xref: /linux/mm/memcontrol.c (revision 4369b3cec2134a6b8ff59b0ed5cca2f816d6e388)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76 
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78 
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82 
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85 
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem __ro_after_init;
88 
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap		1
94 #endif
95 
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99 
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105 
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
108 
109 /*
110  * Cgroups above their limits are maintained in a RB-Tree, independent of
111  * their hierarchy representation
112  */
113 
114 struct mem_cgroup_tree_per_node {
115 	struct rb_root rb_root;
116 	struct rb_node *rb_rightmost;
117 	spinlock_t lock;
118 };
119 
120 struct mem_cgroup_tree {
121 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 };
123 
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125 
126 /* for OOM */
127 struct mem_cgroup_eventfd_list {
128 	struct list_head list;
129 	struct eventfd_ctx *eventfd;
130 };
131 
132 /*
133  * cgroup_event represents events which userspace want to receive.
134  */
135 struct mem_cgroup_event {
136 	/*
137 	 * memcg which the event belongs to.
138 	 */
139 	struct mem_cgroup *memcg;
140 	/*
141 	 * eventfd to signal userspace about the event.
142 	 */
143 	struct eventfd_ctx *eventfd;
144 	/*
145 	 * Each of these stored in a list by the cgroup.
146 	 */
147 	struct list_head list;
148 	/*
149 	 * register_event() callback will be used to add new userspace
150 	 * waiter for changes related to this event.  Use eventfd_signal()
151 	 * on eventfd to send notification to userspace.
152 	 */
153 	int (*register_event)(struct mem_cgroup *memcg,
154 			      struct eventfd_ctx *eventfd, const char *args);
155 	/*
156 	 * unregister_event() callback will be called when userspace closes
157 	 * the eventfd or on cgroup removing.  This callback must be set,
158 	 * if you want provide notification functionality.
159 	 */
160 	void (*unregister_event)(struct mem_cgroup *memcg,
161 				 struct eventfd_ctx *eventfd);
162 	/*
163 	 * All fields below needed to unregister event when
164 	 * userspace closes eventfd.
165 	 */
166 	poll_table pt;
167 	wait_queue_head_t *wqh;
168 	wait_queue_entry_t wait;
169 	struct work_struct remove;
170 };
171 
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174 
175 /* Stuffs for move charges at task migration. */
176 /*
177  * Types of charges to be moved.
178  */
179 #define MOVE_ANON	0x1U
180 #define MOVE_FILE	0x2U
181 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
182 
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 	spinlock_t	  lock; /* for from, to */
186 	struct mm_struct  *mm;
187 	struct mem_cgroup *from;
188 	struct mem_cgroup *to;
189 	unsigned long flags;
190 	unsigned long precharge;
191 	unsigned long moved_charge;
192 	unsigned long moved_swap;
193 	struct task_struct *moving_task;	/* a task moving charges */
194 	wait_queue_head_t waitq;		/* a waitq for other context */
195 } mc = {
196 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198 };
199 
200 /*
201  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202  * limit reclaim to prevent infinite loops, if they ever occur.
203  */
204 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
205 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
206 
207 /* for encoding cft->private value on file */
208 enum res_type {
209 	_MEM,
210 	_MEMSWAP,
211 	_OOM_TYPE,
212 	_KMEM,
213 	_TCP,
214 };
215 
216 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
217 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val)	((val) & 0xffff)
219 /* Used for OOM notifier */
220 #define OOM_CONTROL		(0)
221 
222 /*
223  * Iteration constructs for visiting all cgroups (under a tree).  If
224  * loops are exited prematurely (break), mem_cgroup_iter_break() must
225  * be used for reference counting.
226  */
227 #define for_each_mem_cgroup_tree(iter, root)		\
228 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
229 	     iter != NULL;				\
230 	     iter = mem_cgroup_iter(root, iter, NULL))
231 
232 #define for_each_mem_cgroup(iter)			\
233 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
234 	     iter != NULL;				\
235 	     iter = mem_cgroup_iter(NULL, iter, NULL))
236 
237 static inline bool task_is_dying(void)
238 {
239 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 		(current->flags & PF_EXITING);
241 }
242 
243 /* Some nice accessors for the vmpressure. */
244 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245 {
246 	if (!memcg)
247 		memcg = root_mem_cgroup;
248 	return &memcg->vmpressure;
249 }
250 
251 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
252 {
253 	return container_of(vmpr, struct mem_cgroup, vmpressure);
254 }
255 
256 #ifdef CONFIG_MEMCG_KMEM
257 extern spinlock_t css_set_lock;
258 
259 bool mem_cgroup_kmem_disabled(void)
260 {
261 	return cgroup_memory_nokmem;
262 }
263 
264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 				      unsigned int nr_pages);
266 
267 static void obj_cgroup_release(struct percpu_ref *ref)
268 {
269 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 	unsigned int nr_bytes;
271 	unsigned int nr_pages;
272 	unsigned long flags;
273 
274 	/*
275 	 * At this point all allocated objects are freed, and
276 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 	 *
279 	 * The following sequence can lead to it:
280 	 * 1) CPU0: objcg == stock->cached_objcg
281 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 	 *          PAGE_SIZE bytes are charged
283 	 * 3) CPU1: a process from another memcg is allocating something,
284 	 *          the stock if flushed,
285 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
286 	 * 5) CPU0: we do release this object,
287 	 *          92 bytes are added to stock->nr_bytes
288 	 * 6) CPU0: stock is flushed,
289 	 *          92 bytes are added to objcg->nr_charged_bytes
290 	 *
291 	 * In the result, nr_charged_bytes == PAGE_SIZE.
292 	 * This page will be uncharged in obj_cgroup_release().
293 	 */
294 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 	nr_pages = nr_bytes >> PAGE_SHIFT;
297 
298 	if (nr_pages)
299 		obj_cgroup_uncharge_pages(objcg, nr_pages);
300 
301 	spin_lock_irqsave(&css_set_lock, flags);
302 	list_del(&objcg->list);
303 	spin_unlock_irqrestore(&css_set_lock, flags);
304 
305 	percpu_ref_exit(ref);
306 	kfree_rcu(objcg, rcu);
307 }
308 
309 static struct obj_cgroup *obj_cgroup_alloc(void)
310 {
311 	struct obj_cgroup *objcg;
312 	int ret;
313 
314 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 	if (!objcg)
316 		return NULL;
317 
318 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 			      GFP_KERNEL);
320 	if (ret) {
321 		kfree(objcg);
322 		return NULL;
323 	}
324 	INIT_LIST_HEAD(&objcg->list);
325 	return objcg;
326 }
327 
328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 				  struct mem_cgroup *parent)
330 {
331 	struct obj_cgroup *objcg, *iter;
332 
333 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334 
335 	spin_lock_irq(&css_set_lock);
336 
337 	/* 1) Ready to reparent active objcg. */
338 	list_add(&objcg->list, &memcg->objcg_list);
339 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
340 	list_for_each_entry(iter, &memcg->objcg_list, list)
341 		WRITE_ONCE(iter->memcg, parent);
342 	/* 3) Move already reparented objcgs to the parent's list */
343 	list_splice(&memcg->objcg_list, &parent->objcg_list);
344 
345 	spin_unlock_irq(&css_set_lock);
346 
347 	percpu_ref_kill(&objcg->refcnt);
348 }
349 
350 /*
351  * This will be used as a shrinker list's index.
352  * The main reason for not using cgroup id for this:
353  *  this works better in sparse environments, where we have a lot of memcgs,
354  *  but only a few kmem-limited. Or also, if we have, for instance, 200
355  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
356  *  200 entry array for that.
357  *
358  * The current size of the caches array is stored in memcg_nr_cache_ids. It
359  * will double each time we have to increase it.
360  */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363 
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366 
367 void memcg_get_cache_ids(void)
368 {
369 	down_read(&memcg_cache_ids_sem);
370 }
371 
372 void memcg_put_cache_ids(void)
373 {
374 	up_read(&memcg_cache_ids_sem);
375 }
376 
377 /*
378  * MIN_SIZE is different than 1, because we would like to avoid going through
379  * the alloc/free process all the time. In a small machine, 4 kmem-limited
380  * cgroups is a reasonable guess. In the future, it could be a parameter or
381  * tunable, but that is strictly not necessary.
382  *
383  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384  * this constant directly from cgroup, but it is understandable that this is
385  * better kept as an internal representation in cgroup.c. In any case, the
386  * cgrp_id space is not getting any smaller, and we don't have to necessarily
387  * increase ours as well if it increases.
388  */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391 
392 /*
393  * A lot of the calls to the cache allocation functions are expected to be
394  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395  * conditional to this static branch, we'll have to allow modules that does
396  * kmem_cache_alloc and the such to see this symbol as well
397  */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401 
402 /**
403  * mem_cgroup_css_from_page - css of the memcg associated with a page
404  * @page: page of interest
405  *
406  * If memcg is bound to the default hierarchy, css of the memcg associated
407  * with @page is returned.  The returned css remains associated with @page
408  * until it is released.
409  *
410  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411  * is returned.
412  */
413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414 {
415 	struct mem_cgroup *memcg;
416 
417 	memcg = page_memcg(page);
418 
419 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 		memcg = root_mem_cgroup;
421 
422 	return &memcg->css;
423 }
424 
425 /**
426  * page_cgroup_ino - return inode number of the memcg a page is charged to
427  * @page: the page
428  *
429  * Look up the closest online ancestor of the memory cgroup @page is charged to
430  * and return its inode number or 0 if @page is not charged to any cgroup. It
431  * is safe to call this function without holding a reference to @page.
432  *
433  * Note, this function is inherently racy, because there is nothing to prevent
434  * the cgroup inode from getting torn down and potentially reallocated a moment
435  * after page_cgroup_ino() returns, so it only should be used by callers that
436  * do not care (such as procfs interfaces).
437  */
438 ino_t page_cgroup_ino(struct page *page)
439 {
440 	struct mem_cgroup *memcg;
441 	unsigned long ino = 0;
442 
443 	rcu_read_lock();
444 	memcg = page_memcg_check(page);
445 
446 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 		memcg = parent_mem_cgroup(memcg);
448 	if (memcg)
449 		ino = cgroup_ino(memcg->css.cgroup);
450 	rcu_read_unlock();
451 	return ino;
452 }
453 
454 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
455 					 struct mem_cgroup_tree_per_node *mctz,
456 					 unsigned long new_usage_in_excess)
457 {
458 	struct rb_node **p = &mctz->rb_root.rb_node;
459 	struct rb_node *parent = NULL;
460 	struct mem_cgroup_per_node *mz_node;
461 	bool rightmost = true;
462 
463 	if (mz->on_tree)
464 		return;
465 
466 	mz->usage_in_excess = new_usage_in_excess;
467 	if (!mz->usage_in_excess)
468 		return;
469 	while (*p) {
470 		parent = *p;
471 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
472 					tree_node);
473 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
474 			p = &(*p)->rb_left;
475 			rightmost = false;
476 		} else {
477 			p = &(*p)->rb_right;
478 		}
479 	}
480 
481 	if (rightmost)
482 		mctz->rb_rightmost = &mz->tree_node;
483 
484 	rb_link_node(&mz->tree_node, parent, p);
485 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
486 	mz->on_tree = true;
487 }
488 
489 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
490 					 struct mem_cgroup_tree_per_node *mctz)
491 {
492 	if (!mz->on_tree)
493 		return;
494 
495 	if (&mz->tree_node == mctz->rb_rightmost)
496 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
497 
498 	rb_erase(&mz->tree_node, &mctz->rb_root);
499 	mz->on_tree = false;
500 }
501 
502 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
503 				       struct mem_cgroup_tree_per_node *mctz)
504 {
505 	unsigned long flags;
506 
507 	spin_lock_irqsave(&mctz->lock, flags);
508 	__mem_cgroup_remove_exceeded(mz, mctz);
509 	spin_unlock_irqrestore(&mctz->lock, flags);
510 }
511 
512 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
513 {
514 	unsigned long nr_pages = page_counter_read(&memcg->memory);
515 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
516 	unsigned long excess = 0;
517 
518 	if (nr_pages > soft_limit)
519 		excess = nr_pages - soft_limit;
520 
521 	return excess;
522 }
523 
524 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
525 {
526 	unsigned long excess;
527 	struct mem_cgroup_per_node *mz;
528 	struct mem_cgroup_tree_per_node *mctz;
529 
530 	mctz = soft_limit_tree.rb_tree_per_node[nid];
531 	if (!mctz)
532 		return;
533 	/*
534 	 * Necessary to update all ancestors when hierarchy is used.
535 	 * because their event counter is not touched.
536 	 */
537 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
538 		mz = memcg->nodeinfo[nid];
539 		excess = soft_limit_excess(memcg);
540 		/*
541 		 * We have to update the tree if mz is on RB-tree or
542 		 * mem is over its softlimit.
543 		 */
544 		if (excess || mz->on_tree) {
545 			unsigned long flags;
546 
547 			spin_lock_irqsave(&mctz->lock, flags);
548 			/* if on-tree, remove it */
549 			if (mz->on_tree)
550 				__mem_cgroup_remove_exceeded(mz, mctz);
551 			/*
552 			 * Insert again. mz->usage_in_excess will be updated.
553 			 * If excess is 0, no tree ops.
554 			 */
555 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
556 			spin_unlock_irqrestore(&mctz->lock, flags);
557 		}
558 	}
559 }
560 
561 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
562 {
563 	struct mem_cgroup_tree_per_node *mctz;
564 	struct mem_cgroup_per_node *mz;
565 	int nid;
566 
567 	for_each_node(nid) {
568 		mz = memcg->nodeinfo[nid];
569 		mctz = soft_limit_tree.rb_tree_per_node[nid];
570 		if (mctz)
571 			mem_cgroup_remove_exceeded(mz, mctz);
572 	}
573 }
574 
575 static struct mem_cgroup_per_node *
576 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
577 {
578 	struct mem_cgroup_per_node *mz;
579 
580 retry:
581 	mz = NULL;
582 	if (!mctz->rb_rightmost)
583 		goto done;		/* Nothing to reclaim from */
584 
585 	mz = rb_entry(mctz->rb_rightmost,
586 		      struct mem_cgroup_per_node, tree_node);
587 	/*
588 	 * Remove the node now but someone else can add it back,
589 	 * we will to add it back at the end of reclaim to its correct
590 	 * position in the tree.
591 	 */
592 	__mem_cgroup_remove_exceeded(mz, mctz);
593 	if (!soft_limit_excess(mz->memcg) ||
594 	    !css_tryget(&mz->memcg->css))
595 		goto retry;
596 done:
597 	return mz;
598 }
599 
600 static struct mem_cgroup_per_node *
601 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
602 {
603 	struct mem_cgroup_per_node *mz;
604 
605 	spin_lock_irq(&mctz->lock);
606 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
607 	spin_unlock_irq(&mctz->lock);
608 	return mz;
609 }
610 
611 /*
612  * memcg and lruvec stats flushing
613  *
614  * Many codepaths leading to stats update or read are performance sensitive and
615  * adding stats flushing in such codepaths is not desirable. So, to optimize the
616  * flushing the kernel does:
617  *
618  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
619  *    rstat update tree grow unbounded.
620  *
621  * 2) Flush the stats synchronously on reader side only when there are more than
622  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
623  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
624  *    only for 2 seconds due to (1).
625  */
626 static void flush_memcg_stats_dwork(struct work_struct *w);
627 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
628 static DEFINE_SPINLOCK(stats_flush_lock);
629 static DEFINE_PER_CPU(unsigned int, stats_updates);
630 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
631 
632 static inline void memcg_rstat_updated(struct mem_cgroup *memcg)
633 {
634 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
635 	if (!(__this_cpu_inc_return(stats_updates) % MEMCG_CHARGE_BATCH))
636 		atomic_inc(&stats_flush_threshold);
637 }
638 
639 static void __mem_cgroup_flush_stats(void)
640 {
641 	unsigned long flag;
642 
643 	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
644 		return;
645 
646 	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
647 	atomic_set(&stats_flush_threshold, 0);
648 	spin_unlock_irqrestore(&stats_flush_lock, flag);
649 }
650 
651 void mem_cgroup_flush_stats(void)
652 {
653 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
654 		__mem_cgroup_flush_stats();
655 }
656 
657 static void flush_memcg_stats_dwork(struct work_struct *w)
658 {
659 	mem_cgroup_flush_stats();
660 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
661 }
662 
663 /**
664  * __mod_memcg_state - update cgroup memory statistics
665  * @memcg: the memory cgroup
666  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
667  * @val: delta to add to the counter, can be negative
668  */
669 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
670 {
671 	if (mem_cgroup_disabled())
672 		return;
673 
674 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
675 	memcg_rstat_updated(memcg);
676 }
677 
678 /* idx can be of type enum memcg_stat_item or node_stat_item. */
679 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
680 {
681 	long x = 0;
682 	int cpu;
683 
684 	for_each_possible_cpu(cpu)
685 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
686 #ifdef CONFIG_SMP
687 	if (x < 0)
688 		x = 0;
689 #endif
690 	return x;
691 }
692 
693 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
694 			      int val)
695 {
696 	struct mem_cgroup_per_node *pn;
697 	struct mem_cgroup *memcg;
698 
699 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
700 	memcg = pn->memcg;
701 
702 	/* Update memcg */
703 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
704 
705 	/* Update lruvec */
706 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
707 
708 	memcg_rstat_updated(memcg);
709 }
710 
711 /**
712  * __mod_lruvec_state - update lruvec memory statistics
713  * @lruvec: the lruvec
714  * @idx: the stat item
715  * @val: delta to add to the counter, can be negative
716  *
717  * The lruvec is the intersection of the NUMA node and a cgroup. This
718  * function updates the all three counters that are affected by a
719  * change of state at this level: per-node, per-cgroup, per-lruvec.
720  */
721 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
722 			int val)
723 {
724 	/* Update node */
725 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
726 
727 	/* Update memcg and lruvec */
728 	if (!mem_cgroup_disabled())
729 		__mod_memcg_lruvec_state(lruvec, idx, val);
730 }
731 
732 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
733 			     int val)
734 {
735 	struct page *head = compound_head(page); /* rmap on tail pages */
736 	struct mem_cgroup *memcg;
737 	pg_data_t *pgdat = page_pgdat(page);
738 	struct lruvec *lruvec;
739 
740 	rcu_read_lock();
741 	memcg = page_memcg(head);
742 	/* Untracked pages have no memcg, no lruvec. Update only the node */
743 	if (!memcg) {
744 		rcu_read_unlock();
745 		__mod_node_page_state(pgdat, idx, val);
746 		return;
747 	}
748 
749 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
750 	__mod_lruvec_state(lruvec, idx, val);
751 	rcu_read_unlock();
752 }
753 EXPORT_SYMBOL(__mod_lruvec_page_state);
754 
755 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
756 {
757 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
758 	struct mem_cgroup *memcg;
759 	struct lruvec *lruvec;
760 
761 	rcu_read_lock();
762 	memcg = mem_cgroup_from_obj(p);
763 
764 	/*
765 	 * Untracked pages have no memcg, no lruvec. Update only the
766 	 * node. If we reparent the slab objects to the root memcg,
767 	 * when we free the slab object, we need to update the per-memcg
768 	 * vmstats to keep it correct for the root memcg.
769 	 */
770 	if (!memcg) {
771 		__mod_node_page_state(pgdat, idx, val);
772 	} else {
773 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 		__mod_lruvec_state(lruvec, idx, val);
775 	}
776 	rcu_read_unlock();
777 }
778 
779 /**
780  * __count_memcg_events - account VM events in a cgroup
781  * @memcg: the memory cgroup
782  * @idx: the event item
783  * @count: the number of events that occurred
784  */
785 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
786 			  unsigned long count)
787 {
788 	if (mem_cgroup_disabled())
789 		return;
790 
791 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
792 	memcg_rstat_updated(memcg);
793 }
794 
795 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
796 {
797 	return READ_ONCE(memcg->vmstats.events[event]);
798 }
799 
800 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
801 {
802 	long x = 0;
803 	int cpu;
804 
805 	for_each_possible_cpu(cpu)
806 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
807 	return x;
808 }
809 
810 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
811 					 int nr_pages)
812 {
813 	/* pagein of a big page is an event. So, ignore page size */
814 	if (nr_pages > 0)
815 		__count_memcg_events(memcg, PGPGIN, 1);
816 	else {
817 		__count_memcg_events(memcg, PGPGOUT, 1);
818 		nr_pages = -nr_pages; /* for event */
819 	}
820 
821 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
822 }
823 
824 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
825 				       enum mem_cgroup_events_target target)
826 {
827 	unsigned long val, next;
828 
829 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
830 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
831 	/* from time_after() in jiffies.h */
832 	if ((long)(next - val) < 0) {
833 		switch (target) {
834 		case MEM_CGROUP_TARGET_THRESH:
835 			next = val + THRESHOLDS_EVENTS_TARGET;
836 			break;
837 		case MEM_CGROUP_TARGET_SOFTLIMIT:
838 			next = val + SOFTLIMIT_EVENTS_TARGET;
839 			break;
840 		default:
841 			break;
842 		}
843 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
844 		return true;
845 	}
846 	return false;
847 }
848 
849 /*
850  * Check events in order.
851  *
852  */
853 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
854 {
855 	/* threshold event is triggered in finer grain than soft limit */
856 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
857 						MEM_CGROUP_TARGET_THRESH))) {
858 		bool do_softlimit;
859 
860 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
861 						MEM_CGROUP_TARGET_SOFTLIMIT);
862 		mem_cgroup_threshold(memcg);
863 		if (unlikely(do_softlimit))
864 			mem_cgroup_update_tree(memcg, nid);
865 	}
866 }
867 
868 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
869 {
870 	/*
871 	 * mm_update_next_owner() may clear mm->owner to NULL
872 	 * if it races with swapoff, page migration, etc.
873 	 * So this can be called with p == NULL.
874 	 */
875 	if (unlikely(!p))
876 		return NULL;
877 
878 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
879 }
880 EXPORT_SYMBOL(mem_cgroup_from_task);
881 
882 static __always_inline struct mem_cgroup *active_memcg(void)
883 {
884 	if (!in_task())
885 		return this_cpu_read(int_active_memcg);
886 	else
887 		return current->active_memcg;
888 }
889 
890 /**
891  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
892  * @mm: mm from which memcg should be extracted. It can be NULL.
893  *
894  * Obtain a reference on mm->memcg and returns it if successful. If mm
895  * is NULL, then the memcg is chosen as follows:
896  * 1) The active memcg, if set.
897  * 2) current->mm->memcg, if available
898  * 3) root memcg
899  * If mem_cgroup is disabled, NULL is returned.
900  */
901 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
902 {
903 	struct mem_cgroup *memcg;
904 
905 	if (mem_cgroup_disabled())
906 		return NULL;
907 
908 	/*
909 	 * Page cache insertions can happen without an
910 	 * actual mm context, e.g. during disk probing
911 	 * on boot, loopback IO, acct() writes etc.
912 	 *
913 	 * No need to css_get on root memcg as the reference
914 	 * counting is disabled on the root level in the
915 	 * cgroup core. See CSS_NO_REF.
916 	 */
917 	if (unlikely(!mm)) {
918 		memcg = active_memcg();
919 		if (unlikely(memcg)) {
920 			/* remote memcg must hold a ref */
921 			css_get(&memcg->css);
922 			return memcg;
923 		}
924 		mm = current->mm;
925 		if (unlikely(!mm))
926 			return root_mem_cgroup;
927 	}
928 
929 	rcu_read_lock();
930 	do {
931 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
932 		if (unlikely(!memcg))
933 			memcg = root_mem_cgroup;
934 	} while (!css_tryget(&memcg->css));
935 	rcu_read_unlock();
936 	return memcg;
937 }
938 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
939 
940 static __always_inline bool memcg_kmem_bypass(void)
941 {
942 	/* Allow remote memcg charging from any context. */
943 	if (unlikely(active_memcg()))
944 		return false;
945 
946 	/* Memcg to charge can't be determined. */
947 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
948 		return true;
949 
950 	return false;
951 }
952 
953 /**
954  * mem_cgroup_iter - iterate over memory cgroup hierarchy
955  * @root: hierarchy root
956  * @prev: previously returned memcg, NULL on first invocation
957  * @reclaim: cookie for shared reclaim walks, NULL for full walks
958  *
959  * Returns references to children of the hierarchy below @root, or
960  * @root itself, or %NULL after a full round-trip.
961  *
962  * Caller must pass the return value in @prev on subsequent
963  * invocations for reference counting, or use mem_cgroup_iter_break()
964  * to cancel a hierarchy walk before the round-trip is complete.
965  *
966  * Reclaimers can specify a node in @reclaim to divide up the memcgs
967  * in the hierarchy among all concurrent reclaimers operating on the
968  * same node.
969  */
970 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
971 				   struct mem_cgroup *prev,
972 				   struct mem_cgroup_reclaim_cookie *reclaim)
973 {
974 	struct mem_cgroup_reclaim_iter *iter;
975 	struct cgroup_subsys_state *css = NULL;
976 	struct mem_cgroup *memcg = NULL;
977 	struct mem_cgroup *pos = NULL;
978 
979 	if (mem_cgroup_disabled())
980 		return NULL;
981 
982 	if (!root)
983 		root = root_mem_cgroup;
984 
985 	if (prev && !reclaim)
986 		pos = prev;
987 
988 	rcu_read_lock();
989 
990 	if (reclaim) {
991 		struct mem_cgroup_per_node *mz;
992 
993 		mz = root->nodeinfo[reclaim->pgdat->node_id];
994 		iter = &mz->iter;
995 
996 		if (prev && reclaim->generation != iter->generation)
997 			goto out_unlock;
998 
999 		while (1) {
1000 			pos = READ_ONCE(iter->position);
1001 			if (!pos || css_tryget(&pos->css))
1002 				break;
1003 			/*
1004 			 * css reference reached zero, so iter->position will
1005 			 * be cleared by ->css_released. However, we should not
1006 			 * rely on this happening soon, because ->css_released
1007 			 * is called from a work queue, and by busy-waiting we
1008 			 * might block it. So we clear iter->position right
1009 			 * away.
1010 			 */
1011 			(void)cmpxchg(&iter->position, pos, NULL);
1012 		}
1013 	}
1014 
1015 	if (pos)
1016 		css = &pos->css;
1017 
1018 	for (;;) {
1019 		css = css_next_descendant_pre(css, &root->css);
1020 		if (!css) {
1021 			/*
1022 			 * Reclaimers share the hierarchy walk, and a
1023 			 * new one might jump in right at the end of
1024 			 * the hierarchy - make sure they see at least
1025 			 * one group and restart from the beginning.
1026 			 */
1027 			if (!prev)
1028 				continue;
1029 			break;
1030 		}
1031 
1032 		/*
1033 		 * Verify the css and acquire a reference.  The root
1034 		 * is provided by the caller, so we know it's alive
1035 		 * and kicking, and don't take an extra reference.
1036 		 */
1037 		memcg = mem_cgroup_from_css(css);
1038 
1039 		if (css == &root->css)
1040 			break;
1041 
1042 		if (css_tryget(css))
1043 			break;
1044 
1045 		memcg = NULL;
1046 	}
1047 
1048 	if (reclaim) {
1049 		/*
1050 		 * The position could have already been updated by a competing
1051 		 * thread, so check that the value hasn't changed since we read
1052 		 * it to avoid reclaiming from the same cgroup twice.
