1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/sort.h> 49 #include <linux/fs.h> 50 #include <linux/seq_file.h> 51 #include <linux/vmalloc.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/page_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include "internal.h" 58 #include <net/sock.h> 59 #include <net/ip.h> 60 #include <net/tcp_memcontrol.h> 61 62 #include <asm/uaccess.h> 63 64 #include <trace/events/vmscan.h> 65 66 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 67 EXPORT_SYMBOL(mem_cgroup_subsys); 68 69 #define MEM_CGROUP_RECLAIM_RETRIES 5 70 static struct mem_cgroup *root_mem_cgroup __read_mostly; 71 72 #ifdef CONFIG_MEMCG_SWAP 73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 74 int do_swap_account __read_mostly; 75 76 /* for remember boot option*/ 77 #ifdef CONFIG_MEMCG_SWAP_ENABLED 78 static int really_do_swap_account __initdata = 1; 79 #else 80 static int really_do_swap_account __initdata = 0; 81 #endif 82 83 #else 84 #define do_swap_account 0 85 #endif 86 87 88 /* 89 * Statistics for memory cgroup. 90 */ 91 enum mem_cgroup_stat_index { 92 /* 93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 94 */ 95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 100 MEM_CGROUP_STAT_NSTATS, 101 }; 102 103 static const char * const mem_cgroup_stat_names[] = { 104 "cache", 105 "rss", 106 "rss_huge", 107 "mapped_file", 108 "swap", 109 }; 110 111 enum mem_cgroup_events_index { 112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 116 MEM_CGROUP_EVENTS_NSTATS, 117 }; 118 119 static const char * const mem_cgroup_events_names[] = { 120 "pgpgin", 121 "pgpgout", 122 "pgfault", 123 "pgmajfault", 124 }; 125 126 static const char * const mem_cgroup_lru_names[] = { 127 "inactive_anon", 128 "active_anon", 129 "inactive_file", 130 "active_file", 131 "unevictable", 132 }; 133 134 /* 135 * Per memcg event counter is incremented at every pagein/pageout. With THP, 136 * it will be incremated by the number of pages. This counter is used for 137 * for trigger some periodic events. This is straightforward and better 138 * than using jiffies etc. to handle periodic memcg event. 139 */ 140 enum mem_cgroup_events_target { 141 MEM_CGROUP_TARGET_THRESH, 142 MEM_CGROUP_TARGET_SOFTLIMIT, 143 MEM_CGROUP_TARGET_NUMAINFO, 144 MEM_CGROUP_NTARGETS, 145 }; 146 #define THRESHOLDS_EVENTS_TARGET 128 147 #define SOFTLIMIT_EVENTS_TARGET 1024 148 #define NUMAINFO_EVENTS_TARGET 1024 149 150 struct mem_cgroup_stat_cpu { 151 long count[MEM_CGROUP_STAT_NSTATS]; 152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 153 unsigned long nr_page_events; 154 unsigned long targets[MEM_CGROUP_NTARGETS]; 155 }; 156 157 struct mem_cgroup_reclaim_iter { 158 /* 159 * last scanned hierarchy member. Valid only if last_dead_count 160 * matches memcg->dead_count of the hierarchy root group. 161 */ 162 struct mem_cgroup *last_visited; 163 unsigned long last_dead_count; 164 165 /* scan generation, increased every round-trip */ 166 unsigned int generation; 167 }; 168 169 /* 170 * per-zone information in memory controller. 171 */ 172 struct mem_cgroup_per_zone { 173 struct lruvec lruvec; 174 unsigned long lru_size[NR_LRU_LISTS]; 175 176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 177 178 struct rb_node tree_node; /* RB tree node */ 179 unsigned long long usage_in_excess;/* Set to the value by which */ 180 /* the soft limit is exceeded*/ 181 bool on_tree; 182 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 183 /* use container_of */ 184 }; 185 186 struct mem_cgroup_per_node { 187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 188 }; 189 190 /* 191 * Cgroups above their limits are maintained in a RB-Tree, independent of 192 * their hierarchy representation 193 */ 194 195 struct mem_cgroup_tree_per_zone { 196 struct rb_root rb_root; 197 spinlock_t lock; 198 }; 199 200 struct mem_cgroup_tree_per_node { 201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 202 }; 203 204 struct mem_cgroup_tree { 205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 206 }; 207 208 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 209 210 struct mem_cgroup_threshold { 211 struct eventfd_ctx *eventfd; 212 u64 threshold; 213 }; 214 215 /* For threshold */ 216 struct mem_cgroup_threshold_ary { 217 /* An array index points to threshold just below or equal to usage. */ 218 int current_threshold; 219 /* Size of entries[] */ 220 unsigned int size; 221 /* Array of thresholds */ 222 struct mem_cgroup_threshold entries[0]; 223 }; 224 225 struct mem_cgroup_thresholds { 226 /* Primary thresholds array */ 227 struct mem_cgroup_threshold_ary *primary; 228 /* 229 * Spare threshold array. 230 * This is needed to make mem_cgroup_unregister_event() "never fail". 231 * It must be able to store at least primary->size - 1 entries. 232 */ 233 struct mem_cgroup_threshold_ary *spare; 234 }; 235 236 /* for OOM */ 237 struct mem_cgroup_eventfd_list { 238 struct list_head list; 239 struct eventfd_ctx *eventfd; 240 }; 241 242 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 243 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 244 245 /* 246 * The memory controller data structure. The memory controller controls both 247 * page cache and RSS per cgroup. We would eventually like to provide 248 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 249 * to help the administrator determine what knobs to tune. 250 * 251 * TODO: Add a water mark for the memory controller. Reclaim will begin when 252 * we hit the water mark. May be even add a low water mark, such that 253 * no reclaim occurs from a cgroup at it's low water mark, this is 254 * a feature that will be implemented much later in the future. 255 */ 256 struct mem_cgroup { 257 struct cgroup_subsys_state css; 258 /* 259 * the counter to account for memory usage 260 */ 261 struct res_counter res; 262 263 /* vmpressure notifications */ 264 struct vmpressure vmpressure; 265 266 /* 267 * the counter to account for mem+swap usage. 268 */ 269 struct res_counter memsw; 270 271 /* 272 * the counter to account for kernel memory usage. 273 */ 274 struct res_counter kmem; 275 /* 276 * Should the accounting and control be hierarchical, per subtree? 277 */ 278 bool use_hierarchy; 279 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 280 281 bool oom_lock; 282 atomic_t under_oom; 283 284 int swappiness; 285 /* OOM-Killer disable */ 286 int oom_kill_disable; 287 288 /* set when res.limit == memsw.limit */ 289 bool memsw_is_minimum; 290 291 /* protect arrays of thresholds */ 292 struct mutex thresholds_lock; 293 294 /* thresholds for memory usage. RCU-protected */ 295 struct mem_cgroup_thresholds thresholds; 296 297 /* thresholds for mem+swap usage. RCU-protected */ 298 struct mem_cgroup_thresholds memsw_thresholds; 299 300 /* For oom notifier event fd */ 301 struct list_head oom_notify; 302 303 /* 304 * Should we move charges of a task when a task is moved into this 305 * mem_cgroup ? And what type of charges should we move ? 306 */ 307 unsigned long move_charge_at_immigrate; 308 /* 309 * set > 0 if pages under this cgroup are moving to other cgroup. 310 */ 311 atomic_t moving_account; 312 /* taken only while moving_account > 0 */ 313 spinlock_t move_lock; 314 /* 315 * percpu counter. 316 */ 317 struct mem_cgroup_stat_cpu __percpu *stat; 318 /* 319 * used when a cpu is offlined or other synchronizations 320 * See mem_cgroup_read_stat(). 321 */ 322 struct mem_cgroup_stat_cpu nocpu_base; 323 spinlock_t pcp_counter_lock; 324 325 atomic_t dead_count; 326 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 327 struct tcp_memcontrol tcp_mem; 328 #endif 329 #if defined(CONFIG_MEMCG_KMEM) 330 /* analogous to slab_common's slab_caches list. per-memcg */ 331 struct list_head memcg_slab_caches; 332 /* Not a spinlock, we can take a lot of time walking the list */ 333 struct mutex slab_caches_mutex; 334 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 335 int kmemcg_id; 336 #endif 337 338 int last_scanned_node; 339 #if MAX_NUMNODES > 1 340 nodemask_t scan_nodes; 341 atomic_t numainfo_events; 342 atomic_t numainfo_updating; 343 #endif 344 345 struct mem_cgroup_per_node *nodeinfo[0]; 346 /* WARNING: nodeinfo must be the last member here */ 347 }; 348 349 static size_t memcg_size(void) 350 { 351 return sizeof(struct mem_cgroup) + 352 nr_node_ids * sizeof(struct mem_cgroup_per_node); 353 } 354 355 /* internal only representation about the status of kmem accounting. */ 356 enum { 357 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ 358 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ 359 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 360 }; 361 362 /* We account when limit is on, but only after call sites are patched */ 363 #define KMEM_ACCOUNTED_MASK \ 364 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) 365 366 #ifdef CONFIG_MEMCG_KMEM 367 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 368 { 369 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 370 } 371 372 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 373 { 374 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 375 } 376 377 static void memcg_kmem_set_activated(struct mem_cgroup *memcg) 378 { 379 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 380 } 381 382 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) 383 { 384 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 385 } 386 387 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 388 { 389 /* 390 * Our caller must use css_get() first, because memcg_uncharge_kmem() 391 * will call css_put() if it sees the memcg is dead. 392 */ 393 smp_wmb(); 394 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 395 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 396 } 397 398 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 399 { 400 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 401 &memcg->kmem_account_flags); 402 } 403 #endif 404 405 /* Stuffs for move charges at task migration. */ 406 /* 407 * Types of charges to be moved. "move_charge_at_immitgrate" and 408 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 409 */ 410 enum move_type { 411 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 412 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 413 NR_MOVE_TYPE, 414 }; 415 416 /* "mc" and its members are protected by cgroup_mutex */ 417 static struct move_charge_struct { 418 spinlock_t lock; /* for from, to */ 419 struct mem_cgroup *from; 420 struct mem_cgroup *to; 421 unsigned long immigrate_flags; 422 unsigned long precharge; 423 unsigned long moved_charge; 424 unsigned long moved_swap; 425 struct task_struct *moving_task; /* a task moving charges */ 426 wait_queue_head_t waitq; /* a waitq for other context */ 427 } mc = { 428 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 429 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 430 }; 431 432 static bool move_anon(void) 433 { 434 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 435 } 436 437 static bool move_file(void) 438 { 439 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 440 } 441 442 /* 443 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 444 * limit reclaim to prevent infinite loops, if they ever occur. 445 */ 446 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 447 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 448 449 enum charge_type { 450 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 451 MEM_CGROUP_CHARGE_TYPE_ANON, 452 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 453 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 454 NR_CHARGE_TYPE, 455 }; 456 457 /* for encoding cft->private value on file */ 458 enum res_type { 459 _MEM, 460 _MEMSWAP, 461 _OOM_TYPE, 462 _KMEM, 463 }; 464 465 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 466 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 467 #define MEMFILE_ATTR(val) ((val) & 0xffff) 468 /* Used for OOM nofiier */ 469 #define OOM_CONTROL (0) 470 471 /* 472 * Reclaim flags for mem_cgroup_hierarchical_reclaim 473 */ 474 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 475 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 476 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 477 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 478 479 /* 480 * The memcg_create_mutex will be held whenever a new cgroup is created. 481 * As a consequence, any change that needs to protect against new child cgroups 482 * appearing has to hold it as well. 483 */ 484 static DEFINE_MUTEX(memcg_create_mutex); 485 486 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 487 { 488 return s ? container_of(s, struct mem_cgroup, css) : NULL; 489 } 490 491 /* Some nice accessors for the vmpressure. */ 492 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 493 { 494 if (!memcg) 495 memcg = root_mem_cgroup; 496 return &memcg->vmpressure; 497 } 498 499 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 500 { 501 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 502 } 503 504 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css) 505 { 506 return &mem_cgroup_from_css(css)->vmpressure; 507 } 508 509 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 510 { 511 return (memcg == root_mem_cgroup); 512 } 513 514 /* Writing them here to avoid exposing memcg's inner layout */ 515 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 516 517 void sock_update_memcg(struct sock *sk) 518 { 519 if (mem_cgroup_sockets_enabled) { 520 struct mem_cgroup *memcg; 521 struct cg_proto *cg_proto; 522 523 BUG_ON(!sk->sk_prot->proto_cgroup); 524 525 /* Socket cloning can throw us here with sk_cgrp already 526 * filled. It won't however, necessarily happen from 527 * process context. So the test for root memcg given 528 * the current task's memcg won't help us in this case. 529 * 530 * Respecting the original socket's memcg is a better 531 * decision in this case. 532 */ 533 if (sk->sk_cgrp) { 534 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 535 css_get(&sk->sk_cgrp->memcg->css); 536 return; 537 } 538 539 rcu_read_lock(); 540 memcg = mem_cgroup_from_task(current); 541 cg_proto = sk->sk_prot->proto_cgroup(memcg); 542 if (!mem_cgroup_is_root(memcg) && 543 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) { 544 sk->sk_cgrp = cg_proto; 545 } 546 rcu_read_unlock(); 547 } 548 } 549 EXPORT_SYMBOL(sock_update_memcg); 550 551 void sock_release_memcg(struct sock *sk) 552 { 553 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 554 struct mem_cgroup *memcg; 555 WARN_ON(!sk->sk_cgrp->memcg); 556 memcg = sk->sk_cgrp->memcg; 557 css_put(&sk->sk_cgrp->memcg->css); 558 } 559 } 560 561 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 562 { 563 if (!memcg || mem_cgroup_is_root(memcg)) 564 return NULL; 565 566 return &memcg->tcp_mem.cg_proto; 567 } 568 EXPORT_SYMBOL(tcp_proto_cgroup); 569 570 static void disarm_sock_keys(struct mem_cgroup *memcg) 571 { 572 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 573 return; 574 static_key_slow_dec(&memcg_socket_limit_enabled); 575 } 576 #else 577 static void disarm_sock_keys(struct mem_cgroup *memcg) 578 { 579 } 580 #endif 581 582 #ifdef CONFIG_MEMCG_KMEM 583 /* 584 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 585 * There are two main reasons for not using the css_id for this: 586 * 1) this works better in sparse environments, where we have a lot of memcgs, 587 * but only a few kmem-limited. Or also, if we have, for instance, 200 588 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 589 * 200 entry array for that. 590 * 591 * 2) In order not to violate the cgroup API, we would like to do all memory 592 * allocation in ->create(). At that point, we haven't yet allocated the 593 * css_id. Having a separate index prevents us from messing with the cgroup 594 * core for this 595 * 596 * The current size of the caches array is stored in 597 * memcg_limited_groups_array_size. It will double each time we have to 598 * increase it. 599 */ 600 static DEFINE_IDA(kmem_limited_groups); 601 int memcg_limited_groups_array_size; 602 603 /* 604 * MIN_SIZE is different than 1, because we would like to avoid going through 605 * the alloc/free process all the time. In a small machine, 4 kmem-limited 606 * cgroups is a reasonable guess. In the future, it could be a parameter or 607 * tunable, but that is strictly not necessary. 608 * 609 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get 610 * this constant directly from cgroup, but it is understandable that this is 611 * better kept as an internal representation in cgroup.c. In any case, the 612 * css_id space is not getting any smaller, and we don't have to necessarily 613 * increase ours as well if it increases. 614 */ 615 #define MEMCG_CACHES_MIN_SIZE 4 616 #define MEMCG_CACHES_MAX_SIZE 65535 617 618 /* 619 * A lot of the calls to the cache allocation functions are expected to be 620 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 621 * conditional to this static branch, we'll have to allow modules that does 622 * kmem_cache_alloc and the such to see this symbol as well 623 */ 624 struct static_key memcg_kmem_enabled_key; 625 EXPORT_SYMBOL(memcg_kmem_enabled_key); 626 627 static void disarm_kmem_keys(struct mem_cgroup *memcg) 628 { 629 if (memcg_kmem_is_active(memcg)) { 630 static_key_slow_dec(&memcg_kmem_enabled_key); 631 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 632 } 633 /* 634 * This check can't live in kmem destruction function, 635 * since the charges will outlive the cgroup 636 */ 637 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 638 } 639 #else 640 static void disarm_kmem_keys(struct mem_cgroup *memcg) 641 { 642 } 643 #endif /* CONFIG_MEMCG_KMEM */ 644 645 static void disarm_static_keys(struct mem_cgroup *memcg) 646 { 647 disarm_sock_keys(memcg); 648 disarm_kmem_keys(memcg); 649 } 650 651 static void drain_all_stock_async(struct mem_cgroup *memcg); 652 653 static struct mem_cgroup_per_zone * 654 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 655 { 656 VM_BUG_ON((unsigned)nid >= nr_node_ids); 657 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 658 } 659 660 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 661 { 662 return &memcg->css; 663 } 664 665 static struct mem_cgroup_per_zone * 666 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 667 { 668 int nid = page_to_nid(page); 669 int zid = page_zonenum(page); 670 671 return mem_cgroup_zoneinfo(memcg, nid, zid); 672 } 673 674 static struct mem_cgroup_tree_per_zone * 675 soft_limit_tree_node_zone(int nid, int zid) 676 { 677 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 678 } 679 680 static struct mem_cgroup_tree_per_zone * 681 soft_limit_tree_from_page(struct page *page) 682 { 683 int nid = page_to_nid(page); 684 int zid = page_zonenum(page); 685 686 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 687 } 688 689 static void 690 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 691 struct mem_cgroup_per_zone *mz, 692 struct mem_cgroup_tree_per_zone *mctz, 693 unsigned long long new_usage_in_excess) 694 { 695 struct rb_node **p = &mctz->rb_root.rb_node; 696 struct rb_node *parent = NULL; 697 struct mem_cgroup_per_zone *mz_node; 698 699 if (mz->on_tree) 700 return; 701 702 mz->usage_in_excess = new_usage_in_excess; 703 if (!mz->usage_in_excess) 704 return; 705 while (*p) { 706 parent = *p; 707 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 708 tree_node); 709 if (mz->usage_in_excess < mz_node->usage_in_excess) 710 p = &(*p)->rb_left; 711 /* 712 * We can't avoid mem cgroups that are over their soft 713 * limit by the same amount 714 */ 715 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 716 p = &(*p)->rb_right; 717 } 718 rb_link_node(&mz->tree_node, parent, p); 719 rb_insert_color(&mz->tree_node, &mctz->rb_root); 720 mz->on_tree = true; 721 } 722 723 static void 724 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 725 struct mem_cgroup_per_zone *mz, 726 struct mem_cgroup_tree_per_zone *mctz) 727 { 728 if (!mz->on_tree) 729 return; 730 rb_erase(&mz->tree_node, &mctz->rb_root); 731 mz->on_tree = false; 732 } 733 734 static void 735 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 736 struct mem_cgroup_per_zone *mz, 737 struct mem_cgroup_tree_per_zone *mctz) 738 { 739 spin_lock(&mctz->lock); 740 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 741 spin_unlock(&mctz->lock); 742 } 743 744 745 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 746 { 747 unsigned long long excess; 748 struct mem_cgroup_per_zone *mz; 749 struct mem_cgroup_tree_per_zone *mctz; 750 int nid = page_to_nid(page); 751 int zid = page_zonenum(page); 752 mctz = soft_limit_tree_from_page(page); 753 754 /* 755 * Necessary to update all ancestors when hierarchy is used. 756 * because their event counter is not touched. 757 */ 758 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 759 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 760 excess = res_counter_soft_limit_excess(&memcg->res); 761 /* 762 * We have to update the tree if mz is on RB-tree or 763 * mem is over its softlimit. 764 */ 765 if (excess || mz->on_tree) { 766 spin_lock(&mctz->lock); 767 /* if on-tree, remove it */ 768 if (mz->on_tree) 769 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 770 /* 771 * Insert again. mz->usage_in_excess will be updated. 772 * If excess is 0, no tree ops. 773 */ 774 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 775 spin_unlock(&mctz->lock); 776 } 777 } 778 } 779 780 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 781 { 782 int node, zone; 783 struct mem_cgroup_per_zone *mz; 784 struct mem_cgroup_tree_per_zone *mctz; 785 786 for_each_node(node) { 787 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 788 mz = mem_cgroup_zoneinfo(memcg, node, zone); 789 mctz = soft_limit_tree_node_zone(node, zone); 790 mem_cgroup_remove_exceeded(memcg, mz, mctz); 791 } 792 } 793 } 794 795 static struct mem_cgroup_per_zone * 796 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 797 { 798 struct rb_node *rightmost = NULL; 799 struct mem_cgroup_per_zone *mz; 800 801 retry: 802 mz = NULL; 803 rightmost = rb_last(&mctz->rb_root); 804 if (!rightmost) 805 goto done; /* Nothing to reclaim from */ 806 807 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 808 /* 809 * Remove the node now but someone else can add it back, 810 * we will to add it back at the end of reclaim to its correct 811 * position in the tree. 812 */ 813 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 814 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 815 !css_tryget(&mz->memcg->css)) 816 goto retry; 817 done: 818 return mz; 819 } 820 821 static struct mem_cgroup_per_zone * 822 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 823 { 824 struct mem_cgroup_per_zone *mz; 825 826 spin_lock(&mctz->lock); 827 mz = __mem_cgroup_largest_soft_limit_node(mctz); 828 spin_unlock(&mctz->lock); 829 return mz; 830 } 831 832 /* 833 * Implementation Note: reading percpu statistics for memcg. 834 * 835 * Both of vmstat[] and percpu_counter has threshold and do periodic 836 * synchronization to implement "quick" read. There are trade-off between 837 * reading cost and precision of value. Then, we may have a chance to implement 838 * a periodic synchronizion of counter in memcg's counter. 839 * 840 * But this _read() function is used for user interface now. The user accounts 841 * memory usage by memory cgroup and he _always_ requires exact value because 842 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 843 * have to visit all online cpus and make sum. So, for now, unnecessary 844 * synchronization is not implemented. (just implemented for cpu hotplug) 845 * 846 * If there are kernel internal actions which can make use of some not-exact 847 * value, and reading all cpu value can be performance bottleneck in some 848 * common workload, threashold and synchonization as vmstat[] should be 849 * implemented. 850 */ 851 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 852 enum mem_cgroup_stat_index idx) 853 { 854 long val = 0; 855 int cpu; 856 857 get_online_cpus(); 858 for_each_online_cpu(cpu) 859 val += per_cpu(memcg->stat->count[idx], cpu); 860 #ifdef CONFIG_HOTPLUG_CPU 861 spin_lock(&memcg->pcp_counter_lock); 862 val += memcg->nocpu_base.count[idx]; 863 spin_unlock(&memcg->pcp_counter_lock); 864 #endif 865 put_online_cpus(); 866 return val; 867 } 868 869 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 870 bool charge) 871 { 872 int val = (charge) ? 