1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/sort.h> 49 #include <linux/fs.h> 50 #include <linux/seq_file.h> 51 #include <linux/vmalloc.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/page_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include "internal.h" 59 #include <net/sock.h> 60 #include <net/ip.h> 61 #include <net/tcp_memcontrol.h> 62 #include "slab.h" 63 64 #include <asm/uaccess.h> 65 66 #include <trace/events/vmscan.h> 67 68 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 69 EXPORT_SYMBOL(mem_cgroup_subsys); 70 71 #define MEM_CGROUP_RECLAIM_RETRIES 5 72 static struct mem_cgroup *root_mem_cgroup __read_mostly; 73 74 #ifdef CONFIG_MEMCG_SWAP 75 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 76 int do_swap_account __read_mostly; 77 78 /* for remember boot option*/ 79 #ifdef CONFIG_MEMCG_SWAP_ENABLED 80 static int really_do_swap_account __initdata = 1; 81 #else 82 static int really_do_swap_account __initdata = 0; 83 #endif 84 85 #else 86 #define do_swap_account 0 87 #endif 88 89 90 static const char * const mem_cgroup_stat_names[] = { 91 "cache", 92 "rss", 93 "rss_huge", 94 "mapped_file", 95 "writeback", 96 "swap", 97 }; 98 99 enum mem_cgroup_events_index { 100 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 101 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 102 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 103 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 104 MEM_CGROUP_EVENTS_NSTATS, 105 }; 106 107 static const char * const mem_cgroup_events_names[] = { 108 "pgpgin", 109 "pgpgout", 110 "pgfault", 111 "pgmajfault", 112 }; 113 114 static const char * const mem_cgroup_lru_names[] = { 115 "inactive_anon", 116 "active_anon", 117 "inactive_file", 118 "active_file", 119 "unevictable", 120 }; 121 122 /* 123 * Per memcg event counter is incremented at every pagein/pageout. With THP, 124 * it will be incremated by the number of pages. This counter is used for 125 * for trigger some periodic events. This is straightforward and better 126 * than using jiffies etc. to handle periodic memcg event. 127 */ 128 enum mem_cgroup_events_target { 129 MEM_CGROUP_TARGET_THRESH, 130 MEM_CGROUP_TARGET_SOFTLIMIT, 131 MEM_CGROUP_TARGET_NUMAINFO, 132 MEM_CGROUP_NTARGETS, 133 }; 134 #define THRESHOLDS_EVENTS_TARGET 128 135 #define SOFTLIMIT_EVENTS_TARGET 1024 136 #define NUMAINFO_EVENTS_TARGET 1024 137 138 struct mem_cgroup_stat_cpu { 139 long count[MEM_CGROUP_STAT_NSTATS]; 140 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 141 unsigned long nr_page_events; 142 unsigned long targets[MEM_CGROUP_NTARGETS]; 143 }; 144 145 struct mem_cgroup_reclaim_iter { 146 /* 147 * last scanned hierarchy member. Valid only if last_dead_count 148 * matches memcg->dead_count of the hierarchy root group. 149 */ 150 struct mem_cgroup *last_visited; 151 unsigned long last_dead_count; 152 153 /* scan generation, increased every round-trip */ 154 unsigned int generation; 155 }; 156 157 /* 158 * per-zone information in memory controller. 159 */ 160 struct mem_cgroup_per_zone { 161 struct lruvec lruvec; 162 unsigned long lru_size[NR_LRU_LISTS]; 163 164 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 165 166 struct rb_node tree_node; /* RB tree node */ 167 unsigned long long usage_in_excess;/* Set to the value by which */ 168 /* the soft limit is exceeded*/ 169 bool on_tree; 170 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 171 /* use container_of */ 172 }; 173 174 struct mem_cgroup_per_node { 175 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 176 }; 177 178 /* 179 * Cgroups above their limits are maintained in a RB-Tree, independent of 180 * their hierarchy representation 181 */ 182 183 struct mem_cgroup_tree_per_zone { 184 struct rb_root rb_root; 185 spinlock_t lock; 186 }; 187 188 struct mem_cgroup_tree_per_node { 189 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 190 }; 191 192 struct mem_cgroup_tree { 193 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 194 }; 195 196 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 197 198 struct mem_cgroup_threshold { 199 struct eventfd_ctx *eventfd; 200 u64 threshold; 201 }; 202 203 /* For threshold */ 204 struct mem_cgroup_threshold_ary { 205 /* An array index points to threshold just below or equal to usage. */ 206 int current_threshold; 207 /* Size of entries[] */ 208 unsigned int size; 209 /* Array of thresholds */ 210 struct mem_cgroup_threshold entries[0]; 211 }; 212 213 struct mem_cgroup_thresholds { 214 /* Primary thresholds array */ 215 struct mem_cgroup_threshold_ary *primary; 216 /* 217 * Spare threshold array. 218 * This is needed to make mem_cgroup_unregister_event() "never fail". 219 * It must be able to store at least primary->size - 1 entries. 220 */ 221 struct mem_cgroup_threshold_ary *spare; 222 }; 223 224 /* for OOM */ 225 struct mem_cgroup_eventfd_list { 226 struct list_head list; 227 struct eventfd_ctx *eventfd; 228 }; 229 230 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 231 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 232 233 /* 234 * The memory controller data structure. The memory controller controls both 235 * page cache and RSS per cgroup. We would eventually like to provide 236 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 237 * to help the administrator determine what knobs to tune. 238 * 239 * TODO: Add a water mark for the memory controller. Reclaim will begin when 240 * we hit the water mark. May be even add a low water mark, such that 241 * no reclaim occurs from a cgroup at it's low water mark, this is 242 * a feature that will be implemented much later in the future. 243 */ 244 struct mem_cgroup { 245 struct cgroup_subsys_state css; 246 /* 247 * the counter to account for memory usage 248 */ 249 struct res_counter res; 250 251 /* vmpressure notifications */ 252 struct vmpressure vmpressure; 253 254 /* 255 * the counter to account for mem+swap usage. 256 */ 257 struct res_counter memsw; 258 259 /* 260 * the counter to account for kernel memory usage. 261 */ 262 struct res_counter kmem; 263 /* 264 * Should the accounting and control be hierarchical, per subtree? 265 */ 266 bool use_hierarchy; 267 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 268 269 bool oom_lock; 270 atomic_t under_oom; 271 atomic_t oom_wakeups; 272 273 int swappiness; 274 /* OOM-Killer disable */ 275 int oom_kill_disable; 276 277 /* set when res.limit == memsw.limit */ 278 bool memsw_is_minimum; 279 280 /* protect arrays of thresholds */ 281 struct mutex thresholds_lock; 282 283 /* thresholds for memory usage. RCU-protected */ 284 struct mem_cgroup_thresholds thresholds; 285 286 /* thresholds for mem+swap usage. RCU-protected */ 287 struct mem_cgroup_thresholds memsw_thresholds; 288 289 /* For oom notifier event fd */ 290 struct list_head oom_notify; 291 292 /* 293 * Should we move charges of a task when a task is moved into this 294 * mem_cgroup ? And what type of charges should we move ? 295 */ 296 unsigned long move_charge_at_immigrate; 297 /* 298 * set > 0 if pages under this cgroup are moving to other cgroup. 299 */ 300 atomic_t moving_account; 301 /* taken only while moving_account > 0 */ 302 spinlock_t move_lock; 303 /* 304 * percpu counter. 305 */ 306 struct mem_cgroup_stat_cpu __percpu *stat; 307 /* 308 * used when a cpu is offlined or other synchronizations 309 * See mem_cgroup_read_stat(). 310 */ 311 struct mem_cgroup_stat_cpu nocpu_base; 312 spinlock_t pcp_counter_lock; 313 314 atomic_t dead_count; 315 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 316 struct cg_proto tcp_mem; 317 #endif 318 #if defined(CONFIG_MEMCG_KMEM) 319 /* analogous to slab_common's slab_caches list. per-memcg */ 320 struct list_head memcg_slab_caches; 321 /* Not a spinlock, we can take a lot of time walking the list */ 322 struct mutex slab_caches_mutex; 323 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 324 int kmemcg_id; 325 #endif 326 327 int last_scanned_node; 328 #if MAX_NUMNODES > 1 329 nodemask_t scan_nodes; 330 atomic_t numainfo_events; 331 atomic_t numainfo_updating; 332 #endif 333 334 struct mem_cgroup_per_node *nodeinfo[0]; 335 /* WARNING: nodeinfo must be the last member here */ 336 }; 337 338 static size_t memcg_size(void) 339 { 340 return sizeof(struct mem_cgroup) + 341 nr_node_ids * sizeof(struct mem_cgroup_per_node); 342 } 343 344 /* internal only representation about the status of kmem accounting. */ 345 enum { 346 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ 347 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ 348 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 349 }; 350 351 /* We account when limit is on, but only after call sites are patched */ 352 #define KMEM_ACCOUNTED_MASK \ 353 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) 354 355 #ifdef CONFIG_MEMCG_KMEM 356 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 357 { 358 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 359 } 360 361 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 362 { 363 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 364 } 365 366 static void memcg_kmem_set_activated(struct mem_cgroup *memcg) 367 { 368 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 369 } 370 371 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) 372 { 373 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 374 } 375 376 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 377 { 378 /* 379 * Our caller must use css_get() first, because memcg_uncharge_kmem() 380 * will call css_put() if it sees the memcg is dead. 381 */ 382 smp_wmb(); 383 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 384 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 385 } 386 387 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 388 { 389 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 390 &memcg->kmem_account_flags); 391 } 392 #endif 393 394 /* Stuffs for move charges at task migration. */ 395 /* 396 * Types of charges to be moved. "move_charge_at_immitgrate" and 397 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 398 */ 399 enum move_type { 400 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 401 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 402 NR_MOVE_TYPE, 403 }; 404 405 /* "mc" and its members are protected by cgroup_mutex */ 406 static struct move_charge_struct { 407 spinlock_t lock; /* for from, to */ 408 struct mem_cgroup *from; 409 struct mem_cgroup *to; 410 unsigned long immigrate_flags; 411 unsigned long precharge; 412 unsigned long moved_charge; 413 unsigned long moved_swap; 414 struct task_struct *moving_task; /* a task moving charges */ 415 wait_queue_head_t waitq; /* a waitq for other context */ 416 } mc = { 417 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 418 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 419 }; 420 421 static bool move_anon(void) 422 { 423 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 424 } 425 426 static bool move_file(void) 427 { 428 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 429 } 430 431 /* 432 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 433 * limit reclaim to prevent infinite loops, if they ever occur. 434 */ 435 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 436 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 437 438 enum charge_type { 439 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 440 MEM_CGROUP_CHARGE_TYPE_ANON, 441 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 442 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 443 NR_CHARGE_TYPE, 444 }; 445 446 /* for encoding cft->private value on file */ 447 enum res_type { 448 _MEM, 449 _MEMSWAP, 450 _OOM_TYPE, 451 _KMEM, 452 }; 453 454 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 455 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 456 #define MEMFILE_ATTR(val) ((val) & 0xffff) 457 /* Used for OOM nofiier */ 458 #define OOM_CONTROL (0) 459 460 /* 461 * Reclaim flags for mem_cgroup_hierarchical_reclaim 462 */ 463 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 464 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 465 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 466 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 467 468 /* 469 * The memcg_create_mutex will be held whenever a new cgroup is created. 470 * As a consequence, any change that needs to protect against new child cgroups 471 * appearing has to hold it as well. 472 */ 473 static DEFINE_MUTEX(memcg_create_mutex); 474 475 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 476 { 477 return s ? container_of(s, struct mem_cgroup, css) : NULL; 478 } 479 480 /* Some nice accessors for the vmpressure. */ 481 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 482 { 483 if (!memcg) 484 memcg = root_mem_cgroup; 485 return &memcg->vmpressure; 486 } 487 488 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 489 { 490 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 491 } 492 493 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css) 494 { 495 return &mem_cgroup_from_css(css)->vmpressure; 496 } 497 498 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 499 { 500 return (memcg == root_mem_cgroup); 501 } 502 503 /* 504 * We restrict the id in the range of [1, 65535], so it can fit into 505 * an unsigned short. 506 */ 507 #define MEM_CGROUP_ID_MAX USHRT_MAX 508 509 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 510 { 511 /* 512 * The ID of the root cgroup is 0, but memcg treat 0 as an 513 * invalid ID, so we return (cgroup_id + 1). 514 */ 515 return memcg->css.cgroup->id + 1; 516 } 517 518 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 519 { 520 struct cgroup_subsys_state *css; 521 522 css = css_from_id(id - 1, &mem_cgroup_subsys); 523 return mem_cgroup_from_css(css); 524 } 525 526 /* Writing them here to avoid exposing memcg's inner layout */ 527 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 528 529 void sock_update_memcg(struct sock *sk) 530 { 531 if (mem_cgroup_sockets_enabled) { 532 struct mem_cgroup *memcg; 533 struct cg_proto *cg_proto; 534 535 BUG_ON(!sk->sk_prot->proto_cgroup); 536 537 /* Socket cloning can throw us here with sk_cgrp already 538 * filled. It won't however, necessarily happen from 539 * process context. So the test for root memcg given 540 * the current task's memcg won't help us in this case. 541 * 542 * Respecting the original socket's memcg is a better 543 * decision in this case. 544 */ 545 if (sk->sk_cgrp) { 546 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 547 css_get(&sk->sk_cgrp->memcg->css); 548 return; 549 } 550 551 rcu_read_lock(); 552 memcg = mem_cgroup_from_task(current); 553 cg_proto = sk->sk_prot->proto_cgroup(memcg); 554 if (!mem_cgroup_is_root(memcg) && 555 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) { 556 sk->sk_cgrp = cg_proto; 557 } 558 rcu_read_unlock(); 559 } 560 } 561 EXPORT_SYMBOL(sock_update_memcg); 562 563 void sock_release_memcg(struct sock *sk) 564 { 565 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 566 struct mem_cgroup *memcg; 567 WARN_ON(!sk->sk_cgrp->memcg); 568 memcg = sk->sk_cgrp->memcg; 569 css_put(&sk->sk_cgrp->memcg->css); 570 } 571 } 572 573 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 574 { 575 if (!memcg || mem_cgroup_is_root(memcg)) 576 return NULL; 577 578 return &memcg->tcp_mem; 579 } 580 EXPORT_SYMBOL(tcp_proto_cgroup); 581 582 static void disarm_sock_keys(struct mem_cgroup *memcg) 583 { 584 if (!memcg_proto_activated(&memcg->tcp_mem)) 585 return; 586 static_key_slow_dec(&memcg_socket_limit_enabled); 587 } 588 #else 589 static void disarm_sock_keys(struct mem_cgroup *memcg) 590 { 591 } 592 #endif 593 594 #ifdef CONFIG_MEMCG_KMEM 595 /* 596 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 597 * The main reason for not using cgroup id for this: 598 * this works better in sparse environments, where we have a lot of memcgs, 599 * but only a few kmem-limited. Or also, if we have, for instance, 200 600 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 601 * 200 entry array for that. 602 * 603 * The current size of the caches array is stored in 604 * memcg_limited_groups_array_size. It will double each time we have to 605 * increase it. 606 */ 607 static DEFINE_IDA(kmem_limited_groups); 608 int memcg_limited_groups_array_size; 609 610 /* 611 * MIN_SIZE is different than 1, because we would like to avoid going through 612 * the alloc/free process all the time. In a small machine, 4 kmem-limited 613 * cgroups is a reasonable guess. In the future, it could be a parameter or 614 * tunable, but that is strictly not necessary. 615 * 616 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 617 * this constant directly from cgroup, but it is understandable that this is 618 * better kept as an internal representation in cgroup.c. In any case, the 619 * cgrp_id space is not getting any smaller, and we don't have to necessarily 620 * increase ours as well if it increases. 621 */ 622 #define MEMCG_CACHES_MIN_SIZE 4 623 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 624 625 /* 626 * A lot of the calls to the cache allocation functions are expected to be 627 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 628 * conditional to this static branch, we'll have to allow modules that does 629 * kmem_cache_alloc and the such to see this symbol as well 630 */ 631 struct static_key memcg_kmem_enabled_key; 632 EXPORT_SYMBOL(memcg_kmem_enabled_key); 633 634 static void disarm_kmem_keys(struct mem_cgroup *memcg) 635 { 636 if (memcg_kmem_is_active(memcg)) { 637 static_key_slow_dec(&memcg_kmem_enabled_key); 638 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 639 } 640 /* 641 * This check can't live in kmem destruction function, 642 * since the charges will outlive the cgroup 643 */ 644 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 645 } 646 #else 647 static void disarm_kmem_keys(struct mem_cgroup *memcg) 648 { 649 } 650 #endif /* CONFIG_MEMCG_KMEM */ 651 652 static void disarm_static_keys(struct mem_cgroup *memcg) 653 { 654 disarm_sock_keys(memcg); 655 disarm_kmem_keys(memcg); 656 } 657 658 static void drain_all_stock_async(struct mem_cgroup *memcg); 659 660 static struct mem_cgroup_per_zone * 661 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 662 { 663 VM_BUG_ON((unsigned)nid >= nr_node_ids); 664 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 665 } 666 667 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 668 { 669 return &memcg->css; 670 } 671 672 static struct mem_cgroup_per_zone * 673 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 674 { 675 int nid = page_to_nid(page); 676 int zid = page_zonenum(page); 677 678 return mem_cgroup_zoneinfo(memcg, nid, zid); 679 } 680 681 static struct mem_cgroup_tree_per_zone * 682 soft_limit_tree_node_zone(int nid, int zid) 683 { 684 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 685 } 686 687 static struct mem_cgroup_tree_per_zone * 688 soft_limit_tree_from_page(struct page *page) 689 { 690 int nid = page_to_nid(page); 691 int zid = page_zonenum(page); 692 693 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 694 } 695 696 static void 697 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 698 struct mem_cgroup_per_zone *mz, 699 struct mem_cgroup_tree_per_zone *mctz, 700 unsigned long long new_usage_in_excess) 701 { 702 struct rb_node **p = &mctz->rb_root.rb_node; 703 struct rb_node *parent = NULL; 704 struct mem_cgroup_per_zone *mz_node; 705 706 if (mz->on_tree) 707 return; 708 709 mz->usage_in_excess = new_usage_in_excess; 710 if (!mz->usage_in_excess) 711 return; 712 while (*p) { 713 parent = *p; 714 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 715 tree_node); 716 if (mz->usage_in_excess < mz_node->usage_in_excess) 717 p = &(*p)->rb_left; 718 /* 719 * We can't avoid mem cgroups that are over their soft 720 * limit by the same amount 721 */ 722 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 723 p = &(*p)->rb_right; 724 } 725 rb_link_node(&mz->tree_node, parent, p); 726 rb_insert_color(&mz->tree_node, &mctz->rb_root); 727 mz->on_tree = true; 728 } 729 730 static void 731 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 732 struct mem_cgroup_per_zone *mz, 733 struct mem_cgroup_tree_per_zone *mctz) 734 { 735 if (!mz->on_tree) 736 return; 737 rb_erase(&mz->tree_node, &mctz->rb_root); 738 mz->on_tree = false; 739 } 740 741 static void 742 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 743 struct mem_cgroup_per_zone *mz, 744 struct mem_cgroup_tree_per_zone *mctz) 745 { 746 spin_lock(&mctz->lock); 747 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 748 spin_unlock(&mctz->lock); 749 } 750 751 752 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 753 { 754 unsigned long long excess; 755 struct mem_cgroup_per_zone *mz; 756 struct mem_cgroup_tree_per_zone *mctz; 757 int nid = page_to_nid(page); 758 int zid = page_zonenum(page); 759 mctz = soft_limit_tree_from_page(page); 760 761 /* 762 * Necessary to update all ancestors when hierarchy is used. 763 * because their event counter is not touched. 764 */ 765 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 766 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 767 excess = res_counter_soft_limit_excess(&memcg->res); 768 /* 769 * We have to update the tree if mz is on RB-tree or 770 * mem is over its softlimit. 771 */ 772 if (excess || mz->on_tree) { 773 spin_lock(&mctz->lock); 774 /* if on-tree, remove it */ 775 if (mz->on_tree) 776 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 777 /* 778 * Insert again. mz->usage_in_excess will be updated. 779 * If excess is 0, no tree ops. 780 */ 781 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 782 spin_unlock(&mctz->lock); 783 } 784 } 785 } 786 787 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 788 { 789 int node, zone; 790 struct mem_cgroup_per_zone *mz; 791 struct mem_cgroup_tree_per_zone *mctz; 792 793 for_each_node(node) { 794 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 795 mz = mem_cgroup_zoneinfo(memcg, node, zone); 796 mctz = soft_limit_tree_node_zone(node, zone); 797 mem_cgroup_remove_exceeded(memcg, mz, mctz); 798 } 799 } 800 } 801 802 static struct mem_cgroup_per_zone * 803 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 804 { 805 struct rb_node *rightmost = NULL; 806 struct mem_cgroup_per_zone *mz; 807 808 retry: 809 mz = NULL; 810 rightmost = rb_last(&mctz->rb_root); 811 if (!rightmost) 812 goto done; /* Nothing to reclaim from */ 813 814 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 815 /* 816 * Remove the node now but someone else can add it back, 817 * we will to add it back at the end of reclaim to its correct 818 * position in the tree. 819 */ 820 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 821 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 822 !css_tryget(&mz->memcg->css)) 823 goto retry; 824 done: 825 return mz; 826 } 827 828 static struct mem_cgroup_per_zone * 829 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 830 { 831 struct mem_cgroup_per_zone *mz; 832 833 spin_lock(&mctz->lock); 834 mz = __mem_cgroup_largest_soft_limit_node(mctz); 835 spin_unlock(&mctz->lock); 836 return mz; 837 } 838 839 /* 840 * Implementation Note: reading percpu statistics for memcg. 841 * 842 * Both of vmstat[] and percpu_counter has threshold and do periodic 843 * synchronization to implement "quick" read. There are trade-off between 844 * reading cost and precision of value. Then, we may have a chance to implement 845 * a periodic synchronizion of counter in memcg's counter. 846 * 847 * But this _read() function is used for user interface now. The user accounts 848 * memory usage by memory cgroup and he _always_ requires exact value because 849 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 850 * have to visit all online cpus and make sum. So, for now, unnecessary 851 * synchronization is not implemented. (just implemented for cpu hotplug) 852 * 853 * If there are kernel internal actions which can make use of some not-exact 854 * value, and reading all cpu value can be performance bottleneck in some 855 * common workload, threashold and synchonization as vmstat[] should be 856 * implemented. 857 */ 858 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 859 enum mem_cgroup_stat_index idx) 860 { 861 long val = 0; 862 int cpu; 863 864 get_online_cpus(); 865 for_each_online_cpu(cpu) 866 val += per_cpu(memcg->stat->count[idx], cpu); 867 #ifdef CONFIG_HOTPLUG_CPU 868 spin_lock(&memcg->pcp_counter_lock); 869 val += memcg->nocpu_base.count[idx]; 870 spin_unlock(&memcg->pcp_counter_lock); 871 #endif 872 put_online_cpus(); 873 return val; 874 } 875 876 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 877 bool charge) 878 { 879 int val = (charge) ? 