xref: /linux/mm/memcontrol.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/sched/mm.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/hugetlb.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swapops.h>
48 #include <linux/spinlock.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/parser.h>
52 #include <linux/vmpressure.h>
53 #include <linux/memremap.h>
54 #include <linux/mm_inline.h>
55 #include <linux/swap_cgroup.h>
56 #include <linux/cpu.h>
57 #include <linux/oom.h>
58 #include <linux/lockdep.h>
59 #include <linux/resume_user_mode.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/kmemleak.h>
64 #include "internal.h"
65 #include <net/sock.h>
66 #include <net/ip.h>
67 #include "slab.h"
68 #include "memcontrol-v1.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76 
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78 
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82 
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85 
86 /* Kernel memory accounting disabled? */
87 static bool cgroup_memory_nokmem __ro_after_init;
88 
89 /* BPF memory accounting disabled? */
90 static bool cgroup_memory_nobpf __ro_after_init;
91 
92 #ifdef CONFIG_CGROUP_WRITEBACK
93 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94 #endif
95 
96 #define THRESHOLDS_EVENTS_TARGET 128
97 #define SOFTLIMIT_EVENTS_TARGET 1024
98 
99 static inline bool task_is_dying(void)
100 {
101 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
102 		(current->flags & PF_EXITING);
103 }
104 
105 /* Some nice accessors for the vmpressure. */
106 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
107 {
108 	if (!memcg)
109 		memcg = root_mem_cgroup;
110 	return &memcg->vmpressure;
111 }
112 
113 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
114 {
115 	return container_of(vmpr, struct mem_cgroup, vmpressure);
116 }
117 
118 #define CURRENT_OBJCG_UPDATE_BIT 0
119 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
120 
121 static DEFINE_SPINLOCK(objcg_lock);
122 
123 bool mem_cgroup_kmem_disabled(void)
124 {
125 	return cgroup_memory_nokmem;
126 }
127 
128 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
129 				      unsigned int nr_pages);
130 
131 static void obj_cgroup_release(struct percpu_ref *ref)
132 {
133 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
134 	unsigned int nr_bytes;
135 	unsigned int nr_pages;
136 	unsigned long flags;
137 
138 	/*
139 	 * At this point all allocated objects are freed, and
140 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
141 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
142 	 *
143 	 * The following sequence can lead to it:
144 	 * 1) CPU0: objcg == stock->cached_objcg
145 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
146 	 *          PAGE_SIZE bytes are charged
147 	 * 3) CPU1: a process from another memcg is allocating something,
148 	 *          the stock if flushed,
149 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
150 	 * 5) CPU0: we do release this object,
151 	 *          92 bytes are added to stock->nr_bytes
152 	 * 6) CPU0: stock is flushed,
153 	 *          92 bytes are added to objcg->nr_charged_bytes
154 	 *
155 	 * In the result, nr_charged_bytes == PAGE_SIZE.
156 	 * This page will be uncharged in obj_cgroup_release().
157 	 */
158 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
159 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
160 	nr_pages = nr_bytes >> PAGE_SHIFT;
161 
162 	if (nr_pages)
163 		obj_cgroup_uncharge_pages(objcg, nr_pages);
164 
165 	spin_lock_irqsave(&objcg_lock, flags);
166 	list_del(&objcg->list);
167 	spin_unlock_irqrestore(&objcg_lock, flags);
168 
169 	percpu_ref_exit(ref);
170 	kfree_rcu(objcg, rcu);
171 }
172 
173 static struct obj_cgroup *obj_cgroup_alloc(void)
174 {
175 	struct obj_cgroup *objcg;
176 	int ret;
177 
178 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
179 	if (!objcg)
180 		return NULL;
181 
182 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
183 			      GFP_KERNEL);
184 	if (ret) {
185 		kfree(objcg);
186 		return NULL;
187 	}
188 	INIT_LIST_HEAD(&objcg->list);
189 	return objcg;
190 }
191 
192 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
193 				  struct mem_cgroup *parent)
194 {
195 	struct obj_cgroup *objcg, *iter;
196 
197 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
198 
199 	spin_lock_irq(&objcg_lock);
200 
201 	/* 1) Ready to reparent active objcg. */
202 	list_add(&objcg->list, &memcg->objcg_list);
203 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
204 	list_for_each_entry(iter, &memcg->objcg_list, list)
205 		WRITE_ONCE(iter->memcg, parent);
206 	/* 3) Move already reparented objcgs to the parent's list */
207 	list_splice(&memcg->objcg_list, &parent->objcg_list);
208 
209 	spin_unlock_irq(&objcg_lock);
210 
211 	percpu_ref_kill(&objcg->refcnt);
212 }
213 
214 /*
215  * A lot of the calls to the cache allocation functions are expected to be
216  * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
217  * conditional to this static branch, we'll have to allow modules that does
218  * kmem_cache_alloc and the such to see this symbol as well
219  */
220 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
221 EXPORT_SYMBOL(memcg_kmem_online_key);
222 
223 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
224 EXPORT_SYMBOL(memcg_bpf_enabled_key);
225 
226 /**
227  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
228  * @folio: folio of interest
229  *
230  * If memcg is bound to the default hierarchy, css of the memcg associated
231  * with @folio is returned.  The returned css remains associated with @folio
232  * until it is released.
233  *
234  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
235  * is returned.
236  */
237 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
238 {
239 	struct mem_cgroup *memcg = folio_memcg(folio);
240 
241 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
242 		memcg = root_mem_cgroup;
243 
244 	return &memcg->css;
245 }
246 
247 /**
248  * page_cgroup_ino - return inode number of the memcg a page is charged to
249  * @page: the page
250  *
251  * Look up the closest online ancestor of the memory cgroup @page is charged to
252  * and return its inode number or 0 if @page is not charged to any cgroup. It
253  * is safe to call this function without holding a reference to @page.
254  *
255  * Note, this function is inherently racy, because there is nothing to prevent
256  * the cgroup inode from getting torn down and potentially reallocated a moment
257  * after page_cgroup_ino() returns, so it only should be used by callers that
258  * do not care (such as procfs interfaces).
259  */
260 ino_t page_cgroup_ino(struct page *page)
261 {
262 	struct mem_cgroup *memcg;
263 	unsigned long ino = 0;
264 
265 	rcu_read_lock();
266 	/* page_folio() is racy here, but the entire function is racy anyway */
267 	memcg = folio_memcg_check(page_folio(page));
268 
269 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
270 		memcg = parent_mem_cgroup(memcg);
271 	if (memcg)
272 		ino = cgroup_ino(memcg->css.cgroup);
273 	rcu_read_unlock();
274 	return ino;
275 }
276 
277 /* Subset of node_stat_item for memcg stats */
278 static const unsigned int memcg_node_stat_items[] = {
279 	NR_INACTIVE_ANON,
280 	NR_ACTIVE_ANON,
281 	NR_INACTIVE_FILE,
282 	NR_ACTIVE_FILE,
283 	NR_UNEVICTABLE,
284 	NR_SLAB_RECLAIMABLE_B,
285 	NR_SLAB_UNRECLAIMABLE_B,
286 	WORKINGSET_REFAULT_ANON,
287 	WORKINGSET_REFAULT_FILE,
288 	WORKINGSET_ACTIVATE_ANON,
289 	WORKINGSET_ACTIVATE_FILE,
290 	WORKINGSET_RESTORE_ANON,
291 	WORKINGSET_RESTORE_FILE,
292 	WORKINGSET_NODERECLAIM,
293 	NR_ANON_MAPPED,
294 	NR_FILE_MAPPED,
295 	NR_FILE_PAGES,
296 	NR_FILE_DIRTY,
297 	NR_WRITEBACK,
298 	NR_SHMEM,
299 	NR_SHMEM_THPS,
300 	NR_FILE_THPS,
301 	NR_ANON_THPS,
302 	NR_KERNEL_STACK_KB,
303 	NR_PAGETABLE,
304 	NR_SECONDARY_PAGETABLE,
305 #ifdef CONFIG_SWAP
306 	NR_SWAPCACHE,
307 #endif
308 };
309 
310 static const unsigned int memcg_stat_items[] = {
311 	MEMCG_SWAP,
312 	MEMCG_SOCK,
313 	MEMCG_PERCPU_B,
314 	MEMCG_VMALLOC,
315 	MEMCG_KMEM,
316 	MEMCG_ZSWAP_B,
317 	MEMCG_ZSWAPPED,
318 };
319 
320 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
321 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
322 			   ARRAY_SIZE(memcg_stat_items))
323 static int8_t mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
324 
325 static void init_memcg_stats(void)
326 {
327 	int8_t i, j = 0;
328 
329 	BUILD_BUG_ON(MEMCG_NR_STAT >= S8_MAX);
330 
331 	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i)
332 		mem_cgroup_stats_index[memcg_node_stat_items[i]] = ++j;
333 
334 	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i)
335 		mem_cgroup_stats_index[memcg_stat_items[i]] = ++j;
336 }
337 
338 static inline int memcg_stats_index(int idx)
339 {
340 	return mem_cgroup_stats_index[idx] - 1;
341 }
342 
343 struct lruvec_stats_percpu {
344 	/* Local (CPU and cgroup) state */
345 	long state[NR_MEMCG_NODE_STAT_ITEMS];
346 
347 	/* Delta calculation for lockless upward propagation */
348 	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
349 };
350 
351 struct lruvec_stats {
352 	/* Aggregated (CPU and subtree) state */
353 	long state[NR_MEMCG_NODE_STAT_ITEMS];
354 
355 	/* Non-hierarchical (CPU aggregated) state */
356 	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
357 
358 	/* Pending child counts during tree propagation */
359 	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
360 };
361 
362 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
363 {
364 	struct mem_cgroup_per_node *pn;
365 	long x;
366 	int i;
367 
368 	if (mem_cgroup_disabled())
369 		return node_page_state(lruvec_pgdat(lruvec), idx);
370 
371 	i = memcg_stats_index(idx);
372 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
373 		return 0;
374 
375 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
376 	x = READ_ONCE(pn->lruvec_stats->state[i]);
377 #ifdef CONFIG_SMP
378 	if (x < 0)
379 		x = 0;
380 #endif
381 	return x;
382 }
383 
384 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
385 				      enum node_stat_item idx)
386 {
387 	struct mem_cgroup_per_node *pn;
388 	long x;
389 	int i;
390 
391 	if (mem_cgroup_disabled())
392 		return node_page_state(lruvec_pgdat(lruvec), idx);
393 
394 	i = memcg_stats_index(idx);
395 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
396 		return 0;
397 
398 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
399 	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
400 #ifdef CONFIG_SMP
401 	if (x < 0)
402 		x = 0;
403 #endif
404 	return x;
405 }
406 
407 /* Subset of vm_event_item to report for memcg event stats */
408 static const unsigned int memcg_vm_event_stat[] = {
409 	PGPGIN,
410 	PGPGOUT,
411 	PGSCAN_KSWAPD,
412 	PGSCAN_DIRECT,
413 	PGSCAN_KHUGEPAGED,
414 	PGSTEAL_KSWAPD,
415 	PGSTEAL_DIRECT,
416 	PGSTEAL_KHUGEPAGED,
417 	PGFAULT,
418 	PGMAJFAULT,
419 	PGREFILL,
420 	PGACTIVATE,
421 	PGDEACTIVATE,
422 	PGLAZYFREE,
423 	PGLAZYFREED,
424 #ifdef CONFIG_ZSWAP
425 	ZSWPIN,
426 	ZSWPOUT,
427 	ZSWPWB,
428 #endif
429 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
430 	THP_FAULT_ALLOC,
431 	THP_COLLAPSE_ALLOC,
432 	THP_SWPOUT,
433 	THP_SWPOUT_FALLBACK,
434 #endif
435 };
436 
437 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
438 static int8_t mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
439 
440 static void init_memcg_events(void)
441 {
442 	int8_t i;
443 
444 	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= S8_MAX);
445 
446 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
447 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
448 }
449 
450 static inline int memcg_events_index(enum vm_event_item idx)
451 {
452 	return mem_cgroup_events_index[idx] - 1;
453 }
454 
455 struct memcg_vmstats_percpu {
456 	/* Stats updates since the last flush */
457 	unsigned int			stats_updates;
458 
459 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
460 	struct memcg_vmstats_percpu	*parent;
461 	struct memcg_vmstats		*vmstats;
462 
463 	/* The above should fit a single cacheline for memcg_rstat_updated() */
464 
465 	/* Local (CPU and cgroup) page state & events */
466 	long			state[MEMCG_VMSTAT_SIZE];
467 	unsigned long		events[NR_MEMCG_EVENTS];
468 
469 	/* Delta calculation for lockless upward propagation */
470 	long			state_prev[MEMCG_VMSTAT_SIZE];
471 	unsigned long		events_prev[NR_MEMCG_EVENTS];
472 
473 	/* Cgroup1: threshold notifications & softlimit tree updates */
474 	unsigned long		nr_page_events;
475 	unsigned long		targets[MEM_CGROUP_NTARGETS];
476 } ____cacheline_aligned;
477 
478 struct memcg_vmstats {
479 	/* Aggregated (CPU and subtree) page state & events */
480 	long			state[MEMCG_VMSTAT_SIZE];
481 	unsigned long		events[NR_MEMCG_EVENTS];
482 
483 	/* Non-hierarchical (CPU aggregated) page state & events */
484 	long			state_local[MEMCG_VMSTAT_SIZE];
485 	unsigned long		events_local[NR_MEMCG_EVENTS];
486 
487 	/* Pending child counts during tree propagation */
488 	long			state_pending[MEMCG_VMSTAT_SIZE];
489 	unsigned long		events_pending[NR_MEMCG_EVENTS];
490 
491 	/* Stats updates since the last flush */
492 	atomic64_t		stats_updates;
493 };
494 
495 /*
496  * memcg and lruvec stats flushing
497  *
498  * Many codepaths leading to stats update or read are performance sensitive and
499  * adding stats flushing in such codepaths is not desirable. So, to optimize the
500  * flushing the kernel does:
501  *
502  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
503  *    rstat update tree grow unbounded.
504  *
505  * 2) Flush the stats synchronously on reader side only when there are more than
506  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
507  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
508  *    only for 2 seconds due to (1).
509  */
510 static void flush_memcg_stats_dwork(struct work_struct *w);
511 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
512 static u64 flush_last_time;
513 
514 #define FLUSH_TIME (2UL*HZ)
515 
516 /*
517  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
518  * not rely on this as part of an acquired spinlock_t lock. These functions are
519  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
520  * is sufficient.
521  */
522 static void memcg_stats_lock(void)
523 {
524 	preempt_disable_nested();
525 	VM_WARN_ON_IRQS_ENABLED();
526 }
527 
528 static void __memcg_stats_lock(void)
529 {
530 	preempt_disable_nested();
531 }
532 
533 static void memcg_stats_unlock(void)
534 {
535 	preempt_enable_nested();
536 }
537 
538 
539 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
540 {
541 	return atomic64_read(&vmstats->stats_updates) >
542 		MEMCG_CHARGE_BATCH * num_online_cpus();
543 }
544 
545 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
546 {
547 	struct memcg_vmstats_percpu *statc;
548 	int cpu = smp_processor_id();
549 	unsigned int stats_updates;
550 
551 	if (!val)
552 		return;
553 
554 	cgroup_rstat_updated(memcg->css.cgroup, cpu);
555 	statc = this_cpu_ptr(memcg->vmstats_percpu);
556 	for (; statc; statc = statc->parent) {
557 		stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
558 		WRITE_ONCE(statc->stats_updates, stats_updates);
559 		if (stats_updates < MEMCG_CHARGE_BATCH)
560 			continue;
561 
562 		/*
563 		 * If @memcg is already flush-able, increasing stats_updates is
564 		 * redundant. Avoid the overhead of the atomic update.
565 		 */
566 		if (!memcg_vmstats_needs_flush(statc->vmstats))
567 			atomic64_add(stats_updates,
568 				     &statc->vmstats->stats_updates);
569 		WRITE_ONCE(statc->stats_updates, 0);
570 	}
571 }
572 
573 static void do_flush_stats(struct mem_cgroup *memcg)
574 {
575 	if (mem_cgroup_is_root(memcg))
576 		WRITE_ONCE(flush_last_time, jiffies_64);
577 
578 	cgroup_rstat_flush(memcg->css.cgroup);
579 }
580 
581 /*
582  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
583  * @memcg: root of the subtree to flush
584  *
585  * Flushing is serialized by the underlying global rstat lock. There is also a
586  * minimum amount of work to be done even if there are no stat updates to flush.
587  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
588  * avoids unnecessary work and contention on the underlying lock.
589  */
590 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
591 {
592 	if (mem_cgroup_disabled())
593 		return;
594 
595 	if (!memcg)
596 		memcg = root_mem_cgroup;
597 
598 	if (memcg_vmstats_needs_flush(memcg->vmstats))
599 		do_flush_stats(memcg);
600 }
601 
602 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
603 {
604 	/* Only flush if the periodic flusher is one full cycle late */
605 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
606 		mem_cgroup_flush_stats(memcg);
607 }
608 
609 static void flush_memcg_stats_dwork(struct work_struct *w)
610 {
611 	/*
612 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
613 	 * in latency-sensitive paths is as cheap as possible.
614 	 */
615 	do_flush_stats(root_mem_cgroup);
616 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
617 }
618 
619 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
620 {
621 	long x;
622 	int i = memcg_stats_index(idx);
623 
624 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
625 		return 0;
626 
627 	x = READ_ONCE(memcg->vmstats->state[i]);
628 #ifdef CONFIG_SMP
629 	if (x < 0)
630 		x = 0;
631 #endif
632 	return x;
633 }
634 
635 static int memcg_page_state_unit(int item);
636 
637 /*
638  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
639  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
640  */
641 static int memcg_state_val_in_pages(int idx, int val)
642 {
643 	int unit = memcg_page_state_unit(idx);
644 
645 	if (!val || unit == PAGE_SIZE)
646 		return val;
647 	else
648 		return max(val * unit / PAGE_SIZE, 1UL);
649 }
650 
651 /**
652  * __mod_memcg_state - update cgroup memory statistics
653  * @memcg: the memory cgroup
654  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
655  * @val: delta to add to the counter, can be negative
656  */
657 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
658 		       int val)
659 {
660 	int i = memcg_stats_index(idx);
661 
662 	if (mem_cgroup_disabled())
663 		return;
664 
665 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
666 		return;
667 
668 	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
669 	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
670 }
671 
672 /* idx can be of type enum memcg_stat_item or node_stat_item. */
673 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
674 {
675 	long x;
676 	int i = memcg_stats_index(idx);
677 
678 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
679 		return 0;
680 
681 	x = READ_ONCE(memcg->vmstats->state_local[i]);
682 #ifdef CONFIG_SMP
683 	if (x < 0)
684 		x = 0;
685 #endif
686 	return x;
687 }
688 
689 static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
690 				     enum node_stat_item idx,
691 				     int val)
692 {
693 	struct mem_cgroup_per_node *pn;
694 	struct mem_cgroup *memcg;
695 	int i = memcg_stats_index(idx);
696 
697 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
698 		return;
699 
700 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
701 	memcg = pn->memcg;
702 
703 	/*
704 	 * The caller from rmap relies on disabled preemption because they never
705 	 * update their counter from in-interrupt context. For these two
706 	 * counters we check that the update is never performed from an
707 	 * interrupt context while other caller need to have disabled interrupt.
708 	 */
709 	__memcg_stats_lock();
710 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
711 		switch (idx) {
712 		case NR_ANON_MAPPED:
713 		case NR_FILE_MAPPED:
714 		case NR_ANON_THPS:
715 			WARN_ON_ONCE(!in_task());
716 			break;
717 		default:
718 			VM_WARN_ON_IRQS_ENABLED();
719 		}
720 	}
721 
722 	/* Update memcg */
723 	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
724 
725 	/* Update lruvec */
726 	__this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
727 
728 	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
729 	memcg_stats_unlock();
730 }
731 
732 /**
733  * __mod_lruvec_state - update lruvec memory statistics
734  * @lruvec: the lruvec
735  * @idx: the stat item
736  * @val: delta to add to the counter, can be negative
737  *
738  * The lruvec is the intersection of the NUMA node and a cgroup. This
739  * function updates the all three counters that are affected by a
740  * change of state at this level: per-node, per-cgroup, per-lruvec.