1 : -1; 873 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 874 } 875 876 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 877 enum mem_cgroup_events_index idx) 878 { 879 unsigned long val = 0; 880 int cpu; 881 882 for_each_online_cpu(cpu) 883 val += per_cpu(memcg->stat->events[idx], cpu); 884 #ifdef CONFIG_HOTPLUG_CPU 885 spin_lock(&memcg->pcp_counter_lock); 886 val += memcg->nocpu_base.events[idx]; 887 spin_unlock(&memcg->pcp_counter_lock); 888 #endif 889 return val; 890 } 891 892 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 893 struct page *page, 894 bool anon, int nr_pages) 895 { 896 preempt_disable(); 897 898 /* 899 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 900 * counted as CACHE even if it's on ANON LRU. 901 */ 902 if (anon) 903 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 904 nr_pages); 905 else 906 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 907 nr_pages); 908 909 if (PageTransHuge(page)) 910 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 911 nr_pages); 912 913 /* pagein of a big page is an event. So, ignore page size */ 914 if (nr_pages > 0) 915 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 916 else { 917 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 918 nr_pages = -nr_pages; /* for event */ 919 } 920 921 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 922 923 preempt_enable(); 924 } 925 926 unsigned long 927 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 928 { 929 struct mem_cgroup_per_zone *mz; 930 931 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 932 return mz->lru_size[lru]; 933 } 934 935 static unsigned long 936 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 937 unsigned int lru_mask) 938 { 939 struct mem_cgroup_per_zone *mz; 940 enum lru_list lru; 941 unsigned long ret = 0; 942 943 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 944 945 for_each_lru(lru) { 946 if (BIT(lru) & lru_mask) 947 ret += mz->lru_size[lru]; 948 } 949 return ret; 950 } 951 952 static unsigned long 953 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 954 int nid, unsigned int lru_mask) 955 { 956 u64 total = 0; 957 int zid; 958 959 for (zid = 0; zid < MAX_NR_ZONES; zid++) 960 total += mem_cgroup_zone_nr_lru_pages(memcg, 961 nid, zid, lru_mask); 962 963 return total; 964 } 965 966 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 967 unsigned int lru_mask) 968 { 969 int nid; 970 u64 total = 0; 971 972 for_each_node_state(nid, N_MEMORY) 973 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 974 return total; 975 } 976 977 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 978 enum mem_cgroup_events_target target) 979 { 980 unsigned long val, next; 981 982 val = __this_cpu_read(memcg->stat->nr_page_events); 983 next = __this_cpu_read(memcg->stat->targets[target]); 984 /* from time_after() in jiffies.h */ 985 if ((long)next - (long)val < 0) { 986 switch (target) { 987 case MEM_CGROUP_TARGET_THRESH: 988 next = val + THRESHOLDS_EVENTS_TARGET; 989 break; 990 case MEM_CGROUP_TARGET_SOFTLIMIT: 991 next = val + SOFTLIMIT_EVENTS_TARGET; 992 break; 993 case MEM_CGROUP_TARGET_NUMAINFO: 994 next = val + NUMAINFO_EVENTS_TARGET; 995 break; 996 default: 997 break; 998 } 999 __this_cpu_write(memcg->stat->targets[target], next); 1000 return true; 1001 } 1002 return false; 1003 } 1004 1005 /* 1006 * Check events in order. 1007 * 1008 */ 1009 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 1010 { 1011 preempt_disable(); 1012 /* threshold event is triggered in finer grain than soft limit */ 1013 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1014 MEM_CGROUP_TARGET_THRESH))) { 1015 bool do_softlimit; 1016 bool do_numainfo __maybe_unused; 1017 1018 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1019 MEM_CGROUP_TARGET_SOFTLIMIT); 1020 #if MAX_NUMNODES > 1 1021 do_numainfo = mem_cgroup_event_ratelimit(memcg, 1022 MEM_CGROUP_TARGET_NUMAINFO); 1023 #endif 1024 preempt_enable(); 1025 1026 mem_cgroup_threshold(memcg); 1027 if (unlikely(do_softlimit)) 1028 mem_cgroup_update_tree(memcg, page); 1029 #if MAX_NUMNODES > 1 1030 if (unlikely(do_numainfo)) 1031 atomic_inc(&memcg->numainfo_events); 1032 #endif 1033 } else 1034 preempt_enable(); 1035 } 1036 1037 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1038 { 1039 /* 1040 * mm_update_next_owner() may clear mm->owner to NULL 1041 * if it races with swapoff, page migration, etc. 1042 * So this can be called with p == NULL. 1043 */ 1044 if (unlikely(!p)) 1045 return NULL; 1046 1047 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id)); 1048 } 1049 1050 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 1051 { 1052 struct mem_cgroup *memcg = NULL; 1053 1054 if (!mm) 1055 return NULL; 1056 /* 1057 * Because we have no locks, mm->owner's may be being moved to other 1058 * cgroup. We use css_tryget() here even if this looks 1059 * pessimistic (rather than adding locks here). 1060 */ 1061 rcu_read_lock(); 1062 do { 1063 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1064 if (unlikely(!memcg)) 1065 break; 1066 } while (!css_tryget(&memcg->css)); 1067 rcu_read_unlock(); 1068 return memcg; 1069 } 1070 1071 /* 1072 * Returns a next (in a pre-order walk) alive memcg (with elevated css 1073 * ref. count) or NULL if the whole root's subtree has been visited. 1074 * 1075 * helper function to be used by mem_cgroup_iter 1076 */ 1077 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, 1078 struct mem_cgroup *last_visited) 1079 { 1080 struct cgroup_subsys_state *prev_css, *next_css; 1081 1082 prev_css = last_visited ? &last_visited->css : NULL; 1083 skip_node: 1084 next_css = css_next_descendant_pre(prev_css, &root->css); 1085 1086 /* 1087 * Even if we found a group we have to make sure it is 1088 * alive. css && !memcg means that the groups should be 1089 * skipped and we should continue the tree walk. 1090 * last_visited css is safe to use because it is 1091 * protected by css_get and the tree walk is rcu safe. 1092 */ 1093 if (next_css) { 1094 struct mem_cgroup *mem = mem_cgroup_from_css(next_css); 1095 1096 if (css_tryget(&mem->css)) 1097 return mem; 1098 else { 1099 prev_css = next_css; 1100 goto skip_node; 1101 } 1102 } 1103 1104 return NULL; 1105 } 1106 1107 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) 1108 { 1109 /* 1110 * When a group in the hierarchy below root is destroyed, the 1111 * hierarchy iterator can no longer be trusted since it might 1112 * have pointed to the destroyed group. Invalidate it. 1113 */ 1114 atomic_inc(&root->dead_count); 1115 } 1116 1117 static struct mem_cgroup * 1118 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, 1119 struct mem_cgroup *root, 1120 int *sequence) 1121 { 1122 struct mem_cgroup *position = NULL; 1123 /* 1124 * A cgroup destruction happens in two stages: offlining and 1125 * release. They are separated by a RCU grace period. 1126 * 1127 * If the iterator is valid, we may still race with an 1128 * offlining. The RCU lock ensures the object won't be 1129 * released, tryget will fail if we lost the race. 1130 */ 1131 *sequence = atomic_read(&root->dead_count); 1132 if (iter->last_dead_count == *sequence) { 1133 smp_rmb(); 1134 position = iter->last_visited; 1135 if (position && !css_tryget(&position->css)) 1136 position = NULL; 1137 } 1138 return position; 1139 } 1140 1141 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, 1142 struct mem_cgroup *last_visited, 1143 struct mem_cgroup *new_position, 1144 int sequence) 1145 { 1146 if (last_visited) 1147 css_put(&last_visited->css); 1148 /* 1149 * We store the sequence count from the time @last_visited was 1150 * loaded successfully instead of rereading it here so that we 1151 * don't lose destruction events in between. We could have 1152 * raced with the destruction of @new_position after all. 1153 */ 1154 iter->last_visited = new_position; 1155 smp_wmb(); 1156 iter->last_dead_count = sequence; 1157 } 1158 1159 /** 1160 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1161 * @root: hierarchy root 1162 * @prev: previously returned memcg, NULL on first invocation 1163 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1164 * 1165 * Returns references to children of the hierarchy below @root, or 1166 * @root itself, or %NULL after a full round-trip. 1167 * 1168 * Caller must pass the return value in @prev on subsequent 1169 * invocations for reference counting, or use mem_cgroup_iter_break() 1170 * to cancel a hierarchy walk before the round-trip is complete. 1171 * 1172 * Reclaimers can specify a zone and a priority level in @reclaim to 1173 * divide up the memcgs in the hierarchy among all concurrent 1174 * reclaimers operating on the same zone and priority. 1175 */ 1176 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1177 struct mem_cgroup *prev, 1178 struct mem_cgroup_reclaim_cookie *reclaim) 1179 { 1180 struct mem_cgroup *memcg = NULL; 1181 struct mem_cgroup *last_visited = NULL; 1182 1183 if (mem_cgroup_disabled()) 1184 return NULL; 1185 1186 if (!root) 1187 root = root_mem_cgroup; 1188 1189 if (prev && !reclaim) 1190 last_visited = prev; 1191 1192 if (!root->use_hierarchy && root != root_mem_cgroup) { 1193 if (prev) 1194 goto out_css_put; 1195 return root; 1196 } 1197 1198 rcu_read_lock(); 1199 while (!memcg) { 1200 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1201 int uninitialized_var(seq); 1202 1203 if (reclaim) { 1204 int nid = zone_to_nid(reclaim->zone); 1205 int zid = zone_idx(reclaim->zone); 1206 struct mem_cgroup_per_zone *mz; 1207 1208 mz = mem_cgroup_zoneinfo(root, nid, zid); 1209 iter = &mz->reclaim_iter[reclaim->priority]; 1210 if (prev && reclaim->generation != iter->generation) { 1211 iter->last_visited = NULL; 1212 goto out_unlock; 1213 } 1214 1215 last_visited = mem_cgroup_iter_load(iter, root, &seq); 1216 } 1217 1218 memcg = __mem_cgroup_iter_next(root, last_visited); 1219 1220 if (reclaim) { 1221 mem_cgroup_iter_update(iter, last_visited, memcg, seq); 1222 1223 if (!memcg) 1224 iter->generation++; 1225 else if (!prev && memcg) 1226 reclaim->generation = iter->generation; 1227 } 1228 1229 if (prev && !memcg) 1230 goto out_unlock; 1231 } 1232 out_unlock: 1233 rcu_read_unlock(); 1234 out_css_put: 1235 if (prev && prev != root) 1236 css_put(&prev->css); 1237 1238 return memcg; 1239 } 1240 1241 /** 1242 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1243 * @root: hierarchy root 1244 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1245 */ 1246 void mem_cgroup_iter_break(struct mem_cgroup *root, 1247 struct mem_cgroup *prev) 1248 { 1249 if (!root) 1250 root = root_mem_cgroup; 1251 if (prev && prev != root) 1252 css_put(&prev->css); 1253 } 1254 1255 /* 1256 * Iteration constructs for visiting all cgroups (under a tree). If 1257 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1258 * be used for reference counting. 1259 */ 1260 #define for_each_mem_cgroup_tree(iter, root) \ 1261 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1262 iter != NULL; \ 1263 iter = mem_cgroup_iter(root, iter, NULL)) 1264 1265 #define for_each_mem_cgroup(iter) \ 1266 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1267 iter != NULL; \ 1268 iter = mem_cgroup_iter(NULL, iter, NULL)) 1269 1270 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1271 { 1272 struct mem_cgroup *memcg; 1273 1274 rcu_read_lock(); 1275 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1276 if (unlikely(!memcg)) 1277 goto out; 1278 1279 switch (idx) { 1280 case PGFAULT: 1281 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1282 break; 1283 case PGMAJFAULT: 1284 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1285 break; 1286 default: 1287 BUG(); 1288 } 1289 out: 1290 rcu_read_unlock(); 1291 } 1292 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1293 1294 /** 1295 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1296 * @zone: zone of the wanted lruvec 1297 * @memcg: memcg of the wanted lruvec 1298 * 1299 * Returns the lru list vector holding pages for the given @zone and 1300 * @mem. This can be the global zone lruvec, if the memory controller 1301 * is disabled. 1302 */ 1303 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1304 struct mem_cgroup *memcg) 1305 { 1306 struct mem_cgroup_per_zone *mz; 1307 struct lruvec *lruvec; 1308 1309 if (mem_cgroup_disabled()) { 1310 lruvec = &zone->lruvec; 1311 goto out; 1312 } 1313 1314 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1315 lruvec = &mz->lruvec; 1316 out: 1317 /* 1318 * Since a node can be onlined after the mem_cgroup was created, 1319 * we have to be prepared to initialize lruvec->zone here; 1320 * and if offlined then reonlined, we need to reinitialize it. 1321 */ 1322 if (unlikely(lruvec->zone != zone)) 1323 lruvec->zone = zone; 1324 return lruvec; 1325 } 1326 1327 /* 1328 * Following LRU functions are allowed to be used without PCG_LOCK. 1329 * Operations are called by routine of global LRU independently from memcg. 1330 * What we have to take care of here is validness of pc->mem_cgroup. 1331 * 1332 * Changes to pc->mem_cgroup happens when 1333 * 1. charge 1334 * 2. moving account 1335 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1336 * It is added to LRU before charge. 1337 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1338 * When moving account, the page is not on LRU. It's isolated. 1339 */ 1340 1341 /** 1342 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1343 * @page: the page 1344 * @zone: zone of the page 1345 */ 1346 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1347 { 1348 struct mem_cgroup_per_zone *mz; 1349 struct mem_cgroup *memcg; 1350 struct page_cgroup *pc; 1351 struct lruvec *lruvec; 1352 1353 if (mem_cgroup_disabled()) { 1354 lruvec = &zone->lruvec; 1355 goto out; 1356 } 1357 1358 pc = lookup_page_cgroup(page); 1359 memcg = pc->mem_cgroup; 1360 1361 /* 1362 * Surreptitiously switch any uncharged offlist page to root: 1363 * an uncharged page off lru does nothing to secure 1364 * its former mem_cgroup from sudden removal. 1365 * 1366 * Our caller holds lru_lock, and PageCgroupUsed is updated 1367 * under page_cgroup lock: between them, they make all uses 1368 * of pc->mem_cgroup safe. 1369 */ 1370 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1371 pc->mem_cgroup = memcg = root_mem_cgroup; 1372 1373 mz = page_cgroup_zoneinfo(memcg, page); 1374 lruvec = &mz->lruvec; 1375 out: 1376 /* 1377 * Since a node can be onlined after the mem_cgroup was created, 1378 * we have to be prepared to initialize lruvec->zone here; 1379 * and if offlined then reonlined, we need to reinitialize it. 1380 */ 1381 if (unlikely(lruvec->zone != zone)) 1382 lruvec->zone = zone; 1383 return lruvec; 1384 } 1385 1386 /** 1387 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1388 * @lruvec: mem_cgroup per zone lru vector 1389 * @lru: index of lru list the page is sitting on 1390 * @nr_pages: positive when adding or negative when removing 1391 * 1392 * This function must be called when a page is added to or removed from an 1393 * lru list. 1394 */ 1395 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1396 int nr_pages) 1397 { 1398 struct mem_cgroup_per_zone *mz; 1399 unsigned long *lru_size; 1400 1401 if (mem_cgroup_disabled()) 1402 return; 1403 1404 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1405 lru_size = mz->lru_size + lru; 1406 *lru_size += nr_pages; 1407 VM_BUG_ON((long)(*lru_size) < 0); 1408 } 1409 1410 /* 1411 * Checks whether given mem is same or in the root_mem_cgroup's 1412 * hierarchy subtree 1413 */ 1414 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1415 struct mem_cgroup *memcg) 1416 { 1417 if (root_memcg == memcg) 1418 return true; 1419 if (!root_memcg->use_hierarchy || !memcg) 1420 return false; 1421 return css_is_ancestor(&memcg->css, &root_memcg->css); 1422 } 1423 1424 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1425 struct mem_cgroup *memcg) 1426 { 1427 bool ret; 1428 1429 rcu_read_lock(); 1430 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1431 rcu_read_unlock(); 1432 return ret; 1433 } 1434 1435 bool task_in_mem_cgroup(struct task_struct *task, 1436 const struct mem_cgroup *memcg) 1437 { 1438 struct mem_cgroup *curr = NULL; 1439 struct task_struct *p; 1440 bool ret; 1441 1442 p = find_lock_task_mm(task); 1443 if (p) { 1444 curr = try_get_mem_cgroup_from_mm(p->mm); 1445 task_unlock(p); 1446 } else { 1447 /* 1448 * All threads may have already detached their mm's, but the oom 1449 * killer still needs to detect if they have already been oom 1450 * killed to prevent needlessly killing additional tasks. 1451 */ 1452 rcu_read_lock(); 1453 curr = mem_cgroup_from_task(task); 1454 if (curr) 1455 css_get(&curr->css); 1456 rcu_read_unlock(); 1457 } 1458 if (!curr) 1459 return false; 1460 /* 1461 * We should check use_hierarchy of "memcg" not "curr". Because checking 1462 * use_hierarchy of "curr" here make this function true if hierarchy is 1463 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1464 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1465 */ 1466 ret = mem_cgroup_same_or_subtree(memcg, curr); 1467 css_put(&curr->css); 1468 return ret; 1469 } 1470 1471 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1472 { 1473 unsigned long inactive_ratio; 1474 unsigned long inactive; 1475 unsigned long active; 1476 unsigned long gb; 1477 1478 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1479 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1480 1481 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1482 if (gb) 1483 inactive_ratio = int_sqrt(10 * gb); 1484 else 1485 inactive_ratio = 1; 1486 1487 return inactive * inactive_ratio < active; 1488 } 1489 1490 #define mem_cgroup_from_res_counter(counter, member) \ 1491 container_of(counter, struct mem_cgroup, member) 1492 1493 /** 1494 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1495 * @memcg: the memory cgroup 1496 * 1497 * Returns the maximum amount of memory @mem can be charged with, in 1498 * pages. 1499 */ 1500 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1501 { 1502 unsigned long long margin; 1503 1504 margin = res_counter_margin(&memcg->res); 1505 if (do_swap_account) 1506 margin = min(margin, res_counter_margin(&memcg->memsw)); 1507 return margin >> PAGE_SHIFT; 1508 } 1509 1510 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1511 { 1512 /* root ? */ 1513 if (!css_parent(&memcg->css)) 1514 return vm_swappiness; 1515 1516 return memcg->swappiness; 1517 } 1518 1519 /* 1520 * memcg->moving_account is used for checking possibility that some thread is 1521 * calling move_account(). When a thread on CPU-A starts moving pages under 1522 * a memcg, other threads should check memcg->moving_account under 1523 * rcu_read_lock(), like this: 1524 * 1525 * CPU-A CPU-B 1526 * rcu_read_lock() 1527 * memcg->moving_account+1 if (memcg->mocing_account) 1528 * take heavy locks. 1529 * synchronize_rcu() update something. 1530 * rcu_read_unlock() 1531 * start move here. 1532 */ 1533 1534 /* for quick checking without looking up memcg */ 1535 atomic_t memcg_moving __read_mostly; 1536 1537 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1538 { 1539 atomic_inc(&memcg_moving); 1540 atomic_inc(&memcg->moving_account); 1541 synchronize_rcu(); 1542 } 1543 1544 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1545 { 1546 /* 1547 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1548 * We check NULL in callee rather than caller. 1549 */ 1550 if (memcg) { 1551 atomic_dec(&memcg_moving); 1552 atomic_dec(&memcg->moving_account); 1553 } 1554 } 1555 1556 /* 1557 * 2 routines for checking "mem" is under move_account() or not. 1558 * 1559 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1560 * is used for avoiding races in accounting. If true, 1561 * pc->mem_cgroup may be overwritten. 1562 * 1563 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1564 * under hierarchy of moving cgroups. This is for 1565 * waiting at hith-memory prressure caused by "move". 1566 */ 1567 1568 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1569 { 1570 VM_BUG_ON(!rcu_read_lock_held()); 1571 return atomic_read(&memcg->moving_account) > 0; 1572 } 1573 1574 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1575 { 1576 struct mem_cgroup *from; 1577 struct mem_cgroup *to; 1578 bool ret = false; 1579 /* 1580 * Unlike task_move routines, we access mc.to, mc.from not under 1581 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1582 */ 1583 spin_lock(&mc.lock); 1584 from = mc.from; 1585 to = mc.to; 1586 if (!from) 1587 goto unlock; 1588 1589 ret = mem_cgroup_same_or_subtree(memcg, from) 1590 || mem_cgroup_same_or_subtree(memcg, to); 1591 unlock: 1592 spin_unlock(&mc.lock); 1593 return ret; 1594 } 1595 1596 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1597 { 1598 if (mc.moving_task && current != mc.moving_task) { 1599 if (mem_cgroup_under_move(memcg)) { 1600 DEFINE_WAIT(wait); 1601 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1602 /* moving charge context might have finished. */ 1603 if (mc.moving_task) 1604 schedule(); 1605 finish_wait(&mc.waitq, &wait); 1606 return true; 1607 } 1608 } 1609 return false; 1610 } 1611 1612 /* 1613 * Take this lock when 1614 * - a code tries to modify page's memcg while it's USED. 1615 * - a code tries to modify page state accounting in a memcg. 1616 * see mem_cgroup_stolen(), too. 1617 */ 1618 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1619 unsigned long *flags) 1620 { 1621 spin_lock_irqsave(&memcg->move_lock, *flags); 1622 } 1623 1624 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1625 unsigned long *flags) 1626 { 1627 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1628 } 1629 1630 #define K(x) ((x) << (PAGE_SHIFT-10)) 1631 /** 1632 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1633 * @memcg: The memory cgroup that went over limit 1634 * @p: Task that is going to be killed 1635 * 1636 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1637 * enabled 1638 */ 1639 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1640 { 1641 struct cgroup *task_cgrp; 1642 struct cgroup *mem_cgrp; 1643 /* 1644 * Need a buffer in BSS, can't rely on allocations. The code relies 1645 * on the assumption that OOM is serialized for memory controller. 1646 * If this assumption is broken, revisit this code. 1647 */ 1648 static char memcg_name[PATH_MAX]; 1649 int ret; 1650 struct mem_cgroup *iter; 1651 unsigned int i; 1652 1653 if (!p) 1654 return; 1655 1656 rcu_read_lock(); 1657 1658 mem_cgrp = memcg->css.cgroup; 1659 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1660 1661 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1662 if (ret < 0) { 1663 /* 1664 * Unfortunately, we are unable to convert to a useful name 1665 * But we'll still print out the usage information 1666 */ 1667 rcu_read_unlock(); 1668 goto done; 1669 } 1670 rcu_read_unlock(); 1671 1672 pr_info("Task in %s killed", memcg_name); 1673 1674 rcu_read_lock(); 1675 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1676 if (ret < 0) { 1677 rcu_read_unlock(); 1678 goto done; 1679 } 1680 rcu_read_unlock(); 1681 1682 /* 1683 * Continues from above, so we don't need an KERN_ level 1684 */ 1685 pr_cont(" as a result of limit of %s\n", memcg_name); 1686 done: 1687 1688 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1689 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1690 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1691 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1692 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1693 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1694 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1695 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1696 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1697 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1698 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1699 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1700 1701 for_each_mem_cgroup_tree(iter, memcg) { 1702 pr_info("Memory cgroup stats"); 1703 1704 rcu_read_lock(); 1705 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); 1706 if (!ret) 1707 pr_cont(" for %s", memcg_name); 1708 rcu_read_unlock(); 1709 pr_cont(":"); 1710 1711 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1712 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1713 continue; 1714 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1715 K(mem_cgroup_read_stat(iter, i))); 1716 } 1717 1718 for (i = 0; i < NR_LRU_LISTS; i++) 1719 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1720 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1721 1722 pr_cont("\n"); 1723 } 1724 } 1725 1726 /* 1727 * This function returns the number of memcg under hierarchy tree. Returns 1728 * 1(self count) if no children. 1729 */ 1730 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1731 { 1732 int num = 0; 1733 struct mem_cgroup *iter; 1734 1735 for_each_mem_cgroup_tree(iter, memcg) 1736 num++; 1737 return num; 1738 } 1739 1740 /* 1741 * Return the memory (and swap, if configured) limit for a memcg. 1742 */ 1743 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1744 { 1745 u64 limit; 1746 1747 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1748 1749 /* 1750 * Do not consider swap space if we cannot swap due to swappiness 1751 */ 1752 if (mem_cgroup_swappiness(memcg)) { 1753 u64 memsw; 1754 1755 limit += total_swap_pages << PAGE_SHIFT; 1756 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1757 1758 /* 1759 * If memsw is finite and limits the amount of swap space 1760 * available to this memcg, return that limit. 1761 */ 1762 limit = min(limit, memsw); 1763 } 1764 1765 return limit; 1766 } 1767 1768 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1769 int order) 1770 { 1771 struct mem_cgroup *iter; 1772 unsigned long chosen_points = 0; 1773 unsigned long totalpages; 1774 unsigned int points = 0; 1775 struct task_struct *chosen = NULL; 1776 1777 /* 1778 * If current has a pending SIGKILL or is exiting, then automatically 1779 * select it. The goal is to allow it to allocate so that it may 1780 * quickly exit and free its memory. 