1 : -1; 880 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 881 } 882 883 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 884 enum mem_cgroup_events_index idx) 885 { 886 unsigned long val = 0; 887 int cpu; 888 889 get_online_cpus(); 890 for_each_online_cpu(cpu) 891 val += per_cpu(memcg->stat->events[idx], cpu); 892 #ifdef CONFIG_HOTPLUG_CPU 893 spin_lock(&memcg->pcp_counter_lock); 894 val += memcg->nocpu_base.events[idx]; 895 spin_unlock(&memcg->pcp_counter_lock); 896 #endif 897 put_online_cpus(); 898 return val; 899 } 900 901 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 902 struct page *page, 903 bool anon, int nr_pages) 904 { 905 preempt_disable(); 906 907 /* 908 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 909 * counted as CACHE even if it's on ANON LRU. 910 */ 911 if (anon) 912 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 913 nr_pages); 914 else 915 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 916 nr_pages); 917 918 if (PageTransHuge(page)) 919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 920 nr_pages); 921 922 /* pagein of a big page is an event. So, ignore page size */ 923 if (nr_pages > 0) 924 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 925 else { 926 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 927 nr_pages = -nr_pages; /* for event */ 928 } 929 930 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 931 932 preempt_enable(); 933 } 934 935 unsigned long 936 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 937 { 938 struct mem_cgroup_per_zone *mz; 939 940 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 941 return mz->lru_size[lru]; 942 } 943 944 static unsigned long 945 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 946 unsigned int lru_mask) 947 { 948 struct mem_cgroup_per_zone *mz; 949 enum lru_list lru; 950 unsigned long ret = 0; 951 952 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 953 954 for_each_lru(lru) { 955 if (BIT(lru) & lru_mask) 956 ret += mz->lru_size[lru]; 957 } 958 return ret; 959 } 960 961 static unsigned long 962 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 963 int nid, unsigned int lru_mask) 964 { 965 u64 total = 0; 966 int zid; 967 968 for (zid = 0; zid < MAX_NR_ZONES; zid++) 969 total += mem_cgroup_zone_nr_lru_pages(memcg, 970 nid, zid, lru_mask); 971 972 return total; 973 } 974 975 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 976 unsigned int lru_mask) 977 { 978 int nid; 979 u64 total = 0; 980 981 for_each_node_state(nid, N_MEMORY) 982 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 983 return total; 984 } 985 986 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 987 enum mem_cgroup_events_target target) 988 { 989 unsigned long val, next; 990 991 val = __this_cpu_read(memcg->stat->nr_page_events); 992 next = __this_cpu_read(memcg->stat->targets[target]); 993 /* from time_after() in jiffies.h */ 994 if ((long)next - (long)val < 0) { 995 switch (target) { 996 case MEM_CGROUP_TARGET_THRESH: 997 next = val + THRESHOLDS_EVENTS_TARGET; 998 break; 999 case MEM_CGROUP_TARGET_SOFTLIMIT: 1000 next = val + SOFTLIMIT_EVENTS_TARGET; 1001 break; 1002 case MEM_CGROUP_TARGET_NUMAINFO: 1003 next = val + NUMAINFO_EVENTS_TARGET; 1004 break; 1005 default: 1006 break; 1007 } 1008 __this_cpu_write(memcg->stat->targets[target], next); 1009 return true; 1010 } 1011 return false; 1012 } 1013 1014 /* 1015 * Check events in order. 1016 * 1017 */ 1018 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 1019 { 1020 preempt_disable(); 1021 /* threshold event is triggered in finer grain than soft limit */ 1022 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1023 MEM_CGROUP_TARGET_THRESH))) { 1024 bool do_softlimit; 1025 bool do_numainfo __maybe_unused; 1026 1027 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1028 MEM_CGROUP_TARGET_SOFTLIMIT); 1029 #if MAX_NUMNODES > 1 1030 do_numainfo = mem_cgroup_event_ratelimit(memcg, 1031 MEM_CGROUP_TARGET_NUMAINFO); 1032 #endif 1033 preempt_enable(); 1034 1035 mem_cgroup_threshold(memcg); 1036 if (unlikely(do_softlimit)) 1037 mem_cgroup_update_tree(memcg, page); 1038 #if MAX_NUMNODES > 1 1039 if (unlikely(do_numainfo)) 1040 atomic_inc(&memcg->numainfo_events); 1041 #endif 1042 } else 1043 preempt_enable(); 1044 } 1045 1046 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1047 { 1048 /* 1049 * mm_update_next_owner() may clear mm->owner to NULL 1050 * if it races with swapoff, page migration, etc. 1051 * So this can be called with p == NULL. 1052 */ 1053 if (unlikely(!p)) 1054 return NULL; 1055 1056 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id)); 1057 } 1058 1059 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 1060 { 1061 struct mem_cgroup *memcg = NULL; 1062 1063 if (!mm) 1064 return NULL; 1065 /* 1066 * Because we have no locks, mm->owner's may be being moved to other 1067 * cgroup. We use css_tryget() here even if this looks 1068 * pessimistic (rather than adding locks here). 1069 */ 1070 rcu_read_lock(); 1071 do { 1072 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1073 if (unlikely(!memcg)) 1074 break; 1075 } while (!css_tryget(&memcg->css)); 1076 rcu_read_unlock(); 1077 return memcg; 1078 } 1079 1080 /* 1081 * Returns a next (in a pre-order walk) alive memcg (with elevated css 1082 * ref. count) or NULL if the whole root's subtree has been visited. 1083 * 1084 * helper function to be used by mem_cgroup_iter 1085 */ 1086 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, 1087 struct mem_cgroup *last_visited) 1088 { 1089 struct cgroup_subsys_state *prev_css, *next_css; 1090 1091 prev_css = last_visited ? &last_visited->css : NULL; 1092 skip_node: 1093 next_css = css_next_descendant_pre(prev_css, &root->css); 1094 1095 /* 1096 * Even if we found a group we have to make sure it is 1097 * alive. css && !memcg means that the groups should be 1098 * skipped and we should continue the tree walk. 1099 * last_visited css is safe to use because it is 1100 * protected by css_get and the tree walk is rcu safe. 1101 */ 1102 if (next_css) { 1103 struct mem_cgroup *mem = mem_cgroup_from_css(next_css); 1104 1105 if (css_tryget(&mem->css)) 1106 return mem; 1107 else { 1108 prev_css = next_css; 1109 goto skip_node; 1110 } 1111 } 1112 1113 return NULL; 1114 } 1115 1116 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) 1117 { 1118 /* 1119 * When a group in the hierarchy below root is destroyed, the 1120 * hierarchy iterator can no longer be trusted since it might 1121 * have pointed to the destroyed group. Invalidate it. 1122 */ 1123 atomic_inc(&root->dead_count); 1124 } 1125 1126 static struct mem_cgroup * 1127 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, 1128 struct mem_cgroup *root, 1129 int *sequence) 1130 { 1131 struct mem_cgroup *position = NULL; 1132 /* 1133 * A cgroup destruction happens in two stages: offlining and 1134 * release. They are separated by a RCU grace period. 1135 * 1136 * If the iterator is valid, we may still race with an 1137 * offlining. The RCU lock ensures the object won't be 1138 * released, tryget will fail if we lost the race. 1139 */ 1140 *sequence = atomic_read(&root->dead_count); 1141 if (iter->last_dead_count == *sequence) { 1142 smp_rmb(); 1143 position = iter->last_visited; 1144 if (position && !css_tryget(&position->css)) 1145 position = NULL; 1146 } 1147 return position; 1148 } 1149 1150 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, 1151 struct mem_cgroup *last_visited, 1152 struct mem_cgroup *new_position, 1153 int sequence) 1154 { 1155 if (last_visited) 1156 css_put(&last_visited->css); 1157 /* 1158 * We store the sequence count from the time @last_visited was 1159 * loaded successfully instead of rereading it here so that we 1160 * don't lose destruction events in between. We could have 1161 * raced with the destruction of @new_position after all. 1162 */ 1163 iter->last_visited = new_position; 1164 smp_wmb(); 1165 iter->last_dead_count = sequence; 1166 } 1167 1168 /** 1169 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1170 * @root: hierarchy root 1171 * @prev: previously returned memcg, NULL on first invocation 1172 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1173 * 1174 * Returns references to children of the hierarchy below @root, or 1175 * @root itself, or %NULL after a full round-trip. 1176 * 1177 * Caller must pass the return value in @prev on subsequent 1178 * invocations for reference counting, or use mem_cgroup_iter_break() 1179 * to cancel a hierarchy walk before the round-trip is complete. 1180 * 1181 * Reclaimers can specify a zone and a priority level in @reclaim to 1182 * divide up the memcgs in the hierarchy among all concurrent 1183 * reclaimers operating on the same zone and priority. 1184 */ 1185 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1186 struct mem_cgroup *prev, 1187 struct mem_cgroup_reclaim_cookie *reclaim) 1188 { 1189 struct mem_cgroup *memcg = NULL; 1190 struct mem_cgroup *last_visited = NULL; 1191 1192 if (mem_cgroup_disabled()) 1193 return NULL; 1194 1195 if (!root) 1196 root = root_mem_cgroup; 1197 1198 if (prev && !reclaim) 1199 last_visited = prev; 1200 1201 if (!root->use_hierarchy && root != root_mem_cgroup) { 1202 if (prev) 1203 goto out_css_put; 1204 return root; 1205 } 1206 1207 rcu_read_lock(); 1208 while (!memcg) { 1209 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1210 int uninitialized_var(seq); 1211 1212 if (reclaim) { 1213 int nid = zone_to_nid(reclaim->zone); 1214 int zid = zone_idx(reclaim->zone); 1215 struct mem_cgroup_per_zone *mz; 1216 1217 mz = mem_cgroup_zoneinfo(root, nid, zid); 1218 iter = &mz->reclaim_iter[reclaim->priority]; 1219 if (prev && reclaim->generation != iter->generation) { 1220 iter->last_visited = NULL; 1221 goto out_unlock; 1222 } 1223 1224 last_visited = mem_cgroup_iter_load(iter, root, &seq); 1225 } 1226 1227 memcg = __mem_cgroup_iter_next(root, last_visited); 1228 1229 if (reclaim) { 1230 mem_cgroup_iter_update(iter, last_visited, memcg, seq); 1231 1232 if (!memcg) 1233 iter->generation++; 1234 else if (!prev && memcg) 1235 reclaim->generation = iter->generation; 1236 } 1237 1238 if (prev && !memcg) 1239 goto out_unlock; 1240 } 1241 out_unlock: 1242 rcu_read_unlock(); 1243 out_css_put: 1244 if (prev && prev != root) 1245 css_put(&prev->css); 1246 1247 return memcg; 1248 } 1249 1250 /** 1251 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1252 * @root: hierarchy root 1253 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1254 */ 1255 void mem_cgroup_iter_break(struct mem_cgroup *root, 1256 struct mem_cgroup *prev) 1257 { 1258 if (!root) 1259 root = root_mem_cgroup; 1260 if (prev && prev != root) 1261 css_put(&prev->css); 1262 } 1263 1264 /* 1265 * Iteration constructs for visiting all cgroups (under a tree). If 1266 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1267 * be used for reference counting. 1268 */ 1269 #define for_each_mem_cgroup_tree(iter, root) \ 1270 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1271 iter != NULL; \ 1272 iter = mem_cgroup_iter(root, iter, NULL)) 1273 1274 #define for_each_mem_cgroup(iter) \ 1275 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1276 iter != NULL; \ 1277 iter = mem_cgroup_iter(NULL, iter, NULL)) 1278 1279 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1280 { 1281 struct mem_cgroup *memcg; 1282 1283 rcu_read_lock(); 1284 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1285 if (unlikely(!memcg)) 1286 goto out; 1287 1288 switch (idx) { 1289 case PGFAULT: 1290 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1291 break; 1292 case PGMAJFAULT: 1293 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1294 break; 1295 default: 1296 BUG(); 1297 } 1298 out: 1299 rcu_read_unlock(); 1300 } 1301 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1302 1303 /** 1304 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1305 * @zone: zone of the wanted lruvec 1306 * @memcg: memcg of the wanted lruvec 1307 * 1308 * Returns the lru list vector holding pages for the given @zone and 1309 * @mem. This can be the global zone lruvec, if the memory controller 1310 * is disabled. 1311 */ 1312 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1313 struct mem_cgroup *memcg) 1314 { 1315 struct mem_cgroup_per_zone *mz; 1316 struct lruvec *lruvec; 1317 1318 if (mem_cgroup_disabled()) { 1319 lruvec = &zone->lruvec; 1320 goto out; 1321 } 1322 1323 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1324 lruvec = &mz->lruvec; 1325 out: 1326 /* 1327 * Since a node can be onlined after the mem_cgroup was created, 1328 * we have to be prepared to initialize lruvec->zone here; 1329 * and if offlined then reonlined, we need to reinitialize it. 1330 */ 1331 if (unlikely(lruvec->zone != zone)) 1332 lruvec->zone = zone; 1333 return lruvec; 1334 } 1335 1336 /* 1337 * Following LRU functions are allowed to be used without PCG_LOCK. 1338 * Operations are called by routine of global LRU independently from memcg. 1339 * What we have to take care of here is validness of pc->mem_cgroup. 1340 * 1341 * Changes to pc->mem_cgroup happens when 1342 * 1. charge 1343 * 2. moving account 1344 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1345 * It is added to LRU before charge. 1346 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1347 * When moving account, the page is not on LRU. It's isolated. 1348 */ 1349 1350 /** 1351 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1352 * @page: the page 1353 * @zone: zone of the page 1354 */ 1355 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1356 { 1357 struct mem_cgroup_per_zone *mz; 1358 struct mem_cgroup *memcg; 1359 struct page_cgroup *pc; 1360 struct lruvec *lruvec; 1361 1362 if (mem_cgroup_disabled()) { 1363 lruvec = &zone->lruvec; 1364 goto out; 1365 } 1366 1367 pc = lookup_page_cgroup(page); 1368 memcg = pc->mem_cgroup; 1369 1370 /* 1371 * Surreptitiously switch any uncharged offlist page to root: 1372 * an uncharged page off lru does nothing to secure 1373 * its former mem_cgroup from sudden removal. 1374 * 1375 * Our caller holds lru_lock, and PageCgroupUsed is updated 1376 * under page_cgroup lock: between them, they make all uses 1377 * of pc->mem_cgroup safe. 1378 */ 1379 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1380 pc->mem_cgroup = memcg = root_mem_cgroup; 1381 1382 mz = page_cgroup_zoneinfo(memcg, page); 1383 lruvec = &mz->lruvec; 1384 out: 1385 /* 1386 * Since a node can be onlined after the mem_cgroup was created, 1387 * we have to be prepared to initialize lruvec->zone here; 1388 * and if offlined then reonlined, we need to reinitialize it. 1389 */ 1390 if (unlikely(lruvec->zone != zone)) 1391 lruvec->zone = zone; 1392 return lruvec; 1393 } 1394 1395 /** 1396 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1397 * @lruvec: mem_cgroup per zone lru vector 1398 * @lru: index of lru list the page is sitting on 1399 * @nr_pages: positive when adding or negative when removing 1400 * 1401 * This function must be called when a page is added to or removed from an 1402 * lru list. 1403 */ 1404 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1405 int nr_pages) 1406 { 1407 struct mem_cgroup_per_zone *mz; 1408 unsigned long *lru_size; 1409 1410 if (mem_cgroup_disabled()) 1411 return; 1412 1413 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1414 lru_size = mz->lru_size + lru; 1415 *lru_size += nr_pages; 1416 VM_BUG_ON((long)(*lru_size) < 0); 1417 } 1418 1419 /* 1420 * Checks whether given mem is same or in the root_mem_cgroup's 1421 * hierarchy subtree 1422 */ 1423 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1424 struct mem_cgroup *memcg) 1425 { 1426 if (root_memcg == memcg) 1427 return true; 1428 if (!root_memcg->use_hierarchy || !memcg) 1429 return false; 1430 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup); 1431 } 1432 1433 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1434 struct mem_cgroup *memcg) 1435 { 1436 bool ret; 1437 1438 rcu_read_lock(); 1439 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1440 rcu_read_unlock(); 1441 return ret; 1442 } 1443 1444 bool task_in_mem_cgroup(struct task_struct *task, 1445 const struct mem_cgroup *memcg) 1446 { 1447 struct mem_cgroup *curr = NULL; 1448 struct task_struct *p; 1449 bool ret; 1450 1451 p = find_lock_task_mm(task); 1452 if (p) { 1453 curr = try_get_mem_cgroup_from_mm(p->mm); 1454 task_unlock(p); 1455 } else { 1456 /* 1457 * All threads may have already detached their mm's, but the oom 1458 * killer still needs to detect if they have already been oom 1459 * killed to prevent needlessly killing additional tasks. 1460 */ 1461 rcu_read_lock(); 1462 curr = mem_cgroup_from_task(task); 1463 if (curr) 1464 css_get(&curr->css); 1465 rcu_read_unlock(); 1466 } 1467 if (!curr) 1468 return false; 1469 /* 1470 * We should check use_hierarchy of "memcg" not "curr". Because checking 1471 * use_hierarchy of "curr" here make this function true if hierarchy is 1472 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1473 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1474 */ 1475 ret = mem_cgroup_same_or_subtree(memcg, curr); 1476 css_put(&curr->css); 1477 return ret; 1478 } 1479 1480 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1481 { 1482 unsigned long inactive_ratio; 1483 unsigned long inactive; 1484 unsigned long active; 1485 unsigned long gb; 1486 1487 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1488 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1489 1490 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1491 if (gb) 1492 inactive_ratio = int_sqrt(10 * gb); 1493 else 1494 inactive_ratio = 1; 1495 1496 return inactive * inactive_ratio < active; 1497 } 1498 1499 #define mem_cgroup_from_res_counter(counter, member) \ 1500 container_of(counter, struct mem_cgroup, member) 1501 1502 /** 1503 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1504 * @memcg: the memory cgroup 1505 * 1506 * Returns the maximum amount of memory @mem can be charged with, in 1507 * pages. 1508 */ 1509 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1510 { 1511 unsigned long long margin; 1512 1513 margin = res_counter_margin(&memcg->res); 1514 if (do_swap_account) 1515 margin = min(margin, res_counter_margin(&memcg->memsw)); 1516 return margin >> PAGE_SHIFT; 1517 } 1518 1519 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1520 { 1521 /* root ? */ 1522 if (!css_parent(&memcg->css)) 1523 return vm_swappiness; 1524 1525 return memcg->swappiness; 1526 } 1527 1528 /* 1529 * memcg->moving_account is used for checking possibility that some thread is 1530 * calling move_account(). When a thread on CPU-A starts moving pages under 1531 * a memcg, other threads should check memcg->moving_account under 1532 * rcu_read_lock(), like this: 1533 * 1534 * CPU-A CPU-B 1535 * rcu_read_lock() 1536 * memcg->moving_account+1 if (memcg->mocing_account) 1537 * take heavy locks. 1538 * synchronize_rcu() update something. 1539 * rcu_read_unlock() 1540 * start move here. 1541 */ 1542 1543 /* for quick checking without looking up memcg */ 1544 atomic_t memcg_moving __read_mostly; 1545 1546 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1547 { 1548 atomic_inc(&memcg_moving); 1549 atomic_inc(&memcg->moving_account); 1550 synchronize_rcu(); 1551 } 1552 1553 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1554 { 1555 /* 1556 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1557 * We check NULL in callee rather than caller. 1558 */ 1559 if (memcg) { 1560 atomic_dec(&memcg_moving); 1561 atomic_dec(&memcg->moving_account); 1562 } 1563 } 1564 1565 /* 1566 * 2 routines for checking "mem" is under move_account() or not. 1567 * 1568 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1569 * is used for avoiding races in accounting. If true, 1570 * pc->mem_cgroup may be overwritten. 1571 * 1572 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1573 * under hierarchy of moving cgroups. This is for 1574 * waiting at hith-memory prressure caused by "move". 1575 */ 1576 1577 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1578 { 1579 VM_BUG_ON(!rcu_read_lock_held()); 1580 return atomic_read(&memcg->moving_account) > 0; 1581 } 1582 1583 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1584 { 1585 struct mem_cgroup *from; 1586 struct mem_cgroup *to; 1587 bool ret = false; 1588 /* 1589 * Unlike task_move routines, we access mc.to, mc.from not under 1590 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1591 */ 1592 spin_lock(&mc.lock); 1593 from = mc.from; 1594 to = mc.to; 1595 if (!from) 1596 goto unlock; 1597 1598 ret = mem_cgroup_same_or_subtree(memcg, from) 1599 || mem_cgroup_same_or_subtree(memcg, to); 1600 unlock: 1601 spin_unlock(&mc.lock); 1602 return ret; 1603 } 1604 1605 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1606 { 1607 if (mc.moving_task && current != mc.moving_task) { 1608 if (mem_cgroup_under_move(memcg)) { 1609 DEFINE_WAIT(wait); 1610 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1611 /* moving charge context might have finished. */ 1612 if (mc.moving_task) 1613 schedule(); 1614 finish_wait(&mc.waitq, &wait); 1615 return true; 1616 } 1617 } 1618 return false; 1619 } 1620 1621 /* 1622 * Take this lock when 1623 * - a code tries to modify page's memcg while it's USED. 1624 * - a code tries to modify page state accounting in a memcg. 1625 * see mem_cgroup_stolen(), too. 1626 */ 1627 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1628 unsigned long *flags) 1629 { 1630 spin_lock_irqsave(&memcg->move_lock, *flags); 1631 } 1632 1633 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1634 unsigned long *flags) 1635 { 1636 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1637 } 1638 1639 #define K(x) ((x) << (PAGE_SHIFT-10)) 1640 /** 1641 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1642 * @memcg: The memory cgroup that went over limit 1643 * @p: Task that is going to be killed 1644 * 1645 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1646 * enabled 1647 */ 1648 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1649 { 1650 struct cgroup *task_cgrp; 1651 struct cgroup *mem_cgrp; 1652 /* 1653 * Need a buffer in BSS, can't rely on allocations. The code relies 1654 * on the assumption that OOM is serialized for memory controller. 1655 * If this assumption is broken, revisit this code. 1656 */ 1657 static char memcg_name[PATH_MAX]; 1658 int ret; 1659 struct mem_cgroup *iter; 1660 unsigned int i; 1661 1662 if (!p) 1663 return; 1664 1665 rcu_read_lock(); 1666 1667 mem_cgrp = memcg->css.cgroup; 1668 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1669 1670 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1671 if (ret < 0) { 1672 /* 1673 * Unfortunately, we are unable to convert to a useful name 1674 * But we'll still print out the usage information 1675 */ 1676 rcu_read_unlock(); 1677 goto done; 1678 } 1679 rcu_read_unlock(); 1680 1681 pr_info("Task in %s killed", memcg_name); 1682 1683 rcu_read_lock(); 1684 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1685 if (ret < 0) { 1686 rcu_read_unlock(); 1687 goto done; 1688 } 1689 rcu_read_unlock(); 1690 1691 /* 1692 * Continues from above, so we don't need an KERN_ level 1693 */ 1694 pr_cont(" as a result of limit of %s\n", memcg_name); 1695 done: 1696 1697 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1698 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1699 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1700 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1701 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1702 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1703 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1704 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1705 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1706 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1707 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1708 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1709 1710 for_each_mem_cgroup_tree(iter, memcg) { 1711 pr_info("Memory cgroup stats"); 1712 1713 rcu_read_lock(); 1714 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); 1715 if (!ret) 1716 pr_cont(" for %s", memcg_name); 1717 rcu_read_unlock(); 1718 pr_cont(":"); 1719 1720 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1721 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1722 continue; 1723 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1724 K(mem_cgroup_read_stat(iter, i))); 1725 } 1726 1727 for (i = 0; i < NR_LRU_LISTS; i++) 1728 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1729 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1730 1731 pr_cont("\n"); 1732 } 1733 } 1734 1735 /* 1736 * This function returns the number of memcg under hierarchy tree. Returns 1737 * 1(self count) if no children. 1738 */ 1739 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1740 { 1741 int num = 0; 1742 struct mem_cgroup *iter; 1743 1744 for_each_mem_cgroup_tree(iter, memcg) 1745 num++; 1746 return num; 1747 } 1748 1749 /* 1750 * Return the memory (and swap, if configured) limit for a memcg. 1751 */ 1752 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1753 { 1754 u64 limit; 1755 1756 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1757 1758 /* 1759 * Do not consider swap space if we cannot swap due to swappiness 1760 */ 1761 if (mem_cgroup_swappiness(memcg)) { 1762 u64 memsw; 1763 1764 limit += total_swap_pages << PAGE_SHIFT; 1765 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1766 1767 /* 1768 * If memsw is finite and limits the amount of swap space 1769 * available to this memcg, return that limit. 1770 */ 1771 limit = min(limit, memsw); 1772 } 1773 1774 return limit; 1775 } 1776 1777 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1778 int order) 1779 { 1780 struct mem_cgroup *iter; 1781 unsigned long chosen_points = 0; 1782 unsigned long totalpages; 1783 unsigned int points = 0; 1784 struct task_struct *chosen = NULL; 1785 1786 /* 1787 * If current has a pending SIGKILL or is exiting, then automatically 1788 * select it. The goal is to allow it to allocate so that it may 1789 * quickly exit and free its memory. 