1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/list.h> 46 #include <linux/mutex.h> 47 #include <linux/rbtree.h> 48 #include <linux/slab.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/fs.h> 52 #include <linux/seq_file.h> 53 #include <linux/parser.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #include <trace/events/vmscan.h> 75 76 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 77 EXPORT_SYMBOL(memory_cgrp_subsys); 78 79 struct mem_cgroup *root_mem_cgroup __read_mostly; 80 81 /* Active memory cgroup to use from an interrupt context */ 82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 84 85 /* Socket memory accounting disabled? */ 86 static bool cgroup_memory_nosocket __ro_after_init; 87 88 /* Kernel memory accounting disabled? */ 89 static bool cgroup_memory_nokmem __ro_after_init; 90 91 /* BPF memory accounting disabled? */ 92 static bool cgroup_memory_nobpf __ro_after_init; 93 94 #ifdef CONFIG_CGROUP_WRITEBACK 95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 96 #endif 97 98 static inline bool task_is_dying(void) 99 { 100 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 101 (current->flags & PF_EXITING); 102 } 103 104 /* Some nice accessors for the vmpressure. */ 105 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 106 { 107 if (!memcg) 108 memcg = root_mem_cgroup; 109 return &memcg->vmpressure; 110 } 111 112 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 113 { 114 return container_of(vmpr, struct mem_cgroup, vmpressure); 115 } 116 117 #define CURRENT_OBJCG_UPDATE_BIT 0 118 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 119 120 static DEFINE_SPINLOCK(objcg_lock); 121 122 bool mem_cgroup_kmem_disabled(void) 123 { 124 return cgroup_memory_nokmem; 125 } 126 127 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 128 unsigned int nr_pages); 129 130 static void obj_cgroup_release(struct percpu_ref *ref) 131 { 132 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 133 unsigned int nr_bytes; 134 unsigned int nr_pages; 135 unsigned long flags; 136 137 /* 138 * At this point all allocated objects are freed, and 139 * objcg->nr_charged_bytes can't have an arbitrary byte value. 140 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 141 * 142 * The following sequence can lead to it: 143 * 1) CPU0: objcg == stock->cached_objcg 144 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 145 * PAGE_SIZE bytes are charged 146 * 3) CPU1: a process from another memcg is allocating something, 147 * the stock if flushed, 148 * objcg->nr_charged_bytes = PAGE_SIZE - 92 149 * 5) CPU0: we do release this object, 150 * 92 bytes are added to stock->nr_bytes 151 * 6) CPU0: stock is flushed, 152 * 92 bytes are added to objcg->nr_charged_bytes 153 * 154 * In the result, nr_charged_bytes == PAGE_SIZE. 155 * This page will be uncharged in obj_cgroup_release(). 156 */ 157 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 158 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 159 nr_pages = nr_bytes >> PAGE_SHIFT; 160 161 if (nr_pages) 162 obj_cgroup_uncharge_pages(objcg, nr_pages); 163 164 spin_lock_irqsave(&objcg_lock, flags); 165 list_del(&objcg->list); 166 spin_unlock_irqrestore(&objcg_lock, flags); 167 168 percpu_ref_exit(ref); 169 kfree_rcu(objcg, rcu); 170 } 171 172 static struct obj_cgroup *obj_cgroup_alloc(void) 173 { 174 struct obj_cgroup *objcg; 175 int ret; 176 177 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 178 if (!objcg) 179 return NULL; 180 181 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 182 GFP_KERNEL); 183 if (ret) { 184 kfree(objcg); 185 return NULL; 186 } 187 INIT_LIST_HEAD(&objcg->list); 188 return objcg; 189 } 190 191 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 192 struct mem_cgroup *parent) 193 { 194 struct obj_cgroup *objcg, *iter; 195 196 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 197 198 spin_lock_irq(&objcg_lock); 199 200 /* 1) Ready to reparent active objcg. */ 201 list_add(&objcg->list, &memcg->objcg_list); 202 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 203 list_for_each_entry(iter, &memcg->objcg_list, list) 204 WRITE_ONCE(iter->memcg, parent); 205 /* 3) Move already reparented objcgs to the parent's list */ 206 list_splice(&memcg->objcg_list, &parent->objcg_list); 207 208 spin_unlock_irq(&objcg_lock); 209 210 percpu_ref_kill(&objcg->refcnt); 211 } 212 213 /* 214 * A lot of the calls to the cache allocation functions are expected to be 215 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 216 * conditional to this static branch, we'll have to allow modules that does 217 * kmem_cache_alloc and the such to see this symbol as well 218 */ 219 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 220 EXPORT_SYMBOL(memcg_kmem_online_key); 221 222 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 223 EXPORT_SYMBOL(memcg_bpf_enabled_key); 224 225 /** 226 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 227 * @folio: folio of interest 228 * 229 * If memcg is bound to the default hierarchy, css of the memcg associated 230 * with @folio is returned. The returned css remains associated with @folio 231 * until it is released. 232 * 233 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 234 * is returned. 235 */ 236 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 237 { 238 struct mem_cgroup *memcg = folio_memcg(folio); 239 240 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 241 memcg = root_mem_cgroup; 242 243 return &memcg->css; 244 } 245 246 /** 247 * page_cgroup_ino - return inode number of the memcg a page is charged to 248 * @page: the page 249 * 250 * Look up the closest online ancestor of the memory cgroup @page is charged to 251 * and return its inode number or 0 if @page is not charged to any cgroup. It 252 * is safe to call this function without holding a reference to @page. 253 * 254 * Note, this function is inherently racy, because there is nothing to prevent 255 * the cgroup inode from getting torn down and potentially reallocated a moment 256 * after page_cgroup_ino() returns, so it only should be used by callers that 257 * do not care (such as procfs interfaces). 258 */ 259 ino_t page_cgroup_ino(struct page *page) 260 { 261 struct mem_cgroup *memcg; 262 unsigned long ino = 0; 263 264 rcu_read_lock(); 265 /* page_folio() is racy here, but the entire function is racy anyway */ 266 memcg = folio_memcg_check(page_folio(page)); 267 268 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 269 memcg = parent_mem_cgroup(memcg); 270 if (memcg) 271 ino = cgroup_ino(memcg->css.cgroup); 272 rcu_read_unlock(); 273 return ino; 274 } 275 276 /* Subset of node_stat_item for memcg stats */ 277 static const unsigned int memcg_node_stat_items[] = { 278 NR_INACTIVE_ANON, 279 NR_ACTIVE_ANON, 280 NR_INACTIVE_FILE, 281 NR_ACTIVE_FILE, 282 NR_UNEVICTABLE, 283 NR_SLAB_RECLAIMABLE_B, 284 NR_SLAB_UNRECLAIMABLE_B, 285 WORKINGSET_REFAULT_ANON, 286 WORKINGSET_REFAULT_FILE, 287 WORKINGSET_ACTIVATE_ANON, 288 WORKINGSET_ACTIVATE_FILE, 289 WORKINGSET_RESTORE_ANON, 290 WORKINGSET_RESTORE_FILE, 291 WORKINGSET_NODERECLAIM, 292 NR_ANON_MAPPED, 293 NR_FILE_MAPPED, 294 NR_FILE_PAGES, 295 NR_FILE_DIRTY, 296 NR_WRITEBACK, 297 NR_SHMEM, 298 NR_SHMEM_THPS, 299 NR_FILE_THPS, 300 NR_ANON_THPS, 301 NR_KERNEL_STACK_KB, 302 NR_PAGETABLE, 303 NR_SECONDARY_PAGETABLE, 304 #ifdef CONFIG_SWAP 305 NR_SWAPCACHE, 306 #endif 307 #ifdef CONFIG_NUMA_BALANCING 308 PGPROMOTE_SUCCESS, 309 #endif 310 PGDEMOTE_KSWAPD, 311 PGDEMOTE_DIRECT, 312 PGDEMOTE_KHUGEPAGED, 313 }; 314 315 static const unsigned int memcg_stat_items[] = { 316 MEMCG_SWAP, 317 MEMCG_SOCK, 318 MEMCG_PERCPU_B, 319 MEMCG_VMALLOC, 320 MEMCG_KMEM, 321 MEMCG_ZSWAP_B, 322 MEMCG_ZSWAPPED, 323 }; 324 325 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 326 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 327 ARRAY_SIZE(memcg_stat_items)) 328 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 329 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 330 331 static void init_memcg_stats(void) 332 { 333 u8 i, j = 0; 334 335 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 336 337 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 338 339 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 340 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 341 342 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 343 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 344 } 345 346 static inline int memcg_stats_index(int idx) 347 { 348 return mem_cgroup_stats_index[idx]; 349 } 350 351 struct lruvec_stats_percpu { 352 /* Local (CPU and cgroup) state */ 353 long state[NR_MEMCG_NODE_STAT_ITEMS]; 354 355 /* Delta calculation for lockless upward propagation */ 356 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 357 }; 358 359 struct lruvec_stats { 360 /* Aggregated (CPU and subtree) state */ 361 long state[NR_MEMCG_NODE_STAT_ITEMS]; 362 363 /* Non-hierarchical (CPU aggregated) state */ 364 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 365 366 /* Pending child counts during tree propagation */ 367 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 368 }; 369 370 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 371 { 372 struct mem_cgroup_per_node *pn; 373 long x; 374 int i; 375 376 if (mem_cgroup_disabled()) 377 return node_page_state(lruvec_pgdat(lruvec), idx); 378 379 i = memcg_stats_index(idx); 380 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 381 return 0; 382 383 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 384 x = READ_ONCE(pn->lruvec_stats->state[i]); 385 #ifdef CONFIG_SMP 386 if (x < 0) 387 x = 0; 388 #endif 389 return x; 390 } 391 392 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 393 enum node_stat_item idx) 394 { 395 struct mem_cgroup_per_node *pn; 396 long x; 397 int i; 398 399 if (mem_cgroup_disabled()) 400 return node_page_state(lruvec_pgdat(lruvec), idx); 401 402 i = memcg_stats_index(idx); 403 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 404 return 0; 405 406 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 407 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 408 #ifdef CONFIG_SMP 409 if (x < 0) 410 x = 0; 411 #endif 412 return x; 413 } 414 415 /* Subset of vm_event_item to report for memcg event stats */ 416 static const unsigned int memcg_vm_event_stat[] = { 417 #ifdef CONFIG_MEMCG_V1 418 PGPGIN, 419 PGPGOUT, 420 #endif 421 PGSCAN_KSWAPD, 422 PGSCAN_DIRECT, 423 PGSCAN_KHUGEPAGED, 424 PGSTEAL_KSWAPD, 425 PGSTEAL_DIRECT, 426 PGSTEAL_KHUGEPAGED, 427 PGFAULT, 428 PGMAJFAULT, 429 PGREFILL, 430 PGACTIVATE, 431 PGDEACTIVATE, 432 PGLAZYFREE, 433 PGLAZYFREED, 434 #ifdef CONFIG_SWAP 435 SWPIN_ZERO, 436 SWPOUT_ZERO, 437 #endif 438 #ifdef CONFIG_ZSWAP 439 ZSWPIN, 440 ZSWPOUT, 441 ZSWPWB, 442 #endif 443 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 444 THP_FAULT_ALLOC, 445 THP_COLLAPSE_ALLOC, 446 THP_SWPOUT, 447 THP_SWPOUT_FALLBACK, 448 #endif 449 #ifdef CONFIG_NUMA_BALANCING 450 NUMA_PAGE_MIGRATE, 451 NUMA_PTE_UPDATES, 452 NUMA_HINT_FAULTS, 453 #endif 454 }; 455 456 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 457 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 458 459 static void init_memcg_events(void) 460 { 461 u8 i; 462 463 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 464 465 memset(mem_cgroup_events_index, U8_MAX, 466 sizeof(mem_cgroup_events_index)); 467 468 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 469 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 470 } 471 472 static inline int memcg_events_index(enum vm_event_item idx) 473 { 474 return mem_cgroup_events_index[idx]; 475 } 476 477 struct memcg_vmstats_percpu { 478 /* Stats updates since the last flush */ 479 unsigned int stats_updates; 480 481 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 482 struct memcg_vmstats_percpu *parent; 483 struct memcg_vmstats *vmstats; 484 485 /* The above should fit a single cacheline for memcg_rstat_updated() */ 486 487 /* Local (CPU and cgroup) page state & events */ 488 long state[MEMCG_VMSTAT_SIZE]; 489 unsigned long events[NR_MEMCG_EVENTS]; 490 491 /* Delta calculation for lockless upward propagation */ 492 long state_prev[MEMCG_VMSTAT_SIZE]; 493 unsigned long events_prev[NR_MEMCG_EVENTS]; 494 } ____cacheline_aligned; 495 496 struct memcg_vmstats { 497 /* Aggregated (CPU and subtree) page state & events */ 498 long state[MEMCG_VMSTAT_SIZE]; 499 unsigned long events[NR_MEMCG_EVENTS]; 500 501 /* Non-hierarchical (CPU aggregated) page state & events */ 502 long state_local[MEMCG_VMSTAT_SIZE]; 503 unsigned long events_local[NR_MEMCG_EVENTS]; 504 505 /* Pending child counts during tree propagation */ 506 long state_pending[MEMCG_VMSTAT_SIZE]; 507 unsigned long events_pending[NR_MEMCG_EVENTS]; 508 509 /* Stats updates since the last flush */ 510 atomic64_t stats_updates; 511 }; 512 513 /* 514 * memcg and lruvec stats flushing 515 * 516 * Many codepaths leading to stats update or read are performance sensitive and 517 * adding stats flushing in such codepaths is not desirable. So, to optimize the 518 * flushing the kernel does: 519 * 520 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 521 * rstat update tree grow unbounded. 522 * 523 * 2) Flush the stats synchronously on reader side only when there are more than 524 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 525 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 526 * only for 2 seconds due to (1). 527 */ 528 static void flush_memcg_stats_dwork(struct work_struct *w); 529 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 530 static u64 flush_last_time; 531 532 #define FLUSH_TIME (2UL*HZ) 533 534 /* 535 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 536 * not rely on this as part of an acquired spinlock_t lock. These functions are 537 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 538 * is sufficient. 539 */ 540 static void memcg_stats_lock(void) 541 { 542 preempt_disable_nested(); 543 VM_WARN_ON_IRQS_ENABLED(); 544 } 545 546 static void __memcg_stats_lock(void) 547 { 548 preempt_disable_nested(); 549 } 550 551 static void memcg_stats_unlock(void) 552 { 553 preempt_enable_nested(); 554 } 555 556 557 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 558 { 559 return atomic64_read(&vmstats->stats_updates) > 560 MEMCG_CHARGE_BATCH * num_online_cpus(); 561 } 562 563 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 564 { 565 struct memcg_vmstats_percpu *statc; 566 int cpu = smp_processor_id(); 567 unsigned int stats_updates; 568 569 if (!val) 570 return; 571 572 cgroup_rstat_updated(memcg->css.cgroup, cpu); 573 statc = this_cpu_ptr(memcg->vmstats_percpu); 574 for (; statc; statc = statc->parent) { 575 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 576 WRITE_ONCE(statc->stats_updates, stats_updates); 577 if (stats_updates < MEMCG_CHARGE_BATCH) 578 continue; 579 580 /* 581 * If @memcg is already flush-able, increasing stats_updates is 582 * redundant. Avoid the overhead of the atomic update. 583 */ 584 if (!memcg_vmstats_needs_flush(statc->vmstats)) 585 atomic64_add(stats_updates, 586 &statc->vmstats->stats_updates); 587 WRITE_ONCE(statc->stats_updates, 0); 588 } 589 } 590 591 static void do_flush_stats(struct mem_cgroup *memcg) 592 { 593 if (mem_cgroup_is_root(memcg)) 594 WRITE_ONCE(flush_last_time, jiffies_64); 595 596 cgroup_rstat_flush(memcg->css.cgroup); 597 } 598 599 /* 600 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 601 * @memcg: root of the subtree to flush 602 * 603 * Flushing is serialized by the underlying global rstat lock. There is also a 604 * minimum amount of work to be done even if there are no stat updates to flush. 605 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 606 * avoids unnecessary work and contention on the underlying lock. 607 */ 608 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 609 { 610 if (mem_cgroup_disabled()) 611 return; 612 613 if (!memcg) 614 memcg = root_mem_cgroup; 615 616 if (memcg_vmstats_needs_flush(memcg->vmstats)) 617 do_flush_stats(memcg); 618 } 619 620 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 621 { 622 /* Only flush if the periodic flusher is one full cycle late */ 623 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 624 mem_cgroup_flush_stats(memcg); 625 } 626 627 static void flush_memcg_stats_dwork(struct work_struct *w) 628 { 629 /* 630 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 631 * in latency-sensitive paths is as cheap as possible. 632 */ 633 do_flush_stats(root_mem_cgroup); 634 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 635 } 636 637 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 638 { 639 long x; 640 int i = memcg_stats_index(idx); 641 642 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 643 return 0; 644 645 x = READ_ONCE(memcg->vmstats->state[i]); 646 #ifdef CONFIG_SMP 647 if (x < 0) 648 x = 0; 649 #endif 650 return x; 651 } 652 653 static int memcg_page_state_unit(int item); 654 655 /* 656 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 657 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 658 */ 659 static int memcg_state_val_in_pages(int idx, int val) 660 { 661 int unit = memcg_page_state_unit(idx); 662 663 if (!val || unit == PAGE_SIZE) 664 return val; 665 else 666 return max(val * unit / PAGE_SIZE, 1UL); 667 } 668 669 /** 670 * __mod_memcg_state - update cgroup memory statistics 671 * @memcg: the memory cgroup 672 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 673 * @val: delta to add to the counter, can be negative 674 */ 675 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 676 int val) 677 { 678 int i = memcg_stats_index(idx); 679 680 if (mem_cgroup_disabled()) 681 return; 682 683 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 684 return; 685 686 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 687 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 688 } 689 690 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 691 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 692 { 693 long x; 694 int i = memcg_stats_index(idx); 695 696 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 697 return 0; 698 699 x = READ_ONCE(memcg->vmstats->state_local[i]); 700 #ifdef CONFIG_SMP 701 if (x < 0) 702 x = 0; 703 #endif 704 return x; 705 } 706 707 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 708 enum node_stat_item idx, 709 int val) 710 { 711 struct mem_cgroup_per_node *pn; 712 struct mem_cgroup *memcg; 713 int i = memcg_stats_index(idx); 714 715 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 716 return; 717 718 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 719 memcg = pn->memcg; 720 721 /* 722 * The caller from rmap relies on disabled preemption because they never 723 * update their counter from in-interrupt context. For these two 724 * counters we check that the update is never performed from an 725 * interrupt context while other caller need to have disabled interrupt. 726 */ 727 __memcg_stats_lock(); 728 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 729 switch (idx) { 730 case NR_ANON_MAPPED: 731 case NR_FILE_MAPPED: 732 case NR_ANON_THPS: 733 WARN_ON_ONCE(!in_task()); 734 break; 735 default: 736 VM_WARN_ON_IRQS_ENABLED(); 737 } 738 } 739 740 /* Update memcg */ 741 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 742 743 /* Update lruvec */ 744 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 745 746 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 747 memcg_stats_unlock(); 748 } 749 750 /** 751 * __mod_lruvec_state - update lruvec memory statistics 752 * @lruvec: the lruvec 753 * @idx: the stat item 754 * @val: delta to add to the counter, can be negative 755 * 756 * The lruvec is the intersection of the NUMA node and a cgroup. This 757 * function updates the all three counters that are affected by a 758 * change of state at this level: per-node, per-cgroup, per-lruvec. 