741  */
742 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
743 			int val)
744 {
745 	/* Update node */
746 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
747 
748 	/* Update memcg and lruvec */
749 	if (!mem_cgroup_disabled())
750 		__mod_memcg_lruvec_state(lruvec, idx, val);
751 }
752 
753 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
754 			     int val)
755 {
756 	struct mem_cgroup *memcg;
757 	pg_data_t *pgdat = folio_pgdat(folio);
758 	struct lruvec *lruvec;
759 
760 	rcu_read_lock();
761 	memcg = folio_memcg(folio);
762 	/* Untracked pages have no memcg, no lruvec. Update only the node */
763 	if (!memcg) {
764 		rcu_read_unlock();
765 		__mod_node_page_state(pgdat, idx, val);
766 		return;
767 	}
768 
769 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
770 	__mod_lruvec_state(lruvec, idx, val);
771 	rcu_read_unlock();
772 }
773 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
774 
775 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
776 {
777 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
778 	struct mem_cgroup *memcg;
779 	struct lruvec *lruvec;
780 
781 	rcu_read_lock();
782 	memcg = mem_cgroup_from_slab_obj(p);
783 
784 	/*
785 	 * Untracked pages have no memcg, no lruvec. Update only the
786 	 * node. If we reparent the slab objects to the root memcg,
787 	 * when we free the slab object, we need to update the per-memcg
788 	 * vmstats to keep it correct for the root memcg.
789 	 */
790 	if (!memcg) {
791 		__mod_node_page_state(pgdat, idx, val);
792 	} else {
793 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
794 		__mod_lruvec_state(lruvec, idx, val);
795 	}
796 	rcu_read_unlock();
797 }
798 
799 /**
800  * __count_memcg_events - account VM events in a cgroup
801  * @memcg: the memory cgroup
802  * @idx: the event item
803  * @count: the number of events that occurred
804  */
805 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
806 			  unsigned long count)
807 {
808 	int i = memcg_events_index(idx);
809 
810 	if (mem_cgroup_disabled())
811 		return;
812 
813 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
814 		return;
815 
816 	memcg_stats_lock();
817 	__this_cpu_add(memcg->vmstats_percpu->events[i], count);
818 	memcg_rstat_updated(memcg, count);
819 	memcg_stats_unlock();
820 }
821 
822 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
823 {
824 	int i = memcg_events_index(event);
825 
826 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, event))
827 		return 0;
828 
829 	return READ_ONCE(memcg->vmstats->events[i]);
830 }
831 
832 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
833 {
834 	int i = memcg_events_index(event);
835 
836 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, event))
837 		return 0;
838 
839 	return READ_ONCE(memcg->vmstats->events_local[i]);
840 }
841 
842 void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, int nr_pages)
843 {
844 	/* pagein of a big page is an event. So, ignore page size */
845 	if (nr_pages > 0)
846 		__count_memcg_events(memcg, PGPGIN, 1);
847 	else {
848 		__count_memcg_events(memcg, PGPGOUT, 1);
849 		nr_pages = -nr_pages; /* for event */
850 	}
851 
852 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
853 }
854 
855 bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
856 				enum mem_cgroup_events_target target)
857 {
858 	unsigned long val, next;
859 
860 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
861 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
862 	/* from time_after() in jiffies.h */
863 	if ((long)(next - val) < 0) {
864 		switch (target) {
865 		case MEM_CGROUP_TARGET_THRESH:
866 			next = val + THRESHOLDS_EVENTS_TARGET;
867 			break;
868 		case MEM_CGROUP_TARGET_SOFTLIMIT:
869 			next = val + SOFTLIMIT_EVENTS_TARGET;
870 			break;
871 		default:
872 			break;
873 		}
874 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
875 		return true;
876 	}
877 	return false;
878 }
879 
880 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
881 {
882 	/*
883 	 * mm_update_next_owner() may clear mm->owner to NULL
884 	 * if it races with swapoff, page migration, etc.
885 	 * So this can be called with p == NULL.
886 	 */
887 	if (unlikely(!p))
888 		return NULL;
889 
890 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
891 }
892 EXPORT_SYMBOL(mem_cgroup_from_task);
893 
894 static __always_inline struct mem_cgroup *active_memcg(void)
895 {
896 	if (!in_task())
897 		return this_cpu_read(int_active_memcg);
898 	else
899 		return current->active_memcg;
900 }
901 
902 /**
903  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
904  * @mm: mm from which memcg should be extracted. It can be NULL.
905  *
906  * Obtain a reference on mm->memcg and returns it if successful. If mm
907  * is NULL, then the memcg is chosen as follows:
908  * 1) The active memcg, if set.
909  * 2) current->mm->memcg, if available
910  * 3) root memcg
911  * If mem_cgroup is disabled, NULL is returned.
912  */
913 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
914 {
915 	struct mem_cgroup *memcg;
916 
917 	if (mem_cgroup_disabled())
918 		return NULL;
919 
920 	/*
921 	 * Page cache insertions can happen without an
922 	 * actual mm context, e.g. during disk probing
923 	 * on boot, loopback IO, acct() writes etc.
924 	 *
925 	 * No need to css_get on root memcg as the reference
926 	 * counting is disabled on the root level in the
927 	 * cgroup core. See CSS_NO_REF.
928 	 */
929 	if (unlikely(!mm)) {
930 		memcg = active_memcg();
931 		if (unlikely(memcg)) {
932 			/* remote memcg must hold a ref */
933 			css_get(&memcg->css);
934 			return memcg;
935 		}
936 		mm = current->mm;
937 		if (unlikely(!mm))
938 			return root_mem_cgroup;
939 	}
940 
941 	rcu_read_lock();
942 	do {
943 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
944 		if (unlikely(!memcg))
945 			memcg = root_mem_cgroup;
946 	} while (!css_tryget(&memcg->css));
947 	rcu_read_unlock();
948 	return memcg;
949 }
950 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
951 
952 /**
953  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
954  */
955 struct mem_cgroup *get_mem_cgroup_from_current(void)
956 {
957 	struct mem_cgroup *memcg;
958 
959 	if (mem_cgroup_disabled())
960 		return NULL;
961 
962 again:
963 	rcu_read_lock();
964 	memcg = mem_cgroup_from_task(current);
965 	if (!css_tryget(&memcg->css)) {
966 		rcu_read_unlock();
967 		goto again;
968 	}
969 	rcu_read_unlock();
970 	return memcg;
971 }
972 
973 /**
974  * mem_cgroup_iter - iterate over memory cgroup hierarchy
975  * @root: hierarchy root
976  * @prev: previously returned memcg, NULL on first invocation
977  * @reclaim: cookie for shared reclaim walks, NULL for full walks
978  *
979  * Returns references to children of the hierarchy below @root, or
980  * @root itself, or %NULL after a full round-trip.
981  *
982  * Caller must pass the return value in @prev on subsequent
983  * invocations for reference counting, or use mem_cgroup_iter_break()
984  * to cancel a hierarchy walk before the round-trip is complete.
985  *
986  * Reclaimers can specify a node in @reclaim to divide up the memcgs
987  * in the hierarchy among all concurrent reclaimers operating on the
988  * same node.
989  */
990 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
991 				   struct mem_cgroup *prev,
992 				   struct mem_cgroup_reclaim_cookie *reclaim)
993 {
994 	struct mem_cgroup_reclaim_iter *iter;
995 	struct cgroup_subsys_state *css = NULL;
996 	struct mem_cgroup *memcg = NULL;
997 	struct mem_cgroup *pos = NULL;
998 
999 	if (mem_cgroup_disabled())
1000 		return NULL;
1001 
1002 	if (!root)
1003 		root = root_mem_cgroup;
1004 
1005 	rcu_read_lock();
1006 
1007 	if (reclaim) {
1008 		struct mem_cgroup_per_node *mz;
1009 
1010 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1011 		iter = &mz->iter;
1012 
1013 		/*
1014 		 * On start, join the current reclaim iteration cycle.
1015 		 * Exit when a concurrent walker completes it.
1016 		 */
1017 		if (!prev)
1018 			reclaim->generation = iter->generation;
1019 		else if (reclaim->generation != iter->generation)
1020 			goto out_unlock;
1021 
1022 		while (1) {
1023 			pos = READ_ONCE(iter->position);
1024 			if (!pos || css_tryget(&pos->css))
1025 				break;
1026 			/*
1027 			 * css reference reached zero, so iter->position will
1028 			 * be cleared by ->css_released. However, we should not
1029 			 * rely on this happening soon, because ->css_released
1030 			 * is called from a work queue, and by busy-waiting we
1031 			 * might block it. So we clear iter->position right
1032 			 * away.
1033 			 */
1034 			(void)cmpxchg(&iter->position, pos, NULL);
1035 		}
1036 	} else if (prev) {
1037 		pos = prev;
1038 	}
1039 
1040 	if (pos)
1041 		css = &pos->css;
1042 
1043 	for (;;) {
1044 		css = css_next_descendant_pre(css, &root->css);
1045 		if (!css) {
1046 			/*
1047 			 * Reclaimers share the hierarchy walk, and a
1048 			 * new one might jump in right at the end of
1049 			 * the hierarchy - make sure they see at least
1050 			 * one group and restart from the beginning.
1051 			 */
1052 			if (!prev)
1053 				continue;
1054 			break;
1055 		}
1056 
1057 		/*
1058 		 * Verify the css and acquire a reference.  The root
1059 		 * is provided by the caller, so we know it's alive
1060 		 * and kicking, and don't take an extra reference.
1061 		 */
1062 		if (css == &root->css || css_tryget(css)) {
1063 			memcg = mem_cgroup_from_css(css);
1064 			break;
1065 		}
1066 	}
1067 
1068 	if (reclaim) {
1069 		/*
1070 		 * The position could have already been updated by a competing
1071 		 * thread, so check that the value hasn't changed since we read
1072 		 * it to avoid reclaiming from the same cgroup twice.
1073 		 */
1074 		(void)cmpxchg(&iter->position, pos, memcg);
1075 
1076 		if (pos)
1077 			css_put(&pos->css);
1078 
1079 		if (!memcg)
1080 			iter->generation++;
1081 	}
1082 
1083 out_unlock:
1084 	rcu_read_unlock();
1085 	if (prev && prev != root)
1086 		css_put(&prev->css);
1087 
1088 	return memcg;
1089 }
1090 
1091 /**
1092  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1093  * @root: hierarchy root
1094  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1095  */
1096 void mem_cgroup_iter_break(struct mem_cgroup *root,
1097 			   struct mem_cgroup *prev)
1098 {
1099 	if (!root)
1100 		root = root_mem_cgroup;
1101 	if (prev && prev != root)
1102 		css_put(&prev->css);
1103 }
1104 
1105 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1106 					struct mem_cgroup *dead_memcg)
1107 {
1108 	struct mem_cgroup_reclaim_iter *iter;
1109 	struct mem_cgroup_per_node *mz;
1110 	int nid;
1111 
1112 	for_each_node(nid) {
1113 		mz = from->nodeinfo[nid];
1114 		iter = &mz->iter;
1115 		cmpxchg(&iter->position, dead_memcg, NULL);
1116 	}
1117 }
1118 
1119 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1120 {
1121 	struct mem_cgroup *memcg = dead_memcg;
1122 	struct mem_cgroup *last;
1123 
1124 	do {
1125 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1126 		last = memcg;
1127 	} while ((memcg = parent_mem_cgroup(memcg)));
1128 
1129 	/*
1130 	 * When cgroup1 non-hierarchy mode is used,
1131 	 * parent_mem_cgroup() does not walk all the way up to the
1132 	 * cgroup root (root_mem_cgroup). So we have to handle
1133 	 * dead_memcg from cgroup root separately.
1134 	 */
1135 	if (!mem_cgroup_is_root(last))
1136 		__invalidate_reclaim_iterators(root_mem_cgroup,
1137 						dead_memcg);
1138 }
1139 
1140 /**
1141  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1142  * @memcg: hierarchy root
1143  * @fn: function to call for each task
1144  * @arg: argument passed to @fn
1145  *
1146  * This function iterates over tasks attached to @memcg or to any of its
1147  * descendants and calls @fn for each task. If @fn returns a non-zero
1148  * value, the function breaks the iteration loop. Otherwise, it will iterate
1149  * over all tasks and return 0.
1150  *
1151  * This function must not be called for the root memory cgroup.
1152  */
1153 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1154 			   int (*fn)(struct task_struct *, void *), void *arg)
1155 {
1156 	struct mem_cgroup *iter;
1157 	int ret = 0;
1158 
1159 	BUG_ON(mem_cgroup_is_root(memcg));
1160 
1161 	for_each_mem_cgroup_tree(iter, memcg) {
1162 		struct css_task_iter it;
1163 		struct task_struct *task;
1164 
1165 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1166 		while (!ret && (task = css_task_iter_next(&it)))
1167 			ret = fn(task, arg);
1168 		css_task_iter_end(&it);
1169 		if (ret) {
1170 			mem_cgroup_iter_break(memcg, iter);
1171 			break;
1172 		}
1173 	}
1174 }
1175 
1176 #ifdef CONFIG_DEBUG_VM
1177 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1178 {
1179 	struct mem_cgroup *memcg;
1180 
1181 	if (mem_cgroup_disabled())
1182 		return;
1183 
1184 	memcg = folio_memcg(folio);
1185 
1186 	if (!memcg)
1187 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1188 	else
1189 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1190 }
1191 #endif
1192 
1193 /**
1194  * folio_lruvec_lock - Lock the lruvec for a folio.
1195  * @folio: Pointer to the folio.
1196  *
1197  * These functions are safe to use under any of the following conditions:
1198  * - folio locked
1199  * - folio_test_lru false
1200  * - folio_memcg_lock()
1201  * - folio frozen (refcount of 0)
1202  *
1203  * Return: The lruvec this folio is on with its lock held.
1204  */
1205 struct lruvec *folio_lruvec_lock(struct folio *folio)
1206 {
1207 	struct lruvec *lruvec = folio_lruvec(folio);
1208 
1209 	spin_lock(&lruvec->lru_lock);
1210 	lruvec_memcg_debug(lruvec, folio);
1211 
1212 	return lruvec;
1213 }
1214 
1215 /**
1216  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1217  * @folio: Pointer to the folio.
1218  *
1219  * These functions are safe to use under any of the following conditions:
1220  * - folio locked
1221  * - folio_test_lru false
1222  * - folio_memcg_lock()
1223  * - folio frozen (refcount of 0)
1224  *
1225  * Return: The lruvec this folio is on with its lock held and interrupts
1226  * disabled.
1227  */
1228 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1229 {
1230 	struct lruvec *lruvec = folio_lruvec(folio);
1231 
1232 	spin_lock_irq(&lruvec->lru_lock);
1233 	lruvec_memcg_debug(lruvec, folio);
1234 
1235 	return lruvec;
1236 }
1237 
1238 /**
1239  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1240  * @folio: Pointer to the folio.
1241  * @flags: Pointer to irqsave flags.
1242  *
1243  * These functions are safe to use under any of the following conditions:
1244  * - folio locked
1245  * - folio_test_lru false
1246  * - folio_memcg_lock()
1247  * - folio frozen (refcount of 0)
1248  *
1249  * Return: The lruvec this folio is on with its lock held and interrupts
1250  * disabled.
1251  */
1252 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1253 		unsigned long *flags)
1254 {
1255 	struct lruvec *lruvec = folio_lruvec(folio);
1256 
1257 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1258 	lruvec_memcg_debug(lruvec, folio);
1259 
1260 	return lruvec;
1261 }
1262 
1263 /**
1264  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1265  * @lruvec: mem_cgroup per zone lru vector
1266  * @lru: index of lru list the page is sitting on
1267  * @zid: zone id of the accounted pages
1268  * @nr_pages: positive when adding or negative when removing
1269  *
1270  * This function must be called under lru_lock, just before a page is added
1271  * to or just after a page is removed from an lru list.
1272  */
1273 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1274 				int zid, int nr_pages)
1275 {
1276 	struct mem_cgroup_per_node *mz;
1277 	unsigned long *lru_size;
1278 	long size;
1279 
1280 	if (mem_cgroup_disabled())
1281 		return;
1282 
1283 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1284 	lru_size = &mz->lru_zone_size[zid][lru];
1285 
1286 	if (nr_pages < 0)
1287 		*lru_size += nr_pages;
1288 
1289 	size = *lru_size;
1290 	if (WARN_ONCE(size < 0,
1291 		"%s(%p, %d, %d): lru_size %ld\n",
1292 		__func__, lruvec, lru, nr_pages, size)) {
1293 		VM_BUG_ON(1);
1294 		*lru_size = 0;
1295 	}
1296 
1297 	if (nr_pages > 0)
1298 		*lru_size += nr_pages;
1299 }
1300 
1301 /**
1302  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1303  * @memcg: the memory cgroup
1304  *
1305  * Returns the maximum amount of memory @mem can be charged with, in
1306  * pages.
1307  */
1308 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1309 {
1310 	unsigned long margin = 0;
1311 	unsigned long count;
1312 	unsigned long limit;
1313 
1314 	count = page_counter_read(&memcg->memory);
1315 	limit = READ_ONCE(memcg->memory.max);
1316 	if (count < limit)
1317 		margin = limit - count;
1318 
1319 	if (do_memsw_account()) {
1320 		count = page_counter_read(&memcg->memsw);
1321 		limit = READ_ONCE(memcg->memsw.max);
1322 		if (count < limit)
1323 			margin = min(margin, limit - count);
1324 		else
1325 			margin = 0;
1326 	}
1327 
1328 	return margin;
1329 }
1330 
1331 struct memory_stat {
1332 	const char *name;
1333 	unsigned int idx;
1334 };
1335 
1336 static const struct memory_stat memory_stats[] = {
1337 	{ "anon",			NR_ANON_MAPPED			},
1338 	{ "file",			NR_FILE_PAGES			},
1339 	{ "kernel",			MEMCG_KMEM			},
1340 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1341 	{ "pagetables",			NR_PAGETABLE			},
1342 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1343 	{ "percpu",			MEMCG_PERCPU_B			},
1344 	{ "sock",			MEMCG_SOCK			},
1345 	{ "vmalloc",			MEMCG_VMALLOC			},
1346 	{ "shmem",			NR_SHMEM			},
1347 #ifdef CONFIG_ZSWAP
1348 	{ "zswap",			MEMCG_ZSWAP_B			},
1349 	{ "zswapped",			MEMCG_ZSWAPPED			},
1350 #endif
1351 	{ "file_mapped",		NR_FILE_MAPPED			},
1352 	{ "file_dirty",			NR_FILE_DIRTY			},
1353 	{ "file_writeback",		NR_WRITEBACK			},
1354 #ifdef CONFIG_SWAP
1355 	{ "swapcached",			NR_SWAPCACHE			},
1356 #endif
1357 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1358 	{ "anon_thp",			NR_ANON_THPS			},
1359 	{ "file_thp",			NR_FILE_THPS			},
1360 	{ "shmem_thp",			NR_SHMEM_THPS			},
1361 #endif
1362 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1363 	{ "active_anon",		NR_ACTIVE_ANON			},
1364 	{ "inactive_file",		NR_INACTIVE_FILE		},
1365 	{ "active_file",		NR_ACTIVE_FILE			},
1366 	{ "unevictable",		NR_UNEVICTABLE			},
1367 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1368 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1369 
1370 	/* The memory events */
1371 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1372 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1373 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1374 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1375 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1376 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1377 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1378 };
1379 
1380 /* The actual unit of the state item, not the same as the output unit */
1381 static int memcg_page_state_unit(int item)
1382 {
1383 	switch (item) {
1384 	case MEMCG_PERCPU_B:
1385 	case MEMCG_ZSWAP_B:
1386 	case NR_SLAB_RECLAIMABLE_B:
1387 	case NR_SLAB_UNRECLAIMABLE_B:
1388 		return 1;
1389 	case NR_KERNEL_STACK_KB:
1390 		return SZ_1K;
1391 	default:
1392 		return PAGE_SIZE;
1393 	}
1394 }
1395 
1396 /* Translate stat items to the correct unit for memory.stat output */
1397 static int memcg_page_state_output_unit(int item)
1398 {
1399 	/*
1400 	 * Workingset state is actually in pages, but we export it to userspace
1401 	 * as a scalar count of events, so special case it here.