1790 */ 1791 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 1792 set_thread_flag(TIF_MEMDIE); 1793 return; 1794 } 1795 1796 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1797 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1798 for_each_mem_cgroup_tree(iter, memcg) { 1799 struct css_task_iter it; 1800 struct task_struct *task; 1801 1802 css_task_iter_start(&iter->css, &it); 1803 while ((task = css_task_iter_next(&it))) { 1804 switch (oom_scan_process_thread(task, totalpages, NULL, 1805 false)) { 1806 case OOM_SCAN_SELECT: 1807 if (chosen) 1808 put_task_struct(chosen); 1809 chosen = task; 1810 chosen_points = ULONG_MAX; 1811 get_task_struct(chosen); 1812 /* fall through */ 1813 case OOM_SCAN_CONTINUE: 1814 continue; 1815 case OOM_SCAN_ABORT: 1816 css_task_iter_end(&it); 1817 mem_cgroup_iter_break(memcg, iter); 1818 if (chosen) 1819 put_task_struct(chosen); 1820 return; 1821 case OOM_SCAN_OK: 1822 break; 1823 }; 1824 points = oom_badness(task, memcg, NULL, totalpages); 1825 if (points > chosen_points) { 1826 if (chosen) 1827 put_task_struct(chosen); 1828 chosen = task; 1829 chosen_points = points; 1830 get_task_struct(chosen); 1831 } 1832 } 1833 css_task_iter_end(&it); 1834 } 1835 1836 if (!chosen) 1837 return; 1838 points = chosen_points * 1000 / totalpages; 1839 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1840 NULL, "Memory cgroup out of memory"); 1841 } 1842 1843 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1844 gfp_t gfp_mask, 1845 unsigned long flags) 1846 { 1847 unsigned long total = 0; 1848 bool noswap = false; 1849 int loop; 1850 1851 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1852 noswap = true; 1853 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1854 noswap = true; 1855 1856 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1857 if (loop) 1858 drain_all_stock_async(memcg); 1859 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1860 /* 1861 * Allow limit shrinkers, which are triggered directly 1862 * by userspace, to catch signals and stop reclaim 1863 * after minimal progress, regardless of the margin. 1864 */ 1865 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1866 break; 1867 if (mem_cgroup_margin(memcg)) 1868 break; 1869 /* 1870 * If nothing was reclaimed after two attempts, there 1871 * may be no reclaimable pages in this hierarchy. 1872 */ 1873 if (loop && !total) 1874 break; 1875 } 1876 return total; 1877 } 1878 1879 /** 1880 * test_mem_cgroup_node_reclaimable 1881 * @memcg: the target memcg 1882 * @nid: the node ID to be checked. 1883 * @noswap : specify true here if the user wants flle only information. 1884 * 1885 * This function returns whether the specified memcg contains any 1886 * reclaimable pages on a node. Returns true if there are any reclaimable 1887 * pages in the node. 1888 */ 1889 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1890 int nid, bool noswap) 1891 { 1892 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1893 return true; 1894 if (noswap || !total_swap_pages) 1895 return false; 1896 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1897 return true; 1898 return false; 1899 1900 } 1901 #if MAX_NUMNODES > 1 1902 1903 /* 1904 * Always updating the nodemask is not very good - even if we have an empty 1905 * list or the wrong list here, we can start from some node and traverse all 1906 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1907 * 1908 */ 1909 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1910 { 1911 int nid; 1912 /* 1913 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1914 * pagein/pageout changes since the last update. 1915 */ 1916 if (!atomic_read(&memcg->numainfo_events)) 1917 return; 1918 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1919 return; 1920 1921 /* make a nodemask where this memcg uses memory from */ 1922 memcg->scan_nodes = node_states[N_MEMORY]; 1923 1924 for_each_node_mask(nid, node_states[N_MEMORY]) { 1925 1926 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1927 node_clear(nid, memcg->scan_nodes); 1928 } 1929 1930 atomic_set(&memcg->numainfo_events, 0); 1931 atomic_set(&memcg->numainfo_updating, 0); 1932 } 1933 1934 /* 1935 * Selecting a node where we start reclaim from. Because what we need is just 1936 * reducing usage counter, start from anywhere is O,K. Considering 1937 * memory reclaim from current node, there are pros. and cons. 1938 * 1939 * Freeing memory from current node means freeing memory from a node which 1940 * we'll use or we've used. So, it may make LRU bad. And if several threads 1941 * hit limits, it will see a contention on a node. But freeing from remote 1942 * node means more costs for memory reclaim because of memory latency. 1943 * 1944 * Now, we use round-robin. Better algorithm is welcomed. 1945 */ 1946 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1947 { 1948 int node; 1949 1950 mem_cgroup_may_update_nodemask(memcg); 1951 node = memcg->last_scanned_node; 1952 1953 node = next_node(node, memcg->scan_nodes); 1954 if (node == MAX_NUMNODES) 1955 node = first_node(memcg->scan_nodes); 1956 /* 1957 * We call this when we hit limit, not when pages are added to LRU. 1958 * No LRU may hold pages because all pages are UNEVICTABLE or 1959 * memcg is too small and all pages are not on LRU. In that case, 1960 * we use curret node. 1961 */ 1962 if (unlikely(node == MAX_NUMNODES)) 1963 node = numa_node_id(); 1964 1965 memcg->last_scanned_node = node; 1966 return node; 1967 } 1968 1969 /* 1970 * Check all nodes whether it contains reclaimable pages or not. 1971 * For quick scan, we make use of scan_nodes. This will allow us to skip 1972 * unused nodes. But scan_nodes is lazily updated and may not cotain 1973 * enough new information. We need to do double check. 1974 */ 1975 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1976 { 1977 int nid; 1978 1979 /* 1980 * quick check...making use of scan_node. 1981 * We can skip unused nodes. 1982 */ 1983 if (!nodes_empty(memcg->scan_nodes)) { 1984 for (nid = first_node(memcg->scan_nodes); 1985 nid < MAX_NUMNODES; 1986 nid = next_node(nid, memcg->scan_nodes)) { 1987 1988 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1989 return true; 1990 } 1991 } 1992 /* 1993 * Check rest of nodes. 1994 */ 1995 for_each_node_state(nid, N_MEMORY) { 1996 if (node_isset(nid, memcg->scan_nodes)) 1997 continue; 1998 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1999 return true; 2000 } 2001 return false; 2002 } 2003 2004 #else 2005 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 2006 { 2007 return 0; 2008 } 2009 2010 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 2011 { 2012 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 2013 } 2014 #endif 2015 2016 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 2017 struct zone *zone, 2018 gfp_t gfp_mask, 2019 unsigned long *total_scanned) 2020 { 2021 struct mem_cgroup *victim = NULL; 2022 int total = 0; 2023 int loop = 0; 2024 unsigned long excess; 2025 unsigned long nr_scanned; 2026 struct mem_cgroup_reclaim_cookie reclaim = { 2027 .zone = zone, 2028 .priority = 0, 2029 }; 2030 2031 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 2032 2033 while (1) { 2034 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 2035 if (!victim) { 2036 loop++; 2037 if (loop >= 2) { 2038 /* 2039 * If we have not been able to reclaim 2040 * anything, it might because there are 2041 * no reclaimable pages under this hierarchy 2042 */ 2043 if (!total) 2044 break; 2045 /* 2046 * We want to do more targeted reclaim. 2047 * excess >> 2 is not to excessive so as to 2048 * reclaim too much, nor too less that we keep 2049 * coming back to reclaim from this cgroup 2050 */ 2051 if (total >= (excess >> 2) || 2052 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 2053 break; 2054 } 2055 continue; 2056 } 2057 if (!mem_cgroup_reclaimable(victim, false)) 2058 continue; 2059 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 2060 zone, &nr_scanned); 2061 *total_scanned += nr_scanned; 2062 if (!res_counter_soft_limit_excess(&root_memcg->res)) 2063 break; 2064 } 2065 mem_cgroup_iter_break(root_memcg, victim); 2066 return total; 2067 } 2068 2069 #ifdef CONFIG_LOCKDEP 2070 static struct lockdep_map memcg_oom_lock_dep_map = { 2071 .name = "memcg_oom_lock", 2072 }; 2073 #endif 2074 2075 static DEFINE_SPINLOCK(memcg_oom_lock); 2076 2077 /* 2078 * Check OOM-Killer is already running under our hierarchy. 2079 * If someone is running, return false. 2080 */ 2081 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 2082 { 2083 struct mem_cgroup *iter, *failed = NULL; 2084 2085 spin_lock(&memcg_oom_lock); 2086 2087 for_each_mem_cgroup_tree(iter, memcg) { 2088 if (iter->oom_lock) { 2089 /* 2090 * this subtree of our hierarchy is already locked 2091 * so we cannot give a lock. 2092 */ 2093 failed = iter; 2094 mem_cgroup_iter_break(memcg, iter); 2095 break; 2096 } else 2097 iter->oom_lock = true; 2098 } 2099 2100 if (failed) { 2101 /* 2102 * OK, we failed to lock the whole subtree so we have 2103 * to clean up what we set up to the failing subtree 2104 */ 2105 for_each_mem_cgroup_tree(iter, memcg) { 2106 if (iter == failed) { 2107 mem_cgroup_iter_break(memcg, iter); 2108 break; 2109 } 2110 iter->oom_lock = false; 2111 } 2112 } else 2113 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 2114 2115 spin_unlock(&memcg_oom_lock); 2116 2117 return !failed; 2118 } 2119 2120 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2121 { 2122 struct mem_cgroup *iter; 2123 2124 spin_lock(&memcg_oom_lock); 2125 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 2126 for_each_mem_cgroup_tree(iter, memcg) 2127 iter->oom_lock = false; 2128 spin_unlock(&memcg_oom_lock); 2129 } 2130 2131 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2132 { 2133 struct mem_cgroup *iter; 2134 2135 for_each_mem_cgroup_tree(iter, memcg) 2136 atomic_inc(&iter->under_oom); 2137 } 2138 2139 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2140 { 2141 struct mem_cgroup *iter; 2142 2143 /* 2144 * When a new child is created while the hierarchy is under oom, 2145 * mem_cgroup_oom_lock() may not be called. We have to use 2146 * atomic_add_unless() here. 2147 */ 2148 for_each_mem_cgroup_tree(iter, memcg) 2149 atomic_add_unless(&iter->under_oom, -1, 0); 2150 } 2151 2152 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2153 2154 struct oom_wait_info { 2155 struct mem_cgroup *memcg; 2156 wait_queue_t wait; 2157 }; 2158 2159 static int memcg_oom_wake_function(wait_queue_t *wait, 2160 unsigned mode, int sync, void *arg) 2161 { 2162 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2163 struct mem_cgroup *oom_wait_memcg; 2164 struct oom_wait_info *oom_wait_info; 2165 2166 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2167 oom_wait_memcg = oom_wait_info->memcg; 2168 2169 /* 2170 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2171 * Then we can use css_is_ancestor without taking care of RCU. 2172 */ 2173 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2174 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2175 return 0; 2176 return autoremove_wake_function(wait, mode, sync, arg); 2177 } 2178 2179 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2180 { 2181 atomic_inc(&memcg->oom_wakeups); 2182 /* for filtering, pass "memcg" as argument. */ 2183 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2184 } 2185 2186 static void memcg_oom_recover(struct mem_cgroup *memcg) 2187 { 2188 if (memcg && atomic_read(&memcg->under_oom)) 2189 memcg_wakeup_oom(memcg); 2190 } 2191 2192 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 2193 { 2194 if (!current->memcg_oom.may_oom) 2195 return; 2196 /* 2197 * We are in the middle of the charge context here, so we 2198 * don't want to block when potentially sitting on a callstack 2199 * that holds all kinds of filesystem and mm locks. 2200 * 2201 * Also, the caller may handle a failed allocation gracefully 2202 * (like optional page cache readahead) and so an OOM killer 2203 * invocation might not even be necessary. 2204 * 2205 * That's why we don't do anything here except remember the 2206 * OOM context and then deal with it at the end of the page 2207 * fault when the stack is unwound, the locks are released, 2208 * and when we know whether the fault was overall successful. 2209 */ 2210 css_get(&memcg->css); 2211 current->memcg_oom.memcg = memcg; 2212 current->memcg_oom.gfp_mask = mask; 2213 current->memcg_oom.order = order; 2214 } 2215 2216 /** 2217 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2218 * @handle: actually kill/wait or just clean up the OOM state 2219 * 2220 * This has to be called at the end of a page fault if the memcg OOM 2221 * handler was enabled. 2222 * 2223 * Memcg supports userspace OOM handling where failed allocations must 2224 * sleep on a waitqueue until the userspace task resolves the 2225 * situation. Sleeping directly in the charge context with all kinds 2226 * of locks held is not a good idea, instead we remember an OOM state 2227 * in the task and mem_cgroup_oom_synchronize() has to be called at 2228 * the end of the page fault to complete the OOM handling. 2229 * 2230 * Returns %true if an ongoing memcg OOM situation was detected and 2231 * completed, %false otherwise. 2232 */ 2233 bool mem_cgroup_oom_synchronize(bool handle) 2234 { 2235 struct mem_cgroup *memcg = current->memcg_oom.memcg; 2236 struct oom_wait_info owait; 2237 bool locked; 2238 2239 /* OOM is global, do not handle */ 2240 if (!memcg) 2241 return false; 2242 2243 if (!handle) 2244 goto cleanup; 2245 2246 owait.memcg = memcg; 2247 owait.wait.flags = 0; 2248 owait.wait.func = memcg_oom_wake_function; 2249 owait.wait.private = current; 2250 INIT_LIST_HEAD(&owait.wait.task_list); 2251 2252 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2253 mem_cgroup_mark_under_oom(memcg); 2254 2255 locked = mem_cgroup_oom_trylock(memcg); 2256 2257 if (locked) 2258 mem_cgroup_oom_notify(memcg); 2259 2260 if (locked && !memcg->oom_kill_disable) { 2261 mem_cgroup_unmark_under_oom(memcg); 2262 finish_wait(&memcg_oom_waitq, &owait.wait); 2263 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, 2264 current->memcg_oom.order); 2265 } else { 2266 schedule(); 2267 mem_cgroup_unmark_under_oom(memcg); 2268 finish_wait(&memcg_oom_waitq, &owait.wait); 2269 } 2270 2271 if (locked) { 2272 mem_cgroup_oom_unlock(memcg); 2273 /* 2274 * There is no guarantee that an OOM-lock contender 2275 * sees the wakeups triggered by the OOM kill 2276 * uncharges. Wake any sleepers explicitely. 2277 */ 2278 memcg_oom_recover(memcg); 2279 } 2280 cleanup: 2281 current->memcg_oom.memcg = NULL; 2282 css_put(&memcg->css); 2283 return true; 2284 } 2285 2286 /* 2287 * Currently used to update mapped file statistics, but the routine can be 2288 * generalized to update other statistics as well. 2289 * 2290 * Notes: Race condition 2291 * 2292 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2293 * it tends to be costly. But considering some conditions, we doesn't need 2294 * to do so _always_. 2295 * 2296 * Considering "charge", lock_page_cgroup() is not required because all 2297 * file-stat operations happen after a page is attached to radix-tree. There 2298 * are no race with "charge". 2299 * 2300 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2301 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2302 * if there are race with "uncharge". Statistics itself is properly handled 2303 * by flags. 2304 * 2305 * Considering "move", this is an only case we see a race. To make the race 2306 * small, we check mm->moving_account and detect there are possibility of race 2307 * If there is, we take a lock. 2308 */ 2309 2310 void __mem_cgroup_begin_update_page_stat(struct page *page, 2311 bool *locked, unsigned long *flags) 2312 { 2313 struct mem_cgroup *memcg; 2314 struct page_cgroup *pc; 2315 2316 pc = lookup_page_cgroup(page); 2317 again: 2318 memcg = pc->mem_cgroup; 2319 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2320 return; 2321 /* 2322 * If this memory cgroup is not under account moving, we don't 2323 * need to take move_lock_mem_cgroup(). Because we already hold 2324 * rcu_read_lock(), any calls to move_account will be delayed until 2325 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2326 */ 2327 if (!mem_cgroup_stolen(memcg)) 2328 return; 2329 2330 move_lock_mem_cgroup(memcg, flags); 2331 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2332 move_unlock_mem_cgroup(memcg, flags); 2333 goto again; 2334 } 2335 *locked = true; 2336 } 2337 2338 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2339 { 2340 struct page_cgroup *pc = lookup_page_cgroup(page); 2341 2342 /* 2343 * It's guaranteed that pc->mem_cgroup never changes while 2344 * lock is held because a routine modifies pc->mem_cgroup 2345 * should take move_lock_mem_cgroup(). 2346 */ 2347 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2348 } 2349 2350 void mem_cgroup_update_page_stat(struct page *page, 2351 enum mem_cgroup_stat_index idx, int val) 2352 { 2353 struct mem_cgroup *memcg; 2354 struct page_cgroup *pc = lookup_page_cgroup(page); 2355 unsigned long uninitialized_var(flags); 2356 2357 if (mem_cgroup_disabled()) 2358 return; 2359 2360 VM_BUG_ON(!rcu_read_lock_held()); 2361 memcg = pc->mem_cgroup; 2362 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2363 return; 2364 2365 this_cpu_add(memcg->stat->count[idx], val); 2366 } 2367 2368 /* 2369 * size of first charge trial. "32" comes from vmscan.c's magic value. 2370 * TODO: maybe necessary to use big numbers in big irons. 2371 */ 2372 #define CHARGE_BATCH 32U 2373 struct memcg_stock_pcp { 2374 struct mem_cgroup *cached; /* this never be root cgroup */ 2375 unsigned int nr_pages; 2376 struct work_struct work; 2377 unsigned long flags; 2378 #define FLUSHING_CACHED_CHARGE 0 2379 }; 2380 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2381 static DEFINE_MUTEX(percpu_charge_mutex); 2382 2383 /** 2384 * consume_stock: Try to consume stocked charge on this cpu. 2385 * @memcg: memcg to consume from. 2386 * @nr_pages: how many pages to charge. 2387 * 2388 * The charges will only happen if @memcg matches the current cpu's memcg 2389 * stock, and at least @nr_pages are available in that stock. Failure to 2390 * service an allocation will refill the stock. 2391 * 2392 * returns true if successful, false otherwise. 2393 */ 2394 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2395 { 2396 struct memcg_stock_pcp *stock; 2397 bool ret = true; 2398 2399 if (nr_pages > CHARGE_BATCH) 2400 return false; 2401 2402 stock = &get_cpu_var(memcg_stock); 2403 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2404 stock->nr_pages -= nr_pages; 2405 else /* need to call res_counter_charge */ 2406 ret = false; 2407 put_cpu_var(memcg_stock); 2408 return ret; 2409 } 2410 2411 /* 2412 * Returns stocks cached in percpu to res_counter and reset cached information. 2413 */ 2414 static void drain_stock(struct memcg_stock_pcp *stock) 2415 { 2416 struct mem_cgroup *old = stock->cached; 2417 2418 if (stock->nr_pages) { 2419 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2420 2421 res_counter_uncharge(&old->res, bytes); 2422 if (do_swap_account) 2423 res_counter_uncharge(&old->memsw, bytes); 2424 stock->nr_pages = 0; 2425 } 2426 stock->cached = NULL; 2427 } 2428 2429 /* 2430 * This must be called under preempt disabled or must be called by 2431 * a thread which is pinned to local cpu. 2432 */ 2433 static void drain_local_stock(struct work_struct *dummy) 2434 { 2435 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2436 drain_stock(stock); 2437 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2438 } 2439 2440 static void __init memcg_stock_init(void) 2441 { 2442 int cpu; 2443 2444 for_each_possible_cpu(cpu) { 2445 struct memcg_stock_pcp *stock = 2446 &per_cpu(memcg_stock, cpu); 2447 INIT_WORK(&stock->work, drain_local_stock); 2448 } 2449 } 2450 2451 /* 2452 * Cache charges(val) which is from res_counter, to local per_cpu area. 2453 * This will be consumed by consume_stock() function, later. 2454 */ 2455 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2456 { 2457 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2458 2459 if (stock->cached != memcg) { /* reset if necessary */ 2460 drain_stock(stock); 2461 stock->cached = memcg; 2462 } 2463 stock->nr_pages += nr_pages; 2464 put_cpu_var(memcg_stock); 2465 } 2466 2467 /* 2468 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2469 * of the hierarchy under it. sync flag says whether we should block 2470 * until the work is done. 2471 */ 2472 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2473 { 2474 int cpu, curcpu; 2475 2476 /* Notify other cpus that system-wide "drain" is running */ 2477 get_online_cpus(); 2478 curcpu = get_cpu(); 2479 for_each_online_cpu(cpu) { 2480 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2481 struct mem_cgroup *memcg; 2482 2483 memcg = stock->cached; 2484 if (!memcg || !stock->nr_pages) 2485 continue; 2486 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2487 continue; 2488 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2489 if (cpu == curcpu) 2490 drain_local_stock(&stock->work); 2491 else 2492 schedule_work_on(cpu, &stock->work); 2493 } 2494 } 2495 put_cpu(); 2496 2497 if (!sync) 2498 goto out; 2499 2500 for_each_online_cpu(cpu) { 2501 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2502 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2503 flush_work(&stock->work); 2504 } 2505 out: 2506 put_online_cpus(); 2507 } 2508 2509 /* 2510 * Tries to drain stocked charges in other cpus. This function is asynchronous 2511 * and just put a work per cpu for draining localy on each cpu. Caller can 2512 * expects some charges will be back to res_counter later but cannot wait for 2513 * it. 2514 */ 2515 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2516 { 2517 /* 2518 * If someone calls draining, avoid adding more kworker runs. 2519 */ 2520 if (!mutex_trylock(&percpu_charge_mutex)) 2521 return; 2522 drain_all_stock(root_memcg, false); 2523 mutex_unlock(&percpu_charge_mutex); 2524 } 2525 2526 /* This is a synchronous drain interface. */ 2527 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2528 { 2529 /* called when force_empty is called */ 2530 mutex_lock(&percpu_charge_mutex); 2531 drain_all_stock(root_memcg, true); 2532 mutex_unlock(&percpu_charge_mutex); 2533 } 2534 2535 /* 2536 * This function drains percpu counter value from DEAD cpu and 2537 * move it to local cpu. Note that this function can be preempted. 2538 */ 2539 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2540 { 2541 int i; 2542 2543 spin_lock(&memcg->pcp_counter_lock); 2544 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2545 long x = per_cpu(memcg->stat->count[i], cpu); 2546 2547 per_cpu(memcg->stat->count[i], cpu) = 0; 2548 memcg->nocpu_base.count[i] += x; 2549 } 2550 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2551 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2552 2553 per_cpu(memcg->stat->events[i], cpu) = 0; 2554 memcg->nocpu_base.events[i] += x; 2555 } 2556 spin_unlock(&memcg->pcp_counter_lock); 2557 } 2558 2559 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 2560 unsigned long action, 2561 void *hcpu) 2562 { 2563 int cpu = (unsigned long)hcpu; 2564 struct memcg_stock_pcp *stock; 2565 struct mem_cgroup *iter; 2566 2567 if (action == CPU_ONLINE) 2568 return NOTIFY_OK; 2569 2570 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2571 return NOTIFY_OK; 2572 2573 for_each_mem_cgroup(iter) 2574 mem_cgroup_drain_pcp_counter(iter, cpu); 2575 2576 stock = &per_cpu(memcg_stock, cpu); 2577 drain_stock(stock); 2578 return NOTIFY_OK; 2579 } 2580 2581 2582 /* See __mem_cgroup_try_charge() for details */ 2583 enum { 2584 CHARGE_OK, /* success */ 2585 CHARGE_RETRY, /* need to retry but retry is not bad */ 2586 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2587 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2588 }; 2589 2590 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2591 unsigned int nr_pages, unsigned int min_pages, 2592 bool invoke_oom) 2593 { 2594 unsigned long csize = nr_pages * PAGE_SIZE; 2595 struct mem_cgroup *mem_over_limit; 2596 struct res_counter *fail_res; 2597 unsigned long flags = 0; 2598 int ret; 2599 2600 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2601 2602 if (likely(!ret)) { 2603 if (!do_swap_account) 2604 return CHARGE_OK; 2605 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2606 if (likely(!ret)) 2607 return CHARGE_OK; 2608 2609 res_counter_uncharge(&memcg->res, csize); 2610 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2611 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2612 } else 2613 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2614 /* 2615 * Never reclaim on behalf of optional batching, retry with a 2616 * single page instead. 2617 */ 2618 if (nr_pages > min_pages) 2619 return CHARGE_RETRY; 2620 2621 if (!(gfp_mask & __GFP_WAIT)) 2622 return CHARGE_WOULDBLOCK; 2623 2624 if (gfp_mask & __GFP_NORETRY) 2625 return CHARGE_NOMEM; 2626 2627 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2628 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2629 return CHARGE_RETRY; 2630 /* 2631 * Even though the limit is exceeded at this point, reclaim 2632 * may have been able to free some pages. Retry the charge 2633 * before killing the task. 2634 * 2635 * Only for regular pages, though: huge pages are rather 2636 * unlikely to succeed so close to the limit, and we fall back 2637 * to regular pages anyway in case of failure. 2638 */ 2639 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2640 return CHARGE_RETRY; 2641 2642 /* 2643 * At task move, charge accounts can be doubly counted. So, it's 2644 * better to wait until the end of task_move if something is going on. 2645 */ 2646 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2647 return CHARGE_RETRY; 2648 2649 if (invoke_oom) 2650 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); 2651 2652 return CHARGE_NOMEM; 2653 } 2654 2655 /* 2656 * __mem_cgroup_try_charge() does 2657 * 1. detect memcg to be charged against from passed *mm and *ptr, 2658 * 2. update res_counter 2659 * 3. call memory reclaim if necessary. 2660 * 2661 * In some special case, if the task is fatal, fatal_signal_pending() or 2662 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2663 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2664 * as possible without any hazards. 2: all pages should have a valid 2665 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2666 * pointer, that is treated as a charge to root_mem_cgroup. 2667 * 2668 * So __mem_cgroup_try_charge() will return 2669 * 0 ... on success, filling *ptr with a valid memcg pointer. 2670 * -ENOMEM ... charge failure because of resource limits. 2671 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2672 * 2673 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2674 * the oom-killer can be invoked. 