xref: /linux/mm/memcontrol.c (revision 4c8f1cb266cba4d1052f524d04df839d8f732ace)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/rbtree.h>
33 #include <linux/slab.h>
34 #include <linux/swap.h>
35 #include <linux/spinlock.h>
36 #include <linux/fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm_inline.h>
40 #include <linux/page_cgroup.h>
41 #include "internal.h"
42 
43 #include <asm/uaccess.h>
44 
45 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
46 #define MEM_CGROUP_RECLAIM_RETRIES	5
47 struct mem_cgroup *root_mem_cgroup __read_mostly;
48 
49 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
50 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
51 int do_swap_account __read_mostly;
52 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
53 #else
54 #define do_swap_account		(0)
55 #endif
56 
57 static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
58 #define SOFTLIMIT_EVENTS_THRESH (1000)
59 
60 /*
61  * Statistics for memory cgroup.
62  */
63 enum mem_cgroup_stat_index {
64 	/*
65 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
66 	 */
67 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
68 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
69 	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
70 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
71 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
72 	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
73 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
74 
75 	MEM_CGROUP_STAT_NSTATS,
76 };
77 
78 struct mem_cgroup_stat_cpu {
79 	s64 count[MEM_CGROUP_STAT_NSTATS];
80 } ____cacheline_aligned_in_smp;
81 
82 struct mem_cgroup_stat {
83 	struct mem_cgroup_stat_cpu cpustat[0];
84 };
85 
86 static inline void
87 __mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
88 				enum mem_cgroup_stat_index idx)
89 {
90 	stat->count[idx] = 0;
91 }
92 
93 static inline s64
94 __mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
95 				enum mem_cgroup_stat_index idx)
96 {
97 	return stat->count[idx];
98 }
99 
100 /*
101  * For accounting under irq disable, no need for increment preempt count.
102  */
103 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
104 		enum mem_cgroup_stat_index idx, int val)
105 {
106 	stat->count[idx] += val;
107 }
108 
109 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
110 		enum mem_cgroup_stat_index idx)
111 {
112 	int cpu;
113 	s64 ret = 0;
114 	for_each_possible_cpu(cpu)
115 		ret += stat->cpustat[cpu].count[idx];
116 	return ret;
117 }
118 
119 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
120 {
121 	s64 ret;
122 
123 	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
124 	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
125 	return ret;
126 }
127 
128 /*
129  * per-zone information in memory controller.
130  */
131 struct mem_cgroup_per_zone {
132 	/*
133 	 * spin_lock to protect the per cgroup LRU
134 	 */
135 	struct list_head	lists[NR_LRU_LISTS];
136 	unsigned long		count[NR_LRU_LISTS];
137 
138 	struct zone_reclaim_stat reclaim_stat;
139 	struct rb_node		tree_node;	/* RB tree node */
140 	unsigned long long	usage_in_excess;/* Set to the value by which */
141 						/* the soft limit is exceeded*/
142 	bool			on_tree;
143 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
144 						/* use container_of	   */
145 };
146 /* Macro for accessing counter */
147 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
148 
149 struct mem_cgroup_per_node {
150 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151 };
152 
153 struct mem_cgroup_lru_info {
154 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155 };
156 
157 /*
158  * Cgroups above their limits are maintained in a RB-Tree, independent of
159  * their hierarchy representation
160  */
161 
162 struct mem_cgroup_tree_per_zone {
163 	struct rb_root rb_root;
164 	spinlock_t lock;
165 };
166 
167 struct mem_cgroup_tree_per_node {
168 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169 };
170 
171 struct mem_cgroup_tree {
172 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173 };
174 
175 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  *
183  * TODO: Add a water mark for the memory controller. Reclaim will begin when
184  * we hit the water mark. May be even add a low water mark, such that
185  * no reclaim occurs from a cgroup at it's low water mark, this is
186  * a feature that will be implemented much later in the future.
187  */
188 struct mem_cgroup {
189 	struct cgroup_subsys_state css;
190 	/*
191 	 * the counter to account for memory usage
192 	 */
193 	struct res_counter res;
194 	/*
195 	 * the counter to account for mem+swap usage.
196 	 */
197 	struct res_counter memsw;
198 	/*
199 	 * Per cgroup active and inactive list, similar to the
200 	 * per zone LRU lists.
201 	 */
202 	struct mem_cgroup_lru_info info;
203 
204 	/*
205 	  protect against reclaim related member.
206 	*/
207 	spinlock_t reclaim_param_lock;
208 
209 	int	prev_priority;	/* for recording reclaim priority */
210 
211 	/*
212 	 * While reclaiming in a hiearchy, we cache the last child we
213 	 * reclaimed from.
214 	 */
215 	int last_scanned_child;
216 	/*
217 	 * Should the accounting and control be hierarchical, per subtree?
218 	 */
219 	bool use_hierarchy;
220 	unsigned long	last_oom_jiffies;
221 	atomic_t	refcnt;
222 
223 	unsigned int	swappiness;
224 
225 	/* set when res.limit == memsw.limit */
226 	bool		memsw_is_minimum;
227 
228 	/*
229 	 * statistics. This must be placed at the end of memcg.
230 	 */
231 	struct mem_cgroup_stat stat;
232 };
233 
234 /*
235  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
236  * limit reclaim to prevent infinite loops, if they ever occur.
237  */
238 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
239 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
240 
241 enum charge_type {
242 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
243 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
244 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
245 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
246 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
247 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
248 	NR_CHARGE_TYPE,
249 };
250 
251 /* only for here (for easy reading.) */
252 #define PCGF_CACHE	(1UL << PCG_CACHE)
253 #define PCGF_USED	(1UL << PCG_USED)
254 #define PCGF_LOCK	(1UL << PCG_LOCK)
255 /* Not used, but added here for completeness */
256 #define PCGF_ACCT	(1UL << PCG_ACCT)
257 
258 /* for encoding cft->private value on file */
259 #define _MEM			(0)
260 #define _MEMSWAP		(1)
261 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
262 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
263 #define MEMFILE_ATTR(val)	((val) & 0xffff)
264 
265 /*
266  * Reclaim flags for mem_cgroup_hierarchical_reclaim
267  */
268 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
269 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
270 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
271 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
272 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
273 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
274 
275 static void mem_cgroup_get(struct mem_cgroup *mem);
276 static void mem_cgroup_put(struct mem_cgroup *mem);
277 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
278 
279 static struct mem_cgroup_per_zone *
280 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
281 {
282 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
283 }
284 
285 static struct mem_cgroup_per_zone *
286 page_cgroup_zoneinfo(struct page_cgroup *pc)
287 {
288 	struct mem_cgroup *mem = pc->mem_cgroup;
289 	int nid = page_cgroup_nid(pc);
290 	int zid = page_cgroup_zid(pc);
291 
292 	if (!mem)
293 		return NULL;
294 
295 	return mem_cgroup_zoneinfo(mem, nid, zid);
296 }
297 
298 static struct mem_cgroup_tree_per_zone *
299 soft_limit_tree_node_zone(int nid, int zid)
300 {
301 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
302 }
303 
304 static struct mem_cgroup_tree_per_zone *
305 soft_limit_tree_from_page(struct page *page)
306 {
307 	int nid = page_to_nid(page);
308 	int zid = page_zonenum(page);
309 
310 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
311 }
312 
313 static void
314 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
315 				struct mem_cgroup_per_zone *mz,
316 				struct mem_cgroup_tree_per_zone *mctz)
317 {
318 	struct rb_node **p = &mctz->rb_root.rb_node;
319 	struct rb_node *parent = NULL;
320 	struct mem_cgroup_per_zone *mz_node;
321 
322 	if (mz->on_tree)
323 		return;
324 
325 	mz->usage_in_excess = res_counter_soft_limit_excess(&mem->res);
326 	while (*p) {
327 		parent = *p;
328 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
329 					tree_node);
330 		if (mz->usage_in_excess < mz_node->usage_in_excess)
331 			p = &(*p)->rb_left;
332 		/*
333 		 * We can't avoid mem cgroups that are over their soft
334 		 * limit by the same amount
335 		 */
336 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
337 			p = &(*p)->rb_right;
338 	}
339 	rb_link_node(&mz->tree_node, parent, p);
340 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
341 	mz->on_tree = true;
342 }
343 
344 static void
345 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
346 				struct mem_cgroup_per_zone *mz,
347 				struct mem_cgroup_tree_per_zone *mctz)
348 {
349 	if (!mz->on_tree)
350 		return;
351 	rb_erase(&mz->tree_node, &mctz->rb_root);
352 	mz->on_tree = false;
353 }
354 
355 static void
356 mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
357 				struct mem_cgroup_per_zone *mz,
358 				struct mem_cgroup_tree_per_zone *mctz)
359 {
360 	spin_lock(&mctz->lock);
361 	__mem_cgroup_insert_exceeded(mem, mz, mctz);
362 	spin_unlock(&mctz->lock);
363 }
364 
365 static void
366 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
367 				struct mem_cgroup_per_zone *mz,
368 				struct mem_cgroup_tree_per_zone *mctz)
369 {
370 	spin_lock(&mctz->lock);
371 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
372 	spin_unlock(&mctz->lock);
373 }
374 
375 static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
376 {
377 	bool ret = false;
378 	int cpu;
379 	s64 val;
380 	struct mem_cgroup_stat_cpu *cpustat;
381 
382 	cpu = get_cpu();
383 	cpustat = &mem->stat.cpustat[cpu];
384 	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
385 	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
386 		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
387 		ret = true;
388 	}
389 	put_cpu();
390 	return ret;
391 }
392 
393 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
394 {
395 	unsigned long long prev_usage_in_excess, new_usage_in_excess;
396 	bool updated_tree = false;
397 	struct mem_cgroup_per_zone *mz;
398 	struct mem_cgroup_tree_per_zone *mctz;
399 
400 	mz = mem_cgroup_zoneinfo(mem, page_to_nid(page), page_zonenum(page));
401 	mctz = soft_limit_tree_from_page(page);
402 
403 	/*
404 	 * We do updates in lazy mode, mem's are removed
405 	 * lazily from the per-zone, per-node rb tree
406 	 */
407 	prev_usage_in_excess = mz->usage_in_excess;
408 
409 	new_usage_in_excess = res_counter_soft_limit_excess(&mem->res);
410 	if (prev_usage_in_excess) {
411 		mem_cgroup_remove_exceeded(mem, mz, mctz);
412 		updated_tree = true;
413 	}
414 	if (!new_usage_in_excess)
415 		goto done;
416 	mem_cgroup_insert_exceeded(mem, mz, mctz);
417 
418 done:
419 	if (updated_tree) {
420 		spin_lock(&mctz->lock);
421 		mz->usage_in_excess = new_usage_in_excess;
422 		spin_unlock(&mctz->lock);
423 	}
424 }
425 
426 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
427 {
428 	int node, zone;
429 	struct mem_cgroup_per_zone *mz;
430 	struct mem_cgroup_tree_per_zone *mctz;
431 
432 	for_each_node_state(node, N_POSSIBLE) {
433 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
434 			mz = mem_cgroup_zoneinfo(mem, node, zone);
435 			mctz = soft_limit_tree_node_zone(node, zone);
436 			mem_cgroup_remove_exceeded(mem, mz, mctz);
437 		}
438 	}
439 }
440 
441 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
442 {
443 	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
444 }
445 
446 static struct mem_cgroup_per_zone *
447 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
448 {
449 	struct rb_node *rightmost = NULL;
450 	struct mem_cgroup_per_zone *mz = NULL;
451 
452 retry:
453 	rightmost = rb_last(&mctz->rb_root);
454 	if (!rightmost)
455 		goto done;		/* Nothing to reclaim from */
456 
457 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
458 	/*
459 	 * Remove the node now but someone else can add it back,
460 	 * we will to add it back at the end of reclaim to its correct
461 	 * position in the tree.
