xref: /linux/mm/memcontrol.c (revision 6aacab308a5dfd222b2d23662bbae60c11007cfb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/cpuset.h>
33 #include <linux/sched/mm.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/hugetlb.h>
36 #include <linux/pagemap.h>
37 #include <linux/pagevec.h>
38 #include <linux/vm_event_item.h>
39 #include <linux/smp.h>
40 #include <linux/page-flags.h>
41 #include <linux/backing-dev.h>
42 #include <linux/bit_spinlock.h>
43 #include <linux/rcupdate.h>
44 #include <linux/limits.h>
45 #include <linux/export.h>
46 #include <linux/list.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swapops.h>
51 #include <linux/spinlock.h>
52 #include <linux/fs.h>
53 #include <linux/seq_file.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71 
72 #include <linux/uaccess.h>
73 
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/memcg.h>
76 #undef CREATE_TRACE_POINTS
77 
78 #include <trace/events/vmscan.h>
79 
80 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81 EXPORT_SYMBOL(memory_cgrp_subsys);
82 
83 struct mem_cgroup *root_mem_cgroup __read_mostly;
84 EXPORT_SYMBOL(root_mem_cgroup);
85 
86 /* Active memory cgroup to use from an interrupt context */
87 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
88 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
89 
90 /* Socket memory accounting disabled? */
91 static bool cgroup_memory_nosocket __ro_after_init;
92 
93 /* Kernel memory accounting disabled? */
94 static bool cgroup_memory_nokmem __ro_after_init;
95 
96 /* BPF memory accounting disabled? */
97 static bool cgroup_memory_nobpf __ro_after_init;
98 
99 static struct kmem_cache *memcg_cachep;
100 static struct kmem_cache *memcg_pn_cachep;
101 
102 #ifdef CONFIG_CGROUP_WRITEBACK
103 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
104 #endif
105 
106 static inline bool task_is_dying(void)
107 {
108 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
109 		(current->flags & PF_EXITING);
110 }
111 
112 /* Some nice accessors for the vmpressure. */
113 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
114 {
115 	if (!memcg)
116 		memcg = root_mem_cgroup;
117 	return &memcg->vmpressure;
118 }
119 
120 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
121 {
122 	return container_of(vmpr, struct mem_cgroup, vmpressure);
123 }
124 
125 #define SEQ_BUF_SIZE SZ_4K
126 #define CURRENT_OBJCG_UPDATE_BIT 0
127 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
128 
129 static DEFINE_SPINLOCK(objcg_lock);
130 
131 bool mem_cgroup_kmem_disabled(void)
132 {
133 	return cgroup_memory_nokmem;
134 }
135 
136 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
137 
138 static void obj_cgroup_release(struct percpu_ref *ref)
139 {
140 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
141 	unsigned int nr_bytes;
142 	unsigned int nr_pages;
143 	unsigned long flags;
144 
145 	/*
146 	 * At this point all allocated objects are freed, and
147 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
148 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
149 	 *
150 	 * The following sequence can lead to it:
151 	 * 1) CPU0: objcg == stock->cached_objcg
152 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
153 	 *          PAGE_SIZE bytes are charged
154 	 * 3) CPU1: a process from another memcg is allocating something,
155 	 *          the stock if flushed,
156 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
157 	 * 5) CPU0: we do release this object,
158 	 *          92 bytes are added to stock->nr_bytes
159 	 * 6) CPU0: stock is flushed,
160 	 *          92 bytes are added to objcg->nr_charged_bytes
161 	 *
162 	 * In the result, nr_charged_bytes == PAGE_SIZE.
163 	 * This page will be uncharged in obj_cgroup_release().
164 	 */
165 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
166 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
167 	nr_pages = nr_bytes >> PAGE_SHIFT;
168 
169 	if (nr_pages) {
170 		struct mem_cgroup *memcg;
171 
172 		memcg = get_mem_cgroup_from_objcg(objcg);
173 		mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
174 		memcg1_account_kmem(memcg, -nr_pages);
175 		if (!mem_cgroup_is_root(memcg))
176 			memcg_uncharge(memcg, nr_pages);
177 		mem_cgroup_put(memcg);
178 	}
179 
180 	spin_lock_irqsave(&objcg_lock, flags);
181 	list_del(&objcg->list);
182 	spin_unlock_irqrestore(&objcg_lock, flags);
183 
184 	percpu_ref_exit(ref);
185 	kfree_rcu(objcg, rcu);
186 }
187 
188 static struct obj_cgroup *obj_cgroup_alloc(void)
189 {
190 	struct obj_cgroup *objcg;
191 	int ret;
192 
193 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
194 	if (!objcg)
195 		return NULL;
196 
197 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
198 			      GFP_KERNEL);
199 	if (ret) {
200 		kfree(objcg);
201 		return NULL;
202 	}
203 	INIT_LIST_HEAD(&objcg->list);
204 	return objcg;
205 }
206 
207 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
208 				  struct mem_cgroup *parent)
209 {
210 	struct obj_cgroup *objcg, *iter;
211 
212 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
213 
214 	spin_lock_irq(&objcg_lock);
215 
216 	/* 1) Ready to reparent active objcg. */
217 	list_add(&objcg->list, &memcg->objcg_list);
218 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
219 	list_for_each_entry(iter, &memcg->objcg_list, list)
220 		WRITE_ONCE(iter->memcg, parent);
221 	/* 3) Move already reparented objcgs to the parent's list */
222 	list_splice(&memcg->objcg_list, &parent->objcg_list);
223 
224 	spin_unlock_irq(&objcg_lock);
225 
226 	percpu_ref_kill(&objcg->refcnt);
227 }
228 
229 /*
230  * A lot of the calls to the cache allocation functions are expected to be
231  * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
232  * conditional to this static branch, we'll have to allow modules that does
233  * kmem_cache_alloc and the such to see this symbol as well
234  */
235 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
236 EXPORT_SYMBOL(memcg_kmem_online_key);
237 
238 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
239 EXPORT_SYMBOL(memcg_bpf_enabled_key);
240 
241 /**
242  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
243  * @folio: folio of interest
244  *
245  * If memcg is bound to the default hierarchy, css of the memcg associated
246  * with @folio is returned.  The returned css remains associated with @folio
247  * until it is released.
248  *
249  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
250  * is returned.
251  */
252 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
253 {
254 	struct mem_cgroup *memcg = folio_memcg(folio);
255 
256 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
257 		memcg = root_mem_cgroup;
258 
259 	return &memcg->css;
260 }
261 
262 /**
263  * page_cgroup_ino - return inode number of the memcg a page is charged to
264  * @page: the page
265  *
266  * Look up the closest online ancestor of the memory cgroup @page is charged to
267  * and return its inode number or 0 if @page is not charged to any cgroup. It
268  * is safe to call this function without holding a reference to @page.
269  *
270  * Note, this function is inherently racy, because there is nothing to prevent
271  * the cgroup inode from getting torn down and potentially reallocated a moment
272  * after page_cgroup_ino() returns, so it only should be used by callers that
273  * do not care (such as procfs interfaces).
274  */
275 ino_t page_cgroup_ino(struct page *page)
276 {
277 	struct mem_cgroup *memcg;
278 	unsigned long ino = 0;
279 
280 	rcu_read_lock();
281 	/* page_folio() is racy here, but the entire function is racy anyway */
282 	memcg = folio_memcg_check(page_folio(page));
283 
284 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
285 		memcg = parent_mem_cgroup(memcg);
286 	if (memcg)
287 		ino = cgroup_ino(memcg->css.cgroup);
288 	rcu_read_unlock();
289 	return ino;
290 }
291 EXPORT_SYMBOL_GPL(page_cgroup_ino);
292 
293 /* Subset of node_stat_item for memcg stats */
294 static const unsigned int memcg_node_stat_items[] = {
295 	NR_INACTIVE_ANON,
296 	NR_ACTIVE_ANON,
297 	NR_INACTIVE_FILE,
298 	NR_ACTIVE_FILE,
299 	NR_UNEVICTABLE,
300 	NR_SLAB_RECLAIMABLE_B,
301 	NR_SLAB_UNRECLAIMABLE_B,
302 	WORKINGSET_REFAULT_ANON,
303 	WORKINGSET_REFAULT_FILE,
304 	WORKINGSET_ACTIVATE_ANON,
305 	WORKINGSET_ACTIVATE_FILE,
306 	WORKINGSET_RESTORE_ANON,
307 	WORKINGSET_RESTORE_FILE,
308 	WORKINGSET_NODERECLAIM,
309 	NR_ANON_MAPPED,
310 	NR_FILE_MAPPED,
311 	NR_FILE_PAGES,
312 	NR_FILE_DIRTY,
313 	NR_WRITEBACK,
314 	NR_SHMEM,
315 	NR_SHMEM_THPS,
316 	NR_FILE_THPS,
317 	NR_ANON_THPS,
318 	NR_KERNEL_STACK_KB,
319 	NR_PAGETABLE,
320 	NR_SECONDARY_PAGETABLE,
321 #ifdef CONFIG_SWAP
322 	NR_SWAPCACHE,
323 #endif
324 #ifdef CONFIG_NUMA_BALANCING
325 	PGPROMOTE_SUCCESS,
326 #endif
327 	PGDEMOTE_KSWAPD,
328 	PGDEMOTE_DIRECT,
329 	PGDEMOTE_KHUGEPAGED,
330 	PGDEMOTE_PROACTIVE,
331 #ifdef CONFIG_HUGETLB_PAGE
332 	NR_HUGETLB,
333 #endif
334 };
335 
336 static const unsigned int memcg_stat_items[] = {
337 	MEMCG_SWAP,
338 	MEMCG_SOCK,
339 	MEMCG_PERCPU_B,
340 	MEMCG_VMALLOC,
341 	MEMCG_KMEM,
342 	MEMCG_ZSWAP_B,
343 	MEMCG_ZSWAPPED,
344 };
345 
346 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
347 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
348 			   ARRAY_SIZE(memcg_stat_items))
349 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
350 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
351 
352 static void init_memcg_stats(void)
353 {
354 	u8 i, j = 0;
355 
356 	BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
357 
358 	memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
359 
360 	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
361 		mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
362 
363 	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
364 		mem_cgroup_stats_index[memcg_stat_items[i]] = j;
365 }
366 
367 static inline int memcg_stats_index(int idx)
368 {
369 	return mem_cgroup_stats_index[idx];
370 }
371 
372 struct lruvec_stats_percpu {
373 	/* Local (CPU and cgroup) state */
374 	long state[NR_MEMCG_NODE_STAT_ITEMS];
375 
376 	/* Delta calculation for lockless upward propagation */
377 	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
378 };
379 
380 struct lruvec_stats {
381 	/* Aggregated (CPU and subtree) state */
382 	long state[NR_MEMCG_NODE_STAT_ITEMS];
383 
384 	/* Non-hierarchical (CPU aggregated) state */
385 	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
386 
387 	/* Pending child counts during tree propagation */
388 	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
389 };
390 
391 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
392 {
393 	struct mem_cgroup_per_node *pn;
394 	long x;
395 	int i;
396 
397 	if (mem_cgroup_disabled())
398 		return node_page_state(lruvec_pgdat(lruvec), idx);
399 
400 	i = memcg_stats_index(idx);
401 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
402 		return 0;
403 
404 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
405 	x = READ_ONCE(pn->lruvec_stats->state[i]);
406 #ifdef CONFIG_SMP
407 	if (x < 0)
408 		x = 0;
409 #endif
410 	return x;
411 }
412 
413 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
414 				      enum node_stat_item idx)
415 {
416 	struct mem_cgroup_per_node *pn;
417 	long x;
418 	int i;
419 
420 	if (mem_cgroup_disabled())
421 		return node_page_state(lruvec_pgdat(lruvec), idx);
422 
423 	i = memcg_stats_index(idx);
424 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
425 		return 0;
426 
427 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
428 	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
429 #ifdef CONFIG_SMP
430 	if (x < 0)
431 		x = 0;
432 #endif
433 	return x;
434 }
435 
436 /* Subset of vm_event_item to report for memcg event stats */
437 static const unsigned int memcg_vm_event_stat[] = {
438 #ifdef CONFIG_MEMCG_V1
439 	PGPGIN,
440 	PGPGOUT,
441 #endif
442 	PSWPIN,
443 	PSWPOUT,
444 	PGSCAN_KSWAPD,
445 	PGSCAN_DIRECT,
446 	PGSCAN_KHUGEPAGED,
447 	PGSCAN_PROACTIVE,
448 	PGSTEAL_KSWAPD,
449 	PGSTEAL_DIRECT,
450 	PGSTEAL_KHUGEPAGED,
451 	PGSTEAL_PROACTIVE,
452 	PGFAULT,
453 	PGMAJFAULT,
454 	PGREFILL,
455 	PGACTIVATE,
456 	PGDEACTIVATE,
457 	PGLAZYFREE,
458 	PGLAZYFREED,
459 #ifdef CONFIG_SWAP
460 	SWPIN_ZERO,
461 	SWPOUT_ZERO,
462 #endif
463 #ifdef CONFIG_ZSWAP
464 	ZSWPIN,
465 	ZSWPOUT,
466 	ZSWPWB,
467 #endif
468 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
469 	THP_FAULT_ALLOC,
470 	THP_COLLAPSE_ALLOC,
471 	THP_SWPOUT,
472 	THP_SWPOUT_FALLBACK,
473 #endif
474 #ifdef CONFIG_NUMA_BALANCING
475 	NUMA_PAGE_MIGRATE,
476 	NUMA_PTE_UPDATES,
477 	NUMA_HINT_FAULTS,
478 #endif
479 };
480 
481 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
482 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
483 
484 static void init_memcg_events(void)
485 {
486 	u8 i;
487 
488 	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
489 
490 	memset(mem_cgroup_events_index, U8_MAX,
491 	       sizeof(mem_cgroup_events_index));
492 
493 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
494 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
495 }
496 
497 static inline int memcg_events_index(enum vm_event_item idx)
498 {
499 	return mem_cgroup_events_index[idx];
500 }
501 
502 struct memcg_vmstats_percpu {
503 	/* Stats updates since the last flush */
504 	unsigned int			stats_updates;
505 
506 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
507 	struct memcg_vmstats_percpu __percpu	*parent_pcpu;
508 	struct memcg_vmstats			*vmstats;
509 
510 	/* The above should fit a single cacheline for memcg_rstat_updated() */
511 
512 	/* Local (CPU and cgroup) page state & events */
513 	long			state[MEMCG_VMSTAT_SIZE];
514 	unsigned long		events[NR_MEMCG_EVENTS];
515 
516 	/* Delta calculation for lockless upward propagation */
517 	long			state_prev[MEMCG_VMSTAT_SIZE];
518 	unsigned long		events_prev[NR_MEMCG_EVENTS];
519 } ____cacheline_aligned;
520 
521 struct memcg_vmstats {
522 	/* Aggregated (CPU and subtree) page state & events */
523 	long			state[MEMCG_VMSTAT_SIZE];
524 	unsigned long		events[NR_MEMCG_EVENTS];
525 
526 	/* Non-hierarchical (CPU aggregated) page state & events */
527 	long			state_local[MEMCG_VMSTAT_SIZE];
528 	unsigned long		events_local[NR_MEMCG_EVENTS];
529 
530 	/* Pending child counts during tree propagation */
531 	long			state_pending[MEMCG_VMSTAT_SIZE];
532 	unsigned long		events_pending[NR_MEMCG_EVENTS];
533 
534 	/* Stats updates since the last flush */
535 	atomic_t		stats_updates;
536 };
537 
538 /*
539  * memcg and lruvec stats flushing
540  *
541  * Many codepaths leading to stats update or read are performance sensitive and
542  * adding stats flushing in such codepaths is not desirable. So, to optimize the
543  * flushing the kernel does:
544  *
545  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
546  *    rstat update tree grow unbounded.
547  *
548  * 2) Flush the stats synchronously on reader side only when there are more than
549  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
550  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
551  *    only for 2 seconds due to (1).
552  */
553 static void flush_memcg_stats_dwork(struct work_struct *w);
554 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
555 static u64 flush_last_time;
556 
557 #define FLUSH_TIME (2UL*HZ)
558 
559 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
560 {
561 	return atomic_read(&vmstats->stats_updates) >
562 		MEMCG_CHARGE_BATCH * num_online_cpus();
563 }
564 
565 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
566 				       int cpu)
567 {
568 	struct memcg_vmstats_percpu __percpu *statc_pcpu;
569 	struct memcg_vmstats_percpu *statc;
570 	unsigned int stats_updates;
571 
572 	if (!val)
573 		return;
574 
575 	css_rstat_updated(&memcg->css, cpu);
576 	statc_pcpu = memcg->vmstats_percpu;
577 	for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
578 		statc = this_cpu_ptr(statc_pcpu);
579 		/*
580 		 * If @memcg is already flushable then all its ancestors are
581 		 * flushable as well and also there is no need to increase
582 		 * stats_updates.
583 		 */
584 		if (memcg_vmstats_needs_flush(statc->vmstats))
585 			break;
586 
587 		stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
588 						    abs(val));
589 		if (stats_updates < MEMCG_CHARGE_BATCH)
590 			continue;
591 
592 		stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
593 		atomic_add(stats_updates, &statc->vmstats->stats_updates);
594 	}
595 }
596 
597 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
598 {
599 	bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
600 
601 	trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
602 		force, needs_flush);
603 
604 	if (!force && !needs_flush)
605 		return;
606 
607 	if (mem_cgroup_is_root(memcg))
608 		WRITE_ONCE(flush_last_time, jiffies_64);
609 
610 	css_rstat_flush(&memcg->css);
611 }
612 
613 /*
614  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
615  * @memcg: root of the subtree to flush
616  *
617  * Flushing is serialized by the underlying global rstat lock. There is also a
618  * minimum amount of work to be done even if there are no stat updates to flush.
619  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
620  * avoids unnecessary work and contention on the underlying lock.
621  */
622 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
623 {
624 	if (mem_cgroup_disabled())
625 		return;
626 
627 	if (!memcg)
628 		memcg = root_mem_cgroup;
629 
630 	__mem_cgroup_flush_stats(memcg, false);
631 }
632 
633 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
634 {
635 	/* Only flush if the periodic flusher is one full cycle late */
636 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
637 		mem_cgroup_flush_stats(memcg);
638 }
639 
640 static void flush_memcg_stats_dwork(struct work_struct *w)
641 {
642 	/*
643 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
644 	 * in latency-sensitive paths is as cheap as possible.
645 	 */
646 	__mem_cgroup_flush_stats(root_mem_cgroup, true);
647 	queue_delayed_work(system_dfl_wq, &stats_flush_dwork, FLUSH_TIME);
648 }
649 
650 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
651 {
652 	long x;
653 	int i = memcg_stats_index(idx);
654 
655 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
656 		return 0;
657 
658 	x = READ_ONCE(memcg->vmstats->state[i]);
659 #ifdef CONFIG_SMP
660 	if (x < 0)
661 		x = 0;
662 #endif
663 	return x;
664 }
665 
666 static int memcg_page_state_unit(int item);
667 
668 /*
669  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
670  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
671  */
672 static int memcg_state_val_in_pages(int idx, int val)
673 {
674 	int unit = memcg_page_state_unit(idx);
675 
676 	if (!val || unit == PAGE_SIZE)
677 		return val;
678 	else
679 		return max(val * unit / PAGE_SIZE, 1UL);
680 }
681 
682 /**
683  * mod_memcg_state - update cgroup memory statistics
684  * @memcg: the memory cgroup
685  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
686  * @val: delta to add to the counter, can be negative
687  */
688 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
689 		       int val)
690 {
691 	int i = memcg_stats_index(idx);
692 	int cpu;
693 
694 	if (mem_cgroup_disabled())
695 		return;
696 
697 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
698 		return;
699 
700 	cpu = get_cpu();
701 
702 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
703 	val = memcg_state_val_in_pages(idx, val);
704 	memcg_rstat_updated(memcg, val, cpu);
705 	trace_mod_memcg_state(memcg, idx, val);
706 
707 	put_cpu();
708 }
709 
710 #ifdef CONFIG_MEMCG_V1
711 /* idx can be of type enum memcg_stat_item or node_stat_item. */
712 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
713 {
714 	long x;
715 	int i = memcg_stats_index(idx);
716 
717 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
718 		return 0;
719 
720 	x = READ_ONCE(memcg->vmstats->state_local[i]);
721 #ifdef CONFIG_SMP
722 	if (x < 0)
723 		x = 0;
724 #endif
725 	return x;
726 }
727 #endif
728 
729 static void mod_memcg_lruvec_state(struct lruvec *lruvec,
730 				     enum node_stat_item idx,
731 				     int val)
732 {
733 	struct mem_cgroup_per_node *pn;
734 	struct mem_cgroup *memcg;
735 	int i = memcg_stats_index(idx);
736 	int cpu;
737 
738 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
739 		return;
740 
741 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
742 	memcg = pn->memcg;
743 
744 	cpu = get_cpu();
745 
746 	/* Update memcg */
747 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
748 
749 	/* Update lruvec */
750 	this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
751 
752 	val = memcg_state_val_in_pages(idx, val);
753 	memcg_rstat_updated(memcg, val, cpu);
754 	trace_mod_memcg_lruvec_state(memcg, idx, val);
755 
756 	put_cpu();
757 }
758 
759 /**
760  * mod_lruvec_state - update lruvec memory statistics
761  * @lruvec: the lruvec
762  * @idx: the stat item
763  * @val: delta to add to the counter, can be negative
764  *
765  * The lruvec is the intersection of the NUMA node and a cgroup. This
766  * function updates the all three counters that are affected by a
767  * change of state at this level: per-node, per-cgroup, per-lruvec.