759 */ 760 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 761 int val) 762 { 763 /* Update node */ 764 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 765 766 /* Update memcg and lruvec */ 767 if (!mem_cgroup_disabled()) 768 __mod_memcg_lruvec_state(lruvec, idx, val); 769 } 770 771 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 772 int val) 773 { 774 struct mem_cgroup *memcg; 775 pg_data_t *pgdat = folio_pgdat(folio); 776 struct lruvec *lruvec; 777 778 rcu_read_lock(); 779 memcg = folio_memcg(folio); 780 /* Untracked pages have no memcg, no lruvec. Update only the node */ 781 if (!memcg) { 782 rcu_read_unlock(); 783 __mod_node_page_state(pgdat, idx, val); 784 return; 785 } 786 787 lruvec = mem_cgroup_lruvec(memcg, pgdat); 788 __mod_lruvec_state(lruvec, idx, val); 789 rcu_read_unlock(); 790 } 791 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 792 793 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 794 { 795 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 796 struct mem_cgroup *memcg; 797 struct lruvec *lruvec; 798 799 rcu_read_lock(); 800 memcg = mem_cgroup_from_slab_obj(p); 801 802 /* 803 * Untracked pages have no memcg, no lruvec. Update only the 804 * node. If we reparent the slab objects to the root memcg, 805 * when we free the slab object, we need to update the per-memcg 806 * vmstats to keep it correct for the root memcg. 807 */ 808 if (!memcg) { 809 __mod_node_page_state(pgdat, idx, val); 810 } else { 811 lruvec = mem_cgroup_lruvec(memcg, pgdat); 812 __mod_lruvec_state(lruvec, idx, val); 813 } 814 rcu_read_unlock(); 815 } 816 817 /** 818 * __count_memcg_events - account VM events in a cgroup 819 * @memcg: the memory cgroup 820 * @idx: the event item 821 * @count: the number of events that occurred 822 */ 823 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 824 unsigned long count) 825 { 826 int i = memcg_events_index(idx); 827 828 if (mem_cgroup_disabled()) 829 return; 830 831 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 832 return; 833 834 memcg_stats_lock(); 835 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 836 memcg_rstat_updated(memcg, count); 837 memcg_stats_unlock(); 838 } 839 840 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 841 { 842 int i = memcg_events_index(event); 843 844 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 845 return 0; 846 847 return READ_ONCE(memcg->vmstats->events[i]); 848 } 849 850 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 851 { 852 int i = memcg_events_index(event); 853 854 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 855 return 0; 856 857 return READ_ONCE(memcg->vmstats->events_local[i]); 858 } 859 860 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 861 { 862 /* 863 * mm_update_next_owner() may clear mm->owner to NULL 864 * if it races with swapoff, page migration, etc. 865 * So this can be called with p == NULL. 866 */ 867 if (unlikely(!p)) 868 return NULL; 869 870 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 871 } 872 EXPORT_SYMBOL(mem_cgroup_from_task); 873 874 static __always_inline struct mem_cgroup *active_memcg(void) 875 { 876 if (!in_task()) 877 return this_cpu_read(int_active_memcg); 878 else 879 return current->active_memcg; 880 } 881 882 /** 883 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 884 * @mm: mm from which memcg should be extracted. It can be NULL. 885 * 886 * Obtain a reference on mm->memcg and returns it if successful. If mm 887 * is NULL, then the memcg is chosen as follows: 888 * 1) The active memcg, if set. 889 * 2) current->mm->memcg, if available 890 * 3) root memcg 891 * If mem_cgroup is disabled, NULL is returned. 892 */ 893 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 894 { 895 struct mem_cgroup *memcg; 896 897 if (mem_cgroup_disabled()) 898 return NULL; 899 900 /* 901 * Page cache insertions can happen without an 902 * actual mm context, e.g. during disk probing 903 * on boot, loopback IO, acct() writes etc. 904 * 905 * No need to css_get on root memcg as the reference 906 * counting is disabled on the root level in the 907 * cgroup core. See CSS_NO_REF. 908 */ 909 if (unlikely(!mm)) { 910 memcg = active_memcg(); 911 if (unlikely(memcg)) { 912 /* remote memcg must hold a ref */ 913 css_get(&memcg->css); 914 return memcg; 915 } 916 mm = current->mm; 917 if (unlikely(!mm)) 918 return root_mem_cgroup; 919 } 920 921 rcu_read_lock(); 922 do { 923 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 924 if (unlikely(!memcg)) 925 memcg = root_mem_cgroup; 926 } while (!css_tryget(&memcg->css)); 927 rcu_read_unlock(); 928 return memcg; 929 } 930 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 931 932 /** 933 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 934 */ 935 struct mem_cgroup *get_mem_cgroup_from_current(void) 936 { 937 struct mem_cgroup *memcg; 938 939 if (mem_cgroup_disabled()) 940 return NULL; 941 942 again: 943 rcu_read_lock(); 944 memcg = mem_cgroup_from_task(current); 945 if (!css_tryget(&memcg->css)) { 946 rcu_read_unlock(); 947 goto again; 948 } 949 rcu_read_unlock(); 950 return memcg; 951 } 952 953 /** 954 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 955 * @folio: folio from which memcg should be extracted. 956 */ 957 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 958 { 959 struct mem_cgroup *memcg = folio_memcg(folio); 960 961 if (mem_cgroup_disabled()) 962 return NULL; 963 964 rcu_read_lock(); 965 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 966 memcg = root_mem_cgroup; 967 rcu_read_unlock(); 968 return memcg; 969 } 970 971 /** 972 * mem_cgroup_iter - iterate over memory cgroup hierarchy 973 * @root: hierarchy root 974 * @prev: previously returned memcg, NULL on first invocation 975 * @reclaim: cookie for shared reclaim walks, NULL for full walks 976 * 977 * Returns references to children of the hierarchy below @root, or 978 * @root itself, or %NULL after a full round-trip. 979 * 980 * Caller must pass the return value in @prev on subsequent 981 * invocations for reference counting, or use mem_cgroup_iter_break() 982 * to cancel a hierarchy walk before the round-trip is complete. 983 * 984 * Reclaimers can specify a node in @reclaim to divide up the memcgs 985 * in the hierarchy among all concurrent reclaimers operating on the 986 * same node. 987 */ 988 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 989 struct mem_cgroup *prev, 990 struct mem_cgroup_reclaim_cookie *reclaim) 991 { 992 struct mem_cgroup_reclaim_iter *iter; 993 struct cgroup_subsys_state *css; 994 struct mem_cgroup *pos; 995 struct mem_cgroup *next; 996 997 if (mem_cgroup_disabled()) 998 return NULL; 999 1000 if (!root) 1001 root = root_mem_cgroup; 1002 1003 rcu_read_lock(); 1004 restart: 1005 next = NULL; 1006 1007 if (reclaim) { 1008 int gen; 1009 int nid = reclaim->pgdat->node_id; 1010 1011 iter = &root->nodeinfo[nid]->iter; 1012 gen = atomic_read(&iter->generation); 1013 1014 /* 1015 * On start, join the current reclaim iteration cycle. 1016 * Exit when a concurrent walker completes it. 1017 */ 1018 if (!prev) 1019 reclaim->generation = gen; 1020 else if (reclaim->generation != gen) 1021 goto out_unlock; 1022 1023 pos = READ_ONCE(iter->position); 1024 } else 1025 pos = prev; 1026 1027 css = pos ? &pos->css : NULL; 1028 1029 while ((css = css_next_descendant_pre(css, &root->css))) { 1030 /* 1031 * Verify the css and acquire a reference. The root 1032 * is provided by the caller, so we know it's alive 1033 * and kicking, and don't take an extra reference. 1034 */ 1035 if (css == &root->css || css_tryget(css)) 1036 break; 1037 } 1038 1039 next = mem_cgroup_from_css(css); 1040 1041 if (reclaim) { 1042 /* 1043 * The position could have already been updated by a competing 1044 * thread, so check that the value hasn't changed since we read 1045 * it to avoid reclaiming from the same cgroup twice. 1046 */ 1047 if (cmpxchg(&iter->position, pos, next) != pos) { 1048 if (css && css != &root->css) 1049 css_put(css); 1050 goto restart; 1051 } 1052 1053 if (!next) { 1054 atomic_inc(&iter->generation); 1055 1056 /* 1057 * Reclaimers share the hierarchy walk, and a 1058 * new one might jump in right at the end of 1059 * the hierarchy - make sure they see at least 1060 * one group and restart from the beginning. 1061 */ 1062 if (!prev) 1063 goto restart; 1064 } 1065 } 1066 1067 out_unlock: 1068 rcu_read_unlock(); 1069 if (prev && prev != root) 1070 css_put(&prev->css); 1071 1072 return next; 1073 } 1074 1075 /** 1076 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1077 * @root: hierarchy root 1078 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1079 */ 1080 void mem_cgroup_iter_break(struct mem_cgroup *root, 1081 struct mem_cgroup *prev) 1082 { 1083 if (!root) 1084 root = root_mem_cgroup; 1085 if (prev && prev != root) 1086 css_put(&prev->css); 1087 } 1088 1089 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1090 struct mem_cgroup *dead_memcg) 1091 { 1092 struct mem_cgroup_reclaim_iter *iter; 1093 struct mem_cgroup_per_node *mz; 1094 int nid; 1095 1096 for_each_node(nid) { 1097 mz = from->nodeinfo[nid]; 1098 iter = &mz->iter; 1099 cmpxchg(&iter->position, dead_memcg, NULL); 1100 } 1101 } 1102 1103 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1104 { 1105 struct mem_cgroup *memcg = dead_memcg; 1106 struct mem_cgroup *last; 1107 1108 do { 1109 __invalidate_reclaim_iterators(memcg, dead_memcg); 1110 last = memcg; 1111 } while ((memcg = parent_mem_cgroup(memcg))); 1112 1113 /* 1114 * When cgroup1 non-hierarchy mode is used, 1115 * parent_mem_cgroup() does not walk all the way up to the 1116 * cgroup root (root_mem_cgroup). So we have to handle 1117 * dead_memcg from cgroup root separately. 1118 */ 1119 if (!mem_cgroup_is_root(last)) 1120 __invalidate_reclaim_iterators(root_mem_cgroup, 1121 dead_memcg); 1122 } 1123 1124 /** 1125 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1126 * @memcg: hierarchy root 1127 * @fn: function to call for each task 1128 * @arg: argument passed to @fn 1129 * 1130 * This function iterates over tasks attached to @memcg or to any of its 1131 * descendants and calls @fn for each task. If @fn returns a non-zero 1132 * value, the function breaks the iteration loop. Otherwise, it will iterate 1133 * over all tasks and return 0. 1134 * 1135 * This function must not be called for the root memory cgroup. 1136 */ 1137 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1138 int (*fn)(struct task_struct *, void *), void *arg) 1139 { 1140 struct mem_cgroup *iter; 1141 int ret = 0; 1142 1143 BUG_ON(mem_cgroup_is_root(memcg)); 1144 1145 for_each_mem_cgroup_tree(iter, memcg) { 1146 struct css_task_iter it; 1147 struct task_struct *task; 1148 1149 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1150 while (!ret && (task = css_task_iter_next(&it))) 1151 ret = fn(task, arg); 1152 css_task_iter_end(&it); 1153 if (ret) { 1154 mem_cgroup_iter_break(memcg, iter); 1155 break; 1156 } 1157 } 1158 } 1159 1160 #ifdef CONFIG_DEBUG_VM 1161 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1162 { 1163 struct mem_cgroup *memcg; 1164 1165 if (mem_cgroup_disabled()) 1166 return; 1167 1168 memcg = folio_memcg(folio); 1169 1170 if (!memcg) 1171 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1172 else 1173 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1174 } 1175 #endif 1176 1177 /** 1178 * folio_lruvec_lock - Lock the lruvec for a folio. 1179 * @folio: Pointer to the folio. 1180 * 1181 * These functions are safe to use under any of the following conditions: 1182 * - folio locked 1183 * - folio_test_lru false 1184 * - folio_memcg_lock() 1185 * - folio frozen (refcount of 0) 1186 * 1187 * Return: The lruvec this folio is on with its lock held. 1188 */ 1189 struct lruvec *folio_lruvec_lock(struct folio *folio) 1190 { 1191 struct lruvec *lruvec = folio_lruvec(folio); 1192 1193 spin_lock(&lruvec->lru_lock); 1194 lruvec_memcg_debug(lruvec, folio); 1195 1196 return lruvec; 1197 } 1198 1199 /** 1200 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1201 * @folio: Pointer to the folio. 1202 * 1203 * These functions are safe to use under any of the following conditions: 1204 * - folio locked 1205 * - folio_test_lru false 1206 * - folio_memcg_lock() 1207 * - folio frozen (refcount of 0) 1208 * 1209 * Return: The lruvec this folio is on with its lock held and interrupts 1210 * disabled. 1211 */ 1212 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1213 { 1214 struct lruvec *lruvec = folio_lruvec(folio); 1215 1216 spin_lock_irq(&lruvec->lru_lock); 1217 lruvec_memcg_debug(lruvec, folio); 1218 1219 return lruvec; 1220 } 1221 1222 /** 1223 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1224 * @folio: Pointer to the folio. 1225 * @flags: Pointer to irqsave flags. 1226 * 1227 * These functions are safe to use under any of the following conditions: 1228 * - folio locked 1229 * - folio_test_lru false 1230 * - folio_memcg_lock() 1231 * - folio frozen (refcount of 0) 1232 * 1233 * Return: The lruvec this folio is on with its lock held and interrupts 1234 * disabled. 1235 */ 1236 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1237 unsigned long *flags) 1238 { 1239 struct lruvec *lruvec = folio_lruvec(folio); 1240 1241 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1242 lruvec_memcg_debug(lruvec, folio); 1243 1244 return lruvec; 1245 } 1246 1247 /** 1248 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1249 * @lruvec: mem_cgroup per zone lru vector 1250 * @lru: index of lru list the page is sitting on 1251 * @zid: zone id of the accounted pages 1252 * @nr_pages: positive when adding or negative when removing 1253 * 1254 * This function must be called under lru_lock, just before a page is added 1255 * to or just after a page is removed from an lru list. 1256 */ 1257 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1258 int zid, int nr_pages) 1259 { 1260 struct mem_cgroup_per_node *mz; 1261 unsigned long *lru_size; 1262 long size; 1263 1264 if (mem_cgroup_disabled()) 1265 return; 1266 1267 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1268 lru_size = &mz->lru_zone_size[zid][lru]; 1269 1270 if (nr_pages < 0) 1271 *lru_size += nr_pages; 1272 1273 size = *lru_size; 1274 if (WARN_ONCE(size < 0, 1275 "%s(%p, %d, %d): lru_size %ld\n", 1276 __func__, lruvec, lru, nr_pages, size)) { 1277 VM_BUG_ON(1); 1278 *lru_size = 0; 1279 } 1280 1281 if (nr_pages > 0) 1282 *lru_size += nr_pages; 1283 } 1284 1285 /** 1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1287 * @memcg: the memory cgroup 1288 * 1289 * Returns the maximum amount of memory @mem can be charged with, in 1290 * pages. 1291 */ 1292 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1293 { 1294 unsigned long margin = 0; 1295 unsigned long count; 1296 unsigned long limit; 1297 1298 count = page_counter_read(&memcg->memory); 1299 limit = READ_ONCE(memcg->memory.max); 1300 if (count < limit) 1301 margin = limit - count; 1302 1303 if (do_memsw_account()) { 1304 count = page_counter_read(&memcg->memsw); 1305 limit = READ_ONCE(memcg->memsw.max); 1306 if (count < limit) 1307 margin = min(margin, limit - count); 1308 else 1309 margin = 0; 1310 } 1311 1312 return margin; 1313 } 1314 1315 struct memory_stat { 1316 const char *name; 1317 unsigned int idx; 1318 }; 1319 1320 static const struct memory_stat memory_stats[] = { 1321 { "anon", NR_ANON_MAPPED }, 1322 { "file", NR_FILE_PAGES }, 1323 { "kernel", MEMCG_KMEM }, 1324 { "kernel_stack", NR_KERNEL_STACK_KB }, 1325 { "pagetables", NR_PAGETABLE }, 1326 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1327 { "percpu", MEMCG_PERCPU_B }, 1328 { "sock", MEMCG_SOCK }, 1329 { "vmalloc", MEMCG_VMALLOC }, 1330 { "shmem", NR_SHMEM }, 1331 #ifdef CONFIG_ZSWAP 1332 { "zswap", MEMCG_ZSWAP_B }, 1333 { "zswapped", MEMCG_ZSWAPPED }, 1334 #endif 1335 { "file_mapped", NR_FILE_MAPPED }, 1336 { "file_dirty", NR_FILE_DIRTY }, 1337 { "file_writeback", NR_WRITEBACK }, 1338 #ifdef CONFIG_SWAP 1339 { "swapcached", NR_SWAPCACHE }, 1340 #endif 1341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1342 { "anon_thp", NR_ANON_THPS }, 1343 { "file_thp", NR_FILE_THPS }, 1344 { "shmem_thp", NR_SHMEM_THPS }, 1345 #endif 1346 { "inactive_anon", NR_INACTIVE_ANON }, 1347 { "active_anon", NR_ACTIVE_ANON }, 1348 { "inactive_file", NR_INACTIVE_FILE }, 1349 { "active_file", NR_ACTIVE_FILE }, 1350 { "unevictable", NR_UNEVICTABLE }, 1351 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1352 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1353 1354 /* The memory events */ 1355 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1356 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1357 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1358 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1359 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1360 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1361 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1362 1363 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1364 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1365 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1366 #ifdef CONFIG_NUMA_BALANCING 1367 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1368 #endif 1369 }; 1370 1371 /* The actual unit of the state item, not the same as the output unit */ 1372 static int memcg_page_state_unit(int item) 1373 { 1374 switch (item) { 1375 case MEMCG_PERCPU_B: 1376 case MEMCG_ZSWAP_B: 1377 case NR_SLAB_RECLAIMABLE_B: 1378 case NR_SLAB_UNRECLAIMABLE_B: 1379 return 1; 1380 case NR_KERNEL_STACK_KB: 1381 return SZ_1K; 1382 default: 1383 return PAGE_SIZE; 1384 } 1385 } 1386 1387 /* Translate stat items to the correct unit for memory.stat output */ 1388 static int memcg_page_state_output_unit(int item) 1389 { 1390 /* 1391 * Workingset state is actually in pages, but we export it to userspace 1392 * as a scalar count of events, so special case it here. 1393 * 1394 * Demotion and promotion activities are exported in pages, consistent 1395 * with their global counterparts. 1396 */ 1397 switch (item) { 1398 case WORKINGSET_REFAULT_ANON: 1399 case WORKINGSET_REFAULT_FILE: 1400 case WORKINGSET_ACTIVATE_ANON: 1401 case WORKINGSET_ACTIVATE_FILE: 1402 case WORKINGSET_RESTORE_ANON: 1403 case WORKINGSET_RESTORE_FILE: 1404 case WORKINGSET_NODERECLAIM: 1405 case PGDEMOTE_KSWAPD: 1406 case PGDEMOTE_DIRECT: 1407 case PGDEMOTE_KHUGEPAGED: 1408 #ifdef CONFIG_NUMA_BALANCING 1409 case PGPROMOTE_SUCCESS: 1410 #endif 1411 return 1; 1412 default: 1413 return memcg_page_state_unit(item); 1414 } 1415 } 1416 1417 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1418 { 1419 return memcg_page_state(memcg, item) * 1420 memcg_page_state_output_unit(item); 1421 } 1422 1423 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1424 { 1425 return memcg_page_state_local(memcg, item) * 1426 memcg_page_state_output_unit(item); 1427 } 1428 1429 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1430 { 1431 int i; 1432 1433 /* 1434 * Provide statistics on the state of the memory subsystem as 1435 * well as cumulative event counters that show past behavior. 