1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 */ 23 24 #include <linux/res_counter.h> 25 #include <linux/memcontrol.h> 26 #include <linux/cgroup.h> 27 #include <linux/mm.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagemap.h> 30 #include <linux/smp.h> 31 #include <linux/page-flags.h> 32 #include <linux/backing-dev.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/rcupdate.h> 35 #include <linux/limits.h> 36 #include <linux/mutex.h> 37 #include <linux/rbtree.h> 38 #include <linux/slab.h> 39 #include <linux/swap.h> 40 #include <linux/swapops.h> 41 #include <linux/spinlock.h> 42 #include <linux/eventfd.h> 43 #include <linux/sort.h> 44 #include <linux/fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/vmalloc.h> 47 #include <linux/mm_inline.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/cpu.h> 50 #include <linux/oom.h> 51 #include "internal.h" 52 53 #include <asm/uaccess.h> 54 55 #include <trace/events/vmscan.h> 56 57 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 58 #define MEM_CGROUP_RECLAIM_RETRIES 5 59 struct mem_cgroup *root_mem_cgroup __read_mostly; 60 61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 63 int do_swap_account __read_mostly; 64 65 /* for remember boot option*/ 66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED 67 static int really_do_swap_account __initdata = 1; 68 #else 69 static int really_do_swap_account __initdata = 0; 70 #endif 71 72 #else 73 #define do_swap_account (0) 74 #endif 75 76 /* 77 * Per memcg event counter is incremented at every pagein/pageout. This counter 78 * is used for trigger some periodic events. This is straightforward and better 79 * than using jiffies etc. to handle periodic memcg event. 80 * 81 * These values will be used as !((event) & ((1 <<(thresh)) - 1)) 82 */ 83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */ 84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */ 85 86 /* 87 * Statistics for memory cgroup. 88 */ 89 enum mem_cgroup_stat_index { 90 /* 91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 92 */ 93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ 97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ 98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ 99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */ 100 /* incremented at every pagein/pageout */ 101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA, 102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */ 103 104 MEM_CGROUP_STAT_NSTATS, 105 }; 106 107 struct mem_cgroup_stat_cpu { 108 s64 count[MEM_CGROUP_STAT_NSTATS]; 109 }; 110 111 /* 112 * per-zone information in memory controller. 113 */ 114 struct mem_cgroup_per_zone { 115 /* 116 * spin_lock to protect the per cgroup LRU 117 */ 118 struct list_head lists[NR_LRU_LISTS]; 119 unsigned long count[NR_LRU_LISTS]; 120 121 struct zone_reclaim_stat reclaim_stat; 122 struct rb_node tree_node; /* RB tree node */ 123 unsigned long long usage_in_excess;/* Set to the value by which */ 124 /* the soft limit is exceeded*/ 125 bool on_tree; 126 struct mem_cgroup *mem; /* Back pointer, we cannot */ 127 /* use container_of */ 128 }; 129 /* Macro for accessing counter */ 130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) 131 132 struct mem_cgroup_per_node { 133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 134 }; 135 136 struct mem_cgroup_lru_info { 137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 138 }; 139 140 /* 141 * Cgroups above their limits are maintained in a RB-Tree, independent of 142 * their hierarchy representation 143 */ 144 145 struct mem_cgroup_tree_per_zone { 146 struct rb_root rb_root; 147 spinlock_t lock; 148 }; 149 150 struct mem_cgroup_tree_per_node { 151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 152 }; 153 154 struct mem_cgroup_tree { 155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 156 }; 157 158 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 159 160 struct mem_cgroup_threshold { 161 struct eventfd_ctx *eventfd; 162 u64 threshold; 163 }; 164 165 /* For threshold */ 166 struct mem_cgroup_threshold_ary { 167 /* An array index points to threshold just below usage. */ 168 int current_threshold; 169 /* Size of entries[] */ 170 unsigned int size; 171 /* Array of thresholds */ 172 struct mem_cgroup_threshold entries[0]; 173 }; 174 175 struct mem_cgroup_thresholds { 176 /* Primary thresholds array */ 177 struct mem_cgroup_threshold_ary *primary; 178 /* 179 * Spare threshold array. 180 * This is needed to make mem_cgroup_unregister_event() "never fail". 181 * It must be able to store at least primary->size - 1 entries. 182 */ 183 struct mem_cgroup_threshold_ary *spare; 184 }; 185 186 /* for OOM */ 187 struct mem_cgroup_eventfd_list { 188 struct list_head list; 189 struct eventfd_ctx *eventfd; 190 }; 191 192 static void mem_cgroup_threshold(struct mem_cgroup *mem); 193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem); 194 195 /* 196 * The memory controller data structure. The memory controller controls both 197 * page cache and RSS per cgroup. We would eventually like to provide 198 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 199 * to help the administrator determine what knobs to tune. 200 * 201 * TODO: Add a water mark for the memory controller. Reclaim will begin when 202 * we hit the water mark. May be even add a low water mark, such that 203 * no reclaim occurs from a cgroup at it's low water mark, this is 204 * a feature that will be implemented much later in the future. 205 */ 206 struct mem_cgroup { 207 struct cgroup_subsys_state css; 208 /* 209 * the counter to account for memory usage 210 */ 211 struct res_counter res; 212 /* 213 * the counter to account for mem+swap usage. 214 */ 215 struct res_counter memsw; 216 /* 217 * Per cgroup active and inactive list, similar to the 218 * per zone LRU lists. 219 */ 220 struct mem_cgroup_lru_info info; 221 222 /* 223 protect against reclaim related member. 224 */ 225 spinlock_t reclaim_param_lock; 226 227 /* 228 * While reclaiming in a hierarchy, we cache the last child we 229 * reclaimed from. 230 */ 231 int last_scanned_child; 232 /* 233 * Should the accounting and control be hierarchical, per subtree? 234 */ 235 bool use_hierarchy; 236 atomic_t oom_lock; 237 atomic_t refcnt; 238 239 unsigned int swappiness; 240 /* OOM-Killer disable */ 241 int oom_kill_disable; 242 243 /* set when res.limit == memsw.limit */ 244 bool memsw_is_minimum; 245 246 /* protect arrays of thresholds */ 247 struct mutex thresholds_lock; 248 249 /* thresholds for memory usage. RCU-protected */ 250 struct mem_cgroup_thresholds thresholds; 251 252 /* thresholds for mem+swap usage. RCU-protected */ 253 struct mem_cgroup_thresholds memsw_thresholds; 254 255 /* For oom notifier event fd */ 256 struct list_head oom_notify; 257 258 /* 259 * Should we move charges of a task when a task is moved into this 260 * mem_cgroup ? And what type of charges should we move ? 261 */ 262 unsigned long move_charge_at_immigrate; 263 /* 264 * percpu counter. 265 */ 266 struct mem_cgroup_stat_cpu *stat; 267 /* 268 * used when a cpu is offlined or other synchronizations 269 * See mem_cgroup_read_stat(). 270 */ 271 struct mem_cgroup_stat_cpu nocpu_base; 272 spinlock_t pcp_counter_lock; 273 }; 274 275 /* Stuffs for move charges at task migration. */ 276 /* 277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 278 * left-shifted bitmap of these types. 279 */ 280 enum move_type { 281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 283 NR_MOVE_TYPE, 284 }; 285 286 /* "mc" and its members are protected by cgroup_mutex */ 287 static struct move_charge_struct { 288 spinlock_t lock; /* for from, to */ 289 struct mem_cgroup *from; 290 struct mem_cgroup *to; 291 unsigned long precharge; 292 unsigned long moved_charge; 293 unsigned long moved_swap; 294 struct task_struct *moving_task; /* a task moving charges */ 295 struct mm_struct *mm; 296 wait_queue_head_t waitq; /* a waitq for other context */ 297 } mc = { 298 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 299 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 300 }; 301 302 static bool move_anon(void) 303 { 304 return test_bit(MOVE_CHARGE_TYPE_ANON, 305 &mc.to->move_charge_at_immigrate); 306 } 307 308 static bool move_file(void) 309 { 310 return test_bit(MOVE_CHARGE_TYPE_FILE, 311 &mc.to->move_charge_at_immigrate); 312 } 313 314 /* 315 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 316 * limit reclaim to prevent infinite loops, if they ever occur. 317 */ 318 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100) 319 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2) 320 321 enum charge_type { 322 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 323 MEM_CGROUP_CHARGE_TYPE_MAPPED, 324 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 325 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 326 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 327 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 328 NR_CHARGE_TYPE, 329 }; 330 331 /* only for here (for easy reading.) */ 332 #define PCGF_CACHE (1UL << PCG_CACHE) 333 #define PCGF_USED (1UL << PCG_USED) 334 #define PCGF_LOCK (1UL << PCG_LOCK) 335 /* Not used, but added here for completeness */ 336 #define PCGF_ACCT (1UL << PCG_ACCT) 337 338 /* for encoding cft->private value on file */ 339 #define _MEM (0) 340 #define _MEMSWAP (1) 341 #define _OOM_TYPE (2) 342 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) 343 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) 344 #define MEMFILE_ATTR(val) ((val) & 0xffff) 345 /* Used for OOM nofiier */ 346 #define OOM_CONTROL (0) 347 348 /* 349 * Reclaim flags for mem_cgroup_hierarchical_reclaim 350 */ 351 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 352 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 353 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 354 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 355 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2 356 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT) 357 358 static void mem_cgroup_get(struct mem_cgroup *mem); 359 static void mem_cgroup_put(struct mem_cgroup *mem); 360 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); 361 static void drain_all_stock_async(void); 362 363 static struct mem_cgroup_per_zone * 364 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) 365 { 366 return &mem->info.nodeinfo[nid]->zoneinfo[zid]; 367 } 368 369 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem) 370 { 371 return &mem->css; 372 } 373 374 static struct mem_cgroup_per_zone * 375 page_cgroup_zoneinfo(struct page_cgroup *pc) 376 { 377 struct mem_cgroup *mem = pc->mem_cgroup; 378 int nid = page_cgroup_nid(pc); 379 int zid = page_cgroup_zid(pc); 380 381 if (!mem) 382 return NULL; 383 384 return mem_cgroup_zoneinfo(mem, nid, zid); 385 } 386 387 static struct mem_cgroup_tree_per_zone * 388 soft_limit_tree_node_zone(int nid, int zid) 389 { 390 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 391 } 392 393 static struct mem_cgroup_tree_per_zone * 394 soft_limit_tree_from_page(struct page *page) 395 { 396 int nid = page_to_nid(page); 397 int zid = page_zonenum(page); 398 399 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 400 } 401 402 static void 403 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem, 404 struct mem_cgroup_per_zone *mz, 405 struct mem_cgroup_tree_per_zone *mctz, 406 unsigned long long new_usage_in_excess) 407 { 408 struct rb_node **p = &mctz->rb_root.rb_node; 409 struct rb_node *parent = NULL; 410 struct mem_cgroup_per_zone *mz_node; 411 412 if (mz->on_tree) 413 return; 414 415 mz->usage_in_excess = new_usage_in_excess; 416 if (!mz->usage_in_excess) 417 return; 418 while (*p) { 419 parent = *p; 420 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 421 tree_node); 422 if (mz->usage_in_excess < mz_node->usage_in_excess) 423 p = &(*p)->rb_left; 424 /* 425 * We can't avoid mem cgroups that are over their soft 426 * limit by the same amount 427 */ 428 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 429 p = &(*p)->rb_right; 430 } 431 rb_link_node(&mz->tree_node, parent, p); 432 rb_insert_color(&mz->tree_node, &mctz->rb_root); 433 mz->on_tree = true; 434 } 435 436 static void 437 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem, 438 struct mem_cgroup_per_zone *mz, 439 struct mem_cgroup_tree_per_zone *mctz) 440 { 441 if (!mz->on_tree) 442 return; 443 rb_erase(&mz->tree_node, &mctz->rb_root); 444 mz->on_tree = false; 445 } 446 447 static void 448 mem_cgroup_remove_exceeded(struct mem_cgroup *mem, 449 struct mem_cgroup_per_zone *mz, 450 struct mem_cgroup_tree_per_zone *mctz) 451 { 452 spin_lock(&mctz->lock); 453 __mem_cgroup_remove_exceeded(mem, mz, mctz); 454 spin_unlock(&mctz->lock); 455 } 456 457 458 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page) 459 { 460 unsigned long long excess; 461 struct mem_cgroup_per_zone *mz; 462 struct mem_cgroup_tree_per_zone *mctz; 463 int nid = page_to_nid(page); 464 int zid = page_zonenum(page); 465 mctz = soft_limit_tree_from_page(page); 466 467 /* 468 * Necessary to update all ancestors when hierarchy is used. 469 * because their event counter is not touched. 470 */ 471 for (; mem; mem = parent_mem_cgroup(mem)) { 472 mz = mem_cgroup_zoneinfo(mem, nid, zid); 473 excess = res_counter_soft_limit_excess(&mem->res); 474 /* 475 * We have to update the tree if mz is on RB-tree or 476 * mem is over its softlimit. 477 */ 478 if (excess || mz->on_tree) { 479 spin_lock(&mctz->lock); 480 /* if on-tree, remove it */ 481 if (mz->on_tree) 482 __mem_cgroup_remove_exceeded(mem, mz, mctz); 483 /* 484 * Insert again. mz->usage_in_excess will be updated. 485 * If excess is 0, no tree ops. 486 */ 487 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess); 488 spin_unlock(&mctz->lock); 489 } 490 } 491 } 492 493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem) 494 { 495 int node, zone; 496 struct mem_cgroup_per_zone *mz; 497 struct mem_cgroup_tree_per_zone *mctz; 498 499 for_each_node_state(node, N_POSSIBLE) { 500 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 501 mz = mem_cgroup_zoneinfo(mem, node, zone); 502 mctz = soft_limit_tree_node_zone(node, zone); 503 mem_cgroup_remove_exceeded(mem, mz, mctz); 504 } 505 } 506 } 507 508 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem) 509 { 510 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT; 511 } 512 513 static struct mem_cgroup_per_zone * 514 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 515 { 516 struct rb_node *rightmost = NULL; 517 struct mem_cgroup_per_zone *mz; 518 519 retry: 520 mz = NULL; 521 rightmost = rb_last(&mctz->rb_root); 522 if (!rightmost) 523 goto done; /* Nothing to reclaim from */ 524 525 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 526 /* 527 * Remove the node now but someone else can add it back, 528 * we will to add it back at the end of reclaim to its correct 529 * position in the tree. 530 */ 531 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 532 if (!res_counter_soft_limit_excess(&mz->mem->res) || 533 !css_tryget(&mz->mem->css)) 534 goto retry; 535 done: 536 return mz; 537 } 538 539 static struct mem_cgroup_per_zone * 540 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 541 { 542 struct mem_cgroup_per_zone *mz; 543 544 spin_lock(&mctz->lock); 545 mz = __mem_cgroup_largest_soft_limit_node(mctz); 546 spin_unlock(&mctz->lock); 547 return mz; 548 } 549 550 /* 551 * Implementation Note: reading percpu statistics for memcg. 552 * 553 * Both of vmstat[] and percpu_counter has threshold and do periodic 554 * synchronization to implement "quick" read. There are trade-off between 555 * reading cost and precision of value. Then, we may have a chance to implement 556 * a periodic synchronizion of counter in memcg's counter. 557 * 558 * But this _read() function is used for user interface now. The user accounts 559 * memory usage by memory cgroup and he _always_ requires exact value because 560 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 561 * have to visit all online cpus and make sum. So, for now, unnecessary 562 * synchronization is not implemented. (just implemented for cpu hotplug) 563 * 564 * If there are kernel internal actions which can make use of some not-exact 565 * value, and reading all cpu value can be performance bottleneck in some 566 * common workload, threashold and synchonization as vmstat[] should be 567 * implemented. 568 */ 569 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem, 570 enum mem_cgroup_stat_index idx) 571 { 572 int cpu; 573 s64 val = 0; 574 575 get_online_cpus(); 576 for_each_online_cpu(cpu) 577 val += per_cpu(mem->stat->count[idx], cpu); 578 #ifdef CONFIG_HOTPLUG_CPU 579 spin_lock(&mem->pcp_counter_lock); 580 val += mem->nocpu_base.count[idx]; 581 spin_unlock(&mem->pcp_counter_lock); 582 #endif 583 put_online_cpus(); 584 return val; 585 } 586 587 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem) 588 { 589 s64 ret; 590 591 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); 592 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); 593 return ret; 594 } 595 596 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem, 597 bool charge) 598 { 599 int val = (charge) ? 1 : -1; 600 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); 601 } 602 603 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, 604 struct page_cgroup *pc, 605 bool charge) 606 { 607 int val = (charge) ? 