1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/cpuset.h> 33 #include <linux/sched/mm.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/hugetlb.h> 36 #include <linux/pagemap.h> 37 #include <linux/pagevec.h> 38 #include <linux/vm_event_item.h> 39 #include <linux/smp.h> 40 #include <linux/page-flags.h> 41 #include <linux/backing-dev.h> 42 #include <linux/bit_spinlock.h> 43 #include <linux/rcupdate.h> 44 #include <linux/limits.h> 45 #include <linux/export.h> 46 #include <linux/list.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swapops.h> 51 #include <linux/spinlock.h> 52 #include <linux/fs.h> 53 #include <linux/seq_file.h> 54 #include <linux/parser.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/resume_user_mode.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include <linux/sched/isolation.h> 66 #include <linux/kmemleak.h> 67 #include "internal.h" 68 #include <net/sock.h> 69 #include <net/ip.h> 70 #include "slab.h" 71 #include "memcontrol-v1.h" 72 73 #include <linux/uaccess.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/memcg.h> 77 #undef CREATE_TRACE_POINTS 78 79 #include <trace/events/vmscan.h> 80 81 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 82 EXPORT_SYMBOL(memory_cgrp_subsys); 83 84 struct mem_cgroup *root_mem_cgroup __read_mostly; 85 86 /* Active memory cgroup to use from an interrupt context */ 87 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 88 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 89 90 /* Socket memory accounting disabled? */ 91 static bool cgroup_memory_nosocket __ro_after_init; 92 93 /* Kernel memory accounting disabled? */ 94 static bool cgroup_memory_nokmem __ro_after_init; 95 96 /* BPF memory accounting disabled? */ 97 static bool cgroup_memory_nobpf __ro_after_init; 98 99 static struct kmem_cache *memcg_cachep; 100 static struct kmem_cache *memcg_pn_cachep; 101 102 #ifdef CONFIG_CGROUP_WRITEBACK 103 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 104 #endif 105 106 static inline bool task_is_dying(void) 107 { 108 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 109 (current->flags & PF_EXITING); 110 } 111 112 /* Some nice accessors for the vmpressure. */ 113 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 114 { 115 if (!memcg) 116 memcg = root_mem_cgroup; 117 return &memcg->vmpressure; 118 } 119 120 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 121 { 122 return container_of(vmpr, struct mem_cgroup, vmpressure); 123 } 124 125 #define SEQ_BUF_SIZE SZ_4K 126 #define CURRENT_OBJCG_UPDATE_BIT 0 127 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 128 129 static DEFINE_SPINLOCK(objcg_lock); 130 131 bool mem_cgroup_kmem_disabled(void) 132 { 133 return cgroup_memory_nokmem; 134 } 135 136 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 137 138 static void obj_cgroup_release(struct percpu_ref *ref) 139 { 140 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 141 unsigned int nr_bytes; 142 unsigned int nr_pages; 143 unsigned long flags; 144 145 /* 146 * At this point all allocated objects are freed, and 147 * objcg->nr_charged_bytes can't have an arbitrary byte value. 148 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 149 * 150 * The following sequence can lead to it: 151 * 1) CPU0: objcg == stock->cached_objcg 152 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 153 * PAGE_SIZE bytes are charged 154 * 3) CPU1: a process from another memcg is allocating something, 155 * the stock if flushed, 156 * objcg->nr_charged_bytes = PAGE_SIZE - 92 157 * 5) CPU0: we do release this object, 158 * 92 bytes are added to stock->nr_bytes 159 * 6) CPU0: stock is flushed, 160 * 92 bytes are added to objcg->nr_charged_bytes 161 * 162 * In the result, nr_charged_bytes == PAGE_SIZE. 163 * This page will be uncharged in obj_cgroup_release(). 164 */ 165 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 166 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 167 nr_pages = nr_bytes >> PAGE_SHIFT; 168 169 if (nr_pages) { 170 struct mem_cgroup *memcg; 171 172 memcg = get_mem_cgroup_from_objcg(objcg); 173 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 174 memcg1_account_kmem(memcg, -nr_pages); 175 if (!mem_cgroup_is_root(memcg)) 176 memcg_uncharge(memcg, nr_pages); 177 mem_cgroup_put(memcg); 178 } 179 180 spin_lock_irqsave(&objcg_lock, flags); 181 list_del(&objcg->list); 182 spin_unlock_irqrestore(&objcg_lock, flags); 183 184 percpu_ref_exit(ref); 185 kfree_rcu(objcg, rcu); 186 } 187 188 static struct obj_cgroup *obj_cgroup_alloc(void) 189 { 190 struct obj_cgroup *objcg; 191 int ret; 192 193 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 194 if (!objcg) 195 return NULL; 196 197 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 198 GFP_KERNEL); 199 if (ret) { 200 kfree(objcg); 201 return NULL; 202 } 203 INIT_LIST_HEAD(&objcg->list); 204 return objcg; 205 } 206 207 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 208 struct mem_cgroup *parent) 209 { 210 struct obj_cgroup *objcg, *iter; 211 212 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 213 214 spin_lock_irq(&objcg_lock); 215 216 /* 1) Ready to reparent active objcg. */ 217 list_add(&objcg->list, &memcg->objcg_list); 218 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 219 list_for_each_entry(iter, &memcg->objcg_list, list) 220 WRITE_ONCE(iter->memcg, parent); 221 /* 3) Move already reparented objcgs to the parent's list */ 222 list_splice(&memcg->objcg_list, &parent->objcg_list); 223 224 spin_unlock_irq(&objcg_lock); 225 226 percpu_ref_kill(&objcg->refcnt); 227 } 228 229 /* 230 * A lot of the calls to the cache allocation functions are expected to be 231 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 232 * conditional to this static branch, we'll have to allow modules that does 233 * kmem_cache_alloc and the such to see this symbol as well 234 */ 235 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 236 EXPORT_SYMBOL(memcg_kmem_online_key); 237 238 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 239 EXPORT_SYMBOL(memcg_bpf_enabled_key); 240 241 /** 242 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 243 * @folio: folio of interest 244 * 245 * If memcg is bound to the default hierarchy, css of the memcg associated 246 * with @folio is returned. The returned css remains associated with @folio 247 * until it is released. 248 * 249 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 250 * is returned. 251 */ 252 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 253 { 254 struct mem_cgroup *memcg = folio_memcg(folio); 255 256 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 257 memcg = root_mem_cgroup; 258 259 return &memcg->css; 260 } 261 262 /** 263 * page_cgroup_ino - return inode number of the memcg a page is charged to 264 * @page: the page 265 * 266 * Look up the closest online ancestor of the memory cgroup @page is charged to 267 * and return its inode number or 0 if @page is not charged to any cgroup. It 268 * is safe to call this function without holding a reference to @page. 269 * 270 * Note, this function is inherently racy, because there is nothing to prevent 271 * the cgroup inode from getting torn down and potentially reallocated a moment 272 * after page_cgroup_ino() returns, so it only should be used by callers that 273 * do not care (such as procfs interfaces). 274 */ 275 ino_t page_cgroup_ino(struct page *page) 276 { 277 struct mem_cgroup *memcg; 278 unsigned long ino = 0; 279 280 rcu_read_lock(); 281 /* page_folio() is racy here, but the entire function is racy anyway */ 282 memcg = folio_memcg_check(page_folio(page)); 283 284 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 285 memcg = parent_mem_cgroup(memcg); 286 if (memcg) 287 ino = cgroup_ino(memcg->css.cgroup); 288 rcu_read_unlock(); 289 return ino; 290 } 291 292 /* Subset of node_stat_item for memcg stats */ 293 static const unsigned int memcg_node_stat_items[] = { 294 NR_INACTIVE_ANON, 295 NR_ACTIVE_ANON, 296 NR_INACTIVE_FILE, 297 NR_ACTIVE_FILE, 298 NR_UNEVICTABLE, 299 NR_SLAB_RECLAIMABLE_B, 300 NR_SLAB_UNRECLAIMABLE_B, 301 WORKINGSET_REFAULT_ANON, 302 WORKINGSET_REFAULT_FILE, 303 WORKINGSET_ACTIVATE_ANON, 304 WORKINGSET_ACTIVATE_FILE, 305 WORKINGSET_RESTORE_ANON, 306 WORKINGSET_RESTORE_FILE, 307 WORKINGSET_NODERECLAIM, 308 NR_ANON_MAPPED, 309 NR_FILE_MAPPED, 310 NR_FILE_PAGES, 311 NR_FILE_DIRTY, 312 NR_WRITEBACK, 313 NR_SHMEM, 314 NR_SHMEM_THPS, 315 NR_FILE_THPS, 316 NR_ANON_THPS, 317 NR_KERNEL_STACK_KB, 318 NR_PAGETABLE, 319 NR_SECONDARY_PAGETABLE, 320 #ifdef CONFIG_SWAP 321 NR_SWAPCACHE, 322 #endif 323 #ifdef CONFIG_NUMA_BALANCING 324 PGPROMOTE_SUCCESS, 325 #endif 326 PGDEMOTE_KSWAPD, 327 PGDEMOTE_DIRECT, 328 PGDEMOTE_KHUGEPAGED, 329 PGDEMOTE_PROACTIVE, 330 #ifdef CONFIG_HUGETLB_PAGE 331 NR_HUGETLB, 332 #endif 333 }; 334 335 static const unsigned int memcg_stat_items[] = { 336 MEMCG_SWAP, 337 MEMCG_SOCK, 338 MEMCG_PERCPU_B, 339 MEMCG_VMALLOC, 340 MEMCG_KMEM, 341 MEMCG_ZSWAP_B, 342 MEMCG_ZSWAPPED, 343 }; 344 345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 347 ARRAY_SIZE(memcg_stat_items)) 348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 350 351 static void init_memcg_stats(void) 352 { 353 u8 i, j = 0; 354 355 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 356 357 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 358 359 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 360 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 361 362 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 363 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 364 } 365 366 static inline int memcg_stats_index(int idx) 367 { 368 return mem_cgroup_stats_index[idx]; 369 } 370 371 struct lruvec_stats_percpu { 372 /* Local (CPU and cgroup) state */ 373 long state[NR_MEMCG_NODE_STAT_ITEMS]; 374 375 /* Delta calculation for lockless upward propagation */ 376 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 377 }; 378 379 struct lruvec_stats { 380 /* Aggregated (CPU and subtree) state */ 381 long state[NR_MEMCG_NODE_STAT_ITEMS]; 382 383 /* Non-hierarchical (CPU aggregated) state */ 384 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 385 386 /* Pending child counts during tree propagation */ 387 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 388 }; 389 390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 391 { 392 struct mem_cgroup_per_node *pn; 393 long x; 394 int i; 395 396 if (mem_cgroup_disabled()) 397 return node_page_state(lruvec_pgdat(lruvec), idx); 398 399 i = memcg_stats_index(idx); 400 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 401 return 0; 402 403 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 404 x = READ_ONCE(pn->lruvec_stats->state[i]); 405 #ifdef CONFIG_SMP 406 if (x < 0) 407 x = 0; 408 #endif 409 return x; 410 } 411 412 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 413 enum node_stat_item idx) 414 { 415 struct mem_cgroup_per_node *pn; 416 long x; 417 int i; 418 419 if (mem_cgroup_disabled()) 420 return node_page_state(lruvec_pgdat(lruvec), idx); 421 422 i = memcg_stats_index(idx); 423 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 424 return 0; 425 426 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 427 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 428 #ifdef CONFIG_SMP 429 if (x < 0) 430 x = 0; 431 #endif 432 return x; 433 } 434 435 /* Subset of vm_event_item to report for memcg event stats */ 436 static const unsigned int memcg_vm_event_stat[] = { 437 #ifdef CONFIG_MEMCG_V1 438 PGPGIN, 439 PGPGOUT, 440 #endif 441 PSWPIN, 442 PSWPOUT, 443 PGSCAN_KSWAPD, 444 PGSCAN_DIRECT, 445 PGSCAN_KHUGEPAGED, 446 PGSCAN_PROACTIVE, 447 PGSTEAL_KSWAPD, 448 PGSTEAL_DIRECT, 449 PGSTEAL_KHUGEPAGED, 450 PGSTEAL_PROACTIVE, 451 PGFAULT, 452 PGMAJFAULT, 453 PGREFILL, 454 PGACTIVATE, 455 PGDEACTIVATE, 456 PGLAZYFREE, 457 PGLAZYFREED, 458 #ifdef CONFIG_SWAP 459 SWPIN_ZERO, 460 SWPOUT_ZERO, 461 #endif 462 #ifdef CONFIG_ZSWAP 463 ZSWPIN, 464 ZSWPOUT, 465 ZSWPWB, 466 #endif 467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 468 THP_FAULT_ALLOC, 469 THP_COLLAPSE_ALLOC, 470 THP_SWPOUT, 471 THP_SWPOUT_FALLBACK, 472 #endif 473 #ifdef CONFIG_NUMA_BALANCING 474 NUMA_PAGE_MIGRATE, 475 NUMA_PTE_UPDATES, 476 NUMA_HINT_FAULTS, 477 #endif 478 }; 479 480 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 481 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 482 483 static void init_memcg_events(void) 484 { 485 u8 i; 486 487 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 488 489 memset(mem_cgroup_events_index, U8_MAX, 490 sizeof(mem_cgroup_events_index)); 491 492 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 493 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 494 } 495 496 static inline int memcg_events_index(enum vm_event_item idx) 497 { 498 return mem_cgroup_events_index[idx]; 499 } 500 501 struct memcg_vmstats_percpu { 502 /* Stats updates since the last flush */ 503 unsigned int stats_updates; 504 505 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 506 struct memcg_vmstats_percpu *parent; 507 struct memcg_vmstats *vmstats; 508 509 /* The above should fit a single cacheline for memcg_rstat_updated() */ 510 511 /* Local (CPU and cgroup) page state & events */ 512 long state[MEMCG_VMSTAT_SIZE]; 513 unsigned long events[NR_MEMCG_EVENTS]; 514 515 /* Delta calculation for lockless upward propagation */ 516 long state_prev[MEMCG_VMSTAT_SIZE]; 517 unsigned long events_prev[NR_MEMCG_EVENTS]; 518 } ____cacheline_aligned; 519 520 struct memcg_vmstats { 521 /* Aggregated (CPU and subtree) page state & events */ 522 long state[MEMCG_VMSTAT_SIZE]; 523 unsigned long events[NR_MEMCG_EVENTS]; 524 525 /* Non-hierarchical (CPU aggregated) page state & events */ 526 long state_local[MEMCG_VMSTAT_SIZE]; 527 unsigned long events_local[NR_MEMCG_EVENTS]; 528 529 /* Pending child counts during tree propagation */ 530 long state_pending[MEMCG_VMSTAT_SIZE]; 531 unsigned long events_pending[NR_MEMCG_EVENTS]; 532 533 /* Stats updates since the last flush */ 534 atomic64_t stats_updates; 535 }; 536 537 /* 538 * memcg and lruvec stats flushing 539 * 540 * Many codepaths leading to stats update or read are performance sensitive and 541 * adding stats flushing in such codepaths is not desirable. So, to optimize the 542 * flushing the kernel does: 543 * 544 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 545 * rstat update tree grow unbounded. 546 * 547 * 2) Flush the stats synchronously on reader side only when there are more than 548 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 549 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 550 * only for 2 seconds due to (1). 551 */ 552 static void flush_memcg_stats_dwork(struct work_struct *w); 553 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 554 static u64 flush_last_time; 555 556 #define FLUSH_TIME (2UL*HZ) 557 558 /* 559 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 560 * not rely on this as part of an acquired spinlock_t lock. These functions are 561 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 562 * is sufficient. 563 */ 564 static void memcg_stats_lock(void) 565 { 566 preempt_disable_nested(); 567 VM_WARN_ON_IRQS_ENABLED(); 568 } 569 570 static void __memcg_stats_lock(void) 571 { 572 preempt_disable_nested(); 573 } 574 575 static void memcg_stats_unlock(void) 576 { 577 preempt_enable_nested(); 578 } 579 580 581 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 582 { 583 return atomic64_read(&vmstats->stats_updates) > 584 MEMCG_CHARGE_BATCH * num_online_cpus(); 585 } 586 587 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 588 { 589 struct memcg_vmstats_percpu *statc; 590 int cpu = smp_processor_id(); 591 unsigned int stats_updates; 592 593 if (!val) 594 return; 595 596 cgroup_rstat_updated(memcg->css.cgroup, cpu); 597 statc = this_cpu_ptr(memcg->vmstats_percpu); 598 for (; statc; statc = statc->parent) { 599 /* 600 * If @memcg is already flushable then all its ancestors are 601 * flushable as well and also there is no need to increase 602 * stats_updates. 603 */ 604 if (memcg_vmstats_needs_flush(statc->vmstats)) 605 break; 606 607 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 608 WRITE_ONCE(statc->stats_updates, stats_updates); 609 if (stats_updates < MEMCG_CHARGE_BATCH) 610 continue; 611 612 atomic64_add(stats_updates, &statc->vmstats->stats_updates); 613 WRITE_ONCE(statc->stats_updates, 0); 614 } 615 } 616 617 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 618 { 619 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 620 621 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates), 622 force, needs_flush); 623 624 if (!force && !needs_flush) 625 return; 626 627 if (mem_cgroup_is_root(memcg)) 628 WRITE_ONCE(flush_last_time, jiffies_64); 629 630 cgroup_rstat_flush(memcg->css.cgroup); 631 } 632 633 /* 634 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 635 * @memcg: root of the subtree to flush 636 * 637 * Flushing is serialized by the underlying global rstat lock. There is also a 638 * minimum amount of work to be done even if there are no stat updates to flush. 639 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 640 * avoids unnecessary work and contention on the underlying lock. 641 */ 642 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 643 { 644 if (mem_cgroup_disabled()) 645 return; 646 647 if (!memcg) 648 memcg = root_mem_cgroup; 649 650 __mem_cgroup_flush_stats(memcg, false); 651 } 652 653 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 654 { 655 /* Only flush if the periodic flusher is one full cycle late */ 656 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 657 mem_cgroup_flush_stats(memcg); 658 } 659 660 static void flush_memcg_stats_dwork(struct work_struct *w) 661 { 662 /* 663 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 664 * in latency-sensitive paths is as cheap as possible. 665 */ 666 __mem_cgroup_flush_stats(root_mem_cgroup, true); 667 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 668 } 669 670 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 671 { 672 long x; 673 int i = memcg_stats_index(idx); 674 675 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 676 return 0; 677 678 x = READ_ONCE(memcg->vmstats->state[i]); 679 #ifdef CONFIG_SMP 680 if (x < 0) 681 x = 0; 682 #endif 683 return x; 684 } 685 686 static int memcg_page_state_unit(int item); 687 688 /* 689 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 690 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 691 */ 692 static int memcg_state_val_in_pages(int idx, int val) 693 { 694 int unit = memcg_page_state_unit(idx); 695 696 if (!val || unit == PAGE_SIZE) 697 return val; 698 else 699 return max(val * unit / PAGE_SIZE, 1UL); 700 } 701 702 /** 703 * __mod_memcg_state - update cgroup memory statistics 704 * @memcg: the memory cgroup 705 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 706 * @val: delta to add to the counter, can be negative 707 */ 708 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 709 int val) 710 { 711 int i = memcg_stats_index(idx); 712 713 if (mem_cgroup_disabled()) 714 return; 715 716 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 717 return; 718 719 memcg_stats_lock(); 720 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 721 val = memcg_state_val_in_pages(idx, val); 722 memcg_rstat_updated(memcg, val); 723 trace_mod_memcg_state(memcg, idx, val); 724 memcg_stats_unlock(); 725 } 726 727 #ifdef CONFIG_MEMCG_V1 728 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 729 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 730 { 731 long x; 732 int i = memcg_stats_index(idx); 733 734 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 735 return 0; 736 737 x = READ_ONCE(memcg->vmstats->state_local[i]); 738 #ifdef CONFIG_SMP 739 if (x < 0) 740 x = 0; 741 #endif 742 return x; 743 } 744 #endif 745 746 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 747 enum node_stat_item idx, 748 int val) 749 { 750 struct mem_cgroup_per_node *pn; 751 struct mem_cgroup *memcg; 752 int i = memcg_stats_index(idx); 753 754 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 755 return; 756 757 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 758 memcg = pn->memcg; 759 760 /* 761 * The caller from rmap relies on disabled preemption because they never 762 * update their counter from in-interrupt context. For these two 763 * counters we check that the update is never performed from an 764 * interrupt context while other caller need to have disabled interrupt. 