xref: /linux/mm/memcontrol.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 
69 #include <trace/events/vmscan.h>
70 
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73 
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 
76 #define MEM_CGROUP_RECLAIM_RETRIES	5
77 
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80 
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83 
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account		0
89 #endif
90 
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103 
104 /*
105  * Cgroups above their limits are maintained in a RB-Tree, independent of
106  * their hierarchy representation
107  */
108 
109 struct mem_cgroup_tree_per_node {
110 	struct rb_root rb_root;
111 	struct rb_node *rb_rightmost;
112 	spinlock_t lock;
113 };
114 
115 struct mem_cgroup_tree {
116 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118 
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120 
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 	struct list_head list;
124 	struct eventfd_ctx *eventfd;
125 };
126 
127 /*
128  * cgroup_event represents events which userspace want to receive.
129  */
130 struct mem_cgroup_event {
131 	/*
132 	 * memcg which the event belongs to.
133 	 */
134 	struct mem_cgroup *memcg;
135 	/*
136 	 * eventfd to signal userspace about the event.
137 	 */
138 	struct eventfd_ctx *eventfd;
139 	/*
140 	 * Each of these stored in a list by the cgroup.
141 	 */
142 	struct list_head list;
143 	/*
144 	 * register_event() callback will be used to add new userspace
145 	 * waiter for changes related to this event.  Use eventfd_signal()
146 	 * on eventfd to send notification to userspace.
147 	 */
148 	int (*register_event)(struct mem_cgroup *memcg,
149 			      struct eventfd_ctx *eventfd, const char *args);
150 	/*
151 	 * unregister_event() callback will be called when userspace closes
152 	 * the eventfd or on cgroup removing.  This callback must be set,
153 	 * if you want provide notification functionality.
154 	 */
155 	void (*unregister_event)(struct mem_cgroup *memcg,
156 				 struct eventfd_ctx *eventfd);
157 	/*
158 	 * All fields below needed to unregister event when
159 	 * userspace closes eventfd.
160 	 */
161 	poll_table pt;
162 	wait_queue_head_t *wqh;
163 	wait_queue_entry_t wait;
164 	struct work_struct remove;
165 };
166 
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169 
170 /* Stuffs for move charges at task migration. */
171 /*
172  * Types of charges to be moved.
173  */
174 #define MOVE_ANON	0x1U
175 #define MOVE_FILE	0x2U
176 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177 
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 	spinlock_t	  lock; /* for from, to */
181 	struct mm_struct  *mm;
182 	struct mem_cgroup *from;
183 	struct mem_cgroup *to;
184 	unsigned long flags;
185 	unsigned long precharge;
186 	unsigned long moved_charge;
187 	unsigned long moved_swap;
188 	struct task_struct *moving_task;	/* a task moving charges */
189 	wait_queue_head_t waitq;		/* a waitq for other context */
190 } mc = {
191 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194 
195 /*
196  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197  * limit reclaim to prevent infinite loops, if they ever occur.
198  */
199 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201 
202 enum charge_type {
203 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 	MEM_CGROUP_CHARGE_TYPE_ANON,
205 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
206 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 	NR_CHARGE_TYPE,
208 };
209 
210 /* for encoding cft->private value on file */
211 enum res_type {
212 	_MEM,
213 	_MEMSWAP,
214 	_OOM_TYPE,
215 	_KMEM,
216 	_TCP,
217 };
218 
219 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
220 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val)	((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL		(0)
224 
225 /*
226  * Iteration constructs for visiting all cgroups (under a tree).  If
227  * loops are exited prematurely (break), mem_cgroup_iter_break() must
228  * be used for reference counting.
229  */
230 #define for_each_mem_cgroup_tree(iter, root)		\
231 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
232 	     iter != NULL;				\
233 	     iter = mem_cgroup_iter(root, iter, NULL))
234 
235 #define for_each_mem_cgroup(iter)			\
236 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
237 	     iter != NULL;				\
238 	     iter = mem_cgroup_iter(NULL, iter, NULL))
239 
240 static inline bool should_force_charge(void)
241 {
242 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 		(current->flags & PF_EXITING);
244 }
245 
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 	if (!memcg)
250 		memcg = root_mem_cgroup;
251 	return &memcg->vmpressure;
252 }
253 
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258 
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262  * The main reason for not using cgroup id for this:
263  *  this works better in sparse environments, where we have a lot of memcgs,
264  *  but only a few kmem-limited. Or also, if we have, for instance, 200
265  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
266  *  200 entry array for that.
267  *
268  * The current size of the caches array is stored in memcg_nr_cache_ids. It
269  * will double each time we have to increase it.
270  */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273 
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276 
277 void memcg_get_cache_ids(void)
278 {
279 	down_read(&memcg_cache_ids_sem);
280 }
281 
282 void memcg_put_cache_ids(void)
283 {
284 	up_read(&memcg_cache_ids_sem);
285 }
286 
287 /*
288  * MIN_SIZE is different than 1, because we would like to avoid going through
289  * the alloc/free process all the time. In a small machine, 4 kmem-limited
290  * cgroups is a reasonable guess. In the future, it could be a parameter or
291  * tunable, but that is strictly not necessary.
292  *
293  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294  * this constant directly from cgroup, but it is understandable that this is
295  * better kept as an internal representation in cgroup.c. In any case, the
296  * cgrp_id space is not getting any smaller, and we don't have to necessarily
297  * increase ours as well if it increases.
298  */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301 
302 /*
303  * A lot of the calls to the cache allocation functions are expected to be
304  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305  * conditional to this static branch, we'll have to allow modules that does
306  * kmem_cache_alloc and the such to see this symbol as well
307  */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310 
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313 
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316 
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321 
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 					 int size, int old_size)
324 {
325 	struct memcg_shrinker_map *new, *old;
326 	int nid;
327 
328 	lockdep_assert_held(&memcg_shrinker_map_mutex);
329 
330 	for_each_node(nid) {
331 		old = rcu_dereference_protected(
332 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 		/* Not yet online memcg */
334 		if (!old)
335 			return 0;
336 
337 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
338 		if (!new)
339 			return -ENOMEM;
340 
341 		/* Set all old bits, clear all new bits */
342 		memset(new->map, (int)0xff, old_size);
343 		memset((void *)new->map + old_size, 0, size - old_size);
344 
345 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 	}
348 
349 	return 0;
350 }
351 
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 	struct mem_cgroup_per_node *pn;
355 	struct memcg_shrinker_map *map;
356 	int nid;
357 
358 	if (mem_cgroup_is_root(memcg))
359 		return;
360 
361 	for_each_node(nid) {
362 		pn = mem_cgroup_nodeinfo(memcg, nid);
363 		map = rcu_dereference_protected(pn->shrinker_map, true);
364 		if (map)
365 			kvfree(map);
366 		rcu_assign_pointer(pn->shrinker_map, NULL);
367 	}
368 }
369 
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 	struct memcg_shrinker_map *map;
373 	int nid, size, ret = 0;
374 
375 	if (mem_cgroup_is_root(memcg))
376 		return 0;
377 
378 	mutex_lock(&memcg_shrinker_map_mutex);
379 	size = memcg_shrinker_map_size;
380 	for_each_node(nid) {
381 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
382 		if (!map) {
383 			memcg_free_shrinker_maps(memcg);
384 			ret = -ENOMEM;
385 			break;
386 		}
387 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 	}
389 	mutex_unlock(&memcg_shrinker_map_mutex);
390 
391 	return ret;
392 }
393 
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 	int size, old_size, ret = 0;
397 	struct mem_cgroup *memcg;
398 
399 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 	old_size = memcg_shrinker_map_size;
401 	if (size <= old_size)
402 		return 0;
403 
404 	mutex_lock(&memcg_shrinker_map_mutex);
405 	if (!root_mem_cgroup)
406 		goto unlock;
407 
408 	for_each_mem_cgroup(memcg) {
409 		if (mem_cgroup_is_root(memcg))
410 			continue;
411 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 		if (ret)
413 			goto unlock;
414 	}
415 unlock:
416 	if (!ret)
417 		memcg_shrinker_map_size = size;
418 	mutex_unlock(&memcg_shrinker_map_mutex);
419 	return ret;
420 }
421 
422 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
423 {
424 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
425 		struct memcg_shrinker_map *map;
426 
427 		rcu_read_lock();
428 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
429 		/* Pairs with smp mb in shrink_slab() */
430 		smp_mb__before_atomic();
431 		set_bit(shrinker_id, map->map);
432 		rcu_read_unlock();
433 	}
434 }
435 
436 /**
437  * mem_cgroup_css_from_page - css of the memcg associated with a page
438  * @page: page of interest
439  *
440  * If memcg is bound to the default hierarchy, css of the memcg associated
441  * with @page is returned.  The returned css remains associated with @page
442  * until it is released.
443  *
444  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
445  * is returned.
446  */
447 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
448 {
449 	struct mem_cgroup *memcg;
450 
451 	memcg = page->mem_cgroup;
452 
453 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
454 		memcg = root_mem_cgroup;
455 
456 	return &memcg->css;
457 }
458 
459 /**
460  * page_cgroup_ino - return inode number of the memcg a page is charged to
461  * @page: the page
462  *
463  * Look up the closest online ancestor of the memory cgroup @page is charged to
464  * and return its inode number or 0 if @page is not charged to any cgroup. It
465  * is safe to call this function without holding a reference to @page.
466  *
467  * Note, this function is inherently racy, because there is nothing to prevent
468  * the cgroup inode from getting torn down and potentially reallocated a moment
469  * after page_cgroup_ino() returns, so it only should be used by callers that
470  * do not care (such as procfs interfaces).
471  */
472 ino_t page_cgroup_ino(struct page *page)
473 {
474 	struct mem_cgroup *memcg;
475 	unsigned long ino = 0;
476 
477 	rcu_read_lock();
478 	if (PageSlab(page) && !PageTail(page))
479 		memcg = memcg_from_slab_page(page);
480 	else
481 		memcg = READ_ONCE(page->mem_cgroup);
482 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
483 		memcg = parent_mem_cgroup(memcg);
484 	if (memcg)
485 		ino = cgroup_ino(memcg->css.cgroup);
486 	rcu_read_unlock();
487 	return ino;
488 }
489 
490 static struct mem_cgroup_per_node *
491 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
492 {
493 	int nid = page_to_nid(page);
494 
495 	return memcg->nodeinfo[nid];
496 }
497 
498 static struct mem_cgroup_tree_per_node *
499 soft_limit_tree_node(int nid)
500 {
501 	return soft_limit_tree.rb_tree_per_node[nid];
502 }
503 
504 static struct mem_cgroup_tree_per_node *
505 soft_limit_tree_from_page(struct page *page)
506 {
507 	int nid = page_to_nid(page);
508 
509 	return soft_limit_tree.rb_tree_per_node[nid];
510 }
511 
512 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
513 					 struct mem_cgroup_tree_per_node *mctz,
514 					 unsigned long new_usage_in_excess)
515 {
516 	struct rb_node **p = &mctz->rb_root.rb_node;
517 	struct rb_node *parent = NULL;
518 	struct mem_cgroup_per_node *mz_node;
519 	bool rightmost = true;
520 
521 	if (mz->on_tree)
522 		return;
523 
524 	mz->usage_in_excess = new_usage_in_excess;
525 	if (!mz->usage_in_excess)
526 		return;
527 	while (*p) {
528 		parent = *p;
529 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
530 					tree_node);
531 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
532 			p = &(*p)->rb_left;
533 			rightmost = false;
534 		}
535 
536 		/*
537 		 * We can't avoid mem cgroups that are over their soft
538 		 * limit by the same amount
539 		 */
540 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
541 			p = &(*p)->rb_right;
542 	}
543 
544 	if (rightmost)
545 		mctz->rb_rightmost = &mz->tree_node;
546 
547 	rb_link_node(&mz->tree_node, parent, p);
548 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
549 	mz->on_tree = true;
550 }
551 
552 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
553 					 struct mem_cgroup_tree_per_node *mctz)
554 {
555 	if (!mz->on_tree)
556 		return;
557 
558 	if (&mz->tree_node == mctz->rb_rightmost)
559 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
560 
561 	rb_erase(&mz->tree_node, &mctz->rb_root);
562 	mz->on_tree = false;
563 }
564 
565 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
566 				       struct mem_cgroup_tree_per_node *mctz)
567 {
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&mctz->lock, flags);
571 	__mem_cgroup_remove_exceeded(mz, mctz);
572 	spin_unlock_irqrestore(&mctz->lock, flags);
573 }
574 
575 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
576 {
577 	unsigned long nr_pages = page_counter_read(&memcg->memory);
578 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
579 	unsigned long excess = 0;
580 
581 	if (nr_pages > soft_limit)
582 		excess = nr_pages - soft_limit;
583 
584 	return excess;
585 }
586 
587 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
588 {
589 	unsigned long excess;
590 	struct mem_cgroup_per_node *mz;
591 	struct mem_cgroup_tree_per_node *mctz;
592 
593 	mctz = soft_limit_tree_from_page(page);
594 	if (!mctz)
595 		return;
596 	/*
597 	 * Necessary to update all ancestors when hierarchy is used.
598 	 * because their event counter is not touched.
599 	 */
600 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
601 		mz = mem_cgroup_page_nodeinfo(memcg, page);
602 		excess = soft_limit_excess(memcg);
603 		/*
604 		 * We have to update the tree if mz is on RB-tree or
605 		 * mem is over its softlimit.
606 		 */
607 		if (excess || mz->on_tree) {
608 			unsigned long flags;
609 
610 			spin_lock_irqsave(&mctz->lock, flags);
611 			/* if on-tree, remove it */
612 			if (mz->on_tree)
613 				__mem_cgroup_remove_exceeded(mz, mctz);
614 			/*
615 			 * Insert again. mz->usage_in_excess will be updated.
616 			 * If excess is 0, no tree ops.
617 			 */
618 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
619 			spin_unlock_irqrestore(&mctz->lock, flags);
620 		}
621 	}
622 }
623 
624 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
625 {
626 	struct mem_cgroup_tree_per_node *mctz;
627 	struct mem_cgroup_per_node *mz;
628 	int nid;
629 
630 	for_each_node(nid) {
631 		mz = mem_cgroup_nodeinfo(memcg, nid);
632 		mctz = soft_limit_tree_node(nid);
633 		if (mctz)
634 			mem_cgroup_remove_exceeded(mz, mctz);
635 	}
636 }
637 
638 static struct mem_cgroup_per_node *
639 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
640 {
641 	struct mem_cgroup_per_node *mz;
642 
643 retry:
644 	mz = NULL;
645 	if (!mctz->rb_rightmost)
646 		goto done;		/* Nothing to reclaim from */
647 
648 	mz = rb_entry(mctz->rb_rightmost,
649 		      struct mem_cgroup_per_node, tree_node);
650 	/*
651 	 * Remove the node now but someone else can add it back,
652 	 * we will to add it back at the end of reclaim to its correct
653 	 * position in the tree.
654 	 */
655 	__mem_cgroup_remove_exceeded(mz, mctz);
656 	if (!soft_limit_excess(mz->memcg) ||
657 	    !css_tryget_online(&mz->memcg->css))
658 		goto retry;
659 done:
660 	return mz;
661 }
662 
663 static struct mem_cgroup_per_node *
664 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
665 {
666 	struct mem_cgroup_per_node *mz;
667 
668 	spin_lock_irq(&mctz->lock);
669 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
670 	spin_unlock_irq(&mctz->lock);
671 	return mz;
672 }
673 
674 /**
675  * __mod_memcg_state - update cgroup memory statistics
676  * @memcg: the memory cgroup
677  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
678  * @val: delta to add to the counter, can be negative
679  */
680 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
681 {
682 	long x;
683 
684 	if (mem_cgroup_disabled())
685 		return;
686 
687 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
688 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
689 		struct mem_cgroup *mi;
690 
691 		/*
692 		 * Batch local counters to keep them in sync with
693 		 * the hierarchical ones.
694 		 */
695 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
696 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
697 			atomic_long_add(x, &mi->vmstats[idx]);
698 		x = 0;
699 	}
700 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
701 }
702 
703 static struct mem_cgroup_per_node *
704 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
705 {
706 	struct mem_cgroup *parent;
707 
708 	parent = parent_mem_cgroup(pn->memcg);
709 	if (!parent)
710 		return NULL;
711 	return mem_cgroup_nodeinfo(parent, nid);
712 }
713 
714 /**
715  * __mod_lruvec_state - update lruvec memory statistics
716  * @lruvec: the lruvec
717  * @idx: the stat item
718  * @val: delta to add to the counter, can be negative
719  *
720  * The lruvec is the intersection of the NUMA node and a cgroup. This
721  * function updates the all three counters that are affected by a
722  * change of state at this level: per-node, per-cgroup, per-lruvec.
723  */
724 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
725 			int val)
726 {
727 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
728 	struct mem_cgroup_per_node *pn;
729 	struct mem_cgroup *memcg;
730 	long x;
731 
732 	/* Update node */
733 	__mod_node_page_state(pgdat, idx, val);
734 
735 	if (mem_cgroup_disabled())
736 		return;
737 
738 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
739 	memcg = pn->memcg;
740 
741 	/* Update memcg */
742 	__mod_memcg_state(memcg, idx, val);
743 
744 	/* Update lruvec */
745 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
746 
747 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
748 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
749 		struct mem_cgroup_per_node *pi;
750 
751 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
752 			atomic_long_add(x, &pi->lruvec_stat[idx]);
753 		x = 0;
754 	}
755 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
756 }
757 
758 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
759 {
760 	struct page *page = virt_to_head_page(p);
761 	pg_data_t *pgdat = page_pgdat(page);
762 	struct mem_cgroup *memcg;
763 	struct lruvec *lruvec;
764 
765 	rcu_read_lock();
766 	memcg = memcg_from_slab_page(page);
767 
768 	/* Untracked pages have no memcg, no lruvec. Update only the node */
769 	if (!memcg || memcg == root_mem_cgroup) {
770 		__mod_node_page_state(pgdat, idx, val);
771 	} else {
772 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
773 		__mod_lruvec_state(lruvec, idx, val);
774 	}
775 	rcu_read_unlock();
776 }
777 
778 /**
779  * __count_memcg_events - account VM events in a cgroup
780  * @memcg: the memory cgroup
781  * @idx: the event item
782  * @count: the number of events that occured
783  */
784 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
785 			  unsigned long count)
786 {
787 	unsigned long x;
788 
789 	if (mem_cgroup_disabled())
790 		return;
791 
792 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
793 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
794 		struct mem_cgroup *mi;
795 
796 		/*
797 		 * Batch local counters to keep them in sync with
798 		 * the hierarchical ones.
799 		 */
800 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
801 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
802 			atomic_long_add(x, &mi->vmevents[idx]);
803 		x = 0;
804 	}
805 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
806 }
807 
808 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
809 {
810 	return atomic_long_read(&memcg->vmevents[event]);
811 }
812 
813 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
814 {
815 	long x = 0;
816 	int cpu;
817 
818 	for_each_possible_cpu(cpu)
819 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
820 	return x;
821 }
822 
823 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
824 					 struct page *page,
825 					 bool compound, int nr_pages)
826 {
827 	/*
828 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
829 	 * counted as CACHE even if it's on ANON LRU.
830 	 */
831 	if (PageAnon(page))
832 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
833 	else {
834 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
835 		if (PageSwapBacked(page))
836 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
837 	}
838 
839 	if (compound) {
840 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
841 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
842 	}
843 
844 	/* pagein of a big page is an event. So, ignore page size */
845 	if (nr_pages > 0)
846 		__count_memcg_events(memcg, PGPGIN, 1);
847 	else {
848 		__count_memcg_events(memcg, PGPGOUT, 1);
849 		nr_pages = -nr_pages; /* for event */
850 	}
851 
852 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
853 }
854 
855 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
856 				       enum mem_cgroup_events_target target)
857 {
858 	unsigned long val, next;
859 
860 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
861 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
862 	/* from time_after() in jiffies.h */
863 	if ((long)(next - val) < 0) {
864 		switch (target) {
865 		case MEM_CGROUP_TARGET_THRESH:
866 			next = val + THRESHOLDS_EVENTS_TARGET;
867 			break;
868 		case MEM_CGROUP_TARGET_SOFTLIMIT:
869 			next = val + SOFTLIMIT_EVENTS_TARGET;
870 			break;
871 		default:
872 			break;
873 		}
874 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
875 		return true;
876 	}
877 	return false;
878 }
879 
880 /*
881  * Check events in order.
882  *
883  */
884 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
885 {
886 	/* threshold event is triggered in finer grain than soft limit */
887 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
888 						MEM_CGROUP_TARGET_THRESH))) {
889 		bool do_softlimit;
890 
891 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
892 						MEM_CGROUP_TARGET_SOFTLIMIT);
893 		mem_cgroup_threshold(memcg);
894 		if (unlikely(do_softlimit))
895 			mem_cgroup_update_tree(memcg, page);
896 	}
897 }
898 
899 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
900 {
901 	/*
902 	 * mm_update_next_owner() may clear mm->owner to NULL
903 	 * if it races with swapoff, page migration, etc.
904 	 * So this can be called with p == NULL.
905 	 */
906 	if (unlikely(!p))
907 		return NULL;
908 
909 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
910 }
911 EXPORT_SYMBOL(mem_cgroup_from_task);
912 
913 /**
914  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
915  * @mm: mm from which memcg should be extracted. It can be NULL.
916  *
917  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
918  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
919  * returned.
920  */
921 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
922 {
923 	struct mem_cgroup *memcg;
924 
925 	if (mem_cgroup_disabled())
926 		return NULL;
927 
928 	rcu_read_lock();
929 	do {
930 		/*
931 		 * Page cache insertions can happen withou an
932 		 * actual mm context, e.g. during disk probing
933 		 * on boot, loopback IO, acct() writes etc.
934 		 */
935 		if (unlikely(!mm))
936 			memcg = root_mem_cgroup;
937 		else {
938 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
939 			if (unlikely(!memcg))
940 				memcg = root_mem_cgroup;
941 		}
942 	} while (!css_tryget(&memcg->css));
943 	rcu_read_unlock();
944 	return memcg;
945 }
946 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
947 
948 /**
949  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
950  * @page: page from which memcg should be extracted.
951  *
952  * Obtain a reference on page->memcg and returns it if successful. Otherwise
953  * root_mem_cgroup is returned.
954  */
955 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
956 {
957 	struct mem_cgroup *memcg = page->mem_cgroup;
958 
959 	if (mem_cgroup_disabled())
960 		return NULL;
961 
962 	rcu_read_lock();
963 	if (!memcg || !css_tryget_online(&memcg->css))
964 		memcg = root_mem_cgroup;
965 	rcu_read_unlock();
966 	return memcg;
967 }
968 EXPORT_SYMBOL(get_mem_cgroup_from_page);
969 
970 /**
971  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
972  */
973 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
974 {
975 	if (unlikely(current->active_memcg)) {
976 		struct mem_cgroup *memcg = root_mem_cgroup;
977 
978 		rcu_read_lock();
979 		if (css_tryget_online(&current->active_memcg->css))
980 			memcg = current->active_memcg;
981 		rcu_read_unlock();
982 		return memcg;
983 	}
984 	return get_mem_cgroup_from_mm(current->mm);
985 }
986 
987 /**
988  * mem_cgroup_iter - iterate over memory cgroup hierarchy
989  * @root: hierarchy root
990  * @prev: previously returned memcg, NULL on first invocation
991  * @reclaim: cookie for shared reclaim walks, NULL for full walks
992  *
993  * Returns references to children of the hierarchy below @root, or
994  * @root itself, or %NULL after a full round-trip.
995  *
996  * Caller must pass the return value in @prev on subsequent
997  * invocations for reference counting, or use mem_cgroup_iter_break()
998  * to cancel a hierarchy walk before the round-trip is complete.
999  *
1000  * Reclaimers can specify a node and a priority level in @reclaim to
1001  * divide up the memcgs in the hierarchy among all concurrent
1002  * reclaimers operating on the same node and priority.
1003  */
1004 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1005 				   struct mem_cgroup *prev,
1006 				   struct mem_cgroup_reclaim_cookie *reclaim)
1007 {
1008 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1009 	struct cgroup_subsys_state *css = NULL;
1010 	struct mem_cgroup *memcg = NULL;
1011 	struct mem_cgroup *pos = NULL;
1012 
1013 	if (mem_cgroup_disabled())
1014 		return NULL;
1015 
1016 	if (!root)
1017 		root = root_mem_cgroup;
1018 
1019 	if (prev && !reclaim)
1020 		pos = prev;
1021 
1022 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1023 		if (prev)
1024 			goto out;
1025 		return root;
1026 	}
1027 
1028 	rcu_read_lock();
1029 
1030 	if (reclaim) {
1031 		struct mem_cgroup_per_node *mz;
1032 
1033 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1034 		iter = &mz->iter;
1035 
1036 		if (prev && reclaim->generation != iter->generation)
1037 			goto out_unlock;
1038 
1039 		while (1) {
1040 			pos = READ_ONCE(iter->position);
1041 			if (!pos || css_tryget(&pos->css))
1042 				break;
1043 			/*
1044 			 * css reference reached zero, so iter->position will
1045 			 * be cleared by ->css_released. However, we should not
1046 			 * rely on this happening soon, because ->css_released
1047 			 * is called from a work queue, and by busy-waiting we
1048 			 * might block it. So we clear iter->position right
1049 			 * away.
1050 			 */
1051 			(void)cmpxchg(&iter->position, pos, NULL);
1052 		}
1053 	}
1054 
1055 	if (pos)
1056 		css = &pos->css;
1057 
1058 	for (;;) {
1059 		css = css_next_descendant_pre(css, &root->css);
1060 		if (!css) {
1061 			/*
1062 			 * Reclaimers share the hierarchy walk, and a
1063 			 * new one might jump in right at the end of
1064 			 * the hierarchy - make sure they see at least
1065 			 * one group and restart from the beginning.
1066 			 */
1067 			if (!prev)
1068 				continue;
1069 			break;
1070 		}
1071 
1072 		/*
1073 		 * Verify the css and acquire a reference.  The root
1074 		 * is provided by the caller, so we know it's alive
1075 		 * and kicking, and don't take an extra reference.
1076 		 */
1077 		memcg = mem_cgroup_from_css(css);
1078 
1079 		if (css == &root->css)
1080 			break;
1081 
1082 		if (css_tryget(css))
1083 			break;
1084 
1085 		memcg = NULL;
1086 	}
1087 
1088 	if (reclaim) {
1089 		/*
1090 		 * The position could have already been updated by a competing
1091 		 * thread, so check that the value hasn't changed since we read
1092 		 * it to avoid reclaiming from the same cgroup twice.