1 : -1; 608 609 preempt_disable(); 610 611 if (PageCgroupCache(pc)) 612 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val); 613 else 614 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val); 615 616 if (charge) 617 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]); 618 else 619 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]); 620 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]); 621 622 preempt_enable(); 623 } 624 625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, 626 enum lru_list idx) 627 { 628 int nid, zid; 629 struct mem_cgroup_per_zone *mz; 630 u64 total = 0; 631 632 for_each_online_node(nid) 633 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 634 mz = mem_cgroup_zoneinfo(mem, nid, zid); 635 total += MEM_CGROUP_ZSTAT(mz, idx); 636 } 637 return total; 638 } 639 640 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift) 641 { 642 s64 val; 643 644 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]); 645 646 return !(val & ((1 << event_mask_shift) - 1)); 647 } 648 649 /* 650 * Check events in order. 651 * 652 */ 653 static void memcg_check_events(struct mem_cgroup *mem, struct page *page) 654 { 655 /* threshold event is triggered in finer grain than soft limit */ 656 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) { 657 mem_cgroup_threshold(mem); 658 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH))) 659 mem_cgroup_update_tree(mem, page); 660 } 661 } 662 663 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 664 { 665 return container_of(cgroup_subsys_state(cont, 666 mem_cgroup_subsys_id), struct mem_cgroup, 667 css); 668 } 669 670 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 671 { 672 /* 673 * mm_update_next_owner() may clear mm->owner to NULL 674 * if it races with swapoff, page migration, etc. 675 * So this can be called with p == NULL. 676 */ 677 if (unlikely(!p)) 678 return NULL; 679 680 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 681 struct mem_cgroup, css); 682 } 683 684 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 685 { 686 struct mem_cgroup *mem = NULL; 687 688 if (!mm) 689 return NULL; 690 /* 691 * Because we have no locks, mm->owner's may be being moved to other 692 * cgroup. We use css_tryget() here even if this looks 693 * pessimistic (rather than adding locks here). 694 */ 695 rcu_read_lock(); 696 do { 697 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 698 if (unlikely(!mem)) 699 break; 700 } while (!css_tryget(&mem->css)); 701 rcu_read_unlock(); 702 return mem; 703 } 704 705 /* The caller has to guarantee "mem" exists before calling this */ 706 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem) 707 { 708 struct cgroup_subsys_state *css; 709 int found; 710 711 if (!mem) /* ROOT cgroup has the smallest ID */ 712 return root_mem_cgroup; /*css_put/get against root is ignored*/ 713 if (!mem->use_hierarchy) { 714 if (css_tryget(&mem->css)) 715 return mem; 716 return NULL; 717 } 718 rcu_read_lock(); 719 /* 720 * searching a memory cgroup which has the smallest ID under given 721 * ROOT cgroup. (ID >= 1) 722 */ 723 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found); 724 if (css && css_tryget(css)) 725 mem = container_of(css, struct mem_cgroup, css); 726 else 727 mem = NULL; 728 rcu_read_unlock(); 729 return mem; 730 } 731 732 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter, 733 struct mem_cgroup *root, 734 bool cond) 735 { 736 int nextid = css_id(&iter->css) + 1; 737 int found; 738 int hierarchy_used; 739 struct cgroup_subsys_state *css; 740 741 hierarchy_used = iter->use_hierarchy; 742 743 css_put(&iter->css); 744 /* If no ROOT, walk all, ignore hierarchy */ 745 if (!cond || (root && !hierarchy_used)) 746 return NULL; 747 748 if (!root) 749 root = root_mem_cgroup; 750 751 do { 752 iter = NULL; 753 rcu_read_lock(); 754 755 css = css_get_next(&mem_cgroup_subsys, nextid, 756 &root->css, &found); 757 if (css && css_tryget(css)) 758 iter = container_of(css, struct mem_cgroup, css); 759 rcu_read_unlock(); 760 /* If css is NULL, no more cgroups will be found */ 761 nextid = found + 1; 762 } while (css && !iter); 763 764 return iter; 765 } 766 /* 767 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please 768 * be careful that "break" loop is not allowed. We have reference count. 769 * Instead of that modify "cond" to be false and "continue" to exit the loop. 770 */ 771 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \ 772 for (iter = mem_cgroup_start_loop(root);\ 773 iter != NULL;\ 774 iter = mem_cgroup_get_next(iter, root, cond)) 775 776 #define for_each_mem_cgroup_tree(iter, root) \ 777 for_each_mem_cgroup_tree_cond(iter, root, true) 778 779 #define for_each_mem_cgroup_all(iter) \ 780 for_each_mem_cgroup_tree_cond(iter, NULL, true) 781 782 783 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem) 784 { 785 return (mem == root_mem_cgroup); 786 } 787 788 /* 789 * Following LRU functions are allowed to be used without PCG_LOCK. 790 * Operations are called by routine of global LRU independently from memcg. 791 * What we have to take care of here is validness of pc->mem_cgroup. 792 * 793 * Changes to pc->mem_cgroup happens when 794 * 1. charge 795 * 2. moving account 796 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 797 * It is added to LRU before charge. 798 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 799 * When moving account, the page is not on LRU. It's isolated. 800 */ 801 802 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) 803 { 804 struct page_cgroup *pc; 805 struct mem_cgroup_per_zone *mz; 806 807 if (mem_cgroup_disabled()) 808 return; 809 pc = lookup_page_cgroup(page); 810 /* can happen while we handle swapcache. */ 811 if (!TestClearPageCgroupAcctLRU(pc)) 812 return; 813 VM_BUG_ON(!pc->mem_cgroup); 814 /* 815 * We don't check PCG_USED bit. It's cleared when the "page" is finally 816 * removed from global LRU. 817 */ 818 mz = page_cgroup_zoneinfo(pc); 819 MEM_CGROUP_ZSTAT(mz, lru) -= 1; 820 if (mem_cgroup_is_root(pc->mem_cgroup)) 821 return; 822 VM_BUG_ON(list_empty(&pc->lru)); 823 list_del_init(&pc->lru); 824 return; 825 } 826 827 void mem_cgroup_del_lru(struct page *page) 828 { 829 mem_cgroup_del_lru_list(page, page_lru(page)); 830 } 831 832 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) 833 { 834 struct mem_cgroup_per_zone *mz; 835 struct page_cgroup *pc; 836 837 if (mem_cgroup_disabled()) 838 return; 839 840 pc = lookup_page_cgroup(page); 841 /* 842 * Used bit is set without atomic ops but after smp_wmb(). 843 * For making pc->mem_cgroup visible, insert smp_rmb() here. 844 */ 845 smp_rmb(); 846 /* unused or root page is not rotated. */ 847 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup)) 848 return; 849 mz = page_cgroup_zoneinfo(pc); 850 list_move(&pc->lru, &mz->lists[lru]); 851 } 852 853 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) 854 { 855 struct page_cgroup *pc; 856 struct mem_cgroup_per_zone *mz; 857 858 if (mem_cgroup_disabled()) 859 return; 860 pc = lookup_page_cgroup(page); 861 VM_BUG_ON(PageCgroupAcctLRU(pc)); 862 /* 863 * Used bit is set without atomic ops but after smp_wmb(). 864 * For making pc->mem_cgroup visible, insert smp_rmb() here. 865 */ 866 smp_rmb(); 867 if (!PageCgroupUsed(pc)) 868 return; 869 870 mz = page_cgroup_zoneinfo(pc); 871 MEM_CGROUP_ZSTAT(mz, lru) += 1; 872 SetPageCgroupAcctLRU(pc); 873 if (mem_cgroup_is_root(pc->mem_cgroup)) 874 return; 875 list_add(&pc->lru, &mz->lists[lru]); 876 } 877 878 /* 879 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to 880 * lru because the page may.be reused after it's fully uncharged (because of 881 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge 882 * it again. This function is only used to charge SwapCache. It's done under 883 * lock_page and expected that zone->lru_lock is never held. 884 */ 885 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) 886 { 887 unsigned long flags; 888 struct zone *zone = page_zone(page); 889 struct page_cgroup *pc = lookup_page_cgroup(page); 890 891 spin_lock_irqsave(&zone->lru_lock, flags); 892 /* 893 * Forget old LRU when this page_cgroup is *not* used. This Used bit 894 * is guarded by lock_page() because the page is SwapCache. 895 */ 896 if (!PageCgroupUsed(pc)) 897 mem_cgroup_del_lru_list(page, page_lru(page)); 898 spin_unlock_irqrestore(&zone->lru_lock, flags); 899 } 900 901 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) 902 { 903 unsigned long flags; 904 struct zone *zone = page_zone(page); 905 struct page_cgroup *pc = lookup_page_cgroup(page); 906 907 spin_lock_irqsave(&zone->lru_lock, flags); 908 /* link when the page is linked to LRU but page_cgroup isn't */ 909 if (PageLRU(page) && !PageCgroupAcctLRU(pc)) 910 mem_cgroup_add_lru_list(page, page_lru(page)); 911 spin_unlock_irqrestore(&zone->lru_lock, flags); 912 } 913 914 915 void mem_cgroup_move_lists(struct page *page, 916 enum lru_list from, enum lru_list to) 917 { 918 if (mem_cgroup_disabled()) 919 return; 920 mem_cgroup_del_lru_list(page, from); 921 mem_cgroup_add_lru_list(page, to); 922 } 923 924 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) 925 { 926 int ret; 927 struct mem_cgroup *curr = NULL; 928 struct task_struct *p; 929 930 p = find_lock_task_mm(task); 931 if (!p) 932 return 0; 933 curr = try_get_mem_cgroup_from_mm(p->mm); 934 task_unlock(p); 935 if (!curr) 936 return 0; 937 /* 938 * We should check use_hierarchy of "mem" not "curr". Because checking 939 * use_hierarchy of "curr" here make this function true if hierarchy is 940 * enabled in "curr" and "curr" is a child of "mem" in *cgroup* 941 * hierarchy(even if use_hierarchy is disabled in "mem"). 942 */ 943 if (mem->use_hierarchy) 944 ret = css_is_ancestor(&curr->css, &mem->css); 945 else 946 ret = (curr == mem); 947 css_put(&curr->css); 948 return ret; 949 } 950 951 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) 952 { 953 unsigned long active; 954 unsigned long inactive; 955 unsigned long gb; 956 unsigned long inactive_ratio; 957 958 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); 959 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); 960 961 gb = (inactive + active) >> (30 - PAGE_SHIFT); 962 if (gb) 963 inactive_ratio = int_sqrt(10 * gb); 964 else 965 inactive_ratio = 1; 966 967 if (present_pages) { 968 present_pages[0] = inactive; 969 present_pages[1] = active; 970 } 971 972 return inactive_ratio; 973 } 974 975 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) 976 { 977 unsigned long active; 978 unsigned long inactive; 979 unsigned long present_pages[2]; 980 unsigned long inactive_ratio; 981 982 inactive_ratio = calc_inactive_ratio(memcg, present_pages); 983 984 inactive = present_pages[0]; 985 active = present_pages[1]; 986 987 if (inactive * inactive_ratio < active) 988 return 1; 989 990 return 0; 991 } 992 993 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg) 994 { 995 unsigned long active; 996 unsigned long inactive; 997 998 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE); 999 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE); 1000 1001 return (active > inactive); 1002 } 1003 1004 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, 1005 struct zone *zone, 1006 enum lru_list lru) 1007 { 1008 int nid = zone_to_nid(zone); 1009 int zid = zone_idx(zone); 1010 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 1011 1012 return MEM_CGROUP_ZSTAT(mz, lru); 1013 } 1014 1015 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, 1016 struct zone *zone) 1017 { 1018 int nid = zone_to_nid(zone); 1019 int zid = zone_idx(zone); 1020 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 1021 1022 return &mz->reclaim_stat; 1023 } 1024 1025 struct zone_reclaim_stat * 1026 mem_cgroup_get_reclaim_stat_from_page(struct page *page) 1027 { 1028 struct page_cgroup *pc; 1029 struct mem_cgroup_per_zone *mz; 1030 1031 if (mem_cgroup_disabled()) 1032 return NULL; 1033 1034 pc = lookup_page_cgroup(page); 1035 /* 1036 * Used bit is set without atomic ops but after smp_wmb(). 1037 * For making pc->mem_cgroup visible, insert smp_rmb() here. 1038 */ 1039 smp_rmb(); 1040 if (!PageCgroupUsed(pc)) 1041 return NULL; 1042 1043 mz = page_cgroup_zoneinfo(pc); 1044 if (!mz) 1045 return NULL; 1046 1047 return &mz->reclaim_stat; 1048 } 1049 1050 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, 1051 struct list_head *dst, 1052 unsigned long *scanned, int order, 1053 int mode, struct zone *z, 1054 struct mem_cgroup *mem_cont, 1055 int active, int file) 1056 { 1057 unsigned long nr_taken = 0; 1058 struct page *page; 1059 unsigned long scan; 1060 LIST_HEAD(pc_list); 1061 struct list_head *src; 1062 struct page_cgroup *pc, *tmp; 1063 int nid = zone_to_nid(z); 1064 int zid = zone_idx(z); 1065 struct mem_cgroup_per_zone *mz; 1066 int lru = LRU_FILE * file + active; 1067 int ret; 1068 1069 BUG_ON(!mem_cont); 1070 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 1071 src = &mz->lists[lru]; 1072 1073 scan = 0; 1074 list_for_each_entry_safe_reverse(pc, tmp, src, lru) { 1075 if (scan >= nr_to_scan) 1076 break; 1077 1078 page = pc->page; 1079 if (unlikely(!PageCgroupUsed(pc))) 1080 continue; 1081 if (unlikely(!PageLRU(page))) 1082 continue; 1083 1084 scan++; 1085 ret = __isolate_lru_page(page, mode, file); 1086 switch (ret) { 1087 case 0: 1088 list_move(&page->lru, dst); 1089 mem_cgroup_del_lru(page); 1090 nr_taken++; 1091 break; 1092 case -EBUSY: 1093 /* we don't affect global LRU but rotate in our LRU */ 1094 mem_cgroup_rotate_lru_list(page, page_lru(page)); 1095 break; 1096 default: 1097 break; 1098 } 1099 } 1100 1101 *scanned = scan; 1102 1103 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken, 1104 0, 0, 0, mode); 1105 1106 return nr_taken; 1107 } 1108 1109 #define mem_cgroup_from_res_counter(counter, member) \ 1110 container_of(counter, struct mem_cgroup, member) 1111 1112 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) 1113 { 1114 if (do_swap_account) { 1115 if (res_counter_check_under_limit(&mem->res) && 1116 res_counter_check_under_limit(&mem->memsw)) 1117 return true; 1118 } else 1119 if (res_counter_check_under_limit(&mem->res)) 1120 return true; 1121 return false; 1122 } 1123 1124 static unsigned int get_swappiness(struct mem_cgroup *memcg) 1125 { 1126 struct cgroup *cgrp = memcg->css.cgroup; 1127 unsigned int swappiness; 1128 1129 /* root ? */ 1130 if (cgrp->parent == NULL) 1131 return vm_swappiness; 1132 1133 spin_lock(&memcg->reclaim_param_lock); 1134 swappiness = memcg->swappiness; 1135 spin_unlock(&memcg->reclaim_param_lock); 1136 1137 return swappiness; 1138 } 1139 1140 static void mem_cgroup_start_move(struct mem_cgroup *mem) 1141 { 1142 int cpu; 1143 1144 get_online_cpus(); 1145 spin_lock(&mem->pcp_counter_lock); 1146 for_each_online_cpu(cpu) 1147 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1; 1148 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1; 1149 spin_unlock(&mem->pcp_counter_lock); 1150 put_online_cpus(); 1151 1152 synchronize_rcu(); 1153 } 1154 1155 static void mem_cgroup_end_move(struct mem_cgroup *mem) 1156 { 1157 int cpu; 1158 1159 if (!mem) 1160 return; 1161 get_online_cpus(); 1162 spin_lock(&mem->pcp_counter_lock); 1163 for_each_online_cpu(cpu) 1164 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1; 1165 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1; 1166 spin_unlock(&mem->pcp_counter_lock); 1167 put_online_cpus(); 1168 } 1169 /* 1170 * 2 routines for checking "mem" is under move_account() or not. 1171 * 1172 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used 1173 * for avoiding race in accounting. If true, 1174 * pc->mem_cgroup may be overwritten. 1175 * 1176 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1177 * under hierarchy of moving cgroups. This is for 1178 * waiting at hith-memory prressure caused by "move". 1179 */ 1180 1181 static bool mem_cgroup_stealed(struct mem_cgroup *mem) 1182 { 1183 VM_BUG_ON(!rcu_read_lock_held()); 1184 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0; 1185 } 1186 1187 static bool mem_cgroup_under_move(struct mem_cgroup *mem) 1188 { 1189 struct mem_cgroup *from; 1190 struct mem_cgroup *to; 1191 bool ret = false; 1192 /* 1193 * Unlike task_move routines, we access mc.to, mc.from not under 1194 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1195 */ 1196 spin_lock(&mc.lock); 1197 from = mc.from; 1198 to = mc.to; 1199 if (!from) 1200 goto unlock; 1201 if (from == mem || to == mem 1202 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css)) 1203 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css))) 1204 ret = true; 1205 unlock: 1206 spin_unlock(&mc.lock); 1207 return ret; 1208 } 1209 1210 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem) 1211 { 1212 if (mc.moving_task && current != mc.moving_task) { 1213 if (mem_cgroup_under_move(mem)) { 1214 DEFINE_WAIT(wait); 1215 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1216 /* moving charge context might have finished. */ 1217 if (mc.moving_task) 1218 schedule(); 1219 finish_wait(&mc.waitq, &wait); 1220 return true; 1221 } 1222 } 1223 return false; 1224 } 1225 1226 /** 1227 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1228 * @memcg: The memory cgroup that went over limit 1229 * @p: Task that is going to be killed 1230 * 1231 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1232 * enabled 1233 */ 1234 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1235 { 1236 struct cgroup *task_cgrp; 1237 struct cgroup *mem_cgrp; 1238 /* 1239 * Need a buffer in BSS, can't rely on allocations. The code relies 1240 * on the assumption that OOM is serialized for memory controller. 