1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 */ 23 24 #include <linux/res_counter.h> 25 #include <linux/memcontrol.h> 26 #include <linux/cgroup.h> 27 #include <linux/mm.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagemap.h> 30 #include <linux/smp.h> 31 #include <linux/page-flags.h> 32 #include <linux/backing-dev.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/rcupdate.h> 35 #include <linux/limits.h> 36 #include <linux/export.h> 37 #include <linux/mutex.h> 38 #include <linux/rbtree.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swapops.h> 42 #include <linux/spinlock.h> 43 #include <linux/eventfd.h> 44 #include <linux/sort.h> 45 #include <linux/fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/vmalloc.h> 48 #include <linux/mm_inline.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/cpu.h> 51 #include <linux/oom.h> 52 #include "internal.h" 53 #include <net/sock.h> 54 #include <net/ip.h> 55 #include <net/tcp_memcontrol.h> 56 57 #include <asm/uaccess.h> 58 59 #include <trace/events/vmscan.h> 60 61 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 62 #define MEM_CGROUP_RECLAIM_RETRIES 5 63 static struct mem_cgroup *root_mem_cgroup __read_mostly; 64 65 #ifdef CONFIG_MEMCG_SWAP 66 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 67 int do_swap_account __read_mostly; 68 69 /* for remember boot option*/ 70 #ifdef CONFIG_MEMCG_SWAP_ENABLED 71 static int really_do_swap_account __initdata = 1; 72 #else 73 static int really_do_swap_account __initdata = 0; 74 #endif 75 76 #else 77 #define do_swap_account 0 78 #endif 79 80 81 /* 82 * Statistics for memory cgroup. 83 */ 84 enum mem_cgroup_stat_index { 85 /* 86 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 87 */ 88 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 89 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 90 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 91 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 92 MEM_CGROUP_STAT_NSTATS, 93 }; 94 95 static const char * const mem_cgroup_stat_names[] = { 96 "cache", 97 "rss", 98 "mapped_file", 99 "swap", 100 }; 101 102 enum mem_cgroup_events_index { 103 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 104 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 105 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 106 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 107 MEM_CGROUP_EVENTS_NSTATS, 108 }; 109 110 static const char * const mem_cgroup_events_names[] = { 111 "pgpgin", 112 "pgpgout", 113 "pgfault", 114 "pgmajfault", 115 }; 116 117 /* 118 * Per memcg event counter is incremented at every pagein/pageout. With THP, 119 * it will be incremated by the number of pages. This counter is used for 120 * for trigger some periodic events. This is straightforward and better 121 * than using jiffies etc. to handle periodic memcg event. 122 */ 123 enum mem_cgroup_events_target { 124 MEM_CGROUP_TARGET_THRESH, 125 MEM_CGROUP_TARGET_SOFTLIMIT, 126 MEM_CGROUP_TARGET_NUMAINFO, 127 MEM_CGROUP_NTARGETS, 128 }; 129 #define THRESHOLDS_EVENTS_TARGET 128 130 #define SOFTLIMIT_EVENTS_TARGET 1024 131 #define NUMAINFO_EVENTS_TARGET 1024 132 133 struct mem_cgroup_stat_cpu { 134 long count[MEM_CGROUP_STAT_NSTATS]; 135 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 136 unsigned long nr_page_events; 137 unsigned long targets[MEM_CGROUP_NTARGETS]; 138 }; 139 140 struct mem_cgroup_reclaim_iter { 141 /* css_id of the last scanned hierarchy member */ 142 int position; 143 /* scan generation, increased every round-trip */ 144 unsigned int generation; 145 }; 146 147 /* 148 * per-zone information in memory controller. 149 */ 150 struct mem_cgroup_per_zone { 151 struct lruvec lruvec; 152 unsigned long lru_size[NR_LRU_LISTS]; 153 154 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 155 156 struct rb_node tree_node; /* RB tree node */ 157 unsigned long long usage_in_excess;/* Set to the value by which */ 158 /* the soft limit is exceeded*/ 159 bool on_tree; 160 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 161 /* use container_of */ 162 }; 163 164 struct mem_cgroup_per_node { 165 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 166 }; 167 168 struct mem_cgroup_lru_info { 169 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 170 }; 171 172 /* 173 * Cgroups above their limits are maintained in a RB-Tree, independent of 174 * their hierarchy representation 175 */ 176 177 struct mem_cgroup_tree_per_zone { 178 struct rb_root rb_root; 179 spinlock_t lock; 180 }; 181 182 struct mem_cgroup_tree_per_node { 183 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 184 }; 185 186 struct mem_cgroup_tree { 187 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 188 }; 189 190 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 191 192 struct mem_cgroup_threshold { 193 struct eventfd_ctx *eventfd; 194 u64 threshold; 195 }; 196 197 /* For threshold */ 198 struct mem_cgroup_threshold_ary { 199 /* An array index points to threshold just below or equal to usage. */ 200 int current_threshold; 201 /* Size of entries[] */ 202 unsigned int size; 203 /* Array of thresholds */ 204 struct mem_cgroup_threshold entries[0]; 205 }; 206 207 struct mem_cgroup_thresholds { 208 /* Primary thresholds array */ 209 struct mem_cgroup_threshold_ary *primary; 210 /* 211 * Spare threshold array. 212 * This is needed to make mem_cgroup_unregister_event() "never fail". 213 * It must be able to store at least primary->size - 1 entries. 214 */ 215 struct mem_cgroup_threshold_ary *spare; 216 }; 217 218 /* for OOM */ 219 struct mem_cgroup_eventfd_list { 220 struct list_head list; 221 struct eventfd_ctx *eventfd; 222 }; 223 224 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 225 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 226 227 /* 228 * The memory controller data structure. The memory controller controls both 229 * page cache and RSS per cgroup. We would eventually like to provide 230 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 231 * to help the administrator determine what knobs to tune. 232 * 233 * TODO: Add a water mark for the memory controller. Reclaim will begin when 234 * we hit the water mark. May be even add a low water mark, such that 235 * no reclaim occurs from a cgroup at it's low water mark, this is 236 * a feature that will be implemented much later in the future. 237 */ 238 struct mem_cgroup { 239 struct cgroup_subsys_state css; 240 /* 241 * the counter to account for memory usage 242 */ 243 struct res_counter res; 244 245 union { 246 /* 247 * the counter to account for mem+swap usage. 248 */ 249 struct res_counter memsw; 250 251 /* 252 * rcu_freeing is used only when freeing struct mem_cgroup, 253 * so put it into a union to avoid wasting more memory. 254 * It must be disjoint from the css field. It could be 255 * in a union with the res field, but res plays a much 256 * larger part in mem_cgroup life than memsw, and might 257 * be of interest, even at time of free, when debugging. 258 * So share rcu_head with the less interesting memsw. 259 */ 260 struct rcu_head rcu_freeing; 261 /* 262 * We also need some space for a worker in deferred freeing. 263 * By the time we call it, rcu_freeing is no longer in use. 264 */ 265 struct work_struct work_freeing; 266 }; 267 268 /* 269 * Per cgroup active and inactive list, similar to the 270 * per zone LRU lists. 271 */ 272 struct mem_cgroup_lru_info info; 273 int last_scanned_node; 274 #if MAX_NUMNODES > 1 275 nodemask_t scan_nodes; 276 atomic_t numainfo_events; 277 atomic_t numainfo_updating; 278 #endif 279 /* 280 * Should the accounting and control be hierarchical, per subtree? 281 */ 282 bool use_hierarchy; 283 284 bool oom_lock; 285 atomic_t under_oom; 286 287 atomic_t refcnt; 288 289 int swappiness; 290 /* OOM-Killer disable */ 291 int oom_kill_disable; 292 293 /* set when res.limit == memsw.limit */ 294 bool memsw_is_minimum; 295 296 /* protect arrays of thresholds */ 297 struct mutex thresholds_lock; 298 299 /* thresholds for memory usage. RCU-protected */ 300 struct mem_cgroup_thresholds thresholds; 301 302 /* thresholds for mem+swap usage. RCU-protected */ 303 struct mem_cgroup_thresholds memsw_thresholds; 304 305 /* For oom notifier event fd */ 306 struct list_head oom_notify; 307 308 /* 309 * Should we move charges of a task when a task is moved into this 310 * mem_cgroup ? And what type of charges should we move ? 311 */ 312 unsigned long move_charge_at_immigrate; 313 /* 314 * set > 0 if pages under this cgroup are moving to other cgroup. 315 */ 316 atomic_t moving_account; 317 /* taken only while moving_account > 0 */ 318 spinlock_t move_lock; 319 /* 320 * percpu counter. 321 */ 322 struct mem_cgroup_stat_cpu __percpu *stat; 323 /* 324 * used when a cpu is offlined or other synchronizations 325 * See mem_cgroup_read_stat(). 326 */ 327 struct mem_cgroup_stat_cpu nocpu_base; 328 spinlock_t pcp_counter_lock; 329 330 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 331 struct tcp_memcontrol tcp_mem; 332 #endif 333 }; 334 335 /* Stuffs for move charges at task migration. */ 336 /* 337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 338 * left-shifted bitmap of these types. 339 */ 340 enum move_type { 341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 343 NR_MOVE_TYPE, 344 }; 345 346 /* "mc" and its members are protected by cgroup_mutex */ 347 static struct move_charge_struct { 348 spinlock_t lock; /* for from, to */ 349 struct mem_cgroup *from; 350 struct mem_cgroup *to; 351 unsigned long precharge; 352 unsigned long moved_charge; 353 unsigned long moved_swap; 354 struct task_struct *moving_task; /* a task moving charges */ 355 wait_queue_head_t waitq; /* a waitq for other context */ 356 } mc = { 357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 359 }; 360 361 static bool move_anon(void) 362 { 363 return test_bit(MOVE_CHARGE_TYPE_ANON, 364 &mc.to->move_charge_at_immigrate); 365 } 366 367 static bool move_file(void) 368 { 369 return test_bit(MOVE_CHARGE_TYPE_FILE, 370 &mc.to->move_charge_at_immigrate); 371 } 372 373 /* 374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 375 * limit reclaim to prevent infinite loops, if they ever occur. 376 */ 377 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 378 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 379 380 enum charge_type { 381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 382 MEM_CGROUP_CHARGE_TYPE_ANON, 383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 385 NR_CHARGE_TYPE, 386 }; 387 388 /* for encoding cft->private value on file */ 389 #define _MEM (0) 390 #define _MEMSWAP (1) 391 #define _OOM_TYPE (2) 392 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 393 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 394 #define MEMFILE_ATTR(val) ((val) & 0xffff) 395 /* Used for OOM nofiier */ 396 #define OOM_CONTROL (0) 397 398 /* 399 * Reclaim flags for mem_cgroup_hierarchical_reclaim 400 */ 401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 402 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 404 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 405 406 static void mem_cgroup_get(struct mem_cgroup *memcg); 407 static void mem_cgroup_put(struct mem_cgroup *memcg); 408 409 static inline 410 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 411 { 412 return container_of(s, struct mem_cgroup, css); 413 } 414 415 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 416 { 417 return (memcg == root_mem_cgroup); 418 } 419 420 /* Writing them here to avoid exposing memcg's inner layout */ 421 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 422 423 void sock_update_memcg(struct sock *sk) 424 { 425 if (mem_cgroup_sockets_enabled) { 426 struct mem_cgroup *memcg; 427 struct cg_proto *cg_proto; 428 429 BUG_ON(!sk->sk_prot->proto_cgroup); 430 431 /* Socket cloning can throw us here with sk_cgrp already 432 * filled. It won't however, necessarily happen from 433 * process context. So the test for root memcg given 434 * the current task's memcg won't help us in this case. 435 * 436 * Respecting the original socket's memcg is a better 437 * decision in this case. 438 */ 439 if (sk->sk_cgrp) { 440 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 441 mem_cgroup_get(sk->sk_cgrp->memcg); 442 return; 443 } 444 445 rcu_read_lock(); 446 memcg = mem_cgroup_from_task(current); 447 cg_proto = sk->sk_prot->proto_cgroup(memcg); 448 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { 449 mem_cgroup_get(memcg); 450 sk->sk_cgrp = cg_proto; 451 } 452 rcu_read_unlock(); 453 } 454 } 455 EXPORT_SYMBOL(sock_update_memcg); 456 457 void sock_release_memcg(struct sock *sk) 458 { 459 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 460 struct mem_cgroup *memcg; 461 WARN_ON(!sk->sk_cgrp->memcg); 462 memcg = sk->sk_cgrp->memcg; 463 mem_cgroup_put(memcg); 464 } 465 } 466 467 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 468 { 469 if (!memcg || mem_cgroup_is_root(memcg)) 470 return NULL; 471 472 return &memcg->tcp_mem.cg_proto; 473 } 474 EXPORT_SYMBOL(tcp_proto_cgroup); 475 476 static void disarm_sock_keys(struct mem_cgroup *memcg) 477 { 478 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 479 return; 480 static_key_slow_dec(&memcg_socket_limit_enabled); 481 } 482 #else 483 static void disarm_sock_keys(struct mem_cgroup *memcg) 484 { 485 } 486 #endif 487 488 static void drain_all_stock_async(struct mem_cgroup *memcg); 489 490 static struct mem_cgroup_per_zone * 491 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 492 { 493 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 494 } 495 496 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 497 { 498 return &memcg->css; 499 } 500 501 static struct mem_cgroup_per_zone * 502 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 503 { 504 int nid = page_to_nid(page); 505 int zid = page_zonenum(page); 506 507 return mem_cgroup_zoneinfo(memcg, nid, zid); 508 } 509 510 static struct mem_cgroup_tree_per_zone * 511 soft_limit_tree_node_zone(int nid, int zid) 512 { 513 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 514 } 515 516 static struct mem_cgroup_tree_per_zone * 517 soft_limit_tree_from_page(struct page *page) 518 { 519 int nid = page_to_nid(page); 520 int zid = page_zonenum(page); 521 522 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 523 } 524 525 static void 526 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 527 struct mem_cgroup_per_zone *mz, 528 struct mem_cgroup_tree_per_zone *mctz, 529 unsigned long long new_usage_in_excess) 530 { 531 struct rb_node **p = &mctz->rb_root.rb_node; 532 struct rb_node *parent = NULL; 533 struct mem_cgroup_per_zone *mz_node; 534 535 if (mz->on_tree) 536 return; 537 538 mz->usage_in_excess = new_usage_in_excess; 539 if (!mz->usage_in_excess) 540 return; 541 while (*p) { 542 parent = *p; 543 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 544 tree_node); 545 if (mz->usage_in_excess < mz_node->usage_in_excess) 546 p = &(*p)->rb_left; 547 /* 548 * We can't avoid mem cgroups that are over their soft 549 * limit by the same amount 550 */ 551 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 552 p = &(*p)->rb_right; 553 } 554 rb_link_node(&mz->tree_node, parent, p); 555 rb_insert_color(&mz->tree_node, &mctz->rb_root); 556 mz->on_tree = true; 557 } 558 559 static void 560 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 561 struct mem_cgroup_per_zone *mz, 562 struct mem_cgroup_tree_per_zone *mctz) 563 { 564 if (!mz->on_tree) 565 return; 566 rb_erase(&mz->tree_node, &mctz->rb_root); 567 mz->on_tree = false; 568 } 569 570 static void 571 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 572 struct mem_cgroup_per_zone *mz, 573 struct mem_cgroup_tree_per_zone *mctz) 574 { 575 spin_lock(&mctz->lock); 576 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 577 spin_unlock(&mctz->lock); 578 } 579 580 581 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 582 { 583 unsigned long long excess; 584 struct mem_cgroup_per_zone *mz; 585 struct mem_cgroup_tree_per_zone *mctz; 586 int nid = page_to_nid(page); 587 int zid = page_zonenum(page); 588 mctz = soft_limit_tree_from_page(page); 589 590 /* 591 * Necessary to update all ancestors when hierarchy is used. 592 * because their event counter is not touched. 593 */ 594 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 595 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 596 excess = res_counter_soft_limit_excess(&memcg->res); 597 /* 598 * We have to update the tree if mz is on RB-tree or 599 * mem is over its softlimit. 600 */ 601 if (excess || mz->on_tree) { 602 spin_lock(&mctz->lock); 603 /* if on-tree, remove it */ 604 if (mz->on_tree) 605 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 606 /* 607 * Insert again. mz->usage_in_excess will be updated. 608 * If excess is 0, no tree ops. 609 */ 610 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 611 spin_unlock(&mctz->lock); 612 } 613 } 614 } 615 616 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 617 { 618 int node, zone; 619 struct mem_cgroup_per_zone *mz; 620 struct mem_cgroup_tree_per_zone *mctz; 621 622 for_each_node(node) { 623 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 624 mz = mem_cgroup_zoneinfo(memcg, node, zone); 625 mctz = soft_limit_tree_node_zone(node, zone); 626 mem_cgroup_remove_exceeded(memcg, mz, mctz); 627 } 628 } 629 } 630 631 static struct mem_cgroup_per_zone * 632 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 633 { 634 struct rb_node *rightmost = NULL; 635 struct mem_cgroup_per_zone *mz; 636 637 retry: 638 mz = NULL; 639 rightmost = rb_last(&mctz->rb_root); 640 if (!rightmost) 641 goto done; /* Nothing to reclaim from */ 642 643 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 644 /* 645 * Remove the node now but someone else can add it back, 646 * we will to add it back at the end of reclaim to its correct 647 * position in the tree. 648 */ 649 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 650 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 651 !css_tryget(&mz->memcg->css)) 652 goto retry; 653 done: 654 return mz; 655 } 656 657 static struct mem_cgroup_per_zone * 658 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 659 { 660 struct mem_cgroup_per_zone *mz; 661 662 spin_lock(&mctz->lock); 663 mz = __mem_cgroup_largest_soft_limit_node(mctz); 664 spin_unlock(&mctz->lock); 665 return mz; 666 } 667 668 /* 669 * Implementation Note: reading percpu statistics for memcg. 670 * 671 * Both of vmstat[] and percpu_counter has threshold and do periodic 672 * synchronization to implement "quick" read. There are trade-off between 673 * reading cost and precision of value. Then, we may have a chance to implement 674 * a periodic synchronizion of counter in memcg's counter. 675 * 676 * But this _read() function is used for user interface now. The user accounts 677 * memory usage by memory cgroup and he _always_ requires exact value because 678 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 679 * have to visit all online cpus and make sum. So, for now, unnecessary 680 * synchronization is not implemented. (just implemented for cpu hotplug) 681 * 682 * If there are kernel internal actions which can make use of some not-exact 683 * value, and reading all cpu value can be performance bottleneck in some 684 * common workload, threashold and synchonization as vmstat[] should be 685 * implemented. 686 */ 687 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 688 enum mem_cgroup_stat_index idx) 689 { 690 long val = 0; 691 int cpu; 692 693 get_online_cpus(); 694 for_each_online_cpu(cpu) 695 val += per_cpu(memcg->stat->count[idx], cpu); 696 #ifdef CONFIG_HOTPLUG_CPU 697 spin_lock(&memcg->pcp_counter_lock); 698 val += memcg->nocpu_base.count[idx]; 699 spin_unlock(&memcg->pcp_counter_lock); 700 #endif 701 put_online_cpus(); 702 return val; 703 } 704 705 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 706 bool charge) 707 { 708 int val = (charge) ? 