1436 * 1437 * This list is ordered following a combination of these gradients: 1438 * 1) generic big picture -> specifics and details 1439 * 2) reflecting userspace activity -> reflecting kernel heuristics 1440 * 1441 * Current memory state: 1442 */ 1443 mem_cgroup_flush_stats(memcg); 1444 1445 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1446 u64 size; 1447 1448 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1449 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1450 1451 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1452 size += memcg_page_state_output(memcg, 1453 NR_SLAB_RECLAIMABLE_B); 1454 seq_buf_printf(s, "slab %llu\n", size); 1455 } 1456 } 1457 1458 /* Accumulated memory events */ 1459 seq_buf_printf(s, "pgscan %lu\n", 1460 memcg_events(memcg, PGSCAN_KSWAPD) + 1461 memcg_events(memcg, PGSCAN_DIRECT) + 1462 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1463 seq_buf_printf(s, "pgsteal %lu\n", 1464 memcg_events(memcg, PGSTEAL_KSWAPD) + 1465 memcg_events(memcg, PGSTEAL_DIRECT) + 1466 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1467 1468 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1469 #ifdef CONFIG_MEMCG_V1 1470 if (memcg_vm_event_stat[i] == PGPGIN || 1471 memcg_vm_event_stat[i] == PGPGOUT) 1472 continue; 1473 #endif 1474 seq_buf_printf(s, "%s %lu\n", 1475 vm_event_name(memcg_vm_event_stat[i]), 1476 memcg_events(memcg, memcg_vm_event_stat[i])); 1477 } 1478 } 1479 1480 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1481 { 1482 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1483 memcg_stat_format(memcg, s); 1484 else 1485 memcg1_stat_format(memcg, s); 1486 if (seq_buf_has_overflowed(s)) 1487 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1488 } 1489 1490 /** 1491 * mem_cgroup_print_oom_context: Print OOM information relevant to 1492 * memory controller. 1493 * @memcg: The memory cgroup that went over limit 1494 * @p: Task that is going to be killed 1495 * 1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1497 * enabled 1498 */ 1499 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1500 { 1501 rcu_read_lock(); 1502 1503 if (memcg) { 1504 pr_cont(",oom_memcg="); 1505 pr_cont_cgroup_path(memcg->css.cgroup); 1506 } else 1507 pr_cont(",global_oom"); 1508 if (p) { 1509 pr_cont(",task_memcg="); 1510 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1511 } 1512 rcu_read_unlock(); 1513 } 1514 1515 /** 1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1517 * memory controller. 1518 * @memcg: The memory cgroup that went over limit 1519 */ 1520 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1521 { 1522 /* Use static buffer, for the caller is holding oom_lock. */ 1523 static char buf[PAGE_SIZE]; 1524 struct seq_buf s; 1525 1526 lockdep_assert_held(&oom_lock); 1527 1528 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1529 K((u64)page_counter_read(&memcg->memory)), 1530 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1531 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1532 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1533 K((u64)page_counter_read(&memcg->swap)), 1534 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1535 #ifdef CONFIG_MEMCG_V1 1536 else { 1537 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1538 K((u64)page_counter_read(&memcg->memsw)), 1539 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1540 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1541 K((u64)page_counter_read(&memcg->kmem)), 1542 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1543 } 1544 #endif 1545 1546 pr_info("Memory cgroup stats for "); 1547 pr_cont_cgroup_path(memcg->css.cgroup); 1548 pr_cont(":"); 1549 seq_buf_init(&s, buf, sizeof(buf)); 1550 memory_stat_format(memcg, &s); 1551 seq_buf_do_printk(&s, KERN_INFO); 1552 } 1553 1554 /* 1555 * Return the memory (and swap, if configured) limit for a memcg. 1556 */ 1557 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1558 { 1559 unsigned long max = READ_ONCE(memcg->memory.max); 1560 1561 if (do_memsw_account()) { 1562 if (mem_cgroup_swappiness(memcg)) { 1563 /* Calculate swap excess capacity from memsw limit */ 1564 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1565 1566 max += min(swap, (unsigned long)total_swap_pages); 1567 } 1568 } else { 1569 if (mem_cgroup_swappiness(memcg)) 1570 max += min(READ_ONCE(memcg->swap.max), 1571 (unsigned long)total_swap_pages); 1572 } 1573 return max; 1574 } 1575 1576 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1577 { 1578 return page_counter_read(&memcg->memory); 1579 } 1580 1581 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1582 int order) 1583 { 1584 struct oom_control oc = { 1585 .zonelist = NULL, 1586 .nodemask = NULL, 1587 .memcg = memcg, 1588 .gfp_mask = gfp_mask, 1589 .order = order, 1590 }; 1591 bool ret = true; 1592 1593 if (mutex_lock_killable(&oom_lock)) 1594 return true; 1595 1596 if (mem_cgroup_margin(memcg) >= (1 << order)) 1597 goto unlock; 1598 1599 /* 1600 * A few threads which were not waiting at mutex_lock_killable() can 1601 * fail to bail out. Therefore, check again after holding oom_lock. 1602 */ 1603 ret = task_is_dying() || out_of_memory(&oc); 1604 1605 unlock: 1606 mutex_unlock(&oom_lock); 1607 return ret; 1608 } 1609 1610 /* 1611 * Returns true if successfully killed one or more processes. Though in some 1612 * corner cases it can return true even without killing any process. 1613 */ 1614 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1615 { 1616 bool locked, ret; 1617 1618 if (order > PAGE_ALLOC_COSTLY_ORDER) 1619 return false; 1620 1621 memcg_memory_event(memcg, MEMCG_OOM); 1622 1623 if (!memcg1_oom_prepare(memcg, &locked)) 1624 return false; 1625 1626 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1627 1628 memcg1_oom_finish(memcg, locked); 1629 1630 return ret; 1631 } 1632 1633 /** 1634 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1635 * @victim: task to be killed by the OOM killer 1636 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1637 * 1638 * Returns a pointer to a memory cgroup, which has to be cleaned up 1639 * by killing all belonging OOM-killable tasks. 1640 * 1641 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1642 */ 1643 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1644 struct mem_cgroup *oom_domain) 1645 { 1646 struct mem_cgroup *oom_group = NULL; 1647 struct mem_cgroup *memcg; 1648 1649 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1650 return NULL; 1651 1652 if (!oom_domain) 1653 oom_domain = root_mem_cgroup; 1654 1655 rcu_read_lock(); 1656 1657 memcg = mem_cgroup_from_task(victim); 1658 if (mem_cgroup_is_root(memcg)) 1659 goto out; 1660 1661 /* 1662 * If the victim task has been asynchronously moved to a different 1663 * memory cgroup, we might end up killing tasks outside oom_domain. 1664 * In this case it's better to ignore memory.group.oom. 1665 */ 1666 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1667 goto out; 1668 1669 /* 1670 * Traverse the memory cgroup hierarchy from the victim task's 1671 * cgroup up to the OOMing cgroup (or root) to find the 1672 * highest-level memory cgroup with oom.group set. 1673 */ 1674 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1675 if (READ_ONCE(memcg->oom_group)) 1676 oom_group = memcg; 1677 1678 if (memcg == oom_domain) 1679 break; 1680 } 1681 1682 if (oom_group) 1683 css_get(&oom_group->css); 1684 out: 1685 rcu_read_unlock(); 1686 1687 return oom_group; 1688 } 1689 1690 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1691 { 1692 pr_info("Tasks in "); 1693 pr_cont_cgroup_path(memcg->css.cgroup); 1694 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1695 } 1696 1697 struct memcg_stock_pcp { 1698 local_lock_t stock_lock; 1699 struct mem_cgroup *cached; /* this never be root cgroup */ 1700 unsigned int nr_pages; 1701 1702 struct obj_cgroup *cached_objcg; 1703 struct pglist_data *cached_pgdat; 1704 unsigned int nr_bytes; 1705 int nr_slab_reclaimable_b; 1706 int nr_slab_unreclaimable_b; 1707 1708 struct work_struct work; 1709 unsigned long flags; 1710 #define FLUSHING_CACHED_CHARGE 0 1711 }; 1712 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 1713 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 1714 }; 1715 static DEFINE_MUTEX(percpu_charge_mutex); 1716 1717 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 1718 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1719 struct mem_cgroup *root_memcg); 1720 1721 /** 1722 * consume_stock: Try to consume stocked charge on this cpu. 1723 * @memcg: memcg to consume from. 1724 * @nr_pages: how many pages to charge. 1725 * 1726 * The charges will only happen if @memcg matches the current cpu's memcg 1727 * stock, and at least @nr_pages are available in that stock. Failure to 1728 * service an allocation will refill the stock. 1729 * 1730 * returns true if successful, false otherwise. 1731 */ 1732 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1733 { 1734 struct memcg_stock_pcp *stock; 1735 unsigned int stock_pages; 1736 unsigned long flags; 1737 bool ret = false; 1738 1739 if (nr_pages > MEMCG_CHARGE_BATCH) 1740 return ret; 1741 1742 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1743 1744 stock = this_cpu_ptr(&memcg_stock); 1745 stock_pages = READ_ONCE(stock->nr_pages); 1746 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 1747 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 1748 ret = true; 1749 } 1750 1751 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1752 1753 return ret; 1754 } 1755 1756 /* 1757 * Returns stocks cached in percpu and reset cached information. 1758 */ 1759 static void drain_stock(struct memcg_stock_pcp *stock) 1760 { 1761 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 1762 struct mem_cgroup *old = READ_ONCE(stock->cached); 1763 1764 if (!old) 1765 return; 1766 1767 if (stock_pages) { 1768 page_counter_uncharge(&old->memory, stock_pages); 1769 if (do_memsw_account()) 1770 page_counter_uncharge(&old->memsw, stock_pages); 1771 1772 WRITE_ONCE(stock->nr_pages, 0); 1773 } 1774 1775 css_put(&old->css); 1776 WRITE_ONCE(stock->cached, NULL); 1777 } 1778 1779 static void drain_local_stock(struct work_struct *dummy) 1780 { 1781 struct memcg_stock_pcp *stock; 1782 struct obj_cgroup *old = NULL; 1783 unsigned long flags; 1784 1785 /* 1786 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1787 * drain_stock races is that we always operate on local CPU stock 1788 * here with IRQ disabled 1789 */ 1790 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1791 1792 stock = this_cpu_ptr(&memcg_stock); 1793 old = drain_obj_stock(stock); 1794 drain_stock(stock); 1795 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1796 1797 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1798 obj_cgroup_put(old); 1799 } 1800 1801 /* 1802 * Cache charges(val) to local per_cpu area. 1803 * This will be consumed by consume_stock() function, later. 1804 */ 1805 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1806 { 1807 struct memcg_stock_pcp *stock; 1808 unsigned int stock_pages; 1809 1810 stock = this_cpu_ptr(&memcg_stock); 1811 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 1812 drain_stock(stock); 1813 css_get(&memcg->css); 1814 WRITE_ONCE(stock->cached, memcg); 1815 } 1816 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 1817 WRITE_ONCE(stock->nr_pages, stock_pages); 1818 1819 if (stock_pages > MEMCG_CHARGE_BATCH) 1820 drain_stock(stock); 1821 } 1822 1823 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1824 { 1825 unsigned long flags; 1826 1827 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1828 __refill_stock(memcg, nr_pages); 1829 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1830 } 1831 1832 /* 1833 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1834 * of the hierarchy under it. 1835 */ 1836 void drain_all_stock(struct mem_cgroup *root_memcg) 1837 { 1838 int cpu, curcpu; 1839 1840 /* If someone's already draining, avoid adding running more workers. */ 1841 if (!mutex_trylock(&percpu_charge_mutex)) 1842 return; 1843 /* 1844 * Notify other cpus that system-wide "drain" is running 1845 * We do not care about races with the cpu hotplug because cpu down 1846 * as well as workers from this path always operate on the local 1847 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1848 */ 1849 migrate_disable(); 1850 curcpu = smp_processor_id(); 1851 for_each_online_cpu(cpu) { 1852 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1853 struct mem_cgroup *memcg; 1854 bool flush = false; 1855 1856 rcu_read_lock(); 1857 memcg = READ_ONCE(stock->cached); 1858 if (memcg && READ_ONCE(stock->nr_pages) && 1859 mem_cgroup_is_descendant(memcg, root_memcg)) 1860 flush = true; 1861 else if (obj_stock_flush_required(stock, root_memcg)) 1862 flush = true; 1863 rcu_read_unlock(); 1864 1865 if (flush && 1866 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1867 if (cpu == curcpu) 1868 drain_local_stock(&stock->work); 1869 else if (!cpu_is_isolated(cpu)) 1870 schedule_work_on(cpu, &stock->work); 1871 } 1872 } 1873 migrate_enable(); 1874 mutex_unlock(&percpu_charge_mutex); 1875 } 1876 1877 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1878 { 1879 struct memcg_stock_pcp *stock; 1880 1881 stock = &per_cpu(memcg_stock, cpu); 1882 drain_stock(stock); 1883 1884 return 0; 1885 } 1886 1887 static unsigned long reclaim_high(struct mem_cgroup *memcg, 1888 unsigned int nr_pages, 1889 gfp_t gfp_mask) 1890 { 1891 unsigned long nr_reclaimed = 0; 1892 1893 do { 1894 unsigned long pflags; 1895 1896 if (page_counter_read(&memcg->memory) <= 1897 READ_ONCE(memcg->memory.high)) 1898 continue; 1899 1900 memcg_memory_event(memcg, MEMCG_HIGH); 1901 1902 psi_memstall_enter(&pflags); 1903 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 1904 gfp_mask, 1905 MEMCG_RECLAIM_MAY_SWAP, 1906 NULL); 1907 psi_memstall_leave(&pflags); 1908 } while ((memcg = parent_mem_cgroup(memcg)) && 1909 !mem_cgroup_is_root(memcg)); 1910 1911 return nr_reclaimed; 1912 } 1913 1914 static void high_work_func(struct work_struct *work) 1915 { 1916 struct mem_cgroup *memcg; 1917 1918 memcg = container_of(work, struct mem_cgroup, high_work); 1919 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 1920 } 1921 1922 /* 1923 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 1924 * enough to still cause a significant slowdown in most cases, while still 1925 * allowing diagnostics and tracing to proceed without becoming stuck. 1926 */ 1927 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 1928 1929 /* 1930 * When calculating the delay, we use these either side of the exponentiation to 1931 * maintain precision and scale to a reasonable number of jiffies (see the table 1932 * below. 1933 * 1934 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 1935 * overage ratio to a delay. 1936 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 1937 * proposed penalty in order to reduce to a reasonable number of jiffies, and 1938 * to produce a reasonable delay curve. 1939 * 1940 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 1941 * reasonable delay curve compared to precision-adjusted overage, not 1942 * penalising heavily at first, but still making sure that growth beyond the 1943 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 1944 * example, with a high of 100 megabytes: 1945 * 1946 * +-------+------------------------+ 1947 * | usage | time to allocate in ms | 1948 * +-------+------------------------+ 1949 * | 100M | 0 | 1950 * | 101M | 6 | 1951 * | 102M | 25 | 1952 * | 103M | 57 | 1953 * | 104M | 102 | 1954 * | 105M | 159 | 1955 * | 106M | 230 | 1956 * | 107M | 313 | 1957 * | 108M | 409 | 1958 * | 109M | 518 | 1959 * | 110M | 639 | 1960 * | 111M | 774 | 1961 * | 112M | 921 | 1962 * | 113M | 1081 | 1963 * | 114M | 1254 | 1964 * | 115M | 1439 | 1965 * | 116M | 1638 | 1966 * | 117M | 1849 | 1967 * | 118M | 2000 | 1968 * | 119M | 2000 | 1969 * | 120M | 2000 | 1970 * +-------+------------------------+ 1971 */ 1972 #define MEMCG_DELAY_PRECISION_SHIFT 20 1973 #define MEMCG_DELAY_SCALING_SHIFT 14 1974 1975 static u64 calculate_overage(unsigned long usage, unsigned long high) 1976 { 1977 u64 overage; 1978 1979 if (usage <= high) 1980 return 0; 1981 1982 /* 1983 * Prevent division by 0 in overage calculation by acting as if 1984 * it was a threshold of 1 page 1985 */ 1986 high = max(high, 1UL); 1987 1988 overage = usage - high; 1989 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 1990 return div64_u64(overage, high); 1991 } 1992 1993 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 1994 { 1995 u64 overage, max_overage = 0; 1996 1997 do { 1998 overage = calculate_overage(page_counter_read(&memcg->memory), 1999 READ_ONCE(memcg->memory.high)); 2000 max_overage = max(overage, max_overage); 2001 } while ((memcg = parent_mem_cgroup(memcg)) && 2002 !mem_cgroup_is_root(memcg)); 2003 2004 return max_overage; 2005 } 2006 2007 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2008 { 2009 u64 overage, max_overage = 0; 2010 2011 do { 2012 overage = calculate_overage(page_counter_read(&memcg->swap), 2013 READ_ONCE(memcg->swap.high)); 2014 if (overage) 2015 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2016 max_overage = max(overage, max_overage); 2017 } while ((memcg = parent_mem_cgroup(memcg)) && 2018 !mem_cgroup_is_root(memcg)); 2019 2020 return max_overage; 2021 } 2022 2023 /* 2024 * Get the number of jiffies that we should penalise a mischievous cgroup which 2025 * is exceeding its memory.high by checking both it and its ancestors. 2026 */ 2027 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2028 unsigned int nr_pages, 2029 u64 max_overage) 2030 { 2031 unsigned long penalty_jiffies; 2032 2033 if (!max_overage) 2034 return 0; 2035 2036 /* 2037 * We use overage compared to memory.high to calculate the number of 2038 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2039 * fairly lenient on small overages, and increasingly harsh when the 2040 * memcg in question makes it clear that it has no intention of stopping 2041 * its crazy behaviour, so we exponentially increase the delay based on 2042 * overage amount. 2043 */ 2044 penalty_jiffies = max_overage * max_overage * HZ; 2045 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2046 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2047 2048 /* 2049 * Factor in the task's own contribution to the overage, such that four 2050 * N-sized allocations are throttled approximately the same as one 2051 * 4N-sized allocation. 2052 * 2053 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2054 * larger the current charge patch is than that. 2055 */ 2056 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2057 } 2058 2059 /* 2060 * Reclaims memory over the high limit. Called directly from 2061 * try_charge() (context permitting), as well as from the userland 2062 * return path where reclaim is always able to block. 2063 */ 2064 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2065 { 2066 unsigned long penalty_jiffies; 2067 unsigned long pflags; 2068 unsigned long nr_reclaimed; 2069 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2070 int nr_retries = MAX_RECLAIM_RETRIES; 2071 struct mem_cgroup *memcg; 2072 bool in_retry = false; 2073 2074 if (likely(!nr_pages)) 2075 return; 2076 2077 memcg = get_mem_cgroup_from_mm(current->mm); 2078 current->memcg_nr_pages_over_high = 0; 2079 2080 retry_reclaim: 2081 /* 2082 * Bail if the task is already exiting. Unlike memory.max, 2083 * memory.high enforcement isn't as strict, and there is no 2084 * OOM killer involved, which means the excess could already 2085 * be much bigger (and still growing) than it could for 2086 * memory.max; the dying task could get stuck in fruitless 2087 * reclaim for a long time, which isn't desirable. 2088 */ 2089 if (task_is_dying()) 2090 goto out; 2091 2092 /* 2093 * The allocating task should reclaim at least the batch size, but for 2094 * subsequent retries we only want to do what's necessary to prevent oom 2095 * or breaching resource isolation. 