1241 * If this assumption is broken, revisit this code. 1242 */ 1243 static char memcg_name[PATH_MAX]; 1244 int ret; 1245 1246 if (!memcg || !p) 1247 return; 1248 1249 1250 rcu_read_lock(); 1251 1252 mem_cgrp = memcg->css.cgroup; 1253 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1254 1255 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1256 if (ret < 0) { 1257 /* 1258 * Unfortunately, we are unable to convert to a useful name 1259 * But we'll still print out the usage information 1260 */ 1261 rcu_read_unlock(); 1262 goto done; 1263 } 1264 rcu_read_unlock(); 1265 1266 printk(KERN_INFO "Task in %s killed", memcg_name); 1267 1268 rcu_read_lock(); 1269 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1270 if (ret < 0) { 1271 rcu_read_unlock(); 1272 goto done; 1273 } 1274 rcu_read_unlock(); 1275 1276 /* 1277 * Continues from above, so we don't need an KERN_ level 1278 */ 1279 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1280 done: 1281 1282 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1283 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1284 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1285 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1286 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1287 "failcnt %llu\n", 1288 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1289 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1290 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1291 } 1292 1293 /* 1294 * This function returns the number of memcg under hierarchy tree. Returns 1295 * 1(self count) if no children. 1296 */ 1297 static int mem_cgroup_count_children(struct mem_cgroup *mem) 1298 { 1299 int num = 0; 1300 struct mem_cgroup *iter; 1301 1302 for_each_mem_cgroup_tree(iter, mem) 1303 num++; 1304 return num; 1305 } 1306 1307 /* 1308 * Return the memory (and swap, if configured) limit for a memcg. 1309 */ 1310 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1311 { 1312 u64 limit; 1313 u64 memsw; 1314 1315 limit = res_counter_read_u64(&memcg->res, RES_LIMIT) + 1316 total_swap_pages; 1317 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1318 /* 1319 * If memsw is finite and limits the amount of swap space available 1320 * to this memcg, return that limit. 1321 */ 1322 return min(limit, memsw); 1323 } 1324 1325 /* 1326 * Visit the first child (need not be the first child as per the ordering 1327 * of the cgroup list, since we track last_scanned_child) of @mem and use 1328 * that to reclaim free pages from. 1329 */ 1330 static struct mem_cgroup * 1331 mem_cgroup_select_victim(struct mem_cgroup *root_mem) 1332 { 1333 struct mem_cgroup *ret = NULL; 1334 struct cgroup_subsys_state *css; 1335 int nextid, found; 1336 1337 if (!root_mem->use_hierarchy) { 1338 css_get(&root_mem->css); 1339 ret = root_mem; 1340 } 1341 1342 while (!ret) { 1343 rcu_read_lock(); 1344 nextid = root_mem->last_scanned_child + 1; 1345 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, 1346 &found); 1347 if (css && css_tryget(css)) 1348 ret = container_of(css, struct mem_cgroup, css); 1349 1350 rcu_read_unlock(); 1351 /* Updates scanning parameter */ 1352 spin_lock(&root_mem->reclaim_param_lock); 1353 if (!css) { 1354 /* this means start scan from ID:1 */ 1355 root_mem->last_scanned_child = 0; 1356 } else 1357 root_mem->last_scanned_child = found; 1358 spin_unlock(&root_mem->reclaim_param_lock); 1359 } 1360 1361 return ret; 1362 } 1363 1364 /* 1365 * Scan the hierarchy if needed to reclaim memory. We remember the last child 1366 * we reclaimed from, so that we don't end up penalizing one child extensively 1367 * based on its position in the children list. 1368 * 1369 * root_mem is the original ancestor that we've been reclaim from. 1370 * 1371 * We give up and return to the caller when we visit root_mem twice. 1372 * (other groups can be removed while we're walking....) 1373 * 1374 * If shrink==true, for avoiding to free too much, this returns immedieately. 1375 */ 1376 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, 1377 struct zone *zone, 1378 gfp_t gfp_mask, 1379 unsigned long reclaim_options) 1380 { 1381 struct mem_cgroup *victim; 1382 int ret, total = 0; 1383 int loop = 0; 1384 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP; 1385 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK; 1386 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT; 1387 unsigned long excess = mem_cgroup_get_excess(root_mem); 1388 1389 /* If memsw_is_minimum==1, swap-out is of-no-use. */ 1390 if (root_mem->memsw_is_minimum) 1391 noswap = true; 1392 1393 while (1) { 1394 victim = mem_cgroup_select_victim(root_mem); 1395 if (victim == root_mem) { 1396 loop++; 1397 if (loop >= 1) 1398 drain_all_stock_async(); 1399 if (loop >= 2) { 1400 /* 1401 * If we have not been able to reclaim 1402 * anything, it might because there are 1403 * no reclaimable pages under this hierarchy 1404 */ 1405 if (!check_soft || !total) { 1406 css_put(&victim->css); 1407 break; 1408 } 1409 /* 1410 * We want to do more targetted reclaim. 1411 * excess >> 2 is not to excessive so as to 1412 * reclaim too much, nor too less that we keep 1413 * coming back to reclaim from this cgroup 1414 */ 1415 if (total >= (excess >> 2) || 1416 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) { 1417 css_put(&victim->css); 1418 break; 1419 } 1420 } 1421 } 1422 if (!mem_cgroup_local_usage(victim)) { 1423 /* this cgroup's local usage == 0 */ 1424 css_put(&victim->css); 1425 continue; 1426 } 1427 /* we use swappiness of local cgroup */ 1428 if (check_soft) 1429 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, 1430 noswap, get_swappiness(victim), zone); 1431 else 1432 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, 1433 noswap, get_swappiness(victim)); 1434 css_put(&victim->css); 1435 /* 1436 * At shrinking usage, we can't check we should stop here or 1437 * reclaim more. It's depends on callers. last_scanned_child 1438 * will work enough for keeping fairness under tree. 1439 */ 1440 if (shrink) 1441 return ret; 1442 total += ret; 1443 if (check_soft) { 1444 if (res_counter_check_under_soft_limit(&root_mem->res)) 1445 return total; 1446 } else if (mem_cgroup_check_under_limit(root_mem)) 1447 return 1 + total; 1448 } 1449 return total; 1450 } 1451 1452 /* 1453 * Check OOM-Killer is already running under our hierarchy. 1454 * If someone is running, return false. 1455 */ 1456 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem) 1457 { 1458 int x, lock_count = 0; 1459 struct mem_cgroup *iter; 1460 1461 for_each_mem_cgroup_tree(iter, mem) { 1462 x = atomic_inc_return(&iter->oom_lock); 1463 lock_count = max(x, lock_count); 1464 } 1465 1466 if (lock_count == 1) 1467 return true; 1468 return false; 1469 } 1470 1471 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem) 1472 { 1473 struct mem_cgroup *iter; 1474 1475 /* 1476 * When a new child is created while the hierarchy is under oom, 1477 * mem_cgroup_oom_lock() may not be called. We have to use 1478 * atomic_add_unless() here. 1479 */ 1480 for_each_mem_cgroup_tree(iter, mem) 1481 atomic_add_unless(&iter->oom_lock, -1, 0); 1482 return 0; 1483 } 1484 1485 1486 static DEFINE_MUTEX(memcg_oom_mutex); 1487 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1488 1489 struct oom_wait_info { 1490 struct mem_cgroup *mem; 1491 wait_queue_t wait; 1492 }; 1493 1494 static int memcg_oom_wake_function(wait_queue_t *wait, 1495 unsigned mode, int sync, void *arg) 1496 { 1497 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg; 1498 struct oom_wait_info *oom_wait_info; 1499 1500 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1501 1502 if (oom_wait_info->mem == wake_mem) 1503 goto wakeup; 1504 /* if no hierarchy, no match */ 1505 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy) 1506 return 0; 1507 /* 1508 * Both of oom_wait_info->mem and wake_mem are stable under us. 1509 * Then we can use css_is_ancestor without taking care of RCU. 1510 */ 1511 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) && 1512 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css)) 1513 return 0; 1514 1515 wakeup: 1516 return autoremove_wake_function(wait, mode, sync, arg); 1517 } 1518 1519 static void memcg_wakeup_oom(struct mem_cgroup *mem) 1520 { 1521 /* for filtering, pass "mem" as argument. */ 1522 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem); 1523 } 1524 1525 static void memcg_oom_recover(struct mem_cgroup *mem) 1526 { 1527 if (mem && atomic_read(&mem->oom_lock)) 1528 memcg_wakeup_oom(mem); 1529 } 1530 1531 /* 1532 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1533 */ 1534 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask) 1535 { 1536 struct oom_wait_info owait; 1537 bool locked, need_to_kill; 1538 1539 owait.mem = mem; 1540 owait.wait.flags = 0; 1541 owait.wait.func = memcg_oom_wake_function; 1542 owait.wait.private = current; 1543 INIT_LIST_HEAD(&owait.wait.task_list); 1544 need_to_kill = true; 1545 /* At first, try to OOM lock hierarchy under mem.*/ 1546 mutex_lock(&memcg_oom_mutex); 1547 locked = mem_cgroup_oom_lock(mem); 1548 /* 1549 * Even if signal_pending(), we can't quit charge() loop without 1550 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1551 * under OOM is always welcomed, use TASK_KILLABLE here. 1552 */ 1553 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1554 if (!locked || mem->oom_kill_disable) 1555 need_to_kill = false; 1556 if (locked) 1557 mem_cgroup_oom_notify(mem); 1558 mutex_unlock(&memcg_oom_mutex); 1559 1560 if (need_to_kill) { 1561 finish_wait(&memcg_oom_waitq, &owait.wait); 1562 mem_cgroup_out_of_memory(mem, mask); 1563 } else { 1564 schedule(); 1565 finish_wait(&memcg_oom_waitq, &owait.wait); 1566 } 1567 mutex_lock(&memcg_oom_mutex); 1568 mem_cgroup_oom_unlock(mem); 1569 memcg_wakeup_oom(mem); 1570 mutex_unlock(&memcg_oom_mutex); 1571 1572 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1573 return false; 1574 /* Give chance to dying process */ 1575 schedule_timeout(1); 1576 return true; 1577 } 1578 1579 /* 1580 * Currently used to update mapped file statistics, but the routine can be 1581 * generalized to update other statistics as well. 1582 * 1583 * Notes: Race condition 1584 * 1585 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1586 * it tends to be costly. But considering some conditions, we doesn't need 1587 * to do so _always_. 1588 * 1589 * Considering "charge", lock_page_cgroup() is not required because all 1590 * file-stat operations happen after a page is attached to radix-tree. There 1591 * are no race with "charge". 1592 * 1593 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1594 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1595 * if there are race with "uncharge". Statistics itself is properly handled 1596 * by flags. 1597 * 1598 * Considering "move", this is an only case we see a race. To make the race 1599 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are 1600 * possibility of race condition. If there is, we take a lock. 1601 */ 1602 1603 static void mem_cgroup_update_file_stat(struct page *page, int idx, int val) 1604 { 1605 struct mem_cgroup *mem; 1606 struct page_cgroup *pc = lookup_page_cgroup(page); 1607 bool need_unlock = false; 1608 1609 if (unlikely(!pc)) 1610 return; 1611 1612 rcu_read_lock(); 1613 mem = pc->mem_cgroup; 1614 if (unlikely(!mem || !PageCgroupUsed(pc))) 1615 goto out; 1616 /* pc->mem_cgroup is unstable ? */ 1617 if (unlikely(mem_cgroup_stealed(mem))) { 1618 /* take a lock against to access pc->mem_cgroup */ 1619 lock_page_cgroup(pc); 1620 need_unlock = true; 1621 mem = pc->mem_cgroup; 1622 if (!mem || !PageCgroupUsed(pc)) 1623 goto out; 1624 } 1625 1626 this_cpu_add(mem->stat->count[idx], val); 1627 1628 switch (idx) { 1629 case MEM_CGROUP_STAT_FILE_MAPPED: 1630 if (val > 0) 1631 SetPageCgroupFileMapped(pc); 1632 else if (!page_mapped(page)) 1633 ClearPageCgroupFileMapped(pc); 1634 break; 1635 default: 1636 BUG(); 1637 } 1638 1639 out: 1640 if (unlikely(need_unlock)) 1641 unlock_page_cgroup(pc); 1642 rcu_read_unlock(); 1643 return; 1644 } 1645 1646 void mem_cgroup_update_file_mapped(struct page *page, int val) 1647 { 1648 mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val); 1649 } 1650 1651 /* 1652 * size of first charge trial. "32" comes from vmscan.c's magic value. 1653 * TODO: maybe necessary to use big numbers in big irons. 1654 */ 1655 #define CHARGE_SIZE (32 * PAGE_SIZE) 1656 struct memcg_stock_pcp { 1657 struct mem_cgroup *cached; /* this never be root cgroup */ 1658 int charge; 1659 struct work_struct work; 1660 }; 1661 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1662 static atomic_t memcg_drain_count; 1663 1664 /* 1665 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed 1666 * from local stock and true is returned. If the stock is 0 or charges from a 1667 * cgroup which is not current target, returns false. This stock will be 1668 * refilled. 1669 */ 1670 static bool consume_stock(struct mem_cgroup *mem) 1671 { 1672 struct memcg_stock_pcp *stock; 1673 bool ret = true; 1674 1675 stock = &get_cpu_var(memcg_stock); 1676 if (mem == stock->cached && stock->charge) 1677 stock->charge -= PAGE_SIZE; 1678 else /* need to call res_counter_charge */ 1679 ret = false; 1680 put_cpu_var(memcg_stock); 1681 return ret; 1682 } 1683 1684 /* 1685 * Returns stocks cached in percpu to res_counter and reset cached information. 1686 */ 1687 static void drain_stock(struct memcg_stock_pcp *stock) 1688 { 1689 struct mem_cgroup *old = stock->cached; 1690 1691 if (stock->charge) { 1692 res_counter_uncharge(&old->res, stock->charge); 1693 if (do_swap_account) 1694 res_counter_uncharge(&old->memsw, stock->charge); 1695 } 1696 stock->cached = NULL; 1697 stock->charge = 0; 1698 } 1699 1700 /* 1701 * This must be called under preempt disabled or must be called by 1702 * a thread which is pinned to local cpu. 1703 */ 1704 static void drain_local_stock(struct work_struct *dummy) 1705 { 1706 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 1707 drain_stock(stock); 1708 } 1709 1710 /* 1711 * Cache charges(val) which is from res_counter, to local per_cpu area. 1712 * This will be consumed by consume_stock() function, later. 1713 */ 1714 static void refill_stock(struct mem_cgroup *mem, int val) 1715 { 1716 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1717 1718 if (stock->cached != mem) { /* reset if necessary */ 1719 drain_stock(stock); 1720 stock->cached = mem; 1721 } 1722 stock->charge += val; 1723 put_cpu_var(memcg_stock); 1724 } 1725 1726 /* 1727 * Tries to drain stocked charges in other cpus. This function is asynchronous 1728 * and just put a work per cpu for draining localy on each cpu. Caller can 1729 * expects some charges will be back to res_counter later but cannot wait for 1730 * it. 1731 */ 1732 static void drain_all_stock_async(void) 1733 { 1734 int cpu; 1735 /* This function is for scheduling "drain" in asynchronous way. 1736 * The result of "drain" is not directly handled by callers. Then, 1737 * if someone is calling drain, we don't have to call drain more. 1738 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if 1739 * there is a race. We just do loose check here. 1740 */ 1741 if (atomic_read(&memcg_drain_count)) 1742 return; 1743 /* Notify other cpus that system-wide "drain" is running */ 1744 atomic_inc(&memcg_drain_count); 1745 get_online_cpus(); 1746 for_each_online_cpu(cpu) { 1747 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1748 schedule_work_on(cpu, &stock->work); 1749 } 1750 put_online_cpus(); 1751 atomic_dec(&memcg_drain_count); 1752 /* We don't wait for flush_work */ 1753 } 1754 1755 /* This is a synchronous drain interface. */ 1756 static void drain_all_stock_sync(void) 1757 { 1758 /* called when force_empty is called */ 1759 atomic_inc(&memcg_drain_count); 1760 schedule_on_each_cpu(drain_local_stock); 1761 atomic_dec(&memcg_drain_count); 1762 } 1763 1764 /* 1765 * This function drains percpu counter value from DEAD cpu and 1766 * move it to local cpu. Note that this function can be preempted. 1767 */ 1768 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu) 1769 { 1770 int i; 1771 1772 spin_lock(&mem->pcp_counter_lock); 1773 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) { 1774 s64 x = per_cpu(mem->stat->count[i], cpu); 1775 1776 per_cpu(mem->stat->count[i], cpu) = 0; 1777 mem->nocpu_base.count[i] += x; 1778 } 1779 /* need to clear ON_MOVE value, works as a kind of lock. */ 1780 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0; 1781 spin_unlock(&mem->pcp_counter_lock); 1782 } 1783 1784 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu) 1785 { 1786 int idx = MEM_CGROUP_ON_MOVE; 1787 1788 spin_lock(&mem->pcp_counter_lock); 1789 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx]; 1790 spin_unlock(&mem->pcp_counter_lock); 1791 } 1792 1793 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 1794 unsigned long action, 1795 void *hcpu) 1796 { 1797 int cpu = (unsigned long)hcpu; 1798 struct memcg_stock_pcp *stock; 1799 struct mem_cgroup *iter; 1800 1801 if ((action == CPU_ONLINE)) { 1802 for_each_mem_cgroup_all(iter) 1803 synchronize_mem_cgroup_on_move(iter, cpu); 1804 return NOTIFY_OK; 1805 } 1806 1807 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN) 1808 return NOTIFY_OK; 1809 1810 for_each_mem_cgroup_all(iter) 1811 mem_cgroup_drain_pcp_counter(iter, cpu); 1812 1813 stock = &per_cpu(memcg_stock, cpu); 1814 drain_stock(stock); 1815 return NOTIFY_OK; 1816 } 1817 1818 1819 /* See __mem_cgroup_try_charge() for details */ 1820 enum { 1821 CHARGE_OK, /* success */ 1822 CHARGE_RETRY, /* need to retry but retry is not bad */ 1823 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 1824 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 1825 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 1826 }; 1827 1828 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, 1829 int csize, bool oom_check) 1830 { 1831 struct mem_cgroup *mem_over_limit; 1832 struct res_counter *fail_res; 1833 unsigned long flags = 0; 1834 int ret; 1835 1836 ret = res_counter_charge(&mem->res, csize, &fail_res); 1837 1838 if (likely(!ret)) { 1839 if (!do_swap_account) 1840 return CHARGE_OK; 1841 ret = res_counter_charge(&mem->memsw, csize, &fail_res); 1842 if (likely(!ret)) 1843 return CHARGE_OK; 1844 1845 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 1846 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 1847 } else 1848 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 1849 1850 if (csize > PAGE_SIZE) /* change csize and retry */ 1851 return CHARGE_RETRY; 1852 1853 if (!