1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #include <linux/res_counter.h> 21 #include <linux/memcontrol.h> 22 #include <linux/cgroup.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/smp.h> 26 #include <linux/page-flags.h> 27 #include <linux/backing-dev.h> 28 #include <linux/bit_spinlock.h> 29 #include <linux/rcupdate.h> 30 #include <linux/limits.h> 31 #include <linux/mutex.h> 32 #include <linux/slab.h> 33 #include <linux/swap.h> 34 #include <linux/spinlock.h> 35 #include <linux/fs.h> 36 #include <linux/seq_file.h> 37 #include <linux/vmalloc.h> 38 #include <linux/mm_inline.h> 39 #include <linux/page_cgroup.h> 40 #include "internal.h" 41 42 #include <asm/uaccess.h> 43 44 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 45 #define MEM_CGROUP_RECLAIM_RETRIES 5 46 47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 49 int do_swap_account __read_mostly; 50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/ 51 #else 52 #define do_swap_account (0) 53 #endif 54 55 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */ 56 57 /* 58 * Statistics for memory cgroup. 59 */ 60 enum mem_cgroup_stat_index { 61 /* 62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 63 */ 64 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 65 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 66 MEM_CGROUP_STAT_MAPPED_FILE, /* # of pages charged as file rss */ 67 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ 68 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ 69 70 MEM_CGROUP_STAT_NSTATS, 71 }; 72 73 struct mem_cgroup_stat_cpu { 74 s64 count[MEM_CGROUP_STAT_NSTATS]; 75 } ____cacheline_aligned_in_smp; 76 77 struct mem_cgroup_stat { 78 struct mem_cgroup_stat_cpu cpustat[0]; 79 }; 80 81 /* 82 * For accounting under irq disable, no need for increment preempt count. 83 */ 84 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat, 85 enum mem_cgroup_stat_index idx, int val) 86 { 87 stat->count[idx] += val; 88 } 89 90 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, 91 enum mem_cgroup_stat_index idx) 92 { 93 int cpu; 94 s64 ret = 0; 95 for_each_possible_cpu(cpu) 96 ret += stat->cpustat[cpu].count[idx]; 97 return ret; 98 } 99 100 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat) 101 { 102 s64 ret; 103 104 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE); 105 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS); 106 return ret; 107 } 108 109 /* 110 * per-zone information in memory controller. 111 */ 112 struct mem_cgroup_per_zone { 113 /* 114 * spin_lock to protect the per cgroup LRU 115 */ 116 struct list_head lists[NR_LRU_LISTS]; 117 unsigned long count[NR_LRU_LISTS]; 118 119 struct zone_reclaim_stat reclaim_stat; 120 }; 121 /* Macro for accessing counter */ 122 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) 123 124 struct mem_cgroup_per_node { 125 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 126 }; 127 128 struct mem_cgroup_lru_info { 129 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 130 }; 131 132 /* 133 * The memory controller data structure. The memory controller controls both 134 * page cache and RSS per cgroup. We would eventually like to provide 135 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 136 * to help the administrator determine what knobs to tune. 137 * 138 * TODO: Add a water mark for the memory controller. Reclaim will begin when 139 * we hit the water mark. May be even add a low water mark, such that 140 * no reclaim occurs from a cgroup at it's low water mark, this is 141 * a feature that will be implemented much later in the future. 142 */ 143 struct mem_cgroup { 144 struct cgroup_subsys_state css; 145 /* 146 * the counter to account for memory usage 147 */ 148 struct res_counter res; 149 /* 150 * the counter to account for mem+swap usage. 151 */ 152 struct res_counter memsw; 153 /* 154 * Per cgroup active and inactive list, similar to the 155 * per zone LRU lists. 156 */ 157 struct mem_cgroup_lru_info info; 158 159 /* 160 protect against reclaim related member. 161 */ 162 spinlock_t reclaim_param_lock; 163 164 int prev_priority; /* for recording reclaim priority */ 165 166 /* 167 * While reclaiming in a hiearchy, we cache the last child we 168 * reclaimed from. 169 */ 170 int last_scanned_child; 171 /* 172 * Should the accounting and control be hierarchical, per subtree? 173 */ 174 bool use_hierarchy; 175 unsigned long last_oom_jiffies; 176 atomic_t refcnt; 177 178 unsigned int swappiness; 179 180 /* set when res.limit == memsw.limit */ 181 bool memsw_is_minimum; 182 183 /* 184 * statistics. This must be placed at the end of memcg. 185 */ 186 struct mem_cgroup_stat stat; 187 }; 188 189 enum charge_type { 190 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 191 MEM_CGROUP_CHARGE_TYPE_MAPPED, 192 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 193 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 194 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 195 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 196 NR_CHARGE_TYPE, 197 }; 198 199 /* only for here (for easy reading.) */ 200 #define PCGF_CACHE (1UL << PCG_CACHE) 201 #define PCGF_USED (1UL << PCG_USED) 202 #define PCGF_LOCK (1UL << PCG_LOCK) 203 static const unsigned long 204 pcg_default_flags[NR_CHARGE_TYPE] = { 205 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */ 206 PCGF_USED | PCGF_LOCK, /* Anon */ 207 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ 208 0, /* FORCE */ 209 }; 210 211 /* for encoding cft->private value on file */ 212 #define _MEM (0) 213 #define _MEMSWAP (1) 214 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) 215 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) 216 #define MEMFILE_ATTR(val) ((val) & 0xffff) 217 218 static void mem_cgroup_get(struct mem_cgroup *mem); 219 static void mem_cgroup_put(struct mem_cgroup *mem); 220 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); 221 222 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, 223 struct page_cgroup *pc, 224 bool charge) 225 { 226 int val = (charge)? 1 : -1; 227 struct mem_cgroup_stat *stat = &mem->stat; 228 struct mem_cgroup_stat_cpu *cpustat; 229 int cpu = get_cpu(); 230 231 cpustat = &stat->cpustat[cpu]; 232 if (PageCgroupCache(pc)) 233 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); 234 else 235 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val); 236 237 if (charge) 238 __mem_cgroup_stat_add_safe(cpustat, 239 MEM_CGROUP_STAT_PGPGIN_COUNT, 1); 240 else 241 __mem_cgroup_stat_add_safe(cpustat, 242 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); 243 put_cpu(); 244 } 245 246 static struct mem_cgroup_per_zone * 247 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) 248 { 249 return &mem->info.nodeinfo[nid]->zoneinfo[zid]; 250 } 251 252 static struct mem_cgroup_per_zone * 253 page_cgroup_zoneinfo(struct page_cgroup *pc) 254 { 255 struct mem_cgroup *mem = pc->mem_cgroup; 256 int nid = page_cgroup_nid(pc); 257 int zid = page_cgroup_zid(pc); 258 259 if (!mem) 260 return NULL; 261 262 return mem_cgroup_zoneinfo(mem, nid, zid); 263 } 264 265 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, 266 enum lru_list idx) 267 { 268 int nid, zid; 269 struct mem_cgroup_per_zone *mz; 270 u64 total = 0; 271 272 for_each_online_node(nid) 273 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 274 mz = mem_cgroup_zoneinfo(mem, nid, zid); 275 total += MEM_CGROUP_ZSTAT(mz, idx); 276 } 277 return total; 278 } 279 280 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 281 { 282 return container_of(cgroup_subsys_state(cont, 283 mem_cgroup_subsys_id), struct mem_cgroup, 284 css); 285 } 286 287 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 288 { 289 /* 290 * mm_update_next_owner() may clear mm->owner to NULL 291 * if it races with swapoff, page migration, etc. 292 * So this can be called with p == NULL. 293 */ 294 if (unlikely(!p)) 295 return NULL; 296 297 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 298 struct mem_cgroup, css); 299 } 300 301 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 302 { 303 struct mem_cgroup *mem = NULL; 304 305 if (!mm) 306 return NULL; 307 /* 308 * Because we have no locks, mm->owner's may be being moved to other 309 * cgroup. We use css_tryget() here even if this looks 310 * pessimistic (rather than adding locks here). 311 */ 312 rcu_read_lock(); 313 do { 314 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 315 if (unlikely(!mem)) 316 break; 317 } while (!css_tryget(&mem->css)); 318 rcu_read_unlock(); 319 return mem; 320 } 321 322 /* 323 * Call callback function against all cgroup under hierarchy tree. 324 */ 325 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data, 326 int (*func)(struct mem_cgroup *, void *)) 327 { 328 int found, ret, nextid; 329 struct cgroup_subsys_state *css; 330 struct mem_cgroup *mem; 331 332 if (!root->use_hierarchy) 333 return (*func)(root, data); 334 335 nextid = 1; 336 do { 337 ret = 0; 338 mem = NULL; 339 340 rcu_read_lock(); 341 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css, 342 &found); 343 if (css && css_tryget(css)) 344 mem = container_of(css, struct mem_cgroup, css); 345 rcu_read_unlock(); 346 347 if (mem) { 348 ret = (*func)(mem, data); 349 css_put(&mem->css); 350 } 351 nextid = found + 1; 352 } while (!ret && css); 353 354 return ret; 355 } 356 357 /* 358 * Following LRU functions are allowed to be used without PCG_LOCK. 359 * Operations are called by routine of global LRU independently from memcg. 