2675 */ 2676 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2677 gfp_t gfp_mask, 2678 unsigned int nr_pages, 2679 struct mem_cgroup **ptr, 2680 bool oom) 2681 { 2682 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2683 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2684 struct mem_cgroup *memcg = NULL; 2685 int ret; 2686 2687 /* 2688 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2689 * in system level. So, allow to go ahead dying process in addition to 2690 * MEMDIE process. 2691 */ 2692 if (unlikely(test_thread_flag(TIF_MEMDIE) 2693 || fatal_signal_pending(current))) 2694 goto bypass; 2695 2696 if (unlikely(task_in_memcg_oom(current))) 2697 goto bypass; 2698 2699 /* 2700 * We always charge the cgroup the mm_struct belongs to. 2701 * The mm_struct's mem_cgroup changes on task migration if the 2702 * thread group leader migrates. It's possible that mm is not 2703 * set, if so charge the root memcg (happens for pagecache usage). 2704 */ 2705 if (!*ptr && !mm) 2706 *ptr = root_mem_cgroup; 2707 again: 2708 if (*ptr) { /* css should be a valid one */ 2709 memcg = *ptr; 2710 if (mem_cgroup_is_root(memcg)) 2711 goto done; 2712 if (consume_stock(memcg, nr_pages)) 2713 goto done; 2714 css_get(&memcg->css); 2715 } else { 2716 struct task_struct *p; 2717 2718 rcu_read_lock(); 2719 p = rcu_dereference(mm->owner); 2720 /* 2721 * Because we don't have task_lock(), "p" can exit. 2722 * In that case, "memcg" can point to root or p can be NULL with 2723 * race with swapoff. Then, we have small risk of mis-accouning. 2724 * But such kind of mis-account by race always happens because 2725 * we don't have cgroup_mutex(). It's overkill and we allo that 2726 * small race, here. 2727 * (*) swapoff at el will charge against mm-struct not against 2728 * task-struct. So, mm->owner can be NULL. 2729 */ 2730 memcg = mem_cgroup_from_task(p); 2731 if (!memcg) 2732 memcg = root_mem_cgroup; 2733 if (mem_cgroup_is_root(memcg)) { 2734 rcu_read_unlock(); 2735 goto done; 2736 } 2737 if (consume_stock(memcg, nr_pages)) { 2738 /* 2739 * It seems dagerous to access memcg without css_get(). 2740 * But considering how consume_stok works, it's not 2741 * necessary. If consume_stock success, some charges 2742 * from this memcg are cached on this cpu. So, we 2743 * don't need to call css_get()/css_tryget() before 2744 * calling consume_stock(). 2745 */ 2746 rcu_read_unlock(); 2747 goto done; 2748 } 2749 /* after here, we may be blocked. we need to get refcnt */ 2750 if (!css_tryget(&memcg->css)) { 2751 rcu_read_unlock(); 2752 goto again; 2753 } 2754 rcu_read_unlock(); 2755 } 2756 2757 do { 2758 bool invoke_oom = oom && !nr_oom_retries; 2759 2760 /* If killed, bypass charge */ 2761 if (fatal_signal_pending(current)) { 2762 css_put(&memcg->css); 2763 goto bypass; 2764 } 2765 2766 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, 2767 nr_pages, invoke_oom); 2768 switch (ret) { 2769 case CHARGE_OK: 2770 break; 2771 case CHARGE_RETRY: /* not in OOM situation but retry */ 2772 batch = nr_pages; 2773 css_put(&memcg->css); 2774 memcg = NULL; 2775 goto again; 2776 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2777 css_put(&memcg->css); 2778 goto nomem; 2779 case CHARGE_NOMEM: /* OOM routine works */ 2780 if (!oom || invoke_oom) { 2781 css_put(&memcg->css); 2782 goto nomem; 2783 } 2784 nr_oom_retries--; 2785 break; 2786 } 2787 } while (ret != CHARGE_OK); 2788 2789 if (batch > nr_pages) 2790 refill_stock(memcg, batch - nr_pages); 2791 css_put(&memcg->css); 2792 done: 2793 *ptr = memcg; 2794 return 0; 2795 nomem: 2796 if (!(gfp_mask & __GFP_NOFAIL)) { 2797 *ptr = NULL; 2798 return -ENOMEM; 2799 } 2800 bypass: 2801 *ptr = root_mem_cgroup; 2802 return -EINTR; 2803 } 2804 2805 /* 2806 * Somemtimes we have to undo a charge we got by try_charge(). 2807 * This function is for that and do uncharge, put css's refcnt. 2808 * gotten by try_charge(). 2809 */ 2810 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2811 unsigned int nr_pages) 2812 { 2813 if (!mem_cgroup_is_root(memcg)) { 2814 unsigned long bytes = nr_pages * PAGE_SIZE; 2815 2816 res_counter_uncharge(&memcg->res, bytes); 2817 if (do_swap_account) 2818 res_counter_uncharge(&memcg->memsw, bytes); 2819 } 2820 } 2821 2822 /* 2823 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2824 * This is useful when moving usage to parent cgroup. 2825 */ 2826 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2827 unsigned int nr_pages) 2828 { 2829 unsigned long bytes = nr_pages * PAGE_SIZE; 2830 2831 if (mem_cgroup_is_root(memcg)) 2832 return; 2833 2834 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2835 if (do_swap_account) 2836 res_counter_uncharge_until(&memcg->memsw, 2837 memcg->memsw.parent, bytes); 2838 } 2839 2840 /* 2841 * A helper function to get mem_cgroup from ID. must be called under 2842 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2843 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2844 * called against removed memcg.) 2845 */ 2846 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2847 { 2848 /* ID 0 is unused ID */ 2849 if (!id) 2850 return NULL; 2851 return mem_cgroup_from_id(id); 2852 } 2853 2854 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2855 { 2856 struct mem_cgroup *memcg = NULL; 2857 struct page_cgroup *pc; 2858 unsigned short id; 2859 swp_entry_t ent; 2860 2861 VM_BUG_ON(!PageLocked(page)); 2862 2863 pc = lookup_page_cgroup(page); 2864 lock_page_cgroup(pc); 2865 if (PageCgroupUsed(pc)) { 2866 memcg = pc->mem_cgroup; 2867 if (memcg && !css_tryget(&memcg->css)) 2868 memcg = NULL; 2869 } else if (PageSwapCache(page)) { 2870 ent.val = page_private(page); 2871 id = lookup_swap_cgroup_id(ent); 2872 rcu_read_lock(); 2873 memcg = mem_cgroup_lookup(id); 2874 if (memcg && !css_tryget(&memcg->css)) 2875 memcg = NULL; 2876 rcu_read_unlock(); 2877 } 2878 unlock_page_cgroup(pc); 2879 return memcg; 2880 } 2881 2882 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2883 struct page *page, 2884 unsigned int nr_pages, 2885 enum charge_type ctype, 2886 bool lrucare) 2887 { 2888 struct page_cgroup *pc = lookup_page_cgroup(page); 2889 struct zone *uninitialized_var(zone); 2890 struct lruvec *lruvec; 2891 bool was_on_lru = false; 2892 bool anon; 2893 2894 lock_page_cgroup(pc); 2895 VM_BUG_ON(PageCgroupUsed(pc)); 2896 /* 2897 * we don't need page_cgroup_lock about tail pages, becase they are not 2898 * accessed by any other context at this point. 2899 */ 2900 2901 /* 2902 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2903 * may already be on some other mem_cgroup's LRU. Take care of it. 2904 */ 2905 if (lrucare) { 2906 zone = page_zone(page); 2907 spin_lock_irq(&zone->lru_lock); 2908 if (PageLRU(page)) { 2909 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2910 ClearPageLRU(page); 2911 del_page_from_lru_list(page, lruvec, page_lru(page)); 2912 was_on_lru = true; 2913 } 2914 } 2915 2916 pc->mem_cgroup = memcg; 2917 /* 2918 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2919 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2920 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2921 * before USED bit, we need memory barrier here. 2922 * See mem_cgroup_add_lru_list(), etc. 2923 */ 2924 smp_wmb(); 2925 SetPageCgroupUsed(pc); 2926 2927 if (lrucare) { 2928 if (was_on_lru) { 2929 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2930 VM_BUG_ON(PageLRU(page)); 2931 SetPageLRU(page); 2932 add_page_to_lru_list(page, lruvec, page_lru(page)); 2933 } 2934 spin_unlock_irq(&zone->lru_lock); 2935 } 2936 2937 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2938 anon = true; 2939 else 2940 anon = false; 2941 2942 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); 2943 unlock_page_cgroup(pc); 2944 2945 /* 2946 * "charge_statistics" updated event counter. Then, check it. 2947 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2948 * if they exceeds softlimit. 2949 */ 2950 memcg_check_events(memcg, page); 2951 } 2952 2953 static DEFINE_MUTEX(set_limit_mutex); 2954 2955 #ifdef CONFIG_MEMCG_KMEM 2956 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2957 { 2958 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2959 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); 2960 } 2961 2962 /* 2963 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2964 * in the memcg_cache_params struct. 2965 */ 2966 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2967 { 2968 struct kmem_cache *cachep; 2969 2970 VM_BUG_ON(p->is_root_cache); 2971 cachep = p->root_cache; 2972 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg)); 2973 } 2974 2975 #ifdef CONFIG_SLABINFO 2976 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css, 2977 struct cftype *cft, struct seq_file *m) 2978 { 2979 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2980 struct memcg_cache_params *params; 2981 2982 if (!memcg_can_account_kmem(memcg)) 2983 return -EIO; 2984 2985 print_slabinfo_header(m); 2986 2987 mutex_lock(&memcg->slab_caches_mutex); 2988 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2989 cache_show(memcg_params_to_cache(params), m); 2990 mutex_unlock(&memcg->slab_caches_mutex); 2991 2992 return 0; 2993 } 2994 #endif 2995 2996 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2997 { 2998 struct res_counter *fail_res; 2999 struct mem_cgroup *_memcg; 3000 int ret = 0; 3001 3002 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 3003 if (ret) 3004 return ret; 3005 3006 _memcg = memcg; 3007 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, 3008 &_memcg, oom_gfp_allowed(gfp)); 3009 3010 if (ret == -EINTR) { 3011 /* 3012 * __mem_cgroup_try_charge() chosed to bypass to root due to 3013 * OOM kill or fatal signal. Since our only options are to 3014 * either fail the allocation or charge it to this cgroup, do 3015 * it as a temporary condition. But we can't fail. From a 3016 * kmem/slab perspective, the cache has already been selected, 3017 * by mem_cgroup_kmem_get_cache(), so it is too late to change 3018 * our minds. 3019 * 3020 * This condition will only trigger if the task entered 3021 * memcg_charge_kmem in a sane state, but was OOM-killed during 3022 * __mem_cgroup_try_charge() above. Tasks that were already 3023 * dying when the allocation triggers should have been already 3024 * directed to the root cgroup in memcontrol.h 3025 */ 3026 res_counter_charge_nofail(&memcg->res, size, &fail_res); 3027 if (do_swap_account) 3028 res_counter_charge_nofail(&memcg->memsw, size, 3029 &fail_res); 3030 ret = 0; 3031 } else if (ret) 3032 res_counter_uncharge(&memcg->kmem, size); 3033 3034 return ret; 3035 } 3036 3037 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 3038 { 3039 res_counter_uncharge(&memcg->res, size); 3040 if (do_swap_account) 3041 res_counter_uncharge(&memcg->memsw, size); 3042 3043 /* Not down to 0 */ 3044 if (res_counter_uncharge(&memcg->kmem, size)) 3045 return; 3046 3047 /* 3048 * Releases a reference taken in kmem_cgroup_css_offline in case 3049 * this last uncharge is racing with the offlining code or it is 3050 * outliving the memcg existence. 3051 * 3052 * The memory barrier imposed by test&clear is paired with the 3053 * explicit one in memcg_kmem_mark_dead(). 3054 */ 3055 if (memcg_kmem_test_and_clear_dead(memcg)) 3056 css_put(&memcg->css); 3057 } 3058 3059 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) 3060 { 3061 if (!memcg) 3062 return; 3063 3064 mutex_lock(&memcg->slab_caches_mutex); 3065 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 3066 mutex_unlock(&memcg->slab_caches_mutex); 3067 } 3068 3069 /* 3070 * helper for acessing a memcg's index. It will be used as an index in the 3071 * child cache array in kmem_cache, and also to derive its name. This function 3072 * will return -1 when this is not a kmem-limited memcg. 3073 */ 3074 int memcg_cache_id(struct mem_cgroup *memcg) 3075 { 3076 return memcg ? memcg->kmemcg_id : -1; 3077 } 3078 3079 /* 3080 * This ends up being protected by the set_limit mutex, during normal 3081 * operation, because that is its main call site. 3082 * 3083 * But when we create a new cache, we can call this as well if its parent 3084 * is kmem-limited. That will have to hold set_limit_mutex as well. 3085 */ 3086 int memcg_update_cache_sizes(struct mem_cgroup *memcg) 3087 { 3088 int num, ret; 3089 3090 num = ida_simple_get(&kmem_limited_groups, 3091 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 3092 if (num < 0) 3093 return num; 3094 /* 3095 * After this point, kmem_accounted (that we test atomically in 3096 * the beginning of this conditional), is no longer 0. This 3097 * guarantees only one process will set the following boolean 3098 * to true. We don't need test_and_set because we're protected 3099 * by the set_limit_mutex anyway. 3100 */ 3101 memcg_kmem_set_activated(memcg); 3102 3103 ret = memcg_update_all_caches(num+1); 3104 if (ret) { 3105 ida_simple_remove(&kmem_limited_groups, num); 3106 memcg_kmem_clear_activated(memcg); 3107 return ret; 3108 } 3109 3110 memcg->kmemcg_id = num; 3111 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 3112 mutex_init(&memcg->slab_caches_mutex); 3113 return 0; 3114 } 3115 3116 static size_t memcg_caches_array_size(int num_groups) 3117 { 3118 ssize_t size; 3119 if (num_groups <= 0) 3120 return 0; 3121 3122 size = 2 * num_groups; 3123 if (size < MEMCG_CACHES_MIN_SIZE) 3124 size = MEMCG_CACHES_MIN_SIZE; 3125 else if (size > MEMCG_CACHES_MAX_SIZE) 3126 size = MEMCG_CACHES_MAX_SIZE; 3127 3128 return size; 3129 } 3130 3131 /* 3132 * We should update the current array size iff all caches updates succeed. This 3133 * can only be done from the slab side. The slab mutex needs to be held when 3134 * calling this. 3135 */ 3136 void memcg_update_array_size(int num) 3137 { 3138 if (num > memcg_limited_groups_array_size) 3139 memcg_limited_groups_array_size = memcg_caches_array_size(num); 3140 } 3141 3142 static void kmem_cache_destroy_work_func(struct work_struct *w); 3143 3144 int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 3145 { 3146 struct memcg_cache_params *cur_params = s->memcg_params; 3147 3148 VM_BUG_ON(!is_root_cache(s)); 3149 3150 if (num_groups > memcg_limited_groups_array_size) { 3151 int i; 3152 ssize_t size = memcg_caches_array_size(num_groups); 3153 3154 size *= sizeof(void *); 3155 size += offsetof(struct memcg_cache_params, memcg_caches); 3156 3157 s->memcg_params = kzalloc(size, GFP_KERNEL); 3158 if (!s->memcg_params) { 3159 s->memcg_params = cur_params; 3160 return -ENOMEM; 3161 } 3162 3163 s->memcg_params->is_root_cache = true; 3164 3165 /* 3166 * There is the chance it will be bigger than 3167 * memcg_limited_groups_array_size, if we failed an allocation 3168 * in a cache, in which case all caches updated before it, will 3169 * have a bigger array. 3170 * 3171 * But if that is the case, the data after 3172 * memcg_limited_groups_array_size is certainly unused 3173 */ 3174 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3175 if (!cur_params->memcg_caches[i]) 3176 continue; 3177 s->memcg_params->memcg_caches[i] = 3178 cur_params->memcg_caches[i]; 3179 } 3180 3181 /* 3182 * Ideally, we would wait until all caches succeed, and only 3183 * then free the old one. But this is not worth the extra 3184 * pointer per-cache we'd have to have for this. 3185 * 3186 * It is not a big deal if some caches are left with a size 3187 * bigger than the others. And all updates will reset this 3188 * anyway. 3189 */ 3190 kfree(cur_params); 3191 } 3192 return 0; 3193 } 3194 3195 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 3196 struct kmem_cache *root_cache) 3197 { 3198 size_t size; 3199 3200 if (!memcg_kmem_enabled()) 3201 return 0; 3202 3203 if (!memcg) { 3204 size = offsetof(struct memcg_cache_params, memcg_caches); 3205 size += memcg_limited_groups_array_size * sizeof(void *); 3206 } else 3207 size = sizeof(struct memcg_cache_params); 3208 3209 s->memcg_params = kzalloc(size, GFP_KERNEL); 3210 if (!s->memcg_params) 3211 return -ENOMEM; 3212 3213 if (memcg) { 3214 s->memcg_params->memcg = memcg; 3215 s->memcg_params->root_cache = root_cache; 3216 INIT_WORK(&s->memcg_params->destroy, 3217 kmem_cache_destroy_work_func); 3218 } else 3219 s->memcg_params->is_root_cache = true; 3220 3221 return 0; 3222 } 3223 3224 void memcg_release_cache(struct kmem_cache *s) 3225 { 3226 struct kmem_cache *root; 3227 struct mem_cgroup *memcg; 3228 int id; 3229 3230 /* 3231 * This happens, for instance, when a root cache goes away before we 3232 * add any memcg. 3233 */ 3234 if (!s->memcg_params) 3235 return; 3236 3237 if (s->memcg_params->is_root_cache) 3238 goto out; 3239 3240 memcg = s->memcg_params->memcg; 3241 id = memcg_cache_id(memcg); 3242 3243 root = s->memcg_params->root_cache; 3244 root->memcg_params->memcg_caches[id] = NULL; 3245 3246 mutex_lock(&memcg->slab_caches_mutex); 3247 list_del(&s->memcg_params->list); 3248 mutex_unlock(&memcg->slab_caches_mutex); 3249 3250 css_put(&memcg->css); 3251 out: 3252 kfree(s->memcg_params); 3253 } 3254 3255 /* 3256 * During the creation a new cache, we need to disable our accounting mechanism 3257 * altogether. This is true even if we are not creating, but rather just 3258 * enqueing new caches to be created. 3259 * 3260 * This is because that process will trigger allocations; some visible, like 3261 * explicit kmallocs to auxiliary data structures, name strings and internal 3262 * cache structures; some well concealed, like INIT_WORK() that can allocate 3263 * objects during debug. 3264 * 3265 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3266 * to it. This may not be a bounded recursion: since the first cache creation 3267 * failed to complete (waiting on the allocation), we'll just try to create the 3268 * cache again, failing at the same point. 3269 * 3270 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3271 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3272 * inside the following two functions. 3273 */ 3274 static inline void memcg_stop_kmem_account(void) 3275 { 3276 VM_BUG_ON(!current->mm); 3277 current->memcg_kmem_skip_account++; 3278 } 3279 3280 static inline void memcg_resume_kmem_account(void) 3281 { 3282 VM_BUG_ON(!current->mm); 3283 current->memcg_kmem_skip_account--; 3284 } 3285 3286 static void kmem_cache_destroy_work_func(struct work_struct *w) 3287 { 3288 struct kmem_cache *cachep; 3289 struct memcg_cache_params *p; 3290 3291 p = container_of(w, struct memcg_cache_params, destroy); 3292 3293 cachep = memcg_params_to_cache(p); 3294 3295 /* 3296 * If we get down to 0 after shrink, we could delete right away. 3297 * However, memcg_release_pages() already puts us back in the workqueue 3298 * in that case. If we proceed deleting, we'll get a dangling 3299 * reference, and removing the object from the workqueue in that case 3300 * is unnecessary complication. We are not a fast path. 3301 * 3302 * Note that this case is fundamentally different from racing with 3303 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3304 * kmem_cache_shrink, not only we would be reinserting a dead cache 3305 * into the queue, but doing so from inside the worker racing to 3306 * destroy it. 3307 * 3308 * So if we aren't down to zero, we'll just schedule a worker and try 3309 * again 3310 */ 3311 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { 3312 kmem_cache_shrink(cachep); 3313 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3314 return; 3315 } else 3316 kmem_cache_destroy(cachep); 3317 } 3318 3319 void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3320 { 3321 if (!cachep->memcg_params->dead) 3322 return; 3323 3324 /* 3325 * There are many ways in which we can get here. 3326 * 3327 * We can get to a memory-pressure situation while the delayed work is 3328 * still pending to run. The vmscan shrinkers can then release all 3329 * cache memory and get us to destruction. If this is the case, we'll 3330 * be executed twice, which is a bug (the second time will execute over 3331 * bogus data). In this case, cancelling the work should be fine. 3332 * 3333 * But we can also get here from the worker itself, if 3334 * kmem_cache_shrink is enough to shake all the remaining objects and 3335 * get the page count to 0. In this case, we'll deadlock if we try to 3336 * cancel the work (the worker runs with an internal lock held, which 3337 * is the same lock we would hold for cancel_work_sync().) 3338 * 3339 * Since we can't possibly know who got us here, just refrain from 3340 * running if there is already work pending 3341 */ 3342 if (work_pending(&cachep->memcg_params->destroy)) 3343 return; 3344 /* 3345 * We have to defer the actual destroying to a workqueue, because 3346 * we might currently be in a context that cannot sleep. 3347 */ 3348 schedule_work(&cachep->memcg_params->destroy); 3349 } 3350 3351 /* 3352 * This lock protects updaters, not readers. We want readers to be as fast as 3353 * they can, and they will either see NULL or a valid cache value. Our model 3354 * allow them to see NULL, in which case the root memcg will be selected. 3355 * 3356 * We need this lock because multiple allocations to the same cache from a non 3357 * will span more than one worker. Only one of them can create the cache. 3358 */ 3359 static DEFINE_MUTEX(memcg_cache_mutex); 3360 3361 /* 3362 * Called with memcg_cache_mutex held 3363 */ 3364 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, 3365 struct kmem_cache *s) 3366 { 3367 struct kmem_cache *new; 3368 static char *tmp_name = NULL; 3369 3370 lockdep_assert_held(&memcg_cache_mutex); 3371 3372 /* 3373 * kmem_cache_create_memcg duplicates the given name and 3374 * cgroup_name for this name requires RCU context. 3375 * This static temporary buffer is used to prevent from 3376 * pointless shortliving allocation. 3377 */ 3378 if (!tmp_name) { 3379 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); 3380 if (!tmp_name) 3381 return NULL; 3382 } 3383 3384 rcu_read_lock(); 3385 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name, 3386 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup)); 3387 rcu_read_unlock(); 3388 3389 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, 3390 (s->flags & ~SLAB_PANIC), s->ctor, s); 3391 3392 if (new) 3393 new->allocflags |= __GFP_KMEMCG; 3394 3395 return new; 3396 } 3397 3398 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 3399 struct kmem_cache *cachep) 3400 { 3401 struct kmem_cache *new_cachep; 3402 int idx; 3403 3404 BUG_ON(!memcg_can_account_kmem(memcg)); 3405 3406 idx = memcg_cache_id(memcg); 3407 3408 mutex_lock(&memcg_cache_mutex); 3409 new_cachep = cache_from_memcg_idx(cachep, idx); 3410 if (new_cachep) { 3411 css_put(&memcg->css); 3412 goto out; 3413 } 3414 3415 new_cachep = kmem_cache_dup(memcg, cachep); 3416 if (new_cachep == NULL) { 3417 new_cachep = cachep; 3418 css_put(&memcg->css); 3419 goto out; 3420 } 3421 3422 atomic_set(&new_cachep->memcg_params->nr_pages , 0); 3423 3424 cachep->memcg_params->memcg_caches[idx] = new_cachep; 3425 /* 3426 * the readers won't lock, make sure everybody sees the updated value, 3427 * so they won't put stuff in the queue again for no reason 3428 */ 3429 wmb(); 3430 out: 3431 mutex_unlock(&memcg_cache_mutex); 3432 return new_cachep; 3433 } 3434 3435 void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3436 { 3437 struct kmem_cache *c; 3438 int i; 3439 3440 if (!s->memcg_params) 3441 return; 3442 if (!s->memcg_params->is_root_cache) 3443 return; 3444 3445 /* 3446 * If the cache is being destroyed, we trust that there is no one else 3447 * requesting objects from it. Even if there are, the sanity checks in 3448 * kmem_cache_destroy should caught this ill-case. 3449 * 3450 * Still, we don't want anyone else freeing memcg_caches under our 3451 * noses, which can happen if a new memcg comes to life. As usual, 3452 * we'll take the set_limit_mutex to protect ourselves against this. 3453 */ 3454 mutex_lock(&set_limit_mutex); 3455 for_each_memcg_cache_index(i) { 3456 c = cache_from_memcg_idx(s, i); 3457 if (!c) 3458 continue; 3459 3460 /* 3461 * We will now manually delete the caches, so to avoid races 3462 * we need to cancel all pending destruction workers and 3463 * proceed with destruction ourselves. 3464 * 3465 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3466 * and that could spawn the workers again: it is likely that 3467 * the cache still have active pages until this very moment. 3468 * This would lead us back to mem_cgroup_destroy_cache. 3469 * 3470 * But that will not execute at all if the "dead" flag is not 3471 * set, so flip it down to guarantee we are in control. 3472 */ 3473 c->memcg_params->dead = false; 3474 cancel_work_sync(&c->memcg_params->destroy); 3475 kmem_cache_destroy(c); 3476 } 3477 mutex_unlock(&set_limit_mutex); 3478 } 3479 3480 struct create_work { 3481 struct mem_cgroup *memcg; 3482 struct kmem_cache *cachep; 3483 struct work_struct work; 3484 }; 3485 3486 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3487 { 3488 struct kmem_cache *cachep; 3489 struct memcg_cache_params *params; 3490 3491 if (!memcg_kmem_is_active(memcg)) 3492 return; 3493 3494 mutex_lock(&memcg->slab_caches_mutex); 3495 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3496 cachep = memcg_params_to_cache(params); 3497 cachep->memcg_params->dead = true; 3498 schedule_work(&cachep->memcg_params->destroy); 3499 } 3500 mutex_unlock(&memcg->slab_caches_mutex); 3501 } 3502 3503 static void memcg_create_cache_work_func(struct work_struct *w) 3504 { 3505 struct create_work *cw; 3506 3507 cw = container_of(w, struct create_work, work); 3508 memcg_create_kmem_cache(cw->memcg, cw->cachep); 3509 kfree(cw); 3510 } 3511 3512 /* 3513 * Enqueue the creation of a per-memcg kmem_cache. 