7211 struct mem_cgroup *memcg) 7212 { 7213 unsigned long usage, parent_usage; 7214 struct mem_cgroup *parent; 7215 7216 if (mem_cgroup_disabled()) 7217 return; 7218 7219 if (!root) 7220 root = root_mem_cgroup; 7221 7222 /* 7223 * Effective values of the reclaim targets are ignored so they 7224 * can be stale. Have a look at mem_cgroup_protection for more 7225 * details. 7226 * TODO: calculation should be more robust so that we do not need 7227 * that special casing. 7228 */ 7229 if (memcg == root) 7230 return; 7231 7232 usage = page_counter_read(&memcg->memory); 7233 if (!usage) 7234 return; 7235 7236 parent = parent_mem_cgroup(memcg); 7237 7238 if (parent == root) { 7239 memcg->memory.emin = READ_ONCE(memcg->memory.min); 7240 memcg->memory.elow = READ_ONCE(memcg->memory.low); 7241 return; 7242 } 7243 7244 parent_usage = page_counter_read(&parent->memory); 7245 7246 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 7247 READ_ONCE(memcg->memory.min), 7248 READ_ONCE(parent->memory.emin), 7249 atomic_long_read(&parent->memory.children_min_usage))); 7250 7251 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 7252 READ_ONCE(memcg->memory.low), 7253 READ_ONCE(parent->memory.elow), 7254 atomic_long_read(&parent->memory.children_low_usage))); 7255 } 7256 7257 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 7258 gfp_t gfp) 7259 { 7260 int ret; 7261 7262 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 7263 if (ret) 7264 goto out; 7265 7266 mem_cgroup_commit_charge(folio, memcg); 7267 out: 7268 return ret; 7269 } 7270 7271 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 7272 { 7273 struct mem_cgroup *memcg; 7274 int ret; 7275 7276 memcg = get_mem_cgroup_from_mm(mm); 7277 ret = charge_memcg(folio, memcg, gfp); 7278 css_put(&memcg->css); 7279 7280 return ret; 7281 } 7282 7283 /** 7284 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio 7285 * @memcg: memcg to charge. 7286 * @gfp: reclaim mode. 7287 * @nr_pages: number of pages to charge. 7288 * 7289 * This function is called when allocating a huge page folio to determine if 7290 * the memcg has the capacity for it. It does not commit the charge yet, 7291 * as the hugetlb folio itself has not been obtained from the hugetlb pool. 7292 * 7293 * Once we have obtained the hugetlb folio, we can call 7294 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the 7295 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect 7296 * of try_charge(). 7297 * 7298 * Returns 0 on success. Otherwise, an error code is returned. 7299 */ 7300 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 7301 long nr_pages) 7302 { 7303 /* 7304 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, 7305 * but do not attempt to commit charge later (or cancel on error) either. 7306 */ 7307 if (mem_cgroup_disabled() || !memcg || 7308 !cgroup_subsys_on_dfl(memory_cgrp_subsys) || 7309 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) 7310 return -EOPNOTSUPP; 7311 7312 if (try_charge(memcg, gfp, nr_pages)) 7313 return -ENOMEM; 7314 7315 return 0; 7316 } 7317 7318 /** 7319 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 7320 * @folio: folio to charge. 7321 * @mm: mm context of the victim 7322 * @gfp: reclaim mode 7323 * @entry: swap entry for which the folio is allocated 7324 * 7325 * This function charges a folio allocated for swapin. Please call this before 7326 * adding the folio to the swapcache. 7327 * 7328 * Returns 0 on success. Otherwise, an error code is returned. 7329 */ 7330 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 7331 gfp_t gfp, swp_entry_t entry) 7332 { 7333 struct mem_cgroup *memcg; 7334 unsigned short id; 7335 int ret; 7336 7337 if (mem_cgroup_disabled()) 7338 return 0; 7339 7340 id = lookup_swap_cgroup_id(entry); 7341 rcu_read_lock(); 7342 memcg = mem_cgroup_from_id(id); 7343 if (!memcg || !css_tryget_online(&memcg->css)) 7344 memcg = get_mem_cgroup_from_mm(mm); 7345 rcu_read_unlock(); 7346 7347 ret = charge_memcg(folio, memcg, gfp); 7348 7349 css_put(&memcg->css); 7350 return ret; 7351 } 7352 7353 /* 7354 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 7355 * @entry: swap entry for which the page is charged 7356 * 7357 * Call this function after successfully adding the charged page to swapcache. 