360 * What we have to take care of here is validness of pc->mem_cgroup. 361 * 362 * Changes to pc->mem_cgroup happens when 363 * 1. charge 364 * 2. moving account 365 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 366 * It is added to LRU before charge. 367 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 368 * When moving account, the page is not on LRU. It's isolated. 369 */ 370 371 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) 372 { 373 struct page_cgroup *pc; 374 struct mem_cgroup *mem; 375 struct mem_cgroup_per_zone *mz; 376 377 if (mem_cgroup_disabled()) 378 return; 379 pc = lookup_page_cgroup(page); 380 /* can happen while we handle swapcache. */ 381 if (list_empty(&pc->lru) || !pc->mem_cgroup) 382 return; 383 /* 384 * We don't check PCG_USED bit. It's cleared when the "page" is finally 385 * removed from global LRU. 386 */ 387 mz = page_cgroup_zoneinfo(pc); 388 mem = pc->mem_cgroup; 389 MEM_CGROUP_ZSTAT(mz, lru) -= 1; 390 list_del_init(&pc->lru); 391 return; 392 } 393 394 void mem_cgroup_del_lru(struct page *page) 395 { 396 mem_cgroup_del_lru_list(page, page_lru(page)); 397 } 398 399 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) 400 { 401 struct mem_cgroup_per_zone *mz; 402 struct page_cgroup *pc; 403 404 if (mem_cgroup_disabled()) 405 return; 406 407 pc = lookup_page_cgroup(page); 408 /* 409 * Used bit is set without atomic ops but after smp_wmb(). 410 * For making pc->mem_cgroup visible, insert smp_rmb() here. 411 */ 412 smp_rmb(); 413 /* unused page is not rotated. */ 414 if (!PageCgroupUsed(pc)) 415 return; 416 mz = page_cgroup_zoneinfo(pc); 417 list_move(&pc->lru, &mz->lists[lru]); 418 } 419 420 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) 421 { 422 struct page_cgroup *pc; 423 struct mem_cgroup_per_zone *mz; 424 425 if (mem_cgroup_disabled()) 426 return; 427 pc = lookup_page_cgroup(page); 428 /* 429 * Used bit is set without atomic ops but after smp_wmb(). 430 * For making pc->mem_cgroup visible, insert smp_rmb() here. 431 */ 432 smp_rmb(); 433 if (!PageCgroupUsed(pc)) 434 return; 435 436 mz = page_cgroup_zoneinfo(pc); 437 MEM_CGROUP_ZSTAT(mz, lru) += 1; 438 list_add(&pc->lru, &mz->lists[lru]); 439 } 440 441 /* 442 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to 443 * lru because the page may.be reused after it's fully uncharged (because of 444 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge 445 * it again. This function is only used to charge SwapCache. It's done under 446 * lock_page and expected that zone->lru_lock is never held. 447 */ 448 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) 449 { 450 unsigned long flags; 451 struct zone *zone = page_zone(page); 452 struct page_cgroup *pc = lookup_page_cgroup(page); 453 454 spin_lock_irqsave(&zone->lru_lock, flags); 455 /* 456 * Forget old LRU when this page_cgroup is *not* used. This Used bit 457 * is guarded by lock_page() because the page is SwapCache. 458 */ 459 if (!PageCgroupUsed(pc)) 460 mem_cgroup_del_lru_list(page, page_lru(page)); 461 spin_unlock_irqrestore(&zone->lru_lock, flags); 462 } 463 464 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) 465 { 466 unsigned long flags; 467 struct zone *zone = page_zone(page); 468 struct page_cgroup *pc = lookup_page_cgroup(page); 469 470 spin_lock_irqsave(&zone->lru_lock, flags); 471 /* link when the page is linked to LRU but page_cgroup isn't */ 472 if (PageLRU(page) && list_empty(&pc->lru)) 473 mem_cgroup_add_lru_list(page, page_lru(page)); 474 spin_unlock_irqrestore(&zone->lru_lock, flags); 475 } 476 477 478 void mem_cgroup_move_lists(struct page *page, 479 enum lru_list from, enum lru_list to) 480 { 481 if (mem_cgroup_disabled()) 482 return; 483 mem_cgroup_del_lru_list(page, from); 484 mem_cgroup_add_lru_list(page, to); 485 } 486 487 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) 488 { 489 int ret; 490 struct mem_cgroup *curr = NULL; 491 492 task_lock(task); 493 rcu_read_lock(); 494 curr = try_get_mem_cgroup_from_mm(task->mm); 495 rcu_read_unlock(); 496 task_unlock(task); 497 if (!curr) 498 return 0; 499 if (curr->use_hierarchy) 500 ret = css_is_ancestor(&curr->css, &mem->css); 501 else 502 ret = (curr == mem); 503 css_put(&curr->css); 504 return ret; 505 } 506 507 /* 508 * prev_priority control...this will be used in memory reclaim path. 509 */ 510 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) 511 { 512 int prev_priority; 513 514 spin_lock(&mem->reclaim_param_lock); 515 prev_priority = mem->prev_priority; 516 spin_unlock(&mem->reclaim_param_lock); 517 518 return prev_priority; 519 } 520 521 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) 522 { 523 spin_lock(&mem->reclaim_param_lock); 524 if (priority < mem->prev_priority) 525 mem->prev_priority = priority; 526 spin_unlock(&mem->reclaim_param_lock); 527 } 528 529 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) 530 { 531 spin_lock(&mem->reclaim_param_lock); 532 mem->prev_priority = priority; 533 spin_unlock(&mem->reclaim_param_lock); 534 } 535 536 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) 537 { 538 unsigned long active; 539 unsigned long inactive; 540 unsigned long gb; 541 unsigned long inactive_ratio; 542 543 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); 544 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); 545 546 gb = (inactive + active) >> (30 - PAGE_SHIFT); 547 if (gb) 548 inactive_ratio = int_sqrt(10 * gb); 549 else 550 inactive_ratio = 1; 551 552 if (present_pages) { 553 present_pages[0] = inactive; 554 present_pages[1] = active; 555 } 556 557 return inactive_ratio; 558 } 559 560 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) 561 { 562 unsigned long active; 563 unsigned long inactive; 564 unsigned long present_pages[2]; 565 unsigned long inactive_ratio; 566 567 inactive_ratio = calc_inactive_ratio(memcg, present_pages); 568 569 inactive = present_pages[0]; 570 active = present_pages[1]; 571 572 if (inactive * inactive_ratio < active) 573 return 1; 574 575 return 0; 576 } 577 578 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg) 579 { 580 unsigned long active; 581 unsigned long inactive; 582 583 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE); 584 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE); 585 586 return (active > inactive); 587 } 588 589 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, 590 struct zone *zone, 591 enum lru_list lru) 592 { 593 int nid = zone->zone_pgdat->node_id; 594 int zid = zone_idx(zone); 595 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 596 597 return MEM_CGROUP_ZSTAT(mz, lru); 598 } 599 600 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, 601 struct zone *zone) 602 { 603 int nid = zone->zone_pgdat->node_id; 604 int zid = zone_idx(zone); 605 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 606 607 return &mz->reclaim_stat; 608 } 609 610 struct zone_reclaim_stat * 611 mem_cgroup_get_reclaim_stat_from_page(struct page *page) 612 { 613 struct page_cgroup *pc; 614 struct mem_cgroup_per_zone *mz; 615 616 if (mem_cgroup_disabled()) 617 return NULL; 618 619 pc = lookup_page_cgroup(page); 620 /* 621 * Used bit is set without atomic ops but after smp_wmb(). 