3514 */ 3515 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3516 struct kmem_cache *cachep) 3517 { 3518 struct create_work *cw; 3519 3520 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3521 if (cw == NULL) { 3522 css_put(&memcg->css); 3523 return; 3524 } 3525 3526 cw->memcg = memcg; 3527 cw->cachep = cachep; 3528 3529 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3530 schedule_work(&cw->work); 3531 } 3532 3533 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3534 struct kmem_cache *cachep) 3535 { 3536 /* 3537 * We need to stop accounting when we kmalloc, because if the 3538 * corresponding kmalloc cache is not yet created, the first allocation 3539 * in __memcg_create_cache_enqueue will recurse. 3540 * 3541 * However, it is better to enclose the whole function. Depending on 3542 * the debugging options enabled, INIT_WORK(), for instance, can 3543 * trigger an allocation. This too, will make us recurse. Because at 3544 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3545 * the safest choice is to do it like this, wrapping the whole function. 3546 */ 3547 memcg_stop_kmem_account(); 3548 __memcg_create_cache_enqueue(memcg, cachep); 3549 memcg_resume_kmem_account(); 3550 } 3551 /* 3552 * Return the kmem_cache we're supposed to use for a slab allocation. 3553 * We try to use the current memcg's version of the cache. 3554 * 3555 * If the cache does not exist yet, if we are the first user of it, 3556 * we either create it immediately, if possible, or create it asynchronously 3557 * in a workqueue. 3558 * In the latter case, we will let the current allocation go through with 3559 * the original cache. 3560 * 3561 * Can't be called in interrupt context or from kernel threads. 3562 * This function needs to be called with rcu_read_lock() held. 3563 */ 3564 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3565 gfp_t gfp) 3566 { 3567 struct mem_cgroup *memcg; 3568 int idx; 3569 3570 VM_BUG_ON(!cachep->memcg_params); 3571 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3572 3573 if (!current->mm || current->memcg_kmem_skip_account) 3574 return cachep; 3575 3576 rcu_read_lock(); 3577 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3578 3579 if (!memcg_can_account_kmem(memcg)) 3580 goto out; 3581 3582 idx = memcg_cache_id(memcg); 3583 3584 /* 3585 * barrier to mare sure we're always seeing the up to date value. The 3586 * code updating memcg_caches will issue a write barrier to match this. 3587 */ 3588 read_barrier_depends(); 3589 if (likely(cache_from_memcg_idx(cachep, idx))) { 3590 cachep = cache_from_memcg_idx(cachep, idx); 3591 goto out; 3592 } 3593 3594 /* The corresponding put will be done in the workqueue. */ 3595 if (!css_tryget(&memcg->css)) 3596 goto out; 3597 rcu_read_unlock(); 3598 3599 /* 3600 * If we are in a safe context (can wait, and not in interrupt 3601 * context), we could be be predictable and return right away. 3602 * This would guarantee that the allocation being performed 3603 * already belongs in the new cache. 3604 * 3605 * However, there are some clashes that can arrive from locking. 3606 * For instance, because we acquire the slab_mutex while doing 3607 * kmem_cache_dup, this means no further allocation could happen 3608 * with the slab_mutex held. 3609 * 3610 * Also, because cache creation issue get_online_cpus(), this 3611 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3612 * that ends up reversed during cpu hotplug. (cpuset allocates 3613 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3614 * better to defer everything. 3615 */ 3616 memcg_create_cache_enqueue(memcg, cachep); 3617 return cachep; 3618 out: 3619 rcu_read_unlock(); 3620 return cachep; 3621 } 3622 EXPORT_SYMBOL(__memcg_kmem_get_cache); 3623 3624 /* 3625 * We need to verify if the allocation against current->mm->owner's memcg is 3626 * possible for the given order. But the page is not allocated yet, so we'll 3627 * need a further commit step to do the final arrangements. 3628 * 3629 * It is possible for the task to switch cgroups in this mean time, so at 3630 * commit time, we can't rely on task conversion any longer. We'll then use 3631 * the handle argument to return to the caller which cgroup we should commit 3632 * against. We could also return the memcg directly and avoid the pointer 3633 * passing, but a boolean return value gives better semantics considering 3634 * the compiled-out case as well. 3635 * 3636 * Returning true means the allocation is possible. 3637 */ 3638 bool 3639 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3640 { 3641 struct mem_cgroup *memcg; 3642 int ret; 3643 3644 *_memcg = NULL; 3645 3646 /* 3647 * Disabling accounting is only relevant for some specific memcg 3648 * internal allocations. Therefore we would initially not have such 3649 * check here, since direct calls to the page allocator that are marked 3650 * with GFP_KMEMCG only happen outside memcg core. We are mostly 3651 * concerned with cache allocations, and by having this test at 3652 * memcg_kmem_get_cache, we are already able to relay the allocation to 3653 * the root cache and bypass the memcg cache altogether. 3654 * 3655 * There is one exception, though: the SLUB allocator does not create 3656 * large order caches, but rather service large kmallocs directly from 3657 * the page allocator. Therefore, the following sequence when backed by 3658 * the SLUB allocator: 3659 * 3660 * memcg_stop_kmem_account(); 3661 * kmalloc(<large_number>) 3662 * memcg_resume_kmem_account(); 3663 * 3664 * would effectively ignore the fact that we should skip accounting, 3665 * since it will drive us directly to this function without passing 3666 * through the cache selector memcg_kmem_get_cache. Such large 3667 * allocations are extremely rare but can happen, for instance, for the 3668 * cache arrays. We bring this test here. 3669 */ 3670 if (!current->mm || current->memcg_kmem_skip_account) 3671 return true; 3672 3673 memcg = try_get_mem_cgroup_from_mm(current->mm); 3674 3675 /* 3676 * very rare case described in mem_cgroup_from_task. Unfortunately there 3677 * isn't much we can do without complicating this too much, and it would 3678 * be gfp-dependent anyway. Just let it go 3679 */ 3680 if (unlikely(!memcg)) 3681 return true; 3682 3683 if (!memcg_can_account_kmem(memcg)) { 3684 css_put(&memcg->css); 3685 return true; 3686 } 3687 3688 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3689 if (!ret) 3690 *_memcg = memcg; 3691 3692 css_put(&memcg->css); 3693 return (ret == 0); 3694 } 3695 3696 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3697 int order) 3698 { 3699 struct page_cgroup *pc; 3700 3701 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3702 3703 /* The page allocation failed. Revert */ 3704 if (!page) { 3705 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3706 return; 3707 } 3708 3709 pc = lookup_page_cgroup(page); 3710 lock_page_cgroup(pc); 3711 pc->mem_cgroup = memcg; 3712 SetPageCgroupUsed(pc); 3713 unlock_page_cgroup(pc); 3714 } 3715 3716 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3717 { 3718 struct mem_cgroup *memcg = NULL; 3719 struct page_cgroup *pc; 3720 3721 3722 pc = lookup_page_cgroup(page); 3723 /* 3724 * Fast unlocked return. Theoretically might have changed, have to 3725 * check again after locking. 3726 */ 3727 if (!PageCgroupUsed(pc)) 3728 return; 3729 3730 lock_page_cgroup(pc); 3731 if (PageCgroupUsed(pc)) { 3732 memcg = pc->mem_cgroup; 3733 ClearPageCgroupUsed(pc); 3734 } 3735 unlock_page_cgroup(pc); 3736 3737 /* 3738 * We trust that only if there is a memcg associated with the page, it 3739 * is a valid allocation 3740 */ 3741 if (!memcg) 3742 return; 3743 3744 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3745 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3746 } 3747 #else 3748 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3749 { 3750 } 3751 #endif /* CONFIG_MEMCG_KMEM */ 3752 3753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3754 3755 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3756 /* 3757 * Because tail pages are not marked as "used", set it. We're under 3758 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3759 * charge/uncharge will be never happen and move_account() is done under 3760 * compound_lock(), so we don't have to take care of races. 3761 */ 3762 void mem_cgroup_split_huge_fixup(struct page *head) 3763 { 3764 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3765 struct page_cgroup *pc; 3766 struct mem_cgroup *memcg; 3767 int i; 3768 3769 if (mem_cgroup_disabled()) 3770 return; 3771 3772 memcg = head_pc->mem_cgroup; 3773 for (i = 1; i < HPAGE_PMD_NR; i++) { 3774 pc = head_pc + i; 3775 pc->mem_cgroup = memcg; 3776 smp_wmb();/* see __commit_charge() */ 3777 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3778 } 3779 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 3780 HPAGE_PMD_NR); 3781 } 3782 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3783 3784 static inline 3785 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from, 3786 struct mem_cgroup *to, 3787 unsigned int nr_pages, 3788 enum mem_cgroup_stat_index idx) 3789 { 3790 /* Update stat data for mem_cgroup */ 3791 preempt_disable(); 3792 __this_cpu_sub(from->stat->count[idx], nr_pages); 3793 __this_cpu_add(to->stat->count[idx], nr_pages); 3794 preempt_enable(); 3795 } 3796 3797 /** 3798 * mem_cgroup_move_account - move account of the page 3799 * @page: the page 3800 * @nr_pages: number of regular pages (>1 for huge pages) 3801 * @pc: page_cgroup of the page. 3802 * @from: mem_cgroup which the page is moved from. 3803 * @to: mem_cgroup which the page is moved to. @from != @to. 3804 * 3805 * The caller must confirm following. 3806 * - page is not on LRU (isolate_page() is useful.) 3807 * - compound_lock is held when nr_pages > 1 3808 * 3809 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3810 * from old cgroup. 3811 */ 3812 static int mem_cgroup_move_account(struct page *page, 3813 unsigned int nr_pages, 3814 struct page_cgroup *pc, 3815 struct mem_cgroup *from, 3816 struct mem_cgroup *to) 3817 { 3818 unsigned long flags; 3819 int ret; 3820 bool anon = PageAnon(page); 3821 3822 VM_BUG_ON(from == to); 3823 VM_BUG_ON(PageLRU(page)); 3824 /* 3825 * The page is isolated from LRU. So, collapse function 3826 * will not handle this page. But page splitting can happen. 3827 * Do this check under compound_page_lock(). The caller should 3828 * hold it. 3829 */ 3830 ret = -EBUSY; 3831 if (nr_pages > 1 && !PageTransHuge(page)) 3832 goto out; 3833 3834 lock_page_cgroup(pc); 3835 3836 ret = -EINVAL; 3837 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3838 goto unlock; 3839 3840 move_lock_mem_cgroup(from, &flags); 3841 3842 if (!anon && page_mapped(page)) 3843 mem_cgroup_move_account_page_stat(from, to, nr_pages, 3844 MEM_CGROUP_STAT_FILE_MAPPED); 3845 3846 if (PageWriteback(page)) 3847 mem_cgroup_move_account_page_stat(from, to, nr_pages, 3848 MEM_CGROUP_STAT_WRITEBACK); 3849 3850 mem_cgroup_charge_statistics(from, page, anon, -nr_pages); 3851 3852 /* caller should have done css_get */ 3853 pc->mem_cgroup = to; 3854 mem_cgroup_charge_statistics(to, page, anon, nr_pages); 3855 move_unlock_mem_cgroup(from, &flags); 3856 ret = 0; 3857 unlock: 3858 unlock_page_cgroup(pc); 3859 /* 3860 * check events 3861 */ 3862 memcg_check_events(to, page); 3863 memcg_check_events(from, page); 3864 out: 3865 return ret; 3866 } 3867 3868 /** 3869 * mem_cgroup_move_parent - moves page to the parent group 3870 * @page: the page to move 3871 * @pc: page_cgroup of the page 3872 * @child: page's cgroup 3873 * 3874 * move charges to its parent or the root cgroup if the group has no 3875 * parent (aka use_hierarchy==0). 3876 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3877 * mem_cgroup_move_account fails) the failure is always temporary and 3878 * it signals a race with a page removal/uncharge or migration. In the 3879 * first case the page is on the way out and it will vanish from the LRU 3880 * on the next attempt and the call should be retried later. 3881 * Isolation from the LRU fails only if page has been isolated from 3882 * the LRU since we looked at it and that usually means either global 3883 * reclaim or migration going on. The page will either get back to the 3884 * LRU or vanish. 3885 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3886 * (!PageCgroupUsed) or moved to a different group. The page will 3887 * disappear in the next attempt. 3888 */ 3889 static int mem_cgroup_move_parent(struct page *page, 3890 struct page_cgroup *pc, 3891 struct mem_cgroup *child) 3892 { 3893 struct mem_cgroup *parent; 3894 unsigned int nr_pages; 3895 unsigned long uninitialized_var(flags); 3896 int ret; 3897 3898 VM_BUG_ON(mem_cgroup_is_root(child)); 3899 3900 ret = -EBUSY; 3901 if (!get_page_unless_zero(page)) 3902 goto out; 3903 if (isolate_lru_page(page)) 3904 goto put; 3905 3906 nr_pages = hpage_nr_pages(page); 3907 3908 parent = parent_mem_cgroup(child); 3909 /* 3910 * If no parent, move charges to root cgroup. 3911 */ 3912 if (!parent) 3913 parent = root_mem_cgroup; 3914 3915 if (nr_pages > 1) { 3916 VM_BUG_ON(!PageTransHuge(page)); 3917 flags = compound_lock_irqsave(page); 3918 } 3919 3920 ret = mem_cgroup_move_account(page, nr_pages, 3921 pc, child, parent); 3922 if (!ret) 3923 __mem_cgroup_cancel_local_charge(child, nr_pages); 3924 3925 if (nr_pages > 1) 3926 compound_unlock_irqrestore(page, flags); 3927 putback_lru_page(page); 3928 put: 3929 put_page(page); 3930 out: 3931 return ret; 3932 } 3933 3934 /* 3935 * Charge the memory controller for page usage. 3936 * Return 3937 * 0 if the charge was successful 3938 * < 0 if the cgroup is over its limit 3939 */ 3940 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 3941 gfp_t gfp_mask, enum charge_type ctype) 3942 { 3943 struct mem_cgroup *memcg = NULL; 3944 unsigned int nr_pages = 1; 3945 bool oom = true; 3946 int ret; 3947 3948 if (PageTransHuge(page)) { 3949 nr_pages <<= compound_order(page); 3950 VM_BUG_ON(!PageTransHuge(page)); 3951 /* 3952 * Never OOM-kill a process for a huge page. The 3953 * fault handler will fall back to regular pages. 3954 */ 3955 oom = false; 3956 } 3957 3958 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 3959 if (ret == -ENOMEM) 3960 return ret; 3961 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 3962 return 0; 3963 } 3964 3965 int mem_cgroup_newpage_charge(struct page *page, 3966 struct mm_struct *mm, gfp_t gfp_mask) 3967 { 3968 if (mem_cgroup_disabled()) 3969 return 0; 3970 VM_BUG_ON(page_mapped(page)); 3971 VM_BUG_ON(page->mapping && !PageAnon(page)); 3972 VM_BUG_ON(!mm); 3973 return mem_cgroup_charge_common(page, mm, gfp_mask, 3974 MEM_CGROUP_CHARGE_TYPE_ANON); 3975 } 3976 3977 /* 3978 * While swap-in, try_charge -> commit or cancel, the page is locked. 3979 * And when try_charge() successfully returns, one refcnt to memcg without 3980 * struct page_cgroup is acquired. This refcnt will be consumed by 3981 * "commit()" or removed by "cancel()" 3982 */ 3983 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3984 struct page *page, 3985 gfp_t mask, 3986 struct mem_cgroup **memcgp) 3987 { 3988 struct mem_cgroup *memcg; 3989 struct page_cgroup *pc; 3990 int ret; 3991 3992 pc = lookup_page_cgroup(page); 3993 /* 3994 * Every swap fault against a single page tries to charge the 3995 * page, bail as early as possible. shmem_unuse() encounters 3996 * already charged pages, too. The USED bit is protected by 3997 * the page lock, which serializes swap cache removal, which 3998 * in turn serializes uncharging. 3999 */ 4000 if (PageCgroupUsed(pc)) 4001 return 0; 4002 if (!do_swap_account) 4003 goto charge_cur_mm; 4004 memcg = try_get_mem_cgroup_from_page(page); 4005 if (!memcg) 4006 goto charge_cur_mm; 4007 *memcgp = memcg; 4008 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 4009 css_put(&memcg->css); 4010 if (ret == -EINTR) 4011 ret = 0; 4012 return ret; 4013 charge_cur_mm: 4014 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 4015 if (ret == -EINTR) 4016 ret = 0; 4017 return ret; 4018 } 4019 4020 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 4021 gfp_t gfp_mask, struct mem_cgroup **memcgp) 4022 { 4023 *memcgp = NULL; 4024 if (mem_cgroup_disabled()) 4025 return 0; 4026 /* 4027 * A racing thread's fault, or swapoff, may have already 4028 * updated the pte, and even removed page from swap cache: in 4029 * those cases unuse_pte()'s pte_same() test will fail; but 4030 * there's also a KSM case which does need to charge the page. 4031 */ 4032 if (!PageSwapCache(page)) { 4033 int ret; 4034 4035 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 4036 if (ret == -EINTR) 4037 ret = 0; 4038 return ret; 4039 } 4040 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 4041 } 4042 4043 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 4044 { 4045 if (mem_cgroup_disabled()) 4046 return; 4047 if (!memcg) 4048 return; 4049 __mem_cgroup_cancel_charge(memcg, 1); 4050 } 4051 4052 static void 4053 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 4054 enum charge_type ctype) 4055 { 4056 if (mem_cgroup_disabled()) 4057 return; 4058 if (!memcg) 4059 return; 4060 4061 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 4062 /* 4063 * Now swap is on-memory. This means this page may be 4064 * counted both as mem and swap....double count. 4065 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 4066 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 4067 * may call delete_from_swap_cache() before reach here. 4068 */ 4069 if (do_swap_account && PageSwapCache(page)) { 4070 swp_entry_t ent = {.val = page_private(page)}; 4071 mem_cgroup_uncharge_swap(ent); 4072 } 4073 } 4074 4075 void mem_cgroup_commit_charge_swapin(struct page *page, 4076 struct mem_cgroup *memcg) 4077 { 4078 __mem_cgroup_commit_charge_swapin(page, memcg, 4079 MEM_CGROUP_CHARGE_TYPE_ANON); 4080 } 4081 4082 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 4083 gfp_t gfp_mask) 4084 { 4085 struct mem_cgroup *memcg = NULL; 4086 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4087 int ret; 4088 4089 if (mem_cgroup_disabled()) 4090 return 0; 4091 if (PageCompound(page)) 4092 return 0; 4093 4094 if (!PageSwapCache(page)) 4095 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 4096 else { /* page is swapcache/shmem */ 4097 ret = __mem_cgroup_try_charge_swapin(mm, page, 4098 gfp_mask, &memcg); 4099 if (!ret) 4100 __mem_cgroup_commit_charge_swapin(page, memcg, type); 4101 } 4102 return ret; 4103 } 4104 4105 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 4106 unsigned int nr_pages, 4107 const enum charge_type ctype) 4108 { 4109 struct memcg_batch_info *batch = NULL; 4110 bool uncharge_memsw = true; 4111 4112 /* If swapout, usage of swap doesn't decrease */ 4113 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 4114 uncharge_memsw = false; 4115 4116 batch = ¤t->memcg_batch; 4117 /* 4118 * In usual, we do css_get() when we remember memcg pointer. 4119 * But in this case, we keep res->usage until end of a series of 4120 * uncharges. Then, it's ok to ignore memcg's refcnt. 4121 */ 4122 if (!batch->memcg) 4123 batch->memcg = memcg; 4124 /* 4125 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 4126 * In those cases, all pages freed continuously can be expected to be in 4127 * the same cgroup and we have chance to coalesce uncharges. 4128 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 4129 * because we want to do uncharge as soon as possible. 4130 */ 4131 4132 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 4133 goto direct_uncharge; 4134 4135 if (nr_pages > 1) 4136 goto direct_uncharge; 4137 4138 /* 4139 * In typical case, batch->memcg == mem. This means we can 4140 * merge a series of uncharges to an uncharge of res_counter. 4141 * If not, we uncharge res_counter ony by one. 4142 */ 4143 if (batch->memcg != memcg) 4144 goto direct_uncharge; 4145 /* remember freed charge and uncharge it later */ 4146 batch->nr_pages++; 4147 if (uncharge_memsw) 4148 batch->memsw_nr_pages++; 4149 return; 4150 direct_uncharge: 4151 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 4152 if (uncharge_memsw) 4153 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 4154 if (unlikely(batch->memcg != memcg)) 4155 memcg_oom_recover(memcg); 4156 } 4157 4158 /* 4159 * uncharge if !page_mapped(page) 4160 */ 4161 static struct mem_cgroup * 4162 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 4163 bool end_migration) 4164 { 4165 struct mem_cgroup *memcg = NULL; 4166 unsigned int nr_pages = 1; 4167 struct page_cgroup *pc; 4168 bool anon; 4169 4170 if (mem_cgroup_disabled()) 4171 return NULL; 4172 4173 if (PageTransHuge(page)) { 4174 nr_pages <<= compound_order(page); 4175 VM_BUG_ON(!PageTransHuge(page)); 4176 } 4177 /* 4178 * Check if our page_cgroup is valid 4179 */ 4180 pc = lookup_page_cgroup(page); 4181 if (unlikely(!PageCgroupUsed(pc))) 4182 return NULL; 4183 4184 lock_page_cgroup(pc); 4185 4186 memcg = pc->mem_cgroup; 4187 4188 if (!PageCgroupUsed(pc)) 4189 goto unlock_out; 4190 4191 anon = PageAnon(page); 4192 4193 switch (ctype) { 4194 case MEM_CGROUP_CHARGE_TYPE_ANON: 4195 /* 4196 * Generally PageAnon tells if it's the anon statistics to be 4197 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 4198 * used before page reached the stage of being marked PageAnon. 4199 */ 4200 anon = true; 4201 /* fallthrough */ 4202 case MEM_CGROUP_CHARGE_TYPE_DROP: 4203 /* See mem_cgroup_prepare_migration() */ 4204 if (page_mapped(page)) 4205 goto unlock_out; 4206 /* 4207 * Pages under migration may not be uncharged. But 4208 * end_migration() /must/ be the one uncharging the 4209 * unused post-migration page and so it has to call 4210 * here with the migration bit still set. See the 4211 * res_counter handling below. 4212 */ 4213 if (!end_migration && PageCgroupMigration(pc)) 4214 goto unlock_out; 4215 break; 4216 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 4217 if (!PageAnon(page)) { /* Shared memory */ 4218 if (page->mapping && !page_is_file_cache(page)) 4219 goto unlock_out; 4220 } else if (page_mapped(page)) /* Anon */ 4221 goto unlock_out; 4222 break; 4223 default: 4224 break; 4225 } 4226 4227 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); 4228 4229 ClearPageCgroupUsed(pc); 4230 /* 4231 * pc->mem_cgroup is not cleared here. It will be accessed when it's 4232 * freed from LRU. This is safe because uncharged page is expected not 4233 * to be reused (freed soon). Exception is SwapCache, it's handled by 4234 * special functions. 4235 */ 4236 4237 unlock_page_cgroup(pc); 4238 /* 4239 * even after unlock, we have memcg->res.usage here and this memcg 4240 * will never be freed, so it's safe to call css_get(). 4241 */ 4242 memcg_check_events(memcg, page); 4243 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4244 mem_cgroup_swap_statistics(memcg, true); 4245 css_get(&memcg->css); 4246 } 4247 /* 4248 * Migration does not charge the res_counter for the 4249 * replacement page, so leave it alone when phasing out the 4250 * page that is unused after the migration. 4251 */ 4252 if (!end_migration && !mem_cgroup_is_root(memcg)) 4253 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4254 4255 return memcg; 4256 4257 unlock_out: 4258 unlock_page_cgroup(pc); 4259 return NULL; 4260 } 4261 4262 void mem_cgroup_uncharge_page(struct page *page) 4263 { 4264 /* early check. */ 4265 if (page_mapped(page)) 4266 return; 4267 VM_BUG_ON(page->mapping && !PageAnon(page)); 4268 /* 4269 * If the page is in swap cache, uncharge should be deferred 4270 * to the swap path, which also properly accounts swap usage 4271 * and handles memcg lifetime. 4272 * 4273 * Note that this check is not stable and reclaim may add the 4274 * page to swap cache at any time after this. However, if the 4275 * page is not in swap cache by the time page->mapcount hits 4276 * 0, there won't be any page table references to the swap 4277 * slot, and reclaim will free it and not actually write the 4278 * page to disk. 4279 */ 4280 if (PageSwapCache(page)) 4281 return; 4282 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4283 } 4284 4285 void mem_cgroup_uncharge_cache_page(struct page *page) 4286 { 4287 VM_BUG_ON(page_mapped(page)); 4288 VM_BUG_ON(page->mapping); 4289 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4290 } 4291 4292 /* 4293 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4294 * In that cases, pages are freed continuously and we can expect pages 4295 * are in the same memcg. All these calls itself limits the number of 4296 * pages freed at once, then uncharge_start/end() is called properly. 4297 * This may be called prural(2) times in a context, 4298 */ 4299 4300 void mem_cgroup_uncharge_start(void) 4301 { 4302 current->memcg_batch.do_batch++; 4303 /* We can do nest. */ 4304 if (current->memcg_batch.do_batch == 1) { 4305 current->memcg_batch.memcg = NULL; 4306 current->memcg_batch.nr_pages = 0; 4307 current->memcg_batch.memsw_nr_pages = 0; 4308 } 4309 } 4310 4311 void mem_cgroup_uncharge_end(void) 4312 { 4313 struct memcg_batch_info *batch = ¤t->memcg_batch; 4314 4315 if (!batch->do_batch) 4316 return; 4317 4318 batch->do_batch--; 4319 if (batch->do_batch) /* If stacked, do nothing. */ 4320 return; 4321 4322 if (!batch->memcg) 4323 return; 4324 /* 4325 * This "batch->memcg" is valid without any css_get/put etc... 4326 * bacause we hide charges behind us. 4327 */ 4328 if (batch->nr_pages) 4329 res_counter_uncharge(&batch->memcg->res, 4330 batch->nr_pages * PAGE_SIZE); 4331 if (batch->memsw_nr_pages) 4332 res_counter_uncharge(&batch->memcg->memsw, 4333 batch->memsw_nr_pages * PAGE_SIZE); 4334 memcg_oom_recover(batch->memcg); 4335 /* forget this pointer (for sanity check) */ 4336 batch->memcg = NULL; 4337 } 4338 4339 #ifdef CONFIG_SWAP 4340 /* 4341 * called after __delete_from_swap_cache() and drop "page" account. 4342 * memcg information is recorded to swap_cgroup of "ent" 4343 */ 4344 void 4345 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4346 { 4347 struct mem_cgroup *memcg; 4348 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4349 4350 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4351 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4352 4353 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4354 4355 /* 4356 * record memcg information, if swapout && memcg != NULL, 4357 * css_get() was called in uncharge(). 