xref: /linux/mm/memcontrol.c (revision 7056741fd9fc14a65608549a4657cf5178f05f63)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/ip.h>
55 #include <net/tcp_memcontrol.h>
56 
57 #include <asm/uaccess.h>
58 
59 #include <trace/events/vmscan.h>
60 
61 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 #define MEM_CGROUP_RECLAIM_RETRIES	5
63 static struct mem_cgroup *root_mem_cgroup __read_mostly;
64 
65 #ifdef CONFIG_MEMCG_SWAP
66 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
67 int do_swap_account __read_mostly;
68 
69 /* for remember boot option*/
70 #ifdef CONFIG_MEMCG_SWAP_ENABLED
71 static int really_do_swap_account __initdata = 1;
72 #else
73 static int really_do_swap_account __initdata = 0;
74 #endif
75 
76 #else
77 #define do_swap_account		0
78 #endif
79 
80 
81 /*
82  * Statistics for memory cgroup.
83  */
84 enum mem_cgroup_stat_index {
85 	/*
86 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 	 */
88 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
89 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
90 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
91 	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
92 	MEM_CGROUP_STAT_NSTATS,
93 };
94 
95 static const char * const mem_cgroup_stat_names[] = {
96 	"cache",
97 	"rss",
98 	"mapped_file",
99 	"swap",
100 };
101 
102 enum mem_cgroup_events_index {
103 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
104 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
105 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
106 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
107 	MEM_CGROUP_EVENTS_NSTATS,
108 };
109 
110 static const char * const mem_cgroup_events_names[] = {
111 	"pgpgin",
112 	"pgpgout",
113 	"pgfault",
114 	"pgmajfault",
115 };
116 
117 /*
118  * Per memcg event counter is incremented at every pagein/pageout. With THP,
119  * it will be incremated by the number of pages. This counter is used for
120  * for trigger some periodic events. This is straightforward and better
121  * than using jiffies etc. to handle periodic memcg event.
122  */
123 enum mem_cgroup_events_target {
124 	MEM_CGROUP_TARGET_THRESH,
125 	MEM_CGROUP_TARGET_SOFTLIMIT,
126 	MEM_CGROUP_TARGET_NUMAINFO,
127 	MEM_CGROUP_NTARGETS,
128 };
129 #define THRESHOLDS_EVENTS_TARGET 128
130 #define SOFTLIMIT_EVENTS_TARGET 1024
131 #define NUMAINFO_EVENTS_TARGET	1024
132 
133 struct mem_cgroup_stat_cpu {
134 	long count[MEM_CGROUP_STAT_NSTATS];
135 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
136 	unsigned long nr_page_events;
137 	unsigned long targets[MEM_CGROUP_NTARGETS];
138 };
139 
140 struct mem_cgroup_reclaim_iter {
141 	/* css_id of the last scanned hierarchy member */
142 	int position;
143 	/* scan generation, increased every round-trip */
144 	unsigned int generation;
145 };
146 
147 /*
148  * per-zone information in memory controller.
149  */
150 struct mem_cgroup_per_zone {
151 	struct lruvec		lruvec;
152 	unsigned long		lru_size[NR_LRU_LISTS];
153 
154 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
155 
156 	struct rb_node		tree_node;	/* RB tree node */
157 	unsigned long long	usage_in_excess;/* Set to the value by which */
158 						/* the soft limit is exceeded*/
159 	bool			on_tree;
160 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
161 						/* use container_of	   */
162 };
163 
164 struct mem_cgroup_per_node {
165 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
166 };
167 
168 struct mem_cgroup_lru_info {
169 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
170 };
171 
172 /*
173  * Cgroups above their limits are maintained in a RB-Tree, independent of
174  * their hierarchy representation
175  */
176 
177 struct mem_cgroup_tree_per_zone {
178 	struct rb_root rb_root;
179 	spinlock_t lock;
180 };
181 
182 struct mem_cgroup_tree_per_node {
183 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
184 };
185 
186 struct mem_cgroup_tree {
187 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
188 };
189 
190 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
191 
192 struct mem_cgroup_threshold {
193 	struct eventfd_ctx *eventfd;
194 	u64 threshold;
195 };
196 
197 /* For threshold */
198 struct mem_cgroup_threshold_ary {
199 	/* An array index points to threshold just below or equal to usage. */
200 	int current_threshold;
201 	/* Size of entries[] */
202 	unsigned int size;
203 	/* Array of thresholds */
204 	struct mem_cgroup_threshold entries[0];
205 };
206 
207 struct mem_cgroup_thresholds {
208 	/* Primary thresholds array */
209 	struct mem_cgroup_threshold_ary *primary;
210 	/*
211 	 * Spare threshold array.
212 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
213 	 * It must be able to store at least primary->size - 1 entries.
214 	 */
215 	struct mem_cgroup_threshold_ary *spare;
216 };
217 
218 /* for OOM */
219 struct mem_cgroup_eventfd_list {
220 	struct list_head list;
221 	struct eventfd_ctx *eventfd;
222 };
223 
224 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
225 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
226 
227 /*
228  * The memory controller data structure. The memory controller controls both
229  * page cache and RSS per cgroup. We would eventually like to provide
230  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231  * to help the administrator determine what knobs to tune.
232  *
233  * TODO: Add a water mark for the memory controller. Reclaim will begin when
234  * we hit the water mark. May be even add a low water mark, such that
235  * no reclaim occurs from a cgroup at it's low water mark, this is
236  * a feature that will be implemented much later in the future.
237  */
238 struct mem_cgroup {
239 	struct cgroup_subsys_state css;
240 	/*
241 	 * the counter to account for memory usage
242 	 */
243 	struct res_counter res;
244 
245 	union {
246 		/*
247 		 * the counter to account for mem+swap usage.
248 		 */
249 		struct res_counter memsw;
250 
251 		/*
252 		 * rcu_freeing is used only when freeing struct mem_cgroup,
253 		 * so put it into a union to avoid wasting more memory.
254 		 * It must be disjoint from the css field.  It could be
255 		 * in a union with the res field, but res plays a much
256 		 * larger part in mem_cgroup life than memsw, and might
257 		 * be of interest, even at time of free, when debugging.
258 		 * So share rcu_head with the less interesting memsw.
259 		 */
260 		struct rcu_head rcu_freeing;
261 		/*
262 		 * We also need some space for a worker in deferred freeing.
263 		 * By the time we call it, rcu_freeing is no longer in use.
264 		 */
265 		struct work_struct work_freeing;
266 	};
267 
268 	/*
269 	 * Per cgroup active and inactive list, similar to the
270 	 * per zone LRU lists.
271 	 */
272 	struct mem_cgroup_lru_info info;
273 	int last_scanned_node;
274 #if MAX_NUMNODES > 1
275 	nodemask_t	scan_nodes;
276 	atomic_t	numainfo_events;
277 	atomic_t	numainfo_updating;
278 #endif
279 	/*
280 	 * Should the accounting and control be hierarchical, per subtree?
281 	 */
282 	bool use_hierarchy;
283 
284 	bool		oom_lock;
285 	atomic_t	under_oom;
286 
287 	atomic_t	refcnt;
288 
289 	int	swappiness;
290 	/* OOM-Killer disable */
291 	int		oom_kill_disable;
292 
293 	/* set when res.limit == memsw.limit */
294 	bool		memsw_is_minimum;
295 
296 	/* protect arrays of thresholds */
297 	struct mutex thresholds_lock;
298 
299 	/* thresholds for memory usage. RCU-protected */
300 	struct mem_cgroup_thresholds thresholds;
301 
302 	/* thresholds for mem+swap usage. RCU-protected */
303 	struct mem_cgroup_thresholds memsw_thresholds;
304 
305 	/* For oom notifier event fd */
306 	struct list_head oom_notify;
307 
308 	/*
309 	 * Should we move charges of a task when a task is moved into this
310 	 * mem_cgroup ? And what type of charges should we move ?
311 	 */
312 	unsigned long 	move_charge_at_immigrate;
313 	/*
314 	 * set > 0 if pages under this cgroup are moving to other cgroup.
315 	 */
316 	atomic_t	moving_account;
317 	/* taken only while moving_account > 0 */
318 	spinlock_t	move_lock;
319 	/*
320 	 * percpu counter.
321 	 */
322 	struct mem_cgroup_stat_cpu __percpu *stat;
323 	/*
324 	 * used when a cpu is offlined or other synchronizations
325 	 * See mem_cgroup_read_stat().
326 	 */
327 	struct mem_cgroup_stat_cpu nocpu_base;
328 	spinlock_t pcp_counter_lock;
329 
330 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
331 	struct tcp_memcontrol tcp_mem;
332 #endif
333 };
334 
335 /* Stuffs for move charges at task migration. */
336 /*
337  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338  * left-shifted bitmap of these types.
339  */
340 enum move_type {
341 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
342 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
343 	NR_MOVE_TYPE,
344 };
345 
346 /* "mc" and its members are protected by cgroup_mutex */
347 static struct move_charge_struct {
348 	spinlock_t	  lock; /* for from, to */
349 	struct mem_cgroup *from;
350 	struct mem_cgroup *to;
351 	unsigned long precharge;
352 	unsigned long moved_charge;
353 	unsigned long moved_swap;
354 	struct task_struct *moving_task;	/* a task moving charges */
355 	wait_queue_head_t waitq;		/* a waitq for other context */
356 } mc = {
357 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359 };
360 
361 static bool move_anon(void)
362 {
363 	return test_bit(MOVE_CHARGE_TYPE_ANON,
364 					&mc.to->move_charge_at_immigrate);
365 }
366 
367 static bool move_file(void)
368 {
369 	return test_bit(MOVE_CHARGE_TYPE_FILE,
370 					&mc.to->move_charge_at_immigrate);
371 }
372 
373 /*
374  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375  * limit reclaim to prevent infinite loops, if they ever occur.
376  */
377 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
378 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
379 
380 enum charge_type {
381 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382 	MEM_CGROUP_CHARGE_TYPE_ANON,
383 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
384 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
385 	NR_CHARGE_TYPE,
386 };
387 
388 /* for encoding cft->private value on file */
389 #define _MEM			(0)
390 #define _MEMSWAP		(1)
391 #define _OOM_TYPE		(2)
392 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
393 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
394 #define MEMFILE_ATTR(val)	((val) & 0xffff)
395 /* Used for OOM nofiier */
396 #define OOM_CONTROL		(0)
397 
398 /*
399  * Reclaim flags for mem_cgroup_hierarchical_reclaim
400  */
401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
402 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
404 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405 
406 static void mem_cgroup_get(struct mem_cgroup *memcg);
407 static void mem_cgroup_put(struct mem_cgroup *memcg);
408 
409 static inline
410 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
411 {
412 	return container_of(s, struct mem_cgroup, css);
413 }
414 
415 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
416 {
417 	return (memcg == root_mem_cgroup);
418 }
419 
420 /* Writing them here to avoid exposing memcg's inner layout */
421 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
422 
423 void sock_update_memcg(struct sock *sk)
424 {
425 	if (mem_cgroup_sockets_enabled) {
426 		struct mem_cgroup *memcg;
427 		struct cg_proto *cg_proto;
428 
429 		BUG_ON(!sk->sk_prot->proto_cgroup);
430 
431 		/* Socket cloning can throw us here with sk_cgrp already
432 		 * filled. It won't however, necessarily happen from
433 		 * process context. So the test for root memcg given
434 		 * the current task's memcg won't help us in this case.
435 		 *
436 		 * Respecting the original socket's memcg is a better
437 		 * decision in this case.
438 		 */
439 		if (sk->sk_cgrp) {
440 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
441 			mem_cgroup_get(sk->sk_cgrp->memcg);
442 			return;
443 		}
444 
445 		rcu_read_lock();
446 		memcg = mem_cgroup_from_task(current);
447 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
448 		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
449 			mem_cgroup_get(memcg);
450 			sk->sk_cgrp = cg_proto;
451 		}
452 		rcu_read_unlock();
453 	}
454 }
455 EXPORT_SYMBOL(sock_update_memcg);
456 
457 void sock_release_memcg(struct sock *sk)
458 {
459 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
460 		struct mem_cgroup *memcg;
461 		WARN_ON(!sk->sk_cgrp->memcg);
462 		memcg = sk->sk_cgrp->memcg;
463 		mem_cgroup_put(memcg);
464 	}
465 }
466 
467 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
468 {
469 	if (!memcg || mem_cgroup_is_root(memcg))
470 		return NULL;
471 
472 	return &memcg->tcp_mem.cg_proto;
473 }
474 EXPORT_SYMBOL(tcp_proto_cgroup);
475 
476 static void disarm_sock_keys(struct mem_cgroup *memcg)
477 {
478 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
479 		return;
480 	static_key_slow_dec(&memcg_socket_limit_enabled);
481 }
482 #else
483 static void disarm_sock_keys(struct mem_cgroup *memcg)
484 {
485 }
486 #endif
487 
488 static void drain_all_stock_async(struct mem_cgroup *memcg);
489 
490 static struct mem_cgroup_per_zone *
491 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
492 {
493 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
494 }
495 
496 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
497 {
498 	return &memcg->css;
499 }
500 
501 static struct mem_cgroup_per_zone *
502 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 	int nid = page_to_nid(page);
505 	int zid = page_zonenum(page);
506 
507 	return mem_cgroup_zoneinfo(memcg, nid, zid);
508 }
509 
510 static struct mem_cgroup_tree_per_zone *
511 soft_limit_tree_node_zone(int nid, int zid)
512 {
513 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
514 }
515 
516 static struct mem_cgroup_tree_per_zone *
517 soft_limit_tree_from_page(struct page *page)
518 {
519 	int nid = page_to_nid(page);
520 	int zid = page_zonenum(page);
521 
522 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
523 }
524 
525 static void
526 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
527 				struct mem_cgroup_per_zone *mz,
528 				struct mem_cgroup_tree_per_zone *mctz,
529 				unsigned long long new_usage_in_excess)
530 {
531 	struct rb_node **p = &mctz->rb_root.rb_node;
532 	struct rb_node *parent = NULL;
533 	struct mem_cgroup_per_zone *mz_node;
534 
535 	if (mz->on_tree)
536 		return;
537 
538 	mz->usage_in_excess = new_usage_in_excess;
539 	if (!mz->usage_in_excess)
540 		return;
541 	while (*p) {
542 		parent = *p;
543 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
544 					tree_node);
545 		if (mz->usage_in_excess < mz_node->usage_in_excess)
546 			p = &(*p)->rb_left;
547 		/*
548 		 * We can't avoid mem cgroups that are over their soft
549 		 * limit by the same amount
550 		 */
551 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 			p = &(*p)->rb_right;
553 	}
554 	rb_link_node(&mz->tree_node, parent, p);
555 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 	mz->on_tree = true;
557 }
558 
559 static void
560 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
561 				struct mem_cgroup_per_zone *mz,
562 				struct mem_cgroup_tree_per_zone *mctz)
563 {
564 	if (!mz->on_tree)
565 		return;
566 	rb_erase(&mz->tree_node, &mctz->rb_root);
567 	mz->on_tree = false;
568 }
569 
570 static void
571 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
572 				struct mem_cgroup_per_zone *mz,
573 				struct mem_cgroup_tree_per_zone *mctz)
574 {
575 	spin_lock(&mctz->lock);
576 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
577 	spin_unlock(&mctz->lock);
578 }
579 
580 
581 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
582 {
583 	unsigned long long excess;
584 	struct mem_cgroup_per_zone *mz;
585 	struct mem_cgroup_tree_per_zone *mctz;
586 	int nid = page_to_nid(page);
587 	int zid = page_zonenum(page);
588 	mctz = soft_limit_tree_from_page(page);
589 
590 	/*
591 	 * Necessary to update all ancestors when hierarchy is used.
592 	 * because their event counter is not touched.
593 	 */
594 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
595 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
596 		excess = res_counter_soft_limit_excess(&memcg->res);
597 		/*
598 		 * We have to update the tree if mz is on RB-tree or
599 		 * mem is over its softlimit.
600 		 */
601 		if (excess || mz->on_tree) {
602 			spin_lock(&mctz->lock);
603 			/* if on-tree, remove it */
604 			if (mz->on_tree)
605 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
606 			/*
607 			 * Insert again. mz->usage_in_excess will be updated.
608 			 * If excess is 0, no tree ops.
609 			 */
610 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
611 			spin_unlock(&mctz->lock);
612 		}
613 	}
614 }
615 
616 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
617 {
618 	int node, zone;
619 	struct mem_cgroup_per_zone *mz;
620 	struct mem_cgroup_tree_per_zone *mctz;
621 
622 	for_each_node(node) {
623 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
624 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
625 			mctz = soft_limit_tree_node_zone(node, zone);
626 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
627 		}
628 	}
629 }
630 
631 static struct mem_cgroup_per_zone *
632 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
633 {
634 	struct rb_node *rightmost = NULL;
635 	struct mem_cgroup_per_zone *mz;
636 
637 retry:
638 	mz = NULL;
639 	rightmost = rb_last(&mctz->rb_root);
640 	if (!rightmost)
641 		goto done;		/* Nothing to reclaim from */
642 
643 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
644 	/*
645 	 * Remove the node now but someone else can add it back,
646 	 * we will to add it back at the end of reclaim to its correct
647 	 * position in the tree.
648 	 */
649 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
650 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
651 		!css_tryget(&mz->memcg->css))
652 		goto retry;
653 done:
654 	return mz;
655 }
656 
657 static struct mem_cgroup_per_zone *
658 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
659 {
660 	struct mem_cgroup_per_zone *mz;
661 
662 	spin_lock(&mctz->lock);
663 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
664 	spin_unlock(&mctz->lock);
665 	return mz;
666 }
667 
668 /*
669  * Implementation Note: reading percpu statistics for memcg.
670  *
671  * Both of vmstat[] and percpu_counter has threshold and do periodic
672  * synchronization to implement "quick" read. There are trade-off between
673  * reading cost and precision of value. Then, we may have a chance to implement
674  * a periodic synchronizion of counter in memcg's counter.
675  *
676  * But this _read() function is used for user interface now. The user accounts
677  * memory usage by memory cgroup and he _always_ requires exact value because
678  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
679  * have to visit all online cpus and make sum. So, for now, unnecessary
680  * synchronization is not implemented. (just implemented for cpu hotplug)
681  *
682  * If there are kernel internal actions which can make use of some not-exact
683  * value, and reading all cpu value can be performance bottleneck in some
684  * common workload, threashold and synchonization as vmstat[] should be
685  * implemented.
686  */
687 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
688 				 enum mem_cgroup_stat_index idx)
689 {
690 	long val = 0;
691 	int cpu;
692 
693 	get_online_cpus();
694 	for_each_online_cpu(cpu)
695 		val += per_cpu(memcg->stat->count[idx], cpu);
696 #ifdef CONFIG_HOTPLUG_CPU
697 	spin_lock(&memcg->pcp_counter_lock);
698 	val += memcg->nocpu_base.count[idx];
699 	spin_unlock(&memcg->pcp_counter_lock);
700 #endif
701 	put_online_cpus();
702 	return val;
703 }
704 
705 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
706 					 bool charge)
707 {
708 	int val = (charge) ? 1 : -1;
709 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
710 }
711 
712 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
713 					    enum mem_cgroup_events_index idx)
714 {
715 	unsigned long val = 0;
716 	int cpu;
717 
718 	for_each_online_cpu(cpu)
719 		val += per_cpu(memcg->stat->events[idx], cpu);
720 #ifdef CONFIG_HOTPLUG_CPU
721 	spin_lock(&memcg->pcp_counter_lock);
722 	val += memcg->nocpu_base.events[idx];
723 	spin_unlock(&memcg->pcp_counter_lock);
724 #endif
725 	return val;
726 }
727 
728 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
729 					 bool anon, int nr_pages)
730 {
731 	preempt_disable();
732 
733 	/*
734 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
735 	 * counted as CACHE even if it's on ANON LRU.
736 	 */
737 	if (anon)
738 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
739 				nr_pages);
740 	else
741 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
742 				nr_pages);
743 
744 	/* pagein of a big page is an event. So, ignore page size */
745 	if (nr_pages > 0)
746 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
747 	else {
748 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
749 		nr_pages = -nr_pages; /* for event */
750 	}
751 
752 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
753 
754 	preempt_enable();
755 }
756 
757 unsigned long
758 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
759 {
760 	struct mem_cgroup_per_zone *mz;
761 
762 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
763 	return mz->lru_size[lru];
764 }
765 
766 static unsigned long
767 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
768 			unsigned int lru_mask)
769 {
770 	struct mem_cgroup_per_zone *mz;
771 	enum lru_list lru;
772 	unsigned long ret = 0;
773 
774 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
775 
776 	for_each_lru(lru) {
777 		if (BIT(lru) & lru_mask)
778 			ret += mz->lru_size[lru];
779 	}
780 	return ret;
781 }
782 
783 static unsigned long
784 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
785 			int nid, unsigned int lru_mask)
786 {
787 	u64 total = 0;
788 	int zid;
789 
790 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
791 		total += mem_cgroup_zone_nr_lru_pages(memcg,
792 						nid, zid, lru_mask);
793 
794 	return total;
795 }
796 
797 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
798 			unsigned int lru_mask)
799 {
800 	int nid;
801 	u64 total = 0;
802 
803 	for_each_node_state(nid, N_HIGH_MEMORY)
804 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
805 	return total;
806 }
807 
808 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
809 				       enum mem_cgroup_events_target target)
810 {
811 	unsigned long val, next;
812 
813 	val = __this_cpu_read(memcg->stat->nr_page_events);
814 	next = __this_cpu_read(memcg->stat->targets[target]);
815 	/* from time_after() in jiffies.h */
816 	if ((long)next - (long)val < 0) {
817 		switch (target) {
818 		case MEM_CGROUP_TARGET_THRESH:
819 			next = val + THRESHOLDS_EVENTS_TARGET;
820 			break;
821 		case MEM_CGROUP_TARGET_SOFTLIMIT:
822 			next = val + SOFTLIMIT_EVENTS_TARGET;
823 			break;
824 		case MEM_CGROUP_TARGET_NUMAINFO:
825 			next = val + NUMAINFO_EVENTS_TARGET;
826 			break;
827 		default:
828 			break;
829 		}
830 		__this_cpu_write(memcg->stat->targets[target], next);
831 		return true;
832 	}
833 	return false;
834 }
835 
836 /*
837  * Check events in order.