1053 		 */
1054 		(void)cmpxchg(&iter->position, pos, memcg);
1055 
1056 		if (pos)
1057 			css_put(&pos->css);
1058 
1059 		if (!memcg)
1060 			iter->generation++;
1061 		else if (!prev)
1062 			reclaim->generation = iter->generation;
1063 	}
1064 
1065 out_unlock:
1066 	rcu_read_unlock();
1067 	if (prev && prev != root)
1068 		css_put(&prev->css);
1069 
1070 	return memcg;
1071 }
1072 
1073 /**
1074  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1075  * @root: hierarchy root
1076  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1077  */
1078 void mem_cgroup_iter_break(struct mem_cgroup *root,
1079 			   struct mem_cgroup *prev)
1080 {
1081 	if (!root)
1082 		root = root_mem_cgroup;
1083 	if (prev && prev != root)
1084 		css_put(&prev->css);
1085 }
1086 
1087 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1088 					struct mem_cgroup *dead_memcg)
1089 {
1090 	struct mem_cgroup_reclaim_iter *iter;
1091 	struct mem_cgroup_per_node *mz;
1092 	int nid;
1093 
1094 	for_each_node(nid) {
1095 		mz = from->nodeinfo[nid];
1096 		iter = &mz->iter;
1097 		cmpxchg(&iter->position, dead_memcg, NULL);
1098 	}
1099 }
1100 
1101 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1102 {
1103 	struct mem_cgroup *memcg = dead_memcg;
1104 	struct mem_cgroup *last;
1105 
1106 	do {
1107 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1108 		last = memcg;
1109 	} while ((memcg = parent_mem_cgroup(memcg)));
1110 
1111 	/*
1112 	 * When cgruop1 non-hierarchy mode is used,
1113 	 * parent_mem_cgroup() does not walk all the way up to the
1114 	 * cgroup root (root_mem_cgroup). So we have to handle
1115 	 * dead_memcg from cgroup root separately.
1116 	 */
1117 	if (last != root_mem_cgroup)
1118 		__invalidate_reclaim_iterators(root_mem_cgroup,
1119 						dead_memcg);
1120 }
1121 
1122 /**
1123  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1124  * @memcg: hierarchy root
1125  * @fn: function to call for each task
1126  * @arg: argument passed to @fn
1127  *
1128  * This function iterates over tasks attached to @memcg or to any of its
1129  * descendants and calls @fn for each task. If @fn returns a non-zero
1130  * value, the function breaks the iteration loop and returns the value.
1131  * Otherwise, it will iterate over all tasks and return 0.
1132  *
1133  * This function must not be called for the root memory cgroup.
1134  */
1135 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1136 			  int (*fn)(struct task_struct *, void *), void *arg)
1137 {
1138 	struct mem_cgroup *iter;
1139 	int ret = 0;
1140 
1141 	BUG_ON(memcg == root_mem_cgroup);
1142 
1143 	for_each_mem_cgroup_tree(iter, memcg) {
1144 		struct css_task_iter it;
1145 		struct task_struct *task;
1146 
1147 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1148 		while (!ret && (task = css_task_iter_next(&it)))
1149 			ret = fn(task, arg);
1150 		css_task_iter_end(&it);
1151 		if (ret) {
1152 			mem_cgroup_iter_break(memcg, iter);
1153 			break;
1154 		}
1155 	}
1156 	return ret;
1157 }
1158 
1159 #ifdef CONFIG_DEBUG_VM
1160 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1161 {
1162 	struct mem_cgroup *memcg;
1163 
1164 	if (mem_cgroup_disabled())
1165 		return;
1166 
1167 	memcg = folio_memcg(folio);
1168 
1169 	if (!memcg)
1170 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1171 	else
1172 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1173 }
1174 #endif
1175 
1176 /**
1177  * folio_lruvec_lock - Lock the lruvec for a folio.
1178  * @folio: Pointer to the folio.
1179  *
1180  * These functions are safe to use under any of the following conditions:
1181  * - folio locked
1182  * - folio_test_lru false
1183  * - folio_memcg_lock()
1184  * - folio frozen (refcount of 0)
1185  *
1186  * Return: The lruvec this folio is on with its lock held.
1187  */
1188 struct lruvec *folio_lruvec_lock(struct folio *folio)
1189 {
1190 	struct lruvec *lruvec = folio_lruvec(folio);
1191 
1192 	spin_lock(&lruvec->lru_lock);
1193 	lruvec_memcg_debug(lruvec, folio);
1194 
1195 	return lruvec;
1196 }
1197 
1198 /**
1199  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1200  * @folio: Pointer to the folio.
1201  *
1202  * These functions are safe to use under any of the following conditions:
1203  * - folio locked
1204  * - folio_test_lru false
1205  * - folio_memcg_lock()
1206  * - folio frozen (refcount of 0)
1207  *
1208  * Return: The lruvec this folio is on with its lock held and interrupts
1209  * disabled.
1210  */
1211 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1212 {
1213 	struct lruvec *lruvec = folio_lruvec(folio);
1214 
1215 	spin_lock_irq(&lruvec->lru_lock);
1216 	lruvec_memcg_debug(lruvec, folio);
1217 
1218 	return lruvec;
1219 }
1220 
1221 /**
1222  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1223  * @folio: Pointer to the folio.
1224  * @flags: Pointer to irqsave flags.
1225  *
1226  * These functions are safe to use under any of the following conditions:
1227  * - folio locked
1228  * - folio_test_lru false
1229  * - folio_memcg_lock()
1230  * - folio frozen (refcount of 0)
1231  *
1232  * Return: The lruvec this folio is on with its lock held and interrupts
1233  * disabled.
1234  */
1235 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1236 		unsigned long *flags)
1237 {
1238 	struct lruvec *lruvec = folio_lruvec(folio);
1239 
1240 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1241 	lruvec_memcg_debug(lruvec, folio);
1242 
1243 	return lruvec;
1244 }
1245 
1246 /**
1247  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248  * @lruvec: mem_cgroup per zone lru vector
1249  * @lru: index of lru list the page is sitting on
1250  * @zid: zone id of the accounted pages
1251  * @nr_pages: positive when adding or negative when removing
1252  *
1253  * This function must be called under lru_lock, just before a page is added
1254  * to or just after a page is removed from an lru list (that ordering being
1255  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256  */
1257 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258 				int zid, int nr_pages)
1259 {
1260 	struct mem_cgroup_per_node *mz;
1261 	unsigned long *lru_size;
1262 	long size;
1263 
1264 	if (mem_cgroup_disabled())
1265 		return;
1266 
1267 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268 	lru_size = &mz->lru_zone_size[zid][lru];
1269 
1270 	if (nr_pages < 0)
1271 		*lru_size += nr_pages;
1272 
1273 	size = *lru_size;
1274 	if (WARN_ONCE(size < 0,
1275 		"%s(%p, %d, %d): lru_size %ld\n",
1276 		__func__, lruvec, lru, nr_pages, size)) {
1277 		VM_BUG_ON(1);
1278 		*lru_size = 0;
1279 	}
1280 
1281 	if (nr_pages > 0)
1282 		*lru_size += nr_pages;
1283 }
1284 
1285 /**
1286  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287  * @memcg: the memory cgroup
1288  *
1289  * Returns the maximum amount of memory @mem can be charged with, in
1290  * pages.
1291  */
1292 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293 {
1294 	unsigned long margin = 0;
1295 	unsigned long count;
1296 	unsigned long limit;
1297 
1298 	count = page_counter_read(&memcg->memory);
1299 	limit = READ_ONCE(memcg->memory.max);
1300 	if (count < limit)
1301 		margin = limit - count;
1302 
1303 	if (do_memsw_account()) {
1304 		count = page_counter_read(&memcg->memsw);
1305 		limit = READ_ONCE(memcg->memsw.max);
1306 		if (count < limit)
1307 			margin = min(margin, limit - count);
1308 		else
1309 			margin = 0;
1310 	}
1311 
1312 	return margin;
1313 }
1314 
1315 /*
1316  * A routine for checking "mem" is under move_account() or not.
1317  *
1318  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319  * moving cgroups. This is for waiting at high-memory pressure
1320  * caused by "move".
1321  */
1322 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323 {
1324 	struct mem_cgroup *from;
1325 	struct mem_cgroup *to;
1326 	bool ret = false;
1327 	/*
1328 	 * Unlike task_move routines, we access mc.to, mc.from not under
1329 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330 	 */
1331 	spin_lock(&mc.lock);
1332 	from = mc.from;
1333 	to = mc.to;
1334 	if (!from)
1335 		goto unlock;
1336 
1337 	ret = mem_cgroup_is_descendant(from, memcg) ||
1338 		mem_cgroup_is_descendant(to, memcg);
1339 unlock:
1340 	spin_unlock(&mc.lock);
1341 	return ret;
1342 }
1343 
1344 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345 {
1346 	if (mc.moving_task && current != mc.moving_task) {
1347 		if (mem_cgroup_under_move(memcg)) {
1348 			DEFINE_WAIT(wait);
1349 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350 			/* moving charge context might have finished. */
1351 			if (mc.moving_task)
1352 				schedule();
1353 			finish_wait(&mc.waitq, &wait);
1354 			return true;
1355 		}
1356 	}
1357 	return false;
1358 }
1359 
1360 struct memory_stat {
1361 	const char *name;
1362 	unsigned int idx;
1363 };
1364 
1365 static const struct memory_stat memory_stats[] = {
1366 	{ "anon",			NR_ANON_MAPPED			},
1367 	{ "file",			NR_FILE_PAGES			},
1368 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1369 	{ "pagetables",			NR_PAGETABLE			},
1370 	{ "percpu",			MEMCG_PERCPU_B			},
1371 	{ "sock",			MEMCG_SOCK			},
1372 	{ "shmem",			NR_SHMEM			},
1373 	{ "file_mapped",		NR_FILE_MAPPED			},
1374 	{ "file_dirty",			NR_FILE_DIRTY			},
1375 	{ "file_writeback",		NR_WRITEBACK			},
1376 #ifdef CONFIG_SWAP
1377 	{ "swapcached",			NR_SWAPCACHE			},
1378 #endif
1379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380 	{ "anon_thp",			NR_ANON_THPS			},
1381 	{ "file_thp",			NR_FILE_THPS			},
1382 	{ "shmem_thp",			NR_SHMEM_THPS			},
1383 #endif
1384 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1385 	{ "active_anon",		NR_ACTIVE_ANON			},
1386 	{ "inactive_file",		NR_INACTIVE_FILE		},
1387 	{ "active_file",		NR_ACTIVE_FILE			},
1388 	{ "unevictable",		NR_UNEVICTABLE			},
1389 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1390 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1391 
1392 	/* The memory events */
1393 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1394 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1395 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1396 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1397 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1398 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1399 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1400 };
1401 
1402 /* Translate stat items to the correct unit for memory.stat output */
1403 static int memcg_page_state_unit(int item)
1404 {
1405 	switch (item) {
1406 	case MEMCG_PERCPU_B:
1407 	case NR_SLAB_RECLAIMABLE_B:
1408 	case NR_SLAB_UNRECLAIMABLE_B:
1409 	case WORKINGSET_REFAULT_ANON:
1410 	case WORKINGSET_REFAULT_FILE:
1411 	case WORKINGSET_ACTIVATE_ANON:
1412 	case WORKINGSET_ACTIVATE_FILE:
1413 	case WORKINGSET_RESTORE_ANON:
1414 	case WORKINGSET_RESTORE_FILE:
1415 	case WORKINGSET_NODERECLAIM:
1416 		return 1;
1417 	case NR_KERNEL_STACK_KB:
1418 		return SZ_1K;
1419 	default:
1420 		return PAGE_SIZE;
1421 	}
1422 }
1423 
1424 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425 						    int item)
1426 {
1427 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428 }
1429 
1430 static char *memory_stat_format(struct mem_cgroup *memcg)
1431 {
1432 	struct seq_buf s;
1433 	int i;
1434 
1435 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436 	if (!s.buffer)
1437 		return NULL;
1438 
1439 	/*
1440 	 * Provide statistics on the state of the memory subsystem as
1441 	 * well as cumulative event counters that show past behavior.
1442 	 *
1443 	 * This list is ordered following a combination of these gradients:
1444 	 * 1) generic big picture -> specifics and details
1445 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446 	 *
1447 	 * Current memory state:
1448 	 */
1449 	mem_cgroup_flush_stats();
1450 
1451 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452 		u64 size;
1453 
1454 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456 
1457 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458 			size += memcg_page_state_output(memcg,
1459 							NR_SLAB_RECLAIMABLE_B);
1460 			seq_buf_printf(&s, "slab %llu\n", size);
1461 		}
1462 	}
1463 
1464 	/* Accumulated memory events */
1465 
1466 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467 		       memcg_events(memcg, PGFAULT));
1468 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469 		       memcg_events(memcg, PGMAJFAULT));
1470 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1471 		       memcg_events(memcg, PGREFILL));
1472 	seq_buf_printf(&s, "pgscan %lu\n",
1473 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1474 		       memcg_events(memcg, PGSCAN_DIRECT));
1475 	seq_buf_printf(&s, "pgsteal %lu\n",
1476 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1477 		       memcg_events(memcg, PGSTEAL_DIRECT));
1478 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479 		       memcg_events(memcg, PGACTIVATE));
1480 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481 		       memcg_events(memcg, PGDEACTIVATE));
1482 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483 		       memcg_events(memcg, PGLAZYFREE));
1484 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485 		       memcg_events(memcg, PGLAZYFREED));
1486 
1487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489 		       memcg_events(memcg, THP_FAULT_ALLOC));
1490 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493 
1494 	/* The above should easily fit into one page */
1495 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496 
1497 	return s.buffer;
1498 }
1499 
1500 #define K(x) ((x) << (PAGE_SHIFT-10))
1501 /**
1502  * mem_cgroup_print_oom_context: Print OOM information relevant to
1503  * memory controller.
1504  * @memcg: The memory cgroup that went over limit
1505  * @p: Task that is going to be killed
1506  *
1507  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508  * enabled
1509  */
1510 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511 {
1512 	rcu_read_lock();
1513 
1514 	if (memcg) {
1515 		pr_cont(",oom_memcg=");
1516 		pr_cont_cgroup_path(memcg->css.cgroup);
1517 	} else
1518 		pr_cont(",global_oom");
1519 	if (p) {
1520 		pr_cont(",task_memcg=");
1521 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522 	}
1523 	rcu_read_unlock();
1524 }
1525 
1526 /**
1527  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528  * memory controller.
1529  * @memcg: The memory cgroup that went over limit
1530  */
1531 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532 {
1533 	char *buf;
1534 
1535 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536 		K((u64)page_counter_read(&memcg->memory)),
1537 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540 			K((u64)page_counter_read(&memcg->swap)),
1541 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542 	else {
1543 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544 			K((u64)page_counter_read(&memcg->memsw)),
1545 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547 			K((u64)page_counter_read(&memcg->kmem)),
1548 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549 	}
1550 
1551 	pr_info("Memory cgroup stats for ");
1552 	pr_cont_cgroup_path(memcg->css.cgroup);
1553 	pr_cont(":");
1554 	buf = memory_stat_format(memcg);
1555 	if (!buf)
1556 		return;
1557 	pr_info("%s", buf);
1558 	kfree(buf);
1559 }
1560 
1561 /*
1562  * Return the memory (and swap, if configured) limit for a memcg.
1563  */
1564 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565 {
1566 	unsigned long max = READ_ONCE(memcg->memory.max);
1567 
1568 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569 		if (mem_cgroup_swappiness(memcg))
1570 			max += min(READ_ONCE(memcg->swap.max),
1571 				   (unsigned long)total_swap_pages);
1572 	} else { /* v1 */
1573 		if (mem_cgroup_swappiness(memcg)) {
1574 			/* Calculate swap excess capacity from memsw limit */
1575 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576 
1577 			max += min(swap, (unsigned long)total_swap_pages);
1578 		}
1579 	}
1580 	return max;
1581 }
1582 
1583 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584 {
1585 	return page_counter_read(&memcg->memory);
1586 }
1587 
1588 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589 				     int order)
1590 {
1591 	struct oom_control oc = {
1592 		.zonelist = NULL,
1593 		.nodemask = NULL,
1594 		.memcg = memcg,
1595 		.gfp_mask = gfp_mask,
1596 		.order = order,
1597 	};
1598 	bool ret = true;
1599 
1600 	if (mutex_lock_killable(&oom_lock))
1601 		return true;
1602 
1603 	if (mem_cgroup_margin(memcg) >= (1 << order))
1604 		goto unlock;
1605 
1606 	/*
1607 	 * A few threads which were not waiting at mutex_lock_killable() can
1608 	 * fail to bail out. Therefore, check again after holding oom_lock.
1609 	 */
1610 	ret = task_is_dying() || out_of_memory(&oc);
1611 
1612 unlock:
1613 	mutex_unlock(&oom_lock);
1614 	return ret;
1615 }
1616 
1617 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618 				   pg_data_t *pgdat,
1619 				   gfp_t gfp_mask,
1620 				   unsigned long *total_scanned)
1621 {
1622 	struct mem_cgroup *victim = NULL;
1623 	int total = 0;
1624 	int loop = 0;
1625 	unsigned long excess;
1626 	unsigned long nr_scanned;
1627 	struct mem_cgroup_reclaim_cookie reclaim = {
1628 		.pgdat = pgdat,
1629 	};
1630 
1631 	excess = soft_limit_excess(root_memcg);
1632 
1633 	while (1) {
1634 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635 		if (!victim) {
1636 			loop++;
1637 			if (loop >= 2) {
1638 				/*
1639 				 * If we have not been able to reclaim
1640 				 * anything, it might because there are
1641 				 * no reclaimable pages under this hierarchy
1642 				 */
1643 				if (!total)
1644 					break;
1645 				/*
1646 				 * We want to do more targeted reclaim.
1647 				 * excess >> 2 is not to excessive so as to
1648 				 * reclaim too much, nor too less that we keep
1649 				 * coming back to reclaim from this cgroup
1650 				 */
1651 				if (total >= (excess >> 2) ||
1652 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653 					break;
1654 			}
1655 			continue;
1656 		}
1657 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658 					pgdat, &nr_scanned);
1659 		*total_scanned += nr_scanned;
1660 		if (!soft_limit_excess(root_memcg))
1661 			break;
1662 	}
1663 	mem_cgroup_iter_break(root_memcg, victim);
1664 	return total;
1665 }
1666 
1667 #ifdef CONFIG_LOCKDEP
1668 static struct lockdep_map memcg_oom_lock_dep_map = {
1669 	.name = "memcg_oom_lock",
1670 };
1671 #endif
1672 
1673 static DEFINE_SPINLOCK(memcg_oom_lock);
1674 
1675 /*
1676  * Check OOM-Killer is already running under our hierarchy.
1677  * If someone is running, return false.
1678  */
1679 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680 {
1681 	struct mem_cgroup *iter, *failed = NULL;
1682 
1683 	spin_lock(&memcg_oom_lock);
1684 
1685 	for_each_mem_cgroup_tree(iter, memcg) {
1686 		if (iter->oom_lock) {
1687 			/*
1688 			 * this subtree of our hierarchy is already locked
1689 			 * so we cannot give a lock.
1690 			 */
1691 			failed = iter;
1692 			mem_cgroup_iter_break(memcg, iter);
1693 			break;
1694 		} else
1695 			iter->oom_lock = true;
1696 	}
1697 
1698 	if (failed) {
1699 		/*
1700 		 * OK, we failed to lock the whole subtree so we have
1701 		 * to clean up what we set up to the failing subtree
1702 		 */
1703 		for_each_mem_cgroup_tree(iter, memcg) {
1704 			if (iter == failed) {
1705 				mem_cgroup_iter_break(memcg, iter);
1706 				break;
1707 			}
1708 			iter->oom_lock = false;
1709 		}
1710 	} else
1711 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712 
1713 	spin_unlock(&memcg_oom_lock);
1714 
1715 	return !failed;
1716 }
1717 
1718 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719 {
1720 	struct mem_cgroup *iter;
1721 
1722 	spin_lock(&memcg_oom_lock);
1723 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724 	for_each_mem_cgroup_tree(iter, memcg)
1725 		iter->oom_lock = false;
1726 	spin_unlock(&memcg_oom_lock);
1727 }
1728 
1729 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730 {
1731 	struct mem_cgroup *iter;
1732 
1733 	spin_lock(&memcg_oom_lock);
1734 	for_each_mem_cgroup_tree(iter, memcg)
1735 		iter->under_oom++;
1736 	spin_unlock(&memcg_oom_lock);
1737 }
1738 
1739 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740 {
1741 	struct mem_cgroup *iter;
1742 
1743 	/*
1744 	 * Be careful about under_oom underflows because a child memcg
1745 	 * could have been added after mem_cgroup_mark_under_oom.
1746 	 */
1747 	spin_lock(&memcg_oom_lock);
1748 	for_each_mem_cgroup_tree(iter, memcg)
1749 		if (iter->under_oom > 0)
1750 			iter->under_oom--;
1751 	spin_unlock(&memcg_oom_lock);
1752 }
1753 
1754 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755 
1756 struct oom_wait_info {
1757 	struct mem_cgroup *memcg;
1758 	wait_queue_entry_t	wait;
1759 };
1760 
1761 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762 	unsigned mode, int sync, void *arg)
1763 {
1764 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765 	struct mem_cgroup *oom_wait_memcg;
1766 	struct oom_wait_info *oom_wait_info;
1767 
1768 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769 	oom_wait_memcg = oom_wait_info->memcg;
1770 
1771 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773 		return 0;
1774 	return autoremove_wake_function(wait, mode, sync, arg);
1775 }
1776 
1777 static void memcg_oom_recover(struct mem_cgroup *memcg)
1778 {
1779 	/*
1780 	 * For the following lockless ->under_oom test, the only required
1781 	 * guarantee is that it must see the state asserted by an OOM when
1782 	 * this function is called as a result of userland actions
1783 	 * triggered by the notification of the OOM.  This is trivially
1784 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1785 	 * triggering notification.
1786 	 */
1787 	if (memcg && memcg->under_oom)
1788 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789 }
1790 
1791 enum oom_status {
1792 	OOM_SUCCESS,
1793 	OOM_FAILED,
1794 	OOM_ASYNC,
1795 	OOM_SKIPPED
1796 };
1797 
1798 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799 {
1800 	enum oom_status ret;
1801 	bool locked;
1802 
1803 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1804 		return OOM_SKIPPED;
1805 
1806 	memcg_memory_event(memcg, MEMCG_OOM);
1807 
1808 	/*
1809 	 * We are in the middle of the charge context here, so we
1810 	 * don't want to block when potentially sitting on a callstack
1811 	 * that holds all kinds of filesystem and mm locks.
1812 	 *
1813 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1814 	 * handling until the charge can succeed; remember the context and put
1815 	 * the task to sleep at the end of the page fault when all locks are
1816 	 * released.
1817 	 *
1818 	 * On the other hand, in-kernel OOM killer allows for an async victim
1819 	 * memory reclaim (oom_reaper) and that means that we are not solely
1820 	 * relying on the oom victim to make a forward progress and we can
1821 	 * invoke the oom killer here.
1822 	 *
1823 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1824 	 * victim and then we have to bail out from the charge path.
1825 	 */
1826 	if (memcg->oom_kill_disable) {
1827 		if (!current->in_user_fault)
1828 			return OOM_SKIPPED;
1829 		css_get(&memcg->css);
1830 		current->memcg_in_oom = memcg;
1831 		current->memcg_oom_gfp_mask = mask;
1832 		current->memcg_oom_order = order;
1833 
1834 		return OOM_ASYNC;
1835 	}
1836 
1837 	mem_cgroup_mark_under_oom(memcg);
1838 
1839 	locked = mem_cgroup_oom_trylock(memcg);
1840 
1841 	if (locked)
1842 		mem_cgroup_oom_notify(memcg);
1843 
1844 	mem_cgroup_unmark_under_oom(memcg);
1845 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1846 		ret = OOM_SUCCESS;
1847 	else
1848 		ret = OOM_FAILED;
1849 
1850 	if (locked)
1851 		mem_cgroup_oom_unlock(memcg);
1852 
1853 	return ret;
1854 }
1855 
1856 /**
1857  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858  * @handle: actually kill/wait or just clean up the OOM state
1859  *
1860  * This has to be called at the end of a page fault if the memcg OOM
1861  * handler was enabled.
1862  *
1863  * Memcg supports userspace OOM handling where failed allocations must
1864  * sleep on a waitqueue until the userspace task resolves the
1865  * situation.  Sleeping directly in the charge context with all kinds
1866  * of locks held is not a good idea, instead we remember an OOM state
1867  * in the task and mem_cgroup_oom_synchronize() has to be called at
1868  * the end of the page fault to complete the OOM handling.
1869  *
1870  * Returns %true if an ongoing memcg OOM situation was detected and
1871  * completed, %false otherwise.
1872  */
1873 bool mem_cgroup_oom_synchronize(bool handle)
1874 {
1875 	struct mem_cgroup *memcg = current->memcg_in_oom;
1876 	struct oom_wait_info owait;
1877 	bool locked;
1878 
1879 	/* OOM is global, do not handle */
1880 	if (!memcg)
1881 		return false;
1882 
1883 	if (!handle)
1884 		goto cleanup;
1885 
1886 	owait.memcg = memcg;
1887 	owait.wait.flags = 0;
1888 	owait.wait.func = memcg_oom_wake_function;
1889 	owait.wait.private = current;
1890 	INIT_LIST_HEAD(&owait.wait.entry);
1891 
1892 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893 	mem_cgroup_mark_under_oom(memcg);
1894 
1895 	locked = mem_cgroup_oom_trylock(memcg);
1896 
1897 	if (locked)
1898 		mem_cgroup_oom_notify(memcg);
1899 
1900 	if (locked && !memcg->oom_kill_disable) {
1901 		mem_cgroup_unmark_under_oom(memcg);
1902 		finish_wait(&memcg_oom_waitq, &owait.wait);
1903 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904 					 current->memcg_oom_order);
1905 	} else {
1906 		schedule();
1907 		mem_cgroup_unmark_under_oom(memcg);
1908 		finish_wait(&memcg_oom_waitq, &owait.wait);
1909 	}
1910 
1911 	if (locked) {
1912 		mem_cgroup_oom_unlock(memcg);
1913 		/*
1914 		 * There is no guarantee that an OOM-lock contender
1915 		 * sees the wakeups triggered by the OOM kill
1916 		 * uncharges.  Wake any sleepers explicitly.
1917 		 */
1918 		memcg_oom_recover(memcg);
1919 	}
1920 cleanup:
1921 	current->memcg_in_oom = NULL;
1922 	css_put(&memcg->css);
1923 	return true;
1924 }
1925 
1926 /**
1927  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928  * @victim: task to be killed by the OOM killer
1929  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930  *
1931  * Returns a pointer to a memory cgroup, which has to be cleaned up
1932  * by killing all belonging OOM-killable tasks.
1933  *
1934  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935  */
1936 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937 					    struct mem_cgroup *oom_domain)
1938 {
1939 	struct mem_cgroup *oom_group = NULL;
1940 	struct mem_cgroup *memcg;
1941 
1942 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943 		return NULL;
1944 
1945 	if (!oom_domain)
1946 		oom_domain = root_mem_cgroup;
1947 
1948 	rcu_read_lock();
1949 
1950 	memcg = mem_cgroup_from_task(victim);
1951 	if (memcg == root_mem_cgroup)
1952 		goto out;
1953 
1954 	/*
1955 	 * If the victim task has been asynchronously moved to a different
1956 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1957 	 * In this case it's better to ignore memory.group.oom.
1958 	 */
1959 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960 		goto out;
1961 
1962 	/*
1963 	 * Traverse the memory cgroup hierarchy from the victim task's
1964 	 * cgroup up to the OOMing cgroup (or root) to find the
1965 	 * highest-level memory cgroup with oom.group set.
