xref: /linux/mm/memcontrol.c (revision 544029862cbb1d7903e19f2e58f48d4884e1201b)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 #define MEM_CGROUP_RECLAIM_RETRIES	5
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account		0
95 #endif
96 
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102 
103 static const char *const mem_cgroup_lru_names[] = {
104 	"inactive_anon",
105 	"active_anon",
106 	"inactive_file",
107 	"active_file",
108 	"unevictable",
109 };
110 
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET	1024
114 
115 /*
116  * Cgroups above their limits are maintained in a RB-Tree, independent of
117  * their hierarchy representation
118  */
119 
120 struct mem_cgroup_tree_per_node {
121 	struct rb_root rb_root;
122 	struct rb_node *rb_rightmost;
123 	spinlock_t lock;
124 };
125 
126 struct mem_cgroup_tree {
127 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128 };
129 
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131 
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 	struct list_head list;
135 	struct eventfd_ctx *eventfd;
136 };
137 
138 /*
139  * cgroup_event represents events which userspace want to receive.
140  */
141 struct mem_cgroup_event {
142 	/*
143 	 * memcg which the event belongs to.
144 	 */
145 	struct mem_cgroup *memcg;
146 	/*
147 	 * eventfd to signal userspace about the event.
148 	 */
149 	struct eventfd_ctx *eventfd;
150 	/*
151 	 * Each of these stored in a list by the cgroup.
152 	 */
153 	struct list_head list;
154 	/*
155 	 * register_event() callback will be used to add new userspace
156 	 * waiter for changes related to this event.  Use eventfd_signal()
157 	 * on eventfd to send notification to userspace.
158 	 */
159 	int (*register_event)(struct mem_cgroup *memcg,
160 			      struct eventfd_ctx *eventfd, const char *args);
161 	/*
162 	 * unregister_event() callback will be called when userspace closes
163 	 * the eventfd or on cgroup removing.  This callback must be set,
164 	 * if you want provide notification functionality.
165 	 */
166 	void (*unregister_event)(struct mem_cgroup *memcg,
167 				 struct eventfd_ctx *eventfd);
168 	/*
169 	 * All fields below needed to unregister event when
170 	 * userspace closes eventfd.
171 	 */
172 	poll_table pt;
173 	wait_queue_head_t *wqh;
174 	wait_queue_entry_t wait;
175 	struct work_struct remove;
176 };
177 
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180 
181 /* Stuffs for move charges at task migration. */
182 /*
183  * Types of charges to be moved.
184  */
185 #define MOVE_ANON	0x1U
186 #define MOVE_FILE	0x2U
187 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188 
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 	spinlock_t	  lock; /* for from, to */
192 	struct mm_struct  *mm;
193 	struct mem_cgroup *from;
194 	struct mem_cgroup *to;
195 	unsigned long flags;
196 	unsigned long precharge;
197 	unsigned long moved_charge;
198 	unsigned long moved_swap;
199 	struct task_struct *moving_task;	/* a task moving charges */
200 	wait_queue_head_t waitq;		/* a waitq for other context */
201 } mc = {
202 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 };
205 
206 /*
207  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208  * limit reclaim to prevent infinite loops, if they ever occur.
209  */
210 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212 
213 enum charge_type {
214 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 	MEM_CGROUP_CHARGE_TYPE_ANON,
216 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
217 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 	NR_CHARGE_TYPE,
219 };
220 
221 /* for encoding cft->private value on file */
222 enum res_type {
223 	_MEM,
224 	_MEMSWAP,
225 	_OOM_TYPE,
226 	_KMEM,
227 	_TCP,
228 };
229 
230 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
231 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val)	((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL		(0)
235 
236 /*
237  * Iteration constructs for visiting all cgroups (under a tree).  If
238  * loops are exited prematurely (break), mem_cgroup_iter_break() must
239  * be used for reference counting.
240  */
241 #define for_each_mem_cgroup_tree(iter, root)		\
242 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
243 	     iter != NULL;				\
244 	     iter = mem_cgroup_iter(root, iter, NULL))
245 
246 #define for_each_mem_cgroup(iter)			\
247 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
248 	     iter != NULL;				\
249 	     iter = mem_cgroup_iter(NULL, iter, NULL))
250 
251 static inline bool should_force_charge(void)
252 {
253 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
254 		(current->flags & PF_EXITING);
255 }
256 
257 /* Some nice accessors for the vmpressure. */
258 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259 {
260 	if (!memcg)
261 		memcg = root_mem_cgroup;
262 	return &memcg->vmpressure;
263 }
264 
265 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266 {
267 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268 }
269 
270 #ifdef CONFIG_MEMCG_KMEM
271 /*
272  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
273  * The main reason for not using cgroup id for this:
274  *  this works better in sparse environments, where we have a lot of memcgs,
275  *  but only a few kmem-limited. Or also, if we have, for instance, 200
276  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
277  *  200 entry array for that.
278  *
279  * The current size of the caches array is stored in memcg_nr_cache_ids. It
280  * will double each time we have to increase it.
281  */
282 static DEFINE_IDA(memcg_cache_ida);
283 int memcg_nr_cache_ids;
284 
285 /* Protects memcg_nr_cache_ids */
286 static DECLARE_RWSEM(memcg_cache_ids_sem);
287 
288 void memcg_get_cache_ids(void)
289 {
290 	down_read(&memcg_cache_ids_sem);
291 }
292 
293 void memcg_put_cache_ids(void)
294 {
295 	up_read(&memcg_cache_ids_sem);
296 }
297 
298 /*
299  * MIN_SIZE is different than 1, because we would like to avoid going through
300  * the alloc/free process all the time. In a small machine, 4 kmem-limited
301  * cgroups is a reasonable guess. In the future, it could be a parameter or
302  * tunable, but that is strictly not necessary.
303  *
304  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
305  * this constant directly from cgroup, but it is understandable that this is
306  * better kept as an internal representation in cgroup.c. In any case, the
307  * cgrp_id space is not getting any smaller, and we don't have to necessarily
308  * increase ours as well if it increases.
309  */
310 #define MEMCG_CACHES_MIN_SIZE 4
311 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312 
313 /*
314  * A lot of the calls to the cache allocation functions are expected to be
315  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
316  * conditional to this static branch, we'll have to allow modules that does
317  * kmem_cache_alloc and the such to see this symbol as well
318  */
319 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
320 EXPORT_SYMBOL(memcg_kmem_enabled_key);
321 
322 struct workqueue_struct *memcg_kmem_cache_wq;
323 
324 static int memcg_shrinker_map_size;
325 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
326 
327 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
328 {
329 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
330 }
331 
332 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
333 					 int size, int old_size)
334 {
335 	struct memcg_shrinker_map *new, *old;
336 	int nid;
337 
338 	lockdep_assert_held(&memcg_shrinker_map_mutex);
339 
340 	for_each_node(nid) {
341 		old = rcu_dereference_protected(
342 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
343 		/* Not yet online memcg */
344 		if (!old)
345 			return 0;
346 
347 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
348 		if (!new)
349 			return -ENOMEM;
350 
351 		/* Set all old bits, clear all new bits */
352 		memset(new->map, (int)0xff, old_size);
353 		memset((void *)new->map + old_size, 0, size - old_size);
354 
355 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
356 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
357 	}
358 
359 	return 0;
360 }
361 
362 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
363 {
364 	struct mem_cgroup_per_node *pn;
365 	struct memcg_shrinker_map *map;
366 	int nid;
367 
368 	if (mem_cgroup_is_root(memcg))
369 		return;
370 
371 	for_each_node(nid) {
372 		pn = mem_cgroup_nodeinfo(memcg, nid);
373 		map = rcu_dereference_protected(pn->shrinker_map, true);
374 		if (map)
375 			kvfree(map);
376 		rcu_assign_pointer(pn->shrinker_map, NULL);
377 	}
378 }
379 
380 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
381 {
382 	struct memcg_shrinker_map *map;
383 	int nid, size, ret = 0;
384 
385 	if (mem_cgroup_is_root(memcg))
386 		return 0;
387 
388 	mutex_lock(&memcg_shrinker_map_mutex);
389 	size = memcg_shrinker_map_size;
390 	for_each_node(nid) {
391 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
392 		if (!map) {
393 			memcg_free_shrinker_maps(memcg);
394 			ret = -ENOMEM;
395 			break;
396 		}
397 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
398 	}
399 	mutex_unlock(&memcg_shrinker_map_mutex);
400 
401 	return ret;
402 }
403 
404 int memcg_expand_shrinker_maps(int new_id)
405 {
406 	int size, old_size, ret = 0;
407 	struct mem_cgroup *memcg;
408 
409 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
410 	old_size = memcg_shrinker_map_size;
411 	if (size <= old_size)
412 		return 0;
413 
414 	mutex_lock(&memcg_shrinker_map_mutex);
415 	if (!root_mem_cgroup)
416 		goto unlock;
417 
418 	for_each_mem_cgroup(memcg) {
419 		if (mem_cgroup_is_root(memcg))
420 			continue;
421 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
422 		if (ret)
423 			goto unlock;
424 	}
425 unlock:
426 	if (!ret)
427 		memcg_shrinker_map_size = size;
428 	mutex_unlock(&memcg_shrinker_map_mutex);
429 	return ret;
430 }
431 
432 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
433 {
434 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
435 		struct memcg_shrinker_map *map;
436 
437 		rcu_read_lock();
438 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
439 		/* Pairs with smp mb in shrink_slab() */
440 		smp_mb__before_atomic();
441 		set_bit(shrinker_id, map->map);
442 		rcu_read_unlock();
443 	}
444 }
445 
446 #else /* CONFIG_MEMCG_KMEM */
447 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
448 {
449 	return 0;
450 }
451 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
452 #endif /* CONFIG_MEMCG_KMEM */
453 
454 /**
455  * mem_cgroup_css_from_page - css of the memcg associated with a page
456  * @page: page of interest
457  *
458  * If memcg is bound to the default hierarchy, css of the memcg associated
459  * with @page is returned.  The returned css remains associated with @page
460  * until it is released.
461  *
462  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
463  * is returned.
464  */
465 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
466 {
467 	struct mem_cgroup *memcg;
468 
469 	memcg = page->mem_cgroup;
470 
471 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
472 		memcg = root_mem_cgroup;
473 
474 	return &memcg->css;
475 }
476 
477 /**
478  * page_cgroup_ino - return inode number of the memcg a page is charged to
479  * @page: the page
480  *
481  * Look up the closest online ancestor of the memory cgroup @page is charged to
482  * and return its inode number or 0 if @page is not charged to any cgroup. It
483  * is safe to call this function without holding a reference to @page.
484  *
485  * Note, this function is inherently racy, because there is nothing to prevent
486  * the cgroup inode from getting torn down and potentially reallocated a moment
487  * after page_cgroup_ino() returns, so it only should be used by callers that
488  * do not care (such as procfs interfaces).
489  */
490 ino_t page_cgroup_ino(struct page *page)
491 {
492 	struct mem_cgroup *memcg;
493 	unsigned long ino = 0;
494 
495 	rcu_read_lock();
496 	memcg = READ_ONCE(page->mem_cgroup);
497 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
498 		memcg = parent_mem_cgroup(memcg);
499 	if (memcg)
500 		ino = cgroup_ino(memcg->css.cgroup);
501 	rcu_read_unlock();
502 	return ino;
503 }
504 
505 static struct mem_cgroup_per_node *
506 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
507 {
508 	int nid = page_to_nid(page);
509 
510 	return memcg->nodeinfo[nid];
511 }
512 
513 static struct mem_cgroup_tree_per_node *
514 soft_limit_tree_node(int nid)
515 {
516 	return soft_limit_tree.rb_tree_per_node[nid];
517 }
518 
519 static struct mem_cgroup_tree_per_node *
520 soft_limit_tree_from_page(struct page *page)
521 {
522 	int nid = page_to_nid(page);
523 
524 	return soft_limit_tree.rb_tree_per_node[nid];
525 }
526 
527 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
528 					 struct mem_cgroup_tree_per_node *mctz,
529 					 unsigned long new_usage_in_excess)
530 {
531 	struct rb_node **p = &mctz->rb_root.rb_node;
532 	struct rb_node *parent = NULL;
533 	struct mem_cgroup_per_node *mz_node;
534 	bool rightmost = true;
535 
536 	if (mz->on_tree)
537 		return;
538 
539 	mz->usage_in_excess = new_usage_in_excess;
540 	if (!mz->usage_in_excess)
541 		return;
542 	while (*p) {
543 		parent = *p;
544 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
545 					tree_node);
546 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
547 			p = &(*p)->rb_left;
548 			rightmost = false;
549 		}
550 
551 		/*
552 		 * We can't avoid mem cgroups that are over their soft
553 		 * limit by the same amount
554 		 */
555 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
556 			p = &(*p)->rb_right;
557 	}
558 
559 	if (rightmost)
560 		mctz->rb_rightmost = &mz->tree_node;
561 
562 	rb_link_node(&mz->tree_node, parent, p);
563 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
564 	mz->on_tree = true;
565 }
566 
567 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 					 struct mem_cgroup_tree_per_node *mctz)
569 {
570 	if (!mz->on_tree)
571 		return;
572 
573 	if (&mz->tree_node == mctz->rb_rightmost)
574 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
575 
576 	rb_erase(&mz->tree_node, &mctz->rb_root);
577 	mz->on_tree = false;
578 }
579 
580 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
581 				       struct mem_cgroup_tree_per_node *mctz)
582 {
583 	unsigned long flags;
584 
585 	spin_lock_irqsave(&mctz->lock, flags);
586 	__mem_cgroup_remove_exceeded(mz, mctz);
587 	spin_unlock_irqrestore(&mctz->lock, flags);
588 }
589 
590 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
591 {
592 	unsigned long nr_pages = page_counter_read(&memcg->memory);
593 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
594 	unsigned long excess = 0;
595 
596 	if (nr_pages > soft_limit)
597 		excess = nr_pages - soft_limit;
598 
599 	return excess;
600 }
601 
602 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
603 {
604 	unsigned long excess;
605 	struct mem_cgroup_per_node *mz;
606 	struct mem_cgroup_tree_per_node *mctz;
607 
608 	mctz = soft_limit_tree_from_page(page);
609 	if (!mctz)
610 		return;
611 	/*
612 	 * Necessary to update all ancestors when hierarchy is used.
613 	 * because their event counter is not touched.
614 	 */
615 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
616 		mz = mem_cgroup_page_nodeinfo(memcg, page);
617 		excess = soft_limit_excess(memcg);
618 		/*
619 		 * We have to update the tree if mz is on RB-tree or
620 		 * mem is over its softlimit.
621 		 */
622 		if (excess || mz->on_tree) {
623 			unsigned long flags;
624 
625 			spin_lock_irqsave(&mctz->lock, flags);
626 			/* if on-tree, remove it */
627 			if (mz->on_tree)
628 				__mem_cgroup_remove_exceeded(mz, mctz);
629 			/*
630 			 * Insert again. mz->usage_in_excess will be updated.
631 			 * If excess is 0, no tree ops.
632 			 */
633 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
634 			spin_unlock_irqrestore(&mctz->lock, flags);
635 		}
636 	}
637 }
638 
639 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
640 {
641 	struct mem_cgroup_tree_per_node *mctz;
642 	struct mem_cgroup_per_node *mz;
643 	int nid;
644 
645 	for_each_node(nid) {
646 		mz = mem_cgroup_nodeinfo(memcg, nid);
647 		mctz = soft_limit_tree_node(nid);
648 		if (mctz)
649 			mem_cgroup_remove_exceeded(mz, mctz);
650 	}
651 }
652 
653 static struct mem_cgroup_per_node *
654 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
655 {
656 	struct mem_cgroup_per_node *mz;
657 
658 retry:
659 	mz = NULL;
660 	if (!mctz->rb_rightmost)
661 		goto done;		/* Nothing to reclaim from */
662 
663 	mz = rb_entry(mctz->rb_rightmost,
664 		      struct mem_cgroup_per_node, tree_node);
665 	/*
666 	 * Remove the node now but someone else can add it back,
667 	 * we will to add it back at the end of reclaim to its correct
668 	 * position in the tree.
669 	 */
670 	__mem_cgroup_remove_exceeded(mz, mctz);
671 	if (!soft_limit_excess(mz->memcg) ||
672 	    !css_tryget_online(&mz->memcg->css))
673 		goto retry;
674 done:
675 	return mz;
676 }
677 
678 static struct mem_cgroup_per_node *
679 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
680 {
681 	struct mem_cgroup_per_node *mz;
682 
683 	spin_lock_irq(&mctz->lock);
684 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
685 	spin_unlock_irq(&mctz->lock);
686 	return mz;
687 }
688 
689 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
690 				      int event)
691 {
692 	return atomic_long_read(&memcg->events[event]);
693 }
694 
695 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
696 					 struct page *page,
697 					 bool compound, int nr_pages)
698 {
699 	/*
700 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
701 	 * counted as CACHE even if it's on ANON LRU.
702 	 */
703 	if (PageAnon(page))
704 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
705 	else {
706 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
707 		if (PageSwapBacked(page))
708 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
709 	}
710 
711 	if (compound) {
712 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
713 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
714 	}
715 
716 	/* pagein of a big page is an event. So, ignore page size */
717 	if (nr_pages > 0)
718 		__count_memcg_events(memcg, PGPGIN, 1);
719 	else {
720 		__count_memcg_events(memcg, PGPGOUT, 1);
721 		nr_pages = -nr_pages; /* for event */
722 	}
723 
724 	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
725 }
726 
727 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 					   int nid, unsigned int lru_mask)
729 {
730 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
731 	unsigned long nr = 0;
732 	enum lru_list lru;
733 
734 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
735 
736 	for_each_lru(lru) {
737 		if (!(BIT(lru) & lru_mask))
738 			continue;
739 		nr += mem_cgroup_get_lru_size(lruvec, lru);
740 	}
741 	return nr;
742 }
743 
744 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
745 			unsigned int lru_mask)
746 {
747 	unsigned long nr = 0;
748 	int nid;
749 
750 	for_each_node_state(nid, N_MEMORY)
751 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
752 	return nr;
753 }
754 
755 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
756 				       enum mem_cgroup_events_target target)
757 {
758 	unsigned long val, next;
759 
760 	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
761 	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
762 	/* from time_after() in jiffies.h */
763 	if ((long)(next - val) < 0) {
764 		switch (target) {
765 		case MEM_CGROUP_TARGET_THRESH:
766 			next = val + THRESHOLDS_EVENTS_TARGET;
767 			break;
768 		case MEM_CGROUP_TARGET_SOFTLIMIT:
769 			next = val + SOFTLIMIT_EVENTS_TARGET;
770 			break;
771 		case MEM_CGROUP_TARGET_NUMAINFO:
772 			next = val + NUMAINFO_EVENTS_TARGET;
773 			break;
774 		default:
775 			break;
776 		}
777 		__this_cpu_write(memcg->stat_cpu->targets[target], next);
778 		return true;
779 	}
780 	return false;
781 }
782 
783 /*
784  * Check events in order.
785  *
786  */
787 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
788 {
789 	/* threshold event is triggered in finer grain than soft limit */
790 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
791 						MEM_CGROUP_TARGET_THRESH))) {
792 		bool do_softlimit;
793 		bool do_numainfo __maybe_unused;
794 
795 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
796 						MEM_CGROUP_TARGET_SOFTLIMIT);
797 #if MAX_NUMNODES > 1
798 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
799 						MEM_CGROUP_TARGET_NUMAINFO);
800 #endif
801 		mem_cgroup_threshold(memcg);
802 		if (unlikely(do_softlimit))
803 			mem_cgroup_update_tree(memcg, page);
804 #if MAX_NUMNODES > 1
805 		if (unlikely(do_numainfo))
806 			atomic_inc(&memcg->numainfo_events);
807 #endif
808 	}
809 }
810 
811 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
812 {
813 	/*
814 	 * mm_update_next_owner() may clear mm->owner to NULL
815 	 * if it races with swapoff, page migration, etc.
816 	 * So this can be called with p == NULL.
817 	 */
818 	if (unlikely(!p))
819 		return NULL;
820 
821 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
822 }
823 EXPORT_SYMBOL(mem_cgroup_from_task);
824 
825 /**
826  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
827  * @mm: mm from which memcg should be extracted. It can be NULL.
828  *
829  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
830  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
831  * returned.
832  */
833 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
834 {
835 	struct mem_cgroup *memcg;
836 
837 	if (mem_cgroup_disabled())
838 		return NULL;
839 
840 	rcu_read_lock();
841 	do {
842 		/*
843 		 * Page cache insertions can happen withou an
844 		 * actual mm context, e.g. during disk probing
845 		 * on boot, loopback IO, acct() writes etc.
846 		 */
847 		if (unlikely(!mm))
848 			memcg = root_mem_cgroup;
849 		else {
850 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
851 			if (unlikely(!memcg))
852 				memcg = root_mem_cgroup;
853 		}
854 	} while (!css_tryget_online(&memcg->css));
855 	rcu_read_unlock();
856 	return memcg;
857 }
858 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
859 
860 /**
861  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
862  * @page: page from which memcg should be extracted.
863  *
864  * Obtain a reference on page->memcg and returns it if successful. Otherwise
865  * root_mem_cgroup is returned.
866  */
867 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
868 {
869 	struct mem_cgroup *memcg = page->mem_cgroup;
870 
871 	if (mem_cgroup_disabled())
872 		return NULL;
873 
874 	rcu_read_lock();
875 	if (!memcg || !css_tryget_online(&memcg->css))
876 		memcg = root_mem_cgroup;
877 	rcu_read_unlock();
878 	return memcg;
879 }
880 EXPORT_SYMBOL(get_mem_cgroup_from_page);
881 
882 /**
883  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
884  */
885 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
886 {
887 	if (unlikely(current->active_memcg)) {
888 		struct mem_cgroup *memcg = root_mem_cgroup;
889 
890 		rcu_read_lock();
891 		if (css_tryget_online(&current->active_memcg->css))
892 			memcg = current->active_memcg;
893 		rcu_read_unlock();
894 		return memcg;
895 	}
896 	return get_mem_cgroup_from_mm(current->mm);
897 }
898 
899 /**
900  * mem_cgroup_iter - iterate over memory cgroup hierarchy
901  * @root: hierarchy root
902  * @prev: previously returned memcg, NULL on first invocation
903  * @reclaim: cookie for shared reclaim walks, NULL for full walks
904  *
905  * Returns references to children of the hierarchy below @root, or
906  * @root itself, or %NULL after a full round-trip.
907  *
908  * Caller must pass the return value in @prev on subsequent
909  * invocations for reference counting, or use mem_cgroup_iter_break()
910  * to cancel a hierarchy walk before the round-trip is complete.
911  *
912  * Reclaimers can specify a node and a priority level in @reclaim to
913  * divide up the memcgs in the hierarchy among all concurrent
914  * reclaimers operating on the same node and priority.
915  */
916 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
917 				   struct mem_cgroup *prev,
918 				   struct mem_cgroup_reclaim_cookie *reclaim)
919 {
920 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
921 	struct cgroup_subsys_state *css = NULL;
922 	struct mem_cgroup *memcg = NULL;
923 	struct mem_cgroup *pos = NULL;
924 
925 	if (mem_cgroup_disabled())
926 		return NULL;
927 
928 	if (!root)
929 		root = root_mem_cgroup;
930 
931 	if (prev && !reclaim)
932 		pos = prev;
933 
934 	if (!root->use_hierarchy && root != root_mem_cgroup) {
935 		if (prev)
936 			goto out;
937 		return root;
938 	}
939 
940 	rcu_read_lock();
941 
942 	if (reclaim) {
943 		struct mem_cgroup_per_node *mz;
944 
945 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
946 		iter = &mz->iter[reclaim->priority];
947 
948 		if (prev && reclaim->generation != iter->generation)
949 			goto out_unlock;
950 
951 		while (1) {
952 			pos = READ_ONCE(iter->position);
953 			if (!pos || css_tryget(&pos->css))
954 				break;
955 			/*
956 			 * css reference reached zero, so iter->position will
957 			 * be cleared by ->css_released. However, we should not
958 			 * rely on this happening soon, because ->css_released
959 			 * is called from a work queue, and by busy-waiting we
960 			 * might block it. So we clear iter->position right
961 			 * away.
962 			 */
963 			(void)cmpxchg(&iter->position, pos, NULL);
964 		}
965 	}
966 
967 	if (pos)
968 		css = &pos->css;
969 
970 	for (;;) {
971 		css = css_next_descendant_pre(css, &root->css);
972 		if (!css) {
973 			/*
974 			 * Reclaimers share the hierarchy walk, and a
975 			 * new one might jump in right at the end of
976 			 * the hierarchy - make sure they see at least
977 			 * one group and restart from the beginning.
978 			 */
979 			if (!prev)
980 				continue;
981 			break;
982 		}
983 
984 		/*
985 		 * Verify the css and acquire a reference.  The root
986 		 * is provided by the caller, so we know it's alive
987 		 * and kicking, and don't take an extra reference.