7358 * 7359 * Note: This function assumes the page for which swap slot is being uncharged 7360 * is order 0 page. 7361 */ 7362 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 7363 { 7364 /* 7365 * Cgroup1's unified memory+swap counter has been charged with the 7366 * new swapcache page, finish the transfer by uncharging the swap 7367 * slot. The swap slot would also get uncharged when it dies, but 7368 * it can stick around indefinitely and we'd count the page twice 7369 * the entire time. 7370 * 7371 * Cgroup2 has separate resource counters for memory and swap, 7372 * so this is a non-issue here. Memory and swap charge lifetimes 7373 * correspond 1:1 to page and swap slot lifetimes: we charge the 7374 * page to memory here, and uncharge swap when the slot is freed. 7375 */ 7376 if (!mem_cgroup_disabled() && do_memsw_account()) { 7377 /* 7378 * The swap entry might not get freed for a long time, 7379 * let's not wait for it. The page already received a 7380 * memory+swap charge, drop the swap entry duplicate. 7381 */ 7382 mem_cgroup_uncharge_swap(entry, 1); 7383 } 7384 } 7385 7386 struct uncharge_gather { 7387 struct mem_cgroup *memcg; 7388 unsigned long nr_memory; 7389 unsigned long pgpgout; 7390 unsigned long nr_kmem; 7391 int nid; 7392 }; 7393 7394 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 7395 { 7396 memset(ug, 0, sizeof(*ug)); 7397 } 7398 7399 static void uncharge_batch(const struct uncharge_gather *ug) 7400 { 7401 unsigned long flags; 7402 7403 if (ug->nr_memory) { 7404 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 7405 if (do_memsw_account()) 7406 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 7407 if (ug->nr_kmem) 7408 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 7409 memcg_oom_recover(ug->memcg); 7410 } 7411 7412 local_irq_save(flags); 7413 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 7414 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 7415 memcg_check_events(ug->memcg, ug->nid); 7416 local_irq_restore(flags); 7417 7418 /* drop reference from uncharge_folio */ 7419 css_put(&ug->memcg->css); 7420 } 7421 7422 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 7423 { 7424 long nr_pages; 7425 struct mem_cgroup *memcg; 7426 struct obj_cgroup *objcg; 7427 7428 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7429 7430 /* 7431 * Nobody should be changing or seriously looking at 7432 * folio memcg or objcg at this point, we have fully 7433 * exclusive access to the folio. 7434 */ 7435 if (folio_memcg_kmem(folio)) { 7436 objcg = __folio_objcg(folio); 7437 /* 7438 * This get matches the put at the end of the function and 7439 * kmem pages do not hold memcg references anymore. 7440 */ 7441 memcg = get_mem_cgroup_from_objcg(objcg); 7442 } else { 7443 memcg = __folio_memcg(folio); 7444 } 7445 7446 if (!memcg) 7447 return; 7448 7449 if (ug->memcg != memcg) { 7450 if (ug->memcg) { 7451 uncharge_batch(ug); 7452 uncharge_gather_clear(ug); 7453 } 7454 ug->memcg = memcg; 7455 ug->nid = folio_nid(folio); 7456 7457 /* pairs with css_put in uncharge_batch */ 7458 css_get(&memcg->css); 7459 } 7460 7461 nr_pages = folio_nr_pages(folio); 7462 7463 if (folio_memcg_kmem(folio)) { 7464 ug->nr_memory += nr_pages; 7465 ug->nr_kmem += nr_pages; 7466 7467 folio->memcg_data = 0; 7468 obj_cgroup_put(objcg); 7469 } else { 7470 /* LRU pages aren't accounted at the root level */ 7471 if (!mem_cgroup_is_root(memcg)) 7472 ug->nr_memory += nr_pages; 7473 ug->pgpgout++; 7474 7475 folio->memcg_data = 0; 7476 } 7477 7478 css_put(&memcg->css); 7479 } 7480 7481 void __mem_cgroup_uncharge(struct folio *folio) 7482 { 7483 struct uncharge_gather ug; 7484 7485 /* Don't touch folio->lru of any random page, pre-check: */ 7486 if (!folio_memcg(folio)) 7487 return; 7488 7489 uncharge_gather_clear(&ug); 7490 uncharge_folio(folio, &ug); 7491 uncharge_batch(&ug); 7492 } 7493 7494 /** 7495 * __mem_cgroup_uncharge_list - uncharge a list of page 7496 * @page_list: list of pages to uncharge 7497 * 7498 * Uncharge a list of pages previously charged with 7499 * __mem_cgroup_charge(). 