765 */ 766 __memcg_stats_lock(); 767 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 768 switch (idx) { 769 case NR_ANON_MAPPED: 770 case NR_FILE_MAPPED: 771 case NR_ANON_THPS: 772 WARN_ON_ONCE(!in_task()); 773 break; 774 default: 775 VM_WARN_ON_IRQS_ENABLED(); 776 } 777 } 778 779 /* Update memcg */ 780 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 781 782 /* Update lruvec */ 783 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 784 785 val = memcg_state_val_in_pages(idx, val); 786 memcg_rstat_updated(memcg, val); 787 trace_mod_memcg_lruvec_state(memcg, idx, val); 788 memcg_stats_unlock(); 789 } 790 791 /** 792 * __mod_lruvec_state - update lruvec memory statistics 793 * @lruvec: the lruvec 794 * @idx: the stat item 795 * @val: delta to add to the counter, can be negative 796 * 797 * The lruvec is the intersection of the NUMA node and a cgroup. This 798 * function updates the all three counters that are affected by a 799 * change of state at this level: per-node, per-cgroup, per-lruvec. 800 */ 801 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 802 int val) 803 { 804 /* Update node */ 805 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 806 807 /* Update memcg and lruvec */ 808 if (!mem_cgroup_disabled()) 809 __mod_memcg_lruvec_state(lruvec, idx, val); 810 } 811 812 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 813 int val) 814 { 815 struct mem_cgroup *memcg; 816 pg_data_t *pgdat = folio_pgdat(folio); 817 struct lruvec *lruvec; 818 819 rcu_read_lock(); 820 memcg = folio_memcg(folio); 821 /* Untracked pages have no memcg, no lruvec. Update only the node */ 822 if (!memcg) { 823 rcu_read_unlock(); 824 __mod_node_page_state(pgdat, idx, val); 825 return; 826 } 827 828 lruvec = mem_cgroup_lruvec(memcg, pgdat); 829 __mod_lruvec_state(lruvec, idx, val); 830 rcu_read_unlock(); 831 } 832 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 833 834 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 835 { 836 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 837 struct mem_cgroup *memcg; 838 struct lruvec *lruvec; 839 840 rcu_read_lock(); 841 memcg = mem_cgroup_from_slab_obj(p); 842 843 /* 844 * Untracked pages have no memcg, no lruvec. Update only the 845 * node. If we reparent the slab objects to the root memcg, 846 * when we free the slab object, we need to update the per-memcg 847 * vmstats to keep it correct for the root memcg. 848 */ 849 if (!memcg) { 850 __mod_node_page_state(pgdat, idx, val); 851 } else { 852 lruvec = mem_cgroup_lruvec(memcg, pgdat); 853 __mod_lruvec_state(lruvec, idx, val); 854 } 855 rcu_read_unlock(); 856 } 857 858 /** 859 * __count_memcg_events - account VM events in a cgroup 860 * @memcg: the memory cgroup 861 * @idx: the event item 862 * @count: the number of events that occurred 863 */ 864 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 865 unsigned long count) 866 { 867 int i = memcg_events_index(idx); 868 869 if (mem_cgroup_disabled()) 870 return; 871 872 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 873 return; 874 875 memcg_stats_lock(); 876 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 877 memcg_rstat_updated(memcg, count); 878 trace_count_memcg_events(memcg, idx, count); 879 memcg_stats_unlock(); 880 } 881 882 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 883 { 884 int i = memcg_events_index(event); 885 886 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 887 return 0; 888 889 return READ_ONCE(memcg->vmstats->events[i]); 890 } 891 892 #ifdef CONFIG_MEMCG_V1 893 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 894 { 895 int i = memcg_events_index(event); 896 897 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 898 return 0; 899 900 return READ_ONCE(memcg->vmstats->events_local[i]); 901 } 902 #endif 903 904 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 905 { 906 /* 907 * mm_update_next_owner() may clear mm->owner to NULL 908 * if it races with swapoff, page migration, etc. 909 * So this can be called with p == NULL. 910 */ 911 if (unlikely(!p)) 912 return NULL; 913 914 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 915 } 916 EXPORT_SYMBOL(mem_cgroup_from_task); 917 918 static __always_inline struct mem_cgroup *active_memcg(void) 919 { 920 if (!in_task()) 921 return this_cpu_read(int_active_memcg); 922 else 923 return current->active_memcg; 924 } 925 926 /** 927 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 928 * @mm: mm from which memcg should be extracted. It can be NULL. 929 * 930 * Obtain a reference on mm->memcg and returns it if successful. If mm 931 * is NULL, then the memcg is chosen as follows: 932 * 1) The active memcg, if set. 933 * 2) current->mm->memcg, if available 934 * 3) root memcg 935 * If mem_cgroup is disabled, NULL is returned. 936 */ 937 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 938 { 939 struct mem_cgroup *memcg; 940 941 if (mem_cgroup_disabled()) 942 return NULL; 943 944 /* 945 * Page cache insertions can happen without an 946 * actual mm context, e.g. during disk probing 947 * on boot, loopback IO, acct() writes etc. 948 * 949 * No need to css_get on root memcg as the reference 950 * counting is disabled on the root level in the 951 * cgroup core. See CSS_NO_REF. 952 */ 953 if (unlikely(!mm)) { 954 memcg = active_memcg(); 955 if (unlikely(memcg)) { 956 /* remote memcg must hold a ref */ 957 css_get(&memcg->css); 958 return memcg; 959 } 960 mm = current->mm; 961 if (unlikely(!mm)) 962 return root_mem_cgroup; 963 } 964 965 rcu_read_lock(); 966 do { 967 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 968 if (unlikely(!memcg)) 969 memcg = root_mem_cgroup; 970 } while (!css_tryget(&memcg->css)); 971 rcu_read_unlock(); 972 return memcg; 973 } 974 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 975 976 /** 977 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 978 */ 979 struct mem_cgroup *get_mem_cgroup_from_current(void) 980 { 981 struct mem_cgroup *memcg; 982 983 if (mem_cgroup_disabled()) 984 return NULL; 985 986 again: 987 rcu_read_lock(); 988 memcg = mem_cgroup_from_task(current); 989 if (!css_tryget(&memcg->css)) { 990 rcu_read_unlock(); 991 goto again; 992 } 993 rcu_read_unlock(); 994 return memcg; 995 } 996 997 /** 998 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 999 * @folio: folio from which memcg should be extracted. 1000 */ 1001 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 1002 { 1003 struct mem_cgroup *memcg = folio_memcg(folio); 1004 1005 if (mem_cgroup_disabled()) 1006 return NULL; 1007 1008 rcu_read_lock(); 1009 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 1010 memcg = root_mem_cgroup; 1011 rcu_read_unlock(); 1012 return memcg; 1013 } 1014 1015 /** 1016 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1017 * @root: hierarchy root 1018 * @prev: previously returned memcg, NULL on first invocation 1019 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1020 * 1021 * Returns references to children of the hierarchy below @root, or 1022 * @root itself, or %NULL after a full round-trip. 1023 * 1024 * Caller must pass the return value in @prev on subsequent 1025 * invocations for reference counting, or use mem_cgroup_iter_break() 1026 * to cancel a hierarchy walk before the round-trip is complete. 1027 * 1028 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1029 * in the hierarchy among all concurrent reclaimers operating on the 1030 * same node. 1031 */ 1032 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1033 struct mem_cgroup *prev, 1034 struct mem_cgroup_reclaim_cookie *reclaim) 1035 { 1036 struct mem_cgroup_reclaim_iter *iter; 1037 struct cgroup_subsys_state *css; 1038 struct mem_cgroup *pos; 1039 struct mem_cgroup *next; 1040 1041 if (mem_cgroup_disabled()) 1042 return NULL; 1043 1044 if (!root) 1045 root = root_mem_cgroup; 1046 1047 rcu_read_lock(); 1048 restart: 1049 next = NULL; 1050 1051 if (reclaim) { 1052 int gen; 1053 int nid = reclaim->pgdat->node_id; 1054 1055 iter = &root->nodeinfo[nid]->iter; 1056 gen = atomic_read(&iter->generation); 1057 1058 /* 1059 * On start, join the current reclaim iteration cycle. 1060 * Exit when a concurrent walker completes it. 1061 */ 1062 if (!prev) 1063 reclaim->generation = gen; 1064 else if (reclaim->generation != gen) 1065 goto out_unlock; 1066 1067 pos = READ_ONCE(iter->position); 1068 } else 1069 pos = prev; 1070 1071 css = pos ? &pos->css : NULL; 1072 1073 while ((css = css_next_descendant_pre(css, &root->css))) { 1074 /* 1075 * Verify the css and acquire a reference. The root 1076 * is provided by the caller, so we know it's alive 1077 * and kicking, and don't take an extra reference. 1078 */ 1079 if (css == &root->css || css_tryget(css)) 1080 break; 1081 } 1082 1083 next = mem_cgroup_from_css(css); 1084 1085 if (reclaim) { 1086 /* 1087 * The position could have already been updated by a competing 1088 * thread, so check that the value hasn't changed since we read 1089 * it to avoid reclaiming from the same cgroup twice. 1090 */ 1091 if (cmpxchg(&iter->position, pos, next) != pos) { 1092 if (css && css != &root->css) 1093 css_put(css); 1094 goto restart; 1095 } 1096 1097 if (!next) { 1098 atomic_inc(&iter->generation); 1099 1100 /* 1101 * Reclaimers share the hierarchy walk, and a 1102 * new one might jump in right at the end of 1103 * the hierarchy - make sure they see at least 1104 * one group and restart from the beginning. 1105 */ 1106 if (!prev) 1107 goto restart; 1108 } 1109 } 1110 1111 out_unlock: 1112 rcu_read_unlock(); 1113 if (prev && prev != root) 1114 css_put(&prev->css); 1115 1116 return next; 1117 } 1118 1119 /** 1120 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1121 * @root: hierarchy root 1122 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1123 */ 1124 void mem_cgroup_iter_break(struct mem_cgroup *root, 1125 struct mem_cgroup *prev) 1126 { 1127 if (!root) 1128 root = root_mem_cgroup; 1129 if (prev && prev != root) 1130 css_put(&prev->css); 1131 } 1132 1133 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1134 struct mem_cgroup *dead_memcg) 1135 { 1136 struct mem_cgroup_reclaim_iter *iter; 1137 struct mem_cgroup_per_node *mz; 1138 int nid; 1139 1140 for_each_node(nid) { 1141 mz = from->nodeinfo[nid]; 1142 iter = &mz->iter; 1143 cmpxchg(&iter->position, dead_memcg, NULL); 1144 } 1145 } 1146 1147 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1148 { 1149 struct mem_cgroup *memcg = dead_memcg; 1150 struct mem_cgroup *last; 1151 1152 do { 1153 __invalidate_reclaim_iterators(memcg, dead_memcg); 1154 last = memcg; 1155 } while ((memcg = parent_mem_cgroup(memcg))); 1156 1157 /* 1158 * When cgroup1 non-hierarchy mode is used, 1159 * parent_mem_cgroup() does not walk all the way up to the 1160 * cgroup root (root_mem_cgroup). So we have to handle 1161 * dead_memcg from cgroup root separately. 1162 */ 1163 if (!mem_cgroup_is_root(last)) 1164 __invalidate_reclaim_iterators(root_mem_cgroup, 1165 dead_memcg); 1166 } 1167 1168 /** 1169 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1170 * @memcg: hierarchy root 1171 * @fn: function to call for each task 1172 * @arg: argument passed to @fn 1173 * 1174 * This function iterates over tasks attached to @memcg or to any of its 1175 * descendants and calls @fn for each task. If @fn returns a non-zero 1176 * value, the function breaks the iteration loop. Otherwise, it will iterate 1177 * over all tasks and return 0. 1178 * 1179 * This function must not be called for the root memory cgroup. 1180 */ 1181 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1182 int (*fn)(struct task_struct *, void *), void *arg) 1183 { 1184 struct mem_cgroup *iter; 1185 int ret = 0; 1186 int i = 0; 1187 1188 BUG_ON(mem_cgroup_is_root(memcg)); 1189 1190 for_each_mem_cgroup_tree(iter, memcg) { 1191 struct css_task_iter it; 1192 struct task_struct *task; 1193 1194 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1195 while (!ret && (task = css_task_iter_next(&it))) { 1196 /* Avoid potential softlockup warning */ 1197 if ((++i & 1023) == 0) 1198 cond_resched(); 1199 ret = fn(task, arg); 1200 } 1201 css_task_iter_end(&it); 1202 if (ret) { 1203 mem_cgroup_iter_break(memcg, iter); 1204 break; 1205 } 1206 } 1207 } 1208 1209 #ifdef CONFIG_DEBUG_VM 1210 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1211 { 1212 struct mem_cgroup *memcg; 1213 1214 if (mem_cgroup_disabled()) 1215 return; 1216 1217 memcg = folio_memcg(folio); 1218 1219 if (!memcg) 1220 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1221 else 1222 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1223 } 1224 #endif 1225 1226 /** 1227 * folio_lruvec_lock - Lock the lruvec for a folio. 1228 * @folio: Pointer to the folio. 1229 * 1230 * These functions are safe to use under any of the following conditions: 1231 * - folio locked 1232 * - folio_test_lru false 1233 * - folio frozen (refcount of 0) 1234 * 1235 * Return: The lruvec this folio is on with its lock held. 1236 */ 1237 struct lruvec *folio_lruvec_lock(struct folio *folio) 1238 { 1239 struct lruvec *lruvec = folio_lruvec(folio); 1240 1241 spin_lock(&lruvec->lru_lock); 1242 lruvec_memcg_debug(lruvec, folio); 1243 1244 return lruvec; 1245 } 1246 1247 /** 1248 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1249 * @folio: Pointer to the folio. 1250 * 1251 * These functions are safe to use under any of the following conditions: 1252 * - folio locked 1253 * - folio_test_lru false 1254 * - folio frozen (refcount of 0) 1255 * 1256 * Return: The lruvec this folio is on with its lock held and interrupts 1257 * disabled. 1258 */ 1259 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1260 { 1261 struct lruvec *lruvec = folio_lruvec(folio); 1262 1263 spin_lock_irq(&lruvec->lru_lock); 1264 lruvec_memcg_debug(lruvec, folio); 1265 1266 return lruvec; 1267 } 1268 1269 /** 1270 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1271 * @folio: Pointer to the folio. 1272 * @flags: Pointer to irqsave flags. 1273 * 1274 * These functions are safe to use under any of the following conditions: 1275 * - folio locked 1276 * - folio_test_lru false 1277 * - folio frozen (refcount of 0) 1278 * 1279 * Return: The lruvec this folio is on with its lock held and interrupts 1280 * disabled. 1281 */ 1282 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1283 unsigned long *flags) 1284 { 1285 struct lruvec *lruvec = folio_lruvec(folio); 1286 1287 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1288 lruvec_memcg_debug(lruvec, folio); 1289 1290 return lruvec; 1291 } 1292 1293 /** 1294 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1295 * @lruvec: mem_cgroup per zone lru vector 1296 * @lru: index of lru list the page is sitting on 1297 * @zid: zone id of the accounted pages 1298 * @nr_pages: positive when adding or negative when removing 1299 * 1300 * This function must be called under lru_lock, just before a page is added 1301 * to or just after a page is removed from an lru list. 1302 */ 1303 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1304 int zid, int nr_pages) 1305 { 1306 struct mem_cgroup_per_node *mz; 1307 unsigned long *lru_size; 1308 long size; 1309 1310 if (mem_cgroup_disabled()) 1311 return; 1312 1313 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1314 lru_size = &mz->lru_zone_size[zid][lru]; 1315 1316 if (nr_pages < 0) 1317 *lru_size += nr_pages; 1318 1319 size = *lru_size; 1320 if (WARN_ONCE(size < 0, 1321 "%s(%p, %d, %d): lru_size %ld\n", 1322 __func__, lruvec, lru, nr_pages, size)) { 1323 VM_BUG_ON(1); 1324 *lru_size = 0; 1325 } 1326 1327 if (nr_pages > 0) 1328 *lru_size += nr_pages; 1329 } 1330 1331 /** 1332 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1333 * @memcg: the memory cgroup 1334 * 1335 * Returns the maximum amount of memory @mem can be charged with, in 1336 * pages. 1337 */ 1338 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1339 { 1340 unsigned long margin = 0; 1341 unsigned long count; 1342 unsigned long limit; 1343 1344 count = page_counter_read(&memcg->memory); 1345 limit = READ_ONCE(memcg->memory.max); 1346 if (count < limit) 1347 margin = limit - count; 1348 1349 if (do_memsw_account()) { 1350 count = page_counter_read(&memcg->memsw); 1351 limit = READ_ONCE(memcg->memsw.max); 1352 if (count < limit) 1353 margin = min(margin, limit - count); 1354 else 1355 margin = 0; 1356 } 1357 1358 return margin; 1359 } 1360 1361 struct memory_stat { 1362 const char *name; 1363 unsigned int idx; 1364 }; 1365 1366 static const struct memory_stat memory_stats[] = { 1367 { "anon", NR_ANON_MAPPED }, 1368 { "file", NR_FILE_PAGES }, 1369 { "kernel", MEMCG_KMEM }, 1370 { "kernel_stack", NR_KERNEL_STACK_KB }, 1371 { "pagetables", NR_PAGETABLE }, 1372 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1373 { "percpu", MEMCG_PERCPU_B }, 1374 { "sock", MEMCG_SOCK }, 1375 { "vmalloc", MEMCG_VMALLOC }, 1376 { "shmem", NR_SHMEM }, 1377 #ifdef CONFIG_ZSWAP 1378 { "zswap", MEMCG_ZSWAP_B }, 1379 { "zswapped", MEMCG_ZSWAPPED }, 1380 #endif 1381 { "file_mapped", NR_FILE_MAPPED }, 1382 { "file_dirty", NR_FILE_DIRTY }, 1383 { "file_writeback", NR_WRITEBACK }, 1384 #ifdef CONFIG_SWAP 1385 { "swapcached", NR_SWAPCACHE }, 1386 #endif 1387 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1388 { "anon_thp", NR_ANON_THPS }, 1389 { "file_thp", NR_FILE_THPS }, 1390 { "shmem_thp", NR_SHMEM_THPS }, 1391 #endif 1392 { "inactive_anon", NR_INACTIVE_ANON }, 1393 { "active_anon", NR_ACTIVE_ANON }, 1394 { "inactive_file", NR_INACTIVE_FILE }, 1395 { "active_file", NR_ACTIVE_FILE }, 1396 { "unevictable", NR_UNEVICTABLE }, 1397 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1398 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1399 #ifdef CONFIG_HUGETLB_PAGE 1400 { "hugetlb", NR_HUGETLB }, 1401 #endif 1402 1403 /* The memory events */ 1404 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1405 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1406 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1407 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1408 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1409 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1410 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1411 1412 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1413 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1414 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1415 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1416 #ifdef CONFIG_NUMA_BALANCING 1417 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1418 #endif 1419 }; 1420 1421 /* The actual unit of the state item, not the same as the output unit */ 1422 static int memcg_page_state_unit(int item) 1423 { 1424 switch (item) { 1425 case MEMCG_PERCPU_B: 1426 case MEMCG_ZSWAP_B: 1427 case NR_SLAB_RECLAIMABLE_B: 1428 case NR_SLAB_UNRECLAIMABLE_B: 1429 return 1; 1430 case NR_KERNEL_STACK_KB: 1431 return SZ_1K; 1432 default: 1433 return PAGE_SIZE; 1434 } 1435 } 1436 1437 /* Translate stat items to the correct unit for memory.stat output */ 1438 static int memcg_page_state_output_unit(int item) 1439 { 1440 /* 1441 * Workingset state is actually in pages, but we export it to userspace 1442 * as a scalar count of events, so special case it here. 1443 * 1444 * Demotion and promotion activities are exported in pages, consistent 1445 * with their global counterparts. 