(gfp_mask & __GFP_WAIT)) 1854 return CHARGE_WOULDBLOCK; 1855 1856 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, 1857 gfp_mask, flags); 1858 /* 1859 * try_to_free_mem_cgroup_pages() might not give us a full 1860 * picture of reclaim. Some pages are reclaimed and might be 1861 * moved to swap cache or just unmapped from the cgroup. 1862 * Check the limit again to see if the reclaim reduced the 1863 * current usage of the cgroup before giving up 1864 */ 1865 if (ret || mem_cgroup_check_under_limit(mem_over_limit)) 1866 return CHARGE_RETRY; 1867 1868 /* 1869 * At task move, charge accounts can be doubly counted. So, it's 1870 * better to wait until the end of task_move if something is going on. 1871 */ 1872 if (mem_cgroup_wait_acct_move(mem_over_limit)) 1873 return CHARGE_RETRY; 1874 1875 /* If we don't need to call oom-killer at el, return immediately */ 1876 if (!oom_check) 1877 return CHARGE_NOMEM; 1878 /* check OOM */ 1879 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) 1880 return CHARGE_OOM_DIE; 1881 1882 return CHARGE_RETRY; 1883 } 1884 1885 /* 1886 * Unlike exported interface, "oom" parameter is added. if oom==true, 1887 * oom-killer can be invoked. 1888 */ 1889 static int __mem_cgroup_try_charge(struct mm_struct *mm, 1890 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom) 1891 { 1892 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 1893 struct mem_cgroup *mem = NULL; 1894 int ret; 1895 int csize = CHARGE_SIZE; 1896 1897 /* 1898 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 1899 * in system level. So, allow to go ahead dying process in addition to 1900 * MEMDIE process. 1901 */ 1902 if (unlikely(test_thread_flag(TIF_MEMDIE) 1903 || fatal_signal_pending(current))) 1904 goto bypass; 1905 1906 /* 1907 * We always charge the cgroup the mm_struct belongs to. 1908 * The mm_struct's mem_cgroup changes on task migration if the 1909 * thread group leader migrates. It's possible that mm is not 1910 * set, if so charge the init_mm (happens for pagecache usage). 1911 */ 1912 if (!*memcg && !mm) 1913 goto bypass; 1914 again: 1915 if (*memcg) { /* css should be a valid one */ 1916 mem = *memcg; 1917 VM_BUG_ON(css_is_removed(&mem->css)); 1918 if (mem_cgroup_is_root(mem)) 1919 goto done; 1920 if (consume_stock(mem)) 1921 goto done; 1922 css_get(&mem->css); 1923 } else { 1924 struct task_struct *p; 1925 1926 rcu_read_lock(); 1927 p = rcu_dereference(mm->owner); 1928 /* 1929 * Because we don't have task_lock(), "p" can exit. 1930 * In that case, "mem" can point to root or p can be NULL with 1931 * race with swapoff. Then, we have small risk of mis-accouning. 1932 * But such kind of mis-account by race always happens because 1933 * we don't have cgroup_mutex(). It's overkill and we allo that 1934 * small race, here. 1935 * (*) swapoff at el will charge against mm-struct not against 1936 * task-struct. So, mm->owner can be NULL. 1937 */ 1938 mem = mem_cgroup_from_task(p); 1939 if (!mem || mem_cgroup_is_root(mem)) { 1940 rcu_read_unlock(); 1941 goto done; 1942 } 1943 if (consume_stock(mem)) { 1944 /* 1945 * It seems dagerous to access memcg without css_get(). 1946 * But considering how consume_stok works, it's not 1947 * necessary. If consume_stock success, some charges 1948 * from this memcg are cached on this cpu. So, we 1949 * don't need to call css_get()/css_tryget() before 1950 * calling consume_stock(). 1951 */ 1952 rcu_read_unlock(); 1953 goto done; 1954 } 1955 /* after here, we may be blocked. we need to get refcnt */ 1956 if (!css_tryget(&mem->css)) { 1957 rcu_read_unlock(); 1958 goto again; 1959 } 1960 rcu_read_unlock(); 1961 } 1962 1963 do { 1964 bool oom_check; 1965 1966 /* If killed, bypass charge */ 1967 if (fatal_signal_pending(current)) { 1968 css_put(&mem->css); 1969 goto bypass; 1970 } 1971 1972 oom_check = false; 1973 if (oom && !nr_oom_retries) { 1974 oom_check = true; 1975 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 1976 } 1977 1978 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check); 1979 1980 switch (ret) { 1981 case CHARGE_OK: 1982 break; 1983 case CHARGE_RETRY: /* not in OOM situation but retry */ 1984 csize = PAGE_SIZE; 1985 css_put(&mem->css); 1986 mem = NULL; 1987 goto again; 1988 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 1989 css_put(&mem->css); 1990 goto nomem; 1991 case CHARGE_NOMEM: /* OOM routine works */ 1992 if (!oom) { 1993 css_put(&mem->css); 1994 goto nomem; 1995 } 1996 /* If oom, we never return -ENOMEM */ 1997 nr_oom_retries--; 1998 break; 1999 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2000 css_put(&mem->css); 2001 goto bypass; 2002 } 2003 } while (ret != CHARGE_OK); 2004 2005 if (csize > PAGE_SIZE) 2006 refill_stock(mem, csize - PAGE_SIZE); 2007 css_put(&mem->css); 2008 done: 2009 *memcg = mem; 2010 return 0; 2011 nomem: 2012 *memcg = NULL; 2013 return -ENOMEM; 2014 bypass: 2015 *memcg = NULL; 2016 return 0; 2017 } 2018 2019 /* 2020 * Somemtimes we have to undo a charge we got by try_charge(). 2021 * This function is for that and do uncharge, put css's refcnt. 2022 * gotten by try_charge(). 2023 */ 2024 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem, 2025 unsigned long count) 2026 { 2027 if (!mem_cgroup_is_root(mem)) { 2028 res_counter_uncharge(&mem->res, PAGE_SIZE * count); 2029 if (do_swap_account) 2030 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count); 2031 } 2032 } 2033 2034 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem) 2035 { 2036 __mem_cgroup_cancel_charge(mem, 1); 2037 } 2038 2039 /* 2040 * A helper function to get mem_cgroup from ID. must be called under 2041 * rcu_read_lock(). The caller must check css_is_removed() or some if 2042 * it's concern. (dropping refcnt from swap can be called against removed 2043 * memcg.) 2044 */ 2045 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2046 { 2047 struct cgroup_subsys_state *css; 2048 2049 /* ID 0 is unused ID */ 2050 if (!id) 2051 return NULL; 2052 css = css_lookup(&mem_cgroup_subsys, id); 2053 if (!css) 2054 return NULL; 2055 return container_of(css, struct mem_cgroup, css); 2056 } 2057 2058 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2059 { 2060 struct mem_cgroup *mem = NULL; 2061 struct page_cgroup *pc; 2062 unsigned short id; 2063 swp_entry_t ent; 2064 2065 VM_BUG_ON(!PageLocked(page)); 2066 2067 pc = lookup_page_cgroup(page); 2068 lock_page_cgroup(pc); 2069 if (PageCgroupUsed(pc)) { 2070 mem = pc->mem_cgroup; 2071 if (mem && !css_tryget(&mem->css)) 2072 mem = NULL; 2073 } else if (PageSwapCache(page)) { 2074 ent.val = page_private(page); 2075 id = lookup_swap_cgroup(ent); 2076 rcu_read_lock(); 2077 mem = mem_cgroup_lookup(id); 2078 if (mem && !css_tryget(&mem->css)) 2079 mem = NULL; 2080 rcu_read_unlock(); 2081 } 2082 unlock_page_cgroup(pc); 2083 return mem; 2084 } 2085 2086 /* 2087 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be 2088 * USED state. If already USED, uncharge and return. 2089 */ 2090 2091 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, 2092 struct page_cgroup *pc, 2093 enum charge_type ctype) 2094 { 2095 /* try_charge() can return NULL to *memcg, taking care of it. */ 2096 if (!mem) 2097 return; 2098 2099 lock_page_cgroup(pc); 2100 if (unlikely(PageCgroupUsed(pc))) { 2101 unlock_page_cgroup(pc); 2102 mem_cgroup_cancel_charge(mem); 2103 return; 2104 } 2105 2106 pc->mem_cgroup = mem; 2107 /* 2108 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2109 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2110 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2111 * before USED bit, we need memory barrier here. 2112 * See mem_cgroup_add_lru_list(), etc. 2113 */ 2114 smp_wmb(); 2115 switch (ctype) { 2116 case MEM_CGROUP_CHARGE_TYPE_CACHE: 2117 case MEM_CGROUP_CHARGE_TYPE_SHMEM: 2118 SetPageCgroupCache(pc); 2119 SetPageCgroupUsed(pc); 2120 break; 2121 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2122 ClearPageCgroupCache(pc); 2123 SetPageCgroupUsed(pc); 2124 break; 2125 default: 2126 break; 2127 } 2128 2129 mem_cgroup_charge_statistics(mem, pc, true); 2130 2131 unlock_page_cgroup(pc); 2132 /* 2133 * "charge_statistics" updated event counter. Then, check it. 2134 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2135 * if they exceeds softlimit. 2136 */ 2137 memcg_check_events(mem, pc->page); 2138 } 2139 2140 /** 2141 * __mem_cgroup_move_account - move account of the page 2142 * @pc: page_cgroup of the page. 2143 * @from: mem_cgroup which the page is moved from. 2144 * @to: mem_cgroup which the page is moved to. @from != @to. 2145 * @uncharge: whether we should call uncharge and css_put against @from. 2146 * 2147 * The caller must confirm following. 2148 * - page is not on LRU (isolate_page() is useful.) 2149 * - the pc is locked, used, and ->mem_cgroup points to @from. 2150 * 2151 * This function doesn't do "charge" nor css_get to new cgroup. It should be 2152 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is 2153 * true, this function does "uncharge" from old cgroup, but it doesn't if 2154 * @uncharge is false, so a caller should do "uncharge". 2155 */ 2156 2157 static void __mem_cgroup_move_account(struct page_cgroup *pc, 2158 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge) 2159 { 2160 VM_BUG_ON(from == to); 2161 VM_BUG_ON(PageLRU(pc->page)); 2162 VM_BUG_ON(!page_is_cgroup_locked(pc)); 2163 VM_BUG_ON(!PageCgroupUsed(pc)); 2164 VM_BUG_ON(pc->mem_cgroup != from); 2165 2166 if (PageCgroupFileMapped(pc)) { 2167 /* Update mapped_file data for mem_cgroup */ 2168 preempt_disable(); 2169 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2170 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2171 preempt_enable(); 2172 } 2173 mem_cgroup_charge_statistics(from, pc, false); 2174 if (uncharge) 2175 /* This is not "cancel", but cancel_charge does all we need. */ 2176 mem_cgroup_cancel_charge(from); 2177 2178 /* caller should have done css_get */ 2179 pc->mem_cgroup = to; 2180 mem_cgroup_charge_statistics(to, pc, true); 2181 /* 2182 * We charges against "to" which may not have any tasks. Then, "to" 2183 * can be under rmdir(). But in current implementation, caller of 2184 * this function is just force_empty() and move charge, so it's 2185 * garanteed that "to" is never removed. So, we don't check rmdir 2186 * status here. 2187 */ 2188 } 2189 2190 /* 2191 * check whether the @pc is valid for moving account and call 2192 * __mem_cgroup_move_account() 2193 */ 2194 static int mem_cgroup_move_account(struct page_cgroup *pc, 2195 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge) 2196 { 2197 int ret = -EINVAL; 2198 lock_page_cgroup(pc); 2199 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) { 2200 __mem_cgroup_move_account(pc, from, to, uncharge); 2201 ret = 0; 2202 } 2203 unlock_page_cgroup(pc); 2204 /* 2205 * check events 2206 */ 2207 memcg_check_events(to, pc->page); 2208 memcg_check_events(from, pc->page); 2209 return ret; 2210 } 2211 2212 /* 2213 * move charges to its parent. 2214 */ 2215 2216 static int mem_cgroup_move_parent(struct page_cgroup *pc, 2217 struct mem_cgroup *child, 2218 gfp_t gfp_mask) 2219 { 2220 struct page *page = pc->page; 2221 struct cgroup *cg = child->css.cgroup; 2222 struct cgroup *pcg = cg->parent; 2223 struct mem_cgroup *parent; 2224 int ret; 2225 2226 /* Is ROOT ? */ 2227 if (!pcg) 2228 return -EINVAL; 2229 2230 ret = -EBUSY; 2231 if (!get_page_unless_zero(page)) 2232 goto out; 2233 if (isolate_lru_page(page)) 2234 goto put; 2235 2236 parent = mem_cgroup_from_cont(pcg); 2237 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false); 2238 if (ret || !parent) 2239 goto put_back; 2240 2241 ret = mem_cgroup_move_account(pc, child, parent, true); 2242 if (ret) 2243 mem_cgroup_cancel_charge(parent); 2244 put_back: 2245 putback_lru_page(page); 2246 put: 2247 put_page(page); 2248 out: 2249 return ret; 2250 } 2251 2252 /* 2253 * Charge the memory controller for page usage. 2254 * Return 2255 * 0 if the charge was successful 2256 * < 0 if the cgroup is over its limit 2257 */ 2258 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2259 gfp_t gfp_mask, enum charge_type ctype) 2260 { 2261 struct mem_cgroup *mem = NULL; 2262 struct page_cgroup *pc; 2263 int ret; 2264 2265 pc = lookup_page_cgroup(page); 2266 /* can happen at boot */ 2267 if (unlikely(!pc)) 2268 return 0; 2269 prefetchw(pc); 2270 2271 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); 2272 if (ret || !mem) 2273 return ret; 2274 2275 __mem_cgroup_commit_charge(mem, pc, ctype); 2276 return 0; 2277 } 2278 2279 int mem_cgroup_newpage_charge(struct page *page, 2280 struct mm_struct *mm, gfp_t gfp_mask) 2281 { 2282 if (mem_cgroup_disabled()) 2283 return 0; 2284 if (PageCompound(page)) 2285 return 0; 2286 /* 2287 * If already mapped, we don't have to account. 2288 * If page cache, page->mapping has address_space. 2289 * But page->mapping may have out-of-use anon_vma pointer, 2290 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping 2291 * is NULL. 2292 */ 2293 if (page_mapped(page) || (page->mapping && !PageAnon(page))) 2294 return 0; 2295 if (unlikely(!mm)) 2296 mm = &init_mm; 2297 return mem_cgroup_charge_common(page, mm, gfp_mask, 2298 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2299 } 2300 2301 static void 2302 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 2303 enum charge_type ctype); 2304 2305 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2306 gfp_t gfp_mask) 2307 { 2308 int ret; 2309 2310 if (mem_cgroup_disabled()) 2311 return 0; 2312 if (PageCompound(page)) 2313 return 0; 2314 /* 2315 * Corner case handling. This is called from add_to_page_cache() 2316 * in usual. But some FS (shmem) precharges this page before calling it 2317 * and call add_to_page_cache() with GFP_NOWAIT. 2318 * 2319 * For GFP_NOWAIT case, the page may be pre-charged before calling 2320 * add_to_page_cache(). (See shmem.c) check it here and avoid to call 2321 * charge twice. (It works but has to pay a bit larger cost.) 2322 * And when the page is SwapCache, it should take swap information 2323 * into account. This is under lock_page() now. 2324 */ 2325 if (!(gfp_mask & __GFP_WAIT)) { 2326 struct page_cgroup *pc; 2327 2328 pc = lookup_page_cgroup(page); 2329 if (!pc) 2330 return 0; 2331 lock_page_cgroup(pc); 2332 if (PageCgroupUsed(pc)) { 2333 unlock_page_cgroup(pc); 2334 return 0; 2335 } 2336 unlock_page_cgroup(pc); 2337 } 2338 2339 if (unlikely(!mm)) 2340 mm = &init_mm; 2341 2342 if (page_is_file_cache(page)) 2343 return mem_cgroup_charge_common(page, mm, gfp_mask, 2344 MEM_CGROUP_CHARGE_TYPE_CACHE); 2345 2346 /* shmem */ 2347 if (PageSwapCache(page)) { 2348 struct mem_cgroup *mem = NULL; 2349 2350 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 2351 if (!ret) 2352 __mem_cgroup_commit_charge_swapin(page, mem, 2353 MEM_CGROUP_CHARGE_TYPE_SHMEM); 2354 } else 2355 ret = mem_cgroup_charge_common(page, mm, gfp_mask, 2356 MEM_CGROUP_CHARGE_TYPE_SHMEM); 2357 2358 return ret; 2359 } 2360 2361 /* 2362 * While swap-in, try_charge -> commit or cancel, the page is locked. 2363 * And when try_charge() successfully returns, one refcnt to memcg without 2364 * struct page_cgroup is acquired. This refcnt will be consumed by 2365 * "commit()" or removed by "cancel()" 2366 */ 2367 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2368 struct page *page, 2369 gfp_t mask, struct mem_cgroup **ptr) 2370 { 2371 struct mem_cgroup *mem; 2372 int ret; 2373 2374 if (mem_cgroup_disabled()) 2375 return 0; 2376 2377 if (!do_swap_account) 2378 goto charge_cur_mm; 2379 /* 2380 * A racing thread's fault, or swapoff, may have already updated 2381 * the pte, and even removed page from swap cache: in those cases 2382 * do_swap_page()'s pte_same() test will fail; but there's also a 2383 * KSM case which does need to charge the page. 2384 */ 2385 if (!PageSwapCache(page)) 2386 goto charge_cur_mm; 2387 mem = try_get_mem_cgroup_from_page(page); 2388 if (!mem) 2389 goto charge_cur_mm; 2390 *ptr = mem; 2391 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); 2392 css_put(&mem->css); 2393 return ret; 2394 charge_cur_mm: 2395 if (unlikely(!mm)) 2396 mm = &init_mm; 2397 return __mem_cgroup_try_charge(mm, mask, ptr, true); 2398 } 2399 2400 static void 2401 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 2402 enum charge_type ctype) 2403 { 2404 struct page_cgroup *pc; 2405 2406 if (mem_cgroup_disabled()) 2407 return; 2408 if (!ptr) 2409 return; 2410 cgroup_exclude_rmdir(&ptr->css); 2411 pc = lookup_page_cgroup(page); 2412 mem_cgroup_lru_del_before_commit_swapcache(page); 2413 __mem_cgroup_commit_charge(ptr, pc, ctype); 2414 mem_cgroup_lru_add_after_commit_swapcache(page); 2415 /* 2416 * Now swap is on-memory. This means this page may be 2417 * counted both as mem and swap....double count. 2418 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2419 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2420 * may call delete_from_swap_cache() before reach here. 2421 */ 2422 if (do_swap_account && PageSwapCache(page)) { 2423 swp_entry_t ent = {.val = page_private(page)}; 2424 unsigned short id; 2425 struct mem_cgroup *memcg; 2426 2427 id = swap_cgroup_record(ent, 0); 2428 rcu_read_lock(); 2429 memcg = mem_cgroup_lookup(id); 2430 if (memcg) { 2431 /* 2432 * This recorded memcg can be obsolete one. So, avoid 2433 * calling css_tryget 2434 */ 2435 if (!mem_cgroup_is_root(memcg)) 2436 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 2437 mem_cgroup_swap_statistics(memcg, false); 2438 mem_cgroup_put(memcg); 2439 } 2440 rcu_read_unlock(); 2441 } 2442 /* 2443 * At swapin, we may charge account against cgroup which has no tasks. 2444 * So, rmdir()->pre_destroy() can be called while we do this charge. 