7500 */ 7501 void __mem_cgroup_uncharge_list(struct list_head *page_list) 7502 { 7503 struct uncharge_gather ug; 7504 struct folio *folio; 7505 7506 uncharge_gather_clear(&ug); 7507 list_for_each_entry(folio, page_list, lru) 7508 uncharge_folio(folio, &ug); 7509 if (ug.memcg) 7510 uncharge_batch(&ug); 7511 } 7512 7513 /** 7514 * mem_cgroup_replace_folio - Charge a folio's replacement. 7515 * @old: Currently circulating folio. 7516 * @new: Replacement folio. 7517 * 7518 * Charge @new as a replacement folio for @old. @old will 7519 * be uncharged upon free. This is only used by the page cache 7520 * (in replace_page_cache_folio()). 7521 * 7522 * Both folios must be locked, @new->mapping must be set up. 7523 */ 7524 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 7525 { 7526 struct mem_cgroup *memcg; 7527 long nr_pages = folio_nr_pages(new); 7528 unsigned long flags; 7529 7530 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7531 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7532 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7533 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7534 7535 if (mem_cgroup_disabled()) 7536 return; 7537 7538 /* Page cache replacement: new folio already charged? */ 7539 if (folio_memcg(new)) 7540 return; 7541 7542 memcg = folio_memcg(old); 7543 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7544 if (!memcg) 7545 return; 7546 7547 /* Force-charge the new page. The old one will be freed soon */ 7548 if (!mem_cgroup_is_root(memcg)) { 7549 page_counter_charge(&memcg->memory, nr_pages); 7550 if (do_memsw_account()) 7551 page_counter_charge(&memcg->memsw, nr_pages); 7552 } 7553 7554 css_get(&memcg->css); 7555 commit_charge(new, memcg); 7556 7557 local_irq_save(flags); 7558 mem_cgroup_charge_statistics(memcg, nr_pages); 7559 memcg_check_events(memcg, folio_nid(new)); 7560 local_irq_restore(flags); 7561 } 7562 7563 /** 7564 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 7565 * @old: Currently circulating folio. 7566 * @new: Replacement folio. 7567 * 7568 * Transfer the memcg data from the old folio to the new folio for migration. 7569 * The old folio's data info will be cleared. Note that the memory counters 7570 * will remain unchanged throughout the process. 7571 * 7572 * Both folios must be locked, @new->mapping must be set up. 7573 */ 7574 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7575 { 7576 struct mem_cgroup *memcg; 7577 7578 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7579 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7580 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7581 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 7582 7583 if (mem_cgroup_disabled()) 7584 return; 7585 7586 memcg = folio_memcg(old); 7587 /* 7588 * Note that it is normal to see !memcg for a hugetlb folio. 7589 * For e.g, itt could have been allocated when memory_hugetlb_accounting 7590 * was not selected. 7591 */ 7592 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 7593 if (!memcg) 7594 return; 7595 7596 /* Transfer the charge and the css ref */ 7597 commit_charge(new, memcg); 7598 /* 7599 * If the old folio is a large folio and is in the split queue, it needs 7600 * to be removed from the split queue now, in case getting an incorrect 7601 * split queue in destroy_large_folio() after the memcg of the old folio 7602 * is cleared. 7603 * 7604 * In addition, the old folio is about to be freed after migration, so 7605 * removing from the split queue a bit earlier seems reasonable. 