4358 */ 4359 if (do_swap_account && swapout && memcg) 4360 swap_cgroup_record(ent, mem_cgroup_id(memcg)); 4361 } 4362 #endif 4363 4364 #ifdef CONFIG_MEMCG_SWAP 4365 /* 4366 * called from swap_entry_free(). remove record in swap_cgroup and 4367 * uncharge "memsw" account. 4368 */ 4369 void mem_cgroup_uncharge_swap(swp_entry_t ent) 4370 { 4371 struct mem_cgroup *memcg; 4372 unsigned short id; 4373 4374 if (!do_swap_account) 4375 return; 4376 4377 id = swap_cgroup_record(ent, 0); 4378 rcu_read_lock(); 4379 memcg = mem_cgroup_lookup(id); 4380 if (memcg) { 4381 /* 4382 * We uncharge this because swap is freed. 4383 * This memcg can be obsolete one. We avoid calling css_tryget 4384 */ 4385 if (!mem_cgroup_is_root(memcg)) 4386 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4387 mem_cgroup_swap_statistics(memcg, false); 4388 css_put(&memcg->css); 4389 } 4390 rcu_read_unlock(); 4391 } 4392 4393 /** 4394 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4395 * @entry: swap entry to be moved 4396 * @from: mem_cgroup which the entry is moved from 4397 * @to: mem_cgroup which the entry is moved to 4398 * 4399 * It succeeds only when the swap_cgroup's record for this entry is the same 4400 * as the mem_cgroup's id of @from. 4401 * 4402 * Returns 0 on success, -EINVAL on failure. 4403 * 4404 * The caller must have charged to @to, IOW, called res_counter_charge() about 4405 * both res and memsw, and called css_get(). 4406 */ 4407 static int mem_cgroup_move_swap_account(swp_entry_t entry, 4408 struct mem_cgroup *from, struct mem_cgroup *to) 4409 { 4410 unsigned short old_id, new_id; 4411 4412 old_id = mem_cgroup_id(from); 4413 new_id = mem_cgroup_id(to); 4414 4415 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4416 mem_cgroup_swap_statistics(from, false); 4417 mem_cgroup_swap_statistics(to, true); 4418 /* 4419 * This function is only called from task migration context now. 4420 * It postpones res_counter and refcount handling till the end 4421 * of task migration(mem_cgroup_clear_mc()) for performance 4422 * improvement. But we cannot postpone css_get(to) because if 4423 * the process that has been moved to @to does swap-in, the 4424 * refcount of @to might be decreased to 0. 4425 * 4426 * We are in attach() phase, so the cgroup is guaranteed to be 4427 * alive, so we can just call css_get(). 4428 */ 4429 css_get(&to->css); 4430 return 0; 4431 } 4432 return -EINVAL; 4433 } 4434 #else 4435 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4436 struct mem_cgroup *from, struct mem_cgroup *to) 4437 { 4438 return -EINVAL; 4439 } 4440 #endif 4441 4442 /* 4443 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4444 * page belongs to. 4445 */ 4446 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4447 struct mem_cgroup **memcgp) 4448 { 4449 struct mem_cgroup *memcg = NULL; 4450 unsigned int nr_pages = 1; 4451 struct page_cgroup *pc; 4452 enum charge_type ctype; 4453 4454 *memcgp = NULL; 4455 4456 if (mem_cgroup_disabled()) 4457 return; 4458 4459 if (PageTransHuge(page)) 4460 nr_pages <<= compound_order(page); 4461 4462 pc = lookup_page_cgroup(page); 4463 lock_page_cgroup(pc); 4464 if (PageCgroupUsed(pc)) { 4465 memcg = pc->mem_cgroup; 4466 css_get(&memcg->css); 4467 /* 4468 * At migrating an anonymous page, its mapcount goes down 4469 * to 0 and uncharge() will be called. But, even if it's fully 4470 * unmapped, migration may fail and this page has to be 4471 * charged again. We set MIGRATION flag here and delay uncharge 4472 * until end_migration() is called 4473 * 4474 * Corner Case Thinking 4475 * A) 4476 * When the old page was mapped as Anon and it's unmap-and-freed 4477 * while migration was ongoing. 4478 * If unmap finds the old page, uncharge() of it will be delayed 4479 * until end_migration(). If unmap finds a new page, it's 4480 * uncharged when it make mapcount to be 1->0. If unmap code 4481 * finds swap_migration_entry, the new page will not be mapped 4482 * and end_migration() will find it(mapcount==0). 4483 * 4484 * B) 4485 * When the old page was mapped but migraion fails, the kernel 4486 * remaps it. A charge for it is kept by MIGRATION flag even 4487 * if mapcount goes down to 0. We can do remap successfully 4488 * without charging it again. 4489 * 4490 * C) 4491 * The "old" page is under lock_page() until the end of 4492 * migration, so, the old page itself will not be swapped-out. 4493 * If the new page is swapped out before end_migraton, our 4494 * hook to usual swap-out path will catch the event. 4495 */ 4496 if (PageAnon(page)) 4497 SetPageCgroupMigration(pc); 4498 } 4499 unlock_page_cgroup(pc); 4500 /* 4501 * If the page is not charged at this point, 4502 * we return here. 4503 */ 4504 if (!memcg) 4505 return; 4506 4507 *memcgp = memcg; 4508 /* 4509 * We charge new page before it's used/mapped. So, even if unlock_page() 4510 * is called before end_migration, we can catch all events on this new 4511 * page. In the case new page is migrated but not remapped, new page's 4512 * mapcount will be finally 0 and we call uncharge in end_migration(). 4513 */ 4514 if (PageAnon(page)) 4515 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4516 else 4517 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4518 /* 4519 * The page is committed to the memcg, but it's not actually 4520 * charged to the res_counter since we plan on replacing the 4521 * old one and only one page is going to be left afterwards. 4522 */ 4523 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4524 } 4525 4526 /* remove redundant charge if migration failed*/ 4527 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4528 struct page *oldpage, struct page *newpage, bool migration_ok) 4529 { 4530 struct page *used, *unused; 4531 struct page_cgroup *pc; 4532 bool anon; 4533 4534 if (!memcg) 4535 return; 4536 4537 if (!migration_ok) { 4538 used = oldpage; 4539 unused = newpage; 4540 } else { 4541 used = newpage; 4542 unused = oldpage; 4543 } 4544 anon = PageAnon(used); 4545 __mem_cgroup_uncharge_common(unused, 4546 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4547 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4548 true); 4549 css_put(&memcg->css); 4550 /* 4551 * We disallowed uncharge of pages under migration because mapcount 4552 * of the page goes down to zero, temporarly. 4553 * Clear the flag and check the page should be charged. 4554 */ 4555 pc = lookup_page_cgroup(oldpage); 4556 lock_page_cgroup(pc); 4557 ClearPageCgroupMigration(pc); 4558 unlock_page_cgroup(pc); 4559 4560 /* 4561 * If a page is a file cache, radix-tree replacement is very atomic 4562 * and we can skip this check. When it was an Anon page, its mapcount 4563 * goes down to 0. But because we added MIGRATION flage, it's not 4564 * uncharged yet. There are several case but page->mapcount check 4565 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4566 * check. (see prepare_charge() also) 4567 */ 4568 if (anon) 4569 mem_cgroup_uncharge_page(used); 4570 } 4571 4572 /* 4573 * At replace page cache, newpage is not under any memcg but it's on 4574 * LRU. So, this function doesn't touch res_counter but handles LRU 4575 * in correct way. Both pages are locked so we cannot race with uncharge. 4576 */ 4577 void mem_cgroup_replace_page_cache(struct page *oldpage, 4578 struct page *newpage) 4579 { 4580 struct mem_cgroup *memcg = NULL; 4581 struct page_cgroup *pc; 4582 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4583 4584 if (mem_cgroup_disabled()) 4585 return; 4586 4587 pc = lookup_page_cgroup(oldpage); 4588 /* fix accounting on old pages */ 4589 lock_page_cgroup(pc); 4590 if (PageCgroupUsed(pc)) { 4591 memcg = pc->mem_cgroup; 4592 mem_cgroup_charge_statistics(memcg, oldpage, false, -1); 4593 ClearPageCgroupUsed(pc); 4594 } 4595 unlock_page_cgroup(pc); 4596 4597 /* 4598 * When called from shmem_replace_page(), in some cases the 4599 * oldpage has already been charged, and in some cases not. 4600 */ 4601 if (!memcg) 4602 return; 4603 /* 4604 * Even if newpage->mapping was NULL before starting replacement, 4605 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4606 * LRU while we overwrite pc->mem_cgroup. 4607 */ 4608 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4609 } 4610 4611 #ifdef CONFIG_DEBUG_VM 4612 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4613 { 4614 struct page_cgroup *pc; 4615 4616 pc = lookup_page_cgroup(page); 4617 /* 4618 * Can be NULL while feeding pages into the page allocator for 4619 * the first time, i.e. during boot or memory hotplug; 4620 * or when mem_cgroup_disabled(). 4621 */ 4622 if (likely(pc) && PageCgroupUsed(pc)) 4623 return pc; 4624 return NULL; 4625 } 4626 4627 bool mem_cgroup_bad_page_check(struct page *page) 4628 { 4629 if (mem_cgroup_disabled()) 4630 return false; 4631 4632 return lookup_page_cgroup_used(page) != NULL; 4633 } 4634 4635 void mem_cgroup_print_bad_page(struct page *page) 4636 { 4637 struct page_cgroup *pc; 4638 4639 pc = lookup_page_cgroup_used(page); 4640 if (pc) { 4641 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4642 pc, pc->flags, pc->mem_cgroup); 4643 } 4644 } 4645 #endif 4646 4647 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4648 unsigned long long val) 4649 { 4650 int retry_count; 4651 u64 memswlimit, memlimit; 4652 int ret = 0; 4653 int children = mem_cgroup_count_children(memcg); 4654 u64 curusage, oldusage; 4655 int enlarge; 4656 4657 /* 4658 * For keeping hierarchical_reclaim simple, how long we should retry 4659 * is depends on callers. We set our retry-count to be function 4660 * of # of children which we should visit in this loop. 4661 */ 4662 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4663 4664 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4665 4666 enlarge = 0; 4667 while (retry_count) { 4668 if (signal_pending(current)) { 4669 ret = -EINTR; 4670 break; 4671 } 4672 /* 4673 * Rather than hide all in some function, I do this in 4674 * open coded manner. You see what this really does. 4675 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4676 */ 4677 mutex_lock(&set_limit_mutex); 4678 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4679 if (memswlimit < val) { 4680 ret = -EINVAL; 4681 mutex_unlock(&set_limit_mutex); 4682 break; 4683 } 4684 4685 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4686 if (memlimit < val) 4687 enlarge = 1; 4688 4689 ret = res_counter_set_limit(&memcg->res, val); 4690 if (!ret) { 4691 if (memswlimit == val) 4692 memcg->memsw_is_minimum = true; 4693 else 4694 memcg->memsw_is_minimum = false; 4695 } 4696 mutex_unlock(&set_limit_mutex); 4697 4698 if (!ret) 4699 break; 4700 4701 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4702 MEM_CGROUP_RECLAIM_SHRINK); 4703 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4704 /* Usage is reduced ? */ 4705 if (curusage >= oldusage) 4706 retry_count--; 4707 else 4708 oldusage = curusage; 4709 } 4710 if (!ret && enlarge) 4711 memcg_oom_recover(memcg); 4712 4713 return ret; 4714 } 4715 4716 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4717 unsigned long long val) 4718 { 4719 int retry_count; 4720 u64 memlimit, memswlimit, oldusage, curusage; 4721 int children = mem_cgroup_count_children(memcg); 4722 int ret = -EBUSY; 4723 int enlarge = 0; 4724 4725 /* see mem_cgroup_resize_res_limit */ 4726 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4727 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4728 while (retry_count) { 4729 if (signal_pending(current)) { 4730 ret = -EINTR; 4731 break; 4732 } 4733 /* 4734 * Rather than hide all in some function, I do this in 4735 * open coded manner. You see what this really does. 4736 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4737 */ 4738 mutex_lock(&set_limit_mutex); 4739 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4740 if (memlimit > val) { 4741 ret = -EINVAL; 4742 mutex_unlock(&set_limit_mutex); 4743 break; 4744 } 4745 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4746 if (memswlimit < val) 4747 enlarge = 1; 4748 ret = res_counter_set_limit(&memcg->memsw, val); 4749 if (!ret) { 4750 if (memlimit == val) 4751 memcg->memsw_is_minimum = true; 4752 else 4753 memcg->memsw_is_minimum = false; 4754 } 4755 mutex_unlock(&set_limit_mutex); 4756 4757 if (!ret) 4758 break; 4759 4760 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4761 MEM_CGROUP_RECLAIM_NOSWAP | 4762 MEM_CGROUP_RECLAIM_SHRINK); 4763 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4764 /* Usage is reduced ? */ 4765 if (curusage >= oldusage) 4766 retry_count--; 4767 else 4768 oldusage = curusage; 4769 } 4770 if (!ret && enlarge) 4771 memcg_oom_recover(memcg); 4772 return ret; 4773 } 4774 4775 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4776 gfp_t gfp_mask, 4777 unsigned long *total_scanned) 4778 { 4779 unsigned long nr_reclaimed = 0; 4780 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4781 unsigned long reclaimed; 4782 int loop = 0; 4783 struct mem_cgroup_tree_per_zone *mctz; 4784 unsigned long long excess; 4785 unsigned long nr_scanned; 4786 4787 if (order > 0) 4788 return 0; 4789 4790 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4791 /* 4792 * This loop can run a while, specially if mem_cgroup's continuously 4793 * keep exceeding their soft limit and putting the system under 4794 * pressure 4795 */ 4796 do { 4797 if (next_mz) 4798 mz = next_mz; 4799 else 4800 mz = mem_cgroup_largest_soft_limit_node(mctz); 4801 if (!mz) 4802 break; 4803 4804 nr_scanned = 0; 4805 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4806 gfp_mask, &nr_scanned); 4807 nr_reclaimed += reclaimed; 4808 *total_scanned += nr_scanned; 4809 spin_lock(&mctz->lock); 4810 4811 /* 4812 * If we failed to reclaim anything from this memory cgroup 4813 * it is time to move on to the next cgroup 4814 */ 4815 next_mz = NULL; 4816 if (!reclaimed) { 4817 do { 4818 /* 4819 * Loop until we find yet another one. 4820 * 4821 * By the time we get the soft_limit lock 4822 * again, someone might have aded the 4823 * group back on the RB tree. Iterate to 4824 * make sure we get a different mem. 4825 * mem_cgroup_largest_soft_limit_node returns 4826 * NULL if no other cgroup is present on 4827 * the tree 4828 */ 4829 next_mz = 4830 __mem_cgroup_largest_soft_limit_node(mctz); 4831 if (next_mz == mz) 4832 css_put(&next_mz->memcg->css); 4833 else /* next_mz == NULL or other memcg */ 4834 break; 4835 } while (1); 4836 } 4837 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 4838 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4839 /* 4840 * One school of thought says that we should not add 4841 * back the node to the tree if reclaim returns 0. 4842 * But our reclaim could return 0, simply because due 4843 * to priority we are exposing a smaller subset of 4844 * memory to reclaim from. Consider this as a longer 4845 * term TODO. 4846 */ 4847 /* If excess == 0, no tree ops */ 4848 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 4849 spin_unlock(&mctz->lock); 4850 css_put(&mz->memcg->css); 4851 loop++; 4852 /* 4853 * Could not reclaim anything and there are no more 4854 * mem cgroups to try or we seem to be looping without 4855 * reclaiming anything. 4856 */ 4857 if (!nr_reclaimed && 4858 (next_mz == NULL || 4859 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4860 break; 4861 } while (!nr_reclaimed); 4862 if (next_mz) 4863 css_put(&next_mz->memcg->css); 4864 return nr_reclaimed; 4865 } 4866 4867 /** 4868 * mem_cgroup_force_empty_list - clears LRU of a group 4869 * @memcg: group to clear 4870 * @node: NUMA node 4871 * @zid: zone id 4872 * @lru: lru to to clear 4873 * 4874 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4875 * reclaim the pages page themselves - pages are moved to the parent (or root) 4876 * group. 4877 */ 4878 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4879 int node, int zid, enum lru_list lru) 4880 { 4881 struct lruvec *lruvec; 4882 unsigned long flags; 4883 struct list_head *list; 4884 struct page *busy; 4885 struct zone *zone; 4886 4887 zone = &NODE_DATA(node)->node_zones[zid]; 4888 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4889 list = &lruvec->lists[lru]; 4890 4891 busy = NULL; 4892 do { 4893 struct page_cgroup *pc; 4894 struct page *page; 4895 4896 spin_lock_irqsave(&zone->lru_lock, flags); 4897 if (list_empty(list)) { 4898 spin_unlock_irqrestore(&zone->lru_lock, flags); 4899 break; 4900 } 4901 page = list_entry(list->prev, struct page, lru); 4902 if (busy == page) { 4903 list_move(&page->lru, list); 4904 busy = NULL; 4905 spin_unlock_irqrestore(&zone->lru_lock, flags); 4906 continue; 4907 } 4908 spin_unlock_irqrestore(&zone->lru_lock, flags); 4909 4910 pc = lookup_page_cgroup(page); 4911 4912 if (mem_cgroup_move_parent(page, pc, memcg)) { 4913 /* found lock contention or "pc" is obsolete. */ 4914 busy = page; 4915 cond_resched(); 4916 } else 4917 busy = NULL; 4918 } while (!list_empty(list)); 4919 } 4920 4921 /* 4922 * make mem_cgroup's charge to be 0 if there is no task by moving 4923 * all the charges and pages to the parent. 4924 * This enables deleting this mem_cgroup. 4925 * 4926 * Caller is responsible for holding css reference on the memcg. 4927 */ 4928 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4929 { 4930 int node, zid; 4931 u64 usage; 4932 4933 do { 4934 /* This is for making all *used* pages to be on LRU. */ 4935 lru_add_drain_all(); 4936 drain_all_stock_sync(memcg); 4937 mem_cgroup_start_move(memcg); 4938 for_each_node_state(node, N_MEMORY) { 4939 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4940 enum lru_list lru; 4941 for_each_lru(lru) { 4942 mem_cgroup_force_empty_list(memcg, 4943 node, zid, lru); 4944 } 4945 } 4946 } 4947 mem_cgroup_end_move(memcg); 4948 memcg_oom_recover(memcg); 4949 cond_resched(); 4950 4951 /* 4952 * Kernel memory may not necessarily be trackable to a specific 4953 * process. So they are not migrated, and therefore we can't 4954 * expect their value to drop to 0 here. 4955 * Having res filled up with kmem only is enough. 4956 * 4957 * This is a safety check because mem_cgroup_force_empty_list 4958 * could have raced with mem_cgroup_replace_page_cache callers 4959 * so the lru seemed empty but the page could have been added 4960 * right after the check. RES_USAGE should be safe as we always 4961 * charge before adding to the LRU. 4962 */ 4963 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4964 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4965 } while (usage > 0); 4966 } 4967 4968 static inline bool memcg_has_children(struct mem_cgroup *memcg) 4969 { 4970 lockdep_assert_held(&memcg_create_mutex); 4971 /* 4972 * The lock does not prevent addition or deletion to the list 4973 * of children, but it prevents a new child from being 4974 * initialized based on this parent in css_online(), so it's 4975 * enough to decide whether hierarchically inherited 4976 * attributes can still be changed or not. 4977 */ 4978 return memcg->use_hierarchy && 4979 !list_empty(&memcg->css.cgroup->children); 4980 } 4981 4982 /* 4983 * Reclaims as many pages from the given memcg as possible and moves 4984 * the rest to the parent. 4985 * 4986 * Caller is responsible for holding css reference for memcg. 4987 */ 4988 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4989 { 4990 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4991 struct cgroup *cgrp = memcg->css.cgroup; 4992 4993 /* returns EBUSY if there is a task or if we come here twice. */ 4994 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 4995 return -EBUSY; 4996 4997 /* we call try-to-free pages for make this cgroup empty */ 4998 lru_add_drain_all(); 4999 /* try to free all pages in this cgroup */ 5000 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 5001 int progress; 5002 5003 if (signal_pending(current)) 5004 return -EINTR; 5005 5006 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 5007 false); 5008 if (!progress) { 5009 nr_retries--; 5010 /* maybe some writeback is necessary */ 5011 congestion_wait(BLK_RW_ASYNC, HZ/10); 5012 } 5013 5014 } 5015 lru_add_drain(); 5016 mem_cgroup_reparent_charges(memcg); 5017 5018 return 0; 5019 } 5020 5021 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css, 5022 unsigned int event) 5023 { 5024 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5025 5026 if (mem_cgroup_is_root(memcg)) 5027 return -EINVAL; 5028 return mem_cgroup_force_empty(memcg); 5029 } 5030 5031 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 5032 struct cftype *cft) 5033 { 5034 return mem_cgroup_from_css(css)->use_hierarchy; 5035 } 5036 5037 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 5038 struct cftype *cft, u64 val) 5039 { 5040 int retval = 0; 5041 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5042 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5043 5044 mutex_lock(&memcg_create_mutex); 5045 5046 if (memcg->use_hierarchy == val) 5047 goto out; 5048 5049 /* 5050 * If parent's use_hierarchy is set, we can't make any modifications 5051 * in the child subtrees. If it is unset, then the change can 5052 * occur, provided the current cgroup has no children. 5053 * 5054 * For the root cgroup, parent_mem is NULL, we allow value to be 5055 * set if there are no children. 5056 */ 5057 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 5058 (val == 1 || val == 0)) { 5059 if (list_empty(&memcg->css.cgroup->children)) 5060 memcg->use_hierarchy = val; 5061 else 5062 retval = -EBUSY; 5063 } else 5064 retval = -EINVAL; 5065 5066 out: 5067 mutex_unlock(&memcg_create_mutex); 5068 5069 return retval; 5070 } 5071 5072 5073 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 5074 enum mem_cgroup_stat_index idx) 5075 { 5076 struct mem_cgroup *iter; 5077 long val = 0; 5078 5079 /* Per-cpu values can be negative, use a signed accumulator */ 5080 for_each_mem_cgroup_tree(iter, memcg) 5081 val += mem_cgroup_read_stat(iter, idx); 5082 5083 if (val < 0) /* race ? */ 5084 val = 0; 5085 return val; 5086 } 5087 5088 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 5089 { 5090 u64 val; 5091 5092 if (!mem_cgroup_is_root(memcg)) { 5093 if (!swap) 5094 return res_counter_read_u64(&memcg->res, RES_USAGE); 5095 else 5096 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 5097 } 5098 5099 /* 5100 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS 5101 * as well as in MEM_CGROUP_STAT_RSS_HUGE. 5102 */ 5103 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 5104 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 5105 5106 if (swap) 5107 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 5108 5109 return val << PAGE_SHIFT; 5110 } 5111 5112 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css, 5113 struct cftype *cft, struct file *file, 5114 char __user *buf, size_t nbytes, loff_t *ppos) 5115 { 5116 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5117 char str[64]; 5118 u64 val; 5119 int name, len; 5120 enum res_type type; 5121 5122 type = MEMFILE_TYPE(cft->private); 5123 name = MEMFILE_ATTR(cft->private); 5124 5125 switch (type) { 5126 case _MEM: 5127 if (name == RES_USAGE) 5128 val = mem_cgroup_usage(memcg, false); 5129 else 5130 val = res_counter_read_u64(&memcg->res, name); 5131 break; 5132 case _MEMSWAP: 5133 if (name == RES_USAGE) 5134 val = mem_cgroup_usage(memcg, true); 5135 else 5136 val = res_counter_read_u64(&memcg->memsw, name); 5137 break; 5138 case _KMEM: 5139 val = res_counter_read_u64(&memcg->kmem, name); 5140 break; 5141 default: 5142 BUG(); 5143 } 5144 5145 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 5146 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 5147 } 5148 5149 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val) 5150 { 5151 int ret = -EINVAL; 5152 #ifdef CONFIG_MEMCG_KMEM 5153 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5154 /* 5155 * For simplicity, we won't allow this to be disabled. It also can't 5156 * be changed if the cgroup has children already, or if tasks had 5157 * already joined. 5158 * 5159 * If tasks join before we set the limit, a person looking at 5160 * kmem.usage_in_bytes will have no way to determine when it took 5161 * place, which makes the value quite meaningless. 5162 * 5163 * After it first became limited, changes in the value of the limit are 5164 * of course permitted. 5165 */ 5166 mutex_lock(&memcg_create_mutex); 5167 mutex_lock(&set_limit_mutex); 5168 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) { 5169 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) { 5170 ret = -EBUSY; 5171 goto out; 5172 } 5173 ret = res_counter_set_limit(&memcg->kmem, val); 5174 VM_BUG_ON(ret); 5175 5176 ret = memcg_update_cache_sizes(memcg); 5177 if (ret) { 5178 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX); 5179 goto out; 5180 } 5181 static_key_slow_inc(&memcg_kmem_enabled_key); 5182 /* 5183 * setting the active bit after the inc will guarantee no one 5184 * starts accounting before all call sites are patched 5185 */ 5186 memcg_kmem_set_active(memcg); 5187 } else 5188 ret = res_counter_set_limit(&memcg->kmem, val); 5189 out: 5190 mutex_unlock(&set_limit_mutex); 5191 mutex_unlock(&memcg_create_mutex); 5192 #endif 5193 return ret; 5194 } 5195 5196 #ifdef CONFIG_MEMCG_KMEM 5197 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 5198 { 5199 int ret = 0; 5200 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5201 if (!parent) 5202 goto out; 5203 5204 memcg->kmem_account_flags = parent->kmem_account_flags; 5205 /* 5206 * When that happen, we need to disable the static branch only on those 5207 * memcgs that enabled it. To achieve this, we would be forced to 5208 * complicate the code by keeping track of which memcgs were the ones 5209 * that actually enabled limits, and which ones got it from its 5210 * parents. 5211 * 5212 * It is a lot simpler just to do static_key_slow_inc() on every child 5213 * that is accounted. 