2096 * 2097 * This is distinct from memory.max or page allocator behaviour because 2098 * memory.high is currently batched, whereas memory.max and the page 2099 * allocator run every time an allocation is made. 2100 */ 2101 nr_reclaimed = reclaim_high(memcg, 2102 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2103 gfp_mask); 2104 2105 /* 2106 * memory.high is breached and reclaim is unable to keep up. Throttle 2107 * allocators proactively to slow down excessive growth. 2108 */ 2109 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2110 mem_find_max_overage(memcg)); 2111 2112 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2113 swap_find_max_overage(memcg)); 2114 2115 /* 2116 * Clamp the max delay per usermode return so as to still keep the 2117 * application moving forwards and also permit diagnostics, albeit 2118 * extremely slowly. 2119 */ 2120 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2121 2122 /* 2123 * Don't sleep if the amount of jiffies this memcg owes us is so low 2124 * that it's not even worth doing, in an attempt to be nice to those who 2125 * go only a small amount over their memory.high value and maybe haven't 2126 * been aggressively reclaimed enough yet. 2127 */ 2128 if (penalty_jiffies <= HZ / 100) 2129 goto out; 2130 2131 /* 2132 * If reclaim is making forward progress but we're still over 2133 * memory.high, we want to encourage that rather than doing allocator 2134 * throttling. 2135 */ 2136 if (nr_reclaimed || nr_retries--) { 2137 in_retry = true; 2138 goto retry_reclaim; 2139 } 2140 2141 /* 2142 * Reclaim didn't manage to push usage below the limit, slow 2143 * this allocating task down. 2144 * 2145 * If we exit early, we're guaranteed to die (since 2146 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2147 * need to account for any ill-begotten jiffies to pay them off later. 2148 */ 2149 psi_memstall_enter(&pflags); 2150 schedule_timeout_killable(penalty_jiffies); 2151 psi_memstall_leave(&pflags); 2152 2153 out: 2154 css_put(&memcg->css); 2155 } 2156 2157 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2158 unsigned int nr_pages) 2159 { 2160 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2161 int nr_retries = MAX_RECLAIM_RETRIES; 2162 struct mem_cgroup *mem_over_limit; 2163 struct page_counter *counter; 2164 unsigned long nr_reclaimed; 2165 bool passed_oom = false; 2166 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2167 bool drained = false; 2168 bool raised_max_event = false; 2169 unsigned long pflags; 2170 2171 retry: 2172 if (consume_stock(memcg, nr_pages)) 2173 return 0; 2174 2175 if (!do_memsw_account() || 2176 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2177 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2178 goto done_restock; 2179 if (do_memsw_account()) 2180 page_counter_uncharge(&memcg->memsw, batch); 2181 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2182 } else { 2183 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2184 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2185 } 2186 2187 if (batch > nr_pages) { 2188 batch = nr_pages; 2189 goto retry; 2190 } 2191 2192 /* 2193 * Prevent unbounded recursion when reclaim operations need to 2194 * allocate memory. This might exceed the limits temporarily, 2195 * but we prefer facilitating memory reclaim and getting back 2196 * under the limit over triggering OOM kills in these cases. 2197 */ 2198 if (unlikely(current->flags & PF_MEMALLOC)) 2199 goto force; 2200 2201 if (unlikely(task_in_memcg_oom(current))) 2202 goto nomem; 2203 2204 if (!gfpflags_allow_blocking(gfp_mask)) 2205 goto nomem; 2206 2207 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2208 raised_max_event = true; 2209 2210 psi_memstall_enter(&pflags); 2211 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2212 gfp_mask, reclaim_options, NULL); 2213 psi_memstall_leave(&pflags); 2214 2215 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2216 goto retry; 2217 2218 if (!drained) { 2219 drain_all_stock(mem_over_limit); 2220 drained = true; 2221 goto retry; 2222 } 2223 2224 if (gfp_mask & __GFP_NORETRY) 2225 goto nomem; 2226 /* 2227 * Even though the limit is exceeded at this point, reclaim 2228 * may have been able to free some pages. Retry the charge 2229 * before killing the task. 2230 * 2231 * Only for regular pages, though: huge pages are rather 2232 * unlikely to succeed so close to the limit, and we fall back 2233 * to regular pages anyway in case of failure. 2234 */ 2235 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2236 goto retry; 2237 /* 2238 * At task move, charge accounts can be doubly counted. So, it's 2239 * better to wait until the end of task_move if something is going on. 2240 */ 2241 if (memcg1_wait_acct_move(mem_over_limit)) 2242 goto retry; 2243 2244 if (nr_retries--) 2245 goto retry; 2246 2247 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2248 goto nomem; 2249 2250 /* Avoid endless loop for tasks bypassed by the oom killer */ 2251 if (passed_oom && task_is_dying()) 2252 goto nomem; 2253 2254 /* 2255 * keep retrying as long as the memcg oom killer is able to make 2256 * a forward progress or bypass the charge if the oom killer 2257 * couldn't make any progress. 2258 */ 2259 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2260 get_order(nr_pages * PAGE_SIZE))) { 2261 passed_oom = true; 2262 nr_retries = MAX_RECLAIM_RETRIES; 2263 goto retry; 2264 } 2265 nomem: 2266 /* 2267 * Memcg doesn't have a dedicated reserve for atomic 2268 * allocations. But like the global atomic pool, we need to 2269 * put the burden of reclaim on regular allocation requests 2270 * and let these go through as privileged allocations. 2271 */ 2272 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2273 return -ENOMEM; 2274 force: 2275 /* 2276 * If the allocation has to be enforced, don't forget to raise 2277 * a MEMCG_MAX event. 2278 */ 2279 if (!raised_max_event) 2280 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2281 2282 /* 2283 * The allocation either can't fail or will lead to more memory 2284 * being freed very soon. Allow memory usage go over the limit 2285 * temporarily by force charging it. 2286 */ 2287 page_counter_charge(&memcg->memory, nr_pages); 2288 if (do_memsw_account()) 2289 page_counter_charge(&memcg->memsw, nr_pages); 2290 2291 return 0; 2292 2293 done_restock: 2294 if (batch > nr_pages) 2295 refill_stock(memcg, batch - nr_pages); 2296 2297 /* 2298 * If the hierarchy is above the normal consumption range, schedule 2299 * reclaim on returning to userland. We can perform reclaim here 2300 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2301 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2302 * not recorded as it most likely matches current's and won't 2303 * change in the meantime. As high limit is checked again before 2304 * reclaim, the cost of mismatch is negligible. 2305 */ 2306 do { 2307 bool mem_high, swap_high; 2308 2309 mem_high = page_counter_read(&memcg->memory) > 2310 READ_ONCE(memcg->memory.high); 2311 swap_high = page_counter_read(&memcg->swap) > 2312 READ_ONCE(memcg->swap.high); 2313 2314 /* Don't bother a random interrupted task */ 2315 if (!in_task()) { 2316 if (mem_high) { 2317 schedule_work(&memcg->high_work); 2318 break; 2319 } 2320 continue; 2321 } 2322 2323 if (mem_high || swap_high) { 2324 /* 2325 * The allocating tasks in this cgroup will need to do 2326 * reclaim or be throttled to prevent further growth 2327 * of the memory or swap footprints. 2328 * 2329 * Target some best-effort fairness between the tasks, 2330 * and distribute reclaim work and delay penalties 2331 * based on how much each task is actually allocating. 2332 */ 2333 current->memcg_nr_pages_over_high += batch; 2334 set_notify_resume(current); 2335 break; 2336 } 2337 } while ((memcg = parent_mem_cgroup(memcg))); 2338 2339 /* 2340 * Reclaim is set up above to be called from the userland 2341 * return path. But also attempt synchronous reclaim to avoid 2342 * excessive overrun while the task is still inside the 2343 * kernel. If this is successful, the return path will see it 2344 * when it rechecks the overage and simply bail out. 2345 */ 2346 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2347 !(current->flags & PF_MEMALLOC) && 2348 gfpflags_allow_blocking(gfp_mask)) 2349 mem_cgroup_handle_over_high(gfp_mask); 2350 return 0; 2351 } 2352 2353 /** 2354 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. 2355 * @memcg: memcg previously charged. 2356 * @nr_pages: number of pages previously charged. 2357 */ 2358 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2359 { 2360 if (mem_cgroup_is_root(memcg)) 2361 return; 2362 2363 page_counter_uncharge(&memcg->memory, nr_pages); 2364 if (do_memsw_account()) 2365 page_counter_uncharge(&memcg->memsw, nr_pages); 2366 } 2367 2368 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2369 { 2370 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2371 /* 2372 * Any of the following ensures page's memcg stability: 2373 * 2374 * - the page lock 2375 * - LRU isolation 2376 * - folio_memcg_lock() 2377 * - exclusive reference 2378 * - mem_cgroup_trylock_pages() 2379 */ 2380 folio->memcg_data = (unsigned long)memcg; 2381 } 2382 2383 /** 2384 * mem_cgroup_commit_charge - commit a previously successful try_charge(). 2385 * @folio: folio to commit the charge to. 2386 * @memcg: memcg previously charged. 2387 */ 2388 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2389 { 2390 css_get(&memcg->css); 2391 commit_charge(folio, memcg); 2392 memcg1_commit_charge(folio, memcg); 2393 } 2394 2395 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2396 struct pglist_data *pgdat, 2397 enum node_stat_item idx, int nr) 2398 { 2399 struct mem_cgroup *memcg; 2400 struct lruvec *lruvec; 2401 2402 rcu_read_lock(); 2403 memcg = obj_cgroup_memcg(objcg); 2404 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2405 __mod_memcg_lruvec_state(lruvec, idx, nr); 2406 rcu_read_unlock(); 2407 } 2408 2409 static __always_inline 2410 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2411 { 2412 /* 2413 * Slab objects are accounted individually, not per-page. 2414 * Memcg membership data for each individual object is saved in 2415 * slab->obj_exts. 2416 */ 2417 if (folio_test_slab(folio)) { 2418 struct slabobj_ext *obj_exts; 2419 struct slab *slab; 2420 unsigned int off; 2421 2422 slab = folio_slab(folio); 2423 obj_exts = slab_obj_exts(slab); 2424 if (!obj_exts) 2425 return NULL; 2426 2427 off = obj_to_index(slab->slab_cache, slab, p); 2428 if (obj_exts[off].objcg) 2429 return obj_cgroup_memcg(obj_exts[off].objcg); 2430 2431 return NULL; 2432 } 2433 2434 /* 2435 * folio_memcg_check() is used here, because in theory we can encounter 2436 * a folio where the slab flag has been cleared already, but 2437 * slab->obj_exts has not been freed yet 2438 * folio_memcg_check() will guarantee that a proper memory 2439 * cgroup pointer or NULL will be returned. 2440 */ 2441 return folio_memcg_check(folio); 2442 } 2443 2444 /* 2445 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2446 * It is not suitable for objects allocated using vmalloc(). 2447 * 2448 * A passed kernel object must be a slab object or a generic kernel page. 2449 * 2450 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2451 * cgroup_mutex, etc. 2452 */ 2453 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2454 { 2455 if (mem_cgroup_disabled()) 2456 return NULL; 2457 2458 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2459 } 2460 2461 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2462 { 2463 struct obj_cgroup *objcg = NULL; 2464 2465 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2466 objcg = rcu_dereference(memcg->objcg); 2467 if (likely(objcg && obj_cgroup_tryget(objcg))) 2468 break; 2469 objcg = NULL; 2470 } 2471 return objcg; 2472 } 2473 2474 static struct obj_cgroup *current_objcg_update(void) 2475 { 2476 struct mem_cgroup *memcg; 2477 struct obj_cgroup *old, *objcg = NULL; 2478 2479 do { 2480 /* Atomically drop the update bit. */ 2481 old = xchg(¤t->objcg, NULL); 2482 if (old) { 2483 old = (struct obj_cgroup *) 2484 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2485 obj_cgroup_put(old); 2486 2487 old = NULL; 2488 } 2489 2490 /* If new objcg is NULL, no reason for the second atomic update. */ 2491 if (!current->mm || (current->flags & PF_KTHREAD)) 2492 return NULL; 2493 2494 /* 2495 * Release the objcg pointer from the previous iteration, 2496 * if try_cmpxcg() below fails. 2497 */ 2498 if (unlikely(objcg)) { 2499 obj_cgroup_put(objcg); 2500 objcg = NULL; 2501 } 2502 2503 /* 2504 * Obtain the new objcg pointer. The current task can be 2505 * asynchronously moved to another memcg and the previous 2506 * memcg can be offlined. So let's get the memcg pointer 2507 * and try get a reference to objcg under a rcu read lock. 2508 */ 2509 2510 rcu_read_lock(); 2511 memcg = mem_cgroup_from_task(current); 2512 objcg = __get_obj_cgroup_from_memcg(memcg); 2513 rcu_read_unlock(); 2514 2515 /* 2516 * Try set up a new objcg pointer atomically. If it 2517 * fails, it means the update flag was set concurrently, so 2518 * the whole procedure should be repeated. 2519 */ 2520 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2521 2522 return objcg; 2523 } 2524 2525 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2526 { 2527 struct mem_cgroup *memcg; 2528 struct obj_cgroup *objcg; 2529 2530 if (in_task()) { 2531 memcg = current->active_memcg; 2532 if (unlikely(memcg)) 2533 goto from_memcg; 2534 2535 objcg = READ_ONCE(current->objcg); 2536 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2537 objcg = current_objcg_update(); 2538 /* 2539 * Objcg reference is kept by the task, so it's safe 2540 * to use the objcg by the current task. 2541 */ 2542 return objcg; 2543 } 2544 2545 memcg = this_cpu_read(int_active_memcg); 2546 if (unlikely(memcg)) 2547 goto from_memcg; 2548 2549 return NULL; 2550 2551 from_memcg: 2552 objcg = NULL; 2553 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2554 /* 2555 * Memcg pointer is protected by scope (see set_active_memcg()) 2556 * and is pinning the corresponding objcg, so objcg can't go 2557 * away and can be used within the scope without any additional 2558 * protection. 2559 */ 2560 objcg = rcu_dereference_check(memcg->objcg, 1); 2561 if (likely(objcg)) 2562 break; 2563 } 2564 2565 return objcg; 2566 } 2567 2568 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2569 { 2570 struct obj_cgroup *objcg; 2571 2572 if (!memcg_kmem_online()) 2573 return NULL; 2574 2575 if (folio_memcg_kmem(folio)) { 2576 objcg = __folio_objcg(folio); 2577 obj_cgroup_get(objcg); 2578 } else { 2579 struct mem_cgroup *memcg; 2580 2581 rcu_read_lock(); 2582 memcg = __folio_memcg(folio); 2583 if (memcg) 2584 objcg = __get_obj_cgroup_from_memcg(memcg); 2585 else 2586 objcg = NULL; 2587 rcu_read_unlock(); 2588 } 2589 return objcg; 2590 } 2591 2592 /* 2593 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2594 * @objcg: object cgroup to uncharge 2595 * @nr_pages: number of pages to uncharge 2596 */ 2597 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2598 unsigned int nr_pages) 2599 { 2600 struct mem_cgroup *memcg; 2601 2602 memcg = get_mem_cgroup_from_objcg(objcg); 2603 2604 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2605 memcg1_account_kmem(memcg, -nr_pages); 2606 refill_stock(memcg, nr_pages); 2607 2608 css_put(&memcg->css); 2609 } 2610 2611 /* 2612 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2613 * @objcg: object cgroup to charge 2614 * @gfp: reclaim mode 2615 * @nr_pages: number of pages to charge 2616 * 2617 * Returns 0 on success, an error code on failure. 2618 */ 2619 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2620 unsigned int nr_pages) 2621 { 2622 struct mem_cgroup *memcg; 2623 int ret; 2624 2625 memcg = get_mem_cgroup_from_objcg(objcg); 2626 2627 ret = try_charge_memcg(memcg, gfp, nr_pages); 2628 if (ret) 2629 goto out; 2630 2631 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2632 memcg1_account_kmem(memcg, nr_pages); 2633 out: 2634 css_put(&memcg->css); 2635 2636 return ret; 2637 } 2638 2639 /** 2640 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2641 * @page: page to charge 2642 * @gfp: reclaim mode 2643 * @order: allocation order 2644 * 2645 * Returns 0 on success, an error code on failure. 2646 */ 2647 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2648 { 2649 struct obj_cgroup *objcg; 2650 int ret = 0; 2651 2652 objcg = current_obj_cgroup(); 2653 if (objcg) { 2654 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2655 if (!ret) { 2656 obj_cgroup_get(objcg); 2657 page->memcg_data = (unsigned long)objcg | 2658 MEMCG_DATA_KMEM; 2659 return 0; 2660 } 2661 } 2662 return ret; 2663 } 2664 2665 /** 2666 * __memcg_kmem_uncharge_page: uncharge a kmem page 2667 * @page: page to uncharge 2668 * @order: allocation order 2669 */ 2670 void __memcg_kmem_uncharge_page(struct page *page, int order) 2671 { 2672 struct folio *folio = page_folio(page); 2673 struct obj_cgroup *objcg; 2674 unsigned int nr_pages = 1 << order; 2675 2676 if (!folio_memcg_kmem(folio)) 2677 return; 2678 2679 objcg = __folio_objcg(folio); 2680 obj_cgroup_uncharge_pages(objcg, nr_pages); 2681 folio->memcg_data = 0; 2682 obj_cgroup_put(objcg); 2683 } 2684 2685 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 2686 enum node_stat_item idx, int nr) 2687 { 2688 struct memcg_stock_pcp *stock; 2689 struct obj_cgroup *old = NULL; 2690 unsigned long flags; 2691 int *bytes; 2692 2693 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2694 stock = this_cpu_ptr(&memcg_stock); 2695 2696 /* 2697 * Save vmstat data in stock and skip vmstat array update unless 2698 * accumulating over a page of vmstat data or when pgdat or idx 2699 * changes. 2700 */ 2701 if (READ_ONCE(stock->cached_objcg) != objcg) { 2702 old = drain_obj_stock(stock); 2703 obj_cgroup_get(objcg); 2704 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2705 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2706 WRITE_ONCE(stock->cached_objcg, objcg); 2707 stock->cached_pgdat = pgdat; 2708 } else if (stock->cached_pgdat != pgdat) { 2709 /* Flush the existing cached vmstat data */ 2710 struct pglist_data *oldpg = stock->cached_pgdat; 2711 2712 if (stock->nr_slab_reclaimable_b) { 2713 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2714 stock->nr_slab_reclaimable_b); 2715 stock->nr_slab_reclaimable_b = 0; 2716 } 2717 if (stock->nr_slab_unreclaimable_b) { 2718 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2719 stock->nr_slab_unreclaimable_b); 2720 stock->nr_slab_unreclaimable_b = 0; 2721 } 2722 stock->cached_pgdat = pgdat; 2723 } 2724 2725 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2726 : &stock->nr_slab_unreclaimable_b; 2727 /* 2728 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2729 * cached locally at least once before pushing it out. 2730 */ 2731 if (!