2445 * In that case, we need to call pre_destroy() again. check it here. 2446 */ 2447 cgroup_release_and_wakeup_rmdir(&ptr->css); 2448 } 2449 2450 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) 2451 { 2452 __mem_cgroup_commit_charge_swapin(page, ptr, 2453 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2454 } 2455 2456 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) 2457 { 2458 if (mem_cgroup_disabled()) 2459 return; 2460 if (!mem) 2461 return; 2462 mem_cgroup_cancel_charge(mem); 2463 } 2464 2465 static void 2466 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype) 2467 { 2468 struct memcg_batch_info *batch = NULL; 2469 bool uncharge_memsw = true; 2470 /* If swapout, usage of swap doesn't decrease */ 2471 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2472 uncharge_memsw = false; 2473 2474 batch = ¤t->memcg_batch; 2475 /* 2476 * In usual, we do css_get() when we remember memcg pointer. 2477 * But in this case, we keep res->usage until end of a series of 2478 * uncharges. Then, it's ok to ignore memcg's refcnt. 2479 */ 2480 if (!batch->memcg) 2481 batch->memcg = mem; 2482 /* 2483 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2484 * In those cases, all pages freed continously can be expected to be in 2485 * the same cgroup and we have chance to coalesce uncharges. 2486 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2487 * because we want to do uncharge as soon as possible. 2488 */ 2489 2490 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2491 goto direct_uncharge; 2492 2493 /* 2494 * In typical case, batch->memcg == mem. This means we can 2495 * merge a series of uncharges to an uncharge of res_counter. 2496 * If not, we uncharge res_counter ony by one. 2497 */ 2498 if (batch->memcg != mem) 2499 goto direct_uncharge; 2500 /* remember freed charge and uncharge it later */ 2501 batch->bytes += PAGE_SIZE; 2502 if (uncharge_memsw) 2503 batch->memsw_bytes += PAGE_SIZE; 2504 return; 2505 direct_uncharge: 2506 res_counter_uncharge(&mem->res, PAGE_SIZE); 2507 if (uncharge_memsw) 2508 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 2509 if (unlikely(batch->memcg != mem)) 2510 memcg_oom_recover(mem); 2511 return; 2512 } 2513 2514 /* 2515 * uncharge if !page_mapped(page) 2516 */ 2517 static struct mem_cgroup * 2518 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 2519 { 2520 struct page_cgroup *pc; 2521 struct mem_cgroup *mem = NULL; 2522 2523 if (mem_cgroup_disabled()) 2524 return NULL; 2525 2526 if (PageSwapCache(page)) 2527 return NULL; 2528 2529 /* 2530 * Check if our page_cgroup is valid 2531 */ 2532 pc = lookup_page_cgroup(page); 2533 if (unlikely(!pc || !PageCgroupUsed(pc))) 2534 return NULL; 2535 2536 lock_page_cgroup(pc); 2537 2538 mem = pc->mem_cgroup; 2539 2540 if (!PageCgroupUsed(pc)) 2541 goto unlock_out; 2542 2543 switch (ctype) { 2544 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2545 case MEM_CGROUP_CHARGE_TYPE_DROP: 2546 /* See mem_cgroup_prepare_migration() */ 2547 if (page_mapped(page) || PageCgroupMigration(pc)) 2548 goto unlock_out; 2549 break; 2550 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 2551 if (!PageAnon(page)) { /* Shared memory */ 2552 if (page->mapping && !page_is_file_cache(page)) 2553 goto unlock_out; 2554 } else if (page_mapped(page)) /* Anon */ 2555 goto unlock_out; 2556 break; 2557 default: 2558 break; 2559 } 2560 2561 mem_cgroup_charge_statistics(mem, pc, false); 2562 2563 ClearPageCgroupUsed(pc); 2564 /* 2565 * pc->mem_cgroup is not cleared here. It will be accessed when it's 2566 * freed from LRU. This is safe because uncharged page is expected not 2567 * to be reused (freed soon). Exception is SwapCache, it's handled by 2568 * special functions. 2569 */ 2570 2571 unlock_page_cgroup(pc); 2572 /* 2573 * even after unlock, we have mem->res.usage here and this memcg 2574 * will never be freed. 2575 */ 2576 memcg_check_events(mem, page); 2577 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 2578 mem_cgroup_swap_statistics(mem, true); 2579 mem_cgroup_get(mem); 2580 } 2581 if (!mem_cgroup_is_root(mem)) 2582 __do_uncharge(mem, ctype); 2583 2584 return mem; 2585 2586 unlock_out: 2587 unlock_page_cgroup(pc); 2588 return NULL; 2589 } 2590 2591 void mem_cgroup_uncharge_page(struct page *page) 2592 { 2593 /* early check. */ 2594 if (page_mapped(page)) 2595 return; 2596 if (page->mapping && !PageAnon(page)) 2597 return; 2598 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); 2599 } 2600 2601 void mem_cgroup_uncharge_cache_page(struct page *page) 2602 { 2603 VM_BUG_ON(page_mapped(page)); 2604 VM_BUG_ON(page->mapping); 2605 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); 2606 } 2607 2608 /* 2609 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 2610 * In that cases, pages are freed continuously and we can expect pages 2611 * are in the same memcg. All these calls itself limits the number of 2612 * pages freed at once, then uncharge_start/end() is called properly. 2613 * This may be called prural(2) times in a context, 2614 */ 2615 2616 void mem_cgroup_uncharge_start(void) 2617 { 2618 current->memcg_batch.do_batch++; 2619 /* We can do nest. */ 2620 if (current->memcg_batch.do_batch == 1) { 2621 current->memcg_batch.memcg = NULL; 2622 current->memcg_batch.bytes = 0; 2623 current->memcg_batch.memsw_bytes = 0; 2624 } 2625 } 2626 2627 void mem_cgroup_uncharge_end(void) 2628 { 2629 struct memcg_batch_info *batch = ¤t->memcg_batch; 2630 2631 if (!batch->do_batch) 2632 return; 2633 2634 batch->do_batch--; 2635 if (batch->do_batch) /* If stacked, do nothing. */ 2636 return; 2637 2638 if (!batch->memcg) 2639 return; 2640 /* 2641 * This "batch->memcg" is valid without any css_get/put etc... 2642 * bacause we hide charges behind us. 2643 */ 2644 if (batch->bytes) 2645 res_counter_uncharge(&batch->memcg->res, batch->bytes); 2646 if (batch->memsw_bytes) 2647 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes); 2648 memcg_oom_recover(batch->memcg); 2649 /* forget this pointer (for sanity check) */ 2650 batch->memcg = NULL; 2651 } 2652 2653 #ifdef CONFIG_SWAP 2654 /* 2655 * called after __delete_from_swap_cache() and drop "page" account. 2656 * memcg information is recorded to swap_cgroup of "ent" 2657 */ 2658 void 2659 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 2660 { 2661 struct mem_cgroup *memcg; 2662 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 2663 2664 if (!swapout) /* this was a swap cache but the swap is unused ! */ 2665 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 2666 2667 memcg = __mem_cgroup_uncharge_common(page, ctype); 2668 2669 /* 2670 * record memcg information, if swapout && memcg != NULL, 2671 * mem_cgroup_get() was called in uncharge(). 2672 */ 2673 if (do_swap_account && swapout && memcg) 2674 swap_cgroup_record(ent, css_id(&memcg->css)); 2675 } 2676 #endif 2677 2678 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2679 /* 2680 * called from swap_entry_free(). remove record in swap_cgroup and 2681 * uncharge "memsw" account. 2682 */ 2683 void mem_cgroup_uncharge_swap(swp_entry_t ent) 2684 { 2685 struct mem_cgroup *memcg; 2686 unsigned short id; 2687 2688 if (!do_swap_account) 2689 return; 2690 2691 id = swap_cgroup_record(ent, 0); 2692 rcu_read_lock(); 2693 memcg = mem_cgroup_lookup(id); 2694 if (memcg) { 2695 /* 2696 * We uncharge this because swap is freed. 2697 * This memcg can be obsolete one. We avoid calling css_tryget 2698 */ 2699 if (!mem_cgroup_is_root(memcg)) 2700 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 2701 mem_cgroup_swap_statistics(memcg, false); 2702 mem_cgroup_put(memcg); 2703 } 2704 rcu_read_unlock(); 2705 } 2706 2707 /** 2708 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2709 * @entry: swap entry to be moved 2710 * @from: mem_cgroup which the entry is moved from 2711 * @to: mem_cgroup which the entry is moved to 2712 * @need_fixup: whether we should fixup res_counters and refcounts. 2713 * 2714 * It succeeds only when the swap_cgroup's record for this entry is the same 2715 * as the mem_cgroup's id of @from. 2716 * 2717 * Returns 0 on success, -EINVAL on failure. 2718 * 2719 * The caller must have charged to @to, IOW, called res_counter_charge() about 2720 * both res and memsw, and called css_get(). 2721 */ 2722 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2723 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) 2724 { 2725 unsigned short old_id, new_id; 2726 2727 old_id = css_id(&from->css); 2728 new_id = css_id(&to->css); 2729 2730 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2731 mem_cgroup_swap_statistics(from, false); 2732 mem_cgroup_swap_statistics(to, true); 2733 /* 2734 * This function is only called from task migration context now. 2735 * It postpones res_counter and refcount handling till the end 2736 * of task migration(mem_cgroup_clear_mc()) for performance 2737 * improvement. But we cannot postpone mem_cgroup_get(to) 2738 * because if the process that has been moved to @to does 2739 * swap-in, the refcount of @to might be decreased to 0. 2740 */ 2741 mem_cgroup_get(to); 2742 if (need_fixup) { 2743 if (!mem_cgroup_is_root(from)) 2744 res_counter_uncharge(&from->memsw, PAGE_SIZE); 2745 mem_cgroup_put(from); 2746 /* 2747 * we charged both to->res and to->memsw, so we should 2748 * uncharge to->res. 2749 */ 2750 if (!mem_cgroup_is_root(to)) 2751 res_counter_uncharge(&to->res, PAGE_SIZE); 2752 } 2753 return 0; 2754 } 2755 return -EINVAL; 2756 } 2757 #else 2758 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2759 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) 2760 { 2761 return -EINVAL; 2762 } 2763 #endif 2764 2765 /* 2766 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 2767 * page belongs to. 2768 */ 2769 int mem_cgroup_prepare_migration(struct page *page, 2770 struct page *newpage, struct mem_cgroup **ptr) 2771 { 2772 struct page_cgroup *pc; 2773 struct mem_cgroup *mem = NULL; 2774 enum charge_type ctype; 2775 int ret = 0; 2776 2777 if (mem_cgroup_disabled()) 2778 return 0; 2779 2780 pc = lookup_page_cgroup(page); 2781 lock_page_cgroup(pc); 2782 if (PageCgroupUsed(pc)) { 2783 mem = pc->mem_cgroup; 2784 css_get(&mem->css); 2785 /* 2786 * At migrating an anonymous page, its mapcount goes down 2787 * to 0 and uncharge() will be called. But, even if it's fully 2788 * unmapped, migration may fail and this page has to be 2789 * charged again. We set MIGRATION flag here and delay uncharge 2790 * until end_migration() is called 2791 * 2792 * Corner Case Thinking 2793 * A) 2794 * When the old page was mapped as Anon and it's unmap-and-freed 2795 * while migration was ongoing. 2796 * If unmap finds the old page, uncharge() of it will be delayed 2797 * until end_migration(). If unmap finds a new page, it's 2798 * uncharged when it make mapcount to be 1->0. If unmap code 2799 * finds swap_migration_entry, the new page will not be mapped 2800 * and end_migration() will find it(mapcount==0). 2801 * 2802 * B) 2803 * When the old page was mapped but migraion fails, the kernel 2804 * remaps it. A charge for it is kept by MIGRATION flag even 2805 * if mapcount goes down to 0. We can do remap successfully 2806 * without charging it again. 2807 * 2808 * C) 2809 * The "old" page is under lock_page() until the end of 2810 * migration, so, the old page itself will not be swapped-out. 2811 * If the new page is swapped out before end_migraton, our 2812 * hook to usual swap-out path will catch the event. 2813 */ 2814 if (PageAnon(page)) 2815 SetPageCgroupMigration(pc); 2816 } 2817 unlock_page_cgroup(pc); 2818 /* 2819 * If the page is not charged at this point, 2820 * we return here. 2821 */ 2822 if (!mem) 2823 return 0; 2824 2825 *ptr = mem; 2826 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false); 2827 css_put(&mem->css);/* drop extra refcnt */ 2828 if (ret || *ptr == NULL) { 2829 if (PageAnon(page)) { 2830 lock_page_cgroup(pc); 2831 ClearPageCgroupMigration(pc); 2832 unlock_page_cgroup(pc); 2833 /* 2834 * The old page may be fully unmapped while we kept it. 2835 */ 2836 mem_cgroup_uncharge_page(page); 2837 } 2838 return -ENOMEM; 2839 } 2840 /* 2841 * We charge new page before it's used/mapped. So, even if unlock_page() 2842 * is called before end_migration, we can catch all events on this new 2843 * page. In the case new page is migrated but not remapped, new page's 2844 * mapcount will be finally 0 and we call uncharge in end_migration(). 2845 */ 2846 pc = lookup_page_cgroup(newpage); 2847 if (PageAnon(page)) 2848 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; 2849 else if (page_is_file_cache(page)) 2850 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 2851 else 2852 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 2853 __mem_cgroup_commit_charge(mem, pc, ctype); 2854 return ret; 2855 } 2856 2857 /* remove redundant charge if migration failed*/ 2858 void mem_cgroup_end_migration(struct mem_cgroup *mem, 2859 struct page *oldpage, struct page *newpage) 2860 { 2861 struct page *used, *unused; 2862 struct page_cgroup *pc; 2863 2864 if (!mem) 2865 return; 2866 /* blocks rmdir() */ 2867 cgroup_exclude_rmdir(&mem->css); 2868 /* at migration success, oldpage->mapping is NULL. */ 2869 if (oldpage->mapping) { 2870 used = oldpage; 2871 unused = newpage; 2872 } else { 2873 used = newpage; 2874 unused = oldpage; 2875 } 2876 /* 2877 * We disallowed uncharge of pages under migration because mapcount 2878 * of the page goes down to zero, temporarly. 2879 * Clear the flag and check the page should be charged. 2880 */ 2881 pc = lookup_page_cgroup(oldpage); 2882 lock_page_cgroup(pc); 2883 ClearPageCgroupMigration(pc); 2884 unlock_page_cgroup(pc); 2885 2886 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); 2887 2888 /* 2889 * If a page is a file cache, radix-tree replacement is very atomic 2890 * and we can skip this check. When it was an Anon page, its mapcount 2891 * goes down to 0. But because we added MIGRATION flage, it's not 2892 * uncharged yet. There are several case but page->mapcount check 2893 * and USED bit check in mem_cgroup_uncharge_page() will do enough 2894 * check. (see prepare_charge() also) 2895 */ 2896 if (PageAnon(used)) 2897 mem_cgroup_uncharge_page(used); 2898 /* 2899 * At migration, we may charge account against cgroup which has no 2900 * tasks. 2901 * So, rmdir()->pre_destroy() can be called while we do this charge. 2902 * In that case, we need to call pre_destroy() again. check it here. 2903 */ 2904 cgroup_release_and_wakeup_rmdir(&mem->css); 2905 } 2906 2907 /* 2908 * A call to try to shrink memory usage on charge failure at shmem's swapin. 2909 * Calling hierarchical_reclaim is not enough because we should update 2910 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. 2911 * Moreover considering hierarchy, we should reclaim from the mem_over_limit, 2912 * not from the memcg which this page would be charged to. 2913 * try_charge_swapin does all of these works properly. 2914 */ 2915 int mem_cgroup_shmem_charge_fallback(struct page *page, 2916 struct mm_struct *mm, 2917 gfp_t gfp_mask) 2918 { 2919 struct mem_cgroup *mem = NULL; 2920 int ret; 2921 2922 if (mem_cgroup_disabled()) 2923 return 0; 2924 2925 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 2926 if (!ret) 2927 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ 2928 2929 return ret; 2930 } 2931 2932 static DEFINE_MUTEX(set_limit_mutex); 2933 2934 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2935 unsigned long long val) 2936 { 2937 int retry_count; 2938 u64 memswlimit, memlimit; 2939 int ret = 0; 2940 int children = mem_cgroup_count_children(memcg); 2941 u64 curusage, oldusage; 2942 int enlarge; 2943 2944 /* 2945 * For keeping hierarchical_reclaim simple, how long we should retry 2946 * is depends on callers. We set our retry-count to be function 2947 * of # of children which we should visit in this loop. 2948 */ 2949 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 2950 2951 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 2952 2953 enlarge = 0; 2954 while (retry_count) { 2955 if (signal_pending(current)) { 2956 ret = -EINTR; 2957 break; 2958 } 2959 /* 2960 * Rather than hide all in some function, I do this in 2961 * open coded manner. You see what this really does. 2962 * We have to guarantee mem->res.limit < mem->memsw.limit. 2963 */ 2964 mutex_lock(&set_limit_mutex); 2965 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 2966 if (memswlimit < val) { 2967 ret = -EINVAL; 2968 mutex_unlock(&set_limit_mutex); 2969 break; 2970 } 2971 2972 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 2973 if (memlimit < val) 2974 enlarge = 1; 2975 2976 ret = res_counter_set_limit(&memcg->res, val); 2977 if (!ret) { 2978 if (memswlimit == val) 2979 memcg->memsw_is_minimum = true; 2980 else 2981 memcg->memsw_is_minimum = false; 2982 } 2983 mutex_unlock(&set_limit_mutex); 2984 2985 if (!ret) 2986 break; 2987 2988 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, 2989 MEM_CGROUP_RECLAIM_SHRINK); 2990 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 2991 /* Usage is reduced ? */ 2992 if (curusage >= oldusage) 2993 retry_count--; 2994 else 2995 oldusage = curusage; 2996 } 2997 if (!ret && enlarge) 2998 memcg_oom_recover(memcg); 2999 3000 return ret; 3001 } 3002 3003 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3004 unsigned long long val) 3005 { 3006 int retry_count; 3007 u64 memlimit, memswlimit, oldusage, curusage; 3008 int children = mem_cgroup_count_children(memcg); 3009 int ret = -EBUSY; 3010 int enlarge = 0; 3011 3012 /* see mem_cgroup_resize_res_limit */ 3013 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3014 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3015 while (retry_count) { 3016 if (signal_pending(current)) { 3017 ret = -EINTR; 3018 break; 3019 } 3020 /* 3021 * Rather than hide all in some function, I do this in 3022 * open coded manner. You see what this really does. 3023 * We have to guarantee mem->res.limit < mem->memsw.limit. 