xref: /linux/mm/memcontrol.c (revision 4d7696f1b05f4aeb586c74868fe3da2731daca4b)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61 
62 #include <asm/uaccess.h>
63 
64 #include <trace/events/vmscan.h>
65 
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68 
69 #define MEM_CGROUP_RECLAIM_RETRIES	5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75 
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82 
83 #else
84 #define do_swap_account		0
85 #endif
86 
87 
88 /*
89  * Statistics for memory cgroup.
90  */
91 enum mem_cgroup_stat_index {
92 	/*
93 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 	 */
95 	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
96 	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
97 	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
98 	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
99 	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 	MEM_CGROUP_STAT_NSTATS,
101 };
102 
103 static const char * const mem_cgroup_stat_names[] = {
104 	"cache",
105 	"rss",
106 	"rss_huge",
107 	"mapped_file",
108 	"swap",
109 };
110 
111 enum mem_cgroup_events_index {
112 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
113 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
115 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 	MEM_CGROUP_EVENTS_NSTATS,
117 };
118 
119 static const char * const mem_cgroup_events_names[] = {
120 	"pgpgin",
121 	"pgpgout",
122 	"pgfault",
123 	"pgmajfault",
124 };
125 
126 static const char * const mem_cgroup_lru_names[] = {
127 	"inactive_anon",
128 	"active_anon",
129 	"inactive_file",
130 	"active_file",
131 	"unevictable",
132 };
133 
134 /*
135  * Per memcg event counter is incremented at every pagein/pageout. With THP,
136  * it will be incremated by the number of pages. This counter is used for
137  * for trigger some periodic events. This is straightforward and better
138  * than using jiffies etc. to handle periodic memcg event.
139  */
140 enum mem_cgroup_events_target {
141 	MEM_CGROUP_TARGET_THRESH,
142 	MEM_CGROUP_TARGET_SOFTLIMIT,
143 	MEM_CGROUP_TARGET_NUMAINFO,
144 	MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET	1024
149 
150 struct mem_cgroup_stat_cpu {
151 	long count[MEM_CGROUP_STAT_NSTATS];
152 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 	unsigned long nr_page_events;
154 	unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156 
157 struct mem_cgroup_reclaim_iter {
158 	/*
159 	 * last scanned hierarchy member. Valid only if last_dead_count
160 	 * matches memcg->dead_count of the hierarchy root group.
161 	 */
162 	struct mem_cgroup *last_visited;
163 	unsigned long last_dead_count;
164 
165 	/* scan generation, increased every round-trip */
166 	unsigned int generation;
167 };
168 
169 /*
170  * per-zone information in memory controller.
171  */
172 struct mem_cgroup_per_zone {
173 	struct lruvec		lruvec;
174 	unsigned long		lru_size[NR_LRU_LISTS];
175 
176 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177 
178 	struct rb_node		tree_node;	/* RB tree node */
179 	unsigned long long	usage_in_excess;/* Set to the value by which */
180 						/* the soft limit is exceeded*/
181 	bool			on_tree;
182 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183 						/* use container_of	   */
184 };
185 
186 struct mem_cgroup_per_node {
187 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189 
190 /*
191  * Cgroups above their limits are maintained in a RB-Tree, independent of
192  * their hierarchy representation
193  */
194 
195 struct mem_cgroup_tree_per_zone {
196 	struct rb_root rb_root;
197 	spinlock_t lock;
198 };
199 
200 struct mem_cgroup_tree_per_node {
201 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202 };
203 
204 struct mem_cgroup_tree {
205 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206 };
207 
208 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209 
210 struct mem_cgroup_threshold {
211 	struct eventfd_ctx *eventfd;
212 	u64 threshold;
213 };
214 
215 /* For threshold */
216 struct mem_cgroup_threshold_ary {
217 	/* An array index points to threshold just below or equal to usage. */
218 	int current_threshold;
219 	/* Size of entries[] */
220 	unsigned int size;
221 	/* Array of thresholds */
222 	struct mem_cgroup_threshold entries[0];
223 };
224 
225 struct mem_cgroup_thresholds {
226 	/* Primary thresholds array */
227 	struct mem_cgroup_threshold_ary *primary;
228 	/*
229 	 * Spare threshold array.
230 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 	 * It must be able to store at least primary->size - 1 entries.
232 	 */
233 	struct mem_cgroup_threshold_ary *spare;
234 };
235 
236 /* for OOM */
237 struct mem_cgroup_eventfd_list {
238 	struct list_head list;
239 	struct eventfd_ctx *eventfd;
240 };
241 
242 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244 
245 /*
246  * The memory controller data structure. The memory controller controls both
247  * page cache and RSS per cgroup. We would eventually like to provide
248  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249  * to help the administrator determine what knobs to tune.
250  *
251  * TODO: Add a water mark for the memory controller. Reclaim will begin when
252  * we hit the water mark. May be even add a low water mark, such that
253  * no reclaim occurs from a cgroup at it's low water mark, this is
254  * a feature that will be implemented much later in the future.
255  */
256 struct mem_cgroup {
257 	struct cgroup_subsys_state css;
258 	/*
259 	 * the counter to account for memory usage
260 	 */
261 	struct res_counter res;
262 
263 	/* vmpressure notifications */
264 	struct vmpressure vmpressure;
265 
266 	/*
267 	 * the counter to account for mem+swap usage.
268 	 */
269 	struct res_counter memsw;
270 
271 	/*
272 	 * the counter to account for kernel memory usage.
273 	 */
274 	struct res_counter kmem;
275 	/*
276 	 * Should the accounting and control be hierarchical, per subtree?
277 	 */
278 	bool use_hierarchy;
279 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
280 
281 	bool		oom_lock;
282 	atomic_t	under_oom;
283 
284 	int	swappiness;
285 	/* OOM-Killer disable */
286 	int		oom_kill_disable;
287 
288 	/* set when res.limit == memsw.limit */
289 	bool		memsw_is_minimum;
290 
291 	/* protect arrays of thresholds */
292 	struct mutex thresholds_lock;
293 
294 	/* thresholds for memory usage. RCU-protected */
295 	struct mem_cgroup_thresholds thresholds;
296 
297 	/* thresholds for mem+swap usage. RCU-protected */
298 	struct mem_cgroup_thresholds memsw_thresholds;
299 
300 	/* For oom notifier event fd */
301 	struct list_head oom_notify;
302 
303 	/*
304 	 * Should we move charges of a task when a task is moved into this
305 	 * mem_cgroup ? And what type of charges should we move ?
306 	 */
307 	unsigned long 	move_charge_at_immigrate;
308 	/*
309 	 * set > 0 if pages under this cgroup are moving to other cgroup.
310 	 */
311 	atomic_t	moving_account;
312 	/* taken only while moving_account > 0 */
313 	spinlock_t	move_lock;
314 	/*
315 	 * percpu counter.
316 	 */
317 	struct mem_cgroup_stat_cpu __percpu *stat;
318 	/*
319 	 * used when a cpu is offlined or other synchronizations
320 	 * See mem_cgroup_read_stat().
321 	 */
322 	struct mem_cgroup_stat_cpu nocpu_base;
323 	spinlock_t pcp_counter_lock;
324 
325 	atomic_t	dead_count;
326 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
327 	struct tcp_memcontrol tcp_mem;
328 #endif
329 #if defined(CONFIG_MEMCG_KMEM)
330 	/* analogous to slab_common's slab_caches list. per-memcg */
331 	struct list_head memcg_slab_caches;
332 	/* Not a spinlock, we can take a lot of time walking the list */
333 	struct mutex slab_caches_mutex;
334         /* Index in the kmem_cache->memcg_params->memcg_caches array */
335 	int kmemcg_id;
336 #endif
337 
338 	int last_scanned_node;
339 #if MAX_NUMNODES > 1
340 	nodemask_t	scan_nodes;
341 	atomic_t	numainfo_events;
342 	atomic_t	numainfo_updating;
343 #endif
344 
345 	struct mem_cgroup_per_node *nodeinfo[0];
346 	/* WARNING: nodeinfo must be the last member here */
347 };
348 
349 static size_t memcg_size(void)
350 {
351 	return sizeof(struct mem_cgroup) +
352 		nr_node_ids * sizeof(struct mem_cgroup_per_node);
353 }
354 
355 /* internal only representation about the status of kmem accounting. */
356 enum {
357 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
360 };
361 
362 /* We account when limit is on, but only after call sites are patched */
363 #define KMEM_ACCOUNTED_MASK \
364 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365 
366 #ifdef CONFIG_MEMCG_KMEM
367 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
368 {
369 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
370 }
371 
372 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
373 {
374 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
375 }
376 
377 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
378 {
379 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
380 }
381 
382 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
383 {
384 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
385 }
386 
387 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
388 {
389 	/*
390 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
391 	 * will call css_put() if it sees the memcg is dead.
392 	 */
393 	smp_wmb();
394 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
395 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
396 }
397 
398 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
399 {
400 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
401 				  &memcg->kmem_account_flags);
402 }
403 #endif
404 
405 /* Stuffs for move charges at task migration. */
406 /*
407  * Types of charges to be moved. "move_charge_at_immitgrate" and
408  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
409  */
410 enum move_type {
411 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
412 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
413 	NR_MOVE_TYPE,
414 };
415 
416 /* "mc" and its members are protected by cgroup_mutex */
417 static struct move_charge_struct {
418 	spinlock_t	  lock; /* for from, to */
419 	struct mem_cgroup *from;
420 	struct mem_cgroup *to;
421 	unsigned long immigrate_flags;
422 	unsigned long precharge;
423 	unsigned long moved_charge;
424 	unsigned long moved_swap;
425 	struct task_struct *moving_task;	/* a task moving charges */
426 	wait_queue_head_t waitq;		/* a waitq for other context */
427 } mc = {
428 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
430 };
431 
432 static bool move_anon(void)
433 {
434 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
435 }
436 
437 static bool move_file(void)
438 {
439 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
440 }
441 
442 /*
443  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
444  * limit reclaim to prevent infinite loops, if they ever occur.
445  */
446 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
447 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
448 
449 enum charge_type {
450 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451 	MEM_CGROUP_CHARGE_TYPE_ANON,
452 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
453 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
454 	NR_CHARGE_TYPE,
455 };
456 
457 /* for encoding cft->private value on file */
458 enum res_type {
459 	_MEM,
460 	_MEMSWAP,
461 	_OOM_TYPE,
462 	_KMEM,
463 };
464 
465 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
466 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
467 #define MEMFILE_ATTR(val)	((val) & 0xffff)
468 /* Used for OOM nofiier */
469 #define OOM_CONTROL		(0)
470 
471 /*
472  * Reclaim flags for mem_cgroup_hierarchical_reclaim
473  */
474 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
475 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
476 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
477 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
478 
479 /*
480  * The memcg_create_mutex will be held whenever a new cgroup is created.
481  * As a consequence, any change that needs to protect against new child cgroups
482  * appearing has to hold it as well.
483  */
484 static DEFINE_MUTEX(memcg_create_mutex);
485 
486 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
487 {
488 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
489 }
490 
491 /* Some nice accessors for the vmpressure. */
492 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
493 {
494 	if (!memcg)
495 		memcg = root_mem_cgroup;
496 	return &memcg->vmpressure;
497 }
498 
499 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
500 {
501 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
502 }
503 
504 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
505 {
506 	return &mem_cgroup_from_css(css)->vmpressure;
507 }
508 
509 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
510 {
511 	return (memcg == root_mem_cgroup);
512 }
513 
514 /* Writing them here to avoid exposing memcg's inner layout */
515 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
516 
517 void sock_update_memcg(struct sock *sk)
518 {
519 	if (mem_cgroup_sockets_enabled) {
520 		struct mem_cgroup *memcg;
521 		struct cg_proto *cg_proto;
522 
523 		BUG_ON(!sk->sk_prot->proto_cgroup);
524 
525 		/* Socket cloning can throw us here with sk_cgrp already
526 		 * filled. It won't however, necessarily happen from
527 		 * process context. So the test for root memcg given
528 		 * the current task's memcg won't help us in this case.
529 		 *
530 		 * Respecting the original socket's memcg is a better
531 		 * decision in this case.
532 		 */
533 		if (sk->sk_cgrp) {
534 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
535 			css_get(&sk->sk_cgrp->memcg->css);
536 			return;
537 		}
538 
539 		rcu_read_lock();
540 		memcg = mem_cgroup_from_task(current);
541 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
542 		if (!mem_cgroup_is_root(memcg) &&
543 		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
544 			sk->sk_cgrp = cg_proto;
545 		}
546 		rcu_read_unlock();
547 	}
548 }
549 EXPORT_SYMBOL(sock_update_memcg);
550 
551 void sock_release_memcg(struct sock *sk)
552 {
553 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
554 		struct mem_cgroup *memcg;
555 		WARN_ON(!sk->sk_cgrp->memcg);
556 		memcg = sk->sk_cgrp->memcg;
557 		css_put(&sk->sk_cgrp->memcg->css);
558 	}
559 }
560 
561 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
562 {
563 	if (!memcg || mem_cgroup_is_root(memcg))
564 		return NULL;
565 
566 	return &memcg->tcp_mem.cg_proto;
567 }
568 EXPORT_SYMBOL(tcp_proto_cgroup);
569 
570 static void disarm_sock_keys(struct mem_cgroup *memcg)
571 {
572 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
573 		return;
574 	static_key_slow_dec(&memcg_socket_limit_enabled);
575 }
576 #else
577 static void disarm_sock_keys(struct mem_cgroup *memcg)
578 {
579 }
580 #endif
581 
582 #ifdef CONFIG_MEMCG_KMEM
583 /*
584  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
585  * There are two main reasons for not using the css_id for this:
586  *  1) this works better in sparse environments, where we have a lot of memcgs,
587  *     but only a few kmem-limited. Or also, if we have, for instance, 200
588  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
589  *     200 entry array for that.
590  *
591  *  2) In order not to violate the cgroup API, we would like to do all memory
592  *     allocation in ->create(). At that point, we haven't yet allocated the
593  *     css_id. Having a separate index prevents us from messing with the cgroup
594  *     core for this
595  *
596  * The current size of the caches array is stored in
597  * memcg_limited_groups_array_size.  It will double each time we have to
598  * increase it.
599  */
600 static DEFINE_IDA(kmem_limited_groups);
601 int memcg_limited_groups_array_size;
602 
603 /*
604  * MIN_SIZE is different than 1, because we would like to avoid going through
605  * the alloc/free process all the time. In a small machine, 4 kmem-limited
606  * cgroups is a reasonable guess. In the future, it could be a parameter or
607  * tunable, but that is strictly not necessary.
608  *
609  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
610  * this constant directly from cgroup, but it is understandable that this is
611  * better kept as an internal representation in cgroup.c. In any case, the
612  * css_id space is not getting any smaller, and we don't have to necessarily
613  * increase ours as well if it increases.
614  */
615 #define MEMCG_CACHES_MIN_SIZE 4
616 #define MEMCG_CACHES_MAX_SIZE 65535
617 
618 /*
619  * A lot of the calls to the cache allocation functions are expected to be
620  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
621  * conditional to this static branch, we'll have to allow modules that does
622  * kmem_cache_alloc and the such to see this symbol as well
623  */
624 struct static_key memcg_kmem_enabled_key;
625 EXPORT_SYMBOL(memcg_kmem_enabled_key);
626 
627 static void disarm_kmem_keys(struct mem_cgroup *memcg)
628 {
629 	if (memcg_kmem_is_active(memcg)) {
630 		static_key_slow_dec(&memcg_kmem_enabled_key);
631 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
632 	}
633 	/*
634 	 * This check can't live in kmem destruction function,
635 	 * since the charges will outlive the cgroup
636 	 */
637 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
638 }
639 #else
640 static void disarm_kmem_keys(struct mem_cgroup *memcg)
641 {
642 }
643 #endif /* CONFIG_MEMCG_KMEM */
644 
645 static void disarm_static_keys(struct mem_cgroup *memcg)
646 {
647 	disarm_sock_keys(memcg);
648 	disarm_kmem_keys(memcg);
649 }
650 
651 static void drain_all_stock_async(struct mem_cgroup *memcg);
652 
653 static struct mem_cgroup_per_zone *
654 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
655 {
656 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
657 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 }
659 
660 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
661 {
662 	return &memcg->css;
663 }
664 
665 static struct mem_cgroup_per_zone *
666 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
667 {
668 	int nid = page_to_nid(page);
669 	int zid = page_zonenum(page);
670 
671 	return mem_cgroup_zoneinfo(memcg, nid, zid);
672 }
673 
674 static struct mem_cgroup_tree_per_zone *
675 soft_limit_tree_node_zone(int nid, int zid)
676 {
677 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
678 }
679 
680 static struct mem_cgroup_tree_per_zone *
681 soft_limit_tree_from_page(struct page *page)
682 {
683 	int nid = page_to_nid(page);
684 	int zid = page_zonenum(page);
685 
686 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
687 }
688 
689 static void
690 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
691 				struct mem_cgroup_per_zone *mz,
692 				struct mem_cgroup_tree_per_zone *mctz,
693 				unsigned long long new_usage_in_excess)
694 {
695 	struct rb_node **p = &mctz->rb_root.rb_node;
696 	struct rb_node *parent = NULL;
697 	struct mem_cgroup_per_zone *mz_node;
698 
699 	if (mz->on_tree)
700 		return;
701 
702 	mz->usage_in_excess = new_usage_in_excess;
703 	if (!mz->usage_in_excess)
704 		return;
705 	while (*p) {
706 		parent = *p;
707 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
708 					tree_node);
709 		if (mz->usage_in_excess < mz_node->usage_in_excess)
710 			p = &(*p)->rb_left;
711 		/*
712 		 * We can't avoid mem cgroups that are over their soft
713 		 * limit by the same amount
714 		 */
715 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
716 			p = &(*p)->rb_right;
717 	}
718 	rb_link_node(&mz->tree_node, parent, p);
719 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
720 	mz->on_tree = true;
721 }
722 
723 static void
724 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
725 				struct mem_cgroup_per_zone *mz,
726 				struct mem_cgroup_tree_per_zone *mctz)
727 {
728 	if (!mz->on_tree)
729 		return;
730 	rb_erase(&mz->tree_node, &mctz->rb_root);
731 	mz->on_tree = false;
732 }
733 
734 static void
735 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
736 				struct mem_cgroup_per_zone *mz,
737 				struct mem_cgroup_tree_per_zone *mctz)
738 {
739 	spin_lock(&mctz->lock);
740 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
741 	spin_unlock(&mctz->lock);
742 }
743 
744 
745 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
746 {
747 	unsigned long long excess;
748 	struct mem_cgroup_per_zone *mz;
749 	struct mem_cgroup_tree_per_zone *mctz;
750 	int nid = page_to_nid(page);
751 	int zid = page_zonenum(page);
752 	mctz = soft_limit_tree_from_page(page);
753 
754 	/*
755 	 * Necessary to update all ancestors when hierarchy is used.
756 	 * because their event counter is not touched.
757 	 */
758 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
759 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
760 		excess = res_counter_soft_limit_excess(&memcg->res);
761 		/*
762 		 * We have to update the tree if mz is on RB-tree or
763 		 * mem is over its softlimit.
764 		 */
765 		if (excess || mz->on_tree) {
766 			spin_lock(&mctz->lock);
767 			/* if on-tree, remove it */
768 			if (mz->on_tree)
769 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
770 			/*
771 			 * Insert again. mz->usage_in_excess will be updated.
772 			 * If excess is 0, no tree ops.
773 			 */
774 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
775 			spin_unlock(&mctz->lock);
776 		}
777 	}
778 }
779 
780 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
781 {
782 	int node, zone;
783 	struct mem_cgroup_per_zone *mz;
784 	struct mem_cgroup_tree_per_zone *mctz;
785 
786 	for_each_node(node) {
787 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
788 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
789 			mctz = soft_limit_tree_node_zone(node, zone);
790 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
791 		}
792 	}
793 }
794 
795 static struct mem_cgroup_per_zone *
796 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
797 {
798 	struct rb_node *rightmost = NULL;
799 	struct mem_cgroup_per_zone *mz;
800 
801 retry:
802 	mz = NULL;
803 	rightmost = rb_last(&mctz->rb_root);
804 	if (!rightmost)
805 		goto done;		/* Nothing to reclaim from */
806 
807 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
808 	/*
809 	 * Remove the node now but someone else can add it back,
810 	 * we will to add it back at the end of reclaim to its correct
811 	 * position in the tree.
812 	 */
813 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
814 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
815 		!css_tryget(&mz->memcg->css))
816 		goto retry;
817 done:
818 	return mz;
819 }
820 
821 static struct mem_cgroup_per_zone *
822 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823 {
824 	struct mem_cgroup_per_zone *mz;
825 
826 	spin_lock(&mctz->lock);
827 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
828 	spin_unlock(&mctz->lock);
829 	return mz;
830 }
831 
832 /*
833  * Implementation Note: reading percpu statistics for memcg.
834  *
835  * Both of vmstat[] and percpu_counter has threshold and do periodic
836  * synchronization to implement "quick" read. There are trade-off between
837  * reading cost and precision of value. Then, we may have a chance to implement
838  * a periodic synchronizion of counter in memcg's counter.
839  *
840  * But this _read() function is used for user interface now. The user accounts
841  * memory usage by memory cgroup and he _always_ requires exact value because
842  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
843  * have to visit all online cpus and make sum. So, for now, unnecessary
844  * synchronization is not implemented. (just implemented for cpu hotplug)
845  *
846  * If there are kernel internal actions which can make use of some not-exact
847  * value, and reading all cpu value can be performance bottleneck in some
848  * common workload, threashold and synchonization as vmstat[] should be
849  * implemented.
850  */
851 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
852 				 enum mem_cgroup_stat_index idx)
853 {
854 	long val = 0;
855 	int cpu;
856 
857 	get_online_cpus();
858 	for_each_online_cpu(cpu)
859 		val += per_cpu(memcg->stat->count[idx], cpu);
860 #ifdef CONFIG_HOTPLUG_CPU
861 	spin_lock(&memcg->pcp_counter_lock);
862 	val += memcg->nocpu_base.count[idx];
863 	spin_unlock(&memcg->pcp_counter_lock);
864 #endif
865 	put_online_cpus();
866 	return val;
867 }
868 
869 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
870 					 bool charge)
871 {
872 	int val = (charge) ? 1 : -1;
873 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
874 }
875 
876 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
877 					    enum mem_cgroup_events_index idx)
878 {
879 	unsigned long val = 0;
880 	int cpu;
881 
882 	for_each_online_cpu(cpu)
883 		val += per_cpu(memcg->stat->events[idx], cpu);
884 #ifdef CONFIG_HOTPLUG_CPU
885 	spin_lock(&memcg->pcp_counter_lock);
886 	val += memcg->nocpu_base.events[idx];
887 	spin_unlock(&memcg->pcp_counter_lock);
888 #endif
889 	return val;
890 }
891 
892 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
893 					 struct page *page,
894 					 bool anon, int nr_pages)
895 {
896 	preempt_disable();
897 
898 	/*
899 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
900 	 * counted as CACHE even if it's on ANON LRU.
901 	 */
902 	if (anon)
903 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
904 				nr_pages);
905 	else
906 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
907 				nr_pages);
908 
909 	if (PageTransHuge(page))
910 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
911 				nr_pages);
912 
913 	/* pagein of a big page is an event. So, ignore page size */
914 	if (nr_pages > 0)
915 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
916 	else {
917 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
918 		nr_pages = -nr_pages; /* for event */
919 	}
920 
921 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
922 
923 	preempt_enable();
924 }
925 
926 unsigned long
927 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
928 {
929 	struct mem_cgroup_per_zone *mz;
930 
931 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
932 	return mz->lru_size[lru];
933 }
934 
935 static unsigned long
936 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
937 			unsigned int lru_mask)
938 {
939 	struct mem_cgroup_per_zone *mz;
940 	enum lru_list lru;
941 	unsigned long ret = 0;
942 
943 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
944 
945 	for_each_lru(lru) {
946 		if (BIT(lru) & lru_mask)
947 			ret += mz->lru_size[lru];
948 	}
949 	return ret;
950 }
951 
952 static unsigned long
953 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
954 			int nid, unsigned int lru_mask)
955 {
956 	u64 total = 0;
957 	int zid;
958 
959 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
960 		total += mem_cgroup_zone_nr_lru_pages(memcg,
961 						nid, zid, lru_mask);
962 
963 	return total;
964 }
965 
966 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
967 			unsigned int lru_mask)
968 {
969 	int nid;
970 	u64 total = 0;
971 
972 	for_each_node_state(nid, N_MEMORY)
973 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
974 	return total;
975 }
976 
977 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
978 				       enum mem_cgroup_events_target target)
979 {
980 	unsigned long val, next;
981 
982 	val = __this_cpu_read(memcg->stat->nr_page_events);
983 	next = __this_cpu_read(memcg->stat->targets[target]);
984 	/* from time_after() in jiffies.h */
985 	if ((long)next - (long)val < 0) {
986 		switch (target) {
987 		case MEM_CGROUP_TARGET_THRESH:
988 			next = val + THRESHOLDS_EVENTS_TARGET;
989 			break;
990 		case MEM_CGROUP_TARGET_SOFTLIMIT:
991 			next = val + SOFTLIMIT_EVENTS_TARGET;
992 			break;
993 		case MEM_CGROUP_TARGET_NUMAINFO:
994 			next = val + NUMAINFO_EVENTS_TARGET;
995 			break;
996 		default:
997 			break;
998 		}
999 		__this_cpu_write(memcg->stat->targets[target], next);
1000 		return true;
1001 	}
1002 	return false;
1003 }
1004 
1005 /*
1006  * Check events in order.
1007  *
1008  */
1009 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1010 {
1011 	preempt_disable();
1012 	/* threshold event is triggered in finer grain than soft limit */
1013 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1014 						MEM_CGROUP_TARGET_THRESH))) {
1015 		bool do_softlimit;
1016 		bool do_numainfo __maybe_unused;
1017 
1018 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1019 						MEM_CGROUP_TARGET_SOFTLIMIT);
1020 #if MAX_NUMNODES > 1
1021 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1022 						MEM_CGROUP_TARGET_NUMAINFO);
1023 #endif
1024 		preempt_enable();
1025 
1026 		mem_cgroup_threshold(memcg);
1027 		if (unlikely(do_softlimit))
1028 			mem_cgroup_update_tree(memcg, page);
1029 #if MAX_NUMNODES > 1
1030 		if (unlikely(do_numainfo))
1031 			atomic_inc(&memcg->numainfo_events);
1032 #endif
1033 	} else
1034 		preempt_enable();
1035 }
1036 
1037 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1038 {
1039 	/*
1040 	 * mm_update_next_owner() may clear mm->owner to NULL
1041 	 * if it races with swapoff, page migration, etc.
