xref: /linux/mm/memcontrol.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
35 #include <linux/fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
40 #include "internal.h"
41 
42 #include <asm/uaccess.h>
43 
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
45 #define MEM_CGROUP_RECLAIM_RETRIES	5
46 
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
49 int do_swap_account __read_mostly;
50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
51 #else
52 #define do_swap_account		(0)
53 #endif
54 
55 static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
56 
57 /*
58  * Statistics for memory cgroup.
59  */
60 enum mem_cgroup_stat_index {
61 	/*
62 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 	 */
64 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
65 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
66 	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
67 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
68 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
69 
70 	MEM_CGROUP_STAT_NSTATS,
71 };
72 
73 struct mem_cgroup_stat_cpu {
74 	s64 count[MEM_CGROUP_STAT_NSTATS];
75 } ____cacheline_aligned_in_smp;
76 
77 struct mem_cgroup_stat {
78 	struct mem_cgroup_stat_cpu cpustat[0];
79 };
80 
81 /*
82  * For accounting under irq disable, no need for increment preempt count.
83  */
84 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
85 		enum mem_cgroup_stat_index idx, int val)
86 {
87 	stat->count[idx] += val;
88 }
89 
90 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
91 		enum mem_cgroup_stat_index idx)
92 {
93 	int cpu;
94 	s64 ret = 0;
95 	for_each_possible_cpu(cpu)
96 		ret += stat->cpustat[cpu].count[idx];
97 	return ret;
98 }
99 
100 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
101 {
102 	s64 ret;
103 
104 	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
105 	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
106 	return ret;
107 }
108 
109 /*
110  * per-zone information in memory controller.
111  */
112 struct mem_cgroup_per_zone {
113 	/*
114 	 * spin_lock to protect the per cgroup LRU
115 	 */
116 	struct list_head	lists[NR_LRU_LISTS];
117 	unsigned long		count[NR_LRU_LISTS];
118 
119 	struct zone_reclaim_stat reclaim_stat;
120 };
121 /* Macro for accessing counter */
122 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
123 
124 struct mem_cgroup_per_node {
125 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
126 };
127 
128 struct mem_cgroup_lru_info {
129 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
130 };
131 
132 /*
133  * The memory controller data structure. The memory controller controls both
134  * page cache and RSS per cgroup. We would eventually like to provide
135  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
136  * to help the administrator determine what knobs to tune.
137  *
138  * TODO: Add a water mark for the memory controller. Reclaim will begin when
139  * we hit the water mark. May be even add a low water mark, such that
140  * no reclaim occurs from a cgroup at it's low water mark, this is
141  * a feature that will be implemented much later in the future.
142  */
143 struct mem_cgroup {
144 	struct cgroup_subsys_state css;
145 	/*
146 	 * the counter to account for memory usage
147 	 */
148 	struct res_counter res;
149 	/*
150 	 * the counter to account for mem+swap usage.
151 	 */
152 	struct res_counter memsw;
153 	/*
154 	 * Per cgroup active and inactive list, similar to the
155 	 * per zone LRU lists.
156 	 */
157 	struct mem_cgroup_lru_info info;
158 
159 	/*
160 	  protect against reclaim related member.
161 	*/
162 	spinlock_t reclaim_param_lock;
163 
164 	int	prev_priority;	/* for recording reclaim priority */
165 
166 	/*
167 	 * While reclaiming in a hiearchy, we cache the last child we
168 	 * reclaimed from.
169 	 */
170 	int last_scanned_child;
171 	/*
172 	 * Should the accounting and control be hierarchical, per subtree?
173 	 */
174 	bool use_hierarchy;
175 	unsigned long	last_oom_jiffies;
176 	atomic_t	refcnt;
177 
178 	unsigned int	swappiness;
179 
180 	/* set when res.limit == memsw.limit */
181 	bool		memsw_is_minimum;
182 
183 	/*
184 	 * statistics. This must be placed at the end of memcg.
185 	 */
186 	struct mem_cgroup_stat stat;
187 };
188 
189 enum charge_type {
190 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
191 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
192 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
193 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
194 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
195 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
196 	NR_CHARGE_TYPE,
197 };
198 
199 /* only for here (for easy reading.) */
200 #define PCGF_CACHE	(1UL << PCG_CACHE)
201 #define PCGF_USED	(1UL << PCG_USED)
202 #define PCGF_LOCK	(1UL << PCG_LOCK)
203 static const unsigned long
204 pcg_default_flags[NR_CHARGE_TYPE] = {
205 	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
206 	PCGF_USED | PCGF_LOCK, /* Anon */
207 	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
208 	0, /* FORCE */
209 };
210 
211 /* for encoding cft->private value on file */
212 #define _MEM			(0)
213 #define _MEMSWAP		(1)
214 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
215 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
216 #define MEMFILE_ATTR(val)	((val) & 0xffff)
217 
218 static void mem_cgroup_get(struct mem_cgroup *mem);
219 static void mem_cgroup_put(struct mem_cgroup *mem);
220 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
221 
222 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
223 					 struct page_cgroup *pc,
224 					 bool charge)
225 {
226 	int val = (charge)? 1 : -1;
227 	struct mem_cgroup_stat *stat = &mem->stat;
228 	struct mem_cgroup_stat_cpu *cpustat;
229 	int cpu = get_cpu();
230 
231 	cpustat = &stat->cpustat[cpu];
232 	if (PageCgroupCache(pc))
233 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
234 	else
235 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
236 
237 	if (charge)
238 		__mem_cgroup_stat_add_safe(cpustat,
239 				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
240 	else
241 		__mem_cgroup_stat_add_safe(cpustat,
242 				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
243 	put_cpu();
244 }
245 
246 static struct mem_cgroup_per_zone *
247 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
248 {
249 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
250 }
251 
252 static struct mem_cgroup_per_zone *
253 page_cgroup_zoneinfo(struct page_cgroup *pc)
254 {
255 	struct mem_cgroup *mem = pc->mem_cgroup;
256 	int nid = page_cgroup_nid(pc);
257 	int zid = page_cgroup_zid(pc);
258 
259 	if (!mem)
260 		return NULL;
261 
262 	return mem_cgroup_zoneinfo(mem, nid, zid);
263 }
264 
265 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
266 					enum lru_list idx)
267 {
268 	int nid, zid;
269 	struct mem_cgroup_per_zone *mz;
270 	u64 total = 0;
271 
272 	for_each_online_node(nid)
273 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
274 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
275 			total += MEM_CGROUP_ZSTAT(mz, idx);
276 		}
277 	return total;
278 }
279 
280 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
281 {
282 	return container_of(cgroup_subsys_state(cont,
283 				mem_cgroup_subsys_id), struct mem_cgroup,
284 				css);
285 }
286 
287 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
288 {
289 	/*
290 	 * mm_update_next_owner() may clear mm->owner to NULL
291 	 * if it races with swapoff, page migration, etc.
292 	 * So this can be called with p == NULL.
293 	 */
294 	if (unlikely(!p))
295 		return NULL;
296 
297 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
298 				struct mem_cgroup, css);
299 }
300 
301 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
302 {
303 	struct mem_cgroup *mem = NULL;
304 
305 	if (!mm)
306 		return NULL;
307 	/*
308 	 * Because we have no locks, mm->owner's may be being moved to other
309 	 * cgroup. We use css_tryget() here even if this looks
310 	 * pessimistic (rather than adding locks here).
311 	 */
312 	rcu_read_lock();
313 	do {
314 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
315 		if (unlikely(!mem))
316 			break;
317 	} while (!css_tryget(&mem->css));
318 	rcu_read_unlock();
319 	return mem;
320 }
321 
322 /*
323  * Call callback function against all cgroup under hierarchy tree.
324  */
325 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
326 			  int (*func)(struct mem_cgroup *, void *))
327 {
328 	int found, ret, nextid;
329 	struct cgroup_subsys_state *css;
330 	struct mem_cgroup *mem;
331 
332 	if (!root->use_hierarchy)
333 		return (*func)(root, data);
334 
335 	nextid = 1;
336 	do {
337 		ret = 0;
338 		mem = NULL;
339 
340 		rcu_read_lock();
341 		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
342 				   &found);
343 		if (css && css_tryget(css))
344 			mem = container_of(css, struct mem_cgroup, css);
345 		rcu_read_unlock();
346 
347 		if (mem) {
348 			ret = (*func)(mem, data);
349 			css_put(&mem->css);
350 		}
351 		nextid = found + 1;
352 	} while (!ret && css);
353 
354 	return ret;
355 }
356 
357 /*
358  * Following LRU functions are allowed to be used without PCG_LOCK.
359  * Operations are called by routine of global LRU independently from memcg.
360  * What we have to take care of here is validness of pc->mem_cgroup.
361  *
362  * Changes to pc->mem_cgroup happens when
363  * 1. charge
364  * 2. moving account
365  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
366  * It is added to LRU before charge.
367  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
368  * When moving account, the page is not on LRU. It's isolated.
369  */
370 
371 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
372 {
373 	struct page_cgroup *pc;
374 	struct mem_cgroup *mem;
375 	struct mem_cgroup_per_zone *mz;
376 
377 	if (mem_cgroup_disabled())
378 		return;
379 	pc = lookup_page_cgroup(page);
380 	/* can happen while we handle swapcache. */
381 	if (list_empty(&pc->lru) || !pc->mem_cgroup)
382 		return;
383 	/*
384 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
385 	 * removed from global LRU.
