1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/list.h> 46 #include <linux/mutex.h> 47 #include <linux/rbtree.h> 48 #include <linux/slab.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/fs.h> 52 #include <linux/seq_file.h> 53 #include <linux/parser.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #include <trace/events/vmscan.h> 75 76 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 77 EXPORT_SYMBOL(memory_cgrp_subsys); 78 79 struct mem_cgroup *root_mem_cgroup __read_mostly; 80 81 /* Active memory cgroup to use from an interrupt context */ 82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 84 85 /* Socket memory accounting disabled? */ 86 static bool cgroup_memory_nosocket __ro_after_init; 87 88 /* Kernel memory accounting disabled? */ 89 static bool cgroup_memory_nokmem __ro_after_init; 90 91 /* BPF memory accounting disabled? */ 92 static bool cgroup_memory_nobpf __ro_after_init; 93 94 #ifdef CONFIG_CGROUP_WRITEBACK 95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 96 #endif 97 98 static inline bool task_is_dying(void) 99 { 100 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 101 (current->flags & PF_EXITING); 102 } 103 104 /* Some nice accessors for the vmpressure. */ 105 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 106 { 107 if (!memcg) 108 memcg = root_mem_cgroup; 109 return &memcg->vmpressure; 110 } 111 112 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 113 { 114 return container_of(vmpr, struct mem_cgroup, vmpressure); 115 } 116 117 #define CURRENT_OBJCG_UPDATE_BIT 0 118 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 119 120 static DEFINE_SPINLOCK(objcg_lock); 121 122 bool mem_cgroup_kmem_disabled(void) 123 { 124 return cgroup_memory_nokmem; 125 } 126 127 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 128 unsigned int nr_pages); 129 130 static void obj_cgroup_release(struct percpu_ref *ref) 131 { 132 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 133 unsigned int nr_bytes; 134 unsigned int nr_pages; 135 unsigned long flags; 136 137 /* 138 * At this point all allocated objects are freed, and 139 * objcg->nr_charged_bytes can't have an arbitrary byte value. 140 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 141 * 142 * The following sequence can lead to it: 143 * 1) CPU0: objcg == stock->cached_objcg 144 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 145 * PAGE_SIZE bytes are charged 146 * 3) CPU1: a process from another memcg is allocating something, 147 * the stock if flushed, 148 * objcg->nr_charged_bytes = PAGE_SIZE - 92 149 * 5) CPU0: we do release this object, 150 * 92 bytes are added to stock->nr_bytes 151 * 6) CPU0: stock is flushed, 152 * 92 bytes are added to objcg->nr_charged_bytes 153 * 154 * In the result, nr_charged_bytes == PAGE_SIZE. 155 * This page will be uncharged in obj_cgroup_release(). 156 */ 157 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 158 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 159 nr_pages = nr_bytes >> PAGE_SHIFT; 160 161 if (nr_pages) 162 obj_cgroup_uncharge_pages(objcg, nr_pages); 163 164 spin_lock_irqsave(&objcg_lock, flags); 165 list_del(&objcg->list); 166 spin_unlock_irqrestore(&objcg_lock, flags); 167 168 percpu_ref_exit(ref); 169 kfree_rcu(objcg, rcu); 170 } 171 172 static struct obj_cgroup *obj_cgroup_alloc(void) 173 { 174 struct obj_cgroup *objcg; 175 int ret; 176 177 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 178 if (!objcg) 179 return NULL; 180 181 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 182 GFP_KERNEL); 183 if (ret) { 184 kfree(objcg); 185 return NULL; 186 } 187 INIT_LIST_HEAD(&objcg->list); 188 return objcg; 189 } 190 191 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 192 struct mem_cgroup *parent) 193 { 194 struct obj_cgroup *objcg, *iter; 195 196 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 197 198 spin_lock_irq(&objcg_lock); 199 200 /* 1) Ready to reparent active objcg. */ 201 list_add(&objcg->list, &memcg->objcg_list); 202 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 203 list_for_each_entry(iter, &memcg->objcg_list, list) 204 WRITE_ONCE(iter->memcg, parent); 205 /* 3) Move already reparented objcgs to the parent's list */ 206 list_splice(&memcg->objcg_list, &parent->objcg_list); 207 208 spin_unlock_irq(&objcg_lock); 209 210 percpu_ref_kill(&objcg->refcnt); 211 } 212 213 /* 214 * A lot of the calls to the cache allocation functions are expected to be 215 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 216 * conditional to this static branch, we'll have to allow modules that does 217 * kmem_cache_alloc and the such to see this symbol as well 218 */ 219 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 220 EXPORT_SYMBOL(memcg_kmem_online_key); 221 222 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 223 EXPORT_SYMBOL(memcg_bpf_enabled_key); 224 225 /** 226 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 227 * @folio: folio of interest 228 * 229 * If memcg is bound to the default hierarchy, css of the memcg associated 230 * with @folio is returned. The returned css remains associated with @folio 231 * until it is released. 232 * 233 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 234 * is returned. 235 */ 236 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 237 { 238 struct mem_cgroup *memcg = folio_memcg(folio); 239 240 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 241 memcg = root_mem_cgroup; 242 243 return &memcg->css; 244 } 245 246 /** 247 * page_cgroup_ino - return inode number of the memcg a page is charged to 248 * @page: the page 249 * 250 * Look up the closest online ancestor of the memory cgroup @page is charged to 251 * and return its inode number or 0 if @page is not charged to any cgroup. It 252 * is safe to call this function without holding a reference to @page. 253 * 254 * Note, this function is inherently racy, because there is nothing to prevent 255 * the cgroup inode from getting torn down and potentially reallocated a moment 256 * after page_cgroup_ino() returns, so it only should be used by callers that 257 * do not care (such as procfs interfaces). 258 */ 259 ino_t page_cgroup_ino(struct page *page) 260 { 261 struct mem_cgroup *memcg; 262 unsigned long ino = 0; 263 264 rcu_read_lock(); 265 /* page_folio() is racy here, but the entire function is racy anyway */ 266 memcg = folio_memcg_check(page_folio(page)); 267 268 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 269 memcg = parent_mem_cgroup(memcg); 270 if (memcg) 271 ino = cgroup_ino(memcg->css.cgroup); 272 rcu_read_unlock(); 273 return ino; 274 } 275 276 /* Subset of node_stat_item for memcg stats */ 277 static const unsigned int memcg_node_stat_items[] = { 278 NR_INACTIVE_ANON, 279 NR_ACTIVE_ANON, 280 NR_INACTIVE_FILE, 281 NR_ACTIVE_FILE, 282 NR_UNEVICTABLE, 283 NR_SLAB_RECLAIMABLE_B, 284 NR_SLAB_UNRECLAIMABLE_B, 285 WORKINGSET_REFAULT_ANON, 286 WORKINGSET_REFAULT_FILE, 287 WORKINGSET_ACTIVATE_ANON, 288 WORKINGSET_ACTIVATE_FILE, 289 WORKINGSET_RESTORE_ANON, 290 WORKINGSET_RESTORE_FILE, 291 WORKINGSET_NODERECLAIM, 292 NR_ANON_MAPPED, 293 NR_FILE_MAPPED, 294 NR_FILE_PAGES, 295 NR_FILE_DIRTY, 296 NR_WRITEBACK, 297 NR_SHMEM, 298 NR_SHMEM_THPS, 299 NR_FILE_THPS, 300 NR_ANON_THPS, 301 NR_KERNEL_STACK_KB, 302 NR_PAGETABLE, 303 NR_SECONDARY_PAGETABLE, 304 #ifdef CONFIG_SWAP 305 NR_SWAPCACHE, 306 #endif 307 #ifdef CONFIG_NUMA_BALANCING 308 PGPROMOTE_SUCCESS, 309 #endif 310 PGDEMOTE_KSWAPD, 311 PGDEMOTE_DIRECT, 312 PGDEMOTE_KHUGEPAGED, 313 }; 314 315 static const unsigned int memcg_stat_items[] = { 316 MEMCG_SWAP, 317 MEMCG_SOCK, 318 MEMCG_PERCPU_B, 319 MEMCG_VMALLOC, 320 MEMCG_KMEM, 321 MEMCG_ZSWAP_B, 322 MEMCG_ZSWAPPED, 323 }; 324 325 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 326 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 327 ARRAY_SIZE(memcg_stat_items)) 328 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 329 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 330 331 static void init_memcg_stats(void) 332 { 333 u8 i, j = 0; 334 335 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 336 337 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 338 339 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 340 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 341 342 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 343 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 344 } 345 346 static inline int memcg_stats_index(int idx) 347 { 348 return mem_cgroup_stats_index[idx]; 349 } 350 351 struct lruvec_stats_percpu { 352 /* Local (CPU and cgroup) state */ 353 long state[NR_MEMCG_NODE_STAT_ITEMS]; 354 355 /* Delta calculation for lockless upward propagation */ 356 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 357 }; 358 359 struct lruvec_stats { 360 /* Aggregated (CPU and subtree) state */ 361 long state[NR_MEMCG_NODE_STAT_ITEMS]; 362 363 /* Non-hierarchical (CPU aggregated) state */ 364 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 365 366 /* Pending child counts during tree propagation */ 367 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 368 }; 369 370 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 371 { 372 struct mem_cgroup_per_node *pn; 373 long x; 374 int i; 375 376 if (mem_cgroup_disabled()) 377 return node_page_state(lruvec_pgdat(lruvec), idx); 378 379 i = memcg_stats_index(idx); 380 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 381 return 0; 382 383 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 384 x = READ_ONCE(pn->lruvec_stats->state[i]); 385 #ifdef CONFIG_SMP 386 if (x < 0) 387 x = 0; 388 #endif 389 return x; 390 } 391 392 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 393 enum node_stat_item idx) 394 { 395 struct mem_cgroup_per_node *pn; 396 long x; 397 int i; 398 399 if (mem_cgroup_disabled()) 400 return node_page_state(lruvec_pgdat(lruvec), idx); 401 402 i = memcg_stats_index(idx); 403 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 404 return 0; 405 406 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 407 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 408 #ifdef CONFIG_SMP 409 if (x < 0) 410 x = 0; 411 #endif 412 return x; 413 } 414 415 /* Subset of vm_event_item to report for memcg event stats */ 416 static const unsigned int memcg_vm_event_stat[] = { 417 #ifdef CONFIG_MEMCG_V1 418 PGPGIN, 419 PGPGOUT, 420 #endif 421 PSWPIN, 422 PSWPOUT, 423 PGSCAN_KSWAPD, 424 PGSCAN_DIRECT, 425 PGSCAN_KHUGEPAGED, 426 PGSTEAL_KSWAPD, 427 PGSTEAL_DIRECT, 428 PGSTEAL_KHUGEPAGED, 429 PGFAULT, 430 PGMAJFAULT, 431 PGREFILL, 432 PGACTIVATE, 433 PGDEACTIVATE, 434 PGLAZYFREE, 435 PGLAZYFREED, 436 #ifdef CONFIG_ZSWAP 437 ZSWPIN, 438 ZSWPOUT, 439 ZSWPWB, 440 #endif 441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 442 THP_FAULT_ALLOC, 443 THP_COLLAPSE_ALLOC, 444 THP_SWPOUT, 445 THP_SWPOUT_FALLBACK, 446 #endif 447 #ifdef CONFIG_NUMA_BALANCING 448 NUMA_PAGE_MIGRATE, 449 NUMA_PTE_UPDATES, 450 NUMA_HINT_FAULTS, 451 #endif 452 }; 453 454 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 455 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 456 457 static void init_memcg_events(void) 458 { 459 u8 i; 460 461 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 462 463 memset(mem_cgroup_events_index, U8_MAX, 464 sizeof(mem_cgroup_events_index)); 465 466 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 467 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 468 } 469 470 static inline int memcg_events_index(enum vm_event_item idx) 471 { 472 return mem_cgroup_events_index[idx]; 473 } 474 475 struct memcg_vmstats_percpu { 476 /* Stats updates since the last flush */ 477 unsigned int stats_updates; 478 479 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 480 struct memcg_vmstats_percpu *parent; 481 struct memcg_vmstats *vmstats; 482 483 /* The above should fit a single cacheline for memcg_rstat_updated() */ 484 485 /* Local (CPU and cgroup) page state & events */ 486 long state[MEMCG_VMSTAT_SIZE]; 487 unsigned long events[NR_MEMCG_EVENTS]; 488 489 /* Delta calculation for lockless upward propagation */ 490 long state_prev[MEMCG_VMSTAT_SIZE]; 491 unsigned long events_prev[NR_MEMCG_EVENTS]; 492 } ____cacheline_aligned; 493 494 struct memcg_vmstats { 495 /* Aggregated (CPU and subtree) page state & events */ 496 long state[MEMCG_VMSTAT_SIZE]; 497 unsigned long events[NR_MEMCG_EVENTS]; 498 499 /* Non-hierarchical (CPU aggregated) page state & events */ 500 long state_local[MEMCG_VMSTAT_SIZE]; 501 unsigned long events_local[NR_MEMCG_EVENTS]; 502 503 /* Pending child counts during tree propagation */ 504 long state_pending[MEMCG_VMSTAT_SIZE]; 505 unsigned long events_pending[NR_MEMCG_EVENTS]; 506 507 /* Stats updates since the last flush */ 508 atomic64_t stats_updates; 509 }; 510 511 /* 512 * memcg and lruvec stats flushing 513 * 514 * Many codepaths leading to stats update or read are performance sensitive and 515 * adding stats flushing in such codepaths is not desirable. So, to optimize the 516 * flushing the kernel does: 517 * 518 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 519 * rstat update tree grow unbounded. 520 * 521 * 2) Flush the stats synchronously on reader side only when there are more than 522 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 523 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 524 * only for 2 seconds due to (1). 525 */ 526 static void flush_memcg_stats_dwork(struct work_struct *w); 527 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 528 static u64 flush_last_time; 529 530 #define FLUSH_TIME (2UL*HZ) 531 532 /* 533 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 534 * not rely on this as part of an acquired spinlock_t lock. These functions are 535 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 536 * is sufficient. 537 */ 538 static void memcg_stats_lock(void) 539 { 540 preempt_disable_nested(); 541 VM_WARN_ON_IRQS_ENABLED(); 542 } 543 544 static void __memcg_stats_lock(void) 545 { 546 preempt_disable_nested(); 547 } 548 549 static void memcg_stats_unlock(void) 550 { 551 preempt_enable_nested(); 552 } 553 554 555 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 556 { 557 return atomic64_read(&vmstats->stats_updates) > 558 MEMCG_CHARGE_BATCH * num_online_cpus(); 559 } 560 561 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 562 { 563 struct memcg_vmstats_percpu *statc; 564 int cpu = smp_processor_id(); 565 unsigned int stats_updates; 566 567 if (!val) 568 return; 569 570 cgroup_rstat_updated(memcg->css.cgroup, cpu); 571 statc = this_cpu_ptr(memcg->vmstats_percpu); 572 for (; statc; statc = statc->parent) { 573 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 574 WRITE_ONCE(statc->stats_updates, stats_updates); 575 if (stats_updates < MEMCG_CHARGE_BATCH) 576 continue; 577 578 /* 579 * If @memcg is already flush-able, increasing stats_updates is 580 * redundant. Avoid the overhead of the atomic update. 581 */ 582 if (!memcg_vmstats_needs_flush(statc->vmstats)) 583 atomic64_add(stats_updates, 584 &statc->vmstats->stats_updates); 585 WRITE_ONCE(statc->stats_updates, 0); 586 } 587 } 588 589 static void do_flush_stats(struct mem_cgroup *memcg) 590 { 591 if (mem_cgroup_is_root(memcg)) 592 WRITE_ONCE(flush_last_time, jiffies_64); 593 594 cgroup_rstat_flush(memcg->css.cgroup); 595 } 596 597 /* 598 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 599 * @memcg: root of the subtree to flush 600 * 601 * Flushing is serialized by the underlying global rstat lock. There is also a 602 * minimum amount of work to be done even if there are no stat updates to flush. 603 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 604 * avoids unnecessary work and contention on the underlying lock. 605 */ 606 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 607 { 608 if (mem_cgroup_disabled()) 609 return; 610 611 if (!memcg) 612 memcg = root_mem_cgroup; 613 614 if (memcg_vmstats_needs_flush(memcg->vmstats)) 615 do_flush_stats(memcg); 616 } 617 618 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 619 { 620 /* Only flush if the periodic flusher is one full cycle late */ 621 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 622 mem_cgroup_flush_stats(memcg); 623 } 624 625 static void flush_memcg_stats_dwork(struct work_struct *w) 626 { 627 /* 628 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 629 * in latency-sensitive paths is as cheap as possible. 630 */ 631 do_flush_stats(root_mem_cgroup); 632 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 633 } 634 635 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 636 { 637 long x; 638 int i = memcg_stats_index(idx); 639 640 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 641 return 0; 642 643 x = READ_ONCE(memcg->vmstats->state[i]); 644 #ifdef CONFIG_SMP 645 if (x < 0) 646 x = 0; 647 #endif 648 return x; 649 } 650 651 static int memcg_page_state_unit(int item); 652 653 /* 654 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 655 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 656 */ 657 static int memcg_state_val_in_pages(int idx, int val) 658 { 659 int unit = memcg_page_state_unit(idx); 660 661 if (!val || unit == PAGE_SIZE) 662 return val; 663 else 664 return max(val * unit / PAGE_SIZE, 1UL); 665 } 666 667 /** 668 * __mod_memcg_state - update cgroup memory statistics 669 * @memcg: the memory cgroup 670 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 671 * @val: delta to add to the counter, can be negative 672 */ 673 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 674 int val) 675 { 676 int i = memcg_stats_index(idx); 677 678 if (mem_cgroup_disabled()) 679 return; 680 681 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 682 return; 683 684 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 685 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 686 } 687 688 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 689 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 690 { 691 long x; 692 int i = memcg_stats_index(idx); 693 694 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 695 return 0; 696 697 x = READ_ONCE(memcg->vmstats->state_local[i]); 698 #ifdef CONFIG_SMP 699 if (x < 0) 700 x = 0; 701 #endif 702 return x; 703 } 704 705 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 706 enum node_stat_item idx, 707 int val) 708 { 709 struct mem_cgroup_per_node *pn; 710 struct mem_cgroup *memcg; 711 int i = memcg_stats_index(idx); 712 713 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 714 return; 715 716 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 717 memcg = pn->memcg; 718 719 /* 720 * The caller from rmap relies on disabled preemption because they never 721 * update their counter from in-interrupt context. For these two 722 * counters we check that the update is never performed from an 723 * interrupt context while other caller need to have disabled interrupt. 724 */ 725 __memcg_stats_lock(); 726 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 727 switch (idx) { 728 case NR_ANON_MAPPED: 729 case NR_FILE_MAPPED: 730 case NR_ANON_THPS: 731 WARN_ON_ONCE(!in_task()); 732 break; 733 default: 734 VM_WARN_ON_IRQS_ENABLED(); 735 } 736 } 737 738 /* Update memcg */ 739 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 740 741 /* Update lruvec */ 742 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 743 744 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 745 memcg_stats_unlock(); 746 } 747 748 /** 749 * __mod_lruvec_state - update lruvec memory statistics 750 * @lruvec: the lruvec 751 * @idx: the stat item 752 * @val: delta to add to the counter, can be negative 753 * 754 * The lruvec is the intersection of the NUMA node and a cgroup. This 755 * function updates the all three counters that are affected by a 756 * change of state at this level: per-node, per-cgroup, per-lruvec. 