*bytes) { 2732 *bytes = nr; 2733 nr = 0; 2734 } else { 2735 *bytes += nr; 2736 if (abs(*bytes) > PAGE_SIZE) { 2737 nr = *bytes; 2738 *bytes = 0; 2739 } else { 2740 nr = 0; 2741 } 2742 } 2743 if (nr) 2744 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2745 2746 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2747 obj_cgroup_put(old); 2748 } 2749 2750 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 2751 { 2752 struct memcg_stock_pcp *stock; 2753 unsigned long flags; 2754 bool ret = false; 2755 2756 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2757 2758 stock = this_cpu_ptr(&memcg_stock); 2759 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2760 stock->nr_bytes -= nr_bytes; 2761 ret = true; 2762 } 2763 2764 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2765 2766 return ret; 2767 } 2768 2769 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2770 { 2771 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2772 2773 if (!old) 2774 return NULL; 2775 2776 if (stock->nr_bytes) { 2777 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2778 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2779 2780 if (nr_pages) { 2781 struct mem_cgroup *memcg; 2782 2783 memcg = get_mem_cgroup_from_objcg(old); 2784 2785 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2786 memcg1_account_kmem(memcg, -nr_pages); 2787 __refill_stock(memcg, nr_pages); 2788 2789 css_put(&memcg->css); 2790 } 2791 2792 /* 2793 * The leftover is flushed to the centralized per-memcg value. 2794 * On the next attempt to refill obj stock it will be moved 2795 * to a per-cpu stock (probably, on an other CPU), see 2796 * refill_obj_stock(). 2797 * 2798 * How often it's flushed is a trade-off between the memory 2799 * limit enforcement accuracy and potential CPU contention, 2800 * so it might be changed in the future. 2801 */ 2802 atomic_add(nr_bytes, &old->nr_charged_bytes); 2803 stock->nr_bytes = 0; 2804 } 2805 2806 /* 2807 * Flush the vmstat data in current stock 2808 */ 2809 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2810 if (stock->nr_slab_reclaimable_b) { 2811 __mod_objcg_mlstate(old, stock->cached_pgdat, 2812 NR_SLAB_RECLAIMABLE_B, 2813 stock->nr_slab_reclaimable_b); 2814 stock->nr_slab_reclaimable_b = 0; 2815 } 2816 if (stock->nr_slab_unreclaimable_b) { 2817 __mod_objcg_mlstate(old, stock->cached_pgdat, 2818 NR_SLAB_UNRECLAIMABLE_B, 2819 stock->nr_slab_unreclaimable_b); 2820 stock->nr_slab_unreclaimable_b = 0; 2821 } 2822 stock->cached_pgdat = NULL; 2823 } 2824 2825 WRITE_ONCE(stock->cached_objcg, NULL); 2826 /* 2827 * The `old' objects needs to be released by the caller via 2828 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 2829 */ 2830 return old; 2831 } 2832 2833 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2834 struct mem_cgroup *root_memcg) 2835 { 2836 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2837 struct mem_cgroup *memcg; 2838 2839 if (objcg) { 2840 memcg = obj_cgroup_memcg(objcg); 2841 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2842 return true; 2843 } 2844 2845 return false; 2846 } 2847 2848 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2849 bool allow_uncharge) 2850 { 2851 struct memcg_stock_pcp *stock; 2852 struct obj_cgroup *old = NULL; 2853 unsigned long flags; 2854 unsigned int nr_pages = 0; 2855 2856 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2857 2858 stock = this_cpu_ptr(&memcg_stock); 2859 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2860 old = drain_obj_stock(stock); 2861 obj_cgroup_get(objcg); 2862 WRITE_ONCE(stock->cached_objcg, objcg); 2863 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2864 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2865 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2866 } 2867 stock->nr_bytes += nr_bytes; 2868 2869 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 2870 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2871 stock->nr_bytes &= (PAGE_SIZE - 1); 2872 } 2873 2874 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2875 obj_cgroup_put(old); 2876 2877 if (nr_pages) 2878 obj_cgroup_uncharge_pages(objcg, nr_pages); 2879 } 2880 2881 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 2882 { 2883 unsigned int nr_pages, nr_bytes; 2884 int ret; 2885 2886 if (consume_obj_stock(objcg, size)) 2887 return 0; 2888 2889 /* 2890 * In theory, objcg->nr_charged_bytes can have enough 2891 * pre-charged bytes to satisfy the allocation. However, 2892 * flushing objcg->nr_charged_bytes requires two atomic 2893 * operations, and objcg->nr_charged_bytes can't be big. 2894 * The shared objcg->nr_charged_bytes can also become a 2895 * performance bottleneck if all tasks of the same memcg are 2896 * trying to update it. So it's better to ignore it and try 2897 * grab some new pages. The stock's nr_bytes will be flushed to 2898 * objcg->nr_charged_bytes later on when objcg changes. 2899 * 2900 * The stock's nr_bytes may contain enough pre-charged bytes 2901 * to allow one less page from being charged, but we can't rely 2902 * on the pre-charged bytes not being changed outside of 2903 * consume_obj_stock() or refill_obj_stock(). So ignore those 2904 * pre-charged bytes as well when charging pages. To avoid a 2905 * page uncharge right after a page charge, we set the 2906 * allow_uncharge flag to false when calling refill_obj_stock() 2907 * to temporarily allow the pre-charged bytes to exceed the page 2908 * size limit. The maximum reachable value of the pre-charged 2909 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 2910 * race. 2911 */ 2912 nr_pages = size >> PAGE_SHIFT; 2913 nr_bytes = size & (PAGE_SIZE - 1); 2914 2915 if (nr_bytes) 2916 nr_pages += 1; 2917 2918 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 2919 if (!ret && nr_bytes) 2920 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 2921 2922 return ret; 2923 } 2924 2925 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 2926 { 2927 refill_obj_stock(objcg, size, true); 2928 } 2929 2930 static inline size_t obj_full_size(struct kmem_cache *s) 2931 { 2932 /* 2933 * For each accounted object there is an extra space which is used 2934 * to store obj_cgroup membership. Charge it too. 2935 */ 2936 return s->size + sizeof(struct obj_cgroup *); 2937 } 2938 2939 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2940 gfp_t flags, size_t size, void **p) 2941 { 2942 struct obj_cgroup *objcg; 2943 struct slab *slab; 2944 unsigned long off; 2945 size_t i; 2946 2947 /* 2948 * The obtained objcg pointer is safe to use within the current scope, 2949 * defined by current task or set_active_memcg() pair. 2950 * obj_cgroup_get() is used to get a permanent reference. 2951 */ 2952 objcg = current_obj_cgroup(); 2953 if (!objcg) 2954 return true; 2955 2956 /* 2957 * slab_alloc_node() avoids the NULL check, so we might be called with a 2958 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 2959 * the whole requested size. 2960 * return success as there's nothing to free back 2961 */ 2962 if (unlikely(*p == NULL)) 2963 return true; 2964 2965 flags &= gfp_allowed_mask; 2966 2967 if (lru) { 2968 int ret; 2969 struct mem_cgroup *memcg; 2970 2971 memcg = get_mem_cgroup_from_objcg(objcg); 2972 ret = memcg_list_lru_alloc(memcg, lru, flags); 2973 css_put(&memcg->css); 2974 2975 if (ret) 2976 return false; 2977 } 2978 2979 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 2980 return false; 2981 2982 for (i = 0; i < size; i++) { 2983 slab = virt_to_slab(p[i]); 2984 2985 if (!slab_obj_exts(slab) && 2986 alloc_slab_obj_exts(slab, s, flags, false)) { 2987 obj_cgroup_uncharge(objcg, obj_full_size(s)); 2988 continue; 2989 } 2990 2991 off = obj_to_index(s, slab, p[i]); 2992 obj_cgroup_get(objcg); 2993 slab_obj_exts(slab)[off].objcg = objcg; 2994 mod_objcg_state(objcg, slab_pgdat(slab), 2995 cache_vmstat_idx(s), obj_full_size(s)); 2996 } 2997 2998 return true; 2999 } 3000 3001 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3002 void **p, int objects, struct slabobj_ext *obj_exts) 3003 { 3004 for (int i = 0; i < objects; i++) { 3005 struct obj_cgroup *objcg; 3006 unsigned int off; 3007 3008 off = obj_to_index(s, slab, p[i]); 3009 objcg = obj_exts[off].objcg; 3010 if (!objcg) 3011 continue; 3012 3013 obj_exts[off].objcg = NULL; 3014 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3015 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3016 -obj_full_size(s)); 3017 obj_cgroup_put(objcg); 3018 } 3019 } 3020 3021 /* 3022 * Because folio_memcg(head) is not set on tails, set it now. 3023 */ 3024 void split_page_memcg(struct page *head, int old_order, int new_order) 3025 { 3026 struct folio *folio = page_folio(head); 3027 int i; 3028 unsigned int old_nr = 1 << old_order; 3029 unsigned int new_nr = 1 << new_order; 3030 3031 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3032 return; 3033 3034 for (i = new_nr; i < old_nr; i += new_nr) 3035 folio_page(folio, i)->memcg_data = folio->memcg_data; 3036 3037 if (folio_memcg_kmem(folio)) 3038 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1); 3039 else 3040 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1); 3041 } 3042 3043 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3044 { 3045 unsigned long val; 3046 3047 if (mem_cgroup_is_root(memcg)) { 3048 /* 3049 * Approximate root's usage from global state. This isn't 3050 * perfect, but the root usage was always an approximation. 3051 */ 3052 val = global_node_page_state(NR_FILE_PAGES) + 3053 global_node_page_state(NR_ANON_MAPPED); 3054 if (swap) 3055 val += total_swap_pages - get_nr_swap_pages(); 3056 } else { 3057 if (!swap) 3058 val = page_counter_read(&memcg->memory); 3059 else 3060 val = page_counter_read(&memcg->memsw); 3061 } 3062 return val; 3063 } 3064 3065 static int memcg_online_kmem(struct mem_cgroup *memcg) 3066 { 3067 struct obj_cgroup *objcg; 3068 3069 if (mem_cgroup_kmem_disabled()) 3070 return 0; 3071 3072 if (unlikely(mem_cgroup_is_root(memcg))) 3073 return 0; 3074 3075 objcg = obj_cgroup_alloc(); 3076 if (!objcg) 3077 return -ENOMEM; 3078 3079 objcg->memcg = memcg; 3080 rcu_assign_pointer(memcg->objcg, objcg); 3081 obj_cgroup_get(objcg); 3082 memcg->orig_objcg = objcg; 3083 3084 static_branch_enable(&memcg_kmem_online_key); 3085 3086 memcg->kmemcg_id = memcg->id.id; 3087 3088 return 0; 3089 } 3090 3091 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3092 { 3093 struct mem_cgroup *parent; 3094 3095 if (mem_cgroup_kmem_disabled()) 3096 return; 3097 3098 if (unlikely(mem_cgroup_is_root(memcg))) 3099 return; 3100 3101 parent = parent_mem_cgroup(memcg); 3102 if (!parent) 3103 parent = root_mem_cgroup; 3104 3105 memcg_reparent_objcgs(memcg, parent); 3106 3107 /* 3108 * After we have finished memcg_reparent_objcgs(), all list_lrus 3109 * corresponding to this cgroup are guaranteed to remain empty. 3110 * The ordering is imposed by list_lru_node->lock taken by 3111 * memcg_reparent_list_lrus(). 3112 */ 3113 memcg_reparent_list_lrus(memcg, parent); 3114 } 3115 3116 #ifdef CONFIG_CGROUP_WRITEBACK 3117 3118 #include <trace/events/writeback.h> 3119 3120 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3121 { 3122 return wb_domain_init(&memcg->cgwb_domain, gfp); 3123 } 3124 3125 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3126 { 3127 wb_domain_exit(&memcg->cgwb_domain); 3128 } 3129 3130 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3131 { 3132 wb_domain_size_changed(&memcg->cgwb_domain); 3133 } 3134 3135 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3136 { 3137 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3138 3139 if (!memcg->css.parent) 3140 return NULL; 3141 3142 return &memcg->cgwb_domain; 3143 } 3144 3145 /** 3146 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3147 * @wb: bdi_writeback in question 3148 * @pfilepages: out parameter for number of file pages 3149 * @pheadroom: out parameter for number of allocatable pages according to memcg 3150 * @pdirty: out parameter for number of dirty pages 3151 * @pwriteback: out parameter for number of pages under writeback 3152 * 3153 * Determine the numbers of file, headroom, dirty, and writeback pages in 3154 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3155 * is a bit more involved. 3156 * 3157 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3158 * headroom is calculated as the lowest headroom of itself and the 3159 * ancestors. Note that this doesn't consider the actual amount of 3160 * available memory in the system. The caller should further cap 3161 * *@pheadroom accordingly. 3162 */ 3163 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3164 unsigned long *pheadroom, unsigned long *pdirty, 3165 unsigned long *pwriteback) 3166 { 3167 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3168 struct mem_cgroup *parent; 3169 3170 mem_cgroup_flush_stats_ratelimited(memcg); 3171 3172 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3173 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3174 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3175 memcg_page_state(memcg, NR_ACTIVE_FILE); 3176 3177 *pheadroom = PAGE_COUNTER_MAX; 3178 while ((parent = parent_mem_cgroup(memcg))) { 3179 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3180 READ_ONCE(memcg->memory.high)); 3181 unsigned long used = page_counter_read(&memcg->memory); 3182 3183 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3184 memcg = parent; 3185 } 3186 } 3187 3188 /* 3189 * Foreign dirty flushing 3190 * 3191 * There's an inherent mismatch between memcg and writeback. The former 3192 * tracks ownership per-page while the latter per-inode. This was a 3193 * deliberate design decision because honoring per-page ownership in the 3194 * writeback path is complicated, may lead to higher CPU and IO overheads 3195 * and deemed unnecessary given that write-sharing an inode across 3196 * different cgroups isn't a common use-case. 3197 * 3198 * Combined with inode majority-writer ownership switching, this works well 3199 * enough in most cases but there are some pathological cases. For 3200 * example, let's say there are two cgroups A and B which keep writing to 3201 * different but confined parts of the same inode. B owns the inode and 3202 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3203 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3204 * triggering background writeback. A will be slowed down without a way to 3205 * make writeback of the dirty pages happen. 3206 * 3207 * Conditions like the above can lead to a cgroup getting repeatedly and 3208 * severely throttled after making some progress after each 3209 * dirty_expire_interval while the underlying IO device is almost 3210 * completely idle. 3211 * 3212 * Solving this problem completely requires matching the ownership tracking 3213 * granularities between memcg and writeback in either direction. However, 3214 * the more egregious behaviors can be avoided by simply remembering the 3215 * most recent foreign dirtying events and initiating remote flushes on 3216 * them when local writeback isn't enough to keep the memory clean enough. 3217 * 3218 * The following two functions implement such mechanism. When a foreign 3219 * page - a page whose memcg and writeback ownerships don't match - is 3220 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3221 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3222 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3223 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3224 * foreign bdi_writebacks which haven't expired. Both the numbers of 3225 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3226 * limited to MEMCG_CGWB_FRN_CNT. 3227 * 3228 * The mechanism only remembers IDs and doesn't hold any object references. 3229 * As being wrong occasionally doesn't matter, updates and accesses to the 3230 * records are lockless and racy. 3231 */ 3232 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3233 struct bdi_writeback *wb) 3234 { 3235 struct mem_cgroup *memcg = folio_memcg(folio); 3236 struct memcg_cgwb_frn *frn; 3237 u64 now = get_jiffies_64(); 3238 u64 oldest_at = now; 3239 int oldest = -1; 3240 int i; 3241 3242 trace_track_foreign_dirty(folio, wb); 3243 3244 /* 3245 * Pick the slot to use. If there is already a slot for @wb, keep 3246 * using it. If not replace the oldest one which isn't being 3247 * written out. 3248 */ 3249 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3250 frn = &memcg->cgwb_frn[i]; 3251 if (frn->bdi_id == wb->bdi->id && 3252 frn->memcg_id == wb->memcg_css->id) 3253 break; 3254 if (time_before64(frn->at, oldest_at) && 3255 atomic_read(&frn->done.cnt) == 1) { 3256 oldest = i; 3257 oldest_at = frn->at; 3258 } 3259 } 3260 3261 if (i < MEMCG_CGWB_FRN_CNT) { 3262 /* 3263 * Re-using an existing one. Update timestamp lazily to 3264 * avoid making the cacheline hot. We want them to be 3265 * reasonably up-to-date and significantly shorter than 3266 * dirty_expire_interval as that's what expires the record. 3267 * Use the shorter of 1s and dirty_expire_interval / 8. 3268 */ 3269 unsigned long update_intv = 3270 min_t(unsigned long, HZ, 3271 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3272 3273 if (time_before64(frn->at, now - update_intv)) 3274 frn->at = now; 3275 } else if (oldest >= 0) { 3276 /* replace the oldest free one */ 3277 frn = &memcg->cgwb_frn[oldest]; 3278 frn->bdi_id = wb->bdi->id; 3279 frn->memcg_id = wb->memcg_css->id; 3280 frn->at = now; 3281 } 3282 } 3283 3284 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3285 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3286 { 3287 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3288 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3289 u64 now = jiffies_64; 3290 int i; 3291 3292 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3293 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3294 3295 /* 3296 * If the record is older than dirty_expire_interval, 3297 * writeback on it has already started. No need to kick it 3298 * off again. Also, don't start a new one if there's 3299 * already one in flight. 3300 */ 3301 if (time_after64(frn->at, now - intv) && 3302 atomic_read(&frn->done.cnt) == 1) { 3303 frn->at = 0; 3304 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3305 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3306 WB_REASON_FOREIGN_FLUSH, 3307 &frn->done); 3308 } 3309 } 3310 } 3311 3312 #else /* CONFIG_CGROUP_WRITEBACK */ 3313 3314 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3315 { 3316 return 0; 3317 } 3318 3319 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3320 { 3321 } 3322 3323 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3324 { 3325 } 3326 3327 #endif /* CONFIG_CGROUP_WRITEBACK */ 3328 3329 /* 3330 * Private memory cgroup IDR 3331 * 3332 * Swap-out records and page cache shadow entries need to store memcg 3333 * references in constrained space, so we maintain an ID space that is 3334 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3335 * memory-controlled cgroups to 64k. 3336 * 3337 * However, there usually are many references to the offline CSS after 3338 * the cgroup has been destroyed, such as page cache or reclaimable 3339 * slab objects, that don't need to hang on to the ID. We want to keep 3340 * those dead CSS from occupying IDs, or we might quickly exhaust the 3341 * relatively small ID space and prevent the creation of new cgroups 3342 * even when there are much fewer than 64k cgroups - possibly none. 3343 * 3344 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3345 * be freed and recycled when it's no longer needed, which is usually 3346 * when the CSS is offlined. 3347 * 3348 * The only exception to that are records of swapped out tmpfs/shmem 3349 * pages that need to be attributed to live ancestors on swapin. But 3350 * those references are manageable from userspace. 3351 */ 3352 3353 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3354 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3355 3356 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3357 { 3358 if (memcg->id.id > 0) { 3359 xa_erase(&mem_cgroup_ids, memcg->id.id); 3360 memcg->id.id = 0; 3361 } 3362 } 3363 3364 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3365 unsigned int n) 3366 { 3367 refcount_add(n, &memcg->id.ref); 3368 } 3369 3370 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3371 { 3372 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3373 mem_cgroup_id_remove(memcg); 3374 3375 /* Memcg ID pins CSS */ 3376 css_put(&memcg->css); 3377 } 3378 } 3379 3380 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3381 { 3382 mem_cgroup_id_put_many(memcg, 1); 3383 } 3384 3385 /** 3386 * mem_cgroup_from_id - look up a memcg from a memcg id 3387 * @id: the memcg id to look up 3388 * 3389 * Caller must hold rcu_read_lock(). 