768  */
769 void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
770 			int val)
771 {
772 	/* Update node */
773 	mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
774 
775 	/* Update memcg and lruvec */
776 	if (!mem_cgroup_disabled())
777 		mod_memcg_lruvec_state(lruvec, idx, val);
778 }
779 
780 void lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
781 			     int val)
782 {
783 	struct mem_cgroup *memcg;
784 	pg_data_t *pgdat = folio_pgdat(folio);
785 	struct lruvec *lruvec;
786 
787 	rcu_read_lock();
788 	memcg = folio_memcg(folio);
789 	/* Untracked pages have no memcg, no lruvec. Update only the node */
790 	if (!memcg) {
791 		rcu_read_unlock();
792 		mod_node_page_state(pgdat, idx, val);
793 		return;
794 	}
795 
796 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
797 	mod_lruvec_state(lruvec, idx, val);
798 	rcu_read_unlock();
799 }
800 EXPORT_SYMBOL(lruvec_stat_mod_folio);
801 
802 void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
803 {
804 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
805 	struct mem_cgroup *memcg;
806 	struct lruvec *lruvec;
807 
808 	rcu_read_lock();
809 	memcg = mem_cgroup_from_virt(p);
810 
811 	/*
812 	 * Untracked pages have no memcg, no lruvec. Update only the
813 	 * node. If we reparent the slab objects to the root memcg,
814 	 * when we free the slab object, we need to update the per-memcg
815 	 * vmstats to keep it correct for the root memcg.
816 	 */
817 	if (!memcg) {
818 		mod_node_page_state(pgdat, idx, val);
819 	} else {
820 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
821 		mod_lruvec_state(lruvec, idx, val);
822 	}
823 	rcu_read_unlock();
824 }
825 
826 /**
827  * count_memcg_events - account VM events in a cgroup
828  * @memcg: the memory cgroup
829  * @idx: the event item
830  * @count: the number of events that occurred
831  */
832 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
833 			  unsigned long count)
834 {
835 	int i = memcg_events_index(idx);
836 	int cpu;
837 
838 	if (mem_cgroup_disabled())
839 		return;
840 
841 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
842 		return;
843 
844 	cpu = get_cpu();
845 
846 	this_cpu_add(memcg->vmstats_percpu->events[i], count);
847 	memcg_rstat_updated(memcg, count, cpu);
848 	trace_count_memcg_events(memcg, idx, count);
849 
850 	put_cpu();
851 }
852 
853 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
854 {
855 	int i = memcg_events_index(event);
856 
857 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
858 		return 0;
859 
860 	return READ_ONCE(memcg->vmstats->events[i]);
861 }
862 
863 #ifdef CONFIG_MEMCG_V1
864 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
865 {
866 	int i = memcg_events_index(event);
867 
868 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
869 		return 0;
870 
871 	return READ_ONCE(memcg->vmstats->events_local[i]);
872 }
873 #endif
874 
875 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
876 {
877 	/*
878 	 * mm_update_next_owner() may clear mm->owner to NULL
879 	 * if it races with swapoff, page migration, etc.
880 	 * So this can be called with p == NULL.
881 	 */
882 	if (unlikely(!p))
883 		return NULL;
884 
885 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
886 }
887 EXPORT_SYMBOL(mem_cgroup_from_task);
888 
889 static __always_inline struct mem_cgroup *active_memcg(void)
890 {
891 	if (!in_task())
892 		return this_cpu_read(int_active_memcg);
893 	else
894 		return current->active_memcg;
895 }
896 
897 /**
898  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
899  * @mm: mm from which memcg should be extracted. It can be NULL.
900  *
901  * Obtain a reference on mm->memcg and returns it if successful. If mm
902  * is NULL, then the memcg is chosen as follows:
903  * 1) The active memcg, if set.
904  * 2) current->mm->memcg, if available
905  * 3) root memcg
906  * If mem_cgroup is disabled, NULL is returned.
907  */
908 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
909 {
910 	struct mem_cgroup *memcg;
911 
912 	if (mem_cgroup_disabled())
913 		return NULL;
914 
915 	/*
916 	 * Page cache insertions can happen without an
917 	 * actual mm context, e.g. during disk probing
918 	 * on boot, loopback IO, acct() writes etc.
919 	 *
920 	 * No need to css_get on root memcg as the reference
921 	 * counting is disabled on the root level in the
922 	 * cgroup core. See CSS_NO_REF.
923 	 */
924 	if (unlikely(!mm)) {
925 		memcg = active_memcg();
926 		if (unlikely(memcg)) {
927 			/* remote memcg must hold a ref */
928 			css_get(&memcg->css);
929 			return memcg;
930 		}
931 		mm = current->mm;
932 		if (unlikely(!mm))
933 			return root_mem_cgroup;
934 	}
935 
936 	rcu_read_lock();
937 	do {
938 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
939 		if (unlikely(!memcg))
940 			memcg = root_mem_cgroup;
941 	} while (!css_tryget(&memcg->css));
942 	rcu_read_unlock();
943 	return memcg;
944 }
945 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
946 
947 /**
948  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
949  */
950 struct mem_cgroup *get_mem_cgroup_from_current(void)
951 {
952 	struct mem_cgroup *memcg;
953 
954 	if (mem_cgroup_disabled())
955 		return NULL;
956 
957 again:
958 	rcu_read_lock();
959 	memcg = mem_cgroup_from_task(current);
960 	if (!css_tryget(&memcg->css)) {
961 		rcu_read_unlock();
962 		goto again;
963 	}
964 	rcu_read_unlock();
965 	return memcg;
966 }
967 
968 /**
969  * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
970  * @folio: folio from which memcg should be extracted.
971  */
972 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
973 {
974 	struct mem_cgroup *memcg = folio_memcg(folio);
975 
976 	if (mem_cgroup_disabled())
977 		return NULL;
978 
979 	rcu_read_lock();
980 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
981 		memcg = root_mem_cgroup;
982 	rcu_read_unlock();
983 	return memcg;
984 }
985 
986 /**
987  * mem_cgroup_iter - iterate over memory cgroup hierarchy
988  * @root: hierarchy root
989  * @prev: previously returned memcg, NULL on first invocation
990  * @reclaim: cookie for shared reclaim walks, NULL for full walks
991  *
992  * Returns references to children of the hierarchy below @root, or
993  * @root itself, or %NULL after a full round-trip.
994  *
995  * Caller must pass the return value in @prev on subsequent
996  * invocations for reference counting, or use mem_cgroup_iter_break()
997  * to cancel a hierarchy walk before the round-trip is complete.
998  *
999  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1000  * in the hierarchy among all concurrent reclaimers operating on the
1001  * same node.
1002  */
1003 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1004 				   struct mem_cgroup *prev,
1005 				   struct mem_cgroup_reclaim_cookie *reclaim)
1006 {
1007 	struct mem_cgroup_reclaim_iter *iter;
1008 	struct cgroup_subsys_state *css;
1009 	struct mem_cgroup *pos;
1010 	struct mem_cgroup *next;
1011 
1012 	if (mem_cgroup_disabled())
1013 		return NULL;
1014 
1015 	if (!root)
1016 		root = root_mem_cgroup;
1017 
1018 	rcu_read_lock();
1019 restart:
1020 	next = NULL;
1021 
1022 	if (reclaim) {
1023 		int gen;
1024 		int nid = reclaim->pgdat->node_id;
1025 
1026 		iter = &root->nodeinfo[nid]->iter;
1027 		gen = atomic_read(&iter->generation);
1028 
1029 		/*
1030 		 * On start, join the current reclaim iteration cycle.
1031 		 * Exit when a concurrent walker completes it.
1032 		 */
1033 		if (!prev)
1034 			reclaim->generation = gen;
1035 		else if (reclaim->generation != gen)
1036 			goto out_unlock;
1037 
1038 		pos = READ_ONCE(iter->position);
1039 	} else
1040 		pos = prev;
1041 
1042 	css = pos ? &pos->css : NULL;
1043 
1044 	while ((css = css_next_descendant_pre(css, &root->css))) {
1045 		/*
1046 		 * Verify the css and acquire a reference.  The root
1047 		 * is provided by the caller, so we know it's alive
1048 		 * and kicking, and don't take an extra reference.
1049 		 */
1050 		if (css == &root->css || css_tryget(css))
1051 			break;
1052 	}
1053 
1054 	next = mem_cgroup_from_css(css);
1055 
1056 	if (reclaim) {
1057 		/*
1058 		 * The position could have already been updated by a competing
1059 		 * thread, so check that the value hasn't changed since we read
1060 		 * it to avoid reclaiming from the same cgroup twice.
1061 		 */
1062 		if (cmpxchg(&iter->position, pos, next) != pos) {
1063 			if (css && css != &root->css)
1064 				css_put(css);
1065 			goto restart;
1066 		}
1067 
1068 		if (!next) {
1069 			atomic_inc(&iter->generation);
1070 
1071 			/*
1072 			 * Reclaimers share the hierarchy walk, and a
1073 			 * new one might jump in right at the end of
1074 			 * the hierarchy - make sure they see at least
1075 			 * one group and restart from the beginning.
1076 			 */
1077 			if (!prev)
1078 				goto restart;
1079 		}
1080 	}
1081 
1082 out_unlock:
1083 	rcu_read_unlock();
1084 	if (prev && prev != root)
1085 		css_put(&prev->css);
1086 
1087 	return next;
1088 }
1089 
1090 /**
1091  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1092  * @root: hierarchy root
1093  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1094  */
1095 void mem_cgroup_iter_break(struct mem_cgroup *root,
1096 			   struct mem_cgroup *prev)
1097 {
1098 	if (!root)
1099 		root = root_mem_cgroup;
1100 	if (prev && prev != root)
1101 		css_put(&prev->css);
1102 }
1103 
1104 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1105 					struct mem_cgroup *dead_memcg)
1106 {
1107 	struct mem_cgroup_reclaim_iter *iter;
1108 	struct mem_cgroup_per_node *mz;
1109 	int nid;
1110 
1111 	for_each_node(nid) {
1112 		mz = from->nodeinfo[nid];
1113 		iter = &mz->iter;
1114 		cmpxchg(&iter->position, dead_memcg, NULL);
1115 	}
1116 }
1117 
1118 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1119 {
1120 	struct mem_cgroup *memcg = dead_memcg;
1121 	struct mem_cgroup *last;
1122 
1123 	do {
1124 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1125 		last = memcg;
1126 	} while ((memcg = parent_mem_cgroup(memcg)));
1127 
1128 	/*
1129 	 * When cgroup1 non-hierarchy mode is used,
1130 	 * parent_mem_cgroup() does not walk all the way up to the
1131 	 * cgroup root (root_mem_cgroup). So we have to handle
1132 	 * dead_memcg from cgroup root separately.
1133 	 */
1134 	if (!mem_cgroup_is_root(last))
1135 		__invalidate_reclaim_iterators(root_mem_cgroup,
1136 						dead_memcg);
1137 }
1138 
1139 /**
1140  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1141  * @memcg: hierarchy root
1142  * @fn: function to call for each task
1143  * @arg: argument passed to @fn
1144  *
1145  * This function iterates over tasks attached to @memcg or to any of its
1146  * descendants and calls @fn for each task. If @fn returns a non-zero
1147  * value, the function breaks the iteration loop. Otherwise, it will iterate
1148  * over all tasks and return 0.
1149  *
1150  * This function must not be called for the root memory cgroup.
1151  */
1152 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1153 			   int (*fn)(struct task_struct *, void *), void *arg)
1154 {
1155 	struct mem_cgroup *iter;
1156 	int ret = 0;
1157 
1158 	BUG_ON(mem_cgroup_is_root(memcg));
1159 
1160 	for_each_mem_cgroup_tree(iter, memcg) {
1161 		struct css_task_iter it;
1162 		struct task_struct *task;
1163 
1164 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1165 		while (!ret && (task = css_task_iter_next(&it))) {
1166 			ret = fn(task, arg);
1167 			/* Avoid potential softlockup warning */
1168 			cond_resched();
1169 		}
1170 		css_task_iter_end(&it);
1171 		if (ret) {
1172 			mem_cgroup_iter_break(memcg, iter);
1173 			break;
1174 		}
1175 	}
1176 }
1177 
1178 #ifdef CONFIG_DEBUG_VM
1179 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1180 {
1181 	struct mem_cgroup *memcg;
1182 
1183 	if (mem_cgroup_disabled())
1184 		return;
1185 
1186 	memcg = folio_memcg(folio);
1187 
1188 	if (!memcg)
1189 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1190 	else
1191 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1192 }
1193 #endif
1194 
1195 /**
1196  * folio_lruvec_lock - Lock the lruvec for a folio.
1197  * @folio: Pointer to the folio.
1198  *
1199  * These functions are safe to use under any of the following conditions:
1200  * - folio locked
1201  * - folio_test_lru false
1202  * - folio frozen (refcount of 0)
1203  *
1204  * Return: The lruvec this folio is on with its lock held.
1205  */
1206 struct lruvec *folio_lruvec_lock(struct folio *folio)
1207 {
1208 	struct lruvec *lruvec = folio_lruvec(folio);
1209 
1210 	spin_lock(&lruvec->lru_lock);
1211 	lruvec_memcg_debug(lruvec, folio);
1212 
1213 	return lruvec;
1214 }
1215 
1216 /**
1217  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1218  * @folio: Pointer to the folio.
1219  *
1220  * These functions are safe to use under any of the following conditions:
1221  * - folio locked
1222  * - folio_test_lru false
1223  * - folio frozen (refcount of 0)
1224  *
1225  * Return: The lruvec this folio is on with its lock held and interrupts
1226  * disabled.
1227  */
1228 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1229 {
1230 	struct lruvec *lruvec = folio_lruvec(folio);
1231 
1232 	spin_lock_irq(&lruvec->lru_lock);
1233 	lruvec_memcg_debug(lruvec, folio);
1234 
1235 	return lruvec;
1236 }
1237 
1238 /**
1239  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1240  * @folio: Pointer to the folio.
1241  * @flags: Pointer to irqsave flags.
1242  *
1243  * These functions are safe to use under any of the following conditions:
1244  * - folio locked
1245  * - folio_test_lru false
1246  * - folio frozen (refcount of 0)
1247  *
1248  * Return: The lruvec this folio is on with its lock held and interrupts
1249  * disabled.
1250  */
1251 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1252 		unsigned long *flags)
1253 {
1254 	struct lruvec *lruvec = folio_lruvec(folio);
1255 
1256 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1257 	lruvec_memcg_debug(lruvec, folio);
1258 
1259 	return lruvec;
1260 }
1261 
1262 /**
1263  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1264  * @lruvec: mem_cgroup per zone lru vector
1265  * @lru: index of lru list the page is sitting on
1266  * @zid: zone id of the accounted pages
1267  * @nr_pages: positive when adding or negative when removing
1268  *
1269  * This function must be called under lru_lock, just before a page is added
1270  * to or just after a page is removed from an lru list.
1271  */
1272 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1273 				int zid, int nr_pages)
1274 {
1275 	struct mem_cgroup_per_node *mz;
1276 	unsigned long *lru_size;
1277 	long size;
1278 
1279 	if (mem_cgroup_disabled())
1280 		return;
1281 
1282 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1283 	lru_size = &mz->lru_zone_size[zid][lru];
1284 
1285 	if (nr_pages < 0)
1286 		*lru_size += nr_pages;
1287 
1288 	size = *lru_size;
1289 	if (WARN_ONCE(size < 0,
1290 		"%s(%p, %d, %d): lru_size %ld\n",
1291 		__func__, lruvec, lru, nr_pages, size)) {
1292 		VM_BUG_ON(1);
1293 		*lru_size = 0;
1294 	}
1295 
1296 	if (nr_pages > 0)
1297 		*lru_size += nr_pages;
1298 }
1299 
1300 /**
1301  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1302  * @memcg: the memory cgroup
1303  *
1304  * Returns the maximum amount of memory @mem can be charged with, in
1305  * pages.
1306  */
1307 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1308 {
1309 	unsigned long margin = 0;
1310 	unsigned long count;
1311 	unsigned long limit;
1312 
1313 	count = page_counter_read(&memcg->memory);
1314 	limit = READ_ONCE(memcg->memory.max);
1315 	if (count < limit)
1316 		margin = limit - count;
1317 
1318 	if (do_memsw_account()) {
1319 		count = page_counter_read(&memcg->memsw);
1320 		limit = READ_ONCE(memcg->memsw.max);
1321 		if (count < limit)
1322 			margin = min(margin, limit - count);
1323 		else
1324 			margin = 0;
1325 	}
1326 
1327 	return margin;
1328 }
1329 
1330 struct memory_stat {
1331 	const char *name;
1332 	unsigned int idx;
1333 };
1334 
1335 static const struct memory_stat memory_stats[] = {
1336 	{ "anon",			NR_ANON_MAPPED			},
1337 	{ "file",			NR_FILE_PAGES			},
1338 	{ "kernel",			MEMCG_KMEM			},
1339 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1340 	{ "pagetables",			NR_PAGETABLE			},
1341 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1342 	{ "percpu",			MEMCG_PERCPU_B			},
1343 	{ "sock",			MEMCG_SOCK			},
1344 	{ "vmalloc",			MEMCG_VMALLOC			},
1345 	{ "shmem",			NR_SHMEM			},
1346 #ifdef CONFIG_ZSWAP
1347 	{ "zswap",			MEMCG_ZSWAP_B			},
1348 	{ "zswapped",			MEMCG_ZSWAPPED			},
1349 #endif
1350 	{ "file_mapped",		NR_FILE_MAPPED			},
1351 	{ "file_dirty",			NR_FILE_DIRTY			},
1352 	{ "file_writeback",		NR_WRITEBACK			},
1353 #ifdef CONFIG_SWAP
1354 	{ "swapcached",			NR_SWAPCACHE			},
1355 #endif
1356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1357 	{ "anon_thp",			NR_ANON_THPS			},
1358 	{ "file_thp",			NR_FILE_THPS			},
1359 	{ "shmem_thp",			NR_SHMEM_THPS			},
1360 #endif
1361 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1362 	{ "active_anon",		NR_ACTIVE_ANON			},
1363 	{ "inactive_file",		NR_INACTIVE_FILE		},
1364 	{ "active_file",		NR_ACTIVE_FILE			},
1365 	{ "unevictable",		NR_UNEVICTABLE			},
1366 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1367 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1368 #ifdef CONFIG_HUGETLB_PAGE
1369 	{ "hugetlb",			NR_HUGETLB			},
1370 #endif
1371 
1372 	/* The memory events */
1373 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1374 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1375 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1376 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1377 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1378 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1379 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1380 
1381 	{ "pgdemote_kswapd",		PGDEMOTE_KSWAPD		},
1382 	{ "pgdemote_direct",		PGDEMOTE_DIRECT		},
1383 	{ "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	},
1384 	{ "pgdemote_proactive",		PGDEMOTE_PROACTIVE	},
1385 #ifdef CONFIG_NUMA_BALANCING
1386 	{ "pgpromote_success",		PGPROMOTE_SUCCESS	},
1387 #endif
1388 };
1389 
1390 /* The actual unit of the state item, not the same as the output unit */
1391 static int memcg_page_state_unit(int item)
1392 {
1393 	switch (item) {
1394 	case MEMCG_PERCPU_B:
1395 	case MEMCG_ZSWAP_B:
1396 	case NR_SLAB_RECLAIMABLE_B:
1397 	case NR_SLAB_UNRECLAIMABLE_B:
1398 		return 1;
1399 	case NR_KERNEL_STACK_KB:
1400 		return SZ_1K;
1401 	default:
1402 		return PAGE_SIZE;
1403 	}
1404 }
1405 
1406 /* Translate stat items to the correct unit for memory.stat output */
1407 static int memcg_page_state_output_unit(int item)
1408 {
1409 	/*
1410 	 * Workingset state is actually in pages, but we export it to userspace
1411 	 * as a scalar count of events, so special case it here.
1412 	 *
1413 	 * Demotion and promotion activities are exported in pages, consistent
1414 	 * with their global counterparts.
1415 	 */
1416 	switch (item) {
1417 	case WORKINGSET_REFAULT_ANON:
1418 	case WORKINGSET_REFAULT_FILE:
1419 	case WORKINGSET_ACTIVATE_ANON:
1420 	case WORKINGSET_ACTIVATE_FILE:
1421 	case WORKINGSET_RESTORE_ANON:
1422 	case WORKINGSET_RESTORE_FILE:
1423 	case WORKINGSET_NODERECLAIM:
1424 	case PGDEMOTE_KSWAPD:
1425 	case PGDEMOTE_DIRECT:
1426 	case PGDEMOTE_KHUGEPAGED:
1427 	case PGDEMOTE_PROACTIVE:
1428 #ifdef CONFIG_NUMA_BALANCING
1429 	case PGPROMOTE_SUCCESS:
1430 #endif
1431 		return 1;
1432 	default:
1433 		return memcg_page_state_unit(item);
1434 	}
1435 }
1436 
1437 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1438 {
1439 	return memcg_page_state(memcg, item) *
1440 		memcg_page_state_output_unit(item);
1441 }
1442 
1443 #ifdef CONFIG_MEMCG_V1
1444 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1445 {
1446 	return memcg_page_state_local(memcg, item) *
1447 		memcg_page_state_output_unit(item);
1448 }
1449 #endif
1450 
1451 #ifdef CONFIG_HUGETLB_PAGE
1452 static bool memcg_accounts_hugetlb(void)
1453 {
1454 	return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1455 }
1456 #else /* CONFIG_HUGETLB_PAGE */
1457 static bool memcg_accounts_hugetlb(void)
1458 {
1459 	return false;
1460 }
1461 #endif /* CONFIG_HUGETLB_PAGE */
1462 
1463 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1464 {
1465 	int i;
1466 
1467 	/*
1468 	 * Provide statistics on the state of the memory subsystem as
1469 	 * well as cumulative event counters that show past behavior.