7606 */ 7607 if (folio_test_large(old) && folio_test_large_rmappable(old)) 7608 folio_undo_large_rmappable(old); 7609 old->memcg_data = 0; 7610 } 7611 7612 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7613 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7614 7615 void mem_cgroup_sk_alloc(struct sock *sk) 7616 { 7617 struct mem_cgroup *memcg; 7618 7619 if (!mem_cgroup_sockets_enabled) 7620 return; 7621 7622 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7623 if (!in_task()) 7624 return; 7625 7626 rcu_read_lock(); 7627 memcg = mem_cgroup_from_task(current); 7628 if (mem_cgroup_is_root(memcg)) 7629 goto out; 7630 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7631 goto out; 7632 if (css_tryget(&memcg->css)) 7633 sk->sk_memcg = memcg; 7634 out: 7635 rcu_read_unlock(); 7636 } 7637 7638 void mem_cgroup_sk_free(struct sock *sk) 7639 { 7640 if (sk->sk_memcg) 7641 css_put(&sk->sk_memcg->css); 7642 } 7643 7644 /** 7645 * mem_cgroup_charge_skmem - charge socket memory 7646 * @memcg: memcg to charge 7647 * @nr_pages: number of pages to charge 7648 * @gfp_mask: reclaim mode 7649 * 7650 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7651 * @memcg's configured limit, %false if it doesn't. 7652 */ 7653 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7654 gfp_t gfp_mask) 7655 { 7656 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7657 struct page_counter *fail; 7658 7659 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7660 memcg->tcpmem_pressure = 0; 7661 return true; 7662 } 7663 memcg->tcpmem_pressure = 1; 7664 if (gfp_mask & __GFP_NOFAIL) { 7665 page_counter_charge(&memcg->tcpmem, nr_pages); 7666 return true; 7667 } 7668 return false; 7669 } 7670 7671 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7672 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7673 return true; 7674 } 7675 7676 return false; 7677 } 7678 7679 /** 7680 * mem_cgroup_uncharge_skmem - uncharge socket memory 7681 * @memcg: memcg to uncharge 7682 * @nr_pages: number of pages to uncharge 7683 */ 7684 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7685 { 7686 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7687 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7688 return; 7689 } 7690 7691 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7692 7693 refill_stock(memcg, nr_pages); 7694 } 7695 7696 static int __init cgroup_memory(char *s) 7697 { 7698 char *token; 7699 7700 while ((token = strsep(&s, ",")) != NULL) { 7701 if (!*token) 7702 continue; 7703 if (!strcmp(token, "nosocket")) 7704 cgroup_memory_nosocket = true; 7705 if (!strcmp(token, "nokmem")) 7706 cgroup_memory_nokmem = true; 7707 if (!strcmp(token, "nobpf")) 7708 cgroup_memory_nobpf = true; 7709 } 7710 return 1; 7711 } 7712 __setup("cgroup.memory=", cgroup_memory); 7713 7714 /* 7715 * subsys_initcall() for memory controller. 7716 * 7717 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7718 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7719 * basically everything that doesn't depend on a specific mem_cgroup structure 7720 * should be initialized from here. 7721 */ 7722 static int __init mem_cgroup_init(void) 7723 { 7724 int cpu, node; 7725 7726 /* 7727 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7728 * used for per-memcg-per-cpu caching of per-node statistics. In order 7729 * to work fine, we should make sure that the overfill threshold can't 7730 * exceed S32_MAX / PAGE_SIZE. 7731 */ 7732 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7733 7734 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7735 memcg_hotplug_cpu_dead); 7736 7737 for_each_possible_cpu(cpu) 7738 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7739 drain_local_stock); 7740 7741 for_each_node(node) { 7742 struct mem_cgroup_tree_per_node *rtpn; 7743 7744 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); 7745 7746 rtpn->rb_root = RB_ROOT; 7747 rtpn->rb_rightmost = NULL; 7748 spin_lock_init(&rtpn->lock); 7749 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7750 } 7751 7752 return 0; 7753 } 7754 subsys_initcall(mem_cgroup_init); 7755 7756 #ifdef CONFIG_SWAP 7757 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7758 { 7759 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7760 /* 7761 * The root cgroup cannot be destroyed, so it's refcount must 7762 * always be >= 1. 