1781 */ 1782 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 1783 set_thread_flag(TIF_MEMDIE); 1784 return; 1785 } 1786 1787 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1788 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1789 for_each_mem_cgroup_tree(iter, memcg) { 1790 struct css_task_iter it; 1791 struct task_struct *task; 1792 1793 css_task_iter_start(&iter->css, &it); 1794 while ((task = css_task_iter_next(&it))) { 1795 switch (oom_scan_process_thread(task, totalpages, NULL, 1796 false)) { 1797 case OOM_SCAN_SELECT: 1798 if (chosen) 1799 put_task_struct(chosen); 1800 chosen = task; 1801 chosen_points = ULONG_MAX; 1802 get_task_struct(chosen); 1803 /* fall through */ 1804 case OOM_SCAN_CONTINUE: 1805 continue; 1806 case OOM_SCAN_ABORT: 1807 css_task_iter_end(&it); 1808 mem_cgroup_iter_break(memcg, iter); 1809 if (chosen) 1810 put_task_struct(chosen); 1811 return; 1812 case OOM_SCAN_OK: 1813 break; 1814 }; 1815 points = oom_badness(task, memcg, NULL, totalpages); 1816 if (points > chosen_points) { 1817 if (chosen) 1818 put_task_struct(chosen); 1819 chosen = task; 1820 chosen_points = points; 1821 get_task_struct(chosen); 1822 } 1823 } 1824 css_task_iter_end(&it); 1825 } 1826 1827 if (!chosen) 1828 return; 1829 points = chosen_points * 1000 / totalpages; 1830 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1831 NULL, "Memory cgroup out of memory"); 1832 } 1833 1834 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1835 gfp_t gfp_mask, 1836 unsigned long flags) 1837 { 1838 unsigned long total = 0; 1839 bool noswap = false; 1840 int loop; 1841 1842 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1843 noswap = true; 1844 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1845 noswap = true; 1846 1847 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1848 if (loop) 1849 drain_all_stock_async(memcg); 1850 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1851 /* 1852 * Allow limit shrinkers, which are triggered directly 1853 * by userspace, to catch signals and stop reclaim 1854 * after minimal progress, regardless of the margin. 1855 */ 1856 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1857 break; 1858 if (mem_cgroup_margin(memcg)) 1859 break; 1860 /* 1861 * If nothing was reclaimed after two attempts, there 1862 * may be no reclaimable pages in this hierarchy. 1863 */ 1864 if (loop && !total) 1865 break; 1866 } 1867 return total; 1868 } 1869 1870 /** 1871 * test_mem_cgroup_node_reclaimable 1872 * @memcg: the target memcg 1873 * @nid: the node ID to be checked. 1874 * @noswap : specify true here if the user wants flle only information. 1875 * 1876 * This function returns whether the specified memcg contains any 1877 * reclaimable pages on a node. Returns true if there are any reclaimable 1878 * pages in the node. 1879 */ 1880 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1881 int nid, bool noswap) 1882 { 1883 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1884 return true; 1885 if (noswap || !total_swap_pages) 1886 return false; 1887 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1888 return true; 1889 return false; 1890 1891 } 1892 #if MAX_NUMNODES > 1 1893 1894 /* 1895 * Always updating the nodemask is not very good - even if we have an empty 1896 * list or the wrong list here, we can start from some node and traverse all 1897 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1898 * 1899 */ 1900 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1901 { 1902 int nid; 1903 /* 1904 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1905 * pagein/pageout changes since the last update. 1906 */ 1907 if (!atomic_read(&memcg->numainfo_events)) 1908 return; 1909 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1910 return; 1911 1912 /* make a nodemask where this memcg uses memory from */ 1913 memcg->scan_nodes = node_states[N_MEMORY]; 1914 1915 for_each_node_mask(nid, node_states[N_MEMORY]) { 1916 1917 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1918 node_clear(nid, memcg->scan_nodes); 1919 } 1920 1921 atomic_set(&memcg->numainfo_events, 0); 1922 atomic_set(&memcg->numainfo_updating, 0); 1923 } 1924 1925 /* 1926 * Selecting a node where we start reclaim from. Because what we need is just 1927 * reducing usage counter, start from anywhere is O,K. Considering 1928 * memory reclaim from current node, there are pros. and cons. 1929 * 1930 * Freeing memory from current node means freeing memory from a node which 1931 * we'll use or we've used. So, it may make LRU bad. And if several threads 1932 * hit limits, it will see a contention on a node. But freeing from remote 1933 * node means more costs for memory reclaim because of memory latency. 1934 * 1935 * Now, we use round-robin. Better algorithm is welcomed. 1936 */ 1937 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1938 { 1939 int node; 1940 1941 mem_cgroup_may_update_nodemask(memcg); 1942 node = memcg->last_scanned_node; 1943 1944 node = next_node(node, memcg->scan_nodes); 1945 if (node == MAX_NUMNODES) 1946 node = first_node(memcg->scan_nodes); 1947 /* 1948 * We call this when we hit limit, not when pages are added to LRU. 1949 * No LRU may hold pages because all pages are UNEVICTABLE or 1950 * memcg is too small and all pages are not on LRU. In that case, 1951 * we use curret node. 1952 */ 1953 if (unlikely(node == MAX_NUMNODES)) 1954 node = numa_node_id(); 1955 1956 memcg->last_scanned_node = node; 1957 return node; 1958 } 1959 1960 /* 1961 * Check all nodes whether it contains reclaimable pages or not. 1962 * For quick scan, we make use of scan_nodes. This will allow us to skip 1963 * unused nodes. But scan_nodes is lazily updated and may not cotain 1964 * enough new information. We need to do double check. 1965 */ 1966 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1967 { 1968 int nid; 1969 1970 /* 1971 * quick check...making use of scan_node. 1972 * We can skip unused nodes. 1973 */ 1974 if (!nodes_empty(memcg->scan_nodes)) { 1975 for (nid = first_node(memcg->scan_nodes); 1976 nid < MAX_NUMNODES; 1977 nid = next_node(nid, memcg->scan_nodes)) { 1978 1979 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1980 return true; 1981 } 1982 } 1983 /* 1984 * Check rest of nodes. 1985 */ 1986 for_each_node_state(nid, N_MEMORY) { 1987 if (node_isset(nid, memcg->scan_nodes)) 1988 continue; 1989 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1990 return true; 1991 } 1992 return false; 1993 } 1994 1995 #else 1996 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1997 { 1998 return 0; 1999 } 2000 2001 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 2002 { 2003 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 2004 } 2005 #endif 2006 2007 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 2008 struct zone *zone, 2009 gfp_t gfp_mask, 2010 unsigned long *total_scanned) 2011 { 2012 struct mem_cgroup *victim = NULL; 2013 int total = 0; 2014 int loop = 0; 2015 unsigned long excess; 2016 unsigned long nr_scanned; 2017 struct mem_cgroup_reclaim_cookie reclaim = { 2018 .zone = zone, 2019 .priority = 0, 2020 }; 2021 2022 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 2023 2024 while (1) { 2025 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 2026 if (!victim) { 2027 loop++; 2028 if (loop >= 2) { 2029 /* 2030 * If we have not been able to reclaim 2031 * anything, it might because there are 2032 * no reclaimable pages under this hierarchy 2033 */ 2034 if (!total) 2035 break; 2036 /* 2037 * We want to do more targeted reclaim. 2038 * excess >> 2 is not to excessive so as to 2039 * reclaim too much, nor too less that we keep 2040 * coming back to reclaim from this cgroup 2041 */ 2042 if (total >= (excess >> 2) || 2043 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 2044 break; 2045 } 2046 continue; 2047 } 2048 if (!mem_cgroup_reclaimable(victim, false)) 2049 continue; 2050 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 2051 zone, &nr_scanned); 2052 *total_scanned += nr_scanned; 2053 if (!res_counter_soft_limit_excess(&root_memcg->res)) 2054 break; 2055 } 2056 mem_cgroup_iter_break(root_memcg, victim); 2057 return total; 2058 } 2059 2060 /* 2061 * Check OOM-Killer is already running under our hierarchy. 2062 * If someone is running, return false. 2063 * Has to be called with memcg_oom_lock 2064 */ 2065 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 2066 { 2067 struct mem_cgroup *iter, *failed = NULL; 2068 2069 for_each_mem_cgroup_tree(iter, memcg) { 2070 if (iter->oom_lock) { 2071 /* 2072 * this subtree of our hierarchy is already locked 2073 * so we cannot give a lock. 2074 */ 2075 failed = iter; 2076 mem_cgroup_iter_break(memcg, iter); 2077 break; 2078 } else 2079 iter->oom_lock = true; 2080 } 2081 2082 if (!failed) 2083 return true; 2084 2085 /* 2086 * OK, we failed to lock the whole subtree so we have to clean up 2087 * what we set up to the failing subtree 2088 */ 2089 for_each_mem_cgroup_tree(iter, memcg) { 2090 if (iter == failed) { 2091 mem_cgroup_iter_break(memcg, iter); 2092 break; 2093 } 2094 iter->oom_lock = false; 2095 } 2096 return false; 2097 } 2098 2099 /* 2100 * Has to be called with memcg_oom_lock 2101 */ 2102 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2103 { 2104 struct mem_cgroup *iter; 2105 2106 for_each_mem_cgroup_tree(iter, memcg) 2107 iter->oom_lock = false; 2108 return 0; 2109 } 2110 2111 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2112 { 2113 struct mem_cgroup *iter; 2114 2115 for_each_mem_cgroup_tree(iter, memcg) 2116 atomic_inc(&iter->under_oom); 2117 } 2118 2119 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2120 { 2121 struct mem_cgroup *iter; 2122 2123 /* 2124 * When a new child is created while the hierarchy is under oom, 2125 * mem_cgroup_oom_lock() may not be called. We have to use 2126 * atomic_add_unless() here. 2127 */ 2128 for_each_mem_cgroup_tree(iter, memcg) 2129 atomic_add_unless(&iter->under_oom, -1, 0); 2130 } 2131 2132 static DEFINE_SPINLOCK(memcg_oom_lock); 2133 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2134 2135 struct oom_wait_info { 2136 struct mem_cgroup *memcg; 2137 wait_queue_t wait; 2138 }; 2139 2140 static int memcg_oom_wake_function(wait_queue_t *wait, 2141 unsigned mode, int sync, void *arg) 2142 { 2143 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2144 struct mem_cgroup *oom_wait_memcg; 2145 struct oom_wait_info *oom_wait_info; 2146 2147 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2148 oom_wait_memcg = oom_wait_info->memcg; 2149 2150 /* 2151 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2152 * Then we can use css_is_ancestor without taking care of RCU. 2153 */ 2154 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2155 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2156 return 0; 2157 return autoremove_wake_function(wait, mode, sync, arg); 2158 } 2159 2160 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2161 { 2162 /* for filtering, pass "memcg" as argument. */ 2163 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2164 } 2165 2166 static void memcg_oom_recover(struct mem_cgroup *memcg) 2167 { 2168 if (memcg && atomic_read(&memcg->under_oom)) 2169 memcg_wakeup_oom(memcg); 2170 } 2171 2172 /* 2173 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 2174 */ 2175 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 2176 int order) 2177 { 2178 struct oom_wait_info owait; 2179 bool locked, need_to_kill; 2180 2181 owait.memcg = memcg; 2182 owait.wait.flags = 0; 2183 owait.wait.func = memcg_oom_wake_function; 2184 owait.wait.private = current; 2185 INIT_LIST_HEAD(&owait.wait.task_list); 2186 need_to_kill = true; 2187 mem_cgroup_mark_under_oom(memcg); 2188 2189 /* At first, try to OOM lock hierarchy under memcg.*/ 2190 spin_lock(&memcg_oom_lock); 2191 locked = mem_cgroup_oom_lock(memcg); 2192 /* 2193 * Even if signal_pending(), we can't quit charge() loop without 2194 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 2195 * under OOM is always welcomed, use TASK_KILLABLE here. 2196 */ 2197 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2198 if (!locked || memcg->oom_kill_disable) 2199 need_to_kill = false; 2200 if (locked) 2201 mem_cgroup_oom_notify(memcg); 2202 spin_unlock(&memcg_oom_lock); 2203 2204 if (need_to_kill) { 2205 finish_wait(&memcg_oom_waitq, &owait.wait); 2206 mem_cgroup_out_of_memory(memcg, mask, order); 2207 } else { 2208 schedule(); 2209 finish_wait(&memcg_oom_waitq, &owait.wait); 2210 } 2211 spin_lock(&memcg_oom_lock); 2212 if (locked) 2213 mem_cgroup_oom_unlock(memcg); 2214 memcg_wakeup_oom(memcg); 2215 spin_unlock(&memcg_oom_lock); 2216 2217 mem_cgroup_unmark_under_oom(memcg); 2218 2219 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 2220 return false; 2221 /* Give chance to dying process */ 2222 schedule_timeout_uninterruptible(1); 2223 return true; 2224 } 2225 2226 /* 2227 * Currently used to update mapped file statistics, but the routine can be 2228 * generalized to update other statistics as well. 2229 * 2230 * Notes: Race condition 2231 * 2232 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2233 * it tends to be costly. But considering some conditions, we doesn't need 2234 * to do so _always_. 2235 * 2236 * Considering "charge", lock_page_cgroup() is not required because all 2237 * file-stat operations happen after a page is attached to radix-tree. There 2238 * are no race with "charge". 2239 * 2240 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2241 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2242 * if there are race with "uncharge". Statistics itself is properly handled 2243 * by flags. 2244 * 2245 * Considering "move", this is an only case we see a race. To make the race 2246 * small, we check mm->moving_account and detect there are possibility of race 2247 * If there is, we take a lock. 2248 */ 2249 2250 void __mem_cgroup_begin_update_page_stat(struct page *page, 2251 bool *locked, unsigned long *flags) 2252 { 2253 struct mem_cgroup *memcg; 2254 struct page_cgroup *pc; 2255 2256 pc = lookup_page_cgroup(page); 2257 again: 2258 memcg = pc->mem_cgroup; 2259 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2260 return; 2261 /* 2262 * If this memory cgroup is not under account moving, we don't 2263 * need to take move_lock_mem_cgroup(). Because we already hold 2264 * rcu_read_lock(), any calls to move_account will be delayed until 2265 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2266 */ 2267 if (!mem_cgroup_stolen(memcg)) 2268 return; 2269 2270 move_lock_mem_cgroup(memcg, flags); 2271 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2272 move_unlock_mem_cgroup(memcg, flags); 2273 goto again; 2274 } 2275 *locked = true; 2276 } 2277 2278 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2279 { 2280 struct page_cgroup *pc = lookup_page_cgroup(page); 2281 2282 /* 2283 * It's guaranteed that pc->mem_cgroup never changes while 2284 * lock is held because a routine modifies pc->mem_cgroup 2285 * should take move_lock_mem_cgroup(). 2286 */ 2287 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2288 } 2289 2290 void mem_cgroup_update_page_stat(struct page *page, 2291 enum mem_cgroup_page_stat_item idx, int val) 2292 { 2293 struct mem_cgroup *memcg; 2294 struct page_cgroup *pc = lookup_page_cgroup(page); 2295 unsigned long uninitialized_var(flags); 2296 2297 if (mem_cgroup_disabled()) 2298 return; 2299 2300 memcg = pc->mem_cgroup; 2301 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2302 return; 2303 2304 switch (idx) { 2305 case MEMCG_NR_FILE_MAPPED: 2306 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2307 break; 2308 default: 2309 BUG(); 2310 } 2311 2312 this_cpu_add(memcg->stat->count[idx], val); 2313 } 2314 2315 /* 2316 * size of first charge trial. "32" comes from vmscan.c's magic value. 2317 * TODO: maybe necessary to use big numbers in big irons. 2318 */ 2319 #define CHARGE_BATCH 32U 2320 struct memcg_stock_pcp { 2321 struct mem_cgroup *cached; /* this never be root cgroup */ 2322 unsigned int nr_pages; 2323 struct work_struct work; 2324 unsigned long flags; 2325 #define FLUSHING_CACHED_CHARGE 0 2326 }; 2327 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2328 static DEFINE_MUTEX(percpu_charge_mutex); 2329 2330 /** 2331 * consume_stock: Try to consume stocked charge on this cpu. 2332 * @memcg: memcg to consume from. 2333 * @nr_pages: how many pages to charge. 2334 * 2335 * The charges will only happen if @memcg matches the current cpu's memcg 2336 * stock, and at least @nr_pages are available in that stock. Failure to 2337 * service an allocation will refill the stock. 2338 * 2339 * returns true if successful, false otherwise. 2340 */ 2341 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2342 { 2343 struct memcg_stock_pcp *stock; 2344 bool ret = true; 2345 2346 if (nr_pages > CHARGE_BATCH) 2347 return false; 2348 2349 stock = &get_cpu_var(memcg_stock); 2350 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2351 stock->nr_pages -= nr_pages; 2352 else /* need to call res_counter_charge */ 2353 ret = false; 2354 put_cpu_var(memcg_stock); 2355 return ret; 2356 } 2357 2358 /* 2359 * Returns stocks cached in percpu to res_counter and reset cached information. 2360 */ 2361 static void drain_stock(struct memcg_stock_pcp *stock) 2362 { 2363 struct mem_cgroup *old = stock->cached; 2364 2365 if (stock->nr_pages) { 2366 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2367 2368 res_counter_uncharge(&old->res, bytes); 2369 if (do_swap_account) 2370 res_counter_uncharge(&old->memsw, bytes); 2371 stock->nr_pages = 0; 2372 } 2373 stock->cached = NULL; 2374 } 2375 2376 /* 2377 * This must be called under preempt disabled or must be called by 2378 * a thread which is pinned to local cpu. 2379 */ 2380 static void drain_local_stock(struct work_struct *dummy) 2381 { 2382 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2383 drain_stock(stock); 2384 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2385 } 2386 2387 static void __init memcg_stock_init(void) 2388 { 2389 int cpu; 2390 2391 for_each_possible_cpu(cpu) { 2392 struct memcg_stock_pcp *stock = 2393 &per_cpu(memcg_stock, cpu); 2394 INIT_WORK(&stock->work, drain_local_stock); 2395 } 2396 } 2397 2398 /* 2399 * Cache charges(val) which is from res_counter, to local per_cpu area. 2400 * This will be consumed by consume_stock() function, later. 2401 */ 2402 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2403 { 2404 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2405 2406 if (stock->cached != memcg) { /* reset if necessary */ 2407 drain_stock(stock); 2408 stock->cached = memcg; 2409 } 2410 stock->nr_pages += nr_pages; 2411 put_cpu_var(memcg_stock); 2412 } 2413 2414 /* 2415 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2416 * of the hierarchy under it. sync flag says whether we should block 2417 * until the work is done. 2418 */ 2419 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2420 { 2421 int cpu, curcpu; 2422 2423 /* Notify other cpus that system-wide "drain" is running */ 2424 get_online_cpus(); 2425 curcpu = get_cpu(); 2426 for_each_online_cpu(cpu) { 2427 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2428 struct mem_cgroup *memcg; 2429 2430 memcg = stock->cached; 2431 if (!memcg || !stock->nr_pages) 2432 continue; 2433 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2434 continue; 2435 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2436 if (cpu == curcpu) 2437 drain_local_stock(&stock->work); 2438 else 2439 schedule_work_on(cpu, &stock->work); 2440 } 2441 } 2442 put_cpu(); 2443 2444 if (!sync) 2445 goto out; 2446 2447 for_each_online_cpu(cpu) { 2448 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2449 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2450 flush_work(&stock->work); 2451 } 2452 out: 2453 put_online_cpus(); 2454 } 2455 2456 /* 2457 * Tries to drain stocked charges in other cpus. This function is asynchronous 2458 * and just put a work per cpu for draining localy on each cpu. Caller can 2459 * expects some charges will be back to res_counter later but cannot wait for 2460 * it. 2461 */ 2462 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2463 { 2464 /* 2465 * If someone calls draining, avoid adding more kworker runs. 2466 */ 2467 if (!mutex_trylock(&percpu_charge_mutex)) 2468 return; 2469 drain_all_stock(root_memcg, false); 2470 mutex_unlock(&percpu_charge_mutex); 2471 } 2472 2473 /* This is a synchronous drain interface. */ 2474 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2475 { 2476 /* called when force_empty is called */ 2477 mutex_lock(&percpu_charge_mutex); 2478 drain_all_stock(root_memcg, true); 2479 mutex_unlock(&percpu_charge_mutex); 2480 } 2481 2482 /* 2483 * This function drains percpu counter value from DEAD cpu and 2484 * move it to local cpu. Note that this function can be preempted. 2485 */ 2486 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2487 { 2488 int i; 2489 2490 spin_lock(&memcg->pcp_counter_lock); 2491 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2492 long x = per_cpu(memcg->stat->count[i], cpu); 2493 2494 per_cpu(memcg->stat->count[i], cpu) = 0; 2495 memcg->nocpu_base.count[i] += x; 2496 } 2497 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2498 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2499 2500 per_cpu(memcg->stat->events[i], cpu) = 0; 2501 memcg->nocpu_base.events[i] += x; 2502 } 2503 spin_unlock(&memcg->pcp_counter_lock); 2504 } 2505 2506 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 2507 unsigned long action, 2508 void *hcpu) 2509 { 2510 int cpu = (unsigned long)hcpu; 2511 struct memcg_stock_pcp *stock; 2512 struct mem_cgroup *iter; 2513 2514 if (action == CPU_ONLINE) 2515 return NOTIFY_OK; 2516 2517 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2518 return NOTIFY_OK; 2519 2520 for_each_mem_cgroup(iter) 2521 mem_cgroup_drain_pcp_counter(iter, cpu); 2522 2523 stock = &per_cpu(memcg_stock, cpu); 2524 drain_stock(stock); 2525 return NOTIFY_OK; 2526 } 2527 2528 2529 /* See __mem_cgroup_try_charge() for details */ 2530 enum { 2531 CHARGE_OK, /* success */ 2532 CHARGE_RETRY, /* need to retry but retry is not bad */ 2533 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2534 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2535 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2536 }; 2537 2538 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2539 unsigned int nr_pages, unsigned int min_pages, 2540 bool oom_check) 2541 { 2542 unsigned long csize = nr_pages * PAGE_SIZE; 2543 struct mem_cgroup *mem_over_limit; 2544 struct res_counter *fail_res; 2545 unsigned long flags = 0; 2546 int ret; 2547 2548 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2549 2550 if (likely(!ret)) { 2551 if (!do_swap_account) 2552 return CHARGE_OK; 2553 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2554 if (likely(!ret)) 2555 return CHARGE_OK; 2556 2557 res_counter_uncharge(&memcg->res, csize); 2558 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2559 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2560 } else 2561 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2562 /* 2563 * Never reclaim on behalf of optional batching, retry with a 2564 * single page instead. 2565 */ 2566 if (nr_pages > min_pages) 2567 return CHARGE_RETRY; 2568 2569 if (!(gfp_mask & __GFP_WAIT)) 2570 return CHARGE_WOULDBLOCK; 2571 2572 if (gfp_mask & __GFP_NORETRY) 2573 return CHARGE_NOMEM; 2574 2575 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2576 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2577 return CHARGE_RETRY; 2578 /* 2579 * Even though the limit is exceeded at this point, reclaim 2580 * may have been able to free some pages. Retry the charge 2581 * before killing the task. 2582 * 2583 * Only for regular pages, though: huge pages are rather 2584 * unlikely to succeed so close to the limit, and we fall back 2585 * to regular pages anyway in case of failure. 2586 */ 2587 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2588 return CHARGE_RETRY; 2589 2590 /* 2591 * At task move, charge accounts can be doubly counted. So, it's 2592 * better to wait until the end of task_move if something is going on. 2593 */ 2594 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2595 return CHARGE_RETRY; 2596 2597 /* If we don't need to call oom-killer at el, return immediately */ 2598 if (!oom_check) 2599 return CHARGE_NOMEM; 2600 /* check OOM */ 2601 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2602 return CHARGE_OOM_DIE; 2603 2604 return CHARGE_RETRY; 2605 } 2606 2607 /* 2608 * __mem_cgroup_try_charge() does 2609 * 1. detect memcg to be charged against from passed *mm and *ptr, 2610 * 2. update res_counter 2611 * 3. call memory reclaim if necessary. 2612 * 2613 * In some special case, if the task is fatal, fatal_signal_pending() or 2614 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2615 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2616 * as possible without any hazards. 2: all pages should have a valid 2617 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2618 * pointer, that is treated as a charge to root_mem_cgroup. 2619 * 2620 * So __mem_cgroup_try_charge() will return 2621 * 0 ... on success, filling *ptr with a valid memcg pointer. 2622 * -ENOMEM ... charge failure because of resource limits. 2623 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2624 * 2625 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2626 * the oom-killer can be invoked. 2627 */ 2628 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2629 gfp_t gfp_mask, 2630 unsigned int nr_pages, 2631 struct mem_cgroup **ptr, 2632 bool oom) 2633 { 2634 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2635 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2636 struct mem_cgroup *memcg = NULL; 2637 int ret; 2638 2639 /* 2640 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2641 * in system level. So, allow to go ahead dying process in addition to 2642 * MEMDIE process. 2643 */ 2644 if (unlikely(test_thread_flag(TIF_MEMDIE) 2645 || fatal_signal_pending(current))) 2646 goto bypass; 2647 2648 /* 2649 * We always charge the cgroup the mm_struct belongs to. 2650 * The mm_struct's mem_cgroup changes on task migration if the 2651 * thread group leader migrates. It's possible that mm is not 2652 * set, if so charge the root memcg (happens for pagecache usage). 2653 */ 2654 if (!*ptr && !mm) 2655 *ptr = root_mem_cgroup; 2656 again: 2657 if (*ptr) { /* css should be a valid one */ 2658 memcg = *ptr; 2659 if (mem_cgroup_is_root(memcg)) 2660 goto done; 2661 if (consume_stock(memcg, nr_pages)) 2662 goto done; 2663 css_get(&memcg->css); 2664 } else { 2665 struct task_struct *p; 2666 2667 rcu_read_lock(); 2668 p = rcu_dereference(mm->owner); 2669 /* 2670 * Because we don't have task_lock(), "p" can exit. 2671 * In that case, "memcg" can point to root or p can be NULL with 2672 * race with swapoff. Then, we have small risk of mis-accouning. 