1470 	 *
1471 	 * This list is ordered following a combination of these gradients:
1472 	 * 1) generic big picture -> specifics and details
1473 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1474 	 *
1475 	 * Current memory state:
1476 	 */
1477 	mem_cgroup_flush_stats(memcg);
1478 
1479 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1480 		u64 size;
1481 
1482 #ifdef CONFIG_HUGETLB_PAGE
1483 		if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1484 			!memcg_accounts_hugetlb())
1485 			continue;
1486 #endif
1487 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1488 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1489 
1490 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1491 			size += memcg_page_state_output(memcg,
1492 							NR_SLAB_RECLAIMABLE_B);
1493 			seq_buf_printf(s, "slab %llu\n", size);
1494 		}
1495 	}
1496 
1497 	/* Accumulated memory events */
1498 	seq_buf_printf(s, "pgscan %lu\n",
1499 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1500 		       memcg_events(memcg, PGSCAN_DIRECT) +
1501 		       memcg_events(memcg, PGSCAN_PROACTIVE) +
1502 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1503 	seq_buf_printf(s, "pgsteal %lu\n",
1504 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1505 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1506 		       memcg_events(memcg, PGSTEAL_PROACTIVE) +
1507 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1508 
1509 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1510 #ifdef CONFIG_MEMCG_V1
1511 		if (memcg_vm_event_stat[i] == PGPGIN ||
1512 		    memcg_vm_event_stat[i] == PGPGOUT)
1513 			continue;
1514 #endif
1515 		seq_buf_printf(s, "%s %lu\n",
1516 			       vm_event_name(memcg_vm_event_stat[i]),
1517 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1518 	}
1519 }
1520 
1521 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1522 {
1523 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1524 		memcg_stat_format(memcg, s);
1525 	else
1526 		memcg1_stat_format(memcg, s);
1527 	if (seq_buf_has_overflowed(s))
1528 		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1529 }
1530 
1531 /**
1532  * mem_cgroup_print_oom_context: Print OOM information relevant to
1533  * memory controller.
1534  * @memcg: The memory cgroup that went over limit
1535  * @p: Task that is going to be killed
1536  *
1537  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1538  * enabled
1539  */
1540 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1541 {
1542 	rcu_read_lock();
1543 
1544 	if (memcg) {
1545 		pr_cont(",oom_memcg=");
1546 		pr_cont_cgroup_path(memcg->css.cgroup);
1547 	} else
1548 		pr_cont(",global_oom");
1549 	if (p) {
1550 		pr_cont(",task_memcg=");
1551 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1552 	}
1553 	rcu_read_unlock();
1554 }
1555 
1556 /**
1557  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1558  * memory controller.
1559  * @memcg: The memory cgroup that went over limit
1560  */
1561 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1562 {
1563 	/* Use static buffer, for the caller is holding oom_lock. */
1564 	static char buf[SEQ_BUF_SIZE];
1565 	struct seq_buf s;
1566 	unsigned long memory_failcnt;
1567 
1568 	lockdep_assert_held(&oom_lock);
1569 
1570 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1571 		memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
1572 	else
1573 		memory_failcnt = memcg->memory.failcnt;
1574 
1575 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1576 		K((u64)page_counter_read(&memcg->memory)),
1577 		K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
1578 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1579 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1580 			K((u64)page_counter_read(&memcg->swap)),
1581 			K((u64)READ_ONCE(memcg->swap.max)),
1582 			atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
1583 #ifdef CONFIG_MEMCG_V1
1584 	else {
1585 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1586 			K((u64)page_counter_read(&memcg->memsw)),
1587 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1588 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1589 			K((u64)page_counter_read(&memcg->kmem)),
1590 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1591 	}
1592 #endif
1593 
1594 	pr_info("Memory cgroup stats for ");
1595 	pr_cont_cgroup_path(memcg->css.cgroup);
1596 	pr_cont(":");
1597 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1598 	memory_stat_format(memcg, &s);
1599 	seq_buf_do_printk(&s, KERN_INFO);
1600 }
1601 
1602 /*
1603  * Return the memory (and swap, if configured) limit for a memcg.
1604  */
1605 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1606 {
1607 	unsigned long max = READ_ONCE(memcg->memory.max);
1608 
1609 	if (do_memsw_account()) {
1610 		if (mem_cgroup_swappiness(memcg)) {
1611 			/* Calculate swap excess capacity from memsw limit */
1612 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1613 
1614 			max += min(swap, (unsigned long)total_swap_pages);
1615 		}
1616 	} else {
1617 		if (mem_cgroup_swappiness(memcg))
1618 			max += min(READ_ONCE(memcg->swap.max),
1619 				   (unsigned long)total_swap_pages);
1620 	}
1621 	return max;
1622 }
1623 
1624 void __memcg_memory_event(struct mem_cgroup *memcg,
1625 			  enum memcg_memory_event event, bool allow_spinning)
1626 {
1627 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1628 			  event == MEMCG_SWAP_FAIL;
1629 
1630 	/* For now only MEMCG_MAX can happen with !allow_spinning context. */
1631 	VM_WARN_ON_ONCE(!allow_spinning && event != MEMCG_MAX);
1632 
1633 	atomic_long_inc(&memcg->memory_events_local[event]);
1634 	if (!swap_event && allow_spinning)
1635 		cgroup_file_notify(&memcg->events_local_file);
1636 
1637 	do {
1638 		atomic_long_inc(&memcg->memory_events[event]);
1639 		if (allow_spinning) {
1640 			if (swap_event)
1641 				cgroup_file_notify(&memcg->swap_events_file);
1642 			else
1643 				cgroup_file_notify(&memcg->events_file);
1644 		}
1645 
1646 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1647 			break;
1648 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1649 			break;
1650 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1651 		 !mem_cgroup_is_root(memcg));
1652 }
1653 EXPORT_SYMBOL_GPL(__memcg_memory_event);
1654 
1655 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1656 				     int order)
1657 {
1658 	struct oom_control oc = {
1659 		.zonelist = NULL,
1660 		.nodemask = NULL,
1661 		.memcg = memcg,
1662 		.gfp_mask = gfp_mask,
1663 		.order = order,
1664 	};
1665 	bool ret = true;
1666 
1667 	if (mutex_lock_killable(&oom_lock))
1668 		return true;
1669 
1670 	if (mem_cgroup_margin(memcg) >= (1 << order))
1671 		goto unlock;
1672 
1673 	/*
1674 	 * A few threads which were not waiting at mutex_lock_killable() can
1675 	 * fail to bail out. Therefore, check again after holding oom_lock.
1676 	 */
1677 	ret = out_of_memory(&oc);
1678 
1679 unlock:
1680 	mutex_unlock(&oom_lock);
1681 	return ret;
1682 }
1683 
1684 /*
1685  * Returns true if successfully killed one or more processes. Though in some
1686  * corner cases it can return true even without killing any process.
1687  */
1688 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1689 {
1690 	bool locked, ret;
1691 
1692 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1693 		return false;
1694 
1695 	memcg_memory_event(memcg, MEMCG_OOM);
1696 
1697 	if (!memcg1_oom_prepare(memcg, &locked))
1698 		return false;
1699 
1700 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1701 
1702 	memcg1_oom_finish(memcg, locked);
1703 
1704 	return ret;
1705 }
1706 
1707 /**
1708  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1709  * @victim: task to be killed by the OOM killer
1710  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1711  *
1712  * Returns a pointer to a memory cgroup, which has to be cleaned up
1713  * by killing all belonging OOM-killable tasks.
1714  *
1715  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1716  */
1717 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1718 					    struct mem_cgroup *oom_domain)
1719 {
1720 	struct mem_cgroup *oom_group = NULL;
1721 	struct mem_cgroup *memcg;
1722 
1723 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1724 		return NULL;
1725 
1726 	if (!oom_domain)
1727 		oom_domain = root_mem_cgroup;
1728 
1729 	rcu_read_lock();
1730 
1731 	memcg = mem_cgroup_from_task(victim);
1732 	if (mem_cgroup_is_root(memcg))
1733 		goto out;
1734 
1735 	/*
1736 	 * If the victim task has been asynchronously moved to a different
1737 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1738 	 * In this case it's better to ignore memory.group.oom.
1739 	 */
1740 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1741 		goto out;
1742 
1743 	/*
1744 	 * Traverse the memory cgroup hierarchy from the victim task's
1745 	 * cgroup up to the OOMing cgroup (or root) to find the
1746 	 * highest-level memory cgroup with oom.group set.
1747 	 */
1748 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1749 		if (READ_ONCE(memcg->oom_group))
1750 			oom_group = memcg;
1751 
1752 		if (memcg == oom_domain)
1753 			break;
1754 	}
1755 
1756 	if (oom_group)
1757 		css_get(&oom_group->css);
1758 out:
1759 	rcu_read_unlock();
1760 
1761 	return oom_group;
1762 }
1763 
1764 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1765 {
1766 	pr_info("Tasks in ");
1767 	pr_cont_cgroup_path(memcg->css.cgroup);
1768 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1769 }
1770 
1771 /*
1772  * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
1773  * nr_pages in a single cacheline. This may change in future.
1774  */
1775 #define NR_MEMCG_STOCK 7
1776 #define FLUSHING_CACHED_CHARGE	0
1777 struct memcg_stock_pcp {
1778 	local_trylock_t lock;
1779 	uint8_t nr_pages[NR_MEMCG_STOCK];
1780 	struct mem_cgroup *cached[NR_MEMCG_STOCK];
1781 
1782 	struct work_struct work;
1783 	unsigned long flags;
1784 };
1785 
1786 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
1787 	.lock = INIT_LOCAL_TRYLOCK(lock),
1788 };
1789 
1790 struct obj_stock_pcp {
1791 	local_trylock_t lock;
1792 	unsigned int nr_bytes;
1793 	struct obj_cgroup *cached_objcg;
1794 	struct pglist_data *cached_pgdat;
1795 	int nr_slab_reclaimable_b;
1796 	int nr_slab_unreclaimable_b;
1797 
1798 	struct work_struct work;
1799 	unsigned long flags;
1800 };
1801 
1802 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
1803 	.lock = INIT_LOCAL_TRYLOCK(lock),
1804 };
1805 
1806 static DEFINE_MUTEX(percpu_charge_mutex);
1807 
1808 static void drain_obj_stock(struct obj_stock_pcp *stock);
1809 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
1810 				     struct mem_cgroup *root_memcg);
1811 
1812 /**
1813  * consume_stock: Try to consume stocked charge on this cpu.
1814  * @memcg: memcg to consume from.
1815  * @nr_pages: how many pages to charge.
1816  *
1817  * Consume the cached charge if enough nr_pages are present otherwise return
1818  * failure. Also return failure for charge request larger than
1819  * MEMCG_CHARGE_BATCH or if the local lock is already taken.
1820  *
1821  * returns true if successful, false otherwise.
1822  */
1823 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1824 {
1825 	struct memcg_stock_pcp *stock;
1826 	uint8_t stock_pages;
1827 	bool ret = false;
1828 	int i;
1829 
1830 	if (nr_pages > MEMCG_CHARGE_BATCH ||
1831 	    !local_trylock(&memcg_stock.lock))
1832 		return ret;
1833 
1834 	stock = this_cpu_ptr(&memcg_stock);
1835 
1836 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1837 		if (memcg != READ_ONCE(stock->cached[i]))
1838 			continue;
1839 
1840 		stock_pages = READ_ONCE(stock->nr_pages[i]);
1841 		if (stock_pages >= nr_pages) {
1842 			WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
1843 			ret = true;
1844 		}
1845 		break;
1846 	}
1847 
1848 	local_unlock(&memcg_stock.lock);
1849 
1850 	return ret;
1851 }
1852 
1853 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
1854 {
1855 	page_counter_uncharge(&memcg->memory, nr_pages);
1856 	if (do_memsw_account())
1857 		page_counter_uncharge(&memcg->memsw, nr_pages);
1858 }
1859 
1860 /*
1861  * Returns stocks cached in percpu and reset cached information.
1862  */
1863 static void drain_stock(struct memcg_stock_pcp *stock, int i)
1864 {
1865 	struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
1866 	uint8_t stock_pages;
1867 
1868 	if (!old)
1869 		return;
1870 
1871 	stock_pages = READ_ONCE(stock->nr_pages[i]);
1872 	if (stock_pages) {
1873 		memcg_uncharge(old, stock_pages);
1874 		WRITE_ONCE(stock->nr_pages[i], 0);
1875 	}
1876 
1877 	css_put(&old->css);
1878 	WRITE_ONCE(stock->cached[i], NULL);
1879 }
1880 
1881 static void drain_stock_fully(struct memcg_stock_pcp *stock)
1882 {
1883 	int i;
1884 
1885 	for (i = 0; i < NR_MEMCG_STOCK; ++i)
1886 		drain_stock(stock, i);
1887 }
1888 
1889 static void drain_local_memcg_stock(struct work_struct *dummy)
1890 {
1891 	struct memcg_stock_pcp *stock;
1892 
1893 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
1894 		return;
1895 
1896 	local_lock(&memcg_stock.lock);
1897 
1898 	stock = this_cpu_ptr(&memcg_stock);
1899 	drain_stock_fully(stock);
1900 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1901 
1902 	local_unlock(&memcg_stock.lock);
1903 }
1904 
1905 static void drain_local_obj_stock(struct work_struct *dummy)
1906 {
1907 	struct obj_stock_pcp *stock;
1908 
1909 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
1910 		return;
1911 
1912 	local_lock(&obj_stock.lock);
1913 
1914 	stock = this_cpu_ptr(&obj_stock);
1915 	drain_obj_stock(stock);
1916 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1917 
1918 	local_unlock(&obj_stock.lock);
1919 }
1920 
1921 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1922 {
1923 	struct memcg_stock_pcp *stock;
1924 	struct mem_cgroup *cached;
1925 	uint8_t stock_pages;
1926 	bool success = false;
1927 	int empty_slot = -1;
1928 	int i;
1929 
1930 	/*
1931 	 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
1932 	 * decide to increase it more than 127 then we will need more careful
1933 	 * handling of nr_pages[] in struct memcg_stock_pcp.
1934 	 */
1935 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
1936 
1937 	VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
1938 
1939 	if (nr_pages > MEMCG_CHARGE_BATCH ||
1940 	    !local_trylock(&memcg_stock.lock)) {
1941 		/*
1942 		 * In case of larger than batch refill or unlikely failure to
1943 		 * lock the percpu memcg_stock.lock, uncharge memcg directly.
1944 		 */
1945 		memcg_uncharge(memcg, nr_pages);
1946 		return;
1947 	}
1948 
1949 	stock = this_cpu_ptr(&memcg_stock);
1950 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1951 		cached = READ_ONCE(stock->cached[i]);
1952 		if (!cached && empty_slot == -1)
1953 			empty_slot = i;
1954 		if (memcg == READ_ONCE(stock->cached[i])) {
1955 			stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
1956 			WRITE_ONCE(stock->nr_pages[i], stock_pages);
1957 			if (stock_pages > MEMCG_CHARGE_BATCH)
1958 				drain_stock(stock, i);
1959 			success = true;
1960 			break;
1961 		}
1962 	}
1963 
1964 	if (!success) {
1965 		i = empty_slot;
1966 		if (i == -1) {
1967 			i = get_random_u32_below(NR_MEMCG_STOCK);
1968 			drain_stock(stock, i);
1969 		}
1970 		css_get(&memcg->css);
1971 		WRITE_ONCE(stock->cached[i], memcg);
1972 		WRITE_ONCE(stock->nr_pages[i], nr_pages);
1973 	}
1974 
1975 	local_unlock(&memcg_stock.lock);
1976 }
1977 
1978 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
1979 				  struct mem_cgroup *root_memcg)
1980 {
1981 	struct mem_cgroup *memcg;
1982 	bool flush = false;
1983 	int i;
1984 
1985 	rcu_read_lock();
1986 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1987 		memcg = READ_ONCE(stock->cached[i]);
1988 		if (!memcg)
1989 			continue;
1990 
1991 		if (READ_ONCE(stock->nr_pages[i]) &&
1992 		    mem_cgroup_is_descendant(memcg, root_memcg)) {
1993 			flush = true;
1994 			break;
1995 		}
1996 	}
1997 	rcu_read_unlock();
1998 	return flush;
1999 }
2000 
2001 /*
2002  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2003  * of the hierarchy under it.
2004  */
2005 void drain_all_stock(struct mem_cgroup *root_memcg)
2006 {
2007 	int cpu, curcpu;
2008 
2009 	/* If someone's already draining, avoid adding running more workers. */
2010 	if (!mutex_trylock(&percpu_charge_mutex))
2011 		return;
2012 	/*
2013 	 * Notify other cpus that system-wide "drain" is running
2014 	 * We do not care about races with the cpu hotplug because cpu down
2015 	 * as well as workers from this path always operate on the local
2016 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2017 	 */
2018 	migrate_disable();
2019 	curcpu = smp_processor_id();
2020 	for_each_online_cpu(cpu) {
2021 		struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
2022 		struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
2023 
2024 		if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
2025 		    is_memcg_drain_needed(memcg_st, root_memcg) &&
2026 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2027 				      &memcg_st->flags)) {
2028 			if (cpu == curcpu)
2029 				drain_local_memcg_stock(&memcg_st->work);
2030 			else if (!cpu_is_isolated(cpu))
2031 				schedule_work_on(cpu, &memcg_st->work);
2032 		}
2033 
2034 		if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
2035 		    obj_stock_flush_required(obj_st, root_memcg) &&
2036 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2037 				      &obj_st->flags)) {
2038 			if (cpu == curcpu)
2039 				drain_local_obj_stock(&obj_st->work);
2040 			else if (!cpu_is_isolated(cpu))
2041 				schedule_work_on(cpu, &obj_st->work);
2042 		}
2043 	}
2044 	migrate_enable();
2045 	mutex_unlock(&percpu_charge_mutex);
2046 }
2047 
2048 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2049 {
2050 	/* no need for the local lock */
2051 	drain_obj_stock(&per_cpu(obj_stock, cpu));
2052 	drain_stock_fully(&per_cpu(memcg_stock, cpu));
2053 
2054 	return 0;
2055 }
2056 
2057 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2058 				  unsigned int nr_pages,
2059 				  gfp_t gfp_mask)
2060 {
2061 	unsigned long nr_reclaimed = 0;
2062 
2063 	do {
2064 		unsigned long pflags;
2065 
2066 		if (page_counter_read(&memcg->memory) <=
2067 		    READ_ONCE(memcg->memory.high))
2068 			continue;
2069 
2070 		memcg_memory_event(memcg, MEMCG_HIGH);
2071 
2072 		psi_memstall_enter(&pflags);
2073 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2074 							gfp_mask,
2075 							MEMCG_RECLAIM_MAY_SWAP,
2076 							NULL);
2077 		psi_memstall_leave(&pflags);
2078 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2079 		 !mem_cgroup_is_root(memcg));
2080 
2081 	return nr_reclaimed;
2082 }
2083 
2084 static void high_work_func(struct work_struct *work)
2085 {
2086 	struct mem_cgroup *memcg;
2087 
2088 	memcg = container_of(work, struct mem_cgroup, high_work);
2089 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2090 }
2091 
2092 /*
2093  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2094  * enough to still cause a significant slowdown in most cases, while still
2095  * allowing diagnostics and tracing to proceed without becoming stuck.
2096  */
2097 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2098 
2099 /*
2100  * When calculating the delay, we use these either side of the exponentiation to
2101  * maintain precision and scale to a reasonable number of jiffies (see the table
2102  * below.
2103  *
2104  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2105  *   overage ratio to a delay.
2106  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2107  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2108  *   to produce a reasonable delay curve.