1446 */ 1447 switch (item) { 1448 case WORKINGSET_REFAULT_ANON: 1449 case WORKINGSET_REFAULT_FILE: 1450 case WORKINGSET_ACTIVATE_ANON: 1451 case WORKINGSET_ACTIVATE_FILE: 1452 case WORKINGSET_RESTORE_ANON: 1453 case WORKINGSET_RESTORE_FILE: 1454 case WORKINGSET_NODERECLAIM: 1455 case PGDEMOTE_KSWAPD: 1456 case PGDEMOTE_DIRECT: 1457 case PGDEMOTE_KHUGEPAGED: 1458 case PGDEMOTE_PROACTIVE: 1459 #ifdef CONFIG_NUMA_BALANCING 1460 case PGPROMOTE_SUCCESS: 1461 #endif 1462 return 1; 1463 default: 1464 return memcg_page_state_unit(item); 1465 } 1466 } 1467 1468 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1469 { 1470 return memcg_page_state(memcg, item) * 1471 memcg_page_state_output_unit(item); 1472 } 1473 1474 #ifdef CONFIG_MEMCG_V1 1475 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1476 { 1477 return memcg_page_state_local(memcg, item) * 1478 memcg_page_state_output_unit(item); 1479 } 1480 #endif 1481 1482 #ifdef CONFIG_HUGETLB_PAGE 1483 static bool memcg_accounts_hugetlb(void) 1484 { 1485 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1486 } 1487 #else /* CONFIG_HUGETLB_PAGE */ 1488 static bool memcg_accounts_hugetlb(void) 1489 { 1490 return false; 1491 } 1492 #endif /* CONFIG_HUGETLB_PAGE */ 1493 1494 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1495 { 1496 int i; 1497 1498 /* 1499 * Provide statistics on the state of the memory subsystem as 1500 * well as cumulative event counters that show past behavior. 1501 * 1502 * This list is ordered following a combination of these gradients: 1503 * 1) generic big picture -> specifics and details 1504 * 2) reflecting userspace activity -> reflecting kernel heuristics 1505 * 1506 * Current memory state: 1507 */ 1508 mem_cgroup_flush_stats(memcg); 1509 1510 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1511 u64 size; 1512 1513 #ifdef CONFIG_HUGETLB_PAGE 1514 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1515 !memcg_accounts_hugetlb()) 1516 continue; 1517 #endif 1518 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1519 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1520 1521 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1522 size += memcg_page_state_output(memcg, 1523 NR_SLAB_RECLAIMABLE_B); 1524 seq_buf_printf(s, "slab %llu\n", size); 1525 } 1526 } 1527 1528 /* Accumulated memory events */ 1529 seq_buf_printf(s, "pgscan %lu\n", 1530 memcg_events(memcg, PGSCAN_KSWAPD) + 1531 memcg_events(memcg, PGSCAN_DIRECT) + 1532 memcg_events(memcg, PGSCAN_PROACTIVE) + 1533 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1534 seq_buf_printf(s, "pgsteal %lu\n", 1535 memcg_events(memcg, PGSTEAL_KSWAPD) + 1536 memcg_events(memcg, PGSTEAL_DIRECT) + 1537 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1538 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1539 1540 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1541 #ifdef CONFIG_MEMCG_V1 1542 if (memcg_vm_event_stat[i] == PGPGIN || 1543 memcg_vm_event_stat[i] == PGPGOUT) 1544 continue; 1545 #endif 1546 seq_buf_printf(s, "%s %lu\n", 1547 vm_event_name(memcg_vm_event_stat[i]), 1548 memcg_events(memcg, memcg_vm_event_stat[i])); 1549 } 1550 } 1551 1552 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1553 { 1554 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1555 memcg_stat_format(memcg, s); 1556 else 1557 memcg1_stat_format(memcg, s); 1558 if (seq_buf_has_overflowed(s)) 1559 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1560 } 1561 1562 /** 1563 * mem_cgroup_print_oom_context: Print OOM information relevant to 1564 * memory controller. 1565 * @memcg: The memory cgroup that went over limit 1566 * @p: Task that is going to be killed 1567 * 1568 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1569 * enabled 1570 */ 1571 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1572 { 1573 rcu_read_lock(); 1574 1575 if (memcg) { 1576 pr_cont(",oom_memcg="); 1577 pr_cont_cgroup_path(memcg->css.cgroup); 1578 } else 1579 pr_cont(",global_oom"); 1580 if (p) { 1581 pr_cont(",task_memcg="); 1582 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1583 } 1584 rcu_read_unlock(); 1585 } 1586 1587 /** 1588 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1589 * memory controller. 1590 * @memcg: The memory cgroup that went over limit 1591 */ 1592 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1593 { 1594 /* Use static buffer, for the caller is holding oom_lock. */ 1595 static char buf[SEQ_BUF_SIZE]; 1596 struct seq_buf s; 1597 unsigned long memory_failcnt; 1598 1599 lockdep_assert_held(&oom_lock); 1600 1601 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1602 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1603 else 1604 memory_failcnt = memcg->memory.failcnt; 1605 1606 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1607 K((u64)page_counter_read(&memcg->memory)), 1608 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1609 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1610 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1611 K((u64)page_counter_read(&memcg->swap)), 1612 K((u64)READ_ONCE(memcg->swap.max)), 1613 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1614 #ifdef CONFIG_MEMCG_V1 1615 else { 1616 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1617 K((u64)page_counter_read(&memcg->memsw)), 1618 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1619 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1620 K((u64)page_counter_read(&memcg->kmem)), 1621 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1622 } 1623 #endif 1624 1625 pr_info("Memory cgroup stats for "); 1626 pr_cont_cgroup_path(memcg->css.cgroup); 1627 pr_cont(":"); 1628 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1629 memory_stat_format(memcg, &s); 1630 seq_buf_do_printk(&s, KERN_INFO); 1631 } 1632 1633 /* 1634 * Return the memory (and swap, if configured) limit for a memcg. 1635 */ 1636 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1637 { 1638 unsigned long max = READ_ONCE(memcg->memory.max); 1639 1640 if (do_memsw_account()) { 1641 if (mem_cgroup_swappiness(memcg)) { 1642 /* Calculate swap excess capacity from memsw limit */ 1643 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1644 1645 max += min(swap, (unsigned long)total_swap_pages); 1646 } 1647 } else { 1648 if (mem_cgroup_swappiness(memcg)) 1649 max += min(READ_ONCE(memcg->swap.max), 1650 (unsigned long)total_swap_pages); 1651 } 1652 return max; 1653 } 1654 1655 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1656 { 1657 return page_counter_read(&memcg->memory); 1658 } 1659 1660 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1661 int order) 1662 { 1663 struct oom_control oc = { 1664 .zonelist = NULL, 1665 .nodemask = NULL, 1666 .memcg = memcg, 1667 .gfp_mask = gfp_mask, 1668 .order = order, 1669 }; 1670 bool ret = true; 1671 1672 if (mutex_lock_killable(&oom_lock)) 1673 return true; 1674 1675 if (mem_cgroup_margin(memcg) >= (1 << order)) 1676 goto unlock; 1677 1678 /* 1679 * A few threads which were not waiting at mutex_lock_killable() can 1680 * fail to bail out. Therefore, check again after holding oom_lock. 1681 */ 1682 ret = out_of_memory(&oc); 1683 1684 unlock: 1685 mutex_unlock(&oom_lock); 1686 return ret; 1687 } 1688 1689 /* 1690 * Returns true if successfully killed one or more processes. Though in some 1691 * corner cases it can return true even without killing any process. 1692 */ 1693 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1694 { 1695 bool locked, ret; 1696 1697 if (order > PAGE_ALLOC_COSTLY_ORDER) 1698 return false; 1699 1700 memcg_memory_event(memcg, MEMCG_OOM); 1701 1702 if (!memcg1_oom_prepare(memcg, &locked)) 1703 return false; 1704 1705 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1706 1707 memcg1_oom_finish(memcg, locked); 1708 1709 return ret; 1710 } 1711 1712 /** 1713 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1714 * @victim: task to be killed by the OOM killer 1715 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1716 * 1717 * Returns a pointer to a memory cgroup, which has to be cleaned up 1718 * by killing all belonging OOM-killable tasks. 1719 * 1720 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1721 */ 1722 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1723 struct mem_cgroup *oom_domain) 1724 { 1725 struct mem_cgroup *oom_group = NULL; 1726 struct mem_cgroup *memcg; 1727 1728 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1729 return NULL; 1730 1731 if (!oom_domain) 1732 oom_domain = root_mem_cgroup; 1733 1734 rcu_read_lock(); 1735 1736 memcg = mem_cgroup_from_task(victim); 1737 if (mem_cgroup_is_root(memcg)) 1738 goto out; 1739 1740 /* 1741 * If the victim task has been asynchronously moved to a different 1742 * memory cgroup, we might end up killing tasks outside oom_domain. 1743 * In this case it's better to ignore memory.group.oom. 1744 */ 1745 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1746 goto out; 1747 1748 /* 1749 * Traverse the memory cgroup hierarchy from the victim task's 1750 * cgroup up to the OOMing cgroup (or root) to find the 1751 * highest-level memory cgroup with oom.group set. 1752 */ 1753 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1754 if (READ_ONCE(memcg->oom_group)) 1755 oom_group = memcg; 1756 1757 if (memcg == oom_domain) 1758 break; 1759 } 1760 1761 if (oom_group) 1762 css_get(&oom_group->css); 1763 out: 1764 rcu_read_unlock(); 1765 1766 return oom_group; 1767 } 1768 1769 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1770 { 1771 pr_info("Tasks in "); 1772 pr_cont_cgroup_path(memcg->css.cgroup); 1773 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1774 } 1775 1776 /* 1777 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their 1778 * nr_pages in a single cacheline. This may change in future. 1779 */ 1780 #define NR_MEMCG_STOCK 7 1781 struct memcg_stock_pcp { 1782 local_trylock_t stock_lock; 1783 uint8_t nr_pages[NR_MEMCG_STOCK]; 1784 struct mem_cgroup *cached[NR_MEMCG_STOCK]; 1785 1786 struct obj_cgroup *cached_objcg; 1787 struct pglist_data *cached_pgdat; 1788 unsigned int nr_bytes; 1789 int nr_slab_reclaimable_b; 1790 int nr_slab_unreclaimable_b; 1791 1792 struct work_struct work; 1793 unsigned long flags; 1794 #define FLUSHING_CACHED_CHARGE 0 1795 }; 1796 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = { 1797 .stock_lock = INIT_LOCAL_TRYLOCK(stock_lock), 1798 }; 1799 static DEFINE_MUTEX(percpu_charge_mutex); 1800 1801 static void drain_obj_stock(struct memcg_stock_pcp *stock); 1802 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1803 struct mem_cgroup *root_memcg); 1804 1805 /** 1806 * consume_stock: Try to consume stocked charge on this cpu. 1807 * @memcg: memcg to consume from. 1808 * @nr_pages: how many pages to charge. 1809 * @gfp_mask: allocation mask. 1810 * 1811 * The charges will only happen if @memcg matches the current cpu's memcg 1812 * stock, and at least @nr_pages are available in that stock. Failure to 1813 * service an allocation will refill the stock. 1814 * 1815 * returns true if successful, false otherwise. 1816 */ 1817 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages, 1818 gfp_t gfp_mask) 1819 { 1820 struct memcg_stock_pcp *stock; 1821 uint8_t stock_pages; 1822 unsigned long flags; 1823 bool ret = false; 1824 int i; 1825 1826 if (nr_pages > MEMCG_CHARGE_BATCH) 1827 return ret; 1828 1829 if (gfpflags_allow_spinning(gfp_mask)) 1830 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1831 else if (!local_trylock_irqsave(&memcg_stock.stock_lock, flags)) 1832 return ret; 1833 1834 stock = this_cpu_ptr(&memcg_stock); 1835 1836 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1837 if (memcg != READ_ONCE(stock->cached[i])) 1838 continue; 1839 1840 stock_pages = READ_ONCE(stock->nr_pages[i]); 1841 if (stock_pages >= nr_pages) { 1842 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages); 1843 ret = true; 1844 } 1845 break; 1846 } 1847 1848 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1849 1850 return ret; 1851 } 1852 1853 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 1854 { 1855 page_counter_uncharge(&memcg->memory, nr_pages); 1856 if (do_memsw_account()) 1857 page_counter_uncharge(&memcg->memsw, nr_pages); 1858 } 1859 1860 /* 1861 * Returns stocks cached in percpu and reset cached information. 1862 */ 1863 static void drain_stock(struct memcg_stock_pcp *stock, int i) 1864 { 1865 struct mem_cgroup *old = READ_ONCE(stock->cached[i]); 1866 uint8_t stock_pages; 1867 1868 if (!old) 1869 return; 1870 1871 stock_pages = READ_ONCE(stock->nr_pages[i]); 1872 if (stock_pages) { 1873 memcg_uncharge(old, stock_pages); 1874 WRITE_ONCE(stock->nr_pages[i], 0); 1875 } 1876 1877 css_put(&old->css); 1878 WRITE_ONCE(stock->cached[i], NULL); 1879 } 1880 1881 static void drain_stock_fully(struct memcg_stock_pcp *stock) 1882 { 1883 int i; 1884 1885 for (i = 0; i < NR_MEMCG_STOCK; ++i) 1886 drain_stock(stock, i); 1887 } 1888 1889 static void drain_local_stock(struct work_struct *dummy) 1890 { 1891 struct memcg_stock_pcp *stock; 1892 unsigned long flags; 1893 1894 /* 1895 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1896 * drain_stock races is that we always operate on local CPU stock 1897 * here with IRQ disabled 1898 */ 1899 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1900 1901 stock = this_cpu_ptr(&memcg_stock); 1902 drain_obj_stock(stock); 1903 drain_stock_fully(stock); 1904 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1905 1906 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1907 } 1908 1909 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1910 { 1911 struct memcg_stock_pcp *stock; 1912 struct mem_cgroup *cached; 1913 uint8_t stock_pages; 1914 unsigned long flags; 1915 bool success = false; 1916 int empty_slot = -1; 1917 int i; 1918 1919 /* 1920 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we 1921 * decide to increase it more than 127 then we will need more careful 1922 * handling of nr_pages[] in struct memcg_stock_pcp. 1923 */ 1924 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX); 1925 1926 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); 1927 1928 if (nr_pages > MEMCG_CHARGE_BATCH || 1929 !local_trylock_irqsave(&memcg_stock.stock_lock, flags)) { 1930 /* 1931 * In case of larger than batch refill or unlikely failure to 1932 * lock the percpu stock_lock, uncharge memcg directly. 1933 */ 1934 memcg_uncharge(memcg, nr_pages); 1935 return; 1936 } 1937 1938 stock = this_cpu_ptr(&memcg_stock); 1939 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1940 cached = READ_ONCE(stock->cached[i]); 1941 if (!cached && empty_slot == -1) 1942 empty_slot = i; 1943 if (memcg == READ_ONCE(stock->cached[i])) { 1944 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages; 1945 WRITE_ONCE(stock->nr_pages[i], stock_pages); 1946 if (stock_pages > MEMCG_CHARGE_BATCH) 1947 drain_stock(stock, i); 1948 success = true; 1949 break; 1950 } 1951 } 1952 1953 if (!success) { 1954 i = empty_slot; 1955 if (i == -1) { 1956 i = get_random_u32_below(NR_MEMCG_STOCK); 1957 drain_stock(stock, i); 1958 } 1959 css_get(&memcg->css); 1960 WRITE_ONCE(stock->cached[i], memcg); 1961 WRITE_ONCE(stock->nr_pages[i], nr_pages); 1962 } 1963 1964 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1965 } 1966 1967 static bool is_drain_needed(struct memcg_stock_pcp *stock, 1968 struct mem_cgroup *root_memcg) 1969 { 1970 struct mem_cgroup *memcg; 1971 bool flush = false; 1972 int i; 1973 1974 rcu_read_lock(); 1975 1976 if (obj_stock_flush_required(stock, root_memcg)) { 1977 flush = true; 1978 goto out; 1979 } 1980 1981 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1982 memcg = READ_ONCE(stock->cached[i]); 1983 if (!memcg) 1984 continue; 1985 1986 if (READ_ONCE(stock->nr_pages[i]) && 1987 mem_cgroup_is_descendant(memcg, root_memcg)) { 1988 flush = true; 1989 break; 1990 } 1991 } 1992 out: 1993 rcu_read_unlock(); 1994 return flush; 1995 } 1996 1997 /* 1998 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1999 * of the hierarchy under it. 2000 */ 2001 void drain_all_stock(struct mem_cgroup *root_memcg) 2002 { 2003 int cpu, curcpu; 2004 2005 /* If someone's already draining, avoid adding running more workers. */ 2006 if (!mutex_trylock(&percpu_charge_mutex)) 2007 return; 2008 /* 2009 * Notify other cpus that system-wide "drain" is running 2010 * We do not care about races with the cpu hotplug because cpu down 2011 * as well as workers from this path always operate on the local 2012 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2013 */ 2014 migrate_disable(); 2015 curcpu = smp_processor_id(); 2016 for_each_online_cpu(cpu) { 2017 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2018 bool flush = is_drain_needed(stock, root_memcg); 2019 2020 if (flush && 2021 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2022 if (cpu == curcpu) 2023 drain_local_stock(&stock->work); 2024 else if (!cpu_is_isolated(cpu)) 2025 schedule_work_on(cpu, &stock->work); 2026 } 2027 } 2028 migrate_enable(); 2029 mutex_unlock(&percpu_charge_mutex); 2030 } 2031 2032 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2033 { 2034 struct memcg_stock_pcp *stock; 2035 unsigned long flags; 2036 2037 stock = &per_cpu(memcg_stock, cpu); 2038 2039 /* drain_obj_stock requires stock_lock */ 2040 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2041 drain_obj_stock(stock); 2042 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2043 2044 drain_stock_fully(stock); 2045 2046 return 0; 2047 } 2048 2049 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2050 unsigned int nr_pages, 2051 gfp_t gfp_mask) 2052 { 2053 unsigned long nr_reclaimed = 0; 2054 2055 do { 2056 unsigned long pflags; 2057 2058 if (page_counter_read(&memcg->memory) <= 2059 READ_ONCE(memcg->memory.high)) 2060 continue; 2061 2062 memcg_memory_event(memcg, MEMCG_HIGH); 2063 2064 psi_memstall_enter(&pflags); 2065 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2066 gfp_mask, 2067 MEMCG_RECLAIM_MAY_SWAP, 2068 NULL); 2069 psi_memstall_leave(&pflags); 2070 } while ((memcg = parent_mem_cgroup(memcg)) && 2071 !mem_cgroup_is_root(memcg)); 2072 2073 return nr_reclaimed; 2074 } 2075 2076 static void high_work_func(struct work_struct *work) 2077 { 2078 struct mem_cgroup *memcg; 2079 2080 memcg = container_of(work, struct mem_cgroup, high_work); 2081 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2082 } 2083 2084 /* 2085 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2086 * enough to still cause a significant slowdown in most cases, while still 2087 * allowing diagnostics and tracing to proceed without becoming stuck. 2088 */ 2089 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2090 2091 /* 2092 * When calculating the delay, we use these either side of the exponentiation to 2093 * maintain precision and scale to a reasonable number of jiffies (see the table 2094 * below. 2095 * 2096 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2097 * overage ratio to a delay. 2098 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2099 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2100 * to produce a reasonable delay curve. 