1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/file.h> 62 #include <linux/tracehook.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include "internal.h" 66 #include <net/sock.h> 67 #include <net/ip.h> 68 #include "slab.h" 69 70 #include <linux/uaccess.h> 71 72 #include <trace/events/vmscan.h> 73 74 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 75 EXPORT_SYMBOL(memory_cgrp_subsys); 76 77 struct mem_cgroup *root_mem_cgroup __read_mostly; 78 79 /* Active memory cgroup to use from an interrupt context */ 80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 82 83 /* Socket memory accounting disabled? */ 84 static bool cgroup_memory_nosocket __ro_after_init; 85 86 /* Kernel memory accounting disabled? */ 87 bool cgroup_memory_nokmem __ro_after_init; 88 89 /* Whether the swap controller is active */ 90 #ifdef CONFIG_MEMCG_SWAP 91 bool cgroup_memory_noswap __ro_after_init; 92 #else 93 #define cgroup_memory_noswap 1 94 #endif 95 96 #ifdef CONFIG_CGROUP_WRITEBACK 97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 98 #endif 99 100 /* Whether legacy memory+swap accounting is active */ 101 static bool do_memsw_account(void) 102 { 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 104 } 105 106 #define THRESHOLDS_EVENTS_TARGET 128 107 #define SOFTLIMIT_EVENTS_TARGET 1024 108 109 /* 110 * Cgroups above their limits are maintained in a RB-Tree, independent of 111 * their hierarchy representation 112 */ 113 114 struct mem_cgroup_tree_per_node { 115 struct rb_root rb_root; 116 struct rb_node *rb_rightmost; 117 spinlock_t lock; 118 }; 119 120 struct mem_cgroup_tree { 121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 122 }; 123 124 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 125 126 /* for OOM */ 127 struct mem_cgroup_eventfd_list { 128 struct list_head list; 129 struct eventfd_ctx *eventfd; 130 }; 131 132 /* 133 * cgroup_event represents events which userspace want to receive. 134 */ 135 struct mem_cgroup_event { 136 /* 137 * memcg which the event belongs to. 138 */ 139 struct mem_cgroup *memcg; 140 /* 141 * eventfd to signal userspace about the event. 142 */ 143 struct eventfd_ctx *eventfd; 144 /* 145 * Each of these stored in a list by the cgroup. 146 */ 147 struct list_head list; 148 /* 149 * register_event() callback will be used to add new userspace 150 * waiter for changes related to this event. Use eventfd_signal() 151 * on eventfd to send notification to userspace. 152 */ 153 int (*register_event)(struct mem_cgroup *memcg, 154 struct eventfd_ctx *eventfd, const char *args); 155 /* 156 * unregister_event() callback will be called when userspace closes 157 * the eventfd or on cgroup removing. This callback must be set, 158 * if you want provide notification functionality. 159 */ 160 void (*unregister_event)(struct mem_cgroup *memcg, 161 struct eventfd_ctx *eventfd); 162 /* 163 * All fields below needed to unregister event when 164 * userspace closes eventfd. 165 */ 166 poll_table pt; 167 wait_queue_head_t *wqh; 168 wait_queue_entry_t wait; 169 struct work_struct remove; 170 }; 171 172 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 174 175 /* Stuffs for move charges at task migration. */ 176 /* 177 * Types of charges to be moved. 178 */ 179 #define MOVE_ANON 0x1U 180 #define MOVE_FILE 0x2U 181 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 182 183 /* "mc" and its members are protected by cgroup_mutex */ 184 static struct move_charge_struct { 185 spinlock_t lock; /* for from, to */ 186 struct mm_struct *mm; 187 struct mem_cgroup *from; 188 struct mem_cgroup *to; 189 unsigned long flags; 190 unsigned long precharge; 191 unsigned long moved_charge; 192 unsigned long moved_swap; 193 struct task_struct *moving_task; /* a task moving charges */ 194 wait_queue_head_t waitq; /* a waitq for other context */ 195 } mc = { 196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 198 }; 199 200 /* 201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 202 * limit reclaim to prevent infinite loops, if they ever occur. 203 */ 204 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 205 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 206 207 /* for encoding cft->private value on file */ 208 enum res_type { 209 _MEM, 210 _MEMSWAP, 211 _OOM_TYPE, 212 _KMEM, 213 _TCP, 214 }; 215 216 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 217 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 218 #define MEMFILE_ATTR(val) ((val) & 0xffff) 219 /* Used for OOM notifier */ 220 #define OOM_CONTROL (0) 221 222 /* 223 * Iteration constructs for visiting all cgroups (under a tree). If 224 * loops are exited prematurely (break), mem_cgroup_iter_break() must 225 * be used for reference counting. 226 */ 227 #define for_each_mem_cgroup_tree(iter, root) \ 228 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 229 iter != NULL; \ 230 iter = mem_cgroup_iter(root, iter, NULL)) 231 232 #define for_each_mem_cgroup(iter) \ 233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 234 iter != NULL; \ 235 iter = mem_cgroup_iter(NULL, iter, NULL)) 236 237 static inline bool task_is_dying(void) 238 { 239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 240 (current->flags & PF_EXITING); 241 } 242 243 /* Some nice accessors for the vmpressure. */ 244 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 245 { 246 if (!memcg) 247 memcg = root_mem_cgroup; 248 return &memcg->vmpressure; 249 } 250 251 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 252 { 253 return container_of(vmpr, struct mem_cgroup, vmpressure); 254 } 255 256 #ifdef CONFIG_MEMCG_KMEM 257 extern spinlock_t css_set_lock; 258 259 bool mem_cgroup_kmem_disabled(void) 260 { 261 return cgroup_memory_nokmem; 262 } 263 264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 265 unsigned int nr_pages); 266 267 static void obj_cgroup_release(struct percpu_ref *ref) 268 { 269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 270 unsigned int nr_bytes; 271 unsigned int nr_pages; 272 unsigned long flags; 273 274 /* 275 * At this point all allocated objects are freed, and 276 * objcg->nr_charged_bytes can't have an arbitrary byte value. 277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 278 * 279 * The following sequence can lead to it: 280 * 1) CPU0: objcg == stock->cached_objcg 281 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 282 * PAGE_SIZE bytes are charged 283 * 3) CPU1: a process from another memcg is allocating something, 284 * the stock if flushed, 285 * objcg->nr_charged_bytes = PAGE_SIZE - 92 286 * 5) CPU0: we do release this object, 287 * 92 bytes are added to stock->nr_bytes 288 * 6) CPU0: stock is flushed, 289 * 92 bytes are added to objcg->nr_charged_bytes 290 * 291 * In the result, nr_charged_bytes == PAGE_SIZE. 292 * This page will be uncharged in obj_cgroup_release(). 293 */ 294 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 296 nr_pages = nr_bytes >> PAGE_SHIFT; 297 298 if (nr_pages) 299 obj_cgroup_uncharge_pages(objcg, nr_pages); 300 301 spin_lock_irqsave(&css_set_lock, flags); 302 list_del(&objcg->list); 303 spin_unlock_irqrestore(&css_set_lock, flags); 304 305 percpu_ref_exit(ref); 306 kfree_rcu(objcg, rcu); 307 } 308 309 static struct obj_cgroup *obj_cgroup_alloc(void) 310 { 311 struct obj_cgroup *objcg; 312 int ret; 313 314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 315 if (!objcg) 316 return NULL; 317 318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 319 GFP_KERNEL); 320 if (ret) { 321 kfree(objcg); 322 return NULL; 323 } 324 INIT_LIST_HEAD(&objcg->list); 325 return objcg; 326 } 327 328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 329 struct mem_cgroup *parent) 330 { 331 struct obj_cgroup *objcg, *iter; 332 333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 334 335 spin_lock_irq(&css_set_lock); 336 337 /* 1) Ready to reparent active objcg. */ 338 list_add(&objcg->list, &memcg->objcg_list); 339 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 340 list_for_each_entry(iter, &memcg->objcg_list, list) 341 WRITE_ONCE(iter->memcg, parent); 342 /* 3) Move already reparented objcgs to the parent's list */ 343 list_splice(&memcg->objcg_list, &parent->objcg_list); 344 345 spin_unlock_irq(&css_set_lock); 346 347 percpu_ref_kill(&objcg->refcnt); 348 } 349 350 /* 351 * This will be used as a shrinker list's index. 352 * The main reason for not using cgroup id for this: 353 * this works better in sparse environments, where we have a lot of memcgs, 354 * but only a few kmem-limited. Or also, if we have, for instance, 200 355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 356 * 200 entry array for that. 357 * 358 * The current size of the caches array is stored in memcg_nr_cache_ids. It 359 * will double each time we have to increase it. 360 */ 361 static DEFINE_IDA(memcg_cache_ida); 362 int memcg_nr_cache_ids; 363 364 /* Protects memcg_nr_cache_ids */ 365 static DECLARE_RWSEM(memcg_cache_ids_sem); 366 367 void memcg_get_cache_ids(void) 368 { 369 down_read(&memcg_cache_ids_sem); 370 } 371 372 void memcg_put_cache_ids(void) 373 { 374 up_read(&memcg_cache_ids_sem); 375 } 376 377 /* 378 * MIN_SIZE is different than 1, because we would like to avoid going through 379 * the alloc/free process all the time. In a small machine, 4 kmem-limited 380 * cgroups is a reasonable guess. In the future, it could be a parameter or 381 * tunable, but that is strictly not necessary. 382 * 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 384 * this constant directly from cgroup, but it is understandable that this is 385 * better kept as an internal representation in cgroup.c. In any case, the 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily 387 * increase ours as well if it increases. 388 */ 389 #define MEMCG_CACHES_MIN_SIZE 4 390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 391 392 /* 393 * A lot of the calls to the cache allocation functions are expected to be 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 395 * conditional to this static branch, we'll have to allow modules that does 396 * kmem_cache_alloc and the such to see this symbol as well 397 */ 398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 399 EXPORT_SYMBOL(memcg_kmem_enabled_key); 400 #endif 401 402 /** 403 * mem_cgroup_css_from_page - css of the memcg associated with a page 404 * @page: page of interest 405 * 406 * If memcg is bound to the default hierarchy, css of the memcg associated 407 * with @page is returned. The returned css remains associated with @page 408 * until it is released. 409 * 410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 411 * is returned. 412 */ 413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 414 { 415 struct mem_cgroup *memcg; 416 417 memcg = page_memcg(page); 418 419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 420 memcg = root_mem_cgroup; 421 422 return &memcg->css; 423 } 424 425 /** 426 * page_cgroup_ino - return inode number of the memcg a page is charged to 427 * @page: the page 428 * 429 * Look up the closest online ancestor of the memory cgroup @page is charged to 430 * and return its inode number or 0 if @page is not charged to any cgroup. It 431 * is safe to call this function without holding a reference to @page. 432 * 433 * Note, this function is inherently racy, because there is nothing to prevent 434 * the cgroup inode from getting torn down and potentially reallocated a moment 435 * after page_cgroup_ino() returns, so it only should be used by callers that 436 * do not care (such as procfs interfaces). 437 */ 438 ino_t page_cgroup_ino(struct page *page) 439 { 440 struct mem_cgroup *memcg; 441 unsigned long ino = 0; 442 443 rcu_read_lock(); 444 memcg = page_memcg_check(page); 445 446 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 447 memcg = parent_mem_cgroup(memcg); 448 if (memcg) 449 ino = cgroup_ino(memcg->css.cgroup); 450 rcu_read_unlock(); 451 return ino; 452 } 453 454 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 455 struct mem_cgroup_tree_per_node *mctz, 456 unsigned long new_usage_in_excess) 457 { 458 struct rb_node **p = &mctz->rb_root.rb_node; 459 struct rb_node *parent = NULL; 460 struct mem_cgroup_per_node *mz_node; 461 bool rightmost = true; 462 463 if (mz->on_tree) 464 return; 465 466 mz->usage_in_excess = new_usage_in_excess; 467 if (!mz->usage_in_excess) 468 return; 469 while (*p) { 470 parent = *p; 471 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 472 tree_node); 473 if (mz->usage_in_excess < mz_node->usage_in_excess) { 474 p = &(*p)->rb_left; 475 rightmost = false; 476 } else { 477 p = &(*p)->rb_right; 478 } 479 } 480 481 if (rightmost) 482 mctz->rb_rightmost = &mz->tree_node; 483 484 rb_link_node(&mz->tree_node, parent, p); 485 rb_insert_color(&mz->tree_node, &mctz->rb_root); 486 mz->on_tree = true; 487 } 488 489 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 490 struct mem_cgroup_tree_per_node *mctz) 491 { 492 if (!mz->on_tree) 493 return; 494 495 if (&mz->tree_node == mctz->rb_rightmost) 496 mctz->rb_rightmost = rb_prev(&mz->tree_node); 497 498 rb_erase(&mz->tree_node, &mctz->rb_root); 499 mz->on_tree = false; 500 } 501 502 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 503 struct mem_cgroup_tree_per_node *mctz) 504 { 505 unsigned long flags; 506 507 spin_lock_irqsave(&mctz->lock, flags); 508 __mem_cgroup_remove_exceeded(mz, mctz); 509 spin_unlock_irqrestore(&mctz->lock, flags); 510 } 511 512 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 513 { 514 unsigned long nr_pages = page_counter_read(&memcg->memory); 515 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 516 unsigned long excess = 0; 517 518 if (nr_pages > soft_limit) 519 excess = nr_pages - soft_limit; 520 521 return excess; 522 } 523 524 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 525 { 526 unsigned long excess; 527 struct mem_cgroup_per_node *mz; 528 struct mem_cgroup_tree_per_node *mctz; 529 530 mctz = soft_limit_tree.rb_tree_per_node[nid]; 531 if (!mctz) 532 return; 533 /* 534 * Necessary to update all ancestors when hierarchy is used. 535 * because their event counter is not touched. 536 */ 537 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 538 mz = memcg->nodeinfo[nid]; 539 excess = soft_limit_excess(memcg); 540 /* 541 * We have to update the tree if mz is on RB-tree or 542 * mem is over its softlimit. 543 */ 544 if (excess || mz->on_tree) { 545 unsigned long flags; 546 547 spin_lock_irqsave(&mctz->lock, flags); 548 /* if on-tree, remove it */ 549 if (mz->on_tree) 550 __mem_cgroup_remove_exceeded(mz, mctz); 551 /* 552 * Insert again. mz->usage_in_excess will be updated. 553 * If excess is 0, no tree ops. 554 */ 555 __mem_cgroup_insert_exceeded(mz, mctz, excess); 556 spin_unlock_irqrestore(&mctz->lock, flags); 557 } 558 } 559 } 560 561 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 562 { 563 struct mem_cgroup_tree_per_node *mctz; 564 struct mem_cgroup_per_node *mz; 565 int nid; 566 567 for_each_node(nid) { 568 mz = memcg->nodeinfo[nid]; 569 mctz = soft_limit_tree.rb_tree_per_node[nid]; 570 if (mctz) 571 mem_cgroup_remove_exceeded(mz, mctz); 572 } 573 } 574 575 static struct mem_cgroup_per_node * 576 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 577 { 578 struct mem_cgroup_per_node *mz; 579 580 retry: 581 mz = NULL; 582 if (!mctz->rb_rightmost) 583 goto done; /* Nothing to reclaim from */ 584 585 mz = rb_entry(mctz->rb_rightmost, 586 struct mem_cgroup_per_node, tree_node); 587 /* 588 * Remove the node now but someone else can add it back, 589 * we will to add it back at the end of reclaim to its correct 590 * position in the tree. 591 */ 592 __mem_cgroup_remove_exceeded(mz, mctz); 593 if (!soft_limit_excess(mz->memcg) || 594 !css_tryget(&mz->memcg->css)) 595 goto retry; 596 done: 597 return mz; 598 } 599 600 static struct mem_cgroup_per_node * 601 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 602 { 603 struct mem_cgroup_per_node *mz; 604 605 spin_lock_irq(&mctz->lock); 606 mz = __mem_cgroup_largest_soft_limit_node(mctz); 607 spin_unlock_irq(&mctz->lock); 608 return mz; 609 } 610 611 /* 612 * memcg and lruvec stats flushing 613 * 614 * Many codepaths leading to stats update or read are performance sensitive and 615 * adding stats flushing in such codepaths is not desirable. So, to optimize the 616 * flushing the kernel does: 617 * 618 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 619 * rstat update tree grow unbounded. 620 * 621 * 2) Flush the stats synchronously on reader side only when there are more than 622 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 623 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 624 * only for 2 seconds due to (1). 625 */ 626 static void flush_memcg_stats_dwork(struct work_struct *w); 627 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 628 static DEFINE_SPINLOCK(stats_flush_lock); 629 static DEFINE_PER_CPU(unsigned int, stats_updates); 630 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 631 632 static inline void memcg_rstat_updated(struct mem_cgroup *memcg) 633 { 634 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 635 if (!(__this_cpu_inc_return(stats_updates) % MEMCG_CHARGE_BATCH)) 636 atomic_inc(&stats_flush_threshold); 637 } 638 639 static void __mem_cgroup_flush_stats(void) 640 { 641 unsigned long flag; 642 643 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 644 return; 645 646 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 647 atomic_set(&stats_flush_threshold, 0); 648 spin_unlock_irqrestore(&stats_flush_lock, flag); 649 } 650 651 void mem_cgroup_flush_stats(void) 652 { 653 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 654 __mem_cgroup_flush_stats(); 655 } 656 657 static void flush_memcg_stats_dwork(struct work_struct *w) 658 { 659 mem_cgroup_flush_stats(); 660 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ); 661 } 662 663 /** 664 * __mod_memcg_state - update cgroup memory statistics 665 * @memcg: the memory cgroup 666 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 667 * @val: delta to add to the counter, can be negative 668 */ 669 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 670 { 671 if (mem_cgroup_disabled()) 672 return; 673 674 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 675 memcg_rstat_updated(memcg); 676 } 677 678 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 679 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 680 { 681 long x = 0; 682 int cpu; 683 684 for_each_possible_cpu(cpu) 685 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 686 #ifdef CONFIG_SMP 687 if (x < 0) 688 x = 0; 689 #endif 690 return x; 691 } 692 693 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 694 int val) 695 { 696 struct mem_cgroup_per_node *pn; 697 struct mem_cgroup *memcg; 698 699 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 700 memcg = pn->memcg; 701 702 /* Update memcg */ 703 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 704 705 /* Update lruvec */ 706 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 707 708 memcg_rstat_updated(memcg); 709 } 710 711 /** 712 * __mod_lruvec_state - update lruvec memory statistics 713 * @lruvec: the lruvec 714 * @idx: the stat item 715 * @val: delta to add to the counter, can be negative 716 * 717 * The lruvec is the intersection of the NUMA node and a cgroup. This 718 * function updates the all three counters that are affected by a 719 * change of state at this level: per-node, per-cgroup, per-lruvec. 720 */ 721 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 722 int val) 723 { 724 /* Update node */ 725 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 726 727 /* Update memcg and lruvec */ 728 if (!mem_cgroup_disabled()) 729 __mod_memcg_lruvec_state(lruvec, idx, val); 730 } 731 732 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 733 int val) 734 { 735 struct page *head = compound_head(page); /* rmap on tail pages */ 736 struct mem_cgroup *memcg; 737 pg_data_t *pgdat = page_pgdat(page); 738 struct lruvec *lruvec; 739 740 rcu_read_lock(); 741 memcg = page_memcg(head); 742 /* Untracked pages have no memcg, no lruvec. Update only the node */ 743 if (!memcg) { 744 rcu_read_unlock(); 745 __mod_node_page_state(pgdat, idx, val); 746 return; 747 } 748 749 lruvec = mem_cgroup_lruvec(memcg, pgdat); 750 __mod_lruvec_state(lruvec, idx, val); 751 rcu_read_unlock(); 752 } 753 EXPORT_SYMBOL(__mod_lruvec_page_state); 754 755 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 756 { 757 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 758 struct mem_cgroup *memcg; 759 struct lruvec *lruvec; 760 761 rcu_read_lock(); 762 memcg = mem_cgroup_from_obj(p); 763 764 /* 765 * Untracked pages have no memcg, no lruvec. Update only the 766 * node. If we reparent the slab objects to the root memcg, 767 * when we free the slab object, we need to update the per-memcg 768 * vmstats to keep it correct for the root memcg. 769 */ 770 if (!memcg) { 771 __mod_node_page_state(pgdat, idx, val); 772 } else { 773 lruvec = mem_cgroup_lruvec(memcg, pgdat); 774 __mod_lruvec_state(lruvec, idx, val); 775 } 776 rcu_read_unlock(); 777 } 778 779 /** 780 * __count_memcg_events - account VM events in a cgroup 781 * @memcg: the memory cgroup 782 * @idx: the event item 783 * @count: the number of events that occurred 784 */ 785 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 786 unsigned long count) 787 { 788 if (mem_cgroup_disabled()) 789 return; 790 791 __this_cpu_add(memcg->vmstats_percpu->events[idx], count); 792 memcg_rstat_updated(memcg); 793 } 794 795 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 796 { 797 return READ_ONCE(memcg->vmstats.events[event]); 798 } 799 800 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 801 { 802 long x = 0; 803 int cpu; 804 805 for_each_possible_cpu(cpu) 806 x += per_cpu(memcg->vmstats_percpu->events[event], cpu); 807 return x; 808 } 809 810 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 811 int nr_pages) 812 { 813 /* pagein of a big page is an event. So, ignore page size */ 814 if (nr_pages > 0) 815 __count_memcg_events(memcg, PGPGIN, 1); 816 else { 817 __count_memcg_events(memcg, PGPGOUT, 1); 818 nr_pages = -nr_pages; /* for event */ 819 } 820 821 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 822 } 823 824 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 825 enum mem_cgroup_events_target target) 826 { 827 unsigned long val, next; 828 829 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 830 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 831 /* from time_after() in jiffies.h */ 832 if ((long)(next - val) < 0) { 833 switch (target) { 834 case MEM_CGROUP_TARGET_THRESH: 835 next = val + THRESHOLDS_EVENTS_TARGET; 836 break; 837 case MEM_CGROUP_TARGET_SOFTLIMIT: 838 next = val + SOFTLIMIT_EVENTS_TARGET; 839 break; 840 default: 841 break; 842 } 843 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 844 return true; 845 } 846 return false; 847 } 848 849 /* 850 * Check events in order. 851 * 852 */ 853 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 854 { 855 /* threshold event is triggered in finer grain than soft limit */ 856 if (unlikely(mem_cgroup_event_ratelimit(memcg, 857 MEM_CGROUP_TARGET_THRESH))) { 858 bool do_softlimit; 859 860 do_softlimit = mem_cgroup_event_ratelimit(memcg, 861 MEM_CGROUP_TARGET_SOFTLIMIT); 862 mem_cgroup_threshold(memcg); 863 if (unlikely(do_softlimit)) 864 mem_cgroup_update_tree(memcg, nid); 865 } 866 } 867 868 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 869 { 870 /* 871 * mm_update_next_owner() may clear mm->owner to NULL 872 * if it races with swapoff, page migration, etc. 873 * So this can be called with p == NULL. 874 */ 875 if (unlikely(!p)) 876 return NULL; 877 878 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 879 } 880 EXPORT_SYMBOL(mem_cgroup_from_task); 881 882 static __always_inline struct mem_cgroup *active_memcg(void) 883 { 884 if (!in_task()) 885 return this_cpu_read(int_active_memcg); 886 else 887 return current->active_memcg; 888 } 889 890 /** 891 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 892 * @mm: mm from which memcg should be extracted. It can be NULL. 893 * 894 * Obtain a reference on mm->memcg and returns it if successful. If mm 895 * is NULL, then the memcg is chosen as follows: 896 * 1) The active memcg, if set. 897 * 2) current->mm->memcg, if available 898 * 3) root memcg 899 * If mem_cgroup is disabled, NULL is returned. 