988 		 */
989 		memcg = mem_cgroup_from_css(css);
990 
991 		if (css == &root->css)
992 			break;
993 
994 		if (css_tryget(css))
995 			break;
996 
997 		memcg = NULL;
998 	}
999 
1000 	if (reclaim) {
1001 		/*
1002 		 * The position could have already been updated by a competing
1003 		 * thread, so check that the value hasn't changed since we read
1004 		 * it to avoid reclaiming from the same cgroup twice.
1005 		 */
1006 		(void)cmpxchg(&iter->position, pos, memcg);
1007 
1008 		if (pos)
1009 			css_put(&pos->css);
1010 
1011 		if (!memcg)
1012 			iter->generation++;
1013 		else if (!prev)
1014 			reclaim->generation = iter->generation;
1015 	}
1016 
1017 out_unlock:
1018 	rcu_read_unlock();
1019 out:
1020 	if (prev && prev != root)
1021 		css_put(&prev->css);
1022 
1023 	return memcg;
1024 }
1025 
1026 /**
1027  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1028  * @root: hierarchy root
1029  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1030  */
1031 void mem_cgroup_iter_break(struct mem_cgroup *root,
1032 			   struct mem_cgroup *prev)
1033 {
1034 	if (!root)
1035 		root = root_mem_cgroup;
1036 	if (prev && prev != root)
1037 		css_put(&prev->css);
1038 }
1039 
1040 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1041 {
1042 	struct mem_cgroup *memcg = dead_memcg;
1043 	struct mem_cgroup_reclaim_iter *iter;
1044 	struct mem_cgroup_per_node *mz;
1045 	int nid;
1046 	int i;
1047 
1048 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1049 		for_each_node(nid) {
1050 			mz = mem_cgroup_nodeinfo(memcg, nid);
1051 			for (i = 0; i <= DEF_PRIORITY; i++) {
1052 				iter = &mz->iter[i];
1053 				cmpxchg(&iter->position,
1054 					dead_memcg, NULL);
1055 			}
1056 		}
1057 	}
1058 }
1059 
1060 /**
1061  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1062  * @memcg: hierarchy root
1063  * @fn: function to call for each task
1064  * @arg: argument passed to @fn
1065  *
1066  * This function iterates over tasks attached to @memcg or to any of its
1067  * descendants and calls @fn for each task. If @fn returns a non-zero
1068  * value, the function breaks the iteration loop and returns the value.
1069  * Otherwise, it will iterate over all tasks and return 0.
1070  *
1071  * This function must not be called for the root memory cgroup.
1072  */
1073 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1074 			  int (*fn)(struct task_struct *, void *), void *arg)
1075 {
1076 	struct mem_cgroup *iter;
1077 	int ret = 0;
1078 
1079 	BUG_ON(memcg == root_mem_cgroup);
1080 
1081 	for_each_mem_cgroup_tree(iter, memcg) {
1082 		struct css_task_iter it;
1083 		struct task_struct *task;
1084 
1085 		css_task_iter_start(&iter->css, 0, &it);
1086 		while (!ret && (task = css_task_iter_next(&it)))
1087 			ret = fn(task, arg);
1088 		css_task_iter_end(&it);
1089 		if (ret) {
1090 			mem_cgroup_iter_break(memcg, iter);
1091 			break;
1092 		}
1093 	}
1094 	return ret;
1095 }
1096 
1097 /**
1098  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1099  * @page: the page
1100  * @pgdat: pgdat of the page
1101  *
1102  * This function is only safe when following the LRU page isolation
1103  * and putback protocol: the LRU lock must be held, and the page must
1104  * either be PageLRU() or the caller must have isolated/allocated it.
1105  */
1106 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1107 {
1108 	struct mem_cgroup_per_node *mz;
1109 	struct mem_cgroup *memcg;
1110 	struct lruvec *lruvec;
1111 
1112 	if (mem_cgroup_disabled()) {
1113 		lruvec = &pgdat->lruvec;
1114 		goto out;
1115 	}
1116 
1117 	memcg = page->mem_cgroup;
1118 	/*
1119 	 * Swapcache readahead pages are added to the LRU - and
1120 	 * possibly migrated - before they are charged.
1121 	 */
1122 	if (!memcg)
1123 		memcg = root_mem_cgroup;
1124 
1125 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1126 	lruvec = &mz->lruvec;
1127 out:
1128 	/*
1129 	 * Since a node can be onlined after the mem_cgroup was created,
1130 	 * we have to be prepared to initialize lruvec->zone here;
1131 	 * and if offlined then reonlined, we need to reinitialize it.
1132 	 */
1133 	if (unlikely(lruvec->pgdat != pgdat))
1134 		lruvec->pgdat = pgdat;
1135 	return lruvec;
1136 }
1137 
1138 /**
1139  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1140  * @lruvec: mem_cgroup per zone lru vector
1141  * @lru: index of lru list the page is sitting on
1142  * @zid: zone id of the accounted pages
1143  * @nr_pages: positive when adding or negative when removing
1144  *
1145  * This function must be called under lru_lock, just before a page is added
1146  * to or just after a page is removed from an lru list (that ordering being
1147  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1148  */
1149 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1150 				int zid, int nr_pages)
1151 {
1152 	struct mem_cgroup_per_node *mz;
1153 	unsigned long *lru_size;
1154 	long size;
1155 
1156 	if (mem_cgroup_disabled())
1157 		return;
1158 
1159 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1160 	lru_size = &mz->lru_zone_size[zid][lru];
1161 
1162 	if (nr_pages < 0)
1163 		*lru_size += nr_pages;
1164 
1165 	size = *lru_size;
1166 	if (WARN_ONCE(size < 0,
1167 		"%s(%p, %d, %d): lru_size %ld\n",
1168 		__func__, lruvec, lru, nr_pages, size)) {
1169 		VM_BUG_ON(1);
1170 		*lru_size = 0;
1171 	}
1172 
1173 	if (nr_pages > 0)
1174 		*lru_size += nr_pages;
1175 }
1176 
1177 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1178 {
1179 	struct mem_cgroup *task_memcg;
1180 	struct task_struct *p;
1181 	bool ret;
1182 
1183 	p = find_lock_task_mm(task);
1184 	if (p) {
1185 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1186 		task_unlock(p);
1187 	} else {
1188 		/*
1189 		 * All threads may have already detached their mm's, but the oom
1190 		 * killer still needs to detect if they have already been oom
1191 		 * killed to prevent needlessly killing additional tasks.
1192 		 */
1193 		rcu_read_lock();
1194 		task_memcg = mem_cgroup_from_task(task);
1195 		css_get(&task_memcg->css);
1196 		rcu_read_unlock();
1197 	}
1198 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1199 	css_put(&task_memcg->css);
1200 	return ret;
1201 }
1202 
1203 /**
1204  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1205  * @memcg: the memory cgroup
1206  *
1207  * Returns the maximum amount of memory @mem can be charged with, in
1208  * pages.
1209  */
1210 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1211 {
1212 	unsigned long margin = 0;
1213 	unsigned long count;
1214 	unsigned long limit;
1215 
1216 	count = page_counter_read(&memcg->memory);
1217 	limit = READ_ONCE(memcg->memory.max);
1218 	if (count < limit)
1219 		margin = limit - count;
1220 
1221 	if (do_memsw_account()) {
1222 		count = page_counter_read(&memcg->memsw);
1223 		limit = READ_ONCE(memcg->memsw.max);
1224 		if (count <= limit)
1225 			margin = min(margin, limit - count);
1226 		else
1227 			margin = 0;
1228 	}
1229 
1230 	return margin;
1231 }
1232 
1233 /*
1234  * A routine for checking "mem" is under move_account() or not.
1235  *
1236  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1237  * moving cgroups. This is for waiting at high-memory pressure
1238  * caused by "move".
1239  */
1240 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1241 {
1242 	struct mem_cgroup *from;
1243 	struct mem_cgroup *to;
1244 	bool ret = false;
1245 	/*
1246 	 * Unlike task_move routines, we access mc.to, mc.from not under
1247 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1248 	 */
1249 	spin_lock(&mc.lock);
1250 	from = mc.from;
1251 	to = mc.to;
1252 	if (!from)
1253 		goto unlock;
1254 
1255 	ret = mem_cgroup_is_descendant(from, memcg) ||
1256 		mem_cgroup_is_descendant(to, memcg);
1257 unlock:
1258 	spin_unlock(&mc.lock);
1259 	return ret;
1260 }
1261 
1262 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1263 {
1264 	if (mc.moving_task && current != mc.moving_task) {
1265 		if (mem_cgroup_under_move(memcg)) {
1266 			DEFINE_WAIT(wait);
1267 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1268 			/* moving charge context might have finished. */
1269 			if (mc.moving_task)
1270 				schedule();
1271 			finish_wait(&mc.waitq, &wait);
1272 			return true;
1273 		}
1274 	}
1275 	return false;
1276 }
1277 
1278 static const unsigned int memcg1_stats[] = {
1279 	MEMCG_CACHE,
1280 	MEMCG_RSS,
1281 	MEMCG_RSS_HUGE,
1282 	NR_SHMEM,
1283 	NR_FILE_MAPPED,
1284 	NR_FILE_DIRTY,
1285 	NR_WRITEBACK,
1286 	MEMCG_SWAP,
1287 };
1288 
1289 static const char *const memcg1_stat_names[] = {
1290 	"cache",
1291 	"rss",
1292 	"rss_huge",
1293 	"shmem",
1294 	"mapped_file",
1295 	"dirty",
1296 	"writeback",
1297 	"swap",
1298 };
1299 
1300 #define K(x) ((x) << (PAGE_SHIFT-10))
1301 /**
1302  * mem_cgroup_print_oom_context: Print OOM information relevant to
1303  * memory controller.
1304  * @memcg: The memory cgroup that went over limit
1305  * @p: Task that is going to be killed
1306  *
1307  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1308  * enabled
1309  */
1310 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1311 {
1312 	rcu_read_lock();
1313 
1314 	if (memcg) {
1315 		pr_cont(",oom_memcg=");
1316 		pr_cont_cgroup_path(memcg->css.cgroup);
1317 	} else
1318 		pr_cont(",global_oom");
1319 	if (p) {
1320 		pr_cont(",task_memcg=");
1321 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1322 	}
1323 	rcu_read_unlock();
1324 }
1325 
1326 /**
1327  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1328  * memory controller.
1329  * @memcg: The memory cgroup that went over limit
1330  */
1331 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1332 {
1333 	struct mem_cgroup *iter;
1334 	unsigned int i;
1335 
1336 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1337 		K((u64)page_counter_read(&memcg->memory)),
1338 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1339 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1340 		K((u64)page_counter_read(&memcg->memsw)),
1341 		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1342 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1343 		K((u64)page_counter_read(&memcg->kmem)),
1344 		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1345 
1346 	for_each_mem_cgroup_tree(iter, memcg) {
1347 		pr_info("Memory cgroup stats for ");
1348 		pr_cont_cgroup_path(iter->css.cgroup);
1349 		pr_cont(":");
1350 
1351 		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1352 			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1353 				continue;
1354 			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1355 				K(memcg_page_state(iter, memcg1_stats[i])));
1356 		}
1357 
1358 		for (i = 0; i < NR_LRU_LISTS; i++)
1359 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1360 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1361 
1362 		pr_cont("\n");
1363 	}
1364 }
1365 
1366 /*
1367  * Return the memory (and swap, if configured) limit for a memcg.
1368  */
1369 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1370 {
1371 	unsigned long max;
1372 
1373 	max = memcg->memory.max;
1374 	if (mem_cgroup_swappiness(memcg)) {
1375 		unsigned long memsw_max;
1376 		unsigned long swap_max;
1377 
1378 		memsw_max = memcg->memsw.max;
1379 		swap_max = memcg->swap.max;
1380 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1381 		max = min(max + swap_max, memsw_max);
1382 	}
1383 	return max;
1384 }
1385 
1386 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1387 				     int order)
1388 {
1389 	struct oom_control oc = {
1390 		.zonelist = NULL,
1391 		.nodemask = NULL,
1392 		.memcg = memcg,
1393 		.gfp_mask = gfp_mask,
1394 		.order = order,
1395 	};
1396 	bool ret;
1397 
1398 	if (mutex_lock_killable(&oom_lock))
1399 		return true;
1400 	/*
1401 	 * A few threads which were not waiting at mutex_lock_killable() can
1402 	 * fail to bail out. Therefore, check again after holding oom_lock.
1403 	 */
1404 	ret = should_force_charge() || out_of_memory(&oc);
1405 	mutex_unlock(&oom_lock);
1406 	return ret;
1407 }
1408 
1409 #if MAX_NUMNODES > 1
1410 
1411 /**
1412  * test_mem_cgroup_node_reclaimable
1413  * @memcg: the target memcg
1414  * @nid: the node ID to be checked.
1415  * @noswap : specify true here if the user wants flle only information.
1416  *
1417  * This function returns whether the specified memcg contains any
1418  * reclaimable pages on a node. Returns true if there are any reclaimable
1419  * pages in the node.
1420  */
1421 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1422 		int nid, bool noswap)
1423 {
1424 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1425 		return true;
1426 	if (noswap || !total_swap_pages)
1427 		return false;
1428 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1429 		return true;
1430 	return false;
1431 
1432 }
1433 
1434 /*
1435  * Always updating the nodemask is not very good - even if we have an empty
1436  * list or the wrong list here, we can start from some node and traverse all
1437  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1438  *
1439  */
1440 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1441 {
1442 	int nid;
1443 	/*
1444 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1445 	 * pagein/pageout changes since the last update.
1446 	 */
1447 	if (!atomic_read(&memcg->numainfo_events))
1448 		return;
1449 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1450 		return;
1451 
1452 	/* make a nodemask where this memcg uses memory from */
1453 	memcg->scan_nodes = node_states[N_MEMORY];
1454 
1455 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1456 
1457 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1458 			node_clear(nid, memcg->scan_nodes);
1459 	}
1460 
1461 	atomic_set(&memcg->numainfo_events, 0);
1462 	atomic_set(&memcg->numainfo_updating, 0);
1463 }
1464 
1465 /*
1466  * Selecting a node where we start reclaim from. Because what we need is just
1467  * reducing usage counter, start from anywhere is O,K. Considering
1468  * memory reclaim from current node, there are pros. and cons.
1469  *
1470  * Freeing memory from current node means freeing memory from a node which
1471  * we'll use or we've used. So, it may make LRU bad. And if several threads
1472  * hit limits, it will see a contention on a node. But freeing from remote
1473  * node means more costs for memory reclaim because of memory latency.
1474  *
1475  * Now, we use round-robin. Better algorithm is welcomed.
1476  */
1477 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1478 {
1479 	int node;
1480 
1481 	mem_cgroup_may_update_nodemask(memcg);
1482 	node = memcg->last_scanned_node;
1483 
1484 	node = next_node_in(node, memcg->scan_nodes);
1485 	/*
1486 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1487 	 * last time it really checked all the LRUs due to rate limiting.
1488 	 * Fallback to the current node in that case for simplicity.
1489 	 */
1490 	if (unlikely(node == MAX_NUMNODES))
1491 		node = numa_node_id();
1492 
1493 	memcg->last_scanned_node = node;
1494 	return node;
1495 }
1496 #else
1497 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1498 {
1499 	return 0;
1500 }
1501 #endif
1502 
1503 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1504 				   pg_data_t *pgdat,
1505 				   gfp_t gfp_mask,
1506 				   unsigned long *total_scanned)
1507 {
1508 	struct mem_cgroup *victim = NULL;
1509 	int total = 0;
1510 	int loop = 0;
1511 	unsigned long excess;
1512 	unsigned long nr_scanned;
1513 	struct mem_cgroup_reclaim_cookie reclaim = {
1514 		.pgdat = pgdat,
1515 		.priority = 0,
1516 	};
1517 
1518 	excess = soft_limit_excess(root_memcg);
1519 
1520 	while (1) {
1521 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1522 		if (!victim) {
1523 			loop++;
1524 			if (loop >= 2) {
1525 				/*
1526 				 * If we have not been able to reclaim
1527 				 * anything, it might because there are
1528 				 * no reclaimable pages under this hierarchy
1529 				 */
1530 				if (!total)
1531 					break;
1532 				/*
1533 				 * We want to do more targeted reclaim.
1534 				 * excess >> 2 is not to excessive so as to
1535 				 * reclaim too much, nor too less that we keep
1536 				 * coming back to reclaim from this cgroup
1537 				 */
1538 				if (total >= (excess >> 2) ||
1539 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1540 					break;
1541 			}
1542 			continue;
1543 		}
1544 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1545 					pgdat, &nr_scanned);
1546 		*total_scanned += nr_scanned;
1547 		if (!soft_limit_excess(root_memcg))
1548 			break;
1549 	}
1550 	mem_cgroup_iter_break(root_memcg, victim);
1551 	return total;
1552 }
1553 
1554 #ifdef CONFIG_LOCKDEP
1555 static struct lockdep_map memcg_oom_lock_dep_map = {
1556 	.name = "memcg_oom_lock",
1557 };
1558 #endif
1559 
1560 static DEFINE_SPINLOCK(memcg_oom_lock);
1561 
1562 /*
1563  * Check OOM-Killer is already running under our hierarchy.
1564  * If someone is running, return false.
1565  */
1566 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1567 {
1568 	struct mem_cgroup *iter, *failed = NULL;
1569 
1570 	spin_lock(&memcg_oom_lock);
1571 
1572 	for_each_mem_cgroup_tree(iter, memcg) {
1573 		if (iter->oom_lock) {
1574 			/*
1575 			 * this subtree of our hierarchy is already locked
1576 			 * so we cannot give a lock.
1577 			 */
1578 			failed = iter;
1579 			mem_cgroup_iter_break(memcg, iter);
1580 			break;
1581 		} else
1582 			iter->oom_lock = true;
1583 	}
1584 
1585 	if (failed) {
1586 		/*
1587 		 * OK, we failed to lock the whole subtree so we have
1588 		 * to clean up what we set up to the failing subtree
1589 		 */
1590 		for_each_mem_cgroup_tree(iter, memcg) {
1591 			if (iter == failed) {
1592 				mem_cgroup_iter_break(memcg, iter);
1593 				break;
1594 			}
1595 			iter->oom_lock = false;
1596 		}
1597 	} else
1598 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1599 
1600 	spin_unlock(&memcg_oom_lock);
1601 
1602 	return !failed;
1603 }
1604 
1605 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1606 {
1607 	struct mem_cgroup *iter;
1608 
1609 	spin_lock(&memcg_oom_lock);
1610 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1611 	for_each_mem_cgroup_tree(iter, memcg)
1612 		iter->oom_lock = false;
1613 	spin_unlock(&memcg_oom_lock);
1614 }
1615 
1616 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1617 {
1618 	struct mem_cgroup *iter;
1619 
1620 	spin_lock(&memcg_oom_lock);
1621 	for_each_mem_cgroup_tree(iter, memcg)
1622 		iter->under_oom++;
1623 	spin_unlock(&memcg_oom_lock);
1624 }
1625 
1626 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1627 {
1628 	struct mem_cgroup *iter;
1629 
1630 	/*
1631 	 * When a new child is created while the hierarchy is under oom,
1632 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1633 	 */
1634 	spin_lock(&memcg_oom_lock);
1635 	for_each_mem_cgroup_tree(iter, memcg)
1636 		if (iter->under_oom > 0)
1637 			iter->under_oom--;
1638 	spin_unlock(&memcg_oom_lock);
1639 }
1640 
1641 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1642 
1643 struct oom_wait_info {
1644 	struct mem_cgroup *memcg;
1645 	wait_queue_entry_t	wait;
1646 };
1647 
1648 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1649 	unsigned mode, int sync, void *arg)
1650 {
1651 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1652 	struct mem_cgroup *oom_wait_memcg;
1653 	struct oom_wait_info *oom_wait_info;
1654 
1655 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1656 	oom_wait_memcg = oom_wait_info->memcg;
1657 
1658 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1659 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1660 		return 0;
1661 	return autoremove_wake_function(wait, mode, sync, arg);
1662 }
1663 
1664 static void memcg_oom_recover(struct mem_cgroup *memcg)
1665 {
1666 	/*
1667 	 * For the following lockless ->under_oom test, the only required
1668 	 * guarantee is that it must see the state asserted by an OOM when
1669 	 * this function is called as a result of userland actions
1670 	 * triggered by the notification of the OOM.  This is trivially
1671 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1672 	 * triggering notification.
1673 	 */
1674 	if (memcg && memcg->under_oom)
1675 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1676 }
1677 
1678 enum oom_status {
1679 	OOM_SUCCESS,
1680 	OOM_FAILED,
1681 	OOM_ASYNC,
1682 	OOM_SKIPPED
1683 };
1684 
1685 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1686 {
1687 	enum oom_status ret;
1688 	bool locked;
1689 
1690 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1691 		return OOM_SKIPPED;
1692 
1693 	memcg_memory_event(memcg, MEMCG_OOM);
1694 
1695 	/*
1696 	 * We are in the middle of the charge context here, so we
1697 	 * don't want to block when potentially sitting on a callstack
1698 	 * that holds all kinds of filesystem and mm locks.
1699 	 *
1700 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1701 	 * handling until the charge can succeed; remember the context and put
1702 	 * the task to sleep at the end of the page fault when all locks are
1703 	 * released.
1704 	 *
1705 	 * On the other hand, in-kernel OOM killer allows for an async victim
1706 	 * memory reclaim (oom_reaper) and that means that we are not solely
1707 	 * relying on the oom victim to make a forward progress and we can
1708 	 * invoke the oom killer here.
1709 	 *
1710 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1711 	 * victim and then we have to bail out from the charge path.
1712 	 */
1713 	if (memcg->oom_kill_disable) {
1714 		if (!current->in_user_fault)
1715 			return OOM_SKIPPED;
1716 		css_get(&memcg->css);
1717 		current->memcg_in_oom = memcg;
1718 		current->memcg_oom_gfp_mask = mask;
1719 		current->memcg_oom_order = order;
1720 
1721 		return OOM_ASYNC;
1722 	}
1723 
1724 	mem_cgroup_mark_under_oom(memcg);
1725 
1726 	locked = mem_cgroup_oom_trylock(memcg);
1727 
1728 	if (locked)
1729 		mem_cgroup_oom_notify(memcg);
1730 
1731 	mem_cgroup_unmark_under_oom(memcg);
1732 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1733 		ret = OOM_SUCCESS;
1734 	else
1735 		ret = OOM_FAILED;
1736 
1737 	if (locked)
1738 		mem_cgroup_oom_unlock(memcg);
1739 
1740 	return ret;
1741 }
1742 
1743 /**
1744  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1745  * @handle: actually kill/wait or just clean up the OOM state
1746  *
1747  * This has to be called at the end of a page fault if the memcg OOM
1748  * handler was enabled.
1749  *
1750  * Memcg supports userspace OOM handling where failed allocations must
1751  * sleep on a waitqueue until the userspace task resolves the
1752  * situation.  Sleeping directly in the charge context with all kinds
1753  * of locks held is not a good idea, instead we remember an OOM state
1754  * in the task and mem_cgroup_oom_synchronize() has to be called at
1755  * the end of the page fault to complete the OOM handling.
1756  *
1757  * Returns %true if an ongoing memcg OOM situation was detected and
1758  * completed, %false otherwise.
1759  */
1760 bool mem_cgroup_oom_synchronize(bool handle)
1761 {
1762 	struct mem_cgroup *memcg = current->memcg_in_oom;
1763 	struct oom_wait_info owait;
1764 	bool locked;
1765 
1766 	/* OOM is global, do not handle */
1767 	if (!memcg)
1768 		return false;
1769 
1770 	if (!handle)
1771 		goto cleanup;
1772 
1773 	owait.memcg = memcg;
1774 	owait.wait.flags = 0;
1775 	owait.wait.func = memcg_oom_wake_function;
1776 	owait.wait.private = current;
1777 	INIT_LIST_HEAD(&owait.wait.entry);
1778 
1779 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1780 	mem_cgroup_mark_under_oom(memcg);
1781 
1782 	locked = mem_cgroup_oom_trylock(memcg);
1783 
1784 	if (locked)
1785 		mem_cgroup_oom_notify(memcg);
1786 
1787 	if (locked && !memcg->oom_kill_disable) {
1788 		mem_cgroup_unmark_under_oom(memcg);
1789 		finish_wait(&memcg_oom_waitq, &owait.wait);
1790 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1791 					 current->memcg_oom_order);
1792 	} else {
1793 		schedule();
1794 		mem_cgroup_unmark_under_oom(memcg);
1795 		finish_wait(&memcg_oom_waitq, &owait.wait);
1796 	}
1797 
1798 	if (locked) {
1799 		mem_cgroup_oom_unlock(memcg);
1800 		/*
1801 		 * There is no guarantee that an OOM-lock contender
1802 		 * sees the wakeups triggered by the OOM kill
1803 		 * uncharges.  Wake any sleepers explicitely.