622 * For making pc->mem_cgroup visible, insert smp_rmb() here. 623 */ 624 smp_rmb(); 625 if (!PageCgroupUsed(pc)) 626 return NULL; 627 628 mz = page_cgroup_zoneinfo(pc); 629 if (!mz) 630 return NULL; 631 632 return &mz->reclaim_stat; 633 } 634 635 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, 636 struct list_head *dst, 637 unsigned long *scanned, int order, 638 int mode, struct zone *z, 639 struct mem_cgroup *mem_cont, 640 int active, int file) 641 { 642 unsigned long nr_taken = 0; 643 struct page *page; 644 unsigned long scan; 645 LIST_HEAD(pc_list); 646 struct list_head *src; 647 struct page_cgroup *pc, *tmp; 648 int nid = z->zone_pgdat->node_id; 649 int zid = zone_idx(z); 650 struct mem_cgroup_per_zone *mz; 651 int lru = LRU_FILE * !!file + !!active; 652 int ret; 653 654 BUG_ON(!mem_cont); 655 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 656 src = &mz->lists[lru]; 657 658 scan = 0; 659 list_for_each_entry_safe_reverse(pc, tmp, src, lru) { 660 if (scan >= nr_to_scan) 661 break; 662 663 page = pc->page; 664 if (unlikely(!PageCgroupUsed(pc))) 665 continue; 666 if (unlikely(!PageLRU(page))) 667 continue; 668 669 scan++; 670 ret = __isolate_lru_page(page, mode, file); 671 switch (ret) { 672 case 0: 673 list_move(&page->lru, dst); 674 mem_cgroup_del_lru(page); 675 nr_taken++; 676 break; 677 case -EBUSY: 678 /* we don't affect global LRU but rotate in our LRU */ 679 mem_cgroup_rotate_lru_list(page, page_lru(page)); 680 break; 681 default: 682 break; 683 } 684 } 685 686 *scanned = scan; 687 return nr_taken; 688 } 689 690 #define mem_cgroup_from_res_counter(counter, member) \ 691 container_of(counter, struct mem_cgroup, member) 692 693 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) 694 { 695 if (do_swap_account) { 696 if (res_counter_check_under_limit(&mem->res) && 697 res_counter_check_under_limit(&mem->memsw)) 698 return true; 699 } else 700 if (res_counter_check_under_limit(&mem->res)) 701 return true; 702 return false; 703 } 704 705 static unsigned int get_swappiness(struct mem_cgroup *memcg) 706 { 707 struct cgroup *cgrp = memcg->css.cgroup; 708 unsigned int swappiness; 709 710 /* root ? */ 711 if (cgrp->parent == NULL) 712 return vm_swappiness; 713 714 spin_lock(&memcg->reclaim_param_lock); 715 swappiness = memcg->swappiness; 716 spin_unlock(&memcg->reclaim_param_lock); 717 718 return swappiness; 719 } 720 721 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) 722 { 723 int *val = data; 724 (*val)++; 725 return 0; 726 } 727 728 /** 729 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode. 730 * @memcg: The memory cgroup that went over limit 731 * @p: Task that is going to be killed 732 * 733 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 734 * enabled 735 */ 736 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 737 { 738 struct cgroup *task_cgrp; 739 struct cgroup *mem_cgrp; 740 /* 741 * Need a buffer in BSS, can't rely on allocations. The code relies 742 * on the assumption that OOM is serialized for memory controller. 743 * If this assumption is broken, revisit this code. 744 */ 745 static char memcg_name[PATH_MAX]; 746 int ret; 747 748 if (!memcg) 749 return; 750 751 752 rcu_read_lock(); 753 754 mem_cgrp = memcg->css.cgroup; 755 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 756 757 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 758 if (ret < 0) { 759 /* 760 * Unfortunately, we are unable to convert to a useful name 761 * But we'll still print out the usage information 762 */ 763 rcu_read_unlock(); 764 goto done; 765 } 766 rcu_read_unlock(); 767 768 printk(KERN_INFO "Task in %s killed", memcg_name); 769 770 rcu_read_lock(); 771 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 772 if (ret < 0) { 773 rcu_read_unlock(); 774 goto done; 775 } 776 rcu_read_unlock(); 777 778 /* 779 * Continues from above, so we don't need an KERN_ level 780 */ 781 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 782 done: 783 784 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 785 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 786 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 787 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 788 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 789 "failcnt %llu\n", 790 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 791 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 792 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 793 } 794 795 /* 796 * This function returns the number of memcg under hierarchy tree. Returns 797 * 1(self count) if no children. 798 */ 799 static int mem_cgroup_count_children(struct mem_cgroup *mem) 800 { 801 int num = 0; 802 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb); 803 return num; 804 } 805 806 /* 807 * Visit the first child (need not be the first child as per the ordering 808 * of the cgroup list, since we track last_scanned_child) of @mem and use 809 * that to reclaim free pages from. 810 */ 811 static struct mem_cgroup * 812 mem_cgroup_select_victim(struct mem_cgroup *root_mem) 813 { 814 struct mem_cgroup *ret = NULL; 815 struct cgroup_subsys_state *css; 816 int nextid, found; 817 818 if (!root_mem->use_hierarchy) { 819 css_get(&root_mem->css); 820 ret = root_mem; 821 } 822 823 while (!ret) { 824 rcu_read_lock(); 825 nextid = root_mem->last_scanned_child + 1; 826 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, 827 &found); 828 if (css && css_tryget(css)) 829 ret = container_of(css, struct mem_cgroup, css); 830 831 rcu_read_unlock(); 832 /* Updates scanning parameter */ 833 spin_lock(&root_mem->reclaim_param_lock); 834 if (!css) { 835 /* this means start scan from ID:1 */ 836 root_mem->last_scanned_child = 0; 837 } else 838 root_mem->last_scanned_child = found; 839 spin_unlock(&root_mem->reclaim_param_lock); 840 } 841 842 return ret; 843 } 844 845 /* 846 * Scan the hierarchy if needed to reclaim memory. We remember the last child 847 * we reclaimed from, so that we don't end up penalizing one child extensively 848 * based on its position in the children list. 849 * 850 * root_mem is the original ancestor that we've been reclaim from. 851 * 852 * We give up and return to the caller when we visit root_mem twice. 853 * (other groups can be removed while we're walking....) 854 * 855 * If shrink==true, for avoiding to free too much, this returns immedieately. 856 */ 857 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, 858 gfp_t gfp_mask, bool noswap, bool shrink) 859 { 860 struct mem_cgroup *victim; 861 int ret, total = 0; 862 int loop = 0; 863 864 /* If memsw_is_minimum==1, swap-out is of-no-use. */ 865 if (root_mem->memsw_is_minimum) 866 noswap = true; 867 868 while (loop < 2) { 869 victim = mem_cgroup_select_victim(root_mem); 870 if (victim == root_mem) 871 loop++; 872 if (!mem_cgroup_local_usage(&victim->stat)) { 873 /* this cgroup's local usage == 0 */ 874 css_put(&victim->css); 875 continue; 876 } 877 /* we use swappiness of local cgroup */ 878 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap, 879 get_swappiness(victim)); 880 css_put(&victim->css); 881 /* 882 * At shrinking usage, we can't check we should stop here or 883 * reclaim more. It's depends on callers. last_scanned_child 884 * will work enough for keeping fairness under tree. 885 */ 886 if (shrink) 887 return ret; 888 total += ret; 889 if (mem_cgroup_check_under_limit(root_mem)) 890 return 1 + total; 891 } 892 return total; 893 } 894 895 bool mem_cgroup_oom_called(struct task_struct *task) 896 { 897 bool ret = false; 898 struct mem_cgroup *mem; 899 struct mm_struct *mm; 900 901 rcu_read_lock(); 902 mm = task->mm; 903 if (!mm) 904 mm = &init_mm; 905 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 906 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10)) 907 ret = true; 908 rcu_read_unlock(); 909 return ret; 910 } 911 912 static int record_last_oom_cb(struct mem_cgroup *mem, void *data) 913 { 914 mem->last_oom_jiffies = jiffies; 915 return 0; 916 } 917 918 static void record_last_oom(struct mem_cgroup *mem) 919 { 920 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb); 921 } 922 923 /* 924 * Currently used to update mapped file statistics, but the routine can be 925 * generalized to update other statistics as well. 926 */ 927 void mem_cgroup_update_mapped_file_stat(struct page *page, int val) 928 { 929 struct mem_cgroup *mem; 930 struct mem_cgroup_stat *stat; 931 struct mem_cgroup_stat_cpu *cpustat; 932 int cpu; 933 struct page_cgroup *pc; 934 935 if (!page_is_file_cache(page)) 936 return; 937 938 pc = lookup_page_cgroup(page); 939 if (unlikely(!pc)) 940 return; 941 942 lock_page_cgroup(pc); 943 mem = pc->mem_cgroup; 944 if (!mem) 945 goto done; 946 947 if (!PageCgroupUsed(pc)) 948 goto done; 949 950 /* 951 * Preemption is already disabled, we don't need get_cpu() 952 */ 953 cpu = smp_processor_id(); 954 stat = &mem->stat; 955 cpustat = &stat->cpustat[cpu]; 956 957 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val); 958 done: 959 unlock_page_cgroup(pc); 960 } 961 962 /* 963 * Unlike exported interface, "oom" parameter is added. if oom==true, 964 * oom-killer can be invoked. 965 */ 966 static int __mem_cgroup_try_charge(struct mm_struct *mm, 967 gfp_t gfp_mask, struct mem_cgroup **memcg, 968 bool oom) 969 { 970 struct mem_cgroup *mem, *mem_over_limit; 971 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 972 struct res_counter *fail_res; 973 974 if (unlikely(test_thread_flag(TIF_MEMDIE))) { 975 /* Don't account this! */ 976 *memcg = NULL; 977 return 0; 978 } 979 980 /* 981 * We always charge the cgroup the mm_struct belongs to. 982 * The mm_struct's mem_cgroup changes on task migration if the 983 * thread group leader migrates. It's possible that mm is not 984 * set, if so charge the init_mm (happens for pagecache usage). 985 */ 986 mem = *memcg; 987 if (likely(!mem)) { 988 mem = try_get_mem_cgroup_from_mm(mm); 989 *memcg = mem; 990 } else { 991 css_get(&mem->css); 992 } 993 if (unlikely(!mem)) 994 return 0; 995 996 VM_BUG_ON(css_is_removed(&mem->css)); 997 998 while (1) { 999 int ret; 1000 bool noswap = false; 1001 1002 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res); 1003 if (likely(!ret)) { 1004 if (!do_swap_account) 1005 break; 1006 ret = res_counter_charge(&mem->memsw, PAGE_SIZE, 1007 &fail_res); 1008 if (likely(!ret)) 1009 break; 1010 /* mem+swap counter fails */ 1011 res_counter_uncharge(&mem->res, PAGE_SIZE); 1012 noswap = true; 1013 mem_over_limit = mem_cgroup_from_res_counter(fail_res, 1014 memsw); 1015 } else 1016 /* mem counter fails */ 1017 mem_over_limit = mem_cgroup_from_res_counter(fail_res, 1018 res); 1019 1020 if (!