7763 */ 7764 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 7765 VM_BUG_ON(1); 7766 break; 7767 } 7768 memcg = parent_mem_cgroup(memcg); 7769 if (!memcg) 7770 memcg = root_mem_cgroup; 7771 } 7772 return memcg; 7773 } 7774 7775 /** 7776 * mem_cgroup_swapout - transfer a memsw charge to swap 7777 * @folio: folio whose memsw charge to transfer 7778 * @entry: swap entry to move the charge to 7779 * 7780 * Transfer the memsw charge of @folio to @entry. 7781 */ 7782 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7783 { 7784 struct mem_cgroup *memcg, *swap_memcg; 7785 unsigned int nr_entries; 7786 unsigned short oldid; 7787 7788 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7789 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7790 7791 if (mem_cgroup_disabled()) 7792 return; 7793 7794 if (!do_memsw_account()) 7795 return; 7796 7797 memcg = folio_memcg(folio); 7798 7799 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7800 if (!memcg) 7801 return; 7802 7803 /* 7804 * In case the memcg owning these pages has been offlined and doesn't 7805 * have an ID allocated to it anymore, charge the closest online 7806 * ancestor for the swap instead and transfer the memory+swap charge. 7807 */ 7808 swap_memcg = mem_cgroup_id_get_online(memcg); 7809 nr_entries = folio_nr_pages(folio); 7810 /* Get references for the tail pages, too */ 7811 if (nr_entries > 1) 7812 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7813 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7814 nr_entries); 7815 VM_BUG_ON_FOLIO(oldid, folio); 7816 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7817 7818 folio->memcg_data = 0; 7819 7820 if (!mem_cgroup_is_root(memcg)) 7821 page_counter_uncharge(&memcg->memory, nr_entries); 7822 7823 if (memcg != swap_memcg) { 7824 if (!mem_cgroup_is_root(swap_memcg)) 7825 page_counter_charge(&swap_memcg->memsw, nr_entries); 7826 page_counter_uncharge(&memcg->memsw, nr_entries); 7827 } 7828 7829 /* 7830 * Interrupts should be disabled here because the caller holds the 7831 * i_pages lock which is taken with interrupts-off. It is 7832 * important here to have the interrupts disabled because it is the 7833 * only synchronisation we have for updating the per-CPU variables. 7834 */ 7835 memcg_stats_lock(); 7836 mem_cgroup_charge_statistics(memcg, -nr_entries); 7837 memcg_stats_unlock(); 7838 memcg_check_events(memcg, folio_nid(folio)); 7839 7840 css_put(&memcg->css); 7841 } 7842 7843 /** 7844 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7845 * @folio: folio being added to swap 7846 * @entry: swap entry to charge 7847 * 7848 * Try to charge @folio's memcg for the swap space at @entry. 7849 * 7850 * Returns 0 on success, -ENOMEM on failure. 7851 */ 7852 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7853 { 7854 unsigned int nr_pages = folio_nr_pages(folio); 7855 struct page_counter *counter; 7856 struct mem_cgroup *memcg; 7857 unsigned short oldid; 7858 7859 if (do_memsw_account()) 7860 return 0; 7861 7862 memcg = folio_memcg(folio); 7863 7864 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7865 if (!memcg) 7866 return 0; 7867 7868 if (!entry.val) { 7869 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7870 return 0; 7871 } 7872 7873 memcg = mem_cgroup_id_get_online(memcg); 7874 7875 if (!mem_cgroup_is_root(memcg) && 7876 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7877 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7878 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7879 mem_cgroup_id_put(memcg); 7880 return -ENOMEM; 7881 } 