838  *
839  */
840 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
841 {
842 	preempt_disable();
843 	/* threshold event is triggered in finer grain than soft limit */
844 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
845 						MEM_CGROUP_TARGET_THRESH))) {
846 		bool do_softlimit;
847 		bool do_numainfo __maybe_unused;
848 
849 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
850 						MEM_CGROUP_TARGET_SOFTLIMIT);
851 #if MAX_NUMNODES > 1
852 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
853 						MEM_CGROUP_TARGET_NUMAINFO);
854 #endif
855 		preempt_enable();
856 
857 		mem_cgroup_threshold(memcg);
858 		if (unlikely(do_softlimit))
859 			mem_cgroup_update_tree(memcg, page);
860 #if MAX_NUMNODES > 1
861 		if (unlikely(do_numainfo))
862 			atomic_inc(&memcg->numainfo_events);
863 #endif
864 	} else
865 		preempt_enable();
866 }
867 
868 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
869 {
870 	return mem_cgroup_from_css(
871 		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
872 }
873 
874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875 {
876 	/*
877 	 * mm_update_next_owner() may clear mm->owner to NULL
878 	 * if it races with swapoff, page migration, etc.
879 	 * So this can be called with p == NULL.
880 	 */
881 	if (unlikely(!p))
882 		return NULL;
883 
884 	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
885 }
886 
887 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
888 {
889 	struct mem_cgroup *memcg = NULL;
890 
891 	if (!mm)
892 		return NULL;
893 	/*
894 	 * Because we have no locks, mm->owner's may be being moved to other
895 	 * cgroup. We use css_tryget() here even if this looks
896 	 * pessimistic (rather than adding locks here).
897 	 */
898 	rcu_read_lock();
899 	do {
900 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
901 		if (unlikely(!memcg))
902 			break;
903 	} while (!css_tryget(&memcg->css));
904 	rcu_read_unlock();
905 	return memcg;
906 }
907 
908 /**
909  * mem_cgroup_iter - iterate over memory cgroup hierarchy
910  * @root: hierarchy root
911  * @prev: previously returned memcg, NULL on first invocation
912  * @reclaim: cookie for shared reclaim walks, NULL for full walks
913  *
914  * Returns references to children of the hierarchy below @root, or
915  * @root itself, or %NULL after a full round-trip.
916  *
917  * Caller must pass the return value in @prev on subsequent
918  * invocations for reference counting, or use mem_cgroup_iter_break()
919  * to cancel a hierarchy walk before the round-trip is complete.
920  *
921  * Reclaimers can specify a zone and a priority level in @reclaim to
922  * divide up the memcgs in the hierarchy among all concurrent
923  * reclaimers operating on the same zone and priority.
924  */
925 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
926 				   struct mem_cgroup *prev,
927 				   struct mem_cgroup_reclaim_cookie *reclaim)
928 {
929 	struct mem_cgroup *memcg = NULL;
930 	int id = 0;
931 
932 	if (mem_cgroup_disabled())
933 		return NULL;
934 
935 	if (!root)
936 		root = root_mem_cgroup;
937 
938 	if (prev && !reclaim)
939 		id = css_id(&prev->css);
940 
941 	if (prev && prev != root)
942 		css_put(&prev->css);
943 
944 	if (!root->use_hierarchy && root != root_mem_cgroup) {
945 		if (prev)
946 			return NULL;
947 		return root;
948 	}
949 
950 	while (!memcg) {
951 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
952 		struct cgroup_subsys_state *css;
953 
954 		if (reclaim) {
955 			int nid = zone_to_nid(reclaim->zone);
956 			int zid = zone_idx(reclaim->zone);
957 			struct mem_cgroup_per_zone *mz;
958 
959 			mz = mem_cgroup_zoneinfo(root, nid, zid);
960 			iter = &mz->reclaim_iter[reclaim->priority];
961 			if (prev && reclaim->generation != iter->generation)
962 				return NULL;
963 			id = iter->position;
964 		}
965 
966 		rcu_read_lock();
967 		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
968 		if (css) {
969 			if (css == &root->css || css_tryget(css))
970 				memcg = mem_cgroup_from_css(css);
971 		} else
972 			id = 0;
973 		rcu_read_unlock();
974 
975 		if (reclaim) {
976 			iter->position = id;
977 			if (!css)
978 				iter->generation++;
979 			else if (!prev && memcg)
980 				reclaim->generation = iter->generation;
981 		}
982 
983 		if (prev && !css)
984 			return NULL;
985 	}
986 	return memcg;
987 }
988 
989 /**
990  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
991  * @root: hierarchy root
992  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
993  */
994 void mem_cgroup_iter_break(struct mem_cgroup *root,
995 			   struct mem_cgroup *prev)
996 {
997 	if (!root)
998 		root = root_mem_cgroup;
999 	if (prev && prev != root)
1000 		css_put(&prev->css);
1001 }
1002 
1003 /*
1004  * Iteration constructs for visiting all cgroups (under a tree).  If
1005  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006  * be used for reference counting.
1007  */
1008 #define for_each_mem_cgroup_tree(iter, root)		\
1009 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1010 	     iter != NULL;				\
1011 	     iter = mem_cgroup_iter(root, iter, NULL))
1012 
1013 #define for_each_mem_cgroup(iter)			\
1014 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1015 	     iter != NULL;				\
1016 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1017 
1018 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1019 {
1020 	struct mem_cgroup *memcg;
1021 
1022 	if (!mm)
1023 		return;
1024 
1025 	rcu_read_lock();
1026 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1027 	if (unlikely(!memcg))
1028 		goto out;
1029 
1030 	switch (idx) {
1031 	case PGFAULT:
1032 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1033 		break;
1034 	case PGMAJFAULT:
1035 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1036 		break;
1037 	default:
1038 		BUG();
1039 	}
1040 out:
1041 	rcu_read_unlock();
1042 }
1043 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1044 
1045 /**
1046  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1047  * @zone: zone of the wanted lruvec
1048  * @memcg: memcg of the wanted lruvec
1049  *
1050  * Returns the lru list vector holding pages for the given @zone and
1051  * @mem.  This can be the global zone lruvec, if the memory controller
1052  * is disabled.
1053  */
1054 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1055 				      struct mem_cgroup *memcg)
1056 {
1057 	struct mem_cgroup_per_zone *mz;
1058 
1059 	if (mem_cgroup_disabled())
1060 		return &zone->lruvec;
1061 
1062 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1063 	return &mz->lruvec;
1064 }
1065 
1066 /*
1067  * Following LRU functions are allowed to be used without PCG_LOCK.
1068  * Operations are called by routine of global LRU independently from memcg.
1069  * What we have to take care of here is validness of pc->mem_cgroup.
1070  *
1071  * Changes to pc->mem_cgroup happens when
1072  * 1. charge
1073  * 2. moving account
1074  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1075  * It is added to LRU before charge.
1076  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1077  * When moving account, the page is not on LRU. It's isolated.
1078  */
1079 
1080 /**
1081  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1082  * @page: the page
1083  * @zone: zone of the page
1084  */
1085 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1086 {
1087 	struct mem_cgroup_per_zone *mz;
1088 	struct mem_cgroup *memcg;
1089 	struct page_cgroup *pc;
1090 
1091 	if (mem_cgroup_disabled())
1092 		return &zone->lruvec;
1093 
1094 	pc = lookup_page_cgroup(page);
1095 	memcg = pc->mem_cgroup;
1096 
1097 	/*
1098 	 * Surreptitiously switch any uncharged offlist page to root:
1099 	 * an uncharged page off lru does nothing to secure
1100 	 * its former mem_cgroup from sudden removal.
1101 	 *
1102 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1103 	 * under page_cgroup lock: between them, they make all uses
1104 	 * of pc->mem_cgroup safe.
1105 	 */
1106 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1107 		pc->mem_cgroup = memcg = root_mem_cgroup;
1108 
1109 	mz = page_cgroup_zoneinfo(memcg, page);
1110 	return &mz->lruvec;
1111 }
1112 
1113 /**
1114  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1115  * @lruvec: mem_cgroup per zone lru vector
1116  * @lru: index of lru list the page is sitting on
1117  * @nr_pages: positive when adding or negative when removing
1118  *
1119  * This function must be called when a page is added to or removed from an
1120  * lru list.
1121  */
1122 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1123 				int nr_pages)
1124 {
1125 	struct mem_cgroup_per_zone *mz;
1126 	unsigned long *lru_size;
1127 
1128 	if (mem_cgroup_disabled())
1129 		return;
1130 
1131 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1132 	lru_size = mz->lru_size + lru;
1133 	*lru_size += nr_pages;
1134 	VM_BUG_ON((long)(*lru_size) < 0);
1135 }
1136 
1137 /*
1138  * Checks whether given mem is same or in the root_mem_cgroup's
1139  * hierarchy subtree
1140  */
1141 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1142 				  struct mem_cgroup *memcg)
1143 {
1144 	if (root_memcg == memcg)
1145 		return true;
1146 	if (!root_memcg->use_hierarchy || !memcg)
1147 		return false;
1148 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1149 }
1150 
1151 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1152 				       struct mem_cgroup *memcg)
1153 {
1154 	bool ret;
1155 
1156 	rcu_read_lock();
1157 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1158 	rcu_read_unlock();
1159 	return ret;
1160 }
1161 
1162 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1163 {
1164 	int ret;
1165 	struct mem_cgroup *curr = NULL;
1166 	struct task_struct *p;
1167 
1168 	p = find_lock_task_mm(task);
1169 	if (p) {
1170 		curr = try_get_mem_cgroup_from_mm(p->mm);
1171 		task_unlock(p);
1172 	} else {
1173 		/*
1174 		 * All threads may have already detached their mm's, but the oom
1175 		 * killer still needs to detect if they have already been oom
1176 		 * killed to prevent needlessly killing additional tasks.
1177 		 */
1178 		task_lock(task);
1179 		curr = mem_cgroup_from_task(task);
1180 		if (curr)
1181 			css_get(&curr->css);
1182 		task_unlock(task);
1183 	}
1184 	if (!curr)
1185 		return 0;
1186 	/*
1187 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1188 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1189 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1190 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1191 	 */
1192 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1193 	css_put(&curr->css);
1194 	return ret;
1195 }
1196 
1197 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1198 {
1199 	unsigned long inactive_ratio;
1200 	unsigned long inactive;
1201 	unsigned long active;
1202 	unsigned long gb;
1203 
1204 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1205 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1206 
1207 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1208 	if (gb)
1209 		inactive_ratio = int_sqrt(10 * gb);
1210 	else
1211 		inactive_ratio = 1;
1212 
1213 	return inactive * inactive_ratio < active;
1214 }
1215 
1216 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1217 {
1218 	unsigned long active;
1219 	unsigned long inactive;
1220 
1221 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1222 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1223 
1224 	return (active > inactive);
1225 }
1226 
1227 #define mem_cgroup_from_res_counter(counter, member)	\
1228 	container_of(counter, struct mem_cgroup, member)
1229 
1230 /**
1231  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1232  * @memcg: the memory cgroup
1233  *
1234  * Returns the maximum amount of memory @mem can be charged with, in
1235  * pages.
1236  */
1237 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1238 {
1239 	unsigned long long margin;
1240 
1241 	margin = res_counter_margin(&memcg->res);
1242 	if (do_swap_account)
1243 		margin = min(margin, res_counter_margin(&memcg->memsw));
1244 	return margin >> PAGE_SHIFT;
1245 }
1246 
1247 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1248 {
1249 	struct cgroup *cgrp = memcg->css.cgroup;
1250 
1251 	/* root ? */
1252 	if (cgrp->parent == NULL)
1253 		return vm_swappiness;
1254 
1255 	return memcg->swappiness;
1256 }
1257 
1258 /*
1259  * memcg->moving_account is used for checking possibility that some thread is
1260  * calling move_account(). When a thread on CPU-A starts moving pages under
1261  * a memcg, other threads should check memcg->moving_account under
1262  * rcu_read_lock(), like this:
1263  *
1264  *         CPU-A                                    CPU-B
1265  *                                              rcu_read_lock()
1266  *         memcg->moving_account+1              if (memcg->mocing_account)
1267  *                                                   take heavy locks.
1268  *         synchronize_rcu()                    update something.
1269  *                                              rcu_read_unlock()
1270  *         start move here.
1271  */
1272 
1273 /* for quick checking without looking up memcg */
1274 atomic_t memcg_moving __read_mostly;
1275 
1276 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1277 {
1278 	atomic_inc(&memcg_moving);
1279 	atomic_inc(&memcg->moving_account);
1280 	synchronize_rcu();
1281 }
1282 
1283 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1284 {
1285 	/*
1286 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1287 	 * We check NULL in callee rather than caller.
1288 	 */
1289 	if (memcg) {
1290 		atomic_dec(&memcg_moving);
1291 		atomic_dec(&memcg->moving_account);
1292 	}
1293 }
1294 
1295 /*
1296  * 2 routines for checking "mem" is under move_account() or not.
1297  *
1298  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1299  *			  is used for avoiding races in accounting.  If true,
1300  *			  pc->mem_cgroup may be overwritten.
1301  *
1302  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1303  *			  under hierarchy of moving cgroups. This is for
1304  *			  waiting at hith-memory prressure caused by "move".
1305  */
1306 
1307 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1308 {
1309 	VM_BUG_ON(!rcu_read_lock_held());
1310 	return atomic_read(&memcg->moving_account) > 0;
1311 }
1312 
1313 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1314 {
1315 	struct mem_cgroup *from;
1316 	struct mem_cgroup *to;
1317 	bool ret = false;
1318 	/*
1319 	 * Unlike task_move routines, we access mc.to, mc.from not under
1320 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1321 	 */
1322 	spin_lock(&mc.lock);
1323 	from = mc.from;
1324 	to = mc.to;
1325 	if (!from)
1326 		goto unlock;
1327 
1328 	ret = mem_cgroup_same_or_subtree(memcg, from)
1329 		|| mem_cgroup_same_or_subtree(memcg, to);
1330 unlock:
1331 	spin_unlock(&mc.lock);
1332 	return ret;
1333 }
1334 
1335 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1336 {
1337 	if (mc.moving_task && current != mc.moving_task) {
1338 		if (mem_cgroup_under_move(memcg)) {
1339 			DEFINE_WAIT(wait);
1340 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1341 			/* moving charge context might have finished. */
1342 			if (mc.moving_task)
1343 				schedule();
1344 			finish_wait(&mc.waitq, &wait);
1345 			return true;
1346 		}
1347 	}
1348 	return false;
1349 }
1350 
1351 /*
1352  * Take this lock when
1353  * - a code tries to modify page's memcg while it's USED.
1354  * - a code tries to modify page state accounting in a memcg.
1355  * see mem_cgroup_stolen(), too.
1356  */
1357 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1358 				  unsigned long *flags)
1359 {
1360 	spin_lock_irqsave(&memcg->move_lock, *flags);
1361 }
1362 
1363 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1364 				unsigned long *flags)
1365 {
1366 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1367 }
1368 
1369 /**
1370  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1371  * @memcg: The memory cgroup that went over limit
1372  * @p: Task that is going to be killed
1373  *
1374  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1375  * enabled
1376  */
1377 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1378 {
1379 	struct cgroup *task_cgrp;
1380 	struct cgroup *mem_cgrp;
1381 	/*
1382 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1383 	 * on the assumption that OOM is serialized for memory controller.
1384 	 * If this assumption is broken, revisit this code.
1385 	 */
1386 	static char memcg_name[PATH_MAX];
1387 	int ret;
1388 
1389 	if (!memcg || !p)
1390 		return;
1391 
1392 	rcu_read_lock();
1393 
1394 	mem_cgrp = memcg->css.cgroup;
1395 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1396 
1397 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1398 	if (ret < 0) {
1399 		/*
1400 		 * Unfortunately, we are unable to convert to a useful name
1401 		 * But we'll still print out the usage information
1402 		 */
1403 		rcu_read_unlock();
1404 		goto done;
1405 	}
1406 	rcu_read_unlock();
1407 
1408 	printk(KERN_INFO "Task in %s killed", memcg_name);
1409 
1410 	rcu_read_lock();
1411 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1412 	if (ret < 0) {
1413 		rcu_read_unlock();
1414 		goto done;
1415 	}
1416 	rcu_read_unlock();
1417 
1418 	/*
1419 	 * Continues from above, so we don't need an KERN_ level
1420 	 */
1421 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1422 done:
1423 
1424 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1425 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1426 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1427 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1428 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1429 		"failcnt %llu\n",
1430 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1431 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1432 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1433 }
1434 
1435 /*
1436  * This function returns the number of memcg under hierarchy tree. Returns
1437  * 1(self count) if no children.
1438  */
1439 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1440 {
1441 	int num = 0;
1442 	struct mem_cgroup *iter;
1443 
1444 	for_each_mem_cgroup_tree(iter, memcg)
1445 		num++;
1446 	return num;
1447 }
1448 
1449 /*
1450  * Return the memory (and swap, if configured) limit for a memcg.
1451  */
1452 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1453 {
1454 	u64 limit;
1455 	u64 memsw;
1456 
1457 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1458 	limit += total_swap_pages << PAGE_SHIFT;
1459 
1460 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1461 	/*
1462 	 * If memsw is finite and limits the amount of swap space available
1463 	 * to this memcg, return that limit.
1464 	 */
1465 	return min(limit, memsw);
1466 }
1467 
1468 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1469 			      int order)
1470 {
1471 	struct mem_cgroup *iter;
1472 	unsigned long chosen_points = 0;
1473 	unsigned long totalpages;
1474 	unsigned int points = 0;
1475 	struct task_struct *chosen = NULL;
1476 
1477 	/*
1478 	 * If current has a pending SIGKILL, then automatically select it.  The
1479 	 * goal is to allow it to allocate so that it may quickly exit and free
1480 	 * its memory.
1481 	 */
1482 	if (fatal_signal_pending(current)) {
1483 		set_thread_flag(TIF_MEMDIE);
1484 		return;
1485 	}
1486 
1487 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1488 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1489 	for_each_mem_cgroup_tree(iter, memcg) {
1490 		struct cgroup *cgroup = iter->css.cgroup;
1491 		struct cgroup_iter it;
1492 		struct task_struct *task;
1493 
1494 		cgroup_iter_start(cgroup, &it);
1495 		while ((task = cgroup_iter_next(cgroup, &it))) {
1496 			switch (oom_scan_process_thread(task, totalpages, NULL,
1497 							false)) {
1498 			case OOM_SCAN_SELECT:
1499 				if (chosen)
1500 					put_task_struct(chosen);
1501 				chosen = task;
1502 				chosen_points = ULONG_MAX;
1503 				get_task_struct(chosen);
1504 				/* fall through */
1505 			case OOM_SCAN_CONTINUE:
1506 				continue;
1507 			case OOM_SCAN_ABORT:
1508 				cgroup_iter_end(cgroup, &it);
1509 				mem_cgroup_iter_break(memcg, iter);
1510 				if (chosen)
1511 					put_task_struct(chosen);
1512 				return;
1513 			case OOM_SCAN_OK:
1514 				break;
1515 			};
1516 			points = oom_badness(task, memcg, NULL, totalpages);
1517 			if (points > chosen_points) {
1518 				if (chosen)
1519 					put_task_struct(chosen);
1520 				chosen = task;
1521 				chosen_points = points;
1522 				get_task_struct(chosen);
1523 			}
1524 		}
1525 		cgroup_iter_end(cgroup, &it);
1526 	}
1527 
1528 	if (!chosen)
1529 		return;
1530 	points = chosen_points * 1000 / totalpages;
1531 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1532 			 NULL, "Memory cgroup out of memory");
1533 }
1534 
1535 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1536 					gfp_t gfp_mask,
1537 					unsigned long flags)
1538 {
1539 	unsigned long total = 0;
1540 	bool noswap = false;
1541 	int loop;
1542 
1543 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1544 		noswap = true;
1545 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1546 		noswap = true;
1547 
1548 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1549 		if (loop)
1550 			drain_all_stock_async(memcg);
1551 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1552 		/*
1553 		 * Allow limit shrinkers, which are triggered directly
1554 		 * by userspace, to catch signals and stop reclaim
1555 		 * after minimal progress, regardless of the margin.