1966 	 */
1967 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968 		if (memcg->oom_group)
1969 			oom_group = memcg;
1970 
1971 		if (memcg == oom_domain)
1972 			break;
1973 	}
1974 
1975 	if (oom_group)
1976 		css_get(&oom_group->css);
1977 out:
1978 	rcu_read_unlock();
1979 
1980 	return oom_group;
1981 }
1982 
1983 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984 {
1985 	pr_info("Tasks in ");
1986 	pr_cont_cgroup_path(memcg->css.cgroup);
1987 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1988 }
1989 
1990 /**
1991  * folio_memcg_lock - Bind a folio to its memcg.
1992  * @folio: The folio.
1993  *
1994  * This function prevents unlocked LRU folios from being moved to
1995  * another cgroup.
1996  *
1997  * It ensures lifetime of the bound memcg.  The caller is responsible
1998  * for the lifetime of the folio.
1999  */
2000 void folio_memcg_lock(struct folio *folio)
2001 {
2002 	struct mem_cgroup *memcg;
2003 	unsigned long flags;
2004 
2005 	/*
2006 	 * The RCU lock is held throughout the transaction.  The fast
2007 	 * path can get away without acquiring the memcg->move_lock
2008 	 * because page moving starts with an RCU grace period.
2009          */
2010 	rcu_read_lock();
2011 
2012 	if (mem_cgroup_disabled())
2013 		return;
2014 again:
2015 	memcg = folio_memcg(folio);
2016 	if (unlikely(!memcg))
2017 		return;
2018 
2019 #ifdef CONFIG_PROVE_LOCKING
2020 	local_irq_save(flags);
2021 	might_lock(&memcg->move_lock);
2022 	local_irq_restore(flags);
2023 #endif
2024 
2025 	if (atomic_read(&memcg->moving_account) <= 0)
2026 		return;
2027 
2028 	spin_lock_irqsave(&memcg->move_lock, flags);
2029 	if (memcg != folio_memcg(folio)) {
2030 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2031 		goto again;
2032 	}
2033 
2034 	/*
2035 	 * When charge migration first begins, we can have multiple
2036 	 * critical sections holding the fast-path RCU lock and one
2037 	 * holding the slowpath move_lock. Track the task who has the
2038 	 * move_lock for unlock_page_memcg().
2039 	 */
2040 	memcg->move_lock_task = current;
2041 	memcg->move_lock_flags = flags;
2042 }
2043 
2044 void lock_page_memcg(struct page *page)
2045 {
2046 	folio_memcg_lock(page_folio(page));
2047 }
2048 
2049 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2050 {
2051 	if (memcg && memcg->move_lock_task == current) {
2052 		unsigned long flags = memcg->move_lock_flags;
2053 
2054 		memcg->move_lock_task = NULL;
2055 		memcg->move_lock_flags = 0;
2056 
2057 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2058 	}
2059 
2060 	rcu_read_unlock();
2061 }
2062 
2063 /**
2064  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2065  * @folio: The folio.
2066  *
2067  * This releases the binding created by folio_memcg_lock().  This does
2068  * not change the accounting of this folio to its memcg, but it does
2069  * permit others to change it.
2070  */
2071 void folio_memcg_unlock(struct folio *folio)
2072 {
2073 	__folio_memcg_unlock(folio_memcg(folio));
2074 }
2075 
2076 void unlock_page_memcg(struct page *page)
2077 {
2078 	folio_memcg_unlock(page_folio(page));
2079 }
2080 
2081 struct obj_stock {
2082 #ifdef CONFIG_MEMCG_KMEM
2083 	struct obj_cgroup *cached_objcg;
2084 	struct pglist_data *cached_pgdat;
2085 	unsigned int nr_bytes;
2086 	int nr_slab_reclaimable_b;
2087 	int nr_slab_unreclaimable_b;
2088 #else
2089 	int dummy[0];
2090 #endif
2091 };
2092 
2093 struct memcg_stock_pcp {
2094 	struct mem_cgroup *cached; /* this never be root cgroup */
2095 	unsigned int nr_pages;
2096 	struct obj_stock task_obj;
2097 	struct obj_stock irq_obj;
2098 
2099 	struct work_struct work;
2100 	unsigned long flags;
2101 #define FLUSHING_CACHED_CHARGE	0
2102 };
2103 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2104 static DEFINE_MUTEX(percpu_charge_mutex);
2105 
2106 #ifdef CONFIG_MEMCG_KMEM
2107 static void drain_obj_stock(struct obj_stock *stock);
2108 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2109 				     struct mem_cgroup *root_memcg);
2110 
2111 #else
2112 static inline void drain_obj_stock(struct obj_stock *stock)
2113 {
2114 }
2115 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2116 				     struct mem_cgroup *root_memcg)
2117 {
2118 	return false;
2119 }
2120 #endif
2121 
2122 /**
2123  * consume_stock: Try to consume stocked charge on this cpu.
2124  * @memcg: memcg to consume from.
2125  * @nr_pages: how many pages to charge.
2126  *
2127  * The charges will only happen if @memcg matches the current cpu's memcg
2128  * stock, and at least @nr_pages are available in that stock.  Failure to
2129  * service an allocation will refill the stock.
2130  *
2131  * returns true if successful, false otherwise.
2132  */
2133 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2134 {
2135 	struct memcg_stock_pcp *stock;
2136 	unsigned long flags;
2137 	bool ret = false;
2138 
2139 	if (nr_pages > MEMCG_CHARGE_BATCH)
2140 		return ret;
2141 
2142 	local_irq_save(flags);
2143 
2144 	stock = this_cpu_ptr(&memcg_stock);
2145 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2146 		stock->nr_pages -= nr_pages;
2147 		ret = true;
2148 	}
2149 
2150 	local_irq_restore(flags);
2151 
2152 	return ret;
2153 }
2154 
2155 /*
2156  * Returns stocks cached in percpu and reset cached information.
2157  */
2158 static void drain_stock(struct memcg_stock_pcp *stock)
2159 {
2160 	struct mem_cgroup *old = stock->cached;
2161 
2162 	if (!old)
2163 		return;
2164 
2165 	if (stock->nr_pages) {
2166 		page_counter_uncharge(&old->memory, stock->nr_pages);
2167 		if (do_memsw_account())
2168 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2169 		stock->nr_pages = 0;
2170 	}
2171 
2172 	css_put(&old->css);
2173 	stock->cached = NULL;
2174 }
2175 
2176 static void drain_local_stock(struct work_struct *dummy)
2177 {
2178 	struct memcg_stock_pcp *stock;
2179 	unsigned long flags;
2180 
2181 	/*
2182 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2183 	 * drain_stock races is that we always operate on local CPU stock
2184 	 * here with IRQ disabled
2185 	 */
2186 	local_irq_save(flags);
2187 
2188 	stock = this_cpu_ptr(&memcg_stock);
2189 	drain_obj_stock(&stock->irq_obj);
2190 	if (in_task())
2191 		drain_obj_stock(&stock->task_obj);
2192 	drain_stock(stock);
2193 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2194 
2195 	local_irq_restore(flags);
2196 }
2197 
2198 /*
2199  * Cache charges(val) to local per_cpu area.
2200  * This will be consumed by consume_stock() function, later.
2201  */
2202 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2203 {
2204 	struct memcg_stock_pcp *stock;
2205 	unsigned long flags;
2206 
2207 	local_irq_save(flags);
2208 
2209 	stock = this_cpu_ptr(&memcg_stock);
2210 	if (stock->cached != memcg) { /* reset if necessary */
2211 		drain_stock(stock);
2212 		css_get(&memcg->css);
2213 		stock->cached = memcg;
2214 	}
2215 	stock->nr_pages += nr_pages;
2216 
2217 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2218 		drain_stock(stock);
2219 
2220 	local_irq_restore(flags);
2221 }
2222 
2223 /*
2224  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2225  * of the hierarchy under it.
2226  */
2227 static void drain_all_stock(struct mem_cgroup *root_memcg)
2228 {
2229 	int cpu, curcpu;
2230 
2231 	/* If someone's already draining, avoid adding running more workers. */
2232 	if (!mutex_trylock(&percpu_charge_mutex))
2233 		return;
2234 	/*
2235 	 * Notify other cpus that system-wide "drain" is running
2236 	 * We do not care about races with the cpu hotplug because cpu down
2237 	 * as well as workers from this path always operate on the local
2238 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2239 	 */
2240 	curcpu = get_cpu();
2241 	for_each_online_cpu(cpu) {
2242 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2243 		struct mem_cgroup *memcg;
2244 		bool flush = false;
2245 
2246 		rcu_read_lock();
2247 		memcg = stock->cached;
2248 		if (memcg && stock->nr_pages &&
2249 		    mem_cgroup_is_descendant(memcg, root_memcg))
2250 			flush = true;
2251 		else if (obj_stock_flush_required(stock, root_memcg))
2252 			flush = true;
2253 		rcu_read_unlock();
2254 
2255 		if (flush &&
2256 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2257 			if (cpu == curcpu)
2258 				drain_local_stock(&stock->work);
2259 			else
2260 				schedule_work_on(cpu, &stock->work);
2261 		}
2262 	}
2263 	put_cpu();
2264 	mutex_unlock(&percpu_charge_mutex);
2265 }
2266 
2267 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2268 {
2269 	struct memcg_stock_pcp *stock;
2270 
2271 	stock = &per_cpu(memcg_stock, cpu);
2272 	drain_stock(stock);
2273 
2274 	return 0;
2275 }
2276 
2277 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2278 				  unsigned int nr_pages,
2279 				  gfp_t gfp_mask)
2280 {
2281 	unsigned long nr_reclaimed = 0;
2282 
2283 	do {
2284 		unsigned long pflags;
2285 
2286 		if (page_counter_read(&memcg->memory) <=
2287 		    READ_ONCE(memcg->memory.high))
2288 			continue;
2289 
2290 		memcg_memory_event(memcg, MEMCG_HIGH);
2291 
2292 		psi_memstall_enter(&pflags);
2293 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2294 							     gfp_mask, true);
2295 		psi_memstall_leave(&pflags);
2296 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2297 		 !mem_cgroup_is_root(memcg));
2298 
2299 	return nr_reclaimed;
2300 }
2301 
2302 static void high_work_func(struct work_struct *work)
2303 {
2304 	struct mem_cgroup *memcg;
2305 
2306 	memcg = container_of(work, struct mem_cgroup, high_work);
2307 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2308 }
2309 
2310 /*
2311  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2312  * enough to still cause a significant slowdown in most cases, while still
2313  * allowing diagnostics and tracing to proceed without becoming stuck.
2314  */
2315 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2316 
2317 /*
2318  * When calculating the delay, we use these either side of the exponentiation to
2319  * maintain precision and scale to a reasonable number of jiffies (see the table
2320  * below.
2321  *
2322  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2323  *   overage ratio to a delay.
2324  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2325  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2326  *   to produce a reasonable delay curve.
2327  *
2328  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2329  * reasonable delay curve compared to precision-adjusted overage, not
2330  * penalising heavily at first, but still making sure that growth beyond the
2331  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2332  * example, with a high of 100 megabytes:
2333  *
2334  *  +-------+------------------------+
2335  *  | usage | time to allocate in ms |
2336  *  +-------+------------------------+
2337  *  | 100M  |                      0 |
2338  *  | 101M  |                      6 |
2339  *  | 102M  |                     25 |
2340  *  | 103M  |                     57 |
2341  *  | 104M  |                    102 |
2342  *  | 105M  |                    159 |
2343  *  | 106M  |                    230 |
2344  *  | 107M  |                    313 |
2345  *  | 108M  |                    409 |
2346  *  | 109M  |                    518 |
2347  *  | 110M  |                    639 |
2348  *  | 111M  |                    774 |
2349  *  | 112M  |                    921 |
2350  *  | 113M  |                   1081 |
2351  *  | 114M  |                   1254 |
2352  *  | 115M  |                   1439 |
2353  *  | 116M  |                   1638 |
2354  *  | 117M  |                   1849 |
2355  *  | 118M  |                   2000 |
2356  *  | 119M  |                   2000 |
2357  *  | 120M  |                   2000 |
2358  *  +-------+------------------------+
2359  */
2360  #define MEMCG_DELAY_PRECISION_SHIFT 20
2361  #define MEMCG_DELAY_SCALING_SHIFT 14
2362 
2363 static u64 calculate_overage(unsigned long usage, unsigned long high)
2364 {
2365 	u64 overage;
2366 
2367 	if (usage <= high)
2368 		return 0;
2369 
2370 	/*
2371 	 * Prevent division by 0 in overage calculation by acting as if
2372 	 * it was a threshold of 1 page
2373 	 */
2374 	high = max(high, 1UL);
2375 
2376 	overage = usage - high;
2377 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2378 	return div64_u64(overage, high);
2379 }
2380 
2381 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2382 {
2383 	u64 overage, max_overage = 0;
2384 
2385 	do {
2386 		overage = calculate_overage(page_counter_read(&memcg->memory),
2387 					    READ_ONCE(memcg->memory.high));
2388 		max_overage = max(overage, max_overage);
2389 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2390 		 !mem_cgroup_is_root(memcg));
2391 
2392 	return max_overage;
2393 }
2394 
2395 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2396 {
2397 	u64 overage, max_overage = 0;
2398 
2399 	do {
2400 		overage = calculate_overage(page_counter_read(&memcg->swap),
2401 					    READ_ONCE(memcg->swap.high));
2402 		if (overage)
2403 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2404 		max_overage = max(overage, max_overage);
2405 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2406 		 !mem_cgroup_is_root(memcg));
2407 
2408 	return max_overage;
2409 }
2410 
2411 /*
2412  * Get the number of jiffies that we should penalise a mischievous cgroup which
2413  * is exceeding its memory.high by checking both it and its ancestors.
2414  */
2415 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2416 					  unsigned int nr_pages,
2417 					  u64 max_overage)
2418 {
2419 	unsigned long penalty_jiffies;
2420 
2421 	if (!max_overage)
2422 		return 0;
2423 
2424 	/*
2425 	 * We use overage compared to memory.high to calculate the number of
2426 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2427 	 * fairly lenient on small overages, and increasingly harsh when the
2428 	 * memcg in question makes it clear that it has no intention of stopping
2429 	 * its crazy behaviour, so we exponentially increase the delay based on
2430 	 * overage amount.
2431 	 */
2432 	penalty_jiffies = max_overage * max_overage * HZ;
2433 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2434 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2435 
2436 	/*
2437 	 * Factor in the task's own contribution to the overage, such that four
2438 	 * N-sized allocations are throttled approximately the same as one
2439 	 * 4N-sized allocation.
2440 	 *
2441 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2442 	 * larger the current charge patch is than that.
2443 	 */
2444 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2445 }
2446 
2447 /*
2448  * Scheduled by try_charge() to be executed from the userland return path
2449  * and reclaims memory over the high limit.
2450  */
2451 void mem_cgroup_handle_over_high(void)
2452 {
2453 	unsigned long penalty_jiffies;
2454 	unsigned long pflags;
2455 	unsigned long nr_reclaimed;
2456 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2457 	int nr_retries = MAX_RECLAIM_RETRIES;
2458 	struct mem_cgroup *memcg;
2459 	bool in_retry = false;
2460 
2461 	if (likely(!nr_pages))
2462 		return;
2463 
2464 	memcg = get_mem_cgroup_from_mm(current->mm);
2465 	current->memcg_nr_pages_over_high = 0;
2466 
2467 retry_reclaim:
2468 	/*
2469 	 * The allocating task should reclaim at least the batch size, but for
2470 	 * subsequent retries we only want to do what's necessary to prevent oom
2471 	 * or breaching resource isolation.
2472 	 *
2473 	 * This is distinct from memory.max or page allocator behaviour because
2474 	 * memory.high is currently batched, whereas memory.max and the page
2475 	 * allocator run every time an allocation is made.
2476 	 */
2477 	nr_reclaimed = reclaim_high(memcg,
2478 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2479 				    GFP_KERNEL);
2480 
2481 	/*
2482 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2483 	 * allocators proactively to slow down excessive growth.
2484 	 */
2485 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2486 					       mem_find_max_overage(memcg));
2487 
2488 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2489 						swap_find_max_overage(memcg));
2490 
2491 	/*
2492 	 * Clamp the max delay per usermode return so as to still keep the
2493 	 * application moving forwards and also permit diagnostics, albeit
2494 	 * extremely slowly.
2495 	 */
2496 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2497 
2498 	/*
2499 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2500 	 * that it's not even worth doing, in an attempt to be nice to those who
2501 	 * go only a small amount over their memory.high value and maybe haven't
2502 	 * been aggressively reclaimed enough yet.
2503 	 */
2504 	if (penalty_jiffies <= HZ / 100)
2505 		goto out;
2506 
2507 	/*
2508 	 * If reclaim is making forward progress but we're still over
2509 	 * memory.high, we want to encourage that rather than doing allocator
2510 	 * throttling.
2511 	 */
2512 	if (nr_reclaimed || nr_retries--) {
2513 		in_retry = true;
2514 		goto retry_reclaim;
2515 	}
2516 
2517 	/*
2518 	 * If we exit early, we're guaranteed to die (since
2519 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2520 	 * need to account for any ill-begotten jiffies to pay them off later.
2521 	 */
2522 	psi_memstall_enter(&pflags);
2523 	schedule_timeout_killable(penalty_jiffies);
2524 	psi_memstall_leave(&pflags);
2525 
2526 out:
2527 	css_put(&memcg->css);
2528 }
2529 
2530 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2531 			unsigned int nr_pages)
2532 {
2533 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2534 	int nr_retries = MAX_RECLAIM_RETRIES;
2535 	struct mem_cgroup *mem_over_limit;
2536 	struct page_counter *counter;
2537 	enum oom_status oom_status;
2538 	unsigned long nr_reclaimed;
2539 	bool passed_oom = false;
2540 	bool may_swap = true;
2541 	bool drained = false;
2542 	unsigned long pflags;
2543 
2544 retry:
2545 	if (consume_stock(memcg, nr_pages))
2546 		return 0;
2547 
2548 	if (!do_memsw_account() ||
2549 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2550 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2551 			goto done_restock;
2552 		if (do_memsw_account())
2553 			page_counter_uncharge(&memcg->memsw, batch);
2554 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2555 	} else {
2556 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2557 		may_swap = false;
2558 	}
2559 
2560 	if (batch > nr_pages) {
2561 		batch = nr_pages;
2562 		goto retry;
2563 	}
2564 
2565 	/*
2566 	 * Memcg doesn't have a dedicated reserve for atomic
2567 	 * allocations. But like the global atomic pool, we need to
2568 	 * put the burden of reclaim on regular allocation requests
2569 	 * and let these go through as privileged allocations.
2570 	 */
2571 	if (gfp_mask & __GFP_ATOMIC)
2572 		goto force;
2573 
2574 	/*
2575 	 * Prevent unbounded recursion when reclaim operations need to
2576 	 * allocate memory. This might exceed the limits temporarily,
2577 	 * but we prefer facilitating memory reclaim and getting back
2578 	 * under the limit over triggering OOM kills in these cases.
2579 	 */
2580 	if (unlikely(current->flags & PF_MEMALLOC))
2581 		goto force;
2582 
2583 	if (unlikely(task_in_memcg_oom(current)))
2584 		goto nomem;
2585 
2586 	if (!gfpflags_allow_blocking(gfp_mask))
2587 		goto nomem;
2588 
2589 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2590 
2591 	psi_memstall_enter(&pflags);
2592 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2593 						    gfp_mask, may_swap);
2594 	psi_memstall_leave(&pflags);
2595 
2596 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2597 		goto retry;
2598 
2599 	if (!drained) {
2600 		drain_all_stock(mem_over_limit);
2601 		drained = true;
2602 		goto retry;
2603 	}
2604 
2605 	if (gfp_mask & __GFP_NORETRY)
2606 		goto nomem;
2607 	/*
2608 	 * Even though the limit is exceeded at this point, reclaim
2609 	 * may have been able to free some pages.  Retry the charge
2610 	 * before killing the task.
2611 	 *
2612 	 * Only for regular pages, though: huge pages are rather
2613 	 * unlikely to succeed so close to the limit, and we fall back
2614 	 * to regular pages anyway in case of failure.
2615 	 */
2616 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2617 		goto retry;
2618 	/*
2619 	 * At task move, charge accounts can be doubly counted. So, it's
2620 	 * better to wait until the end of task_move if something is going on.
2621 	 */
2622 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2623 		goto retry;
2624 
2625 	if (nr_retries--)
2626 		goto retry;
2627 
2628 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2629 		goto nomem;
2630 
2631 	/* Avoid endless loop for tasks bypassed by the oom killer */
2632 	if (passed_oom && task_is_dying())
2633 		goto nomem;
2634 
2635 	/*
2636 	 * keep retrying as long as the memcg oom killer is able to make
2637 	 * a forward progress or bypass the charge if the oom killer
2638 	 * couldn't make any progress.
2639 	 */
2640 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2641 		       get_order(nr_pages * PAGE_SIZE));
2642 	if (oom_status == OOM_SUCCESS) {
2643 		passed_oom = true;
2644 		nr_retries = MAX_RECLAIM_RETRIES;
2645 		goto retry;
2646 	}
2647 nomem:
2648 	if (!(gfp_mask & __GFP_NOFAIL))
2649 		return -ENOMEM;
2650 force:
2651 	/*
2652 	 * The allocation either can't fail or will lead to more memory
2653 	 * being freed very soon.  Allow memory usage go over the limit
2654 	 * temporarily by force charging it.
2655 	 */
2656 	page_counter_charge(&memcg->memory, nr_pages);
2657 	if (do_memsw_account())
2658 		page_counter_charge(&memcg->memsw, nr_pages);
2659 
2660 	return 0;
2661 
2662 done_restock:
2663 	if (batch > nr_pages)
2664 		refill_stock(memcg, batch - nr_pages);
2665 
2666 	/*
2667 	 * If the hierarchy is above the normal consumption range, schedule
2668 	 * reclaim on returning to userland.  We can perform reclaim here
2669 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2670 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2671 	 * not recorded as it most likely matches current's and won't
2672 	 * change in the meantime.  As high limit is checked again before
2673 	 * reclaim, the cost of mismatch is negligible.
2674 	 */
2675 	do {
2676 		bool mem_high, swap_high;
2677 
2678 		mem_high = page_counter_read(&memcg->memory) >
2679 			READ_ONCE(memcg->memory.high);
2680 		swap_high = page_counter_read(&memcg->swap) >
2681 			READ_ONCE(memcg->swap.high);
2682 
2683 		/* Don't bother a random interrupted task */
2684 		if (in_interrupt()) {
2685 			if (mem_high) {
2686 				schedule_work(&memcg->high_work);
2687 				break;
2688 			}
2689 			continue;
2690 		}
2691 
2692 		if (mem_high || swap_high) {
2693 			/*
2694 			 * The allocating tasks in this cgroup will need to do
2695 			 * reclaim or be throttled to prevent further growth
2696 			 * of the memory or swap footprints.
2697 			 *
2698 			 * Target some best-effort fairness between the tasks,
2699 			 * and distribute reclaim work and delay penalties
2700 			 * based on how much each task is actually allocating.
2701 			 */
2702 			current->memcg_nr_pages_over_high += batch;
2703 			set_notify_resume(current);
2704 			break;
2705 		}
2706 	} while ((memcg = parent_mem_cgroup(memcg)));
2707 
2708 	return 0;
2709 }
2710 
2711 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2712 			     unsigned int nr_pages)
2713 {
2714 	if (mem_cgroup_is_root(memcg))
2715 		return 0;
2716 
2717 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2718 }
2719 
2720 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2721 {
2722 	if (mem_cgroup_is_root(memcg))
2723 		return;
2724 
2725 	page_counter_uncharge(&memcg->memory, nr_pages);
2726 	if (do_memsw_account())
2727 		page_counter_uncharge(&memcg->memsw, nr_pages);
2728 }
2729 
2730 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2731 {
2732 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2733 	/*
2734 	 * Any of the following ensures page's memcg stability:
2735 	 *
2736 	 * - the page lock
2737 	 * - LRU isolation
2738 	 * - lock_page_memcg()
2739 	 * - exclusive reference
2740 	 */
2741 	folio->memcg_data = (unsigned long)memcg;
2742 }
2743 
2744 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2745 {
2746 	struct mem_cgroup *memcg;
2747 
2748 	rcu_read_lock();
2749 retry:
2750 	memcg = obj_cgroup_memcg(objcg);
2751 	if (unlikely(!css_tryget(&memcg->css)))
2752 		goto retry;
2753 	rcu_read_unlock();
2754 
2755 	return memcg;
2756 }
2757 
2758 #ifdef CONFIG_MEMCG_KMEM
2759 /*
2760  * The allocated objcg pointers array is not accounted directly.
2761  * Moreover, it should not come from DMA buffer and is not readily
2762  * reclaimable. So those GFP bits should be masked off.
2763  */
2764 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2765 
2766 /*
2767  * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2768  * sequence used in this case to access content from object stock is slow.
2769  * To optimize for user context access, there are now two object stocks for
2770  * task context and interrupt context access respectively.
2771  *
2772  * The task context object stock can be accessed by disabling preemption only
2773  * which is cheap in non-preempt kernel. The interrupt context object stock
2774  * can only be accessed after disabling interrupt. User context code can
2775  * access interrupt object stock, but not vice versa.
2776  */
2777 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2778 {
2779 	struct memcg_stock_pcp *stock;
2780 
2781 	if (likely(in_task())) {
2782 		*pflags = 0UL;
2783 		preempt_disable();
2784 		stock = this_cpu_ptr(&memcg_stock);
2785 		return &stock->task_obj;
2786 	}
2787 
2788 	local_irq_save(*pflags);
2789 	stock = this_cpu_ptr(&memcg_stock);
2790 	return &stock->irq_obj;
2791 }
2792 
2793 static inline void put_obj_stock(unsigned long flags)
2794 {
2795 	if (likely(in_task()))
2796 		preempt_enable();
2797 	else
2798 		local_irq_restore(flags);
2799 }
2800 
2801 /*
2802  * mod_objcg_mlstate() may be called with irq enabled, so
2803  * mod_memcg_lruvec_state() should be used.
2804  */
2805 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2806 				     struct pglist_data *pgdat,
2807 				     enum node_stat_item idx, int nr)
2808 {
2809 	struct mem_cgroup *memcg;
2810 	struct lruvec *lruvec;
2811 
2812 	rcu_read_lock();
2813 	memcg = obj_cgroup_memcg(objcg);
2814 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2815 	mod_memcg_lruvec_state(lruvec, idx, nr);
2816 	rcu_read_unlock();
2817 }
2818 
2819 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2820 				 gfp_t gfp, bool new_slab)
2821 {
2822 	unsigned int objects = objs_per_slab(s, slab);
2823 	unsigned long memcg_data;
2824 	void *vec;
2825 
2826 	gfp &= ~OBJCGS_CLEAR_MASK;
2827 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2828 			   slab_nid(slab));
2829 	if (!vec)
2830 		return -ENOMEM;
2831 
2832 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2833 	if (new_slab) {
2834 		/*
2835 		 * If the slab is brand new and nobody can yet access its
2836 		 * memcg_data, no synchronization is required and memcg_data can
2837 		 * be simply assigned.
2838 		 */
2839 		slab->memcg_data = memcg_data;
2840 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2841 		/*
2842 		 * If the slab is already in use, somebody can allocate and
2843 		 * assign obj_cgroups in parallel. In this case the existing
2844 		 * objcg vector should be reused.
2845 		 */
2846 		kfree(vec);
2847 		return 0;
2848 	}
2849 
2850 	kmemleak_not_leak(vec);
2851 	return 0;
2852 }
2853 
2854 /*
2855  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2856  *
2857  * A passed kernel object can be a slab object or a generic kernel page, so
2858  * different mechanisms for getting the memory cgroup pointer should be used.
2859  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2860  * can not know for sure how the kernel object is implemented.