1 : -1; 709 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 710 } 711 712 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 713 enum mem_cgroup_events_index idx) 714 { 715 unsigned long val = 0; 716 int cpu; 717 718 for_each_online_cpu(cpu) 719 val += per_cpu(memcg->stat->events[idx], cpu); 720 #ifdef CONFIG_HOTPLUG_CPU 721 spin_lock(&memcg->pcp_counter_lock); 722 val += memcg->nocpu_base.events[idx]; 723 spin_unlock(&memcg->pcp_counter_lock); 724 #endif 725 return val; 726 } 727 728 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 729 bool anon, int nr_pages) 730 { 731 preempt_disable(); 732 733 /* 734 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 735 * counted as CACHE even if it's on ANON LRU. 736 */ 737 if (anon) 738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 739 nr_pages); 740 else 741 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 742 nr_pages); 743 744 /* pagein of a big page is an event. So, ignore page size */ 745 if (nr_pages > 0) 746 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 747 else { 748 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 749 nr_pages = -nr_pages; /* for event */ 750 } 751 752 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 753 754 preempt_enable(); 755 } 756 757 unsigned long 758 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 759 { 760 struct mem_cgroup_per_zone *mz; 761 762 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 763 return mz->lru_size[lru]; 764 } 765 766 static unsigned long 767 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 768 unsigned int lru_mask) 769 { 770 struct mem_cgroup_per_zone *mz; 771 enum lru_list lru; 772 unsigned long ret = 0; 773 774 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 775 776 for_each_lru(lru) { 777 if (BIT(lru) & lru_mask) 778 ret += mz->lru_size[lru]; 779 } 780 return ret; 781 } 782 783 static unsigned long 784 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 785 int nid, unsigned int lru_mask) 786 { 787 u64 total = 0; 788 int zid; 789 790 for (zid = 0; zid < MAX_NR_ZONES; zid++) 791 total += mem_cgroup_zone_nr_lru_pages(memcg, 792 nid, zid, lru_mask); 793 794 return total; 795 } 796 797 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 798 unsigned int lru_mask) 799 { 800 int nid; 801 u64 total = 0; 802 803 for_each_node_state(nid, N_HIGH_MEMORY) 804 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 805 return total; 806 } 807 808 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 809 enum mem_cgroup_events_target target) 810 { 811 unsigned long val, next; 812 813 val = __this_cpu_read(memcg->stat->nr_page_events); 814 next = __this_cpu_read(memcg->stat->targets[target]); 815 /* from time_after() in jiffies.h */ 816 if ((long)next - (long)val < 0) { 817 switch (target) { 818 case MEM_CGROUP_TARGET_THRESH: 819 next = val + THRESHOLDS_EVENTS_TARGET; 820 break; 821 case MEM_CGROUP_TARGET_SOFTLIMIT: 822 next = val + SOFTLIMIT_EVENTS_TARGET; 823 break; 824 case MEM_CGROUP_TARGET_NUMAINFO: 825 next = val + NUMAINFO_EVENTS_TARGET; 826 break; 827 default: 828 break; 829 } 830 __this_cpu_write(memcg->stat->targets[target], next); 831 return true; 832 } 833 return false; 834 } 835 836 /* 837 * Check events in order. 838 * 839 */ 840 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 841 { 842 preempt_disable(); 843 /* threshold event is triggered in finer grain than soft limit */ 844 if (unlikely(mem_cgroup_event_ratelimit(memcg, 845 MEM_CGROUP_TARGET_THRESH))) { 846 bool do_softlimit; 847 bool do_numainfo __maybe_unused; 848 849 do_softlimit = mem_cgroup_event_ratelimit(memcg, 850 MEM_CGROUP_TARGET_SOFTLIMIT); 851 #if MAX_NUMNODES > 1 852 do_numainfo = mem_cgroup_event_ratelimit(memcg, 853 MEM_CGROUP_TARGET_NUMAINFO); 854 #endif 855 preempt_enable(); 856 857 mem_cgroup_threshold(memcg); 858 if (unlikely(do_softlimit)) 859 mem_cgroup_update_tree(memcg, page); 860 #if MAX_NUMNODES > 1 861 if (unlikely(do_numainfo)) 862 atomic_inc(&memcg->numainfo_events); 863 #endif 864 } else 865 preempt_enable(); 866 } 867 868 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 869 { 870 return mem_cgroup_from_css( 871 cgroup_subsys_state(cont, mem_cgroup_subsys_id)); 872 } 873 874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 875 { 876 /* 877 * mm_update_next_owner() may clear mm->owner to NULL 878 * if it races with swapoff, page migration, etc. 879 * So this can be called with p == NULL. 880 */ 881 if (unlikely(!p)) 882 return NULL; 883 884 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); 885 } 886 887 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 888 { 889 struct mem_cgroup *memcg = NULL; 890 891 if (!mm) 892 return NULL; 893 /* 894 * Because we have no locks, mm->owner's may be being moved to other 895 * cgroup. We use css_tryget() here even if this looks 896 * pessimistic (rather than adding locks here). 897 */ 898 rcu_read_lock(); 899 do { 900 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 901 if (unlikely(!memcg)) 902 break; 903 } while (!css_tryget(&memcg->css)); 904 rcu_read_unlock(); 905 return memcg; 906 } 907 908 /** 909 * mem_cgroup_iter - iterate over memory cgroup hierarchy 910 * @root: hierarchy root 911 * @prev: previously returned memcg, NULL on first invocation 912 * @reclaim: cookie for shared reclaim walks, NULL for full walks 913 * 914 * Returns references to children of the hierarchy below @root, or 915 * @root itself, or %NULL after a full round-trip. 916 * 917 * Caller must pass the return value in @prev on subsequent 918 * invocations for reference counting, or use mem_cgroup_iter_break() 919 * to cancel a hierarchy walk before the round-trip is complete. 920 * 921 * Reclaimers can specify a zone and a priority level in @reclaim to 922 * divide up the memcgs in the hierarchy among all concurrent 923 * reclaimers operating on the same zone and priority. 924 */ 925 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 926 struct mem_cgroup *prev, 927 struct mem_cgroup_reclaim_cookie *reclaim) 928 { 929 struct mem_cgroup *memcg = NULL; 930 int id = 0; 931 932 if (mem_cgroup_disabled()) 933 return NULL; 934 935 if (!root) 936 root = root_mem_cgroup; 937 938 if (prev && !reclaim) 939 id = css_id(&prev->css); 940 941 if (prev && prev != root) 942 css_put(&prev->css); 943 944 if (!root->use_hierarchy && root != root_mem_cgroup) { 945 if (prev) 946 return NULL; 947 return root; 948 } 949 950 while (!memcg) { 951 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 952 struct cgroup_subsys_state *css; 953 954 if (reclaim) { 955 int nid = zone_to_nid(reclaim->zone); 956 int zid = zone_idx(reclaim->zone); 957 struct mem_cgroup_per_zone *mz; 958 959 mz = mem_cgroup_zoneinfo(root, nid, zid); 960 iter = &mz->reclaim_iter[reclaim->priority]; 961 if (prev && reclaim->generation != iter->generation) 962 return NULL; 963 id = iter->position; 964 } 965 966 rcu_read_lock(); 967 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 968 if (css) { 969 if (css == &root->css || css_tryget(css)) 970 memcg = mem_cgroup_from_css(css); 971 } else 972 id = 0; 973 rcu_read_unlock(); 974 975 if (reclaim) { 976 iter->position = id; 977 if (!css) 978 iter->generation++; 979 else if (!prev && memcg) 980 reclaim->generation = iter->generation; 981 } 982 983 if (prev && !css) 984 return NULL; 985 } 986 return memcg; 987 } 988 989 /** 990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 991 * @root: hierarchy root 992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 993 */ 994 void mem_cgroup_iter_break(struct mem_cgroup *root, 995 struct mem_cgroup *prev) 996 { 997 if (!root) 998 root = root_mem_cgroup; 999 if (prev && prev != root) 1000 css_put(&prev->css); 1001 } 1002 1003 /* 1004 * Iteration constructs for visiting all cgroups (under a tree). If 1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1006 * be used for reference counting. 1007 */ 1008 #define for_each_mem_cgroup_tree(iter, root) \ 1009 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1010 iter != NULL; \ 1011 iter = mem_cgroup_iter(root, iter, NULL)) 1012 1013 #define for_each_mem_cgroup(iter) \ 1014 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1015 iter != NULL; \ 1016 iter = mem_cgroup_iter(NULL, iter, NULL)) 1017 1018 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1019 { 1020 struct mem_cgroup *memcg; 1021 1022 if (!mm) 1023 return; 1024 1025 rcu_read_lock(); 1026 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1027 if (unlikely(!memcg)) 1028 goto out; 1029 1030 switch (idx) { 1031 case PGFAULT: 1032 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1033 break; 1034 case PGMAJFAULT: 1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1036 break; 1037 default: 1038 BUG(); 1039 } 1040 out: 1041 rcu_read_unlock(); 1042 } 1043 EXPORT_SYMBOL(mem_cgroup_count_vm_event); 1044 1045 /** 1046 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1047 * @zone: zone of the wanted lruvec 1048 * @memcg: memcg of the wanted lruvec 1049 * 1050 * Returns the lru list vector holding pages for the given @zone and 1051 * @mem. This can be the global zone lruvec, if the memory controller 1052 * is disabled. 1053 */ 1054 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1055 struct mem_cgroup *memcg) 1056 { 1057 struct mem_cgroup_per_zone *mz; 1058 1059 if (mem_cgroup_disabled()) 1060 return &zone->lruvec; 1061 1062 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1063 return &mz->lruvec; 1064 } 1065 1066 /* 1067 * Following LRU functions are allowed to be used without PCG_LOCK. 1068 * Operations are called by routine of global LRU independently from memcg. 1069 * What we have to take care of here is validness of pc->mem_cgroup. 1070 * 1071 * Changes to pc->mem_cgroup happens when 1072 * 1. charge 1073 * 2. moving account 1074 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1075 * It is added to LRU before charge. 1076 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1077 * When moving account, the page is not on LRU. It's isolated. 1078 */ 1079 1080 /** 1081 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1082 * @page: the page 1083 * @zone: zone of the page 1084 */ 1085 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1086 { 1087 struct mem_cgroup_per_zone *mz; 1088 struct mem_cgroup *memcg; 1089 struct page_cgroup *pc; 1090 1091 if (mem_cgroup_disabled()) 1092 return &zone->lruvec; 1093 1094 pc = lookup_page_cgroup(page); 1095 memcg = pc->mem_cgroup; 1096 1097 /* 1098 * Surreptitiously switch any uncharged offlist page to root: 1099 * an uncharged page off lru does nothing to secure 1100 * its former mem_cgroup from sudden removal. 1101 * 1102 * Our caller holds lru_lock, and PageCgroupUsed is updated 1103 * under page_cgroup lock: between them, they make all uses 1104 * of pc->mem_cgroup safe. 1105 */ 1106 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1107 pc->mem_cgroup = memcg = root_mem_cgroup; 1108 1109 mz = page_cgroup_zoneinfo(memcg, page); 1110 return &mz->lruvec; 1111 } 1112 1113 /** 1114 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1115 * @lruvec: mem_cgroup per zone lru vector 1116 * @lru: index of lru list the page is sitting on 1117 * @nr_pages: positive when adding or negative when removing 1118 * 1119 * This function must be called when a page is added to or removed from an 1120 * lru list. 1121 */ 1122 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1123 int nr_pages) 1124 { 1125 struct mem_cgroup_per_zone *mz; 1126 unsigned long *lru_size; 1127 1128 if (mem_cgroup_disabled()) 1129 return; 1130 1131 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1132 lru_size = mz->lru_size + lru; 1133 *lru_size += nr_pages; 1134 VM_BUG_ON((long)(*lru_size) < 0); 1135 } 1136 1137 /* 1138 * Checks whether given mem is same or in the root_mem_cgroup's 1139 * hierarchy subtree 1140 */ 1141 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1142 struct mem_cgroup *memcg) 1143 { 1144 if (root_memcg == memcg) 1145 return true; 1146 if (!root_memcg->use_hierarchy || !memcg) 1147 return false; 1148 return css_is_ancestor(&memcg->css, &root_memcg->css); 1149 } 1150 1151 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1152 struct mem_cgroup *memcg) 1153 { 1154 bool ret; 1155 1156 rcu_read_lock(); 1157 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1158 rcu_read_unlock(); 1159 return ret; 1160 } 1161 1162 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1163 { 1164 int ret; 1165 struct mem_cgroup *curr = NULL; 1166 struct task_struct *p; 1167 1168 p = find_lock_task_mm(task); 1169 if (p) { 1170 curr = try_get_mem_cgroup_from_mm(p->mm); 1171 task_unlock(p); 1172 } else { 1173 /* 1174 * All threads may have already detached their mm's, but the oom 1175 * killer still needs to detect if they have already been oom 1176 * killed to prevent needlessly killing additional tasks. 1177 */ 1178 task_lock(task); 1179 curr = mem_cgroup_from_task(task); 1180 if (curr) 1181 css_get(&curr->css); 1182 task_unlock(task); 1183 } 1184 if (!curr) 1185 return 0; 1186 /* 1187 * We should check use_hierarchy of "memcg" not "curr". Because checking 1188 * use_hierarchy of "curr" here make this function true if hierarchy is 1189 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1190 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1191 */ 1192 ret = mem_cgroup_same_or_subtree(memcg, curr); 1193 css_put(&curr->css); 1194 return ret; 1195 } 1196 1197 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1198 { 1199 unsigned long inactive_ratio; 1200 unsigned long inactive; 1201 unsigned long active; 1202 unsigned long gb; 1203 1204 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1205 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1206 1207 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1208 if (gb) 1209 inactive_ratio = int_sqrt(10 * gb); 1210 else 1211 inactive_ratio = 1; 1212 1213 return inactive * inactive_ratio < active; 1214 } 1215 1216 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) 1217 { 1218 unsigned long active; 1219 unsigned long inactive; 1220 1221 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE); 1222 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE); 1223 1224 return (active > inactive); 1225 } 1226 1227 #define mem_cgroup_from_res_counter(counter, member) \ 1228 container_of(counter, struct mem_cgroup, member) 1229 1230 /** 1231 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1232 * @memcg: the memory cgroup 1233 * 1234 * Returns the maximum amount of memory @mem can be charged with, in 1235 * pages. 1236 */ 1237 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1238 { 1239 unsigned long long margin; 1240 1241 margin = res_counter_margin(&memcg->res); 1242 if (do_swap_account) 1243 margin = min(margin, res_counter_margin(&memcg->memsw)); 1244 return margin >> PAGE_SHIFT; 1245 } 1246 1247 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1248 { 1249 struct cgroup *cgrp = memcg->css.cgroup; 1250 1251 /* root ? */ 1252 if (cgrp->parent == NULL) 1253 return vm_swappiness; 1254 1255 return memcg->swappiness; 1256 } 1257 1258 /* 1259 * memcg->moving_account is used for checking possibility that some thread is 1260 * calling move_account(). When a thread on CPU-A starts moving pages under 1261 * a memcg, other threads should check memcg->moving_account under 1262 * rcu_read_lock(), like this: 1263 * 1264 * CPU-A CPU-B 1265 * rcu_read_lock() 1266 * memcg->moving_account+1 if (memcg->mocing_account) 1267 * take heavy locks. 1268 * synchronize_rcu() update something. 1269 * rcu_read_unlock() 1270 * start move here. 1271 */ 1272 1273 /* for quick checking without looking up memcg */ 1274 atomic_t memcg_moving __read_mostly; 1275 1276 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1277 { 1278 atomic_inc(&memcg_moving); 1279 atomic_inc(&memcg->moving_account); 1280 synchronize_rcu(); 1281 } 1282 1283 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1284 { 1285 /* 1286 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1287 * We check NULL in callee rather than caller. 1288 */ 1289 if (memcg) { 1290 atomic_dec(&memcg_moving); 1291 atomic_dec(&memcg->moving_account); 1292 } 1293 } 1294 1295 /* 1296 * 2 routines for checking "mem" is under move_account() or not. 1297 * 1298 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1299 * is used for avoiding races in accounting. If true, 1300 * pc->mem_cgroup may be overwritten. 1301 * 1302 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1303 * under hierarchy of moving cgroups. This is for 1304 * waiting at hith-memory prressure caused by "move". 1305 */ 1306 1307 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1308 { 1309 VM_BUG_ON(!rcu_read_lock_held()); 1310 return atomic_read(&memcg->moving_account) > 0; 1311 } 1312 1313 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1314 { 1315 struct mem_cgroup *from; 1316 struct mem_cgroup *to; 1317 bool ret = false; 1318 /* 1319 * Unlike task_move routines, we access mc.to, mc.from not under 1320 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1321 */ 1322 spin_lock(&mc.lock); 1323 from = mc.from; 1324 to = mc.to; 1325 if (!from) 1326 goto unlock; 1327 1328 ret = mem_cgroup_same_or_subtree(memcg, from) 1329 || mem_cgroup_same_or_subtree(memcg, to); 1330 unlock: 1331 spin_unlock(&mc.lock); 1332 return ret; 1333 } 1334 1335 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1336 { 1337 if (mc.moving_task && current != mc.moving_task) { 1338 if (mem_cgroup_under_move(memcg)) { 1339 DEFINE_WAIT(wait); 1340 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1341 /* moving charge context might have finished. */ 1342 if (mc.moving_task) 1343 schedule(); 1344 finish_wait(&mc.waitq, &wait); 1345 return true; 1346 } 1347 } 1348 return false; 1349 } 1350 1351 /* 1352 * Take this lock when 1353 * - a code tries to modify page's memcg while it's USED. 1354 * - a code tries to modify page state accounting in a memcg. 1355 * see mem_cgroup_stolen(), too. 1356 */ 1357 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1358 unsigned long *flags) 1359 { 1360 spin_lock_irqsave(&memcg->move_lock, *flags); 1361 } 1362 1363 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1364 unsigned long *flags) 1365 { 1366 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1367 } 1368 1369 /** 1370 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1371 * @memcg: The memory cgroup that went over limit 1372 * @p: Task that is going to be killed 1373 * 1374 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1375 * enabled 1376 */ 1377 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1378 { 1379 struct cgroup *task_cgrp; 1380 struct cgroup *mem_cgrp; 1381 /* 1382 * Need a buffer in BSS, can't rely on allocations. The code relies 1383 * on the assumption that OOM is serialized for memory controller. 1384 * If this assumption is broken, revisit this code. 1385 */ 1386 static char memcg_name[PATH_MAX]; 1387 int ret; 1388 1389 if (!memcg || !p) 1390 return; 1391 1392 rcu_read_lock(); 1393 1394 mem_cgrp = memcg->css.cgroup; 1395 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1396 1397 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1398 if (ret < 0) { 1399 /* 1400 * Unfortunately, we are unable to convert to a useful name 1401 * But we'll still print out the usage information 1402 */ 1403 rcu_read_unlock(); 1404 goto done; 1405 } 1406 rcu_read_unlock(); 1407 1408 printk(KERN_INFO "Task in %s killed", memcg_name); 1409 1410 rcu_read_lock(); 1411 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1412 if (ret < 0) { 1413 rcu_read_unlock(); 1414 goto done; 1415 } 1416 rcu_read_unlock(); 1417 1418 /* 1419 * Continues from above, so we don't need an KERN_ level 1420 */ 1421 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1422 done: 1423 1424 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1425 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1426 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1427 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1428 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1429 "failcnt %llu\n", 1430 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1431 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1432 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1433 } 1434 1435 /* 1436 * This function returns the number of memcg under hierarchy tree. Returns 1437 * 1(self count) if no children. 1438 */ 1439 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1440 { 1441 int num = 0; 1442 struct mem_cgroup *iter; 1443 1444 for_each_mem_cgroup_tree(iter, memcg) 1445 num++; 1446 return num; 1447 } 1448 1449 /* 1450 * Return the memory (and swap, if configured) limit for a memcg. 