1556 		 */
1557 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1558 			break;
1559 		if (mem_cgroup_margin(memcg))
1560 			break;
1561 		/*
1562 		 * If nothing was reclaimed after two attempts, there
1563 		 * may be no reclaimable pages in this hierarchy.
1564 		 */
1565 		if (loop && !total)
1566 			break;
1567 	}
1568 	return total;
1569 }
1570 
1571 /**
1572  * test_mem_cgroup_node_reclaimable
1573  * @memcg: the target memcg
1574  * @nid: the node ID to be checked.
1575  * @noswap : specify true here if the user wants flle only information.
1576  *
1577  * This function returns whether the specified memcg contains any
1578  * reclaimable pages on a node. Returns true if there are any reclaimable
1579  * pages in the node.
1580  */
1581 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1582 		int nid, bool noswap)
1583 {
1584 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1585 		return true;
1586 	if (noswap || !total_swap_pages)
1587 		return false;
1588 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1589 		return true;
1590 	return false;
1591 
1592 }
1593 #if MAX_NUMNODES > 1
1594 
1595 /*
1596  * Always updating the nodemask is not very good - even if we have an empty
1597  * list or the wrong list here, we can start from some node and traverse all
1598  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1599  *
1600  */
1601 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1602 {
1603 	int nid;
1604 	/*
1605 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1606 	 * pagein/pageout changes since the last update.
1607 	 */
1608 	if (!atomic_read(&memcg->numainfo_events))
1609 		return;
1610 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1611 		return;
1612 
1613 	/* make a nodemask where this memcg uses memory from */
1614 	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1615 
1616 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1617 
1618 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1619 			node_clear(nid, memcg->scan_nodes);
1620 	}
1621 
1622 	atomic_set(&memcg->numainfo_events, 0);
1623 	atomic_set(&memcg->numainfo_updating, 0);
1624 }
1625 
1626 /*
1627  * Selecting a node where we start reclaim from. Because what we need is just
1628  * reducing usage counter, start from anywhere is O,K. Considering
1629  * memory reclaim from current node, there are pros. and cons.
1630  *
1631  * Freeing memory from current node means freeing memory from a node which
1632  * we'll use or we've used. So, it may make LRU bad. And if several threads
1633  * hit limits, it will see a contention on a node. But freeing from remote
1634  * node means more costs for memory reclaim because of memory latency.
1635  *
1636  * Now, we use round-robin. Better algorithm is welcomed.
1637  */
1638 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1639 {
1640 	int node;
1641 
1642 	mem_cgroup_may_update_nodemask(memcg);
1643 	node = memcg->last_scanned_node;
1644 
1645 	node = next_node(node, memcg->scan_nodes);
1646 	if (node == MAX_NUMNODES)
1647 		node = first_node(memcg->scan_nodes);
1648 	/*
1649 	 * We call this when we hit limit, not when pages are added to LRU.
1650 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1651 	 * memcg is too small and all pages are not on LRU. In that case,
1652 	 * we use curret node.
1653 	 */
1654 	if (unlikely(node == MAX_NUMNODES))
1655 		node = numa_node_id();
1656 
1657 	memcg->last_scanned_node = node;
1658 	return node;
1659 }
1660 
1661 /*
1662  * Check all nodes whether it contains reclaimable pages or not.
1663  * For quick scan, we make use of scan_nodes. This will allow us to skip
1664  * unused nodes. But scan_nodes is lazily updated and may not cotain
1665  * enough new information. We need to do double check.
1666  */
1667 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1668 {
1669 	int nid;
1670 
1671 	/*
1672 	 * quick check...making use of scan_node.
1673 	 * We can skip unused nodes.
1674 	 */
1675 	if (!nodes_empty(memcg->scan_nodes)) {
1676 		for (nid = first_node(memcg->scan_nodes);
1677 		     nid < MAX_NUMNODES;
1678 		     nid = next_node(nid, memcg->scan_nodes)) {
1679 
1680 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1681 				return true;
1682 		}
1683 	}
1684 	/*
1685 	 * Check rest of nodes.
1686 	 */
1687 	for_each_node_state(nid, N_HIGH_MEMORY) {
1688 		if (node_isset(nid, memcg->scan_nodes))
1689 			continue;
1690 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1691 			return true;
1692 	}
1693 	return false;
1694 }
1695 
1696 #else
1697 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1698 {
1699 	return 0;
1700 }
1701 
1702 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1703 {
1704 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1705 }
1706 #endif
1707 
1708 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1709 				   struct zone *zone,
1710 				   gfp_t gfp_mask,
1711 				   unsigned long *total_scanned)
1712 {
1713 	struct mem_cgroup *victim = NULL;
1714 	int total = 0;
1715 	int loop = 0;
1716 	unsigned long excess;
1717 	unsigned long nr_scanned;
1718 	struct mem_cgroup_reclaim_cookie reclaim = {
1719 		.zone = zone,
1720 		.priority = 0,
1721 	};
1722 
1723 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1724 
1725 	while (1) {
1726 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1727 		if (!victim) {
1728 			loop++;
1729 			if (loop >= 2) {
1730 				/*
1731 				 * If we have not been able to reclaim
1732 				 * anything, it might because there are
1733 				 * no reclaimable pages under this hierarchy
1734 				 */
1735 				if (!total)
1736 					break;
1737 				/*
1738 				 * We want to do more targeted reclaim.
1739 				 * excess >> 2 is not to excessive so as to
1740 				 * reclaim too much, nor too less that we keep
1741 				 * coming back to reclaim from this cgroup
1742 				 */
1743 				if (total >= (excess >> 2) ||
1744 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1745 					break;
1746 			}
1747 			continue;
1748 		}
1749 		if (!mem_cgroup_reclaimable(victim, false))
1750 			continue;
1751 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1752 						     zone, &nr_scanned);
1753 		*total_scanned += nr_scanned;
1754 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1755 			break;
1756 	}
1757 	mem_cgroup_iter_break(root_memcg, victim);
1758 	return total;
1759 }
1760 
1761 /*
1762  * Check OOM-Killer is already running under our hierarchy.
1763  * If someone is running, return false.
1764  * Has to be called with memcg_oom_lock
1765  */
1766 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1767 {
1768 	struct mem_cgroup *iter, *failed = NULL;
1769 
1770 	for_each_mem_cgroup_tree(iter, memcg) {
1771 		if (iter->oom_lock) {
1772 			/*
1773 			 * this subtree of our hierarchy is already locked
1774 			 * so we cannot give a lock.
1775 			 */
1776 			failed = iter;
1777 			mem_cgroup_iter_break(memcg, iter);
1778 			break;
1779 		} else
1780 			iter->oom_lock = true;
1781 	}
1782 
1783 	if (!failed)
1784 		return true;
1785 
1786 	/*
1787 	 * OK, we failed to lock the whole subtree so we have to clean up
1788 	 * what we set up to the failing subtree
1789 	 */
1790 	for_each_mem_cgroup_tree(iter, memcg) {
1791 		if (iter == failed) {
1792 			mem_cgroup_iter_break(memcg, iter);
1793 			break;
1794 		}
1795 		iter->oom_lock = false;
1796 	}
1797 	return false;
1798 }
1799 
1800 /*
1801  * Has to be called with memcg_oom_lock
1802  */
1803 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1804 {
1805 	struct mem_cgroup *iter;
1806 
1807 	for_each_mem_cgroup_tree(iter, memcg)
1808 		iter->oom_lock = false;
1809 	return 0;
1810 }
1811 
1812 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1813 {
1814 	struct mem_cgroup *iter;
1815 
1816 	for_each_mem_cgroup_tree(iter, memcg)
1817 		atomic_inc(&iter->under_oom);
1818 }
1819 
1820 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1821 {
1822 	struct mem_cgroup *iter;
1823 
1824 	/*
1825 	 * When a new child is created while the hierarchy is under oom,
1826 	 * mem_cgroup_oom_lock() may not be called. We have to use
1827 	 * atomic_add_unless() here.
1828 	 */
1829 	for_each_mem_cgroup_tree(iter, memcg)
1830 		atomic_add_unless(&iter->under_oom, -1, 0);
1831 }
1832 
1833 static DEFINE_SPINLOCK(memcg_oom_lock);
1834 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1835 
1836 struct oom_wait_info {
1837 	struct mem_cgroup *memcg;
1838 	wait_queue_t	wait;
1839 };
1840 
1841 static int memcg_oom_wake_function(wait_queue_t *wait,
1842 	unsigned mode, int sync, void *arg)
1843 {
1844 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1845 	struct mem_cgroup *oom_wait_memcg;
1846 	struct oom_wait_info *oom_wait_info;
1847 
1848 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1849 	oom_wait_memcg = oom_wait_info->memcg;
1850 
1851 	/*
1852 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1853 	 * Then we can use css_is_ancestor without taking care of RCU.
1854 	 */
1855 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1856 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1857 		return 0;
1858 	return autoremove_wake_function(wait, mode, sync, arg);
1859 }
1860 
1861 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1862 {
1863 	/* for filtering, pass "memcg" as argument. */
1864 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1865 }
1866 
1867 static void memcg_oom_recover(struct mem_cgroup *memcg)
1868 {
1869 	if (memcg && atomic_read(&memcg->under_oom))
1870 		memcg_wakeup_oom(memcg);
1871 }
1872 
1873 /*
1874  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1875  */
1876 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1877 				  int order)
1878 {
1879 	struct oom_wait_info owait;
1880 	bool locked, need_to_kill;
1881 
1882 	owait.memcg = memcg;
1883 	owait.wait.flags = 0;
1884 	owait.wait.func = memcg_oom_wake_function;
1885 	owait.wait.private = current;
1886 	INIT_LIST_HEAD(&owait.wait.task_list);
1887 	need_to_kill = true;
1888 	mem_cgroup_mark_under_oom(memcg);
1889 
1890 	/* At first, try to OOM lock hierarchy under memcg.*/
1891 	spin_lock(&memcg_oom_lock);
1892 	locked = mem_cgroup_oom_lock(memcg);
1893 	/*
1894 	 * Even if signal_pending(), we can't quit charge() loop without
1895 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1896 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1897 	 */
1898 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1899 	if (!locked || memcg->oom_kill_disable)
1900 		need_to_kill = false;
1901 	if (locked)
1902 		mem_cgroup_oom_notify(memcg);
1903 	spin_unlock(&memcg_oom_lock);
1904 
1905 	if (need_to_kill) {
1906 		finish_wait(&memcg_oom_waitq, &owait.wait);
1907 		mem_cgroup_out_of_memory(memcg, mask, order);
1908 	} else {
1909 		schedule();
1910 		finish_wait(&memcg_oom_waitq, &owait.wait);
1911 	}
1912 	spin_lock(&memcg_oom_lock);
1913 	if (locked)
1914 		mem_cgroup_oom_unlock(memcg);
1915 	memcg_wakeup_oom(memcg);
1916 	spin_unlock(&memcg_oom_lock);
1917 
1918 	mem_cgroup_unmark_under_oom(memcg);
1919 
1920 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1921 		return false;
1922 	/* Give chance to dying process */
1923 	schedule_timeout_uninterruptible(1);
1924 	return true;
1925 }
1926 
1927 /*
1928  * Currently used to update mapped file statistics, but the routine can be
1929  * generalized to update other statistics as well.
1930  *
1931  * Notes: Race condition
1932  *
1933  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1934  * it tends to be costly. But considering some conditions, we doesn't need
1935  * to do so _always_.
1936  *
1937  * Considering "charge", lock_page_cgroup() is not required because all
1938  * file-stat operations happen after a page is attached to radix-tree. There
1939  * are no race with "charge".
1940  *
1941  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1942  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1943  * if there are race with "uncharge". Statistics itself is properly handled
1944  * by flags.
1945  *
1946  * Considering "move", this is an only case we see a race. To make the race
1947  * small, we check mm->moving_account and detect there are possibility of race
1948  * If there is, we take a lock.
1949  */
1950 
1951 void __mem_cgroup_begin_update_page_stat(struct page *page,
1952 				bool *locked, unsigned long *flags)
1953 {
1954 	struct mem_cgroup *memcg;
1955 	struct page_cgroup *pc;
1956 
1957 	pc = lookup_page_cgroup(page);
1958 again:
1959 	memcg = pc->mem_cgroup;
1960 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1961 		return;
1962 	/*
1963 	 * If this memory cgroup is not under account moving, we don't
1964 	 * need to take move_lock_mem_cgroup(). Because we already hold
1965 	 * rcu_read_lock(), any calls to move_account will be delayed until
1966 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1967 	 */
1968 	if (!mem_cgroup_stolen(memcg))
1969 		return;
1970 
1971 	move_lock_mem_cgroup(memcg, flags);
1972 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1973 		move_unlock_mem_cgroup(memcg, flags);
1974 		goto again;
1975 	}
1976 	*locked = true;
1977 }
1978 
1979 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1980 {
1981 	struct page_cgroup *pc = lookup_page_cgroup(page);
1982 
1983 	/*
1984 	 * It's guaranteed that pc->mem_cgroup never changes while
1985 	 * lock is held because a routine modifies pc->mem_cgroup
1986 	 * should take move_lock_mem_cgroup().
1987 	 */
1988 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1989 }
1990 
1991 void mem_cgroup_update_page_stat(struct page *page,
1992 				 enum mem_cgroup_page_stat_item idx, int val)
1993 {
1994 	struct mem_cgroup *memcg;
1995 	struct page_cgroup *pc = lookup_page_cgroup(page);
1996 	unsigned long uninitialized_var(flags);
1997 
1998 	if (mem_cgroup_disabled())
1999 		return;
2000 
2001 	memcg = pc->mem_cgroup;
2002 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2003 		return;
2004 
2005 	switch (idx) {
2006 	case MEMCG_NR_FILE_MAPPED:
2007 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2008 		break;
2009 	default:
2010 		BUG();
2011 	}
2012 
2013 	this_cpu_add(memcg->stat->count[idx], val);
2014 }
2015 
2016 /*
2017  * size of first charge trial. "32" comes from vmscan.c's magic value.
2018  * TODO: maybe necessary to use big numbers in big irons.
2019  */
2020 #define CHARGE_BATCH	32U
2021 struct memcg_stock_pcp {
2022 	struct mem_cgroup *cached; /* this never be root cgroup */
2023 	unsigned int nr_pages;
2024 	struct work_struct work;
2025 	unsigned long flags;
2026 #define FLUSHING_CACHED_CHARGE	0
2027 };
2028 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2029 static DEFINE_MUTEX(percpu_charge_mutex);
2030 
2031 /*
2032  * Try to consume stocked charge on this cpu. If success, one page is consumed
2033  * from local stock and true is returned. If the stock is 0 or charges from a
2034  * cgroup which is not current target, returns false. This stock will be
2035  * refilled.
2036  */
2037 static bool consume_stock(struct mem_cgroup *memcg)
2038 {
2039 	struct memcg_stock_pcp *stock;
2040 	bool ret = true;
2041 
2042 	stock = &get_cpu_var(memcg_stock);
2043 	if (memcg == stock->cached && stock->nr_pages)
2044 		stock->nr_pages--;
2045 	else /* need to call res_counter_charge */
2046 		ret = false;
2047 	put_cpu_var(memcg_stock);
2048 	return ret;
2049 }
2050 
2051 /*
2052  * Returns stocks cached in percpu to res_counter and reset cached information.
2053  */
2054 static void drain_stock(struct memcg_stock_pcp *stock)
2055 {
2056 	struct mem_cgroup *old = stock->cached;
2057 
2058 	if (stock->nr_pages) {
2059 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2060 
2061 		res_counter_uncharge(&old->res, bytes);
2062 		if (do_swap_account)
2063 			res_counter_uncharge(&old->memsw, bytes);
2064 		stock->nr_pages = 0;
2065 	}
2066 	stock->cached = NULL;
2067 }
2068 
2069 /*
2070  * This must be called under preempt disabled or must be called by
2071  * a thread which is pinned to local cpu.
2072  */
2073 static void drain_local_stock(struct work_struct *dummy)
2074 {
2075 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2076 	drain_stock(stock);
2077 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2078 }
2079 
2080 /*
2081  * Cache charges(val) which is from res_counter, to local per_cpu area.
2082  * This will be consumed by consume_stock() function, later.
2083  */
2084 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2085 {
2086 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2087 
2088 	if (stock->cached != memcg) { /* reset if necessary */
2089 		drain_stock(stock);
2090 		stock->cached = memcg;
2091 	}
2092 	stock->nr_pages += nr_pages;
2093 	put_cpu_var(memcg_stock);
2094 }
2095 
2096 /*
2097  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2098  * of the hierarchy under it. sync flag says whether we should block
2099  * until the work is done.
2100  */
2101 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2102 {
2103 	int cpu, curcpu;
2104 
2105 	/* Notify other cpus that system-wide "drain" is running */
2106 	get_online_cpus();
2107 	curcpu = get_cpu();
2108 	for_each_online_cpu(cpu) {
2109 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2110 		struct mem_cgroup *memcg;
2111 
2112 		memcg = stock->cached;
2113 		if (!memcg || !stock->nr_pages)
2114 			continue;
2115 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2116 			continue;
2117 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2118 			if (cpu == curcpu)
2119 				drain_local_stock(&stock->work);
2120 			else
2121 				schedule_work_on(cpu, &stock->work);
2122 		}
2123 	}
2124 	put_cpu();
2125 
2126 	if (!sync)
2127 		goto out;
2128 
2129 	for_each_online_cpu(cpu) {
2130 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2131 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2132 			flush_work(&stock->work);
2133 	}
2134 out:
2135  	put_online_cpus();
2136 }
2137 
2138 /*
2139  * Tries to drain stocked charges in other cpus. This function is asynchronous
2140  * and just put a work per cpu for draining localy on each cpu. Caller can
2141  * expects some charges will be back to res_counter later but cannot wait for
2142  * it.
2143  */
2144 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2145 {
2146 	/*
2147 	 * If someone calls draining, avoid adding more kworker runs.
2148 	 */
2149 	if (!mutex_trylock(&percpu_charge_mutex))
2150 		return;
2151 	drain_all_stock(root_memcg, false);
2152 	mutex_unlock(&percpu_charge_mutex);
2153 }
2154 
2155 /* This is a synchronous drain interface. */
2156 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2157 {
2158 	/* called when force_empty is called */
2159 	mutex_lock(&percpu_charge_mutex);
2160 	drain_all_stock(root_memcg, true);
2161 	mutex_unlock(&percpu_charge_mutex);
2162 }
2163 
2164 /*
2165  * This function drains percpu counter value from DEAD cpu and
2166  * move it to local cpu. Note that this function can be preempted.
2167  */
2168 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2169 {
2170 	int i;
2171 
2172 	spin_lock(&memcg->pcp_counter_lock);
2173 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2174 		long x = per_cpu(memcg->stat->count[i], cpu);
2175 
2176 		per_cpu(memcg->stat->count[i], cpu) = 0;
2177 		memcg->nocpu_base.count[i] += x;
2178 	}
2179 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2180 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2181 
2182 		per_cpu(memcg->stat->events[i], cpu) = 0;
2183 		memcg->nocpu_base.events[i] += x;
2184 	}
2185 	spin_unlock(&memcg->pcp_counter_lock);
2186 }
2187 
2188 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2189 					unsigned long action,
2190 					void *hcpu)
2191 {
2192 	int cpu = (unsigned long)hcpu;
2193 	struct memcg_stock_pcp *stock;
2194 	struct mem_cgroup *iter;
2195 
2196 	if (action == CPU_ONLINE)
2197 		return NOTIFY_OK;
2198 
2199 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2200 		return NOTIFY_OK;
2201 
2202 	for_each_mem_cgroup(iter)
2203 		mem_cgroup_drain_pcp_counter(iter, cpu);
2204 
2205 	stock = &per_cpu(memcg_stock, cpu);
2206 	drain_stock(stock);
2207 	return NOTIFY_OK;
2208 }
2209 
2210 
2211 /* See __mem_cgroup_try_charge() for details */
2212 enum {
2213 	CHARGE_OK,		/* success */
2214 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2215 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2216 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2217 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2218 };
2219 
2220 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2221 				unsigned int nr_pages, bool oom_check)
2222 {
2223 	unsigned long csize = nr_pages * PAGE_SIZE;
2224 	struct mem_cgroup *mem_over_limit;
2225 	struct res_counter *fail_res;
2226 	unsigned long flags = 0;
2227 	int ret;
2228 
2229 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2230 
2231 	if (likely(!ret)) {
2232 		if (!do_swap_account)
2233 			return CHARGE_OK;
2234 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2235 		if (likely(!ret))
2236 			return CHARGE_OK;
2237 
2238 		res_counter_uncharge(&memcg->res, csize);
2239 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2240 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2241 	} else
2242 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2243 	/*
2244 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2245 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2246 	 *
2247 	 * Never reclaim on behalf of optional batching, retry with a
2248 	 * single page instead.