1804 		 */
1805 		memcg_oom_recover(memcg);
1806 	}
1807 cleanup:
1808 	current->memcg_in_oom = NULL;
1809 	css_put(&memcg->css);
1810 	return true;
1811 }
1812 
1813 /**
1814  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1815  * @victim: task to be killed by the OOM killer
1816  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1817  *
1818  * Returns a pointer to a memory cgroup, which has to be cleaned up
1819  * by killing all belonging OOM-killable tasks.
1820  *
1821  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1822  */
1823 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1824 					    struct mem_cgroup *oom_domain)
1825 {
1826 	struct mem_cgroup *oom_group = NULL;
1827 	struct mem_cgroup *memcg;
1828 
1829 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1830 		return NULL;
1831 
1832 	if (!oom_domain)
1833 		oom_domain = root_mem_cgroup;
1834 
1835 	rcu_read_lock();
1836 
1837 	memcg = mem_cgroup_from_task(victim);
1838 	if (memcg == root_mem_cgroup)
1839 		goto out;
1840 
1841 	/*
1842 	 * Traverse the memory cgroup hierarchy from the victim task's
1843 	 * cgroup up to the OOMing cgroup (or root) to find the
1844 	 * highest-level memory cgroup with oom.group set.
1845 	 */
1846 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1847 		if (memcg->oom_group)
1848 			oom_group = memcg;
1849 
1850 		if (memcg == oom_domain)
1851 			break;
1852 	}
1853 
1854 	if (oom_group)
1855 		css_get(&oom_group->css);
1856 out:
1857 	rcu_read_unlock();
1858 
1859 	return oom_group;
1860 }
1861 
1862 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1863 {
1864 	pr_info("Tasks in ");
1865 	pr_cont_cgroup_path(memcg->css.cgroup);
1866 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1867 }
1868 
1869 /**
1870  * lock_page_memcg - lock a page->mem_cgroup binding
1871  * @page: the page
1872  *
1873  * This function protects unlocked LRU pages from being moved to
1874  * another cgroup.
1875  *
1876  * It ensures lifetime of the returned memcg. Caller is responsible
1877  * for the lifetime of the page; __unlock_page_memcg() is available
1878  * when @page might get freed inside the locked section.
1879  */
1880 struct mem_cgroup *lock_page_memcg(struct page *page)
1881 {
1882 	struct mem_cgroup *memcg;
1883 	unsigned long flags;
1884 
1885 	/*
1886 	 * The RCU lock is held throughout the transaction.  The fast
1887 	 * path can get away without acquiring the memcg->move_lock
1888 	 * because page moving starts with an RCU grace period.
1889 	 *
1890 	 * The RCU lock also protects the memcg from being freed when
1891 	 * the page state that is going to change is the only thing
1892 	 * preventing the page itself from being freed. E.g. writeback
1893 	 * doesn't hold a page reference and relies on PG_writeback to
1894 	 * keep off truncation, migration and so forth.
1895          */
1896 	rcu_read_lock();
1897 
1898 	if (mem_cgroup_disabled())
1899 		return NULL;
1900 again:
1901 	memcg = page->mem_cgroup;
1902 	if (unlikely(!memcg))
1903 		return NULL;
1904 
1905 	if (atomic_read(&memcg->moving_account) <= 0)
1906 		return memcg;
1907 
1908 	spin_lock_irqsave(&memcg->move_lock, flags);
1909 	if (memcg != page->mem_cgroup) {
1910 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1911 		goto again;
1912 	}
1913 
1914 	/*
1915 	 * When charge migration first begins, we can have locked and
1916 	 * unlocked page stat updates happening concurrently.  Track
1917 	 * the task who has the lock for unlock_page_memcg().
1918 	 */
1919 	memcg->move_lock_task = current;
1920 	memcg->move_lock_flags = flags;
1921 
1922 	return memcg;
1923 }
1924 EXPORT_SYMBOL(lock_page_memcg);
1925 
1926 /**
1927  * __unlock_page_memcg - unlock and unpin a memcg
1928  * @memcg: the memcg
1929  *
1930  * Unlock and unpin a memcg returned by lock_page_memcg().
1931  */
1932 void __unlock_page_memcg(struct mem_cgroup *memcg)
1933 {
1934 	if (memcg && memcg->move_lock_task == current) {
1935 		unsigned long flags = memcg->move_lock_flags;
1936 
1937 		memcg->move_lock_task = NULL;
1938 		memcg->move_lock_flags = 0;
1939 
1940 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1941 	}
1942 
1943 	rcu_read_unlock();
1944 }
1945 
1946 /**
1947  * unlock_page_memcg - unlock a page->mem_cgroup binding
1948  * @page: the page
1949  */
1950 void unlock_page_memcg(struct page *page)
1951 {
1952 	__unlock_page_memcg(page->mem_cgroup);
1953 }
1954 EXPORT_SYMBOL(unlock_page_memcg);
1955 
1956 struct memcg_stock_pcp {
1957 	struct mem_cgroup *cached; /* this never be root cgroup */
1958 	unsigned int nr_pages;
1959 	struct work_struct work;
1960 	unsigned long flags;
1961 #define FLUSHING_CACHED_CHARGE	0
1962 };
1963 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1964 static DEFINE_MUTEX(percpu_charge_mutex);
1965 
1966 /**
1967  * consume_stock: Try to consume stocked charge on this cpu.
1968  * @memcg: memcg to consume from.
1969  * @nr_pages: how many pages to charge.
1970  *
1971  * The charges will only happen if @memcg matches the current cpu's memcg
1972  * stock, and at least @nr_pages are available in that stock.  Failure to
1973  * service an allocation will refill the stock.
1974  *
1975  * returns true if successful, false otherwise.
1976  */
1977 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1978 {
1979 	struct memcg_stock_pcp *stock;
1980 	unsigned long flags;
1981 	bool ret = false;
1982 
1983 	if (nr_pages > MEMCG_CHARGE_BATCH)
1984 		return ret;
1985 
1986 	local_irq_save(flags);
1987 
1988 	stock = this_cpu_ptr(&memcg_stock);
1989 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1990 		stock->nr_pages -= nr_pages;
1991 		ret = true;
1992 	}
1993 
1994 	local_irq_restore(flags);
1995 
1996 	return ret;
1997 }
1998 
1999 /*
2000  * Returns stocks cached in percpu and reset cached information.
2001  */
2002 static void drain_stock(struct memcg_stock_pcp *stock)
2003 {
2004 	struct mem_cgroup *old = stock->cached;
2005 
2006 	if (stock->nr_pages) {
2007 		page_counter_uncharge(&old->memory, stock->nr_pages);
2008 		if (do_memsw_account())
2009 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2010 		css_put_many(&old->css, stock->nr_pages);
2011 		stock->nr_pages = 0;
2012 	}
2013 	stock->cached = NULL;
2014 }
2015 
2016 static void drain_local_stock(struct work_struct *dummy)
2017 {
2018 	struct memcg_stock_pcp *stock;
2019 	unsigned long flags;
2020 
2021 	/*
2022 	 * The only protection from memory hotplug vs. drain_stock races is
2023 	 * that we always operate on local CPU stock here with IRQ disabled
2024 	 */
2025 	local_irq_save(flags);
2026 
2027 	stock = this_cpu_ptr(&memcg_stock);
2028 	drain_stock(stock);
2029 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2030 
2031 	local_irq_restore(flags);
2032 }
2033 
2034 /*
2035  * Cache charges(val) to local per_cpu area.
2036  * This will be consumed by consume_stock() function, later.
2037  */
2038 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2039 {
2040 	struct memcg_stock_pcp *stock;
2041 	unsigned long flags;
2042 
2043 	local_irq_save(flags);
2044 
2045 	stock = this_cpu_ptr(&memcg_stock);
2046 	if (stock->cached != memcg) { /* reset if necessary */
2047 		drain_stock(stock);
2048 		stock->cached = memcg;
2049 	}
2050 	stock->nr_pages += nr_pages;
2051 
2052 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2053 		drain_stock(stock);
2054 
2055 	local_irq_restore(flags);
2056 }
2057 
2058 /*
2059  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2060  * of the hierarchy under it.
2061  */
2062 static void drain_all_stock(struct mem_cgroup *root_memcg)
2063 {
2064 	int cpu, curcpu;
2065 
2066 	/* If someone's already draining, avoid adding running more workers. */
2067 	if (!mutex_trylock(&percpu_charge_mutex))
2068 		return;
2069 	/*
2070 	 * Notify other cpus that system-wide "drain" is running
2071 	 * We do not care about races with the cpu hotplug because cpu down
2072 	 * as well as workers from this path always operate on the local
2073 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2074 	 */
2075 	curcpu = get_cpu();
2076 	for_each_online_cpu(cpu) {
2077 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2078 		struct mem_cgroup *memcg;
2079 
2080 		memcg = stock->cached;
2081 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2082 			continue;
2083 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2084 			css_put(&memcg->css);
2085 			continue;
2086 		}
2087 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2088 			if (cpu == curcpu)
2089 				drain_local_stock(&stock->work);
2090 			else
2091 				schedule_work_on(cpu, &stock->work);
2092 		}
2093 		css_put(&memcg->css);
2094 	}
2095 	put_cpu();
2096 	mutex_unlock(&percpu_charge_mutex);
2097 }
2098 
2099 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2100 {
2101 	struct memcg_stock_pcp *stock;
2102 	struct mem_cgroup *memcg;
2103 
2104 	stock = &per_cpu(memcg_stock, cpu);
2105 	drain_stock(stock);
2106 
2107 	for_each_mem_cgroup(memcg) {
2108 		int i;
2109 
2110 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2111 			int nid;
2112 			long x;
2113 
2114 			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2115 			if (x)
2116 				atomic_long_add(x, &memcg->stat[i]);
2117 
2118 			if (i >= NR_VM_NODE_STAT_ITEMS)
2119 				continue;
2120 
2121 			for_each_node(nid) {
2122 				struct mem_cgroup_per_node *pn;
2123 
2124 				pn = mem_cgroup_nodeinfo(memcg, nid);
2125 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2126 				if (x)
2127 					atomic_long_add(x, &pn->lruvec_stat[i]);
2128 			}
2129 		}
2130 
2131 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2132 			long x;
2133 
2134 			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2135 			if (x)
2136 				atomic_long_add(x, &memcg->events[i]);
2137 		}
2138 	}
2139 
2140 	return 0;
2141 }
2142 
2143 static void reclaim_high(struct mem_cgroup *memcg,
2144 			 unsigned int nr_pages,
2145 			 gfp_t gfp_mask)
2146 {
2147 	do {
2148 		if (page_counter_read(&memcg->memory) <= memcg->high)
2149 			continue;
2150 		memcg_memory_event(memcg, MEMCG_HIGH);
2151 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2152 	} while ((memcg = parent_mem_cgroup(memcg)));
2153 }
2154 
2155 static void high_work_func(struct work_struct *work)
2156 {
2157 	struct mem_cgroup *memcg;
2158 
2159 	memcg = container_of(work, struct mem_cgroup, high_work);
2160 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2161 }
2162 
2163 /*
2164  * Scheduled by try_charge() to be executed from the userland return path
2165  * and reclaims memory over the high limit.
2166  */
2167 void mem_cgroup_handle_over_high(void)
2168 {
2169 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2170 	struct mem_cgroup *memcg;
2171 
2172 	if (likely(!nr_pages))
2173 		return;
2174 
2175 	memcg = get_mem_cgroup_from_mm(current->mm);
2176 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2177 	css_put(&memcg->css);
2178 	current->memcg_nr_pages_over_high = 0;
2179 }
2180 
2181 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2182 		      unsigned int nr_pages)
2183 {
2184 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2185 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2186 	struct mem_cgroup *mem_over_limit;
2187 	struct page_counter *counter;
2188 	unsigned long nr_reclaimed;
2189 	bool may_swap = true;
2190 	bool drained = false;
2191 	bool oomed = false;
2192 	enum oom_status oom_status;
2193 
2194 	if (mem_cgroup_is_root(memcg))
2195 		return 0;
2196 retry:
2197 	if (consume_stock(memcg, nr_pages))
2198 		return 0;
2199 
2200 	if (!do_memsw_account() ||
2201 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2202 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2203 			goto done_restock;
2204 		if (do_memsw_account())
2205 			page_counter_uncharge(&memcg->memsw, batch);
2206 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2207 	} else {
2208 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2209 		may_swap = false;
2210 	}
2211 
2212 	if (batch > nr_pages) {
2213 		batch = nr_pages;
2214 		goto retry;
2215 	}
2216 
2217 	/*
2218 	 * Unlike in global OOM situations, memcg is not in a physical
2219 	 * memory shortage.  Allow dying and OOM-killed tasks to
2220 	 * bypass the last charges so that they can exit quickly and
2221 	 * free their memory.
2222 	 */
2223 	if (unlikely(should_force_charge()))
2224 		goto force;
2225 
2226 	/*
2227 	 * Prevent unbounded recursion when reclaim operations need to
2228 	 * allocate memory. This might exceed the limits temporarily,
2229 	 * but we prefer facilitating memory reclaim and getting back
2230 	 * under the limit over triggering OOM kills in these cases.
2231 	 */
2232 	if (unlikely(current->flags & PF_MEMALLOC))
2233 		goto force;
2234 
2235 	if (unlikely(task_in_memcg_oom(current)))
2236 		goto nomem;
2237 
2238 	if (!gfpflags_allow_blocking(gfp_mask))
2239 		goto nomem;
2240 
2241 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2242 
2243 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2244 						    gfp_mask, may_swap);
2245 
2246 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2247 		goto retry;
2248 
2249 	if (!drained) {
2250 		drain_all_stock(mem_over_limit);
2251 		drained = true;
2252 		goto retry;
2253 	}
2254 
2255 	if (gfp_mask & __GFP_NORETRY)
2256 		goto nomem;
2257 	/*
2258 	 * Even though the limit is exceeded at this point, reclaim
2259 	 * may have been able to free some pages.  Retry the charge
2260 	 * before killing the task.
2261 	 *
2262 	 * Only for regular pages, though: huge pages are rather
2263 	 * unlikely to succeed so close to the limit, and we fall back
2264 	 * to regular pages anyway in case of failure.
2265 	 */
2266 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2267 		goto retry;
2268 	/*
2269 	 * At task move, charge accounts can be doubly counted. So, it's
2270 	 * better to wait until the end of task_move if something is going on.
2271 	 */
2272 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2273 		goto retry;
2274 
2275 	if (nr_retries--)
2276 		goto retry;
2277 
2278 	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2279 		goto nomem;
2280 
2281 	if (gfp_mask & __GFP_NOFAIL)
2282 		goto force;
2283 
2284 	if (fatal_signal_pending(current))
2285 		goto force;
2286 
2287 	/*
2288 	 * keep retrying as long as the memcg oom killer is able to make
2289 	 * a forward progress or bypass the charge if the oom killer
2290 	 * couldn't make any progress.
2291 	 */
2292 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2293 		       get_order(nr_pages * PAGE_SIZE));
2294 	switch (oom_status) {
2295 	case OOM_SUCCESS:
2296 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2297 		oomed = true;
2298 		goto retry;
2299 	case OOM_FAILED:
2300 		goto force;
2301 	default:
2302 		goto nomem;
2303 	}
2304 nomem:
2305 	if (!(gfp_mask & __GFP_NOFAIL))
2306 		return -ENOMEM;
2307 force:
2308 	/*
2309 	 * The allocation either can't fail or will lead to more memory
2310 	 * being freed very soon.  Allow memory usage go over the limit
2311 	 * temporarily by force charging it.
2312 	 */
2313 	page_counter_charge(&memcg->memory, nr_pages);
2314 	if (do_memsw_account())
2315 		page_counter_charge(&memcg->memsw, nr_pages);
2316 	css_get_many(&memcg->css, nr_pages);
2317 
2318 	return 0;
2319 
2320 done_restock:
2321 	css_get_many(&memcg->css, batch);
2322 	if (batch > nr_pages)
2323 		refill_stock(memcg, batch - nr_pages);
2324 
2325 	/*
2326 	 * If the hierarchy is above the normal consumption range, schedule
2327 	 * reclaim on returning to userland.  We can perform reclaim here
2328 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2329 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2330 	 * not recorded as it most likely matches current's and won't
2331 	 * change in the meantime.  As high limit is checked again before
2332 	 * reclaim, the cost of mismatch is negligible.
2333 	 */
2334 	do {
2335 		if (page_counter_read(&memcg->memory) > memcg->high) {
2336 			/* Don't bother a random interrupted task */
2337 			if (in_interrupt()) {
2338 				schedule_work(&memcg->high_work);
2339 				break;
2340 			}
2341 			current->memcg_nr_pages_over_high += batch;
2342 			set_notify_resume(current);
2343 			break;
2344 		}
2345 	} while ((memcg = parent_mem_cgroup(memcg)));
2346 
2347 	return 0;
2348 }
2349 
2350 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2351 {
2352 	if (mem_cgroup_is_root(memcg))
2353 		return;
2354 
2355 	page_counter_uncharge(&memcg->memory, nr_pages);
2356 	if (do_memsw_account())
2357 		page_counter_uncharge(&memcg->memsw, nr_pages);
2358 
2359 	css_put_many(&memcg->css, nr_pages);
2360 }
2361 
2362 static void lock_page_lru(struct page *page, int *isolated)
2363 {
2364 	struct zone *zone = page_zone(page);
2365 
2366 	spin_lock_irq(zone_lru_lock(zone));
2367 	if (PageLRU(page)) {
2368 		struct lruvec *lruvec;
2369 
2370 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2371 		ClearPageLRU(page);
2372 		del_page_from_lru_list(page, lruvec, page_lru(page));
2373 		*isolated = 1;
2374 	} else
2375 		*isolated = 0;
2376 }
2377 
2378 static void unlock_page_lru(struct page *page, int isolated)
2379 {
2380 	struct zone *zone = page_zone(page);
2381 
2382 	if (isolated) {
2383 		struct lruvec *lruvec;
2384 
2385 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2386 		VM_BUG_ON_PAGE(PageLRU(page), page);
2387 		SetPageLRU(page);
2388 		add_page_to_lru_list(page, lruvec, page_lru(page));
2389 	}
2390 	spin_unlock_irq(zone_lru_lock(zone));
2391 }
2392 
2393 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2394 			  bool lrucare)
2395 {
2396 	int isolated;
2397 
2398 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2399 
2400 	/*
2401 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2402 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2403 	 */
2404 	if (lrucare)
2405 		lock_page_lru(page, &isolated);
2406 
2407 	/*
2408 	 * Nobody should be changing or seriously looking at
2409 	 * page->mem_cgroup at this point:
2410 	 *
2411 	 * - the page is uncharged
2412 	 *
2413 	 * - the page is off-LRU
2414 	 *
2415 	 * - an anonymous fault has exclusive page access, except for
2416 	 *   a locked page table
2417 	 *
2418 	 * - a page cache insertion, a swapin fault, or a migration
2419 	 *   have the page locked
2420 	 */
2421 	page->mem_cgroup = memcg;
2422 
2423 	if (lrucare)
2424 		unlock_page_lru(page, isolated);
2425 }
2426 
2427 #ifdef CONFIG_MEMCG_KMEM
2428 static int memcg_alloc_cache_id(void)
2429 {
2430 	int id, size;
2431 	int err;
2432 
2433 	id = ida_simple_get(&memcg_cache_ida,
2434 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2435 	if (id < 0)
2436 		return id;
2437 
2438 	if (id < memcg_nr_cache_ids)
2439 		return id;
2440 
2441 	/*
2442 	 * There's no space for the new id in memcg_caches arrays,
2443 	 * so we have to grow them.
2444 	 */
2445 	down_write(&memcg_cache_ids_sem);
2446 
2447 	size = 2 * (id + 1);
2448 	if (size < MEMCG_CACHES_MIN_SIZE)
2449 		size = MEMCG_CACHES_MIN_SIZE;
2450 	else if (size > MEMCG_CACHES_MAX_SIZE)
2451 		size = MEMCG_CACHES_MAX_SIZE;
2452 
2453 	err = memcg_update_all_caches(size);
2454 	if (!err)
2455 		err = memcg_update_all_list_lrus(size);
2456 	if (!err)
2457 		memcg_nr_cache_ids = size;
2458 
2459 	up_write(&memcg_cache_ids_sem);
2460 
2461 	if (err) {
2462 		ida_simple_remove(&memcg_cache_ida, id);
2463 		return err;
2464 	}
2465 	return id;
2466 }
2467 
2468 static void memcg_free_cache_id(int id)
2469 {
2470 	ida_simple_remove(&memcg_cache_ida, id);
2471 }
2472 
2473 struct memcg_kmem_cache_create_work {
2474 	struct mem_cgroup *memcg;
2475 	struct kmem_cache *cachep;
2476 	struct work_struct work;
2477 };
2478 
2479 static void memcg_kmem_cache_create_func(struct work_struct *w)
2480 {
2481 	struct memcg_kmem_cache_create_work *cw =
2482 		container_of(w, struct memcg_kmem_cache_create_work, work);
2483 	struct mem_cgroup *memcg = cw->memcg;
2484 	struct kmem_cache *cachep = cw->cachep;
2485 
2486 	memcg_create_kmem_cache(memcg, cachep);
2487 
2488 	css_put(&memcg->css);
2489 	kfree(cw);
2490 }
2491 
2492 /*
2493  * Enqueue the creation of a per-memcg kmem_cache.
2494  */
2495 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2496 					       struct kmem_cache *cachep)
2497 {
2498 	struct memcg_kmem_cache_create_work *cw;
2499 
2500 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2501 	if (!cw)
2502 		return;
2503 
2504 	css_get(&memcg->css);
2505 
2506 	cw->memcg = memcg;
2507 	cw->cachep = cachep;
2508 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2509 
2510 	queue_work(memcg_kmem_cache_wq, &cw->work);
2511 }
2512 
2513 static inline bool memcg_kmem_bypass(void)
2514 {
2515 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2516 		return true;
2517 	return false;
2518 }
2519 
2520 /**
2521  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2522  * @cachep: the original global kmem cache
2523  *
2524  * Return the kmem_cache we're supposed to use for a slab allocation.
2525  * We try to use the current memcg's version of the cache.
2526  *
2527  * If the cache does not exist yet, if we are the first user of it, we
2528  * create it asynchronously in a workqueue and let the current allocation
2529  * go through with the original cache.
2530  *
2531  * This function takes a reference to the cache it returns to assure it
2532  * won't get destroyed while we are working with it. Once the caller is
2533  * done with it, memcg_kmem_put_cache() must be called to release the
2534  * reference.
2535  */
2536 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2537 {
2538 	struct mem_cgroup *memcg;
2539 	struct kmem_cache *memcg_cachep;
2540 	int kmemcg_id;
2541 
2542 	VM_BUG_ON(!is_root_cache(cachep));
2543 
2544 	if (memcg_kmem_bypass())
2545 		return cachep;
2546 
2547 	memcg = get_mem_cgroup_from_current();
2548 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2549 	if (kmemcg_id < 0)
2550 		goto out;
2551 
2552 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2553 	if (likely(memcg_cachep))
2554 		return memcg_cachep;
2555 
2556 	/*
2557 	 * If we are in a safe context (can wait, and not in interrupt
2558 	 * context), we could be be predictable and return right away.
2559 	 * This would guarantee that the allocation being performed
2560 	 * already belongs in the new cache.
2561 	 *
2562 	 * However, there are some clashes that can arrive from locking.
2563 	 * For instance, because we acquire the slab_mutex while doing
2564 	 * memcg_create_kmem_cache, this means no further allocation
2565 	 * could happen with the slab_mutex held. So it's better to
2566 	 * defer everything.
2567 	 */
2568 	memcg_schedule_kmem_cache_create(memcg, cachep);
2569 out:
2570 	css_put(&memcg->css);
2571 	return cachep;
2572 }
2573 
2574 /**
2575  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2576  * @cachep: the cache returned by memcg_kmem_get_cache
2577  */
2578 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2579 {
2580 	if (!is_root_cache(cachep))
2581 		css_put(&cachep->memcg_params.memcg->css);
2582 }
2583 
2584 /**
2585  * __memcg_kmem_charge_memcg: charge a kmem page
2586  * @page: page to charge
2587  * @gfp: reclaim mode
2588  * @order: allocation order
2589  * @memcg: memory cgroup to charge
2590  *
2591  * Returns 0 on success, an error code on failure.
2592  */
2593 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2594 			    struct mem_cgroup *memcg)
2595 {
2596 	unsigned int nr_pages = 1 << order;
2597 	struct page_counter *counter;
2598 	int ret;
2599 
2600 	ret = try_charge(memcg, gfp, nr_pages);
2601 	if (ret)
2602 		return ret;
2603 
2604 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2605 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2606 		cancel_charge(memcg, nr_pages);
2607 		return -ENOMEM;
2608 	}
2609 
2610 	page->mem_cgroup = memcg;
2611 
2612 	return 0;
2613 }
2614 
2615 /**
2616  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2617  * @page: page to charge
2618  * @gfp: reclaim mode
2619  * @order: allocation order
2620  *
2621  * Returns 0 on success, an error code on failure.