1093 		 */
1094 		(void)cmpxchg(&iter->position, pos, memcg);
1095 
1096 		if (pos)
1097 			css_put(&pos->css);
1098 
1099 		if (!memcg)
1100 			iter->generation++;
1101 		else if (!prev)
1102 			reclaim->generation = iter->generation;
1103 	}
1104 
1105 out_unlock:
1106 	rcu_read_unlock();
1107 out:
1108 	if (prev && prev != root)
1109 		css_put(&prev->css);
1110 
1111 	return memcg;
1112 }
1113 
1114 /**
1115  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1116  * @root: hierarchy root
1117  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1118  */
1119 void mem_cgroup_iter_break(struct mem_cgroup *root,
1120 			   struct mem_cgroup *prev)
1121 {
1122 	if (!root)
1123 		root = root_mem_cgroup;
1124 	if (prev && prev != root)
1125 		css_put(&prev->css);
1126 }
1127 
1128 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1129 					struct mem_cgroup *dead_memcg)
1130 {
1131 	struct mem_cgroup_reclaim_iter *iter;
1132 	struct mem_cgroup_per_node *mz;
1133 	int nid;
1134 
1135 	for_each_node(nid) {
1136 		mz = mem_cgroup_nodeinfo(from, nid);
1137 		iter = &mz->iter;
1138 		cmpxchg(&iter->position, dead_memcg, NULL);
1139 	}
1140 }
1141 
1142 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1143 {
1144 	struct mem_cgroup *memcg = dead_memcg;
1145 	struct mem_cgroup *last;
1146 
1147 	do {
1148 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1149 		last = memcg;
1150 	} while ((memcg = parent_mem_cgroup(memcg)));
1151 
1152 	/*
1153 	 * When cgruop1 non-hierarchy mode is used,
1154 	 * parent_mem_cgroup() does not walk all the way up to the
1155 	 * cgroup root (root_mem_cgroup). So we have to handle
1156 	 * dead_memcg from cgroup root separately.
1157 	 */
1158 	if (last != root_mem_cgroup)
1159 		__invalidate_reclaim_iterators(root_mem_cgroup,
1160 						dead_memcg);
1161 }
1162 
1163 /**
1164  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1165  * @memcg: hierarchy root
1166  * @fn: function to call for each task
1167  * @arg: argument passed to @fn
1168  *
1169  * This function iterates over tasks attached to @memcg or to any of its
1170  * descendants and calls @fn for each task. If @fn returns a non-zero
1171  * value, the function breaks the iteration loop and returns the value.
1172  * Otherwise, it will iterate over all tasks and return 0.
1173  *
1174  * This function must not be called for the root memory cgroup.
1175  */
1176 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1177 			  int (*fn)(struct task_struct *, void *), void *arg)
1178 {
1179 	struct mem_cgroup *iter;
1180 	int ret = 0;
1181 
1182 	BUG_ON(memcg == root_mem_cgroup);
1183 
1184 	for_each_mem_cgroup_tree(iter, memcg) {
1185 		struct css_task_iter it;
1186 		struct task_struct *task;
1187 
1188 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1189 		while (!ret && (task = css_task_iter_next(&it)))
1190 			ret = fn(task, arg);
1191 		css_task_iter_end(&it);
1192 		if (ret) {
1193 			mem_cgroup_iter_break(memcg, iter);
1194 			break;
1195 		}
1196 	}
1197 	return ret;
1198 }
1199 
1200 /**
1201  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1202  * @page: the page
1203  * @pgdat: pgdat of the page
1204  *
1205  * This function is only safe when following the LRU page isolation
1206  * and putback protocol: the LRU lock must be held, and the page must
1207  * either be PageLRU() or the caller must have isolated/allocated it.
1208  */
1209 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1210 {
1211 	struct mem_cgroup_per_node *mz;
1212 	struct mem_cgroup *memcg;
1213 	struct lruvec *lruvec;
1214 
1215 	if (mem_cgroup_disabled()) {
1216 		lruvec = &pgdat->__lruvec;
1217 		goto out;
1218 	}
1219 
1220 	memcg = page->mem_cgroup;
1221 	/*
1222 	 * Swapcache readahead pages are added to the LRU - and
1223 	 * possibly migrated - before they are charged.
1224 	 */
1225 	if (!memcg)
1226 		memcg = root_mem_cgroup;
1227 
1228 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1229 	lruvec = &mz->lruvec;
1230 out:
1231 	/*
1232 	 * Since a node can be onlined after the mem_cgroup was created,
1233 	 * we have to be prepared to initialize lruvec->zone here;
1234 	 * and if offlined then reonlined, we need to reinitialize it.
1235 	 */
1236 	if (unlikely(lruvec->pgdat != pgdat))
1237 		lruvec->pgdat = pgdat;
1238 	return lruvec;
1239 }
1240 
1241 /**
1242  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1243  * @lruvec: mem_cgroup per zone lru vector
1244  * @lru: index of lru list the page is sitting on
1245  * @zid: zone id of the accounted pages
1246  * @nr_pages: positive when adding or negative when removing
1247  *
1248  * This function must be called under lru_lock, just before a page is added
1249  * to or just after a page is removed from an lru list (that ordering being
1250  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1251  */
1252 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1253 				int zid, int nr_pages)
1254 {
1255 	struct mem_cgroup_per_node *mz;
1256 	unsigned long *lru_size;
1257 	long size;
1258 
1259 	if (mem_cgroup_disabled())
1260 		return;
1261 
1262 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1263 	lru_size = &mz->lru_zone_size[zid][lru];
1264 
1265 	if (nr_pages < 0)
1266 		*lru_size += nr_pages;
1267 
1268 	size = *lru_size;
1269 	if (WARN_ONCE(size < 0,
1270 		"%s(%p, %d, %d): lru_size %ld\n",
1271 		__func__, lruvec, lru, nr_pages, size)) {
1272 		VM_BUG_ON(1);
1273 		*lru_size = 0;
1274 	}
1275 
1276 	if (nr_pages > 0)
1277 		*lru_size += nr_pages;
1278 }
1279 
1280 /**
1281  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1282  * @memcg: the memory cgroup
1283  *
1284  * Returns the maximum amount of memory @mem can be charged with, in
1285  * pages.
1286  */
1287 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1288 {
1289 	unsigned long margin = 0;
1290 	unsigned long count;
1291 	unsigned long limit;
1292 
1293 	count = page_counter_read(&memcg->memory);
1294 	limit = READ_ONCE(memcg->memory.max);
1295 	if (count < limit)
1296 		margin = limit - count;
1297 
1298 	if (do_memsw_account()) {
1299 		count = page_counter_read(&memcg->memsw);
1300 		limit = READ_ONCE(memcg->memsw.max);
1301 		if (count <= limit)
1302 			margin = min(margin, limit - count);
1303 		else
1304 			margin = 0;
1305 	}
1306 
1307 	return margin;
1308 }
1309 
1310 /*
1311  * A routine for checking "mem" is under move_account() or not.
1312  *
1313  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1314  * moving cgroups. This is for waiting at high-memory pressure
1315  * caused by "move".
1316  */
1317 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1318 {
1319 	struct mem_cgroup *from;
1320 	struct mem_cgroup *to;
1321 	bool ret = false;
1322 	/*
1323 	 * Unlike task_move routines, we access mc.to, mc.from not under
1324 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1325 	 */
1326 	spin_lock(&mc.lock);
1327 	from = mc.from;
1328 	to = mc.to;
1329 	if (!from)
1330 		goto unlock;
1331 
1332 	ret = mem_cgroup_is_descendant(from, memcg) ||
1333 		mem_cgroup_is_descendant(to, memcg);
1334 unlock:
1335 	spin_unlock(&mc.lock);
1336 	return ret;
1337 }
1338 
1339 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1340 {
1341 	if (mc.moving_task && current != mc.moving_task) {
1342 		if (mem_cgroup_under_move(memcg)) {
1343 			DEFINE_WAIT(wait);
1344 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1345 			/* moving charge context might have finished. */
1346 			if (mc.moving_task)
1347 				schedule();
1348 			finish_wait(&mc.waitq, &wait);
1349 			return true;
1350 		}
1351 	}
1352 	return false;
1353 }
1354 
1355 static char *memory_stat_format(struct mem_cgroup *memcg)
1356 {
1357 	struct seq_buf s;
1358 	int i;
1359 
1360 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1361 	if (!s.buffer)
1362 		return NULL;
1363 
1364 	/*
1365 	 * Provide statistics on the state of the memory subsystem as
1366 	 * well as cumulative event counters that show past behavior.
1367 	 *
1368 	 * This list is ordered following a combination of these gradients:
1369 	 * 1) generic big picture -> specifics and details
1370 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1371 	 *
1372 	 * Current memory state:
1373 	 */
1374 
1375 	seq_buf_printf(&s, "anon %llu\n",
1376 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1377 		       PAGE_SIZE);
1378 	seq_buf_printf(&s, "file %llu\n",
1379 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1380 		       PAGE_SIZE);
1381 	seq_buf_printf(&s, "kernel_stack %llu\n",
1382 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1383 		       1024);
1384 	seq_buf_printf(&s, "slab %llu\n",
1385 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1386 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1387 		       PAGE_SIZE);
1388 	seq_buf_printf(&s, "sock %llu\n",
1389 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1390 		       PAGE_SIZE);
1391 
1392 	seq_buf_printf(&s, "shmem %llu\n",
1393 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1394 		       PAGE_SIZE);
1395 	seq_buf_printf(&s, "file_mapped %llu\n",
1396 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1397 		       PAGE_SIZE);
1398 	seq_buf_printf(&s, "file_dirty %llu\n",
1399 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1400 		       PAGE_SIZE);
1401 	seq_buf_printf(&s, "file_writeback %llu\n",
1402 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1403 		       PAGE_SIZE);
1404 
1405 	/*
1406 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1407 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1408 	 * arse because it requires migrating the work out of rmap to a place
1409 	 * where the page->mem_cgroup is set up and stable.
1410 	 */
1411 	seq_buf_printf(&s, "anon_thp %llu\n",
1412 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1413 		       PAGE_SIZE);
1414 
1415 	for (i = 0; i < NR_LRU_LISTS; i++)
1416 		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1417 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1418 			       PAGE_SIZE);
1419 
1420 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1421 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1422 		       PAGE_SIZE);
1423 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1424 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1425 		       PAGE_SIZE);
1426 
1427 	/* Accumulated memory events */
1428 
1429 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1430 		       memcg_events(memcg, PGFAULT));
1431 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1432 		       memcg_events(memcg, PGMAJFAULT));
1433 
1434 	seq_buf_printf(&s, "workingset_refault %lu\n",
1435 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1436 	seq_buf_printf(&s, "workingset_activate %lu\n",
1437 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1438 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1439 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1440 
1441 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1442 		       memcg_events(memcg, PGREFILL));
1443 	seq_buf_printf(&s, "pgscan %lu\n",
1444 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1445 		       memcg_events(memcg, PGSCAN_DIRECT));
1446 	seq_buf_printf(&s, "pgsteal %lu\n",
1447 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1448 		       memcg_events(memcg, PGSTEAL_DIRECT));
1449 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1450 		       memcg_events(memcg, PGACTIVATE));
1451 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1452 		       memcg_events(memcg, PGDEACTIVATE));
1453 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1454 		       memcg_events(memcg, PGLAZYFREE));
1455 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1456 		       memcg_events(memcg, PGLAZYFREED));
1457 
1458 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1459 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1460 		       memcg_events(memcg, THP_FAULT_ALLOC));
1461 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1462 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1463 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1464 
1465 	/* The above should easily fit into one page */
1466 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1467 
1468 	return s.buffer;
1469 }
1470 
1471 #define K(x) ((x) << (PAGE_SHIFT-10))
1472 /**
1473  * mem_cgroup_print_oom_context: Print OOM information relevant to
1474  * memory controller.
1475  * @memcg: The memory cgroup that went over limit
1476  * @p: Task that is going to be killed
1477  *
1478  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1479  * enabled
1480  */
1481 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1482 {
1483 	rcu_read_lock();
1484 
1485 	if (memcg) {
1486 		pr_cont(",oom_memcg=");
1487 		pr_cont_cgroup_path(memcg->css.cgroup);
1488 	} else
1489 		pr_cont(",global_oom");
1490 	if (p) {
1491 		pr_cont(",task_memcg=");
1492 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1493 	}
1494 	rcu_read_unlock();
1495 }
1496 
1497 /**
1498  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1499  * memory controller.
1500  * @memcg: The memory cgroup that went over limit
1501  */
1502 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1503 {
1504 	char *buf;
1505 
1506 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1507 		K((u64)page_counter_read(&memcg->memory)),
1508 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1509 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1510 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511 			K((u64)page_counter_read(&memcg->swap)),
1512 			K((u64)memcg->swap.max), memcg->swap.failcnt);
1513 	else {
1514 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1515 			K((u64)page_counter_read(&memcg->memsw)),
1516 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1517 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1518 			K((u64)page_counter_read(&memcg->kmem)),
1519 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1520 	}
1521 
1522 	pr_info("Memory cgroup stats for ");
1523 	pr_cont_cgroup_path(memcg->css.cgroup);
1524 	pr_cont(":");
1525 	buf = memory_stat_format(memcg);
1526 	if (!buf)
1527 		return;
1528 	pr_info("%s", buf);
1529 	kfree(buf);
1530 }
1531 
1532 /*
1533  * Return the memory (and swap, if configured) limit for a memcg.
1534  */
1535 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1536 {
1537 	unsigned long max;
1538 
1539 	max = memcg->memory.max;
1540 	if (mem_cgroup_swappiness(memcg)) {
1541 		unsigned long memsw_max;
1542 		unsigned long swap_max;
1543 
1544 		memsw_max = memcg->memsw.max;
1545 		swap_max = memcg->swap.max;
1546 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1547 		max = min(max + swap_max, memsw_max);
1548 	}
1549 	return max;
1550 }
1551 
1552 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1553 {
1554 	return page_counter_read(&memcg->memory);
1555 }
1556 
1557 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1558 				     int order)
1559 {
1560 	struct oom_control oc = {
1561 		.zonelist = NULL,
1562 		.nodemask = NULL,
1563 		.memcg = memcg,
1564 		.gfp_mask = gfp_mask,
1565 		.order = order,
1566 	};
1567 	bool ret;
1568 
1569 	if (mutex_lock_killable(&oom_lock))
1570 		return true;
1571 	/*
1572 	 * A few threads which were not waiting at mutex_lock_killable() can
1573 	 * fail to bail out. Therefore, check again after holding oom_lock.
1574 	 */
1575 	ret = should_force_charge() || out_of_memory(&oc);
1576 	mutex_unlock(&oom_lock);
1577 	return ret;
1578 }
1579 
1580 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1581 				   pg_data_t *pgdat,
1582 				   gfp_t gfp_mask,
1583 				   unsigned long *total_scanned)
1584 {
1585 	struct mem_cgroup *victim = NULL;
1586 	int total = 0;
1587 	int loop = 0;
1588 	unsigned long excess;
1589 	unsigned long nr_scanned;
1590 	struct mem_cgroup_reclaim_cookie reclaim = {
1591 		.pgdat = pgdat,
1592 	};
1593 
1594 	excess = soft_limit_excess(root_memcg);
1595 
1596 	while (1) {
1597 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1598 		if (!victim) {
1599 			loop++;
1600 			if (loop >= 2) {
1601 				/*
1602 				 * If we have not been able to reclaim
1603 				 * anything, it might because there are
1604 				 * no reclaimable pages under this hierarchy
1605 				 */
1606 				if (!total)
1607 					break;
1608 				/*
1609 				 * We want to do more targeted reclaim.
1610 				 * excess >> 2 is not to excessive so as to
1611 				 * reclaim too much, nor too less that we keep
1612 				 * coming back to reclaim from this cgroup
1613 				 */
1614 				if (total >= (excess >> 2) ||
1615 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1616 					break;
1617 			}
1618 			continue;
1619 		}
1620 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1621 					pgdat, &nr_scanned);
1622 		*total_scanned += nr_scanned;
1623 		if (!soft_limit_excess(root_memcg))
1624 			break;
1625 	}
1626 	mem_cgroup_iter_break(root_memcg, victim);
1627 	return total;
1628 }
1629 
1630 #ifdef CONFIG_LOCKDEP
1631 static struct lockdep_map memcg_oom_lock_dep_map = {
1632 	.name = "memcg_oom_lock",
1633 };
1634 #endif
1635 
1636 static DEFINE_SPINLOCK(memcg_oom_lock);
1637 
1638 /*
1639  * Check OOM-Killer is already running under our hierarchy.
1640  * If someone is running, return false.
1641  */
1642 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1643 {
1644 	struct mem_cgroup *iter, *failed = NULL;
1645 
1646 	spin_lock(&memcg_oom_lock);
1647 
1648 	for_each_mem_cgroup_tree(iter, memcg) {
1649 		if (iter->oom_lock) {
1650 			/*
1651 			 * this subtree of our hierarchy is already locked
1652 			 * so we cannot give a lock.
1653 			 */
1654 			failed = iter;
1655 			mem_cgroup_iter_break(memcg, iter);
1656 			break;
1657 		} else
1658 			iter->oom_lock = true;
1659 	}
1660 
1661 	if (failed) {
1662 		/*
1663 		 * OK, we failed to lock the whole subtree so we have
1664 		 * to clean up what we set up to the failing subtree
1665 		 */
1666 		for_each_mem_cgroup_tree(iter, memcg) {
1667 			if (iter == failed) {
1668 				mem_cgroup_iter_break(memcg, iter);
1669 				break;
1670 			}
1671 			iter->oom_lock = false;
1672 		}
1673 	} else
1674 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1675 
1676 	spin_unlock(&memcg_oom_lock);
1677 
1678 	return !failed;
1679 }
1680 
1681 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1682 {
1683 	struct mem_cgroup *iter;
1684 
1685 	spin_lock(&memcg_oom_lock);
1686 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1687 	for_each_mem_cgroup_tree(iter, memcg)
1688 		iter->oom_lock = false;
1689 	spin_unlock(&memcg_oom_lock);
1690 }
1691 
1692 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1693 {
1694 	struct mem_cgroup *iter;
1695 
1696 	spin_lock(&memcg_oom_lock);
1697 	for_each_mem_cgroup_tree(iter, memcg)
1698 		iter->under_oom++;
1699 	spin_unlock(&memcg_oom_lock);
1700 }
1701 
1702 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1703 {
1704 	struct mem_cgroup *iter;
1705 
1706 	/*
1707 	 * When a new child is created while the hierarchy is under oom,
1708 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1709 	 */
1710 	spin_lock(&memcg_oom_lock);
1711 	for_each_mem_cgroup_tree(iter, memcg)
1712 		if (iter->under_oom > 0)
1713 			iter->under_oom--;
1714 	spin_unlock(&memcg_oom_lock);
1715 }
1716 
1717 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1718 
1719 struct oom_wait_info {
1720 	struct mem_cgroup *memcg;
1721 	wait_queue_entry_t	wait;
1722 };
1723 
1724 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1725 	unsigned mode, int sync, void *arg)
1726 {
1727 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1728 	struct mem_cgroup *oom_wait_memcg;
1729 	struct oom_wait_info *oom_wait_info;
1730 
1731 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1732 	oom_wait_memcg = oom_wait_info->memcg;
1733 
1734 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1735 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1736 		return 0;
1737 	return autoremove_wake_function(wait, mode, sync, arg);
1738 }
1739 
1740 static void memcg_oom_recover(struct mem_cgroup *memcg)
1741 {
1742 	/*
1743 	 * For the following lockless ->under_oom test, the only required
1744 	 * guarantee is that it must see the state asserted by an OOM when
1745 	 * this function is called as a result of userland actions
1746 	 * triggered by the notification of the OOM.  This is trivially
1747 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1748 	 * triggering notification.
1749 	 */
1750 	if (memcg && memcg->under_oom)
1751 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1752 }
1753 
1754 enum oom_status {
1755 	OOM_SUCCESS,
1756 	OOM_FAILED,
1757 	OOM_ASYNC,
1758 	OOM_SKIPPED
1759 };
1760 
1761 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1762 {
1763 	enum oom_status ret;
1764 	bool locked;
1765 
1766 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1767 		return OOM_SKIPPED;
1768 
1769 	memcg_memory_event(memcg, MEMCG_OOM);
1770 
1771 	/*
1772 	 * We are in the middle of the charge context here, so we
1773 	 * don't want to block when potentially sitting on a callstack
1774 	 * that holds all kinds of filesystem and mm locks.
1775 	 *
1776 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1777 	 * handling until the charge can succeed; remember the context and put
1778 	 * the task to sleep at the end of the page fault when all locks are
1779 	 * released.
1780 	 *
1781 	 * On the other hand, in-kernel OOM killer allows for an async victim
1782 	 * memory reclaim (oom_reaper) and that means that we are not solely
1783 	 * relying on the oom victim to make a forward progress and we can
1784 	 * invoke the oom killer here.
1785 	 *
1786 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1787 	 * victim and then we have to bail out from the charge path.
1788 	 */
1789 	if (memcg->oom_kill_disable) {
1790 		if (!current->in_user_fault)
1791 			return OOM_SKIPPED;
1792 		css_get(&memcg->css);
1793 		current->memcg_in_oom = memcg;
1794 		current->memcg_oom_gfp_mask = mask;
1795 		current->memcg_oom_order = order;
1796 
1797 		return OOM_ASYNC;
1798 	}
1799 
1800 	mem_cgroup_mark_under_oom(memcg);
1801 
1802 	locked = mem_cgroup_oom_trylock(memcg);
1803 
1804 	if (locked)
1805 		mem_cgroup_oom_notify(memcg);
1806 
1807 	mem_cgroup_unmark_under_oom(memcg);
1808 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1809 		ret = OOM_SUCCESS;
1810 	else
1811 		ret = OOM_FAILED;
1812 
1813 	if (locked)
1814 		mem_cgroup_oom_unlock(memcg);
1815 
1816 	return ret;
1817 }
1818 
1819 /**
1820  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1821  * @handle: actually kill/wait or just clean up the OOM state
1822  *
1823  * This has to be called at the end of a page fault if the memcg OOM
1824  * handler was enabled.
1825  *
1826  * Memcg supports userspace OOM handling where failed allocations must
1827  * sleep on a waitqueue until the userspace task resolves the
1828  * situation.  Sleeping directly in the charge context with all kinds
1829  * of locks held is not a good idea, instead we remember an OOM state
1830  * in the task and mem_cgroup_oom_synchronize() has to be called at
1831  * the end of the page fault to complete the OOM handling.
1832  *
1833  * Returns %true if an ongoing memcg OOM situation was detected and
1834  * completed, %false otherwise.
1835  */
1836 bool mem_cgroup_oom_synchronize(bool handle)
1837 {
1838 	struct mem_cgroup *memcg = current->memcg_in_oom;
1839 	struct oom_wait_info owait;
1840 	bool locked;
1841 
1842 	/* OOM is global, do not handle */
1843 	if (!memcg)
1844 		return false;
1845 
1846 	if (!handle)
1847 		goto cleanup;
1848 
1849 	owait.memcg = memcg;
1850 	owait.wait.flags = 0;
1851 	owait.wait.func = memcg_oom_wake_function;
1852 	owait.wait.private = current;
1853 	INIT_LIST_HEAD(&owait.wait.entry);
1854 
1855 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1856 	mem_cgroup_mark_under_oom(memcg);
1857 
1858 	locked = mem_cgroup_oom_trylock(memcg);
1859 
1860 	if (locked)
1861 		mem_cgroup_oom_notify(memcg);
1862 
1863 	if (locked && !memcg->oom_kill_disable) {
1864 		mem_cgroup_unmark_under_oom(memcg);
1865 		finish_wait(&memcg_oom_waitq, &owait.wait);
1866 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1867 					 current->memcg_oom_order);
1868 	} else {
1869 		schedule();
1870 		mem_cgroup_unmark_under_oom(memcg);
1871 		finish_wait(&memcg_oom_waitq, &owait.wait);
1872 	}
1873 
1874 	if (locked) {
1875 		mem_cgroup_oom_unlock(memcg);
1876 		/*
1877 		 * There is no guarantee that an OOM-lock contender
1878 		 * sees the wakeups triggered by the OOM kill
1879 		 * uncharges.  Wake any sleepers explicitely.
1880 		 */
1881 		memcg_oom_recover(memcg);
1882 	}
1883 cleanup:
1884 	current->memcg_in_oom = NULL;
1885 	css_put(&memcg->css);
1886 	return true;
1887 }
1888 
1889 /**
1890  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1891  * @victim: task to be killed by the OOM killer
1892  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1893  *
1894  * Returns a pointer to a memory cgroup, which has to be cleaned up
1895  * by killing all belonging OOM-killable tasks.
1896  *
1897  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1898  */
1899 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1900 					    struct mem_cgroup *oom_domain)
1901 {
1902 	struct mem_cgroup *oom_group = NULL;
1903 	struct mem_cgroup *memcg;
1904 
1905 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1906 		return NULL;
1907 
1908 	if (!oom_domain)
1909 		oom_domain = root_mem_cgroup;
1910 
1911 	rcu_read_lock();
1912 
1913 	memcg = mem_cgroup_from_task(victim);
1914 	if (memcg == root_mem_cgroup)
1915 		goto out;
1916 
1917 	/*
1918 	 * Traverse the memory cgroup hierarchy from the victim task's
1919 	 * cgroup up to the OOMing cgroup (or root) to find the
1920 	 * highest-level memory cgroup with oom.group set.
1921 	 */
1922 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1923 		if (memcg->oom_group)
1924 			oom_group = memcg;
1925 
1926 		if (memcg == oom_domain)
1927 			break;
1928 	}
1929 
1930 	if (oom_group)
1931 		css_get(&oom_group->css);
1932 out:
1933 	rcu_read_unlock();
1934 
1935 	return oom_group;
1936 }
1937 
1938 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1939 {
1940 	pr_info("Tasks in ");
1941 	pr_cont_cgroup_path(memcg->css.cgroup);
1942 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1943 }
1944 
1945 /**
1946  * lock_page_memcg - lock a page->mem_cgroup binding
1947  * @page: the page
1948  *
1949  * This function protects unlocked LRU pages from being moved to
1950  * another cgroup.
1951  *
1952  * It ensures lifetime of the returned memcg. Caller is responsible
1953  * for the lifetime of the page; __unlock_page_memcg() is available
1954  * when @page might get freed inside the locked section.
1955  */
1956 struct mem_cgroup *lock_page_memcg(struct page *page)
1957 {
1958 	struct mem_cgroup *memcg;
1959 	unsigned long flags;
1960 
1961 	/*
1962 	 * The RCU lock is held throughout the transaction.  The fast
1963 	 * path can get away without acquiring the memcg->move_lock
1964 	 * because page moving starts with an RCU grace period.