3390 */ 3391 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3392 { 3393 WARN_ON_ONCE(!rcu_read_lock_held()); 3394 return xa_load(&mem_cgroup_ids, id); 3395 } 3396 3397 #ifdef CONFIG_SHRINKER_DEBUG 3398 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3399 { 3400 struct cgroup *cgrp; 3401 struct cgroup_subsys_state *css; 3402 struct mem_cgroup *memcg; 3403 3404 cgrp = cgroup_get_from_id(ino); 3405 if (IS_ERR(cgrp)) 3406 return ERR_CAST(cgrp); 3407 3408 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3409 if (css) 3410 memcg = container_of(css, struct mem_cgroup, css); 3411 else 3412 memcg = ERR_PTR(-ENOENT); 3413 3414 cgroup_put(cgrp); 3415 3416 return memcg; 3417 } 3418 #endif 3419 3420 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3421 { 3422 struct mem_cgroup_per_node *pn; 3423 3424 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3425 if (!pn) 3426 return false; 3427 3428 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3429 GFP_KERNEL_ACCOUNT, node); 3430 if (!pn->lruvec_stats) 3431 goto fail; 3432 3433 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3434 GFP_KERNEL_ACCOUNT); 3435 if (!pn->lruvec_stats_percpu) 3436 goto fail; 3437 3438 lruvec_init(&pn->lruvec); 3439 pn->memcg = memcg; 3440 3441 memcg->nodeinfo[node] = pn; 3442 return true; 3443 fail: 3444 kfree(pn->lruvec_stats); 3445 kfree(pn); 3446 return false; 3447 } 3448 3449 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3450 { 3451 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3452 3453 if (!pn) 3454 return; 3455 3456 free_percpu(pn->lruvec_stats_percpu); 3457 kfree(pn->lruvec_stats); 3458 kfree(pn); 3459 } 3460 3461 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3462 { 3463 int node; 3464 3465 obj_cgroup_put(memcg->orig_objcg); 3466 3467 for_each_node(node) 3468 free_mem_cgroup_per_node_info(memcg, node); 3469 memcg1_free_events(memcg); 3470 kfree(memcg->vmstats); 3471 free_percpu(memcg->vmstats_percpu); 3472 kfree(memcg); 3473 } 3474 3475 static void mem_cgroup_free(struct mem_cgroup *memcg) 3476 { 3477 lru_gen_exit_memcg(memcg); 3478 memcg_wb_domain_exit(memcg); 3479 __mem_cgroup_free(memcg); 3480 } 3481 3482 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3483 { 3484 struct memcg_vmstats_percpu *statc, *pstatc; 3485 struct mem_cgroup *memcg; 3486 int node, cpu; 3487 int __maybe_unused i; 3488 long error; 3489 3490 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3491 if (!memcg) 3492 return ERR_PTR(-ENOMEM); 3493 3494 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3495 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3496 if (error) 3497 goto fail; 3498 error = -ENOMEM; 3499 3500 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3501 GFP_KERNEL_ACCOUNT); 3502 if (!memcg->vmstats) 3503 goto fail; 3504 3505 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3506 GFP_KERNEL_ACCOUNT); 3507 if (!memcg->vmstats_percpu) 3508 goto fail; 3509 3510 if (!memcg1_alloc_events(memcg)) 3511 goto fail; 3512 3513 for_each_possible_cpu(cpu) { 3514 if (parent) 3515 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3516 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3517 statc->parent = parent ? pstatc : NULL; 3518 statc->vmstats = memcg->vmstats; 3519 } 3520 3521 for_each_node(node) 3522 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3523 goto fail; 3524 3525 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3526 goto fail; 3527 3528 INIT_WORK(&memcg->high_work, high_work_func); 3529 vmpressure_init(&memcg->vmpressure); 3530 INIT_LIST_HEAD(&memcg->memory_peaks); 3531 INIT_LIST_HEAD(&memcg->swap_peaks); 3532 spin_lock_init(&memcg->peaks_lock); 3533 memcg->socket_pressure = jiffies; 3534 memcg1_memcg_init(memcg); 3535 memcg->kmemcg_id = -1; 3536 INIT_LIST_HEAD(&memcg->objcg_list); 3537 #ifdef CONFIG_CGROUP_WRITEBACK 3538 INIT_LIST_HEAD(&memcg->cgwb_list); 3539 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3540 memcg->cgwb_frn[i].done = 3541 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3542 #endif 3543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3544 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3545 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3546 memcg->deferred_split_queue.split_queue_len = 0; 3547 #endif 3548 lru_gen_init_memcg(memcg); 3549 return memcg; 3550 fail: 3551 mem_cgroup_id_remove(memcg); 3552 __mem_cgroup_free(memcg); 3553 return ERR_PTR(error); 3554 } 3555 3556 static struct cgroup_subsys_state * __ref 3557 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3558 { 3559 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3560 struct mem_cgroup *memcg, *old_memcg; 3561 3562 old_memcg = set_active_memcg(parent); 3563 memcg = mem_cgroup_alloc(parent); 3564 set_active_memcg(old_memcg); 3565 if (IS_ERR(memcg)) 3566 return ERR_CAST(memcg); 3567 3568 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3569 memcg1_soft_limit_reset(memcg); 3570 #ifdef CONFIG_ZSWAP 3571 memcg->zswap_max = PAGE_COUNTER_MAX; 3572 WRITE_ONCE(memcg->zswap_writeback, true); 3573 #endif 3574 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3575 if (parent) { 3576 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3577 3578 page_counter_init(&memcg->memory, &parent->memory, true); 3579 page_counter_init(&memcg->swap, &parent->swap, false); 3580 #ifdef CONFIG_MEMCG_V1 3581 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3582 page_counter_init(&memcg->kmem, &parent->kmem, false); 3583 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3584 #endif 3585 } else { 3586 init_memcg_stats(); 3587 init_memcg_events(); 3588 page_counter_init(&memcg->memory, NULL, true); 3589 page_counter_init(&memcg->swap, NULL, false); 3590 #ifdef CONFIG_MEMCG_V1 3591 page_counter_init(&memcg->kmem, NULL, false); 3592 page_counter_init(&memcg->tcpmem, NULL, false); 3593 #endif 3594 root_mem_cgroup = memcg; 3595 return &memcg->css; 3596 } 3597 3598 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3599 static_branch_inc(&memcg_sockets_enabled_key); 3600 3601 if (!cgroup_memory_nobpf) 3602 static_branch_inc(&memcg_bpf_enabled_key); 3603 3604 return &memcg->css; 3605 } 3606 3607 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3608 { 3609 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3610 3611 if (memcg_online_kmem(memcg)) 3612 goto remove_id; 3613 3614 /* 3615 * A memcg must be visible for expand_shrinker_info() 3616 * by the time the maps are allocated. So, we allocate maps 3617 * here, when for_each_mem_cgroup() can't skip it. 3618 */ 3619 if (alloc_shrinker_info(memcg)) 3620 goto offline_kmem; 3621 3622 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3623 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3624 FLUSH_TIME); 3625 lru_gen_online_memcg(memcg); 3626 3627 /* Online state pins memcg ID, memcg ID pins CSS */ 3628 refcount_set(&memcg->id.ref, 1); 3629 css_get(css); 3630 3631 /* 3632 * Ensure mem_cgroup_from_id() works once we're fully online. 3633 * 3634 * We could do this earlier and require callers to filter with 3635 * css_tryget_online(). But right now there are no users that 3636 * need earlier access, and the workingset code relies on the 3637 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3638 * publish it here at the end of onlining. This matches the 3639 * regular ID destruction during offlining. 3640 */ 3641 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3642 3643 return 0; 3644 offline_kmem: 3645 memcg_offline_kmem(memcg); 3646 remove_id: 3647 mem_cgroup_id_remove(memcg); 3648 return -ENOMEM; 3649 } 3650 3651 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3652 { 3653 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3654 3655 memcg1_css_offline(memcg); 3656 3657 page_counter_set_min(&memcg->memory, 0); 3658 page_counter_set_low(&memcg->memory, 0); 3659 3660 zswap_memcg_offline_cleanup(memcg); 3661 3662 memcg_offline_kmem(memcg); 3663 reparent_shrinker_deferred(memcg); 3664 wb_memcg_offline(memcg); 3665 lru_gen_offline_memcg(memcg); 3666 3667 drain_all_stock(memcg); 3668 3669 mem_cgroup_id_put(memcg); 3670 } 3671 3672 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3673 { 3674 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3675 3676 invalidate_reclaim_iterators(memcg); 3677 lru_gen_release_memcg(memcg); 3678 } 3679 3680 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3681 { 3682 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3683 int __maybe_unused i; 3684 3685 #ifdef CONFIG_CGROUP_WRITEBACK 3686 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3687 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3688 #endif 3689 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3690 static_branch_dec(&memcg_sockets_enabled_key); 3691 3692 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3693 static_branch_dec(&memcg_sockets_enabled_key); 3694 3695 if (!cgroup_memory_nobpf) 3696 static_branch_dec(&memcg_bpf_enabled_key); 3697 3698 vmpressure_cleanup(&memcg->vmpressure); 3699 cancel_work_sync(&memcg->high_work); 3700 memcg1_remove_from_trees(memcg); 3701 free_shrinker_info(memcg); 3702 mem_cgroup_free(memcg); 3703 } 3704 3705 /** 3706 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3707 * @css: the target css 3708 * 3709 * Reset the states of the mem_cgroup associated with @css. This is 3710 * invoked when the userland requests disabling on the default hierarchy 3711 * but the memcg is pinned through dependency. The memcg should stop 3712 * applying policies and should revert to the vanilla state as it may be 3713 * made visible again. 3714 * 3715 * The current implementation only resets the essential configurations. 3716 * This needs to be expanded to cover all the visible parts. 3717 */ 3718 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3719 { 3720 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3721 3722 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3723 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3724 #ifdef CONFIG_MEMCG_V1 3725 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3726 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3727 #endif 3728 page_counter_set_min(&memcg->memory, 0); 3729 page_counter_set_low(&memcg->memory, 0); 3730 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3731 memcg1_soft_limit_reset(memcg); 3732 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3733 memcg_wb_domain_size_changed(memcg); 3734 } 3735 3736 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3737 { 3738 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3739 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3740 struct memcg_vmstats_percpu *statc; 3741 long delta, delta_cpu, v; 3742 int i, nid; 3743 3744 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3745 3746 for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) { 3747 /* 3748 * Collect the aggregated propagation counts of groups 3749 * below us. We're in a per-cpu loop here and this is 3750 * a global counter, so the first cycle will get them. 3751 */ 3752 delta = memcg->vmstats->state_pending[i]; 3753 if (delta) 3754 memcg->vmstats->state_pending[i] = 0; 3755 3756 /* Add CPU changes on this level since the last flush */ 3757 delta_cpu = 0; 3758 v = READ_ONCE(statc->state[i]); 3759 if (v != statc->state_prev[i]) { 3760 delta_cpu = v - statc->state_prev[i]; 3761 delta += delta_cpu; 3762 statc->state_prev[i] = v; 3763 } 3764 3765 /* Aggregate counts on this level and propagate upwards */ 3766 if (delta_cpu) 3767 memcg->vmstats->state_local[i] += delta_cpu; 3768 3769 if (delta) { 3770 memcg->vmstats->state[i] += delta; 3771 if (parent) 3772 parent->vmstats->state_pending[i] += delta; 3773 } 3774 } 3775 3776 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 3777 delta = memcg->vmstats->events_pending[i]; 3778 if (delta) 3779 memcg->vmstats->events_pending[i] = 0; 3780 3781 delta_cpu = 0; 3782 v = READ_ONCE(statc->events[i]); 3783 if (v != statc->events_prev[i]) { 3784 delta_cpu = v - statc->events_prev[i]; 3785 delta += delta_cpu; 3786 statc->events_prev[i] = v; 3787 } 3788 3789 if (delta_cpu) 3790 memcg->vmstats->events_local[i] += delta_cpu; 3791 3792 if (delta) { 3793 memcg->vmstats->events[i] += delta; 3794 if (parent) 3795 parent->vmstats->events_pending[i] += delta; 3796 } 3797 } 3798 3799 for_each_node_state(nid, N_MEMORY) { 3800 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3801 struct lruvec_stats *lstats = pn->lruvec_stats; 3802 struct lruvec_stats *plstats = NULL; 3803 struct lruvec_stats_percpu *lstatc; 3804 3805 if (parent) 3806 plstats = parent->nodeinfo[nid]->lruvec_stats; 3807 3808 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 3809 3810 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) { 3811 delta = lstats->state_pending[i]; 3812 if (delta) 3813 lstats->state_pending[i] = 0; 3814 3815 delta_cpu = 0; 3816 v = READ_ONCE(lstatc->state[i]); 3817 if (v != lstatc->state_prev[i]) { 3818 delta_cpu = v - lstatc->state_prev[i]; 3819 delta += delta_cpu; 3820 lstatc->state_prev[i] = v; 3821 } 3822 3823 if (delta_cpu) 3824 lstats->state_local[i] += delta_cpu; 3825 3826 if (delta) { 3827 lstats->state[i] += delta; 3828 if (plstats) 3829 plstats->state_pending[i] += delta; 3830 } 3831 } 3832 } 3833 WRITE_ONCE(statc->stats_updates, 0); 3834 /* We are in a per-cpu loop here, only do the atomic write once */ 3835 if (atomic64_read(&memcg->vmstats->stats_updates)) 3836 atomic64_set(&memcg->vmstats->stats_updates, 0); 3837 } 3838 3839 static void mem_cgroup_fork(struct task_struct *task) 3840 { 3841 /* 3842 * Set the update flag to cause task->objcg to be initialized lazily 3843 * on the first allocation. It can be done without any synchronization 3844 * because it's always performed on the current task, so does 3845 * current_objcg_update(). 3846 */ 3847 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 3848 } 3849 3850 static void mem_cgroup_exit(struct task_struct *task) 3851 { 3852 struct obj_cgroup *objcg = task->objcg; 3853 3854 objcg = (struct obj_cgroup *) 3855 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 3856 obj_cgroup_put(objcg); 3857 3858 /* 3859 * Some kernel allocations can happen after this point, 3860 * but let's ignore them. It can be done without any synchronization 3861 * because it's always performed on the current task, so does 3862 * current_objcg_update(). 3863 */ 3864 task->objcg = NULL; 3865 } 3866 3867 #ifdef CONFIG_LRU_GEN 3868 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 3869 { 3870 struct task_struct *task; 3871 struct cgroup_subsys_state *css; 3872 3873 /* find the first leader if there is any */ 3874 cgroup_taskset_for_each_leader(task, css, tset) 3875 break; 3876 3877 if (!task) 3878 return; 3879 3880 task_lock(task); 3881 if (task->mm && READ_ONCE(task->mm->owner) == task) 3882 lru_gen_migrate_mm(task->mm); 3883 task_unlock(task); 3884 } 3885 #else 3886 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 3887 #endif /* CONFIG_LRU_GEN */ 3888 3889 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 3890 { 3891 struct task_struct *task; 3892 struct cgroup_subsys_state *css; 3893 3894 cgroup_taskset_for_each(task, css, tset) { 3895 /* atomically set the update bit */ 3896 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 3897 } 3898 } 3899 3900 static void mem_cgroup_attach(struct cgroup_taskset *tset) 3901 { 3902 mem_cgroup_lru_gen_attach(tset); 3903 mem_cgroup_kmem_attach(tset); 3904 } 3905 3906 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 3907 { 3908 if (value == PAGE_COUNTER_MAX) 3909 seq_puts(m, "max\n"); 3910 else 3911 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 3912 3913 return 0; 3914 } 3915 3916 static u64 memory_current_read(struct cgroup_subsys_state *css, 3917 struct cftype *cft) 3918 { 3919 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3920 3921 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 3922 } 3923 3924 #define OFP_PEAK_UNSET (((-1UL))) 3925 3926 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 3927 { 3928 struct cgroup_of_peak *ofp = of_peak(sf->private); 3929 u64 fd_peak = READ_ONCE(ofp->value), peak; 3930 3931 /* User wants global or local peak? */ 3932 if (fd_peak == OFP_PEAK_UNSET) 3933 peak = pc->watermark; 3934 else 3935 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 3936 3937 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 3938 return 0; 3939 } 3940 3941 static int memory_peak_show(struct seq_file *sf, void *v) 3942 { 3943 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3944 3945 return peak_show(sf, v, &memcg->memory); 3946 } 3947 3948 static int peak_open(struct kernfs_open_file *of) 3949 { 3950 struct cgroup_of_peak *ofp = of_peak(of); 3951 3952 ofp->value = OFP_PEAK_UNSET; 3953 return 0; 3954 } 3955 3956 static void peak_release(struct kernfs_open_file *of) 3957 { 3958 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3959 struct cgroup_of_peak *ofp = of_peak(of); 3960 3961 if (ofp->value == OFP_PEAK_UNSET) { 3962 /* fast path (no writes on this fd) */ 3963 return; 3964 } 3965 spin_lock(&memcg->peaks_lock); 3966 list_del(&ofp->list); 3967 spin_unlock(&memcg->peaks_lock); 3968 } 3969 3970 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 3971 loff_t off, struct page_counter *pc, 3972 struct list_head *watchers) 3973 { 3974 unsigned long usage; 3975 struct cgroup_of_peak *peer_ctx; 3976 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3977 struct cgroup_of_peak *ofp = of_peak(of); 3978 3979 spin_lock(&memcg->peaks_lock); 3980 3981 usage = page_counter_read(pc); 3982 WRITE_ONCE(pc->local_watermark, usage); 3983 3984 list_for_each_entry(peer_ctx, watchers, list) 3985 if (usage > peer_ctx->value) 3986 WRITE_ONCE(peer_ctx->value, usage); 3987 3988 /* initial write, register watcher */ 3989 if (ofp->value == -1) 3990 list_add(&ofp->list, watchers); 3991 3992 WRITE_ONCE(ofp->value, usage); 3993 spin_unlock(&memcg->peaks_lock); 3994 3995 return nbytes; 3996 } 3997 3998 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 3999 size_t nbytes, loff_t off) 4000 { 4001 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4002 4003 return peak_write(of, buf, nbytes, off, &memcg->memory, 4004 &memcg->memory_peaks); 4005 } 4006 4007 #undef OFP_PEAK_UNSET 4008 4009 static int memory_min_show(struct seq_file *m, void *v) 4010 { 4011 return seq_puts_memcg_tunable(m, 4012 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4013 } 4014 4015 static ssize_t memory_min_write(struct kernfs_open_file *of, 4016 char *buf, size_t nbytes, loff_t off) 4017 { 4018 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4019 unsigned long min; 4020 int err; 4021 4022 buf = strstrip(buf); 4023 err = page_counter_memparse(buf, "max", &min); 4024 if (err) 4025 return err; 4026 4027 page_counter_set_min(&memcg->memory, min); 4028 4029 return nbytes; 4030 } 4031 4032 static int memory_low_show(struct seq_file *m, void *v) 4033 { 4034 return seq_puts_memcg_tunable(m, 4035 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4036 } 4037 4038 static ssize_t memory_low_write(struct kernfs_open_file *of, 4039 char *buf, size_t nbytes, loff_t off) 4040 { 4041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4042 unsigned long low; 4043 int err; 4044 4045 buf = strstrip(buf); 4046 err = page_counter_memparse(buf, "max", &low); 4047 if (err) 4048 return err; 4049 4050 page_counter_set_low(&memcg->memory, low); 4051 4052 return nbytes; 4053 } 4054 4055 static int memory_high_show(struct seq_file *m, void *v) 4056 { 4057 return seq_puts_memcg_tunable(m, 4058 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4059 } 4060 4061 static ssize_t memory_high_write(struct kernfs_open_file *of, 4062 char *buf, size_t nbytes, loff_t off) 4063 { 4064 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4065 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4066 bool drained = false; 4067 unsigned long high; 4068 int err; 4069 4070 buf = strstrip(buf); 4071 err = page_counter_memparse(buf, "max", &high); 4072 if (err) 4073 return err; 4074 4075 page_counter_set_high(&memcg->memory, high); 4076 4077 for (;;) { 4078 unsigned long nr_pages = page_counter_read(&memcg->memory); 4079 unsigned long reclaimed; 4080 4081 if (nr_pages <= high) 4082 break; 4083 4084 if (signal_pending(current)) 4085 break; 4086 4087 if (!drained) { 4088 drain_all_stock(memcg); 4089 drained = true; 4090 continue; 4091 } 4092 4093 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4094 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4095 4096 if (!reclaimed && !nr_retries--) 4097 break; 4098 } 4099 4100 memcg_wb_domain_size_changed(memcg); 4101 return nbytes; 4102 } 4103 4104 static int memory_max_show(struct seq_file *m, void *v) 4105 { 4106 return seq_puts_memcg_tunable(m, 4107 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4108 } 4109 4110 static ssize_t memory_max_write(struct kernfs_open_file *of, 4111 char *buf, size_t nbytes, loff_t off) 4112 { 4113 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4114 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4115 bool drained = false; 4116 unsigned long max; 4117 int err; 4118 4119 buf = strstrip(buf); 4120 err = page_counter_memparse(buf, "max", &max); 4121 if (err) 4122 return err; 4123 4124 xchg(&memcg->memory.max, max); 4125 4126 for (;;) { 4127 unsigned long nr_pages = page_counter_read(&memcg->memory); 4128 4129 if (nr_pages <= max) 4130 break; 4131 4132 if (signal_pending(current)) 4133 break; 4134 4135 if (!drained) { 4136 drain_all_stock(memcg); 4137 drained = true; 4138 continue; 4139 } 4140 4141 if (nr_reclaims) { 4142 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4143 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4144 nr_reclaims--; 4145 continue; 4146 } 4147 4148 memcg_memory_event(memcg, MEMCG_OOM); 4149 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4150 break; 4151 } 4152 4153 memcg_wb_domain_size_changed(memcg); 4154 return nbytes; 4155 } 4156 4157 /* 4158 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4159 * if any new events become available. 