2622  */
2623 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2624 {
2625 	struct mem_cgroup *memcg;
2626 	int ret = 0;
2627 
2628 	if (memcg_kmem_bypass())
2629 		return 0;
2630 
2631 	memcg = get_mem_cgroup_from_current();
2632 	if (!mem_cgroup_is_root(memcg)) {
2633 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2634 		if (!ret)
2635 			__SetPageKmemcg(page);
2636 	}
2637 	css_put(&memcg->css);
2638 	return ret;
2639 }
2640 /**
2641  * __memcg_kmem_uncharge: uncharge a kmem page
2642  * @page: page to uncharge
2643  * @order: allocation order
2644  */
2645 void __memcg_kmem_uncharge(struct page *page, int order)
2646 {
2647 	struct mem_cgroup *memcg = page->mem_cgroup;
2648 	unsigned int nr_pages = 1 << order;
2649 
2650 	if (!memcg)
2651 		return;
2652 
2653 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2654 
2655 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2656 		page_counter_uncharge(&memcg->kmem, nr_pages);
2657 
2658 	page_counter_uncharge(&memcg->memory, nr_pages);
2659 	if (do_memsw_account())
2660 		page_counter_uncharge(&memcg->memsw, nr_pages);
2661 
2662 	page->mem_cgroup = NULL;
2663 
2664 	/* slab pages do not have PageKmemcg flag set */
2665 	if (PageKmemcg(page))
2666 		__ClearPageKmemcg(page);
2667 
2668 	css_put_many(&memcg->css, nr_pages);
2669 }
2670 #endif /* CONFIG_MEMCG_KMEM */
2671 
2672 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2673 
2674 /*
2675  * Because tail pages are not marked as "used", set it. We're under
2676  * zone_lru_lock and migration entries setup in all page mappings.
2677  */
2678 void mem_cgroup_split_huge_fixup(struct page *head)
2679 {
2680 	int i;
2681 
2682 	if (mem_cgroup_disabled())
2683 		return;
2684 
2685 	for (i = 1; i < HPAGE_PMD_NR; i++)
2686 		head[i].mem_cgroup = head->mem_cgroup;
2687 
2688 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2689 }
2690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2691 
2692 #ifdef CONFIG_MEMCG_SWAP
2693 /**
2694  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2695  * @entry: swap entry to be moved
2696  * @from:  mem_cgroup which the entry is moved from
2697  * @to:  mem_cgroup which the entry is moved to
2698  *
2699  * It succeeds only when the swap_cgroup's record for this entry is the same
2700  * as the mem_cgroup's id of @from.
2701  *
2702  * Returns 0 on success, -EINVAL on failure.
2703  *
2704  * The caller must have charged to @to, IOW, called page_counter_charge() about
2705  * both res and memsw, and called css_get().
2706  */
2707 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2708 				struct mem_cgroup *from, struct mem_cgroup *to)
2709 {
2710 	unsigned short old_id, new_id;
2711 
2712 	old_id = mem_cgroup_id(from);
2713 	new_id = mem_cgroup_id(to);
2714 
2715 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2716 		mod_memcg_state(from, MEMCG_SWAP, -1);
2717 		mod_memcg_state(to, MEMCG_SWAP, 1);
2718 		return 0;
2719 	}
2720 	return -EINVAL;
2721 }
2722 #else
2723 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2724 				struct mem_cgroup *from, struct mem_cgroup *to)
2725 {
2726 	return -EINVAL;
2727 }
2728 #endif
2729 
2730 static DEFINE_MUTEX(memcg_max_mutex);
2731 
2732 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2733 				 unsigned long max, bool memsw)
2734 {
2735 	bool enlarge = false;
2736 	bool drained = false;
2737 	int ret;
2738 	bool limits_invariant;
2739 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2740 
2741 	do {
2742 		if (signal_pending(current)) {
2743 			ret = -EINTR;
2744 			break;
2745 		}
2746 
2747 		mutex_lock(&memcg_max_mutex);
2748 		/*
2749 		 * Make sure that the new limit (memsw or memory limit) doesn't
2750 		 * break our basic invariant rule memory.max <= memsw.max.
2751 		 */
2752 		limits_invariant = memsw ? max >= memcg->memory.max :
2753 					   max <= memcg->memsw.max;
2754 		if (!limits_invariant) {
2755 			mutex_unlock(&memcg_max_mutex);
2756 			ret = -EINVAL;
2757 			break;
2758 		}
2759 		if (max > counter->max)
2760 			enlarge = true;
2761 		ret = page_counter_set_max(counter, max);
2762 		mutex_unlock(&memcg_max_mutex);
2763 
2764 		if (!ret)
2765 			break;
2766 
2767 		if (!drained) {
2768 			drain_all_stock(memcg);
2769 			drained = true;
2770 			continue;
2771 		}
2772 
2773 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2774 					GFP_KERNEL, !memsw)) {
2775 			ret = -EBUSY;
2776 			break;
2777 		}
2778 	} while (true);
2779 
2780 	if (!ret && enlarge)
2781 		memcg_oom_recover(memcg);
2782 
2783 	return ret;
2784 }
2785 
2786 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2787 					    gfp_t gfp_mask,
2788 					    unsigned long *total_scanned)
2789 {
2790 	unsigned long nr_reclaimed = 0;
2791 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2792 	unsigned long reclaimed;
2793 	int loop = 0;
2794 	struct mem_cgroup_tree_per_node *mctz;
2795 	unsigned long excess;
2796 	unsigned long nr_scanned;
2797 
2798 	if (order > 0)
2799 		return 0;
2800 
2801 	mctz = soft_limit_tree_node(pgdat->node_id);
2802 
2803 	/*
2804 	 * Do not even bother to check the largest node if the root
2805 	 * is empty. Do it lockless to prevent lock bouncing. Races
2806 	 * are acceptable as soft limit is best effort anyway.
2807 	 */
2808 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2809 		return 0;
2810 
2811 	/*
2812 	 * This loop can run a while, specially if mem_cgroup's continuously
2813 	 * keep exceeding their soft limit and putting the system under
2814 	 * pressure
2815 	 */
2816 	do {
2817 		if (next_mz)
2818 			mz = next_mz;
2819 		else
2820 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2821 		if (!mz)
2822 			break;
2823 
2824 		nr_scanned = 0;
2825 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2826 						    gfp_mask, &nr_scanned);
2827 		nr_reclaimed += reclaimed;
2828 		*total_scanned += nr_scanned;
2829 		spin_lock_irq(&mctz->lock);
2830 		__mem_cgroup_remove_exceeded(mz, mctz);
2831 
2832 		/*
2833 		 * If we failed to reclaim anything from this memory cgroup
2834 		 * it is time to move on to the next cgroup
2835 		 */
2836 		next_mz = NULL;
2837 		if (!reclaimed)
2838 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2839 
2840 		excess = soft_limit_excess(mz->memcg);
2841 		/*
2842 		 * One school of thought says that we should not add
2843 		 * back the node to the tree if reclaim returns 0.
2844 		 * But our reclaim could return 0, simply because due
2845 		 * to priority we are exposing a smaller subset of
2846 		 * memory to reclaim from. Consider this as a longer
2847 		 * term TODO.
2848 		 */
2849 		/* If excess == 0, no tree ops */
2850 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2851 		spin_unlock_irq(&mctz->lock);
2852 		css_put(&mz->memcg->css);
2853 		loop++;
2854 		/*
2855 		 * Could not reclaim anything and there are no more
2856 		 * mem cgroups to try or we seem to be looping without
2857 		 * reclaiming anything.
2858 		 */
2859 		if (!nr_reclaimed &&
2860 			(next_mz == NULL ||
2861 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2862 			break;
2863 	} while (!nr_reclaimed);
2864 	if (next_mz)
2865 		css_put(&next_mz->memcg->css);
2866 	return nr_reclaimed;
2867 }
2868 
2869 /*
2870  * Test whether @memcg has children, dead or alive.  Note that this
2871  * function doesn't care whether @memcg has use_hierarchy enabled and
2872  * returns %true if there are child csses according to the cgroup
2873  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2874  */
2875 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2876 {
2877 	bool ret;
2878 
2879 	rcu_read_lock();
2880 	ret = css_next_child(NULL, &memcg->css);
2881 	rcu_read_unlock();
2882 	return ret;
2883 }
2884 
2885 /*
2886  * Reclaims as many pages from the given memcg as possible.
2887  *
2888  * Caller is responsible for holding css reference for memcg.
2889  */
2890 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2891 {
2892 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2893 
2894 	/* we call try-to-free pages for make this cgroup empty */
2895 	lru_add_drain_all();
2896 
2897 	drain_all_stock(memcg);
2898 
2899 	/* try to free all pages in this cgroup */
2900 	while (nr_retries && page_counter_read(&memcg->memory)) {
2901 		int progress;
2902 
2903 		if (signal_pending(current))
2904 			return -EINTR;
2905 
2906 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2907 							GFP_KERNEL, true);
2908 		if (!progress) {
2909 			nr_retries--;
2910 			/* maybe some writeback is necessary */
2911 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2912 		}
2913 
2914 	}
2915 
2916 	return 0;
2917 }
2918 
2919 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2920 					    char *buf, size_t nbytes,
2921 					    loff_t off)
2922 {
2923 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2924 
2925 	if (mem_cgroup_is_root(memcg))
2926 		return -EINVAL;
2927 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2928 }
2929 
2930 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2931 				     struct cftype *cft)
2932 {
2933 	return mem_cgroup_from_css(css)->use_hierarchy;
2934 }
2935 
2936 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2937 				      struct cftype *cft, u64 val)
2938 {
2939 	int retval = 0;
2940 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2941 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2942 
2943 	if (memcg->use_hierarchy == val)
2944 		return 0;
2945 
2946 	/*
2947 	 * If parent's use_hierarchy is set, we can't make any modifications
2948 	 * in the child subtrees. If it is unset, then the change can
2949 	 * occur, provided the current cgroup has no children.
2950 	 *
2951 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2952 	 * set if there are no children.
2953 	 */
2954 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2955 				(val == 1 || val == 0)) {
2956 		if (!memcg_has_children(memcg))
2957 			memcg->use_hierarchy = val;
2958 		else
2959 			retval = -EBUSY;
2960 	} else
2961 		retval = -EINVAL;
2962 
2963 	return retval;
2964 }
2965 
2966 struct accumulated_stats {
2967 	unsigned long stat[MEMCG_NR_STAT];
2968 	unsigned long events[NR_VM_EVENT_ITEMS];
2969 	unsigned long lru_pages[NR_LRU_LISTS];
2970 	const unsigned int *stats_array;
2971 	const unsigned int *events_array;
2972 	int stats_size;
2973 	int events_size;
2974 };
2975 
2976 static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2977 				  struct accumulated_stats *acc)
2978 {
2979 	struct mem_cgroup *mi;
2980 	int i;
2981 
2982 	for_each_mem_cgroup_tree(mi, memcg) {
2983 		for (i = 0; i < acc->stats_size; i++)
2984 			acc->stat[i] += memcg_page_state(mi,
2985 				acc->stats_array ? acc->stats_array[i] : i);
2986 
2987 		for (i = 0; i < acc->events_size; i++)
2988 			acc->events[i] += memcg_sum_events(mi,
2989 				acc->events_array ? acc->events_array[i] : i);
2990 
2991 		for (i = 0; i < NR_LRU_LISTS; i++)
2992 			acc->lru_pages[i] +=
2993 				mem_cgroup_nr_lru_pages(mi, BIT(i));
2994 	}
2995 }
2996 
2997 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2998 {
2999 	unsigned long val = 0;
3000 
3001 	if (mem_cgroup_is_root(memcg)) {
3002 		struct mem_cgroup *iter;
3003 
3004 		for_each_mem_cgroup_tree(iter, memcg) {
3005 			val += memcg_page_state(iter, MEMCG_CACHE);
3006 			val += memcg_page_state(iter, MEMCG_RSS);
3007 			if (swap)
3008 				val += memcg_page_state(iter, MEMCG_SWAP);
3009 		}
3010 	} else {
3011 		if (!swap)
3012 			val = page_counter_read(&memcg->memory);
3013 		else
3014 			val = page_counter_read(&memcg->memsw);
3015 	}
3016 	return val;
3017 }
3018 
3019 enum {
3020 	RES_USAGE,
3021 	RES_LIMIT,
3022 	RES_MAX_USAGE,
3023 	RES_FAILCNT,
3024 	RES_SOFT_LIMIT,
3025 };
3026 
3027 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3028 			       struct cftype *cft)
3029 {
3030 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3031 	struct page_counter *counter;
3032 
3033 	switch (MEMFILE_TYPE(cft->private)) {
3034 	case _MEM:
3035 		counter = &memcg->memory;
3036 		break;
3037 	case _MEMSWAP:
3038 		counter = &memcg->memsw;
3039 		break;
3040 	case _KMEM:
3041 		counter = &memcg->kmem;
3042 		break;
3043 	case _TCP:
3044 		counter = &memcg->tcpmem;
3045 		break;
3046 	default:
3047 		BUG();
3048 	}
3049 
3050 	switch (MEMFILE_ATTR(cft->private)) {
3051 	case RES_USAGE:
3052 		if (counter == &memcg->memory)
3053 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3054 		if (counter == &memcg->memsw)
3055 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3056 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3057 	case RES_LIMIT:
3058 		return (u64)counter->max * PAGE_SIZE;
3059 	case RES_MAX_USAGE:
3060 		return (u64)counter->watermark * PAGE_SIZE;
3061 	case RES_FAILCNT:
3062 		return counter->failcnt;
3063 	case RES_SOFT_LIMIT:
3064 		return (u64)memcg->soft_limit * PAGE_SIZE;
3065 	default:
3066 		BUG();
3067 	}
3068 }
3069 
3070 #ifdef CONFIG_MEMCG_KMEM
3071 static int memcg_online_kmem(struct mem_cgroup *memcg)
3072 {
3073 	int memcg_id;
3074 
3075 	if (cgroup_memory_nokmem)
3076 		return 0;
3077 
3078 	BUG_ON(memcg->kmemcg_id >= 0);
3079 	BUG_ON(memcg->kmem_state);
3080 
3081 	memcg_id = memcg_alloc_cache_id();
3082 	if (memcg_id < 0)
3083 		return memcg_id;
3084 
3085 	static_branch_inc(&memcg_kmem_enabled_key);
3086 	/*
3087 	 * A memory cgroup is considered kmem-online as soon as it gets
3088 	 * kmemcg_id. Setting the id after enabling static branching will
3089 	 * guarantee no one starts accounting before all call sites are
3090 	 * patched.
3091 	 */
3092 	memcg->kmemcg_id = memcg_id;
3093 	memcg->kmem_state = KMEM_ONLINE;
3094 	INIT_LIST_HEAD(&memcg->kmem_caches);
3095 
3096 	return 0;
3097 }
3098 
3099 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3100 {
3101 	struct cgroup_subsys_state *css;
3102 	struct mem_cgroup *parent, *child;
3103 	int kmemcg_id;
3104 
3105 	if (memcg->kmem_state != KMEM_ONLINE)
3106 		return;
3107 	/*
3108 	 * Clear the online state before clearing memcg_caches array
3109 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3110 	 * guarantees that no cache will be created for this cgroup
3111 	 * after we are done (see memcg_create_kmem_cache()).
3112 	 */
3113 	memcg->kmem_state = KMEM_ALLOCATED;
3114 
3115 	memcg_deactivate_kmem_caches(memcg);
3116 
3117 	kmemcg_id = memcg->kmemcg_id;
3118 	BUG_ON(kmemcg_id < 0);
3119 
3120 	parent = parent_mem_cgroup(memcg);
3121 	if (!parent)
3122 		parent = root_mem_cgroup;
3123 
3124 	/*
3125 	 * Change kmemcg_id of this cgroup and all its descendants to the
3126 	 * parent's id, and then move all entries from this cgroup's list_lrus
3127 	 * to ones of the parent. After we have finished, all list_lrus
3128 	 * corresponding to this cgroup are guaranteed to remain empty. The
3129 	 * ordering is imposed by list_lru_node->lock taken by
3130 	 * memcg_drain_all_list_lrus().
3131 	 */
3132 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3133 	css_for_each_descendant_pre(css, &memcg->css) {
3134 		child = mem_cgroup_from_css(css);
3135 		BUG_ON(child->kmemcg_id != kmemcg_id);
3136 		child->kmemcg_id = parent->kmemcg_id;
3137 		if (!memcg->use_hierarchy)
3138 			break;
3139 	}
3140 	rcu_read_unlock();
3141 
3142 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3143 
3144 	memcg_free_cache_id(kmemcg_id);
3145 }
3146 
3147 static void memcg_free_kmem(struct mem_cgroup *memcg)
3148 {
3149 	/* css_alloc() failed, offlining didn't happen */
3150 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3151 		memcg_offline_kmem(memcg);
3152 
3153 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3154 		memcg_destroy_kmem_caches(memcg);
3155 		static_branch_dec(&memcg_kmem_enabled_key);
3156 		WARN_ON(page_counter_read(&memcg->kmem));
3157 	}
3158 }
3159 #else
3160 static int memcg_online_kmem(struct mem_cgroup *memcg)
3161 {
3162 	return 0;
3163 }
3164 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3165 {
3166 }
3167 static void memcg_free_kmem(struct mem_cgroup *memcg)
3168 {
3169 }
3170 #endif /* CONFIG_MEMCG_KMEM */
3171 
3172 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3173 				 unsigned long max)
3174 {
3175 	int ret;
3176 
3177 	mutex_lock(&memcg_max_mutex);
3178 	ret = page_counter_set_max(&memcg->kmem, max);
3179 	mutex_unlock(&memcg_max_mutex);
3180 	return ret;
3181 }
3182 
3183 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3184 {
3185 	int ret;
3186 
3187 	mutex_lock(&memcg_max_mutex);
3188 
3189 	ret = page_counter_set_max(&memcg->tcpmem, max);
3190 	if (ret)
3191 		goto out;
3192 
3193 	if (!memcg->tcpmem_active) {
3194 		/*
3195 		 * The active flag needs to be written after the static_key
3196 		 * update. This is what guarantees that the socket activation
3197 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3198 		 * for details, and note that we don't mark any socket as
3199 		 * belonging to this memcg until that flag is up.
3200 		 *
3201 		 * We need to do this, because static_keys will span multiple
3202 		 * sites, but we can't control their order. If we mark a socket
3203 		 * as accounted, but the accounting functions are not patched in
3204 		 * yet, we'll lose accounting.
3205 		 *
3206 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3207 		 * because when this value change, the code to process it is not
3208 		 * patched in yet.
3209 		 */
3210 		static_branch_inc(&memcg_sockets_enabled_key);
3211 		memcg->tcpmem_active = true;
3212 	}
3213 out:
3214 	mutex_unlock(&memcg_max_mutex);
3215 	return ret;
3216 }
3217 
3218 /*
3219  * The user of this function is...
3220  * RES_LIMIT.
3221  */
3222 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3223 				char *buf, size_t nbytes, loff_t off)
3224 {
3225 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3226 	unsigned long nr_pages;
3227 	int ret;
3228 
3229 	buf = strstrip(buf);
3230 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3231 	if (ret)
3232 		return ret;
3233 
3234 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3235 	case RES_LIMIT:
3236 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3237 			ret = -EINVAL;
3238 			break;
3239 		}
3240 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3241 		case _MEM:
3242 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3243 			break;
3244 		case _MEMSWAP:
3245 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3246 			break;
3247 		case _KMEM:
3248 			ret = memcg_update_kmem_max(memcg, nr_pages);
3249 			break;
3250 		case _TCP:
3251 			ret = memcg_update_tcp_max(memcg, nr_pages);
3252 			break;
3253 		}
3254 		break;
3255 	case RES_SOFT_LIMIT:
3256 		memcg->soft_limit = nr_pages;
3257 		ret = 0;
3258 		break;
3259 	}
3260 	return ret ?: nbytes;
3261 }
3262 
3263 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3264 				size_t nbytes, loff_t off)
3265 {
3266 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3267 	struct page_counter *counter;
3268 
3269 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3270 	case _MEM:
3271 		counter = &memcg->memory;
3272 		break;
3273 	case _MEMSWAP:
3274 		counter = &memcg->memsw;
3275 		break;
3276 	case _KMEM:
3277 		counter = &memcg->kmem;
3278 		break;
3279 	case _TCP:
3280 		counter = &memcg->tcpmem;
3281 		break;
3282 	default:
3283 		BUG();
3284 	}
3285 
3286 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3287 	case RES_MAX_USAGE:
3288 		page_counter_reset_watermark(counter);
3289 		break;
3290 	case RES_FAILCNT:
3291 		counter->failcnt = 0;
3292 		break;
3293 	default:
3294 		BUG();
3295 	}
3296 
3297 	return nbytes;
3298 }
3299 
3300 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3301 					struct cftype *cft)
3302 {
3303 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3304 }
3305 
3306 #ifdef CONFIG_MMU
3307 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3308 					struct cftype *cft, u64 val)
3309 {
3310 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3311 
3312 	if (val & ~MOVE_MASK)
3313 		return -EINVAL;
3314 
3315 	/*
3316 	 * No kind of locking is needed in here, because ->can_attach() will
3317 	 * check this value once in the beginning of the process, and then carry
3318 	 * on with stale data. This means that changes to this value will only
3319 	 * affect task migrations starting after the change.
3320 	 */
3321 	memcg->move_charge_at_immigrate = val;
3322 	return 0;
3323 }
3324 #else
3325 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3326 					struct cftype *cft, u64 val)
3327 {
3328 	return -ENOSYS;
3329 }
3330 #endif
3331 
3332 #ifdef CONFIG_NUMA
3333 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3334 {
3335 	struct numa_stat {
3336 		const char *name;
3337 		unsigned int lru_mask;
3338 	};
3339 
3340 	static const struct numa_stat stats[] = {
3341 		{ "total", LRU_ALL },
3342 		{ "file", LRU_ALL_FILE },
3343 		{ "anon", LRU_ALL_ANON },
3344 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3345 	};
3346 	const struct numa_stat *stat;
3347 	int nid;
3348 	unsigned long nr;
3349 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3350 
3351 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3352 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3353 		seq_printf(m, "%s=%lu", stat->name, nr);
3354 		for_each_node_state(nid, N_MEMORY) {
3355 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3356 							  stat->lru_mask);
3357 			seq_printf(m, " N%d=%lu", nid, nr);
3358 		}
3359 		seq_putc(m, '\n');
3360 	}
3361 
3362 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3363 		struct mem_cgroup *iter;
3364 
3365 		nr = 0;
3366 		for_each_mem_cgroup_tree(iter, memcg)
3367 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3368 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3369 		for_each_node_state(nid, N_MEMORY) {
3370 			nr = 0;
3371 			for_each_mem_cgroup_tree(iter, memcg)
3372 				nr += mem_cgroup_node_nr_lru_pages(
3373 					iter, nid, stat->lru_mask);
3374 			seq_printf(m, " N%d=%lu", nid, nr);
3375 		}
3376 		seq_putc(m, '\n');
3377 	}
3378 
3379 	return 0;
3380 }
3381 #endif /* CONFIG_NUMA */
3382 
3383 /* Universal VM events cgroup1 shows, original sort order */
3384 static const unsigned int memcg1_events[] = {
3385 	PGPGIN,
3386 	PGPGOUT,
3387 	PGFAULT,
3388 	PGMAJFAULT,
3389 };
3390 
3391 static const char *const memcg1_event_names[] = {
3392 	"pgpgin",
3393 	"pgpgout",
3394 	"pgfault",
3395 	"pgmajfault",
3396 };
3397 
3398 static int memcg_stat_show(struct seq_file *m, void *v)
3399 {
3400 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3401 	unsigned long memory, memsw;
3402 	struct mem_cgroup *mi;
3403 	unsigned int i;
3404 	struct accumulated_stats acc;
3405 
3406 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3407 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3408 
3409 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3410 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3411 			continue;
3412 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3413 			   memcg_page_state(memcg, memcg1_stats[i]) *
3414 			   PAGE_SIZE);
3415 	}
3416 
3417 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3418 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3419 			   memcg_sum_events(memcg, memcg1_events[i]));
3420 
3421 	for (i = 0; i < NR_LRU_LISTS; i++)
3422 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3423 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3424 
3425 	/* Hierarchical information */
3426 	memory = memsw = PAGE_COUNTER_MAX;
3427 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3428 		memory = min(memory, mi->memory.max);
3429 		memsw = min(memsw, mi->memsw.max);
3430 	}
3431 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3432 		   (u64)memory * PAGE_SIZE);
3433 	if (do_memsw_account())
3434 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3435 			   (u64)memsw * PAGE_SIZE);
3436 
3437 	memset(&acc, 0, sizeof(acc));
3438 	acc.stats_size = ARRAY_SIZE(memcg1_stats);
3439 	acc.stats_array = memcg1_stats;
3440 	acc.events_size = ARRAY_SIZE(memcg1_events);
3441 	acc.events_array = memcg1_events;
3442 	accumulate_memcg_tree(memcg, &acc);
3443 
3444 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3445 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3446 			continue;
3447 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3448 			   (u64)acc.stat[i] * PAGE_SIZE);
3449 	}
3450 
3451 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3452 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3453 			   (u64)acc.events[i]);
3454 
3455 	for (i = 0; i < NR_LRU_LISTS; i++)
3456 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3457 			   (u64)acc.lru_pages[i] * PAGE_SIZE);
3458 
3459 #ifdef CONFIG_DEBUG_VM
3460 	{
3461 		pg_data_t *pgdat;
3462 		struct mem_cgroup_per_node *mz;
3463 		struct zone_reclaim_stat *rstat;
3464 		unsigned long recent_rotated[2] = {0, 0};
3465 		unsigned long recent_scanned[2] = {0, 0};
3466 
3467 		for_each_online_pgdat(pgdat) {
3468 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3469 			rstat = &mz->lruvec.reclaim_stat;
3470 
3471 			recent_rotated[0] += rstat->recent_rotated[0];
3472 			recent_rotated[1] += rstat->recent_rotated[1];
3473 			recent_scanned[0] += rstat->recent_scanned[0];
3474 			recent_scanned[1] += rstat->recent_scanned[1];
3475 		}
3476 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3477 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3478 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3479 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3480 	}
3481 #endif
3482 
3483 	return 0;
3484 }
3485 
3486 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3487 				      struct cftype *cft)
3488 {
3489 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3490 
3491 	return mem_cgroup_swappiness(memcg);
3492 }
3493 
3494 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3495 				       struct cftype *cft, u64 val)
3496 {
3497 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3498 
3499 	if (val > 100)
3500 		return -EINVAL;
3501 
3502 	if (css->parent)
3503 		memcg->swappiness = val;
3504 	else
3505 		vm_swappiness = val;
3506 
3507 	return 0;
3508 }
3509 
3510 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3511 {
3512 	struct mem_cgroup_threshold_ary *t;
3513 	unsigned long usage;
3514 	int i;
3515 
3516 	rcu_read_lock();
3517 	if (!swap)
3518 		t = rcu_dereference(memcg->thresholds.primary);
3519 	else
3520 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3521 
3522 	if (!t)
3523 		goto unlock;
3524 
3525 	usage = mem_cgroup_usage(memcg, swap);
3526 
3527 	/*
3528 	 * current_threshold points to threshold just below or equal to usage.