2249 	 */
2250 	if (nr_pages == CHARGE_BATCH)
2251 		return CHARGE_RETRY;
2252 
2253 	if (!(gfp_mask & __GFP_WAIT))
2254 		return CHARGE_WOULDBLOCK;
2255 
2256 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2257 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2258 		return CHARGE_RETRY;
2259 	/*
2260 	 * Even though the limit is exceeded at this point, reclaim
2261 	 * may have been able to free some pages.  Retry the charge
2262 	 * before killing the task.
2263 	 *
2264 	 * Only for regular pages, though: huge pages are rather
2265 	 * unlikely to succeed so close to the limit, and we fall back
2266 	 * to regular pages anyway in case of failure.
2267 	 */
2268 	if (nr_pages == 1 && ret)
2269 		return CHARGE_RETRY;
2270 
2271 	/*
2272 	 * At task move, charge accounts can be doubly counted. So, it's
2273 	 * better to wait until the end of task_move if something is going on.
2274 	 */
2275 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2276 		return CHARGE_RETRY;
2277 
2278 	/* If we don't need to call oom-killer at el, return immediately */
2279 	if (!oom_check)
2280 		return CHARGE_NOMEM;
2281 	/* check OOM */
2282 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2283 		return CHARGE_OOM_DIE;
2284 
2285 	return CHARGE_RETRY;
2286 }
2287 
2288 /*
2289  * __mem_cgroup_try_charge() does
2290  * 1. detect memcg to be charged against from passed *mm and *ptr,
2291  * 2. update res_counter
2292  * 3. call memory reclaim if necessary.
2293  *
2294  * In some special case, if the task is fatal, fatal_signal_pending() or
2295  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2296  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2297  * as possible without any hazards. 2: all pages should have a valid
2298  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2299  * pointer, that is treated as a charge to root_mem_cgroup.
2300  *
2301  * So __mem_cgroup_try_charge() will return
2302  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2303  *  -ENOMEM ...  charge failure because of resource limits.
2304  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2305  *
2306  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2307  * the oom-killer can be invoked.
2308  */
2309 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2310 				   gfp_t gfp_mask,
2311 				   unsigned int nr_pages,
2312 				   struct mem_cgroup **ptr,
2313 				   bool oom)
2314 {
2315 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2316 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2317 	struct mem_cgroup *memcg = NULL;
2318 	int ret;
2319 
2320 	/*
2321 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2322 	 * in system level. So, allow to go ahead dying process in addition to
2323 	 * MEMDIE process.
2324 	 */
2325 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2326 		     || fatal_signal_pending(current)))
2327 		goto bypass;
2328 
2329 	/*
2330 	 * We always charge the cgroup the mm_struct belongs to.
2331 	 * The mm_struct's mem_cgroup changes on task migration if the
2332 	 * thread group leader migrates. It's possible that mm is not
2333 	 * set, if so charge the root memcg (happens for pagecache usage).
2334 	 */
2335 	if (!*ptr && !mm)
2336 		*ptr = root_mem_cgroup;
2337 again:
2338 	if (*ptr) { /* css should be a valid one */
2339 		memcg = *ptr;
2340 		VM_BUG_ON(css_is_removed(&memcg->css));
2341 		if (mem_cgroup_is_root(memcg))
2342 			goto done;
2343 		if (nr_pages == 1 && consume_stock(memcg))
2344 			goto done;
2345 		css_get(&memcg->css);
2346 	} else {
2347 		struct task_struct *p;
2348 
2349 		rcu_read_lock();
2350 		p = rcu_dereference(mm->owner);
2351 		/*
2352 		 * Because we don't have task_lock(), "p" can exit.
2353 		 * In that case, "memcg" can point to root or p can be NULL with
2354 		 * race with swapoff. Then, we have small risk of mis-accouning.
2355 		 * But such kind of mis-account by race always happens because
2356 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2357 		 * small race, here.
2358 		 * (*) swapoff at el will charge against mm-struct not against
2359 		 * task-struct. So, mm->owner can be NULL.
2360 		 */
2361 		memcg = mem_cgroup_from_task(p);
2362 		if (!memcg)
2363 			memcg = root_mem_cgroup;
2364 		if (mem_cgroup_is_root(memcg)) {
2365 			rcu_read_unlock();
2366 			goto done;
2367 		}
2368 		if (nr_pages == 1 && consume_stock(memcg)) {
2369 			/*
2370 			 * It seems dagerous to access memcg without css_get().
2371 			 * But considering how consume_stok works, it's not
2372 			 * necessary. If consume_stock success, some charges
2373 			 * from this memcg are cached on this cpu. So, we
2374 			 * don't need to call css_get()/css_tryget() before
2375 			 * calling consume_stock().
2376 			 */
2377 			rcu_read_unlock();
2378 			goto done;
2379 		}
2380 		/* after here, we may be blocked. we need to get refcnt */
2381 		if (!css_tryget(&memcg->css)) {
2382 			rcu_read_unlock();
2383 			goto again;
2384 		}
2385 		rcu_read_unlock();
2386 	}
2387 
2388 	do {
2389 		bool oom_check;
2390 
2391 		/* If killed, bypass charge */
2392 		if (fatal_signal_pending(current)) {
2393 			css_put(&memcg->css);
2394 			goto bypass;
2395 		}
2396 
2397 		oom_check = false;
2398 		if (oom && !nr_oom_retries) {
2399 			oom_check = true;
2400 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2401 		}
2402 
2403 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2404 		switch (ret) {
2405 		case CHARGE_OK:
2406 			break;
2407 		case CHARGE_RETRY: /* not in OOM situation but retry */
2408 			batch = nr_pages;
2409 			css_put(&memcg->css);
2410 			memcg = NULL;
2411 			goto again;
2412 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2413 			css_put(&memcg->css);
2414 			goto nomem;
2415 		case CHARGE_NOMEM: /* OOM routine works */
2416 			if (!oom) {
2417 				css_put(&memcg->css);
2418 				goto nomem;
2419 			}
2420 			/* If oom, we never return -ENOMEM */
2421 			nr_oom_retries--;
2422 			break;
2423 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2424 			css_put(&memcg->css);
2425 			goto bypass;
2426 		}
2427 	} while (ret != CHARGE_OK);
2428 
2429 	if (batch > nr_pages)
2430 		refill_stock(memcg, batch - nr_pages);
2431 	css_put(&memcg->css);
2432 done:
2433 	*ptr = memcg;
2434 	return 0;
2435 nomem:
2436 	*ptr = NULL;
2437 	return -ENOMEM;
2438 bypass:
2439 	*ptr = root_mem_cgroup;
2440 	return -EINTR;
2441 }
2442 
2443 /*
2444  * Somemtimes we have to undo a charge we got by try_charge().
2445  * This function is for that and do uncharge, put css's refcnt.
2446  * gotten by try_charge().
2447  */
2448 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2449 				       unsigned int nr_pages)
2450 {
2451 	if (!mem_cgroup_is_root(memcg)) {
2452 		unsigned long bytes = nr_pages * PAGE_SIZE;
2453 
2454 		res_counter_uncharge(&memcg->res, bytes);
2455 		if (do_swap_account)
2456 			res_counter_uncharge(&memcg->memsw, bytes);
2457 	}
2458 }
2459 
2460 /*
2461  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2462  * This is useful when moving usage to parent cgroup.
2463  */
2464 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2465 					unsigned int nr_pages)
2466 {
2467 	unsigned long bytes = nr_pages * PAGE_SIZE;
2468 
2469 	if (mem_cgroup_is_root(memcg))
2470 		return;
2471 
2472 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2473 	if (do_swap_account)
2474 		res_counter_uncharge_until(&memcg->memsw,
2475 						memcg->memsw.parent, bytes);
2476 }
2477 
2478 /*
2479  * A helper function to get mem_cgroup from ID. must be called under
2480  * rcu_read_lock(). The caller must check css_is_removed() or some if
2481  * it's concern. (dropping refcnt from swap can be called against removed
2482  * memcg.)
2483  */
2484 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2485 {
2486 	struct cgroup_subsys_state *css;
2487 
2488 	/* ID 0 is unused ID */
2489 	if (!id)
2490 		return NULL;
2491 	css = css_lookup(&mem_cgroup_subsys, id);
2492 	if (!css)
2493 		return NULL;
2494 	return mem_cgroup_from_css(css);
2495 }
2496 
2497 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2498 {
2499 	struct mem_cgroup *memcg = NULL;
2500 	struct page_cgroup *pc;
2501 	unsigned short id;
2502 	swp_entry_t ent;
2503 
2504 	VM_BUG_ON(!PageLocked(page));
2505 
2506 	pc = lookup_page_cgroup(page);
2507 	lock_page_cgroup(pc);
2508 	if (PageCgroupUsed(pc)) {
2509 		memcg = pc->mem_cgroup;
2510 		if (memcg && !css_tryget(&memcg->css))
2511 			memcg = NULL;
2512 	} else if (PageSwapCache(page)) {
2513 		ent.val = page_private(page);
2514 		id = lookup_swap_cgroup_id(ent);
2515 		rcu_read_lock();
2516 		memcg = mem_cgroup_lookup(id);
2517 		if (memcg && !css_tryget(&memcg->css))
2518 			memcg = NULL;
2519 		rcu_read_unlock();
2520 	}
2521 	unlock_page_cgroup(pc);
2522 	return memcg;
2523 }
2524 
2525 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2526 				       struct page *page,
2527 				       unsigned int nr_pages,
2528 				       enum charge_type ctype,
2529 				       bool lrucare)
2530 {
2531 	struct page_cgroup *pc = lookup_page_cgroup(page);
2532 	struct zone *uninitialized_var(zone);
2533 	struct lruvec *lruvec;
2534 	bool was_on_lru = false;
2535 	bool anon;
2536 
2537 	lock_page_cgroup(pc);
2538 	VM_BUG_ON(PageCgroupUsed(pc));
2539 	/*
2540 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2541 	 * accessed by any other context at this point.
2542 	 */
2543 
2544 	/*
2545 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2546 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2547 	 */
2548 	if (lrucare) {
2549 		zone = page_zone(page);
2550 		spin_lock_irq(&zone->lru_lock);
2551 		if (PageLRU(page)) {
2552 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2553 			ClearPageLRU(page);
2554 			del_page_from_lru_list(page, lruvec, page_lru(page));
2555 			was_on_lru = true;
2556 		}
2557 	}
2558 
2559 	pc->mem_cgroup = memcg;
2560 	/*
2561 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2562 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2563 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2564 	 * before USED bit, we need memory barrier here.
2565 	 * See mem_cgroup_add_lru_list(), etc.
2566  	 */
2567 	smp_wmb();
2568 	SetPageCgroupUsed(pc);
2569 
2570 	if (lrucare) {
2571 		if (was_on_lru) {
2572 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2573 			VM_BUG_ON(PageLRU(page));
2574 			SetPageLRU(page);
2575 			add_page_to_lru_list(page, lruvec, page_lru(page));
2576 		}
2577 		spin_unlock_irq(&zone->lru_lock);
2578 	}
2579 
2580 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2581 		anon = true;
2582 	else
2583 		anon = false;
2584 
2585 	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2586 	unlock_page_cgroup(pc);
2587 
2588 	/*
2589 	 * "charge_statistics" updated event counter. Then, check it.
2590 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2591 	 * if they exceeds softlimit.
2592 	 */
2593 	memcg_check_events(memcg, page);
2594 }
2595 
2596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2597 
2598 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2599 /*
2600  * Because tail pages are not marked as "used", set it. We're under
2601  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2602  * charge/uncharge will be never happen and move_account() is done under
2603  * compound_lock(), so we don't have to take care of races.
2604  */
2605 void mem_cgroup_split_huge_fixup(struct page *head)
2606 {
2607 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2608 	struct page_cgroup *pc;
2609 	int i;
2610 
2611 	if (mem_cgroup_disabled())
2612 		return;
2613 	for (i = 1; i < HPAGE_PMD_NR; i++) {
2614 		pc = head_pc + i;
2615 		pc->mem_cgroup = head_pc->mem_cgroup;
2616 		smp_wmb();/* see __commit_charge() */
2617 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2618 	}
2619 }
2620 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2621 
2622 /**
2623  * mem_cgroup_move_account - move account of the page
2624  * @page: the page
2625  * @nr_pages: number of regular pages (>1 for huge pages)
2626  * @pc:	page_cgroup of the page.
2627  * @from: mem_cgroup which the page is moved from.
2628  * @to:	mem_cgroup which the page is moved to. @from != @to.
2629  *
2630  * The caller must confirm following.
2631  * - page is not on LRU (isolate_page() is useful.)
2632  * - compound_lock is held when nr_pages > 1
2633  *
2634  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2635  * from old cgroup.
2636  */
2637 static int mem_cgroup_move_account(struct page *page,
2638 				   unsigned int nr_pages,
2639 				   struct page_cgroup *pc,
2640 				   struct mem_cgroup *from,
2641 				   struct mem_cgroup *to)
2642 {
2643 	unsigned long flags;
2644 	int ret;
2645 	bool anon = PageAnon(page);
2646 
2647 	VM_BUG_ON(from == to);
2648 	VM_BUG_ON(PageLRU(page));
2649 	/*
2650 	 * The page is isolated from LRU. So, collapse function
2651 	 * will not handle this page. But page splitting can happen.
2652 	 * Do this check under compound_page_lock(). The caller should
2653 	 * hold it.
2654 	 */
2655 	ret = -EBUSY;
2656 	if (nr_pages > 1 && !PageTransHuge(page))
2657 		goto out;
2658 
2659 	lock_page_cgroup(pc);
2660 
2661 	ret = -EINVAL;
2662 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2663 		goto unlock;
2664 
2665 	move_lock_mem_cgroup(from, &flags);
2666 
2667 	if (!anon && page_mapped(page)) {
2668 		/* Update mapped_file data for mem_cgroup */
2669 		preempt_disable();
2670 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2671 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2672 		preempt_enable();
2673 	}
2674 	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2675 
2676 	/* caller should have done css_get */
2677 	pc->mem_cgroup = to;
2678 	mem_cgroup_charge_statistics(to, anon, nr_pages);
2679 	/*
2680 	 * We charges against "to" which may not have any tasks. Then, "to"
2681 	 * can be under rmdir(). But in current implementation, caller of
2682 	 * this function is just force_empty() and move charge, so it's
2683 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2684 	 * status here.
2685 	 */
2686 	move_unlock_mem_cgroup(from, &flags);
2687 	ret = 0;
2688 unlock:
2689 	unlock_page_cgroup(pc);
2690 	/*
2691 	 * check events
2692 	 */
2693 	memcg_check_events(to, page);
2694 	memcg_check_events(from, page);
2695 out:
2696 	return ret;
2697 }
2698 
2699 /*
2700  * move charges to its parent.
2701  */
2702 
2703 static int mem_cgroup_move_parent(struct page *page,
2704 				  struct page_cgroup *pc,
2705 				  struct mem_cgroup *child)
2706 {
2707 	struct mem_cgroup *parent;
2708 	unsigned int nr_pages;
2709 	unsigned long uninitialized_var(flags);
2710 	int ret;
2711 
2712 	/* Is ROOT ? */
2713 	if (mem_cgroup_is_root(child))
2714 		return -EINVAL;
2715 
2716 	ret = -EBUSY;
2717 	if (!get_page_unless_zero(page))
2718 		goto out;
2719 	if (isolate_lru_page(page))
2720 		goto put;
2721 
2722 	nr_pages = hpage_nr_pages(page);
2723 
2724 	parent = parent_mem_cgroup(child);
2725 	/*
2726 	 * If no parent, move charges to root cgroup.
2727 	 */
2728 	if (!parent)
2729 		parent = root_mem_cgroup;
2730 
2731 	if (nr_pages > 1)
2732 		flags = compound_lock_irqsave(page);
2733 
2734 	ret = mem_cgroup_move_account(page, nr_pages,
2735 				pc, child, parent);
2736 	if (!ret)
2737 		__mem_cgroup_cancel_local_charge(child, nr_pages);
2738 
2739 	if (nr_pages > 1)
2740 		compound_unlock_irqrestore(page, flags);
2741 	putback_lru_page(page);
2742 put:
2743 	put_page(page);
2744 out:
2745 	return ret;
2746 }
2747 
2748 /*
2749  * Charge the memory controller for page usage.
2750  * Return
2751  * 0 if the charge was successful
2752  * < 0 if the cgroup is over its limit
2753  */
2754 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2755 				gfp_t gfp_mask, enum charge_type ctype)
2756 {
2757 	struct mem_cgroup *memcg = NULL;
2758 	unsigned int nr_pages = 1;
2759 	bool oom = true;
2760 	int ret;
2761 
2762 	if (PageTransHuge(page)) {
2763 		nr_pages <<= compound_order(page);
2764 		VM_BUG_ON(!PageTransHuge(page));
2765 		/*
2766 		 * Never OOM-kill a process for a huge page.  The
2767 		 * fault handler will fall back to regular pages.
2768 		 */
2769 		oom = false;
2770 	}
2771 
2772 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2773 	if (ret == -ENOMEM)
2774 		return ret;
2775 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2776 	return 0;
2777 }
2778 
2779 int mem_cgroup_newpage_charge(struct page *page,
2780 			      struct mm_struct *mm, gfp_t gfp_mask)
2781 {
2782 	if (mem_cgroup_disabled())
2783 		return 0;
2784 	VM_BUG_ON(page_mapped(page));
2785 	VM_BUG_ON(page->mapping && !PageAnon(page));
2786 	VM_BUG_ON(!mm);
2787 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2788 					MEM_CGROUP_CHARGE_TYPE_ANON);
2789 }
2790 
2791 /*
2792  * While swap-in, try_charge -> commit or cancel, the page is locked.
2793  * And when try_charge() successfully returns, one refcnt to memcg without
2794  * struct page_cgroup is acquired. This refcnt will be consumed by
2795  * "commit()" or removed by "cancel()"
2796  */
2797 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2798 					  struct page *page,
2799 					  gfp_t mask,
2800 					  struct mem_cgroup **memcgp)
2801 {
2802 	struct mem_cgroup *memcg;
2803 	struct page_cgroup *pc;
2804 	int ret;
2805 
2806 	pc = lookup_page_cgroup(page);
2807 	/*
2808 	 * Every swap fault against a single page tries to charge the
2809 	 * page, bail as early as possible.  shmem_unuse() encounters
2810 	 * already charged pages, too.  The USED bit is protected by
2811 	 * the page lock, which serializes swap cache removal, which
2812 	 * in turn serializes uncharging.
2813 	 */
2814 	if (PageCgroupUsed(pc))
2815 		return 0;
2816 	if (!do_swap_account)
2817 		goto charge_cur_mm;
2818 	memcg = try_get_mem_cgroup_from_page(page);
2819 	if (!memcg)
2820 		goto charge_cur_mm;
2821 	*memcgp = memcg;
2822 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2823 	css_put(&memcg->css);
2824 	if (ret == -EINTR)
2825 		ret = 0;
2826 	return ret;
2827 charge_cur_mm:
2828 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2829 	if (ret == -EINTR)
2830 		ret = 0;
2831 	return ret;
2832 }
2833 
2834 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2835 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2836 {
2837 	*memcgp = NULL;
2838 	if (mem_cgroup_disabled())
2839 		return 0;
2840 	/*
2841 	 * A racing thread's fault, or swapoff, may have already
2842 	 * updated the pte, and even removed page from swap cache: in
2843 	 * those cases unuse_pte()'s pte_same() test will fail; but
2844 	 * there's also a KSM case which does need to charge the page.
2845 	 */
2846 	if (!PageSwapCache(page)) {
2847 		int ret;
2848 
2849 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2850 		if (ret == -EINTR)
2851 			ret = 0;
2852 		return ret;
2853 	}
2854 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2855 }
2856 
2857 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2858 {
2859 	if (mem_cgroup_disabled())
2860 		return;
2861 	if (!memcg)
2862 		return;
2863 	__mem_cgroup_cancel_charge(memcg, 1);
2864 }
2865 
2866 static void
2867 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2868 					enum charge_type ctype)
2869 {
2870 	if (mem_cgroup_disabled())
2871 		return;
2872 	if (!memcg)
2873 		return;
2874 	cgroup_exclude_rmdir(&memcg->css);
2875 
2876 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2877 	/*
2878 	 * Now swap is on-memory. This means this page may be
2879 	 * counted both as mem and swap....double count.
2880 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2881 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2882 	 * may call delete_from_swap_cache() before reach here.
2883 	 */
2884 	if (do_swap_account && PageSwapCache(page)) {
2885 		swp_entry_t ent = {.val = page_private(page)};
2886 		mem_cgroup_uncharge_swap(ent);
2887 	}
2888 	/*
2889 	 * At swapin, we may charge account against cgroup which has no tasks.
2890 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2891 	 * In that case, we need to call pre_destroy() again. check it here.