2673 * But such kind of mis-account by race always happens because 2674 * we don't have cgroup_mutex(). It's overkill and we allo that 2675 * small race, here. 2676 * (*) swapoff at el will charge against mm-struct not against 2677 * task-struct. So, mm->owner can be NULL. 2678 */ 2679 memcg = mem_cgroup_from_task(p); 2680 if (!memcg) 2681 memcg = root_mem_cgroup; 2682 if (mem_cgroup_is_root(memcg)) { 2683 rcu_read_unlock(); 2684 goto done; 2685 } 2686 if (consume_stock(memcg, nr_pages)) { 2687 /* 2688 * It seems dagerous to access memcg without css_get(). 2689 * But considering how consume_stok works, it's not 2690 * necessary. If consume_stock success, some charges 2691 * from this memcg are cached on this cpu. So, we 2692 * don't need to call css_get()/css_tryget() before 2693 * calling consume_stock(). 2694 */ 2695 rcu_read_unlock(); 2696 goto done; 2697 } 2698 /* after here, we may be blocked. we need to get refcnt */ 2699 if (!css_tryget(&memcg->css)) { 2700 rcu_read_unlock(); 2701 goto again; 2702 } 2703 rcu_read_unlock(); 2704 } 2705 2706 do { 2707 bool oom_check; 2708 2709 /* If killed, bypass charge */ 2710 if (fatal_signal_pending(current)) { 2711 css_put(&memcg->css); 2712 goto bypass; 2713 } 2714 2715 oom_check = false; 2716 if (oom && !nr_oom_retries) { 2717 oom_check = true; 2718 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2719 } 2720 2721 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages, 2722 oom_check); 2723 switch (ret) { 2724 case CHARGE_OK: 2725 break; 2726 case CHARGE_RETRY: /* not in OOM situation but retry */ 2727 batch = nr_pages; 2728 css_put(&memcg->css); 2729 memcg = NULL; 2730 goto again; 2731 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2732 css_put(&memcg->css); 2733 goto nomem; 2734 case CHARGE_NOMEM: /* OOM routine works */ 2735 if (!oom) { 2736 css_put(&memcg->css); 2737 goto nomem; 2738 } 2739 /* If oom, we never return -ENOMEM */ 2740 nr_oom_retries--; 2741 break; 2742 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2743 css_put(&memcg->css); 2744 goto bypass; 2745 } 2746 } while (ret != CHARGE_OK); 2747 2748 if (batch > nr_pages) 2749 refill_stock(memcg, batch - nr_pages); 2750 css_put(&memcg->css); 2751 done: 2752 *ptr = memcg; 2753 return 0; 2754 nomem: 2755 *ptr = NULL; 2756 return -ENOMEM; 2757 bypass: 2758 *ptr = root_mem_cgroup; 2759 return -EINTR; 2760 } 2761 2762 /* 2763 * Somemtimes we have to undo a charge we got by try_charge(). 2764 * This function is for that and do uncharge, put css's refcnt. 2765 * gotten by try_charge(). 2766 */ 2767 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2768 unsigned int nr_pages) 2769 { 2770 if (!mem_cgroup_is_root(memcg)) { 2771 unsigned long bytes = nr_pages * PAGE_SIZE; 2772 2773 res_counter_uncharge(&memcg->res, bytes); 2774 if (do_swap_account) 2775 res_counter_uncharge(&memcg->memsw, bytes); 2776 } 2777 } 2778 2779 /* 2780 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2781 * This is useful when moving usage to parent cgroup. 2782 */ 2783 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2784 unsigned int nr_pages) 2785 { 2786 unsigned long bytes = nr_pages * PAGE_SIZE; 2787 2788 if (mem_cgroup_is_root(memcg)) 2789 return; 2790 2791 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2792 if (do_swap_account) 2793 res_counter_uncharge_until(&memcg->memsw, 2794 memcg->memsw.parent, bytes); 2795 } 2796 2797 /* 2798 * A helper function to get mem_cgroup from ID. must be called under 2799 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2800 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2801 * called against removed memcg.) 2802 */ 2803 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2804 { 2805 struct cgroup_subsys_state *css; 2806 2807 /* ID 0 is unused ID */ 2808 if (!id) 2809 return NULL; 2810 css = css_lookup(&mem_cgroup_subsys, id); 2811 if (!css) 2812 return NULL; 2813 return mem_cgroup_from_css(css); 2814 } 2815 2816 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2817 { 2818 struct mem_cgroup *memcg = NULL; 2819 struct page_cgroup *pc; 2820 unsigned short id; 2821 swp_entry_t ent; 2822 2823 VM_BUG_ON(!PageLocked(page)); 2824 2825 pc = lookup_page_cgroup(page); 2826 lock_page_cgroup(pc); 2827 if (PageCgroupUsed(pc)) { 2828 memcg = pc->mem_cgroup; 2829 if (memcg && !css_tryget(&memcg->css)) 2830 memcg = NULL; 2831 } else if (PageSwapCache(page)) { 2832 ent.val = page_private(page); 2833 id = lookup_swap_cgroup_id(ent); 2834 rcu_read_lock(); 2835 memcg = mem_cgroup_lookup(id); 2836 if (memcg && !css_tryget(&memcg->css)) 2837 memcg = NULL; 2838 rcu_read_unlock(); 2839 } 2840 unlock_page_cgroup(pc); 2841 return memcg; 2842 } 2843 2844 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2845 struct page *page, 2846 unsigned int nr_pages, 2847 enum charge_type ctype, 2848 bool lrucare) 2849 { 2850 struct page_cgroup *pc = lookup_page_cgroup(page); 2851 struct zone *uninitialized_var(zone); 2852 struct lruvec *lruvec; 2853 bool was_on_lru = false; 2854 bool anon; 2855 2856 lock_page_cgroup(pc); 2857 VM_BUG_ON(PageCgroupUsed(pc)); 2858 /* 2859 * we don't need page_cgroup_lock about tail pages, becase they are not 2860 * accessed by any other context at this point. 2861 */ 2862 2863 /* 2864 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2865 * may already be on some other mem_cgroup's LRU. Take care of it. 2866 */ 2867 if (lrucare) { 2868 zone = page_zone(page); 2869 spin_lock_irq(&zone->lru_lock); 2870 if (PageLRU(page)) { 2871 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2872 ClearPageLRU(page); 2873 del_page_from_lru_list(page, lruvec, page_lru(page)); 2874 was_on_lru = true; 2875 } 2876 } 2877 2878 pc->mem_cgroup = memcg; 2879 /* 2880 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2881 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2882 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2883 * before USED bit, we need memory barrier here. 2884 * See mem_cgroup_add_lru_list(), etc. 2885 */ 2886 smp_wmb(); 2887 SetPageCgroupUsed(pc); 2888 2889 if (lrucare) { 2890 if (was_on_lru) { 2891 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2892 VM_BUG_ON(PageLRU(page)); 2893 SetPageLRU(page); 2894 add_page_to_lru_list(page, lruvec, page_lru(page)); 2895 } 2896 spin_unlock_irq(&zone->lru_lock); 2897 } 2898 2899 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2900 anon = true; 2901 else 2902 anon = false; 2903 2904 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); 2905 unlock_page_cgroup(pc); 2906 2907 /* 2908 * "charge_statistics" updated event counter. Then, check it. 2909 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2910 * if they exceeds softlimit. 2911 */ 2912 memcg_check_events(memcg, page); 2913 } 2914 2915 static DEFINE_MUTEX(set_limit_mutex); 2916 2917 #ifdef CONFIG_MEMCG_KMEM 2918 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2919 { 2920 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2921 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); 2922 } 2923 2924 /* 2925 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2926 * in the memcg_cache_params struct. 2927 */ 2928 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2929 { 2930 struct kmem_cache *cachep; 2931 2932 VM_BUG_ON(p->is_root_cache); 2933 cachep = p->root_cache; 2934 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; 2935 } 2936 2937 #ifdef CONFIG_SLABINFO 2938 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css, 2939 struct cftype *cft, struct seq_file *m) 2940 { 2941 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2942 struct memcg_cache_params *params; 2943 2944 if (!memcg_can_account_kmem(memcg)) 2945 return -EIO; 2946 2947 print_slabinfo_header(m); 2948 2949 mutex_lock(&memcg->slab_caches_mutex); 2950 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2951 cache_show(memcg_params_to_cache(params), m); 2952 mutex_unlock(&memcg->slab_caches_mutex); 2953 2954 return 0; 2955 } 2956 #endif 2957 2958 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2959 { 2960 struct res_counter *fail_res; 2961 struct mem_cgroup *_memcg; 2962 int ret = 0; 2963 bool may_oom; 2964 2965 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2966 if (ret) 2967 return ret; 2968 2969 /* 2970 * Conditions under which we can wait for the oom_killer. Those are 2971 * the same conditions tested by the core page allocator 2972 */ 2973 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); 2974 2975 _memcg = memcg; 2976 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, 2977 &_memcg, may_oom); 2978 2979 if (ret == -EINTR) { 2980 /* 2981 * __mem_cgroup_try_charge() chosed to bypass to root due to 2982 * OOM kill or fatal signal. Since our only options are to 2983 * either fail the allocation or charge it to this cgroup, do 2984 * it as a temporary condition. But we can't fail. From a 2985 * kmem/slab perspective, the cache has already been selected, 2986 * by mem_cgroup_kmem_get_cache(), so it is too late to change 2987 * our minds. 2988 * 2989 * This condition will only trigger if the task entered 2990 * memcg_charge_kmem in a sane state, but was OOM-killed during 2991 * __mem_cgroup_try_charge() above. Tasks that were already 2992 * dying when the allocation triggers should have been already 2993 * directed to the root cgroup in memcontrol.h 2994 */ 2995 res_counter_charge_nofail(&memcg->res, size, &fail_res); 2996 if (do_swap_account) 2997 res_counter_charge_nofail(&memcg->memsw, size, 2998 &fail_res); 2999 ret = 0; 3000 } else if (ret) 3001 res_counter_uncharge(&memcg->kmem, size); 3002 3003 return ret; 3004 } 3005 3006 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 3007 { 3008 res_counter_uncharge(&memcg->res, size); 3009 if (do_swap_account) 3010 res_counter_uncharge(&memcg->memsw, size); 3011 3012 /* Not down to 0 */ 3013 if (res_counter_uncharge(&memcg->kmem, size)) 3014 return; 3015 3016 /* 3017 * Releases a reference taken in kmem_cgroup_css_offline in case 3018 * this last uncharge is racing with the offlining code or it is 3019 * outliving the memcg existence. 3020 * 3021 * The memory barrier imposed by test&clear is paired with the 3022 * explicit one in memcg_kmem_mark_dead(). 3023 */ 3024 if (memcg_kmem_test_and_clear_dead(memcg)) 3025 css_put(&memcg->css); 3026 } 3027 3028 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) 3029 { 3030 if (!memcg) 3031 return; 3032 3033 mutex_lock(&memcg->slab_caches_mutex); 3034 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 3035 mutex_unlock(&memcg->slab_caches_mutex); 3036 } 3037 3038 /* 3039 * helper for acessing a memcg's index. It will be used as an index in the 3040 * child cache array in kmem_cache, and also to derive its name. This function 3041 * will return -1 when this is not a kmem-limited memcg. 3042 */ 3043 int memcg_cache_id(struct mem_cgroup *memcg) 3044 { 3045 return memcg ? memcg->kmemcg_id : -1; 3046 } 3047 3048 /* 3049 * This ends up being protected by the set_limit mutex, during normal 3050 * operation, because that is its main call site. 3051 * 3052 * But when we create a new cache, we can call this as well if its parent 3053 * is kmem-limited. That will have to hold set_limit_mutex as well. 3054 */ 3055 int memcg_update_cache_sizes(struct mem_cgroup *memcg) 3056 { 3057 int num, ret; 3058 3059 num = ida_simple_get(&kmem_limited_groups, 3060 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 3061 if (num < 0) 3062 return num; 3063 /* 3064 * After this point, kmem_accounted (that we test atomically in 3065 * the beginning of this conditional), is no longer 0. This 3066 * guarantees only one process will set the following boolean 3067 * to true. We don't need test_and_set because we're protected 3068 * by the set_limit_mutex anyway. 3069 */ 3070 memcg_kmem_set_activated(memcg); 3071 3072 ret = memcg_update_all_caches(num+1); 3073 if (ret) { 3074 ida_simple_remove(&kmem_limited_groups, num); 3075 memcg_kmem_clear_activated(memcg); 3076 return ret; 3077 } 3078 3079 memcg->kmemcg_id = num; 3080 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 3081 mutex_init(&memcg->slab_caches_mutex); 3082 return 0; 3083 } 3084 3085 static size_t memcg_caches_array_size(int num_groups) 3086 { 3087 ssize_t size; 3088 if (num_groups <= 0) 3089 return 0; 3090 3091 size = 2 * num_groups; 3092 if (size < MEMCG_CACHES_MIN_SIZE) 3093 size = MEMCG_CACHES_MIN_SIZE; 3094 else if (size > MEMCG_CACHES_MAX_SIZE) 3095 size = MEMCG_CACHES_MAX_SIZE; 3096 3097 return size; 3098 } 3099 3100 /* 3101 * We should update the current array size iff all caches updates succeed. This 3102 * can only be done from the slab side. The slab mutex needs to be held when 3103 * calling this. 3104 */ 3105 void memcg_update_array_size(int num) 3106 { 3107 if (num > memcg_limited_groups_array_size) 3108 memcg_limited_groups_array_size = memcg_caches_array_size(num); 3109 } 3110 3111 static void kmem_cache_destroy_work_func(struct work_struct *w); 3112 3113 int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 3114 { 3115 struct memcg_cache_params *cur_params = s->memcg_params; 3116 3117 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); 3118 3119 if (num_groups > memcg_limited_groups_array_size) { 3120 int i; 3121 ssize_t size = memcg_caches_array_size(num_groups); 3122 3123 size *= sizeof(void *); 3124 size += sizeof(struct memcg_cache_params); 3125 3126 s->memcg_params = kzalloc(size, GFP_KERNEL); 3127 if (!s->memcg_params) { 3128 s->memcg_params = cur_params; 3129 return -ENOMEM; 3130 } 3131 3132 s->memcg_params->is_root_cache = true; 3133 3134 /* 3135 * There is the chance it will be bigger than 3136 * memcg_limited_groups_array_size, if we failed an allocation 3137 * in a cache, in which case all caches updated before it, will 3138 * have a bigger array. 3139 * 3140 * But if that is the case, the data after 3141 * memcg_limited_groups_array_size is certainly unused 3142 */ 3143 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3144 if (!cur_params->memcg_caches[i]) 3145 continue; 3146 s->memcg_params->memcg_caches[i] = 3147 cur_params->memcg_caches[i]; 3148 } 3149 3150 /* 3151 * Ideally, we would wait until all caches succeed, and only 3152 * then free the old one. But this is not worth the extra 3153 * pointer per-cache we'd have to have for this. 3154 * 3155 * It is not a big deal if some caches are left with a size 3156 * bigger than the others. And all updates will reset this 3157 * anyway. 3158 */ 3159 kfree(cur_params); 3160 } 3161 return 0; 3162 } 3163 3164 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 3165 struct kmem_cache *root_cache) 3166 { 3167 size_t size = sizeof(struct memcg_cache_params); 3168 3169 if (!memcg_kmem_enabled()) 3170 return 0; 3171 3172 if (!memcg) 3173 size += memcg_limited_groups_array_size * sizeof(void *); 3174 3175 s->memcg_params = kzalloc(size, GFP_KERNEL); 3176 if (!s->memcg_params) 3177 return -ENOMEM; 3178 3179 if (memcg) { 3180 s->memcg_params->memcg = memcg; 3181 s->memcg_params->root_cache = root_cache; 3182 INIT_WORK(&s->memcg_params->destroy, 3183 kmem_cache_destroy_work_func); 3184 } else 3185 s->memcg_params->is_root_cache = true; 3186 3187 return 0; 3188 } 3189 3190 void memcg_release_cache(struct kmem_cache *s) 3191 { 3192 struct kmem_cache *root; 3193 struct mem_cgroup *memcg; 3194 int id; 3195 3196 /* 3197 * This happens, for instance, when a root cache goes away before we 3198 * add any memcg. 3199 */ 3200 if (!s->memcg_params) 3201 return; 3202 3203 if (s->memcg_params->is_root_cache) 3204 goto out; 3205 3206 memcg = s->memcg_params->memcg; 3207 id = memcg_cache_id(memcg); 3208 3209 root = s->memcg_params->root_cache; 3210 root->memcg_params->memcg_caches[id] = NULL; 3211 3212 mutex_lock(&memcg->slab_caches_mutex); 3213 list_del(&s->memcg_params->list); 3214 mutex_unlock(&memcg->slab_caches_mutex); 3215 3216 css_put(&memcg->css); 3217 out: 3218 kfree(s->memcg_params); 3219 } 3220 3221 /* 3222 * During the creation a new cache, we need to disable our accounting mechanism 3223 * altogether. This is true even if we are not creating, but rather just 3224 * enqueing new caches to be created. 3225 * 3226 * This is because that process will trigger allocations; some visible, like 3227 * explicit kmallocs to auxiliary data structures, name strings and internal 3228 * cache structures; some well concealed, like INIT_WORK() that can allocate 3229 * objects during debug. 3230 * 3231 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3232 * to it. This may not be a bounded recursion: since the first cache creation 3233 * failed to complete (waiting on the allocation), we'll just try to create the 3234 * cache again, failing at the same point. 3235 * 3236 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3237 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3238 * inside the following two functions. 3239 */ 3240 static inline void memcg_stop_kmem_account(void) 3241 { 3242 VM_BUG_ON(!current->mm); 3243 current->memcg_kmem_skip_account++; 3244 } 3245 3246 static inline void memcg_resume_kmem_account(void) 3247 { 3248 VM_BUG_ON(!current->mm); 3249 current->memcg_kmem_skip_account--; 3250 } 3251 3252 static void kmem_cache_destroy_work_func(struct work_struct *w) 3253 { 3254 struct kmem_cache *cachep; 3255 struct memcg_cache_params *p; 3256 3257 p = container_of(w, struct memcg_cache_params, destroy); 3258 3259 cachep = memcg_params_to_cache(p); 3260 3261 /* 3262 * If we get down to 0 after shrink, we could delete right away. 3263 * However, memcg_release_pages() already puts us back in the workqueue 3264 * in that case. If we proceed deleting, we'll get a dangling 3265 * reference, and removing the object from the workqueue in that case 3266 * is unnecessary complication. We are not a fast path. 3267 * 3268 * Note that this case is fundamentally different from racing with 3269 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3270 * kmem_cache_shrink, not only we would be reinserting a dead cache 3271 * into the queue, but doing so from inside the worker racing to 3272 * destroy it. 3273 * 3274 * So if we aren't down to zero, we'll just schedule a worker and try 3275 * again 3276 */ 3277 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { 3278 kmem_cache_shrink(cachep); 3279 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3280 return; 3281 } else 3282 kmem_cache_destroy(cachep); 3283 } 3284 3285 void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3286 { 3287 if (!cachep->memcg_params->dead) 3288 return; 3289 3290 /* 3291 * There are many ways in which we can get here. 3292 * 3293 * We can get to a memory-pressure situation while the delayed work is 3294 * still pending to run. The vmscan shrinkers can then release all 3295 * cache memory and get us to destruction. If this is the case, we'll 3296 * be executed twice, which is a bug (the second time will execute over 3297 * bogus data). In this case, cancelling the work should be fine. 3298 * 3299 * But we can also get here from the worker itself, if 3300 * kmem_cache_shrink is enough to shake all the remaining objects and 3301 * get the page count to 0. In this case, we'll deadlock if we try to 3302 * cancel the work (the worker runs with an internal lock held, which 3303 * is the same lock we would hold for cancel_work_sync().) 3304 * 3305 * Since we can't possibly know who got us here, just refrain from 3306 * running if there is already work pending 3307 */ 3308 if (work_pending(&cachep->memcg_params->destroy)) 3309 return; 3310 /* 3311 * We have to defer the actual destroying to a workqueue, because 3312 * we might currently be in a context that cannot sleep. 3313 */ 3314 schedule_work(&cachep->memcg_params->destroy); 3315 } 3316 3317 /* 3318 * This lock protects updaters, not readers. We want readers to be as fast as 3319 * they can, and they will either see NULL or a valid cache value. Our model 3320 * allow them to see NULL, in which case the root memcg will be selected. 3321 * 3322 * We need this lock because multiple allocations to the same cache from a non 3323 * will span more than one worker. Only one of them can create the cache. 3324 */ 3325 static DEFINE_MUTEX(memcg_cache_mutex); 3326 3327 /* 3328 * Called with memcg_cache_mutex held 3329 */ 3330 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, 3331 struct kmem_cache *s) 3332 { 3333 struct kmem_cache *new; 3334 static char *tmp_name = NULL; 3335 3336 lockdep_assert_held(&memcg_cache_mutex); 3337 3338 /* 3339 * kmem_cache_create_memcg duplicates the given name and 3340 * cgroup_name for this name requires RCU context. 3341 * This static temporary buffer is used to prevent from 3342 * pointless shortliving allocation. 3343 */ 3344 if (!tmp_name) { 3345 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); 3346 if (!tmp_name) 3347 return NULL; 3348 } 3349 3350 rcu_read_lock(); 3351 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name, 3352 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup)); 3353 rcu_read_unlock(); 3354 3355 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, 3356 (s->flags & ~SLAB_PANIC), s->ctor, s); 3357 3358 if (new) 3359 new->allocflags |= __GFP_KMEMCG; 3360 3361 return new; 3362 } 3363 3364 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 3365 struct kmem_cache *cachep) 3366 { 3367 struct kmem_cache *new_cachep; 3368 int idx; 3369 3370 BUG_ON(!memcg_can_account_kmem(memcg)); 3371 3372 idx = memcg_cache_id(memcg); 3373 3374 mutex_lock(&memcg_cache_mutex); 3375 new_cachep = cachep->memcg_params->memcg_caches[idx]; 3376 if (new_cachep) { 3377 css_put(&memcg->css); 3378 goto out; 3379 } 3380 3381 new_cachep = kmem_cache_dup(memcg, cachep); 3382 if (new_cachep == NULL) { 3383 new_cachep = cachep; 3384 css_put(&memcg->css); 3385 goto out; 3386 } 3387 3388 atomic_set(&new_cachep->memcg_params->nr_pages , 0); 3389 3390 cachep->memcg_params->memcg_caches[idx] = new_cachep; 3391 /* 3392 * the readers won't lock, make sure everybody sees the updated value, 3393 * so they won't put stuff in the queue again for no reason 3394 */ 3395 wmb(); 3396 out: 3397 mutex_unlock(&memcg_cache_mutex); 3398 return new_cachep; 3399 } 3400 3401 void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3402 { 3403 struct kmem_cache *c; 3404 int i; 3405 3406 if (!s->memcg_params) 3407 return; 3408 if (!s->memcg_params->is_root_cache) 3409 return; 3410 3411 /* 3412 * If the cache is being destroyed, we trust that there is no one else 3413 * requesting objects from it. Even if there are, the sanity checks in 3414 * kmem_cache_destroy should caught this ill-case. 3415 * 3416 * Still, we don't want anyone else freeing memcg_caches under our 3417 * noses, which can happen if a new memcg comes to life. As usual, 3418 * we'll take the set_limit_mutex to protect ourselves against this. 3419 */ 3420 mutex_lock(&set_limit_mutex); 3421 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3422 c = s->memcg_params->memcg_caches[i]; 3423 if (!c) 3424 continue; 3425 3426 /* 3427 * We will now manually delete the caches, so to avoid races 3428 * we need to cancel all pending destruction workers and 3429 * proceed with destruction ourselves. 3430 * 3431 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3432 * and that could spawn the workers again: it is likely that 3433 * the cache still have active pages until this very moment. 3434 * This would lead us back to mem_cgroup_destroy_cache. 3435 * 3436 * But that will not execute at all if the "dead" flag is not 3437 * set, so flip it down to guarantee we are in control. 3438 */ 3439 c->memcg_params->dead = false; 3440 cancel_work_sync(&c->memcg_params->destroy); 3441 kmem_cache_destroy(c); 3442 } 3443 mutex_unlock(&set_limit_mutex); 3444 } 3445 3446 struct create_work { 3447 struct mem_cgroup *memcg; 3448 struct kmem_cache *cachep; 3449 struct work_struct work; 3450 }; 3451 3452 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3453 { 3454 struct kmem_cache *cachep; 3455 struct memcg_cache_params *params; 3456 3457 if (!memcg_kmem_is_active(memcg)) 3458 return; 3459 3460 mutex_lock(&memcg->slab_caches_mutex); 3461 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3462 cachep = memcg_params_to_cache(params); 3463 cachep->memcg_params->dead = true; 3464 schedule_work(&cachep->memcg_params->destroy); 3465 } 3466 mutex_unlock(&memcg->slab_caches_mutex); 3467 } 3468 3469 static void memcg_create_cache_work_func(struct work_struct *w) 3470 { 3471 struct create_work *cw; 3472 3473 cw = container_of(w, struct create_work, work); 3474 memcg_create_kmem_cache(cw->memcg, cw->cachep); 3475 kfree(cw); 3476 } 3477 3478 /* 3479 * Enqueue the creation of a per-memcg kmem_cache. 3480 */ 3481 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3482 struct kmem_cache *cachep) 3483 { 3484 struct create_work *cw; 3485 3486 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3487 if (cw == NULL) { 3488 css_put(&memcg->css); 3489 return; 3490 } 3491 3492 cw->memcg = memcg; 3493 cw->cachep = cachep; 3494 3495 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3496 schedule_work(&cw->work); 3497 } 3498 3499 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3500 struct kmem_cache *cachep) 3501 { 3502 /* 3503 * We need to stop accounting when we kmalloc, because if the 3504 * corresponding kmalloc cache is not yet created, the first allocation 3505 * in __memcg_create_cache_enqueue will recurse. 3506 * 3507 * However, it is better to enclose the whole function. Depending on 3508 * the debugging options enabled, INIT_WORK(), for instance, can 3509 * trigger an allocation. This too, will make us recurse. Because at 3510 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3511 * the safest choice is to do it like this, wrapping the whole function. 