3529 	 * If it's not true, a threshold was crossed after last
3530 	 * call of __mem_cgroup_threshold().
3531 	 */
3532 	i = t->current_threshold;
3533 
3534 	/*
3535 	 * Iterate backward over array of thresholds starting from
3536 	 * current_threshold and check if a threshold is crossed.
3537 	 * If none of thresholds below usage is crossed, we read
3538 	 * only one element of the array here.
3539 	 */
3540 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3541 		eventfd_signal(t->entries[i].eventfd, 1);
3542 
3543 	/* i = current_threshold + 1 */
3544 	i++;
3545 
3546 	/*
3547 	 * Iterate forward over array of thresholds starting from
3548 	 * current_threshold+1 and check if a threshold is crossed.
3549 	 * If none of thresholds above usage is crossed, we read
3550 	 * only one element of the array here.
3551 	 */
3552 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3553 		eventfd_signal(t->entries[i].eventfd, 1);
3554 
3555 	/* Update current_threshold */
3556 	t->current_threshold = i - 1;
3557 unlock:
3558 	rcu_read_unlock();
3559 }
3560 
3561 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3562 {
3563 	while (memcg) {
3564 		__mem_cgroup_threshold(memcg, false);
3565 		if (do_memsw_account())
3566 			__mem_cgroup_threshold(memcg, true);
3567 
3568 		memcg = parent_mem_cgroup(memcg);
3569 	}
3570 }
3571 
3572 static int compare_thresholds(const void *a, const void *b)
3573 {
3574 	const struct mem_cgroup_threshold *_a = a;
3575 	const struct mem_cgroup_threshold *_b = b;
3576 
3577 	if (_a->threshold > _b->threshold)
3578 		return 1;
3579 
3580 	if (_a->threshold < _b->threshold)
3581 		return -1;
3582 
3583 	return 0;
3584 }
3585 
3586 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3587 {
3588 	struct mem_cgroup_eventfd_list *ev;
3589 
3590 	spin_lock(&memcg_oom_lock);
3591 
3592 	list_for_each_entry(ev, &memcg->oom_notify, list)
3593 		eventfd_signal(ev->eventfd, 1);
3594 
3595 	spin_unlock(&memcg_oom_lock);
3596 	return 0;
3597 }
3598 
3599 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3600 {
3601 	struct mem_cgroup *iter;
3602 
3603 	for_each_mem_cgroup_tree(iter, memcg)
3604 		mem_cgroup_oom_notify_cb(iter);
3605 }
3606 
3607 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3608 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3609 {
3610 	struct mem_cgroup_thresholds *thresholds;
3611 	struct mem_cgroup_threshold_ary *new;
3612 	unsigned long threshold;
3613 	unsigned long usage;
3614 	int i, size, ret;
3615 
3616 	ret = page_counter_memparse(args, "-1", &threshold);
3617 	if (ret)
3618 		return ret;
3619 
3620 	mutex_lock(&memcg->thresholds_lock);
3621 
3622 	if (type == _MEM) {
3623 		thresholds = &memcg->thresholds;
3624 		usage = mem_cgroup_usage(memcg, false);
3625 	} else if (type == _MEMSWAP) {
3626 		thresholds = &memcg->memsw_thresholds;
3627 		usage = mem_cgroup_usage(memcg, true);
3628 	} else
3629 		BUG();
3630 
3631 	/* Check if a threshold crossed before adding a new one */
3632 	if (thresholds->primary)
3633 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3634 
3635 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3636 
3637 	/* Allocate memory for new array of thresholds */
3638 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3639 	if (!new) {
3640 		ret = -ENOMEM;
3641 		goto unlock;
3642 	}
3643 	new->size = size;
3644 
3645 	/* Copy thresholds (if any) to new array */
3646 	if (thresholds->primary) {
3647 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3648 				sizeof(struct mem_cgroup_threshold));
3649 	}
3650 
3651 	/* Add new threshold */
3652 	new->entries[size - 1].eventfd = eventfd;
3653 	new->entries[size - 1].threshold = threshold;
3654 
3655 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3656 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3657 			compare_thresholds, NULL);
3658 
3659 	/* Find current threshold */
3660 	new->current_threshold = -1;
3661 	for (i = 0; i < size; i++) {
3662 		if (new->entries[i].threshold <= usage) {
3663 			/*
3664 			 * new->current_threshold will not be used until
3665 			 * rcu_assign_pointer(), so it's safe to increment
3666 			 * it here.
3667 			 */
3668 			++new->current_threshold;
3669 		} else
3670 			break;
3671 	}
3672 
3673 	/* Free old spare buffer and save old primary buffer as spare */
3674 	kfree(thresholds->spare);
3675 	thresholds->spare = thresholds->primary;
3676 
3677 	rcu_assign_pointer(thresholds->primary, new);
3678 
3679 	/* To be sure that nobody uses thresholds */
3680 	synchronize_rcu();
3681 
3682 unlock:
3683 	mutex_unlock(&memcg->thresholds_lock);
3684 
3685 	return ret;
3686 }
3687 
3688 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3689 	struct eventfd_ctx *eventfd, const char *args)
3690 {
3691 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3692 }
3693 
3694 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3695 	struct eventfd_ctx *eventfd, const char *args)
3696 {
3697 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3698 }
3699 
3700 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3701 	struct eventfd_ctx *eventfd, enum res_type type)
3702 {
3703 	struct mem_cgroup_thresholds *thresholds;
3704 	struct mem_cgroup_threshold_ary *new;
3705 	unsigned long usage;
3706 	int i, j, size;
3707 
3708 	mutex_lock(&memcg->thresholds_lock);
3709 
3710 	if (type == _MEM) {
3711 		thresholds = &memcg->thresholds;
3712 		usage = mem_cgroup_usage(memcg, false);
3713 	} else if (type == _MEMSWAP) {
3714 		thresholds = &memcg->memsw_thresholds;
3715 		usage = mem_cgroup_usage(memcg, true);
3716 	} else
3717 		BUG();
3718 
3719 	if (!thresholds->primary)
3720 		goto unlock;
3721 
3722 	/* Check if a threshold crossed before removing */
3723 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3724 
3725 	/* Calculate new number of threshold */
3726 	size = 0;
3727 	for (i = 0; i < thresholds->primary->size; i++) {
3728 		if (thresholds->primary->entries[i].eventfd != eventfd)
3729 			size++;
3730 	}
3731 
3732 	new = thresholds->spare;
3733 
3734 	/* Set thresholds array to NULL if we don't have thresholds */
3735 	if (!size) {
3736 		kfree(new);
3737 		new = NULL;
3738 		goto swap_buffers;
3739 	}
3740 
3741 	new->size = size;
3742 
3743 	/* Copy thresholds and find current threshold */
3744 	new->current_threshold = -1;
3745 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3746 		if (thresholds->primary->entries[i].eventfd == eventfd)
3747 			continue;
3748 
3749 		new->entries[j] = thresholds->primary->entries[i];
3750 		if (new->entries[j].threshold <= usage) {
3751 			/*
3752 			 * new->current_threshold will not be used
3753 			 * until rcu_assign_pointer(), so it's safe to increment
3754 			 * it here.
3755 			 */
3756 			++new->current_threshold;
3757 		}
3758 		j++;
3759 	}
3760 
3761 swap_buffers:
3762 	/* Swap primary and spare array */
3763 	thresholds->spare = thresholds->primary;
3764 
3765 	rcu_assign_pointer(thresholds->primary, new);
3766 
3767 	/* To be sure that nobody uses thresholds */
3768 	synchronize_rcu();
3769 
3770 	/* If all events are unregistered, free the spare array */
3771 	if (!new) {
3772 		kfree(thresholds->spare);
3773 		thresholds->spare = NULL;
3774 	}
3775 unlock:
3776 	mutex_unlock(&memcg->thresholds_lock);
3777 }
3778 
3779 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3780 	struct eventfd_ctx *eventfd)
3781 {
3782 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3783 }
3784 
3785 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3786 	struct eventfd_ctx *eventfd)
3787 {
3788 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3789 }
3790 
3791 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3792 	struct eventfd_ctx *eventfd, const char *args)
3793 {
3794 	struct mem_cgroup_eventfd_list *event;
3795 
3796 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3797 	if (!event)
3798 		return -ENOMEM;
3799 
3800 	spin_lock(&memcg_oom_lock);
3801 
3802 	event->eventfd = eventfd;
3803 	list_add(&event->list, &memcg->oom_notify);
3804 
3805 	/* already in OOM ? */
3806 	if (memcg->under_oom)
3807 		eventfd_signal(eventfd, 1);
3808 	spin_unlock(&memcg_oom_lock);
3809 
3810 	return 0;
3811 }
3812 
3813 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3814 	struct eventfd_ctx *eventfd)
3815 {
3816 	struct mem_cgroup_eventfd_list *ev, *tmp;
3817 
3818 	spin_lock(&memcg_oom_lock);
3819 
3820 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3821 		if (ev->eventfd == eventfd) {
3822 			list_del(&ev->list);
3823 			kfree(ev);
3824 		}
3825 	}
3826 
3827 	spin_unlock(&memcg_oom_lock);
3828 }
3829 
3830 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3831 {
3832 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3833 
3834 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3835 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3836 	seq_printf(sf, "oom_kill %lu\n",
3837 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3838 	return 0;
3839 }
3840 
3841 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3842 	struct cftype *cft, u64 val)
3843 {
3844 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3845 
3846 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3847 	if (!css->parent || !((val == 0) || (val == 1)))
3848 		return -EINVAL;
3849 
3850 	memcg->oom_kill_disable = val;
3851 	if (!val)
3852 		memcg_oom_recover(memcg);
3853 
3854 	return 0;
3855 }
3856 
3857 #ifdef CONFIG_CGROUP_WRITEBACK
3858 
3859 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3860 {
3861 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3862 }
3863 
3864 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3865 {
3866 	wb_domain_exit(&memcg->cgwb_domain);
3867 }
3868 
3869 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3870 {
3871 	wb_domain_size_changed(&memcg->cgwb_domain);
3872 }
3873 
3874 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3875 {
3876 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3877 
3878 	if (!memcg->css.parent)
3879 		return NULL;
3880 
3881 	return &memcg->cgwb_domain;
3882 }
3883 
3884 /**
3885  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3886  * @wb: bdi_writeback in question
3887  * @pfilepages: out parameter for number of file pages
3888  * @pheadroom: out parameter for number of allocatable pages according to memcg
3889  * @pdirty: out parameter for number of dirty pages
3890  * @pwriteback: out parameter for number of pages under writeback
3891  *
3892  * Determine the numbers of file, headroom, dirty, and writeback pages in
3893  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3894  * is a bit more involved.
3895  *
3896  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3897  * headroom is calculated as the lowest headroom of itself and the
3898  * ancestors.  Note that this doesn't consider the actual amount of
3899  * available memory in the system.  The caller should further cap
3900  * *@pheadroom accordingly.
3901  */
3902 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3903 			 unsigned long *pheadroom, unsigned long *pdirty,
3904 			 unsigned long *pwriteback)
3905 {
3906 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3907 	struct mem_cgroup *parent;
3908 
3909 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3910 
3911 	/* this should eventually include NR_UNSTABLE_NFS */
3912 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3913 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3914 						     (1 << LRU_ACTIVE_FILE));
3915 	*pheadroom = PAGE_COUNTER_MAX;
3916 
3917 	while ((parent = parent_mem_cgroup(memcg))) {
3918 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3919 		unsigned long used = page_counter_read(&memcg->memory);
3920 
3921 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3922 		memcg = parent;
3923 	}
3924 }
3925 
3926 #else	/* CONFIG_CGROUP_WRITEBACK */
3927 
3928 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3929 {
3930 	return 0;
3931 }
3932 
3933 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3934 {
3935 }
3936 
3937 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3938 {
3939 }
3940 
3941 #endif	/* CONFIG_CGROUP_WRITEBACK */
3942 
3943 /*
3944  * DO NOT USE IN NEW FILES.
3945  *
3946  * "cgroup.event_control" implementation.
3947  *
3948  * This is way over-engineered.  It tries to support fully configurable
3949  * events for each user.  Such level of flexibility is completely
3950  * unnecessary especially in the light of the planned unified hierarchy.
3951  *
3952  * Please deprecate this and replace with something simpler if at all
3953  * possible.
3954  */
3955 
3956 /*
3957  * Unregister event and free resources.
3958  *
3959  * Gets called from workqueue.
3960  */
3961 static void memcg_event_remove(struct work_struct *work)
3962 {
3963 	struct mem_cgroup_event *event =
3964 		container_of(work, struct mem_cgroup_event, remove);
3965 	struct mem_cgroup *memcg = event->memcg;
3966 
3967 	remove_wait_queue(event->wqh, &event->wait);
3968 
3969 	event->unregister_event(memcg, event->eventfd);
3970 
3971 	/* Notify userspace the event is going away. */
3972 	eventfd_signal(event->eventfd, 1);
3973 
3974 	eventfd_ctx_put(event->eventfd);
3975 	kfree(event);
3976 	css_put(&memcg->css);
3977 }
3978 
3979 /*
3980  * Gets called on EPOLLHUP on eventfd when user closes it.
3981  *
3982  * Called with wqh->lock held and interrupts disabled.
3983  */
3984 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3985 			    int sync, void *key)
3986 {
3987 	struct mem_cgroup_event *event =
3988 		container_of(wait, struct mem_cgroup_event, wait);
3989 	struct mem_cgroup *memcg = event->memcg;
3990 	__poll_t flags = key_to_poll(key);
3991 
3992 	if (flags & EPOLLHUP) {
3993 		/*
3994 		 * If the event has been detached at cgroup removal, we
3995 		 * can simply return knowing the other side will cleanup
3996 		 * for us.
3997 		 *
3998 		 * We can't race against event freeing since the other
3999 		 * side will require wqh->lock via remove_wait_queue(),
4000 		 * which we hold.
4001 		 */
4002 		spin_lock(&memcg->event_list_lock);
4003 		if (!list_empty(&event->list)) {
4004 			list_del_init(&event->list);
4005 			/*
4006 			 * We are in atomic context, but cgroup_event_remove()
4007 			 * may sleep, so we have to call it in workqueue.
4008 			 */
4009 			schedule_work(&event->remove);
4010 		}
4011 		spin_unlock(&memcg->event_list_lock);
4012 	}
4013 
4014 	return 0;
4015 }
4016 
4017 static void memcg_event_ptable_queue_proc(struct file *file,
4018 		wait_queue_head_t *wqh, poll_table *pt)
4019 {
4020 	struct mem_cgroup_event *event =
4021 		container_of(pt, struct mem_cgroup_event, pt);
4022 
4023 	event->wqh = wqh;
4024 	add_wait_queue(wqh, &event->wait);
4025 }
4026 
4027 /*
4028  * DO NOT USE IN NEW FILES.
4029  *
4030  * Parse input and register new cgroup event handler.
4031  *
4032  * Input must be in format '<event_fd> <control_fd> <args>'.
4033  * Interpretation of args is defined by control file implementation.
4034  */
4035 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4036 					 char *buf, size_t nbytes, loff_t off)
4037 {
4038 	struct cgroup_subsys_state *css = of_css(of);
4039 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4040 	struct mem_cgroup_event *event;
4041 	struct cgroup_subsys_state *cfile_css;
4042 	unsigned int efd, cfd;
4043 	struct fd efile;
4044 	struct fd cfile;
4045 	const char *name;
4046 	char *endp;
4047 	int ret;
4048 
4049 	buf = strstrip(buf);
4050 
4051 	efd = simple_strtoul(buf, &endp, 10);
4052 	if (*endp != ' ')
4053 		return -EINVAL;
4054 	buf = endp + 1;
4055 
4056 	cfd = simple_strtoul(buf, &endp, 10);
4057 	if ((*endp != ' ') && (*endp != '\0'))
4058 		return -EINVAL;
4059 	buf = endp + 1;
4060 
4061 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4062 	if (!event)
4063 		return -ENOMEM;
4064 
4065 	event->memcg = memcg;
4066 	INIT_LIST_HEAD(&event->list);
4067 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4068 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4069 	INIT_WORK(&event->remove, memcg_event_remove);
4070 
4071 	efile = fdget(efd);
4072 	if (!efile.file) {
4073 		ret = -EBADF;
4074 		goto out_kfree;
4075 	}
4076 
4077 	event->eventfd = eventfd_ctx_fileget(efile.file);
4078 	if (IS_ERR(event->eventfd)) {
4079 		ret = PTR_ERR(event->eventfd);
4080 		goto out_put_efile;
4081 	}
4082 
4083 	cfile = fdget(cfd);
4084 	if (!cfile.file) {
4085 		ret = -EBADF;
4086 		goto out_put_eventfd;
4087 	}
4088 
4089 	/* the process need read permission on control file */
4090 	/* AV: shouldn't we check that it's been opened for read instead? */
4091 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4092 	if (ret < 0)
4093 		goto out_put_cfile;
4094 
4095 	/*
4096 	 * Determine the event callbacks and set them in @event.  This used
4097 	 * to be done via struct cftype but cgroup core no longer knows
4098 	 * about these events.  The following is crude but the whole thing
4099 	 * is for compatibility anyway.
4100 	 *
4101 	 * DO NOT ADD NEW FILES.
4102 	 */
4103 	name = cfile.file->f_path.dentry->d_name.name;
4104 
4105 	if (!strcmp(name, "memory.usage_in_bytes")) {
4106 		event->register_event = mem_cgroup_usage_register_event;
4107 		event->unregister_event = mem_cgroup_usage_unregister_event;
4108 	} else if (!strcmp(name, "memory.oom_control")) {
4109 		event->register_event = mem_cgroup_oom_register_event;
4110 		event->unregister_event = mem_cgroup_oom_unregister_event;
4111 	} else if (!strcmp(name, "memory.pressure_level")) {
4112 		event->register_event = vmpressure_register_event;
4113 		event->unregister_event = vmpressure_unregister_event;
4114 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4115 		event->register_event = memsw_cgroup_usage_register_event;
4116 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4117 	} else {
4118 		ret = -EINVAL;
4119 		goto out_put_cfile;
4120 	}
4121 
4122 	/*
4123 	 * Verify @cfile should belong to @css.  Also, remaining events are
4124 	 * automatically removed on cgroup destruction but the removal is
4125 	 * asynchronous, so take an extra ref on @css.
4126 	 */
4127 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4128 					       &memory_cgrp_subsys);
4129 	ret = -EINVAL;
4130 	if (IS_ERR(cfile_css))
4131 		goto out_put_cfile;
4132 	if (cfile_css != css) {
4133 		css_put(cfile_css);
4134 		goto out_put_cfile;
4135 	}
4136 
4137 	ret = event->register_event(memcg, event->eventfd, buf);
4138 	if (ret)
4139 		goto out_put_css;
4140 
4141 	vfs_poll(efile.file, &event->pt);
4142 
4143 	spin_lock(&memcg->event_list_lock);
4144 	list_add(&event->list, &memcg->event_list);
4145 	spin_unlock(&memcg->event_list_lock);
4146 
4147 	fdput(cfile);
4148 	fdput(efile);
4149 
4150 	return nbytes;
4151 
4152 out_put_css:
4153 	css_put(css);
4154 out_put_cfile:
4155 	fdput(cfile);
4156 out_put_eventfd:
4157 	eventfd_ctx_put(event->eventfd);
4158 out_put_efile:
4159 	fdput(efile);
4160 out_kfree:
4161 	kfree(event);
4162 
4163 	return ret;
4164 }
4165 
4166 static struct cftype mem_cgroup_legacy_files[] = {
4167 	{
4168 		.name = "usage_in_bytes",
4169 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4170 		.read_u64 = mem_cgroup_read_u64,
4171 	},
4172 	{
4173 		.name = "max_usage_in_bytes",
4174 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4175 		.write = mem_cgroup_reset,
4176 		.read_u64 = mem_cgroup_read_u64,
4177 	},
4178 	{
4179 		.name = "limit_in_bytes",
4180 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4181 		.write = mem_cgroup_write,
4182 		.read_u64 = mem_cgroup_read_u64,
4183 	},
4184 	{
4185 		.name = "soft_limit_in_bytes",
4186 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4187 		.write = mem_cgroup_write,
4188 		.read_u64 = mem_cgroup_read_u64,
4189 	},
4190 	{
4191 		.name = "failcnt",
4192 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4193 		.write = mem_cgroup_reset,
4194 		.read_u64 = mem_cgroup_read_u64,
4195 	},
4196 	{
4197 		.name = "stat",
4198 		.seq_show = memcg_stat_show,
4199 	},
4200 	{
4201 		.name = "force_empty",
4202 		.write = mem_cgroup_force_empty_write,
4203 	},
4204 	{
4205 		.name = "use_hierarchy",
4206 		.write_u64 = mem_cgroup_hierarchy_write,
4207 		.read_u64 = mem_cgroup_hierarchy_read,
4208 	},
4209 	{
4210 		.name = "cgroup.event_control",		/* XXX: for compat */
4211 		.write = memcg_write_event_control,
4212 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4213 	},
4214 	{
4215 		.name = "swappiness",
4216 		.read_u64 = mem_cgroup_swappiness_read,
4217 		.write_u64 = mem_cgroup_swappiness_write,
4218 	},
4219 	{
4220 		.name = "move_charge_at_immigrate",
4221 		.read_u64 = mem_cgroup_move_charge_read,
4222 		.write_u64 = mem_cgroup_move_charge_write,
4223 	},
4224 	{
4225 		.name = "oom_control",
4226 		.seq_show = mem_cgroup_oom_control_read,
4227 		.write_u64 = mem_cgroup_oom_control_write,
4228 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4229 	},
4230 	{
4231 		.name = "pressure_level",
4232 	},
4233 #ifdef CONFIG_NUMA
4234 	{
4235 		.name = "numa_stat",
4236 		.seq_show = memcg_numa_stat_show,
4237 	},
4238 #endif
4239 	{
4240 		.name = "kmem.limit_in_bytes",
4241 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4242 		.write = mem_cgroup_write,
4243 		.read_u64 = mem_cgroup_read_u64,
4244 	},
4245 	{
4246 		.name = "kmem.usage_in_bytes",
4247 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4248 		.read_u64 = mem_cgroup_read_u64,
4249 	},
4250 	{
4251 		.name = "kmem.failcnt",
4252 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4253 		.write = mem_cgroup_reset,
4254 		.read_u64 = mem_cgroup_read_u64,
4255 	},
4256 	{
4257 		.name = "kmem.max_usage_in_bytes",
4258 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4259 		.write = mem_cgroup_reset,
4260 		.read_u64 = mem_cgroup_read_u64,
4261 	},
4262 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4263 	{
4264 		.name = "kmem.slabinfo",
4265 		.seq_start = memcg_slab_start,
4266 		.seq_next = memcg_slab_next,
4267 		.seq_stop = memcg_slab_stop,
4268 		.seq_show = memcg_slab_show,
4269 	},
4270 #endif
4271 	{
4272 		.name = "kmem.tcp.limit_in_bytes",
4273 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4274 		.write = mem_cgroup_write,
4275 		.read_u64 = mem_cgroup_read_u64,
4276 	},
4277 	{
4278 		.name = "kmem.tcp.usage_in_bytes",
4279 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4280 		.read_u64 = mem_cgroup_read_u64,
4281 	},
4282 	{
4283 		.name = "kmem.tcp.failcnt",
4284 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4285 		.write = mem_cgroup_reset,
4286 		.read_u64 = mem_cgroup_read_u64,
4287 	},
4288 	{
4289 		.name = "kmem.tcp.max_usage_in_bytes",
4290 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4291 		.write = mem_cgroup_reset,
4292 		.read_u64 = mem_cgroup_read_u64,
4293 	},
4294 	{ },	/* terminate */
4295 };
4296 
4297 /*
4298  * Private memory cgroup IDR
4299  *
4300  * Swap-out records and page cache shadow entries need to store memcg
4301  * references in constrained space, so we maintain an ID space that is
4302  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4303  * memory-controlled cgroups to 64k.