2892 	 */
2893 	cgroup_release_and_wakeup_rmdir(&memcg->css);
2894 }
2895 
2896 void mem_cgroup_commit_charge_swapin(struct page *page,
2897 				     struct mem_cgroup *memcg)
2898 {
2899 	__mem_cgroup_commit_charge_swapin(page, memcg,
2900 					  MEM_CGROUP_CHARGE_TYPE_ANON);
2901 }
2902 
2903 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2904 				gfp_t gfp_mask)
2905 {
2906 	struct mem_cgroup *memcg = NULL;
2907 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2908 	int ret;
2909 
2910 	if (mem_cgroup_disabled())
2911 		return 0;
2912 	if (PageCompound(page))
2913 		return 0;
2914 
2915 	if (!PageSwapCache(page))
2916 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2917 	else { /* page is swapcache/shmem */
2918 		ret = __mem_cgroup_try_charge_swapin(mm, page,
2919 						     gfp_mask, &memcg);
2920 		if (!ret)
2921 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2922 	}
2923 	return ret;
2924 }
2925 
2926 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2927 				   unsigned int nr_pages,
2928 				   const enum charge_type ctype)
2929 {
2930 	struct memcg_batch_info *batch = NULL;
2931 	bool uncharge_memsw = true;
2932 
2933 	/* If swapout, usage of swap doesn't decrease */
2934 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2935 		uncharge_memsw = false;
2936 
2937 	batch = &current->memcg_batch;
2938 	/*
2939 	 * In usual, we do css_get() when we remember memcg pointer.
2940 	 * But in this case, we keep res->usage until end of a series of
2941 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2942 	 */
2943 	if (!batch->memcg)
2944 		batch->memcg = memcg;
2945 	/*
2946 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2947 	 * In those cases, all pages freed continuously can be expected to be in
2948 	 * the same cgroup and we have chance to coalesce uncharges.
2949 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2950 	 * because we want to do uncharge as soon as possible.
2951 	 */
2952 
2953 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2954 		goto direct_uncharge;
2955 
2956 	if (nr_pages > 1)
2957 		goto direct_uncharge;
2958 
2959 	/*
2960 	 * In typical case, batch->memcg == mem. This means we can
2961 	 * merge a series of uncharges to an uncharge of res_counter.
2962 	 * If not, we uncharge res_counter ony by one.
2963 	 */
2964 	if (batch->memcg != memcg)
2965 		goto direct_uncharge;
2966 	/* remember freed charge and uncharge it later */
2967 	batch->nr_pages++;
2968 	if (uncharge_memsw)
2969 		batch->memsw_nr_pages++;
2970 	return;
2971 direct_uncharge:
2972 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2973 	if (uncharge_memsw)
2974 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2975 	if (unlikely(batch->memcg != memcg))
2976 		memcg_oom_recover(memcg);
2977 }
2978 
2979 /*
2980  * uncharge if !page_mapped(page)
2981  */
2982 static struct mem_cgroup *
2983 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2984 			     bool end_migration)
2985 {
2986 	struct mem_cgroup *memcg = NULL;
2987 	unsigned int nr_pages = 1;
2988 	struct page_cgroup *pc;
2989 	bool anon;
2990 
2991 	if (mem_cgroup_disabled())
2992 		return NULL;
2993 
2994 	VM_BUG_ON(PageSwapCache(page));
2995 
2996 	if (PageTransHuge(page)) {
2997 		nr_pages <<= compound_order(page);
2998 		VM_BUG_ON(!PageTransHuge(page));
2999 	}
3000 	/*
3001 	 * Check if our page_cgroup is valid
3002 	 */
3003 	pc = lookup_page_cgroup(page);
3004 	if (unlikely(!PageCgroupUsed(pc)))
3005 		return NULL;
3006 
3007 	lock_page_cgroup(pc);
3008 
3009 	memcg = pc->mem_cgroup;
3010 
3011 	if (!PageCgroupUsed(pc))
3012 		goto unlock_out;
3013 
3014 	anon = PageAnon(page);
3015 
3016 	switch (ctype) {
3017 	case MEM_CGROUP_CHARGE_TYPE_ANON:
3018 		/*
3019 		 * Generally PageAnon tells if it's the anon statistics to be
3020 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3021 		 * used before page reached the stage of being marked PageAnon.
3022 		 */
3023 		anon = true;
3024 		/* fallthrough */
3025 	case MEM_CGROUP_CHARGE_TYPE_DROP:
3026 		/* See mem_cgroup_prepare_migration() */
3027 		if (page_mapped(page))
3028 			goto unlock_out;
3029 		/*
3030 		 * Pages under migration may not be uncharged.  But
3031 		 * end_migration() /must/ be the one uncharging the
3032 		 * unused post-migration page and so it has to call
3033 		 * here with the migration bit still set.  See the
3034 		 * res_counter handling below.
3035 		 */
3036 		if (!end_migration && PageCgroupMigration(pc))
3037 			goto unlock_out;
3038 		break;
3039 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3040 		if (!PageAnon(page)) {	/* Shared memory */
3041 			if (page->mapping && !page_is_file_cache(page))
3042 				goto unlock_out;
3043 		} else if (page_mapped(page)) /* Anon */
3044 				goto unlock_out;
3045 		break;
3046 	default:
3047 		break;
3048 	}
3049 
3050 	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3051 
3052 	ClearPageCgroupUsed(pc);
3053 	/*
3054 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3055 	 * freed from LRU. This is safe because uncharged page is expected not
3056 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3057 	 * special functions.
3058 	 */
3059 
3060 	unlock_page_cgroup(pc);
3061 	/*
3062 	 * even after unlock, we have memcg->res.usage here and this memcg
3063 	 * will never be freed.
3064 	 */
3065 	memcg_check_events(memcg, page);
3066 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3067 		mem_cgroup_swap_statistics(memcg, true);
3068 		mem_cgroup_get(memcg);
3069 	}
3070 	/*
3071 	 * Migration does not charge the res_counter for the
3072 	 * replacement page, so leave it alone when phasing out the
3073 	 * page that is unused after the migration.
3074 	 */
3075 	if (!end_migration && !mem_cgroup_is_root(memcg))
3076 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3077 
3078 	return memcg;
3079 
3080 unlock_out:
3081 	unlock_page_cgroup(pc);
3082 	return NULL;
3083 }
3084 
3085 void mem_cgroup_uncharge_page(struct page *page)
3086 {
3087 	/* early check. */
3088 	if (page_mapped(page))
3089 		return;
3090 	VM_BUG_ON(page->mapping && !PageAnon(page));
3091 	if (PageSwapCache(page))
3092 		return;
3093 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3094 }
3095 
3096 void mem_cgroup_uncharge_cache_page(struct page *page)
3097 {
3098 	VM_BUG_ON(page_mapped(page));
3099 	VM_BUG_ON(page->mapping);
3100 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3101 }
3102 
3103 /*
3104  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3105  * In that cases, pages are freed continuously and we can expect pages
3106  * are in the same memcg. All these calls itself limits the number of
3107  * pages freed at once, then uncharge_start/end() is called properly.
3108  * This may be called prural(2) times in a context,
3109  */
3110 
3111 void mem_cgroup_uncharge_start(void)
3112 {
3113 	current->memcg_batch.do_batch++;
3114 	/* We can do nest. */
3115 	if (current->memcg_batch.do_batch == 1) {
3116 		current->memcg_batch.memcg = NULL;
3117 		current->memcg_batch.nr_pages = 0;
3118 		current->memcg_batch.memsw_nr_pages = 0;
3119 	}
3120 }
3121 
3122 void mem_cgroup_uncharge_end(void)
3123 {
3124 	struct memcg_batch_info *batch = &current->memcg_batch;
3125 
3126 	if (!batch->do_batch)
3127 		return;
3128 
3129 	batch->do_batch--;
3130 	if (batch->do_batch) /* If stacked, do nothing. */
3131 		return;
3132 
3133 	if (!batch->memcg)
3134 		return;
3135 	/*
3136 	 * This "batch->memcg" is valid without any css_get/put etc...
3137 	 * bacause we hide charges behind us.
3138 	 */
3139 	if (batch->nr_pages)
3140 		res_counter_uncharge(&batch->memcg->res,
3141 				     batch->nr_pages * PAGE_SIZE);
3142 	if (batch->memsw_nr_pages)
3143 		res_counter_uncharge(&batch->memcg->memsw,
3144 				     batch->memsw_nr_pages * PAGE_SIZE);
3145 	memcg_oom_recover(batch->memcg);
3146 	/* forget this pointer (for sanity check) */
3147 	batch->memcg = NULL;
3148 }
3149 
3150 #ifdef CONFIG_SWAP
3151 /*
3152  * called after __delete_from_swap_cache() and drop "page" account.
3153  * memcg information is recorded to swap_cgroup of "ent"
3154  */
3155 void
3156 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3157 {
3158 	struct mem_cgroup *memcg;
3159 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3160 
3161 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3162 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3163 
3164 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3165 
3166 	/*
3167 	 * record memcg information,  if swapout && memcg != NULL,
3168 	 * mem_cgroup_get() was called in uncharge().
3169 	 */
3170 	if (do_swap_account && swapout && memcg)
3171 		swap_cgroup_record(ent, css_id(&memcg->css));
3172 }
3173 #endif
3174 
3175 #ifdef CONFIG_MEMCG_SWAP
3176 /*
3177  * called from swap_entry_free(). remove record in swap_cgroup and
3178  * uncharge "memsw" account.
3179  */
3180 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3181 {
3182 	struct mem_cgroup *memcg;
3183 	unsigned short id;
3184 
3185 	if (!do_swap_account)
3186 		return;
3187 
3188 	id = swap_cgroup_record(ent, 0);
3189 	rcu_read_lock();
3190 	memcg = mem_cgroup_lookup(id);
3191 	if (memcg) {
3192 		/*
3193 		 * We uncharge this because swap is freed.
3194 		 * This memcg can be obsolete one. We avoid calling css_tryget
3195 		 */
3196 		if (!mem_cgroup_is_root(memcg))
3197 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3198 		mem_cgroup_swap_statistics(memcg, false);
3199 		mem_cgroup_put(memcg);
3200 	}
3201 	rcu_read_unlock();
3202 }
3203 
3204 /**
3205  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3206  * @entry: swap entry to be moved
3207  * @from:  mem_cgroup which the entry is moved from
3208  * @to:  mem_cgroup which the entry is moved to
3209  *
3210  * It succeeds only when the swap_cgroup's record for this entry is the same
3211  * as the mem_cgroup's id of @from.
3212  *
3213  * Returns 0 on success, -EINVAL on failure.
3214  *
3215  * The caller must have charged to @to, IOW, called res_counter_charge() about
3216  * both res and memsw, and called css_get().
3217  */
3218 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3219 				struct mem_cgroup *from, struct mem_cgroup *to)
3220 {
3221 	unsigned short old_id, new_id;
3222 
3223 	old_id = css_id(&from->css);
3224 	new_id = css_id(&to->css);
3225 
3226 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3227 		mem_cgroup_swap_statistics(from, false);
3228 		mem_cgroup_swap_statistics(to, true);
3229 		/*
3230 		 * This function is only called from task migration context now.
3231 		 * It postpones res_counter and refcount handling till the end
3232 		 * of task migration(mem_cgroup_clear_mc()) for performance
3233 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3234 		 * because if the process that has been moved to @to does
3235 		 * swap-in, the refcount of @to might be decreased to 0.
3236 		 */
3237 		mem_cgroup_get(to);
3238 		return 0;
3239 	}
3240 	return -EINVAL;
3241 }
3242 #else
3243 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3244 				struct mem_cgroup *from, struct mem_cgroup *to)
3245 {
3246 	return -EINVAL;
3247 }
3248 #endif
3249 
3250 /*
3251  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3252  * page belongs to.
3253  */
3254 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3255 				  struct mem_cgroup **memcgp)
3256 {
3257 	struct mem_cgroup *memcg = NULL;
3258 	struct page_cgroup *pc;
3259 	enum charge_type ctype;
3260 
3261 	*memcgp = NULL;
3262 
3263 	VM_BUG_ON(PageTransHuge(page));
3264 	if (mem_cgroup_disabled())
3265 		return;
3266 
3267 	pc = lookup_page_cgroup(page);
3268 	lock_page_cgroup(pc);
3269 	if (PageCgroupUsed(pc)) {
3270 		memcg = pc->mem_cgroup;
3271 		css_get(&memcg->css);
3272 		/*
3273 		 * At migrating an anonymous page, its mapcount goes down
3274 		 * to 0 and uncharge() will be called. But, even if it's fully
3275 		 * unmapped, migration may fail and this page has to be
3276 		 * charged again. We set MIGRATION flag here and delay uncharge
3277 		 * until end_migration() is called
3278 		 *
3279 		 * Corner Case Thinking
3280 		 * A)
3281 		 * When the old page was mapped as Anon and it's unmap-and-freed
3282 		 * while migration was ongoing.
3283 		 * If unmap finds the old page, uncharge() of it will be delayed
3284 		 * until end_migration(). If unmap finds a new page, it's
3285 		 * uncharged when it make mapcount to be 1->0. If unmap code
3286 		 * finds swap_migration_entry, the new page will not be mapped
3287 		 * and end_migration() will find it(mapcount==0).
3288 		 *
3289 		 * B)
3290 		 * When the old page was mapped but migraion fails, the kernel
3291 		 * remaps it. A charge for it is kept by MIGRATION flag even
3292 		 * if mapcount goes down to 0. We can do remap successfully
3293 		 * without charging it again.
3294 		 *
3295 		 * C)
3296 		 * The "old" page is under lock_page() until the end of
3297 		 * migration, so, the old page itself will not be swapped-out.
3298 		 * If the new page is swapped out before end_migraton, our
3299 		 * hook to usual swap-out path will catch the event.
3300 		 */
3301 		if (PageAnon(page))
3302 			SetPageCgroupMigration(pc);
3303 	}
3304 	unlock_page_cgroup(pc);
3305 	/*
3306 	 * If the page is not charged at this point,
3307 	 * we return here.
3308 	 */
3309 	if (!memcg)
3310 		return;
3311 
3312 	*memcgp = memcg;
3313 	/*
3314 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3315 	 * is called before end_migration, we can catch all events on this new
3316 	 * page. In the case new page is migrated but not remapped, new page's
3317 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3318 	 */
3319 	if (PageAnon(page))
3320 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3321 	else
3322 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3323 	/*
3324 	 * The page is committed to the memcg, but it's not actually
3325 	 * charged to the res_counter since we plan on replacing the
3326 	 * old one and only one page is going to be left afterwards.
3327 	 */
3328 	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3329 }
3330 
3331 /* remove redundant charge if migration failed*/
3332 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3333 	struct page *oldpage, struct page *newpage, bool migration_ok)
3334 {
3335 	struct page *used, *unused;
3336 	struct page_cgroup *pc;
3337 	bool anon;
3338 
3339 	if (!memcg)
3340 		return;
3341 	/* blocks rmdir() */
3342 	cgroup_exclude_rmdir(&memcg->css);
3343 	if (!migration_ok) {
3344 		used = oldpage;
3345 		unused = newpage;
3346 	} else {
3347 		used = newpage;
3348 		unused = oldpage;
3349 	}
3350 	anon = PageAnon(used);
3351 	__mem_cgroup_uncharge_common(unused,
3352 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3353 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
3354 				     true);
3355 	css_put(&memcg->css);
3356 	/*
3357 	 * We disallowed uncharge of pages under migration because mapcount
3358 	 * of the page goes down to zero, temporarly.
3359 	 * Clear the flag and check the page should be charged.
3360 	 */
3361 	pc = lookup_page_cgroup(oldpage);
3362 	lock_page_cgroup(pc);
3363 	ClearPageCgroupMigration(pc);
3364 	unlock_page_cgroup(pc);
3365 
3366 	/*
3367 	 * If a page is a file cache, radix-tree replacement is very atomic
3368 	 * and we can skip this check. When it was an Anon page, its mapcount
3369 	 * goes down to 0. But because we added MIGRATION flage, it's not
3370 	 * uncharged yet. There are several case but page->mapcount check
3371 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3372 	 * check. (see prepare_charge() also)
3373 	 */
3374 	if (anon)
3375 		mem_cgroup_uncharge_page(used);
3376 	/*
3377 	 * At migration, we may charge account against cgroup which has no
3378 	 * tasks.
3379 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3380 	 * In that case, we need to call pre_destroy() again. check it here.
3381 	 */
3382 	cgroup_release_and_wakeup_rmdir(&memcg->css);
3383 }
3384 
3385 /*
3386  * At replace page cache, newpage is not under any memcg but it's on
3387  * LRU. So, this function doesn't touch res_counter but handles LRU
3388  * in correct way. Both pages are locked so we cannot race with uncharge.
3389  */
3390 void mem_cgroup_replace_page_cache(struct page *oldpage,
3391 				  struct page *newpage)
3392 {
3393 	struct mem_cgroup *memcg = NULL;
3394 	struct page_cgroup *pc;
3395 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3396 
3397 	if (mem_cgroup_disabled())
3398 		return;
3399 
3400 	pc = lookup_page_cgroup(oldpage);
3401 	/* fix accounting on old pages */
3402 	lock_page_cgroup(pc);
3403 	if (PageCgroupUsed(pc)) {
3404 		memcg = pc->mem_cgroup;
3405 		mem_cgroup_charge_statistics(memcg, false, -1);
3406 		ClearPageCgroupUsed(pc);
3407 	}
3408 	unlock_page_cgroup(pc);
3409 
3410 	/*
3411 	 * When called from shmem_replace_page(), in some cases the
3412 	 * oldpage has already been charged, and in some cases not.
3413 	 */
3414 	if (!memcg)
3415 		return;
3416 	/*
3417 	 * Even if newpage->mapping was NULL before starting replacement,
3418 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3419 	 * LRU while we overwrite pc->mem_cgroup.
3420 	 */
3421 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3422 }
3423 
3424 #ifdef CONFIG_DEBUG_VM
3425 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3426 {
3427 	struct page_cgroup *pc;
3428 
3429 	pc = lookup_page_cgroup(page);
3430 	/*
3431 	 * Can be NULL while feeding pages into the page allocator for
3432 	 * the first time, i.e. during boot or memory hotplug;
3433 	 * or when mem_cgroup_disabled().
3434 	 */
3435 	if (likely(pc) && PageCgroupUsed(pc))
3436 		return pc;
3437 	return NULL;
3438 }
3439 
3440 bool mem_cgroup_bad_page_check(struct page *page)
3441 {
3442 	if (mem_cgroup_disabled())
3443 		return false;
3444 
3445 	return lookup_page_cgroup_used(page) != NULL;
3446 }
3447 
3448 void mem_cgroup_print_bad_page(struct page *page)
3449 {
3450 	struct page_cgroup *pc;
3451 
3452 	pc = lookup_page_cgroup_used(page);
3453 	if (pc) {
3454 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3455 		       pc, pc->flags, pc->mem_cgroup);
3456 	}
3457 }
3458 #endif
3459 
3460 static DEFINE_MUTEX(set_limit_mutex);
3461 
3462 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3463 				unsigned long long val)
3464 {
3465 	int retry_count;
3466 	u64 memswlimit, memlimit;
3467 	int ret = 0;
3468 	int children = mem_cgroup_count_children(memcg);
3469 	u64 curusage, oldusage;
3470 	int enlarge;
3471 
3472 	/*
3473 	 * For keeping hierarchical_reclaim simple, how long we should retry
3474 	 * is depends on callers. We set our retry-count to be function
3475 	 * of # of children which we should visit in this loop.
3476 	 */
3477 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3478 
3479 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3480 
3481 	enlarge = 0;
3482 	while (retry_count) {
3483 		if (signal_pending(current)) {
3484 			ret = -EINTR;
3485 			break;
3486 		}
3487 		/*
3488 		 * Rather than hide all in some function, I do this in
3489 		 * open coded manner. You see what this really does.
3490 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3491 		 */
3492 		mutex_lock(&set_limit_mutex);
3493 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3494 		if (memswlimit < val) {
3495 			ret = -EINVAL;
3496 			mutex_unlock(&set_limit_mutex);
3497 			break;
3498 		}
3499 
3500 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3501 		if (memlimit < val)
3502 			enlarge = 1;
3503 
3504 		ret = res_counter_set_limit(&memcg->res, val);
3505 		if (!ret) {
3506 			if (memswlimit == val)
3507 				memcg->memsw_is_minimum = true;
3508 			else
3509 				memcg->memsw_is_minimum = false;
3510 		}
3511 		mutex_unlock(&set_limit_mutex);
3512 
3513 		if (!ret)
3514 			break;
3515 
3516 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3517 				   MEM_CGROUP_RECLAIM_SHRINK);
3518 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3519 		/* Usage is reduced ? */
3520   		if (curusage >= oldusage)
3521 			retry_count--;
3522 		else
3523 			oldusage = curusage;
3524 	}
3525 	if (!ret && enlarge)
3526 		memcg_oom_recover(memcg);
3527 
3528 	return ret;
3529 }
3530 
3531 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3532 					unsigned long long val)
3533 {
3534 	int retry_count;
3535 	u64 memlimit, memswlimit, oldusage, curusage;
3536 	int children = mem_cgroup_count_children(memcg);
3537 	int ret = -EBUSY;
3538 	int enlarge = 0;
3539 
3540 	/* see mem_cgroup_resize_res_limit */
3541  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3542 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3543 	while (retry_count) {
3544 		if (signal_pending(current)) {
3545 			ret = -EINTR;
3546 			break;
3547 		}
3548 		/*
3549 		 * Rather than hide all in some function, I do this in
3550 		 * open coded manner. You see what this really does.