1451 */ 1452 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1453 { 1454 u64 limit; 1455 u64 memsw; 1456 1457 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1458 limit += total_swap_pages << PAGE_SHIFT; 1459 1460 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1461 /* 1462 * If memsw is finite and limits the amount of swap space available 1463 * to this memcg, return that limit. 1464 */ 1465 return min(limit, memsw); 1466 } 1467 1468 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1469 int order) 1470 { 1471 struct mem_cgroup *iter; 1472 unsigned long chosen_points = 0; 1473 unsigned long totalpages; 1474 unsigned int points = 0; 1475 struct task_struct *chosen = NULL; 1476 1477 /* 1478 * If current has a pending SIGKILL, then automatically select it. The 1479 * goal is to allow it to allocate so that it may quickly exit and free 1480 * its memory. 1481 */ 1482 if (fatal_signal_pending(current)) { 1483 set_thread_flag(TIF_MEMDIE); 1484 return; 1485 } 1486 1487 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1488 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1489 for_each_mem_cgroup_tree(iter, memcg) { 1490 struct cgroup *cgroup = iter->css.cgroup; 1491 struct cgroup_iter it; 1492 struct task_struct *task; 1493 1494 cgroup_iter_start(cgroup, &it); 1495 while ((task = cgroup_iter_next(cgroup, &it))) { 1496 switch (oom_scan_process_thread(task, totalpages, NULL, 1497 false)) { 1498 case OOM_SCAN_SELECT: 1499 if (chosen) 1500 put_task_struct(chosen); 1501 chosen = task; 1502 chosen_points = ULONG_MAX; 1503 get_task_struct(chosen); 1504 /* fall through */ 1505 case OOM_SCAN_CONTINUE: 1506 continue; 1507 case OOM_SCAN_ABORT: 1508 cgroup_iter_end(cgroup, &it); 1509 mem_cgroup_iter_break(memcg, iter); 1510 if (chosen) 1511 put_task_struct(chosen); 1512 return; 1513 case OOM_SCAN_OK: 1514 break; 1515 }; 1516 points = oom_badness(task, memcg, NULL, totalpages); 1517 if (points > chosen_points) { 1518 if (chosen) 1519 put_task_struct(chosen); 1520 chosen = task; 1521 chosen_points = points; 1522 get_task_struct(chosen); 1523 } 1524 } 1525 cgroup_iter_end(cgroup, &it); 1526 } 1527 1528 if (!chosen) 1529 return; 1530 points = chosen_points * 1000 / totalpages; 1531 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1532 NULL, "Memory cgroup out of memory"); 1533 } 1534 1535 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1536 gfp_t gfp_mask, 1537 unsigned long flags) 1538 { 1539 unsigned long total = 0; 1540 bool noswap = false; 1541 int loop; 1542 1543 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1544 noswap = true; 1545 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1546 noswap = true; 1547 1548 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1549 if (loop) 1550 drain_all_stock_async(memcg); 1551 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1552 /* 1553 * Allow limit shrinkers, which are triggered directly 1554 * by userspace, to catch signals and stop reclaim 1555 * after minimal progress, regardless of the margin. 1556 */ 1557 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1558 break; 1559 if (mem_cgroup_margin(memcg)) 1560 break; 1561 /* 1562 * If nothing was reclaimed after two attempts, there 1563 * may be no reclaimable pages in this hierarchy. 1564 */ 1565 if (loop && !total) 1566 break; 1567 } 1568 return total; 1569 } 1570 1571 /** 1572 * test_mem_cgroup_node_reclaimable 1573 * @memcg: the target memcg 1574 * @nid: the node ID to be checked. 1575 * @noswap : specify true here if the user wants flle only information. 1576 * 1577 * This function returns whether the specified memcg contains any 1578 * reclaimable pages on a node. Returns true if there are any reclaimable 1579 * pages in the node. 1580 */ 1581 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1582 int nid, bool noswap) 1583 { 1584 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1585 return true; 1586 if (noswap || !total_swap_pages) 1587 return false; 1588 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1589 return true; 1590 return false; 1591 1592 } 1593 #if MAX_NUMNODES > 1 1594 1595 /* 1596 * Always updating the nodemask is not very good - even if we have an empty 1597 * list or the wrong list here, we can start from some node and traverse all 1598 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1599 * 1600 */ 1601 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1602 { 1603 int nid; 1604 /* 1605 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1606 * pagein/pageout changes since the last update. 1607 */ 1608 if (!atomic_read(&memcg->numainfo_events)) 1609 return; 1610 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1611 return; 1612 1613 /* make a nodemask where this memcg uses memory from */ 1614 memcg->scan_nodes = node_states[N_HIGH_MEMORY]; 1615 1616 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { 1617 1618 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1619 node_clear(nid, memcg->scan_nodes); 1620 } 1621 1622 atomic_set(&memcg->numainfo_events, 0); 1623 atomic_set(&memcg->numainfo_updating, 0); 1624 } 1625 1626 /* 1627 * Selecting a node where we start reclaim from. Because what we need is just 1628 * reducing usage counter, start from anywhere is O,K. Considering 1629 * memory reclaim from current node, there are pros. and cons. 1630 * 1631 * Freeing memory from current node means freeing memory from a node which 1632 * we'll use or we've used. So, it may make LRU bad. And if several threads 1633 * hit limits, it will see a contention on a node. But freeing from remote 1634 * node means more costs for memory reclaim because of memory latency. 1635 * 1636 * Now, we use round-robin. Better algorithm is welcomed. 1637 */ 1638 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1639 { 1640 int node; 1641 1642 mem_cgroup_may_update_nodemask(memcg); 1643 node = memcg->last_scanned_node; 1644 1645 node = next_node(node, memcg->scan_nodes); 1646 if (node == MAX_NUMNODES) 1647 node = first_node(memcg->scan_nodes); 1648 /* 1649 * We call this when we hit limit, not when pages are added to LRU. 1650 * No LRU may hold pages because all pages are UNEVICTABLE or 1651 * memcg is too small and all pages are not on LRU. In that case, 1652 * we use curret node. 1653 */ 1654 if (unlikely(node == MAX_NUMNODES)) 1655 node = numa_node_id(); 1656 1657 memcg->last_scanned_node = node; 1658 return node; 1659 } 1660 1661 /* 1662 * Check all nodes whether it contains reclaimable pages or not. 1663 * For quick scan, we make use of scan_nodes. This will allow us to skip 1664 * unused nodes. But scan_nodes is lazily updated and may not cotain 1665 * enough new information. We need to do double check. 1666 */ 1667 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1668 { 1669 int nid; 1670 1671 /* 1672 * quick check...making use of scan_node. 1673 * We can skip unused nodes. 1674 */ 1675 if (!nodes_empty(memcg->scan_nodes)) { 1676 for (nid = first_node(memcg->scan_nodes); 1677 nid < MAX_NUMNODES; 1678 nid = next_node(nid, memcg->scan_nodes)) { 1679 1680 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1681 return true; 1682 } 1683 } 1684 /* 1685 * Check rest of nodes. 1686 */ 1687 for_each_node_state(nid, N_HIGH_MEMORY) { 1688 if (node_isset(nid, memcg->scan_nodes)) 1689 continue; 1690 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1691 return true; 1692 } 1693 return false; 1694 } 1695 1696 #else 1697 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1698 { 1699 return 0; 1700 } 1701 1702 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1703 { 1704 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1705 } 1706 #endif 1707 1708 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1709 struct zone *zone, 1710 gfp_t gfp_mask, 1711 unsigned long *total_scanned) 1712 { 1713 struct mem_cgroup *victim = NULL; 1714 int total = 0; 1715 int loop = 0; 1716 unsigned long excess; 1717 unsigned long nr_scanned; 1718 struct mem_cgroup_reclaim_cookie reclaim = { 1719 .zone = zone, 1720 .priority = 0, 1721 }; 1722 1723 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1724 1725 while (1) { 1726 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1727 if (!victim) { 1728 loop++; 1729 if (loop >= 2) { 1730 /* 1731 * If we have not been able to reclaim 1732 * anything, it might because there are 1733 * no reclaimable pages under this hierarchy 1734 */ 1735 if (!total) 1736 break; 1737 /* 1738 * We want to do more targeted reclaim. 1739 * excess >> 2 is not to excessive so as to 1740 * reclaim too much, nor too less that we keep 1741 * coming back to reclaim from this cgroup 1742 */ 1743 if (total >= (excess >> 2) || 1744 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1745 break; 1746 } 1747 continue; 1748 } 1749 if (!mem_cgroup_reclaimable(victim, false)) 1750 continue; 1751 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1752 zone, &nr_scanned); 1753 *total_scanned += nr_scanned; 1754 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1755 break; 1756 } 1757 mem_cgroup_iter_break(root_memcg, victim); 1758 return total; 1759 } 1760 1761 /* 1762 * Check OOM-Killer is already running under our hierarchy. 1763 * If someone is running, return false. 1764 * Has to be called with memcg_oom_lock 1765 */ 1766 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1767 { 1768 struct mem_cgroup *iter, *failed = NULL; 1769 1770 for_each_mem_cgroup_tree(iter, memcg) { 1771 if (iter->oom_lock) { 1772 /* 1773 * this subtree of our hierarchy is already locked 1774 * so we cannot give a lock. 1775 */ 1776 failed = iter; 1777 mem_cgroup_iter_break(memcg, iter); 1778 break; 1779 } else 1780 iter->oom_lock = true; 1781 } 1782 1783 if (!failed) 1784 return true; 1785 1786 /* 1787 * OK, we failed to lock the whole subtree so we have to clean up 1788 * what we set up to the failing subtree 1789 */ 1790 for_each_mem_cgroup_tree(iter, memcg) { 1791 if (iter == failed) { 1792 mem_cgroup_iter_break(memcg, iter); 1793 break; 1794 } 1795 iter->oom_lock = false; 1796 } 1797 return false; 1798 } 1799 1800 /* 1801 * Has to be called with memcg_oom_lock 1802 */ 1803 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1804 { 1805 struct mem_cgroup *iter; 1806 1807 for_each_mem_cgroup_tree(iter, memcg) 1808 iter->oom_lock = false; 1809 return 0; 1810 } 1811 1812 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1813 { 1814 struct mem_cgroup *iter; 1815 1816 for_each_mem_cgroup_tree(iter, memcg) 1817 atomic_inc(&iter->under_oom); 1818 } 1819 1820 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1821 { 1822 struct mem_cgroup *iter; 1823 1824 /* 1825 * When a new child is created while the hierarchy is under oom, 1826 * mem_cgroup_oom_lock() may not be called. We have to use 1827 * atomic_add_unless() here. 1828 */ 1829 for_each_mem_cgroup_tree(iter, memcg) 1830 atomic_add_unless(&iter->under_oom, -1, 0); 1831 } 1832 1833 static DEFINE_SPINLOCK(memcg_oom_lock); 1834 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1835 1836 struct oom_wait_info { 1837 struct mem_cgroup *memcg; 1838 wait_queue_t wait; 1839 }; 1840 1841 static int memcg_oom_wake_function(wait_queue_t *wait, 1842 unsigned mode, int sync, void *arg) 1843 { 1844 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1845 struct mem_cgroup *oom_wait_memcg; 1846 struct oom_wait_info *oom_wait_info; 1847 1848 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1849 oom_wait_memcg = oom_wait_info->memcg; 1850 1851 /* 1852 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 1853 * Then we can use css_is_ancestor without taking care of RCU. 1854 */ 1855 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 1856 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 1857 return 0; 1858 return autoremove_wake_function(wait, mode, sync, arg); 1859 } 1860 1861 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 1862 { 1863 /* for filtering, pass "memcg" as argument. */ 1864 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1865 } 1866 1867 static void memcg_oom_recover(struct mem_cgroup *memcg) 1868 { 1869 if (memcg && atomic_read(&memcg->under_oom)) 1870 memcg_wakeup_oom(memcg); 1871 } 1872 1873 /* 1874 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1875 */ 1876 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 1877 int order) 1878 { 1879 struct oom_wait_info owait; 1880 bool locked, need_to_kill; 1881 1882 owait.memcg = memcg; 1883 owait.wait.flags = 0; 1884 owait.wait.func = memcg_oom_wake_function; 1885 owait.wait.private = current; 1886 INIT_LIST_HEAD(&owait.wait.task_list); 1887 need_to_kill = true; 1888 mem_cgroup_mark_under_oom(memcg); 1889 1890 /* At first, try to OOM lock hierarchy under memcg.*/ 1891 spin_lock(&memcg_oom_lock); 1892 locked = mem_cgroup_oom_lock(memcg); 1893 /* 1894 * Even if signal_pending(), we can't quit charge() loop without 1895 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1896 * under OOM is always welcomed, use TASK_KILLABLE here. 1897 */ 1898 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1899 if (!locked || memcg->oom_kill_disable) 1900 need_to_kill = false; 1901 if (locked) 1902 mem_cgroup_oom_notify(memcg); 1903 spin_unlock(&memcg_oom_lock); 1904 1905 if (need_to_kill) { 1906 finish_wait(&memcg_oom_waitq, &owait.wait); 1907 mem_cgroup_out_of_memory(memcg, mask, order); 1908 } else { 1909 schedule(); 1910 finish_wait(&memcg_oom_waitq, &owait.wait); 1911 } 1912 spin_lock(&memcg_oom_lock); 1913 if (locked) 1914 mem_cgroup_oom_unlock(memcg); 1915 memcg_wakeup_oom(memcg); 1916 spin_unlock(&memcg_oom_lock); 1917 1918 mem_cgroup_unmark_under_oom(memcg); 1919 1920 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1921 return false; 1922 /* Give chance to dying process */ 1923 schedule_timeout_uninterruptible(1); 1924 return true; 1925 } 1926 1927 /* 1928 * Currently used to update mapped file statistics, but the routine can be 1929 * generalized to update other statistics as well. 1930 * 1931 * Notes: Race condition 1932 * 1933 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1934 * it tends to be costly. But considering some conditions, we doesn't need 1935 * to do so _always_. 1936 * 1937 * Considering "charge", lock_page_cgroup() is not required because all 1938 * file-stat operations happen after a page is attached to radix-tree. There 1939 * are no race with "charge". 1940 * 1941 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1942 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1943 * if there are race with "uncharge". Statistics itself is properly handled 1944 * by flags. 1945 * 1946 * Considering "move", this is an only case we see a race. To make the race 1947 * small, we check mm->moving_account and detect there are possibility of race 1948 * If there is, we take a lock. 1949 */ 1950 1951 void __mem_cgroup_begin_update_page_stat(struct page *page, 1952 bool *locked, unsigned long *flags) 1953 { 1954 struct mem_cgroup *memcg; 1955 struct page_cgroup *pc; 1956 1957 pc = lookup_page_cgroup(page); 1958 again: 1959 memcg = pc->mem_cgroup; 1960 if (unlikely(!memcg || !PageCgroupUsed(pc))) 1961 return; 1962 /* 1963 * If this memory cgroup is not under account moving, we don't 1964 * need to take move_lock_mem_cgroup(). Because we already hold 1965 * rcu_read_lock(), any calls to move_account will be delayed until 1966 * rcu_read_unlock() if mem_cgroup_stolen() == true. 1967 */ 1968 if (!mem_cgroup_stolen(memcg)) 1969 return; 1970 1971 move_lock_mem_cgroup(memcg, flags); 1972 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 1973 move_unlock_mem_cgroup(memcg, flags); 1974 goto again; 1975 } 1976 *locked = true; 1977 } 1978 1979 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 1980 { 1981 struct page_cgroup *pc = lookup_page_cgroup(page); 1982 1983 /* 1984 * It's guaranteed that pc->mem_cgroup never changes while 1985 * lock is held because a routine modifies pc->mem_cgroup 1986 * should take move_lock_mem_cgroup(). 1987 */ 1988 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 1989 } 1990 1991 void mem_cgroup_update_page_stat(struct page *page, 1992 enum mem_cgroup_page_stat_item idx, int val) 1993 { 1994 struct mem_cgroup *memcg; 1995 struct page_cgroup *pc = lookup_page_cgroup(page); 1996 unsigned long uninitialized_var(flags); 1997 1998 if (mem_cgroup_disabled()) 1999 return; 2000 2001 memcg = pc->mem_cgroup; 2002 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2003 return; 2004 2005 switch (idx) { 2006 case MEMCG_NR_FILE_MAPPED: 2007 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2008 break; 2009 default: 2010 BUG(); 2011 } 2012 2013 this_cpu_add(memcg->stat->count[idx], val); 2014 } 2015 2016 /* 2017 * size of first charge trial. "32" comes from vmscan.c's magic value. 2018 * TODO: maybe necessary to use big numbers in big irons. 2019 */ 2020 #define CHARGE_BATCH 32U 2021 struct memcg_stock_pcp { 2022 struct mem_cgroup *cached; /* this never be root cgroup */ 2023 unsigned int nr_pages; 2024 struct work_struct work; 2025 unsigned long flags; 2026 #define FLUSHING_CACHED_CHARGE 0 2027 }; 2028 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2029 static DEFINE_MUTEX(percpu_charge_mutex); 2030 2031 /* 2032 * Try to consume stocked charge on this cpu. If success, one page is consumed 2033 * from local stock and true is returned. If the stock is 0 or charges from a 2034 * cgroup which is not current target, returns false. This stock will be 2035 * refilled. 2036 */ 2037 static bool consume_stock(struct mem_cgroup *memcg) 2038 { 2039 struct memcg_stock_pcp *stock; 2040 bool ret = true; 2041 2042 stock = &get_cpu_var(memcg_stock); 2043 if (memcg == stock->cached && stock->nr_pages) 2044 stock->nr_pages--; 2045 else /* need to call res_counter_charge */ 2046 ret = false; 2047 put_cpu_var(memcg_stock); 2048 return ret; 2049 } 2050 2051 /* 2052 * Returns stocks cached in percpu to res_counter and reset cached information. 2053 */ 2054 static void drain_stock(struct memcg_stock_pcp *stock) 2055 { 2056 struct mem_cgroup *old = stock->cached; 2057 2058 if (stock->nr_pages) { 2059 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2060 2061 res_counter_uncharge(&old->res, bytes); 2062 if (do_swap_account) 2063 res_counter_uncharge(&old->memsw, bytes); 2064 stock->nr_pages = 0; 2065 } 2066 stock->cached = NULL; 2067 } 2068 2069 /* 2070 * This must be called under preempt disabled or must be called by 2071 * a thread which is pinned to local cpu. 2072 */ 2073 static void drain_local_stock(struct work_struct *dummy) 2074 { 2075 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2076 drain_stock(stock); 2077 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2078 } 2079 2080 /* 2081 * Cache charges(val) which is from res_counter, to local per_cpu area. 2082 * This will be consumed by consume_stock() function, later. 2083 */ 2084 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2085 { 2086 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2087 2088 if (stock->cached != memcg) { /* reset if necessary */ 2089 drain_stock(stock); 2090 stock->cached = memcg; 2091 } 2092 stock->nr_pages += nr_pages; 2093 put_cpu_var(memcg_stock); 2094 } 2095 2096 /* 2097 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2098 * of the hierarchy under it. sync flag says whether we should block 2099 * until the work is done. 2100 */ 2101 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2102 { 2103 int cpu, curcpu; 2104 2105 /* Notify other cpus that system-wide "drain" is running */ 2106 get_online_cpus(); 2107 curcpu = get_cpu(); 2108 for_each_online_cpu(cpu) { 2109 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2110 struct mem_cgroup *memcg; 2111 2112 memcg = stock->cached; 2113 if (!memcg || !stock->nr_pages) 2114 continue; 2115 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2116 continue; 2117 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2118 if (cpu == curcpu) 2119 drain_local_stock(&stock->work); 2120 else 2121 schedule_work_on(cpu, &stock->work); 2122 } 2123 } 2124 put_cpu(); 2125 2126 if (!sync) 2127 goto out; 2128 2129 for_each_online_cpu(cpu) { 2130 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2131 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2132 flush_work(&stock->work); 2133 } 2134 out: 2135 put_online_cpus(); 2136 } 2137 2138 /* 2139 * Tries to drain stocked charges in other cpus. This function is asynchronous 2140 * and just put a work per cpu for draining localy on each cpu. Caller can 2141 * expects some charges will be back to res_counter later but cannot wait for 2142 * it. 2143 */ 2144 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2145 { 2146 /* 2147 * If someone calls draining, avoid adding more kworker runs. 2148 */ 2149 if (!mutex_trylock(&percpu_charge_mutex)) 2150 return; 2151 drain_all_stock(root_memcg, false); 2152 mutex_unlock(&percpu_charge_mutex); 2153 } 2154 2155 /* This is a synchronous drain interface. */ 2156 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2157 { 2158 /* called when force_empty is called */ 2159 mutex_lock(&percpu_charge_mutex); 2160 drain_all_stock(root_memcg, true); 2161 mutex_unlock(&percpu_charge_mutex); 2162 } 2163 2164 /* 2165 * This function drains percpu counter value from DEAD cpu and 2166 * move it to local cpu. Note that this function can be preempted. 