xref: /linux/mm/memcontrol.c (revision 704bf317fd21683e5c71a542f5fb5f65271a1582)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/vmscan.h>
56 
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES	5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60 
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71 
72 #else
73 #define do_swap_account		(0)
74 #endif
75 
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85 
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90 	/*
91 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 	 */
93 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
97 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 	/* incremented at every  pagein/pageout */
101 	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 
104 	MEM_CGROUP_STAT_NSTATS,
105 };
106 
107 struct mem_cgroup_stat_cpu {
108 	s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110 
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115 	/*
116 	 * spin_lock to protect the per cgroup LRU
117 	 */
118 	struct list_head	lists[NR_LRU_LISTS];
119 	unsigned long		count[NR_LRU_LISTS];
120 
121 	struct zone_reclaim_stat reclaim_stat;
122 	struct rb_node		tree_node;	/* RB tree node */
123 	unsigned long long	usage_in_excess;/* Set to the value by which */
124 						/* the soft limit is exceeded*/
125 	bool			on_tree;
126 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
127 						/* use container_of	   */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
131 
132 struct mem_cgroup_per_node {
133 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135 
136 struct mem_cgroup_lru_info {
137 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139 
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144 
145 struct mem_cgroup_tree_per_zone {
146 	struct rb_root rb_root;
147 	spinlock_t lock;
148 };
149 
150 struct mem_cgroup_tree_per_node {
151 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153 
154 struct mem_cgroup_tree {
155 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157 
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159 
160 struct mem_cgroup_threshold {
161 	struct eventfd_ctx *eventfd;
162 	u64 threshold;
163 };
164 
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 	/* An array index points to threshold just below usage. */
168 	int current_threshold;
169 	/* Size of entries[] */
170 	unsigned int size;
171 	/* Array of thresholds */
172 	struct mem_cgroup_threshold entries[0];
173 };
174 
175 struct mem_cgroup_thresholds {
176 	/* Primary thresholds array */
177 	struct mem_cgroup_threshold_ary *primary;
178 	/*
179 	 * Spare threshold array.
180 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 	 * It must be able to store at least primary->size - 1 entries.
182 	 */
183 	struct mem_cgroup_threshold_ary *spare;
184 };
185 
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 	struct list_head list;
189 	struct eventfd_ctx *eventfd;
190 };
191 
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194 
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207 	struct cgroup_subsys_state css;
208 	/*
209 	 * the counter to account for memory usage
210 	 */
211 	struct res_counter res;
212 	/*
213 	 * the counter to account for mem+swap usage.
214 	 */
215 	struct res_counter memsw;
216 	/*
217 	 * Per cgroup active and inactive list, similar to the
218 	 * per zone LRU lists.
219 	 */
220 	struct mem_cgroup_lru_info info;
221 
222 	/*
223 	  protect against reclaim related member.
224 	*/
225 	spinlock_t reclaim_param_lock;
226 
227 	/*
228 	 * While reclaiming in a hierarchy, we cache the last child we
229 	 * reclaimed from.
230 	 */
231 	int last_scanned_child;
232 	/*
233 	 * Should the accounting and control be hierarchical, per subtree?
234 	 */
235 	bool use_hierarchy;
236 	atomic_t	oom_lock;
237 	atomic_t	refcnt;
238 
239 	unsigned int	swappiness;
240 	/* OOM-Killer disable */
241 	int		oom_kill_disable;
242 
243 	/* set when res.limit == memsw.limit */
244 	bool		memsw_is_minimum;
245 
246 	/* protect arrays of thresholds */
247 	struct mutex thresholds_lock;
248 
249 	/* thresholds for memory usage. RCU-protected */
250 	struct mem_cgroup_thresholds thresholds;
251 
252 	/* thresholds for mem+swap usage. RCU-protected */
253 	struct mem_cgroup_thresholds memsw_thresholds;
254 
255 	/* For oom notifier event fd */
256 	struct list_head oom_notify;
257 
258 	/*
259 	 * Should we move charges of a task when a task is moved into this
260 	 * mem_cgroup ? And what type of charges should we move ?
261 	 */
262 	unsigned long 	move_charge_at_immigrate;
263 	/*
264 	 * percpu counter.
265 	 */
266 	struct mem_cgroup_stat_cpu *stat;
267 	/*
268 	 * used when a cpu is offlined or other synchronizations
269 	 * See mem_cgroup_read_stat().
270 	 */
271 	struct mem_cgroup_stat_cpu nocpu_base;
272 	spinlock_t pcp_counter_lock;
273 };
274 
275 /* Stuffs for move charges at task migration. */
276 /*
277  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278  * left-shifted bitmap of these types.
279  */
280 enum move_type {
281 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 	NR_MOVE_TYPE,
284 };
285 
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 	spinlock_t	  lock; /* for from, to */
289 	struct mem_cgroup *from;
290 	struct mem_cgroup *to;
291 	unsigned long precharge;
292 	unsigned long moved_charge;
293 	unsigned long moved_swap;
294 	struct task_struct *moving_task;	/* a task moving charges */
295 	struct mm_struct *mm;
296 	wait_queue_head_t waitq;		/* a waitq for other context */
297 } mc = {
298 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
299 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
300 };
301 
302 static bool move_anon(void)
303 {
304 	return test_bit(MOVE_CHARGE_TYPE_ANON,
305 					&mc.to->move_charge_at_immigrate);
306 }
307 
308 static bool move_file(void)
309 {
310 	return test_bit(MOVE_CHARGE_TYPE_FILE,
311 					&mc.to->move_charge_at_immigrate);
312 }
313 
314 /*
315  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
316  * limit reclaim to prevent infinite loops, if they ever occur.
317  */
318 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
319 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
320 
321 enum charge_type {
322 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
323 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
324 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
325 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
326 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
327 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
328 	NR_CHARGE_TYPE,
329 };
330 
331 /* only for here (for easy reading.) */
332 #define PCGF_CACHE	(1UL << PCG_CACHE)
333 #define PCGF_USED	(1UL << PCG_USED)
334 #define PCGF_LOCK	(1UL << PCG_LOCK)
335 /* Not used, but added here for completeness */
336 #define PCGF_ACCT	(1UL << PCG_ACCT)
337 
338 /* for encoding cft->private value on file */
339 #define _MEM			(0)
340 #define _MEMSWAP		(1)
341 #define _OOM_TYPE		(2)
342 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
343 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
344 #define MEMFILE_ATTR(val)	((val) & 0xffff)
345 /* Used for OOM nofiier */
346 #define OOM_CONTROL		(0)
347 
348 /*
349  * Reclaim flags for mem_cgroup_hierarchical_reclaim
350  */
351 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
352 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
353 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
354 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
355 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
356 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
357 
358 static void mem_cgroup_get(struct mem_cgroup *mem);
359 static void mem_cgroup_put(struct mem_cgroup *mem);
360 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
361 static void drain_all_stock_async(void);
362 
363 static struct mem_cgroup_per_zone *
364 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
365 {
366 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
367 }
368 
369 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
370 {
371 	return &mem->css;
372 }
373 
374 static struct mem_cgroup_per_zone *
375 page_cgroup_zoneinfo(struct page_cgroup *pc)
376 {
377 	struct mem_cgroup *mem = pc->mem_cgroup;
378 	int nid = page_cgroup_nid(pc);
379 	int zid = page_cgroup_zid(pc);
380 
381 	if (!mem)
382 		return NULL;
383 
384 	return mem_cgroup_zoneinfo(mem, nid, zid);
385 }
386 
387 static struct mem_cgroup_tree_per_zone *
388 soft_limit_tree_node_zone(int nid, int zid)
389 {
390 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
391 }
392 
393 static struct mem_cgroup_tree_per_zone *
394 soft_limit_tree_from_page(struct page *page)
395 {
396 	int nid = page_to_nid(page);
397 	int zid = page_zonenum(page);
398 
399 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
400 }
401 
402 static void
403 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
404 				struct mem_cgroup_per_zone *mz,
405 				struct mem_cgroup_tree_per_zone *mctz,
406 				unsigned long long new_usage_in_excess)
407 {
408 	struct rb_node **p = &mctz->rb_root.rb_node;
409 	struct rb_node *parent = NULL;
410 	struct mem_cgroup_per_zone *mz_node;
411 
412 	if (mz->on_tree)
413 		return;
414 
415 	mz->usage_in_excess = new_usage_in_excess;
416 	if (!mz->usage_in_excess)
417 		return;
418 	while (*p) {
419 		parent = *p;
420 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
421 					tree_node);
422 		if (mz->usage_in_excess < mz_node->usage_in_excess)
423 			p = &(*p)->rb_left;
424 		/*
425 		 * We can't avoid mem cgroups that are over their soft
426 		 * limit by the same amount
427 		 */
428 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
429 			p = &(*p)->rb_right;
430 	}
431 	rb_link_node(&mz->tree_node, parent, p);
432 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
433 	mz->on_tree = true;
434 }
435 
436 static void
437 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
438 				struct mem_cgroup_per_zone *mz,
439 				struct mem_cgroup_tree_per_zone *mctz)
440 {
441 	if (!mz->on_tree)
442 		return;
443 	rb_erase(&mz->tree_node, &mctz->rb_root);
444 	mz->on_tree = false;
445 }
446 
447 static void
448 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
449 				struct mem_cgroup_per_zone *mz,
450 				struct mem_cgroup_tree_per_zone *mctz)
451 {
452 	spin_lock(&mctz->lock);
453 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
454 	spin_unlock(&mctz->lock);
455 }
456 
457 
458 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
459 {
460 	unsigned long long excess;
461 	struct mem_cgroup_per_zone *mz;
462 	struct mem_cgroup_tree_per_zone *mctz;
463 	int nid = page_to_nid(page);
464 	int zid = page_zonenum(page);
465 	mctz = soft_limit_tree_from_page(page);
466 
467 	/*
468 	 * Necessary to update all ancestors when hierarchy is used.
469 	 * because their event counter is not touched.
470 	 */
471 	for (; mem; mem = parent_mem_cgroup(mem)) {
472 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
473 		excess = res_counter_soft_limit_excess(&mem->res);
474 		/*
475 		 * We have to update the tree if mz is on RB-tree or
476 		 * mem is over its softlimit.
477 		 */
478 		if (excess || mz->on_tree) {
479 			spin_lock(&mctz->lock);
480 			/* if on-tree, remove it */
481 			if (mz->on_tree)
482 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
483 			/*
484 			 * Insert again. mz->usage_in_excess will be updated.
485 			 * If excess is 0, no tree ops.
486 			 */
487 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
488 			spin_unlock(&mctz->lock);
489 		}
490 	}
491 }
492 
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
494 {
495 	int node, zone;
496 	struct mem_cgroup_per_zone *mz;
497 	struct mem_cgroup_tree_per_zone *mctz;
498 
499 	for_each_node_state(node, N_POSSIBLE) {
500 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
501 			mz = mem_cgroup_zoneinfo(mem, node, zone);
502 			mctz = soft_limit_tree_node_zone(node, zone);
503 			mem_cgroup_remove_exceeded(mem, mz, mctz);
504 		}
505 	}
506 }
507 
508 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
509 {
510 	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
511 }
512 
513 static struct mem_cgroup_per_zone *
514 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
515 {
516 	struct rb_node *rightmost = NULL;
517 	struct mem_cgroup_per_zone *mz;
518 
519 retry:
520 	mz = NULL;
521 	rightmost = rb_last(&mctz->rb_root);
522 	if (!rightmost)
523 		goto done;		/* Nothing to reclaim from */
524 
525 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
526 	/*
527 	 * Remove the node now but someone else can add it back,
528 	 * we will to add it back at the end of reclaim to its correct
529 	 * position in the tree.
530 	 */
531 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
532 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
533 		!css_tryget(&mz->mem->css))
534 		goto retry;
535 done:
536 	return mz;
537 }
538 
539 static struct mem_cgroup_per_zone *
540 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
541 {
542 	struct mem_cgroup_per_zone *mz;
543 
544 	spin_lock(&mctz->lock);
545 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
546 	spin_unlock(&mctz->lock);
547 	return mz;
548 }
549 
550 /*
551  * Implementation Note: reading percpu statistics for memcg.
552  *
553  * Both of vmstat[] and percpu_counter has threshold and do periodic
554  * synchronization to implement "quick" read. There are trade-off between
555  * reading cost and precision of value. Then, we may have a chance to implement
556  * a periodic synchronizion of counter in memcg's counter.
557  *
558  * But this _read() function is used for user interface now. The user accounts
559  * memory usage by memory cgroup and he _always_ requires exact value because
560  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
561  * have to visit all online cpus and make sum. So, for now, unnecessary
562  * synchronization is not implemented. (just implemented for cpu hotplug)
563  *
564  * If there are kernel internal actions which can make use of some not-exact
565  * value, and reading all cpu value can be performance bottleneck in some
566  * common workload, threashold and synchonization as vmstat[] should be
567  * implemented.
568  */
569 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
570 		enum mem_cgroup_stat_index idx)
571 {
572 	int cpu;
573 	s64 val = 0;
574 
575 	get_online_cpus();
576 	for_each_online_cpu(cpu)
577 		val += per_cpu(mem->stat->count[idx], cpu);
578 #ifdef CONFIG_HOTPLUG_CPU
579 	spin_lock(&mem->pcp_counter_lock);
580 	val += mem->nocpu_base.count[idx];
581 	spin_unlock(&mem->pcp_counter_lock);
582 #endif
583 	put_online_cpus();
584 	return val;
585 }
586 
587 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
588 {
589 	s64 ret;
590 
591 	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
592 	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
593 	return ret;
594 }
595 
596 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
597 					 bool charge)
598 {
599 	int val = (charge) ? 1 : -1;
600 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
601 }
602 
603 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
604 					 struct page_cgroup *pc,
605 					 bool charge)
606 {
607 	int val = (charge) ? 1 : -1;
608 
609 	preempt_disable();
610 
611 	if (PageCgroupCache(pc))
612 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
613 	else
614 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
615 
616 	if (charge)
617 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
618 	else
619 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
620 	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
621 
622 	preempt_enable();
623 }
624 
625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626 					enum lru_list idx)
627 {
628 	int nid, zid;
629 	struct mem_cgroup_per_zone *mz;
630 	u64 total = 0;
631 
632 	for_each_online_node(nid)
633 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
635 			total += MEM_CGROUP_ZSTAT(mz, idx);
636 		}
637 	return total;
638 }
639 
640 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
641 {
642 	s64 val;
643 
644 	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
645 
646 	return !(val & ((1 << event_mask_shift) - 1));
647 }
648 
649 /*
650  * Check events in order.
651  *
652  */
653 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
654 {
655 	/* threshold event is triggered in finer grain than soft limit */
656 	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657 		mem_cgroup_threshold(mem);
658 		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659 			mem_cgroup_update_tree(mem, page);
660 	}
661 }
662 
663 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
664 {
665 	return container_of(cgroup_subsys_state(cont,
666 				mem_cgroup_subsys_id), struct mem_cgroup,
667 				css);
668 }
669 
670 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
671 {
672 	/*
673 	 * mm_update_next_owner() may clear mm->owner to NULL
674 	 * if it races with swapoff, page migration, etc.
675 	 * So this can be called with p == NULL.
676 	 */
677 	if (unlikely(!p))
678 		return NULL;
679 
680 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681 				struct mem_cgroup, css);
682 }
683 
684 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
685 {
686 	struct mem_cgroup *mem = NULL;
687 
688 	if (!mm)
689 		return NULL;
690 	/*
691 	 * Because we have no locks, mm->owner's may be being moved to other
692 	 * cgroup. We use css_tryget() here even if this looks
693 	 * pessimistic (rather than adding locks here).
694 	 */
695 	rcu_read_lock();
696 	do {
697 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698 		if (unlikely(!mem))
699 			break;
700 	} while (!css_tryget(&mem->css));
701 	rcu_read_unlock();
702 	return mem;
703 }
704 
705 /* The caller has to guarantee "mem" exists before calling this */
706 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
707 {
708 	struct cgroup_subsys_state *css;
709 	int found;
710 
711 	if (!mem) /* ROOT cgroup has the smallest ID */
712 		return root_mem_cgroup; /*css_put/get against root is ignored*/
713 	if (!mem->use_hierarchy) {
714 		if (css_tryget(&mem->css))
715 			return mem;
716 		return NULL;
717 	}
718 	rcu_read_lock();
719 	/*
720 	 * searching a memory cgroup which has the smallest ID under given
721 	 * ROOT cgroup. (ID >= 1)
722 	 */
723 	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724 	if (css && css_tryget(css))
725 		mem = container_of(css, struct mem_cgroup, css);
726 	else
727 		mem = NULL;
728 	rcu_read_unlock();
729 	return mem;
730 }
731 
732 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733 					struct mem_cgroup *root,
734 					bool cond)
735 {
736 	int nextid = css_id(&iter->css) + 1;
737 	int found;
738 	int hierarchy_used;
739 	struct cgroup_subsys_state *css;
740 
741 	hierarchy_used = iter->use_hierarchy;
742 
743 	css_put(&iter->css);
744 	/* If no ROOT, walk all, ignore hierarchy */
745 	if (!cond || (root && !hierarchy_used))
746 		return NULL;
747 
748 	if (!root)
749 		root = root_mem_cgroup;
750 
751 	do {
752 		iter = NULL;
753 		rcu_read_lock();
754 
755 		css = css_get_next(&mem_cgroup_subsys, nextid,
756 				&root->css, &found);
757 		if (css && css_tryget(css))
758 			iter = container_of(css, struct mem_cgroup, css);
759 		rcu_read_unlock();
760 		/* If css is NULL, no more cgroups will be found */
761 		nextid = found + 1;
762 	} while (css && !iter);
763 
764 	return iter;
765 }
766 /*
767  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768  * be careful that "break" loop is not allowed. We have reference count.
769  * Instead of that modify "cond" to be false and "continue" to exit the loop.
770  */
771 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
772 	for (iter = mem_cgroup_start_loop(root);\
773 	     iter != NULL;\
774 	     iter = mem_cgroup_get_next(iter, root, cond))
775 
776 #define for_each_mem_cgroup_tree(iter, root) \
777 	for_each_mem_cgroup_tree_cond(iter, root, true)
778 
779 #define for_each_mem_cgroup_all(iter) \
780 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
781 
782 
783 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
784 {
785 	return (mem == root_mem_cgroup);
786 }
787 
788 /*
789  * Following LRU functions are allowed to be used without PCG_LOCK.