2109  *
2110  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2111  * reasonable delay curve compared to precision-adjusted overage, not
2112  * penalising heavily at first, but still making sure that growth beyond the
2113  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2114  * example, with a high of 100 megabytes:
2115  *
2116  *  +-------+------------------------+
2117  *  | usage | time to allocate in ms |
2118  *  +-------+------------------------+
2119  *  | 100M  |                      0 |
2120  *  | 101M  |                      6 |
2121  *  | 102M  |                     25 |
2122  *  | 103M  |                     57 |
2123  *  | 104M  |                    102 |
2124  *  | 105M  |                    159 |
2125  *  | 106M  |                    230 |
2126  *  | 107M  |                    313 |
2127  *  | 108M  |                    409 |
2128  *  | 109M  |                    518 |
2129  *  | 110M  |                    639 |
2130  *  | 111M  |                    774 |
2131  *  | 112M  |                    921 |
2132  *  | 113M  |                   1081 |
2133  *  | 114M  |                   1254 |
2134  *  | 115M  |                   1439 |
2135  *  | 116M  |                   1638 |
2136  *  | 117M  |                   1849 |
2137  *  | 118M  |                   2000 |
2138  *  | 119M  |                   2000 |
2139  *  | 120M  |                   2000 |
2140  *  +-------+------------------------+
2141  */
2142  #define MEMCG_DELAY_PRECISION_SHIFT 20
2143  #define MEMCG_DELAY_SCALING_SHIFT 14
2144 
2145 static u64 calculate_overage(unsigned long usage, unsigned long high)
2146 {
2147 	u64 overage;
2148 
2149 	if (usage <= high)
2150 		return 0;
2151 
2152 	/*
2153 	 * Prevent division by 0 in overage calculation by acting as if
2154 	 * it was a threshold of 1 page
2155 	 */
2156 	high = max(high, 1UL);
2157 
2158 	overage = usage - high;
2159 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2160 	return div64_u64(overage, high);
2161 }
2162 
2163 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2164 {
2165 	u64 overage, max_overage = 0;
2166 
2167 	do {
2168 		overage = calculate_overage(page_counter_read(&memcg->memory),
2169 					    READ_ONCE(memcg->memory.high));
2170 		max_overage = max(overage, max_overage);
2171 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2172 		 !mem_cgroup_is_root(memcg));
2173 
2174 	return max_overage;
2175 }
2176 
2177 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2178 {
2179 	u64 overage, max_overage = 0;
2180 
2181 	do {
2182 		overage = calculate_overage(page_counter_read(&memcg->swap),
2183 					    READ_ONCE(memcg->swap.high));
2184 		if (overage)
2185 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2186 		max_overage = max(overage, max_overage);
2187 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2188 		 !mem_cgroup_is_root(memcg));
2189 
2190 	return max_overage;
2191 }
2192 
2193 /*
2194  * Get the number of jiffies that we should penalise a mischievous cgroup which
2195  * is exceeding its memory.high by checking both it and its ancestors.
2196  */
2197 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2198 					  unsigned int nr_pages,
2199 					  u64 max_overage)
2200 {
2201 	unsigned long penalty_jiffies;
2202 
2203 	if (!max_overage)
2204 		return 0;
2205 
2206 	/*
2207 	 * We use overage compared to memory.high to calculate the number of
2208 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2209 	 * fairly lenient on small overages, and increasingly harsh when the
2210 	 * memcg in question makes it clear that it has no intention of stopping
2211 	 * its crazy behaviour, so we exponentially increase the delay based on
2212 	 * overage amount.
2213 	 */
2214 	penalty_jiffies = max_overage * max_overage * HZ;
2215 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2216 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2217 
2218 	/*
2219 	 * Factor in the task's own contribution to the overage, such that four
2220 	 * N-sized allocations are throttled approximately the same as one
2221 	 * 4N-sized allocation.
2222 	 *
2223 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2224 	 * larger the current charge patch is than that.
2225 	 */
2226 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2227 }
2228 
2229 /*
2230  * Reclaims memory over the high limit. Called directly from
2231  * try_charge() (context permitting), as well as from the userland
2232  * return path where reclaim is always able to block.
2233  */
2234 void __mem_cgroup_handle_over_high(gfp_t gfp_mask)
2235 {
2236 	unsigned long penalty_jiffies;
2237 	unsigned long pflags;
2238 	unsigned long nr_reclaimed;
2239 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2240 	int nr_retries = MAX_RECLAIM_RETRIES;
2241 	struct mem_cgroup *memcg;
2242 	bool in_retry = false;
2243 
2244 	memcg = get_mem_cgroup_from_mm(current->mm);
2245 	current->memcg_nr_pages_over_high = 0;
2246 
2247 retry_reclaim:
2248 	/*
2249 	 * Bail if the task is already exiting. Unlike memory.max,
2250 	 * memory.high enforcement isn't as strict, and there is no
2251 	 * OOM killer involved, which means the excess could already
2252 	 * be much bigger (and still growing) than it could for
2253 	 * memory.max; the dying task could get stuck in fruitless
2254 	 * reclaim for a long time, which isn't desirable.
2255 	 */
2256 	if (task_is_dying())
2257 		goto out;
2258 
2259 	/*
2260 	 * The allocating task should reclaim at least the batch size, but for
2261 	 * subsequent retries we only want to do what's necessary to prevent oom
2262 	 * or breaching resource isolation.
2263 	 *
2264 	 * This is distinct from memory.max or page allocator behaviour because
2265 	 * memory.high is currently batched, whereas memory.max and the page
2266 	 * allocator run every time an allocation is made.
2267 	 */
2268 	nr_reclaimed = reclaim_high(memcg,
2269 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2270 				    gfp_mask);
2271 
2272 	/*
2273 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2274 	 * allocators proactively to slow down excessive growth.
2275 	 */
2276 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2277 					       mem_find_max_overage(memcg));
2278 
2279 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2280 						swap_find_max_overage(memcg));
2281 
2282 	/*
2283 	 * Clamp the max delay per usermode return so as to still keep the
2284 	 * application moving forwards and also permit diagnostics, albeit
2285 	 * extremely slowly.
2286 	 */
2287 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2288 
2289 	/*
2290 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2291 	 * that it's not even worth doing, in an attempt to be nice to those who
2292 	 * go only a small amount over their memory.high value and maybe haven't
2293 	 * been aggressively reclaimed enough yet.
2294 	 */
2295 	if (penalty_jiffies <= HZ / 100)
2296 		goto out;
2297 
2298 	/*
2299 	 * If reclaim is making forward progress but we're still over
2300 	 * memory.high, we want to encourage that rather than doing allocator
2301 	 * throttling.
2302 	 */
2303 	if (nr_reclaimed || nr_retries--) {
2304 		in_retry = true;
2305 		goto retry_reclaim;
2306 	}
2307 
2308 	/*
2309 	 * Reclaim didn't manage to push usage below the limit, slow
2310 	 * this allocating task down.
2311 	 *
2312 	 * If we exit early, we're guaranteed to die (since
2313 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2314 	 * need to account for any ill-begotten jiffies to pay them off later.
2315 	 */
2316 	psi_memstall_enter(&pflags);
2317 	schedule_timeout_killable(penalty_jiffies);
2318 	psi_memstall_leave(&pflags);
2319 
2320 out:
2321 	css_put(&memcg->css);
2322 }
2323 
2324 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2325 			    unsigned int nr_pages)
2326 {
2327 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2328 	int nr_retries = MAX_RECLAIM_RETRIES;
2329 	struct mem_cgroup *mem_over_limit;
2330 	struct page_counter *counter;
2331 	unsigned long nr_reclaimed;
2332 	bool passed_oom = false;
2333 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2334 	bool drained = false;
2335 	bool raised_max_event = false;
2336 	unsigned long pflags;
2337 	bool allow_spinning = gfpflags_allow_spinning(gfp_mask);
2338 
2339 retry:
2340 	if (consume_stock(memcg, nr_pages))
2341 		return 0;
2342 
2343 	if (!allow_spinning)
2344 		/* Avoid the refill and flush of the older stock */
2345 		batch = nr_pages;
2346 
2347 	if (!do_memsw_account() ||
2348 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2349 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2350 			goto done_restock;
2351 		if (do_memsw_account())
2352 			page_counter_uncharge(&memcg->memsw, batch);
2353 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2354 	} else {
2355 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2356 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2357 	}
2358 
2359 	if (batch > nr_pages) {
2360 		batch = nr_pages;
2361 		goto retry;
2362 	}
2363 
2364 	/*
2365 	 * Prevent unbounded recursion when reclaim operations need to
2366 	 * allocate memory. This might exceed the limits temporarily,
2367 	 * but we prefer facilitating memory reclaim and getting back
2368 	 * under the limit over triggering OOM kills in these cases.
2369 	 */
2370 	if (unlikely(current->flags & PF_MEMALLOC))
2371 		goto force;
2372 
2373 	if (unlikely(task_in_memcg_oom(current)))
2374 		goto nomem;
2375 
2376 	if (!gfpflags_allow_blocking(gfp_mask))
2377 		goto nomem;
2378 
2379 	__memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
2380 	raised_max_event = true;
2381 
2382 	psi_memstall_enter(&pflags);
2383 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2384 						    gfp_mask, reclaim_options, NULL);
2385 	psi_memstall_leave(&pflags);
2386 
2387 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2388 		goto retry;
2389 
2390 	if (!drained) {
2391 		drain_all_stock(mem_over_limit);
2392 		drained = true;
2393 		goto retry;
2394 	}
2395 
2396 	if (gfp_mask & __GFP_NORETRY)
2397 		goto nomem;
2398 	/*
2399 	 * Even though the limit is exceeded at this point, reclaim
2400 	 * may have been able to free some pages.  Retry the charge
2401 	 * before killing the task.
2402 	 *
2403 	 * Only for regular pages, though: huge pages are rather
2404 	 * unlikely to succeed so close to the limit, and we fall back
2405 	 * to regular pages anyway in case of failure.
2406 	 */
2407 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2408 		goto retry;
2409 
2410 	if (nr_retries--)
2411 		goto retry;
2412 
2413 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2414 		goto nomem;
2415 
2416 	/* Avoid endless loop for tasks bypassed by the oom killer */
2417 	if (passed_oom && task_is_dying())
2418 		goto nomem;
2419 
2420 	/*
2421 	 * keep retrying as long as the memcg oom killer is able to make
2422 	 * a forward progress or bypass the charge if the oom killer
2423 	 * couldn't make any progress.
2424 	 */
2425 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2426 			   get_order(nr_pages * PAGE_SIZE))) {
2427 		passed_oom = true;
2428 		nr_retries = MAX_RECLAIM_RETRIES;
2429 		goto retry;
2430 	}
2431 nomem:
2432 	/*
2433 	 * Memcg doesn't have a dedicated reserve for atomic
2434 	 * allocations. But like the global atomic pool, we need to
2435 	 * put the burden of reclaim on regular allocation requests
2436 	 * and let these go through as privileged allocations.
2437 	 */
2438 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2439 		return -ENOMEM;
2440 force:
2441 	/*
2442 	 * If the allocation has to be enforced, don't forget to raise
2443 	 * a MEMCG_MAX event.
2444 	 */
2445 	if (!raised_max_event)
2446 		__memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
2447 
2448 	/*
2449 	 * The allocation either can't fail or will lead to more memory
2450 	 * being freed very soon.  Allow memory usage go over the limit
2451 	 * temporarily by force charging it.
2452 	 */
2453 	page_counter_charge(&memcg->memory, nr_pages);
2454 	if (do_memsw_account())
2455 		page_counter_charge(&memcg->memsw, nr_pages);
2456 
2457 	return 0;
2458 
2459 done_restock:
2460 	if (batch > nr_pages)
2461 		refill_stock(memcg, batch - nr_pages);
2462 
2463 	/*
2464 	 * If the hierarchy is above the normal consumption range, schedule
2465 	 * reclaim on returning to userland.  We can perform reclaim here
2466 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2467 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2468 	 * not recorded as it most likely matches current's and won't
2469 	 * change in the meantime.  As high limit is checked again before
2470 	 * reclaim, the cost of mismatch is negligible.
2471 	 */
2472 	do {
2473 		bool mem_high, swap_high;
2474 
2475 		mem_high = page_counter_read(&memcg->memory) >
2476 			READ_ONCE(memcg->memory.high);
2477 		swap_high = page_counter_read(&memcg->swap) >
2478 			READ_ONCE(memcg->swap.high);
2479 
2480 		/* Don't bother a random interrupted task */
2481 		if (!in_task()) {
2482 			if (mem_high) {
2483 				schedule_work(&memcg->high_work);
2484 				break;
2485 			}
2486 			continue;
2487 		}
2488 
2489 		if (mem_high || swap_high) {
2490 			/*
2491 			 * The allocating tasks in this cgroup will need to do
2492 			 * reclaim or be throttled to prevent further growth
2493 			 * of the memory or swap footprints.
2494 			 *
2495 			 * Target some best-effort fairness between the tasks,
2496 			 * and distribute reclaim work and delay penalties
2497 			 * based on how much each task is actually allocating.
2498 			 */
2499 			current->memcg_nr_pages_over_high += batch;
2500 			set_notify_resume(current);
2501 			break;
2502 		}
2503 	} while ((memcg = parent_mem_cgroup(memcg)));
2504 
2505 	/*
2506 	 * Reclaim is set up above to be called from the userland
2507 	 * return path. But also attempt synchronous reclaim to avoid
2508 	 * excessive overrun while the task is still inside the
2509 	 * kernel. If this is successful, the return path will see it
2510 	 * when it rechecks the overage and simply bail out.
2511 	 */
2512 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2513 	    !(current->flags & PF_MEMALLOC) &&
2514 	    gfpflags_allow_blocking(gfp_mask))
2515 		__mem_cgroup_handle_over_high(gfp_mask);
2516 	return 0;
2517 }
2518 
2519 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2520 			     unsigned int nr_pages)
2521 {
2522 	if (mem_cgroup_is_root(memcg))
2523 		return 0;
2524 
2525 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2526 }
2527 
2528 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2529 {
2530 	VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2531 	/*
2532 	 * Any of the following ensures page's memcg stability:
2533 	 *
2534 	 * - the page lock
2535 	 * - LRU isolation
2536 	 * - exclusive reference
2537 	 */
2538 	folio->memcg_data = (unsigned long)memcg;
2539 }
2540 
2541 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
2542 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2543 					 struct pglist_data *pgdat,
2544 					 enum node_stat_item idx, int nr)
2545 {
2546 	struct lruvec *lruvec;
2547 
2548 	if (likely(!in_nmi())) {
2549 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
2550 		mod_memcg_lruvec_state(lruvec, idx, nr);
2551 	} else {
2552 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
2553 
2554 		/* preemption is disabled in_nmi(). */
2555 		css_rstat_updated(&memcg->css, smp_processor_id());
2556 		if (idx == NR_SLAB_RECLAIMABLE_B)
2557 			atomic_add(nr, &pn->slab_reclaimable);
2558 		else
2559 			atomic_add(nr, &pn->slab_unreclaimable);
2560 	}
2561 }
2562 #else
2563 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2564 					 struct pglist_data *pgdat,
2565 					 enum node_stat_item idx, int nr)
2566 {
2567 	struct lruvec *lruvec;
2568 
2569 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2570 	mod_memcg_lruvec_state(lruvec, idx, nr);
2571 }
2572 #endif
2573 
2574 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2575 				       struct pglist_data *pgdat,
2576 				       enum node_stat_item idx, int nr)
2577 {
2578 	struct mem_cgroup *memcg;
2579 
2580 	rcu_read_lock();
2581 	memcg = obj_cgroup_memcg(objcg);
2582 	account_slab_nmi_safe(memcg, pgdat, idx, nr);
2583 	rcu_read_unlock();
2584 }
2585 
2586 static __always_inline
2587 struct mem_cgroup *mem_cgroup_from_obj_slab(struct slab *slab, void *p)
2588 {
2589 	/*
2590 	 * Slab objects are accounted individually, not per-page.
2591 	 * Memcg membership data for each individual object is saved in
2592 	 * slab->obj_exts.
2593 	 */
2594 	struct slabobj_ext *obj_exts;
2595 	unsigned int off;
2596 
2597 	obj_exts = slab_obj_exts(slab);
2598 	if (!obj_exts)
2599 		return NULL;
2600 
2601 	off = obj_to_index(slab->slab_cache, slab, p);
2602 	if (obj_exts[off].objcg)
2603 		return obj_cgroup_memcg(obj_exts[off].objcg);
2604 
2605 	return NULL;
2606 }
2607 
2608 /*
2609  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2610  * It is not suitable for objects allocated using vmalloc().
2611  *
2612  * A passed kernel object must be a slab object or a generic kernel page.
2613  *
2614  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2615  * cgroup_mutex, etc.
2616  */
2617 struct mem_cgroup *mem_cgroup_from_virt(void *p)
2618 {
2619 	struct slab *slab;
2620 
2621 	if (mem_cgroup_disabled())
2622 		return NULL;
2623 
2624 	slab = virt_to_slab(p);
2625 	if (slab)
2626 		return mem_cgroup_from_obj_slab(slab, p);
2627 	return folio_memcg_check(virt_to_folio(p));
2628 }
2629 
2630 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2631 {
2632 	struct obj_cgroup *objcg = NULL;
2633 
2634 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2635 		objcg = rcu_dereference(memcg->objcg);
2636 		if (likely(objcg && obj_cgroup_tryget(objcg)))
2637 			break;
2638 		objcg = NULL;
2639 	}
2640 	return objcg;
2641 }
2642 
2643 static struct obj_cgroup *current_objcg_update(void)
2644 {
2645 	struct mem_cgroup *memcg;
2646 	struct obj_cgroup *old, *objcg = NULL;
2647 
2648 	do {
2649 		/* Atomically drop the update bit. */
2650 		old = xchg(&current->objcg, NULL);
2651 		if (old) {
2652 			old = (struct obj_cgroup *)
2653 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2654 			obj_cgroup_put(old);
2655 
2656 			old = NULL;
2657 		}
2658 
2659 		/* If new objcg is NULL, no reason for the second atomic update. */
2660 		if (!current->mm || (current->flags & PF_KTHREAD))
2661 			return NULL;
2662 
2663 		/*
2664 		 * Release the objcg pointer from the previous iteration,
2665 		 * if try_cmpxcg() below fails.
2666 		 */
2667 		if (unlikely(objcg)) {
2668 			obj_cgroup_put(objcg);
2669 			objcg = NULL;
2670 		}
2671 
2672 		/*
2673 		 * Obtain the new objcg pointer. The current task can be
2674 		 * asynchronously moved to another memcg and the previous
2675 		 * memcg can be offlined. So let's get the memcg pointer
2676 		 * and try get a reference to objcg under a rcu read lock.
2677 		 */
2678 
2679 		rcu_read_lock();
2680 		memcg = mem_cgroup_from_task(current);
2681 		objcg = __get_obj_cgroup_from_memcg(memcg);
2682 		rcu_read_unlock();
2683 
2684 		/*
2685 		 * Try set up a new objcg pointer atomically. If it
2686 		 * fails, it means the update flag was set concurrently, so
2687 		 * the whole procedure should be repeated.
2688 		 */
2689 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
2690 
2691 	return objcg;
2692 }
2693 
2694 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2695 {
2696 	struct mem_cgroup *memcg;
2697 	struct obj_cgroup *objcg;
2698 
2699 	if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
2700 		return NULL;
2701 
2702 	if (in_task()) {
2703 		memcg = current->active_memcg;
2704 		if (unlikely(memcg))
2705 			goto from_memcg;
2706 
2707 		objcg = READ_ONCE(current->objcg);
2708 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2709 			objcg = current_objcg_update();
2710 		/*
2711 		 * Objcg reference is kept by the task, so it's safe
2712 		 * to use the objcg by the current task.
2713 		 */
2714 		return objcg;
2715 	}
2716 
2717 	memcg = this_cpu_read(int_active_memcg);
2718 	if (unlikely(memcg))
2719 		goto from_memcg;
2720 
2721 	return NULL;
2722 
2723 from_memcg:
2724 	objcg = NULL;
2725 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2726 		/*
2727 		 * Memcg pointer is protected by scope (see set_active_memcg())
2728 		 * and is pinning the corresponding objcg, so objcg can't go
2729 		 * away and can be used within the scope without any additional
2730 		 * protection.
2731 		 */
2732 		objcg = rcu_dereference_check(memcg->objcg, 1);
2733 		if (likely(objcg))
2734 			break;
2735 	}
2736 
2737 	return objcg;
2738 }
2739 
2740 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2741 {
2742 	struct obj_cgroup *objcg;
2743 
2744 	if (!memcg_kmem_online())
2745 		return NULL;
2746 
2747 	if (folio_memcg_kmem(folio)) {
2748 		objcg = __folio_objcg(folio);
2749 		obj_cgroup_get(objcg);
2750 	} else {
2751 		struct mem_cgroup *memcg;
2752 
2753 		rcu_read_lock();
2754 		memcg = __folio_memcg(folio);
2755 		if (memcg)
2756 			objcg = __get_obj_cgroup_from_memcg(memcg);
2757 		else
2758 			objcg = NULL;
2759 		rcu_read_unlock();
2760 	}
2761 	return objcg;
2762 }
2763 
2764 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
2765 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2766 {
2767 	if (likely(!in_nmi())) {
2768 		mod_memcg_state(memcg, MEMCG_KMEM, val);
2769 	} else {
2770 		/* preemption is disabled in_nmi(). */
2771 		css_rstat_updated(&memcg->css, smp_processor_id());
2772 		atomic_add(val, &memcg->kmem_stat);
2773 	}
2774 }
2775 #else
2776 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2777 {
2778 	mod_memcg_state(memcg, MEMCG_KMEM, val);
2779 }
2780 #endif
2781 
2782 /*
2783  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2784  * @objcg: object cgroup to uncharge
2785  * @nr_pages: number of pages to uncharge
2786  */
2787 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2788 				      unsigned int nr_pages)
2789 {
2790 	struct mem_cgroup *memcg;
2791 
2792 	memcg = get_mem_cgroup_from_objcg(objcg);
2793 
2794 	account_kmem_nmi_safe(memcg, -nr_pages);
2795 	memcg1_account_kmem(memcg, -nr_pages);
2796 	if (!mem_cgroup_is_root(memcg))
2797 		refill_stock(memcg, nr_pages);
2798 
2799 	css_put(&memcg->css);
2800 }
2801 
2802 /*
2803  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2804  * @objcg: object cgroup to charge
2805  * @gfp: reclaim mode
2806  * @nr_pages: number of pages to charge
2807  *
2808  * Returns 0 on success, an error code on failure.