1965 	 *
1966 	 * The RCU lock also protects the memcg from being freed when
1967 	 * the page state that is going to change is the only thing
1968 	 * preventing the page itself from being freed. E.g. writeback
1969 	 * doesn't hold a page reference and relies on PG_writeback to
1970 	 * keep off truncation, migration and so forth.
1971          */
1972 	rcu_read_lock();
1973 
1974 	if (mem_cgroup_disabled())
1975 		return NULL;
1976 again:
1977 	memcg = page->mem_cgroup;
1978 	if (unlikely(!memcg))
1979 		return NULL;
1980 
1981 	if (atomic_read(&memcg->moving_account) <= 0)
1982 		return memcg;
1983 
1984 	spin_lock_irqsave(&memcg->move_lock, flags);
1985 	if (memcg != page->mem_cgroup) {
1986 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1987 		goto again;
1988 	}
1989 
1990 	/*
1991 	 * When charge migration first begins, we can have locked and
1992 	 * unlocked page stat updates happening concurrently.  Track
1993 	 * the task who has the lock for unlock_page_memcg().
1994 	 */
1995 	memcg->move_lock_task = current;
1996 	memcg->move_lock_flags = flags;
1997 
1998 	return memcg;
1999 }
2000 EXPORT_SYMBOL(lock_page_memcg);
2001 
2002 /**
2003  * __unlock_page_memcg - unlock and unpin a memcg
2004  * @memcg: the memcg
2005  *
2006  * Unlock and unpin a memcg returned by lock_page_memcg().
2007  */
2008 void __unlock_page_memcg(struct mem_cgroup *memcg)
2009 {
2010 	if (memcg && memcg->move_lock_task == current) {
2011 		unsigned long flags = memcg->move_lock_flags;
2012 
2013 		memcg->move_lock_task = NULL;
2014 		memcg->move_lock_flags = 0;
2015 
2016 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2017 	}
2018 
2019 	rcu_read_unlock();
2020 }
2021 
2022 /**
2023  * unlock_page_memcg - unlock a page->mem_cgroup binding
2024  * @page: the page
2025  */
2026 void unlock_page_memcg(struct page *page)
2027 {
2028 	__unlock_page_memcg(page->mem_cgroup);
2029 }
2030 EXPORT_SYMBOL(unlock_page_memcg);
2031 
2032 struct memcg_stock_pcp {
2033 	struct mem_cgroup *cached; /* this never be root cgroup */
2034 	unsigned int nr_pages;
2035 	struct work_struct work;
2036 	unsigned long flags;
2037 #define FLUSHING_CACHED_CHARGE	0
2038 };
2039 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2040 static DEFINE_MUTEX(percpu_charge_mutex);
2041 
2042 /**
2043  * consume_stock: Try to consume stocked charge on this cpu.
2044  * @memcg: memcg to consume from.
2045  * @nr_pages: how many pages to charge.
2046  *
2047  * The charges will only happen if @memcg matches the current cpu's memcg
2048  * stock, and at least @nr_pages are available in that stock.  Failure to
2049  * service an allocation will refill the stock.
2050  *
2051  * returns true if successful, false otherwise.
2052  */
2053 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2054 {
2055 	struct memcg_stock_pcp *stock;
2056 	unsigned long flags;
2057 	bool ret = false;
2058 
2059 	if (nr_pages > MEMCG_CHARGE_BATCH)
2060 		return ret;
2061 
2062 	local_irq_save(flags);
2063 
2064 	stock = this_cpu_ptr(&memcg_stock);
2065 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2066 		stock->nr_pages -= nr_pages;
2067 		ret = true;
2068 	}
2069 
2070 	local_irq_restore(flags);
2071 
2072 	return ret;
2073 }
2074 
2075 /*
2076  * Returns stocks cached in percpu and reset cached information.
2077  */
2078 static void drain_stock(struct memcg_stock_pcp *stock)
2079 {
2080 	struct mem_cgroup *old = stock->cached;
2081 
2082 	if (stock->nr_pages) {
2083 		page_counter_uncharge(&old->memory, stock->nr_pages);
2084 		if (do_memsw_account())
2085 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2086 		css_put_many(&old->css, stock->nr_pages);
2087 		stock->nr_pages = 0;
2088 	}
2089 	stock->cached = NULL;
2090 }
2091 
2092 static void drain_local_stock(struct work_struct *dummy)
2093 {
2094 	struct memcg_stock_pcp *stock;
2095 	unsigned long flags;
2096 
2097 	/*
2098 	 * The only protection from memory hotplug vs. drain_stock races is
2099 	 * that we always operate on local CPU stock here with IRQ disabled
2100 	 */
2101 	local_irq_save(flags);
2102 
2103 	stock = this_cpu_ptr(&memcg_stock);
2104 	drain_stock(stock);
2105 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2106 
2107 	local_irq_restore(flags);
2108 }
2109 
2110 /*
2111  * Cache charges(val) to local per_cpu area.
2112  * This will be consumed by consume_stock() function, later.
2113  */
2114 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2115 {
2116 	struct memcg_stock_pcp *stock;
2117 	unsigned long flags;
2118 
2119 	local_irq_save(flags);
2120 
2121 	stock = this_cpu_ptr(&memcg_stock);
2122 	if (stock->cached != memcg) { /* reset if necessary */
2123 		drain_stock(stock);
2124 		stock->cached = memcg;
2125 	}
2126 	stock->nr_pages += nr_pages;
2127 
2128 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2129 		drain_stock(stock);
2130 
2131 	local_irq_restore(flags);
2132 }
2133 
2134 /*
2135  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2136  * of the hierarchy under it.
2137  */
2138 static void drain_all_stock(struct mem_cgroup *root_memcg)
2139 {
2140 	int cpu, curcpu;
2141 
2142 	/* If someone's already draining, avoid adding running more workers. */
2143 	if (!mutex_trylock(&percpu_charge_mutex))
2144 		return;
2145 	/*
2146 	 * Notify other cpus that system-wide "drain" is running
2147 	 * We do not care about races with the cpu hotplug because cpu down
2148 	 * as well as workers from this path always operate on the local
2149 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2150 	 */
2151 	curcpu = get_cpu();
2152 	for_each_online_cpu(cpu) {
2153 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2154 		struct mem_cgroup *memcg;
2155 		bool flush = false;
2156 
2157 		rcu_read_lock();
2158 		memcg = stock->cached;
2159 		if (memcg && stock->nr_pages &&
2160 		    mem_cgroup_is_descendant(memcg, root_memcg))
2161 			flush = true;
2162 		rcu_read_unlock();
2163 
2164 		if (flush &&
2165 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2166 			if (cpu == curcpu)
2167 				drain_local_stock(&stock->work);
2168 			else
2169 				schedule_work_on(cpu, &stock->work);
2170 		}
2171 	}
2172 	put_cpu();
2173 	mutex_unlock(&percpu_charge_mutex);
2174 }
2175 
2176 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2177 {
2178 	struct memcg_stock_pcp *stock;
2179 	struct mem_cgroup *memcg, *mi;
2180 
2181 	stock = &per_cpu(memcg_stock, cpu);
2182 	drain_stock(stock);
2183 
2184 	for_each_mem_cgroup(memcg) {
2185 		int i;
2186 
2187 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2188 			int nid;
2189 			long x;
2190 
2191 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2192 			if (x)
2193 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2194 					atomic_long_add(x, &memcg->vmstats[i]);
2195 
2196 			if (i >= NR_VM_NODE_STAT_ITEMS)
2197 				continue;
2198 
2199 			for_each_node(nid) {
2200 				struct mem_cgroup_per_node *pn;
2201 
2202 				pn = mem_cgroup_nodeinfo(memcg, nid);
2203 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2204 				if (x)
2205 					do {
2206 						atomic_long_add(x, &pn->lruvec_stat[i]);
2207 					} while ((pn = parent_nodeinfo(pn, nid)));
2208 			}
2209 		}
2210 
2211 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2212 			long x;
2213 
2214 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2215 			if (x)
2216 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2217 					atomic_long_add(x, &memcg->vmevents[i]);
2218 		}
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 static void reclaim_high(struct mem_cgroup *memcg,
2225 			 unsigned int nr_pages,
2226 			 gfp_t gfp_mask)
2227 {
2228 	do {
2229 		if (page_counter_read(&memcg->memory) <= memcg->high)
2230 			continue;
2231 		memcg_memory_event(memcg, MEMCG_HIGH);
2232 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2233 	} while ((memcg = parent_mem_cgroup(memcg)));
2234 }
2235 
2236 static void high_work_func(struct work_struct *work)
2237 {
2238 	struct mem_cgroup *memcg;
2239 
2240 	memcg = container_of(work, struct mem_cgroup, high_work);
2241 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2242 }
2243 
2244 /*
2245  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2246  * enough to still cause a significant slowdown in most cases, while still
2247  * allowing diagnostics and tracing to proceed without becoming stuck.
2248  */
2249 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2250 
2251 /*
2252  * When calculating the delay, we use these either side of the exponentiation to
2253  * maintain precision and scale to a reasonable number of jiffies (see the table
2254  * below.
2255  *
2256  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2257  *   overage ratio to a delay.
2258  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2259  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2260  *   to produce a reasonable delay curve.
2261  *
2262  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2263  * reasonable delay curve compared to precision-adjusted overage, not
2264  * penalising heavily at first, but still making sure that growth beyond the
2265  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2266  * example, with a high of 100 megabytes:
2267  *
2268  *  +-------+------------------------+
2269  *  | usage | time to allocate in ms |
2270  *  +-------+------------------------+
2271  *  | 100M  |                      0 |
2272  *  | 101M  |                      6 |
2273  *  | 102M  |                     25 |
2274  *  | 103M  |                     57 |
2275  *  | 104M  |                    102 |
2276  *  | 105M  |                    159 |
2277  *  | 106M  |                    230 |
2278  *  | 107M  |                    313 |
2279  *  | 108M  |                    409 |
2280  *  | 109M  |                    518 |
2281  *  | 110M  |                    639 |
2282  *  | 111M  |                    774 |
2283  *  | 112M  |                    921 |
2284  *  | 113M  |                   1081 |
2285  *  | 114M  |                   1254 |
2286  *  | 115M  |                   1439 |
2287  *  | 116M  |                   1638 |
2288  *  | 117M  |                   1849 |
2289  *  | 118M  |                   2000 |
2290  *  | 119M  |                   2000 |
2291  *  | 120M  |                   2000 |
2292  *  +-------+------------------------+
2293  */
2294  #define MEMCG_DELAY_PRECISION_SHIFT 20
2295  #define MEMCG_DELAY_SCALING_SHIFT 14
2296 
2297 /*
2298  * Scheduled by try_charge() to be executed from the userland return path
2299  * and reclaims memory over the high limit.
2300  */
2301 void mem_cgroup_handle_over_high(void)
2302 {
2303 	unsigned long usage, high, clamped_high;
2304 	unsigned long pflags;
2305 	unsigned long penalty_jiffies, overage;
2306 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2307 	struct mem_cgroup *memcg;
2308 
2309 	if (likely(!nr_pages))
2310 		return;
2311 
2312 	memcg = get_mem_cgroup_from_mm(current->mm);
2313 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2314 	current->memcg_nr_pages_over_high = 0;
2315 
2316 	/*
2317 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2318 	 * allocators proactively to slow down excessive growth.
2319 	 *
2320 	 * We use overage compared to memory.high to calculate the number of
2321 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2322 	 * fairly lenient on small overages, and increasingly harsh when the
2323 	 * memcg in question makes it clear that it has no intention of stopping
2324 	 * its crazy behaviour, so we exponentially increase the delay based on
2325 	 * overage amount.
2326 	 */
2327 
2328 	usage = page_counter_read(&memcg->memory);
2329 	high = READ_ONCE(memcg->high);
2330 
2331 	if (usage <= high)
2332 		goto out;
2333 
2334 	/*
2335 	 * Prevent division by 0 in overage calculation by acting as if it was a
2336 	 * threshold of 1 page
2337 	 */
2338 	clamped_high = max(high, 1UL);
2339 
2340 	overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2341 			  clamped_high);
2342 
2343 	penalty_jiffies = ((u64)overage * overage * HZ)
2344 		>> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2345 
2346 	/*
2347 	 * Factor in the task's own contribution to the overage, such that four
2348 	 * N-sized allocations are throttled approximately the same as one
2349 	 * 4N-sized allocation.
2350 	 *
2351 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2352 	 * larger the current charge patch is than that.
2353 	 */
2354 	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2355 
2356 	/*
2357 	 * Clamp the max delay per usermode return so as to still keep the
2358 	 * application moving forwards and also permit diagnostics, albeit
2359 	 * extremely slowly.
2360 	 */
2361 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2362 
2363 	/*
2364 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2365 	 * that it's not even worth doing, in an attempt to be nice to those who
2366 	 * go only a small amount over their memory.high value and maybe haven't
2367 	 * been aggressively reclaimed enough yet.
2368 	 */
2369 	if (penalty_jiffies <= HZ / 100)
2370 		goto out;
2371 
2372 	/*
2373 	 * If we exit early, we're guaranteed to die (since
2374 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2375 	 * need to account for any ill-begotten jiffies to pay them off later.
2376 	 */
2377 	psi_memstall_enter(&pflags);
2378 	schedule_timeout_killable(penalty_jiffies);
2379 	psi_memstall_leave(&pflags);
2380 
2381 out:
2382 	css_put(&memcg->css);
2383 }
2384 
2385 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2386 		      unsigned int nr_pages)
2387 {
2388 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2389 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2390 	struct mem_cgroup *mem_over_limit;
2391 	struct page_counter *counter;
2392 	unsigned long nr_reclaimed;
2393 	bool may_swap = true;
2394 	bool drained = false;
2395 	enum oom_status oom_status;
2396 
2397 	if (mem_cgroup_is_root(memcg))
2398 		return 0;
2399 retry:
2400 	if (consume_stock(memcg, nr_pages))
2401 		return 0;
2402 
2403 	if (!do_memsw_account() ||
2404 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2405 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2406 			goto done_restock;
2407 		if (do_memsw_account())
2408 			page_counter_uncharge(&memcg->memsw, batch);
2409 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2410 	} else {
2411 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2412 		may_swap = false;
2413 	}
2414 
2415 	if (batch > nr_pages) {
2416 		batch = nr_pages;
2417 		goto retry;
2418 	}
2419 
2420 	/*
2421 	 * Memcg doesn't have a dedicated reserve for atomic
2422 	 * allocations. But like the global atomic pool, we need to
2423 	 * put the burden of reclaim on regular allocation requests
2424 	 * and let these go through as privileged allocations.
2425 	 */
2426 	if (gfp_mask & __GFP_ATOMIC)
2427 		goto force;
2428 
2429 	/*
2430 	 * Unlike in global OOM situations, memcg is not in a physical
2431 	 * memory shortage.  Allow dying and OOM-killed tasks to
2432 	 * bypass the last charges so that they can exit quickly and
2433 	 * free their memory.
2434 	 */
2435 	if (unlikely(should_force_charge()))
2436 		goto force;
2437 
2438 	/*
2439 	 * Prevent unbounded recursion when reclaim operations need to
2440 	 * allocate memory. This might exceed the limits temporarily,
2441 	 * but we prefer facilitating memory reclaim and getting back
2442 	 * under the limit over triggering OOM kills in these cases.
2443 	 */
2444 	if (unlikely(current->flags & PF_MEMALLOC))
2445 		goto force;
2446 
2447 	if (unlikely(task_in_memcg_oom(current)))
2448 		goto nomem;
2449 
2450 	if (!gfpflags_allow_blocking(gfp_mask))
2451 		goto nomem;
2452 
2453 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2454 
2455 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2456 						    gfp_mask, may_swap);
2457 
2458 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2459 		goto retry;
2460 
2461 	if (!drained) {
2462 		drain_all_stock(mem_over_limit);
2463 		drained = true;
2464 		goto retry;
2465 	}
2466 
2467 	if (gfp_mask & __GFP_NORETRY)
2468 		goto nomem;
2469 	/*
2470 	 * Even though the limit is exceeded at this point, reclaim
2471 	 * may have been able to free some pages.  Retry the charge
2472 	 * before killing the task.
2473 	 *
2474 	 * Only for regular pages, though: huge pages are rather
2475 	 * unlikely to succeed so close to the limit, and we fall back
2476 	 * to regular pages anyway in case of failure.
2477 	 */
2478 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2479 		goto retry;
2480 	/*
2481 	 * At task move, charge accounts can be doubly counted. So, it's
2482 	 * better to wait until the end of task_move if something is going on.
2483 	 */
2484 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2485 		goto retry;
2486 
2487 	if (nr_retries--)
2488 		goto retry;
2489 
2490 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2491 		goto nomem;
2492 
2493 	if (gfp_mask & __GFP_NOFAIL)
2494 		goto force;
2495 
2496 	if (fatal_signal_pending(current))
2497 		goto force;
2498 
2499 	/*
2500 	 * keep retrying as long as the memcg oom killer is able to make
2501 	 * a forward progress or bypass the charge if the oom killer
2502 	 * couldn't make any progress.
2503 	 */
2504 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2505 		       get_order(nr_pages * PAGE_SIZE));
2506 	switch (oom_status) {
2507 	case OOM_SUCCESS:
2508 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2509 		goto retry;
2510 	case OOM_FAILED:
2511 		goto force;
2512 	default:
2513 		goto nomem;
2514 	}
2515 nomem:
2516 	if (!(gfp_mask & __GFP_NOFAIL))
2517 		return -ENOMEM;
2518 force:
2519 	/*
2520 	 * The allocation either can't fail or will lead to more memory
2521 	 * being freed very soon.  Allow memory usage go over the limit
2522 	 * temporarily by force charging it.
2523 	 */
2524 	page_counter_charge(&memcg->memory, nr_pages);
2525 	if (do_memsw_account())
2526 		page_counter_charge(&memcg->memsw, nr_pages);
2527 	css_get_many(&memcg->css, nr_pages);
2528 
2529 	return 0;
2530 
2531 done_restock:
2532 	css_get_many(&memcg->css, batch);
2533 	if (batch > nr_pages)
2534 		refill_stock(memcg, batch - nr_pages);
2535 
2536 	/*
2537 	 * If the hierarchy is above the normal consumption range, schedule
2538 	 * reclaim on returning to userland.  We can perform reclaim here
2539 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2540 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2541 	 * not recorded as it most likely matches current's and won't
2542 	 * change in the meantime.  As high limit is checked again before
2543 	 * reclaim, the cost of mismatch is negligible.
2544 	 */
2545 	do {
2546 		if (page_counter_read(&memcg->memory) > memcg->high) {
2547 			/* Don't bother a random interrupted task */
2548 			if (in_interrupt()) {
2549 				schedule_work(&memcg->high_work);
2550 				break;
2551 			}
2552 			current->memcg_nr_pages_over_high += batch;
2553 			set_notify_resume(current);
2554 			break;
2555 		}
2556 	} while ((memcg = parent_mem_cgroup(memcg)));
2557 
2558 	return 0;
2559 }
2560 
2561 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2562 {
2563 	if (mem_cgroup_is_root(memcg))
2564 		return;
2565 
2566 	page_counter_uncharge(&memcg->memory, nr_pages);
2567 	if (do_memsw_account())
2568 		page_counter_uncharge(&memcg->memsw, nr_pages);
2569 
2570 	css_put_many(&memcg->css, nr_pages);
2571 }
2572 
2573 static void lock_page_lru(struct page *page, int *isolated)
2574 {
2575 	pg_data_t *pgdat = page_pgdat(page);
2576 
2577 	spin_lock_irq(&pgdat->lru_lock);
2578 	if (PageLRU(page)) {
2579 		struct lruvec *lruvec;
2580 
2581 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2582 		ClearPageLRU(page);
2583 		del_page_from_lru_list(page, lruvec, page_lru(page));
2584 		*isolated = 1;
2585 	} else
2586 		*isolated = 0;
2587 }
2588 
2589 static void unlock_page_lru(struct page *page, int isolated)
2590 {
2591 	pg_data_t *pgdat = page_pgdat(page);
2592 
2593 	if (isolated) {
2594 		struct lruvec *lruvec;
2595 
2596 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2597 		VM_BUG_ON_PAGE(PageLRU(page), page);
2598 		SetPageLRU(page);
2599 		add_page_to_lru_list(page, lruvec, page_lru(page));
2600 	}
2601 	spin_unlock_irq(&pgdat->lru_lock);
2602 }
2603 
2604 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2605 			  bool lrucare)
2606 {
2607 	int isolated;
2608 
2609 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2610 
2611 	/*
2612 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2613 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2614 	 */
2615 	if (lrucare)
2616 		lock_page_lru(page, &isolated);
2617 
2618 	/*
2619 	 * Nobody should be changing or seriously looking at
2620 	 * page->mem_cgroup at this point:
2621 	 *
2622 	 * - the page is uncharged
2623 	 *
2624 	 * - the page is off-LRU
2625 	 *
2626 	 * - an anonymous fault has exclusive page access, except for
2627 	 *   a locked page table
2628 	 *
2629 	 * - a page cache insertion, a swapin fault, or a migration
2630 	 *   have the page locked
2631 	 */
2632 	page->mem_cgroup = memcg;
2633 
2634 	if (lrucare)
2635 		unlock_page_lru(page, isolated);
2636 }
2637 
2638 #ifdef CONFIG_MEMCG_KMEM
2639 static int memcg_alloc_cache_id(void)
2640 {
2641 	int id, size;
2642 	int err;
2643 
2644 	id = ida_simple_get(&memcg_cache_ida,
2645 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2646 	if (id < 0)
2647 		return id;
2648 
2649 	if (id < memcg_nr_cache_ids)
2650 		return id;
2651 
2652 	/*
2653 	 * There's no space for the new id in memcg_caches arrays,
2654 	 * so we have to grow them.
2655 	 */
2656 	down_write(&memcg_cache_ids_sem);
2657 
2658 	size = 2 * (id + 1);
2659 	if (size < MEMCG_CACHES_MIN_SIZE)
2660 		size = MEMCG_CACHES_MIN_SIZE;
2661 	else if (size > MEMCG_CACHES_MAX_SIZE)
2662 		size = MEMCG_CACHES_MAX_SIZE;
2663 
2664 	err = memcg_update_all_caches(size);
2665 	if (!err)
2666 		err = memcg_update_all_list_lrus(size);
2667 	if (!err)
2668 		memcg_nr_cache_ids = size;
2669 
2670 	up_write(&memcg_cache_ids_sem);
2671 
2672 	if (err) {
2673 		ida_simple_remove(&memcg_cache_ida, id);
2674 		return err;
2675 	}
2676 	return id;
2677 }
2678 
2679 static void memcg_free_cache_id(int id)
2680 {
2681 	ida_simple_remove(&memcg_cache_ida, id);
2682 }
2683 
2684 struct memcg_kmem_cache_create_work {
2685 	struct mem_cgroup *memcg;
2686 	struct kmem_cache *cachep;
2687 	struct work_struct work;
2688 };
2689 
2690 static void memcg_kmem_cache_create_func(struct work_struct *w)
2691 {
2692 	struct memcg_kmem_cache_create_work *cw =
2693 		container_of(w, struct memcg_kmem_cache_create_work, work);
2694 	struct mem_cgroup *memcg = cw->memcg;
2695 	struct kmem_cache *cachep = cw->cachep;
2696 
2697 	memcg_create_kmem_cache(memcg, cachep);
2698 
2699 	css_put(&memcg->css);
2700 	kfree(cw);
2701 }
2702 
2703 /*
2704  * Enqueue the creation of a per-memcg kmem_cache.
2705  */
2706 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2707 					       struct kmem_cache *cachep)
2708 {
2709 	struct memcg_kmem_cache_create_work *cw;
2710 
2711 	if (!css_tryget_online(&memcg->css))
2712 		return;
2713 
2714 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2715 	if (!cw)
2716 		return;
2717 
2718 	cw->memcg = memcg;
2719 	cw->cachep = cachep;
2720 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2721 
2722 	queue_work(memcg_kmem_cache_wq, &cw->work);
2723 }
2724 
2725 static inline bool memcg_kmem_bypass(void)
2726 {
2727 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2728 		return true;
2729 	return false;
2730 }
2731 
2732 /**
2733  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2734  * @cachep: the original global kmem cache
2735  *
2736  * Return the kmem_cache we're supposed to use for a slab allocation.
2737  * We try to use the current memcg's version of the cache.
2738  *
2739  * If the cache does not exist yet, if we are the first user of it, we
2740  * create it asynchronously in a workqueue and let the current allocation
2741  * go through with the original cache.
2742  *
2743  * This function takes a reference to the cache it returns to assure it
2744  * won't get destroyed while we are working with it. Once the caller is
2745  * done with it, memcg_kmem_put_cache() must be called to release the
2746  * reference.
2747  */
2748 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2749 {
2750 	struct mem_cgroup *memcg;
2751 	struct kmem_cache *memcg_cachep;
2752 	struct memcg_cache_array *arr;
2753 	int kmemcg_id;
2754 
2755 	VM_BUG_ON(!is_root_cache(cachep));
2756 
2757 	if (memcg_kmem_bypass())
2758 		return cachep;
2759 
2760 	rcu_read_lock();
2761 
2762 	if (unlikely(current->active_memcg))
2763 		memcg = current->active_memcg;
2764 	else
2765 		memcg = mem_cgroup_from_task(current);
2766 
2767 	if (!memcg || memcg == root_mem_cgroup)
2768 		goto out_unlock;
2769 
2770 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2771 	if (kmemcg_id < 0)
2772 		goto out_unlock;
2773 
2774 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2775 
2776 	/*
2777 	 * Make sure we will access the up-to-date value. The code updating
2778 	 * memcg_caches issues a write barrier to match the data dependency
2779 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2780 	 */
2781 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2782 
2783 	/*
2784 	 * If we are in a safe context (can wait, and not in interrupt
2785 	 * context), we could be be predictable and return right away.
2786 	 * This would guarantee that the allocation being performed
2787 	 * already belongs in the new cache.
2788 	 *
2789 	 * However, there are some clashes that can arrive from locking.
2790 	 * For instance, because we acquire the slab_mutex while doing
2791 	 * memcg_create_kmem_cache, this means no further allocation
2792 	 * could happen with the slab_mutex held. So it's better to
2793 	 * defer everything.
2794 	 *
2795 	 * If the memcg is dying or memcg_cache is about to be released,
2796 	 * don't bother creating new kmem_caches. Because memcg_cachep
2797 	 * is ZEROed as the fist step of kmem offlining, we don't need
2798 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2799 	 * memcg_schedule_kmem_cache_create() will prevent us from
2800 	 * creation of a new kmem_cache.