386 	 */
387 	mz = page_cgroup_zoneinfo(pc);
388 	mem = pc->mem_cgroup;
389 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
390 	list_del_init(&pc->lru);
391 	return;
392 }
393 
394 void mem_cgroup_del_lru(struct page *page)
395 {
396 	mem_cgroup_del_lru_list(page, page_lru(page));
397 }
398 
399 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
400 {
401 	struct mem_cgroup_per_zone *mz;
402 	struct page_cgroup *pc;
403 
404 	if (mem_cgroup_disabled())
405 		return;
406 
407 	pc = lookup_page_cgroup(page);
408 	/*
409 	 * Used bit is set without atomic ops but after smp_wmb().
410 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
411 	 */
412 	smp_rmb();
413 	/* unused page is not rotated. */
414 	if (!PageCgroupUsed(pc))
415 		return;
416 	mz = page_cgroup_zoneinfo(pc);
417 	list_move(&pc->lru, &mz->lists[lru]);
418 }
419 
420 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
421 {
422 	struct page_cgroup *pc;
423 	struct mem_cgroup_per_zone *mz;
424 
425 	if (mem_cgroup_disabled())
426 		return;
427 	pc = lookup_page_cgroup(page);
428 	/*
429 	 * Used bit is set without atomic ops but after smp_wmb().
430 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
431 	 */
432 	smp_rmb();
433 	if (!PageCgroupUsed(pc))
434 		return;
435 
436 	mz = page_cgroup_zoneinfo(pc);
437 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
438 	list_add(&pc->lru, &mz->lists[lru]);
439 }
440 
441 /*
442  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
443  * lru because the page may.be reused after it's fully uncharged (because of
444  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
445  * it again. This function is only used to charge SwapCache. It's done under
446  * lock_page and expected that zone->lru_lock is never held.
447  */
448 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
449 {
450 	unsigned long flags;
451 	struct zone *zone = page_zone(page);
452 	struct page_cgroup *pc = lookup_page_cgroup(page);
453 
454 	spin_lock_irqsave(&zone->lru_lock, flags);
455 	/*
456 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
457 	 * is guarded by lock_page() because the page is SwapCache.
458 	 */
459 	if (!PageCgroupUsed(pc))
460 		mem_cgroup_del_lru_list(page, page_lru(page));
461 	spin_unlock_irqrestore(&zone->lru_lock, flags);
462 }
463 
464 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
465 {
466 	unsigned long flags;
467 	struct zone *zone = page_zone(page);
468 	struct page_cgroup *pc = lookup_page_cgroup(page);
469 
470 	spin_lock_irqsave(&zone->lru_lock, flags);
471 	/* link when the page is linked to LRU but page_cgroup isn't */
472 	if (PageLRU(page) && list_empty(&pc->lru))
473 		mem_cgroup_add_lru_list(page, page_lru(page));
474 	spin_unlock_irqrestore(&zone->lru_lock, flags);
475 }
476 
477 
478 void mem_cgroup_move_lists(struct page *page,
479 			   enum lru_list from, enum lru_list to)
480 {
481 	if (mem_cgroup_disabled())
482 		return;
483 	mem_cgroup_del_lru_list(page, from);
484 	mem_cgroup_add_lru_list(page, to);
485 }
486 
487 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
488 {
489 	int ret;
490 	struct mem_cgroup *curr = NULL;
491 
492 	task_lock(task);
493 	rcu_read_lock();
494 	curr = try_get_mem_cgroup_from_mm(task->mm);
495 	rcu_read_unlock();
496 	task_unlock(task);
497 	if (!curr)
498 		return 0;
499 	if (curr->use_hierarchy)
500 		ret = css_is_ancestor(&curr->css, &mem->css);
501 	else
502 		ret = (curr == mem);
503 	css_put(&curr->css);
504 	return ret;
505 }
506 
507 /*
508  * prev_priority control...this will be used in memory reclaim path.
509  */
510 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
511 {
512 	int prev_priority;
513 
514 	spin_lock(&mem->reclaim_param_lock);
515 	prev_priority = mem->prev_priority;
516 	spin_unlock(&mem->reclaim_param_lock);
517 
518 	return prev_priority;
519 }
520 
521 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
522 {
523 	spin_lock(&mem->reclaim_param_lock);
524 	if (priority < mem->prev_priority)
525 		mem->prev_priority = priority;
526 	spin_unlock(&mem->reclaim_param_lock);
527 }
528 
529 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
530 {
531 	spin_lock(&mem->reclaim_param_lock);
532 	mem->prev_priority = priority;
533 	spin_unlock(&mem->reclaim_param_lock);
534 }
535 
536 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
537 {
538 	unsigned long active;
539 	unsigned long inactive;
540 	unsigned long gb;
541 	unsigned long inactive_ratio;
542 
543 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
544 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
545 
546 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
547 	if (gb)
548 		inactive_ratio = int_sqrt(10 * gb);
549 	else
550 		inactive_ratio = 1;
551 
552 	if (present_pages) {
553 		present_pages[0] = inactive;
554 		present_pages[1] = active;
555 	}
556 
557 	return inactive_ratio;
558 }
559 
560 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
561 {
562 	unsigned long active;
563 	unsigned long inactive;
564 	unsigned long present_pages[2];
565 	unsigned long inactive_ratio;
566 
567 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
568 
569 	inactive = present_pages[0];
570 	active = present_pages[1];
571 
572 	if (inactive * inactive_ratio < active)
573 		return 1;
574 
575 	return 0;
576 }
577 
578 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
579 {
580 	unsigned long active;
581 	unsigned long inactive;
582 
583 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
584 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
585 
586 	return (active > inactive);
587 }
588 
589 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
590 				       struct zone *zone,
591 				       enum lru_list lru)
592 {
593 	int nid = zone->zone_pgdat->node_id;
594 	int zid = zone_idx(zone);
595 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
596 
597 	return MEM_CGROUP_ZSTAT(mz, lru);
598 }
599 
600 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
601 						      struct zone *zone)
602 {
603 	int nid = zone->zone_pgdat->node_id;
604 	int zid = zone_idx(zone);
605 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
606 
607 	return &mz->reclaim_stat;
608 }
609 
610 struct zone_reclaim_stat *
611 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
612 {
613 	struct page_cgroup *pc;
614 	struct mem_cgroup_per_zone *mz;
615 
616 	if (mem_cgroup_disabled())
617 		return NULL;
618 
619 	pc = lookup_page_cgroup(page);
620 	/*
621 	 * Used bit is set without atomic ops but after smp_wmb().
622 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
623 	 */
624 	smp_rmb();
625 	if (!PageCgroupUsed(pc))
626 		return NULL;
627 
628 	mz = page_cgroup_zoneinfo(pc);
629 	if (!mz)
630 		return NULL;
631 
632 	return &mz->reclaim_stat;
633 }
634 
635 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
636 					struct list_head *dst,
637 					unsigned long *scanned, int order,
638 					int mode, struct zone *z,
639 					struct mem_cgroup *mem_cont,
640 					int active, int file)
641 {
642 	unsigned long nr_taken = 0;
643 	struct page *page;
644 	unsigned long scan;
645 	LIST_HEAD(pc_list);
646 	struct list_head *src;
647 	struct page_cgroup *pc, *tmp;
648 	int nid = z->zone_pgdat->node_id;
649 	int zid = zone_idx(z);
650 	struct mem_cgroup_per_zone *mz;
651 	int lru = LRU_FILE * !!file + !!active;
652 	int ret;
653 
654 	BUG_ON(!mem_cont);
655 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
656 	src = &mz->lists[lru];
657 
658 	scan = 0;
659 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
660 		if (scan >= nr_to_scan)
661 			break;
662 
663 		page = pc->page;
664 		if (unlikely(!PageCgroupUsed(pc)))
665 			continue;
666 		if (unlikely(!PageLRU(page)))
667 			continue;
668 
669 		scan++;
670 		ret = __isolate_lru_page(page, mode, file);
671 		switch (ret) {
672 		case 0:
673 			list_move(&page->lru, dst);
674 			mem_cgroup_del_lru(page);
675 			nr_taken++;
676 			break;
677 		case -EBUSY:
678 			/* we don't affect global LRU but rotate in our LRU */
679 			mem_cgroup_rotate_lru_list(page, page_lru(page));
680 			break;
681 		default:
682 			break;
683 		}
684 	}
685 
686 	*scanned = scan;
687 	return nr_taken;
688 }
689 
690 #define mem_cgroup_from_res_counter(counter, member)	\
691 	container_of(counter, struct mem_cgroup, member)
692 
693 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
694 {
695 	if (do_swap_account) {
696 		if (res_counter_check_under_limit(&mem->res) &&
697 			res_counter_check_under_limit(&mem->memsw))
698 			return true;
699 	} else
700 		if (res_counter_check_under_limit(&mem->res))
701 			return true;
702 	return false;
703 }
704 
705 static unsigned int get_swappiness(struct mem_cgroup *memcg)
706 {
707 	struct cgroup *cgrp = memcg->css.cgroup;
708 	unsigned int swappiness;
709 
710 	/* root ? */
711 	if (cgrp->parent == NULL)
712 		return vm_swappiness;
713 
714 	spin_lock(&memcg->reclaim_param_lock);
715 	swappiness = memcg->swappiness;
716 	spin_unlock(&memcg->reclaim_param_lock);
717 
718 	return swappiness;
719 }
720 
721 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
722 {
723 	int *val = data;
724 	(*val)++;
725 	return 0;
726 }
727 
728 /**
729  * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
730  * @memcg: The memory cgroup that went over limit
731  * @p: Task that is going to be killed
732  *
733  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
734  * enabled
735  */
736 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
737 {
738 	struct cgroup *task_cgrp;
739 	struct cgroup *mem_cgrp;
740 	/*
741 	 * Need a buffer in BSS, can't rely on allocations. The code relies
742 	 * on the assumption that OOM is serialized for memory controller.