2809  */
2810 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2811 				   unsigned int nr_pages)
2812 {
2813 	struct mem_cgroup *memcg;
2814 	int ret;
2815 
2816 	memcg = get_mem_cgroup_from_objcg(objcg);
2817 
2818 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2819 	if (ret)
2820 		goto out;
2821 
2822 	account_kmem_nmi_safe(memcg, nr_pages);
2823 	memcg1_account_kmem(memcg, nr_pages);
2824 out:
2825 	css_put(&memcg->css);
2826 
2827 	return ret;
2828 }
2829 
2830 static struct obj_cgroup *page_objcg(const struct page *page)
2831 {
2832 	unsigned long memcg_data = page->memcg_data;
2833 
2834 	if (mem_cgroup_disabled() || !memcg_data)
2835 		return NULL;
2836 
2837 	VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
2838 			page);
2839 	return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
2840 }
2841 
2842 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
2843 {
2844 	page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
2845 }
2846 
2847 /**
2848  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2849  * @page: page to charge
2850  * @gfp: reclaim mode
2851  * @order: allocation order
2852  *
2853  * Returns 0 on success, an error code on failure.
2854  */
2855 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2856 {
2857 	struct obj_cgroup *objcg;
2858 	int ret = 0;
2859 
2860 	objcg = current_obj_cgroup();
2861 	if (objcg) {
2862 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2863 		if (!ret) {
2864 			obj_cgroup_get(objcg);
2865 			page_set_objcg(page, objcg);
2866 			return 0;
2867 		}
2868 	}
2869 	return ret;
2870 }
2871 
2872 /**
2873  * __memcg_kmem_uncharge_page: uncharge a kmem page
2874  * @page: page to uncharge
2875  * @order: allocation order
2876  */
2877 void __memcg_kmem_uncharge_page(struct page *page, int order)
2878 {
2879 	struct obj_cgroup *objcg = page_objcg(page);
2880 	unsigned int nr_pages = 1 << order;
2881 
2882 	if (!objcg)
2883 		return;
2884 
2885 	obj_cgroup_uncharge_pages(objcg, nr_pages);
2886 	page->memcg_data = 0;
2887 	obj_cgroup_put(objcg);
2888 }
2889 
2890 static void __account_obj_stock(struct obj_cgroup *objcg,
2891 				struct obj_stock_pcp *stock, int nr,
2892 				struct pglist_data *pgdat, enum node_stat_item idx)
2893 {
2894 	int *bytes;
2895 
2896 	/*
2897 	 * Save vmstat data in stock and skip vmstat array update unless
2898 	 * accumulating over a page of vmstat data or when pgdat changes.
2899 	 */
2900 	if (stock->cached_pgdat != pgdat) {
2901 		/* Flush the existing cached vmstat data */
2902 		struct pglist_data *oldpg = stock->cached_pgdat;
2903 
2904 		if (stock->nr_slab_reclaimable_b) {
2905 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2906 					  stock->nr_slab_reclaimable_b);
2907 			stock->nr_slab_reclaimable_b = 0;
2908 		}
2909 		if (stock->nr_slab_unreclaimable_b) {
2910 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2911 					  stock->nr_slab_unreclaimable_b);
2912 			stock->nr_slab_unreclaimable_b = 0;
2913 		}
2914 		stock->cached_pgdat = pgdat;
2915 	}
2916 
2917 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2918 					       : &stock->nr_slab_unreclaimable_b;
2919 	/*
2920 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2921 	 * cached locally at least once before pushing it out.
2922 	 */
2923 	if (!*bytes) {
2924 		*bytes = nr;
2925 		nr = 0;
2926 	} else {
2927 		*bytes += nr;
2928 		if (abs(*bytes) > PAGE_SIZE) {
2929 			nr = *bytes;
2930 			*bytes = 0;
2931 		} else {
2932 			nr = 0;
2933 		}
2934 	}
2935 	if (nr)
2936 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
2937 }
2938 
2939 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2940 			      struct pglist_data *pgdat, enum node_stat_item idx)
2941 {
2942 	struct obj_stock_pcp *stock;
2943 	bool ret = false;
2944 
2945 	if (!local_trylock(&obj_stock.lock))
2946 		return ret;
2947 
2948 	stock = this_cpu_ptr(&obj_stock);
2949 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2950 		stock->nr_bytes -= nr_bytes;
2951 		ret = true;
2952 
2953 		if (pgdat)
2954 			__account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
2955 	}
2956 
2957 	local_unlock(&obj_stock.lock);
2958 
2959 	return ret;
2960 }
2961 
2962 static void drain_obj_stock(struct obj_stock_pcp *stock)
2963 {
2964 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2965 
2966 	if (!old)
2967 		return;
2968 
2969 	if (stock->nr_bytes) {
2970 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2971 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2972 
2973 		if (nr_pages) {
2974 			struct mem_cgroup *memcg;
2975 
2976 			memcg = get_mem_cgroup_from_objcg(old);
2977 
2978 			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2979 			memcg1_account_kmem(memcg, -nr_pages);
2980 			if (!mem_cgroup_is_root(memcg))
2981 				memcg_uncharge(memcg, nr_pages);
2982 
2983 			css_put(&memcg->css);
2984 		}
2985 
2986 		/*
2987 		 * The leftover is flushed to the centralized per-memcg value.
2988 		 * On the next attempt to refill obj stock it will be moved
2989 		 * to a per-cpu stock (probably, on an other CPU), see
2990 		 * refill_obj_stock().
2991 		 *
2992 		 * How often it's flushed is a trade-off between the memory
2993 		 * limit enforcement accuracy and potential CPU contention,
2994 		 * so it might be changed in the future.
2995 		 */
2996 		atomic_add(nr_bytes, &old->nr_charged_bytes);
2997 		stock->nr_bytes = 0;
2998 	}
2999 
3000 	/*
3001 	 * Flush the vmstat data in current stock
3002 	 */
3003 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3004 		if (stock->nr_slab_reclaimable_b) {
3005 			mod_objcg_mlstate(old, stock->cached_pgdat,
3006 					  NR_SLAB_RECLAIMABLE_B,
3007 					  stock->nr_slab_reclaimable_b);
3008 			stock->nr_slab_reclaimable_b = 0;
3009 		}
3010 		if (stock->nr_slab_unreclaimable_b) {
3011 			mod_objcg_mlstate(old, stock->cached_pgdat,
3012 					  NR_SLAB_UNRECLAIMABLE_B,
3013 					  stock->nr_slab_unreclaimable_b);
3014 			stock->nr_slab_unreclaimable_b = 0;
3015 		}
3016 		stock->cached_pgdat = NULL;
3017 	}
3018 
3019 	WRITE_ONCE(stock->cached_objcg, NULL);
3020 	obj_cgroup_put(old);
3021 }
3022 
3023 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
3024 				     struct mem_cgroup *root_memcg)
3025 {
3026 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3027 	struct mem_cgroup *memcg;
3028 	bool flush = false;
3029 
3030 	rcu_read_lock();
3031 	if (objcg) {
3032 		memcg = obj_cgroup_memcg(objcg);
3033 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3034 			flush = true;
3035 	}
3036 	rcu_read_unlock();
3037 
3038 	return flush;
3039 }
3040 
3041 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3042 		bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
3043 		enum node_stat_item idx)
3044 {
3045 	struct obj_stock_pcp *stock;
3046 	unsigned int nr_pages = 0;
3047 
3048 	if (!local_trylock(&obj_stock.lock)) {
3049 		if (pgdat)
3050 			mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
3051 		nr_pages = nr_bytes >> PAGE_SHIFT;
3052 		nr_bytes = nr_bytes & (PAGE_SIZE - 1);
3053 		atomic_add(nr_bytes, &objcg->nr_charged_bytes);
3054 		goto out;
3055 	}
3056 
3057 	stock = this_cpu_ptr(&obj_stock);
3058 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3059 		drain_obj_stock(stock);
3060 		obj_cgroup_get(objcg);
3061 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3062 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3063 		WRITE_ONCE(stock->cached_objcg, objcg);
3064 
3065 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3066 	}
3067 	stock->nr_bytes += nr_bytes;
3068 
3069 	if (pgdat)
3070 		__account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
3071 
3072 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3073 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3074 		stock->nr_bytes &= (PAGE_SIZE - 1);
3075 	}
3076 
3077 	local_unlock(&obj_stock.lock);
3078 out:
3079 	if (nr_pages)
3080 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3081 }
3082 
3083 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
3084 				     struct pglist_data *pgdat, enum node_stat_item idx)
3085 {
3086 	unsigned int nr_pages, nr_bytes;
3087 	int ret;
3088 
3089 	if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
3090 		return 0;
3091 
3092 	/*
3093 	 * In theory, objcg->nr_charged_bytes can have enough
3094 	 * pre-charged bytes to satisfy the allocation. However,
3095 	 * flushing objcg->nr_charged_bytes requires two atomic
3096 	 * operations, and objcg->nr_charged_bytes can't be big.
3097 	 * The shared objcg->nr_charged_bytes can also become a
3098 	 * performance bottleneck if all tasks of the same memcg are
3099 	 * trying to update it. So it's better to ignore it and try
3100 	 * grab some new pages. The stock's nr_bytes will be flushed to
3101 	 * objcg->nr_charged_bytes later on when objcg changes.
3102 	 *
3103 	 * The stock's nr_bytes may contain enough pre-charged bytes
3104 	 * to allow one less page from being charged, but we can't rely
3105 	 * on the pre-charged bytes not being changed outside of
3106 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3107 	 * pre-charged bytes as well when charging pages. To avoid a
3108 	 * page uncharge right after a page charge, we set the
3109 	 * allow_uncharge flag to false when calling refill_obj_stock()
3110 	 * to temporarily allow the pre-charged bytes to exceed the page
3111 	 * size limit. The maximum reachable value of the pre-charged
3112 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3113 	 * race.
3114 	 */
3115 	nr_pages = size >> PAGE_SHIFT;
3116 	nr_bytes = size & (PAGE_SIZE - 1);
3117 
3118 	if (nr_bytes)
3119 		nr_pages += 1;
3120 
3121 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3122 	if (!ret && (nr_bytes || pgdat))
3123 		refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
3124 					 false, size, pgdat, idx);
3125 
3126 	return ret;
3127 }
3128 
3129 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3130 {
3131 	return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
3132 }
3133 
3134 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3135 {
3136 	refill_obj_stock(objcg, size, true, 0, NULL, 0);
3137 }
3138 
3139 static inline size_t obj_full_size(struct kmem_cache *s)
3140 {
3141 	/*
3142 	 * For each accounted object there is an extra space which is used
3143 	 * to store obj_cgroup membership. Charge it too.
3144 	 */
3145 	return s->size + sizeof(struct obj_cgroup *);
3146 }
3147 
3148 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3149 				  gfp_t flags, size_t size, void **p)
3150 {
3151 	struct obj_cgroup *objcg;
3152 	struct slab *slab;
3153 	unsigned long off;
3154 	size_t i;
3155 
3156 	/*
3157 	 * The obtained objcg pointer is safe to use within the current scope,
3158 	 * defined by current task or set_active_memcg() pair.
3159 	 * obj_cgroup_get() is used to get a permanent reference.
3160 	 */
3161 	objcg = current_obj_cgroup();
3162 	if (!objcg)
3163 		return true;
3164 
3165 	/*
3166 	 * slab_alloc_node() avoids the NULL check, so we might be called with a
3167 	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3168 	 * the whole requested size.
3169 	 * return success as there's nothing to free back
3170 	 */
3171 	if (unlikely(*p == NULL))
3172 		return true;
3173 
3174 	flags &= gfp_allowed_mask;
3175 
3176 	if (lru) {
3177 		int ret;
3178 		struct mem_cgroup *memcg;
3179 
3180 		memcg = get_mem_cgroup_from_objcg(objcg);
3181 		ret = memcg_list_lru_alloc(memcg, lru, flags);
3182 		css_put(&memcg->css);
3183 
3184 		if (ret)
3185 			return false;
3186 	}
3187 
3188 	for (i = 0; i < size; i++) {
3189 		slab = virt_to_slab(p[i]);
3190 
3191 		if (!slab_obj_exts(slab) &&
3192 		    alloc_slab_obj_exts(slab, s, flags, false)) {
3193 			continue;
3194 		}
3195 
3196 		/*
3197 		 * if we fail and size is 1, memcg_alloc_abort_single() will
3198 		 * just free the object, which is ok as we have not assigned
3199 		 * objcg to its obj_ext yet
3200 		 *
3201 		 * for larger sizes, kmem_cache_free_bulk() will uncharge
3202 		 * any objects that were already charged and obj_ext assigned
3203 		 *
3204 		 * TODO: we could batch this until slab_pgdat(slab) changes
3205 		 * between iterations, with a more complicated undo
3206 		 */
3207 		if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
3208 					slab_pgdat(slab), cache_vmstat_idx(s)))
3209 			return false;
3210 
3211 		off = obj_to_index(s, slab, p[i]);
3212 		obj_cgroup_get(objcg);
3213 		slab_obj_exts(slab)[off].objcg = objcg;
3214 	}
3215 
3216 	return true;
3217 }
3218 
3219 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3220 			    void **p, int objects, struct slabobj_ext *obj_exts)
3221 {
3222 	size_t obj_size = obj_full_size(s);
3223 
3224 	for (int i = 0; i < objects; i++) {
3225 		struct obj_cgroup *objcg;
3226 		unsigned int off;
3227 
3228 		off = obj_to_index(s, slab, p[i]);
3229 		objcg = obj_exts[off].objcg;
3230 		if (!objcg)
3231 			continue;
3232 
3233 		obj_exts[off].objcg = NULL;
3234 		refill_obj_stock(objcg, obj_size, true, -obj_size,
3235 				 slab_pgdat(slab), cache_vmstat_idx(s));
3236 		obj_cgroup_put(objcg);
3237 	}
3238 }
3239 
3240 /*
3241  * The objcg is only set on the first page, so transfer it to all the
3242  * other pages.
3243  */
3244 void split_page_memcg(struct page *page, unsigned order)
3245 {
3246 	struct obj_cgroup *objcg = page_objcg(page);
3247 	unsigned int i, nr = 1 << order;
3248 
3249 	if (!objcg)
3250 		return;
3251 
3252 	for (i = 1; i < nr; i++)
3253 		page_set_objcg(&page[i], objcg);
3254 
3255 	obj_cgroup_get_many(objcg, nr - 1);
3256 }
3257 
3258 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
3259 		unsigned new_order)
3260 {
3261 	unsigned new_refs;
3262 
3263 	if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3264 		return;
3265 
3266 	new_refs = (1 << (old_order - new_order)) - 1;
3267 	css_get_many(&__folio_memcg(folio)->css, new_refs);
3268 }
3269 
3270 static int memcg_online_kmem(struct mem_cgroup *memcg)
3271 {
3272 	struct obj_cgroup *objcg;
3273 
3274 	if (mem_cgroup_kmem_disabled())
3275 		return 0;
3276 
3277 	if (unlikely(mem_cgroup_is_root(memcg)))
3278 		return 0;
3279 
3280 	objcg = obj_cgroup_alloc();
3281 	if (!objcg)
3282 		return -ENOMEM;
3283 
3284 	objcg->memcg = memcg;
3285 	rcu_assign_pointer(memcg->objcg, objcg);
3286 	obj_cgroup_get(objcg);
3287 	memcg->orig_objcg = objcg;
3288 
3289 	static_branch_enable(&memcg_kmem_online_key);
3290 
3291 	memcg->kmemcg_id = memcg->id.id;
3292 
3293 	return 0;
3294 }
3295 
3296 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3297 {
3298 	struct mem_cgroup *parent;
3299 
3300 	if (mem_cgroup_kmem_disabled())
3301 		return;
3302 
3303 	if (unlikely(mem_cgroup_is_root(memcg)))
3304 		return;
3305 
3306 	parent = parent_mem_cgroup(memcg);
3307 	if (!parent)
3308 		parent = root_mem_cgroup;
3309 
3310 	memcg_reparent_list_lrus(memcg, parent);
3311 
3312 	/*
3313 	 * Objcg's reparenting must be after list_lru's, make sure list_lru
3314 	 * helpers won't use parent's list_lru until child is drained.
3315 	 */
3316 	memcg_reparent_objcgs(memcg, parent);
3317 }
3318 
3319 #ifdef CONFIG_CGROUP_WRITEBACK
3320 
3321 #include <trace/events/writeback.h>
3322 
3323 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3324 {
3325 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3326 }
3327 
3328 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3329 {
3330 	wb_domain_exit(&memcg->cgwb_domain);
3331 }
3332 
3333 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3334 {
3335 	wb_domain_size_changed(&memcg->cgwb_domain);
3336 }
3337 
3338 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3339 {
3340 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3341 
3342 	if (!memcg->css.parent)
3343 		return NULL;
3344 
3345 	return &memcg->cgwb_domain;
3346 }
3347 
3348 /**
3349  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3350  * @wb: bdi_writeback in question
3351  * @pfilepages: out parameter for number of file pages
3352  * @pheadroom: out parameter for number of allocatable pages according to memcg
3353  * @pdirty: out parameter for number of dirty pages
3354  * @pwriteback: out parameter for number of pages under writeback
3355  *
3356  * Determine the numbers of file, headroom, dirty, and writeback pages in
3357  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3358  * is a bit more involved.
3359  *
3360  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3361  * headroom is calculated as the lowest headroom of itself and the
3362  * ancestors.  Note that this doesn't consider the actual amount of
3363  * available memory in the system.  The caller should further cap
3364  * *@pheadroom accordingly.
3365  */
3366 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3367 			 unsigned long *pheadroom, unsigned long *pdirty,
3368 			 unsigned long *pwriteback)
3369 {
3370 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3371 	struct mem_cgroup *parent;
3372 
3373 	mem_cgroup_flush_stats_ratelimited(memcg);
3374 
3375 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3376 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3377 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3378 			memcg_page_state(memcg, NR_ACTIVE_FILE);
3379 
3380 	*pheadroom = PAGE_COUNTER_MAX;
3381 	while ((parent = parent_mem_cgroup(memcg))) {
3382 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3383 					    READ_ONCE(memcg->memory.high));
3384 		unsigned long used = page_counter_read(&memcg->memory);
3385 
3386 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3387 		memcg = parent;
3388 	}
3389 }
3390 
3391 /*
3392  * Foreign dirty flushing
3393  *
3394  * There's an inherent mismatch between memcg and writeback.  The former
3395  * tracks ownership per-page while the latter per-inode.  This was a
3396  * deliberate design decision because honoring per-page ownership in the
3397  * writeback path is complicated, may lead to higher CPU and IO overheads
3398  * and deemed unnecessary given that write-sharing an inode across
3399  * different cgroups isn't a common use-case.
3400  *
3401  * Combined with inode majority-writer ownership switching, this works well
3402  * enough in most cases but there are some pathological cases.  For
3403  * example, let's say there are two cgroups A and B which keep writing to
3404  * different but confined parts of the same inode.  B owns the inode and
3405  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
3406  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3407  * triggering background writeback.  A will be slowed down without a way to
3408  * make writeback of the dirty pages happen.
3409  *
3410  * Conditions like the above can lead to a cgroup getting repeatedly and
3411  * severely throttled after making some progress after each
3412  * dirty_expire_interval while the underlying IO device is almost
3413  * completely idle.
3414  *
3415  * Solving this problem completely requires matching the ownership tracking
3416  * granularities between memcg and writeback in either direction.  However,
3417  * the more egregious behaviors can be avoided by simply remembering the
3418  * most recent foreign dirtying events and initiating remote flushes on
3419  * them when local writeback isn't enough to keep the memory clean enough.
3420  *
3421  * The following two functions implement such mechanism.  When a foreign
3422  * page - a page whose memcg and writeback ownerships don't match - is
3423  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3424  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
3425  * decides that the memcg needs to sleep due to high dirty ratio, it calls
3426  * mem_cgroup_flush_foreign() which queues writeback on the recorded
3427  * foreign bdi_writebacks which haven't expired.  Both the numbers of
3428  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3429  * limited to MEMCG_CGWB_FRN_CNT.
3430  *
3431  * The mechanism only remembers IDs and doesn't hold any object references.
3432  * As being wrong occasionally doesn't matter, updates and accesses to the
3433  * records are lockless and racy.
3434  */
3435 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3436 					     struct bdi_writeback *wb)
3437 {
3438 	struct mem_cgroup *memcg = folio_memcg(folio);
3439 	struct memcg_cgwb_frn *frn;
3440 	u64 now = get_jiffies_64();
3441 	u64 oldest_at = now;
3442 	int oldest = -1;
3443 	int i;
3444 
3445 	trace_track_foreign_dirty(folio, wb);
3446 
3447 	/*
3448 	 * Pick the slot to use.  If there is already a slot for @wb, keep
3449 	 * using it.  If not replace the oldest one which isn't being
3450 	 * written out.
3451 	 */
3452 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3453 		frn = &memcg->cgwb_frn[i];
3454 		if (frn->bdi_id == wb->bdi->id &&
3455 		    frn->memcg_id == wb->memcg_css->id)
3456 			break;
3457 		if (time_before64(frn->at, oldest_at) &&
3458 		    atomic_read(&frn->done.cnt) == 1) {
3459 			oldest = i;
3460 			oldest_at = frn->at;
3461 		}
3462 	}
3463 
3464 	if (i < MEMCG_CGWB_FRN_CNT) {
3465 		/*
3466 		 * Re-using an existing one.  Update timestamp lazily to
3467 		 * avoid making the cacheline hot.  We want them to be
3468 		 * reasonably up-to-date and significantly shorter than
3469 		 * dirty_expire_interval as that's what expires the record.
3470 		 * Use the shorter of 1s and dirty_expire_interval / 8.