790  * Operations are called by routine of global LRU independently from memcg.
791  * What we have to take care of here is validness of pc->mem_cgroup.
792  *
793  * Changes to pc->mem_cgroup happens when
794  * 1. charge
795  * 2. moving account
796  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797  * It is added to LRU before charge.
798  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799  * When moving account, the page is not on LRU. It's isolated.
800  */
801 
802 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
803 {
804 	struct page_cgroup *pc;
805 	struct mem_cgroup_per_zone *mz;
806 
807 	if (mem_cgroup_disabled())
808 		return;
809 	pc = lookup_page_cgroup(page);
810 	/* can happen while we handle swapcache. */
811 	if (!TestClearPageCgroupAcctLRU(pc))
812 		return;
813 	VM_BUG_ON(!pc->mem_cgroup);
814 	/*
815 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 	 * removed from global LRU.
817 	 */
818 	mz = page_cgroup_zoneinfo(pc);
819 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
820 	if (mem_cgroup_is_root(pc->mem_cgroup))
821 		return;
822 	VM_BUG_ON(list_empty(&pc->lru));
823 	list_del_init(&pc->lru);
824 	return;
825 }
826 
827 void mem_cgroup_del_lru(struct page *page)
828 {
829 	mem_cgroup_del_lru_list(page, page_lru(page));
830 }
831 
832 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
833 {
834 	struct mem_cgroup_per_zone *mz;
835 	struct page_cgroup *pc;
836 
837 	if (mem_cgroup_disabled())
838 		return;
839 
840 	pc = lookup_page_cgroup(page);
841 	/*
842 	 * Used bit is set without atomic ops but after smp_wmb().
843 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
844 	 */
845 	smp_rmb();
846 	/* unused or root page is not rotated. */
847 	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
848 		return;
849 	mz = page_cgroup_zoneinfo(pc);
850 	list_move(&pc->lru, &mz->lists[lru]);
851 }
852 
853 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
854 {
855 	struct page_cgroup *pc;
856 	struct mem_cgroup_per_zone *mz;
857 
858 	if (mem_cgroup_disabled())
859 		return;
860 	pc = lookup_page_cgroup(page);
861 	VM_BUG_ON(PageCgroupAcctLRU(pc));
862 	/*
863 	 * Used bit is set without atomic ops but after smp_wmb().
864 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
865 	 */
866 	smp_rmb();
867 	if (!PageCgroupUsed(pc))
868 		return;
869 
870 	mz = page_cgroup_zoneinfo(pc);
871 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
872 	SetPageCgroupAcctLRU(pc);
873 	if (mem_cgroup_is_root(pc->mem_cgroup))
874 		return;
875 	list_add(&pc->lru, &mz->lists[lru]);
876 }
877 
878 /*
879  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
880  * lru because the page may.be reused after it's fully uncharged (because of
881  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
882  * it again. This function is only used to charge SwapCache. It's done under
883  * lock_page and expected that zone->lru_lock is never held.
884  */
885 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
886 {
887 	unsigned long flags;
888 	struct zone *zone = page_zone(page);
889 	struct page_cgroup *pc = lookup_page_cgroup(page);
890 
891 	spin_lock_irqsave(&zone->lru_lock, flags);
892 	/*
893 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
894 	 * is guarded by lock_page() because the page is SwapCache.
895 	 */
896 	if (!PageCgroupUsed(pc))
897 		mem_cgroup_del_lru_list(page, page_lru(page));
898 	spin_unlock_irqrestore(&zone->lru_lock, flags);
899 }
900 
901 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
902 {
903 	unsigned long flags;
904 	struct zone *zone = page_zone(page);
905 	struct page_cgroup *pc = lookup_page_cgroup(page);
906 
907 	spin_lock_irqsave(&zone->lru_lock, flags);
908 	/* link when the page is linked to LRU but page_cgroup isn't */
909 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
910 		mem_cgroup_add_lru_list(page, page_lru(page));
911 	spin_unlock_irqrestore(&zone->lru_lock, flags);
912 }
913 
914 
915 void mem_cgroup_move_lists(struct page *page,
916 			   enum lru_list from, enum lru_list to)
917 {
918 	if (mem_cgroup_disabled())
919 		return;
920 	mem_cgroup_del_lru_list(page, from);
921 	mem_cgroup_add_lru_list(page, to);
922 }
923 
924 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
925 {
926 	int ret;
927 	struct mem_cgroup *curr = NULL;
928 	struct task_struct *p;
929 
930 	p = find_lock_task_mm(task);
931 	if (!p)
932 		return 0;
933 	curr = try_get_mem_cgroup_from_mm(p->mm);
934 	task_unlock(p);
935 	if (!curr)
936 		return 0;
937 	/*
938 	 * We should check use_hierarchy of "mem" not "curr". Because checking
939 	 * use_hierarchy of "curr" here make this function true if hierarchy is
940 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
941 	 * hierarchy(even if use_hierarchy is disabled in "mem").
942 	 */
943 	if (mem->use_hierarchy)
944 		ret = css_is_ancestor(&curr->css, &mem->css);
945 	else
946 		ret = (curr == mem);
947 	css_put(&curr->css);
948 	return ret;
949 }
950 
951 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
952 {
953 	unsigned long active;
954 	unsigned long inactive;
955 	unsigned long gb;
956 	unsigned long inactive_ratio;
957 
958 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
959 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
960 
961 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
962 	if (gb)
963 		inactive_ratio = int_sqrt(10 * gb);
964 	else
965 		inactive_ratio = 1;
966 
967 	if (present_pages) {
968 		present_pages[0] = inactive;
969 		present_pages[1] = active;
970 	}
971 
972 	return inactive_ratio;
973 }
974 
975 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
976 {
977 	unsigned long active;
978 	unsigned long inactive;
979 	unsigned long present_pages[2];
980 	unsigned long inactive_ratio;
981 
982 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
983 
984 	inactive = present_pages[0];
985 	active = present_pages[1];
986 
987 	if (inactive * inactive_ratio < active)
988 		return 1;
989 
990 	return 0;
991 }
992 
993 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
994 {
995 	unsigned long active;
996 	unsigned long inactive;
997 
998 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
999 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1000 
1001 	return (active > inactive);
1002 }
1003 
1004 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1005 				       struct zone *zone,
1006 				       enum lru_list lru)
1007 {
1008 	int nid = zone_to_nid(zone);
1009 	int zid = zone_idx(zone);
1010 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1011 
1012 	return MEM_CGROUP_ZSTAT(mz, lru);
1013 }
1014 
1015 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1016 						      struct zone *zone)
1017 {
1018 	int nid = zone_to_nid(zone);
1019 	int zid = zone_idx(zone);
1020 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021 
1022 	return &mz->reclaim_stat;
1023 }
1024 
1025 struct zone_reclaim_stat *
1026 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1027 {
1028 	struct page_cgroup *pc;
1029 	struct mem_cgroup_per_zone *mz;
1030 
1031 	if (mem_cgroup_disabled())
1032 		return NULL;
1033 
1034 	pc = lookup_page_cgroup(page);
1035 	/*
1036 	 * Used bit is set without atomic ops but after smp_wmb().
1037 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1038 	 */
1039 	smp_rmb();
1040 	if (!PageCgroupUsed(pc))
1041 		return NULL;
1042 
1043 	mz = page_cgroup_zoneinfo(pc);
1044 	if (!mz)
1045 		return NULL;
1046 
1047 	return &mz->reclaim_stat;
1048 }
1049 
1050 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1051 					struct list_head *dst,
1052 					unsigned long *scanned, int order,
1053 					int mode, struct zone *z,
1054 					struct mem_cgroup *mem_cont,
1055 					int active, int file)
1056 {
1057 	unsigned long nr_taken = 0;
1058 	struct page *page;
1059 	unsigned long scan;
1060 	LIST_HEAD(pc_list);
1061 	struct list_head *src;
1062 	struct page_cgroup *pc, *tmp;
1063 	int nid = zone_to_nid(z);
1064 	int zid = zone_idx(z);
1065 	struct mem_cgroup_per_zone *mz;
1066 	int lru = LRU_FILE * file + active;
1067 	int ret;
1068 
1069 	BUG_ON(!mem_cont);
1070 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1071 	src = &mz->lists[lru];
1072 
1073 	scan = 0;
1074 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1075 		if (scan >= nr_to_scan)
1076 			break;
1077 
1078 		page = pc->page;
1079 		if (unlikely(!PageCgroupUsed(pc)))
1080 			continue;
1081 		if (unlikely(!PageLRU(page)))
1082 			continue;
1083 
1084 		scan++;
1085 		ret = __isolate_lru_page(page, mode, file);
1086 		switch (ret) {
1087 		case 0:
1088 			list_move(&page->lru, dst);
1089 			mem_cgroup_del_lru(page);
1090 			nr_taken++;
1091 			break;
1092 		case -EBUSY:
1093 			/* we don't affect global LRU but rotate in our LRU */
1094 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1095 			break;
1096 		default:
1097 			break;
1098 		}
1099 	}
1100 
1101 	*scanned = scan;
1102 
1103 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1104 				      0, 0, 0, mode);
1105 
1106 	return nr_taken;
1107 }
1108 
1109 #define mem_cgroup_from_res_counter(counter, member)	\
1110 	container_of(counter, struct mem_cgroup, member)
1111 
1112 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1113 {
1114 	if (do_swap_account) {
1115 		if (res_counter_check_under_limit(&mem->res) &&
1116 			res_counter_check_under_limit(&mem->memsw))
1117 			return true;
1118 	} else
1119 		if (res_counter_check_under_limit(&mem->res))
1120 			return true;
1121 	return false;
1122 }
1123 
1124 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1125 {
1126 	struct cgroup *cgrp = memcg->css.cgroup;
1127 	unsigned int swappiness;
1128 
1129 	/* root ? */
1130 	if (cgrp->parent == NULL)
1131 		return vm_swappiness;
1132 
1133 	spin_lock(&memcg->reclaim_param_lock);
1134 	swappiness = memcg->swappiness;
1135 	spin_unlock(&memcg->reclaim_param_lock);
1136 
1137 	return swappiness;
1138 }
1139 
1140 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1141 {
1142 	int cpu;
1143 
1144 	get_online_cpus();
1145 	spin_lock(&mem->pcp_counter_lock);
1146 	for_each_online_cpu(cpu)
1147 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1148 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1149 	spin_unlock(&mem->pcp_counter_lock);
1150 	put_online_cpus();
1151 
1152 	synchronize_rcu();
1153 }
1154 
1155 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1156 {
1157 	int cpu;
1158 
1159 	if (!mem)
1160 		return;
1161 	get_online_cpus();
1162 	spin_lock(&mem->pcp_counter_lock);
1163 	for_each_online_cpu(cpu)
1164 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1165 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1166 	spin_unlock(&mem->pcp_counter_lock);
1167 	put_online_cpus();
1168 }
1169 /*
1170  * 2 routines for checking "mem" is under move_account() or not.
1171  *
1172  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1173  *			  for avoiding race in accounting. If true,
1174  *			  pc->mem_cgroup may be overwritten.
1175  *
1176  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1177  *			  under hierarchy of moving cgroups. This is for
1178  *			  waiting at hith-memory prressure caused by "move".
1179  */
1180 
1181 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1182 {
1183 	VM_BUG_ON(!rcu_read_lock_held());
1184 	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1185 }
1186 
1187 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1188 {
1189 	struct mem_cgroup *from;
1190 	struct mem_cgroup *to;
1191 	bool ret = false;
1192 	/*
1193 	 * Unlike task_move routines, we access mc.to, mc.from not under
1194 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1195 	 */
1196 	spin_lock(&mc.lock);
1197 	from = mc.from;
1198 	to = mc.to;
1199 	if (!from)
1200 		goto unlock;
1201 	if (from == mem || to == mem
1202 	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1203 	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1204 		ret = true;
1205 unlock:
1206 	spin_unlock(&mc.lock);
1207 	return ret;
1208 }
1209 
1210 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1211 {
1212 	if (mc.moving_task && current != mc.moving_task) {
1213 		if (mem_cgroup_under_move(mem)) {
1214 			DEFINE_WAIT(wait);
1215 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1216 			/* moving charge context might have finished. */
1217 			if (mc.moving_task)
1218 				schedule();
1219 			finish_wait(&mc.waitq, &wait);
1220 			return true;
1221 		}
1222 	}
1223 	return false;
1224 }
1225 
1226 /**
1227  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1228  * @memcg: The memory cgroup that went over limit
1229  * @p: Task that is going to be killed
1230  *
1231  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1232  * enabled
1233  */
1234 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1235 {
1236 	struct cgroup *task_cgrp;
1237 	struct cgroup *mem_cgrp;
1238 	/*
1239 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1240 	 * on the assumption that OOM is serialized for memory controller.
1241 	 * If this assumption is broken, revisit this code.
1242 	 */
1243 	static char memcg_name[PATH_MAX];
1244 	int ret;
1245 
1246 	if (!memcg || !p)
1247 		return;
1248 
1249 
1250 	rcu_read_lock();
1251 
1252 	mem_cgrp = memcg->css.cgroup;
1253 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1254 
1255 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1256 	if (ret < 0) {
1257 		/*
1258 		 * Unfortunately, we are unable to convert to a useful name
1259 		 * But we'll still print out the usage information
1260 		 */
1261 		rcu_read_unlock();
1262 		goto done;
1263 	}
1264 	rcu_read_unlock();
1265 
1266 	printk(KERN_INFO "Task in %s killed", memcg_name);
1267 
1268 	rcu_read_lock();
1269 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1270 	if (ret < 0) {
1271 		rcu_read_unlock();
1272 		goto done;
1273 	}
1274 	rcu_read_unlock();
1275 
1276 	/*
1277 	 * Continues from above, so we don't need an KERN_ level
1278 	 */
1279 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1280 done:
1281 
1282 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1283 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1284 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1285 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1286 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1287 		"failcnt %llu\n",
1288 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1289 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1290 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1291 }
1292 
1293 /*
1294  * This function returns the number of memcg under hierarchy tree. Returns
1295  * 1(self count) if no children.
1296  */
1297 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1298 {
1299 	int num = 0;
1300 	struct mem_cgroup *iter;
1301 
1302 	for_each_mem_cgroup_tree(iter, mem)
1303 		num++;
1304 	return num;
1305 }
1306 
1307 /*
1308  * Return the memory (and swap, if configured) limit for a memcg.
1309  */
1310 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1311 {
1312 	u64 limit;
1313 	u64 memsw;
1314 
1315 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1316 			total_swap_pages;
1317 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1318 	/*
1319 	 * If memsw is finite and limits the amount of swap space available
1320 	 * to this memcg, return that limit.
1321 	 */
1322 	return min(limit, memsw);
1323 }
1324 
1325 /*
1326  * Visit the first child (need not be the first child as per the ordering
1327  * of the cgroup list, since we track last_scanned_child) of @mem and use
1328  * that to reclaim free pages from.
1329  */
1330 static struct mem_cgroup *
1331 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1332 {
1333 	struct mem_cgroup *ret = NULL;
1334 	struct cgroup_subsys_state *css;
1335 	int nextid, found;
1336 
1337 	if (!root_mem->use_hierarchy) {
1338 		css_get(&root_mem->css);
1339 		ret = root_mem;
1340 	}
1341 
1342 	while (!ret) {
1343 		rcu_read_lock();
1344 		nextid = root_mem->last_scanned_child + 1;
1345 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1346 				   &found);
1347 		if (css && css_tryget(css))
1348 			ret = container_of(css, struct mem_cgroup, css);
1349 
1350 		rcu_read_unlock();
1351 		/* Updates scanning parameter */
1352 		spin_lock(&root_mem->reclaim_param_lock);
1353 		if (!css) {
1354 			/* this means start scan from ID:1 */
1355 			root_mem->last_scanned_child = 0;
1356 		} else
1357 			root_mem->last_scanned_child = found;
1358 		spin_unlock(&root_mem->reclaim_param_lock);
1359 	}
1360 
1361 	return ret;
1362 }
1363 
1364 /*
1365  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1366  * we reclaimed from, so that we don't end up penalizing one child extensively
1367  * based on its position in the children list.
1368  *
1369  * root_mem is the original ancestor that we've been reclaim from.
1370  *
1371  * We give up and return to the caller when we visit root_mem twice.
1372  * (other groups can be removed while we're walking....)
1373  *
1374  * If shrink==true, for avoiding to free too much, this returns immedieately.
1375  */
1376 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1377 						struct zone *zone,
1378 						gfp_t gfp_mask,
1379 						unsigned long reclaim_options)
1380 {
1381 	struct mem_cgroup *victim;
1382 	int ret, total = 0;
1383 	int loop = 0;
1384 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1385 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1386 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1387 	unsigned long excess = mem_cgroup_get_excess(root_mem);
1388 
1389 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1390 	if (root_mem->memsw_is_minimum)
1391 		noswap = true;
1392 
1393 	while (1) {
1394 		victim = mem_cgroup_select_victim(root_mem);
1395 		if (victim == root_mem) {
1396 			loop++;
1397 			if (loop >= 1)
1398 				drain_all_stock_async();
1399 			if (loop >= 2) {
1400 				/*
1401 				 * If we have not been able to reclaim
1402 				 * anything, it might because there are
1403 				 * no reclaimable pages under this hierarchy
1404 				 */
1405 				if (!check_soft || !total) {
1406 					css_put(&victim->css);
1407 					break;
1408 				}
1409 				/*
1410 				 * We want to do more targetted reclaim.
1411 				 * excess >> 2 is not to excessive so as to
1412 				 * reclaim too much, nor too less that we keep
1413 				 * coming back to reclaim from this cgroup
1414 				 */
1415 				if (total >= (excess >> 2) ||
1416 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1417 					css_put(&victim->css);
1418 					break;
1419 				}
1420 			}
1421 		}
1422 		if (!mem_cgroup_local_usage(victim)) {
1423 			/* this cgroup's local usage == 0 */
1424 			css_put(&victim->css);
1425 			continue;
1426 		}
1427 		/* we use swappiness of local cgroup */
1428 		if (check_soft)
1429 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1430 				noswap, get_swappiness(victim), zone);
1431 		else
1432 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1433 						noswap, get_swappiness(victim));
1434 		css_put(&victim->css);
1435 		/*
1436 		 * At shrinking usage, we can't check we should stop here or
1437 		 * reclaim more. It's depends on callers. last_scanned_child
1438 		 * will work enough for keeping fairness under tree.