(gfp_mask & __GFP_WAIT)) 1021 goto nomem; 1022 1023 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask, 1024 noswap, false); 1025 if (ret) 1026 continue; 1027 1028 /* 1029 * try_to_free_mem_cgroup_pages() might not give us a full 1030 * picture of reclaim. Some pages are reclaimed and might be 1031 * moved to swap cache or just unmapped from the cgroup. 1032 * Check the limit again to see if the reclaim reduced the 1033 * current usage of the cgroup before giving up 1034 * 1035 */ 1036 if (mem_cgroup_check_under_limit(mem_over_limit)) 1037 continue; 1038 1039 if (!nr_retries--) { 1040 if (oom) { 1041 mutex_lock(&memcg_tasklist); 1042 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); 1043 mutex_unlock(&memcg_tasklist); 1044 record_last_oom(mem_over_limit); 1045 } 1046 goto nomem; 1047 } 1048 } 1049 return 0; 1050 nomem: 1051 css_put(&mem->css); 1052 return -ENOMEM; 1053 } 1054 1055 1056 /* 1057 * A helper function to get mem_cgroup from ID. must be called under 1058 * rcu_read_lock(). The caller must check css_is_removed() or some if 1059 * it's concern. (dropping refcnt from swap can be called against removed 1060 * memcg.) 1061 */ 1062 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 1063 { 1064 struct cgroup_subsys_state *css; 1065 1066 /* ID 0 is unused ID */ 1067 if (!id) 1068 return NULL; 1069 css = css_lookup(&mem_cgroup_subsys, id); 1070 if (!css) 1071 return NULL; 1072 return container_of(css, struct mem_cgroup, css); 1073 } 1074 1075 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page) 1076 { 1077 struct mem_cgroup *mem; 1078 struct page_cgroup *pc; 1079 unsigned short id; 1080 swp_entry_t ent; 1081 1082 VM_BUG_ON(!PageLocked(page)); 1083 1084 if (!PageSwapCache(page)) 1085 return NULL; 1086 1087 pc = lookup_page_cgroup(page); 1088 lock_page_cgroup(pc); 1089 if (PageCgroupUsed(pc)) { 1090 mem = pc->mem_cgroup; 1091 if (mem && !css_tryget(&mem->css)) 1092 mem = NULL; 1093 } else { 1094 ent.val = page_private(page); 1095 id = lookup_swap_cgroup(ent); 1096 rcu_read_lock(); 1097 mem = mem_cgroup_lookup(id); 1098 if (mem && !css_tryget(&mem->css)) 1099 mem = NULL; 1100 rcu_read_unlock(); 1101 } 1102 unlock_page_cgroup(pc); 1103 return mem; 1104 } 1105 1106 /* 1107 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be 1108 * USED state. If already USED, uncharge and return. 1109 */ 1110 1111 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, 1112 struct page_cgroup *pc, 1113 enum charge_type ctype) 1114 { 1115 /* try_charge() can return NULL to *memcg, taking care of it. */ 1116 if (!mem) 1117 return; 1118 1119 lock_page_cgroup(pc); 1120 if (unlikely(PageCgroupUsed(pc))) { 1121 unlock_page_cgroup(pc); 1122 res_counter_uncharge(&mem->res, PAGE_SIZE); 1123 if (do_swap_account) 1124 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1125 css_put(&mem->css); 1126 return; 1127 } 1128 pc->mem_cgroup = mem; 1129 smp_wmb(); 1130 pc->flags = pcg_default_flags[ctype]; 1131 1132 mem_cgroup_charge_statistics(mem, pc, true); 1133 1134 unlock_page_cgroup(pc); 1135 } 1136 1137 /** 1138 * mem_cgroup_move_account - move account of the page 1139 * @pc: page_cgroup of the page. 1140 * @from: mem_cgroup which the page is moved from. 1141 * @to: mem_cgroup which the page is moved to. @from != @to. 1142 * 1143 * The caller must confirm following. 1144 * - page is not on LRU (isolate_page() is useful.) 1145 * 1146 * returns 0 at success, 1147 * returns -EBUSY when lock is busy or "pc" is unstable. 1148 * 1149 * This function does "uncharge" from old cgroup but doesn't do "charge" to 1150 * new cgroup. It should be done by a caller. 1151 */ 1152 1153 static int mem_cgroup_move_account(struct page_cgroup *pc, 1154 struct mem_cgroup *from, struct mem_cgroup *to) 1155 { 1156 struct mem_cgroup_per_zone *from_mz, *to_mz; 1157 int nid, zid; 1158 int ret = -EBUSY; 1159 struct page *page; 1160 int cpu; 1161 struct mem_cgroup_stat *stat; 1162 struct mem_cgroup_stat_cpu *cpustat; 1163 1164 VM_BUG_ON(from == to); 1165 VM_BUG_ON(PageLRU(pc->page)); 1166 1167 nid = page_cgroup_nid(pc); 1168 zid = page_cgroup_zid(pc); 1169 from_mz = mem_cgroup_zoneinfo(from, nid, zid); 1170 to_mz = mem_cgroup_zoneinfo(to, nid, zid); 1171 1172 if (!trylock_page_cgroup(pc)) 1173 return ret; 1174 1175 if (!PageCgroupUsed(pc)) 1176 goto out; 1177 1178 if (pc->mem_cgroup != from) 1179 goto out; 1180 1181 res_counter_uncharge(&from->res, PAGE_SIZE); 1182 mem_cgroup_charge_statistics(from, pc, false); 1183 1184 page = pc->page; 1185 if (page_is_file_cache(page) && page_mapped(page)) { 1186 cpu = smp_processor_id(); 1187 /* Update mapped_file data for mem_cgroup "from" */ 1188 stat = &from->stat; 1189 cpustat = &stat->cpustat[cpu]; 1190 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, 1191 -1); 1192 1193 /* Update mapped_file data for mem_cgroup "to" */ 1194 stat = &to->stat; 1195 cpustat = &stat->cpustat[cpu]; 1196 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, 1197 1); 1198 } 1199 1200 if (do_swap_account) 1201 res_counter_uncharge(&from->memsw, PAGE_SIZE); 1202 css_put(&from->css); 1203 1204 css_get(&to->css); 1205 pc->mem_cgroup = to; 1206 mem_cgroup_charge_statistics(to, pc, true); 1207 ret = 0; 1208 out: 1209 unlock_page_cgroup(pc); 1210 return ret; 1211 } 1212 1213 /* 1214 * move charges to its parent. 1215 */ 1216 1217 static int mem_cgroup_move_parent(struct page_cgroup *pc, 1218 struct mem_cgroup *child, 1219 gfp_t gfp_mask) 1220 { 1221 struct page *page = pc->page; 1222 struct cgroup *cg = child->css.cgroup; 1223 struct cgroup *pcg = cg->parent; 1224 struct mem_cgroup *parent; 1225 int ret; 1226 1227 /* Is ROOT ? */ 1228 if (!pcg) 1229 return -EINVAL; 1230 1231 1232 parent = mem_cgroup_from_cont(pcg); 1233 1234 1235 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false); 1236 if (ret || !parent) 1237 return ret; 1238 1239 if (!get_page_unless_zero(page)) { 1240 ret = -EBUSY; 1241 goto uncharge; 1242 } 1243 1244 ret = isolate_lru_page(page); 1245 1246 if (ret) 1247 goto cancel; 1248 1249 ret = mem_cgroup_move_account(pc, child, parent); 1250 1251 putback_lru_page(page); 1252 if (!ret) { 1253 put_page(page); 1254 /* drop extra refcnt by try_charge() */ 1255 css_put(&parent->css); 1256 return 0; 1257 } 1258 1259 cancel: 1260 put_page(page); 1261 uncharge: 1262 /* drop extra refcnt by try_charge() */ 1263 css_put(&parent->css); 1264 /* uncharge if move fails */ 1265 res_counter_uncharge(&parent->res, PAGE_SIZE); 1266 if (do_swap_account) 1267 res_counter_uncharge(&parent->memsw, PAGE_SIZE); 1268 return ret; 1269 } 1270 1271 /* 1272 * Charge the memory controller for page usage. 1273 * Return 1274 * 0 if the charge was successful 1275 * < 0 if the cgroup is over its limit 1276 */ 1277 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 1278 gfp_t gfp_mask, enum charge_type ctype, 1279 struct mem_cgroup *memcg) 1280 { 1281 struct mem_cgroup *mem; 1282 struct page_cgroup *pc; 1283 int ret; 1284 1285 pc = lookup_page_cgroup(page); 1286 /* can happen at boot */ 1287 if (unlikely(!pc)) 1288 return 0; 1289 prefetchw(pc); 1290 1291 mem = memcg; 1292 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); 1293 if (ret || !mem) 1294 return ret; 1295 1296 __mem_cgroup_commit_charge(mem, pc, ctype); 1297 return 0; 1298 } 1299 1300 int mem_cgroup_newpage_charge(struct page *page, 1301 struct mm_struct *mm, gfp_t gfp_mask) 1302 { 1303 if (mem_cgroup_disabled()) 1304 return 0; 1305 if (PageCompound(page)) 1306 return 0; 1307 /* 1308 * If already mapped, we don't have to account. 1309 * If page cache, page->mapping has address_space. 1310 * But page->mapping may have out-of-use anon_vma pointer, 1311 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping 1312 * is NULL. 1313 */ 1314 if (page_mapped(page) || (page->mapping && !PageAnon(page))) 1315 return 0; 1316 if (unlikely(!mm)) 1317 mm = &init_mm; 1318 return mem_cgroup_charge_common(page, mm, gfp_mask, 1319 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); 1320 } 1321 1322 static void 1323 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 1324 enum charge_type ctype); 1325 1326 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 1327 gfp_t gfp_mask) 1328 { 1329 struct mem_cgroup *mem = NULL; 1330 int ret; 1331 1332 if (mem_cgroup_disabled()) 1333 return 0; 1334 if (PageCompound(page)) 1335 return 0; 1336 /* 1337 * Corner case handling. This is called from add_to_page_cache() 1338 * in usual. But some FS (shmem) precharges this page before calling it 1339 * and call add_to_page_cache() with GFP_NOWAIT. 