2101 * 2102 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2103 * reasonable delay curve compared to precision-adjusted overage, not 2104 * penalising heavily at first, but still making sure that growth beyond the 2105 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2106 * example, with a high of 100 megabytes: 2107 * 2108 * +-------+------------------------+ 2109 * | usage | time to allocate in ms | 2110 * +-------+------------------------+ 2111 * | 100M | 0 | 2112 * | 101M | 6 | 2113 * | 102M | 25 | 2114 * | 103M | 57 | 2115 * | 104M | 102 | 2116 * | 105M | 159 | 2117 * | 106M | 230 | 2118 * | 107M | 313 | 2119 * | 108M | 409 | 2120 * | 109M | 518 | 2121 * | 110M | 639 | 2122 * | 111M | 774 | 2123 * | 112M | 921 | 2124 * | 113M | 1081 | 2125 * | 114M | 1254 | 2126 * | 115M | 1439 | 2127 * | 116M | 1638 | 2128 * | 117M | 1849 | 2129 * | 118M | 2000 | 2130 * | 119M | 2000 | 2131 * | 120M | 2000 | 2132 * +-------+------------------------+ 2133 */ 2134 #define MEMCG_DELAY_PRECISION_SHIFT 20 2135 #define MEMCG_DELAY_SCALING_SHIFT 14 2136 2137 static u64 calculate_overage(unsigned long usage, unsigned long high) 2138 { 2139 u64 overage; 2140 2141 if (usage <= high) 2142 return 0; 2143 2144 /* 2145 * Prevent division by 0 in overage calculation by acting as if 2146 * it was a threshold of 1 page 2147 */ 2148 high = max(high, 1UL); 2149 2150 overage = usage - high; 2151 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2152 return div64_u64(overage, high); 2153 } 2154 2155 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2156 { 2157 u64 overage, max_overage = 0; 2158 2159 do { 2160 overage = calculate_overage(page_counter_read(&memcg->memory), 2161 READ_ONCE(memcg->memory.high)); 2162 max_overage = max(overage, max_overage); 2163 } while ((memcg = parent_mem_cgroup(memcg)) && 2164 !mem_cgroup_is_root(memcg)); 2165 2166 return max_overage; 2167 } 2168 2169 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2170 { 2171 u64 overage, max_overage = 0; 2172 2173 do { 2174 overage = calculate_overage(page_counter_read(&memcg->swap), 2175 READ_ONCE(memcg->swap.high)); 2176 if (overage) 2177 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2178 max_overage = max(overage, max_overage); 2179 } while ((memcg = parent_mem_cgroup(memcg)) && 2180 !mem_cgroup_is_root(memcg)); 2181 2182 return max_overage; 2183 } 2184 2185 /* 2186 * Get the number of jiffies that we should penalise a mischievous cgroup which 2187 * is exceeding its memory.high by checking both it and its ancestors. 2188 */ 2189 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2190 unsigned int nr_pages, 2191 u64 max_overage) 2192 { 2193 unsigned long penalty_jiffies; 2194 2195 if (!max_overage) 2196 return 0; 2197 2198 /* 2199 * We use overage compared to memory.high to calculate the number of 2200 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2201 * fairly lenient on small overages, and increasingly harsh when the 2202 * memcg in question makes it clear that it has no intention of stopping 2203 * its crazy behaviour, so we exponentially increase the delay based on 2204 * overage amount. 2205 */ 2206 penalty_jiffies = max_overage * max_overage * HZ; 2207 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2208 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2209 2210 /* 2211 * Factor in the task's own contribution to the overage, such that four 2212 * N-sized allocations are throttled approximately the same as one 2213 * 4N-sized allocation. 2214 * 2215 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2216 * larger the current charge patch is than that. 2217 */ 2218 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2219 } 2220 2221 /* 2222 * Reclaims memory over the high limit. Called directly from 2223 * try_charge() (context permitting), as well as from the userland 2224 * return path where reclaim is always able to block. 2225 */ 2226 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2227 { 2228 unsigned long penalty_jiffies; 2229 unsigned long pflags; 2230 unsigned long nr_reclaimed; 2231 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2232 int nr_retries = MAX_RECLAIM_RETRIES; 2233 struct mem_cgroup *memcg; 2234 bool in_retry = false; 2235 2236 if (likely(!nr_pages)) 2237 return; 2238 2239 memcg = get_mem_cgroup_from_mm(current->mm); 2240 current->memcg_nr_pages_over_high = 0; 2241 2242 retry_reclaim: 2243 /* 2244 * Bail if the task is already exiting. Unlike memory.max, 2245 * memory.high enforcement isn't as strict, and there is no 2246 * OOM killer involved, which means the excess could already 2247 * be much bigger (and still growing) than it could for 2248 * memory.max; the dying task could get stuck in fruitless 2249 * reclaim for a long time, which isn't desirable. 2250 */ 2251 if (task_is_dying()) 2252 goto out; 2253 2254 /* 2255 * The allocating task should reclaim at least the batch size, but for 2256 * subsequent retries we only want to do what's necessary to prevent oom 2257 * or breaching resource isolation. 2258 * 2259 * This is distinct from memory.max or page allocator behaviour because 2260 * memory.high is currently batched, whereas memory.max and the page 2261 * allocator run every time an allocation is made. 2262 */ 2263 nr_reclaimed = reclaim_high(memcg, 2264 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2265 gfp_mask); 2266 2267 /* 2268 * memory.high is breached and reclaim is unable to keep up. Throttle 2269 * allocators proactively to slow down excessive growth. 2270 */ 2271 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2272 mem_find_max_overage(memcg)); 2273 2274 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2275 swap_find_max_overage(memcg)); 2276 2277 /* 2278 * Clamp the max delay per usermode return so as to still keep the 2279 * application moving forwards and also permit diagnostics, albeit 2280 * extremely slowly. 2281 */ 2282 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2283 2284 /* 2285 * Don't sleep if the amount of jiffies this memcg owes us is so low 2286 * that it's not even worth doing, in an attempt to be nice to those who 2287 * go only a small amount over their memory.high value and maybe haven't 2288 * been aggressively reclaimed enough yet. 2289 */ 2290 if (penalty_jiffies <= HZ / 100) 2291 goto out; 2292 2293 /* 2294 * If reclaim is making forward progress but we're still over 2295 * memory.high, we want to encourage that rather than doing allocator 2296 * throttling. 2297 */ 2298 if (nr_reclaimed || nr_retries--) { 2299 in_retry = true; 2300 goto retry_reclaim; 2301 } 2302 2303 /* 2304 * Reclaim didn't manage to push usage below the limit, slow 2305 * this allocating task down. 2306 * 2307 * If we exit early, we're guaranteed to die (since 2308 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2309 * need to account for any ill-begotten jiffies to pay them off later. 2310 */ 2311 psi_memstall_enter(&pflags); 2312 schedule_timeout_killable(penalty_jiffies); 2313 psi_memstall_leave(&pflags); 2314 2315 out: 2316 css_put(&memcg->css); 2317 } 2318 2319 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2320 unsigned int nr_pages) 2321 { 2322 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2323 int nr_retries = MAX_RECLAIM_RETRIES; 2324 struct mem_cgroup *mem_over_limit; 2325 struct page_counter *counter; 2326 unsigned long nr_reclaimed; 2327 bool passed_oom = false; 2328 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2329 bool drained = false; 2330 bool raised_max_event = false; 2331 unsigned long pflags; 2332 2333 retry: 2334 if (consume_stock(memcg, nr_pages, gfp_mask)) 2335 return 0; 2336 2337 if (!gfpflags_allow_spinning(gfp_mask)) 2338 /* Avoid the refill and flush of the older stock */ 2339 batch = nr_pages; 2340 2341 if (!do_memsw_account() || 2342 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2343 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2344 goto done_restock; 2345 if (do_memsw_account()) 2346 page_counter_uncharge(&memcg->memsw, batch); 2347 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2348 } else { 2349 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2350 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2351 } 2352 2353 if (batch > nr_pages) { 2354 batch = nr_pages; 2355 goto retry; 2356 } 2357 2358 /* 2359 * Prevent unbounded recursion when reclaim operations need to 2360 * allocate memory. This might exceed the limits temporarily, 2361 * but we prefer facilitating memory reclaim and getting back 2362 * under the limit over triggering OOM kills in these cases. 2363 */ 2364 if (unlikely(current->flags & PF_MEMALLOC)) 2365 goto force; 2366 2367 if (unlikely(task_in_memcg_oom(current))) 2368 goto nomem; 2369 2370 if (!gfpflags_allow_blocking(gfp_mask)) 2371 goto nomem; 2372 2373 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2374 raised_max_event = true; 2375 2376 psi_memstall_enter(&pflags); 2377 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2378 gfp_mask, reclaim_options, NULL); 2379 psi_memstall_leave(&pflags); 2380 2381 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2382 goto retry; 2383 2384 if (!drained) { 2385 drain_all_stock(mem_over_limit); 2386 drained = true; 2387 goto retry; 2388 } 2389 2390 if (gfp_mask & __GFP_NORETRY) 2391 goto nomem; 2392 /* 2393 * Even though the limit is exceeded at this point, reclaim 2394 * may have been able to free some pages. Retry the charge 2395 * before killing the task. 2396 * 2397 * Only for regular pages, though: huge pages are rather 2398 * unlikely to succeed so close to the limit, and we fall back 2399 * to regular pages anyway in case of failure. 2400 */ 2401 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2402 goto retry; 2403 2404 if (nr_retries--) 2405 goto retry; 2406 2407 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2408 goto nomem; 2409 2410 /* Avoid endless loop for tasks bypassed by the oom killer */ 2411 if (passed_oom && task_is_dying()) 2412 goto nomem; 2413 2414 /* 2415 * keep retrying as long as the memcg oom killer is able to make 2416 * a forward progress or bypass the charge if the oom killer 2417 * couldn't make any progress. 2418 */ 2419 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2420 get_order(nr_pages * PAGE_SIZE))) { 2421 passed_oom = true; 2422 nr_retries = MAX_RECLAIM_RETRIES; 2423 goto retry; 2424 } 2425 nomem: 2426 /* 2427 * Memcg doesn't have a dedicated reserve for atomic 2428 * allocations. But like the global atomic pool, we need to 2429 * put the burden of reclaim on regular allocation requests 2430 * and let these go through as privileged allocations. 2431 */ 2432 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2433 return -ENOMEM; 2434 force: 2435 /* 2436 * If the allocation has to be enforced, don't forget to raise 2437 * a MEMCG_MAX event. 2438 */ 2439 if (!raised_max_event) 2440 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2441 2442 /* 2443 * The allocation either can't fail or will lead to more memory 2444 * being freed very soon. Allow memory usage go over the limit 2445 * temporarily by force charging it. 2446 */ 2447 page_counter_charge(&memcg->memory, nr_pages); 2448 if (do_memsw_account()) 2449 page_counter_charge(&memcg->memsw, nr_pages); 2450 2451 return 0; 2452 2453 done_restock: 2454 if (batch > nr_pages) 2455 refill_stock(memcg, batch - nr_pages); 2456 2457 /* 2458 * If the hierarchy is above the normal consumption range, schedule 2459 * reclaim on returning to userland. We can perform reclaim here 2460 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2461 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2462 * not recorded as it most likely matches current's and won't 2463 * change in the meantime. As high limit is checked again before 2464 * reclaim, the cost of mismatch is negligible. 2465 */ 2466 do { 2467 bool mem_high, swap_high; 2468 2469 mem_high = page_counter_read(&memcg->memory) > 2470 READ_ONCE(memcg->memory.high); 2471 swap_high = page_counter_read(&memcg->swap) > 2472 READ_ONCE(memcg->swap.high); 2473 2474 /* Don't bother a random interrupted task */ 2475 if (!in_task()) { 2476 if (mem_high) { 2477 schedule_work(&memcg->high_work); 2478 break; 2479 } 2480 continue; 2481 } 2482 2483 if (mem_high || swap_high) { 2484 /* 2485 * The allocating tasks in this cgroup will need to do 2486 * reclaim or be throttled to prevent further growth 2487 * of the memory or swap footprints. 2488 * 2489 * Target some best-effort fairness between the tasks, 2490 * and distribute reclaim work and delay penalties 2491 * based on how much each task is actually allocating. 2492 */ 2493 current->memcg_nr_pages_over_high += batch; 2494 set_notify_resume(current); 2495 break; 2496 } 2497 } while ((memcg = parent_mem_cgroup(memcg))); 2498 2499 /* 2500 * Reclaim is set up above to be called from the userland 2501 * return path. But also attempt synchronous reclaim to avoid 2502 * excessive overrun while the task is still inside the 2503 * kernel. If this is successful, the return path will see it 2504 * when it rechecks the overage and simply bail out. 2505 */ 2506 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2507 !(current->flags & PF_MEMALLOC) && 2508 gfpflags_allow_blocking(gfp_mask)) 2509 mem_cgroup_handle_over_high(gfp_mask); 2510 return 0; 2511 } 2512 2513 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2514 unsigned int nr_pages) 2515 { 2516 if (mem_cgroup_is_root(memcg)) 2517 return 0; 2518 2519 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2520 } 2521 2522 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2523 { 2524 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2525 /* 2526 * Any of the following ensures page's memcg stability: 2527 * 2528 * - the page lock 2529 * - LRU isolation 2530 * - exclusive reference 2531 */ 2532 folio->memcg_data = (unsigned long)memcg; 2533 } 2534 2535 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2536 struct pglist_data *pgdat, 2537 enum node_stat_item idx, int nr) 2538 { 2539 struct mem_cgroup *memcg; 2540 struct lruvec *lruvec; 2541 2542 rcu_read_lock(); 2543 memcg = obj_cgroup_memcg(objcg); 2544 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2545 __mod_memcg_lruvec_state(lruvec, idx, nr); 2546 rcu_read_unlock(); 2547 } 2548 2549 static __always_inline 2550 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2551 { 2552 /* 2553 * Slab objects are accounted individually, not per-page. 2554 * Memcg membership data for each individual object is saved in 2555 * slab->obj_exts. 2556 */ 2557 if (folio_test_slab(folio)) { 2558 struct slabobj_ext *obj_exts; 2559 struct slab *slab; 2560 unsigned int off; 2561 2562 slab = folio_slab(folio); 2563 obj_exts = slab_obj_exts(slab); 2564 if (!obj_exts) 2565 return NULL; 2566 2567 off = obj_to_index(slab->slab_cache, slab, p); 2568 if (obj_exts[off].objcg) 2569 return obj_cgroup_memcg(obj_exts[off].objcg); 2570 2571 return NULL; 2572 } 2573 2574 /* 2575 * folio_memcg_check() is used here, because in theory we can encounter 2576 * a folio where the slab flag has been cleared already, but 2577 * slab->obj_exts has not been freed yet 2578 * folio_memcg_check() will guarantee that a proper memory 2579 * cgroup pointer or NULL will be returned. 2580 */ 2581 return folio_memcg_check(folio); 2582 } 2583 2584 /* 2585 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2586 * It is not suitable for objects allocated using vmalloc(). 2587 * 2588 * A passed kernel object must be a slab object or a generic kernel page. 2589 * 2590 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2591 * cgroup_mutex, etc. 2592 */ 2593 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2594 { 2595 if (mem_cgroup_disabled()) 2596 return NULL; 2597 2598 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2599 } 2600 2601 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2602 { 2603 struct obj_cgroup *objcg = NULL; 2604 2605 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2606 objcg = rcu_dereference(memcg->objcg); 2607 if (likely(objcg && obj_cgroup_tryget(objcg))) 2608 break; 2609 objcg = NULL; 2610 } 2611 return objcg; 2612 } 2613 2614 static struct obj_cgroup *current_objcg_update(void) 2615 { 2616 struct mem_cgroup *memcg; 2617 struct obj_cgroup *old, *objcg = NULL; 2618 2619 do { 2620 /* Atomically drop the update bit. */ 2621 old = xchg(¤t->objcg, NULL); 2622 if (old) { 2623 old = (struct obj_cgroup *) 2624 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2625 obj_cgroup_put(old); 2626 2627 old = NULL; 2628 } 2629 2630 /* If new objcg is NULL, no reason for the second atomic update. */ 2631 if (!current->mm || (current->flags & PF_KTHREAD)) 2632 return NULL; 2633 2634 /* 2635 * Release the objcg pointer from the previous iteration, 2636 * if try_cmpxcg() below fails. 2637 */ 2638 if (unlikely(objcg)) { 2639 obj_cgroup_put(objcg); 2640 objcg = NULL; 2641 } 2642 2643 /* 2644 * Obtain the new objcg pointer. The current task can be 2645 * asynchronously moved to another memcg and the previous 2646 * memcg can be offlined. So let's get the memcg pointer 2647 * and try get a reference to objcg under a rcu read lock. 2648 */ 2649 2650 rcu_read_lock(); 2651 memcg = mem_cgroup_from_task(current); 2652 objcg = __get_obj_cgroup_from_memcg(memcg); 2653 rcu_read_unlock(); 2654 2655 /* 2656 * Try set up a new objcg pointer atomically. If it 2657 * fails, it means the update flag was set concurrently, so 2658 * the whole procedure should be repeated. 2659 */ 2660 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2661 2662 return objcg; 2663 } 2664 2665 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2666 { 2667 struct mem_cgroup *memcg; 2668 struct obj_cgroup *objcg; 2669 2670 if (in_task()) { 2671 memcg = current->active_memcg; 2672 if (unlikely(memcg)) 2673 goto from_memcg; 2674 2675 objcg = READ_ONCE(current->objcg); 2676 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2677 objcg = current_objcg_update(); 2678 /* 2679 * Objcg reference is kept by the task, so it's safe 2680 * to use the objcg by the current task. 2681 */ 2682 return objcg; 2683 } 2684 2685 memcg = this_cpu_read(int_active_memcg); 2686 if (unlikely(memcg)) 2687 goto from_memcg; 2688 2689 return NULL; 2690 2691 from_memcg: 2692 objcg = NULL; 2693 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2694 /* 2695 * Memcg pointer is protected by scope (see set_active_memcg()) 2696 * and is pinning the corresponding objcg, so objcg can't go 2697 * away and can be used within the scope without any additional 2698 * protection. 2699 */ 2700 objcg = rcu_dereference_check(memcg->objcg, 1); 2701 if (likely(objcg)) 2702 break; 2703 } 2704 2705 return objcg; 2706 } 2707 2708 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2709 { 2710 struct obj_cgroup *objcg; 2711 2712 if (!memcg_kmem_online()) 2713 return NULL; 2714 2715 if (folio_memcg_kmem(folio)) { 2716 objcg = __folio_objcg(folio); 2717 obj_cgroup_get(objcg); 2718 } else { 2719 struct mem_cgroup *memcg; 2720 2721 rcu_read_lock(); 2722 memcg = __folio_memcg(folio); 2723 if (memcg) 2724 objcg = __get_obj_cgroup_from_memcg(memcg); 2725 else 2726 objcg = NULL; 2727 rcu_read_unlock(); 2728 } 2729 return objcg; 2730 } 2731 2732 /* 2733 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2734 * @objcg: object cgroup to uncharge 2735 * @nr_pages: number of pages to uncharge 2736 */ 2737 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2738 unsigned int nr_pages) 2739 { 2740 struct mem_cgroup *memcg; 2741 2742 memcg = get_mem_cgroup_from_objcg(objcg); 2743 2744 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2745 memcg1_account_kmem(memcg, -nr_pages); 2746 if (!mem_cgroup_is_root(memcg)) 2747 refill_stock(memcg, nr_pages); 2748 2749 css_put(&memcg->css); 2750 } 2751 2752 /* 2753 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2754 * @objcg: object cgroup to charge 2755 * @gfp: reclaim mode 2756 * @nr_pages: number of pages to charge 2757 * 2758 * Returns 0 on success, an error code on failure. 2759 */ 2760 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2761 unsigned int nr_pages) 2762 { 2763 struct mem_cgroup *memcg; 2764 int ret; 2765 2766 memcg = get_mem_cgroup_from_objcg(objcg); 2767 2768 ret = try_charge_memcg(memcg, gfp, nr_pages); 2769 if (ret) 2770 goto out; 2771 2772 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2773 memcg1_account_kmem(memcg, nr_pages); 2774 out: 2775 css_put(&memcg->css); 2776 2777 return ret; 2778 } 2779 2780 static struct obj_cgroup *page_objcg(const struct page *page) 2781 { 2782 unsigned long memcg_data = page->memcg_data; 2783 2784 if (mem_cgroup_disabled() || !memcg_data) 2785 return NULL; 2786 2787 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2788 page); 2789 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2790 } 2791 2792 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2793 { 2794 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2795 } 2796 2797 /** 2798 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2799 * @page: page to charge 2800 * @gfp: reclaim mode 2801 * @order: allocation order 2802 * 2803 * Returns 0 on success, an error code on failure. 