5214 */ 5215 if (!memcg_kmem_is_active(memcg)) 5216 goto out; 5217 5218 /* 5219 * __mem_cgroup_free() will issue static_key_slow_dec() because this 5220 * memcg is active already. If the later initialization fails then the 5221 * cgroup core triggers the cleanup so we do not have to do it here. 5222 */ 5223 static_key_slow_inc(&memcg_kmem_enabled_key); 5224 5225 mutex_lock(&set_limit_mutex); 5226 memcg_stop_kmem_account(); 5227 ret = memcg_update_cache_sizes(memcg); 5228 memcg_resume_kmem_account(); 5229 mutex_unlock(&set_limit_mutex); 5230 out: 5231 return ret; 5232 } 5233 #endif /* CONFIG_MEMCG_KMEM */ 5234 5235 /* 5236 * The user of this function is... 5237 * RES_LIMIT. 5238 */ 5239 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft, 5240 const char *buffer) 5241 { 5242 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5243 enum res_type type; 5244 int name; 5245 unsigned long long val; 5246 int ret; 5247 5248 type = MEMFILE_TYPE(cft->private); 5249 name = MEMFILE_ATTR(cft->private); 5250 5251 switch (name) { 5252 case RES_LIMIT: 5253 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5254 ret = -EINVAL; 5255 break; 5256 } 5257 /* This function does all necessary parse...reuse it */ 5258 ret = res_counter_memparse_write_strategy(buffer, &val); 5259 if (ret) 5260 break; 5261 if (type == _MEM) 5262 ret = mem_cgroup_resize_limit(memcg, val); 5263 else if (type == _MEMSWAP) 5264 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5265 else if (type == _KMEM) 5266 ret = memcg_update_kmem_limit(css, val); 5267 else 5268 return -EINVAL; 5269 break; 5270 case RES_SOFT_LIMIT: 5271 ret = res_counter_memparse_write_strategy(buffer, &val); 5272 if (ret) 5273 break; 5274 /* 5275 * For memsw, soft limits are hard to implement in terms 5276 * of semantics, for now, we support soft limits for 5277 * control without swap 5278 */ 5279 if (type == _MEM) 5280 ret = res_counter_set_soft_limit(&memcg->res, val); 5281 else 5282 ret = -EINVAL; 5283 break; 5284 default: 5285 ret = -EINVAL; /* should be BUG() ? */ 5286 break; 5287 } 5288 return ret; 5289 } 5290 5291 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5292 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5293 { 5294 unsigned long long min_limit, min_memsw_limit, tmp; 5295 5296 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5297 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5298 if (!memcg->use_hierarchy) 5299 goto out; 5300 5301 while (css_parent(&memcg->css)) { 5302 memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5303 if (!memcg->use_hierarchy) 5304 break; 5305 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5306 min_limit = min(min_limit, tmp); 5307 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5308 min_memsw_limit = min(min_memsw_limit, tmp); 5309 } 5310 out: 5311 *mem_limit = min_limit; 5312 *memsw_limit = min_memsw_limit; 5313 } 5314 5315 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event) 5316 { 5317 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5318 int name; 5319 enum res_type type; 5320 5321 type = MEMFILE_TYPE(event); 5322 name = MEMFILE_ATTR(event); 5323 5324 switch (name) { 5325 case RES_MAX_USAGE: 5326 if (type == _MEM) 5327 res_counter_reset_max(&memcg->res); 5328 else if (type == _MEMSWAP) 5329 res_counter_reset_max(&memcg->memsw); 5330 else if (type == _KMEM) 5331 res_counter_reset_max(&memcg->kmem); 5332 else 5333 return -EINVAL; 5334 break; 5335 case RES_FAILCNT: 5336 if (type == _MEM) 5337 res_counter_reset_failcnt(&memcg->res); 5338 else if (type == _MEMSWAP) 5339 res_counter_reset_failcnt(&memcg->memsw); 5340 else if (type == _KMEM) 5341 res_counter_reset_failcnt(&memcg->kmem); 5342 else 5343 return -EINVAL; 5344 break; 5345 } 5346 5347 return 0; 5348 } 5349 5350 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 5351 struct cftype *cft) 5352 { 5353 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 5354 } 5355 5356 #ifdef CONFIG_MMU 5357 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5358 struct cftype *cft, u64 val) 5359 { 5360 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5361 5362 if (val >= (1 << NR_MOVE_TYPE)) 5363 return -EINVAL; 5364 5365 /* 5366 * No kind of locking is needed in here, because ->can_attach() will 5367 * check this value once in the beginning of the process, and then carry 5368 * on with stale data. This means that changes to this value will only 5369 * affect task migrations starting after the change. 5370 */ 5371 memcg->move_charge_at_immigrate = val; 5372 return 0; 5373 } 5374 #else 5375 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5376 struct cftype *cft, u64 val) 5377 { 5378 return -ENOSYS; 5379 } 5380 #endif 5381 5382 #ifdef CONFIG_NUMA 5383 static int memcg_numa_stat_show(struct cgroup_subsys_state *css, 5384 struct cftype *cft, struct seq_file *m) 5385 { 5386 struct numa_stat { 5387 const char *name; 5388 unsigned int lru_mask; 5389 }; 5390 5391 static const struct numa_stat stats[] = { 5392 { "total", LRU_ALL }, 5393 { "file", LRU_ALL_FILE }, 5394 { "anon", LRU_ALL_ANON }, 5395 { "unevictable", BIT(LRU_UNEVICTABLE) }, 5396 }; 5397 const struct numa_stat *stat; 5398 int nid; 5399 unsigned long nr; 5400 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5401 5402 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 5403 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 5404 seq_printf(m, "%s=%lu", stat->name, nr); 5405 for_each_node_state(nid, N_MEMORY) { 5406 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5407 stat->lru_mask); 5408 seq_printf(m, " N%d=%lu", nid, nr); 5409 } 5410 seq_putc(m, '\n'); 5411 } 5412 5413 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 5414 struct mem_cgroup *iter; 5415 5416 nr = 0; 5417 for_each_mem_cgroup_tree(iter, memcg) 5418 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 5419 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 5420 for_each_node_state(nid, N_MEMORY) { 5421 nr = 0; 5422 for_each_mem_cgroup_tree(iter, memcg) 5423 nr += mem_cgroup_node_nr_lru_pages( 5424 iter, nid, stat->lru_mask); 5425 seq_printf(m, " N%d=%lu", nid, nr); 5426 } 5427 seq_putc(m, '\n'); 5428 } 5429 5430 return 0; 5431 } 5432 #endif /* CONFIG_NUMA */ 5433 5434 static inline void mem_cgroup_lru_names_not_uptodate(void) 5435 { 5436 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5437 } 5438 5439 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft, 5440 struct seq_file *m) 5441 { 5442 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5443 struct mem_cgroup *mi; 5444 unsigned int i; 5445 5446 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5447 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5448 continue; 5449 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5450 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5451 } 5452 5453 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5454 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5455 mem_cgroup_read_events(memcg, i)); 5456 5457 for (i = 0; i < NR_LRU_LISTS; i++) 5458 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5459 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5460 5461 /* Hierarchical information */ 5462 { 5463 unsigned long long limit, memsw_limit; 5464 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5465 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5466 if (do_swap_account) 5467 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5468 memsw_limit); 5469 } 5470 5471 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5472 long long val = 0; 5473 5474 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5475 continue; 5476 for_each_mem_cgroup_tree(mi, memcg) 5477 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5478 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5479 } 5480 5481 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5482 unsigned long long val = 0; 5483 5484 for_each_mem_cgroup_tree(mi, memcg) 5485 val += mem_cgroup_read_events(mi, i); 5486 seq_printf(m, "total_%s %llu\n", 5487 mem_cgroup_events_names[i], val); 5488 } 5489 5490 for (i = 0; i < NR_LRU_LISTS; i++) { 5491 unsigned long long val = 0; 5492 5493 for_each_mem_cgroup_tree(mi, memcg) 5494 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5495 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5496 } 5497 5498 #ifdef CONFIG_DEBUG_VM 5499 { 5500 int nid, zid; 5501 struct mem_cgroup_per_zone *mz; 5502 struct zone_reclaim_stat *rstat; 5503 unsigned long recent_rotated[2] = {0, 0}; 5504 unsigned long recent_scanned[2] = {0, 0}; 5505 5506 for_each_online_node(nid) 5507 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5508 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5509 rstat = &mz->lruvec.reclaim_stat; 5510 5511 recent_rotated[0] += rstat->recent_rotated[0]; 5512 recent_rotated[1] += rstat->recent_rotated[1]; 5513 recent_scanned[0] += rstat->recent_scanned[0]; 5514 recent_scanned[1] += rstat->recent_scanned[1]; 5515 } 5516 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5517 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5518 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5519 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5520 } 5521 #endif 5522 5523 return 0; 5524 } 5525 5526 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 5527 struct cftype *cft) 5528 { 5529 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5530 5531 return mem_cgroup_swappiness(memcg); 5532 } 5533 5534 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 5535 struct cftype *cft, u64 val) 5536 { 5537 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5538 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5539 5540 if (val > 100 || !parent) 5541 return -EINVAL; 5542 5543 mutex_lock(&memcg_create_mutex); 5544 5545 /* If under hierarchy, only empty-root can set this value */ 5546 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5547 mutex_unlock(&memcg_create_mutex); 5548 return -EINVAL; 5549 } 5550 5551 memcg->swappiness = val; 5552 5553 mutex_unlock(&memcg_create_mutex); 5554 5555 return 0; 5556 } 5557 5558 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5559 { 5560 struct mem_cgroup_threshold_ary *t; 5561 u64 usage; 5562 int i; 5563 5564 rcu_read_lock(); 5565 if (!swap) 5566 t = rcu_dereference(memcg->thresholds.primary); 5567 else 5568 t = rcu_dereference(memcg->memsw_thresholds.primary); 5569 5570 if (!t) 5571 goto unlock; 5572 5573 usage = mem_cgroup_usage(memcg, swap); 5574 5575 /* 5576 * current_threshold points to threshold just below or equal to usage. 5577 * If it's not true, a threshold was crossed after last 5578 * call of __mem_cgroup_threshold(). 5579 */ 5580 i = t->current_threshold; 5581 5582 /* 5583 * Iterate backward over array of thresholds starting from 5584 * current_threshold and check if a threshold is crossed. 5585 * If none of thresholds below usage is crossed, we read 5586 * only one element of the array here. 5587 */ 5588 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5589 eventfd_signal(t->entries[i].eventfd, 1); 5590 5591 /* i = current_threshold + 1 */ 5592 i++; 5593 5594 /* 5595 * Iterate forward over array of thresholds starting from 5596 * current_threshold+1 and check if a threshold is crossed. 5597 * If none of thresholds above usage is crossed, we read 5598 * only one element of the array here. 5599 */ 5600 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5601 eventfd_signal(t->entries[i].eventfd, 1); 5602 5603 /* Update current_threshold */ 5604 t->current_threshold = i - 1; 5605 unlock: 5606 rcu_read_unlock(); 5607 } 5608 5609 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5610 { 5611 while (memcg) { 5612 __mem_cgroup_threshold(memcg, false); 5613 if (do_swap_account) 5614 __mem_cgroup_threshold(memcg, true); 5615 5616 memcg = parent_mem_cgroup(memcg); 5617 } 5618 } 5619 5620 static int compare_thresholds(const void *a, const void *b) 5621 { 5622 const struct mem_cgroup_threshold *_a = a; 5623 const struct mem_cgroup_threshold *_b = b; 5624 5625 if (_a->threshold > _b->threshold) 5626 return 1; 5627 5628 if (_a->threshold < _b->threshold) 5629 return -1; 5630 5631 return 0; 5632 } 5633 5634 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5635 { 5636 struct mem_cgroup_eventfd_list *ev; 5637 5638 list_for_each_entry(ev, &memcg->oom_notify, list) 5639 eventfd_signal(ev->eventfd, 1); 5640 return 0; 5641 } 5642 5643 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5644 { 5645 struct mem_cgroup *iter; 5646 5647 for_each_mem_cgroup_tree(iter, memcg) 5648 mem_cgroup_oom_notify_cb(iter); 5649 } 5650 5651 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css, 5652 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5653 { 5654 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5655 struct mem_cgroup_thresholds *thresholds; 5656 struct mem_cgroup_threshold_ary *new; 5657 enum res_type type = MEMFILE_TYPE(cft->private); 5658 u64 threshold, usage; 5659 int i, size, ret; 5660 5661 ret = res_counter_memparse_write_strategy(args, &threshold); 5662 if (ret) 5663 return ret; 5664 5665 mutex_lock(&memcg->thresholds_lock); 5666 5667 if (type == _MEM) 5668 thresholds = &memcg->thresholds; 5669 else if (type == _MEMSWAP) 5670 thresholds = &memcg->memsw_thresholds; 5671 else 5672 BUG(); 5673 5674 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5675 5676 /* Check if a threshold crossed before adding a new one */ 5677 if (thresholds->primary) 5678 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5679 5680 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5681 5682 /* Allocate memory for new array of thresholds */ 5683 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5684 GFP_KERNEL); 5685 if (!new) { 5686 ret = -ENOMEM; 5687 goto unlock; 5688 } 5689 new->size = size; 5690 5691 /* Copy thresholds (if any) to new array */ 5692 if (thresholds->primary) { 5693 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5694 sizeof(struct mem_cgroup_threshold)); 5695 } 5696 5697 /* Add new threshold */ 5698 new->entries[size - 1].eventfd = eventfd; 5699 new->entries[size - 1].threshold = threshold; 5700 5701 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5702 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5703 compare_thresholds, NULL); 5704 5705 /* Find current threshold */ 5706 new->current_threshold = -1; 5707 for (i = 0; i < size; i++) { 5708 if (new->entries[i].threshold <= usage) { 5709 /* 5710 * new->current_threshold will not be used until 5711 * rcu_assign_pointer(), so it's safe to increment 5712 * it here. 5713 */ 5714 ++new->current_threshold; 5715 } else 5716 break; 5717 } 5718 5719 /* Free old spare buffer and save old primary buffer as spare */ 5720 kfree(thresholds->spare); 5721 thresholds->spare = thresholds->primary; 5722 5723 rcu_assign_pointer(thresholds->primary, new); 5724 5725 /* To be sure that nobody uses thresholds */ 5726 synchronize_rcu(); 5727 5728 unlock: 5729 mutex_unlock(&memcg->thresholds_lock); 5730 5731 return ret; 5732 } 5733 5734 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css, 5735 struct cftype *cft, struct eventfd_ctx *eventfd) 5736 { 5737 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5738 struct mem_cgroup_thresholds *thresholds; 5739 struct mem_cgroup_threshold_ary *new; 5740 enum res_type type = MEMFILE_TYPE(cft->private); 5741 u64 usage; 5742 int i, j, size; 5743 5744 mutex_lock(&memcg->thresholds_lock); 5745 if (type == _MEM) 5746 thresholds = &memcg->thresholds; 5747 else if (type == _MEMSWAP) 5748 thresholds = &memcg->memsw_thresholds; 5749 else 5750 BUG(); 5751 5752 if (!thresholds->primary) 5753 goto unlock; 5754 5755 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5756 5757 /* Check if a threshold crossed before removing */ 5758 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5759 5760 /* Calculate new number of threshold */ 5761 size = 0; 5762 for (i = 0; i < thresholds->primary->size; i++) { 5763 if (thresholds->primary->entries[i].eventfd != eventfd) 5764 size++; 5765 } 5766 5767 new = thresholds->spare; 5768 5769 /* Set thresholds array to NULL if we don't have thresholds */ 5770 if (!size) { 5771 kfree(new); 5772 new = NULL; 5773 goto swap_buffers; 5774 } 5775 5776 new->size = size; 5777 5778 /* Copy thresholds and find current threshold */ 5779 new->current_threshold = -1; 5780 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5781 if (thresholds->primary->entries[i].eventfd == eventfd) 5782 continue; 5783 5784 new->entries[j] = thresholds->primary->entries[i]; 5785 if (new->entries[j].threshold <= usage) { 5786 /* 5787 * new->current_threshold will not be used 5788 * until rcu_assign_pointer(), so it's safe to increment 5789 * it here. 5790 */ 5791 ++new->current_threshold; 5792 } 5793 j++; 5794 } 5795 5796 swap_buffers: 5797 /* Swap primary and spare array */ 5798 thresholds->spare = thresholds->primary; 5799 /* If all events are unregistered, free the spare array */ 5800 if (!new) { 5801 kfree(thresholds->spare); 5802 thresholds->spare = NULL; 5803 } 5804 5805 rcu_assign_pointer(thresholds->primary, new); 5806 5807 /* To be sure that nobody uses thresholds */ 5808 synchronize_rcu(); 5809 unlock: 5810 mutex_unlock(&memcg->thresholds_lock); 5811 } 5812 5813 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css, 5814 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5815 { 5816 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5817 struct mem_cgroup_eventfd_list *event; 5818 enum res_type type = MEMFILE_TYPE(cft->private); 5819 5820 BUG_ON(type != _OOM_TYPE); 5821 event = kmalloc(sizeof(*event), GFP_KERNEL); 5822 if (!event) 5823 return -ENOMEM; 5824 5825 spin_lock(&memcg_oom_lock); 5826 5827 event->eventfd = eventfd; 5828 list_add(&event->list, &memcg->oom_notify); 5829 5830 /* already in OOM ? */ 5831 if (atomic_read(&memcg->under_oom)) 5832 eventfd_signal(eventfd, 1); 5833 spin_unlock(&memcg_oom_lock); 5834 5835 return 0; 5836 } 5837 5838 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css, 5839 struct cftype *cft, struct eventfd_ctx *eventfd) 5840 { 5841 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5842 struct mem_cgroup_eventfd_list *ev, *tmp; 5843 enum res_type type = MEMFILE_TYPE(cft->private); 5844 5845 BUG_ON(type != _OOM_TYPE); 5846 5847 spin_lock(&memcg_oom_lock); 5848 5849 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5850 if (ev->eventfd == eventfd) { 5851 list_del(&ev->list); 5852 kfree(ev); 5853 } 5854 } 5855 5856 spin_unlock(&memcg_oom_lock); 5857 } 5858 5859 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css, 5860 struct cftype *cft, struct cgroup_map_cb *cb) 5861 { 5862 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5863 5864 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 5865 5866 if (atomic_read(&memcg->under_oom)) 5867 cb->fill(cb, "under_oom", 1); 5868 else 5869 cb->fill(cb, "under_oom", 0); 5870 return 0; 5871 } 5872 5873 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 5874 struct cftype *cft, u64 val) 5875 { 5876 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5877 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5878 5879 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5880 if (!parent || !((val == 0) || (val == 1))) 5881 return -EINVAL; 5882 5883 mutex_lock(&memcg_create_mutex); 5884 /* oom-kill-disable is a flag for subhierarchy. */ 5885 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5886 mutex_unlock(&memcg_create_mutex); 5887 return -EINVAL; 5888 } 5889 memcg->oom_kill_disable = val; 5890 if (!val) 5891 memcg_oom_recover(memcg); 5892 mutex_unlock(&memcg_create_mutex); 5893 return 0; 5894 } 5895 5896 #ifdef CONFIG_MEMCG_KMEM 5897 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5898 { 5899 int ret; 5900 5901 memcg->kmemcg_id = -1; 5902 ret = memcg_propagate_kmem(memcg); 5903 if (ret) 5904 return ret; 5905 5906 return mem_cgroup_sockets_init(memcg, ss); 5907 } 5908 5909 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5910 { 5911 mem_cgroup_sockets_destroy(memcg); 5912 } 5913 5914 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5915 { 5916 if (!memcg_kmem_is_active(memcg)) 5917 return; 5918 5919 /* 5920 * kmem charges can outlive the cgroup. In the case of slab 5921 * pages, for instance, a page contain objects from various 5922 * processes. As we prevent from taking a reference for every 5923 * such allocation we have to be careful when doing uncharge 5924 * (see memcg_uncharge_kmem) and here during offlining. 5925 * 5926 * The idea is that that only the _last_ uncharge which sees 5927 * the dead memcg will drop the last reference. An additional 5928 * reference is taken here before the group is marked dead 5929 * which is then paired with css_put during uncharge resp. here. 5930 * 5931 * Although this might sound strange as this path is called from 5932 * css_offline() when the referencemight have dropped down to 0 5933 * and shouldn't be incremented anymore (css_tryget would fail) 5934 * we do not have other options because of the kmem allocations 5935 * lifetime. 5936 */ 5937 css_get(&memcg->css); 5938 5939 memcg_kmem_mark_dead(memcg); 5940 5941 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5942 return; 5943 5944 if (memcg_kmem_test_and_clear_dead(memcg)) 5945 css_put(&memcg->css); 5946 } 5947 #else 5948 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5949 { 5950 return 0; 5951 } 5952 5953 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5954 { 5955 } 5956 5957 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5958 { 5959 } 5960 #endif 5961 5962 static struct cftype mem_cgroup_files[] = { 5963 { 5964 .name = "usage_in_bytes", 5965 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5966 .read = mem_cgroup_read, 5967 .register_event = mem_cgroup_usage_register_event, 5968 .unregister_event = mem_cgroup_usage_unregister_event, 5969 }, 5970 { 5971 .name = "max_usage_in_bytes", 5972 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5973 .trigger = mem_cgroup_reset, 5974 .read = mem_cgroup_read, 5975 }, 5976 { 5977 .name = "limit_in_bytes", 5978 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5979 .write_string = mem_cgroup_write, 5980 .read = mem_cgroup_read, 5981 }, 5982 { 5983 .name = "soft_limit_in_bytes", 5984 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5985 .write_string = mem_cgroup_write, 5986 .read = mem_cgroup_read, 5987 }, 5988 { 5989 .name = "failcnt", 5990 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5991 .trigger = mem_cgroup_reset, 5992 .read = mem_cgroup_read, 5993 }, 5994 { 5995 .name = "stat", 5996 .read_seq_string = memcg_stat_show, 5997 }, 5998 { 5999 .name = "force_empty", 6000 .trigger = mem_cgroup_force_empty_write, 6001 }, 6002 { 6003 .name = "use_hierarchy", 6004 .flags = CFTYPE_INSANE, 6005 .write_u64 = mem_cgroup_hierarchy_write, 6006 .read_u64 = mem_cgroup_hierarchy_read, 6007 }, 6008 { 6009 .name = "swappiness", 6010 .read_u64 = mem_cgroup_swappiness_read, 6011 .write_u64 = mem_cgroup_swappiness_write, 6012 }, 6013 { 6014 .name = "move_charge_at_immigrate", 6015 .read_u64 = mem_cgroup_move_charge_read, 6016 .write_u64 = mem_cgroup_move_charge_write, 6017 }, 6018 { 6019 .name = "oom_control", 6020 .read_map = mem_cgroup_oom_control_read, 6021 .write_u64 = mem_cgroup_oom_control_write, 6022 .register_event = mem_cgroup_oom_register_event, 6023 .unregister_event = mem_cgroup_oom_unregister_event, 6024 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 6025 }, 6026 { 6027 .name = "pressure_level", 6028 .register_event = vmpressure_register_event, 6029 .unregister_event = vmpressure_unregister_event, 6030 }, 6031 #ifdef CONFIG_NUMA 6032 { 6033 .name = "numa_stat", 6034 .read_seq_string = memcg_numa_stat_show, 6035 }, 6036 #endif 6037 #ifdef CONFIG_MEMCG_KMEM 6038 { 6039 .name = "kmem.limit_in_bytes", 6040 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 6041 .write_string = mem_cgroup_write, 6042 .read = mem_cgroup_read, 6043 }, 6044 { 6045 .name = "kmem.usage_in_bytes", 6046 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 6047 .read = mem_cgroup_read, 6048 }, 6049 { 6050 .name = "kmem.failcnt", 6051 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 6052 .trigger = mem_cgroup_reset, 6053 .read = mem_cgroup_read, 6054 }, 6055 { 6056 .name = "kmem.max_usage_in_bytes", 6057 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 6058 .trigger = mem_cgroup_reset, 6059 .read = mem_cgroup_read, 6060 }, 6061 #ifdef CONFIG_SLABINFO 6062 { 6063 .name = "kmem.slabinfo", 6064 .read_seq_string = mem_cgroup_slabinfo_read, 6065 }, 6066 #endif 6067 #endif 6068 { }, /* terminate */ 6069 }; 6070 6071 #ifdef CONFIG_MEMCG_SWAP 6072 static struct cftype memsw_cgroup_files[] = { 6073 { 6074 .name = "memsw.usage_in_bytes", 6075 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6076 .read = mem_cgroup_read, 6077 .register_event = mem_cgroup_usage_register_event, 6078 .unregister_event = mem_cgroup_usage_unregister_event, 6079 }, 6080 { 6081 .name = "memsw.max_usage_in_bytes", 6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6083 .trigger = mem_cgroup_reset, 6084 .read = mem_cgroup_read, 6085 }, 6086 { 6087 .name = "memsw.limit_in_bytes", 6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6089 .write_string = mem_cgroup_write, 6090 .read = mem_cgroup_read, 6091 }, 6092 { 6093 .name = "memsw.failcnt", 6094 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6095 .trigger = mem_cgroup_reset, 6096 .read = mem_cgroup_read, 6097 }, 6098 { }, /* terminate */ 6099 }; 6100 #endif 6101 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6102 { 6103 struct mem_cgroup_per_node *pn; 6104 struct mem_cgroup_per_zone *mz; 6105 int zone, tmp = node; 6106 /* 6107 * This routine is called against possible nodes. 6108 * But it's BUG to call kmalloc() against offline node. 6109 * 6110 * TODO: this routine can waste much memory for nodes which will 6111 * never be onlined. It's better to use memory hotplug callback 6112 * function. 