3512 */ 3513 memcg_stop_kmem_account(); 3514 __memcg_create_cache_enqueue(memcg, cachep); 3515 memcg_resume_kmem_account(); 3516 } 3517 /* 3518 * Return the kmem_cache we're supposed to use for a slab allocation. 3519 * We try to use the current memcg's version of the cache. 3520 * 3521 * If the cache does not exist yet, if we are the first user of it, 3522 * we either create it immediately, if possible, or create it asynchronously 3523 * in a workqueue. 3524 * In the latter case, we will let the current allocation go through with 3525 * the original cache. 3526 * 3527 * Can't be called in interrupt context or from kernel threads. 3528 * This function needs to be called with rcu_read_lock() held. 3529 */ 3530 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3531 gfp_t gfp) 3532 { 3533 struct mem_cgroup *memcg; 3534 int idx; 3535 3536 VM_BUG_ON(!cachep->memcg_params); 3537 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3538 3539 if (!current->mm || current->memcg_kmem_skip_account) 3540 return cachep; 3541 3542 rcu_read_lock(); 3543 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3544 3545 if (!memcg_can_account_kmem(memcg)) 3546 goto out; 3547 3548 idx = memcg_cache_id(memcg); 3549 3550 /* 3551 * barrier to mare sure we're always seeing the up to date value. The 3552 * code updating memcg_caches will issue a write barrier to match this. 3553 */ 3554 read_barrier_depends(); 3555 if (likely(cachep->memcg_params->memcg_caches[idx])) { 3556 cachep = cachep->memcg_params->memcg_caches[idx]; 3557 goto out; 3558 } 3559 3560 /* The corresponding put will be done in the workqueue. */ 3561 if (!css_tryget(&memcg->css)) 3562 goto out; 3563 rcu_read_unlock(); 3564 3565 /* 3566 * If we are in a safe context (can wait, and not in interrupt 3567 * context), we could be be predictable and return right away. 3568 * This would guarantee that the allocation being performed 3569 * already belongs in the new cache. 3570 * 3571 * However, there are some clashes that can arrive from locking. 3572 * For instance, because we acquire the slab_mutex while doing 3573 * kmem_cache_dup, this means no further allocation could happen 3574 * with the slab_mutex held. 3575 * 3576 * Also, because cache creation issue get_online_cpus(), this 3577 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3578 * that ends up reversed during cpu hotplug. (cpuset allocates 3579 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3580 * better to defer everything. 3581 */ 3582 memcg_create_cache_enqueue(memcg, cachep); 3583 return cachep; 3584 out: 3585 rcu_read_unlock(); 3586 return cachep; 3587 } 3588 EXPORT_SYMBOL(__memcg_kmem_get_cache); 3589 3590 /* 3591 * We need to verify if the allocation against current->mm->owner's memcg is 3592 * possible for the given order. But the page is not allocated yet, so we'll 3593 * need a further commit step to do the final arrangements. 3594 * 3595 * It is possible for the task to switch cgroups in this mean time, so at 3596 * commit time, we can't rely on task conversion any longer. We'll then use 3597 * the handle argument to return to the caller which cgroup we should commit 3598 * against. We could also return the memcg directly and avoid the pointer 3599 * passing, but a boolean return value gives better semantics considering 3600 * the compiled-out case as well. 3601 * 3602 * Returning true means the allocation is possible. 3603 */ 3604 bool 3605 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3606 { 3607 struct mem_cgroup *memcg; 3608 int ret; 3609 3610 *_memcg = NULL; 3611 3612 /* 3613 * Disabling accounting is only relevant for some specific memcg 3614 * internal allocations. Therefore we would initially not have such 3615 * check here, since direct calls to the page allocator that are marked 3616 * with GFP_KMEMCG only happen outside memcg core. We are mostly 3617 * concerned with cache allocations, and by having this test at 3618 * memcg_kmem_get_cache, we are already able to relay the allocation to 3619 * the root cache and bypass the memcg cache altogether. 3620 * 3621 * There is one exception, though: the SLUB allocator does not create 3622 * large order caches, but rather service large kmallocs directly from 3623 * the page allocator. Therefore, the following sequence when backed by 3624 * the SLUB allocator: 3625 * 3626 * memcg_stop_kmem_account(); 3627 * kmalloc(<large_number>) 3628 * memcg_resume_kmem_account(); 3629 * 3630 * would effectively ignore the fact that we should skip accounting, 3631 * since it will drive us directly to this function without passing 3632 * through the cache selector memcg_kmem_get_cache. Such large 3633 * allocations are extremely rare but can happen, for instance, for the 3634 * cache arrays. We bring this test here. 3635 */ 3636 if (!current->mm || current->memcg_kmem_skip_account) 3637 return true; 3638 3639 memcg = try_get_mem_cgroup_from_mm(current->mm); 3640 3641 /* 3642 * very rare case described in mem_cgroup_from_task. Unfortunately there 3643 * isn't much we can do without complicating this too much, and it would 3644 * be gfp-dependent anyway. Just let it go 3645 */ 3646 if (unlikely(!memcg)) 3647 return true; 3648 3649 if (!memcg_can_account_kmem(memcg)) { 3650 css_put(&memcg->css); 3651 return true; 3652 } 3653 3654 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3655 if (!ret) 3656 *_memcg = memcg; 3657 3658 css_put(&memcg->css); 3659 return (ret == 0); 3660 } 3661 3662 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3663 int order) 3664 { 3665 struct page_cgroup *pc; 3666 3667 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3668 3669 /* The page allocation failed. Revert */ 3670 if (!page) { 3671 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3672 return; 3673 } 3674 3675 pc = lookup_page_cgroup(page); 3676 lock_page_cgroup(pc); 3677 pc->mem_cgroup = memcg; 3678 SetPageCgroupUsed(pc); 3679 unlock_page_cgroup(pc); 3680 } 3681 3682 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3683 { 3684 struct mem_cgroup *memcg = NULL; 3685 struct page_cgroup *pc; 3686 3687 3688 pc = lookup_page_cgroup(page); 3689 /* 3690 * Fast unlocked return. Theoretically might have changed, have to 3691 * check again after locking. 3692 */ 3693 if (!PageCgroupUsed(pc)) 3694 return; 3695 3696 lock_page_cgroup(pc); 3697 if (PageCgroupUsed(pc)) { 3698 memcg = pc->mem_cgroup; 3699 ClearPageCgroupUsed(pc); 3700 } 3701 unlock_page_cgroup(pc); 3702 3703 /* 3704 * We trust that only if there is a memcg associated with the page, it 3705 * is a valid allocation 3706 */ 3707 if (!memcg) 3708 return; 3709 3710 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3711 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3712 } 3713 #else 3714 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3715 { 3716 } 3717 #endif /* CONFIG_MEMCG_KMEM */ 3718 3719 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3720 3721 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3722 /* 3723 * Because tail pages are not marked as "used", set it. We're under 3724 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3725 * charge/uncharge will be never happen and move_account() is done under 3726 * compound_lock(), so we don't have to take care of races. 3727 */ 3728 void mem_cgroup_split_huge_fixup(struct page *head) 3729 { 3730 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3731 struct page_cgroup *pc; 3732 struct mem_cgroup *memcg; 3733 int i; 3734 3735 if (mem_cgroup_disabled()) 3736 return; 3737 3738 memcg = head_pc->mem_cgroup; 3739 for (i = 1; i < HPAGE_PMD_NR; i++) { 3740 pc = head_pc + i; 3741 pc->mem_cgroup = memcg; 3742 smp_wmb();/* see __commit_charge() */ 3743 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3744 } 3745 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 3746 HPAGE_PMD_NR); 3747 } 3748 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3749 3750 /** 3751 * mem_cgroup_move_account - move account of the page 3752 * @page: the page 3753 * @nr_pages: number of regular pages (>1 for huge pages) 3754 * @pc: page_cgroup of the page. 3755 * @from: mem_cgroup which the page is moved from. 3756 * @to: mem_cgroup which the page is moved to. @from != @to. 3757 * 3758 * The caller must confirm following. 3759 * - page is not on LRU (isolate_page() is useful.) 3760 * - compound_lock is held when nr_pages > 1 3761 * 3762 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3763 * from old cgroup. 3764 */ 3765 static int mem_cgroup_move_account(struct page *page, 3766 unsigned int nr_pages, 3767 struct page_cgroup *pc, 3768 struct mem_cgroup *from, 3769 struct mem_cgroup *to) 3770 { 3771 unsigned long flags; 3772 int ret; 3773 bool anon = PageAnon(page); 3774 3775 VM_BUG_ON(from == to); 3776 VM_BUG_ON(PageLRU(page)); 3777 /* 3778 * The page is isolated from LRU. So, collapse function 3779 * will not handle this page. But page splitting can happen. 3780 * Do this check under compound_page_lock(). The caller should 3781 * hold it. 3782 */ 3783 ret = -EBUSY; 3784 if (nr_pages > 1 && !PageTransHuge(page)) 3785 goto out; 3786 3787 lock_page_cgroup(pc); 3788 3789 ret = -EINVAL; 3790 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3791 goto unlock; 3792 3793 move_lock_mem_cgroup(from, &flags); 3794 3795 if (!anon && page_mapped(page)) { 3796 /* Update mapped_file data for mem_cgroup */ 3797 preempt_disable(); 3798 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3799 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3800 preempt_enable(); 3801 } 3802 mem_cgroup_charge_statistics(from, page, anon, -nr_pages); 3803 3804 /* caller should have done css_get */ 3805 pc->mem_cgroup = to; 3806 mem_cgroup_charge_statistics(to, page, anon, nr_pages); 3807 move_unlock_mem_cgroup(from, &flags); 3808 ret = 0; 3809 unlock: 3810 unlock_page_cgroup(pc); 3811 /* 3812 * check events 3813 */ 3814 memcg_check_events(to, page); 3815 memcg_check_events(from, page); 3816 out: 3817 return ret; 3818 } 3819 3820 /** 3821 * mem_cgroup_move_parent - moves page to the parent group 3822 * @page: the page to move 3823 * @pc: page_cgroup of the page 3824 * @child: page's cgroup 3825 * 3826 * move charges to its parent or the root cgroup if the group has no 3827 * parent (aka use_hierarchy==0). 3828 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3829 * mem_cgroup_move_account fails) the failure is always temporary and 3830 * it signals a race with a page removal/uncharge or migration. In the 3831 * first case the page is on the way out and it will vanish from the LRU 3832 * on the next attempt and the call should be retried later. 3833 * Isolation from the LRU fails only if page has been isolated from 3834 * the LRU since we looked at it and that usually means either global 3835 * reclaim or migration going on. The page will either get back to the 3836 * LRU or vanish. 3837 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3838 * (!PageCgroupUsed) or moved to a different group. The page will 3839 * disappear in the next attempt. 3840 */ 3841 static int mem_cgroup_move_parent(struct page *page, 3842 struct page_cgroup *pc, 3843 struct mem_cgroup *child) 3844 { 3845 struct mem_cgroup *parent; 3846 unsigned int nr_pages; 3847 unsigned long uninitialized_var(flags); 3848 int ret; 3849 3850 VM_BUG_ON(mem_cgroup_is_root(child)); 3851 3852 ret = -EBUSY; 3853 if (!get_page_unless_zero(page)) 3854 goto out; 3855 if (isolate_lru_page(page)) 3856 goto put; 3857 3858 nr_pages = hpage_nr_pages(page); 3859 3860 parent = parent_mem_cgroup(child); 3861 /* 3862 * If no parent, move charges to root cgroup. 3863 */ 3864 if (!parent) 3865 parent = root_mem_cgroup; 3866 3867 if (nr_pages > 1) { 3868 VM_BUG_ON(!PageTransHuge(page)); 3869 flags = compound_lock_irqsave(page); 3870 } 3871 3872 ret = mem_cgroup_move_account(page, nr_pages, 3873 pc, child, parent); 3874 if (!ret) 3875 __mem_cgroup_cancel_local_charge(child, nr_pages); 3876 3877 if (nr_pages > 1) 3878 compound_unlock_irqrestore(page, flags); 3879 putback_lru_page(page); 3880 put: 3881 put_page(page); 3882 out: 3883 return ret; 3884 } 3885 3886 /* 3887 * Charge the memory controller for page usage. 3888 * Return 3889 * 0 if the charge was successful 3890 * < 0 if the cgroup is over its limit 3891 */ 3892 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 3893 gfp_t gfp_mask, enum charge_type ctype) 3894 { 3895 struct mem_cgroup *memcg = NULL; 3896 unsigned int nr_pages = 1; 3897 bool oom = true; 3898 int ret; 3899 3900 if (PageTransHuge(page)) { 3901 nr_pages <<= compound_order(page); 3902 VM_BUG_ON(!PageTransHuge(page)); 3903 /* 3904 * Never OOM-kill a process for a huge page. The 3905 * fault handler will fall back to regular pages. 3906 */ 3907 oom = false; 3908 } 3909 3910 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 3911 if (ret == -ENOMEM) 3912 return ret; 3913 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 3914 return 0; 3915 } 3916 3917 int mem_cgroup_newpage_charge(struct page *page, 3918 struct mm_struct *mm, gfp_t gfp_mask) 3919 { 3920 if (mem_cgroup_disabled()) 3921 return 0; 3922 VM_BUG_ON(page_mapped(page)); 3923 VM_BUG_ON(page->mapping && !PageAnon(page)); 3924 VM_BUG_ON(!mm); 3925 return mem_cgroup_charge_common(page, mm, gfp_mask, 3926 MEM_CGROUP_CHARGE_TYPE_ANON); 3927 } 3928 3929 /* 3930 * While swap-in, try_charge -> commit or cancel, the page is locked. 3931 * And when try_charge() successfully returns, one refcnt to memcg without 3932 * struct page_cgroup is acquired. This refcnt will be consumed by 3933 * "commit()" or removed by "cancel()" 3934 */ 3935 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3936 struct page *page, 3937 gfp_t mask, 3938 struct mem_cgroup **memcgp) 3939 { 3940 struct mem_cgroup *memcg; 3941 struct page_cgroup *pc; 3942 int ret; 3943 3944 pc = lookup_page_cgroup(page); 3945 /* 3946 * Every swap fault against a single page tries to charge the 3947 * page, bail as early as possible. shmem_unuse() encounters 3948 * already charged pages, too. The USED bit is protected by 3949 * the page lock, which serializes swap cache removal, which 3950 * in turn serializes uncharging. 3951 */ 3952 if (PageCgroupUsed(pc)) 3953 return 0; 3954 if (!do_swap_account) 3955 goto charge_cur_mm; 3956 memcg = try_get_mem_cgroup_from_page(page); 3957 if (!memcg) 3958 goto charge_cur_mm; 3959 *memcgp = memcg; 3960 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 3961 css_put(&memcg->css); 3962 if (ret == -EINTR) 3963 ret = 0; 3964 return ret; 3965 charge_cur_mm: 3966 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 3967 if (ret == -EINTR) 3968 ret = 0; 3969 return ret; 3970 } 3971 3972 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 3973 gfp_t gfp_mask, struct mem_cgroup **memcgp) 3974 { 3975 *memcgp = NULL; 3976 if (mem_cgroup_disabled()) 3977 return 0; 3978 /* 3979 * A racing thread's fault, or swapoff, may have already 3980 * updated the pte, and even removed page from swap cache: in 3981 * those cases unuse_pte()'s pte_same() test will fail; but 3982 * there's also a KSM case which does need to charge the page. 3983 */ 3984 if (!PageSwapCache(page)) { 3985 int ret; 3986 3987 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 3988 if (ret == -EINTR) 3989 ret = 0; 3990 return ret; 3991 } 3992 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 3993 } 3994 3995 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 3996 { 3997 if (mem_cgroup_disabled()) 3998 return; 3999 if (!memcg) 4000 return; 4001 __mem_cgroup_cancel_charge(memcg, 1); 4002 } 4003 4004 static void 4005 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 4006 enum charge_type ctype) 4007 { 4008 if (mem_cgroup_disabled()) 4009 return; 4010 if (!memcg) 4011 return; 4012 4013 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 4014 /* 4015 * Now swap is on-memory. This means this page may be 4016 * counted both as mem and swap....double count. 4017 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 4018 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 4019 * may call delete_from_swap_cache() before reach here. 4020 */ 4021 if (do_swap_account && PageSwapCache(page)) { 4022 swp_entry_t ent = {.val = page_private(page)}; 4023 mem_cgroup_uncharge_swap(ent); 4024 } 4025 } 4026 4027 void mem_cgroup_commit_charge_swapin(struct page *page, 4028 struct mem_cgroup *memcg) 4029 { 4030 __mem_cgroup_commit_charge_swapin(page, memcg, 4031 MEM_CGROUP_CHARGE_TYPE_ANON); 4032 } 4033 4034 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 4035 gfp_t gfp_mask) 4036 { 4037 struct mem_cgroup *memcg = NULL; 4038 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4039 int ret; 4040 4041 if (mem_cgroup_disabled()) 4042 return 0; 4043 if (PageCompound(page)) 4044 return 0; 4045 4046 if (!PageSwapCache(page)) 4047 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 4048 else { /* page is swapcache/shmem */ 4049 ret = __mem_cgroup_try_charge_swapin(mm, page, 4050 gfp_mask, &memcg); 4051 if (!ret) 4052 __mem_cgroup_commit_charge_swapin(page, memcg, type); 4053 } 4054 return ret; 4055 } 4056 4057 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 4058 unsigned int nr_pages, 4059 const enum charge_type ctype) 4060 { 4061 struct memcg_batch_info *batch = NULL; 4062 bool uncharge_memsw = true; 4063 4064 /* If swapout, usage of swap doesn't decrease */ 4065 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 4066 uncharge_memsw = false; 4067 4068 batch = ¤t->memcg_batch; 4069 /* 4070 * In usual, we do css_get() when we remember memcg pointer. 4071 * But in this case, we keep res->usage until end of a series of 4072 * uncharges. Then, it's ok to ignore memcg's refcnt. 4073 */ 4074 if (!batch->memcg) 4075 batch->memcg = memcg; 4076 /* 4077 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 4078 * In those cases, all pages freed continuously can be expected to be in 4079 * the same cgroup and we have chance to coalesce uncharges. 4080 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 4081 * because we want to do uncharge as soon as possible. 4082 */ 4083 4084 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 4085 goto direct_uncharge; 4086 4087 if (nr_pages > 1) 4088 goto direct_uncharge; 4089 4090 /* 4091 * In typical case, batch->memcg == mem. This means we can 4092 * merge a series of uncharges to an uncharge of res_counter. 4093 * If not, we uncharge res_counter ony by one. 4094 */ 4095 if (batch->memcg != memcg) 4096 goto direct_uncharge; 4097 /* remember freed charge and uncharge it later */ 4098 batch->nr_pages++; 4099 if (uncharge_memsw) 4100 batch->memsw_nr_pages++; 4101 return; 4102 direct_uncharge: 4103 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 4104 if (uncharge_memsw) 4105 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 4106 if (unlikely(batch->memcg != memcg)) 4107 memcg_oom_recover(memcg); 4108 } 4109 4110 /* 4111 * uncharge if !page_mapped(page) 4112 */ 4113 static struct mem_cgroup * 4114 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 4115 bool end_migration) 4116 { 4117 struct mem_cgroup *memcg = NULL; 4118 unsigned int nr_pages = 1; 4119 struct page_cgroup *pc; 4120 bool anon; 4121 4122 if (mem_cgroup_disabled()) 4123 return NULL; 4124 4125 if (PageTransHuge(page)) { 4126 nr_pages <<= compound_order(page); 4127 VM_BUG_ON(!PageTransHuge(page)); 4128 } 4129 /* 4130 * Check if our page_cgroup is valid 4131 */ 4132 pc = lookup_page_cgroup(page); 4133 if (unlikely(!PageCgroupUsed(pc))) 4134 return NULL; 4135 4136 lock_page_cgroup(pc); 4137 4138 memcg = pc->mem_cgroup; 4139 4140 if (!PageCgroupUsed(pc)) 4141 goto unlock_out; 4142 4143 anon = PageAnon(page); 4144 4145 switch (ctype) { 4146 case MEM_CGROUP_CHARGE_TYPE_ANON: 4147 /* 4148 * Generally PageAnon tells if it's the anon statistics to be 4149 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 4150 * used before page reached the stage of being marked PageAnon. 4151 */ 4152 anon = true; 4153 /* fallthrough */ 4154 case MEM_CGROUP_CHARGE_TYPE_DROP: 4155 /* See mem_cgroup_prepare_migration() */ 4156 if (page_mapped(page)) 4157 goto unlock_out; 4158 /* 4159 * Pages under migration may not be uncharged. But 4160 * end_migration() /must/ be the one uncharging the 4161 * unused post-migration page and so it has to call 4162 * here with the migration bit still set. See the 4163 * res_counter handling below. 4164 */ 4165 if (!end_migration && PageCgroupMigration(pc)) 4166 goto unlock_out; 4167 break; 4168 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 4169 if (!PageAnon(page)) { /* Shared memory */ 4170 if (page->mapping && !page_is_file_cache(page)) 4171 goto unlock_out; 4172 } else if (page_mapped(page)) /* Anon */ 4173 goto unlock_out; 4174 break; 4175 default: 4176 break; 4177 } 4178 4179 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); 4180 4181 ClearPageCgroupUsed(pc); 4182 /* 4183 * pc->mem_cgroup is not cleared here. It will be accessed when it's 4184 * freed from LRU. This is safe because uncharged page is expected not 4185 * to be reused (freed soon). Exception is SwapCache, it's handled by 4186 * special functions. 4187 */ 4188 4189 unlock_page_cgroup(pc); 4190 /* 4191 * even after unlock, we have memcg->res.usage here and this memcg 4192 * will never be freed, so it's safe to call css_get(). 4193 */ 4194 memcg_check_events(memcg, page); 4195 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4196 mem_cgroup_swap_statistics(memcg, true); 4197 css_get(&memcg->css); 4198 } 4199 /* 4200 * Migration does not charge the res_counter for the 4201 * replacement page, so leave it alone when phasing out the 4202 * page that is unused after the migration. 4203 */ 4204 if (!end_migration && !mem_cgroup_is_root(memcg)) 4205 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4206 4207 return memcg; 4208 4209 unlock_out: 4210 unlock_page_cgroup(pc); 4211 return NULL; 4212 } 4213 4214 void mem_cgroup_uncharge_page(struct page *page) 4215 { 4216 /* early check. */ 4217 if (page_mapped(page)) 4218 return; 4219 VM_BUG_ON(page->mapping && !PageAnon(page)); 4220 /* 4221 * If the page is in swap cache, uncharge should be deferred 4222 * to the swap path, which also properly accounts swap usage 4223 * and handles memcg lifetime. 4224 * 4225 * Note that this check is not stable and reclaim may add the 4226 * page to swap cache at any time after this. However, if the 4227 * page is not in swap cache by the time page->mapcount hits 4228 * 0, there won't be any page table references to the swap 4229 * slot, and reclaim will free it and not actually write the 4230 * page to disk. 4231 */ 4232 if (PageSwapCache(page)) 4233 return; 4234 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4235 } 4236 4237 void mem_cgroup_uncharge_cache_page(struct page *page) 4238 { 4239 VM_BUG_ON(page_mapped(page)); 4240 VM_BUG_ON(page->mapping); 4241 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4242 } 4243 4244 /* 4245 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4246 * In that cases, pages are freed continuously and we can expect pages 4247 * are in the same memcg. All these calls itself limits the number of 4248 * pages freed at once, then uncharge_start/end() is called properly. 4249 * This may be called prural(2) times in a context, 4250 */ 4251 4252 void mem_cgroup_uncharge_start(void) 4253 { 4254 current->memcg_batch.do_batch++; 4255 /* We can do nest. */ 4256 if (current->memcg_batch.do_batch == 1) { 4257 current->memcg_batch.memcg = NULL; 4258 current->memcg_batch.nr_pages = 0; 4259 current->memcg_batch.memsw_nr_pages = 0; 4260 } 4261 } 4262 4263 void mem_cgroup_uncharge_end(void) 4264 { 4265 struct memcg_batch_info *batch = ¤t->memcg_batch; 4266 4267 if (!batch->do_batch) 4268 return; 4269 4270 batch->do_batch--; 4271 if (batch->do_batch) /* If stacked, do nothing. */ 4272 return; 4273 4274 if (!batch->memcg) 4275 return; 4276 /* 4277 * This "batch->memcg" is valid without any css_get/put etc... 4278 * bacause we hide charges behind us. 4279 */ 4280 if (batch->nr_pages) 4281 res_counter_uncharge(&batch->memcg->res, 4282 batch->nr_pages * PAGE_SIZE); 4283 if (batch->memsw_nr_pages) 4284 res_counter_uncharge(&batch->memcg->memsw, 4285 batch->memsw_nr_pages * PAGE_SIZE); 4286 memcg_oom_recover(batch->memcg); 4287 /* forget this pointer (for sanity check) */ 4288 batch->memcg = NULL; 4289 } 4290 4291 #ifdef CONFIG_SWAP 4292 /* 4293 * called after __delete_from_swap_cache() and drop "page" account. 4294 * memcg information is recorded to swap_cgroup of "ent" 4295 */ 4296 void 4297 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4298 { 4299 struct mem_cgroup *memcg; 4300 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4301 4302 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4303 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4304 4305 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4306 4307 /* 4308 * record memcg information, if swapout && memcg != NULL, 4309 * css_get() was called in uncharge(). 4310 */ 4311 if (do_swap_account && swapout && memcg) 4312 swap_cgroup_record(ent, css_id(&memcg->css)); 4313 } 4314 #endif 4315 4316 #ifdef CONFIG_MEMCG_SWAP 4317 /* 4318 * called from swap_entry_free(). remove record in swap_cgroup and 4319 * uncharge "memsw" account. 4320 */ 4321 void mem_cgroup_uncharge_swap(swp_entry_t ent) 4322 { 4323 struct mem_cgroup *memcg; 4324 unsigned short id; 4325 4326 if (!do_swap_account) 4327 return; 4328 4329 id = swap_cgroup_record(ent, 0); 4330 rcu_read_lock(); 4331 memcg = mem_cgroup_lookup(id); 4332 if (memcg) { 4333 /* 4334 * We uncharge this because swap is freed. 