757 */ 758 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 759 int val) 760 { 761 /* Update node */ 762 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 763 764 /* Update memcg and lruvec */ 765 if (!mem_cgroup_disabled()) 766 __mod_memcg_lruvec_state(lruvec, idx, val); 767 } 768 769 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 770 int val) 771 { 772 struct mem_cgroup *memcg; 773 pg_data_t *pgdat = folio_pgdat(folio); 774 struct lruvec *lruvec; 775 776 rcu_read_lock(); 777 memcg = folio_memcg(folio); 778 /* Untracked pages have no memcg, no lruvec. Update only the node */ 779 if (!memcg) { 780 rcu_read_unlock(); 781 __mod_node_page_state(pgdat, idx, val); 782 return; 783 } 784 785 lruvec = mem_cgroup_lruvec(memcg, pgdat); 786 __mod_lruvec_state(lruvec, idx, val); 787 rcu_read_unlock(); 788 } 789 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 790 791 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 792 { 793 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 794 struct mem_cgroup *memcg; 795 struct lruvec *lruvec; 796 797 rcu_read_lock(); 798 memcg = mem_cgroup_from_slab_obj(p); 799 800 /* 801 * Untracked pages have no memcg, no lruvec. Update only the 802 * node. If we reparent the slab objects to the root memcg, 803 * when we free the slab object, we need to update the per-memcg 804 * vmstats to keep it correct for the root memcg. 805 */ 806 if (!memcg) { 807 __mod_node_page_state(pgdat, idx, val); 808 } else { 809 lruvec = mem_cgroup_lruvec(memcg, pgdat); 810 __mod_lruvec_state(lruvec, idx, val); 811 } 812 rcu_read_unlock(); 813 } 814 815 /** 816 * __count_memcg_events - account VM events in a cgroup 817 * @memcg: the memory cgroup 818 * @idx: the event item 819 * @count: the number of events that occurred 820 */ 821 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 822 unsigned long count) 823 { 824 int i = memcg_events_index(idx); 825 826 if (mem_cgroup_disabled()) 827 return; 828 829 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 830 return; 831 832 memcg_stats_lock(); 833 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 834 memcg_rstat_updated(memcg, count); 835 memcg_stats_unlock(); 836 } 837 838 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 839 { 840 int i = memcg_events_index(event); 841 842 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 843 return 0; 844 845 return READ_ONCE(memcg->vmstats->events[i]); 846 } 847 848 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 849 { 850 int i = memcg_events_index(event); 851 852 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 853 return 0; 854 855 return READ_ONCE(memcg->vmstats->events_local[i]); 856 } 857 858 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 859 { 860 /* 861 * mm_update_next_owner() may clear mm->owner to NULL 862 * if it races with swapoff, page migration, etc. 863 * So this can be called with p == NULL. 864 */ 865 if (unlikely(!p)) 866 return NULL; 867 868 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 869 } 870 EXPORT_SYMBOL(mem_cgroup_from_task); 871 872 static __always_inline struct mem_cgroup *active_memcg(void) 873 { 874 if (!in_task()) 875 return this_cpu_read(int_active_memcg); 876 else 877 return current->active_memcg; 878 } 879 880 /** 881 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 882 * @mm: mm from which memcg should be extracted. It can be NULL. 883 * 884 * Obtain a reference on mm->memcg and returns it if successful. If mm 885 * is NULL, then the memcg is chosen as follows: 886 * 1) The active memcg, if set. 887 * 2) current->mm->memcg, if available 888 * 3) root memcg 889 * If mem_cgroup is disabled, NULL is returned. 890 */ 891 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 892 { 893 struct mem_cgroup *memcg; 894 895 if (mem_cgroup_disabled()) 896 return NULL; 897 898 /* 899 * Page cache insertions can happen without an 900 * actual mm context, e.g. during disk probing 901 * on boot, loopback IO, acct() writes etc. 902 * 903 * No need to css_get on root memcg as the reference 904 * counting is disabled on the root level in the 905 * cgroup core. See CSS_NO_REF. 906 */ 907 if (unlikely(!mm)) { 908 memcg = active_memcg(); 909 if (unlikely(memcg)) { 910 /* remote memcg must hold a ref */ 911 css_get(&memcg->css); 912 return memcg; 913 } 914 mm = current->mm; 915 if (unlikely(!mm)) 916 return root_mem_cgroup; 917 } 918 919 rcu_read_lock(); 920 do { 921 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 922 if (unlikely(!memcg)) 923 memcg = root_mem_cgroup; 924 } while (!css_tryget(&memcg->css)); 925 rcu_read_unlock(); 926 return memcg; 927 } 928 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 929 930 /** 931 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 932 */ 933 struct mem_cgroup *get_mem_cgroup_from_current(void) 934 { 935 struct mem_cgroup *memcg; 936 937 if (mem_cgroup_disabled()) 938 return NULL; 939 940 again: 941 rcu_read_lock(); 942 memcg = mem_cgroup_from_task(current); 943 if (!css_tryget(&memcg->css)) { 944 rcu_read_unlock(); 945 goto again; 946 } 947 rcu_read_unlock(); 948 return memcg; 949 } 950 951 /** 952 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 953 * @folio: folio from which memcg should be extracted. 954 */ 955 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 956 { 957 struct mem_cgroup *memcg = folio_memcg(folio); 958 959 if (mem_cgroup_disabled()) 960 return NULL; 961 962 rcu_read_lock(); 963 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 964 memcg = root_mem_cgroup; 965 rcu_read_unlock(); 966 return memcg; 967 } 968 969 /** 970 * mem_cgroup_iter - iterate over memory cgroup hierarchy 971 * @root: hierarchy root 972 * @prev: previously returned memcg, NULL on first invocation 973 * @reclaim: cookie for shared reclaim walks, NULL for full walks 974 * 975 * Returns references to children of the hierarchy below @root, or 976 * @root itself, or %NULL after a full round-trip. 977 * 978 * Caller must pass the return value in @prev on subsequent 979 * invocations for reference counting, or use mem_cgroup_iter_break() 980 * to cancel a hierarchy walk before the round-trip is complete. 981 * 982 * Reclaimers can specify a node in @reclaim to divide up the memcgs 983 * in the hierarchy among all concurrent reclaimers operating on the 984 * same node. 985 */ 986 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 987 struct mem_cgroup *prev, 988 struct mem_cgroup_reclaim_cookie *reclaim) 989 { 990 struct mem_cgroup_reclaim_iter *iter; 991 struct cgroup_subsys_state *css; 992 struct mem_cgroup *pos; 993 struct mem_cgroup *next; 994 995 if (mem_cgroup_disabled()) 996 return NULL; 997 998 if (!root) 999 root = root_mem_cgroup; 1000 1001 rcu_read_lock(); 1002 restart: 1003 next = NULL; 1004 1005 if (reclaim) { 1006 int gen; 1007 int nid = reclaim->pgdat->node_id; 1008 1009 iter = &root->nodeinfo[nid]->iter; 1010 gen = atomic_read(&iter->generation); 1011 1012 /* 1013 * On start, join the current reclaim iteration cycle. 1014 * Exit when a concurrent walker completes it. 1015 */ 1016 if (!prev) 1017 reclaim->generation = gen; 1018 else if (reclaim->generation != gen) 1019 goto out_unlock; 1020 1021 pos = READ_ONCE(iter->position); 1022 } else 1023 pos = prev; 1024 1025 css = pos ? &pos->css : NULL; 1026 1027 while ((css = css_next_descendant_pre(css, &root->css))) { 1028 /* 1029 * Verify the css and acquire a reference. The root 1030 * is provided by the caller, so we know it's alive 1031 * and kicking, and don't take an extra reference. 1032 */ 1033 if (css == &root->css || css_tryget(css)) 1034 break; 1035 } 1036 1037 next = mem_cgroup_from_css(css); 1038 1039 if (reclaim) { 1040 /* 1041 * The position could have already been updated by a competing 1042 * thread, so check that the value hasn't changed since we read 1043 * it to avoid reclaiming from the same cgroup twice. 1044 */ 1045 if (cmpxchg(&iter->position, pos, next) != pos) { 1046 if (css && css != &root->css) 1047 css_put(css); 1048 goto restart; 1049 } 1050 1051 if (!next) { 1052 atomic_inc(&iter->generation); 1053 1054 /* 1055 * Reclaimers share the hierarchy walk, and a 1056 * new one might jump in right at the end of 1057 * the hierarchy - make sure they see at least 1058 * one group and restart from the beginning. 1059 */ 1060 if (!prev) 1061 goto restart; 1062 } 1063 } 1064 1065 out_unlock: 1066 rcu_read_unlock(); 1067 if (prev && prev != root) 1068 css_put(&prev->css); 1069 1070 return next; 1071 } 1072 1073 /** 1074 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1075 * @root: hierarchy root 1076 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1077 */ 1078 void mem_cgroup_iter_break(struct mem_cgroup *root, 1079 struct mem_cgroup *prev) 1080 { 1081 if (!root) 1082 root = root_mem_cgroup; 1083 if (prev && prev != root) 1084 css_put(&prev->css); 1085 } 1086 1087 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1088 struct mem_cgroup *dead_memcg) 1089 { 1090 struct mem_cgroup_reclaim_iter *iter; 1091 struct mem_cgroup_per_node *mz; 1092 int nid; 1093 1094 for_each_node(nid) { 1095 mz = from->nodeinfo[nid]; 1096 iter = &mz->iter; 1097 cmpxchg(&iter->position, dead_memcg, NULL); 1098 } 1099 } 1100 1101 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1102 { 1103 struct mem_cgroup *memcg = dead_memcg; 1104 struct mem_cgroup *last; 1105 1106 do { 1107 __invalidate_reclaim_iterators(memcg, dead_memcg); 1108 last = memcg; 1109 } while ((memcg = parent_mem_cgroup(memcg))); 1110 1111 /* 1112 * When cgroup1 non-hierarchy mode is used, 1113 * parent_mem_cgroup() does not walk all the way up to the 1114 * cgroup root (root_mem_cgroup). So we have to handle 1115 * dead_memcg from cgroup root separately. 1116 */ 1117 if (!mem_cgroup_is_root(last)) 1118 __invalidate_reclaim_iterators(root_mem_cgroup, 1119 dead_memcg); 1120 } 1121 1122 /** 1123 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1124 * @memcg: hierarchy root 1125 * @fn: function to call for each task 1126 * @arg: argument passed to @fn 1127 * 1128 * This function iterates over tasks attached to @memcg or to any of its 1129 * descendants and calls @fn for each task. If @fn returns a non-zero 1130 * value, the function breaks the iteration loop. Otherwise, it will iterate 1131 * over all tasks and return 0. 1132 * 1133 * This function must not be called for the root memory cgroup. 1134 */ 1135 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1136 int (*fn)(struct task_struct *, void *), void *arg) 1137 { 1138 struct mem_cgroup *iter; 1139 int ret = 0; 1140 1141 BUG_ON(mem_cgroup_is_root(memcg)); 1142 1143 for_each_mem_cgroup_tree(iter, memcg) { 1144 struct css_task_iter it; 1145 struct task_struct *task; 1146 1147 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1148 while (!ret && (task = css_task_iter_next(&it))) 1149 ret = fn(task, arg); 1150 css_task_iter_end(&it); 1151 if (ret) { 1152 mem_cgroup_iter_break(memcg, iter); 1153 break; 1154 } 1155 } 1156 } 1157 1158 #ifdef CONFIG_DEBUG_VM 1159 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1160 { 1161 struct mem_cgroup *memcg; 1162 1163 if (mem_cgroup_disabled()) 1164 return; 1165 1166 memcg = folio_memcg(folio); 1167 1168 if (!memcg) 1169 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1170 else 1171 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1172 } 1173 #endif 1174 1175 /** 1176 * folio_lruvec_lock - Lock the lruvec for a folio. 1177 * @folio: Pointer to the folio. 1178 * 1179 * These functions are safe to use under any of the following conditions: 1180 * - folio locked 1181 * - folio_test_lru false 1182 * - folio_memcg_lock() 1183 * - folio frozen (refcount of 0) 1184 * 1185 * Return: The lruvec this folio is on with its lock held. 1186 */ 1187 struct lruvec *folio_lruvec_lock(struct folio *folio) 1188 { 1189 struct lruvec *lruvec = folio_lruvec(folio); 1190 1191 spin_lock(&lruvec->lru_lock); 1192 lruvec_memcg_debug(lruvec, folio); 1193 1194 return lruvec; 1195 } 1196 1197 /** 1198 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1199 * @folio: Pointer to the folio. 1200 * 1201 * These functions are safe to use under any of the following conditions: 1202 * - folio locked 1203 * - folio_test_lru false 1204 * - folio_memcg_lock() 1205 * - folio frozen (refcount of 0) 1206 * 1207 * Return: The lruvec this folio is on with its lock held and interrupts 1208 * disabled. 1209 */ 1210 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1211 { 1212 struct lruvec *lruvec = folio_lruvec(folio); 1213 1214 spin_lock_irq(&lruvec->lru_lock); 1215 lruvec_memcg_debug(lruvec, folio); 1216 1217 return lruvec; 1218 } 1219 1220 /** 1221 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1222 * @folio: Pointer to the folio. 1223 * @flags: Pointer to irqsave flags. 1224 * 1225 * These functions are safe to use under any of the following conditions: 1226 * - folio locked 1227 * - folio_test_lru false 1228 * - folio_memcg_lock() 1229 * - folio frozen (refcount of 0) 1230 * 1231 * Return: The lruvec this folio is on with its lock held and interrupts 1232 * disabled. 1233 */ 1234 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1235 unsigned long *flags) 1236 { 1237 struct lruvec *lruvec = folio_lruvec(folio); 1238 1239 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1240 lruvec_memcg_debug(lruvec, folio); 1241 1242 return lruvec; 1243 } 1244 1245 /** 1246 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1247 * @lruvec: mem_cgroup per zone lru vector 1248 * @lru: index of lru list the page is sitting on 1249 * @zid: zone id of the accounted pages 1250 * @nr_pages: positive when adding or negative when removing 1251 * 1252 * This function must be called under lru_lock, just before a page is added 1253 * to or just after a page is removed from an lru list. 1254 */ 1255 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1256 int zid, int nr_pages) 1257 { 1258 struct mem_cgroup_per_node *mz; 1259 unsigned long *lru_size; 1260 long size; 1261 1262 if (mem_cgroup_disabled()) 1263 return; 1264 1265 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1266 lru_size = &mz->lru_zone_size[zid][lru]; 1267 1268 if (nr_pages < 0) 1269 *lru_size += nr_pages; 1270 1271 size = *lru_size; 1272 if (WARN_ONCE(size < 0, 1273 "%s(%p, %d, %d): lru_size %ld\n", 1274 __func__, lruvec, lru, nr_pages, size)) { 1275 VM_BUG_ON(1); 1276 *lru_size = 0; 1277 } 1278 1279 if (nr_pages > 0) 1280 *lru_size += nr_pages; 1281 } 1282 1283 /** 1284 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1285 * @memcg: the memory cgroup 1286 * 1287 * Returns the maximum amount of memory @mem can be charged with, in 1288 * pages. 1289 */ 1290 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1291 { 1292 unsigned long margin = 0; 1293 unsigned long count; 1294 unsigned long limit; 1295 1296 count = page_counter_read(&memcg->memory); 1297 limit = READ_ONCE(memcg->memory.max); 1298 if (count < limit) 1299 margin = limit - count; 1300 1301 if (do_memsw_account()) { 1302 count = page_counter_read(&memcg->memsw); 1303 limit = READ_ONCE(memcg->memsw.max); 1304 if (count < limit) 1305 margin = min(margin, limit - count); 1306 else 1307 margin = 0; 1308 } 1309 1310 return margin; 1311 } 1312 1313 struct memory_stat { 1314 const char *name; 1315 unsigned int idx; 1316 }; 1317 1318 static const struct memory_stat memory_stats[] = { 1319 { "anon", NR_ANON_MAPPED }, 1320 { "file", NR_FILE_PAGES }, 1321 { "kernel", MEMCG_KMEM }, 1322 { "kernel_stack", NR_KERNEL_STACK_KB }, 1323 { "pagetables", NR_PAGETABLE }, 1324 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1325 { "percpu", MEMCG_PERCPU_B }, 1326 { "sock", MEMCG_SOCK }, 1327 { "vmalloc", MEMCG_VMALLOC }, 1328 { "shmem", NR_SHMEM }, 1329 #ifdef CONFIG_ZSWAP 1330 { "zswap", MEMCG_ZSWAP_B }, 1331 { "zswapped", MEMCG_ZSWAPPED }, 1332 #endif 1333 { "file_mapped", NR_FILE_MAPPED }, 1334 { "file_dirty", NR_FILE_DIRTY }, 1335 { "file_writeback", NR_WRITEBACK }, 1336 #ifdef CONFIG_SWAP 1337 { "swapcached", NR_SWAPCACHE }, 1338 #endif 1339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1340 { "anon_thp", NR_ANON_THPS }, 1341 { "file_thp", NR_FILE_THPS }, 1342 { "shmem_thp", NR_SHMEM_THPS }, 1343 #endif 1344 { "inactive_anon", NR_INACTIVE_ANON }, 1345 { "active_anon", NR_ACTIVE_ANON }, 1346 { "inactive_file", NR_INACTIVE_FILE }, 1347 { "active_file", NR_ACTIVE_FILE }, 1348 { "unevictable", NR_UNEVICTABLE }, 1349 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1350 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1351 1352 /* The memory events */ 1353 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1354 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1355 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1356 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1357 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1358 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1359 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1360 1361 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1362 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1363 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1364 #ifdef CONFIG_NUMA_BALANCING 1365 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1366 #endif 1367 }; 1368 1369 /* The actual unit of the state item, not the same as the output unit */ 1370 static int memcg_page_state_unit(int item) 1371 { 1372 switch (item) { 1373 case MEMCG_PERCPU_B: 1374 case MEMCG_ZSWAP_B: 1375 case NR_SLAB_RECLAIMABLE_B: 1376 case NR_SLAB_UNRECLAIMABLE_B: 1377 return 1; 1378 case NR_KERNEL_STACK_KB: 1379 return SZ_1K; 1380 default: 1381 return PAGE_SIZE; 1382 } 1383 } 1384 1385 /* Translate stat items to the correct unit for memory.stat output */ 1386 static int memcg_page_state_output_unit(int item) 1387 { 1388 /* 1389 * Workingset state is actually in pages, but we export it to userspace 1390 * as a scalar count of events, so special case it here. 1391 * 1392 * Demotion and promotion activities are exported in pages, consistent 1393 * with their global counterparts. 1394 */ 1395 switch (item) { 1396 case WORKINGSET_REFAULT_ANON: 1397 case WORKINGSET_REFAULT_FILE: 1398 case WORKINGSET_ACTIVATE_ANON: 1399 case WORKINGSET_ACTIVATE_FILE: 1400 case WORKINGSET_RESTORE_ANON: 1401 case WORKINGSET_RESTORE_FILE: 1402 case WORKINGSET_NODERECLAIM: 1403 case PGDEMOTE_KSWAPD: 1404 case PGDEMOTE_DIRECT: 1405 case PGDEMOTE_KHUGEPAGED: 1406 #ifdef CONFIG_NUMA_BALANCING 1407 case PGPROMOTE_SUCCESS: 1408 #endif 1409 return 1; 1410 default: 1411 return memcg_page_state_unit(item); 1412 } 1413 } 1414 1415 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1416 { 1417 return memcg_page_state(memcg, item) * 1418 memcg_page_state_output_unit(item); 1419 } 1420 1421 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1422 { 1423 return memcg_page_state_local(memcg, item) * 1424 memcg_page_state_output_unit(item); 1425 } 1426 1427 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1428 { 1429 int i; 1430 1431 /* 1432 * Provide statistics on the state of the memory subsystem as 1433 * well as cumulative event counters that show past behavior. 