743 	 * If this assumption is broken, revisit this code.
744 	 */
745 	static char memcg_name[PATH_MAX];
746 	int ret;
747 
748 	if (!memcg)
749 		return;
750 
751 
752 	rcu_read_lock();
753 
754 	mem_cgrp = memcg->css.cgroup;
755 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
756 
757 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
758 	if (ret < 0) {
759 		/*
760 		 * Unfortunately, we are unable to convert to a useful name
761 		 * But we'll still print out the usage information
762 		 */
763 		rcu_read_unlock();
764 		goto done;
765 	}
766 	rcu_read_unlock();
767 
768 	printk(KERN_INFO "Task in %s killed", memcg_name);
769 
770 	rcu_read_lock();
771 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
772 	if (ret < 0) {
773 		rcu_read_unlock();
774 		goto done;
775 	}
776 	rcu_read_unlock();
777 
778 	/*
779 	 * Continues from above, so we don't need an KERN_ level
780 	 */
781 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
782 done:
783 
784 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
785 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
786 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
787 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
788 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
789 		"failcnt %llu\n",
790 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
791 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
792 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
793 }
794 
795 /*
796  * This function returns the number of memcg under hierarchy tree. Returns
797  * 1(self count) if no children.
798  */
799 static int mem_cgroup_count_children(struct mem_cgroup *mem)
800 {
801 	int num = 0;
802  	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
803 	return num;
804 }
805 
806 /*
807  * Visit the first child (need not be the first child as per the ordering
808  * of the cgroup list, since we track last_scanned_child) of @mem and use
809  * that to reclaim free pages from.
810  */
811 static struct mem_cgroup *
812 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
813 {
814 	struct mem_cgroup *ret = NULL;
815 	struct cgroup_subsys_state *css;
816 	int nextid, found;
817 
818 	if (!root_mem->use_hierarchy) {
819 		css_get(&root_mem->css);
820 		ret = root_mem;
821 	}
822 
823 	while (!ret) {
824 		rcu_read_lock();
825 		nextid = root_mem->last_scanned_child + 1;
826 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
827 				   &found);
828 		if (css && css_tryget(css))
829 			ret = container_of(css, struct mem_cgroup, css);
830 
831 		rcu_read_unlock();
832 		/* Updates scanning parameter */
833 		spin_lock(&root_mem->reclaim_param_lock);
834 		if (!css) {
835 			/* this means start scan from ID:1 */
836 			root_mem->last_scanned_child = 0;
837 		} else
838 			root_mem->last_scanned_child = found;
839 		spin_unlock(&root_mem->reclaim_param_lock);
840 	}
841 
842 	return ret;
843 }
844 
845 /*
846  * Scan the hierarchy if needed to reclaim memory. We remember the last child
847  * we reclaimed from, so that we don't end up penalizing one child extensively
848  * based on its position in the children list.
849  *
850  * root_mem is the original ancestor that we've been reclaim from.
851  *
852  * We give up and return to the caller when we visit root_mem twice.
853  * (other groups can be removed while we're walking....)
854  *
855  * If shrink==true, for avoiding to free too much, this returns immedieately.
856  */
857 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
858 				   gfp_t gfp_mask, bool noswap, bool shrink)
859 {
860 	struct mem_cgroup *victim;
861 	int ret, total = 0;
862 	int loop = 0;
863 
864 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
865 	if (root_mem->memsw_is_minimum)
866 		noswap = true;
867 
868 	while (loop < 2) {
869 		victim = mem_cgroup_select_victim(root_mem);
870 		if (victim == root_mem)
871 			loop++;
872 		if (!mem_cgroup_local_usage(&victim->stat)) {
873 			/* this cgroup's local usage == 0 */
874 			css_put(&victim->css);
875 			continue;
876 		}
877 		/* we use swappiness of local cgroup */
878 		ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
879 						   get_swappiness(victim));
880 		css_put(&victim->css);
881 		/*
882 		 * At shrinking usage, we can't check we should stop here or
883 		 * reclaim more. It's depends on callers. last_scanned_child
884 		 * will work enough for keeping fairness under tree.
885 		 */
886 		if (shrink)
887 			return ret;
888 		total += ret;
889 		if (mem_cgroup_check_under_limit(root_mem))
890 			return 1 + total;
891 	}
892 	return total;
893 }
894 
895 bool mem_cgroup_oom_called(struct task_struct *task)
896 {
897 	bool ret = false;
898 	struct mem_cgroup *mem;
899 	struct mm_struct *mm;
900 
901 	rcu_read_lock();
902 	mm = task->mm;
903 	if (!mm)
904 		mm = &init_mm;
905 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
906 	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
907 		ret = true;
908 	rcu_read_unlock();
909 	return ret;
910 }
911 
912 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
913 {
914 	mem->last_oom_jiffies = jiffies;
915 	return 0;
916 }
917 
918 static void record_last_oom(struct mem_cgroup *mem)
919 {
920 	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
921 }
922 
923 /*
924  * Currently used to update mapped file statistics, but the routine can be
925  * generalized to update other statistics as well.
926  */
927 void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
928 {
929 	struct mem_cgroup *mem;
930 	struct mem_cgroup_stat *stat;
931 	struct mem_cgroup_stat_cpu *cpustat;
932 	int cpu;
933 	struct page_cgroup *pc;
934 
935 	if (!page_is_file_cache(page))
936 		return;
937 
938 	pc = lookup_page_cgroup(page);
939 	if (unlikely(!pc))
940 		return;
941 
942 	lock_page_cgroup(pc);
943 	mem = pc->mem_cgroup;
944 	if (!mem)
945 		goto done;
946 
947 	if (!PageCgroupUsed(pc))
948 		goto done;
949 
950 	/*
951 	 * Preemption is already disabled, we don't need get_cpu()
952 	 */
953 	cpu = smp_processor_id();
954 	stat = &mem->stat;
955 	cpustat = &stat->cpustat[cpu];
956 
957 	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
958 done:
959 	unlock_page_cgroup(pc);
960 }
961 
962 /*
963  * Unlike exported interface, "oom" parameter is added. if oom==true,
964  * oom-killer can be invoked.
965  */
966 static int __mem_cgroup_try_charge(struct mm_struct *mm,
967 			gfp_t gfp_mask, struct mem_cgroup **memcg,
968 			bool oom)
969 {
970 	struct mem_cgroup *mem, *mem_over_limit;
971 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
972 	struct res_counter *fail_res;
973 
974 	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
975 		/* Don't account this! */
976 		*memcg = NULL;
977 		return 0;
978 	}
979 
980 	/*
981 	 * We always charge the cgroup the mm_struct belongs to.
982 	 * The mm_struct's mem_cgroup changes on task migration if the
983 	 * thread group leader migrates. It's possible that mm is not
984 	 * set, if so charge the init_mm (happens for pagecache usage).
985 	 */
986 	mem = *memcg;
987 	if (likely(!mem)) {
988 		mem = try_get_mem_cgroup_from_mm(mm);
989 		*memcg = mem;
990 	} else {
991 		css_get(&mem->css);
992 	}
993 	if (unlikely(!mem))
994 		return 0;
995 
996 	VM_BUG_ON(css_is_removed(&mem->css));
997 
998 	while (1) {
999 		int ret;
1000 		bool noswap = false;
1001 
1002 		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
1003 		if (likely(!ret)) {
1004 			if (!do_swap_account)
1005 				break;
1006 			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1007 							&fail_res);
1008 			if (likely(!ret))
1009 				break;
1010 			/* mem+swap counter fails */
1011 			res_counter_uncharge(&mem->res, PAGE_SIZE);
1012 			noswap = true;
1013 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1014 									memsw);
1015 		} else
1016 			/* mem counter fails */
1017 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1018 									res);
1019 
1020 		if (!(gfp_mask & __GFP_WAIT))
1021 			goto nomem;
1022 
1023 		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
1024 							noswap, false);
1025 		if (ret)
1026 			continue;
1027 
1028 		/*
1029 		 * try_to_free_mem_cgroup_pages() might not give us a full
1030 		 * picture of reclaim. Some pages are reclaimed and might be
1031 		 * moved to swap cache or just unmapped from the cgroup.
1032 		 * Check the limit again to see if the reclaim reduced the
1033 		 * current usage of the cgroup before giving up
1034 		 *
1035 		 */
1036 		if (mem_cgroup_check_under_limit(mem_over_limit))
1037 			continue;
1038 
1039 		if (!nr_retries--) {
1040 			if (oom) {
1041 				mutex_lock(&memcg_tasklist);
1042 				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1043 				mutex_unlock(&memcg_tasklist);
1044 				record_last_oom(mem_over_limit);
1045 			}
1046 			goto nomem;
1047 		}
1048 	}
1049 	return 0;
1050 nomem:
1051 	css_put(&mem->css);
1052 	return -ENOMEM;
1053 }
1054 
1055 
1056 /*
1057  * A helper function to get mem_cgroup from ID. must be called under
1058  * rcu_read_lock(). The caller must check css_is_removed() or some if
1059  * it's concern. (dropping refcnt from swap can be called against removed
1060  * memcg.)