4335 * This memcg can be obsolete one. We avoid calling css_tryget 4336 */ 4337 if (!mem_cgroup_is_root(memcg)) 4338 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4339 mem_cgroup_swap_statistics(memcg, false); 4340 css_put(&memcg->css); 4341 } 4342 rcu_read_unlock(); 4343 } 4344 4345 /** 4346 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4347 * @entry: swap entry to be moved 4348 * @from: mem_cgroup which the entry is moved from 4349 * @to: mem_cgroup which the entry is moved to 4350 * 4351 * It succeeds only when the swap_cgroup's record for this entry is the same 4352 * as the mem_cgroup's id of @from. 4353 * 4354 * Returns 0 on success, -EINVAL on failure. 4355 * 4356 * The caller must have charged to @to, IOW, called res_counter_charge() about 4357 * both res and memsw, and called css_get(). 4358 */ 4359 static int mem_cgroup_move_swap_account(swp_entry_t entry, 4360 struct mem_cgroup *from, struct mem_cgroup *to) 4361 { 4362 unsigned short old_id, new_id; 4363 4364 old_id = css_id(&from->css); 4365 new_id = css_id(&to->css); 4366 4367 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4368 mem_cgroup_swap_statistics(from, false); 4369 mem_cgroup_swap_statistics(to, true); 4370 /* 4371 * This function is only called from task migration context now. 4372 * It postpones res_counter and refcount handling till the end 4373 * of task migration(mem_cgroup_clear_mc()) for performance 4374 * improvement. But we cannot postpone css_get(to) because if 4375 * the process that has been moved to @to does swap-in, the 4376 * refcount of @to might be decreased to 0. 4377 * 4378 * We are in attach() phase, so the cgroup is guaranteed to be 4379 * alive, so we can just call css_get(). 4380 */ 4381 css_get(&to->css); 4382 return 0; 4383 } 4384 return -EINVAL; 4385 } 4386 #else 4387 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4388 struct mem_cgroup *from, struct mem_cgroup *to) 4389 { 4390 return -EINVAL; 4391 } 4392 #endif 4393 4394 /* 4395 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4396 * page belongs to. 4397 */ 4398 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4399 struct mem_cgroup **memcgp) 4400 { 4401 struct mem_cgroup *memcg = NULL; 4402 unsigned int nr_pages = 1; 4403 struct page_cgroup *pc; 4404 enum charge_type ctype; 4405 4406 *memcgp = NULL; 4407 4408 if (mem_cgroup_disabled()) 4409 return; 4410 4411 if (PageTransHuge(page)) 4412 nr_pages <<= compound_order(page); 4413 4414 pc = lookup_page_cgroup(page); 4415 lock_page_cgroup(pc); 4416 if (PageCgroupUsed(pc)) { 4417 memcg = pc->mem_cgroup; 4418 css_get(&memcg->css); 4419 /* 4420 * At migrating an anonymous page, its mapcount goes down 4421 * to 0 and uncharge() will be called. But, even if it's fully 4422 * unmapped, migration may fail and this page has to be 4423 * charged again. We set MIGRATION flag here and delay uncharge 4424 * until end_migration() is called 4425 * 4426 * Corner Case Thinking 4427 * A) 4428 * When the old page was mapped as Anon and it's unmap-and-freed 4429 * while migration was ongoing. 4430 * If unmap finds the old page, uncharge() of it will be delayed 4431 * until end_migration(). If unmap finds a new page, it's 4432 * uncharged when it make mapcount to be 1->0. If unmap code 4433 * finds swap_migration_entry, the new page will not be mapped 4434 * and end_migration() will find it(mapcount==0). 4435 * 4436 * B) 4437 * When the old page was mapped but migraion fails, the kernel 4438 * remaps it. A charge for it is kept by MIGRATION flag even 4439 * if mapcount goes down to 0. We can do remap successfully 4440 * without charging it again. 4441 * 4442 * C) 4443 * The "old" page is under lock_page() until the end of 4444 * migration, so, the old page itself will not be swapped-out. 4445 * If the new page is swapped out before end_migraton, our 4446 * hook to usual swap-out path will catch the event. 4447 */ 4448 if (PageAnon(page)) 4449 SetPageCgroupMigration(pc); 4450 } 4451 unlock_page_cgroup(pc); 4452 /* 4453 * If the page is not charged at this point, 4454 * we return here. 4455 */ 4456 if (!memcg) 4457 return; 4458 4459 *memcgp = memcg; 4460 /* 4461 * We charge new page before it's used/mapped. So, even if unlock_page() 4462 * is called before end_migration, we can catch all events on this new 4463 * page. In the case new page is migrated but not remapped, new page's 4464 * mapcount will be finally 0 and we call uncharge in end_migration(). 4465 */ 4466 if (PageAnon(page)) 4467 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4468 else 4469 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4470 /* 4471 * The page is committed to the memcg, but it's not actually 4472 * charged to the res_counter since we plan on replacing the 4473 * old one and only one page is going to be left afterwards. 4474 */ 4475 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4476 } 4477 4478 /* remove redundant charge if migration failed*/ 4479 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4480 struct page *oldpage, struct page *newpage, bool migration_ok) 4481 { 4482 struct page *used, *unused; 4483 struct page_cgroup *pc; 4484 bool anon; 4485 4486 if (!memcg) 4487 return; 4488 4489 if (!migration_ok) { 4490 used = oldpage; 4491 unused = newpage; 4492 } else { 4493 used = newpage; 4494 unused = oldpage; 4495 } 4496 anon = PageAnon(used); 4497 __mem_cgroup_uncharge_common(unused, 4498 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4499 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4500 true); 4501 css_put(&memcg->css); 4502 /* 4503 * We disallowed uncharge of pages under migration because mapcount 4504 * of the page goes down to zero, temporarly. 4505 * Clear the flag and check the page should be charged. 4506 */ 4507 pc = lookup_page_cgroup(oldpage); 4508 lock_page_cgroup(pc); 4509 ClearPageCgroupMigration(pc); 4510 unlock_page_cgroup(pc); 4511 4512 /* 4513 * If a page is a file cache, radix-tree replacement is very atomic 4514 * and we can skip this check. When it was an Anon page, its mapcount 4515 * goes down to 0. But because we added MIGRATION flage, it's not 4516 * uncharged yet. There are several case but page->mapcount check 4517 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4518 * check. (see prepare_charge() also) 4519 */ 4520 if (anon) 4521 mem_cgroup_uncharge_page(used); 4522 } 4523 4524 /* 4525 * At replace page cache, newpage is not under any memcg but it's on 4526 * LRU. So, this function doesn't touch res_counter but handles LRU 4527 * in correct way. Both pages are locked so we cannot race with uncharge. 4528 */ 4529 void mem_cgroup_replace_page_cache(struct page *oldpage, 4530 struct page *newpage) 4531 { 4532 struct mem_cgroup *memcg = NULL; 4533 struct page_cgroup *pc; 4534 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4535 4536 if (mem_cgroup_disabled()) 4537 return; 4538 4539 pc = lookup_page_cgroup(oldpage); 4540 /* fix accounting on old pages */ 4541 lock_page_cgroup(pc); 4542 if (PageCgroupUsed(pc)) { 4543 memcg = pc->mem_cgroup; 4544 mem_cgroup_charge_statistics(memcg, oldpage, false, -1); 4545 ClearPageCgroupUsed(pc); 4546 } 4547 unlock_page_cgroup(pc); 4548 4549 /* 4550 * When called from shmem_replace_page(), in some cases the 4551 * oldpage has already been charged, and in some cases not. 4552 */ 4553 if (!memcg) 4554 return; 4555 /* 4556 * Even if newpage->mapping was NULL before starting replacement, 4557 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4558 * LRU while we overwrite pc->mem_cgroup. 4559 */ 4560 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4561 } 4562 4563 #ifdef CONFIG_DEBUG_VM 4564 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4565 { 4566 struct page_cgroup *pc; 4567 4568 pc = lookup_page_cgroup(page); 4569 /* 4570 * Can be NULL while feeding pages into the page allocator for 4571 * the first time, i.e. during boot or memory hotplug; 4572 * or when mem_cgroup_disabled(). 4573 */ 4574 if (likely(pc) && PageCgroupUsed(pc)) 4575 return pc; 4576 return NULL; 4577 } 4578 4579 bool mem_cgroup_bad_page_check(struct page *page) 4580 { 4581 if (mem_cgroup_disabled()) 4582 return false; 4583 4584 return lookup_page_cgroup_used(page) != NULL; 4585 } 4586 4587 void mem_cgroup_print_bad_page(struct page *page) 4588 { 4589 struct page_cgroup *pc; 4590 4591 pc = lookup_page_cgroup_used(page); 4592 if (pc) { 4593 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4594 pc, pc->flags, pc->mem_cgroup); 4595 } 4596 } 4597 #endif 4598 4599 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4600 unsigned long long val) 4601 { 4602 int retry_count; 4603 u64 memswlimit, memlimit; 4604 int ret = 0; 4605 int children = mem_cgroup_count_children(memcg); 4606 u64 curusage, oldusage; 4607 int enlarge; 4608 4609 /* 4610 * For keeping hierarchical_reclaim simple, how long we should retry 4611 * is depends on callers. We set our retry-count to be function 4612 * of # of children which we should visit in this loop. 4613 */ 4614 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4615 4616 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4617 4618 enlarge = 0; 4619 while (retry_count) { 4620 if (signal_pending(current)) { 4621 ret = -EINTR; 4622 break; 4623 } 4624 /* 4625 * Rather than hide all in some function, I do this in 4626 * open coded manner. You see what this really does. 4627 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4628 */ 4629 mutex_lock(&set_limit_mutex); 4630 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4631 if (memswlimit < val) { 4632 ret = -EINVAL; 4633 mutex_unlock(&set_limit_mutex); 4634 break; 4635 } 4636 4637 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4638 if (memlimit < val) 4639 enlarge = 1; 4640 4641 ret = res_counter_set_limit(&memcg->res, val); 4642 if (!ret) { 4643 if (memswlimit == val) 4644 memcg->memsw_is_minimum = true; 4645 else 4646 memcg->memsw_is_minimum = false; 4647 } 4648 mutex_unlock(&set_limit_mutex); 4649 4650 if (!ret) 4651 break; 4652 4653 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4654 MEM_CGROUP_RECLAIM_SHRINK); 4655 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4656 /* Usage is reduced ? */ 4657 if (curusage >= oldusage) 4658 retry_count--; 4659 else 4660 oldusage = curusage; 4661 } 4662 if (!ret && enlarge) 4663 memcg_oom_recover(memcg); 4664 4665 return ret; 4666 } 4667 4668 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4669 unsigned long long val) 4670 { 4671 int retry_count; 4672 u64 memlimit, memswlimit, oldusage, curusage; 4673 int children = mem_cgroup_count_children(memcg); 4674 int ret = -EBUSY; 4675 int enlarge = 0; 4676 4677 /* see mem_cgroup_resize_res_limit */ 4678 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4679 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4680 while (retry_count) { 4681 if (signal_pending(current)) { 4682 ret = -EINTR; 4683 break; 4684 } 4685 /* 4686 * Rather than hide all in some function, I do this in 4687 * open coded manner. You see what this really does. 4688 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4689 */ 4690 mutex_lock(&set_limit_mutex); 4691 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4692 if (memlimit > val) { 4693 ret = -EINVAL; 4694 mutex_unlock(&set_limit_mutex); 4695 break; 4696 } 4697 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4698 if (memswlimit < val) 4699 enlarge = 1; 4700 ret = res_counter_set_limit(&memcg->memsw, val); 4701 if (!ret) { 4702 if (memlimit == val) 4703 memcg->memsw_is_minimum = true; 4704 else 4705 memcg->memsw_is_minimum = false; 4706 } 4707 mutex_unlock(&set_limit_mutex); 4708 4709 if (!ret) 4710 break; 4711 4712 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4713 MEM_CGROUP_RECLAIM_NOSWAP | 4714 MEM_CGROUP_RECLAIM_SHRINK); 4715 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4716 /* Usage is reduced ? */ 4717 if (curusage >= oldusage) 4718 retry_count--; 4719 else 4720 oldusage = curusage; 4721 } 4722 if (!ret && enlarge) 4723 memcg_oom_recover(memcg); 4724 return ret; 4725 } 4726 4727 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4728 gfp_t gfp_mask, 4729 unsigned long *total_scanned) 4730 { 4731 unsigned long nr_reclaimed = 0; 4732 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4733 unsigned long reclaimed; 4734 int loop = 0; 4735 struct mem_cgroup_tree_per_zone *mctz; 4736 unsigned long long excess; 4737 unsigned long nr_scanned; 4738 4739 if (order > 0) 4740 return 0; 4741 4742 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4743 /* 4744 * This loop can run a while, specially if mem_cgroup's continuously 4745 * keep exceeding their soft limit and putting the system under 4746 * pressure 4747 */ 4748 do { 4749 if (next_mz) 4750 mz = next_mz; 4751 else 4752 mz = mem_cgroup_largest_soft_limit_node(mctz); 4753 if (!mz) 4754 break; 4755 4756 nr_scanned = 0; 4757 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4758 gfp_mask, &nr_scanned); 4759 nr_reclaimed += reclaimed; 4760 *total_scanned += nr_scanned; 4761 spin_lock(&mctz->lock); 4762 4763 /* 4764 * If we failed to reclaim anything from this memory cgroup 4765 * it is time to move on to the next cgroup 4766 */ 4767 next_mz = NULL; 4768 if (!reclaimed) { 4769 do { 4770 /* 4771 * Loop until we find yet another one. 4772 * 4773 * By the time we get the soft_limit lock 4774 * again, someone might have aded the 4775 * group back on the RB tree. Iterate to 4776 * make sure we get a different mem. 4777 * mem_cgroup_largest_soft_limit_node returns 4778 * NULL if no other cgroup is present on 4779 * the tree 4780 */ 4781 next_mz = 4782 __mem_cgroup_largest_soft_limit_node(mctz); 4783 if (next_mz == mz) 4784 css_put(&next_mz->memcg->css); 4785 else /* next_mz == NULL or other memcg */ 4786 break; 4787 } while (1); 4788 } 4789 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 4790 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4791 /* 4792 * One school of thought says that we should not add 4793 * back the node to the tree if reclaim returns 0. 4794 * But our reclaim could return 0, simply because due 4795 * to priority we are exposing a smaller subset of 4796 * memory to reclaim from. Consider this as a longer 4797 * term TODO. 4798 */ 4799 /* If excess == 0, no tree ops */ 4800 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 4801 spin_unlock(&mctz->lock); 4802 css_put(&mz->memcg->css); 4803 loop++; 4804 /* 4805 * Could not reclaim anything and there are no more 4806 * mem cgroups to try or we seem to be looping without 4807 * reclaiming anything. 4808 */ 4809 if (!nr_reclaimed && 4810 (next_mz == NULL || 4811 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4812 break; 4813 } while (!nr_reclaimed); 4814 if (next_mz) 4815 css_put(&next_mz->memcg->css); 4816 return nr_reclaimed; 4817 } 4818 4819 /** 4820 * mem_cgroup_force_empty_list - clears LRU of a group 4821 * @memcg: group to clear 4822 * @node: NUMA node 4823 * @zid: zone id 4824 * @lru: lru to to clear 4825 * 4826 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4827 * reclaim the pages page themselves - pages are moved to the parent (or root) 4828 * group. 4829 */ 4830 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4831 int node, int zid, enum lru_list lru) 4832 { 4833 struct lruvec *lruvec; 4834 unsigned long flags; 4835 struct list_head *list; 4836 struct page *busy; 4837 struct zone *zone; 4838 4839 zone = &NODE_DATA(node)->node_zones[zid]; 4840 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4841 list = &lruvec->lists[lru]; 4842 4843 busy = NULL; 4844 do { 4845 struct page_cgroup *pc; 4846 struct page *page; 4847 4848 spin_lock_irqsave(&zone->lru_lock, flags); 4849 if (list_empty(list)) { 4850 spin_unlock_irqrestore(&zone->lru_lock, flags); 4851 break; 4852 } 4853 page = list_entry(list->prev, struct page, lru); 4854 if (busy == page) { 4855 list_move(&page->lru, list); 4856 busy = NULL; 4857 spin_unlock_irqrestore(&zone->lru_lock, flags); 4858 continue; 4859 } 4860 spin_unlock_irqrestore(&zone->lru_lock, flags); 4861 4862 pc = lookup_page_cgroup(page); 4863 4864 if (mem_cgroup_move_parent(page, pc, memcg)) { 4865 /* found lock contention or "pc" is obsolete. */ 4866 busy = page; 4867 cond_resched(); 4868 } else 4869 busy = NULL; 4870 } while (!list_empty(list)); 4871 } 4872 4873 /* 4874 * make mem_cgroup's charge to be 0 if there is no task by moving 4875 * all the charges and pages to the parent. 4876 * This enables deleting this mem_cgroup. 4877 * 4878 * Caller is responsible for holding css reference on the memcg. 4879 */ 4880 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4881 { 4882 int node, zid; 4883 u64 usage; 4884 4885 do { 4886 /* This is for making all *used* pages to be on LRU. */ 4887 lru_add_drain_all(); 4888 drain_all_stock_sync(memcg); 4889 mem_cgroup_start_move(memcg); 4890 for_each_node_state(node, N_MEMORY) { 4891 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4892 enum lru_list lru; 4893 for_each_lru(lru) { 4894 mem_cgroup_force_empty_list(memcg, 4895 node, zid, lru); 4896 } 4897 } 4898 } 4899 mem_cgroup_end_move(memcg); 4900 memcg_oom_recover(memcg); 4901 cond_resched(); 4902 4903 /* 4904 * Kernel memory may not necessarily be trackable to a specific 4905 * process. So they are not migrated, and therefore we can't 4906 * expect their value to drop to 0 here. 4907 * Having res filled up with kmem only is enough. 4908 * 4909 * This is a safety check because mem_cgroup_force_empty_list 4910 * could have raced with mem_cgroup_replace_page_cache callers 4911 * so the lru seemed empty but the page could have been added 4912 * right after the check. RES_USAGE should be safe as we always 4913 * charge before adding to the LRU. 4914 */ 4915 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4916 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4917 } while (usage > 0); 4918 } 4919 4920 /* 4921 * This mainly exists for tests during the setting of set of use_hierarchy. 4922 * Since this is the very setting we are changing, the current hierarchy value 4923 * is meaningless 4924 */ 4925 static inline bool __memcg_has_children(struct mem_cgroup *memcg) 4926 { 4927 struct cgroup_subsys_state *pos; 4928 4929 /* bounce at first found */ 4930 css_for_each_child(pos, &memcg->css) 4931 return true; 4932 return false; 4933 } 4934 4935 /* 4936 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed 4937 * to be already dead (as in mem_cgroup_force_empty, for instance). This is 4938 * from mem_cgroup_count_children(), in the sense that we don't really care how 4939 * many children we have; we only need to know if we have any. It also counts 4940 * any memcg without hierarchy as infertile. 4941 */ 4942 static inline bool memcg_has_children(struct mem_cgroup *memcg) 4943 { 4944 return memcg->use_hierarchy && __memcg_has_children(memcg); 4945 } 4946 4947 /* 4948 * Reclaims as many pages from the given memcg as possible and moves 4949 * the rest to the parent. 4950 * 4951 * Caller is responsible for holding css reference for memcg. 4952 */ 4953 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4954 { 4955 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4956 struct cgroup *cgrp = memcg->css.cgroup; 4957 4958 /* returns EBUSY if there is a task or if we come here twice. */ 4959 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 4960 return -EBUSY; 4961 4962 /* we call try-to-free pages for make this cgroup empty */ 4963 lru_add_drain_all(); 4964 /* try to free all pages in this cgroup */ 4965 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4966 int progress; 4967 4968 if (signal_pending(current)) 4969 return -EINTR; 4970 4971 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 4972 false); 4973 if (!progress) { 4974 nr_retries--; 4975 /* maybe some writeback is necessary */ 4976 congestion_wait(BLK_RW_ASYNC, HZ/10); 4977 } 4978 4979 } 4980 lru_add_drain(); 4981 mem_cgroup_reparent_charges(memcg); 4982 4983 return 0; 4984 } 4985 4986 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css, 4987 unsigned int event) 4988 { 4989 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4990 int ret; 4991 4992 if (mem_cgroup_is_root(memcg)) 4993 return -EINVAL; 4994 css_get(&memcg->css); 4995 ret = mem_cgroup_force_empty(memcg); 4996 css_put(&memcg->css); 4997 4998 return ret; 4999 } 5000 5001 5002 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 5003 struct cftype *cft) 5004 { 5005 return mem_cgroup_from_css(css)->use_hierarchy; 5006 } 5007 5008 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 5009 struct cftype *cft, u64 val) 5010 { 5011 int retval = 0; 5012 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5013 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5014 5015 mutex_lock(&memcg_create_mutex); 5016 5017 if (memcg->use_hierarchy == val) 5018 goto out; 5019 5020 /* 5021 * If parent's use_hierarchy is set, we can't make any modifications 5022 * in the child subtrees. If it is unset, then the change can 5023 * occur, provided the current cgroup has no children. 5024 * 5025 * For the root cgroup, parent_mem is NULL, we allow value to be 5026 * set if there are no children. 5027 */ 5028 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 5029 (val == 1 || val == 0)) { 5030 if (!__memcg_has_children(memcg)) 5031 memcg->use_hierarchy = val; 5032 else 5033 retval = -EBUSY; 5034 } else 5035 retval = -EINVAL; 5036 5037 out: 5038 mutex_unlock(&memcg_create_mutex); 5039 5040 return retval; 5041 } 5042 5043 5044 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 5045 enum mem_cgroup_stat_index idx) 5046 { 5047 struct mem_cgroup *iter; 5048 long val = 0; 5049 5050 /* Per-cpu values can be negative, use a signed accumulator */ 5051 for_each_mem_cgroup_tree(iter, memcg) 5052 val += mem_cgroup_read_stat(iter, idx); 5053 5054 if (val < 0) /* race ? */ 5055 val = 0; 5056 return val; 5057 } 5058 5059 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 5060 { 5061 u64 val; 5062 5063 if (!mem_cgroup_is_root(memcg)) { 5064 if (!swap) 5065 return res_counter_read_u64(&memcg->res, RES_USAGE); 5066 else 5067 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 5068 } 5069 5070 /* 5071 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS 5072 * as well as in MEM_CGROUP_STAT_RSS_HUGE. 5073 */ 5074 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 5075 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 5076 5077 if (swap) 5078 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 5079 5080 return val << PAGE_SHIFT; 5081 } 5082 5083 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css, 5084 struct cftype *cft, struct file *file, 5085 char __user *buf, size_t nbytes, loff_t *ppos) 5086 { 5087 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5088 char str[64]; 5089 u64 val; 5090 int name, len; 5091 enum res_type type; 5092 5093 type = MEMFILE_TYPE(cft->private); 5094 name = MEMFILE_ATTR(cft->private); 5095 5096 switch (type) { 5097 case _MEM: 5098 if (name == RES_USAGE) 5099 val = mem_cgroup_usage(memcg, false); 5100 else 5101 val = res_counter_read_u64(&memcg->res, name); 5102 break; 5103 case _MEMSWAP: 5104 if (name == RES_USAGE) 5105 val = mem_cgroup_usage(memcg, true); 5106 else 5107 val = res_counter_read_u64(&memcg->memsw, name); 5108 break; 5109 case _KMEM: 5110 val = res_counter_read_u64(&memcg->kmem, name); 5111 break; 5112 default: 5113 BUG(); 5114 } 5115 5116 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 5117 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 5118 } 5119 5120 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val) 5121 { 5122 int ret = -EINVAL; 5123 #ifdef CONFIG_MEMCG_KMEM 5124 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5125 /* 5126 * For simplicity, we won't allow this to be disabled. It also can't 5127 * be changed if the cgroup has children already, or if tasks had 5128 * already joined. 5129 * 5130 * If tasks join before we set the limit, a person looking at 5131 * kmem.usage_in_bytes will have no way to determine when it took 5132 * place, which makes the value quite meaningless. 5133 * 5134 * After it first became limited, changes in the value of the limit are 5135 * of course permitted. 5136 */ 5137 mutex_lock(&memcg_create_mutex); 5138 mutex_lock(&set_limit_mutex); 5139 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) { 5140 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) { 5141 ret = -EBUSY; 5142 goto out; 5143 } 5144 ret = res_counter_set_limit(&memcg->kmem, val); 5145 VM_BUG_ON(ret); 5146 5147 ret = memcg_update_cache_sizes(memcg); 5148 if (ret) { 5149 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX); 5150 goto out; 5151 } 5152 static_key_slow_inc(&memcg_kmem_enabled_key); 5153 /* 5154 * setting the active bit after the inc will guarantee no one 5155 * starts accounting before all call sites are patched 5156 */ 5157 memcg_kmem_set_active(memcg); 5158 } else 5159 ret = res_counter_set_limit(&memcg->kmem, val); 5160 out: 5161 mutex_unlock(&set_limit_mutex); 5162 mutex_unlock(&memcg_create_mutex); 5163 #endif 5164 return ret; 5165 } 5166 5167 #ifdef CONFIG_MEMCG_KMEM 5168 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 5169 { 5170 int ret = 0; 5171 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5172 if (!parent) 5173 goto out; 5174 5175 memcg->kmem_account_flags = parent->kmem_account_flags; 5176 /* 5177 * When that happen, we need to disable the static branch only on those 5178 * memcgs that enabled it. To achieve this, we would be forced to 5179 * complicate the code by keeping track of which memcgs were the ones 5180 * that actually enabled limits, and which ones got it from its 5181 * parents. 5182 * 5183 * It is a lot simpler just to do static_key_slow_inc() on every child 5184 * that is accounted. 