1434 * 1435 * This list is ordered following a combination of these gradients: 1436 * 1) generic big picture -> specifics and details 1437 * 2) reflecting userspace activity -> reflecting kernel heuristics 1438 * 1439 * Current memory state: 1440 */ 1441 mem_cgroup_flush_stats(memcg); 1442 1443 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1444 u64 size; 1445 1446 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1447 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1448 1449 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1450 size += memcg_page_state_output(memcg, 1451 NR_SLAB_RECLAIMABLE_B); 1452 seq_buf_printf(s, "slab %llu\n", size); 1453 } 1454 } 1455 1456 /* Accumulated memory events */ 1457 seq_buf_printf(s, "pgscan %lu\n", 1458 memcg_events(memcg, PGSCAN_KSWAPD) + 1459 memcg_events(memcg, PGSCAN_DIRECT) + 1460 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1461 seq_buf_printf(s, "pgsteal %lu\n", 1462 memcg_events(memcg, PGSTEAL_KSWAPD) + 1463 memcg_events(memcg, PGSTEAL_DIRECT) + 1464 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1465 1466 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1467 #ifdef CONFIG_MEMCG_V1 1468 if (memcg_vm_event_stat[i] == PGPGIN || 1469 memcg_vm_event_stat[i] == PGPGOUT) 1470 continue; 1471 #endif 1472 seq_buf_printf(s, "%s %lu\n", 1473 vm_event_name(memcg_vm_event_stat[i]), 1474 memcg_events(memcg, memcg_vm_event_stat[i])); 1475 } 1476 } 1477 1478 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1479 { 1480 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1481 memcg_stat_format(memcg, s); 1482 else 1483 memcg1_stat_format(memcg, s); 1484 if (seq_buf_has_overflowed(s)) 1485 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1486 } 1487 1488 /** 1489 * mem_cgroup_print_oom_context: Print OOM information relevant to 1490 * memory controller. 1491 * @memcg: The memory cgroup that went over limit 1492 * @p: Task that is going to be killed 1493 * 1494 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1495 * enabled 1496 */ 1497 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1498 { 1499 rcu_read_lock(); 1500 1501 if (memcg) { 1502 pr_cont(",oom_memcg="); 1503 pr_cont_cgroup_path(memcg->css.cgroup); 1504 } else 1505 pr_cont(",global_oom"); 1506 if (p) { 1507 pr_cont(",task_memcg="); 1508 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1509 } 1510 rcu_read_unlock(); 1511 } 1512 1513 /** 1514 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1515 * memory controller. 1516 * @memcg: The memory cgroup that went over limit 1517 */ 1518 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1519 { 1520 /* Use static buffer, for the caller is holding oom_lock. */ 1521 static char buf[PAGE_SIZE]; 1522 struct seq_buf s; 1523 1524 lockdep_assert_held(&oom_lock); 1525 1526 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1527 K((u64)page_counter_read(&memcg->memory)), 1528 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1529 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1530 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1531 K((u64)page_counter_read(&memcg->swap)), 1532 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1533 #ifdef CONFIG_MEMCG_V1 1534 else { 1535 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1536 K((u64)page_counter_read(&memcg->memsw)), 1537 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1538 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1539 K((u64)page_counter_read(&memcg->kmem)), 1540 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1541 } 1542 #endif 1543 1544 pr_info("Memory cgroup stats for "); 1545 pr_cont_cgroup_path(memcg->css.cgroup); 1546 pr_cont(":"); 1547 seq_buf_init(&s, buf, sizeof(buf)); 1548 memory_stat_format(memcg, &s); 1549 seq_buf_do_printk(&s, KERN_INFO); 1550 } 1551 1552 /* 1553 * Return the memory (and swap, if configured) limit for a memcg. 1554 */ 1555 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1556 { 1557 unsigned long max = READ_ONCE(memcg->memory.max); 1558 1559 if (do_memsw_account()) { 1560 if (mem_cgroup_swappiness(memcg)) { 1561 /* Calculate swap excess capacity from memsw limit */ 1562 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1563 1564 max += min(swap, (unsigned long)total_swap_pages); 1565 } 1566 } else { 1567 if (mem_cgroup_swappiness(memcg)) 1568 max += min(READ_ONCE(memcg->swap.max), 1569 (unsigned long)total_swap_pages); 1570 } 1571 return max; 1572 } 1573 1574 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1575 { 1576 return page_counter_read(&memcg->memory); 1577 } 1578 1579 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1580 int order) 1581 { 1582 struct oom_control oc = { 1583 .zonelist = NULL, 1584 .nodemask = NULL, 1585 .memcg = memcg, 1586 .gfp_mask = gfp_mask, 1587 .order = order, 1588 }; 1589 bool ret = true; 1590 1591 if (mutex_lock_killable(&oom_lock)) 1592 return true; 1593 1594 if (mem_cgroup_margin(memcg) >= (1 << order)) 1595 goto unlock; 1596 1597 /* 1598 * A few threads which were not waiting at mutex_lock_killable() can 1599 * fail to bail out. Therefore, check again after holding oom_lock. 1600 */ 1601 ret = task_is_dying() || out_of_memory(&oc); 1602 1603 unlock: 1604 mutex_unlock(&oom_lock); 1605 return ret; 1606 } 1607 1608 /* 1609 * Returns true if successfully killed one or more processes. Though in some 1610 * corner cases it can return true even without killing any process. 1611 */ 1612 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1613 { 1614 bool locked, ret; 1615 1616 if (order > PAGE_ALLOC_COSTLY_ORDER) 1617 return false; 1618 1619 memcg_memory_event(memcg, MEMCG_OOM); 1620 1621 if (!memcg1_oom_prepare(memcg, &locked)) 1622 return false; 1623 1624 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1625 1626 memcg1_oom_finish(memcg, locked); 1627 1628 return ret; 1629 } 1630 1631 /** 1632 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1633 * @victim: task to be killed by the OOM killer 1634 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1635 * 1636 * Returns a pointer to a memory cgroup, which has to be cleaned up 1637 * by killing all belonging OOM-killable tasks. 1638 * 1639 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1640 */ 1641 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1642 struct mem_cgroup *oom_domain) 1643 { 1644 struct mem_cgroup *oom_group = NULL; 1645 struct mem_cgroup *memcg; 1646 1647 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1648 return NULL; 1649 1650 if (!oom_domain) 1651 oom_domain = root_mem_cgroup; 1652 1653 rcu_read_lock(); 1654 1655 memcg = mem_cgroup_from_task(victim); 1656 if (mem_cgroup_is_root(memcg)) 1657 goto out; 1658 1659 /* 1660 * If the victim task has been asynchronously moved to a different 1661 * memory cgroup, we might end up killing tasks outside oom_domain. 1662 * In this case it's better to ignore memory.group.oom. 1663 */ 1664 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1665 goto out; 1666 1667 /* 1668 * Traverse the memory cgroup hierarchy from the victim task's 1669 * cgroup up to the OOMing cgroup (or root) to find the 1670 * highest-level memory cgroup with oom.group set. 1671 */ 1672 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1673 if (READ_ONCE(memcg->oom_group)) 1674 oom_group = memcg; 1675 1676 if (memcg == oom_domain) 1677 break; 1678 } 1679 1680 if (oom_group) 1681 css_get(&oom_group->css); 1682 out: 1683 rcu_read_unlock(); 1684 1685 return oom_group; 1686 } 1687 1688 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1689 { 1690 pr_info("Tasks in "); 1691 pr_cont_cgroup_path(memcg->css.cgroup); 1692 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1693 } 1694 1695 struct memcg_stock_pcp { 1696 local_lock_t stock_lock; 1697 struct mem_cgroup *cached; /* this never be root cgroup */ 1698 unsigned int nr_pages; 1699 1700 struct obj_cgroup *cached_objcg; 1701 struct pglist_data *cached_pgdat; 1702 unsigned int nr_bytes; 1703 int nr_slab_reclaimable_b; 1704 int nr_slab_unreclaimable_b; 1705 1706 struct work_struct work; 1707 unsigned long flags; 1708 #define FLUSHING_CACHED_CHARGE 0 1709 }; 1710 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 1711 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 1712 }; 1713 static DEFINE_MUTEX(percpu_charge_mutex); 1714 1715 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 1716 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1717 struct mem_cgroup *root_memcg); 1718 1719 /** 1720 * consume_stock: Try to consume stocked charge on this cpu. 1721 * @memcg: memcg to consume from. 1722 * @nr_pages: how many pages to charge. 1723 * 1724 * The charges will only happen if @memcg matches the current cpu's memcg 1725 * stock, and at least @nr_pages are available in that stock. Failure to 1726 * service an allocation will refill the stock. 1727 * 1728 * returns true if successful, false otherwise. 1729 */ 1730 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1731 { 1732 struct memcg_stock_pcp *stock; 1733 unsigned int stock_pages; 1734 unsigned long flags; 1735 bool ret = false; 1736 1737 if (nr_pages > MEMCG_CHARGE_BATCH) 1738 return ret; 1739 1740 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1741 1742 stock = this_cpu_ptr(&memcg_stock); 1743 stock_pages = READ_ONCE(stock->nr_pages); 1744 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 1745 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 1746 ret = true; 1747 } 1748 1749 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1750 1751 return ret; 1752 } 1753 1754 /* 1755 * Returns stocks cached in percpu and reset cached information. 1756 */ 1757 static void drain_stock(struct memcg_stock_pcp *stock) 1758 { 1759 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 1760 struct mem_cgroup *old = READ_ONCE(stock->cached); 1761 1762 if (!old) 1763 return; 1764 1765 if (stock_pages) { 1766 page_counter_uncharge(&old->memory, stock_pages); 1767 if (do_memsw_account()) 1768 page_counter_uncharge(&old->memsw, stock_pages); 1769 1770 WRITE_ONCE(stock->nr_pages, 0); 1771 } 1772 1773 css_put(&old->css); 1774 WRITE_ONCE(stock->cached, NULL); 1775 } 1776 1777 static void drain_local_stock(struct work_struct *dummy) 1778 { 1779 struct memcg_stock_pcp *stock; 1780 struct obj_cgroup *old = NULL; 1781 unsigned long flags; 1782 1783 /* 1784 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1785 * drain_stock races is that we always operate on local CPU stock 1786 * here with IRQ disabled 1787 */ 1788 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1789 1790 stock = this_cpu_ptr(&memcg_stock); 1791 old = drain_obj_stock(stock); 1792 drain_stock(stock); 1793 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1794 1795 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1796 obj_cgroup_put(old); 1797 } 1798 1799 /* 1800 * Cache charges(val) to local per_cpu area. 1801 * This will be consumed by consume_stock() function, later. 1802 */ 1803 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1804 { 1805 struct memcg_stock_pcp *stock; 1806 unsigned int stock_pages; 1807 1808 stock = this_cpu_ptr(&memcg_stock); 1809 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 1810 drain_stock(stock); 1811 css_get(&memcg->css); 1812 WRITE_ONCE(stock->cached, memcg); 1813 } 1814 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 1815 WRITE_ONCE(stock->nr_pages, stock_pages); 1816 1817 if (stock_pages > MEMCG_CHARGE_BATCH) 1818 drain_stock(stock); 1819 } 1820 1821 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1822 { 1823 unsigned long flags; 1824 1825 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1826 __refill_stock(memcg, nr_pages); 1827 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1828 } 1829 1830 /* 1831 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1832 * of the hierarchy under it. 1833 */ 1834 void drain_all_stock(struct mem_cgroup *root_memcg) 1835 { 1836 int cpu, curcpu; 1837 1838 /* If someone's already draining, avoid adding running more workers. */ 1839 if (!mutex_trylock(&percpu_charge_mutex)) 1840 return; 1841 /* 1842 * Notify other cpus that system-wide "drain" is running 1843 * We do not care about races with the cpu hotplug because cpu down 1844 * as well as workers from this path always operate on the local 1845 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1846 */ 1847 migrate_disable(); 1848 curcpu = smp_processor_id(); 1849 for_each_online_cpu(cpu) { 1850 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1851 struct mem_cgroup *memcg; 1852 bool flush = false; 1853 1854 rcu_read_lock(); 1855 memcg = READ_ONCE(stock->cached); 1856 if (memcg && READ_ONCE(stock->nr_pages) && 1857 mem_cgroup_is_descendant(memcg, root_memcg)) 1858 flush = true; 1859 else if (obj_stock_flush_required(stock, root_memcg)) 1860 flush = true; 1861 rcu_read_unlock(); 1862 1863 if (flush && 1864 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1865 if (cpu == curcpu) 1866 drain_local_stock(&stock->work); 1867 else if (!cpu_is_isolated(cpu)) 1868 schedule_work_on(cpu, &stock->work); 1869 } 1870 } 1871 migrate_enable(); 1872 mutex_unlock(&percpu_charge_mutex); 1873 } 1874 1875 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1876 { 1877 struct memcg_stock_pcp *stock; 1878 1879 stock = &per_cpu(memcg_stock, cpu); 1880 drain_stock(stock); 1881 1882 return 0; 1883 } 1884 1885 static unsigned long reclaim_high(struct mem_cgroup *memcg, 1886 unsigned int nr_pages, 1887 gfp_t gfp_mask) 1888 { 1889 unsigned long nr_reclaimed = 0; 1890 1891 do { 1892 unsigned long pflags; 1893 1894 if (page_counter_read(&memcg->memory) <= 1895 READ_ONCE(memcg->memory.high)) 1896 continue; 1897 1898 memcg_memory_event(memcg, MEMCG_HIGH); 1899 1900 psi_memstall_enter(&pflags); 1901 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 1902 gfp_mask, 1903 MEMCG_RECLAIM_MAY_SWAP, 1904 NULL); 1905 psi_memstall_leave(&pflags); 1906 } while ((memcg = parent_mem_cgroup(memcg)) && 1907 !mem_cgroup_is_root(memcg)); 1908 1909 return nr_reclaimed; 1910 } 1911 1912 static void high_work_func(struct work_struct *work) 1913 { 1914 struct mem_cgroup *memcg; 1915 1916 memcg = container_of(work, struct mem_cgroup, high_work); 1917 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 1918 } 1919 1920 /* 1921 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 1922 * enough to still cause a significant slowdown in most cases, while still 1923 * allowing diagnostics and tracing to proceed without becoming stuck. 1924 */ 1925 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 1926 1927 /* 1928 * When calculating the delay, we use these either side of the exponentiation to 1929 * maintain precision and scale to a reasonable number of jiffies (see the table 1930 * below. 1931 * 1932 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 1933 * overage ratio to a delay. 1934 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 1935 * proposed penalty in order to reduce to a reasonable number of jiffies, and 1936 * to produce a reasonable delay curve. 1937 * 1938 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 1939 * reasonable delay curve compared to precision-adjusted overage, not 1940 * penalising heavily at first, but still making sure that growth beyond the 1941 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 1942 * example, with a high of 100 megabytes: 1943 * 1944 * +-------+------------------------+ 1945 * | usage | time to allocate in ms | 1946 * +-------+------------------------+ 1947 * | 100M | 0 | 1948 * | 101M | 6 | 1949 * | 102M | 25 | 1950 * | 103M | 57 | 1951 * | 104M | 102 | 1952 * | 105M | 159 | 1953 * | 106M | 230 | 1954 * | 107M | 313 | 1955 * | 108M | 409 | 1956 * | 109M | 518 | 1957 * | 110M | 639 | 1958 * | 111M | 774 | 1959 * | 112M | 921 | 1960 * | 113M | 1081 | 1961 * | 114M | 1254 | 1962 * | 115M | 1439 | 1963 * | 116M | 1638 | 1964 * | 117M | 1849 | 1965 * | 118M | 2000 | 1966 * | 119M | 2000 | 1967 * | 120M | 2000 | 1968 * +-------+------------------------+ 1969 */ 1970 #define MEMCG_DELAY_PRECISION_SHIFT 20 1971 #define MEMCG_DELAY_SCALING_SHIFT 14 1972 1973 static u64 calculate_overage(unsigned long usage, unsigned long high) 1974 { 1975 u64 overage; 1976 1977 if (usage <= high) 1978 return 0; 1979 1980 /* 1981 * Prevent division by 0 in overage calculation by acting as if 1982 * it was a threshold of 1 page 1983 */ 1984 high = max(high, 1UL); 1985 1986 overage = usage - high; 1987 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 1988 return div64_u64(overage, high); 1989 } 1990 1991 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 1992 { 1993 u64 overage, max_overage = 0; 1994 1995 do { 1996 overage = calculate_overage(page_counter_read(&memcg->memory), 1997 READ_ONCE(memcg->memory.high)); 1998 max_overage = max(overage, max_overage); 1999 } while ((memcg = parent_mem_cgroup(memcg)) && 2000 !mem_cgroup_is_root(memcg)); 2001 2002 return max_overage; 2003 } 2004 2005 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2006 { 2007 u64 overage, max_overage = 0; 2008 2009 do { 2010 overage = calculate_overage(page_counter_read(&memcg->swap), 2011 READ_ONCE(memcg->swap.high)); 2012 if (overage) 2013 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2014 max_overage = max(overage, max_overage); 2015 } while ((memcg = parent_mem_cgroup(memcg)) && 2016 !mem_cgroup_is_root(memcg)); 2017 2018 return max_overage; 2019 } 2020 2021 /* 2022 * Get the number of jiffies that we should penalise a mischievous cgroup which 2023 * is exceeding its memory.high by checking both it and its ancestors. 2024 */ 2025 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2026 unsigned int nr_pages, 2027 u64 max_overage) 2028 { 2029 unsigned long penalty_jiffies; 2030 2031 if (!max_overage) 2032 return 0; 2033 2034 /* 2035 * We use overage compared to memory.high to calculate the number of 2036 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2037 * fairly lenient on small overages, and increasingly harsh when the 2038 * memcg in question makes it clear that it has no intention of stopping 2039 * its crazy behaviour, so we exponentially increase the delay based on 2040 * overage amount. 2041 */ 2042 penalty_jiffies = max_overage * max_overage * HZ; 2043 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2044 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2045 2046 /* 2047 * Factor in the task's own contribution to the overage, such that four 2048 * N-sized allocations are throttled approximately the same as one 2049 * 4N-sized allocation. 2050 * 2051 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2052 * larger the current charge patch is than that. 2053 */ 2054 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2055 } 2056 2057 /* 2058 * Reclaims memory over the high limit. Called directly from 2059 * try_charge() (context permitting), as well as from the userland 2060 * return path where reclaim is always able to block. 2061 */ 2062 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2063 { 2064 unsigned long penalty_jiffies; 2065 unsigned long pflags; 2066 unsigned long nr_reclaimed; 2067 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2068 int nr_retries = MAX_RECLAIM_RETRIES; 2069 struct mem_cgroup *memcg; 2070 bool in_retry = false; 2071 2072 if (likely(!nr_pages)) 2073 return; 2074 2075 memcg = get_mem_cgroup_from_mm(current->mm); 2076 current->memcg_nr_pages_over_high = 0; 2077 2078 retry_reclaim: 2079 /* 2080 * Bail if the task is already exiting. Unlike memory.max, 2081 * memory.high enforcement isn't as strict, and there is no 2082 * OOM killer involved, which means the excess could already 2083 * be much bigger (and still growing) than it could for 2084 * memory.max; the dying task could get stuck in fruitless 2085 * reclaim for a long time, which isn't desirable. 2086 */ 2087 if (task_is_dying()) 2088 goto out; 2089 2090 /* 2091 * The allocating task should reclaim at least the batch size, but for 2092 * subsequent retries we only want to do what's necessary to prevent oom 2093 * or breaching resource isolation. 