900 */ 901 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 902 { 903 struct mem_cgroup *memcg; 904 905 if (mem_cgroup_disabled()) 906 return NULL; 907 908 /* 909 * Page cache insertions can happen without an 910 * actual mm context, e.g. during disk probing 911 * on boot, loopback IO, acct() writes etc. 912 * 913 * No need to css_get on root memcg as the reference 914 * counting is disabled on the root level in the 915 * cgroup core. See CSS_NO_REF. 916 */ 917 if (unlikely(!mm)) { 918 memcg = active_memcg(); 919 if (unlikely(memcg)) { 920 /* remote memcg must hold a ref */ 921 css_get(&memcg->css); 922 return memcg; 923 } 924 mm = current->mm; 925 if (unlikely(!mm)) 926 return root_mem_cgroup; 927 } 928 929 rcu_read_lock(); 930 do { 931 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 932 if (unlikely(!memcg)) 933 memcg = root_mem_cgroup; 934 } while (!css_tryget(&memcg->css)); 935 rcu_read_unlock(); 936 return memcg; 937 } 938 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 939 940 static __always_inline bool memcg_kmem_bypass(void) 941 { 942 /* Allow remote memcg charging from any context. */ 943 if (unlikely(active_memcg())) 944 return false; 945 946 /* Memcg to charge can't be determined. */ 947 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 948 return true; 949 950 return false; 951 } 952 953 /** 954 * mem_cgroup_iter - iterate over memory cgroup hierarchy 955 * @root: hierarchy root 956 * @prev: previously returned memcg, NULL on first invocation 957 * @reclaim: cookie for shared reclaim walks, NULL for full walks 958 * 959 * Returns references to children of the hierarchy below @root, or 960 * @root itself, or %NULL after a full round-trip. 961 * 962 * Caller must pass the return value in @prev on subsequent 963 * invocations for reference counting, or use mem_cgroup_iter_break() 964 * to cancel a hierarchy walk before the round-trip is complete. 965 * 966 * Reclaimers can specify a node in @reclaim to divide up the memcgs 967 * in the hierarchy among all concurrent reclaimers operating on the 968 * same node. 969 */ 970 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 971 struct mem_cgroup *prev, 972 struct mem_cgroup_reclaim_cookie *reclaim) 973 { 974 struct mem_cgroup_reclaim_iter *iter; 975 struct cgroup_subsys_state *css = NULL; 976 struct mem_cgroup *memcg = NULL; 977 struct mem_cgroup *pos = NULL; 978 979 if (mem_cgroup_disabled()) 980 return NULL; 981 982 if (!root) 983 root = root_mem_cgroup; 984 985 if (prev && !reclaim) 986 pos = prev; 987 988 rcu_read_lock(); 989 990 if (reclaim) { 991 struct mem_cgroup_per_node *mz; 992 993 mz = root->nodeinfo[reclaim->pgdat->node_id]; 994 iter = &mz->iter; 995 996 if (prev && reclaim->generation != iter->generation) 997 goto out_unlock; 998 999 while (1) { 1000 pos = READ_ONCE(iter->position); 1001 if (!pos || css_tryget(&pos->css)) 1002 break; 1003 /* 1004 * css reference reached zero, so iter->position will 1005 * be cleared by ->css_released. However, we should not 1006 * rely on this happening soon, because ->css_released 1007 * is called from a work queue, and by busy-waiting we 1008 * might block it. So we clear iter->position right 1009 * away. 1010 */ 1011 (void)cmpxchg(&iter->position, pos, NULL); 1012 } 1013 } 1014 1015 if (pos) 1016 css = &pos->css; 1017 1018 for (;;) { 1019 css = css_next_descendant_pre(css, &root->css); 1020 if (!css) { 1021 /* 1022 * Reclaimers share the hierarchy walk, and a 1023 * new one might jump in right at the end of 1024 * the hierarchy - make sure they see at least 1025 * one group and restart from the beginning. 1026 */ 1027 if (!prev) 1028 continue; 1029 break; 1030 } 1031 1032 /* 1033 * Verify the css and acquire a reference. The root 1034 * is provided by the caller, so we know it's alive 1035 * and kicking, and don't take an extra reference. 1036 */ 1037 memcg = mem_cgroup_from_css(css); 1038 1039 if (css == &root->css) 1040 break; 1041 1042 if (css_tryget(css)) 1043 break; 1044 1045 memcg = NULL; 1046 } 1047 1048 if (reclaim) { 1049 /* 1050 * The position could have already been updated by a competing 1051 * thread, so check that the value hasn't changed since we read 1052 * it to avoid reclaiming from the same cgroup twice. 1053 */ 1054 (void)cmpxchg(&iter->position, pos, memcg); 1055 1056 if (pos) 1057 css_put(&pos->css); 1058 1059 if (!memcg) 1060 iter->generation++; 1061 else if (!prev) 1062 reclaim->generation = iter->generation; 1063 } 1064 1065 out_unlock: 1066 rcu_read_unlock(); 1067 if (prev && prev != root) 1068 css_put(&prev->css); 1069 1070 return memcg; 1071 } 1072 1073 /** 1074 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1075 * @root: hierarchy root 1076 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1077 */ 1078 void mem_cgroup_iter_break(struct mem_cgroup *root, 1079 struct mem_cgroup *prev) 1080 { 1081 if (!root) 1082 root = root_mem_cgroup; 1083 if (prev && prev != root) 1084 css_put(&prev->css); 1085 } 1086 1087 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1088 struct mem_cgroup *dead_memcg) 1089 { 1090 struct mem_cgroup_reclaim_iter *iter; 1091 struct mem_cgroup_per_node *mz; 1092 int nid; 1093 1094 for_each_node(nid) { 1095 mz = from->nodeinfo[nid]; 1096 iter = &mz->iter; 1097 cmpxchg(&iter->position, dead_memcg, NULL); 1098 } 1099 } 1100 1101 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1102 { 1103 struct mem_cgroup *memcg = dead_memcg; 1104 struct mem_cgroup *last; 1105 1106 do { 1107 __invalidate_reclaim_iterators(memcg, dead_memcg); 1108 last = memcg; 1109 } while ((memcg = parent_mem_cgroup(memcg))); 1110 1111 /* 1112 * When cgruop1 non-hierarchy mode is used, 1113 * parent_mem_cgroup() does not walk all the way up to the 1114 * cgroup root (root_mem_cgroup). So we have to handle 1115 * dead_memcg from cgroup root separately. 1116 */ 1117 if (last != root_mem_cgroup) 1118 __invalidate_reclaim_iterators(root_mem_cgroup, 1119 dead_memcg); 1120 } 1121 1122 /** 1123 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1124 * @memcg: hierarchy root 1125 * @fn: function to call for each task 1126 * @arg: argument passed to @fn 1127 * 1128 * This function iterates over tasks attached to @memcg or to any of its 1129 * descendants and calls @fn for each task. If @fn returns a non-zero 1130 * value, the function breaks the iteration loop and returns the value. 1131 * Otherwise, it will iterate over all tasks and return 0. 1132 * 1133 * This function must not be called for the root memory cgroup. 1134 */ 1135 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1136 int (*fn)(struct task_struct *, void *), void *arg) 1137 { 1138 struct mem_cgroup *iter; 1139 int ret = 0; 1140 1141 BUG_ON(memcg == root_mem_cgroup); 1142 1143 for_each_mem_cgroup_tree(iter, memcg) { 1144 struct css_task_iter it; 1145 struct task_struct *task; 1146 1147 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1148 while (!ret && (task = css_task_iter_next(&it))) 1149 ret = fn(task, arg); 1150 css_task_iter_end(&it); 1151 if (ret) { 1152 mem_cgroup_iter_break(memcg, iter); 1153 break; 1154 } 1155 } 1156 return ret; 1157 } 1158 1159 #ifdef CONFIG_DEBUG_VM 1160 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1161 { 1162 struct mem_cgroup *memcg; 1163 1164 if (mem_cgroup_disabled()) 1165 return; 1166 1167 memcg = folio_memcg(folio); 1168 1169 if (!memcg) 1170 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio); 1171 else 1172 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1173 } 1174 #endif 1175 1176 /** 1177 * folio_lruvec_lock - Lock the lruvec for a folio. 1178 * @folio: Pointer to the folio. 1179 * 1180 * These functions are safe to use under any of the following conditions: 1181 * - folio locked 1182 * - folio_test_lru false 1183 * - folio_memcg_lock() 1184 * - folio frozen (refcount of 0) 1185 * 1186 * Return: The lruvec this folio is on with its lock held. 1187 */ 1188 struct lruvec *folio_lruvec_lock(struct folio *folio) 1189 { 1190 struct lruvec *lruvec = folio_lruvec(folio); 1191 1192 spin_lock(&lruvec->lru_lock); 1193 lruvec_memcg_debug(lruvec, folio); 1194 1195 return lruvec; 1196 } 1197 1198 /** 1199 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1200 * @folio: Pointer to the folio. 1201 * 1202 * These functions are safe to use under any of the following conditions: 1203 * - folio locked 1204 * - folio_test_lru false 1205 * - folio_memcg_lock() 1206 * - folio frozen (refcount of 0) 1207 * 1208 * Return: The lruvec this folio is on with its lock held and interrupts 1209 * disabled. 1210 */ 1211 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1212 { 1213 struct lruvec *lruvec = folio_lruvec(folio); 1214 1215 spin_lock_irq(&lruvec->lru_lock); 1216 lruvec_memcg_debug(lruvec, folio); 1217 1218 return lruvec; 1219 } 1220 1221 /** 1222 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1223 * @folio: Pointer to the folio. 1224 * @flags: Pointer to irqsave flags. 1225 * 1226 * These functions are safe to use under any of the following conditions: 1227 * - folio locked 1228 * - folio_test_lru false 1229 * - folio_memcg_lock() 1230 * - folio frozen (refcount of 0) 1231 * 1232 * Return: The lruvec this folio is on with its lock held and interrupts 1233 * disabled. 1234 */ 1235 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1236 unsigned long *flags) 1237 { 1238 struct lruvec *lruvec = folio_lruvec(folio); 1239 1240 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1241 lruvec_memcg_debug(lruvec, folio); 1242 1243 return lruvec; 1244 } 1245 1246 /** 1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1248 * @lruvec: mem_cgroup per zone lru vector 1249 * @lru: index of lru list the page is sitting on 1250 * @zid: zone id of the accounted pages 1251 * @nr_pages: positive when adding or negative when removing 1252 * 1253 * This function must be called under lru_lock, just before a page is added 1254 * to or just after a page is removed from an lru list (that ordering being 1255 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1256 */ 1257 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1258 int zid, int nr_pages) 1259 { 1260 struct mem_cgroup_per_node *mz; 1261 unsigned long *lru_size; 1262 long size; 1263 1264 if (mem_cgroup_disabled()) 1265 return; 1266 1267 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1268 lru_size = &mz->lru_zone_size[zid][lru]; 1269 1270 if (nr_pages < 0) 1271 *lru_size += nr_pages; 1272 1273 size = *lru_size; 1274 if (WARN_ONCE(size < 0, 1275 "%s(%p, %d, %d): lru_size %ld\n", 1276 __func__, lruvec, lru, nr_pages, size)) { 1277 VM_BUG_ON(1); 1278 *lru_size = 0; 1279 } 1280 1281 if (nr_pages > 0) 1282 *lru_size += nr_pages; 1283 } 1284 1285 /** 1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1287 * @memcg: the memory cgroup 1288 * 1289 * Returns the maximum amount of memory @mem can be charged with, in 1290 * pages. 1291 */ 1292 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1293 { 1294 unsigned long margin = 0; 1295 unsigned long count; 1296 unsigned long limit; 1297 1298 count = page_counter_read(&memcg->memory); 1299 limit = READ_ONCE(memcg->memory.max); 1300 if (count < limit) 1301 margin = limit - count; 1302 1303 if (do_memsw_account()) { 1304 count = page_counter_read(&memcg->memsw); 1305 limit = READ_ONCE(memcg->memsw.max); 1306 if (count < limit) 1307 margin = min(margin, limit - count); 1308 else 1309 margin = 0; 1310 } 1311 1312 return margin; 1313 } 1314 1315 /* 1316 * A routine for checking "mem" is under move_account() or not. 1317 * 1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1319 * moving cgroups. This is for waiting at high-memory pressure 1320 * caused by "move". 1321 */ 1322 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1323 { 1324 struct mem_cgroup *from; 1325 struct mem_cgroup *to; 1326 bool ret = false; 1327 /* 1328 * Unlike task_move routines, we access mc.to, mc.from not under 1329 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1330 */ 1331 spin_lock(&mc.lock); 1332 from = mc.from; 1333 to = mc.to; 1334 if (!from) 1335 goto unlock; 1336 1337 ret = mem_cgroup_is_descendant(from, memcg) || 1338 mem_cgroup_is_descendant(to, memcg); 1339 unlock: 1340 spin_unlock(&mc.lock); 1341 return ret; 1342 } 1343 1344 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1345 { 1346 if (mc.moving_task && current != mc.moving_task) { 1347 if (mem_cgroup_under_move(memcg)) { 1348 DEFINE_WAIT(wait); 1349 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1350 /* moving charge context might have finished. */ 1351 if (mc.moving_task) 1352 schedule(); 1353 finish_wait(&mc.waitq, &wait); 1354 return true; 1355 } 1356 } 1357 return false; 1358 } 1359 1360 struct memory_stat { 1361 const char *name; 1362 unsigned int idx; 1363 }; 1364 1365 static const struct memory_stat memory_stats[] = { 1366 { "anon", NR_ANON_MAPPED }, 1367 { "file", NR_FILE_PAGES }, 1368 { "kernel_stack", NR_KERNEL_STACK_KB }, 1369 { "pagetables", NR_PAGETABLE }, 1370 { "percpu", MEMCG_PERCPU_B }, 1371 { "sock", MEMCG_SOCK }, 1372 { "shmem", NR_SHMEM }, 1373 { "file_mapped", NR_FILE_MAPPED }, 1374 { "file_dirty", NR_FILE_DIRTY }, 1375 { "file_writeback", NR_WRITEBACK }, 1376 #ifdef CONFIG_SWAP 1377 { "swapcached", NR_SWAPCACHE }, 1378 #endif 1379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1380 { "anon_thp", NR_ANON_THPS }, 1381 { "file_thp", NR_FILE_THPS }, 1382 { "shmem_thp", NR_SHMEM_THPS }, 1383 #endif 1384 { "inactive_anon", NR_INACTIVE_ANON }, 1385 { "active_anon", NR_ACTIVE_ANON }, 1386 { "inactive_file", NR_INACTIVE_FILE }, 1387 { "active_file", NR_ACTIVE_FILE }, 1388 { "unevictable", NR_UNEVICTABLE }, 1389 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1390 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1391 1392 /* The memory events */ 1393 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1394 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1395 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1396 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1397 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1398 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1399 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1400 }; 1401 1402 /* Translate stat items to the correct unit for memory.stat output */ 1403 static int memcg_page_state_unit(int item) 1404 { 1405 switch (item) { 1406 case MEMCG_PERCPU_B: 1407 case NR_SLAB_RECLAIMABLE_B: 1408 case NR_SLAB_UNRECLAIMABLE_B: 1409 case WORKINGSET_REFAULT_ANON: 1410 case WORKINGSET_REFAULT_FILE: 1411 case WORKINGSET_ACTIVATE_ANON: 1412 case WORKINGSET_ACTIVATE_FILE: 1413 case WORKINGSET_RESTORE_ANON: 1414 case WORKINGSET_RESTORE_FILE: 1415 case WORKINGSET_NODERECLAIM: 1416 return 1; 1417 case NR_KERNEL_STACK_KB: 1418 return SZ_1K; 1419 default: 1420 return PAGE_SIZE; 1421 } 1422 } 1423 1424 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1425 int item) 1426 { 1427 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1428 } 1429 1430 static char *memory_stat_format(struct mem_cgroup *memcg) 1431 { 1432 struct seq_buf s; 1433 int i; 1434 1435 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1436 if (!s.buffer) 1437 return NULL; 1438 1439 /* 1440 * Provide statistics on the state of the memory subsystem as 1441 * well as cumulative event counters that show past behavior. 1442 * 1443 * This list is ordered following a combination of these gradients: 1444 * 1) generic big picture -> specifics and details 1445 * 2) reflecting userspace activity -> reflecting kernel heuristics 1446 * 1447 * Current memory state: 1448 */ 1449 mem_cgroup_flush_stats(); 1450 1451 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1452 u64 size; 1453 1454 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1455 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1456 1457 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1458 size += memcg_page_state_output(memcg, 1459 NR_SLAB_RECLAIMABLE_B); 1460 seq_buf_printf(&s, "slab %llu\n", size); 1461 } 1462 } 1463 1464 /* Accumulated memory events */ 1465 1466 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1467 memcg_events(memcg, PGFAULT)); 1468 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1469 memcg_events(memcg, PGMAJFAULT)); 1470 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1471 memcg_events(memcg, PGREFILL)); 1472 seq_buf_printf(&s, "pgscan %lu\n", 1473 memcg_events(memcg, PGSCAN_KSWAPD) + 1474 memcg_events(memcg, PGSCAN_DIRECT)); 1475 seq_buf_printf(&s, "pgsteal %lu\n", 1476 memcg_events(memcg, PGSTEAL_KSWAPD) + 1477 memcg_events(memcg, PGSTEAL_DIRECT)); 1478 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1479 memcg_events(memcg, PGACTIVATE)); 1480 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1481 memcg_events(memcg, PGDEACTIVATE)); 1482 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1483 memcg_events(memcg, PGLAZYFREE)); 1484 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1485 memcg_events(memcg, PGLAZYFREED)); 1486 1487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1488 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1489 memcg_events(memcg, THP_FAULT_ALLOC)); 1490 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1491 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1492 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1493 1494 /* The above should easily fit into one page */ 1495 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1496 1497 return s.buffer; 1498 } 1499 1500 #define K(x) ((x) << (PAGE_SHIFT-10)) 1501 /** 1502 * mem_cgroup_print_oom_context: Print OOM information relevant to 1503 * memory controller. 1504 * @memcg: The memory cgroup that went over limit 1505 * @p: Task that is going to be killed 1506 * 1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1508 * enabled 1509 */ 1510 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1511 { 1512 rcu_read_lock(); 1513 1514 if (memcg) { 1515 pr_cont(",oom_memcg="); 1516 pr_cont_cgroup_path(memcg->css.cgroup); 1517 } else 1518 pr_cont(",global_oom"); 1519 if (p) { 1520 pr_cont(",task_memcg="); 1521 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1522 } 1523 rcu_read_unlock(); 1524 } 1525 1526 /** 1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1528 * memory controller. 1529 * @memcg: The memory cgroup that went over limit 1530 */ 1531 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1532 { 1533 char *buf; 1534 1535 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1536 K((u64)page_counter_read(&memcg->memory)), 1537 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1538 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1539 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1540 K((u64)page_counter_read(&memcg->swap)), 1541 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1542 else { 1543 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1544 K((u64)page_counter_read(&memcg->memsw)), 1545 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1546 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1547 K((u64)page_counter_read(&memcg->kmem)), 1548 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1549 } 1550 1551 pr_info("Memory cgroup stats for "); 1552 pr_cont_cgroup_path(memcg->css.cgroup); 1553 pr_cont(":"); 1554 buf = memory_stat_format(memcg); 1555 if (!buf) 1556 return; 1557 pr_info("%s", buf); 1558 kfree(buf); 1559 } 1560 1561 /* 1562 * Return the memory (and swap, if configured) limit for a memcg. 1563 */ 1564 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1565 { 1566 unsigned long max = READ_ONCE(memcg->memory.max); 1567 1568 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1569 if (mem_cgroup_swappiness(memcg)) 1570 max += min(READ_ONCE(memcg->swap.max), 1571 (unsigned long)total_swap_pages); 1572 } else { /* v1 */ 1573 if (mem_cgroup_swappiness(memcg)) { 1574 /* Calculate swap excess capacity from memsw limit */ 1575 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1576 1577 max += min(swap, (unsigned long)total_swap_pages); 1578 } 1579 } 1580 return max; 1581 } 1582 1583 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1584 { 1585 return page_counter_read(&memcg->memory); 1586 } 1587 1588 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1589 int order) 1590 { 1591 struct oom_control oc = { 1592 .zonelist = NULL, 1593 .nodemask = NULL, 1594 .memcg = memcg, 1595 .gfp_mask = gfp_mask, 1596 .order = order, 1597 }; 1598 bool ret = true; 1599 1600 if (mutex_lock_killable(&oom_lock)) 1601 return true; 1602 1603 if (mem_cgroup_margin(memcg) >= (1 << order)) 1604 goto unlock; 1605 1606 /* 1607 * A few threads which were not waiting at mutex_lock_killable() can 1608 * fail to bail out. Therefore, check again after holding oom_lock. 1609 */ 1610 ret = task_is_dying() || out_of_memory(&oc); 1611 1612 unlock: 1613 mutex_unlock(&oom_lock); 1614 return ret; 1615 } 1616 1617 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1618 pg_data_t *pgdat, 1619 gfp_t gfp_mask, 1620 unsigned long *total_scanned) 1621 { 1622 struct mem_cgroup *victim = NULL; 1623 int total = 0; 1624 int loop = 0; 1625 unsigned long excess; 1626 unsigned long nr_scanned; 1627 struct mem_cgroup_reclaim_cookie reclaim = { 1628 .pgdat = pgdat, 1629 }; 1630 1631 excess = soft_limit_excess(root_memcg); 1632 1633 while (1) { 1634 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1635 if (!victim) { 1636 loop++; 1637 if (loop >= 2) { 1638 /* 1639 * If we have not been able to reclaim 1640 * anything, it might because there are 1641 * no reclaimable pages under this hierarchy 1642 */ 1643 if (!total) 1644 break; 1645 /* 1646 * We want to do more targeted reclaim. 1647 * excess >> 2 is not to excessive so as to 1648 * reclaim too much, nor too less that we keep 1649 * coming back to reclaim from this cgroup 1650 */ 1651 if (total >= (excess >> 2) || 1652 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1653 break; 1654 } 1655 continue; 1656 } 1657 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1658 pgdat, &nr_scanned); 1659 *total_scanned += nr_scanned; 1660 if (!soft_limit_excess(root_memcg)) 1661 break; 1662 } 1663 mem_cgroup_iter_break(root_memcg, victim); 1664 return total; 1665 } 1666 1667 #ifdef CONFIG_LOCKDEP 1668 static struct lockdep_map memcg_oom_lock_dep_map = { 1669 .name = "memcg_oom_lock", 1670 }; 1671 #endif 1672 1673 static DEFINE_SPINLOCK(memcg_oom_lock); 1674 1675 /* 1676 * Check OOM-Killer is already running under our hierarchy. 1677 * If someone is running, return false. 