1439 		 */
1440 		if (shrink)
1441 			return ret;
1442 		total += ret;
1443 		if (check_soft) {
1444 			if (res_counter_check_under_soft_limit(&root_mem->res))
1445 				return total;
1446 		} else if (mem_cgroup_check_under_limit(root_mem))
1447 			return 1 + total;
1448 	}
1449 	return total;
1450 }
1451 
1452 /*
1453  * Check OOM-Killer is already running under our hierarchy.
1454  * If someone is running, return false.
1455  */
1456 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1457 {
1458 	int x, lock_count = 0;
1459 	struct mem_cgroup *iter;
1460 
1461 	for_each_mem_cgroup_tree(iter, mem) {
1462 		x = atomic_inc_return(&iter->oom_lock);
1463 		lock_count = max(x, lock_count);
1464 	}
1465 
1466 	if (lock_count == 1)
1467 		return true;
1468 	return false;
1469 }
1470 
1471 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1472 {
1473 	struct mem_cgroup *iter;
1474 
1475 	/*
1476 	 * When a new child is created while the hierarchy is under oom,
1477 	 * mem_cgroup_oom_lock() may not be called. We have to use
1478 	 * atomic_add_unless() here.
1479 	 */
1480 	for_each_mem_cgroup_tree(iter, mem)
1481 		atomic_add_unless(&iter->oom_lock, -1, 0);
1482 	return 0;
1483 }
1484 
1485 
1486 static DEFINE_MUTEX(memcg_oom_mutex);
1487 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1488 
1489 struct oom_wait_info {
1490 	struct mem_cgroup *mem;
1491 	wait_queue_t	wait;
1492 };
1493 
1494 static int memcg_oom_wake_function(wait_queue_t *wait,
1495 	unsigned mode, int sync, void *arg)
1496 {
1497 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1498 	struct oom_wait_info *oom_wait_info;
1499 
1500 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1501 
1502 	if (oom_wait_info->mem == wake_mem)
1503 		goto wakeup;
1504 	/* if no hierarchy, no match */
1505 	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1506 		return 0;
1507 	/*
1508 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1509 	 * Then we can use css_is_ancestor without taking care of RCU.
1510 	 */
1511 	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1512 	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1513 		return 0;
1514 
1515 wakeup:
1516 	return autoremove_wake_function(wait, mode, sync, arg);
1517 }
1518 
1519 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1520 {
1521 	/* for filtering, pass "mem" as argument. */
1522 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1523 }
1524 
1525 static void memcg_oom_recover(struct mem_cgroup *mem)
1526 {
1527 	if (mem && atomic_read(&mem->oom_lock))
1528 		memcg_wakeup_oom(mem);
1529 }
1530 
1531 /*
1532  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1533  */
1534 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1535 {
1536 	struct oom_wait_info owait;
1537 	bool locked, need_to_kill;
1538 
1539 	owait.mem = mem;
1540 	owait.wait.flags = 0;
1541 	owait.wait.func = memcg_oom_wake_function;
1542 	owait.wait.private = current;
1543 	INIT_LIST_HEAD(&owait.wait.task_list);
1544 	need_to_kill = true;
1545 	/* At first, try to OOM lock hierarchy under mem.*/
1546 	mutex_lock(&memcg_oom_mutex);
1547 	locked = mem_cgroup_oom_lock(mem);
1548 	/*
1549 	 * Even if signal_pending(), we can't quit charge() loop without
1550 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1551 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1552 	 */
1553 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1554 	if (!locked || mem->oom_kill_disable)
1555 		need_to_kill = false;
1556 	if (locked)
1557 		mem_cgroup_oom_notify(mem);
1558 	mutex_unlock(&memcg_oom_mutex);
1559 
1560 	if (need_to_kill) {
1561 		finish_wait(&memcg_oom_waitq, &owait.wait);
1562 		mem_cgroup_out_of_memory(mem, mask);
1563 	} else {
1564 		schedule();
1565 		finish_wait(&memcg_oom_waitq, &owait.wait);
1566 	}
1567 	mutex_lock(&memcg_oom_mutex);
1568 	mem_cgroup_oom_unlock(mem);
1569 	memcg_wakeup_oom(mem);
1570 	mutex_unlock(&memcg_oom_mutex);
1571 
1572 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1573 		return false;
1574 	/* Give chance to dying process */
1575 	schedule_timeout(1);
1576 	return true;
1577 }
1578 
1579 /*
1580  * Currently used to update mapped file statistics, but the routine can be
1581  * generalized to update other statistics as well.
1582  *
1583  * Notes: Race condition
1584  *
1585  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1586  * it tends to be costly. But considering some conditions, we doesn't need
1587  * to do so _always_.
1588  *
1589  * Considering "charge", lock_page_cgroup() is not required because all
1590  * file-stat operations happen after a page is attached to radix-tree. There
1591  * are no race with "charge".
1592  *
1593  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1594  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1595  * if there are race with "uncharge". Statistics itself is properly handled
1596  * by flags.
1597  *
1598  * Considering "move", this is an only case we see a race. To make the race
1599  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1600  * possibility of race condition. If there is, we take a lock.
1601  */
1602 
1603 static void mem_cgroup_update_file_stat(struct page *page, int idx, int val)
1604 {
1605 	struct mem_cgroup *mem;
1606 	struct page_cgroup *pc = lookup_page_cgroup(page);
1607 	bool need_unlock = false;
1608 
1609 	if (unlikely(!pc))
1610 		return;
1611 
1612 	rcu_read_lock();
1613 	mem = pc->mem_cgroup;
1614 	if (unlikely(!mem || !PageCgroupUsed(pc)))
1615 		goto out;
1616 	/* pc->mem_cgroup is unstable ? */
1617 	if (unlikely(mem_cgroup_stealed(mem))) {
1618 		/* take a lock against to access pc->mem_cgroup */
1619 		lock_page_cgroup(pc);
1620 		need_unlock = true;
1621 		mem = pc->mem_cgroup;
1622 		if (!mem || !PageCgroupUsed(pc))
1623 			goto out;
1624 	}
1625 
1626 	this_cpu_add(mem->stat->count[idx], val);
1627 
1628 	switch (idx) {
1629 	case MEM_CGROUP_STAT_FILE_MAPPED:
1630 		if (val > 0)
1631 			SetPageCgroupFileMapped(pc);
1632 		else if (!page_mapped(page))
1633 			ClearPageCgroupFileMapped(pc);
1634 		break;
1635 	default:
1636 		BUG();
1637 	}
1638 
1639 out:
1640 	if (unlikely(need_unlock))
1641 		unlock_page_cgroup(pc);
1642 	rcu_read_unlock();
1643 	return;
1644 }
1645 
1646 void mem_cgroup_update_file_mapped(struct page *page, int val)
1647 {
1648 	mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val);
1649 }
1650 
1651 /*
1652  * size of first charge trial. "32" comes from vmscan.c's magic value.
1653  * TODO: maybe necessary to use big numbers in big irons.
1654  */
1655 #define CHARGE_SIZE	(32 * PAGE_SIZE)
1656 struct memcg_stock_pcp {
1657 	struct mem_cgroup *cached; /* this never be root cgroup */
1658 	int charge;
1659 	struct work_struct work;
1660 };
1661 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1662 static atomic_t memcg_drain_count;
1663 
1664 /*
1665  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1666  * from local stock and true is returned. If the stock is 0 or charges from a
1667  * cgroup which is not current target, returns false. This stock will be
1668  * refilled.
1669  */
1670 static bool consume_stock(struct mem_cgroup *mem)
1671 {
1672 	struct memcg_stock_pcp *stock;
1673 	bool ret = true;
1674 
1675 	stock = &get_cpu_var(memcg_stock);
1676 	if (mem == stock->cached && stock->charge)
1677 		stock->charge -= PAGE_SIZE;
1678 	else /* need to call res_counter_charge */
1679 		ret = false;
1680 	put_cpu_var(memcg_stock);
1681 	return ret;
1682 }
1683 
1684 /*
1685  * Returns stocks cached in percpu to res_counter and reset cached information.
1686  */
1687 static void drain_stock(struct memcg_stock_pcp *stock)
1688 {
1689 	struct mem_cgroup *old = stock->cached;
1690 
1691 	if (stock->charge) {
1692 		res_counter_uncharge(&old->res, stock->charge);
1693 		if (do_swap_account)
1694 			res_counter_uncharge(&old->memsw, stock->charge);
1695 	}
1696 	stock->cached = NULL;
1697 	stock->charge = 0;
1698 }
1699 
1700 /*
1701  * This must be called under preempt disabled or must be called by
1702  * a thread which is pinned to local cpu.
1703  */
1704 static void drain_local_stock(struct work_struct *dummy)
1705 {
1706 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1707 	drain_stock(stock);
1708 }
1709 
1710 /*
1711  * Cache charges(val) which is from res_counter, to local per_cpu area.
1712  * This will be consumed by consume_stock() function, later.
1713  */
1714 static void refill_stock(struct mem_cgroup *mem, int val)
1715 {
1716 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1717 
1718 	if (stock->cached != mem) { /* reset if necessary */
1719 		drain_stock(stock);
1720 		stock->cached = mem;
1721 	}
1722 	stock->charge += val;
1723 	put_cpu_var(memcg_stock);
1724 }
1725 
1726 /*
1727  * Tries to drain stocked charges in other cpus. This function is asynchronous
1728  * and just put a work per cpu for draining localy on each cpu. Caller can
1729  * expects some charges will be back to res_counter later but cannot wait for
1730  * it.
1731  */
1732 static void drain_all_stock_async(void)
1733 {
1734 	int cpu;
1735 	/* This function is for scheduling "drain" in asynchronous way.
1736 	 * The result of "drain" is not directly handled by callers. Then,
1737 	 * if someone is calling drain, we don't have to call drain more.
1738 	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1739 	 * there is a race. We just do loose check here.
1740 	 */
1741 	if (atomic_read(&memcg_drain_count))
1742 		return;
1743 	/* Notify other cpus that system-wide "drain" is running */
1744 	atomic_inc(&memcg_drain_count);
1745 	get_online_cpus();
1746 	for_each_online_cpu(cpu) {
1747 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1748 		schedule_work_on(cpu, &stock->work);
1749 	}
1750  	put_online_cpus();
1751 	atomic_dec(&memcg_drain_count);
1752 	/* We don't wait for flush_work */
1753 }
1754 
1755 /* This is a synchronous drain interface. */
1756 static void drain_all_stock_sync(void)
1757 {
1758 	/* called when force_empty is called */
1759 	atomic_inc(&memcg_drain_count);
1760 	schedule_on_each_cpu(drain_local_stock);
1761 	atomic_dec(&memcg_drain_count);
1762 }
1763 
1764 /*
1765  * This function drains percpu counter value from DEAD cpu and
1766  * move it to local cpu. Note that this function can be preempted.
1767  */
1768 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1769 {
1770 	int i;
1771 
1772 	spin_lock(&mem->pcp_counter_lock);
1773 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1774 		s64 x = per_cpu(mem->stat->count[i], cpu);
1775 
1776 		per_cpu(mem->stat->count[i], cpu) = 0;
1777 		mem->nocpu_base.count[i] += x;
1778 	}
1779 	/* need to clear ON_MOVE value, works as a kind of lock. */
1780 	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1781 	spin_unlock(&mem->pcp_counter_lock);
1782 }
1783 
1784 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1785 {
1786 	int idx = MEM_CGROUP_ON_MOVE;
1787 
1788 	spin_lock(&mem->pcp_counter_lock);
1789 	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1790 	spin_unlock(&mem->pcp_counter_lock);
1791 }
1792 
1793 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1794 					unsigned long action,
1795 					void *hcpu)
1796 {
1797 	int cpu = (unsigned long)hcpu;
1798 	struct memcg_stock_pcp *stock;
1799 	struct mem_cgroup *iter;
1800 
1801 	if ((action == CPU_ONLINE)) {
1802 		for_each_mem_cgroup_all(iter)
1803 			synchronize_mem_cgroup_on_move(iter, cpu);
1804 		return NOTIFY_OK;
1805 	}
1806 
1807 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1808 		return NOTIFY_OK;
1809 
1810 	for_each_mem_cgroup_all(iter)
1811 		mem_cgroup_drain_pcp_counter(iter, cpu);
1812 
1813 	stock = &per_cpu(memcg_stock, cpu);
1814 	drain_stock(stock);
1815 	return NOTIFY_OK;
1816 }
1817 
1818 
1819 /* See __mem_cgroup_try_charge() for details */
1820 enum {
1821 	CHARGE_OK,		/* success */
1822 	CHARGE_RETRY,		/* need to retry but retry is not bad */
1823 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1824 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1825 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1826 };
1827 
1828 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1829 				int csize, bool oom_check)
1830 {
1831 	struct mem_cgroup *mem_over_limit;
1832 	struct res_counter *fail_res;
1833 	unsigned long flags = 0;
1834 	int ret;
1835 
1836 	ret = res_counter_charge(&mem->res, csize, &fail_res);
1837 
1838 	if (likely(!ret)) {
1839 		if (!do_swap_account)
1840 			return CHARGE_OK;
1841 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1842 		if (likely(!ret))
1843 			return CHARGE_OK;
1844 
1845 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1846 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1847 	} else
1848 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1849 
1850 	if (csize > PAGE_SIZE) /* change csize and retry */
1851 		return CHARGE_RETRY;
1852 
1853 	if (!(gfp_mask & __GFP_WAIT))
1854 		return CHARGE_WOULDBLOCK;
1855 
1856 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1857 					gfp_mask, flags);
1858 	/*
1859 	 * try_to_free_mem_cgroup_pages() might not give us a full
1860 	 * picture of reclaim. Some pages are reclaimed and might be
1861 	 * moved to swap cache or just unmapped from the cgroup.
1862 	 * Check the limit again to see if the reclaim reduced the
1863 	 * current usage of the cgroup before giving up
1864 	 */
1865 	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1866 		return CHARGE_RETRY;
1867 
1868 	/*
1869 	 * At task move, charge accounts can be doubly counted. So, it's
1870 	 * better to wait until the end of task_move if something is going on.
1871 	 */
1872 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1873 		return CHARGE_RETRY;
1874 
1875 	/* If we don't need to call oom-killer at el, return immediately */
1876 	if (!oom_check)
1877 		return CHARGE_NOMEM;
1878 	/* check OOM */
1879 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1880 		return CHARGE_OOM_DIE;
1881 
1882 	return CHARGE_RETRY;
1883 }
1884 
1885 /*
1886  * Unlike exported interface, "oom" parameter is added. if oom==true,
1887  * oom-killer can be invoked.
1888  */
1889 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1890 		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1891 {
1892 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1893 	struct mem_cgroup *mem = NULL;
1894 	int ret;
1895 	int csize = CHARGE_SIZE;
1896 
1897 	/*
1898 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1899 	 * in system level. So, allow to go ahead dying process in addition to
1900 	 * MEMDIE process.
1901 	 */
1902 	if (unlikely(test_thread_flag(TIF_MEMDIE)
1903 		     || fatal_signal_pending(current)))
1904 		goto bypass;
1905 
1906 	/*
1907 	 * We always charge the cgroup the mm_struct belongs to.
1908 	 * The mm_struct's mem_cgroup changes on task migration if the
1909 	 * thread group leader migrates. It's possible that mm is not
1910 	 * set, if so charge the init_mm (happens for pagecache usage).
1911 	 */
1912 	if (!*memcg && !mm)
1913 		goto bypass;
1914 again:
1915 	if (*memcg) { /* css should be a valid one */
1916 		mem = *memcg;
1917 		VM_BUG_ON(css_is_removed(&mem->css));
1918 		if (mem_cgroup_is_root(mem))
1919 			goto done;
1920 		if (consume_stock(mem))
1921 			goto done;
1922 		css_get(&mem->css);
1923 	} else {
1924 		struct task_struct *p;
1925 
1926 		rcu_read_lock();
1927 		p = rcu_dereference(mm->owner);
1928 		/*
1929 		 * Because we don't have task_lock(), "p" can exit.
1930 		 * In that case, "mem" can point to root or p can be NULL with
1931 		 * race with swapoff. Then, we have small risk of mis-accouning.
1932 		 * But such kind of mis-account by race always happens because
1933 		 * we don't have cgroup_mutex(). It's overkill and we allo that
1934 		 * small race, here.
1935 		 * (*) swapoff at el will charge against mm-struct not against
1936 		 * task-struct. So, mm->owner can be NULL.
1937 		 */
1938 		mem = mem_cgroup_from_task(p);
1939 		if (!mem || mem_cgroup_is_root(mem)) {
1940 			rcu_read_unlock();
1941 			goto done;
1942 		}
1943 		if (consume_stock(mem)) {
1944 			/*
1945 			 * It seems dagerous to access memcg without css_get().
1946 			 * But considering how consume_stok works, it's not
1947 			 * necessary. If consume_stock success, some charges
1948 			 * from this memcg are cached on this cpu. So, we
1949 			 * don't need to call css_get()/css_tryget() before
1950 			 * calling consume_stock().
1951 			 */
1952 			rcu_read_unlock();
1953 			goto done;
1954 		}
1955 		/* after here, we may be blocked. we need to get refcnt */
1956 		if (!css_tryget(&mem->css)) {
1957 			rcu_read_unlock();
1958 			goto again;
1959 		}
1960 		rcu_read_unlock();
1961 	}
1962 
1963 	do {
1964 		bool oom_check;
1965 
1966 		/* If killed, bypass charge */
1967 		if (fatal_signal_pending(current)) {
1968 			css_put(&mem->css);
1969 			goto bypass;
1970 		}
1971 
1972 		oom_check = false;
1973 		if (oom && !nr_oom_retries) {
1974 			oom_check = true;
1975 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1976 		}
1977 
1978 		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1979 
1980 		switch (ret) {
1981 		case CHARGE_OK:
1982 			break;
1983 		case CHARGE_RETRY: /* not in OOM situation but retry */
1984 			csize = PAGE_SIZE;
1985 			css_put(&mem->css);
1986 			mem = NULL;
1987 			goto again;
1988 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1989 			css_put(&mem->css);
1990 			goto nomem;
1991 		case CHARGE_NOMEM: /* OOM routine works */
1992 			if (!oom) {
1993 				css_put(&mem->css);
1994 				goto nomem;
1995 			}
1996 			/* If oom, we never return -ENOMEM */
1997 			nr_oom_retries--;
1998 			break;
1999 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2000 			css_put(&mem->css);
2001 			goto bypass;
2002 		}
2003 	} while (ret != CHARGE_OK);
2004 
2005 	if (csize > PAGE_SIZE)
2006 		refill_stock(mem, csize - PAGE_SIZE);
2007 	css_put(&mem->css);
2008 done:
2009 	*memcg = mem;
2010 	return 0;
2011 nomem:
2012 	*memcg = NULL;
2013 	return -ENOMEM;
2014 bypass:
2015 	*memcg = NULL;
2016 	return 0;
2017 }
2018 
2019 /*
2020  * Somemtimes we have to undo a charge we got by try_charge().