1042 	 * So this can be called with p == NULL.
1043 	 */
1044 	if (unlikely(!p))
1045 		return NULL;
1046 
1047 	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1048 }
1049 
1050 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1051 {
1052 	struct mem_cgroup *memcg = NULL;
1053 
1054 	if (!mm)
1055 		return NULL;
1056 	/*
1057 	 * Because we have no locks, mm->owner's may be being moved to other
1058 	 * cgroup. We use css_tryget() here even if this looks
1059 	 * pessimistic (rather than adding locks here).
1060 	 */
1061 	rcu_read_lock();
1062 	do {
1063 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1064 		if (unlikely(!memcg))
1065 			break;
1066 	} while (!css_tryget(&memcg->css));
1067 	rcu_read_unlock();
1068 	return memcg;
1069 }
1070 
1071 /*
1072  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1073  * ref. count) or NULL if the whole root's subtree has been visited.
1074  *
1075  * helper function to be used by mem_cgroup_iter
1076  */
1077 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1078 		struct mem_cgroup *last_visited)
1079 {
1080 	struct cgroup_subsys_state *prev_css, *next_css;
1081 
1082 	prev_css = last_visited ? &last_visited->css : NULL;
1083 skip_node:
1084 	next_css = css_next_descendant_pre(prev_css, &root->css);
1085 
1086 	/*
1087 	 * Even if we found a group we have to make sure it is
1088 	 * alive. css && !memcg means that the groups should be
1089 	 * skipped and we should continue the tree walk.
1090 	 * last_visited css is safe to use because it is
1091 	 * protected by css_get and the tree walk is rcu safe.
1092 	 */
1093 	if (next_css) {
1094 		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1095 
1096 		if (css_tryget(&mem->css))
1097 			return mem;
1098 		else {
1099 			prev_css = next_css;
1100 			goto skip_node;
1101 		}
1102 	}
1103 
1104 	return NULL;
1105 }
1106 
1107 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1108 {
1109 	/*
1110 	 * When a group in the hierarchy below root is destroyed, the
1111 	 * hierarchy iterator can no longer be trusted since it might
1112 	 * have pointed to the destroyed group.  Invalidate it.
1113 	 */
1114 	atomic_inc(&root->dead_count);
1115 }
1116 
1117 static struct mem_cgroup *
1118 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1119 		     struct mem_cgroup *root,
1120 		     int *sequence)
1121 {
1122 	struct mem_cgroup *position = NULL;
1123 	/*
1124 	 * A cgroup destruction happens in two stages: offlining and
1125 	 * release.  They are separated by a RCU grace period.
1126 	 *
1127 	 * If the iterator is valid, we may still race with an
1128 	 * offlining.  The RCU lock ensures the object won't be
1129 	 * released, tryget will fail if we lost the race.
1130 	 */
1131 	*sequence = atomic_read(&root->dead_count);
1132 	if (iter->last_dead_count == *sequence) {
1133 		smp_rmb();
1134 		position = iter->last_visited;
1135 		if (position && !css_tryget(&position->css))
1136 			position = NULL;
1137 	}
1138 	return position;
1139 }
1140 
1141 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1142 				   struct mem_cgroup *last_visited,
1143 				   struct mem_cgroup *new_position,
1144 				   int sequence)
1145 {
1146 	if (last_visited)
1147 		css_put(&last_visited->css);
1148 	/*
1149 	 * We store the sequence count from the time @last_visited was
1150 	 * loaded successfully instead of rereading it here so that we
1151 	 * don't lose destruction events in between.  We could have
1152 	 * raced with the destruction of @new_position after all.
1153 	 */
1154 	iter->last_visited = new_position;
1155 	smp_wmb();
1156 	iter->last_dead_count = sequence;
1157 }
1158 
1159 /**
1160  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1161  * @root: hierarchy root
1162  * @prev: previously returned memcg, NULL on first invocation
1163  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1164  *
1165  * Returns references to children of the hierarchy below @root, or
1166  * @root itself, or %NULL after a full round-trip.
1167  *
1168  * Caller must pass the return value in @prev on subsequent
1169  * invocations for reference counting, or use mem_cgroup_iter_break()
1170  * to cancel a hierarchy walk before the round-trip is complete.
1171  *
1172  * Reclaimers can specify a zone and a priority level in @reclaim to
1173  * divide up the memcgs in the hierarchy among all concurrent
1174  * reclaimers operating on the same zone and priority.
1175  */
1176 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1177 				   struct mem_cgroup *prev,
1178 				   struct mem_cgroup_reclaim_cookie *reclaim)
1179 {
1180 	struct mem_cgroup *memcg = NULL;
1181 	struct mem_cgroup *last_visited = NULL;
1182 
1183 	if (mem_cgroup_disabled())
1184 		return NULL;
1185 
1186 	if (!root)
1187 		root = root_mem_cgroup;
1188 
1189 	if (prev && !reclaim)
1190 		last_visited = prev;
1191 
1192 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1193 		if (prev)
1194 			goto out_css_put;
1195 		return root;
1196 	}
1197 
1198 	rcu_read_lock();
1199 	while (!memcg) {
1200 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1201 		int uninitialized_var(seq);
1202 
1203 		if (reclaim) {
1204 			int nid = zone_to_nid(reclaim->zone);
1205 			int zid = zone_idx(reclaim->zone);
1206 			struct mem_cgroup_per_zone *mz;
1207 
1208 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1209 			iter = &mz->reclaim_iter[reclaim->priority];
1210 			if (prev && reclaim->generation != iter->generation) {
1211 				iter->last_visited = NULL;
1212 				goto out_unlock;
1213 			}
1214 
1215 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1216 		}
1217 
1218 		memcg = __mem_cgroup_iter_next(root, last_visited);
1219 
1220 		if (reclaim) {
1221 			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1222 
1223 			if (!memcg)
1224 				iter->generation++;
1225 			else if (!prev && memcg)
1226 				reclaim->generation = iter->generation;
1227 		}
1228 
1229 		if (prev && !memcg)
1230 			goto out_unlock;
1231 	}
1232 out_unlock:
1233 	rcu_read_unlock();
1234 out_css_put:
1235 	if (prev && prev != root)
1236 		css_put(&prev->css);
1237 
1238 	return memcg;
1239 }
1240 
1241 /**
1242  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1243  * @root: hierarchy root
1244  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1245  */
1246 void mem_cgroup_iter_break(struct mem_cgroup *root,
1247 			   struct mem_cgroup *prev)
1248 {
1249 	if (!root)
1250 		root = root_mem_cgroup;
1251 	if (prev && prev != root)
1252 		css_put(&prev->css);
1253 }
1254 
1255 /*
1256  * Iteration constructs for visiting all cgroups (under a tree).  If
1257  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1258  * be used for reference counting.
1259  */
1260 #define for_each_mem_cgroup_tree(iter, root)		\
1261 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1262 	     iter != NULL;				\
1263 	     iter = mem_cgroup_iter(root, iter, NULL))
1264 
1265 #define for_each_mem_cgroup(iter)			\
1266 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1267 	     iter != NULL;				\
1268 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1269 
1270 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1271 {
1272 	struct mem_cgroup *memcg;
1273 
1274 	rcu_read_lock();
1275 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1276 	if (unlikely(!memcg))
1277 		goto out;
1278 
1279 	switch (idx) {
1280 	case PGFAULT:
1281 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1282 		break;
1283 	case PGMAJFAULT:
1284 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1285 		break;
1286 	default:
1287 		BUG();
1288 	}
1289 out:
1290 	rcu_read_unlock();
1291 }
1292 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1293 
1294 /**
1295  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1296  * @zone: zone of the wanted lruvec
1297  * @memcg: memcg of the wanted lruvec
1298  *
1299  * Returns the lru list vector holding pages for the given @zone and
1300  * @mem.  This can be the global zone lruvec, if the memory controller
1301  * is disabled.
1302  */
1303 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1304 				      struct mem_cgroup *memcg)
1305 {
1306 	struct mem_cgroup_per_zone *mz;
1307 	struct lruvec *lruvec;
1308 
1309 	if (mem_cgroup_disabled()) {
1310 		lruvec = &zone->lruvec;
1311 		goto out;
1312 	}
1313 
1314 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1315 	lruvec = &mz->lruvec;
1316 out:
1317 	/*
1318 	 * Since a node can be onlined after the mem_cgroup was created,
1319 	 * we have to be prepared to initialize lruvec->zone here;
1320 	 * and if offlined then reonlined, we need to reinitialize it.
1321 	 */
1322 	if (unlikely(lruvec->zone != zone))
1323 		lruvec->zone = zone;
1324 	return lruvec;
1325 }
1326 
1327 /*
1328  * Following LRU functions are allowed to be used without PCG_LOCK.
1329  * Operations are called by routine of global LRU independently from memcg.
1330  * What we have to take care of here is validness of pc->mem_cgroup.
1331  *
1332  * Changes to pc->mem_cgroup happens when
1333  * 1. charge
1334  * 2. moving account
1335  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1336  * It is added to LRU before charge.
1337  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1338  * When moving account, the page is not on LRU. It's isolated.
1339  */
1340 
1341 /**
1342  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1343  * @page: the page
1344  * @zone: zone of the page
1345  */
1346 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1347 {
1348 	struct mem_cgroup_per_zone *mz;
1349 	struct mem_cgroup *memcg;
1350 	struct page_cgroup *pc;
1351 	struct lruvec *lruvec;
1352 
1353 	if (mem_cgroup_disabled()) {
1354 		lruvec = &zone->lruvec;
1355 		goto out;
1356 	}
1357 
1358 	pc = lookup_page_cgroup(page);
1359 	memcg = pc->mem_cgroup;
1360 
1361 	/*
1362 	 * Surreptitiously switch any uncharged offlist page to root:
1363 	 * an uncharged page off lru does nothing to secure
1364 	 * its former mem_cgroup from sudden removal.
1365 	 *
1366 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1367 	 * under page_cgroup lock: between them, they make all uses
1368 	 * of pc->mem_cgroup safe.
1369 	 */
1370 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1371 		pc->mem_cgroup = memcg = root_mem_cgroup;
1372 
1373 	mz = page_cgroup_zoneinfo(memcg, page);
1374 	lruvec = &mz->lruvec;
1375 out:
1376 	/*
1377 	 * Since a node can be onlined after the mem_cgroup was created,
1378 	 * we have to be prepared to initialize lruvec->zone here;
1379 	 * and if offlined then reonlined, we need to reinitialize it.
1380 	 */
1381 	if (unlikely(lruvec->zone != zone))
1382 		lruvec->zone = zone;
1383 	return lruvec;
1384 }
1385 
1386 /**
1387  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1388  * @lruvec: mem_cgroup per zone lru vector
1389  * @lru: index of lru list the page is sitting on
1390  * @nr_pages: positive when adding or negative when removing
1391  *
1392  * This function must be called when a page is added to or removed from an
1393  * lru list.
1394  */
1395 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1396 				int nr_pages)
1397 {
1398 	struct mem_cgroup_per_zone *mz;
1399 	unsigned long *lru_size;
1400 
1401 	if (mem_cgroup_disabled())
1402 		return;
1403 
1404 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1405 	lru_size = mz->lru_size + lru;
1406 	*lru_size += nr_pages;
1407 	VM_BUG_ON((long)(*lru_size) < 0);
1408 }
1409 
1410 /*
1411  * Checks whether given mem is same or in the root_mem_cgroup's
1412  * hierarchy subtree
1413  */
1414 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1415 				  struct mem_cgroup *memcg)
1416 {
1417 	if (root_memcg == memcg)
1418 		return true;
1419 	if (!root_memcg->use_hierarchy || !memcg)
1420 		return false;
1421 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1422 }
1423 
1424 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1425 				       struct mem_cgroup *memcg)
1426 {
1427 	bool ret;
1428 
1429 	rcu_read_lock();
1430 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1431 	rcu_read_unlock();
1432 	return ret;
1433 }
1434 
1435 bool task_in_mem_cgroup(struct task_struct *task,
1436 			const struct mem_cgroup *memcg)
1437 {
1438 	struct mem_cgroup *curr = NULL;
1439 	struct task_struct *p;
1440 	bool ret;
1441 
1442 	p = find_lock_task_mm(task);
1443 	if (p) {
1444 		curr = try_get_mem_cgroup_from_mm(p->mm);
1445 		task_unlock(p);
1446 	} else {
1447 		/*
1448 		 * All threads may have already detached their mm's, but the oom
1449 		 * killer still needs to detect if they have already been oom
1450 		 * killed to prevent needlessly killing additional tasks.
1451 		 */
1452 		rcu_read_lock();
1453 		curr = mem_cgroup_from_task(task);
1454 		if (curr)
1455 			css_get(&curr->css);
1456 		rcu_read_unlock();
1457 	}
1458 	if (!curr)
1459 		return false;
1460 	/*
1461 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1462 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1463 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1464 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1465 	 */
1466 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1467 	css_put(&curr->css);
1468 	return ret;
1469 }
1470 
1471 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1472 {
1473 	unsigned long inactive_ratio;
1474 	unsigned long inactive;
1475 	unsigned long active;
1476 	unsigned long gb;
1477 
1478 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1479 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1480 
1481 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1482 	if (gb)
1483 		inactive_ratio = int_sqrt(10 * gb);
1484 	else
1485 		inactive_ratio = 1;
1486 
1487 	return inactive * inactive_ratio < active;
1488 }
1489 
1490 #define mem_cgroup_from_res_counter(counter, member)	\
1491 	container_of(counter, struct mem_cgroup, member)
1492 
1493 /**
1494  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1495  * @memcg: the memory cgroup
1496  *
1497  * Returns the maximum amount of memory @mem can be charged with, in
1498  * pages.
1499  */
1500 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1501 {
1502 	unsigned long long margin;
1503 
1504 	margin = res_counter_margin(&memcg->res);
1505 	if (do_swap_account)
1506 		margin = min(margin, res_counter_margin(&memcg->memsw));
1507 	return margin >> PAGE_SHIFT;
1508 }
1509 
1510 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1511 {
1512 	/* root ? */
1513 	if (!css_parent(&memcg->css))
1514 		return vm_swappiness;
1515 
1516 	return memcg->swappiness;
1517 }
1518 
1519 /*
1520  * memcg->moving_account is used for checking possibility that some thread is
1521  * calling move_account(). When a thread on CPU-A starts moving pages under
1522  * a memcg, other threads should check memcg->moving_account under
1523  * rcu_read_lock(), like this:
1524  *
1525  *         CPU-A                                    CPU-B
1526  *                                              rcu_read_lock()
1527  *         memcg->moving_account+1              if (memcg->mocing_account)
1528  *                                                   take heavy locks.
1529  *         synchronize_rcu()                    update something.
1530  *                                              rcu_read_unlock()
1531  *         start move here.
1532  */
1533 
1534 /* for quick checking without looking up memcg */
1535 atomic_t memcg_moving __read_mostly;
1536 
1537 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1538 {
1539 	atomic_inc(&memcg_moving);
1540 	atomic_inc(&memcg->moving_account);
1541 	synchronize_rcu();
1542 }
1543 
1544 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1545 {
1546 	/*
1547 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1548 	 * We check NULL in callee rather than caller.
1549 	 */
1550 	if (memcg) {
1551 		atomic_dec(&memcg_moving);
1552 		atomic_dec(&memcg->moving_account);
1553 	}
1554 }
1555 
1556 /*
1557  * 2 routines for checking "mem" is under move_account() or not.
1558  *
1559  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1560  *			  is used for avoiding races in accounting.  If true,
1561  *			  pc->mem_cgroup may be overwritten.
1562  *
1563  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1564  *			  under hierarchy of moving cgroups. This is for
1565  *			  waiting at hith-memory prressure caused by "move".
1566  */
1567 
1568 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1569 {
1570 	VM_BUG_ON(!rcu_read_lock_held());
1571 	return atomic_read(&memcg->moving_account) > 0;
1572 }
1573 
1574 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1575 {
1576 	struct mem_cgroup *from;
1577 	struct mem_cgroup *to;
1578 	bool ret = false;
1579 	/*
1580 	 * Unlike task_move routines, we access mc.to, mc.from not under
1581 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1582 	 */
1583 	spin_lock(&mc.lock);
1584 	from = mc.from;
1585 	to = mc.to;
1586 	if (!from)
1587 		goto unlock;
1588 
1589 	ret = mem_cgroup_same_or_subtree(memcg, from)
1590 		|| mem_cgroup_same_or_subtree(memcg, to);
1591 unlock:
1592 	spin_unlock(&mc.lock);
1593 	return ret;
1594 }
1595 
1596 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1597 {
1598 	if (mc.moving_task && current != mc.moving_task) {
1599 		if (mem_cgroup_under_move(memcg)) {
1600 			DEFINE_WAIT(wait);
1601 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1602 			/* moving charge context might have finished. */
1603 			if (mc.moving_task)
1604 				schedule();
1605 			finish_wait(&mc.waitq, &wait);
1606 			return true;
1607 		}
1608 	}
1609 	return false;
1610 }
1611 
1612 /*
1613  * Take this lock when
1614  * - a code tries to modify page's memcg while it's USED.
1615  * - a code tries to modify page state accounting in a memcg.
1616  * see mem_cgroup_stolen(), too.
1617  */
1618 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1619 				  unsigned long *flags)
1620 {
1621 	spin_lock_irqsave(&memcg->move_lock, *flags);
1622 }
1623 
1624 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1625 				unsigned long *flags)
1626 {
1627 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1628 }
1629 
1630 #define K(x) ((x) << (PAGE_SHIFT-10))
1631 /**
1632  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1633  * @memcg: The memory cgroup that went over limit
1634  * @p: Task that is going to be killed
1635  *
1636  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1637  * enabled
1638  */
1639 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1640 {
1641 	struct cgroup *task_cgrp;
1642 	struct cgroup *mem_cgrp;
1643 	/*
1644 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1645 	 * on the assumption that OOM is serialized for memory controller.
1646 	 * If this assumption is broken, revisit this code.
1647 	 */
1648 	static char memcg_name[PATH_MAX];
1649 	int ret;
1650 	struct mem_cgroup *iter;
1651 	unsigned int i;
1652 
1653 	if (!p)
1654 		return;
1655 
1656 	rcu_read_lock();
1657 
1658 	mem_cgrp = memcg->css.cgroup;
1659 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1660 
1661 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1662 	if (ret < 0) {
1663 		/*
1664 		 * Unfortunately, we are unable to convert to a useful name
1665 		 * But we'll still print out the usage information
1666 		 */
1667 		rcu_read_unlock();
1668 		goto done;
1669 	}
1670 	rcu_read_unlock();
1671 
1672 	pr_info("Task in %s killed", memcg_name);
1673 
1674 	rcu_read_lock();
1675 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1676 	if (ret < 0) {
1677 		rcu_read_unlock();
1678 		goto done;
1679 	}
1680 	rcu_read_unlock();
1681 
1682 	/*
1683 	 * Continues from above, so we don't need an KERN_ level
1684 	 */
1685 	pr_cont(" as a result of limit of %s\n", memcg_name);
1686 done:
1687 
1688 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1689 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1690 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1691 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1692 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1693 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1694 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1695 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1696 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1697 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1698 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1699 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1700 
1701 	for_each_mem_cgroup_tree(iter, memcg) {
1702 		pr_info("Memory cgroup stats");
1703 
1704 		rcu_read_lock();
1705 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1706 		if (!ret)
1707 			pr_cont(" for %s", memcg_name);
1708 		rcu_read_unlock();
1709 		pr_cont(":");
1710 
1711 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1712 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1713 				continue;
1714 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1715 				K(mem_cgroup_read_stat(iter, i)));
1716 		}
1717 
1718 		for (i = 0; i < NR_LRU_LISTS; i++)
1719 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1720 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1721 
1722 		pr_cont("\n");
1723 	}
1724 }
1725 
1726 /*
1727  * This function returns the number of memcg under hierarchy tree. Returns
1728  * 1(self count) if no children.
1729  */
1730 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1731 {
1732 	int num = 0;
1733 	struct mem_cgroup *iter;
1734 
1735 	for_each_mem_cgroup_tree(iter, memcg)
1736 		num++;
1737 	return num;
1738 }
1739 
1740 /*
1741  * Return the memory (and swap, if configured) limit for a memcg.
1742  */
1743 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1744 {
1745 	u64 limit;
1746 
1747 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1748 
1749 	/*
1750 	 * Do not consider swap space if we cannot swap due to swappiness
1751 	 */
1752 	if (mem_cgroup_swappiness(memcg)) {
1753 		u64 memsw;
1754 
1755 		limit += total_swap_pages << PAGE_SHIFT;
1756 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1757 
1758 		/*
1759 		 * If memsw is finite and limits the amount of swap space
1760 		 * available to this memcg, return that limit.
1761 		 */
1762 		limit = min(limit, memsw);
1763 	}
1764 
1765 	return limit;
1766 }
1767 
1768 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1769 				     int order)
1770 {
1771 	struct mem_cgroup *iter;
1772 	unsigned long chosen_points = 0;
1773 	unsigned long totalpages;
1774 	unsigned int points = 0;
1775 	struct task_struct *chosen = NULL;
1776 
1777 	/*
1778 	 * If current has a pending SIGKILL or is exiting, then automatically
1779 	 * select it.  The goal is to allow it to allocate so that it may
1780 	 * quickly exit and free its memory.
1781 	 */
1782 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1783 		set_thread_flag(TIF_MEMDIE);
1784 		return;
1785 	}
1786 
1787 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1788 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1789 	for_each_mem_cgroup_tree(iter, memcg) {
1790 		struct css_task_iter it;
1791 		struct task_struct *task;
1792 
1793 		css_task_iter_start(&iter->css, &it);
1794 		while ((task = css_task_iter_next(&it))) {
1795 			switch (oom_scan_process_thread(task, totalpages, NULL,
1796 							false)) {
1797 			case OOM_SCAN_SELECT:
1798 				if (chosen)
1799 					put_task_struct(chosen);
1800 				chosen = task;
1801 				chosen_points = ULONG_MAX;
1802 				get_task_struct(chosen);
1803 				/* fall through */
1804 			case OOM_SCAN_CONTINUE:
1805 				continue;
1806 			case OOM_SCAN_ABORT:
1807 				css_task_iter_end(&it);
1808 				mem_cgroup_iter_break(memcg, iter);
1809 				if (chosen)
1810 					put_task_struct(chosen);
1811 				return;
1812 			case OOM_SCAN_OK:
1813 				break;
1814 			};
1815 			points = oom_badness(task, memcg, NULL, totalpages);
1816 			if (points > chosen_points) {
1817 				if (chosen)
1818 					put_task_struct(chosen);
1819 				chosen = task;
1820 				chosen_points = points;
1821 				get_task_struct(chosen);
1822 			}
1823 		}
1824 		css_task_iter_end(&it);
1825 	}
1826 
1827 	if (!chosen)
1828 		return;
1829 	points = chosen_points * 1000 / totalpages;
1830 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1831 			 NULL, "Memory cgroup out of memory");
1832 }
1833 
1834 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1835 					gfp_t gfp_mask,
1836 					unsigned long flags)
1837 {
1838 	unsigned long total = 0;
1839 	bool noswap = false;
1840 	int loop;
1841 
1842 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1843 		noswap = true;
1844 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1845 		noswap = true;
1846 
1847 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1848 		if (loop)
1849 			drain_all_stock_async(memcg);
1850 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1851 		/*
1852 		 * Allow limit shrinkers, which are triggered directly
1853 		 * by userspace, to catch signals and stop reclaim
1854 		 * after minimal progress, regardless of the margin.
1855 		 */
1856 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1857 			break;
1858 		if (mem_cgroup_margin(memcg))
1859 			break;
1860 		/*
1861 		 * If nothing was reclaimed after two attempts, there
1862 		 * may be no reclaimable pages in this hierarchy.
1863 		 */
1864 		if (loop && !total)
1865 			break;
1866 	}
1867 	return total;
1868 }
1869 
1870 /**
1871  * test_mem_cgroup_node_reclaimable
1872  * @memcg: the target memcg
1873  * @nid: the node ID to be checked.
1874  * @noswap : specify true here if the user wants flle only information.
1875  *
1876  * This function returns whether the specified memcg contains any
1877  * reclaimable pages on a node. Returns true if there are any reclaimable
1878  * pages in the node.
1879  */
1880 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1881 		int nid, bool noswap)
1882 {
1883 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1884 		return true;
1885 	if (noswap || !total_swap_pages)
1886 		return false;
1887 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1888 		return true;
1889 	return false;
1890 
1891 }
1892 #if MAX_NUMNODES > 1
1893 
1894 /*
1895  * Always updating the nodemask is not very good - even if we have an empty
1896  * list or the wrong list here, we can start from some node and traverse all
1897  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1898  *
1899  */
1900 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1901 {
1902 	int nid;
1903 	/*
1904 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1905 	 * pagein/pageout changes since the last update.
1906 	 */
1907 	if (!atomic_read(&memcg->numainfo_events))
1908 		return;
1909 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1910 		return;
1911 
1912 	/* make a nodemask where this memcg uses memory from */
1913 	memcg->scan_nodes = node_states[N_MEMORY];
1914 
1915 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1916 
1917 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1918 			node_clear(nid, memcg->scan_nodes);
1919 	}
1920 
1921 	atomic_set(&memcg->numainfo_events, 0);
1922 	atomic_set(&memcg->numainfo_updating, 0);
1923 }
1924 
1925 /*
1926  * Selecting a node where we start reclaim from. Because what we need is just
1927  * reducing usage counter, start from anywhere is O,K. Considering
1928  * memory reclaim from current node, there are pros. and cons.
1929  *
1930  * Freeing memory from current node means freeing memory from a node which
1931  * we'll use or we've used. So, it may make LRU bad. And if several threads
1932  * hit limits, it will see a contention on a node. But freeing from remote
1933  * node means more costs for memory reclaim because of memory latency.
1934  *
1935  * Now, we use round-robin. Better algorithm is welcomed.