2804 */ 2805 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2806 { 2807 struct obj_cgroup *objcg; 2808 int ret = 0; 2809 2810 objcg = current_obj_cgroup(); 2811 if (objcg) { 2812 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2813 if (!ret) { 2814 obj_cgroup_get(objcg); 2815 page_set_objcg(page, objcg); 2816 return 0; 2817 } 2818 } 2819 return ret; 2820 } 2821 2822 /** 2823 * __memcg_kmem_uncharge_page: uncharge a kmem page 2824 * @page: page to uncharge 2825 * @order: allocation order 2826 */ 2827 void __memcg_kmem_uncharge_page(struct page *page, int order) 2828 { 2829 struct obj_cgroup *objcg = page_objcg(page); 2830 unsigned int nr_pages = 1 << order; 2831 2832 if (!objcg) 2833 return; 2834 2835 obj_cgroup_uncharge_pages(objcg, nr_pages); 2836 page->memcg_data = 0; 2837 obj_cgroup_put(objcg); 2838 } 2839 2840 static void __account_obj_stock(struct obj_cgroup *objcg, 2841 struct memcg_stock_pcp *stock, int nr, 2842 struct pglist_data *pgdat, enum node_stat_item idx) 2843 { 2844 int *bytes; 2845 2846 /* 2847 * Save vmstat data in stock and skip vmstat array update unless 2848 * accumulating over a page of vmstat data or when pgdat changes. 2849 */ 2850 if (stock->cached_pgdat != pgdat) { 2851 /* Flush the existing cached vmstat data */ 2852 struct pglist_data *oldpg = stock->cached_pgdat; 2853 2854 if (stock->nr_slab_reclaimable_b) { 2855 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2856 stock->nr_slab_reclaimable_b); 2857 stock->nr_slab_reclaimable_b = 0; 2858 } 2859 if (stock->nr_slab_unreclaimable_b) { 2860 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2861 stock->nr_slab_unreclaimable_b); 2862 stock->nr_slab_unreclaimable_b = 0; 2863 } 2864 stock->cached_pgdat = pgdat; 2865 } 2866 2867 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2868 : &stock->nr_slab_unreclaimable_b; 2869 /* 2870 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2871 * cached locally at least once before pushing it out. 2872 */ 2873 if (!*bytes) { 2874 *bytes = nr; 2875 nr = 0; 2876 } else { 2877 *bytes += nr; 2878 if (abs(*bytes) > PAGE_SIZE) { 2879 nr = *bytes; 2880 *bytes = 0; 2881 } else { 2882 nr = 0; 2883 } 2884 } 2885 if (nr) 2886 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2887 } 2888 2889 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2890 struct pglist_data *pgdat, enum node_stat_item idx) 2891 { 2892 struct memcg_stock_pcp *stock; 2893 unsigned long flags; 2894 bool ret = false; 2895 2896 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2897 2898 stock = this_cpu_ptr(&memcg_stock); 2899 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2900 stock->nr_bytes -= nr_bytes; 2901 ret = true; 2902 2903 if (pgdat) 2904 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); 2905 } 2906 2907 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2908 2909 return ret; 2910 } 2911 2912 static void drain_obj_stock(struct memcg_stock_pcp *stock) 2913 { 2914 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2915 2916 if (!old) 2917 return; 2918 2919 if (stock->nr_bytes) { 2920 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2921 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2922 2923 if (nr_pages) { 2924 struct mem_cgroup *memcg; 2925 2926 memcg = get_mem_cgroup_from_objcg(old); 2927 2928 __mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2929 memcg1_account_kmem(memcg, -nr_pages); 2930 if (!mem_cgroup_is_root(memcg)) 2931 memcg_uncharge(memcg, nr_pages); 2932 2933 css_put(&memcg->css); 2934 } 2935 2936 /* 2937 * The leftover is flushed to the centralized per-memcg value. 2938 * On the next attempt to refill obj stock it will be moved 2939 * to a per-cpu stock (probably, on an other CPU), see 2940 * refill_obj_stock(). 2941 * 2942 * How often it's flushed is a trade-off between the memory 2943 * limit enforcement accuracy and potential CPU contention, 2944 * so it might be changed in the future. 2945 */ 2946 atomic_add(nr_bytes, &old->nr_charged_bytes); 2947 stock->nr_bytes = 0; 2948 } 2949 2950 /* 2951 * Flush the vmstat data in current stock 2952 */ 2953 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2954 if (stock->nr_slab_reclaimable_b) { 2955 __mod_objcg_mlstate(old, stock->cached_pgdat, 2956 NR_SLAB_RECLAIMABLE_B, 2957 stock->nr_slab_reclaimable_b); 2958 stock->nr_slab_reclaimable_b = 0; 2959 } 2960 if (stock->nr_slab_unreclaimable_b) { 2961 __mod_objcg_mlstate(old, stock->cached_pgdat, 2962 NR_SLAB_UNRECLAIMABLE_B, 2963 stock->nr_slab_unreclaimable_b); 2964 stock->nr_slab_unreclaimable_b = 0; 2965 } 2966 stock->cached_pgdat = NULL; 2967 } 2968 2969 WRITE_ONCE(stock->cached_objcg, NULL); 2970 obj_cgroup_put(old); 2971 } 2972 2973 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2974 struct mem_cgroup *root_memcg) 2975 { 2976 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2977 struct mem_cgroup *memcg; 2978 2979 if (objcg) { 2980 memcg = obj_cgroup_memcg(objcg); 2981 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2982 return true; 2983 } 2984 2985 return false; 2986 } 2987 2988 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2989 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, 2990 enum node_stat_item idx) 2991 { 2992 struct memcg_stock_pcp *stock; 2993 unsigned long flags; 2994 unsigned int nr_pages = 0; 2995 2996 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2997 2998 stock = this_cpu_ptr(&memcg_stock); 2999 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 3000 drain_obj_stock(stock); 3001 obj_cgroup_get(objcg); 3002 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3003 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3004 WRITE_ONCE(stock->cached_objcg, objcg); 3005 3006 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3007 } 3008 stock->nr_bytes += nr_bytes; 3009 3010 if (pgdat) 3011 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); 3012 3013 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3014 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3015 stock->nr_bytes &= (PAGE_SIZE - 1); 3016 } 3017 3018 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3019 3020 if (nr_pages) 3021 obj_cgroup_uncharge_pages(objcg, nr_pages); 3022 } 3023 3024 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, 3025 struct pglist_data *pgdat, enum node_stat_item idx) 3026 { 3027 unsigned int nr_pages, nr_bytes; 3028 int ret; 3029 3030 if (likely(consume_obj_stock(objcg, size, pgdat, idx))) 3031 return 0; 3032 3033 /* 3034 * In theory, objcg->nr_charged_bytes can have enough 3035 * pre-charged bytes to satisfy the allocation. However, 3036 * flushing objcg->nr_charged_bytes requires two atomic 3037 * operations, and objcg->nr_charged_bytes can't be big. 3038 * The shared objcg->nr_charged_bytes can also become a 3039 * performance bottleneck if all tasks of the same memcg are 3040 * trying to update it. So it's better to ignore it and try 3041 * grab some new pages. The stock's nr_bytes will be flushed to 3042 * objcg->nr_charged_bytes later on when objcg changes. 3043 * 3044 * The stock's nr_bytes may contain enough pre-charged bytes 3045 * to allow one less page from being charged, but we can't rely 3046 * on the pre-charged bytes not being changed outside of 3047 * consume_obj_stock() or refill_obj_stock(). So ignore those 3048 * pre-charged bytes as well when charging pages. To avoid a 3049 * page uncharge right after a page charge, we set the 3050 * allow_uncharge flag to false when calling refill_obj_stock() 3051 * to temporarily allow the pre-charged bytes to exceed the page 3052 * size limit. The maximum reachable value of the pre-charged 3053 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3054 * race. 3055 */ 3056 nr_pages = size >> PAGE_SHIFT; 3057 nr_bytes = size & (PAGE_SIZE - 1); 3058 3059 if (nr_bytes) 3060 nr_pages += 1; 3061 3062 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3063 if (!ret && (nr_bytes || pgdat)) 3064 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, 3065 false, size, pgdat, idx); 3066 3067 return ret; 3068 } 3069 3070 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3071 { 3072 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); 3073 } 3074 3075 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3076 { 3077 refill_obj_stock(objcg, size, true, 0, NULL, 0); 3078 } 3079 3080 static inline size_t obj_full_size(struct kmem_cache *s) 3081 { 3082 /* 3083 * For each accounted object there is an extra space which is used 3084 * to store obj_cgroup membership. Charge it too. 3085 */ 3086 return s->size + sizeof(struct obj_cgroup *); 3087 } 3088 3089 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3090 gfp_t flags, size_t size, void **p) 3091 { 3092 struct obj_cgroup *objcg; 3093 struct slab *slab; 3094 unsigned long off; 3095 size_t i; 3096 3097 /* 3098 * The obtained objcg pointer is safe to use within the current scope, 3099 * defined by current task or set_active_memcg() pair. 3100 * obj_cgroup_get() is used to get a permanent reference. 3101 */ 3102 objcg = current_obj_cgroup(); 3103 if (!objcg) 3104 return true; 3105 3106 /* 3107 * slab_alloc_node() avoids the NULL check, so we might be called with a 3108 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3109 * the whole requested size. 3110 * return success as there's nothing to free back 3111 */ 3112 if (unlikely(*p == NULL)) 3113 return true; 3114 3115 flags &= gfp_allowed_mask; 3116 3117 if (lru) { 3118 int ret; 3119 struct mem_cgroup *memcg; 3120 3121 memcg = get_mem_cgroup_from_objcg(objcg); 3122 ret = memcg_list_lru_alloc(memcg, lru, flags); 3123 css_put(&memcg->css); 3124 3125 if (ret) 3126 return false; 3127 } 3128 3129 for (i = 0; i < size; i++) { 3130 slab = virt_to_slab(p[i]); 3131 3132 if (!slab_obj_exts(slab) && 3133 alloc_slab_obj_exts(slab, s, flags, false)) { 3134 continue; 3135 } 3136 3137 /* 3138 * if we fail and size is 1, memcg_alloc_abort_single() will 3139 * just free the object, which is ok as we have not assigned 3140 * objcg to its obj_ext yet 3141 * 3142 * for larger sizes, kmem_cache_free_bulk() will uncharge 3143 * any objects that were already charged and obj_ext assigned 3144 * 3145 * TODO: we could batch this until slab_pgdat(slab) changes 3146 * between iterations, with a more complicated undo 3147 */ 3148 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), 3149 slab_pgdat(slab), cache_vmstat_idx(s))) 3150 return false; 3151 3152 off = obj_to_index(s, slab, p[i]); 3153 obj_cgroup_get(objcg); 3154 slab_obj_exts(slab)[off].objcg = objcg; 3155 } 3156 3157 return true; 3158 } 3159 3160 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3161 void **p, int objects, struct slabobj_ext *obj_exts) 3162 { 3163 size_t obj_size = obj_full_size(s); 3164 3165 for (int i = 0; i < objects; i++) { 3166 struct obj_cgroup *objcg; 3167 unsigned int off; 3168 3169 off = obj_to_index(s, slab, p[i]); 3170 objcg = obj_exts[off].objcg; 3171 if (!objcg) 3172 continue; 3173 3174 obj_exts[off].objcg = NULL; 3175 refill_obj_stock(objcg, obj_size, true, -obj_size, 3176 slab_pgdat(slab), cache_vmstat_idx(s)); 3177 obj_cgroup_put(objcg); 3178 } 3179 } 3180 3181 /* 3182 * The objcg is only set on the first page, so transfer it to all the 3183 * other pages. 3184 */ 3185 void split_page_memcg(struct page *page, unsigned order) 3186 { 3187 struct obj_cgroup *objcg = page_objcg(page); 3188 unsigned int i, nr = 1 << order; 3189 3190 if (!objcg) 3191 return; 3192 3193 for (i = 1; i < nr; i++) 3194 page_set_objcg(&page[i], objcg); 3195 3196 obj_cgroup_get_many(objcg, nr - 1); 3197 } 3198 3199 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3200 unsigned new_order) 3201 { 3202 unsigned new_refs; 3203 3204 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3205 return; 3206 3207 new_refs = (1 << (old_order - new_order)) - 1; 3208 css_get_many(&__folio_memcg(folio)->css, new_refs); 3209 } 3210 3211 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3212 { 3213 unsigned long val; 3214 3215 if (mem_cgroup_is_root(memcg)) { 3216 /* 3217 * Approximate root's usage from global state. This isn't 3218 * perfect, but the root usage was always an approximation. 3219 */ 3220 val = global_node_page_state(NR_FILE_PAGES) + 3221 global_node_page_state(NR_ANON_MAPPED); 3222 if (swap) 3223 val += total_swap_pages - get_nr_swap_pages(); 3224 } else { 3225 if (!swap) 3226 val = page_counter_read(&memcg->memory); 3227 else 3228 val = page_counter_read(&memcg->memsw); 3229 } 3230 return val; 3231 } 3232 3233 static int memcg_online_kmem(struct mem_cgroup *memcg) 3234 { 3235 struct obj_cgroup *objcg; 3236 3237 if (mem_cgroup_kmem_disabled()) 3238 return 0; 3239 3240 if (unlikely(mem_cgroup_is_root(memcg))) 3241 return 0; 3242 3243 objcg = obj_cgroup_alloc(); 3244 if (!objcg) 3245 return -ENOMEM; 3246 3247 objcg->memcg = memcg; 3248 rcu_assign_pointer(memcg->objcg, objcg); 3249 obj_cgroup_get(objcg); 3250 memcg->orig_objcg = objcg; 3251 3252 static_branch_enable(&memcg_kmem_online_key); 3253 3254 memcg->kmemcg_id = memcg->id.id; 3255 3256 return 0; 3257 } 3258 3259 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3260 { 3261 struct mem_cgroup *parent; 3262 3263 if (mem_cgroup_kmem_disabled()) 3264 return; 3265 3266 if (unlikely(mem_cgroup_is_root(memcg))) 3267 return; 3268 3269 parent = parent_mem_cgroup(memcg); 3270 if (!parent) 3271 parent = root_mem_cgroup; 3272 3273 memcg_reparent_list_lrus(memcg, parent); 3274 3275 /* 3276 * Objcg's reparenting must be after list_lru's, make sure list_lru 3277 * helpers won't use parent's list_lru until child is drained. 3278 */ 3279 memcg_reparent_objcgs(memcg, parent); 3280 } 3281 3282 #ifdef CONFIG_CGROUP_WRITEBACK 3283 3284 #include <trace/events/writeback.h> 3285 3286 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3287 { 3288 return wb_domain_init(&memcg->cgwb_domain, gfp); 3289 } 3290 3291 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3292 { 3293 wb_domain_exit(&memcg->cgwb_domain); 3294 } 3295 3296 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3297 { 3298 wb_domain_size_changed(&memcg->cgwb_domain); 3299 } 3300 3301 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3302 { 3303 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3304 3305 if (!memcg->css.parent) 3306 return NULL; 3307 3308 return &memcg->cgwb_domain; 3309 } 3310 3311 /** 3312 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3313 * @wb: bdi_writeback in question 3314 * @pfilepages: out parameter for number of file pages 3315 * @pheadroom: out parameter for number of allocatable pages according to memcg 3316 * @pdirty: out parameter for number of dirty pages 3317 * @pwriteback: out parameter for number of pages under writeback 3318 * 3319 * Determine the numbers of file, headroom, dirty, and writeback pages in 3320 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3321 * is a bit more involved. 3322 * 3323 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3324 * headroom is calculated as the lowest headroom of itself and the 3325 * ancestors. Note that this doesn't consider the actual amount of 3326 * available memory in the system. The caller should further cap 3327 * *@pheadroom accordingly. 3328 */ 3329 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3330 unsigned long *pheadroom, unsigned long *pdirty, 3331 unsigned long *pwriteback) 3332 { 3333 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3334 struct mem_cgroup *parent; 3335 3336 mem_cgroup_flush_stats_ratelimited(memcg); 3337 3338 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3339 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3340 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3341 memcg_page_state(memcg, NR_ACTIVE_FILE); 3342 3343 *pheadroom = PAGE_COUNTER_MAX; 3344 while ((parent = parent_mem_cgroup(memcg))) { 3345 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3346 READ_ONCE(memcg->memory.high)); 3347 unsigned long used = page_counter_read(&memcg->memory); 3348 3349 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3350 memcg = parent; 3351 } 3352 } 3353 3354 /* 3355 * Foreign dirty flushing 3356 * 3357 * There's an inherent mismatch between memcg and writeback. The former 3358 * tracks ownership per-page while the latter per-inode. This was a 3359 * deliberate design decision because honoring per-page ownership in the 3360 * writeback path is complicated, may lead to higher CPU and IO overheads 3361 * and deemed unnecessary given that write-sharing an inode across 3362 * different cgroups isn't a common use-case. 3363 * 3364 * Combined with inode majority-writer ownership switching, this works well 3365 * enough in most cases but there are some pathological cases. For 3366 * example, let's say there are two cgroups A and B which keep writing to 3367 * different but confined parts of the same inode. B owns the inode and 3368 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3369 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3370 * triggering background writeback. A will be slowed down without a way to 3371 * make writeback of the dirty pages happen. 3372 * 3373 * Conditions like the above can lead to a cgroup getting repeatedly and 3374 * severely throttled after making some progress after each 3375 * dirty_expire_interval while the underlying IO device is almost 3376 * completely idle. 3377 * 3378 * Solving this problem completely requires matching the ownership tracking 3379 * granularities between memcg and writeback in either direction. However, 3380 * the more egregious behaviors can be avoided by simply remembering the 3381 * most recent foreign dirtying events and initiating remote flushes on 3382 * them when local writeback isn't enough to keep the memory clean enough. 3383 * 3384 * The following two functions implement such mechanism. When a foreign 3385 * page - a page whose memcg and writeback ownerships don't match - is 3386 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3387 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3388 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3389 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3390 * foreign bdi_writebacks which haven't expired. Both the numbers of 3391 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3392 * limited to MEMCG_CGWB_FRN_CNT. 3393 * 3394 * The mechanism only remembers IDs and doesn't hold any object references. 3395 * As being wrong occasionally doesn't matter, updates and accesses to the 3396 * records are lockless and racy. 3397 */ 3398 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3399 struct bdi_writeback *wb) 3400 { 3401 struct mem_cgroup *memcg = folio_memcg(folio); 3402 struct memcg_cgwb_frn *frn; 3403 u64 now = get_jiffies_64(); 3404 u64 oldest_at = now; 3405 int oldest = -1; 3406 int i; 3407 3408 trace_track_foreign_dirty(folio, wb); 3409 3410 /* 3411 * Pick the slot to use. If there is already a slot for @wb, keep 3412 * using it. If not replace the oldest one which isn't being 3413 * written out. 3414 */ 3415 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3416 frn = &memcg->cgwb_frn[i]; 3417 if (frn->bdi_id == wb->bdi->id && 3418 frn->memcg_id == wb->memcg_css->id) 3419 break; 3420 if (time_before64(frn->at, oldest_at) && 3421 atomic_read(&frn->done.cnt) == 1) { 3422 oldest = i; 3423 oldest_at = frn->at; 3424 } 3425 } 3426 3427 if (i < MEMCG_CGWB_FRN_CNT) { 3428 /* 3429 * Re-using an existing one. Update timestamp lazily to 3430 * avoid making the cacheline hot. We want them to be 3431 * reasonably up-to-date and significantly shorter than 3432 * dirty_expire_interval as that's what expires the record. 3433 * Use the shorter of 1s and dirty_expire_interval / 8. 