2094 * 2095 * This is distinct from memory.max or page allocator behaviour because 2096 * memory.high is currently batched, whereas memory.max and the page 2097 * allocator run every time an allocation is made. 2098 */ 2099 nr_reclaimed = reclaim_high(memcg, 2100 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2101 gfp_mask); 2102 2103 /* 2104 * memory.high is breached and reclaim is unable to keep up. Throttle 2105 * allocators proactively to slow down excessive growth. 2106 */ 2107 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2108 mem_find_max_overage(memcg)); 2109 2110 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2111 swap_find_max_overage(memcg)); 2112 2113 /* 2114 * Clamp the max delay per usermode return so as to still keep the 2115 * application moving forwards and also permit diagnostics, albeit 2116 * extremely slowly. 2117 */ 2118 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2119 2120 /* 2121 * Don't sleep if the amount of jiffies this memcg owes us is so low 2122 * that it's not even worth doing, in an attempt to be nice to those who 2123 * go only a small amount over their memory.high value and maybe haven't 2124 * been aggressively reclaimed enough yet. 2125 */ 2126 if (penalty_jiffies <= HZ / 100) 2127 goto out; 2128 2129 /* 2130 * If reclaim is making forward progress but we're still over 2131 * memory.high, we want to encourage that rather than doing allocator 2132 * throttling. 2133 */ 2134 if (nr_reclaimed || nr_retries--) { 2135 in_retry = true; 2136 goto retry_reclaim; 2137 } 2138 2139 /* 2140 * Reclaim didn't manage to push usage below the limit, slow 2141 * this allocating task down. 2142 * 2143 * If we exit early, we're guaranteed to die (since 2144 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2145 * need to account for any ill-begotten jiffies to pay them off later. 2146 */ 2147 psi_memstall_enter(&pflags); 2148 schedule_timeout_killable(penalty_jiffies); 2149 psi_memstall_leave(&pflags); 2150 2151 out: 2152 css_put(&memcg->css); 2153 } 2154 2155 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2156 unsigned int nr_pages) 2157 { 2158 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2159 int nr_retries = MAX_RECLAIM_RETRIES; 2160 struct mem_cgroup *mem_over_limit; 2161 struct page_counter *counter; 2162 unsigned long nr_reclaimed; 2163 bool passed_oom = false; 2164 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2165 bool drained = false; 2166 bool raised_max_event = false; 2167 unsigned long pflags; 2168 2169 retry: 2170 if (consume_stock(memcg, nr_pages)) 2171 return 0; 2172 2173 if (!do_memsw_account() || 2174 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2175 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2176 goto done_restock; 2177 if (do_memsw_account()) 2178 page_counter_uncharge(&memcg->memsw, batch); 2179 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2180 } else { 2181 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2182 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2183 } 2184 2185 if (batch > nr_pages) { 2186 batch = nr_pages; 2187 goto retry; 2188 } 2189 2190 /* 2191 * Prevent unbounded recursion when reclaim operations need to 2192 * allocate memory. This might exceed the limits temporarily, 2193 * but we prefer facilitating memory reclaim and getting back 2194 * under the limit over triggering OOM kills in these cases. 2195 */ 2196 if (unlikely(current->flags & PF_MEMALLOC)) 2197 goto force; 2198 2199 if (unlikely(task_in_memcg_oom(current))) 2200 goto nomem; 2201 2202 if (!gfpflags_allow_blocking(gfp_mask)) 2203 goto nomem; 2204 2205 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2206 raised_max_event = true; 2207 2208 psi_memstall_enter(&pflags); 2209 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2210 gfp_mask, reclaim_options, NULL); 2211 psi_memstall_leave(&pflags); 2212 2213 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2214 goto retry; 2215 2216 if (!drained) { 2217 drain_all_stock(mem_over_limit); 2218 drained = true; 2219 goto retry; 2220 } 2221 2222 if (gfp_mask & __GFP_NORETRY) 2223 goto nomem; 2224 /* 2225 * Even though the limit is exceeded at this point, reclaim 2226 * may have been able to free some pages. Retry the charge 2227 * before killing the task. 2228 * 2229 * Only for regular pages, though: huge pages are rather 2230 * unlikely to succeed so close to the limit, and we fall back 2231 * to regular pages anyway in case of failure. 2232 */ 2233 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2234 goto retry; 2235 /* 2236 * At task move, charge accounts can be doubly counted. So, it's 2237 * better to wait until the end of task_move if something is going on. 2238 */ 2239 if (memcg1_wait_acct_move(mem_over_limit)) 2240 goto retry; 2241 2242 if (nr_retries--) 2243 goto retry; 2244 2245 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2246 goto nomem; 2247 2248 /* Avoid endless loop for tasks bypassed by the oom killer */ 2249 if (passed_oom && task_is_dying()) 2250 goto nomem; 2251 2252 /* 2253 * keep retrying as long as the memcg oom killer is able to make 2254 * a forward progress or bypass the charge if the oom killer 2255 * couldn't make any progress. 2256 */ 2257 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2258 get_order(nr_pages * PAGE_SIZE))) { 2259 passed_oom = true; 2260 nr_retries = MAX_RECLAIM_RETRIES; 2261 goto retry; 2262 } 2263 nomem: 2264 /* 2265 * Memcg doesn't have a dedicated reserve for atomic 2266 * allocations. But like the global atomic pool, we need to 2267 * put the burden of reclaim on regular allocation requests 2268 * and let these go through as privileged allocations. 2269 */ 2270 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2271 return -ENOMEM; 2272 force: 2273 /* 2274 * If the allocation has to be enforced, don't forget to raise 2275 * a MEMCG_MAX event. 2276 */ 2277 if (!raised_max_event) 2278 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2279 2280 /* 2281 * The allocation either can't fail or will lead to more memory 2282 * being freed very soon. Allow memory usage go over the limit 2283 * temporarily by force charging it. 2284 */ 2285 page_counter_charge(&memcg->memory, nr_pages); 2286 if (do_memsw_account()) 2287 page_counter_charge(&memcg->memsw, nr_pages); 2288 2289 return 0; 2290 2291 done_restock: 2292 if (batch > nr_pages) 2293 refill_stock(memcg, batch - nr_pages); 2294 2295 /* 2296 * If the hierarchy is above the normal consumption range, schedule 2297 * reclaim on returning to userland. We can perform reclaim here 2298 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2299 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2300 * not recorded as it most likely matches current's and won't 2301 * change in the meantime. As high limit is checked again before 2302 * reclaim, the cost of mismatch is negligible. 2303 */ 2304 do { 2305 bool mem_high, swap_high; 2306 2307 mem_high = page_counter_read(&memcg->memory) > 2308 READ_ONCE(memcg->memory.high); 2309 swap_high = page_counter_read(&memcg->swap) > 2310 READ_ONCE(memcg->swap.high); 2311 2312 /* Don't bother a random interrupted task */ 2313 if (!in_task()) { 2314 if (mem_high) { 2315 schedule_work(&memcg->high_work); 2316 break; 2317 } 2318 continue; 2319 } 2320 2321 if (mem_high || swap_high) { 2322 /* 2323 * The allocating tasks in this cgroup will need to do 2324 * reclaim or be throttled to prevent further growth 2325 * of the memory or swap footprints. 2326 * 2327 * Target some best-effort fairness between the tasks, 2328 * and distribute reclaim work and delay penalties 2329 * based on how much each task is actually allocating. 2330 */ 2331 current->memcg_nr_pages_over_high += batch; 2332 set_notify_resume(current); 2333 break; 2334 } 2335 } while ((memcg = parent_mem_cgroup(memcg))); 2336 2337 /* 2338 * Reclaim is set up above to be called from the userland 2339 * return path. But also attempt synchronous reclaim to avoid 2340 * excessive overrun while the task is still inside the 2341 * kernel. If this is successful, the return path will see it 2342 * when it rechecks the overage and simply bail out. 2343 */ 2344 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2345 !(current->flags & PF_MEMALLOC) && 2346 gfpflags_allow_blocking(gfp_mask)) 2347 mem_cgroup_handle_over_high(gfp_mask); 2348 return 0; 2349 } 2350 2351 /** 2352 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. 2353 * @memcg: memcg previously charged. 2354 * @nr_pages: number of pages previously charged. 2355 */ 2356 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2357 { 2358 if (mem_cgroup_is_root(memcg)) 2359 return; 2360 2361 page_counter_uncharge(&memcg->memory, nr_pages); 2362 if (do_memsw_account()) 2363 page_counter_uncharge(&memcg->memsw, nr_pages); 2364 } 2365 2366 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2367 { 2368 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2369 /* 2370 * Any of the following ensures page's memcg stability: 2371 * 2372 * - the page lock 2373 * - LRU isolation 2374 * - folio_memcg_lock() 2375 * - exclusive reference 2376 * - mem_cgroup_trylock_pages() 2377 */ 2378 folio->memcg_data = (unsigned long)memcg; 2379 } 2380 2381 /** 2382 * mem_cgroup_commit_charge - commit a previously successful try_charge(). 2383 * @folio: folio to commit the charge to. 2384 * @memcg: memcg previously charged. 2385 */ 2386 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2387 { 2388 css_get(&memcg->css); 2389 commit_charge(folio, memcg); 2390 memcg1_commit_charge(folio, memcg); 2391 } 2392 2393 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2394 struct pglist_data *pgdat, 2395 enum node_stat_item idx, int nr) 2396 { 2397 struct mem_cgroup *memcg; 2398 struct lruvec *lruvec; 2399 2400 rcu_read_lock(); 2401 memcg = obj_cgroup_memcg(objcg); 2402 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2403 __mod_memcg_lruvec_state(lruvec, idx, nr); 2404 rcu_read_unlock(); 2405 } 2406 2407 static __always_inline 2408 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2409 { 2410 /* 2411 * Slab objects are accounted individually, not per-page. 2412 * Memcg membership data for each individual object is saved in 2413 * slab->obj_exts. 2414 */ 2415 if (folio_test_slab(folio)) { 2416 struct slabobj_ext *obj_exts; 2417 struct slab *slab; 2418 unsigned int off; 2419 2420 slab = folio_slab(folio); 2421 obj_exts = slab_obj_exts(slab); 2422 if (!obj_exts) 2423 return NULL; 2424 2425 off = obj_to_index(slab->slab_cache, slab, p); 2426 if (obj_exts[off].objcg) 2427 return obj_cgroup_memcg(obj_exts[off].objcg); 2428 2429 return NULL; 2430 } 2431 2432 /* 2433 * folio_memcg_check() is used here, because in theory we can encounter 2434 * a folio where the slab flag has been cleared already, but 2435 * slab->obj_exts has not been freed yet 2436 * folio_memcg_check() will guarantee that a proper memory 2437 * cgroup pointer or NULL will be returned. 2438 */ 2439 return folio_memcg_check(folio); 2440 } 2441 2442 /* 2443 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2444 * It is not suitable for objects allocated using vmalloc(). 2445 * 2446 * A passed kernel object must be a slab object or a generic kernel page. 2447 * 2448 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2449 * cgroup_mutex, etc. 2450 */ 2451 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2452 { 2453 if (mem_cgroup_disabled()) 2454 return NULL; 2455 2456 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2457 } 2458 2459 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2460 { 2461 struct obj_cgroup *objcg = NULL; 2462 2463 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2464 objcg = rcu_dereference(memcg->objcg); 2465 if (likely(objcg && obj_cgroup_tryget(objcg))) 2466 break; 2467 objcg = NULL; 2468 } 2469 return objcg; 2470 } 2471 2472 static struct obj_cgroup *current_objcg_update(void) 2473 { 2474 struct mem_cgroup *memcg; 2475 struct obj_cgroup *old, *objcg = NULL; 2476 2477 do { 2478 /* Atomically drop the update bit. */ 2479 old = xchg(¤t->objcg, NULL); 2480 if (old) { 2481 old = (struct obj_cgroup *) 2482 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2483 obj_cgroup_put(old); 2484 2485 old = NULL; 2486 } 2487 2488 /* If new objcg is NULL, no reason for the second atomic update. */ 2489 if (!current->mm || (current->flags & PF_KTHREAD)) 2490 return NULL; 2491 2492 /* 2493 * Release the objcg pointer from the previous iteration, 2494 * if try_cmpxcg() below fails. 2495 */ 2496 if (unlikely(objcg)) { 2497 obj_cgroup_put(objcg); 2498 objcg = NULL; 2499 } 2500 2501 /* 2502 * Obtain the new objcg pointer. The current task can be 2503 * asynchronously moved to another memcg and the previous 2504 * memcg can be offlined. So let's get the memcg pointer 2505 * and try get a reference to objcg under a rcu read lock. 2506 */ 2507 2508 rcu_read_lock(); 2509 memcg = mem_cgroup_from_task(current); 2510 objcg = __get_obj_cgroup_from_memcg(memcg); 2511 rcu_read_unlock(); 2512 2513 /* 2514 * Try set up a new objcg pointer atomically. If it 2515 * fails, it means the update flag was set concurrently, so 2516 * the whole procedure should be repeated. 2517 */ 2518 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2519 2520 return objcg; 2521 } 2522 2523 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2524 { 2525 struct mem_cgroup *memcg; 2526 struct obj_cgroup *objcg; 2527 2528 if (in_task()) { 2529 memcg = current->active_memcg; 2530 if (unlikely(memcg)) 2531 goto from_memcg; 2532 2533 objcg = READ_ONCE(current->objcg); 2534 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2535 objcg = current_objcg_update(); 2536 /* 2537 * Objcg reference is kept by the task, so it's safe 2538 * to use the objcg by the current task. 2539 */ 2540 return objcg; 2541 } 2542 2543 memcg = this_cpu_read(int_active_memcg); 2544 if (unlikely(memcg)) 2545 goto from_memcg; 2546 2547 return NULL; 2548 2549 from_memcg: 2550 objcg = NULL; 2551 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2552 /* 2553 * Memcg pointer is protected by scope (see set_active_memcg()) 2554 * and is pinning the corresponding objcg, so objcg can't go 2555 * away and can be used within the scope without any additional 2556 * protection. 2557 */ 2558 objcg = rcu_dereference_check(memcg->objcg, 1); 2559 if (likely(objcg)) 2560 break; 2561 } 2562 2563 return objcg; 2564 } 2565 2566 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2567 { 2568 struct obj_cgroup *objcg; 2569 2570 if (!memcg_kmem_online()) 2571 return NULL; 2572 2573 if (folio_memcg_kmem(folio)) { 2574 objcg = __folio_objcg(folio); 2575 obj_cgroup_get(objcg); 2576 } else { 2577 struct mem_cgroup *memcg; 2578 2579 rcu_read_lock(); 2580 memcg = __folio_memcg(folio); 2581 if (memcg) 2582 objcg = __get_obj_cgroup_from_memcg(memcg); 2583 else 2584 objcg = NULL; 2585 rcu_read_unlock(); 2586 } 2587 return objcg; 2588 } 2589 2590 /* 2591 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2592 * @objcg: object cgroup to uncharge 2593 * @nr_pages: number of pages to uncharge 2594 */ 2595 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2596 unsigned int nr_pages) 2597 { 2598 struct mem_cgroup *memcg; 2599 2600 memcg = get_mem_cgroup_from_objcg(objcg); 2601 2602 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2603 memcg1_account_kmem(memcg, -nr_pages); 2604 refill_stock(memcg, nr_pages); 2605 2606 css_put(&memcg->css); 2607 } 2608 2609 /* 2610 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2611 * @objcg: object cgroup to charge 2612 * @gfp: reclaim mode 2613 * @nr_pages: number of pages to charge 2614 * 2615 * Returns 0 on success, an error code on failure. 2616 */ 2617 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2618 unsigned int nr_pages) 2619 { 2620 struct mem_cgroup *memcg; 2621 int ret; 2622 2623 memcg = get_mem_cgroup_from_objcg(objcg); 2624 2625 ret = try_charge_memcg(memcg, gfp, nr_pages); 2626 if (ret) 2627 goto out; 2628 2629 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2630 memcg1_account_kmem(memcg, nr_pages); 2631 out: 2632 css_put(&memcg->css); 2633 2634 return ret; 2635 } 2636 2637 /** 2638 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2639 * @page: page to charge 2640 * @gfp: reclaim mode 2641 * @order: allocation order 2642 * 2643 * Returns 0 on success, an error code on failure. 2644 */ 2645 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2646 { 2647 struct obj_cgroup *objcg; 2648 int ret = 0; 2649 2650 objcg = current_obj_cgroup(); 2651 if (objcg) { 2652 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2653 if (!ret) { 2654 obj_cgroup_get(objcg); 2655 page->memcg_data = (unsigned long)objcg | 2656 MEMCG_DATA_KMEM; 2657 return 0; 2658 } 2659 } 2660 return ret; 2661 } 2662 2663 /** 2664 * __memcg_kmem_uncharge_page: uncharge a kmem page 2665 * @page: page to uncharge 2666 * @order: allocation order 2667 */ 2668 void __memcg_kmem_uncharge_page(struct page *page, int order) 2669 { 2670 struct folio *folio = page_folio(page); 2671 struct obj_cgroup *objcg; 2672 unsigned int nr_pages = 1 << order; 2673 2674 if (!folio_memcg_kmem(folio)) 2675 return; 2676 2677 objcg = __folio_objcg(folio); 2678 obj_cgroup_uncharge_pages(objcg, nr_pages); 2679 folio->memcg_data = 0; 2680 obj_cgroup_put(objcg); 2681 } 2682 2683 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 2684 enum node_stat_item idx, int nr) 2685 { 2686 struct memcg_stock_pcp *stock; 2687 struct obj_cgroup *old = NULL; 2688 unsigned long flags; 2689 int *bytes; 2690 2691 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2692 stock = this_cpu_ptr(&memcg_stock); 2693 2694 /* 2695 * Save vmstat data in stock and skip vmstat array update unless 2696 * accumulating over a page of vmstat data or when pgdat or idx 2697 * changes. 2698 */ 2699 if (READ_ONCE(stock->cached_objcg) != objcg) { 2700 old = drain_obj_stock(stock); 2701 obj_cgroup_get(objcg); 2702 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2703 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2704 WRITE_ONCE(stock->cached_objcg, objcg); 2705 stock->cached_pgdat = pgdat; 2706 } else if (stock->cached_pgdat != pgdat) { 2707 /* Flush the existing cached vmstat data */ 2708 struct pglist_data *oldpg = stock->cached_pgdat; 2709 2710 if (stock->nr_slab_reclaimable_b) { 2711 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2712 stock->nr_slab_reclaimable_b); 2713 stock->nr_slab_reclaimable_b = 0; 2714 } 2715 if (stock->nr_slab_unreclaimable_b) { 2716 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2717 stock->nr_slab_unreclaimable_b); 2718 stock->nr_slab_unreclaimable_b = 0; 2719 } 2720 stock->cached_pgdat = pgdat; 2721 } 2722 2723 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2724 : &stock->nr_slab_unreclaimable_b; 2725 /* 2726 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2727 * cached locally at least once before pushing it out. 2728 */ 2729 if (!