1061  */
1062 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1063 {
1064 	struct cgroup_subsys_state *css;
1065 
1066 	/* ID 0 is unused ID */
1067 	if (!id)
1068 		return NULL;
1069 	css = css_lookup(&mem_cgroup_subsys, id);
1070 	if (!css)
1071 		return NULL;
1072 	return container_of(css, struct mem_cgroup, css);
1073 }
1074 
1075 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1076 {
1077 	struct mem_cgroup *mem;
1078 	struct page_cgroup *pc;
1079 	unsigned short id;
1080 	swp_entry_t ent;
1081 
1082 	VM_BUG_ON(!PageLocked(page));
1083 
1084 	if (!PageSwapCache(page))
1085 		return NULL;
1086 
1087 	pc = lookup_page_cgroup(page);
1088 	lock_page_cgroup(pc);
1089 	if (PageCgroupUsed(pc)) {
1090 		mem = pc->mem_cgroup;
1091 		if (mem && !css_tryget(&mem->css))
1092 			mem = NULL;
1093 	} else {
1094 		ent.val = page_private(page);
1095 		id = lookup_swap_cgroup(ent);
1096 		rcu_read_lock();
1097 		mem = mem_cgroup_lookup(id);
1098 		if (mem && !css_tryget(&mem->css))
1099 			mem = NULL;
1100 		rcu_read_unlock();
1101 	}
1102 	unlock_page_cgroup(pc);
1103 	return mem;
1104 }
1105 
1106 /*
1107  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1108  * USED state. If already USED, uncharge and return.
1109  */
1110 
1111 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1112 				     struct page_cgroup *pc,
1113 				     enum charge_type ctype)
1114 {
1115 	/* try_charge() can return NULL to *memcg, taking care of it. */
1116 	if (!mem)
1117 		return;
1118 
1119 	lock_page_cgroup(pc);
1120 	if (unlikely(PageCgroupUsed(pc))) {
1121 		unlock_page_cgroup(pc);
1122 		res_counter_uncharge(&mem->res, PAGE_SIZE);
1123 		if (do_swap_account)
1124 			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1125 		css_put(&mem->css);
1126 		return;
1127 	}
1128 	pc->mem_cgroup = mem;
1129 	smp_wmb();
1130 	pc->flags = pcg_default_flags[ctype];
1131 
1132 	mem_cgroup_charge_statistics(mem, pc, true);
1133 
1134 	unlock_page_cgroup(pc);
1135 }
1136 
1137 /**
1138  * mem_cgroup_move_account - move account of the page
1139  * @pc:	page_cgroup of the page.
1140  * @from: mem_cgroup which the page is moved from.
1141  * @to:	mem_cgroup which the page is moved to. @from != @to.
1142  *
1143  * The caller must confirm following.
1144  * - page is not on LRU (isolate_page() is useful.)
1145  *
1146  * returns 0 at success,
1147  * returns -EBUSY when lock is busy or "pc" is unstable.
1148  *
1149  * This function does "uncharge" from old cgroup but doesn't do "charge" to
1150  * new cgroup. It should be done by a caller.
1151  */
1152 
1153 static int mem_cgroup_move_account(struct page_cgroup *pc,
1154 	struct mem_cgroup *from, struct mem_cgroup *to)
1155 {
1156 	struct mem_cgroup_per_zone *from_mz, *to_mz;
1157 	int nid, zid;
1158 	int ret = -EBUSY;
1159 	struct page *page;
1160 	int cpu;
1161 	struct mem_cgroup_stat *stat;
1162 	struct mem_cgroup_stat_cpu *cpustat;
1163 
1164 	VM_BUG_ON(from == to);
1165 	VM_BUG_ON(PageLRU(pc->page));
1166 
1167 	nid = page_cgroup_nid(pc);
1168 	zid = page_cgroup_zid(pc);
1169 	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
1170 	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
1171 
1172 	if (!trylock_page_cgroup(pc))
1173 		return ret;
1174 
1175 	if (!PageCgroupUsed(pc))
1176 		goto out;
1177 
1178 	if (pc->mem_cgroup != from)
1179 		goto out;
1180 
1181 	res_counter_uncharge(&from->res, PAGE_SIZE);
1182 	mem_cgroup_charge_statistics(from, pc, false);
1183 
1184 	page = pc->page;
1185 	if (page_is_file_cache(page) && page_mapped(page)) {
1186 		cpu = smp_processor_id();
1187 		/* Update mapped_file data for mem_cgroup "from" */
1188 		stat = &from->stat;
1189 		cpustat = &stat->cpustat[cpu];
1190 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1191 						-1);
1192 
1193 		/* Update mapped_file data for mem_cgroup "to" */
1194 		stat = &to->stat;
1195 		cpustat = &stat->cpustat[cpu];
1196 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1197 						1);
1198 	}
1199 
1200 	if (do_swap_account)
1201 		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1202 	css_put(&from->css);
1203 
1204 	css_get(&to->css);
1205 	pc->mem_cgroup = to;
1206 	mem_cgroup_charge_statistics(to, pc, true);
1207 	ret = 0;
1208 out:
1209 	unlock_page_cgroup(pc);
1210 	return ret;
1211 }
1212 
1213 /*
1214  * move charges to its parent.
1215  */
1216 
1217 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1218 				  struct mem_cgroup *child,
1219 				  gfp_t gfp_mask)
1220 {
1221 	struct page *page = pc->page;
1222 	struct cgroup *cg = child->css.cgroup;
1223 	struct cgroup *pcg = cg->parent;
1224 	struct mem_cgroup *parent;
1225 	int ret;
1226 
1227 	/* Is ROOT ? */
1228 	if (!pcg)
1229 		return -EINVAL;
1230 
1231 
1232 	parent = mem_cgroup_from_cont(pcg);
1233 
1234 
1235 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1236 	if (ret || !parent)
1237 		return ret;
1238 
1239 	if (!get_page_unless_zero(page)) {
1240 		ret = -EBUSY;
1241 		goto uncharge;
1242 	}
1243 
1244 	ret = isolate_lru_page(page);
1245 
1246 	if (ret)
1247 		goto cancel;
1248 
1249 	ret = mem_cgroup_move_account(pc, child, parent);
1250 
1251 	putback_lru_page(page);
1252 	if (!ret) {
1253 		put_page(page);
1254 		/* drop extra refcnt by try_charge() */
1255 		css_put(&parent->css);
1256 		return 0;
1257 	}
1258 
1259 cancel:
1260 	put_page(page);
1261 uncharge:
1262 	/* drop extra refcnt by try_charge() */
1263 	css_put(&parent->css);
1264 	/* uncharge if move fails */
1265 	res_counter_uncharge(&parent->res, PAGE_SIZE);
1266 	if (do_swap_account)
1267 		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1268 	return ret;
1269 }
1270 
1271 /*
1272  * Charge the memory controller for page usage.
1273  * Return
1274  * 0 if the charge was successful
1275  * < 0 if the cgroup is over its limit
1276  */
1277 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1278 				gfp_t gfp_mask, enum charge_type ctype,
1279 				struct mem_cgroup *memcg)
1280 {
1281 	struct mem_cgroup *mem;
1282 	struct page_cgroup *pc;
1283 	int ret;
1284 
1285 	pc = lookup_page_cgroup(page);
1286 	/* can happen at boot */
1287 	if (unlikely(!pc))
1288 		return 0;
1289 	prefetchw(pc);
1290 
1291 	mem = memcg;
1292 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1293 	if (ret || !mem)
1294 		return ret;
1295 
1296 	__mem_cgroup_commit_charge(mem, pc, ctype);
1297 	return 0;
1298 }
1299 
1300 int mem_cgroup_newpage_charge(struct page *page,
1301 			      struct mm_struct *mm, gfp_t gfp_mask)
1302 {
1303 	if (mem_cgroup_disabled())
1304 		return 0;
1305 	if (PageCompound(page))
1306 		return 0;
1307 	/*
1308 	 * If already mapped, we don't have to account.
1309 	 * If page cache, page->mapping has address_space.
1310 	 * But page->mapping may have out-of-use anon_vma pointer,
1311 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1312 	 * is NULL.
1313   	 */
1314 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1315 		return 0;
1316 	if (unlikely(!mm))
1317 		mm = &init_mm;
1318 	return mem_cgroup_charge_common(page, mm, gfp_mask,
1319 				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1320 }
1321 
1322 static void
1323 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1324 					enum charge_type ctype);
1325 
1326 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1327 				gfp_t gfp_mask)
1328 {
1329 	struct mem_cgroup *mem = NULL;
1330 	int ret;
1331 
1332 	if (mem_cgroup_disabled())
1333 		return 0;
1334 	if (PageCompound(page))
1335 		return 0;
1336 	/*
1337 	 * Corner case handling. This is called from add_to_page_cache()
1338 	 * in usual. But some FS (shmem) precharges this page before calling it
1339 	 * and call add_to_page_cache() with GFP_NOWAIT.
1340 	 *
1341 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1342 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1343 	 * charge twice. (It works but has to pay a bit larger cost.)
1344 	 * And when the page is SwapCache, it should take swap information
1345 	 * into account. This is under lock_page() now.
1346 	 */
1347 	if (!(gfp_mask & __GFP_WAIT)) {
1348 		struct page_cgroup *pc;
1349 
1350 
1351 		pc = lookup_page_cgroup(page);
1352 		if (!pc)
1353 			return 0;
1354 		lock_page_cgroup(pc);
1355 		if (PageCgroupUsed(pc)) {
1356 			unlock_page_cgroup(pc);
1357 			return 0;
1358 		}
1359 		unlock_page_cgroup(pc);
1360 	}
1361 
1362 	if (unlikely(!mm && !mem))
1363 		mm = &init_mm;
1364 
1365 	if (page_is_file_cache(page))
1366 		return mem_cgroup_charge_common(page, mm, gfp_mask,
1367 				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1368 
1369 	/* shmem */
1370 	if (PageSwapCache(page)) {
1371 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1372 		if (!ret)
1373 			__mem_cgroup_commit_charge_swapin(page, mem,
1374 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
1375 	} else
1376 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1377 					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1378 
1379 	return ret;
1380 }
1381 
1382 /*
1383  * While swap-in, try_charge -> commit or cancel, the page is locked.