1402 	 */
1403 	switch (item) {
1404 	case WORKINGSET_REFAULT_ANON:
1405 	case WORKINGSET_REFAULT_FILE:
1406 	case WORKINGSET_ACTIVATE_ANON:
1407 	case WORKINGSET_ACTIVATE_FILE:
1408 	case WORKINGSET_RESTORE_ANON:
1409 	case WORKINGSET_RESTORE_FILE:
1410 	case WORKINGSET_NODERECLAIM:
1411 		return 1;
1412 	default:
1413 		return memcg_page_state_unit(item);
1414 	}
1415 }
1416 
1417 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1418 {
1419 	return memcg_page_state(memcg, item) *
1420 		memcg_page_state_output_unit(item);
1421 }
1422 
1423 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1424 {
1425 	return memcg_page_state_local(memcg, item) *
1426 		memcg_page_state_output_unit(item);
1427 }
1428 
1429 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1430 {
1431 	int i;
1432 
1433 	/*
1434 	 * Provide statistics on the state of the memory subsystem as
1435 	 * well as cumulative event counters that show past behavior.
1436 	 *
1437 	 * This list is ordered following a combination of these gradients:
1438 	 * 1) generic big picture -> specifics and details
1439 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1440 	 *
1441 	 * Current memory state:
1442 	 */
1443 	mem_cgroup_flush_stats(memcg);
1444 
1445 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1446 		u64 size;
1447 
1448 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1449 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1450 
1451 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1452 			size += memcg_page_state_output(memcg,
1453 							NR_SLAB_RECLAIMABLE_B);
1454 			seq_buf_printf(s, "slab %llu\n", size);
1455 		}
1456 	}
1457 
1458 	/* Accumulated memory events */
1459 	seq_buf_printf(s, "pgscan %lu\n",
1460 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1461 		       memcg_events(memcg, PGSCAN_DIRECT) +
1462 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1463 	seq_buf_printf(s, "pgsteal %lu\n",
1464 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1465 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1466 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1467 
1468 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1469 		if (memcg_vm_event_stat[i] == PGPGIN ||
1470 		    memcg_vm_event_stat[i] == PGPGOUT)
1471 			continue;
1472 
1473 		seq_buf_printf(s, "%s %lu\n",
1474 			       vm_event_name(memcg_vm_event_stat[i]),
1475 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1476 	}
1477 }
1478 
1479 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1480 {
1481 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1482 		memcg_stat_format(memcg, s);
1483 	else
1484 		memcg1_stat_format(memcg, s);
1485 	if (seq_buf_has_overflowed(s))
1486 		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1487 }
1488 
1489 /**
1490  * mem_cgroup_print_oom_context: Print OOM information relevant to
1491  * memory controller.
1492  * @memcg: The memory cgroup that went over limit
1493  * @p: Task that is going to be killed
1494  *
1495  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1496  * enabled
1497  */
1498 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1499 {
1500 	rcu_read_lock();
1501 
1502 	if (memcg) {
1503 		pr_cont(",oom_memcg=");
1504 		pr_cont_cgroup_path(memcg->css.cgroup);
1505 	} else
1506 		pr_cont(",global_oom");
1507 	if (p) {
1508 		pr_cont(",task_memcg=");
1509 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1510 	}
1511 	rcu_read_unlock();
1512 }
1513 
1514 /**
1515  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1516  * memory controller.
1517  * @memcg: The memory cgroup that went over limit
1518  */
1519 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1520 {
1521 	/* Use static buffer, for the caller is holding oom_lock. */
1522 	static char buf[PAGE_SIZE];
1523 	struct seq_buf s;
1524 
1525 	lockdep_assert_held(&oom_lock);
1526 
1527 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1528 		K((u64)page_counter_read(&memcg->memory)),
1529 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1530 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1531 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1532 			K((u64)page_counter_read(&memcg->swap)),
1533 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1534 #ifdef CONFIG_MEMCG_V1
1535 	else {
1536 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1537 			K((u64)page_counter_read(&memcg->memsw)),
1538 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1539 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1540 			K((u64)page_counter_read(&memcg->kmem)),
1541 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1542 	}
1543 #endif
1544 
1545 	pr_info("Memory cgroup stats for ");
1546 	pr_cont_cgroup_path(memcg->css.cgroup);
1547 	pr_cont(":");
1548 	seq_buf_init(&s, buf, sizeof(buf));
1549 	memory_stat_format(memcg, &s);
1550 	seq_buf_do_printk(&s, KERN_INFO);
1551 }
1552 
1553 /*
1554  * Return the memory (and swap, if configured) limit for a memcg.
1555  */
1556 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1557 {
1558 	unsigned long max = READ_ONCE(memcg->memory.max);
1559 
1560 	if (do_memsw_account()) {
1561 		if (mem_cgroup_swappiness(memcg)) {
1562 			/* Calculate swap excess capacity from memsw limit */
1563 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1564 
1565 			max += min(swap, (unsigned long)total_swap_pages);
1566 		}
1567 	} else {
1568 		if (mem_cgroup_swappiness(memcg))
1569 			max += min(READ_ONCE(memcg->swap.max),
1570 				   (unsigned long)total_swap_pages);
1571 	}
1572 	return max;
1573 }
1574 
1575 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1576 {
1577 	return page_counter_read(&memcg->memory);
1578 }
1579 
1580 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1581 				     int order)
1582 {
1583 	struct oom_control oc = {
1584 		.zonelist = NULL,
1585 		.nodemask = NULL,
1586 		.memcg = memcg,
1587 		.gfp_mask = gfp_mask,
1588 		.order = order,
1589 	};
1590 	bool ret = true;
1591 
1592 	if (mutex_lock_killable(&oom_lock))
1593 		return true;
1594 
1595 	if (mem_cgroup_margin(memcg) >= (1 << order))
1596 		goto unlock;
1597 
1598 	/*
1599 	 * A few threads which were not waiting at mutex_lock_killable() can
1600 	 * fail to bail out. Therefore, check again after holding oom_lock.
1601 	 */
1602 	ret = task_is_dying() || out_of_memory(&oc);
1603 
1604 unlock:
1605 	mutex_unlock(&oom_lock);
1606 	return ret;
1607 }
1608 
1609 /*
1610  * Returns true if successfully killed one or more processes. Though in some
1611  * corner cases it can return true even without killing any process.
1612  */
1613 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1614 {
1615 	bool locked, ret;
1616 
1617 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1618 		return false;
1619 
1620 	memcg_memory_event(memcg, MEMCG_OOM);
1621 
1622 	if (!memcg1_oom_prepare(memcg, &locked))
1623 		return false;
1624 
1625 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1626 
1627 	memcg1_oom_finish(memcg, locked);
1628 
1629 	return ret;
1630 }
1631 
1632 /**
1633  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1634  * @victim: task to be killed by the OOM killer
1635  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1636  *
1637  * Returns a pointer to a memory cgroup, which has to be cleaned up
1638  * by killing all belonging OOM-killable tasks.
1639  *
1640  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1641  */
1642 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1643 					    struct mem_cgroup *oom_domain)
1644 {
1645 	struct mem_cgroup *oom_group = NULL;
1646 	struct mem_cgroup *memcg;
1647 
1648 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1649 		return NULL;
1650 
1651 	if (!oom_domain)
1652 		oom_domain = root_mem_cgroup;
1653 
1654 	rcu_read_lock();
1655 
1656 	memcg = mem_cgroup_from_task(victim);
1657 	if (mem_cgroup_is_root(memcg))
1658 		goto out;
1659 
1660 	/*
1661 	 * If the victim task has been asynchronously moved to a different
1662 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1663 	 * In this case it's better to ignore memory.group.oom.
1664 	 */
1665 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1666 		goto out;
1667 
1668 	/*
1669 	 * Traverse the memory cgroup hierarchy from the victim task's
1670 	 * cgroup up to the OOMing cgroup (or root) to find the
1671 	 * highest-level memory cgroup with oom.group set.
1672 	 */
1673 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1674 		if (READ_ONCE(memcg->oom_group))
1675 			oom_group = memcg;
1676 
1677 		if (memcg == oom_domain)
1678 			break;
1679 	}
1680 
1681 	if (oom_group)
1682 		css_get(&oom_group->css);
1683 out:
1684 	rcu_read_unlock();
1685 
1686 	return oom_group;
1687 }
1688 
1689 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1690 {
1691 	pr_info("Tasks in ");
1692 	pr_cont_cgroup_path(memcg->css.cgroup);
1693 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1694 }
1695 
1696 struct memcg_stock_pcp {
1697 	local_lock_t stock_lock;
1698 	struct mem_cgroup *cached; /* this never be root cgroup */
1699 	unsigned int nr_pages;
1700 
1701 	struct obj_cgroup *cached_objcg;
1702 	struct pglist_data *cached_pgdat;
1703 	unsigned int nr_bytes;
1704 	int nr_slab_reclaimable_b;
1705 	int nr_slab_unreclaimable_b;
1706 
1707 	struct work_struct work;
1708 	unsigned long flags;
1709 #define FLUSHING_CACHED_CHARGE	0
1710 };
1711 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1712 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
1713 };
1714 static DEFINE_MUTEX(percpu_charge_mutex);
1715 
1716 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1717 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1718 				     struct mem_cgroup *root_memcg);
1719 
1720 /**
1721  * consume_stock: Try to consume stocked charge on this cpu.
1722  * @memcg: memcg to consume from.
1723  * @nr_pages: how many pages to charge.
1724  *
1725  * The charges will only happen if @memcg matches the current cpu's memcg
1726  * stock, and at least @nr_pages are available in that stock.  Failure to
1727  * service an allocation will refill the stock.
1728  *
1729  * returns true if successful, false otherwise.
1730  */
1731 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1732 {
1733 	struct memcg_stock_pcp *stock;
1734 	unsigned int stock_pages;
1735 	unsigned long flags;
1736 	bool ret = false;
1737 
1738 	if (nr_pages > MEMCG_CHARGE_BATCH)
1739 		return ret;
1740 
1741 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1742 
1743 	stock = this_cpu_ptr(&memcg_stock);
1744 	stock_pages = READ_ONCE(stock->nr_pages);
1745 	if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1746 		WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1747 		ret = true;
1748 	}
1749 
1750 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1751 
1752 	return ret;
1753 }
1754 
1755 /*
1756  * Returns stocks cached in percpu and reset cached information.
1757  */
1758 static void drain_stock(struct memcg_stock_pcp *stock)
1759 {
1760 	unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1761 	struct mem_cgroup *old = READ_ONCE(stock->cached);
1762 
1763 	if (!old)
1764 		return;
1765 
1766 	if (stock_pages) {
1767 		page_counter_uncharge(&old->memory, stock_pages);
1768 		if (do_memsw_account())
1769 			page_counter_uncharge(&old->memsw, stock_pages);
1770 
1771 		WRITE_ONCE(stock->nr_pages, 0);
1772 	}
1773 
1774 	css_put(&old->css);
1775 	WRITE_ONCE(stock->cached, NULL);
1776 }
1777 
1778 static void drain_local_stock(struct work_struct *dummy)
1779 {
1780 	struct memcg_stock_pcp *stock;
1781 	struct obj_cgroup *old = NULL;
1782 	unsigned long flags;
1783 
1784 	/*
1785 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1786 	 * drain_stock races is that we always operate on local CPU stock
1787 	 * here with IRQ disabled
1788 	 */
1789 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1790 
1791 	stock = this_cpu_ptr(&memcg_stock);
1792 	old = drain_obj_stock(stock);
1793 	drain_stock(stock);
1794 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1795 
1796 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1797 	obj_cgroup_put(old);
1798 }
1799 
1800 /*
1801  * Cache charges(val) to local per_cpu area.
1802  * This will be consumed by consume_stock() function, later.
1803  */
1804 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1805 {
1806 	struct memcg_stock_pcp *stock;
1807 	unsigned int stock_pages;
1808 
1809 	stock = this_cpu_ptr(&memcg_stock);
1810 	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1811 		drain_stock(stock);
1812 		css_get(&memcg->css);
1813 		WRITE_ONCE(stock->cached, memcg);
1814 	}
1815 	stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1816 	WRITE_ONCE(stock->nr_pages, stock_pages);
1817 
1818 	if (stock_pages > MEMCG_CHARGE_BATCH)
1819 		drain_stock(stock);
1820 }
1821 
1822 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1823 {
1824 	unsigned long flags;
1825 
1826 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1827 	__refill_stock(memcg, nr_pages);
1828 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1829 }
1830 
1831 /*
1832  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1833  * of the hierarchy under it.
1834  */
1835 void drain_all_stock(struct mem_cgroup *root_memcg)
1836 {
1837 	int cpu, curcpu;
1838 
1839 	/* If someone's already draining, avoid adding running more workers. */
1840 	if (!mutex_trylock(&percpu_charge_mutex))
1841 		return;
1842 	/*
1843 	 * Notify other cpus that system-wide "drain" is running
1844 	 * We do not care about races with the cpu hotplug because cpu down
1845 	 * as well as workers from this path always operate on the local
1846 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1847 	 */
1848 	migrate_disable();
1849 	curcpu = smp_processor_id();
1850 	for_each_online_cpu(cpu) {
1851 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1852 		struct mem_cgroup *memcg;
1853 		bool flush = false;
1854 
1855 		rcu_read_lock();
1856 		memcg = READ_ONCE(stock->cached);
1857 		if (memcg && READ_ONCE(stock->nr_pages) &&
1858 		    mem_cgroup_is_descendant(memcg, root_memcg))
1859 			flush = true;
1860 		else if (obj_stock_flush_required(stock, root_memcg))
1861 			flush = true;
1862 		rcu_read_unlock();
1863 
1864 		if (flush &&
1865 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1866 			if (cpu == curcpu)
1867 				drain_local_stock(&stock->work);
1868 			else if (!cpu_is_isolated(cpu))
1869 				schedule_work_on(cpu, &stock->work);
1870 		}
1871 	}
1872 	migrate_enable();
1873 	mutex_unlock(&percpu_charge_mutex);
1874 }
1875 
1876 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1877 {
1878 	struct memcg_stock_pcp *stock;
1879 
1880 	stock = &per_cpu(memcg_stock, cpu);
1881 	drain_stock(stock);
1882 
1883 	return 0;
1884 }
1885 
1886 static unsigned long reclaim_high(struct mem_cgroup *memcg,
1887 				  unsigned int nr_pages,
1888 				  gfp_t gfp_mask)
1889 {
1890 	unsigned long nr_reclaimed = 0;
1891 
1892 	do {
1893 		unsigned long pflags;
1894 
1895 		if (page_counter_read(&memcg->memory) <=
1896 		    READ_ONCE(memcg->memory.high))
1897 			continue;
1898 
1899 		memcg_memory_event(memcg, MEMCG_HIGH);
1900 
1901 		psi_memstall_enter(&pflags);
1902 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1903 							gfp_mask,
1904 							MEMCG_RECLAIM_MAY_SWAP,
1905 							NULL);
1906 		psi_memstall_leave(&pflags);
1907 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1908 		 !mem_cgroup_is_root(memcg));
1909 
1910 	return nr_reclaimed;
1911 }
1912 
1913 static void high_work_func(struct work_struct *work)
1914 {
1915 	struct mem_cgroup *memcg;
1916 
1917 	memcg = container_of(work, struct mem_cgroup, high_work);
1918 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1919 }
1920 
1921 /*
1922  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1923  * enough to still cause a significant slowdown in most cases, while still
1924  * allowing diagnostics and tracing to proceed without becoming stuck.
1925  */
1926 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1927 
1928 /*
1929  * When calculating the delay, we use these either side of the exponentiation to
1930  * maintain precision and scale to a reasonable number of jiffies (see the table
1931  * below.
1932  *
1933  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
1934  *   overage ratio to a delay.
1935  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
1936  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
1937  *   to produce a reasonable delay curve.
1938  *
1939  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
1940  * reasonable delay curve compared to precision-adjusted overage, not
1941  * penalising heavily at first, but still making sure that growth beyond the
1942  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
1943  * example, with a high of 100 megabytes:
1944  *
1945  *  +-------+------------------------+
1946  *  | usage | time to allocate in ms |
1947  *  +-------+------------------------+
1948  *  | 100M  |                      0 |
1949  *  | 101M  |                      6 |
1950  *  | 102M  |                     25 |
1951  *  | 103M  |                     57 |
1952  *  | 104M  |                    102 |
1953  *  | 105M  |                    159 |
1954  *  | 106M  |                    230 |
1955  *  | 107M  |                    313 |
1956  *  | 108M  |                    409 |
1957  *  | 109M  |                    518 |
1958  *  | 110M  |                    639 |
1959  *  | 111M  |                    774 |
1960  *  | 112M  |                    921 |
1961  *  | 113M  |                   1081 |
1962  *  | 114M  |                   1254 |
1963  *  | 115M  |                   1439 |
1964  *  | 116M  |                   1638 |
1965  *  | 117M  |                   1849 |
1966  *  | 118M  |                   2000 |
1967  *  | 119M  |                   2000 |
1968  *  | 120M  |                   2000 |
1969  *  +-------+------------------------+
1970  */
1971  #define MEMCG_DELAY_PRECISION_SHIFT 20
1972  #define MEMCG_DELAY_SCALING_SHIFT 14
1973 
1974 static u64 calculate_overage(unsigned long usage, unsigned long high)
1975 {
1976 	u64 overage;
1977 
1978 	if (usage <= high)
1979 		return 0;
1980 
1981 	/*
1982 	 * Prevent division by 0 in overage calculation by acting as if
1983 	 * it was a threshold of 1 page
1984 	 */
1985 	high = max(high, 1UL);
1986 
1987 	overage = usage - high;
1988 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
1989 	return div64_u64(overage, high);
1990 }
1991 
1992 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
1993 {
1994 	u64 overage, max_overage = 0;
1995 
1996 	do {
1997 		overage = calculate_overage(page_counter_read(&memcg->memory),
1998 					    READ_ONCE(memcg->memory.high));
1999 		max_overage = max(overage, max_overage);
2000 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2001 		 !mem_cgroup_is_root(memcg));
2002 
2003 	return max_overage;
2004 }
2005 
2006 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2007 {
2008 	u64 overage, max_overage = 0;
2009 
2010 	do {
2011 		overage = calculate_overage(page_counter_read(&memcg->swap),
2012 					    READ_ONCE(memcg->swap.high));
2013 		if (overage)
2014 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2015 		max_overage = max(overage, max_overage);
2016 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2017 		 !mem_cgroup_is_root(memcg));
2018 
2019 	return max_overage;
2020 }
2021 
2022 /*
2023  * Get the number of jiffies that we should penalise a mischievous cgroup which
2024  * is exceeding its memory.high by checking both it and its ancestors.
2025  */
2026 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2027 					  unsigned int nr_pages,
2028 					  u64 max_overage)
2029 {
2030 	unsigned long penalty_jiffies;
2031 
2032 	if (!max_overage)
2033 		return 0;
2034 
2035 	/*
2036 	 * We use overage compared to memory.high to calculate the number of
2037 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2038 	 * fairly lenient on small overages, and increasingly harsh when the
2039 	 * memcg in question makes it clear that it has no intention of stopping
2040 	 * its crazy behaviour, so we exponentially increase the delay based on
2041 	 * overage amount.
2042 	 */
2043 	penalty_jiffies = max_overage * max_overage * HZ;
2044 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2045 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2046 
2047 	/*
2048 	 * Factor in the task's own contribution to the overage, such that four
2049 	 * N-sized allocations are throttled approximately the same as one
2050 	 * 4N-sized allocation.
2051 	 *
2052 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2053 	 * larger the current charge patch is than that.
2054 	 */
2055 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2056 }
2057 
2058 /*
2059  * Reclaims memory over the high limit. Called directly from
2060  * try_charge() (context permitting), as well as from the userland
2061  * return path where reclaim is always able to block.
2062  */
2063 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2064 {
2065 	unsigned long penalty_jiffies;
2066 	unsigned long pflags;
2067 	unsigned long nr_reclaimed;
2068 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2069 	int nr_retries = MAX_RECLAIM_RETRIES;
2070 	struct mem_cgroup *memcg;
2071 	bool in_retry = false;
2072 
2073 	if (likely(!nr_pages))
2074 		return;
2075 
2076 	memcg = get_mem_cgroup_from_mm(current->mm);
2077 	current->memcg_nr_pages_over_high = 0;
2078 
2079 retry_reclaim:
2080 	/*
2081 	 * Bail if the task is already exiting. Unlike memory.max,
2082 	 * memory.high enforcement isn't as strict, and there is no
2083 	 * OOM killer involved, which means the excess could already
2084 	 * be much bigger (and still growing) than it could for
2085 	 * memory.max; the dying task could get stuck in fruitless
2086 	 * reclaim for a long time, which isn't desirable.