2801 	 */
2802 	if (unlikely(!memcg_cachep))
2803 		memcg_schedule_kmem_cache_create(memcg, cachep);
2804 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2805 		cachep = memcg_cachep;
2806 out_unlock:
2807 	rcu_read_unlock();
2808 	return cachep;
2809 }
2810 
2811 /**
2812  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2813  * @cachep: the cache returned by memcg_kmem_get_cache
2814  */
2815 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2816 {
2817 	if (!is_root_cache(cachep))
2818 		percpu_ref_put(&cachep->memcg_params.refcnt);
2819 }
2820 
2821 /**
2822  * __memcg_kmem_charge_memcg: charge a kmem page
2823  * @page: page to charge
2824  * @gfp: reclaim mode
2825  * @order: allocation order
2826  * @memcg: memory cgroup to charge
2827  *
2828  * Returns 0 on success, an error code on failure.
2829  */
2830 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2831 			    struct mem_cgroup *memcg)
2832 {
2833 	unsigned int nr_pages = 1 << order;
2834 	struct page_counter *counter;
2835 	int ret;
2836 
2837 	ret = try_charge(memcg, gfp, nr_pages);
2838 	if (ret)
2839 		return ret;
2840 
2841 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2842 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2843 
2844 		/*
2845 		 * Enforce __GFP_NOFAIL allocation because callers are not
2846 		 * prepared to see failures and likely do not have any failure
2847 		 * handling code.
2848 		 */
2849 		if (gfp & __GFP_NOFAIL) {
2850 			page_counter_charge(&memcg->kmem, nr_pages);
2851 			return 0;
2852 		}
2853 		cancel_charge(memcg, nr_pages);
2854 		return -ENOMEM;
2855 	}
2856 	return 0;
2857 }
2858 
2859 /**
2860  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2861  * @page: page to charge
2862  * @gfp: reclaim mode
2863  * @order: allocation order
2864  *
2865  * Returns 0 on success, an error code on failure.
2866  */
2867 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2868 {
2869 	struct mem_cgroup *memcg;
2870 	int ret = 0;
2871 
2872 	if (memcg_kmem_bypass())
2873 		return 0;
2874 
2875 	memcg = get_mem_cgroup_from_current();
2876 	if (!mem_cgroup_is_root(memcg)) {
2877 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2878 		if (!ret) {
2879 			page->mem_cgroup = memcg;
2880 			__SetPageKmemcg(page);
2881 		}
2882 	}
2883 	css_put(&memcg->css);
2884 	return ret;
2885 }
2886 
2887 /**
2888  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2889  * @memcg: memcg to uncharge
2890  * @nr_pages: number of pages to uncharge
2891  */
2892 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2893 				 unsigned int nr_pages)
2894 {
2895 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2896 		page_counter_uncharge(&memcg->kmem, nr_pages);
2897 
2898 	page_counter_uncharge(&memcg->memory, nr_pages);
2899 	if (do_memsw_account())
2900 		page_counter_uncharge(&memcg->memsw, nr_pages);
2901 }
2902 /**
2903  * __memcg_kmem_uncharge: uncharge a kmem page
2904  * @page: page to uncharge
2905  * @order: allocation order
2906  */
2907 void __memcg_kmem_uncharge(struct page *page, int order)
2908 {
2909 	struct mem_cgroup *memcg = page->mem_cgroup;
2910 	unsigned int nr_pages = 1 << order;
2911 
2912 	if (!memcg)
2913 		return;
2914 
2915 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2916 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2917 	page->mem_cgroup = NULL;
2918 
2919 	/* slab pages do not have PageKmemcg flag set */
2920 	if (PageKmemcg(page))
2921 		__ClearPageKmemcg(page);
2922 
2923 	css_put_many(&memcg->css, nr_pages);
2924 }
2925 #endif /* CONFIG_MEMCG_KMEM */
2926 
2927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2928 
2929 /*
2930  * Because tail pages are not marked as "used", set it. We're under
2931  * pgdat->lru_lock and migration entries setup in all page mappings.
2932  */
2933 void mem_cgroup_split_huge_fixup(struct page *head)
2934 {
2935 	int i;
2936 
2937 	if (mem_cgroup_disabled())
2938 		return;
2939 
2940 	for (i = 1; i < HPAGE_PMD_NR; i++)
2941 		head[i].mem_cgroup = head->mem_cgroup;
2942 
2943 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2944 }
2945 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2946 
2947 #ifdef CONFIG_MEMCG_SWAP
2948 /**
2949  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2950  * @entry: swap entry to be moved
2951  * @from:  mem_cgroup which the entry is moved from
2952  * @to:  mem_cgroup which the entry is moved to
2953  *
2954  * It succeeds only when the swap_cgroup's record for this entry is the same
2955  * as the mem_cgroup's id of @from.
2956  *
2957  * Returns 0 on success, -EINVAL on failure.
2958  *
2959  * The caller must have charged to @to, IOW, called page_counter_charge() about
2960  * both res and memsw, and called css_get().
2961  */
2962 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2963 				struct mem_cgroup *from, struct mem_cgroup *to)
2964 {
2965 	unsigned short old_id, new_id;
2966 
2967 	old_id = mem_cgroup_id(from);
2968 	new_id = mem_cgroup_id(to);
2969 
2970 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2971 		mod_memcg_state(from, MEMCG_SWAP, -1);
2972 		mod_memcg_state(to, MEMCG_SWAP, 1);
2973 		return 0;
2974 	}
2975 	return -EINVAL;
2976 }
2977 #else
2978 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2979 				struct mem_cgroup *from, struct mem_cgroup *to)
2980 {
2981 	return -EINVAL;
2982 }
2983 #endif
2984 
2985 static DEFINE_MUTEX(memcg_max_mutex);
2986 
2987 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2988 				 unsigned long max, bool memsw)
2989 {
2990 	bool enlarge = false;
2991 	bool drained = false;
2992 	int ret;
2993 	bool limits_invariant;
2994 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2995 
2996 	do {
2997 		if (signal_pending(current)) {
2998 			ret = -EINTR;
2999 			break;
3000 		}
3001 
3002 		mutex_lock(&memcg_max_mutex);
3003 		/*
3004 		 * Make sure that the new limit (memsw or memory limit) doesn't
3005 		 * break our basic invariant rule memory.max <= memsw.max.
3006 		 */
3007 		limits_invariant = memsw ? max >= memcg->memory.max :
3008 					   max <= memcg->memsw.max;
3009 		if (!limits_invariant) {
3010 			mutex_unlock(&memcg_max_mutex);
3011 			ret = -EINVAL;
3012 			break;
3013 		}
3014 		if (max > counter->max)
3015 			enlarge = true;
3016 		ret = page_counter_set_max(counter, max);
3017 		mutex_unlock(&memcg_max_mutex);
3018 
3019 		if (!ret)
3020 			break;
3021 
3022 		if (!drained) {
3023 			drain_all_stock(memcg);
3024 			drained = true;
3025 			continue;
3026 		}
3027 
3028 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3029 					GFP_KERNEL, !memsw)) {
3030 			ret = -EBUSY;
3031 			break;
3032 		}
3033 	} while (true);
3034 
3035 	if (!ret && enlarge)
3036 		memcg_oom_recover(memcg);
3037 
3038 	return ret;
3039 }
3040 
3041 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3042 					    gfp_t gfp_mask,
3043 					    unsigned long *total_scanned)
3044 {
3045 	unsigned long nr_reclaimed = 0;
3046 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3047 	unsigned long reclaimed;
3048 	int loop = 0;
3049 	struct mem_cgroup_tree_per_node *mctz;
3050 	unsigned long excess;
3051 	unsigned long nr_scanned;
3052 
3053 	if (order > 0)
3054 		return 0;
3055 
3056 	mctz = soft_limit_tree_node(pgdat->node_id);
3057 
3058 	/*
3059 	 * Do not even bother to check the largest node if the root
3060 	 * is empty. Do it lockless to prevent lock bouncing. Races
3061 	 * are acceptable as soft limit is best effort anyway.
3062 	 */
3063 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3064 		return 0;
3065 
3066 	/*
3067 	 * This loop can run a while, specially if mem_cgroup's continuously
3068 	 * keep exceeding their soft limit and putting the system under
3069 	 * pressure
3070 	 */
3071 	do {
3072 		if (next_mz)
3073 			mz = next_mz;
3074 		else
3075 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3076 		if (!mz)
3077 			break;
3078 
3079 		nr_scanned = 0;
3080 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3081 						    gfp_mask, &nr_scanned);
3082 		nr_reclaimed += reclaimed;
3083 		*total_scanned += nr_scanned;
3084 		spin_lock_irq(&mctz->lock);
3085 		__mem_cgroup_remove_exceeded(mz, mctz);
3086 
3087 		/*
3088 		 * If we failed to reclaim anything from this memory cgroup
3089 		 * it is time to move on to the next cgroup
3090 		 */
3091 		next_mz = NULL;
3092 		if (!reclaimed)
3093 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3094 
3095 		excess = soft_limit_excess(mz->memcg);
3096 		/*
3097 		 * One school of thought says that we should not add
3098 		 * back the node to the tree if reclaim returns 0.
3099 		 * But our reclaim could return 0, simply because due
3100 		 * to priority we are exposing a smaller subset of
3101 		 * memory to reclaim from. Consider this as a longer
3102 		 * term TODO.
3103 		 */
3104 		/* If excess == 0, no tree ops */
3105 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3106 		spin_unlock_irq(&mctz->lock);
3107 		css_put(&mz->memcg->css);
3108 		loop++;
3109 		/*
3110 		 * Could not reclaim anything and there are no more
3111 		 * mem cgroups to try or we seem to be looping without
3112 		 * reclaiming anything.
3113 		 */
3114 		if (!nr_reclaimed &&
3115 			(next_mz == NULL ||
3116 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3117 			break;
3118 	} while (!nr_reclaimed);
3119 	if (next_mz)
3120 		css_put(&next_mz->memcg->css);
3121 	return nr_reclaimed;
3122 }
3123 
3124 /*
3125  * Test whether @memcg has children, dead or alive.  Note that this
3126  * function doesn't care whether @memcg has use_hierarchy enabled and
3127  * returns %true if there are child csses according to the cgroup
3128  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3129  */
3130 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3131 {
3132 	bool ret;
3133 
3134 	rcu_read_lock();
3135 	ret = css_next_child(NULL, &memcg->css);
3136 	rcu_read_unlock();
3137 	return ret;
3138 }
3139 
3140 /*
3141  * Reclaims as many pages from the given memcg as possible.
3142  *
3143  * Caller is responsible for holding css reference for memcg.
3144  */
3145 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3146 {
3147 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3148 
3149 	/* we call try-to-free pages for make this cgroup empty */
3150 	lru_add_drain_all();
3151 
3152 	drain_all_stock(memcg);
3153 
3154 	/* try to free all pages in this cgroup */
3155 	while (nr_retries && page_counter_read(&memcg->memory)) {
3156 		int progress;
3157 
3158 		if (signal_pending(current))
3159 			return -EINTR;
3160 
3161 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3162 							GFP_KERNEL, true);
3163 		if (!progress) {
3164 			nr_retries--;
3165 			/* maybe some writeback is necessary */
3166 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3167 		}
3168 
3169 	}
3170 
3171 	return 0;
3172 }
3173 
3174 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3175 					    char *buf, size_t nbytes,
3176 					    loff_t off)
3177 {
3178 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3179 
3180 	if (mem_cgroup_is_root(memcg))
3181 		return -EINVAL;
3182 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3183 }
3184 
3185 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3186 				     struct cftype *cft)
3187 {
3188 	return mem_cgroup_from_css(css)->use_hierarchy;
3189 }
3190 
3191 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3192 				      struct cftype *cft, u64 val)
3193 {
3194 	int retval = 0;
3195 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3196 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3197 
3198 	if (memcg->use_hierarchy == val)
3199 		return 0;
3200 
3201 	/*
3202 	 * If parent's use_hierarchy is set, we can't make any modifications
3203 	 * in the child subtrees. If it is unset, then the change can
3204 	 * occur, provided the current cgroup has no children.
3205 	 *
3206 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3207 	 * set if there are no children.
3208 	 */
3209 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3210 				(val == 1 || val == 0)) {
3211 		if (!memcg_has_children(memcg))
3212 			memcg->use_hierarchy = val;
3213 		else
3214 			retval = -EBUSY;
3215 	} else
3216 		retval = -EINVAL;
3217 
3218 	return retval;
3219 }
3220 
3221 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3222 {
3223 	unsigned long val;
3224 
3225 	if (mem_cgroup_is_root(memcg)) {
3226 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3227 			memcg_page_state(memcg, MEMCG_RSS);
3228 		if (swap)
3229 			val += memcg_page_state(memcg, MEMCG_SWAP);
3230 	} else {
3231 		if (!swap)
3232 			val = page_counter_read(&memcg->memory);
3233 		else
3234 			val = page_counter_read(&memcg->memsw);
3235 	}
3236 	return val;
3237 }
3238 
3239 enum {
3240 	RES_USAGE,
3241 	RES_LIMIT,
3242 	RES_MAX_USAGE,
3243 	RES_FAILCNT,
3244 	RES_SOFT_LIMIT,
3245 };
3246 
3247 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3248 			       struct cftype *cft)
3249 {
3250 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3251 	struct page_counter *counter;
3252 
3253 	switch (MEMFILE_TYPE(cft->private)) {
3254 	case _MEM:
3255 		counter = &memcg->memory;
3256 		break;
3257 	case _MEMSWAP:
3258 		counter = &memcg->memsw;
3259 		break;
3260 	case _KMEM:
3261 		counter = &memcg->kmem;
3262 		break;
3263 	case _TCP:
3264 		counter = &memcg->tcpmem;
3265 		break;
3266 	default:
3267 		BUG();
3268 	}
3269 
3270 	switch (MEMFILE_ATTR(cft->private)) {
3271 	case RES_USAGE:
3272 		if (counter == &memcg->memory)
3273 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3274 		if (counter == &memcg->memsw)
3275 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3276 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3277 	case RES_LIMIT:
3278 		return (u64)counter->max * PAGE_SIZE;
3279 	case RES_MAX_USAGE:
3280 		return (u64)counter->watermark * PAGE_SIZE;
3281 	case RES_FAILCNT:
3282 		return counter->failcnt;
3283 	case RES_SOFT_LIMIT:
3284 		return (u64)memcg->soft_limit * PAGE_SIZE;
3285 	default:
3286 		BUG();
3287 	}
3288 }
3289 
3290 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3291 {
3292 	unsigned long stat[MEMCG_NR_STAT];
3293 	struct mem_cgroup *mi;
3294 	int node, cpu, i;
3295 	int min_idx, max_idx;
3296 
3297 	if (slab_only) {
3298 		min_idx = NR_SLAB_RECLAIMABLE;
3299 		max_idx = NR_SLAB_UNRECLAIMABLE;
3300 	} else {
3301 		min_idx = 0;
3302 		max_idx = MEMCG_NR_STAT;
3303 	}
3304 
3305 	for (i = min_idx; i < max_idx; i++)
3306 		stat[i] = 0;
3307 
3308 	for_each_online_cpu(cpu)
3309 		for (i = min_idx; i < max_idx; i++)
3310 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3311 
3312 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3313 		for (i = min_idx; i < max_idx; i++)
3314 			atomic_long_add(stat[i], &mi->vmstats[i]);
3315 
3316 	if (!slab_only)
3317 		max_idx = NR_VM_NODE_STAT_ITEMS;
3318 
3319 	for_each_node(node) {
3320 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3321 		struct mem_cgroup_per_node *pi;
3322 
3323 		for (i = min_idx; i < max_idx; i++)
3324 			stat[i] = 0;
3325 
3326 		for_each_online_cpu(cpu)
3327 			for (i = min_idx; i < max_idx; i++)
3328 				stat[i] += per_cpu(
3329 					pn->lruvec_stat_cpu->count[i], cpu);
3330 
3331 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3332 			for (i = min_idx; i < max_idx; i++)
3333 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3334 	}
3335 }
3336 
3337 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3338 {
3339 	unsigned long events[NR_VM_EVENT_ITEMS];
3340 	struct mem_cgroup *mi;
3341 	int cpu, i;
3342 
3343 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3344 		events[i] = 0;
3345 
3346 	for_each_online_cpu(cpu)
3347 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3348 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3349 					     cpu);
3350 
3351 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3352 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3353 			atomic_long_add(events[i], &mi->vmevents[i]);
3354 }
3355 
3356 #ifdef CONFIG_MEMCG_KMEM
3357 static int memcg_online_kmem(struct mem_cgroup *memcg)
3358 {
3359 	int memcg_id;
3360 
3361 	if (cgroup_memory_nokmem)
3362 		return 0;
3363 
3364 	BUG_ON(memcg->kmemcg_id >= 0);
3365 	BUG_ON(memcg->kmem_state);
3366 
3367 	memcg_id = memcg_alloc_cache_id();
3368 	if (memcg_id < 0)
3369 		return memcg_id;
3370 
3371 	static_branch_inc(&memcg_kmem_enabled_key);
3372 	/*
3373 	 * A memory cgroup is considered kmem-online as soon as it gets
3374 	 * kmemcg_id. Setting the id after enabling static branching will
3375 	 * guarantee no one starts accounting before all call sites are
3376 	 * patched.
3377 	 */
3378 	memcg->kmemcg_id = memcg_id;
3379 	memcg->kmem_state = KMEM_ONLINE;
3380 	INIT_LIST_HEAD(&memcg->kmem_caches);
3381 
3382 	return 0;
3383 }
3384 
3385 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3386 {
3387 	struct cgroup_subsys_state *css;
3388 	struct mem_cgroup *parent, *child;
3389 	int kmemcg_id;
3390 
3391 	if (memcg->kmem_state != KMEM_ONLINE)
3392 		return;
3393 	/*
3394 	 * Clear the online state before clearing memcg_caches array
3395 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3396 	 * guarantees that no cache will be created for this cgroup
3397 	 * after we are done (see memcg_create_kmem_cache()).
3398 	 */
3399 	memcg->kmem_state = KMEM_ALLOCATED;
3400 
3401 	parent = parent_mem_cgroup(memcg);
3402 	if (!parent)
3403 		parent = root_mem_cgroup;
3404 
3405 	/*
3406 	 * Deactivate and reparent kmem_caches. Then flush percpu
3407 	 * slab statistics to have precise values at the parent and
3408 	 * all ancestor levels. It's required to keep slab stats
3409 	 * accurate after the reparenting of kmem_caches.
3410 	 */
3411 	memcg_deactivate_kmem_caches(memcg, parent);
3412 	memcg_flush_percpu_vmstats(memcg, true);
3413 
3414 	kmemcg_id = memcg->kmemcg_id;
3415 	BUG_ON(kmemcg_id < 0);
3416 
3417 	/*
3418 	 * Change kmemcg_id of this cgroup and all its descendants to the
3419 	 * parent's id, and then move all entries from this cgroup's list_lrus
3420 	 * to ones of the parent. After we have finished, all list_lrus
3421 	 * corresponding to this cgroup are guaranteed to remain empty. The
3422 	 * ordering is imposed by list_lru_node->lock taken by
3423 	 * memcg_drain_all_list_lrus().
3424 	 */
3425 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3426 	css_for_each_descendant_pre(css, &memcg->css) {
3427 		child = mem_cgroup_from_css(css);
3428 		BUG_ON(child->kmemcg_id != kmemcg_id);
3429 		child->kmemcg_id = parent->kmemcg_id;
3430 		if (!memcg->use_hierarchy)
3431 			break;
3432 	}
3433 	rcu_read_unlock();
3434 
3435 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3436 
3437 	memcg_free_cache_id(kmemcg_id);
3438 }
3439 
3440 static void memcg_free_kmem(struct mem_cgroup *memcg)
3441 {
3442 	/* css_alloc() failed, offlining didn't happen */
3443 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3444 		memcg_offline_kmem(memcg);
3445 
3446 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3447 		WARN_ON(!list_empty(&memcg->kmem_caches));
3448 		static_branch_dec(&memcg_kmem_enabled_key);
3449 	}
3450 }
3451 #else
3452 static int memcg_online_kmem(struct mem_cgroup *memcg)
3453 {
3454 	return 0;
3455 }
3456 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3457 {
3458 }
3459 static void memcg_free_kmem(struct mem_cgroup *memcg)
3460 {
3461 }
3462 #endif /* CONFIG_MEMCG_KMEM */
3463 
3464 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3465 				 unsigned long max)
3466 {
3467 	int ret;
3468 
3469 	mutex_lock(&memcg_max_mutex);
3470 	ret = page_counter_set_max(&memcg->kmem, max);
3471 	mutex_unlock(&memcg_max_mutex);
3472 	return ret;
3473 }
3474 
3475 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3476 {
3477 	int ret;
3478 
3479 	mutex_lock(&memcg_max_mutex);
3480 
3481 	ret = page_counter_set_max(&memcg->tcpmem, max);
3482 	if (ret)
3483 		goto out;
3484 
3485 	if (!memcg->tcpmem_active) {
3486 		/*
3487 		 * The active flag needs to be written after the static_key
3488 		 * update. This is what guarantees that the socket activation
3489 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3490 		 * for details, and note that we don't mark any socket as
3491 		 * belonging to this memcg until that flag is up.
3492 		 *
3493 		 * We need to do this, because static_keys will span multiple
3494 		 * sites, but we can't control their order. If we mark a socket
3495 		 * as accounted, but the accounting functions are not patched in
3496 		 * yet, we'll lose accounting.
3497 		 *
3498 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3499 		 * because when this value change, the code to process it is not
3500 		 * patched in yet.
3501 		 */
3502 		static_branch_inc(&memcg_sockets_enabled_key);
3503 		memcg->tcpmem_active = true;
3504 	}
3505 out:
3506 	mutex_unlock(&memcg_max_mutex);
3507 	return ret;
3508 }
3509 
3510 /*
3511  * The user of this function is...
3512  * RES_LIMIT.
3513  */
3514 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3515 				char *buf, size_t nbytes, loff_t off)
3516 {
3517 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3518 	unsigned long nr_pages;
3519 	int ret;
3520 
3521 	buf = strstrip(buf);
3522 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3523 	if (ret)
3524 		return ret;
3525 
3526 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3527 	case RES_LIMIT:
3528 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3529 			ret = -EINVAL;
3530 			break;
3531 		}
3532 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3533 		case _MEM:
3534 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3535 			break;
3536 		case _MEMSWAP:
3537 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3538 			break;
3539 		case _KMEM:
3540 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3541 				     "Please report your usecase to linux-mm@kvack.org if you "
3542 				     "depend on this functionality.\n");
3543 			ret = memcg_update_kmem_max(memcg, nr_pages);
3544 			break;
3545 		case _TCP:
3546 			ret = memcg_update_tcp_max(memcg, nr_pages);
3547 			break;
3548 		}
3549 		break;
3550 	case RES_SOFT_LIMIT:
3551 		memcg->soft_limit = nr_pages;
3552 		ret = 0;
3553 		break;
3554 	}
3555 	return ret ?: nbytes;
3556 }
3557 
3558 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3559 				size_t nbytes, loff_t off)
3560 {
3561 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3562 	struct page_counter *counter;
3563 
3564 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3565 	case _MEM:
3566 		counter = &memcg->memory;
3567 		break;
3568 	case _MEMSWAP:
3569 		counter = &memcg->memsw;
3570 		break;
3571 	case _KMEM:
3572 		counter = &memcg->kmem;
3573 		break;
3574 	case _TCP:
3575 		counter = &memcg->tcpmem;
3576 		break;
3577 	default:
3578 		BUG();
3579 	}
3580 
3581 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3582 	case RES_MAX_USAGE:
3583 		page_counter_reset_watermark(counter);
3584 		break;
3585 	case RES_FAILCNT:
3586 		counter->failcnt = 0;
3587 		break;
3588 	default:
3589 		BUG();
3590 	}
3591 
3592 	return nbytes;
3593 }
3594 
3595 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3596 					struct cftype *cft)
3597 {
3598 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3599 }
3600 
3601 #ifdef CONFIG_MMU
3602 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3603 					struct cftype *cft, u64 val)
3604 {
3605 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606 
3607 	if (val & ~MOVE_MASK)
3608 		return -EINVAL;
3609 
3610 	/*
3611 	 * No kind of locking is needed in here, because ->can_attach() will
3612 	 * check this value once in the beginning of the process, and then carry
3613 	 * on with stale data. This means that changes to this value will only
3614 	 * affect task migrations starting after the change.