2861  * mem_cgroup_from_obj() can be safely used in such cases.
2862  *
2863  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2864  * cgroup_mutex, etc.
2865  */
2866 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2867 {
2868 	struct folio *folio;
2869 
2870 	if (mem_cgroup_disabled())
2871 		return NULL;
2872 
2873 	folio = virt_to_folio(p);
2874 
2875 	/*
2876 	 * Slab objects are accounted individually, not per-page.
2877 	 * Memcg membership data for each individual object is saved in
2878 	 * slab->memcg_data.
2879 	 */
2880 	if (folio_test_slab(folio)) {
2881 		struct obj_cgroup **objcgs;
2882 		struct slab *slab;
2883 		unsigned int off;
2884 
2885 		slab = folio_slab(folio);
2886 		objcgs = slab_objcgs(slab);
2887 		if (!objcgs)
2888 			return NULL;
2889 
2890 		off = obj_to_index(slab->slab_cache, slab, p);
2891 		if (objcgs[off])
2892 			return obj_cgroup_memcg(objcgs[off]);
2893 
2894 		return NULL;
2895 	}
2896 
2897 	/*
2898 	 * page_memcg_check() is used here, because in theory we can encounter
2899 	 * a folio where the slab flag has been cleared already, but
2900 	 * slab->memcg_data has not been freed yet
2901 	 * page_memcg_check(page) will guarantee that a proper memory
2902 	 * cgroup pointer or NULL will be returned.
2903 	 */
2904 	return page_memcg_check(folio_page(folio, 0));
2905 }
2906 
2907 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2908 {
2909 	struct obj_cgroup *objcg = NULL;
2910 	struct mem_cgroup *memcg;
2911 
2912 	if (memcg_kmem_bypass())
2913 		return NULL;
2914 
2915 	rcu_read_lock();
2916 	if (unlikely(active_memcg()))
2917 		memcg = active_memcg();
2918 	else
2919 		memcg = mem_cgroup_from_task(current);
2920 
2921 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2922 		objcg = rcu_dereference(memcg->objcg);
2923 		if (objcg && obj_cgroup_tryget(objcg))
2924 			break;
2925 		objcg = NULL;
2926 	}
2927 	rcu_read_unlock();
2928 
2929 	return objcg;
2930 }
2931 
2932 static int memcg_alloc_cache_id(void)
2933 {
2934 	int id, size;
2935 	int err;
2936 
2937 	id = ida_simple_get(&memcg_cache_ida,
2938 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2939 	if (id < 0)
2940 		return id;
2941 
2942 	if (id < memcg_nr_cache_ids)
2943 		return id;
2944 
2945 	/*
2946 	 * There's no space for the new id in memcg_caches arrays,
2947 	 * so we have to grow them.
2948 	 */
2949 	down_write(&memcg_cache_ids_sem);
2950 
2951 	size = 2 * (id + 1);
2952 	if (size < MEMCG_CACHES_MIN_SIZE)
2953 		size = MEMCG_CACHES_MIN_SIZE;
2954 	else if (size > MEMCG_CACHES_MAX_SIZE)
2955 		size = MEMCG_CACHES_MAX_SIZE;
2956 
2957 	err = memcg_update_all_list_lrus(size);
2958 	if (!err)
2959 		memcg_nr_cache_ids = size;
2960 
2961 	up_write(&memcg_cache_ids_sem);
2962 
2963 	if (err) {
2964 		ida_simple_remove(&memcg_cache_ida, id);
2965 		return err;
2966 	}
2967 	return id;
2968 }
2969 
2970 static void memcg_free_cache_id(int id)
2971 {
2972 	ida_simple_remove(&memcg_cache_ida, id);
2973 }
2974 
2975 /*
2976  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2977  * @objcg: object cgroup to uncharge
2978  * @nr_pages: number of pages to uncharge
2979  */
2980 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2981 				      unsigned int nr_pages)
2982 {
2983 	struct mem_cgroup *memcg;
2984 
2985 	memcg = get_mem_cgroup_from_objcg(objcg);
2986 
2987 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2988 		page_counter_uncharge(&memcg->kmem, nr_pages);
2989 	refill_stock(memcg, nr_pages);
2990 
2991 	css_put(&memcg->css);
2992 }
2993 
2994 /*
2995  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2996  * @objcg: object cgroup to charge
2997  * @gfp: reclaim mode
2998  * @nr_pages: number of pages to charge
2999  *
3000  * Returns 0 on success, an error code on failure.
3001  */
3002 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3003 				   unsigned int nr_pages)
3004 {
3005 	struct mem_cgroup *memcg;
3006 	int ret;
3007 
3008 	memcg = get_mem_cgroup_from_objcg(objcg);
3009 
3010 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3011 	if (ret)
3012 		goto out;
3013 
3014 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3015 		page_counter_charge(&memcg->kmem, nr_pages);
3016 out:
3017 	css_put(&memcg->css);
3018 
3019 	return ret;
3020 }
3021 
3022 /**
3023  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3024  * @page: page to charge
3025  * @gfp: reclaim mode
3026  * @order: allocation order
3027  *
3028  * Returns 0 on success, an error code on failure.
3029  */
3030 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3031 {
3032 	struct obj_cgroup *objcg;
3033 	int ret = 0;
3034 
3035 	objcg = get_obj_cgroup_from_current();
3036 	if (objcg) {
3037 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3038 		if (!ret) {
3039 			page->memcg_data = (unsigned long)objcg |
3040 				MEMCG_DATA_KMEM;
3041 			return 0;
3042 		}
3043 		obj_cgroup_put(objcg);
3044 	}
3045 	return ret;
3046 }
3047 
3048 /**
3049  * __memcg_kmem_uncharge_page: uncharge a kmem page
3050  * @page: page to uncharge
3051  * @order: allocation order
3052  */
3053 void __memcg_kmem_uncharge_page(struct page *page, int order)
3054 {
3055 	struct folio *folio = page_folio(page);
3056 	struct obj_cgroup *objcg;
3057 	unsigned int nr_pages = 1 << order;
3058 
3059 	if (!folio_memcg_kmem(folio))
3060 		return;
3061 
3062 	objcg = __folio_objcg(folio);
3063 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3064 	folio->memcg_data = 0;
3065 	obj_cgroup_put(objcg);
3066 }
3067 
3068 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3069 		     enum node_stat_item idx, int nr)
3070 {
3071 	unsigned long flags;
3072 	struct obj_stock *stock = get_obj_stock(&flags);
3073 	int *bytes;
3074 
3075 	/*
3076 	 * Save vmstat data in stock and skip vmstat array update unless
3077 	 * accumulating over a page of vmstat data or when pgdat or idx
3078 	 * changes.
3079 	 */
3080 	if (stock->cached_objcg != objcg) {
3081 		drain_obj_stock(stock);
3082 		obj_cgroup_get(objcg);
3083 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3084 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3085 		stock->cached_objcg = objcg;
3086 		stock->cached_pgdat = pgdat;
3087 	} else if (stock->cached_pgdat != pgdat) {
3088 		/* Flush the existing cached vmstat data */
3089 		struct pglist_data *oldpg = stock->cached_pgdat;
3090 
3091 		if (stock->nr_slab_reclaimable_b) {
3092 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3093 					  stock->nr_slab_reclaimable_b);
3094 			stock->nr_slab_reclaimable_b = 0;
3095 		}
3096 		if (stock->nr_slab_unreclaimable_b) {
3097 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3098 					  stock->nr_slab_unreclaimable_b);
3099 			stock->nr_slab_unreclaimable_b = 0;
3100 		}
3101 		stock->cached_pgdat = pgdat;
3102 	}
3103 
3104 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3105 					       : &stock->nr_slab_unreclaimable_b;
3106 	/*
3107 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3108 	 * cached locally at least once before pushing it out.
3109 	 */
3110 	if (!*bytes) {
3111 		*bytes = nr;
3112 		nr = 0;
3113 	} else {
3114 		*bytes += nr;
3115 		if (abs(*bytes) > PAGE_SIZE) {
3116 			nr = *bytes;
3117 			*bytes = 0;
3118 		} else {
3119 			nr = 0;
3120 		}
3121 	}
3122 	if (nr)
3123 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3124 
3125 	put_obj_stock(flags);
3126 }
3127 
3128 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3129 {
3130 	unsigned long flags;
3131 	struct obj_stock *stock = get_obj_stock(&flags);
3132 	bool ret = false;
3133 
3134 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3135 		stock->nr_bytes -= nr_bytes;
3136 		ret = true;
3137 	}
3138 
3139 	put_obj_stock(flags);
3140 
3141 	return ret;
3142 }
3143 
3144 static void drain_obj_stock(struct obj_stock *stock)
3145 {
3146 	struct obj_cgroup *old = stock->cached_objcg;
3147 
3148 	if (!old)
3149 		return;
3150 
3151 	if (stock->nr_bytes) {
3152 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3153 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3154 
3155 		if (nr_pages)
3156 			obj_cgroup_uncharge_pages(old, nr_pages);
3157 
3158 		/*
3159 		 * The leftover is flushed to the centralized per-memcg value.
3160 		 * On the next attempt to refill obj stock it will be moved
3161 		 * to a per-cpu stock (probably, on an other CPU), see
3162 		 * refill_obj_stock().
3163 		 *
3164 		 * How often it's flushed is a trade-off between the memory
3165 		 * limit enforcement accuracy and potential CPU contention,
3166 		 * so it might be changed in the future.
3167 		 */
3168 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3169 		stock->nr_bytes = 0;
3170 	}
3171 
3172 	/*
3173 	 * Flush the vmstat data in current stock
3174 	 */
3175 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3176 		if (stock->nr_slab_reclaimable_b) {
3177 			mod_objcg_mlstate(old, stock->cached_pgdat,
3178 					  NR_SLAB_RECLAIMABLE_B,
3179 					  stock->nr_slab_reclaimable_b);
3180 			stock->nr_slab_reclaimable_b = 0;
3181 		}
3182 		if (stock->nr_slab_unreclaimable_b) {
3183 			mod_objcg_mlstate(old, stock->cached_pgdat,
3184 					  NR_SLAB_UNRECLAIMABLE_B,
3185 					  stock->nr_slab_unreclaimable_b);
3186 			stock->nr_slab_unreclaimable_b = 0;
3187 		}
3188 		stock->cached_pgdat = NULL;
3189 	}
3190 
3191 	obj_cgroup_put(old);
3192 	stock->cached_objcg = NULL;
3193 }
3194 
3195 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3196 				     struct mem_cgroup *root_memcg)
3197 {
3198 	struct mem_cgroup *memcg;
3199 
3200 	if (in_task() && stock->task_obj.cached_objcg) {
3201 		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3202 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3203 			return true;
3204 	}
3205 	if (stock->irq_obj.cached_objcg) {
3206 		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3207 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3208 			return true;
3209 	}
3210 
3211 	return false;
3212 }
3213 
3214 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3215 			     bool allow_uncharge)
3216 {
3217 	unsigned long flags;
3218 	struct obj_stock *stock = get_obj_stock(&flags);
3219 	unsigned int nr_pages = 0;
3220 
3221 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3222 		drain_obj_stock(stock);
3223 		obj_cgroup_get(objcg);
3224 		stock->cached_objcg = objcg;
3225 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3226 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3227 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3228 	}
3229 	stock->nr_bytes += nr_bytes;
3230 
3231 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3232 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3233 		stock->nr_bytes &= (PAGE_SIZE - 1);
3234 	}
3235 
3236 	put_obj_stock(flags);
3237 
3238 	if (nr_pages)
3239 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3240 }
3241 
3242 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3243 {
3244 	unsigned int nr_pages, nr_bytes;
3245 	int ret;
3246 
3247 	if (consume_obj_stock(objcg, size))
3248 		return 0;
3249 
3250 	/*
3251 	 * In theory, objcg->nr_charged_bytes can have enough
3252 	 * pre-charged bytes to satisfy the allocation. However,
3253 	 * flushing objcg->nr_charged_bytes requires two atomic
3254 	 * operations, and objcg->nr_charged_bytes can't be big.
3255 	 * The shared objcg->nr_charged_bytes can also become a
3256 	 * performance bottleneck if all tasks of the same memcg are
3257 	 * trying to update it. So it's better to ignore it and try
3258 	 * grab some new pages. The stock's nr_bytes will be flushed to
3259 	 * objcg->nr_charged_bytes later on when objcg changes.
3260 	 *
3261 	 * The stock's nr_bytes may contain enough pre-charged bytes
3262 	 * to allow one less page from being charged, but we can't rely
3263 	 * on the pre-charged bytes not being changed outside of
3264 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3265 	 * pre-charged bytes as well when charging pages. To avoid a
3266 	 * page uncharge right after a page charge, we set the
3267 	 * allow_uncharge flag to false when calling refill_obj_stock()
3268 	 * to temporarily allow the pre-charged bytes to exceed the page
3269 	 * size limit. The maximum reachable value of the pre-charged
3270 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3271 	 * race.
3272 	 */
3273 	nr_pages = size >> PAGE_SHIFT;
3274 	nr_bytes = size & (PAGE_SIZE - 1);
3275 
3276 	if (nr_bytes)
3277 		nr_pages += 1;
3278 
3279 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3280 	if (!ret && nr_bytes)
3281 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3282 
3283 	return ret;
3284 }
3285 
3286 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3287 {
3288 	refill_obj_stock(objcg, size, true);
3289 }
3290 
3291 #endif /* CONFIG_MEMCG_KMEM */
3292 
3293 /*
3294  * Because page_memcg(head) is not set on tails, set it now.
3295  */
3296 void split_page_memcg(struct page *head, unsigned int nr)
3297 {
3298 	struct folio *folio = page_folio(head);
3299 	struct mem_cgroup *memcg = folio_memcg(folio);
3300 	int i;
3301 
3302 	if (mem_cgroup_disabled() || !memcg)
3303 		return;
3304 
3305 	for (i = 1; i < nr; i++)
3306 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3307 
3308 	if (folio_memcg_kmem(folio))
3309 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3310 	else
3311 		css_get_many(&memcg->css, nr - 1);
3312 }
3313 
3314 #ifdef CONFIG_MEMCG_SWAP
3315 /**
3316  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3317  * @entry: swap entry to be moved
3318  * @from:  mem_cgroup which the entry is moved from
3319  * @to:  mem_cgroup which the entry is moved to
3320  *
3321  * It succeeds only when the swap_cgroup's record for this entry is the same
3322  * as the mem_cgroup's id of @from.
3323  *
3324  * Returns 0 on success, -EINVAL on failure.
3325  *
3326  * The caller must have charged to @to, IOW, called page_counter_charge() about
3327  * both res and memsw, and called css_get().
3328  */
3329 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3330 				struct mem_cgroup *from, struct mem_cgroup *to)
3331 {
3332 	unsigned short old_id, new_id;
3333 
3334 	old_id = mem_cgroup_id(from);
3335 	new_id = mem_cgroup_id(to);
3336 
3337 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3338 		mod_memcg_state(from, MEMCG_SWAP, -1);
3339 		mod_memcg_state(to, MEMCG_SWAP, 1);
3340 		return 0;
3341 	}
3342 	return -EINVAL;
3343 }
3344 #else
3345 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3346 				struct mem_cgroup *from, struct mem_cgroup *to)
3347 {
3348 	return -EINVAL;
3349 }
3350 #endif
3351 
3352 static DEFINE_MUTEX(memcg_max_mutex);
3353 
3354 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3355 				 unsigned long max, bool memsw)
3356 {
3357 	bool enlarge = false;
3358 	bool drained = false;
3359 	int ret;
3360 	bool limits_invariant;
3361 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3362 
3363 	do {
3364 		if (signal_pending(current)) {
3365 			ret = -EINTR;
3366 			break;
3367 		}
3368 
3369 		mutex_lock(&memcg_max_mutex);
3370 		/*
3371 		 * Make sure that the new limit (memsw or memory limit) doesn't
3372 		 * break our basic invariant rule memory.max <= memsw.max.
3373 		 */
3374 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3375 					   max <= memcg->memsw.max;
3376 		if (!limits_invariant) {
3377 			mutex_unlock(&memcg_max_mutex);
3378 			ret = -EINVAL;
3379 			break;
3380 		}
3381 		if (max > counter->max)
3382 			enlarge = true;
3383 		ret = page_counter_set_max(counter, max);
3384 		mutex_unlock(&memcg_max_mutex);
3385 
3386 		if (!ret)
3387 			break;
3388 
3389 		if (!drained) {
3390 			drain_all_stock(memcg);
3391 			drained = true;
3392 			continue;
3393 		}
3394 
3395 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3396 					GFP_KERNEL, !memsw)) {
3397 			ret = -EBUSY;
3398 			break;
3399 		}
3400 	} while (true);
3401 
3402 	if (!ret && enlarge)
3403 		memcg_oom_recover(memcg);
3404 
3405 	return ret;
3406 }
3407 
3408 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3409 					    gfp_t gfp_mask,
3410 					    unsigned long *total_scanned)
3411 {
3412 	unsigned long nr_reclaimed = 0;
3413 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3414 	unsigned long reclaimed;
3415 	int loop = 0;
3416 	struct mem_cgroup_tree_per_node *mctz;
3417 	unsigned long excess;
3418 	unsigned long nr_scanned;
3419 
3420 	if (order > 0)
3421 		return 0;
3422 
3423 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3424 
3425 	/*
3426 	 * Do not even bother to check the largest node if the root
3427 	 * is empty. Do it lockless to prevent lock bouncing. Races
3428 	 * are acceptable as soft limit is best effort anyway.
3429 	 */
3430 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3431 		return 0;
3432 
3433 	/*
3434 	 * This loop can run a while, specially if mem_cgroup's continuously
3435 	 * keep exceeding their soft limit and putting the system under
3436 	 * pressure
3437 	 */
3438 	do {
3439 		if (next_mz)
3440 			mz = next_mz;
3441 		else
3442 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3443 		if (!mz)
3444 			break;
3445 
3446 		nr_scanned = 0;
3447 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3448 						    gfp_mask, &nr_scanned);
3449 		nr_reclaimed += reclaimed;
3450 		*total_scanned += nr_scanned;
3451 		spin_lock_irq(&mctz->lock);
3452 		__mem_cgroup_remove_exceeded(mz, mctz);
3453 
3454 		/*
3455 		 * If we failed to reclaim anything from this memory cgroup
3456 		 * it is time to move on to the next cgroup
3457 		 */
3458 		next_mz = NULL;
3459 		if (!reclaimed)
3460 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3461 
3462 		excess = soft_limit_excess(mz->memcg);
3463 		/*
3464 		 * One school of thought says that we should not add
3465 		 * back the node to the tree if reclaim returns 0.
3466 		 * But our reclaim could return 0, simply because due
3467 		 * to priority we are exposing a smaller subset of
3468 		 * memory to reclaim from. Consider this as a longer
3469 		 * term TODO.
3470 		 */
3471 		/* If excess == 0, no tree ops */
3472 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3473 		spin_unlock_irq(&mctz->lock);
3474 		css_put(&mz->memcg->css);
3475 		loop++;
3476 		/*
3477 		 * Could not reclaim anything and there are no more
3478 		 * mem cgroups to try or we seem to be looping without
3479 		 * reclaiming anything.
3480 		 */
3481 		if (!nr_reclaimed &&
3482 			(next_mz == NULL ||
3483 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3484 			break;
3485 	} while (!nr_reclaimed);
3486 	if (next_mz)
3487 		css_put(&next_mz->memcg->css);
3488 	return nr_reclaimed;
3489 }
3490 
3491 /*
3492  * Reclaims as many pages from the given memcg as possible.
3493  *
3494  * Caller is responsible for holding css reference for memcg.
3495  */
3496 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3497 {
3498 	int nr_retries = MAX_RECLAIM_RETRIES;
3499 
3500 	/* we call try-to-free pages for make this cgroup empty */
3501 	lru_add_drain_all();
3502 
3503 	drain_all_stock(memcg);
3504 
3505 	/* try to free all pages in this cgroup */
3506 	while (nr_retries && page_counter_read(&memcg->memory)) {
3507 		if (signal_pending(current))
3508 			return -EINTR;
3509 
3510 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3511 			nr_retries--;
3512 	}
3513 
3514 	return 0;
3515 }
3516 
3517 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3518 					    char *buf, size_t nbytes,
3519 					    loff_t off)
3520 {
3521 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3522 
3523 	if (mem_cgroup_is_root(memcg))
3524 		return -EINVAL;
3525 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3526 }
3527 
3528 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3529 				     struct cftype *cft)
3530 {
3531 	return 1;
3532 }
3533 
3534 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3535 				      struct cftype *cft, u64 val)
3536 {
3537 	if (val == 1)
3538 		return 0;
3539 
3540 	pr_warn_once("Non-hierarchical mode is deprecated. "
3541 		     "Please report your usecase to linux-mm@kvack.org if you "
3542 		     "depend on this functionality.\n");
3543 
3544 	return -EINVAL;
3545 }
3546 
3547 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3548 {
3549 	unsigned long val;
3550 
3551 	if (mem_cgroup_is_root(memcg)) {
3552 		mem_cgroup_flush_stats();
3553 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3554 			memcg_page_state(memcg, NR_ANON_MAPPED);
3555 		if (swap)
3556 			val += memcg_page_state(memcg, MEMCG_SWAP);
3557 	} else {
3558 		if (!swap)
3559 			val = page_counter_read(&memcg->memory);
3560 		else
3561 			val = page_counter_read(&memcg->memsw);
3562 	}
3563 	return val;
3564 }
3565 
3566 enum {
3567 	RES_USAGE,
3568 	RES_LIMIT,
3569 	RES_MAX_USAGE,
3570 	RES_FAILCNT,
3571 	RES_SOFT_LIMIT,
3572 };
3573 
3574 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3575 			       struct cftype *cft)
3576 {
3577 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3578 	struct page_counter *counter;
3579 
3580 	switch (MEMFILE_TYPE(cft->private)) {
3581 	case _MEM:
3582 		counter = &memcg->memory;
3583 		break;
3584 	case _MEMSWAP:
3585 		counter = &memcg->memsw;
3586 		break;
3587 	case _KMEM:
3588 		counter = &memcg->kmem;
3589 		break;
3590 	case _TCP:
3591 		counter = &memcg->tcpmem;
3592 		break;
3593 	default:
3594 		BUG();
3595 	}
3596 
3597 	switch (MEMFILE_ATTR(cft->private)) {
3598 	case RES_USAGE:
3599 		if (counter == &memcg->memory)
3600 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3601 		if (counter == &memcg->memsw)
3602 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3603 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3604 	case RES_LIMIT:
3605 		return (u64)counter->max * PAGE_SIZE;
3606 	case RES_MAX_USAGE:
3607 		return (u64)counter->watermark * PAGE_SIZE;
3608 	case RES_FAILCNT:
3609 		return counter->failcnt;
3610 	case RES_SOFT_LIMIT:
3611 		return (u64)memcg->soft_limit * PAGE_SIZE;
3612 	default:
3613 		BUG();
3614 	}
3615 }
3616 
3617 #ifdef CONFIG_MEMCG_KMEM
3618 static int memcg_online_kmem(struct mem_cgroup *memcg)
3619 {
3620 	struct obj_cgroup *objcg;
3621 	int memcg_id;
3622 
3623 	if (cgroup_memory_nokmem)
3624 		return 0;
3625 
3626 	BUG_ON(memcg->kmemcg_id >= 0);
3627 
3628 	memcg_id = memcg_alloc_cache_id();
3629 	if (memcg_id < 0)
3630 		return memcg_id;
3631 
3632 	objcg = obj_cgroup_alloc();
3633 	if (!objcg) {
3634 		memcg_free_cache_id(memcg_id);
3635 		return -ENOMEM;
3636 	}
3637 	objcg->memcg = memcg;
3638 	rcu_assign_pointer(memcg->objcg, objcg);
3639 
3640 	static_branch_enable(&memcg_kmem_enabled_key);
3641 
3642 	memcg->kmemcg_id = memcg_id;
3643 
3644 	return 0;
3645 }
3646 
3647 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3648 {
3649 	struct mem_cgroup *parent;
3650 	int kmemcg_id;
3651 
3652 	if (memcg->kmemcg_id == -1)
3653 		return;
3654 
3655 	parent = parent_mem_cgroup(memcg);
3656 	if (!parent)
3657 		parent = root_mem_cgroup;
3658 
3659 	memcg_reparent_objcgs(memcg, parent);
3660 
3661 	kmemcg_id = memcg->kmemcg_id;
3662 	BUG_ON(kmemcg_id < 0);
3663 
3664 	/*
3665 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3666 	 * corresponding to this cgroup are guaranteed to remain empty.
3667 	 * The ordering is imposed by list_lru_node->lock taken by
3668 	 * memcg_drain_all_list_lrus().
3669 	 */
3670 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3671 
3672 	memcg_free_cache_id(kmemcg_id);
3673 	memcg->kmemcg_id = -1;
3674 }
3675 #else
3676 static int memcg_online_kmem(struct mem_cgroup *memcg)
3677 {
3678 	return 0;
3679 }
3680 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3681 {
3682 }
3683 #endif /* CONFIG_MEMCG_KMEM */
3684 
3685 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3686 {
3687 	int ret;
3688 
3689 	mutex_lock(&memcg_max_mutex);
3690 
3691 	ret = page_counter_set_max(&memcg->tcpmem, max);
3692 	if (ret)
3693 		goto out;
3694 
3695 	if (!memcg->tcpmem_active) {
3696 		/*
3697 		 * The active flag needs to be written after the static_key
3698 		 * update. This is what guarantees that the socket activation
3699 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3700 		 * for details, and note that we don't mark any socket as
3701 		 * belonging to this memcg until that flag is up.
3702 		 *
3703 		 * We need to do this, because static_keys will span multiple
3704 		 * sites, but we can't control their order. If we mark a socket
3705 		 * as accounted, but the accounting functions are not patched in
3706 		 * yet, we'll lose accounting.
3707 		 *
3708 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3709 		 * because when this value change, the code to process it is not
3710 		 * patched in yet.
3711 		 */
3712 		static_branch_inc(&memcg_sockets_enabled_key);
3713 		memcg->tcpmem_active = true;
3714 	}
3715 out:
3716 	mutex_unlock(&memcg_max_mutex);
3717 	return ret;
3718 }
3719 
3720 /*
3721  * The user of this function is...
3722  * RES_LIMIT.
3723  */
3724 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3725 				char *buf, size_t nbytes, loff_t off)
3726 {
3727 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3728 	unsigned long nr_pages;
3729 	int ret;
3730 
3731 	buf = strstrip(buf);
3732 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3733 	if (ret)
3734 		return ret;
3735 
3736 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3737 	case RES_LIMIT:
3738 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3739 			ret = -EINVAL;
3740 			break;
3741 		}
3742 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3743 		case _MEM:
3744 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3745 			break;
3746 		case _MEMSWAP:
3747 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3748 			break;
3749 		case _KMEM:
3750 			/* kmem.limit_in_bytes is deprecated. */
3751 			ret = -EOPNOTSUPP;
3752 			break;
3753 		case _TCP:
3754 			ret = memcg_update_tcp_max(memcg, nr_pages);
3755 			break;
3756 		}
3757 		break;
3758 	case RES_SOFT_LIMIT:
3759 		memcg->soft_limit = nr_pages;
3760 		ret = 0;
3761 		break;
3762 	}
3763 	return ret ?: nbytes;
3764 }
3765 
3766 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3767 				size_t nbytes, loff_t off)
3768 {
3769 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3770 	struct page_counter *counter;
3771 
3772 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3773 	case _MEM:
3774 		counter = &memcg->memory;
3775 		break;
3776 	case _MEMSWAP:
3777 		counter = &memcg->memsw;
3778 		break;
3779 	case _KMEM:
3780 		counter = &memcg->kmem;
3781 		break;
3782 	case _TCP:
3783 		counter = &memcg->tcpmem;
3784 		break;
3785 	default:
3786 		BUG();
3787 	}
3788 
3789 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3790 	case RES_MAX_USAGE:
3791 		page_counter_reset_watermark(counter);
3792 		break;
3793 	case RES_FAILCNT:
3794 		counter->failcnt = 0;
3795 		break;
3796 	default:
3797 		BUG();
3798 	}
3799 
3800 	return nbytes;
3801 }
3802 
3803 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3804 					struct cftype *cft)
3805 {
3806 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3807 }
3808 
3809 #ifdef CONFIG_MMU
3810 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3811 					struct cftype *cft, u64 val)
3812 {
3813 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3814 
3815 	if (val & ~MOVE_MASK)
3816 		return -EINVAL;
3817 
3818 	/*
3819 	 * No kind of locking is needed in here, because ->can_attach() will
3820 	 * check this value once in the beginning of the process, and then carry
3821 	 * on with stale data. This means that changes to this value will only
3822 	 * affect task migrations starting after the change.