3471 		 */
3472 		unsigned long update_intv =
3473 			min_t(unsigned long, HZ,
3474 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3475 
3476 		if (time_before64(frn->at, now - update_intv))
3477 			frn->at = now;
3478 	} else if (oldest >= 0) {
3479 		/* replace the oldest free one */
3480 		frn = &memcg->cgwb_frn[oldest];
3481 		frn->bdi_id = wb->bdi->id;
3482 		frn->memcg_id = wb->memcg_css->id;
3483 		frn->at = now;
3484 	}
3485 }
3486 
3487 /* issue foreign writeback flushes for recorded foreign dirtying events */
3488 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3489 {
3490 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3491 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3492 	u64 now = jiffies_64;
3493 	int i;
3494 
3495 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3496 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3497 
3498 		/*
3499 		 * If the record is older than dirty_expire_interval,
3500 		 * writeback on it has already started.  No need to kick it
3501 		 * off again.  Also, don't start a new one if there's
3502 		 * already one in flight.
3503 		 */
3504 		if (time_after64(frn->at, now - intv) &&
3505 		    atomic_read(&frn->done.cnt) == 1) {
3506 			frn->at = 0;
3507 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3508 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3509 					       WB_REASON_FOREIGN_FLUSH,
3510 					       &frn->done);
3511 		}
3512 	}
3513 }
3514 
3515 #else	/* CONFIG_CGROUP_WRITEBACK */
3516 
3517 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3518 {
3519 	return 0;
3520 }
3521 
3522 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3523 {
3524 }
3525 
3526 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3527 {
3528 }
3529 
3530 #endif	/* CONFIG_CGROUP_WRITEBACK */
3531 
3532 /*
3533  * Private memory cgroup IDR
3534  *
3535  * Swap-out records and page cache shadow entries need to store memcg
3536  * references in constrained space, so we maintain an ID space that is
3537  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3538  * memory-controlled cgroups to 64k.
3539  *
3540  * However, there usually are many references to the offline CSS after
3541  * the cgroup has been destroyed, such as page cache or reclaimable
3542  * slab objects, that don't need to hang on to the ID. We want to keep
3543  * those dead CSS from occupying IDs, or we might quickly exhaust the
3544  * relatively small ID space and prevent the creation of new cgroups
3545  * even when there are much fewer than 64k cgroups - possibly none.
3546  *
3547  * Maintain a private 16-bit ID space for memcg, and allow the ID to
3548  * be freed and recycled when it's no longer needed, which is usually
3549  * when the CSS is offlined.
3550  *
3551  * The only exception to that are records of swapped out tmpfs/shmem
3552  * pages that need to be attributed to live ancestors on swapin. But
3553  * those references are manageable from userspace.
3554  */
3555 
3556 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3557 static DEFINE_XARRAY_ALLOC1(mem_cgroup_private_ids);
3558 
3559 static void mem_cgroup_private_id_remove(struct mem_cgroup *memcg)
3560 {
3561 	if (memcg->id.id > 0) {
3562 		xa_erase(&mem_cgroup_private_ids, memcg->id.id);
3563 		memcg->id.id = 0;
3564 	}
3565 }
3566 
3567 void __maybe_unused mem_cgroup_private_id_get_many(struct mem_cgroup *memcg,
3568 					   unsigned int n)
3569 {
3570 	refcount_add(n, &memcg->id.ref);
3571 }
3572 
3573 static void mem_cgroup_private_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3574 {
3575 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
3576 		mem_cgroup_private_id_remove(memcg);
3577 
3578 		/* Memcg ID pins CSS */
3579 		css_put(&memcg->css);
3580 	}
3581 }
3582 
3583 static inline void mem_cgroup_private_id_put(struct mem_cgroup *memcg)
3584 {
3585 	mem_cgroup_private_id_put_many(memcg, 1);
3586 }
3587 
3588 struct mem_cgroup *mem_cgroup_private_id_get_online(struct mem_cgroup *memcg)
3589 {
3590 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
3591 		/*
3592 		 * The root cgroup cannot be destroyed, so it's refcount must
3593 		 * always be >= 1.
3594 		 */
3595 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
3596 			VM_BUG_ON(1);
3597 			break;
3598 		}
3599 		memcg = parent_mem_cgroup(memcg);
3600 		if (!memcg)
3601 			memcg = root_mem_cgroup;
3602 	}
3603 	return memcg;
3604 }
3605 
3606 /**
3607  * mem_cgroup_from_private_id - look up a memcg from a memcg id
3608  * @id: the memcg id to look up
3609  *
3610  * Caller must hold rcu_read_lock().
3611  */
3612 struct mem_cgroup *mem_cgroup_from_private_id(unsigned short id)
3613 {
3614 	WARN_ON_ONCE(!rcu_read_lock_held());
3615 	return xa_load(&mem_cgroup_private_ids, id);
3616 }
3617 
3618 struct mem_cgroup *mem_cgroup_get_from_id(u64 id)
3619 {
3620 	struct cgroup *cgrp;
3621 	struct cgroup_subsys_state *css;
3622 	struct mem_cgroup *memcg = NULL;
3623 
3624 	cgrp = cgroup_get_from_id(id);
3625 	if (IS_ERR(cgrp))
3626 		return NULL;
3627 
3628 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3629 	if (css)
3630 		memcg = container_of(css, struct mem_cgroup, css);
3631 
3632 	cgroup_put(cgrp);
3633 
3634 	return memcg;
3635 }
3636 
3637 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
3638 {
3639 	if (!pn)
3640 		return;
3641 
3642 	free_percpu(pn->lruvec_stats_percpu);
3643 	kfree(pn->lruvec_stats);
3644 	kfree(pn);
3645 }
3646 
3647 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3648 {
3649 	struct mem_cgroup_per_node *pn;
3650 
3651 	pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3652 				   node);
3653 	if (!pn)
3654 		return false;
3655 
3656 	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3657 					GFP_KERNEL_ACCOUNT, node);
3658 	if (!pn->lruvec_stats)
3659 		goto fail;
3660 
3661 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3662 						   GFP_KERNEL_ACCOUNT);
3663 	if (!pn->lruvec_stats_percpu)
3664 		goto fail;
3665 
3666 	lruvec_init(&pn->lruvec);
3667 	pn->memcg = memcg;
3668 
3669 	memcg->nodeinfo[node] = pn;
3670 	return true;
3671 fail:
3672 	free_mem_cgroup_per_node_info(pn);
3673 	return false;
3674 }
3675 
3676 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3677 {
3678 	int node;
3679 
3680 	obj_cgroup_put(memcg->orig_objcg);
3681 
3682 	for_each_node(node)
3683 		free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
3684 	memcg1_free_events(memcg);
3685 	kfree(memcg->vmstats);
3686 	free_percpu(memcg->vmstats_percpu);
3687 	kfree(memcg);
3688 }
3689 
3690 static void mem_cgroup_free(struct mem_cgroup *memcg)
3691 {
3692 	lru_gen_exit_memcg(memcg);
3693 	memcg_wb_domain_exit(memcg);
3694 	__mem_cgroup_free(memcg);
3695 }
3696 
3697 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3698 {
3699 	struct memcg_vmstats_percpu *statc;
3700 	struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
3701 	struct mem_cgroup *memcg;
3702 	int node, cpu;
3703 	int __maybe_unused i;
3704 	long error;
3705 
3706 	memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3707 	if (!memcg)
3708 		return ERR_PTR(-ENOMEM);
3709 
3710 	error = xa_alloc(&mem_cgroup_private_ids, &memcg->id.id, NULL,
3711 			 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3712 	if (error)
3713 		goto fail;
3714 	error = -ENOMEM;
3715 
3716 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3717 				 GFP_KERNEL_ACCOUNT);
3718 	if (!memcg->vmstats)
3719 		goto fail;
3720 
3721 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3722 						 GFP_KERNEL_ACCOUNT);
3723 	if (!memcg->vmstats_percpu)
3724 		goto fail;
3725 
3726 	if (!memcg1_alloc_events(memcg))
3727 		goto fail;
3728 
3729 	for_each_possible_cpu(cpu) {
3730 		if (parent)
3731 			pstatc_pcpu = parent->vmstats_percpu;
3732 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3733 		statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
3734 		statc->vmstats = memcg->vmstats;
3735 	}
3736 
3737 	for_each_node(node)
3738 		if (!alloc_mem_cgroup_per_node_info(memcg, node))
3739 			goto fail;
3740 
3741 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3742 		goto fail;
3743 
3744 	INIT_WORK(&memcg->high_work, high_work_func);
3745 	vmpressure_init(&memcg->vmpressure);
3746 	INIT_LIST_HEAD(&memcg->memory_peaks);
3747 	INIT_LIST_HEAD(&memcg->swap_peaks);
3748 	spin_lock_init(&memcg->peaks_lock);
3749 	memcg->socket_pressure = get_jiffies_64();
3750 #if BITS_PER_LONG < 64
3751 	seqlock_init(&memcg->socket_pressure_seqlock);
3752 #endif
3753 	memcg1_memcg_init(memcg);
3754 	memcg->kmemcg_id = -1;
3755 	INIT_LIST_HEAD(&memcg->objcg_list);
3756 #ifdef CONFIG_CGROUP_WRITEBACK
3757 	INIT_LIST_HEAD(&memcg->cgwb_list);
3758 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3759 		memcg->cgwb_frn[i].done =
3760 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3761 #endif
3762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3763 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3764 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3765 	memcg->deferred_split_queue.split_queue_len = 0;
3766 #endif
3767 	lru_gen_init_memcg(memcg);
3768 	return memcg;
3769 fail:
3770 	mem_cgroup_private_id_remove(memcg);
3771 	__mem_cgroup_free(memcg);
3772 	return ERR_PTR(error);
3773 }
3774 
3775 static struct cgroup_subsys_state * __ref
3776 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3777 {
3778 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3779 	struct mem_cgroup *memcg, *old_memcg;
3780 	bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
3781 
3782 	old_memcg = set_active_memcg(parent);
3783 	memcg = mem_cgroup_alloc(parent);
3784 	set_active_memcg(old_memcg);
3785 	if (IS_ERR(memcg))
3786 		return ERR_CAST(memcg);
3787 
3788 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3789 	memcg1_soft_limit_reset(memcg);
3790 #ifdef CONFIG_ZSWAP
3791 	memcg->zswap_max = PAGE_COUNTER_MAX;
3792 	WRITE_ONCE(memcg->zswap_writeback, true);
3793 #endif
3794 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3795 	if (parent) {
3796 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3797 
3798 		page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
3799 		page_counter_init(&memcg->swap, &parent->swap, false);
3800 #ifdef CONFIG_MEMCG_V1
3801 		memcg->memory.track_failcnt = !memcg_on_dfl;
3802 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3803 		page_counter_init(&memcg->kmem, &parent->kmem, false);
3804 		page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3805 #endif
3806 	} else {
3807 		init_memcg_stats();
3808 		init_memcg_events();
3809 		page_counter_init(&memcg->memory, NULL, true);
3810 		page_counter_init(&memcg->swap, NULL, false);
3811 #ifdef CONFIG_MEMCG_V1
3812 		page_counter_init(&memcg->kmem, NULL, false);
3813 		page_counter_init(&memcg->tcpmem, NULL, false);
3814 #endif
3815 		root_mem_cgroup = memcg;
3816 		return &memcg->css;
3817 	}
3818 
3819 	if (memcg_on_dfl && !cgroup_memory_nosocket)
3820 		static_branch_inc(&memcg_sockets_enabled_key);
3821 
3822 	if (!cgroup_memory_nobpf)
3823 		static_branch_inc(&memcg_bpf_enabled_key);
3824 
3825 	return &memcg->css;
3826 }
3827 
3828 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3829 {
3830 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3831 
3832 	if (memcg_online_kmem(memcg))
3833 		goto remove_id;
3834 
3835 	/*
3836 	 * A memcg must be visible for expand_shrinker_info()
3837 	 * by the time the maps are allocated. So, we allocate maps
3838 	 * here, when for_each_mem_cgroup() can't skip it.
3839 	 */
3840 	if (alloc_shrinker_info(memcg))
3841 		goto offline_kmem;
3842 
3843 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3844 		queue_delayed_work(system_dfl_wq, &stats_flush_dwork,
3845 				   FLUSH_TIME);
3846 	lru_gen_online_memcg(memcg);
3847 
3848 	/* Online state pins memcg ID, memcg ID pins CSS */
3849 	refcount_set(&memcg->id.ref, 1);
3850 	css_get(css);
3851 
3852 	/*
3853 	 * Ensure mem_cgroup_from_private_id() works once we're fully online.
3854 	 *
3855 	 * We could do this earlier and require callers to filter with
3856 	 * css_tryget_online(). But right now there are no users that
3857 	 * need earlier access, and the workingset code relies on the
3858 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3859 	 * publish it here at the end of onlining. This matches the
3860 	 * regular ID destruction during offlining.
3861 	 */
3862 	xa_store(&mem_cgroup_private_ids, memcg->id.id, memcg, GFP_KERNEL);
3863 
3864 	return 0;
3865 offline_kmem:
3866 	memcg_offline_kmem(memcg);
3867 remove_id:
3868 	mem_cgroup_private_id_remove(memcg);
3869 	return -ENOMEM;
3870 }
3871 
3872 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3873 {
3874 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3875 
3876 	memcg1_css_offline(memcg);
3877 
3878 	page_counter_set_min(&memcg->memory, 0);
3879 	page_counter_set_low(&memcg->memory, 0);
3880 
3881 	zswap_memcg_offline_cleanup(memcg);
3882 
3883 	memcg_offline_kmem(memcg);
3884 	reparent_deferred_split_queue(memcg);
3885 	reparent_shrinker_deferred(memcg);
3886 	wb_memcg_offline(memcg);
3887 	lru_gen_offline_memcg(memcg);
3888 
3889 	drain_all_stock(memcg);
3890 
3891 	mem_cgroup_private_id_put(memcg);
3892 }
3893 
3894 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3895 {
3896 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3897 
3898 	invalidate_reclaim_iterators(memcg);
3899 	lru_gen_release_memcg(memcg);
3900 }
3901 
3902 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3903 {
3904 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3905 	int __maybe_unused i;
3906 
3907 #ifdef CONFIG_CGROUP_WRITEBACK
3908 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3909 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3910 #endif
3911 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3912 		static_branch_dec(&memcg_sockets_enabled_key);
3913 
3914 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3915 		static_branch_dec(&memcg_sockets_enabled_key);
3916 
3917 	if (!cgroup_memory_nobpf)
3918 		static_branch_dec(&memcg_bpf_enabled_key);
3919 
3920 	vmpressure_cleanup(&memcg->vmpressure);
3921 	cancel_work_sync(&memcg->high_work);
3922 	memcg1_remove_from_trees(memcg);
3923 	free_shrinker_info(memcg);
3924 	mem_cgroup_free(memcg);
3925 }
3926 
3927 /**
3928  * mem_cgroup_css_reset - reset the states of a mem_cgroup
3929  * @css: the target css
3930  *
3931  * Reset the states of the mem_cgroup associated with @css.  This is
3932  * invoked when the userland requests disabling on the default hierarchy
3933  * but the memcg is pinned through dependency.  The memcg should stop
3934  * applying policies and should revert to the vanilla state as it may be
3935  * made visible again.
3936  *
3937  * The current implementation only resets the essential configurations.
3938  * This needs to be expanded to cover all the visible parts.
3939  */
3940 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3941 {
3942 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3943 
3944 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3945 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3946 #ifdef CONFIG_MEMCG_V1
3947 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3948 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3949 #endif
3950 	page_counter_set_min(&memcg->memory, 0);
3951 	page_counter_set_low(&memcg->memory, 0);
3952 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3953 	memcg1_soft_limit_reset(memcg);
3954 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3955 	memcg_wb_domain_size_changed(memcg);
3956 }
3957 
3958 struct aggregate_control {
3959 	/* pointer to the aggregated (CPU and subtree aggregated) counters */
3960 	long *aggregate;
3961 	/* pointer to the non-hierarchichal (CPU aggregated) counters */
3962 	long *local;
3963 	/* pointer to the pending child counters during tree propagation */
3964 	long *pending;
3965 	/* pointer to the parent's pending counters, could be NULL */
3966 	long *ppending;
3967 	/* pointer to the percpu counters to be aggregated */
3968 	long *cstat;
3969 	/* pointer to the percpu counters of the last aggregation*/
3970 	long *cstat_prev;
3971 	/* size of the above counters */
3972 	int size;
3973 };
3974 
3975 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3976 {
3977 	int i;
3978 	long delta, delta_cpu, v;
3979 
3980 	for (i = 0; i < ac->size; i++) {
3981 		/*
3982 		 * Collect the aggregated propagation counts of groups
3983 		 * below us. We're in a per-cpu loop here and this is
3984 		 * a global counter, so the first cycle will get them.
3985 		 */
3986 		delta = ac->pending[i];
3987 		if (delta)
3988 			ac->pending[i] = 0;
3989 
3990 		/* Add CPU changes on this level since the last flush */
3991 		delta_cpu = 0;
3992 		v = READ_ONCE(ac->cstat[i]);
3993 		if (v != ac->cstat_prev[i]) {
3994 			delta_cpu = v - ac->cstat_prev[i];
3995 			delta += delta_cpu;
3996 			ac->cstat_prev[i] = v;
3997 		}
3998 
3999 		/* Aggregate counts on this level and propagate upwards */
4000 		if (delta_cpu)
4001 			ac->local[i] += delta_cpu;
4002 
4003 		if (delta) {
4004 			ac->aggregate[i] += delta;
4005 			if (ac->ppending)
4006 				ac->ppending[i] += delta;
4007 		}
4008 	}
4009 }
4010 
4011 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
4012 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4013 			    int cpu)
4014 {
4015 	int nid;
4016 
4017 	if (atomic_read(&memcg->kmem_stat)) {
4018 		int kmem = atomic_xchg(&memcg->kmem_stat, 0);
4019 		int index = memcg_stats_index(MEMCG_KMEM);
4020 
4021 		memcg->vmstats->state[index] += kmem;
4022 		if (parent)
4023 			parent->vmstats->state_pending[index] += kmem;
4024 	}
4025 
4026 	for_each_node_state(nid, N_MEMORY) {
4027 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4028 		struct lruvec_stats *lstats = pn->lruvec_stats;
4029 		struct lruvec_stats *plstats = NULL;
4030 
4031 		if (parent)
4032 			plstats = parent->nodeinfo[nid]->lruvec_stats;
4033 
4034 		if (atomic_read(&pn->slab_reclaimable)) {
4035 			int slab = atomic_xchg(&pn->slab_reclaimable, 0);
4036 			int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
4037 
4038 			lstats->state[index] += slab;
4039 			if (plstats)
4040 				plstats->state_pending[index] += slab;
4041 		}
4042 		if (atomic_read(&pn->slab_unreclaimable)) {
4043 			int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
4044 			int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
4045 
4046 			lstats->state[index] += slab;
4047 			if (plstats)
4048 				plstats->state_pending[index] += slab;
4049 		}
4050 	}
4051 }
4052 #else
4053 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4054 			    int cpu)
4055 {}
4056 #endif
4057 
4058 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
4059 {
4060 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4061 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4062 	struct memcg_vmstats_percpu *statc;
4063 	struct aggregate_control ac;
4064 	int nid;
4065 
4066 	flush_nmi_stats(memcg, parent, cpu);
4067 
4068 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
4069 
4070 	ac = (struct aggregate_control) {
4071 		.aggregate = memcg->vmstats->state,
4072 		.local = memcg->vmstats->state_local,
4073 		.pending = memcg->vmstats->state_pending,
4074 		.ppending = parent ? parent->vmstats->state_pending : NULL,
4075 		.cstat = statc->state,
4076 		.cstat_prev = statc->state_prev,
4077 		.size = MEMCG_VMSTAT_SIZE,
4078 	};
4079 	mem_cgroup_stat_aggregate(&ac);
4080 
4081 	ac = (struct aggregate_control) {
4082 		.aggregate = memcg->vmstats->events,
4083 		.local = memcg->vmstats->events_local,
4084 		.pending = memcg->vmstats->events_pending,
4085 		.ppending = parent ? parent->vmstats->events_pending : NULL,
4086 		.cstat = statc->events,
4087 		.cstat_prev = statc->events_prev,
4088 		.size = NR_MEMCG_EVENTS,
4089 	};
4090 	mem_cgroup_stat_aggregate(&ac);
4091 
4092 	for_each_node_state(nid, N_MEMORY) {
4093 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4094 		struct lruvec_stats *lstats = pn->lruvec_stats;
4095 		struct lruvec_stats *plstats = NULL;
4096 		struct lruvec_stats_percpu *lstatc;
4097 
4098 		if (parent)
4099 			plstats = parent->nodeinfo[nid]->lruvec_stats;
4100 
4101 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
4102 
4103 		ac = (struct aggregate_control) {
4104 			.aggregate = lstats->state,
4105 			.local = lstats->state_local,
4106 			.pending = lstats->state_pending,
4107 			.ppending = plstats ? plstats->state_pending : NULL,
4108 			.cstat = lstatc->state,
4109 			.cstat_prev = lstatc->state_prev,
4110 			.size = NR_MEMCG_NODE_STAT_ITEMS,
4111 		};
4112 		mem_cgroup_stat_aggregate(&ac);
4113 
4114 	}
4115 	WRITE_ONCE(statc->stats_updates, 0);
4116 	/* We are in a per-cpu loop here, only do the atomic write once */
4117 	if (atomic_read(&memcg->vmstats->stats_updates))
4118 		atomic_set(&memcg->vmstats->stats_updates, 0);
4119 }
4120 
4121 static void mem_cgroup_fork(struct task_struct *task)
4122 {
4123 	/*
4124 	 * Set the update flag to cause task->objcg to be initialized lazily
4125 	 * on the first allocation. It can be done without any synchronization
4126 	 * because it's always performed on the current task, so does
4127 	 * current_objcg_update().