1340 * 1341 * For GFP_NOWAIT case, the page may be pre-charged before calling 1342 * add_to_page_cache(). (See shmem.c) check it here and avoid to call 1343 * charge twice. (It works but has to pay a bit larger cost.) 1344 * And when the page is SwapCache, it should take swap information 1345 * into account. This is under lock_page() now. 1346 */ 1347 if (!(gfp_mask & __GFP_WAIT)) { 1348 struct page_cgroup *pc; 1349 1350 1351 pc = lookup_page_cgroup(page); 1352 if (!pc) 1353 return 0; 1354 lock_page_cgroup(pc); 1355 if (PageCgroupUsed(pc)) { 1356 unlock_page_cgroup(pc); 1357 return 0; 1358 } 1359 unlock_page_cgroup(pc); 1360 } 1361 1362 if (unlikely(!mm && !mem)) 1363 mm = &init_mm; 1364 1365 if (page_is_file_cache(page)) 1366 return mem_cgroup_charge_common(page, mm, gfp_mask, 1367 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); 1368 1369 /* shmem */ 1370 if (PageSwapCache(page)) { 1371 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 1372 if (!ret) 1373 __mem_cgroup_commit_charge_swapin(page, mem, 1374 MEM_CGROUP_CHARGE_TYPE_SHMEM); 1375 } else 1376 ret = mem_cgroup_charge_common(page, mm, gfp_mask, 1377 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); 1378 1379 return ret; 1380 } 1381 1382 /* 1383 * While swap-in, try_charge -> commit or cancel, the page is locked. 1384 * And when try_charge() successfully returns, one refcnt to memcg without 1385 * struct page_cgroup is aquired. This refcnt will be cumsumed by 1386 * "commit()" or removed by "cancel()" 1387 */ 1388 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 1389 struct page *page, 1390 gfp_t mask, struct mem_cgroup **ptr) 1391 { 1392 struct mem_cgroup *mem; 1393 int ret; 1394 1395 if (mem_cgroup_disabled()) 1396 return 0; 1397 1398 if (!do_swap_account) 1399 goto charge_cur_mm; 1400 /* 1401 * A racing thread's fault, or swapoff, may have already updated 1402 * the pte, and even removed page from swap cache: return success 1403 * to go on to do_swap_page()'s pte_same() test, which should fail. 1404 */ 1405 if (!PageSwapCache(page)) 1406 return 0; 1407 mem = try_get_mem_cgroup_from_swapcache(page); 1408 if (!mem) 1409 goto charge_cur_mm; 1410 *ptr = mem; 1411 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); 1412 /* drop extra refcnt from tryget */ 1413 css_put(&mem->css); 1414 return ret; 1415 charge_cur_mm: 1416 if (unlikely(!mm)) 1417 mm = &init_mm; 1418 return __mem_cgroup_try_charge(mm, mask, ptr, true); 1419 } 1420 1421 static void 1422 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 1423 enum charge_type ctype) 1424 { 1425 struct page_cgroup *pc; 1426 1427 if (mem_cgroup_disabled()) 1428 return; 1429 if (!ptr) 1430 return; 1431 pc = lookup_page_cgroup(page); 1432 mem_cgroup_lru_del_before_commit_swapcache(page); 1433 __mem_cgroup_commit_charge(ptr, pc, ctype); 1434 mem_cgroup_lru_add_after_commit_swapcache(page); 1435 /* 1436 * Now swap is on-memory. This means this page may be 1437 * counted both as mem and swap....double count. 1438 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 1439 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 1440 * may call delete_from_swap_cache() before reach here. 1441 */ 1442 if (do_swap_account && PageSwapCache(page)) { 1443 swp_entry_t ent = {.val = page_private(page)}; 1444 unsigned short id; 1445 struct mem_cgroup *memcg; 1446 1447 id = swap_cgroup_record(ent, 0); 1448 rcu_read_lock(); 1449 memcg = mem_cgroup_lookup(id); 1450 if (memcg) { 1451 /* 1452 * This recorded memcg can be obsolete one. So, avoid 1453 * calling css_tryget 1454 */ 1455 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 1456 mem_cgroup_put(memcg); 1457 } 1458 rcu_read_unlock(); 1459 } 1460 /* add this page(page_cgroup) to the LRU we want. */ 1461 1462 } 1463 1464 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) 1465 { 1466 __mem_cgroup_commit_charge_swapin(page, ptr, 1467 MEM_CGROUP_CHARGE_TYPE_MAPPED); 1468 } 1469 1470 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) 1471 { 1472 if (mem_cgroup_disabled()) 1473 return; 1474 if (!mem) 1475 return; 1476 res_counter_uncharge(&mem->res, PAGE_SIZE); 1477 if (do_swap_account) 1478 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1479 css_put(&mem->css); 1480 } 1481 1482 1483 /* 1484 * uncharge if !page_mapped(page) 1485 */ 1486 static struct mem_cgroup * 1487 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 1488 { 1489 struct page_cgroup *pc; 1490 struct mem_cgroup *mem = NULL; 1491 struct mem_cgroup_per_zone *mz; 1492 1493 if (mem_cgroup_disabled()) 1494 return NULL; 1495 1496 if (PageSwapCache(page)) 1497 return NULL; 1498 1499 /* 1500 * Check if our page_cgroup is valid 1501 */ 1502 pc = lookup_page_cgroup(page); 1503 if (unlikely(!pc || !PageCgroupUsed(pc))) 1504 return NULL; 1505 1506 lock_page_cgroup(pc); 1507 1508 mem = pc->mem_cgroup; 1509 1510 if (!PageCgroupUsed(pc)) 1511 goto unlock_out; 1512 1513 switch (ctype) { 1514 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 1515 case MEM_CGROUP_CHARGE_TYPE_DROP: 1516 if (page_mapped(page)) 1517 goto unlock_out; 1518 break; 1519 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 1520 if (!PageAnon(page)) { /* Shared memory */ 1521 if (page->mapping && !page_is_file_cache(page)) 1522 goto unlock_out; 1523 } else if (page_mapped(page)) /* Anon */ 1524 goto unlock_out; 1525 break; 1526 default: 1527 break; 1528 } 1529 1530 res_counter_uncharge(&mem->res, PAGE_SIZE); 1531 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)) 1532 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1533 mem_cgroup_charge_statistics(mem, pc, false); 1534 1535 ClearPageCgroupUsed(pc); 1536 /* 1537 * pc->mem_cgroup is not cleared here. It will be accessed when it's 1538 * freed from LRU. This is safe because uncharged page is expected not 1539 * to be reused (freed soon). Exception is SwapCache, it's handled by 1540 * special functions. 1541 */ 1542 1543 mz = page_cgroup_zoneinfo(pc); 1544 unlock_page_cgroup(pc); 1545 1546 /* at swapout, this memcg will be accessed to record to swap */ 1547 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 1548 css_put(&mem->css); 1549 1550 return mem; 1551 1552 unlock_out: 1553 unlock_page_cgroup(pc); 1554 return NULL; 1555 } 1556 1557 void mem_cgroup_uncharge_page(struct page *page) 1558 { 1559 /* early check. */ 1560 if (page_mapped(page)) 1561 return; 1562 if (page->mapping && !PageAnon(page)) 1563 return; 1564 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); 1565 } 1566 1567 void mem_cgroup_uncharge_cache_page(struct page *page) 1568 { 1569 VM_BUG_ON(page_mapped(page)); 1570 VM_BUG_ON(page->mapping); 1571 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); 1572 } 1573 1574 #ifdef CONFIG_SWAP 1575 /* 1576 * called after __delete_from_swap_cache() and drop "page" account. 1577 * memcg information is recorded to swap_cgroup of "ent" 1578 */ 1579 void 1580 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 1581 { 1582 struct mem_cgroup *memcg; 1583 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 1584 1585 if (!swapout) /* this was a swap cache but the swap is unused ! */ 1586 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 1587 1588 memcg = __mem_cgroup_uncharge_common(page, ctype); 1589 1590 /* record memcg information */ 1591 if (do_swap_account && swapout && memcg) { 1592 swap_cgroup_record(ent, css_id(&memcg->css)); 1593 mem_cgroup_get(memcg); 1594 } 1595 if (swapout && memcg) 1596 css_put(&memcg->css); 1597 } 1598 #endif 1599 1600 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 1601 /* 1602 * called from swap_entry_free(). remove record in swap_cgroup and 1603 * uncharge "memsw" account. 1604 */ 1605 void mem_cgroup_uncharge_swap(swp_entry_t ent) 1606 { 1607 struct mem_cgroup *memcg; 1608 unsigned short id; 1609 1610 if (!do_swap_account) 1611 return; 1612 1613 id = swap_cgroup_record(ent, 0); 1614 rcu_read_lock(); 1615 memcg = mem_cgroup_lookup(id); 1616 if (memcg) { 1617 /* 1618 * We uncharge this because swap is freed. 1619 * This memcg can be obsolete one. We avoid calling css_tryget 1620 */ 1621 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 1622 mem_cgroup_put(memcg); 1623 } 1624 rcu_read_unlock(); 1625 } 1626 #endif 1627 1628 /* 1629 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 1630 * page belongs to. 1631 */ 1632 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr) 1633 { 1634 struct page_cgroup *pc; 1635 struct mem_cgroup *mem = NULL; 1636 int ret = 0; 1637 1638 if (mem_cgroup_disabled()) 1639 return 0; 1640 1641 pc = lookup_page_cgroup(page); 1642 lock_page_cgroup(pc); 1643 if (PageCgroupUsed(pc)) { 1644 mem = pc->mem_cgroup; 1645 css_get(&mem->css); 1646 } 1647 unlock_page_cgroup(pc); 1648 1649 if (mem) { 1650 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false); 1651 css_put(&mem->css); 1652 } 1653 *ptr = mem; 1654 return ret; 1655 } 1656 1657 /* remove redundant charge if migration failed*/ 1658 void mem_cgroup_end_migration(struct mem_cgroup *mem, 1659 struct page *oldpage, struct page *newpage) 1660 { 1661 struct page *target, *unused; 1662 struct page_cgroup *pc; 1663 enum charge_type ctype; 1664 1665 if (!mem) 1666 return; 1667 1668 /* at migration success, oldpage->mapping is NULL. */ 1669 if (oldpage->mapping) { 1670 target = oldpage; 1671 unused = NULL; 1672 } else { 1673 target = newpage; 1674 unused = oldpage; 1675 } 1676 1677 if (PageAnon(target)) 1678 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; 1679 else if (page_is_file_cache(target)) 1680 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 1681 else 1682 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 1683 1684 /* unused page is not on radix-tree now. */ 1685 if (unused) 1686 __mem_cgroup_uncharge_common(unused, ctype); 1687 1688 pc = lookup_page_cgroup(target); 1689 /* 1690 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup. 1691 * So, double-counting is effectively avoided. 