3823 	 */
3824 	memcg->move_charge_at_immigrate = val;
3825 	return 0;
3826 }
3827 #else
3828 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3829 					struct cftype *cft, u64 val)
3830 {
3831 	return -ENOSYS;
3832 }
3833 #endif
3834 
3835 #ifdef CONFIG_NUMA
3836 
3837 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3838 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3839 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3840 
3841 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3842 				int nid, unsigned int lru_mask, bool tree)
3843 {
3844 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3845 	unsigned long nr = 0;
3846 	enum lru_list lru;
3847 
3848 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3849 
3850 	for_each_lru(lru) {
3851 		if (!(BIT(lru) & lru_mask))
3852 			continue;
3853 		if (tree)
3854 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3855 		else
3856 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3857 	}
3858 	return nr;
3859 }
3860 
3861 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3862 					     unsigned int lru_mask,
3863 					     bool tree)
3864 {
3865 	unsigned long nr = 0;
3866 	enum lru_list lru;
3867 
3868 	for_each_lru(lru) {
3869 		if (!(BIT(lru) & lru_mask))
3870 			continue;
3871 		if (tree)
3872 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3873 		else
3874 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3875 	}
3876 	return nr;
3877 }
3878 
3879 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3880 {
3881 	struct numa_stat {
3882 		const char *name;
3883 		unsigned int lru_mask;
3884 	};
3885 
3886 	static const struct numa_stat stats[] = {
3887 		{ "total", LRU_ALL },
3888 		{ "file", LRU_ALL_FILE },
3889 		{ "anon", LRU_ALL_ANON },
3890 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3891 	};
3892 	const struct numa_stat *stat;
3893 	int nid;
3894 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3895 
3896 	mem_cgroup_flush_stats();
3897 
3898 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3899 		seq_printf(m, "%s=%lu", stat->name,
3900 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3901 						   false));
3902 		for_each_node_state(nid, N_MEMORY)
3903 			seq_printf(m, " N%d=%lu", nid,
3904 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3905 							stat->lru_mask, false));
3906 		seq_putc(m, '\n');
3907 	}
3908 
3909 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3910 
3911 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3912 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3913 						   true));
3914 		for_each_node_state(nid, N_MEMORY)
3915 			seq_printf(m, " N%d=%lu", nid,
3916 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3917 							stat->lru_mask, true));
3918 		seq_putc(m, '\n');
3919 	}
3920 
3921 	return 0;
3922 }
3923 #endif /* CONFIG_NUMA */
3924 
3925 static const unsigned int memcg1_stats[] = {
3926 	NR_FILE_PAGES,
3927 	NR_ANON_MAPPED,
3928 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3929 	NR_ANON_THPS,
3930 #endif
3931 	NR_SHMEM,
3932 	NR_FILE_MAPPED,
3933 	NR_FILE_DIRTY,
3934 	NR_WRITEBACK,
3935 	MEMCG_SWAP,
3936 };
3937 
3938 static const char *const memcg1_stat_names[] = {
3939 	"cache",
3940 	"rss",
3941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3942 	"rss_huge",
3943 #endif
3944 	"shmem",
3945 	"mapped_file",
3946 	"dirty",
3947 	"writeback",
3948 	"swap",
3949 };
3950 
3951 /* Universal VM events cgroup1 shows, original sort order */
3952 static const unsigned int memcg1_events[] = {
3953 	PGPGIN,
3954 	PGPGOUT,
3955 	PGFAULT,
3956 	PGMAJFAULT,
3957 };
3958 
3959 static int memcg_stat_show(struct seq_file *m, void *v)
3960 {
3961 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3962 	unsigned long memory, memsw;
3963 	struct mem_cgroup *mi;
3964 	unsigned int i;
3965 
3966 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3967 
3968 	mem_cgroup_flush_stats();
3969 
3970 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3971 		unsigned long nr;
3972 
3973 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3974 			continue;
3975 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3976 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3977 	}
3978 
3979 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3980 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3981 			   memcg_events_local(memcg, memcg1_events[i]));
3982 
3983 	for (i = 0; i < NR_LRU_LISTS; i++)
3984 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3985 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3986 			   PAGE_SIZE);
3987 
3988 	/* Hierarchical information */
3989 	memory = memsw = PAGE_COUNTER_MAX;
3990 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3991 		memory = min(memory, READ_ONCE(mi->memory.max));
3992 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3993 	}
3994 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3995 		   (u64)memory * PAGE_SIZE);
3996 	if (do_memsw_account())
3997 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3998 			   (u64)memsw * PAGE_SIZE);
3999 
4000 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4001 		unsigned long nr;
4002 
4003 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4004 			continue;
4005 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4006 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4007 						(u64)nr * PAGE_SIZE);
4008 	}
4009 
4010 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4011 		seq_printf(m, "total_%s %llu\n",
4012 			   vm_event_name(memcg1_events[i]),
4013 			   (u64)memcg_events(memcg, memcg1_events[i]));
4014 
4015 	for (i = 0; i < NR_LRU_LISTS; i++)
4016 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4017 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4018 			   PAGE_SIZE);
4019 
4020 #ifdef CONFIG_DEBUG_VM
4021 	{
4022 		pg_data_t *pgdat;
4023 		struct mem_cgroup_per_node *mz;
4024 		unsigned long anon_cost = 0;
4025 		unsigned long file_cost = 0;
4026 
4027 		for_each_online_pgdat(pgdat) {
4028 			mz = memcg->nodeinfo[pgdat->node_id];
4029 
4030 			anon_cost += mz->lruvec.anon_cost;
4031 			file_cost += mz->lruvec.file_cost;
4032 		}
4033 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4034 		seq_printf(m, "file_cost %lu\n", file_cost);
4035 	}
4036 #endif
4037 
4038 	return 0;
4039 }
4040 
4041 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4042 				      struct cftype *cft)
4043 {
4044 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4045 
4046 	return mem_cgroup_swappiness(memcg);
4047 }
4048 
4049 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4050 				       struct cftype *cft, u64 val)
4051 {
4052 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4053 
4054 	if (val > 200)
4055 		return -EINVAL;
4056 
4057 	if (!mem_cgroup_is_root(memcg))
4058 		memcg->swappiness = val;
4059 	else
4060 		vm_swappiness = val;
4061 
4062 	return 0;
4063 }
4064 
4065 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4066 {
4067 	struct mem_cgroup_threshold_ary *t;
4068 	unsigned long usage;
4069 	int i;
4070 
4071 	rcu_read_lock();
4072 	if (!swap)
4073 		t = rcu_dereference(memcg->thresholds.primary);
4074 	else
4075 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4076 
4077 	if (!t)
4078 		goto unlock;
4079 
4080 	usage = mem_cgroup_usage(memcg, swap);
4081 
4082 	/*
4083 	 * current_threshold points to threshold just below or equal to usage.
4084 	 * If it's not true, a threshold was crossed after last
4085 	 * call of __mem_cgroup_threshold().
4086 	 */
4087 	i = t->current_threshold;
4088 
4089 	/*
4090 	 * Iterate backward over array of thresholds starting from
4091 	 * current_threshold and check if a threshold is crossed.
4092 	 * If none of thresholds below usage is crossed, we read
4093 	 * only one element of the array here.
4094 	 */
4095 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4096 		eventfd_signal(t->entries[i].eventfd, 1);
4097 
4098 	/* i = current_threshold + 1 */
4099 	i++;
4100 
4101 	/*
4102 	 * Iterate forward over array of thresholds starting from
4103 	 * current_threshold+1 and check if a threshold is crossed.
4104 	 * If none of thresholds above usage is crossed, we read
4105 	 * only one element of the array here.
4106 	 */
4107 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4108 		eventfd_signal(t->entries[i].eventfd, 1);
4109 
4110 	/* Update current_threshold */
4111 	t->current_threshold = i - 1;
4112 unlock:
4113 	rcu_read_unlock();
4114 }
4115 
4116 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4117 {
4118 	while (memcg) {
4119 		__mem_cgroup_threshold(memcg, false);
4120 		if (do_memsw_account())
4121 			__mem_cgroup_threshold(memcg, true);
4122 
4123 		memcg = parent_mem_cgroup(memcg);
4124 	}
4125 }
4126 
4127 static int compare_thresholds(const void *a, const void *b)
4128 {
4129 	const struct mem_cgroup_threshold *_a = a;
4130 	const struct mem_cgroup_threshold *_b = b;
4131 
4132 	if (_a->threshold > _b->threshold)
4133 		return 1;
4134 
4135 	if (_a->threshold < _b->threshold)
4136 		return -1;
4137 
4138 	return 0;
4139 }
4140 
4141 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4142 {
4143 	struct mem_cgroup_eventfd_list *ev;
4144 
4145 	spin_lock(&memcg_oom_lock);
4146 
4147 	list_for_each_entry(ev, &memcg->oom_notify, list)
4148 		eventfd_signal(ev->eventfd, 1);
4149 
4150 	spin_unlock(&memcg_oom_lock);
4151 	return 0;
4152 }
4153 
4154 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4155 {
4156 	struct mem_cgroup *iter;
4157 
4158 	for_each_mem_cgroup_tree(iter, memcg)
4159 		mem_cgroup_oom_notify_cb(iter);
4160 }
4161 
4162 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4163 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4164 {
4165 	struct mem_cgroup_thresholds *thresholds;
4166 	struct mem_cgroup_threshold_ary *new;
4167 	unsigned long threshold;
4168 	unsigned long usage;
4169 	int i, size, ret;
4170 
4171 	ret = page_counter_memparse(args, "-1", &threshold);
4172 	if (ret)
4173 		return ret;
4174 
4175 	mutex_lock(&memcg->thresholds_lock);
4176 
4177 	if (type == _MEM) {
4178 		thresholds = &memcg->thresholds;
4179 		usage = mem_cgroup_usage(memcg, false);
4180 	} else if (type == _MEMSWAP) {
4181 		thresholds = &memcg->memsw_thresholds;
4182 		usage = mem_cgroup_usage(memcg, true);
4183 	} else
4184 		BUG();
4185 
4186 	/* Check if a threshold crossed before adding a new one */
4187 	if (thresholds->primary)
4188 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4189 
4190 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4191 
4192 	/* Allocate memory for new array of thresholds */
4193 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4194 	if (!new) {
4195 		ret = -ENOMEM;
4196 		goto unlock;
4197 	}
4198 	new->size = size;
4199 
4200 	/* Copy thresholds (if any) to new array */
4201 	if (thresholds->primary)
4202 		memcpy(new->entries, thresholds->primary->entries,
4203 		       flex_array_size(new, entries, size - 1));
4204 
4205 	/* Add new threshold */
4206 	new->entries[size - 1].eventfd = eventfd;
4207 	new->entries[size - 1].threshold = threshold;
4208 
4209 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4210 	sort(new->entries, size, sizeof(*new->entries),
4211 			compare_thresholds, NULL);
4212 
4213 	/* Find current threshold */
4214 	new->current_threshold = -1;
4215 	for (i = 0; i < size; i++) {
4216 		if (new->entries[i].threshold <= usage) {
4217 			/*
4218 			 * new->current_threshold will not be used until
4219 			 * rcu_assign_pointer(), so it's safe to increment
4220 			 * it here.
4221 			 */
4222 			++new->current_threshold;
4223 		} else
4224 			break;
4225 	}
4226 
4227 	/* Free old spare buffer and save old primary buffer as spare */
4228 	kfree(thresholds->spare);
4229 	thresholds->spare = thresholds->primary;
4230 
4231 	rcu_assign_pointer(thresholds->primary, new);
4232 
4233 	/* To be sure that nobody uses thresholds */
4234 	synchronize_rcu();
4235 
4236 unlock:
4237 	mutex_unlock(&memcg->thresholds_lock);
4238 
4239 	return ret;
4240 }
4241 
4242 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4243 	struct eventfd_ctx *eventfd, const char *args)
4244 {
4245 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4246 }
4247 
4248 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4249 	struct eventfd_ctx *eventfd, const char *args)
4250 {
4251 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4252 }
4253 
4254 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4255 	struct eventfd_ctx *eventfd, enum res_type type)
4256 {
4257 	struct mem_cgroup_thresholds *thresholds;
4258 	struct mem_cgroup_threshold_ary *new;
4259 	unsigned long usage;
4260 	int i, j, size, entries;
4261 
4262 	mutex_lock(&memcg->thresholds_lock);
4263 
4264 	if (type == _MEM) {
4265 		thresholds = &memcg->thresholds;
4266 		usage = mem_cgroup_usage(memcg, false);
4267 	} else if (type == _MEMSWAP) {
4268 		thresholds = &memcg->memsw_thresholds;
4269 		usage = mem_cgroup_usage(memcg, true);
4270 	} else
4271 		BUG();
4272 
4273 	if (!thresholds->primary)
4274 		goto unlock;
4275 
4276 	/* Check if a threshold crossed before removing */
4277 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4278 
4279 	/* Calculate new number of threshold */
4280 	size = entries = 0;
4281 	for (i = 0; i < thresholds->primary->size; i++) {
4282 		if (thresholds->primary->entries[i].eventfd != eventfd)
4283 			size++;
4284 		else
4285 			entries++;
4286 	}
4287 
4288 	new = thresholds->spare;
4289 
4290 	/* If no items related to eventfd have been cleared, nothing to do */
4291 	if (!entries)
4292 		goto unlock;
4293 
4294 	/* Set thresholds array to NULL if we don't have thresholds */
4295 	if (!size) {
4296 		kfree(new);
4297 		new = NULL;
4298 		goto swap_buffers;
4299 	}
4300 
4301 	new->size = size;
4302 
4303 	/* Copy thresholds and find current threshold */
4304 	new->current_threshold = -1;
4305 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4306 		if (thresholds->primary->entries[i].eventfd == eventfd)
4307 			continue;
4308 
4309 		new->entries[j] = thresholds->primary->entries[i];
4310 		if (new->entries[j].threshold <= usage) {
4311 			/*
4312 			 * new->current_threshold will not be used
4313 			 * until rcu_assign_pointer(), so it's safe to increment
4314 			 * it here.
4315 			 */
4316 			++new->current_threshold;
4317 		}
4318 		j++;
4319 	}
4320 
4321 swap_buffers:
4322 	/* Swap primary and spare array */
4323 	thresholds->spare = thresholds->primary;
4324 
4325 	rcu_assign_pointer(thresholds->primary, new);
4326 
4327 	/* To be sure that nobody uses thresholds */
4328 	synchronize_rcu();
4329 
4330 	/* If all events are unregistered, free the spare array */
4331 	if (!new) {
4332 		kfree(thresholds->spare);
4333 		thresholds->spare = NULL;
4334 	}
4335 unlock:
4336 	mutex_unlock(&memcg->thresholds_lock);
4337 }
4338 
4339 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4340 	struct eventfd_ctx *eventfd)
4341 {
4342 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4343 }
4344 
4345 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4346 	struct eventfd_ctx *eventfd)
4347 {
4348 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4349 }
4350 
4351 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4352 	struct eventfd_ctx *eventfd, const char *args)
4353 {
4354 	struct mem_cgroup_eventfd_list *event;
4355 
4356 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4357 	if (!event)
4358 		return -ENOMEM;
4359 
4360 	spin_lock(&memcg_oom_lock);
4361 
4362 	event->eventfd = eventfd;
4363 	list_add(&event->list, &memcg->oom_notify);
4364 
4365 	/* already in OOM ? */
4366 	if (memcg->under_oom)
4367 		eventfd_signal(eventfd, 1);
4368 	spin_unlock(&memcg_oom_lock);
4369 
4370 	return 0;
4371 }
4372 
4373 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4374 	struct eventfd_ctx *eventfd)
4375 {
4376 	struct mem_cgroup_eventfd_list *ev, *tmp;
4377 
4378 	spin_lock(&memcg_oom_lock);
4379 
4380 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4381 		if (ev->eventfd == eventfd) {
4382 			list_del(&ev->list);
4383 			kfree(ev);
4384 		}
4385 	}
4386 
4387 	spin_unlock(&memcg_oom_lock);
4388 }
4389 
4390 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4391 {
4392 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4393 
4394 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4395 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4396 	seq_printf(sf, "oom_kill %lu\n",
4397 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4398 	return 0;
4399 }
4400 
4401 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4402 	struct cftype *cft, u64 val)
4403 {
4404 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4405 
4406 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4407 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4408 		return -EINVAL;
4409 
4410 	memcg->oom_kill_disable = val;
4411 	if (!val)
4412 		memcg_oom_recover(memcg);
4413 
4414 	return 0;
4415 }
4416 
4417 #ifdef CONFIG_CGROUP_WRITEBACK
4418 
4419 #include <trace/events/writeback.h>
4420 
4421 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4422 {
4423 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4424 }
4425 
4426 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4427 {
4428 	wb_domain_exit(&memcg->cgwb_domain);
4429 }
4430 
4431 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4432 {
4433 	wb_domain_size_changed(&memcg->cgwb_domain);
4434 }
4435 
4436 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4437 {
4438 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4439 
4440 	if (!memcg->css.parent)
4441 		return NULL;
4442 
4443 	return &memcg->cgwb_domain;
4444 }
4445 
4446 /**
4447  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4448  * @wb: bdi_writeback in question
4449  * @pfilepages: out parameter for number of file pages
4450  * @pheadroom: out parameter for number of allocatable pages according to memcg
4451  * @pdirty: out parameter for number of dirty pages
4452  * @pwriteback: out parameter for number of pages under writeback
4453  *
4454  * Determine the numbers of file, headroom, dirty, and writeback pages in
4455  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4456  * is a bit more involved.
4457  *
4458  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4459  * headroom is calculated as the lowest headroom of itself and the
4460  * ancestors.  Note that this doesn't consider the actual amount of
4461  * available memory in the system.  The caller should further cap
4462  * *@pheadroom accordingly.
4463  */
4464 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4465 			 unsigned long *pheadroom, unsigned long *pdirty,
4466 			 unsigned long *pwriteback)
4467 {
4468 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4469 	struct mem_cgroup *parent;
4470 
4471 	mem_cgroup_flush_stats();
4472 
4473 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4474 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4475 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4476 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4477 
4478 	*pheadroom = PAGE_COUNTER_MAX;
4479 	while ((parent = parent_mem_cgroup(memcg))) {
4480 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4481 					    READ_ONCE(memcg->memory.high));
4482 		unsigned long used = page_counter_read(&memcg->memory);
4483 
4484 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4485 		memcg = parent;
4486 	}
4487 }
4488 
4489 /*
4490  * Foreign dirty flushing
4491  *
4492  * There's an inherent mismatch between memcg and writeback.  The former
4493  * tracks ownership per-page while the latter per-inode.  This was a
4494  * deliberate design decision because honoring per-page ownership in the
4495  * writeback path is complicated, may lead to higher CPU and IO overheads
4496  * and deemed unnecessary given that write-sharing an inode across
4497  * different cgroups isn't a common use-case.
4498  *
4499  * Combined with inode majority-writer ownership switching, this works well
4500  * enough in most cases but there are some pathological cases.  For
4501  * example, let's say there are two cgroups A and B which keep writing to
4502  * different but confined parts of the same inode.  B owns the inode and
4503  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4504  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4505  * triggering background writeback.  A will be slowed down without a way to
4506  * make writeback of the dirty pages happen.
4507  *
4508  * Conditions like the above can lead to a cgroup getting repeatedly and
4509  * severely throttled after making some progress after each
4510  * dirty_expire_interval while the underlying IO device is almost
4511  * completely idle.
4512  *
4513  * Solving this problem completely requires matching the ownership tracking
4514  * granularities between memcg and writeback in either direction.  However,
4515  * the more egregious behaviors can be avoided by simply remembering the
4516  * most recent foreign dirtying events and initiating remote flushes on
4517  * them when local writeback isn't enough to keep the memory clean enough.
4518  *
4519  * The following two functions implement such mechanism.  When a foreign
4520  * page - a page whose memcg and writeback ownerships don't match - is
4521  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4522  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4523  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4524  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4525  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4526  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4527  * limited to MEMCG_CGWB_FRN_CNT.
4528  *
4529  * The mechanism only remembers IDs and doesn't hold any object references.
4530  * As being wrong occasionally doesn't matter, updates and accesses to the
4531  * records are lockless and racy.
4532  */
4533 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4534 					     struct bdi_writeback *wb)
4535 {
4536 	struct mem_cgroup *memcg = folio_memcg(folio);
4537 	struct memcg_cgwb_frn *frn;
4538 	u64 now = get_jiffies_64();
4539 	u64 oldest_at = now;
4540 	int oldest = -1;
4541 	int i;
4542 
4543 	trace_track_foreign_dirty(folio, wb);
4544 
4545 	/*
4546 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4547 	 * using it.  If not replace the oldest one which isn't being
4548 	 * written out.
4549 	 */
4550 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4551 		frn = &memcg->cgwb_frn[i];
4552 		if (frn->bdi_id == wb->bdi->id &&
4553 		    frn->memcg_id == wb->memcg_css->id)
4554 			break;
4555 		if (time_before64(frn->at, oldest_at) &&
4556 		    atomic_read(&frn->done.cnt) == 1) {
4557 			oldest = i;
4558 			oldest_at = frn->at;
4559 		}
4560 	}
4561 
4562 	if (i < MEMCG_CGWB_FRN_CNT) {
4563 		/*
4564 		 * Re-using an existing one.  Update timestamp lazily to
4565 		 * avoid making the cacheline hot.  We want them to be
4566 		 * reasonably up-to-date and significantly shorter than
4567 		 * dirty_expire_interval as that's what expires the record.
4568 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4569 		 */
4570 		unsigned long update_intv =
4571 			min_t(unsigned long, HZ,
4572 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4573 
4574 		if (time_before64(frn->at, now - update_intv))
4575 			frn->at = now;
4576 	} else if (oldest >= 0) {
4577 		/* replace the oldest free one */
4578 		frn = &memcg->cgwb_frn[oldest];
4579 		frn->bdi_id = wb->bdi->id;
4580 		frn->memcg_id = wb->memcg_css->id;
4581 		frn->at = now;
4582 	}
4583 }
4584 
4585 /* issue foreign writeback flushes for recorded foreign dirtying events */
4586 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4587 {
4588 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4589 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4590 	u64 now = jiffies_64;
4591 	int i;
4592 
4593 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4594 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4595 
4596 		/*
4597 		 * If the record is older than dirty_expire_interval,
4598 		 * writeback on it has already started.  No need to kick it
4599 		 * off again.  Also, don't start a new one if there's
4600 		 * already one in flight.
4601 		 */
4602 		if (time_after64(frn->at, now - intv) &&
4603 		    atomic_read(&frn->done.cnt) == 1) {
4604 			frn->at = 0;
4605 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4606 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4607 					       WB_REASON_FOREIGN_FLUSH,
4608 					       &frn->done);
4609 		}
4610 	}
4611 }
4612 
4613 #else	/* CONFIG_CGROUP_WRITEBACK */
4614 
4615 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4616 {
4617 	return 0;
4618 }
4619 
4620 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4621 {
4622 }
4623 
4624 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4625 {
4626 }
4627 
4628 #endif	/* CONFIG_CGROUP_WRITEBACK */
4629 
4630 /*
4631  * DO NOT USE IN NEW FILES.
4632  *
4633  * "cgroup.event_control" implementation.
4634  *
4635  * This is way over-engineered.  It tries to support fully configurable
4636  * events for each user.  Such level of flexibility is completely
4637  * unnecessary especially in the light of the planned unified hierarchy.
4638  *
4639  * Please deprecate this and replace with something simpler if at all
4640  * possible.
4641  */
4642 
4643 /*
4644  * Unregister event and free resources.
4645  *
4646  * Gets called from workqueue.
4647  */
4648 static void memcg_event_remove(struct work_struct *work)
4649 {
4650 	struct mem_cgroup_event *event =
4651 		container_of(work, struct mem_cgroup_event, remove);
4652 	struct mem_cgroup *memcg = event->memcg;
4653 
4654 	remove_wait_queue(event->wqh, &event->wait);
4655 
4656 	event->unregister_event(memcg, event->eventfd);
4657 
4658 	/* Notify userspace the event is going away. */
4659 	eventfd_signal(event->eventfd, 1);
4660 
4661 	eventfd_ctx_put(event->eventfd);
4662 	kfree(event);
4663 	css_put(&memcg->css);
4664 }
4665 
4666 /*
4667  * Gets called on EPOLLHUP on eventfd when user closes it.
4668  *
4669  * Called with wqh->lock held and interrupts disabled.
4670  */
4671 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4672 			    int sync, void *key)
4673 {
4674 	struct mem_cgroup_event *event =
4675 		container_of(wait, struct mem_cgroup_event, wait);
4676 	struct mem_cgroup *memcg = event->memcg;
4677 	__poll_t flags = key_to_poll(key);
4678 
4679 	if (flags & EPOLLHUP) {
4680 		/*
4681 		 * If the event has been detached at cgroup removal, we
4682 		 * can simply return knowing the other side will cleanup
4683 		 * for us.
4684 		 *
4685 		 * We can't race against event freeing since the other
4686 		 * side will require wqh->lock via remove_wait_queue(),
4687 		 * which we hold.
4688 		 */
4689 		spin_lock(&memcg->event_list_lock);
4690 		if (!list_empty(&event->list)) {
4691 			list_del_init(&event->list);
4692 			/*
4693 			 * We are in atomic context, but cgroup_event_remove()
4694 			 * may sleep, so we have to call it in workqueue.
4695 			 */
4696 			schedule_work(&event->remove);
4697 		}
4698 		spin_unlock(&memcg->event_list_lock);
4699 	}
4700 
4701 	return 0;
4702 }
4703 
4704 static void memcg_event_ptable_queue_proc(struct file *file,
4705 		wait_queue_head_t *wqh, poll_table *pt)
4706 {
4707 	struct mem_cgroup_event *event =
4708 		container_of(pt, struct mem_cgroup_event, pt);
4709 
4710 	event->wqh = wqh;
4711 	add_wait_queue(wqh, &event->wait);
4712 }
4713 
4714 /*
4715  * DO NOT USE IN NEW FILES.
4716  *
4717  * Parse input and register new cgroup event handler.
4718  *
4719  * Input must be in format '<event_fd> <control_fd> <args>'.
4720  * Interpretation of args is defined by control file implementation.