1678 */ 1679 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1680 { 1681 struct mem_cgroup *iter, *failed = NULL; 1682 1683 spin_lock(&memcg_oom_lock); 1684 1685 for_each_mem_cgroup_tree(iter, memcg) { 1686 if (iter->oom_lock) { 1687 /* 1688 * this subtree of our hierarchy is already locked 1689 * so we cannot give a lock. 1690 */ 1691 failed = iter; 1692 mem_cgroup_iter_break(memcg, iter); 1693 break; 1694 } else 1695 iter->oom_lock = true; 1696 } 1697 1698 if (failed) { 1699 /* 1700 * OK, we failed to lock the whole subtree so we have 1701 * to clean up what we set up to the failing subtree 1702 */ 1703 for_each_mem_cgroup_tree(iter, memcg) { 1704 if (iter == failed) { 1705 mem_cgroup_iter_break(memcg, iter); 1706 break; 1707 } 1708 iter->oom_lock = false; 1709 } 1710 } else 1711 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1712 1713 spin_unlock(&memcg_oom_lock); 1714 1715 return !failed; 1716 } 1717 1718 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1719 { 1720 struct mem_cgroup *iter; 1721 1722 spin_lock(&memcg_oom_lock); 1723 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1724 for_each_mem_cgroup_tree(iter, memcg) 1725 iter->oom_lock = false; 1726 spin_unlock(&memcg_oom_lock); 1727 } 1728 1729 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1730 { 1731 struct mem_cgroup *iter; 1732 1733 spin_lock(&memcg_oom_lock); 1734 for_each_mem_cgroup_tree(iter, memcg) 1735 iter->under_oom++; 1736 spin_unlock(&memcg_oom_lock); 1737 } 1738 1739 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1740 { 1741 struct mem_cgroup *iter; 1742 1743 /* 1744 * Be careful about under_oom underflows because a child memcg 1745 * could have been added after mem_cgroup_mark_under_oom. 1746 */ 1747 spin_lock(&memcg_oom_lock); 1748 for_each_mem_cgroup_tree(iter, memcg) 1749 if (iter->under_oom > 0) 1750 iter->under_oom--; 1751 spin_unlock(&memcg_oom_lock); 1752 } 1753 1754 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1755 1756 struct oom_wait_info { 1757 struct mem_cgroup *memcg; 1758 wait_queue_entry_t wait; 1759 }; 1760 1761 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1762 unsigned mode, int sync, void *arg) 1763 { 1764 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1765 struct mem_cgroup *oom_wait_memcg; 1766 struct oom_wait_info *oom_wait_info; 1767 1768 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1769 oom_wait_memcg = oom_wait_info->memcg; 1770 1771 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1772 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1773 return 0; 1774 return autoremove_wake_function(wait, mode, sync, arg); 1775 } 1776 1777 static void memcg_oom_recover(struct mem_cgroup *memcg) 1778 { 1779 /* 1780 * For the following lockless ->under_oom test, the only required 1781 * guarantee is that it must see the state asserted by an OOM when 1782 * this function is called as a result of userland actions 1783 * triggered by the notification of the OOM. This is trivially 1784 * achieved by invoking mem_cgroup_mark_under_oom() before 1785 * triggering notification. 1786 */ 1787 if (memcg && memcg->under_oom) 1788 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1789 } 1790 1791 enum oom_status { 1792 OOM_SUCCESS, 1793 OOM_FAILED, 1794 OOM_ASYNC, 1795 OOM_SKIPPED 1796 }; 1797 1798 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1799 { 1800 enum oom_status ret; 1801 bool locked; 1802 1803 if (order > PAGE_ALLOC_COSTLY_ORDER) 1804 return OOM_SKIPPED; 1805 1806 memcg_memory_event(memcg, MEMCG_OOM); 1807 1808 /* 1809 * We are in the middle of the charge context here, so we 1810 * don't want to block when potentially sitting on a callstack 1811 * that holds all kinds of filesystem and mm locks. 1812 * 1813 * cgroup1 allows disabling the OOM killer and waiting for outside 1814 * handling until the charge can succeed; remember the context and put 1815 * the task to sleep at the end of the page fault when all locks are 1816 * released. 1817 * 1818 * On the other hand, in-kernel OOM killer allows for an async victim 1819 * memory reclaim (oom_reaper) and that means that we are not solely 1820 * relying on the oom victim to make a forward progress and we can 1821 * invoke the oom killer here. 1822 * 1823 * Please note that mem_cgroup_out_of_memory might fail to find a 1824 * victim and then we have to bail out from the charge path. 1825 */ 1826 if (memcg->oom_kill_disable) { 1827 if (!current->in_user_fault) 1828 return OOM_SKIPPED; 1829 css_get(&memcg->css); 1830 current->memcg_in_oom = memcg; 1831 current->memcg_oom_gfp_mask = mask; 1832 current->memcg_oom_order = order; 1833 1834 return OOM_ASYNC; 1835 } 1836 1837 mem_cgroup_mark_under_oom(memcg); 1838 1839 locked = mem_cgroup_oom_trylock(memcg); 1840 1841 if (locked) 1842 mem_cgroup_oom_notify(memcg); 1843 1844 mem_cgroup_unmark_under_oom(memcg); 1845 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1846 ret = OOM_SUCCESS; 1847 else 1848 ret = OOM_FAILED; 1849 1850 if (locked) 1851 mem_cgroup_oom_unlock(memcg); 1852 1853 return ret; 1854 } 1855 1856 /** 1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1858 * @handle: actually kill/wait or just clean up the OOM state 1859 * 1860 * This has to be called at the end of a page fault if the memcg OOM 1861 * handler was enabled. 1862 * 1863 * Memcg supports userspace OOM handling where failed allocations must 1864 * sleep on a waitqueue until the userspace task resolves the 1865 * situation. Sleeping directly in the charge context with all kinds 1866 * of locks held is not a good idea, instead we remember an OOM state 1867 * in the task and mem_cgroup_oom_synchronize() has to be called at 1868 * the end of the page fault to complete the OOM handling. 1869 * 1870 * Returns %true if an ongoing memcg OOM situation was detected and 1871 * completed, %false otherwise. 1872 */ 1873 bool mem_cgroup_oom_synchronize(bool handle) 1874 { 1875 struct mem_cgroup *memcg = current->memcg_in_oom; 1876 struct oom_wait_info owait; 1877 bool locked; 1878 1879 /* OOM is global, do not handle */ 1880 if (!memcg) 1881 return false; 1882 1883 if (!handle) 1884 goto cleanup; 1885 1886 owait.memcg = memcg; 1887 owait.wait.flags = 0; 1888 owait.wait.func = memcg_oom_wake_function; 1889 owait.wait.private = current; 1890 INIT_LIST_HEAD(&owait.wait.entry); 1891 1892 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1893 mem_cgroup_mark_under_oom(memcg); 1894 1895 locked = mem_cgroup_oom_trylock(memcg); 1896 1897 if (locked) 1898 mem_cgroup_oom_notify(memcg); 1899 1900 if (locked && !memcg->oom_kill_disable) { 1901 mem_cgroup_unmark_under_oom(memcg); 1902 finish_wait(&memcg_oom_waitq, &owait.wait); 1903 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1904 current->memcg_oom_order); 1905 } else { 1906 schedule(); 1907 mem_cgroup_unmark_under_oom(memcg); 1908 finish_wait(&memcg_oom_waitq, &owait.wait); 1909 } 1910 1911 if (locked) { 1912 mem_cgroup_oom_unlock(memcg); 1913 /* 1914 * There is no guarantee that an OOM-lock contender 1915 * sees the wakeups triggered by the OOM kill 1916 * uncharges. Wake any sleepers explicitly. 1917 */ 1918 memcg_oom_recover(memcg); 1919 } 1920 cleanup: 1921 current->memcg_in_oom = NULL; 1922 css_put(&memcg->css); 1923 return true; 1924 } 1925 1926 /** 1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1928 * @victim: task to be killed by the OOM killer 1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1930 * 1931 * Returns a pointer to a memory cgroup, which has to be cleaned up 1932 * by killing all belonging OOM-killable tasks. 1933 * 1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1935 */ 1936 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1937 struct mem_cgroup *oom_domain) 1938 { 1939 struct mem_cgroup *oom_group = NULL; 1940 struct mem_cgroup *memcg; 1941 1942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1943 return NULL; 1944 1945 if (!oom_domain) 1946 oom_domain = root_mem_cgroup; 1947 1948 rcu_read_lock(); 1949 1950 memcg = mem_cgroup_from_task(victim); 1951 if (memcg == root_mem_cgroup) 1952 goto out; 1953 1954 /* 1955 * If the victim task has been asynchronously moved to a different 1956 * memory cgroup, we might end up killing tasks outside oom_domain. 1957 * In this case it's better to ignore memory.group.oom. 1958 */ 1959 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1960 goto out; 1961 1962 /* 1963 * Traverse the memory cgroup hierarchy from the victim task's 1964 * cgroup up to the OOMing cgroup (or root) to find the 1965 * highest-level memory cgroup with oom.group set. 1966 */ 1967 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1968 if (memcg->oom_group) 1969 oom_group = memcg; 1970 1971 if (memcg == oom_domain) 1972 break; 1973 } 1974 1975 if (oom_group) 1976 css_get(&oom_group->css); 1977 out: 1978 rcu_read_unlock(); 1979 1980 return oom_group; 1981 } 1982 1983 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1984 { 1985 pr_info("Tasks in "); 1986 pr_cont_cgroup_path(memcg->css.cgroup); 1987 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1988 } 1989 1990 /** 1991 * folio_memcg_lock - Bind a folio to its memcg. 1992 * @folio: The folio. 1993 * 1994 * This function prevents unlocked LRU folios from being moved to 1995 * another cgroup. 1996 * 1997 * It ensures lifetime of the bound memcg. The caller is responsible 1998 * for the lifetime of the folio. 1999 */ 2000 void folio_memcg_lock(struct folio *folio) 2001 { 2002 struct mem_cgroup *memcg; 2003 unsigned long flags; 2004 2005 /* 2006 * The RCU lock is held throughout the transaction. The fast 2007 * path can get away without acquiring the memcg->move_lock 2008 * because page moving starts with an RCU grace period. 2009 */ 2010 rcu_read_lock(); 2011 2012 if (mem_cgroup_disabled()) 2013 return; 2014 again: 2015 memcg = folio_memcg(folio); 2016 if (unlikely(!memcg)) 2017 return; 2018 2019 #ifdef CONFIG_PROVE_LOCKING 2020 local_irq_save(flags); 2021 might_lock(&memcg->move_lock); 2022 local_irq_restore(flags); 2023 #endif 2024 2025 if (atomic_read(&memcg->moving_account) <= 0) 2026 return; 2027 2028 spin_lock_irqsave(&memcg->move_lock, flags); 2029 if (memcg != folio_memcg(folio)) { 2030 spin_unlock_irqrestore(&memcg->move_lock, flags); 2031 goto again; 2032 } 2033 2034 /* 2035 * When charge migration first begins, we can have multiple 2036 * critical sections holding the fast-path RCU lock and one 2037 * holding the slowpath move_lock. Track the task who has the 2038 * move_lock for unlock_page_memcg(). 2039 */ 2040 memcg->move_lock_task = current; 2041 memcg->move_lock_flags = flags; 2042 } 2043 2044 void lock_page_memcg(struct page *page) 2045 { 2046 folio_memcg_lock(page_folio(page)); 2047 } 2048 2049 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2050 { 2051 if (memcg && memcg->move_lock_task == current) { 2052 unsigned long flags = memcg->move_lock_flags; 2053 2054 memcg->move_lock_task = NULL; 2055 memcg->move_lock_flags = 0; 2056 2057 spin_unlock_irqrestore(&memcg->move_lock, flags); 2058 } 2059 2060 rcu_read_unlock(); 2061 } 2062 2063 /** 2064 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2065 * @folio: The folio. 2066 * 2067 * This releases the binding created by folio_memcg_lock(). This does 2068 * not change the accounting of this folio to its memcg, but it does 2069 * permit others to change it. 2070 */ 2071 void folio_memcg_unlock(struct folio *folio) 2072 { 2073 __folio_memcg_unlock(folio_memcg(folio)); 2074 } 2075 2076 void unlock_page_memcg(struct page *page) 2077 { 2078 folio_memcg_unlock(page_folio(page)); 2079 } 2080 2081 struct obj_stock { 2082 #ifdef CONFIG_MEMCG_KMEM 2083 struct obj_cgroup *cached_objcg; 2084 struct pglist_data *cached_pgdat; 2085 unsigned int nr_bytes; 2086 int nr_slab_reclaimable_b; 2087 int nr_slab_unreclaimable_b; 2088 #else 2089 int dummy[0]; 2090 #endif 2091 }; 2092 2093 struct memcg_stock_pcp { 2094 struct mem_cgroup *cached; /* this never be root cgroup */ 2095 unsigned int nr_pages; 2096 struct obj_stock task_obj; 2097 struct obj_stock irq_obj; 2098 2099 struct work_struct work; 2100 unsigned long flags; 2101 #define FLUSHING_CACHED_CHARGE 0 2102 }; 2103 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2104 static DEFINE_MUTEX(percpu_charge_mutex); 2105 2106 #ifdef CONFIG_MEMCG_KMEM 2107 static void drain_obj_stock(struct obj_stock *stock); 2108 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2109 struct mem_cgroup *root_memcg); 2110 2111 #else 2112 static inline void drain_obj_stock(struct obj_stock *stock) 2113 { 2114 } 2115 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2116 struct mem_cgroup *root_memcg) 2117 { 2118 return false; 2119 } 2120 #endif 2121 2122 /** 2123 * consume_stock: Try to consume stocked charge on this cpu. 2124 * @memcg: memcg to consume from. 2125 * @nr_pages: how many pages to charge. 2126 * 2127 * The charges will only happen if @memcg matches the current cpu's memcg 2128 * stock, and at least @nr_pages are available in that stock. Failure to 2129 * service an allocation will refill the stock. 2130 * 2131 * returns true if successful, false otherwise. 2132 */ 2133 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2134 { 2135 struct memcg_stock_pcp *stock; 2136 unsigned long flags; 2137 bool ret = false; 2138 2139 if (nr_pages > MEMCG_CHARGE_BATCH) 2140 return ret; 2141 2142 local_irq_save(flags); 2143 2144 stock = this_cpu_ptr(&memcg_stock); 2145 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2146 stock->nr_pages -= nr_pages; 2147 ret = true; 2148 } 2149 2150 local_irq_restore(flags); 2151 2152 return ret; 2153 } 2154 2155 /* 2156 * Returns stocks cached in percpu and reset cached information. 2157 */ 2158 static void drain_stock(struct memcg_stock_pcp *stock) 2159 { 2160 struct mem_cgroup *old = stock->cached; 2161 2162 if (!old) 2163 return; 2164 2165 if (stock->nr_pages) { 2166 page_counter_uncharge(&old->memory, stock->nr_pages); 2167 if (do_memsw_account()) 2168 page_counter_uncharge(&old->memsw, stock->nr_pages); 2169 stock->nr_pages = 0; 2170 } 2171 2172 css_put(&old->css); 2173 stock->cached = NULL; 2174 } 2175 2176 static void drain_local_stock(struct work_struct *dummy) 2177 { 2178 struct memcg_stock_pcp *stock; 2179 unsigned long flags; 2180 2181 /* 2182 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2183 * drain_stock races is that we always operate on local CPU stock 2184 * here with IRQ disabled 2185 */ 2186 local_irq_save(flags); 2187 2188 stock = this_cpu_ptr(&memcg_stock); 2189 drain_obj_stock(&stock->irq_obj); 2190 if (in_task()) 2191 drain_obj_stock(&stock->task_obj); 2192 drain_stock(stock); 2193 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2194 2195 local_irq_restore(flags); 2196 } 2197 2198 /* 2199 * Cache charges(val) to local per_cpu area. 2200 * This will be consumed by consume_stock() function, later. 2201 */ 2202 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2203 { 2204 struct memcg_stock_pcp *stock; 2205 unsigned long flags; 2206 2207 local_irq_save(flags); 2208 2209 stock = this_cpu_ptr(&memcg_stock); 2210 if (stock->cached != memcg) { /* reset if necessary */ 2211 drain_stock(stock); 2212 css_get(&memcg->css); 2213 stock->cached = memcg; 2214 } 2215 stock->nr_pages += nr_pages; 2216 2217 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2218 drain_stock(stock); 2219 2220 local_irq_restore(flags); 2221 } 2222 2223 /* 2224 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2225 * of the hierarchy under it. 2226 */ 2227 static void drain_all_stock(struct mem_cgroup *root_memcg) 2228 { 2229 int cpu, curcpu; 2230 2231 /* If someone's already draining, avoid adding running more workers. */ 2232 if (!mutex_trylock(&percpu_charge_mutex)) 2233 return; 2234 /* 2235 * Notify other cpus that system-wide "drain" is running 2236 * We do not care about races with the cpu hotplug because cpu down 2237 * as well as workers from this path always operate on the local 2238 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2239 */ 2240 curcpu = get_cpu(); 2241 for_each_online_cpu(cpu) { 2242 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2243 struct mem_cgroup *memcg; 2244 bool flush = false; 2245 2246 rcu_read_lock(); 2247 memcg = stock->cached; 2248 if (memcg && stock->nr_pages && 2249 mem_cgroup_is_descendant(memcg, root_memcg)) 2250 flush = true; 2251 else if (obj_stock_flush_required(stock, root_memcg)) 2252 flush = true; 2253 rcu_read_unlock(); 2254 2255 if (flush && 2256 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2257 if (cpu == curcpu) 2258 drain_local_stock(&stock->work); 2259 else 2260 schedule_work_on(cpu, &stock->work); 2261 } 2262 } 2263 put_cpu(); 2264 mutex_unlock(&percpu_charge_mutex); 2265 } 2266 2267 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2268 { 2269 struct memcg_stock_pcp *stock; 2270 2271 stock = &per_cpu(memcg_stock, cpu); 2272 drain_stock(stock); 2273 2274 return 0; 2275 } 2276 2277 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2278 unsigned int nr_pages, 2279 gfp_t gfp_mask) 2280 { 2281 unsigned long nr_reclaimed = 0; 2282 2283 do { 2284 unsigned long pflags; 2285 2286 if (page_counter_read(&memcg->memory) <= 2287 READ_ONCE(memcg->memory.high)) 2288 continue; 2289 2290 memcg_memory_event(memcg, MEMCG_HIGH); 2291 2292 psi_memstall_enter(&pflags); 2293 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2294 gfp_mask, true); 2295 psi_memstall_leave(&pflags); 2296 } while ((memcg = parent_mem_cgroup(memcg)) && 2297 !mem_cgroup_is_root(memcg)); 2298 2299 return nr_reclaimed; 2300 } 2301 2302 static void high_work_func(struct work_struct *work) 2303 { 2304 struct mem_cgroup *memcg; 2305 2306 memcg = container_of(work, struct mem_cgroup, high_work); 2307 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2308 } 2309 2310 /* 2311 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2312 * enough to still cause a significant slowdown in most cases, while still 2313 * allowing diagnostics and tracing to proceed without becoming stuck. 2314 */ 2315 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2316 2317 /* 2318 * When calculating the delay, we use these either side of the exponentiation to 2319 * maintain precision and scale to a reasonable number of jiffies (see the table 2320 * below. 2321 * 2322 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2323 * overage ratio to a delay. 2324 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2325 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2326 * to produce a reasonable delay curve. 2327 * 2328 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2329 * reasonable delay curve compared to precision-adjusted overage, not 2330 * penalising heavily at first, but still making sure that growth beyond the 2331 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2332 * example, with a high of 100 megabytes: 2333 * 2334 * +-------+------------------------+ 2335 * | usage | time to allocate in ms | 2336 * +-------+------------------------+ 2337 * | 100M | 0 | 2338 * | 101M | 6 | 2339 * | 102M | 25 | 2340 * | 103M | 57 | 2341 * | 104M | 102 | 2342 * | 105M | 159 | 2343 * | 106M | 230 | 2344 * | 107M | 313 | 2345 * | 108M | 409 | 2346 * | 109M | 518 | 2347 * | 110M | 639 | 2348 * | 111M | 774 | 2349 * | 112M | 921 | 2350 * | 113M | 1081 | 2351 * | 114M | 1254 | 2352 * | 115M | 1439 | 2353 * | 116M | 1638 | 2354 * | 117M | 1849 | 2355 * | 118M | 2000 | 2356 * | 119M | 2000 | 2357 * | 120M | 2000 | 2358 * +-------+------------------------+ 2359 */ 2360 #define MEMCG_DELAY_PRECISION_SHIFT 20 2361 #define MEMCG_DELAY_SCALING_SHIFT 14 2362 2363 static u64 calculate_overage(unsigned long usage, unsigned long high) 2364 { 2365 u64 overage; 2366 2367 if (usage <= high) 2368 return 0; 2369 2370 /* 2371 * Prevent division by 0 in overage calculation by acting as if 2372 * it was a threshold of 1 page 2373 */ 2374 high = max(high, 1UL); 2375 2376 overage = usage - high; 2377 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2378 return div64_u64(overage, high); 2379 } 2380 2381 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2382 { 2383 u64 overage, max_overage = 0; 2384 2385 do { 2386 overage = calculate_overage(page_counter_read(&memcg->memory), 2387 READ_ONCE(memcg->memory.high)); 2388 max_overage = max(overage, max_overage); 2389 } while ((memcg = parent_mem_cgroup(memcg)) && 2390 !mem_cgroup_is_root(memcg)); 2391 2392 return max_overage; 2393 } 2394 2395 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2396 { 2397 u64 overage, max_overage = 0; 2398 2399 do { 2400 overage = calculate_overage(page_counter_read(&memcg->swap), 2401 READ_ONCE(memcg->swap.high)); 2402 if (overage) 2403 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2404 max_overage = max(overage, max_overage); 2405 } while ((memcg = parent_mem_cgroup(memcg)) && 2406 !mem_cgroup_is_root(memcg)); 2407 2408 return max_overage; 2409 } 2410 2411 /* 2412 * Get the number of jiffies that we should penalise a mischievous cgroup which 2413 * is exceeding its memory.high by checking both it and its ancestors. 2414 */ 2415 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2416 unsigned int nr_pages, 2417 u64 max_overage) 2418 { 2419 unsigned long penalty_jiffies; 2420 2421 if (!max_overage) 2422 return 0; 2423 2424 /* 2425 * We use overage compared to memory.high to calculate the number of 2426 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2427 * fairly lenient on small overages, and increasingly harsh when the 2428 * memcg in question makes it clear that it has no intention of stopping 2429 * its crazy behaviour, so we exponentially increase the delay based on 2430 * overage amount. 2431 */ 2432 penalty_jiffies = max_overage * max_overage * HZ; 2433 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2434 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2435 2436 /* 2437 * Factor in the task's own contribution to the overage, such that four 2438 * N-sized allocations are throttled approximately the same as one 2439 * 4N-sized allocation. 2440 * 2441 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2442 * larger the current charge patch is than that. 2443 */ 2444 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2445 } 2446 2447 /* 2448 * Scheduled by try_charge() to be executed from the userland return path 2449 * and reclaims memory over the high limit. 2450 */ 2451 void mem_cgroup_handle_over_high(void) 2452 { 2453 unsigned long penalty_jiffies; 2454 unsigned long pflags; 2455 unsigned long nr_reclaimed; 2456 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2457 int nr_retries = MAX_RECLAIM_RETRIES; 2458 struct mem_cgroup *memcg; 2459 bool in_retry = false; 2460 2461 if (likely(!nr_pages)) 2462 return; 2463 2464 memcg = get_mem_cgroup_from_mm(current->mm); 2465 current->memcg_nr_pages_over_high = 0; 2466 2467 retry_reclaim: 2468 /* 2469 * The allocating task should reclaim at least the batch size, but for 2470 * subsequent retries we only want to do what's necessary to prevent oom 2471 * or breaching resource isolation. 2472 * 2473 * This is distinct from memory.max or page allocator behaviour because 2474 * memory.high is currently batched, whereas memory.max and the page 2475 * allocator run every time an allocation is made. 2476 */ 2477 nr_reclaimed = reclaim_high(memcg, 2478 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2479 GFP_KERNEL); 2480 2481 /* 2482 * memory.high is breached and reclaim is unable to keep up. Throttle 2483 * allocators proactively to slow down excessive growth. 2484 */ 2485 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2486 mem_find_max_overage(memcg)); 2487 2488 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2489 swap_find_max_overage(memcg)); 2490 2491 /* 2492 * Clamp the max delay per usermode return so as to still keep the 2493 * application moving forwards and also permit diagnostics, albeit 2494 * extremely slowly. 2495 */ 2496 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2497 2498 /* 2499 * Don't sleep if the amount of jiffies this memcg owes us is so low 2500 * that it's not even worth doing, in an attempt to be nice to those who 2501 * go only a small amount over their memory.high value and maybe haven't 2502 * been aggressively reclaimed enough yet. 2503 */ 2504 if (penalty_jiffies <= HZ / 100) 2505 goto out; 2506 2507 /* 2508 * If reclaim is making forward progress but we're still over 2509 * memory.high, we want to encourage that rather than doing allocator 2510 * throttling. 