7882 7883 /* Get references for the tail pages, too */ 7884 if (nr_pages > 1) 7885 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7886 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7887 VM_BUG_ON_FOLIO(oldid, folio); 7888 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7889 7890 return 0; 7891 } 7892 7893 /** 7894 * __mem_cgroup_uncharge_swap - uncharge swap space 7895 * @entry: swap entry to uncharge 7896 * @nr_pages: the amount of swap space to uncharge 7897 */ 7898 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7899 { 7900 struct mem_cgroup *memcg; 7901 unsigned short id; 7902 7903 id = swap_cgroup_record(entry, 0, nr_pages); 7904 rcu_read_lock(); 7905 memcg = mem_cgroup_from_id(id); 7906 if (memcg) { 7907 if (!mem_cgroup_is_root(memcg)) { 7908 if (do_memsw_account()) 7909 page_counter_uncharge(&memcg->memsw, nr_pages); 7910 else 7911 page_counter_uncharge(&memcg->swap, nr_pages); 7912 } 7913 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7914 mem_cgroup_id_put_many(memcg, nr_pages); 7915 } 7916 rcu_read_unlock(); 7917 } 7918 7919 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7920 { 7921 long nr_swap_pages = get_nr_swap_pages(); 7922 7923 if (mem_cgroup_disabled() || do_memsw_account()) 7924 return nr_swap_pages; 7925 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 7926 nr_swap_pages = min_t(long, nr_swap_pages, 7927 READ_ONCE(memcg->swap.max) - 7928 page_counter_read(&memcg->swap)); 7929 return nr_swap_pages; 7930 } 7931 7932 bool mem_cgroup_swap_full(struct folio *folio) 7933 { 7934 struct mem_cgroup *memcg; 7935 7936 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 7937 7938 if (vm_swap_full()) 7939 return true; 7940 if (do_memsw_account()) 7941 return false; 7942 7943 memcg = folio_memcg(folio); 7944 if (!memcg) 7945 return false; 7946 7947 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 7948 unsigned long usage = page_counter_read(&memcg->swap); 7949 7950 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7951 usage * 2 >= READ_ONCE(memcg->swap.max)) 7952 return true; 7953 } 7954 7955 return false; 7956 } 7957 7958 static int __init setup_swap_account(char *s) 7959 { 7960 pr_warn_once("The swapaccount= commandline option is deprecated. " 7961 "Please report your usecase to linux-mm@kvack.org if you " 7962 "depend on this functionality.\n"); 7963 return 1; 7964 } 7965 __setup("swapaccount=", setup_swap_account); 7966 7967 static u64 swap_current_read(struct cgroup_subsys_state *css, 7968 struct cftype *cft) 7969 { 7970 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7971 7972 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7973 } 7974 7975 static u64 swap_peak_read(struct cgroup_subsys_state *css, 7976 struct cftype *cft) 7977 { 7978 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7979 7980 return (u64)memcg->swap.watermark * PAGE_SIZE; 7981 } 7982 7983 static int swap_high_show(struct seq_file *m, void *v) 7984 { 7985 return seq_puts_memcg_tunable(m, 7986 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7987 } 7988 7989 static ssize_t swap_high_write(struct kernfs_open_file *of, 7990 char *buf, size_t nbytes, loff_t off) 7991 { 7992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7993 unsigned long high; 7994 int err; 7995 7996 buf = strstrip(buf); 7997 err = page_counter_memparse(buf, "max", &high); 7998 if (err) 7999 return err; 8000 8001 page_counter_set_high(&memcg->swap, high); 8002 8003 return nbytes; 8004 } 8005 8006 static int swap_max_show(struct seq_file *m, void *v) 8007 { 8008 return seq_puts_memcg_tunable(m, 8009 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 8010 } 8011 8012 static ssize_t swap_max_write(struct kernfs_open_file *of, 8013 char *buf, size_t nbytes, loff_t off) 8014 { 8015 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8016 unsigned long max; 8017 int err; 8018 8019 buf = strstrip(buf); 8020 err = page_counter_memparse(buf, "max", &max); 8021 if (err) 