4721  */
4722 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4723 					 char *buf, size_t nbytes, loff_t off)
4724 {
4725 	struct cgroup_subsys_state *css = of_css(of);
4726 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4727 	struct mem_cgroup_event *event;
4728 	struct cgroup_subsys_state *cfile_css;
4729 	unsigned int efd, cfd;
4730 	struct fd efile;
4731 	struct fd cfile;
4732 	const char *name;
4733 	char *endp;
4734 	int ret;
4735 
4736 	buf = strstrip(buf);
4737 
4738 	efd = simple_strtoul(buf, &endp, 10);
4739 	if (*endp != ' ')
4740 		return -EINVAL;
4741 	buf = endp + 1;
4742 
4743 	cfd = simple_strtoul(buf, &endp, 10);
4744 	if ((*endp != ' ') && (*endp != '\0'))
4745 		return -EINVAL;
4746 	buf = endp + 1;
4747 
4748 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4749 	if (!event)
4750 		return -ENOMEM;
4751 
4752 	event->memcg = memcg;
4753 	INIT_LIST_HEAD(&event->list);
4754 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4755 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4756 	INIT_WORK(&event->remove, memcg_event_remove);
4757 
4758 	efile = fdget(efd);
4759 	if (!efile.file) {
4760 		ret = -EBADF;
4761 		goto out_kfree;
4762 	}
4763 
4764 	event->eventfd = eventfd_ctx_fileget(efile.file);
4765 	if (IS_ERR(event->eventfd)) {
4766 		ret = PTR_ERR(event->eventfd);
4767 		goto out_put_efile;
4768 	}
4769 
4770 	cfile = fdget(cfd);
4771 	if (!cfile.file) {
4772 		ret = -EBADF;
4773 		goto out_put_eventfd;
4774 	}
4775 
4776 	/* the process need read permission on control file */
4777 	/* AV: shouldn't we check that it's been opened for read instead? */
4778 	ret = file_permission(cfile.file, MAY_READ);
4779 	if (ret < 0)
4780 		goto out_put_cfile;
4781 
4782 	/*
4783 	 * Determine the event callbacks and set them in @event.  This used
4784 	 * to be done via struct cftype but cgroup core no longer knows
4785 	 * about these events.  The following is crude but the whole thing
4786 	 * is for compatibility anyway.
4787 	 *
4788 	 * DO NOT ADD NEW FILES.
4789 	 */
4790 	name = cfile.file->f_path.dentry->d_name.name;
4791 
4792 	if (!strcmp(name, "memory.usage_in_bytes")) {
4793 		event->register_event = mem_cgroup_usage_register_event;
4794 		event->unregister_event = mem_cgroup_usage_unregister_event;
4795 	} else if (!strcmp(name, "memory.oom_control")) {
4796 		event->register_event = mem_cgroup_oom_register_event;
4797 		event->unregister_event = mem_cgroup_oom_unregister_event;
4798 	} else if (!strcmp(name, "memory.pressure_level")) {
4799 		event->register_event = vmpressure_register_event;
4800 		event->unregister_event = vmpressure_unregister_event;
4801 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4802 		event->register_event = memsw_cgroup_usage_register_event;
4803 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4804 	} else {
4805 		ret = -EINVAL;
4806 		goto out_put_cfile;
4807 	}
4808 
4809 	/*
4810 	 * Verify @cfile should belong to @css.  Also, remaining events are
4811 	 * automatically removed on cgroup destruction but the removal is
4812 	 * asynchronous, so take an extra ref on @css.
4813 	 */
4814 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4815 					       &memory_cgrp_subsys);
4816 	ret = -EINVAL;
4817 	if (IS_ERR(cfile_css))
4818 		goto out_put_cfile;
4819 	if (cfile_css != css) {
4820 		css_put(cfile_css);
4821 		goto out_put_cfile;
4822 	}
4823 
4824 	ret = event->register_event(memcg, event->eventfd, buf);
4825 	if (ret)
4826 		goto out_put_css;
4827 
4828 	vfs_poll(efile.file, &event->pt);
4829 
4830 	spin_lock_irq(&memcg->event_list_lock);
4831 	list_add(&event->list, &memcg->event_list);
4832 	spin_unlock_irq(&memcg->event_list_lock);
4833 
4834 	fdput(cfile);
4835 	fdput(efile);
4836 
4837 	return nbytes;
4838 
4839 out_put_css:
4840 	css_put(css);
4841 out_put_cfile:
4842 	fdput(cfile);
4843 out_put_eventfd:
4844 	eventfd_ctx_put(event->eventfd);
4845 out_put_efile:
4846 	fdput(efile);
4847 out_kfree:
4848 	kfree(event);
4849 
4850 	return ret;
4851 }
4852 
4853 static struct cftype mem_cgroup_legacy_files[] = {
4854 	{
4855 		.name = "usage_in_bytes",
4856 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4857 		.read_u64 = mem_cgroup_read_u64,
4858 	},
4859 	{
4860 		.name = "max_usage_in_bytes",
4861 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4862 		.write = mem_cgroup_reset,
4863 		.read_u64 = mem_cgroup_read_u64,
4864 	},
4865 	{
4866 		.name = "limit_in_bytes",
4867 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4868 		.write = mem_cgroup_write,
4869 		.read_u64 = mem_cgroup_read_u64,
4870 	},
4871 	{
4872 		.name = "soft_limit_in_bytes",
4873 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4874 		.write = mem_cgroup_write,
4875 		.read_u64 = mem_cgroup_read_u64,
4876 	},
4877 	{
4878 		.name = "failcnt",
4879 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4880 		.write = mem_cgroup_reset,
4881 		.read_u64 = mem_cgroup_read_u64,
4882 	},
4883 	{
4884 		.name = "stat",
4885 		.seq_show = memcg_stat_show,
4886 	},
4887 	{
4888 		.name = "force_empty",
4889 		.write = mem_cgroup_force_empty_write,
4890 	},
4891 	{
4892 		.name = "use_hierarchy",
4893 		.write_u64 = mem_cgroup_hierarchy_write,
4894 		.read_u64 = mem_cgroup_hierarchy_read,
4895 	},
4896 	{
4897 		.name = "cgroup.event_control",		/* XXX: for compat */
4898 		.write = memcg_write_event_control,
4899 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4900 	},
4901 	{
4902 		.name = "swappiness",
4903 		.read_u64 = mem_cgroup_swappiness_read,
4904 		.write_u64 = mem_cgroup_swappiness_write,
4905 	},
4906 	{
4907 		.name = "move_charge_at_immigrate",
4908 		.read_u64 = mem_cgroup_move_charge_read,
4909 		.write_u64 = mem_cgroup_move_charge_write,
4910 	},
4911 	{
4912 		.name = "oom_control",
4913 		.seq_show = mem_cgroup_oom_control_read,
4914 		.write_u64 = mem_cgroup_oom_control_write,
4915 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4916 	},
4917 	{
4918 		.name = "pressure_level",
4919 	},
4920 #ifdef CONFIG_NUMA
4921 	{
4922 		.name = "numa_stat",
4923 		.seq_show = memcg_numa_stat_show,
4924 	},
4925 #endif
4926 	{
4927 		.name = "kmem.limit_in_bytes",
4928 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4929 		.write = mem_cgroup_write,
4930 		.read_u64 = mem_cgroup_read_u64,
4931 	},
4932 	{
4933 		.name = "kmem.usage_in_bytes",
4934 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4935 		.read_u64 = mem_cgroup_read_u64,
4936 	},
4937 	{
4938 		.name = "kmem.failcnt",
4939 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4940 		.write = mem_cgroup_reset,
4941 		.read_u64 = mem_cgroup_read_u64,
4942 	},
4943 	{
4944 		.name = "kmem.max_usage_in_bytes",
4945 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4946 		.write = mem_cgroup_reset,
4947 		.read_u64 = mem_cgroup_read_u64,
4948 	},
4949 #if defined(CONFIG_MEMCG_KMEM) && \
4950 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4951 	{
4952 		.name = "kmem.slabinfo",
4953 		.seq_show = memcg_slab_show,
4954 	},
4955 #endif
4956 	{
4957 		.name = "kmem.tcp.limit_in_bytes",
4958 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4959 		.write = mem_cgroup_write,
4960 		.read_u64 = mem_cgroup_read_u64,
4961 	},
4962 	{
4963 		.name = "kmem.tcp.usage_in_bytes",
4964 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4965 		.read_u64 = mem_cgroup_read_u64,
4966 	},
4967 	{
4968 		.name = "kmem.tcp.failcnt",
4969 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4970 		.write = mem_cgroup_reset,
4971 		.read_u64 = mem_cgroup_read_u64,
4972 	},
4973 	{
4974 		.name = "kmem.tcp.max_usage_in_bytes",
4975 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4976 		.write = mem_cgroup_reset,
4977 		.read_u64 = mem_cgroup_read_u64,
4978 	},
4979 	{ },	/* terminate */
4980 };
4981 
4982 /*
4983  * Private memory cgroup IDR
4984  *
4985  * Swap-out records and page cache shadow entries need to store memcg
4986  * references in constrained space, so we maintain an ID space that is
4987  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4988  * memory-controlled cgroups to 64k.
4989  *
4990  * However, there usually are many references to the offline CSS after
4991  * the cgroup has been destroyed, such as page cache or reclaimable
4992  * slab objects, that don't need to hang on to the ID. We want to keep
4993  * those dead CSS from occupying IDs, or we might quickly exhaust the
4994  * relatively small ID space and prevent the creation of new cgroups
4995  * even when there are much fewer than 64k cgroups - possibly none.
4996  *
4997  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4998  * be freed and recycled when it's no longer needed, which is usually
4999  * when the CSS is offlined.
5000  *
5001  * The only exception to that are records of swapped out tmpfs/shmem
5002  * pages that need to be attributed to live ancestors on swapin. But
5003  * those references are manageable from userspace.
5004  */
5005 
5006 static DEFINE_IDR(mem_cgroup_idr);
5007 
5008 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5009 {
5010 	if (memcg->id.id > 0) {
5011 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5012 		memcg->id.id = 0;
5013 	}
5014 }
5015 
5016 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5017 						  unsigned int n)
5018 {
5019 	refcount_add(n, &memcg->id.ref);
5020 }
5021 
5022 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5023 {
5024 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5025 		mem_cgroup_id_remove(memcg);
5026 
5027 		/* Memcg ID pins CSS */
5028 		css_put(&memcg->css);
5029 	}
5030 }
5031 
5032 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5033 {
5034 	mem_cgroup_id_put_many(memcg, 1);
5035 }
5036 
5037 /**
5038  * mem_cgroup_from_id - look up a memcg from a memcg id
5039  * @id: the memcg id to look up
5040  *
5041  * Caller must hold rcu_read_lock().
5042  */
5043 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5044 {
5045 	WARN_ON_ONCE(!rcu_read_lock_held());
5046 	return idr_find(&mem_cgroup_idr, id);
5047 }
5048 
5049 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5050 {
5051 	struct mem_cgroup_per_node *pn;
5052 	int tmp = node;
5053 	/*
5054 	 * This routine is called against possible nodes.
5055 	 * But it's BUG to call kmalloc() against offline node.
5056 	 *
5057 	 * TODO: this routine can waste much memory for nodes which will
5058 	 *       never be onlined. It's better to use memory hotplug callback
5059 	 *       function.
5060 	 */
5061 	if (!node_state(node, N_NORMAL_MEMORY))
5062 		tmp = -1;
5063 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5064 	if (!pn)
5065 		return 1;
5066 
5067 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5068 						   GFP_KERNEL_ACCOUNT);
5069 	if (!pn->lruvec_stats_percpu) {
5070 		kfree(pn);
5071 		return 1;
5072 	}
5073 
5074 	lruvec_init(&pn->lruvec);
5075 	pn->usage_in_excess = 0;
5076 	pn->on_tree = false;
5077 	pn->memcg = memcg;
5078 
5079 	memcg->nodeinfo[node] = pn;
5080 	return 0;
5081 }
5082 
5083 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5084 {
5085 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5086 
5087 	if (!pn)
5088 		return;
5089 
5090 	free_percpu(pn->lruvec_stats_percpu);
5091 	kfree(pn);
5092 }
5093 
5094 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5095 {
5096 	int node;
5097 
5098 	for_each_node(node)
5099 		free_mem_cgroup_per_node_info(memcg, node);
5100 	free_percpu(memcg->vmstats_percpu);
5101 	kfree(memcg);
5102 }
5103 
5104 static void mem_cgroup_free(struct mem_cgroup *memcg)
5105 {
5106 	memcg_wb_domain_exit(memcg);
5107 	__mem_cgroup_free(memcg);
5108 }
5109 
5110 static struct mem_cgroup *mem_cgroup_alloc(void)
5111 {
5112 	struct mem_cgroup *memcg;
5113 	unsigned int size;
5114 	int node;
5115 	int __maybe_unused i;
5116 	long error = -ENOMEM;
5117 
5118 	size = sizeof(struct mem_cgroup);
5119 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5120 
5121 	memcg = kzalloc(size, GFP_KERNEL);
5122 	if (!memcg)
5123 		return ERR_PTR(error);
5124 
5125 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5126 				 1, MEM_CGROUP_ID_MAX,
5127 				 GFP_KERNEL);
5128 	if (memcg->id.id < 0) {
5129 		error = memcg->id.id;
5130 		goto fail;
5131 	}
5132 
5133 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5134 						 GFP_KERNEL_ACCOUNT);
5135 	if (!memcg->vmstats_percpu)
5136 		goto fail;
5137 
5138 	for_each_node(node)
5139 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5140 			goto fail;
5141 
5142 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5143 		goto fail;
5144 
5145 	INIT_WORK(&memcg->high_work, high_work_func);
5146 	INIT_LIST_HEAD(&memcg->oom_notify);
5147 	mutex_init(&memcg->thresholds_lock);
5148 	spin_lock_init(&memcg->move_lock);
5149 	vmpressure_init(&memcg->vmpressure);
5150 	INIT_LIST_HEAD(&memcg->event_list);
5151 	spin_lock_init(&memcg->event_list_lock);
5152 	memcg->socket_pressure = jiffies;
5153 #ifdef CONFIG_MEMCG_KMEM
5154 	memcg->kmemcg_id = -1;
5155 	INIT_LIST_HEAD(&memcg->objcg_list);
5156 #endif
5157 #ifdef CONFIG_CGROUP_WRITEBACK
5158 	INIT_LIST_HEAD(&memcg->cgwb_list);
5159 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5160 		memcg->cgwb_frn[i].done =
5161 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5162 #endif
5163 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5164 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5165 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5166 	memcg->deferred_split_queue.split_queue_len = 0;
5167 #endif
5168 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5169 	return memcg;
5170 fail:
5171 	mem_cgroup_id_remove(memcg);
5172 	__mem_cgroup_free(memcg);
5173 	return ERR_PTR(error);
5174 }
5175 
5176 static struct cgroup_subsys_state * __ref
5177 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5178 {
5179 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5180 	struct mem_cgroup *memcg, *old_memcg;
5181 	long error = -ENOMEM;
5182 
5183 	old_memcg = set_active_memcg(parent);
5184 	memcg = mem_cgroup_alloc();
5185 	set_active_memcg(old_memcg);
5186 	if (IS_ERR(memcg))
5187 		return ERR_CAST(memcg);
5188 
5189 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5190 	memcg->soft_limit = PAGE_COUNTER_MAX;
5191 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5192 	if (parent) {
5193 		memcg->swappiness = mem_cgroup_swappiness(parent);
5194 		memcg->oom_kill_disable = parent->oom_kill_disable;
5195 
5196 		page_counter_init(&memcg->memory, &parent->memory);
5197 		page_counter_init(&memcg->swap, &parent->swap);
5198 		page_counter_init(&memcg->kmem, &parent->kmem);
5199 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5200 	} else {
5201 		page_counter_init(&memcg->memory, NULL);
5202 		page_counter_init(&memcg->swap, NULL);
5203 		page_counter_init(&memcg->kmem, NULL);
5204 		page_counter_init(&memcg->tcpmem, NULL);
5205 
5206 		root_mem_cgroup = memcg;
5207 		return &memcg->css;
5208 	}
5209 
5210 	/* The following stuff does not apply to the root */
5211 	error = memcg_online_kmem(memcg);
5212 	if (error)
5213 		goto fail;
5214 
5215 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5216 		static_branch_inc(&memcg_sockets_enabled_key);
5217 
5218 	return &memcg->css;
5219 fail:
5220 	mem_cgroup_id_remove(memcg);
5221 	mem_cgroup_free(memcg);
5222 	return ERR_PTR(error);
5223 }
5224 
5225 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5226 {
5227 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5228 
5229 	/*
5230 	 * A memcg must be visible for expand_shrinker_info()
5231 	 * by the time the maps are allocated. So, we allocate maps
5232 	 * here, when for_each_mem_cgroup() can't skip it.
5233 	 */
5234 	if (alloc_shrinker_info(memcg)) {
5235 		mem_cgroup_id_remove(memcg);
5236 		return -ENOMEM;
5237 	}
5238 
5239 	/* Online state pins memcg ID, memcg ID pins CSS */
5240 	refcount_set(&memcg->id.ref, 1);
5241 	css_get(css);
5242 
5243 	if (unlikely(mem_cgroup_is_root(memcg)))
5244 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5245 				   2UL*HZ);
5246 	return 0;
5247 }
5248 
5249 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5250 {
5251 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5252 	struct mem_cgroup_event *event, *tmp;
5253 
5254 	/*
5255 	 * Unregister events and notify userspace.
5256 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5257 	 * directory to avoid race between userspace and kernelspace.
5258 	 */
5259 	spin_lock_irq(&memcg->event_list_lock);
5260 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5261 		list_del_init(&event->list);
5262 		schedule_work(&event->remove);
5263 	}
5264 	spin_unlock_irq(&memcg->event_list_lock);
5265 
5266 	page_counter_set_min(&memcg->memory, 0);
5267 	page_counter_set_low(&memcg->memory, 0);
5268 
5269 	memcg_offline_kmem(memcg);
5270 	reparent_shrinker_deferred(memcg);
5271 	wb_memcg_offline(memcg);
5272 
5273 	drain_all_stock(memcg);
5274 
5275 	mem_cgroup_id_put(memcg);
5276 }
5277 
5278 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5279 {
5280 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5281 
5282 	invalidate_reclaim_iterators(memcg);
5283 }
5284 
5285 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5286 {
5287 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5288 	int __maybe_unused i;
5289 
5290 #ifdef CONFIG_CGROUP_WRITEBACK
5291 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5292 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5293 #endif
5294 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5295 		static_branch_dec(&memcg_sockets_enabled_key);
5296 
5297 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5298 		static_branch_dec(&memcg_sockets_enabled_key);
5299 
5300 	vmpressure_cleanup(&memcg->vmpressure);
5301 	cancel_work_sync(&memcg->high_work);
5302 	mem_cgroup_remove_from_trees(memcg);
5303 	free_shrinker_info(memcg);
5304 
5305 	/* Need to offline kmem if online_css() fails */
5306 	memcg_offline_kmem(memcg);
5307 	mem_cgroup_free(memcg);
5308 }
5309 
5310 /**
5311  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5312  * @css: the target css
5313  *
5314  * Reset the states of the mem_cgroup associated with @css.  This is
5315  * invoked when the userland requests disabling on the default hierarchy
5316  * but the memcg is pinned through dependency.  The memcg should stop
5317  * applying policies and should revert to the vanilla state as it may be
5318  * made visible again.
5319  *
5320  * The current implementation only resets the essential configurations.
5321  * This needs to be expanded to cover all the visible parts.
5322  */
5323 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5324 {
5325 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5326 
5327 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5328 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5329 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5330 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5331 	page_counter_set_min(&memcg->memory, 0);
5332 	page_counter_set_low(&memcg->memory, 0);
5333 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5334 	memcg->soft_limit = PAGE_COUNTER_MAX;
5335 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5336 	memcg_wb_domain_size_changed(memcg);
5337 }
5338 
5339 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5340 {
5341 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5342 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5343 	struct memcg_vmstats_percpu *statc;
5344 	long delta, v;
5345 	int i, nid;
5346 
5347 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5348 
5349 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5350 		/*
5351 		 * Collect the aggregated propagation counts of groups
5352 		 * below us. We're in a per-cpu loop here and this is
5353 		 * a global counter, so the first cycle will get them.
5354 		 */
5355 		delta = memcg->vmstats.state_pending[i];
5356 		if (delta)
5357 			memcg->vmstats.state_pending[i] = 0;
5358 
5359 		/* Add CPU changes on this level since the last flush */
5360 		v = READ_ONCE(statc->state[i]);
5361 		if (v != statc->state_prev[i]) {
5362 			delta += v - statc->state_prev[i];
5363 			statc->state_prev[i] = v;
5364 		}
5365 
5366 		if (!delta)
5367 			continue;
5368 
5369 		/* Aggregate counts on this level and propagate upwards */
5370 		memcg->vmstats.state[i] += delta;
5371 		if (parent)
5372 			parent->vmstats.state_pending[i] += delta;
5373 	}
5374 
5375 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5376 		delta = memcg->vmstats.events_pending[i];
5377 		if (delta)
5378 			memcg->vmstats.events_pending[i] = 0;
5379 
5380 		v = READ_ONCE(statc->events[i]);
5381 		if (v != statc->events_prev[i]) {
5382 			delta += v - statc->events_prev[i];
5383 			statc->events_prev[i] = v;
5384 		}
5385 
5386 		if (!delta)
5387 			continue;
5388 
5389 		memcg->vmstats.events[i] += delta;
5390 		if (parent)
5391 			parent->vmstats.events_pending[i] += delta;
5392 	}
5393 
5394 	for_each_node_state(nid, N_MEMORY) {
5395 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5396 		struct mem_cgroup_per_node *ppn = NULL;
5397 		struct lruvec_stats_percpu *lstatc;
5398 
5399 		if (parent)
5400 			ppn = parent->nodeinfo[nid];
5401 
5402 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5403 
5404 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5405 			delta = pn->lruvec_stats.state_pending[i];
5406 			if (delta)
5407 				pn->lruvec_stats.state_pending[i] = 0;
5408 
5409 			v = READ_ONCE(lstatc->state[i]);
5410 			if (v != lstatc->state_prev[i]) {
5411 				delta += v - lstatc->state_prev[i];
5412 				lstatc->state_prev[i] = v;
5413 			}
5414 
5415 			if (!delta)
5416 				continue;
5417 
5418 			pn->lruvec_stats.state[i] += delta;
5419 			if (ppn)
5420 				ppn->lruvec_stats.state_pending[i] += delta;
5421 		}
5422 	}
5423 }
5424 
5425 #ifdef CONFIG_MMU
5426 /* Handlers for move charge at task migration. */
5427 static int mem_cgroup_do_precharge(unsigned long count)
5428 {
5429 	int ret;
5430 
5431 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5432 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5433 	if (!ret) {
5434 		mc.precharge += count;
5435 		return ret;
5436 	}
5437 
5438 	/* Try charges one by one with reclaim, but do not retry */
5439 	while (count--) {
5440 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5441 		if (ret)
5442 			return ret;
5443 		mc.precharge++;
5444 		cond_resched();
5445 	}
5446 	return 0;
5447 }
5448 
5449 union mc_target {
5450 	struct page	*page;
5451 	swp_entry_t	ent;
5452 };
5453 
5454 enum mc_target_type {
5455 	MC_TARGET_NONE = 0,
5456 	MC_TARGET_PAGE,
5457 	MC_TARGET_SWAP,
5458 	MC_TARGET_DEVICE,
5459 };
5460 
5461 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5462 						unsigned long addr, pte_t ptent)
5463 {
5464 	struct page *page = vm_normal_page(vma, addr, ptent);
5465 
5466 	if (!page || !page_mapped(page))
5467 		return NULL;
5468 	if (PageAnon(page)) {
5469 		if (!(mc.flags & MOVE_ANON))
5470 			return NULL;
5471 	} else {
5472 		if (!(mc.flags & MOVE_FILE))
5473 			return NULL;
5474 	}
5475 	if (!get_page_unless_zero(page))
5476 		return NULL;
5477 
5478 	return page;
5479 }
5480 
5481 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5482 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5483 			pte_t ptent, swp_entry_t *entry)
5484 {
5485 	struct page *page = NULL;
5486 	swp_entry_t ent = pte_to_swp_entry(ptent);
5487 
5488 	if (!(mc.flags & MOVE_ANON))
5489 		return NULL;
5490 
5491 	/*
5492 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5493 	 * a device and because they are not accessible by CPU they are store
5494 	 * as special swap entry in the CPU page table.
5495 	 */
5496 	if (is_device_private_entry(ent)) {
5497 		page = pfn_swap_entry_to_page(ent);
5498 		/*
5499 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5500 		 * a refcount of 1 when free (unlike normal page)
5501 		 */
5502 		if (!page_ref_add_unless(page, 1, 1))
5503 			return NULL;
5504 		return page;
5505 	}
5506 
5507 	if (non_swap_entry(ent))
5508 		return NULL;
5509 
5510 	/*
5511 	 * Because lookup_swap_cache() updates some statistics counter,
5512 	 * we call find_get_page() with swapper_space directly.
5513 	 */
5514 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5515 	entry->val = ent.val;
5516 
5517 	return page;
5518 }
5519 #else
5520 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5521 			pte_t ptent, swp_entry_t *entry)
5522 {
5523 	return NULL;
5524 }
5525 #endif
5526 
5527 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5528 			unsigned long addr, pte_t ptent)
5529 {
5530 	if (!vma->vm_file) /* anonymous vma */
5531 		return NULL;
5532 	if (!(mc.flags & MOVE_FILE))
5533 		return NULL;
5534 
5535 	/* page is moved even if it's not RSS of this task(page-faulted). */
5536 	/* shmem/tmpfs may report page out on swap: account for that too. */
5537 	return find_get_incore_page(vma->vm_file->f_mapping,
5538 			linear_page_index(vma, addr));
5539 }
5540 
5541 /**
5542  * mem_cgroup_move_account - move account of the page
5543  * @page: the page
5544  * @compound: charge the page as compound or small page
5545  * @from: mem_cgroup which the page is moved from.
5546  * @to:	mem_cgroup which the page is moved to. @from != @to.
5547  *
5548  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5549  *
5550  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5551  * from old cgroup.
5552  */
5553 static int mem_cgroup_move_account(struct page *page,
5554 				   bool compound,
5555 				   struct mem_cgroup *from,
5556 				   struct mem_cgroup *to)
5557 {
5558 	struct folio *folio = page_folio(page);
5559 	struct lruvec *from_vec, *to_vec;
5560 	struct pglist_data *pgdat;
5561 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5562 	int nid, ret;
5563 
5564 	VM_BUG_ON(from == to);
5565 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5566 	VM_BUG_ON(compound && !folio_test_large(folio));
5567 
5568 	/*
5569 	 * Prevent mem_cgroup_migrate() from looking at
5570 	 * page's memory cgroup of its source page while we change it.
5571 	 */
5572 	ret = -EBUSY;
5573 	if (!folio_trylock(folio))
5574 		goto out;
5575 
5576 	ret = -EINVAL;
5577 	if (folio_memcg(folio) != from)
5578 		goto out_unlock;
5579 
5580 	pgdat = folio_pgdat(folio);
5581 	from_vec = mem_cgroup_lruvec(from, pgdat);
5582 	to_vec = mem_cgroup_lruvec(to, pgdat);
5583 
5584 	folio_memcg_lock(folio);
5585 
5586 	if (folio_test_anon(folio)) {
5587 		if (folio_mapped(folio)) {
5588 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5589 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5590 			if (folio_test_transhuge(folio)) {
5591 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5592 						   -nr_pages);
5593 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5594 						   nr_pages);
5595 			}
5596 		}
5597 	} else {
5598 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5599 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5600 
5601 		if (folio_test_swapbacked(folio)) {
5602 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5603 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5604 		}
5605 
5606 		if (folio_mapped(folio)) {
5607 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5608 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5609 		}
5610 
5611 		if (folio_test_dirty(folio)) {
5612 			struct address_space *mapping = folio_mapping(folio);
5613 
5614 			if (mapping_can_writeback(mapping)) {
5615 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5616 						   -nr_pages);
5617 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5618 						   nr_pages);
5619 			}
5620 		}
5621 	}
5622 
5623 	if (folio_test_writeback(folio)) {
5624 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5625 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5626 	}
5627 
5628 	/*
5629 	 * All state has been migrated, let's switch to the new memcg.