3434 */ 3435 unsigned long update_intv = 3436 min_t(unsigned long, HZ, 3437 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3438 3439 if (time_before64(frn->at, now - update_intv)) 3440 frn->at = now; 3441 } else if (oldest >= 0) { 3442 /* replace the oldest free one */ 3443 frn = &memcg->cgwb_frn[oldest]; 3444 frn->bdi_id = wb->bdi->id; 3445 frn->memcg_id = wb->memcg_css->id; 3446 frn->at = now; 3447 } 3448 } 3449 3450 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3451 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3452 { 3453 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3454 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3455 u64 now = jiffies_64; 3456 int i; 3457 3458 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3459 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3460 3461 /* 3462 * If the record is older than dirty_expire_interval, 3463 * writeback on it has already started. No need to kick it 3464 * off again. Also, don't start a new one if there's 3465 * already one in flight. 3466 */ 3467 if (time_after64(frn->at, now - intv) && 3468 atomic_read(&frn->done.cnt) == 1) { 3469 frn->at = 0; 3470 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3471 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3472 WB_REASON_FOREIGN_FLUSH, 3473 &frn->done); 3474 } 3475 } 3476 } 3477 3478 #else /* CONFIG_CGROUP_WRITEBACK */ 3479 3480 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3481 { 3482 return 0; 3483 } 3484 3485 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3486 { 3487 } 3488 3489 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3490 { 3491 } 3492 3493 #endif /* CONFIG_CGROUP_WRITEBACK */ 3494 3495 /* 3496 * Private memory cgroup IDR 3497 * 3498 * Swap-out records and page cache shadow entries need to store memcg 3499 * references in constrained space, so we maintain an ID space that is 3500 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3501 * memory-controlled cgroups to 64k. 3502 * 3503 * However, there usually are many references to the offline CSS after 3504 * the cgroup has been destroyed, such as page cache or reclaimable 3505 * slab objects, that don't need to hang on to the ID. We want to keep 3506 * those dead CSS from occupying IDs, or we might quickly exhaust the 3507 * relatively small ID space and prevent the creation of new cgroups 3508 * even when there are much fewer than 64k cgroups - possibly none. 3509 * 3510 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3511 * be freed and recycled when it's no longer needed, which is usually 3512 * when the CSS is offlined. 3513 * 3514 * The only exception to that are records of swapped out tmpfs/shmem 3515 * pages that need to be attributed to live ancestors on swapin. But 3516 * those references are manageable from userspace. 3517 */ 3518 3519 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3520 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3521 3522 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3523 { 3524 if (memcg->id.id > 0) { 3525 xa_erase(&mem_cgroup_ids, memcg->id.id); 3526 memcg->id.id = 0; 3527 } 3528 } 3529 3530 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3531 unsigned int n) 3532 { 3533 refcount_add(n, &memcg->id.ref); 3534 } 3535 3536 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3537 { 3538 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3539 mem_cgroup_id_remove(memcg); 3540 3541 /* Memcg ID pins CSS */ 3542 css_put(&memcg->css); 3543 } 3544 } 3545 3546 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3547 { 3548 mem_cgroup_id_put_many(memcg, 1); 3549 } 3550 3551 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 3552 { 3553 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3554 /* 3555 * The root cgroup cannot be destroyed, so it's refcount must 3556 * always be >= 1. 3557 */ 3558 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3559 VM_BUG_ON(1); 3560 break; 3561 } 3562 memcg = parent_mem_cgroup(memcg); 3563 if (!memcg) 3564 memcg = root_mem_cgroup; 3565 } 3566 return memcg; 3567 } 3568 3569 /** 3570 * mem_cgroup_from_id - look up a memcg from a memcg id 3571 * @id: the memcg id to look up 3572 * 3573 * Caller must hold rcu_read_lock(). 3574 */ 3575 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3576 { 3577 WARN_ON_ONCE(!rcu_read_lock_held()); 3578 return xa_load(&mem_cgroup_ids, id); 3579 } 3580 3581 #ifdef CONFIG_SHRINKER_DEBUG 3582 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3583 { 3584 struct cgroup *cgrp; 3585 struct cgroup_subsys_state *css; 3586 struct mem_cgroup *memcg; 3587 3588 cgrp = cgroup_get_from_id(ino); 3589 if (IS_ERR(cgrp)) 3590 return ERR_CAST(cgrp); 3591 3592 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3593 if (css) 3594 memcg = container_of(css, struct mem_cgroup, css); 3595 else 3596 memcg = ERR_PTR(-ENOENT); 3597 3598 cgroup_put(cgrp); 3599 3600 return memcg; 3601 } 3602 #endif 3603 3604 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3605 { 3606 if (!pn) 3607 return; 3608 3609 free_percpu(pn->lruvec_stats_percpu); 3610 kfree(pn->lruvec_stats); 3611 kfree(pn); 3612 } 3613 3614 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3615 { 3616 struct mem_cgroup_per_node *pn; 3617 3618 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO, 3619 node); 3620 if (!pn) 3621 return false; 3622 3623 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3624 GFP_KERNEL_ACCOUNT, node); 3625 if (!pn->lruvec_stats) 3626 goto fail; 3627 3628 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3629 GFP_KERNEL_ACCOUNT); 3630 if (!pn->lruvec_stats_percpu) 3631 goto fail; 3632 3633 lruvec_init(&pn->lruvec); 3634 pn->memcg = memcg; 3635 3636 memcg->nodeinfo[node] = pn; 3637 return true; 3638 fail: 3639 free_mem_cgroup_per_node_info(pn); 3640 return false; 3641 } 3642 3643 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3644 { 3645 int node; 3646 3647 obj_cgroup_put(memcg->orig_objcg); 3648 3649 for_each_node(node) 3650 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3651 memcg1_free_events(memcg); 3652 kfree(memcg->vmstats); 3653 free_percpu(memcg->vmstats_percpu); 3654 kfree(memcg); 3655 } 3656 3657 static void mem_cgroup_free(struct mem_cgroup *memcg) 3658 { 3659 lru_gen_exit_memcg(memcg); 3660 memcg_wb_domain_exit(memcg); 3661 __mem_cgroup_free(memcg); 3662 } 3663 3664 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3665 { 3666 struct memcg_vmstats_percpu *statc, *pstatc; 3667 struct mem_cgroup *memcg; 3668 int node, cpu; 3669 int __maybe_unused i; 3670 long error; 3671 3672 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL); 3673 if (!memcg) 3674 return ERR_PTR(-ENOMEM); 3675 3676 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3677 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3678 if (error) 3679 goto fail; 3680 error = -ENOMEM; 3681 3682 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3683 GFP_KERNEL_ACCOUNT); 3684 if (!memcg->vmstats) 3685 goto fail; 3686 3687 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3688 GFP_KERNEL_ACCOUNT); 3689 if (!memcg->vmstats_percpu) 3690 goto fail; 3691 3692 if (!memcg1_alloc_events(memcg)) 3693 goto fail; 3694 3695 for_each_possible_cpu(cpu) { 3696 if (parent) 3697 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3698 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3699 statc->parent = parent ? pstatc : NULL; 3700 statc->vmstats = memcg->vmstats; 3701 } 3702 3703 for_each_node(node) 3704 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3705 goto fail; 3706 3707 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3708 goto fail; 3709 3710 INIT_WORK(&memcg->high_work, high_work_func); 3711 vmpressure_init(&memcg->vmpressure); 3712 INIT_LIST_HEAD(&memcg->memory_peaks); 3713 INIT_LIST_HEAD(&memcg->swap_peaks); 3714 spin_lock_init(&memcg->peaks_lock); 3715 memcg->socket_pressure = jiffies; 3716 memcg1_memcg_init(memcg); 3717 memcg->kmemcg_id = -1; 3718 INIT_LIST_HEAD(&memcg->objcg_list); 3719 #ifdef CONFIG_CGROUP_WRITEBACK 3720 INIT_LIST_HEAD(&memcg->cgwb_list); 3721 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3722 memcg->cgwb_frn[i].done = 3723 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3724 #endif 3725 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3726 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3727 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3728 memcg->deferred_split_queue.split_queue_len = 0; 3729 #endif 3730 lru_gen_init_memcg(memcg); 3731 return memcg; 3732 fail: 3733 mem_cgroup_id_remove(memcg); 3734 __mem_cgroup_free(memcg); 3735 return ERR_PTR(error); 3736 } 3737 3738 static struct cgroup_subsys_state * __ref 3739 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3740 { 3741 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3742 struct mem_cgroup *memcg, *old_memcg; 3743 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3744 3745 old_memcg = set_active_memcg(parent); 3746 memcg = mem_cgroup_alloc(parent); 3747 set_active_memcg(old_memcg); 3748 if (IS_ERR(memcg)) 3749 return ERR_CAST(memcg); 3750 3751 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3752 memcg1_soft_limit_reset(memcg); 3753 #ifdef CONFIG_ZSWAP 3754 memcg->zswap_max = PAGE_COUNTER_MAX; 3755 WRITE_ONCE(memcg->zswap_writeback, true); 3756 #endif 3757 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3758 if (parent) { 3759 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3760 3761 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3762 page_counter_init(&memcg->swap, &parent->swap, false); 3763 #ifdef CONFIG_MEMCG_V1 3764 memcg->memory.track_failcnt = !memcg_on_dfl; 3765 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3766 page_counter_init(&memcg->kmem, &parent->kmem, false); 3767 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3768 #endif 3769 } else { 3770 init_memcg_stats(); 3771 init_memcg_events(); 3772 page_counter_init(&memcg->memory, NULL, true); 3773 page_counter_init(&memcg->swap, NULL, false); 3774 #ifdef CONFIG_MEMCG_V1 3775 page_counter_init(&memcg->kmem, NULL, false); 3776 page_counter_init(&memcg->tcpmem, NULL, false); 3777 #endif 3778 root_mem_cgroup = memcg; 3779 return &memcg->css; 3780 } 3781 3782 if (memcg_on_dfl && !cgroup_memory_nosocket) 3783 static_branch_inc(&memcg_sockets_enabled_key); 3784 3785 if (!cgroup_memory_nobpf) 3786 static_branch_inc(&memcg_bpf_enabled_key); 3787 3788 return &memcg->css; 3789 } 3790 3791 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3792 { 3793 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3794 3795 if (memcg_online_kmem(memcg)) 3796 goto remove_id; 3797 3798 /* 3799 * A memcg must be visible for expand_shrinker_info() 3800 * by the time the maps are allocated. So, we allocate maps 3801 * here, when for_each_mem_cgroup() can't skip it. 3802 */ 3803 if (alloc_shrinker_info(memcg)) 3804 goto offline_kmem; 3805 3806 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3807 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3808 FLUSH_TIME); 3809 lru_gen_online_memcg(memcg); 3810 3811 /* Online state pins memcg ID, memcg ID pins CSS */ 3812 refcount_set(&memcg->id.ref, 1); 3813 css_get(css); 3814 3815 /* 3816 * Ensure mem_cgroup_from_id() works once we're fully online. 3817 * 3818 * We could do this earlier and require callers to filter with 3819 * css_tryget_online(). But right now there are no users that 3820 * need earlier access, and the workingset code relies on the 3821 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3822 * publish it here at the end of onlining. This matches the 3823 * regular ID destruction during offlining. 3824 */ 3825 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3826 3827 return 0; 3828 offline_kmem: 3829 memcg_offline_kmem(memcg); 3830 remove_id: 3831 mem_cgroup_id_remove(memcg); 3832 return -ENOMEM; 3833 } 3834 3835 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3836 { 3837 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3838 3839 memcg1_css_offline(memcg); 3840 3841 page_counter_set_min(&memcg->memory, 0); 3842 page_counter_set_low(&memcg->memory, 0); 3843 3844 zswap_memcg_offline_cleanup(memcg); 3845 3846 memcg_offline_kmem(memcg); 3847 reparent_shrinker_deferred(memcg); 3848 wb_memcg_offline(memcg); 3849 lru_gen_offline_memcg(memcg); 3850 3851 drain_all_stock(memcg); 3852 3853 mem_cgroup_id_put(memcg); 3854 } 3855 3856 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3857 { 3858 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3859 3860 invalidate_reclaim_iterators(memcg); 3861 lru_gen_release_memcg(memcg); 3862 } 3863 3864 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3865 { 3866 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3867 int __maybe_unused i; 3868 3869 #ifdef CONFIG_CGROUP_WRITEBACK 3870 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3871 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3872 #endif 3873 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3874 static_branch_dec(&memcg_sockets_enabled_key); 3875 3876 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3877 static_branch_dec(&memcg_sockets_enabled_key); 3878 3879 if (!cgroup_memory_nobpf) 3880 static_branch_dec(&memcg_bpf_enabled_key); 3881 3882 vmpressure_cleanup(&memcg->vmpressure); 3883 cancel_work_sync(&memcg->high_work); 3884 memcg1_remove_from_trees(memcg); 3885 free_shrinker_info(memcg); 3886 mem_cgroup_free(memcg); 3887 } 3888 3889 /** 3890 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3891 * @css: the target css 3892 * 3893 * Reset the states of the mem_cgroup associated with @css. This is 3894 * invoked when the userland requests disabling on the default hierarchy 3895 * but the memcg is pinned through dependency. The memcg should stop 3896 * applying policies and should revert to the vanilla state as it may be 3897 * made visible again. 3898 * 3899 * The current implementation only resets the essential configurations. 3900 * This needs to be expanded to cover all the visible parts. 3901 */ 3902 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3903 { 3904 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3905 3906 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3907 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3908 #ifdef CONFIG_MEMCG_V1 3909 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3910 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3911 #endif 3912 page_counter_set_min(&memcg->memory, 0); 3913 page_counter_set_low(&memcg->memory, 0); 3914 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3915 memcg1_soft_limit_reset(memcg); 3916 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3917 memcg_wb_domain_size_changed(memcg); 3918 } 3919 3920 struct aggregate_control { 3921 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3922 long *aggregate; 3923 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3924 long *local; 3925 /* pointer to the pending child counters during tree propagation */ 3926 long *pending; 3927 /* pointer to the parent's pending counters, could be NULL */ 3928 long *ppending; 3929 /* pointer to the percpu counters to be aggregated */ 3930 long *cstat; 3931 /* pointer to the percpu counters of the last aggregation*/ 3932 long *cstat_prev; 3933 /* size of the above counters */ 3934 int size; 3935 }; 3936 3937 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3938 { 3939 int i; 3940 long delta, delta_cpu, v; 3941 3942 for (i = 0; i < ac->size; i++) { 3943 /* 3944 * Collect the aggregated propagation counts of groups 3945 * below us. We're in a per-cpu loop here and this is 3946 * a global counter, so the first cycle will get them. 3947 */ 3948 delta = ac->pending[i]; 3949 if (delta) 3950 ac->pending[i] = 0; 3951 3952 /* Add CPU changes on this level since the last flush */ 3953 delta_cpu = 0; 3954 v = READ_ONCE(ac->cstat[i]); 3955 if (v != ac->cstat_prev[i]) { 3956 delta_cpu = v - ac->cstat_prev[i]; 3957 delta += delta_cpu; 3958 ac->cstat_prev[i] = v; 3959 } 3960 3961 /* Aggregate counts on this level and propagate upwards */ 3962 if (delta_cpu) 3963 ac->local[i] += delta_cpu; 3964 3965 if (delta) { 3966 ac->aggregate[i] += delta; 3967 if (ac->ppending) 3968 ac->ppending[i] += delta; 3969 } 3970 } 3971 } 3972 3973 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3974 { 3975 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3976 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3977 struct memcg_vmstats_percpu *statc; 3978 struct aggregate_control ac; 3979 int nid; 3980 3981 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3982 3983 ac = (struct aggregate_control) { 3984 .aggregate = memcg->vmstats->state, 3985 .local = memcg->vmstats->state_local, 3986 .pending = memcg->vmstats->state_pending, 3987 .ppending = parent ? parent->vmstats->state_pending : NULL, 3988 .cstat = statc->state, 3989 .cstat_prev = statc->state_prev, 3990 .size = MEMCG_VMSTAT_SIZE, 3991 }; 3992 mem_cgroup_stat_aggregate(&ac); 3993 3994 ac = (struct aggregate_control) { 3995 .aggregate = memcg->vmstats->events, 3996 .local = memcg->vmstats->events_local, 3997 .pending = memcg->vmstats->events_pending, 3998 .ppending = parent ? parent->vmstats->events_pending : NULL, 3999 .cstat = statc->events, 4000 .cstat_prev = statc->events_prev, 4001 .size = NR_MEMCG_EVENTS, 4002 }; 4003 mem_cgroup_stat_aggregate(&ac); 4004 4005 for_each_node_state(nid, N_MEMORY) { 4006 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 4007 struct lruvec_stats *lstats = pn->lruvec_stats; 4008 struct lruvec_stats *plstats = NULL; 4009 struct lruvec_stats_percpu *lstatc; 4010 4011 if (parent) 4012 plstats = parent->nodeinfo[nid]->lruvec_stats; 4013 4014 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 4015 4016 ac = (struct aggregate_control) { 4017 .aggregate = lstats->state, 4018 .local = lstats->state_local, 4019 .pending = lstats->state_pending, 4020 .ppending = plstats ? plstats->state_pending : NULL, 4021 .cstat = lstatc->state, 4022 .cstat_prev = lstatc->state_prev, 4023 .size = NR_MEMCG_NODE_STAT_ITEMS, 4024 }; 4025 mem_cgroup_stat_aggregate(&ac); 4026 4027 } 4028 WRITE_ONCE(statc->stats_updates, 0); 4029 /* We are in a per-cpu loop here, only do the atomic write once */ 4030 if (atomic64_read(&memcg->vmstats->stats_updates)) 4031 atomic64_set(&memcg->vmstats->stats_updates, 0); 4032 } 4033 4034 static void mem_cgroup_fork(struct task_struct *task) 4035 { 4036 /* 4037 * Set the update flag to cause task->objcg to be initialized lazily 4038 * on the first allocation. It can be done without any synchronization 4039 * because it's always performed on the current task, so does 4040 * current_objcg_update(). 4041 */ 4042 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 4043 } 4044 4045 static void mem_cgroup_exit(struct task_struct *task) 4046 { 4047 struct obj_cgroup *objcg = task->objcg; 4048 4049 objcg = (struct obj_cgroup *) 4050 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 4051 obj_cgroup_put(objcg); 4052 4053 /* 4054 * Some kernel allocations can happen after this point, 4055 * but let's ignore them. It can be done without any synchronization 4056 * because it's always performed on the current task, so does 4057 * current_objcg_update(). 