1936  */
1937 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1938 {
1939 	int node;
1940 
1941 	mem_cgroup_may_update_nodemask(memcg);
1942 	node = memcg->last_scanned_node;
1943 
1944 	node = next_node(node, memcg->scan_nodes);
1945 	if (node == MAX_NUMNODES)
1946 		node = first_node(memcg->scan_nodes);
1947 	/*
1948 	 * We call this when we hit limit, not when pages are added to LRU.
1949 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1950 	 * memcg is too small and all pages are not on LRU. In that case,
1951 	 * we use curret node.
1952 	 */
1953 	if (unlikely(node == MAX_NUMNODES))
1954 		node = numa_node_id();
1955 
1956 	memcg->last_scanned_node = node;
1957 	return node;
1958 }
1959 
1960 /*
1961  * Check all nodes whether it contains reclaimable pages or not.
1962  * For quick scan, we make use of scan_nodes. This will allow us to skip
1963  * unused nodes. But scan_nodes is lazily updated and may not cotain
1964  * enough new information. We need to do double check.
1965  */
1966 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1967 {
1968 	int nid;
1969 
1970 	/*
1971 	 * quick check...making use of scan_node.
1972 	 * We can skip unused nodes.
1973 	 */
1974 	if (!nodes_empty(memcg->scan_nodes)) {
1975 		for (nid = first_node(memcg->scan_nodes);
1976 		     nid < MAX_NUMNODES;
1977 		     nid = next_node(nid, memcg->scan_nodes)) {
1978 
1979 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1980 				return true;
1981 		}
1982 	}
1983 	/*
1984 	 * Check rest of nodes.
1985 	 */
1986 	for_each_node_state(nid, N_MEMORY) {
1987 		if (node_isset(nid, memcg->scan_nodes))
1988 			continue;
1989 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1990 			return true;
1991 	}
1992 	return false;
1993 }
1994 
1995 #else
1996 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1997 {
1998 	return 0;
1999 }
2000 
2001 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2002 {
2003 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2004 }
2005 #endif
2006 
2007 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2008 				   struct zone *zone,
2009 				   gfp_t gfp_mask,
2010 				   unsigned long *total_scanned)
2011 {
2012 	struct mem_cgroup *victim = NULL;
2013 	int total = 0;
2014 	int loop = 0;
2015 	unsigned long excess;
2016 	unsigned long nr_scanned;
2017 	struct mem_cgroup_reclaim_cookie reclaim = {
2018 		.zone = zone,
2019 		.priority = 0,
2020 	};
2021 
2022 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2023 
2024 	while (1) {
2025 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2026 		if (!victim) {
2027 			loop++;
2028 			if (loop >= 2) {
2029 				/*
2030 				 * If we have not been able to reclaim
2031 				 * anything, it might because there are
2032 				 * no reclaimable pages under this hierarchy
2033 				 */
2034 				if (!total)
2035 					break;
2036 				/*
2037 				 * We want to do more targeted reclaim.
2038 				 * excess >> 2 is not to excessive so as to
2039 				 * reclaim too much, nor too less that we keep
2040 				 * coming back to reclaim from this cgroup
2041 				 */
2042 				if (total >= (excess >> 2) ||
2043 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2044 					break;
2045 			}
2046 			continue;
2047 		}
2048 		if (!mem_cgroup_reclaimable(victim, false))
2049 			continue;
2050 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2051 						     zone, &nr_scanned);
2052 		*total_scanned += nr_scanned;
2053 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2054 			break;
2055 	}
2056 	mem_cgroup_iter_break(root_memcg, victim);
2057 	return total;
2058 }
2059 
2060 /*
2061  * Check OOM-Killer is already running under our hierarchy.
2062  * If someone is running, return false.
2063  * Has to be called with memcg_oom_lock
2064  */
2065 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2066 {
2067 	struct mem_cgroup *iter, *failed = NULL;
2068 
2069 	for_each_mem_cgroup_tree(iter, memcg) {
2070 		if (iter->oom_lock) {
2071 			/*
2072 			 * this subtree of our hierarchy is already locked
2073 			 * so we cannot give a lock.
2074 			 */
2075 			failed = iter;
2076 			mem_cgroup_iter_break(memcg, iter);
2077 			break;
2078 		} else
2079 			iter->oom_lock = true;
2080 	}
2081 
2082 	if (!failed)
2083 		return true;
2084 
2085 	/*
2086 	 * OK, we failed to lock the whole subtree so we have to clean up
2087 	 * what we set up to the failing subtree
2088 	 */
2089 	for_each_mem_cgroup_tree(iter, memcg) {
2090 		if (iter == failed) {
2091 			mem_cgroup_iter_break(memcg, iter);
2092 			break;
2093 		}
2094 		iter->oom_lock = false;
2095 	}
2096 	return false;
2097 }
2098 
2099 /*
2100  * Has to be called with memcg_oom_lock
2101  */
2102 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2103 {
2104 	struct mem_cgroup *iter;
2105 
2106 	for_each_mem_cgroup_tree(iter, memcg)
2107 		iter->oom_lock = false;
2108 	return 0;
2109 }
2110 
2111 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2112 {
2113 	struct mem_cgroup *iter;
2114 
2115 	for_each_mem_cgroup_tree(iter, memcg)
2116 		atomic_inc(&iter->under_oom);
2117 }
2118 
2119 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2120 {
2121 	struct mem_cgroup *iter;
2122 
2123 	/*
2124 	 * When a new child is created while the hierarchy is under oom,
2125 	 * mem_cgroup_oom_lock() may not be called. We have to use
2126 	 * atomic_add_unless() here.
2127 	 */
2128 	for_each_mem_cgroup_tree(iter, memcg)
2129 		atomic_add_unless(&iter->under_oom, -1, 0);
2130 }
2131 
2132 static DEFINE_SPINLOCK(memcg_oom_lock);
2133 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2134 
2135 struct oom_wait_info {
2136 	struct mem_cgroup *memcg;
2137 	wait_queue_t	wait;
2138 };
2139 
2140 static int memcg_oom_wake_function(wait_queue_t *wait,
2141 	unsigned mode, int sync, void *arg)
2142 {
2143 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2144 	struct mem_cgroup *oom_wait_memcg;
2145 	struct oom_wait_info *oom_wait_info;
2146 
2147 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2148 	oom_wait_memcg = oom_wait_info->memcg;
2149 
2150 	/*
2151 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2152 	 * Then we can use css_is_ancestor without taking care of RCU.
2153 	 */
2154 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2155 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2156 		return 0;
2157 	return autoremove_wake_function(wait, mode, sync, arg);
2158 }
2159 
2160 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2161 {
2162 	/* for filtering, pass "memcg" as argument. */
2163 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2164 }
2165 
2166 static void memcg_oom_recover(struct mem_cgroup *memcg)
2167 {
2168 	if (memcg && atomic_read(&memcg->under_oom))
2169 		memcg_wakeup_oom(memcg);
2170 }
2171 
2172 /*
2173  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2174  */
2175 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2176 				  int order)
2177 {
2178 	struct oom_wait_info owait;
2179 	bool locked, need_to_kill;
2180 
2181 	owait.memcg = memcg;
2182 	owait.wait.flags = 0;
2183 	owait.wait.func = memcg_oom_wake_function;
2184 	owait.wait.private = current;
2185 	INIT_LIST_HEAD(&owait.wait.task_list);
2186 	need_to_kill = true;
2187 	mem_cgroup_mark_under_oom(memcg);
2188 
2189 	/* At first, try to OOM lock hierarchy under memcg.*/
2190 	spin_lock(&memcg_oom_lock);
2191 	locked = mem_cgroup_oom_lock(memcg);
2192 	/*
2193 	 * Even if signal_pending(), we can't quit charge() loop without
2194 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2195 	 * under OOM is always welcomed, use TASK_KILLABLE here.
2196 	 */
2197 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2198 	if (!locked || memcg->oom_kill_disable)
2199 		need_to_kill = false;
2200 	if (locked)
2201 		mem_cgroup_oom_notify(memcg);
2202 	spin_unlock(&memcg_oom_lock);
2203 
2204 	if (need_to_kill) {
2205 		finish_wait(&memcg_oom_waitq, &owait.wait);
2206 		mem_cgroup_out_of_memory(memcg, mask, order);
2207 	} else {
2208 		schedule();
2209 		finish_wait(&memcg_oom_waitq, &owait.wait);
2210 	}
2211 	spin_lock(&memcg_oom_lock);
2212 	if (locked)
2213 		mem_cgroup_oom_unlock(memcg);
2214 	memcg_wakeup_oom(memcg);
2215 	spin_unlock(&memcg_oom_lock);
2216 
2217 	mem_cgroup_unmark_under_oom(memcg);
2218 
2219 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2220 		return false;
2221 	/* Give chance to dying process */
2222 	schedule_timeout_uninterruptible(1);
2223 	return true;
2224 }
2225 
2226 /*
2227  * Currently used to update mapped file statistics, but the routine can be
2228  * generalized to update other statistics as well.
2229  *
2230  * Notes: Race condition
2231  *
2232  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2233  * it tends to be costly. But considering some conditions, we doesn't need
2234  * to do so _always_.
2235  *
2236  * Considering "charge", lock_page_cgroup() is not required because all
2237  * file-stat operations happen after a page is attached to radix-tree. There
2238  * are no race with "charge".
2239  *
2240  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2241  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2242  * if there are race with "uncharge". Statistics itself is properly handled
2243  * by flags.
2244  *
2245  * Considering "move", this is an only case we see a race. To make the race
2246  * small, we check mm->moving_account and detect there are possibility of race
2247  * If there is, we take a lock.
2248  */
2249 
2250 void __mem_cgroup_begin_update_page_stat(struct page *page,
2251 				bool *locked, unsigned long *flags)
2252 {
2253 	struct mem_cgroup *memcg;
2254 	struct page_cgroup *pc;
2255 
2256 	pc = lookup_page_cgroup(page);
2257 again:
2258 	memcg = pc->mem_cgroup;
2259 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2260 		return;
2261 	/*
2262 	 * If this memory cgroup is not under account moving, we don't
2263 	 * need to take move_lock_mem_cgroup(). Because we already hold
2264 	 * rcu_read_lock(), any calls to move_account will be delayed until
2265 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2266 	 */
2267 	if (!mem_cgroup_stolen(memcg))
2268 		return;
2269 
2270 	move_lock_mem_cgroup(memcg, flags);
2271 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2272 		move_unlock_mem_cgroup(memcg, flags);
2273 		goto again;
2274 	}
2275 	*locked = true;
2276 }
2277 
2278 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2279 {
2280 	struct page_cgroup *pc = lookup_page_cgroup(page);
2281 
2282 	/*
2283 	 * It's guaranteed that pc->mem_cgroup never changes while
2284 	 * lock is held because a routine modifies pc->mem_cgroup
2285 	 * should take move_lock_mem_cgroup().
2286 	 */
2287 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2288 }
2289 
2290 void mem_cgroup_update_page_stat(struct page *page,
2291 				 enum mem_cgroup_page_stat_item idx, int val)
2292 {
2293 	struct mem_cgroup *memcg;
2294 	struct page_cgroup *pc = lookup_page_cgroup(page);
2295 	unsigned long uninitialized_var(flags);
2296 
2297 	if (mem_cgroup_disabled())
2298 		return;
2299 
2300 	memcg = pc->mem_cgroup;
2301 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2302 		return;
2303 
2304 	switch (idx) {
2305 	case MEMCG_NR_FILE_MAPPED:
2306 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2307 		break;
2308 	default:
2309 		BUG();
2310 	}
2311 
2312 	this_cpu_add(memcg->stat->count[idx], val);
2313 }
2314 
2315 /*
2316  * size of first charge trial. "32" comes from vmscan.c's magic value.
2317  * TODO: maybe necessary to use big numbers in big irons.
2318  */
2319 #define CHARGE_BATCH	32U
2320 struct memcg_stock_pcp {
2321 	struct mem_cgroup *cached; /* this never be root cgroup */
2322 	unsigned int nr_pages;
2323 	struct work_struct work;
2324 	unsigned long flags;
2325 #define FLUSHING_CACHED_CHARGE	0
2326 };
2327 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2328 static DEFINE_MUTEX(percpu_charge_mutex);
2329 
2330 /**
2331  * consume_stock: Try to consume stocked charge on this cpu.
2332  * @memcg: memcg to consume from.
2333  * @nr_pages: how many pages to charge.
2334  *
2335  * The charges will only happen if @memcg matches the current cpu's memcg
2336  * stock, and at least @nr_pages are available in that stock.  Failure to
2337  * service an allocation will refill the stock.
2338  *
2339  * returns true if successful, false otherwise.
2340  */
2341 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2342 {
2343 	struct memcg_stock_pcp *stock;
2344 	bool ret = true;
2345 
2346 	if (nr_pages > CHARGE_BATCH)
2347 		return false;
2348 
2349 	stock = &get_cpu_var(memcg_stock);
2350 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2351 		stock->nr_pages -= nr_pages;
2352 	else /* need to call res_counter_charge */
2353 		ret = false;
2354 	put_cpu_var(memcg_stock);
2355 	return ret;
2356 }
2357 
2358 /*
2359  * Returns stocks cached in percpu to res_counter and reset cached information.
2360  */
2361 static void drain_stock(struct memcg_stock_pcp *stock)
2362 {
2363 	struct mem_cgroup *old = stock->cached;
2364 
2365 	if (stock->nr_pages) {
2366 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2367 
2368 		res_counter_uncharge(&old->res, bytes);
2369 		if (do_swap_account)
2370 			res_counter_uncharge(&old->memsw, bytes);
2371 		stock->nr_pages = 0;
2372 	}
2373 	stock->cached = NULL;
2374 }
2375 
2376 /*
2377  * This must be called under preempt disabled or must be called by
2378  * a thread which is pinned to local cpu.
2379  */
2380 static void drain_local_stock(struct work_struct *dummy)
2381 {
2382 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2383 	drain_stock(stock);
2384 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2385 }
2386 
2387 static void __init memcg_stock_init(void)
2388 {
2389 	int cpu;
2390 
2391 	for_each_possible_cpu(cpu) {
2392 		struct memcg_stock_pcp *stock =
2393 					&per_cpu(memcg_stock, cpu);
2394 		INIT_WORK(&stock->work, drain_local_stock);
2395 	}
2396 }
2397 
2398 /*
2399  * Cache charges(val) which is from res_counter, to local per_cpu area.
2400  * This will be consumed by consume_stock() function, later.
2401  */
2402 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2403 {
2404 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2405 
2406 	if (stock->cached != memcg) { /* reset if necessary */
2407 		drain_stock(stock);
2408 		stock->cached = memcg;
2409 	}
2410 	stock->nr_pages += nr_pages;
2411 	put_cpu_var(memcg_stock);
2412 }
2413 
2414 /*
2415  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2416  * of the hierarchy under it. sync flag says whether we should block
2417  * until the work is done.
2418  */
2419 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2420 {
2421 	int cpu, curcpu;
2422 
2423 	/* Notify other cpus that system-wide "drain" is running */
2424 	get_online_cpus();
2425 	curcpu = get_cpu();
2426 	for_each_online_cpu(cpu) {
2427 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2428 		struct mem_cgroup *memcg;
2429 
2430 		memcg = stock->cached;
2431 		if (!memcg || !stock->nr_pages)
2432 			continue;
2433 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2434 			continue;
2435 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2436 			if (cpu == curcpu)
2437 				drain_local_stock(&stock->work);
2438 			else
2439 				schedule_work_on(cpu, &stock->work);
2440 		}
2441 	}
2442 	put_cpu();
2443 
2444 	if (!sync)
2445 		goto out;
2446 
2447 	for_each_online_cpu(cpu) {
2448 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2449 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2450 			flush_work(&stock->work);
2451 	}
2452 out:
2453  	put_online_cpus();
2454 }
2455 
2456 /*
2457  * Tries to drain stocked charges in other cpus. This function is asynchronous
2458  * and just put a work per cpu for draining localy on each cpu. Caller can
2459  * expects some charges will be back to res_counter later but cannot wait for
2460  * it.
2461  */
2462 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2463 {
2464 	/*
2465 	 * If someone calls draining, avoid adding more kworker runs.
2466 	 */
2467 	if (!mutex_trylock(&percpu_charge_mutex))
2468 		return;
2469 	drain_all_stock(root_memcg, false);
2470 	mutex_unlock(&percpu_charge_mutex);
2471 }
2472 
2473 /* This is a synchronous drain interface. */
2474 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2475 {
2476 	/* called when force_empty is called */
2477 	mutex_lock(&percpu_charge_mutex);
2478 	drain_all_stock(root_memcg, true);
2479 	mutex_unlock(&percpu_charge_mutex);
2480 }
2481 
2482 /*
2483  * This function drains percpu counter value from DEAD cpu and
2484  * move it to local cpu. Note that this function can be preempted.
2485  */
2486 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2487 {
2488 	int i;
2489 
2490 	spin_lock(&memcg->pcp_counter_lock);
2491 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2492 		long x = per_cpu(memcg->stat->count[i], cpu);
2493 
2494 		per_cpu(memcg->stat->count[i], cpu) = 0;
2495 		memcg->nocpu_base.count[i] += x;
2496 	}
2497 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2498 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2499 
2500 		per_cpu(memcg->stat->events[i], cpu) = 0;
2501 		memcg->nocpu_base.events[i] += x;
2502 	}
2503 	spin_unlock(&memcg->pcp_counter_lock);
2504 }
2505 
2506 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2507 					unsigned long action,
2508 					void *hcpu)
2509 {
2510 	int cpu = (unsigned long)hcpu;
2511 	struct memcg_stock_pcp *stock;
2512 	struct mem_cgroup *iter;
2513 
2514 	if (action == CPU_ONLINE)
2515 		return NOTIFY_OK;
2516 
2517 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2518 		return NOTIFY_OK;
2519 
2520 	for_each_mem_cgroup(iter)
2521 		mem_cgroup_drain_pcp_counter(iter, cpu);
2522 
2523 	stock = &per_cpu(memcg_stock, cpu);
2524 	drain_stock(stock);
2525 	return NOTIFY_OK;
2526 }
2527 
2528 
2529 /* See __mem_cgroup_try_charge() for details */
2530 enum {
2531 	CHARGE_OK,		/* success */
2532 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2533 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2534 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2535 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2536 };
2537 
2538 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2539 				unsigned int nr_pages, unsigned int min_pages,
2540 				bool oom_check)
2541 {
2542 	unsigned long csize = nr_pages * PAGE_SIZE;
2543 	struct mem_cgroup *mem_over_limit;
2544 	struct res_counter *fail_res;
2545 	unsigned long flags = 0;
2546 	int ret;
2547 
2548 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2549 
2550 	if (likely(!ret)) {
2551 		if (!do_swap_account)
2552 			return CHARGE_OK;
2553 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2554 		if (likely(!ret))
2555 			return CHARGE_OK;
2556 
2557 		res_counter_uncharge(&memcg->res, csize);
2558 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2559 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2560 	} else
2561 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2562 	/*
2563 	 * Never reclaim on behalf of optional batching, retry with a
2564 	 * single page instead.
2565 	 */
2566 	if (nr_pages > min_pages)
2567 		return CHARGE_RETRY;
2568 
2569 	if (!(gfp_mask & __GFP_WAIT))
2570 		return CHARGE_WOULDBLOCK;
2571 
2572 	if (gfp_mask & __GFP_NORETRY)
2573 		return CHARGE_NOMEM;
2574 
2575 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2576 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2577 		return CHARGE_RETRY;
2578 	/*
2579 	 * Even though the limit is exceeded at this point, reclaim
2580 	 * may have been able to free some pages.  Retry the charge
2581 	 * before killing the task.
2582 	 *
2583 	 * Only for regular pages, though: huge pages are rather
2584 	 * unlikely to succeed so close to the limit, and we fall back
2585 	 * to regular pages anyway in case of failure.
2586 	 */
2587 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2588 		return CHARGE_RETRY;
2589 
2590 	/*
2591 	 * At task move, charge accounts can be doubly counted. So, it's
2592 	 * better to wait until the end of task_move if something is going on.
2593 	 */
2594 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2595 		return CHARGE_RETRY;
2596 
2597 	/* If we don't need to call oom-killer at el, return immediately */
2598 	if (!oom_check)
2599 		return CHARGE_NOMEM;
2600 	/* check OOM */
2601 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2602 		return CHARGE_OOM_DIE;
2603 
2604 	return CHARGE_RETRY;
2605 }
2606 
2607 /*
2608  * __mem_cgroup_try_charge() does
2609  * 1. detect memcg to be charged against from passed *mm and *ptr,
2610  * 2. update res_counter
2611  * 3. call memory reclaim if necessary.
2612  *
2613  * In some special case, if the task is fatal, fatal_signal_pending() or
2614  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2615  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2616  * as possible without any hazards. 2: all pages should have a valid
2617  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2618  * pointer, that is treated as a charge to root_mem_cgroup.
2619  *
2620  * So __mem_cgroup_try_charge() will return
2621  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2622  *  -ENOMEM ...  charge failure because of resource limits.
2623  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2624  *
2625  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2626  * the oom-killer can be invoked.
2627  */
2628 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2629 				   gfp_t gfp_mask,
2630 				   unsigned int nr_pages,
2631 				   struct mem_cgroup **ptr,
2632 				   bool oom)
2633 {
2634 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2635 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2636 	struct mem_cgroup *memcg = NULL;
2637 	int ret;
2638 
2639 	/*
2640 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2641 	 * in system level. So, allow to go ahead dying process in addition to
2642 	 * MEMDIE process.
2643 	 */
2644 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2645 		     || fatal_signal_pending(current)))
2646 		goto bypass;
2647 
2648 	/*
2649 	 * We always charge the cgroup the mm_struct belongs to.
2650 	 * The mm_struct's mem_cgroup changes on task migration if the
2651 	 * thread group leader migrates. It's possible that mm is not
2652 	 * set, if so charge the root memcg (happens for pagecache usage).
2653 	 */
2654 	if (!*ptr && !mm)
2655 		*ptr = root_mem_cgroup;
2656 again:
2657 	if (*ptr) { /* css should be a valid one */
2658 		memcg = *ptr;
2659 		if (mem_cgroup_is_root(memcg))
2660 			goto done;
2661 		if (consume_stock(memcg, nr_pages))
2662 			goto done;
2663 		css_get(&memcg->css);
2664 	} else {
2665 		struct task_struct *p;
2666 
2667 		rcu_read_lock();
2668 		p = rcu_dereference(mm->owner);
2669 		/*
2670 		 * Because we don't have task_lock(), "p" can exit.
2671 		 * In that case, "memcg" can point to root or p can be NULL with
2672 		 * race with swapoff. Then, we have small risk of mis-accouning.
2673 		 * But such kind of mis-account by race always happens because
2674 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2675 		 * small race, here.
2676 		 * (*) swapoff at el will charge against mm-struct not against
2677 		 * task-struct. So, mm->owner can be NULL.
2678 		 */
2679 		memcg = mem_cgroup_from_task(p);
2680 		if (!memcg)
2681 			memcg = root_mem_cgroup;
2682 		if (mem_cgroup_is_root(memcg)) {
2683 			rcu_read_unlock();
2684 			goto done;
2685 		}
2686 		if (consume_stock(memcg, nr_pages)) {
2687 			/*
2688 			 * It seems dagerous to access memcg without css_get().
2689 			 * But considering how consume_stok works, it's not
2690 			 * necessary. If consume_stock success, some charges
2691 			 * from this memcg are cached on this cpu. So, we
2692 			 * don't need to call css_get()/css_tryget() before
2693 			 * calling consume_stock().
2694 			 */
2695 			rcu_read_unlock();
2696 			goto done;
2697 		}
2698 		/* after here, we may be blocked. we need to get refcnt */
2699 		if (!css_tryget(&memcg->css)) {
2700 			rcu_read_unlock();
2701 			goto again;
2702 		}
2703 		rcu_read_unlock();
2704 	}
2705 
2706 	do {
2707 		bool oom_check;
2708 
2709 		/* If killed, bypass charge */
2710 		if (fatal_signal_pending(current)) {
2711 			css_put(&memcg->css);
2712 			goto bypass;
2713 		}
2714 
2715 		oom_check = false;
2716 		if (oom && !nr_oom_retries) {
2717 			oom_check = true;
2718 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2719 		}
2720 
2721 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2722 		    oom_check);
2723 		switch (ret) {
2724 		case CHARGE_OK:
2725 			break;
2726 		case CHARGE_RETRY: /* not in OOM situation but retry */
2727 			batch = nr_pages;
2728 			css_put(&memcg->css);
2729 			memcg = NULL;
2730 			goto again;
2731 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2732 			css_put(&memcg->css);
2733 			goto nomem;
2734 		case CHARGE_NOMEM: /* OOM routine works */
2735 			if (!oom) {
2736 				css_put(&memcg->css);
2737 				goto nomem;
2738 			}
2739 			/* If oom, we never return -ENOMEM */
2740 			nr_oom_retries--;
2741 			break;
2742 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2743 			css_put(&memcg->css);
2744 			goto bypass;
2745 		}
2746 	} while (ret != CHARGE_OK);
2747 
2748 	if (batch > nr_pages)
2749 		refill_stock(memcg, batch - nr_pages);
2750 	css_put(&memcg->css);
2751 done:
2752 	*ptr = memcg;
2753 	return 0;
2754 nomem:
2755 	*ptr = NULL;
2756 	return -ENOMEM;
2757 bypass:
2758 	*ptr = root_mem_cgroup;
2759 	return -EINTR;
2760 }
2761 
2762 /*
2763  * Somemtimes we have to undo a charge we got by try_charge().
2764  * This function is for that and do uncharge, put css's refcnt.
2765  * gotten by try_charge().
2766  */
2767 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2768 				       unsigned int nr_pages)
2769 {
2770 	if (!mem_cgroup_is_root(memcg)) {
2771 		unsigned long bytes = nr_pages * PAGE_SIZE;
2772 
2773 		res_counter_uncharge(&memcg->res, bytes);
2774 		if (do_swap_account)
2775 			res_counter_uncharge(&memcg->memsw, bytes);
2776 	}
2777 }
2778 
2779 /*
2780  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2781  * This is useful when moving usage to parent cgroup.