1692 */ 1693 __mem_cgroup_commit_charge(mem, pc, ctype); 1694 1695 /* 1696 * Both of oldpage and newpage are still under lock_page(). 1697 * Then, we don't have to care about race in radix-tree. 1698 * But we have to be careful that this page is unmapped or not. 1699 * 1700 * There is a case for !page_mapped(). At the start of 1701 * migration, oldpage was mapped. But now, it's zapped. 1702 * But we know *target* page is not freed/reused under us. 1703 * mem_cgroup_uncharge_page() does all necessary checks. 1704 */ 1705 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) 1706 mem_cgroup_uncharge_page(target); 1707 } 1708 1709 /* 1710 * A call to try to shrink memory usage on charge failure at shmem's swapin. 1711 * Calling hierarchical_reclaim is not enough because we should update 1712 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. 1713 * Moreover considering hierarchy, we should reclaim from the mem_over_limit, 1714 * not from the memcg which this page would be charged to. 1715 * try_charge_swapin does all of these works properly. 1716 */ 1717 int mem_cgroup_shmem_charge_fallback(struct page *page, 1718 struct mm_struct *mm, 1719 gfp_t gfp_mask) 1720 { 1721 struct mem_cgroup *mem = NULL; 1722 int ret; 1723 1724 if (mem_cgroup_disabled()) 1725 return 0; 1726 1727 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 1728 if (!ret) 1729 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ 1730 1731 return ret; 1732 } 1733 1734 static DEFINE_MUTEX(set_limit_mutex); 1735 1736 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 1737 unsigned long long val) 1738 { 1739 int retry_count; 1740 int progress; 1741 u64 memswlimit; 1742 int ret = 0; 1743 int children = mem_cgroup_count_children(memcg); 1744 u64 curusage, oldusage; 1745 1746 /* 1747 * For keeping hierarchical_reclaim simple, how long we should retry 1748 * is depends on callers. We set our retry-count to be function 1749 * of # of children which we should visit in this loop. 1750 */ 1751 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 1752 1753 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 1754 1755 while (retry_count) { 1756 if (signal_pending(current)) { 1757 ret = -EINTR; 1758 break; 1759 } 1760 /* 1761 * Rather than hide all in some function, I do this in 1762 * open coded manner. You see what this really does. 1763 * We have to guarantee mem->res.limit < mem->memsw.limit. 1764 */ 1765 mutex_lock(&set_limit_mutex); 1766 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1767 if (memswlimit < val) { 1768 ret = -EINVAL; 1769 mutex_unlock(&set_limit_mutex); 1770 break; 1771 } 1772 ret = res_counter_set_limit(&memcg->res, val); 1773 if (!ret) { 1774 if (memswlimit == val) 1775 memcg->memsw_is_minimum = true; 1776 else 1777 memcg->memsw_is_minimum = false; 1778 } 1779 mutex_unlock(&set_limit_mutex); 1780 1781 if (!ret) 1782 break; 1783 1784 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, 1785 false, true); 1786 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 1787 /* Usage is reduced ? */ 1788 if (curusage >= oldusage) 1789 retry_count--; 1790 else 1791 oldusage = curusage; 1792 } 1793 1794 return ret; 1795 } 1796 1797 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 1798 unsigned long long val) 1799 { 1800 int retry_count; 1801 u64 memlimit, oldusage, curusage; 1802 int children = mem_cgroup_count_children(memcg); 1803 int ret = -EBUSY; 1804 1805 /* see mem_cgroup_resize_res_limit */ 1806 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 1807 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 1808 while (retry_count) { 1809 if (signal_pending(current)) { 1810 ret = -EINTR; 1811 break; 1812 } 1813 /* 1814 * Rather than hide all in some function, I do this in 1815 * open coded manner. You see what this really does. 1816 * We have to guarantee mem->res.limit < mem->memsw.limit. 1817 */ 1818 mutex_lock(&set_limit_mutex); 1819 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1820 if (memlimit > val) { 1821 ret = -EINVAL; 1822 mutex_unlock(&set_limit_mutex); 1823 break; 1824 } 1825 ret = res_counter_set_limit(&memcg->memsw, val); 1826 if (!ret) { 1827 if (memlimit == val) 1828 memcg->memsw_is_minimum = true; 1829 else 1830 memcg->memsw_is_minimum = false; 1831 } 1832 mutex_unlock(&set_limit_mutex); 1833 1834 if (!ret) 1835 break; 1836 1837 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true); 1838 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 1839 /* Usage is reduced ? */ 1840 if (curusage >= oldusage) 1841 retry_count--; 1842 else 1843 oldusage = curusage; 1844 } 1845 return ret; 1846 } 1847 1848 /* 1849 * This routine traverse page_cgroup in given list and drop them all. 1850 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 1851 */ 1852 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, 1853 int node, int zid, enum lru_list lru) 1854 { 1855 struct zone *zone; 1856 struct mem_cgroup_per_zone *mz; 1857 struct page_cgroup *pc, *busy; 1858 unsigned long flags, loop; 1859 struct list_head *list; 1860 int ret = 0; 1861 1862 zone = &NODE_DATA(node)->node_zones[zid]; 1863 mz = mem_cgroup_zoneinfo(mem, node, zid); 1864 list = &mz->lists[lru]; 1865 1866 loop = MEM_CGROUP_ZSTAT(mz, lru); 1867 /* give some margin against EBUSY etc...*/ 1868 loop += 256; 1869 busy = NULL; 1870 while (loop--) { 1871 ret = 0; 1872 spin_lock_irqsave(&zone->lru_lock, flags); 1873 if (list_empty(list)) { 1874 spin_unlock_irqrestore(&zone->lru_lock, flags); 1875 break; 1876 } 1877 pc = list_entry(list->prev, struct page_cgroup, lru); 1878 if (busy == pc) { 1879 list_move(&pc->lru, list); 1880 busy = 0; 1881 spin_unlock_irqrestore(&zone->lru_lock, flags); 1882 continue; 1883 } 1884 spin_unlock_irqrestore(&zone->lru_lock, flags); 1885 1886 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); 1887 if (ret == -ENOMEM) 1888 break; 1889 1890 if (ret == -EBUSY || ret == -EINVAL) { 1891 /* found lock contention or "pc" is obsolete. */ 1892 busy = pc; 1893 cond_resched(); 1894 } else 1895 busy = NULL; 1896 } 1897 1898 if (!ret && !list_empty(list)) 1899 return -EBUSY; 1900 return ret; 1901 } 1902 1903 /* 1904 * make mem_cgroup's charge to be 0 if there is no task. 1905 * This enables deleting this mem_cgroup. 1906 */ 1907 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) 1908 { 1909 int ret; 1910 int node, zid, shrink; 1911 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1912 struct cgroup *cgrp = mem->css.cgroup; 1913 1914 css_get(&mem->css); 1915 1916 shrink = 0; 1917 /* should free all ? */ 1918 if (free_all) 1919 goto try_to_free; 1920 move_account: 1921 while (mem->res.usage > 0) { 1922 ret = -EBUSY; 1923 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 1924 goto out; 1925 ret = -EINTR; 1926 if (signal_pending(current)) 1927 goto out; 1928 /* This is for making all *used* pages to be on LRU. */ 1929 lru_add_drain_all(); 1930 ret = 0; 1931 for_each_node_state(node, N_HIGH_MEMORY) { 1932 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 1933 enum lru_list l; 1934 for_each_lru(l) { 1935 ret = mem_cgroup_force_empty_list(mem, 1936 node, zid, l); 1937 if (ret) 1938 break; 1939 } 1940 } 1941 if (ret) 1942 break; 1943 } 1944 /* it seems parent cgroup doesn't have enough mem */ 1945 if (ret == -ENOMEM) 1946 goto try_to_free; 1947 cond_resched(); 1948 } 1949 ret = 0; 1950 out: 1951 css_put(&mem->css); 1952 return ret; 1953 1954 try_to_free: 1955 /* returns EBUSY if there is a task or if we come here twice. */ 1956 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 1957 ret = -EBUSY; 1958 goto out; 1959 } 1960 /* we call try-to-free pages for make this cgroup empty */ 1961 lru_add_drain_all(); 1962 /* try to free all pages in this cgroup */ 1963 shrink = 1; 1964 while (nr_retries && mem->res.usage > 0) { 1965 int progress; 1966 1967 if (signal_pending(current)) { 1968 ret = -EINTR; 1969 goto out; 1970 } 1971 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, 1972 false, get_swappiness(mem)); 1973 if (!progress) { 1974 nr_retries--; 1975 /* maybe some writeback is necessary */ 1976 congestion_wait(BLK_RW_ASYNC, HZ/10); 1977 } 1978 1979 } 1980 lru_add_drain(); 1981 /* try move_account...there may be some *locked* pages. */ 1982 if (mem->res.usage) 1983 goto move_account; 1984 ret = 0; 1985 goto out; 1986 } 1987 1988 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 1989 { 1990 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 1991 } 1992 1993 1994 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 1995 { 1996 return mem_cgroup_from_cont(cont)->use_hierarchy; 1997 } 1998 1999 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 2000 u64 val) 2001 { 2002 int retval = 0; 2003 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2004 struct cgroup *parent = cont->parent; 2005 struct mem_cgroup *parent_mem = NULL; 2006 2007 if (parent) 2008 parent_mem = mem_cgroup_from_cont(parent); 2009 2010 cgroup_lock(); 2011 /* 2012 * If parent's use_hiearchy is set, we can't make any modifications 2013 * in the child subtrees. If it is unset, then the change can 2014 * occur, provided the current cgroup has no children. 