4304  *
4305  * However, there usually are many references to the oflline CSS after
4306  * the cgroup has been destroyed, such as page cache or reclaimable
4307  * slab objects, that don't need to hang on to the ID. We want to keep
4308  * those dead CSS from occupying IDs, or we might quickly exhaust the
4309  * relatively small ID space and prevent the creation of new cgroups
4310  * even when there are much fewer than 64k cgroups - possibly none.
4311  *
4312  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4313  * be freed and recycled when it's no longer needed, which is usually
4314  * when the CSS is offlined.
4315  *
4316  * The only exception to that are records of swapped out tmpfs/shmem
4317  * pages that need to be attributed to live ancestors on swapin. But
4318  * those references are manageable from userspace.
4319  */
4320 
4321 static DEFINE_IDR(mem_cgroup_idr);
4322 
4323 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4324 {
4325 	if (memcg->id.id > 0) {
4326 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4327 		memcg->id.id = 0;
4328 	}
4329 }
4330 
4331 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4332 {
4333 	refcount_add(n, &memcg->id.ref);
4334 }
4335 
4336 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4337 {
4338 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4339 		mem_cgroup_id_remove(memcg);
4340 
4341 		/* Memcg ID pins CSS */
4342 		css_put(&memcg->css);
4343 	}
4344 }
4345 
4346 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4347 {
4348 	mem_cgroup_id_get_many(memcg, 1);
4349 }
4350 
4351 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4352 {
4353 	mem_cgroup_id_put_many(memcg, 1);
4354 }
4355 
4356 /**
4357  * mem_cgroup_from_id - look up a memcg from a memcg id
4358  * @id: the memcg id to look up
4359  *
4360  * Caller must hold rcu_read_lock().
4361  */
4362 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4363 {
4364 	WARN_ON_ONCE(!rcu_read_lock_held());
4365 	return idr_find(&mem_cgroup_idr, id);
4366 }
4367 
4368 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4369 {
4370 	struct mem_cgroup_per_node *pn;
4371 	int tmp = node;
4372 	/*
4373 	 * This routine is called against possible nodes.
4374 	 * But it's BUG to call kmalloc() against offline node.
4375 	 *
4376 	 * TODO: this routine can waste much memory for nodes which will
4377 	 *       never be onlined. It's better to use memory hotplug callback
4378 	 *       function.
4379 	 */
4380 	if (!node_state(node, N_NORMAL_MEMORY))
4381 		tmp = -1;
4382 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4383 	if (!pn)
4384 		return 1;
4385 
4386 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4387 	if (!pn->lruvec_stat_cpu) {
4388 		kfree(pn);
4389 		return 1;
4390 	}
4391 
4392 	lruvec_init(&pn->lruvec);
4393 	pn->usage_in_excess = 0;
4394 	pn->on_tree = false;
4395 	pn->memcg = memcg;
4396 
4397 	memcg->nodeinfo[node] = pn;
4398 	return 0;
4399 }
4400 
4401 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4402 {
4403 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4404 
4405 	if (!pn)
4406 		return;
4407 
4408 	free_percpu(pn->lruvec_stat_cpu);
4409 	kfree(pn);
4410 }
4411 
4412 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4413 {
4414 	int node;
4415 
4416 	for_each_node(node)
4417 		free_mem_cgroup_per_node_info(memcg, node);
4418 	free_percpu(memcg->stat_cpu);
4419 	kfree(memcg);
4420 }
4421 
4422 static void mem_cgroup_free(struct mem_cgroup *memcg)
4423 {
4424 	memcg_wb_domain_exit(memcg);
4425 	__mem_cgroup_free(memcg);
4426 }
4427 
4428 static struct mem_cgroup *mem_cgroup_alloc(void)
4429 {
4430 	struct mem_cgroup *memcg;
4431 	size_t size;
4432 	int node;
4433 
4434 	size = sizeof(struct mem_cgroup);
4435 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4436 
4437 	memcg = kzalloc(size, GFP_KERNEL);
4438 	if (!memcg)
4439 		return NULL;
4440 
4441 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4442 				 1, MEM_CGROUP_ID_MAX,
4443 				 GFP_KERNEL);
4444 	if (memcg->id.id < 0)
4445 		goto fail;
4446 
4447 	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4448 	if (!memcg->stat_cpu)
4449 		goto fail;
4450 
4451 	for_each_node(node)
4452 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4453 			goto fail;
4454 
4455 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4456 		goto fail;
4457 
4458 	INIT_WORK(&memcg->high_work, high_work_func);
4459 	memcg->last_scanned_node = MAX_NUMNODES;
4460 	INIT_LIST_HEAD(&memcg->oom_notify);
4461 	mutex_init(&memcg->thresholds_lock);
4462 	spin_lock_init(&memcg->move_lock);
4463 	vmpressure_init(&memcg->vmpressure);
4464 	INIT_LIST_HEAD(&memcg->event_list);
4465 	spin_lock_init(&memcg->event_list_lock);
4466 	memcg->socket_pressure = jiffies;
4467 #ifdef CONFIG_MEMCG_KMEM
4468 	memcg->kmemcg_id = -1;
4469 #endif
4470 #ifdef CONFIG_CGROUP_WRITEBACK
4471 	INIT_LIST_HEAD(&memcg->cgwb_list);
4472 #endif
4473 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4474 	return memcg;
4475 fail:
4476 	mem_cgroup_id_remove(memcg);
4477 	__mem_cgroup_free(memcg);
4478 	return NULL;
4479 }
4480 
4481 static struct cgroup_subsys_state * __ref
4482 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4483 {
4484 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4485 	struct mem_cgroup *memcg;
4486 	long error = -ENOMEM;
4487 
4488 	memcg = mem_cgroup_alloc();
4489 	if (!memcg)
4490 		return ERR_PTR(error);
4491 
4492 	memcg->high = PAGE_COUNTER_MAX;
4493 	memcg->soft_limit = PAGE_COUNTER_MAX;
4494 	if (parent) {
4495 		memcg->swappiness = mem_cgroup_swappiness(parent);
4496 		memcg->oom_kill_disable = parent->oom_kill_disable;
4497 	}
4498 	if (parent && parent->use_hierarchy) {
4499 		memcg->use_hierarchy = true;
4500 		page_counter_init(&memcg->memory, &parent->memory);
4501 		page_counter_init(&memcg->swap, &parent->swap);
4502 		page_counter_init(&memcg->memsw, &parent->memsw);
4503 		page_counter_init(&memcg->kmem, &parent->kmem);
4504 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4505 	} else {
4506 		page_counter_init(&memcg->memory, NULL);
4507 		page_counter_init(&memcg->swap, NULL);
4508 		page_counter_init(&memcg->memsw, NULL);
4509 		page_counter_init(&memcg->kmem, NULL);
4510 		page_counter_init(&memcg->tcpmem, NULL);
4511 		/*
4512 		 * Deeper hierachy with use_hierarchy == false doesn't make
4513 		 * much sense so let cgroup subsystem know about this
4514 		 * unfortunate state in our controller.
4515 		 */
4516 		if (parent != root_mem_cgroup)
4517 			memory_cgrp_subsys.broken_hierarchy = true;
4518 	}
4519 
4520 	/* The following stuff does not apply to the root */
4521 	if (!parent) {
4522 		root_mem_cgroup = memcg;
4523 		return &memcg->css;
4524 	}
4525 
4526 	error = memcg_online_kmem(memcg);
4527 	if (error)
4528 		goto fail;
4529 
4530 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4531 		static_branch_inc(&memcg_sockets_enabled_key);
4532 
4533 	return &memcg->css;
4534 fail:
4535 	mem_cgroup_id_remove(memcg);
4536 	mem_cgroup_free(memcg);
4537 	return ERR_PTR(-ENOMEM);
4538 }
4539 
4540 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4541 {
4542 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4543 
4544 	/*
4545 	 * A memcg must be visible for memcg_expand_shrinker_maps()
4546 	 * by the time the maps are allocated. So, we allocate maps
4547 	 * here, when for_each_mem_cgroup() can't skip it.
4548 	 */
4549 	if (memcg_alloc_shrinker_maps(memcg)) {
4550 		mem_cgroup_id_remove(memcg);
4551 		return -ENOMEM;
4552 	}
4553 
4554 	/* Online state pins memcg ID, memcg ID pins CSS */
4555 	refcount_set(&memcg->id.ref, 1);
4556 	css_get(css);
4557 	return 0;
4558 }
4559 
4560 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4561 {
4562 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4563 	struct mem_cgroup_event *event, *tmp;
4564 
4565 	/*
4566 	 * Unregister events and notify userspace.
4567 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4568 	 * directory to avoid race between userspace and kernelspace.
4569 	 */
4570 	spin_lock(&memcg->event_list_lock);
4571 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4572 		list_del_init(&event->list);
4573 		schedule_work(&event->remove);
4574 	}
4575 	spin_unlock(&memcg->event_list_lock);
4576 
4577 	page_counter_set_min(&memcg->memory, 0);
4578 	page_counter_set_low(&memcg->memory, 0);
4579 
4580 	memcg_offline_kmem(memcg);
4581 	wb_memcg_offline(memcg);
4582 
4583 	drain_all_stock(memcg);
4584 
4585 	mem_cgroup_id_put(memcg);
4586 }
4587 
4588 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4589 {
4590 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4591 
4592 	invalidate_reclaim_iterators(memcg);
4593 }
4594 
4595 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4596 {
4597 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4598 
4599 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4600 		static_branch_dec(&memcg_sockets_enabled_key);
4601 
4602 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4603 		static_branch_dec(&memcg_sockets_enabled_key);
4604 
4605 	vmpressure_cleanup(&memcg->vmpressure);
4606 	cancel_work_sync(&memcg->high_work);
4607 	mem_cgroup_remove_from_trees(memcg);
4608 	memcg_free_shrinker_maps(memcg);
4609 	memcg_free_kmem(memcg);
4610 	mem_cgroup_free(memcg);
4611 }
4612 
4613 /**
4614  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4615  * @css: the target css
4616  *
4617  * Reset the states of the mem_cgroup associated with @css.  This is
4618  * invoked when the userland requests disabling on the default hierarchy
4619  * but the memcg is pinned through dependency.  The memcg should stop
4620  * applying policies and should revert to the vanilla state as it may be
4621  * made visible again.
4622  *
4623  * The current implementation only resets the essential configurations.
4624  * This needs to be expanded to cover all the visible parts.
4625  */
4626 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4627 {
4628 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4629 
4630 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4631 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4632 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4633 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4634 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4635 	page_counter_set_min(&memcg->memory, 0);
4636 	page_counter_set_low(&memcg->memory, 0);
4637 	memcg->high = PAGE_COUNTER_MAX;
4638 	memcg->soft_limit = PAGE_COUNTER_MAX;
4639 	memcg_wb_domain_size_changed(memcg);
4640 }
4641 
4642 #ifdef CONFIG_MMU
4643 /* Handlers for move charge at task migration. */
4644 static int mem_cgroup_do_precharge(unsigned long count)
4645 {
4646 	int ret;
4647 
4648 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4649 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4650 	if (!ret) {
4651 		mc.precharge += count;
4652 		return ret;
4653 	}
4654 
4655 	/* Try charges one by one with reclaim, but do not retry */
4656 	while (count--) {
4657 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4658 		if (ret)
4659 			return ret;
4660 		mc.precharge++;
4661 		cond_resched();
4662 	}
4663 	return 0;
4664 }
4665 
4666 union mc_target {
4667 	struct page	*page;
4668 	swp_entry_t	ent;
4669 };
4670 
4671 enum mc_target_type {
4672 	MC_TARGET_NONE = 0,
4673 	MC_TARGET_PAGE,
4674 	MC_TARGET_SWAP,
4675 	MC_TARGET_DEVICE,
4676 };
4677 
4678 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4679 						unsigned long addr, pte_t ptent)
4680 {
4681 	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4682 
4683 	if (!page || !page_mapped(page))
4684 		return NULL;
4685 	if (PageAnon(page)) {
4686 		if (!(mc.flags & MOVE_ANON))
4687 			return NULL;
4688 	} else {
4689 		if (!(mc.flags & MOVE_FILE))
4690 			return NULL;
4691 	}
4692 	if (!get_page_unless_zero(page))
4693 		return NULL;
4694 
4695 	return page;
4696 }
4697 
4698 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4699 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4700 			pte_t ptent, swp_entry_t *entry)
4701 {
4702 	struct page *page = NULL;
4703 	swp_entry_t ent = pte_to_swp_entry(ptent);
4704 
4705 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4706 		return NULL;
4707 
4708 	/*
4709 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4710 	 * a device and because they are not accessible by CPU they are store
4711 	 * as special swap entry in the CPU page table.
4712 	 */
4713 	if (is_device_private_entry(ent)) {
4714 		page = device_private_entry_to_page(ent);
4715 		/*
4716 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4717 		 * a refcount of 1 when free (unlike normal page)
4718 		 */
4719 		if (!page_ref_add_unless(page, 1, 1))
4720 			return NULL;
4721 		return page;
4722 	}
4723 
4724 	/*
4725 	 * Because lookup_swap_cache() updates some statistics counter,
4726 	 * we call find_get_page() with swapper_space directly.
4727 	 */
4728 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4729 	if (do_memsw_account())
4730 		entry->val = ent.val;
4731 
4732 	return page;
4733 }
4734 #else
4735 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4736 			pte_t ptent, swp_entry_t *entry)
4737 {
4738 	return NULL;
4739 }
4740 #endif
4741 
4742 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4743 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4744 {
4745 	struct page *page = NULL;
4746 	struct address_space *mapping;
4747 	pgoff_t pgoff;
4748 
4749 	if (!vma->vm_file) /* anonymous vma */
4750 		return NULL;
4751 	if (!(mc.flags & MOVE_FILE))
4752 		return NULL;
4753 
4754 	mapping = vma->vm_file->f_mapping;
4755 	pgoff = linear_page_index(vma, addr);
4756 
4757 	/* page is moved even if it's not RSS of this task(page-faulted). */
4758 #ifdef CONFIG_SWAP
4759 	/* shmem/tmpfs may report page out on swap: account for that too. */
4760 	if (shmem_mapping(mapping)) {
4761 		page = find_get_entry(mapping, pgoff);
4762 		if (xa_is_value(page)) {
4763 			swp_entry_t swp = radix_to_swp_entry(page);
4764 			if (do_memsw_account())
4765 				*entry = swp;
4766 			page = find_get_page(swap_address_space(swp),
4767 					     swp_offset(swp));
4768 		}
4769 	} else
4770 		page = find_get_page(mapping, pgoff);
4771 #else
4772 	page = find_get_page(mapping, pgoff);
4773 #endif
4774 	return page;
4775 }
4776 
4777 /**
4778  * mem_cgroup_move_account - move account of the page
4779  * @page: the page
4780  * @compound: charge the page as compound or small page
4781  * @from: mem_cgroup which the page is moved from.
4782  * @to:	mem_cgroup which the page is moved to. @from != @to.
4783  *
4784  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4785  *
4786  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4787  * from old cgroup.
4788  */
4789 static int mem_cgroup_move_account(struct page *page,
4790 				   bool compound,
4791 				   struct mem_cgroup *from,
4792 				   struct mem_cgroup *to)
4793 {
4794 	unsigned long flags;
4795 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4796 	int ret;
4797 	bool anon;
4798 
4799 	VM_BUG_ON(from == to);
4800 	VM_BUG_ON_PAGE(PageLRU(page), page);
4801 	VM_BUG_ON(compound && !PageTransHuge(page));
4802 
4803 	/*
4804 	 * Prevent mem_cgroup_migrate() from looking at
4805 	 * page->mem_cgroup of its source page while we change it.
4806 	 */
4807 	ret = -EBUSY;
4808 	if (!trylock_page(page))
4809 		goto out;
4810 
4811 	ret = -EINVAL;
4812 	if (page->mem_cgroup != from)
4813 		goto out_unlock;
4814 
4815 	anon = PageAnon(page);
4816 
4817 	spin_lock_irqsave(&from->move_lock, flags);
4818 
4819 	if (!anon && page_mapped(page)) {
4820 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4821 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4822 	}
4823 
4824 	/*
4825 	 * move_lock grabbed above and caller set from->moving_account, so
4826 	 * mod_memcg_page_state will serialize updates to PageDirty.
4827 	 * So mapping should be stable for dirty pages.
4828 	 */
4829 	if (!anon && PageDirty(page)) {
4830 		struct address_space *mapping = page_mapping(page);
4831 
4832 		if (mapping_cap_account_dirty(mapping)) {
4833 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4834 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4835 		}
4836 	}
4837 
4838 	if (PageWriteback(page)) {
4839 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4840 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4841 	}
4842 
4843 	/*
4844 	 * It is safe to change page->mem_cgroup here because the page
4845 	 * is referenced, charged, and isolated - we can't race with
4846 	 * uncharging, charging, migration, or LRU putback.
4847 	 */
4848 
4849 	/* caller should have done css_get */
4850 	page->mem_cgroup = to;
4851 	spin_unlock_irqrestore(&from->move_lock, flags);
4852 
4853 	ret = 0;
4854 
4855 	local_irq_disable();
4856 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4857 	memcg_check_events(to, page);
4858 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4859 	memcg_check_events(from, page);
4860 	local_irq_enable();
4861 out_unlock:
4862 	unlock_page(page);
4863 out:
4864 	return ret;
4865 }
4866 
4867 /**
4868  * get_mctgt_type - get target type of moving charge
4869  * @vma: the vma the pte to be checked belongs
4870  * @addr: the address corresponding to the pte to be checked
4871  * @ptent: the pte to be checked
4872  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4873  *
4874  * Returns
4875  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4876  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4877  *     move charge. if @target is not NULL, the page is stored in target->page
4878  *     with extra refcnt got(Callers should handle it).
4879  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4880  *     target for charge migration. if @target is not NULL, the entry is stored
4881  *     in target->ent.
4882  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4883  *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4884  *     For now we such page is charge like a regular page would be as for all
4885  *     intent and purposes it is just special memory taking the place of a
4886  *     regular page.
4887  *
4888  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4889  *
4890  * Called with pte lock held.
4891  */
4892 
4893 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4894 		unsigned long addr, pte_t ptent, union mc_target *target)
4895 {
4896 	struct page *page = NULL;
4897 	enum mc_target_type ret = MC_TARGET_NONE;
4898 	swp_entry_t ent = { .val = 0 };
4899 
4900 	if (pte_present(ptent))
4901 		page = mc_handle_present_pte(vma, addr, ptent);
4902 	else if (is_swap_pte(ptent))
4903 		page = mc_handle_swap_pte(vma, ptent, &ent);
4904 	else if (pte_none(ptent))
4905 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4906 
4907 	if (!page && !ent.val)
4908 		return ret;
4909 	if (page) {
4910 		/*
4911 		 * Do only loose check w/o serialization.
4912 		 * mem_cgroup_move_account() checks the page is valid or
4913 		 * not under LRU exclusion.
4914 		 */
4915 		if (page->mem_cgroup == mc.from) {
4916 			ret = MC_TARGET_PAGE;
4917 			if (is_device_private_page(page) ||
4918 			    is_device_public_page(page))
4919 				ret = MC_TARGET_DEVICE;
4920 			if (target)
4921 				target->page = page;
4922 		}
4923 		if (!ret || !target)
4924 			put_page(page);
4925 	}
4926 	/*
4927 	 * There is a swap entry and a page doesn't exist or isn't charged.
4928 	 * But we cannot move a tail-page in a THP.
4929 	 */
4930 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4931 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4932 		ret = MC_TARGET_SWAP;
4933 		if (target)
4934 			target->ent = ent;
4935 	}
4936 	return ret;
4937 }
4938 
4939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4940 /*
4941  * We don't consider PMD mapped swapping or file mapped pages because THP does
4942  * not support them for now.
4943  * Caller should make sure that pmd_trans_huge(pmd) is true.
4944  */
4945 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4946 		unsigned long addr, pmd_t pmd, union mc_target *target)
4947 {
4948 	struct page *page = NULL;
4949 	enum mc_target_type ret = MC_TARGET_NONE;
4950 
4951 	if (unlikely(is_swap_pmd(pmd))) {
4952 		VM_BUG_ON(thp_migration_supported() &&
4953 				  !is_pmd_migration_entry(pmd));
4954 		return ret;
4955 	}
4956 	page = pmd_page(pmd);
4957 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4958 	if (!(mc.flags & MOVE_ANON))
4959 		return ret;
4960 	if (page->mem_cgroup == mc.from) {
4961 		ret = MC_TARGET_PAGE;
4962 		if (target) {
4963 			get_page(page);
4964 			target->page = page;
4965 		}
4966 	}
4967 	return ret;
4968 }
4969 #else
4970 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4971 		unsigned long addr, pmd_t pmd, union mc_target *target)
4972 {
4973 	return MC_TARGET_NONE;
4974 }
4975 #endif
4976 
4977 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4978 					unsigned long addr, unsigned long end,
4979 					struct mm_walk *walk)
4980 {
4981 	struct vm_area_struct *vma = walk->vma;
4982 	pte_t *pte;
4983 	spinlock_t *ptl;
4984 
4985 	ptl = pmd_trans_huge_lock(pmd, vma);
4986 	if (ptl) {
4987 		/*
4988 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
4989 		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4990 		 * MEMORY_DEVICE_PRIVATE but this might change.
4991 		 */
4992 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4993 			mc.precharge += HPAGE_PMD_NR;
4994 		spin_unlock(ptl);
4995 		return 0;
4996 	}
4997 
4998 	if (pmd_trans_unstable(pmd))
4999 		return 0;
5000 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5001 	for (; addr != end; pte++, addr += PAGE_SIZE)
5002 		if (get_mctgt_type(vma, addr, *pte, NULL))
5003 			mc.precharge++;	/* increment precharge temporarily */
5004 	pte_unmap_unlock(pte - 1, ptl);
5005 	cond_resched();
5006 
5007 	return 0;
5008 }
5009 
5010 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5011 {
5012 	unsigned long precharge;
5013 
5014 	struct mm_walk mem_cgroup_count_precharge_walk = {
5015 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
5016 		.mm = mm,
5017 	};
5018 	down_read(&mm->mmap_sem);
5019 	walk_page_range(0, mm->highest_vm_end,
5020 			&mem_cgroup_count_precharge_walk);
5021 	up_read(&mm->mmap_sem);
5022 
5023 	precharge = mc.precharge;
5024 	mc.precharge = 0;
5025 
5026 	return precharge;
5027 }
5028 
5029 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5030 {
5031 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5032 
5033 	VM_BUG_ON(mc.moving_task);
5034 	mc.moving_task = current;
5035 	return mem_cgroup_do_precharge(precharge);
5036 }
5037 
5038 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5039 static void __mem_cgroup_clear_mc(void)
5040 {
5041 	struct mem_cgroup *from = mc.from;
5042 	struct mem_cgroup *to = mc.to;
5043 
5044 	/* we must uncharge all the leftover precharges from mc.to */
5045 	if (mc.precharge) {
5046 		cancel_charge(mc.to, mc.precharge);
5047 		mc.precharge = 0;
5048 	}
5049 	/*
5050 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5051 	 * we must uncharge here.
5052 	 */
5053 	if (mc.moved_charge) {
5054 		cancel_charge(mc.from, mc.moved_charge);
5055 		mc.moved_charge = 0;
5056 	}
5057 	/* we must fixup refcnts and charges */
5058 	if (mc.moved_swap) {
5059 		/* uncharge swap account from the old cgroup */
5060 		if (!mem_cgroup_is_root(mc.from))
5061 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5062 
5063 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5064 
5065 		/*
5066 		 * we charged both to->memory and to->memsw, so we
5067 		 * should uncharge to->memory.