3024 */ 3025 mutex_lock(&set_limit_mutex); 3026 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3027 if (memlimit > val) { 3028 ret = -EINVAL; 3029 mutex_unlock(&set_limit_mutex); 3030 break; 3031 } 3032 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3033 if (memswlimit < val) 3034 enlarge = 1; 3035 ret = res_counter_set_limit(&memcg->memsw, val); 3036 if (!ret) { 3037 if (memlimit == val) 3038 memcg->memsw_is_minimum = true; 3039 else 3040 memcg->memsw_is_minimum = false; 3041 } 3042 mutex_unlock(&set_limit_mutex); 3043 3044 if (!ret) 3045 break; 3046 3047 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, 3048 MEM_CGROUP_RECLAIM_NOSWAP | 3049 MEM_CGROUP_RECLAIM_SHRINK); 3050 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3051 /* Usage is reduced ? */ 3052 if (curusage >= oldusage) 3053 retry_count--; 3054 else 3055 oldusage = curusage; 3056 } 3057 if (!ret && enlarge) 3058 memcg_oom_recover(memcg); 3059 return ret; 3060 } 3061 3062 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3063 gfp_t gfp_mask) 3064 { 3065 unsigned long nr_reclaimed = 0; 3066 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3067 unsigned long reclaimed; 3068 int loop = 0; 3069 struct mem_cgroup_tree_per_zone *mctz; 3070 unsigned long long excess; 3071 3072 if (order > 0) 3073 return 0; 3074 3075 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3076 /* 3077 * This loop can run a while, specially if mem_cgroup's continuously 3078 * keep exceeding their soft limit and putting the system under 3079 * pressure 3080 */ 3081 do { 3082 if (next_mz) 3083 mz = next_mz; 3084 else 3085 mz = mem_cgroup_largest_soft_limit_node(mctz); 3086 if (!mz) 3087 break; 3088 3089 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone, 3090 gfp_mask, 3091 MEM_CGROUP_RECLAIM_SOFT); 3092 nr_reclaimed += reclaimed; 3093 spin_lock(&mctz->lock); 3094 3095 /* 3096 * If we failed to reclaim anything from this memory cgroup 3097 * it is time to move on to the next cgroup 3098 */ 3099 next_mz = NULL; 3100 if (!reclaimed) { 3101 do { 3102 /* 3103 * Loop until we find yet another one. 3104 * 3105 * By the time we get the soft_limit lock 3106 * again, someone might have aded the 3107 * group back on the RB tree. Iterate to 3108 * make sure we get a different mem. 3109 * mem_cgroup_largest_soft_limit_node returns 3110 * NULL if no other cgroup is present on 3111 * the tree 3112 */ 3113 next_mz = 3114 __mem_cgroup_largest_soft_limit_node(mctz); 3115 if (next_mz == mz) { 3116 css_put(&next_mz->mem->css); 3117 next_mz = NULL; 3118 } else /* next_mz == NULL or other memcg */ 3119 break; 3120 } while (1); 3121 } 3122 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 3123 excess = res_counter_soft_limit_excess(&mz->mem->res); 3124 /* 3125 * One school of thought says that we should not add 3126 * back the node to the tree if reclaim returns 0. 3127 * But our reclaim could return 0, simply because due 3128 * to priority we are exposing a smaller subset of 3129 * memory to reclaim from. Consider this as a longer 3130 * term TODO. 3131 */ 3132 /* If excess == 0, no tree ops */ 3133 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess); 3134 spin_unlock(&mctz->lock); 3135 css_put(&mz->mem->css); 3136 loop++; 3137 /* 3138 * Could not reclaim anything and there are no more 3139 * mem cgroups to try or we seem to be looping without 3140 * reclaiming anything. 3141 */ 3142 if (!nr_reclaimed && 3143 (next_mz == NULL || 3144 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3145 break; 3146 } while (!nr_reclaimed); 3147 if (next_mz) 3148 css_put(&next_mz->mem->css); 3149 return nr_reclaimed; 3150 } 3151 3152 /* 3153 * This routine traverse page_cgroup in given list and drop them all. 3154 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 3155 */ 3156 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, 3157 int node, int zid, enum lru_list lru) 3158 { 3159 struct zone *zone; 3160 struct mem_cgroup_per_zone *mz; 3161 struct page_cgroup *pc, *busy; 3162 unsigned long flags, loop; 3163 struct list_head *list; 3164 int ret = 0; 3165 3166 zone = &NODE_DATA(node)->node_zones[zid]; 3167 mz = mem_cgroup_zoneinfo(mem, node, zid); 3168 list = &mz->lists[lru]; 3169 3170 loop = MEM_CGROUP_ZSTAT(mz, lru); 3171 /* give some margin against EBUSY etc...*/ 3172 loop += 256; 3173 busy = NULL; 3174 while (loop--) { 3175 ret = 0; 3176 spin_lock_irqsave(&zone->lru_lock, flags); 3177 if (list_empty(list)) { 3178 spin_unlock_irqrestore(&zone->lru_lock, flags); 3179 break; 3180 } 3181 pc = list_entry(list->prev, struct page_cgroup, lru); 3182 if (busy == pc) { 3183 list_move(&pc->lru, list); 3184 busy = NULL; 3185 spin_unlock_irqrestore(&zone->lru_lock, flags); 3186 continue; 3187 } 3188 spin_unlock_irqrestore(&zone->lru_lock, flags); 3189 3190 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); 3191 if (ret == -ENOMEM) 3192 break; 3193 3194 if (ret == -EBUSY || ret == -EINVAL) { 3195 /* found lock contention or "pc" is obsolete. */ 3196 busy = pc; 3197 cond_resched(); 3198 } else 3199 busy = NULL; 3200 } 3201 3202 if (!ret && !list_empty(list)) 3203 return -EBUSY; 3204 return ret; 3205 } 3206 3207 /* 3208 * make mem_cgroup's charge to be 0 if there is no task. 3209 * This enables deleting this mem_cgroup. 3210 */ 3211 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) 3212 { 3213 int ret; 3214 int node, zid, shrink; 3215 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3216 struct cgroup *cgrp = mem->css.cgroup; 3217 3218 css_get(&mem->css); 3219 3220 shrink = 0; 3221 /* should free all ? */ 3222 if (free_all) 3223 goto try_to_free; 3224 move_account: 3225 do { 3226 ret = -EBUSY; 3227 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3228 goto out; 3229 ret = -EINTR; 3230 if (signal_pending(current)) 3231 goto out; 3232 /* This is for making all *used* pages to be on LRU. */ 3233 lru_add_drain_all(); 3234 drain_all_stock_sync(); 3235 ret = 0; 3236 mem_cgroup_start_move(mem); 3237 for_each_node_state(node, N_HIGH_MEMORY) { 3238 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3239 enum lru_list l; 3240 for_each_lru(l) { 3241 ret = mem_cgroup_force_empty_list(mem, 3242 node, zid, l); 3243 if (ret) 3244 break; 3245 } 3246 } 3247 if (ret) 3248 break; 3249 } 3250 mem_cgroup_end_move(mem); 3251 memcg_oom_recover(mem); 3252 /* it seems parent cgroup doesn't have enough mem */ 3253 if (ret == -ENOMEM) 3254 goto try_to_free; 3255 cond_resched(); 3256 /* "ret" should also be checked to ensure all lists are empty. */ 3257 } while (mem->res.usage > 0 || ret); 3258 out: 3259 css_put(&mem->css); 3260 return ret; 3261 3262 try_to_free: 3263 /* returns EBUSY if there is a task or if we come here twice. */ 3264 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3265 ret = -EBUSY; 3266 goto out; 3267 } 3268 /* we call try-to-free pages for make this cgroup empty */ 3269 lru_add_drain_all(); 3270 /* try to free all pages in this cgroup */ 3271 shrink = 1; 3272 while (nr_retries && mem->res.usage > 0) { 3273 int progress; 3274 3275 if (signal_pending(current)) { 3276 ret = -EINTR; 3277 goto out; 3278 } 3279 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, 3280 false, get_swappiness(mem)); 3281 if (!progress) { 3282 nr_retries--; 3283 /* maybe some writeback is necessary */ 3284 congestion_wait(BLK_RW_ASYNC, HZ/10); 3285 } 3286 3287 } 3288 lru_add_drain(); 3289 /* try move_account...there may be some *locked* pages. */ 3290 goto move_account; 3291 } 3292 3293 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3294 { 3295 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3296 } 3297 3298 3299 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3300 { 3301 return mem_cgroup_from_cont(cont)->use_hierarchy; 3302 } 3303 3304 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3305 u64 val) 3306 { 3307 int retval = 0; 3308 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 3309 struct cgroup *parent = cont->parent; 3310 struct mem_cgroup *parent_mem = NULL; 3311 3312 if (parent) 3313 parent_mem = mem_cgroup_from_cont(parent); 3314 3315 cgroup_lock(); 3316 /* 3317 * If parent's use_hierarchy is set, we can't make any modifications 3318 * in the child subtrees. If it is unset, then the change can 3319 * occur, provided the current cgroup has no children. 3320 * 3321 * For the root cgroup, parent_mem is NULL, we allow value to be 3322 * set if there are no children. 3323 */ 3324 if ((!parent_mem || !parent_mem->use_hierarchy) && 3325 (val == 1 || val == 0)) { 3326 if (list_empty(&cont->children)) 3327 mem->use_hierarchy = val; 3328 else 3329 retval = -EBUSY; 3330 } else 3331 retval = -EINVAL; 3332 cgroup_unlock(); 3333 3334 return retval; 3335 } 3336 3337 3338 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem, 3339 enum mem_cgroup_stat_index idx) 3340 { 3341 struct mem_cgroup *iter; 3342 s64 val = 0; 3343 3344 /* each per cpu's value can be minus.Then, use s64 */ 3345 for_each_mem_cgroup_tree(iter, mem) 3346 val += mem_cgroup_read_stat(iter, idx); 3347 3348 if (val < 0) /* race ? */ 3349 val = 0; 3350 return val; 3351 } 3352 3353 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap) 3354 { 3355 u64 val; 3356 3357 if (!mem_cgroup_is_root(mem)) { 3358 if (!swap) 3359 return res_counter_read_u64(&mem->res, RES_USAGE); 3360 else 3361 return res_counter_read_u64(&mem->memsw, RES_USAGE); 3362 } 3363 3364 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE); 3365 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS); 3366 3367 if (swap) 3368 val += mem_cgroup_get_recursive_idx_stat(mem, 3369 MEM_CGROUP_STAT_SWAPOUT); 3370 3371 return val << PAGE_SHIFT; 3372 } 3373 3374 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 3375 { 3376 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 3377 u64 val; 3378 int type, name; 3379 3380 type = MEMFILE_TYPE(cft->private); 3381 name = MEMFILE_ATTR(cft->private); 3382 switch (type) { 3383 case _MEM: 3384 if (name == RES_USAGE) 3385 val = mem_cgroup_usage(mem, false); 3386 else 3387 val = res_counter_read_u64(&mem->res, name); 3388 break; 3389 case _MEMSWAP: 3390 if (name == RES_USAGE) 3391 val = mem_cgroup_usage(mem, true); 3392 else 3393 val = res_counter_read_u64(&mem->memsw, name); 3394 break; 3395 default: 3396 BUG(); 3397 break; 3398 } 3399 return val; 3400 } 3401 /* 3402 * The user of this function is... 3403 * RES_LIMIT. 3404 */ 3405 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3406 const char *buffer) 3407 { 3408 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3409 int type, name; 3410 unsigned long long val; 3411 int ret; 3412 3413 type = MEMFILE_TYPE(cft->private); 3414 name = MEMFILE_ATTR(cft->private); 3415 switch (name) { 3416 case RES_LIMIT: 3417 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3418 ret = -EINVAL; 3419 break; 3420 } 3421 /* This function does all necessary parse...reuse it */ 3422 ret = res_counter_memparse_write_strategy(buffer, &val); 3423 if (ret) 3424 break; 3425 if (type == _MEM) 3426 ret = mem_cgroup_resize_limit(memcg, val); 3427 else 3428 ret = mem_cgroup_resize_memsw_limit(memcg, val); 3429 break; 3430 case RES_SOFT_LIMIT: 3431 ret = res_counter_memparse_write_strategy(buffer, &val); 3432 if (ret) 3433 break; 3434 /* 3435 * For memsw, soft limits are hard to implement in terms 3436 * of semantics, for now, we support soft limits for 3437 * control without swap 3438 */ 3439 if (type == _MEM) 3440 ret = res_counter_set_soft_limit(&memcg->res, val); 3441 else 3442 ret = -EINVAL; 3443 break; 3444 default: 3445 ret = -EINVAL; /* should be BUG() ? */ 3446 break; 3447 } 3448 return ret; 3449 } 3450 3451 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 3452 unsigned long long *mem_limit, unsigned long long *memsw_limit) 3453 { 3454 struct cgroup *cgroup; 3455 unsigned long long min_limit, min_memsw_limit, tmp; 3456 3457 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3458 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3459 cgroup = memcg->css.cgroup; 3460 if (!memcg->use_hierarchy) 3461 goto out; 3462 3463 while (cgroup->parent) { 3464 cgroup = cgroup->parent; 3465 memcg = mem_cgroup_from_cont(cgroup); 3466 if (!memcg->use_hierarchy) 3467 break; 3468 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 3469 min_limit = min(min_limit, tmp); 3470 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3471 min_memsw_limit = min(min_memsw_limit, tmp); 3472 } 3473 out: 3474 *mem_limit = min_limit; 3475 *memsw_limit = min_memsw_limit; 3476 return; 3477 } 3478 3479 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 3480 { 3481 struct mem_cgroup *mem; 3482 int type, name; 3483 3484 mem = mem_cgroup_from_cont(cont); 3485 type = MEMFILE_TYPE(event); 3486 name = MEMFILE_ATTR(event); 3487 switch (name) { 3488 case RES_MAX_USAGE: 3489 if (type == _MEM) 3490 res_counter_reset_max(&mem->res); 3491 else 3492 res_counter_reset_max(&mem->memsw); 3493 break; 3494 case RES_FAILCNT: 3495 if (type == _MEM) 3496 res_counter_reset_failcnt(&mem->res); 3497 else 3498 res_counter_reset_failcnt(&mem->memsw); 3499 break; 3500 } 3501 3502 return 0; 3503 } 3504 3505 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 3506 struct cftype *cft) 3507 { 3508 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 3509 } 3510 3511 #ifdef CONFIG_MMU 3512 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 3513 struct cftype *cft, u64 val) 3514 { 3515 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 3516 3517 if (val >= (1 << NR_MOVE_TYPE)) 3518 return -EINVAL; 3519 /* 3520 * We check this value several times in both in can_attach() and 3521 * attach(), so we need cgroup lock to prevent this value from being 3522 * inconsistent. 3523 */ 3524 cgroup_lock(); 3525 mem->move_charge_at_immigrate = val; 3526 cgroup_unlock(); 3527 3528 return 0; 3529 } 3530 #else 3531 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 3532 struct cftype *cft, u64 val) 3533 { 3534 return -ENOSYS; 3535 } 3536 #endif 3537 3538 3539 /* For read statistics */ 3540 enum { 3541 MCS_CACHE, 3542 MCS_RSS, 3543 MCS_FILE_MAPPED, 3544 MCS_PGPGIN, 3545 MCS_PGPGOUT, 3546 MCS_SWAP, 3547 MCS_INACTIVE_ANON, 3548 MCS_ACTIVE_ANON, 3549 MCS_INACTIVE_FILE, 3550 MCS_ACTIVE_FILE, 3551 MCS_UNEVICTABLE, 3552 NR_MCS_STAT, 3553 }; 3554 3555 struct mcs_total_stat { 3556 s64 stat[NR_MCS_STAT]; 3557 }; 3558 3559 struct { 3560 char *local_name; 3561 char *total_name; 3562 } memcg_stat_strings[NR_MCS_STAT] = { 3563 {"cache", "total_cache"}, 3564 {"rss", "total_rss"}, 3565 {"mapped_file", "total_mapped_file"}, 3566 {"pgpgin", "total_pgpgin"}, 3567 {"pgpgout", "total_pgpgout"}, 3568 {"swap", "total_swap"}, 3569 {"inactive_anon", "total_inactive_anon"}, 3570 {"active_anon", "total_active_anon"}, 3571 {"inactive_file", "total_inactive_file"}, 3572 {"active_file", "total_active_file"}, 3573 {"unevictable", "total_unevictable"} 3574 }; 3575 3576 3577 static void 3578 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 3579 { 3580 s64 val; 3581 3582 /* per cpu stat */ 3583 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); 3584 s->stat[MCS_CACHE] += val * PAGE_SIZE; 3585 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); 3586 s->stat[MCS_RSS] += val * PAGE_SIZE; 3587 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED); 3588 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; 3589 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT); 3590 s->stat[MCS_PGPGIN] += val; 3591 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT); 3592 s->stat[MCS_PGPGOUT] += val; 3593 if (do_swap_account) { 3594 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT); 3595 s->stat[MCS_SWAP] += val * PAGE_SIZE; 3596 } 3597 3598 /* per zone stat */ 3599 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); 3600 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; 3601 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); 3602 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; 3603 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); 3604 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; 3605 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); 3606 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; 3607 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); 3608 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; 3609 } 3610 3611 static void 3612 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 3613 { 3614 struct mem_cgroup *iter; 3615 3616 for_each_mem_cgroup_tree(iter, mem) 3617 mem_cgroup_get_local_stat(iter, s); 3618 } 3619 3620 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 3621 struct cgroup_map_cb *cb) 3622 { 3623 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 3624 struct mcs_total_stat mystat; 3625 int i; 3626 3627 memset(&mystat, 0, sizeof(mystat)); 3628 mem_cgroup_get_local_stat(mem_cont, &mystat); 3629 3630 for (i = 0; i < NR_MCS_STAT; i++) { 3631 if (i == MCS_SWAP && !do_swap_account) 3632 continue; 3633 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); 3634 } 3635 3636 /* Hierarchical information */ 3637 { 3638 unsigned long long limit, memsw_limit; 3639 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); 3640 cb->fill(cb, "hierarchical_memory_limit", limit); 3641 if (do_swap_account) 3642 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); 3643 } 3644 3645 memset(&mystat, 0, sizeof(mystat)); 3646 mem_cgroup_get_total_stat(mem_cont, &mystat); 3647 for (i = 0; i < NR_MCS_STAT; i++) { 3648 if (i == MCS_SWAP && !do_swap_account) 3649 continue; 3650 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); 3651 } 3652 3653 #ifdef CONFIG_DEBUG_VM 3654 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); 3655 3656 { 3657 int nid, zid; 3658 struct mem_cgroup_per_zone *mz; 3659 unsigned long recent_rotated[2] = {0, 0}; 3660 unsigned long recent_scanned[2] = {0, 0}; 3661 3662 for_each_online_node(nid) 3663 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 3664 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 3665 3666 recent_rotated[0] += 3667 mz->reclaim_stat.recent_rotated[0]; 3668 recent_rotated[1] += 3669 mz->reclaim_stat.recent_rotated[1]; 3670 recent_scanned[0] += 3671 mz->reclaim_stat.recent_scanned[0]; 3672 recent_scanned[1] += 3673 mz->reclaim_stat.recent_scanned[1]; 3674 } 3675 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); 3676 cb->fill(cb, "recent_rotated_file", recent_rotated[1]); 3677 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); 3678 cb->fill(cb, "recent_scanned_file", recent_scanned[1]); 3679 } 3680 #endif 3681 3682 return 0; 3683 } 3684 3685 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 3686 { 3687 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3688 3689 return get_swappiness(memcg); 3690 } 3691 3692 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 3693 u64 val) 3694 { 3695 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3696 struct mem_cgroup *parent; 3697 3698 if (val > 100) 3699 return -EINVAL; 3700 3701 if (cgrp->parent == NULL) 3702 return -EINVAL; 3703 3704 parent = mem_cgroup_from_cont(cgrp->parent); 3705 3706 cgroup_lock(); 3707 3708 /* If under hierarchy, only empty-root can set this value */ 3709 if ((parent->use_hierarchy) || 3710 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 3711 cgroup_unlock(); 3712 return -EINVAL; 3713 } 3714 3715 spin_lock(&memcg->reclaim_param_lock); 3716 memcg->swappiness = val; 3717 spin_unlock(&memcg->reclaim_param_lock); 3718 3719 cgroup_unlock(); 3720 3721 return 0; 3722 } 3723 3724 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3725 { 3726 struct mem_cgroup_threshold_ary *t; 3727 u64 usage; 3728 int i; 3729 3730 rcu_read_lock(); 3731 if (!swap) 3732 t = rcu_dereference(memcg->thresholds.primary); 3733 else 3734 t = rcu_dereference(memcg->memsw_thresholds.primary); 3735 3736 if (!t) 3737 goto unlock; 3738 3739 usage = mem_cgroup_usage(memcg, swap); 3740 3741 /* 3742 * current_threshold points to threshold just below usage. 