1384  * And when try_charge() successfully returns, one refcnt to memcg without
1385  * struct page_cgroup is aquired. This refcnt will be cumsumed by
1386  * "commit()" or removed by "cancel()"
1387  */
1388 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1389 				 struct page *page,
1390 				 gfp_t mask, struct mem_cgroup **ptr)
1391 {
1392 	struct mem_cgroup *mem;
1393 	int ret;
1394 
1395 	if (mem_cgroup_disabled())
1396 		return 0;
1397 
1398 	if (!do_swap_account)
1399 		goto charge_cur_mm;
1400 	/*
1401 	 * A racing thread's fault, or swapoff, may have already updated
1402 	 * the pte, and even removed page from swap cache: return success
1403 	 * to go on to do_swap_page()'s pte_same() test, which should fail.
1404 	 */
1405 	if (!PageSwapCache(page))
1406 		return 0;
1407 	mem = try_get_mem_cgroup_from_swapcache(page);
1408 	if (!mem)
1409 		goto charge_cur_mm;
1410 	*ptr = mem;
1411 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1412 	/* drop extra refcnt from tryget */
1413 	css_put(&mem->css);
1414 	return ret;
1415 charge_cur_mm:
1416 	if (unlikely(!mm))
1417 		mm = &init_mm;
1418 	return __mem_cgroup_try_charge(mm, mask, ptr, true);
1419 }
1420 
1421 static void
1422 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1423 					enum charge_type ctype)
1424 {
1425 	struct page_cgroup *pc;
1426 
1427 	if (mem_cgroup_disabled())
1428 		return;
1429 	if (!ptr)
1430 		return;
1431 	pc = lookup_page_cgroup(page);
1432 	mem_cgroup_lru_del_before_commit_swapcache(page);
1433 	__mem_cgroup_commit_charge(ptr, pc, ctype);
1434 	mem_cgroup_lru_add_after_commit_swapcache(page);
1435 	/*
1436 	 * Now swap is on-memory. This means this page may be
1437 	 * counted both as mem and swap....double count.
1438 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1439 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1440 	 * may call delete_from_swap_cache() before reach here.
1441 	 */
1442 	if (do_swap_account && PageSwapCache(page)) {
1443 		swp_entry_t ent = {.val = page_private(page)};
1444 		unsigned short id;
1445 		struct mem_cgroup *memcg;
1446 
1447 		id = swap_cgroup_record(ent, 0);
1448 		rcu_read_lock();
1449 		memcg = mem_cgroup_lookup(id);
1450 		if (memcg) {
1451 			/*
1452 			 * This recorded memcg can be obsolete one. So, avoid
1453 			 * calling css_tryget
1454 			 */
1455 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1456 			mem_cgroup_put(memcg);
1457 		}
1458 		rcu_read_unlock();
1459 	}
1460 	/* add this page(page_cgroup) to the LRU we want. */
1461 
1462 }
1463 
1464 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1465 {
1466 	__mem_cgroup_commit_charge_swapin(page, ptr,
1467 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
1468 }
1469 
1470 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1471 {
1472 	if (mem_cgroup_disabled())
1473 		return;
1474 	if (!mem)
1475 		return;
1476 	res_counter_uncharge(&mem->res, PAGE_SIZE);
1477 	if (do_swap_account)
1478 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1479 	css_put(&mem->css);
1480 }
1481 
1482 
1483 /*
1484  * uncharge if !page_mapped(page)
1485  */
1486 static struct mem_cgroup *
1487 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1488 {
1489 	struct page_cgroup *pc;
1490 	struct mem_cgroup *mem = NULL;
1491 	struct mem_cgroup_per_zone *mz;
1492 
1493 	if (mem_cgroup_disabled())
1494 		return NULL;
1495 
1496 	if (PageSwapCache(page))
1497 		return NULL;
1498 
1499 	/*
1500 	 * Check if our page_cgroup is valid
1501 	 */
1502 	pc = lookup_page_cgroup(page);
1503 	if (unlikely(!pc || !PageCgroupUsed(pc)))
1504 		return NULL;
1505 
1506 	lock_page_cgroup(pc);
1507 
1508 	mem = pc->mem_cgroup;
1509 
1510 	if (!PageCgroupUsed(pc))
1511 		goto unlock_out;
1512 
1513 	switch (ctype) {
1514 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1515 	case MEM_CGROUP_CHARGE_TYPE_DROP:
1516 		if (page_mapped(page))
1517 			goto unlock_out;
1518 		break;
1519 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1520 		if (!PageAnon(page)) {	/* Shared memory */
1521 			if (page->mapping && !page_is_file_cache(page))
1522 				goto unlock_out;
1523 		} else if (page_mapped(page)) /* Anon */
1524 				goto unlock_out;
1525 		break;
1526 	default:
1527 		break;
1528 	}
1529 
1530 	res_counter_uncharge(&mem->res, PAGE_SIZE);
1531 	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1532 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1533 	mem_cgroup_charge_statistics(mem, pc, false);
1534 
1535 	ClearPageCgroupUsed(pc);
1536 	/*
1537 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1538 	 * freed from LRU. This is safe because uncharged page is expected not
1539 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
1540 	 * special functions.
1541 	 */
1542 
1543 	mz = page_cgroup_zoneinfo(pc);
1544 	unlock_page_cgroup(pc);
1545 
1546 	/* at swapout, this memcg will be accessed to record to swap */
1547 	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1548 		css_put(&mem->css);
1549 
1550 	return mem;
1551 
1552 unlock_out:
1553 	unlock_page_cgroup(pc);
1554 	return NULL;
1555 }
1556 
1557 void mem_cgroup_uncharge_page(struct page *page)
1558 {
1559 	/* early check. */
1560 	if (page_mapped(page))
1561 		return;
1562 	if (page->mapping && !PageAnon(page))
1563 		return;
1564 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1565 }
1566 
1567 void mem_cgroup_uncharge_cache_page(struct page *page)
1568 {
1569 	VM_BUG_ON(page_mapped(page));
1570 	VM_BUG_ON(page->mapping);
1571 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1572 }
1573 
1574 #ifdef CONFIG_SWAP
1575 /*
1576  * called after __delete_from_swap_cache() and drop "page" account.
1577  * memcg information is recorded to swap_cgroup of "ent"
1578  */
1579 void
1580 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1581 {
1582 	struct mem_cgroup *memcg;
1583 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1584 
1585 	if (!swapout) /* this was a swap cache but the swap is unused ! */
1586 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1587 
1588 	memcg = __mem_cgroup_uncharge_common(page, ctype);
1589 
1590 	/* record memcg information */
1591 	if (do_swap_account && swapout && memcg) {
1592 		swap_cgroup_record(ent, css_id(&memcg->css));
1593 		mem_cgroup_get(memcg);
1594 	}
1595 	if (swapout && memcg)
1596 		css_put(&memcg->css);
1597 }
1598 #endif
1599 
1600 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1601 /*
1602  * called from swap_entry_free(). remove record in swap_cgroup and
1603  * uncharge "memsw" account.
1604  */
1605 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1606 {
1607 	struct mem_cgroup *memcg;
1608 	unsigned short id;
1609 
1610 	if (!do_swap_account)
1611 		return;
1612 
1613 	id = swap_cgroup_record(ent, 0);
1614 	rcu_read_lock();
1615 	memcg = mem_cgroup_lookup(id);
1616 	if (memcg) {
1617 		/*
1618 		 * We uncharge this because swap is freed.
1619 		 * This memcg can be obsolete one. We avoid calling css_tryget
1620 		 */
1621 		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1622 		mem_cgroup_put(memcg);
1623 	}
1624 	rcu_read_unlock();
1625 }
1626 #endif
1627 
1628 /*
1629  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1630  * page belongs to.
1631  */
1632 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1633 {
1634 	struct page_cgroup *pc;
1635 	struct mem_cgroup *mem = NULL;
1636 	int ret = 0;
1637 
1638 	if (mem_cgroup_disabled())
1639 		return 0;
1640 
1641 	pc = lookup_page_cgroup(page);
1642 	lock_page_cgroup(pc);
1643 	if (PageCgroupUsed(pc)) {
1644 		mem = pc->mem_cgroup;
1645 		css_get(&mem->css);
1646 	}
1647 	unlock_page_cgroup(pc);
1648 
1649 	if (mem) {
1650 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1651 		css_put(&mem->css);
1652 	}
1653 	*ptr = mem;
1654 	return ret;
1655 }
1656 
1657 /* remove redundant charge if migration failed*/
1658 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1659 		struct page *oldpage, struct page *newpage)
1660 {
1661 	struct page *target, *unused;
1662 	struct page_cgroup *pc;
1663 	enum charge_type ctype;
1664 
1665 	if (!mem)
1666 		return;
1667 
1668 	/* at migration success, oldpage->mapping is NULL. */
1669 	if (oldpage->mapping) {
1670 		target = oldpage;
1671 		unused = NULL;
1672 	} else {
1673 		target = newpage;
1674 		unused = oldpage;
1675 	}
1676 
1677 	if (PageAnon(target))
1678 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1679 	else if (page_is_file_cache(target))
1680 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1681 	else
1682 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1683 
1684 	/* unused page is not on radix-tree now. */
1685 	if (unused)
1686 		__mem_cgroup_uncharge_common(unused, ctype);
1687 
1688 	pc = lookup_page_cgroup(target);
1689 	/*
1690 	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1691 	 * So, double-counting is effectively avoided.