5068 		 */
5069 		if (!mem_cgroup_is_root(mc.to))
5070 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5071 
5072 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5073 		css_put_many(&mc.to->css, mc.moved_swap);
5074 
5075 		mc.moved_swap = 0;
5076 	}
5077 	memcg_oom_recover(from);
5078 	memcg_oom_recover(to);
5079 	wake_up_all(&mc.waitq);
5080 }
5081 
5082 static void mem_cgroup_clear_mc(void)
5083 {
5084 	struct mm_struct *mm = mc.mm;
5085 
5086 	/*
5087 	 * we must clear moving_task before waking up waiters at the end of
5088 	 * task migration.
5089 	 */
5090 	mc.moving_task = NULL;
5091 	__mem_cgroup_clear_mc();
5092 	spin_lock(&mc.lock);
5093 	mc.from = NULL;
5094 	mc.to = NULL;
5095 	mc.mm = NULL;
5096 	spin_unlock(&mc.lock);
5097 
5098 	mmput(mm);
5099 }
5100 
5101 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5102 {
5103 	struct cgroup_subsys_state *css;
5104 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5105 	struct mem_cgroup *from;
5106 	struct task_struct *leader, *p;
5107 	struct mm_struct *mm;
5108 	unsigned long move_flags;
5109 	int ret = 0;
5110 
5111 	/* charge immigration isn't supported on the default hierarchy */
5112 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5113 		return 0;
5114 
5115 	/*
5116 	 * Multi-process migrations only happen on the default hierarchy
5117 	 * where charge immigration is not used.  Perform charge
5118 	 * immigration if @tset contains a leader and whine if there are
5119 	 * multiple.
5120 	 */
5121 	p = NULL;
5122 	cgroup_taskset_for_each_leader(leader, css, tset) {
5123 		WARN_ON_ONCE(p);
5124 		p = leader;
5125 		memcg = mem_cgroup_from_css(css);
5126 	}
5127 	if (!p)
5128 		return 0;
5129 
5130 	/*
5131 	 * We are now commited to this value whatever it is. Changes in this
5132 	 * tunable will only affect upcoming migrations, not the current one.
5133 	 * So we need to save it, and keep it going.
5134 	 */
5135 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5136 	if (!move_flags)
5137 		return 0;
5138 
5139 	from = mem_cgroup_from_task(p);
5140 
5141 	VM_BUG_ON(from == memcg);
5142 
5143 	mm = get_task_mm(p);
5144 	if (!mm)
5145 		return 0;
5146 	/* We move charges only when we move a owner of the mm */
5147 	if (mm->owner == p) {
5148 		VM_BUG_ON(mc.from);
5149 		VM_BUG_ON(mc.to);
5150 		VM_BUG_ON(mc.precharge);
5151 		VM_BUG_ON(mc.moved_charge);
5152 		VM_BUG_ON(mc.moved_swap);
5153 
5154 		spin_lock(&mc.lock);
5155 		mc.mm = mm;
5156 		mc.from = from;
5157 		mc.to = memcg;
5158 		mc.flags = move_flags;
5159 		spin_unlock(&mc.lock);
5160 		/* We set mc.moving_task later */
5161 
5162 		ret = mem_cgroup_precharge_mc(mm);
5163 		if (ret)
5164 			mem_cgroup_clear_mc();
5165 	} else {
5166 		mmput(mm);
5167 	}
5168 	return ret;
5169 }
5170 
5171 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5172 {
5173 	if (mc.to)
5174 		mem_cgroup_clear_mc();
5175 }
5176 
5177 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5178 				unsigned long addr, unsigned long end,
5179 				struct mm_walk *walk)
5180 {
5181 	int ret = 0;
5182 	struct vm_area_struct *vma = walk->vma;
5183 	pte_t *pte;
5184 	spinlock_t *ptl;
5185 	enum mc_target_type target_type;
5186 	union mc_target target;
5187 	struct page *page;
5188 
5189 	ptl = pmd_trans_huge_lock(pmd, vma);
5190 	if (ptl) {
5191 		if (mc.precharge < HPAGE_PMD_NR) {
5192 			spin_unlock(ptl);
5193 			return 0;
5194 		}
5195 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5196 		if (target_type == MC_TARGET_PAGE) {
5197 			page = target.page;
5198 			if (!isolate_lru_page(page)) {
5199 				if (!mem_cgroup_move_account(page, true,
5200 							     mc.from, mc.to)) {
5201 					mc.precharge -= HPAGE_PMD_NR;
5202 					mc.moved_charge += HPAGE_PMD_NR;
5203 				}
5204 				putback_lru_page(page);
5205 			}
5206 			put_page(page);
5207 		} else if (target_type == MC_TARGET_DEVICE) {
5208 			page = target.page;
5209 			if (!mem_cgroup_move_account(page, true,
5210 						     mc.from, mc.to)) {
5211 				mc.precharge -= HPAGE_PMD_NR;
5212 				mc.moved_charge += HPAGE_PMD_NR;
5213 			}
5214 			put_page(page);
5215 		}
5216 		spin_unlock(ptl);
5217 		return 0;
5218 	}
5219 
5220 	if (pmd_trans_unstable(pmd))
5221 		return 0;
5222 retry:
5223 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5224 	for (; addr != end; addr += PAGE_SIZE) {
5225 		pte_t ptent = *(pte++);
5226 		bool device = false;
5227 		swp_entry_t ent;
5228 
5229 		if (!mc.precharge)
5230 			break;
5231 
5232 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5233 		case MC_TARGET_DEVICE:
5234 			device = true;
5235 			/* fall through */
5236 		case MC_TARGET_PAGE:
5237 			page = target.page;
5238 			/*
5239 			 * We can have a part of the split pmd here. Moving it
5240 			 * can be done but it would be too convoluted so simply
5241 			 * ignore such a partial THP and keep it in original
5242 			 * memcg. There should be somebody mapping the head.
5243 			 */
5244 			if (PageTransCompound(page))
5245 				goto put;
5246 			if (!device && isolate_lru_page(page))
5247 				goto put;
5248 			if (!mem_cgroup_move_account(page, false,
5249 						mc.from, mc.to)) {
5250 				mc.precharge--;
5251 				/* we uncharge from mc.from later. */
5252 				mc.moved_charge++;
5253 			}
5254 			if (!device)
5255 				putback_lru_page(page);
5256 put:			/* get_mctgt_type() gets the page */
5257 			put_page(page);
5258 			break;
5259 		case MC_TARGET_SWAP:
5260 			ent = target.ent;
5261 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5262 				mc.precharge--;
5263 				/* we fixup refcnts and charges later. */
5264 				mc.moved_swap++;
5265 			}
5266 			break;
5267 		default:
5268 			break;
5269 		}
5270 	}
5271 	pte_unmap_unlock(pte - 1, ptl);
5272 	cond_resched();
5273 
5274 	if (addr != end) {
5275 		/*
5276 		 * We have consumed all precharges we got in can_attach().
5277 		 * We try charge one by one, but don't do any additional
5278 		 * charges to mc.to if we have failed in charge once in attach()
5279 		 * phase.
5280 		 */
5281 		ret = mem_cgroup_do_precharge(1);
5282 		if (!ret)
5283 			goto retry;
5284 	}
5285 
5286 	return ret;
5287 }
5288 
5289 static void mem_cgroup_move_charge(void)
5290 {
5291 	struct mm_walk mem_cgroup_move_charge_walk = {
5292 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5293 		.mm = mc.mm,
5294 	};
5295 
5296 	lru_add_drain_all();
5297 	/*
5298 	 * Signal lock_page_memcg() to take the memcg's move_lock
5299 	 * while we're moving its pages to another memcg. Then wait
5300 	 * for already started RCU-only updates to finish.
5301 	 */
5302 	atomic_inc(&mc.from->moving_account);
5303 	synchronize_rcu();
5304 retry:
5305 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5306 		/*
5307 		 * Someone who are holding the mmap_sem might be waiting in
5308 		 * waitq. So we cancel all extra charges, wake up all waiters,
5309 		 * and retry. Because we cancel precharges, we might not be able
5310 		 * to move enough charges, but moving charge is a best-effort
5311 		 * feature anyway, so it wouldn't be a big problem.
5312 		 */
5313 		__mem_cgroup_clear_mc();
5314 		cond_resched();
5315 		goto retry;
5316 	}
5317 	/*
5318 	 * When we have consumed all precharges and failed in doing
5319 	 * additional charge, the page walk just aborts.
5320 	 */
5321 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5322 
5323 	up_read(&mc.mm->mmap_sem);
5324 	atomic_dec(&mc.from->moving_account);
5325 }
5326 
5327 static void mem_cgroup_move_task(void)
5328 {
5329 	if (mc.to) {
5330 		mem_cgroup_move_charge();
5331 		mem_cgroup_clear_mc();
5332 	}
5333 }
5334 #else	/* !CONFIG_MMU */
5335 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5336 {
5337 	return 0;
5338 }
5339 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5340 {
5341 }
5342 static void mem_cgroup_move_task(void)
5343 {
5344 }
5345 #endif
5346 
5347 /*
5348  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5349  * to verify whether we're attached to the default hierarchy on each mount
5350  * attempt.
5351  */
5352 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5353 {
5354 	/*
5355 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5356 	 * guarantees that @root doesn't have any children, so turning it
5357 	 * on for the root memcg is enough.
5358 	 */
5359 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5360 		root_mem_cgroup->use_hierarchy = true;
5361 	else
5362 		root_mem_cgroup->use_hierarchy = false;
5363 }
5364 
5365 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5366 {
5367 	if (value == PAGE_COUNTER_MAX)
5368 		seq_puts(m, "max\n");
5369 	else
5370 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5371 
5372 	return 0;
5373 }
5374 
5375 static u64 memory_current_read(struct cgroup_subsys_state *css,
5376 			       struct cftype *cft)
5377 {
5378 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5379 
5380 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5381 }
5382 
5383 static int memory_min_show(struct seq_file *m, void *v)
5384 {
5385 	return seq_puts_memcg_tunable(m,
5386 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5387 }
5388 
5389 static ssize_t memory_min_write(struct kernfs_open_file *of,
5390 				char *buf, size_t nbytes, loff_t off)
5391 {
5392 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5393 	unsigned long min;
5394 	int err;
5395 
5396 	buf = strstrip(buf);
5397 	err = page_counter_memparse(buf, "max", &min);
5398 	if (err)
5399 		return err;
5400 
5401 	page_counter_set_min(&memcg->memory, min);
5402 
5403 	return nbytes;
5404 }
5405 
5406 static int memory_low_show(struct seq_file *m, void *v)
5407 {
5408 	return seq_puts_memcg_tunable(m,
5409 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5410 }
5411 
5412 static ssize_t memory_low_write(struct kernfs_open_file *of,
5413 				char *buf, size_t nbytes, loff_t off)
5414 {
5415 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5416 	unsigned long low;
5417 	int err;
5418 
5419 	buf = strstrip(buf);
5420 	err = page_counter_memparse(buf, "max", &low);
5421 	if (err)
5422 		return err;
5423 
5424 	page_counter_set_low(&memcg->memory, low);
5425 
5426 	return nbytes;
5427 }
5428 
5429 static int memory_high_show(struct seq_file *m, void *v)
5430 {
5431 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5432 }
5433 
5434 static ssize_t memory_high_write(struct kernfs_open_file *of,
5435 				 char *buf, size_t nbytes, loff_t off)
5436 {
5437 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5438 	unsigned long nr_pages;
5439 	unsigned long high;
5440 	int err;
5441 
5442 	buf = strstrip(buf);
5443 	err = page_counter_memparse(buf, "max", &high);
5444 	if (err)
5445 		return err;
5446 
5447 	memcg->high = high;
5448 
5449 	nr_pages = page_counter_read(&memcg->memory);
5450 	if (nr_pages > high)
5451 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5452 					     GFP_KERNEL, true);
5453 
5454 	memcg_wb_domain_size_changed(memcg);
5455 	return nbytes;
5456 }
5457 
5458 static int memory_max_show(struct seq_file *m, void *v)
5459 {
5460 	return seq_puts_memcg_tunable(m,
5461 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5462 }
5463 
5464 static ssize_t memory_max_write(struct kernfs_open_file *of,
5465 				char *buf, size_t nbytes, loff_t off)
5466 {
5467 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5468 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5469 	bool drained = false;
5470 	unsigned long max;
5471 	int err;
5472 
5473 	buf = strstrip(buf);
5474 	err = page_counter_memparse(buf, "max", &max);
5475 	if (err)
5476 		return err;
5477 
5478 	xchg(&memcg->memory.max, max);
5479 
5480 	for (;;) {
5481 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5482 
5483 		if (nr_pages <= max)
5484 			break;
5485 
5486 		if (signal_pending(current)) {
5487 			err = -EINTR;
5488 			break;
5489 		}
5490 
5491 		if (!drained) {
5492 			drain_all_stock(memcg);
5493 			drained = true;
5494 			continue;
5495 		}
5496 
5497 		if (nr_reclaims) {
5498 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5499 							  GFP_KERNEL, true))
5500 				nr_reclaims--;
5501 			continue;
5502 		}
5503 
5504 		memcg_memory_event(memcg, MEMCG_OOM);
5505 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5506 			break;
5507 	}
5508 
5509 	memcg_wb_domain_size_changed(memcg);
5510 	return nbytes;
5511 }
5512 
5513 static int memory_events_show(struct seq_file *m, void *v)
5514 {
5515 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5516 
5517 	seq_printf(m, "low %lu\n",
5518 		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5519 	seq_printf(m, "high %lu\n",
5520 		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5521 	seq_printf(m, "max %lu\n",
5522 		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5523 	seq_printf(m, "oom %lu\n",
5524 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5525 	seq_printf(m, "oom_kill %lu\n",
5526 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5527 
5528 	return 0;
5529 }
5530 
5531 static int memory_stat_show(struct seq_file *m, void *v)
5532 {
5533 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5534 	struct accumulated_stats acc;
5535 	int i;
5536 
5537 	/*
5538 	 * Provide statistics on the state of the memory subsystem as
5539 	 * well as cumulative event counters that show past behavior.
5540 	 *
5541 	 * This list is ordered following a combination of these gradients:
5542 	 * 1) generic big picture -> specifics and details
5543 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5544 	 *
5545 	 * Current memory state:
5546 	 */
5547 
5548 	memset(&acc, 0, sizeof(acc));
5549 	acc.stats_size = MEMCG_NR_STAT;
5550 	acc.events_size = NR_VM_EVENT_ITEMS;
5551 	accumulate_memcg_tree(memcg, &acc);
5552 
5553 	seq_printf(m, "anon %llu\n",
5554 		   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5555 	seq_printf(m, "file %llu\n",
5556 		   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5557 	seq_printf(m, "kernel_stack %llu\n",
5558 		   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5559 	seq_printf(m, "slab %llu\n",
5560 		   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5561 			 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5562 	seq_printf(m, "sock %llu\n",
5563 		   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5564 
5565 	seq_printf(m, "shmem %llu\n",
5566 		   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5567 	seq_printf(m, "file_mapped %llu\n",
5568 		   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5569 	seq_printf(m, "file_dirty %llu\n",
5570 		   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5571 	seq_printf(m, "file_writeback %llu\n",
5572 		   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5573 
5574 	for (i = 0; i < NR_LRU_LISTS; i++)
5575 		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5576 			   (u64)acc.lru_pages[i] * PAGE_SIZE);
5577 
5578 	seq_printf(m, "slab_reclaimable %llu\n",
5579 		   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5580 	seq_printf(m, "slab_unreclaimable %llu\n",
5581 		   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5582 
5583 	/* Accumulated memory events */
5584 
5585 	seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5586 	seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5587 
5588 	seq_printf(m, "workingset_refault %lu\n",
5589 		   acc.stat[WORKINGSET_REFAULT]);
5590 	seq_printf(m, "workingset_activate %lu\n",
5591 		   acc.stat[WORKINGSET_ACTIVATE]);
5592 	seq_printf(m, "workingset_nodereclaim %lu\n",
5593 		   acc.stat[WORKINGSET_NODERECLAIM]);
5594 
5595 	seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5596 	seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5597 		   acc.events[PGSCAN_DIRECT]);
5598 	seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5599 		   acc.events[PGSTEAL_DIRECT]);
5600 	seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5601 	seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5602 	seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5603 	seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5604 
5605 	return 0;
5606 }
5607 
5608 static int memory_oom_group_show(struct seq_file *m, void *v)
5609 {
5610 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5611 
5612 	seq_printf(m, "%d\n", memcg->oom_group);
5613 
5614 	return 0;
5615 }
5616 
5617 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5618 				      char *buf, size_t nbytes, loff_t off)
5619 {
5620 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5621 	int ret, oom_group;
5622 
5623 	buf = strstrip(buf);
5624 	if (!buf)
5625 		return -EINVAL;
5626 
5627 	ret = kstrtoint(buf, 0, &oom_group);
5628 	if (ret)
5629 		return ret;
5630 
5631 	if (oom_group != 0 && oom_group != 1)
5632 		return -EINVAL;
5633 
5634 	memcg->oom_group = oom_group;
5635 
5636 	return nbytes;
5637 }
5638 
5639 static struct cftype memory_files[] = {
5640 	{
5641 		.name = "current",
5642 		.flags = CFTYPE_NOT_ON_ROOT,
5643 		.read_u64 = memory_current_read,
5644 	},
5645 	{
5646 		.name = "min",
5647 		.flags = CFTYPE_NOT_ON_ROOT,
5648 		.seq_show = memory_min_show,
5649 		.write = memory_min_write,
5650 	},
5651 	{
5652 		.name = "low",
5653 		.flags = CFTYPE_NOT_ON_ROOT,
5654 		.seq_show = memory_low_show,
5655 		.write = memory_low_write,
5656 	},
5657 	{
5658 		.name = "high",
5659 		.flags = CFTYPE_NOT_ON_ROOT,
5660 		.seq_show = memory_high_show,
5661 		.write = memory_high_write,
5662 	},
5663 	{
5664 		.name = "max",
5665 		.flags = CFTYPE_NOT_ON_ROOT,
5666 		.seq_show = memory_max_show,
5667 		.write = memory_max_write,
5668 	},
5669 	{
5670 		.name = "events",
5671 		.flags = CFTYPE_NOT_ON_ROOT,
5672 		.file_offset = offsetof(struct mem_cgroup, events_file),
5673 		.seq_show = memory_events_show,
5674 	},
5675 	{
5676 		.name = "stat",
5677 		.flags = CFTYPE_NOT_ON_ROOT,
5678 		.seq_show = memory_stat_show,
5679 	},
5680 	{
5681 		.name = "oom.group",
5682 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5683 		.seq_show = memory_oom_group_show,
5684 		.write = memory_oom_group_write,
5685 	},
5686 	{ }	/* terminate */
5687 };
5688 
5689 struct cgroup_subsys memory_cgrp_subsys = {
5690 	.css_alloc = mem_cgroup_css_alloc,
5691 	.css_online = mem_cgroup_css_online,
5692 	.css_offline = mem_cgroup_css_offline,
5693 	.css_released = mem_cgroup_css_released,
5694 	.css_free = mem_cgroup_css_free,
5695 	.css_reset = mem_cgroup_css_reset,
5696 	.can_attach = mem_cgroup_can_attach,
5697 	.cancel_attach = mem_cgroup_cancel_attach,
5698 	.post_attach = mem_cgroup_move_task,
5699 	.bind = mem_cgroup_bind,
5700 	.dfl_cftypes = memory_files,
5701 	.legacy_cftypes = mem_cgroup_legacy_files,
5702 	.early_init = 0,
5703 };
5704 
5705 /**
5706  * mem_cgroup_protected - check if memory consumption is in the normal range
5707  * @root: the top ancestor of the sub-tree being checked
5708  * @memcg: the memory cgroup to check
5709  *
5710  * WARNING: This function is not stateless! It can only be used as part
5711  *          of a top-down tree iteration, not for isolated queries.
5712  *
5713  * Returns one of the following:
5714  *   MEMCG_PROT_NONE: cgroup memory is not protected
5715  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
5716  *     an unprotected supply of reclaimable memory from other cgroups.
5717  *   MEMCG_PROT_MIN: cgroup memory is protected
5718  *
5719  * @root is exclusive; it is never protected when looked at directly
5720  *
5721  * To provide a proper hierarchical behavior, effective memory.min/low values
5722  * are used. Below is the description of how effective memory.low is calculated.
5723  * Effective memory.min values is calculated in the same way.
5724  *
5725  * Effective memory.low is always equal or less than the original memory.low.
5726  * If there is no memory.low overcommittment (which is always true for
5727  * top-level memory cgroups), these two values are equal.
5728  * Otherwise, it's a part of parent's effective memory.low,
5729  * calculated as a cgroup's memory.low usage divided by sum of sibling's
5730  * memory.low usages, where memory.low usage is the size of actually
5731  * protected memory.
5732  *
5733  *                                             low_usage
5734  * elow = min( memory.low, parent->elow * ------------------ ),
5735  *                                        siblings_low_usage
5736  *
5737  *             | memory.current, if memory.current < memory.low
5738  * low_usage = |
5739 	       | 0, otherwise.
5740  *
5741  *
5742  * Such definition of the effective memory.low provides the expected
5743  * hierarchical behavior: parent's memory.low value is limiting
5744  * children, unprotected memory is reclaimed first and cgroups,
5745  * which are not using their guarantee do not affect actual memory
5746  * distribution.
5747  *
5748  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5749  *
5750  *     A      A/memory.low = 2G, A/memory.current = 6G
5751  *    //\\
5752  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
5753  *            C/memory.low = 1G  C/memory.current = 2G
5754  *            D/memory.low = 0   D/memory.current = 2G
5755  *            E/memory.low = 10G E/memory.current = 0
5756  *
5757  * and the memory pressure is applied, the following memory distribution
5758  * is expected (approximately):
5759  *
5760  *     A/memory.current = 2G
5761  *
5762  *     B/memory.current = 1.3G
5763  *     C/memory.current = 0.6G
5764  *     D/memory.current = 0
5765  *     E/memory.current = 0
5766  *
5767  * These calculations require constant tracking of the actual low usages
5768  * (see propagate_protected_usage()), as well as recursive calculation of
5769  * effective memory.low values. But as we do call mem_cgroup_protected()
5770  * path for each memory cgroup top-down from the reclaim,
5771  * it's possible to optimize this part, and save calculated elow
5772  * for next usage. This part is intentionally racy, but it's ok,
5773  * as memory.low is a best-effort mechanism.
5774  */
5775 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5776 						struct mem_cgroup *memcg)
5777 {
5778 	struct mem_cgroup *parent;
5779 	unsigned long emin, parent_emin;
5780 	unsigned long elow, parent_elow;
5781 	unsigned long usage;
5782 
5783 	if (mem_cgroup_disabled())
5784 		return MEMCG_PROT_NONE;
5785 
5786 	if (!root)
5787 		root = root_mem_cgroup;
5788 	if (memcg == root)
5789 		return MEMCG_PROT_NONE;
5790 
5791 	usage = page_counter_read(&memcg->memory);
5792 	if (!usage)
5793 		return MEMCG_PROT_NONE;
5794 
5795 	emin = memcg->memory.min;
5796 	elow = memcg->memory.low;
5797 
5798 	parent = parent_mem_cgroup(memcg);
5799 	/* No parent means a non-hierarchical mode on v1 memcg */
5800 	if (!parent)
5801 		return MEMCG_PROT_NONE;
5802 
5803 	if (parent == root)
5804 		goto exit;
5805 
5806 	parent_emin = READ_ONCE(parent->memory.emin);
5807 	emin = min(emin, parent_emin);
5808 	if (emin && parent_emin) {
5809 		unsigned long min_usage, siblings_min_usage;
5810 
5811 		min_usage = min(usage, memcg->memory.min);
5812 		siblings_min_usage = atomic_long_read(
5813 			&parent->memory.children_min_usage);
5814 
5815 		if (min_usage && siblings_min_usage)
5816 			emin = min(emin, parent_emin * min_usage /
5817 				   siblings_min_usage);
5818 	}
5819 
5820 	parent_elow = READ_ONCE(parent->memory.elow);
5821 	elow = min(elow, parent_elow);
5822 	if (elow && parent_elow) {
5823 		unsigned long low_usage, siblings_low_usage;
5824 
5825 		low_usage = min(usage, memcg->memory.low);
5826 		siblings_low_usage = atomic_long_read(
5827 			&parent->memory.children_low_usage);
5828 
5829 		if (low_usage && siblings_low_usage)
5830 			elow = min(elow, parent_elow * low_usage /
5831 				   siblings_low_usage);
5832 	}
5833 
5834 exit:
5835 	memcg->memory.emin = emin;
5836 	memcg->memory.elow = elow;
5837 
5838 	if (usage <= emin)
5839 		return MEMCG_PROT_MIN;
5840 	else if (usage <= elow)
5841 		return MEMCG_PROT_LOW;
5842 	else
5843 		return MEMCG_PROT_NONE;
5844 }
5845 
5846 /**
5847  * mem_cgroup_try_charge - try charging a page
5848  * @page: page to charge
5849  * @mm: mm context of the victim
5850  * @gfp_mask: reclaim mode
5851  * @memcgp: charged memcg return
5852  * @compound: charge the page as compound or small page
5853  *
5854  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5855  * pages according to @gfp_mask if necessary.