*bytes) { 2730 *bytes = nr; 2731 nr = 0; 2732 } else { 2733 *bytes += nr; 2734 if (abs(*bytes) > PAGE_SIZE) { 2735 nr = *bytes; 2736 *bytes = 0; 2737 } else { 2738 nr = 0; 2739 } 2740 } 2741 if (nr) 2742 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2743 2744 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2745 obj_cgroup_put(old); 2746 } 2747 2748 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 2749 { 2750 struct memcg_stock_pcp *stock; 2751 unsigned long flags; 2752 bool ret = false; 2753 2754 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2755 2756 stock = this_cpu_ptr(&memcg_stock); 2757 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2758 stock->nr_bytes -= nr_bytes; 2759 ret = true; 2760 } 2761 2762 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2763 2764 return ret; 2765 } 2766 2767 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2768 { 2769 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2770 2771 if (!old) 2772 return NULL; 2773 2774 if (stock->nr_bytes) { 2775 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2776 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2777 2778 if (nr_pages) { 2779 struct mem_cgroup *memcg; 2780 2781 memcg = get_mem_cgroup_from_objcg(old); 2782 2783 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2784 memcg1_account_kmem(memcg, -nr_pages); 2785 __refill_stock(memcg, nr_pages); 2786 2787 css_put(&memcg->css); 2788 } 2789 2790 /* 2791 * The leftover is flushed to the centralized per-memcg value. 2792 * On the next attempt to refill obj stock it will be moved 2793 * to a per-cpu stock (probably, on an other CPU), see 2794 * refill_obj_stock(). 2795 * 2796 * How often it's flushed is a trade-off between the memory 2797 * limit enforcement accuracy and potential CPU contention, 2798 * so it might be changed in the future. 2799 */ 2800 atomic_add(nr_bytes, &old->nr_charged_bytes); 2801 stock->nr_bytes = 0; 2802 } 2803 2804 /* 2805 * Flush the vmstat data in current stock 2806 */ 2807 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2808 if (stock->nr_slab_reclaimable_b) { 2809 __mod_objcg_mlstate(old, stock->cached_pgdat, 2810 NR_SLAB_RECLAIMABLE_B, 2811 stock->nr_slab_reclaimable_b); 2812 stock->nr_slab_reclaimable_b = 0; 2813 } 2814 if (stock->nr_slab_unreclaimable_b) { 2815 __mod_objcg_mlstate(old, stock->cached_pgdat, 2816 NR_SLAB_UNRECLAIMABLE_B, 2817 stock->nr_slab_unreclaimable_b); 2818 stock->nr_slab_unreclaimable_b = 0; 2819 } 2820 stock->cached_pgdat = NULL; 2821 } 2822 2823 WRITE_ONCE(stock->cached_objcg, NULL); 2824 /* 2825 * The `old' objects needs to be released by the caller via 2826 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 2827 */ 2828 return old; 2829 } 2830 2831 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2832 struct mem_cgroup *root_memcg) 2833 { 2834 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2835 struct mem_cgroup *memcg; 2836 2837 if (objcg) { 2838 memcg = obj_cgroup_memcg(objcg); 2839 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2840 return true; 2841 } 2842 2843 return false; 2844 } 2845 2846 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2847 bool allow_uncharge) 2848 { 2849 struct memcg_stock_pcp *stock; 2850 struct obj_cgroup *old = NULL; 2851 unsigned long flags; 2852 unsigned int nr_pages = 0; 2853 2854 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2855 2856 stock = this_cpu_ptr(&memcg_stock); 2857 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2858 old = drain_obj_stock(stock); 2859 obj_cgroup_get(objcg); 2860 WRITE_ONCE(stock->cached_objcg, objcg); 2861 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2862 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2863 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2864 } 2865 stock->nr_bytes += nr_bytes; 2866 2867 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 2868 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2869 stock->nr_bytes &= (PAGE_SIZE - 1); 2870 } 2871 2872 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2873 obj_cgroup_put(old); 2874 2875 if (nr_pages) 2876 obj_cgroup_uncharge_pages(objcg, nr_pages); 2877 } 2878 2879 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 2880 { 2881 unsigned int nr_pages, nr_bytes; 2882 int ret; 2883 2884 if (consume_obj_stock(objcg, size)) 2885 return 0; 2886 2887 /* 2888 * In theory, objcg->nr_charged_bytes can have enough 2889 * pre-charged bytes to satisfy the allocation. However, 2890 * flushing objcg->nr_charged_bytes requires two atomic 2891 * operations, and objcg->nr_charged_bytes can't be big. 2892 * The shared objcg->nr_charged_bytes can also become a 2893 * performance bottleneck if all tasks of the same memcg are 2894 * trying to update it. So it's better to ignore it and try 2895 * grab some new pages. The stock's nr_bytes will be flushed to 2896 * objcg->nr_charged_bytes later on when objcg changes. 2897 * 2898 * The stock's nr_bytes may contain enough pre-charged bytes 2899 * to allow one less page from being charged, but we can't rely 2900 * on the pre-charged bytes not being changed outside of 2901 * consume_obj_stock() or refill_obj_stock(). So ignore those 2902 * pre-charged bytes as well when charging pages. To avoid a 2903 * page uncharge right after a page charge, we set the 2904 * allow_uncharge flag to false when calling refill_obj_stock() 2905 * to temporarily allow the pre-charged bytes to exceed the page 2906 * size limit. The maximum reachable value of the pre-charged 2907 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 2908 * race. 2909 */ 2910 nr_pages = size >> PAGE_SHIFT; 2911 nr_bytes = size & (PAGE_SIZE - 1); 2912 2913 if (nr_bytes) 2914 nr_pages += 1; 2915 2916 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 2917 if (!ret && nr_bytes) 2918 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 2919 2920 return ret; 2921 } 2922 2923 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 2924 { 2925 refill_obj_stock(objcg, size, true); 2926 } 2927 2928 static inline size_t obj_full_size(struct kmem_cache *s) 2929 { 2930 /* 2931 * For each accounted object there is an extra space which is used 2932 * to store obj_cgroup membership. Charge it too. 2933 */ 2934 return s->size + sizeof(struct obj_cgroup *); 2935 } 2936 2937 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2938 gfp_t flags, size_t size, void **p) 2939 { 2940 struct obj_cgroup *objcg; 2941 struct slab *slab; 2942 unsigned long off; 2943 size_t i; 2944 2945 /* 2946 * The obtained objcg pointer is safe to use within the current scope, 2947 * defined by current task or set_active_memcg() pair. 2948 * obj_cgroup_get() is used to get a permanent reference. 2949 */ 2950 objcg = current_obj_cgroup(); 2951 if (!objcg) 2952 return true; 2953 2954 /* 2955 * slab_alloc_node() avoids the NULL check, so we might be called with a 2956 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 2957 * the whole requested size. 2958 * return success as there's nothing to free back 2959 */ 2960 if (unlikely(*p == NULL)) 2961 return true; 2962 2963 flags &= gfp_allowed_mask; 2964 2965 if (lru) { 2966 int ret; 2967 struct mem_cgroup *memcg; 2968 2969 memcg = get_mem_cgroup_from_objcg(objcg); 2970 ret = memcg_list_lru_alloc(memcg, lru, flags); 2971 css_put(&memcg->css); 2972 2973 if (ret) 2974 return false; 2975 } 2976 2977 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 2978 return false; 2979 2980 for (i = 0; i < size; i++) { 2981 slab = virt_to_slab(p[i]); 2982 2983 if (!slab_obj_exts(slab) && 2984 alloc_slab_obj_exts(slab, s, flags, false)) { 2985 obj_cgroup_uncharge(objcg, obj_full_size(s)); 2986 continue; 2987 } 2988 2989 off = obj_to_index(s, slab, p[i]); 2990 obj_cgroup_get(objcg); 2991 slab_obj_exts(slab)[off].objcg = objcg; 2992 mod_objcg_state(objcg, slab_pgdat(slab), 2993 cache_vmstat_idx(s), obj_full_size(s)); 2994 } 2995 2996 return true; 2997 } 2998 2999 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3000 void **p, int objects, struct slabobj_ext *obj_exts) 3001 { 3002 for (int i = 0; i < objects; i++) { 3003 struct obj_cgroup *objcg; 3004 unsigned int off; 3005 3006 off = obj_to_index(s, slab, p[i]); 3007 objcg = obj_exts[off].objcg; 3008 if (!objcg) 3009 continue; 3010 3011 obj_exts[off].objcg = NULL; 3012 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3013 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3014 -obj_full_size(s)); 3015 obj_cgroup_put(objcg); 3016 } 3017 } 3018 3019 /* 3020 * Because folio_memcg(head) is not set on tails, set it now. 3021 */ 3022 void split_page_memcg(struct page *head, int old_order, int new_order) 3023 { 3024 struct folio *folio = page_folio(head); 3025 int i; 3026 unsigned int old_nr = 1 << old_order; 3027 unsigned int new_nr = 1 << new_order; 3028 3029 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3030 return; 3031 3032 for (i = new_nr; i < old_nr; i += new_nr) 3033 folio_page(folio, i)->memcg_data = folio->memcg_data; 3034 3035 if (folio_memcg_kmem(folio)) 3036 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1); 3037 else 3038 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1); 3039 } 3040 3041 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3042 { 3043 unsigned long val; 3044 3045 if (mem_cgroup_is_root(memcg)) { 3046 /* 3047 * Approximate root's usage from global state. This isn't 3048 * perfect, but the root usage was always an approximation. 3049 */ 3050 val = global_node_page_state(NR_FILE_PAGES) + 3051 global_node_page_state(NR_ANON_MAPPED); 3052 if (swap) 3053 val += total_swap_pages - get_nr_swap_pages(); 3054 } else { 3055 if (!swap) 3056 val = page_counter_read(&memcg->memory); 3057 else 3058 val = page_counter_read(&memcg->memsw); 3059 } 3060 return val; 3061 } 3062 3063 static int memcg_online_kmem(struct mem_cgroup *memcg) 3064 { 3065 struct obj_cgroup *objcg; 3066 3067 if (mem_cgroup_kmem_disabled()) 3068 return 0; 3069 3070 if (unlikely(mem_cgroup_is_root(memcg))) 3071 return 0; 3072 3073 objcg = obj_cgroup_alloc(); 3074 if (!objcg) 3075 return -ENOMEM; 3076 3077 objcg->memcg = memcg; 3078 rcu_assign_pointer(memcg->objcg, objcg); 3079 obj_cgroup_get(objcg); 3080 memcg->orig_objcg = objcg; 3081 3082 static_branch_enable(&memcg_kmem_online_key); 3083 3084 memcg->kmemcg_id = memcg->id.id; 3085 3086 return 0; 3087 } 3088 3089 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3090 { 3091 struct mem_cgroup *parent; 3092 3093 if (mem_cgroup_kmem_disabled()) 3094 return; 3095 3096 if (unlikely(mem_cgroup_is_root(memcg))) 3097 return; 3098 3099 parent = parent_mem_cgroup(memcg); 3100 if (!parent) 3101 parent = root_mem_cgroup; 3102 3103 memcg_reparent_objcgs(memcg, parent); 3104 3105 /* 3106 * After we have finished memcg_reparent_objcgs(), all list_lrus 3107 * corresponding to this cgroup are guaranteed to remain empty. 3108 * The ordering is imposed by list_lru_node->lock taken by 3109 * memcg_reparent_list_lrus(). 3110 */ 3111 memcg_reparent_list_lrus(memcg, parent); 3112 } 3113 3114 #ifdef CONFIG_CGROUP_WRITEBACK 3115 3116 #include <trace/events/writeback.h> 3117 3118 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3119 { 3120 return wb_domain_init(&memcg->cgwb_domain, gfp); 3121 } 3122 3123 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3124 { 3125 wb_domain_exit(&memcg->cgwb_domain); 3126 } 3127 3128 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3129 { 3130 wb_domain_size_changed(&memcg->cgwb_domain); 3131 } 3132 3133 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3134 { 3135 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3136 3137 if (!memcg->css.parent) 3138 return NULL; 3139 3140 return &memcg->cgwb_domain; 3141 } 3142 3143 /** 3144 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3145 * @wb: bdi_writeback in question 3146 * @pfilepages: out parameter for number of file pages 3147 * @pheadroom: out parameter for number of allocatable pages according to memcg 3148 * @pdirty: out parameter for number of dirty pages 3149 * @pwriteback: out parameter for number of pages under writeback 3150 * 3151 * Determine the numbers of file, headroom, dirty, and writeback pages in 3152 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3153 * is a bit more involved. 3154 * 3155 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3156 * headroom is calculated as the lowest headroom of itself and the 3157 * ancestors. Note that this doesn't consider the actual amount of 3158 * available memory in the system. The caller should further cap 3159 * *@pheadroom accordingly. 3160 */ 3161 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3162 unsigned long *pheadroom, unsigned long *pdirty, 3163 unsigned long *pwriteback) 3164 { 3165 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3166 struct mem_cgroup *parent; 3167 3168 mem_cgroup_flush_stats_ratelimited(memcg); 3169 3170 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3171 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3172 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3173 memcg_page_state(memcg, NR_ACTIVE_FILE); 3174 3175 *pheadroom = PAGE_COUNTER_MAX; 3176 while ((parent = parent_mem_cgroup(memcg))) { 3177 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3178 READ_ONCE(memcg->memory.high)); 3179 unsigned long used = page_counter_read(&memcg->memory); 3180 3181 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3182 memcg = parent; 3183 } 3184 } 3185 3186 /* 3187 * Foreign dirty flushing 3188 * 3189 * There's an inherent mismatch between memcg and writeback. The former 3190 * tracks ownership per-page while the latter per-inode. This was a 3191 * deliberate design decision because honoring per-page ownership in the 3192 * writeback path is complicated, may lead to higher CPU and IO overheads 3193 * and deemed unnecessary given that write-sharing an inode across 3194 * different cgroups isn't a common use-case. 3195 * 3196 * Combined with inode majority-writer ownership switching, this works well 3197 * enough in most cases but there are some pathological cases. For 3198 * example, let's say there are two cgroups A and B which keep writing to 3199 * different but confined parts of the same inode. B owns the inode and 3200 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3201 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3202 * triggering background writeback. A will be slowed down without a way to 3203 * make writeback of the dirty pages happen. 3204 * 3205 * Conditions like the above can lead to a cgroup getting repeatedly and 3206 * severely throttled after making some progress after each 3207 * dirty_expire_interval while the underlying IO device is almost 3208 * completely idle. 3209 * 3210 * Solving this problem completely requires matching the ownership tracking 3211 * granularities between memcg and writeback in either direction. However, 3212 * the more egregious behaviors can be avoided by simply remembering the 3213 * most recent foreign dirtying events and initiating remote flushes on 3214 * them when local writeback isn't enough to keep the memory clean enough. 3215 * 3216 * The following two functions implement such mechanism. When a foreign 3217 * page - a page whose memcg and writeback ownerships don't match - is 3218 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3219 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3220 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3221 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3222 * foreign bdi_writebacks which haven't expired. Both the numbers of 3223 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3224 * limited to MEMCG_CGWB_FRN_CNT. 3225 * 3226 * The mechanism only remembers IDs and doesn't hold any object references. 3227 * As being wrong occasionally doesn't matter, updates and accesses to the 3228 * records are lockless and racy. 3229 */ 3230 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3231 struct bdi_writeback *wb) 3232 { 3233 struct mem_cgroup *memcg = folio_memcg(folio); 3234 struct memcg_cgwb_frn *frn; 3235 u64 now = get_jiffies_64(); 3236 u64 oldest_at = now; 3237 int oldest = -1; 3238 int i; 3239 3240 trace_track_foreign_dirty(folio, wb); 3241 3242 /* 3243 * Pick the slot to use. If there is already a slot for @wb, keep 3244 * using it. If not replace the oldest one which isn't being 3245 * written out. 3246 */ 3247 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3248 frn = &memcg->cgwb_frn[i]; 3249 if (frn->bdi_id == wb->bdi->id && 3250 frn->memcg_id == wb->memcg_css->id) 3251 break; 3252 if (time_before64(frn->at, oldest_at) && 3253 atomic_read(&frn->done.cnt) == 1) { 3254 oldest = i; 3255 oldest_at = frn->at; 3256 } 3257 } 3258 3259 if (i < MEMCG_CGWB_FRN_CNT) { 3260 /* 3261 * Re-using an existing one. Update timestamp lazily to 3262 * avoid making the cacheline hot. We want them to be 3263 * reasonably up-to-date and significantly shorter than 3264 * dirty_expire_interval as that's what expires the record. 3265 * Use the shorter of 1s and dirty_expire_interval / 8. 3266 */ 3267 unsigned long update_intv = 3268 min_t(unsigned long, HZ, 3269 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3270 3271 if (time_before64(frn->at, now - update_intv)) 3272 frn->at = now; 3273 } else if (oldest >= 0) { 3274 /* replace the oldest free one */ 3275 frn = &memcg->cgwb_frn[oldest]; 3276 frn->bdi_id = wb->bdi->id; 3277 frn->memcg_id = wb->memcg_css->id; 3278 frn->at = now; 3279 } 3280 } 3281 3282 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3283 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3284 { 3285 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3286 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3287 u64 now = jiffies_64; 3288 int i; 3289 3290 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3291 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3292 3293 /* 3294 * If the record is older than dirty_expire_interval, 3295 * writeback on it has already started. No need to kick it 3296 * off again. Also, don't start a new one if there's 3297 * already one in flight. 3298 */ 3299 if (time_after64(frn->at, now - intv) && 3300 atomic_read(&frn->done.cnt) == 1) { 3301 frn->at = 0; 3302 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3303 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3304 WB_REASON_FOREIGN_FLUSH, 3305 &frn->done); 3306 } 3307 } 3308 } 3309 3310 #else /* CONFIG_CGROUP_WRITEBACK */ 3311 3312 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3313 { 3314 return 0; 3315 } 3316 3317 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3318 { 3319 } 3320 3321 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3322 { 3323 } 3324 3325 #endif /* CONFIG_CGROUP_WRITEBACK */ 3326 3327 /* 3328 * Private memory cgroup IDR 3329 * 3330 * Swap-out records and page cache shadow entries need to store memcg 3331 * references in constrained space, so we maintain an ID space that is 3332 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3333 * memory-controlled cgroups to 64k. 3334 * 3335 * However, there usually are many references to the offline CSS after 3336 * the cgroup has been destroyed, such as page cache or reclaimable 3337 * slab objects, that don't need to hang on to the ID. We want to keep 3338 * those dead CSS from occupying IDs, or we might quickly exhaust the 3339 * relatively small ID space and prevent the creation of new cgroups 3340 * even when there are much fewer than 64k cgroups - possibly none. 3341 * 3342 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3343 * be freed and recycled when it's no longer needed, which is usually 3344 * when the CSS is offlined. 3345 * 3346 * The only exception to that are records of swapped out tmpfs/shmem 3347 * pages that need to be attributed to live ancestors on swapin. But 3348 * those references are manageable from userspace. 3349 */ 3350 3351 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3352 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3353 3354 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3355 { 3356 if (memcg->id.id > 0) { 3357 xa_erase(&mem_cgroup_ids, memcg->id.id); 3358 memcg->id.id = 0; 3359 } 3360 } 3361 3362 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3363 unsigned int n) 3364 { 3365 refcount_add(n, &memcg->id.ref); 3366 } 3367 3368 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3369 { 3370 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3371 mem_cgroup_id_remove(memcg); 3372 3373 /* Memcg ID pins CSS */ 3374 css_put(&memcg->css); 3375 } 3376 } 3377 3378 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3379 { 3380 mem_cgroup_id_put_many(memcg, 1); 3381 } 3382 3383 /** 3384 * mem_cgroup_from_id - look up a memcg from a memcg id 3385 * @id: the memcg id to look up 3386 * 3387 * Caller must hold rcu_read_lock(). 