8022 return err; 8023 8024 xchg(&memcg->swap.max, max); 8025 8026 return nbytes; 8027 } 8028 8029 static int swap_events_show(struct seq_file *m, void *v) 8030 { 8031 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 8032 8033 seq_printf(m, "high %lu\n", 8034 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 8035 seq_printf(m, "max %lu\n", 8036 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 8037 seq_printf(m, "fail %lu\n", 8038 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 8039 8040 return 0; 8041 } 8042 8043 static struct cftype swap_files[] = { 8044 { 8045 .name = "swap.current", 8046 .flags = CFTYPE_NOT_ON_ROOT, 8047 .read_u64 = swap_current_read, 8048 }, 8049 { 8050 .name = "swap.high", 8051 .flags = CFTYPE_NOT_ON_ROOT, 8052 .seq_show = swap_high_show, 8053 .write = swap_high_write, 8054 }, 8055 { 8056 .name = "swap.max", 8057 .flags = CFTYPE_NOT_ON_ROOT, 8058 .seq_show = swap_max_show, 8059 .write = swap_max_write, 8060 }, 8061 { 8062 .name = "swap.peak", 8063 .flags = CFTYPE_NOT_ON_ROOT, 8064 .read_u64 = swap_peak_read, 8065 }, 8066 { 8067 .name = "swap.events", 8068 .flags = CFTYPE_NOT_ON_ROOT, 8069 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 8070 .seq_show = swap_events_show, 8071 }, 8072 { } /* terminate */ 8073 }; 8074 8075 static struct cftype memsw_files[] = { 8076 { 8077 .name = "memsw.usage_in_bytes", 8078 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 8079 .read_u64 = mem_cgroup_read_u64, 8080 }, 8081 { 8082 .name = "memsw.max_usage_in_bytes", 8083 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 8084 .write = mem_cgroup_reset, 8085 .read_u64 = mem_cgroup_read_u64, 8086 }, 8087 { 8088 .name = "memsw.limit_in_bytes", 8089 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 8090 .write = mem_cgroup_write, 8091 .read_u64 = mem_cgroup_read_u64, 8092 }, 8093 { 8094 .name = "memsw.failcnt", 8095 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 8096 .write = mem_cgroup_reset, 8097 .read_u64 = mem_cgroup_read_u64, 8098 }, 8099 { }, /* terminate */ 8100 }; 8101 8102 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 8103 /** 8104 * obj_cgroup_may_zswap - check if this cgroup can zswap 8105 * @objcg: the object cgroup 8106 * 8107 * Check if the hierarchical zswap limit has been reached. 8108 * 8109 * This doesn't check for specific headroom, and it is not atomic 8110 * either. But with zswap, the size of the allocation is only known 8111 * once compression has occurred, and this optimistic pre-check avoids 8112 * spending cycles on compression when there is already no room left 8113 * or zswap is disabled altogether somewhere in the hierarchy. 8114 */ 8115 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 8116 { 8117 struct mem_cgroup *memcg, *original_memcg; 8118 bool ret = true; 8119 8120 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8121 return true; 8122 8123 original_memcg = get_mem_cgroup_from_objcg(objcg); 8124 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 8125 memcg = parent_mem_cgroup(memcg)) { 8126 unsigned long max = READ_ONCE(memcg->zswap_max); 8127 unsigned long pages; 8128 8129 if (max == PAGE_COUNTER_MAX) 8130 continue; 8131 if (max == 0) { 8132 ret = false; 8133 break; 8134 } 8135 8136 /* 8137 * mem_cgroup_flush_stats() ignores small changes. Use 8138 * do_flush_stats() directly to get accurate stats for charging. 8139 */ 8140 do_flush_stats(memcg); 8141 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 8142 if (pages < max) 8143 continue; 8144 ret = false; 8145 break; 8146 } 8147 mem_cgroup_put(original_memcg); 8148 return ret; 8149 } 8150 8151 /** 8152 * obj_cgroup_charge_zswap - charge compression backend memory 8153 * @objcg: the object cgroup 8154 * @size: size of compressed object 8155 * 8156 * This forces the charge after obj_cgroup_may_zswap() allowed 8157 * compression and storage in zwap for this cgroup to go ahead. 