2087 	 */
2088 	if (task_is_dying())
2089 		goto out;
2090 
2091 	/*
2092 	 * The allocating task should reclaim at least the batch size, but for
2093 	 * subsequent retries we only want to do what's necessary to prevent oom
2094 	 * or breaching resource isolation.
2095 	 *
2096 	 * This is distinct from memory.max or page allocator behaviour because
2097 	 * memory.high is currently batched, whereas memory.max and the page
2098 	 * allocator run every time an allocation is made.
2099 	 */
2100 	nr_reclaimed = reclaim_high(memcg,
2101 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2102 				    gfp_mask);
2103 
2104 	/*
2105 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2106 	 * allocators proactively to slow down excessive growth.
2107 	 */
2108 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2109 					       mem_find_max_overage(memcg));
2110 
2111 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2112 						swap_find_max_overage(memcg));
2113 
2114 	/*
2115 	 * Clamp the max delay per usermode return so as to still keep the
2116 	 * application moving forwards and also permit diagnostics, albeit
2117 	 * extremely slowly.
2118 	 */
2119 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2120 
2121 	/*
2122 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2123 	 * that it's not even worth doing, in an attempt to be nice to those who
2124 	 * go only a small amount over their memory.high value and maybe haven't
2125 	 * been aggressively reclaimed enough yet.
2126 	 */
2127 	if (penalty_jiffies <= HZ / 100)
2128 		goto out;
2129 
2130 	/*
2131 	 * If reclaim is making forward progress but we're still over
2132 	 * memory.high, we want to encourage that rather than doing allocator
2133 	 * throttling.
2134 	 */
2135 	if (nr_reclaimed || nr_retries--) {
2136 		in_retry = true;
2137 		goto retry_reclaim;
2138 	}
2139 
2140 	/*
2141 	 * Reclaim didn't manage to push usage below the limit, slow
2142 	 * this allocating task down.
2143 	 *
2144 	 * If we exit early, we're guaranteed to die (since
2145 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2146 	 * need to account for any ill-begotten jiffies to pay them off later.
2147 	 */
2148 	psi_memstall_enter(&pflags);
2149 	schedule_timeout_killable(penalty_jiffies);
2150 	psi_memstall_leave(&pflags);
2151 
2152 out:
2153 	css_put(&memcg->css);
2154 }
2155 
2156 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2157 		     unsigned int nr_pages)
2158 {
2159 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2160 	int nr_retries = MAX_RECLAIM_RETRIES;
2161 	struct mem_cgroup *mem_over_limit;
2162 	struct page_counter *counter;
2163 	unsigned long nr_reclaimed;
2164 	bool passed_oom = false;
2165 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2166 	bool drained = false;
2167 	bool raised_max_event = false;
2168 	unsigned long pflags;
2169 
2170 retry:
2171 	if (consume_stock(memcg, nr_pages))
2172 		return 0;
2173 
2174 	if (!do_memsw_account() ||
2175 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2176 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2177 			goto done_restock;
2178 		if (do_memsw_account())
2179 			page_counter_uncharge(&memcg->memsw, batch);
2180 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2181 	} else {
2182 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2183 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2184 	}
2185 
2186 	if (batch > nr_pages) {
2187 		batch = nr_pages;
2188 		goto retry;
2189 	}
2190 
2191 	/*
2192 	 * Prevent unbounded recursion when reclaim operations need to
2193 	 * allocate memory. This might exceed the limits temporarily,
2194 	 * but we prefer facilitating memory reclaim and getting back
2195 	 * under the limit over triggering OOM kills in these cases.
2196 	 */
2197 	if (unlikely(current->flags & PF_MEMALLOC))
2198 		goto force;
2199 
2200 	if (unlikely(task_in_memcg_oom(current)))
2201 		goto nomem;
2202 
2203 	if (!gfpflags_allow_blocking(gfp_mask))
2204 		goto nomem;
2205 
2206 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2207 	raised_max_event = true;
2208 
2209 	psi_memstall_enter(&pflags);
2210 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2211 						    gfp_mask, reclaim_options, NULL);
2212 	psi_memstall_leave(&pflags);
2213 
2214 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2215 		goto retry;
2216 
2217 	if (!drained) {
2218 		drain_all_stock(mem_over_limit);
2219 		drained = true;
2220 		goto retry;
2221 	}
2222 
2223 	if (gfp_mask & __GFP_NORETRY)
2224 		goto nomem;
2225 	/*
2226 	 * Even though the limit is exceeded at this point, reclaim
2227 	 * may have been able to free some pages.  Retry the charge
2228 	 * before killing the task.
2229 	 *
2230 	 * Only for regular pages, though: huge pages are rather
2231 	 * unlikely to succeed so close to the limit, and we fall back
2232 	 * to regular pages anyway in case of failure.
2233 	 */
2234 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2235 		goto retry;
2236 	/*
2237 	 * At task move, charge accounts can be doubly counted. So, it's
2238 	 * better to wait until the end of task_move if something is going on.
2239 	 */
2240 	if (memcg1_wait_acct_move(mem_over_limit))
2241 		goto retry;
2242 
2243 	if (nr_retries--)
2244 		goto retry;
2245 
2246 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2247 		goto nomem;
2248 
2249 	/* Avoid endless loop for tasks bypassed by the oom killer */
2250 	if (passed_oom && task_is_dying())
2251 		goto nomem;
2252 
2253 	/*
2254 	 * keep retrying as long as the memcg oom killer is able to make
2255 	 * a forward progress or bypass the charge if the oom killer
2256 	 * couldn't make any progress.
2257 	 */
2258 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2259 			   get_order(nr_pages * PAGE_SIZE))) {
2260 		passed_oom = true;
2261 		nr_retries = MAX_RECLAIM_RETRIES;
2262 		goto retry;
2263 	}
2264 nomem:
2265 	/*
2266 	 * Memcg doesn't have a dedicated reserve for atomic
2267 	 * allocations. But like the global atomic pool, we need to
2268 	 * put the burden of reclaim on regular allocation requests
2269 	 * and let these go through as privileged allocations.
2270 	 */
2271 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2272 		return -ENOMEM;
2273 force:
2274 	/*
2275 	 * If the allocation has to be enforced, don't forget to raise
2276 	 * a MEMCG_MAX event.
2277 	 */
2278 	if (!raised_max_event)
2279 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2280 
2281 	/*
2282 	 * The allocation either can't fail or will lead to more memory
2283 	 * being freed very soon.  Allow memory usage go over the limit
2284 	 * temporarily by force charging it.
2285 	 */
2286 	page_counter_charge(&memcg->memory, nr_pages);
2287 	if (do_memsw_account())
2288 		page_counter_charge(&memcg->memsw, nr_pages);
2289 
2290 	return 0;
2291 
2292 done_restock:
2293 	if (batch > nr_pages)
2294 		refill_stock(memcg, batch - nr_pages);
2295 
2296 	/*
2297 	 * If the hierarchy is above the normal consumption range, schedule
2298 	 * reclaim on returning to userland.  We can perform reclaim here
2299 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2300 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2301 	 * not recorded as it most likely matches current's and won't
2302 	 * change in the meantime.  As high limit is checked again before
2303 	 * reclaim, the cost of mismatch is negligible.
2304 	 */
2305 	do {
2306 		bool mem_high, swap_high;
2307 
2308 		mem_high = page_counter_read(&memcg->memory) >
2309 			READ_ONCE(memcg->memory.high);
2310 		swap_high = page_counter_read(&memcg->swap) >
2311 			READ_ONCE(memcg->swap.high);
2312 
2313 		/* Don't bother a random interrupted task */
2314 		if (!in_task()) {
2315 			if (mem_high) {
2316 				schedule_work(&memcg->high_work);
2317 				break;
2318 			}
2319 			continue;
2320 		}
2321 
2322 		if (mem_high || swap_high) {
2323 			/*
2324 			 * The allocating tasks in this cgroup will need to do
2325 			 * reclaim or be throttled to prevent further growth
2326 			 * of the memory or swap footprints.
2327 			 *
2328 			 * Target some best-effort fairness between the tasks,
2329 			 * and distribute reclaim work and delay penalties
2330 			 * based on how much each task is actually allocating.
2331 			 */
2332 			current->memcg_nr_pages_over_high += batch;
2333 			set_notify_resume(current);
2334 			break;
2335 		}
2336 	} while ((memcg = parent_mem_cgroup(memcg)));
2337 
2338 	/*
2339 	 * Reclaim is set up above to be called from the userland
2340 	 * return path. But also attempt synchronous reclaim to avoid
2341 	 * excessive overrun while the task is still inside the
2342 	 * kernel. If this is successful, the return path will see it
2343 	 * when it rechecks the overage and simply bail out.
2344 	 */
2345 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2346 	    !(current->flags & PF_MEMALLOC) &&
2347 	    gfpflags_allow_blocking(gfp_mask))
2348 		mem_cgroup_handle_over_high(gfp_mask);
2349 	return 0;
2350 }
2351 
2352 /**
2353  * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2354  * @memcg: memcg previously charged.
2355  * @nr_pages: number of pages previously charged.
2356  */
2357 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2358 {
2359 	if (mem_cgroup_is_root(memcg))
2360 		return;
2361 
2362 	page_counter_uncharge(&memcg->memory, nr_pages);
2363 	if (do_memsw_account())
2364 		page_counter_uncharge(&memcg->memsw, nr_pages);
2365 }
2366 
2367 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2368 {
2369 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2370 	/*
2371 	 * Any of the following ensures page's memcg stability:
2372 	 *
2373 	 * - the page lock
2374 	 * - LRU isolation
2375 	 * - folio_memcg_lock()
2376 	 * - exclusive reference
2377 	 * - mem_cgroup_trylock_pages()
2378 	 */
2379 	folio->memcg_data = (unsigned long)memcg;
2380 }
2381 
2382 /**
2383  * mem_cgroup_commit_charge - commit a previously successful try_charge().
2384  * @folio: folio to commit the charge to.
2385  * @memcg: memcg previously charged.
2386  */
2387 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2388 {
2389 	css_get(&memcg->css);
2390 	commit_charge(folio, memcg);
2391 
2392 	local_irq_disable();
2393 	mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
2394 	memcg1_check_events(memcg, folio_nid(folio));
2395 	local_irq_enable();
2396 }
2397 
2398 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2399 				       struct pglist_data *pgdat,
2400 				       enum node_stat_item idx, int nr)
2401 {
2402 	struct mem_cgroup *memcg;
2403 	struct lruvec *lruvec;
2404 
2405 	rcu_read_lock();
2406 	memcg = obj_cgroup_memcg(objcg);
2407 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2408 	__mod_memcg_lruvec_state(lruvec, idx, nr);
2409 	rcu_read_unlock();
2410 }
2411 
2412 static __always_inline
2413 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2414 {
2415 	/*
2416 	 * Slab objects are accounted individually, not per-page.
2417 	 * Memcg membership data for each individual object is saved in
2418 	 * slab->obj_exts.
2419 	 */
2420 	if (folio_test_slab(folio)) {
2421 		struct slabobj_ext *obj_exts;
2422 		struct slab *slab;
2423 		unsigned int off;
2424 
2425 		slab = folio_slab(folio);
2426 		obj_exts = slab_obj_exts(slab);
2427 		if (!obj_exts)
2428 			return NULL;
2429 
2430 		off = obj_to_index(slab->slab_cache, slab, p);
2431 		if (obj_exts[off].objcg)
2432 			return obj_cgroup_memcg(obj_exts[off].objcg);
2433 
2434 		return NULL;
2435 	}
2436 
2437 	/*
2438 	 * folio_memcg_check() is used here, because in theory we can encounter
2439 	 * a folio where the slab flag has been cleared already, but
2440 	 * slab->obj_exts has not been freed yet
2441 	 * folio_memcg_check() will guarantee that a proper memory
2442 	 * cgroup pointer or NULL will be returned.
2443 	 */
2444 	return folio_memcg_check(folio);
2445 }
2446 
2447 /*
2448  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2449  *
2450  * A passed kernel object can be a slab object, vmalloc object or a generic
2451  * kernel page, so different mechanisms for getting the memory cgroup pointer
2452  * should be used.
2453  *
2454  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2455  * can not know for sure how the kernel object is implemented.
2456  * mem_cgroup_from_obj() can be safely used in such cases.
2457  *
2458  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2459  * cgroup_mutex, etc.
2460  */
2461 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2462 {
2463 	struct folio *folio;
2464 
2465 	if (mem_cgroup_disabled())
2466 		return NULL;
2467 
2468 	if (unlikely(is_vmalloc_addr(p)))
2469 		folio = page_folio(vmalloc_to_page(p));
2470 	else
2471 		folio = virt_to_folio(p);
2472 
2473 	return mem_cgroup_from_obj_folio(folio, p);
2474 }
2475 
2476 /*
2477  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2478  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2479  * allocated using vmalloc().
2480  *
2481  * A passed kernel object must be a slab object or a generic kernel page.
2482  *
2483  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2484  * cgroup_mutex, etc.
2485  */
2486 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2487 {
2488 	if (mem_cgroup_disabled())
2489 		return NULL;
2490 
2491 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2492 }
2493 
2494 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2495 {
2496 	struct obj_cgroup *objcg = NULL;
2497 
2498 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2499 		objcg = rcu_dereference(memcg->objcg);
2500 		if (likely(objcg && obj_cgroup_tryget(objcg)))
2501 			break;
2502 		objcg = NULL;
2503 	}
2504 	return objcg;
2505 }
2506 
2507 static struct obj_cgroup *current_objcg_update(void)
2508 {
2509 	struct mem_cgroup *memcg;
2510 	struct obj_cgroup *old, *objcg = NULL;
2511 
2512 	do {
2513 		/* Atomically drop the update bit. */
2514 		old = xchg(&current->objcg, NULL);
2515 		if (old) {
2516 			old = (struct obj_cgroup *)
2517 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2518 			obj_cgroup_put(old);
2519 
2520 			old = NULL;
2521 		}
2522 
2523 		/* If new objcg is NULL, no reason for the second atomic update. */
2524 		if (!current->mm || (current->flags & PF_KTHREAD))
2525 			return NULL;
2526 
2527 		/*
2528 		 * Release the objcg pointer from the previous iteration,
2529 		 * if try_cmpxcg() below fails.
2530 		 */
2531 		if (unlikely(objcg)) {
2532 			obj_cgroup_put(objcg);
2533 			objcg = NULL;
2534 		}
2535 
2536 		/*
2537 		 * Obtain the new objcg pointer. The current task can be
2538 		 * asynchronously moved to another memcg and the previous
2539 		 * memcg can be offlined. So let's get the memcg pointer
2540 		 * and try get a reference to objcg under a rcu read lock.
2541 		 */
2542 
2543 		rcu_read_lock();
2544 		memcg = mem_cgroup_from_task(current);
2545 		objcg = __get_obj_cgroup_from_memcg(memcg);
2546 		rcu_read_unlock();
2547 
2548 		/*
2549 		 * Try set up a new objcg pointer atomically. If it
2550 		 * fails, it means the update flag was set concurrently, so
2551 		 * the whole procedure should be repeated.
2552 		 */
2553 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
2554 
2555 	return objcg;
2556 }
2557 
2558 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2559 {
2560 	struct mem_cgroup *memcg;
2561 	struct obj_cgroup *objcg;
2562 
2563 	if (in_task()) {
2564 		memcg = current->active_memcg;
2565 		if (unlikely(memcg))
2566 			goto from_memcg;
2567 
2568 		objcg = READ_ONCE(current->objcg);
2569 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2570 			objcg = current_objcg_update();
2571 		/*
2572 		 * Objcg reference is kept by the task, so it's safe
2573 		 * to use the objcg by the current task.
2574 		 */
2575 		return objcg;
2576 	}
2577 
2578 	memcg = this_cpu_read(int_active_memcg);
2579 	if (unlikely(memcg))
2580 		goto from_memcg;
2581 
2582 	return NULL;
2583 
2584 from_memcg:
2585 	objcg = NULL;
2586 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2587 		/*
2588 		 * Memcg pointer is protected by scope (see set_active_memcg())
2589 		 * and is pinning the corresponding objcg, so objcg can't go
2590 		 * away and can be used within the scope without any additional
2591 		 * protection.
2592 		 */
2593 		objcg = rcu_dereference_check(memcg->objcg, 1);
2594 		if (likely(objcg))
2595 			break;
2596 	}
2597 
2598 	return objcg;
2599 }
2600 
2601 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2602 {
2603 	struct obj_cgroup *objcg;
2604 
2605 	if (!memcg_kmem_online())
2606 		return NULL;
2607 
2608 	if (folio_memcg_kmem(folio)) {
2609 		objcg = __folio_objcg(folio);
2610 		obj_cgroup_get(objcg);
2611 	} else {
2612 		struct mem_cgroup *memcg;
2613 
2614 		rcu_read_lock();
2615 		memcg = __folio_memcg(folio);
2616 		if (memcg)
2617 			objcg = __get_obj_cgroup_from_memcg(memcg);
2618 		else
2619 			objcg = NULL;
2620 		rcu_read_unlock();
2621 	}
2622 	return objcg;
2623 }
2624 
2625 /*
2626  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2627  * @objcg: object cgroup to uncharge
2628  * @nr_pages: number of pages to uncharge
2629  */
2630 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2631 				      unsigned int nr_pages)
2632 {
2633 	struct mem_cgroup *memcg;
2634 
2635 	memcg = get_mem_cgroup_from_objcg(objcg);
2636 
2637 	mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2638 	memcg1_account_kmem(memcg, -nr_pages);
2639 	refill_stock(memcg, nr_pages);
2640 
2641 	css_put(&memcg->css);
2642 }
2643 
2644 /*
2645  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2646  * @objcg: object cgroup to charge
2647  * @gfp: reclaim mode
2648  * @nr_pages: number of pages to charge
2649  *
2650  * Returns 0 on success, an error code on failure.
2651  */
2652 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2653 				   unsigned int nr_pages)
2654 {
2655 	struct mem_cgroup *memcg;
2656 	int ret;
2657 
2658 	memcg = get_mem_cgroup_from_objcg(objcg);
2659 
2660 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2661 	if (ret)
2662 		goto out;
2663 
2664 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2665 	memcg1_account_kmem(memcg, nr_pages);
2666 out:
2667 	css_put(&memcg->css);
2668 
2669 	return ret;
2670 }
2671 
2672 /**
2673  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2674  * @page: page to charge
2675  * @gfp: reclaim mode
2676  * @order: allocation order
2677  *
2678  * Returns 0 on success, an error code on failure.
2679  */
2680 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2681 {
2682 	struct obj_cgroup *objcg;
2683 	int ret = 0;
2684 
2685 	objcg = current_obj_cgroup();
2686 	if (objcg) {
2687 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2688 		if (!ret) {
2689 			obj_cgroup_get(objcg);
2690 			page->memcg_data = (unsigned long)objcg |
2691 				MEMCG_DATA_KMEM;
2692 			return 0;
2693 		}
2694 	}
2695 	return ret;
2696 }
2697 
2698 /**
2699  * __memcg_kmem_uncharge_page: uncharge a kmem page
2700  * @page: page to uncharge
2701  * @order: allocation order
2702  */
2703 void __memcg_kmem_uncharge_page(struct page *page, int order)
2704 {
2705 	struct folio *folio = page_folio(page);
2706 	struct obj_cgroup *objcg;
2707 	unsigned int nr_pages = 1 << order;
2708 
2709 	if (!folio_memcg_kmem(folio))
2710 		return;
2711 
2712 	objcg = __folio_objcg(folio);
2713 	obj_cgroup_uncharge_pages(objcg, nr_pages);
2714 	folio->memcg_data = 0;
2715 	obj_cgroup_put(objcg);
2716 }
2717 
2718 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2719 		     enum node_stat_item idx, int nr)
2720 {
2721 	struct memcg_stock_pcp *stock;
2722 	struct obj_cgroup *old = NULL;
2723 	unsigned long flags;
2724 	int *bytes;
2725 
2726 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2727 	stock = this_cpu_ptr(&memcg_stock);
2728 
2729 	/*
2730 	 * Save vmstat data in stock and skip vmstat array update unless
2731 	 * accumulating over a page of vmstat data or when pgdat or idx
2732 	 * changes.