4160 */ 4161 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4162 { 4163 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4164 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4165 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4166 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4167 seq_printf(m, "oom_kill %lu\n", 4168 atomic_long_read(&events[MEMCG_OOM_KILL])); 4169 seq_printf(m, "oom_group_kill %lu\n", 4170 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4171 } 4172 4173 static int memory_events_show(struct seq_file *m, void *v) 4174 { 4175 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4176 4177 __memory_events_show(m, memcg->memory_events); 4178 return 0; 4179 } 4180 4181 static int memory_events_local_show(struct seq_file *m, void *v) 4182 { 4183 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4184 4185 __memory_events_show(m, memcg->memory_events_local); 4186 return 0; 4187 } 4188 4189 int memory_stat_show(struct seq_file *m, void *v) 4190 { 4191 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4192 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 4193 struct seq_buf s; 4194 4195 if (!buf) 4196 return -ENOMEM; 4197 seq_buf_init(&s, buf, PAGE_SIZE); 4198 memory_stat_format(memcg, &s); 4199 seq_puts(m, buf); 4200 kfree(buf); 4201 return 0; 4202 } 4203 4204 #ifdef CONFIG_NUMA 4205 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4206 int item) 4207 { 4208 return lruvec_page_state(lruvec, item) * 4209 memcg_page_state_output_unit(item); 4210 } 4211 4212 static int memory_numa_stat_show(struct seq_file *m, void *v) 4213 { 4214 int i; 4215 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4216 4217 mem_cgroup_flush_stats(memcg); 4218 4219 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4220 int nid; 4221 4222 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4223 continue; 4224 4225 seq_printf(m, "%s", memory_stats[i].name); 4226 for_each_node_state(nid, N_MEMORY) { 4227 u64 size; 4228 struct lruvec *lruvec; 4229 4230 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4231 size = lruvec_page_state_output(lruvec, 4232 memory_stats[i].idx); 4233 seq_printf(m, " N%d=%llu", nid, size); 4234 } 4235 seq_putc(m, '\n'); 4236 } 4237 4238 return 0; 4239 } 4240 #endif 4241 4242 static int memory_oom_group_show(struct seq_file *m, void *v) 4243 { 4244 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4245 4246 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4247 4248 return 0; 4249 } 4250 4251 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4252 char *buf, size_t nbytes, loff_t off) 4253 { 4254 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4255 int ret, oom_group; 4256 4257 buf = strstrip(buf); 4258 if (!buf) 4259 return -EINVAL; 4260 4261 ret = kstrtoint(buf, 0, &oom_group); 4262 if (ret) 4263 return ret; 4264 4265 if (oom_group != 0 && oom_group != 1) 4266 return -EINVAL; 4267 4268 WRITE_ONCE(memcg->oom_group, oom_group); 4269 4270 return nbytes; 4271 } 4272 4273 enum { 4274 MEMORY_RECLAIM_SWAPPINESS = 0, 4275 MEMORY_RECLAIM_NULL, 4276 }; 4277 4278 static const match_table_t tokens = { 4279 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4280 { MEMORY_RECLAIM_NULL, NULL }, 4281 }; 4282 4283 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4284 size_t nbytes, loff_t off) 4285 { 4286 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4287 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4288 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4289 int swappiness = -1; 4290 unsigned int reclaim_options; 4291 char *old_buf, *start; 4292 substring_t args[MAX_OPT_ARGS]; 4293 4294 buf = strstrip(buf); 4295 4296 old_buf = buf; 4297 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4298 if (buf == old_buf) 4299 return -EINVAL; 4300 4301 buf = strstrip(buf); 4302 4303 while ((start = strsep(&buf, " ")) != NULL) { 4304 if (!strlen(start)) 4305 continue; 4306 switch (match_token(start, tokens, args)) { 4307 case MEMORY_RECLAIM_SWAPPINESS: 4308 if (match_int(&args[0], &swappiness)) 4309 return -EINVAL; 4310 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4311 return -EINVAL; 4312 break; 4313 default: 4314 return -EINVAL; 4315 } 4316 } 4317 4318 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4319 while (nr_reclaimed < nr_to_reclaim) { 4320 /* Will converge on zero, but reclaim enforces a minimum */ 4321 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4322 unsigned long reclaimed; 4323 4324 if (signal_pending(current)) 4325 return -EINTR; 4326 4327 /* 4328 * This is the final attempt, drain percpu lru caches in the 4329 * hope of introducing more evictable pages for 4330 * try_to_free_mem_cgroup_pages(). 4331 */ 4332 if (!nr_retries) 4333 lru_add_drain_all(); 4334 4335 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4336 batch_size, GFP_KERNEL, 4337 reclaim_options, 4338 swappiness == -1 ? NULL : &swappiness); 4339 4340 if (!reclaimed && !nr_retries--) 4341 return -EAGAIN; 4342 4343 nr_reclaimed += reclaimed; 4344 } 4345 4346 return nbytes; 4347 } 4348 4349 static struct cftype memory_files[] = { 4350 { 4351 .name = "current", 4352 .flags = CFTYPE_NOT_ON_ROOT, 4353 .read_u64 = memory_current_read, 4354 }, 4355 { 4356 .name = "peak", 4357 .flags = CFTYPE_NOT_ON_ROOT, 4358 .open = peak_open, 4359 .release = peak_release, 4360 .seq_show = memory_peak_show, 4361 .write = memory_peak_write, 4362 }, 4363 { 4364 .name = "min", 4365 .flags = CFTYPE_NOT_ON_ROOT, 4366 .seq_show = memory_min_show, 4367 .write = memory_min_write, 4368 }, 4369 { 4370 .name = "low", 4371 .flags = CFTYPE_NOT_ON_ROOT, 4372 .seq_show = memory_low_show, 4373 .write = memory_low_write, 4374 }, 4375 { 4376 .name = "high", 4377 .flags = CFTYPE_NOT_ON_ROOT, 4378 .seq_show = memory_high_show, 4379 .write = memory_high_write, 4380 }, 4381 { 4382 .name = "max", 4383 .flags = CFTYPE_NOT_ON_ROOT, 4384 .seq_show = memory_max_show, 4385 .write = memory_max_write, 4386 }, 4387 { 4388 .name = "events", 4389 .flags = CFTYPE_NOT_ON_ROOT, 4390 .file_offset = offsetof(struct mem_cgroup, events_file), 4391 .seq_show = memory_events_show, 4392 }, 4393 { 4394 .name = "events.local", 4395 .flags = CFTYPE_NOT_ON_ROOT, 4396 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4397 .seq_show = memory_events_local_show, 4398 }, 4399 { 4400 .name = "stat", 4401 .seq_show = memory_stat_show, 4402 }, 4403 #ifdef CONFIG_NUMA 4404 { 4405 .name = "numa_stat", 4406 .seq_show = memory_numa_stat_show, 4407 }, 4408 #endif 4409 { 4410 .name = "oom.group", 4411 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4412 .seq_show = memory_oom_group_show, 4413 .write = memory_oom_group_write, 4414 }, 4415 { 4416 .name = "reclaim", 4417 .flags = CFTYPE_NS_DELEGATABLE, 4418 .write = memory_reclaim, 4419 }, 4420 { } /* terminate */ 4421 }; 4422 4423 struct cgroup_subsys memory_cgrp_subsys = { 4424 .css_alloc = mem_cgroup_css_alloc, 4425 .css_online = mem_cgroup_css_online, 4426 .css_offline = mem_cgroup_css_offline, 4427 .css_released = mem_cgroup_css_released, 4428 .css_free = mem_cgroup_css_free, 4429 .css_reset = mem_cgroup_css_reset, 4430 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4431 .attach = mem_cgroup_attach, 4432 .fork = mem_cgroup_fork, 4433 .exit = mem_cgroup_exit, 4434 .dfl_cftypes = memory_files, 4435 #ifdef CONFIG_MEMCG_V1 4436 .can_attach = memcg1_can_attach, 4437 .cancel_attach = memcg1_cancel_attach, 4438 .post_attach = memcg1_move_task, 4439 .legacy_cftypes = mem_cgroup_legacy_files, 4440 #endif 4441 .early_init = 0, 4442 }; 4443 4444 /** 4445 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4446 * @root: the top ancestor of the sub-tree being checked 4447 * @memcg: the memory cgroup to check 4448 * 4449 * WARNING: This function is not stateless! It can only be used as part 4450 * of a top-down tree iteration, not for isolated queries. 4451 */ 4452 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4453 struct mem_cgroup *memcg) 4454 { 4455 bool recursive_protection = 4456 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4457 4458 if (mem_cgroup_disabled()) 4459 return; 4460 4461 if (!root) 4462 root = root_mem_cgroup; 4463 4464 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4465 } 4466 4467 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4468 gfp_t gfp) 4469 { 4470 int ret; 4471 4472 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4473 if (ret) 4474 goto out; 4475 4476 mem_cgroup_commit_charge(folio, memcg); 4477 out: 4478 return ret; 4479 } 4480 4481 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4482 { 4483 struct mem_cgroup *memcg; 4484 int ret; 4485 4486 memcg = get_mem_cgroup_from_mm(mm); 4487 ret = charge_memcg(folio, memcg, gfp); 4488 css_put(&memcg->css); 4489 4490 return ret; 4491 } 4492 4493 /** 4494 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio 4495 * @memcg: memcg to charge. 4496 * @gfp: reclaim mode. 4497 * @nr_pages: number of pages to charge. 4498 * 4499 * This function is called when allocating a huge page folio to determine if 4500 * the memcg has the capacity for it. It does not commit the charge yet, 4501 * as the hugetlb folio itself has not been obtained from the hugetlb pool. 4502 * 4503 * Once we have obtained the hugetlb folio, we can call 4504 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the 4505 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect 4506 * of try_charge(). 4507 * 4508 * Returns 0 on success. Otherwise, an error code is returned. 4509 */ 4510 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 4511 long nr_pages) 4512 { 4513 /* 4514 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, 4515 * but do not attempt to commit charge later (or cancel on error) either. 4516 */ 4517 if (mem_cgroup_disabled() || !memcg || 4518 !cgroup_subsys_on_dfl(memory_cgrp_subsys) || 4519 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) 4520 return -EOPNOTSUPP; 4521 4522 if (try_charge(memcg, gfp, nr_pages)) 4523 return -ENOMEM; 4524 4525 return 0; 4526 } 4527 4528 /** 4529 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4530 * @folio: folio to charge. 4531 * @mm: mm context of the victim 4532 * @gfp: reclaim mode 4533 * @entry: swap entry for which the folio is allocated 4534 * 4535 * This function charges a folio allocated for swapin. Please call this before 4536 * adding the folio to the swapcache. 4537 * 4538 * Returns 0 on success. Otherwise, an error code is returned. 4539 */ 4540 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4541 gfp_t gfp, swp_entry_t entry) 4542 { 4543 struct mem_cgroup *memcg; 4544 unsigned short id; 4545 int ret; 4546 4547 if (mem_cgroup_disabled()) 4548 return 0; 4549 4550 id = lookup_swap_cgroup_id(entry); 4551 rcu_read_lock(); 4552 memcg = mem_cgroup_from_id(id); 4553 if (!memcg || !css_tryget_online(&memcg->css)) 4554 memcg = get_mem_cgroup_from_mm(mm); 4555 rcu_read_unlock(); 4556 4557 ret = charge_memcg(folio, memcg, gfp); 4558 4559 css_put(&memcg->css); 4560 return ret; 4561 } 4562 4563 /* 4564 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 4565 * @entry: the first swap entry for which the pages are charged 4566 * @nr_pages: number of pages which will be uncharged 4567 * 4568 * Call this function after successfully adding the charged page to swapcache. 4569 * 4570 * Note: This function assumes the page for which swap slot is being uncharged 4571 * is order 0 page. 4572 */ 4573 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 4574 { 4575 /* 4576 * Cgroup1's unified memory+swap counter has been charged with the 4577 * new swapcache page, finish the transfer by uncharging the swap 4578 * slot. The swap slot would also get uncharged when it dies, but 4579 * it can stick around indefinitely and we'd count the page twice 4580 * the entire time. 4581 * 4582 * Cgroup2 has separate resource counters for memory and swap, 4583 * so this is a non-issue here. Memory and swap charge lifetimes 4584 * correspond 1:1 to page and swap slot lifetimes: we charge the 4585 * page to memory here, and uncharge swap when the slot is freed. 4586 */ 4587 if (!mem_cgroup_disabled() && do_memsw_account()) { 4588 /* 4589 * The swap entry might not get freed for a long time, 4590 * let's not wait for it. The page already received a 4591 * memory+swap charge, drop the swap entry duplicate. 4592 */ 4593 mem_cgroup_uncharge_swap(entry, nr_pages); 4594 } 4595 } 4596 4597 struct uncharge_gather { 4598 struct mem_cgroup *memcg; 4599 unsigned long nr_memory; 4600 unsigned long pgpgout; 4601 unsigned long nr_kmem; 4602 int nid; 4603 }; 4604 4605 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4606 { 4607 memset(ug, 0, sizeof(*ug)); 4608 } 4609 4610 static void uncharge_batch(const struct uncharge_gather *ug) 4611 { 4612 if (ug->nr_memory) { 4613 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 4614 if (do_memsw_account()) 4615 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 4616 if (ug->nr_kmem) { 4617 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4618 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4619 } 4620 memcg1_oom_recover(ug->memcg); 4621 } 4622 4623 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4624 4625 /* drop reference from uncharge_folio */ 4626 css_put(&ug->memcg->css); 4627 } 4628 4629 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4630 { 4631 long nr_pages; 4632 struct mem_cgroup *memcg; 4633 struct obj_cgroup *objcg; 4634 4635 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4636 4637 /* 4638 * Nobody should be changing or seriously looking at 4639 * folio memcg or objcg at this point, we have fully 4640 * exclusive access to the folio. 4641 */ 4642 if (folio_memcg_kmem(folio)) { 4643 objcg = __folio_objcg(folio); 4644 /* 4645 * This get matches the put at the end of the function and 4646 * kmem pages do not hold memcg references anymore. 4647 */ 4648 memcg = get_mem_cgroup_from_objcg(objcg); 4649 } else { 4650 memcg = __folio_memcg(folio); 4651 } 4652 4653 if (!memcg) 4654 return; 4655 4656 if (ug->memcg != memcg) { 4657 if (ug->memcg) { 4658 uncharge_batch(ug); 4659 uncharge_gather_clear(ug); 4660 } 4661 ug->memcg = memcg; 4662 ug->nid = folio_nid(folio); 4663 4664 /* pairs with css_put in uncharge_batch */ 4665 css_get(&memcg->css); 4666 } 4667 4668 nr_pages = folio_nr_pages(folio); 4669 4670 if (folio_memcg_kmem(folio)) { 4671 ug->nr_memory += nr_pages; 4672 ug->nr_kmem += nr_pages; 4673 4674 folio->memcg_data = 0; 4675 obj_cgroup_put(objcg); 4676 } else { 4677 /* LRU pages aren't accounted at the root level */ 4678 if (!mem_cgroup_is_root(memcg)) 4679 ug->nr_memory += nr_pages; 4680 ug->pgpgout++; 4681 4682 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4683 folio->memcg_data = 0; 4684 } 4685 4686 css_put(&memcg->css); 4687 } 4688 4689 void __mem_cgroup_uncharge(struct folio *folio) 4690 { 4691 struct uncharge_gather ug; 4692 4693 /* Don't touch folio->lru of any random page, pre-check: */ 4694 if (!folio_memcg_charged(folio)) 4695 return; 4696 4697 uncharge_gather_clear(&ug); 4698 uncharge_folio(folio, &ug); 4699 uncharge_batch(&ug); 4700 } 4701 4702 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4703 { 4704 struct uncharge_gather ug; 4705 unsigned int i; 4706 4707 uncharge_gather_clear(&ug); 4708 for (i = 0; i < folios->nr; i++) 4709 uncharge_folio(folios->folios[i], &ug); 4710 if (ug.memcg) 4711 uncharge_batch(&ug); 4712 } 4713 4714 /** 4715 * mem_cgroup_replace_folio - Charge a folio's replacement. 4716 * @old: Currently circulating folio. 4717 * @new: Replacement folio. 4718 * 4719 * Charge @new as a replacement folio for @old. @old will 4720 * be uncharged upon free. 4721 * 4722 * Both folios must be locked, @new->mapping must be set up. 4723 */ 4724 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4725 { 4726 struct mem_cgroup *memcg; 4727 long nr_pages = folio_nr_pages(new); 4728 4729 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4730 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4731 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4732 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4733 4734 if (mem_cgroup_disabled()) 4735 return; 4736 4737 /* Page cache replacement: new folio already charged? */ 4738 if (folio_memcg_charged(new)) 4739 return; 4740 4741 memcg = folio_memcg(old); 4742 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4743 if (!memcg) 4744 return; 4745 4746 /* Force-charge the new page. The old one will be freed soon */ 4747 if (!mem_cgroup_is_root(memcg)) { 4748 page_counter_charge(&memcg->memory, nr_pages); 4749 if (do_memsw_account()) 4750 page_counter_charge(&memcg->memsw, nr_pages); 4751 } 4752 4753 css_get(&memcg->css); 4754 commit_charge(new, memcg); 4755 memcg1_commit_charge(new, memcg); 4756 } 4757 4758 /** 4759 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4760 * @old: Currently circulating folio. 