3615 	 */
3616 	memcg->move_charge_at_immigrate = val;
3617 	return 0;
3618 }
3619 #else
3620 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3621 					struct cftype *cft, u64 val)
3622 {
3623 	return -ENOSYS;
3624 }
3625 #endif
3626 
3627 #ifdef CONFIG_NUMA
3628 
3629 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3630 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3631 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3632 
3633 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3634 					   int nid, unsigned int lru_mask)
3635 {
3636 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3637 	unsigned long nr = 0;
3638 	enum lru_list lru;
3639 
3640 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3641 
3642 	for_each_lru(lru) {
3643 		if (!(BIT(lru) & lru_mask))
3644 			continue;
3645 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3646 	}
3647 	return nr;
3648 }
3649 
3650 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3651 					     unsigned int lru_mask)
3652 {
3653 	unsigned long nr = 0;
3654 	enum lru_list lru;
3655 
3656 	for_each_lru(lru) {
3657 		if (!(BIT(lru) & lru_mask))
3658 			continue;
3659 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3660 	}
3661 	return nr;
3662 }
3663 
3664 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3665 {
3666 	struct numa_stat {
3667 		const char *name;
3668 		unsigned int lru_mask;
3669 	};
3670 
3671 	static const struct numa_stat stats[] = {
3672 		{ "total", LRU_ALL },
3673 		{ "file", LRU_ALL_FILE },
3674 		{ "anon", LRU_ALL_ANON },
3675 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3676 	};
3677 	const struct numa_stat *stat;
3678 	int nid;
3679 	unsigned long nr;
3680 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3681 
3682 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3683 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3684 		seq_printf(m, "%s=%lu", stat->name, nr);
3685 		for_each_node_state(nid, N_MEMORY) {
3686 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3687 							  stat->lru_mask);
3688 			seq_printf(m, " N%d=%lu", nid, nr);
3689 		}
3690 		seq_putc(m, '\n');
3691 	}
3692 
3693 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3694 		struct mem_cgroup *iter;
3695 
3696 		nr = 0;
3697 		for_each_mem_cgroup_tree(iter, memcg)
3698 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3699 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3700 		for_each_node_state(nid, N_MEMORY) {
3701 			nr = 0;
3702 			for_each_mem_cgroup_tree(iter, memcg)
3703 				nr += mem_cgroup_node_nr_lru_pages(
3704 					iter, nid, stat->lru_mask);
3705 			seq_printf(m, " N%d=%lu", nid, nr);
3706 		}
3707 		seq_putc(m, '\n');
3708 	}
3709 
3710 	return 0;
3711 }
3712 #endif /* CONFIG_NUMA */
3713 
3714 static const unsigned int memcg1_stats[] = {
3715 	MEMCG_CACHE,
3716 	MEMCG_RSS,
3717 	MEMCG_RSS_HUGE,
3718 	NR_SHMEM,
3719 	NR_FILE_MAPPED,
3720 	NR_FILE_DIRTY,
3721 	NR_WRITEBACK,
3722 	MEMCG_SWAP,
3723 };
3724 
3725 static const char *const memcg1_stat_names[] = {
3726 	"cache",
3727 	"rss",
3728 	"rss_huge",
3729 	"shmem",
3730 	"mapped_file",
3731 	"dirty",
3732 	"writeback",
3733 	"swap",
3734 };
3735 
3736 /* Universal VM events cgroup1 shows, original sort order */
3737 static const unsigned int memcg1_events[] = {
3738 	PGPGIN,
3739 	PGPGOUT,
3740 	PGFAULT,
3741 	PGMAJFAULT,
3742 };
3743 
3744 static int memcg_stat_show(struct seq_file *m, void *v)
3745 {
3746 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3747 	unsigned long memory, memsw;
3748 	struct mem_cgroup *mi;
3749 	unsigned int i;
3750 
3751 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3752 
3753 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3754 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3755 			continue;
3756 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3757 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3758 			   PAGE_SIZE);
3759 	}
3760 
3761 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3762 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3763 			   memcg_events_local(memcg, memcg1_events[i]));
3764 
3765 	for (i = 0; i < NR_LRU_LISTS; i++)
3766 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3767 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3768 			   PAGE_SIZE);
3769 
3770 	/* Hierarchical information */
3771 	memory = memsw = PAGE_COUNTER_MAX;
3772 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3773 		memory = min(memory, mi->memory.max);
3774 		memsw = min(memsw, mi->memsw.max);
3775 	}
3776 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3777 		   (u64)memory * PAGE_SIZE);
3778 	if (do_memsw_account())
3779 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3780 			   (u64)memsw * PAGE_SIZE);
3781 
3782 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3783 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3784 			continue;
3785 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3786 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3787 			   PAGE_SIZE);
3788 	}
3789 
3790 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3791 		seq_printf(m, "total_%s %llu\n",
3792 			   vm_event_name(memcg1_events[i]),
3793 			   (u64)memcg_events(memcg, memcg1_events[i]));
3794 
3795 	for (i = 0; i < NR_LRU_LISTS; i++)
3796 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3797 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3798 			   PAGE_SIZE);
3799 
3800 #ifdef CONFIG_DEBUG_VM
3801 	{
3802 		pg_data_t *pgdat;
3803 		struct mem_cgroup_per_node *mz;
3804 		struct zone_reclaim_stat *rstat;
3805 		unsigned long recent_rotated[2] = {0, 0};
3806 		unsigned long recent_scanned[2] = {0, 0};
3807 
3808 		for_each_online_pgdat(pgdat) {
3809 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3810 			rstat = &mz->lruvec.reclaim_stat;
3811 
3812 			recent_rotated[0] += rstat->recent_rotated[0];
3813 			recent_rotated[1] += rstat->recent_rotated[1];
3814 			recent_scanned[0] += rstat->recent_scanned[0];
3815 			recent_scanned[1] += rstat->recent_scanned[1];
3816 		}
3817 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3818 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3819 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3820 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3821 	}
3822 #endif
3823 
3824 	return 0;
3825 }
3826 
3827 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3828 				      struct cftype *cft)
3829 {
3830 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3831 
3832 	return mem_cgroup_swappiness(memcg);
3833 }
3834 
3835 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3836 				       struct cftype *cft, u64 val)
3837 {
3838 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3839 
3840 	if (val > 100)
3841 		return -EINVAL;
3842 
3843 	if (css->parent)
3844 		memcg->swappiness = val;
3845 	else
3846 		vm_swappiness = val;
3847 
3848 	return 0;
3849 }
3850 
3851 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3852 {
3853 	struct mem_cgroup_threshold_ary *t;
3854 	unsigned long usage;
3855 	int i;
3856 
3857 	rcu_read_lock();
3858 	if (!swap)
3859 		t = rcu_dereference(memcg->thresholds.primary);
3860 	else
3861 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3862 
3863 	if (!t)
3864 		goto unlock;
3865 
3866 	usage = mem_cgroup_usage(memcg, swap);
3867 
3868 	/*
3869 	 * current_threshold points to threshold just below or equal to usage.
3870 	 * If it's not true, a threshold was crossed after last
3871 	 * call of __mem_cgroup_threshold().
3872 	 */
3873 	i = t->current_threshold;
3874 
3875 	/*
3876 	 * Iterate backward over array of thresholds starting from
3877 	 * current_threshold and check if a threshold is crossed.
3878 	 * If none of thresholds below usage is crossed, we read
3879 	 * only one element of the array here.
3880 	 */
3881 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3882 		eventfd_signal(t->entries[i].eventfd, 1);
3883 
3884 	/* i = current_threshold + 1 */
3885 	i++;
3886 
3887 	/*
3888 	 * Iterate forward over array of thresholds starting from
3889 	 * current_threshold+1 and check if a threshold is crossed.
3890 	 * If none of thresholds above usage is crossed, we read
3891 	 * only one element of the array here.
3892 	 */
3893 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3894 		eventfd_signal(t->entries[i].eventfd, 1);
3895 
3896 	/* Update current_threshold */
3897 	t->current_threshold = i - 1;
3898 unlock:
3899 	rcu_read_unlock();
3900 }
3901 
3902 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3903 {
3904 	while (memcg) {
3905 		__mem_cgroup_threshold(memcg, false);
3906 		if (do_memsw_account())
3907 			__mem_cgroup_threshold(memcg, true);
3908 
3909 		memcg = parent_mem_cgroup(memcg);
3910 	}
3911 }
3912 
3913 static int compare_thresholds(const void *a, const void *b)
3914 {
3915 	const struct mem_cgroup_threshold *_a = a;
3916 	const struct mem_cgroup_threshold *_b = b;
3917 
3918 	if (_a->threshold > _b->threshold)
3919 		return 1;
3920 
3921 	if (_a->threshold < _b->threshold)
3922 		return -1;
3923 
3924 	return 0;
3925 }
3926 
3927 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3928 {
3929 	struct mem_cgroup_eventfd_list *ev;
3930 
3931 	spin_lock(&memcg_oom_lock);
3932 
3933 	list_for_each_entry(ev, &memcg->oom_notify, list)
3934 		eventfd_signal(ev->eventfd, 1);
3935 
3936 	spin_unlock(&memcg_oom_lock);
3937 	return 0;
3938 }
3939 
3940 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3941 {
3942 	struct mem_cgroup *iter;
3943 
3944 	for_each_mem_cgroup_tree(iter, memcg)
3945 		mem_cgroup_oom_notify_cb(iter);
3946 }
3947 
3948 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3949 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3950 {
3951 	struct mem_cgroup_thresholds *thresholds;
3952 	struct mem_cgroup_threshold_ary *new;
3953 	unsigned long threshold;
3954 	unsigned long usage;
3955 	int i, size, ret;
3956 
3957 	ret = page_counter_memparse(args, "-1", &threshold);
3958 	if (ret)
3959 		return ret;
3960 
3961 	mutex_lock(&memcg->thresholds_lock);
3962 
3963 	if (type == _MEM) {
3964 		thresholds = &memcg->thresholds;
3965 		usage = mem_cgroup_usage(memcg, false);
3966 	} else if (type == _MEMSWAP) {
3967 		thresholds = &memcg->memsw_thresholds;
3968 		usage = mem_cgroup_usage(memcg, true);
3969 	} else
3970 		BUG();
3971 
3972 	/* Check if a threshold crossed before adding a new one */
3973 	if (thresholds->primary)
3974 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3975 
3976 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3977 
3978 	/* Allocate memory for new array of thresholds */
3979 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3980 	if (!new) {
3981 		ret = -ENOMEM;
3982 		goto unlock;
3983 	}
3984 	new->size = size;
3985 
3986 	/* Copy thresholds (if any) to new array */
3987 	if (thresholds->primary) {
3988 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3989 				sizeof(struct mem_cgroup_threshold));
3990 	}
3991 
3992 	/* Add new threshold */
3993 	new->entries[size - 1].eventfd = eventfd;
3994 	new->entries[size - 1].threshold = threshold;
3995 
3996 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3997 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3998 			compare_thresholds, NULL);
3999 
4000 	/* Find current threshold */
4001 	new->current_threshold = -1;
4002 	for (i = 0; i < size; i++) {
4003 		if (new->entries[i].threshold <= usage) {
4004 			/*
4005 			 * new->current_threshold will not be used until
4006 			 * rcu_assign_pointer(), so it's safe to increment
4007 			 * it here.
4008 			 */
4009 			++new->current_threshold;
4010 		} else
4011 			break;
4012 	}
4013 
4014 	/* Free old spare buffer and save old primary buffer as spare */
4015 	kfree(thresholds->spare);
4016 	thresholds->spare = thresholds->primary;
4017 
4018 	rcu_assign_pointer(thresholds->primary, new);
4019 
4020 	/* To be sure that nobody uses thresholds */
4021 	synchronize_rcu();
4022 
4023 unlock:
4024 	mutex_unlock(&memcg->thresholds_lock);
4025 
4026 	return ret;
4027 }
4028 
4029 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4030 	struct eventfd_ctx *eventfd, const char *args)
4031 {
4032 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4033 }
4034 
4035 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4036 	struct eventfd_ctx *eventfd, const char *args)
4037 {
4038 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4039 }
4040 
4041 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4042 	struct eventfd_ctx *eventfd, enum res_type type)
4043 {
4044 	struct mem_cgroup_thresholds *thresholds;
4045 	struct mem_cgroup_threshold_ary *new;
4046 	unsigned long usage;
4047 	int i, j, size;
4048 
4049 	mutex_lock(&memcg->thresholds_lock);
4050 
4051 	if (type == _MEM) {
4052 		thresholds = &memcg->thresholds;
4053 		usage = mem_cgroup_usage(memcg, false);
4054 	} else if (type == _MEMSWAP) {
4055 		thresholds = &memcg->memsw_thresholds;
4056 		usage = mem_cgroup_usage(memcg, true);
4057 	} else
4058 		BUG();
4059 
4060 	if (!thresholds->primary)
4061 		goto unlock;
4062 
4063 	/* Check if a threshold crossed before removing */
4064 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4065 
4066 	/* Calculate new number of threshold */
4067 	size = 0;
4068 	for (i = 0; i < thresholds->primary->size; i++) {
4069 		if (thresholds->primary->entries[i].eventfd != eventfd)
4070 			size++;
4071 	}
4072 
4073 	new = thresholds->spare;
4074 
4075 	/* Set thresholds array to NULL if we don't have thresholds */
4076 	if (!size) {
4077 		kfree(new);
4078 		new = NULL;
4079 		goto swap_buffers;
4080 	}
4081 
4082 	new->size = size;
4083 
4084 	/* Copy thresholds and find current threshold */
4085 	new->current_threshold = -1;
4086 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4087 		if (thresholds->primary->entries[i].eventfd == eventfd)
4088 			continue;
4089 
4090 		new->entries[j] = thresholds->primary->entries[i];
4091 		if (new->entries[j].threshold <= usage) {
4092 			/*
4093 			 * new->current_threshold will not be used
4094 			 * until rcu_assign_pointer(), so it's safe to increment
4095 			 * it here.
4096 			 */
4097 			++new->current_threshold;
4098 		}
4099 		j++;
4100 	}
4101 
4102 swap_buffers:
4103 	/* Swap primary and spare array */
4104 	thresholds->spare = thresholds->primary;
4105 
4106 	rcu_assign_pointer(thresholds->primary, new);
4107 
4108 	/* To be sure that nobody uses thresholds */
4109 	synchronize_rcu();
4110 
4111 	/* If all events are unregistered, free the spare array */
4112 	if (!new) {
4113 		kfree(thresholds->spare);
4114 		thresholds->spare = NULL;
4115 	}
4116 unlock:
4117 	mutex_unlock(&memcg->thresholds_lock);
4118 }
4119 
4120 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4121 	struct eventfd_ctx *eventfd)
4122 {
4123 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4124 }
4125 
4126 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4127 	struct eventfd_ctx *eventfd)
4128 {
4129 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4130 }
4131 
4132 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4133 	struct eventfd_ctx *eventfd, const char *args)
4134 {
4135 	struct mem_cgroup_eventfd_list *event;
4136 
4137 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4138 	if (!event)
4139 		return -ENOMEM;
4140 
4141 	spin_lock(&memcg_oom_lock);
4142 
4143 	event->eventfd = eventfd;
4144 	list_add(&event->list, &memcg->oom_notify);
4145 
4146 	/* already in OOM ? */
4147 	if (memcg->under_oom)
4148 		eventfd_signal(eventfd, 1);
4149 	spin_unlock(&memcg_oom_lock);
4150 
4151 	return 0;
4152 }
4153 
4154 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4155 	struct eventfd_ctx *eventfd)
4156 {
4157 	struct mem_cgroup_eventfd_list *ev, *tmp;
4158 
4159 	spin_lock(&memcg_oom_lock);
4160 
4161 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4162 		if (ev->eventfd == eventfd) {
4163 			list_del(&ev->list);
4164 			kfree(ev);
4165 		}
4166 	}
4167 
4168 	spin_unlock(&memcg_oom_lock);
4169 }
4170 
4171 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4172 {
4173 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4174 
4175 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4176 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4177 	seq_printf(sf, "oom_kill %lu\n",
4178 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4179 	return 0;
4180 }
4181 
4182 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4183 	struct cftype *cft, u64 val)
4184 {
4185 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4186 
4187 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4188 	if (!css->parent || !((val == 0) || (val == 1)))
4189 		return -EINVAL;
4190 
4191 	memcg->oom_kill_disable = val;
4192 	if (!val)
4193 		memcg_oom_recover(memcg);
4194 
4195 	return 0;
4196 }
4197 
4198 #ifdef CONFIG_CGROUP_WRITEBACK
4199 
4200 #include <trace/events/writeback.h>
4201 
4202 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4203 {
4204 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4205 }
4206 
4207 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4208 {
4209 	wb_domain_exit(&memcg->cgwb_domain);
4210 }
4211 
4212 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4213 {
4214 	wb_domain_size_changed(&memcg->cgwb_domain);
4215 }
4216 
4217 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4218 {
4219 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4220 
4221 	if (!memcg->css.parent)
4222 		return NULL;
4223 
4224 	return &memcg->cgwb_domain;
4225 }
4226 
4227 /*
4228  * idx can be of type enum memcg_stat_item or node_stat_item.
4229  * Keep in sync with memcg_exact_page().
4230  */
4231 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4232 {
4233 	long x = atomic_long_read(&memcg->vmstats[idx]);
4234 	int cpu;
4235 
4236 	for_each_online_cpu(cpu)
4237 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4238 	if (x < 0)
4239 		x = 0;
4240 	return x;
4241 }
4242 
4243 /**
4244  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4245  * @wb: bdi_writeback in question
4246  * @pfilepages: out parameter for number of file pages
4247  * @pheadroom: out parameter for number of allocatable pages according to memcg
4248  * @pdirty: out parameter for number of dirty pages
4249  * @pwriteback: out parameter for number of pages under writeback
4250  *
4251  * Determine the numbers of file, headroom, dirty, and writeback pages in
4252  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4253  * is a bit more involved.
4254  *
4255  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4256  * headroom is calculated as the lowest headroom of itself and the
4257  * ancestors.  Note that this doesn't consider the actual amount of
4258  * available memory in the system.  The caller should further cap
4259  * *@pheadroom accordingly.
4260  */
4261 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4262 			 unsigned long *pheadroom, unsigned long *pdirty,
4263 			 unsigned long *pwriteback)
4264 {
4265 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4266 	struct mem_cgroup *parent;
4267 
4268 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4269 
4270 	/* this should eventually include NR_UNSTABLE_NFS */
4271 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4272 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4273 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4274 	*pheadroom = PAGE_COUNTER_MAX;
4275 
4276 	while ((parent = parent_mem_cgroup(memcg))) {
4277 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4278 		unsigned long used = page_counter_read(&memcg->memory);
4279 
4280 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4281 		memcg = parent;
4282 	}
4283 }
4284 
4285 /*
4286  * Foreign dirty flushing
4287  *
4288  * There's an inherent mismatch between memcg and writeback.  The former
4289  * trackes ownership per-page while the latter per-inode.  This was a
4290  * deliberate design decision because honoring per-page ownership in the
4291  * writeback path is complicated, may lead to higher CPU and IO overheads
4292  * and deemed unnecessary given that write-sharing an inode across
4293  * different cgroups isn't a common use-case.
4294  *
4295  * Combined with inode majority-writer ownership switching, this works well
4296  * enough in most cases but there are some pathological cases.  For
4297  * example, let's say there are two cgroups A and B which keep writing to
4298  * different but confined parts of the same inode.  B owns the inode and
4299  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4300  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4301  * triggering background writeback.  A will be slowed down without a way to
4302  * make writeback of the dirty pages happen.
4303  *
4304  * Conditions like the above can lead to a cgroup getting repatedly and
4305  * severely throttled after making some progress after each
4306  * dirty_expire_interval while the underyling IO device is almost
4307  * completely idle.
4308  *
4309  * Solving this problem completely requires matching the ownership tracking
4310  * granularities between memcg and writeback in either direction.  However,
4311  * the more egregious behaviors can be avoided by simply remembering the
4312  * most recent foreign dirtying events and initiating remote flushes on
4313  * them when local writeback isn't enough to keep the memory clean enough.
4314  *
4315  * The following two functions implement such mechanism.  When a foreign
4316  * page - a page whose memcg and writeback ownerships don't match - is
4317  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4318  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4319  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4320  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4321  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4322  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4323  * limited to MEMCG_CGWB_FRN_CNT.
4324  *
4325  * The mechanism only remembers IDs and doesn't hold any object references.
4326  * As being wrong occasionally doesn't matter, updates and accesses to the
4327  * records are lockless and racy.
4328  */
4329 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4330 					     struct bdi_writeback *wb)
4331 {
4332 	struct mem_cgroup *memcg = page->mem_cgroup;
4333 	struct memcg_cgwb_frn *frn;
4334 	u64 now = get_jiffies_64();
4335 	u64 oldest_at = now;
4336 	int oldest = -1;
4337 	int i;
4338 
4339 	trace_track_foreign_dirty(page, wb);
4340 
4341 	/*
4342 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4343 	 * using it.  If not replace the oldest one which isn't being
4344 	 * written out.
4345 	 */
4346 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4347 		frn = &memcg->cgwb_frn[i];
4348 		if (frn->bdi_id == wb->bdi->id &&
4349 		    frn->memcg_id == wb->memcg_css->id)
4350 			break;
4351 		if (time_before64(frn->at, oldest_at) &&
4352 		    atomic_read(&frn->done.cnt) == 1) {
4353 			oldest = i;
4354 			oldest_at = frn->at;
4355 		}
4356 	}
4357 
4358 	if (i < MEMCG_CGWB_FRN_CNT) {
4359 		/*
4360 		 * Re-using an existing one.  Update timestamp lazily to
4361 		 * avoid making the cacheline hot.  We want them to be
4362 		 * reasonably up-to-date and significantly shorter than
4363 		 * dirty_expire_interval as that's what expires the record.
4364 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4365 		 */
4366 		unsigned long update_intv =
4367 			min_t(unsigned long, HZ,
4368 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4369 
4370 		if (time_before64(frn->at, now - update_intv))
4371 			frn->at = now;
4372 	} else if (oldest >= 0) {
4373 		/* replace the oldest free one */
4374 		frn = &memcg->cgwb_frn[oldest];
4375 		frn->bdi_id = wb->bdi->id;
4376 		frn->memcg_id = wb->memcg_css->id;
4377 		frn->at = now;
4378 	}
4379 }
4380 
4381 /* issue foreign writeback flushes for recorded foreign dirtying events */
4382 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4383 {
4384 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4385 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4386 	u64 now = jiffies_64;
4387 	int i;
4388 
4389 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4390 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4391 
4392 		/*
4393 		 * If the record is older than dirty_expire_interval,
4394 		 * writeback on it has already started.  No need to kick it
4395 		 * off again.  Also, don't start a new one if there's
4396 		 * already one in flight.
4397 		 */
4398 		if (time_after64(frn->at, now - intv) &&
4399 		    atomic_read(&frn->done.cnt) == 1) {
4400 			frn->at = 0;
4401 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4402 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4403 					       WB_REASON_FOREIGN_FLUSH,
4404 					       &frn->done);
4405 		}
4406 	}
4407 }
4408 
4409 #else	/* CONFIG_CGROUP_WRITEBACK */
4410 
4411 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4412 {
4413 	return 0;
4414 }
4415 
4416 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4417 {
4418 }
4419 
4420 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4421 {
4422 }
4423 
4424 #endif	/* CONFIG_CGROUP_WRITEBACK */
4425 
4426 /*
4427  * DO NOT USE IN NEW FILES.
4428  *
4429  * "cgroup.event_control" implementation.
4430  *
4431  * This is way over-engineered.  It tries to support fully configurable
4432  * events for each user.  Such level of flexibility is completely
4433  * unnecessary especially in the light of the planned unified hierarchy.
4434  *
4435  * Please deprecate this and replace with something simpler if at all
4436  * possible.
4437  */
4438 
4439 /*
4440  * Unregister event and free resources.
4441  *
4442  * Gets called from workqueue.
4443  */
4444 static void memcg_event_remove(struct work_struct *work)
4445 {
4446 	struct mem_cgroup_event *event =
4447 		container_of(work, struct mem_cgroup_event, remove);
4448 	struct mem_cgroup *memcg = event->memcg;
4449 
4450 	remove_wait_queue(event->wqh, &event->wait);
4451 
4452 	event->unregister_event(memcg, event->eventfd);
4453 
4454 	/* Notify userspace the event is going away. */
4455 	eventfd_signal(event->eventfd, 1);
4456 
4457 	eventfd_ctx_put(event->eventfd);
4458 	kfree(event);
4459 	css_put(&memcg->css);
4460 }
4461 
4462 /*
4463  * Gets called on EPOLLHUP on eventfd when user closes it.
4464  *
4465  * Called with wqh->lock held and interrupts disabled.
4466  */
4467 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4468 			    int sync, void *key)
4469 {
4470 	struct mem_cgroup_event *event =
4471 		container_of(wait, struct mem_cgroup_event, wait);
4472 	struct mem_cgroup *memcg = event->memcg;
4473 	__poll_t flags = key_to_poll(key);
4474 
4475 	if (flags & EPOLLHUP) {
4476 		/*
4477 		 * If the event has been detached at cgroup removal, we
4478 		 * can simply return knowing the other side will cleanup
4479 		 * for us.
4480 		 *
4481 		 * We can't race against event freeing since the other
4482 		 * side will require wqh->lock via remove_wait_queue(),
4483 		 * which we hold.
4484 		 */
4485 		spin_lock(&memcg->event_list_lock);
4486 		if (!list_empty(&event->list)) {
4487 			list_del_init(&event->list);
4488 			/*
4489 			 * We are in atomic context, but cgroup_event_remove()
4490 			 * may sleep, so we have to call it in workqueue.
4491 			 */
4492 			schedule_work(&event->remove);
4493 		}
4494 		spin_unlock(&memcg->event_list_lock);
4495 	}
4496 
4497 	return 0;
4498 }
4499 
4500 static void memcg_event_ptable_queue_proc(struct file *file,
4501 		wait_queue_head_t *wqh, poll_table *pt)
4502 {
4503 	struct mem_cgroup_event *event =
4504 		container_of(pt, struct mem_cgroup_event, pt);
4505 
4506 	event->wqh = wqh;
4507 	add_wait_queue(wqh, &event->wait);
4508 }
4509 
4510 /*
4511  * DO NOT USE IN NEW FILES.
4512  *
4513  * Parse input and register new cgroup event handler.
4514  *
4515  * Input must be in format '<event_fd> <control_fd> <args>'.
4516  * Interpretation of args is defined by control file implementation.
4517  */
4518 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4519 					 char *buf, size_t nbytes, loff_t off)
4520 {
4521 	struct cgroup_subsys_state *css = of_css(of);
4522 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4523 	struct mem_cgroup_event *event;
4524 	struct cgroup_subsys_state *cfile_css;
4525 	unsigned int efd, cfd;
4526 	struct fd efile;
4527 	struct fd cfile;
4528 	const char *name;
4529 	char *endp;
4530 	int ret;
4531 
4532 	buf = strstrip(buf);
4533 
4534 	efd = simple_strtoul(buf, &endp, 10);
4535 	if (*endp != ' ')
4536 		return -EINVAL;
4537 	buf = endp + 1;
4538 
4539 	cfd = simple_strtoul(buf, &endp, 10);
4540 	if ((*endp != ' ') && (*endp != '\0'))
4541 		return -EINVAL;
4542 	buf = endp + 1;
4543 
4544 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4545 	if (!event)
4546 		return -ENOMEM;
4547 
4548 	event->memcg = memcg;
4549 	INIT_LIST_HEAD(&event->list);
4550 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4551 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4552 	INIT_WORK(&event->remove, memcg_event_remove);
4553 
4554 	efile = fdget(efd);
4555 	if (!efile.file) {
4556 		ret = -EBADF;
4557 		goto out_kfree;
4558 	}
4559 
4560 	event->eventfd = eventfd_ctx_fileget(efile.file);
4561 	if (IS_ERR(event->eventfd)) {
4562 		ret = PTR_ERR(event->eventfd);
4563 		goto out_put_efile;
4564 	}
4565 
4566 	cfile = fdget(cfd);
4567 	if (!cfile.file) {
4568 		ret = -EBADF;
4569 		goto out_put_eventfd;
4570 	}
4571 
4572 	/* the process need read permission on control file */
4573 	/* AV: shouldn't we check that it's been opened for read instead? */
4574 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4575 	if (ret < 0)
4576 		goto out_put_cfile;
4577 
4578 	/*
4579 	 * Determine the event callbacks and set them in @event.  This used
4580 	 * to be done via struct cftype but cgroup core no longer knows
4581 	 * about these events.  The following is crude but the whole thing
4582 	 * is for compatibility anyway.
4583 	 *
4584 	 * DO NOT ADD NEW FILES.