2021  * This function is for that and do uncharge, put css's refcnt.
2022  * gotten by try_charge().
2023  */
2024 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2025 							unsigned long count)
2026 {
2027 	if (!mem_cgroup_is_root(mem)) {
2028 		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2029 		if (do_swap_account)
2030 			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2031 	}
2032 }
2033 
2034 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
2035 {
2036 	__mem_cgroup_cancel_charge(mem, 1);
2037 }
2038 
2039 /*
2040  * A helper function to get mem_cgroup from ID. must be called under
2041  * rcu_read_lock(). The caller must check css_is_removed() or some if
2042  * it's concern. (dropping refcnt from swap can be called against removed
2043  * memcg.)
2044  */
2045 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2046 {
2047 	struct cgroup_subsys_state *css;
2048 
2049 	/* ID 0 is unused ID */
2050 	if (!id)
2051 		return NULL;
2052 	css = css_lookup(&mem_cgroup_subsys, id);
2053 	if (!css)
2054 		return NULL;
2055 	return container_of(css, struct mem_cgroup, css);
2056 }
2057 
2058 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2059 {
2060 	struct mem_cgroup *mem = NULL;
2061 	struct page_cgroup *pc;
2062 	unsigned short id;
2063 	swp_entry_t ent;
2064 
2065 	VM_BUG_ON(!PageLocked(page));
2066 
2067 	pc = lookup_page_cgroup(page);
2068 	lock_page_cgroup(pc);
2069 	if (PageCgroupUsed(pc)) {
2070 		mem = pc->mem_cgroup;
2071 		if (mem && !css_tryget(&mem->css))
2072 			mem = NULL;
2073 	} else if (PageSwapCache(page)) {
2074 		ent.val = page_private(page);
2075 		id = lookup_swap_cgroup(ent);
2076 		rcu_read_lock();
2077 		mem = mem_cgroup_lookup(id);
2078 		if (mem && !css_tryget(&mem->css))
2079 			mem = NULL;
2080 		rcu_read_unlock();
2081 	}
2082 	unlock_page_cgroup(pc);
2083 	return mem;
2084 }
2085 
2086 /*
2087  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2088  * USED state. If already USED, uncharge and return.
2089  */
2090 
2091 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2092 				     struct page_cgroup *pc,
2093 				     enum charge_type ctype)
2094 {
2095 	/* try_charge() can return NULL to *memcg, taking care of it. */
2096 	if (!mem)
2097 		return;
2098 
2099 	lock_page_cgroup(pc);
2100 	if (unlikely(PageCgroupUsed(pc))) {
2101 		unlock_page_cgroup(pc);
2102 		mem_cgroup_cancel_charge(mem);
2103 		return;
2104 	}
2105 
2106 	pc->mem_cgroup = mem;
2107 	/*
2108 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2109 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2110 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2111 	 * before USED bit, we need memory barrier here.
2112 	 * See mem_cgroup_add_lru_list(), etc.
2113  	 */
2114 	smp_wmb();
2115 	switch (ctype) {
2116 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2117 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2118 		SetPageCgroupCache(pc);
2119 		SetPageCgroupUsed(pc);
2120 		break;
2121 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2122 		ClearPageCgroupCache(pc);
2123 		SetPageCgroupUsed(pc);
2124 		break;
2125 	default:
2126 		break;
2127 	}
2128 
2129 	mem_cgroup_charge_statistics(mem, pc, true);
2130 
2131 	unlock_page_cgroup(pc);
2132 	/*
2133 	 * "charge_statistics" updated event counter. Then, check it.
2134 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2135 	 * if they exceeds softlimit.
2136 	 */
2137 	memcg_check_events(mem, pc->page);
2138 }
2139 
2140 /**
2141  * __mem_cgroup_move_account - move account of the page
2142  * @pc:	page_cgroup of the page.
2143  * @from: mem_cgroup which the page is moved from.
2144  * @to:	mem_cgroup which the page is moved to. @from != @to.
2145  * @uncharge: whether we should call uncharge and css_put against @from.
2146  *
2147  * The caller must confirm following.
2148  * - page is not on LRU (isolate_page() is useful.)
2149  * - the pc is locked, used, and ->mem_cgroup points to @from.
2150  *
2151  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2152  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2153  * true, this function does "uncharge" from old cgroup, but it doesn't if
2154  * @uncharge is false, so a caller should do "uncharge".
2155  */
2156 
2157 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2158 	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2159 {
2160 	VM_BUG_ON(from == to);
2161 	VM_BUG_ON(PageLRU(pc->page));
2162 	VM_BUG_ON(!page_is_cgroup_locked(pc));
2163 	VM_BUG_ON(!PageCgroupUsed(pc));
2164 	VM_BUG_ON(pc->mem_cgroup != from);
2165 
2166 	if (PageCgroupFileMapped(pc)) {
2167 		/* Update mapped_file data for mem_cgroup */
2168 		preempt_disable();
2169 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2170 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2171 		preempt_enable();
2172 	}
2173 	mem_cgroup_charge_statistics(from, pc, false);
2174 	if (uncharge)
2175 		/* This is not "cancel", but cancel_charge does all we need. */
2176 		mem_cgroup_cancel_charge(from);
2177 
2178 	/* caller should have done css_get */
2179 	pc->mem_cgroup = to;
2180 	mem_cgroup_charge_statistics(to, pc, true);
2181 	/*
2182 	 * We charges against "to" which may not have any tasks. Then, "to"
2183 	 * can be under rmdir(). But in current implementation, caller of
2184 	 * this function is just force_empty() and move charge, so it's
2185 	 * garanteed that "to" is never removed. So, we don't check rmdir
2186 	 * status here.
2187 	 */
2188 }
2189 
2190 /*
2191  * check whether the @pc is valid for moving account and call
2192  * __mem_cgroup_move_account()
2193  */
2194 static int mem_cgroup_move_account(struct page_cgroup *pc,
2195 		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2196 {
2197 	int ret = -EINVAL;
2198 	lock_page_cgroup(pc);
2199 	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2200 		__mem_cgroup_move_account(pc, from, to, uncharge);
2201 		ret = 0;
2202 	}
2203 	unlock_page_cgroup(pc);
2204 	/*
2205 	 * check events
2206 	 */
2207 	memcg_check_events(to, pc->page);
2208 	memcg_check_events(from, pc->page);
2209 	return ret;
2210 }
2211 
2212 /*
2213  * move charges to its parent.
2214  */
2215 
2216 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2217 				  struct mem_cgroup *child,
2218 				  gfp_t gfp_mask)
2219 {
2220 	struct page *page = pc->page;
2221 	struct cgroup *cg = child->css.cgroup;
2222 	struct cgroup *pcg = cg->parent;
2223 	struct mem_cgroup *parent;
2224 	int ret;
2225 
2226 	/* Is ROOT ? */
2227 	if (!pcg)
2228 		return -EINVAL;
2229 
2230 	ret = -EBUSY;
2231 	if (!get_page_unless_zero(page))
2232 		goto out;
2233 	if (isolate_lru_page(page))
2234 		goto put;
2235 
2236 	parent = mem_cgroup_from_cont(pcg);
2237 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2238 	if (ret || !parent)
2239 		goto put_back;
2240 
2241 	ret = mem_cgroup_move_account(pc, child, parent, true);
2242 	if (ret)
2243 		mem_cgroup_cancel_charge(parent);
2244 put_back:
2245 	putback_lru_page(page);
2246 put:
2247 	put_page(page);
2248 out:
2249 	return ret;
2250 }
2251 
2252 /*
2253  * Charge the memory controller for page usage.
2254  * Return
2255  * 0 if the charge was successful
2256  * < 0 if the cgroup is over its limit
2257  */
2258 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2259 				gfp_t gfp_mask, enum charge_type ctype)
2260 {
2261 	struct mem_cgroup *mem = NULL;
2262 	struct page_cgroup *pc;
2263 	int ret;
2264 
2265 	pc = lookup_page_cgroup(page);
2266 	/* can happen at boot */
2267 	if (unlikely(!pc))
2268 		return 0;
2269 	prefetchw(pc);
2270 
2271 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2272 	if (ret || !mem)
2273 		return ret;
2274 
2275 	__mem_cgroup_commit_charge(mem, pc, ctype);
2276 	return 0;
2277 }
2278 
2279 int mem_cgroup_newpage_charge(struct page *page,
2280 			      struct mm_struct *mm, gfp_t gfp_mask)
2281 {
2282 	if (mem_cgroup_disabled())
2283 		return 0;
2284 	if (PageCompound(page))
2285 		return 0;
2286 	/*
2287 	 * If already mapped, we don't have to account.
2288 	 * If page cache, page->mapping has address_space.
2289 	 * But page->mapping may have out-of-use anon_vma pointer,
2290 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2291 	 * is NULL.
2292   	 */
2293 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2294 		return 0;
2295 	if (unlikely(!mm))
2296 		mm = &init_mm;
2297 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2298 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2299 }
2300 
2301 static void
2302 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2303 					enum charge_type ctype);
2304 
2305 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2306 				gfp_t gfp_mask)
2307 {
2308 	int ret;
2309 
2310 	if (mem_cgroup_disabled())
2311 		return 0;
2312 	if (PageCompound(page))
2313 		return 0;
2314 	/*
2315 	 * Corner case handling. This is called from add_to_page_cache()
2316 	 * in usual. But some FS (shmem) precharges this page before calling it
2317 	 * and call add_to_page_cache() with GFP_NOWAIT.
2318 	 *
2319 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2320 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2321 	 * charge twice. (It works but has to pay a bit larger cost.)
2322 	 * And when the page is SwapCache, it should take swap information
2323 	 * into account. This is under lock_page() now.
2324 	 */
2325 	if (!(gfp_mask & __GFP_WAIT)) {
2326 		struct page_cgroup *pc;
2327 
2328 		pc = lookup_page_cgroup(page);
2329 		if (!pc)
2330 			return 0;
2331 		lock_page_cgroup(pc);
2332 		if (PageCgroupUsed(pc)) {
2333 			unlock_page_cgroup(pc);
2334 			return 0;
2335 		}
2336 		unlock_page_cgroup(pc);
2337 	}
2338 
2339 	if (unlikely(!mm))
2340 		mm = &init_mm;
2341 
2342 	if (page_is_file_cache(page))
2343 		return mem_cgroup_charge_common(page, mm, gfp_mask,
2344 				MEM_CGROUP_CHARGE_TYPE_CACHE);
2345 
2346 	/* shmem */
2347 	if (PageSwapCache(page)) {
2348 		struct mem_cgroup *mem = NULL;
2349 
2350 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2351 		if (!ret)
2352 			__mem_cgroup_commit_charge_swapin(page, mem,
2353 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2354 	} else
2355 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2356 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2357 
2358 	return ret;
2359 }
2360 
2361 /*
2362  * While swap-in, try_charge -> commit or cancel, the page is locked.
2363  * And when try_charge() successfully returns, one refcnt to memcg without
2364  * struct page_cgroup is acquired. This refcnt will be consumed by
2365  * "commit()" or removed by "cancel()"
2366  */
2367 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2368 				 struct page *page,
2369 				 gfp_t mask, struct mem_cgroup **ptr)
2370 {
2371 	struct mem_cgroup *mem;
2372 	int ret;
2373 
2374 	if (mem_cgroup_disabled())
2375 		return 0;
2376 
2377 	if (!do_swap_account)
2378 		goto charge_cur_mm;
2379 	/*
2380 	 * A racing thread's fault, or swapoff, may have already updated
2381 	 * the pte, and even removed page from swap cache: in those cases
2382 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2383 	 * KSM case which does need to charge the page.
2384 	 */
2385 	if (!PageSwapCache(page))
2386 		goto charge_cur_mm;
2387 	mem = try_get_mem_cgroup_from_page(page);
2388 	if (!mem)
2389 		goto charge_cur_mm;
2390 	*ptr = mem;
2391 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2392 	css_put(&mem->css);
2393 	return ret;
2394 charge_cur_mm:
2395 	if (unlikely(!mm))
2396 		mm = &init_mm;
2397 	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2398 }
2399 
2400 static void
2401 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2402 					enum charge_type ctype)
2403 {
2404 	struct page_cgroup *pc;
2405 
2406 	if (mem_cgroup_disabled())
2407 		return;
2408 	if (!ptr)
2409 		return;
2410 	cgroup_exclude_rmdir(&ptr->css);
2411 	pc = lookup_page_cgroup(page);
2412 	mem_cgroup_lru_del_before_commit_swapcache(page);
2413 	__mem_cgroup_commit_charge(ptr, pc, ctype);
2414 	mem_cgroup_lru_add_after_commit_swapcache(page);
2415 	/*
2416 	 * Now swap is on-memory. This means this page may be
2417 	 * counted both as mem and swap....double count.
2418 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2419 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2420 	 * may call delete_from_swap_cache() before reach here.
2421 	 */
2422 	if (do_swap_account && PageSwapCache(page)) {
2423 		swp_entry_t ent = {.val = page_private(page)};
2424 		unsigned short id;
2425 		struct mem_cgroup *memcg;
2426 
2427 		id = swap_cgroup_record(ent, 0);
2428 		rcu_read_lock();
2429 		memcg = mem_cgroup_lookup(id);
2430 		if (memcg) {
2431 			/*
2432 			 * This recorded memcg can be obsolete one. So, avoid
2433 			 * calling css_tryget
2434 			 */
2435 			if (!mem_cgroup_is_root(memcg))
2436 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2437 			mem_cgroup_swap_statistics(memcg, false);
2438 			mem_cgroup_put(memcg);
2439 		}
2440 		rcu_read_unlock();
2441 	}
2442 	/*
2443 	 * At swapin, we may charge account against cgroup which has no tasks.
2444 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2445 	 * In that case, we need to call pre_destroy() again. check it here.
2446 	 */
2447 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2448 }
2449 
2450 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2451 {
2452 	__mem_cgroup_commit_charge_swapin(page, ptr,
2453 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2454 }
2455 
2456 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2457 {
2458 	if (mem_cgroup_disabled())
2459 		return;
2460 	if (!mem)
2461 		return;
2462 	mem_cgroup_cancel_charge(mem);
2463 }
2464 
2465 static void
2466 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2467 {
2468 	struct memcg_batch_info *batch = NULL;
2469 	bool uncharge_memsw = true;
2470 	/* If swapout, usage of swap doesn't decrease */
2471 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2472 		uncharge_memsw = false;
2473 
2474 	batch = &current->memcg_batch;
2475 	/*
2476 	 * In usual, we do css_get() when we remember memcg pointer.
2477 	 * But in this case, we keep res->usage until end of a series of
2478 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2479 	 */
2480 	if (!batch->memcg)
2481 		batch->memcg = mem;
2482 	/*
2483 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2484 	 * In those cases, all pages freed continously can be expected to be in
2485 	 * the same cgroup and we have chance to coalesce uncharges.
2486 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2487 	 * because we want to do uncharge as soon as possible.
2488 	 */
2489 
2490 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2491 		goto direct_uncharge;
2492 
2493 	/*
2494 	 * In typical case, batch->memcg == mem. This means we can
2495 	 * merge a series of uncharges to an uncharge of res_counter.
2496 	 * If not, we uncharge res_counter ony by one.
2497 	 */
2498 	if (batch->memcg != mem)
2499 		goto direct_uncharge;
2500 	/* remember freed charge and uncharge it later */
2501 	batch->bytes += PAGE_SIZE;
2502 	if (uncharge_memsw)
2503 		batch->memsw_bytes += PAGE_SIZE;
2504 	return;
2505 direct_uncharge:
2506 	res_counter_uncharge(&mem->res, PAGE_SIZE);
2507 	if (uncharge_memsw)
2508 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2509 	if (unlikely(batch->memcg != mem))
2510 		memcg_oom_recover(mem);
2511 	return;
2512 }
2513 
2514 /*
2515  * uncharge if !page_mapped(page)
2516  */
2517 static struct mem_cgroup *
2518 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2519 {
2520 	struct page_cgroup *pc;
2521 	struct mem_cgroup *mem = NULL;
2522 
2523 	if (mem_cgroup_disabled())
2524 		return NULL;
2525 
2526 	if (PageSwapCache(page))
2527 		return NULL;
2528 
2529 	/*
2530 	 * Check if our page_cgroup is valid
2531 	 */
2532 	pc = lookup_page_cgroup(page);
2533 	if (unlikely(!pc || !PageCgroupUsed(pc)))
2534 		return NULL;
2535 
2536 	lock_page_cgroup(pc);
2537 
2538 	mem = pc->mem_cgroup;
2539 
2540 	if (!PageCgroupUsed(pc))
2541 		goto unlock_out;
2542 
2543 	switch (ctype) {
2544 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2545 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2546 		/* See mem_cgroup_prepare_migration() */
2547 		if (page_mapped(page) || PageCgroupMigration(pc))
2548 			goto unlock_out;
2549 		break;
2550 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2551 		if (!PageAnon(page)) {	/* Shared memory */
2552 			if (page->mapping && !page_is_file_cache(page))
2553 				goto unlock_out;
2554 		} else if (page_mapped(page)) /* Anon */
2555 				goto unlock_out;
2556 		break;
2557 	default:
2558 		break;
2559 	}
2560 
2561 	mem_cgroup_charge_statistics(mem, pc, false);
2562 
2563 	ClearPageCgroupUsed(pc);
2564 	/*
2565 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2566 	 * freed from LRU. This is safe because uncharged page is expected not
2567 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2568 	 * special functions.
2569 	 */
2570 
2571 	unlock_page_cgroup(pc);
2572 	/*
2573 	 * even after unlock, we have mem->res.usage here and this memcg
2574 	 * will never be freed.