3388 */ 3389 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3390 { 3391 WARN_ON_ONCE(!rcu_read_lock_held()); 3392 return xa_load(&mem_cgroup_ids, id); 3393 } 3394 3395 #ifdef CONFIG_SHRINKER_DEBUG 3396 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3397 { 3398 struct cgroup *cgrp; 3399 struct cgroup_subsys_state *css; 3400 struct mem_cgroup *memcg; 3401 3402 cgrp = cgroup_get_from_id(ino); 3403 if (IS_ERR(cgrp)) 3404 return ERR_CAST(cgrp); 3405 3406 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3407 if (css) 3408 memcg = container_of(css, struct mem_cgroup, css); 3409 else 3410 memcg = ERR_PTR(-ENOENT); 3411 3412 cgroup_put(cgrp); 3413 3414 return memcg; 3415 } 3416 #endif 3417 3418 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3419 { 3420 struct mem_cgroup_per_node *pn; 3421 3422 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3423 if (!pn) 3424 return false; 3425 3426 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3427 GFP_KERNEL_ACCOUNT, node); 3428 if (!pn->lruvec_stats) 3429 goto fail; 3430 3431 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3432 GFP_KERNEL_ACCOUNT); 3433 if (!pn->lruvec_stats_percpu) 3434 goto fail; 3435 3436 lruvec_init(&pn->lruvec); 3437 pn->memcg = memcg; 3438 3439 memcg->nodeinfo[node] = pn; 3440 return true; 3441 fail: 3442 kfree(pn->lruvec_stats); 3443 kfree(pn); 3444 return false; 3445 } 3446 3447 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3448 { 3449 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3450 3451 if (!pn) 3452 return; 3453 3454 free_percpu(pn->lruvec_stats_percpu); 3455 kfree(pn->lruvec_stats); 3456 kfree(pn); 3457 } 3458 3459 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3460 { 3461 int node; 3462 3463 obj_cgroup_put(memcg->orig_objcg); 3464 3465 for_each_node(node) 3466 free_mem_cgroup_per_node_info(memcg, node); 3467 memcg1_free_events(memcg); 3468 kfree(memcg->vmstats); 3469 free_percpu(memcg->vmstats_percpu); 3470 kfree(memcg); 3471 } 3472 3473 static void mem_cgroup_free(struct mem_cgroup *memcg) 3474 { 3475 lru_gen_exit_memcg(memcg); 3476 memcg_wb_domain_exit(memcg); 3477 __mem_cgroup_free(memcg); 3478 } 3479 3480 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3481 { 3482 struct memcg_vmstats_percpu *statc, *pstatc; 3483 struct mem_cgroup *memcg; 3484 int node, cpu; 3485 int __maybe_unused i; 3486 long error; 3487 3488 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3489 if (!memcg) 3490 return ERR_PTR(-ENOMEM); 3491 3492 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3493 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3494 if (error) 3495 goto fail; 3496 error = -ENOMEM; 3497 3498 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3499 GFP_KERNEL_ACCOUNT); 3500 if (!memcg->vmstats) 3501 goto fail; 3502 3503 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3504 GFP_KERNEL_ACCOUNT); 3505 if (!memcg->vmstats_percpu) 3506 goto fail; 3507 3508 if (!memcg1_alloc_events(memcg)) 3509 goto fail; 3510 3511 for_each_possible_cpu(cpu) { 3512 if (parent) 3513 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3514 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3515 statc->parent = parent ? pstatc : NULL; 3516 statc->vmstats = memcg->vmstats; 3517 } 3518 3519 for_each_node(node) 3520 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3521 goto fail; 3522 3523 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3524 goto fail; 3525 3526 INIT_WORK(&memcg->high_work, high_work_func); 3527 vmpressure_init(&memcg->vmpressure); 3528 INIT_LIST_HEAD(&memcg->memory_peaks); 3529 INIT_LIST_HEAD(&memcg->swap_peaks); 3530 spin_lock_init(&memcg->peaks_lock); 3531 memcg->socket_pressure = jiffies; 3532 memcg1_memcg_init(memcg); 3533 memcg->kmemcg_id = -1; 3534 INIT_LIST_HEAD(&memcg->objcg_list); 3535 #ifdef CONFIG_CGROUP_WRITEBACK 3536 INIT_LIST_HEAD(&memcg->cgwb_list); 3537 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3538 memcg->cgwb_frn[i].done = 3539 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3540 #endif 3541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3542 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3543 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3544 memcg->deferred_split_queue.split_queue_len = 0; 3545 #endif 3546 lru_gen_init_memcg(memcg); 3547 return memcg; 3548 fail: 3549 mem_cgroup_id_remove(memcg); 3550 __mem_cgroup_free(memcg); 3551 return ERR_PTR(error); 3552 } 3553 3554 static struct cgroup_subsys_state * __ref 3555 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3556 { 3557 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3558 struct mem_cgroup *memcg, *old_memcg; 3559 3560 old_memcg = set_active_memcg(parent); 3561 memcg = mem_cgroup_alloc(parent); 3562 set_active_memcg(old_memcg); 3563 if (IS_ERR(memcg)) 3564 return ERR_CAST(memcg); 3565 3566 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3567 memcg1_soft_limit_reset(memcg); 3568 #ifdef CONFIG_ZSWAP 3569 memcg->zswap_max = PAGE_COUNTER_MAX; 3570 WRITE_ONCE(memcg->zswap_writeback, true); 3571 #endif 3572 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3573 if (parent) { 3574 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3575 3576 page_counter_init(&memcg->memory, &parent->memory, true); 3577 page_counter_init(&memcg->swap, &parent->swap, false); 3578 #ifdef CONFIG_MEMCG_V1 3579 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3580 page_counter_init(&memcg->kmem, &parent->kmem, false); 3581 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3582 #endif 3583 } else { 3584 init_memcg_stats(); 3585 init_memcg_events(); 3586 page_counter_init(&memcg->memory, NULL, true); 3587 page_counter_init(&memcg->swap, NULL, false); 3588 #ifdef CONFIG_MEMCG_V1 3589 page_counter_init(&memcg->kmem, NULL, false); 3590 page_counter_init(&memcg->tcpmem, NULL, false); 3591 #endif 3592 root_mem_cgroup = memcg; 3593 return &memcg->css; 3594 } 3595 3596 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3597 static_branch_inc(&memcg_sockets_enabled_key); 3598 3599 if (!cgroup_memory_nobpf) 3600 static_branch_inc(&memcg_bpf_enabled_key); 3601 3602 return &memcg->css; 3603 } 3604 3605 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3606 { 3607 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3608 3609 if (memcg_online_kmem(memcg)) 3610 goto remove_id; 3611 3612 /* 3613 * A memcg must be visible for expand_shrinker_info() 3614 * by the time the maps are allocated. So, we allocate maps 3615 * here, when for_each_mem_cgroup() can't skip it. 3616 */ 3617 if (alloc_shrinker_info(memcg)) 3618 goto offline_kmem; 3619 3620 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3621 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3622 FLUSH_TIME); 3623 lru_gen_online_memcg(memcg); 3624 3625 /* Online state pins memcg ID, memcg ID pins CSS */ 3626 refcount_set(&memcg->id.ref, 1); 3627 css_get(css); 3628 3629 /* 3630 * Ensure mem_cgroup_from_id() works once we're fully online. 3631 * 3632 * We could do this earlier and require callers to filter with 3633 * css_tryget_online(). But right now there are no users that 3634 * need earlier access, and the workingset code relies on the 3635 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3636 * publish it here at the end of onlining. This matches the 3637 * regular ID destruction during offlining. 3638 */ 3639 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3640 3641 return 0; 3642 offline_kmem: 3643 memcg_offline_kmem(memcg); 3644 remove_id: 3645 mem_cgroup_id_remove(memcg); 3646 return -ENOMEM; 3647 } 3648 3649 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3650 { 3651 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3652 3653 memcg1_css_offline(memcg); 3654 3655 page_counter_set_min(&memcg->memory, 0); 3656 page_counter_set_low(&memcg->memory, 0); 3657 3658 zswap_memcg_offline_cleanup(memcg); 3659 3660 memcg_offline_kmem(memcg); 3661 reparent_shrinker_deferred(memcg); 3662 wb_memcg_offline(memcg); 3663 lru_gen_offline_memcg(memcg); 3664 3665 drain_all_stock(memcg); 3666 3667 mem_cgroup_id_put(memcg); 3668 } 3669 3670 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3671 { 3672 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3673 3674 invalidate_reclaim_iterators(memcg); 3675 lru_gen_release_memcg(memcg); 3676 } 3677 3678 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3679 { 3680 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3681 int __maybe_unused i; 3682 3683 #ifdef CONFIG_CGROUP_WRITEBACK 3684 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3685 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3686 #endif 3687 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3688 static_branch_dec(&memcg_sockets_enabled_key); 3689 3690 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3691 static_branch_dec(&memcg_sockets_enabled_key); 3692 3693 if (!cgroup_memory_nobpf) 3694 static_branch_dec(&memcg_bpf_enabled_key); 3695 3696 vmpressure_cleanup(&memcg->vmpressure); 3697 cancel_work_sync(&memcg->high_work); 3698 memcg1_remove_from_trees(memcg); 3699 free_shrinker_info(memcg); 3700 mem_cgroup_free(memcg); 3701 } 3702 3703 /** 3704 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3705 * @css: the target css 3706 * 3707 * Reset the states of the mem_cgroup associated with @css. This is 3708 * invoked when the userland requests disabling on the default hierarchy 3709 * but the memcg is pinned through dependency. The memcg should stop 3710 * applying policies and should revert to the vanilla state as it may be 3711 * made visible again. 3712 * 3713 * The current implementation only resets the essential configurations. 3714 * This needs to be expanded to cover all the visible parts. 3715 */ 3716 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3717 { 3718 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3719 3720 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3721 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3722 #ifdef CONFIG_MEMCG_V1 3723 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3724 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3725 #endif 3726 page_counter_set_min(&memcg->memory, 0); 3727 page_counter_set_low(&memcg->memory, 0); 3728 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3729 memcg1_soft_limit_reset(memcg); 3730 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3731 memcg_wb_domain_size_changed(memcg); 3732 } 3733 3734 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3735 { 3736 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3737 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3738 struct memcg_vmstats_percpu *statc; 3739 long delta, delta_cpu, v; 3740 int i, nid; 3741 3742 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3743 3744 for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) { 3745 /* 3746 * Collect the aggregated propagation counts of groups 3747 * below us. We're in a per-cpu loop here and this is 3748 * a global counter, so the first cycle will get them. 3749 */ 3750 delta = memcg->vmstats->state_pending[i]; 3751 if (delta) 3752 memcg->vmstats->state_pending[i] = 0; 3753 3754 /* Add CPU changes on this level since the last flush */ 3755 delta_cpu = 0; 3756 v = READ_ONCE(statc->state[i]); 3757 if (v != statc->state_prev[i]) { 3758 delta_cpu = v - statc->state_prev[i]; 3759 delta += delta_cpu; 3760 statc->state_prev[i] = v; 3761 } 3762 3763 /* Aggregate counts on this level and propagate upwards */ 3764 if (delta_cpu) 3765 memcg->vmstats->state_local[i] += delta_cpu; 3766 3767 if (delta) { 3768 memcg->vmstats->state[i] += delta; 3769 if (parent) 3770 parent->vmstats->state_pending[i] += delta; 3771 } 3772 } 3773 3774 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 3775 delta = memcg->vmstats->events_pending[i]; 3776 if (delta) 3777 memcg->vmstats->events_pending[i] = 0; 3778 3779 delta_cpu = 0; 3780 v = READ_ONCE(statc->events[i]); 3781 if (v != statc->events_prev[i]) { 3782 delta_cpu = v - statc->events_prev[i]; 3783 delta += delta_cpu; 3784 statc->events_prev[i] = v; 3785 } 3786 3787 if (delta_cpu) 3788 memcg->vmstats->events_local[i] += delta_cpu; 3789 3790 if (delta) { 3791 memcg->vmstats->events[i] += delta; 3792 if (parent) 3793 parent->vmstats->events_pending[i] += delta; 3794 } 3795 } 3796 3797 for_each_node_state(nid, N_MEMORY) { 3798 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3799 struct lruvec_stats *lstats = pn->lruvec_stats; 3800 struct lruvec_stats *plstats = NULL; 3801 struct lruvec_stats_percpu *lstatc; 3802 3803 if (parent) 3804 plstats = parent->nodeinfo[nid]->lruvec_stats; 3805 3806 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 3807 3808 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) { 3809 delta = lstats->state_pending[i]; 3810 if (delta) 3811 lstats->state_pending[i] = 0; 3812 3813 delta_cpu = 0; 3814 v = READ_ONCE(lstatc->state[i]); 3815 if (v != lstatc->state_prev[i]) { 3816 delta_cpu = v - lstatc->state_prev[i]; 3817 delta += delta_cpu; 3818 lstatc->state_prev[i] = v; 3819 } 3820 3821 if (delta_cpu) 3822 lstats->state_local[i] += delta_cpu; 3823 3824 if (delta) { 3825 lstats->state[i] += delta; 3826 if (plstats) 3827 plstats->state_pending[i] += delta; 3828 } 3829 } 3830 } 3831 WRITE_ONCE(statc->stats_updates, 0); 3832 /* We are in a per-cpu loop here, only do the atomic write once */ 3833 if (atomic64_read(&memcg->vmstats->stats_updates)) 3834 atomic64_set(&memcg->vmstats->stats_updates, 0); 3835 } 3836 3837 static void mem_cgroup_fork(struct task_struct *task) 3838 { 3839 /* 3840 * Set the update flag to cause task->objcg to be initialized lazily 3841 * on the first allocation. It can be done without any synchronization 3842 * because it's always performed on the current task, so does 3843 * current_objcg_update(). 3844 */ 3845 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 3846 } 3847 3848 static void mem_cgroup_exit(struct task_struct *task) 3849 { 3850 struct obj_cgroup *objcg = task->objcg; 3851 3852 objcg = (struct obj_cgroup *) 3853 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 3854 obj_cgroup_put(objcg); 3855 3856 /* 3857 * Some kernel allocations can happen after this point, 3858 * but let's ignore them. It can be done without any synchronization 3859 * because it's always performed on the current task, so does 3860 * current_objcg_update(). 3861 */ 3862 task->objcg = NULL; 3863 } 3864 3865 #ifdef CONFIG_LRU_GEN 3866 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 3867 { 3868 struct task_struct *task; 3869 struct cgroup_subsys_state *css; 3870 3871 /* find the first leader if there is any */ 3872 cgroup_taskset_for_each_leader(task, css, tset) 3873 break; 3874 3875 if (!task) 3876 return; 3877 3878 task_lock(task); 3879 if (task->mm && READ_ONCE(task->mm->owner) == task) 3880 lru_gen_migrate_mm(task->mm); 3881 task_unlock(task); 3882 } 3883 #else 3884 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 3885 #endif /* CONFIG_LRU_GEN */ 3886 3887 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 3888 { 3889 struct task_struct *task; 3890 struct cgroup_subsys_state *css; 3891 3892 cgroup_taskset_for_each(task, css, tset) { 3893 /* atomically set the update bit */ 3894 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 3895 } 3896 } 3897 3898 static void mem_cgroup_attach(struct cgroup_taskset *tset) 3899 { 3900 mem_cgroup_lru_gen_attach(tset); 3901 mem_cgroup_kmem_attach(tset); 3902 } 3903 3904 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 3905 { 3906 if (value == PAGE_COUNTER_MAX) 3907 seq_puts(m, "max\n"); 3908 else 3909 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 3910 3911 return 0; 3912 } 3913 3914 static u64 memory_current_read(struct cgroup_subsys_state *css, 3915 struct cftype *cft) 3916 { 3917 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3918 3919 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 3920 } 3921 3922 #define OFP_PEAK_UNSET (((-1UL))) 3923 3924 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 3925 { 3926 struct cgroup_of_peak *ofp = of_peak(sf->private); 3927 u64 fd_peak = READ_ONCE(ofp->value), peak; 3928 3929 /* User wants global or local peak? */ 3930 if (fd_peak == OFP_PEAK_UNSET) 3931 peak = pc->watermark; 3932 else 3933 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 3934 3935 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 3936 return 0; 3937 } 3938 3939 static int memory_peak_show(struct seq_file *sf, void *v) 3940 { 3941 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3942 3943 return peak_show(sf, v, &memcg->memory); 3944 } 3945 3946 static int peak_open(struct kernfs_open_file *of) 3947 { 3948 struct cgroup_of_peak *ofp = of_peak(of); 3949 3950 ofp->value = OFP_PEAK_UNSET; 3951 return 0; 3952 } 3953 3954 static void peak_release(struct kernfs_open_file *of) 3955 { 3956 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3957 struct cgroup_of_peak *ofp = of_peak(of); 3958 3959 if (ofp->value == OFP_PEAK_UNSET) { 3960 /* fast path (no writes on this fd) */ 3961 return; 3962 } 3963 spin_lock(&memcg->peaks_lock); 3964 list_del(&ofp->list); 3965 spin_unlock(&memcg->peaks_lock); 3966 } 3967 3968 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 3969 loff_t off, struct page_counter *pc, 3970 struct list_head *watchers) 3971 { 3972 unsigned long usage; 3973 struct cgroup_of_peak *peer_ctx; 3974 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3975 struct cgroup_of_peak *ofp = of_peak(of); 3976 3977 spin_lock(&memcg->peaks_lock); 3978 3979 usage = page_counter_read(pc); 3980 WRITE_ONCE(pc->local_watermark, usage); 3981 3982 list_for_each_entry(peer_ctx, watchers, list) 3983 if (usage > peer_ctx->value) 3984 WRITE_ONCE(peer_ctx->value, usage); 3985 3986 /* initial write, register watcher */ 3987 if (ofp->value == -1) 3988 list_add(&ofp->list, watchers); 3989 3990 WRITE_ONCE(ofp->value, usage); 3991 spin_unlock(&memcg->peaks_lock); 3992 3993 return nbytes; 3994 } 3995 3996 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 3997 size_t nbytes, loff_t off) 3998 { 3999 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4000 4001 return peak_write(of, buf, nbytes, off, &memcg->memory, 4002 &memcg->memory_peaks); 4003 } 4004 4005 #undef OFP_PEAK_UNSET 4006 4007 static int memory_min_show(struct seq_file *m, void *v) 4008 { 4009 return seq_puts_memcg_tunable(m, 4010 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4011 } 4012 4013 static ssize_t memory_min_write(struct kernfs_open_file *of, 4014 char *buf, size_t nbytes, loff_t off) 4015 { 4016 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4017 unsigned long min; 4018 int err; 4019 4020 buf = strstrip(buf); 4021 err = page_counter_memparse(buf, "max", &min); 4022 if (err) 4023 return err; 4024 4025 page_counter_set_min(&memcg->memory, min); 4026 4027 return nbytes; 4028 } 4029 4030 static int memory_low_show(struct seq_file *m, void *v) 4031 { 4032 return seq_puts_memcg_tunable(m, 4033 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4034 } 4035 4036 static ssize_t memory_low_write(struct kernfs_open_file *of, 4037 char *buf, size_t nbytes, loff_t off) 4038 { 4039 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4040 unsigned long low; 4041 int err; 4042 4043 buf = strstrip(buf); 4044 err = page_counter_memparse(buf, "max", &low); 4045 if (err) 4046 return err; 4047 4048 page_counter_set_low(&memcg->memory, low); 4049 4050 return nbytes; 4051 } 4052 4053 static int memory_high_show(struct seq_file *m, void *v) 4054 { 4055 return seq_puts_memcg_tunable(m, 4056 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4057 } 4058 4059 static ssize_t memory_high_write(struct kernfs_open_file *of, 4060 char *buf, size_t nbytes, loff_t off) 4061 { 4062 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4063 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4064 bool drained = false; 4065 unsigned long high; 4066 int err; 4067 4068 buf = strstrip(buf); 4069 err = page_counter_memparse(buf, "max", &high); 4070 if (err) 4071 return err; 4072 4073 page_counter_set_high(&memcg->memory, high); 4074 4075 for (;;) { 4076 unsigned long nr_pages = page_counter_read(&memcg->memory); 4077 unsigned long reclaimed; 4078 4079 if (nr_pages <= high) 4080 break; 4081 4082 if (signal_pending(current)) 4083 break; 4084 4085 if (!drained) { 4086 drain_all_stock(memcg); 4087 drained = true; 4088 continue; 4089 } 4090 4091 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4092 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4093 4094 if (!reclaimed && !nr_retries--) 4095 break; 4096 } 4097 4098 memcg_wb_domain_size_changed(memcg); 4099 return nbytes; 4100 } 4101 4102 static int memory_max_show(struct seq_file *m, void *v) 4103 { 4104 return seq_puts_memcg_tunable(m, 4105 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4106 } 4107 4108 static ssize_t memory_max_write(struct kernfs_open_file *of, 4109 char *buf, size_t nbytes, loff_t off) 4110 { 4111 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4112 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4113 bool drained = false; 4114 unsigned long max; 4115 int err; 4116 4117 buf = strstrip(buf); 4118 err = page_counter_memparse(buf, "max", &max); 4119 if (err) 4120 return err; 4121 4122 xchg(&memcg->memory.max, max); 4123 4124 for (;;) { 4125 unsigned long nr_pages = page_counter_read(&memcg->memory); 4126 4127 if (nr_pages <= max) 4128 break; 4129 4130 if (signal_pending(current)) 4131 break; 4132 4133 if (!drained) { 4134 drain_all_stock(memcg); 4135 drained = true; 4136 continue; 4137 } 4138 4139 if (nr_reclaims) { 4140 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4141 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4142 nr_reclaims--; 4143 continue; 4144 } 4145 4146 memcg_memory_event(memcg, MEMCG_OOM); 4147 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4148 break; 4149 } 4150 4151 memcg_wb_domain_size_changed(memcg); 4152 return nbytes; 4153 } 4154 4155 /* 4156 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4157 * if any new events become available. 