5185 */ 5186 if (!memcg_kmem_is_active(memcg)) 5187 goto out; 5188 5189 /* 5190 * __mem_cgroup_free() will issue static_key_slow_dec() because this 5191 * memcg is active already. If the later initialization fails then the 5192 * cgroup core triggers the cleanup so we do not have to do it here. 5193 */ 5194 static_key_slow_inc(&memcg_kmem_enabled_key); 5195 5196 mutex_lock(&set_limit_mutex); 5197 memcg_stop_kmem_account(); 5198 ret = memcg_update_cache_sizes(memcg); 5199 memcg_resume_kmem_account(); 5200 mutex_unlock(&set_limit_mutex); 5201 out: 5202 return ret; 5203 } 5204 #endif /* CONFIG_MEMCG_KMEM */ 5205 5206 /* 5207 * The user of this function is... 5208 * RES_LIMIT. 5209 */ 5210 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft, 5211 const char *buffer) 5212 { 5213 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5214 enum res_type type; 5215 int name; 5216 unsigned long long val; 5217 int ret; 5218 5219 type = MEMFILE_TYPE(cft->private); 5220 name = MEMFILE_ATTR(cft->private); 5221 5222 switch (name) { 5223 case RES_LIMIT: 5224 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5225 ret = -EINVAL; 5226 break; 5227 } 5228 /* This function does all necessary parse...reuse it */ 5229 ret = res_counter_memparse_write_strategy(buffer, &val); 5230 if (ret) 5231 break; 5232 if (type == _MEM) 5233 ret = mem_cgroup_resize_limit(memcg, val); 5234 else if (type == _MEMSWAP) 5235 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5236 else if (type == _KMEM) 5237 ret = memcg_update_kmem_limit(css, val); 5238 else 5239 return -EINVAL; 5240 break; 5241 case RES_SOFT_LIMIT: 5242 ret = res_counter_memparse_write_strategy(buffer, &val); 5243 if (ret) 5244 break; 5245 /* 5246 * For memsw, soft limits are hard to implement in terms 5247 * of semantics, for now, we support soft limits for 5248 * control without swap 5249 */ 5250 if (type == _MEM) 5251 ret = res_counter_set_soft_limit(&memcg->res, val); 5252 else 5253 ret = -EINVAL; 5254 break; 5255 default: 5256 ret = -EINVAL; /* should be BUG() ? */ 5257 break; 5258 } 5259 return ret; 5260 } 5261 5262 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5263 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5264 { 5265 unsigned long long min_limit, min_memsw_limit, tmp; 5266 5267 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5268 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5269 if (!memcg->use_hierarchy) 5270 goto out; 5271 5272 while (css_parent(&memcg->css)) { 5273 memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5274 if (!memcg->use_hierarchy) 5275 break; 5276 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5277 min_limit = min(min_limit, tmp); 5278 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5279 min_memsw_limit = min(min_memsw_limit, tmp); 5280 } 5281 out: 5282 *mem_limit = min_limit; 5283 *memsw_limit = min_memsw_limit; 5284 } 5285 5286 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event) 5287 { 5288 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5289 int name; 5290 enum res_type type; 5291 5292 type = MEMFILE_TYPE(event); 5293 name = MEMFILE_ATTR(event); 5294 5295 switch (name) { 5296 case RES_MAX_USAGE: 5297 if (type == _MEM) 5298 res_counter_reset_max(&memcg->res); 5299 else if (type == _MEMSWAP) 5300 res_counter_reset_max(&memcg->memsw); 5301 else if (type == _KMEM) 5302 res_counter_reset_max(&memcg->kmem); 5303 else 5304 return -EINVAL; 5305 break; 5306 case RES_FAILCNT: 5307 if (type == _MEM) 5308 res_counter_reset_failcnt(&memcg->res); 5309 else if (type == _MEMSWAP) 5310 res_counter_reset_failcnt(&memcg->memsw); 5311 else if (type == _KMEM) 5312 res_counter_reset_failcnt(&memcg->kmem); 5313 else 5314 return -EINVAL; 5315 break; 5316 } 5317 5318 return 0; 5319 } 5320 5321 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 5322 struct cftype *cft) 5323 { 5324 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 5325 } 5326 5327 #ifdef CONFIG_MMU 5328 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5329 struct cftype *cft, u64 val) 5330 { 5331 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5332 5333 if (val >= (1 << NR_MOVE_TYPE)) 5334 return -EINVAL; 5335 5336 /* 5337 * No kind of locking is needed in here, because ->can_attach() will 5338 * check this value once in the beginning of the process, and then carry 5339 * on with stale data. This means that changes to this value will only 5340 * affect task migrations starting after the change. 5341 */ 5342 memcg->move_charge_at_immigrate = val; 5343 return 0; 5344 } 5345 #else 5346 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5347 struct cftype *cft, u64 val) 5348 { 5349 return -ENOSYS; 5350 } 5351 #endif 5352 5353 #ifdef CONFIG_NUMA 5354 static int memcg_numa_stat_show(struct cgroup_subsys_state *css, 5355 struct cftype *cft, struct seq_file *m) 5356 { 5357 int nid; 5358 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 5359 unsigned long node_nr; 5360 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5361 5362 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 5363 seq_printf(m, "total=%lu", total_nr); 5364 for_each_node_state(nid, N_MEMORY) { 5365 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 5366 seq_printf(m, " N%d=%lu", nid, node_nr); 5367 } 5368 seq_putc(m, '\n'); 5369 5370 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 5371 seq_printf(m, "file=%lu", file_nr); 5372 for_each_node_state(nid, N_MEMORY) { 5373 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5374 LRU_ALL_FILE); 5375 seq_printf(m, " N%d=%lu", nid, node_nr); 5376 } 5377 seq_putc(m, '\n'); 5378 5379 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 5380 seq_printf(m, "anon=%lu", anon_nr); 5381 for_each_node_state(nid, N_MEMORY) { 5382 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5383 LRU_ALL_ANON); 5384 seq_printf(m, " N%d=%lu", nid, node_nr); 5385 } 5386 seq_putc(m, '\n'); 5387 5388 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 5389 seq_printf(m, "unevictable=%lu", unevictable_nr); 5390 for_each_node_state(nid, N_MEMORY) { 5391 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5392 BIT(LRU_UNEVICTABLE)); 5393 seq_printf(m, " N%d=%lu", nid, node_nr); 5394 } 5395 seq_putc(m, '\n'); 5396 return 0; 5397 } 5398 #endif /* CONFIG_NUMA */ 5399 5400 static inline void mem_cgroup_lru_names_not_uptodate(void) 5401 { 5402 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5403 } 5404 5405 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft, 5406 struct seq_file *m) 5407 { 5408 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5409 struct mem_cgroup *mi; 5410 unsigned int i; 5411 5412 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5413 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5414 continue; 5415 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5416 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5417 } 5418 5419 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5420 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5421 mem_cgroup_read_events(memcg, i)); 5422 5423 for (i = 0; i < NR_LRU_LISTS; i++) 5424 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5425 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5426 5427 /* Hierarchical information */ 5428 { 5429 unsigned long long limit, memsw_limit; 5430 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5431 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5432 if (do_swap_account) 5433 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5434 memsw_limit); 5435 } 5436 5437 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5438 long long val = 0; 5439 5440 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5441 continue; 5442 for_each_mem_cgroup_tree(mi, memcg) 5443 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5444 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5445 } 5446 5447 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5448 unsigned long long val = 0; 5449 5450 for_each_mem_cgroup_tree(mi, memcg) 5451 val += mem_cgroup_read_events(mi, i); 5452 seq_printf(m, "total_%s %llu\n", 5453 mem_cgroup_events_names[i], val); 5454 } 5455 5456 for (i = 0; i < NR_LRU_LISTS; i++) { 5457 unsigned long long val = 0; 5458 5459 for_each_mem_cgroup_tree(mi, memcg) 5460 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5461 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5462 } 5463 5464 #ifdef CONFIG_DEBUG_VM 5465 { 5466 int nid, zid; 5467 struct mem_cgroup_per_zone *mz; 5468 struct zone_reclaim_stat *rstat; 5469 unsigned long recent_rotated[2] = {0, 0}; 5470 unsigned long recent_scanned[2] = {0, 0}; 5471 5472 for_each_online_node(nid) 5473 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5474 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5475 rstat = &mz->lruvec.reclaim_stat; 5476 5477 recent_rotated[0] += rstat->recent_rotated[0]; 5478 recent_rotated[1] += rstat->recent_rotated[1]; 5479 recent_scanned[0] += rstat->recent_scanned[0]; 5480 recent_scanned[1] += rstat->recent_scanned[1]; 5481 } 5482 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5483 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5484 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5485 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5486 } 5487 #endif 5488 5489 return 0; 5490 } 5491 5492 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 5493 struct cftype *cft) 5494 { 5495 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5496 5497 return mem_cgroup_swappiness(memcg); 5498 } 5499 5500 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 5501 struct cftype *cft, u64 val) 5502 { 5503 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5504 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5505 5506 if (val > 100 || !parent) 5507 return -EINVAL; 5508 5509 mutex_lock(&memcg_create_mutex); 5510 5511 /* If under hierarchy, only empty-root can set this value */ 5512 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5513 mutex_unlock(&memcg_create_mutex); 5514 return -EINVAL; 5515 } 5516 5517 memcg->swappiness = val; 5518 5519 mutex_unlock(&memcg_create_mutex); 5520 5521 return 0; 5522 } 5523 5524 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5525 { 5526 struct mem_cgroup_threshold_ary *t; 5527 u64 usage; 5528 int i; 5529 5530 rcu_read_lock(); 5531 if (!swap) 5532 t = rcu_dereference(memcg->thresholds.primary); 5533 else 5534 t = rcu_dereference(memcg->memsw_thresholds.primary); 5535 5536 if (!t) 5537 goto unlock; 5538 5539 usage = mem_cgroup_usage(memcg, swap); 5540 5541 /* 5542 * current_threshold points to threshold just below or equal to usage. 5543 * If it's not true, a threshold was crossed after last 5544 * call of __mem_cgroup_threshold(). 5545 */ 5546 i = t->current_threshold; 5547 5548 /* 5549 * Iterate backward over array of thresholds starting from 5550 * current_threshold and check if a threshold is crossed. 5551 * If none of thresholds below usage is crossed, we read 5552 * only one element of the array here. 5553 */ 5554 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5555 eventfd_signal(t->entries[i].eventfd, 1); 5556 5557 /* i = current_threshold + 1 */ 5558 i++; 5559 5560 /* 5561 * Iterate forward over array of thresholds starting from 5562 * current_threshold+1 and check if a threshold is crossed. 5563 * If none of thresholds above usage is crossed, we read 5564 * only one element of the array here. 5565 */ 5566 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5567 eventfd_signal(t->entries[i].eventfd, 1); 5568 5569 /* Update current_threshold */ 5570 t->current_threshold = i - 1; 5571 unlock: 5572 rcu_read_unlock(); 5573 } 5574 5575 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5576 { 5577 while (memcg) { 5578 __mem_cgroup_threshold(memcg, false); 5579 if (do_swap_account) 5580 __mem_cgroup_threshold(memcg, true); 5581 5582 memcg = parent_mem_cgroup(memcg); 5583 } 5584 } 5585 5586 static int compare_thresholds(const void *a, const void *b) 5587 { 5588 const struct mem_cgroup_threshold *_a = a; 5589 const struct mem_cgroup_threshold *_b = b; 5590 5591 return _a->threshold - _b->threshold; 5592 } 5593 5594 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5595 { 5596 struct mem_cgroup_eventfd_list *ev; 5597 5598 list_for_each_entry(ev, &memcg->oom_notify, list) 5599 eventfd_signal(ev->eventfd, 1); 5600 return 0; 5601 } 5602 5603 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5604 { 5605 struct mem_cgroup *iter; 5606 5607 for_each_mem_cgroup_tree(iter, memcg) 5608 mem_cgroup_oom_notify_cb(iter); 5609 } 5610 5611 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css, 5612 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5613 { 5614 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5615 struct mem_cgroup_thresholds *thresholds; 5616 struct mem_cgroup_threshold_ary *new; 5617 enum res_type type = MEMFILE_TYPE(cft->private); 5618 u64 threshold, usage; 5619 int i, size, ret; 5620 5621 ret = res_counter_memparse_write_strategy(args, &threshold); 5622 if (ret) 5623 return ret; 5624 5625 mutex_lock(&memcg->thresholds_lock); 5626 5627 if (type == _MEM) 5628 thresholds = &memcg->thresholds; 5629 else if (type == _MEMSWAP) 5630 thresholds = &memcg->memsw_thresholds; 5631 else 5632 BUG(); 5633 5634 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5635 5636 /* Check if a threshold crossed before adding a new one */ 5637 if (thresholds->primary) 5638 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5639 5640 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5641 5642 /* Allocate memory for new array of thresholds */ 5643 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5644 GFP_KERNEL); 5645 if (!new) { 5646 ret = -ENOMEM; 5647 goto unlock; 5648 } 5649 new->size = size; 5650 5651 /* Copy thresholds (if any) to new array */ 5652 if (thresholds->primary) { 5653 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5654 sizeof(struct mem_cgroup_threshold)); 5655 } 5656 5657 /* Add new threshold */ 5658 new->entries[size - 1].eventfd = eventfd; 5659 new->entries[size - 1].threshold = threshold; 5660 5661 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5662 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5663 compare_thresholds, NULL); 5664 5665 /* Find current threshold */ 5666 new->current_threshold = -1; 5667 for (i = 0; i < size; i++) { 5668 if (new->entries[i].threshold <= usage) { 5669 /* 5670 * new->current_threshold will not be used until 5671 * rcu_assign_pointer(), so it's safe to increment 5672 * it here. 5673 */ 5674 ++new->current_threshold; 5675 } else 5676 break; 5677 } 5678 5679 /* Free old spare buffer and save old primary buffer as spare */ 5680 kfree(thresholds->spare); 5681 thresholds->spare = thresholds->primary; 5682 5683 rcu_assign_pointer(thresholds->primary, new); 5684 5685 /* To be sure that nobody uses thresholds */ 5686 synchronize_rcu(); 5687 5688 unlock: 5689 mutex_unlock(&memcg->thresholds_lock); 5690 5691 return ret; 5692 } 5693 5694 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css, 5695 struct cftype *cft, struct eventfd_ctx *eventfd) 5696 { 5697 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5698 struct mem_cgroup_thresholds *thresholds; 5699 struct mem_cgroup_threshold_ary *new; 5700 enum res_type type = MEMFILE_TYPE(cft->private); 5701 u64 usage; 5702 int i, j, size; 5703 5704 mutex_lock(&memcg->thresholds_lock); 5705 if (type == _MEM) 5706 thresholds = &memcg->thresholds; 5707 else if (type == _MEMSWAP) 5708 thresholds = &memcg->memsw_thresholds; 5709 else 5710 BUG(); 5711 5712 if (!thresholds->primary) 5713 goto unlock; 5714 5715 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5716 5717 /* Check if a threshold crossed before removing */ 5718 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5719 5720 /* Calculate new number of threshold */ 5721 size = 0; 5722 for (i = 0; i < thresholds->primary->size; i++) { 5723 if (thresholds->primary->entries[i].eventfd != eventfd) 5724 size++; 5725 } 5726 5727 new = thresholds->spare; 5728 5729 /* Set thresholds array to NULL if we don't have thresholds */ 5730 if (!size) { 5731 kfree(new); 5732 new = NULL; 5733 goto swap_buffers; 5734 } 5735 5736 new->size = size; 5737 5738 /* Copy thresholds and find current threshold */ 5739 new->current_threshold = -1; 5740 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5741 if (thresholds->primary->entries[i].eventfd == eventfd) 5742 continue; 5743 5744 new->entries[j] = thresholds->primary->entries[i]; 5745 if (new->entries[j].threshold <= usage) { 5746 /* 5747 * new->current_threshold will not be used 5748 * until rcu_assign_pointer(), so it's safe to increment 5749 * it here. 5750 */ 5751 ++new->current_threshold; 5752 } 5753 j++; 5754 } 5755 5756 swap_buffers: 5757 /* Swap primary and spare array */ 5758 thresholds->spare = thresholds->primary; 5759 /* If all events are unregistered, free the spare array */ 5760 if (!new) { 5761 kfree(thresholds->spare); 5762 thresholds->spare = NULL; 5763 } 5764 5765 rcu_assign_pointer(thresholds->primary, new); 5766 5767 /* To be sure that nobody uses thresholds */ 5768 synchronize_rcu(); 5769 unlock: 5770 mutex_unlock(&memcg->thresholds_lock); 5771 } 5772 5773 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css, 5774 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5775 { 5776 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5777 struct mem_cgroup_eventfd_list *event; 5778 enum res_type type = MEMFILE_TYPE(cft->private); 5779 5780 BUG_ON(type != _OOM_TYPE); 5781 event = kmalloc(sizeof(*event), GFP_KERNEL); 5782 if (!event) 5783 return -ENOMEM; 5784 5785 spin_lock(&memcg_oom_lock); 5786 5787 event->eventfd = eventfd; 5788 list_add(&event->list, &memcg->oom_notify); 5789 5790 /* already in OOM ? */ 5791 if (atomic_read(&memcg->under_oom)) 5792 eventfd_signal(eventfd, 1); 5793 spin_unlock(&memcg_oom_lock); 5794 5795 return 0; 5796 } 5797 5798 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css, 5799 struct cftype *cft, struct eventfd_ctx *eventfd) 5800 { 5801 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5802 struct mem_cgroup_eventfd_list *ev, *tmp; 5803 enum res_type type = MEMFILE_TYPE(cft->private); 5804 5805 BUG_ON(type != _OOM_TYPE); 5806 5807 spin_lock(&memcg_oom_lock); 5808 5809 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5810 if (ev->eventfd == eventfd) { 5811 list_del(&ev->list); 5812 kfree(ev); 5813 } 5814 } 5815 5816 spin_unlock(&memcg_oom_lock); 5817 } 5818 5819 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css, 5820 struct cftype *cft, struct cgroup_map_cb *cb) 5821 { 5822 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5823 5824 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 5825 5826 if (atomic_read(&memcg->under_oom)) 5827 cb->fill(cb, "under_oom", 1); 5828 else 5829 cb->fill(cb, "under_oom", 0); 5830 return 0; 5831 } 5832 5833 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 5834 struct cftype *cft, u64 val) 5835 { 5836 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5837 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5838 5839 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5840 if (!parent || !((val == 0) || (val == 1))) 5841 return -EINVAL; 5842 5843 mutex_lock(&memcg_create_mutex); 5844 /* oom-kill-disable is a flag for subhierarchy. */ 5845 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5846 mutex_unlock(&memcg_create_mutex); 5847 return -EINVAL; 5848 } 5849 memcg->oom_kill_disable = val; 5850 if (!val) 5851 memcg_oom_recover(memcg); 5852 mutex_unlock(&memcg_create_mutex); 5853 return 0; 5854 } 5855 5856 #ifdef CONFIG_MEMCG_KMEM 5857 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5858 { 5859 int ret; 5860 5861 memcg->kmemcg_id = -1; 5862 ret = memcg_propagate_kmem(memcg); 5863 if (ret) 5864 return ret; 5865 5866 return mem_cgroup_sockets_init(memcg, ss); 5867 } 5868 5869 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5870 { 5871 mem_cgroup_sockets_destroy(memcg); 5872 } 5873 5874 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5875 { 5876 if (!memcg_kmem_is_active(memcg)) 5877 return; 5878 5879 /* 5880 * kmem charges can outlive the cgroup. In the case of slab 5881 * pages, for instance, a page contain objects from various 5882 * processes. As we prevent from taking a reference for every 5883 * such allocation we have to be careful when doing uncharge 5884 * (see memcg_uncharge_kmem) and here during offlining. 5885 * 5886 * The idea is that that only the _last_ uncharge which sees 5887 * the dead memcg will drop the last reference. An additional 5888 * reference is taken here before the group is marked dead 5889 * which is then paired with css_put during uncharge resp. here. 5890 * 5891 * Although this might sound strange as this path is called from 5892 * css_offline() when the referencemight have dropped down to 0 5893 * and shouldn't be incremented anymore (css_tryget would fail) 5894 * we do not have other options because of the kmem allocations 5895 * lifetime. 5896 */ 5897 css_get(&memcg->css); 5898 5899 memcg_kmem_mark_dead(memcg); 5900 5901 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5902 return; 5903 5904 if (memcg_kmem_test_and_clear_dead(memcg)) 5905 css_put(&memcg->css); 5906 } 5907 #else 5908 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5909 { 5910 return 0; 5911 } 5912 5913 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5914 { 5915 } 5916 5917 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5918 { 5919 } 5920 #endif 5921 5922 static struct cftype mem_cgroup_files[] = { 5923 { 5924 .name = "usage_in_bytes", 5925 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5926 .read = mem_cgroup_read, 5927 .register_event = mem_cgroup_usage_register_event, 5928 .unregister_event = mem_cgroup_usage_unregister_event, 5929 }, 5930 { 5931 .name = "max_usage_in_bytes", 5932 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5933 .trigger = mem_cgroup_reset, 5934 .read = mem_cgroup_read, 5935 }, 5936 { 5937 .name = "limit_in_bytes", 5938 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5939 .write_string = mem_cgroup_write, 5940 .read = mem_cgroup_read, 5941 }, 5942 { 5943 .name = "soft_limit_in_bytes", 5944 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5945 .write_string = mem_cgroup_write, 5946 .read = mem_cgroup_read, 5947 }, 5948 { 5949 .name = "failcnt", 5950 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5951 .trigger = mem_cgroup_reset, 5952 .read = mem_cgroup_read, 5953 }, 5954 { 5955 .name = "stat", 5956 .read_seq_string = memcg_stat_show, 5957 }, 5958 { 5959 .name = "force_empty", 5960 .trigger = mem_cgroup_force_empty_write, 5961 }, 5962 { 5963 .name = "use_hierarchy", 5964 .flags = CFTYPE_INSANE, 5965 .write_u64 = mem_cgroup_hierarchy_write, 5966 .read_u64 = mem_cgroup_hierarchy_read, 5967 }, 5968 { 5969 .name = "swappiness", 5970 .read_u64 = mem_cgroup_swappiness_read, 5971 .write_u64 = mem_cgroup_swappiness_write, 5972 }, 5973 { 5974 .name = "move_charge_at_immigrate", 5975 .read_u64 = mem_cgroup_move_charge_read, 5976 .write_u64 = mem_cgroup_move_charge_write, 5977 }, 5978 { 5979 .name = "oom_control", 5980 .read_map = mem_cgroup_oom_control_read, 5981 .write_u64 = mem_cgroup_oom_control_write, 5982 .register_event = mem_cgroup_oom_register_event, 5983 .unregister_event = mem_cgroup_oom_unregister_event, 5984 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5985 }, 5986 { 5987 .name = "pressure_level", 5988 .register_event = vmpressure_register_event, 5989 .unregister_event = vmpressure_unregister_event, 5990 }, 5991 #ifdef CONFIG_NUMA 5992 { 5993 .name = "numa_stat", 5994 .read_seq_string = memcg_numa_stat_show, 5995 }, 5996 #endif 5997 #ifdef CONFIG_MEMCG_KMEM 5998 { 5999 .name = "kmem.limit_in_bytes", 6000 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 6001 .write_string = mem_cgroup_write, 6002 .read = mem_cgroup_read, 6003 }, 6004 { 6005 .name = "kmem.usage_in_bytes", 6006 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 6007 .read = mem_cgroup_read, 6008 }, 6009 { 6010 .name = "kmem.failcnt", 6011 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 6012 .trigger = mem_cgroup_reset, 6013 .read = mem_cgroup_read, 6014 }, 6015 { 6016 .name = "kmem.max_usage_in_bytes", 6017 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 6018 .trigger = mem_cgroup_reset, 6019 .read = mem_cgroup_read, 6020 }, 6021 #ifdef CONFIG_SLABINFO 6022 { 6023 .name = "kmem.slabinfo", 6024 .read_seq_string = mem_cgroup_slabinfo_read, 6025 }, 6026 #endif 6027 #endif 6028 { }, /* terminate */ 6029 }; 6030 6031 #ifdef CONFIG_MEMCG_SWAP 6032 static struct cftype memsw_cgroup_files[] = { 6033 { 6034 .name = "memsw.usage_in_bytes", 6035 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6036 .read = mem_cgroup_read, 6037 .register_event = mem_cgroup_usage_register_event, 6038 .unregister_event = mem_cgroup_usage_unregister_event, 6039 }, 6040 { 6041 .name = "memsw.max_usage_in_bytes", 6042 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6043 .trigger = mem_cgroup_reset, 6044 .read = mem_cgroup_read, 6045 }, 6046 { 6047 .name = "memsw.limit_in_bytes", 6048 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6049 .write_string = mem_cgroup_write, 6050 .read = mem_cgroup_read, 6051 }, 6052 { 6053 .name = "memsw.failcnt", 6054 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6055 .trigger = mem_cgroup_reset, 6056 .read = mem_cgroup_read, 6057 }, 6058 { }, /* terminate */ 6059 }; 6060 #endif 6061 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6062 { 6063 struct mem_cgroup_per_node *pn; 6064 struct mem_cgroup_per_zone *mz; 6065 int zone, tmp = node; 6066 /* 6067 * This routine is called against possible nodes. 6068 * But it's BUG to call kmalloc() against offline node. 6069 * 6070 * TODO: this routine can waste much memory for nodes which will 6071 * never be onlined. It's better to use memory hotplug callback 6072 * function. 