5630 	 *
5631 	 * It is safe to change page's memcg here because the page
5632 	 * is referenced, charged, isolated, and locked: we can't race
5633 	 * with (un)charging, migration, LRU putback, or anything else
5634 	 * that would rely on a stable page's memory cgroup.
5635 	 *
5636 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5637 	 * to save space. As soon as we switch page's memory cgroup to a
5638 	 * new memcg that isn't locked, the above state can change
5639 	 * concurrently again. Make sure we're truly done with it.
5640 	 */
5641 	smp_mb();
5642 
5643 	css_get(&to->css);
5644 	css_put(&from->css);
5645 
5646 	folio->memcg_data = (unsigned long)to;
5647 
5648 	__folio_memcg_unlock(from);
5649 
5650 	ret = 0;
5651 	nid = folio_nid(folio);
5652 
5653 	local_irq_disable();
5654 	mem_cgroup_charge_statistics(to, nr_pages);
5655 	memcg_check_events(to, nid);
5656 	mem_cgroup_charge_statistics(from, -nr_pages);
5657 	memcg_check_events(from, nid);
5658 	local_irq_enable();
5659 out_unlock:
5660 	folio_unlock(folio);
5661 out:
5662 	return ret;
5663 }
5664 
5665 /**
5666  * get_mctgt_type - get target type of moving charge
5667  * @vma: the vma the pte to be checked belongs
5668  * @addr: the address corresponding to the pte to be checked
5669  * @ptent: the pte to be checked
5670  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5671  *
5672  * Returns
5673  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5674  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5675  *     move charge. if @target is not NULL, the page is stored in target->page
5676  *     with extra refcnt got(Callers should handle it).
5677  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5678  *     target for charge migration. if @target is not NULL, the entry is stored
5679  *     in target->ent.
5680  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5681  *     (so ZONE_DEVICE page and thus not on the lru).
5682  *     For now we such page is charge like a regular page would be as for all
5683  *     intent and purposes it is just special memory taking the place of a
5684  *     regular page.
5685  *
5686  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5687  *
5688  * Called with pte lock held.
5689  */
5690 
5691 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5692 		unsigned long addr, pte_t ptent, union mc_target *target)
5693 {
5694 	struct page *page = NULL;
5695 	enum mc_target_type ret = MC_TARGET_NONE;
5696 	swp_entry_t ent = { .val = 0 };
5697 
5698 	if (pte_present(ptent))
5699 		page = mc_handle_present_pte(vma, addr, ptent);
5700 	else if (is_swap_pte(ptent))
5701 		page = mc_handle_swap_pte(vma, ptent, &ent);
5702 	else if (pte_none(ptent))
5703 		page = mc_handle_file_pte(vma, addr, ptent);
5704 
5705 	if (!page && !ent.val)
5706 		return ret;
5707 	if (page) {
5708 		/*
5709 		 * Do only loose check w/o serialization.
5710 		 * mem_cgroup_move_account() checks the page is valid or
5711 		 * not under LRU exclusion.
5712 		 */
5713 		if (page_memcg(page) == mc.from) {
5714 			ret = MC_TARGET_PAGE;
5715 			if (is_device_private_page(page))
5716 				ret = MC_TARGET_DEVICE;
5717 			if (target)
5718 				target->page = page;
5719 		}
5720 		if (!ret || !target)
5721 			put_page(page);
5722 	}
5723 	/*
5724 	 * There is a swap entry and a page doesn't exist or isn't charged.
5725 	 * But we cannot move a tail-page in a THP.
5726 	 */
5727 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5728 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5729 		ret = MC_TARGET_SWAP;
5730 		if (target)
5731 			target->ent = ent;
5732 	}
5733 	return ret;
5734 }
5735 
5736 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5737 /*
5738  * We don't consider PMD mapped swapping or file mapped pages because THP does
5739  * not support them for now.
5740  * Caller should make sure that pmd_trans_huge(pmd) is true.
5741  */
5742 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5743 		unsigned long addr, pmd_t pmd, union mc_target *target)
5744 {
5745 	struct page *page = NULL;
5746 	enum mc_target_type ret = MC_TARGET_NONE;
5747 
5748 	if (unlikely(is_swap_pmd(pmd))) {
5749 		VM_BUG_ON(thp_migration_supported() &&
5750 				  !is_pmd_migration_entry(pmd));
5751 		return ret;
5752 	}
5753 	page = pmd_page(pmd);
5754 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5755 	if (!(mc.flags & MOVE_ANON))
5756 		return ret;
5757 	if (page_memcg(page) == mc.from) {
5758 		ret = MC_TARGET_PAGE;
5759 		if (target) {
5760 			get_page(page);
5761 			target->page = page;
5762 		}
5763 	}
5764 	return ret;
5765 }
5766 #else
5767 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5768 		unsigned long addr, pmd_t pmd, union mc_target *target)
5769 {
5770 	return MC_TARGET_NONE;
5771 }
5772 #endif
5773 
5774 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5775 					unsigned long addr, unsigned long end,
5776 					struct mm_walk *walk)
5777 {
5778 	struct vm_area_struct *vma = walk->vma;
5779 	pte_t *pte;
5780 	spinlock_t *ptl;
5781 
5782 	ptl = pmd_trans_huge_lock(pmd, vma);
5783 	if (ptl) {
5784 		/*
5785 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5786 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5787 		 * this might change.
5788 		 */
5789 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5790 			mc.precharge += HPAGE_PMD_NR;
5791 		spin_unlock(ptl);
5792 		return 0;
5793 	}
5794 
5795 	if (pmd_trans_unstable(pmd))
5796 		return 0;
5797 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5798 	for (; addr != end; pte++, addr += PAGE_SIZE)
5799 		if (get_mctgt_type(vma, addr, *pte, NULL))
5800 			mc.precharge++;	/* increment precharge temporarily */
5801 	pte_unmap_unlock(pte - 1, ptl);
5802 	cond_resched();
5803 
5804 	return 0;
5805 }
5806 
5807 static const struct mm_walk_ops precharge_walk_ops = {
5808 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5809 };
5810 
5811 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5812 {
5813 	unsigned long precharge;
5814 
5815 	mmap_read_lock(mm);
5816 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5817 	mmap_read_unlock(mm);
5818 
5819 	precharge = mc.precharge;
5820 	mc.precharge = 0;
5821 
5822 	return precharge;
5823 }
5824 
5825 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5826 {
5827 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5828 
5829 	VM_BUG_ON(mc.moving_task);
5830 	mc.moving_task = current;
5831 	return mem_cgroup_do_precharge(precharge);
5832 }
5833 
5834 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5835 static void __mem_cgroup_clear_mc(void)
5836 {
5837 	struct mem_cgroup *from = mc.from;
5838 	struct mem_cgroup *to = mc.to;
5839 
5840 	/* we must uncharge all the leftover precharges from mc.to */
5841 	if (mc.precharge) {
5842 		cancel_charge(mc.to, mc.precharge);
5843 		mc.precharge = 0;
5844 	}
5845 	/*
5846 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5847 	 * we must uncharge here.
5848 	 */
5849 	if (mc.moved_charge) {
5850 		cancel_charge(mc.from, mc.moved_charge);
5851 		mc.moved_charge = 0;
5852 	}
5853 	/* we must fixup refcnts and charges */
5854 	if (mc.moved_swap) {
5855 		/* uncharge swap account from the old cgroup */
5856 		if (!mem_cgroup_is_root(mc.from))
5857 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5858 
5859 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5860 
5861 		/*
5862 		 * we charged both to->memory and to->memsw, so we
5863 		 * should uncharge to->memory.
5864 		 */
5865 		if (!mem_cgroup_is_root(mc.to))
5866 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5867 
5868 		mc.moved_swap = 0;
5869 	}
5870 	memcg_oom_recover(from);
5871 	memcg_oom_recover(to);
5872 	wake_up_all(&mc.waitq);
5873 }
5874 
5875 static void mem_cgroup_clear_mc(void)
5876 {
5877 	struct mm_struct *mm = mc.mm;
5878 
5879 	/*
5880 	 * we must clear moving_task before waking up waiters at the end of
5881 	 * task migration.
5882 	 */
5883 	mc.moving_task = NULL;
5884 	__mem_cgroup_clear_mc();
5885 	spin_lock(&mc.lock);
5886 	mc.from = NULL;
5887 	mc.to = NULL;
5888 	mc.mm = NULL;
5889 	spin_unlock(&mc.lock);
5890 
5891 	mmput(mm);
5892 }
5893 
5894 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5895 {
5896 	struct cgroup_subsys_state *css;
5897 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5898 	struct mem_cgroup *from;
5899 	struct task_struct *leader, *p;
5900 	struct mm_struct *mm;
5901 	unsigned long move_flags;
5902 	int ret = 0;
5903 
5904 	/* charge immigration isn't supported on the default hierarchy */
5905 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5906 		return 0;
5907 
5908 	/*
5909 	 * Multi-process migrations only happen on the default hierarchy
5910 	 * where charge immigration is not used.  Perform charge
5911 	 * immigration if @tset contains a leader and whine if there are
5912 	 * multiple.
5913 	 */
5914 	p = NULL;
5915 	cgroup_taskset_for_each_leader(leader, css, tset) {
5916 		WARN_ON_ONCE(p);
5917 		p = leader;
5918 		memcg = mem_cgroup_from_css(css);
5919 	}
5920 	if (!p)
5921 		return 0;
5922 
5923 	/*
5924 	 * We are now committed to this value whatever it is. Changes in this
5925 	 * tunable will only affect upcoming migrations, not the current one.
5926 	 * So we need to save it, and keep it going.
5927 	 */
5928 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5929 	if (!move_flags)
5930 		return 0;
5931 
5932 	from = mem_cgroup_from_task(p);
5933 
5934 	VM_BUG_ON(from == memcg);
5935 
5936 	mm = get_task_mm(p);
5937 	if (!mm)
5938 		return 0;
5939 	/* We move charges only when we move a owner of the mm */
5940 	if (mm->owner == p) {
5941 		VM_BUG_ON(mc.from);
5942 		VM_BUG_ON(mc.to);
5943 		VM_BUG_ON(mc.precharge);
5944 		VM_BUG_ON(mc.moved_charge);
5945 		VM_BUG_ON(mc.moved_swap);
5946 
5947 		spin_lock(&mc.lock);
5948 		mc.mm = mm;
5949 		mc.from = from;
5950 		mc.to = memcg;
5951 		mc.flags = move_flags;
5952 		spin_unlock(&mc.lock);
5953 		/* We set mc.moving_task later */
5954 
5955 		ret = mem_cgroup_precharge_mc(mm);
5956 		if (ret)
5957 			mem_cgroup_clear_mc();
5958 	} else {
5959 		mmput(mm);
5960 	}
5961 	return ret;
5962 }
5963 
5964 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5965 {
5966 	if (mc.to)
5967 		mem_cgroup_clear_mc();
5968 }
5969 
5970 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5971 				unsigned long addr, unsigned long end,
5972 				struct mm_walk *walk)
5973 {
5974 	int ret = 0;
5975 	struct vm_area_struct *vma = walk->vma;
5976 	pte_t *pte;
5977 	spinlock_t *ptl;
5978 	enum mc_target_type target_type;
5979 	union mc_target target;
5980 	struct page *page;
5981 
5982 	ptl = pmd_trans_huge_lock(pmd, vma);
5983 	if (ptl) {
5984 		if (mc.precharge < HPAGE_PMD_NR) {
5985 			spin_unlock(ptl);
5986 			return 0;
5987 		}
5988 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5989 		if (target_type == MC_TARGET_PAGE) {
5990 			page = target.page;
5991 			if (!isolate_lru_page(page)) {
5992 				if (!mem_cgroup_move_account(page, true,
5993 							     mc.from, mc.to)) {
5994 					mc.precharge -= HPAGE_PMD_NR;
5995 					mc.moved_charge += HPAGE_PMD_NR;
5996 				}
5997 				putback_lru_page(page);
5998 			}
5999 			put_page(page);
6000 		} else if (target_type == MC_TARGET_DEVICE) {
6001 			page = target.page;
6002 			if (!mem_cgroup_move_account(page, true,
6003 						     mc.from, mc.to)) {
6004 				mc.precharge -= HPAGE_PMD_NR;
6005 				mc.moved_charge += HPAGE_PMD_NR;
6006 			}
6007 			put_page(page);
6008 		}
6009 		spin_unlock(ptl);
6010 		return 0;
6011 	}
6012 
6013 	if (pmd_trans_unstable(pmd))
6014 		return 0;
6015 retry:
6016 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6017 	for (; addr != end; addr += PAGE_SIZE) {
6018 		pte_t ptent = *(pte++);
6019 		bool device = false;
6020 		swp_entry_t ent;
6021 
6022 		if (!mc.precharge)
6023 			break;
6024 
6025 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6026 		case MC_TARGET_DEVICE:
6027 			device = true;
6028 			fallthrough;
6029 		case MC_TARGET_PAGE:
6030 			page = target.page;
6031 			/*
6032 			 * We can have a part of the split pmd here. Moving it
6033 			 * can be done but it would be too convoluted so simply
6034 			 * ignore such a partial THP and keep it in original
6035 			 * memcg. There should be somebody mapping the head.
6036 			 */
6037 			if (PageTransCompound(page))
6038 				goto put;
6039 			if (!device && isolate_lru_page(page))
6040 				goto put;
6041 			if (!mem_cgroup_move_account(page, false,
6042 						mc.from, mc.to)) {
6043 				mc.precharge--;
6044 				/* we uncharge from mc.from later. */
6045 				mc.moved_charge++;
6046 			}
6047 			if (!device)
6048 				putback_lru_page(page);
6049 put:			/* get_mctgt_type() gets the page */
6050 			put_page(page);
6051 			break;
6052 		case MC_TARGET_SWAP:
6053 			ent = target.ent;
6054 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6055 				mc.precharge--;
6056 				mem_cgroup_id_get_many(mc.to, 1);
6057 				/* we fixup other refcnts and charges later. */
6058 				mc.moved_swap++;
6059 			}
6060 			break;
6061 		default:
6062 			break;
6063 		}
6064 	}
6065 	pte_unmap_unlock(pte - 1, ptl);
6066 	cond_resched();
6067 
6068 	if (addr != end) {
6069 		/*
6070 		 * We have consumed all precharges we got in can_attach().
6071 		 * We try charge one by one, but don't do any additional
6072 		 * charges to mc.to if we have failed in charge once in attach()
6073 		 * phase.
6074 		 */
6075 		ret = mem_cgroup_do_precharge(1);
6076 		if (!ret)
6077 			goto retry;
6078 	}
6079 
6080 	return ret;
6081 }
6082 
6083 static const struct mm_walk_ops charge_walk_ops = {
6084 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6085 };
6086 
6087 static void mem_cgroup_move_charge(void)
6088 {
6089 	lru_add_drain_all();
6090 	/*
6091 	 * Signal lock_page_memcg() to take the memcg's move_lock
6092 	 * while we're moving its pages to another memcg. Then wait
6093 	 * for already started RCU-only updates to finish.
6094 	 */
6095 	atomic_inc(&mc.from->moving_account);
6096 	synchronize_rcu();
6097 retry:
6098 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6099 		/*
6100 		 * Someone who are holding the mmap_lock might be waiting in
6101 		 * waitq. So we cancel all extra charges, wake up all waiters,
6102 		 * and retry. Because we cancel precharges, we might not be able
6103 		 * to move enough charges, but moving charge is a best-effort
6104 		 * feature anyway, so it wouldn't be a big problem.
6105 		 */
6106 		__mem_cgroup_clear_mc();
6107 		cond_resched();
6108 		goto retry;
6109 	}
6110 	/*
6111 	 * When we have consumed all precharges and failed in doing
6112 	 * additional charge, the page walk just aborts.
6113 	 */
6114 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6115 			NULL);
6116 
6117 	mmap_read_unlock(mc.mm);
6118 	atomic_dec(&mc.from->moving_account);
6119 }
6120 
6121 static void mem_cgroup_move_task(void)
6122 {
6123 	if (mc.to) {
6124 		mem_cgroup_move_charge();
6125 		mem_cgroup_clear_mc();
6126 	}
6127 }
6128 #else	/* !CONFIG_MMU */
6129 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6130 {
6131 	return 0;
6132 }
6133 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6134 {
6135 }
6136 static void mem_cgroup_move_task(void)
6137 {
6138 }
6139 #endif
6140 
6141 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6142 {
6143 	if (value == PAGE_COUNTER_MAX)
6144 		seq_puts(m, "max\n");
6145 	else
6146 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6147 
6148 	return 0;
6149 }
6150 
6151 static u64 memory_current_read(struct cgroup_subsys_state *css,
6152 			       struct cftype *cft)
6153 {
6154 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6155 
6156 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6157 }
6158 
6159 static int memory_min_show(struct seq_file *m, void *v)
6160 {
6161 	return seq_puts_memcg_tunable(m,
6162 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6163 }
6164 
6165 static ssize_t memory_min_write(struct kernfs_open_file *of,
6166 				char *buf, size_t nbytes, loff_t off)
6167 {
6168 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6169 	unsigned long min;
6170 	int err;
6171 
6172 	buf = strstrip(buf);
6173 	err = page_counter_memparse(buf, "max", &min);
6174 	if (err)
6175 		return err;
6176 
6177 	page_counter_set_min(&memcg->memory, min);
6178 
6179 	return nbytes;
6180 }
6181 
6182 static int memory_low_show(struct seq_file *m, void *v)
6183 {
6184 	return seq_puts_memcg_tunable(m,
6185 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6186 }
6187 
6188 static ssize_t memory_low_write(struct kernfs_open_file *of,
6189 				char *buf, size_t nbytes, loff_t off)
6190 {
6191 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6192 	unsigned long low;
6193 	int err;
6194 
6195 	buf = strstrip(buf);
6196 	err = page_counter_memparse(buf, "max", &low);
6197 	if (err)
6198 		return err;
6199 
6200 	page_counter_set_low(&memcg->memory, low);
6201 
6202 	return nbytes;
6203 }
6204 
6205 static int memory_high_show(struct seq_file *m, void *v)
6206 {
6207 	return seq_puts_memcg_tunable(m,
6208 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6209 }
6210 
6211 static ssize_t memory_high_write(struct kernfs_open_file *of,
6212 				 char *buf, size_t nbytes, loff_t off)
6213 {
6214 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6215 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6216 	bool drained = false;
6217 	unsigned long high;
6218 	int err;
6219 
6220 	buf = strstrip(buf);
6221 	err = page_counter_memparse(buf, "max", &high);
6222 	if (err)
6223 		return err;
6224 
6225 	page_counter_set_high(&memcg->memory, high);
6226 
6227 	for (;;) {
6228 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6229 		unsigned long reclaimed;
6230 
6231 		if (nr_pages <= high)
6232 			break;
6233 
6234 		if (signal_pending(current))
6235 			break;
6236 
6237 		if (!drained) {
6238 			drain_all_stock(memcg);
6239 			drained = true;
6240 			continue;
6241 		}
6242 
6243 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6244 							 GFP_KERNEL, true);
6245 
6246 		if (!reclaimed && !nr_retries--)
6247 			break;
6248 	}
6249 
6250 	memcg_wb_domain_size_changed(memcg);
6251 	return nbytes;
6252 }
6253 
6254 static int memory_max_show(struct seq_file *m, void *v)
6255 {
6256 	return seq_puts_memcg_tunable(m,
6257 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6258 }
6259 
6260 static ssize_t memory_max_write(struct kernfs_open_file *of,
6261 				char *buf, size_t nbytes, loff_t off)
6262 {
6263 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6264 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6265 	bool drained = false;
6266 	unsigned long max;
6267 	int err;
6268 
6269 	buf = strstrip(buf);
6270 	err = page_counter_memparse(buf, "max", &max);
6271 	if (err)
6272 		return err;
6273 
6274 	xchg(&memcg->memory.max, max);
6275 
6276 	for (;;) {
6277 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6278 
6279 		if (nr_pages <= max)
6280 			break;
6281 
6282 		if (signal_pending(current))
6283 			break;
6284 
6285 		if (!drained) {
6286 			drain_all_stock(memcg);
6287 			drained = true;
6288 			continue;
6289 		}
6290 
6291 		if (nr_reclaims) {
6292 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6293 							  GFP_KERNEL, true))
6294 				nr_reclaims--;
6295 			continue;
6296 		}
6297 
6298 		memcg_memory_event(memcg, MEMCG_OOM);
6299 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6300 			break;
6301 	}
6302 
6303 	memcg_wb_domain_size_changed(memcg);
6304 	return nbytes;
6305 }
6306 
6307 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6308 {
6309 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6310 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6311 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6312 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6313 	seq_printf(m, "oom_kill %lu\n",
6314 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6315 }
6316 
6317 static int memory_events_show(struct seq_file *m, void *v)
6318 {
6319 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6320 
6321 	__memory_events_show(m, memcg->memory_events);
6322 	return 0;
6323 }
6324 
6325 static int memory_events_local_show(struct seq_file *m, void *v)
6326 {
6327 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6328 
6329 	__memory_events_show(m, memcg->memory_events_local);
6330 	return 0;
6331 }
6332 
6333 static int memory_stat_show(struct seq_file *m, void *v)
6334 {
6335 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6336 	char *buf;
6337 
6338 	buf = memory_stat_format(memcg);
6339 	if (!buf)
6340 		return -ENOMEM;
6341 	seq_puts(m, buf);
6342 	kfree(buf);
6343 	return 0;
6344 }
6345 
6346 #ifdef CONFIG_NUMA
6347 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6348 						     int item)
6349 {
6350 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6351 }
6352 
6353 static int memory_numa_stat_show(struct seq_file *m, void *v)
6354 {
6355 	int i;
6356 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6357 
6358 	mem_cgroup_flush_stats();
6359 
6360 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6361 		int nid;
6362 
6363 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6364 			continue;
6365 
6366 		seq_printf(m, "%s", memory_stats[i].name);
6367 		for_each_node_state(nid, N_MEMORY) {
6368 			u64 size;
6369 			struct lruvec *lruvec;
6370 
6371 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6372 			size = lruvec_page_state_output(lruvec,
6373 							memory_stats[i].idx);
6374 			seq_printf(m, " N%d=%llu", nid, size);
6375 		}
6376 		seq_putc(m, '\n');
6377 	}
6378 
6379 	return 0;
6380 }
6381 #endif
6382 
6383 static int memory_oom_group_show(struct seq_file *m, void *v)
6384 {
6385 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6386 
6387 	seq_printf(m, "%d\n", memcg->oom_group);
6388 
6389 	return 0;
6390 }
6391 
6392 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6393 				      char *buf, size_t nbytes, loff_t off)
6394 {
6395 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6396 	int ret, oom_group;
6397 
6398 	buf = strstrip(buf);
6399 	if (!buf)
6400 		return -EINVAL;
6401 
6402 	ret = kstrtoint(buf, 0, &oom_group);
6403 	if (ret)
6404 		return ret;
6405 
6406 	if (oom_group != 0 && oom_group != 1)
6407 		return -EINVAL;
6408 
6409 	memcg->oom_group = oom_group;
6410 
6411 	return nbytes;
6412 }
6413 
6414 static struct cftype memory_files[] = {
6415 	{
6416 		.name = "current",
6417 		.flags = CFTYPE_NOT_ON_ROOT,
6418 		.read_u64 = memory_current_read,
6419 	},
6420 	{
6421 		.name = "min",
6422 		.flags = CFTYPE_NOT_ON_ROOT,
6423 		.seq_show = memory_min_show,
6424 		.write = memory_min_write,
6425 	},
6426 	{
6427 		.name = "low",
6428 		.flags = CFTYPE_NOT_ON_ROOT,
6429 		.seq_show = memory_low_show,
6430 		.write = memory_low_write,
6431 	},
6432 	{
6433 		.name = "high",
6434 		.flags = CFTYPE_NOT_ON_ROOT,
6435 		.seq_show = memory_high_show,
6436 		.write = memory_high_write,
6437 	},
6438 	{
6439 		.name = "max",
6440 		.flags = CFTYPE_NOT_ON_ROOT,
6441 		.seq_show = memory_max_show,
6442 		.write = memory_max_write,
6443 	},
6444 	{
6445 		.name = "events",
6446 		.flags = CFTYPE_NOT_ON_ROOT,
6447 		.file_offset = offsetof(struct mem_cgroup, events_file),
6448 		.seq_show = memory_events_show,
6449 	},
6450 	{
6451 		.name = "events.local",
6452 		.flags = CFTYPE_NOT_ON_ROOT,
6453 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6454 		.seq_show = memory_events_local_show,
6455 	},
6456 	{
6457 		.name = "stat",
6458 		.seq_show = memory_stat_show,
6459 	},
6460 #ifdef CONFIG_NUMA
6461 	{
6462 		.name = "numa_stat",
6463 		.seq_show = memory_numa_stat_show,
6464 	},
6465 #endif
6466 	{
6467 		.name = "oom.group",
6468 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6469 		.seq_show = memory_oom_group_show,
6470 		.write = memory_oom_group_write,
6471 	},
6472 	{ }	/* terminate */
6473 };
6474 
6475 struct cgroup_subsys memory_cgrp_subsys = {
6476 	.css_alloc = mem_cgroup_css_alloc,
6477 	.css_online = mem_cgroup_css_online,
6478 	.css_offline = mem_cgroup_css_offline,
6479 	.css_released = mem_cgroup_css_released,
6480 	.css_free = mem_cgroup_css_free,
6481 	.css_reset = mem_cgroup_css_reset,
6482 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6483 	.can_attach = mem_cgroup_can_attach,
6484 	.cancel_attach = mem_cgroup_cancel_attach,
6485 	.post_attach = mem_cgroup_move_task,
6486 	.dfl_cftypes = memory_files,
6487 	.legacy_cftypes = mem_cgroup_legacy_files,
6488 	.early_init = 0,
6489 };
6490 
6491 /*
6492  * This function calculates an individual cgroup's effective
6493  * protection which is derived from its own memory.min/low, its
6494  * parent's and siblings' settings, as well as the actual memory
6495  * distribution in the tree.
6496  *
6497  * The following rules apply to the effective protection values:
6498  *
6499  * 1. At the first level of reclaim, effective protection is equal to
6500  *    the declared protection in memory.min and memory.low.
6501  *
6502  * 2. To enable safe delegation of the protection configuration, at
6503  *    subsequent levels the effective protection is capped to the
6504  *    parent's effective protection.
6505  *
6506  * 3. To make complex and dynamic subtrees easier to configure, the
6507  *    user is allowed to overcommit the declared protection at a given
6508  *    level. If that is the case, the parent's effective protection is
6509  *    distributed to the children in proportion to how much protection
6510  *    they have declared and how much of it they are utilizing.
6511  *
6512  *    This makes distribution proportional, but also work-conserving:
6513  *    if one cgroup claims much more protection than it uses memory,
6514  *    the unused remainder is available to its siblings.
6515  *
6516  * 4. Conversely, when the declared protection is undercommitted at a
6517  *    given level, the distribution of the larger parental protection
6518  *    budget is NOT proportional. A cgroup's protection from a sibling
6519  *    is capped to its own memory.min/low setting.
6520  *
6521  * 5. However, to allow protecting recursive subtrees from each other
6522  *    without having to declare each individual cgroup's fixed share
6523  *    of the ancestor's claim to protection, any unutilized -
6524  *    "floating" - protection from up the tree is distributed in
6525  *    proportion to each cgroup's *usage*. This makes the protection
6526  *    neutral wrt sibling cgroups and lets them compete freely over
6527  *    the shared parental protection budget, but it protects the
6528  *    subtree as a whole from neighboring subtrees.