2167 */ 2168 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2169 { 2170 int i; 2171 2172 spin_lock(&memcg->pcp_counter_lock); 2173 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2174 long x = per_cpu(memcg->stat->count[i], cpu); 2175 2176 per_cpu(memcg->stat->count[i], cpu) = 0; 2177 memcg->nocpu_base.count[i] += x; 2178 } 2179 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2180 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2181 2182 per_cpu(memcg->stat->events[i], cpu) = 0; 2183 memcg->nocpu_base.events[i] += x; 2184 } 2185 spin_unlock(&memcg->pcp_counter_lock); 2186 } 2187 2188 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2189 unsigned long action, 2190 void *hcpu) 2191 { 2192 int cpu = (unsigned long)hcpu; 2193 struct memcg_stock_pcp *stock; 2194 struct mem_cgroup *iter; 2195 2196 if (action == CPU_ONLINE) 2197 return NOTIFY_OK; 2198 2199 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2200 return NOTIFY_OK; 2201 2202 for_each_mem_cgroup(iter) 2203 mem_cgroup_drain_pcp_counter(iter, cpu); 2204 2205 stock = &per_cpu(memcg_stock, cpu); 2206 drain_stock(stock); 2207 return NOTIFY_OK; 2208 } 2209 2210 2211 /* See __mem_cgroup_try_charge() for details */ 2212 enum { 2213 CHARGE_OK, /* success */ 2214 CHARGE_RETRY, /* need to retry but retry is not bad */ 2215 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2216 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2217 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2218 }; 2219 2220 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2221 unsigned int nr_pages, bool oom_check) 2222 { 2223 unsigned long csize = nr_pages * PAGE_SIZE; 2224 struct mem_cgroup *mem_over_limit; 2225 struct res_counter *fail_res; 2226 unsigned long flags = 0; 2227 int ret; 2228 2229 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2230 2231 if (likely(!ret)) { 2232 if (!do_swap_account) 2233 return CHARGE_OK; 2234 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2235 if (likely(!ret)) 2236 return CHARGE_OK; 2237 2238 res_counter_uncharge(&memcg->res, csize); 2239 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2240 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2241 } else 2242 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2243 /* 2244 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch 2245 * of regular pages (CHARGE_BATCH), or a single regular page (1). 2246 * 2247 * Never reclaim on behalf of optional batching, retry with a 2248 * single page instead. 2249 */ 2250 if (nr_pages == CHARGE_BATCH) 2251 return CHARGE_RETRY; 2252 2253 if (!(gfp_mask & __GFP_WAIT)) 2254 return CHARGE_WOULDBLOCK; 2255 2256 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2257 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2258 return CHARGE_RETRY; 2259 /* 2260 * Even though the limit is exceeded at this point, reclaim 2261 * may have been able to free some pages. Retry the charge 2262 * before killing the task. 2263 * 2264 * Only for regular pages, though: huge pages are rather 2265 * unlikely to succeed so close to the limit, and we fall back 2266 * to regular pages anyway in case of failure. 2267 */ 2268 if (nr_pages == 1 && ret) 2269 return CHARGE_RETRY; 2270 2271 /* 2272 * At task move, charge accounts can be doubly counted. So, it's 2273 * better to wait until the end of task_move if something is going on. 2274 */ 2275 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2276 return CHARGE_RETRY; 2277 2278 /* If we don't need to call oom-killer at el, return immediately */ 2279 if (!oom_check) 2280 return CHARGE_NOMEM; 2281 /* check OOM */ 2282 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2283 return CHARGE_OOM_DIE; 2284 2285 return CHARGE_RETRY; 2286 } 2287 2288 /* 2289 * __mem_cgroup_try_charge() does 2290 * 1. detect memcg to be charged against from passed *mm and *ptr, 2291 * 2. update res_counter 2292 * 3. call memory reclaim if necessary. 2293 * 2294 * In some special case, if the task is fatal, fatal_signal_pending() or 2295 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2296 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2297 * as possible without any hazards. 2: all pages should have a valid 2298 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2299 * pointer, that is treated as a charge to root_mem_cgroup. 2300 * 2301 * So __mem_cgroup_try_charge() will return 2302 * 0 ... on success, filling *ptr with a valid memcg pointer. 2303 * -ENOMEM ... charge failure because of resource limits. 2304 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2305 * 2306 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2307 * the oom-killer can be invoked. 2308 */ 2309 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2310 gfp_t gfp_mask, 2311 unsigned int nr_pages, 2312 struct mem_cgroup **ptr, 2313 bool oom) 2314 { 2315 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2316 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2317 struct mem_cgroup *memcg = NULL; 2318 int ret; 2319 2320 /* 2321 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2322 * in system level. So, allow to go ahead dying process in addition to 2323 * MEMDIE process. 2324 */ 2325 if (unlikely(test_thread_flag(TIF_MEMDIE) 2326 || fatal_signal_pending(current))) 2327 goto bypass; 2328 2329 /* 2330 * We always charge the cgroup the mm_struct belongs to. 2331 * The mm_struct's mem_cgroup changes on task migration if the 2332 * thread group leader migrates. It's possible that mm is not 2333 * set, if so charge the root memcg (happens for pagecache usage). 2334 */ 2335 if (!*ptr && !mm) 2336 *ptr = root_mem_cgroup; 2337 again: 2338 if (*ptr) { /* css should be a valid one */ 2339 memcg = *ptr; 2340 VM_BUG_ON(css_is_removed(&memcg->css)); 2341 if (mem_cgroup_is_root(memcg)) 2342 goto done; 2343 if (nr_pages == 1 && consume_stock(memcg)) 2344 goto done; 2345 css_get(&memcg->css); 2346 } else { 2347 struct task_struct *p; 2348 2349 rcu_read_lock(); 2350 p = rcu_dereference(mm->owner); 2351 /* 2352 * Because we don't have task_lock(), "p" can exit. 2353 * In that case, "memcg" can point to root or p can be NULL with 2354 * race with swapoff. Then, we have small risk of mis-accouning. 2355 * But such kind of mis-account by race always happens because 2356 * we don't have cgroup_mutex(). It's overkill and we allo that 2357 * small race, here. 2358 * (*) swapoff at el will charge against mm-struct not against 2359 * task-struct. So, mm->owner can be NULL. 2360 */ 2361 memcg = mem_cgroup_from_task(p); 2362 if (!memcg) 2363 memcg = root_mem_cgroup; 2364 if (mem_cgroup_is_root(memcg)) { 2365 rcu_read_unlock(); 2366 goto done; 2367 } 2368 if (nr_pages == 1 && consume_stock(memcg)) { 2369 /* 2370 * It seems dagerous to access memcg without css_get(). 2371 * But considering how consume_stok works, it's not 2372 * necessary. If consume_stock success, some charges 2373 * from this memcg are cached on this cpu. So, we 2374 * don't need to call css_get()/css_tryget() before 2375 * calling consume_stock(). 2376 */ 2377 rcu_read_unlock(); 2378 goto done; 2379 } 2380 /* after here, we may be blocked. we need to get refcnt */ 2381 if (!css_tryget(&memcg->css)) { 2382 rcu_read_unlock(); 2383 goto again; 2384 } 2385 rcu_read_unlock(); 2386 } 2387 2388 do { 2389 bool oom_check; 2390 2391 /* If killed, bypass charge */ 2392 if (fatal_signal_pending(current)) { 2393 css_put(&memcg->css); 2394 goto bypass; 2395 } 2396 2397 oom_check = false; 2398 if (oom && !nr_oom_retries) { 2399 oom_check = true; 2400 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2401 } 2402 2403 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); 2404 switch (ret) { 2405 case CHARGE_OK: 2406 break; 2407 case CHARGE_RETRY: /* not in OOM situation but retry */ 2408 batch = nr_pages; 2409 css_put(&memcg->css); 2410 memcg = NULL; 2411 goto again; 2412 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2413 css_put(&memcg->css); 2414 goto nomem; 2415 case CHARGE_NOMEM: /* OOM routine works */ 2416 if (!oom) { 2417 css_put(&memcg->css); 2418 goto nomem; 2419 } 2420 /* If oom, we never return -ENOMEM */ 2421 nr_oom_retries--; 2422 break; 2423 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2424 css_put(&memcg->css); 2425 goto bypass; 2426 } 2427 } while (ret != CHARGE_OK); 2428 2429 if (batch > nr_pages) 2430 refill_stock(memcg, batch - nr_pages); 2431 css_put(&memcg->css); 2432 done: 2433 *ptr = memcg; 2434 return 0; 2435 nomem: 2436 *ptr = NULL; 2437 return -ENOMEM; 2438 bypass: 2439 *ptr = root_mem_cgroup; 2440 return -EINTR; 2441 } 2442 2443 /* 2444 * Somemtimes we have to undo a charge we got by try_charge(). 2445 * This function is for that and do uncharge, put css's refcnt. 2446 * gotten by try_charge(). 2447 */ 2448 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2449 unsigned int nr_pages) 2450 { 2451 if (!mem_cgroup_is_root(memcg)) { 2452 unsigned long bytes = nr_pages * PAGE_SIZE; 2453 2454 res_counter_uncharge(&memcg->res, bytes); 2455 if (do_swap_account) 2456 res_counter_uncharge(&memcg->memsw, bytes); 2457 } 2458 } 2459 2460 /* 2461 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2462 * This is useful when moving usage to parent cgroup. 2463 */ 2464 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2465 unsigned int nr_pages) 2466 { 2467 unsigned long bytes = nr_pages * PAGE_SIZE; 2468 2469 if (mem_cgroup_is_root(memcg)) 2470 return; 2471 2472 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2473 if (do_swap_account) 2474 res_counter_uncharge_until(&memcg->memsw, 2475 memcg->memsw.parent, bytes); 2476 } 2477 2478 /* 2479 * A helper function to get mem_cgroup from ID. must be called under 2480 * rcu_read_lock(). The caller must check css_is_removed() or some if 2481 * it's concern. (dropping refcnt from swap can be called against removed 2482 * memcg.) 2483 */ 2484 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2485 { 2486 struct cgroup_subsys_state *css; 2487 2488 /* ID 0 is unused ID */ 2489 if (!id) 2490 return NULL; 2491 css = css_lookup(&mem_cgroup_subsys, id); 2492 if (!css) 2493 return NULL; 2494 return mem_cgroup_from_css(css); 2495 } 2496 2497 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2498 { 2499 struct mem_cgroup *memcg = NULL; 2500 struct page_cgroup *pc; 2501 unsigned short id; 2502 swp_entry_t ent; 2503 2504 VM_BUG_ON(!PageLocked(page)); 2505 2506 pc = lookup_page_cgroup(page); 2507 lock_page_cgroup(pc); 2508 if (PageCgroupUsed(pc)) { 2509 memcg = pc->mem_cgroup; 2510 if (memcg && !css_tryget(&memcg->css)) 2511 memcg = NULL; 2512 } else if (PageSwapCache(page)) { 2513 ent.val = page_private(page); 2514 id = lookup_swap_cgroup_id(ent); 2515 rcu_read_lock(); 2516 memcg = mem_cgroup_lookup(id); 2517 if (memcg && !css_tryget(&memcg->css)) 2518 memcg = NULL; 2519 rcu_read_unlock(); 2520 } 2521 unlock_page_cgroup(pc); 2522 return memcg; 2523 } 2524 2525 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2526 struct page *page, 2527 unsigned int nr_pages, 2528 enum charge_type ctype, 2529 bool lrucare) 2530 { 2531 struct page_cgroup *pc = lookup_page_cgroup(page); 2532 struct zone *uninitialized_var(zone); 2533 struct lruvec *lruvec; 2534 bool was_on_lru = false; 2535 bool anon; 2536 2537 lock_page_cgroup(pc); 2538 VM_BUG_ON(PageCgroupUsed(pc)); 2539 /* 2540 * we don't need page_cgroup_lock about tail pages, becase they are not 2541 * accessed by any other context at this point. 2542 */ 2543 2544 /* 2545 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2546 * may already be on some other mem_cgroup's LRU. Take care of it. 2547 */ 2548 if (lrucare) { 2549 zone = page_zone(page); 2550 spin_lock_irq(&zone->lru_lock); 2551 if (PageLRU(page)) { 2552 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2553 ClearPageLRU(page); 2554 del_page_from_lru_list(page, lruvec, page_lru(page)); 2555 was_on_lru = true; 2556 } 2557 } 2558 2559 pc->mem_cgroup = memcg; 2560 /* 2561 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2562 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2563 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2564 * before USED bit, we need memory barrier here. 2565 * See mem_cgroup_add_lru_list(), etc. 2566 */ 2567 smp_wmb(); 2568 SetPageCgroupUsed(pc); 2569 2570 if (lrucare) { 2571 if (was_on_lru) { 2572 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2573 VM_BUG_ON(PageLRU(page)); 2574 SetPageLRU(page); 2575 add_page_to_lru_list(page, lruvec, page_lru(page)); 2576 } 2577 spin_unlock_irq(&zone->lru_lock); 2578 } 2579 2580 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2581 anon = true; 2582 else 2583 anon = false; 2584 2585 mem_cgroup_charge_statistics(memcg, anon, nr_pages); 2586 unlock_page_cgroup(pc); 2587 2588 /* 2589 * "charge_statistics" updated event counter. Then, check it. 2590 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2591 * if they exceeds softlimit. 2592 */ 2593 memcg_check_events(memcg, page); 2594 } 2595 2596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2597 2598 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 2599 /* 2600 * Because tail pages are not marked as "used", set it. We're under 2601 * zone->lru_lock, 'splitting on pmd' and compound_lock. 2602 * charge/uncharge will be never happen and move_account() is done under 2603 * compound_lock(), so we don't have to take care of races. 2604 */ 2605 void mem_cgroup_split_huge_fixup(struct page *head) 2606 { 2607 struct page_cgroup *head_pc = lookup_page_cgroup(head); 2608 struct page_cgroup *pc; 2609 int i; 2610 2611 if (mem_cgroup_disabled()) 2612 return; 2613 for (i = 1; i < HPAGE_PMD_NR; i++) { 2614 pc = head_pc + i; 2615 pc->mem_cgroup = head_pc->mem_cgroup; 2616 smp_wmb();/* see __commit_charge() */ 2617 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 2618 } 2619 } 2620 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2621 2622 /** 2623 * mem_cgroup_move_account - move account of the page 2624 * @page: the page 2625 * @nr_pages: number of regular pages (>1 for huge pages) 2626 * @pc: page_cgroup of the page. 2627 * @from: mem_cgroup which the page is moved from. 2628 * @to: mem_cgroup which the page is moved to. @from != @to. 2629 * 2630 * The caller must confirm following. 2631 * - page is not on LRU (isolate_page() is useful.) 2632 * - compound_lock is held when nr_pages > 1 2633 * 2634 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 2635 * from old cgroup. 2636 */ 2637 static int mem_cgroup_move_account(struct page *page, 2638 unsigned int nr_pages, 2639 struct page_cgroup *pc, 2640 struct mem_cgroup *from, 2641 struct mem_cgroup *to) 2642 { 2643 unsigned long flags; 2644 int ret; 2645 bool anon = PageAnon(page); 2646 2647 VM_BUG_ON(from == to); 2648 VM_BUG_ON(PageLRU(page)); 2649 /* 2650 * The page is isolated from LRU. So, collapse function 2651 * will not handle this page. But page splitting can happen. 2652 * Do this check under compound_page_lock(). The caller should 2653 * hold it. 2654 */ 2655 ret = -EBUSY; 2656 if (nr_pages > 1 && !PageTransHuge(page)) 2657 goto out; 2658 2659 lock_page_cgroup(pc); 2660 2661 ret = -EINVAL; 2662 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 2663 goto unlock; 2664 2665 move_lock_mem_cgroup(from, &flags); 2666 2667 if (!anon && page_mapped(page)) { 2668 /* Update mapped_file data for mem_cgroup */ 2669 preempt_disable(); 2670 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2671 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2672 preempt_enable(); 2673 } 2674 mem_cgroup_charge_statistics(from, anon, -nr_pages); 2675 2676 /* caller should have done css_get */ 2677 pc->mem_cgroup = to; 2678 mem_cgroup_charge_statistics(to, anon, nr_pages); 2679 /* 2680 * We charges against "to" which may not have any tasks. Then, "to" 2681 * can be under rmdir(). But in current implementation, caller of 2682 * this function is just force_empty() and move charge, so it's 2683 * guaranteed that "to" is never removed. So, we don't check rmdir 2684 * status here. 2685 */ 2686 move_unlock_mem_cgroup(from, &flags); 2687 ret = 0; 2688 unlock: 2689 unlock_page_cgroup(pc); 2690 /* 2691 * check events 2692 */ 2693 memcg_check_events(to, page); 2694 memcg_check_events(from, page); 2695 out: 2696 return ret; 2697 } 2698 2699 /* 2700 * move charges to its parent. 2701 */ 2702 2703 static int mem_cgroup_move_parent(struct page *page, 2704 struct page_cgroup *pc, 2705 struct mem_cgroup *child) 2706 { 2707 struct mem_cgroup *parent; 2708 unsigned int nr_pages; 2709 unsigned long uninitialized_var(flags); 2710 int ret; 2711 2712 /* Is ROOT ? */ 2713 if (mem_cgroup_is_root(child)) 2714 return -EINVAL; 2715 2716 ret = -EBUSY; 2717 if (!get_page_unless_zero(page)) 2718 goto out; 2719 if (isolate_lru_page(page)) 2720 goto put; 2721 2722 nr_pages = hpage_nr_pages(page); 2723 2724 parent = parent_mem_cgroup(child); 2725 /* 2726 * If no parent, move charges to root cgroup. 2727 */ 2728 if (!parent) 2729 parent = root_mem_cgroup; 2730 2731 if (nr_pages > 1) 2732 flags = compound_lock_irqsave(page); 2733 2734 ret = mem_cgroup_move_account(page, nr_pages, 2735 pc, child, parent); 2736 if (!ret) 2737 __mem_cgroup_cancel_local_charge(child, nr_pages); 2738 2739 if (nr_pages > 1) 2740 compound_unlock_irqrestore(page, flags); 2741 putback_lru_page(page); 2742 put: 2743 put_page(page); 2744 out: 2745 return ret; 2746 } 2747 2748 /* 2749 * Charge the memory controller for page usage. 2750 * Return 2751 * 0 if the charge was successful 2752 * < 0 if the cgroup is over its limit 2753 */ 2754 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2755 gfp_t gfp_mask, enum charge_type ctype) 2756 { 2757 struct mem_cgroup *memcg = NULL; 2758 unsigned int nr_pages = 1; 2759 bool oom = true; 2760 int ret; 2761 2762 if (PageTransHuge(page)) { 2763 nr_pages <<= compound_order(page); 2764 VM_BUG_ON(!PageTransHuge(page)); 2765 /* 2766 * Never OOM-kill a process for a huge page. The 2767 * fault handler will fall back to regular pages. 2768 */ 2769 oom = false; 2770 } 2771 2772 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 2773 if (ret == -ENOMEM) 2774 return ret; 2775 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 2776 return 0; 2777 } 2778 2779 int mem_cgroup_newpage_charge(struct page *page, 2780 struct mm_struct *mm, gfp_t gfp_mask) 2781 { 2782 if (mem_cgroup_disabled()) 2783 return 0; 2784 VM_BUG_ON(page_mapped(page)); 2785 VM_BUG_ON(page->mapping && !PageAnon(page)); 2786 VM_BUG_ON(!mm); 2787 return mem_cgroup_charge_common(page, mm, gfp_mask, 2788 MEM_CGROUP_CHARGE_TYPE_ANON); 2789 } 2790 2791 /* 2792 * While swap-in, try_charge -> commit or cancel, the page is locked. 2793 * And when try_charge() successfully returns, one refcnt to memcg without 2794 * struct page_cgroup is acquired. This refcnt will be consumed by 2795 * "commit()" or removed by "cancel()" 2796 */ 2797 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2798 struct page *page, 2799 gfp_t mask, 2800 struct mem_cgroup **memcgp) 2801 { 2802 struct mem_cgroup *memcg; 2803 struct page_cgroup *pc; 2804 int ret; 2805 2806 pc = lookup_page_cgroup(page); 2807 /* 2808 * Every swap fault against a single page tries to charge the 2809 * page, bail as early as possible. shmem_unuse() encounters 2810 * already charged pages, too. The USED bit is protected by 2811 * the page lock, which serializes swap cache removal, which 2812 * in turn serializes uncharging. 