6073 */ 6074 if (!node_state(node, N_NORMAL_MEMORY)) 6075 tmp = -1; 6076 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 6077 if (!pn) 6078 return 1; 6079 6080 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6081 mz = &pn->zoneinfo[zone]; 6082 lruvec_init(&mz->lruvec); 6083 mz->usage_in_excess = 0; 6084 mz->on_tree = false; 6085 mz->memcg = memcg; 6086 } 6087 memcg->nodeinfo[node] = pn; 6088 return 0; 6089 } 6090 6091 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6092 { 6093 kfree(memcg->nodeinfo[node]); 6094 } 6095 6096 static struct mem_cgroup *mem_cgroup_alloc(void) 6097 { 6098 struct mem_cgroup *memcg; 6099 size_t size = memcg_size(); 6100 6101 /* Can be very big if nr_node_ids is very big */ 6102 if (size < PAGE_SIZE) 6103 memcg = kzalloc(size, GFP_KERNEL); 6104 else 6105 memcg = vzalloc(size); 6106 6107 if (!memcg) 6108 return NULL; 6109 6110 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 6111 if (!memcg->stat) 6112 goto out_free; 6113 spin_lock_init(&memcg->pcp_counter_lock); 6114 return memcg; 6115 6116 out_free: 6117 if (size < PAGE_SIZE) 6118 kfree(memcg); 6119 else 6120 vfree(memcg); 6121 return NULL; 6122 } 6123 6124 /* 6125 * At destroying mem_cgroup, references from swap_cgroup can remain. 6126 * (scanning all at force_empty is too costly...) 6127 * 6128 * Instead of clearing all references at force_empty, we remember 6129 * the number of reference from swap_cgroup and free mem_cgroup when 6130 * it goes down to 0. 6131 * 6132 * Removal of cgroup itself succeeds regardless of refs from swap. 6133 */ 6134 6135 static void __mem_cgroup_free(struct mem_cgroup *memcg) 6136 { 6137 int node; 6138 size_t size = memcg_size(); 6139 6140 mem_cgroup_remove_from_trees(memcg); 6141 free_css_id(&mem_cgroup_subsys, &memcg->css); 6142 6143 for_each_node(node) 6144 free_mem_cgroup_per_zone_info(memcg, node); 6145 6146 free_percpu(memcg->stat); 6147 6148 /* 6149 * We need to make sure that (at least for now), the jump label 6150 * destruction code runs outside of the cgroup lock. This is because 6151 * get_online_cpus(), which is called from the static_branch update, 6152 * can't be called inside the cgroup_lock. cpusets are the ones 6153 * enforcing this dependency, so if they ever change, we might as well. 6154 * 6155 * schedule_work() will guarantee this happens. Be careful if you need 6156 * to move this code around, and make sure it is outside 6157 * the cgroup_lock. 6158 */ 6159 disarm_static_keys(memcg); 6160 if (size < PAGE_SIZE) 6161 kfree(memcg); 6162 else 6163 vfree(memcg); 6164 } 6165 6166 /* 6167 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6168 */ 6169 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6170 { 6171 if (!memcg->res.parent) 6172 return NULL; 6173 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6174 } 6175 EXPORT_SYMBOL(parent_mem_cgroup); 6176 6177 static void __init mem_cgroup_soft_limit_tree_init(void) 6178 { 6179 struct mem_cgroup_tree_per_node *rtpn; 6180 struct mem_cgroup_tree_per_zone *rtpz; 6181 int tmp, node, zone; 6182 6183 for_each_node(node) { 6184 tmp = node; 6185 if (!node_state(node, N_NORMAL_MEMORY)) 6186 tmp = -1; 6187 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6188 BUG_ON(!rtpn); 6189 6190 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6191 6192 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6193 rtpz = &rtpn->rb_tree_per_zone[zone]; 6194 rtpz->rb_root = RB_ROOT; 6195 spin_lock_init(&rtpz->lock); 6196 } 6197 } 6198 } 6199 6200 static struct cgroup_subsys_state * __ref 6201 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6202 { 6203 struct mem_cgroup *memcg; 6204 long error = -ENOMEM; 6205 int node; 6206 6207 memcg = mem_cgroup_alloc(); 6208 if (!memcg) 6209 return ERR_PTR(error); 6210 6211 for_each_node(node) 6212 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6213 goto free_out; 6214 6215 /* root ? */ 6216 if (parent_css == NULL) { 6217 root_mem_cgroup = memcg; 6218 res_counter_init(&memcg->res, NULL); 6219 res_counter_init(&memcg->memsw, NULL); 6220 res_counter_init(&memcg->kmem, NULL); 6221 } 6222 6223 memcg->last_scanned_node = MAX_NUMNODES; 6224 INIT_LIST_HEAD(&memcg->oom_notify); 6225 memcg->move_charge_at_immigrate = 0; 6226 mutex_init(&memcg->thresholds_lock); 6227 spin_lock_init(&memcg->move_lock); 6228 vmpressure_init(&memcg->vmpressure); 6229 6230 return &memcg->css; 6231 6232 free_out: 6233 __mem_cgroup_free(memcg); 6234 return ERR_PTR(error); 6235 } 6236 6237 static int 6238 mem_cgroup_css_online(struct cgroup_subsys_state *css) 6239 { 6240 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6241 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css)); 6242 int error = 0; 6243 6244 if (!parent) 6245 return 0; 6246 6247 mutex_lock(&memcg_create_mutex); 6248 6249 memcg->use_hierarchy = parent->use_hierarchy; 6250 memcg->oom_kill_disable = parent->oom_kill_disable; 6251 memcg->swappiness = mem_cgroup_swappiness(parent); 6252 6253 if (parent->use_hierarchy) { 6254 res_counter_init(&memcg->res, &parent->res); 6255 res_counter_init(&memcg->memsw, &parent->memsw); 6256 res_counter_init(&memcg->kmem, &parent->kmem); 6257 6258 /* 6259 * No need to take a reference to the parent because cgroup 6260 * core guarantees its existence. 6261 */ 6262 } else { 6263 res_counter_init(&memcg->res, NULL); 6264 res_counter_init(&memcg->memsw, NULL); 6265 res_counter_init(&memcg->kmem, NULL); 6266 /* 6267 * Deeper hierachy with use_hierarchy == false doesn't make 6268 * much sense so let cgroup subsystem know about this 6269 * unfortunate state in our controller. 6270 */ 6271 if (parent != root_mem_cgroup) 6272 mem_cgroup_subsys.broken_hierarchy = true; 6273 } 6274 6275 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 6276 mutex_unlock(&memcg_create_mutex); 6277 return error; 6278 } 6279 6280 /* 6281 * Announce all parents that a group from their hierarchy is gone. 6282 */ 6283 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) 6284 { 6285 struct mem_cgroup *parent = memcg; 6286 6287 while ((parent = parent_mem_cgroup(parent))) 6288 mem_cgroup_iter_invalidate(parent); 6289 6290 /* 6291 * if the root memcg is not hierarchical we have to check it 6292 * explicitely. 6293 */ 6294 if (!root_mem_cgroup->use_hierarchy) 6295 mem_cgroup_iter_invalidate(root_mem_cgroup); 6296 } 6297 6298 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 6299 { 6300 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6301 6302 kmem_cgroup_css_offline(memcg); 6303 6304 mem_cgroup_invalidate_reclaim_iterators(memcg); 6305 mem_cgroup_reparent_charges(memcg); 6306 mem_cgroup_destroy_all_caches(memcg); 6307 vmpressure_cleanup(&memcg->vmpressure); 6308 } 6309 6310 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 6311 { 6312 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6313 6314 memcg_destroy_kmem(memcg); 6315 __mem_cgroup_free(memcg); 6316 } 6317 6318 #ifdef CONFIG_MMU 6319 /* Handlers for move charge at task migration. */ 6320 #define PRECHARGE_COUNT_AT_ONCE 256 6321 static int mem_cgroup_do_precharge(unsigned long count) 6322 { 6323 int ret = 0; 6324 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6325 struct mem_cgroup *memcg = mc.to; 6326 6327 if (mem_cgroup_is_root(memcg)) { 6328 mc.precharge += count; 6329 /* we don't need css_get for root */ 6330 return ret; 6331 } 6332 /* try to charge at once */ 6333 if (count > 1) { 6334 struct res_counter *dummy; 6335 /* 6336 * "memcg" cannot be under rmdir() because we've already checked 6337 * by cgroup_lock_live_cgroup() that it is not removed and we 6338 * are still under the same cgroup_mutex. So we can postpone 6339 * css_get(). 6340 */ 6341 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6342 goto one_by_one; 6343 if (do_swap_account && res_counter_charge(&memcg->memsw, 6344 PAGE_SIZE * count, &dummy)) { 6345 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6346 goto one_by_one; 6347 } 6348 mc.precharge += count; 6349 return ret; 6350 } 6351 one_by_one: 6352 /* fall back to one by one charge */ 6353 while (count--) { 6354 if (signal_pending(current)) { 6355 ret = -EINTR; 6356 break; 6357 } 6358 if (!batch_count--) { 6359 batch_count = PRECHARGE_COUNT_AT_ONCE; 6360 cond_resched(); 6361 } 6362 ret = __mem_cgroup_try_charge(NULL, 6363 GFP_KERNEL, 1, &memcg, false); 6364 if (ret) 6365 /* mem_cgroup_clear_mc() will do uncharge later */ 6366 return ret; 6367 mc.precharge++; 6368 } 6369 return ret; 6370 } 6371 6372 /** 6373 * get_mctgt_type - get target type of moving charge 6374 * @vma: the vma the pte to be checked belongs 6375 * @addr: the address corresponding to the pte to be checked 6376 * @ptent: the pte to be checked 6377 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6378 * 6379 * Returns 6380 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6381 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6382 * move charge. if @target is not NULL, the page is stored in target->page 6383 * with extra refcnt got(Callers should handle it). 6384 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6385 * target for charge migration. if @target is not NULL, the entry is stored 6386 * in target->ent. 6387 * 6388 * Called with pte lock held. 6389 */ 6390 union mc_target { 6391 struct page *page; 6392 swp_entry_t ent; 6393 }; 6394 6395 enum mc_target_type { 6396 MC_TARGET_NONE = 0, 6397 MC_TARGET_PAGE, 6398 MC_TARGET_SWAP, 6399 }; 6400 6401 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6402 unsigned long addr, pte_t ptent) 6403 { 6404 struct page *page = vm_normal_page(vma, addr, ptent); 6405 6406 if (!page || !page_mapped(page)) 6407 return NULL; 6408 if (PageAnon(page)) { 6409 /* we don't move shared anon */ 6410 if (!move_anon()) 6411 return NULL; 6412 } else if (!move_file()) 6413 /* we ignore mapcount for file pages */ 6414 return NULL; 6415 if (!get_page_unless_zero(page)) 6416 return NULL; 6417 6418 return page; 6419 } 6420 6421 #ifdef CONFIG_SWAP 6422 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6423 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6424 { 6425 struct page *page = NULL; 6426 swp_entry_t ent = pte_to_swp_entry(ptent); 6427 6428 if (!move_anon() || non_swap_entry(ent)) 6429 return NULL; 6430 /* 6431 * Because lookup_swap_cache() updates some statistics counter, 6432 * we call find_get_page() with swapper_space directly. 6433 */ 6434 page = find_get_page(swap_address_space(ent), ent.val); 6435 if (do_swap_account) 6436 entry->val = ent.val; 6437 6438 return page; 6439 } 6440 #else 6441 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6442 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6443 { 6444 return NULL; 6445 } 6446 #endif 6447 6448 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6449 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6450 { 6451 struct page *page = NULL; 6452 struct address_space *mapping; 6453 pgoff_t pgoff; 6454 6455 if (!vma->vm_file) /* anonymous vma */ 6456 return NULL; 6457 if (!move_file()) 6458 return NULL; 6459 6460 mapping = vma->vm_file->f_mapping; 6461 if (pte_none(ptent)) 6462 pgoff = linear_page_index(vma, addr); 6463 else /* pte_file(ptent) is true */ 6464 pgoff = pte_to_pgoff(ptent); 6465 6466 /* page is moved even if it's not RSS of this task(page-faulted). */ 6467 page = find_get_page(mapping, pgoff); 6468 6469 #ifdef CONFIG_SWAP 6470 /* shmem/tmpfs may report page out on swap: account for that too. */ 6471 if (radix_tree_exceptional_entry(page)) { 6472 swp_entry_t swap = radix_to_swp_entry(page); 6473 if (do_swap_account) 6474 *entry = swap; 6475 page = find_get_page(swap_address_space(swap), swap.val); 6476 } 6477 #endif 6478 return page; 6479 } 6480 6481 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6482 unsigned long addr, pte_t ptent, union mc_target *target) 6483 { 6484 struct page *page = NULL; 6485 struct page_cgroup *pc; 6486 enum mc_target_type ret = MC_TARGET_NONE; 6487 swp_entry_t ent = { .val = 0 }; 6488 6489 if (pte_present(ptent)) 6490 page = mc_handle_present_pte(vma, addr, ptent); 6491 else if (is_swap_pte(ptent)) 6492 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6493 else if (pte_none(ptent) || pte_file(ptent)) 6494 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6495 6496 if (!page && !ent.val) 6497 return ret; 6498 if (page) { 6499 pc = lookup_page_cgroup(page); 6500 /* 6501 * Do only loose check w/o page_cgroup lock. 6502 * mem_cgroup_move_account() checks the pc is valid or not under 6503 * the lock. 6504 */ 6505 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6506 ret = MC_TARGET_PAGE; 6507 if (target) 6508 target->page = page; 6509 } 6510 if (!ret || !target) 6511 put_page(page); 6512 } 6513 /* There is a swap entry and a page doesn't exist or isn't charged */ 6514 if (ent.val && !ret && 6515 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 6516 ret = MC_TARGET_SWAP; 6517 if (target) 6518 target->ent = ent; 6519 } 6520 return ret; 6521 } 6522 6523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6524 /* 6525 * We don't consider swapping or file mapped pages because THP does not 6526 * support them for now. 6527 * Caller should make sure that pmd_trans_huge(pmd) is true. 6528 */ 6529 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6530 unsigned long addr, pmd_t pmd, union mc_target *target) 6531 { 6532 struct page *page = NULL; 6533 struct page_cgroup *pc; 6534 enum mc_target_type ret = MC_TARGET_NONE; 6535 6536 page = pmd_page(pmd); 6537 VM_BUG_ON(!page || !PageHead(page)); 6538 if (!move_anon()) 6539 return ret; 6540 pc = lookup_page_cgroup(page); 6541 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6542 ret = MC_TARGET_PAGE; 6543 if (target) { 6544 get_page(page); 6545 target->page = page; 6546 } 6547 } 6548 return ret; 6549 } 6550 #else 6551 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6552 unsigned long addr, pmd_t pmd, union mc_target *target) 6553 { 6554 return MC_TARGET_NONE; 6555 } 6556 #endif 6557 6558 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6559 unsigned long addr, unsigned long end, 6560 struct mm_walk *walk) 6561 { 6562 struct vm_area_struct *vma = walk->private; 6563 pte_t *pte; 6564 spinlock_t *ptl; 6565 6566 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6567 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6568 mc.precharge += HPAGE_PMD_NR; 6569 spin_unlock(&vma->vm_mm->page_table_lock); 6570 return 0; 6571 } 6572 6573 if (pmd_trans_unstable(pmd)) 6574 return 0; 6575 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6576 for (; addr != end; pte++, addr += PAGE_SIZE) 6577 if (get_mctgt_type(vma, addr, *pte, NULL)) 6578 mc.precharge++; /* increment precharge temporarily */ 6579 pte_unmap_unlock(pte - 1, ptl); 6580 cond_resched(); 6581 6582 return 0; 6583 } 6584 6585 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6586 { 6587 unsigned long precharge; 6588 struct vm_area_struct *vma; 6589 6590 down_read(&mm->mmap_sem); 6591 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6592 struct mm_walk mem_cgroup_count_precharge_walk = { 6593 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6594 .mm = mm, 6595 .private = vma, 6596 }; 6597 if (is_vm_hugetlb_page(vma)) 6598 continue; 6599 walk_page_range(vma->vm_start, vma->vm_end, 6600 &mem_cgroup_count_precharge_walk); 6601 } 6602 up_read(&mm->mmap_sem); 6603 6604 precharge = mc.precharge; 6605 mc.precharge = 0; 6606 6607 return precharge; 6608 } 6609 6610 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6611 { 6612 unsigned long precharge = mem_cgroup_count_precharge(mm); 6613 6614 VM_BUG_ON(mc.moving_task); 6615 mc.moving_task = current; 6616 return mem_cgroup_do_precharge(precharge); 6617 } 6618 6619 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6620 static void __mem_cgroup_clear_mc(void) 6621 { 6622 struct mem_cgroup *from = mc.from; 6623 struct mem_cgroup *to = mc.to; 6624 int i; 6625 6626 /* we must uncharge all the leftover precharges from mc.to */ 6627 if (mc.precharge) { 6628 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6629 mc.precharge = 0; 6630 } 6631 /* 6632 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6633 * we must uncharge here. 6634 */ 6635 if (mc.moved_charge) { 6636 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6637 mc.moved_charge = 0; 6638 } 6639 /* we must fixup refcnts and charges */ 6640 if (mc.moved_swap) { 6641 /* uncharge swap account from the old cgroup */ 6642 if (!mem_cgroup_is_root(mc.from)) 6643 res_counter_uncharge(&mc.from->memsw, 6644 PAGE_SIZE * mc.moved_swap); 6645 6646 for (i = 0; i < mc.moved_swap; i++) 6647 css_put(&mc.from->css); 6648 6649 if (!mem_cgroup_is_root(mc.to)) { 6650 /* 6651 * we charged both to->res and to->memsw, so we should 6652 * uncharge to->res. 6653 */ 6654 res_counter_uncharge(&mc.to->res, 6655 PAGE_SIZE * mc.moved_swap); 6656 } 6657 /* we've already done css_get(mc.to) */ 6658 mc.moved_swap = 0; 6659 } 6660 memcg_oom_recover(from); 6661 memcg_oom_recover(to); 6662 wake_up_all(&mc.waitq); 6663 } 6664 6665 static void mem_cgroup_clear_mc(void) 6666 { 6667 struct mem_cgroup *from = mc.from; 6668 6669 /* 6670 * we must clear moving_task before waking up waiters at the end of 6671 * task migration. 6672 */ 6673 mc.moving_task = NULL; 6674 __mem_cgroup_clear_mc(); 6675 spin_lock(&mc.lock); 6676 mc.from = NULL; 6677 mc.to = NULL; 6678 spin_unlock(&mc.lock); 6679 mem_cgroup_end_move(from); 6680 } 6681 6682 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6683 struct cgroup_taskset *tset) 6684 { 6685 struct task_struct *p = cgroup_taskset_first(tset); 6686 int ret = 0; 6687 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6688 unsigned long move_charge_at_immigrate; 6689 6690 /* 6691 * We are now commited to this value whatever it is. Changes in this 6692 * tunable will only affect upcoming migrations, not the current one. 6693 * So we need to save it, and keep it going. 6694 */ 6695 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 6696 if (move_charge_at_immigrate) { 6697 struct mm_struct *mm; 6698 struct mem_cgroup *from = mem_cgroup_from_task(p); 6699 6700 VM_BUG_ON(from == memcg); 6701 6702 mm = get_task_mm(p); 6703 if (!mm) 6704 return 0; 6705 /* We move charges only when we move a owner of the mm */ 6706 if (mm->owner == p) { 6707 VM_BUG_ON(mc.from); 6708 VM_BUG_ON(mc.to); 6709 VM_BUG_ON(mc.precharge); 6710 VM_BUG_ON(mc.moved_charge); 6711 VM_BUG_ON(mc.moved_swap); 6712 mem_cgroup_start_move(from); 6713 spin_lock(&mc.lock); 6714 mc.from = from; 6715 mc.to = memcg; 6716 mc.immigrate_flags = move_charge_at_immigrate; 6717 spin_unlock(&mc.lock); 6718 /* We set mc.moving_task later */ 6719 6720 ret = mem_cgroup_precharge_mc(mm); 6721 if (ret) 6722 mem_cgroup_clear_mc(); 6723 } 6724 mmput(mm); 6725 } 6726 return ret; 6727 } 6728 6729 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6730 struct cgroup_taskset *tset) 6731 { 6732 mem_cgroup_clear_mc(); 6733 } 6734 6735 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6736 unsigned long addr, unsigned long end, 6737 struct mm_walk *walk) 6738 { 6739 int ret = 0; 6740 struct vm_area_struct *vma = walk->private; 6741 pte_t *pte; 6742 spinlock_t *ptl; 6743 enum mc_target_type target_type; 6744 union mc_target target; 6745 struct page *page; 6746 struct page_cgroup *pc; 6747 6748 /* 6749 * We don't take compound_lock() here but no race with splitting thp 6750 * happens because: 6751 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6752 * under splitting, which means there's no concurrent thp split, 6753 * - if another thread runs into split_huge_page() just after we 6754 * entered this if-block, the thread must wait for page table lock 6755 * to be unlocked in __split_huge_page_splitting(), where the main 6756 * part of thp split is not executed yet. 6757 */ 6758 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6759 if (mc.precharge < HPAGE_PMD_NR) { 6760 spin_unlock(&vma->vm_mm->page_table_lock); 6761 return 0; 6762 } 6763 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6764 if (target_type == MC_TARGET_PAGE) { 6765 page = target.page; 6766 if (!isolate_lru_page(page)) { 6767 pc = lookup_page_cgroup(page); 6768 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6769 pc, mc.from, mc.to)) { 6770 mc.precharge -= HPAGE_PMD_NR; 6771 mc.moved_charge += HPAGE_PMD_NR; 6772 } 6773 putback_lru_page(page); 6774 } 6775 put_page(page); 6776 } 6777 spin_unlock(&vma->vm_mm->page_table_lock); 6778 return 0; 6779 } 6780 6781 if (pmd_trans_unstable(pmd)) 6782 return 0; 6783 retry: 6784 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6785 for (; addr != end; addr += PAGE_SIZE) { 6786 pte_t ptent = *(pte++); 6787 swp_entry_t ent; 6788 6789 if (!mc.precharge) 6790 break; 6791 6792 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6793 case MC_TARGET_PAGE: 6794 page = target.page; 6795 if (isolate_lru_page(page)) 6796 goto put; 6797 pc = lookup_page_cgroup(page); 6798 if (!mem_cgroup_move_account(page, 1, pc, 6799 mc.from, mc.to)) { 6800 mc.precharge--; 6801 /* we uncharge from mc.from later. */ 6802 mc.moved_charge++; 6803 } 6804 putback_lru_page(page); 6805 put: /* get_mctgt_type() gets the page */ 6806 put_page(page); 6807 break; 6808 case MC_TARGET_SWAP: 6809 ent = target.ent; 6810 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6811 mc.precharge--; 6812 /* we fixup refcnts and charges later. */ 6813 mc.moved_swap++; 6814 } 6815 break; 6816 default: 6817 break; 6818 } 6819 } 6820 pte_unmap_unlock(pte - 1, ptl); 6821 cond_resched(); 6822 6823 if (addr != end) { 6824 /* 6825 * We have consumed all precharges we got in can_attach(). 6826 * We try charge one by one, but don't do any additional 6827 * charges to mc.to if we have failed in charge once in attach() 6828 * phase. 6829 */ 6830 ret = mem_cgroup_do_precharge(1); 6831 if (!ret) 6832 goto retry; 6833 } 6834 6835 return ret; 6836 } 6837 6838 static void mem_cgroup_move_charge(struct mm_struct *mm) 6839 { 6840 struct vm_area_struct *vma; 6841 6842 lru_add_drain_all(); 6843 retry: 6844 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6845 /* 6846 * Someone who are holding the mmap_sem might be waiting in 6847 * waitq. So we cancel all extra charges, wake up all waiters, 6848 * and retry. Because we cancel precharges, we might not be able 6849 * to move enough charges, but moving charge is a best-effort 6850 * feature anyway, so it wouldn't be a big problem. 6851 */ 6852 __mem_cgroup_clear_mc(); 6853 cond_resched(); 6854 goto retry; 6855 } 6856 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6857 int ret; 6858 struct mm_walk mem_cgroup_move_charge_walk = { 6859 .pmd_entry = mem_cgroup_move_charge_pte_range, 6860 .mm = mm, 6861 .private = vma, 6862 }; 6863 if (is_vm_hugetlb_page(vma)) 6864 continue; 6865 ret = walk_page_range(vma->vm_start, vma->vm_end, 6866 &mem_cgroup_move_charge_walk); 6867 if (ret) 6868 /* 6869 * means we have consumed all precharges and failed in 6870 * doing additional charge. Just abandon here. 6871 */ 6872 break; 6873 } 6874 up_read(&mm->mmap_sem); 6875 } 6876 6877 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6878 struct cgroup_taskset *tset) 6879 { 6880 struct task_struct *p = cgroup_taskset_first(tset); 6881 struct mm_struct *mm = get_task_mm(p); 6882 6883 if (mm) { 6884 if (mc.to) 6885 mem_cgroup_move_charge(mm); 6886 mmput(mm); 6887 } 6888 if (mc.to) 6889 mem_cgroup_clear_mc(); 6890 } 6891 #else /* !CONFIG_MMU */ 6892 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6893 struct cgroup_taskset *tset) 6894 { 6895 return 0; 6896 } 6897 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6898 struct cgroup_taskset *tset) 6899 { 6900 } 6901 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6902 struct cgroup_taskset *tset) 6903 { 6904 } 6905 #endif 6906 6907 /* 6908 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6909 * to verify sane_behavior flag on each mount attempt. 6910 */ 6911 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 6912 { 6913 /* 6914 * use_hierarchy is forced with sane_behavior. cgroup core 6915 * guarantees that @root doesn't have any children, so turning it 6916 * on for the root memcg is enough. 6917 */ 6918 if (cgroup_sane_behavior(root_css->cgroup)) 6919 mem_cgroup_from_css(root_css)->use_hierarchy = true; 6920 } 6921 6922 struct cgroup_subsys mem_cgroup_subsys = { 6923 .name = "memory", 6924 .subsys_id = mem_cgroup_subsys_id, 6925 .css_alloc = mem_cgroup_css_alloc, 6926 .css_online = mem_cgroup_css_online, 6927 .css_offline = mem_cgroup_css_offline, 6928 .css_free = mem_cgroup_css_free, 6929 .can_attach = mem_cgroup_can_attach, 6930 .cancel_attach = mem_cgroup_cancel_attach, 6931 .attach = mem_cgroup_move_task, 6932 .bind = mem_cgroup_bind, 6933 .base_cftypes = mem_cgroup_files, 6934 .early_init = 0, 6935 .use_id = 1, 6936 }; 6937 6938 #ifdef CONFIG_MEMCG_SWAP 6939 static int __init enable_swap_account(char *s) 6940 { 6941 if (!strcmp(s, "1")) 6942 really_do_swap_account = 1; 6943 else if (!strcmp(s, "0")) 6944 really_do_swap_account = 0; 6945 return 1; 6946 } 6947 __setup("swapaccount=", enable_swap_account); 6948 6949 static void __init memsw_file_init(void) 6950 { 6951 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); 6952 } 6953 6954 static void __init enable_swap_cgroup(void) 6955 { 6956 if (!mem_cgroup_disabled() && really_do_swap_account) { 6957 do_swap_account = 1; 6958 memsw_file_init(); 6959 } 6960 } 6961 6962 #else 6963 static void __init enable_swap_cgroup(void) 6964 { 6965 } 6966 #endif 6967 6968 /* 6969 * subsys_initcall() for memory controller. 6970 * 6971 * Some parts like hotcpu_notifier() have to be initialized from this context 6972 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 6973 * everything that doesn't depend on a specific mem_cgroup structure should 6974 * be initialized from here. 6975 */ 6976 static int __init mem_cgroup_init(void) 6977 { 6978 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 6979 enable_swap_cgroup(); 6980 mem_cgroup_soft_limit_tree_init(); 6981 memcg_stock_init(); 6982 return 0; 6983 } 6984 subsys_initcall(mem_cgroup_init); 6985