4058 */ 4059 task->objcg = NULL; 4060 } 4061 4062 #ifdef CONFIG_LRU_GEN 4063 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 4064 { 4065 struct task_struct *task; 4066 struct cgroup_subsys_state *css; 4067 4068 /* find the first leader if there is any */ 4069 cgroup_taskset_for_each_leader(task, css, tset) 4070 break; 4071 4072 if (!task) 4073 return; 4074 4075 task_lock(task); 4076 if (task->mm && READ_ONCE(task->mm->owner) == task) 4077 lru_gen_migrate_mm(task->mm); 4078 task_unlock(task); 4079 } 4080 #else 4081 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4082 #endif /* CONFIG_LRU_GEN */ 4083 4084 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4085 { 4086 struct task_struct *task; 4087 struct cgroup_subsys_state *css; 4088 4089 cgroup_taskset_for_each(task, css, tset) { 4090 /* atomically set the update bit */ 4091 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4092 } 4093 } 4094 4095 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4096 { 4097 mem_cgroup_lru_gen_attach(tset); 4098 mem_cgroup_kmem_attach(tset); 4099 } 4100 4101 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4102 { 4103 if (value == PAGE_COUNTER_MAX) 4104 seq_puts(m, "max\n"); 4105 else 4106 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4107 4108 return 0; 4109 } 4110 4111 static u64 memory_current_read(struct cgroup_subsys_state *css, 4112 struct cftype *cft) 4113 { 4114 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4115 4116 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4117 } 4118 4119 #define OFP_PEAK_UNSET (((-1UL))) 4120 4121 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4122 { 4123 struct cgroup_of_peak *ofp = of_peak(sf->private); 4124 u64 fd_peak = READ_ONCE(ofp->value), peak; 4125 4126 /* User wants global or local peak? */ 4127 if (fd_peak == OFP_PEAK_UNSET) 4128 peak = pc->watermark; 4129 else 4130 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4131 4132 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4133 return 0; 4134 } 4135 4136 static int memory_peak_show(struct seq_file *sf, void *v) 4137 { 4138 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4139 4140 return peak_show(sf, v, &memcg->memory); 4141 } 4142 4143 static int peak_open(struct kernfs_open_file *of) 4144 { 4145 struct cgroup_of_peak *ofp = of_peak(of); 4146 4147 ofp->value = OFP_PEAK_UNSET; 4148 return 0; 4149 } 4150 4151 static void peak_release(struct kernfs_open_file *of) 4152 { 4153 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4154 struct cgroup_of_peak *ofp = of_peak(of); 4155 4156 if (ofp->value == OFP_PEAK_UNSET) { 4157 /* fast path (no writes on this fd) */ 4158 return; 4159 } 4160 spin_lock(&memcg->peaks_lock); 4161 list_del(&ofp->list); 4162 spin_unlock(&memcg->peaks_lock); 4163 } 4164 4165 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4166 loff_t off, struct page_counter *pc, 4167 struct list_head *watchers) 4168 { 4169 unsigned long usage; 4170 struct cgroup_of_peak *peer_ctx; 4171 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4172 struct cgroup_of_peak *ofp = of_peak(of); 4173 4174 spin_lock(&memcg->peaks_lock); 4175 4176 usage = page_counter_read(pc); 4177 WRITE_ONCE(pc->local_watermark, usage); 4178 4179 list_for_each_entry(peer_ctx, watchers, list) 4180 if (usage > peer_ctx->value) 4181 WRITE_ONCE(peer_ctx->value, usage); 4182 4183 /* initial write, register watcher */ 4184 if (ofp->value == OFP_PEAK_UNSET) 4185 list_add(&ofp->list, watchers); 4186 4187 WRITE_ONCE(ofp->value, usage); 4188 spin_unlock(&memcg->peaks_lock); 4189 4190 return nbytes; 4191 } 4192 4193 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4194 size_t nbytes, loff_t off) 4195 { 4196 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4197 4198 return peak_write(of, buf, nbytes, off, &memcg->memory, 4199 &memcg->memory_peaks); 4200 } 4201 4202 #undef OFP_PEAK_UNSET 4203 4204 static int memory_min_show(struct seq_file *m, void *v) 4205 { 4206 return seq_puts_memcg_tunable(m, 4207 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4208 } 4209 4210 static ssize_t memory_min_write(struct kernfs_open_file *of, 4211 char *buf, size_t nbytes, loff_t off) 4212 { 4213 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4214 unsigned long min; 4215 int err; 4216 4217 buf = strstrip(buf); 4218 err = page_counter_memparse(buf, "max", &min); 4219 if (err) 4220 return err; 4221 4222 page_counter_set_min(&memcg->memory, min); 4223 4224 return nbytes; 4225 } 4226 4227 static int memory_low_show(struct seq_file *m, void *v) 4228 { 4229 return seq_puts_memcg_tunable(m, 4230 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4231 } 4232 4233 static ssize_t memory_low_write(struct kernfs_open_file *of, 4234 char *buf, size_t nbytes, loff_t off) 4235 { 4236 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4237 unsigned long low; 4238 int err; 4239 4240 buf = strstrip(buf); 4241 err = page_counter_memparse(buf, "max", &low); 4242 if (err) 4243 return err; 4244 4245 page_counter_set_low(&memcg->memory, low); 4246 4247 return nbytes; 4248 } 4249 4250 static int memory_high_show(struct seq_file *m, void *v) 4251 { 4252 return seq_puts_memcg_tunable(m, 4253 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4254 } 4255 4256 static ssize_t memory_high_write(struct kernfs_open_file *of, 4257 char *buf, size_t nbytes, loff_t off) 4258 { 4259 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4260 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4261 bool drained = false; 4262 unsigned long high; 4263 int err; 4264 4265 buf = strstrip(buf); 4266 err = page_counter_memparse(buf, "max", &high); 4267 if (err) 4268 return err; 4269 4270 page_counter_set_high(&memcg->memory, high); 4271 4272 if (of->file->f_flags & O_NONBLOCK) 4273 goto out; 4274 4275 for (;;) { 4276 unsigned long nr_pages = page_counter_read(&memcg->memory); 4277 unsigned long reclaimed; 4278 4279 if (nr_pages <= high) 4280 break; 4281 4282 if (signal_pending(current)) 4283 break; 4284 4285 if (!drained) { 4286 drain_all_stock(memcg); 4287 drained = true; 4288 continue; 4289 } 4290 4291 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4292 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4293 4294 if (!reclaimed && !nr_retries--) 4295 break; 4296 } 4297 out: 4298 memcg_wb_domain_size_changed(memcg); 4299 return nbytes; 4300 } 4301 4302 static int memory_max_show(struct seq_file *m, void *v) 4303 { 4304 return seq_puts_memcg_tunable(m, 4305 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4306 } 4307 4308 static ssize_t memory_max_write(struct kernfs_open_file *of, 4309 char *buf, size_t nbytes, loff_t off) 4310 { 4311 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4312 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4313 bool drained = false; 4314 unsigned long max; 4315 int err; 4316 4317 buf = strstrip(buf); 4318 err = page_counter_memparse(buf, "max", &max); 4319 if (err) 4320 return err; 4321 4322 xchg(&memcg->memory.max, max); 4323 4324 if (of->file->f_flags & O_NONBLOCK) 4325 goto out; 4326 4327 for (;;) { 4328 unsigned long nr_pages = page_counter_read(&memcg->memory); 4329 4330 if (nr_pages <= max) 4331 break; 4332 4333 if (signal_pending(current)) 4334 break; 4335 4336 if (!drained) { 4337 drain_all_stock(memcg); 4338 drained = true; 4339 continue; 4340 } 4341 4342 if (nr_reclaims) { 4343 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4344 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4345 nr_reclaims--; 4346 continue; 4347 } 4348 4349 memcg_memory_event(memcg, MEMCG_OOM); 4350 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4351 break; 4352 cond_resched(); 4353 } 4354 out: 4355 memcg_wb_domain_size_changed(memcg); 4356 return nbytes; 4357 } 4358 4359 /* 4360 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4361 * if any new events become available. 4362 */ 4363 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4364 { 4365 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4366 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4367 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4368 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4369 seq_printf(m, "oom_kill %lu\n", 4370 atomic_long_read(&events[MEMCG_OOM_KILL])); 4371 seq_printf(m, "oom_group_kill %lu\n", 4372 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4373 } 4374 4375 static int memory_events_show(struct seq_file *m, void *v) 4376 { 4377 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4378 4379 __memory_events_show(m, memcg->memory_events); 4380 return 0; 4381 } 4382 4383 static int memory_events_local_show(struct seq_file *m, void *v) 4384 { 4385 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4386 4387 __memory_events_show(m, memcg->memory_events_local); 4388 return 0; 4389 } 4390 4391 int memory_stat_show(struct seq_file *m, void *v) 4392 { 4393 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4394 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4395 struct seq_buf s; 4396 4397 if (!buf) 4398 return -ENOMEM; 4399 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4400 memory_stat_format(memcg, &s); 4401 seq_puts(m, buf); 4402 kfree(buf); 4403 return 0; 4404 } 4405 4406 #ifdef CONFIG_NUMA 4407 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4408 int item) 4409 { 4410 return lruvec_page_state(lruvec, item) * 4411 memcg_page_state_output_unit(item); 4412 } 4413 4414 static int memory_numa_stat_show(struct seq_file *m, void *v) 4415 { 4416 int i; 4417 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4418 4419 mem_cgroup_flush_stats(memcg); 4420 4421 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4422 int nid; 4423 4424 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4425 continue; 4426 4427 seq_printf(m, "%s", memory_stats[i].name); 4428 for_each_node_state(nid, N_MEMORY) { 4429 u64 size; 4430 struct lruvec *lruvec; 4431 4432 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4433 size = lruvec_page_state_output(lruvec, 4434 memory_stats[i].idx); 4435 seq_printf(m, " N%d=%llu", nid, size); 4436 } 4437 seq_putc(m, '\n'); 4438 } 4439 4440 return 0; 4441 } 4442 #endif 4443 4444 static int memory_oom_group_show(struct seq_file *m, void *v) 4445 { 4446 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4447 4448 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4449 4450 return 0; 4451 } 4452 4453 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4454 char *buf, size_t nbytes, loff_t off) 4455 { 4456 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4457 int ret, oom_group; 4458 4459 buf = strstrip(buf); 4460 if (!buf) 4461 return -EINVAL; 4462 4463 ret = kstrtoint(buf, 0, &oom_group); 4464 if (ret) 4465 return ret; 4466 4467 if (oom_group != 0 && oom_group != 1) 4468 return -EINVAL; 4469 4470 WRITE_ONCE(memcg->oom_group, oom_group); 4471 4472 return nbytes; 4473 } 4474 4475 enum { 4476 MEMORY_RECLAIM_SWAPPINESS = 0, 4477 MEMORY_RECLAIM_SWAPPINESS_MAX, 4478 MEMORY_RECLAIM_NULL, 4479 }; 4480 4481 static const match_table_t tokens = { 4482 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4483 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"}, 4484 { MEMORY_RECLAIM_NULL, NULL }, 4485 }; 4486 4487 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4488 size_t nbytes, loff_t off) 4489 { 4490 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4491 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4492 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4493 int swappiness = -1; 4494 unsigned int reclaim_options; 4495 char *old_buf, *start; 4496 substring_t args[MAX_OPT_ARGS]; 4497 4498 buf = strstrip(buf); 4499 4500 old_buf = buf; 4501 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4502 if (buf == old_buf) 4503 return -EINVAL; 4504 4505 buf = strstrip(buf); 4506 4507 while ((start = strsep(&buf, " ")) != NULL) { 4508 if (!strlen(start)) 4509 continue; 4510 switch (match_token(start, tokens, args)) { 4511 case MEMORY_RECLAIM_SWAPPINESS: 4512 if (match_int(&args[0], &swappiness)) 4513 return -EINVAL; 4514 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4515 return -EINVAL; 4516 break; 4517 case MEMORY_RECLAIM_SWAPPINESS_MAX: 4518 swappiness = SWAPPINESS_ANON_ONLY; 4519 break; 4520 default: 4521 return -EINVAL; 4522 } 4523 } 4524 4525 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4526 while (nr_reclaimed < nr_to_reclaim) { 4527 /* Will converge on zero, but reclaim enforces a minimum */ 4528 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4529 unsigned long reclaimed; 4530 4531 if (signal_pending(current)) 4532 return -EINTR; 4533 4534 /* 4535 * This is the final attempt, drain percpu lru caches in the 4536 * hope of introducing more evictable pages for 4537 * try_to_free_mem_cgroup_pages(). 4538 */ 4539 if (!nr_retries) 4540 lru_add_drain_all(); 4541 4542 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4543 batch_size, GFP_KERNEL, 4544 reclaim_options, 4545 swappiness == -1 ? NULL : &swappiness); 4546 4547 if (!reclaimed && !nr_retries--) 4548 return -EAGAIN; 4549 4550 nr_reclaimed += reclaimed; 4551 } 4552 4553 return nbytes; 4554 } 4555 4556 static struct cftype memory_files[] = { 4557 { 4558 .name = "current", 4559 .flags = CFTYPE_NOT_ON_ROOT, 4560 .read_u64 = memory_current_read, 4561 }, 4562 { 4563 .name = "peak", 4564 .flags = CFTYPE_NOT_ON_ROOT, 4565 .open = peak_open, 4566 .release = peak_release, 4567 .seq_show = memory_peak_show, 4568 .write = memory_peak_write, 4569 }, 4570 { 4571 .name = "min", 4572 .flags = CFTYPE_NOT_ON_ROOT, 4573 .seq_show = memory_min_show, 4574 .write = memory_min_write, 4575 }, 4576 { 4577 .name = "low", 4578 .flags = CFTYPE_NOT_ON_ROOT, 4579 .seq_show = memory_low_show, 4580 .write = memory_low_write, 4581 }, 4582 { 4583 .name = "high", 4584 .flags = CFTYPE_NOT_ON_ROOT, 4585 .seq_show = memory_high_show, 4586 .write = memory_high_write, 4587 }, 4588 { 4589 .name = "max", 4590 .flags = CFTYPE_NOT_ON_ROOT, 4591 .seq_show = memory_max_show, 4592 .write = memory_max_write, 4593 }, 4594 { 4595 .name = "events", 4596 .flags = CFTYPE_NOT_ON_ROOT, 4597 .file_offset = offsetof(struct mem_cgroup, events_file), 4598 .seq_show = memory_events_show, 4599 }, 4600 { 4601 .name = "events.local", 4602 .flags = CFTYPE_NOT_ON_ROOT, 4603 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4604 .seq_show = memory_events_local_show, 4605 }, 4606 { 4607 .name = "stat", 4608 .seq_show = memory_stat_show, 4609 }, 4610 #ifdef CONFIG_NUMA 4611 { 4612 .name = "numa_stat", 4613 .seq_show = memory_numa_stat_show, 4614 }, 4615 #endif 4616 { 4617 .name = "oom.group", 4618 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4619 .seq_show = memory_oom_group_show, 4620 .write = memory_oom_group_write, 4621 }, 4622 { 4623 .name = "reclaim", 4624 .flags = CFTYPE_NS_DELEGATABLE, 4625 .write = memory_reclaim, 4626 }, 4627 { } /* terminate */ 4628 }; 4629 4630 struct cgroup_subsys memory_cgrp_subsys = { 4631 .css_alloc = mem_cgroup_css_alloc, 4632 .css_online = mem_cgroup_css_online, 4633 .css_offline = mem_cgroup_css_offline, 4634 .css_released = mem_cgroup_css_released, 4635 .css_free = mem_cgroup_css_free, 4636 .css_reset = mem_cgroup_css_reset, 4637 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4638 .attach = mem_cgroup_attach, 4639 .fork = mem_cgroup_fork, 4640 .exit = mem_cgroup_exit, 4641 .dfl_cftypes = memory_files, 4642 #ifdef CONFIG_MEMCG_V1 4643 .legacy_cftypes = mem_cgroup_legacy_files, 4644 #endif 4645 .early_init = 0, 4646 }; 4647 4648 /** 4649 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4650 * @root: the top ancestor of the sub-tree being checked 4651 * @memcg: the memory cgroup to check 4652 * 4653 * WARNING: This function is not stateless! It can only be used as part 4654 * of a top-down tree iteration, not for isolated queries. 4655 */ 4656 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4657 struct mem_cgroup *memcg) 4658 { 4659 bool recursive_protection = 4660 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4661 4662 if (mem_cgroup_disabled()) 4663 return; 4664 4665 if (!root) 4666 root = root_mem_cgroup; 4667 4668 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4669 } 4670 4671 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4672 gfp_t gfp) 4673 { 4674 int ret; 4675 4676 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4677 if (ret) 4678 goto out; 4679 4680 css_get(&memcg->css); 4681 commit_charge(folio, memcg); 4682 memcg1_commit_charge(folio, memcg); 4683 out: 4684 return ret; 4685 } 4686 4687 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4688 { 4689 struct mem_cgroup *memcg; 4690 int ret; 4691 4692 memcg = get_mem_cgroup_from_mm(mm); 4693 ret = charge_memcg(folio, memcg, gfp); 4694 css_put(&memcg->css); 4695 4696 return ret; 4697 } 4698 4699 /** 4700 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4701 * @folio: folio being charged 4702 * @gfp: reclaim mode 4703 * 4704 * This function is called when allocating a huge page folio, after the page has 4705 * already been obtained and charged to the appropriate hugetlb cgroup 4706 * controller (if it is enabled). 4707 * 4708 * Returns ENOMEM if the memcg is already full. 4709 * Returns 0 if either the charge was successful, or if we skip the charging. 4710 */ 4711 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4712 { 4713 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4714 int ret = 0; 4715 4716 /* 4717 * Even memcg does not account for hugetlb, we still want to update 4718 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4719 * charging the memcg. 4720 */ 4721 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4722 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4723 goto out; 4724 4725 if (charge_memcg(folio, memcg, gfp)) 4726 ret = -ENOMEM; 4727 4728 out: 4729 mem_cgroup_put(memcg); 4730 return ret; 4731 } 4732 4733 /** 4734 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4735 * @folio: folio to charge. 4736 * @mm: mm context of the victim 4737 * @gfp: reclaim mode 4738 * @entry: swap entry for which the folio is allocated 4739 * 4740 * This function charges a folio allocated for swapin. Please call this before 4741 * adding the folio to the swapcache. 4742 * 4743 * Returns 0 on success. Otherwise, an error code is returned. 4744 */ 4745 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4746 gfp_t gfp, swp_entry_t entry) 4747 { 4748 struct mem_cgroup *memcg; 4749 unsigned short id; 4750 int ret; 4751 4752 if (mem_cgroup_disabled()) 4753 return 0; 4754 4755 id = lookup_swap_cgroup_id(entry); 4756 rcu_read_lock(); 4757 memcg = mem_cgroup_from_id(id); 4758 if (!memcg || !css_tryget_online(&memcg->css)) 4759 memcg = get_mem_cgroup_from_mm(mm); 4760 rcu_read_unlock(); 4761 4762 ret = charge_memcg(folio, memcg, gfp); 4763 4764 css_put(&memcg->css); 4765 return ret; 4766 } 4767 4768 struct uncharge_gather { 4769 struct mem_cgroup *memcg; 4770 unsigned long nr_memory; 4771 unsigned long pgpgout; 4772 unsigned long nr_kmem; 4773 int nid; 4774 }; 4775 4776 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4777 { 4778 memset(ug, 0, sizeof(*ug)); 4779 } 4780 4781 static void uncharge_batch(const struct uncharge_gather *ug) 4782 { 4783 if (ug->nr_memory) { 4784 memcg_uncharge(ug->memcg, ug->nr_memory); 4785 if (ug->nr_kmem) { 4786 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4787 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4788 } 4789 memcg1_oom_recover(ug->memcg); 4790 } 4791 4792 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4793 4794 /* drop reference from uncharge_folio */ 4795 css_put(&ug->memcg->css); 4796 } 4797 4798 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4799 { 4800 long nr_pages; 4801 struct mem_cgroup *memcg; 4802 struct obj_cgroup *objcg; 4803 4804 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4805 4806 /* 4807 * Nobody should be changing or seriously looking at 4808 * folio memcg or objcg at this point, we have fully 4809 * exclusive access to the folio. 4810 */ 4811 if (folio_memcg_kmem(folio)) { 4812 objcg = __folio_objcg(folio); 4813 /* 4814 * This get matches the put at the end of the function and 4815 * kmem pages do not hold memcg references anymore. 