462 	 */
463 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
464 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
465 		!css_tryget(&mz->mem->css))
466 		goto retry;
467 done:
468 	return mz;
469 }
470 
471 static struct mem_cgroup_per_zone *
472 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
473 {
474 	struct mem_cgroup_per_zone *mz;
475 
476 	spin_lock(&mctz->lock);
477 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
478 	spin_unlock(&mctz->lock);
479 	return mz;
480 }
481 
482 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
483 					 bool charge)
484 {
485 	int val = (charge) ? 1 : -1;
486 	struct mem_cgroup_stat *stat = &mem->stat;
487 	struct mem_cgroup_stat_cpu *cpustat;
488 	int cpu = get_cpu();
489 
490 	cpustat = &stat->cpustat[cpu];
491 	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
492 	put_cpu();
493 }
494 
495 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
496 					 struct page_cgroup *pc,
497 					 bool charge)
498 {
499 	int val = (charge) ? 1 : -1;
500 	struct mem_cgroup_stat *stat = &mem->stat;
501 	struct mem_cgroup_stat_cpu *cpustat;
502 	int cpu = get_cpu();
503 
504 	cpustat = &stat->cpustat[cpu];
505 	if (PageCgroupCache(pc))
506 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
507 	else
508 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
509 
510 	if (charge)
511 		__mem_cgroup_stat_add_safe(cpustat,
512 				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
513 	else
514 		__mem_cgroup_stat_add_safe(cpustat,
515 				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
516 	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
517 	put_cpu();
518 }
519 
520 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
521 					enum lru_list idx)
522 {
523 	int nid, zid;
524 	struct mem_cgroup_per_zone *mz;
525 	u64 total = 0;
526 
527 	for_each_online_node(nid)
528 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
529 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
530 			total += MEM_CGROUP_ZSTAT(mz, idx);
531 		}
532 	return total;
533 }
534 
535 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
536 {
537 	return container_of(cgroup_subsys_state(cont,
538 				mem_cgroup_subsys_id), struct mem_cgroup,
539 				css);
540 }
541 
542 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
543 {
544 	/*
545 	 * mm_update_next_owner() may clear mm->owner to NULL
546 	 * if it races with swapoff, page migration, etc.
547 	 * So this can be called with p == NULL.
548 	 */
549 	if (unlikely(!p))
550 		return NULL;
551 
552 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
553 				struct mem_cgroup, css);
554 }
555 
556 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
557 {
558 	struct mem_cgroup *mem = NULL;
559 
560 	if (!mm)
561 		return NULL;
562 	/*
563 	 * Because we have no locks, mm->owner's may be being moved to other
564 	 * cgroup. We use css_tryget() here even if this looks
565 	 * pessimistic (rather than adding locks here).
566 	 */
567 	rcu_read_lock();
568 	do {
569 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
570 		if (unlikely(!mem))
571 			break;
572 	} while (!css_tryget(&mem->css));
573 	rcu_read_unlock();
574 	return mem;
575 }
576 
577 /*
578  * Call callback function against all cgroup under hierarchy tree.
579  */
580 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
581 			  int (*func)(struct mem_cgroup *, void *))
582 {
583 	int found, ret, nextid;
584 	struct cgroup_subsys_state *css;
585 	struct mem_cgroup *mem;
586 
587 	if (!root->use_hierarchy)
588 		return (*func)(root, data);
589 
590 	nextid = 1;
591 	do {
592 		ret = 0;
593 		mem = NULL;
594 
595 		rcu_read_lock();
596 		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
597 				   &found);
598 		if (css && css_tryget(css))
599 			mem = container_of(css, struct mem_cgroup, css);
600 		rcu_read_unlock();
601 
602 		if (mem) {
603 			ret = (*func)(mem, data);
604 			css_put(&mem->css);
605 		}
606 		nextid = found + 1;
607 	} while (!ret && css);
608 
609 	return ret;
610 }
611 
612 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
613 {
614 	return (mem == root_mem_cgroup);
615 }
616 
617 /*
618  * Following LRU functions are allowed to be used without PCG_LOCK.
619  * Operations are called by routine of global LRU independently from memcg.
620  * What we have to take care of here is validness of pc->mem_cgroup.
621  *
622  * Changes to pc->mem_cgroup happens when
623  * 1. charge
624  * 2. moving account
625  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
626  * It is added to LRU before charge.
627  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
628  * When moving account, the page is not on LRU. It's isolated.
629  */
630 
631 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
632 {
633 	struct page_cgroup *pc;
634 	struct mem_cgroup_per_zone *mz;
635 
636 	if (mem_cgroup_disabled())
637 		return;
638 	pc = lookup_page_cgroup(page);
639 	/* can happen while we handle swapcache. */
640 	if (!TestClearPageCgroupAcctLRU(pc))
641 		return;
642 	VM_BUG_ON(!pc->mem_cgroup);
643 	/*
644 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
645 	 * removed from global LRU.
646 	 */
647 	mz = page_cgroup_zoneinfo(pc);
648 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
649 	if (mem_cgroup_is_root(pc->mem_cgroup))
650 		return;
651 	VM_BUG_ON(list_empty(&pc->lru));
652 	list_del_init(&pc->lru);
653 	return;
654 }
655 
656 void mem_cgroup_del_lru(struct page *page)
657 {
658 	mem_cgroup_del_lru_list(page, page_lru(page));
659 }
660 
661 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
662 {
663 	struct mem_cgroup_per_zone *mz;
664 	struct page_cgroup *pc;
665 
666 	if (mem_cgroup_disabled())
667 		return;
668 
669 	pc = lookup_page_cgroup(page);
670 	/*
671 	 * Used bit is set without atomic ops but after smp_wmb().
672 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
673 	 */
674 	smp_rmb();
675 	/* unused or root page is not rotated. */
676 	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
677 		return;
678 	mz = page_cgroup_zoneinfo(pc);
679 	list_move(&pc->lru, &mz->lists[lru]);
680 }
681 
682 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
683 {
684 	struct page_cgroup *pc;
685 	struct mem_cgroup_per_zone *mz;
686 
687 	if (mem_cgroup_disabled())
688 		return;
689 	pc = lookup_page_cgroup(page);
690 	VM_BUG_ON(PageCgroupAcctLRU(pc));
691 	/*
692 	 * Used bit is set without atomic ops but after smp_wmb().
693 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
694 	 */
695 	smp_rmb();
696 	if (!PageCgroupUsed(pc))
697 		return;
698 
699 	mz = page_cgroup_zoneinfo(pc);
700 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
701 	SetPageCgroupAcctLRU(pc);
702 	if (mem_cgroup_is_root(pc->mem_cgroup))
703 		return;
704 	list_add(&pc->lru, &mz->lists[lru]);
705 }
706 
707 /*
708  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
709  * lru because the page may.be reused after it's fully uncharged (because of
710  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
711  * it again. This function is only used to charge SwapCache. It's done under
712  * lock_page and expected that zone->lru_lock is never held.
713  */
714 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
715 {
716 	unsigned long flags;
717 	struct zone *zone = page_zone(page);
718 	struct page_cgroup *pc = lookup_page_cgroup(page);
719 
720 	spin_lock_irqsave(&zone->lru_lock, flags);
721 	/*
722 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
723 	 * is guarded by lock_page() because the page is SwapCache.
724 	 */
725 	if (!PageCgroupUsed(pc))
726 		mem_cgroup_del_lru_list(page, page_lru(page));
727 	spin_unlock_irqrestore(&zone->lru_lock, flags);
728 }
729 
730 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
731 {
732 	unsigned long flags;
733 	struct zone *zone = page_zone(page);
734 	struct page_cgroup *pc = lookup_page_cgroup(page);
735 
736 	spin_lock_irqsave(&zone->lru_lock, flags);
737 	/* link when the page is linked to LRU but page_cgroup isn't */
738 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
739 		mem_cgroup_add_lru_list(page, page_lru(page));
740 	spin_unlock_irqrestore(&zone->lru_lock, flags);
741 }
742 
743 
744 void mem_cgroup_move_lists(struct page *page,
745 			   enum lru_list from, enum lru_list to)
746 {
747 	if (mem_cgroup_disabled())
748 		return;
749 	mem_cgroup_del_lru_list(page, from);
750 	mem_cgroup_add_lru_list(page, to);
751 }
752 
753 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
754 {
755 	int ret;
756 	struct mem_cgroup *curr = NULL;
757 
758 	task_lock(task);
759 	rcu_read_lock();
760 	curr = try_get_mem_cgroup_from_mm(task->mm);
761 	rcu_read_unlock();
762 	task_unlock(task);
763 	if (!curr)
764 		return 0;
765 	if (curr->use_hierarchy)
766 		ret = css_is_ancestor(&curr->css, &mem->css);
767 	else
768 		ret = (curr == mem);
769 	css_put(&curr->css);
770 	return ret;
771 }
772 
773 /*
774  * prev_priority control...this will be used in memory reclaim path.
775  */
776 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
777 {
778 	int prev_priority;
779 
780 	spin_lock(&mem->reclaim_param_lock);
781 	prev_priority = mem->prev_priority;
782 	spin_unlock(&mem->reclaim_param_lock);
783 
784 	return prev_priority;
785 }
786 
787 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
788 {
789 	spin_lock(&mem->reclaim_param_lock);
790 	if (priority < mem->prev_priority)
791 		mem->prev_priority = priority;
792 	spin_unlock(&mem->reclaim_param_lock);
793 }
794 
795 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
796 {
797 	spin_lock(&mem->reclaim_param_lock);
798 	mem->prev_priority = priority;
799 	spin_unlock(&mem->reclaim_param_lock);
800 }
801 
802 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
803 {
804 	unsigned long active;
805 	unsigned long inactive;
806 	unsigned long gb;
807 	unsigned long inactive_ratio;
808 
809 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
810 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
811 
812 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
813 	if (gb)
814 		inactive_ratio = int_sqrt(10 * gb);
815 	else
816 		inactive_ratio = 1;
817 
818 	if (present_pages) {
819 		present_pages[0] = inactive;
820 		present_pages[1] = active;
821 	}
822 
823 	return inactive_ratio;
824 }
825 
826 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
827 {
828 	unsigned long active;
829 	unsigned long inactive;
830 	unsigned long present_pages[2];
831 	unsigned long inactive_ratio;
832 
833 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
834 
835 	inactive = present_pages[0];
836 	active = present_pages[1];
837 
838 	if (inactive * inactive_ratio < active)
839 		return 1;
840 
841 	return 0;
842 }
843 
844 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
845 {
846 	unsigned long active;
847 	unsigned long inactive;
848 
849 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
850 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
851 
852 	return (active > inactive);
853 }
854 
855 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
856 				       struct zone *zone,
857 				       enum lru_list lru)
858 {
859 	int nid = zone->zone_pgdat->node_id;
860 	int zid = zone_idx(zone);
861 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
862 
863 	return MEM_CGROUP_ZSTAT(mz, lru);
864 }
865 
866 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
867 						      struct zone *zone)
868 {
869 	int nid = zone->zone_pgdat->node_id;
870 	int zid = zone_idx(zone);
871 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
872 
873 	return &mz->reclaim_stat;
874 }
875 
876 struct zone_reclaim_stat *
877 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
878 {
879 	struct page_cgroup *pc;
880 	struct mem_cgroup_per_zone *mz;
881 
882 	if (mem_cgroup_disabled())
883 		return NULL;
884 
885 	pc = lookup_page_cgroup(page);
886 	/*
887 	 * Used bit is set without atomic ops but after smp_wmb().