3551 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3552 		 */
3553 		mutex_lock(&set_limit_mutex);
3554 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3555 		if (memlimit > val) {
3556 			ret = -EINVAL;
3557 			mutex_unlock(&set_limit_mutex);
3558 			break;
3559 		}
3560 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3561 		if (memswlimit < val)
3562 			enlarge = 1;
3563 		ret = res_counter_set_limit(&memcg->memsw, val);
3564 		if (!ret) {
3565 			if (memlimit == val)
3566 				memcg->memsw_is_minimum = true;
3567 			else
3568 				memcg->memsw_is_minimum = false;
3569 		}
3570 		mutex_unlock(&set_limit_mutex);
3571 
3572 		if (!ret)
3573 			break;
3574 
3575 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3576 				   MEM_CGROUP_RECLAIM_NOSWAP |
3577 				   MEM_CGROUP_RECLAIM_SHRINK);
3578 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3579 		/* Usage is reduced ? */
3580 		if (curusage >= oldusage)
3581 			retry_count--;
3582 		else
3583 			oldusage = curusage;
3584 	}
3585 	if (!ret && enlarge)
3586 		memcg_oom_recover(memcg);
3587 	return ret;
3588 }
3589 
3590 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3591 					    gfp_t gfp_mask,
3592 					    unsigned long *total_scanned)
3593 {
3594 	unsigned long nr_reclaimed = 0;
3595 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3596 	unsigned long reclaimed;
3597 	int loop = 0;
3598 	struct mem_cgroup_tree_per_zone *mctz;
3599 	unsigned long long excess;
3600 	unsigned long nr_scanned;
3601 
3602 	if (order > 0)
3603 		return 0;
3604 
3605 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3606 	/*
3607 	 * This loop can run a while, specially if mem_cgroup's continuously
3608 	 * keep exceeding their soft limit and putting the system under
3609 	 * pressure
3610 	 */
3611 	do {
3612 		if (next_mz)
3613 			mz = next_mz;
3614 		else
3615 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3616 		if (!mz)
3617 			break;
3618 
3619 		nr_scanned = 0;
3620 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3621 						    gfp_mask, &nr_scanned);
3622 		nr_reclaimed += reclaimed;
3623 		*total_scanned += nr_scanned;
3624 		spin_lock(&mctz->lock);
3625 
3626 		/*
3627 		 * If we failed to reclaim anything from this memory cgroup
3628 		 * it is time to move on to the next cgroup
3629 		 */
3630 		next_mz = NULL;
3631 		if (!reclaimed) {
3632 			do {
3633 				/*
3634 				 * Loop until we find yet another one.
3635 				 *
3636 				 * By the time we get the soft_limit lock
3637 				 * again, someone might have aded the
3638 				 * group back on the RB tree. Iterate to
3639 				 * make sure we get a different mem.
3640 				 * mem_cgroup_largest_soft_limit_node returns
3641 				 * NULL if no other cgroup is present on
3642 				 * the tree
3643 				 */
3644 				next_mz =
3645 				__mem_cgroup_largest_soft_limit_node(mctz);
3646 				if (next_mz == mz)
3647 					css_put(&next_mz->memcg->css);
3648 				else /* next_mz == NULL or other memcg */
3649 					break;
3650 			} while (1);
3651 		}
3652 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3653 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3654 		/*
3655 		 * One school of thought says that we should not add
3656 		 * back the node to the tree if reclaim returns 0.
3657 		 * But our reclaim could return 0, simply because due
3658 		 * to priority we are exposing a smaller subset of
3659 		 * memory to reclaim from. Consider this as a longer
3660 		 * term TODO.
3661 		 */
3662 		/* If excess == 0, no tree ops */
3663 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3664 		spin_unlock(&mctz->lock);
3665 		css_put(&mz->memcg->css);
3666 		loop++;
3667 		/*
3668 		 * Could not reclaim anything and there are no more
3669 		 * mem cgroups to try or we seem to be looping without
3670 		 * reclaiming anything.
3671 		 */
3672 		if (!nr_reclaimed &&
3673 			(next_mz == NULL ||
3674 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3675 			break;
3676 	} while (!nr_reclaimed);
3677 	if (next_mz)
3678 		css_put(&next_mz->memcg->css);
3679 	return nr_reclaimed;
3680 }
3681 
3682 /*
3683  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3684  * reclaim the pages page themselves - it just removes the page_cgroups.
3685  * Returns true if some page_cgroups were not freed, indicating that the caller
3686  * must retry this operation.
3687  */
3688 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3689 				int node, int zid, enum lru_list lru)
3690 {
3691 	struct mem_cgroup_per_zone *mz;
3692 	unsigned long flags, loop;
3693 	struct list_head *list;
3694 	struct page *busy;
3695 	struct zone *zone;
3696 
3697 	zone = &NODE_DATA(node)->node_zones[zid];
3698 	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3699 	list = &mz->lruvec.lists[lru];
3700 
3701 	loop = mz->lru_size[lru];
3702 	/* give some margin against EBUSY etc...*/
3703 	loop += 256;
3704 	busy = NULL;
3705 	while (loop--) {
3706 		struct page_cgroup *pc;
3707 		struct page *page;
3708 
3709 		spin_lock_irqsave(&zone->lru_lock, flags);
3710 		if (list_empty(list)) {
3711 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3712 			break;
3713 		}
3714 		page = list_entry(list->prev, struct page, lru);
3715 		if (busy == page) {
3716 			list_move(&page->lru, list);
3717 			busy = NULL;
3718 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3719 			continue;
3720 		}
3721 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3722 
3723 		pc = lookup_page_cgroup(page);
3724 
3725 		if (mem_cgroup_move_parent(page, pc, memcg)) {
3726 			/* found lock contention or "pc" is obsolete. */
3727 			busy = page;
3728 			cond_resched();
3729 		} else
3730 			busy = NULL;
3731 	}
3732 	return !list_empty(list);
3733 }
3734 
3735 /*
3736  * make mem_cgroup's charge to be 0 if there is no task.
3737  * This enables deleting this mem_cgroup.
3738  */
3739 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3740 {
3741 	int ret;
3742 	int node, zid, shrink;
3743 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3744 	struct cgroup *cgrp = memcg->css.cgroup;
3745 
3746 	css_get(&memcg->css);
3747 
3748 	shrink = 0;
3749 	/* should free all ? */
3750 	if (free_all)
3751 		goto try_to_free;
3752 move_account:
3753 	do {
3754 		ret = -EBUSY;
3755 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3756 			goto out;
3757 		/* This is for making all *used* pages to be on LRU. */
3758 		lru_add_drain_all();
3759 		drain_all_stock_sync(memcg);
3760 		ret = 0;
3761 		mem_cgroup_start_move(memcg);
3762 		for_each_node_state(node, N_HIGH_MEMORY) {
3763 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3764 				enum lru_list lru;
3765 				for_each_lru(lru) {
3766 					ret = mem_cgroup_force_empty_list(memcg,
3767 							node, zid, lru);
3768 					if (ret)
3769 						break;
3770 				}
3771 			}
3772 			if (ret)
3773 				break;
3774 		}
3775 		mem_cgroup_end_move(memcg);
3776 		memcg_oom_recover(memcg);
3777 		cond_resched();
3778 	/* "ret" should also be checked to ensure all lists are empty. */
3779 	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3780 out:
3781 	css_put(&memcg->css);
3782 	return ret;
3783 
3784 try_to_free:
3785 	/* returns EBUSY if there is a task or if we come here twice. */
3786 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3787 		ret = -EBUSY;
3788 		goto out;
3789 	}
3790 	/* we call try-to-free pages for make this cgroup empty */
3791 	lru_add_drain_all();
3792 	/* try to free all pages in this cgroup */
3793 	shrink = 1;
3794 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3795 		int progress;
3796 
3797 		if (signal_pending(current)) {
3798 			ret = -EINTR;
3799 			goto out;
3800 		}
3801 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3802 						false);
3803 		if (!progress) {
3804 			nr_retries--;
3805 			/* maybe some writeback is necessary */
3806 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3807 		}
3808 
3809 	}
3810 	lru_add_drain();
3811 	/* try move_account...there may be some *locked* pages. */
3812 	goto move_account;
3813 }
3814 
3815 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3816 {
3817 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3818 }
3819 
3820 
3821 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3822 {
3823 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3824 }
3825 
3826 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3827 					u64 val)
3828 {
3829 	int retval = 0;
3830 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3831 	struct cgroup *parent = cont->parent;
3832 	struct mem_cgroup *parent_memcg = NULL;
3833 
3834 	if (parent)
3835 		parent_memcg = mem_cgroup_from_cont(parent);
3836 
3837 	cgroup_lock();
3838 
3839 	if (memcg->use_hierarchy == val)
3840 		goto out;
3841 
3842 	/*
3843 	 * If parent's use_hierarchy is set, we can't make any modifications
3844 	 * in the child subtrees. If it is unset, then the change can
3845 	 * occur, provided the current cgroup has no children.
3846 	 *
3847 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3848 	 * set if there are no children.
3849 	 */
3850 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3851 				(val == 1 || val == 0)) {
3852 		if (list_empty(&cont->children))
3853 			memcg->use_hierarchy = val;
3854 		else
3855 			retval = -EBUSY;
3856 	} else
3857 		retval = -EINVAL;
3858 
3859 out:
3860 	cgroup_unlock();
3861 
3862 	return retval;
3863 }
3864 
3865 
3866 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3867 					       enum mem_cgroup_stat_index idx)
3868 {
3869 	struct mem_cgroup *iter;
3870 	long val = 0;
3871 
3872 	/* Per-cpu values can be negative, use a signed accumulator */
3873 	for_each_mem_cgroup_tree(iter, memcg)
3874 		val += mem_cgroup_read_stat(iter, idx);
3875 
3876 	if (val < 0) /* race ? */
3877 		val = 0;
3878 	return val;
3879 }
3880 
3881 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3882 {
3883 	u64 val;
3884 
3885 	if (!mem_cgroup_is_root(memcg)) {
3886 		if (!swap)
3887 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3888 		else
3889 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3890 	}
3891 
3892 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3893 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3894 
3895 	if (swap)
3896 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3897 
3898 	return val << PAGE_SHIFT;
3899 }
3900 
3901 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3902 			       struct file *file, char __user *buf,
3903 			       size_t nbytes, loff_t *ppos)
3904 {
3905 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3906 	char str[64];
3907 	u64 val;
3908 	int type, name, len;
3909 
3910 	type = MEMFILE_TYPE(cft->private);
3911 	name = MEMFILE_ATTR(cft->private);
3912 
3913 	if (!do_swap_account && type == _MEMSWAP)
3914 		return -EOPNOTSUPP;
3915 
3916 	switch (type) {
3917 	case _MEM:
3918 		if (name == RES_USAGE)
3919 			val = mem_cgroup_usage(memcg, false);
3920 		else
3921 			val = res_counter_read_u64(&memcg->res, name);
3922 		break;
3923 	case _MEMSWAP:
3924 		if (name == RES_USAGE)
3925 			val = mem_cgroup_usage(memcg, true);
3926 		else
3927 			val = res_counter_read_u64(&memcg->memsw, name);
3928 		break;
3929 	default:
3930 		BUG();
3931 	}
3932 
3933 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3934 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3935 }
3936 /*
3937  * The user of this function is...
3938  * RES_LIMIT.
3939  */
3940 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3941 			    const char *buffer)
3942 {
3943 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3944 	int type, name;
3945 	unsigned long long val;
3946 	int ret;
3947 
3948 	type = MEMFILE_TYPE(cft->private);
3949 	name = MEMFILE_ATTR(cft->private);
3950 
3951 	if (!do_swap_account && type == _MEMSWAP)
3952 		return -EOPNOTSUPP;
3953 
3954 	switch (name) {
3955 	case RES_LIMIT:
3956 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3957 			ret = -EINVAL;
3958 			break;
3959 		}
3960 		/* This function does all necessary parse...reuse it */
3961 		ret = res_counter_memparse_write_strategy(buffer, &val);
3962 		if (ret)
3963 			break;
3964 		if (type == _MEM)
3965 			ret = mem_cgroup_resize_limit(memcg, val);
3966 		else
3967 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3968 		break;
3969 	case RES_SOFT_LIMIT:
3970 		ret = res_counter_memparse_write_strategy(buffer, &val);
3971 		if (ret)
3972 			break;
3973 		/*
3974 		 * For memsw, soft limits are hard to implement in terms
3975 		 * of semantics, for now, we support soft limits for
3976 		 * control without swap
3977 		 */
3978 		if (type == _MEM)
3979 			ret = res_counter_set_soft_limit(&memcg->res, val);
3980 		else
3981 			ret = -EINVAL;
3982 		break;
3983 	default:
3984 		ret = -EINVAL; /* should be BUG() ? */
3985 		break;
3986 	}
3987 	return ret;
3988 }
3989 
3990 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3991 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3992 {
3993 	struct cgroup *cgroup;
3994 	unsigned long long min_limit, min_memsw_limit, tmp;
3995 
3996 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3997 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3998 	cgroup = memcg->css.cgroup;
3999 	if (!memcg->use_hierarchy)
4000 		goto out;
4001 
4002 	while (cgroup->parent) {
4003 		cgroup = cgroup->parent;
4004 		memcg = mem_cgroup_from_cont(cgroup);
4005 		if (!memcg->use_hierarchy)
4006 			break;
4007 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4008 		min_limit = min(min_limit, tmp);
4009 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4010 		min_memsw_limit = min(min_memsw_limit, tmp);
4011 	}
4012 out:
4013 	*mem_limit = min_limit;
4014 	*memsw_limit = min_memsw_limit;
4015 }
4016 
4017 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4018 {
4019 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4020 	int type, name;
4021 
4022 	type = MEMFILE_TYPE(event);
4023 	name = MEMFILE_ATTR(event);
4024 
4025 	if (!do_swap_account && type == _MEMSWAP)
4026 		return -EOPNOTSUPP;
4027 
4028 	switch (name) {
4029 	case RES_MAX_USAGE:
4030 		if (type == _MEM)
4031 			res_counter_reset_max(&memcg->res);
4032 		else
4033 			res_counter_reset_max(&memcg->memsw);
4034 		break;
4035 	case RES_FAILCNT:
4036 		if (type == _MEM)
4037 			res_counter_reset_failcnt(&memcg->res);
4038 		else
4039 			res_counter_reset_failcnt(&memcg->memsw);
4040 		break;
4041 	}
4042 
4043 	return 0;
4044 }
4045 
4046 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4047 					struct cftype *cft)
4048 {
4049 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4050 }
4051 
4052 #ifdef CONFIG_MMU
4053 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4054 					struct cftype *cft, u64 val)
4055 {
4056 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4057 
4058 	if (val >= (1 << NR_MOVE_TYPE))
4059 		return -EINVAL;
4060 	/*
4061 	 * We check this value several times in both in can_attach() and
4062 	 * attach(), so we need cgroup lock to prevent this value from being
4063 	 * inconsistent.
4064 	 */
4065 	cgroup_lock();
4066 	memcg->move_charge_at_immigrate = val;
4067 	cgroup_unlock();
4068 
4069 	return 0;
4070 }
4071 #else
4072 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4073 					struct cftype *cft, u64 val)
4074 {
4075 	return -ENOSYS;
4076 }
4077 #endif
4078 
4079 #ifdef CONFIG_NUMA
4080 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4081 				      struct seq_file *m)
4082 {
4083 	int nid;
4084 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4085 	unsigned long node_nr;
4086 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4087 
4088 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4089 	seq_printf(m, "total=%lu", total_nr);
4090 	for_each_node_state(nid, N_HIGH_MEMORY) {
4091 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4092 		seq_printf(m, " N%d=%lu", nid, node_nr);
4093 	}
4094 	seq_putc(m, '\n');
4095 
4096 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4097 	seq_printf(m, "file=%lu", file_nr);
4098 	for_each_node_state(nid, N_HIGH_MEMORY) {
4099 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4100 				LRU_ALL_FILE);
4101 		seq_printf(m, " N%d=%lu", nid, node_nr);
4102 	}
4103 	seq_putc(m, '\n');
4104 
4105 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4106 	seq_printf(m, "anon=%lu", anon_nr);
4107 	for_each_node_state(nid, N_HIGH_MEMORY) {
4108 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4109 				LRU_ALL_ANON);
4110 		seq_printf(m, " N%d=%lu", nid, node_nr);
4111 	}
4112 	seq_putc(m, '\n');
4113 
4114 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4115 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4116 	for_each_node_state(nid, N_HIGH_MEMORY) {
4117 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4118 				BIT(LRU_UNEVICTABLE));
4119 		seq_printf(m, " N%d=%lu", nid, node_nr);
4120 	}
4121 	seq_putc(m, '\n');
4122 	return 0;
4123 }
4124 #endif /* CONFIG_NUMA */
4125 
4126 static const char * const mem_cgroup_lru_names[] = {
4127 	"inactive_anon",
4128 	"active_anon",
4129 	"inactive_file",
4130 	"active_file",
4131 	"unevictable",
4132 };
4133 
4134 static inline void mem_cgroup_lru_names_not_uptodate(void)
4135 {
4136 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4137 }
4138 
4139 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4140 				 struct seq_file *m)
4141 {
4142 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4143 	struct mem_cgroup *mi;
4144 	unsigned int i;
4145 
4146 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4147 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4148 			continue;
4149 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4150 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4151 	}
4152 
4153 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4154 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4155 			   mem_cgroup_read_events(memcg, i));
4156 
4157 	for (i = 0; i < NR_LRU_LISTS; i++)
4158 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4159 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4160 
4161 	/* Hierarchical information */
4162 	{
4163 		unsigned long long limit, memsw_limit;
4164 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4165 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4166 		if (do_swap_account)
4167 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
4168 				   memsw_limit);
4169 	}
4170 
4171 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4172 		long long val = 0;
4173 
4174 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4175 			continue;
4176 		for_each_mem_cgroup_tree(mi, memcg)
4177 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4178 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4179 	}
4180 
4181 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4182 		unsigned long long val = 0;
4183 
4184 		for_each_mem_cgroup_tree(mi, memcg)
4185 			val += mem_cgroup_read_events(mi, i);
4186 		seq_printf(m, "total_%s %llu\n",
4187 			   mem_cgroup_events_names[i], val);
4188 	}
4189 
4190 	for (i = 0; i < NR_LRU_LISTS; i++) {
4191 		unsigned long long val = 0;
4192 
4193 		for_each_mem_cgroup_tree(mi, memcg)
4194 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4195 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4196 	}
4197 
4198 #ifdef CONFIG_DEBUG_VM
4199 	{
4200 		int nid, zid;
4201 		struct mem_cgroup_per_zone *mz;
4202 		struct zone_reclaim_stat *rstat;
4203 		unsigned long recent_rotated[2] = {0, 0};
4204 		unsigned long recent_scanned[2] = {0, 0};
4205 
4206 		for_each_online_node(nid)
4207 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4208 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4209 				rstat = &mz->lruvec.reclaim_stat;
4210 
4211 				recent_rotated[0] += rstat->recent_rotated[0];
4212 				recent_rotated[1] += rstat->recent_rotated[1];
4213 				recent_scanned[0] += rstat->recent_scanned[0];
4214 				recent_scanned[1] += rstat->recent_scanned[1];
4215 			}
4216 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4217 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4218 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4219 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4220 	}
4221 #endif
4222 
4223 	return 0;
4224 }
4225 
4226 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4227 {
4228 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4229 
4230 	return mem_cgroup_swappiness(memcg);
4231 }
4232 
4233 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4234 				       u64 val)
4235 {
4236 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4237 	struct mem_cgroup *parent;
4238 
4239 	if (val > 100)
4240 		return -EINVAL;
4241 
4242 	if (cgrp->parent == NULL)
4243 		return -EINVAL;
4244 
4245 	parent = mem_cgroup_from_cont(cgrp->parent);
4246 
4247 	cgroup_lock();
4248 
4249 	/* If under hierarchy, only empty-root can set this value */
4250 	if ((parent->use_hierarchy) ||
4251 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4252 		cgroup_unlock();
4253 		return -EINVAL;
4254 	}
4255 
4256 	memcg->swappiness = val;
4257 
4258 	cgroup_unlock();
4259 
4260 	return 0;
4261 }
4262 
4263 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4264 {
4265 	struct mem_cgroup_threshold_ary *t;
4266 	u64 usage;
4267 	int i;
4268 
4269 	rcu_read_lock();
4270 	if (!swap)
4271 		t = rcu_dereference(memcg->thresholds.primary);
4272 	else
4273 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4274 
4275 	if (!t)
4276 		goto unlock;
4277 
4278 	usage = mem_cgroup_usage(memcg, swap);
4279 
4280 	/*
4281 	 * current_threshold points to threshold just below or equal to usage.
4282 	 * If it's not true, a threshold was crossed after last
4283 	 * call of __mem_cgroup_threshold().
4284 	 */
4285 	i = t->current_threshold;
4286 
4287 	/*
4288 	 * Iterate backward over array of thresholds starting from
4289 	 * current_threshold and check if a threshold is crossed.
4290 	 * If none of thresholds below usage is crossed, we read
4291 	 * only one element of the array here.