6529  *
6530  * Note that 4. and 5. are not in conflict: 4. is about protecting
6531  * against immediate siblings whereas 5. is about protecting against
6532  * neighboring subtrees.
6533  */
6534 static unsigned long effective_protection(unsigned long usage,
6535 					  unsigned long parent_usage,
6536 					  unsigned long setting,
6537 					  unsigned long parent_effective,
6538 					  unsigned long siblings_protected)
6539 {
6540 	unsigned long protected;
6541 	unsigned long ep;
6542 
6543 	protected = min(usage, setting);
6544 	/*
6545 	 * If all cgroups at this level combined claim and use more
6546 	 * protection then what the parent affords them, distribute
6547 	 * shares in proportion to utilization.
6548 	 *
6549 	 * We are using actual utilization rather than the statically
6550 	 * claimed protection in order to be work-conserving: claimed
6551 	 * but unused protection is available to siblings that would
6552 	 * otherwise get a smaller chunk than what they claimed.
6553 	 */
6554 	if (siblings_protected > parent_effective)
6555 		return protected * parent_effective / siblings_protected;
6556 
6557 	/*
6558 	 * Ok, utilized protection of all children is within what the
6559 	 * parent affords them, so we know whatever this child claims
6560 	 * and utilizes is effectively protected.
6561 	 *
6562 	 * If there is unprotected usage beyond this value, reclaim
6563 	 * will apply pressure in proportion to that amount.
6564 	 *
6565 	 * If there is unutilized protection, the cgroup will be fully
6566 	 * shielded from reclaim, but we do return a smaller value for
6567 	 * protection than what the group could enjoy in theory. This
6568 	 * is okay. With the overcommit distribution above, effective
6569 	 * protection is always dependent on how memory is actually
6570 	 * consumed among the siblings anyway.
6571 	 */
6572 	ep = protected;
6573 
6574 	/*
6575 	 * If the children aren't claiming (all of) the protection
6576 	 * afforded to them by the parent, distribute the remainder in
6577 	 * proportion to the (unprotected) memory of each cgroup. That
6578 	 * way, cgroups that aren't explicitly prioritized wrt each
6579 	 * other compete freely over the allowance, but they are
6580 	 * collectively protected from neighboring trees.
6581 	 *
6582 	 * We're using unprotected memory for the weight so that if
6583 	 * some cgroups DO claim explicit protection, we don't protect
6584 	 * the same bytes twice.
6585 	 *
6586 	 * Check both usage and parent_usage against the respective
6587 	 * protected values. One should imply the other, but they
6588 	 * aren't read atomically - make sure the division is sane.
6589 	 */
6590 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6591 		return ep;
6592 	if (parent_effective > siblings_protected &&
6593 	    parent_usage > siblings_protected &&
6594 	    usage > protected) {
6595 		unsigned long unclaimed;
6596 
6597 		unclaimed = parent_effective - siblings_protected;
6598 		unclaimed *= usage - protected;
6599 		unclaimed /= parent_usage - siblings_protected;
6600 
6601 		ep += unclaimed;
6602 	}
6603 
6604 	return ep;
6605 }
6606 
6607 /**
6608  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6609  * @root: the top ancestor of the sub-tree being checked
6610  * @memcg: the memory cgroup to check
6611  *
6612  * WARNING: This function is not stateless! It can only be used as part
6613  *          of a top-down tree iteration, not for isolated queries.
6614  */
6615 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6616 				     struct mem_cgroup *memcg)
6617 {
6618 	unsigned long usage, parent_usage;
6619 	struct mem_cgroup *parent;
6620 
6621 	if (mem_cgroup_disabled())
6622 		return;
6623 
6624 	if (!root)
6625 		root = root_mem_cgroup;
6626 
6627 	/*
6628 	 * Effective values of the reclaim targets are ignored so they
6629 	 * can be stale. Have a look at mem_cgroup_protection for more
6630 	 * details.
6631 	 * TODO: calculation should be more robust so that we do not need
6632 	 * that special casing.
6633 	 */
6634 	if (memcg == root)
6635 		return;
6636 
6637 	usage = page_counter_read(&memcg->memory);
6638 	if (!usage)
6639 		return;
6640 
6641 	parent = parent_mem_cgroup(memcg);
6642 	/* No parent means a non-hierarchical mode on v1 memcg */
6643 	if (!parent)
6644 		return;
6645 
6646 	if (parent == root) {
6647 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6648 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6649 		return;
6650 	}
6651 
6652 	parent_usage = page_counter_read(&parent->memory);
6653 
6654 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6655 			READ_ONCE(memcg->memory.min),
6656 			READ_ONCE(parent->memory.emin),
6657 			atomic_long_read(&parent->memory.children_min_usage)));
6658 
6659 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6660 			READ_ONCE(memcg->memory.low),
6661 			READ_ONCE(parent->memory.elow),
6662 			atomic_long_read(&parent->memory.children_low_usage)));
6663 }
6664 
6665 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6666 			gfp_t gfp)
6667 {
6668 	long nr_pages = folio_nr_pages(folio);
6669 	int ret;
6670 
6671 	ret = try_charge(memcg, gfp, nr_pages);
6672 	if (ret)
6673 		goto out;
6674 
6675 	css_get(&memcg->css);
6676 	commit_charge(folio, memcg);
6677 
6678 	local_irq_disable();
6679 	mem_cgroup_charge_statistics(memcg, nr_pages);
6680 	memcg_check_events(memcg, folio_nid(folio));
6681 	local_irq_enable();
6682 out:
6683 	return ret;
6684 }
6685 
6686 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6687 {
6688 	struct mem_cgroup *memcg;
6689 	int ret;
6690 
6691 	memcg = get_mem_cgroup_from_mm(mm);
6692 	ret = charge_memcg(folio, memcg, gfp);
6693 	css_put(&memcg->css);
6694 
6695 	return ret;
6696 }
6697 
6698 /**
6699  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6700  * @page: page to charge
6701  * @mm: mm context of the victim
6702  * @gfp: reclaim mode
6703  * @entry: swap entry for which the page is allocated
6704  *
6705  * This function charges a page allocated for swapin. Please call this before
6706  * adding the page to the swapcache.
6707  *
6708  * Returns 0 on success. Otherwise, an error code is returned.
6709  */
6710 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6711 				  gfp_t gfp, swp_entry_t entry)
6712 {
6713 	struct folio *folio = page_folio(page);
6714 	struct mem_cgroup *memcg;
6715 	unsigned short id;
6716 	int ret;
6717 
6718 	if (mem_cgroup_disabled())
6719 		return 0;
6720 
6721 	id = lookup_swap_cgroup_id(entry);
6722 	rcu_read_lock();
6723 	memcg = mem_cgroup_from_id(id);
6724 	if (!memcg || !css_tryget_online(&memcg->css))
6725 		memcg = get_mem_cgroup_from_mm(mm);
6726 	rcu_read_unlock();
6727 
6728 	ret = charge_memcg(folio, memcg, gfp);
6729 
6730 	css_put(&memcg->css);
6731 	return ret;
6732 }
6733 
6734 /*
6735  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6736  * @entry: swap entry for which the page is charged
6737  *
6738  * Call this function after successfully adding the charged page to swapcache.
6739  *
6740  * Note: This function assumes the page for which swap slot is being uncharged
6741  * is order 0 page.
6742  */
6743 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6744 {
6745 	/*
6746 	 * Cgroup1's unified memory+swap counter has been charged with the
6747 	 * new swapcache page, finish the transfer by uncharging the swap
6748 	 * slot. The swap slot would also get uncharged when it dies, but
6749 	 * it can stick around indefinitely and we'd count the page twice
6750 	 * the entire time.
6751 	 *
6752 	 * Cgroup2 has separate resource counters for memory and swap,
6753 	 * so this is a non-issue here. Memory and swap charge lifetimes
6754 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6755 	 * page to memory here, and uncharge swap when the slot is freed.
6756 	 */
6757 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6758 		/*
6759 		 * The swap entry might not get freed for a long time,
6760 		 * let's not wait for it.  The page already received a
6761 		 * memory+swap charge, drop the swap entry duplicate.
6762 		 */
6763 		mem_cgroup_uncharge_swap(entry, 1);
6764 	}
6765 }
6766 
6767 struct uncharge_gather {
6768 	struct mem_cgroup *memcg;
6769 	unsigned long nr_memory;
6770 	unsigned long pgpgout;
6771 	unsigned long nr_kmem;
6772 	int nid;
6773 };
6774 
6775 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6776 {
6777 	memset(ug, 0, sizeof(*ug));
6778 }
6779 
6780 static void uncharge_batch(const struct uncharge_gather *ug)
6781 {
6782 	unsigned long flags;
6783 
6784 	if (ug->nr_memory) {
6785 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6786 		if (do_memsw_account())
6787 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6788 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6789 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6790 		memcg_oom_recover(ug->memcg);
6791 	}
6792 
6793 	local_irq_save(flags);
6794 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6795 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6796 	memcg_check_events(ug->memcg, ug->nid);
6797 	local_irq_restore(flags);
6798 
6799 	/* drop reference from uncharge_folio */
6800 	css_put(&ug->memcg->css);
6801 }
6802 
6803 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6804 {
6805 	long nr_pages;
6806 	struct mem_cgroup *memcg;
6807 	struct obj_cgroup *objcg;
6808 	bool use_objcg = folio_memcg_kmem(folio);
6809 
6810 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6811 
6812 	/*
6813 	 * Nobody should be changing or seriously looking at
6814 	 * folio memcg or objcg at this point, we have fully
6815 	 * exclusive access to the folio.
6816 	 */
6817 	if (use_objcg) {
6818 		objcg = __folio_objcg(folio);
6819 		/*
6820 		 * This get matches the put at the end of the function and
6821 		 * kmem pages do not hold memcg references anymore.
6822 		 */
6823 		memcg = get_mem_cgroup_from_objcg(objcg);
6824 	} else {
6825 		memcg = __folio_memcg(folio);
6826 	}
6827 
6828 	if (!memcg)
6829 		return;
6830 
6831 	if (ug->memcg != memcg) {
6832 		if (ug->memcg) {
6833 			uncharge_batch(ug);
6834 			uncharge_gather_clear(ug);
6835 		}
6836 		ug->memcg = memcg;
6837 		ug->nid = folio_nid(folio);
6838 
6839 		/* pairs with css_put in uncharge_batch */
6840 		css_get(&memcg->css);
6841 	}
6842 
6843 	nr_pages = folio_nr_pages(folio);
6844 
6845 	if (use_objcg) {
6846 		ug->nr_memory += nr_pages;
6847 		ug->nr_kmem += nr_pages;
6848 
6849 		folio->memcg_data = 0;
6850 		obj_cgroup_put(objcg);
6851 	} else {
6852 		/* LRU pages aren't accounted at the root level */
6853 		if (!mem_cgroup_is_root(memcg))
6854 			ug->nr_memory += nr_pages;
6855 		ug->pgpgout++;
6856 
6857 		folio->memcg_data = 0;
6858 	}
6859 
6860 	css_put(&memcg->css);
6861 }
6862 
6863 void __mem_cgroup_uncharge(struct folio *folio)
6864 {
6865 	struct uncharge_gather ug;
6866 
6867 	/* Don't touch folio->lru of any random page, pre-check: */
6868 	if (!folio_memcg(folio))
6869 		return;
6870 
6871 	uncharge_gather_clear(&ug);
6872 	uncharge_folio(folio, &ug);
6873 	uncharge_batch(&ug);
6874 }
6875 
6876 /**
6877  * __mem_cgroup_uncharge_list - uncharge a list of page
6878  * @page_list: list of pages to uncharge
6879  *
6880  * Uncharge a list of pages previously charged with
6881  * __mem_cgroup_charge().
6882  */
6883 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6884 {
6885 	struct uncharge_gather ug;
6886 	struct folio *folio;
6887 
6888 	uncharge_gather_clear(&ug);
6889 	list_for_each_entry(folio, page_list, lru)
6890 		uncharge_folio(folio, &ug);
6891 	if (ug.memcg)
6892 		uncharge_batch(&ug);
6893 }
6894 
6895 /**
6896  * mem_cgroup_migrate - Charge a folio's replacement.
6897  * @old: Currently circulating folio.
6898  * @new: Replacement folio.
6899  *
6900  * Charge @new as a replacement folio for @old. @old will
6901  * be uncharged upon free.
6902  *
6903  * Both folios must be locked, @new->mapping must be set up.
6904  */
6905 void mem_cgroup_migrate(struct folio *old, struct folio *new)
6906 {
6907 	struct mem_cgroup *memcg;
6908 	long nr_pages = folio_nr_pages(new);
6909 	unsigned long flags;
6910 
6911 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6912 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6913 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6914 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6915 
6916 	if (mem_cgroup_disabled())
6917 		return;
6918 
6919 	/* Page cache replacement: new folio already charged? */
6920 	if (folio_memcg(new))
6921 		return;
6922 
6923 	memcg = folio_memcg(old);
6924 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6925 	if (!memcg)
6926 		return;
6927 
6928 	/* Force-charge the new page. The old one will be freed soon */
6929 	if (!mem_cgroup_is_root(memcg)) {
6930 		page_counter_charge(&memcg->memory, nr_pages);
6931 		if (do_memsw_account())
6932 			page_counter_charge(&memcg->memsw, nr_pages);
6933 	}
6934 
6935 	css_get(&memcg->css);
6936 	commit_charge(new, memcg);
6937 
6938 	local_irq_save(flags);
6939 	mem_cgroup_charge_statistics(memcg, nr_pages);
6940 	memcg_check_events(memcg, folio_nid(new));
6941 	local_irq_restore(flags);
6942 }
6943 
6944 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6945 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6946 
6947 void mem_cgroup_sk_alloc(struct sock *sk)
6948 {
6949 	struct mem_cgroup *memcg;
6950 
6951 	if (!mem_cgroup_sockets_enabled)
6952 		return;
6953 
6954 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6955 	if (in_interrupt())
6956 		return;
6957 
6958 	rcu_read_lock();
6959 	memcg = mem_cgroup_from_task(current);
6960 	if (memcg == root_mem_cgroup)
6961 		goto out;
6962 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6963 		goto out;
6964 	if (css_tryget(&memcg->css))
6965 		sk->sk_memcg = memcg;
6966 out:
6967 	rcu_read_unlock();
6968 }
6969 
6970 void mem_cgroup_sk_free(struct sock *sk)
6971 {
6972 	if (sk->sk_memcg)
6973 		css_put(&sk->sk_memcg->css);
6974 }
6975 
6976 /**
6977  * mem_cgroup_charge_skmem - charge socket memory
6978  * @memcg: memcg to charge
6979  * @nr_pages: number of pages to charge
6980  * @gfp_mask: reclaim mode
6981  *
6982  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6983  * @memcg's configured limit, %false if it doesn't.
6984  */
6985 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
6986 			     gfp_t gfp_mask)
6987 {
6988 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6989 		struct page_counter *fail;
6990 
6991 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6992 			memcg->tcpmem_pressure = 0;
6993 			return true;
6994 		}
6995 		memcg->tcpmem_pressure = 1;
6996 		if (gfp_mask & __GFP_NOFAIL) {
6997 			page_counter_charge(&memcg->tcpmem, nr_pages);
6998 			return true;
6999 		}
7000 		return false;
7001 	}
7002 
7003 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7004 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7005 		return true;
7006 	}
7007 
7008 	return false;
7009 }
7010 
7011 /**
7012  * mem_cgroup_uncharge_skmem - uncharge socket memory
7013  * @memcg: memcg to uncharge
7014  * @nr_pages: number of pages to uncharge
7015  */
7016 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7017 {
7018 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7019 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7020 		return;
7021 	}
7022 
7023 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7024 
7025 	refill_stock(memcg, nr_pages);
7026 }
7027 
7028 static int __init cgroup_memory(char *s)
7029 {
7030 	char *token;
7031 
7032 	while ((token = strsep(&s, ",")) != NULL) {
7033 		if (!*token)
7034 			continue;
7035 		if (!strcmp(token, "nosocket"))
7036 			cgroup_memory_nosocket = true;
7037 		if (!strcmp(token, "nokmem"))
7038 			cgroup_memory_nokmem = true;
7039 	}
7040 	return 0;
7041 }
7042 __setup("cgroup.memory=", cgroup_memory);
7043 
7044 /*
7045  * subsys_initcall() for memory controller.
7046  *
7047  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7048  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7049  * basically everything that doesn't depend on a specific mem_cgroup structure
7050  * should be initialized from here.
7051  */
7052 static int __init mem_cgroup_init(void)
7053 {
7054 	int cpu, node;
7055 
7056 	/*
7057 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7058 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7059 	 * to work fine, we should make sure that the overfill threshold can't
7060 	 * exceed S32_MAX / PAGE_SIZE.
7061 	 */
7062 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7063 
7064 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7065 				  memcg_hotplug_cpu_dead);
7066 
7067 	for_each_possible_cpu(cpu)
7068 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7069 			  drain_local_stock);
7070 
7071 	for_each_node(node) {
7072 		struct mem_cgroup_tree_per_node *rtpn;
7073 
7074 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7075 				    node_online(node) ? node : NUMA_NO_NODE);
7076 
7077 		rtpn->rb_root = RB_ROOT;
7078 		rtpn->rb_rightmost = NULL;
7079 		spin_lock_init(&rtpn->lock);
7080 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7081 	}
7082 
7083 	return 0;
7084 }
7085 subsys_initcall(mem_cgroup_init);
7086 
7087 #ifdef CONFIG_MEMCG_SWAP
7088 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7089 {
7090 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7091 		/*
7092 		 * The root cgroup cannot be destroyed, so it's refcount must
7093 		 * always be >= 1.
7094 		 */
7095 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7096 			VM_BUG_ON(1);
7097 			break;
7098 		}
7099 		memcg = parent_mem_cgroup(memcg);
7100 		if (!memcg)
7101 			memcg = root_mem_cgroup;
7102 	}
7103 	return memcg;
7104 }
7105 
7106 /**
7107  * mem_cgroup_swapout - transfer a memsw charge to swap
7108  * @page: page whose memsw charge to transfer
7109  * @entry: swap entry to move the charge to
7110  *
7111  * Transfer the memsw charge of @page to @entry.
7112  */
7113 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7114 {
7115 	struct mem_cgroup *memcg, *swap_memcg;
7116 	unsigned int nr_entries;
7117 	unsigned short oldid;
7118 
7119 	VM_BUG_ON_PAGE(PageLRU(page), page);
7120 	VM_BUG_ON_PAGE(page_count(page), page);
7121 
7122 	if (mem_cgroup_disabled())
7123 		return;
7124 
7125 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7126 		return;
7127 
7128 	memcg = page_memcg(page);
7129 
7130 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7131 	if (!memcg)
7132 		return;
7133 
7134 	/*
7135 	 * In case the memcg owning these pages has been offlined and doesn't
7136 	 * have an ID allocated to it anymore, charge the closest online
7137 	 * ancestor for the swap instead and transfer the memory+swap charge.
7138 	 */
7139 	swap_memcg = mem_cgroup_id_get_online(memcg);
7140 	nr_entries = thp_nr_pages(page);
7141 	/* Get references for the tail pages, too */
7142 	if (nr_entries > 1)
7143 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7144 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7145 				   nr_entries);
7146 	VM_BUG_ON_PAGE(oldid, page);
7147 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7148 
7149 	page->memcg_data = 0;
7150 
7151 	if (!mem_cgroup_is_root(memcg))
7152 		page_counter_uncharge(&memcg->memory, nr_entries);
7153 
7154 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7155 		if (!mem_cgroup_is_root(swap_memcg))
7156 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7157 		page_counter_uncharge(&memcg->memsw, nr_entries);
7158 	}
7159 
7160 	/*
7161 	 * Interrupts should be disabled here because the caller holds the
7162 	 * i_pages lock which is taken with interrupts-off. It is
7163 	 * important here to have the interrupts disabled because it is the
7164 	 * only synchronisation we have for updating the per-CPU variables.
7165 	 */
7166 	VM_BUG_ON(!irqs_disabled());
7167 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7168 	memcg_check_events(memcg, page_to_nid(page));
7169 
7170 	css_put(&memcg->css);
7171 }
7172 
7173 /**
7174  * __mem_cgroup_try_charge_swap - try charging swap space for a page
7175  * @page: page being added to swap
7176  * @entry: swap entry to charge
7177  *
7178  * Try to charge @page's memcg for the swap space at @entry.
7179  *
7180  * Returns 0 on success, -ENOMEM on failure.
7181  */
7182 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7183 {
7184 	unsigned int nr_pages = thp_nr_pages(page);
7185 	struct page_counter *counter;
7186 	struct mem_cgroup *memcg;
7187 	unsigned short oldid;
7188 
7189 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7190 		return 0;
7191 
7192 	memcg = page_memcg(page);
7193 
7194 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7195 	if (!memcg)
7196 		return 0;
7197 
7198 	if (!entry.val) {
7199 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7200 		return 0;
7201 	}
7202 
7203 	memcg = mem_cgroup_id_get_online(memcg);
7204 
7205 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7206 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7207 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7208 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7209 		mem_cgroup_id_put(memcg);
7210 		return -ENOMEM;
7211 	}
7212 
7213 	/* Get references for the tail pages, too */
7214 	if (nr_pages > 1)
7215 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7216 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7217 	VM_BUG_ON_PAGE(oldid, page);
7218 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7219 
7220 	return 0;
7221 }
7222 
7223 /**
7224  * __mem_cgroup_uncharge_swap - uncharge swap space
7225  * @entry: swap entry to uncharge
7226  * @nr_pages: the amount of swap space to uncharge
7227  */
7228 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7229 {
7230 	struct mem_cgroup *memcg;
7231 	unsigned short id;
7232 
7233 	id = swap_cgroup_record(entry, 0, nr_pages);
7234 	rcu_read_lock();
7235 	memcg = mem_cgroup_from_id(id);
7236 	if (memcg) {
7237 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7238 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7239 				page_counter_uncharge(&memcg->swap, nr_pages);
7240 			else
7241 				page_counter_uncharge(&memcg->memsw, nr_pages);
7242 		}
7243 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7244 		mem_cgroup_id_put_many(memcg, nr_pages);
7245 	}
7246 	rcu_read_unlock();
7247 }
7248 
7249 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7250 {
7251 	long nr_swap_pages = get_nr_swap_pages();
7252 
7253 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7254 		return nr_swap_pages;
7255 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7256 		nr_swap_pages = min_t(long, nr_swap_pages,
7257 				      READ_ONCE(memcg->swap.max) -
7258 				      page_counter_read(&memcg->swap));
7259 	return nr_swap_pages;
7260 }
7261 
7262 bool mem_cgroup_swap_full(struct page *page)
7263 {
7264 	struct mem_cgroup *memcg;
7265 
7266 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7267 
7268 	if (vm_swap_full())
7269 		return true;
7270 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7271 		return false;
7272 
7273 	memcg = page_memcg(page);
7274 	if (!memcg)
7275 		return false;
7276 
7277 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7278 		unsigned long usage = page_counter_read(&memcg->swap);
7279 
7280 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7281 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7282 			return true;
7283 	}
7284 
7285 	return false;
7286 }
7287 
7288 static int __init setup_swap_account(char *s)
7289 {
7290 	if (!strcmp(s, "1"))
7291 		cgroup_memory_noswap = false;
7292 	else if (!strcmp(s, "0"))
7293 		cgroup_memory_noswap = true;
7294 	return 1;
7295 }
7296 __setup("swapaccount=", setup_swap_account);
7297 
7298 static u64 swap_current_read(struct cgroup_subsys_state *css,
7299 			     struct cftype *cft)
7300 {
7301 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7302 
7303 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7304 }
7305 
7306 static int swap_high_show(struct seq_file *m, void *v)
7307 {
7308 	return seq_puts_memcg_tunable(m,
7309 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7310 }
7311 
7312 static ssize_t swap_high_write(struct kernfs_open_file *of,
7313 			       char *buf, size_t nbytes, loff_t off)
7314 {
7315 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7316 	unsigned long high;
7317 	int err;
7318 
7319 	buf = strstrip(buf);
7320 	err = page_counter_memparse(buf, "max", &high);
7321 	if (err)
7322 		return err;
7323 
7324 	page_counter_set_high(&memcg->swap, high);
7325 
7326 	return nbytes;
7327 }
7328 
7329 static int swap_max_show(struct seq_file *m, void *v)
7330 {
7331 	return seq_puts_memcg_tunable(m,
7332 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7333 }
7334 
7335 static ssize_t swap_max_write(struct kernfs_open_file *of,
7336 			      char *buf, size_t nbytes, loff_t off)
7337 {
7338 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7339 	unsigned long max;
7340 	int err;
7341 
7342 	buf = strstrip(buf);
7343 	err = page_counter_memparse(buf, "max", &max);
7344 	if (err)
7345 		return err;
7346 
7347 	xchg(&memcg->swap.max, max);
7348 
7349 	return nbytes;
7350 }
7351 
7352 static int swap_events_show(struct seq_file *m, void *v)
7353 {
7354 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7355 
7356 	seq_printf(m, "high %lu\n",
7357 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7358 	seq_printf(m, "max %lu\n",
7359 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7360 	seq_printf(m, "fail %lu\n",
7361 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7362 
7363 	return 0;
7364 }
7365 
7366 static struct cftype swap_files[] = {
7367 	{
7368 		.name = "swap.current",
7369 		.flags = CFTYPE_NOT_ON_ROOT,
7370 		.read_u64 = swap_current_read,
7371 	},
7372 	{
7373 		.name = "swap.high",
7374 		.flags = CFTYPE_NOT_ON_ROOT,
7375 		.seq_show = swap_high_show,
7376 		.write = swap_high_write,
7377 	},
7378 	{
7379 		.name = "swap.max",
7380 		.flags = CFTYPE_NOT_ON_ROOT,
7381 		.seq_show = swap_max_show,
7382 		.write = swap_max_write,
7383 	},
7384 	{
7385 		.name = "swap.events",
7386 		.flags = CFTYPE_NOT_ON_ROOT,
7387 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7388 		.seq_show = swap_events_show,
7389 	},
7390 	{ }	/* terminate */
7391 };
7392 
7393 static struct cftype memsw_files[] = {
7394 	{
7395 		.name = "memsw.usage_in_bytes",
7396 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7397 		.read_u64 = mem_cgroup_read_u64,
7398 	},
7399 	{
7400 		.name = "memsw.max_usage_in_bytes",
7401 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7402 		.write = mem_cgroup_reset,
7403 		.read_u64 = mem_cgroup_read_u64,
7404 	},
7405 	{
7406 		.name = "memsw.limit_in_bytes",
7407 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7408 		.write = mem_cgroup_write,
7409 		.read_u64 = mem_cgroup_read_u64,
7410 	},
7411 	{
7412 		.name = "memsw.failcnt",
7413 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7414 		.write = mem_cgroup_reset,
7415 		.read_u64 = mem_cgroup_read_u64,
7416 	},
7417 	{ },	/* terminate */
7418 };
7419 
7420 /*
7421  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7422  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7423  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7424  * boot parameter. This may result in premature OOPS inside
7425  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7426  */
7427 static int __init mem_cgroup_swap_init(void)
7428 {
7429 	/* No memory control -> no swap control */
7430 	if (mem_cgroup_disabled())
7431 		cgroup_memory_noswap = true;
7432 
7433 	if (cgroup_memory_noswap)
7434 		return 0;
7435 
7436 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7437 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7438 
7439 	return 0;
7440 }
7441 core_initcall(mem_cgroup_swap_init);
7442 
7443 #endif /* CONFIG_MEMCG_SWAP */
7444