1692 	 */
1693 	__mem_cgroup_commit_charge(mem, pc, ctype);
1694 
1695 	/*
1696 	 * Both of oldpage and newpage are still under lock_page().
1697 	 * Then, we don't have to care about race in radix-tree.
1698 	 * But we have to be careful that this page is unmapped or not.
1699 	 *
1700 	 * There is a case for !page_mapped(). At the start of
1701 	 * migration, oldpage was mapped. But now, it's zapped.
1702 	 * But we know *target* page is not freed/reused under us.
1703 	 * mem_cgroup_uncharge_page() does all necessary checks.
1704 	 */
1705 	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1706 		mem_cgroup_uncharge_page(target);
1707 }
1708 
1709 /*
1710  * A call to try to shrink memory usage on charge failure at shmem's swapin.
1711  * Calling hierarchical_reclaim is not enough because we should update
1712  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1713  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1714  * not from the memcg which this page would be charged to.
1715  * try_charge_swapin does all of these works properly.
1716  */
1717 int mem_cgroup_shmem_charge_fallback(struct page *page,
1718 			    struct mm_struct *mm,
1719 			    gfp_t gfp_mask)
1720 {
1721 	struct mem_cgroup *mem = NULL;
1722 	int ret;
1723 
1724 	if (mem_cgroup_disabled())
1725 		return 0;
1726 
1727 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1728 	if (!ret)
1729 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
1730 
1731 	return ret;
1732 }
1733 
1734 static DEFINE_MUTEX(set_limit_mutex);
1735 
1736 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1737 				unsigned long long val)
1738 {
1739 	int retry_count;
1740 	int progress;
1741 	u64 memswlimit;
1742 	int ret = 0;
1743 	int children = mem_cgroup_count_children(memcg);
1744 	u64 curusage, oldusage;
1745 
1746 	/*
1747 	 * For keeping hierarchical_reclaim simple, how long we should retry
1748 	 * is depends on callers. We set our retry-count to be function
1749 	 * of # of children which we should visit in this loop.
1750 	 */
1751 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1752 
1753 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1754 
1755 	while (retry_count) {
1756 		if (signal_pending(current)) {
1757 			ret = -EINTR;
1758 			break;
1759 		}
1760 		/*
1761 		 * Rather than hide all in some function, I do this in
1762 		 * open coded manner. You see what this really does.
1763 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1764 		 */
1765 		mutex_lock(&set_limit_mutex);
1766 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1767 		if (memswlimit < val) {
1768 			ret = -EINVAL;
1769 			mutex_unlock(&set_limit_mutex);
1770 			break;
1771 		}
1772 		ret = res_counter_set_limit(&memcg->res, val);
1773 		if (!ret) {
1774 			if (memswlimit == val)
1775 				memcg->memsw_is_minimum = true;
1776 			else
1777 				memcg->memsw_is_minimum = false;
1778 		}
1779 		mutex_unlock(&set_limit_mutex);
1780 
1781 		if (!ret)
1782 			break;
1783 
1784 		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1785 						   false, true);
1786 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1787 		/* Usage is reduced ? */
1788   		if (curusage >= oldusage)
1789 			retry_count--;
1790 		else
1791 			oldusage = curusage;
1792 	}
1793 
1794 	return ret;
1795 }
1796 
1797 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1798 					unsigned long long val)
1799 {
1800 	int retry_count;
1801 	u64 memlimit, oldusage, curusage;
1802 	int children = mem_cgroup_count_children(memcg);
1803 	int ret = -EBUSY;
1804 
1805 	/* see mem_cgroup_resize_res_limit */
1806  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1807 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1808 	while (retry_count) {
1809 		if (signal_pending(current)) {
1810 			ret = -EINTR;
1811 			break;
1812 		}
1813 		/*
1814 		 * Rather than hide all in some function, I do this in
1815 		 * open coded manner. You see what this really does.
1816 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1817 		 */
1818 		mutex_lock(&set_limit_mutex);
1819 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1820 		if (memlimit > val) {
1821 			ret = -EINVAL;
1822 			mutex_unlock(&set_limit_mutex);
1823 			break;
1824 		}
1825 		ret = res_counter_set_limit(&memcg->memsw, val);
1826 		if (!ret) {
1827 			if (memlimit == val)
1828 				memcg->memsw_is_minimum = true;
1829 			else
1830 				memcg->memsw_is_minimum = false;
1831 		}
1832 		mutex_unlock(&set_limit_mutex);
1833 
1834 		if (!ret)
1835 			break;
1836 
1837 		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1838 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1839 		/* Usage is reduced ? */
1840 		if (curusage >= oldusage)
1841 			retry_count--;
1842 		else
1843 			oldusage = curusage;
1844 	}
1845 	return ret;
1846 }
1847 
1848 /*
1849  * This routine traverse page_cgroup in given list and drop them all.
1850  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1851  */
1852 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1853 				int node, int zid, enum lru_list lru)
1854 {
1855 	struct zone *zone;
1856 	struct mem_cgroup_per_zone *mz;
1857 	struct page_cgroup *pc, *busy;
1858 	unsigned long flags, loop;
1859 	struct list_head *list;
1860 	int ret = 0;
1861 
1862 	zone = &NODE_DATA(node)->node_zones[zid];
1863 	mz = mem_cgroup_zoneinfo(mem, node, zid);
1864 	list = &mz->lists[lru];
1865 
1866 	loop = MEM_CGROUP_ZSTAT(mz, lru);
1867 	/* give some margin against EBUSY etc...*/
1868 	loop += 256;
1869 	busy = NULL;
1870 	while (loop--) {
1871 		ret = 0;
1872 		spin_lock_irqsave(&zone->lru_lock, flags);
1873 		if (list_empty(list)) {
1874 			spin_unlock_irqrestore(&zone->lru_lock, flags);
1875 			break;
1876 		}
1877 		pc = list_entry(list->prev, struct page_cgroup, lru);
1878 		if (busy == pc) {
1879 			list_move(&pc->lru, list);
1880 			busy = 0;
1881 			spin_unlock_irqrestore(&zone->lru_lock, flags);
1882 			continue;
1883 		}
1884 		spin_unlock_irqrestore(&zone->lru_lock, flags);
1885 
1886 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1887 		if (ret == -ENOMEM)
1888 			break;
1889 
1890 		if (ret == -EBUSY || ret == -EINVAL) {
1891 			/* found lock contention or "pc" is obsolete. */
1892 			busy = pc;
1893 			cond_resched();
1894 		} else
1895 			busy = NULL;
1896 	}
1897 
1898 	if (!ret && !list_empty(list))
1899 		return -EBUSY;
1900 	return ret;
1901 }
1902 
1903 /*
1904  * make mem_cgroup's charge to be 0 if there is no task.
1905  * This enables deleting this mem_cgroup.
1906  */
1907 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1908 {
1909 	int ret;
1910 	int node, zid, shrink;
1911 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1912 	struct cgroup *cgrp = mem->css.cgroup;
1913 
1914 	css_get(&mem->css);
1915 
1916 	shrink = 0;
1917 	/* should free all ? */
1918 	if (free_all)
1919 		goto try_to_free;
1920 move_account:
1921 	while (mem->res.usage > 0) {
1922 		ret = -EBUSY;
1923 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1924 			goto out;
1925 		ret = -EINTR;
1926 		if (signal_pending(current))
1927 			goto out;
1928 		/* This is for making all *used* pages to be on LRU. */
1929 		lru_add_drain_all();
1930 		ret = 0;
1931 		for_each_node_state(node, N_HIGH_MEMORY) {
1932 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1933 				enum lru_list l;
1934 				for_each_lru(l) {
1935 					ret = mem_cgroup_force_empty_list(mem,
1936 							node, zid, l);
1937 					if (ret)
1938 						break;
1939 				}
1940 			}
1941 			if (ret)
1942 				break;
1943 		}
1944 		/* it seems parent cgroup doesn't have enough mem */
1945 		if (ret == -ENOMEM)
1946 			goto try_to_free;
1947 		cond_resched();
1948 	}
1949 	ret = 0;
1950 out:
1951 	css_put(&mem->css);
1952 	return ret;
1953 
1954 try_to_free:
1955 	/* returns EBUSY if there is a task or if we come here twice. */
1956 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1957 		ret = -EBUSY;
1958 		goto out;
1959 	}
1960 	/* we call try-to-free pages for make this cgroup empty */
1961 	lru_add_drain_all();
1962 	/* try to free all pages in this cgroup */
1963 	shrink = 1;
1964 	while (nr_retries && mem->res.usage > 0) {
1965 		int progress;
1966 
1967 		if (signal_pending(current)) {
1968 			ret = -EINTR;
1969 			goto out;
1970 		}
1971 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1972 						false, get_swappiness(mem));
1973 		if (!progress) {
1974 			nr_retries--;
1975 			/* maybe some writeback is necessary */
1976 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1977 		}
1978 
1979 	}
1980 	lru_add_drain();
1981 	/* try move_account...there may be some *locked* pages. */
1982 	if (mem->res.usage)
1983 		goto move_account;
1984 	ret = 0;
1985 	goto out;
1986 }
1987 
1988 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1989 {
1990 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1991 }
1992 
1993 
1994 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1995 {
1996 	return mem_cgroup_from_cont(cont)->use_hierarchy;
1997 }
1998 
1999 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2000 					u64 val)
2001 {
2002 	int retval = 0;
2003 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2004 	struct cgroup *parent = cont->parent;
2005 	struct mem_cgroup *parent_mem = NULL;
2006 
2007 	if (parent)
2008 		parent_mem = mem_cgroup_from_cont(parent);
2009 
2010 	cgroup_lock();
2011 	/*
2012 	 * If parent's use_hiearchy is set, we can't make any modifications
2013 	 * in the child subtrees. If it is unset, then the change can
2014 	 * occur, provided the current cgroup has no children.