4585 	 */
4586 	name = cfile.file->f_path.dentry->d_name.name;
4587 
4588 	if (!strcmp(name, "memory.usage_in_bytes")) {
4589 		event->register_event = mem_cgroup_usage_register_event;
4590 		event->unregister_event = mem_cgroup_usage_unregister_event;
4591 	} else if (!strcmp(name, "memory.oom_control")) {
4592 		event->register_event = mem_cgroup_oom_register_event;
4593 		event->unregister_event = mem_cgroup_oom_unregister_event;
4594 	} else if (!strcmp(name, "memory.pressure_level")) {
4595 		event->register_event = vmpressure_register_event;
4596 		event->unregister_event = vmpressure_unregister_event;
4597 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4598 		event->register_event = memsw_cgroup_usage_register_event;
4599 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4600 	} else {
4601 		ret = -EINVAL;
4602 		goto out_put_cfile;
4603 	}
4604 
4605 	/*
4606 	 * Verify @cfile should belong to @css.  Also, remaining events are
4607 	 * automatically removed on cgroup destruction but the removal is
4608 	 * asynchronous, so take an extra ref on @css.
4609 	 */
4610 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4611 					       &memory_cgrp_subsys);
4612 	ret = -EINVAL;
4613 	if (IS_ERR(cfile_css))
4614 		goto out_put_cfile;
4615 	if (cfile_css != css) {
4616 		css_put(cfile_css);
4617 		goto out_put_cfile;
4618 	}
4619 
4620 	ret = event->register_event(memcg, event->eventfd, buf);
4621 	if (ret)
4622 		goto out_put_css;
4623 
4624 	vfs_poll(efile.file, &event->pt);
4625 
4626 	spin_lock(&memcg->event_list_lock);
4627 	list_add(&event->list, &memcg->event_list);
4628 	spin_unlock(&memcg->event_list_lock);
4629 
4630 	fdput(cfile);
4631 	fdput(efile);
4632 
4633 	return nbytes;
4634 
4635 out_put_css:
4636 	css_put(css);
4637 out_put_cfile:
4638 	fdput(cfile);
4639 out_put_eventfd:
4640 	eventfd_ctx_put(event->eventfd);
4641 out_put_efile:
4642 	fdput(efile);
4643 out_kfree:
4644 	kfree(event);
4645 
4646 	return ret;
4647 }
4648 
4649 static struct cftype mem_cgroup_legacy_files[] = {
4650 	{
4651 		.name = "usage_in_bytes",
4652 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4653 		.read_u64 = mem_cgroup_read_u64,
4654 	},
4655 	{
4656 		.name = "max_usage_in_bytes",
4657 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4658 		.write = mem_cgroup_reset,
4659 		.read_u64 = mem_cgroup_read_u64,
4660 	},
4661 	{
4662 		.name = "limit_in_bytes",
4663 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4664 		.write = mem_cgroup_write,
4665 		.read_u64 = mem_cgroup_read_u64,
4666 	},
4667 	{
4668 		.name = "soft_limit_in_bytes",
4669 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4670 		.write = mem_cgroup_write,
4671 		.read_u64 = mem_cgroup_read_u64,
4672 	},
4673 	{
4674 		.name = "failcnt",
4675 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4676 		.write = mem_cgroup_reset,
4677 		.read_u64 = mem_cgroup_read_u64,
4678 	},
4679 	{
4680 		.name = "stat",
4681 		.seq_show = memcg_stat_show,
4682 	},
4683 	{
4684 		.name = "force_empty",
4685 		.write = mem_cgroup_force_empty_write,
4686 	},
4687 	{
4688 		.name = "use_hierarchy",
4689 		.write_u64 = mem_cgroup_hierarchy_write,
4690 		.read_u64 = mem_cgroup_hierarchy_read,
4691 	},
4692 	{
4693 		.name = "cgroup.event_control",		/* XXX: for compat */
4694 		.write = memcg_write_event_control,
4695 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4696 	},
4697 	{
4698 		.name = "swappiness",
4699 		.read_u64 = mem_cgroup_swappiness_read,
4700 		.write_u64 = mem_cgroup_swappiness_write,
4701 	},
4702 	{
4703 		.name = "move_charge_at_immigrate",
4704 		.read_u64 = mem_cgroup_move_charge_read,
4705 		.write_u64 = mem_cgroup_move_charge_write,
4706 	},
4707 	{
4708 		.name = "oom_control",
4709 		.seq_show = mem_cgroup_oom_control_read,
4710 		.write_u64 = mem_cgroup_oom_control_write,
4711 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4712 	},
4713 	{
4714 		.name = "pressure_level",
4715 	},
4716 #ifdef CONFIG_NUMA
4717 	{
4718 		.name = "numa_stat",
4719 		.seq_show = memcg_numa_stat_show,
4720 	},
4721 #endif
4722 	{
4723 		.name = "kmem.limit_in_bytes",
4724 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4725 		.write = mem_cgroup_write,
4726 		.read_u64 = mem_cgroup_read_u64,
4727 	},
4728 	{
4729 		.name = "kmem.usage_in_bytes",
4730 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4731 		.read_u64 = mem_cgroup_read_u64,
4732 	},
4733 	{
4734 		.name = "kmem.failcnt",
4735 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4736 		.write = mem_cgroup_reset,
4737 		.read_u64 = mem_cgroup_read_u64,
4738 	},
4739 	{
4740 		.name = "kmem.max_usage_in_bytes",
4741 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4742 		.write = mem_cgroup_reset,
4743 		.read_u64 = mem_cgroup_read_u64,
4744 	},
4745 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4746 	{
4747 		.name = "kmem.slabinfo",
4748 		.seq_start = memcg_slab_start,
4749 		.seq_next = memcg_slab_next,
4750 		.seq_stop = memcg_slab_stop,
4751 		.seq_show = memcg_slab_show,
4752 	},
4753 #endif
4754 	{
4755 		.name = "kmem.tcp.limit_in_bytes",
4756 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4757 		.write = mem_cgroup_write,
4758 		.read_u64 = mem_cgroup_read_u64,
4759 	},
4760 	{
4761 		.name = "kmem.tcp.usage_in_bytes",
4762 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4763 		.read_u64 = mem_cgroup_read_u64,
4764 	},
4765 	{
4766 		.name = "kmem.tcp.failcnt",
4767 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4768 		.write = mem_cgroup_reset,
4769 		.read_u64 = mem_cgroup_read_u64,
4770 	},
4771 	{
4772 		.name = "kmem.tcp.max_usage_in_bytes",
4773 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4774 		.write = mem_cgroup_reset,
4775 		.read_u64 = mem_cgroup_read_u64,
4776 	},
4777 	{ },	/* terminate */
4778 };
4779 
4780 /*
4781  * Private memory cgroup IDR
4782  *
4783  * Swap-out records and page cache shadow entries need to store memcg
4784  * references in constrained space, so we maintain an ID space that is
4785  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4786  * memory-controlled cgroups to 64k.
4787  *
4788  * However, there usually are many references to the oflline CSS after
4789  * the cgroup has been destroyed, such as page cache or reclaimable
4790  * slab objects, that don't need to hang on to the ID. We want to keep
4791  * those dead CSS from occupying IDs, or we might quickly exhaust the
4792  * relatively small ID space and prevent the creation of new cgroups
4793  * even when there are much fewer than 64k cgroups - possibly none.
4794  *
4795  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4796  * be freed and recycled when it's no longer needed, which is usually
4797  * when the CSS is offlined.
4798  *
4799  * The only exception to that are records of swapped out tmpfs/shmem
4800  * pages that need to be attributed to live ancestors on swapin. But
4801  * those references are manageable from userspace.
4802  */
4803 
4804 static DEFINE_IDR(mem_cgroup_idr);
4805 
4806 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4807 {
4808 	if (memcg->id.id > 0) {
4809 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4810 		memcg->id.id = 0;
4811 	}
4812 }
4813 
4814 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4815 {
4816 	refcount_add(n, &memcg->id.ref);
4817 }
4818 
4819 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4820 {
4821 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4822 		mem_cgroup_id_remove(memcg);
4823 
4824 		/* Memcg ID pins CSS */
4825 		css_put(&memcg->css);
4826 	}
4827 }
4828 
4829 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4830 {
4831 	mem_cgroup_id_put_many(memcg, 1);
4832 }
4833 
4834 /**
4835  * mem_cgroup_from_id - look up a memcg from a memcg id
4836  * @id: the memcg id to look up
4837  *
4838  * Caller must hold rcu_read_lock().
4839  */
4840 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4841 {
4842 	WARN_ON_ONCE(!rcu_read_lock_held());
4843 	return idr_find(&mem_cgroup_idr, id);
4844 }
4845 
4846 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4847 {
4848 	struct mem_cgroup_per_node *pn;
4849 	int tmp = node;
4850 	/*
4851 	 * This routine is called against possible nodes.
4852 	 * But it's BUG to call kmalloc() against offline node.
4853 	 *
4854 	 * TODO: this routine can waste much memory for nodes which will
4855 	 *       never be onlined. It's better to use memory hotplug callback
4856 	 *       function.
4857 	 */
4858 	if (!node_state(node, N_NORMAL_MEMORY))
4859 		tmp = -1;
4860 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4861 	if (!pn)
4862 		return 1;
4863 
4864 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4865 	if (!pn->lruvec_stat_local) {
4866 		kfree(pn);
4867 		return 1;
4868 	}
4869 
4870 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4871 	if (!pn->lruvec_stat_cpu) {
4872 		free_percpu(pn->lruvec_stat_local);
4873 		kfree(pn);
4874 		return 1;
4875 	}
4876 
4877 	lruvec_init(&pn->lruvec);
4878 	pn->usage_in_excess = 0;
4879 	pn->on_tree = false;
4880 	pn->memcg = memcg;
4881 
4882 	memcg->nodeinfo[node] = pn;
4883 	return 0;
4884 }
4885 
4886 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4887 {
4888 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4889 
4890 	if (!pn)
4891 		return;
4892 
4893 	free_percpu(pn->lruvec_stat_cpu);
4894 	free_percpu(pn->lruvec_stat_local);
4895 	kfree(pn);
4896 }
4897 
4898 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4899 {
4900 	int node;
4901 
4902 	for_each_node(node)
4903 		free_mem_cgroup_per_node_info(memcg, node);
4904 	free_percpu(memcg->vmstats_percpu);
4905 	free_percpu(memcg->vmstats_local);
4906 	kfree(memcg);
4907 }
4908 
4909 static void mem_cgroup_free(struct mem_cgroup *memcg)
4910 {
4911 	memcg_wb_domain_exit(memcg);
4912 	/*
4913 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
4914 	 * on parent's and all ancestor levels.
4915 	 */
4916 	memcg_flush_percpu_vmstats(memcg, false);
4917 	memcg_flush_percpu_vmevents(memcg);
4918 	__mem_cgroup_free(memcg);
4919 }
4920 
4921 static struct mem_cgroup *mem_cgroup_alloc(void)
4922 {
4923 	struct mem_cgroup *memcg;
4924 	unsigned int size;
4925 	int node;
4926 	int __maybe_unused i;
4927 
4928 	size = sizeof(struct mem_cgroup);
4929 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4930 
4931 	memcg = kzalloc(size, GFP_KERNEL);
4932 	if (!memcg)
4933 		return NULL;
4934 
4935 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4936 				 1, MEM_CGROUP_ID_MAX,
4937 				 GFP_KERNEL);
4938 	if (memcg->id.id < 0)
4939 		goto fail;
4940 
4941 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4942 	if (!memcg->vmstats_local)
4943 		goto fail;
4944 
4945 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4946 	if (!memcg->vmstats_percpu)
4947 		goto fail;
4948 
4949 	for_each_node(node)
4950 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4951 			goto fail;
4952 
4953 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4954 		goto fail;
4955 
4956 	INIT_WORK(&memcg->high_work, high_work_func);
4957 	INIT_LIST_HEAD(&memcg->oom_notify);
4958 	mutex_init(&memcg->thresholds_lock);
4959 	spin_lock_init(&memcg->move_lock);
4960 	vmpressure_init(&memcg->vmpressure);
4961 	INIT_LIST_HEAD(&memcg->event_list);
4962 	spin_lock_init(&memcg->event_list_lock);
4963 	memcg->socket_pressure = jiffies;
4964 #ifdef CONFIG_MEMCG_KMEM
4965 	memcg->kmemcg_id = -1;
4966 #endif
4967 #ifdef CONFIG_CGROUP_WRITEBACK
4968 	INIT_LIST_HEAD(&memcg->cgwb_list);
4969 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4970 		memcg->cgwb_frn[i].done =
4971 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4972 #endif
4973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4974 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
4975 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
4976 	memcg->deferred_split_queue.split_queue_len = 0;
4977 #endif
4978 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4979 	return memcg;
4980 fail:
4981 	mem_cgroup_id_remove(memcg);
4982 	__mem_cgroup_free(memcg);
4983 	return NULL;
4984 }
4985 
4986 static struct cgroup_subsys_state * __ref
4987 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4988 {
4989 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4990 	struct mem_cgroup *memcg;
4991 	long error = -ENOMEM;
4992 
4993 	memcg = mem_cgroup_alloc();
4994 	if (!memcg)
4995 		return ERR_PTR(error);
4996 
4997 	memcg->high = PAGE_COUNTER_MAX;
4998 	memcg->soft_limit = PAGE_COUNTER_MAX;
4999 	if (parent) {
5000 		memcg->swappiness = mem_cgroup_swappiness(parent);
5001 		memcg->oom_kill_disable = parent->oom_kill_disable;
5002 	}
5003 	if (parent && parent->use_hierarchy) {
5004 		memcg->use_hierarchy = true;
5005 		page_counter_init(&memcg->memory, &parent->memory);
5006 		page_counter_init(&memcg->swap, &parent->swap);
5007 		page_counter_init(&memcg->memsw, &parent->memsw);
5008 		page_counter_init(&memcg->kmem, &parent->kmem);
5009 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5010 	} else {
5011 		page_counter_init(&memcg->memory, NULL);
5012 		page_counter_init(&memcg->swap, NULL);
5013 		page_counter_init(&memcg->memsw, NULL);
5014 		page_counter_init(&memcg->kmem, NULL);
5015 		page_counter_init(&memcg->tcpmem, NULL);
5016 		/*
5017 		 * Deeper hierachy with use_hierarchy == false doesn't make
5018 		 * much sense so let cgroup subsystem know about this
5019 		 * unfortunate state in our controller.
5020 		 */
5021 		if (parent != root_mem_cgroup)
5022 			memory_cgrp_subsys.broken_hierarchy = true;
5023 	}
5024 
5025 	/* The following stuff does not apply to the root */
5026 	if (!parent) {
5027 #ifdef CONFIG_MEMCG_KMEM
5028 		INIT_LIST_HEAD(&memcg->kmem_caches);
5029 #endif
5030 		root_mem_cgroup = memcg;
5031 		return &memcg->css;
5032 	}
5033 
5034 	error = memcg_online_kmem(memcg);
5035 	if (error)
5036 		goto fail;
5037 
5038 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5039 		static_branch_inc(&memcg_sockets_enabled_key);
5040 
5041 	return &memcg->css;
5042 fail:
5043 	mem_cgroup_id_remove(memcg);
5044 	mem_cgroup_free(memcg);
5045 	return ERR_PTR(-ENOMEM);
5046 }
5047 
5048 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5049 {
5050 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5051 
5052 	/*
5053 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5054 	 * by the time the maps are allocated. So, we allocate maps
5055 	 * here, when for_each_mem_cgroup() can't skip it.
5056 	 */
5057 	if (memcg_alloc_shrinker_maps(memcg)) {
5058 		mem_cgroup_id_remove(memcg);
5059 		return -ENOMEM;
5060 	}
5061 
5062 	/* Online state pins memcg ID, memcg ID pins CSS */
5063 	refcount_set(&memcg->id.ref, 1);
5064 	css_get(css);
5065 	return 0;
5066 }
5067 
5068 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5069 {
5070 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5071 	struct mem_cgroup_event *event, *tmp;
5072 
5073 	/*
5074 	 * Unregister events and notify userspace.
5075 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5076 	 * directory to avoid race between userspace and kernelspace.
5077 	 */
5078 	spin_lock(&memcg->event_list_lock);
5079 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5080 		list_del_init(&event->list);
5081 		schedule_work(&event->remove);
5082 	}
5083 	spin_unlock(&memcg->event_list_lock);
5084 
5085 	page_counter_set_min(&memcg->memory, 0);
5086 	page_counter_set_low(&memcg->memory, 0);
5087 
5088 	memcg_offline_kmem(memcg);
5089 	wb_memcg_offline(memcg);
5090 
5091 	drain_all_stock(memcg);
5092 
5093 	mem_cgroup_id_put(memcg);
5094 }
5095 
5096 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5097 {
5098 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5099 
5100 	invalidate_reclaim_iterators(memcg);
5101 }
5102 
5103 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5104 {
5105 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5106 	int __maybe_unused i;
5107 
5108 #ifdef CONFIG_CGROUP_WRITEBACK
5109 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5110 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5111 #endif
5112 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5113 		static_branch_dec(&memcg_sockets_enabled_key);
5114 
5115 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5116 		static_branch_dec(&memcg_sockets_enabled_key);
5117 
5118 	vmpressure_cleanup(&memcg->vmpressure);
5119 	cancel_work_sync(&memcg->high_work);
5120 	mem_cgroup_remove_from_trees(memcg);
5121 	memcg_free_shrinker_maps(memcg);
5122 	memcg_free_kmem(memcg);
5123 	mem_cgroup_free(memcg);
5124 }
5125 
5126 /**
5127  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5128  * @css: the target css
5129  *
5130  * Reset the states of the mem_cgroup associated with @css.  This is
5131  * invoked when the userland requests disabling on the default hierarchy
5132  * but the memcg is pinned through dependency.  The memcg should stop
5133  * applying policies and should revert to the vanilla state as it may be
5134  * made visible again.
5135  *
5136  * The current implementation only resets the essential configurations.
5137  * This needs to be expanded to cover all the visible parts.
5138  */
5139 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5140 {
5141 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5142 
5143 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5144 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5145 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5146 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5147 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5148 	page_counter_set_min(&memcg->memory, 0);
5149 	page_counter_set_low(&memcg->memory, 0);
5150 	memcg->high = PAGE_COUNTER_MAX;
5151 	memcg->soft_limit = PAGE_COUNTER_MAX;
5152 	memcg_wb_domain_size_changed(memcg);
5153 }
5154 
5155 #ifdef CONFIG_MMU
5156 /* Handlers for move charge at task migration. */
5157 static int mem_cgroup_do_precharge(unsigned long count)
5158 {
5159 	int ret;
5160 
5161 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5162 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5163 	if (!ret) {
5164 		mc.precharge += count;
5165 		return ret;
5166 	}
5167 
5168 	/* Try charges one by one with reclaim, but do not retry */
5169 	while (count--) {
5170 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5171 		if (ret)
5172 			return ret;
5173 		mc.precharge++;
5174 		cond_resched();
5175 	}
5176 	return 0;
5177 }
5178 
5179 union mc_target {
5180 	struct page	*page;
5181 	swp_entry_t	ent;
5182 };
5183 
5184 enum mc_target_type {
5185 	MC_TARGET_NONE = 0,
5186 	MC_TARGET_PAGE,
5187 	MC_TARGET_SWAP,
5188 	MC_TARGET_DEVICE,
5189 };
5190 
5191 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5192 						unsigned long addr, pte_t ptent)
5193 {
5194 	struct page *page = vm_normal_page(vma, addr, ptent);
5195 
5196 	if (!page || !page_mapped(page))
5197 		return NULL;
5198 	if (PageAnon(page)) {
5199 		if (!(mc.flags & MOVE_ANON))
5200 			return NULL;
5201 	} else {
5202 		if (!(mc.flags & MOVE_FILE))
5203 			return NULL;
5204 	}
5205 	if (!get_page_unless_zero(page))
5206 		return NULL;
5207 
5208 	return page;
5209 }
5210 
5211 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5212 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5213 			pte_t ptent, swp_entry_t *entry)
5214 {
5215 	struct page *page = NULL;
5216 	swp_entry_t ent = pte_to_swp_entry(ptent);
5217 
5218 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5219 		return NULL;
5220 
5221 	/*
5222 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5223 	 * a device and because they are not accessible by CPU they are store
5224 	 * as special swap entry in the CPU page table.
5225 	 */
5226 	if (is_device_private_entry(ent)) {
5227 		page = device_private_entry_to_page(ent);
5228 		/*
5229 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5230 		 * a refcount of 1 when free (unlike normal page)
5231 		 */
5232 		if (!page_ref_add_unless(page, 1, 1))
5233 			return NULL;
5234 		return page;
5235 	}
5236 
5237 	/*
5238 	 * Because lookup_swap_cache() updates some statistics counter,
5239 	 * we call find_get_page() with swapper_space directly.
5240 	 */
5241 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5242 	if (do_memsw_account())
5243 		entry->val = ent.val;
5244 
5245 	return page;
5246 }
5247 #else
5248 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5249 			pte_t ptent, swp_entry_t *entry)
5250 {
5251 	return NULL;
5252 }
5253 #endif
5254 
5255 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5256 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5257 {
5258 	struct page *page = NULL;
5259 	struct address_space *mapping;
5260 	pgoff_t pgoff;
5261 
5262 	if (!vma->vm_file) /* anonymous vma */
5263 		return NULL;
5264 	if (!(mc.flags & MOVE_FILE))
5265 		return NULL;
5266 
5267 	mapping = vma->vm_file->f_mapping;
5268 	pgoff = linear_page_index(vma, addr);
5269 
5270 	/* page is moved even if it's not RSS of this task(page-faulted). */
5271 #ifdef CONFIG_SWAP
5272 	/* shmem/tmpfs may report page out on swap: account for that too. */
5273 	if (shmem_mapping(mapping)) {
5274 		page = find_get_entry(mapping, pgoff);
5275 		if (xa_is_value(page)) {
5276 			swp_entry_t swp = radix_to_swp_entry(page);
5277 			if (do_memsw_account())
5278 				*entry = swp;
5279 			page = find_get_page(swap_address_space(swp),
5280 					     swp_offset(swp));
5281 		}
5282 	} else
5283 		page = find_get_page(mapping, pgoff);
5284 #else
5285 	page = find_get_page(mapping, pgoff);
5286 #endif
5287 	return page;
5288 }
5289 
5290 /**
5291  * mem_cgroup_move_account - move account of the page
5292  * @page: the page
5293  * @compound: charge the page as compound or small page
5294  * @from: mem_cgroup which the page is moved from.
5295  * @to:	mem_cgroup which the page is moved to. @from != @to.
5296  *
5297  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5298  *
5299  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5300  * from old cgroup.
5301  */
5302 static int mem_cgroup_move_account(struct page *page,
5303 				   bool compound,
5304 				   struct mem_cgroup *from,
5305 				   struct mem_cgroup *to)
5306 {
5307 	struct lruvec *from_vec, *to_vec;
5308 	struct pglist_data *pgdat;
5309 	unsigned long flags;
5310 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5311 	int ret;
5312 	bool anon;
5313 
5314 	VM_BUG_ON(from == to);
5315 	VM_BUG_ON_PAGE(PageLRU(page), page);
5316 	VM_BUG_ON(compound && !PageTransHuge(page));
5317 
5318 	/*
5319 	 * Prevent mem_cgroup_migrate() from looking at
5320 	 * page->mem_cgroup of its source page while we change it.
5321 	 */
5322 	ret = -EBUSY;
5323 	if (!trylock_page(page))
5324 		goto out;
5325 
5326 	ret = -EINVAL;
5327 	if (page->mem_cgroup != from)
5328 		goto out_unlock;
5329 
5330 	anon = PageAnon(page);
5331 
5332 	pgdat = page_pgdat(page);
5333 	from_vec = mem_cgroup_lruvec(from, pgdat);
5334 	to_vec = mem_cgroup_lruvec(to, pgdat);
5335 
5336 	spin_lock_irqsave(&from->move_lock, flags);
5337 
5338 	if (!anon && page_mapped(page)) {
5339 		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5340 		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5341 	}
5342 
5343 	/*
5344 	 * move_lock grabbed above and caller set from->moving_account, so
5345 	 * mod_memcg_page_state will serialize updates to PageDirty.
5346 	 * So mapping should be stable for dirty pages.
5347 	 */
5348 	if (!anon && PageDirty(page)) {
5349 		struct address_space *mapping = page_mapping(page);
5350 
5351 		if (mapping_cap_account_dirty(mapping)) {
5352 			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5353 			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5354 		}
5355 	}
5356 
5357 	if (PageWriteback(page)) {
5358 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5359 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5360 	}
5361 
5362 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5363 	if (compound && !list_empty(page_deferred_list(page))) {
5364 		spin_lock(&from->deferred_split_queue.split_queue_lock);
5365 		list_del_init(page_deferred_list(page));
5366 		from->deferred_split_queue.split_queue_len--;
5367 		spin_unlock(&from->deferred_split_queue.split_queue_lock);
5368 	}
5369 #endif
5370 	/*
5371 	 * It is safe to change page->mem_cgroup here because the page
5372 	 * is referenced, charged, and isolated - we can't race with
5373 	 * uncharging, charging, migration, or LRU putback.
5374 	 */
5375 
5376 	/* caller should have done css_get */
5377 	page->mem_cgroup = to;
5378 
5379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5380 	if (compound && list_empty(page_deferred_list(page))) {
5381 		spin_lock(&to->deferred_split_queue.split_queue_lock);
5382 		list_add_tail(page_deferred_list(page),
5383 			      &to->deferred_split_queue.split_queue);
5384 		to->deferred_split_queue.split_queue_len++;
5385 		spin_unlock(&to->deferred_split_queue.split_queue_lock);
5386 	}
5387 #endif
5388 
5389 	spin_unlock_irqrestore(&from->move_lock, flags);
5390 
5391 	ret = 0;
5392 
5393 	local_irq_disable();
5394 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5395 	memcg_check_events(to, page);
5396 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5397 	memcg_check_events(from, page);
5398 	local_irq_enable();
5399 out_unlock:
5400 	unlock_page(page);
5401 out:
5402 	return ret;
5403 }
5404 
5405 /**
5406  * get_mctgt_type - get target type of moving charge
5407  * @vma: the vma the pte to be checked belongs
5408  * @addr: the address corresponding to the pte to be checked
5409  * @ptent: the pte to be checked
5410  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5411  *
5412  * Returns
5413  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5414  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5415  *     move charge. if @target is not NULL, the page is stored in target->page
5416  *     with extra refcnt got(Callers should handle it).
5417  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5418  *     target for charge migration. if @target is not NULL, the entry is stored
5419  *     in target->ent.
5420  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5421  *     (so ZONE_DEVICE page and thus not on the lru).
5422  *     For now we such page is charge like a regular page would be as for all
5423  *     intent and purposes it is just special memory taking the place of a
5424  *     regular page.
5425  *
5426  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5427  *
5428  * Called with pte lock held.