2575 	 */
2576 	memcg_check_events(mem, page);
2577 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2578 		mem_cgroup_swap_statistics(mem, true);
2579 		mem_cgroup_get(mem);
2580 	}
2581 	if (!mem_cgroup_is_root(mem))
2582 		__do_uncharge(mem, ctype);
2583 
2584 	return mem;
2585 
2586 unlock_out:
2587 	unlock_page_cgroup(pc);
2588 	return NULL;
2589 }
2590 
2591 void mem_cgroup_uncharge_page(struct page *page)
2592 {
2593 	/* early check. */
2594 	if (page_mapped(page))
2595 		return;
2596 	if (page->mapping && !PageAnon(page))
2597 		return;
2598 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2599 }
2600 
2601 void mem_cgroup_uncharge_cache_page(struct page *page)
2602 {
2603 	VM_BUG_ON(page_mapped(page));
2604 	VM_BUG_ON(page->mapping);
2605 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2606 }
2607 
2608 /*
2609  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2610  * In that cases, pages are freed continuously and we can expect pages
2611  * are in the same memcg. All these calls itself limits the number of
2612  * pages freed at once, then uncharge_start/end() is called properly.
2613  * This may be called prural(2) times in a context,
2614  */
2615 
2616 void mem_cgroup_uncharge_start(void)
2617 {
2618 	current->memcg_batch.do_batch++;
2619 	/* We can do nest. */
2620 	if (current->memcg_batch.do_batch == 1) {
2621 		current->memcg_batch.memcg = NULL;
2622 		current->memcg_batch.bytes = 0;
2623 		current->memcg_batch.memsw_bytes = 0;
2624 	}
2625 }
2626 
2627 void mem_cgroup_uncharge_end(void)
2628 {
2629 	struct memcg_batch_info *batch = &current->memcg_batch;
2630 
2631 	if (!batch->do_batch)
2632 		return;
2633 
2634 	batch->do_batch--;
2635 	if (batch->do_batch) /* If stacked, do nothing. */
2636 		return;
2637 
2638 	if (!batch->memcg)
2639 		return;
2640 	/*
2641 	 * This "batch->memcg" is valid without any css_get/put etc...
2642 	 * bacause we hide charges behind us.
2643 	 */
2644 	if (batch->bytes)
2645 		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2646 	if (batch->memsw_bytes)
2647 		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2648 	memcg_oom_recover(batch->memcg);
2649 	/* forget this pointer (for sanity check) */
2650 	batch->memcg = NULL;
2651 }
2652 
2653 #ifdef CONFIG_SWAP
2654 /*
2655  * called after __delete_from_swap_cache() and drop "page" account.
2656  * memcg information is recorded to swap_cgroup of "ent"
2657  */
2658 void
2659 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2660 {
2661 	struct mem_cgroup *memcg;
2662 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2663 
2664 	if (!swapout) /* this was a swap cache but the swap is unused ! */
2665 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2666 
2667 	memcg = __mem_cgroup_uncharge_common(page, ctype);
2668 
2669 	/*
2670 	 * record memcg information,  if swapout && memcg != NULL,
2671 	 * mem_cgroup_get() was called in uncharge().
2672 	 */
2673 	if (do_swap_account && swapout && memcg)
2674 		swap_cgroup_record(ent, css_id(&memcg->css));
2675 }
2676 #endif
2677 
2678 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2679 /*
2680  * called from swap_entry_free(). remove record in swap_cgroup and
2681  * uncharge "memsw" account.
2682  */
2683 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2684 {
2685 	struct mem_cgroup *memcg;
2686 	unsigned short id;
2687 
2688 	if (!do_swap_account)
2689 		return;
2690 
2691 	id = swap_cgroup_record(ent, 0);
2692 	rcu_read_lock();
2693 	memcg = mem_cgroup_lookup(id);
2694 	if (memcg) {
2695 		/*
2696 		 * We uncharge this because swap is freed.
2697 		 * This memcg can be obsolete one. We avoid calling css_tryget
2698 		 */
2699 		if (!mem_cgroup_is_root(memcg))
2700 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2701 		mem_cgroup_swap_statistics(memcg, false);
2702 		mem_cgroup_put(memcg);
2703 	}
2704 	rcu_read_unlock();
2705 }
2706 
2707 /**
2708  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2709  * @entry: swap entry to be moved
2710  * @from:  mem_cgroup which the entry is moved from
2711  * @to:  mem_cgroup which the entry is moved to
2712  * @need_fixup: whether we should fixup res_counters and refcounts.
2713  *
2714  * It succeeds only when the swap_cgroup's record for this entry is the same
2715  * as the mem_cgroup's id of @from.
2716  *
2717  * Returns 0 on success, -EINVAL on failure.
2718  *
2719  * The caller must have charged to @to, IOW, called res_counter_charge() about
2720  * both res and memsw, and called css_get().
2721  */
2722 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2723 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2724 {
2725 	unsigned short old_id, new_id;
2726 
2727 	old_id = css_id(&from->css);
2728 	new_id = css_id(&to->css);
2729 
2730 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2731 		mem_cgroup_swap_statistics(from, false);
2732 		mem_cgroup_swap_statistics(to, true);
2733 		/*
2734 		 * This function is only called from task migration context now.
2735 		 * It postpones res_counter and refcount handling till the end
2736 		 * of task migration(mem_cgroup_clear_mc()) for performance
2737 		 * improvement. But we cannot postpone mem_cgroup_get(to)
2738 		 * because if the process that has been moved to @to does
2739 		 * swap-in, the refcount of @to might be decreased to 0.
2740 		 */
2741 		mem_cgroup_get(to);
2742 		if (need_fixup) {
2743 			if (!mem_cgroup_is_root(from))
2744 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2745 			mem_cgroup_put(from);
2746 			/*
2747 			 * we charged both to->res and to->memsw, so we should
2748 			 * uncharge to->res.
2749 			 */
2750 			if (!mem_cgroup_is_root(to))
2751 				res_counter_uncharge(&to->res, PAGE_SIZE);
2752 		}
2753 		return 0;
2754 	}
2755 	return -EINVAL;
2756 }
2757 #else
2758 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2759 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2760 {
2761 	return -EINVAL;
2762 }
2763 #endif
2764 
2765 /*
2766  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2767  * page belongs to.
2768  */
2769 int mem_cgroup_prepare_migration(struct page *page,
2770 	struct page *newpage, struct mem_cgroup **ptr)
2771 {
2772 	struct page_cgroup *pc;
2773 	struct mem_cgroup *mem = NULL;
2774 	enum charge_type ctype;
2775 	int ret = 0;
2776 
2777 	if (mem_cgroup_disabled())
2778 		return 0;
2779 
2780 	pc = lookup_page_cgroup(page);
2781 	lock_page_cgroup(pc);
2782 	if (PageCgroupUsed(pc)) {
2783 		mem = pc->mem_cgroup;
2784 		css_get(&mem->css);
2785 		/*
2786 		 * At migrating an anonymous page, its mapcount goes down
2787 		 * to 0 and uncharge() will be called. But, even if it's fully
2788 		 * unmapped, migration may fail and this page has to be
2789 		 * charged again. We set MIGRATION flag here and delay uncharge
2790 		 * until end_migration() is called
2791 		 *
2792 		 * Corner Case Thinking
2793 		 * A)
2794 		 * When the old page was mapped as Anon and it's unmap-and-freed
2795 		 * while migration was ongoing.
2796 		 * If unmap finds the old page, uncharge() of it will be delayed
2797 		 * until end_migration(). If unmap finds a new page, it's
2798 		 * uncharged when it make mapcount to be 1->0. If unmap code
2799 		 * finds swap_migration_entry, the new page will not be mapped
2800 		 * and end_migration() will find it(mapcount==0).
2801 		 *
2802 		 * B)
2803 		 * When the old page was mapped but migraion fails, the kernel
2804 		 * remaps it. A charge for it is kept by MIGRATION flag even
2805 		 * if mapcount goes down to 0. We can do remap successfully
2806 		 * without charging it again.
2807 		 *
2808 		 * C)
2809 		 * The "old" page is under lock_page() until the end of
2810 		 * migration, so, the old page itself will not be swapped-out.
2811 		 * If the new page is swapped out before end_migraton, our
2812 		 * hook to usual swap-out path will catch the event.
2813 		 */
2814 		if (PageAnon(page))
2815 			SetPageCgroupMigration(pc);
2816 	}
2817 	unlock_page_cgroup(pc);
2818 	/*
2819 	 * If the page is not charged at this point,
2820 	 * we return here.
2821 	 */
2822 	if (!mem)
2823 		return 0;
2824 
2825 	*ptr = mem;
2826 	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2827 	css_put(&mem->css);/* drop extra refcnt */
2828 	if (ret || *ptr == NULL) {
2829 		if (PageAnon(page)) {
2830 			lock_page_cgroup(pc);
2831 			ClearPageCgroupMigration(pc);
2832 			unlock_page_cgroup(pc);
2833 			/*
2834 			 * The old page may be fully unmapped while we kept it.
2835 			 */
2836 			mem_cgroup_uncharge_page(page);
2837 		}
2838 		return -ENOMEM;
2839 	}
2840 	/*
2841 	 * We charge new page before it's used/mapped. So, even if unlock_page()
2842 	 * is called before end_migration, we can catch all events on this new
2843 	 * page. In the case new page is migrated but not remapped, new page's
2844 	 * mapcount will be finally 0 and we call uncharge in end_migration().
2845 	 */
2846 	pc = lookup_page_cgroup(newpage);
2847 	if (PageAnon(page))
2848 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2849 	else if (page_is_file_cache(page))
2850 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2851 	else
2852 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2853 	__mem_cgroup_commit_charge(mem, pc, ctype);
2854 	return ret;
2855 }
2856 
2857 /* remove redundant charge if migration failed*/
2858 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2859 	struct page *oldpage, struct page *newpage)
2860 {
2861 	struct page *used, *unused;
2862 	struct page_cgroup *pc;
2863 
2864 	if (!mem)
2865 		return;
2866 	/* blocks rmdir() */
2867 	cgroup_exclude_rmdir(&mem->css);
2868 	/* at migration success, oldpage->mapping is NULL. */
2869 	if (oldpage->mapping) {
2870 		used = oldpage;
2871 		unused = newpage;
2872 	} else {
2873 		used = newpage;
2874 		unused = oldpage;
2875 	}
2876 	/*
2877 	 * We disallowed uncharge of pages under migration because mapcount
2878 	 * of the page goes down to zero, temporarly.
2879 	 * Clear the flag and check the page should be charged.
2880 	 */
2881 	pc = lookup_page_cgroup(oldpage);
2882 	lock_page_cgroup(pc);
2883 	ClearPageCgroupMigration(pc);
2884 	unlock_page_cgroup(pc);
2885 
2886 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2887 
2888 	/*
2889 	 * If a page is a file cache, radix-tree replacement is very atomic
2890 	 * and we can skip this check. When it was an Anon page, its mapcount
2891 	 * goes down to 0. But because we added MIGRATION flage, it's not
2892 	 * uncharged yet. There are several case but page->mapcount check
2893 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2894 	 * check. (see prepare_charge() also)
2895 	 */
2896 	if (PageAnon(used))
2897 		mem_cgroup_uncharge_page(used);
2898 	/*
2899 	 * At migration, we may charge account against cgroup which has no
2900 	 * tasks.
2901 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2902 	 * In that case, we need to call pre_destroy() again. check it here.
2903 	 */
2904 	cgroup_release_and_wakeup_rmdir(&mem->css);
2905 }
2906 
2907 /*
2908  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2909  * Calling hierarchical_reclaim is not enough because we should update
2910  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2911  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2912  * not from the memcg which this page would be charged to.
2913  * try_charge_swapin does all of these works properly.
2914  */
2915 int mem_cgroup_shmem_charge_fallback(struct page *page,
2916 			    struct mm_struct *mm,
2917 			    gfp_t gfp_mask)
2918 {
2919 	struct mem_cgroup *mem = NULL;
2920 	int ret;
2921 
2922 	if (mem_cgroup_disabled())
2923 		return 0;
2924 
2925 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2926 	if (!ret)
2927 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2928 
2929 	return ret;
2930 }
2931 
2932 static DEFINE_MUTEX(set_limit_mutex);
2933 
2934 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2935 				unsigned long long val)
2936 {
2937 	int retry_count;
2938 	u64 memswlimit, memlimit;
2939 	int ret = 0;
2940 	int children = mem_cgroup_count_children(memcg);
2941 	u64 curusage, oldusage;
2942 	int enlarge;
2943 
2944 	/*
2945 	 * For keeping hierarchical_reclaim simple, how long we should retry
2946 	 * is depends on callers. We set our retry-count to be function
2947 	 * of # of children which we should visit in this loop.
2948 	 */
2949 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2950 
2951 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2952 
2953 	enlarge = 0;
2954 	while (retry_count) {
2955 		if (signal_pending(current)) {
2956 			ret = -EINTR;
2957 			break;
2958 		}
2959 		/*
2960 		 * Rather than hide all in some function, I do this in
2961 		 * open coded manner. You see what this really does.
2962 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2963 		 */
2964 		mutex_lock(&set_limit_mutex);
2965 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2966 		if (memswlimit < val) {
2967 			ret = -EINVAL;
2968 			mutex_unlock(&set_limit_mutex);
2969 			break;
2970 		}
2971 
2972 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2973 		if (memlimit < val)
2974 			enlarge = 1;
2975 
2976 		ret = res_counter_set_limit(&memcg->res, val);
2977 		if (!ret) {
2978 			if (memswlimit == val)
2979 				memcg->memsw_is_minimum = true;
2980 			else
2981 				memcg->memsw_is_minimum = false;
2982 		}
2983 		mutex_unlock(&set_limit_mutex);
2984 
2985 		if (!ret)
2986 			break;
2987 
2988 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2989 						MEM_CGROUP_RECLAIM_SHRINK);
2990 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2991 		/* Usage is reduced ? */
2992   		if (curusage >= oldusage)
2993 			retry_count--;
2994 		else
2995 			oldusage = curusage;
2996 	}
2997 	if (!ret && enlarge)
2998 		memcg_oom_recover(memcg);
2999 
3000 	return ret;
3001 }
3002 
3003 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3004 					unsigned long long val)
3005 {
3006 	int retry_count;
3007 	u64 memlimit, memswlimit, oldusage, curusage;
3008 	int children = mem_cgroup_count_children(memcg);
3009 	int ret = -EBUSY;
3010 	int enlarge = 0;
3011 
3012 	/* see mem_cgroup_resize_res_limit */
3013  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3014 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3015 	while (retry_count) {
3016 		if (signal_pending(current)) {
3017 			ret = -EINTR;
3018 			break;
3019 		}
3020 		/*
3021 		 * Rather than hide all in some function, I do this in
3022 		 * open coded manner. You see what this really does.
3023 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3024 		 */
3025 		mutex_lock(&set_limit_mutex);
3026 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3027 		if (memlimit > val) {
3028 			ret = -EINVAL;
3029 			mutex_unlock(&set_limit_mutex);
3030 			break;
3031 		}
3032 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3033 		if (memswlimit < val)
3034 			enlarge = 1;
3035 		ret = res_counter_set_limit(&memcg->memsw, val);
3036 		if (!ret) {
3037 			if (memlimit == val)
3038 				memcg->memsw_is_minimum = true;
3039 			else
3040 				memcg->memsw_is_minimum = false;
3041 		}
3042 		mutex_unlock(&set_limit_mutex);
3043 
3044 		if (!ret)
3045 			break;
3046 
3047 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3048 						MEM_CGROUP_RECLAIM_NOSWAP |
3049 						MEM_CGROUP_RECLAIM_SHRINK);
3050 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3051 		/* Usage is reduced ? */
3052 		if (curusage >= oldusage)
3053 			retry_count--;
3054 		else
3055 			oldusage = curusage;
3056 	}
3057 	if (!ret && enlarge)
3058 		memcg_oom_recover(memcg);
3059 	return ret;
3060 }
3061 
3062 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3063 					    gfp_t gfp_mask)
3064 {
3065 	unsigned long nr_reclaimed = 0;
3066 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3067 	unsigned long reclaimed;
3068 	int loop = 0;
3069 	struct mem_cgroup_tree_per_zone *mctz;
3070 	unsigned long long excess;
3071 
3072 	if (order > 0)
3073 		return 0;
3074 
3075 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3076 	/*
3077 	 * This loop can run a while, specially if mem_cgroup's continuously
3078 	 * keep exceeding their soft limit and putting the system under
3079 	 * pressure
3080 	 */
3081 	do {
3082 		if (next_mz)
3083 			mz = next_mz;
3084 		else
3085 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3086 		if (!mz)
3087 			break;
3088 
3089 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3090 						gfp_mask,
3091 						MEM_CGROUP_RECLAIM_SOFT);
3092 		nr_reclaimed += reclaimed;
3093 		spin_lock(&mctz->lock);
3094 
3095 		/*
3096 		 * If we failed to reclaim anything from this memory cgroup
3097 		 * it is time to move on to the next cgroup
3098 		 */
3099 		next_mz = NULL;
3100 		if (!reclaimed) {
3101 			do {
3102 				/*
3103 				 * Loop until we find yet another one.
3104 				 *
3105 				 * By the time we get the soft_limit lock
3106 				 * again, someone might have aded the
3107 				 * group back on the RB tree. Iterate to
3108 				 * make sure we get a different mem.
3109 				 * mem_cgroup_largest_soft_limit_node returns
3110 				 * NULL if no other cgroup is present on
3111 				 * the tree
3112 				 */
3113 				next_mz =
3114 				__mem_cgroup_largest_soft_limit_node(mctz);
3115 				if (next_mz == mz) {
3116 					css_put(&next_mz->mem->css);
3117 					next_mz = NULL;
3118 				} else /* next_mz == NULL or other memcg */
3119 					break;
3120 			} while (1);
3121 		}
3122 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3123 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3124 		/*
3125 		 * One school of thought says that we should not add
3126 		 * back the node to the tree if reclaim returns 0.
3127 		 * But our reclaim could return 0, simply because due
3128 		 * to priority we are exposing a smaller subset of
3129 		 * memory to reclaim from. Consider this as a longer
3130 		 * term TODO.
3131 		 */
3132 		/* If excess == 0, no tree ops */
3133 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3134 		spin_unlock(&mctz->lock);
3135 		css_put(&mz->mem->css);
3136 		loop++;
3137 		/*
3138 		 * Could not reclaim anything and there are no more
3139 		 * mem cgroups to try or we seem to be looping without
3140 		 * reclaiming anything.