4158 */ 4159 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4160 { 4161 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4162 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4163 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4164 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4165 seq_printf(m, "oom_kill %lu\n", 4166 atomic_long_read(&events[MEMCG_OOM_KILL])); 4167 seq_printf(m, "oom_group_kill %lu\n", 4168 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4169 } 4170 4171 static int memory_events_show(struct seq_file *m, void *v) 4172 { 4173 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4174 4175 __memory_events_show(m, memcg->memory_events); 4176 return 0; 4177 } 4178 4179 static int memory_events_local_show(struct seq_file *m, void *v) 4180 { 4181 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4182 4183 __memory_events_show(m, memcg->memory_events_local); 4184 return 0; 4185 } 4186 4187 int memory_stat_show(struct seq_file *m, void *v) 4188 { 4189 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4190 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 4191 struct seq_buf s; 4192 4193 if (!buf) 4194 return -ENOMEM; 4195 seq_buf_init(&s, buf, PAGE_SIZE); 4196 memory_stat_format(memcg, &s); 4197 seq_puts(m, buf); 4198 kfree(buf); 4199 return 0; 4200 } 4201 4202 #ifdef CONFIG_NUMA 4203 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4204 int item) 4205 { 4206 return lruvec_page_state(lruvec, item) * 4207 memcg_page_state_output_unit(item); 4208 } 4209 4210 static int memory_numa_stat_show(struct seq_file *m, void *v) 4211 { 4212 int i; 4213 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4214 4215 mem_cgroup_flush_stats(memcg); 4216 4217 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4218 int nid; 4219 4220 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4221 continue; 4222 4223 seq_printf(m, "%s", memory_stats[i].name); 4224 for_each_node_state(nid, N_MEMORY) { 4225 u64 size; 4226 struct lruvec *lruvec; 4227 4228 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4229 size = lruvec_page_state_output(lruvec, 4230 memory_stats[i].idx); 4231 seq_printf(m, " N%d=%llu", nid, size); 4232 } 4233 seq_putc(m, '\n'); 4234 } 4235 4236 return 0; 4237 } 4238 #endif 4239 4240 static int memory_oom_group_show(struct seq_file *m, void *v) 4241 { 4242 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4243 4244 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4245 4246 return 0; 4247 } 4248 4249 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4250 char *buf, size_t nbytes, loff_t off) 4251 { 4252 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4253 int ret, oom_group; 4254 4255 buf = strstrip(buf); 4256 if (!buf) 4257 return -EINVAL; 4258 4259 ret = kstrtoint(buf, 0, &oom_group); 4260 if (ret) 4261 return ret; 4262 4263 if (oom_group != 0 && oom_group != 1) 4264 return -EINVAL; 4265 4266 WRITE_ONCE(memcg->oom_group, oom_group); 4267 4268 return nbytes; 4269 } 4270 4271 enum { 4272 MEMORY_RECLAIM_SWAPPINESS = 0, 4273 MEMORY_RECLAIM_NULL, 4274 }; 4275 4276 static const match_table_t tokens = { 4277 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4278 { MEMORY_RECLAIM_NULL, NULL }, 4279 }; 4280 4281 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4282 size_t nbytes, loff_t off) 4283 { 4284 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4285 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4286 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4287 int swappiness = -1; 4288 unsigned int reclaim_options; 4289 char *old_buf, *start; 4290 substring_t args[MAX_OPT_ARGS]; 4291 4292 buf = strstrip(buf); 4293 4294 old_buf = buf; 4295 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4296 if (buf == old_buf) 4297 return -EINVAL; 4298 4299 buf = strstrip(buf); 4300 4301 while ((start = strsep(&buf, " ")) != NULL) { 4302 if (!strlen(start)) 4303 continue; 4304 switch (match_token(start, tokens, args)) { 4305 case MEMORY_RECLAIM_SWAPPINESS: 4306 if (match_int(&args[0], &swappiness)) 4307 return -EINVAL; 4308 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4309 return -EINVAL; 4310 break; 4311 default: 4312 return -EINVAL; 4313 } 4314 } 4315 4316 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4317 while (nr_reclaimed < nr_to_reclaim) { 4318 /* Will converge on zero, but reclaim enforces a minimum */ 4319 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4320 unsigned long reclaimed; 4321 4322 if (signal_pending(current)) 4323 return -EINTR; 4324 4325 /* 4326 * This is the final attempt, drain percpu lru caches in the 4327 * hope of introducing more evictable pages for 4328 * try_to_free_mem_cgroup_pages(). 4329 */ 4330 if (!nr_retries) 4331 lru_add_drain_all(); 4332 4333 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4334 batch_size, GFP_KERNEL, 4335 reclaim_options, 4336 swappiness == -1 ? NULL : &swappiness); 4337 4338 if (!reclaimed && !nr_retries--) 4339 return -EAGAIN; 4340 4341 nr_reclaimed += reclaimed; 4342 } 4343 4344 return nbytes; 4345 } 4346 4347 static struct cftype memory_files[] = { 4348 { 4349 .name = "current", 4350 .flags = CFTYPE_NOT_ON_ROOT, 4351 .read_u64 = memory_current_read, 4352 }, 4353 { 4354 .name = "peak", 4355 .flags = CFTYPE_NOT_ON_ROOT, 4356 .open = peak_open, 4357 .release = peak_release, 4358 .seq_show = memory_peak_show, 4359 .write = memory_peak_write, 4360 }, 4361 { 4362 .name = "min", 4363 .flags = CFTYPE_NOT_ON_ROOT, 4364 .seq_show = memory_min_show, 4365 .write = memory_min_write, 4366 }, 4367 { 4368 .name = "low", 4369 .flags = CFTYPE_NOT_ON_ROOT, 4370 .seq_show = memory_low_show, 4371 .write = memory_low_write, 4372 }, 4373 { 4374 .name = "high", 4375 .flags = CFTYPE_NOT_ON_ROOT, 4376 .seq_show = memory_high_show, 4377 .write = memory_high_write, 4378 }, 4379 { 4380 .name = "max", 4381 .flags = CFTYPE_NOT_ON_ROOT, 4382 .seq_show = memory_max_show, 4383 .write = memory_max_write, 4384 }, 4385 { 4386 .name = "events", 4387 .flags = CFTYPE_NOT_ON_ROOT, 4388 .file_offset = offsetof(struct mem_cgroup, events_file), 4389 .seq_show = memory_events_show, 4390 }, 4391 { 4392 .name = "events.local", 4393 .flags = CFTYPE_NOT_ON_ROOT, 4394 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4395 .seq_show = memory_events_local_show, 4396 }, 4397 { 4398 .name = "stat", 4399 .seq_show = memory_stat_show, 4400 }, 4401 #ifdef CONFIG_NUMA 4402 { 4403 .name = "numa_stat", 4404 .seq_show = memory_numa_stat_show, 4405 }, 4406 #endif 4407 { 4408 .name = "oom.group", 4409 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4410 .seq_show = memory_oom_group_show, 4411 .write = memory_oom_group_write, 4412 }, 4413 { 4414 .name = "reclaim", 4415 .flags = CFTYPE_NS_DELEGATABLE, 4416 .write = memory_reclaim, 4417 }, 4418 { } /* terminate */ 4419 }; 4420 4421 struct cgroup_subsys memory_cgrp_subsys = { 4422 .css_alloc = mem_cgroup_css_alloc, 4423 .css_online = mem_cgroup_css_online, 4424 .css_offline = mem_cgroup_css_offline, 4425 .css_released = mem_cgroup_css_released, 4426 .css_free = mem_cgroup_css_free, 4427 .css_reset = mem_cgroup_css_reset, 4428 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4429 .attach = mem_cgroup_attach, 4430 .fork = mem_cgroup_fork, 4431 .exit = mem_cgroup_exit, 4432 .dfl_cftypes = memory_files, 4433 #ifdef CONFIG_MEMCG_V1 4434 .can_attach = memcg1_can_attach, 4435 .cancel_attach = memcg1_cancel_attach, 4436 .post_attach = memcg1_move_task, 4437 .legacy_cftypes = mem_cgroup_legacy_files, 4438 #endif 4439 .early_init = 0, 4440 }; 4441 4442 /** 4443 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4444 * @root: the top ancestor of the sub-tree being checked 4445 * @memcg: the memory cgroup to check 4446 * 4447 * WARNING: This function is not stateless! It can only be used as part 4448 * of a top-down tree iteration, not for isolated queries. 4449 */ 4450 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4451 struct mem_cgroup *memcg) 4452 { 4453 bool recursive_protection = 4454 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4455 4456 if (mem_cgroup_disabled()) 4457 return; 4458 4459 if (!root) 4460 root = root_mem_cgroup; 4461 4462 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4463 } 4464 4465 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4466 gfp_t gfp) 4467 { 4468 int ret; 4469 4470 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4471 if (ret) 4472 goto out; 4473 4474 mem_cgroup_commit_charge(folio, memcg); 4475 out: 4476 return ret; 4477 } 4478 4479 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4480 { 4481 struct mem_cgroup *memcg; 4482 int ret; 4483 4484 memcg = get_mem_cgroup_from_mm(mm); 4485 ret = charge_memcg(folio, memcg, gfp); 4486 css_put(&memcg->css); 4487 4488 return ret; 4489 } 4490 4491 /** 4492 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio 4493 * @memcg: memcg to charge. 4494 * @gfp: reclaim mode. 4495 * @nr_pages: number of pages to charge. 4496 * 4497 * This function is called when allocating a huge page folio to determine if 4498 * the memcg has the capacity for it. It does not commit the charge yet, 4499 * as the hugetlb folio itself has not been obtained from the hugetlb pool. 4500 * 4501 * Once we have obtained the hugetlb folio, we can call 4502 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the 4503 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect 4504 * of try_charge(). 4505 * 4506 * Returns 0 on success. Otherwise, an error code is returned. 4507 */ 4508 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 4509 long nr_pages) 4510 { 4511 /* 4512 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, 4513 * but do not attempt to commit charge later (or cancel on error) either. 4514 */ 4515 if (mem_cgroup_disabled() || !memcg || 4516 !cgroup_subsys_on_dfl(memory_cgrp_subsys) || 4517 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) 4518 return -EOPNOTSUPP; 4519 4520 if (try_charge(memcg, gfp, nr_pages)) 4521 return -ENOMEM; 4522 4523 return 0; 4524 } 4525 4526 /** 4527 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4528 * @folio: folio to charge. 4529 * @mm: mm context of the victim 4530 * @gfp: reclaim mode 4531 * @entry: swap entry for which the folio is allocated 4532 * 4533 * This function charges a folio allocated for swapin. Please call this before 4534 * adding the folio to the swapcache. 4535 * 4536 * Returns 0 on success. Otherwise, an error code is returned. 4537 */ 4538 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4539 gfp_t gfp, swp_entry_t entry) 4540 { 4541 struct mem_cgroup *memcg; 4542 unsigned short id; 4543 int ret; 4544 4545 if (mem_cgroup_disabled()) 4546 return 0; 4547 4548 id = lookup_swap_cgroup_id(entry); 4549 rcu_read_lock(); 4550 memcg = mem_cgroup_from_id(id); 4551 if (!memcg || !css_tryget_online(&memcg->css)) 4552 memcg = get_mem_cgroup_from_mm(mm); 4553 rcu_read_unlock(); 4554 4555 ret = charge_memcg(folio, memcg, gfp); 4556 4557 css_put(&memcg->css); 4558 return ret; 4559 } 4560 4561 /* 4562 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 4563 * @entry: the first swap entry for which the pages are charged 4564 * @nr_pages: number of pages which will be uncharged 4565 * 4566 * Call this function after successfully adding the charged page to swapcache. 4567 * 4568 * Note: This function assumes the page for which swap slot is being uncharged 4569 * is order 0 page. 4570 */ 4571 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 4572 { 4573 /* 4574 * Cgroup1's unified memory+swap counter has been charged with the 4575 * new swapcache page, finish the transfer by uncharging the swap 4576 * slot. The swap slot would also get uncharged when it dies, but 4577 * it can stick around indefinitely and we'd count the page twice 4578 * the entire time. 4579 * 4580 * Cgroup2 has separate resource counters for memory and swap, 4581 * so this is a non-issue here. Memory and swap charge lifetimes 4582 * correspond 1:1 to page and swap slot lifetimes: we charge the 4583 * page to memory here, and uncharge swap when the slot is freed. 4584 */ 4585 if (!mem_cgroup_disabled() && do_memsw_account()) { 4586 /* 4587 * The swap entry might not get freed for a long time, 4588 * let's not wait for it. The page already received a 4589 * memory+swap charge, drop the swap entry duplicate. 4590 */ 4591 mem_cgroup_uncharge_swap(entry, nr_pages); 4592 } 4593 } 4594 4595 struct uncharge_gather { 4596 struct mem_cgroup *memcg; 4597 unsigned long nr_memory; 4598 unsigned long pgpgout; 4599 unsigned long nr_kmem; 4600 int nid; 4601 }; 4602 4603 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4604 { 4605 memset(ug, 0, sizeof(*ug)); 4606 } 4607 4608 static void uncharge_batch(const struct uncharge_gather *ug) 4609 { 4610 if (ug->nr_memory) { 4611 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 4612 if (do_memsw_account()) 4613 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 4614 if (ug->nr_kmem) { 4615 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4616 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4617 } 4618 memcg1_oom_recover(ug->memcg); 4619 } 4620 4621 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4622 4623 /* drop reference from uncharge_folio */ 4624 css_put(&ug->memcg->css); 4625 } 4626 4627 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4628 { 4629 long nr_pages; 4630 struct mem_cgroup *memcg; 4631 struct obj_cgroup *objcg; 4632 4633 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4634 4635 /* 4636 * Nobody should be changing or seriously looking at 4637 * folio memcg or objcg at this point, we have fully 4638 * exclusive access to the folio. 4639 */ 4640 if (folio_memcg_kmem(folio)) { 4641 objcg = __folio_objcg(folio); 4642 /* 4643 * This get matches the put at the end of the function and 4644 * kmem pages do not hold memcg references anymore. 4645 */ 4646 memcg = get_mem_cgroup_from_objcg(objcg); 4647 } else { 4648 memcg = __folio_memcg(folio); 4649 } 4650 4651 if (!memcg) 4652 return; 4653 4654 if (ug->memcg != memcg) { 4655 if (ug->memcg) { 4656 uncharge_batch(ug); 4657 uncharge_gather_clear(ug); 4658 } 4659 ug->memcg = memcg; 4660 ug->nid = folio_nid(folio); 4661 4662 /* pairs with css_put in uncharge_batch */ 4663 css_get(&memcg->css); 4664 } 4665 4666 nr_pages = folio_nr_pages(folio); 4667 4668 if (folio_memcg_kmem(folio)) { 4669 ug->nr_memory += nr_pages; 4670 ug->nr_kmem += nr_pages; 4671 4672 folio->memcg_data = 0; 4673 obj_cgroup_put(objcg); 4674 } else { 4675 /* LRU pages aren't accounted at the root level */ 4676 if (!mem_cgroup_is_root(memcg)) 4677 ug->nr_memory += nr_pages; 4678 ug->pgpgout++; 4679 4680 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4681 folio->memcg_data = 0; 4682 } 4683 4684 css_put(&memcg->css); 4685 } 4686 4687 void __mem_cgroup_uncharge(struct folio *folio) 4688 { 4689 struct uncharge_gather ug; 4690 4691 /* Don't touch folio->lru of any random page, pre-check: */ 4692 if (!folio_memcg_charged(folio)) 4693 return; 4694 4695 uncharge_gather_clear(&ug); 4696 uncharge_folio(folio, &ug); 4697 uncharge_batch(&ug); 4698 } 4699 4700 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4701 { 4702 struct uncharge_gather ug; 4703 unsigned int i; 4704 4705 uncharge_gather_clear(&ug); 4706 for (i = 0; i < folios->nr; i++) 4707 uncharge_folio(folios->folios[i], &ug); 4708 if (ug.memcg) 4709 uncharge_batch(&ug); 4710 } 4711 4712 /** 4713 * mem_cgroup_replace_folio - Charge a folio's replacement. 4714 * @old: Currently circulating folio. 4715 * @new: Replacement folio. 4716 * 4717 * Charge @new as a replacement folio for @old. @old will 4718 * be uncharged upon free. 4719 * 4720 * Both folios must be locked, @new->mapping must be set up. 4721 */ 4722 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4723 { 4724 struct mem_cgroup *memcg; 4725 long nr_pages = folio_nr_pages(new); 4726 4727 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4728 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4729 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4730 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4731 4732 if (mem_cgroup_disabled()) 4733 return; 4734 4735 /* Page cache replacement: new folio already charged? */ 4736 if (folio_memcg_charged(new)) 4737 return; 4738 4739 memcg = folio_memcg(old); 4740 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4741 if (!memcg) 4742 return; 4743 4744 /* Force-charge the new page. The old one will be freed soon */ 4745 if (!mem_cgroup_is_root(memcg)) { 4746 page_counter_charge(&memcg->memory, nr_pages); 4747 if (do_memsw_account()) 4748 page_counter_charge(&memcg->memsw, nr_pages); 4749 } 4750 4751 css_get(&memcg->css); 4752 commit_charge(new, memcg); 4753 memcg1_commit_charge(new, memcg); 4754 } 4755 4756 /** 4757 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4758 * @old: Currently circulating folio. 