5429  */
5430 
5431 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5432 		unsigned long addr, pte_t ptent, union mc_target *target)
5433 {
5434 	struct page *page = NULL;
5435 	enum mc_target_type ret = MC_TARGET_NONE;
5436 	swp_entry_t ent = { .val = 0 };
5437 
5438 	if (pte_present(ptent))
5439 		page = mc_handle_present_pte(vma, addr, ptent);
5440 	else if (is_swap_pte(ptent))
5441 		page = mc_handle_swap_pte(vma, ptent, &ent);
5442 	else if (pte_none(ptent))
5443 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5444 
5445 	if (!page && !ent.val)
5446 		return ret;
5447 	if (page) {
5448 		/*
5449 		 * Do only loose check w/o serialization.
5450 		 * mem_cgroup_move_account() checks the page is valid or
5451 		 * not under LRU exclusion.
5452 		 */
5453 		if (page->mem_cgroup == mc.from) {
5454 			ret = MC_TARGET_PAGE;
5455 			if (is_device_private_page(page))
5456 				ret = MC_TARGET_DEVICE;
5457 			if (target)
5458 				target->page = page;
5459 		}
5460 		if (!ret || !target)
5461 			put_page(page);
5462 	}
5463 	/*
5464 	 * There is a swap entry and a page doesn't exist or isn't charged.
5465 	 * But we cannot move a tail-page in a THP.
5466 	 */
5467 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5468 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5469 		ret = MC_TARGET_SWAP;
5470 		if (target)
5471 			target->ent = ent;
5472 	}
5473 	return ret;
5474 }
5475 
5476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5477 /*
5478  * We don't consider PMD mapped swapping or file mapped pages because THP does
5479  * not support them for now.
5480  * Caller should make sure that pmd_trans_huge(pmd) is true.
5481  */
5482 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5483 		unsigned long addr, pmd_t pmd, union mc_target *target)
5484 {
5485 	struct page *page = NULL;
5486 	enum mc_target_type ret = MC_TARGET_NONE;
5487 
5488 	if (unlikely(is_swap_pmd(pmd))) {
5489 		VM_BUG_ON(thp_migration_supported() &&
5490 				  !is_pmd_migration_entry(pmd));
5491 		return ret;
5492 	}
5493 	page = pmd_page(pmd);
5494 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5495 	if (!(mc.flags & MOVE_ANON))
5496 		return ret;
5497 	if (page->mem_cgroup == mc.from) {
5498 		ret = MC_TARGET_PAGE;
5499 		if (target) {
5500 			get_page(page);
5501 			target->page = page;
5502 		}
5503 	}
5504 	return ret;
5505 }
5506 #else
5507 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5508 		unsigned long addr, pmd_t pmd, union mc_target *target)
5509 {
5510 	return MC_TARGET_NONE;
5511 }
5512 #endif
5513 
5514 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5515 					unsigned long addr, unsigned long end,
5516 					struct mm_walk *walk)
5517 {
5518 	struct vm_area_struct *vma = walk->vma;
5519 	pte_t *pte;
5520 	spinlock_t *ptl;
5521 
5522 	ptl = pmd_trans_huge_lock(pmd, vma);
5523 	if (ptl) {
5524 		/*
5525 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5526 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5527 		 * this might change.
5528 		 */
5529 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5530 			mc.precharge += HPAGE_PMD_NR;
5531 		spin_unlock(ptl);
5532 		return 0;
5533 	}
5534 
5535 	if (pmd_trans_unstable(pmd))
5536 		return 0;
5537 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5538 	for (; addr != end; pte++, addr += PAGE_SIZE)
5539 		if (get_mctgt_type(vma, addr, *pte, NULL))
5540 			mc.precharge++;	/* increment precharge temporarily */
5541 	pte_unmap_unlock(pte - 1, ptl);
5542 	cond_resched();
5543 
5544 	return 0;
5545 }
5546 
5547 static const struct mm_walk_ops precharge_walk_ops = {
5548 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5549 };
5550 
5551 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5552 {
5553 	unsigned long precharge;
5554 
5555 	down_read(&mm->mmap_sem);
5556 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5557 	up_read(&mm->mmap_sem);
5558 
5559 	precharge = mc.precharge;
5560 	mc.precharge = 0;
5561 
5562 	return precharge;
5563 }
5564 
5565 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5566 {
5567 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5568 
5569 	VM_BUG_ON(mc.moving_task);
5570 	mc.moving_task = current;
5571 	return mem_cgroup_do_precharge(precharge);
5572 }
5573 
5574 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5575 static void __mem_cgroup_clear_mc(void)
5576 {
5577 	struct mem_cgroup *from = mc.from;
5578 	struct mem_cgroup *to = mc.to;
5579 
5580 	/* we must uncharge all the leftover precharges from mc.to */
5581 	if (mc.precharge) {
5582 		cancel_charge(mc.to, mc.precharge);
5583 		mc.precharge = 0;
5584 	}
5585 	/*
5586 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5587 	 * we must uncharge here.
5588 	 */
5589 	if (mc.moved_charge) {
5590 		cancel_charge(mc.from, mc.moved_charge);
5591 		mc.moved_charge = 0;
5592 	}
5593 	/* we must fixup refcnts and charges */
5594 	if (mc.moved_swap) {
5595 		/* uncharge swap account from the old cgroup */
5596 		if (!mem_cgroup_is_root(mc.from))
5597 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5598 
5599 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5600 
5601 		/*
5602 		 * we charged both to->memory and to->memsw, so we
5603 		 * should uncharge to->memory.
5604 		 */
5605 		if (!mem_cgroup_is_root(mc.to))
5606 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5607 
5608 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5609 		css_put_many(&mc.to->css, mc.moved_swap);
5610 
5611 		mc.moved_swap = 0;
5612 	}
5613 	memcg_oom_recover(from);
5614 	memcg_oom_recover(to);
5615 	wake_up_all(&mc.waitq);
5616 }
5617 
5618 static void mem_cgroup_clear_mc(void)
5619 {
5620 	struct mm_struct *mm = mc.mm;
5621 
5622 	/*
5623 	 * we must clear moving_task before waking up waiters at the end of
5624 	 * task migration.
5625 	 */
5626 	mc.moving_task = NULL;
5627 	__mem_cgroup_clear_mc();
5628 	spin_lock(&mc.lock);
5629 	mc.from = NULL;
5630 	mc.to = NULL;
5631 	mc.mm = NULL;
5632 	spin_unlock(&mc.lock);
5633 
5634 	mmput(mm);
5635 }
5636 
5637 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5638 {
5639 	struct cgroup_subsys_state *css;
5640 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5641 	struct mem_cgroup *from;
5642 	struct task_struct *leader, *p;
5643 	struct mm_struct *mm;
5644 	unsigned long move_flags;
5645 	int ret = 0;
5646 
5647 	/* charge immigration isn't supported on the default hierarchy */
5648 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5649 		return 0;
5650 
5651 	/*
5652 	 * Multi-process migrations only happen on the default hierarchy
5653 	 * where charge immigration is not used.  Perform charge
5654 	 * immigration if @tset contains a leader and whine if there are
5655 	 * multiple.
5656 	 */
5657 	p = NULL;
5658 	cgroup_taskset_for_each_leader(leader, css, tset) {
5659 		WARN_ON_ONCE(p);
5660 		p = leader;
5661 		memcg = mem_cgroup_from_css(css);
5662 	}
5663 	if (!p)
5664 		return 0;
5665 
5666 	/*
5667 	 * We are now commited to this value whatever it is. Changes in this
5668 	 * tunable will only affect upcoming migrations, not the current one.
5669 	 * So we need to save it, and keep it going.
5670 	 */
5671 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5672 	if (!move_flags)
5673 		return 0;
5674 
5675 	from = mem_cgroup_from_task(p);
5676 
5677 	VM_BUG_ON(from == memcg);
5678 
5679 	mm = get_task_mm(p);
5680 	if (!mm)
5681 		return 0;
5682 	/* We move charges only when we move a owner of the mm */
5683 	if (mm->owner == p) {
5684 		VM_BUG_ON(mc.from);
5685 		VM_BUG_ON(mc.to);
5686 		VM_BUG_ON(mc.precharge);
5687 		VM_BUG_ON(mc.moved_charge);
5688 		VM_BUG_ON(mc.moved_swap);
5689 
5690 		spin_lock(&mc.lock);
5691 		mc.mm = mm;
5692 		mc.from = from;
5693 		mc.to = memcg;
5694 		mc.flags = move_flags;
5695 		spin_unlock(&mc.lock);
5696 		/* We set mc.moving_task later */
5697 
5698 		ret = mem_cgroup_precharge_mc(mm);
5699 		if (ret)
5700 			mem_cgroup_clear_mc();
5701 	} else {
5702 		mmput(mm);
5703 	}
5704 	return ret;
5705 }
5706 
5707 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5708 {
5709 	if (mc.to)
5710 		mem_cgroup_clear_mc();
5711 }
5712 
5713 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5714 				unsigned long addr, unsigned long end,
5715 				struct mm_walk *walk)
5716 {
5717 	int ret = 0;
5718 	struct vm_area_struct *vma = walk->vma;
5719 	pte_t *pte;
5720 	spinlock_t *ptl;
5721 	enum mc_target_type target_type;
5722 	union mc_target target;
5723 	struct page *page;
5724 
5725 	ptl = pmd_trans_huge_lock(pmd, vma);
5726 	if (ptl) {
5727 		if (mc.precharge < HPAGE_PMD_NR) {
5728 			spin_unlock(ptl);
5729 			return 0;
5730 		}
5731 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5732 		if (target_type == MC_TARGET_PAGE) {
5733 			page = target.page;
5734 			if (!isolate_lru_page(page)) {
5735 				if (!mem_cgroup_move_account(page, true,
5736 							     mc.from, mc.to)) {
5737 					mc.precharge -= HPAGE_PMD_NR;
5738 					mc.moved_charge += HPAGE_PMD_NR;
5739 				}
5740 				putback_lru_page(page);
5741 			}
5742 			put_page(page);
5743 		} else if (target_type == MC_TARGET_DEVICE) {
5744 			page = target.page;
5745 			if (!mem_cgroup_move_account(page, true,
5746 						     mc.from, mc.to)) {
5747 				mc.precharge -= HPAGE_PMD_NR;
5748 				mc.moved_charge += HPAGE_PMD_NR;
5749 			}
5750 			put_page(page);
5751 		}
5752 		spin_unlock(ptl);
5753 		return 0;
5754 	}
5755 
5756 	if (pmd_trans_unstable(pmd))
5757 		return 0;
5758 retry:
5759 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5760 	for (; addr != end; addr += PAGE_SIZE) {
5761 		pte_t ptent = *(pte++);
5762 		bool device = false;
5763 		swp_entry_t ent;
5764 
5765 		if (!mc.precharge)
5766 			break;
5767 
5768 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5769 		case MC_TARGET_DEVICE:
5770 			device = true;
5771 			/* fall through */
5772 		case MC_TARGET_PAGE:
5773 			page = target.page;
5774 			/*
5775 			 * We can have a part of the split pmd here. Moving it
5776 			 * can be done but it would be too convoluted so simply
5777 			 * ignore such a partial THP and keep it in original
5778 			 * memcg. There should be somebody mapping the head.
5779 			 */
5780 			if (PageTransCompound(page))
5781 				goto put;
5782 			if (!device && isolate_lru_page(page))
5783 				goto put;
5784 			if (!mem_cgroup_move_account(page, false,
5785 						mc.from, mc.to)) {
5786 				mc.precharge--;
5787 				/* we uncharge from mc.from later. */
5788 				mc.moved_charge++;
5789 			}
5790 			if (!device)
5791 				putback_lru_page(page);
5792 put:			/* get_mctgt_type() gets the page */
5793 			put_page(page);
5794 			break;
5795 		case MC_TARGET_SWAP:
5796 			ent = target.ent;
5797 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5798 				mc.precharge--;
5799 				/* we fixup refcnts and charges later. */
5800 				mc.moved_swap++;
5801 			}
5802 			break;
5803 		default:
5804 			break;
5805 		}
5806 	}
5807 	pte_unmap_unlock(pte - 1, ptl);
5808 	cond_resched();
5809 
5810 	if (addr != end) {
5811 		/*
5812 		 * We have consumed all precharges we got in can_attach().
5813 		 * We try charge one by one, but don't do any additional
5814 		 * charges to mc.to if we have failed in charge once in attach()
5815 		 * phase.
5816 		 */
5817 		ret = mem_cgroup_do_precharge(1);
5818 		if (!ret)
5819 			goto retry;
5820 	}
5821 
5822 	return ret;
5823 }
5824 
5825 static const struct mm_walk_ops charge_walk_ops = {
5826 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5827 };
5828 
5829 static void mem_cgroup_move_charge(void)
5830 {
5831 	lru_add_drain_all();
5832 	/*
5833 	 * Signal lock_page_memcg() to take the memcg's move_lock
5834 	 * while we're moving its pages to another memcg. Then wait
5835 	 * for already started RCU-only updates to finish.
5836 	 */
5837 	atomic_inc(&mc.from->moving_account);
5838 	synchronize_rcu();
5839 retry:
5840 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5841 		/*
5842 		 * Someone who are holding the mmap_sem might be waiting in
5843 		 * waitq. So we cancel all extra charges, wake up all waiters,
5844 		 * and retry. Because we cancel precharges, we might not be able
5845 		 * to move enough charges, but moving charge is a best-effort
5846 		 * feature anyway, so it wouldn't be a big problem.
5847 		 */
5848 		__mem_cgroup_clear_mc();
5849 		cond_resched();
5850 		goto retry;
5851 	}
5852 	/*
5853 	 * When we have consumed all precharges and failed in doing
5854 	 * additional charge, the page walk just aborts.
5855 	 */
5856 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5857 			NULL);
5858 
5859 	up_read(&mc.mm->mmap_sem);
5860 	atomic_dec(&mc.from->moving_account);
5861 }
5862 
5863 static void mem_cgroup_move_task(void)
5864 {
5865 	if (mc.to) {
5866 		mem_cgroup_move_charge();
5867 		mem_cgroup_clear_mc();
5868 	}
5869 }
5870 #else	/* !CONFIG_MMU */
5871 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5872 {
5873 	return 0;
5874 }
5875 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5876 {
5877 }
5878 static void mem_cgroup_move_task(void)
5879 {
5880 }
5881 #endif
5882 
5883 /*
5884  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5885  * to verify whether we're attached to the default hierarchy on each mount
5886  * attempt.
5887  */
5888 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5889 {
5890 	/*
5891 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5892 	 * guarantees that @root doesn't have any children, so turning it
5893 	 * on for the root memcg is enough.
5894 	 */
5895 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5896 		root_mem_cgroup->use_hierarchy = true;
5897 	else
5898 		root_mem_cgroup->use_hierarchy = false;
5899 }
5900 
5901 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5902 {
5903 	if (value == PAGE_COUNTER_MAX)
5904 		seq_puts(m, "max\n");
5905 	else
5906 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5907 
5908 	return 0;
5909 }
5910 
5911 static u64 memory_current_read(struct cgroup_subsys_state *css,
5912 			       struct cftype *cft)
5913 {
5914 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5915 
5916 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5917 }
5918 
5919 static int memory_min_show(struct seq_file *m, void *v)
5920 {
5921 	return seq_puts_memcg_tunable(m,
5922 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5923 }
5924 
5925 static ssize_t memory_min_write(struct kernfs_open_file *of,
5926 				char *buf, size_t nbytes, loff_t off)
5927 {
5928 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5929 	unsigned long min;
5930 	int err;
5931 
5932 	buf = strstrip(buf);
5933 	err = page_counter_memparse(buf, "max", &min);
5934 	if (err)
5935 		return err;
5936 
5937 	page_counter_set_min(&memcg->memory, min);
5938 
5939 	return nbytes;
5940 }
5941 
5942 static int memory_low_show(struct seq_file *m, void *v)
5943 {
5944 	return seq_puts_memcg_tunable(m,
5945 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5946 }
5947 
5948 static ssize_t memory_low_write(struct kernfs_open_file *of,
5949 				char *buf, size_t nbytes, loff_t off)
5950 {
5951 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5952 	unsigned long low;
5953 	int err;
5954 
5955 	buf = strstrip(buf);
5956 	err = page_counter_memparse(buf, "max", &low);
5957 	if (err)
5958 		return err;
5959 
5960 	page_counter_set_low(&memcg->memory, low);
5961 
5962 	return nbytes;
5963 }
5964 
5965 static int memory_high_show(struct seq_file *m, void *v)
5966 {
5967 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5968 }
5969 
5970 static ssize_t memory_high_write(struct kernfs_open_file *of,
5971 				 char *buf, size_t nbytes, loff_t off)
5972 {
5973 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5974 	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5975 	bool drained = false;
5976 	unsigned long high;
5977 	int err;
5978 
5979 	buf = strstrip(buf);
5980 	err = page_counter_memparse(buf, "max", &high);
5981 	if (err)
5982 		return err;
5983 
5984 	memcg->high = high;
5985 
5986 	for (;;) {
5987 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5988 		unsigned long reclaimed;
5989 
5990 		if (nr_pages <= high)
5991 			break;
5992 
5993 		if (signal_pending(current))
5994 			break;
5995 
5996 		if (!drained) {
5997 			drain_all_stock(memcg);
5998 			drained = true;
5999 			continue;
6000 		}
6001 
6002 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6003 							 GFP_KERNEL, true);
6004 
6005 		if (!reclaimed && !nr_retries--)
6006 			break;
6007 	}
6008 
6009 	return nbytes;
6010 }
6011 
6012 static int memory_max_show(struct seq_file *m, void *v)
6013 {
6014 	return seq_puts_memcg_tunable(m,
6015 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6016 }
6017 
6018 static ssize_t memory_max_write(struct kernfs_open_file *of,
6019 				char *buf, size_t nbytes, loff_t off)
6020 {
6021 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6022 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6023 	bool drained = false;
6024 	unsigned long max;
6025 	int err;
6026 
6027 	buf = strstrip(buf);
6028 	err = page_counter_memparse(buf, "max", &max);
6029 	if (err)
6030 		return err;
6031 
6032 	xchg(&memcg->memory.max, max);
6033 
6034 	for (;;) {
6035 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6036 
6037 		if (nr_pages <= max)
6038 			break;
6039 
6040 		if (signal_pending(current))
6041 			break;
6042 
6043 		if (!drained) {
6044 			drain_all_stock(memcg);
6045 			drained = true;
6046 			continue;
6047 		}
6048 
6049 		if (nr_reclaims) {
6050 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6051 							  GFP_KERNEL, true))
6052 				nr_reclaims--;
6053 			continue;
6054 		}
6055 
6056 		memcg_memory_event(memcg, MEMCG_OOM);
6057 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6058 			break;
6059 	}
6060 
6061 	memcg_wb_domain_size_changed(memcg);
6062 	return nbytes;
6063 }
6064 
6065 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6066 {
6067 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6068 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6069 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6070 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6071 	seq_printf(m, "oom_kill %lu\n",
6072 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6073 }
6074 
6075 static int memory_events_show(struct seq_file *m, void *v)
6076 {
6077 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6078 
6079 	__memory_events_show(m, memcg->memory_events);
6080 	return 0;
6081 }
6082 
6083 static int memory_events_local_show(struct seq_file *m, void *v)
6084 {
6085 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6086 
6087 	__memory_events_show(m, memcg->memory_events_local);
6088 	return 0;
6089 }
6090 
6091 static int memory_stat_show(struct seq_file *m, void *v)
6092 {
6093 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6094 	char *buf;
6095 
6096 	buf = memory_stat_format(memcg);
6097 	if (!buf)
6098 		return -ENOMEM;
6099 	seq_puts(m, buf);
6100 	kfree(buf);
6101 	return 0;
6102 }
6103 
6104 static int memory_oom_group_show(struct seq_file *m, void *v)
6105 {
6106 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6107 
6108 	seq_printf(m, "%d\n", memcg->oom_group);
6109 
6110 	return 0;
6111 }
6112 
6113 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6114 				      char *buf, size_t nbytes, loff_t off)
6115 {
6116 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6117 	int ret, oom_group;
6118 
6119 	buf = strstrip(buf);
6120 	if (!buf)
6121 		return -EINVAL;
6122 
6123 	ret = kstrtoint(buf, 0, &oom_group);
6124 	if (ret)
6125 		return ret;
6126 
6127 	if (oom_group != 0 && oom_group != 1)
6128 		return -EINVAL;
6129 
6130 	memcg->oom_group = oom_group;
6131 
6132 	return nbytes;
6133 }
6134 
6135 static struct cftype memory_files[] = {
6136 	{
6137 		.name = "current",
6138 		.flags = CFTYPE_NOT_ON_ROOT,
6139 		.read_u64 = memory_current_read,
6140 	},
6141 	{
6142 		.name = "min",
6143 		.flags = CFTYPE_NOT_ON_ROOT,
6144 		.seq_show = memory_min_show,
6145 		.write = memory_min_write,
6146 	},
6147 	{
6148 		.name = "low",
6149 		.flags = CFTYPE_NOT_ON_ROOT,
6150 		.seq_show = memory_low_show,
6151 		.write = memory_low_write,
6152 	},
6153 	{
6154 		.name = "high",
6155 		.flags = CFTYPE_NOT_ON_ROOT,
6156 		.seq_show = memory_high_show,
6157 		.write = memory_high_write,
6158 	},
6159 	{
6160 		.name = "max",
6161 		.flags = CFTYPE_NOT_ON_ROOT,
6162 		.seq_show = memory_max_show,
6163 		.write = memory_max_write,
6164 	},
6165 	{
6166 		.name = "events",
6167 		.flags = CFTYPE_NOT_ON_ROOT,
6168 		.file_offset = offsetof(struct mem_cgroup, events_file),
6169 		.seq_show = memory_events_show,
6170 	},
6171 	{
6172 		.name = "events.local",
6173 		.flags = CFTYPE_NOT_ON_ROOT,
6174 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6175 		.seq_show = memory_events_local_show,
6176 	},
6177 	{
6178 		.name = "stat",
6179 		.flags = CFTYPE_NOT_ON_ROOT,
6180 		.seq_show = memory_stat_show,
6181 	},
6182 	{
6183 		.name = "oom.group",
6184 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6185 		.seq_show = memory_oom_group_show,
6186 		.write = memory_oom_group_write,
6187 	},
6188 	{ }	/* terminate */
6189 };
6190 
6191 struct cgroup_subsys memory_cgrp_subsys = {
6192 	.css_alloc = mem_cgroup_css_alloc,
6193 	.css_online = mem_cgroup_css_online,
6194 	.css_offline = mem_cgroup_css_offline,
6195 	.css_released = mem_cgroup_css_released,
6196 	.css_free = mem_cgroup_css_free,
6197 	.css_reset = mem_cgroup_css_reset,
6198 	.can_attach = mem_cgroup_can_attach,
6199 	.cancel_attach = mem_cgroup_cancel_attach,
6200 	.post_attach = mem_cgroup_move_task,
6201 	.bind = mem_cgroup_bind,
6202 	.dfl_cftypes = memory_files,
6203 	.legacy_cftypes = mem_cgroup_legacy_files,
6204 	.early_init = 0,
6205 };
6206 
6207 /**
6208  * mem_cgroup_protected - check if memory consumption is in the normal range
6209  * @root: the top ancestor of the sub-tree being checked
6210  * @memcg: the memory cgroup to check
6211  *
6212  * WARNING: This function is not stateless! It can only be used as part
6213  *          of a top-down tree iteration, not for isolated queries.
6214  *
6215  * Returns one of the following:
6216  *   MEMCG_PROT_NONE: cgroup memory is not protected
6217  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6218  *     an unprotected supply of reclaimable memory from other cgroups.
6219  *   MEMCG_PROT_MIN: cgroup memory is protected
6220  *
6221  * @root is exclusive; it is never protected when looked at directly
6222  *
6223  * To provide a proper hierarchical behavior, effective memory.min/low values
6224  * are used. Below is the description of how effective memory.low is calculated.
6225  * Effective memory.min values is calculated in the same way.
6226  *
6227  * Effective memory.low is always equal or less than the original memory.low.
6228  * If there is no memory.low overcommittment (which is always true for
6229  * top-level memory cgroups), these two values are equal.
6230  * Otherwise, it's a part of parent's effective memory.low,
6231  * calculated as a cgroup's memory.low usage divided by sum of sibling's
6232  * memory.low usages, where memory.low usage is the size of actually
6233  * protected memory.
6234  *
6235  *                                             low_usage
6236  * elow = min( memory.low, parent->elow * ------------------ ),
6237  *                                        siblings_low_usage
6238  *
6239  *             | memory.current, if memory.current < memory.low
6240  * low_usage = |
6241  *	       | 0, otherwise.
6242  *
6243  *
6244  * Such definition of the effective memory.low provides the expected
6245  * hierarchical behavior: parent's memory.low value is limiting
6246  * children, unprotected memory is reclaimed first and cgroups,
6247  * which are not using their guarantee do not affect actual memory
6248  * distribution.
6249  *
6250  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6251  *
6252  *     A      A/memory.low = 2G, A/memory.current = 6G
6253  *    //\\
6254  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6255  *            C/memory.low = 1G  C/memory.current = 2G
6256  *            D/memory.low = 0   D/memory.current = 2G
6257  *            E/memory.low = 10G E/memory.current = 0
6258  *
6259  * and the memory pressure is applied, the following memory distribution
6260  * is expected (approximately):
6261  *
6262  *     A/memory.current = 2G
6263  *
6264  *     B/memory.current = 1.3G
6265  *     C/memory.current = 0.6G
6266  *     D/memory.current = 0
6267  *     E/memory.current = 0
6268  *
6269  * These calculations require constant tracking of the actual low usages
6270  * (see propagate_protected_usage()), as well as recursive calculation of
6271  * effective memory.low values. But as we do call mem_cgroup_protected()
6272  * path for each memory cgroup top-down from the reclaim,
6273  * it's possible to optimize this part, and save calculated elow
6274  * for next usage. This part is intentionally racy, but it's ok,
6275  * as memory.low is a best-effort mechanism.