3141 		 */
3142 		if (!nr_reclaimed &&
3143 			(next_mz == NULL ||
3144 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3145 			break;
3146 	} while (!nr_reclaimed);
3147 	if (next_mz)
3148 		css_put(&next_mz->mem->css);
3149 	return nr_reclaimed;
3150 }
3151 
3152 /*
3153  * This routine traverse page_cgroup in given list and drop them all.
3154  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3155  */
3156 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3157 				int node, int zid, enum lru_list lru)
3158 {
3159 	struct zone *zone;
3160 	struct mem_cgroup_per_zone *mz;
3161 	struct page_cgroup *pc, *busy;
3162 	unsigned long flags, loop;
3163 	struct list_head *list;
3164 	int ret = 0;
3165 
3166 	zone = &NODE_DATA(node)->node_zones[zid];
3167 	mz = mem_cgroup_zoneinfo(mem, node, zid);
3168 	list = &mz->lists[lru];
3169 
3170 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3171 	/* give some margin against EBUSY etc...*/
3172 	loop += 256;
3173 	busy = NULL;
3174 	while (loop--) {
3175 		ret = 0;
3176 		spin_lock_irqsave(&zone->lru_lock, flags);
3177 		if (list_empty(list)) {
3178 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3179 			break;
3180 		}
3181 		pc = list_entry(list->prev, struct page_cgroup, lru);
3182 		if (busy == pc) {
3183 			list_move(&pc->lru, list);
3184 			busy = NULL;
3185 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3186 			continue;
3187 		}
3188 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3189 
3190 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3191 		if (ret == -ENOMEM)
3192 			break;
3193 
3194 		if (ret == -EBUSY || ret == -EINVAL) {
3195 			/* found lock contention or "pc" is obsolete. */
3196 			busy = pc;
3197 			cond_resched();
3198 		} else
3199 			busy = NULL;
3200 	}
3201 
3202 	if (!ret && !list_empty(list))
3203 		return -EBUSY;
3204 	return ret;
3205 }
3206 
3207 /*
3208  * make mem_cgroup's charge to be 0 if there is no task.
3209  * This enables deleting this mem_cgroup.
3210  */
3211 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3212 {
3213 	int ret;
3214 	int node, zid, shrink;
3215 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3216 	struct cgroup *cgrp = mem->css.cgroup;
3217 
3218 	css_get(&mem->css);
3219 
3220 	shrink = 0;
3221 	/* should free all ? */
3222 	if (free_all)
3223 		goto try_to_free;
3224 move_account:
3225 	do {
3226 		ret = -EBUSY;
3227 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3228 			goto out;
3229 		ret = -EINTR;
3230 		if (signal_pending(current))
3231 			goto out;
3232 		/* This is for making all *used* pages to be on LRU. */
3233 		lru_add_drain_all();
3234 		drain_all_stock_sync();
3235 		ret = 0;
3236 		mem_cgroup_start_move(mem);
3237 		for_each_node_state(node, N_HIGH_MEMORY) {
3238 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3239 				enum lru_list l;
3240 				for_each_lru(l) {
3241 					ret = mem_cgroup_force_empty_list(mem,
3242 							node, zid, l);
3243 					if (ret)
3244 						break;
3245 				}
3246 			}
3247 			if (ret)
3248 				break;
3249 		}
3250 		mem_cgroup_end_move(mem);
3251 		memcg_oom_recover(mem);
3252 		/* it seems parent cgroup doesn't have enough mem */
3253 		if (ret == -ENOMEM)
3254 			goto try_to_free;
3255 		cond_resched();
3256 	/* "ret" should also be checked to ensure all lists are empty. */
3257 	} while (mem->res.usage > 0 || ret);
3258 out:
3259 	css_put(&mem->css);
3260 	return ret;
3261 
3262 try_to_free:
3263 	/* returns EBUSY if there is a task or if we come here twice. */
3264 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3265 		ret = -EBUSY;
3266 		goto out;
3267 	}
3268 	/* we call try-to-free pages for make this cgroup empty */
3269 	lru_add_drain_all();
3270 	/* try to free all pages in this cgroup */
3271 	shrink = 1;
3272 	while (nr_retries && mem->res.usage > 0) {
3273 		int progress;
3274 
3275 		if (signal_pending(current)) {
3276 			ret = -EINTR;
3277 			goto out;
3278 		}
3279 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3280 						false, get_swappiness(mem));
3281 		if (!progress) {
3282 			nr_retries--;
3283 			/* maybe some writeback is necessary */
3284 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3285 		}
3286 
3287 	}
3288 	lru_add_drain();
3289 	/* try move_account...there may be some *locked* pages. */
3290 	goto move_account;
3291 }
3292 
3293 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3294 {
3295 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3296 }
3297 
3298 
3299 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3300 {
3301 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3302 }
3303 
3304 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3305 					u64 val)
3306 {
3307 	int retval = 0;
3308 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3309 	struct cgroup *parent = cont->parent;
3310 	struct mem_cgroup *parent_mem = NULL;
3311 
3312 	if (parent)
3313 		parent_mem = mem_cgroup_from_cont(parent);
3314 
3315 	cgroup_lock();
3316 	/*
3317 	 * If parent's use_hierarchy is set, we can't make any modifications
3318 	 * in the child subtrees. If it is unset, then the change can
3319 	 * occur, provided the current cgroup has no children.
3320 	 *
3321 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3322 	 * set if there are no children.
3323 	 */
3324 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3325 				(val == 1 || val == 0)) {
3326 		if (list_empty(&cont->children))
3327 			mem->use_hierarchy = val;
3328 		else
3329 			retval = -EBUSY;
3330 	} else
3331 		retval = -EINVAL;
3332 	cgroup_unlock();
3333 
3334 	return retval;
3335 }
3336 
3337 
3338 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3339 				enum mem_cgroup_stat_index idx)
3340 {
3341 	struct mem_cgroup *iter;
3342 	s64 val = 0;
3343 
3344 	/* each per cpu's value can be minus.Then, use s64 */
3345 	for_each_mem_cgroup_tree(iter, mem)
3346 		val += mem_cgroup_read_stat(iter, idx);
3347 
3348 	if (val < 0) /* race ? */
3349 		val = 0;
3350 	return val;
3351 }
3352 
3353 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3354 {
3355 	u64 val;
3356 
3357 	if (!mem_cgroup_is_root(mem)) {
3358 		if (!swap)
3359 			return res_counter_read_u64(&mem->res, RES_USAGE);
3360 		else
3361 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3362 	}
3363 
3364 	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3365 	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3366 
3367 	if (swap)
3368 		val += mem_cgroup_get_recursive_idx_stat(mem,
3369 				MEM_CGROUP_STAT_SWAPOUT);
3370 
3371 	return val << PAGE_SHIFT;
3372 }
3373 
3374 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3375 {
3376 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3377 	u64 val;
3378 	int type, name;
3379 
3380 	type = MEMFILE_TYPE(cft->private);
3381 	name = MEMFILE_ATTR(cft->private);
3382 	switch (type) {
3383 	case _MEM:
3384 		if (name == RES_USAGE)
3385 			val = mem_cgroup_usage(mem, false);
3386 		else
3387 			val = res_counter_read_u64(&mem->res, name);
3388 		break;
3389 	case _MEMSWAP:
3390 		if (name == RES_USAGE)
3391 			val = mem_cgroup_usage(mem, true);
3392 		else
3393 			val = res_counter_read_u64(&mem->memsw, name);
3394 		break;
3395 	default:
3396 		BUG();
3397 		break;
3398 	}
3399 	return val;
3400 }
3401 /*
3402  * The user of this function is...
3403  * RES_LIMIT.
3404  */
3405 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3406 			    const char *buffer)
3407 {
3408 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3409 	int type, name;
3410 	unsigned long long val;
3411 	int ret;
3412 
3413 	type = MEMFILE_TYPE(cft->private);
3414 	name = MEMFILE_ATTR(cft->private);
3415 	switch (name) {
3416 	case RES_LIMIT:
3417 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3418 			ret = -EINVAL;
3419 			break;
3420 		}
3421 		/* This function does all necessary parse...reuse it */
3422 		ret = res_counter_memparse_write_strategy(buffer, &val);
3423 		if (ret)
3424 			break;
3425 		if (type == _MEM)
3426 			ret = mem_cgroup_resize_limit(memcg, val);
3427 		else
3428 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3429 		break;
3430 	case RES_SOFT_LIMIT:
3431 		ret = res_counter_memparse_write_strategy(buffer, &val);
3432 		if (ret)
3433 			break;
3434 		/*
3435 		 * For memsw, soft limits are hard to implement in terms
3436 		 * of semantics, for now, we support soft limits for
3437 		 * control without swap
3438 		 */
3439 		if (type == _MEM)
3440 			ret = res_counter_set_soft_limit(&memcg->res, val);
3441 		else
3442 			ret = -EINVAL;
3443 		break;
3444 	default:
3445 		ret = -EINVAL; /* should be BUG() ? */
3446 		break;
3447 	}
3448 	return ret;
3449 }
3450 
3451 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3452 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3453 {
3454 	struct cgroup *cgroup;
3455 	unsigned long long min_limit, min_memsw_limit, tmp;
3456 
3457 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3458 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3459 	cgroup = memcg->css.cgroup;
3460 	if (!memcg->use_hierarchy)
3461 		goto out;
3462 
3463 	while (cgroup->parent) {
3464 		cgroup = cgroup->parent;
3465 		memcg = mem_cgroup_from_cont(cgroup);
3466 		if (!memcg->use_hierarchy)
3467 			break;
3468 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3469 		min_limit = min(min_limit, tmp);
3470 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3471 		min_memsw_limit = min(min_memsw_limit, tmp);
3472 	}
3473 out:
3474 	*mem_limit = min_limit;
3475 	*memsw_limit = min_memsw_limit;
3476 	return;
3477 }
3478 
3479 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3480 {
3481 	struct mem_cgroup *mem;
3482 	int type, name;
3483 
3484 	mem = mem_cgroup_from_cont(cont);
3485 	type = MEMFILE_TYPE(event);
3486 	name = MEMFILE_ATTR(event);
3487 	switch (name) {
3488 	case RES_MAX_USAGE:
3489 		if (type == _MEM)
3490 			res_counter_reset_max(&mem->res);
3491 		else
3492 			res_counter_reset_max(&mem->memsw);
3493 		break;
3494 	case RES_FAILCNT:
3495 		if (type == _MEM)
3496 			res_counter_reset_failcnt(&mem->res);
3497 		else
3498 			res_counter_reset_failcnt(&mem->memsw);
3499 		break;
3500 	}
3501 
3502 	return 0;
3503 }
3504 
3505 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3506 					struct cftype *cft)
3507 {
3508 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3509 }
3510 
3511 #ifdef CONFIG_MMU
3512 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3513 					struct cftype *cft, u64 val)
3514 {
3515 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3516 
3517 	if (val >= (1 << NR_MOVE_TYPE))
3518 		return -EINVAL;
3519 	/*
3520 	 * We check this value several times in both in can_attach() and
3521 	 * attach(), so we need cgroup lock to prevent this value from being
3522 	 * inconsistent.
3523 	 */
3524 	cgroup_lock();
3525 	mem->move_charge_at_immigrate = val;
3526 	cgroup_unlock();
3527 
3528 	return 0;
3529 }
3530 #else
3531 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3532 					struct cftype *cft, u64 val)
3533 {
3534 	return -ENOSYS;
3535 }
3536 #endif
3537 
3538 
3539 /* For read statistics */
3540 enum {
3541 	MCS_CACHE,
3542 	MCS_RSS,
3543 	MCS_FILE_MAPPED,
3544 	MCS_PGPGIN,
3545 	MCS_PGPGOUT,
3546 	MCS_SWAP,
3547 	MCS_INACTIVE_ANON,
3548 	MCS_ACTIVE_ANON,
3549 	MCS_INACTIVE_FILE,
3550 	MCS_ACTIVE_FILE,
3551 	MCS_UNEVICTABLE,
3552 	NR_MCS_STAT,
3553 };
3554 
3555 struct mcs_total_stat {
3556 	s64 stat[NR_MCS_STAT];
3557 };
3558 
3559 struct {
3560 	char *local_name;
3561 	char *total_name;
3562 } memcg_stat_strings[NR_MCS_STAT] = {
3563 	{"cache", "total_cache"},
3564 	{"rss", "total_rss"},
3565 	{"mapped_file", "total_mapped_file"},
3566 	{"pgpgin", "total_pgpgin"},
3567 	{"pgpgout", "total_pgpgout"},
3568 	{"swap", "total_swap"},
3569 	{"inactive_anon", "total_inactive_anon"},
3570 	{"active_anon", "total_active_anon"},
3571 	{"inactive_file", "total_inactive_file"},
3572 	{"active_file", "total_active_file"},
3573 	{"unevictable", "total_unevictable"}
3574 };
3575 
3576 
3577 static void
3578 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3579 {
3580 	s64 val;
3581 
3582 	/* per cpu stat */
3583 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3584 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3585 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3586 	s->stat[MCS_RSS] += val * PAGE_SIZE;
3587 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3588 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3589 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3590 	s->stat[MCS_PGPGIN] += val;
3591 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3592 	s->stat[MCS_PGPGOUT] += val;
3593 	if (do_swap_account) {
3594 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3595 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3596 	}
3597 
3598 	/* per zone stat */
3599 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3600 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3601 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3602 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3603 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3604 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3605 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3606 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3607 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3608 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3609 }
3610 
3611 static void
3612 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3613 {
3614 	struct mem_cgroup *iter;
3615 
3616 	for_each_mem_cgroup_tree(iter, mem)
3617 		mem_cgroup_get_local_stat(iter, s);
3618 }
3619 
3620 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3621 				 struct cgroup_map_cb *cb)
3622 {
3623 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3624 	struct mcs_total_stat mystat;
3625 	int i;
3626 
3627 	memset(&mystat, 0, sizeof(mystat));
3628 	mem_cgroup_get_local_stat(mem_cont, &mystat);
3629 
3630 	for (i = 0; i < NR_MCS_STAT; i++) {
3631 		if (i == MCS_SWAP && !do_swap_account)
3632 			continue;
3633 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3634 	}
3635 
3636 	/* Hierarchical information */
3637 	{
3638 		unsigned long long limit, memsw_limit;
3639 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3640 		cb->fill(cb, "hierarchical_memory_limit", limit);
3641 		if (do_swap_account)
3642 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3643 	}
3644 
3645 	memset(&mystat, 0, sizeof(mystat));
3646 	mem_cgroup_get_total_stat(mem_cont, &mystat);
3647 	for (i = 0; i < NR_MCS_STAT; i++) {
3648 		if (i == MCS_SWAP && !do_swap_account)
3649 			continue;
3650 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3651 	}
3652 
3653 #ifdef CONFIG_DEBUG_VM
3654 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3655 
3656 	{
3657 		int nid, zid;
3658 		struct mem_cgroup_per_zone *mz;
3659 		unsigned long recent_rotated[2] = {0, 0};
3660 		unsigned long recent_scanned[2] = {0, 0};
3661 
3662 		for_each_online_node(nid)
3663 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3664 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3665 
3666 				recent_rotated[0] +=
3667 					mz->reclaim_stat.recent_rotated[0];
3668 				recent_rotated[1] +=
3669 					mz->reclaim_stat.recent_rotated[1];
3670 				recent_scanned[0] +=
3671 					mz->reclaim_stat.recent_scanned[0];
3672 				recent_scanned[1] +=
3673 					mz->reclaim_stat.recent_scanned[1];
3674 			}
3675 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3676 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3677 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3678 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3679 	}
3680 #endif
3681 
3682 	return 0;
3683 }
3684 
3685 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3686 {
3687 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3688 
3689 	return get_swappiness(memcg);
3690 }
3691 
3692 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3693 				       u64 val)
3694 {
3695 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3696 	struct mem_cgroup *parent;
3697 
3698 	if (val > 100)
3699 		return -EINVAL;
3700 
3701 	if (cgrp->parent == NULL)
3702 		return -EINVAL;
3703 
3704 	parent = mem_cgroup_from_cont(cgrp->parent);
3705 
3706 	cgroup_lock();
3707 
3708 	/* If under hierarchy, only empty-root can set this value */
3709 	if ((parent->use_hierarchy) ||
3710 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3711 		cgroup_unlock();
3712 		return -EINVAL;
3713 	}
3714 
3715 	spin_lock(&memcg->reclaim_param_lock);
3716 	memcg->swappiness = val;
3717 	spin_unlock(&memcg->reclaim_param_lock);
3718 
3719 	cgroup_unlock();
3720 
3721 	return 0;
3722 }
3723 
3724 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3725 {
3726 	struct mem_cgroup_threshold_ary *t;
3727 	u64 usage;
3728 	int i;
3729 
3730 	rcu_read_lock();
3731 	if (!swap)
3732 		t = rcu_dereference(memcg->thresholds.primary);
3733 	else
3734 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3735 
3736 	if (!t)
3737 		goto unlock;
3738 
3739 	usage = mem_cgroup_usage(memcg, swap);
3740 
3741 	/*
3742 	 * current_threshold points to threshold just below usage.
3743 	 * If it's not true, a threshold was crossed after last
3744 	 * call of __mem_cgroup_threshold().
3745 	 */
3746 	i = t->current_threshold;
3747 
3748 	/*
3749 	 * Iterate backward over array of thresholds starting from
3750 	 * current_threshold and check if a threshold is crossed.
3751 	 * If none of thresholds below usage is crossed, we read
3752 	 * only one element of the array here.
3753 	 */
3754 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3755 		eventfd_signal(t->entries[i].eventfd, 1);
3756 
3757 	/* i = current_threshold + 1 */
3758 	i++;
3759 
3760 	/*
3761 	 * Iterate forward over array of thresholds starting from
3762 	 * current_threshold+1 and check if a threshold is crossed.
3763 	 * If none of thresholds above usage is crossed, we read
3764 	 * only one element of the array here.