888 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
889 	 */
890 	smp_rmb();
891 	if (!PageCgroupUsed(pc))
892 		return NULL;
893 
894 	mz = page_cgroup_zoneinfo(pc);
895 	if (!mz)
896 		return NULL;
897 
898 	return &mz->reclaim_stat;
899 }
900 
901 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
902 					struct list_head *dst,
903 					unsigned long *scanned, int order,
904 					int mode, struct zone *z,
905 					struct mem_cgroup *mem_cont,
906 					int active, int file)
907 {
908 	unsigned long nr_taken = 0;
909 	struct page *page;
910 	unsigned long scan;
911 	LIST_HEAD(pc_list);
912 	struct list_head *src;
913 	struct page_cgroup *pc, *tmp;
914 	int nid = z->zone_pgdat->node_id;
915 	int zid = zone_idx(z);
916 	struct mem_cgroup_per_zone *mz;
917 	int lru = LRU_FILE * file + active;
918 	int ret;
919 
920 	BUG_ON(!mem_cont);
921 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
922 	src = &mz->lists[lru];
923 
924 	scan = 0;
925 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
926 		if (scan >= nr_to_scan)
927 			break;
928 
929 		page = pc->page;
930 		if (unlikely(!PageCgroupUsed(pc)))
931 			continue;
932 		if (unlikely(!PageLRU(page)))
933 			continue;
934 
935 		scan++;
936 		ret = __isolate_lru_page(page, mode, file);
937 		switch (ret) {
938 		case 0:
939 			list_move(&page->lru, dst);
940 			mem_cgroup_del_lru(page);
941 			nr_taken++;
942 			break;
943 		case -EBUSY:
944 			/* we don't affect global LRU but rotate in our LRU */
945 			mem_cgroup_rotate_lru_list(page, page_lru(page));
946 			break;
947 		default:
948 			break;
949 		}
950 	}
951 
952 	*scanned = scan;
953 	return nr_taken;
954 }
955 
956 #define mem_cgroup_from_res_counter(counter, member)	\
957 	container_of(counter, struct mem_cgroup, member)
958 
959 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
960 {
961 	if (do_swap_account) {
962 		if (res_counter_check_under_limit(&mem->res) &&
963 			res_counter_check_under_limit(&mem->memsw))
964 			return true;
965 	} else
966 		if (res_counter_check_under_limit(&mem->res))
967 			return true;
968 	return false;
969 }
970 
971 static unsigned int get_swappiness(struct mem_cgroup *memcg)
972 {
973 	struct cgroup *cgrp = memcg->css.cgroup;
974 	unsigned int swappiness;
975 
976 	/* root ? */
977 	if (cgrp->parent == NULL)
978 		return vm_swappiness;
979 
980 	spin_lock(&memcg->reclaim_param_lock);
981 	swappiness = memcg->swappiness;
982 	spin_unlock(&memcg->reclaim_param_lock);
983 
984 	return swappiness;
985 }
986 
987 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
988 {
989 	int *val = data;
990 	(*val)++;
991 	return 0;
992 }
993 
994 /**
995  * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
996  * @memcg: The memory cgroup that went over limit
997  * @p: Task that is going to be killed
998  *
999  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1000  * enabled
1001  */
1002 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1003 {
1004 	struct cgroup *task_cgrp;
1005 	struct cgroup *mem_cgrp;
1006 	/*
1007 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1008 	 * on the assumption that OOM is serialized for memory controller.
1009 	 * If this assumption is broken, revisit this code.
1010 	 */
1011 	static char memcg_name[PATH_MAX];
1012 	int ret;
1013 
1014 	if (!memcg)
1015 		return;
1016 
1017 
1018 	rcu_read_lock();
1019 
1020 	mem_cgrp = memcg->css.cgroup;
1021 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1022 
1023 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1024 	if (ret < 0) {
1025 		/*
1026 		 * Unfortunately, we are unable to convert to a useful name
1027 		 * But we'll still print out the usage information
1028 		 */
1029 		rcu_read_unlock();
1030 		goto done;
1031 	}
1032 	rcu_read_unlock();
1033 
1034 	printk(KERN_INFO "Task in %s killed", memcg_name);
1035 
1036 	rcu_read_lock();
1037 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1038 	if (ret < 0) {
1039 		rcu_read_unlock();
1040 		goto done;
1041 	}
1042 	rcu_read_unlock();
1043 
1044 	/*
1045 	 * Continues from above, so we don't need an KERN_ level
1046 	 */
1047 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1048 done:
1049 
1050 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1051 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1052 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1053 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1054 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1055 		"failcnt %llu\n",
1056 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1057 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1058 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1059 }
1060 
1061 /*
1062  * This function returns the number of memcg under hierarchy tree. Returns
1063  * 1(self count) if no children.
1064  */
1065 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1066 {
1067 	int num = 0;
1068  	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1069 	return num;
1070 }
1071 
1072 /*
1073  * Visit the first child (need not be the first child as per the ordering
1074  * of the cgroup list, since we track last_scanned_child) of @mem and use
1075  * that to reclaim free pages from.
1076  */
1077 static struct mem_cgroup *
1078 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1079 {
1080 	struct mem_cgroup *ret = NULL;
1081 	struct cgroup_subsys_state *css;
1082 	int nextid, found;
1083 
1084 	if (!root_mem->use_hierarchy) {
1085 		css_get(&root_mem->css);
1086 		ret = root_mem;
1087 	}
1088 
1089 	while (!ret) {
1090 		rcu_read_lock();
1091 		nextid = root_mem->last_scanned_child + 1;
1092 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1093 				   &found);
1094 		if (css && css_tryget(css))
1095 			ret = container_of(css, struct mem_cgroup, css);
1096 
1097 		rcu_read_unlock();
1098 		/* Updates scanning parameter */
1099 		spin_lock(&root_mem->reclaim_param_lock);
1100 		if (!css) {
1101 			/* this means start scan from ID:1 */
1102 			root_mem->last_scanned_child = 0;
1103 		} else
1104 			root_mem->last_scanned_child = found;
1105 		spin_unlock(&root_mem->reclaim_param_lock);
1106 	}
1107 
1108 	return ret;
1109 }
1110 
1111 /*
1112  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1113  * we reclaimed from, so that we don't end up penalizing one child extensively
1114  * based on its position in the children list.
1115  *
1116  * root_mem is the original ancestor that we've been reclaim from.
1117  *
1118  * We give up and return to the caller when we visit root_mem twice.
1119  * (other groups can be removed while we're walking....)
1120  *
1121  * If shrink==true, for avoiding to free too much, this returns immedieately.
1122  */
1123 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1124 						struct zone *zone,
1125 						gfp_t gfp_mask,
1126 						unsigned long reclaim_options)
1127 {
1128 	struct mem_cgroup *victim;
1129 	int ret, total = 0;
1130 	int loop = 0;
1131 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1132 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1133 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1134 	unsigned long excess = mem_cgroup_get_excess(root_mem);
1135 
1136 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1137 	if (root_mem->memsw_is_minimum)
1138 		noswap = true;
1139 
1140 	while (1) {
1141 		victim = mem_cgroup_select_victim(root_mem);
1142 		if (victim == root_mem) {
1143 			loop++;
1144 			if (loop >= 2) {
1145 				/*
1146 				 * If we have not been able to reclaim
1147 				 * anything, it might because there are
1148 				 * no reclaimable pages under this hierarchy
1149 				 */
1150 				if (!check_soft || !total) {
1151 					css_put(&victim->css);
1152 					break;
1153 				}
1154 				/*
1155 				 * We want to do more targetted reclaim.
1156 				 * excess >> 2 is not to excessive so as to
1157 				 * reclaim too much, nor too less that we keep
1158 				 * coming back to reclaim from this cgroup
1159 				 */
1160 				if (total >= (excess >> 2) ||
1161 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1162 					css_put(&victim->css);
1163 					break;
1164 				}
1165 			}
1166 		}
1167 		if (!mem_cgroup_local_usage(&victim->stat)) {
1168 			/* this cgroup's local usage == 0 */
1169 			css_put(&victim->css);
1170 			continue;
1171 		}
1172 		/* we use swappiness of local cgroup */
1173 		if (check_soft)
1174 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1175 				noswap, get_swappiness(victim), zone,
1176 				zone->zone_pgdat->node_id);
1177 		else
1178 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1179 						noswap, get_swappiness(victim));
1180 		css_put(&victim->css);
1181 		/*
1182 		 * At shrinking usage, we can't check we should stop here or
1183 		 * reclaim more. It's depends on callers. last_scanned_child
1184 		 * will work enough for keeping fairness under tree.
1185 		 */
1186 		if (shrink)
1187 			return ret;
1188 		total += ret;
1189 		if (check_soft) {
1190 			if (res_counter_check_under_soft_limit(&root_mem->res))
1191 				return total;
1192 		} else if (mem_cgroup_check_under_limit(root_mem))
1193 			return 1 + total;
1194 	}
1195 	return total;
1196 }
1197 
1198 bool mem_cgroup_oom_called(struct task_struct *task)
1199 {
1200 	bool ret = false;
1201 	struct mem_cgroup *mem;
1202 	struct mm_struct *mm;
1203 
1204 	rcu_read_lock();
1205 	mm = task->mm;
1206 	if (!mm)
1207 		mm = &init_mm;
1208 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1209 	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1210 		ret = true;
1211 	rcu_read_unlock();
1212 	return ret;
1213 }
1214 
1215 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1216 {
1217 	mem->last_oom_jiffies = jiffies;
1218 	return 0;
1219 }
1220 
1221 static void record_last_oom(struct mem_cgroup *mem)
1222 {
1223 	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1224 }
1225 
1226 /*
1227  * Currently used to update mapped file statistics, but the routine can be
1228  * generalized to update other statistics as well.
1229  */
1230 void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
1231 {
1232 	struct mem_cgroup *mem;
1233 	struct mem_cgroup_stat *stat;
1234 	struct mem_cgroup_stat_cpu *cpustat;
1235 	int cpu;
1236 	struct page_cgroup *pc;
1237 
1238 	if (!page_is_file_cache(page))
1239 		return;
1240 
1241 	pc = lookup_page_cgroup(page);
1242 	if (unlikely(!pc))
1243 		return;
1244 
1245 	lock_page_cgroup(pc);
1246 	mem = pc->mem_cgroup;
1247 	if (!mem)
1248 		goto done;
1249 
1250 	if (!PageCgroupUsed(pc))
1251 		goto done;
1252 
1253 	/*
1254 	 * Preemption is already disabled, we don't need get_cpu()
1255 	 */
1256 	cpu = smp_processor_id();
1257 	stat = &mem->stat;
1258 	cpustat = &stat->cpustat[cpu];
1259 
1260 	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
1261 done:
1262 	unlock_page_cgroup(pc);
1263 }
1264 
1265 /*
1266  * Unlike exported interface, "oom" parameter is added. if oom==true,
1267  * oom-killer can be invoked.
1268  */
1269 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1270 			gfp_t gfp_mask, struct mem_cgroup **memcg,
1271 			bool oom, struct page *page)
1272 {
1273 	struct mem_cgroup *mem, *mem_over_limit, *mem_over_soft_limit;
1274 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1275 	struct res_counter *fail_res, *soft_fail_res = NULL;
1276 
1277 	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1278 		/* Don't account this! */
1279 		*memcg = NULL;
1280 		return 0;
1281 	}
1282 
1283 	/*
1284 	 * We always charge the cgroup the mm_struct belongs to.
1285 	 * The mm_struct's mem_cgroup changes on task migration if the
1286 	 * thread group leader migrates. It's possible that mm is not
1287 	 * set, if so charge the init_mm (happens for pagecache usage).