3743 * If it's not true, a threshold was crossed after last 3744 * call of __mem_cgroup_threshold(). 3745 */ 3746 i = t->current_threshold; 3747 3748 /* 3749 * Iterate backward over array of thresholds starting from 3750 * current_threshold and check if a threshold is crossed. 3751 * If none of thresholds below usage is crossed, we read 3752 * only one element of the array here. 3753 */ 3754 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3755 eventfd_signal(t->entries[i].eventfd, 1); 3756 3757 /* i = current_threshold + 1 */ 3758 i++; 3759 3760 /* 3761 * Iterate forward over array of thresholds starting from 3762 * current_threshold+1 and check if a threshold is crossed. 3763 * If none of thresholds above usage is crossed, we read 3764 * only one element of the array here. 3765 */ 3766 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3767 eventfd_signal(t->entries[i].eventfd, 1); 3768 3769 /* Update current_threshold */ 3770 t->current_threshold = i - 1; 3771 unlock: 3772 rcu_read_unlock(); 3773 } 3774 3775 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3776 { 3777 while (memcg) { 3778 __mem_cgroup_threshold(memcg, false); 3779 if (do_swap_account) 3780 __mem_cgroup_threshold(memcg, true); 3781 3782 memcg = parent_mem_cgroup(memcg); 3783 } 3784 } 3785 3786 static int compare_thresholds(const void *a, const void *b) 3787 { 3788 const struct mem_cgroup_threshold *_a = a; 3789 const struct mem_cgroup_threshold *_b = b; 3790 3791 return _a->threshold - _b->threshold; 3792 } 3793 3794 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem) 3795 { 3796 struct mem_cgroup_eventfd_list *ev; 3797 3798 list_for_each_entry(ev, &mem->oom_notify, list) 3799 eventfd_signal(ev->eventfd, 1); 3800 return 0; 3801 } 3802 3803 static void mem_cgroup_oom_notify(struct mem_cgroup *mem) 3804 { 3805 struct mem_cgroup *iter; 3806 3807 for_each_mem_cgroup_tree(iter, mem) 3808 mem_cgroup_oom_notify_cb(iter); 3809 } 3810 3811 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 3812 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 3813 { 3814 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3815 struct mem_cgroup_thresholds *thresholds; 3816 struct mem_cgroup_threshold_ary *new; 3817 int type = MEMFILE_TYPE(cft->private); 3818 u64 threshold, usage; 3819 int i, size, ret; 3820 3821 ret = res_counter_memparse_write_strategy(args, &threshold); 3822 if (ret) 3823 return ret; 3824 3825 mutex_lock(&memcg->thresholds_lock); 3826 3827 if (type == _MEM) 3828 thresholds = &memcg->thresholds; 3829 else if (type == _MEMSWAP) 3830 thresholds = &memcg->memsw_thresholds; 3831 else 3832 BUG(); 3833 3834 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 3835 3836 /* Check if a threshold crossed before adding a new one */ 3837 if (thresholds->primary) 3838 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3839 3840 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3841 3842 /* Allocate memory for new array of thresholds */ 3843 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3844 GFP_KERNEL); 3845 if (!new) { 3846 ret = -ENOMEM; 3847 goto unlock; 3848 } 3849 new->size = size; 3850 3851 /* Copy thresholds (if any) to new array */ 3852 if (thresholds->primary) { 3853 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3854 sizeof(struct mem_cgroup_threshold)); 3855 } 3856 3857 /* Add new threshold */ 3858 new->entries[size - 1].eventfd = eventfd; 3859 new->entries[size - 1].threshold = threshold; 3860 3861 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3862 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3863 compare_thresholds, NULL); 3864 3865 /* Find current threshold */ 3866 new->current_threshold = -1; 3867 for (i = 0; i < size; i++) { 3868 if (new->entries[i].threshold < usage) { 3869 /* 3870 * new->current_threshold will not be used until 3871 * rcu_assign_pointer(), so it's safe to increment 3872 * it here. 3873 */ 3874 ++new->current_threshold; 3875 } 3876 } 3877 3878 /* Free old spare buffer and save old primary buffer as spare */ 3879 kfree(thresholds->spare); 3880 thresholds->spare = thresholds->primary; 3881 3882 rcu_assign_pointer(thresholds->primary, new); 3883 3884 /* To be sure that nobody uses thresholds */ 3885 synchronize_rcu(); 3886 3887 unlock: 3888 mutex_unlock(&memcg->thresholds_lock); 3889 3890 return ret; 3891 } 3892 3893 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 3894 struct cftype *cft, struct eventfd_ctx *eventfd) 3895 { 3896 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3897 struct mem_cgroup_thresholds *thresholds; 3898 struct mem_cgroup_threshold_ary *new; 3899 int type = MEMFILE_TYPE(cft->private); 3900 u64 usage; 3901 int i, j, size; 3902 3903 mutex_lock(&memcg->thresholds_lock); 3904 if (type == _MEM) 3905 thresholds = &memcg->thresholds; 3906 else if (type == _MEMSWAP) 3907 thresholds = &memcg->memsw_thresholds; 3908 else 3909 BUG(); 3910 3911 /* 3912 * Something went wrong if we trying to unregister a threshold 3913 * if we don't have thresholds 3914 */ 3915 BUG_ON(!thresholds); 3916 3917 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 3918 3919 /* Check if a threshold crossed before removing */ 3920 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3921 3922 /* Calculate new number of threshold */ 3923 size = 0; 3924 for (i = 0; i < thresholds->primary->size; i++) { 3925 if (thresholds->primary->entries[i].eventfd != eventfd) 3926 size++; 3927 } 3928 3929 new = thresholds->spare; 3930 3931 /* Set thresholds array to NULL if we don't have thresholds */ 3932 if (!size) { 3933 kfree(new); 3934 new = NULL; 3935 goto swap_buffers; 3936 } 3937 3938 new->size = size; 3939 3940 /* Copy thresholds and find current threshold */ 3941 new->current_threshold = -1; 3942 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3943 if (thresholds->primary->entries[i].eventfd == eventfd) 3944 continue; 3945 3946 new->entries[j] = thresholds->primary->entries[i]; 3947 if (new->entries[j].threshold < usage) { 3948 /* 3949 * new->current_threshold will not be used 3950 * until rcu_assign_pointer(), so it's safe to increment 3951 * it here. 3952 */ 3953 ++new->current_threshold; 3954 } 3955 j++; 3956 } 3957 3958 swap_buffers: 3959 /* Swap primary and spare array */ 3960 thresholds->spare = thresholds->primary; 3961 rcu_assign_pointer(thresholds->primary, new); 3962 3963 /* To be sure that nobody uses thresholds */ 3964 synchronize_rcu(); 3965 3966 mutex_unlock(&memcg->thresholds_lock); 3967 } 3968 3969 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 3970 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 3971 { 3972 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3973 struct mem_cgroup_eventfd_list *event; 3974 int type = MEMFILE_TYPE(cft->private); 3975 3976 BUG_ON(type != _OOM_TYPE); 3977 event = kmalloc(sizeof(*event), GFP_KERNEL); 3978 if (!event) 3979 return -ENOMEM; 3980 3981 mutex_lock(&memcg_oom_mutex); 3982 3983 event->eventfd = eventfd; 3984 list_add(&event->list, &memcg->oom_notify); 3985 3986 /* already in OOM ? */ 3987 if (atomic_read(&memcg->oom_lock)) 3988 eventfd_signal(eventfd, 1); 3989 mutex_unlock(&memcg_oom_mutex); 3990 3991 return 0; 3992 } 3993 3994 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 3995 struct cftype *cft, struct eventfd_ctx *eventfd) 3996 { 3997 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 3998 struct mem_cgroup_eventfd_list *ev, *tmp; 3999 int type = MEMFILE_TYPE(cft->private); 4000 4001 BUG_ON(type != _OOM_TYPE); 4002 4003 mutex_lock(&memcg_oom_mutex); 4004 4005 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) { 4006 if (ev->eventfd == eventfd) { 4007 list_del(&ev->list); 4008 kfree(ev); 4009 } 4010 } 4011 4012 mutex_unlock(&memcg_oom_mutex); 4013 } 4014 4015 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4016 struct cftype *cft, struct cgroup_map_cb *cb) 4017 { 4018 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 4019 4020 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable); 4021 4022 if (atomic_read(&mem->oom_lock)) 4023 cb->fill(cb, "under_oom", 1); 4024 else 4025 cb->fill(cb, "under_oom", 0); 4026 return 0; 4027 } 4028 4029 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4030 struct cftype *cft, u64 val) 4031 { 4032 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 4033 struct mem_cgroup *parent; 4034 4035 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4036 if (!cgrp->parent || !((val == 0) || (val == 1))) 4037 return -EINVAL; 4038 4039 parent = mem_cgroup_from_cont(cgrp->parent); 4040 4041 cgroup_lock(); 4042 /* oom-kill-disable is a flag for subhierarchy. */ 4043 if ((parent->use_hierarchy) || 4044 (mem->use_hierarchy && !list_empty(&cgrp->children))) { 4045 cgroup_unlock(); 4046 return -EINVAL; 4047 } 4048 mem->oom_kill_disable = val; 4049 if (!val) 4050 memcg_oom_recover(mem); 4051 cgroup_unlock(); 4052 return 0; 4053 } 4054 4055 static struct cftype mem_cgroup_files[] = { 4056 { 4057 .name = "usage_in_bytes", 4058 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4059 .read_u64 = mem_cgroup_read, 4060 .register_event = mem_cgroup_usage_register_event, 4061 .unregister_event = mem_cgroup_usage_unregister_event, 4062 }, 4063 { 4064 .name = "max_usage_in_bytes", 4065 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4066 .trigger = mem_cgroup_reset, 4067 .read_u64 = mem_cgroup_read, 4068 }, 4069 { 4070 .name = "limit_in_bytes", 4071 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4072 .write_string = mem_cgroup_write, 4073 .read_u64 = mem_cgroup_read, 4074 }, 4075 { 4076 .name = "soft_limit_in_bytes", 4077 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4078 .write_string = mem_cgroup_write, 4079 .read_u64 = mem_cgroup_read, 4080 }, 4081 { 4082 .name = "failcnt", 4083 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4084 .trigger = mem_cgroup_reset, 4085 .read_u64 = mem_cgroup_read, 4086 }, 4087 { 4088 .name = "stat", 4089 .read_map = mem_control_stat_show, 4090 }, 4091 { 4092 .name = "force_empty", 4093 .trigger = mem_cgroup_force_empty_write, 4094 }, 4095 { 4096 .name = "use_hierarchy", 4097 .write_u64 = mem_cgroup_hierarchy_write, 4098 .read_u64 = mem_cgroup_hierarchy_read, 4099 }, 4100 { 4101 .name = "swappiness", 4102 .read_u64 = mem_cgroup_swappiness_read, 4103 .write_u64 = mem_cgroup_swappiness_write, 4104 }, 4105 { 4106 .name = "move_charge_at_immigrate", 4107 .read_u64 = mem_cgroup_move_charge_read, 4108 .write_u64 = mem_cgroup_move_charge_write, 4109 }, 4110 { 4111 .name = "oom_control", 4112 .read_map = mem_cgroup_oom_control_read, 4113 .write_u64 = mem_cgroup_oom_control_write, 4114 .register_event = mem_cgroup_oom_register_event, 4115 .unregister_event = mem_cgroup_oom_unregister_event, 4116 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4117 }, 4118 }; 4119 4120 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4121 static struct cftype memsw_cgroup_files[] = { 4122 { 4123 .name = "memsw.usage_in_bytes", 4124 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4125 .read_u64 = mem_cgroup_read, 4126 .register_event = mem_cgroup_usage_register_event, 4127 .unregister_event = mem_cgroup_usage_unregister_event, 4128 }, 4129 { 4130 .name = "memsw.max_usage_in_bytes", 4131 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4132 .trigger = mem_cgroup_reset, 4133 .read_u64 = mem_cgroup_read, 4134 }, 4135 { 4136 .name = "memsw.limit_in_bytes", 4137 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4138 .write_string = mem_cgroup_write, 4139 .read_u64 = mem_cgroup_read, 4140 }, 4141 { 4142 .name = "memsw.failcnt", 4143 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4144 .trigger = mem_cgroup_reset, 4145 .read_u64 = mem_cgroup_read, 4146 }, 4147 }; 4148 4149 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 4150 { 4151 if (!do_swap_account) 4152 return 0; 4153 return cgroup_add_files(cont, ss, memsw_cgroup_files, 4154 ARRAY_SIZE(memsw_cgroup_files)); 4155 }; 4156 #else 4157 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 4158 { 4159 return 0; 4160 } 4161 #endif 4162 4163 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 4164 { 4165 struct mem_cgroup_per_node *pn; 4166 struct mem_cgroup_per_zone *mz; 4167 enum lru_list l; 4168 int zone, tmp = node; 4169 /* 4170 * This routine is called against possible nodes. 4171 * But it's BUG to call kmalloc() against offline node. 4172 * 4173 * TODO: this routine can waste much memory for nodes which will 4174 * never be onlined. It's better to use memory hotplug callback 4175 * function. 4176 */ 4177 if (!node_state(node, N_NORMAL_MEMORY)) 4178 tmp = -1; 4179 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4180 if (!pn) 4181 return 1; 4182 4183 mem->info.nodeinfo[node] = pn; 4184 memset(pn, 0, sizeof(*pn)); 4185 4186 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4187 mz = &pn->zoneinfo[zone]; 4188 for_each_lru(l) 4189 INIT_LIST_HEAD(&mz->lists[l]); 4190 mz->usage_in_excess = 0; 4191 mz->on_tree = false; 4192 mz->mem = mem; 4193 } 4194 return 0; 4195 } 4196 4197 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 4198 { 4199 kfree(mem->info.nodeinfo[node]); 4200 } 4201 4202 static struct mem_cgroup *mem_cgroup_alloc(void) 4203 { 4204 struct mem_cgroup *mem; 4205 int size = sizeof(struct mem_cgroup); 4206 4207 /* Can be very big if MAX_NUMNODES is very big */ 4208 if (size < PAGE_SIZE) 4209 mem = kmalloc(size, GFP_KERNEL); 4210 else 4211 mem = vmalloc(size); 4212 4213 if (!mem) 4214 return NULL; 4215 4216 memset(mem, 0, size); 4217 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4218 if (!mem->stat) 4219 goto out_free; 4220 spin_lock_init(&mem->pcp_counter_lock); 4221 return mem; 4222 4223 out_free: 4224 if (size < PAGE_SIZE) 4225 kfree(mem); 4226 else 4227 vfree(mem); 4228 return NULL; 4229 } 4230 4231 /* 4232 * At destroying mem_cgroup, references from swap_cgroup can remain. 4233 * (scanning all at force_empty is too costly...) 4234 * 4235 * Instead of clearing all references at force_empty, we remember 4236 * the number of reference from swap_cgroup and free mem_cgroup when 4237 * it goes down to 0. 