2511 */ 2512 if (nr_reclaimed || nr_retries--) { 2513 in_retry = true; 2514 goto retry_reclaim; 2515 } 2516 2517 /* 2518 * If we exit early, we're guaranteed to die (since 2519 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2520 * need to account for any ill-begotten jiffies to pay them off later. 2521 */ 2522 psi_memstall_enter(&pflags); 2523 schedule_timeout_killable(penalty_jiffies); 2524 psi_memstall_leave(&pflags); 2525 2526 out: 2527 css_put(&memcg->css); 2528 } 2529 2530 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2531 unsigned int nr_pages) 2532 { 2533 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2534 int nr_retries = MAX_RECLAIM_RETRIES; 2535 struct mem_cgroup *mem_over_limit; 2536 struct page_counter *counter; 2537 enum oom_status oom_status; 2538 unsigned long nr_reclaimed; 2539 bool passed_oom = false; 2540 bool may_swap = true; 2541 bool drained = false; 2542 unsigned long pflags; 2543 2544 retry: 2545 if (consume_stock(memcg, nr_pages)) 2546 return 0; 2547 2548 if (!do_memsw_account() || 2549 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2550 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2551 goto done_restock; 2552 if (do_memsw_account()) 2553 page_counter_uncharge(&memcg->memsw, batch); 2554 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2555 } else { 2556 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2557 may_swap = false; 2558 } 2559 2560 if (batch > nr_pages) { 2561 batch = nr_pages; 2562 goto retry; 2563 } 2564 2565 /* 2566 * Memcg doesn't have a dedicated reserve for atomic 2567 * allocations. But like the global atomic pool, we need to 2568 * put the burden of reclaim on regular allocation requests 2569 * and let these go through as privileged allocations. 2570 */ 2571 if (gfp_mask & __GFP_ATOMIC) 2572 goto force; 2573 2574 /* 2575 * Prevent unbounded recursion when reclaim operations need to 2576 * allocate memory. This might exceed the limits temporarily, 2577 * but we prefer facilitating memory reclaim and getting back 2578 * under the limit over triggering OOM kills in these cases. 2579 */ 2580 if (unlikely(current->flags & PF_MEMALLOC)) 2581 goto force; 2582 2583 if (unlikely(task_in_memcg_oom(current))) 2584 goto nomem; 2585 2586 if (!gfpflags_allow_blocking(gfp_mask)) 2587 goto nomem; 2588 2589 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2590 2591 psi_memstall_enter(&pflags); 2592 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2593 gfp_mask, may_swap); 2594 psi_memstall_leave(&pflags); 2595 2596 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2597 goto retry; 2598 2599 if (!drained) { 2600 drain_all_stock(mem_over_limit); 2601 drained = true; 2602 goto retry; 2603 } 2604 2605 if (gfp_mask & __GFP_NORETRY) 2606 goto nomem; 2607 /* 2608 * Even though the limit is exceeded at this point, reclaim 2609 * may have been able to free some pages. Retry the charge 2610 * before killing the task. 2611 * 2612 * Only for regular pages, though: huge pages are rather 2613 * unlikely to succeed so close to the limit, and we fall back 2614 * to regular pages anyway in case of failure. 2615 */ 2616 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2617 goto retry; 2618 /* 2619 * At task move, charge accounts can be doubly counted. So, it's 2620 * better to wait until the end of task_move if something is going on. 2621 */ 2622 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2623 goto retry; 2624 2625 if (nr_retries--) 2626 goto retry; 2627 2628 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2629 goto nomem; 2630 2631 /* Avoid endless loop for tasks bypassed by the oom killer */ 2632 if (passed_oom && task_is_dying()) 2633 goto nomem; 2634 2635 /* 2636 * keep retrying as long as the memcg oom killer is able to make 2637 * a forward progress or bypass the charge if the oom killer 2638 * couldn't make any progress. 2639 */ 2640 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2641 get_order(nr_pages * PAGE_SIZE)); 2642 if (oom_status == OOM_SUCCESS) { 2643 passed_oom = true; 2644 nr_retries = MAX_RECLAIM_RETRIES; 2645 goto retry; 2646 } 2647 nomem: 2648 if (!(gfp_mask & __GFP_NOFAIL)) 2649 return -ENOMEM; 2650 force: 2651 /* 2652 * The allocation either can't fail or will lead to more memory 2653 * being freed very soon. Allow memory usage go over the limit 2654 * temporarily by force charging it. 2655 */ 2656 page_counter_charge(&memcg->memory, nr_pages); 2657 if (do_memsw_account()) 2658 page_counter_charge(&memcg->memsw, nr_pages); 2659 2660 return 0; 2661 2662 done_restock: 2663 if (batch > nr_pages) 2664 refill_stock(memcg, batch - nr_pages); 2665 2666 /* 2667 * If the hierarchy is above the normal consumption range, schedule 2668 * reclaim on returning to userland. We can perform reclaim here 2669 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2670 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2671 * not recorded as it most likely matches current's and won't 2672 * change in the meantime. As high limit is checked again before 2673 * reclaim, the cost of mismatch is negligible. 2674 */ 2675 do { 2676 bool mem_high, swap_high; 2677 2678 mem_high = page_counter_read(&memcg->memory) > 2679 READ_ONCE(memcg->memory.high); 2680 swap_high = page_counter_read(&memcg->swap) > 2681 READ_ONCE(memcg->swap.high); 2682 2683 /* Don't bother a random interrupted task */ 2684 if (in_interrupt()) { 2685 if (mem_high) { 2686 schedule_work(&memcg->high_work); 2687 break; 2688 } 2689 continue; 2690 } 2691 2692 if (mem_high || swap_high) { 2693 /* 2694 * The allocating tasks in this cgroup will need to do 2695 * reclaim or be throttled to prevent further growth 2696 * of the memory or swap footprints. 2697 * 2698 * Target some best-effort fairness between the tasks, 2699 * and distribute reclaim work and delay penalties 2700 * based on how much each task is actually allocating. 2701 */ 2702 current->memcg_nr_pages_over_high += batch; 2703 set_notify_resume(current); 2704 break; 2705 } 2706 } while ((memcg = parent_mem_cgroup(memcg))); 2707 2708 return 0; 2709 } 2710 2711 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2712 unsigned int nr_pages) 2713 { 2714 if (mem_cgroup_is_root(memcg)) 2715 return 0; 2716 2717 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2718 } 2719 2720 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2721 { 2722 if (mem_cgroup_is_root(memcg)) 2723 return; 2724 2725 page_counter_uncharge(&memcg->memory, nr_pages); 2726 if (do_memsw_account()) 2727 page_counter_uncharge(&memcg->memsw, nr_pages); 2728 } 2729 2730 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2731 { 2732 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2733 /* 2734 * Any of the following ensures page's memcg stability: 2735 * 2736 * - the page lock 2737 * - LRU isolation 2738 * - lock_page_memcg() 2739 * - exclusive reference 2740 */ 2741 folio->memcg_data = (unsigned long)memcg; 2742 } 2743 2744 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 2745 { 2746 struct mem_cgroup *memcg; 2747 2748 rcu_read_lock(); 2749 retry: 2750 memcg = obj_cgroup_memcg(objcg); 2751 if (unlikely(!css_tryget(&memcg->css))) 2752 goto retry; 2753 rcu_read_unlock(); 2754 2755 return memcg; 2756 } 2757 2758 #ifdef CONFIG_MEMCG_KMEM 2759 /* 2760 * The allocated objcg pointers array is not accounted directly. 2761 * Moreover, it should not come from DMA buffer and is not readily 2762 * reclaimable. So those GFP bits should be masked off. 2763 */ 2764 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2765 2766 /* 2767 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable 2768 * sequence used in this case to access content from object stock is slow. 2769 * To optimize for user context access, there are now two object stocks for 2770 * task context and interrupt context access respectively. 2771 * 2772 * The task context object stock can be accessed by disabling preemption only 2773 * which is cheap in non-preempt kernel. The interrupt context object stock 2774 * can only be accessed after disabling interrupt. User context code can 2775 * access interrupt object stock, but not vice versa. 2776 */ 2777 static inline struct obj_stock *get_obj_stock(unsigned long *pflags) 2778 { 2779 struct memcg_stock_pcp *stock; 2780 2781 if (likely(in_task())) { 2782 *pflags = 0UL; 2783 preempt_disable(); 2784 stock = this_cpu_ptr(&memcg_stock); 2785 return &stock->task_obj; 2786 } 2787 2788 local_irq_save(*pflags); 2789 stock = this_cpu_ptr(&memcg_stock); 2790 return &stock->irq_obj; 2791 } 2792 2793 static inline void put_obj_stock(unsigned long flags) 2794 { 2795 if (likely(in_task())) 2796 preempt_enable(); 2797 else 2798 local_irq_restore(flags); 2799 } 2800 2801 /* 2802 * mod_objcg_mlstate() may be called with irq enabled, so 2803 * mod_memcg_lruvec_state() should be used. 2804 */ 2805 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2806 struct pglist_data *pgdat, 2807 enum node_stat_item idx, int nr) 2808 { 2809 struct mem_cgroup *memcg; 2810 struct lruvec *lruvec; 2811 2812 rcu_read_lock(); 2813 memcg = obj_cgroup_memcg(objcg); 2814 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2815 mod_memcg_lruvec_state(lruvec, idx, nr); 2816 rcu_read_unlock(); 2817 } 2818 2819 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2820 gfp_t gfp, bool new_slab) 2821 { 2822 unsigned int objects = objs_per_slab(s, slab); 2823 unsigned long memcg_data; 2824 void *vec; 2825 2826 gfp &= ~OBJCGS_CLEAR_MASK; 2827 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2828 slab_nid(slab)); 2829 if (!vec) 2830 return -ENOMEM; 2831 2832 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2833 if (new_slab) { 2834 /* 2835 * If the slab is brand new and nobody can yet access its 2836 * memcg_data, no synchronization is required and memcg_data can 2837 * be simply assigned. 2838 */ 2839 slab->memcg_data = memcg_data; 2840 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2841 /* 2842 * If the slab is already in use, somebody can allocate and 2843 * assign obj_cgroups in parallel. In this case the existing 2844 * objcg vector should be reused. 2845 */ 2846 kfree(vec); 2847 return 0; 2848 } 2849 2850 kmemleak_not_leak(vec); 2851 return 0; 2852 } 2853 2854 /* 2855 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2856 * 2857 * A passed kernel object can be a slab object or a generic kernel page, so 2858 * different mechanisms for getting the memory cgroup pointer should be used. 2859 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2860 * can not know for sure how the kernel object is implemented. 2861 * mem_cgroup_from_obj() can be safely used in such cases. 2862 * 2863 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2864 * cgroup_mutex, etc. 2865 */ 2866 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2867 { 2868 struct folio *folio; 2869 2870 if (mem_cgroup_disabled()) 2871 return NULL; 2872 2873 folio = virt_to_folio(p); 2874 2875 /* 2876 * Slab objects are accounted individually, not per-page. 2877 * Memcg membership data for each individual object is saved in 2878 * slab->memcg_data. 2879 */ 2880 if (folio_test_slab(folio)) { 2881 struct obj_cgroup **objcgs; 2882 struct slab *slab; 2883 unsigned int off; 2884 2885 slab = folio_slab(folio); 2886 objcgs = slab_objcgs(slab); 2887 if (!objcgs) 2888 return NULL; 2889 2890 off = obj_to_index(slab->slab_cache, slab, p); 2891 if (objcgs[off]) 2892 return obj_cgroup_memcg(objcgs[off]); 2893 2894 return NULL; 2895 } 2896 2897 /* 2898 * page_memcg_check() is used here, because in theory we can encounter 2899 * a folio where the slab flag has been cleared already, but 2900 * slab->memcg_data has not been freed yet 2901 * page_memcg_check(page) will guarantee that a proper memory 2902 * cgroup pointer or NULL will be returned. 2903 */ 2904 return page_memcg_check(folio_page(folio, 0)); 2905 } 2906 2907 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2908 { 2909 struct obj_cgroup *objcg = NULL; 2910 struct mem_cgroup *memcg; 2911 2912 if (memcg_kmem_bypass()) 2913 return NULL; 2914 2915 rcu_read_lock(); 2916 if (unlikely(active_memcg())) 2917 memcg = active_memcg(); 2918 else 2919 memcg = mem_cgroup_from_task(current); 2920 2921 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2922 objcg = rcu_dereference(memcg->objcg); 2923 if (objcg && obj_cgroup_tryget(objcg)) 2924 break; 2925 objcg = NULL; 2926 } 2927 rcu_read_unlock(); 2928 2929 return objcg; 2930 } 2931 2932 static int memcg_alloc_cache_id(void) 2933 { 2934 int id, size; 2935 int err; 2936 2937 id = ida_simple_get(&memcg_cache_ida, 2938 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2939 if (id < 0) 2940 return id; 2941 2942 if (id < memcg_nr_cache_ids) 2943 return id; 2944 2945 /* 2946 * There's no space for the new id in memcg_caches arrays, 2947 * so we have to grow them. 2948 */ 2949 down_write(&memcg_cache_ids_sem); 2950 2951 size = 2 * (id + 1); 2952 if (size < MEMCG_CACHES_MIN_SIZE) 2953 size = MEMCG_CACHES_MIN_SIZE; 2954 else if (size > MEMCG_CACHES_MAX_SIZE) 2955 size = MEMCG_CACHES_MAX_SIZE; 2956 2957 err = memcg_update_all_list_lrus(size); 2958 if (!err) 2959 memcg_nr_cache_ids = size; 2960 2961 up_write(&memcg_cache_ids_sem); 2962 2963 if (err) { 2964 ida_simple_remove(&memcg_cache_ida, id); 2965 return err; 2966 } 2967 return id; 2968 } 2969 2970 static void memcg_free_cache_id(int id) 2971 { 2972 ida_simple_remove(&memcg_cache_ida, id); 2973 } 2974 2975 /* 2976 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2977 * @objcg: object cgroup to uncharge 2978 * @nr_pages: number of pages to uncharge 2979 */ 2980 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2981 unsigned int nr_pages) 2982 { 2983 struct mem_cgroup *memcg; 2984 2985 memcg = get_mem_cgroup_from_objcg(objcg); 2986 2987 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2988 page_counter_uncharge(&memcg->kmem, nr_pages); 2989 refill_stock(memcg, nr_pages); 2990 2991 css_put(&memcg->css); 2992 } 2993 2994 /* 2995 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2996 * @objcg: object cgroup to charge 2997 * @gfp: reclaim mode 2998 * @nr_pages: number of pages to charge 2999 * 3000 * Returns 0 on success, an error code on failure. 3001 */ 3002 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3003 unsigned int nr_pages) 3004 { 3005 struct mem_cgroup *memcg; 3006 int ret; 3007 3008 memcg = get_mem_cgroup_from_objcg(objcg); 3009 3010 ret = try_charge_memcg(memcg, gfp, nr_pages); 3011 if (ret) 3012 goto out; 3013 3014 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 3015 page_counter_charge(&memcg->kmem, nr_pages); 3016 out: 3017 css_put(&memcg->css); 3018 3019 return ret; 3020 } 3021 3022 /** 3023 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3024 * @page: page to charge 3025 * @gfp: reclaim mode 3026 * @order: allocation order 3027 * 3028 * Returns 0 on success, an error code on failure. 3029 */ 3030 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3031 { 3032 struct obj_cgroup *objcg; 3033 int ret = 0; 3034 3035 objcg = get_obj_cgroup_from_current(); 3036 if (objcg) { 3037 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3038 if (!ret) { 3039 page->memcg_data = (unsigned long)objcg | 3040 MEMCG_DATA_KMEM; 3041 return 0; 3042 } 3043 obj_cgroup_put(objcg); 3044 } 3045 return ret; 3046 } 3047 3048 /** 3049 * __memcg_kmem_uncharge_page: uncharge a kmem page 3050 * @page: page to uncharge 3051 * @order: allocation order 3052 */ 3053 void __memcg_kmem_uncharge_page(struct page *page, int order) 3054 { 3055 struct folio *folio = page_folio(page); 3056 struct obj_cgroup *objcg; 3057 unsigned int nr_pages = 1 << order; 3058 3059 if (!folio_memcg_kmem(folio)) 3060 return; 3061 3062 objcg = __folio_objcg(folio); 3063 obj_cgroup_uncharge_pages(objcg, nr_pages); 3064 folio->memcg_data = 0; 3065 obj_cgroup_put(objcg); 3066 } 3067 3068 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3069 enum node_stat_item idx, int nr) 3070 { 3071 unsigned long flags; 3072 struct obj_stock *stock = get_obj_stock(&flags); 3073 int *bytes; 3074 3075 /* 3076 * Save vmstat data in stock and skip vmstat array update unless 3077 * accumulating over a page of vmstat data or when pgdat or idx 3078 * changes. 3079 */ 3080 if (stock->cached_objcg != objcg) { 3081 drain_obj_stock(stock); 3082 obj_cgroup_get(objcg); 3083 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3084 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3085 stock->cached_objcg = objcg; 3086 stock->cached_pgdat = pgdat; 3087 } else if (stock->cached_pgdat != pgdat) { 3088 /* Flush the existing cached vmstat data */ 3089 struct pglist_data *oldpg = stock->cached_pgdat; 3090 3091 if (stock->nr_slab_reclaimable_b) { 3092 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3093 stock->nr_slab_reclaimable_b); 3094 stock->nr_slab_reclaimable_b = 0; 3095 } 3096 if (stock->nr_slab_unreclaimable_b) { 3097 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3098 stock->nr_slab_unreclaimable_b); 3099 stock->nr_slab_unreclaimable_b = 0; 3100 } 3101 stock->cached_pgdat = pgdat; 3102 } 3103 3104 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3105 : &stock->nr_slab_unreclaimable_b; 3106 /* 3107 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3108 * cached locally at least once before pushing it out. 3109 */ 3110 if (!*bytes) { 3111 *bytes = nr; 3112 nr = 0; 3113 } else { 3114 *bytes += nr; 3115 if (abs(*bytes) > PAGE_SIZE) { 3116 nr = *bytes; 3117 *bytes = 0; 3118 } else { 3119 nr = 0; 3120 } 3121 } 3122 if (nr) 3123 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3124 3125 put_obj_stock(flags); 3126 } 3127 3128 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3129 { 3130 unsigned long flags; 3131 struct obj_stock *stock = get_obj_stock(&flags); 3132 bool ret = false; 3133 3134 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3135 stock->nr_bytes -= nr_bytes; 3136 ret = true; 3137 } 3138 3139 put_obj_stock(flags); 3140 3141 return ret; 3142 } 3143 3144 static void drain_obj_stock(struct obj_stock *stock) 3145 { 3146 struct obj_cgroup *old = stock->cached_objcg; 3147 3148 if (!old) 3149 return; 3150 3151 if (stock->nr_bytes) { 3152 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3153 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3154 3155 if (nr_pages) 3156 obj_cgroup_uncharge_pages(old, nr_pages); 3157 3158 /* 3159 * The leftover is flushed to the centralized per-memcg value. 3160 * On the next attempt to refill obj stock it will be moved 3161 * to a per-cpu stock (probably, on an other CPU), see 3162 * refill_obj_stock(). 3163 * 3164 * How often it's flushed is a trade-off between the memory 3165 * limit enforcement accuracy and potential CPU contention, 3166 * so it might be changed in the future. 3167 */ 3168 atomic_add(nr_bytes, &old->nr_charged_bytes); 3169 stock->nr_bytes = 0; 3170 } 3171 3172 /* 3173 * Flush the vmstat data in current stock 3174 */ 3175 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3176 if (stock->nr_slab_reclaimable_b) { 3177 mod_objcg_mlstate(old, stock->cached_pgdat, 3178 NR_SLAB_RECLAIMABLE_B, 3179 stock->nr_slab_reclaimable_b); 3180 stock->nr_slab_reclaimable_b = 0; 3181 } 3182 if (stock->nr_slab_unreclaimable_b) { 3183 mod_objcg_mlstate(old, stock->cached_pgdat, 3184 NR_SLAB_UNRECLAIMABLE_B, 3185 stock->nr_slab_unreclaimable_b); 3186 stock->nr_slab_unreclaimable_b = 0; 3187 } 3188 stock->cached_pgdat = NULL; 3189 } 3190 3191 obj_cgroup_put(old); 3192 stock->cached_objcg = NULL; 3193 } 3194 3195 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3196 struct mem_cgroup *root_memcg) 3197 { 3198 struct mem_cgroup *memcg; 3199 3200 if (in_task() && stock->task_obj.cached_objcg) { 3201 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg); 3202 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3203 return true; 3204 } 3205 if (stock->irq_obj.cached_objcg) { 3206 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg); 3207 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3208 return true; 3209 } 3210 3211 return false; 3212 } 3213 3214 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3215 bool allow_uncharge) 3216 { 3217 unsigned long flags; 3218 struct obj_stock *stock = get_obj_stock(&flags); 3219 unsigned int nr_pages = 0; 3220 3221 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3222 drain_obj_stock(stock); 3223 obj_cgroup_get(objcg); 3224 stock->cached_objcg = objcg; 3225 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3226 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3227 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3228 } 3229 stock->nr_bytes += nr_bytes; 3230 3231 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3232 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3233 stock->nr_bytes &= (PAGE_SIZE - 1); 3234 } 3235 3236 put_obj_stock(flags); 3237 3238 if (nr_pages) 3239 obj_cgroup_uncharge_pages(objcg, nr_pages); 3240 } 3241 3242 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3243 { 3244 unsigned int nr_pages, nr_bytes; 3245 int ret; 3246 3247 if (consume_obj_stock(objcg, size)) 3248 return 0; 3249 3250 /* 3251 * In theory, objcg->nr_charged_bytes can have enough 3252 * pre-charged bytes to satisfy the allocation. However, 3253 * flushing objcg->nr_charged_bytes requires two atomic 3254 * operations, and objcg->nr_charged_bytes can't be big. 3255 * The shared objcg->nr_charged_bytes can also become a 3256 * performance bottleneck if all tasks of the same memcg are 3257 * trying to update it. So it's better to ignore it and try 3258 * grab some new pages. The stock's nr_bytes will be flushed to 3259 * objcg->nr_charged_bytes later on when objcg changes. 3260 * 3261 * The stock's nr_bytes may contain enough pre-charged bytes 3262 * to allow one less page from being charged, but we can't rely 3263 * on the pre-charged bytes not being changed outside of 3264 * consume_obj_stock() or refill_obj_stock(). So ignore those 3265 * pre-charged bytes as well when charging pages. To avoid a 3266 * page uncharge right after a page charge, we set the 3267 * allow_uncharge flag to false when calling refill_obj_stock() 3268 * to temporarily allow the pre-charged bytes to exceed the page 3269 * size limit. The maximum reachable value of the pre-charged 3270 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3271 * race. 3272 */ 3273 nr_pages = size >> PAGE_SHIFT; 3274 nr_bytes = size & (PAGE_SIZE - 1); 3275 3276 if (nr_bytes) 3277 nr_pages += 1; 3278 3279 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3280 if (!ret && nr_bytes) 3281 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3282 3283 return ret; 3284 } 3285 3286 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3287 { 3288 refill_obj_stock(objcg, size, true); 3289 } 3290 3291 #endif /* CONFIG_MEMCG_KMEM */ 3292 3293 /* 3294 * Because page_memcg(head) is not set on tails, set it now. 3295 */ 3296 void split_page_memcg(struct page *head, unsigned int nr) 3297 { 3298 struct folio *folio = page_folio(head); 3299 struct mem_cgroup *memcg = folio_memcg(folio); 3300 int i; 3301 3302 if (mem_cgroup_disabled() || !memcg) 3303 return; 3304 3305 for (i = 1; i < nr; i++) 3306 folio_page(folio, i)->memcg_data = folio->memcg_data; 3307 3308 if (folio_memcg_kmem(folio)) 3309 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3310 else 3311 css_get_many(&memcg->css, nr - 1); 3312 } 3313 3314 #ifdef CONFIG_MEMCG_SWAP 3315 /** 3316 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3317 * @entry: swap entry to be moved 3318 * @from: mem_cgroup which the entry is moved from 3319 * @to: mem_cgroup which the entry is moved to 3320 * 3321 * It succeeds only when the swap_cgroup's record for this entry is the same 3322 * as the mem_cgroup's id of @from. 3323 * 3324 * Returns 0 on success, -EINVAL on failure. 3325 * 3326 * The caller must have charged to @to, IOW, called page_counter_charge() about 3327 * both res and memsw, and called css_get(). 