2782  */
2783 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2784 					unsigned int nr_pages)
2785 {
2786 	unsigned long bytes = nr_pages * PAGE_SIZE;
2787 
2788 	if (mem_cgroup_is_root(memcg))
2789 		return;
2790 
2791 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2792 	if (do_swap_account)
2793 		res_counter_uncharge_until(&memcg->memsw,
2794 						memcg->memsw.parent, bytes);
2795 }
2796 
2797 /*
2798  * A helper function to get mem_cgroup from ID. must be called under
2799  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2800  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2801  * called against removed memcg.)
2802  */
2803 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2804 {
2805 	struct cgroup_subsys_state *css;
2806 
2807 	/* ID 0 is unused ID */
2808 	if (!id)
2809 		return NULL;
2810 	css = css_lookup(&mem_cgroup_subsys, id);
2811 	if (!css)
2812 		return NULL;
2813 	return mem_cgroup_from_css(css);
2814 }
2815 
2816 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2817 {
2818 	struct mem_cgroup *memcg = NULL;
2819 	struct page_cgroup *pc;
2820 	unsigned short id;
2821 	swp_entry_t ent;
2822 
2823 	VM_BUG_ON(!PageLocked(page));
2824 
2825 	pc = lookup_page_cgroup(page);
2826 	lock_page_cgroup(pc);
2827 	if (PageCgroupUsed(pc)) {
2828 		memcg = pc->mem_cgroup;
2829 		if (memcg && !css_tryget(&memcg->css))
2830 			memcg = NULL;
2831 	} else if (PageSwapCache(page)) {
2832 		ent.val = page_private(page);
2833 		id = lookup_swap_cgroup_id(ent);
2834 		rcu_read_lock();
2835 		memcg = mem_cgroup_lookup(id);
2836 		if (memcg && !css_tryget(&memcg->css))
2837 			memcg = NULL;
2838 		rcu_read_unlock();
2839 	}
2840 	unlock_page_cgroup(pc);
2841 	return memcg;
2842 }
2843 
2844 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2845 				       struct page *page,
2846 				       unsigned int nr_pages,
2847 				       enum charge_type ctype,
2848 				       bool lrucare)
2849 {
2850 	struct page_cgroup *pc = lookup_page_cgroup(page);
2851 	struct zone *uninitialized_var(zone);
2852 	struct lruvec *lruvec;
2853 	bool was_on_lru = false;
2854 	bool anon;
2855 
2856 	lock_page_cgroup(pc);
2857 	VM_BUG_ON(PageCgroupUsed(pc));
2858 	/*
2859 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2860 	 * accessed by any other context at this point.
2861 	 */
2862 
2863 	/*
2864 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2865 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2866 	 */
2867 	if (lrucare) {
2868 		zone = page_zone(page);
2869 		spin_lock_irq(&zone->lru_lock);
2870 		if (PageLRU(page)) {
2871 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2872 			ClearPageLRU(page);
2873 			del_page_from_lru_list(page, lruvec, page_lru(page));
2874 			was_on_lru = true;
2875 		}
2876 	}
2877 
2878 	pc->mem_cgroup = memcg;
2879 	/*
2880 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2881 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2882 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2883 	 * before USED bit, we need memory barrier here.
2884 	 * See mem_cgroup_add_lru_list(), etc.
2885  	 */
2886 	smp_wmb();
2887 	SetPageCgroupUsed(pc);
2888 
2889 	if (lrucare) {
2890 		if (was_on_lru) {
2891 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2892 			VM_BUG_ON(PageLRU(page));
2893 			SetPageLRU(page);
2894 			add_page_to_lru_list(page, lruvec, page_lru(page));
2895 		}
2896 		spin_unlock_irq(&zone->lru_lock);
2897 	}
2898 
2899 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2900 		anon = true;
2901 	else
2902 		anon = false;
2903 
2904 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2905 	unlock_page_cgroup(pc);
2906 
2907 	/*
2908 	 * "charge_statistics" updated event counter. Then, check it.
2909 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2910 	 * if they exceeds softlimit.
2911 	 */
2912 	memcg_check_events(memcg, page);
2913 }
2914 
2915 static DEFINE_MUTEX(set_limit_mutex);
2916 
2917 #ifdef CONFIG_MEMCG_KMEM
2918 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2919 {
2920 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2921 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2922 }
2923 
2924 /*
2925  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2926  * in the memcg_cache_params struct.
2927  */
2928 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2929 {
2930 	struct kmem_cache *cachep;
2931 
2932 	VM_BUG_ON(p->is_root_cache);
2933 	cachep = p->root_cache;
2934 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2935 }
2936 
2937 #ifdef CONFIG_SLABINFO
2938 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2939 				    struct cftype *cft, struct seq_file *m)
2940 {
2941 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2942 	struct memcg_cache_params *params;
2943 
2944 	if (!memcg_can_account_kmem(memcg))
2945 		return -EIO;
2946 
2947 	print_slabinfo_header(m);
2948 
2949 	mutex_lock(&memcg->slab_caches_mutex);
2950 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2951 		cache_show(memcg_params_to_cache(params), m);
2952 	mutex_unlock(&memcg->slab_caches_mutex);
2953 
2954 	return 0;
2955 }
2956 #endif
2957 
2958 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2959 {
2960 	struct res_counter *fail_res;
2961 	struct mem_cgroup *_memcg;
2962 	int ret = 0;
2963 	bool may_oom;
2964 
2965 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2966 	if (ret)
2967 		return ret;
2968 
2969 	/*
2970 	 * Conditions under which we can wait for the oom_killer. Those are
2971 	 * the same conditions tested by the core page allocator
2972 	 */
2973 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2974 
2975 	_memcg = memcg;
2976 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2977 				      &_memcg, may_oom);
2978 
2979 	if (ret == -EINTR)  {
2980 		/*
2981 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
2982 		 * OOM kill or fatal signal.  Since our only options are to
2983 		 * either fail the allocation or charge it to this cgroup, do
2984 		 * it as a temporary condition. But we can't fail. From a
2985 		 * kmem/slab perspective, the cache has already been selected,
2986 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2987 		 * our minds.
2988 		 *
2989 		 * This condition will only trigger if the task entered
2990 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
2991 		 * __mem_cgroup_try_charge() above. Tasks that were already
2992 		 * dying when the allocation triggers should have been already
2993 		 * directed to the root cgroup in memcontrol.h
2994 		 */
2995 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
2996 		if (do_swap_account)
2997 			res_counter_charge_nofail(&memcg->memsw, size,
2998 						  &fail_res);
2999 		ret = 0;
3000 	} else if (ret)
3001 		res_counter_uncharge(&memcg->kmem, size);
3002 
3003 	return ret;
3004 }
3005 
3006 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3007 {
3008 	res_counter_uncharge(&memcg->res, size);
3009 	if (do_swap_account)
3010 		res_counter_uncharge(&memcg->memsw, size);
3011 
3012 	/* Not down to 0 */
3013 	if (res_counter_uncharge(&memcg->kmem, size))
3014 		return;
3015 
3016 	/*
3017 	 * Releases a reference taken in kmem_cgroup_css_offline in case
3018 	 * this last uncharge is racing with the offlining code or it is
3019 	 * outliving the memcg existence.
3020 	 *
3021 	 * The memory barrier imposed by test&clear is paired with the
3022 	 * explicit one in memcg_kmem_mark_dead().
3023 	 */
3024 	if (memcg_kmem_test_and_clear_dead(memcg))
3025 		css_put(&memcg->css);
3026 }
3027 
3028 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3029 {
3030 	if (!memcg)
3031 		return;
3032 
3033 	mutex_lock(&memcg->slab_caches_mutex);
3034 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3035 	mutex_unlock(&memcg->slab_caches_mutex);
3036 }
3037 
3038 /*
3039  * helper for acessing a memcg's index. It will be used as an index in the
3040  * child cache array in kmem_cache, and also to derive its name. This function
3041  * will return -1 when this is not a kmem-limited memcg.
3042  */
3043 int memcg_cache_id(struct mem_cgroup *memcg)
3044 {
3045 	return memcg ? memcg->kmemcg_id : -1;
3046 }
3047 
3048 /*
3049  * This ends up being protected by the set_limit mutex, during normal
3050  * operation, because that is its main call site.
3051  *
3052  * But when we create a new cache, we can call this as well if its parent
3053  * is kmem-limited. That will have to hold set_limit_mutex as well.
3054  */
3055 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3056 {
3057 	int num, ret;
3058 
3059 	num = ida_simple_get(&kmem_limited_groups,
3060 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3061 	if (num < 0)
3062 		return num;
3063 	/*
3064 	 * After this point, kmem_accounted (that we test atomically in
3065 	 * the beginning of this conditional), is no longer 0. This
3066 	 * guarantees only one process will set the following boolean
3067 	 * to true. We don't need test_and_set because we're protected
3068 	 * by the set_limit_mutex anyway.
3069 	 */
3070 	memcg_kmem_set_activated(memcg);
3071 
3072 	ret = memcg_update_all_caches(num+1);
3073 	if (ret) {
3074 		ida_simple_remove(&kmem_limited_groups, num);
3075 		memcg_kmem_clear_activated(memcg);
3076 		return ret;
3077 	}
3078 
3079 	memcg->kmemcg_id = num;
3080 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3081 	mutex_init(&memcg->slab_caches_mutex);
3082 	return 0;
3083 }
3084 
3085 static size_t memcg_caches_array_size(int num_groups)
3086 {
3087 	ssize_t size;
3088 	if (num_groups <= 0)
3089 		return 0;
3090 
3091 	size = 2 * num_groups;
3092 	if (size < MEMCG_CACHES_MIN_SIZE)
3093 		size = MEMCG_CACHES_MIN_SIZE;
3094 	else if (size > MEMCG_CACHES_MAX_SIZE)
3095 		size = MEMCG_CACHES_MAX_SIZE;
3096 
3097 	return size;
3098 }
3099 
3100 /*
3101  * We should update the current array size iff all caches updates succeed. This
3102  * can only be done from the slab side. The slab mutex needs to be held when
3103  * calling this.
3104  */
3105 void memcg_update_array_size(int num)
3106 {
3107 	if (num > memcg_limited_groups_array_size)
3108 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3109 }
3110 
3111 static void kmem_cache_destroy_work_func(struct work_struct *w);
3112 
3113 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3114 {
3115 	struct memcg_cache_params *cur_params = s->memcg_params;
3116 
3117 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3118 
3119 	if (num_groups > memcg_limited_groups_array_size) {
3120 		int i;
3121 		ssize_t size = memcg_caches_array_size(num_groups);
3122 
3123 		size *= sizeof(void *);
3124 		size += sizeof(struct memcg_cache_params);
3125 
3126 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3127 		if (!s->memcg_params) {
3128 			s->memcg_params = cur_params;
3129 			return -ENOMEM;
3130 		}
3131 
3132 		s->memcg_params->is_root_cache = true;
3133 
3134 		/*
3135 		 * There is the chance it will be bigger than
3136 		 * memcg_limited_groups_array_size, if we failed an allocation
3137 		 * in a cache, in which case all caches updated before it, will
3138 		 * have a bigger array.
3139 		 *
3140 		 * But if that is the case, the data after
3141 		 * memcg_limited_groups_array_size is certainly unused
3142 		 */
3143 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3144 			if (!cur_params->memcg_caches[i])
3145 				continue;
3146 			s->memcg_params->memcg_caches[i] =
3147 						cur_params->memcg_caches[i];
3148 		}
3149 
3150 		/*
3151 		 * Ideally, we would wait until all caches succeed, and only
3152 		 * then free the old one. But this is not worth the extra
3153 		 * pointer per-cache we'd have to have for this.
3154 		 *
3155 		 * It is not a big deal if some caches are left with a size
3156 		 * bigger than the others. And all updates will reset this
3157 		 * anyway.
3158 		 */
3159 		kfree(cur_params);
3160 	}
3161 	return 0;
3162 }
3163 
3164 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3165 			 struct kmem_cache *root_cache)
3166 {
3167 	size_t size = sizeof(struct memcg_cache_params);
3168 
3169 	if (!memcg_kmem_enabled())
3170 		return 0;
3171 
3172 	if (!memcg)
3173 		size += memcg_limited_groups_array_size * sizeof(void *);
3174 
3175 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3176 	if (!s->memcg_params)
3177 		return -ENOMEM;
3178 
3179 	if (memcg) {
3180 		s->memcg_params->memcg = memcg;
3181 		s->memcg_params->root_cache = root_cache;
3182 		INIT_WORK(&s->memcg_params->destroy,
3183 				kmem_cache_destroy_work_func);
3184 	} else
3185 		s->memcg_params->is_root_cache = true;
3186 
3187 	return 0;
3188 }
3189 
3190 void memcg_release_cache(struct kmem_cache *s)
3191 {
3192 	struct kmem_cache *root;
3193 	struct mem_cgroup *memcg;
3194 	int id;
3195 
3196 	/*
3197 	 * This happens, for instance, when a root cache goes away before we
3198 	 * add any memcg.
3199 	 */
3200 	if (!s->memcg_params)
3201 		return;
3202 
3203 	if (s->memcg_params->is_root_cache)
3204 		goto out;
3205 
3206 	memcg = s->memcg_params->memcg;
3207 	id  = memcg_cache_id(memcg);
3208 
3209 	root = s->memcg_params->root_cache;
3210 	root->memcg_params->memcg_caches[id] = NULL;
3211 
3212 	mutex_lock(&memcg->slab_caches_mutex);
3213 	list_del(&s->memcg_params->list);
3214 	mutex_unlock(&memcg->slab_caches_mutex);
3215 
3216 	css_put(&memcg->css);
3217 out:
3218 	kfree(s->memcg_params);
3219 }
3220 
3221 /*
3222  * During the creation a new cache, we need to disable our accounting mechanism
3223  * altogether. This is true even if we are not creating, but rather just
3224  * enqueing new caches to be created.
3225  *
3226  * This is because that process will trigger allocations; some visible, like
3227  * explicit kmallocs to auxiliary data structures, name strings and internal
3228  * cache structures; some well concealed, like INIT_WORK() that can allocate
3229  * objects during debug.
3230  *
3231  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3232  * to it. This may not be a bounded recursion: since the first cache creation
3233  * failed to complete (waiting on the allocation), we'll just try to create the
3234  * cache again, failing at the same point.
3235  *
3236  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3237  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3238  * inside the following two functions.
3239  */
3240 static inline void memcg_stop_kmem_account(void)
3241 {
3242 	VM_BUG_ON(!current->mm);
3243 	current->memcg_kmem_skip_account++;
3244 }
3245 
3246 static inline void memcg_resume_kmem_account(void)
3247 {
3248 	VM_BUG_ON(!current->mm);
3249 	current->memcg_kmem_skip_account--;
3250 }
3251 
3252 static void kmem_cache_destroy_work_func(struct work_struct *w)
3253 {
3254 	struct kmem_cache *cachep;
3255 	struct memcg_cache_params *p;
3256 
3257 	p = container_of(w, struct memcg_cache_params, destroy);
3258 
3259 	cachep = memcg_params_to_cache(p);
3260 
3261 	/*
3262 	 * If we get down to 0 after shrink, we could delete right away.
3263 	 * However, memcg_release_pages() already puts us back in the workqueue
3264 	 * in that case. If we proceed deleting, we'll get a dangling
3265 	 * reference, and removing the object from the workqueue in that case
3266 	 * is unnecessary complication. We are not a fast path.
3267 	 *
3268 	 * Note that this case is fundamentally different from racing with
3269 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3270 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3271 	 * into the queue, but doing so from inside the worker racing to
3272 	 * destroy it.
3273 	 *
3274 	 * So if we aren't down to zero, we'll just schedule a worker and try
3275 	 * again
3276 	 */
3277 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3278 		kmem_cache_shrink(cachep);
3279 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3280 			return;
3281 	} else
3282 		kmem_cache_destroy(cachep);
3283 }
3284 
3285 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3286 {
3287 	if (!cachep->memcg_params->dead)
3288 		return;
3289 
3290 	/*
3291 	 * There are many ways in which we can get here.
3292 	 *
3293 	 * We can get to a memory-pressure situation while the delayed work is
3294 	 * still pending to run. The vmscan shrinkers can then release all
3295 	 * cache memory and get us to destruction. If this is the case, we'll
3296 	 * be executed twice, which is a bug (the second time will execute over
3297 	 * bogus data). In this case, cancelling the work should be fine.
3298 	 *
3299 	 * But we can also get here from the worker itself, if
3300 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3301 	 * get the page count to 0. In this case, we'll deadlock if we try to
3302 	 * cancel the work (the worker runs with an internal lock held, which
3303 	 * is the same lock we would hold for cancel_work_sync().)
3304 	 *
3305 	 * Since we can't possibly know who got us here, just refrain from
3306 	 * running if there is already work pending
3307 	 */
3308 	if (work_pending(&cachep->memcg_params->destroy))
3309 		return;
3310 	/*
3311 	 * We have to defer the actual destroying to a workqueue, because
3312 	 * we might currently be in a context that cannot sleep.
3313 	 */
3314 	schedule_work(&cachep->memcg_params->destroy);
3315 }
3316 
3317 /*
3318  * This lock protects updaters, not readers. We want readers to be as fast as
3319  * they can, and they will either see NULL or a valid cache value. Our model
3320  * allow them to see NULL, in which case the root memcg will be selected.
3321  *
3322  * We need this lock because multiple allocations to the same cache from a non
3323  * will span more than one worker. Only one of them can create the cache.
3324  */
3325 static DEFINE_MUTEX(memcg_cache_mutex);
3326 
3327 /*
3328  * Called with memcg_cache_mutex held
3329  */
3330 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3331 					 struct kmem_cache *s)
3332 {
3333 	struct kmem_cache *new;
3334 	static char *tmp_name = NULL;
3335 
3336 	lockdep_assert_held(&memcg_cache_mutex);
3337 
3338 	/*
3339 	 * kmem_cache_create_memcg duplicates the given name and
3340 	 * cgroup_name for this name requires RCU context.
3341 	 * This static temporary buffer is used to prevent from
3342 	 * pointless shortliving allocation.
3343 	 */
3344 	if (!tmp_name) {
3345 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3346 		if (!tmp_name)
3347 			return NULL;
3348 	}
3349 
3350 	rcu_read_lock();
3351 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3352 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3353 	rcu_read_unlock();
3354 
3355 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3356 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3357 
3358 	if (new)
3359 		new->allocflags |= __GFP_KMEMCG;
3360 
3361 	return new;
3362 }
3363 
3364 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3365 						  struct kmem_cache *cachep)
3366 {
3367 	struct kmem_cache *new_cachep;
3368 	int idx;
3369 
3370 	BUG_ON(!memcg_can_account_kmem(memcg));
3371 
3372 	idx = memcg_cache_id(memcg);
3373 
3374 	mutex_lock(&memcg_cache_mutex);
3375 	new_cachep = cachep->memcg_params->memcg_caches[idx];
3376 	if (new_cachep) {
3377 		css_put(&memcg->css);
3378 		goto out;
3379 	}
3380 
3381 	new_cachep = kmem_cache_dup(memcg, cachep);
3382 	if (new_cachep == NULL) {
3383 		new_cachep = cachep;
3384 		css_put(&memcg->css);
3385 		goto out;
3386 	}
3387 
3388 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3389 
3390 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3391 	/*
3392 	 * the readers won't lock, make sure everybody sees the updated value,
3393 	 * so they won't put stuff in the queue again for no reason
3394 	 */
3395 	wmb();
3396 out:
3397 	mutex_unlock(&memcg_cache_mutex);
3398 	return new_cachep;
3399 }
3400 
3401 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3402 {
3403 	struct kmem_cache *c;
3404 	int i;
3405 
3406 	if (!s->memcg_params)
3407 		return;
3408 	if (!s->memcg_params->is_root_cache)
3409 		return;
3410 
3411 	/*
3412 	 * If the cache is being destroyed, we trust that there is no one else
3413 	 * requesting objects from it. Even if there are, the sanity checks in
3414 	 * kmem_cache_destroy should caught this ill-case.
3415 	 *
3416 	 * Still, we don't want anyone else freeing memcg_caches under our
3417 	 * noses, which can happen if a new memcg comes to life. As usual,
3418 	 * we'll take the set_limit_mutex to protect ourselves against this.
3419 	 */
3420 	mutex_lock(&set_limit_mutex);
3421 	for (i = 0; i < memcg_limited_groups_array_size; i++) {
3422 		c = s->memcg_params->memcg_caches[i];
3423 		if (!c)
3424 			continue;
3425 
3426 		/*
3427 		 * We will now manually delete the caches, so to avoid races
3428 		 * we need to cancel all pending destruction workers and
3429 		 * proceed with destruction ourselves.
3430 		 *
3431 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3432 		 * and that could spawn the workers again: it is likely that
3433 		 * the cache still have active pages until this very moment.
3434 		 * This would lead us back to mem_cgroup_destroy_cache.
3435 		 *
3436 		 * But that will not execute at all if the "dead" flag is not
3437 		 * set, so flip it down to guarantee we are in control.
3438 		 */
3439 		c->memcg_params->dead = false;
3440 		cancel_work_sync(&c->memcg_params->destroy);
3441 		kmem_cache_destroy(c);
3442 	}
3443 	mutex_unlock(&set_limit_mutex);
3444 }
3445 
3446 struct create_work {
3447 	struct mem_cgroup *memcg;
3448 	struct kmem_cache *cachep;
3449 	struct work_struct work;
3450 };
3451 
3452 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3453 {
3454 	struct kmem_cache *cachep;
3455 	struct memcg_cache_params *params;
3456 
3457 	if (!memcg_kmem_is_active(memcg))
3458 		return;
3459 
3460 	mutex_lock(&memcg->slab_caches_mutex);
3461 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3462 		cachep = memcg_params_to_cache(params);
3463 		cachep->memcg_params->dead = true;
3464 		schedule_work(&cachep->memcg_params->destroy);
3465 	}
3466 	mutex_unlock(&memcg->slab_caches_mutex);
3467 }
3468 
3469 static void memcg_create_cache_work_func(struct work_struct *w)
3470 {
3471 	struct create_work *cw;
3472 
3473 	cw = container_of(w, struct create_work, work);
3474 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3475 	kfree(cw);
3476 }
3477 
3478 /*
3479  * Enqueue the creation of a per-memcg kmem_cache.
3480  */
3481 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3482 					 struct kmem_cache *cachep)
3483 {
3484 	struct create_work *cw;
3485 
3486 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3487 	if (cw == NULL) {
3488 		css_put(&memcg->css);
3489 		return;
3490 	}
3491 
3492 	cw->memcg = memcg;
3493 	cw->cachep = cachep;
3494 
3495 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3496 	schedule_work(&cw->work);
3497 }
3498 
3499 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3500 				       struct kmem_cache *cachep)
3501 {
3502 	/*
3503 	 * We need to stop accounting when we kmalloc, because if the
3504 	 * corresponding kmalloc cache is not yet created, the first allocation
3505 	 * in __memcg_create_cache_enqueue will recurse.
3506 	 *
3507 	 * However, it is better to enclose the whole function. Depending on
3508 	 * the debugging options enabled, INIT_WORK(), for instance, can
3509 	 * trigger an allocation. This too, will make us recurse. Because at
3510 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3511 	 * the safest choice is to do it like this, wrapping the whole function.
3512 	 */
3513 	memcg_stop_kmem_account();
3514 	__memcg_create_cache_enqueue(memcg, cachep);
3515 	memcg_resume_kmem_account();
3516 }
3517 /*
3518  * Return the kmem_cache we're supposed to use for a slab allocation.
3519  * We try to use the current memcg's version of the cache.
3520  *
3521  * If the cache does not exist yet, if we are the first user of it,
3522  * we either create it immediately, if possible, or create it asynchronously
3523  * in a workqueue.
3524  * In the latter case, we will let the current allocation go through with
3525  * the original cache.
3526  *
3527  * Can't be called in interrupt context or from kernel threads.
3528  * This function needs to be called with rcu_read_lock() held.
3529  */
3530 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3531 					  gfp_t gfp)
3532 {
3533 	struct mem_cgroup *memcg;
3534 	int idx;
3535 
3536 	VM_BUG_ON(!cachep->memcg_params);
3537 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3538 
3539 	if (!current->mm || current->memcg_kmem_skip_account)
3540 		return cachep;
3541 
3542 	rcu_read_lock();
3543 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3544 
3545 	if (!memcg_can_account_kmem(memcg))
3546 		goto out;
3547 
3548 	idx = memcg_cache_id(memcg);
3549 
3550 	/*
3551 	 * barrier to mare sure we're always seeing the up to date value.  The
3552 	 * code updating memcg_caches will issue a write barrier to match this.
3553 	 */
3554 	read_barrier_depends();
3555 	if (likely(cachep->memcg_params->memcg_caches[idx])) {
3556 		cachep = cachep->memcg_params->memcg_caches[idx];
3557 		goto out;
3558 	}
3559 
3560 	/* The corresponding put will be done in the workqueue. */
3561 	if (!css_tryget(&memcg->css))
3562 		goto out;
3563 	rcu_read_unlock();
3564 
3565 	/*
3566 	 * If we are in a safe context (can wait, and not in interrupt
3567 	 * context), we could be be predictable and return right away.
3568 	 * This would guarantee that the allocation being performed
3569 	 * already belongs in the new cache.
3570 	 *
3571 	 * However, there are some clashes that can arrive from locking.
3572 	 * For instance, because we acquire the slab_mutex while doing
3573 	 * kmem_cache_dup, this means no further allocation could happen
3574 	 * with the slab_mutex held.
3575 	 *
3576 	 * Also, because cache creation issue get_online_cpus(), this
3577 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3578 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3579 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3580 	 * better to defer everything.
3581 	 */
3582 	memcg_create_cache_enqueue(memcg, cachep);
3583 	return cachep;
3584 out:
3585 	rcu_read_unlock();
3586 	return cachep;
3587 }
3588 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3589 
3590 /*
3591  * We need to verify if the allocation against current->mm->owner's memcg is
3592  * possible for the given order. But the page is not allocated yet, so we'll
3593  * need a further commit step to do the final arrangements.
3594  *
3595  * It is possible for the task to switch cgroups in this mean time, so at
3596  * commit time, we can't rely on task conversion any longer.  We'll then use
3597  * the handle argument to return to the caller which cgroup we should commit
3598  * against. We could also return the memcg directly and avoid the pointer
3599  * passing, but a boolean return value gives better semantics considering
3600  * the compiled-out case as well.