4761 * @new: Replacement folio. 4762 * 4763 * Transfer the memcg data from the old folio to the new folio for migration. 4764 * The old folio's data info will be cleared. Note that the memory counters 4765 * will remain unchanged throughout the process. 4766 * 4767 * Both folios must be locked, @new->mapping must be set up. 4768 */ 4769 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4770 { 4771 struct mem_cgroup *memcg; 4772 4773 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4774 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4775 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4776 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4777 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4778 4779 if (mem_cgroup_disabled()) 4780 return; 4781 4782 memcg = folio_memcg(old); 4783 /* 4784 * Note that it is normal to see !memcg for a hugetlb folio. 4785 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4786 * was not selected. 4787 */ 4788 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4789 if (!memcg) 4790 return; 4791 4792 /* Transfer the charge and the css ref */ 4793 commit_charge(new, memcg); 4794 4795 /* Warning should never happen, so don't worry about refcount non-0 */ 4796 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4797 old->memcg_data = 0; 4798 } 4799 4800 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4801 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4802 4803 void mem_cgroup_sk_alloc(struct sock *sk) 4804 { 4805 struct mem_cgroup *memcg; 4806 4807 if (!mem_cgroup_sockets_enabled) 4808 return; 4809 4810 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4811 if (!in_task()) 4812 return; 4813 4814 rcu_read_lock(); 4815 memcg = mem_cgroup_from_task(current); 4816 if (mem_cgroup_is_root(memcg)) 4817 goto out; 4818 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4819 goto out; 4820 if (css_tryget(&memcg->css)) 4821 sk->sk_memcg = memcg; 4822 out: 4823 rcu_read_unlock(); 4824 } 4825 4826 void mem_cgroup_sk_free(struct sock *sk) 4827 { 4828 if (sk->sk_memcg) 4829 css_put(&sk->sk_memcg->css); 4830 } 4831 4832 /** 4833 * mem_cgroup_charge_skmem - charge socket memory 4834 * @memcg: memcg to charge 4835 * @nr_pages: number of pages to charge 4836 * @gfp_mask: reclaim mode 4837 * 4838 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4839 * @memcg's configured limit, %false if it doesn't. 4840 */ 4841 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4842 gfp_t gfp_mask) 4843 { 4844 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4845 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4846 4847 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 4848 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 4849 return true; 4850 } 4851 4852 return false; 4853 } 4854 4855 /** 4856 * mem_cgroup_uncharge_skmem - uncharge socket memory 4857 * @memcg: memcg to uncharge 4858 * @nr_pages: number of pages to uncharge 4859 */ 4860 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 4861 { 4862 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 4863 memcg1_uncharge_skmem(memcg, nr_pages); 4864 return; 4865 } 4866 4867 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 4868 4869 refill_stock(memcg, nr_pages); 4870 } 4871 4872 static int __init cgroup_memory(char *s) 4873 { 4874 char *token; 4875 4876 while ((token = strsep(&s, ",")) != NULL) { 4877 if (!*token) 4878 continue; 4879 if (!strcmp(token, "nosocket")) 4880 cgroup_memory_nosocket = true; 4881 if (!strcmp(token, "nokmem")) 4882 cgroup_memory_nokmem = true; 4883 if (!strcmp(token, "nobpf")) 4884 cgroup_memory_nobpf = true; 4885 } 4886 return 1; 4887 } 4888 __setup("cgroup.memory=", cgroup_memory); 4889 4890 /* 4891 * subsys_initcall() for memory controller. 4892 * 4893 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 4894 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 4895 * basically everything that doesn't depend on a specific mem_cgroup structure 4896 * should be initialized from here. 4897 */ 4898 static int __init mem_cgroup_init(void) 4899 { 4900 int cpu; 4901 4902 /* 4903 * Currently s32 type (can refer to struct batched_lruvec_stat) is 4904 * used for per-memcg-per-cpu caching of per-node statistics. In order 4905 * to work fine, we should make sure that the overfill threshold can't 4906 * exceed S32_MAX / PAGE_SIZE. 4907 */ 4908 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 4909 4910 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 4911 memcg_hotplug_cpu_dead); 4912 4913 for_each_possible_cpu(cpu) 4914 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 4915 drain_local_stock); 4916 4917 return 0; 4918 } 4919 subsys_initcall(mem_cgroup_init); 4920 4921 #ifdef CONFIG_SWAP 4922 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 4923 { 4924 while (!refcount_inc_not_zero(&memcg->id.ref)) { 4925 /* 4926 * The root cgroup cannot be destroyed, so it's refcount must 4927 * always be >= 1. 4928 */ 4929 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 4930 VM_BUG_ON(1); 4931 break; 4932 } 4933 memcg = parent_mem_cgroup(memcg); 4934 if (!memcg) 4935 memcg = root_mem_cgroup; 4936 } 4937 return memcg; 4938 } 4939 4940 /** 4941 * mem_cgroup_swapout - transfer a memsw charge to swap 4942 * @folio: folio whose memsw charge to transfer 4943 * @entry: swap entry to move the charge to 4944 * 4945 * Transfer the memsw charge of @folio to @entry. 4946 */ 4947 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 4948 { 4949 struct mem_cgroup *memcg, *swap_memcg; 4950 unsigned int nr_entries; 4951 unsigned short oldid; 4952 4953 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4954 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 4955 4956 if (mem_cgroup_disabled()) 4957 return; 4958 4959 if (!do_memsw_account()) 4960 return; 4961 4962 memcg = folio_memcg(folio); 4963 4964 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 4965 if (!memcg) 4966 return; 4967 4968 /* 4969 * In case the memcg owning these pages has been offlined and doesn't 4970 * have an ID allocated to it anymore, charge the closest online 4971 * ancestor for the swap instead and transfer the memory+swap charge. 4972 */ 4973 swap_memcg = mem_cgroup_id_get_online(memcg); 4974 nr_entries = folio_nr_pages(folio); 4975 /* Get references for the tail pages, too */ 4976 if (nr_entries > 1) 4977 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 4978 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 4979 nr_entries); 4980 VM_BUG_ON_FOLIO(oldid, folio); 4981 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 4982 4983 folio_unqueue_deferred_split(folio); 4984 folio->memcg_data = 0; 4985 4986 if (!mem_cgroup_is_root(memcg)) 4987 page_counter_uncharge(&memcg->memory, nr_entries); 4988 4989 if (memcg != swap_memcg) { 4990 if (!mem_cgroup_is_root(swap_memcg)) 4991 page_counter_charge(&swap_memcg->memsw, nr_entries); 4992 page_counter_uncharge(&memcg->memsw, nr_entries); 4993 } 4994 4995 memcg1_swapout(folio, memcg); 4996 css_put(&memcg->css); 4997 } 4998 4999 /** 5000 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5001 * @folio: folio being added to swap 5002 * @entry: swap entry to charge 5003 * 5004 * Try to charge @folio's memcg for the swap space at @entry. 5005 * 5006 * Returns 0 on success, -ENOMEM on failure. 5007 */ 5008 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5009 { 5010 unsigned int nr_pages = folio_nr_pages(folio); 5011 struct page_counter *counter; 5012 struct mem_cgroup *memcg; 5013 unsigned short oldid; 5014 5015 if (do_memsw_account()) 5016 return 0; 5017 5018 memcg = folio_memcg(folio); 5019 5020 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5021 if (!memcg) 5022 return 0; 5023 5024 if (!entry.val) { 5025 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5026 return 0; 5027 } 5028 5029 memcg = mem_cgroup_id_get_online(memcg); 5030 5031 if (!mem_cgroup_is_root(memcg) && 5032 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5033 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5034 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5035 mem_cgroup_id_put(memcg); 5036 return -ENOMEM; 5037 } 5038 5039 /* Get references for the tail pages, too */ 5040 if (nr_pages > 1) 5041 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5042 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 5043 VM_BUG_ON_FOLIO(oldid, folio); 5044 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5045 5046 return 0; 5047 } 5048 5049 /** 5050 * __mem_cgroup_uncharge_swap - uncharge swap space 5051 * @entry: swap entry to uncharge 5052 * @nr_pages: the amount of swap space to uncharge 5053 */ 5054 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5055 { 5056 struct mem_cgroup *memcg; 5057 unsigned short id; 5058 5059 id = swap_cgroup_record(entry, 0, nr_pages); 5060 rcu_read_lock(); 5061 memcg = mem_cgroup_from_id(id); 5062 if (memcg) { 5063 if (!mem_cgroup_is_root(memcg)) { 5064 if (do_memsw_account()) 5065 page_counter_uncharge(&memcg->memsw, nr_pages); 5066 else 5067 page_counter_uncharge(&memcg->swap, nr_pages); 5068 } 5069 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5070 mem_cgroup_id_put_many(memcg, nr_pages); 5071 } 5072 rcu_read_unlock(); 5073 } 5074 5075 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5076 { 5077 long nr_swap_pages = get_nr_swap_pages(); 5078 5079 if (mem_cgroup_disabled() || do_memsw_account()) 5080 return nr_swap_pages; 5081 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5082 nr_swap_pages = min_t(long, nr_swap_pages, 5083 READ_ONCE(memcg->swap.max) - 5084 page_counter_read(&memcg->swap)); 5085 return nr_swap_pages; 5086 } 5087 5088 bool mem_cgroup_swap_full(struct folio *folio) 5089 { 5090 struct mem_cgroup *memcg; 5091 5092 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5093 5094 if (vm_swap_full()) 5095 return true; 5096 if (do_memsw_account()) 5097 return false; 5098 5099 memcg = folio_memcg(folio); 5100 if (!memcg) 5101 return false; 5102 5103 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5104 unsigned long usage = page_counter_read(&memcg->swap); 5105 5106 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5107 usage * 2 >= READ_ONCE(memcg->swap.max)) 5108 return true; 5109 } 5110 5111 return false; 5112 } 5113 5114 static int __init setup_swap_account(char *s) 5115 { 5116 bool res; 5117 5118 if (!kstrtobool(s, &res) && !res) 5119 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5120 "in favor of configuring swap control via cgroupfs. " 5121 "Please report your usecase to linux-mm@kvack.org if you " 5122 "depend on this functionality.\n"); 5123 return 1; 5124 } 5125 __setup("swapaccount=", setup_swap_account); 5126 5127 static u64 swap_current_read(struct cgroup_subsys_state *css, 5128 struct cftype *cft) 5129 { 5130 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5131 5132 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5133 } 5134 5135 static int swap_peak_show(struct seq_file *sf, void *v) 5136 { 5137 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5138 5139 return peak_show(sf, v, &memcg->swap); 5140 } 5141 5142 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5143 size_t nbytes, loff_t off) 5144 { 5145 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5146 5147 return peak_write(of, buf, nbytes, off, &memcg->swap, 5148 &memcg->swap_peaks); 5149 } 5150 5151 static int swap_high_show(struct seq_file *m, void *v) 5152 { 5153 return seq_puts_memcg_tunable(m, 5154 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5155 } 5156 5157 static ssize_t swap_high_write(struct kernfs_open_file *of, 5158 char *buf, size_t nbytes, loff_t off) 5159 { 5160 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5161 unsigned long high; 5162 int err; 5163 5164 buf = strstrip(buf); 5165 err = page_counter_memparse(buf, "max", &high); 5166 if (err) 5167 return err; 5168 5169 page_counter_set_high(&memcg->swap, high); 5170 5171 return nbytes; 5172 } 5173 5174 static int swap_max_show(struct seq_file *m, void *v) 5175 { 5176 return seq_puts_memcg_tunable(m, 5177 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5178 } 5179 5180 static ssize_t swap_max_write(struct kernfs_open_file *of, 5181 char *buf, size_t nbytes, loff_t off) 5182 { 5183 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5184 unsigned long max; 5185 int err; 5186 5187 buf = strstrip(buf); 5188 err = page_counter_memparse(buf, "max", &max); 5189 if (err) 5190 return err; 5191 5192 xchg(&memcg->swap.max, max); 5193 5194 return nbytes; 5195 } 5196 5197 static int swap_events_show(struct seq_file *m, void *v) 5198 { 5199 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5200 5201 seq_printf(m, "high %lu\n", 5202 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5203 seq_printf(m, "max %lu\n", 5204 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5205 seq_printf(m, "fail %lu\n", 5206 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5207 5208 return 0; 5209 } 5210 5211 static struct cftype swap_files[] = { 5212 { 5213 .name = "swap.current", 5214 .flags = CFTYPE_NOT_ON_ROOT, 5215 .read_u64 = swap_current_read, 5216 }, 5217 { 5218 .name = "swap.high", 5219 .flags = CFTYPE_NOT_ON_ROOT, 5220 .seq_show = swap_high_show, 5221 .write = swap_high_write, 5222 }, 5223 { 5224 .name = "swap.max", 5225 .flags = CFTYPE_NOT_ON_ROOT, 5226 .seq_show = swap_max_show, 5227 .write = swap_max_write, 5228 }, 5229 { 5230 .name = "swap.peak", 5231 .flags = CFTYPE_NOT_ON_ROOT, 5232 .open = peak_open, 5233 .release = peak_release, 5234 .seq_show = swap_peak_show, 5235 .write = swap_peak_write, 5236 }, 5237 { 5238 .name = "swap.events", 5239 .flags = CFTYPE_NOT_ON_ROOT, 5240 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5241 .seq_show = swap_events_show, 5242 }, 5243 { } /* terminate */ 5244 }; 5245 5246 #ifdef CONFIG_ZSWAP 5247 /** 5248 * obj_cgroup_may_zswap - check if this cgroup can zswap 5249 * @objcg: the object cgroup 5250 * 5251 * Check if the hierarchical zswap limit has been reached. 5252 * 5253 * This doesn't check for specific headroom, and it is not atomic 5254 * either. But with zswap, the size of the allocation is only known 5255 * once compression has occurred, and this optimistic pre-check avoids 5256 * spending cycles on compression when there is already no room left 5257 * or zswap is disabled altogether somewhere in the hierarchy. 5258 */ 5259 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5260 { 5261 struct mem_cgroup *memcg, *original_memcg; 5262 bool ret = true; 5263 5264 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5265 return true; 5266 5267 original_memcg = get_mem_cgroup_from_objcg(objcg); 5268 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5269 memcg = parent_mem_cgroup(memcg)) { 5270 unsigned long max = READ_ONCE(memcg->zswap_max); 5271 unsigned long pages; 5272 5273 if (max == PAGE_COUNTER_MAX) 5274 continue; 5275 if (max == 0) { 5276 ret = false; 5277 break; 5278 } 5279 5280 /* 5281 * mem_cgroup_flush_stats() ignores small changes. Use 5282 * do_flush_stats() directly to get accurate stats for charging. 5283 */ 5284 do_flush_stats(memcg); 5285 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5286 if (pages < max) 5287 continue; 5288 ret = false; 5289 break; 5290 } 5291 mem_cgroup_put(original_memcg); 5292 return ret; 5293 } 5294 5295 /** 5296 * obj_cgroup_charge_zswap - charge compression backend memory 5297 * @objcg: the object cgroup 5298 * @size: size of compressed object 5299 * 5300 * This forces the charge after obj_cgroup_may_zswap() allowed 5301 * compression and storage in zwap for this cgroup to go ahead. 5302 */ 5303 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5304 { 5305 struct mem_cgroup *memcg; 5306 5307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5308 return; 5309 5310 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5311 5312 /* PF_MEMALLOC context, charging must succeed */ 5313 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5314 VM_WARN_ON_ONCE(1); 5315 5316 rcu_read_lock(); 5317 memcg = obj_cgroup_memcg(objcg); 5318 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5319 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5320 rcu_read_unlock(); 5321 } 5322 5323 /** 5324 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5325 * @objcg: the object cgroup 5326 * @size: size of compressed object 5327 * 5328 * Uncharges zswap memory on page in. 5329 */ 5330 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5331 { 5332 struct mem_cgroup *memcg; 5333 5334 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5335 return; 5336 5337 obj_cgroup_uncharge(objcg, size); 5338 5339 rcu_read_lock(); 5340 memcg = obj_cgroup_memcg(objcg); 5341 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5342 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5343 rcu_read_unlock(); 5344 } 5345 5346 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5347 { 5348 /* if zswap is disabled, do not block pages going to the swapping device */ 5349 if (!zswap_is_enabled()) 5350 return true; 5351 5352 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5353 if (!READ_ONCE(memcg->zswap_writeback)) 5354 return false; 5355 5356 return true; 5357 } 5358 5359 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5360 struct cftype *cft) 5361 { 5362 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5363 5364 mem_cgroup_flush_stats(memcg); 5365 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5366 } 5367 5368 static int zswap_max_show(struct seq_file *m, void *v) 5369 { 5370 return seq_puts_memcg_tunable(m, 5371 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5372 } 5373 5374 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5375 char *buf, size_t nbytes, loff_t off) 5376 { 5377 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5378 unsigned long max; 5379 int err; 5380 5381 buf = strstrip(buf); 5382 err = page_counter_memparse(buf, "max", &max); 5383 if (err) 5384 return err; 5385 5386 xchg(&memcg->zswap_max, max); 5387 5388 return nbytes; 5389 } 5390 5391 static int zswap_writeback_show(struct seq_file *m, void *v) 5392 { 5393 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5394 5395 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5396 return 0; 5397 } 5398 5399 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5400 char *buf, size_t nbytes, loff_t off) 5401 { 5402 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5403 int zswap_writeback; 5404 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5405 5406 if (parse_ret) 5407 return parse_ret; 5408 5409 if (zswap_writeback != 0 && zswap_writeback != 1) 5410 return -EINVAL; 5411 5412 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5413 return nbytes; 5414 } 5415 5416 static struct cftype zswap_files[] = { 5417 { 5418 .name = "zswap.current", 5419 .flags = CFTYPE_NOT_ON_ROOT, 5420 .read_u64 = zswap_current_read, 5421 }, 5422 { 5423 .name = "zswap.max", 5424 .flags = CFTYPE_NOT_ON_ROOT, 5425 .seq_show = zswap_max_show, 5426 .write = zswap_max_write, 5427 }, 5428 { 5429 .name = "zswap.writeback", 5430 .seq_show = zswap_writeback_show, 5431 .write = zswap_writeback_write, 5432 }, 5433 { } /* terminate */ 5434 }; 5435 #endif /* CONFIG_ZSWAP */ 5436 5437 static int __init mem_cgroup_swap_init(void) 5438 { 5439 if (mem_cgroup_disabled()) 5440 return 0; 5441 5442 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5443 #ifdef CONFIG_MEMCG_V1 5444 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5445 #endif 5446 #ifdef CONFIG_ZSWAP 5447 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5448 #endif 5449 return 0; 5450 } 5451 subsys_initcall(mem_cgroup_swap_init); 5452 5453 #endif /* CONFIG_SWAP */ 5454