2733 	 */
2734 	if (READ_ONCE(stock->cached_objcg) != objcg) {
2735 		old = drain_obj_stock(stock);
2736 		obj_cgroup_get(objcg);
2737 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2738 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2739 		WRITE_ONCE(stock->cached_objcg, objcg);
2740 		stock->cached_pgdat = pgdat;
2741 	} else if (stock->cached_pgdat != pgdat) {
2742 		/* Flush the existing cached vmstat data */
2743 		struct pglist_data *oldpg = stock->cached_pgdat;
2744 
2745 		if (stock->nr_slab_reclaimable_b) {
2746 			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2747 					  stock->nr_slab_reclaimable_b);
2748 			stock->nr_slab_reclaimable_b = 0;
2749 		}
2750 		if (stock->nr_slab_unreclaimable_b) {
2751 			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2752 					  stock->nr_slab_unreclaimable_b);
2753 			stock->nr_slab_unreclaimable_b = 0;
2754 		}
2755 		stock->cached_pgdat = pgdat;
2756 	}
2757 
2758 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2759 					       : &stock->nr_slab_unreclaimable_b;
2760 	/*
2761 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2762 	 * cached locally at least once before pushing it out.
2763 	 */
2764 	if (!*bytes) {
2765 		*bytes = nr;
2766 		nr = 0;
2767 	} else {
2768 		*bytes += nr;
2769 		if (abs(*bytes) > PAGE_SIZE) {
2770 			nr = *bytes;
2771 			*bytes = 0;
2772 		} else {
2773 			nr = 0;
2774 		}
2775 	}
2776 	if (nr)
2777 		__mod_objcg_mlstate(objcg, pgdat, idx, nr);
2778 
2779 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2780 	obj_cgroup_put(old);
2781 }
2782 
2783 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2784 {
2785 	struct memcg_stock_pcp *stock;
2786 	unsigned long flags;
2787 	bool ret = false;
2788 
2789 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2790 
2791 	stock = this_cpu_ptr(&memcg_stock);
2792 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2793 		stock->nr_bytes -= nr_bytes;
2794 		ret = true;
2795 	}
2796 
2797 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2798 
2799 	return ret;
2800 }
2801 
2802 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2803 {
2804 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2805 
2806 	if (!old)
2807 		return NULL;
2808 
2809 	if (stock->nr_bytes) {
2810 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2811 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2812 
2813 		if (nr_pages) {
2814 			struct mem_cgroup *memcg;
2815 
2816 			memcg = get_mem_cgroup_from_objcg(old);
2817 
2818 			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2819 			memcg1_account_kmem(memcg, -nr_pages);
2820 			__refill_stock(memcg, nr_pages);
2821 
2822 			css_put(&memcg->css);
2823 		}
2824 
2825 		/*
2826 		 * The leftover is flushed to the centralized per-memcg value.
2827 		 * On the next attempt to refill obj stock it will be moved
2828 		 * to a per-cpu stock (probably, on an other CPU), see
2829 		 * refill_obj_stock().
2830 		 *
2831 		 * How often it's flushed is a trade-off between the memory
2832 		 * limit enforcement accuracy and potential CPU contention,
2833 		 * so it might be changed in the future.
2834 		 */
2835 		atomic_add(nr_bytes, &old->nr_charged_bytes);
2836 		stock->nr_bytes = 0;
2837 	}
2838 
2839 	/*
2840 	 * Flush the vmstat data in current stock
2841 	 */
2842 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2843 		if (stock->nr_slab_reclaimable_b) {
2844 			__mod_objcg_mlstate(old, stock->cached_pgdat,
2845 					  NR_SLAB_RECLAIMABLE_B,
2846 					  stock->nr_slab_reclaimable_b);
2847 			stock->nr_slab_reclaimable_b = 0;
2848 		}
2849 		if (stock->nr_slab_unreclaimable_b) {
2850 			__mod_objcg_mlstate(old, stock->cached_pgdat,
2851 					  NR_SLAB_UNRECLAIMABLE_B,
2852 					  stock->nr_slab_unreclaimable_b);
2853 			stock->nr_slab_unreclaimable_b = 0;
2854 		}
2855 		stock->cached_pgdat = NULL;
2856 	}
2857 
2858 	WRITE_ONCE(stock->cached_objcg, NULL);
2859 	/*
2860 	 * The `old' objects needs to be released by the caller via
2861 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
2862 	 */
2863 	return old;
2864 }
2865 
2866 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2867 				     struct mem_cgroup *root_memcg)
2868 {
2869 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2870 	struct mem_cgroup *memcg;
2871 
2872 	if (objcg) {
2873 		memcg = obj_cgroup_memcg(objcg);
2874 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2875 			return true;
2876 	}
2877 
2878 	return false;
2879 }
2880 
2881 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2882 			     bool allow_uncharge)
2883 {
2884 	struct memcg_stock_pcp *stock;
2885 	struct obj_cgroup *old = NULL;
2886 	unsigned long flags;
2887 	unsigned int nr_pages = 0;
2888 
2889 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2890 
2891 	stock = this_cpu_ptr(&memcg_stock);
2892 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2893 		old = drain_obj_stock(stock);
2894 		obj_cgroup_get(objcg);
2895 		WRITE_ONCE(stock->cached_objcg, objcg);
2896 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2897 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2898 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
2899 	}
2900 	stock->nr_bytes += nr_bytes;
2901 
2902 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2903 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2904 		stock->nr_bytes &= (PAGE_SIZE - 1);
2905 	}
2906 
2907 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2908 	obj_cgroup_put(old);
2909 
2910 	if (nr_pages)
2911 		obj_cgroup_uncharge_pages(objcg, nr_pages);
2912 }
2913 
2914 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2915 {
2916 	unsigned int nr_pages, nr_bytes;
2917 	int ret;
2918 
2919 	if (consume_obj_stock(objcg, size))
2920 		return 0;
2921 
2922 	/*
2923 	 * In theory, objcg->nr_charged_bytes can have enough
2924 	 * pre-charged bytes to satisfy the allocation. However,
2925 	 * flushing objcg->nr_charged_bytes requires two atomic
2926 	 * operations, and objcg->nr_charged_bytes can't be big.
2927 	 * The shared objcg->nr_charged_bytes can also become a
2928 	 * performance bottleneck if all tasks of the same memcg are
2929 	 * trying to update it. So it's better to ignore it and try
2930 	 * grab some new pages. The stock's nr_bytes will be flushed to
2931 	 * objcg->nr_charged_bytes later on when objcg changes.
2932 	 *
2933 	 * The stock's nr_bytes may contain enough pre-charged bytes
2934 	 * to allow one less page from being charged, but we can't rely
2935 	 * on the pre-charged bytes not being changed outside of
2936 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
2937 	 * pre-charged bytes as well when charging pages. To avoid a
2938 	 * page uncharge right after a page charge, we set the
2939 	 * allow_uncharge flag to false when calling refill_obj_stock()
2940 	 * to temporarily allow the pre-charged bytes to exceed the page
2941 	 * size limit. The maximum reachable value of the pre-charged
2942 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2943 	 * race.
2944 	 */
2945 	nr_pages = size >> PAGE_SHIFT;
2946 	nr_bytes = size & (PAGE_SIZE - 1);
2947 
2948 	if (nr_bytes)
2949 		nr_pages += 1;
2950 
2951 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2952 	if (!ret && nr_bytes)
2953 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2954 
2955 	return ret;
2956 }
2957 
2958 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
2959 {
2960 	refill_obj_stock(objcg, size, true);
2961 }
2962 
2963 static inline size_t obj_full_size(struct kmem_cache *s)
2964 {
2965 	/*
2966 	 * For each accounted object there is an extra space which is used
2967 	 * to store obj_cgroup membership. Charge it too.
2968 	 */
2969 	return s->size + sizeof(struct obj_cgroup *);
2970 }
2971 
2972 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2973 				  gfp_t flags, size_t size, void **p)
2974 {
2975 	struct obj_cgroup *objcg;
2976 	struct slab *slab;
2977 	unsigned long off;
2978 	size_t i;
2979 
2980 	/*
2981 	 * The obtained objcg pointer is safe to use within the current scope,
2982 	 * defined by current task or set_active_memcg() pair.
2983 	 * obj_cgroup_get() is used to get a permanent reference.
2984 	 */
2985 	objcg = current_obj_cgroup();
2986 	if (!objcg)
2987 		return true;
2988 
2989 	/*
2990 	 * slab_alloc_node() avoids the NULL check, so we might be called with a
2991 	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
2992 	 * the whole requested size.
2993 	 * return success as there's nothing to free back
2994 	 */
2995 	if (unlikely(*p == NULL))
2996 		return true;
2997 
2998 	flags &= gfp_allowed_mask;
2999 
3000 	if (lru) {
3001 		int ret;
3002 		struct mem_cgroup *memcg;
3003 
3004 		memcg = get_mem_cgroup_from_objcg(objcg);
3005 		ret = memcg_list_lru_alloc(memcg, lru, flags);
3006 		css_put(&memcg->css);
3007 
3008 		if (ret)
3009 			return false;
3010 	}
3011 
3012 	if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
3013 		return false;
3014 
3015 	for (i = 0; i < size; i++) {
3016 		slab = virt_to_slab(p[i]);
3017 
3018 		if (!slab_obj_exts(slab) &&
3019 		    alloc_slab_obj_exts(slab, s, flags, false)) {
3020 			obj_cgroup_uncharge(objcg, obj_full_size(s));
3021 			continue;
3022 		}
3023 
3024 		off = obj_to_index(s, slab, p[i]);
3025 		obj_cgroup_get(objcg);
3026 		slab_obj_exts(slab)[off].objcg = objcg;
3027 		mod_objcg_state(objcg, slab_pgdat(slab),
3028 				cache_vmstat_idx(s), obj_full_size(s));
3029 	}
3030 
3031 	return true;
3032 }
3033 
3034 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3035 			    void **p, int objects, struct slabobj_ext *obj_exts)
3036 {
3037 	for (int i = 0; i < objects; i++) {
3038 		struct obj_cgroup *objcg;
3039 		unsigned int off;
3040 
3041 		off = obj_to_index(s, slab, p[i]);
3042 		objcg = obj_exts[off].objcg;
3043 		if (!objcg)
3044 			continue;
3045 
3046 		obj_exts[off].objcg = NULL;
3047 		obj_cgroup_uncharge(objcg, obj_full_size(s));
3048 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3049 				-obj_full_size(s));
3050 		obj_cgroup_put(objcg);
3051 	}
3052 }
3053 
3054 /*
3055  * Because folio_memcg(head) is not set on tails, set it now.
3056  */
3057 void split_page_memcg(struct page *head, int old_order, int new_order)
3058 {
3059 	struct folio *folio = page_folio(head);
3060 	struct mem_cgroup *memcg = folio_memcg(folio);
3061 	int i;
3062 	unsigned int old_nr = 1 << old_order;
3063 	unsigned int new_nr = 1 << new_order;
3064 
3065 	if (mem_cgroup_disabled() || !memcg)
3066 		return;
3067 
3068 	for (i = new_nr; i < old_nr; i += new_nr)
3069 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3070 
3071 	if (folio_memcg_kmem(folio))
3072 		obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3073 	else
3074 		css_get_many(&memcg->css, old_nr / new_nr - 1);
3075 }
3076 
3077 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3078 {
3079 	unsigned long val;
3080 
3081 	if (mem_cgroup_is_root(memcg)) {
3082 		/*
3083 		 * Approximate root's usage from global state. This isn't
3084 		 * perfect, but the root usage was always an approximation.
3085 		 */
3086 		val = global_node_page_state(NR_FILE_PAGES) +
3087 			global_node_page_state(NR_ANON_MAPPED);
3088 		if (swap)
3089 			val += total_swap_pages - get_nr_swap_pages();
3090 	} else {
3091 		if (!swap)
3092 			val = page_counter_read(&memcg->memory);
3093 		else
3094 			val = page_counter_read(&memcg->memsw);
3095 	}
3096 	return val;
3097 }
3098 
3099 static int memcg_online_kmem(struct mem_cgroup *memcg)
3100 {
3101 	struct obj_cgroup *objcg;
3102 
3103 	if (mem_cgroup_kmem_disabled())
3104 		return 0;
3105 
3106 	if (unlikely(mem_cgroup_is_root(memcg)))
3107 		return 0;
3108 
3109 	objcg = obj_cgroup_alloc();
3110 	if (!objcg)
3111 		return -ENOMEM;
3112 
3113 	objcg->memcg = memcg;
3114 	rcu_assign_pointer(memcg->objcg, objcg);
3115 	obj_cgroup_get(objcg);
3116 	memcg->orig_objcg = objcg;
3117 
3118 	static_branch_enable(&memcg_kmem_online_key);
3119 
3120 	memcg->kmemcg_id = memcg->id.id;
3121 
3122 	return 0;
3123 }
3124 
3125 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3126 {
3127 	struct mem_cgroup *parent;
3128 
3129 	if (mem_cgroup_kmem_disabled())
3130 		return;
3131 
3132 	if (unlikely(mem_cgroup_is_root(memcg)))
3133 		return;
3134 
3135 	parent = parent_mem_cgroup(memcg);
3136 	if (!parent)
3137 		parent = root_mem_cgroup;
3138 
3139 	memcg_reparent_objcgs(memcg, parent);
3140 
3141 	/*
3142 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3143 	 * corresponding to this cgroup are guaranteed to remain empty.
3144 	 * The ordering is imposed by list_lru_node->lock taken by
3145 	 * memcg_reparent_list_lrus().
3146 	 */
3147 	memcg_reparent_list_lrus(memcg, parent);
3148 }
3149 
3150 #ifdef CONFIG_CGROUP_WRITEBACK
3151 
3152 #include <trace/events/writeback.h>
3153 
3154 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3155 {
3156 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3157 }
3158 
3159 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3160 {
3161 	wb_domain_exit(&memcg->cgwb_domain);
3162 }
3163 
3164 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3165 {
3166 	wb_domain_size_changed(&memcg->cgwb_domain);
3167 }
3168 
3169 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3170 {
3171 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3172 
3173 	if (!memcg->css.parent)
3174 		return NULL;
3175 
3176 	return &memcg->cgwb_domain;
3177 }
3178 
3179 /**
3180  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3181  * @wb: bdi_writeback in question
3182  * @pfilepages: out parameter for number of file pages
3183  * @pheadroom: out parameter for number of allocatable pages according to memcg
3184  * @pdirty: out parameter for number of dirty pages
3185  * @pwriteback: out parameter for number of pages under writeback
3186  *
3187  * Determine the numbers of file, headroom, dirty, and writeback pages in
3188  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3189  * is a bit more involved.
3190  *
3191  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3192  * headroom is calculated as the lowest headroom of itself and the
3193  * ancestors.  Note that this doesn't consider the actual amount of
3194  * available memory in the system.  The caller should further cap
3195  * *@pheadroom accordingly.
3196  */
3197 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3198 			 unsigned long *pheadroom, unsigned long *pdirty,
3199 			 unsigned long *pwriteback)
3200 {
3201 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3202 	struct mem_cgroup *parent;
3203 
3204 	mem_cgroup_flush_stats_ratelimited(memcg);
3205 
3206 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3207 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3208 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3209 			memcg_page_state(memcg, NR_ACTIVE_FILE);
3210 
3211 	*pheadroom = PAGE_COUNTER_MAX;
3212 	while ((parent = parent_mem_cgroup(memcg))) {
3213 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3214 					    READ_ONCE(memcg->memory.high));
3215 		unsigned long used = page_counter_read(&memcg->memory);
3216 
3217 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3218 		memcg = parent;
3219 	}
3220 }
3221 
3222 /*
3223  * Foreign dirty flushing
3224  *
3225  * There's an inherent mismatch between memcg and writeback.  The former
3226  * tracks ownership per-page while the latter per-inode.  This was a
3227  * deliberate design decision because honoring per-page ownership in the
3228  * writeback path is complicated, may lead to higher CPU and IO overheads
3229  * and deemed unnecessary given that write-sharing an inode across
3230  * different cgroups isn't a common use-case.
3231  *
3232  * Combined with inode majority-writer ownership switching, this works well
3233  * enough in most cases but there are some pathological cases.  For
3234  * example, let's say there are two cgroups A and B which keep writing to
3235  * different but confined parts of the same inode.  B owns the inode and
3236  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
3237  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3238  * triggering background writeback.  A will be slowed down without a way to
3239  * make writeback of the dirty pages happen.
3240  *
3241  * Conditions like the above can lead to a cgroup getting repeatedly and
3242  * severely throttled after making some progress after each
3243  * dirty_expire_interval while the underlying IO device is almost
3244  * completely idle.
3245  *
3246  * Solving this problem completely requires matching the ownership tracking
3247  * granularities between memcg and writeback in either direction.  However,
3248  * the more egregious behaviors can be avoided by simply remembering the
3249  * most recent foreign dirtying events and initiating remote flushes on
3250  * them when local writeback isn't enough to keep the memory clean enough.
3251  *
3252  * The following two functions implement such mechanism.  When a foreign
3253  * page - a page whose memcg and writeback ownerships don't match - is
3254  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3255  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
3256  * decides that the memcg needs to sleep due to high dirty ratio, it calls
3257  * mem_cgroup_flush_foreign() which queues writeback on the recorded
3258  * foreign bdi_writebacks which haven't expired.  Both the numbers of
3259  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3260  * limited to MEMCG_CGWB_FRN_CNT.
3261  *
3262  * The mechanism only remembers IDs and doesn't hold any object references.
3263  * As being wrong occasionally doesn't matter, updates and accesses to the
3264  * records are lockless and racy.
3265  */
3266 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3267 					     struct bdi_writeback *wb)
3268 {
3269 	struct mem_cgroup *memcg = folio_memcg(folio);
3270 	struct memcg_cgwb_frn *frn;
3271 	u64 now = get_jiffies_64();
3272 	u64 oldest_at = now;
3273 	int oldest = -1;
3274 	int i;
3275 
3276 	trace_track_foreign_dirty(folio, wb);
3277 
3278 	/*
3279 	 * Pick the slot to use.  If there is already a slot for @wb, keep
3280 	 * using it.  If not replace the oldest one which isn't being
3281 	 * written out.
3282 	 */
3283 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3284 		frn = &memcg->cgwb_frn[i];
3285 		if (frn->bdi_id == wb->bdi->id &&
3286 		    frn->memcg_id == wb->memcg_css->id)
3287 			break;
3288 		if (time_before64(frn->at, oldest_at) &&
3289 		    atomic_read(&frn->done.cnt) == 1) {
3290 			oldest = i;
3291 			oldest_at = frn->at;
3292 		}
3293 	}
3294 
3295 	if (i < MEMCG_CGWB_FRN_CNT) {
3296 		/*
3297 		 * Re-using an existing one.  Update timestamp lazily to
3298 		 * avoid making the cacheline hot.  We want them to be
3299 		 * reasonably up-to-date and significantly shorter than
3300 		 * dirty_expire_interval as that's what expires the record.
3301 		 * Use the shorter of 1s and dirty_expire_interval / 8.
3302 		 */
3303 		unsigned long update_intv =
3304 			min_t(unsigned long, HZ,
3305 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3306 
3307 		if (time_before64(frn->at, now - update_intv))
3308 			frn->at = now;
3309 	} else if (oldest >= 0) {
3310 		/* replace the oldest free one */
3311 		frn = &memcg->cgwb_frn[oldest];
3312 		frn->bdi_id = wb->bdi->id;
3313 		frn->memcg_id = wb->memcg_css->id;
3314 		frn->at = now;
3315 	}
3316 }
3317 
3318 /* issue foreign writeback flushes for recorded foreign dirtying events */
3319 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3320 {
3321 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3322 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3323 	u64 now = jiffies_64;
3324 	int i;
3325 
3326 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3327 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3328 
3329 		/*
3330 		 * If the record is older than dirty_expire_interval,
3331 		 * writeback on it has already started.  No need to kick it
3332 		 * off again.  Also, don't start a new one if there's
3333 		 * already one in flight.
3334 		 */
3335 		if (time_after64(frn->at, now - intv) &&
3336 		    atomic_read(&frn->done.cnt) == 1) {
3337 			frn->at = 0;
3338 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3339 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3340 					       WB_REASON_FOREIGN_FLUSH,
3341 					       &frn->done);
3342 		}
3343 	}
3344 }
3345 
3346 #else	/* CONFIG_CGROUP_WRITEBACK */
3347 
3348 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3349 {
3350 	return 0;
3351 }
3352 
3353 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3354 {
3355 }
3356 
3357 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3358 {
3359 }
3360 
3361 #endif	/* CONFIG_CGROUP_WRITEBACK */
3362 
3363 /*
3364  * Private memory cgroup IDR
3365  *
3366  * Swap-out records and page cache shadow entries need to store memcg
3367  * references in constrained space, so we maintain an ID space that is
3368  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3369  * memory-controlled cgroups to 64k.