3601  *
3602  * Returning true means the allocation is possible.
3603  */
3604 bool
3605 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3606 {
3607 	struct mem_cgroup *memcg;
3608 	int ret;
3609 
3610 	*_memcg = NULL;
3611 
3612 	/*
3613 	 * Disabling accounting is only relevant for some specific memcg
3614 	 * internal allocations. Therefore we would initially not have such
3615 	 * check here, since direct calls to the page allocator that are marked
3616 	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3617 	 * concerned with cache allocations, and by having this test at
3618 	 * memcg_kmem_get_cache, we are already able to relay the allocation to
3619 	 * the root cache and bypass the memcg cache altogether.
3620 	 *
3621 	 * There is one exception, though: the SLUB allocator does not create
3622 	 * large order caches, but rather service large kmallocs directly from
3623 	 * the page allocator. Therefore, the following sequence when backed by
3624 	 * the SLUB allocator:
3625 	 *
3626 	 * 	memcg_stop_kmem_account();
3627 	 * 	kmalloc(<large_number>)
3628 	 * 	memcg_resume_kmem_account();
3629 	 *
3630 	 * would effectively ignore the fact that we should skip accounting,
3631 	 * since it will drive us directly to this function without passing
3632 	 * through the cache selector memcg_kmem_get_cache. Such large
3633 	 * allocations are extremely rare but can happen, for instance, for the
3634 	 * cache arrays. We bring this test here.
3635 	 */
3636 	if (!current->mm || current->memcg_kmem_skip_account)
3637 		return true;
3638 
3639 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3640 
3641 	/*
3642 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3643 	 * isn't much we can do without complicating this too much, and it would
3644 	 * be gfp-dependent anyway. Just let it go
3645 	 */
3646 	if (unlikely(!memcg))
3647 		return true;
3648 
3649 	if (!memcg_can_account_kmem(memcg)) {
3650 		css_put(&memcg->css);
3651 		return true;
3652 	}
3653 
3654 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3655 	if (!ret)
3656 		*_memcg = memcg;
3657 
3658 	css_put(&memcg->css);
3659 	return (ret == 0);
3660 }
3661 
3662 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3663 			      int order)
3664 {
3665 	struct page_cgroup *pc;
3666 
3667 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3668 
3669 	/* The page allocation failed. Revert */
3670 	if (!page) {
3671 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3672 		return;
3673 	}
3674 
3675 	pc = lookup_page_cgroup(page);
3676 	lock_page_cgroup(pc);
3677 	pc->mem_cgroup = memcg;
3678 	SetPageCgroupUsed(pc);
3679 	unlock_page_cgroup(pc);
3680 }
3681 
3682 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3683 {
3684 	struct mem_cgroup *memcg = NULL;
3685 	struct page_cgroup *pc;
3686 
3687 
3688 	pc = lookup_page_cgroup(page);
3689 	/*
3690 	 * Fast unlocked return. Theoretically might have changed, have to
3691 	 * check again after locking.
3692 	 */
3693 	if (!PageCgroupUsed(pc))
3694 		return;
3695 
3696 	lock_page_cgroup(pc);
3697 	if (PageCgroupUsed(pc)) {
3698 		memcg = pc->mem_cgroup;
3699 		ClearPageCgroupUsed(pc);
3700 	}
3701 	unlock_page_cgroup(pc);
3702 
3703 	/*
3704 	 * We trust that only if there is a memcg associated with the page, it
3705 	 * is a valid allocation
3706 	 */
3707 	if (!memcg)
3708 		return;
3709 
3710 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3711 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3712 }
3713 #else
3714 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3715 {
3716 }
3717 #endif /* CONFIG_MEMCG_KMEM */
3718 
3719 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3720 
3721 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3722 /*
3723  * Because tail pages are not marked as "used", set it. We're under
3724  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3725  * charge/uncharge will be never happen and move_account() is done under
3726  * compound_lock(), so we don't have to take care of races.
3727  */
3728 void mem_cgroup_split_huge_fixup(struct page *head)
3729 {
3730 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3731 	struct page_cgroup *pc;
3732 	struct mem_cgroup *memcg;
3733 	int i;
3734 
3735 	if (mem_cgroup_disabled())
3736 		return;
3737 
3738 	memcg = head_pc->mem_cgroup;
3739 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3740 		pc = head_pc + i;
3741 		pc->mem_cgroup = memcg;
3742 		smp_wmb();/* see __commit_charge() */
3743 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3744 	}
3745 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3746 		       HPAGE_PMD_NR);
3747 }
3748 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3749 
3750 /**
3751  * mem_cgroup_move_account - move account of the page
3752  * @page: the page
3753  * @nr_pages: number of regular pages (>1 for huge pages)
3754  * @pc:	page_cgroup of the page.
3755  * @from: mem_cgroup which the page is moved from.
3756  * @to:	mem_cgroup which the page is moved to. @from != @to.
3757  *
3758  * The caller must confirm following.
3759  * - page is not on LRU (isolate_page() is useful.)
3760  * - compound_lock is held when nr_pages > 1
3761  *
3762  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3763  * from old cgroup.
3764  */
3765 static int mem_cgroup_move_account(struct page *page,
3766 				   unsigned int nr_pages,
3767 				   struct page_cgroup *pc,
3768 				   struct mem_cgroup *from,
3769 				   struct mem_cgroup *to)
3770 {
3771 	unsigned long flags;
3772 	int ret;
3773 	bool anon = PageAnon(page);
3774 
3775 	VM_BUG_ON(from == to);
3776 	VM_BUG_ON(PageLRU(page));
3777 	/*
3778 	 * The page is isolated from LRU. So, collapse function
3779 	 * will not handle this page. But page splitting can happen.
3780 	 * Do this check under compound_page_lock(). The caller should
3781 	 * hold it.
3782 	 */
3783 	ret = -EBUSY;
3784 	if (nr_pages > 1 && !PageTransHuge(page))
3785 		goto out;
3786 
3787 	lock_page_cgroup(pc);
3788 
3789 	ret = -EINVAL;
3790 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3791 		goto unlock;
3792 
3793 	move_lock_mem_cgroup(from, &flags);
3794 
3795 	if (!anon && page_mapped(page)) {
3796 		/* Update mapped_file data for mem_cgroup */
3797 		preempt_disable();
3798 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3799 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3800 		preempt_enable();
3801 	}
3802 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3803 
3804 	/* caller should have done css_get */
3805 	pc->mem_cgroup = to;
3806 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3807 	move_unlock_mem_cgroup(from, &flags);
3808 	ret = 0;
3809 unlock:
3810 	unlock_page_cgroup(pc);
3811 	/*
3812 	 * check events
3813 	 */
3814 	memcg_check_events(to, page);
3815 	memcg_check_events(from, page);
3816 out:
3817 	return ret;
3818 }
3819 
3820 /**
3821  * mem_cgroup_move_parent - moves page to the parent group
3822  * @page: the page to move
3823  * @pc: page_cgroup of the page
3824  * @child: page's cgroup
3825  *
3826  * move charges to its parent or the root cgroup if the group has no
3827  * parent (aka use_hierarchy==0).
3828  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3829  * mem_cgroup_move_account fails) the failure is always temporary and
3830  * it signals a race with a page removal/uncharge or migration. In the
3831  * first case the page is on the way out and it will vanish from the LRU
3832  * on the next attempt and the call should be retried later.
3833  * Isolation from the LRU fails only if page has been isolated from
3834  * the LRU since we looked at it and that usually means either global
3835  * reclaim or migration going on. The page will either get back to the
3836  * LRU or vanish.
3837  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3838  * (!PageCgroupUsed) or moved to a different group. The page will
3839  * disappear in the next attempt.
3840  */
3841 static int mem_cgroup_move_parent(struct page *page,
3842 				  struct page_cgroup *pc,
3843 				  struct mem_cgroup *child)
3844 {
3845 	struct mem_cgroup *parent;
3846 	unsigned int nr_pages;
3847 	unsigned long uninitialized_var(flags);
3848 	int ret;
3849 
3850 	VM_BUG_ON(mem_cgroup_is_root(child));
3851 
3852 	ret = -EBUSY;
3853 	if (!get_page_unless_zero(page))
3854 		goto out;
3855 	if (isolate_lru_page(page))
3856 		goto put;
3857 
3858 	nr_pages = hpage_nr_pages(page);
3859 
3860 	parent = parent_mem_cgroup(child);
3861 	/*
3862 	 * If no parent, move charges to root cgroup.
3863 	 */
3864 	if (!parent)
3865 		parent = root_mem_cgroup;
3866 
3867 	if (nr_pages > 1) {
3868 		VM_BUG_ON(!PageTransHuge(page));
3869 		flags = compound_lock_irqsave(page);
3870 	}
3871 
3872 	ret = mem_cgroup_move_account(page, nr_pages,
3873 				pc, child, parent);
3874 	if (!ret)
3875 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3876 
3877 	if (nr_pages > 1)
3878 		compound_unlock_irqrestore(page, flags);
3879 	putback_lru_page(page);
3880 put:
3881 	put_page(page);
3882 out:
3883 	return ret;
3884 }
3885 
3886 /*
3887  * Charge the memory controller for page usage.
3888  * Return
3889  * 0 if the charge was successful
3890  * < 0 if the cgroup is over its limit
3891  */
3892 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3893 				gfp_t gfp_mask, enum charge_type ctype)
3894 {
3895 	struct mem_cgroup *memcg = NULL;
3896 	unsigned int nr_pages = 1;
3897 	bool oom = true;
3898 	int ret;
3899 
3900 	if (PageTransHuge(page)) {
3901 		nr_pages <<= compound_order(page);
3902 		VM_BUG_ON(!PageTransHuge(page));
3903 		/*
3904 		 * Never OOM-kill a process for a huge page.  The
3905 		 * fault handler will fall back to regular pages.
3906 		 */
3907 		oom = false;
3908 	}
3909 
3910 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3911 	if (ret == -ENOMEM)
3912 		return ret;
3913 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3914 	return 0;
3915 }
3916 
3917 int mem_cgroup_newpage_charge(struct page *page,
3918 			      struct mm_struct *mm, gfp_t gfp_mask)
3919 {
3920 	if (mem_cgroup_disabled())
3921 		return 0;
3922 	VM_BUG_ON(page_mapped(page));
3923 	VM_BUG_ON(page->mapping && !PageAnon(page));
3924 	VM_BUG_ON(!mm);
3925 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3926 					MEM_CGROUP_CHARGE_TYPE_ANON);
3927 }
3928 
3929 /*
3930  * While swap-in, try_charge -> commit or cancel, the page is locked.
3931  * And when try_charge() successfully returns, one refcnt to memcg without
3932  * struct page_cgroup is acquired. This refcnt will be consumed by
3933  * "commit()" or removed by "cancel()"
3934  */
3935 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3936 					  struct page *page,
3937 					  gfp_t mask,
3938 					  struct mem_cgroup **memcgp)
3939 {
3940 	struct mem_cgroup *memcg;
3941 	struct page_cgroup *pc;
3942 	int ret;
3943 
3944 	pc = lookup_page_cgroup(page);
3945 	/*
3946 	 * Every swap fault against a single page tries to charge the
3947 	 * page, bail as early as possible.  shmem_unuse() encounters
3948 	 * already charged pages, too.  The USED bit is protected by
3949 	 * the page lock, which serializes swap cache removal, which
3950 	 * in turn serializes uncharging.
3951 	 */
3952 	if (PageCgroupUsed(pc))
3953 		return 0;
3954 	if (!do_swap_account)
3955 		goto charge_cur_mm;
3956 	memcg = try_get_mem_cgroup_from_page(page);
3957 	if (!memcg)
3958 		goto charge_cur_mm;
3959 	*memcgp = memcg;
3960 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3961 	css_put(&memcg->css);
3962 	if (ret == -EINTR)
3963 		ret = 0;
3964 	return ret;
3965 charge_cur_mm:
3966 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3967 	if (ret == -EINTR)
3968 		ret = 0;
3969 	return ret;
3970 }
3971 
3972 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3973 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3974 {
3975 	*memcgp = NULL;
3976 	if (mem_cgroup_disabled())
3977 		return 0;
3978 	/*
3979 	 * A racing thread's fault, or swapoff, may have already
3980 	 * updated the pte, and even removed page from swap cache: in
3981 	 * those cases unuse_pte()'s pte_same() test will fail; but
3982 	 * there's also a KSM case which does need to charge the page.
3983 	 */
3984 	if (!PageSwapCache(page)) {
3985 		int ret;
3986 
3987 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3988 		if (ret == -EINTR)
3989 			ret = 0;
3990 		return ret;
3991 	}
3992 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3993 }
3994 
3995 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3996 {
3997 	if (mem_cgroup_disabled())
3998 		return;
3999 	if (!memcg)
4000 		return;
4001 	__mem_cgroup_cancel_charge(memcg, 1);
4002 }
4003 
4004 static void
4005 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4006 					enum charge_type ctype)
4007 {
4008 	if (mem_cgroup_disabled())
4009 		return;
4010 	if (!memcg)
4011 		return;
4012 
4013 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4014 	/*
4015 	 * Now swap is on-memory. This means this page may be
4016 	 * counted both as mem and swap....double count.
4017 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4018 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4019 	 * may call delete_from_swap_cache() before reach here.
4020 	 */
4021 	if (do_swap_account && PageSwapCache(page)) {
4022 		swp_entry_t ent = {.val = page_private(page)};
4023 		mem_cgroup_uncharge_swap(ent);
4024 	}
4025 }
4026 
4027 void mem_cgroup_commit_charge_swapin(struct page *page,
4028 				     struct mem_cgroup *memcg)
4029 {
4030 	__mem_cgroup_commit_charge_swapin(page, memcg,
4031 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4032 }
4033 
4034 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4035 				gfp_t gfp_mask)
4036 {
4037 	struct mem_cgroup *memcg = NULL;
4038 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4039 	int ret;
4040 
4041 	if (mem_cgroup_disabled())
4042 		return 0;
4043 	if (PageCompound(page))
4044 		return 0;
4045 
4046 	if (!PageSwapCache(page))
4047 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4048 	else { /* page is swapcache/shmem */
4049 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4050 						     gfp_mask, &memcg);
4051 		if (!ret)
4052 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4053 	}
4054 	return ret;
4055 }
4056 
4057 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4058 				   unsigned int nr_pages,
4059 				   const enum charge_type ctype)
4060 {
4061 	struct memcg_batch_info *batch = NULL;
4062 	bool uncharge_memsw = true;
4063 
4064 	/* If swapout, usage of swap doesn't decrease */
4065 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4066 		uncharge_memsw = false;
4067 
4068 	batch = &current->memcg_batch;
4069 	/*
4070 	 * In usual, we do css_get() when we remember memcg pointer.
4071 	 * But in this case, we keep res->usage until end of a series of
4072 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4073 	 */
4074 	if (!batch->memcg)
4075 		batch->memcg = memcg;
4076 	/*
4077 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4078 	 * In those cases, all pages freed continuously can be expected to be in
4079 	 * the same cgroup and we have chance to coalesce uncharges.
4080 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4081 	 * because we want to do uncharge as soon as possible.
4082 	 */
4083 
4084 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4085 		goto direct_uncharge;
4086 
4087 	if (nr_pages > 1)
4088 		goto direct_uncharge;
4089 
4090 	/*
4091 	 * In typical case, batch->memcg == mem. This means we can
4092 	 * merge a series of uncharges to an uncharge of res_counter.
4093 	 * If not, we uncharge res_counter ony by one.
4094 	 */
4095 	if (batch->memcg != memcg)
4096 		goto direct_uncharge;
4097 	/* remember freed charge and uncharge it later */
4098 	batch->nr_pages++;
4099 	if (uncharge_memsw)
4100 		batch->memsw_nr_pages++;
4101 	return;
4102 direct_uncharge:
4103 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4104 	if (uncharge_memsw)
4105 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4106 	if (unlikely(batch->memcg != memcg))
4107 		memcg_oom_recover(memcg);
4108 }
4109 
4110 /*
4111  * uncharge if !page_mapped(page)
4112  */
4113 static struct mem_cgroup *
4114 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4115 			     bool end_migration)
4116 {
4117 	struct mem_cgroup *memcg = NULL;
4118 	unsigned int nr_pages = 1;
4119 	struct page_cgroup *pc;
4120 	bool anon;
4121 
4122 	if (mem_cgroup_disabled())
4123 		return NULL;
4124 
4125 	if (PageTransHuge(page)) {
4126 		nr_pages <<= compound_order(page);
4127 		VM_BUG_ON(!PageTransHuge(page));
4128 	}
4129 	/*
4130 	 * Check if our page_cgroup is valid
4131 	 */
4132 	pc = lookup_page_cgroup(page);
4133 	if (unlikely(!PageCgroupUsed(pc)))
4134 		return NULL;
4135 
4136 	lock_page_cgroup(pc);
4137 
4138 	memcg = pc->mem_cgroup;
4139 
4140 	if (!PageCgroupUsed(pc))
4141 		goto unlock_out;
4142 
4143 	anon = PageAnon(page);
4144 
4145 	switch (ctype) {
4146 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4147 		/*
4148 		 * Generally PageAnon tells if it's the anon statistics to be
4149 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4150 		 * used before page reached the stage of being marked PageAnon.
4151 		 */
4152 		anon = true;
4153 		/* fallthrough */
4154 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4155 		/* See mem_cgroup_prepare_migration() */
4156 		if (page_mapped(page))
4157 			goto unlock_out;
4158 		/*
4159 		 * Pages under migration may not be uncharged.  But
4160 		 * end_migration() /must/ be the one uncharging the
4161 		 * unused post-migration page and so it has to call
4162 		 * here with the migration bit still set.  See the
4163 		 * res_counter handling below.
4164 		 */
4165 		if (!end_migration && PageCgroupMigration(pc))
4166 			goto unlock_out;
4167 		break;
4168 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4169 		if (!PageAnon(page)) {	/* Shared memory */
4170 			if (page->mapping && !page_is_file_cache(page))
4171 				goto unlock_out;
4172 		} else if (page_mapped(page)) /* Anon */
4173 				goto unlock_out;
4174 		break;
4175 	default:
4176 		break;
4177 	}
4178 
4179 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4180 
4181 	ClearPageCgroupUsed(pc);
4182 	/*
4183 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4184 	 * freed from LRU. This is safe because uncharged page is expected not
4185 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4186 	 * special functions.
4187 	 */
4188 
4189 	unlock_page_cgroup(pc);
4190 	/*
4191 	 * even after unlock, we have memcg->res.usage here and this memcg
4192 	 * will never be freed, so it's safe to call css_get().
4193 	 */
4194 	memcg_check_events(memcg, page);
4195 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4196 		mem_cgroup_swap_statistics(memcg, true);
4197 		css_get(&memcg->css);
4198 	}
4199 	/*
4200 	 * Migration does not charge the res_counter for the
4201 	 * replacement page, so leave it alone when phasing out the
4202 	 * page that is unused after the migration.
4203 	 */
4204 	if (!end_migration && !mem_cgroup_is_root(memcg))
4205 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4206 
4207 	return memcg;
4208 
4209 unlock_out:
4210 	unlock_page_cgroup(pc);
4211 	return NULL;
4212 }
4213 
4214 void mem_cgroup_uncharge_page(struct page *page)
4215 {
4216 	/* early check. */
4217 	if (page_mapped(page))
4218 		return;
4219 	VM_BUG_ON(page->mapping && !PageAnon(page));
4220 	/*
4221 	 * If the page is in swap cache, uncharge should be deferred
4222 	 * to the swap path, which also properly accounts swap usage
4223 	 * and handles memcg lifetime.
4224 	 *
4225 	 * Note that this check is not stable and reclaim may add the
4226 	 * page to swap cache at any time after this.  However, if the
4227 	 * page is not in swap cache by the time page->mapcount hits
4228 	 * 0, there won't be any page table references to the swap
4229 	 * slot, and reclaim will free it and not actually write the
4230 	 * page to disk.
4231 	 */
4232 	if (PageSwapCache(page))
4233 		return;
4234 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4235 }
4236 
4237 void mem_cgroup_uncharge_cache_page(struct page *page)
4238 {
4239 	VM_BUG_ON(page_mapped(page));
4240 	VM_BUG_ON(page->mapping);
4241 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4242 }
4243 
4244 /*
4245  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4246  * In that cases, pages are freed continuously and we can expect pages
4247  * are in the same memcg. All these calls itself limits the number of
4248  * pages freed at once, then uncharge_start/end() is called properly.
4249  * This may be called prural(2) times in a context,
4250  */
4251 
4252 void mem_cgroup_uncharge_start(void)
4253 {
4254 	current->memcg_batch.do_batch++;
4255 	/* We can do nest. */
4256 	if (current->memcg_batch.do_batch == 1) {
4257 		current->memcg_batch.memcg = NULL;
4258 		current->memcg_batch.nr_pages = 0;
4259 		current->memcg_batch.memsw_nr_pages = 0;
4260 	}
4261 }
4262 
4263 void mem_cgroup_uncharge_end(void)
4264 {
4265 	struct memcg_batch_info *batch = &current->memcg_batch;
4266 
4267 	if (!batch->do_batch)
4268 		return;
4269 
4270 	batch->do_batch--;
4271 	if (batch->do_batch) /* If stacked, do nothing. */
4272 		return;
4273 
4274 	if (!batch->memcg)
4275 		return;
4276 	/*
4277 	 * This "batch->memcg" is valid without any css_get/put etc...
4278 	 * bacause we hide charges behind us.
4279 	 */
4280 	if (batch->nr_pages)
4281 		res_counter_uncharge(&batch->memcg->res,
4282 				     batch->nr_pages * PAGE_SIZE);
4283 	if (batch->memsw_nr_pages)
4284 		res_counter_uncharge(&batch->memcg->memsw,
4285 				     batch->memsw_nr_pages * PAGE_SIZE);
4286 	memcg_oom_recover(batch->memcg);
4287 	/* forget this pointer (for sanity check) */
4288 	batch->memcg = NULL;
4289 }
4290 
4291 #ifdef CONFIG_SWAP
4292 /*
4293  * called after __delete_from_swap_cache() and drop "page" account.
4294  * memcg information is recorded to swap_cgroup of "ent"
4295  */
4296 void
4297 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4298 {
4299 	struct mem_cgroup *memcg;
4300 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4301 
4302 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4303 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4304 
4305 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4306 
4307 	/*
4308 	 * record memcg information,  if swapout && memcg != NULL,
4309 	 * css_get() was called in uncharge().
4310 	 */
4311 	if (do_swap_account && swapout && memcg)
4312 		swap_cgroup_record(ent, css_id(&memcg->css));
4313 }
4314 #endif
4315 
4316 #ifdef CONFIG_MEMCG_SWAP
4317 /*
4318  * called from swap_entry_free(). remove record in swap_cgroup and
4319  * uncharge "memsw" account.
4320  */
4321 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4322 {
4323 	struct mem_cgroup *memcg;
4324 	unsigned short id;
4325 
4326 	if (!do_swap_account)
4327 		return;
4328 
4329 	id = swap_cgroup_record(ent, 0);
4330 	rcu_read_lock();
4331 	memcg = mem_cgroup_lookup(id);
4332 	if (memcg) {
4333 		/*
4334 		 * We uncharge this because swap is freed.
4335 		 * This memcg can be obsolete one. We avoid calling css_tryget
4336 		 */
4337 		if (!mem_cgroup_is_root(memcg))
4338 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4339 		mem_cgroup_swap_statistics(memcg, false);
4340 		css_put(&memcg->css);
4341 	}
4342 	rcu_read_unlock();
4343 }
4344 
4345 /**
4346  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4347  * @entry: swap entry to be moved
4348  * @from:  mem_cgroup which the entry is moved from
4349  * @to:  mem_cgroup which the entry is moved to
4350  *
4351  * It succeeds only when the swap_cgroup's record for this entry is the same
4352  * as the mem_cgroup's id of @from.
4353  *
4354  * Returns 0 on success, -EINVAL on failure.
4355  *
4356  * The caller must have charged to @to, IOW, called res_counter_charge() about
4357  * both res and memsw, and called css_get().
4358  */
4359 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4360 				struct mem_cgroup *from, struct mem_cgroup *to)
4361 {
4362 	unsigned short old_id, new_id;
4363 
4364 	old_id = css_id(&from->css);
4365 	new_id = css_id(&to->css);
4366 
4367 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4368 		mem_cgroup_swap_statistics(from, false);
4369 		mem_cgroup_swap_statistics(to, true);
4370 		/*
4371 		 * This function is only called from task migration context now.
4372 		 * It postpones res_counter and refcount handling till the end
4373 		 * of task migration(mem_cgroup_clear_mc()) for performance
4374 		 * improvement. But we cannot postpone css_get(to)  because if
4375 		 * the process that has been moved to @to does swap-in, the
4376 		 * refcount of @to might be decreased to 0.
4377 		 *
4378 		 * We are in attach() phase, so the cgroup is guaranteed to be
4379 		 * alive, so we can just call css_get().
4380 		 */
4381 		css_get(&to->css);
4382 		return 0;
4383 	}
4384 	return -EINVAL;
4385 }
4386 #else
4387 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4388 				struct mem_cgroup *from, struct mem_cgroup *to)
4389 {
4390 	return -EINVAL;
4391 }
4392 #endif
4393 
4394 /*
4395  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4396  * page belongs to.
4397  */
4398 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4399 				  struct mem_cgroup **memcgp)
4400 {
4401 	struct mem_cgroup *memcg = NULL;
4402 	unsigned int nr_pages = 1;
4403 	struct page_cgroup *pc;
4404 	enum charge_type ctype;
4405 
4406 	*memcgp = NULL;
4407 
4408 	if (mem_cgroup_disabled())
4409 		return;
4410 
4411 	if (PageTransHuge(page))
4412 		nr_pages <<= compound_order(page);
4413 
4414 	pc = lookup_page_cgroup(page);
4415 	lock_page_cgroup(pc);
4416 	if (PageCgroupUsed(pc)) {
4417 		memcg = pc->mem_cgroup;
4418 		css_get(&memcg->css);
4419 		/*
4420 		 * At migrating an anonymous page, its mapcount goes down
4421 		 * to 0 and uncharge() will be called. But, even if it's fully
4422 		 * unmapped, migration may fail and this page has to be
4423 		 * charged again. We set MIGRATION flag here and delay uncharge
4424 		 * until end_migration() is called
4425 		 *
4426 		 * Corner Case Thinking
4427 		 * A)
4428 		 * When the old page was mapped as Anon and it's unmap-and-freed
4429 		 * while migration was ongoing.