2015 	 *
2016 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2017 	 * set if there are no children.
2018 	 */
2019 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
2020 				(val == 1 || val == 0)) {
2021 		if (list_empty(&cont->children))
2022 			mem->use_hierarchy = val;
2023 		else
2024 			retval = -EBUSY;
2025 	} else
2026 		retval = -EINVAL;
2027 	cgroup_unlock();
2028 
2029 	return retval;
2030 }
2031 
2032 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2033 {
2034 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2035 	u64 val = 0;
2036 	int type, name;
2037 
2038 	type = MEMFILE_TYPE(cft->private);
2039 	name = MEMFILE_ATTR(cft->private);
2040 	switch (type) {
2041 	case _MEM:
2042 		val = res_counter_read_u64(&mem->res, name);
2043 		break;
2044 	case _MEMSWAP:
2045 		val = res_counter_read_u64(&mem->memsw, name);
2046 		break;
2047 	default:
2048 		BUG();
2049 		break;
2050 	}
2051 	return val;
2052 }
2053 /*
2054  * The user of this function is...
2055  * RES_LIMIT.
2056  */
2057 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2058 			    const char *buffer)
2059 {
2060 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2061 	int type, name;
2062 	unsigned long long val;
2063 	int ret;
2064 
2065 	type = MEMFILE_TYPE(cft->private);
2066 	name = MEMFILE_ATTR(cft->private);
2067 	switch (name) {
2068 	case RES_LIMIT:
2069 		/* This function does all necessary parse...reuse it */
2070 		ret = res_counter_memparse_write_strategy(buffer, &val);
2071 		if (ret)
2072 			break;
2073 		if (type == _MEM)
2074 			ret = mem_cgroup_resize_limit(memcg, val);
2075 		else
2076 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2077 		break;
2078 	default:
2079 		ret = -EINVAL; /* should be BUG() ? */
2080 		break;
2081 	}
2082 	return ret;
2083 }
2084 
2085 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2086 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
2087 {
2088 	struct cgroup *cgroup;
2089 	unsigned long long min_limit, min_memsw_limit, tmp;
2090 
2091 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2092 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2093 	cgroup = memcg->css.cgroup;
2094 	if (!memcg->use_hierarchy)
2095 		goto out;
2096 
2097 	while (cgroup->parent) {
2098 		cgroup = cgroup->parent;
2099 		memcg = mem_cgroup_from_cont(cgroup);
2100 		if (!memcg->use_hierarchy)
2101 			break;
2102 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2103 		min_limit = min(min_limit, tmp);
2104 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2105 		min_memsw_limit = min(min_memsw_limit, tmp);
2106 	}
2107 out:
2108 	*mem_limit = min_limit;
2109 	*memsw_limit = min_memsw_limit;
2110 	return;
2111 }
2112 
2113 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2114 {
2115 	struct mem_cgroup *mem;
2116 	int type, name;
2117 
2118 	mem = mem_cgroup_from_cont(cont);
2119 	type = MEMFILE_TYPE(event);
2120 	name = MEMFILE_ATTR(event);
2121 	switch (name) {
2122 	case RES_MAX_USAGE:
2123 		if (type == _MEM)
2124 			res_counter_reset_max(&mem->res);
2125 		else
2126 			res_counter_reset_max(&mem->memsw);
2127 		break;
2128 	case RES_FAILCNT:
2129 		if (type == _MEM)
2130 			res_counter_reset_failcnt(&mem->res);
2131 		else
2132 			res_counter_reset_failcnt(&mem->memsw);
2133 		break;
2134 	}
2135 	return 0;
2136 }
2137 
2138 
2139 /* For read statistics */
2140 enum {
2141 	MCS_CACHE,
2142 	MCS_RSS,
2143 	MCS_MAPPED_FILE,
2144 	MCS_PGPGIN,
2145 	MCS_PGPGOUT,
2146 	MCS_INACTIVE_ANON,
2147 	MCS_ACTIVE_ANON,
2148 	MCS_INACTIVE_FILE,
2149 	MCS_ACTIVE_FILE,
2150 	MCS_UNEVICTABLE,
2151 	NR_MCS_STAT,
2152 };
2153 
2154 struct mcs_total_stat {
2155 	s64 stat[NR_MCS_STAT];
2156 };
2157 
2158 struct {
2159 	char *local_name;
2160 	char *total_name;
2161 } memcg_stat_strings[NR_MCS_STAT] = {
2162 	{"cache", "total_cache"},
2163 	{"rss", "total_rss"},
2164 	{"mapped_file", "total_mapped_file"},
2165 	{"pgpgin", "total_pgpgin"},
2166 	{"pgpgout", "total_pgpgout"},
2167 	{"inactive_anon", "total_inactive_anon"},
2168 	{"active_anon", "total_active_anon"},
2169 	{"inactive_file", "total_inactive_file"},
2170 	{"active_file", "total_active_file"},
2171 	{"unevictable", "total_unevictable"}
2172 };
2173 
2174 
2175 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2176 {
2177 	struct mcs_total_stat *s = data;
2178 	s64 val;
2179 
2180 	/* per cpu stat */
2181 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2182 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
2183 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2184 	s->stat[MCS_RSS] += val * PAGE_SIZE;
2185 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2186 	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
2187 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2188 	s->stat[MCS_PGPGIN] += val;
2189 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2190 	s->stat[MCS_PGPGOUT] += val;
2191 
2192 	/* per zone stat */
2193 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2194 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2195 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2196 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2197 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2198 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2199 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2200 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2201 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2202 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2203 	return 0;
2204 }
2205 
2206 static void
2207 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2208 {
2209 	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2210 }
2211 
2212 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2213 				 struct cgroup_map_cb *cb)
2214 {
2215 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2216 	struct mcs_total_stat mystat;
2217 	int i;
2218 
2219 	memset(&mystat, 0, sizeof(mystat));
2220 	mem_cgroup_get_local_stat(mem_cont, &mystat);
2221 
2222 	for (i = 0; i < NR_MCS_STAT; i++)
2223 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2224 
2225 	/* Hierarchical information */
2226 	{
2227 		unsigned long long limit, memsw_limit;
2228 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2229 		cb->fill(cb, "hierarchical_memory_limit", limit);
2230 		if (do_swap_account)
2231 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2232 	}
2233 
2234 	memset(&mystat, 0, sizeof(mystat));
2235 	mem_cgroup_get_total_stat(mem_cont, &mystat);
2236 	for (i = 0; i < NR_MCS_STAT; i++)
2237 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2238 
2239 
2240 #ifdef CONFIG_DEBUG_VM
2241 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2242 
2243 	{
2244 		int nid, zid;
2245 		struct mem_cgroup_per_zone *mz;
2246 		unsigned long recent_rotated[2] = {0, 0};
2247 		unsigned long recent_scanned[2] = {0, 0};
2248 
2249 		for_each_online_node(nid)
2250 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2251 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2252 
2253 				recent_rotated[0] +=
2254 					mz->reclaim_stat.recent_rotated[0];
2255 				recent_rotated[1] +=
2256 					mz->reclaim_stat.recent_rotated[1];
2257 				recent_scanned[0] +=
2258 					mz->reclaim_stat.recent_scanned[0];
2259 				recent_scanned[1] +=
2260 					mz->reclaim_stat.recent_scanned[1];
2261 			}
2262 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2263 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2264 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2265 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2266 	}
2267 #endif
2268 
2269 	return 0;
2270 }
2271 
2272 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2273 {
2274 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2275 
2276 	return get_swappiness(memcg);
2277 }
2278 
2279 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2280 				       u64 val)
2281 {
2282 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2283 	struct mem_cgroup *parent;
2284 
2285 	if (val > 100)
2286 		return -EINVAL;
2287 
2288 	if (cgrp->parent == NULL)
2289 		return -EINVAL;
2290 
2291 	parent = mem_cgroup_from_cont(cgrp->parent);
2292 
2293 	cgroup_lock();
2294 
2295 	/* If under hierarchy, only empty-root can set this value */
2296 	if ((parent->use_hierarchy) ||
2297 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2298 		cgroup_unlock();
2299 		return -EINVAL;
2300 	}
2301 
2302 	spin_lock(&memcg->reclaim_param_lock);
2303 	memcg->swappiness = val;
2304 	spin_unlock(&memcg->reclaim_param_lock);
2305 
2306 	cgroup_unlock();
2307 
2308 	return 0;
2309 }
2310 
2311 
2312 static struct cftype mem_cgroup_files[] = {
2313 	{
2314 		.name = "usage_in_bytes",
2315 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2316 		.read_u64 = mem_cgroup_read,
2317 	},
2318 	{
2319 		.name = "max_usage_in_bytes",
2320 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2321 		.trigger = mem_cgroup_reset,
2322 		.read_u64 = mem_cgroup_read,
2323 	},
2324 	{
2325 		.name = "limit_in_bytes",
2326 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2327 		.write_string = mem_cgroup_write,
2328 		.read_u64 = mem_cgroup_read,
2329 	},
2330 	{
2331 		.name = "failcnt",
2332 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2333 		.trigger = mem_cgroup_reset,
2334 		.read_u64 = mem_cgroup_read,
2335 	},
2336 	{
2337 		.name = "stat",
2338 		.read_map = mem_control_stat_show,
2339 	},
2340 	{
2341 		.name = "force_empty",
2342 		.trigger = mem_cgroup_force_empty_write,
2343 	},
2344 	{
2345 		.name = "use_hierarchy",
2346 		.write_u64 = mem_cgroup_hierarchy_write,
2347 		.read_u64 = mem_cgroup_hierarchy_read,
2348 	},
2349 	{
2350 		.name = "swappiness",
2351 		.read_u64 = mem_cgroup_swappiness_read,
2352 		.write_u64 = mem_cgroup_swappiness_write,
2353 	},
2354 };
2355 
2356 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2357 static struct cftype memsw_cgroup_files[] = {
2358 	{
2359 		.name = "memsw.usage_in_bytes",
2360 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2361 		.read_u64 = mem_cgroup_read,
2362 	},
2363 	{
2364 		.name = "memsw.max_usage_in_bytes",
2365 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2366 		.trigger = mem_cgroup_reset,
2367 		.read_u64 = mem_cgroup_read,
2368 	},
2369 	{
2370 		.name = "memsw.limit_in_bytes",
2371 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2372 		.write_string = mem_cgroup_write,
2373 		.read_u64 = mem_cgroup_read,
2374 	},
2375 	{
2376 		.name = "memsw.failcnt",
2377 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2378 		.trigger = mem_cgroup_reset,
2379 		.read_u64 = mem_cgroup_read,
2380 	},
2381 };
2382 
2383 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2384 {
2385 	if (!do_swap_account)
2386 		return 0;
2387 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
2388 				ARRAY_SIZE(memsw_cgroup_files));
2389 };
2390 #else
2391 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2392 {
2393 	return 0;
2394 }
2395 #endif
2396 
2397 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2398 {
2399 	struct mem_cgroup_per_node *pn;
2400 	struct mem_cgroup_per_zone *mz;
2401 	enum lru_list l;
2402 	int zone, tmp = node;
2403 	/*
2404 	 * This routine is called against possible nodes.