3328 */ 3329 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3330 struct mem_cgroup *from, struct mem_cgroup *to) 3331 { 3332 unsigned short old_id, new_id; 3333 3334 old_id = mem_cgroup_id(from); 3335 new_id = mem_cgroup_id(to); 3336 3337 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3338 mod_memcg_state(from, MEMCG_SWAP, -1); 3339 mod_memcg_state(to, MEMCG_SWAP, 1); 3340 return 0; 3341 } 3342 return -EINVAL; 3343 } 3344 #else 3345 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3346 struct mem_cgroup *from, struct mem_cgroup *to) 3347 { 3348 return -EINVAL; 3349 } 3350 #endif 3351 3352 static DEFINE_MUTEX(memcg_max_mutex); 3353 3354 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3355 unsigned long max, bool memsw) 3356 { 3357 bool enlarge = false; 3358 bool drained = false; 3359 int ret; 3360 bool limits_invariant; 3361 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3362 3363 do { 3364 if (signal_pending(current)) { 3365 ret = -EINTR; 3366 break; 3367 } 3368 3369 mutex_lock(&memcg_max_mutex); 3370 /* 3371 * Make sure that the new limit (memsw or memory limit) doesn't 3372 * break our basic invariant rule memory.max <= memsw.max. 3373 */ 3374 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3375 max <= memcg->memsw.max; 3376 if (!limits_invariant) { 3377 mutex_unlock(&memcg_max_mutex); 3378 ret = -EINVAL; 3379 break; 3380 } 3381 if (max > counter->max) 3382 enlarge = true; 3383 ret = page_counter_set_max(counter, max); 3384 mutex_unlock(&memcg_max_mutex); 3385 3386 if (!ret) 3387 break; 3388 3389 if (!drained) { 3390 drain_all_stock(memcg); 3391 drained = true; 3392 continue; 3393 } 3394 3395 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3396 GFP_KERNEL, !memsw)) { 3397 ret = -EBUSY; 3398 break; 3399 } 3400 } while (true); 3401 3402 if (!ret && enlarge) 3403 memcg_oom_recover(memcg); 3404 3405 return ret; 3406 } 3407 3408 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3409 gfp_t gfp_mask, 3410 unsigned long *total_scanned) 3411 { 3412 unsigned long nr_reclaimed = 0; 3413 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3414 unsigned long reclaimed; 3415 int loop = 0; 3416 struct mem_cgroup_tree_per_node *mctz; 3417 unsigned long excess; 3418 unsigned long nr_scanned; 3419 3420 if (order > 0) 3421 return 0; 3422 3423 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3424 3425 /* 3426 * Do not even bother to check the largest node if the root 3427 * is empty. Do it lockless to prevent lock bouncing. Races 3428 * are acceptable as soft limit is best effort anyway. 3429 */ 3430 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3431 return 0; 3432 3433 /* 3434 * This loop can run a while, specially if mem_cgroup's continuously 3435 * keep exceeding their soft limit and putting the system under 3436 * pressure 3437 */ 3438 do { 3439 if (next_mz) 3440 mz = next_mz; 3441 else 3442 mz = mem_cgroup_largest_soft_limit_node(mctz); 3443 if (!mz) 3444 break; 3445 3446 nr_scanned = 0; 3447 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3448 gfp_mask, &nr_scanned); 3449 nr_reclaimed += reclaimed; 3450 *total_scanned += nr_scanned; 3451 spin_lock_irq(&mctz->lock); 3452 __mem_cgroup_remove_exceeded(mz, mctz); 3453 3454 /* 3455 * If we failed to reclaim anything from this memory cgroup 3456 * it is time to move on to the next cgroup 3457 */ 3458 next_mz = NULL; 3459 if (!reclaimed) 3460 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3461 3462 excess = soft_limit_excess(mz->memcg); 3463 /* 3464 * One school of thought says that we should not add 3465 * back the node to the tree if reclaim returns 0. 3466 * But our reclaim could return 0, simply because due 3467 * to priority we are exposing a smaller subset of 3468 * memory to reclaim from. Consider this as a longer 3469 * term TODO. 3470 */ 3471 /* If excess == 0, no tree ops */ 3472 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3473 spin_unlock_irq(&mctz->lock); 3474 css_put(&mz->memcg->css); 3475 loop++; 3476 /* 3477 * Could not reclaim anything and there are no more 3478 * mem cgroups to try or we seem to be looping without 3479 * reclaiming anything. 3480 */ 3481 if (!nr_reclaimed && 3482 (next_mz == NULL || 3483 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3484 break; 3485 } while (!nr_reclaimed); 3486 if (next_mz) 3487 css_put(&next_mz->memcg->css); 3488 return nr_reclaimed; 3489 } 3490 3491 /* 3492 * Reclaims as many pages from the given memcg as possible. 3493 * 3494 * Caller is responsible for holding css reference for memcg. 3495 */ 3496 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3497 { 3498 int nr_retries = MAX_RECLAIM_RETRIES; 3499 3500 /* we call try-to-free pages for make this cgroup empty */ 3501 lru_add_drain_all(); 3502 3503 drain_all_stock(memcg); 3504 3505 /* try to free all pages in this cgroup */ 3506 while (nr_retries && page_counter_read(&memcg->memory)) { 3507 if (signal_pending(current)) 3508 return -EINTR; 3509 3510 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true)) 3511 nr_retries--; 3512 } 3513 3514 return 0; 3515 } 3516 3517 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3518 char *buf, size_t nbytes, 3519 loff_t off) 3520 { 3521 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3522 3523 if (mem_cgroup_is_root(memcg)) 3524 return -EINVAL; 3525 return mem_cgroup_force_empty(memcg) ?: nbytes; 3526 } 3527 3528 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3529 struct cftype *cft) 3530 { 3531 return 1; 3532 } 3533 3534 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3535 struct cftype *cft, u64 val) 3536 { 3537 if (val == 1) 3538 return 0; 3539 3540 pr_warn_once("Non-hierarchical mode is deprecated. " 3541 "Please report your usecase to linux-mm@kvack.org if you " 3542 "depend on this functionality.\n"); 3543 3544 return -EINVAL; 3545 } 3546 3547 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3548 { 3549 unsigned long val; 3550 3551 if (mem_cgroup_is_root(memcg)) { 3552 mem_cgroup_flush_stats(); 3553 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3554 memcg_page_state(memcg, NR_ANON_MAPPED); 3555 if (swap) 3556 val += memcg_page_state(memcg, MEMCG_SWAP); 3557 } else { 3558 if (!swap) 3559 val = page_counter_read(&memcg->memory); 3560 else 3561 val = page_counter_read(&memcg->memsw); 3562 } 3563 return val; 3564 } 3565 3566 enum { 3567 RES_USAGE, 3568 RES_LIMIT, 3569 RES_MAX_USAGE, 3570 RES_FAILCNT, 3571 RES_SOFT_LIMIT, 3572 }; 3573 3574 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3575 struct cftype *cft) 3576 { 3577 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3578 struct page_counter *counter; 3579 3580 switch (MEMFILE_TYPE(cft->private)) { 3581 case _MEM: 3582 counter = &memcg->memory; 3583 break; 3584 case _MEMSWAP: 3585 counter = &memcg->memsw; 3586 break; 3587 case _KMEM: 3588 counter = &memcg->kmem; 3589 break; 3590 case _TCP: 3591 counter = &memcg->tcpmem; 3592 break; 3593 default: 3594 BUG(); 3595 } 3596 3597 switch (MEMFILE_ATTR(cft->private)) { 3598 case RES_USAGE: 3599 if (counter == &memcg->memory) 3600 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3601 if (counter == &memcg->memsw) 3602 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3603 return (u64)page_counter_read(counter) * PAGE_SIZE; 3604 case RES_LIMIT: 3605 return (u64)counter->max * PAGE_SIZE; 3606 case RES_MAX_USAGE: 3607 return (u64)counter->watermark * PAGE_SIZE; 3608 case RES_FAILCNT: 3609 return counter->failcnt; 3610 case RES_SOFT_LIMIT: 3611 return (u64)memcg->soft_limit * PAGE_SIZE; 3612 default: 3613 BUG(); 3614 } 3615 } 3616 3617 #ifdef CONFIG_MEMCG_KMEM 3618 static int memcg_online_kmem(struct mem_cgroup *memcg) 3619 { 3620 struct obj_cgroup *objcg; 3621 int memcg_id; 3622 3623 if (cgroup_memory_nokmem) 3624 return 0; 3625 3626 BUG_ON(memcg->kmemcg_id >= 0); 3627 3628 memcg_id = memcg_alloc_cache_id(); 3629 if (memcg_id < 0) 3630 return memcg_id; 3631 3632 objcg = obj_cgroup_alloc(); 3633 if (!objcg) { 3634 memcg_free_cache_id(memcg_id); 3635 return -ENOMEM; 3636 } 3637 objcg->memcg = memcg; 3638 rcu_assign_pointer(memcg->objcg, objcg); 3639 3640 static_branch_enable(&memcg_kmem_enabled_key); 3641 3642 memcg->kmemcg_id = memcg_id; 3643 3644 return 0; 3645 } 3646 3647 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3648 { 3649 struct mem_cgroup *parent; 3650 int kmemcg_id; 3651 3652 if (memcg->kmemcg_id == -1) 3653 return; 3654 3655 parent = parent_mem_cgroup(memcg); 3656 if (!parent) 3657 parent = root_mem_cgroup; 3658 3659 memcg_reparent_objcgs(memcg, parent); 3660 3661 kmemcg_id = memcg->kmemcg_id; 3662 BUG_ON(kmemcg_id < 0); 3663 3664 /* 3665 * After we have finished memcg_reparent_objcgs(), all list_lrus 3666 * corresponding to this cgroup are guaranteed to remain empty. 3667 * The ordering is imposed by list_lru_node->lock taken by 3668 * memcg_drain_all_list_lrus(). 3669 */ 3670 memcg_drain_all_list_lrus(kmemcg_id, parent); 3671 3672 memcg_free_cache_id(kmemcg_id); 3673 memcg->kmemcg_id = -1; 3674 } 3675 #else 3676 static int memcg_online_kmem(struct mem_cgroup *memcg) 3677 { 3678 return 0; 3679 } 3680 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3681 { 3682 } 3683 #endif /* CONFIG_MEMCG_KMEM */ 3684 3685 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3686 { 3687 int ret; 3688 3689 mutex_lock(&memcg_max_mutex); 3690 3691 ret = page_counter_set_max(&memcg->tcpmem, max); 3692 if (ret) 3693 goto out; 3694 3695 if (!memcg->tcpmem_active) { 3696 /* 3697 * The active flag needs to be written after the static_key 3698 * update. This is what guarantees that the socket activation 3699 * function is the last one to run. See mem_cgroup_sk_alloc() 3700 * for details, and note that we don't mark any socket as 3701 * belonging to this memcg until that flag is up. 3702 * 3703 * We need to do this, because static_keys will span multiple 3704 * sites, but we can't control their order. If we mark a socket 3705 * as accounted, but the accounting functions are not patched in 3706 * yet, we'll lose accounting. 3707 * 3708 * We never race with the readers in mem_cgroup_sk_alloc(), 3709 * because when this value change, the code to process it is not 3710 * patched in yet. 3711 */ 3712 static_branch_inc(&memcg_sockets_enabled_key); 3713 memcg->tcpmem_active = true; 3714 } 3715 out: 3716 mutex_unlock(&memcg_max_mutex); 3717 return ret; 3718 } 3719 3720 /* 3721 * The user of this function is... 3722 * RES_LIMIT. 3723 */ 3724 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3725 char *buf, size_t nbytes, loff_t off) 3726 { 3727 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3728 unsigned long nr_pages; 3729 int ret; 3730 3731 buf = strstrip(buf); 3732 ret = page_counter_memparse(buf, "-1", &nr_pages); 3733 if (ret) 3734 return ret; 3735 3736 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3737 case RES_LIMIT: 3738 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3739 ret = -EINVAL; 3740 break; 3741 } 3742 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3743 case _MEM: 3744 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3745 break; 3746 case _MEMSWAP: 3747 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3748 break; 3749 case _KMEM: 3750 /* kmem.limit_in_bytes is deprecated. */ 3751 ret = -EOPNOTSUPP; 3752 break; 3753 case _TCP: 3754 ret = memcg_update_tcp_max(memcg, nr_pages); 3755 break; 3756 } 3757 break; 3758 case RES_SOFT_LIMIT: 3759 memcg->soft_limit = nr_pages; 3760 ret = 0; 3761 break; 3762 } 3763 return ret ?: nbytes; 3764 } 3765 3766 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3767 size_t nbytes, loff_t off) 3768 { 3769 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3770 struct page_counter *counter; 3771 3772 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3773 case _MEM: 3774 counter = &memcg->memory; 3775 break; 3776 case _MEMSWAP: 3777 counter = &memcg->memsw; 3778 break; 3779 case _KMEM: 3780 counter = &memcg->kmem; 3781 break; 3782 case _TCP: 3783 counter = &memcg->tcpmem; 3784 break; 3785 default: 3786 BUG(); 3787 } 3788 3789 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3790 case RES_MAX_USAGE: 3791 page_counter_reset_watermark(counter); 3792 break; 3793 case RES_FAILCNT: 3794 counter->failcnt = 0; 3795 break; 3796 default: 3797 BUG(); 3798 } 3799 3800 return nbytes; 3801 } 3802 3803 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3804 struct cftype *cft) 3805 { 3806 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3807 } 3808 3809 #ifdef CONFIG_MMU 3810 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3811 struct cftype *cft, u64 val) 3812 { 3813 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3814 3815 if (val & ~MOVE_MASK) 3816 return -EINVAL; 3817 3818 /* 3819 * No kind of locking is needed in here, because ->can_attach() will 3820 * check this value once in the beginning of the process, and then carry 3821 * on with stale data. This means that changes to this value will only 3822 * affect task migrations starting after the change. 3823 */ 3824 memcg->move_charge_at_immigrate = val; 3825 return 0; 3826 } 3827 #else 3828 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3829 struct cftype *cft, u64 val) 3830 { 3831 return -ENOSYS; 3832 } 3833 #endif 3834 3835 #ifdef CONFIG_NUMA 3836 3837 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3838 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3839 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3840 3841 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3842 int nid, unsigned int lru_mask, bool tree) 3843 { 3844 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3845 unsigned long nr = 0; 3846 enum lru_list lru; 3847 3848 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3849 3850 for_each_lru(lru) { 3851 if (!(BIT(lru) & lru_mask)) 3852 continue; 3853 if (tree) 3854 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3855 else 3856 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3857 } 3858 return nr; 3859 } 3860 3861 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3862 unsigned int lru_mask, 3863 bool tree) 3864 { 3865 unsigned long nr = 0; 3866 enum lru_list lru; 3867 3868 for_each_lru(lru) { 3869 if (!(BIT(lru) & lru_mask)) 3870 continue; 3871 if (tree) 3872 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3873 else 3874 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3875 } 3876 return nr; 3877 } 3878 3879 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3880 { 3881 struct numa_stat { 3882 const char *name; 3883 unsigned int lru_mask; 3884 }; 3885 3886 static const struct numa_stat stats[] = { 3887 { "total", LRU_ALL }, 3888 { "file", LRU_ALL_FILE }, 3889 { "anon", LRU_ALL_ANON }, 3890 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3891 }; 3892 const struct numa_stat *stat; 3893 int nid; 3894 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3895 3896 mem_cgroup_flush_stats(); 3897 3898 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3899 seq_printf(m, "%s=%lu", stat->name, 3900 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3901 false)); 3902 for_each_node_state(nid, N_MEMORY) 3903 seq_printf(m, " N%d=%lu", nid, 3904 mem_cgroup_node_nr_lru_pages(memcg, nid, 3905 stat->lru_mask, false)); 3906 seq_putc(m, '\n'); 3907 } 3908 3909 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3910 3911 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3912 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3913 true)); 3914 for_each_node_state(nid, N_MEMORY) 3915 seq_printf(m, " N%d=%lu", nid, 3916 mem_cgroup_node_nr_lru_pages(memcg, nid, 3917 stat->lru_mask, true)); 3918 seq_putc(m, '\n'); 3919 } 3920 3921 return 0; 3922 } 3923 #endif /* CONFIG_NUMA */ 3924 3925 static const unsigned int memcg1_stats[] = { 3926 NR_FILE_PAGES, 3927 NR_ANON_MAPPED, 3928 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3929 NR_ANON_THPS, 3930 #endif 3931 NR_SHMEM, 3932 NR_FILE_MAPPED, 3933 NR_FILE_DIRTY, 3934 NR_WRITEBACK, 3935 MEMCG_SWAP, 3936 }; 3937 3938 static const char *const memcg1_stat_names[] = { 3939 "cache", 3940 "rss", 3941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3942 "rss_huge", 3943 #endif 3944 "shmem", 3945 "mapped_file", 3946 "dirty", 3947 "writeback", 3948 "swap", 3949 }; 3950 3951 /* Universal VM events cgroup1 shows, original sort order */ 3952 static const unsigned int memcg1_events[] = { 3953 PGPGIN, 3954 PGPGOUT, 3955 PGFAULT, 3956 PGMAJFAULT, 3957 }; 3958 3959 static int memcg_stat_show(struct seq_file *m, void *v) 3960 { 3961 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3962 unsigned long memory, memsw; 3963 struct mem_cgroup *mi; 3964 unsigned int i; 3965 3966 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3967 3968 mem_cgroup_flush_stats(); 3969 3970 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3971 unsigned long nr; 3972 3973 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3974 continue; 3975 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 3976 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 3977 } 3978 3979 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3980 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3981 memcg_events_local(memcg, memcg1_events[i])); 3982 3983 for (i = 0; i < NR_LRU_LISTS; i++) 3984 seq_printf(m, "%s %lu\n", lru_list_name(i), 3985 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3986 PAGE_SIZE); 3987 3988 /* Hierarchical information */ 3989 memory = memsw = PAGE_COUNTER_MAX; 3990 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3991 memory = min(memory, READ_ONCE(mi->memory.max)); 3992 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 3993 } 3994 seq_printf(m, "hierarchical_memory_limit %llu\n", 3995 (u64)memory * PAGE_SIZE); 3996 if (do_memsw_account()) 3997 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3998 (u64)memsw * PAGE_SIZE); 3999 4000 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4001 unsigned long nr; 4002 4003 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4004 continue; 4005 nr = memcg_page_state(memcg, memcg1_stats[i]); 4006 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4007 (u64)nr * PAGE_SIZE); 4008 } 4009 4010 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4011 seq_printf(m, "total_%s %llu\n", 4012 vm_event_name(memcg1_events[i]), 4013 (u64)memcg_events(memcg, memcg1_events[i])); 4014 4015 for (i = 0; i < NR_LRU_LISTS; i++) 4016 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4017 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4018 PAGE_SIZE); 4019 4020 #ifdef CONFIG_DEBUG_VM 4021 { 4022 pg_data_t *pgdat; 4023 struct mem_cgroup_per_node *mz; 4024 unsigned long anon_cost = 0; 4025 unsigned long file_cost = 0; 4026 4027 for_each_online_pgdat(pgdat) { 4028 mz = memcg->nodeinfo[pgdat->node_id]; 4029 4030 anon_cost += mz->lruvec.anon_cost; 4031 file_cost += mz->lruvec.file_cost; 4032 } 4033 seq_printf(m, "anon_cost %lu\n", anon_cost); 4034 seq_printf(m, "file_cost %lu\n", file_cost); 4035 } 4036 #endif 4037 4038 return 0; 4039 } 4040 4041 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4042 struct cftype *cft) 4043 { 4044 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4045 4046 return mem_cgroup_swappiness(memcg); 4047 } 4048 4049 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4050 struct cftype *cft, u64 val) 4051 { 4052 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4053 4054 if (val > 200) 4055 return -EINVAL; 4056 4057 if (!mem_cgroup_is_root(memcg)) 4058 memcg->swappiness = val; 4059 else 4060 vm_swappiness = val; 4061 4062 return 0; 4063 } 4064 4065 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4066 { 4067 struct mem_cgroup_threshold_ary *t; 4068 unsigned long usage; 4069 int i; 4070 4071 rcu_read_lock(); 4072 if (!swap) 4073 t = rcu_dereference(memcg->thresholds.primary); 4074 else 4075 t = rcu_dereference(memcg->memsw_thresholds.primary); 4076 4077 if (!t) 4078 goto unlock; 4079 4080 usage = mem_cgroup_usage(memcg, swap); 4081 4082 /* 4083 * current_threshold points to threshold just below or equal to usage. 4084 * If it's not true, a threshold was crossed after last 4085 * call of __mem_cgroup_threshold(). 4086 */ 4087 i = t->current_threshold; 4088 4089 /* 4090 * Iterate backward over array of thresholds starting from 4091 * current_threshold and check if a threshold is crossed. 4092 * If none of thresholds below usage is crossed, we read 4093 * only one element of the array here. 4094 */ 4095 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4096 eventfd_signal(t->entries[i].eventfd, 1); 4097 4098 /* i = current_threshold + 1 */ 4099 i++; 4100 4101 /* 4102 * Iterate forward over array of thresholds starting from 4103 * current_threshold+1 and check if a threshold is crossed. 