6113 */ 6114 if (!node_state(node, N_NORMAL_MEMORY)) 6115 tmp = -1; 6116 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 6117 if (!pn) 6118 return 1; 6119 6120 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6121 mz = &pn->zoneinfo[zone]; 6122 lruvec_init(&mz->lruvec); 6123 mz->usage_in_excess = 0; 6124 mz->on_tree = false; 6125 mz->memcg = memcg; 6126 } 6127 memcg->nodeinfo[node] = pn; 6128 return 0; 6129 } 6130 6131 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6132 { 6133 kfree(memcg->nodeinfo[node]); 6134 } 6135 6136 static struct mem_cgroup *mem_cgroup_alloc(void) 6137 { 6138 struct mem_cgroup *memcg; 6139 size_t size = memcg_size(); 6140 6141 /* Can be very big if nr_node_ids is very big */ 6142 if (size < PAGE_SIZE) 6143 memcg = kzalloc(size, GFP_KERNEL); 6144 else 6145 memcg = vzalloc(size); 6146 6147 if (!memcg) 6148 return NULL; 6149 6150 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 6151 if (!memcg->stat) 6152 goto out_free; 6153 spin_lock_init(&memcg->pcp_counter_lock); 6154 return memcg; 6155 6156 out_free: 6157 if (size < PAGE_SIZE) 6158 kfree(memcg); 6159 else 6160 vfree(memcg); 6161 return NULL; 6162 } 6163 6164 /* 6165 * At destroying mem_cgroup, references from swap_cgroup can remain. 6166 * (scanning all at force_empty is too costly...) 6167 * 6168 * Instead of clearing all references at force_empty, we remember 6169 * the number of reference from swap_cgroup and free mem_cgroup when 6170 * it goes down to 0. 6171 * 6172 * Removal of cgroup itself succeeds regardless of refs from swap. 6173 */ 6174 6175 static void __mem_cgroup_free(struct mem_cgroup *memcg) 6176 { 6177 int node; 6178 size_t size = memcg_size(); 6179 6180 mem_cgroup_remove_from_trees(memcg); 6181 6182 for_each_node(node) 6183 free_mem_cgroup_per_zone_info(memcg, node); 6184 6185 free_percpu(memcg->stat); 6186 6187 /* 6188 * We need to make sure that (at least for now), the jump label 6189 * destruction code runs outside of the cgroup lock. This is because 6190 * get_online_cpus(), which is called from the static_branch update, 6191 * can't be called inside the cgroup_lock. cpusets are the ones 6192 * enforcing this dependency, so if they ever change, we might as well. 6193 * 6194 * schedule_work() will guarantee this happens. Be careful if you need 6195 * to move this code around, and make sure it is outside 6196 * the cgroup_lock. 6197 */ 6198 disarm_static_keys(memcg); 6199 if (size < PAGE_SIZE) 6200 kfree(memcg); 6201 else 6202 vfree(memcg); 6203 } 6204 6205 /* 6206 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6207 */ 6208 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6209 { 6210 if (!memcg->res.parent) 6211 return NULL; 6212 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6213 } 6214 EXPORT_SYMBOL(parent_mem_cgroup); 6215 6216 static void __init mem_cgroup_soft_limit_tree_init(void) 6217 { 6218 struct mem_cgroup_tree_per_node *rtpn; 6219 struct mem_cgroup_tree_per_zone *rtpz; 6220 int tmp, node, zone; 6221 6222 for_each_node(node) { 6223 tmp = node; 6224 if (!node_state(node, N_NORMAL_MEMORY)) 6225 tmp = -1; 6226 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6227 BUG_ON(!rtpn); 6228 6229 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6230 6231 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6232 rtpz = &rtpn->rb_tree_per_zone[zone]; 6233 rtpz->rb_root = RB_ROOT; 6234 spin_lock_init(&rtpz->lock); 6235 } 6236 } 6237 } 6238 6239 static struct cgroup_subsys_state * __ref 6240 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6241 { 6242 struct mem_cgroup *memcg; 6243 long error = -ENOMEM; 6244 int node; 6245 6246 memcg = mem_cgroup_alloc(); 6247 if (!memcg) 6248 return ERR_PTR(error); 6249 6250 for_each_node(node) 6251 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6252 goto free_out; 6253 6254 /* root ? */ 6255 if (parent_css == NULL) { 6256 root_mem_cgroup = memcg; 6257 res_counter_init(&memcg->res, NULL); 6258 res_counter_init(&memcg->memsw, NULL); 6259 res_counter_init(&memcg->kmem, NULL); 6260 } 6261 6262 memcg->last_scanned_node = MAX_NUMNODES; 6263 INIT_LIST_HEAD(&memcg->oom_notify); 6264 memcg->move_charge_at_immigrate = 0; 6265 mutex_init(&memcg->thresholds_lock); 6266 spin_lock_init(&memcg->move_lock); 6267 vmpressure_init(&memcg->vmpressure); 6268 6269 return &memcg->css; 6270 6271 free_out: 6272 __mem_cgroup_free(memcg); 6273 return ERR_PTR(error); 6274 } 6275 6276 static int 6277 mem_cgroup_css_online(struct cgroup_subsys_state *css) 6278 { 6279 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6280 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css)); 6281 int error = 0; 6282 6283 if (css->cgroup->id > MEM_CGROUP_ID_MAX) 6284 return -ENOSPC; 6285 6286 if (!parent) 6287 return 0; 6288 6289 mutex_lock(&memcg_create_mutex); 6290 6291 memcg->use_hierarchy = parent->use_hierarchy; 6292 memcg->oom_kill_disable = parent->oom_kill_disable; 6293 memcg->swappiness = mem_cgroup_swappiness(parent); 6294 6295 if (parent->use_hierarchy) { 6296 res_counter_init(&memcg->res, &parent->res); 6297 res_counter_init(&memcg->memsw, &parent->memsw); 6298 res_counter_init(&memcg->kmem, &parent->kmem); 6299 6300 /* 6301 * No need to take a reference to the parent because cgroup 6302 * core guarantees its existence. 6303 */ 6304 } else { 6305 res_counter_init(&memcg->res, NULL); 6306 res_counter_init(&memcg->memsw, NULL); 6307 res_counter_init(&memcg->kmem, NULL); 6308 /* 6309 * Deeper hierachy with use_hierarchy == false doesn't make 6310 * much sense so let cgroup subsystem know about this 6311 * unfortunate state in our controller. 6312 */ 6313 if (parent != root_mem_cgroup) 6314 mem_cgroup_subsys.broken_hierarchy = true; 6315 } 6316 6317 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 6318 mutex_unlock(&memcg_create_mutex); 6319 return error; 6320 } 6321 6322 /* 6323 * Announce all parents that a group from their hierarchy is gone. 6324 */ 6325 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) 6326 { 6327 struct mem_cgroup *parent = memcg; 6328 6329 while ((parent = parent_mem_cgroup(parent))) 6330 mem_cgroup_iter_invalidate(parent); 6331 6332 /* 6333 * if the root memcg is not hierarchical we have to check it 6334 * explicitely. 6335 */ 6336 if (!root_mem_cgroup->use_hierarchy) 6337 mem_cgroup_iter_invalidate(root_mem_cgroup); 6338 } 6339 6340 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 6341 { 6342 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6343 6344 kmem_cgroup_css_offline(memcg); 6345 6346 mem_cgroup_invalidate_reclaim_iterators(memcg); 6347 mem_cgroup_reparent_charges(memcg); 6348 mem_cgroup_destroy_all_caches(memcg); 6349 vmpressure_cleanup(&memcg->vmpressure); 6350 } 6351 6352 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 6353 { 6354 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6355 6356 memcg_destroy_kmem(memcg); 6357 __mem_cgroup_free(memcg); 6358 } 6359 6360 #ifdef CONFIG_MMU 6361 /* Handlers for move charge at task migration. */ 6362 #define PRECHARGE_COUNT_AT_ONCE 256 6363 static int mem_cgroup_do_precharge(unsigned long count) 6364 { 6365 int ret = 0; 6366 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6367 struct mem_cgroup *memcg = mc.to; 6368 6369 if (mem_cgroup_is_root(memcg)) { 6370 mc.precharge += count; 6371 /* we don't need css_get for root */ 6372 return ret; 6373 } 6374 /* try to charge at once */ 6375 if (count > 1) { 6376 struct res_counter *dummy; 6377 /* 6378 * "memcg" cannot be under rmdir() because we've already checked 6379 * by cgroup_lock_live_cgroup() that it is not removed and we 6380 * are still under the same cgroup_mutex. So we can postpone 6381 * css_get(). 6382 */ 6383 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6384 goto one_by_one; 6385 if (do_swap_account && res_counter_charge(&memcg->memsw, 6386 PAGE_SIZE * count, &dummy)) { 6387 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6388 goto one_by_one; 6389 } 6390 mc.precharge += count; 6391 return ret; 6392 } 6393 one_by_one: 6394 /* fall back to one by one charge */ 6395 while (count--) { 6396 if (signal_pending(current)) { 6397 ret = -EINTR; 6398 break; 6399 } 6400 if (!batch_count--) { 6401 batch_count = PRECHARGE_COUNT_AT_ONCE; 6402 cond_resched(); 6403 } 6404 ret = __mem_cgroup_try_charge(NULL, 6405 GFP_KERNEL, 1, &memcg, false); 6406 if (ret) 6407 /* mem_cgroup_clear_mc() will do uncharge later */ 6408 return ret; 6409 mc.precharge++; 6410 } 6411 return ret; 6412 } 6413 6414 /** 6415 * get_mctgt_type - get target type of moving charge 6416 * @vma: the vma the pte to be checked belongs 6417 * @addr: the address corresponding to the pte to be checked 6418 * @ptent: the pte to be checked 6419 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6420 * 6421 * Returns 6422 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6423 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6424 * move charge. if @target is not NULL, the page is stored in target->page 6425 * with extra refcnt got(Callers should handle it). 6426 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6427 * target for charge migration. if @target is not NULL, the entry is stored 6428 * in target->ent. 6429 * 6430 * Called with pte lock held. 6431 */ 6432 union mc_target { 6433 struct page *page; 6434 swp_entry_t ent; 6435 }; 6436 6437 enum mc_target_type { 6438 MC_TARGET_NONE = 0, 6439 MC_TARGET_PAGE, 6440 MC_TARGET_SWAP, 6441 }; 6442 6443 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6444 unsigned long addr, pte_t ptent) 6445 { 6446 struct page *page = vm_normal_page(vma, addr, ptent); 6447 6448 if (!page || !page_mapped(page)) 6449 return NULL; 6450 if (PageAnon(page)) { 6451 /* we don't move shared anon */ 6452 if (!move_anon()) 6453 return NULL; 6454 } else if (!move_file()) 6455 /* we ignore mapcount for file pages */ 6456 return NULL; 6457 if (!get_page_unless_zero(page)) 6458 return NULL; 6459 6460 return page; 6461 } 6462 6463 #ifdef CONFIG_SWAP 6464 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6465 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6466 { 6467 struct page *page = NULL; 6468 swp_entry_t ent = pte_to_swp_entry(ptent); 6469 6470 if (!move_anon() || non_swap_entry(ent)) 6471 return NULL; 6472 /* 6473 * Because lookup_swap_cache() updates some statistics counter, 6474 * we call find_get_page() with swapper_space directly. 6475 */ 6476 page = find_get_page(swap_address_space(ent), ent.val); 6477 if (do_swap_account) 6478 entry->val = ent.val; 6479 6480 return page; 6481 } 6482 #else 6483 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6484 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6485 { 6486 return NULL; 6487 } 6488 #endif 6489 6490 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6491 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6492 { 6493 struct page *page = NULL; 6494 struct address_space *mapping; 6495 pgoff_t pgoff; 6496 6497 if (!vma->vm_file) /* anonymous vma */ 6498 return NULL; 6499 if (!move_file()) 6500 return NULL; 6501 6502 mapping = vma->vm_file->f_mapping; 6503 if (pte_none(ptent)) 6504 pgoff = linear_page_index(vma, addr); 6505 else /* pte_file(ptent) is true */ 6506 pgoff = pte_to_pgoff(ptent); 6507 6508 /* page is moved even if it's not RSS of this task(page-faulted). */ 6509 page = find_get_page(mapping, pgoff); 6510 6511 #ifdef CONFIG_SWAP 6512 /* shmem/tmpfs may report page out on swap: account for that too. */ 6513 if (radix_tree_exceptional_entry(page)) { 6514 swp_entry_t swap = radix_to_swp_entry(page); 6515 if (do_swap_account) 6516 *entry = swap; 6517 page = find_get_page(swap_address_space(swap), swap.val); 6518 } 6519 #endif 6520 return page; 6521 } 6522 6523 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6524 unsigned long addr, pte_t ptent, union mc_target *target) 6525 { 6526 struct page *page = NULL; 6527 struct page_cgroup *pc; 6528 enum mc_target_type ret = MC_TARGET_NONE; 6529 swp_entry_t ent = { .val = 0 }; 6530 6531 if (pte_present(ptent)) 6532 page = mc_handle_present_pte(vma, addr, ptent); 6533 else if (is_swap_pte(ptent)) 6534 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6535 else if (pte_none(ptent) || pte_file(ptent)) 6536 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6537 6538 if (!page && !ent.val) 6539 return ret; 6540 if (page) { 6541 pc = lookup_page_cgroup(page); 6542 /* 6543 * Do only loose check w/o page_cgroup lock. 6544 * mem_cgroup_move_account() checks the pc is valid or not under 6545 * the lock. 6546 */ 6547 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6548 ret = MC_TARGET_PAGE; 6549 if (target) 6550 target->page = page; 6551 } 6552 if (!ret || !target) 6553 put_page(page); 6554 } 6555 /* There is a swap entry and a page doesn't exist or isn't charged */ 6556 if (ent.val && !ret && 6557 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 6558 ret = MC_TARGET_SWAP; 6559 if (target) 6560 target->ent = ent; 6561 } 6562 return ret; 6563 } 6564 6565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6566 /* 6567 * We don't consider swapping or file mapped pages because THP does not 6568 * support them for now. 6569 * Caller should make sure that pmd_trans_huge(pmd) is true. 6570 */ 6571 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6572 unsigned long addr, pmd_t pmd, union mc_target *target) 6573 { 6574 struct page *page = NULL; 6575 struct page_cgroup *pc; 6576 enum mc_target_type ret = MC_TARGET_NONE; 6577 6578 page = pmd_page(pmd); 6579 VM_BUG_ON(!page || !PageHead(page)); 6580 if (!move_anon()) 6581 return ret; 6582 pc = lookup_page_cgroup(page); 6583 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6584 ret = MC_TARGET_PAGE; 6585 if (target) { 6586 get_page(page); 6587 target->page = page; 6588 } 6589 } 6590 return ret; 6591 } 6592 #else 6593 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6594 unsigned long addr, pmd_t pmd, union mc_target *target) 6595 { 6596 return MC_TARGET_NONE; 6597 } 6598 #endif 6599 6600 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6601 unsigned long addr, unsigned long end, 6602 struct mm_walk *walk) 6603 { 6604 struct vm_area_struct *vma = walk->private; 6605 pte_t *pte; 6606 spinlock_t *ptl; 6607 6608 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 6609 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6610 mc.precharge += HPAGE_PMD_NR; 6611 spin_unlock(ptl); 6612 return 0; 6613 } 6614 6615 if (pmd_trans_unstable(pmd)) 6616 return 0; 6617 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6618 for (; addr != end; pte++, addr += PAGE_SIZE) 6619 if (get_mctgt_type(vma, addr, *pte, NULL)) 6620 mc.precharge++; /* increment precharge temporarily */ 6621 pte_unmap_unlock(pte - 1, ptl); 6622 cond_resched(); 6623 6624 return 0; 6625 } 6626 6627 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6628 { 6629 unsigned long precharge; 6630 struct vm_area_struct *vma; 6631 6632 down_read(&mm->mmap_sem); 6633 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6634 struct mm_walk mem_cgroup_count_precharge_walk = { 6635 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6636 .mm = mm, 6637 .private = vma, 6638 }; 6639 if (is_vm_hugetlb_page(vma)) 6640 continue; 6641 walk_page_range(vma->vm_start, vma->vm_end, 6642 &mem_cgroup_count_precharge_walk); 6643 } 6644 up_read(&mm->mmap_sem); 6645 6646 precharge = mc.precharge; 6647 mc.precharge = 0; 6648 6649 return precharge; 6650 } 6651 6652 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6653 { 6654 unsigned long precharge = mem_cgroup_count_precharge(mm); 6655 6656 VM_BUG_ON(mc.moving_task); 6657 mc.moving_task = current; 6658 return mem_cgroup_do_precharge(precharge); 6659 } 6660 6661 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6662 static void __mem_cgroup_clear_mc(void) 6663 { 6664 struct mem_cgroup *from = mc.from; 6665 struct mem_cgroup *to = mc.to; 6666 int i; 6667 6668 /* we must uncharge all the leftover precharges from mc.to */ 6669 if (mc.precharge) { 6670 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6671 mc.precharge = 0; 6672 } 6673 /* 6674 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6675 * we must uncharge here. 6676 */ 6677 if (mc.moved_charge) { 6678 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6679 mc.moved_charge = 0; 6680 } 6681 /* we must fixup refcnts and charges */ 6682 if (mc.moved_swap) { 6683 /* uncharge swap account from the old cgroup */ 6684 if (!mem_cgroup_is_root(mc.from)) 6685 res_counter_uncharge(&mc.from->memsw, 6686 PAGE_SIZE * mc.moved_swap); 6687 6688 for (i = 0; i < mc.moved_swap; i++) 6689 css_put(&mc.from->css); 6690 6691 if (!mem_cgroup_is_root(mc.to)) { 6692 /* 6693 * we charged both to->res and to->memsw, so we should 6694 * uncharge to->res. 6695 */ 6696 res_counter_uncharge(&mc.to->res, 6697 PAGE_SIZE * mc.moved_swap); 6698 } 6699 /* we've already done css_get(mc.to) */ 6700 mc.moved_swap = 0; 6701 } 6702 memcg_oom_recover(from); 6703 memcg_oom_recover(to); 6704 wake_up_all(&mc.waitq); 6705 } 6706 6707 static void mem_cgroup_clear_mc(void) 6708 { 6709 struct mem_cgroup *from = mc.from; 6710 6711 /* 6712 * we must clear moving_task before waking up waiters at the end of 6713 * task migration. 6714 */ 6715 mc.moving_task = NULL; 6716 __mem_cgroup_clear_mc(); 6717 spin_lock(&mc.lock); 6718 mc.from = NULL; 6719 mc.to = NULL; 6720 spin_unlock(&mc.lock); 6721 mem_cgroup_end_move(from); 6722 } 6723 6724 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6725 struct cgroup_taskset *tset) 6726 { 6727 struct task_struct *p = cgroup_taskset_first(tset); 6728 int ret = 0; 6729 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6730 unsigned long move_charge_at_immigrate; 6731 6732 /* 6733 * We are now commited to this value whatever it is. Changes in this 6734 * tunable will only affect upcoming migrations, not the current one. 6735 * So we need to save it, and keep it going. 6736 */ 6737 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 6738 if (move_charge_at_immigrate) { 6739 struct mm_struct *mm; 6740 struct mem_cgroup *from = mem_cgroup_from_task(p); 6741 6742 VM_BUG_ON(from == memcg); 6743 6744 mm = get_task_mm(p); 6745 if (!mm) 6746 return 0; 6747 /* We move charges only when we move a owner of the mm */ 6748 if (mm->owner == p) { 6749 VM_BUG_ON(mc.from); 6750 VM_BUG_ON(mc.to); 6751 VM_BUG_ON(mc.precharge); 6752 VM_BUG_ON(mc.moved_charge); 6753 VM_BUG_ON(mc.moved_swap); 6754 mem_cgroup_start_move(from); 6755 spin_lock(&mc.lock); 6756 mc.from = from; 6757 mc.to = memcg; 6758 mc.immigrate_flags = move_charge_at_immigrate; 6759 spin_unlock(&mc.lock); 6760 /* We set mc.moving_task later */ 6761 6762 ret = mem_cgroup_precharge_mc(mm); 6763 if (ret) 6764 mem_cgroup_clear_mc(); 6765 } 6766 mmput(mm); 6767 } 6768 return ret; 6769 } 6770 6771 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6772 struct cgroup_taskset *tset) 6773 { 6774 mem_cgroup_clear_mc(); 6775 } 6776 6777 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6778 unsigned long addr, unsigned long end, 6779 struct mm_walk *walk) 6780 { 6781 int ret = 0; 6782 struct vm_area_struct *vma = walk->private; 6783 pte_t *pte; 6784 spinlock_t *ptl; 6785 enum mc_target_type target_type; 6786 union mc_target target; 6787 struct page *page; 6788 struct page_cgroup *pc; 6789 6790 /* 6791 * We don't take compound_lock() here but no race with splitting thp 6792 * happens because: 6793 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6794 * under splitting, which means there's no concurrent thp split, 6795 * - if another thread runs into split_huge_page() just after we 6796 * entered this if-block, the thread must wait for page table lock 6797 * to be unlocked in __split_huge_page_splitting(), where the main 6798 * part of thp split is not executed yet. 6799 */ 6800 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 6801 if (mc.precharge < HPAGE_PMD_NR) { 6802 spin_unlock(ptl); 6803 return 0; 6804 } 6805 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6806 if (target_type == MC_TARGET_PAGE) { 6807 page = target.page; 6808 if (!isolate_lru_page(page)) { 6809 pc = lookup_page_cgroup(page); 6810 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6811 pc, mc.from, mc.to)) { 6812 mc.precharge -= HPAGE_PMD_NR; 6813 mc.moved_charge += HPAGE_PMD_NR; 6814 } 6815 putback_lru_page(page); 6816 } 6817 put_page(page); 6818 } 6819 spin_unlock(ptl); 6820 return 0; 6821 } 6822 6823 if (pmd_trans_unstable(pmd)) 6824 return 0; 6825 retry: 6826 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6827 for (; addr != end; addr += PAGE_SIZE) { 6828 pte_t ptent = *(pte++); 6829 swp_entry_t ent; 6830 6831 if (!mc.precharge) 6832 break; 6833 6834 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6835 case MC_TARGET_PAGE: 6836 page = target.page; 6837 if (isolate_lru_page(page)) 6838 goto put; 6839 pc = lookup_page_cgroup(page); 6840 if (!mem_cgroup_move_account(page, 1, pc, 6841 mc.from, mc.to)) { 6842 mc.precharge--; 6843 /* we uncharge from mc.from later. */ 6844 mc.moved_charge++; 6845 } 6846 putback_lru_page(page); 6847 put: /* get_mctgt_type() gets the page */ 6848 put_page(page); 6849 break; 6850 case MC_TARGET_SWAP: 6851 ent = target.ent; 6852 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6853 mc.precharge--; 6854 /* we fixup refcnts and charges later. */ 6855 mc.moved_swap++; 6856 } 6857 break; 6858 default: 6859 break; 6860 } 6861 } 6862 pte_unmap_unlock(pte - 1, ptl); 6863 cond_resched(); 6864 6865 if (addr != end) { 6866 /* 6867 * We have consumed all precharges we got in can_attach(). 6868 * We try charge one by one, but don't do any additional 6869 * charges to mc.to if we have failed in charge once in attach() 6870 * phase. 6871 */ 6872 ret = mem_cgroup_do_precharge(1); 6873 if (!ret) 6874 goto retry; 6875 } 6876 6877 return ret; 6878 } 6879 6880 static void mem_cgroup_move_charge(struct mm_struct *mm) 6881 { 6882 struct vm_area_struct *vma; 6883 6884 lru_add_drain_all(); 6885 retry: 6886 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6887 /* 6888 * Someone who are holding the mmap_sem might be waiting in 6889 * waitq. So we cancel all extra charges, wake up all waiters, 6890 * and retry. Because we cancel precharges, we might not be able 6891 * to move enough charges, but moving charge is a best-effort 6892 * feature anyway, so it wouldn't be a big problem. 6893 */ 6894 __mem_cgroup_clear_mc(); 6895 cond_resched(); 6896 goto retry; 6897 } 6898 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6899 int ret; 6900 struct mm_walk mem_cgroup_move_charge_walk = { 6901 .pmd_entry = mem_cgroup_move_charge_pte_range, 6902 .mm = mm, 6903 .private = vma, 6904 }; 6905 if (is_vm_hugetlb_page(vma)) 6906 continue; 6907 ret = walk_page_range(vma->vm_start, vma->vm_end, 6908 &mem_cgroup_move_charge_walk); 6909 if (ret) 6910 /* 6911 * means we have consumed all precharges and failed in 6912 * doing additional charge. Just abandon here. 6913 */ 6914 break; 6915 } 6916 up_read(&mm->mmap_sem); 6917 } 6918 6919 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6920 struct cgroup_taskset *tset) 6921 { 6922 struct task_struct *p = cgroup_taskset_first(tset); 6923 struct mm_struct *mm = get_task_mm(p); 6924 6925 if (mm) { 6926 if (mc.to) 6927 mem_cgroup_move_charge(mm); 6928 mmput(mm); 6929 } 6930 if (mc.to) 6931 mem_cgroup_clear_mc(); 6932 } 6933 #else /* !CONFIG_MMU */ 6934 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6935 struct cgroup_taskset *tset) 6936 { 6937 return 0; 6938 } 6939 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6940 struct cgroup_taskset *tset) 6941 { 6942 } 6943 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6944 struct cgroup_taskset *tset) 6945 { 6946 } 6947 #endif 6948 6949 /* 6950 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6951 * to verify sane_behavior flag on each mount attempt. 6952 */ 6953 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 6954 { 6955 /* 6956 * use_hierarchy is forced with sane_behavior. cgroup core 6957 * guarantees that @root doesn't have any children, so turning it 6958 * on for the root memcg is enough. 6959 */ 6960 if (cgroup_sane_behavior(root_css->cgroup)) 6961 mem_cgroup_from_css(root_css)->use_hierarchy = true; 6962 } 6963 6964 struct cgroup_subsys mem_cgroup_subsys = { 6965 .name = "memory", 6966 .subsys_id = mem_cgroup_subsys_id, 6967 .css_alloc = mem_cgroup_css_alloc, 6968 .css_online = mem_cgroup_css_online, 6969 .css_offline = mem_cgroup_css_offline, 6970 .css_free = mem_cgroup_css_free, 6971 .can_attach = mem_cgroup_can_attach, 6972 .cancel_attach = mem_cgroup_cancel_attach, 6973 .attach = mem_cgroup_move_task, 6974 .bind = mem_cgroup_bind, 6975 .base_cftypes = mem_cgroup_files, 6976 .early_init = 0, 6977 }; 6978 6979 #ifdef CONFIG_MEMCG_SWAP 6980 static int __init enable_swap_account(char *s) 6981 { 6982 if (!strcmp(s, "1")) 6983 really_do_swap_account = 1; 6984 else if (!strcmp(s, "0")) 6985 really_do_swap_account = 0; 6986 return 1; 6987 } 6988 __setup("swapaccount=", enable_swap_account); 6989 6990 static void __init memsw_file_init(void) 6991 { 6992 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); 6993 } 6994 6995 static void __init enable_swap_cgroup(void) 6996 { 6997 if (!mem_cgroup_disabled() && really_do_swap_account) { 6998 do_swap_account = 1; 6999 memsw_file_init(); 7000 } 7001 } 7002 7003 #else 7004 static void __init enable_swap_cgroup(void) 7005 { 7006 } 7007 #endif 7008 7009 /* 7010 * subsys_initcall() for memory controller. 7011 * 7012 * Some parts like hotcpu_notifier() have to be initialized from this context 7013 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 7014 * everything that doesn't depend on a specific mem_cgroup structure should 7015 * be initialized from here. 7016 */ 7017 static int __init mem_cgroup_init(void) 7018 { 7019 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 7020 enable_swap_cgroup(); 7021 mem_cgroup_soft_limit_tree_init(); 7022 memcg_stock_init(); 7023 return 0; 7024 } 7025 subsys_initcall(mem_cgroup_init); 7026