2015 * 2016 * For the root cgroup, parent_mem is NULL, we allow value to be 2017 * set if there are no children. 2018 */ 2019 if ((!parent_mem || !parent_mem->use_hierarchy) && 2020 (val == 1 || val == 0)) { 2021 if (list_empty(&cont->children)) 2022 mem->use_hierarchy = val; 2023 else 2024 retval = -EBUSY; 2025 } else 2026 retval = -EINVAL; 2027 cgroup_unlock(); 2028 2029 return retval; 2030 } 2031 2032 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 2033 { 2034 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2035 u64 val = 0; 2036 int type, name; 2037 2038 type = MEMFILE_TYPE(cft->private); 2039 name = MEMFILE_ATTR(cft->private); 2040 switch (type) { 2041 case _MEM: 2042 val = res_counter_read_u64(&mem->res, name); 2043 break; 2044 case _MEMSWAP: 2045 val = res_counter_read_u64(&mem->memsw, name); 2046 break; 2047 default: 2048 BUG(); 2049 break; 2050 } 2051 return val; 2052 } 2053 /* 2054 * The user of this function is... 2055 * RES_LIMIT. 2056 */ 2057 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 2058 const char *buffer) 2059 { 2060 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 2061 int type, name; 2062 unsigned long long val; 2063 int ret; 2064 2065 type = MEMFILE_TYPE(cft->private); 2066 name = MEMFILE_ATTR(cft->private); 2067 switch (name) { 2068 case RES_LIMIT: 2069 /* This function does all necessary parse...reuse it */ 2070 ret = res_counter_memparse_write_strategy(buffer, &val); 2071 if (ret) 2072 break; 2073 if (type == _MEM) 2074 ret = mem_cgroup_resize_limit(memcg, val); 2075 else 2076 ret = mem_cgroup_resize_memsw_limit(memcg, val); 2077 break; 2078 default: 2079 ret = -EINVAL; /* should be BUG() ? */ 2080 break; 2081 } 2082 return ret; 2083 } 2084 2085 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 2086 unsigned long long *mem_limit, unsigned long long *memsw_limit) 2087 { 2088 struct cgroup *cgroup; 2089 unsigned long long min_limit, min_memsw_limit, tmp; 2090 2091 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 2092 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 2093 cgroup = memcg->css.cgroup; 2094 if (!memcg->use_hierarchy) 2095 goto out; 2096 2097 while (cgroup->parent) { 2098 cgroup = cgroup->parent; 2099 memcg = mem_cgroup_from_cont(cgroup); 2100 if (!memcg->use_hierarchy) 2101 break; 2102 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 2103 min_limit = min(min_limit, tmp); 2104 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 2105 min_memsw_limit = min(min_memsw_limit, tmp); 2106 } 2107 out: 2108 *mem_limit = min_limit; 2109 *memsw_limit = min_memsw_limit; 2110 return; 2111 } 2112 2113 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 2114 { 2115 struct mem_cgroup *mem; 2116 int type, name; 2117 2118 mem = mem_cgroup_from_cont(cont); 2119 type = MEMFILE_TYPE(event); 2120 name = MEMFILE_ATTR(event); 2121 switch (name) { 2122 case RES_MAX_USAGE: 2123 if (type == _MEM) 2124 res_counter_reset_max(&mem->res); 2125 else 2126 res_counter_reset_max(&mem->memsw); 2127 break; 2128 case RES_FAILCNT: 2129 if (type == _MEM) 2130 res_counter_reset_failcnt(&mem->res); 2131 else 2132 res_counter_reset_failcnt(&mem->memsw); 2133 break; 2134 } 2135 return 0; 2136 } 2137 2138 2139 /* For read statistics */ 2140 enum { 2141 MCS_CACHE, 2142 MCS_RSS, 2143 MCS_MAPPED_FILE, 2144 MCS_PGPGIN, 2145 MCS_PGPGOUT, 2146 MCS_INACTIVE_ANON, 2147 MCS_ACTIVE_ANON, 2148 MCS_INACTIVE_FILE, 2149 MCS_ACTIVE_FILE, 2150 MCS_UNEVICTABLE, 2151 NR_MCS_STAT, 2152 }; 2153 2154 struct mcs_total_stat { 2155 s64 stat[NR_MCS_STAT]; 2156 }; 2157 2158 struct { 2159 char *local_name; 2160 char *total_name; 2161 } memcg_stat_strings[NR_MCS_STAT] = { 2162 {"cache", "total_cache"}, 2163 {"rss", "total_rss"}, 2164 {"mapped_file", "total_mapped_file"}, 2165 {"pgpgin", "total_pgpgin"}, 2166 {"pgpgout", "total_pgpgout"}, 2167 {"inactive_anon", "total_inactive_anon"}, 2168 {"active_anon", "total_active_anon"}, 2169 {"inactive_file", "total_inactive_file"}, 2170 {"active_file", "total_active_file"}, 2171 {"unevictable", "total_unevictable"} 2172 }; 2173 2174 2175 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data) 2176 { 2177 struct mcs_total_stat *s = data; 2178 s64 val; 2179 2180 /* per cpu stat */ 2181 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE); 2182 s->stat[MCS_CACHE] += val * PAGE_SIZE; 2183 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); 2184 s->stat[MCS_RSS] += val * PAGE_SIZE; 2185 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE); 2186 s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE; 2187 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT); 2188 s->stat[MCS_PGPGIN] += val; 2189 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT); 2190 s->stat[MCS_PGPGOUT] += val; 2191 2192 /* per zone stat */ 2193 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); 2194 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; 2195 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); 2196 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; 2197 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); 2198 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; 2199 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); 2200 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; 2201 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); 2202 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; 2203 return 0; 2204 } 2205 2206 static void 2207 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 2208 { 2209 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat); 2210 } 2211 2212 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 2213 struct cgroup_map_cb *cb) 2214 { 2215 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 2216 struct mcs_total_stat mystat; 2217 int i; 2218 2219 memset(&mystat, 0, sizeof(mystat)); 2220 mem_cgroup_get_local_stat(mem_cont, &mystat); 2221 2222 for (i = 0; i < NR_MCS_STAT; i++) 2223 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); 2224 2225 /* Hierarchical information */ 2226 { 2227 unsigned long long limit, memsw_limit; 2228 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); 2229 cb->fill(cb, "hierarchical_memory_limit", limit); 2230 if (do_swap_account) 2231 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); 2232 } 2233 2234 memset(&mystat, 0, sizeof(mystat)); 2235 mem_cgroup_get_total_stat(mem_cont, &mystat); 2236 for (i = 0; i < NR_MCS_STAT; i++) 2237 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); 2238 2239 2240 #ifdef CONFIG_DEBUG_VM 2241 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); 2242 2243 { 2244 int nid, zid; 2245 struct mem_cgroup_per_zone *mz; 2246 unsigned long recent_rotated[2] = {0, 0}; 2247 unsigned long recent_scanned[2] = {0, 0}; 2248 2249 for_each_online_node(nid) 2250 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2251 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 2252 2253 recent_rotated[0] += 2254 mz->reclaim_stat.recent_rotated[0]; 2255 recent_rotated[1] += 2256 mz->reclaim_stat.recent_rotated[1]; 2257 recent_scanned[0] += 2258 mz->reclaim_stat.recent_scanned[0]; 2259 recent_scanned[1] += 2260 mz->reclaim_stat.recent_scanned[1]; 2261 } 2262 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); 2263 cb->fill(cb, "recent_rotated_file", recent_rotated[1]); 2264 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); 2265 cb->fill(cb, "recent_scanned_file", recent_scanned[1]); 2266 } 2267 #endif 2268 2269 return 0; 2270 } 2271 2272 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 2273 { 2274 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 2275 2276 return get_swappiness(memcg); 2277 } 2278 2279 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 2280 u64 val) 2281 { 2282 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 2283 struct mem_cgroup *parent; 2284 2285 if (val > 100) 2286 return -EINVAL; 2287 2288 if (cgrp->parent == NULL) 2289 return -EINVAL; 2290 2291 parent = mem_cgroup_from_cont(cgrp->parent); 