3765 	 */
3766 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3767 		eventfd_signal(t->entries[i].eventfd, 1);
3768 
3769 	/* Update current_threshold */
3770 	t->current_threshold = i - 1;
3771 unlock:
3772 	rcu_read_unlock();
3773 }
3774 
3775 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3776 {
3777 	while (memcg) {
3778 		__mem_cgroup_threshold(memcg, false);
3779 		if (do_swap_account)
3780 			__mem_cgroup_threshold(memcg, true);
3781 
3782 		memcg = parent_mem_cgroup(memcg);
3783 	}
3784 }
3785 
3786 static int compare_thresholds(const void *a, const void *b)
3787 {
3788 	const struct mem_cgroup_threshold *_a = a;
3789 	const struct mem_cgroup_threshold *_b = b;
3790 
3791 	return _a->threshold - _b->threshold;
3792 }
3793 
3794 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3795 {
3796 	struct mem_cgroup_eventfd_list *ev;
3797 
3798 	list_for_each_entry(ev, &mem->oom_notify, list)
3799 		eventfd_signal(ev->eventfd, 1);
3800 	return 0;
3801 }
3802 
3803 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3804 {
3805 	struct mem_cgroup *iter;
3806 
3807 	for_each_mem_cgroup_tree(iter, mem)
3808 		mem_cgroup_oom_notify_cb(iter);
3809 }
3810 
3811 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3812 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3813 {
3814 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3815 	struct mem_cgroup_thresholds *thresholds;
3816 	struct mem_cgroup_threshold_ary *new;
3817 	int type = MEMFILE_TYPE(cft->private);
3818 	u64 threshold, usage;
3819 	int i, size, ret;
3820 
3821 	ret = res_counter_memparse_write_strategy(args, &threshold);
3822 	if (ret)
3823 		return ret;
3824 
3825 	mutex_lock(&memcg->thresholds_lock);
3826 
3827 	if (type == _MEM)
3828 		thresholds = &memcg->thresholds;
3829 	else if (type == _MEMSWAP)
3830 		thresholds = &memcg->memsw_thresholds;
3831 	else
3832 		BUG();
3833 
3834 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3835 
3836 	/* Check if a threshold crossed before adding a new one */
3837 	if (thresholds->primary)
3838 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3839 
3840 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3841 
3842 	/* Allocate memory for new array of thresholds */
3843 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3844 			GFP_KERNEL);
3845 	if (!new) {
3846 		ret = -ENOMEM;
3847 		goto unlock;
3848 	}
3849 	new->size = size;
3850 
3851 	/* Copy thresholds (if any) to new array */
3852 	if (thresholds->primary) {
3853 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3854 				sizeof(struct mem_cgroup_threshold));
3855 	}
3856 
3857 	/* Add new threshold */
3858 	new->entries[size - 1].eventfd = eventfd;
3859 	new->entries[size - 1].threshold = threshold;
3860 
3861 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3862 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3863 			compare_thresholds, NULL);
3864 
3865 	/* Find current threshold */
3866 	new->current_threshold = -1;
3867 	for (i = 0; i < size; i++) {
3868 		if (new->entries[i].threshold < usage) {
3869 			/*
3870 			 * new->current_threshold will not be used until
3871 			 * rcu_assign_pointer(), so it's safe to increment
3872 			 * it here.
3873 			 */
3874 			++new->current_threshold;
3875 		}
3876 	}
3877 
3878 	/* Free old spare buffer and save old primary buffer as spare */
3879 	kfree(thresholds->spare);
3880 	thresholds->spare = thresholds->primary;
3881 
3882 	rcu_assign_pointer(thresholds->primary, new);
3883 
3884 	/* To be sure that nobody uses thresholds */
3885 	synchronize_rcu();
3886 
3887 unlock:
3888 	mutex_unlock(&memcg->thresholds_lock);
3889 
3890 	return ret;
3891 }
3892 
3893 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3894 	struct cftype *cft, struct eventfd_ctx *eventfd)
3895 {
3896 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3897 	struct mem_cgroup_thresholds *thresholds;
3898 	struct mem_cgroup_threshold_ary *new;
3899 	int type = MEMFILE_TYPE(cft->private);
3900 	u64 usage;
3901 	int i, j, size;
3902 
3903 	mutex_lock(&memcg->thresholds_lock);
3904 	if (type == _MEM)
3905 		thresholds = &memcg->thresholds;
3906 	else if (type == _MEMSWAP)
3907 		thresholds = &memcg->memsw_thresholds;
3908 	else
3909 		BUG();
3910 
3911 	/*
3912 	 * Something went wrong if we trying to unregister a threshold
3913 	 * if we don't have thresholds
3914 	 */
3915 	BUG_ON(!thresholds);
3916 
3917 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3918 
3919 	/* Check if a threshold crossed before removing */
3920 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3921 
3922 	/* Calculate new number of threshold */
3923 	size = 0;
3924 	for (i = 0; i < thresholds->primary->size; i++) {
3925 		if (thresholds->primary->entries[i].eventfd != eventfd)
3926 			size++;
3927 	}
3928 
3929 	new = thresholds->spare;
3930 
3931 	/* Set thresholds array to NULL if we don't have thresholds */
3932 	if (!size) {
3933 		kfree(new);
3934 		new = NULL;
3935 		goto swap_buffers;
3936 	}
3937 
3938 	new->size = size;
3939 
3940 	/* Copy thresholds and find current threshold */
3941 	new->current_threshold = -1;
3942 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3943 		if (thresholds->primary->entries[i].eventfd == eventfd)
3944 			continue;
3945 
3946 		new->entries[j] = thresholds->primary->entries[i];
3947 		if (new->entries[j].threshold < usage) {
3948 			/*
3949 			 * new->current_threshold will not be used
3950 			 * until rcu_assign_pointer(), so it's safe to increment
3951 			 * it here.
3952 			 */
3953 			++new->current_threshold;
3954 		}
3955 		j++;
3956 	}
3957 
3958 swap_buffers:
3959 	/* Swap primary and spare array */
3960 	thresholds->spare = thresholds->primary;
3961 	rcu_assign_pointer(thresholds->primary, new);
3962 
3963 	/* To be sure that nobody uses thresholds */
3964 	synchronize_rcu();
3965 
3966 	mutex_unlock(&memcg->thresholds_lock);
3967 }
3968 
3969 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3970 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3971 {
3972 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3973 	struct mem_cgroup_eventfd_list *event;
3974 	int type = MEMFILE_TYPE(cft->private);
3975 
3976 	BUG_ON(type != _OOM_TYPE);
3977 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3978 	if (!event)
3979 		return -ENOMEM;
3980 
3981 	mutex_lock(&memcg_oom_mutex);
3982 
3983 	event->eventfd = eventfd;
3984 	list_add(&event->list, &memcg->oom_notify);
3985 
3986 	/* already in OOM ? */
3987 	if (atomic_read(&memcg->oom_lock))
3988 		eventfd_signal(eventfd, 1);
3989 	mutex_unlock(&memcg_oom_mutex);
3990 
3991 	return 0;
3992 }
3993 
3994 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3995 	struct cftype *cft, struct eventfd_ctx *eventfd)
3996 {
3997 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3998 	struct mem_cgroup_eventfd_list *ev, *tmp;
3999 	int type = MEMFILE_TYPE(cft->private);
4000 
4001 	BUG_ON(type != _OOM_TYPE);
4002 
4003 	mutex_lock(&memcg_oom_mutex);
4004 
4005 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4006 		if (ev->eventfd == eventfd) {
4007 			list_del(&ev->list);
4008 			kfree(ev);
4009 		}
4010 	}
4011 
4012 	mutex_unlock(&memcg_oom_mutex);
4013 }
4014 
4015 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4016 	struct cftype *cft,  struct cgroup_map_cb *cb)
4017 {
4018 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4019 
4020 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4021 
4022 	if (atomic_read(&mem->oom_lock))
4023 		cb->fill(cb, "under_oom", 1);
4024 	else
4025 		cb->fill(cb, "under_oom", 0);
4026 	return 0;
4027 }
4028 
4029 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4030 	struct cftype *cft, u64 val)
4031 {
4032 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4033 	struct mem_cgroup *parent;
4034 
4035 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4036 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4037 		return -EINVAL;
4038 
4039 	parent = mem_cgroup_from_cont(cgrp->parent);
4040 
4041 	cgroup_lock();
4042 	/* oom-kill-disable is a flag for subhierarchy. */
4043 	if ((parent->use_hierarchy) ||
4044 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4045 		cgroup_unlock();
4046 		return -EINVAL;
4047 	}
4048 	mem->oom_kill_disable = val;
4049 	if (!val)
4050 		memcg_oom_recover(mem);
4051 	cgroup_unlock();
4052 	return 0;
4053 }
4054 
4055 static struct cftype mem_cgroup_files[] = {
4056 	{
4057 		.name = "usage_in_bytes",
4058 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4059 		.read_u64 = mem_cgroup_read,
4060 		.register_event = mem_cgroup_usage_register_event,
4061 		.unregister_event = mem_cgroup_usage_unregister_event,
4062 	},
4063 	{
4064 		.name = "max_usage_in_bytes",
4065 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4066 		.trigger = mem_cgroup_reset,
4067 		.read_u64 = mem_cgroup_read,
4068 	},
4069 	{
4070 		.name = "limit_in_bytes",
4071 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4072 		.write_string = mem_cgroup_write,
4073 		.read_u64 = mem_cgroup_read,
4074 	},
4075 	{
4076 		.name = "soft_limit_in_bytes",
4077 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4078 		.write_string = mem_cgroup_write,
4079 		.read_u64 = mem_cgroup_read,
4080 	},
4081 	{
4082 		.name = "failcnt",
4083 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4084 		.trigger = mem_cgroup_reset,
4085 		.read_u64 = mem_cgroup_read,
4086 	},
4087 	{
4088 		.name = "stat",
4089 		.read_map = mem_control_stat_show,
4090 	},
4091 	{
4092 		.name = "force_empty",
4093 		.trigger = mem_cgroup_force_empty_write,
4094 	},
4095 	{
4096 		.name = "use_hierarchy",
4097 		.write_u64 = mem_cgroup_hierarchy_write,
4098 		.read_u64 = mem_cgroup_hierarchy_read,
4099 	},
4100 	{
4101 		.name = "swappiness",
4102 		.read_u64 = mem_cgroup_swappiness_read,
4103 		.write_u64 = mem_cgroup_swappiness_write,
4104 	},
4105 	{
4106 		.name = "move_charge_at_immigrate",
4107 		.read_u64 = mem_cgroup_move_charge_read,
4108 		.write_u64 = mem_cgroup_move_charge_write,
4109 	},
4110 	{
4111 		.name = "oom_control",
4112 		.read_map = mem_cgroup_oom_control_read,
4113 		.write_u64 = mem_cgroup_oom_control_write,
4114 		.register_event = mem_cgroup_oom_register_event,
4115 		.unregister_event = mem_cgroup_oom_unregister_event,
4116 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4117 	},
4118 };
4119 
4120 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4121 static struct cftype memsw_cgroup_files[] = {
4122 	{
4123 		.name = "memsw.usage_in_bytes",
4124 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4125 		.read_u64 = mem_cgroup_read,
4126 		.register_event = mem_cgroup_usage_register_event,
4127 		.unregister_event = mem_cgroup_usage_unregister_event,
4128 	},
4129 	{
4130 		.name = "memsw.max_usage_in_bytes",
4131 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4132 		.trigger = mem_cgroup_reset,
4133 		.read_u64 = mem_cgroup_read,
4134 	},
4135 	{
4136 		.name = "memsw.limit_in_bytes",
4137 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4138 		.write_string = mem_cgroup_write,
4139 		.read_u64 = mem_cgroup_read,
4140 	},
4141 	{
4142 		.name = "memsw.failcnt",
4143 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4144 		.trigger = mem_cgroup_reset,
4145 		.read_u64 = mem_cgroup_read,
4146 	},
4147 };
4148 
4149 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4150 {
4151 	if (!do_swap_account)
4152 		return 0;
4153 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4154 				ARRAY_SIZE(memsw_cgroup_files));
4155 };
4156 #else
4157 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4158 {
4159 	return 0;
4160 }
4161 #endif
4162 
4163 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4164 {
4165 	struct mem_cgroup_per_node *pn;
4166 	struct mem_cgroup_per_zone *mz;
4167 	enum lru_list l;
4168 	int zone, tmp = node;
4169 	/*
4170 	 * This routine is called against possible nodes.
4171 	 * But it's BUG to call kmalloc() against offline node.
4172 	 *
4173 	 * TODO: this routine can waste much memory for nodes which will
4174 	 *       never be onlined. It's better to use memory hotplug callback
4175 	 *       function.
4176 	 */
4177 	if (!node_state(node, N_NORMAL_MEMORY))
4178 		tmp = -1;
4179 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4180 	if (!pn)
4181 		return 1;
4182 
4183 	mem->info.nodeinfo[node] = pn;
4184 	memset(pn, 0, sizeof(*pn));
4185 
4186 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4187 		mz = &pn->zoneinfo[zone];
4188 		for_each_lru(l)
4189 			INIT_LIST_HEAD(&mz->lists[l]);
4190 		mz->usage_in_excess = 0;
4191 		mz->on_tree = false;
4192 		mz->mem = mem;
4193 	}
4194 	return 0;
4195 }
4196 
4197 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4198 {
4199 	kfree(mem->info.nodeinfo[node]);
4200 }
4201 
4202 static struct mem_cgroup *mem_cgroup_alloc(void)
4203 {
4204 	struct mem_cgroup *mem;
4205 	int size = sizeof(struct mem_cgroup);
4206 
4207 	/* Can be very big if MAX_NUMNODES is very big */
4208 	if (size < PAGE_SIZE)
4209 		mem = kmalloc(size, GFP_KERNEL);
4210 	else
4211 		mem = vmalloc(size);
4212 
4213 	if (!mem)
4214 		return NULL;
4215 
4216 	memset(mem, 0, size);
4217 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4218 	if (!mem->stat)
4219 		goto out_free;
4220 	spin_lock_init(&mem->pcp_counter_lock);
4221 	return mem;
4222 
4223 out_free:
4224 	if (size < PAGE_SIZE)
4225 		kfree(mem);
4226 	else
4227 		vfree(mem);
4228 	return NULL;
4229 }
4230 
4231 /*
4232  * At destroying mem_cgroup, references from swap_cgroup can remain.
4233  * (scanning all at force_empty is too costly...)
4234  *
4235  * Instead of clearing all references at force_empty, we remember
4236  * the number of reference from swap_cgroup and free mem_cgroup when
4237  * it goes down to 0.
4238  *
4239  * Removal of cgroup itself succeeds regardless of refs from swap.
4240  */
4241 
4242 static void __mem_cgroup_free(struct mem_cgroup *mem)
4243 {
4244 	int node;
4245 
4246 	mem_cgroup_remove_from_trees(mem);
4247 	free_css_id(&mem_cgroup_subsys, &mem->css);
4248 
4249 	for_each_node_state(node, N_POSSIBLE)
4250 		free_mem_cgroup_per_zone_info(mem, node);
4251 
4252 	free_percpu(mem->stat);
4253 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4254 		kfree(mem);
4255 	else
4256 		vfree(mem);
4257 }
4258 
4259 static void mem_cgroup_get(struct mem_cgroup *mem)
4260 {
4261 	atomic_inc(&mem->refcnt);
4262 }
4263 
4264 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4265 {
4266 	if (atomic_sub_and_test(count, &mem->refcnt)) {
4267 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4268 		__mem_cgroup_free(mem);
4269 		if (parent)
4270 			mem_cgroup_put(parent);
4271 	}
4272 }
4273 
4274 static void mem_cgroup_put(struct mem_cgroup *mem)
4275 {
4276 	__mem_cgroup_put(mem, 1);
4277 }
4278 
4279 /*
4280  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4281  */
4282 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4283 {
4284 	if (!mem->res.parent)
4285 		return NULL;
4286 	return mem_cgroup_from_res_counter(mem->res.parent, res);
4287 }
4288 
4289 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4290 static void __init enable_swap_cgroup(void)
4291 {
4292 	if (!mem_cgroup_disabled() && really_do_swap_account)
4293 		do_swap_account = 1;
4294 }
4295 #else
4296 static void __init enable_swap_cgroup(void)
4297 {
4298 }
4299 #endif
4300 
4301 static int mem_cgroup_soft_limit_tree_init(void)
4302 {
4303 	struct mem_cgroup_tree_per_node *rtpn;
4304 	struct mem_cgroup_tree_per_zone *rtpz;
4305 	int tmp, node, zone;
4306 
4307 	for_each_node_state(node, N_POSSIBLE) {
4308 		tmp = node;
4309 		if (!node_state(node, N_NORMAL_MEMORY))
4310 			tmp = -1;
4311 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4312 		if (!rtpn)
4313 			return 1;
4314 
4315 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4316 
4317 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4318 			rtpz = &rtpn->rb_tree_per_zone[zone];
4319 			rtpz->rb_root = RB_ROOT;
4320 			spin_lock_init(&rtpz->lock);
4321 		}
4322 	}
4323 	return 0;
4324 }
4325 
4326 static struct cgroup_subsys_state * __ref
4327 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4328 {
4329 	struct mem_cgroup *mem, *parent;
4330 	long error = -ENOMEM;
4331 	int node;
4332 
4333 	mem = mem_cgroup_alloc();
4334 	if (!mem)
4335 		return ERR_PTR(error);
4336 
4337 	for_each_node_state(node, N_POSSIBLE)
4338 		if (alloc_mem_cgroup_per_zone_info(mem, node))
4339 			goto free_out;
4340 
4341 	/* root ? */
4342 	if (cont->parent == NULL) {
4343 		int cpu;
4344 		enable_swap_cgroup();
4345 		parent = NULL;
4346 		root_mem_cgroup = mem;
4347 		if (mem_cgroup_soft_limit_tree_init())
4348 			goto free_out;
4349 		for_each_possible_cpu(cpu) {
4350 			struct memcg_stock_pcp *stock =
4351 						&per_cpu(memcg_stock, cpu);
4352 			INIT_WORK(&stock->work, drain_local_stock);
4353 		}
4354 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4355 	} else {
4356 		parent = mem_cgroup_from_cont(cont->parent);
4357 		mem->use_hierarchy = parent->use_hierarchy;
4358 		mem->oom_kill_disable = parent->oom_kill_disable;
4359 	}
4360 
4361 	if (parent && parent->use_hierarchy) {
4362 		res_counter_init(&mem->res, &parent->res);
4363 		res_counter_init(&mem->memsw, &parent->memsw);
4364 		/*
4365 		 * We increment refcnt of the parent to ensure that we can
4366 		 * safely access it on res_counter_charge/uncharge.
4367 		 * This refcnt will be decremented when freeing this
4368 		 * mem_cgroup(see mem_cgroup_put).