1288 	 */
1289 	mem = *memcg;
1290 	if (likely(!mem)) {
1291 		mem = try_get_mem_cgroup_from_mm(mm);
1292 		*memcg = mem;
1293 	} else {
1294 		css_get(&mem->css);
1295 	}
1296 	if (unlikely(!mem))
1297 		return 0;
1298 
1299 	VM_BUG_ON(css_is_removed(&mem->css));
1300 
1301 	while (1) {
1302 		int ret = 0;
1303 		unsigned long flags = 0;
1304 
1305 		if (mem_cgroup_is_root(mem))
1306 			goto done;
1307 		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res,
1308 						&soft_fail_res);
1309 		if (likely(!ret)) {
1310 			if (!do_swap_account)
1311 				break;
1312 			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1313 							&fail_res, NULL);
1314 			if (likely(!ret))
1315 				break;
1316 			/* mem+swap counter fails */
1317 			res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1318 			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1319 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1320 									memsw);
1321 		} else
1322 			/* mem counter fails */
1323 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1324 									res);
1325 
1326 		if (!(gfp_mask & __GFP_WAIT))
1327 			goto nomem;
1328 
1329 		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1330 						gfp_mask, flags);
1331 		if (ret)
1332 			continue;
1333 
1334 		/*
1335 		 * try_to_free_mem_cgroup_pages() might not give us a full
1336 		 * picture of reclaim. Some pages are reclaimed and might be
1337 		 * moved to swap cache or just unmapped from the cgroup.
1338 		 * Check the limit again to see if the reclaim reduced the
1339 		 * current usage of the cgroup before giving up
1340 		 *
1341 		 */
1342 		if (mem_cgroup_check_under_limit(mem_over_limit))
1343 			continue;
1344 
1345 		if (!nr_retries--) {
1346 			if (oom) {
1347 				mutex_lock(&memcg_tasklist);
1348 				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1349 				mutex_unlock(&memcg_tasklist);
1350 				record_last_oom(mem_over_limit);
1351 			}
1352 			goto nomem;
1353 		}
1354 	}
1355 	/*
1356 	 * Insert just the ancestor, we should trickle down to the correct
1357 	 * cgroup for reclaim, since the other nodes will be below their
1358 	 * soft limit
1359 	 */
1360 	if (soft_fail_res) {
1361 		mem_over_soft_limit =
1362 			mem_cgroup_from_res_counter(soft_fail_res, res);
1363 		if (mem_cgroup_soft_limit_check(mem_over_soft_limit))
1364 			mem_cgroup_update_tree(mem_over_soft_limit, page);
1365 	}
1366 done:
1367 	return 0;
1368 nomem:
1369 	css_put(&mem->css);
1370 	return -ENOMEM;
1371 }
1372 
1373 /*
1374  * A helper function to get mem_cgroup from ID. must be called under
1375  * rcu_read_lock(). The caller must check css_is_removed() or some if
1376  * it's concern. (dropping refcnt from swap can be called against removed
1377  * memcg.)
1378  */
1379 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1380 {
1381 	struct cgroup_subsys_state *css;
1382 
1383 	/* ID 0 is unused ID */
1384 	if (!id)
1385 		return NULL;
1386 	css = css_lookup(&mem_cgroup_subsys, id);
1387 	if (!css)
1388 		return NULL;
1389 	return container_of(css, struct mem_cgroup, css);
1390 }
1391 
1392 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1393 {
1394 	struct mem_cgroup *mem;
1395 	struct page_cgroup *pc;
1396 	unsigned short id;
1397 	swp_entry_t ent;
1398 
1399 	VM_BUG_ON(!PageLocked(page));
1400 
1401 	if (!PageSwapCache(page))
1402 		return NULL;
1403 
1404 	pc = lookup_page_cgroup(page);
1405 	lock_page_cgroup(pc);
1406 	if (PageCgroupUsed(pc)) {
1407 		mem = pc->mem_cgroup;
1408 		if (mem && !css_tryget(&mem->css))
1409 			mem = NULL;
1410 	} else {
1411 		ent.val = page_private(page);
1412 		id = lookup_swap_cgroup(ent);
1413 		rcu_read_lock();
1414 		mem = mem_cgroup_lookup(id);
1415 		if (mem && !css_tryget(&mem->css))
1416 			mem = NULL;
1417 		rcu_read_unlock();
1418 	}
1419 	unlock_page_cgroup(pc);
1420 	return mem;
1421 }
1422 
1423 /*
1424  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1425  * USED state. If already USED, uncharge and return.
1426  */
1427 
1428 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1429 				     struct page_cgroup *pc,
1430 				     enum charge_type ctype)
1431 {
1432 	/* try_charge() can return NULL to *memcg, taking care of it. */
1433 	if (!mem)
1434 		return;
1435 
1436 	lock_page_cgroup(pc);
1437 	if (unlikely(PageCgroupUsed(pc))) {
1438 		unlock_page_cgroup(pc);
1439 		if (!mem_cgroup_is_root(mem)) {
1440 			res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1441 			if (do_swap_account)
1442 				res_counter_uncharge(&mem->memsw, PAGE_SIZE,
1443 							NULL);
1444 		}
1445 		css_put(&mem->css);
1446 		return;
1447 	}
1448 
1449 	pc->mem_cgroup = mem;
1450 	/*
1451 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
1452 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1453 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1454 	 * before USED bit, we need memory barrier here.
1455 	 * See mem_cgroup_add_lru_list(), etc.
1456  	 */
1457 	smp_wmb();
1458 	switch (ctype) {
1459 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
1460 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1461 		SetPageCgroupCache(pc);
1462 		SetPageCgroupUsed(pc);
1463 		break;
1464 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1465 		ClearPageCgroupCache(pc);
1466 		SetPageCgroupUsed(pc);
1467 		break;
1468 	default:
1469 		break;
1470 	}
1471 
1472 	mem_cgroup_charge_statistics(mem, pc, true);
1473 
1474 	unlock_page_cgroup(pc);
1475 }
1476 
1477 /**
1478  * mem_cgroup_move_account - move account of the page
1479  * @pc:	page_cgroup of the page.
1480  * @from: mem_cgroup which the page is moved from.
1481  * @to:	mem_cgroup which the page is moved to. @from != @to.
1482  *
1483  * The caller must confirm following.
1484  * - page is not on LRU (isolate_page() is useful.)
1485  *
1486  * returns 0 at success,
1487  * returns -EBUSY when lock is busy or "pc" is unstable.
1488  *
1489  * This function does "uncharge" from old cgroup but doesn't do "charge" to
1490  * new cgroup. It should be done by a caller.
1491  */
1492 
1493 static int mem_cgroup_move_account(struct page_cgroup *pc,
1494 	struct mem_cgroup *from, struct mem_cgroup *to)
1495 {
1496 	struct mem_cgroup_per_zone *from_mz, *to_mz;
1497 	int nid, zid;
1498 	int ret = -EBUSY;
1499 	struct page *page;
1500 	int cpu;
1501 	struct mem_cgroup_stat *stat;
1502 	struct mem_cgroup_stat_cpu *cpustat;
1503 
1504 	VM_BUG_ON(from == to);
1505 	VM_BUG_ON(PageLRU(pc->page));
1506 
1507 	nid = page_cgroup_nid(pc);
1508 	zid = page_cgroup_zid(pc);
1509 	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
1510 	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
1511 
1512 	if (!trylock_page_cgroup(pc))
1513 		return ret;
1514 
1515 	if (!PageCgroupUsed(pc))
1516 		goto out;
1517 
1518 	if (pc->mem_cgroup != from)
1519 		goto out;
1520 
1521 	if (!mem_cgroup_is_root(from))
1522 		res_counter_uncharge(&from->res, PAGE_SIZE, NULL);
1523 	mem_cgroup_charge_statistics(from, pc, false);
1524 
1525 	page = pc->page;
1526 	if (page_is_file_cache(page) && page_mapped(page)) {
1527 		cpu = smp_processor_id();
1528 		/* Update mapped_file data for mem_cgroup "from" */
1529 		stat = &from->stat;
1530 		cpustat = &stat->cpustat[cpu];
1531 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1532 						-1);
1533 
1534 		/* Update mapped_file data for mem_cgroup "to" */
1535 		stat = &to->stat;
1536 		cpustat = &stat->cpustat[cpu];
1537 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1538 						1);
1539 	}
1540 
1541 	if (do_swap_account && !mem_cgroup_is_root(from))
1542 		res_counter_uncharge(&from->memsw, PAGE_SIZE, NULL);
1543 	css_put(&from->css);
1544 
1545 	css_get(&to->css);
1546 	pc->mem_cgroup = to;
1547 	mem_cgroup_charge_statistics(to, pc, true);
1548 	ret = 0;
1549 out:
1550 	unlock_page_cgroup(pc);
1551 	/*
1552 	 * We charges against "to" which may not have any tasks. Then, "to"
1553 	 * can be under rmdir(). But in current implementation, caller of
1554 	 * this function is just force_empty() and it's garanteed that
1555 	 * "to" is never removed. So, we don't check rmdir status here.
1556 	 */
1557 	return ret;
1558 }
1559 
1560 /*
1561  * move charges to its parent.
1562  */
1563 
1564 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1565 				  struct mem_cgroup *child,
1566 				  gfp_t gfp_mask)
1567 {
1568 	struct page *page = pc->page;
1569 	struct cgroup *cg = child->css.cgroup;
1570 	struct cgroup *pcg = cg->parent;
1571 	struct mem_cgroup *parent;
1572 	int ret;
1573 
1574 	/* Is ROOT ? */
1575 	if (!pcg)
1576 		return -EINVAL;
1577 
1578 
1579 	parent = mem_cgroup_from_cont(pcg);
1580 
1581 
1582 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1583 	if (ret || !parent)
1584 		return ret;
1585 
1586 	if (!get_page_unless_zero(page)) {
1587 		ret = -EBUSY;
1588 		goto uncharge;
1589 	}
1590 
1591 	ret = isolate_lru_page(page);
1592 
1593 	if (ret)
1594 		goto cancel;
1595 
1596 	ret = mem_cgroup_move_account(pc, child, parent);
1597 
1598 	putback_lru_page(page);
1599 	if (!ret) {
1600 		put_page(page);
1601 		/* drop extra refcnt by try_charge() */
1602 		css_put(&parent->css);
1603 		return 0;
1604 	}
1605 
1606 cancel:
1607 	put_page(page);
1608 uncharge:
1609 	/* drop extra refcnt by try_charge() */
1610 	css_put(&parent->css);
1611 	/* uncharge if move fails */
1612 	if (!mem_cgroup_is_root(parent)) {
1613 		res_counter_uncharge(&parent->res, PAGE_SIZE, NULL);
1614 		if (do_swap_account)
1615 			res_counter_uncharge(&parent->memsw, PAGE_SIZE, NULL);
1616 	}
1617 	return ret;
1618 }
1619 
1620 /*
1621  * Charge the memory controller for page usage.
1622  * Return
1623  * 0 if the charge was successful
1624  * < 0 if the cgroup is over its limit
1625  */
1626 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1627 				gfp_t gfp_mask, enum charge_type ctype,
1628 				struct mem_cgroup *memcg)
1629 {
1630 	struct mem_cgroup *mem;
1631 	struct page_cgroup *pc;
1632 	int ret;
1633 
1634 	pc = lookup_page_cgroup(page);
1635 	/* can happen at boot */
1636 	if (unlikely(!pc))
1637 		return 0;
1638 	prefetchw(pc);
1639 
1640 	mem = memcg;
1641 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1642 	if (ret || !mem)
1643 		return ret;
1644 
1645 	__mem_cgroup_commit_charge(mem, pc, ctype);
1646 	return 0;
1647 }
1648 
1649 int mem_cgroup_newpage_charge(struct page *page,
1650 			      struct mm_struct *mm, gfp_t gfp_mask)
1651 {
1652 	if (mem_cgroup_disabled())
1653 		return 0;
1654 	if (PageCompound(page))
1655 		return 0;
1656 	/*
1657 	 * If already mapped, we don't have to account.
1658 	 * If page cache, page->mapping has address_space.
1659 	 * But page->mapping may have out-of-use anon_vma pointer,
1660 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1661 	 * is NULL.