4104 * If none of thresholds above usage is crossed, we read 4105 * only one element of the array here. 4106 */ 4107 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4108 eventfd_signal(t->entries[i].eventfd, 1); 4109 4110 /* Update current_threshold */ 4111 t->current_threshold = i - 1; 4112 unlock: 4113 rcu_read_unlock(); 4114 } 4115 4116 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4117 { 4118 while (memcg) { 4119 __mem_cgroup_threshold(memcg, false); 4120 if (do_memsw_account()) 4121 __mem_cgroup_threshold(memcg, true); 4122 4123 memcg = parent_mem_cgroup(memcg); 4124 } 4125 } 4126 4127 static int compare_thresholds(const void *a, const void *b) 4128 { 4129 const struct mem_cgroup_threshold *_a = a; 4130 const struct mem_cgroup_threshold *_b = b; 4131 4132 if (_a->threshold > _b->threshold) 4133 return 1; 4134 4135 if (_a->threshold < _b->threshold) 4136 return -1; 4137 4138 return 0; 4139 } 4140 4141 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4142 { 4143 struct mem_cgroup_eventfd_list *ev; 4144 4145 spin_lock(&memcg_oom_lock); 4146 4147 list_for_each_entry(ev, &memcg->oom_notify, list) 4148 eventfd_signal(ev->eventfd, 1); 4149 4150 spin_unlock(&memcg_oom_lock); 4151 return 0; 4152 } 4153 4154 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4155 { 4156 struct mem_cgroup *iter; 4157 4158 for_each_mem_cgroup_tree(iter, memcg) 4159 mem_cgroup_oom_notify_cb(iter); 4160 } 4161 4162 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4163 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4164 { 4165 struct mem_cgroup_thresholds *thresholds; 4166 struct mem_cgroup_threshold_ary *new; 4167 unsigned long threshold; 4168 unsigned long usage; 4169 int i, size, ret; 4170 4171 ret = page_counter_memparse(args, "-1", &threshold); 4172 if (ret) 4173 return ret; 4174 4175 mutex_lock(&memcg->thresholds_lock); 4176 4177 if (type == _MEM) { 4178 thresholds = &memcg->thresholds; 4179 usage = mem_cgroup_usage(memcg, false); 4180 } else if (type == _MEMSWAP) { 4181 thresholds = &memcg->memsw_thresholds; 4182 usage = mem_cgroup_usage(memcg, true); 4183 } else 4184 BUG(); 4185 4186 /* Check if a threshold crossed before adding a new one */ 4187 if (thresholds->primary) 4188 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4189 4190 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4191 4192 /* Allocate memory for new array of thresholds */ 4193 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4194 if (!new) { 4195 ret = -ENOMEM; 4196 goto unlock; 4197 } 4198 new->size = size; 4199 4200 /* Copy thresholds (if any) to new array */ 4201 if (thresholds->primary) 4202 memcpy(new->entries, thresholds->primary->entries, 4203 flex_array_size(new, entries, size - 1)); 4204 4205 /* Add new threshold */ 4206 new->entries[size - 1].eventfd = eventfd; 4207 new->entries[size - 1].threshold = threshold; 4208 4209 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4210 sort(new->entries, size, sizeof(*new->entries), 4211 compare_thresholds, NULL); 4212 4213 /* Find current threshold */ 4214 new->current_threshold = -1; 4215 for (i = 0; i < size; i++) { 4216 if (new->entries[i].threshold <= usage) { 4217 /* 4218 * new->current_threshold will not be used until 4219 * rcu_assign_pointer(), so it's safe to increment 4220 * it here. 4221 */ 4222 ++new->current_threshold; 4223 } else 4224 break; 4225 } 4226 4227 /* Free old spare buffer and save old primary buffer as spare */ 4228 kfree(thresholds->spare); 4229 thresholds->spare = thresholds->primary; 4230 4231 rcu_assign_pointer(thresholds->primary, new); 4232 4233 /* To be sure that nobody uses thresholds */ 4234 synchronize_rcu(); 4235 4236 unlock: 4237 mutex_unlock(&memcg->thresholds_lock); 4238 4239 return ret; 4240 } 4241 4242 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4243 struct eventfd_ctx *eventfd, const char *args) 4244 { 4245 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4246 } 4247 4248 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4249 struct eventfd_ctx *eventfd, const char *args) 4250 { 4251 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4252 } 4253 4254 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4255 struct eventfd_ctx *eventfd, enum res_type type) 4256 { 4257 struct mem_cgroup_thresholds *thresholds; 4258 struct mem_cgroup_threshold_ary *new; 4259 unsigned long usage; 4260 int i, j, size, entries; 4261 4262 mutex_lock(&memcg->thresholds_lock); 4263 4264 if (type == _MEM) { 4265 thresholds = &memcg->thresholds; 4266 usage = mem_cgroup_usage(memcg, false); 4267 } else if (type == _MEMSWAP) { 4268 thresholds = &memcg->memsw_thresholds; 4269 usage = mem_cgroup_usage(memcg, true); 4270 } else 4271 BUG(); 4272 4273 if (!thresholds->primary) 4274 goto unlock; 4275 4276 /* Check if a threshold crossed before removing */ 4277 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4278 4279 /* Calculate new number of threshold */ 4280 size = entries = 0; 4281 for (i = 0; i < thresholds->primary->size; i++) { 4282 if (thresholds->primary->entries[i].eventfd != eventfd) 4283 size++; 4284 else 4285 entries++; 4286 } 4287 4288 new = thresholds->spare; 4289 4290 /* If no items related to eventfd have been cleared, nothing to do */ 4291 if (!entries) 4292 goto unlock; 4293 4294 /* Set thresholds array to NULL if we don't have thresholds */ 4295 if (!size) { 4296 kfree(new); 4297 new = NULL; 4298 goto swap_buffers; 4299 } 4300 4301 new->size = size; 4302 4303 /* Copy thresholds and find current threshold */ 4304 new->current_threshold = -1; 4305 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4306 if (thresholds->primary->entries[i].eventfd == eventfd) 4307 continue; 4308 4309 new->entries[j] = thresholds->primary->entries[i]; 4310 if (new->entries[j].threshold <= usage) { 4311 /* 4312 * new->current_threshold will not be used 4313 * until rcu_assign_pointer(), so it's safe to increment 4314 * it here. 4315 */ 4316 ++new->current_threshold; 4317 } 4318 j++; 4319 } 4320 4321 swap_buffers: 4322 /* Swap primary and spare array */ 4323 thresholds->spare = thresholds->primary; 4324 4325 rcu_assign_pointer(thresholds->primary, new); 4326 4327 /* To be sure that nobody uses thresholds */ 4328 synchronize_rcu(); 4329 4330 /* If all events are unregistered, free the spare array */ 4331 if (!new) { 4332 kfree(thresholds->spare); 4333 thresholds->spare = NULL; 4334 } 4335 unlock: 4336 mutex_unlock(&memcg->thresholds_lock); 4337 } 4338 4339 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4340 struct eventfd_ctx *eventfd) 4341 { 4342 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4343 } 4344 4345 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4346 struct eventfd_ctx *eventfd) 4347 { 4348 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4349 } 4350 4351 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4352 struct eventfd_ctx *eventfd, const char *args) 4353 { 4354 struct mem_cgroup_eventfd_list *event; 4355 4356 event = kmalloc(sizeof(*event), GFP_KERNEL); 4357 if (!event) 4358 return -ENOMEM; 4359 4360 spin_lock(&memcg_oom_lock); 4361 4362 event->eventfd = eventfd; 4363 list_add(&event->list, &memcg->oom_notify); 4364 4365 /* already in OOM ? */ 4366 if (memcg->under_oom) 4367 eventfd_signal(eventfd, 1); 4368 spin_unlock(&memcg_oom_lock); 4369 4370 return 0; 4371 } 4372 4373 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4374 struct eventfd_ctx *eventfd) 4375 { 4376 struct mem_cgroup_eventfd_list *ev, *tmp; 4377 4378 spin_lock(&memcg_oom_lock); 4379 4380 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4381 if (ev->eventfd == eventfd) { 4382 list_del(&ev->list); 4383 kfree(ev); 4384 } 4385 } 4386 4387 spin_unlock(&memcg_oom_lock); 4388 } 4389 4390 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4391 { 4392 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4393 4394 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4395 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4396 seq_printf(sf, "oom_kill %lu\n", 4397 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4398 return 0; 4399 } 4400 4401 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4402 struct cftype *cft, u64 val) 4403 { 4404 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4405 4406 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4407 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4408 return -EINVAL; 4409 4410 memcg->oom_kill_disable = val; 4411 if (!val) 4412 memcg_oom_recover(memcg); 4413 4414 return 0; 4415 } 4416 4417 #ifdef CONFIG_CGROUP_WRITEBACK 4418 4419 #include <trace/events/writeback.h> 4420 4421 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4422 { 4423 return wb_domain_init(&memcg->cgwb_domain, gfp); 4424 } 4425 4426 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4427 { 4428 wb_domain_exit(&memcg->cgwb_domain); 4429 } 4430 4431 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4432 { 4433 wb_domain_size_changed(&memcg->cgwb_domain); 4434 } 4435 4436 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4437 { 4438 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4439 4440 if (!memcg->css.parent) 4441 return NULL; 4442 4443 return &memcg->cgwb_domain; 4444 } 4445 4446 /** 4447 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4448 * @wb: bdi_writeback in question 4449 * @pfilepages: out parameter for number of file pages 4450 * @pheadroom: out parameter for number of allocatable pages according to memcg 4451 * @pdirty: out parameter for number of dirty pages 4452 * @pwriteback: out parameter for number of pages under writeback 4453 * 4454 * Determine the numbers of file, headroom, dirty, and writeback pages in 4455 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4456 * is a bit more involved. 4457 * 4458 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4459 * headroom is calculated as the lowest headroom of itself and the 4460 * ancestors. Note that this doesn't consider the actual amount of 4461 * available memory in the system. The caller should further cap 4462 * *@pheadroom accordingly. 4463 */ 4464 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4465 unsigned long *pheadroom, unsigned long *pdirty, 4466 unsigned long *pwriteback) 4467 { 4468 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4469 struct mem_cgroup *parent; 4470 4471 mem_cgroup_flush_stats(); 4472 4473 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4474 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4475 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4476 memcg_page_state(memcg, NR_ACTIVE_FILE); 4477 4478 *pheadroom = PAGE_COUNTER_MAX; 4479 while ((parent = parent_mem_cgroup(memcg))) { 4480 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4481 READ_ONCE(memcg->memory.high)); 4482 unsigned long used = page_counter_read(&memcg->memory); 4483 4484 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4485 memcg = parent; 4486 } 4487 } 4488 4489 /* 4490 * Foreign dirty flushing 4491 * 4492 * There's an inherent mismatch between memcg and writeback. The former 4493 * tracks ownership per-page while the latter per-inode. This was a 4494 * deliberate design decision because honoring per-page ownership in the 4495 * writeback path is complicated, may lead to higher CPU and IO overheads 4496 * and deemed unnecessary given that write-sharing an inode across 4497 * different cgroups isn't a common use-case. 4498 * 4499 * Combined with inode majority-writer ownership switching, this works well 4500 * enough in most cases but there are some pathological cases. For 4501 * example, let's say there are two cgroups A and B which keep writing to 4502 * different but confined parts of the same inode. B owns the inode and 4503 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4504 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4505 * triggering background writeback. A will be slowed down without a way to 4506 * make writeback of the dirty pages happen. 4507 * 4508 * Conditions like the above can lead to a cgroup getting repeatedly and 4509 * severely throttled after making some progress after each 4510 * dirty_expire_interval while the underlying IO device is almost 4511 * completely idle. 4512 * 4513 * Solving this problem completely requires matching the ownership tracking 4514 * granularities between memcg and writeback in either direction. However, 4515 * the more egregious behaviors can be avoided by simply remembering the 4516 * most recent foreign dirtying events and initiating remote flushes on 4517 * them when local writeback isn't enough to keep the memory clean enough. 4518 * 4519 * The following two functions implement such mechanism. When a foreign 4520 * page - a page whose memcg and writeback ownerships don't match - is 4521 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4522 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4523 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4524 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4525 * foreign bdi_writebacks which haven't expired. Both the numbers of 4526 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4527 * limited to MEMCG_CGWB_FRN_CNT. 4528 * 4529 * The mechanism only remembers IDs and doesn't hold any object references. 4530 * As being wrong occasionally doesn't matter, updates and accesses to the 4531 * records are lockless and racy. 4532 */ 4533 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4534 struct bdi_writeback *wb) 4535 { 4536 struct mem_cgroup *memcg = folio_memcg(folio); 4537 struct memcg_cgwb_frn *frn; 4538 u64 now = get_jiffies_64(); 4539 u64 oldest_at = now; 4540 int oldest = -1; 4541 int i; 4542 4543 trace_track_foreign_dirty(folio, wb); 4544 4545 /* 4546 * Pick the slot to use. If there is already a slot for @wb, keep 4547 * using it. If not replace the oldest one which isn't being 4548 * written out. 4549 */ 4550 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4551 frn = &memcg->cgwb_frn[i]; 4552 if (frn->bdi_id == wb->bdi->id && 4553 frn->memcg_id == wb->memcg_css->id) 4554 break; 4555 if (time_before64(frn->at, oldest_at) && 4556 atomic_read(&frn->done.cnt) == 1) { 4557 oldest = i; 4558 oldest_at = frn->at; 4559 } 4560 } 4561 4562 if (i < MEMCG_CGWB_FRN_CNT) { 4563 /* 4564 * Re-using an existing one. Update timestamp lazily to 4565 * avoid making the cacheline hot. We want them to be 4566 * reasonably up-to-date and significantly shorter than 4567 * dirty_expire_interval as that's what expires the record. 4568 * Use the shorter of 1s and dirty_expire_interval / 8. 4569 */ 4570 unsigned long update_intv = 4571 min_t(unsigned long, HZ, 4572 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4573 4574 if (time_before64(frn->at, now - update_intv)) 4575 frn->at = now; 4576 } else if (oldest >= 0) { 4577 /* replace the oldest free one */ 4578 frn = &memcg->cgwb_frn[oldest]; 4579 frn->bdi_id = wb->bdi->id; 4580 frn->memcg_id = wb->memcg_css->id; 4581 frn->at = now; 4582 } 4583 } 4584 4585 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4586 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4587 { 4588 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4589 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4590 u64 now = jiffies_64; 4591 int i; 4592 4593 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4594 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4595 4596 /* 4597 * If the record is older than dirty_expire_interval, 4598 * writeback on it has already started. No need to kick it 4599 * off again. Also, don't start a new one if there's 4600 * already one in flight. 4601 */ 4602 if (time_after64(frn->at, now - intv) && 4603 atomic_read(&frn->done.cnt) == 1) { 4604 frn->at = 0; 4605 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4606 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4607 WB_REASON_FOREIGN_FLUSH, 4608 &frn->done); 4609 } 4610 } 4611 } 4612 4613 #else /* CONFIG_CGROUP_WRITEBACK */ 4614 4615 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4616 { 4617 return 0; 4618 } 4619 4620 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4621 { 4622 } 4623 4624 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4625 { 4626 } 4627 4628 #endif /* CONFIG_CGROUP_WRITEBACK */ 4629 4630 /* 4631 * DO NOT USE IN NEW FILES. 4632 * 4633 * "cgroup.event_control" implementation. 4634 * 4635 * This is way over-engineered. It tries to support fully configurable 4636 * events for each user. Such level of flexibility is completely 4637 * unnecessary especially in the light of the planned unified hierarchy. 4638 * 4639 * Please deprecate this and replace with something simpler if at all 4640 * possible. 4641 */ 4642 4643 /* 4644 * Unregister event and free resources. 4645 * 4646 * Gets called from workqueue. 4647 */ 4648 static void memcg_event_remove(struct work_struct *work) 4649 { 4650 struct mem_cgroup_event *event = 4651 container_of(work, struct mem_cgroup_event, remove); 4652 struct mem_cgroup *memcg = event->memcg; 4653 4654 remove_wait_queue(event->wqh, &event->wait); 4655 4656 event->unregister_event(memcg, event->eventfd); 4657 4658 /* Notify userspace the event is going away. */ 4659 eventfd_signal(event->eventfd, 1); 4660 4661 eventfd_ctx_put(event->eventfd); 4662 kfree(event); 4663 css_put(&memcg->css); 4664 } 4665 4666 /* 4667 * Gets called on EPOLLHUP on eventfd when user closes it. 4668 * 4669 * Called with wqh->lock held and interrupts disabled. 4670 */ 4671 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4672 int sync, void *key) 4673 { 4674 struct mem_cgroup_event *event = 4675 container_of(wait, struct mem_cgroup_event, wait); 4676 struct mem_cgroup *memcg = event->memcg; 4677 __poll_t flags = key_to_poll(key); 4678 4679 if (flags & EPOLLHUP) { 4680 /* 4681 * If the event has been detached at cgroup removal, we 4682 * can simply return knowing the other side will cleanup 4683 * for us. 4684 * 4685 * We can't race against event freeing since the other 4686 * side will require wqh->lock via remove_wait_queue(), 4687 * which we hold. 4688 */ 4689 spin_lock(&memcg->event_list_lock); 4690 if (!list_empty(&event->list)) { 4691 list_del_init(&event->list); 4692 /* 4693 * We are in atomic context, but cgroup_event_remove() 4694 * may sleep, so we have to call it in workqueue. 4695 */ 4696 schedule_work(&event->remove); 4697 } 4698 spin_unlock(&memcg->event_list_lock); 4699 } 4700 4701 return 0; 4702 } 4703 4704 static void memcg_event_ptable_queue_proc(struct file *file, 4705 wait_queue_head_t *wqh, poll_table *pt) 4706 { 4707 struct mem_cgroup_event *event = 4708 container_of(pt, struct mem_cgroup_event, pt); 4709 4710 event->wqh = wqh; 4711 add_wait_queue(wqh, &event->wait); 4712 } 4713 4714 /* 4715 * DO NOT USE IN NEW FILES. 4716 * 4717 * Parse input and register new cgroup event handler. 4718 * 4719 * Input must be in format '<event_fd> <control_fd> <args>'. 4720 * Interpretation of args is defined by control file implementation. 4721 */ 4722 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4723 char *buf, size_t nbytes, loff_t off) 4724 { 4725 struct cgroup_subsys_state *css = of_css(of); 4726 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4727 struct mem_cgroup_event *event; 4728 struct cgroup_subsys_state *cfile_css; 4729 unsigned int efd, cfd; 4730 struct fd efile; 4731 struct fd cfile; 4732 const char *name; 4733 char *endp; 4734 int ret; 4735 4736 buf = strstrip(buf); 4737 4738 efd = simple_strtoul(buf, &endp, 10); 4739 if (*endp != ' ') 4740 return -EINVAL; 4741 buf = endp + 1; 4742 4743 cfd = simple_strtoul(buf, &endp, 10); 4744 if ((*endp != ' ') && (*endp != '\0')) 4745 return -EINVAL; 4746 buf = endp + 1; 4747 4748 event = kzalloc(sizeof(*event), GFP_KERNEL); 4749 if (!event) 4750 return -ENOMEM; 4751 4752 event->memcg = memcg; 4753 INIT_LIST_HEAD(&event->list); 4754 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4755 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4756 INIT_WORK(&event->remove, memcg_event_remove); 4757 4758 efile = fdget(efd); 4759 if (!efile.file) { 4760 ret = -EBADF; 4761 goto out_kfree; 4762 } 4763 4764 event->eventfd = eventfd_ctx_fileget(efile.file); 4765 if (IS_ERR(event->eventfd)) { 4766 ret = PTR_ERR(event->eventfd); 4767 goto out_put_efile; 4768 } 4769 4770 cfile = fdget(cfd); 4771 if (!cfile.file) { 4772 ret = -EBADF; 4773 goto out_put_eventfd; 4774 } 4775 4776 /* the process need read permission on control file */ 4777 /* AV: shouldn't we check that it's been opened for read instead? */ 4778 ret = file_permission(cfile.file, MAY_READ); 4779 if (ret < 0) 4780 goto out_put_cfile; 4781 4782 /* 4783 * Determine the event callbacks and set them in @event. This used 4784 * to be done via struct cftype but cgroup core no longer knows 4785 * about these events. The following is crude but the whole thing 4786 * is for compatibility anyway. 4787 * 4788 * DO NOT ADD NEW FILES. 4789 */ 4790 name = cfile.file->f_path.dentry->d_name.name; 4791 4792 if (!strcmp(name, "memory.usage_in_bytes")) { 4793 event->register_event = mem_cgroup_usage_register_event; 4794 event->unregister_event = mem_cgroup_usage_unregister_event; 4795 } else if (!strcmp(name, "memory.oom_control")) { 4796 event->register_event = mem_cgroup_oom_register_event; 4797 event->unregister_event = mem_cgroup_oom_unregister_event; 4798 } else if (!strcmp(name, "memory.pressure_level")) { 4799 event->register_event = vmpressure_register_event; 4800 event->unregister_event = vmpressure_unregister_event; 4801 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4802 event->register_event = memsw_cgroup_usage_register_event; 4803 event->unregister_event = memsw_cgroup_usage_unregister_event; 4804 } else { 4805 ret = -EINVAL; 4806 goto out_put_cfile; 4807 } 4808 4809 /* 4810 * Verify @cfile should belong to @css. Also, remaining events are 4811 * automatically removed on cgroup destruction but the removal is 4812 * asynchronous, so take an extra ref on @css. 4813 */ 4814 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4815 &memory_cgrp_subsys); 4816 ret = -EINVAL; 4817 if (IS_ERR(cfile_css)) 4818 goto out_put_cfile; 4819 if (cfile_css != css) { 4820 css_put(cfile_css); 4821 goto out_put_cfile; 4822 } 4823 4824 ret = event->register_event(memcg, event->eventfd, buf); 4825 if (ret) 4826 goto out_put_css; 4827 4828 vfs_poll(efile.file, &event->pt); 4829 4830 spin_lock_irq(&memcg->event_list_lock); 4831 list_add(&event->list, &memcg->event_list); 4832 spin_unlock_irq(&memcg->event_list_lock); 4833 4834 fdput(cfile); 4835 fdput(efile); 4836 4837 return nbytes; 4838 4839 out_put_css: 4840 css_put(css); 4841 out_put_cfile: 4842 fdput(cfile); 4843 out_put_eventfd: 4844 eventfd_ctx_put(event->eventfd); 4845 out_put_efile: 4846 fdput(efile); 4847 out_kfree: 4848 kfree(event); 4849 4850 return ret; 4851 } 4852 4853 static struct cftype mem_cgroup_legacy_files[] = { 4854 { 4855 .name = "usage_in_bytes", 4856 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4857 .read_u64 = mem_cgroup_read_u64, 4858 }, 4859 { 4860 .name = "max_usage_in_bytes", 4861 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4862 .write = mem_cgroup_reset, 4863 .read_u64 = mem_cgroup_read_u64, 4864 }, 4865 { 4866 .name = "limit_in_bytes", 4867 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4868 .write = mem_cgroup_write, 4869 .read_u64 = mem_cgroup_read_u64, 4870 }, 4871 { 4872 .name = "soft_limit_in_bytes", 4873 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4874 .write = mem_cgroup_write, 4875 .read_u64 = mem_cgroup_read_u64, 4876 }, 4877 { 4878 .name = "failcnt", 4879 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4880 .write = mem_cgroup_reset, 4881 .read_u64 = mem_cgroup_read_u64, 4882 }, 4883 { 4884 .name = "stat", 4885 .seq_show = memcg_stat_show, 4886 }, 4887 { 4888 .name = "force_empty", 4889 .write = mem_cgroup_force_empty_write, 4890 }, 4891 { 4892 .name = "use_hierarchy", 4893 .write_u64 = mem_cgroup_hierarchy_write, 4894 .read_u64 = mem_cgroup_hierarchy_read, 4895 }, 4896 { 4897 .name = "cgroup.event_control", /* XXX: for compat */ 4898 .write = memcg_write_event_control, 4899 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4900 }, 4901 { 4902 .name = "swappiness", 4903 .read_u64 = mem_cgroup_swappiness_read, 4904 .write_u64 = mem_cgroup_swappiness_write, 4905 }, 4906 { 4907 .name = "move_charge_at_immigrate", 4908 .read_u64 = mem_cgroup_move_charge_read, 4909 .write_u64 = mem_cgroup_move_charge_write, 4910 }, 4911 { 4912 .name = "oom_control", 4913 .seq_show = mem_cgroup_oom_control_read, 4914 .write_u64 = mem_cgroup_oom_control_write, 4915 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4916 }, 4917 { 4918 .name = "pressure_level", 4919 }, 4920 #ifdef CONFIG_NUMA 4921 { 4922 .name = "numa_stat", 4923 .seq_show = memcg_numa_stat_show, 4924 }, 4925 #endif 4926 { 4927 .name = "kmem.limit_in_bytes", 4928 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4929 .write = mem_cgroup_write, 4930 .read_u64 = mem_cgroup_read_u64, 4931 }, 4932 { 4933 .name = "kmem.usage_in_bytes", 4934 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4935 .read_u64 = mem_cgroup_read_u64, 4936 }, 4937 { 4938 .name = "kmem.failcnt", 4939 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4940 .write = mem_cgroup_reset, 4941 .read_u64 = mem_cgroup_read_u64, 4942 }, 4943 { 4944 .name = "kmem.max_usage_in_bytes", 4945 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4946 .write = mem_cgroup_reset, 4947 .read_u64 = mem_cgroup_read_u64, 4948 }, 4949 #if defined(CONFIG_MEMCG_KMEM) && \ 4950 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4951 { 4952 .name = "kmem.slabinfo", 4953 .seq_show = memcg_slab_show, 4954 }, 4955 #endif 4956 { 4957 .name = "kmem.tcp.limit_in_bytes", 4958 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4959 .write = mem_cgroup_write, 4960 .read_u64 = mem_cgroup_read_u64, 4961 }, 4962 { 4963 .name = "kmem.tcp.usage_in_bytes", 4964 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4965 .read_u64 = mem_cgroup_read_u64, 4966 }, 4967 { 4968 .name = "kmem.tcp.failcnt", 4969 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4970 .write = mem_cgroup_reset, 4971 .read_u64 = mem_cgroup_read_u64, 4972 }, 4973 { 4974 .name = "kmem.tcp.max_usage_in_bytes", 4975 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4976 .write = mem_cgroup_reset, 4977 .read_u64 = mem_cgroup_read_u64, 4978 }, 4979 { }, /* terminate */ 4980 }; 4981 4982 /* 4983 * Private memory cgroup IDR 4984 * 4985 * Swap-out records and page cache shadow entries need to store memcg 4986 * references in constrained space, so we maintain an ID space that is 4987 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4988 * memory-controlled cgroups to 64k. 4989 * 4990 * However, there usually are many references to the offline CSS after 4991 * the cgroup has been destroyed, such as page cache or reclaimable 4992 * slab objects, that don't need to hang on to the ID. We want to keep 4993 * those dead CSS from occupying IDs, or we might quickly exhaust the 4994 * relatively small ID space and prevent the creation of new cgroups 4995 * even when there are much fewer than 64k cgroups - possibly none. 4996 * 4997 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4998 * be freed and recycled when it's no longer needed, which is usually 4999 * when the CSS is offlined. 