8158 */ 8159 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 8160 { 8161 struct mem_cgroup *memcg; 8162 8163 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8164 return; 8165 8166 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 8167 8168 /* PF_MEMALLOC context, charging must succeed */ 8169 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 8170 VM_WARN_ON_ONCE(1); 8171 8172 rcu_read_lock(); 8173 memcg = obj_cgroup_memcg(objcg); 8174 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 8175 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 8176 rcu_read_unlock(); 8177 } 8178 8179 /** 8180 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 8181 * @objcg: the object cgroup 8182 * @size: size of compressed object 8183 * 8184 * Uncharges zswap memory on page in. 8185 */ 8186 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 8187 { 8188 struct mem_cgroup *memcg; 8189 8190 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8191 return; 8192 8193 obj_cgroup_uncharge(objcg, size); 8194 8195 rcu_read_lock(); 8196 memcg = obj_cgroup_memcg(objcg); 8197 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 8198 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 8199 rcu_read_unlock(); 8200 } 8201 8202 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 8203 { 8204 /* if zswap is disabled, do not block pages going to the swapping device */ 8205 return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback); 8206 } 8207 8208 static u64 zswap_current_read(struct cgroup_subsys_state *css, 8209 struct cftype *cft) 8210 { 8211 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 8212 8213 mem_cgroup_flush_stats(memcg); 8214 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 8215 } 8216 8217 static int zswap_max_show(struct seq_file *m, void *v) 8218 { 8219 return seq_puts_memcg_tunable(m, 8220 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 8221 } 8222 8223 static ssize_t zswap_max_write(struct kernfs_open_file *of, 8224 char *buf, size_t nbytes, loff_t off) 8225 { 8226 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8227 unsigned long max; 8228 int err; 8229 8230 buf = strstrip(buf); 8231 err = page_counter_memparse(buf, "max", &max); 8232 if (err) 8233 return err; 8234 8235 xchg(&memcg->zswap_max, max); 8236 8237 return nbytes; 8238 } 8239 8240 static int zswap_writeback_show(struct seq_file *m, void *v) 8241 { 8242 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 8243 8244 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 8245 return 0; 8246 } 8247 8248 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 8249 char *buf, size_t nbytes, loff_t off) 8250 { 8251 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8252 int zswap_writeback; 8253 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 8254 8255 if (parse_ret) 8256 return parse_ret; 8257 8258 if (zswap_writeback != 0 && zswap_writeback != 1) 8259 return -EINVAL; 8260 8261 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 8262 return nbytes; 8263 } 8264 8265 static struct cftype zswap_files[] = { 8266 { 8267 .name = "zswap.current", 8268 .flags = CFTYPE_NOT_ON_ROOT, 8269 .read_u64 = zswap_current_read, 8270 }, 8271 { 8272 .name = "zswap.max", 8273 .flags = CFTYPE_NOT_ON_ROOT, 8274 .seq_show = zswap_max_show, 8275 .write = zswap_max_write, 8276 }, 8277 { 8278 .name = "zswap.writeback", 8279 .seq_show = zswap_writeback_show, 8280 .write = zswap_writeback_write, 8281 }, 8282 { } /* terminate */ 8283 }; 8284 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 8285 8286 static int __init mem_cgroup_swap_init(void) 8287 { 8288 if (mem_cgroup_disabled()) 8289 return 0; 8290 8291 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 8292 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 8293 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 8294 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 8295 #endif 8296 return 0; 8297 } 8298 subsys_initcall(mem_cgroup_swap_init); 8299 8300 #endif /* CONFIG_SWAP */ 8301