2813 */ 2814 if (PageCgroupUsed(pc)) 2815 return 0; 2816 if (!do_swap_account) 2817 goto charge_cur_mm; 2818 memcg = try_get_mem_cgroup_from_page(page); 2819 if (!memcg) 2820 goto charge_cur_mm; 2821 *memcgp = memcg; 2822 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 2823 css_put(&memcg->css); 2824 if (ret == -EINTR) 2825 ret = 0; 2826 return ret; 2827 charge_cur_mm: 2828 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 2829 if (ret == -EINTR) 2830 ret = 0; 2831 return ret; 2832 } 2833 2834 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 2835 gfp_t gfp_mask, struct mem_cgroup **memcgp) 2836 { 2837 *memcgp = NULL; 2838 if (mem_cgroup_disabled()) 2839 return 0; 2840 /* 2841 * A racing thread's fault, or swapoff, may have already 2842 * updated the pte, and even removed page from swap cache: in 2843 * those cases unuse_pte()'s pte_same() test will fail; but 2844 * there's also a KSM case which does need to charge the page. 2845 */ 2846 if (!PageSwapCache(page)) { 2847 int ret; 2848 2849 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 2850 if (ret == -EINTR) 2851 ret = 0; 2852 return ret; 2853 } 2854 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 2855 } 2856 2857 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 2858 { 2859 if (mem_cgroup_disabled()) 2860 return; 2861 if (!memcg) 2862 return; 2863 __mem_cgroup_cancel_charge(memcg, 1); 2864 } 2865 2866 static void 2867 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 2868 enum charge_type ctype) 2869 { 2870 if (mem_cgroup_disabled()) 2871 return; 2872 if (!memcg) 2873 return; 2874 cgroup_exclude_rmdir(&memcg->css); 2875 2876 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 2877 /* 2878 * Now swap is on-memory. This means this page may be 2879 * counted both as mem and swap....double count. 2880 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2881 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2882 * may call delete_from_swap_cache() before reach here. 2883 */ 2884 if (do_swap_account && PageSwapCache(page)) { 2885 swp_entry_t ent = {.val = page_private(page)}; 2886 mem_cgroup_uncharge_swap(ent); 2887 } 2888 /* 2889 * At swapin, we may charge account against cgroup which has no tasks. 2890 * So, rmdir()->pre_destroy() can be called while we do this charge. 2891 * In that case, we need to call pre_destroy() again. check it here. 2892 */ 2893 cgroup_release_and_wakeup_rmdir(&memcg->css); 2894 } 2895 2896 void mem_cgroup_commit_charge_swapin(struct page *page, 2897 struct mem_cgroup *memcg) 2898 { 2899 __mem_cgroup_commit_charge_swapin(page, memcg, 2900 MEM_CGROUP_CHARGE_TYPE_ANON); 2901 } 2902 2903 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2904 gfp_t gfp_mask) 2905 { 2906 struct mem_cgroup *memcg = NULL; 2907 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 2908 int ret; 2909 2910 if (mem_cgroup_disabled()) 2911 return 0; 2912 if (PageCompound(page)) 2913 return 0; 2914 2915 if (!PageSwapCache(page)) 2916 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 2917 else { /* page is swapcache/shmem */ 2918 ret = __mem_cgroup_try_charge_swapin(mm, page, 2919 gfp_mask, &memcg); 2920 if (!ret) 2921 __mem_cgroup_commit_charge_swapin(page, memcg, type); 2922 } 2923 return ret; 2924 } 2925 2926 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 2927 unsigned int nr_pages, 2928 const enum charge_type ctype) 2929 { 2930 struct memcg_batch_info *batch = NULL; 2931 bool uncharge_memsw = true; 2932 2933 /* If swapout, usage of swap doesn't decrease */ 2934 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2935 uncharge_memsw = false; 2936 2937 batch = ¤t->memcg_batch; 2938 /* 2939 * In usual, we do css_get() when we remember memcg pointer. 2940 * But in this case, we keep res->usage until end of a series of 2941 * uncharges. Then, it's ok to ignore memcg's refcnt. 2942 */ 2943 if (!batch->memcg) 2944 batch->memcg = memcg; 2945 /* 2946 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2947 * In those cases, all pages freed continuously can be expected to be in 2948 * the same cgroup and we have chance to coalesce uncharges. 2949 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2950 * because we want to do uncharge as soon as possible. 2951 */ 2952 2953 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2954 goto direct_uncharge; 2955 2956 if (nr_pages > 1) 2957 goto direct_uncharge; 2958 2959 /* 2960 * In typical case, batch->memcg == mem. This means we can 2961 * merge a series of uncharges to an uncharge of res_counter. 2962 * If not, we uncharge res_counter ony by one. 2963 */ 2964 if (batch->memcg != memcg) 2965 goto direct_uncharge; 2966 /* remember freed charge and uncharge it later */ 2967 batch->nr_pages++; 2968 if (uncharge_memsw) 2969 batch->memsw_nr_pages++; 2970 return; 2971 direct_uncharge: 2972 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 2973 if (uncharge_memsw) 2974 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 2975 if (unlikely(batch->memcg != memcg)) 2976 memcg_oom_recover(memcg); 2977 } 2978 2979 /* 2980 * uncharge if !page_mapped(page) 2981 */ 2982 static struct mem_cgroup * 2983 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 2984 bool end_migration) 2985 { 2986 struct mem_cgroup *memcg = NULL; 2987 unsigned int nr_pages = 1; 2988 struct page_cgroup *pc; 2989 bool anon; 2990 2991 if (mem_cgroup_disabled()) 2992 return NULL; 2993 2994 VM_BUG_ON(PageSwapCache(page)); 2995 2996 if (PageTransHuge(page)) { 2997 nr_pages <<= compound_order(page); 2998 VM_BUG_ON(!PageTransHuge(page)); 2999 } 3000 /* 3001 * Check if our page_cgroup is valid 3002 */ 3003 pc = lookup_page_cgroup(page); 3004 if (unlikely(!PageCgroupUsed(pc))) 3005 return NULL; 3006 3007 lock_page_cgroup(pc); 3008 3009 memcg = pc->mem_cgroup; 3010 3011 if (!PageCgroupUsed(pc)) 3012 goto unlock_out; 3013 3014 anon = PageAnon(page); 3015 3016 switch (ctype) { 3017 case MEM_CGROUP_CHARGE_TYPE_ANON: 3018 /* 3019 * Generally PageAnon tells if it's the anon statistics to be 3020 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 3021 * used before page reached the stage of being marked PageAnon. 3022 */ 3023 anon = true; 3024 /* fallthrough */ 3025 case MEM_CGROUP_CHARGE_TYPE_DROP: 3026 /* See mem_cgroup_prepare_migration() */ 3027 if (page_mapped(page)) 3028 goto unlock_out; 3029 /* 3030 * Pages under migration may not be uncharged. But 3031 * end_migration() /must/ be the one uncharging the 3032 * unused post-migration page and so it has to call 3033 * here with the migration bit still set. See the 3034 * res_counter handling below. 3035 */ 3036 if (!end_migration && PageCgroupMigration(pc)) 3037 goto unlock_out; 3038 break; 3039 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 3040 if (!PageAnon(page)) { /* Shared memory */ 3041 if (page->mapping && !page_is_file_cache(page)) 3042 goto unlock_out; 3043 } else if (page_mapped(page)) /* Anon */ 3044 goto unlock_out; 3045 break; 3046 default: 3047 break; 3048 } 3049 3050 mem_cgroup_charge_statistics(memcg, anon, -nr_pages); 3051 3052 ClearPageCgroupUsed(pc); 3053 /* 3054 * pc->mem_cgroup is not cleared here. It will be accessed when it's 3055 * freed from LRU. This is safe because uncharged page is expected not 3056 * to be reused (freed soon). Exception is SwapCache, it's handled by 3057 * special functions. 3058 */ 3059 3060 unlock_page_cgroup(pc); 3061 /* 3062 * even after unlock, we have memcg->res.usage here and this memcg 3063 * will never be freed. 3064 */ 3065 memcg_check_events(memcg, page); 3066 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 3067 mem_cgroup_swap_statistics(memcg, true); 3068 mem_cgroup_get(memcg); 3069 } 3070 /* 3071 * Migration does not charge the res_counter for the 3072 * replacement page, so leave it alone when phasing out the 3073 * page that is unused after the migration. 3074 */ 3075 if (!end_migration && !mem_cgroup_is_root(memcg)) 3076 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 3077 3078 return memcg; 3079 3080 unlock_out: 3081 unlock_page_cgroup(pc); 3082 return NULL; 3083 } 3084 3085 void mem_cgroup_uncharge_page(struct page *page) 3086 { 3087 /* early check. */ 3088 if (page_mapped(page)) 3089 return; 3090 VM_BUG_ON(page->mapping && !PageAnon(page)); 3091 if (PageSwapCache(page)) 3092 return; 3093 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 3094 } 3095 3096 void mem_cgroup_uncharge_cache_page(struct page *page) 3097 { 3098 VM_BUG_ON(page_mapped(page)); 3099 VM_BUG_ON(page->mapping); 3100 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 3101 } 3102 3103 /* 3104 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 3105 * In that cases, pages are freed continuously and we can expect pages 3106 * are in the same memcg. All these calls itself limits the number of 3107 * pages freed at once, then uncharge_start/end() is called properly. 3108 * This may be called prural(2) times in a context, 3109 */ 3110 3111 void mem_cgroup_uncharge_start(void) 3112 { 3113 current->memcg_batch.do_batch++; 3114 /* We can do nest. */ 3115 if (current->memcg_batch.do_batch == 1) { 3116 current->memcg_batch.memcg = NULL; 3117 current->memcg_batch.nr_pages = 0; 3118 current->memcg_batch.memsw_nr_pages = 0; 3119 } 3120 } 3121 3122 void mem_cgroup_uncharge_end(void) 3123 { 3124 struct memcg_batch_info *batch = ¤t->memcg_batch; 3125 3126 if (!batch->do_batch) 3127 return; 3128 3129 batch->do_batch--; 3130 if (batch->do_batch) /* If stacked, do nothing. */ 3131 return; 3132 3133 if (!batch->memcg) 3134 return; 3135 /* 3136 * This "batch->memcg" is valid without any css_get/put etc... 3137 * bacause we hide charges behind us. 3138 */ 3139 if (batch->nr_pages) 3140 res_counter_uncharge(&batch->memcg->res, 3141 batch->nr_pages * PAGE_SIZE); 3142 if (batch->memsw_nr_pages) 3143 res_counter_uncharge(&batch->memcg->memsw, 3144 batch->memsw_nr_pages * PAGE_SIZE); 3145 memcg_oom_recover(batch->memcg); 3146 /* forget this pointer (for sanity check) */ 3147 batch->memcg = NULL; 3148 } 3149 3150 #ifdef CONFIG_SWAP 3151 /* 3152 * called after __delete_from_swap_cache() and drop "page" account. 3153 * memcg information is recorded to swap_cgroup of "ent" 3154 */ 3155 void 3156 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 3157 { 3158 struct mem_cgroup *memcg; 3159 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 3160 3161 if (!swapout) /* this was a swap cache but the swap is unused ! */ 3162 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 3163 3164 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 3165 3166 /* 3167 * record memcg information, if swapout && memcg != NULL, 3168 * mem_cgroup_get() was called in uncharge(). 3169 */ 3170 if (do_swap_account && swapout && memcg) 3171 swap_cgroup_record(ent, css_id(&memcg->css)); 3172 } 3173 #endif 3174 3175 #ifdef CONFIG_MEMCG_SWAP 3176 /* 3177 * called from swap_entry_free(). remove record in swap_cgroup and 3178 * uncharge "memsw" account. 3179 */ 3180 void mem_cgroup_uncharge_swap(swp_entry_t ent) 3181 { 3182 struct mem_cgroup *memcg; 3183 unsigned short id; 3184 3185 if (!do_swap_account) 3186 return; 3187 3188 id = swap_cgroup_record(ent, 0); 3189 rcu_read_lock(); 3190 memcg = mem_cgroup_lookup(id); 3191 if (memcg) { 3192 /* 3193 * We uncharge this because swap is freed. 3194 * This memcg can be obsolete one. We avoid calling css_tryget 3195 */ 3196 if (!mem_cgroup_is_root(memcg)) 3197 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 3198 mem_cgroup_swap_statistics(memcg, false); 3199 mem_cgroup_put(memcg); 3200 } 3201 rcu_read_unlock(); 3202 } 3203 3204 /** 3205 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3206 * @entry: swap entry to be moved 3207 * @from: mem_cgroup which the entry is moved from 3208 * @to: mem_cgroup which the entry is moved to 3209 * 3210 * It succeeds only when the swap_cgroup's record for this entry is the same 3211 * as the mem_cgroup's id of @from. 3212 * 3213 * Returns 0 on success, -EINVAL on failure. 3214 * 3215 * The caller must have charged to @to, IOW, called res_counter_charge() about 3216 * both res and memsw, and called css_get(). 3217 */ 3218 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3219 struct mem_cgroup *from, struct mem_cgroup *to) 3220 { 3221 unsigned short old_id, new_id; 3222 3223 old_id = css_id(&from->css); 3224 new_id = css_id(&to->css); 3225 3226 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3227 mem_cgroup_swap_statistics(from, false); 3228 mem_cgroup_swap_statistics(to, true); 3229 /* 3230 * This function is only called from task migration context now. 3231 * It postpones res_counter and refcount handling till the end 3232 * of task migration(mem_cgroup_clear_mc()) for performance 3233 * improvement. But we cannot postpone mem_cgroup_get(to) 3234 * because if the process that has been moved to @to does 3235 * swap-in, the refcount of @to might be decreased to 0. 3236 */ 3237 mem_cgroup_get(to); 3238 return 0; 3239 } 3240 return -EINVAL; 3241 } 3242 #else 3243 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3244 struct mem_cgroup *from, struct mem_cgroup *to) 3245 { 3246 return -EINVAL; 3247 } 3248 #endif 3249 3250 /* 3251 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 3252 * page belongs to. 3253 */ 3254 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 3255 struct mem_cgroup **memcgp) 3256 { 3257 struct mem_cgroup *memcg = NULL; 3258 struct page_cgroup *pc; 3259 enum charge_type ctype; 3260 3261 *memcgp = NULL; 3262 3263 VM_BUG_ON(PageTransHuge(page)); 3264 if (mem_cgroup_disabled()) 3265 return; 3266 3267 pc = lookup_page_cgroup(page); 3268 lock_page_cgroup(pc); 3269 if (PageCgroupUsed(pc)) { 3270 memcg = pc->mem_cgroup; 3271 css_get(&memcg->css); 3272 /* 3273 * At migrating an anonymous page, its mapcount goes down 3274 * to 0 and uncharge() will be called. But, even if it's fully 3275 * unmapped, migration may fail and this page has to be 3276 * charged again. We set MIGRATION flag here and delay uncharge 3277 * until end_migration() is called 3278 * 3279 * Corner Case Thinking 3280 * A) 3281 * When the old page was mapped as Anon and it's unmap-and-freed 3282 * while migration was ongoing. 3283 * If unmap finds the old page, uncharge() of it will be delayed 3284 * until end_migration(). If unmap finds a new page, it's 3285 * uncharged when it make mapcount to be 1->0. If unmap code 3286 * finds swap_migration_entry, the new page will not be mapped 3287 * and end_migration() will find it(mapcount==0). 3288 * 3289 * B) 3290 * When the old page was mapped but migraion fails, the kernel 3291 * remaps it. A charge for it is kept by MIGRATION flag even 3292 * if mapcount goes down to 0. We can do remap successfully 3293 * without charging it again. 3294 * 3295 * C) 3296 * The "old" page is under lock_page() until the end of 3297 * migration, so, the old page itself will not be swapped-out. 3298 * If the new page is swapped out before end_migraton, our 3299 * hook to usual swap-out path will catch the event. 3300 */ 3301 if (PageAnon(page)) 3302 SetPageCgroupMigration(pc); 3303 } 3304 unlock_page_cgroup(pc); 3305 /* 3306 * If the page is not charged at this point, 3307 * we return here. 3308 */ 3309 if (!memcg) 3310 return; 3311 3312 *memcgp = memcg; 3313 /* 3314 * We charge new page before it's used/mapped. So, even if unlock_page() 3315 * is called before end_migration, we can catch all events on this new 3316 * page. In the case new page is migrated but not remapped, new page's 3317 * mapcount will be finally 0 and we call uncharge in end_migration(). 3318 */ 3319 if (PageAnon(page)) 3320 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 3321 else 3322 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 3323 /* 3324 * The page is committed to the memcg, but it's not actually 3325 * charged to the res_counter since we plan on replacing the 3326 * old one and only one page is going to be left afterwards. 3327 */ 3328 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false); 3329 } 3330 3331 /* remove redundant charge if migration failed*/ 3332 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 3333 struct page *oldpage, struct page *newpage, bool migration_ok) 3334 { 3335 struct page *used, *unused; 3336 struct page_cgroup *pc; 3337 bool anon; 3338 3339 if (!memcg) 3340 return; 3341 /* blocks rmdir() */ 3342 cgroup_exclude_rmdir(&memcg->css); 3343 if (!migration_ok) { 3344 used = oldpage; 3345 unused = newpage; 3346 } else { 3347 used = newpage; 3348 unused = oldpage; 3349 } 3350 anon = PageAnon(used); 3351 __mem_cgroup_uncharge_common(unused, 3352 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 3353 : MEM_CGROUP_CHARGE_TYPE_CACHE, 3354 true); 3355 css_put(&memcg->css); 3356 /* 3357 * We disallowed uncharge of pages under migration because mapcount 3358 * of the page goes down to zero, temporarly. 3359 * Clear the flag and check the page should be charged. 3360 */ 3361 pc = lookup_page_cgroup(oldpage); 3362 lock_page_cgroup(pc); 3363 ClearPageCgroupMigration(pc); 3364 unlock_page_cgroup(pc); 3365 3366 /* 3367 * If a page is a file cache, radix-tree replacement is very atomic 3368 * and we can skip this check. When it was an Anon page, its mapcount 3369 * goes down to 0. But because we added MIGRATION flage, it's not 3370 * uncharged yet. There are several case but page->mapcount check 3371 * and USED bit check in mem_cgroup_uncharge_page() will do enough 3372 * check. (see prepare_charge() also) 3373 */ 3374 if (anon) 3375 mem_cgroup_uncharge_page(used); 3376 /* 3377 * At migration, we may charge account against cgroup which has no 3378 * tasks. 3379 * So, rmdir()->pre_destroy() can be called while we do this charge. 3380 * In that case, we need to call pre_destroy() again. check it here. 3381 */ 3382 cgroup_release_and_wakeup_rmdir(&memcg->css); 3383 } 3384 3385 /* 3386 * At replace page cache, newpage is not under any memcg but it's on 3387 * LRU. So, this function doesn't touch res_counter but handles LRU 3388 * in correct way. Both pages are locked so we cannot race with uncharge. 3389 */ 3390 void mem_cgroup_replace_page_cache(struct page *oldpage, 3391 struct page *newpage) 3392 { 3393 struct mem_cgroup *memcg = NULL; 3394 struct page_cgroup *pc; 3395 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3396 3397 if (mem_cgroup_disabled()) 3398 return; 3399 3400 pc = lookup_page_cgroup(oldpage); 3401 /* fix accounting on old pages */ 3402 lock_page_cgroup(pc); 3403 if (PageCgroupUsed(pc)) { 3404 memcg = pc->mem_cgroup; 3405 mem_cgroup_charge_statistics(memcg, false, -1); 3406 ClearPageCgroupUsed(pc); 3407 } 3408 unlock_page_cgroup(pc); 3409 3410 /* 3411 * When called from shmem_replace_page(), in some cases the 3412 * oldpage has already been charged, and in some cases not. 3413 */ 3414 if (!memcg) 3415 return; 3416 /* 3417 * Even if newpage->mapping was NULL before starting replacement, 3418 * the newpage may be on LRU(or pagevec for LRU) already. We lock 3419 * LRU while we overwrite pc->mem_cgroup. 3420 */ 3421 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 3422 } 3423 3424 #ifdef CONFIG_DEBUG_VM 3425 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 3426 { 3427 struct page_cgroup *pc; 3428 3429 pc = lookup_page_cgroup(page); 3430 /* 3431 * Can be NULL while feeding pages into the page allocator for 3432 * the first time, i.e. during boot or memory hotplug; 3433 * or when mem_cgroup_disabled(). 