5000 * 5001 * The only exception to that are records of swapped out tmpfs/shmem 5002 * pages that need to be attributed to live ancestors on swapin. But 5003 * those references are manageable from userspace. 5004 */ 5005 5006 static DEFINE_IDR(mem_cgroup_idr); 5007 5008 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5009 { 5010 if (memcg->id.id > 0) { 5011 idr_remove(&mem_cgroup_idr, memcg->id.id); 5012 memcg->id.id = 0; 5013 } 5014 } 5015 5016 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5017 unsigned int n) 5018 { 5019 refcount_add(n, &memcg->id.ref); 5020 } 5021 5022 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5023 { 5024 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5025 mem_cgroup_id_remove(memcg); 5026 5027 /* Memcg ID pins CSS */ 5028 css_put(&memcg->css); 5029 } 5030 } 5031 5032 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5033 { 5034 mem_cgroup_id_put_many(memcg, 1); 5035 } 5036 5037 /** 5038 * mem_cgroup_from_id - look up a memcg from a memcg id 5039 * @id: the memcg id to look up 5040 * 5041 * Caller must hold rcu_read_lock(). 5042 */ 5043 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5044 { 5045 WARN_ON_ONCE(!rcu_read_lock_held()); 5046 return idr_find(&mem_cgroup_idr, id); 5047 } 5048 5049 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5050 { 5051 struct mem_cgroup_per_node *pn; 5052 int tmp = node; 5053 /* 5054 * This routine is called against possible nodes. 5055 * But it's BUG to call kmalloc() against offline node. 5056 * 5057 * TODO: this routine can waste much memory for nodes which will 5058 * never be onlined. It's better to use memory hotplug callback 5059 * function. 5060 */ 5061 if (!node_state(node, N_NORMAL_MEMORY)) 5062 tmp = -1; 5063 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5064 if (!pn) 5065 return 1; 5066 5067 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5068 GFP_KERNEL_ACCOUNT); 5069 if (!pn->lruvec_stats_percpu) { 5070 kfree(pn); 5071 return 1; 5072 } 5073 5074 lruvec_init(&pn->lruvec); 5075 pn->usage_in_excess = 0; 5076 pn->on_tree = false; 5077 pn->memcg = memcg; 5078 5079 memcg->nodeinfo[node] = pn; 5080 return 0; 5081 } 5082 5083 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5084 { 5085 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5086 5087 if (!pn) 5088 return; 5089 5090 free_percpu(pn->lruvec_stats_percpu); 5091 kfree(pn); 5092 } 5093 5094 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5095 { 5096 int node; 5097 5098 for_each_node(node) 5099 free_mem_cgroup_per_node_info(memcg, node); 5100 free_percpu(memcg->vmstats_percpu); 5101 kfree(memcg); 5102 } 5103 5104 static void mem_cgroup_free(struct mem_cgroup *memcg) 5105 { 5106 memcg_wb_domain_exit(memcg); 5107 __mem_cgroup_free(memcg); 5108 } 5109 5110 static struct mem_cgroup *mem_cgroup_alloc(void) 5111 { 5112 struct mem_cgroup *memcg; 5113 unsigned int size; 5114 int node; 5115 int __maybe_unused i; 5116 long error = -ENOMEM; 5117 5118 size = sizeof(struct mem_cgroup); 5119 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5120 5121 memcg = kzalloc(size, GFP_KERNEL); 5122 if (!memcg) 5123 return ERR_PTR(error); 5124 5125 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5126 1, MEM_CGROUP_ID_MAX, 5127 GFP_KERNEL); 5128 if (memcg->id.id < 0) { 5129 error = memcg->id.id; 5130 goto fail; 5131 } 5132 5133 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5134 GFP_KERNEL_ACCOUNT); 5135 if (!memcg->vmstats_percpu) 5136 goto fail; 5137 5138 for_each_node(node) 5139 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5140 goto fail; 5141 5142 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5143 goto fail; 5144 5145 INIT_WORK(&memcg->high_work, high_work_func); 5146 INIT_LIST_HEAD(&memcg->oom_notify); 5147 mutex_init(&memcg->thresholds_lock); 5148 spin_lock_init(&memcg->move_lock); 5149 vmpressure_init(&memcg->vmpressure); 5150 INIT_LIST_HEAD(&memcg->event_list); 5151 spin_lock_init(&memcg->event_list_lock); 5152 memcg->socket_pressure = jiffies; 5153 #ifdef CONFIG_MEMCG_KMEM 5154 memcg->kmemcg_id = -1; 5155 INIT_LIST_HEAD(&memcg->objcg_list); 5156 #endif 5157 #ifdef CONFIG_CGROUP_WRITEBACK 5158 INIT_LIST_HEAD(&memcg->cgwb_list); 5159 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5160 memcg->cgwb_frn[i].done = 5161 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5162 #endif 5163 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5164 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5165 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5166 memcg->deferred_split_queue.split_queue_len = 0; 5167 #endif 5168 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5169 return memcg; 5170 fail: 5171 mem_cgroup_id_remove(memcg); 5172 __mem_cgroup_free(memcg); 5173 return ERR_PTR(error); 5174 } 5175 5176 static struct cgroup_subsys_state * __ref 5177 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5178 { 5179 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5180 struct mem_cgroup *memcg, *old_memcg; 5181 long error = -ENOMEM; 5182 5183 old_memcg = set_active_memcg(parent); 5184 memcg = mem_cgroup_alloc(); 5185 set_active_memcg(old_memcg); 5186 if (IS_ERR(memcg)) 5187 return ERR_CAST(memcg); 5188 5189 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5190 memcg->soft_limit = PAGE_COUNTER_MAX; 5191 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5192 if (parent) { 5193 memcg->swappiness = mem_cgroup_swappiness(parent); 5194 memcg->oom_kill_disable = parent->oom_kill_disable; 5195 5196 page_counter_init(&memcg->memory, &parent->memory); 5197 page_counter_init(&memcg->swap, &parent->swap); 5198 page_counter_init(&memcg->kmem, &parent->kmem); 5199 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5200 } else { 5201 page_counter_init(&memcg->memory, NULL); 5202 page_counter_init(&memcg->swap, NULL); 5203 page_counter_init(&memcg->kmem, NULL); 5204 page_counter_init(&memcg->tcpmem, NULL); 5205 5206 root_mem_cgroup = memcg; 5207 return &memcg->css; 5208 } 5209 5210 /* The following stuff does not apply to the root */ 5211 error = memcg_online_kmem(memcg); 5212 if (error) 5213 goto fail; 5214 5215 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5216 static_branch_inc(&memcg_sockets_enabled_key); 5217 5218 return &memcg->css; 5219 fail: 5220 mem_cgroup_id_remove(memcg); 5221 mem_cgroup_free(memcg); 5222 return ERR_PTR(error); 5223 } 5224 5225 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5226 { 5227 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5228 5229 /* 5230 * A memcg must be visible for expand_shrinker_info() 5231 * by the time the maps are allocated. So, we allocate maps 5232 * here, when for_each_mem_cgroup() can't skip it. 5233 */ 5234 if (alloc_shrinker_info(memcg)) { 5235 mem_cgroup_id_remove(memcg); 5236 return -ENOMEM; 5237 } 5238 5239 /* Online state pins memcg ID, memcg ID pins CSS */ 5240 refcount_set(&memcg->id.ref, 1); 5241 css_get(css); 5242 5243 if (unlikely(mem_cgroup_is_root(memcg))) 5244 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5245 2UL*HZ); 5246 return 0; 5247 } 5248 5249 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5250 { 5251 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5252 struct mem_cgroup_event *event, *tmp; 5253 5254 /* 5255 * Unregister events and notify userspace. 5256 * Notify userspace about cgroup removing only after rmdir of cgroup 5257 * directory to avoid race between userspace and kernelspace. 5258 */ 5259 spin_lock_irq(&memcg->event_list_lock); 5260 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5261 list_del_init(&event->list); 5262 schedule_work(&event->remove); 5263 } 5264 spin_unlock_irq(&memcg->event_list_lock); 5265 5266 page_counter_set_min(&memcg->memory, 0); 5267 page_counter_set_low(&memcg->memory, 0); 5268 5269 memcg_offline_kmem(memcg); 5270 reparent_shrinker_deferred(memcg); 5271 wb_memcg_offline(memcg); 5272 5273 drain_all_stock(memcg); 5274 5275 mem_cgroup_id_put(memcg); 5276 } 5277 5278 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5279 { 5280 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5281 5282 invalidate_reclaim_iterators(memcg); 5283 } 5284 5285 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5286 { 5287 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5288 int __maybe_unused i; 5289 5290 #ifdef CONFIG_CGROUP_WRITEBACK 5291 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5292 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5293 #endif 5294 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5295 static_branch_dec(&memcg_sockets_enabled_key); 5296 5297 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5298 static_branch_dec(&memcg_sockets_enabled_key); 5299 5300 vmpressure_cleanup(&memcg->vmpressure); 5301 cancel_work_sync(&memcg->high_work); 5302 mem_cgroup_remove_from_trees(memcg); 5303 free_shrinker_info(memcg); 5304 5305 /* Need to offline kmem if online_css() fails */ 5306 memcg_offline_kmem(memcg); 5307 mem_cgroup_free(memcg); 5308 } 5309 5310 /** 5311 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5312 * @css: the target css 5313 * 5314 * Reset the states of the mem_cgroup associated with @css. This is 5315 * invoked when the userland requests disabling on the default hierarchy 5316 * but the memcg is pinned through dependency. The memcg should stop 5317 * applying policies and should revert to the vanilla state as it may be 5318 * made visible again. 5319 * 5320 * The current implementation only resets the essential configurations. 5321 * This needs to be expanded to cover all the visible parts. 5322 */ 5323 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5324 { 5325 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5326 5327 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5328 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5329 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5330 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5331 page_counter_set_min(&memcg->memory, 0); 5332 page_counter_set_low(&memcg->memory, 0); 5333 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5334 memcg->soft_limit = PAGE_COUNTER_MAX; 5335 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5336 memcg_wb_domain_size_changed(memcg); 5337 } 5338 5339 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5340 { 5341 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5342 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5343 struct memcg_vmstats_percpu *statc; 5344 long delta, v; 5345 int i, nid; 5346 5347 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5348 5349 for (i = 0; i < MEMCG_NR_STAT; i++) { 5350 /* 5351 * Collect the aggregated propagation counts of groups 5352 * below us. We're in a per-cpu loop here and this is 5353 * a global counter, so the first cycle will get them. 5354 */ 5355 delta = memcg->vmstats.state_pending[i]; 5356 if (delta) 5357 memcg->vmstats.state_pending[i] = 0; 5358 5359 /* Add CPU changes on this level since the last flush */ 5360 v = READ_ONCE(statc->state[i]); 5361 if (v != statc->state_prev[i]) { 5362 delta += v - statc->state_prev[i]; 5363 statc->state_prev[i] = v; 5364 } 5365 5366 if (!delta) 5367 continue; 5368 5369 /* Aggregate counts on this level and propagate upwards */ 5370 memcg->vmstats.state[i] += delta; 5371 if (parent) 5372 parent->vmstats.state_pending[i] += delta; 5373 } 5374 5375 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 5376 delta = memcg->vmstats.events_pending[i]; 5377 if (delta) 5378 memcg->vmstats.events_pending[i] = 0; 5379 5380 v = READ_ONCE(statc->events[i]); 5381 if (v != statc->events_prev[i]) { 5382 delta += v - statc->events_prev[i]; 5383 statc->events_prev[i] = v; 5384 } 5385 5386 if (!delta) 5387 continue; 5388 5389 memcg->vmstats.events[i] += delta; 5390 if (parent) 5391 parent->vmstats.events_pending[i] += delta; 5392 } 5393 5394 for_each_node_state(nid, N_MEMORY) { 5395 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5396 struct mem_cgroup_per_node *ppn = NULL; 5397 struct lruvec_stats_percpu *lstatc; 5398 5399 if (parent) 5400 ppn = parent->nodeinfo[nid]; 5401 5402 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5403 5404 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5405 delta = pn->lruvec_stats.state_pending[i]; 5406 if (delta) 5407 pn->lruvec_stats.state_pending[i] = 0; 5408 5409 v = READ_ONCE(lstatc->state[i]); 5410 if (v != lstatc->state_prev[i]) { 5411 delta += v - lstatc->state_prev[i]; 5412 lstatc->state_prev[i] = v; 5413 } 5414 5415 if (!delta) 5416 continue; 5417 5418 pn->lruvec_stats.state[i] += delta; 5419 if (ppn) 5420 ppn->lruvec_stats.state_pending[i] += delta; 5421 } 5422 } 5423 } 5424 5425 #ifdef CONFIG_MMU 5426 /* Handlers for move charge at task migration. */ 5427 static int mem_cgroup_do_precharge(unsigned long count) 5428 { 5429 int ret; 5430 5431 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5432 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5433 if (!ret) { 5434 mc.precharge += count; 5435 return ret; 5436 } 5437 5438 /* Try charges one by one with reclaim, but do not retry */ 5439 while (count--) { 5440 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5441 if (ret) 5442 return ret; 5443 mc.precharge++; 5444 cond_resched(); 5445 } 5446 return 0; 5447 } 5448 5449 union mc_target { 5450 struct page *page; 5451 swp_entry_t ent; 5452 }; 5453 5454 enum mc_target_type { 5455 MC_TARGET_NONE = 0, 5456 MC_TARGET_PAGE, 5457 MC_TARGET_SWAP, 5458 MC_TARGET_DEVICE, 5459 }; 5460 5461 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5462 unsigned long addr, pte_t ptent) 5463 { 5464 struct page *page = vm_normal_page(vma, addr, ptent); 5465 5466 if (!page || !page_mapped(page)) 5467 return NULL; 5468 if (PageAnon(page)) { 5469 if (!(mc.flags & MOVE_ANON)) 5470 return NULL; 5471 } else { 5472 if (!(mc.flags & MOVE_FILE)) 5473 return NULL; 5474 } 5475 if (!get_page_unless_zero(page)) 5476 return NULL; 5477 5478 return page; 5479 } 5480 5481 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5482 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5483 pte_t ptent, swp_entry_t *entry) 5484 { 5485 struct page *page = NULL; 5486 swp_entry_t ent = pte_to_swp_entry(ptent); 5487 5488 if (!(mc.flags & MOVE_ANON)) 5489 return NULL; 5490 5491 /* 5492 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5493 * a device and because they are not accessible by CPU they are store 5494 * as special swap entry in the CPU page table. 5495 */ 5496 if (is_device_private_entry(ent)) { 5497 page = pfn_swap_entry_to_page(ent); 5498 /* 5499 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5500 * a refcount of 1 when free (unlike normal page) 5501 */ 5502 if (!page_ref_add_unless(page, 1, 1)) 5503 return NULL; 5504 return page; 5505 } 5506 5507 if (non_swap_entry(ent)) 5508 return NULL; 5509 5510 /* 5511 * Because lookup_swap_cache() updates some statistics counter, 5512 * we call find_get_page() with swapper_space directly. 5513 */ 5514 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5515 entry->val = ent.val; 5516 5517 return page; 5518 } 5519 #else 5520 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5521 pte_t ptent, swp_entry_t *entry) 5522 { 5523 return NULL; 5524 } 5525 #endif 5526 5527 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5528 unsigned long addr, pte_t ptent) 5529 { 5530 if (!vma->vm_file) /* anonymous vma */ 5531 return NULL; 5532 if (!(mc.flags & MOVE_FILE)) 5533 return NULL; 5534 5535 /* page is moved even if it's not RSS of this task(page-faulted). */ 5536 /* shmem/tmpfs may report page out on swap: account for that too. */ 5537 return find_get_incore_page(vma->vm_file->f_mapping, 5538 linear_page_index(vma, addr)); 5539 } 5540 5541 /** 5542 * mem_cgroup_move_account - move account of the page 5543 * @page: the page 5544 * @compound: charge the page as compound or small page 5545 * @from: mem_cgroup which the page is moved from. 5546 * @to: mem_cgroup which the page is moved to. @from != @to. 5547 * 5548 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5549 * 5550 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5551 * from old cgroup. 5552 */ 5553 static int mem_cgroup_move_account(struct page *page, 5554 bool compound, 5555 struct mem_cgroup *from, 5556 struct mem_cgroup *to) 5557 { 5558 struct folio *folio = page_folio(page); 5559 struct lruvec *from_vec, *to_vec; 5560 struct pglist_data *pgdat; 5561 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5562 int nid, ret; 5563 5564 VM_BUG_ON(from == to); 5565 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5566 VM_BUG_ON(compound && !folio_test_large(folio)); 5567 5568 /* 5569 * Prevent mem_cgroup_migrate() from looking at 5570 * page's memory cgroup of its source page while we change it. 5571 */ 5572 ret = -EBUSY; 5573 if (!folio_trylock(folio)) 5574 goto out; 5575 5576 ret = -EINVAL; 5577 if (folio_memcg(folio) != from) 5578 goto out_unlock; 5579 5580 pgdat = folio_pgdat(folio); 5581 from_vec = mem_cgroup_lruvec(from, pgdat); 5582 to_vec = mem_cgroup_lruvec(to, pgdat); 5583 5584 folio_memcg_lock(folio); 5585 5586 if (folio_test_anon(folio)) { 5587 if (folio_mapped(folio)) { 5588 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5589 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5590 if (folio_test_transhuge(folio)) { 5591 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5592 -nr_pages); 5593 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5594 nr_pages); 5595 } 5596 } 5597 } else { 5598 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5599 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5600 5601 if (folio_test_swapbacked(folio)) { 5602 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5603 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5604 } 5605 5606 if (folio_mapped(folio)) { 5607 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5608 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5609 } 5610 5611 if (folio_test_dirty(folio)) { 5612 struct address_space *mapping = folio_mapping(folio); 5613 5614 if (mapping_can_writeback(mapping)) { 5615 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5616 -nr_pages); 5617 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5618 nr_pages); 5619 } 5620 } 5621 } 5622 5623 if (folio_test_writeback(folio)) { 5624 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5625 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5626 } 5627 5628 /* 5629 * All state has been migrated, let's switch to the new memcg. 5630 * 5631 * It is safe to change page's memcg here because the page 5632 * is referenced, charged, isolated, and locked: we can't race 5633 * with (un)charging, migration, LRU putback, or anything else 5634 * that would rely on a stable page's memory cgroup. 5635 * 5636 * Note that lock_page_memcg is a memcg lock, not a page lock, 5637 * to save space. As soon as we switch page's memory cgroup to a 5638 * new memcg that isn't locked, the above state can change 5639 * concurrently again. Make sure we're truly done with it. 5640 */ 5641 smp_mb(); 5642 5643 css_get(&to->css); 5644 css_put(&from->css); 5645 5646 folio->memcg_data = (unsigned long)to; 5647 5648 __folio_memcg_unlock(from); 5649 5650 ret = 0; 5651 nid = folio_nid(folio); 5652 5653 local_irq_disable(); 5654 mem_cgroup_charge_statistics(to, nr_pages); 5655 memcg_check_events(to, nid); 5656 mem_cgroup_charge_statistics(from, -nr_pages); 5657 memcg_check_events(from, nid); 5658 local_irq_enable(); 5659 out_unlock: 5660 folio_unlock(folio); 5661 out: 5662 return ret; 5663 } 5664 5665 /** 5666 * get_mctgt_type - get target type of moving charge 5667 * @vma: the vma the pte to be checked belongs 5668 * @addr: the address corresponding to the pte to be checked 5669 * @ptent: the pte to be checked 5670 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5671 * 5672 * Returns 5673 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5674 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5675 * move charge. if @target is not NULL, the page is stored in target->page 5676 * with extra refcnt got(Callers should handle it). 5677 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5678 * target for charge migration. if @target is not NULL, the entry is stored 5679 * in target->ent. 5680 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5681 * (so ZONE_DEVICE page and thus not on the lru). 5682 * For now we such page is charge like a regular page would be as for all 5683 * intent and purposes it is just special memory taking the place of a 5684 * regular page. 5685 * 5686 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5687 * 5688 * Called with pte lock held. 5689 */ 5690 5691 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5692 unsigned long addr, pte_t ptent, union mc_target *target) 5693 { 5694 struct page *page = NULL; 5695 enum mc_target_type ret = MC_TARGET_NONE; 5696 swp_entry_t ent = { .val = 0 }; 5697 5698 if (pte_present(ptent)) 5699 page = mc_handle_present_pte(vma, addr, ptent); 5700 else if (is_swap_pte(ptent)) 5701 page = mc_handle_swap_pte(vma, ptent, &ent); 5702 else if (pte_none(ptent)) 5703 page = mc_handle_file_pte(vma, addr, ptent); 5704 5705 if (!page && !ent.val) 5706 return ret; 5707 if (page) { 5708 /* 5709 * Do only loose check w/o serialization. 5710 * mem_cgroup_move_account() checks the page is valid or 5711 * not under LRU exclusion. 5712 */ 5713 if (page_memcg(page) == mc.from) { 5714 ret = MC_TARGET_PAGE; 5715 if (is_device_private_page(page)) 5716 ret = MC_TARGET_DEVICE; 5717 if (target) 5718 target->page = page; 5719 } 5720 if (!ret || !target) 5721 put_page(page); 5722 } 5723 /* 5724 * There is a swap entry and a page doesn't exist or isn't charged. 5725 * But we cannot move a tail-page in a THP. 5726 */ 5727 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5728 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5729 ret = MC_TARGET_SWAP; 5730 if (target) 5731 target->ent = ent; 5732 } 5733 return ret; 5734 } 5735 5736 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5737 /* 5738 * We don't consider PMD mapped swapping or file mapped pages because THP does 5739 * not support them for now. 5740 * Caller should make sure that pmd_trans_huge(pmd) is true. 5741 */ 5742 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5743 unsigned long addr, pmd_t pmd, union mc_target *target) 5744 { 5745 struct page *page = NULL; 5746 enum mc_target_type ret = MC_TARGET_NONE; 5747 5748 if (unlikely(is_swap_pmd(pmd))) { 5749 VM_BUG_ON(thp_migration_supported() && 5750 !is_pmd_migration_entry(pmd)); 5751 return ret; 5752 } 5753 page = pmd_page(pmd); 5754 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5755 if (!(mc.flags & MOVE_ANON)) 5756 return ret; 5757 if (page_memcg(page) == mc.from) { 5758 ret = MC_TARGET_PAGE; 5759 if (target) { 5760 get_page(page); 5761 target->page = page; 5762 } 5763 } 5764 return ret; 5765 } 5766 #else 5767 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5768 unsigned long addr, pmd_t pmd, union mc_target *target) 5769 { 5770 return MC_TARGET_NONE; 5771 } 5772 #endif 5773 5774 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5775 unsigned long addr, unsigned long end, 5776 struct mm_walk *walk) 5777 { 5778 struct vm_area_struct *vma = walk->vma; 5779 pte_t *pte; 5780 spinlock_t *ptl; 5781 5782 ptl = pmd_trans_huge_lock(pmd, vma); 5783 if (ptl) { 5784 /* 5785 * Note their can not be MC_TARGET_DEVICE for now as we do not 5786 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5787 * this might change. 