4292 	 */
4293 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4294 		eventfd_signal(t->entries[i].eventfd, 1);
4295 
4296 	/* i = current_threshold + 1 */
4297 	i++;
4298 
4299 	/*
4300 	 * Iterate forward over array of thresholds starting from
4301 	 * current_threshold+1 and check if a threshold is crossed.
4302 	 * If none of thresholds above usage is crossed, we read
4303 	 * only one element of the array here.
4304 	 */
4305 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4306 		eventfd_signal(t->entries[i].eventfd, 1);
4307 
4308 	/* Update current_threshold */
4309 	t->current_threshold = i - 1;
4310 unlock:
4311 	rcu_read_unlock();
4312 }
4313 
4314 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4315 {
4316 	while (memcg) {
4317 		__mem_cgroup_threshold(memcg, false);
4318 		if (do_swap_account)
4319 			__mem_cgroup_threshold(memcg, true);
4320 
4321 		memcg = parent_mem_cgroup(memcg);
4322 	}
4323 }
4324 
4325 static int compare_thresholds(const void *a, const void *b)
4326 {
4327 	const struct mem_cgroup_threshold *_a = a;
4328 	const struct mem_cgroup_threshold *_b = b;
4329 
4330 	return _a->threshold - _b->threshold;
4331 }
4332 
4333 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4334 {
4335 	struct mem_cgroup_eventfd_list *ev;
4336 
4337 	list_for_each_entry(ev, &memcg->oom_notify, list)
4338 		eventfd_signal(ev->eventfd, 1);
4339 	return 0;
4340 }
4341 
4342 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4343 {
4344 	struct mem_cgroup *iter;
4345 
4346 	for_each_mem_cgroup_tree(iter, memcg)
4347 		mem_cgroup_oom_notify_cb(iter);
4348 }
4349 
4350 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4351 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4352 {
4353 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4354 	struct mem_cgroup_thresholds *thresholds;
4355 	struct mem_cgroup_threshold_ary *new;
4356 	int type = MEMFILE_TYPE(cft->private);
4357 	u64 threshold, usage;
4358 	int i, size, ret;
4359 
4360 	ret = res_counter_memparse_write_strategy(args, &threshold);
4361 	if (ret)
4362 		return ret;
4363 
4364 	mutex_lock(&memcg->thresholds_lock);
4365 
4366 	if (type == _MEM)
4367 		thresholds = &memcg->thresholds;
4368 	else if (type == _MEMSWAP)
4369 		thresholds = &memcg->memsw_thresholds;
4370 	else
4371 		BUG();
4372 
4373 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4374 
4375 	/* Check if a threshold crossed before adding a new one */
4376 	if (thresholds->primary)
4377 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4378 
4379 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4380 
4381 	/* Allocate memory for new array of thresholds */
4382 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4383 			GFP_KERNEL);
4384 	if (!new) {
4385 		ret = -ENOMEM;
4386 		goto unlock;
4387 	}
4388 	new->size = size;
4389 
4390 	/* Copy thresholds (if any) to new array */
4391 	if (thresholds->primary) {
4392 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4393 				sizeof(struct mem_cgroup_threshold));
4394 	}
4395 
4396 	/* Add new threshold */
4397 	new->entries[size - 1].eventfd = eventfd;
4398 	new->entries[size - 1].threshold = threshold;
4399 
4400 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4401 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4402 			compare_thresholds, NULL);
4403 
4404 	/* Find current threshold */
4405 	new->current_threshold = -1;
4406 	for (i = 0; i < size; i++) {
4407 		if (new->entries[i].threshold <= usage) {
4408 			/*
4409 			 * new->current_threshold will not be used until
4410 			 * rcu_assign_pointer(), so it's safe to increment
4411 			 * it here.
4412 			 */
4413 			++new->current_threshold;
4414 		} else
4415 			break;
4416 	}
4417 
4418 	/* Free old spare buffer and save old primary buffer as spare */
4419 	kfree(thresholds->spare);
4420 	thresholds->spare = thresholds->primary;
4421 
4422 	rcu_assign_pointer(thresholds->primary, new);
4423 
4424 	/* To be sure that nobody uses thresholds */
4425 	synchronize_rcu();
4426 
4427 unlock:
4428 	mutex_unlock(&memcg->thresholds_lock);
4429 
4430 	return ret;
4431 }
4432 
4433 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4434 	struct cftype *cft, struct eventfd_ctx *eventfd)
4435 {
4436 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4437 	struct mem_cgroup_thresholds *thresholds;
4438 	struct mem_cgroup_threshold_ary *new;
4439 	int type = MEMFILE_TYPE(cft->private);
4440 	u64 usage;
4441 	int i, j, size;
4442 
4443 	mutex_lock(&memcg->thresholds_lock);
4444 	if (type == _MEM)
4445 		thresholds = &memcg->thresholds;
4446 	else if (type == _MEMSWAP)
4447 		thresholds = &memcg->memsw_thresholds;
4448 	else
4449 		BUG();
4450 
4451 	if (!thresholds->primary)
4452 		goto unlock;
4453 
4454 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4455 
4456 	/* Check if a threshold crossed before removing */
4457 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4458 
4459 	/* Calculate new number of threshold */
4460 	size = 0;
4461 	for (i = 0; i < thresholds->primary->size; i++) {
4462 		if (thresholds->primary->entries[i].eventfd != eventfd)
4463 			size++;
4464 	}
4465 
4466 	new = thresholds->spare;
4467 
4468 	/* Set thresholds array to NULL if we don't have thresholds */
4469 	if (!size) {
4470 		kfree(new);
4471 		new = NULL;
4472 		goto swap_buffers;
4473 	}
4474 
4475 	new->size = size;
4476 
4477 	/* Copy thresholds and find current threshold */
4478 	new->current_threshold = -1;
4479 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4480 		if (thresholds->primary->entries[i].eventfd == eventfd)
4481 			continue;
4482 
4483 		new->entries[j] = thresholds->primary->entries[i];
4484 		if (new->entries[j].threshold <= usage) {
4485 			/*
4486 			 * new->current_threshold will not be used
4487 			 * until rcu_assign_pointer(), so it's safe to increment
4488 			 * it here.
4489 			 */
4490 			++new->current_threshold;
4491 		}
4492 		j++;
4493 	}
4494 
4495 swap_buffers:
4496 	/* Swap primary and spare array */
4497 	thresholds->spare = thresholds->primary;
4498 	/* If all events are unregistered, free the spare array */
4499 	if (!new) {
4500 		kfree(thresholds->spare);
4501 		thresholds->spare = NULL;
4502 	}
4503 
4504 	rcu_assign_pointer(thresholds->primary, new);
4505 
4506 	/* To be sure that nobody uses thresholds */
4507 	synchronize_rcu();
4508 unlock:
4509 	mutex_unlock(&memcg->thresholds_lock);
4510 }
4511 
4512 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4513 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4514 {
4515 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4516 	struct mem_cgroup_eventfd_list *event;
4517 	int type = MEMFILE_TYPE(cft->private);
4518 
4519 	BUG_ON(type != _OOM_TYPE);
4520 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4521 	if (!event)
4522 		return -ENOMEM;
4523 
4524 	spin_lock(&memcg_oom_lock);
4525 
4526 	event->eventfd = eventfd;
4527 	list_add(&event->list, &memcg->oom_notify);
4528 
4529 	/* already in OOM ? */
4530 	if (atomic_read(&memcg->under_oom))
4531 		eventfd_signal(eventfd, 1);
4532 	spin_unlock(&memcg_oom_lock);
4533 
4534 	return 0;
4535 }
4536 
4537 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4538 	struct cftype *cft, struct eventfd_ctx *eventfd)
4539 {
4540 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4541 	struct mem_cgroup_eventfd_list *ev, *tmp;
4542 	int type = MEMFILE_TYPE(cft->private);
4543 
4544 	BUG_ON(type != _OOM_TYPE);
4545 
4546 	spin_lock(&memcg_oom_lock);
4547 
4548 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4549 		if (ev->eventfd == eventfd) {
4550 			list_del(&ev->list);
4551 			kfree(ev);
4552 		}
4553 	}
4554 
4555 	spin_unlock(&memcg_oom_lock);
4556 }
4557 
4558 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4559 	struct cftype *cft,  struct cgroup_map_cb *cb)
4560 {
4561 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4562 
4563 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4564 
4565 	if (atomic_read(&memcg->under_oom))
4566 		cb->fill(cb, "under_oom", 1);
4567 	else
4568 		cb->fill(cb, "under_oom", 0);
4569 	return 0;
4570 }
4571 
4572 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4573 	struct cftype *cft, u64 val)
4574 {
4575 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4576 	struct mem_cgroup *parent;
4577 
4578 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4579 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4580 		return -EINVAL;
4581 
4582 	parent = mem_cgroup_from_cont(cgrp->parent);
4583 
4584 	cgroup_lock();
4585 	/* oom-kill-disable is a flag for subhierarchy. */
4586 	if ((parent->use_hierarchy) ||
4587 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4588 		cgroup_unlock();
4589 		return -EINVAL;
4590 	}
4591 	memcg->oom_kill_disable = val;
4592 	if (!val)
4593 		memcg_oom_recover(memcg);
4594 	cgroup_unlock();
4595 	return 0;
4596 }
4597 
4598 #ifdef CONFIG_MEMCG_KMEM
4599 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4600 {
4601 	return mem_cgroup_sockets_init(memcg, ss);
4602 };
4603 
4604 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4605 {
4606 	mem_cgroup_sockets_destroy(memcg);
4607 }
4608 #else
4609 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4610 {
4611 	return 0;
4612 }
4613 
4614 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4615 {
4616 }
4617 #endif
4618 
4619 static struct cftype mem_cgroup_files[] = {
4620 	{
4621 		.name = "usage_in_bytes",
4622 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4623 		.read = mem_cgroup_read,
4624 		.register_event = mem_cgroup_usage_register_event,
4625 		.unregister_event = mem_cgroup_usage_unregister_event,
4626 	},
4627 	{
4628 		.name = "max_usage_in_bytes",
4629 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4630 		.trigger = mem_cgroup_reset,
4631 		.read = mem_cgroup_read,
4632 	},
4633 	{
4634 		.name = "limit_in_bytes",
4635 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4636 		.write_string = mem_cgroup_write,
4637 		.read = mem_cgroup_read,
4638 	},
4639 	{
4640 		.name = "soft_limit_in_bytes",
4641 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4642 		.write_string = mem_cgroup_write,
4643 		.read = mem_cgroup_read,
4644 	},
4645 	{
4646 		.name = "failcnt",
4647 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4648 		.trigger = mem_cgroup_reset,
4649 		.read = mem_cgroup_read,
4650 	},
4651 	{
4652 		.name = "stat",
4653 		.read_seq_string = memcg_stat_show,
4654 	},
4655 	{
4656 		.name = "force_empty",
4657 		.trigger = mem_cgroup_force_empty_write,
4658 	},
4659 	{
4660 		.name = "use_hierarchy",
4661 		.write_u64 = mem_cgroup_hierarchy_write,
4662 		.read_u64 = mem_cgroup_hierarchy_read,
4663 	},
4664 	{
4665 		.name = "swappiness",
4666 		.read_u64 = mem_cgroup_swappiness_read,
4667 		.write_u64 = mem_cgroup_swappiness_write,
4668 	},
4669 	{
4670 		.name = "move_charge_at_immigrate",
4671 		.read_u64 = mem_cgroup_move_charge_read,
4672 		.write_u64 = mem_cgroup_move_charge_write,
4673 	},
4674 	{
4675 		.name = "oom_control",
4676 		.read_map = mem_cgroup_oom_control_read,
4677 		.write_u64 = mem_cgroup_oom_control_write,
4678 		.register_event = mem_cgroup_oom_register_event,
4679 		.unregister_event = mem_cgroup_oom_unregister_event,
4680 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4681 	},
4682 #ifdef CONFIG_NUMA
4683 	{
4684 		.name = "numa_stat",
4685 		.read_seq_string = memcg_numa_stat_show,
4686 	},
4687 #endif
4688 #ifdef CONFIG_MEMCG_SWAP
4689 	{
4690 		.name = "memsw.usage_in_bytes",
4691 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4692 		.read = mem_cgroup_read,
4693 		.register_event = mem_cgroup_usage_register_event,
4694 		.unregister_event = mem_cgroup_usage_unregister_event,
4695 	},
4696 	{
4697 		.name = "memsw.max_usage_in_bytes",
4698 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4699 		.trigger = mem_cgroup_reset,
4700 		.read = mem_cgroup_read,
4701 	},
4702 	{
4703 		.name = "memsw.limit_in_bytes",
4704 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4705 		.write_string = mem_cgroup_write,
4706 		.read = mem_cgroup_read,
4707 	},
4708 	{
4709 		.name = "memsw.failcnt",
4710 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4711 		.trigger = mem_cgroup_reset,
4712 		.read = mem_cgroup_read,
4713 	},
4714 #endif
4715 	{ },	/* terminate */
4716 };
4717 
4718 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4719 {
4720 	struct mem_cgroup_per_node *pn;
4721 	struct mem_cgroup_per_zone *mz;
4722 	int zone, tmp = node;
4723 	/*
4724 	 * This routine is called against possible nodes.
4725 	 * But it's BUG to call kmalloc() against offline node.
4726 	 *
4727 	 * TODO: this routine can waste much memory for nodes which will
4728 	 *       never be onlined. It's better to use memory hotplug callback
4729 	 *       function.
4730 	 */
4731 	if (!node_state(node, N_NORMAL_MEMORY))
4732 		tmp = -1;
4733 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4734 	if (!pn)
4735 		return 1;
4736 
4737 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4738 		mz = &pn->zoneinfo[zone];
4739 		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4740 		mz->usage_in_excess = 0;
4741 		mz->on_tree = false;
4742 		mz->memcg = memcg;
4743 	}
4744 	memcg->info.nodeinfo[node] = pn;
4745 	return 0;
4746 }
4747 
4748 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4749 {
4750 	kfree(memcg->info.nodeinfo[node]);
4751 }
4752 
4753 static struct mem_cgroup *mem_cgroup_alloc(void)
4754 {
4755 	struct mem_cgroup *memcg;
4756 	int size = sizeof(struct mem_cgroup);
4757 
4758 	/* Can be very big if MAX_NUMNODES is very big */
4759 	if (size < PAGE_SIZE)
4760 		memcg = kzalloc(size, GFP_KERNEL);
4761 	else
4762 		memcg = vzalloc(size);
4763 
4764 	if (!memcg)
4765 		return NULL;
4766 
4767 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4768 	if (!memcg->stat)
4769 		goto out_free;
4770 	spin_lock_init(&memcg->pcp_counter_lock);
4771 	return memcg;
4772 
4773 out_free:
4774 	if (size < PAGE_SIZE)
4775 		kfree(memcg);
4776 	else
4777 		vfree(memcg);
4778 	return NULL;
4779 }
4780 
4781 /*
4782  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4783  * but in process context.  The work_freeing structure is overlaid
4784  * on the rcu_freeing structure, which itself is overlaid on memsw.
4785  */
4786 static void free_work(struct work_struct *work)
4787 {
4788 	struct mem_cgroup *memcg;
4789 	int size = sizeof(struct mem_cgroup);
4790 
4791 	memcg = container_of(work, struct mem_cgroup, work_freeing);
4792 	/*
4793 	 * We need to make sure that (at least for now), the jump label
4794 	 * destruction code runs outside of the cgroup lock. This is because
4795 	 * get_online_cpus(), which is called from the static_branch update,
4796 	 * can't be called inside the cgroup_lock. cpusets are the ones
4797 	 * enforcing this dependency, so if they ever change, we might as well.
4798 	 *
4799 	 * schedule_work() will guarantee this happens. Be careful if you need
4800 	 * to move this code around, and make sure it is outside
4801 	 * the cgroup_lock.
4802 	 */
4803 	disarm_sock_keys(memcg);
4804 	if (size < PAGE_SIZE)
4805 		kfree(memcg);
4806 	else
4807 		vfree(memcg);
4808 }
4809 
4810 static void free_rcu(struct rcu_head *rcu_head)
4811 {
4812 	struct mem_cgroup *memcg;
4813 
4814 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4815 	INIT_WORK(&memcg->work_freeing, free_work);
4816 	schedule_work(&memcg->work_freeing);
4817 }
4818 
4819 /*
4820  * At destroying mem_cgroup, references from swap_cgroup can remain.
4821  * (scanning all at force_empty is too costly...)
4822  *
4823  * Instead of clearing all references at force_empty, we remember
4824  * the number of reference from swap_cgroup and free mem_cgroup when
4825  * it goes down to 0.
4826  *
4827  * Removal of cgroup itself succeeds regardless of refs from swap.
4828  */
4829 
4830 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4831 {
4832 	int node;
4833 
4834 	mem_cgroup_remove_from_trees(memcg);
4835 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4836 
4837 	for_each_node(node)
4838 		free_mem_cgroup_per_zone_info(memcg, node);
4839 
4840 	free_percpu(memcg->stat);
4841 	call_rcu(&memcg->rcu_freeing, free_rcu);
4842 }
4843 
4844 static void mem_cgroup_get(struct mem_cgroup *memcg)
4845 {
4846 	atomic_inc(&memcg->refcnt);
4847 }
4848 
4849 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4850 {
4851 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4852 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4853 		__mem_cgroup_free(memcg);
4854 		if (parent)
4855 			mem_cgroup_put(parent);
4856 	}
4857 }
4858 
4859 static void mem_cgroup_put(struct mem_cgroup *memcg)
4860 {
4861 	__mem_cgroup_put(memcg, 1);
4862 }
4863 
4864 /*
4865  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4866  */
4867 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4868 {
4869 	if (!memcg->res.parent)
4870 		return NULL;
4871 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4872 }
4873 EXPORT_SYMBOL(parent_mem_cgroup);
4874 
4875 #ifdef CONFIG_MEMCG_SWAP
4876 static void __init enable_swap_cgroup(void)
4877 {
4878 	if (!mem_cgroup_disabled() && really_do_swap_account)
4879 		do_swap_account = 1;
4880 }
4881 #else
4882 static void __init enable_swap_cgroup(void)
4883 {
4884 }
4885 #endif
4886 
4887 static int mem_cgroup_soft_limit_tree_init(void)
4888 {
4889 	struct mem_cgroup_tree_per_node *rtpn;
4890 	struct mem_cgroup_tree_per_zone *rtpz;
4891 	int tmp, node, zone;
4892 
4893 	for_each_node(node) {
4894 		tmp = node;
4895 		if (!node_state(node, N_NORMAL_MEMORY))
4896 			tmp = -1;
4897 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4898 		if (!rtpn)
4899 			goto err_cleanup;
4900 
4901 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4902 
4903 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4904 			rtpz = &rtpn->rb_tree_per_zone[zone];
4905 			rtpz->rb_root = RB_ROOT;
4906 			spin_lock_init(&rtpz->lock);
4907 		}
4908 	}
4909 	return 0;
4910 
4911 err_cleanup:
4912 	for_each_node(node) {
4913 		if (!soft_limit_tree.rb_tree_per_node[node])
4914 			break;
4915 		kfree(soft_limit_tree.rb_tree_per_node[node]);
4916 		soft_limit_tree.rb_tree_per_node[node] = NULL;
4917 	}
4918 	return 1;
4919 
4920 }
4921 
4922 static struct cgroup_subsys_state * __ref
4923 mem_cgroup_create(struct cgroup *cont)
4924 {
4925 	struct mem_cgroup *memcg, *parent;
4926 	long error = -ENOMEM;
4927 	int node;
4928 
4929 	memcg = mem_cgroup_alloc();
4930 	if (!memcg)
4931 		return ERR_PTR(error);
4932 
4933 	for_each_node(node)
4934 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4935 			goto free_out;
4936 
4937 	/* root ? */
4938 	if (cont->parent == NULL) {
4939 		int cpu;
4940 		enable_swap_cgroup();
4941 		parent = NULL;
4942 		if (mem_cgroup_soft_limit_tree_init())
4943 			goto free_out;
4944 		root_mem_cgroup = memcg;
4945 		for_each_possible_cpu(cpu) {
4946 			struct memcg_stock_pcp *stock =
4947 						&per_cpu(memcg_stock, cpu);
4948 			INIT_WORK(&stock->work, drain_local_stock);
4949 		}
4950 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4951 	} else {
4952 		parent = mem_cgroup_from_cont(cont->parent);
4953 		memcg->use_hierarchy = parent->use_hierarchy;
4954 		memcg->oom_kill_disable = parent->oom_kill_disable;
4955 	}
4956 
4957 	if (parent && parent->use_hierarchy) {
4958 		res_counter_init(&memcg->res, &parent->res);
4959 		res_counter_init(&memcg->memsw, &parent->memsw);
4960 		/*
4961 		 * We increment refcnt of the parent to ensure that we can
4962 		 * safely access it on res_counter_charge/uncharge.
4963 		 * This refcnt will be decremented when freeing this
4964 		 * mem_cgroup(see mem_cgroup_put).
4965 		 */
4966 		mem_cgroup_get(parent);
4967 	} else {
4968 		res_counter_init(&memcg->res, NULL);
4969 		res_counter_init(&memcg->memsw, NULL);
4970 		/*
4971 		 * Deeper hierachy with use_hierarchy == false doesn't make
4972 		 * much sense so let cgroup subsystem know about this
4973 		 * unfortunate state in our controller.