3434 */ 3435 if (likely(pc) && PageCgroupUsed(pc)) 3436 return pc; 3437 return NULL; 3438 } 3439 3440 bool mem_cgroup_bad_page_check(struct page *page) 3441 { 3442 if (mem_cgroup_disabled()) 3443 return false; 3444 3445 return lookup_page_cgroup_used(page) != NULL; 3446 } 3447 3448 void mem_cgroup_print_bad_page(struct page *page) 3449 { 3450 struct page_cgroup *pc; 3451 3452 pc = lookup_page_cgroup_used(page); 3453 if (pc) { 3454 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 3455 pc, pc->flags, pc->mem_cgroup); 3456 } 3457 } 3458 #endif 3459 3460 static DEFINE_MUTEX(set_limit_mutex); 3461 3462 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 3463 unsigned long long val) 3464 { 3465 int retry_count; 3466 u64 memswlimit, memlimit; 3467 int ret = 0; 3468 int children = mem_cgroup_count_children(memcg); 3469 u64 curusage, oldusage; 3470 int enlarge; 3471 3472 /* 3473 * For keeping hierarchical_reclaim simple, how long we should retry 3474 * is depends on callers. We set our retry-count to be function 3475 * of # of children which we should visit in this loop. 3476 */ 3477 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 3478 3479 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3480 3481 enlarge = 0; 3482 while (retry_count) { 3483 if (signal_pending(current)) { 3484 ret = -EINTR; 3485 break; 3486 } 3487 /* 3488 * Rather than hide all in some function, I do this in 3489 * open coded manner. You see what this really does. 3490 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3491 */ 3492 mutex_lock(&set_limit_mutex); 3493 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3494 if (memswlimit < val) { 3495 ret = -EINVAL; 3496 mutex_unlock(&set_limit_mutex); 3497 break; 3498 } 3499 3500 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3501 if (memlimit < val) 3502 enlarge = 1; 3503 3504 ret = res_counter_set_limit(&memcg->res, val); 3505 if (!ret) { 3506 if (memswlimit == val) 3507 memcg->memsw_is_minimum = true; 3508 else 3509 memcg->memsw_is_minimum = false; 3510 } 3511 mutex_unlock(&set_limit_mutex); 3512 3513 if (!ret) 3514 break; 3515 3516 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3517 MEM_CGROUP_RECLAIM_SHRINK); 3518 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3519 /* Usage is reduced ? */ 3520 if (curusage >= oldusage) 3521 retry_count--; 3522 else 3523 oldusage = curusage; 3524 } 3525 if (!ret && enlarge) 3526 memcg_oom_recover(memcg); 3527 3528 return ret; 3529 } 3530 3531 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3532 unsigned long long val) 3533 { 3534 int retry_count; 3535 u64 memlimit, memswlimit, oldusage, curusage; 3536 int children = mem_cgroup_count_children(memcg); 3537 int ret = -EBUSY; 3538 int enlarge = 0; 3539 3540 /* see mem_cgroup_resize_res_limit */ 3541 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3542 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3543 while (retry_count) { 3544 if (signal_pending(current)) { 3545 ret = -EINTR; 3546 break; 3547 } 3548 /* 3549 * Rather than hide all in some function, I do this in 3550 * open coded manner. You see what this really does. 3551 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3552 */ 3553 mutex_lock(&set_limit_mutex); 3554 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3555 if (memlimit > val) { 3556 ret = -EINVAL; 3557 mutex_unlock(&set_limit_mutex); 3558 break; 3559 } 3560 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3561 if (memswlimit < val) 3562 enlarge = 1; 3563 ret = res_counter_set_limit(&memcg->memsw, val); 3564 if (!ret) { 3565 if (memlimit == val) 3566 memcg->memsw_is_minimum = true; 3567 else 3568 memcg->memsw_is_minimum = false; 3569 } 3570 mutex_unlock(&set_limit_mutex); 3571 3572 if (!ret) 3573 break; 3574 3575 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3576 MEM_CGROUP_RECLAIM_NOSWAP | 3577 MEM_CGROUP_RECLAIM_SHRINK); 3578 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3579 /* Usage is reduced ? */ 3580 if (curusage >= oldusage) 3581 retry_count--; 3582 else 3583 oldusage = curusage; 3584 } 3585 if (!ret && enlarge) 3586 memcg_oom_recover(memcg); 3587 return ret; 3588 } 3589 3590 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3591 gfp_t gfp_mask, 3592 unsigned long *total_scanned) 3593 { 3594 unsigned long nr_reclaimed = 0; 3595 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3596 unsigned long reclaimed; 3597 int loop = 0; 3598 struct mem_cgroup_tree_per_zone *mctz; 3599 unsigned long long excess; 3600 unsigned long nr_scanned; 3601 3602 if (order > 0) 3603 return 0; 3604 3605 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3606 /* 3607 * This loop can run a while, specially if mem_cgroup's continuously 3608 * keep exceeding their soft limit and putting the system under 3609 * pressure 3610 */ 3611 do { 3612 if (next_mz) 3613 mz = next_mz; 3614 else 3615 mz = mem_cgroup_largest_soft_limit_node(mctz); 3616 if (!mz) 3617 break; 3618 3619 nr_scanned = 0; 3620 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 3621 gfp_mask, &nr_scanned); 3622 nr_reclaimed += reclaimed; 3623 *total_scanned += nr_scanned; 3624 spin_lock(&mctz->lock); 3625 3626 /* 3627 * If we failed to reclaim anything from this memory cgroup 3628 * it is time to move on to the next cgroup 3629 */ 3630 next_mz = NULL; 3631 if (!reclaimed) { 3632 do { 3633 /* 3634 * Loop until we find yet another one. 3635 * 3636 * By the time we get the soft_limit lock 3637 * again, someone might have aded the 3638 * group back on the RB tree. Iterate to 3639 * make sure we get a different mem. 3640 * mem_cgroup_largest_soft_limit_node returns 3641 * NULL if no other cgroup is present on 3642 * the tree 3643 */ 3644 next_mz = 3645 __mem_cgroup_largest_soft_limit_node(mctz); 3646 if (next_mz == mz) 3647 css_put(&next_mz->memcg->css); 3648 else /* next_mz == NULL or other memcg */ 3649 break; 3650 } while (1); 3651 } 3652 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 3653 excess = res_counter_soft_limit_excess(&mz->memcg->res); 3654 /* 3655 * One school of thought says that we should not add 3656 * back the node to the tree if reclaim returns 0. 3657 * But our reclaim could return 0, simply because due 3658 * to priority we are exposing a smaller subset of 3659 * memory to reclaim from. Consider this as a longer 3660 * term TODO. 3661 */ 3662 /* If excess == 0, no tree ops */ 3663 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 3664 spin_unlock(&mctz->lock); 3665 css_put(&mz->memcg->css); 3666 loop++; 3667 /* 3668 * Could not reclaim anything and there are no more 3669 * mem cgroups to try or we seem to be looping without 3670 * reclaiming anything. 3671 */ 3672 if (!nr_reclaimed && 3673 (next_mz == NULL || 3674 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3675 break; 3676 } while (!nr_reclaimed); 3677 if (next_mz) 3678 css_put(&next_mz->memcg->css); 3679 return nr_reclaimed; 3680 } 3681 3682 /* 3683 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 3684 * reclaim the pages page themselves - it just removes the page_cgroups. 3685 * Returns true if some page_cgroups were not freed, indicating that the caller 3686 * must retry this operation. 3687 */ 3688 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 3689 int node, int zid, enum lru_list lru) 3690 { 3691 struct mem_cgroup_per_zone *mz; 3692 unsigned long flags, loop; 3693 struct list_head *list; 3694 struct page *busy; 3695 struct zone *zone; 3696 3697 zone = &NODE_DATA(node)->node_zones[zid]; 3698 mz = mem_cgroup_zoneinfo(memcg, node, zid); 3699 list = &mz->lruvec.lists[lru]; 3700 3701 loop = mz->lru_size[lru]; 3702 /* give some margin against EBUSY etc...*/ 3703 loop += 256; 3704 busy = NULL; 3705 while (loop--) { 3706 struct page_cgroup *pc; 3707 struct page *page; 3708 3709 spin_lock_irqsave(&zone->lru_lock, flags); 3710 if (list_empty(list)) { 3711 spin_unlock_irqrestore(&zone->lru_lock, flags); 3712 break; 3713 } 3714 page = list_entry(list->prev, struct page, lru); 3715 if (busy == page) { 3716 list_move(&page->lru, list); 3717 busy = NULL; 3718 spin_unlock_irqrestore(&zone->lru_lock, flags); 3719 continue; 3720 } 3721 spin_unlock_irqrestore(&zone->lru_lock, flags); 3722 3723 pc = lookup_page_cgroup(page); 3724 3725 if (mem_cgroup_move_parent(page, pc, memcg)) { 3726 /* found lock contention or "pc" is obsolete. */ 3727 busy = page; 3728 cond_resched(); 3729 } else 3730 busy = NULL; 3731 } 3732 return !list_empty(list); 3733 } 3734 3735 /* 3736 * make mem_cgroup's charge to be 0 if there is no task. 3737 * This enables deleting this mem_cgroup. 3738 */ 3739 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) 3740 { 3741 int ret; 3742 int node, zid, shrink; 3743 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3744 struct cgroup *cgrp = memcg->css.cgroup; 3745 3746 css_get(&memcg->css); 3747 3748 shrink = 0; 3749 /* should free all ? */ 3750 if (free_all) 3751 goto try_to_free; 3752 move_account: 3753 do { 3754 ret = -EBUSY; 3755 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3756 goto out; 3757 /* This is for making all *used* pages to be on LRU. */ 3758 lru_add_drain_all(); 3759 drain_all_stock_sync(memcg); 3760 ret = 0; 3761 mem_cgroup_start_move(memcg); 3762 for_each_node_state(node, N_HIGH_MEMORY) { 3763 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3764 enum lru_list lru; 3765 for_each_lru(lru) { 3766 ret = mem_cgroup_force_empty_list(memcg, 3767 node, zid, lru); 3768 if (ret) 3769 break; 3770 } 3771 } 3772 if (ret) 3773 break; 3774 } 3775 mem_cgroup_end_move(memcg); 3776 memcg_oom_recover(memcg); 3777 cond_resched(); 3778 /* "ret" should also be checked to ensure all lists are empty. */ 3779 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret); 3780 out: 3781 css_put(&memcg->css); 3782 return ret; 3783 3784 try_to_free: 3785 /* returns EBUSY if there is a task or if we come here twice. */ 3786 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3787 ret = -EBUSY; 3788 goto out; 3789 } 3790 /* we call try-to-free pages for make this cgroup empty */ 3791 lru_add_drain_all(); 3792 /* try to free all pages in this cgroup */ 3793 shrink = 1; 3794 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 3795 int progress; 3796 3797 if (signal_pending(current)) { 3798 ret = -EINTR; 3799 goto out; 3800 } 3801 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 3802 false); 3803 if (!progress) { 3804 nr_retries--; 3805 /* maybe some writeback is necessary */ 3806 congestion_wait(BLK_RW_ASYNC, HZ/10); 3807 } 3808 3809 } 3810 lru_add_drain(); 3811 /* try move_account...there may be some *locked* pages. */ 3812 goto move_account; 3813 } 3814 3815 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3816 { 3817 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3818 } 3819 3820 3821 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3822 { 3823 return mem_cgroup_from_cont(cont)->use_hierarchy; 3824 } 3825 3826 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3827 u64 val) 3828 { 3829 int retval = 0; 3830 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3831 struct cgroup *parent = cont->parent; 3832 struct mem_cgroup *parent_memcg = NULL; 3833 3834 if (parent) 3835 parent_memcg = mem_cgroup_from_cont(parent); 3836 3837 cgroup_lock(); 3838 3839 if (memcg->use_hierarchy == val) 3840 goto out; 3841 3842 /* 3843 * If parent's use_hierarchy is set, we can't make any modifications 3844 * in the child subtrees. If it is unset, then the change can 3845 * occur, provided the current cgroup has no children. 3846 * 3847 * For the root cgroup, parent_mem is NULL, we allow value to be 3848 * set if there are no children. 3849 */ 3850 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3851 (val == 1 || val == 0)) { 3852 if (list_empty(&cont->children)) 3853 memcg->use_hierarchy = val; 3854 else 3855 retval = -EBUSY; 3856 } else 3857 retval = -EINVAL; 3858 3859 out: 3860 cgroup_unlock(); 3861 3862 return retval; 3863 } 3864 3865 3866 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 3867 enum mem_cgroup_stat_index idx) 3868 { 3869 struct mem_cgroup *iter; 3870 long val = 0; 3871 3872 /* Per-cpu values can be negative, use a signed accumulator */ 3873 for_each_mem_cgroup_tree(iter, memcg) 3874 val += mem_cgroup_read_stat(iter, idx); 3875 3876 if (val < 0) /* race ? */ 3877 val = 0; 3878 return val; 3879 } 3880 3881 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3882 { 3883 u64 val; 3884 3885 if (!mem_cgroup_is_root(memcg)) { 3886 if (!swap) 3887 return res_counter_read_u64(&memcg->res, RES_USAGE); 3888 else 3889 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 3890 } 3891 3892 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 3893 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 3894 3895 if (swap) 3896 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 3897 3898 return val << PAGE_SHIFT; 3899 } 3900 3901 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, 3902 struct file *file, char __user *buf, 3903 size_t nbytes, loff_t *ppos) 3904 { 3905 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3906 char str[64]; 3907 u64 val; 3908 int type, name, len; 3909 3910 type = MEMFILE_TYPE(cft->private); 3911 name = MEMFILE_ATTR(cft->private); 3912 3913 if (!do_swap_account && type == _MEMSWAP) 3914 return -EOPNOTSUPP; 3915 3916 switch (type) { 3917 case _MEM: 3918 if (name == RES_USAGE) 3919 val = mem_cgroup_usage(memcg, false); 3920 else 3921 val = res_counter_read_u64(&memcg->res, name); 3922 break; 3923 case _MEMSWAP: 3924 if (name == RES_USAGE) 3925 val = mem_cgroup_usage(memcg, true); 3926 else 3927 val = res_counter_read_u64(&memcg->memsw, name); 3928 break; 3929 default: 3930 BUG(); 3931 } 3932 3933 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 3934 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 3935 } 3936 /* 3937 * The user of this function is... 3938 * RES_LIMIT. 3939 */ 3940 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3941 const char *buffer) 3942 { 3943 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3944 int type, name; 3945 unsigned long long val; 3946 int ret; 3947 3948 type = MEMFILE_TYPE(cft->private); 3949 name = MEMFILE_ATTR(cft->private); 3950 3951 if (!do_swap_account && type == _MEMSWAP) 3952 return -EOPNOTSUPP; 3953 3954 switch (name) { 3955 case RES_LIMIT: 3956 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3957 ret = -EINVAL; 3958 break; 3959 } 3960 /* This function does all necessary parse...reuse it */ 3961 ret = res_counter_memparse_write_strategy(buffer, &val); 3962 if (ret) 3963 break; 3964 if (type == _MEM) 3965 ret = mem_cgroup_resize_limit(memcg, val); 3966 else 3967 ret = mem_cgroup_resize_memsw_limit(memcg, val); 3968 break; 3969 case RES_SOFT_LIMIT: 3970 ret = res_counter_memparse_write_strategy(buffer, &val); 3971 if (ret) 3972 break; 3973 /* 3974 * For memsw, soft limits are hard to implement in terms 3975 * of semantics, for now, we support soft limits for 3976 * control without swap 3977 */ 3978 if (type == _MEM) 3979 ret = res_counter_set_soft_limit(&memcg->res, val); 3980 else 3981 ret = -EINVAL; 3982 break; 3983 default: 3984 ret = -EINVAL; /* should be BUG() ? */ 3985 break; 3986 } 3987 return ret; 3988 } 3989 3990 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 3991 unsigned long long *mem_limit, unsigned long long *memsw_limit) 3992 { 3993 struct cgroup *cgroup; 3994 unsigned long long min_limit, min_memsw_limit, tmp; 3995 3996 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3997 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3998 cgroup = memcg->css.cgroup; 3999 if (!memcg->use_hierarchy) 4000 goto out; 4001 4002 while (cgroup->parent) { 4003 cgroup = cgroup->parent; 4004 memcg = mem_cgroup_from_cont(cgroup); 4005 if (!memcg->use_hierarchy) 4006 break; 4007 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 4008 min_limit = min(min_limit, tmp); 4009 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4010 min_memsw_limit = min(min_memsw_limit, tmp); 4011 } 4012 out: 4013 *mem_limit = min_limit; 4014 *memsw_limit = min_memsw_limit; 4015 } 4016 4017 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 4018 { 4019 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4020 int type, name; 4021 4022 type = MEMFILE_TYPE(event); 4023 name = MEMFILE_ATTR(event); 4024 4025 if (!do_swap_account && type == _MEMSWAP) 4026 return -EOPNOTSUPP; 4027 4028 switch (name) { 4029 case RES_MAX_USAGE: 4030 if (type == _MEM) 4031 res_counter_reset_max(&memcg->res); 4032 else 4033 res_counter_reset_max(&memcg->memsw); 4034 break; 4035 case RES_FAILCNT: 4036 if (type == _MEM) 4037 res_counter_reset_failcnt(&memcg->res); 4038 else 4039 res_counter_reset_failcnt(&memcg->memsw); 4040 break; 4041 } 4042 4043 return 0; 4044 } 4045 4046 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 4047 struct cftype *cft) 4048 { 4049 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 4050 } 4051 4052 #ifdef CONFIG_MMU 4053 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4054 struct cftype *cft, u64 val) 4055 { 4056 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4057 4058 if (val >= (1 << NR_MOVE_TYPE)) 4059 return -EINVAL; 4060 /* 4061 * We check this value several times in both in can_attach() and 4062 * attach(), so we need cgroup lock to prevent this value from being 4063 * inconsistent. 4064 */ 4065 cgroup_lock(); 4066 memcg->move_charge_at_immigrate = val; 4067 cgroup_unlock(); 4068 4069 return 0; 4070 } 4071 #else 4072 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4073 struct cftype *cft, u64 val) 4074 { 4075 return -ENOSYS; 4076 } 4077 #endif 4078 4079 #ifdef CONFIG_NUMA 4080 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, 4081 struct seq_file *m) 4082 { 4083 int nid; 4084 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 4085 unsigned long node_nr; 4086 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4087 4088 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 4089 seq_printf(m, "total=%lu", total_nr); 4090 for_each_node_state(nid, N_HIGH_MEMORY) { 4091 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 4092 seq_printf(m, " N%d=%lu", nid, node_nr); 4093 } 4094 seq_putc(m, '\n'); 4095 4096 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 4097 seq_printf(m, "file=%lu", file_nr); 4098 for_each_node_state(nid, N_HIGH_MEMORY) { 4099 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4100 LRU_ALL_FILE); 4101 seq_printf(m, " N%d=%lu", nid, node_nr); 4102 } 4103 seq_putc(m, '\n'); 4104 4105 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 4106 seq_printf(m, "anon=%lu", anon_nr); 4107 for_each_node_state(nid, N_HIGH_MEMORY) { 4108 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4109 LRU_ALL_ANON); 4110 seq_printf(m, " N%d=%lu", nid, node_nr); 4111 } 4112 seq_putc(m, '\n'); 4113 4114 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 4115 seq_printf(m, "unevictable=%lu", unevictable_nr); 4116 for_each_node_state(nid, N_HIGH_MEMORY) { 4117 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4118 BIT(LRU_UNEVICTABLE)); 4119 seq_printf(m, " N%d=%lu", nid, node_nr); 4120 } 4121 seq_putc(m, '\n'); 4122 return 0; 4123 } 4124 #endif /* CONFIG_NUMA */ 4125 4126 static const char * const mem_cgroup_lru_names[] = { 4127 "inactive_anon", 4128 "active_anon", 4129 "inactive_file", 4130 "active_file", 4131 "unevictable", 4132 }; 4133 4134 static inline void mem_cgroup_lru_names_not_uptodate(void) 4135 { 4136 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 4137 } 4138 4139 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, 4140 struct seq_file *m) 4141 { 4142 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4143 struct mem_cgroup *mi; 4144 unsigned int i; 4145 4146 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4147 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4148 continue; 4149 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 4150 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 4151 } 4152 4153 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 4154 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 4155 mem_cgroup_read_events(memcg, i)); 4156 4157 for (i = 0; i < NR_LRU_LISTS; i++) 4158 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 4159 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 4160 4161 /* Hierarchical information */ 4162 { 4163 unsigned long long limit, memsw_limit; 4164 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 4165 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 4166 if (do_swap_account) 4167 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4168 memsw_limit); 4169 } 4170 4171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4172 long long val = 0; 4173 4174 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4175 continue; 4176 for_each_mem_cgroup_tree(mi, memcg) 4177 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 4178 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 4179 } 4180 4181 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 4182 unsigned long long val = 0; 4183 4184 for_each_mem_cgroup_tree(mi, memcg) 4185 val += mem_cgroup_read_events(mi, i); 4186 seq_printf(m, "total_%s %llu\n", 4187 mem_cgroup_events_names[i], val); 4188 } 4189 4190 for (i = 0; i < NR_LRU_LISTS; i++) { 4191 unsigned long long val = 0; 4192 4193 for_each_mem_cgroup_tree(mi, memcg) 4194 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 4195 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 4196 } 4197 4198 #ifdef CONFIG_DEBUG_VM 4199 { 4200 int nid, zid; 4201 struct mem_cgroup_per_zone *mz; 4202 struct zone_reclaim_stat *rstat; 4203 unsigned long recent_rotated[2] = {0, 0}; 4204 unsigned long recent_scanned[2] = {0, 0}; 4205 4206 for_each_online_node(nid) 4207 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4208 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 4209 rstat = &mz->lruvec.reclaim_stat; 4210 4211 recent_rotated[0] += rstat->recent_rotated[0]; 4212 recent_rotated[1] += rstat->recent_rotated[1]; 4213 recent_scanned[0] += rstat->recent_scanned[0]; 4214 recent_scanned[1] += rstat->recent_scanned[1]; 4215 } 4216 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 4217 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 4218 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 4219 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 4220 } 4221 #endif 4222 4223 return 0; 4224 } 4225 4226 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 4227 { 4228 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4229 4230 return mem_cgroup_swappiness(memcg); 4231 } 4232 4233 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 4234 u64 val) 4235 { 4236 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4237 struct mem_cgroup *parent; 4238 4239 if (val > 100) 4240 return -EINVAL; 4241 4242 if (cgrp->parent == NULL) 4243 return -EINVAL; 4244 4245 parent = mem_cgroup_from_cont(cgrp->parent); 4246 4247 cgroup_lock(); 4248 4249 /* If under hierarchy, only empty-root can set this value */ 4250 if ((parent->use_hierarchy) || 4251 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4252 cgroup_unlock(); 4253 return -EINVAL; 4254 } 4255 4256 memcg->swappiness = val; 4257 4258 cgroup_unlock(); 4259 4260 return 0; 4261 } 4262 4263 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4264 { 4265 struct mem_cgroup_threshold_ary *t; 4266 u64 usage; 4267 int i; 4268 4269 rcu_read_lock(); 4270 if (!swap) 4271 t = rcu_dereference(memcg->thresholds.primary); 4272 else 4273 t = rcu_dereference(memcg->memsw_thresholds.primary); 4274 4275 if (!t) 4276 goto unlock; 4277 4278 usage = mem_cgroup_usage(memcg, swap); 4279 4280 /* 4281 * current_threshold points to threshold just below or equal to usage. 