2405 	 * But it's BUG to call kmalloc() against offline node.
2406 	 *
2407 	 * TODO: this routine can waste much memory for nodes which will
2408 	 *       never be onlined. It's better to use memory hotplug callback
2409 	 *       function.
2410 	 */
2411 	if (!node_state(node, N_NORMAL_MEMORY))
2412 		tmp = -1;
2413 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2414 	if (!pn)
2415 		return 1;
2416 
2417 	mem->info.nodeinfo[node] = pn;
2418 	memset(pn, 0, sizeof(*pn));
2419 
2420 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2421 		mz = &pn->zoneinfo[zone];
2422 		for_each_lru(l)
2423 			INIT_LIST_HEAD(&mz->lists[l]);
2424 	}
2425 	return 0;
2426 }
2427 
2428 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2429 {
2430 	kfree(mem->info.nodeinfo[node]);
2431 }
2432 
2433 static int mem_cgroup_size(void)
2434 {
2435 	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2436 	return sizeof(struct mem_cgroup) + cpustat_size;
2437 }
2438 
2439 static struct mem_cgroup *mem_cgroup_alloc(void)
2440 {
2441 	struct mem_cgroup *mem;
2442 	int size = mem_cgroup_size();
2443 
2444 	if (size < PAGE_SIZE)
2445 		mem = kmalloc(size, GFP_KERNEL);
2446 	else
2447 		mem = vmalloc(size);
2448 
2449 	if (mem)
2450 		memset(mem, 0, size);
2451 	return mem;
2452 }
2453 
2454 /*
2455  * At destroying mem_cgroup, references from swap_cgroup can remain.
2456  * (scanning all at force_empty is too costly...)
2457  *
2458  * Instead of clearing all references at force_empty, we remember
2459  * the number of reference from swap_cgroup and free mem_cgroup when
2460  * it goes down to 0.
2461  *
2462  * Removal of cgroup itself succeeds regardless of refs from swap.
2463  */
2464 
2465 static void __mem_cgroup_free(struct mem_cgroup *mem)
2466 {
2467 	int node;
2468 
2469 	free_css_id(&mem_cgroup_subsys, &mem->css);
2470 
2471 	for_each_node_state(node, N_POSSIBLE)
2472 		free_mem_cgroup_per_zone_info(mem, node);
2473 
2474 	if (mem_cgroup_size() < PAGE_SIZE)
2475 		kfree(mem);
2476 	else
2477 		vfree(mem);
2478 }
2479 
2480 static void mem_cgroup_get(struct mem_cgroup *mem)
2481 {
2482 	atomic_inc(&mem->refcnt);
2483 }
2484 
2485 static void mem_cgroup_put(struct mem_cgroup *mem)
2486 {
2487 	if (atomic_dec_and_test(&mem->refcnt)) {
2488 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
2489 		__mem_cgroup_free(mem);
2490 		if (parent)
2491 			mem_cgroup_put(parent);
2492 	}
2493 }
2494 
2495 /*
2496  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2497  */
2498 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2499 {
2500 	if (!mem->res.parent)
2501 		return NULL;
2502 	return mem_cgroup_from_res_counter(mem->res.parent, res);
2503 }
2504 
2505 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2506 static void __init enable_swap_cgroup(void)
2507 {
2508 	if (!mem_cgroup_disabled() && really_do_swap_account)
2509 		do_swap_account = 1;
2510 }
2511 #else
2512 static void __init enable_swap_cgroup(void)
2513 {
2514 }
2515 #endif
2516 
2517 static struct cgroup_subsys_state * __ref
2518 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2519 {
2520 	struct mem_cgroup *mem, *parent;
2521 	long error = -ENOMEM;
2522 	int node;
2523 
2524 	mem = mem_cgroup_alloc();
2525 	if (!mem)
2526 		return ERR_PTR(error);
2527 
2528 	for_each_node_state(node, N_POSSIBLE)
2529 		if (alloc_mem_cgroup_per_zone_info(mem, node))
2530 			goto free_out;
2531 	/* root ? */
2532 	if (cont->parent == NULL) {
2533 		enable_swap_cgroup();
2534 		parent = NULL;
2535 	} else {
2536 		parent = mem_cgroup_from_cont(cont->parent);
2537 		mem->use_hierarchy = parent->use_hierarchy;
2538 	}
2539 
2540 	if (parent && parent->use_hierarchy) {
2541 		res_counter_init(&mem->res, &parent->res);
2542 		res_counter_init(&mem->memsw, &parent->memsw);
2543 		/*
2544 		 * We increment refcnt of the parent to ensure that we can
2545 		 * safely access it on res_counter_charge/uncharge.
2546 		 * This refcnt will be decremented when freeing this
2547 		 * mem_cgroup(see mem_cgroup_put).
2548 		 */
2549 		mem_cgroup_get(parent);
2550 	} else {
2551 		res_counter_init(&mem->res, NULL);
2552 		res_counter_init(&mem->memsw, NULL);
2553 	}
2554 	mem->last_scanned_child = 0;
2555 	spin_lock_init(&mem->reclaim_param_lock);
2556 
2557 	if (parent)
2558 		mem->swappiness = get_swappiness(parent);
2559 	atomic_set(&mem->refcnt, 1);
2560 	return &mem->css;
2561 free_out:
2562 	__mem_cgroup_free(mem);
2563 	return ERR_PTR(error);
2564 }
2565 
2566 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2567 					struct cgroup *cont)
2568 {
2569 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2570 
2571 	return mem_cgroup_force_empty(mem, false);
2572 }
2573 
2574 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2575 				struct cgroup *cont)
2576 {
2577 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2578 
2579 	mem_cgroup_put(mem);
2580 }
2581 
2582 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2583 				struct cgroup *cont)
2584 {
2585 	int ret;
2586 
2587 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2588 				ARRAY_SIZE(mem_cgroup_files));
2589 
2590 	if (!ret)
2591 		ret = register_memsw_files(cont, ss);
2592 	return ret;
2593 }
2594 
2595 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2596 				struct cgroup *cont,
2597 				struct cgroup *old_cont,
2598 				struct task_struct *p)
2599 {
2600 	mutex_lock(&memcg_tasklist);
2601 	/*
2602 	 * FIXME: It's better to move charges of this process from old
2603 	 * memcg to new memcg. But it's just on TODO-List now.
2604 	 */
2605 	mutex_unlock(&memcg_tasklist);
2606 }
2607 
2608 struct cgroup_subsys mem_cgroup_subsys = {
2609 	.name = "memory",
2610 	.subsys_id = mem_cgroup_subsys_id,
2611 	.create = mem_cgroup_create,
2612 	.pre_destroy = mem_cgroup_pre_destroy,
2613 	.destroy = mem_cgroup_destroy,
2614 	.populate = mem_cgroup_populate,
2615 	.attach = mem_cgroup_move_task,
2616 	.early_init = 0,
2617 	.use_id = 1,
2618 };
2619 
2620 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2621 
2622 static int __init disable_swap_account(char *s)
2623 {
2624 	really_do_swap_account = 0;
2625 	return 1;
2626 }
2627 __setup("noswapaccount", disable_swap_account);
2628 #endif
2629