4759 * @new: Replacement folio. 4760 * 4761 * Transfer the memcg data from the old folio to the new folio for migration. 4762 * The old folio's data info will be cleared. Note that the memory counters 4763 * will remain unchanged throughout the process. 4764 * 4765 * Both folios must be locked, @new->mapping must be set up. 4766 */ 4767 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4768 { 4769 struct mem_cgroup *memcg; 4770 4771 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4772 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4773 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4774 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4775 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4776 4777 if (mem_cgroup_disabled()) 4778 return; 4779 4780 memcg = folio_memcg(old); 4781 /* 4782 * Note that it is normal to see !memcg for a hugetlb folio. 4783 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4784 * was not selected. 4785 */ 4786 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4787 if (!memcg) 4788 return; 4789 4790 /* Transfer the charge and the css ref */ 4791 commit_charge(new, memcg); 4792 4793 /* Warning should never happen, so don't worry about refcount non-0 */ 4794 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4795 old->memcg_data = 0; 4796 } 4797 4798 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4799 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4800 4801 void mem_cgroup_sk_alloc(struct sock *sk) 4802 { 4803 struct mem_cgroup *memcg; 4804 4805 if (!mem_cgroup_sockets_enabled) 4806 return; 4807 4808 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4809 if (!in_task()) 4810 return; 4811 4812 rcu_read_lock(); 4813 memcg = mem_cgroup_from_task(current); 4814 if (mem_cgroup_is_root(memcg)) 4815 goto out; 4816 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4817 goto out; 4818 if (css_tryget(&memcg->css)) 4819 sk->sk_memcg = memcg; 4820 out: 4821 rcu_read_unlock(); 4822 } 4823 4824 void mem_cgroup_sk_free(struct sock *sk) 4825 { 4826 if (sk->sk_memcg) 4827 css_put(&sk->sk_memcg->css); 4828 } 4829 4830 /** 4831 * mem_cgroup_charge_skmem - charge socket memory 4832 * @memcg: memcg to charge 4833 * @nr_pages: number of pages to charge 4834 * @gfp_mask: reclaim mode 4835 * 4836 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4837 * @memcg's configured limit, %false if it doesn't. 4838 */ 4839 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4840 gfp_t gfp_mask) 4841 { 4842 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4843 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4844 4845 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 4846 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 4847 return true; 4848 } 4849 4850 return false; 4851 } 4852 4853 /** 4854 * mem_cgroup_uncharge_skmem - uncharge socket memory 4855 * @memcg: memcg to uncharge 4856 * @nr_pages: number of pages to uncharge 4857 */ 4858 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 4859 { 4860 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 4861 memcg1_uncharge_skmem(memcg, nr_pages); 4862 return; 4863 } 4864 4865 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 4866 4867 refill_stock(memcg, nr_pages); 4868 } 4869 4870 static int __init cgroup_memory(char *s) 4871 { 4872 char *token; 4873 4874 while ((token = strsep(&s, ",")) != NULL) { 4875 if (!*token) 4876 continue; 4877 if (!strcmp(token, "nosocket")) 4878 cgroup_memory_nosocket = true; 4879 if (!strcmp(token, "nokmem")) 4880 cgroup_memory_nokmem = true; 4881 if (!strcmp(token, "nobpf")) 4882 cgroup_memory_nobpf = true; 4883 } 4884 return 1; 4885 } 4886 __setup("cgroup.memory=", cgroup_memory); 4887 4888 /* 4889 * subsys_initcall() for memory controller. 4890 * 4891 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 4892 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 4893 * basically everything that doesn't depend on a specific mem_cgroup structure 4894 * should be initialized from here. 4895 */ 4896 static int __init mem_cgroup_init(void) 4897 { 4898 int cpu; 4899 4900 /* 4901 * Currently s32 type (can refer to struct batched_lruvec_stat) is 4902 * used for per-memcg-per-cpu caching of per-node statistics. In order 4903 * to work fine, we should make sure that the overfill threshold can't 4904 * exceed S32_MAX / PAGE_SIZE. 4905 */ 4906 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 4907 4908 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 4909 memcg_hotplug_cpu_dead); 4910 4911 for_each_possible_cpu(cpu) 4912 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 4913 drain_local_stock); 4914 4915 return 0; 4916 } 4917 subsys_initcall(mem_cgroup_init); 4918 4919 #ifdef CONFIG_SWAP 4920 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 4921 { 4922 while (!refcount_inc_not_zero(&memcg->id.ref)) { 4923 /* 4924 * The root cgroup cannot be destroyed, so it's refcount must 4925 * always be >= 1. 4926 */ 4927 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 4928 VM_BUG_ON(1); 4929 break; 4930 } 4931 memcg = parent_mem_cgroup(memcg); 4932 if (!memcg) 4933 memcg = root_mem_cgroup; 4934 } 4935 return memcg; 4936 } 4937 4938 /** 4939 * mem_cgroup_swapout - transfer a memsw charge to swap 4940 * @folio: folio whose memsw charge to transfer 4941 * @entry: swap entry to move the charge to 4942 * 4943 * Transfer the memsw charge of @folio to @entry. 4944 */ 4945 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 4946 { 4947 struct mem_cgroup *memcg, *swap_memcg; 4948 unsigned int nr_entries; 4949 unsigned short oldid; 4950 4951 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4952 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 4953 4954 if (mem_cgroup_disabled()) 4955 return; 4956 4957 if (!do_memsw_account()) 4958 return; 4959 4960 memcg = folio_memcg(folio); 4961 4962 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 4963 if (!memcg) 4964 return; 4965 4966 /* 4967 * In case the memcg owning these pages has been offlined and doesn't 4968 * have an ID allocated to it anymore, charge the closest online 4969 * ancestor for the swap instead and transfer the memory+swap charge. 4970 */ 4971 swap_memcg = mem_cgroup_id_get_online(memcg); 4972 nr_entries = folio_nr_pages(folio); 4973 /* Get references for the tail pages, too */ 4974 if (nr_entries > 1) 4975 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 4976 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 4977 nr_entries); 4978 VM_BUG_ON_FOLIO(oldid, folio); 4979 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 4980 4981 folio_unqueue_deferred_split(folio); 4982 folio->memcg_data = 0; 4983 4984 if (!mem_cgroup_is_root(memcg)) 4985 page_counter_uncharge(&memcg->memory, nr_entries); 4986 4987 if (memcg != swap_memcg) { 4988 if (!mem_cgroup_is_root(swap_memcg)) 4989 page_counter_charge(&swap_memcg->memsw, nr_entries); 4990 page_counter_uncharge(&memcg->memsw, nr_entries); 4991 } 4992 4993 memcg1_swapout(folio, memcg); 4994 css_put(&memcg->css); 4995 } 4996 4997 /** 4998 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 4999 * @folio: folio being added to swap 5000 * @entry: swap entry to charge 5001 * 5002 * Try to charge @folio's memcg for the swap space at @entry. 5003 * 5004 * Returns 0 on success, -ENOMEM on failure. 5005 */ 5006 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5007 { 5008 unsigned int nr_pages = folio_nr_pages(folio); 5009 struct page_counter *counter; 5010 struct mem_cgroup *memcg; 5011 unsigned short oldid; 5012 5013 if (do_memsw_account()) 5014 return 0; 5015 5016 memcg = folio_memcg(folio); 5017 5018 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5019 if (!memcg) 5020 return 0; 5021 5022 if (!entry.val) { 5023 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5024 return 0; 5025 } 5026 5027 memcg = mem_cgroup_id_get_online(memcg); 5028 5029 if (!mem_cgroup_is_root(memcg) && 5030 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5031 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5032 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5033 mem_cgroup_id_put(memcg); 5034 return -ENOMEM; 5035 } 5036 5037 /* Get references for the tail pages, too */ 5038 if (nr_pages > 1) 5039 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5040 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 5041 VM_BUG_ON_FOLIO(oldid, folio); 5042 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5043 5044 return 0; 5045 } 5046 5047 /** 5048 * __mem_cgroup_uncharge_swap - uncharge swap space 5049 * @entry: swap entry to uncharge 5050 * @nr_pages: the amount of swap space to uncharge 5051 */ 5052 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5053 { 5054 struct mem_cgroup *memcg; 5055 unsigned short id; 5056 5057 id = swap_cgroup_record(entry, 0, nr_pages); 5058 rcu_read_lock(); 5059 memcg = mem_cgroup_from_id(id); 5060 if (memcg) { 5061 if (!mem_cgroup_is_root(memcg)) { 5062 if (do_memsw_account()) 5063 page_counter_uncharge(&memcg->memsw, nr_pages); 5064 else 5065 page_counter_uncharge(&memcg->swap, nr_pages); 5066 } 5067 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5068 mem_cgroup_id_put_many(memcg, nr_pages); 5069 } 5070 rcu_read_unlock(); 5071 } 5072 5073 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5074 { 5075 long nr_swap_pages = get_nr_swap_pages(); 5076 5077 if (mem_cgroup_disabled() || do_memsw_account()) 5078 return nr_swap_pages; 5079 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5080 nr_swap_pages = min_t(long, nr_swap_pages, 5081 READ_ONCE(memcg->swap.max) - 5082 page_counter_read(&memcg->swap)); 5083 return nr_swap_pages; 5084 } 5085 5086 bool mem_cgroup_swap_full(struct folio *folio) 5087 { 5088 struct mem_cgroup *memcg; 5089 5090 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5091 5092 if (vm_swap_full()) 5093 return true; 5094 if (do_memsw_account()) 5095 return false; 5096 5097 memcg = folio_memcg(folio); 5098 if (!memcg) 5099 return false; 5100 5101 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5102 unsigned long usage = page_counter_read(&memcg->swap); 5103 5104 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5105 usage * 2 >= READ_ONCE(memcg->swap.max)) 5106 return true; 5107 } 5108 5109 return false; 5110 } 5111 5112 static int __init setup_swap_account(char *s) 5113 { 5114 bool res; 5115 5116 if (!kstrtobool(s, &res) && !res) 5117 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5118 "in favor of configuring swap control via cgroupfs. " 5119 "Please report your usecase to linux-mm@kvack.org if you " 5120 "depend on this functionality.\n"); 5121 return 1; 5122 } 5123 __setup("swapaccount=", setup_swap_account); 5124 5125 static u64 swap_current_read(struct cgroup_subsys_state *css, 5126 struct cftype *cft) 5127 { 5128 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5129 5130 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5131 } 5132 5133 static int swap_peak_show(struct seq_file *sf, void *v) 5134 { 5135 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5136 5137 return peak_show(sf, v, &memcg->swap); 5138 } 5139 5140 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5141 size_t nbytes, loff_t off) 5142 { 5143 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5144 5145 return peak_write(of, buf, nbytes, off, &memcg->swap, 5146 &memcg->swap_peaks); 5147 } 5148 5149 static int swap_high_show(struct seq_file *m, void *v) 5150 { 5151 return seq_puts_memcg_tunable(m, 5152 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5153 } 5154 5155 static ssize_t swap_high_write(struct kernfs_open_file *of, 5156 char *buf, size_t nbytes, loff_t off) 5157 { 5158 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5159 unsigned long high; 5160 int err; 5161 5162 buf = strstrip(buf); 5163 err = page_counter_memparse(buf, "max", &high); 5164 if (err) 5165 return err; 5166 5167 page_counter_set_high(&memcg->swap, high); 5168 5169 return nbytes; 5170 } 5171 5172 static int swap_max_show(struct seq_file *m, void *v) 5173 { 5174 return seq_puts_memcg_tunable(m, 5175 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5176 } 5177 5178 static ssize_t swap_max_write(struct kernfs_open_file *of, 5179 char *buf, size_t nbytes, loff_t off) 5180 { 5181 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5182 unsigned long max; 5183 int err; 5184 5185 buf = strstrip(buf); 5186 err = page_counter_memparse(buf, "max", &max); 5187 if (err) 5188 return err; 5189 5190 xchg(&memcg->swap.max, max); 5191 5192 return nbytes; 5193 } 5194 5195 static int swap_events_show(struct seq_file *m, void *v) 5196 { 5197 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5198 5199 seq_printf(m, "high %lu\n", 5200 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5201 seq_printf(m, "max %lu\n", 5202 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5203 seq_printf(m, "fail %lu\n", 5204 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5205 5206 return 0; 5207 } 5208 5209 static struct cftype swap_files[] = { 5210 { 5211 .name = "swap.current", 5212 .flags = CFTYPE_NOT_ON_ROOT, 5213 .read_u64 = swap_current_read, 5214 }, 5215 { 5216 .name = "swap.high", 5217 .flags = CFTYPE_NOT_ON_ROOT, 5218 .seq_show = swap_high_show, 5219 .write = swap_high_write, 5220 }, 5221 { 5222 .name = "swap.max", 5223 .flags = CFTYPE_NOT_ON_ROOT, 5224 .seq_show = swap_max_show, 5225 .write = swap_max_write, 5226 }, 5227 { 5228 .name = "swap.peak", 5229 .flags = CFTYPE_NOT_ON_ROOT, 5230 .open = peak_open, 5231 .release = peak_release, 5232 .seq_show = swap_peak_show, 5233 .write = swap_peak_write, 5234 }, 5235 { 5236 .name = "swap.events", 5237 .flags = CFTYPE_NOT_ON_ROOT, 5238 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5239 .seq_show = swap_events_show, 5240 }, 5241 { } /* terminate */ 5242 }; 5243 5244 #ifdef CONFIG_ZSWAP 5245 /** 5246 * obj_cgroup_may_zswap - check if this cgroup can zswap 5247 * @objcg: the object cgroup 5248 * 5249 * Check if the hierarchical zswap limit has been reached. 5250 * 5251 * This doesn't check for specific headroom, and it is not atomic 5252 * either. But with zswap, the size of the allocation is only known 5253 * once compression has occurred, and this optimistic pre-check avoids 5254 * spending cycles on compression when there is already no room left 5255 * or zswap is disabled altogether somewhere in the hierarchy. 5256 */ 5257 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5258 { 5259 struct mem_cgroup *memcg, *original_memcg; 5260 bool ret = true; 5261 5262 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5263 return true; 5264 5265 original_memcg = get_mem_cgroup_from_objcg(objcg); 5266 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5267 memcg = parent_mem_cgroup(memcg)) { 5268 unsigned long max = READ_ONCE(memcg->zswap_max); 5269 unsigned long pages; 5270 5271 if (max == PAGE_COUNTER_MAX) 5272 continue; 5273 if (max == 0) { 5274 ret = false; 5275 break; 5276 } 5277 5278 /* 5279 * mem_cgroup_flush_stats() ignores small changes. Use 5280 * do_flush_stats() directly to get accurate stats for charging. 5281 */ 5282 do_flush_stats(memcg); 5283 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5284 if (pages < max) 5285 continue; 5286 ret = false; 5287 break; 5288 } 5289 mem_cgroup_put(original_memcg); 5290 return ret; 5291 } 5292 5293 /** 5294 * obj_cgroup_charge_zswap - charge compression backend memory 5295 * @objcg: the object cgroup 5296 * @size: size of compressed object 5297 * 5298 * This forces the charge after obj_cgroup_may_zswap() allowed 5299 * compression and storage in zwap for this cgroup to go ahead. 5300 */ 5301 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5302 { 5303 struct mem_cgroup *memcg; 5304 5305 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5306 return; 5307 5308 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5309 5310 /* PF_MEMALLOC context, charging must succeed */ 5311 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5312 VM_WARN_ON_ONCE(1); 5313 5314 rcu_read_lock(); 5315 memcg = obj_cgroup_memcg(objcg); 5316 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5317 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5318 rcu_read_unlock(); 5319 } 5320 5321 /** 5322 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5323 * @objcg: the object cgroup 5324 * @size: size of compressed object 5325 * 5326 * Uncharges zswap memory on page in. 5327 */ 5328 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5329 { 5330 struct mem_cgroup *memcg; 5331 5332 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5333 return; 5334 5335 obj_cgroup_uncharge(objcg, size); 5336 5337 rcu_read_lock(); 5338 memcg = obj_cgroup_memcg(objcg); 5339 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5340 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5341 rcu_read_unlock(); 5342 } 5343 5344 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5345 { 5346 /* if zswap is disabled, do not block pages going to the swapping device */ 5347 if (!zswap_is_enabled()) 5348 return true; 5349 5350 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5351 if (!READ_ONCE(memcg->zswap_writeback)) 5352 return false; 5353 5354 return true; 5355 } 5356 5357 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5358 struct cftype *cft) 5359 { 5360 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5361 5362 mem_cgroup_flush_stats(memcg); 5363 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5364 } 5365 5366 static int zswap_max_show(struct seq_file *m, void *v) 5367 { 5368 return seq_puts_memcg_tunable(m, 5369 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5370 } 5371 5372 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5373 char *buf, size_t nbytes, loff_t off) 5374 { 5375 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5376 unsigned long max; 5377 int err; 5378 5379 buf = strstrip(buf); 5380 err = page_counter_memparse(buf, "max", &max); 5381 if (err) 5382 return err; 5383 5384 xchg(&memcg->zswap_max, max); 5385 5386 return nbytes; 5387 } 5388 5389 static int zswap_writeback_show(struct seq_file *m, void *v) 5390 { 5391 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5392 5393 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5394 return 0; 5395 } 5396 5397 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5398 char *buf, size_t nbytes, loff_t off) 5399 { 5400 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5401 int zswap_writeback; 5402 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5403 5404 if (parse_ret) 5405 return parse_ret; 5406 5407 if (zswap_writeback != 0 && zswap_writeback != 1) 5408 return -EINVAL; 5409 5410 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5411 return nbytes; 5412 } 5413 5414 static struct cftype zswap_files[] = { 5415 { 5416 .name = "zswap.current", 5417 .flags = CFTYPE_NOT_ON_ROOT, 5418 .read_u64 = zswap_current_read, 5419 }, 5420 { 5421 .name = "zswap.max", 5422 .flags = CFTYPE_NOT_ON_ROOT, 5423 .seq_show = zswap_max_show, 5424 .write = zswap_max_write, 5425 }, 5426 { 5427 .name = "zswap.writeback", 5428 .seq_show = zswap_writeback_show, 5429 .write = zswap_writeback_write, 5430 }, 5431 { } /* terminate */ 5432 }; 5433 #endif /* CONFIG_ZSWAP */ 5434 5435 static int __init mem_cgroup_swap_init(void) 5436 { 5437 if (mem_cgroup_disabled()) 5438 return 0; 5439 5440 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5441 #ifdef CONFIG_MEMCG_V1 5442 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5443 #endif 5444 #ifdef CONFIG_ZSWAP 5445 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5446 #endif 5447 return 0; 5448 } 5449 subsys_initcall(mem_cgroup_swap_init); 5450 5451 #endif /* CONFIG_SWAP */ 5452