4238 * 4239 * Removal of cgroup itself succeeds regardless of refs from swap. 4240 */ 4241 4242 static void __mem_cgroup_free(struct mem_cgroup *mem) 4243 { 4244 int node; 4245 4246 mem_cgroup_remove_from_trees(mem); 4247 free_css_id(&mem_cgroup_subsys, &mem->css); 4248 4249 for_each_node_state(node, N_POSSIBLE) 4250 free_mem_cgroup_per_zone_info(mem, node); 4251 4252 free_percpu(mem->stat); 4253 if (sizeof(struct mem_cgroup) < PAGE_SIZE) 4254 kfree(mem); 4255 else 4256 vfree(mem); 4257 } 4258 4259 static void mem_cgroup_get(struct mem_cgroup *mem) 4260 { 4261 atomic_inc(&mem->refcnt); 4262 } 4263 4264 static void __mem_cgroup_put(struct mem_cgroup *mem, int count) 4265 { 4266 if (atomic_sub_and_test(count, &mem->refcnt)) { 4267 struct mem_cgroup *parent = parent_mem_cgroup(mem); 4268 __mem_cgroup_free(mem); 4269 if (parent) 4270 mem_cgroup_put(parent); 4271 } 4272 } 4273 4274 static void mem_cgroup_put(struct mem_cgroup *mem) 4275 { 4276 __mem_cgroup_put(mem, 1); 4277 } 4278 4279 /* 4280 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4281 */ 4282 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) 4283 { 4284 if (!mem->res.parent) 4285 return NULL; 4286 return mem_cgroup_from_res_counter(mem->res.parent, res); 4287 } 4288 4289 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4290 static void __init enable_swap_cgroup(void) 4291 { 4292 if (!mem_cgroup_disabled() && really_do_swap_account) 4293 do_swap_account = 1; 4294 } 4295 #else 4296 static void __init enable_swap_cgroup(void) 4297 { 4298 } 4299 #endif 4300 4301 static int mem_cgroup_soft_limit_tree_init(void) 4302 { 4303 struct mem_cgroup_tree_per_node *rtpn; 4304 struct mem_cgroup_tree_per_zone *rtpz; 4305 int tmp, node, zone; 4306 4307 for_each_node_state(node, N_POSSIBLE) { 4308 tmp = node; 4309 if (!node_state(node, N_NORMAL_MEMORY)) 4310 tmp = -1; 4311 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4312 if (!rtpn) 4313 return 1; 4314 4315 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4316 4317 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4318 rtpz = &rtpn->rb_tree_per_zone[zone]; 4319 rtpz->rb_root = RB_ROOT; 4320 spin_lock_init(&rtpz->lock); 4321 } 4322 } 4323 return 0; 4324 } 4325 4326 static struct cgroup_subsys_state * __ref 4327 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 4328 { 4329 struct mem_cgroup *mem, *parent; 4330 long error = -ENOMEM; 4331 int node; 4332 4333 mem = mem_cgroup_alloc(); 4334 if (!mem) 4335 return ERR_PTR(error); 4336 4337 for_each_node_state(node, N_POSSIBLE) 4338 if (alloc_mem_cgroup_per_zone_info(mem, node)) 4339 goto free_out; 4340 4341 /* root ? */ 4342 if (cont->parent == NULL) { 4343 int cpu; 4344 enable_swap_cgroup(); 4345 parent = NULL; 4346 root_mem_cgroup = mem; 4347 if (mem_cgroup_soft_limit_tree_init()) 4348 goto free_out; 4349 for_each_possible_cpu(cpu) { 4350 struct memcg_stock_pcp *stock = 4351 &per_cpu(memcg_stock, cpu); 4352 INIT_WORK(&stock->work, drain_local_stock); 4353 } 4354 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4355 } else { 4356 parent = mem_cgroup_from_cont(cont->parent); 4357 mem->use_hierarchy = parent->use_hierarchy; 4358 mem->oom_kill_disable = parent->oom_kill_disable; 4359 } 4360 4361 if (parent && parent->use_hierarchy) { 4362 res_counter_init(&mem->res, &parent->res); 4363 res_counter_init(&mem->memsw, &parent->memsw); 4364 /* 4365 * We increment refcnt of the parent to ensure that we can 4366 * safely access it on res_counter_charge/uncharge. 4367 * This refcnt will be decremented when freeing this 4368 * mem_cgroup(see mem_cgroup_put). 4369 */ 4370 mem_cgroup_get(parent); 4371 } else { 4372 res_counter_init(&mem->res, NULL); 4373 res_counter_init(&mem->memsw, NULL); 4374 } 4375 mem->last_scanned_child = 0; 4376 spin_lock_init(&mem->reclaim_param_lock); 4377 INIT_LIST_HEAD(&mem->oom_notify); 4378 4379 if (parent) 4380 mem->swappiness = get_swappiness(parent); 4381 atomic_set(&mem->refcnt, 1); 4382 mem->move_charge_at_immigrate = 0; 4383 mutex_init(&mem->thresholds_lock); 4384 return &mem->css; 4385 free_out: 4386 __mem_cgroup_free(mem); 4387 root_mem_cgroup = NULL; 4388 return ERR_PTR(error); 4389 } 4390 4391 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 4392 struct cgroup *cont) 4393 { 4394 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 4395 4396 return mem_cgroup_force_empty(mem, false); 4397 } 4398 4399 static void mem_cgroup_destroy(struct cgroup_subsys *ss, 4400 struct cgroup *cont) 4401 { 4402 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 4403 4404 mem_cgroup_put(mem); 4405 } 4406 4407 static int mem_cgroup_populate(struct cgroup_subsys *ss, 4408 struct cgroup *cont) 4409 { 4410 int ret; 4411 4412 ret = cgroup_add_files(cont, ss, mem_cgroup_files, 4413 ARRAY_SIZE(mem_cgroup_files)); 4414 4415 if (!ret) 4416 ret = register_memsw_files(cont, ss); 4417 return ret; 4418 } 4419 4420 #ifdef CONFIG_MMU 4421 /* Handlers for move charge at task migration. */ 4422 #define PRECHARGE_COUNT_AT_ONCE 256 4423 static int mem_cgroup_do_precharge(unsigned long count) 4424 { 4425 int ret = 0; 4426 int batch_count = PRECHARGE_COUNT_AT_ONCE; 4427 struct mem_cgroup *mem = mc.to; 4428 4429 if (mem_cgroup_is_root(mem)) { 4430 mc.precharge += count; 4431 /* we don't need css_get for root */ 4432 return ret; 4433 } 4434 /* try to charge at once */ 4435 if (count > 1) { 4436 struct res_counter *dummy; 4437 /* 4438 * "mem" cannot be under rmdir() because we've already checked 4439 * by cgroup_lock_live_cgroup() that it is not removed and we 4440 * are still under the same cgroup_mutex. So we can postpone 4441 * css_get(). 4442 */ 4443 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy)) 4444 goto one_by_one; 4445 if (do_swap_account && res_counter_charge(&mem->memsw, 4446 PAGE_SIZE * count, &dummy)) { 4447 res_counter_uncharge(&mem->res, PAGE_SIZE * count); 4448 goto one_by_one; 4449 } 4450 mc.precharge += count; 4451 return ret; 4452 } 4453 one_by_one: 4454 /* fall back to one by one charge */ 4455 while (count--) { 4456 if (signal_pending(current)) { 4457 ret = -EINTR; 4458 break; 4459 } 4460 if (!batch_count--) { 4461 batch_count = PRECHARGE_COUNT_AT_ONCE; 4462 cond_resched(); 4463 } 4464 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false); 4465 if (ret || !mem) 4466 /* mem_cgroup_clear_mc() will do uncharge later */ 4467 return -ENOMEM; 4468 mc.precharge++; 4469 } 4470 return ret; 4471 } 4472 4473 /** 4474 * is_target_pte_for_mc - check a pte whether it is valid for move charge 4475 * @vma: the vma the pte to be checked belongs 4476 * @addr: the address corresponding to the pte to be checked 4477 * @ptent: the pte to be checked 4478 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4479 * 4480 * Returns 4481 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4482 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4483 * move charge. if @target is not NULL, the page is stored in target->page 4484 * with extra refcnt got(Callers should handle it). 4485 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4486 * target for charge migration. if @target is not NULL, the entry is stored 4487 * in target->ent. 4488 * 4489 * Called with pte lock held. 4490 */ 4491 union mc_target { 4492 struct page *page; 4493 swp_entry_t ent; 4494 }; 4495 4496 enum mc_target_type { 4497 MC_TARGET_NONE, /* not used */ 4498 MC_TARGET_PAGE, 4499 MC_TARGET_SWAP, 4500 }; 4501 4502 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4503 unsigned long addr, pte_t ptent) 4504 { 4505 struct page *page = vm_normal_page(vma, addr, ptent); 4506 4507 if (!page || !page_mapped(page)) 4508 return NULL; 4509 if (PageAnon(page)) { 4510 /* we don't move shared anon */ 4511 if (!move_anon() || page_mapcount(page) > 2) 4512 return NULL; 4513 } else if (!move_file()) 4514 /* we ignore mapcount for file pages */ 4515 return NULL; 4516 if (!get_page_unless_zero(page)) 4517 return NULL; 4518 4519 return page; 4520 } 4521 4522 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4523 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4524 { 4525 int usage_count; 4526 struct page *page = NULL; 4527 swp_entry_t ent = pte_to_swp_entry(ptent); 4528 4529 if (!move_anon() || non_swap_entry(ent)) 4530 return NULL; 4531 usage_count = mem_cgroup_count_swap_user(ent, &page); 4532 if (usage_count > 1) { /* we don't move shared anon */ 4533 if (page) 4534 put_page(page); 4535 return NULL; 4536 } 4537 if (do_swap_account) 4538 entry->val = ent.val; 4539 4540 return page; 4541 } 4542 4543 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4544 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4545 { 4546 struct page *page = NULL; 4547 struct inode *inode; 4548 struct address_space *mapping; 4549 pgoff_t pgoff; 4550 4551 if (!vma->vm_file) /* anonymous vma */ 4552 return NULL; 4553 if (!move_file()) 4554 return NULL; 4555 4556 inode = vma->vm_file->f_path.dentry->d_inode; 4557 mapping = vma->vm_file->f_mapping; 4558 if (pte_none(ptent)) 4559 pgoff = linear_page_index(vma, addr); 4560 else /* pte_file(ptent) is true */ 4561 pgoff = pte_to_pgoff(ptent); 4562 4563 /* page is moved even if it's not RSS of this task(page-faulted). */ 4564 if (!mapping_cap_swap_backed(mapping)) { /* normal file */ 4565 page = find_get_page(mapping, pgoff); 4566 } else { /* shmem/tmpfs file. we should take account of swap too. */ 4567 swp_entry_t ent; 4568 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent); 4569 if (do_swap_account) 4570 entry->val = ent.val; 4571 } 4572 4573 return page; 4574 } 4575 4576 static int is_target_pte_for_mc(struct vm_area_struct *vma, 4577 unsigned long addr, pte_t ptent, union mc_target *target) 4578 { 4579 struct page *page = NULL; 4580 struct page_cgroup *pc; 4581 int ret = 0; 4582 swp_entry_t ent = { .val = 0 }; 4583 4584 if (pte_present(ptent)) 4585 page = mc_handle_present_pte(vma, addr, ptent); 4586 else if (is_swap_pte(ptent)) 4587 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 4588 else if (pte_none(ptent) || pte_file(ptent)) 4589 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4590 4591 if (!page && !ent.val) 4592 return 0; 4593 if (page) { 4594 pc = lookup_page_cgroup(page); 4595 /* 4596 * Do only loose check w/o page_cgroup lock. 4597 * mem_cgroup_move_account() checks the pc is valid or not under 4598 * the lock. 4599 */ 4600 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 4601 ret = MC_TARGET_PAGE; 4602 if (target) 4603 target->page = page; 4604 } 4605 if (!ret || !target) 4606 put_page(page); 4607 } 4608 /* There is a swap entry and a page doesn't exist or isn't charged */ 4609 if (ent.val && !ret && 4610 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) { 4611 ret = MC_TARGET_SWAP; 4612 if (target) 4613 target->ent = ent; 4614 } 4615 return ret; 4616 } 4617 4618 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4619 unsigned long addr, unsigned long end, 4620 struct mm_walk *walk) 4621 { 4622 struct vm_area_struct *vma = walk->private; 4623 pte_t *pte; 4624 spinlock_t *ptl; 4625 4626 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4627 for (; addr != end; pte++, addr += PAGE_SIZE) 4628 if (is_target_pte_for_mc(vma, addr, *pte, NULL)) 4629 mc.precharge++; /* increment precharge temporarily */ 4630 pte_unmap_unlock(pte - 1, ptl); 4631 cond_resched(); 4632 4633 return 0; 4634 } 4635 4636 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4637 { 4638 unsigned long precharge; 4639 struct vm_area_struct *vma; 4640 4641 /* We've already held the mmap_sem */ 4642 for (vma = mm->mmap; vma; vma = vma->vm_next) { 4643 struct mm_walk mem_cgroup_count_precharge_walk = { 4644 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4645 .mm = mm, 4646 .private = vma, 4647 }; 4648 if (is_vm_hugetlb_page(vma)) 4649 continue; 4650 walk_page_range(vma->vm_start, vma->vm_end, 4651 &mem_cgroup_count_precharge_walk); 4652 } 4653 4654 precharge = mc.precharge; 4655 mc.precharge = 0; 4656 4657 return precharge; 4658 } 4659 4660 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4661 { 4662 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm)); 4663 } 4664 4665 static void mem_cgroup_clear_mc(void) 4666 { 4667 struct mem_cgroup *from = mc.from; 4668 struct mem_cgroup *to = mc.to; 4669 4670 /* we must uncharge all the leftover precharges from mc.to */ 4671 if (mc.precharge) { 4672 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 4673 mc.precharge = 0; 4674 } 4675 /* 4676 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4677 * we must uncharge here. 4678 */ 4679 if (mc.moved_charge) { 4680 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 4681 mc.moved_charge = 0; 4682 } 4683 /* we must fixup refcnts and charges */ 4684 if (mc.moved_swap) { 4685 /* uncharge swap account from the old cgroup */ 4686 if (!mem_cgroup_is_root(mc.from)) 4687 res_counter_uncharge(&mc.from->memsw, 4688 PAGE_SIZE * mc.moved_swap); 4689 __mem_cgroup_put(mc.from, mc.moved_swap); 4690 4691 if (!mem_cgroup_is_root(mc.to)) { 4692 /* 4693 * we charged both to->res and to->memsw, so we should 4694 * uncharge to->res. 4695 */ 4696 res_counter_uncharge(&mc.to->res, 4697 PAGE_SIZE * mc.moved_swap); 4698 } 4699 /* we've already done mem_cgroup_get(mc.to) */ 4700 4701 mc.moved_swap = 0; 4702 } 4703 if (mc.mm) { 4704 up_read(&mc.mm->mmap_sem); 4705 mmput(mc.mm); 4706 } 4707 spin_lock(&mc.lock); 4708 mc.from = NULL; 4709 mc.to = NULL; 4710 spin_unlock(&mc.lock); 4711 mc.moving_task = NULL; 4712 mc.mm = NULL; 4713 mem_cgroup_end_move(from); 4714 memcg_oom_recover(from); 4715 memcg_oom_recover(to); 4716 wake_up_all(&mc.waitq); 4717 } 4718 4719 static int mem_cgroup_can_attach(struct cgroup_subsys *ss, 4720 struct cgroup *cgroup, 4721 struct task_struct *p, 4722 bool threadgroup) 4723 { 4724 int ret = 0; 4725 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup); 4726 4727 if (mem->move_charge_at_immigrate) { 4728 struct mm_struct *mm; 4729 struct mem_cgroup *from = mem_cgroup_from_task(p); 4730 4731 VM_BUG_ON(from == mem); 4732 4733 mm = get_task_mm(p); 4734 if (!mm) 4735 return 0; 4736 /* We move charges only when we move a owner of the mm */ 4737 if (mm->owner == p) { 4738 /* 4739 * We do all the move charge works under one mmap_sem to 4740 * avoid deadlock with down_write(&mmap_sem) 4741 * -> try_charge() -> if (mc.moving_task) -> sleep. 4742 */ 4743 down_read(&mm->mmap_sem); 4744 4745 VM_BUG_ON(mc.from); 4746 VM_BUG_ON(mc.to); 4747 VM_BUG_ON(mc.precharge); 4748 VM_BUG_ON(mc.moved_charge); 4749 VM_BUG_ON(mc.moved_swap); 4750 VM_BUG_ON(mc.moving_task); 4751 VM_BUG_ON(mc.mm); 4752 4753 mem_cgroup_start_move(from); 4754 spin_lock(&mc.lock); 4755 mc.from = from; 4756 mc.to = mem; 4757 mc.precharge = 0; 4758 mc.moved_charge = 0; 4759 mc.moved_swap = 0; 4760 spin_unlock(&mc.lock); 4761 mc.moving_task = current; 4762 mc.mm = mm; 4763 4764 ret = mem_cgroup_precharge_mc(mm); 4765 if (ret) 4766 mem_cgroup_clear_mc(); 4767 /* We call up_read() and mmput() in clear_mc(). */ 4768 } else 4769 mmput(mm); 4770 } 4771 return ret; 4772 } 4773 4774 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, 4775 struct cgroup *cgroup, 4776 struct task_struct *p, 4777 bool threadgroup) 4778 { 4779 mem_cgroup_clear_mc(); 4780 } 4781 4782 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4783 unsigned long addr, unsigned long end, 4784 struct mm_walk *walk) 4785 { 4786 int ret = 0; 4787 struct vm_area_struct *vma = walk->private; 4788 pte_t *pte; 4789 spinlock_t *ptl; 4790 4791 retry: 4792 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4793 for (; addr != end; addr += PAGE_SIZE) { 4794 pte_t ptent = *(pte++); 4795 union mc_target target; 4796 int type; 4797 struct page *page; 4798 struct page_cgroup *pc; 4799 swp_entry_t ent; 4800 4801 if (!mc.precharge) 4802 break; 4803 4804 type = is_target_pte_for_mc(vma, addr, ptent, &target); 4805 switch (type) { 4806 case MC_TARGET_PAGE: 4807 page = target.page; 4808 if (isolate_lru_page(page)) 4809 goto put; 4810 pc = lookup_page_cgroup(page); 4811 if (!mem_cgroup_move_account(pc, 4812 mc.from, mc.to, false)) { 4813 mc.precharge--; 4814 /* we uncharge from mc.from later. */ 4815 mc.moved_charge++; 4816 } 4817 putback_lru_page(page); 4818 put: /* is_target_pte_for_mc() gets the page */ 4819 put_page(page); 4820 break; 4821 case MC_TARGET_SWAP: 4822 ent = target.ent; 4823 if (!mem_cgroup_move_swap_account(ent, 4824 mc.from, mc.to, false)) { 4825 mc.precharge--; 4826 /* we fixup refcnts and charges later. */ 4827 mc.moved_swap++; 4828 } 4829 break; 4830 default: 4831 break; 4832 } 4833 } 4834 pte_unmap_unlock(pte - 1, ptl); 4835 cond_resched(); 4836 4837 if (addr != end) { 4838 /* 4839 * We have consumed all precharges we got in can_attach(). 4840 * We try charge one by one, but don't do any additional 4841 * charges to mc.to if we have failed in charge once in attach() 4842 * phase. 4843 */ 4844 ret = mem_cgroup_do_precharge(1); 4845 if (!ret) 4846 goto retry; 4847 } 4848 4849 return ret; 4850 } 4851 4852 static void mem_cgroup_move_charge(struct mm_struct *mm) 4853 { 4854 struct vm_area_struct *vma; 4855 4856 lru_add_drain_all(); 4857 /* We've already held the mmap_sem */ 4858 for (vma = mm->mmap; vma; vma = vma->vm_next) { 4859 int ret; 4860 struct mm_walk mem_cgroup_move_charge_walk = { 4861 .pmd_entry = mem_cgroup_move_charge_pte_range, 4862 .mm = mm, 4863 .private = vma, 4864 }; 4865 if (is_vm_hugetlb_page(vma)) 4866 continue; 4867 ret = walk_page_range(vma->vm_start, vma->vm_end, 4868 &mem_cgroup_move_charge_walk); 4869 if (ret) 4870 /* 4871 * means we have consumed all precharges and failed in 4872 * doing additional charge. Just abandon here. 4873 */ 4874 break; 4875 } 4876 } 4877 4878 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 4879 struct cgroup *cont, 4880 struct cgroup *old_cont, 4881 struct task_struct *p, 4882 bool threadgroup) 4883 { 4884 if (!mc.mm) 4885 /* no need to move charge */ 4886 return; 4887 4888 mem_cgroup_move_charge(mc.mm); 4889 mem_cgroup_clear_mc(); 4890 } 4891 #else /* !CONFIG_MMU */ 4892 static int mem_cgroup_can_attach(struct cgroup_subsys *ss, 4893 struct cgroup *cgroup, 4894 struct task_struct *p, 4895 bool threadgroup) 4896 { 4897 return 0; 4898 } 4899 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, 4900 struct cgroup *cgroup, 4901 struct task_struct *p, 4902 bool threadgroup) 4903 { 4904 } 4905 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 4906 struct cgroup *cont, 4907 struct cgroup *old_cont, 4908 struct task_struct *p, 4909 bool threadgroup) 4910 { 4911 } 4912 #endif 4913 4914 struct cgroup_subsys mem_cgroup_subsys = { 4915 .name = "memory", 4916 .subsys_id = mem_cgroup_subsys_id, 4917 .create = mem_cgroup_create, 4918 .pre_destroy = mem_cgroup_pre_destroy, 4919 .destroy = mem_cgroup_destroy, 4920 .populate = mem_cgroup_populate, 4921 .can_attach = mem_cgroup_can_attach, 4922 .cancel_attach = mem_cgroup_cancel_attach, 4923 .attach = mem_cgroup_move_task, 4924 .early_init = 0, 4925 .use_id = 1, 4926 }; 4927 4928 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4929 static int __init enable_swap_account(char *s) 4930 { 4931 /* consider enabled if no parameter or 1 is given */ 4932 if (!s || !strcmp(s, "1")) 4933 really_do_swap_account = 1; 4934 else if (!strcmp(s, "0")) 4935 really_do_swap_account = 0; 4936 return 1; 4937 } 4938 __setup("swapaccount", enable_swap_account); 4939 4940 static int __init disable_swap_account(char *s) 4941 { 4942 enable_swap_account("0"); 4943 return 1; 4944 } 4945 __setup("noswapaccount", disable_swap_account); 4946 #endif 4947