2292 2293 cgroup_lock(); 2294 2295 /* If under hierarchy, only empty-root can set this value */ 2296 if ((parent->use_hierarchy) || 2297 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 2298 cgroup_unlock(); 2299 return -EINVAL; 2300 } 2301 2302 spin_lock(&memcg->reclaim_param_lock); 2303 memcg->swappiness = val; 2304 spin_unlock(&memcg->reclaim_param_lock); 2305 2306 cgroup_unlock(); 2307 2308 return 0; 2309 } 2310 2311 2312 static struct cftype mem_cgroup_files[] = { 2313 { 2314 .name = "usage_in_bytes", 2315 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 2316 .read_u64 = mem_cgroup_read, 2317 }, 2318 { 2319 .name = "max_usage_in_bytes", 2320 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 2321 .trigger = mem_cgroup_reset, 2322 .read_u64 = mem_cgroup_read, 2323 }, 2324 { 2325 .name = "limit_in_bytes", 2326 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 2327 .write_string = mem_cgroup_write, 2328 .read_u64 = mem_cgroup_read, 2329 }, 2330 { 2331 .name = "failcnt", 2332 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 2333 .trigger = mem_cgroup_reset, 2334 .read_u64 = mem_cgroup_read, 2335 }, 2336 { 2337 .name = "stat", 2338 .read_map = mem_control_stat_show, 2339 }, 2340 { 2341 .name = "force_empty", 2342 .trigger = mem_cgroup_force_empty_write, 2343 }, 2344 { 2345 .name = "use_hierarchy", 2346 .write_u64 = mem_cgroup_hierarchy_write, 2347 .read_u64 = mem_cgroup_hierarchy_read, 2348 }, 2349 { 2350 .name = "swappiness", 2351 .read_u64 = mem_cgroup_swappiness_read, 2352 .write_u64 = mem_cgroup_swappiness_write, 2353 }, 2354 }; 2355 2356 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2357 static struct cftype memsw_cgroup_files[] = { 2358 { 2359 .name = "memsw.usage_in_bytes", 2360 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 2361 .read_u64 = mem_cgroup_read, 2362 }, 2363 { 2364 .name = "memsw.max_usage_in_bytes", 2365 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 2366 .trigger = mem_cgroup_reset, 2367 .read_u64 = mem_cgroup_read, 2368 }, 2369 { 2370 .name = "memsw.limit_in_bytes", 2371 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 2372 .write_string = mem_cgroup_write, 2373 .read_u64 = mem_cgroup_read, 2374 }, 2375 { 2376 .name = "memsw.failcnt", 2377 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 2378 .trigger = mem_cgroup_reset, 2379 .read_u64 = mem_cgroup_read, 2380 }, 2381 }; 2382 2383 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 2384 { 2385 if (!do_swap_account) 2386 return 0; 2387 return cgroup_add_files(cont, ss, memsw_cgroup_files, 2388 ARRAY_SIZE(memsw_cgroup_files)); 2389 }; 2390 #else 2391 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 2392 { 2393 return 0; 2394 } 2395 #endif 2396 2397 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 2398 { 2399 struct mem_cgroup_per_node *pn; 2400 struct mem_cgroup_per_zone *mz; 2401 enum lru_list l; 2402 int zone, tmp = node; 2403 /* 2404 * This routine is called against possible nodes. 2405 * But it's BUG to call kmalloc() against offline node. 2406 * 2407 * TODO: this routine can waste much memory for nodes which will 2408 * never be onlined. It's better to use memory hotplug callback 2409 * function. 2410 */ 2411 if (!node_state(node, N_NORMAL_MEMORY)) 2412 tmp = -1; 2413 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 2414 if (!pn) 2415 return 1; 2416 2417 mem->info.nodeinfo[node] = pn; 2418 memset(pn, 0, sizeof(*pn)); 2419 2420 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 2421 mz = &pn->zoneinfo[zone]; 2422 for_each_lru(l) 2423 INIT_LIST_HEAD(&mz->lists[l]); 2424 } 2425 return 0; 2426 } 2427 2428 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 2429 { 2430 kfree(mem->info.nodeinfo[node]); 2431 } 2432 2433 static int mem_cgroup_size(void) 2434 { 2435 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu); 2436 return sizeof(struct mem_cgroup) + cpustat_size; 2437 } 2438 2439 static struct mem_cgroup *mem_cgroup_alloc(void) 2440 { 2441 struct mem_cgroup *mem; 2442 int size = mem_cgroup_size(); 2443 2444 if (size < PAGE_SIZE) 2445 mem = kmalloc(size, GFP_KERNEL); 2446 else 2447 mem = vmalloc(size); 2448 2449 if (mem) 2450 memset(mem, 0, size); 2451 return mem; 2452 } 2453 2454 /* 2455 * At destroying mem_cgroup, references from swap_cgroup can remain. 2456 * (scanning all at force_empty is too costly...) 2457 * 2458 * Instead of clearing all references at force_empty, we remember 2459 * the number of reference from swap_cgroup and free mem_cgroup when 2460 * it goes down to 0. 2461 * 2462 * Removal of cgroup itself succeeds regardless of refs from swap. 2463 */ 2464 2465 static void __mem_cgroup_free(struct mem_cgroup *mem) 2466 { 2467 int node; 2468 2469 free_css_id(&mem_cgroup_subsys, &mem->css); 2470 2471 for_each_node_state(node, N_POSSIBLE) 2472 free_mem_cgroup_per_zone_info(mem, node); 2473 2474 if (mem_cgroup_size() < PAGE_SIZE) 2475 kfree(mem); 2476 else 2477 vfree(mem); 2478 } 2479 2480 static void mem_cgroup_get(struct mem_cgroup *mem) 2481 { 2482 atomic_inc(&mem->refcnt); 2483 } 2484 2485 static void mem_cgroup_put(struct mem_cgroup *mem) 2486 { 2487 if (atomic_dec_and_test(&mem->refcnt)) { 2488 struct mem_cgroup *parent = parent_mem_cgroup(mem); 2489 __mem_cgroup_free(mem); 2490 if (parent) 2491 mem_cgroup_put(parent); 2492 } 2493 } 2494 2495 /* 2496 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 2497 */ 2498 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) 2499 { 2500 if (!mem->res.parent) 2501 return NULL; 2502 return mem_cgroup_from_res_counter(mem->res.parent, res); 2503 } 2504 2505 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2506 static void __init enable_swap_cgroup(void) 2507 { 2508 if (!mem_cgroup_disabled() && really_do_swap_account) 2509 do_swap_account = 1; 2510 } 2511 #else 2512 static void __init enable_swap_cgroup(void) 2513 { 2514 } 2515 #endif 2516 2517 static struct cgroup_subsys_state * __ref 2518 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 2519 { 2520 struct mem_cgroup *mem, *parent; 2521 long error = -ENOMEM; 2522 int node; 2523 2524 mem = mem_cgroup_alloc(); 2525 if (!mem) 2526 return ERR_PTR(error); 2527 2528 for_each_node_state(node, N_POSSIBLE) 2529 if (alloc_mem_cgroup_per_zone_info(mem, node)) 2530 goto free_out; 2531 /* root ? */ 2532 if (cont->parent == NULL) { 2533 enable_swap_cgroup(); 2534 parent = NULL; 2535 } else { 2536 parent = mem_cgroup_from_cont(cont->parent); 2537 mem->use_hierarchy = parent->use_hierarchy; 2538 } 2539 2540 if (parent && parent->use_hierarchy) { 2541 res_counter_init(&mem->res, &parent->res); 2542 res_counter_init(&mem->memsw, &parent->memsw); 2543 /* 2544 * We increment refcnt of the parent to ensure that we can 2545 * safely access it on res_counter_charge/uncharge. 2546 * This refcnt will be decremented when freeing this 2547 * mem_cgroup(see mem_cgroup_put). 2548 */ 2549 mem_cgroup_get(parent); 2550 } else { 2551 res_counter_init(&mem->res, NULL); 2552 res_counter_init(&mem->memsw, NULL); 2553 } 2554 mem->last_scanned_child = 0; 2555 spin_lock_init(&mem->reclaim_param_lock); 2556 2557 if (parent) 2558 mem->swappiness = get_swappiness(parent); 2559 atomic_set(&mem->refcnt, 1); 2560 return &mem->css; 2561 free_out: 2562 __mem_cgroup_free(mem); 2563 return ERR_PTR(error); 2564 } 2565 2566 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 2567 struct cgroup *cont) 2568 { 2569 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2570 2571 return mem_cgroup_force_empty(mem, false); 2572 } 2573 2574 static void mem_cgroup_destroy(struct cgroup_subsys *ss, 2575 struct cgroup *cont) 2576 { 2577 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2578 2579 mem_cgroup_put(mem); 2580 } 2581 2582 static int mem_cgroup_populate(struct cgroup_subsys *ss, 2583 struct cgroup *cont) 2584 { 2585 int ret; 2586 2587 ret = cgroup_add_files(cont, ss, mem_cgroup_files, 2588 ARRAY_SIZE(mem_cgroup_files)); 2589 2590 if (!ret) 2591 ret = register_memsw_files(cont, ss); 2592 return ret; 2593 } 2594 2595 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 2596 struct cgroup *cont, 2597 struct cgroup *old_cont, 2598 struct task_struct *p) 2599 { 2600 mutex_lock(&memcg_tasklist); 2601 /* 2602 * FIXME: It's better to move charges of this process from old 2603 * memcg to new memcg. But it's just on TODO-List now. 2604 */ 2605 mutex_unlock(&memcg_tasklist); 2606 } 2607 2608 struct cgroup_subsys mem_cgroup_subsys = { 2609 .name = "memory", 2610 .subsys_id = mem_cgroup_subsys_id, 2611 .create = mem_cgroup_create, 2612 .pre_destroy = mem_cgroup_pre_destroy, 2613 .destroy = mem_cgroup_destroy, 2614 .populate = mem_cgroup_populate, 2615 .attach = mem_cgroup_move_task, 2616 .early_init = 0, 2617 .use_id = 1, 2618 }; 2619 2620 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2621 2622 static int __init disable_swap_account(char *s) 2623 { 2624 really_do_swap_account = 0; 2625 return 1; 2626 } 2627 __setup("noswapaccount", disable_swap_account); 2628 #endif 2629