1662   	 */
1663 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1664 		return 0;
1665 	if (unlikely(!mm))
1666 		mm = &init_mm;
1667 	return mem_cgroup_charge_common(page, mm, gfp_mask,
1668 				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1669 }
1670 
1671 static void
1672 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1673 					enum charge_type ctype);
1674 
1675 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1676 				gfp_t gfp_mask)
1677 {
1678 	struct mem_cgroup *mem = NULL;
1679 	int ret;
1680 
1681 	if (mem_cgroup_disabled())
1682 		return 0;
1683 	if (PageCompound(page))
1684 		return 0;
1685 	/*
1686 	 * Corner case handling. This is called from add_to_page_cache()
1687 	 * in usual. But some FS (shmem) precharges this page before calling it
1688 	 * and call add_to_page_cache() with GFP_NOWAIT.
1689 	 *
1690 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1691 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1692 	 * charge twice. (It works but has to pay a bit larger cost.)
1693 	 * And when the page is SwapCache, it should take swap information
1694 	 * into account. This is under lock_page() now.
1695 	 */
1696 	if (!(gfp_mask & __GFP_WAIT)) {
1697 		struct page_cgroup *pc;
1698 
1699 
1700 		pc = lookup_page_cgroup(page);
1701 		if (!pc)
1702 			return 0;
1703 		lock_page_cgroup(pc);
1704 		if (PageCgroupUsed(pc)) {
1705 			unlock_page_cgroup(pc);
1706 			return 0;
1707 		}
1708 		unlock_page_cgroup(pc);
1709 	}
1710 
1711 	if (unlikely(!mm && !mem))
1712 		mm = &init_mm;
1713 
1714 	if (page_is_file_cache(page))
1715 		return mem_cgroup_charge_common(page, mm, gfp_mask,
1716 				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1717 
1718 	/* shmem */
1719 	if (PageSwapCache(page)) {
1720 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1721 		if (!ret)
1722 			__mem_cgroup_commit_charge_swapin(page, mem,
1723 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
1724 	} else
1725 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1726 					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1727 
1728 	return ret;
1729 }
1730 
1731 /*
1732  * While swap-in, try_charge -> commit or cancel, the page is locked.
1733  * And when try_charge() successfully returns, one refcnt to memcg without
1734  * struct page_cgroup is aquired. This refcnt will be cumsumed by
1735  * "commit()" or removed by "cancel()"
1736  */
1737 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1738 				 struct page *page,
1739 				 gfp_t mask, struct mem_cgroup **ptr)
1740 {
1741 	struct mem_cgroup *mem;
1742 	int ret;
1743 
1744 	if (mem_cgroup_disabled())
1745 		return 0;
1746 
1747 	if (!do_swap_account)
1748 		goto charge_cur_mm;
1749 	/*
1750 	 * A racing thread's fault, or swapoff, may have already updated
1751 	 * the pte, and even removed page from swap cache: return success
1752 	 * to go on to do_swap_page()'s pte_same() test, which should fail.
1753 	 */
1754 	if (!PageSwapCache(page))
1755 		return 0;
1756 	mem = try_get_mem_cgroup_from_swapcache(page);
1757 	if (!mem)
1758 		goto charge_cur_mm;
1759 	*ptr = mem;
1760 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1761 	/* drop extra refcnt from tryget */
1762 	css_put(&mem->css);
1763 	return ret;
1764 charge_cur_mm:
1765 	if (unlikely(!mm))
1766 		mm = &init_mm;
1767 	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1768 }
1769 
1770 static void
1771 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1772 					enum charge_type ctype)
1773 {
1774 	struct page_cgroup *pc;
1775 
1776 	if (mem_cgroup_disabled())
1777 		return;
1778 	if (!ptr)
1779 		return;
1780 	cgroup_exclude_rmdir(&ptr->css);
1781 	pc = lookup_page_cgroup(page);
1782 	mem_cgroup_lru_del_before_commit_swapcache(page);
1783 	__mem_cgroup_commit_charge(ptr, pc, ctype);
1784 	mem_cgroup_lru_add_after_commit_swapcache(page);
1785 	/*
1786 	 * Now swap is on-memory. This means this page may be
1787 	 * counted both as mem and swap....double count.
1788 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1789 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1790 	 * may call delete_from_swap_cache() before reach here.
1791 	 */
1792 	if (do_swap_account && PageSwapCache(page)) {
1793 		swp_entry_t ent = {.val = page_private(page)};
1794 		unsigned short id;
1795 		struct mem_cgroup *memcg;
1796 
1797 		id = swap_cgroup_record(ent, 0);
1798 		rcu_read_lock();
1799 		memcg = mem_cgroup_lookup(id);
1800 		if (memcg) {
1801 			/*
1802 			 * This recorded memcg can be obsolete one. So, avoid
1803 			 * calling css_tryget
1804 			 */
1805 			if (!mem_cgroup_is_root(memcg))
1806 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE,
1807 							NULL);
1808 			mem_cgroup_swap_statistics(memcg, false);
1809 			mem_cgroup_put(memcg);
1810 		}
1811 		rcu_read_unlock();
1812 	}
1813 	/*
1814 	 * At swapin, we may charge account against cgroup which has no tasks.
1815 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
1816 	 * In that case, we need to call pre_destroy() again. check it here.
1817 	 */
1818 	cgroup_release_and_wakeup_rmdir(&ptr->css);
1819 }
1820 
1821 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1822 {
1823 	__mem_cgroup_commit_charge_swapin(page, ptr,
1824 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
1825 }
1826 
1827 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1828 {
1829 	if (mem_cgroup_disabled())
1830 		return;
1831 	if (!mem)
1832 		return;
1833 	if (!mem_cgroup_is_root(mem)) {
1834 		res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1835 		if (do_swap_account)
1836 			res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
1837 	}
1838 	css_put(&mem->css);
1839 }
1840 
1841 
1842 /*
1843  * uncharge if !page_mapped(page)
1844  */
1845 static struct mem_cgroup *
1846 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1847 {
1848 	struct page_cgroup *pc;
1849 	struct mem_cgroup *mem = NULL;
1850 	struct mem_cgroup_per_zone *mz;
1851 	bool soft_limit_excess = false;
1852 
1853 	if (mem_cgroup_disabled())
1854 		return NULL;
1855 
1856 	if (PageSwapCache(page))
1857 		return NULL;
1858 
1859 	/*
1860 	 * Check if our page_cgroup is valid
1861 	 */
1862 	pc = lookup_page_cgroup(page);
1863 	if (unlikely(!pc || !PageCgroupUsed(pc)))
1864 		return NULL;
1865 
1866 	lock_page_cgroup(pc);
1867 
1868 	mem = pc->mem_cgroup;
1869 
1870 	if (!PageCgroupUsed(pc))
1871 		goto unlock_out;
1872 
1873 	switch (ctype) {
1874 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1875 	case MEM_CGROUP_CHARGE_TYPE_DROP:
1876 		if (page_mapped(page))
1877 			goto unlock_out;
1878 		break;
1879 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1880 		if (!PageAnon(page)) {	/* Shared memory */
1881 			if (page->mapping && !page_is_file_cache(page))
1882 				goto unlock_out;
1883 		} else if (page_mapped(page)) /* Anon */
1884 				goto unlock_out;
1885 		break;
1886 	default:
1887 		break;
1888 	}
1889 
1890 	if (!mem_cgroup_is_root(mem)) {
1891 		res_counter_uncharge(&mem->res, PAGE_SIZE, &soft_limit_excess);
1892 		if (do_swap_account &&
1893 				(ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1894 			res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
1895 	}
1896 	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1897 		mem_cgroup_swap_statistics(mem, true);
1898 	mem_cgroup_charge_statistics(mem, pc, false);
1899 
1900 	ClearPageCgroupUsed(pc);
1901 	/*
1902 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1903 	 * freed from LRU. This is safe because uncharged page is expected not
1904 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
1905 	 * special functions.
1906 	 */
1907 
1908 	mz = page_cgroup_zoneinfo(pc);
1909 	unlock_page_cgroup(pc);
1910 
1911 	if (soft_limit_excess && mem_cgroup_soft_limit_check(mem))
1912 		mem_cgroup_update_tree(mem, page);
1913 	/* at swapout, this memcg will be accessed to record to swap */
1914 	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1915 		css_put(&mem->css);
1916 
1917 	return mem;
1918 
1919 unlock_out:
1920 	unlock_page_cgroup(pc);
1921 	return NULL;
1922 }
1923 
1924 void mem_cgroup_uncharge_page(struct page *page)
1925 {
1926 	/* early check. */
1927 	if (page_mapped(page))
1928 		return;
1929 	if (page->mapping && !PageAnon(page))
1930 		return;
1931 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1932 }
1933 
1934 void mem_cgroup_uncharge_cache_page(struct page *page)
1935 {
1936 	VM_BUG_ON(page_mapped(page));
1937 	VM_BUG_ON(page->mapping);
1938 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1939 }
1940 
1941 #ifdef CONFIG_SWAP
1942 /*
1943  * called after __delete_from_swap_cache() and drop "page" account.
1944  * memcg information is recorded to swap_cgroup of "ent"
1945  */
1946 void
1947 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1948 {
1949 	struct mem_cgroup *memcg;
1950 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1951 
1952 	if (!swapout) /* this was a swap cache but the swap is unused ! */
1953 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1954 
1955 	memcg = __mem_cgroup_uncharge_common(page, ctype);
1956 
1957 	/* record memcg information */
1958 	if (do_swap_account && swapout && memcg) {
1959 		swap_cgroup_record(ent, css_id(&memcg->css));
1960 		mem_cgroup_get(memcg);
1961 	}
1962 	if (swapout && memcg)
1963 		css_put(&memcg->css);
1964 }
1965 #endif
1966 
1967 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1968 /*
1969  * called from swap_entry_free(). remove record in swap_cgroup and
1970  * uncharge "memsw" account.
1971  */
1972 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1973 {
1974 	struct mem_cgroup *memcg;
1975 	unsigned short id;
1976 
1977 	if (!do_swap_account)
1978 		return;
1979 
1980 	id = swap_cgroup_record(ent, 0);
1981 	rcu_read_lock();
1982 	memcg = mem_cgroup_lookup(id);
1983 	if (memcg) {
1984 		/*
1985 		 * We uncharge this because swap is freed.
1986 		 * This memcg can be obsolete one. We avoid calling css_tryget
1987 		 */
1988 		if (!mem_cgroup_is_root(memcg))
1989 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
1990 		mem_cgroup_swap_statistics(memcg, false);
1991 		mem_cgroup_put(memcg);
1992 	}
1993 	rcu_read_unlock();
1994 }
1995 #endif
1996 
1997 /*
1998  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1999  * page belongs to.
2000  */
2001 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2002 {
2003 	struct page_cgroup *pc;
2004 	struct mem_cgroup *mem = NULL;
2005 	int ret = 0;
2006 
2007 	if (mem_cgroup_disabled())
2008 		return 0;
2009 
2010 	pc = lookup_page_cgroup(page);
2011 	lock_page_cgroup(pc);
2012 	if (PageCgroupUsed(pc)) {
2013 		mem = pc->mem_cgroup;
2014 		css_get(&mem->css);
2015 	}
2016 	unlock_page_cgroup(pc);
2017 
2018 	if (mem) {
2019 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2020 						page);
2021 		css_put(&mem->css);
2022 	}
2023 	*ptr = mem;
2024 	return ret;
2025 }
2026 
2027 /* remove redundant charge if migration failed*/
2028 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2029 		struct page *oldpage, struct page *newpage)
2030 {
2031 	struct page *target, *unused;
2032 	struct page_cgroup *pc;
2033 	enum charge_type ctype;
2034 
2035 	if (!mem)
2036 		return;
2037 	cgroup_exclude_rmdir(&mem->css);
2038 	/* at migration success, oldpage->mapping is NULL. */
2039 	if (oldpage->mapping) {
2040 		target = oldpage;
2041 		unused = NULL;
2042 	} else {
2043 		target = newpage;
2044 		unused = oldpage;
2045 	}
2046 
2047 	if (PageAnon(target))
2048 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2049 	else if (page_is_file_cache(target))
2050 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2051 	else
2052 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2053 
2054 	/* unused page is not on radix-tree now. */
2055 	if (unused)
2056 		__mem_cgroup_uncharge_common(unused, ctype);
2057 
2058 	pc = lookup_page_cgroup(target);
2059 	/*
2060 	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2061 	 * So, double-counting is effectively avoided.