4974 		 */
4975 		if (parent && parent != root_mem_cgroup)
4976 			mem_cgroup_subsys.broken_hierarchy = true;
4977 	}
4978 	memcg->last_scanned_node = MAX_NUMNODES;
4979 	INIT_LIST_HEAD(&memcg->oom_notify);
4980 
4981 	if (parent)
4982 		memcg->swappiness = mem_cgroup_swappiness(parent);
4983 	atomic_set(&memcg->refcnt, 1);
4984 	memcg->move_charge_at_immigrate = 0;
4985 	mutex_init(&memcg->thresholds_lock);
4986 	spin_lock_init(&memcg->move_lock);
4987 
4988 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4989 	if (error) {
4990 		/*
4991 		 * We call put now because our (and parent's) refcnts
4992 		 * are already in place. mem_cgroup_put() will internally
4993 		 * call __mem_cgroup_free, so return directly
4994 		 */
4995 		mem_cgroup_put(memcg);
4996 		return ERR_PTR(error);
4997 	}
4998 	return &memcg->css;
4999 free_out:
5000 	__mem_cgroup_free(memcg);
5001 	return ERR_PTR(error);
5002 }
5003 
5004 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5005 {
5006 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5007 
5008 	return mem_cgroup_force_empty(memcg, false);
5009 }
5010 
5011 static void mem_cgroup_destroy(struct cgroup *cont)
5012 {
5013 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5014 
5015 	kmem_cgroup_destroy(memcg);
5016 
5017 	mem_cgroup_put(memcg);
5018 }
5019 
5020 #ifdef CONFIG_MMU
5021 /* Handlers for move charge at task migration. */
5022 #define PRECHARGE_COUNT_AT_ONCE	256
5023 static int mem_cgroup_do_precharge(unsigned long count)
5024 {
5025 	int ret = 0;
5026 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5027 	struct mem_cgroup *memcg = mc.to;
5028 
5029 	if (mem_cgroup_is_root(memcg)) {
5030 		mc.precharge += count;
5031 		/* we don't need css_get for root */
5032 		return ret;
5033 	}
5034 	/* try to charge at once */
5035 	if (count > 1) {
5036 		struct res_counter *dummy;
5037 		/*
5038 		 * "memcg" cannot be under rmdir() because we've already checked
5039 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5040 		 * are still under the same cgroup_mutex. So we can postpone
5041 		 * css_get().
5042 		 */
5043 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5044 			goto one_by_one;
5045 		if (do_swap_account && res_counter_charge(&memcg->memsw,
5046 						PAGE_SIZE * count, &dummy)) {
5047 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5048 			goto one_by_one;
5049 		}
5050 		mc.precharge += count;
5051 		return ret;
5052 	}
5053 one_by_one:
5054 	/* fall back to one by one charge */
5055 	while (count--) {
5056 		if (signal_pending(current)) {
5057 			ret = -EINTR;
5058 			break;
5059 		}
5060 		if (!batch_count--) {
5061 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5062 			cond_resched();
5063 		}
5064 		ret = __mem_cgroup_try_charge(NULL,
5065 					GFP_KERNEL, 1, &memcg, false);
5066 		if (ret)
5067 			/* mem_cgroup_clear_mc() will do uncharge later */
5068 			return ret;
5069 		mc.precharge++;
5070 	}
5071 	return ret;
5072 }
5073 
5074 /**
5075  * get_mctgt_type - get target type of moving charge
5076  * @vma: the vma the pte to be checked belongs
5077  * @addr: the address corresponding to the pte to be checked
5078  * @ptent: the pte to be checked
5079  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5080  *
5081  * Returns
5082  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5083  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5084  *     move charge. if @target is not NULL, the page is stored in target->page
5085  *     with extra refcnt got(Callers should handle it).
5086  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5087  *     target for charge migration. if @target is not NULL, the entry is stored
5088  *     in target->ent.
5089  *
5090  * Called with pte lock held.
5091  */
5092 union mc_target {
5093 	struct page	*page;
5094 	swp_entry_t	ent;
5095 };
5096 
5097 enum mc_target_type {
5098 	MC_TARGET_NONE = 0,
5099 	MC_TARGET_PAGE,
5100 	MC_TARGET_SWAP,
5101 };
5102 
5103 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5104 						unsigned long addr, pte_t ptent)
5105 {
5106 	struct page *page = vm_normal_page(vma, addr, ptent);
5107 
5108 	if (!page || !page_mapped(page))
5109 		return NULL;
5110 	if (PageAnon(page)) {
5111 		/* we don't move shared anon */
5112 		if (!move_anon())
5113 			return NULL;
5114 	} else if (!move_file())
5115 		/* we ignore mapcount for file pages */
5116 		return NULL;
5117 	if (!get_page_unless_zero(page))
5118 		return NULL;
5119 
5120 	return page;
5121 }
5122 
5123 #ifdef CONFIG_SWAP
5124 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5125 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5126 {
5127 	struct page *page = NULL;
5128 	swp_entry_t ent = pte_to_swp_entry(ptent);
5129 
5130 	if (!move_anon() || non_swap_entry(ent))
5131 		return NULL;
5132 	/*
5133 	 * Because lookup_swap_cache() updates some statistics counter,
5134 	 * we call find_get_page() with swapper_space directly.
5135 	 */
5136 	page = find_get_page(&swapper_space, ent.val);
5137 	if (do_swap_account)
5138 		entry->val = ent.val;
5139 
5140 	return page;
5141 }
5142 #else
5143 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5144 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5145 {
5146 	return NULL;
5147 }
5148 #endif
5149 
5150 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5151 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5152 {
5153 	struct page *page = NULL;
5154 	struct address_space *mapping;
5155 	pgoff_t pgoff;
5156 
5157 	if (!vma->vm_file) /* anonymous vma */
5158 		return NULL;
5159 	if (!move_file())
5160 		return NULL;
5161 
5162 	mapping = vma->vm_file->f_mapping;
5163 	if (pte_none(ptent))
5164 		pgoff = linear_page_index(vma, addr);
5165 	else /* pte_file(ptent) is true */
5166 		pgoff = pte_to_pgoff(ptent);
5167 
5168 	/* page is moved even if it's not RSS of this task(page-faulted). */
5169 	page = find_get_page(mapping, pgoff);
5170 
5171 #ifdef CONFIG_SWAP
5172 	/* shmem/tmpfs may report page out on swap: account for that too. */
5173 	if (radix_tree_exceptional_entry(page)) {
5174 		swp_entry_t swap = radix_to_swp_entry(page);
5175 		if (do_swap_account)
5176 			*entry = swap;
5177 		page = find_get_page(&swapper_space, swap.val);
5178 	}
5179 #endif
5180 	return page;
5181 }
5182 
5183 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5184 		unsigned long addr, pte_t ptent, union mc_target *target)
5185 {
5186 	struct page *page = NULL;
5187 	struct page_cgroup *pc;
5188 	enum mc_target_type ret = MC_TARGET_NONE;
5189 	swp_entry_t ent = { .val = 0 };
5190 
5191 	if (pte_present(ptent))
5192 		page = mc_handle_present_pte(vma, addr, ptent);
5193 	else if (is_swap_pte(ptent))
5194 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5195 	else if (pte_none(ptent) || pte_file(ptent))
5196 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5197 
5198 	if (!page && !ent.val)
5199 		return ret;
5200 	if (page) {
5201 		pc = lookup_page_cgroup(page);
5202 		/*
5203 		 * Do only loose check w/o page_cgroup lock.
5204 		 * mem_cgroup_move_account() checks the pc is valid or not under
5205 		 * the lock.
5206 		 */
5207 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5208 			ret = MC_TARGET_PAGE;
5209 			if (target)
5210 				target->page = page;
5211 		}
5212 		if (!ret || !target)
5213 			put_page(page);
5214 	}
5215 	/* There is a swap entry and a page doesn't exist or isn't charged */
5216 	if (ent.val && !ret &&
5217 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5218 		ret = MC_TARGET_SWAP;
5219 		if (target)
5220 			target->ent = ent;
5221 	}
5222 	return ret;
5223 }
5224 
5225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5226 /*
5227  * We don't consider swapping or file mapped pages because THP does not
5228  * support them for now.
5229  * Caller should make sure that pmd_trans_huge(pmd) is true.
5230  */
5231 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5232 		unsigned long addr, pmd_t pmd, union mc_target *target)
5233 {
5234 	struct page *page = NULL;
5235 	struct page_cgroup *pc;
5236 	enum mc_target_type ret = MC_TARGET_NONE;
5237 
5238 	page = pmd_page(pmd);
5239 	VM_BUG_ON(!page || !PageHead(page));
5240 	if (!move_anon())
5241 		return ret;
5242 	pc = lookup_page_cgroup(page);
5243 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5244 		ret = MC_TARGET_PAGE;
5245 		if (target) {
5246 			get_page(page);
5247 			target->page = page;
5248 		}
5249 	}
5250 	return ret;
5251 }
5252 #else
5253 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5254 		unsigned long addr, pmd_t pmd, union mc_target *target)
5255 {
5256 	return MC_TARGET_NONE;
5257 }
5258 #endif
5259 
5260 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5261 					unsigned long addr, unsigned long end,
5262 					struct mm_walk *walk)
5263 {
5264 	struct vm_area_struct *vma = walk->private;
5265 	pte_t *pte;
5266 	spinlock_t *ptl;
5267 
5268 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5269 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5270 			mc.precharge += HPAGE_PMD_NR;
5271 		spin_unlock(&vma->vm_mm->page_table_lock);
5272 		return 0;
5273 	}
5274 
5275 	if (pmd_trans_unstable(pmd))
5276 		return 0;
5277 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5278 	for (; addr != end; pte++, addr += PAGE_SIZE)
5279 		if (get_mctgt_type(vma, addr, *pte, NULL))
5280 			mc.precharge++;	/* increment precharge temporarily */
5281 	pte_unmap_unlock(pte - 1, ptl);
5282 	cond_resched();
5283 
5284 	return 0;
5285 }
5286 
5287 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5288 {
5289 	unsigned long precharge;
5290 	struct vm_area_struct *vma;
5291 
5292 	down_read(&mm->mmap_sem);
5293 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5294 		struct mm_walk mem_cgroup_count_precharge_walk = {
5295 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5296 			.mm = mm,
5297 			.private = vma,
5298 		};
5299 		if (is_vm_hugetlb_page(vma))
5300 			continue;
5301 		walk_page_range(vma->vm_start, vma->vm_end,
5302 					&mem_cgroup_count_precharge_walk);
5303 	}
5304 	up_read(&mm->mmap_sem);
5305 
5306 	precharge = mc.precharge;
5307 	mc.precharge = 0;
5308 
5309 	return precharge;
5310 }
5311 
5312 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5313 {
5314 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5315 
5316 	VM_BUG_ON(mc.moving_task);
5317 	mc.moving_task = current;
5318 	return mem_cgroup_do_precharge(precharge);
5319 }
5320 
5321 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5322 static void __mem_cgroup_clear_mc(void)
5323 {
5324 	struct mem_cgroup *from = mc.from;
5325 	struct mem_cgroup *to = mc.to;
5326 
5327 	/* we must uncharge all the leftover precharges from mc.to */
5328 	if (mc.precharge) {
5329 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5330 		mc.precharge = 0;
5331 	}
5332 	/*
5333 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5334 	 * we must uncharge here.
5335 	 */
5336 	if (mc.moved_charge) {
5337 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5338 		mc.moved_charge = 0;
5339 	}
5340 	/* we must fixup refcnts and charges */
5341 	if (mc.moved_swap) {
5342 		/* uncharge swap account from the old cgroup */
5343 		if (!mem_cgroup_is_root(mc.from))
5344 			res_counter_uncharge(&mc.from->memsw,
5345 						PAGE_SIZE * mc.moved_swap);
5346 		__mem_cgroup_put(mc.from, mc.moved_swap);
5347 
5348 		if (!mem_cgroup_is_root(mc.to)) {
5349 			/*
5350 			 * we charged both to->res and to->memsw, so we should
5351 			 * uncharge to->res.
5352 			 */
5353 			res_counter_uncharge(&mc.to->res,
5354 						PAGE_SIZE * mc.moved_swap);
5355 		}
5356 		/* we've already done mem_cgroup_get(mc.to) */
5357 		mc.moved_swap = 0;
5358 	}
5359 	memcg_oom_recover(from);
5360 	memcg_oom_recover(to);
5361 	wake_up_all(&mc.waitq);
5362 }
5363 
5364 static void mem_cgroup_clear_mc(void)
5365 {
5366 	struct mem_cgroup *from = mc.from;
5367 
5368 	/*
5369 	 * we must clear moving_task before waking up waiters at the end of
5370 	 * task migration.
5371 	 */
5372 	mc.moving_task = NULL;
5373 	__mem_cgroup_clear_mc();
5374 	spin_lock(&mc.lock);
5375 	mc.from = NULL;
5376 	mc.to = NULL;
5377 	spin_unlock(&mc.lock);
5378 	mem_cgroup_end_move(from);
5379 }
5380 
5381 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5382 				 struct cgroup_taskset *tset)
5383 {
5384 	struct task_struct *p = cgroup_taskset_first(tset);
5385 	int ret = 0;
5386 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5387 
5388 	if (memcg->move_charge_at_immigrate) {
5389 		struct mm_struct *mm;
5390 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5391 
5392 		VM_BUG_ON(from == memcg);
5393 
5394 		mm = get_task_mm(p);
5395 		if (!mm)
5396 			return 0;
5397 		/* We move charges only when we move a owner of the mm */
5398 		if (mm->owner == p) {
5399 			VM_BUG_ON(mc.from);
5400 			VM_BUG_ON(mc.to);
5401 			VM_BUG_ON(mc.precharge);
5402 			VM_BUG_ON(mc.moved_charge);
5403 			VM_BUG_ON(mc.moved_swap);
5404 			mem_cgroup_start_move(from);
5405 			spin_lock(&mc.lock);
5406 			mc.from = from;
5407 			mc.to = memcg;
5408 			spin_unlock(&mc.lock);
5409 			/* We set mc.moving_task later */
5410 
5411 			ret = mem_cgroup_precharge_mc(mm);
5412 			if (ret)
5413 				mem_cgroup_clear_mc();
5414 		}
5415 		mmput(mm);
5416 	}
5417 	return ret;
5418 }
5419 
5420 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5421 				     struct cgroup_taskset *tset)
5422 {
5423 	mem_cgroup_clear_mc();
5424 }
5425 
5426 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5427 				unsigned long addr, unsigned long end,
5428 				struct mm_walk *walk)
5429 {
5430 	int ret = 0;
5431 	struct vm_area_struct *vma = walk->private;
5432 	pte_t *pte;
5433 	spinlock_t *ptl;
5434 	enum mc_target_type target_type;
5435 	union mc_target target;
5436 	struct page *page;
5437 	struct page_cgroup *pc;
5438 
5439 	/*
5440 	 * We don't take compound_lock() here but no race with splitting thp
5441 	 * happens because:
5442 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5443 	 *    under splitting, which means there's no concurrent thp split,
5444 	 *  - if another thread runs into split_huge_page() just after we
5445 	 *    entered this if-block, the thread must wait for page table lock
5446 	 *    to be unlocked in __split_huge_page_splitting(), where the main
5447 	 *    part of thp split is not executed yet.
5448 	 */
5449 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5450 		if (mc.precharge < HPAGE_PMD_NR) {
5451 			spin_unlock(&vma->vm_mm->page_table_lock);
5452 			return 0;
5453 		}
5454 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5455 		if (target_type == MC_TARGET_PAGE) {
5456 			page = target.page;
5457 			if (!isolate_lru_page(page)) {
5458 				pc = lookup_page_cgroup(page);
5459 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5460 							pc, mc.from, mc.to)) {
5461 					mc.precharge -= HPAGE_PMD_NR;
5462 					mc.moved_charge += HPAGE_PMD_NR;
5463 				}
5464 				putback_lru_page(page);
5465 			}
5466 			put_page(page);
5467 		}
5468 		spin_unlock(&vma->vm_mm->page_table_lock);
5469 		return 0;
5470 	}
5471 
5472 	if (pmd_trans_unstable(pmd))
5473 		return 0;
5474 retry:
5475 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5476 	for (; addr != end; addr += PAGE_SIZE) {
5477 		pte_t ptent = *(pte++);
5478 		swp_entry_t ent;
5479 
5480 		if (!mc.precharge)
5481 			break;
5482 
5483 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5484 		case MC_TARGET_PAGE:
5485 			page = target.page;
5486 			if (isolate_lru_page(page))
5487 				goto put;
5488 			pc = lookup_page_cgroup(page);
5489 			if (!mem_cgroup_move_account(page, 1, pc,
5490 						     mc.from, mc.to)) {
5491 				mc.precharge--;
5492 				/* we uncharge from mc.from later. */
5493 				mc.moved_charge++;
5494 			}
5495 			putback_lru_page(page);
5496 put:			/* get_mctgt_type() gets the page */
5497 			put_page(page);
5498 			break;
5499 		case MC_TARGET_SWAP:
5500 			ent = target.ent;
5501 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5502 				mc.precharge--;
5503 				/* we fixup refcnts and charges later. */
5504 				mc.moved_swap++;
5505 			}
5506 			break;
5507 		default:
5508 			break;
5509 		}
5510 	}
5511 	pte_unmap_unlock(pte - 1, ptl);
5512 	cond_resched();
5513 
5514 	if (addr != end) {
5515 		/*
5516 		 * We have consumed all precharges we got in can_attach().
5517 		 * We try charge one by one, but don't do any additional
5518 		 * charges to mc.to if we have failed in charge once in attach()
5519 		 * phase.
5520 		 */
5521 		ret = mem_cgroup_do_precharge(1);
5522 		if (!ret)
5523 			goto retry;
5524 	}
5525 
5526 	return ret;
5527 }
5528 
5529 static void mem_cgroup_move_charge(struct mm_struct *mm)
5530 {
5531 	struct vm_area_struct *vma;
5532 
5533 	lru_add_drain_all();
5534 retry:
5535 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5536 		/*
5537 		 * Someone who are holding the mmap_sem might be waiting in
5538 		 * waitq. So we cancel all extra charges, wake up all waiters,
5539 		 * and retry. Because we cancel precharges, we might not be able
5540 		 * to move enough charges, but moving charge is a best-effort
5541 		 * feature anyway, so it wouldn't be a big problem.
5542 		 */
5543 		__mem_cgroup_clear_mc();
5544 		cond_resched();
5545 		goto retry;
5546 	}
5547 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5548 		int ret;
5549 		struct mm_walk mem_cgroup_move_charge_walk = {
5550 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5551 			.mm = mm,
5552 			.private = vma,
5553 		};
5554 		if (is_vm_hugetlb_page(vma))
5555 			continue;
5556 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5557 						&mem_cgroup_move_charge_walk);
5558 		if (ret)
5559 			/*
5560 			 * means we have consumed all precharges and failed in
5561 			 * doing additional charge. Just abandon here.
5562 			 */
5563 			break;
5564 	}
5565 	up_read(&mm->mmap_sem);
5566 }
5567 
5568 static void mem_cgroup_move_task(struct cgroup *cont,
5569 				 struct cgroup_taskset *tset)
5570 {
5571 	struct task_struct *p = cgroup_taskset_first(tset);
5572 	struct mm_struct *mm = get_task_mm(p);
5573 
5574 	if (mm) {
5575 		if (mc.to)
5576 			mem_cgroup_move_charge(mm);
5577 		mmput(mm);
5578 	}
5579 	if (mc.to)
5580 		mem_cgroup_clear_mc();
5581 }
5582 #else	/* !CONFIG_MMU */
5583 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5584 				 struct cgroup_taskset *tset)
5585 {
5586 	return 0;
5587 }
5588 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5589 				     struct cgroup_taskset *tset)
5590 {
5591 }
5592 static void mem_cgroup_move_task(struct cgroup *cont,
5593 				 struct cgroup_taskset *tset)
5594 {
5595 }
5596 #endif
5597 
5598 struct cgroup_subsys mem_cgroup_subsys = {
5599 	.name = "memory",
5600 	.subsys_id = mem_cgroup_subsys_id,
5601 	.create = mem_cgroup_create,
5602 	.pre_destroy = mem_cgroup_pre_destroy,
5603 	.destroy = mem_cgroup_destroy,
5604 	.can_attach = mem_cgroup_can_attach,
5605 	.cancel_attach = mem_cgroup_cancel_attach,
5606 	.attach = mem_cgroup_move_task,
5607 	.base_cftypes = mem_cgroup_files,
5608 	.early_init = 0,
5609 	.use_id = 1,
5610 	.__DEPRECATED_clear_css_refs = true,
5611 };
5612 
5613 #ifdef CONFIG_MEMCG_SWAP
5614 static int __init enable_swap_account(char *s)
5615 {
5616 	/* consider enabled if no parameter or 1 is given */
5617 	if (!strcmp(s, "1"))
5618 		really_do_swap_account = 1;
5619 	else if (!strcmp(s, "0"))
5620 		really_do_swap_account = 0;
5621 	return 1;
5622 }
5623 __setup("swapaccount=", enable_swap_account);
5624 
5625 #endif
5626