5856  *
5857  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5858  * Otherwise, an error code is returned.
5859  *
5860  * After page->mapping has been set up, the caller must finalize the
5861  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5862  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5863  */
5864 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5865 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5866 			  bool compound)
5867 {
5868 	struct mem_cgroup *memcg = NULL;
5869 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5870 	int ret = 0;
5871 
5872 	if (mem_cgroup_disabled())
5873 		goto out;
5874 
5875 	if (PageSwapCache(page)) {
5876 		/*
5877 		 * Every swap fault against a single page tries to charge the
5878 		 * page, bail as early as possible.  shmem_unuse() encounters
5879 		 * already charged pages, too.  The USED bit is protected by
5880 		 * the page lock, which serializes swap cache removal, which
5881 		 * in turn serializes uncharging.
5882 		 */
5883 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5884 		if (compound_head(page)->mem_cgroup)
5885 			goto out;
5886 
5887 		if (do_swap_account) {
5888 			swp_entry_t ent = { .val = page_private(page), };
5889 			unsigned short id = lookup_swap_cgroup_id(ent);
5890 
5891 			rcu_read_lock();
5892 			memcg = mem_cgroup_from_id(id);
5893 			if (memcg && !css_tryget_online(&memcg->css))
5894 				memcg = NULL;
5895 			rcu_read_unlock();
5896 		}
5897 	}
5898 
5899 	if (!memcg)
5900 		memcg = get_mem_cgroup_from_mm(mm);
5901 
5902 	ret = try_charge(memcg, gfp_mask, nr_pages);
5903 
5904 	css_put(&memcg->css);
5905 out:
5906 	*memcgp = memcg;
5907 	return ret;
5908 }
5909 
5910 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5911 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5912 			  bool compound)
5913 {
5914 	struct mem_cgroup *memcg;
5915 	int ret;
5916 
5917 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5918 	memcg = *memcgp;
5919 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5920 	return ret;
5921 }
5922 
5923 /**
5924  * mem_cgroup_commit_charge - commit a page charge
5925  * @page: page to charge
5926  * @memcg: memcg to charge the page to
5927  * @lrucare: page might be on LRU already
5928  * @compound: charge the page as compound or small page
5929  *
5930  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5931  * after page->mapping has been set up.  This must happen atomically
5932  * as part of the page instantiation, i.e. under the page table lock
5933  * for anonymous pages, under the page lock for page and swap cache.
5934  *
5935  * In addition, the page must not be on the LRU during the commit, to
5936  * prevent racing with task migration.  If it might be, use @lrucare.
5937  *
5938  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5939  */
5940 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5941 			      bool lrucare, bool compound)
5942 {
5943 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5944 
5945 	VM_BUG_ON_PAGE(!page->mapping, page);
5946 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5947 
5948 	if (mem_cgroup_disabled())
5949 		return;
5950 	/*
5951 	 * Swap faults will attempt to charge the same page multiple
5952 	 * times.  But reuse_swap_page() might have removed the page
5953 	 * from swapcache already, so we can't check PageSwapCache().
5954 	 */
5955 	if (!memcg)
5956 		return;
5957 
5958 	commit_charge(page, memcg, lrucare);
5959 
5960 	local_irq_disable();
5961 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5962 	memcg_check_events(memcg, page);
5963 	local_irq_enable();
5964 
5965 	if (do_memsw_account() && PageSwapCache(page)) {
5966 		swp_entry_t entry = { .val = page_private(page) };
5967 		/*
5968 		 * The swap entry might not get freed for a long time,
5969 		 * let's not wait for it.  The page already received a
5970 		 * memory+swap charge, drop the swap entry duplicate.
5971 		 */
5972 		mem_cgroup_uncharge_swap(entry, nr_pages);
5973 	}
5974 }
5975 
5976 /**
5977  * mem_cgroup_cancel_charge - cancel a page charge
5978  * @page: page to charge
5979  * @memcg: memcg to charge the page to
5980  * @compound: charge the page as compound or small page
5981  *
5982  * Cancel a charge transaction started by mem_cgroup_try_charge().
5983  */
5984 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5985 		bool compound)
5986 {
5987 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5988 
5989 	if (mem_cgroup_disabled())
5990 		return;
5991 	/*
5992 	 * Swap faults will attempt to charge the same page multiple
5993 	 * times.  But reuse_swap_page() might have removed the page
5994 	 * from swapcache already, so we can't check PageSwapCache().
5995 	 */
5996 	if (!memcg)
5997 		return;
5998 
5999 	cancel_charge(memcg, nr_pages);
6000 }
6001 
6002 struct uncharge_gather {
6003 	struct mem_cgroup *memcg;
6004 	unsigned long pgpgout;
6005 	unsigned long nr_anon;
6006 	unsigned long nr_file;
6007 	unsigned long nr_kmem;
6008 	unsigned long nr_huge;
6009 	unsigned long nr_shmem;
6010 	struct page *dummy_page;
6011 };
6012 
6013 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6014 {
6015 	memset(ug, 0, sizeof(*ug));
6016 }
6017 
6018 static void uncharge_batch(const struct uncharge_gather *ug)
6019 {
6020 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6021 	unsigned long flags;
6022 
6023 	if (!mem_cgroup_is_root(ug->memcg)) {
6024 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6025 		if (do_memsw_account())
6026 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6027 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6028 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6029 		memcg_oom_recover(ug->memcg);
6030 	}
6031 
6032 	local_irq_save(flags);
6033 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6034 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6035 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6036 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6037 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6038 	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6039 	memcg_check_events(ug->memcg, ug->dummy_page);
6040 	local_irq_restore(flags);
6041 
6042 	if (!mem_cgroup_is_root(ug->memcg))
6043 		css_put_many(&ug->memcg->css, nr_pages);
6044 }
6045 
6046 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6047 {
6048 	VM_BUG_ON_PAGE(PageLRU(page), page);
6049 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6050 			!PageHWPoison(page) , page);
6051 
6052 	if (!page->mem_cgroup)
6053 		return;
6054 
6055 	/*
6056 	 * Nobody should be changing or seriously looking at
6057 	 * page->mem_cgroup at this point, we have fully
6058 	 * exclusive access to the page.
6059 	 */
6060 
6061 	if (ug->memcg != page->mem_cgroup) {
6062 		if (ug->memcg) {
6063 			uncharge_batch(ug);
6064 			uncharge_gather_clear(ug);
6065 		}
6066 		ug->memcg = page->mem_cgroup;
6067 	}
6068 
6069 	if (!PageKmemcg(page)) {
6070 		unsigned int nr_pages = 1;
6071 
6072 		if (PageTransHuge(page)) {
6073 			nr_pages <<= compound_order(page);
6074 			ug->nr_huge += nr_pages;
6075 		}
6076 		if (PageAnon(page))
6077 			ug->nr_anon += nr_pages;
6078 		else {
6079 			ug->nr_file += nr_pages;
6080 			if (PageSwapBacked(page))
6081 				ug->nr_shmem += nr_pages;
6082 		}
6083 		ug->pgpgout++;
6084 	} else {
6085 		ug->nr_kmem += 1 << compound_order(page);
6086 		__ClearPageKmemcg(page);
6087 	}
6088 
6089 	ug->dummy_page = page;
6090 	page->mem_cgroup = NULL;
6091 }
6092 
6093 static void uncharge_list(struct list_head *page_list)
6094 {
6095 	struct uncharge_gather ug;
6096 	struct list_head *next;
6097 
6098 	uncharge_gather_clear(&ug);
6099 
6100 	/*
6101 	 * Note that the list can be a single page->lru; hence the
6102 	 * do-while loop instead of a simple list_for_each_entry().
6103 	 */
6104 	next = page_list->next;
6105 	do {
6106 		struct page *page;
6107 
6108 		page = list_entry(next, struct page, lru);
6109 		next = page->lru.next;
6110 
6111 		uncharge_page(page, &ug);
6112 	} while (next != page_list);
6113 
6114 	if (ug.memcg)
6115 		uncharge_batch(&ug);
6116 }
6117 
6118 /**
6119  * mem_cgroup_uncharge - uncharge a page
6120  * @page: page to uncharge
6121  *
6122  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6123  * mem_cgroup_commit_charge().
6124  */
6125 void mem_cgroup_uncharge(struct page *page)
6126 {
6127 	struct uncharge_gather ug;
6128 
6129 	if (mem_cgroup_disabled())
6130 		return;
6131 
6132 	/* Don't touch page->lru of any random page, pre-check: */
6133 	if (!page->mem_cgroup)
6134 		return;
6135 
6136 	uncharge_gather_clear(&ug);
6137 	uncharge_page(page, &ug);
6138 	uncharge_batch(&ug);
6139 }
6140 
6141 /**
6142  * mem_cgroup_uncharge_list - uncharge a list of page
6143  * @page_list: list of pages to uncharge
6144  *
6145  * Uncharge a list of pages previously charged with
6146  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6147  */
6148 void mem_cgroup_uncharge_list(struct list_head *page_list)
6149 {
6150 	if (mem_cgroup_disabled())
6151 		return;
6152 
6153 	if (!list_empty(page_list))
6154 		uncharge_list(page_list);
6155 }
6156 
6157 /**
6158  * mem_cgroup_migrate - charge a page's replacement
6159  * @oldpage: currently circulating page
6160  * @newpage: replacement page
6161  *
6162  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6163  * be uncharged upon free.
6164  *
6165  * Both pages must be locked, @newpage->mapping must be set up.
6166  */
6167 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6168 {
6169 	struct mem_cgroup *memcg;
6170 	unsigned int nr_pages;
6171 	bool compound;
6172 	unsigned long flags;
6173 
6174 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6175 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6176 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6177 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6178 		       newpage);
6179 
6180 	if (mem_cgroup_disabled())
6181 		return;
6182 
6183 	/* Page cache replacement: new page already charged? */
6184 	if (newpage->mem_cgroup)
6185 		return;
6186 
6187 	/* Swapcache readahead pages can get replaced before being charged */
6188 	memcg = oldpage->mem_cgroup;
6189 	if (!memcg)
6190 		return;
6191 
6192 	/* Force-charge the new page. The old one will be freed soon */
6193 	compound = PageTransHuge(newpage);
6194 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6195 
6196 	page_counter_charge(&memcg->memory, nr_pages);
6197 	if (do_memsw_account())
6198 		page_counter_charge(&memcg->memsw, nr_pages);
6199 	css_get_many(&memcg->css, nr_pages);
6200 
6201 	commit_charge(newpage, memcg, false);
6202 
6203 	local_irq_save(flags);
6204 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6205 	memcg_check_events(memcg, newpage);
6206 	local_irq_restore(flags);
6207 }
6208 
6209 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6210 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6211 
6212 void mem_cgroup_sk_alloc(struct sock *sk)
6213 {
6214 	struct mem_cgroup *memcg;
6215 
6216 	if (!mem_cgroup_sockets_enabled)
6217 		return;
6218 
6219 	/*
6220 	 * Socket cloning can throw us here with sk_memcg already
6221 	 * filled. It won't however, necessarily happen from
6222 	 * process context. So the test for root memcg given
6223 	 * the current task's memcg won't help us in this case.
6224 	 *
6225 	 * Respecting the original socket's memcg is a better
6226 	 * decision in this case.
6227 	 */
6228 	if (sk->sk_memcg) {
6229 		css_get(&sk->sk_memcg->css);
6230 		return;
6231 	}
6232 
6233 	rcu_read_lock();
6234 	memcg = mem_cgroup_from_task(current);
6235 	if (memcg == root_mem_cgroup)
6236 		goto out;
6237 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6238 		goto out;
6239 	if (css_tryget_online(&memcg->css))
6240 		sk->sk_memcg = memcg;
6241 out:
6242 	rcu_read_unlock();
6243 }
6244 
6245 void mem_cgroup_sk_free(struct sock *sk)
6246 {
6247 	if (sk->sk_memcg)
6248 		css_put(&sk->sk_memcg->css);
6249 }
6250 
6251 /**
6252  * mem_cgroup_charge_skmem - charge socket memory
6253  * @memcg: memcg to charge
6254  * @nr_pages: number of pages to charge
6255  *
6256  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6257  * @memcg's configured limit, %false if the charge had to be forced.
6258  */
6259 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6260 {
6261 	gfp_t gfp_mask = GFP_KERNEL;
6262 
6263 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6264 		struct page_counter *fail;
6265 
6266 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6267 			memcg->tcpmem_pressure = 0;
6268 			return true;
6269 		}
6270 		page_counter_charge(&memcg->tcpmem, nr_pages);
6271 		memcg->tcpmem_pressure = 1;
6272 		return false;
6273 	}
6274 
6275 	/* Don't block in the packet receive path */
6276 	if (in_softirq())
6277 		gfp_mask = GFP_NOWAIT;
6278 
6279 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6280 
6281 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6282 		return true;
6283 
6284 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6285 	return false;
6286 }
6287 
6288 /**
6289  * mem_cgroup_uncharge_skmem - uncharge socket memory
6290  * @memcg: memcg to uncharge
6291  * @nr_pages: number of pages to uncharge
6292  */
6293 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6294 {
6295 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6296 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6297 		return;
6298 	}
6299 
6300 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6301 
6302 	refill_stock(memcg, nr_pages);
6303 }
6304 
6305 static int __init cgroup_memory(char *s)
6306 {
6307 	char *token;
6308 
6309 	while ((token = strsep(&s, ",")) != NULL) {
6310 		if (!*token)
6311 			continue;
6312 		if (!strcmp(token, "nosocket"))
6313 			cgroup_memory_nosocket = true;
6314 		if (!strcmp(token, "nokmem"))
6315 			cgroup_memory_nokmem = true;
6316 	}
6317 	return 0;
6318 }
6319 __setup("cgroup.memory=", cgroup_memory);
6320 
6321 /*
6322  * subsys_initcall() for memory controller.
6323  *
6324  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6325  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6326  * basically everything that doesn't depend on a specific mem_cgroup structure
6327  * should be initialized from here.
6328  */
6329 static int __init mem_cgroup_init(void)
6330 {
6331 	int cpu, node;
6332 
6333 #ifdef CONFIG_MEMCG_KMEM
6334 	/*
6335 	 * Kmem cache creation is mostly done with the slab_mutex held,
6336 	 * so use a workqueue with limited concurrency to avoid stalling
6337 	 * all worker threads in case lots of cgroups are created and
6338 	 * destroyed simultaneously.
6339 	 */
6340 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6341 	BUG_ON(!memcg_kmem_cache_wq);
6342 #endif
6343 
6344 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6345 				  memcg_hotplug_cpu_dead);
6346 
6347 	for_each_possible_cpu(cpu)
6348 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6349 			  drain_local_stock);
6350 
6351 	for_each_node(node) {
6352 		struct mem_cgroup_tree_per_node *rtpn;
6353 
6354 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6355 				    node_online(node) ? node : NUMA_NO_NODE);
6356 
6357 		rtpn->rb_root = RB_ROOT;
6358 		rtpn->rb_rightmost = NULL;
6359 		spin_lock_init(&rtpn->lock);
6360 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6361 	}
6362 
6363 	return 0;
6364 }
6365 subsys_initcall(mem_cgroup_init);
6366 
6367 #ifdef CONFIG_MEMCG_SWAP
6368 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6369 {
6370 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6371 		/*
6372 		 * The root cgroup cannot be destroyed, so it's refcount must
6373 		 * always be >= 1.
6374 		 */
6375 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6376 			VM_BUG_ON(1);
6377 			break;
6378 		}
6379 		memcg = parent_mem_cgroup(memcg);
6380 		if (!memcg)
6381 			memcg = root_mem_cgroup;
6382 	}
6383 	return memcg;
6384 }
6385 
6386 /**
6387  * mem_cgroup_swapout - transfer a memsw charge to swap
6388  * @page: page whose memsw charge to transfer
6389  * @entry: swap entry to move the charge to
6390  *
6391  * Transfer the memsw charge of @page to @entry.
6392  */
6393 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6394 {
6395 	struct mem_cgroup *memcg, *swap_memcg;
6396 	unsigned int nr_entries;
6397 	unsigned short oldid;
6398 
6399 	VM_BUG_ON_PAGE(PageLRU(page), page);
6400 	VM_BUG_ON_PAGE(page_count(page), page);
6401 
6402 	if (!do_memsw_account())
6403 		return;
6404 
6405 	memcg = page->mem_cgroup;
6406 
6407 	/* Readahead page, never charged */
6408 	if (!memcg)
6409 		return;
6410 
6411 	/*
6412 	 * In case the memcg owning these pages has been offlined and doesn't
6413 	 * have an ID allocated to it anymore, charge the closest online
6414 	 * ancestor for the swap instead and transfer the memory+swap charge.
6415 	 */
6416 	swap_memcg = mem_cgroup_id_get_online(memcg);
6417 	nr_entries = hpage_nr_pages(page);
6418 	/* Get references for the tail pages, too */
6419 	if (nr_entries > 1)
6420 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6421 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6422 				   nr_entries);
6423 	VM_BUG_ON_PAGE(oldid, page);
6424 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6425 
6426 	page->mem_cgroup = NULL;
6427 
6428 	if (!mem_cgroup_is_root(memcg))
6429 		page_counter_uncharge(&memcg->memory, nr_entries);
6430 
6431 	if (memcg != swap_memcg) {
6432 		if (!mem_cgroup_is_root(swap_memcg))
6433 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6434 		page_counter_uncharge(&memcg->memsw, nr_entries);
6435 	}
6436 
6437 	/*
6438 	 * Interrupts should be disabled here because the caller holds the
6439 	 * i_pages lock which is taken with interrupts-off. It is
6440 	 * important here to have the interrupts disabled because it is the
6441 	 * only synchronisation we have for updating the per-CPU variables.
6442 	 */
6443 	VM_BUG_ON(!irqs_disabled());
6444 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6445 				     -nr_entries);
6446 	memcg_check_events(memcg, page);
6447 
6448 	if (!mem_cgroup_is_root(memcg))
6449 		css_put_many(&memcg->css, nr_entries);
6450 }
6451 
6452 /**
6453  * mem_cgroup_try_charge_swap - try charging swap space for a page
6454  * @page: page being added to swap
6455  * @entry: swap entry to charge
6456  *
6457  * Try to charge @page's memcg for the swap space at @entry.
6458  *
6459  * Returns 0 on success, -ENOMEM on failure.
6460  */
6461 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6462 {
6463 	unsigned int nr_pages = hpage_nr_pages(page);
6464 	struct page_counter *counter;
6465 	struct mem_cgroup *memcg;
6466 	unsigned short oldid;
6467 
6468 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6469 		return 0;
6470 
6471 	memcg = page->mem_cgroup;
6472 
6473 	/* Readahead page, never charged */
6474 	if (!memcg)
6475 		return 0;
6476 
6477 	if (!entry.val) {
6478 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6479 		return 0;
6480 	}
6481 
6482 	memcg = mem_cgroup_id_get_online(memcg);
6483 
6484 	if (!mem_cgroup_is_root(memcg) &&
6485 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6486 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6487 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6488 		mem_cgroup_id_put(memcg);
6489 		return -ENOMEM;
6490 	}
6491 
6492 	/* Get references for the tail pages, too */
6493 	if (nr_pages > 1)
6494 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6495 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6496 	VM_BUG_ON_PAGE(oldid, page);
6497 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6498 
6499 	return 0;
6500 }
6501 
6502 /**
6503  * mem_cgroup_uncharge_swap - uncharge swap space
6504  * @entry: swap entry to uncharge
6505  * @nr_pages: the amount of swap space to uncharge
6506  */
6507 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6508 {
6509 	struct mem_cgroup *memcg;
6510 	unsigned short id;
6511 
6512 	if (!do_swap_account)
6513 		return;
6514 
6515 	id = swap_cgroup_record(entry, 0, nr_pages);
6516 	rcu_read_lock();
6517 	memcg = mem_cgroup_from_id(id);
6518 	if (memcg) {
6519 		if (!mem_cgroup_is_root(memcg)) {
6520 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6521 				page_counter_uncharge(&memcg->swap, nr_pages);
6522 			else
6523 				page_counter_uncharge(&memcg->memsw, nr_pages);
6524 		}
6525 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6526 		mem_cgroup_id_put_many(memcg, nr_pages);
6527 	}
6528 	rcu_read_unlock();
6529 }
6530 
6531 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6532 {
6533 	long nr_swap_pages = get_nr_swap_pages();
6534 
6535 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6536 		return nr_swap_pages;
6537 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6538 		nr_swap_pages = min_t(long, nr_swap_pages,
6539 				      READ_ONCE(memcg->swap.max) -
6540 				      page_counter_read(&memcg->swap));
6541 	return nr_swap_pages;
6542 }
6543 
6544 bool mem_cgroup_swap_full(struct page *page)
6545 {
6546 	struct mem_cgroup *memcg;
6547 
6548 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6549 
6550 	if (vm_swap_full())
6551 		return true;
6552 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6553 		return false;
6554 
6555 	memcg = page->mem_cgroup;
6556 	if (!memcg)
6557 		return false;
6558 
6559 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6560 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6561 			return true;
6562 
6563 	return false;
6564 }
6565 
6566 /* for remember boot option*/
6567 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6568 static int really_do_swap_account __initdata = 1;
6569 #else
6570 static int really_do_swap_account __initdata;
6571 #endif
6572 
6573 static int __init enable_swap_account(char *s)
6574 {
6575 	if (!strcmp(s, "1"))
6576 		really_do_swap_account = 1;
6577 	else if (!strcmp(s, "0"))
6578 		really_do_swap_account = 0;
6579 	return 1;
6580 }
6581 __setup("swapaccount=", enable_swap_account);
6582 
6583 static u64 swap_current_read(struct cgroup_subsys_state *css,
6584 			     struct cftype *cft)
6585 {
6586 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6587 
6588 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6589 }
6590 
6591 static int swap_max_show(struct seq_file *m, void *v)
6592 {
6593 	return seq_puts_memcg_tunable(m,
6594 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6595 }
6596 
6597 static ssize_t swap_max_write(struct kernfs_open_file *of,
6598 			      char *buf, size_t nbytes, loff_t off)
6599 {
6600 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6601 	unsigned long max;
6602 	int err;
6603 
6604 	buf = strstrip(buf);
6605 	err = page_counter_memparse(buf, "max", &max);
6606 	if (err)
6607 		return err;
6608 
6609 	xchg(&memcg->swap.max, max);
6610 
6611 	return nbytes;
6612 }
6613 
6614 static int swap_events_show(struct seq_file *m, void *v)
6615 {
6616 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6617 
6618 	seq_printf(m, "max %lu\n",
6619 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6620 	seq_printf(m, "fail %lu\n",
6621 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6622 
6623 	return 0;
6624 }
6625 
6626 static struct cftype swap_files[] = {
6627 	{
6628 		.name = "swap.current",
6629 		.flags = CFTYPE_NOT_ON_ROOT,
6630 		.read_u64 = swap_current_read,
6631 	},
6632 	{
6633 		.name = "swap.max",
6634 		.flags = CFTYPE_NOT_ON_ROOT,
6635 		.seq_show = swap_max_show,
6636 		.write = swap_max_write,
6637 	},
6638 	{
6639 		.name = "swap.events",
6640 		.flags = CFTYPE_NOT_ON_ROOT,
6641 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
6642 		.seq_show = swap_events_show,
6643 	},
6644 	{ }	/* terminate */
6645 };
6646 
6647 static struct cftype memsw_cgroup_files[] = {
6648 	{
6649 		.name = "memsw.usage_in_bytes",
6650 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6651 		.read_u64 = mem_cgroup_read_u64,
6652 	},
6653 	{
6654 		.name = "memsw.max_usage_in_bytes",
6655 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6656 		.write = mem_cgroup_reset,
6657 		.read_u64 = mem_cgroup_read_u64,
6658 	},
6659 	{
6660 		.name = "memsw.limit_in_bytes",
6661 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6662 		.write = mem_cgroup_write,
6663 		.read_u64 = mem_cgroup_read_u64,
6664 	},
6665 	{
6666 		.name = "memsw.failcnt",
6667 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6668 		.write = mem_cgroup_reset,
6669 		.read_u64 = mem_cgroup_read_u64,
6670 	},
6671 	{ },	/* terminate */
6672 };
6673 
6674 static int __init mem_cgroup_swap_init(void)
6675 {
6676 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6677 		do_swap_account = 1;
6678 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6679 					       swap_files));
6680 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6681 						  memsw_cgroup_files));
6682 	}
6683 	return 0;
6684 }
6685 subsys_initcall(mem_cgroup_swap_init);
6686 
6687 #endif /* CONFIG_MEMCG_SWAP */
6688