2062 	 */
2063 	__mem_cgroup_commit_charge(mem, pc, ctype);
2064 
2065 	/*
2066 	 * Both of oldpage and newpage are still under lock_page().
2067 	 * Then, we don't have to care about race in radix-tree.
2068 	 * But we have to be careful that this page is unmapped or not.
2069 	 *
2070 	 * There is a case for !page_mapped(). At the start of
2071 	 * migration, oldpage was mapped. But now, it's zapped.
2072 	 * But we know *target* page is not freed/reused under us.
2073 	 * mem_cgroup_uncharge_page() does all necessary checks.
2074 	 */
2075 	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2076 		mem_cgroup_uncharge_page(target);
2077 	/*
2078 	 * At migration, we may charge account against cgroup which has no tasks
2079 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2080 	 * In that case, we need to call pre_destroy() again. check it here.
2081 	 */
2082 	cgroup_release_and_wakeup_rmdir(&mem->css);
2083 }
2084 
2085 /*
2086  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2087  * Calling hierarchical_reclaim is not enough because we should update
2088  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2089  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2090  * not from the memcg which this page would be charged to.
2091  * try_charge_swapin does all of these works properly.
2092  */
2093 int mem_cgroup_shmem_charge_fallback(struct page *page,
2094 			    struct mm_struct *mm,
2095 			    gfp_t gfp_mask)
2096 {
2097 	struct mem_cgroup *mem = NULL;
2098 	int ret;
2099 
2100 	if (mem_cgroup_disabled())
2101 		return 0;
2102 
2103 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2104 	if (!ret)
2105 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2106 
2107 	return ret;
2108 }
2109 
2110 static DEFINE_MUTEX(set_limit_mutex);
2111 
2112 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2113 				unsigned long long val)
2114 {
2115 	int retry_count;
2116 	int progress;
2117 	u64 memswlimit;
2118 	int ret = 0;
2119 	int children = mem_cgroup_count_children(memcg);
2120 	u64 curusage, oldusage;
2121 
2122 	/*
2123 	 * For keeping hierarchical_reclaim simple, how long we should retry
2124 	 * is depends on callers. We set our retry-count to be function
2125 	 * of # of children which we should visit in this loop.
2126 	 */
2127 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2128 
2129 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2130 
2131 	while (retry_count) {
2132 		if (signal_pending(current)) {
2133 			ret = -EINTR;
2134 			break;
2135 		}
2136 		/*
2137 		 * Rather than hide all in some function, I do this in
2138 		 * open coded manner. You see what this really does.
2139 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2140 		 */
2141 		mutex_lock(&set_limit_mutex);
2142 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2143 		if (memswlimit < val) {
2144 			ret = -EINVAL;
2145 			mutex_unlock(&set_limit_mutex);
2146 			break;
2147 		}
2148 		ret = res_counter_set_limit(&memcg->res, val);
2149 		if (!ret) {
2150 			if (memswlimit == val)
2151 				memcg->memsw_is_minimum = true;
2152 			else
2153 				memcg->memsw_is_minimum = false;
2154 		}
2155 		mutex_unlock(&set_limit_mutex);
2156 
2157 		if (!ret)
2158 			break;
2159 
2160 		progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
2161 						GFP_KERNEL,
2162 						MEM_CGROUP_RECLAIM_SHRINK);
2163 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2164 		/* Usage is reduced ? */
2165   		if (curusage >= oldusage)
2166 			retry_count--;
2167 		else
2168 			oldusage = curusage;
2169 	}
2170 
2171 	return ret;
2172 }
2173 
2174 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2175 					unsigned long long val)
2176 {
2177 	int retry_count;
2178 	u64 memlimit, oldusage, curusage;
2179 	int children = mem_cgroup_count_children(memcg);
2180 	int ret = -EBUSY;
2181 
2182 	/* see mem_cgroup_resize_res_limit */
2183  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2184 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2185 	while (retry_count) {
2186 		if (signal_pending(current)) {
2187 			ret = -EINTR;
2188 			break;
2189 		}
2190 		/*
2191 		 * Rather than hide all in some function, I do this in
2192 		 * open coded manner. You see what this really does.
2193 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2194 		 */
2195 		mutex_lock(&set_limit_mutex);
2196 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2197 		if (memlimit > val) {
2198 			ret = -EINVAL;
2199 			mutex_unlock(&set_limit_mutex);
2200 			break;
2201 		}
2202 		ret = res_counter_set_limit(&memcg->memsw, val);
2203 		if (!ret) {
2204 			if (memlimit == val)
2205 				memcg->memsw_is_minimum = true;
2206 			else
2207 				memcg->memsw_is_minimum = false;
2208 		}
2209 		mutex_unlock(&set_limit_mutex);
2210 
2211 		if (!ret)
2212 			break;
2213 
2214 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2215 						MEM_CGROUP_RECLAIM_NOSWAP |
2216 						MEM_CGROUP_RECLAIM_SHRINK);
2217 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2218 		/* Usage is reduced ? */
2219 		if (curusage >= oldusage)
2220 			retry_count--;
2221 		else
2222 			oldusage = curusage;
2223 	}
2224 	return ret;
2225 }
2226 
2227 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2228 						gfp_t gfp_mask, int nid,
2229 						int zid)
2230 {
2231 	unsigned long nr_reclaimed = 0;
2232 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2233 	unsigned long reclaimed;
2234 	int loop = 0;
2235 	struct mem_cgroup_tree_per_zone *mctz;
2236 
2237 	if (order > 0)
2238 		return 0;
2239 
2240 	mctz = soft_limit_tree_node_zone(nid, zid);
2241 	/*
2242 	 * This loop can run a while, specially if mem_cgroup's continuously
2243 	 * keep exceeding their soft limit and putting the system under
2244 	 * pressure
2245 	 */
2246 	do {
2247 		if (next_mz)
2248 			mz = next_mz;
2249 		else
2250 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2251 		if (!mz)
2252 			break;
2253 
2254 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2255 						gfp_mask,
2256 						MEM_CGROUP_RECLAIM_SOFT);
2257 		nr_reclaimed += reclaimed;
2258 		spin_lock(&mctz->lock);
2259 
2260 		/*
2261 		 * If we failed to reclaim anything from this memory cgroup
2262 		 * it is time to move on to the next cgroup
2263 		 */
2264 		next_mz = NULL;
2265 		if (!reclaimed) {
2266 			do {
2267 				/*
2268 				 * Loop until we find yet another one.
2269 				 *
2270 				 * By the time we get the soft_limit lock
2271 				 * again, someone might have aded the
2272 				 * group back on the RB tree. Iterate to
2273 				 * make sure we get a different mem.
2274 				 * mem_cgroup_largest_soft_limit_node returns
2275 				 * NULL if no other cgroup is present on
2276 				 * the tree
2277 				 */
2278 				next_mz =
2279 				__mem_cgroup_largest_soft_limit_node(mctz);
2280 				if (next_mz == mz) {
2281 					css_put(&next_mz->mem->css);
2282 					next_mz = NULL;
2283 				} else /* next_mz == NULL or other memcg */
2284 					break;
2285 			} while (1);
2286 		}
2287 		mz->usage_in_excess =
2288 			res_counter_soft_limit_excess(&mz->mem->res);
2289 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2290 		/*
2291 		 * One school of thought says that we should not add
2292 		 * back the node to the tree if reclaim returns 0.
2293 		 * But our reclaim could return 0, simply because due
2294 		 * to priority we are exposing a smaller subset of
2295 		 * memory to reclaim from. Consider this as a longer
2296 		 * term TODO.
2297 		 */
2298 		if (mz->usage_in_excess)
2299 			__mem_cgroup_insert_exceeded(mz->mem, mz, mctz);
2300 		spin_unlock(&mctz->lock);
2301 		css_put(&mz->mem->css);
2302 		loop++;
2303 		/*
2304 		 * Could not reclaim anything and there are no more
2305 		 * mem cgroups to try or we seem to be looping without
2306 		 * reclaiming anything.
2307 		 */
2308 		if (!nr_reclaimed &&
2309 			(next_mz == NULL ||
2310 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2311 			break;
2312 	} while (!nr_reclaimed);
2313 	if (next_mz)
2314 		css_put(&next_mz->mem->css);
2315 	return nr_reclaimed;
2316 }
2317 
2318 /*
2319  * This routine traverse page_cgroup in given list and drop them all.
2320  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2321  */
2322 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2323 				int node, int zid, enum lru_list lru)
2324 {
2325 	struct zone *zone;
2326 	struct mem_cgroup_per_zone *mz;
2327 	struct page_cgroup *pc, *busy;
2328 	unsigned long flags, loop;
2329 	struct list_head *list;
2330 	int ret = 0;
2331 
2332 	zone = &NODE_DATA(node)->node_zones[zid];
2333 	mz = mem_cgroup_zoneinfo(mem, node, zid);
2334 	list = &mz->lists[lru];
2335 
2336 	loop = MEM_CGROUP_ZSTAT(mz, lru);
2337 	/* give some margin against EBUSY etc...*/
2338 	loop += 256;
2339 	busy = NULL;
2340 	while (loop--) {
2341 		ret = 0;
2342 		spin_lock_irqsave(&zone->lru_lock, flags);
2343 		if (list_empty(list)) {
2344 			spin_unlock_irqrestore(&zone->lru_lock, flags);
2345 			break;
2346 		}
2347 		pc = list_entry(list->prev, struct page_cgroup, lru);
2348 		if (busy == pc) {
2349 			list_move(&pc->lru, list);
2350 			busy = 0;
2351 			spin_unlock_irqrestore(&zone->lru_lock, flags);
2352 			continue;
2353 		}
2354 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2355 
2356 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2357 		if (ret == -ENOMEM)
2358 			break;
2359 
2360 		if (ret == -EBUSY || ret == -EINVAL) {
2361 			/* found lock contention or "pc" is obsolete. */
2362 			busy = pc;
2363 			cond_resched();
2364 		} else
2365 			busy = NULL;
2366 	}
2367 
2368 	if (!ret && !list_empty(list))
2369 		return -EBUSY;
2370 	return ret;
2371 }
2372 
2373 /*
2374  * make mem_cgroup's charge to be 0 if there is no task.
2375  * This enables deleting this mem_cgroup.