3370  *
3371  * However, there usually are many references to the offline CSS after
3372  * the cgroup has been destroyed, such as page cache or reclaimable
3373  * slab objects, that don't need to hang on to the ID. We want to keep
3374  * those dead CSS from occupying IDs, or we might quickly exhaust the
3375  * relatively small ID space and prevent the creation of new cgroups
3376  * even when there are much fewer than 64k cgroups - possibly none.
3377  *
3378  * Maintain a private 16-bit ID space for memcg, and allow the ID to
3379  * be freed and recycled when it's no longer needed, which is usually
3380  * when the CSS is offlined.
3381  *
3382  * The only exception to that are records of swapped out tmpfs/shmem
3383  * pages that need to be attributed to live ancestors on swapin. But
3384  * those references are manageable from userspace.
3385  */
3386 
3387 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3388 static DEFINE_IDR(mem_cgroup_idr);
3389 static DEFINE_SPINLOCK(memcg_idr_lock);
3390 
3391 static int mem_cgroup_alloc_id(void)
3392 {
3393 	int ret;
3394 
3395 	idr_preload(GFP_KERNEL);
3396 	spin_lock(&memcg_idr_lock);
3397 	ret = idr_alloc(&mem_cgroup_idr, NULL, 1, MEM_CGROUP_ID_MAX + 1,
3398 			GFP_NOWAIT);
3399 	spin_unlock(&memcg_idr_lock);
3400 	idr_preload_end();
3401 	return ret;
3402 }
3403 
3404 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3405 {
3406 	if (memcg->id.id > 0) {
3407 		spin_lock(&memcg_idr_lock);
3408 		idr_remove(&mem_cgroup_idr, memcg->id.id);
3409 		spin_unlock(&memcg_idr_lock);
3410 
3411 		memcg->id.id = 0;
3412 	}
3413 }
3414 
3415 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3416 					   unsigned int n)
3417 {
3418 	refcount_add(n, &memcg->id.ref);
3419 }
3420 
3421 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3422 {
3423 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
3424 		mem_cgroup_id_remove(memcg);
3425 
3426 		/* Memcg ID pins CSS */
3427 		css_put(&memcg->css);
3428 	}
3429 }
3430 
3431 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3432 {
3433 	mem_cgroup_id_put_many(memcg, 1);
3434 }
3435 
3436 /**
3437  * mem_cgroup_from_id - look up a memcg from a memcg id
3438  * @id: the memcg id to look up
3439  *
3440  * Caller must hold rcu_read_lock().
3441  */
3442 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3443 {
3444 	WARN_ON_ONCE(!rcu_read_lock_held());
3445 	return idr_find(&mem_cgroup_idr, id);
3446 }
3447 
3448 #ifdef CONFIG_SHRINKER_DEBUG
3449 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3450 {
3451 	struct cgroup *cgrp;
3452 	struct cgroup_subsys_state *css;
3453 	struct mem_cgroup *memcg;
3454 
3455 	cgrp = cgroup_get_from_id(ino);
3456 	if (IS_ERR(cgrp))
3457 		return ERR_CAST(cgrp);
3458 
3459 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3460 	if (css)
3461 		memcg = container_of(css, struct mem_cgroup, css);
3462 	else
3463 		memcg = ERR_PTR(-ENOENT);
3464 
3465 	cgroup_put(cgrp);
3466 
3467 	return memcg;
3468 }
3469 #endif
3470 
3471 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3472 {
3473 	struct mem_cgroup_per_node *pn;
3474 
3475 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
3476 	if (!pn)
3477 		return false;
3478 
3479 	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3480 					GFP_KERNEL_ACCOUNT, node);
3481 	if (!pn->lruvec_stats)
3482 		goto fail;
3483 
3484 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3485 						   GFP_KERNEL_ACCOUNT);
3486 	if (!pn->lruvec_stats_percpu)
3487 		goto fail;
3488 
3489 	lruvec_init(&pn->lruvec);
3490 	pn->memcg = memcg;
3491 
3492 	memcg->nodeinfo[node] = pn;
3493 	return true;
3494 fail:
3495 	kfree(pn->lruvec_stats);
3496 	kfree(pn);
3497 	return false;
3498 }
3499 
3500 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3501 {
3502 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3503 
3504 	if (!pn)
3505 		return;
3506 
3507 	free_percpu(pn->lruvec_stats_percpu);
3508 	kfree(pn->lruvec_stats);
3509 	kfree(pn);
3510 }
3511 
3512 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3513 {
3514 	int node;
3515 
3516 	obj_cgroup_put(memcg->orig_objcg);
3517 
3518 	for_each_node(node)
3519 		free_mem_cgroup_per_node_info(memcg, node);
3520 	kfree(memcg->vmstats);
3521 	free_percpu(memcg->vmstats_percpu);
3522 	kfree(memcg);
3523 }
3524 
3525 static void mem_cgroup_free(struct mem_cgroup *memcg)
3526 {
3527 	lru_gen_exit_memcg(memcg);
3528 	memcg_wb_domain_exit(memcg);
3529 	__mem_cgroup_free(memcg);
3530 }
3531 
3532 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3533 {
3534 	struct memcg_vmstats_percpu *statc, *pstatc;
3535 	struct mem_cgroup *memcg;
3536 	int node, cpu;
3537 	int __maybe_unused i;
3538 	long error = -ENOMEM;
3539 
3540 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
3541 	if (!memcg)
3542 		return ERR_PTR(error);
3543 
3544 	memcg->id.id = mem_cgroup_alloc_id();
3545 	if (memcg->id.id < 0) {
3546 		error = memcg->id.id;
3547 		goto fail;
3548 	}
3549 
3550 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3551 				 GFP_KERNEL_ACCOUNT);
3552 	if (!memcg->vmstats)
3553 		goto fail;
3554 
3555 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3556 						 GFP_KERNEL_ACCOUNT);
3557 	if (!memcg->vmstats_percpu)
3558 		goto fail;
3559 
3560 	for_each_possible_cpu(cpu) {
3561 		if (parent)
3562 			pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3563 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3564 		statc->parent = parent ? pstatc : NULL;
3565 		statc->vmstats = memcg->vmstats;
3566 	}
3567 
3568 	for_each_node(node)
3569 		if (!alloc_mem_cgroup_per_node_info(memcg, node))
3570 			goto fail;
3571 
3572 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3573 		goto fail;
3574 
3575 	INIT_WORK(&memcg->high_work, high_work_func);
3576 	vmpressure_init(&memcg->vmpressure);
3577 	memcg->socket_pressure = jiffies;
3578 	memcg1_memcg_init(memcg);
3579 	memcg->kmemcg_id = -1;
3580 	INIT_LIST_HEAD(&memcg->objcg_list);
3581 #ifdef CONFIG_CGROUP_WRITEBACK
3582 	INIT_LIST_HEAD(&memcg->cgwb_list);
3583 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3584 		memcg->cgwb_frn[i].done =
3585 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3586 #endif
3587 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3588 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3589 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3590 	memcg->deferred_split_queue.split_queue_len = 0;
3591 #endif
3592 	lru_gen_init_memcg(memcg);
3593 	return memcg;
3594 fail:
3595 	mem_cgroup_id_remove(memcg);
3596 	__mem_cgroup_free(memcg);
3597 	return ERR_PTR(error);
3598 }
3599 
3600 static struct cgroup_subsys_state * __ref
3601 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3602 {
3603 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3604 	struct mem_cgroup *memcg, *old_memcg;
3605 
3606 	old_memcg = set_active_memcg(parent);
3607 	memcg = mem_cgroup_alloc(parent);
3608 	set_active_memcg(old_memcg);
3609 	if (IS_ERR(memcg))
3610 		return ERR_CAST(memcg);
3611 
3612 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3613 	memcg1_soft_limit_reset(memcg);
3614 #ifdef CONFIG_ZSWAP
3615 	memcg->zswap_max = PAGE_COUNTER_MAX;
3616 	WRITE_ONCE(memcg->zswap_writeback,
3617 		!parent || READ_ONCE(parent->zswap_writeback));
3618 #endif
3619 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3620 	if (parent) {
3621 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3622 
3623 		page_counter_init(&memcg->memory, &parent->memory);
3624 		page_counter_init(&memcg->swap, &parent->swap);
3625 #ifdef CONFIG_MEMCG_V1
3626 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3627 		page_counter_init(&memcg->kmem, &parent->kmem);
3628 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
3629 #endif
3630 	} else {
3631 		init_memcg_stats();
3632 		init_memcg_events();
3633 		page_counter_init(&memcg->memory, NULL);
3634 		page_counter_init(&memcg->swap, NULL);
3635 #ifdef CONFIG_MEMCG_V1
3636 		page_counter_init(&memcg->kmem, NULL);
3637 		page_counter_init(&memcg->tcpmem, NULL);
3638 #endif
3639 		root_mem_cgroup = memcg;
3640 		return &memcg->css;
3641 	}
3642 
3643 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3644 		static_branch_inc(&memcg_sockets_enabled_key);
3645 
3646 	if (!cgroup_memory_nobpf)
3647 		static_branch_inc(&memcg_bpf_enabled_key);
3648 
3649 	return &memcg->css;
3650 }
3651 
3652 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3653 {
3654 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3655 
3656 	if (memcg_online_kmem(memcg))
3657 		goto remove_id;
3658 
3659 	/*
3660 	 * A memcg must be visible for expand_shrinker_info()
3661 	 * by the time the maps are allocated. So, we allocate maps
3662 	 * here, when for_each_mem_cgroup() can't skip it.
3663 	 */
3664 	if (alloc_shrinker_info(memcg))
3665 		goto offline_kmem;
3666 
3667 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3668 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3669 				   FLUSH_TIME);
3670 	lru_gen_online_memcg(memcg);
3671 
3672 	/* Online state pins memcg ID, memcg ID pins CSS */
3673 	refcount_set(&memcg->id.ref, 1);
3674 	css_get(css);
3675 
3676 	/*
3677 	 * Ensure mem_cgroup_from_id() works once we're fully online.
3678 	 *
3679 	 * We could do this earlier and require callers to filter with
3680 	 * css_tryget_online(). But right now there are no users that
3681 	 * need earlier access, and the workingset code relies on the
3682 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3683 	 * publish it here at the end of onlining. This matches the
3684 	 * regular ID destruction during offlining.
3685 	 */
3686 	spin_lock(&memcg_idr_lock);
3687 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
3688 	spin_unlock(&memcg_idr_lock);
3689 
3690 	return 0;
3691 offline_kmem:
3692 	memcg_offline_kmem(memcg);
3693 remove_id:
3694 	mem_cgroup_id_remove(memcg);
3695 	return -ENOMEM;
3696 }
3697 
3698 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3699 {
3700 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3701 
3702 	memcg1_css_offline(memcg);
3703 
3704 	page_counter_set_min(&memcg->memory, 0);
3705 	page_counter_set_low(&memcg->memory, 0);
3706 
3707 	zswap_memcg_offline_cleanup(memcg);
3708 
3709 	memcg_offline_kmem(memcg);
3710 	reparent_shrinker_deferred(memcg);
3711 	wb_memcg_offline(memcg);
3712 	lru_gen_offline_memcg(memcg);
3713 
3714 	drain_all_stock(memcg);
3715 
3716 	mem_cgroup_id_put(memcg);
3717 }
3718 
3719 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3720 {
3721 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3722 
3723 	invalidate_reclaim_iterators(memcg);
3724 	lru_gen_release_memcg(memcg);
3725 }
3726 
3727 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3728 {
3729 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3730 	int __maybe_unused i;
3731 
3732 #ifdef CONFIG_CGROUP_WRITEBACK
3733 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3734 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3735 #endif
3736 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3737 		static_branch_dec(&memcg_sockets_enabled_key);
3738 
3739 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3740 		static_branch_dec(&memcg_sockets_enabled_key);
3741 
3742 	if (!cgroup_memory_nobpf)
3743 		static_branch_dec(&memcg_bpf_enabled_key);
3744 
3745 	vmpressure_cleanup(&memcg->vmpressure);
3746 	cancel_work_sync(&memcg->high_work);
3747 	memcg1_remove_from_trees(memcg);
3748 	free_shrinker_info(memcg);
3749 	mem_cgroup_free(memcg);
3750 }
3751 
3752 /**
3753  * mem_cgroup_css_reset - reset the states of a mem_cgroup
3754  * @css: the target css
3755  *
3756  * Reset the states of the mem_cgroup associated with @css.  This is
3757  * invoked when the userland requests disabling on the default hierarchy
3758  * but the memcg is pinned through dependency.  The memcg should stop
3759  * applying policies and should revert to the vanilla state as it may be
3760  * made visible again.
3761  *
3762  * The current implementation only resets the essential configurations.
3763  * This needs to be expanded to cover all the visible parts.
3764  */
3765 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3766 {
3767 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3768 
3769 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3770 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3771 #ifdef CONFIG_MEMCG_V1
3772 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3773 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3774 #endif
3775 	page_counter_set_min(&memcg->memory, 0);
3776 	page_counter_set_low(&memcg->memory, 0);
3777 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3778 	memcg1_soft_limit_reset(memcg);
3779 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3780 	memcg_wb_domain_size_changed(memcg);
3781 }
3782 
3783 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
3784 {
3785 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3786 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3787 	struct memcg_vmstats_percpu *statc;
3788 	long delta, delta_cpu, v;
3789 	int i, nid;
3790 
3791 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3792 
3793 	for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) {
3794 		/*
3795 		 * Collect the aggregated propagation counts of groups
3796 		 * below us. We're in a per-cpu loop here and this is
3797 		 * a global counter, so the first cycle will get them.
3798 		 */
3799 		delta = memcg->vmstats->state_pending[i];
3800 		if (delta)
3801 			memcg->vmstats->state_pending[i] = 0;
3802 
3803 		/* Add CPU changes on this level since the last flush */
3804 		delta_cpu = 0;
3805 		v = READ_ONCE(statc->state[i]);
3806 		if (v != statc->state_prev[i]) {
3807 			delta_cpu = v - statc->state_prev[i];
3808 			delta += delta_cpu;
3809 			statc->state_prev[i] = v;
3810 		}
3811 
3812 		/* Aggregate counts on this level and propagate upwards */
3813 		if (delta_cpu)
3814 			memcg->vmstats->state_local[i] += delta_cpu;
3815 
3816 		if (delta) {
3817 			memcg->vmstats->state[i] += delta;
3818 			if (parent)
3819 				parent->vmstats->state_pending[i] += delta;
3820 		}
3821 	}
3822 
3823 	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
3824 		delta = memcg->vmstats->events_pending[i];
3825 		if (delta)
3826 			memcg->vmstats->events_pending[i] = 0;
3827 
3828 		delta_cpu = 0;
3829 		v = READ_ONCE(statc->events[i]);
3830 		if (v != statc->events_prev[i]) {
3831 			delta_cpu = v - statc->events_prev[i];
3832 			delta += delta_cpu;
3833 			statc->events_prev[i] = v;
3834 		}
3835 
3836 		if (delta_cpu)
3837 			memcg->vmstats->events_local[i] += delta_cpu;
3838 
3839 		if (delta) {
3840 			memcg->vmstats->events[i] += delta;
3841 			if (parent)
3842 				parent->vmstats->events_pending[i] += delta;
3843 		}
3844 	}
3845 
3846 	for_each_node_state(nid, N_MEMORY) {
3847 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3848 		struct lruvec_stats *lstats = pn->lruvec_stats;
3849 		struct lruvec_stats *plstats = NULL;
3850 		struct lruvec_stats_percpu *lstatc;
3851 
3852 		if (parent)
3853 			plstats = parent->nodeinfo[nid]->lruvec_stats;
3854 
3855 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
3856 
3857 		for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) {
3858 			delta = lstats->state_pending[i];
3859 			if (delta)
3860 				lstats->state_pending[i] = 0;
3861 
3862 			delta_cpu = 0;
3863 			v = READ_ONCE(lstatc->state[i]);
3864 			if (v != lstatc->state_prev[i]) {
3865 				delta_cpu = v - lstatc->state_prev[i];
3866 				delta += delta_cpu;
3867 				lstatc->state_prev[i] = v;
3868 			}
3869 
3870 			if (delta_cpu)
3871 				lstats->state_local[i] += delta_cpu;
3872 
3873 			if (delta) {
3874 				lstats->state[i] += delta;
3875 				if (plstats)
3876 					plstats->state_pending[i] += delta;
3877 			}
3878 		}
3879 	}
3880 	WRITE_ONCE(statc->stats_updates, 0);
3881 	/* We are in a per-cpu loop here, only do the atomic write once */
3882 	if (atomic64_read(&memcg->vmstats->stats_updates))
3883 		atomic64_set(&memcg->vmstats->stats_updates, 0);
3884 }
3885 
3886 static void mem_cgroup_fork(struct task_struct *task)
3887 {
3888 	/*
3889 	 * Set the update flag to cause task->objcg to be initialized lazily
3890 	 * on the first allocation. It can be done without any synchronization
3891 	 * because it's always performed on the current task, so does
3892 	 * current_objcg_update().
3893 	 */
3894 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
3895 }
3896 
3897 static void mem_cgroup_exit(struct task_struct *task)
3898 {
3899 	struct obj_cgroup *objcg = task->objcg;
3900 
3901 	objcg = (struct obj_cgroup *)
3902 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3903 	obj_cgroup_put(objcg);
3904 
3905 	/*
3906 	 * Some kernel allocations can happen after this point,
3907 	 * but let's ignore them. It can be done without any synchronization
3908 	 * because it's always performed on the current task, so does
3909 	 * current_objcg_update().