4430 		 * If unmap finds the old page, uncharge() of it will be delayed
4431 		 * until end_migration(). If unmap finds a new page, it's
4432 		 * uncharged when it make mapcount to be 1->0. If unmap code
4433 		 * finds swap_migration_entry, the new page will not be mapped
4434 		 * and end_migration() will find it(mapcount==0).
4435 		 *
4436 		 * B)
4437 		 * When the old page was mapped but migraion fails, the kernel
4438 		 * remaps it. A charge for it is kept by MIGRATION flag even
4439 		 * if mapcount goes down to 0. We can do remap successfully
4440 		 * without charging it again.
4441 		 *
4442 		 * C)
4443 		 * The "old" page is under lock_page() until the end of
4444 		 * migration, so, the old page itself will not be swapped-out.
4445 		 * If the new page is swapped out before end_migraton, our
4446 		 * hook to usual swap-out path will catch the event.
4447 		 */
4448 		if (PageAnon(page))
4449 			SetPageCgroupMigration(pc);
4450 	}
4451 	unlock_page_cgroup(pc);
4452 	/*
4453 	 * If the page is not charged at this point,
4454 	 * we return here.
4455 	 */
4456 	if (!memcg)
4457 		return;
4458 
4459 	*memcgp = memcg;
4460 	/*
4461 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4462 	 * is called before end_migration, we can catch all events on this new
4463 	 * page. In the case new page is migrated but not remapped, new page's
4464 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4465 	 */
4466 	if (PageAnon(page))
4467 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4468 	else
4469 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4470 	/*
4471 	 * The page is committed to the memcg, but it's not actually
4472 	 * charged to the res_counter since we plan on replacing the
4473 	 * old one and only one page is going to be left afterwards.
4474 	 */
4475 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4476 }
4477 
4478 /* remove redundant charge if migration failed*/
4479 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4480 	struct page *oldpage, struct page *newpage, bool migration_ok)
4481 {
4482 	struct page *used, *unused;
4483 	struct page_cgroup *pc;
4484 	bool anon;
4485 
4486 	if (!memcg)
4487 		return;
4488 
4489 	if (!migration_ok) {
4490 		used = oldpage;
4491 		unused = newpage;
4492 	} else {
4493 		used = newpage;
4494 		unused = oldpage;
4495 	}
4496 	anon = PageAnon(used);
4497 	__mem_cgroup_uncharge_common(unused,
4498 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4499 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4500 				     true);
4501 	css_put(&memcg->css);
4502 	/*
4503 	 * We disallowed uncharge of pages under migration because mapcount
4504 	 * of the page goes down to zero, temporarly.
4505 	 * Clear the flag and check the page should be charged.
4506 	 */
4507 	pc = lookup_page_cgroup(oldpage);
4508 	lock_page_cgroup(pc);
4509 	ClearPageCgroupMigration(pc);
4510 	unlock_page_cgroup(pc);
4511 
4512 	/*
4513 	 * If a page is a file cache, radix-tree replacement is very atomic
4514 	 * and we can skip this check. When it was an Anon page, its mapcount
4515 	 * goes down to 0. But because we added MIGRATION flage, it's not
4516 	 * uncharged yet. There are several case but page->mapcount check
4517 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4518 	 * check. (see prepare_charge() also)
4519 	 */
4520 	if (anon)
4521 		mem_cgroup_uncharge_page(used);
4522 }
4523 
4524 /*
4525  * At replace page cache, newpage is not under any memcg but it's on
4526  * LRU. So, this function doesn't touch res_counter but handles LRU
4527  * in correct way. Both pages are locked so we cannot race with uncharge.
4528  */
4529 void mem_cgroup_replace_page_cache(struct page *oldpage,
4530 				  struct page *newpage)
4531 {
4532 	struct mem_cgroup *memcg = NULL;
4533 	struct page_cgroup *pc;
4534 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4535 
4536 	if (mem_cgroup_disabled())
4537 		return;
4538 
4539 	pc = lookup_page_cgroup(oldpage);
4540 	/* fix accounting on old pages */
4541 	lock_page_cgroup(pc);
4542 	if (PageCgroupUsed(pc)) {
4543 		memcg = pc->mem_cgroup;
4544 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4545 		ClearPageCgroupUsed(pc);
4546 	}
4547 	unlock_page_cgroup(pc);
4548 
4549 	/*
4550 	 * When called from shmem_replace_page(), in some cases the
4551 	 * oldpage has already been charged, and in some cases not.
4552 	 */
4553 	if (!memcg)
4554 		return;
4555 	/*
4556 	 * Even if newpage->mapping was NULL before starting replacement,
4557 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4558 	 * LRU while we overwrite pc->mem_cgroup.
4559 	 */
4560 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4561 }
4562 
4563 #ifdef CONFIG_DEBUG_VM
4564 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4565 {
4566 	struct page_cgroup *pc;
4567 
4568 	pc = lookup_page_cgroup(page);
4569 	/*
4570 	 * Can be NULL while feeding pages into the page allocator for
4571 	 * the first time, i.e. during boot or memory hotplug;
4572 	 * or when mem_cgroup_disabled().
4573 	 */
4574 	if (likely(pc) && PageCgroupUsed(pc))
4575 		return pc;
4576 	return NULL;
4577 }
4578 
4579 bool mem_cgroup_bad_page_check(struct page *page)
4580 {
4581 	if (mem_cgroup_disabled())
4582 		return false;
4583 
4584 	return lookup_page_cgroup_used(page) != NULL;
4585 }
4586 
4587 void mem_cgroup_print_bad_page(struct page *page)
4588 {
4589 	struct page_cgroup *pc;
4590 
4591 	pc = lookup_page_cgroup_used(page);
4592 	if (pc) {
4593 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4594 			 pc, pc->flags, pc->mem_cgroup);
4595 	}
4596 }
4597 #endif
4598 
4599 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4600 				unsigned long long val)
4601 {
4602 	int retry_count;
4603 	u64 memswlimit, memlimit;
4604 	int ret = 0;
4605 	int children = mem_cgroup_count_children(memcg);
4606 	u64 curusage, oldusage;
4607 	int enlarge;
4608 
4609 	/*
4610 	 * For keeping hierarchical_reclaim simple, how long we should retry
4611 	 * is depends on callers. We set our retry-count to be function
4612 	 * of # of children which we should visit in this loop.
4613 	 */
4614 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4615 
4616 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4617 
4618 	enlarge = 0;
4619 	while (retry_count) {
4620 		if (signal_pending(current)) {
4621 			ret = -EINTR;
4622 			break;
4623 		}
4624 		/*
4625 		 * Rather than hide all in some function, I do this in
4626 		 * open coded manner. You see what this really does.
4627 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4628 		 */
4629 		mutex_lock(&set_limit_mutex);
4630 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4631 		if (memswlimit < val) {
4632 			ret = -EINVAL;
4633 			mutex_unlock(&set_limit_mutex);
4634 			break;
4635 		}
4636 
4637 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4638 		if (memlimit < val)
4639 			enlarge = 1;
4640 
4641 		ret = res_counter_set_limit(&memcg->res, val);
4642 		if (!ret) {
4643 			if (memswlimit == val)
4644 				memcg->memsw_is_minimum = true;
4645 			else
4646 				memcg->memsw_is_minimum = false;
4647 		}
4648 		mutex_unlock(&set_limit_mutex);
4649 
4650 		if (!ret)
4651 			break;
4652 
4653 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4654 				   MEM_CGROUP_RECLAIM_SHRINK);
4655 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4656 		/* Usage is reduced ? */
4657   		if (curusage >= oldusage)
4658 			retry_count--;
4659 		else
4660 			oldusage = curusage;
4661 	}
4662 	if (!ret && enlarge)
4663 		memcg_oom_recover(memcg);
4664 
4665 	return ret;
4666 }
4667 
4668 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4669 					unsigned long long val)
4670 {
4671 	int retry_count;
4672 	u64 memlimit, memswlimit, oldusage, curusage;
4673 	int children = mem_cgroup_count_children(memcg);
4674 	int ret = -EBUSY;
4675 	int enlarge = 0;
4676 
4677 	/* see mem_cgroup_resize_res_limit */
4678  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4679 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4680 	while (retry_count) {
4681 		if (signal_pending(current)) {
4682 			ret = -EINTR;
4683 			break;
4684 		}
4685 		/*
4686 		 * Rather than hide all in some function, I do this in
4687 		 * open coded manner. You see what this really does.
4688 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4689 		 */
4690 		mutex_lock(&set_limit_mutex);
4691 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4692 		if (memlimit > val) {
4693 			ret = -EINVAL;
4694 			mutex_unlock(&set_limit_mutex);
4695 			break;
4696 		}
4697 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4698 		if (memswlimit < val)
4699 			enlarge = 1;
4700 		ret = res_counter_set_limit(&memcg->memsw, val);
4701 		if (!ret) {
4702 			if (memlimit == val)
4703 				memcg->memsw_is_minimum = true;
4704 			else
4705 				memcg->memsw_is_minimum = false;
4706 		}
4707 		mutex_unlock(&set_limit_mutex);
4708 
4709 		if (!ret)
4710 			break;
4711 
4712 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4713 				   MEM_CGROUP_RECLAIM_NOSWAP |
4714 				   MEM_CGROUP_RECLAIM_SHRINK);
4715 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4716 		/* Usage is reduced ? */
4717 		if (curusage >= oldusage)
4718 			retry_count--;
4719 		else
4720 			oldusage = curusage;
4721 	}
4722 	if (!ret && enlarge)
4723 		memcg_oom_recover(memcg);
4724 	return ret;
4725 }
4726 
4727 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4728 					    gfp_t gfp_mask,
4729 					    unsigned long *total_scanned)
4730 {
4731 	unsigned long nr_reclaimed = 0;
4732 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4733 	unsigned long reclaimed;
4734 	int loop = 0;
4735 	struct mem_cgroup_tree_per_zone *mctz;
4736 	unsigned long long excess;
4737 	unsigned long nr_scanned;
4738 
4739 	if (order > 0)
4740 		return 0;
4741 
4742 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4743 	/*
4744 	 * This loop can run a while, specially if mem_cgroup's continuously
4745 	 * keep exceeding their soft limit and putting the system under
4746 	 * pressure
4747 	 */
4748 	do {
4749 		if (next_mz)
4750 			mz = next_mz;
4751 		else
4752 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4753 		if (!mz)
4754 			break;
4755 
4756 		nr_scanned = 0;
4757 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4758 						    gfp_mask, &nr_scanned);
4759 		nr_reclaimed += reclaimed;
4760 		*total_scanned += nr_scanned;
4761 		spin_lock(&mctz->lock);
4762 
4763 		/*
4764 		 * If we failed to reclaim anything from this memory cgroup
4765 		 * it is time to move on to the next cgroup
4766 		 */
4767 		next_mz = NULL;
4768 		if (!reclaimed) {
4769 			do {
4770 				/*
4771 				 * Loop until we find yet another one.
4772 				 *
4773 				 * By the time we get the soft_limit lock
4774 				 * again, someone might have aded the
4775 				 * group back on the RB tree. Iterate to
4776 				 * make sure we get a different mem.
4777 				 * mem_cgroup_largest_soft_limit_node returns
4778 				 * NULL if no other cgroup is present on
4779 				 * the tree
4780 				 */
4781 				next_mz =
4782 				__mem_cgroup_largest_soft_limit_node(mctz);
4783 				if (next_mz == mz)
4784 					css_put(&next_mz->memcg->css);
4785 				else /* next_mz == NULL or other memcg */
4786 					break;
4787 			} while (1);
4788 		}
4789 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4790 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4791 		/*
4792 		 * One school of thought says that we should not add
4793 		 * back the node to the tree if reclaim returns 0.
4794 		 * But our reclaim could return 0, simply because due
4795 		 * to priority we are exposing a smaller subset of
4796 		 * memory to reclaim from. Consider this as a longer
4797 		 * term TODO.
4798 		 */
4799 		/* If excess == 0, no tree ops */
4800 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4801 		spin_unlock(&mctz->lock);
4802 		css_put(&mz->memcg->css);
4803 		loop++;
4804 		/*
4805 		 * Could not reclaim anything and there are no more
4806 		 * mem cgroups to try or we seem to be looping without
4807 		 * reclaiming anything.
4808 		 */
4809 		if (!nr_reclaimed &&
4810 			(next_mz == NULL ||
4811 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4812 			break;
4813 	} while (!nr_reclaimed);
4814 	if (next_mz)
4815 		css_put(&next_mz->memcg->css);
4816 	return nr_reclaimed;
4817 }
4818 
4819 /**
4820  * mem_cgroup_force_empty_list - clears LRU of a group
4821  * @memcg: group to clear
4822  * @node: NUMA node
4823  * @zid: zone id
4824  * @lru: lru to to clear
4825  *
4826  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4827  * reclaim the pages page themselves - pages are moved to the parent (or root)
4828  * group.
4829  */
4830 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4831 				int node, int zid, enum lru_list lru)
4832 {
4833 	struct lruvec *lruvec;
4834 	unsigned long flags;
4835 	struct list_head *list;
4836 	struct page *busy;
4837 	struct zone *zone;
4838 
4839 	zone = &NODE_DATA(node)->node_zones[zid];
4840 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4841 	list = &lruvec->lists[lru];
4842 
4843 	busy = NULL;
4844 	do {
4845 		struct page_cgroup *pc;
4846 		struct page *page;
4847 
4848 		spin_lock_irqsave(&zone->lru_lock, flags);
4849 		if (list_empty(list)) {
4850 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4851 			break;
4852 		}
4853 		page = list_entry(list->prev, struct page, lru);
4854 		if (busy == page) {
4855 			list_move(&page->lru, list);
4856 			busy = NULL;
4857 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4858 			continue;
4859 		}
4860 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4861 
4862 		pc = lookup_page_cgroup(page);
4863 
4864 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4865 			/* found lock contention or "pc" is obsolete. */
4866 			busy = page;
4867 			cond_resched();
4868 		} else
4869 			busy = NULL;
4870 	} while (!list_empty(list));
4871 }
4872 
4873 /*
4874  * make mem_cgroup's charge to be 0 if there is no task by moving
4875  * all the charges and pages to the parent.
4876  * This enables deleting this mem_cgroup.
4877  *
4878  * Caller is responsible for holding css reference on the memcg.
4879  */
4880 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4881 {
4882 	int node, zid;
4883 	u64 usage;
4884 
4885 	do {
4886 		/* This is for making all *used* pages to be on LRU. */
4887 		lru_add_drain_all();
4888 		drain_all_stock_sync(memcg);
4889 		mem_cgroup_start_move(memcg);
4890 		for_each_node_state(node, N_MEMORY) {
4891 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4892 				enum lru_list lru;
4893 				for_each_lru(lru) {
4894 					mem_cgroup_force_empty_list(memcg,
4895 							node, zid, lru);
4896 				}
4897 			}
4898 		}
4899 		mem_cgroup_end_move(memcg);
4900 		memcg_oom_recover(memcg);
4901 		cond_resched();
4902 
4903 		/*
4904 		 * Kernel memory may not necessarily be trackable to a specific
4905 		 * process. So they are not migrated, and therefore we can't
4906 		 * expect their value to drop to 0 here.
4907 		 * Having res filled up with kmem only is enough.
4908 		 *
4909 		 * This is a safety check because mem_cgroup_force_empty_list
4910 		 * could have raced with mem_cgroup_replace_page_cache callers
4911 		 * so the lru seemed empty but the page could have been added
4912 		 * right after the check. RES_USAGE should be safe as we always
4913 		 * charge before adding to the LRU.
4914 		 */
4915 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4916 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4917 	} while (usage > 0);
4918 }
4919 
4920 /*
4921  * This mainly exists for tests during the setting of set of use_hierarchy.
4922  * Since this is the very setting we are changing, the current hierarchy value
4923  * is meaningless
4924  */
4925 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4926 {
4927 	struct cgroup_subsys_state *pos;
4928 
4929 	/* bounce at first found */
4930 	css_for_each_child(pos, &memcg->css)
4931 		return true;
4932 	return false;
4933 }
4934 
4935 /*
4936  * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4937  * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4938  * from mem_cgroup_count_children(), in the sense that we don't really care how
4939  * many children we have; we only need to know if we have any.  It also counts
4940  * any memcg without hierarchy as infertile.
4941  */
4942 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4943 {
4944 	return memcg->use_hierarchy && __memcg_has_children(memcg);
4945 }
4946 
4947 /*
4948  * Reclaims as many pages from the given memcg as possible and moves
4949  * the rest to the parent.
4950  *
4951  * Caller is responsible for holding css reference for memcg.
4952  */
4953 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4954 {
4955 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4956 	struct cgroup *cgrp = memcg->css.cgroup;
4957 
4958 	/* returns EBUSY if there is a task or if we come here twice. */
4959 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4960 		return -EBUSY;
4961 
4962 	/* we call try-to-free pages for make this cgroup empty */
4963 	lru_add_drain_all();
4964 	/* try to free all pages in this cgroup */
4965 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4966 		int progress;
4967 
4968 		if (signal_pending(current))
4969 			return -EINTR;
4970 
4971 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4972 						false);
4973 		if (!progress) {
4974 			nr_retries--;
4975 			/* maybe some writeback is necessary */
4976 			congestion_wait(BLK_RW_ASYNC, HZ/10);
4977 		}
4978 
4979 	}
4980 	lru_add_drain();
4981 	mem_cgroup_reparent_charges(memcg);
4982 
4983 	return 0;
4984 }
4985 
4986 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4987 					unsigned int event)
4988 {
4989 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4990 	int ret;
4991 
4992 	if (mem_cgroup_is_root(memcg))
4993 		return -EINVAL;
4994 	css_get(&memcg->css);
4995 	ret = mem_cgroup_force_empty(memcg);
4996 	css_put(&memcg->css);
4997 
4998 	return ret;
4999 }
5000 
5001 
5002 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5003 				     struct cftype *cft)
5004 {
5005 	return mem_cgroup_from_css(css)->use_hierarchy;
5006 }
5007 
5008 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5009 				      struct cftype *cft, u64 val)
5010 {
5011 	int retval = 0;
5012 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5013 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5014 
5015 	mutex_lock(&memcg_create_mutex);
5016 
5017 	if (memcg->use_hierarchy == val)
5018 		goto out;
5019 
5020 	/*
5021 	 * If parent's use_hierarchy is set, we can't make any modifications
5022 	 * in the child subtrees. If it is unset, then the change can
5023 	 * occur, provided the current cgroup has no children.
5024 	 *
5025 	 * For the root cgroup, parent_mem is NULL, we allow value to be
5026 	 * set if there are no children.
5027 	 */
5028 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5029 				(val == 1 || val == 0)) {
5030 		if (!__memcg_has_children(memcg))
5031 			memcg->use_hierarchy = val;
5032 		else
5033 			retval = -EBUSY;
5034 	} else
5035 		retval = -EINVAL;
5036 
5037 out:
5038 	mutex_unlock(&memcg_create_mutex);
5039 
5040 	return retval;
5041 }
5042 
5043 
5044 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5045 					       enum mem_cgroup_stat_index idx)
5046 {
5047 	struct mem_cgroup *iter;
5048 	long val = 0;
5049 
5050 	/* Per-cpu values can be negative, use a signed accumulator */
5051 	for_each_mem_cgroup_tree(iter, memcg)
5052 		val += mem_cgroup_read_stat(iter, idx);
5053 
5054 	if (val < 0) /* race ? */
5055 		val = 0;
5056 	return val;
5057 }
5058 
5059 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5060 {
5061 	u64 val;
5062 
5063 	if (!mem_cgroup_is_root(memcg)) {
5064 		if (!swap)
5065 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5066 		else
5067 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5068 	}
5069 
5070 	/*
5071 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5072 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5073 	 */
5074 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5075 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5076 
5077 	if (swap)
5078 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5079 
5080 	return val << PAGE_SHIFT;
5081 }
5082 
5083 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5084 			       struct cftype *cft, struct file *file,
5085 			       char __user *buf, size_t nbytes, loff_t *ppos)
5086 {
5087 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5088 	char str[64];
5089 	u64 val;
5090 	int name, len;
5091 	enum res_type type;
5092 
5093 	type = MEMFILE_TYPE(cft->private);
5094 	name = MEMFILE_ATTR(cft->private);
5095 
5096 	switch (type) {
5097 	case _MEM:
5098 		if (name == RES_USAGE)
5099 			val = mem_cgroup_usage(memcg, false);
5100 		else
5101 			val = res_counter_read_u64(&memcg->res, name);
5102 		break;
5103 	case _MEMSWAP:
5104 		if (name == RES_USAGE)
5105 			val = mem_cgroup_usage(memcg, true);
5106 		else
5107 			val = res_counter_read_u64(&memcg->memsw, name);
5108 		break;
5109 	case _KMEM:
5110 		val = res_counter_read_u64(&memcg->kmem, name);
5111 		break;
5112 	default:
5113 		BUG();
5114 	}
5115 
5116 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5117 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5118 }
5119 
5120 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5121 {
5122 	int ret = -EINVAL;
5123 #ifdef CONFIG_MEMCG_KMEM
5124 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5125 	/*
5126 	 * For simplicity, we won't allow this to be disabled.  It also can't
5127 	 * be changed if the cgroup has children already, or if tasks had
5128 	 * already joined.
5129 	 *
5130 	 * If tasks join before we set the limit, a person looking at
5131 	 * kmem.usage_in_bytes will have no way to determine when it took
5132 	 * place, which makes the value quite meaningless.
5133 	 *
5134 	 * After it first became limited, changes in the value of the limit are
5135 	 * of course permitted.
5136 	 */
5137 	mutex_lock(&memcg_create_mutex);
5138 	mutex_lock(&set_limit_mutex);
5139 	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5140 		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5141 			ret = -EBUSY;
5142 			goto out;
5143 		}
5144 		ret = res_counter_set_limit(&memcg->kmem, val);
5145 		VM_BUG_ON(ret);
5146 
5147 		ret = memcg_update_cache_sizes(memcg);
5148 		if (ret) {
5149 			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5150 			goto out;
5151 		}
5152 		static_key_slow_inc(&memcg_kmem_enabled_key);
5153 		/*
5154 		 * setting the active bit after the inc will guarantee no one
5155 		 * starts accounting before all call sites are patched
5156 		 */
5157 		memcg_kmem_set_active(memcg);
5158 	} else
5159 		ret = res_counter_set_limit(&memcg->kmem, val);
5160 out:
5161 	mutex_unlock(&set_limit_mutex);
5162 	mutex_unlock(&memcg_create_mutex);
5163 #endif
5164 	return ret;
5165 }
5166 
5167 #ifdef CONFIG_MEMCG_KMEM
5168 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5169 {
5170 	int ret = 0;
5171 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5172 	if (!parent)
5173 		goto out;
5174 
5175 	memcg->kmem_account_flags = parent->kmem_account_flags;
5176 	/*
5177 	 * When that happen, we need to disable the static branch only on those
5178 	 * memcgs that enabled it. To achieve this, we would be forced to
5179 	 * complicate the code by keeping track of which memcgs were the ones
5180 	 * that actually enabled limits, and which ones got it from its
5181 	 * parents.
5182 	 *
5183 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5184 	 * that is accounted.
5185 	 */
5186 	if (!memcg_kmem_is_active(memcg))
5187 		goto out;
5188 
5189 	/*
5190 	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5191 	 * memcg is active already. If the later initialization fails then the
5192 	 * cgroup core triggers the cleanup so we do not have to do it here.
5193 	 */
5194 	static_key_slow_inc(&memcg_kmem_enabled_key);
5195 
5196 	mutex_lock(&set_limit_mutex);
5197 	memcg_stop_kmem_account();
5198 	ret = memcg_update_cache_sizes(memcg);
5199 	memcg_resume_kmem_account();
5200 	mutex_unlock(&set_limit_mutex);
5201 out:
5202 	return ret;
5203 }
5204 #endif /* CONFIG_MEMCG_KMEM */
5205 
5206 /*
5207  * The user of this function is...
5208  * RES_LIMIT.
5209  */
5210 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5211 			    const char *buffer)
5212 {
5213 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5214 	enum res_type type;
5215 	int name;
5216 	unsigned long long val;
5217 	int ret;
5218 
5219 	type = MEMFILE_TYPE(cft->private);
5220 	name = MEMFILE_ATTR(cft->private);
5221 
5222 	switch (name) {
5223 	case RES_LIMIT:
5224 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5225 			ret = -EINVAL;
5226 			break;
5227 		}
5228 		/* This function does all necessary parse...reuse it */
5229 		ret = res_counter_memparse_write_strategy(buffer, &val);
5230 		if (ret)
5231 			break;
5232 		if (type == _MEM)
5233 			ret = mem_cgroup_resize_limit(memcg, val);
5234 		else if (type == _MEMSWAP)
5235 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5236 		else if (type == _KMEM)
5237 			ret = memcg_update_kmem_limit(css, val);
5238 		else
5239 			return -EINVAL;
5240 		break;
5241 	case RES_SOFT_LIMIT:
5242 		ret = res_counter_memparse_write_strategy(buffer, &val);
5243 		if (ret)
5244 			break;
5245 		/*
5246 		 * For memsw, soft limits are hard to implement in terms
5247 		 * of semantics, for now, we support soft limits for
5248 		 * control without swap
5249 		 */
5250 		if (type == _MEM)
5251 			ret = res_counter_set_soft_limit(&memcg->res, val);
5252 		else
5253 			ret = -EINVAL;
5254 		break;
5255 	default:
5256 		ret = -EINVAL; /* should be BUG() ? */
5257 		break;
5258 	}
5259 	return ret;
5260 }
5261 
5262 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5263 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5264 {
5265 	unsigned long long min_limit, min_memsw_limit, tmp;
5266 
5267 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5268 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5269 	if (!memcg->use_hierarchy)
5270 		goto out;
5271 
5272 	while (css_parent(&memcg->css)) {
5273 		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5274 		if (!memcg->use_hierarchy)
5275 			break;
5276 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5277 		min_limit = min(min_limit, tmp);
5278 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5279 		min_memsw_limit = min(min_memsw_limit, tmp);
5280 	}
5281 out:
5282 	*mem_limit = min_limit;
5283 	*memsw_limit = min_memsw_limit;
5284 }
5285 
5286 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5287 {
5288 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5289 	int name;
5290 	enum res_type type;
5291 
5292 	type = MEMFILE_TYPE(event);
5293 	name = MEMFILE_ATTR(event);
5294 
5295 	switch (name) {
5296 	case RES_MAX_USAGE:
5297 		if (type == _MEM)
5298 			res_counter_reset_max(&memcg->res);
5299 		else if (type == _MEMSWAP)
5300 			res_counter_reset_max(&memcg->memsw);
5301 		else if (type == _KMEM)
5302 			res_counter_reset_max(&memcg->kmem);
5303 		else
5304 			return -EINVAL;
5305 		break;
5306 	case RES_FAILCNT:
5307 		if (type == _MEM)
5308 			res_counter_reset_failcnt(&memcg->res);
5309 		else if (type == _MEMSWAP)
5310 			res_counter_reset_failcnt(&memcg->memsw);
5311 		else if (type == _KMEM)
5312 			res_counter_reset_failcnt(&memcg->kmem);
5313 		else
5314 			return -EINVAL;
5315 		break;
5316 	}
5317 
5318 	return 0;
5319 }
5320 
5321 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5322 					struct cftype *cft)
5323 {
5324 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5325 }
5326 
5327 #ifdef CONFIG_MMU
5328 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5329 					struct cftype *cft, u64 val)
5330 {
5331 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5332 
5333 	if (val >= (1 << NR_MOVE_TYPE))
5334 		return -EINVAL;
5335 
5336 	/*
5337 	 * No kind of locking is needed in here, because ->can_attach() will
5338 	 * check this value once in the beginning of the process, and then carry
5339 	 * on with stale data. This means that changes to this value will only
5340 	 * affect task migrations starting after the change.