2376  */
2377 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2378 {
2379 	int ret;
2380 	int node, zid, shrink;
2381 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2382 	struct cgroup *cgrp = mem->css.cgroup;
2383 
2384 	css_get(&mem->css);
2385 
2386 	shrink = 0;
2387 	/* should free all ? */
2388 	if (free_all)
2389 		goto try_to_free;
2390 move_account:
2391 	while (mem->res.usage > 0) {
2392 		ret = -EBUSY;
2393 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2394 			goto out;
2395 		ret = -EINTR;
2396 		if (signal_pending(current))
2397 			goto out;
2398 		/* This is for making all *used* pages to be on LRU. */
2399 		lru_add_drain_all();
2400 		ret = 0;
2401 		for_each_node_state(node, N_HIGH_MEMORY) {
2402 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2403 				enum lru_list l;
2404 				for_each_lru(l) {
2405 					ret = mem_cgroup_force_empty_list(mem,
2406 							node, zid, l);
2407 					if (ret)
2408 						break;
2409 				}
2410 			}
2411 			if (ret)
2412 				break;
2413 		}
2414 		/* it seems parent cgroup doesn't have enough mem */
2415 		if (ret == -ENOMEM)
2416 			goto try_to_free;
2417 		cond_resched();
2418 	}
2419 	ret = 0;
2420 out:
2421 	css_put(&mem->css);
2422 	return ret;
2423 
2424 try_to_free:
2425 	/* returns EBUSY if there is a task or if we come here twice. */
2426 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2427 		ret = -EBUSY;
2428 		goto out;
2429 	}
2430 	/* we call try-to-free pages for make this cgroup empty */
2431 	lru_add_drain_all();
2432 	/* try to free all pages in this cgroup */
2433 	shrink = 1;
2434 	while (nr_retries && mem->res.usage > 0) {
2435 		int progress;
2436 
2437 		if (signal_pending(current)) {
2438 			ret = -EINTR;
2439 			goto out;
2440 		}
2441 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2442 						false, get_swappiness(mem));
2443 		if (!progress) {
2444 			nr_retries--;
2445 			/* maybe some writeback is necessary */
2446 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2447 		}
2448 
2449 	}
2450 	lru_add_drain();
2451 	/* try move_account...there may be some *locked* pages. */
2452 	if (mem->res.usage)
2453 		goto move_account;
2454 	ret = 0;
2455 	goto out;
2456 }
2457 
2458 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2459 {
2460 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2461 }
2462 
2463 
2464 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2465 {
2466 	return mem_cgroup_from_cont(cont)->use_hierarchy;
2467 }
2468 
2469 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2470 					u64 val)
2471 {
2472 	int retval = 0;
2473 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2474 	struct cgroup *parent = cont->parent;
2475 	struct mem_cgroup *parent_mem = NULL;
2476 
2477 	if (parent)
2478 		parent_mem = mem_cgroup_from_cont(parent);
2479 
2480 	cgroup_lock();
2481 	/*
2482 	 * If parent's use_hiearchy is set, we can't make any modifications
2483 	 * in the child subtrees. If it is unset, then the change can
2484 	 * occur, provided the current cgroup has no children.
2485 	 *
2486 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2487 	 * set if there are no children.
2488 	 */
2489 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
2490 				(val == 1 || val == 0)) {
2491 		if (list_empty(&cont->children))
2492 			mem->use_hierarchy = val;
2493 		else
2494 			retval = -EBUSY;
2495 	} else
2496 		retval = -EINVAL;
2497 	cgroup_unlock();
2498 
2499 	return retval;
2500 }
2501 
2502 struct mem_cgroup_idx_data {
2503 	s64 val;
2504 	enum mem_cgroup_stat_index idx;
2505 };
2506 
2507 static int
2508 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2509 {
2510 	struct mem_cgroup_idx_data *d = data;
2511 	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
2512 	return 0;
2513 }
2514 
2515 static void
2516 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2517 				enum mem_cgroup_stat_index idx, s64 *val)
2518 {
2519 	struct mem_cgroup_idx_data d;
2520 	d.idx = idx;
2521 	d.val = 0;
2522 	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2523 	*val = d.val;
2524 }
2525 
2526 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2527 {
2528 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2529 	u64 idx_val, val;
2530 	int type, name;
2531 
2532 	type = MEMFILE_TYPE(cft->private);
2533 	name = MEMFILE_ATTR(cft->private);
2534 	switch (type) {
2535 	case _MEM:
2536 		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2537 			mem_cgroup_get_recursive_idx_stat(mem,
2538 				MEM_CGROUP_STAT_CACHE, &idx_val);
2539 			val = idx_val;
2540 			mem_cgroup_get_recursive_idx_stat(mem,
2541 				MEM_CGROUP_STAT_RSS, &idx_val);
2542 			val += idx_val;
2543 			val <<= PAGE_SHIFT;
2544 		} else
2545 			val = res_counter_read_u64(&mem->res, name);
2546 		break;
2547 	case _MEMSWAP:
2548 		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2549 			mem_cgroup_get_recursive_idx_stat(mem,
2550 				MEM_CGROUP_STAT_CACHE, &idx_val);
2551 			val = idx_val;
2552 			mem_cgroup_get_recursive_idx_stat(mem,
2553 				MEM_CGROUP_STAT_RSS, &idx_val);
2554 			val += idx_val;
2555 			mem_cgroup_get_recursive_idx_stat(mem,
2556 				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2557 			val <<= PAGE_SHIFT;
2558 		} else
2559 			val = res_counter_read_u64(&mem->memsw, name);
2560 		break;
2561 	default:
2562 		BUG();
2563 		break;
2564 	}
2565 	return val;
2566 }
2567 /*
2568  * The user of this function is...
2569  * RES_LIMIT.
2570  */
2571 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2572 			    const char *buffer)
2573 {
2574 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2575 	int type, name;
2576 	unsigned long long val;
2577 	int ret;
2578 
2579 	type = MEMFILE_TYPE(cft->private);
2580 	name = MEMFILE_ATTR(cft->private);
2581 	switch (name) {
2582 	case RES_LIMIT:
2583 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2584 			ret = -EINVAL;
2585 			break;
2586 		}
2587 		/* This function does all necessary parse...reuse it */
2588 		ret = res_counter_memparse_write_strategy(buffer, &val);
2589 		if (ret)
2590 			break;
2591 		if (type == _MEM)
2592 			ret = mem_cgroup_resize_limit(memcg, val);
2593 		else
2594 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2595 		break;
2596 	case RES_SOFT_LIMIT:
2597 		ret = res_counter_memparse_write_strategy(buffer, &val);
2598 		if (ret)
2599 			break;
2600 		/*
2601 		 * For memsw, soft limits are hard to implement in terms
2602 		 * of semantics, for now, we support soft limits for
2603 		 * control without swap
2604 		 */
2605 		if (type == _MEM)
2606 			ret = res_counter_set_soft_limit(&memcg->res, val);
2607 		else
2608 			ret = -EINVAL;
2609 		break;
2610 	default:
2611 		ret = -EINVAL; /* should be BUG() ? */
2612 		break;
2613 	}
2614 	return ret;
2615 }
2616 
2617 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2618 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
2619 {
2620 	struct cgroup *cgroup;
2621 	unsigned long long min_limit, min_memsw_limit, tmp;
2622 
2623 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2624 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2625 	cgroup = memcg->css.cgroup;
2626 	if (!memcg->use_hierarchy)
2627 		goto out;
2628 
2629 	while (cgroup->parent) {
2630 		cgroup = cgroup->parent;
2631 		memcg = mem_cgroup_from_cont(cgroup);
2632 		if (!memcg->use_hierarchy)
2633 			break;
2634 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2635 		min_limit = min(min_limit, tmp);
2636 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2637 		min_memsw_limit = min(min_memsw_limit, tmp);
2638 	}
2639 out:
2640 	*mem_limit = min_limit;
2641 	*memsw_limit = min_memsw_limit;
2642 	return;
2643 }
2644 
2645 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2646 {
2647 	struct mem_cgroup *mem;
2648 	int type, name;
2649 
2650 	mem = mem_cgroup_from_cont(cont);
2651 	type = MEMFILE_TYPE(event);
2652 	name = MEMFILE_ATTR(event);
2653 	switch (name) {
2654 	case RES_MAX_USAGE:
2655 		if (type == _MEM)
2656 			res_counter_reset_max(&mem->res);
2657 		else
2658 			res_counter_reset_max(&mem->memsw);
2659 		break;
2660 	case RES_FAILCNT:
2661 		if (type == _MEM)
2662 			res_counter_reset_failcnt(&mem->res);
2663 		else
2664 			res_counter_reset_failcnt(&mem->memsw);
2665 		break;
2666 	}
2667 
2668 	return 0;
2669 }
2670 
2671 
2672 /* For read statistics */
2673 enum {
2674 	MCS_CACHE,
2675 	MCS_RSS,
2676 	MCS_MAPPED_FILE,
2677 	MCS_PGPGIN,
2678 	MCS_PGPGOUT,
2679 	MCS_SWAP,
2680 	MCS_INACTIVE_ANON,
2681 	MCS_ACTIVE_ANON,
2682 	MCS_INACTIVE_FILE,
2683 	MCS_ACTIVE_FILE,
2684 	MCS_UNEVICTABLE,
2685 	NR_MCS_STAT,
2686 };
2687 
2688 struct mcs_total_stat {
2689 	s64 stat[NR_MCS_STAT];
2690 };
2691 
2692 struct {
2693 	char *local_name;
2694 	char *total_name;
2695 } memcg_stat_strings[NR_MCS_STAT] = {
2696 	{"cache", "total_cache"},
2697 	{"rss", "total_rss"},
2698 	{"mapped_file", "total_mapped_file"},
2699 	{"pgpgin", "total_pgpgin"},
2700 	{"pgpgout", "total_pgpgout"},
2701 	{"swap", "total_swap"},
2702 	{"inactive_anon", "total_inactive_anon"},
2703 	{"active_anon", "total_active_anon"},
2704 	{"inactive_file", "total_inactive_file"},
2705 	{"active_file", "total_active_file"},
2706 	{"unevictable", "total_unevictable"}
2707 };
2708 
2709 
2710 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2711 {
2712 	struct mcs_total_stat *s = data;
2713 	s64 val;
2714 
2715 	/* per cpu stat */
2716 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2717 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
2718 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2719 	s->stat[MCS_RSS] += val * PAGE_SIZE;
2720 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2721 	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
2722 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2723 	s->stat[MCS_PGPGIN] += val;
2724 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2725 	s->stat[MCS_PGPGOUT] += val;
2726 	if (do_swap_account) {
2727 		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
2728 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
2729 	}
2730 
2731 	/* per zone stat */
2732 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2733 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2734 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2735 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2736 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2737 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2738 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2739 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2740 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2741 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2742 	return 0;
2743 }
2744 
2745 static void
2746 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2747 {
2748 	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2749 }
2750 
2751 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2752 				 struct cgroup_map_cb *cb)
2753 {
2754 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2755 	struct mcs_total_stat mystat;
2756 	int i;
2757 
2758 	memset(&mystat, 0, sizeof(mystat));
2759 	mem_cgroup_get_local_stat(mem_cont, &mystat);
2760 
2761 	for (i = 0; i < NR_MCS_STAT; i++) {
2762 		if (i == MCS_SWAP && !do_swap_account)
2763 			continue;
2764 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2765 	}
2766 
2767 	/* Hierarchical information */
2768 	{
2769 		unsigned long long limit, memsw_limit;
2770 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2771 		cb->fill(cb, "hierarchical_memory_limit", limit);
2772 		if (do_swap_account)
2773 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2774 	}
2775 
2776 	memset(&mystat, 0, sizeof(mystat));
2777 	mem_cgroup_get_total_stat(mem_cont, &mystat);
2778 	for (i = 0; i < NR_MCS_STAT; i++) {
2779 		if (i == MCS_SWAP && !do_swap_account)
2780 			continue;
2781 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2782 	}
2783 
2784 #ifdef CONFIG_DEBUG_VM
2785 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2786 
2787 	{
2788 		int nid, zid;
2789 		struct mem_cgroup_per_zone *mz;
2790 		unsigned long recent_rotated[2] = {0, 0};
2791 		unsigned long recent_scanned[2] = {0, 0};
2792 
2793 		for_each_online_node(nid)
2794 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2795 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2796 
2797 				recent_rotated[0] +=
2798 					mz->reclaim_stat.recent_rotated[0];
2799 				recent_rotated[1] +=
2800 					mz->reclaim_stat.recent_rotated[1];
2801 				recent_scanned[0] +=
2802 					mz->reclaim_stat.recent_scanned[0];
2803 				recent_scanned[1] +=
2804 					mz->reclaim_stat.recent_scanned[1];
2805 			}
2806 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2807 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2808 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2809 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2810 	}
2811 #endif
2812 
2813 	return 0;
2814 }
2815 
2816 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2817 {
2818 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2819 
2820 	return get_swappiness(memcg);
2821 }
2822 
2823 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2824 				       u64 val)
2825 {
2826 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2827 	struct mem_cgroup *parent;
2828 
2829 	if (val > 100)
2830 		return -EINVAL;
2831 
2832 	if (cgrp->parent == NULL)
2833 		return -EINVAL;
2834 
2835 	parent = mem_cgroup_from_cont(cgrp->parent);
2836 
2837 	cgroup_lock();
2838 
2839 	/* If under hierarchy, only empty-root can set this value */
2840 	if ((parent->use_hierarchy) ||
2841 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2842 		cgroup_unlock();
2843 		return -EINVAL;
2844 	}
2845 
2846 	spin_lock(&memcg->reclaim_param_lock);
2847 	memcg->swappiness = val;
2848 	spin_unlock(&memcg->reclaim_param_lock);
2849 
2850 	cgroup_unlock();
2851 
2852 	return 0;
2853 }
2854 
2855 
2856 static struct cftype mem_cgroup_files[] = {
2857 	{
2858 		.name = "usage_in_bytes",
2859 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2860 		.read_u64 = mem_cgroup_read,
2861 	},
2862 	{
2863 		.name = "max_usage_in_bytes",
2864 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2865 		.trigger = mem_cgroup_reset,
2866 		.read_u64 = mem_cgroup_read,
2867 	},
2868 	{
2869 		.name = "limit_in_bytes",
2870 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2871 		.write_string = mem_cgroup_write,
2872 		.read_u64 = mem_cgroup_read,
2873 	},
2874 	{
2875 		.name = "soft_limit_in_bytes",
2876 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2877 		.write_string = mem_cgroup_write,
2878 		.read_u64 = mem_cgroup_read,
2879 	},
2880 	{
2881 		.name = "failcnt",
2882 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2883 		.trigger = mem_cgroup_reset,
2884 		.read_u64 = mem_cgroup_read,
2885 	},
2886 	{
2887 		.name = "stat",
2888 		.read_map = mem_control_stat_show,
2889 	},
2890 	{
2891 		.name = "force_empty",
2892 		.trigger = mem_cgroup_force_empty_write,
2893 	},
2894 	{
2895 		.name = "use_hierarchy",
2896 		.write_u64 = mem_cgroup_hierarchy_write,
2897 		.read_u64 = mem_cgroup_hierarchy_read,
2898 	},
2899 	{
2900 		.name = "swappiness",
2901 		.read_u64 = mem_cgroup_swappiness_read,
2902 		.write_u64 = mem_cgroup_swappiness_write,
2903 	},
2904 };
2905 
2906 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2907 static struct cftype memsw_cgroup_files[] = {
2908 	{
2909 		.name = "memsw.usage_in_bytes",
2910 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2911 		.read_u64 = mem_cgroup_read,
2912 	},
2913 	{
2914 		.name = "memsw.max_usage_in_bytes",
2915 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2916 		.trigger = mem_cgroup_reset,
2917 		.read_u64 = mem_cgroup_read,
2918 	},
2919 	{
2920 		.name = "memsw.limit_in_bytes",
2921 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2922 		.write_string = mem_cgroup_write,
2923 		.read_u64 = mem_cgroup_read,
2924 	},
2925 	{
2926 		.name = "memsw.failcnt",
2927 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2928 		.trigger = mem_cgroup_reset,
2929 		.read_u64 = mem_cgroup_read,
2930 	},
2931 };
2932 
2933 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2934 {
2935 	if (!do_swap_account)
2936 		return 0;
2937 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
2938 				ARRAY_SIZE(memsw_cgroup_files));
2939 };
2940 #else
2941 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2942 {
2943 	return 0;
2944 }
2945 #endif
2946 
2947 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2948 {
2949 	struct mem_cgroup_per_node *pn;
2950 	struct mem_cgroup_per_zone *mz;
2951 	enum lru_list l;
2952 	int zone, tmp = node;
2953 	/*
2954 	 * This routine is called against possible nodes.