3910 	 */
3911 	task->objcg = NULL;
3912 }
3913 
3914 #ifdef CONFIG_LRU_GEN
3915 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
3916 {
3917 	struct task_struct *task;
3918 	struct cgroup_subsys_state *css;
3919 
3920 	/* find the first leader if there is any */
3921 	cgroup_taskset_for_each_leader(task, css, tset)
3922 		break;
3923 
3924 	if (!task)
3925 		return;
3926 
3927 	task_lock(task);
3928 	if (task->mm && READ_ONCE(task->mm->owner) == task)
3929 		lru_gen_migrate_mm(task->mm);
3930 	task_unlock(task);
3931 }
3932 #else
3933 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3934 #endif /* CONFIG_LRU_GEN */
3935 
3936 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
3937 {
3938 	struct task_struct *task;
3939 	struct cgroup_subsys_state *css;
3940 
3941 	cgroup_taskset_for_each(task, css, tset) {
3942 		/* atomically set the update bit */
3943 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
3944 	}
3945 }
3946 
3947 static void mem_cgroup_attach(struct cgroup_taskset *tset)
3948 {
3949 	mem_cgroup_lru_gen_attach(tset);
3950 	mem_cgroup_kmem_attach(tset);
3951 }
3952 
3953 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3954 {
3955 	if (value == PAGE_COUNTER_MAX)
3956 		seq_puts(m, "max\n");
3957 	else
3958 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
3959 
3960 	return 0;
3961 }
3962 
3963 static u64 memory_current_read(struct cgroup_subsys_state *css,
3964 			       struct cftype *cft)
3965 {
3966 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3967 
3968 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3969 }
3970 
3971 static u64 memory_peak_read(struct cgroup_subsys_state *css,
3972 			    struct cftype *cft)
3973 {
3974 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3975 
3976 	return (u64)memcg->memory.watermark * PAGE_SIZE;
3977 }
3978 
3979 static int memory_min_show(struct seq_file *m, void *v)
3980 {
3981 	return seq_puts_memcg_tunable(m,
3982 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
3983 }
3984 
3985 static ssize_t memory_min_write(struct kernfs_open_file *of,
3986 				char *buf, size_t nbytes, loff_t off)
3987 {
3988 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3989 	unsigned long min;
3990 	int err;
3991 
3992 	buf = strstrip(buf);
3993 	err = page_counter_memparse(buf, "max", &min);
3994 	if (err)
3995 		return err;
3996 
3997 	page_counter_set_min(&memcg->memory, min);
3998 
3999 	return nbytes;
4000 }
4001 
4002 static int memory_low_show(struct seq_file *m, void *v)
4003 {
4004 	return seq_puts_memcg_tunable(m,
4005 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4006 }
4007 
4008 static ssize_t memory_low_write(struct kernfs_open_file *of,
4009 				char *buf, size_t nbytes, loff_t off)
4010 {
4011 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4012 	unsigned long low;
4013 	int err;
4014 
4015 	buf = strstrip(buf);
4016 	err = page_counter_memparse(buf, "max", &low);
4017 	if (err)
4018 		return err;
4019 
4020 	page_counter_set_low(&memcg->memory, low);
4021 
4022 	return nbytes;
4023 }
4024 
4025 static int memory_high_show(struct seq_file *m, void *v)
4026 {
4027 	return seq_puts_memcg_tunable(m,
4028 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4029 }
4030 
4031 static ssize_t memory_high_write(struct kernfs_open_file *of,
4032 				 char *buf, size_t nbytes, loff_t off)
4033 {
4034 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4035 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4036 	bool drained = false;
4037 	unsigned long high;
4038 	int err;
4039 
4040 	buf = strstrip(buf);
4041 	err = page_counter_memparse(buf, "max", &high);
4042 	if (err)
4043 		return err;
4044 
4045 	page_counter_set_high(&memcg->memory, high);
4046 
4047 	for (;;) {
4048 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4049 		unsigned long reclaimed;
4050 
4051 		if (nr_pages <= high)
4052 			break;
4053 
4054 		if (signal_pending(current))
4055 			break;
4056 
4057 		if (!drained) {
4058 			drain_all_stock(memcg);
4059 			drained = true;
4060 			continue;
4061 		}
4062 
4063 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4064 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4065 
4066 		if (!reclaimed && !nr_retries--)
4067 			break;
4068 	}
4069 
4070 	memcg_wb_domain_size_changed(memcg);
4071 	return nbytes;
4072 }
4073 
4074 static int memory_max_show(struct seq_file *m, void *v)
4075 {
4076 	return seq_puts_memcg_tunable(m,
4077 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4078 }
4079 
4080 static ssize_t memory_max_write(struct kernfs_open_file *of,
4081 				char *buf, size_t nbytes, loff_t off)
4082 {
4083 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4084 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4085 	bool drained = false;
4086 	unsigned long max;
4087 	int err;
4088 
4089 	buf = strstrip(buf);
4090 	err = page_counter_memparse(buf, "max", &max);
4091 	if (err)
4092 		return err;
4093 
4094 	xchg(&memcg->memory.max, max);
4095 
4096 	for (;;) {
4097 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4098 
4099 		if (nr_pages <= max)
4100 			break;
4101 
4102 		if (signal_pending(current))
4103 			break;
4104 
4105 		if (!drained) {
4106 			drain_all_stock(memcg);
4107 			drained = true;
4108 			continue;
4109 		}
4110 
4111 		if (nr_reclaims) {
4112 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4113 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4114 				nr_reclaims--;
4115 			continue;
4116 		}
4117 
4118 		memcg_memory_event(memcg, MEMCG_OOM);
4119 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4120 			break;
4121 	}
4122 
4123 	memcg_wb_domain_size_changed(memcg);
4124 	return nbytes;
4125 }
4126 
4127 /*
4128  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4129  * if any new events become available.
4130  */
4131 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4132 {
4133 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4134 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4135 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4136 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4137 	seq_printf(m, "oom_kill %lu\n",
4138 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
4139 	seq_printf(m, "oom_group_kill %lu\n",
4140 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4141 }
4142 
4143 static int memory_events_show(struct seq_file *m, void *v)
4144 {
4145 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4146 
4147 	__memory_events_show(m, memcg->memory_events);
4148 	return 0;
4149 }
4150 
4151 static int memory_events_local_show(struct seq_file *m, void *v)
4152 {
4153 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4154 
4155 	__memory_events_show(m, memcg->memory_events_local);
4156 	return 0;
4157 }
4158 
4159 int memory_stat_show(struct seq_file *m, void *v)
4160 {
4161 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4162 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4163 	struct seq_buf s;
4164 
4165 	if (!buf)
4166 		return -ENOMEM;
4167 	seq_buf_init(&s, buf, PAGE_SIZE);
4168 	memory_stat_format(memcg, &s);
4169 	seq_puts(m, buf);
4170 	kfree(buf);
4171 	return 0;
4172 }
4173 
4174 #ifdef CONFIG_NUMA
4175 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4176 						     int item)
4177 {
4178 	return lruvec_page_state(lruvec, item) *
4179 		memcg_page_state_output_unit(item);
4180 }
4181 
4182 static int memory_numa_stat_show(struct seq_file *m, void *v)
4183 {
4184 	int i;
4185 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4186 
4187 	mem_cgroup_flush_stats(memcg);
4188 
4189 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4190 		int nid;
4191 
4192 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4193 			continue;
4194 
4195 		seq_printf(m, "%s", memory_stats[i].name);
4196 		for_each_node_state(nid, N_MEMORY) {
4197 			u64 size;
4198 			struct lruvec *lruvec;
4199 
4200 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4201 			size = lruvec_page_state_output(lruvec,
4202 							memory_stats[i].idx);
4203 			seq_printf(m, " N%d=%llu", nid, size);
4204 		}
4205 		seq_putc(m, '\n');
4206 	}
4207 
4208 	return 0;
4209 }
4210 #endif
4211 
4212 static int memory_oom_group_show(struct seq_file *m, void *v)
4213 {
4214 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4215 
4216 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4217 
4218 	return 0;
4219 }
4220 
4221 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4222 				      char *buf, size_t nbytes, loff_t off)
4223 {
4224 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4225 	int ret, oom_group;
4226 
4227 	buf = strstrip(buf);
4228 	if (!buf)
4229 		return -EINVAL;
4230 
4231 	ret = kstrtoint(buf, 0, &oom_group);
4232 	if (ret)
4233 		return ret;
4234 
4235 	if (oom_group != 0 && oom_group != 1)
4236 		return -EINVAL;
4237 
4238 	WRITE_ONCE(memcg->oom_group, oom_group);
4239 
4240 	return nbytes;
4241 }
4242 
4243 enum {
4244 	MEMORY_RECLAIM_SWAPPINESS = 0,
4245 	MEMORY_RECLAIM_NULL,
4246 };
4247 
4248 static const match_table_t tokens = {
4249 	{ MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4250 	{ MEMORY_RECLAIM_NULL, NULL },
4251 };
4252 
4253 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4254 			      size_t nbytes, loff_t off)
4255 {
4256 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4257 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4258 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
4259 	int swappiness = -1;
4260 	unsigned int reclaim_options;
4261 	char *old_buf, *start;
4262 	substring_t args[MAX_OPT_ARGS];
4263 
4264 	buf = strstrip(buf);
4265 
4266 	old_buf = buf;
4267 	nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4268 	if (buf == old_buf)
4269 		return -EINVAL;
4270 
4271 	buf = strstrip(buf);
4272 
4273 	while ((start = strsep(&buf, " ")) != NULL) {
4274 		if (!strlen(start))
4275 			continue;
4276 		switch (match_token(start, tokens, args)) {
4277 		case MEMORY_RECLAIM_SWAPPINESS:
4278 			if (match_int(&args[0], &swappiness))
4279 				return -EINVAL;
4280 			if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4281 				return -EINVAL;
4282 			break;
4283 		default:
4284 			return -EINVAL;
4285 		}
4286 	}
4287 
4288 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4289 	while (nr_reclaimed < nr_to_reclaim) {
4290 		/* Will converge on zero, but reclaim enforces a minimum */
4291 		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4292 		unsigned long reclaimed;
4293 
4294 		if (signal_pending(current))
4295 			return -EINTR;
4296 
4297 		/*
4298 		 * This is the final attempt, drain percpu lru caches in the
4299 		 * hope of introducing more evictable pages for
4300 		 * try_to_free_mem_cgroup_pages().
4301 		 */
4302 		if (!nr_retries)
4303 			lru_add_drain_all();
4304 
4305 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
4306 					batch_size, GFP_KERNEL,
4307 					reclaim_options,
4308 					swappiness == -1 ? NULL : &swappiness);
4309 
4310 		if (!reclaimed && !nr_retries--)
4311 			return -EAGAIN;
4312 
4313 		nr_reclaimed += reclaimed;
4314 	}
4315 
4316 	return nbytes;
4317 }
4318 
4319 static struct cftype memory_files[] = {
4320 	{
4321 		.name = "current",
4322 		.flags = CFTYPE_NOT_ON_ROOT,
4323 		.read_u64 = memory_current_read,
4324 	},
4325 	{
4326 		.name = "peak",
4327 		.flags = CFTYPE_NOT_ON_ROOT,
4328 		.read_u64 = memory_peak_read,
4329 	},
4330 	{
4331 		.name = "min",
4332 		.flags = CFTYPE_NOT_ON_ROOT,
4333 		.seq_show = memory_min_show,
4334 		.write = memory_min_write,
4335 	},
4336 	{
4337 		.name = "low",
4338 		.flags = CFTYPE_NOT_ON_ROOT,
4339 		.seq_show = memory_low_show,
4340 		.write = memory_low_write,
4341 	},
4342 	{
4343 		.name = "high",
4344 		.flags = CFTYPE_NOT_ON_ROOT,
4345 		.seq_show = memory_high_show,
4346 		.write = memory_high_write,
4347 	},
4348 	{
4349 		.name = "max",
4350 		.flags = CFTYPE_NOT_ON_ROOT,
4351 		.seq_show = memory_max_show,
4352 		.write = memory_max_write,
4353 	},
4354 	{
4355 		.name = "events",
4356 		.flags = CFTYPE_NOT_ON_ROOT,
4357 		.file_offset = offsetof(struct mem_cgroup, events_file),
4358 		.seq_show = memory_events_show,
4359 	},
4360 	{
4361 		.name = "events.local",
4362 		.flags = CFTYPE_NOT_ON_ROOT,
4363 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
4364 		.seq_show = memory_events_local_show,
4365 	},
4366 	{
4367 		.name = "stat",
4368 		.seq_show = memory_stat_show,
4369 	},
4370 #ifdef CONFIG_NUMA
4371 	{
4372 		.name = "numa_stat",
4373 		.seq_show = memory_numa_stat_show,
4374 	},
4375 #endif
4376 	{
4377 		.name = "oom.group",
4378 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4379 		.seq_show = memory_oom_group_show,
4380 		.write = memory_oom_group_write,
4381 	},
4382 	{
4383 		.name = "reclaim",
4384 		.flags = CFTYPE_NS_DELEGATABLE,
4385 		.write = memory_reclaim,
4386 	},
4387 	{ }	/* terminate */
4388 };
4389 
4390 struct cgroup_subsys memory_cgrp_subsys = {
4391 	.css_alloc = mem_cgroup_css_alloc,
4392 	.css_online = mem_cgroup_css_online,
4393 	.css_offline = mem_cgroup_css_offline,
4394 	.css_released = mem_cgroup_css_released,
4395 	.css_free = mem_cgroup_css_free,
4396 	.css_reset = mem_cgroup_css_reset,
4397 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
4398 	.attach = mem_cgroup_attach,
4399 	.fork = mem_cgroup_fork,
4400 	.exit = mem_cgroup_exit,
4401 	.dfl_cftypes = memory_files,
4402 #ifdef CONFIG_MEMCG_V1
4403 	.can_attach = memcg1_can_attach,
4404 	.cancel_attach = memcg1_cancel_attach,
4405 	.post_attach = memcg1_move_task,
4406 	.legacy_cftypes = mem_cgroup_legacy_files,
4407 #endif
4408 	.early_init = 0,
4409 };
4410 
4411 /**
4412  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4413  * @root: the top ancestor of the sub-tree being checked
4414  * @memcg: the memory cgroup to check
4415  *
4416  * WARNING: This function is not stateless! It can only be used as part
4417  *          of a top-down tree iteration, not for isolated queries.
4418  */
4419 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4420 				     struct mem_cgroup *memcg)
4421 {
4422 	bool recursive_protection =
4423 		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4424 
4425 	if (mem_cgroup_disabled())
4426 		return;
4427 
4428 	if (!root)
4429 		root = root_mem_cgroup;
4430 
4431 	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4432 }
4433 
4434 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4435 			gfp_t gfp)
4436 {
4437 	int ret;
4438 
4439 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4440 	if (ret)
4441 		goto out;
4442 
4443 	mem_cgroup_commit_charge(folio, memcg);
4444 out:
4445 	return ret;
4446 }
4447 
4448 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4449 {
4450 	struct mem_cgroup *memcg;
4451 	int ret;
4452 
4453 	memcg = get_mem_cgroup_from_mm(mm);
4454 	ret = charge_memcg(folio, memcg, gfp);
4455 	css_put(&memcg->css);
4456 
4457 	return ret;
4458 }
4459 
4460 /**
4461  * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
4462  * @memcg: memcg to charge.
4463  * @gfp: reclaim mode.
4464  * @nr_pages: number of pages to charge.
4465  *
4466  * This function is called when allocating a huge page folio to determine if
4467  * the memcg has the capacity for it. It does not commit the charge yet,
4468  * as the hugetlb folio itself has not been obtained from the hugetlb pool.
4469  *
4470  * Once we have obtained the hugetlb folio, we can call
4471  * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
4472  * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
4473  * of try_charge().
4474  *
4475  * Returns 0 on success. Otherwise, an error code is returned.
4476  */
4477 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
4478 			long nr_pages)
4479 {
4480 	/*
4481 	 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
4482 	 * but do not attempt to commit charge later (or cancel on error) either.
4483 	 */
4484 	if (mem_cgroup_disabled() || !memcg ||
4485 		!cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
4486 		!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
4487 		return -EOPNOTSUPP;
4488 
4489 	if (try_charge(memcg, gfp, nr_pages))
4490 		return -ENOMEM;
4491 
4492 	return 0;
4493 }
4494 
4495 /**
4496  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4497  * @folio: folio to charge.
4498  * @mm: mm context of the victim
4499  * @gfp: reclaim mode
4500  * @entry: swap entry for which the folio is allocated
4501  *
4502  * This function charges a folio allocated for swapin. Please call this before
4503  * adding the folio to the swapcache.
4504  *
4505  * Returns 0 on success. Otherwise, an error code is returned.
4506  */
4507 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4508 				  gfp_t gfp, swp_entry_t entry)
4509 {
4510 	struct mem_cgroup *memcg;
4511 	unsigned short id;
4512 	int ret;
4513 
4514 	if (mem_cgroup_disabled())
4515 		return 0;
4516 
4517 	id = lookup_swap_cgroup_id(entry);
4518 	rcu_read_lock();
4519 	memcg = mem_cgroup_from_id(id);
4520 	if (!memcg || !css_tryget_online(&memcg->css))
4521 		memcg = get_mem_cgroup_from_mm(mm);
4522 	rcu_read_unlock();
4523 
4524 	ret = charge_memcg(folio, memcg, gfp);
4525 
4526 	css_put(&memcg->css);
4527 	return ret;
4528 }
4529 
4530 /*
4531  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4532  * @entry: swap entry for which the page is charged
4533  *
4534  * Call this function after successfully adding the charged page to swapcache.
4535  *
4536  * Note: This function assumes the page for which swap slot is being uncharged
4537  * is order 0 page.
4538  */
4539 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
4540 {
4541 	/*
4542 	 * Cgroup1's unified memory+swap counter has been charged with the
4543 	 * new swapcache page, finish the transfer by uncharging the swap
4544 	 * slot. The swap slot would also get uncharged when it dies, but
4545 	 * it can stick around indefinitely and we'd count the page twice
4546 	 * the entire time.
4547 	 *
4548 	 * Cgroup2 has separate resource counters for memory and swap,
4549 	 * so this is a non-issue here. Memory and swap charge lifetimes
4550 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
4551 	 * page to memory here, and uncharge swap when the slot is freed.
4552 	 */
4553 	if (!mem_cgroup_disabled() && do_memsw_account()) {
4554 		/*
4555 		 * The swap entry might not get freed for a long time,
4556 		 * let's not wait for it.  The page already received a
4557 		 * memory+swap charge, drop the swap entry duplicate.
4558 		 */
4559 		mem_cgroup_uncharge_swap(entry, 1);
4560 	}
4561 }
4562 
4563 struct uncharge_gather {
4564 	struct mem_cgroup *memcg;
4565 	unsigned long nr_memory;
4566 	unsigned long pgpgout;
4567 	unsigned long nr_kmem;
4568 	int nid;
4569 };
4570 
4571 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4572 {
4573 	memset(ug, 0, sizeof(*ug));
4574 }
4575 
4576 static void uncharge_batch(const struct uncharge_gather *ug)
4577 {
4578 	unsigned long flags;
4579 
4580 	if (ug->nr_memory) {
4581 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
4582 		if (do_memsw_account())
4583 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4584 		if (ug->nr_kmem) {
4585 			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4586 			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4587 		}
4588 		memcg1_oom_recover(ug->memcg);
4589 	}
4590 
4591 	local_irq_save(flags);
4592 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
4593 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
4594 	memcg1_check_events(ug->memcg, ug->nid);
4595 	local_irq_restore(flags);
4596 
4597 	/* drop reference from uncharge_folio */
4598 	css_put(&ug->memcg->css);
4599 }
4600 
4601 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4602 {
4603 	long nr_pages;
4604 	struct mem_cgroup *memcg;
4605 	struct obj_cgroup *objcg;
4606 
4607 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4608 	VM_BUG_ON_FOLIO(folio_order(folio) > 1 &&
4609 			!folio_test_hugetlb(folio) &&
4610 			!list_empty(&folio->_deferred_list), folio);
4611 
4612 	/*
4613 	 * Nobody should be changing or seriously looking at
4614 	 * folio memcg or objcg at this point, we have fully
4615 	 * exclusive access to the folio.
4616 	 */
4617 	if (folio_memcg_kmem(folio)) {
4618 		objcg = __folio_objcg(folio);
4619 		/*
4620 		 * This get matches the put at the end of the function and
4621 		 * kmem pages do not hold memcg references anymore.
4622 		 */
4623 		memcg = get_mem_cgroup_from_objcg(objcg);
4624 	} else {
4625 		memcg = __folio_memcg(folio);
4626 	}
4627 
4628 	if (!memcg)
4629 		return;
4630 
4631 	if (ug->memcg != memcg) {
4632 		if (ug->memcg) {
4633 			uncharge_batch(ug);
4634 			uncharge_gather_clear(ug);
4635 		}
4636 		ug->memcg = memcg;
4637 		ug->nid = folio_nid(folio);
4638 
4639 		/* pairs with css_put in uncharge_batch */
4640 		css_get(&memcg->css);
4641 	}
4642 
4643 	nr_pages = folio_nr_pages(folio);
4644 
4645 	if (folio_memcg_kmem(folio)) {
4646 		ug->nr_memory += nr_pages;
4647 		ug->nr_kmem += nr_pages;
4648 
4649 		folio->memcg_data = 0;
4650 		obj_cgroup_put(objcg);
4651 	} else {
4652 		/* LRU pages aren't accounted at the root level */
4653 		if (!mem_cgroup_is_root(memcg))
4654 			ug->nr_memory += nr_pages;
4655 		ug->pgpgout++;
4656 
4657 		folio->memcg_data = 0;
4658 	}
4659 
4660 	css_put(&memcg->css);
4661 }
4662 
4663 void __mem_cgroup_uncharge(struct folio *folio)
4664 {
4665 	struct uncharge_gather ug;
4666 
4667 	/* Don't touch folio->lru of any random page, pre-check: */
4668 	if (!folio_memcg(folio))
4669 		return;
4670 
4671 	uncharge_gather_clear(&ug);
4672 	uncharge_folio(folio, &ug);
4673 	uncharge_batch(&ug);
4674 }
4675 
4676 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4677 {
4678 	struct uncharge_gather ug;
4679 	unsigned int i;
4680 
4681 	uncharge_gather_clear(&ug);
4682 	for (i = 0; i < folios->nr; i++)
4683 		uncharge_folio(folios->folios[i], &ug);
4684 	if (ug.memcg)
4685 		uncharge_batch(&ug);
4686 }
4687 
4688 /**
4689  * mem_cgroup_replace_folio - Charge a folio's replacement.
4690  * @old: Currently circulating folio.
4691  * @new: Replacement folio.
4692  *
4693  * Charge @new as a replacement folio for @old. @old will
4694  * be uncharged upon free.
4695  *
4696  * Both folios must be locked, @new->mapping must be set up.