4369 		 */
4370 		mem_cgroup_get(parent);
4371 	} else {
4372 		res_counter_init(&mem->res, NULL);
4373 		res_counter_init(&mem->memsw, NULL);
4374 	}
4375 	mem->last_scanned_child = 0;
4376 	spin_lock_init(&mem->reclaim_param_lock);
4377 	INIT_LIST_HEAD(&mem->oom_notify);
4378 
4379 	if (parent)
4380 		mem->swappiness = get_swappiness(parent);
4381 	atomic_set(&mem->refcnt, 1);
4382 	mem->move_charge_at_immigrate = 0;
4383 	mutex_init(&mem->thresholds_lock);
4384 	return &mem->css;
4385 free_out:
4386 	__mem_cgroup_free(mem);
4387 	root_mem_cgroup = NULL;
4388 	return ERR_PTR(error);
4389 }
4390 
4391 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4392 					struct cgroup *cont)
4393 {
4394 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4395 
4396 	return mem_cgroup_force_empty(mem, false);
4397 }
4398 
4399 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4400 				struct cgroup *cont)
4401 {
4402 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4403 
4404 	mem_cgroup_put(mem);
4405 }
4406 
4407 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4408 				struct cgroup *cont)
4409 {
4410 	int ret;
4411 
4412 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4413 				ARRAY_SIZE(mem_cgroup_files));
4414 
4415 	if (!ret)
4416 		ret = register_memsw_files(cont, ss);
4417 	return ret;
4418 }
4419 
4420 #ifdef CONFIG_MMU
4421 /* Handlers for move charge at task migration. */
4422 #define PRECHARGE_COUNT_AT_ONCE	256
4423 static int mem_cgroup_do_precharge(unsigned long count)
4424 {
4425 	int ret = 0;
4426 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4427 	struct mem_cgroup *mem = mc.to;
4428 
4429 	if (mem_cgroup_is_root(mem)) {
4430 		mc.precharge += count;
4431 		/* we don't need css_get for root */
4432 		return ret;
4433 	}
4434 	/* try to charge at once */
4435 	if (count > 1) {
4436 		struct res_counter *dummy;
4437 		/*
4438 		 * "mem" cannot be under rmdir() because we've already checked
4439 		 * by cgroup_lock_live_cgroup() that it is not removed and we
4440 		 * are still under the same cgroup_mutex. So we can postpone
4441 		 * css_get().
4442 		 */
4443 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4444 			goto one_by_one;
4445 		if (do_swap_account && res_counter_charge(&mem->memsw,
4446 						PAGE_SIZE * count, &dummy)) {
4447 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4448 			goto one_by_one;
4449 		}
4450 		mc.precharge += count;
4451 		return ret;
4452 	}
4453 one_by_one:
4454 	/* fall back to one by one charge */
4455 	while (count--) {
4456 		if (signal_pending(current)) {
4457 			ret = -EINTR;
4458 			break;
4459 		}
4460 		if (!batch_count--) {
4461 			batch_count = PRECHARGE_COUNT_AT_ONCE;
4462 			cond_resched();
4463 		}
4464 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4465 		if (ret || !mem)
4466 			/* mem_cgroup_clear_mc() will do uncharge later */
4467 			return -ENOMEM;
4468 		mc.precharge++;
4469 	}
4470 	return ret;
4471 }
4472 
4473 /**
4474  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4475  * @vma: the vma the pte to be checked belongs
4476  * @addr: the address corresponding to the pte to be checked
4477  * @ptent: the pte to be checked
4478  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4479  *
4480  * Returns
4481  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4482  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4483  *     move charge. if @target is not NULL, the page is stored in target->page
4484  *     with extra refcnt got(Callers should handle it).
4485  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4486  *     target for charge migration. if @target is not NULL, the entry is stored
4487  *     in target->ent.
4488  *
4489  * Called with pte lock held.
4490  */
4491 union mc_target {
4492 	struct page	*page;
4493 	swp_entry_t	ent;
4494 };
4495 
4496 enum mc_target_type {
4497 	MC_TARGET_NONE,	/* not used */
4498 	MC_TARGET_PAGE,
4499 	MC_TARGET_SWAP,
4500 };
4501 
4502 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4503 						unsigned long addr, pte_t ptent)
4504 {
4505 	struct page *page = vm_normal_page(vma, addr, ptent);
4506 
4507 	if (!page || !page_mapped(page))
4508 		return NULL;
4509 	if (PageAnon(page)) {
4510 		/* we don't move shared anon */
4511 		if (!move_anon() || page_mapcount(page) > 2)
4512 			return NULL;
4513 	} else if (!move_file())
4514 		/* we ignore mapcount for file pages */
4515 		return NULL;
4516 	if (!get_page_unless_zero(page))
4517 		return NULL;
4518 
4519 	return page;
4520 }
4521 
4522 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4523 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4524 {
4525 	int usage_count;
4526 	struct page *page = NULL;
4527 	swp_entry_t ent = pte_to_swp_entry(ptent);
4528 
4529 	if (!move_anon() || non_swap_entry(ent))
4530 		return NULL;
4531 	usage_count = mem_cgroup_count_swap_user(ent, &page);
4532 	if (usage_count > 1) { /* we don't move shared anon */
4533 		if (page)
4534 			put_page(page);
4535 		return NULL;
4536 	}
4537 	if (do_swap_account)
4538 		entry->val = ent.val;
4539 
4540 	return page;
4541 }
4542 
4543 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4544 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4545 {
4546 	struct page *page = NULL;
4547 	struct inode *inode;
4548 	struct address_space *mapping;
4549 	pgoff_t pgoff;
4550 
4551 	if (!vma->vm_file) /* anonymous vma */
4552 		return NULL;
4553 	if (!move_file())
4554 		return NULL;
4555 
4556 	inode = vma->vm_file->f_path.dentry->d_inode;
4557 	mapping = vma->vm_file->f_mapping;
4558 	if (pte_none(ptent))
4559 		pgoff = linear_page_index(vma, addr);
4560 	else /* pte_file(ptent) is true */
4561 		pgoff = pte_to_pgoff(ptent);
4562 
4563 	/* page is moved even if it's not RSS of this task(page-faulted). */
4564 	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4565 		page = find_get_page(mapping, pgoff);
4566 	} else { /* shmem/tmpfs file. we should take account of swap too. */
4567 		swp_entry_t ent;
4568 		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4569 		if (do_swap_account)
4570 			entry->val = ent.val;
4571 	}
4572 
4573 	return page;
4574 }
4575 
4576 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4577 		unsigned long addr, pte_t ptent, union mc_target *target)
4578 {
4579 	struct page *page = NULL;
4580 	struct page_cgroup *pc;
4581 	int ret = 0;
4582 	swp_entry_t ent = { .val = 0 };
4583 
4584 	if (pte_present(ptent))
4585 		page = mc_handle_present_pte(vma, addr, ptent);
4586 	else if (is_swap_pte(ptent))
4587 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4588 	else if (pte_none(ptent) || pte_file(ptent))
4589 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4590 
4591 	if (!page && !ent.val)
4592 		return 0;
4593 	if (page) {
4594 		pc = lookup_page_cgroup(page);
4595 		/*
4596 		 * Do only loose check w/o page_cgroup lock.
4597 		 * mem_cgroup_move_account() checks the pc is valid or not under
4598 		 * the lock.
4599 		 */
4600 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4601 			ret = MC_TARGET_PAGE;
4602 			if (target)
4603 				target->page = page;
4604 		}
4605 		if (!ret || !target)
4606 			put_page(page);
4607 	}
4608 	/* There is a swap entry and a page doesn't exist or isn't charged */
4609 	if (ent.val && !ret &&
4610 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4611 		ret = MC_TARGET_SWAP;
4612 		if (target)
4613 			target->ent = ent;
4614 	}
4615 	return ret;
4616 }
4617 
4618 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4619 					unsigned long addr, unsigned long end,
4620 					struct mm_walk *walk)
4621 {
4622 	struct vm_area_struct *vma = walk->private;
4623 	pte_t *pte;
4624 	spinlock_t *ptl;
4625 
4626 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4627 	for (; addr != end; pte++, addr += PAGE_SIZE)
4628 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4629 			mc.precharge++;	/* increment precharge temporarily */
4630 	pte_unmap_unlock(pte - 1, ptl);
4631 	cond_resched();
4632 
4633 	return 0;
4634 }
4635 
4636 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4637 {
4638 	unsigned long precharge;
4639 	struct vm_area_struct *vma;
4640 
4641 	/* We've already held the mmap_sem */
4642 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4643 		struct mm_walk mem_cgroup_count_precharge_walk = {
4644 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4645 			.mm = mm,
4646 			.private = vma,
4647 		};
4648 		if (is_vm_hugetlb_page(vma))
4649 			continue;
4650 		walk_page_range(vma->vm_start, vma->vm_end,
4651 					&mem_cgroup_count_precharge_walk);
4652 	}
4653 
4654 	precharge = mc.precharge;
4655 	mc.precharge = 0;
4656 
4657 	return precharge;
4658 }
4659 
4660 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4661 {
4662 	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4663 }
4664 
4665 static void mem_cgroup_clear_mc(void)
4666 {
4667 	struct mem_cgroup *from = mc.from;
4668 	struct mem_cgroup *to = mc.to;
4669 
4670 	/* we must uncharge all the leftover precharges from mc.to */
4671 	if (mc.precharge) {
4672 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4673 		mc.precharge = 0;
4674 	}
4675 	/*
4676 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4677 	 * we must uncharge here.
4678 	 */
4679 	if (mc.moved_charge) {
4680 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4681 		mc.moved_charge = 0;
4682 	}
4683 	/* we must fixup refcnts and charges */
4684 	if (mc.moved_swap) {
4685 		/* uncharge swap account from the old cgroup */
4686 		if (!mem_cgroup_is_root(mc.from))
4687 			res_counter_uncharge(&mc.from->memsw,
4688 						PAGE_SIZE * mc.moved_swap);
4689 		__mem_cgroup_put(mc.from, mc.moved_swap);
4690 
4691 		if (!mem_cgroup_is_root(mc.to)) {
4692 			/*
4693 			 * we charged both to->res and to->memsw, so we should
4694 			 * uncharge to->res.
4695 			 */
4696 			res_counter_uncharge(&mc.to->res,
4697 						PAGE_SIZE * mc.moved_swap);
4698 		}
4699 		/* we've already done mem_cgroup_get(mc.to) */
4700 
4701 		mc.moved_swap = 0;
4702 	}
4703 	if (mc.mm) {
4704 		up_read(&mc.mm->mmap_sem);
4705 		mmput(mc.mm);
4706 	}
4707 	spin_lock(&mc.lock);
4708 	mc.from = NULL;
4709 	mc.to = NULL;
4710 	spin_unlock(&mc.lock);
4711 	mc.moving_task = NULL;
4712 	mc.mm = NULL;
4713 	mem_cgroup_end_move(from);
4714 	memcg_oom_recover(from);
4715 	memcg_oom_recover(to);
4716 	wake_up_all(&mc.waitq);
4717 }
4718 
4719 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4720 				struct cgroup *cgroup,
4721 				struct task_struct *p,
4722 				bool threadgroup)
4723 {
4724 	int ret = 0;
4725 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4726 
4727 	if (mem->move_charge_at_immigrate) {
4728 		struct mm_struct *mm;
4729 		struct mem_cgroup *from = mem_cgroup_from_task(p);
4730 
4731 		VM_BUG_ON(from == mem);
4732 
4733 		mm = get_task_mm(p);
4734 		if (!mm)
4735 			return 0;
4736 		/* We move charges only when we move a owner of the mm */
4737 		if (mm->owner == p) {
4738 			/*
4739 			 * We do all the move charge works under one mmap_sem to
4740 			 * avoid deadlock with down_write(&mmap_sem)
4741 			 * -> try_charge() -> if (mc.moving_task) -> sleep.
4742 			 */
4743 			down_read(&mm->mmap_sem);
4744 
4745 			VM_BUG_ON(mc.from);
4746 			VM_BUG_ON(mc.to);
4747 			VM_BUG_ON(mc.precharge);
4748 			VM_BUG_ON(mc.moved_charge);
4749 			VM_BUG_ON(mc.moved_swap);
4750 			VM_BUG_ON(mc.moving_task);
4751 			VM_BUG_ON(mc.mm);
4752 
4753 			mem_cgroup_start_move(from);
4754 			spin_lock(&mc.lock);
4755 			mc.from = from;
4756 			mc.to = mem;
4757 			mc.precharge = 0;
4758 			mc.moved_charge = 0;
4759 			mc.moved_swap = 0;
4760 			spin_unlock(&mc.lock);
4761 			mc.moving_task = current;
4762 			mc.mm = mm;
4763 
4764 			ret = mem_cgroup_precharge_mc(mm);
4765 			if (ret)
4766 				mem_cgroup_clear_mc();
4767 			/* We call up_read() and mmput() in clear_mc(). */
4768 		} else
4769 			mmput(mm);
4770 	}
4771 	return ret;
4772 }
4773 
4774 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4775 				struct cgroup *cgroup,
4776 				struct task_struct *p,
4777 				bool threadgroup)
4778 {
4779 	mem_cgroup_clear_mc();
4780 }
4781 
4782 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4783 				unsigned long addr, unsigned long end,
4784 				struct mm_walk *walk)
4785 {
4786 	int ret = 0;
4787 	struct vm_area_struct *vma = walk->private;
4788 	pte_t *pte;
4789 	spinlock_t *ptl;
4790 
4791 retry:
4792 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4793 	for (; addr != end; addr += PAGE_SIZE) {
4794 		pte_t ptent = *(pte++);
4795 		union mc_target target;
4796 		int type;
4797 		struct page *page;
4798 		struct page_cgroup *pc;
4799 		swp_entry_t ent;
4800 
4801 		if (!mc.precharge)
4802 			break;
4803 
4804 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4805 		switch (type) {
4806 		case MC_TARGET_PAGE:
4807 			page = target.page;
4808 			if (isolate_lru_page(page))
4809 				goto put;
4810 			pc = lookup_page_cgroup(page);
4811 			if (!mem_cgroup_move_account(pc,
4812 						mc.from, mc.to, false)) {
4813 				mc.precharge--;
4814 				/* we uncharge from mc.from later. */
4815 				mc.moved_charge++;
4816 			}
4817 			putback_lru_page(page);
4818 put:			/* is_target_pte_for_mc() gets the page */
4819 			put_page(page);
4820 			break;
4821 		case MC_TARGET_SWAP:
4822 			ent = target.ent;
4823 			if (!mem_cgroup_move_swap_account(ent,
4824 						mc.from, mc.to, false)) {
4825 				mc.precharge--;
4826 				/* we fixup refcnts and charges later. */
4827 				mc.moved_swap++;
4828 			}
4829 			break;
4830 		default:
4831 			break;
4832 		}
4833 	}
4834 	pte_unmap_unlock(pte - 1, ptl);
4835 	cond_resched();
4836 
4837 	if (addr != end) {
4838 		/*
4839 		 * We have consumed all precharges we got in can_attach().
4840 		 * We try charge one by one, but don't do any additional
4841 		 * charges to mc.to if we have failed in charge once in attach()
4842 		 * phase.
4843 		 */
4844 		ret = mem_cgroup_do_precharge(1);
4845 		if (!ret)
4846 			goto retry;
4847 	}
4848 
4849 	return ret;
4850 }
4851 
4852 static void mem_cgroup_move_charge(struct mm_struct *mm)
4853 {
4854 	struct vm_area_struct *vma;
4855 
4856 	lru_add_drain_all();
4857 	/* We've already held the mmap_sem */
4858 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4859 		int ret;
4860 		struct mm_walk mem_cgroup_move_charge_walk = {
4861 			.pmd_entry = mem_cgroup_move_charge_pte_range,
4862 			.mm = mm,
4863 			.private = vma,
4864 		};
4865 		if (is_vm_hugetlb_page(vma))
4866 			continue;
4867 		ret = walk_page_range(vma->vm_start, vma->vm_end,
4868 						&mem_cgroup_move_charge_walk);
4869 		if (ret)
4870 			/*
4871 			 * means we have consumed all precharges and failed in
4872 			 * doing additional charge. Just abandon here.
4873 			 */
4874 			break;
4875 	}
4876 }
4877 
4878 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4879 				struct cgroup *cont,
4880 				struct cgroup *old_cont,
4881 				struct task_struct *p,
4882 				bool threadgroup)
4883 {
4884 	if (!mc.mm)
4885 		/* no need to move charge */
4886 		return;
4887 
4888 	mem_cgroup_move_charge(mc.mm);
4889 	mem_cgroup_clear_mc();
4890 }
4891 #else	/* !CONFIG_MMU */
4892 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4893 				struct cgroup *cgroup,
4894 				struct task_struct *p,
4895 				bool threadgroup)
4896 {
4897 	return 0;
4898 }
4899 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4900 				struct cgroup *cgroup,
4901 				struct task_struct *p,
4902 				bool threadgroup)
4903 {
4904 }
4905 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4906 				struct cgroup *cont,
4907 				struct cgroup *old_cont,
4908 				struct task_struct *p,
4909 				bool threadgroup)
4910 {
4911 }
4912 #endif
4913 
4914 struct cgroup_subsys mem_cgroup_subsys = {
4915 	.name = "memory",
4916 	.subsys_id = mem_cgroup_subsys_id,
4917 	.create = mem_cgroup_create,
4918 	.pre_destroy = mem_cgroup_pre_destroy,
4919 	.destroy = mem_cgroup_destroy,
4920 	.populate = mem_cgroup_populate,
4921 	.can_attach = mem_cgroup_can_attach,
4922 	.cancel_attach = mem_cgroup_cancel_attach,
4923 	.attach = mem_cgroup_move_task,
4924 	.early_init = 0,
4925 	.use_id = 1,
4926 };
4927 
4928 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4929 static int __init enable_swap_account(char *s)
4930 {
4931 	/* consider enabled if no parameter or 1 is given */
4932 	if (!s || !strcmp(s, "1"))
4933 		really_do_swap_account = 1;
4934 	else if (!strcmp(s, "0"))
4935 		really_do_swap_account = 0;
4936 	return 1;
4937 }
4938 __setup("swapaccount", enable_swap_account);
4939 
4940 static int __init disable_swap_account(char *s)
4941 {
4942 	enable_swap_account("0");
4943 	return 1;
4944 }
4945 __setup("noswapaccount", disable_swap_account);
4946 #endif
4947