5341 	 */
5342 	memcg->move_charge_at_immigrate = val;
5343 	return 0;
5344 }
5345 #else
5346 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5347 					struct cftype *cft, u64 val)
5348 {
5349 	return -ENOSYS;
5350 }
5351 #endif
5352 
5353 #ifdef CONFIG_NUMA
5354 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5355 				struct cftype *cft, struct seq_file *m)
5356 {
5357 	int nid;
5358 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5359 	unsigned long node_nr;
5360 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5361 
5362 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5363 	seq_printf(m, "total=%lu", total_nr);
5364 	for_each_node_state(nid, N_MEMORY) {
5365 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5366 		seq_printf(m, " N%d=%lu", nid, node_nr);
5367 	}
5368 	seq_putc(m, '\n');
5369 
5370 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5371 	seq_printf(m, "file=%lu", file_nr);
5372 	for_each_node_state(nid, N_MEMORY) {
5373 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5374 				LRU_ALL_FILE);
5375 		seq_printf(m, " N%d=%lu", nid, node_nr);
5376 	}
5377 	seq_putc(m, '\n');
5378 
5379 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5380 	seq_printf(m, "anon=%lu", anon_nr);
5381 	for_each_node_state(nid, N_MEMORY) {
5382 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5383 				LRU_ALL_ANON);
5384 		seq_printf(m, " N%d=%lu", nid, node_nr);
5385 	}
5386 	seq_putc(m, '\n');
5387 
5388 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5389 	seq_printf(m, "unevictable=%lu", unevictable_nr);
5390 	for_each_node_state(nid, N_MEMORY) {
5391 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5392 				BIT(LRU_UNEVICTABLE));
5393 		seq_printf(m, " N%d=%lu", nid, node_nr);
5394 	}
5395 	seq_putc(m, '\n');
5396 	return 0;
5397 }
5398 #endif /* CONFIG_NUMA */
5399 
5400 static inline void mem_cgroup_lru_names_not_uptodate(void)
5401 {
5402 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5403 }
5404 
5405 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5406 				 struct seq_file *m)
5407 {
5408 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5409 	struct mem_cgroup *mi;
5410 	unsigned int i;
5411 
5412 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5413 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5414 			continue;
5415 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5416 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5417 	}
5418 
5419 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5420 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5421 			   mem_cgroup_read_events(memcg, i));
5422 
5423 	for (i = 0; i < NR_LRU_LISTS; i++)
5424 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5425 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5426 
5427 	/* Hierarchical information */
5428 	{
5429 		unsigned long long limit, memsw_limit;
5430 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5431 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5432 		if (do_swap_account)
5433 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5434 				   memsw_limit);
5435 	}
5436 
5437 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5438 		long long val = 0;
5439 
5440 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5441 			continue;
5442 		for_each_mem_cgroup_tree(mi, memcg)
5443 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5444 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5445 	}
5446 
5447 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5448 		unsigned long long val = 0;
5449 
5450 		for_each_mem_cgroup_tree(mi, memcg)
5451 			val += mem_cgroup_read_events(mi, i);
5452 		seq_printf(m, "total_%s %llu\n",
5453 			   mem_cgroup_events_names[i], val);
5454 	}
5455 
5456 	for (i = 0; i < NR_LRU_LISTS; i++) {
5457 		unsigned long long val = 0;
5458 
5459 		for_each_mem_cgroup_tree(mi, memcg)
5460 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5461 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5462 	}
5463 
5464 #ifdef CONFIG_DEBUG_VM
5465 	{
5466 		int nid, zid;
5467 		struct mem_cgroup_per_zone *mz;
5468 		struct zone_reclaim_stat *rstat;
5469 		unsigned long recent_rotated[2] = {0, 0};
5470 		unsigned long recent_scanned[2] = {0, 0};
5471 
5472 		for_each_online_node(nid)
5473 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5474 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5475 				rstat = &mz->lruvec.reclaim_stat;
5476 
5477 				recent_rotated[0] += rstat->recent_rotated[0];
5478 				recent_rotated[1] += rstat->recent_rotated[1];
5479 				recent_scanned[0] += rstat->recent_scanned[0];
5480 				recent_scanned[1] += rstat->recent_scanned[1];
5481 			}
5482 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5483 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5484 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5485 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5486 	}
5487 #endif
5488 
5489 	return 0;
5490 }
5491 
5492 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5493 				      struct cftype *cft)
5494 {
5495 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5496 
5497 	return mem_cgroup_swappiness(memcg);
5498 }
5499 
5500 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5501 				       struct cftype *cft, u64 val)
5502 {
5503 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5504 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5505 
5506 	if (val > 100 || !parent)
5507 		return -EINVAL;
5508 
5509 	mutex_lock(&memcg_create_mutex);
5510 
5511 	/* If under hierarchy, only empty-root can set this value */
5512 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5513 		mutex_unlock(&memcg_create_mutex);
5514 		return -EINVAL;
5515 	}
5516 
5517 	memcg->swappiness = val;
5518 
5519 	mutex_unlock(&memcg_create_mutex);
5520 
5521 	return 0;
5522 }
5523 
5524 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5525 {
5526 	struct mem_cgroup_threshold_ary *t;
5527 	u64 usage;
5528 	int i;
5529 
5530 	rcu_read_lock();
5531 	if (!swap)
5532 		t = rcu_dereference(memcg->thresholds.primary);
5533 	else
5534 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5535 
5536 	if (!t)
5537 		goto unlock;
5538 
5539 	usage = mem_cgroup_usage(memcg, swap);
5540 
5541 	/*
5542 	 * current_threshold points to threshold just below or equal to usage.
5543 	 * If it's not true, a threshold was crossed after last
5544 	 * call of __mem_cgroup_threshold().
5545 	 */
5546 	i = t->current_threshold;
5547 
5548 	/*
5549 	 * Iterate backward over array of thresholds starting from
5550 	 * current_threshold and check if a threshold is crossed.
5551 	 * If none of thresholds below usage is crossed, we read
5552 	 * only one element of the array here.
5553 	 */
5554 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5555 		eventfd_signal(t->entries[i].eventfd, 1);
5556 
5557 	/* i = current_threshold + 1 */
5558 	i++;
5559 
5560 	/*
5561 	 * Iterate forward over array of thresholds starting from
5562 	 * current_threshold+1 and check if a threshold is crossed.
5563 	 * If none of thresholds above usage is crossed, we read
5564 	 * only one element of the array here.
5565 	 */
5566 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5567 		eventfd_signal(t->entries[i].eventfd, 1);
5568 
5569 	/* Update current_threshold */
5570 	t->current_threshold = i - 1;
5571 unlock:
5572 	rcu_read_unlock();
5573 }
5574 
5575 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5576 {
5577 	while (memcg) {
5578 		__mem_cgroup_threshold(memcg, false);
5579 		if (do_swap_account)
5580 			__mem_cgroup_threshold(memcg, true);
5581 
5582 		memcg = parent_mem_cgroup(memcg);
5583 	}
5584 }
5585 
5586 static int compare_thresholds(const void *a, const void *b)
5587 {
5588 	const struct mem_cgroup_threshold *_a = a;
5589 	const struct mem_cgroup_threshold *_b = b;
5590 
5591 	return _a->threshold - _b->threshold;
5592 }
5593 
5594 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5595 {
5596 	struct mem_cgroup_eventfd_list *ev;
5597 
5598 	list_for_each_entry(ev, &memcg->oom_notify, list)
5599 		eventfd_signal(ev->eventfd, 1);
5600 	return 0;
5601 }
5602 
5603 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5604 {
5605 	struct mem_cgroup *iter;
5606 
5607 	for_each_mem_cgroup_tree(iter, memcg)
5608 		mem_cgroup_oom_notify_cb(iter);
5609 }
5610 
5611 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5612 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5613 {
5614 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5615 	struct mem_cgroup_thresholds *thresholds;
5616 	struct mem_cgroup_threshold_ary *new;
5617 	enum res_type type = MEMFILE_TYPE(cft->private);
5618 	u64 threshold, usage;
5619 	int i, size, ret;
5620 
5621 	ret = res_counter_memparse_write_strategy(args, &threshold);
5622 	if (ret)
5623 		return ret;
5624 
5625 	mutex_lock(&memcg->thresholds_lock);
5626 
5627 	if (type == _MEM)
5628 		thresholds = &memcg->thresholds;
5629 	else if (type == _MEMSWAP)
5630 		thresholds = &memcg->memsw_thresholds;
5631 	else
5632 		BUG();
5633 
5634 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5635 
5636 	/* Check if a threshold crossed before adding a new one */
5637 	if (thresholds->primary)
5638 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5639 
5640 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5641 
5642 	/* Allocate memory for new array of thresholds */
5643 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5644 			GFP_KERNEL);
5645 	if (!new) {
5646 		ret = -ENOMEM;
5647 		goto unlock;
5648 	}
5649 	new->size = size;
5650 
5651 	/* Copy thresholds (if any) to new array */
5652 	if (thresholds->primary) {
5653 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5654 				sizeof(struct mem_cgroup_threshold));
5655 	}
5656 
5657 	/* Add new threshold */
5658 	new->entries[size - 1].eventfd = eventfd;
5659 	new->entries[size - 1].threshold = threshold;
5660 
5661 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5662 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5663 			compare_thresholds, NULL);
5664 
5665 	/* Find current threshold */
5666 	new->current_threshold = -1;
5667 	for (i = 0; i < size; i++) {
5668 		if (new->entries[i].threshold <= usage) {
5669 			/*
5670 			 * new->current_threshold will not be used until
5671 			 * rcu_assign_pointer(), so it's safe to increment
5672 			 * it here.
5673 			 */
5674 			++new->current_threshold;
5675 		} else
5676 			break;
5677 	}
5678 
5679 	/* Free old spare buffer and save old primary buffer as spare */
5680 	kfree(thresholds->spare);
5681 	thresholds->spare = thresholds->primary;
5682 
5683 	rcu_assign_pointer(thresholds->primary, new);
5684 
5685 	/* To be sure that nobody uses thresholds */
5686 	synchronize_rcu();
5687 
5688 unlock:
5689 	mutex_unlock(&memcg->thresholds_lock);
5690 
5691 	return ret;
5692 }
5693 
5694 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5695 	struct cftype *cft, struct eventfd_ctx *eventfd)
5696 {
5697 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5698 	struct mem_cgroup_thresholds *thresholds;
5699 	struct mem_cgroup_threshold_ary *new;
5700 	enum res_type type = MEMFILE_TYPE(cft->private);
5701 	u64 usage;
5702 	int i, j, size;
5703 
5704 	mutex_lock(&memcg->thresholds_lock);
5705 	if (type == _MEM)
5706 		thresholds = &memcg->thresholds;
5707 	else if (type == _MEMSWAP)
5708 		thresholds = &memcg->memsw_thresholds;
5709 	else
5710 		BUG();
5711 
5712 	if (!thresholds->primary)
5713 		goto unlock;
5714 
5715 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5716 
5717 	/* Check if a threshold crossed before removing */
5718 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5719 
5720 	/* Calculate new number of threshold */
5721 	size = 0;
5722 	for (i = 0; i < thresholds->primary->size; i++) {
5723 		if (thresholds->primary->entries[i].eventfd != eventfd)
5724 			size++;
5725 	}
5726 
5727 	new = thresholds->spare;
5728 
5729 	/* Set thresholds array to NULL if we don't have thresholds */
5730 	if (!size) {
5731 		kfree(new);
5732 		new = NULL;
5733 		goto swap_buffers;
5734 	}
5735 
5736 	new->size = size;
5737 
5738 	/* Copy thresholds and find current threshold */
5739 	new->current_threshold = -1;
5740 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5741 		if (thresholds->primary->entries[i].eventfd == eventfd)
5742 			continue;
5743 
5744 		new->entries[j] = thresholds->primary->entries[i];
5745 		if (new->entries[j].threshold <= usage) {
5746 			/*
5747 			 * new->current_threshold will not be used
5748 			 * until rcu_assign_pointer(), so it's safe to increment
5749 			 * it here.
5750 			 */
5751 			++new->current_threshold;
5752 		}
5753 		j++;
5754 	}
5755 
5756 swap_buffers:
5757 	/* Swap primary and spare array */
5758 	thresholds->spare = thresholds->primary;
5759 	/* If all events are unregistered, free the spare array */
5760 	if (!new) {
5761 		kfree(thresholds->spare);
5762 		thresholds->spare = NULL;
5763 	}
5764 
5765 	rcu_assign_pointer(thresholds->primary, new);
5766 
5767 	/* To be sure that nobody uses thresholds */
5768 	synchronize_rcu();
5769 unlock:
5770 	mutex_unlock(&memcg->thresholds_lock);
5771 }
5772 
5773 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5774 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5775 {
5776 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5777 	struct mem_cgroup_eventfd_list *event;
5778 	enum res_type type = MEMFILE_TYPE(cft->private);
5779 
5780 	BUG_ON(type != _OOM_TYPE);
5781 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5782 	if (!event)
5783 		return -ENOMEM;
5784 
5785 	spin_lock(&memcg_oom_lock);
5786 
5787 	event->eventfd = eventfd;
5788 	list_add(&event->list, &memcg->oom_notify);
5789 
5790 	/* already in OOM ? */
5791 	if (atomic_read(&memcg->under_oom))
5792 		eventfd_signal(eventfd, 1);
5793 	spin_unlock(&memcg_oom_lock);
5794 
5795 	return 0;
5796 }
5797 
5798 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5799 	struct cftype *cft, struct eventfd_ctx *eventfd)
5800 {
5801 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5802 	struct mem_cgroup_eventfd_list *ev, *tmp;
5803 	enum res_type type = MEMFILE_TYPE(cft->private);
5804 
5805 	BUG_ON(type != _OOM_TYPE);
5806 
5807 	spin_lock(&memcg_oom_lock);
5808 
5809 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5810 		if (ev->eventfd == eventfd) {
5811 			list_del(&ev->list);
5812 			kfree(ev);
5813 		}
5814 	}
5815 
5816 	spin_unlock(&memcg_oom_lock);
5817 }
5818 
5819 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5820 	struct cftype *cft,  struct cgroup_map_cb *cb)
5821 {
5822 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5823 
5824 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5825 
5826 	if (atomic_read(&memcg->under_oom))
5827 		cb->fill(cb, "under_oom", 1);
5828 	else
5829 		cb->fill(cb, "under_oom", 0);
5830 	return 0;
5831 }
5832 
5833 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5834 	struct cftype *cft, u64 val)
5835 {
5836 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5837 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5838 
5839 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5840 	if (!parent || !((val == 0) || (val == 1)))
5841 		return -EINVAL;
5842 
5843 	mutex_lock(&memcg_create_mutex);
5844 	/* oom-kill-disable is a flag for subhierarchy. */
5845 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5846 		mutex_unlock(&memcg_create_mutex);
5847 		return -EINVAL;
5848 	}
5849 	memcg->oom_kill_disable = val;
5850 	if (!val)
5851 		memcg_oom_recover(memcg);
5852 	mutex_unlock(&memcg_create_mutex);
5853 	return 0;
5854 }
5855 
5856 #ifdef CONFIG_MEMCG_KMEM
5857 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5858 {
5859 	int ret;
5860 
5861 	memcg->kmemcg_id = -1;
5862 	ret = memcg_propagate_kmem(memcg);
5863 	if (ret)
5864 		return ret;
5865 
5866 	return mem_cgroup_sockets_init(memcg, ss);
5867 }
5868 
5869 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5870 {
5871 	mem_cgroup_sockets_destroy(memcg);
5872 }
5873 
5874 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5875 {
5876 	if (!memcg_kmem_is_active(memcg))
5877 		return;
5878 
5879 	/*
5880 	 * kmem charges can outlive the cgroup. In the case of slab
5881 	 * pages, for instance, a page contain objects from various
5882 	 * processes. As we prevent from taking a reference for every
5883 	 * such allocation we have to be careful when doing uncharge
5884 	 * (see memcg_uncharge_kmem) and here during offlining.
5885 	 *
5886 	 * The idea is that that only the _last_ uncharge which sees
5887 	 * the dead memcg will drop the last reference. An additional
5888 	 * reference is taken here before the group is marked dead
5889 	 * which is then paired with css_put during uncharge resp. here.
5890 	 *
5891 	 * Although this might sound strange as this path is called from
5892 	 * css_offline() when the referencemight have dropped down to 0
5893 	 * and shouldn't be incremented anymore (css_tryget would fail)
5894 	 * we do not have other options because of the kmem allocations
5895 	 * lifetime.
5896 	 */
5897 	css_get(&memcg->css);
5898 
5899 	memcg_kmem_mark_dead(memcg);
5900 
5901 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5902 		return;
5903 
5904 	if (memcg_kmem_test_and_clear_dead(memcg))
5905 		css_put(&memcg->css);
5906 }
5907 #else
5908 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5909 {
5910 	return 0;
5911 }
5912 
5913 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5914 {
5915 }
5916 
5917 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5918 {
5919 }
5920 #endif
5921 
5922 static struct cftype mem_cgroup_files[] = {
5923 	{
5924 		.name = "usage_in_bytes",
5925 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5926 		.read = mem_cgroup_read,
5927 		.register_event = mem_cgroup_usage_register_event,
5928 		.unregister_event = mem_cgroup_usage_unregister_event,
5929 	},
5930 	{
5931 		.name = "max_usage_in_bytes",
5932 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5933 		.trigger = mem_cgroup_reset,
5934 		.read = mem_cgroup_read,
5935 	},
5936 	{
5937 		.name = "limit_in_bytes",
5938 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5939 		.write_string = mem_cgroup_write,
5940 		.read = mem_cgroup_read,
5941 	},
5942 	{
5943 		.name = "soft_limit_in_bytes",
5944 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5945 		.write_string = mem_cgroup_write,
5946 		.read = mem_cgroup_read,
5947 	},
5948 	{
5949 		.name = "failcnt",
5950 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5951 		.trigger = mem_cgroup_reset,
5952 		.read = mem_cgroup_read,
5953 	},
5954 	{
5955 		.name = "stat",
5956 		.read_seq_string = memcg_stat_show,
5957 	},
5958 	{
5959 		.name = "force_empty",
5960 		.trigger = mem_cgroup_force_empty_write,
5961 	},
5962 	{
5963 		.name = "use_hierarchy",
5964 		.flags = CFTYPE_INSANE,
5965 		.write_u64 = mem_cgroup_hierarchy_write,
5966 		.read_u64 = mem_cgroup_hierarchy_read,
5967 	},
5968 	{
5969 		.name = "swappiness",
5970 		.read_u64 = mem_cgroup_swappiness_read,
5971 		.write_u64 = mem_cgroup_swappiness_write,
5972 	},
5973 	{
5974 		.name = "move_charge_at_immigrate",
5975 		.read_u64 = mem_cgroup_move_charge_read,
5976 		.write_u64 = mem_cgroup_move_charge_write,
5977 	},
5978 	{
5979 		.name = "oom_control",
5980 		.read_map = mem_cgroup_oom_control_read,
5981 		.write_u64 = mem_cgroup_oom_control_write,
5982 		.register_event = mem_cgroup_oom_register_event,
5983 		.unregister_event = mem_cgroup_oom_unregister_event,
5984 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5985 	},
5986 	{
5987 		.name = "pressure_level",
5988 		.register_event = vmpressure_register_event,
5989 		.unregister_event = vmpressure_unregister_event,
5990 	},
5991 #ifdef CONFIG_NUMA
5992 	{
5993 		.name = "numa_stat",
5994 		.read_seq_string = memcg_numa_stat_show,
5995 	},
5996 #endif
5997 #ifdef CONFIG_MEMCG_KMEM
5998 	{
5999 		.name = "kmem.limit_in_bytes",
6000 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6001 		.write_string = mem_cgroup_write,
6002 		.read = mem_cgroup_read,
6003 	},
6004 	{
6005 		.name = "kmem.usage_in_bytes",
6006 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6007 		.read = mem_cgroup_read,
6008 	},
6009 	{
6010 		.name = "kmem.failcnt",
6011 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6012 		.trigger = mem_cgroup_reset,
6013 		.read = mem_cgroup_read,
6014 	},
6015 	{
6016 		.name = "kmem.max_usage_in_bytes",
6017 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6018 		.trigger = mem_cgroup_reset,
6019 		.read = mem_cgroup_read,
6020 	},
6021 #ifdef CONFIG_SLABINFO
6022 	{
6023 		.name = "kmem.slabinfo",
6024 		.read_seq_string = mem_cgroup_slabinfo_read,
6025 	},
6026 #endif
6027 #endif
6028 	{ },	/* terminate */
6029 };
6030 
6031 #ifdef CONFIG_MEMCG_SWAP
6032 static struct cftype memsw_cgroup_files[] = {
6033 	{
6034 		.name = "memsw.usage_in_bytes",
6035 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6036 		.read = mem_cgroup_read,
6037 		.register_event = mem_cgroup_usage_register_event,
6038 		.unregister_event = mem_cgroup_usage_unregister_event,
6039 	},
6040 	{
6041 		.name = "memsw.max_usage_in_bytes",
6042 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6043 		.trigger = mem_cgroup_reset,
6044 		.read = mem_cgroup_read,
6045 	},
6046 	{
6047 		.name = "memsw.limit_in_bytes",
6048 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6049 		.write_string = mem_cgroup_write,
6050 		.read = mem_cgroup_read,
6051 	},
6052 	{
6053 		.name = "memsw.failcnt",
6054 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6055 		.trigger = mem_cgroup_reset,
6056 		.read = mem_cgroup_read,
6057 	},
6058 	{ },	/* terminate */
6059 };
6060 #endif
6061 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6062 {
6063 	struct mem_cgroup_per_node *pn;
6064 	struct mem_cgroup_per_zone *mz;
6065 	int zone, tmp = node;
6066 	/*
6067 	 * This routine is called against possible nodes.
6068 	 * But it's BUG to call kmalloc() against offline node.
6069 	 *
6070 	 * TODO: this routine can waste much memory for nodes which will
6071 	 *       never be onlined. It's better to use memory hotplug callback
6072 	 *       function.
6073 	 */
6074 	if (!node_state(node, N_NORMAL_MEMORY))
6075 		tmp = -1;
6076 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6077 	if (!pn)
6078 		return 1;
6079 
6080 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6081 		mz = &pn->zoneinfo[zone];
6082 		lruvec_init(&mz->lruvec);
6083 		mz->usage_in_excess = 0;
6084 		mz->on_tree = false;
6085 		mz->memcg = memcg;
6086 	}
6087 	memcg->nodeinfo[node] = pn;
6088 	return 0;
6089 }
6090 
6091 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6092 {
6093 	kfree(memcg->nodeinfo[node]);
6094 }
6095 
6096 static struct mem_cgroup *mem_cgroup_alloc(void)
6097 {
6098 	struct mem_cgroup *memcg;
6099 	size_t size = memcg_size();
6100 
6101 	/* Can be very big if nr_node_ids is very big */
6102 	if (size < PAGE_SIZE)
6103 		memcg = kzalloc(size, GFP_KERNEL);
6104 	else
6105 		memcg = vzalloc(size);
6106 
6107 	if (!memcg)
6108 		return NULL;
6109 
6110 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6111 	if (!memcg->stat)
6112 		goto out_free;
6113 	spin_lock_init(&memcg->pcp_counter_lock);
6114 	return memcg;
6115 
6116 out_free:
6117 	if (size < PAGE_SIZE)
6118 		kfree(memcg);
6119 	else
6120 		vfree(memcg);
6121 	return NULL;
6122 }
6123 
6124 /*
6125  * At destroying mem_cgroup, references from swap_cgroup can remain.
6126  * (scanning all at force_empty is too costly...)
6127  *
6128  * Instead of clearing all references at force_empty, we remember
6129  * the number of reference from swap_cgroup and free mem_cgroup when
6130  * it goes down to 0.
6131  *
6132  * Removal of cgroup itself succeeds regardless of refs from swap.
6133  */
6134 
6135 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6136 {
6137 	int node;
6138 	size_t size = memcg_size();
6139 
6140 	mem_cgroup_remove_from_trees(memcg);
6141 	free_css_id(&mem_cgroup_subsys, &memcg->css);
6142 
6143 	for_each_node(node)
6144 		free_mem_cgroup_per_zone_info(memcg, node);
6145 
6146 	free_percpu(memcg->stat);
6147 
6148 	/*
6149 	 * We need to make sure that (at least for now), the jump label
6150 	 * destruction code runs outside of the cgroup lock. This is because
6151 	 * get_online_cpus(), which is called from the static_branch update,
6152 	 * can't be called inside the cgroup_lock. cpusets are the ones
6153 	 * enforcing this dependency, so if they ever change, we might as well.