2955 	 * But it's BUG to call kmalloc() against offline node.
2956 	 *
2957 	 * TODO: this routine can waste much memory for nodes which will
2958 	 *       never be onlined. It's better to use memory hotplug callback
2959 	 *       function.
2960 	 */
2961 	if (!node_state(node, N_NORMAL_MEMORY))
2962 		tmp = -1;
2963 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2964 	if (!pn)
2965 		return 1;
2966 
2967 	mem->info.nodeinfo[node] = pn;
2968 	memset(pn, 0, sizeof(*pn));
2969 
2970 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2971 		mz = &pn->zoneinfo[zone];
2972 		for_each_lru(l)
2973 			INIT_LIST_HEAD(&mz->lists[l]);
2974 		mz->usage_in_excess = 0;
2975 		mz->on_tree = false;
2976 		mz->mem = mem;
2977 	}
2978 	return 0;
2979 }
2980 
2981 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2982 {
2983 	kfree(mem->info.nodeinfo[node]);
2984 }
2985 
2986 static int mem_cgroup_size(void)
2987 {
2988 	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2989 	return sizeof(struct mem_cgroup) + cpustat_size;
2990 }
2991 
2992 static struct mem_cgroup *mem_cgroup_alloc(void)
2993 {
2994 	struct mem_cgroup *mem;
2995 	int size = mem_cgroup_size();
2996 
2997 	if (size < PAGE_SIZE)
2998 		mem = kmalloc(size, GFP_KERNEL);
2999 	else
3000 		mem = vmalloc(size);
3001 
3002 	if (mem)
3003 		memset(mem, 0, size);
3004 	return mem;
3005 }
3006 
3007 /*
3008  * At destroying mem_cgroup, references from swap_cgroup can remain.
3009  * (scanning all at force_empty is too costly...)
3010  *
3011  * Instead of clearing all references at force_empty, we remember
3012  * the number of reference from swap_cgroup and free mem_cgroup when
3013  * it goes down to 0.
3014  *
3015  * Removal of cgroup itself succeeds regardless of refs from swap.
3016  */
3017 
3018 static void __mem_cgroup_free(struct mem_cgroup *mem)
3019 {
3020 	int node;
3021 
3022 	mem_cgroup_remove_from_trees(mem);
3023 	free_css_id(&mem_cgroup_subsys, &mem->css);
3024 
3025 	for_each_node_state(node, N_POSSIBLE)
3026 		free_mem_cgroup_per_zone_info(mem, node);
3027 
3028 	if (mem_cgroup_size() < PAGE_SIZE)
3029 		kfree(mem);
3030 	else
3031 		vfree(mem);
3032 }
3033 
3034 static void mem_cgroup_get(struct mem_cgroup *mem)
3035 {
3036 	atomic_inc(&mem->refcnt);
3037 }
3038 
3039 static void mem_cgroup_put(struct mem_cgroup *mem)
3040 {
3041 	if (atomic_dec_and_test(&mem->refcnt)) {
3042 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3043 		__mem_cgroup_free(mem);
3044 		if (parent)
3045 			mem_cgroup_put(parent);
3046 	}
3047 }
3048 
3049 /*
3050  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3051  */
3052 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3053 {
3054 	if (!mem->res.parent)
3055 		return NULL;
3056 	return mem_cgroup_from_res_counter(mem->res.parent, res);
3057 }
3058 
3059 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3060 static void __init enable_swap_cgroup(void)
3061 {
3062 	if (!mem_cgroup_disabled() && really_do_swap_account)
3063 		do_swap_account = 1;
3064 }
3065 #else
3066 static void __init enable_swap_cgroup(void)
3067 {
3068 }
3069 #endif
3070 
3071 static int mem_cgroup_soft_limit_tree_init(void)
3072 {
3073 	struct mem_cgroup_tree_per_node *rtpn;
3074 	struct mem_cgroup_tree_per_zone *rtpz;
3075 	int tmp, node, zone;
3076 
3077 	for_each_node_state(node, N_POSSIBLE) {
3078 		tmp = node;
3079 		if (!node_state(node, N_NORMAL_MEMORY))
3080 			tmp = -1;
3081 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3082 		if (!rtpn)
3083 			return 1;
3084 
3085 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
3086 
3087 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3088 			rtpz = &rtpn->rb_tree_per_zone[zone];
3089 			rtpz->rb_root = RB_ROOT;
3090 			spin_lock_init(&rtpz->lock);
3091 		}
3092 	}
3093 	return 0;
3094 }
3095 
3096 static struct cgroup_subsys_state * __ref
3097 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3098 {
3099 	struct mem_cgroup *mem, *parent;
3100 	long error = -ENOMEM;
3101 	int node;
3102 
3103 	mem = mem_cgroup_alloc();
3104 	if (!mem)
3105 		return ERR_PTR(error);
3106 
3107 	for_each_node_state(node, N_POSSIBLE)
3108 		if (alloc_mem_cgroup_per_zone_info(mem, node))
3109 			goto free_out;
3110 
3111 	/* root ? */
3112 	if (cont->parent == NULL) {
3113 		enable_swap_cgroup();
3114 		parent = NULL;
3115 		root_mem_cgroup = mem;
3116 		if (mem_cgroup_soft_limit_tree_init())
3117 			goto free_out;
3118 
3119 	} else {
3120 		parent = mem_cgroup_from_cont(cont->parent);
3121 		mem->use_hierarchy = parent->use_hierarchy;
3122 	}
3123 
3124 	if (parent && parent->use_hierarchy) {
3125 		res_counter_init(&mem->res, &parent->res);
3126 		res_counter_init(&mem->memsw, &parent->memsw);
3127 		/*
3128 		 * We increment refcnt of the parent to ensure that we can
3129 		 * safely access it on res_counter_charge/uncharge.
3130 		 * This refcnt will be decremented when freeing this
3131 		 * mem_cgroup(see mem_cgroup_put).
3132 		 */
3133 		mem_cgroup_get(parent);
3134 	} else {
3135 		res_counter_init(&mem->res, NULL);
3136 		res_counter_init(&mem->memsw, NULL);
3137 	}
3138 	mem->last_scanned_child = 0;
3139 	spin_lock_init(&mem->reclaim_param_lock);
3140 
3141 	if (parent)
3142 		mem->swappiness = get_swappiness(parent);
3143 	atomic_set(&mem->refcnt, 1);
3144 	return &mem->css;
3145 free_out:
3146 	__mem_cgroup_free(mem);
3147 	root_mem_cgroup = NULL;
3148 	return ERR_PTR(error);
3149 }
3150 
3151 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3152 					struct cgroup *cont)
3153 {
3154 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3155 
3156 	return mem_cgroup_force_empty(mem, false);
3157 }
3158 
3159 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3160 				struct cgroup *cont)
3161 {
3162 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3163 
3164 	mem_cgroup_put(mem);
3165 }
3166 
3167 static int mem_cgroup_populate(struct cgroup_subsys *ss,
3168 				struct cgroup *cont)
3169 {
3170 	int ret;
3171 
3172 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3173 				ARRAY_SIZE(mem_cgroup_files));
3174 
3175 	if (!ret)
3176 		ret = register_memsw_files(cont, ss);
3177 	return ret;
3178 }
3179 
3180 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3181 				struct cgroup *cont,
3182 				struct cgroup *old_cont,
3183 				struct task_struct *p,
3184 				bool threadgroup)
3185 {
3186 	mutex_lock(&memcg_tasklist);
3187 	/*
3188 	 * FIXME: It's better to move charges of this process from old
3189 	 * memcg to new memcg. But it's just on TODO-List now.
3190 	 */
3191 	mutex_unlock(&memcg_tasklist);
3192 }
3193 
3194 struct cgroup_subsys mem_cgroup_subsys = {
3195 	.name = "memory",
3196 	.subsys_id = mem_cgroup_subsys_id,
3197 	.create = mem_cgroup_create,
3198 	.pre_destroy = mem_cgroup_pre_destroy,
3199 	.destroy = mem_cgroup_destroy,
3200 	.populate = mem_cgroup_populate,
3201 	.attach = mem_cgroup_move_task,
3202 	.early_init = 0,
3203 	.use_id = 1,
3204 };
3205 
3206 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3207 
3208 static int __init disable_swap_account(char *s)
3209 {
3210 	really_do_swap_account = 0;
3211 	return 1;
3212 }
3213 __setup("noswapaccount", disable_swap_account);
3214 #endif
3215