4697  */
4698 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4699 {
4700 	struct mem_cgroup *memcg;
4701 	long nr_pages = folio_nr_pages(new);
4702 	unsigned long flags;
4703 
4704 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4705 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4706 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4707 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4708 
4709 	if (mem_cgroup_disabled())
4710 		return;
4711 
4712 	/* Page cache replacement: new folio already charged? */
4713 	if (folio_memcg(new))
4714 		return;
4715 
4716 	memcg = folio_memcg(old);
4717 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4718 	if (!memcg)
4719 		return;
4720 
4721 	/* Force-charge the new page. The old one will be freed soon */
4722 	if (!mem_cgroup_is_root(memcg)) {
4723 		page_counter_charge(&memcg->memory, nr_pages);
4724 		if (do_memsw_account())
4725 			page_counter_charge(&memcg->memsw, nr_pages);
4726 	}
4727 
4728 	css_get(&memcg->css);
4729 	commit_charge(new, memcg);
4730 
4731 	local_irq_save(flags);
4732 	mem_cgroup_charge_statistics(memcg, nr_pages);
4733 	memcg1_check_events(memcg, folio_nid(new));
4734 	local_irq_restore(flags);
4735 }
4736 
4737 /**
4738  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4739  * @old: Currently circulating folio.
4740  * @new: Replacement folio.
4741  *
4742  * Transfer the memcg data from the old folio to the new folio for migration.
4743  * The old folio's data info will be cleared. Note that the memory counters
4744  * will remain unchanged throughout the process.
4745  *
4746  * Both folios must be locked, @new->mapping must be set up.
4747  */
4748 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4749 {
4750 	struct mem_cgroup *memcg;
4751 
4752 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4753 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4754 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4755 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4756 	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4757 
4758 	if (mem_cgroup_disabled())
4759 		return;
4760 
4761 	memcg = folio_memcg(old);
4762 	/*
4763 	 * Note that it is normal to see !memcg for a hugetlb folio.
4764 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4765 	 * was not selected.
4766 	 */
4767 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4768 	if (!memcg)
4769 		return;
4770 
4771 	/* Transfer the charge and the css ref */
4772 	commit_charge(new, memcg);
4773 	old->memcg_data = 0;
4774 }
4775 
4776 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4777 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4778 
4779 void mem_cgroup_sk_alloc(struct sock *sk)
4780 {
4781 	struct mem_cgroup *memcg;
4782 
4783 	if (!mem_cgroup_sockets_enabled)
4784 		return;
4785 
4786 	/* Do not associate the sock with unrelated interrupted task's memcg. */
4787 	if (!in_task())
4788 		return;
4789 
4790 	rcu_read_lock();
4791 	memcg = mem_cgroup_from_task(current);
4792 	if (mem_cgroup_is_root(memcg))
4793 		goto out;
4794 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4795 		goto out;
4796 	if (css_tryget(&memcg->css))
4797 		sk->sk_memcg = memcg;
4798 out:
4799 	rcu_read_unlock();
4800 }
4801 
4802 void mem_cgroup_sk_free(struct sock *sk)
4803 {
4804 	if (sk->sk_memcg)
4805 		css_put(&sk->sk_memcg->css);
4806 }
4807 
4808 /**
4809  * mem_cgroup_charge_skmem - charge socket memory
4810  * @memcg: memcg to charge
4811  * @nr_pages: number of pages to charge
4812  * @gfp_mask: reclaim mode
4813  *
4814  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4815  * @memcg's configured limit, %false if it doesn't.
4816  */
4817 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4818 			     gfp_t gfp_mask)
4819 {
4820 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4821 		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
4822 
4823 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4824 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4825 		return true;
4826 	}
4827 
4828 	return false;
4829 }
4830 
4831 /**
4832  * mem_cgroup_uncharge_skmem - uncharge socket memory
4833  * @memcg: memcg to uncharge
4834  * @nr_pages: number of pages to uncharge
4835  */
4836 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4837 {
4838 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4839 		memcg1_uncharge_skmem(memcg, nr_pages);
4840 		return;
4841 	}
4842 
4843 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4844 
4845 	refill_stock(memcg, nr_pages);
4846 }
4847 
4848 static int __init cgroup_memory(char *s)
4849 {
4850 	char *token;
4851 
4852 	while ((token = strsep(&s, ",")) != NULL) {
4853 		if (!*token)
4854 			continue;
4855 		if (!strcmp(token, "nosocket"))
4856 			cgroup_memory_nosocket = true;
4857 		if (!strcmp(token, "nokmem"))
4858 			cgroup_memory_nokmem = true;
4859 		if (!strcmp(token, "nobpf"))
4860 			cgroup_memory_nobpf = true;
4861 	}
4862 	return 1;
4863 }
4864 __setup("cgroup.memory=", cgroup_memory);
4865 
4866 /*
4867  * subsys_initcall() for memory controller.
4868  *
4869  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4870  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4871  * basically everything that doesn't depend on a specific mem_cgroup structure
4872  * should be initialized from here.
4873  */
4874 static int __init mem_cgroup_init(void)
4875 {
4876 	int cpu;
4877 
4878 	/*
4879 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4880 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
4881 	 * to work fine, we should make sure that the overfill threshold can't
4882 	 * exceed S32_MAX / PAGE_SIZE.
4883 	 */
4884 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
4885 
4886 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4887 				  memcg_hotplug_cpu_dead);
4888 
4889 	for_each_possible_cpu(cpu)
4890 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4891 			  drain_local_stock);
4892 
4893 	return 0;
4894 }
4895 subsys_initcall(mem_cgroup_init);
4896 
4897 #ifdef CONFIG_SWAP
4898 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4899 {
4900 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
4901 		/*
4902 		 * The root cgroup cannot be destroyed, so it's refcount must
4903 		 * always be >= 1.
4904 		 */
4905 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
4906 			VM_BUG_ON(1);
4907 			break;
4908 		}
4909 		memcg = parent_mem_cgroup(memcg);
4910 		if (!memcg)
4911 			memcg = root_mem_cgroup;
4912 	}
4913 	return memcg;
4914 }
4915 
4916 /**
4917  * mem_cgroup_swapout - transfer a memsw charge to swap
4918  * @folio: folio whose memsw charge to transfer
4919  * @entry: swap entry to move the charge to
4920  *
4921  * Transfer the memsw charge of @folio to @entry.
4922  */
4923 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
4924 {
4925 	struct mem_cgroup *memcg, *swap_memcg;
4926 	unsigned int nr_entries;
4927 	unsigned short oldid;
4928 
4929 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4930 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
4931 
4932 	if (mem_cgroup_disabled())
4933 		return;
4934 
4935 	if (!do_memsw_account())
4936 		return;
4937 
4938 	memcg = folio_memcg(folio);
4939 
4940 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
4941 	if (!memcg)
4942 		return;
4943 
4944 	/*
4945 	 * In case the memcg owning these pages has been offlined and doesn't
4946 	 * have an ID allocated to it anymore, charge the closest online
4947 	 * ancestor for the swap instead and transfer the memory+swap charge.
4948 	 */
4949 	swap_memcg = mem_cgroup_id_get_online(memcg);
4950 	nr_entries = folio_nr_pages(folio);
4951 	/* Get references for the tail pages, too */
4952 	if (nr_entries > 1)
4953 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
4954 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
4955 				   nr_entries);
4956 	VM_BUG_ON_FOLIO(oldid, folio);
4957 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
4958 
4959 	folio->memcg_data = 0;
4960 
4961 	if (!mem_cgroup_is_root(memcg))
4962 		page_counter_uncharge(&memcg->memory, nr_entries);
4963 
4964 	if (memcg != swap_memcg) {
4965 		if (!mem_cgroup_is_root(swap_memcg))
4966 			page_counter_charge(&swap_memcg->memsw, nr_entries);
4967 		page_counter_uncharge(&memcg->memsw, nr_entries);
4968 	}
4969 
4970 	/*
4971 	 * Interrupts should be disabled here because the caller holds the
4972 	 * i_pages lock which is taken with interrupts-off. It is
4973 	 * important here to have the interrupts disabled because it is the
4974 	 * only synchronisation we have for updating the per-CPU variables.
4975 	 */
4976 	memcg_stats_lock();
4977 	mem_cgroup_charge_statistics(memcg, -nr_entries);
4978 	memcg_stats_unlock();
4979 	memcg1_check_events(memcg, folio_nid(folio));
4980 
4981 	css_put(&memcg->css);
4982 }
4983 
4984 /**
4985  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
4986  * @folio: folio being added to swap
4987  * @entry: swap entry to charge
4988  *
4989  * Try to charge @folio's memcg for the swap space at @entry.
4990  *
4991  * Returns 0 on success, -ENOMEM on failure.
4992  */
4993 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
4994 {
4995 	unsigned int nr_pages = folio_nr_pages(folio);
4996 	struct page_counter *counter;
4997 	struct mem_cgroup *memcg;
4998 	unsigned short oldid;
4999 
5000 	if (do_memsw_account())
5001 		return 0;
5002 
5003 	memcg = folio_memcg(folio);
5004 
5005 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5006 	if (!memcg)
5007 		return 0;
5008 
5009 	if (!entry.val) {
5010 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5011 		return 0;
5012 	}
5013 
5014 	memcg = mem_cgroup_id_get_online(memcg);
5015 
5016 	if (!mem_cgroup_is_root(memcg) &&
5017 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5018 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5019 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5020 		mem_cgroup_id_put(memcg);
5021 		return -ENOMEM;
5022 	}
5023 
5024 	/* Get references for the tail pages, too */
5025 	if (nr_pages > 1)
5026 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5027 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5028 	VM_BUG_ON_FOLIO(oldid, folio);
5029 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5030 
5031 	return 0;
5032 }
5033 
5034 /**
5035  * __mem_cgroup_uncharge_swap - uncharge swap space
5036  * @entry: swap entry to uncharge
5037  * @nr_pages: the amount of swap space to uncharge
5038  */
5039 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5040 {
5041 	struct mem_cgroup *memcg;
5042 	unsigned short id;
5043 
5044 	id = swap_cgroup_record(entry, 0, nr_pages);
5045 	rcu_read_lock();
5046 	memcg = mem_cgroup_from_id(id);
5047 	if (memcg) {
5048 		if (!mem_cgroup_is_root(memcg)) {
5049 			if (do_memsw_account())
5050 				page_counter_uncharge(&memcg->memsw, nr_pages);
5051 			else
5052 				page_counter_uncharge(&memcg->swap, nr_pages);
5053 		}
5054 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5055 		mem_cgroup_id_put_many(memcg, nr_pages);
5056 	}
5057 	rcu_read_unlock();
5058 }
5059 
5060 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5061 {
5062 	long nr_swap_pages = get_nr_swap_pages();
5063 
5064 	if (mem_cgroup_disabled() || do_memsw_account())
5065 		return nr_swap_pages;
5066 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5067 		nr_swap_pages = min_t(long, nr_swap_pages,
5068 				      READ_ONCE(memcg->swap.max) -
5069 				      page_counter_read(&memcg->swap));
5070 	return nr_swap_pages;
5071 }
5072 
5073 bool mem_cgroup_swap_full(struct folio *folio)
5074 {
5075 	struct mem_cgroup *memcg;
5076 
5077 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5078 
5079 	if (vm_swap_full())
5080 		return true;
5081 	if (do_memsw_account())
5082 		return false;
5083 
5084 	memcg = folio_memcg(folio);
5085 	if (!memcg)
5086 		return false;
5087 
5088 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5089 		unsigned long usage = page_counter_read(&memcg->swap);
5090 
5091 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5092 		    usage * 2 >= READ_ONCE(memcg->swap.max))
5093 			return true;
5094 	}
5095 
5096 	return false;
5097 }
5098 
5099 static int __init setup_swap_account(char *s)
5100 {
5101 	bool res;
5102 
5103 	if (!kstrtobool(s, &res) && !res)
5104 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
5105 			     "in favor of configuring swap control via cgroupfs. "
5106 			     "Please report your usecase to linux-mm@kvack.org if you "
5107 			     "depend on this functionality.\n");
5108 	return 1;
5109 }
5110 __setup("swapaccount=", setup_swap_account);
5111 
5112 static u64 swap_current_read(struct cgroup_subsys_state *css,
5113 			     struct cftype *cft)
5114 {
5115 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5116 
5117 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5118 }
5119 
5120 static u64 swap_peak_read(struct cgroup_subsys_state *css,
5121 			  struct cftype *cft)
5122 {
5123 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5124 
5125 	return (u64)memcg->swap.watermark * PAGE_SIZE;
5126 }
5127 
5128 static int swap_high_show(struct seq_file *m, void *v)
5129 {
5130 	return seq_puts_memcg_tunable(m,
5131 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5132 }
5133 
5134 static ssize_t swap_high_write(struct kernfs_open_file *of,
5135 			       char *buf, size_t nbytes, loff_t off)
5136 {
5137 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5138 	unsigned long high;
5139 	int err;
5140 
5141 	buf = strstrip(buf);
5142 	err = page_counter_memparse(buf, "max", &high);
5143 	if (err)
5144 		return err;
5145 
5146 	page_counter_set_high(&memcg->swap, high);
5147 
5148 	return nbytes;
5149 }
5150 
5151 static int swap_max_show(struct seq_file *m, void *v)
5152 {
5153 	return seq_puts_memcg_tunable(m,
5154 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5155 }
5156 
5157 static ssize_t swap_max_write(struct kernfs_open_file *of,
5158 			      char *buf, size_t nbytes, loff_t off)
5159 {
5160 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5161 	unsigned long max;
5162 	int err;
5163 
5164 	buf = strstrip(buf);
5165 	err = page_counter_memparse(buf, "max", &max);
5166 	if (err)
5167 		return err;
5168 
5169 	xchg(&memcg->swap.max, max);
5170 
5171 	return nbytes;
5172 }
5173 
5174 static int swap_events_show(struct seq_file *m, void *v)
5175 {
5176 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5177 
5178 	seq_printf(m, "high %lu\n",
5179 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5180 	seq_printf(m, "max %lu\n",
5181 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5182 	seq_printf(m, "fail %lu\n",
5183 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5184 
5185 	return 0;
5186 }
5187 
5188 static struct cftype swap_files[] = {
5189 	{
5190 		.name = "swap.current",
5191 		.flags = CFTYPE_NOT_ON_ROOT,
5192 		.read_u64 = swap_current_read,
5193 	},
5194 	{
5195 		.name = "swap.high",
5196 		.flags = CFTYPE_NOT_ON_ROOT,
5197 		.seq_show = swap_high_show,
5198 		.write = swap_high_write,
5199 	},
5200 	{
5201 		.name = "swap.max",
5202 		.flags = CFTYPE_NOT_ON_ROOT,
5203 		.seq_show = swap_max_show,
5204 		.write = swap_max_write,
5205 	},
5206 	{
5207 		.name = "swap.peak",
5208 		.flags = CFTYPE_NOT_ON_ROOT,
5209 		.read_u64 = swap_peak_read,
5210 	},
5211 	{
5212 		.name = "swap.events",
5213 		.flags = CFTYPE_NOT_ON_ROOT,
5214 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
5215 		.seq_show = swap_events_show,
5216 	},
5217 	{ }	/* terminate */
5218 };
5219 
5220 #ifdef CONFIG_ZSWAP
5221 /**
5222  * obj_cgroup_may_zswap - check if this cgroup can zswap
5223  * @objcg: the object cgroup
5224  *
5225  * Check if the hierarchical zswap limit has been reached.
5226  *
5227  * This doesn't check for specific headroom, and it is not atomic
5228  * either. But with zswap, the size of the allocation is only known
5229  * once compression has occurred, and this optimistic pre-check avoids
5230  * spending cycles on compression when there is already no room left
5231  * or zswap is disabled altogether somewhere in the hierarchy.
5232  */
5233 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5234 {
5235 	struct mem_cgroup *memcg, *original_memcg;
5236 	bool ret = true;
5237 
5238 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5239 		return true;
5240 
5241 	original_memcg = get_mem_cgroup_from_objcg(objcg);
5242 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5243 	     memcg = parent_mem_cgroup(memcg)) {
5244 		unsigned long max = READ_ONCE(memcg->zswap_max);
5245 		unsigned long pages;
5246 
5247 		if (max == PAGE_COUNTER_MAX)
5248 			continue;
5249 		if (max == 0) {
5250 			ret = false;
5251 			break;
5252 		}
5253 
5254 		/*
5255 		 * mem_cgroup_flush_stats() ignores small changes. Use
5256 		 * do_flush_stats() directly to get accurate stats for charging.
5257 		 */
5258 		do_flush_stats(memcg);
5259 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5260 		if (pages < max)
5261 			continue;
5262 		ret = false;
5263 		break;
5264 	}
5265 	mem_cgroup_put(original_memcg);
5266 	return ret;
5267 }
5268 
5269 /**
5270  * obj_cgroup_charge_zswap - charge compression backend memory
5271  * @objcg: the object cgroup
5272  * @size: size of compressed object
5273  *
5274  * This forces the charge after obj_cgroup_may_zswap() allowed
5275  * compression and storage in zwap for this cgroup to go ahead.
5276  */
5277 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5278 {
5279 	struct mem_cgroup *memcg;
5280 
5281 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5282 		return;
5283 
5284 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5285 
5286 	/* PF_MEMALLOC context, charging must succeed */
5287 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5288 		VM_WARN_ON_ONCE(1);
5289 
5290 	rcu_read_lock();
5291 	memcg = obj_cgroup_memcg(objcg);
5292 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5293 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5294 	rcu_read_unlock();
5295 }
5296 
5297 /**
5298  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5299  * @objcg: the object cgroup
5300  * @size: size of compressed object
5301  *
5302  * Uncharges zswap memory on page in.
5303  */
5304 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5305 {
5306 	struct mem_cgroup *memcg;
5307 
5308 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5309 		return;
5310 
5311 	obj_cgroup_uncharge(objcg, size);
5312 
5313 	rcu_read_lock();
5314 	memcg = obj_cgroup_memcg(objcg);
5315 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5316 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5317 	rcu_read_unlock();
5318 }
5319 
5320 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5321 {
5322 	/* if zswap is disabled, do not block pages going to the swapping device */
5323 	return !zswap_is_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback);
5324 }
5325 
5326 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5327 			      struct cftype *cft)
5328 {
5329 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5330 
5331 	mem_cgroup_flush_stats(memcg);
5332 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5333 }
5334 
5335 static int zswap_max_show(struct seq_file *m, void *v)
5336 {
5337 	return seq_puts_memcg_tunable(m,
5338 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5339 }
5340 
5341 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5342 			       char *buf, size_t nbytes, loff_t off)
5343 {
5344 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5345 	unsigned long max;
5346 	int err;
5347 
5348 	buf = strstrip(buf);
5349 	err = page_counter_memparse(buf, "max", &max);
5350 	if (err)
5351 		return err;
5352 
5353 	xchg(&memcg->zswap_max, max);
5354 
5355 	return nbytes;
5356 }
5357 
5358 static int zswap_writeback_show(struct seq_file *m, void *v)
5359 {
5360 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5361 
5362 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5363 	return 0;
5364 }
5365 
5366 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5367 				char *buf, size_t nbytes, loff_t off)
5368 {
5369 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5370 	int zswap_writeback;
5371 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5372 
5373 	if (parse_ret)
5374 		return parse_ret;
5375 
5376 	if (zswap_writeback != 0 && zswap_writeback != 1)
5377 		return -EINVAL;
5378 
5379 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5380 	return nbytes;
5381 }
5382 
5383 static struct cftype zswap_files[] = {
5384 	{
5385 		.name = "zswap.current",
5386 		.flags = CFTYPE_NOT_ON_ROOT,
5387 		.read_u64 = zswap_current_read,
5388 	},
5389 	{
5390 		.name = "zswap.max",
5391 		.flags = CFTYPE_NOT_ON_ROOT,
5392 		.seq_show = zswap_max_show,
5393 		.write = zswap_max_write,
5394 	},
5395 	{
5396 		.name = "zswap.writeback",
5397 		.seq_show = zswap_writeback_show,
5398 		.write = zswap_writeback_write,
5399 	},
5400 	{ }	/* terminate */
5401 };
5402 #endif /* CONFIG_ZSWAP */
5403 
5404 static int __init mem_cgroup_swap_init(void)
5405 {
5406 	if (mem_cgroup_disabled())
5407 		return 0;
5408 
5409 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5410 #ifdef CONFIG_MEMCG_V1
5411 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5412 #endif
5413 #ifdef CONFIG_ZSWAP
5414 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5415 #endif
5416 	return 0;
5417 }
5418 subsys_initcall(mem_cgroup_swap_init);
5419 
5420 #endif /* CONFIG_SWAP */
5421