6154 	 *
6155 	 * schedule_work() will guarantee this happens. Be careful if you need
6156 	 * to move this code around, and make sure it is outside
6157 	 * the cgroup_lock.
6158 	 */
6159 	disarm_static_keys(memcg);
6160 	if (size < PAGE_SIZE)
6161 		kfree(memcg);
6162 	else
6163 		vfree(memcg);
6164 }
6165 
6166 /*
6167  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6168  */
6169 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6170 {
6171 	if (!memcg->res.parent)
6172 		return NULL;
6173 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6174 }
6175 EXPORT_SYMBOL(parent_mem_cgroup);
6176 
6177 static void __init mem_cgroup_soft_limit_tree_init(void)
6178 {
6179 	struct mem_cgroup_tree_per_node *rtpn;
6180 	struct mem_cgroup_tree_per_zone *rtpz;
6181 	int tmp, node, zone;
6182 
6183 	for_each_node(node) {
6184 		tmp = node;
6185 		if (!node_state(node, N_NORMAL_MEMORY))
6186 			tmp = -1;
6187 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6188 		BUG_ON(!rtpn);
6189 
6190 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6191 
6192 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6193 			rtpz = &rtpn->rb_tree_per_zone[zone];
6194 			rtpz->rb_root = RB_ROOT;
6195 			spin_lock_init(&rtpz->lock);
6196 		}
6197 	}
6198 }
6199 
6200 static struct cgroup_subsys_state * __ref
6201 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6202 {
6203 	struct mem_cgroup *memcg;
6204 	long error = -ENOMEM;
6205 	int node;
6206 
6207 	memcg = mem_cgroup_alloc();
6208 	if (!memcg)
6209 		return ERR_PTR(error);
6210 
6211 	for_each_node(node)
6212 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6213 			goto free_out;
6214 
6215 	/* root ? */
6216 	if (parent_css == NULL) {
6217 		root_mem_cgroup = memcg;
6218 		res_counter_init(&memcg->res, NULL);
6219 		res_counter_init(&memcg->memsw, NULL);
6220 		res_counter_init(&memcg->kmem, NULL);
6221 	}
6222 
6223 	memcg->last_scanned_node = MAX_NUMNODES;
6224 	INIT_LIST_HEAD(&memcg->oom_notify);
6225 	memcg->move_charge_at_immigrate = 0;
6226 	mutex_init(&memcg->thresholds_lock);
6227 	spin_lock_init(&memcg->move_lock);
6228 	vmpressure_init(&memcg->vmpressure);
6229 
6230 	return &memcg->css;
6231 
6232 free_out:
6233 	__mem_cgroup_free(memcg);
6234 	return ERR_PTR(error);
6235 }
6236 
6237 static int
6238 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6239 {
6240 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6241 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6242 	int error = 0;
6243 
6244 	if (!parent)
6245 		return 0;
6246 
6247 	mutex_lock(&memcg_create_mutex);
6248 
6249 	memcg->use_hierarchy = parent->use_hierarchy;
6250 	memcg->oom_kill_disable = parent->oom_kill_disable;
6251 	memcg->swappiness = mem_cgroup_swappiness(parent);
6252 
6253 	if (parent->use_hierarchy) {
6254 		res_counter_init(&memcg->res, &parent->res);
6255 		res_counter_init(&memcg->memsw, &parent->memsw);
6256 		res_counter_init(&memcg->kmem, &parent->kmem);
6257 
6258 		/*
6259 		 * No need to take a reference to the parent because cgroup
6260 		 * core guarantees its existence.
6261 		 */
6262 	} else {
6263 		res_counter_init(&memcg->res, NULL);
6264 		res_counter_init(&memcg->memsw, NULL);
6265 		res_counter_init(&memcg->kmem, NULL);
6266 		/*
6267 		 * Deeper hierachy with use_hierarchy == false doesn't make
6268 		 * much sense so let cgroup subsystem know about this
6269 		 * unfortunate state in our controller.
6270 		 */
6271 		if (parent != root_mem_cgroup)
6272 			mem_cgroup_subsys.broken_hierarchy = true;
6273 	}
6274 
6275 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6276 	mutex_unlock(&memcg_create_mutex);
6277 	return error;
6278 }
6279 
6280 /*
6281  * Announce all parents that a group from their hierarchy is gone.
6282  */
6283 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6284 {
6285 	struct mem_cgroup *parent = memcg;
6286 
6287 	while ((parent = parent_mem_cgroup(parent)))
6288 		mem_cgroup_iter_invalidate(parent);
6289 
6290 	/*
6291 	 * if the root memcg is not hierarchical we have to check it
6292 	 * explicitely.
6293 	 */
6294 	if (!root_mem_cgroup->use_hierarchy)
6295 		mem_cgroup_iter_invalidate(root_mem_cgroup);
6296 }
6297 
6298 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6299 {
6300 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6301 
6302 	kmem_cgroup_css_offline(memcg);
6303 
6304 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6305 	mem_cgroup_reparent_charges(memcg);
6306 	mem_cgroup_destroy_all_caches(memcg);
6307 	vmpressure_cleanup(&memcg->vmpressure);
6308 }
6309 
6310 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6311 {
6312 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6313 
6314 	memcg_destroy_kmem(memcg);
6315 	__mem_cgroup_free(memcg);
6316 }
6317 
6318 #ifdef CONFIG_MMU
6319 /* Handlers for move charge at task migration. */
6320 #define PRECHARGE_COUNT_AT_ONCE	256
6321 static int mem_cgroup_do_precharge(unsigned long count)
6322 {
6323 	int ret = 0;
6324 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6325 	struct mem_cgroup *memcg = mc.to;
6326 
6327 	if (mem_cgroup_is_root(memcg)) {
6328 		mc.precharge += count;
6329 		/* we don't need css_get for root */
6330 		return ret;
6331 	}
6332 	/* try to charge at once */
6333 	if (count > 1) {
6334 		struct res_counter *dummy;
6335 		/*
6336 		 * "memcg" cannot be under rmdir() because we've already checked
6337 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6338 		 * are still under the same cgroup_mutex. So we can postpone
6339 		 * css_get().
6340 		 */
6341 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6342 			goto one_by_one;
6343 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6344 						PAGE_SIZE * count, &dummy)) {
6345 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6346 			goto one_by_one;
6347 		}
6348 		mc.precharge += count;
6349 		return ret;
6350 	}
6351 one_by_one:
6352 	/* fall back to one by one charge */
6353 	while (count--) {
6354 		if (signal_pending(current)) {
6355 			ret = -EINTR;
6356 			break;
6357 		}
6358 		if (!batch_count--) {
6359 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6360 			cond_resched();
6361 		}
6362 		ret = __mem_cgroup_try_charge(NULL,
6363 					GFP_KERNEL, 1, &memcg, false);
6364 		if (ret)
6365 			/* mem_cgroup_clear_mc() will do uncharge later */
6366 			return ret;
6367 		mc.precharge++;
6368 	}
6369 	return ret;
6370 }
6371 
6372 /**
6373  * get_mctgt_type - get target type of moving charge
6374  * @vma: the vma the pte to be checked belongs
6375  * @addr: the address corresponding to the pte to be checked
6376  * @ptent: the pte to be checked
6377  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6378  *
6379  * Returns
6380  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6381  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6382  *     move charge. if @target is not NULL, the page is stored in target->page
6383  *     with extra refcnt got(Callers should handle it).
6384  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6385  *     target for charge migration. if @target is not NULL, the entry is stored
6386  *     in target->ent.
6387  *
6388  * Called with pte lock held.
6389  */
6390 union mc_target {
6391 	struct page	*page;
6392 	swp_entry_t	ent;
6393 };
6394 
6395 enum mc_target_type {
6396 	MC_TARGET_NONE = 0,
6397 	MC_TARGET_PAGE,
6398 	MC_TARGET_SWAP,
6399 };
6400 
6401 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6402 						unsigned long addr, pte_t ptent)
6403 {
6404 	struct page *page = vm_normal_page(vma, addr, ptent);
6405 
6406 	if (!page || !page_mapped(page))
6407 		return NULL;
6408 	if (PageAnon(page)) {
6409 		/* we don't move shared anon */
6410 		if (!move_anon())
6411 			return NULL;
6412 	} else if (!move_file())
6413 		/* we ignore mapcount for file pages */
6414 		return NULL;
6415 	if (!get_page_unless_zero(page))
6416 		return NULL;
6417 
6418 	return page;
6419 }
6420 
6421 #ifdef CONFIG_SWAP
6422 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6423 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6424 {
6425 	struct page *page = NULL;
6426 	swp_entry_t ent = pte_to_swp_entry(ptent);
6427 
6428 	if (!move_anon() || non_swap_entry(ent))
6429 		return NULL;
6430 	/*
6431 	 * Because lookup_swap_cache() updates some statistics counter,
6432 	 * we call find_get_page() with swapper_space directly.
6433 	 */
6434 	page = find_get_page(swap_address_space(ent), ent.val);
6435 	if (do_swap_account)
6436 		entry->val = ent.val;
6437 
6438 	return page;
6439 }
6440 #else
6441 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6442 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6443 {
6444 	return NULL;
6445 }
6446 #endif
6447 
6448 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6449 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6450 {
6451 	struct page *page = NULL;
6452 	struct address_space *mapping;
6453 	pgoff_t pgoff;
6454 
6455 	if (!vma->vm_file) /* anonymous vma */
6456 		return NULL;
6457 	if (!move_file())
6458 		return NULL;
6459 
6460 	mapping = vma->vm_file->f_mapping;
6461 	if (pte_none(ptent))
6462 		pgoff = linear_page_index(vma, addr);
6463 	else /* pte_file(ptent) is true */
6464 		pgoff = pte_to_pgoff(ptent);
6465 
6466 	/* page is moved even if it's not RSS of this task(page-faulted). */
6467 	page = find_get_page(mapping, pgoff);
6468 
6469 #ifdef CONFIG_SWAP
6470 	/* shmem/tmpfs may report page out on swap: account for that too. */
6471 	if (radix_tree_exceptional_entry(page)) {
6472 		swp_entry_t swap = radix_to_swp_entry(page);
6473 		if (do_swap_account)
6474 			*entry = swap;
6475 		page = find_get_page(swap_address_space(swap), swap.val);
6476 	}
6477 #endif
6478 	return page;
6479 }
6480 
6481 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6482 		unsigned long addr, pte_t ptent, union mc_target *target)
6483 {
6484 	struct page *page = NULL;
6485 	struct page_cgroup *pc;
6486 	enum mc_target_type ret = MC_TARGET_NONE;
6487 	swp_entry_t ent = { .val = 0 };
6488 
6489 	if (pte_present(ptent))
6490 		page = mc_handle_present_pte(vma, addr, ptent);
6491 	else if (is_swap_pte(ptent))
6492 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6493 	else if (pte_none(ptent) || pte_file(ptent))
6494 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6495 
6496 	if (!page && !ent.val)
6497 		return ret;
6498 	if (page) {
6499 		pc = lookup_page_cgroup(page);
6500 		/*
6501 		 * Do only loose check w/o page_cgroup lock.
6502 		 * mem_cgroup_move_account() checks the pc is valid or not under
6503 		 * the lock.
6504 		 */
6505 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6506 			ret = MC_TARGET_PAGE;
6507 			if (target)
6508 				target->page = page;
6509 		}
6510 		if (!ret || !target)
6511 			put_page(page);
6512 	}
6513 	/* There is a swap entry and a page doesn't exist or isn't charged */
6514 	if (ent.val && !ret &&
6515 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6516 		ret = MC_TARGET_SWAP;
6517 		if (target)
6518 			target->ent = ent;
6519 	}
6520 	return ret;
6521 }
6522 
6523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6524 /*
6525  * We don't consider swapping or file mapped pages because THP does not
6526  * support them for now.
6527  * Caller should make sure that pmd_trans_huge(pmd) is true.
6528  */
6529 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6530 		unsigned long addr, pmd_t pmd, union mc_target *target)
6531 {
6532 	struct page *page = NULL;
6533 	struct page_cgroup *pc;
6534 	enum mc_target_type ret = MC_TARGET_NONE;
6535 
6536 	page = pmd_page(pmd);
6537 	VM_BUG_ON(!page || !PageHead(page));
6538 	if (!move_anon())
6539 		return ret;
6540 	pc = lookup_page_cgroup(page);
6541 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6542 		ret = MC_TARGET_PAGE;
6543 		if (target) {
6544 			get_page(page);
6545 			target->page = page;
6546 		}
6547 	}
6548 	return ret;
6549 }
6550 #else
6551 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6552 		unsigned long addr, pmd_t pmd, union mc_target *target)
6553 {
6554 	return MC_TARGET_NONE;
6555 }
6556 #endif
6557 
6558 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6559 					unsigned long addr, unsigned long end,
6560 					struct mm_walk *walk)
6561 {
6562 	struct vm_area_struct *vma = walk->private;
6563 	pte_t *pte;
6564 	spinlock_t *ptl;
6565 
6566 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6567 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6568 			mc.precharge += HPAGE_PMD_NR;
6569 		spin_unlock(&vma->vm_mm->page_table_lock);
6570 		return 0;
6571 	}
6572 
6573 	if (pmd_trans_unstable(pmd))
6574 		return 0;
6575 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6576 	for (; addr != end; pte++, addr += PAGE_SIZE)
6577 		if (get_mctgt_type(vma, addr, *pte, NULL))
6578 			mc.precharge++;	/* increment precharge temporarily */
6579 	pte_unmap_unlock(pte - 1, ptl);
6580 	cond_resched();
6581 
6582 	return 0;
6583 }
6584 
6585 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6586 {
6587 	unsigned long precharge;
6588 	struct vm_area_struct *vma;
6589 
6590 	down_read(&mm->mmap_sem);
6591 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6592 		struct mm_walk mem_cgroup_count_precharge_walk = {
6593 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6594 			.mm = mm,
6595 			.private = vma,
6596 		};
6597 		if (is_vm_hugetlb_page(vma))
6598 			continue;
6599 		walk_page_range(vma->vm_start, vma->vm_end,
6600 					&mem_cgroup_count_precharge_walk);
6601 	}
6602 	up_read(&mm->mmap_sem);
6603 
6604 	precharge = mc.precharge;
6605 	mc.precharge = 0;
6606 
6607 	return precharge;
6608 }
6609 
6610 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6611 {
6612 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6613 
6614 	VM_BUG_ON(mc.moving_task);
6615 	mc.moving_task = current;
6616 	return mem_cgroup_do_precharge(precharge);
6617 }
6618 
6619 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6620 static void __mem_cgroup_clear_mc(void)
6621 {
6622 	struct mem_cgroup *from = mc.from;
6623 	struct mem_cgroup *to = mc.to;
6624 	int i;
6625 
6626 	/* we must uncharge all the leftover precharges from mc.to */
6627 	if (mc.precharge) {
6628 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6629 		mc.precharge = 0;
6630 	}
6631 	/*
6632 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6633 	 * we must uncharge here.
6634 	 */
6635 	if (mc.moved_charge) {
6636 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6637 		mc.moved_charge = 0;
6638 	}
6639 	/* we must fixup refcnts and charges */
6640 	if (mc.moved_swap) {
6641 		/* uncharge swap account from the old cgroup */
6642 		if (!mem_cgroup_is_root(mc.from))
6643 			res_counter_uncharge(&mc.from->memsw,
6644 						PAGE_SIZE * mc.moved_swap);
6645 
6646 		for (i = 0; i < mc.moved_swap; i++)
6647 			css_put(&mc.from->css);
6648 
6649 		if (!mem_cgroup_is_root(mc.to)) {
6650 			/*
6651 			 * we charged both to->res and to->memsw, so we should
6652 			 * uncharge to->res.
6653 			 */
6654 			res_counter_uncharge(&mc.to->res,
6655 						PAGE_SIZE * mc.moved_swap);
6656 		}
6657 		/* we've already done css_get(mc.to) */
6658 		mc.moved_swap = 0;
6659 	}
6660 	memcg_oom_recover(from);
6661 	memcg_oom_recover(to);
6662 	wake_up_all(&mc.waitq);
6663 }
6664 
6665 static void mem_cgroup_clear_mc(void)
6666 {
6667 	struct mem_cgroup *from = mc.from;
6668 
6669 	/*
6670 	 * we must clear moving_task before waking up waiters at the end of
6671 	 * task migration.
6672 	 */
6673 	mc.moving_task = NULL;
6674 	__mem_cgroup_clear_mc();
6675 	spin_lock(&mc.lock);
6676 	mc.from = NULL;
6677 	mc.to = NULL;
6678 	spin_unlock(&mc.lock);
6679 	mem_cgroup_end_move(from);
6680 }
6681 
6682 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6683 				 struct cgroup_taskset *tset)
6684 {
6685 	struct task_struct *p = cgroup_taskset_first(tset);
6686 	int ret = 0;
6687 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6688 	unsigned long move_charge_at_immigrate;
6689 
6690 	/*
6691 	 * We are now commited to this value whatever it is. Changes in this
6692 	 * tunable will only affect upcoming migrations, not the current one.
6693 	 * So we need to save it, and keep it going.
6694 	 */
6695 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6696 	if (move_charge_at_immigrate) {
6697 		struct mm_struct *mm;
6698 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6699 
6700 		VM_BUG_ON(from == memcg);
6701 
6702 		mm = get_task_mm(p);
6703 		if (!mm)
6704 			return 0;
6705 		/* We move charges only when we move a owner of the mm */
6706 		if (mm->owner == p) {
6707 			VM_BUG_ON(mc.from);
6708 			VM_BUG_ON(mc.to);
6709 			VM_BUG_ON(mc.precharge);
6710 			VM_BUG_ON(mc.moved_charge);
6711 			VM_BUG_ON(mc.moved_swap);
6712 			mem_cgroup_start_move(from);
6713 			spin_lock(&mc.lock);
6714 			mc.from = from;
6715 			mc.to = memcg;
6716 			mc.immigrate_flags = move_charge_at_immigrate;
6717 			spin_unlock(&mc.lock);
6718 			/* We set mc.moving_task later */
6719 
6720 			ret = mem_cgroup_precharge_mc(mm);
6721 			if (ret)
6722 				mem_cgroup_clear_mc();
6723 		}
6724 		mmput(mm);
6725 	}
6726 	return ret;
6727 }
6728 
6729 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6730 				     struct cgroup_taskset *tset)
6731 {
6732 	mem_cgroup_clear_mc();
6733 }
6734 
6735 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6736 				unsigned long addr, unsigned long end,
6737 				struct mm_walk *walk)
6738 {
6739 	int ret = 0;
6740 	struct vm_area_struct *vma = walk->private;
6741 	pte_t *pte;
6742 	spinlock_t *ptl;
6743 	enum mc_target_type target_type;
6744 	union mc_target target;
6745 	struct page *page;
6746 	struct page_cgroup *pc;
6747 
6748 	/*
6749 	 * We don't take compound_lock() here but no race with splitting thp
6750 	 * happens because:
6751 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6752 	 *    under splitting, which means there's no concurrent thp split,
6753 	 *  - if another thread runs into split_huge_page() just after we
6754 	 *    entered this if-block, the thread must wait for page table lock
6755 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6756 	 *    part of thp split is not executed yet.
6757 	 */
6758 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6759 		if (mc.precharge < HPAGE_PMD_NR) {
6760 			spin_unlock(&vma->vm_mm->page_table_lock);
6761 			return 0;
6762 		}
6763 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6764 		if (target_type == MC_TARGET_PAGE) {
6765 			page = target.page;
6766 			if (!isolate_lru_page(page)) {
6767 				pc = lookup_page_cgroup(page);
6768 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6769 							pc, mc.from, mc.to)) {
6770 					mc.precharge -= HPAGE_PMD_NR;
6771 					mc.moved_charge += HPAGE_PMD_NR;
6772 				}
6773 				putback_lru_page(page);
6774 			}
6775 			put_page(page);
6776 		}
6777 		spin_unlock(&vma->vm_mm->page_table_lock);
6778 		return 0;
6779 	}
6780 
6781 	if (pmd_trans_unstable(pmd))
6782 		return 0;
6783 retry:
6784 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6785 	for (; addr != end; addr += PAGE_SIZE) {
6786 		pte_t ptent = *(pte++);
6787 		swp_entry_t ent;
6788 
6789 		if (!mc.precharge)
6790 			break;
6791 
6792 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6793 		case MC_TARGET_PAGE:
6794 			page = target.page;
6795 			if (isolate_lru_page(page))
6796 				goto put;
6797 			pc = lookup_page_cgroup(page);
6798 			if (!mem_cgroup_move_account(page, 1, pc,
6799 						     mc.from, mc.to)) {
6800 				mc.precharge--;
6801 				/* we uncharge from mc.from later. */
6802 				mc.moved_charge++;
6803 			}
6804 			putback_lru_page(page);
6805 put:			/* get_mctgt_type() gets the page */
6806 			put_page(page);
6807 			break;
6808 		case MC_TARGET_SWAP:
6809 			ent = target.ent;
6810 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6811 				mc.precharge--;
6812 				/* we fixup refcnts and charges later. */
6813 				mc.moved_swap++;
6814 			}
6815 			break;
6816 		default:
6817 			break;
6818 		}
6819 	}
6820 	pte_unmap_unlock(pte - 1, ptl);
6821 	cond_resched();
6822 
6823 	if (addr != end) {
6824 		/*
6825 		 * We have consumed all precharges we got in can_attach().
6826 		 * We try charge one by one, but don't do any additional
6827 		 * charges to mc.to if we have failed in charge once in attach()
6828 		 * phase.
6829 		 */
6830 		ret = mem_cgroup_do_precharge(1);
6831 		if (!ret)
6832 			goto retry;
6833 	}
6834 
6835 	return ret;
6836 }
6837 
6838 static void mem_cgroup_move_charge(struct mm_struct *mm)
6839 {
6840 	struct vm_area_struct *vma;
6841 
6842 	lru_add_drain_all();
6843 retry:
6844 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6845 		/*
6846 		 * Someone who are holding the mmap_sem might be waiting in
6847 		 * waitq. So we cancel all extra charges, wake up all waiters,
6848 		 * and retry. Because we cancel precharges, we might not be able
6849 		 * to move enough charges, but moving charge is a best-effort
6850 		 * feature anyway, so it wouldn't be a big problem.
6851 		 */
6852 		__mem_cgroup_clear_mc();
6853 		cond_resched();
6854 		goto retry;
6855 	}
6856 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6857 		int ret;
6858 		struct mm_walk mem_cgroup_move_charge_walk = {
6859 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6860 			.mm = mm,
6861 			.private = vma,
6862 		};
6863 		if (is_vm_hugetlb_page(vma))
6864 			continue;
6865 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6866 						&mem_cgroup_move_charge_walk);
6867 		if (ret)
6868 			/*
6869 			 * means we have consumed all precharges and failed in
6870 			 * doing additional charge. Just abandon here.
6871 			 */
6872 			break;
6873 	}
6874 	up_read(&mm->mmap_sem);
6875 }
6876 
6877 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6878 				 struct cgroup_taskset *tset)
6879 {
6880 	struct task_struct *p = cgroup_taskset_first(tset);
6881 	struct mm_struct *mm = get_task_mm(p);
6882 
6883 	if (mm) {
6884 		if (mc.to)
6885 			mem_cgroup_move_charge(mm);
6886 		mmput(mm);
6887 	}
6888 	if (mc.to)
6889 		mem_cgroup_clear_mc();
6890 }
6891 #else	/* !CONFIG_MMU */
6892 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6893 				 struct cgroup_taskset *tset)
6894 {
6895 	return 0;
6896 }
6897 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6898 				     struct cgroup_taskset *tset)
6899 {
6900 }
6901 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6902 				 struct cgroup_taskset *tset)
6903 {
6904 }
6905 #endif
6906 
6907 /*
6908  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6909  * to verify sane_behavior flag on each mount attempt.
6910  */
6911 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6912 {
6913 	/*
6914 	 * use_hierarchy is forced with sane_behavior.  cgroup core
6915 	 * guarantees that @root doesn't have any children, so turning it
6916 	 * on for the root memcg is enough.
6917 	 */
6918 	if (cgroup_sane_behavior(root_css->cgroup))
6919 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6920 }
6921 
6922 struct cgroup_subsys mem_cgroup_subsys = {
6923 	.name = "memory",
6924 	.subsys_id = mem_cgroup_subsys_id,
6925 	.css_alloc = mem_cgroup_css_alloc,
6926 	.css_online = mem_cgroup_css_online,
6927 	.css_offline = mem_cgroup_css_offline,
6928 	.css_free = mem_cgroup_css_free,
6929 	.can_attach = mem_cgroup_can_attach,
6930 	.cancel_attach = mem_cgroup_cancel_attach,
6931 	.attach = mem_cgroup_move_task,
6932 	.bind = mem_cgroup_bind,
6933 	.base_cftypes = mem_cgroup_files,
6934 	.early_init = 0,
6935 	.use_id = 1,
6936 };
6937 
6938 #ifdef CONFIG_MEMCG_SWAP
6939 static int __init enable_swap_account(char *s)
6940 {
6941 	if (!strcmp(s, "1"))
6942 		really_do_swap_account = 1;
6943 	else if (!strcmp(s, "0"))
6944 		really_do_swap_account = 0;
6945 	return 1;
6946 }
6947 __setup("swapaccount=", enable_swap_account);
6948 
6949 static void __init memsw_file_init(void)
6950 {
6951 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6952 }
6953 
6954 static void __init enable_swap_cgroup(void)
6955 {
6956 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6957 		do_swap_account = 1;
6958 		memsw_file_init();
6959 	}
6960 }
6961 
6962 #else
6963 static void __init enable_swap_cgroup(void)
6964 {
6965 }
6966 #endif
6967 
6968 /*
6969  * subsys_initcall() for memory controller.
6970  *
6971  * Some parts like hotcpu_notifier() have to be initialized from this context
6972  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6973  * everything that doesn't depend on a specific mem_cgroup structure should
6974  * be initialized from here.
6975  */
6976 static int __init mem_cgroup_init(void)
6977 {
6978 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6979 	enable_swap_cgroup();
6980 	mem_cgroup_soft_limit_tree_init();
6981 	memcg_stock_init();
6982 	return 0;
6983 }
6984 subsys_initcall(mem_cgroup_init);
6985