4282 * If it's not true, a threshold was crossed after last 4283 * call of __mem_cgroup_threshold(). 4284 */ 4285 i = t->current_threshold; 4286 4287 /* 4288 * Iterate backward over array of thresholds starting from 4289 * current_threshold and check if a threshold is crossed. 4290 * If none of thresholds below usage is crossed, we read 4291 * only one element of the array here. 4292 */ 4293 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4294 eventfd_signal(t->entries[i].eventfd, 1); 4295 4296 /* i = current_threshold + 1 */ 4297 i++; 4298 4299 /* 4300 * Iterate forward over array of thresholds starting from 4301 * current_threshold+1 and check if a threshold is crossed. 4302 * If none of thresholds above usage is crossed, we read 4303 * only one element of the array here. 4304 */ 4305 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4306 eventfd_signal(t->entries[i].eventfd, 1); 4307 4308 /* Update current_threshold */ 4309 t->current_threshold = i - 1; 4310 unlock: 4311 rcu_read_unlock(); 4312 } 4313 4314 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4315 { 4316 while (memcg) { 4317 __mem_cgroup_threshold(memcg, false); 4318 if (do_swap_account) 4319 __mem_cgroup_threshold(memcg, true); 4320 4321 memcg = parent_mem_cgroup(memcg); 4322 } 4323 } 4324 4325 static int compare_thresholds(const void *a, const void *b) 4326 { 4327 const struct mem_cgroup_threshold *_a = a; 4328 const struct mem_cgroup_threshold *_b = b; 4329 4330 return _a->threshold - _b->threshold; 4331 } 4332 4333 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4334 { 4335 struct mem_cgroup_eventfd_list *ev; 4336 4337 list_for_each_entry(ev, &memcg->oom_notify, list) 4338 eventfd_signal(ev->eventfd, 1); 4339 return 0; 4340 } 4341 4342 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4343 { 4344 struct mem_cgroup *iter; 4345 4346 for_each_mem_cgroup_tree(iter, memcg) 4347 mem_cgroup_oom_notify_cb(iter); 4348 } 4349 4350 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 4351 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4352 { 4353 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4354 struct mem_cgroup_thresholds *thresholds; 4355 struct mem_cgroup_threshold_ary *new; 4356 int type = MEMFILE_TYPE(cft->private); 4357 u64 threshold, usage; 4358 int i, size, ret; 4359 4360 ret = res_counter_memparse_write_strategy(args, &threshold); 4361 if (ret) 4362 return ret; 4363 4364 mutex_lock(&memcg->thresholds_lock); 4365 4366 if (type == _MEM) 4367 thresholds = &memcg->thresholds; 4368 else if (type == _MEMSWAP) 4369 thresholds = &memcg->memsw_thresholds; 4370 else 4371 BUG(); 4372 4373 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4374 4375 /* Check if a threshold crossed before adding a new one */ 4376 if (thresholds->primary) 4377 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4378 4379 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4380 4381 /* Allocate memory for new array of thresholds */ 4382 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 4383 GFP_KERNEL); 4384 if (!new) { 4385 ret = -ENOMEM; 4386 goto unlock; 4387 } 4388 new->size = size; 4389 4390 /* Copy thresholds (if any) to new array */ 4391 if (thresholds->primary) { 4392 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4393 sizeof(struct mem_cgroup_threshold)); 4394 } 4395 4396 /* Add new threshold */ 4397 new->entries[size - 1].eventfd = eventfd; 4398 new->entries[size - 1].threshold = threshold; 4399 4400 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4401 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4402 compare_thresholds, NULL); 4403 4404 /* Find current threshold */ 4405 new->current_threshold = -1; 4406 for (i = 0; i < size; i++) { 4407 if (new->entries[i].threshold <= usage) { 4408 /* 4409 * new->current_threshold will not be used until 4410 * rcu_assign_pointer(), so it's safe to increment 4411 * it here. 4412 */ 4413 ++new->current_threshold; 4414 } else 4415 break; 4416 } 4417 4418 /* Free old spare buffer and save old primary buffer as spare */ 4419 kfree(thresholds->spare); 4420 thresholds->spare = thresholds->primary; 4421 4422 rcu_assign_pointer(thresholds->primary, new); 4423 4424 /* To be sure that nobody uses thresholds */ 4425 synchronize_rcu(); 4426 4427 unlock: 4428 mutex_unlock(&memcg->thresholds_lock); 4429 4430 return ret; 4431 } 4432 4433 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 4434 struct cftype *cft, struct eventfd_ctx *eventfd) 4435 { 4436 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4437 struct mem_cgroup_thresholds *thresholds; 4438 struct mem_cgroup_threshold_ary *new; 4439 int type = MEMFILE_TYPE(cft->private); 4440 u64 usage; 4441 int i, j, size; 4442 4443 mutex_lock(&memcg->thresholds_lock); 4444 if (type == _MEM) 4445 thresholds = &memcg->thresholds; 4446 else if (type == _MEMSWAP) 4447 thresholds = &memcg->memsw_thresholds; 4448 else 4449 BUG(); 4450 4451 if (!thresholds->primary) 4452 goto unlock; 4453 4454 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4455 4456 /* Check if a threshold crossed before removing */ 4457 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4458 4459 /* Calculate new number of threshold */ 4460 size = 0; 4461 for (i = 0; i < thresholds->primary->size; i++) { 4462 if (thresholds->primary->entries[i].eventfd != eventfd) 4463 size++; 4464 } 4465 4466 new = thresholds->spare; 4467 4468 /* Set thresholds array to NULL if we don't have thresholds */ 4469 if (!size) { 4470 kfree(new); 4471 new = NULL; 4472 goto swap_buffers; 4473 } 4474 4475 new->size = size; 4476 4477 /* Copy thresholds and find current threshold */ 4478 new->current_threshold = -1; 4479 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4480 if (thresholds->primary->entries[i].eventfd == eventfd) 4481 continue; 4482 4483 new->entries[j] = thresholds->primary->entries[i]; 4484 if (new->entries[j].threshold <= usage) { 4485 /* 4486 * new->current_threshold will not be used 4487 * until rcu_assign_pointer(), so it's safe to increment 4488 * it here. 4489 */ 4490 ++new->current_threshold; 4491 } 4492 j++; 4493 } 4494 4495 swap_buffers: 4496 /* Swap primary and spare array */ 4497 thresholds->spare = thresholds->primary; 4498 /* If all events are unregistered, free the spare array */ 4499 if (!new) { 4500 kfree(thresholds->spare); 4501 thresholds->spare = NULL; 4502 } 4503 4504 rcu_assign_pointer(thresholds->primary, new); 4505 4506 /* To be sure that nobody uses thresholds */ 4507 synchronize_rcu(); 4508 unlock: 4509 mutex_unlock(&memcg->thresholds_lock); 4510 } 4511 4512 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 4513 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4514 { 4515 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4516 struct mem_cgroup_eventfd_list *event; 4517 int type = MEMFILE_TYPE(cft->private); 4518 4519 BUG_ON(type != _OOM_TYPE); 4520 event = kmalloc(sizeof(*event), GFP_KERNEL); 4521 if (!event) 4522 return -ENOMEM; 4523 4524 spin_lock(&memcg_oom_lock); 4525 4526 event->eventfd = eventfd; 4527 list_add(&event->list, &memcg->oom_notify); 4528 4529 /* already in OOM ? */ 4530 if (atomic_read(&memcg->under_oom)) 4531 eventfd_signal(eventfd, 1); 4532 spin_unlock(&memcg_oom_lock); 4533 4534 return 0; 4535 } 4536 4537 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 4538 struct cftype *cft, struct eventfd_ctx *eventfd) 4539 { 4540 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4541 struct mem_cgroup_eventfd_list *ev, *tmp; 4542 int type = MEMFILE_TYPE(cft->private); 4543 4544 BUG_ON(type != _OOM_TYPE); 4545 4546 spin_lock(&memcg_oom_lock); 4547 4548 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4549 if (ev->eventfd == eventfd) { 4550 list_del(&ev->list); 4551 kfree(ev); 4552 } 4553 } 4554 4555 spin_unlock(&memcg_oom_lock); 4556 } 4557 4558 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4559 struct cftype *cft, struct cgroup_map_cb *cb) 4560 { 4561 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4562 4563 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 4564 4565 if (atomic_read(&memcg->under_oom)) 4566 cb->fill(cb, "under_oom", 1); 4567 else 4568 cb->fill(cb, "under_oom", 0); 4569 return 0; 4570 } 4571 4572 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4573 struct cftype *cft, u64 val) 4574 { 4575 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4576 struct mem_cgroup *parent; 4577 4578 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4579 if (!cgrp->parent || !((val == 0) || (val == 1))) 4580 return -EINVAL; 4581 4582 parent = mem_cgroup_from_cont(cgrp->parent); 4583 4584 cgroup_lock(); 4585 /* oom-kill-disable is a flag for subhierarchy. */ 4586 if ((parent->use_hierarchy) || 4587 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4588 cgroup_unlock(); 4589 return -EINVAL; 4590 } 4591 memcg->oom_kill_disable = val; 4592 if (!val) 4593 memcg_oom_recover(memcg); 4594 cgroup_unlock(); 4595 return 0; 4596 } 4597 4598 #ifdef CONFIG_MEMCG_KMEM 4599 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4600 { 4601 return mem_cgroup_sockets_init(memcg, ss); 4602 }; 4603 4604 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4605 { 4606 mem_cgroup_sockets_destroy(memcg); 4607 } 4608 #else 4609 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4610 { 4611 return 0; 4612 } 4613 4614 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4615 { 4616 } 4617 #endif 4618 4619 static struct cftype mem_cgroup_files[] = { 4620 { 4621 .name = "usage_in_bytes", 4622 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4623 .read = mem_cgroup_read, 4624 .register_event = mem_cgroup_usage_register_event, 4625 .unregister_event = mem_cgroup_usage_unregister_event, 4626 }, 4627 { 4628 .name = "max_usage_in_bytes", 4629 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4630 .trigger = mem_cgroup_reset, 4631 .read = mem_cgroup_read, 4632 }, 4633 { 4634 .name = "limit_in_bytes", 4635 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4636 .write_string = mem_cgroup_write, 4637 .read = mem_cgroup_read, 4638 }, 4639 { 4640 .name = "soft_limit_in_bytes", 4641 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4642 .write_string = mem_cgroup_write, 4643 .read = mem_cgroup_read, 4644 }, 4645 { 4646 .name = "failcnt", 4647 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4648 .trigger = mem_cgroup_reset, 4649 .read = mem_cgroup_read, 4650 }, 4651 { 4652 .name = "stat", 4653 .read_seq_string = memcg_stat_show, 4654 }, 4655 { 4656 .name = "force_empty", 4657 .trigger = mem_cgroup_force_empty_write, 4658 }, 4659 { 4660 .name = "use_hierarchy", 4661 .write_u64 = mem_cgroup_hierarchy_write, 4662 .read_u64 = mem_cgroup_hierarchy_read, 4663 }, 4664 { 4665 .name = "swappiness", 4666 .read_u64 = mem_cgroup_swappiness_read, 4667 .write_u64 = mem_cgroup_swappiness_write, 4668 }, 4669 { 4670 .name = "move_charge_at_immigrate", 4671 .read_u64 = mem_cgroup_move_charge_read, 4672 .write_u64 = mem_cgroup_move_charge_write, 4673 }, 4674 { 4675 .name = "oom_control", 4676 .read_map = mem_cgroup_oom_control_read, 4677 .write_u64 = mem_cgroup_oom_control_write, 4678 .register_event = mem_cgroup_oom_register_event, 4679 .unregister_event = mem_cgroup_oom_unregister_event, 4680 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4681 }, 4682 #ifdef CONFIG_NUMA 4683 { 4684 .name = "numa_stat", 4685 .read_seq_string = memcg_numa_stat_show, 4686 }, 4687 #endif 4688 #ifdef CONFIG_MEMCG_SWAP 4689 { 4690 .name = "memsw.usage_in_bytes", 4691 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4692 .read = mem_cgroup_read, 4693 .register_event = mem_cgroup_usage_register_event, 4694 .unregister_event = mem_cgroup_usage_unregister_event, 4695 }, 4696 { 4697 .name = "memsw.max_usage_in_bytes", 4698 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4699 .trigger = mem_cgroup_reset, 4700 .read = mem_cgroup_read, 4701 }, 4702 { 4703 .name = "memsw.limit_in_bytes", 4704 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4705 .write_string = mem_cgroup_write, 4706 .read = mem_cgroup_read, 4707 }, 4708 { 4709 .name = "memsw.failcnt", 4710 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4711 .trigger = mem_cgroup_reset, 4712 .read = mem_cgroup_read, 4713 }, 4714 #endif 4715 { }, /* terminate */ 4716 }; 4717 4718 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4719 { 4720 struct mem_cgroup_per_node *pn; 4721 struct mem_cgroup_per_zone *mz; 4722 int zone, tmp = node; 4723 /* 4724 * This routine is called against possible nodes. 4725 * But it's BUG to call kmalloc() against offline node. 4726 * 4727 * TODO: this routine can waste much memory for nodes which will 4728 * never be onlined. It's better to use memory hotplug callback 4729 * function. 4730 */ 4731 if (!node_state(node, N_NORMAL_MEMORY)) 4732 tmp = -1; 4733 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4734 if (!pn) 4735 return 1; 4736 4737 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4738 mz = &pn->zoneinfo[zone]; 4739 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]); 4740 mz->usage_in_excess = 0; 4741 mz->on_tree = false; 4742 mz->memcg = memcg; 4743 } 4744 memcg->info.nodeinfo[node] = pn; 4745 return 0; 4746 } 4747 4748 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4749 { 4750 kfree(memcg->info.nodeinfo[node]); 4751 } 4752 4753 static struct mem_cgroup *mem_cgroup_alloc(void) 4754 { 4755 struct mem_cgroup *memcg; 4756 int size = sizeof(struct mem_cgroup); 4757 4758 /* Can be very big if MAX_NUMNODES is very big */ 4759 if (size < PAGE_SIZE) 4760 memcg = kzalloc(size, GFP_KERNEL); 4761 else 4762 memcg = vzalloc(size); 4763 4764 if (!memcg) 4765 return NULL; 4766 4767 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4768 if (!memcg->stat) 4769 goto out_free; 4770 spin_lock_init(&memcg->pcp_counter_lock); 4771 return memcg; 4772 4773 out_free: 4774 if (size < PAGE_SIZE) 4775 kfree(memcg); 4776 else 4777 vfree(memcg); 4778 return NULL; 4779 } 4780 4781 /* 4782 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, 4783 * but in process context. The work_freeing structure is overlaid 4784 * on the rcu_freeing structure, which itself is overlaid on memsw. 4785 */ 4786 static void free_work(struct work_struct *work) 4787 { 4788 struct mem_cgroup *memcg; 4789 int size = sizeof(struct mem_cgroup); 4790 4791 memcg = container_of(work, struct mem_cgroup, work_freeing); 4792 /* 4793 * We need to make sure that (at least for now), the jump label 4794 * destruction code runs outside of the cgroup lock. This is because 4795 * get_online_cpus(), which is called from the static_branch update, 4796 * can't be called inside the cgroup_lock. cpusets are the ones 4797 * enforcing this dependency, so if they ever change, we might as well. 4798 * 4799 * schedule_work() will guarantee this happens. Be careful if you need 4800 * to move this code around, and make sure it is outside 4801 * the cgroup_lock. 4802 */ 4803 disarm_sock_keys(memcg); 4804 if (size < PAGE_SIZE) 4805 kfree(memcg); 4806 else 4807 vfree(memcg); 4808 } 4809 4810 static void free_rcu(struct rcu_head *rcu_head) 4811 { 4812 struct mem_cgroup *memcg; 4813 4814 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 4815 INIT_WORK(&memcg->work_freeing, free_work); 4816 schedule_work(&memcg->work_freeing); 4817 } 4818 4819 /* 4820 * At destroying mem_cgroup, references from swap_cgroup can remain. 4821 * (scanning all at force_empty is too costly...) 4822 * 4823 * Instead of clearing all references at force_empty, we remember 4824 * the number of reference from swap_cgroup and free mem_cgroup when 4825 * it goes down to 0. 4826 * 4827 * Removal of cgroup itself succeeds regardless of refs from swap. 4828 */ 4829 4830 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4831 { 4832 int node; 4833 4834 mem_cgroup_remove_from_trees(memcg); 4835 free_css_id(&mem_cgroup_subsys, &memcg->css); 4836 4837 for_each_node(node) 4838 free_mem_cgroup_per_zone_info(memcg, node); 4839 4840 free_percpu(memcg->stat); 4841 call_rcu(&memcg->rcu_freeing, free_rcu); 4842 } 4843 4844 static void mem_cgroup_get(struct mem_cgroup *memcg) 4845 { 4846 atomic_inc(&memcg->refcnt); 4847 } 4848 4849 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 4850 { 4851 if (atomic_sub_and_test(count, &memcg->refcnt)) { 4852 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4853 __mem_cgroup_free(memcg); 4854 if (parent) 4855 mem_cgroup_put(parent); 4856 } 4857 } 4858 4859 static void mem_cgroup_put(struct mem_cgroup *memcg) 4860 { 4861 __mem_cgroup_put(memcg, 1); 4862 } 4863 4864 /* 4865 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4866 */ 4867 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 4868 { 4869 if (!memcg->res.parent) 4870 return NULL; 4871 return mem_cgroup_from_res_counter(memcg->res.parent, res); 4872 } 4873 EXPORT_SYMBOL(parent_mem_cgroup); 4874 4875 #ifdef CONFIG_MEMCG_SWAP 4876 static void __init enable_swap_cgroup(void) 4877 { 4878 if (!mem_cgroup_disabled() && really_do_swap_account) 4879 do_swap_account = 1; 4880 } 4881 #else 4882 static void __init enable_swap_cgroup(void) 4883 { 4884 } 4885 #endif 4886 4887 static int mem_cgroup_soft_limit_tree_init(void) 4888 { 4889 struct mem_cgroup_tree_per_node *rtpn; 4890 struct mem_cgroup_tree_per_zone *rtpz; 4891 int tmp, node, zone; 4892 4893 for_each_node(node) { 4894 tmp = node; 4895 if (!node_state(node, N_NORMAL_MEMORY)) 4896 tmp = -1; 4897 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4898 if (!rtpn) 4899 goto err_cleanup; 4900 4901 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4902 4903 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4904 rtpz = &rtpn->rb_tree_per_zone[zone]; 4905 rtpz->rb_root = RB_ROOT; 4906 spin_lock_init(&rtpz->lock); 4907 } 4908 } 4909 return 0; 4910 4911 err_cleanup: 4912 for_each_node(node) { 4913 if (!soft_limit_tree.rb_tree_per_node[node]) 4914 break; 4915 kfree(soft_limit_tree.rb_tree_per_node[node]); 4916 soft_limit_tree.rb_tree_per_node[node] = NULL; 4917 } 4918 return 1; 4919 4920 } 4921 4922 static struct cgroup_subsys_state * __ref 4923 mem_cgroup_create(struct cgroup *cont) 4924 { 4925 struct mem_cgroup *memcg, *parent; 4926 long error = -ENOMEM; 4927 int node; 4928 4929 memcg = mem_cgroup_alloc(); 4930 if (!memcg) 4931 return ERR_PTR(error); 4932 4933 for_each_node(node) 4934 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4935 goto free_out; 4936 4937 /* root ? */ 4938 if (cont->parent == NULL) { 4939 int cpu; 4940 enable_swap_cgroup(); 4941 parent = NULL; 4942 if (mem_cgroup_soft_limit_tree_init()) 4943 goto free_out; 4944 root_mem_cgroup = memcg; 4945 for_each_possible_cpu(cpu) { 4946 struct memcg_stock_pcp *stock = 4947 &per_cpu(memcg_stock, cpu); 4948 INIT_WORK(&stock->work, drain_local_stock); 4949 } 4950 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4951 } else { 4952 parent = mem_cgroup_from_cont(cont->parent); 4953 memcg->use_hierarchy = parent->use_hierarchy; 4954 memcg->oom_kill_disable = parent->oom_kill_disable; 4955 } 4956 4957 if (parent && parent->use_hierarchy) { 4958 res_counter_init(&memcg->res, &parent->res); 4959 res_counter_init(&memcg->memsw, &parent->memsw); 4960 /* 4961 * We increment refcnt of the parent to ensure that we can 4962 * safely access it on res_counter_charge/uncharge. 