4816 */ 4817 memcg = get_mem_cgroup_from_objcg(objcg); 4818 } else { 4819 memcg = __folio_memcg(folio); 4820 } 4821 4822 if (!memcg) 4823 return; 4824 4825 if (ug->memcg != memcg) { 4826 if (ug->memcg) { 4827 uncharge_batch(ug); 4828 uncharge_gather_clear(ug); 4829 } 4830 ug->memcg = memcg; 4831 ug->nid = folio_nid(folio); 4832 4833 /* pairs with css_put in uncharge_batch */ 4834 css_get(&memcg->css); 4835 } 4836 4837 nr_pages = folio_nr_pages(folio); 4838 4839 if (folio_memcg_kmem(folio)) { 4840 ug->nr_memory += nr_pages; 4841 ug->nr_kmem += nr_pages; 4842 4843 folio->memcg_data = 0; 4844 obj_cgroup_put(objcg); 4845 } else { 4846 /* LRU pages aren't accounted at the root level */ 4847 if (!mem_cgroup_is_root(memcg)) 4848 ug->nr_memory += nr_pages; 4849 ug->pgpgout++; 4850 4851 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4852 folio->memcg_data = 0; 4853 } 4854 4855 css_put(&memcg->css); 4856 } 4857 4858 void __mem_cgroup_uncharge(struct folio *folio) 4859 { 4860 struct uncharge_gather ug; 4861 4862 /* Don't touch folio->lru of any random page, pre-check: */ 4863 if (!folio_memcg_charged(folio)) 4864 return; 4865 4866 uncharge_gather_clear(&ug); 4867 uncharge_folio(folio, &ug); 4868 uncharge_batch(&ug); 4869 } 4870 4871 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4872 { 4873 struct uncharge_gather ug; 4874 unsigned int i; 4875 4876 uncharge_gather_clear(&ug); 4877 for (i = 0; i < folios->nr; i++) 4878 uncharge_folio(folios->folios[i], &ug); 4879 if (ug.memcg) 4880 uncharge_batch(&ug); 4881 } 4882 4883 /** 4884 * mem_cgroup_replace_folio - Charge a folio's replacement. 4885 * @old: Currently circulating folio. 4886 * @new: Replacement folio. 4887 * 4888 * Charge @new as a replacement folio for @old. @old will 4889 * be uncharged upon free. 4890 * 4891 * Both folios must be locked, @new->mapping must be set up. 4892 */ 4893 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4894 { 4895 struct mem_cgroup *memcg; 4896 long nr_pages = folio_nr_pages(new); 4897 4898 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4899 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4900 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4901 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4902 4903 if (mem_cgroup_disabled()) 4904 return; 4905 4906 /* Page cache replacement: new folio already charged? */ 4907 if (folio_memcg_charged(new)) 4908 return; 4909 4910 memcg = folio_memcg(old); 4911 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4912 if (!memcg) 4913 return; 4914 4915 /* Force-charge the new page. The old one will be freed soon */ 4916 if (!mem_cgroup_is_root(memcg)) { 4917 page_counter_charge(&memcg->memory, nr_pages); 4918 if (do_memsw_account()) 4919 page_counter_charge(&memcg->memsw, nr_pages); 4920 } 4921 4922 css_get(&memcg->css); 4923 commit_charge(new, memcg); 4924 memcg1_commit_charge(new, memcg); 4925 } 4926 4927 /** 4928 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4929 * @old: Currently circulating folio. 4930 * @new: Replacement folio. 4931 * 4932 * Transfer the memcg data from the old folio to the new folio for migration. 4933 * The old folio's data info will be cleared. Note that the memory counters 4934 * will remain unchanged throughout the process. 4935 * 4936 * Both folios must be locked, @new->mapping must be set up. 4937 */ 4938 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4939 { 4940 struct mem_cgroup *memcg; 4941 4942 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4943 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4944 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4945 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4946 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4947 4948 if (mem_cgroup_disabled()) 4949 return; 4950 4951 memcg = folio_memcg(old); 4952 /* 4953 * Note that it is normal to see !memcg for a hugetlb folio. 4954 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4955 * was not selected. 4956 */ 4957 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4958 if (!memcg) 4959 return; 4960 4961 /* Transfer the charge and the css ref */ 4962 commit_charge(new, memcg); 4963 4964 /* Warning should never happen, so don't worry about refcount non-0 */ 4965 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4966 old->memcg_data = 0; 4967 } 4968 4969 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4970 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4971 4972 void mem_cgroup_sk_alloc(struct sock *sk) 4973 { 4974 struct mem_cgroup *memcg; 4975 4976 if (!mem_cgroup_sockets_enabled) 4977 return; 4978 4979 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4980 if (!in_task()) 4981 return; 4982 4983 rcu_read_lock(); 4984 memcg = mem_cgroup_from_task(current); 4985 if (mem_cgroup_is_root(memcg)) 4986 goto out; 4987 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4988 goto out; 4989 if (css_tryget(&memcg->css)) 4990 sk->sk_memcg = memcg; 4991 out: 4992 rcu_read_unlock(); 4993 } 4994 4995 void mem_cgroup_sk_free(struct sock *sk) 4996 { 4997 if (sk->sk_memcg) 4998 css_put(&sk->sk_memcg->css); 4999 } 5000 5001 /** 5002 * mem_cgroup_charge_skmem - charge socket memory 5003 * @memcg: memcg to charge 5004 * @nr_pages: number of pages to charge 5005 * @gfp_mask: reclaim mode 5006 * 5007 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5008 * @memcg's configured limit, %false if it doesn't. 5009 */ 5010 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 5011 gfp_t gfp_mask) 5012 { 5013 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5014 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 5015 5016 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 5017 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 5018 return true; 5019 } 5020 5021 return false; 5022 } 5023 5024 /** 5025 * mem_cgroup_uncharge_skmem - uncharge socket memory 5026 * @memcg: memcg to uncharge 5027 * @nr_pages: number of pages to uncharge 5028 */ 5029 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5030 { 5031 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5032 memcg1_uncharge_skmem(memcg, nr_pages); 5033 return; 5034 } 5035 5036 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 5037 5038 refill_stock(memcg, nr_pages); 5039 } 5040 5041 static int __init cgroup_memory(char *s) 5042 { 5043 char *token; 5044 5045 while ((token = strsep(&s, ",")) != NULL) { 5046 if (!*token) 5047 continue; 5048 if (!strcmp(token, "nosocket")) 5049 cgroup_memory_nosocket = true; 5050 if (!strcmp(token, "nokmem")) 5051 cgroup_memory_nokmem = true; 5052 if (!strcmp(token, "nobpf")) 5053 cgroup_memory_nobpf = true; 5054 } 5055 return 1; 5056 } 5057 __setup("cgroup.memory=", cgroup_memory); 5058 5059 /* 5060 * Memory controller init before cgroup_init() initialize root_mem_cgroup. 5061 * 5062 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5063 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5064 * basically everything that doesn't depend on a specific mem_cgroup structure 5065 * should be initialized from here. 5066 */ 5067 int __init mem_cgroup_init(void) 5068 { 5069 unsigned int memcg_size; 5070 int cpu; 5071 5072 /* 5073 * Currently s32 type (can refer to struct batched_lruvec_stat) is 5074 * used for per-memcg-per-cpu caching of per-node statistics. In order 5075 * to work fine, we should make sure that the overfill threshold can't 5076 * exceed S32_MAX / PAGE_SIZE. 5077 */ 5078 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 5079 5080 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5081 memcg_hotplug_cpu_dead); 5082 5083 for_each_possible_cpu(cpu) 5084 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5085 drain_local_stock); 5086 5087 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids); 5088 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0, 5089 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); 5090 5091 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node, 5092 SLAB_PANIC | SLAB_HWCACHE_ALIGN); 5093 5094 return 0; 5095 } 5096 5097 #ifdef CONFIG_SWAP 5098 /** 5099 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5100 * @folio: folio being added to swap 5101 * @entry: swap entry to charge 5102 * 5103 * Try to charge @folio's memcg for the swap space at @entry. 5104 * 5105 * Returns 0 on success, -ENOMEM on failure. 5106 */ 5107 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5108 { 5109 unsigned int nr_pages = folio_nr_pages(folio); 5110 struct page_counter *counter; 5111 struct mem_cgroup *memcg; 5112 5113 if (do_memsw_account()) 5114 return 0; 5115 5116 memcg = folio_memcg(folio); 5117 5118 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5119 if (!memcg) 5120 return 0; 5121 5122 if (!entry.val) { 5123 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5124 return 0; 5125 } 5126 5127 memcg = mem_cgroup_id_get_online(memcg); 5128 5129 if (!mem_cgroup_is_root(memcg) && 5130 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5131 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5132 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5133 mem_cgroup_id_put(memcg); 5134 return -ENOMEM; 5135 } 5136 5137 /* Get references for the tail pages, too */ 5138 if (nr_pages > 1) 5139 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5140 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5141 5142 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5143 5144 return 0; 5145 } 5146 5147 /** 5148 * __mem_cgroup_uncharge_swap - uncharge swap space 5149 * @entry: swap entry to uncharge 5150 * @nr_pages: the amount of swap space to uncharge 5151 */ 5152 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5153 { 5154 struct mem_cgroup *memcg; 5155 unsigned short id; 5156 5157 id = swap_cgroup_clear(entry, nr_pages); 5158 rcu_read_lock(); 5159 memcg = mem_cgroup_from_id(id); 5160 if (memcg) { 5161 if (!mem_cgroup_is_root(memcg)) { 5162 if (do_memsw_account()) 5163 page_counter_uncharge(&memcg->memsw, nr_pages); 5164 else 5165 page_counter_uncharge(&memcg->swap, nr_pages); 5166 } 5167 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5168 mem_cgroup_id_put_many(memcg, nr_pages); 5169 } 5170 rcu_read_unlock(); 5171 } 5172 5173 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5174 { 5175 long nr_swap_pages = get_nr_swap_pages(); 5176 5177 if (mem_cgroup_disabled() || do_memsw_account()) 5178 return nr_swap_pages; 5179 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5180 nr_swap_pages = min_t(long, nr_swap_pages, 5181 READ_ONCE(memcg->swap.max) - 5182 page_counter_read(&memcg->swap)); 5183 return nr_swap_pages; 5184 } 5185 5186 bool mem_cgroup_swap_full(struct folio *folio) 5187 { 5188 struct mem_cgroup *memcg; 5189 5190 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5191 5192 if (vm_swap_full()) 5193 return true; 5194 if (do_memsw_account()) 5195 return false; 5196 5197 memcg = folio_memcg(folio); 5198 if (!memcg) 5199 return false; 5200 5201 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5202 unsigned long usage = page_counter_read(&memcg->swap); 5203 5204 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5205 usage * 2 >= READ_ONCE(memcg->swap.max)) 5206 return true; 5207 } 5208 5209 return false; 5210 } 5211 5212 static int __init setup_swap_account(char *s) 5213 { 5214 bool res; 5215 5216 if (!kstrtobool(s, &res) && !res) 5217 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5218 "in favor of configuring swap control via cgroupfs. " 5219 "Please report your usecase to linux-mm@kvack.org if you " 5220 "depend on this functionality.\n"); 5221 return 1; 5222 } 5223 __setup("swapaccount=", setup_swap_account); 5224 5225 static u64 swap_current_read(struct cgroup_subsys_state *css, 5226 struct cftype *cft) 5227 { 5228 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5229 5230 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5231 } 5232 5233 static int swap_peak_show(struct seq_file *sf, void *v) 5234 { 5235 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5236 5237 return peak_show(sf, v, &memcg->swap); 5238 } 5239 5240 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5241 size_t nbytes, loff_t off) 5242 { 5243 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5244 5245 return peak_write(of, buf, nbytes, off, &memcg->swap, 5246 &memcg->swap_peaks); 5247 } 5248 5249 static int swap_high_show(struct seq_file *m, void *v) 5250 { 5251 return seq_puts_memcg_tunable(m, 5252 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5253 } 5254 5255 static ssize_t swap_high_write(struct kernfs_open_file *of, 5256 char *buf, size_t nbytes, loff_t off) 5257 { 5258 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5259 unsigned long high; 5260 int err; 5261 5262 buf = strstrip(buf); 5263 err = page_counter_memparse(buf, "max", &high); 5264 if (err) 5265 return err; 5266 5267 page_counter_set_high(&memcg->swap, high); 5268 5269 return nbytes; 5270 } 5271 5272 static int swap_max_show(struct seq_file *m, void *v) 5273 { 5274 return seq_puts_memcg_tunable(m, 5275 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5276 } 5277 5278 static ssize_t swap_max_write(struct kernfs_open_file *of, 5279 char *buf, size_t nbytes, loff_t off) 5280 { 5281 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5282 unsigned long max; 5283 int err; 5284 5285 buf = strstrip(buf); 5286 err = page_counter_memparse(buf, "max", &max); 5287 if (err) 5288 return err; 5289 5290 xchg(&memcg->swap.max, max); 5291 5292 return nbytes; 5293 } 5294 5295 static int swap_events_show(struct seq_file *m, void *v) 5296 { 5297 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5298 5299 seq_printf(m, "high %lu\n", 5300 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5301 seq_printf(m, "max %lu\n", 5302 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5303 seq_printf(m, "fail %lu\n", 5304 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5305 5306 return 0; 5307 } 5308 5309 static struct cftype swap_files[] = { 5310 { 5311 .name = "swap.current", 5312 .flags = CFTYPE_NOT_ON_ROOT, 5313 .read_u64 = swap_current_read, 5314 }, 5315 { 5316 .name = "swap.high", 5317 .flags = CFTYPE_NOT_ON_ROOT, 5318 .seq_show = swap_high_show, 5319 .write = swap_high_write, 5320 }, 5321 { 5322 .name = "swap.max", 5323 .flags = CFTYPE_NOT_ON_ROOT, 5324 .seq_show = swap_max_show, 5325 .write = swap_max_write, 5326 }, 5327 { 5328 .name = "swap.peak", 5329 .flags = CFTYPE_NOT_ON_ROOT, 5330 .open = peak_open, 5331 .release = peak_release, 5332 .seq_show = swap_peak_show, 5333 .write = swap_peak_write, 5334 }, 5335 { 5336 .name = "swap.events", 5337 .flags = CFTYPE_NOT_ON_ROOT, 5338 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5339 .seq_show = swap_events_show, 5340 }, 5341 { } /* terminate */ 5342 }; 5343 5344 #ifdef CONFIG_ZSWAP 5345 /** 5346 * obj_cgroup_may_zswap - check if this cgroup can zswap 5347 * @objcg: the object cgroup 5348 * 5349 * Check if the hierarchical zswap limit has been reached. 5350 * 5351 * This doesn't check for specific headroom, and it is not atomic 5352 * either. But with zswap, the size of the allocation is only known 5353 * once compression has occurred, and this optimistic pre-check avoids 5354 * spending cycles on compression when there is already no room left 5355 * or zswap is disabled altogether somewhere in the hierarchy. 5356 */ 5357 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5358 { 5359 struct mem_cgroup *memcg, *original_memcg; 5360 bool ret = true; 5361 5362 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5363 return true; 5364 5365 original_memcg = get_mem_cgroup_from_objcg(objcg); 5366 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5367 memcg = parent_mem_cgroup(memcg)) { 5368 unsigned long max = READ_ONCE(memcg->zswap_max); 5369 unsigned long pages; 5370 5371 if (max == PAGE_COUNTER_MAX) 5372 continue; 5373 if (max == 0) { 5374 ret = false; 5375 break; 5376 } 5377 5378 /* Force flush to get accurate stats for charging */ 5379 __mem_cgroup_flush_stats(memcg, true); 5380 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5381 if (pages < max) 5382 continue; 5383 ret = false; 5384 break; 5385 } 5386 mem_cgroup_put(original_memcg); 5387 return ret; 5388 } 5389 5390 /** 5391 * obj_cgroup_charge_zswap - charge compression backend memory 5392 * @objcg: the object cgroup 5393 * @size: size of compressed object 5394 * 5395 * This forces the charge after obj_cgroup_may_zswap() allowed 5396 * compression and storage in zwap for this cgroup to go ahead. 5397 */ 5398 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5399 { 5400 struct mem_cgroup *memcg; 5401 5402 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5403 return; 5404 5405 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5406 5407 /* PF_MEMALLOC context, charging must succeed */ 5408 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5409 VM_WARN_ON_ONCE(1); 5410 5411 rcu_read_lock(); 5412 memcg = obj_cgroup_memcg(objcg); 5413 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5414 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5415 rcu_read_unlock(); 5416 } 5417 5418 /** 5419 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5420 * @objcg: the object cgroup 5421 * @size: size of compressed object 5422 * 5423 * Uncharges zswap memory on page in. 5424 */ 5425 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5426 { 5427 struct mem_cgroup *memcg; 5428 5429 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5430 return; 5431 5432 obj_cgroup_uncharge(objcg, size); 5433 5434 rcu_read_lock(); 5435 memcg = obj_cgroup_memcg(objcg); 5436 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5437 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5438 rcu_read_unlock(); 5439 } 5440 5441 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5442 { 5443 /* if zswap is disabled, do not block pages going to the swapping device */ 5444 if (!zswap_is_enabled()) 5445 return true; 5446 5447 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5448 if (!READ_ONCE(memcg->zswap_writeback)) 5449 return false; 5450 5451 return true; 5452 } 5453 5454 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5455 struct cftype *cft) 5456 { 5457 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5458 5459 mem_cgroup_flush_stats(memcg); 5460 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5461 } 5462 5463 static int zswap_max_show(struct seq_file *m, void *v) 5464 { 5465 return seq_puts_memcg_tunable(m, 5466 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5467 } 5468 5469 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5470 char *buf, size_t nbytes, loff_t off) 5471 { 5472 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5473 unsigned long max; 5474 int err; 5475 5476 buf = strstrip(buf); 5477 err = page_counter_memparse(buf, "max", &max); 5478 if (err) 5479 return err; 5480 5481 xchg(&memcg->zswap_max, max); 5482 5483 return nbytes; 5484 } 5485 5486 static int zswap_writeback_show(struct seq_file *m, void *v) 5487 { 5488 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5489 5490 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5491 return 0; 5492 } 5493 5494 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5495 char *buf, size_t nbytes, loff_t off) 5496 { 5497 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5498 int zswap_writeback; 5499 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5500 5501 if (parse_ret) 5502 return parse_ret; 5503 5504 if (zswap_writeback != 0 && zswap_writeback != 1) 5505 return -EINVAL; 5506 5507 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5508 return nbytes; 5509 } 5510 5511 static struct cftype zswap_files[] = { 5512 { 5513 .name = "zswap.current", 5514 .flags = CFTYPE_NOT_ON_ROOT, 5515 .read_u64 = zswap_current_read, 5516 }, 5517 { 5518 .name = "zswap.max", 5519 .flags = CFTYPE_NOT_ON_ROOT, 5520 .seq_show = zswap_max_show, 5521 .write = zswap_max_write, 5522 }, 5523 { 5524 .name = "zswap.writeback", 5525 .seq_show = zswap_writeback_show, 5526 .write = zswap_writeback_write, 5527 }, 5528 { } /* terminate */ 5529 }; 5530 #endif /* CONFIG_ZSWAP */ 5531 5532 static int __init mem_cgroup_swap_init(void) 5533 { 5534 if (mem_cgroup_disabled()) 5535 return 0; 5536 5537 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5538 #ifdef CONFIG_MEMCG_V1 5539 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5540 #endif 5541 #ifdef CONFIG_ZSWAP 5542 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5543 #endif 5544 return 0; 5545 } 5546 subsys_initcall(mem_cgroup_swap_init); 5547 5548 #endif /* CONFIG_SWAP */ 5549 5550 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) 5551 { 5552 return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true; 5553 } 5554