4128 	 */
4129 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
4130 }
4131 
4132 static void mem_cgroup_exit(struct task_struct *task)
4133 {
4134 	struct obj_cgroup *objcg = task->objcg;
4135 
4136 	objcg = (struct obj_cgroup *)
4137 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
4138 	obj_cgroup_put(objcg);
4139 
4140 	/*
4141 	 * Some kernel allocations can happen after this point,
4142 	 * but let's ignore them. It can be done without any synchronization
4143 	 * because it's always performed on the current task, so does
4144 	 * current_objcg_update().
4145 	 */
4146 	task->objcg = NULL;
4147 }
4148 
4149 #ifdef CONFIG_LRU_GEN
4150 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
4151 {
4152 	struct task_struct *task;
4153 	struct cgroup_subsys_state *css;
4154 
4155 	/* find the first leader if there is any */
4156 	cgroup_taskset_for_each_leader(task, css, tset)
4157 		break;
4158 
4159 	if (!task)
4160 		return;
4161 
4162 	task_lock(task);
4163 	if (task->mm && READ_ONCE(task->mm->owner) == task)
4164 		lru_gen_migrate_mm(task->mm);
4165 	task_unlock(task);
4166 }
4167 #else
4168 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
4169 #endif /* CONFIG_LRU_GEN */
4170 
4171 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
4172 {
4173 	struct task_struct *task;
4174 	struct cgroup_subsys_state *css;
4175 
4176 	cgroup_taskset_for_each(task, css, tset) {
4177 		/* atomically set the update bit */
4178 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
4179 	}
4180 }
4181 
4182 static void mem_cgroup_attach(struct cgroup_taskset *tset)
4183 {
4184 	mem_cgroup_lru_gen_attach(tset);
4185 	mem_cgroup_kmem_attach(tset);
4186 }
4187 
4188 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
4189 {
4190 	if (value == PAGE_COUNTER_MAX)
4191 		seq_puts(m, "max\n");
4192 	else
4193 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
4194 
4195 	return 0;
4196 }
4197 
4198 static u64 memory_current_read(struct cgroup_subsys_state *css,
4199 			       struct cftype *cft)
4200 {
4201 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4202 
4203 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4204 }
4205 
4206 #define OFP_PEAK_UNSET (((-1UL)))
4207 
4208 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4209 {
4210 	struct cgroup_of_peak *ofp = of_peak(sf->private);
4211 	u64 fd_peak = READ_ONCE(ofp->value), peak;
4212 
4213 	/* User wants global or local peak? */
4214 	if (fd_peak == OFP_PEAK_UNSET)
4215 		peak = pc->watermark;
4216 	else
4217 		peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4218 
4219 	seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4220 	return 0;
4221 }
4222 
4223 static int memory_peak_show(struct seq_file *sf, void *v)
4224 {
4225 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4226 
4227 	return peak_show(sf, v, &memcg->memory);
4228 }
4229 
4230 static int peak_open(struct kernfs_open_file *of)
4231 {
4232 	struct cgroup_of_peak *ofp = of_peak(of);
4233 
4234 	ofp->value = OFP_PEAK_UNSET;
4235 	return 0;
4236 }
4237 
4238 static void peak_release(struct kernfs_open_file *of)
4239 {
4240 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4241 	struct cgroup_of_peak *ofp = of_peak(of);
4242 
4243 	if (ofp->value == OFP_PEAK_UNSET) {
4244 		/* fast path (no writes on this fd) */
4245 		return;
4246 	}
4247 	spin_lock(&memcg->peaks_lock);
4248 	list_del(&ofp->list);
4249 	spin_unlock(&memcg->peaks_lock);
4250 }
4251 
4252 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4253 			  loff_t off, struct page_counter *pc,
4254 			  struct list_head *watchers)
4255 {
4256 	unsigned long usage;
4257 	struct cgroup_of_peak *peer_ctx;
4258 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4259 	struct cgroup_of_peak *ofp = of_peak(of);
4260 
4261 	spin_lock(&memcg->peaks_lock);
4262 
4263 	usage = page_counter_read(pc);
4264 	WRITE_ONCE(pc->local_watermark, usage);
4265 
4266 	list_for_each_entry(peer_ctx, watchers, list)
4267 		if (usage > peer_ctx->value)
4268 			WRITE_ONCE(peer_ctx->value, usage);
4269 
4270 	/* initial write, register watcher */
4271 	if (ofp->value == OFP_PEAK_UNSET)
4272 		list_add(&ofp->list, watchers);
4273 
4274 	WRITE_ONCE(ofp->value, usage);
4275 	spin_unlock(&memcg->peaks_lock);
4276 
4277 	return nbytes;
4278 }
4279 
4280 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4281 				 size_t nbytes, loff_t off)
4282 {
4283 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4284 
4285 	return peak_write(of, buf, nbytes, off, &memcg->memory,
4286 			  &memcg->memory_peaks);
4287 }
4288 
4289 #undef OFP_PEAK_UNSET
4290 
4291 static int memory_min_show(struct seq_file *m, void *v)
4292 {
4293 	return seq_puts_memcg_tunable(m,
4294 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4295 }
4296 
4297 static ssize_t memory_min_write(struct kernfs_open_file *of,
4298 				char *buf, size_t nbytes, loff_t off)
4299 {
4300 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4301 	unsigned long min;
4302 	int err;
4303 
4304 	buf = strstrip(buf);
4305 	err = page_counter_memparse(buf, "max", &min);
4306 	if (err)
4307 		return err;
4308 
4309 	page_counter_set_min(&memcg->memory, min);
4310 
4311 	return nbytes;
4312 }
4313 
4314 static int memory_low_show(struct seq_file *m, void *v)
4315 {
4316 	return seq_puts_memcg_tunable(m,
4317 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4318 }
4319 
4320 static ssize_t memory_low_write(struct kernfs_open_file *of,
4321 				char *buf, size_t nbytes, loff_t off)
4322 {
4323 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4324 	unsigned long low;
4325 	int err;
4326 
4327 	buf = strstrip(buf);
4328 	err = page_counter_memparse(buf, "max", &low);
4329 	if (err)
4330 		return err;
4331 
4332 	page_counter_set_low(&memcg->memory, low);
4333 
4334 	return nbytes;
4335 }
4336 
4337 static int memory_high_show(struct seq_file *m, void *v)
4338 {
4339 	return seq_puts_memcg_tunable(m,
4340 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4341 }
4342 
4343 static ssize_t memory_high_write(struct kernfs_open_file *of,
4344 				 char *buf, size_t nbytes, loff_t off)
4345 {
4346 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4347 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4348 	bool drained = false;
4349 	unsigned long high;
4350 	int err;
4351 
4352 	buf = strstrip(buf);
4353 	err = page_counter_memparse(buf, "max", &high);
4354 	if (err)
4355 		return err;
4356 
4357 	page_counter_set_high(&memcg->memory, high);
4358 
4359 	if (of->file->f_flags & O_NONBLOCK)
4360 		goto out;
4361 
4362 	for (;;) {
4363 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4364 		unsigned long reclaimed;
4365 
4366 		if (nr_pages <= high)
4367 			break;
4368 
4369 		if (signal_pending(current))
4370 			break;
4371 
4372 		if (!drained) {
4373 			drain_all_stock(memcg);
4374 			drained = true;
4375 			continue;
4376 		}
4377 
4378 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4379 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4380 
4381 		if (!reclaimed && !nr_retries--)
4382 			break;
4383 	}
4384 out:
4385 	memcg_wb_domain_size_changed(memcg);
4386 	return nbytes;
4387 }
4388 
4389 static int memory_max_show(struct seq_file *m, void *v)
4390 {
4391 	return seq_puts_memcg_tunable(m,
4392 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4393 }
4394 
4395 static ssize_t memory_max_write(struct kernfs_open_file *of,
4396 				char *buf, size_t nbytes, loff_t off)
4397 {
4398 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4399 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4400 	bool drained = false;
4401 	unsigned long max;
4402 	int err;
4403 
4404 	buf = strstrip(buf);
4405 	err = page_counter_memparse(buf, "max", &max);
4406 	if (err)
4407 		return err;
4408 
4409 	xchg(&memcg->memory.max, max);
4410 
4411 	if (of->file->f_flags & O_NONBLOCK)
4412 		goto out;
4413 
4414 	for (;;) {
4415 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4416 
4417 		if (nr_pages <= max)
4418 			break;
4419 
4420 		if (signal_pending(current))
4421 			break;
4422 
4423 		if (!drained) {
4424 			drain_all_stock(memcg);
4425 			drained = true;
4426 			continue;
4427 		}
4428 
4429 		if (nr_reclaims) {
4430 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4431 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4432 				nr_reclaims--;
4433 			continue;
4434 		}
4435 
4436 		memcg_memory_event(memcg, MEMCG_OOM);
4437 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4438 			break;
4439 		cond_resched();
4440 	}
4441 out:
4442 	memcg_wb_domain_size_changed(memcg);
4443 	return nbytes;
4444 }
4445 
4446 /*
4447  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4448  * if any new events become available.
4449  */
4450 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4451 {
4452 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4453 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4454 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4455 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4456 	seq_printf(m, "oom_kill %lu\n",
4457 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
4458 	seq_printf(m, "oom_group_kill %lu\n",
4459 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4460 	seq_printf(m, "sock_throttled %lu\n",
4461 		   atomic_long_read(&events[MEMCG_SOCK_THROTTLED]));
4462 }
4463 
4464 static int memory_events_show(struct seq_file *m, void *v)
4465 {
4466 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4467 
4468 	__memory_events_show(m, memcg->memory_events);
4469 	return 0;
4470 }
4471 
4472 static int memory_events_local_show(struct seq_file *m, void *v)
4473 {
4474 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4475 
4476 	__memory_events_show(m, memcg->memory_events_local);
4477 	return 0;
4478 }
4479 
4480 int memory_stat_show(struct seq_file *m, void *v)
4481 {
4482 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4483 	char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4484 	struct seq_buf s;
4485 
4486 	if (!buf)
4487 		return -ENOMEM;
4488 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4489 	memory_stat_format(memcg, &s);
4490 	seq_puts(m, buf);
4491 	kfree(buf);
4492 	return 0;
4493 }
4494 
4495 #ifdef CONFIG_NUMA
4496 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4497 						     int item)
4498 {
4499 	return lruvec_page_state(lruvec, item) *
4500 		memcg_page_state_output_unit(item);
4501 }
4502 
4503 static int memory_numa_stat_show(struct seq_file *m, void *v)
4504 {
4505 	int i;
4506 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4507 
4508 	mem_cgroup_flush_stats(memcg);
4509 
4510 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4511 		int nid;
4512 
4513 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4514 			continue;
4515 
4516 		seq_printf(m, "%s", memory_stats[i].name);
4517 		for_each_node_state(nid, N_MEMORY) {
4518 			u64 size;
4519 			struct lruvec *lruvec;
4520 
4521 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4522 			size = lruvec_page_state_output(lruvec,
4523 							memory_stats[i].idx);
4524 			seq_printf(m, " N%d=%llu", nid, size);
4525 		}
4526 		seq_putc(m, '\n');
4527 	}
4528 
4529 	return 0;
4530 }
4531 #endif
4532 
4533 static int memory_oom_group_show(struct seq_file *m, void *v)
4534 {
4535 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4536 
4537 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4538 
4539 	return 0;
4540 }
4541 
4542 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4543 				      char *buf, size_t nbytes, loff_t off)
4544 {
4545 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4546 	int ret, oom_group;
4547 
4548 	buf = strstrip(buf);
4549 	if (!buf)
4550 		return -EINVAL;
4551 
4552 	ret = kstrtoint(buf, 0, &oom_group);
4553 	if (ret)
4554 		return ret;
4555 
4556 	if (oom_group != 0 && oom_group != 1)
4557 		return -EINVAL;
4558 
4559 	WRITE_ONCE(memcg->oom_group, oom_group);
4560 
4561 	return nbytes;
4562 }
4563 
4564 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4565 			      size_t nbytes, loff_t off)
4566 {
4567 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4568 	int ret;
4569 
4570 	ret = user_proactive_reclaim(buf, memcg, NULL);
4571 	if (ret)
4572 		return ret;
4573 
4574 	return nbytes;
4575 }
4576 
4577 static struct cftype memory_files[] = {
4578 	{
4579 		.name = "current",
4580 		.flags = CFTYPE_NOT_ON_ROOT,
4581 		.read_u64 = memory_current_read,
4582 	},
4583 	{
4584 		.name = "peak",
4585 		.flags = CFTYPE_NOT_ON_ROOT,
4586 		.open = peak_open,
4587 		.release = peak_release,
4588 		.seq_show = memory_peak_show,
4589 		.write = memory_peak_write,
4590 	},
4591 	{
4592 		.name = "min",
4593 		.flags = CFTYPE_NOT_ON_ROOT,
4594 		.seq_show = memory_min_show,
4595 		.write = memory_min_write,
4596 	},
4597 	{
4598 		.name = "low",
4599 		.flags = CFTYPE_NOT_ON_ROOT,
4600 		.seq_show = memory_low_show,
4601 		.write = memory_low_write,
4602 	},
4603 	{
4604 		.name = "high",
4605 		.flags = CFTYPE_NOT_ON_ROOT,
4606 		.seq_show = memory_high_show,
4607 		.write = memory_high_write,
4608 	},
4609 	{
4610 		.name = "max",
4611 		.flags = CFTYPE_NOT_ON_ROOT,
4612 		.seq_show = memory_max_show,
4613 		.write = memory_max_write,
4614 	},
4615 	{
4616 		.name = "events",
4617 		.flags = CFTYPE_NOT_ON_ROOT,
4618 		.file_offset = offsetof(struct mem_cgroup, events_file),
4619 		.seq_show = memory_events_show,
4620 	},
4621 	{
4622 		.name = "events.local",
4623 		.flags = CFTYPE_NOT_ON_ROOT,
4624 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
4625 		.seq_show = memory_events_local_show,
4626 	},
4627 	{
4628 		.name = "stat",
4629 		.seq_show = memory_stat_show,
4630 	},
4631 #ifdef CONFIG_NUMA
4632 	{
4633 		.name = "numa_stat",
4634 		.seq_show = memory_numa_stat_show,
4635 	},
4636 #endif
4637 	{
4638 		.name = "oom.group",
4639 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4640 		.seq_show = memory_oom_group_show,
4641 		.write = memory_oom_group_write,
4642 	},
4643 	{
4644 		.name = "reclaim",
4645 		.flags = CFTYPE_NS_DELEGATABLE,
4646 		.write = memory_reclaim,
4647 	},
4648 	{ }	/* terminate */
4649 };
4650 
4651 struct cgroup_subsys memory_cgrp_subsys = {
4652 	.css_alloc = mem_cgroup_css_alloc,
4653 	.css_online = mem_cgroup_css_online,
4654 	.css_offline = mem_cgroup_css_offline,
4655 	.css_released = mem_cgroup_css_released,
4656 	.css_free = mem_cgroup_css_free,
4657 	.css_reset = mem_cgroup_css_reset,
4658 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
4659 	.attach = mem_cgroup_attach,
4660 	.fork = mem_cgroup_fork,
4661 	.exit = mem_cgroup_exit,
4662 	.dfl_cftypes = memory_files,
4663 #ifdef CONFIG_MEMCG_V1
4664 	.legacy_cftypes = mem_cgroup_legacy_files,
4665 #endif
4666 	.early_init = 0,
4667 };
4668 
4669 /**
4670  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4671  * @root: the top ancestor of the sub-tree being checked
4672  * @memcg: the memory cgroup to check
4673  *
4674  * WARNING: This function is not stateless! It can only be used as part
4675  *          of a top-down tree iteration, not for isolated queries.
4676  */
4677 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4678 				     struct mem_cgroup *memcg)
4679 {
4680 	bool recursive_protection =
4681 		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4682 
4683 	if (mem_cgroup_disabled())
4684 		return;
4685 
4686 	if (!root)
4687 		root = root_mem_cgroup;
4688 
4689 	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4690 }
4691 
4692 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4693 			gfp_t gfp)
4694 {
4695 	int ret;
4696 
4697 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4698 	if (ret)
4699 		goto out;
4700 
4701 	css_get(&memcg->css);
4702 	commit_charge(folio, memcg);
4703 	memcg1_commit_charge(folio, memcg);
4704 out:
4705 	return ret;
4706 }
4707 
4708 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4709 {
4710 	struct mem_cgroup *memcg;
4711 	int ret;
4712 
4713 	memcg = get_mem_cgroup_from_mm(mm);
4714 	ret = charge_memcg(folio, memcg, gfp);
4715 	css_put(&memcg->css);
4716 
4717 	return ret;
4718 }
4719 
4720 /**
4721  * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4722  * @folio: folio being charged
4723  * @gfp: reclaim mode
4724  *
4725  * This function is called when allocating a huge page folio, after the page has
4726  * already been obtained and charged to the appropriate hugetlb cgroup
4727  * controller (if it is enabled).
4728  *
4729  * Returns ENOMEM if the memcg is already full.
4730  * Returns 0 if either the charge was successful, or if we skip the charging.
4731  */
4732 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4733 {
4734 	struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4735 	int ret = 0;
4736 
4737 	/*
4738 	 * Even memcg does not account for hugetlb, we still want to update
4739 	 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4740 	 * charging the memcg.
4741 	 */
4742 	if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4743 		!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4744 		goto out;
4745 
4746 	if (charge_memcg(folio, memcg, gfp))
4747 		ret = -ENOMEM;
4748 
4749 out:
4750 	mem_cgroup_put(memcg);
4751 	return ret;
4752 }
4753 
4754 /**
4755  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4756  * @folio: folio to charge.
4757  * @mm: mm context of the victim
4758  * @gfp: reclaim mode
4759  * @entry: swap entry for which the folio is allocated
4760  *
4761  * This function charges a folio allocated for swapin. Please call this before
4762  * adding the folio to the swapcache.
4763  *
4764  * Returns 0 on success. Otherwise, an error code is returned.
4765  */
4766 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4767 				  gfp_t gfp, swp_entry_t entry)
4768 {
4769 	struct mem_cgroup *memcg;
4770 	unsigned short id;
4771 	int ret;
4772 
4773 	if (mem_cgroup_disabled())
4774 		return 0;
4775 
4776 	id = lookup_swap_cgroup_id(entry);
4777 	rcu_read_lock();
4778 	memcg = mem_cgroup_from_private_id(id);
4779 	if (!memcg || !css_tryget_online(&memcg->css))
4780 		memcg = get_mem_cgroup_from_mm(mm);
4781 	rcu_read_unlock();
4782 
4783 	ret = charge_memcg(folio, memcg, gfp);
4784 
4785 	css_put(&memcg->css);
4786 	return ret;
4787 }
4788 
4789 struct uncharge_gather {
4790 	struct mem_cgroup *memcg;
4791 	unsigned long nr_memory;
4792 	unsigned long pgpgout;
4793 	unsigned long nr_kmem;
4794 	int nid;
4795 };
4796 
4797 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4798 {
4799 	memset(ug, 0, sizeof(*ug));
4800 }
4801 
4802 static void uncharge_batch(const struct uncharge_gather *ug)
4803 {
4804 	if (ug->nr_memory) {
4805 		memcg_uncharge(ug->memcg, ug->nr_memory);
4806 		if (ug->nr_kmem) {
4807 			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4808 			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4809 		}
4810 		memcg1_oom_recover(ug->memcg);
4811 	}
4812 
4813 	memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4814 
4815 	/* drop reference from uncharge_folio */
4816 	css_put(&ug->memcg->css);
4817 }
4818 
4819 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4820 {
4821 	long nr_pages;
4822 	struct mem_cgroup *memcg;
4823 	struct obj_cgroup *objcg;
4824 
4825 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4826 
4827 	/*
4828 	 * Nobody should be changing or seriously looking at
4829 	 * folio memcg or objcg at this point, we have fully
4830 	 * exclusive access to the folio.
4831 	 */
4832 	if (folio_memcg_kmem(folio)) {
4833 		objcg = __folio_objcg(folio);
4834 		/*
4835 		 * This get matches the put at the end of the function and
4836 		 * kmem pages do not hold memcg references anymore.
4837 		 */
4838 		memcg = get_mem_cgroup_from_objcg(objcg);
4839 	} else {
4840 		memcg = __folio_memcg(folio);
4841 	}
4842 
4843 	if (!memcg)
4844 		return;
4845 
4846 	if (ug->memcg != memcg) {
4847 		if (ug->memcg) {
4848 			uncharge_batch(ug);
4849 			uncharge_gather_clear(ug);
4850 		}
4851 		ug->memcg = memcg;
4852 		ug->nid = folio_nid(folio);
4853 
4854 		/* pairs with css_put in uncharge_batch */
4855 		css_get(&memcg->css);
4856 	}
4857 
4858 	nr_pages = folio_nr_pages(folio);
4859 
4860 	if (folio_memcg_kmem(folio)) {
4861 		ug->nr_memory += nr_pages;
4862 		ug->nr_kmem += nr_pages;
4863 
4864 		folio->memcg_data = 0;
4865 		obj_cgroup_put(objcg);
4866 	} else {
4867 		/* LRU pages aren't accounted at the root level */
4868 		if (!mem_cgroup_is_root(memcg))
4869 			ug->nr_memory += nr_pages;
4870 		ug->pgpgout++;
4871 
4872 		WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4873 		folio->memcg_data = 0;
4874 	}
4875 
4876 	css_put(&memcg->css);
4877 }
4878 
4879 void __mem_cgroup_uncharge(struct folio *folio)
4880 {
4881 	struct uncharge_gather ug;
4882 
4883 	/* Don't touch folio->lru of any random page, pre-check: */
4884 	if (!folio_memcg_charged(folio))
4885 		return;
4886 
4887 	uncharge_gather_clear(&ug);
4888 	uncharge_folio(folio, &ug);
4889 	uncharge_batch(&ug);
4890 }
4891 
4892 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4893 {
4894 	struct uncharge_gather ug;
4895 	unsigned int i;
4896 
4897 	uncharge_gather_clear(&ug);
4898 	for (i = 0; i < folios->nr; i++)
4899 		uncharge_folio(folios->folios[i], &ug);
4900 	if (ug.memcg)
4901 		uncharge_batch(&ug);
4902 }
4903 
4904 /**
4905  * mem_cgroup_replace_folio - Charge a folio's replacement.