4963 * This refcnt will be decremented when freeing this 4964 * mem_cgroup(see mem_cgroup_put). 4965 */ 4966 mem_cgroup_get(parent); 4967 } else { 4968 res_counter_init(&memcg->res, NULL); 4969 res_counter_init(&memcg->memsw, NULL); 4970 /* 4971 * Deeper hierachy with use_hierarchy == false doesn't make 4972 * much sense so let cgroup subsystem know about this 4973 * unfortunate state in our controller. 4974 */ 4975 if (parent && parent != root_mem_cgroup) 4976 mem_cgroup_subsys.broken_hierarchy = true; 4977 } 4978 memcg->last_scanned_node = MAX_NUMNODES; 4979 INIT_LIST_HEAD(&memcg->oom_notify); 4980 4981 if (parent) 4982 memcg->swappiness = mem_cgroup_swappiness(parent); 4983 atomic_set(&memcg->refcnt, 1); 4984 memcg->move_charge_at_immigrate = 0; 4985 mutex_init(&memcg->thresholds_lock); 4986 spin_lock_init(&memcg->move_lock); 4987 4988 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 4989 if (error) { 4990 /* 4991 * We call put now because our (and parent's) refcnts 4992 * are already in place. mem_cgroup_put() will internally 4993 * call __mem_cgroup_free, so return directly 4994 */ 4995 mem_cgroup_put(memcg); 4996 return ERR_PTR(error); 4997 } 4998 return &memcg->css; 4999 free_out: 5000 __mem_cgroup_free(memcg); 5001 return ERR_PTR(error); 5002 } 5003 5004 static int mem_cgroup_pre_destroy(struct cgroup *cont) 5005 { 5006 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5007 5008 return mem_cgroup_force_empty(memcg, false); 5009 } 5010 5011 static void mem_cgroup_destroy(struct cgroup *cont) 5012 { 5013 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5014 5015 kmem_cgroup_destroy(memcg); 5016 5017 mem_cgroup_put(memcg); 5018 } 5019 5020 #ifdef CONFIG_MMU 5021 /* Handlers for move charge at task migration. */ 5022 #define PRECHARGE_COUNT_AT_ONCE 256 5023 static int mem_cgroup_do_precharge(unsigned long count) 5024 { 5025 int ret = 0; 5026 int batch_count = PRECHARGE_COUNT_AT_ONCE; 5027 struct mem_cgroup *memcg = mc.to; 5028 5029 if (mem_cgroup_is_root(memcg)) { 5030 mc.precharge += count; 5031 /* we don't need css_get for root */ 5032 return ret; 5033 } 5034 /* try to charge at once */ 5035 if (count > 1) { 5036 struct res_counter *dummy; 5037 /* 5038 * "memcg" cannot be under rmdir() because we've already checked 5039 * by cgroup_lock_live_cgroup() that it is not removed and we 5040 * are still under the same cgroup_mutex. So we can postpone 5041 * css_get(). 5042 */ 5043 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 5044 goto one_by_one; 5045 if (do_swap_account && res_counter_charge(&memcg->memsw, 5046 PAGE_SIZE * count, &dummy)) { 5047 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 5048 goto one_by_one; 5049 } 5050 mc.precharge += count; 5051 return ret; 5052 } 5053 one_by_one: 5054 /* fall back to one by one charge */ 5055 while (count--) { 5056 if (signal_pending(current)) { 5057 ret = -EINTR; 5058 break; 5059 } 5060 if (!batch_count--) { 5061 batch_count = PRECHARGE_COUNT_AT_ONCE; 5062 cond_resched(); 5063 } 5064 ret = __mem_cgroup_try_charge(NULL, 5065 GFP_KERNEL, 1, &memcg, false); 5066 if (ret) 5067 /* mem_cgroup_clear_mc() will do uncharge later */ 5068 return ret; 5069 mc.precharge++; 5070 } 5071 return ret; 5072 } 5073 5074 /** 5075 * get_mctgt_type - get target type of moving charge 5076 * @vma: the vma the pte to be checked belongs 5077 * @addr: the address corresponding to the pte to be checked 5078 * @ptent: the pte to be checked 5079 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5080 * 5081 * Returns 5082 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5083 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5084 * move charge. if @target is not NULL, the page is stored in target->page 5085 * with extra refcnt got(Callers should handle it). 5086 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5087 * target for charge migration. if @target is not NULL, the entry is stored 5088 * in target->ent. 5089 * 5090 * Called with pte lock held. 5091 */ 5092 union mc_target { 5093 struct page *page; 5094 swp_entry_t ent; 5095 }; 5096 5097 enum mc_target_type { 5098 MC_TARGET_NONE = 0, 5099 MC_TARGET_PAGE, 5100 MC_TARGET_SWAP, 5101 }; 5102 5103 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5104 unsigned long addr, pte_t ptent) 5105 { 5106 struct page *page = vm_normal_page(vma, addr, ptent); 5107 5108 if (!page || !page_mapped(page)) 5109 return NULL; 5110 if (PageAnon(page)) { 5111 /* we don't move shared anon */ 5112 if (!move_anon()) 5113 return NULL; 5114 } else if (!move_file()) 5115 /* we ignore mapcount for file pages */ 5116 return NULL; 5117 if (!get_page_unless_zero(page)) 5118 return NULL; 5119 5120 return page; 5121 } 5122 5123 #ifdef CONFIG_SWAP 5124 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5125 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5126 { 5127 struct page *page = NULL; 5128 swp_entry_t ent = pte_to_swp_entry(ptent); 5129 5130 if (!move_anon() || non_swap_entry(ent)) 5131 return NULL; 5132 /* 5133 * Because lookup_swap_cache() updates some statistics counter, 5134 * we call find_get_page() with swapper_space directly. 5135 */ 5136 page = find_get_page(&swapper_space, ent.val); 5137 if (do_swap_account) 5138 entry->val = ent.val; 5139 5140 return page; 5141 } 5142 #else 5143 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5144 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5145 { 5146 return NULL; 5147 } 5148 #endif 5149 5150 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5151 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5152 { 5153 struct page *page = NULL; 5154 struct address_space *mapping; 5155 pgoff_t pgoff; 5156 5157 if (!vma->vm_file) /* anonymous vma */ 5158 return NULL; 5159 if (!move_file()) 5160 return NULL; 5161 5162 mapping = vma->vm_file->f_mapping; 5163 if (pte_none(ptent)) 5164 pgoff = linear_page_index(vma, addr); 5165 else /* pte_file(ptent) is true */ 5166 pgoff = pte_to_pgoff(ptent); 5167 5168 /* page is moved even if it's not RSS of this task(page-faulted). */ 5169 page = find_get_page(mapping, pgoff); 5170 5171 #ifdef CONFIG_SWAP 5172 /* shmem/tmpfs may report page out on swap: account for that too. */ 5173 if (radix_tree_exceptional_entry(page)) { 5174 swp_entry_t swap = radix_to_swp_entry(page); 5175 if (do_swap_account) 5176 *entry = swap; 5177 page = find_get_page(&swapper_space, swap.val); 5178 } 5179 #endif 5180 return page; 5181 } 5182 5183 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5184 unsigned long addr, pte_t ptent, union mc_target *target) 5185 { 5186 struct page *page = NULL; 5187 struct page_cgroup *pc; 5188 enum mc_target_type ret = MC_TARGET_NONE; 5189 swp_entry_t ent = { .val = 0 }; 5190 5191 if (pte_present(ptent)) 5192 page = mc_handle_present_pte(vma, addr, ptent); 5193 else if (is_swap_pte(ptent)) 5194 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 5195 else if (pte_none(ptent) || pte_file(ptent)) 5196 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5197 5198 if (!page && !ent.val) 5199 return ret; 5200 if (page) { 5201 pc = lookup_page_cgroup(page); 5202 /* 5203 * Do only loose check w/o page_cgroup lock. 5204 * mem_cgroup_move_account() checks the pc is valid or not under 5205 * the lock. 5206 */ 5207 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5208 ret = MC_TARGET_PAGE; 5209 if (target) 5210 target->page = page; 5211 } 5212 if (!ret || !target) 5213 put_page(page); 5214 } 5215 /* There is a swap entry and a page doesn't exist or isn't charged */ 5216 if (ent.val && !ret && 5217 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 5218 ret = MC_TARGET_SWAP; 5219 if (target) 5220 target->ent = ent; 5221 } 5222 return ret; 5223 } 5224 5225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5226 /* 5227 * We don't consider swapping or file mapped pages because THP does not 5228 * support them for now. 5229 * Caller should make sure that pmd_trans_huge(pmd) is true. 5230 */ 5231 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5232 unsigned long addr, pmd_t pmd, union mc_target *target) 5233 { 5234 struct page *page = NULL; 5235 struct page_cgroup *pc; 5236 enum mc_target_type ret = MC_TARGET_NONE; 5237 5238 page = pmd_page(pmd); 5239 VM_BUG_ON(!page || !PageHead(page)); 5240 if (!move_anon()) 5241 return ret; 5242 pc = lookup_page_cgroup(page); 5243 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5244 ret = MC_TARGET_PAGE; 5245 if (target) { 5246 get_page(page); 5247 target->page = page; 5248 } 5249 } 5250 return ret; 5251 } 5252 #else 5253 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5254 unsigned long addr, pmd_t pmd, union mc_target *target) 5255 { 5256 return MC_TARGET_NONE; 5257 } 5258 #endif 5259 5260 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5261 unsigned long addr, unsigned long end, 5262 struct mm_walk *walk) 5263 { 5264 struct vm_area_struct *vma = walk->private; 5265 pte_t *pte; 5266 spinlock_t *ptl; 5267 5268 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5269 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5270 mc.precharge += HPAGE_PMD_NR; 5271 spin_unlock(&vma->vm_mm->page_table_lock); 5272 return 0; 5273 } 5274 5275 if (pmd_trans_unstable(pmd)) 5276 return 0; 5277 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5278 for (; addr != end; pte++, addr += PAGE_SIZE) 5279 if (get_mctgt_type(vma, addr, *pte, NULL)) 5280 mc.precharge++; /* increment precharge temporarily */ 5281 pte_unmap_unlock(pte - 1, ptl); 5282 cond_resched(); 5283 5284 return 0; 5285 } 5286 5287 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5288 { 5289 unsigned long precharge; 5290 struct vm_area_struct *vma; 5291 5292 down_read(&mm->mmap_sem); 5293 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5294 struct mm_walk mem_cgroup_count_precharge_walk = { 5295 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5296 .mm = mm, 5297 .private = vma, 5298 }; 5299 if (is_vm_hugetlb_page(vma)) 5300 continue; 5301 walk_page_range(vma->vm_start, vma->vm_end, 5302 &mem_cgroup_count_precharge_walk); 5303 } 5304 up_read(&mm->mmap_sem); 5305 5306 precharge = mc.precharge; 5307 mc.precharge = 0; 5308 5309 return precharge; 5310 } 5311 5312 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5313 { 5314 unsigned long precharge = mem_cgroup_count_precharge(mm); 5315 5316 VM_BUG_ON(mc.moving_task); 5317 mc.moving_task = current; 5318 return mem_cgroup_do_precharge(precharge); 5319 } 5320 5321 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5322 static void __mem_cgroup_clear_mc(void) 5323 { 5324 struct mem_cgroup *from = mc.from; 5325 struct mem_cgroup *to = mc.to; 5326 5327 /* we must uncharge all the leftover precharges from mc.to */ 5328 if (mc.precharge) { 5329 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 5330 mc.precharge = 0; 5331 } 5332 /* 5333 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5334 * we must uncharge here. 5335 */ 5336 if (mc.moved_charge) { 5337 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 5338 mc.moved_charge = 0; 5339 } 5340 /* we must fixup refcnts and charges */ 5341 if (mc.moved_swap) { 5342 /* uncharge swap account from the old cgroup */ 5343 if (!mem_cgroup_is_root(mc.from)) 5344 res_counter_uncharge(&mc.from->memsw, 5345 PAGE_SIZE * mc.moved_swap); 5346 __mem_cgroup_put(mc.from, mc.moved_swap); 5347 5348 if (!mem_cgroup_is_root(mc.to)) { 5349 /* 5350 * we charged both to->res and to->memsw, so we should 5351 * uncharge to->res. 5352 */ 5353 res_counter_uncharge(&mc.to->res, 5354 PAGE_SIZE * mc.moved_swap); 5355 } 5356 /* we've already done mem_cgroup_get(mc.to) */ 5357 mc.moved_swap = 0; 5358 } 5359 memcg_oom_recover(from); 5360 memcg_oom_recover(to); 5361 wake_up_all(&mc.waitq); 5362 } 5363 5364 static void mem_cgroup_clear_mc(void) 5365 { 5366 struct mem_cgroup *from = mc.from; 5367 5368 /* 5369 * we must clear moving_task before waking up waiters at the end of 5370 * task migration. 5371 */ 5372 mc.moving_task = NULL; 5373 __mem_cgroup_clear_mc(); 5374 spin_lock(&mc.lock); 5375 mc.from = NULL; 5376 mc.to = NULL; 5377 spin_unlock(&mc.lock); 5378 mem_cgroup_end_move(from); 5379 } 5380 5381 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5382 struct cgroup_taskset *tset) 5383 { 5384 struct task_struct *p = cgroup_taskset_first(tset); 5385 int ret = 0; 5386 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 5387 5388 if (memcg->move_charge_at_immigrate) { 5389 struct mm_struct *mm; 5390 struct mem_cgroup *from = mem_cgroup_from_task(p); 5391 5392 VM_BUG_ON(from == memcg); 5393 5394 mm = get_task_mm(p); 5395 if (!mm) 5396 return 0; 5397 /* We move charges only when we move a owner of the mm */ 5398 if (mm->owner == p) { 5399 VM_BUG_ON(mc.from); 5400 VM_BUG_ON(mc.to); 5401 VM_BUG_ON(mc.precharge); 5402 VM_BUG_ON(mc.moved_charge); 5403 VM_BUG_ON(mc.moved_swap); 5404 mem_cgroup_start_move(from); 5405 spin_lock(&mc.lock); 5406 mc.from = from; 5407 mc.to = memcg; 5408 spin_unlock(&mc.lock); 5409 /* We set mc.moving_task later */ 5410 5411 ret = mem_cgroup_precharge_mc(mm); 5412 if (ret) 5413 mem_cgroup_clear_mc(); 5414 } 5415 mmput(mm); 5416 } 5417 return ret; 5418 } 5419 5420 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5421 struct cgroup_taskset *tset) 5422 { 5423 mem_cgroup_clear_mc(); 5424 } 5425 5426 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5427 unsigned long addr, unsigned long end, 5428 struct mm_walk *walk) 5429 { 5430 int ret = 0; 5431 struct vm_area_struct *vma = walk->private; 5432 pte_t *pte; 5433 spinlock_t *ptl; 5434 enum mc_target_type target_type; 5435 union mc_target target; 5436 struct page *page; 5437 struct page_cgroup *pc; 5438 5439 /* 5440 * We don't take compound_lock() here but no race with splitting thp 5441 * happens because: 5442 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 5443 * under splitting, which means there's no concurrent thp split, 5444 * - if another thread runs into split_huge_page() just after we 5445 * entered this if-block, the thread must wait for page table lock 5446 * to be unlocked in __split_huge_page_splitting(), where the main 5447 * part of thp split is not executed yet. 5448 */ 5449 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5450 if (mc.precharge < HPAGE_PMD_NR) { 5451 spin_unlock(&vma->vm_mm->page_table_lock); 5452 return 0; 5453 } 5454 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5455 if (target_type == MC_TARGET_PAGE) { 5456 page = target.page; 5457 if (!isolate_lru_page(page)) { 5458 pc = lookup_page_cgroup(page); 5459 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 5460 pc, mc.from, mc.to)) { 5461 mc.precharge -= HPAGE_PMD_NR; 5462 mc.moved_charge += HPAGE_PMD_NR; 5463 } 5464 putback_lru_page(page); 5465 } 5466 put_page(page); 5467 } 5468 spin_unlock(&vma->vm_mm->page_table_lock); 5469 return 0; 5470 } 5471 5472 if (pmd_trans_unstable(pmd)) 5473 return 0; 5474 retry: 5475 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5476 for (; addr != end; addr += PAGE_SIZE) { 5477 pte_t ptent = *(pte++); 5478 swp_entry_t ent; 5479 5480 if (!mc.precharge) 5481 break; 5482 5483 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5484 case MC_TARGET_PAGE: 5485 page = target.page; 5486 if (isolate_lru_page(page)) 5487 goto put; 5488 pc = lookup_page_cgroup(page); 5489 if (!mem_cgroup_move_account(page, 1, pc, 5490 mc.from, mc.to)) { 5491 mc.precharge--; 5492 /* we uncharge from mc.from later. */ 5493 mc.moved_charge++; 5494 } 5495 putback_lru_page(page); 5496 put: /* get_mctgt_type() gets the page */ 5497 put_page(page); 5498 break; 5499 case MC_TARGET_SWAP: 5500 ent = target.ent; 5501 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5502 mc.precharge--; 5503 /* we fixup refcnts and charges later. */ 5504 mc.moved_swap++; 5505 } 5506 break; 5507 default: 5508 break; 5509 } 5510 } 5511 pte_unmap_unlock(pte - 1, ptl); 5512 cond_resched(); 5513 5514 if (addr != end) { 5515 /* 5516 * We have consumed all precharges we got in can_attach(). 5517 * We try charge one by one, but don't do any additional 5518 * charges to mc.to if we have failed in charge once in attach() 5519 * phase. 5520 */ 5521 ret = mem_cgroup_do_precharge(1); 5522 if (!ret) 5523 goto retry; 5524 } 5525 5526 return ret; 5527 } 5528 5529 static void mem_cgroup_move_charge(struct mm_struct *mm) 5530 { 5531 struct vm_area_struct *vma; 5532 5533 lru_add_drain_all(); 5534 retry: 5535 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5536 /* 5537 * Someone who are holding the mmap_sem might be waiting in 5538 * waitq. So we cancel all extra charges, wake up all waiters, 5539 * and retry. Because we cancel precharges, we might not be able 5540 * to move enough charges, but moving charge is a best-effort 5541 * feature anyway, so it wouldn't be a big problem. 5542 */ 5543 __mem_cgroup_clear_mc(); 5544 cond_resched(); 5545 goto retry; 5546 } 5547 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5548 int ret; 5549 struct mm_walk mem_cgroup_move_charge_walk = { 5550 .pmd_entry = mem_cgroup_move_charge_pte_range, 5551 .mm = mm, 5552 .private = vma, 5553 }; 5554 if (is_vm_hugetlb_page(vma)) 5555 continue; 5556 ret = walk_page_range(vma->vm_start, vma->vm_end, 5557 &mem_cgroup_move_charge_walk); 5558 if (ret) 5559 /* 5560 * means we have consumed all precharges and failed in 5561 * doing additional charge. Just abandon here. 5562 */ 5563 break; 5564 } 5565 up_read(&mm->mmap_sem); 5566 } 5567 5568 static void mem_cgroup_move_task(struct cgroup *cont, 5569 struct cgroup_taskset *tset) 5570 { 5571 struct task_struct *p = cgroup_taskset_first(tset); 5572 struct mm_struct *mm = get_task_mm(p); 5573 5574 if (mm) { 5575 if (mc.to) 5576 mem_cgroup_move_charge(mm); 5577 mmput(mm); 5578 } 5579 if (mc.to) 5580 mem_cgroup_clear_mc(); 5581 } 5582 #else /* !CONFIG_MMU */ 5583 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5584 struct cgroup_taskset *tset) 5585 { 5586 return 0; 5587 } 5588 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5589 struct cgroup_taskset *tset) 5590 { 5591 } 5592 static void mem_cgroup_move_task(struct cgroup *cont, 5593 struct cgroup_taskset *tset) 5594 { 5595 } 5596 #endif 5597 5598 struct cgroup_subsys mem_cgroup_subsys = { 5599 .name = "memory", 5600 .subsys_id = mem_cgroup_subsys_id, 5601 .create = mem_cgroup_create, 5602 .pre_destroy = mem_cgroup_pre_destroy, 5603 .destroy = mem_cgroup_destroy, 5604 .can_attach = mem_cgroup_can_attach, 5605 .cancel_attach = mem_cgroup_cancel_attach, 5606 .attach = mem_cgroup_move_task, 5607 .base_cftypes = mem_cgroup_files, 5608 .early_init = 0, 5609 .use_id = 1, 5610 .__DEPRECATED_clear_css_refs = true, 5611 }; 5612 5613 #ifdef CONFIG_MEMCG_SWAP 5614 static int __init enable_swap_account(char *s) 5615 { 5616 /* consider enabled if no parameter or 1 is given */ 5617 if (!strcmp(s, "1")) 5618 really_do_swap_account = 1; 5619 else if (!strcmp(s, "0")) 5620 really_do_swap_account = 0; 5621 return 1; 5622 } 5623 __setup("swapaccount=", enable_swap_account); 5624 5625 #endif 5626