6276  */
6277 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6278 						struct mem_cgroup *memcg)
6279 {
6280 	struct mem_cgroup *parent;
6281 	unsigned long emin, parent_emin;
6282 	unsigned long elow, parent_elow;
6283 	unsigned long usage;
6284 
6285 	if (mem_cgroup_disabled())
6286 		return MEMCG_PROT_NONE;
6287 
6288 	if (!root)
6289 		root = root_mem_cgroup;
6290 	if (memcg == root)
6291 		return MEMCG_PROT_NONE;
6292 
6293 	usage = page_counter_read(&memcg->memory);
6294 	if (!usage)
6295 		return MEMCG_PROT_NONE;
6296 
6297 	emin = memcg->memory.min;
6298 	elow = memcg->memory.low;
6299 
6300 	parent = parent_mem_cgroup(memcg);
6301 	/* No parent means a non-hierarchical mode on v1 memcg */
6302 	if (!parent)
6303 		return MEMCG_PROT_NONE;
6304 
6305 	if (parent == root)
6306 		goto exit;
6307 
6308 	parent_emin = READ_ONCE(parent->memory.emin);
6309 	emin = min(emin, parent_emin);
6310 	if (emin && parent_emin) {
6311 		unsigned long min_usage, siblings_min_usage;
6312 
6313 		min_usage = min(usage, memcg->memory.min);
6314 		siblings_min_usage = atomic_long_read(
6315 			&parent->memory.children_min_usage);
6316 
6317 		if (min_usage && siblings_min_usage)
6318 			emin = min(emin, parent_emin * min_usage /
6319 				   siblings_min_usage);
6320 	}
6321 
6322 	parent_elow = READ_ONCE(parent->memory.elow);
6323 	elow = min(elow, parent_elow);
6324 	if (elow && parent_elow) {
6325 		unsigned long low_usage, siblings_low_usage;
6326 
6327 		low_usage = min(usage, memcg->memory.low);
6328 		siblings_low_usage = atomic_long_read(
6329 			&parent->memory.children_low_usage);
6330 
6331 		if (low_usage && siblings_low_usage)
6332 			elow = min(elow, parent_elow * low_usage /
6333 				   siblings_low_usage);
6334 	}
6335 
6336 exit:
6337 	memcg->memory.emin = emin;
6338 	memcg->memory.elow = elow;
6339 
6340 	if (usage <= emin)
6341 		return MEMCG_PROT_MIN;
6342 	else if (usage <= elow)
6343 		return MEMCG_PROT_LOW;
6344 	else
6345 		return MEMCG_PROT_NONE;
6346 }
6347 
6348 /**
6349  * mem_cgroup_try_charge - try charging a page
6350  * @page: page to charge
6351  * @mm: mm context of the victim
6352  * @gfp_mask: reclaim mode
6353  * @memcgp: charged memcg return
6354  * @compound: charge the page as compound or small page
6355  *
6356  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6357  * pages according to @gfp_mask if necessary.
6358  *
6359  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6360  * Otherwise, an error code is returned.
6361  *
6362  * After page->mapping has been set up, the caller must finalize the
6363  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6364  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6365  */
6366 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6367 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6368 			  bool compound)
6369 {
6370 	struct mem_cgroup *memcg = NULL;
6371 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6372 	int ret = 0;
6373 
6374 	if (mem_cgroup_disabled())
6375 		goto out;
6376 
6377 	if (PageSwapCache(page)) {
6378 		/*
6379 		 * Every swap fault against a single page tries to charge the
6380 		 * page, bail as early as possible.  shmem_unuse() encounters
6381 		 * already charged pages, too.  The USED bit is protected by
6382 		 * the page lock, which serializes swap cache removal, which
6383 		 * in turn serializes uncharging.
6384 		 */
6385 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6386 		if (compound_head(page)->mem_cgroup)
6387 			goto out;
6388 
6389 		if (do_swap_account) {
6390 			swp_entry_t ent = { .val = page_private(page), };
6391 			unsigned short id = lookup_swap_cgroup_id(ent);
6392 
6393 			rcu_read_lock();
6394 			memcg = mem_cgroup_from_id(id);
6395 			if (memcg && !css_tryget_online(&memcg->css))
6396 				memcg = NULL;
6397 			rcu_read_unlock();
6398 		}
6399 	}
6400 
6401 	if (!memcg)
6402 		memcg = get_mem_cgroup_from_mm(mm);
6403 
6404 	ret = try_charge(memcg, gfp_mask, nr_pages);
6405 
6406 	css_put(&memcg->css);
6407 out:
6408 	*memcgp = memcg;
6409 	return ret;
6410 }
6411 
6412 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6413 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6414 			  bool compound)
6415 {
6416 	struct mem_cgroup *memcg;
6417 	int ret;
6418 
6419 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6420 	memcg = *memcgp;
6421 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6422 	return ret;
6423 }
6424 
6425 /**
6426  * mem_cgroup_commit_charge - commit a page charge
6427  * @page: page to charge
6428  * @memcg: memcg to charge the page to
6429  * @lrucare: page might be on LRU already
6430  * @compound: charge the page as compound or small page
6431  *
6432  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6433  * after page->mapping has been set up.  This must happen atomically
6434  * as part of the page instantiation, i.e. under the page table lock
6435  * for anonymous pages, under the page lock for page and swap cache.
6436  *
6437  * In addition, the page must not be on the LRU during the commit, to
6438  * prevent racing with task migration.  If it might be, use @lrucare.
6439  *
6440  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6441  */
6442 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6443 			      bool lrucare, bool compound)
6444 {
6445 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6446 
6447 	VM_BUG_ON_PAGE(!page->mapping, page);
6448 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6449 
6450 	if (mem_cgroup_disabled())
6451 		return;
6452 	/*
6453 	 * Swap faults will attempt to charge the same page multiple
6454 	 * times.  But reuse_swap_page() might have removed the page
6455 	 * from swapcache already, so we can't check PageSwapCache().
6456 	 */
6457 	if (!memcg)
6458 		return;
6459 
6460 	commit_charge(page, memcg, lrucare);
6461 
6462 	local_irq_disable();
6463 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6464 	memcg_check_events(memcg, page);
6465 	local_irq_enable();
6466 
6467 	if (do_memsw_account() && PageSwapCache(page)) {
6468 		swp_entry_t entry = { .val = page_private(page) };
6469 		/*
6470 		 * The swap entry might not get freed for a long time,
6471 		 * let's not wait for it.  The page already received a
6472 		 * memory+swap charge, drop the swap entry duplicate.
6473 		 */
6474 		mem_cgroup_uncharge_swap(entry, nr_pages);
6475 	}
6476 }
6477 
6478 /**
6479  * mem_cgroup_cancel_charge - cancel a page charge
6480  * @page: page to charge
6481  * @memcg: memcg to charge the page to
6482  * @compound: charge the page as compound or small page
6483  *
6484  * Cancel a charge transaction started by mem_cgroup_try_charge().
6485  */
6486 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6487 		bool compound)
6488 {
6489 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6490 
6491 	if (mem_cgroup_disabled())
6492 		return;
6493 	/*
6494 	 * Swap faults will attempt to charge the same page multiple
6495 	 * times.  But reuse_swap_page() might have removed the page
6496 	 * from swapcache already, so we can't check PageSwapCache().
6497 	 */
6498 	if (!memcg)
6499 		return;
6500 
6501 	cancel_charge(memcg, nr_pages);
6502 }
6503 
6504 struct uncharge_gather {
6505 	struct mem_cgroup *memcg;
6506 	unsigned long pgpgout;
6507 	unsigned long nr_anon;
6508 	unsigned long nr_file;
6509 	unsigned long nr_kmem;
6510 	unsigned long nr_huge;
6511 	unsigned long nr_shmem;
6512 	struct page *dummy_page;
6513 };
6514 
6515 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6516 {
6517 	memset(ug, 0, sizeof(*ug));
6518 }
6519 
6520 static void uncharge_batch(const struct uncharge_gather *ug)
6521 {
6522 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6523 	unsigned long flags;
6524 
6525 	if (!mem_cgroup_is_root(ug->memcg)) {
6526 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6527 		if (do_memsw_account())
6528 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6529 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6530 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6531 		memcg_oom_recover(ug->memcg);
6532 	}
6533 
6534 	local_irq_save(flags);
6535 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6536 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6537 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6538 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6539 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6540 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6541 	memcg_check_events(ug->memcg, ug->dummy_page);
6542 	local_irq_restore(flags);
6543 
6544 	if (!mem_cgroup_is_root(ug->memcg))
6545 		css_put_many(&ug->memcg->css, nr_pages);
6546 }
6547 
6548 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6549 {
6550 	VM_BUG_ON_PAGE(PageLRU(page), page);
6551 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6552 			!PageHWPoison(page) , page);
6553 
6554 	if (!page->mem_cgroup)
6555 		return;
6556 
6557 	/*
6558 	 * Nobody should be changing or seriously looking at
6559 	 * page->mem_cgroup at this point, we have fully
6560 	 * exclusive access to the page.
6561 	 */
6562 
6563 	if (ug->memcg != page->mem_cgroup) {
6564 		if (ug->memcg) {
6565 			uncharge_batch(ug);
6566 			uncharge_gather_clear(ug);
6567 		}
6568 		ug->memcg = page->mem_cgroup;
6569 	}
6570 
6571 	if (!PageKmemcg(page)) {
6572 		unsigned int nr_pages = 1;
6573 
6574 		if (PageTransHuge(page)) {
6575 			nr_pages = compound_nr(page);
6576 			ug->nr_huge += nr_pages;
6577 		}
6578 		if (PageAnon(page))
6579 			ug->nr_anon += nr_pages;
6580 		else {
6581 			ug->nr_file += nr_pages;
6582 			if (PageSwapBacked(page))
6583 				ug->nr_shmem += nr_pages;
6584 		}
6585 		ug->pgpgout++;
6586 	} else {
6587 		ug->nr_kmem += compound_nr(page);
6588 		__ClearPageKmemcg(page);
6589 	}
6590 
6591 	ug->dummy_page = page;
6592 	page->mem_cgroup = NULL;
6593 }
6594 
6595 static void uncharge_list(struct list_head *page_list)
6596 {
6597 	struct uncharge_gather ug;
6598 	struct list_head *next;
6599 
6600 	uncharge_gather_clear(&ug);
6601 
6602 	/*
6603 	 * Note that the list can be a single page->lru; hence the
6604 	 * do-while loop instead of a simple list_for_each_entry().
6605 	 */
6606 	next = page_list->next;
6607 	do {
6608 		struct page *page;
6609 
6610 		page = list_entry(next, struct page, lru);
6611 		next = page->lru.next;
6612 
6613 		uncharge_page(page, &ug);
6614 	} while (next != page_list);
6615 
6616 	if (ug.memcg)
6617 		uncharge_batch(&ug);
6618 }
6619 
6620 /**
6621  * mem_cgroup_uncharge - uncharge a page
6622  * @page: page to uncharge
6623  *
6624  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6625  * mem_cgroup_commit_charge().
6626  */
6627 void mem_cgroup_uncharge(struct page *page)
6628 {
6629 	struct uncharge_gather ug;
6630 
6631 	if (mem_cgroup_disabled())
6632 		return;
6633 
6634 	/* Don't touch page->lru of any random page, pre-check: */
6635 	if (!page->mem_cgroup)
6636 		return;
6637 
6638 	uncharge_gather_clear(&ug);
6639 	uncharge_page(page, &ug);
6640 	uncharge_batch(&ug);
6641 }
6642 
6643 /**
6644  * mem_cgroup_uncharge_list - uncharge a list of page
6645  * @page_list: list of pages to uncharge
6646  *
6647  * Uncharge a list of pages previously charged with
6648  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6649  */
6650 void mem_cgroup_uncharge_list(struct list_head *page_list)
6651 {
6652 	if (mem_cgroup_disabled())
6653 		return;
6654 
6655 	if (!list_empty(page_list))
6656 		uncharge_list(page_list);
6657 }
6658 
6659 /**
6660  * mem_cgroup_migrate - charge a page's replacement
6661  * @oldpage: currently circulating page
6662  * @newpage: replacement page
6663  *
6664  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6665  * be uncharged upon free.
6666  *
6667  * Both pages must be locked, @newpage->mapping must be set up.
6668  */
6669 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6670 {
6671 	struct mem_cgroup *memcg;
6672 	unsigned int nr_pages;
6673 	bool compound;
6674 	unsigned long flags;
6675 
6676 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6677 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6678 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6679 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6680 		       newpage);
6681 
6682 	if (mem_cgroup_disabled())
6683 		return;
6684 
6685 	/* Page cache replacement: new page already charged? */
6686 	if (newpage->mem_cgroup)
6687 		return;
6688 
6689 	/* Swapcache readahead pages can get replaced before being charged */
6690 	memcg = oldpage->mem_cgroup;
6691 	if (!memcg)
6692 		return;
6693 
6694 	/* Force-charge the new page. The old one will be freed soon */
6695 	compound = PageTransHuge(newpage);
6696 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6697 
6698 	page_counter_charge(&memcg->memory, nr_pages);
6699 	if (do_memsw_account())
6700 		page_counter_charge(&memcg->memsw, nr_pages);
6701 	css_get_many(&memcg->css, nr_pages);
6702 
6703 	commit_charge(newpage, memcg, false);
6704 
6705 	local_irq_save(flags);
6706 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6707 	memcg_check_events(memcg, newpage);
6708 	local_irq_restore(flags);
6709 }
6710 
6711 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6712 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6713 
6714 void mem_cgroup_sk_alloc(struct sock *sk)
6715 {
6716 	struct mem_cgroup *memcg;
6717 
6718 	if (!mem_cgroup_sockets_enabled)
6719 		return;
6720 
6721 	/*
6722 	 * Socket cloning can throw us here with sk_memcg already
6723 	 * filled. It won't however, necessarily happen from
6724 	 * process context. So the test for root memcg given
6725 	 * the current task's memcg won't help us in this case.
6726 	 *
6727 	 * Respecting the original socket's memcg is a better
6728 	 * decision in this case.
6729 	 */
6730 	if (sk->sk_memcg) {
6731 		css_get(&sk->sk_memcg->css);
6732 		return;
6733 	}
6734 
6735 	rcu_read_lock();
6736 	memcg = mem_cgroup_from_task(current);
6737 	if (memcg == root_mem_cgroup)
6738 		goto out;
6739 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6740 		goto out;
6741 	if (css_tryget_online(&memcg->css))
6742 		sk->sk_memcg = memcg;
6743 out:
6744 	rcu_read_unlock();
6745 }
6746 
6747 void mem_cgroup_sk_free(struct sock *sk)
6748 {
6749 	if (sk->sk_memcg)
6750 		css_put(&sk->sk_memcg->css);
6751 }
6752 
6753 /**
6754  * mem_cgroup_charge_skmem - charge socket memory
6755  * @memcg: memcg to charge
6756  * @nr_pages: number of pages to charge
6757  *
6758  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6759  * @memcg's configured limit, %false if the charge had to be forced.
6760  */
6761 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6762 {
6763 	gfp_t gfp_mask = GFP_KERNEL;
6764 
6765 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6766 		struct page_counter *fail;
6767 
6768 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6769 			memcg->tcpmem_pressure = 0;
6770 			return true;
6771 		}
6772 		page_counter_charge(&memcg->tcpmem, nr_pages);
6773 		memcg->tcpmem_pressure = 1;
6774 		return false;
6775 	}
6776 
6777 	/* Don't block in the packet receive path */
6778 	if (in_softirq())
6779 		gfp_mask = GFP_NOWAIT;
6780 
6781 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6782 
6783 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6784 		return true;
6785 
6786 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6787 	return false;
6788 }
6789 
6790 /**
6791  * mem_cgroup_uncharge_skmem - uncharge socket memory
6792  * @memcg: memcg to uncharge
6793  * @nr_pages: number of pages to uncharge
6794  */
6795 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6796 {
6797 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6798 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6799 		return;
6800 	}
6801 
6802 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6803 
6804 	refill_stock(memcg, nr_pages);
6805 }
6806 
6807 static int __init cgroup_memory(char *s)
6808 {
6809 	char *token;
6810 
6811 	while ((token = strsep(&s, ",")) != NULL) {
6812 		if (!*token)
6813 			continue;
6814 		if (!strcmp(token, "nosocket"))
6815 			cgroup_memory_nosocket = true;
6816 		if (!strcmp(token, "nokmem"))
6817 			cgroup_memory_nokmem = true;
6818 	}
6819 	return 0;
6820 }
6821 __setup("cgroup.memory=", cgroup_memory);
6822 
6823 /*
6824  * subsys_initcall() for memory controller.
6825  *
6826  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6827  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6828  * basically everything that doesn't depend on a specific mem_cgroup structure
6829  * should be initialized from here.
6830  */
6831 static int __init mem_cgroup_init(void)
6832 {
6833 	int cpu, node;
6834 
6835 #ifdef CONFIG_MEMCG_KMEM
6836 	/*
6837 	 * Kmem cache creation is mostly done with the slab_mutex held,
6838 	 * so use a workqueue with limited concurrency to avoid stalling
6839 	 * all worker threads in case lots of cgroups are created and
6840 	 * destroyed simultaneously.
6841 	 */
6842 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6843 	BUG_ON(!memcg_kmem_cache_wq);
6844 #endif
6845 
6846 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6847 				  memcg_hotplug_cpu_dead);
6848 
6849 	for_each_possible_cpu(cpu)
6850 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6851 			  drain_local_stock);
6852 
6853 	for_each_node(node) {
6854 		struct mem_cgroup_tree_per_node *rtpn;
6855 
6856 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6857 				    node_online(node) ? node : NUMA_NO_NODE);
6858 
6859 		rtpn->rb_root = RB_ROOT;
6860 		rtpn->rb_rightmost = NULL;
6861 		spin_lock_init(&rtpn->lock);
6862 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6863 	}
6864 
6865 	return 0;
6866 }
6867 subsys_initcall(mem_cgroup_init);
6868 
6869 #ifdef CONFIG_MEMCG_SWAP
6870 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6871 {
6872 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6873 		/*
6874 		 * The root cgroup cannot be destroyed, so it's refcount must
6875 		 * always be >= 1.
6876 		 */
6877 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6878 			VM_BUG_ON(1);
6879 			break;
6880 		}
6881 		memcg = parent_mem_cgroup(memcg);
6882 		if (!memcg)
6883 			memcg = root_mem_cgroup;
6884 	}
6885 	return memcg;
6886 }
6887 
6888 /**
6889  * mem_cgroup_swapout - transfer a memsw charge to swap
6890  * @page: page whose memsw charge to transfer
6891  * @entry: swap entry to move the charge to
6892  *
6893  * Transfer the memsw charge of @page to @entry.
6894  */
6895 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6896 {
6897 	struct mem_cgroup *memcg, *swap_memcg;
6898 	unsigned int nr_entries;
6899 	unsigned short oldid;
6900 
6901 	VM_BUG_ON_PAGE(PageLRU(page), page);
6902 	VM_BUG_ON_PAGE(page_count(page), page);
6903 
6904 	if (!do_memsw_account())
6905 		return;
6906 
6907 	memcg = page->mem_cgroup;
6908 
6909 	/* Readahead page, never charged */
6910 	if (!memcg)
6911 		return;
6912 
6913 	/*
6914 	 * In case the memcg owning these pages has been offlined and doesn't
6915 	 * have an ID allocated to it anymore, charge the closest online
6916 	 * ancestor for the swap instead and transfer the memory+swap charge.
6917 	 */
6918 	swap_memcg = mem_cgroup_id_get_online(memcg);
6919 	nr_entries = hpage_nr_pages(page);
6920 	/* Get references for the tail pages, too */
6921 	if (nr_entries > 1)
6922 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6923 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6924 				   nr_entries);
6925 	VM_BUG_ON_PAGE(oldid, page);
6926 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6927 
6928 	page->mem_cgroup = NULL;
6929 
6930 	if (!mem_cgroup_is_root(memcg))
6931 		page_counter_uncharge(&memcg->memory, nr_entries);
6932 
6933 	if (memcg != swap_memcg) {
6934 		if (!mem_cgroup_is_root(swap_memcg))
6935 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6936 		page_counter_uncharge(&memcg->memsw, nr_entries);
6937 	}
6938 
6939 	/*
6940 	 * Interrupts should be disabled here because the caller holds the
6941 	 * i_pages lock which is taken with interrupts-off. It is
6942 	 * important here to have the interrupts disabled because it is the
6943 	 * only synchronisation we have for updating the per-CPU variables.
6944 	 */
6945 	VM_BUG_ON(!irqs_disabled());
6946 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6947 				     -nr_entries);
6948 	memcg_check_events(memcg, page);
6949 
6950 	if (!mem_cgroup_is_root(memcg))
6951 		css_put_many(&memcg->css, nr_entries);
6952 }
6953 
6954 /**
6955  * mem_cgroup_try_charge_swap - try charging swap space for a page
6956  * @page: page being added to swap
6957  * @entry: swap entry to charge
6958  *
6959  * Try to charge @page's memcg for the swap space at @entry.
6960  *
6961  * Returns 0 on success, -ENOMEM on failure.
6962  */
6963 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6964 {
6965 	unsigned int nr_pages = hpage_nr_pages(page);
6966 	struct page_counter *counter;
6967 	struct mem_cgroup *memcg;
6968 	unsigned short oldid;
6969 
6970 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6971 		return 0;
6972 
6973 	memcg = page->mem_cgroup;
6974 
6975 	/* Readahead page, never charged */
6976 	if (!memcg)
6977 		return 0;
6978 
6979 	if (!entry.val) {
6980 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6981 		return 0;
6982 	}
6983 
6984 	memcg = mem_cgroup_id_get_online(memcg);
6985 
6986 	if (!mem_cgroup_is_root(memcg) &&
6987 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6988 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6989 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6990 		mem_cgroup_id_put(memcg);
6991 		return -ENOMEM;
6992 	}
6993 
6994 	/* Get references for the tail pages, too */
6995 	if (nr_pages > 1)
6996 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6997 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6998 	VM_BUG_ON_PAGE(oldid, page);
6999 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7000 
7001 	return 0;
7002 }
7003 
7004 /**
7005  * mem_cgroup_uncharge_swap - uncharge swap space
7006  * @entry: swap entry to uncharge
7007  * @nr_pages: the amount of swap space to uncharge
7008  */
7009 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7010 {
7011 	struct mem_cgroup *memcg;
7012 	unsigned short id;
7013 
7014 	if (!do_swap_account)
7015 		return;
7016 
7017 	id = swap_cgroup_record(entry, 0, nr_pages);
7018 	rcu_read_lock();
7019 	memcg = mem_cgroup_from_id(id);
7020 	if (memcg) {
7021 		if (!mem_cgroup_is_root(memcg)) {
7022 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7023 				page_counter_uncharge(&memcg->swap, nr_pages);
7024 			else
7025 				page_counter_uncharge(&memcg->memsw, nr_pages);
7026 		}
7027 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7028 		mem_cgroup_id_put_many(memcg, nr_pages);
7029 	}
7030 	rcu_read_unlock();
7031 }
7032 
7033 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7034 {
7035 	long nr_swap_pages = get_nr_swap_pages();
7036 
7037 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7038 		return nr_swap_pages;
7039 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7040 		nr_swap_pages = min_t(long, nr_swap_pages,
7041 				      READ_ONCE(memcg->swap.max) -
7042 				      page_counter_read(&memcg->swap));
7043 	return nr_swap_pages;
7044 }
7045 
7046 bool mem_cgroup_swap_full(struct page *page)
7047 {
7048 	struct mem_cgroup *memcg;
7049 
7050 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7051 
7052 	if (vm_swap_full())
7053 		return true;
7054 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7055 		return false;
7056 
7057 	memcg = page->mem_cgroup;
7058 	if (!memcg)
7059 		return false;
7060 
7061 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7062 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7063 			return true;
7064 
7065 	return false;
7066 }
7067 
7068 /* for remember boot option*/
7069 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7070 static int really_do_swap_account __initdata = 1;
7071 #else
7072 static int really_do_swap_account __initdata;
7073 #endif
7074 
7075 static int __init enable_swap_account(char *s)
7076 {
7077 	if (!strcmp(s, "1"))
7078 		really_do_swap_account = 1;
7079 	else if (!strcmp(s, "0"))
7080 		really_do_swap_account = 0;
7081 	return 1;
7082 }
7083 __setup("swapaccount=", enable_swap_account);
7084 
7085 static u64 swap_current_read(struct cgroup_subsys_state *css,
7086 			     struct cftype *cft)
7087 {
7088 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7089 
7090 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7091 }
7092 
7093 static int swap_max_show(struct seq_file *m, void *v)
7094 {
7095 	return seq_puts_memcg_tunable(m,
7096 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7097 }
7098 
7099 static ssize_t swap_max_write(struct kernfs_open_file *of,
7100 			      char *buf, size_t nbytes, loff_t off)
7101 {
7102 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7103 	unsigned long max;
7104 	int err;
7105 
7106 	buf = strstrip(buf);
7107 	err = page_counter_memparse(buf, "max", &max);
7108 	if (err)
7109 		return err;
7110 
7111 	xchg(&memcg->swap.max, max);
7112 
7113 	return nbytes;
7114 }
7115 
7116 static int swap_events_show(struct seq_file *m, void *v)
7117 {
7118 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7119 
7120 	seq_printf(m, "max %lu\n",
7121 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7122 	seq_printf(m, "fail %lu\n",
7123 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7124 
7125 	return 0;
7126 }
7127 
7128 static struct cftype swap_files[] = {
7129 	{
7130 		.name = "swap.current",
7131 		.flags = CFTYPE_NOT_ON_ROOT,
7132 		.read_u64 = swap_current_read,
7133 	},
7134 	{
7135 		.name = "swap.max",
7136 		.flags = CFTYPE_NOT_ON_ROOT,
7137 		.seq_show = swap_max_show,
7138 		.write = swap_max_write,
7139 	},
7140 	{
7141 		.name = "swap.events",
7142 		.flags = CFTYPE_NOT_ON_ROOT,
7143 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7144 		.seq_show = swap_events_show,
7145 	},
7146 	{ }	/* terminate */
7147 };
7148 
7149 static struct cftype memsw_cgroup_files[] = {
7150 	{
7151 		.name = "memsw.usage_in_bytes",
7152 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7153 		.read_u64 = mem_cgroup_read_u64,
7154 	},
7155 	{
7156 		.name = "memsw.max_usage_in_bytes",
7157 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7158 		.write = mem_cgroup_reset,
7159 		.read_u64 = mem_cgroup_read_u64,
7160 	},
7161 	{
7162 		.name = "memsw.limit_in_bytes",
7163 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7164 		.write = mem_cgroup_write,
7165 		.read_u64 = mem_cgroup_read_u64,
7166 	},
7167 	{
7168 		.name = "memsw.failcnt",
7169 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7170 		.write = mem_cgroup_reset,
7171 		.read_u64 = mem_cgroup_read_u64,
7172 	},
7173 	{ },	/* terminate */
7174 };
7175 
7176 static int __init mem_cgroup_swap_init(void)
7177 {
7178 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7179 		do_swap_account = 1;
7180 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7181 					       swap_files));
7182 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7183 						  memsw_cgroup_files));
7184 	}
7185 	return 0;
7186 }
7187 subsys_initcall(mem_cgroup_swap_init);
7188 
7189 #endif /* CONFIG_MEMCG_SWAP */
7190