4906  * @old: Currently circulating folio.
4907  * @new: Replacement folio.
4908  *
4909  * Charge @new as a replacement folio for @old. @old will
4910  * be uncharged upon free.
4911  *
4912  * Both folios must be locked, @new->mapping must be set up.
4913  */
4914 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4915 {
4916 	struct mem_cgroup *memcg;
4917 	long nr_pages = folio_nr_pages(new);
4918 
4919 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4920 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4921 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4922 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4923 
4924 	if (mem_cgroup_disabled())
4925 		return;
4926 
4927 	/* Page cache replacement: new folio already charged? */
4928 	if (folio_memcg_charged(new))
4929 		return;
4930 
4931 	memcg = folio_memcg(old);
4932 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4933 	if (!memcg)
4934 		return;
4935 
4936 	/* Force-charge the new page. The old one will be freed soon */
4937 	if (!mem_cgroup_is_root(memcg)) {
4938 		page_counter_charge(&memcg->memory, nr_pages);
4939 		if (do_memsw_account())
4940 			page_counter_charge(&memcg->memsw, nr_pages);
4941 	}
4942 
4943 	css_get(&memcg->css);
4944 	commit_charge(new, memcg);
4945 	memcg1_commit_charge(new, memcg);
4946 }
4947 
4948 /**
4949  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4950  * @old: Currently circulating folio.
4951  * @new: Replacement folio.
4952  *
4953  * Transfer the memcg data from the old folio to the new folio for migration.
4954  * The old folio's data info will be cleared. Note that the memory counters
4955  * will remain unchanged throughout the process.
4956  *
4957  * Both folios must be locked, @new->mapping must be set up.
4958  */
4959 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4960 {
4961 	struct mem_cgroup *memcg;
4962 
4963 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4964 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4965 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4966 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4967 	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4968 
4969 	if (mem_cgroup_disabled())
4970 		return;
4971 
4972 	memcg = folio_memcg(old);
4973 	/*
4974 	 * Note that it is normal to see !memcg for a hugetlb folio.
4975 	 * For e.g, it could have been allocated when memory_hugetlb_accounting
4976 	 * was not selected.
4977 	 */
4978 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4979 	if (!memcg)
4980 		return;
4981 
4982 	/* Transfer the charge and the css ref */
4983 	commit_charge(new, memcg);
4984 
4985 	/* Warning should never happen, so don't worry about refcount non-0 */
4986 	WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4987 	old->memcg_data = 0;
4988 }
4989 
4990 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4991 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4992 
4993 void mem_cgroup_sk_alloc(struct sock *sk)
4994 {
4995 	struct mem_cgroup *memcg;
4996 
4997 	if (!mem_cgroup_sockets_enabled)
4998 		return;
4999 
5000 	/* Do not associate the sock with unrelated interrupted task's memcg. */
5001 	if (!in_task())
5002 		return;
5003 
5004 	rcu_read_lock();
5005 	memcg = mem_cgroup_from_task(current);
5006 	if (mem_cgroup_is_root(memcg))
5007 		goto out;
5008 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
5009 		goto out;
5010 	if (css_tryget(&memcg->css))
5011 		sk->sk_memcg = memcg;
5012 out:
5013 	rcu_read_unlock();
5014 }
5015 
5016 void mem_cgroup_sk_free(struct sock *sk)
5017 {
5018 	struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5019 
5020 	if (memcg)
5021 		css_put(&memcg->css);
5022 }
5023 
5024 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
5025 {
5026 	struct mem_cgroup *memcg;
5027 
5028 	if (sk->sk_memcg == newsk->sk_memcg)
5029 		return;
5030 
5031 	mem_cgroup_sk_free(newsk);
5032 
5033 	memcg = mem_cgroup_from_sk(sk);
5034 	if (memcg)
5035 		css_get(&memcg->css);
5036 
5037 	newsk->sk_memcg = sk->sk_memcg;
5038 }
5039 
5040 /**
5041  * mem_cgroup_sk_charge - charge socket memory
5042  * @sk: socket in memcg to charge
5043  * @nr_pages: number of pages to charge
5044  * @gfp_mask: reclaim mode
5045  *
5046  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5047  * @memcg's configured limit, %false if it doesn't.
5048  */
5049 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
5050 			  gfp_t gfp_mask)
5051 {
5052 	struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5053 
5054 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5055 		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
5056 
5057 	if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
5058 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5059 		return true;
5060 	}
5061 
5062 	return false;
5063 }
5064 
5065 /**
5066  * mem_cgroup_sk_uncharge - uncharge socket memory
5067  * @sk: socket in memcg to uncharge
5068  * @nr_pages: number of pages to uncharge
5069  */
5070 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages)
5071 {
5072 	struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5073 
5074 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5075 		memcg1_uncharge_skmem(memcg, nr_pages);
5076 		return;
5077 	}
5078 
5079 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5080 
5081 	refill_stock(memcg, nr_pages);
5082 }
5083 
5084 static int __init cgroup_memory(char *s)
5085 {
5086 	char *token;
5087 
5088 	while ((token = strsep(&s, ",")) != NULL) {
5089 		if (!*token)
5090 			continue;
5091 		if (!strcmp(token, "nosocket"))
5092 			cgroup_memory_nosocket = true;
5093 		if (!strcmp(token, "nokmem"))
5094 			cgroup_memory_nokmem = true;
5095 		if (!strcmp(token, "nobpf"))
5096 			cgroup_memory_nobpf = true;
5097 	}
5098 	return 1;
5099 }
5100 __setup("cgroup.memory=", cgroup_memory);
5101 
5102 /*
5103  * Memory controller init before cgroup_init() initialize root_mem_cgroup.
5104  *
5105  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5106  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5107  * basically everything that doesn't depend on a specific mem_cgroup structure
5108  * should be initialized from here.
5109  */
5110 int __init mem_cgroup_init(void)
5111 {
5112 	unsigned int memcg_size;
5113 	int cpu;
5114 
5115 	/*
5116 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
5117 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
5118 	 * to work fine, we should make sure that the overfill threshold can't
5119 	 * exceed S32_MAX / PAGE_SIZE.
5120 	 */
5121 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
5122 
5123 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5124 				  memcg_hotplug_cpu_dead);
5125 
5126 	for_each_possible_cpu(cpu) {
5127 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5128 			  drain_local_memcg_stock);
5129 		INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
5130 			  drain_local_obj_stock);
5131 	}
5132 
5133 	memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
5134 	memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
5135 					 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
5136 
5137 	memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
5138 				     SLAB_PANIC | SLAB_HWCACHE_ALIGN);
5139 
5140 	return 0;
5141 }
5142 
5143 #ifdef CONFIG_SWAP
5144 /**
5145  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5146  * @folio: folio being added to swap
5147  * @entry: swap entry to charge
5148  *
5149  * Try to charge @folio's memcg for the swap space at @entry.
5150  *
5151  * Returns 0 on success, -ENOMEM on failure.
5152  */
5153 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5154 {
5155 	unsigned int nr_pages = folio_nr_pages(folio);
5156 	struct page_counter *counter;
5157 	struct mem_cgroup *memcg;
5158 
5159 	if (do_memsw_account())
5160 		return 0;
5161 
5162 	memcg = folio_memcg(folio);
5163 
5164 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5165 	if (!memcg)
5166 		return 0;
5167 
5168 	if (!entry.val) {
5169 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5170 		return 0;
5171 	}
5172 
5173 	memcg = mem_cgroup_private_id_get_online(memcg);
5174 
5175 	if (!mem_cgroup_is_root(memcg) &&
5176 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5177 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5178 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5179 		mem_cgroup_private_id_put(memcg);
5180 		return -ENOMEM;
5181 	}
5182 
5183 	/* Get references for the tail pages, too */
5184 	if (nr_pages > 1)
5185 		mem_cgroup_private_id_get_many(memcg, nr_pages - 1);
5186 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5187 
5188 	swap_cgroup_record(folio, mem_cgroup_private_id(memcg), entry);
5189 
5190 	return 0;
5191 }
5192 
5193 /**
5194  * __mem_cgroup_uncharge_swap - uncharge swap space
5195  * @entry: swap entry to uncharge
5196  * @nr_pages: the amount of swap space to uncharge
5197  */
5198 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5199 {
5200 	struct mem_cgroup *memcg;
5201 	unsigned short id;
5202 
5203 	id = swap_cgroup_clear(entry, nr_pages);
5204 	rcu_read_lock();
5205 	memcg = mem_cgroup_from_private_id(id);
5206 	if (memcg) {
5207 		if (!mem_cgroup_is_root(memcg)) {
5208 			if (do_memsw_account())
5209 				page_counter_uncharge(&memcg->memsw, nr_pages);
5210 			else
5211 				page_counter_uncharge(&memcg->swap, nr_pages);
5212 		}
5213 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5214 		mem_cgroup_private_id_put_many(memcg, nr_pages);
5215 	}
5216 	rcu_read_unlock();
5217 }
5218 
5219 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5220 {
5221 	long nr_swap_pages = get_nr_swap_pages();
5222 
5223 	if (mem_cgroup_disabled() || do_memsw_account())
5224 		return nr_swap_pages;
5225 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5226 		nr_swap_pages = min_t(long, nr_swap_pages,
5227 				      READ_ONCE(memcg->swap.max) -
5228 				      page_counter_read(&memcg->swap));
5229 	return nr_swap_pages;
5230 }
5231 
5232 bool mem_cgroup_swap_full(struct folio *folio)
5233 {
5234 	struct mem_cgroup *memcg;
5235 
5236 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5237 
5238 	if (vm_swap_full())
5239 		return true;
5240 	if (do_memsw_account())
5241 		return false;
5242 
5243 	memcg = folio_memcg(folio);
5244 	if (!memcg)
5245 		return false;
5246 
5247 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5248 		unsigned long usage = page_counter_read(&memcg->swap);
5249 
5250 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5251 		    usage * 2 >= READ_ONCE(memcg->swap.max))
5252 			return true;
5253 	}
5254 
5255 	return false;
5256 }
5257 
5258 static int __init setup_swap_account(char *s)
5259 {
5260 	bool res;
5261 
5262 	if (!kstrtobool(s, &res) && !res)
5263 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
5264 			     "in favor of configuring swap control via cgroupfs. "
5265 			     "Please report your usecase to linux-mm@kvack.org if you "
5266 			     "depend on this functionality.\n");
5267 	return 1;
5268 }
5269 __setup("swapaccount=", setup_swap_account);
5270 
5271 static u64 swap_current_read(struct cgroup_subsys_state *css,
5272 			     struct cftype *cft)
5273 {
5274 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5275 
5276 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5277 }
5278 
5279 static int swap_peak_show(struct seq_file *sf, void *v)
5280 {
5281 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5282 
5283 	return peak_show(sf, v, &memcg->swap);
5284 }
5285 
5286 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5287 			       size_t nbytes, loff_t off)
5288 {
5289 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5290 
5291 	return peak_write(of, buf, nbytes, off, &memcg->swap,
5292 			  &memcg->swap_peaks);
5293 }
5294 
5295 static int swap_high_show(struct seq_file *m, void *v)
5296 {
5297 	return seq_puts_memcg_tunable(m,
5298 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5299 }
5300 
5301 static ssize_t swap_high_write(struct kernfs_open_file *of,
5302 			       char *buf, size_t nbytes, loff_t off)
5303 {
5304 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5305 	unsigned long high;
5306 	int err;
5307 
5308 	buf = strstrip(buf);
5309 	err = page_counter_memparse(buf, "max", &high);
5310 	if (err)
5311 		return err;
5312 
5313 	page_counter_set_high(&memcg->swap, high);
5314 
5315 	return nbytes;
5316 }
5317 
5318 static int swap_max_show(struct seq_file *m, void *v)
5319 {
5320 	return seq_puts_memcg_tunable(m,
5321 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5322 }
5323 
5324 static ssize_t swap_max_write(struct kernfs_open_file *of,
5325 			      char *buf, size_t nbytes, loff_t off)
5326 {
5327 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5328 	unsigned long max;
5329 	int err;
5330 
5331 	buf = strstrip(buf);
5332 	err = page_counter_memparse(buf, "max", &max);
5333 	if (err)
5334 		return err;
5335 
5336 	xchg(&memcg->swap.max, max);
5337 
5338 	return nbytes;
5339 }
5340 
5341 static int swap_events_show(struct seq_file *m, void *v)
5342 {
5343 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5344 
5345 	seq_printf(m, "high %lu\n",
5346 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5347 	seq_printf(m, "max %lu\n",
5348 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5349 	seq_printf(m, "fail %lu\n",
5350 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5351 
5352 	return 0;
5353 }
5354 
5355 static struct cftype swap_files[] = {
5356 	{
5357 		.name = "swap.current",
5358 		.flags = CFTYPE_NOT_ON_ROOT,
5359 		.read_u64 = swap_current_read,
5360 	},
5361 	{
5362 		.name = "swap.high",
5363 		.flags = CFTYPE_NOT_ON_ROOT,
5364 		.seq_show = swap_high_show,
5365 		.write = swap_high_write,
5366 	},
5367 	{
5368 		.name = "swap.max",
5369 		.flags = CFTYPE_NOT_ON_ROOT,
5370 		.seq_show = swap_max_show,
5371 		.write = swap_max_write,
5372 	},
5373 	{
5374 		.name = "swap.peak",
5375 		.flags = CFTYPE_NOT_ON_ROOT,
5376 		.open = peak_open,
5377 		.release = peak_release,
5378 		.seq_show = swap_peak_show,
5379 		.write = swap_peak_write,
5380 	},
5381 	{
5382 		.name = "swap.events",
5383 		.flags = CFTYPE_NOT_ON_ROOT,
5384 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
5385 		.seq_show = swap_events_show,
5386 	},
5387 	{ }	/* terminate */
5388 };
5389 
5390 #ifdef CONFIG_ZSWAP
5391 /**
5392  * obj_cgroup_may_zswap - check if this cgroup can zswap
5393  * @objcg: the object cgroup
5394  *
5395  * Check if the hierarchical zswap limit has been reached.
5396  *
5397  * This doesn't check for specific headroom, and it is not atomic
5398  * either. But with zswap, the size of the allocation is only known
5399  * once compression has occurred, and this optimistic pre-check avoids
5400  * spending cycles on compression when there is already no room left
5401  * or zswap is disabled altogether somewhere in the hierarchy.
5402  */
5403 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5404 {
5405 	struct mem_cgroup *memcg, *original_memcg;
5406 	bool ret = true;
5407 
5408 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5409 		return true;
5410 
5411 	original_memcg = get_mem_cgroup_from_objcg(objcg);
5412 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5413 	     memcg = parent_mem_cgroup(memcg)) {
5414 		unsigned long max = READ_ONCE(memcg->zswap_max);
5415 		unsigned long pages;
5416 
5417 		if (max == PAGE_COUNTER_MAX)
5418 			continue;
5419 		if (max == 0) {
5420 			ret = false;
5421 			break;
5422 		}
5423 
5424 		/* Force flush to get accurate stats for charging */
5425 		__mem_cgroup_flush_stats(memcg, true);
5426 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5427 		if (pages < max)
5428 			continue;
5429 		ret = false;
5430 		break;
5431 	}
5432 	mem_cgroup_put(original_memcg);
5433 	return ret;
5434 }
5435 
5436 /**
5437  * obj_cgroup_charge_zswap - charge compression backend memory
5438  * @objcg: the object cgroup
5439  * @size: size of compressed object
5440  *
5441  * This forces the charge after obj_cgroup_may_zswap() allowed
5442  * compression and storage in zswap for this cgroup to go ahead.
5443  */
5444 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5445 {
5446 	struct mem_cgroup *memcg;
5447 
5448 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5449 		return;
5450 
5451 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5452 
5453 	/* PF_MEMALLOC context, charging must succeed */
5454 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5455 		VM_WARN_ON_ONCE(1);
5456 
5457 	rcu_read_lock();
5458 	memcg = obj_cgroup_memcg(objcg);
5459 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5460 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5461 	rcu_read_unlock();
5462 }
5463 
5464 /**
5465  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5466  * @objcg: the object cgroup
5467  * @size: size of compressed object
5468  *
5469  * Uncharges zswap memory on page in.
5470  */
5471 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5472 {
5473 	struct mem_cgroup *memcg;
5474 
5475 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5476 		return;
5477 
5478 	obj_cgroup_uncharge(objcg, size);
5479 
5480 	rcu_read_lock();
5481 	memcg = obj_cgroup_memcg(objcg);
5482 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5483 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5484 	rcu_read_unlock();
5485 }
5486 
5487 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5488 {
5489 	/* if zswap is disabled, do not block pages going to the swapping device */
5490 	if (!zswap_is_enabled())
5491 		return true;
5492 
5493 	for (; memcg; memcg = parent_mem_cgroup(memcg))
5494 		if (!READ_ONCE(memcg->zswap_writeback))
5495 			return false;
5496 
5497 	return true;
5498 }
5499 
5500 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5501 			      struct cftype *cft)
5502 {
5503 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5504 
5505 	mem_cgroup_flush_stats(memcg);
5506 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5507 }
5508 
5509 static int zswap_max_show(struct seq_file *m, void *v)
5510 {
5511 	return seq_puts_memcg_tunable(m,
5512 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5513 }
5514 
5515 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5516 			       char *buf, size_t nbytes, loff_t off)
5517 {
5518 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5519 	unsigned long max;
5520 	int err;
5521 
5522 	buf = strstrip(buf);
5523 	err = page_counter_memparse(buf, "max", &max);
5524 	if (err)
5525 		return err;
5526 
5527 	xchg(&memcg->zswap_max, max);
5528 
5529 	return nbytes;
5530 }
5531 
5532 static int zswap_writeback_show(struct seq_file *m, void *v)
5533 {
5534 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5535 
5536 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5537 	return 0;
5538 }
5539 
5540 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5541 				char *buf, size_t nbytes, loff_t off)
5542 {
5543 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5544 	int zswap_writeback;
5545 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5546 
5547 	if (parse_ret)
5548 		return parse_ret;
5549 
5550 	if (zswap_writeback != 0 && zswap_writeback != 1)
5551 		return -EINVAL;
5552 
5553 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5554 	return nbytes;
5555 }
5556 
5557 static struct cftype zswap_files[] = {
5558 	{
5559 		.name = "zswap.current",
5560 		.flags = CFTYPE_NOT_ON_ROOT,
5561 		.read_u64 = zswap_current_read,
5562 	},
5563 	{
5564 		.name = "zswap.max",
5565 		.flags = CFTYPE_NOT_ON_ROOT,
5566 		.seq_show = zswap_max_show,
5567 		.write = zswap_max_write,
5568 	},
5569 	{
5570 		.name = "zswap.writeback",
5571 		.seq_show = zswap_writeback_show,
5572 		.write = zswap_writeback_write,
5573 	},
5574 	{ }	/* terminate */
5575 };
5576 #endif /* CONFIG_ZSWAP */
5577 
5578 static int __init mem_cgroup_swap_init(void)
5579 {
5580 	if (mem_cgroup_disabled())
5581 		return 0;
5582 
5583 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5584 #ifdef CONFIG_MEMCG_V1
5585 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5586 #endif
5587 #ifdef CONFIG_ZSWAP
5588 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5589 #endif
5590 	return 0;
5591 }
5592 subsys_initcall(mem_cgroup_swap_init);
5593 
5594 #endif /* CONFIG_SWAP */
5595 
5596 void mem_cgroup_node_filter_allowed(struct mem_cgroup *memcg, nodemask_t *mask)
5597 {
5598 	nodemask_t allowed;
5599 
5600 	if (!memcg)
5601 		return;
5602 
5603 	/*
5604 	 * Since this interface is intended for use by migration paths, and
5605 	 * reclaim and migration are subject to race conditions such as changes
5606 	 * in effective_mems and hot-unpluging of nodes, inaccurate allowed
5607 	 * mask is acceptable.
5608 	 */
5609 	cpuset_nodes_allowed(memcg->css.cgroup, &allowed);
5610 	nodes_and(*mask, *mask, allowed);
5611 }
5612 
5613 void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg)
5614 {
5615 	if (mem_cgroup_disabled() || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5616 		return;
5617 
5618 	if (!memcg)
5619 		memcg = root_mem_cgroup;
5620 
5621 	pr_warn("Memory cgroup min protection %lukB -- low protection %lukB",
5622 		K(atomic_long_read(&memcg->memory.children_min_usage)),
5623 		K(atomic_long_read(&memcg->memory.children_low_usage)));
5624 }
5625