5788 */ 5789 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5790 mc.precharge += HPAGE_PMD_NR; 5791 spin_unlock(ptl); 5792 return 0; 5793 } 5794 5795 if (pmd_trans_unstable(pmd)) 5796 return 0; 5797 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5798 for (; addr != end; pte++, addr += PAGE_SIZE) 5799 if (get_mctgt_type(vma, addr, *pte, NULL)) 5800 mc.precharge++; /* increment precharge temporarily */ 5801 pte_unmap_unlock(pte - 1, ptl); 5802 cond_resched(); 5803 5804 return 0; 5805 } 5806 5807 static const struct mm_walk_ops precharge_walk_ops = { 5808 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5809 }; 5810 5811 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5812 { 5813 unsigned long precharge; 5814 5815 mmap_read_lock(mm); 5816 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5817 mmap_read_unlock(mm); 5818 5819 precharge = mc.precharge; 5820 mc.precharge = 0; 5821 5822 return precharge; 5823 } 5824 5825 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5826 { 5827 unsigned long precharge = mem_cgroup_count_precharge(mm); 5828 5829 VM_BUG_ON(mc.moving_task); 5830 mc.moving_task = current; 5831 return mem_cgroup_do_precharge(precharge); 5832 } 5833 5834 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5835 static void __mem_cgroup_clear_mc(void) 5836 { 5837 struct mem_cgroup *from = mc.from; 5838 struct mem_cgroup *to = mc.to; 5839 5840 /* we must uncharge all the leftover precharges from mc.to */ 5841 if (mc.precharge) { 5842 cancel_charge(mc.to, mc.precharge); 5843 mc.precharge = 0; 5844 } 5845 /* 5846 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5847 * we must uncharge here. 5848 */ 5849 if (mc.moved_charge) { 5850 cancel_charge(mc.from, mc.moved_charge); 5851 mc.moved_charge = 0; 5852 } 5853 /* we must fixup refcnts and charges */ 5854 if (mc.moved_swap) { 5855 /* uncharge swap account from the old cgroup */ 5856 if (!mem_cgroup_is_root(mc.from)) 5857 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5858 5859 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5860 5861 /* 5862 * we charged both to->memory and to->memsw, so we 5863 * should uncharge to->memory. 5864 */ 5865 if (!mem_cgroup_is_root(mc.to)) 5866 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5867 5868 mc.moved_swap = 0; 5869 } 5870 memcg_oom_recover(from); 5871 memcg_oom_recover(to); 5872 wake_up_all(&mc.waitq); 5873 } 5874 5875 static void mem_cgroup_clear_mc(void) 5876 { 5877 struct mm_struct *mm = mc.mm; 5878 5879 /* 5880 * we must clear moving_task before waking up waiters at the end of 5881 * task migration. 5882 */ 5883 mc.moving_task = NULL; 5884 __mem_cgroup_clear_mc(); 5885 spin_lock(&mc.lock); 5886 mc.from = NULL; 5887 mc.to = NULL; 5888 mc.mm = NULL; 5889 spin_unlock(&mc.lock); 5890 5891 mmput(mm); 5892 } 5893 5894 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5895 { 5896 struct cgroup_subsys_state *css; 5897 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5898 struct mem_cgroup *from; 5899 struct task_struct *leader, *p; 5900 struct mm_struct *mm; 5901 unsigned long move_flags; 5902 int ret = 0; 5903 5904 /* charge immigration isn't supported on the default hierarchy */ 5905 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5906 return 0; 5907 5908 /* 5909 * Multi-process migrations only happen on the default hierarchy 5910 * where charge immigration is not used. Perform charge 5911 * immigration if @tset contains a leader and whine if there are 5912 * multiple. 5913 */ 5914 p = NULL; 5915 cgroup_taskset_for_each_leader(leader, css, tset) { 5916 WARN_ON_ONCE(p); 5917 p = leader; 5918 memcg = mem_cgroup_from_css(css); 5919 } 5920 if (!p) 5921 return 0; 5922 5923 /* 5924 * We are now committed to this value whatever it is. Changes in this 5925 * tunable will only affect upcoming migrations, not the current one. 5926 * So we need to save it, and keep it going. 5927 */ 5928 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5929 if (!move_flags) 5930 return 0; 5931 5932 from = mem_cgroup_from_task(p); 5933 5934 VM_BUG_ON(from == memcg); 5935 5936 mm = get_task_mm(p); 5937 if (!mm) 5938 return 0; 5939 /* We move charges only when we move a owner of the mm */ 5940 if (mm->owner == p) { 5941 VM_BUG_ON(mc.from); 5942 VM_BUG_ON(mc.to); 5943 VM_BUG_ON(mc.precharge); 5944 VM_BUG_ON(mc.moved_charge); 5945 VM_BUG_ON(mc.moved_swap); 5946 5947 spin_lock(&mc.lock); 5948 mc.mm = mm; 5949 mc.from = from; 5950 mc.to = memcg; 5951 mc.flags = move_flags; 5952 spin_unlock(&mc.lock); 5953 /* We set mc.moving_task later */ 5954 5955 ret = mem_cgroup_precharge_mc(mm); 5956 if (ret) 5957 mem_cgroup_clear_mc(); 5958 } else { 5959 mmput(mm); 5960 } 5961 return ret; 5962 } 5963 5964 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5965 { 5966 if (mc.to) 5967 mem_cgroup_clear_mc(); 5968 } 5969 5970 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5971 unsigned long addr, unsigned long end, 5972 struct mm_walk *walk) 5973 { 5974 int ret = 0; 5975 struct vm_area_struct *vma = walk->vma; 5976 pte_t *pte; 5977 spinlock_t *ptl; 5978 enum mc_target_type target_type; 5979 union mc_target target; 5980 struct page *page; 5981 5982 ptl = pmd_trans_huge_lock(pmd, vma); 5983 if (ptl) { 5984 if (mc.precharge < HPAGE_PMD_NR) { 5985 spin_unlock(ptl); 5986 return 0; 5987 } 5988 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5989 if (target_type == MC_TARGET_PAGE) { 5990 page = target.page; 5991 if (!isolate_lru_page(page)) { 5992 if (!mem_cgroup_move_account(page, true, 5993 mc.from, mc.to)) { 5994 mc.precharge -= HPAGE_PMD_NR; 5995 mc.moved_charge += HPAGE_PMD_NR; 5996 } 5997 putback_lru_page(page); 5998 } 5999 put_page(page); 6000 } else if (target_type == MC_TARGET_DEVICE) { 6001 page = target.page; 6002 if (!mem_cgroup_move_account(page, true, 6003 mc.from, mc.to)) { 6004 mc.precharge -= HPAGE_PMD_NR; 6005 mc.moved_charge += HPAGE_PMD_NR; 6006 } 6007 put_page(page); 6008 } 6009 spin_unlock(ptl); 6010 return 0; 6011 } 6012 6013 if (pmd_trans_unstable(pmd)) 6014 return 0; 6015 retry: 6016 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6017 for (; addr != end; addr += PAGE_SIZE) { 6018 pte_t ptent = *(pte++); 6019 bool device = false; 6020 swp_entry_t ent; 6021 6022 if (!mc.precharge) 6023 break; 6024 6025 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6026 case MC_TARGET_DEVICE: 6027 device = true; 6028 fallthrough; 6029 case MC_TARGET_PAGE: 6030 page = target.page; 6031 /* 6032 * We can have a part of the split pmd here. Moving it 6033 * can be done but it would be too convoluted so simply 6034 * ignore such a partial THP and keep it in original 6035 * memcg. There should be somebody mapping the head. 6036 */ 6037 if (PageTransCompound(page)) 6038 goto put; 6039 if (!device && isolate_lru_page(page)) 6040 goto put; 6041 if (!mem_cgroup_move_account(page, false, 6042 mc.from, mc.to)) { 6043 mc.precharge--; 6044 /* we uncharge from mc.from later. */ 6045 mc.moved_charge++; 6046 } 6047 if (!device) 6048 putback_lru_page(page); 6049 put: /* get_mctgt_type() gets the page */ 6050 put_page(page); 6051 break; 6052 case MC_TARGET_SWAP: 6053 ent = target.ent; 6054 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6055 mc.precharge--; 6056 mem_cgroup_id_get_many(mc.to, 1); 6057 /* we fixup other refcnts and charges later. */ 6058 mc.moved_swap++; 6059 } 6060 break; 6061 default: 6062 break; 6063 } 6064 } 6065 pte_unmap_unlock(pte - 1, ptl); 6066 cond_resched(); 6067 6068 if (addr != end) { 6069 /* 6070 * We have consumed all precharges we got in can_attach(). 6071 * We try charge one by one, but don't do any additional 6072 * charges to mc.to if we have failed in charge once in attach() 6073 * phase. 6074 */ 6075 ret = mem_cgroup_do_precharge(1); 6076 if (!ret) 6077 goto retry; 6078 } 6079 6080 return ret; 6081 } 6082 6083 static const struct mm_walk_ops charge_walk_ops = { 6084 .pmd_entry = mem_cgroup_move_charge_pte_range, 6085 }; 6086 6087 static void mem_cgroup_move_charge(void) 6088 { 6089 lru_add_drain_all(); 6090 /* 6091 * Signal lock_page_memcg() to take the memcg's move_lock 6092 * while we're moving its pages to another memcg. Then wait 6093 * for already started RCU-only updates to finish. 6094 */ 6095 atomic_inc(&mc.from->moving_account); 6096 synchronize_rcu(); 6097 retry: 6098 if (unlikely(!mmap_read_trylock(mc.mm))) { 6099 /* 6100 * Someone who are holding the mmap_lock might be waiting in 6101 * waitq. So we cancel all extra charges, wake up all waiters, 6102 * and retry. Because we cancel precharges, we might not be able 6103 * to move enough charges, but moving charge is a best-effort 6104 * feature anyway, so it wouldn't be a big problem. 6105 */ 6106 __mem_cgroup_clear_mc(); 6107 cond_resched(); 6108 goto retry; 6109 } 6110 /* 6111 * When we have consumed all precharges and failed in doing 6112 * additional charge, the page walk just aborts. 6113 */ 6114 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6115 NULL); 6116 6117 mmap_read_unlock(mc.mm); 6118 atomic_dec(&mc.from->moving_account); 6119 } 6120 6121 static void mem_cgroup_move_task(void) 6122 { 6123 if (mc.to) { 6124 mem_cgroup_move_charge(); 6125 mem_cgroup_clear_mc(); 6126 } 6127 } 6128 #else /* !CONFIG_MMU */ 6129 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6130 { 6131 return 0; 6132 } 6133 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6134 { 6135 } 6136 static void mem_cgroup_move_task(void) 6137 { 6138 } 6139 #endif 6140 6141 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6142 { 6143 if (value == PAGE_COUNTER_MAX) 6144 seq_puts(m, "max\n"); 6145 else 6146 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6147 6148 return 0; 6149 } 6150 6151 static u64 memory_current_read(struct cgroup_subsys_state *css, 6152 struct cftype *cft) 6153 { 6154 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6155 6156 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6157 } 6158 6159 static int memory_min_show(struct seq_file *m, void *v) 6160 { 6161 return seq_puts_memcg_tunable(m, 6162 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6163 } 6164 6165 static ssize_t memory_min_write(struct kernfs_open_file *of, 6166 char *buf, size_t nbytes, loff_t off) 6167 { 6168 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6169 unsigned long min; 6170 int err; 6171 6172 buf = strstrip(buf); 6173 err = page_counter_memparse(buf, "max", &min); 6174 if (err) 6175 return err; 6176 6177 page_counter_set_min(&memcg->memory, min); 6178 6179 return nbytes; 6180 } 6181 6182 static int memory_low_show(struct seq_file *m, void *v) 6183 { 6184 return seq_puts_memcg_tunable(m, 6185 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6186 } 6187 6188 static ssize_t memory_low_write(struct kernfs_open_file *of, 6189 char *buf, size_t nbytes, loff_t off) 6190 { 6191 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6192 unsigned long low; 6193 int err; 6194 6195 buf = strstrip(buf); 6196 err = page_counter_memparse(buf, "max", &low); 6197 if (err) 6198 return err; 6199 6200 page_counter_set_low(&memcg->memory, low); 6201 6202 return nbytes; 6203 } 6204 6205 static int memory_high_show(struct seq_file *m, void *v) 6206 { 6207 return seq_puts_memcg_tunable(m, 6208 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6209 } 6210 6211 static ssize_t memory_high_write(struct kernfs_open_file *of, 6212 char *buf, size_t nbytes, loff_t off) 6213 { 6214 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6215 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6216 bool drained = false; 6217 unsigned long high; 6218 int err; 6219 6220 buf = strstrip(buf); 6221 err = page_counter_memparse(buf, "max", &high); 6222 if (err) 6223 return err; 6224 6225 page_counter_set_high(&memcg->memory, high); 6226 6227 for (;;) { 6228 unsigned long nr_pages = page_counter_read(&memcg->memory); 6229 unsigned long reclaimed; 6230 6231 if (nr_pages <= high) 6232 break; 6233 6234 if (signal_pending(current)) 6235 break; 6236 6237 if (!drained) { 6238 drain_all_stock(memcg); 6239 drained = true; 6240 continue; 6241 } 6242 6243 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6244 GFP_KERNEL, true); 6245 6246 if (!reclaimed && !nr_retries--) 6247 break; 6248 } 6249 6250 memcg_wb_domain_size_changed(memcg); 6251 return nbytes; 6252 } 6253 6254 static int memory_max_show(struct seq_file *m, void *v) 6255 { 6256 return seq_puts_memcg_tunable(m, 6257 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6258 } 6259 6260 static ssize_t memory_max_write(struct kernfs_open_file *of, 6261 char *buf, size_t nbytes, loff_t off) 6262 { 6263 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6264 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6265 bool drained = false; 6266 unsigned long max; 6267 int err; 6268 6269 buf = strstrip(buf); 6270 err = page_counter_memparse(buf, "max", &max); 6271 if (err) 6272 return err; 6273 6274 xchg(&memcg->memory.max, max); 6275 6276 for (;;) { 6277 unsigned long nr_pages = page_counter_read(&memcg->memory); 6278 6279 if (nr_pages <= max) 6280 break; 6281 6282 if (signal_pending(current)) 6283 break; 6284 6285 if (!drained) { 6286 drain_all_stock(memcg); 6287 drained = true; 6288 continue; 6289 } 6290 6291 if (nr_reclaims) { 6292 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6293 GFP_KERNEL, true)) 6294 nr_reclaims--; 6295 continue; 6296 } 6297 6298 memcg_memory_event(memcg, MEMCG_OOM); 6299 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6300 break; 6301 } 6302 6303 memcg_wb_domain_size_changed(memcg); 6304 return nbytes; 6305 } 6306 6307 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6308 { 6309 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6310 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6311 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6312 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6313 seq_printf(m, "oom_kill %lu\n", 6314 atomic_long_read(&events[MEMCG_OOM_KILL])); 6315 } 6316 6317 static int memory_events_show(struct seq_file *m, void *v) 6318 { 6319 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6320 6321 __memory_events_show(m, memcg->memory_events); 6322 return 0; 6323 } 6324 6325 static int memory_events_local_show(struct seq_file *m, void *v) 6326 { 6327 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6328 6329 __memory_events_show(m, memcg->memory_events_local); 6330 return 0; 6331 } 6332 6333 static int memory_stat_show(struct seq_file *m, void *v) 6334 { 6335 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6336 char *buf; 6337 6338 buf = memory_stat_format(memcg); 6339 if (!buf) 6340 return -ENOMEM; 6341 seq_puts(m, buf); 6342 kfree(buf); 6343 return 0; 6344 } 6345 6346 #ifdef CONFIG_NUMA 6347 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6348 int item) 6349 { 6350 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6351 } 6352 6353 static int memory_numa_stat_show(struct seq_file *m, void *v) 6354 { 6355 int i; 6356 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6357 6358 mem_cgroup_flush_stats(); 6359 6360 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6361 int nid; 6362 6363 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6364 continue; 6365 6366 seq_printf(m, "%s", memory_stats[i].name); 6367 for_each_node_state(nid, N_MEMORY) { 6368 u64 size; 6369 struct lruvec *lruvec; 6370 6371 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6372 size = lruvec_page_state_output(lruvec, 6373 memory_stats[i].idx); 6374 seq_printf(m, " N%d=%llu", nid, size); 6375 } 6376 seq_putc(m, '\n'); 6377 } 6378 6379 return 0; 6380 } 6381 #endif 6382 6383 static int memory_oom_group_show(struct seq_file *m, void *v) 6384 { 6385 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6386 6387 seq_printf(m, "%d\n", memcg->oom_group); 6388 6389 return 0; 6390 } 6391 6392 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6393 char *buf, size_t nbytes, loff_t off) 6394 { 6395 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6396 int ret, oom_group; 6397 6398 buf = strstrip(buf); 6399 if (!buf) 6400 return -EINVAL; 6401 6402 ret = kstrtoint(buf, 0, &oom_group); 6403 if (ret) 6404 return ret; 6405 6406 if (oom_group != 0 && oom_group != 1) 6407 return -EINVAL; 6408 6409 memcg->oom_group = oom_group; 6410 6411 return nbytes; 6412 } 6413 6414 static struct cftype memory_files[] = { 6415 { 6416 .name = "current", 6417 .flags = CFTYPE_NOT_ON_ROOT, 6418 .read_u64 = memory_current_read, 6419 }, 6420 { 6421 .name = "min", 6422 .flags = CFTYPE_NOT_ON_ROOT, 6423 .seq_show = memory_min_show, 6424 .write = memory_min_write, 6425 }, 6426 { 6427 .name = "low", 6428 .flags = CFTYPE_NOT_ON_ROOT, 6429 .seq_show = memory_low_show, 6430 .write = memory_low_write, 6431 }, 6432 { 6433 .name = "high", 6434 .flags = CFTYPE_NOT_ON_ROOT, 6435 .seq_show = memory_high_show, 6436 .write = memory_high_write, 6437 }, 6438 { 6439 .name = "max", 6440 .flags = CFTYPE_NOT_ON_ROOT, 6441 .seq_show = memory_max_show, 6442 .write = memory_max_write, 6443 }, 6444 { 6445 .name = "events", 6446 .flags = CFTYPE_NOT_ON_ROOT, 6447 .file_offset = offsetof(struct mem_cgroup, events_file), 6448 .seq_show = memory_events_show, 6449 }, 6450 { 6451 .name = "events.local", 6452 .flags = CFTYPE_NOT_ON_ROOT, 6453 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6454 .seq_show = memory_events_local_show, 6455 }, 6456 { 6457 .name = "stat", 6458 .seq_show = memory_stat_show, 6459 }, 6460 #ifdef CONFIG_NUMA 6461 { 6462 .name = "numa_stat", 6463 .seq_show = memory_numa_stat_show, 6464 }, 6465 #endif 6466 { 6467 .name = "oom.group", 6468 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6469 .seq_show = memory_oom_group_show, 6470 .write = memory_oom_group_write, 6471 }, 6472 { } /* terminate */ 6473 }; 6474 6475 struct cgroup_subsys memory_cgrp_subsys = { 6476 .css_alloc = mem_cgroup_css_alloc, 6477 .css_online = mem_cgroup_css_online, 6478 .css_offline = mem_cgroup_css_offline, 6479 .css_released = mem_cgroup_css_released, 6480 .css_free = mem_cgroup_css_free, 6481 .css_reset = mem_cgroup_css_reset, 6482 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6483 .can_attach = mem_cgroup_can_attach, 6484 .cancel_attach = mem_cgroup_cancel_attach, 6485 .post_attach = mem_cgroup_move_task, 6486 .dfl_cftypes = memory_files, 6487 .legacy_cftypes = mem_cgroup_legacy_files, 6488 .early_init = 0, 6489 }; 6490 6491 /* 6492 * This function calculates an individual cgroup's effective 6493 * protection which is derived from its own memory.min/low, its 6494 * parent's and siblings' settings, as well as the actual memory 6495 * distribution in the tree. 6496 * 6497 * The following rules apply to the effective protection values: 6498 * 6499 * 1. At the first level of reclaim, effective protection is equal to 6500 * the declared protection in memory.min and memory.low. 6501 * 6502 * 2. To enable safe delegation of the protection configuration, at 6503 * subsequent levels the effective protection is capped to the 6504 * parent's effective protection. 6505 * 6506 * 3. To make complex and dynamic subtrees easier to configure, the 6507 * user is allowed to overcommit the declared protection at a given 6508 * level. If that is the case, the parent's effective protection is 6509 * distributed to the children in proportion to how much protection 6510 * they have declared and how much of it they are utilizing. 6511 * 6512 * This makes distribution proportional, but also work-conserving: 6513 * if one cgroup claims much more protection than it uses memory, 6514 * the unused remainder is available to its siblings. 6515 * 6516 * 4. Conversely, when the declared protection is undercommitted at a 6517 * given level, the distribution of the larger parental protection 6518 * budget is NOT proportional. A cgroup's protection from a sibling 6519 * is capped to its own memory.min/low setting. 6520 * 6521 * 5. However, to allow protecting recursive subtrees from each other 6522 * without having to declare each individual cgroup's fixed share 6523 * of the ancestor's claim to protection, any unutilized - 6524 * "floating" - protection from up the tree is distributed in 6525 * proportion to each cgroup's *usage*. This makes the protection 6526 * neutral wrt sibling cgroups and lets them compete freely over 6527 * the shared parental protection budget, but it protects the 6528 * subtree as a whole from neighboring subtrees. 6529 * 6530 * Note that 4. and 5. are not in conflict: 4. is about protecting 6531 * against immediate siblings whereas 5. is about protecting against 6532 * neighboring subtrees. 6533 */ 6534 static unsigned long effective_protection(unsigned long usage, 6535 unsigned long parent_usage, 6536 unsigned long setting, 6537 unsigned long parent_effective, 6538 unsigned long siblings_protected) 6539 { 6540 unsigned long protected; 6541 unsigned long ep; 6542 6543 protected = min(usage, setting); 6544 /* 6545 * If all cgroups at this level combined claim and use more 6546 * protection then what the parent affords them, distribute 6547 * shares in proportion to utilization. 6548 * 6549 * We are using actual utilization rather than the statically 6550 * claimed protection in order to be work-conserving: claimed 6551 * but unused protection is available to siblings that would 6552 * otherwise get a smaller chunk than what they claimed. 6553 */ 6554 if (siblings_protected > parent_effective) 6555 return protected * parent_effective / siblings_protected; 6556 6557 /* 6558 * Ok, utilized protection of all children is within what the 6559 * parent affords them, so we know whatever this child claims 6560 * and utilizes is effectively protected. 6561 * 6562 * If there is unprotected usage beyond this value, reclaim 6563 * will apply pressure in proportion to that amount. 6564 * 6565 * If there is unutilized protection, the cgroup will be fully 6566 * shielded from reclaim, but we do return a smaller value for 6567 * protection than what the group could enjoy in theory. This 6568 * is okay. With the overcommit distribution above, effective 6569 * protection is always dependent on how memory is actually 6570 * consumed among the siblings anyway. 6571 */ 6572 ep = protected; 6573 6574 /* 6575 * If the children aren't claiming (all of) the protection 6576 * afforded to them by the parent, distribute the remainder in 6577 * proportion to the (unprotected) memory of each cgroup. That 6578 * way, cgroups that aren't explicitly prioritized wrt each 6579 * other compete freely over the allowance, but they are 6580 * collectively protected from neighboring trees. 6581 * 6582 * We're using unprotected memory for the weight so that if 6583 * some cgroups DO claim explicit protection, we don't protect 6584 * the same bytes twice. 6585 * 6586 * Check both usage and parent_usage against the respective 6587 * protected values. One should imply the other, but they 6588 * aren't read atomically - make sure the division is sane. 6589 */ 6590 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6591 return ep; 6592 if (parent_effective > siblings_protected && 6593 parent_usage > siblings_protected && 6594 usage > protected) { 6595 unsigned long unclaimed; 6596 6597 unclaimed = parent_effective - siblings_protected; 6598 unclaimed *= usage - protected; 6599 unclaimed /= parent_usage - siblings_protected; 6600 6601 ep += unclaimed; 6602 } 6603 6604 return ep; 6605 } 6606 6607 /** 6608 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6609 * @root: the top ancestor of the sub-tree being checked 6610 * @memcg: the memory cgroup to check 6611 * 6612 * WARNING: This function is not stateless! It can only be used as part 6613 * of a top-down tree iteration, not for isolated queries. 6614 */ 6615 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6616 struct mem_cgroup *memcg) 6617 { 6618 unsigned long usage, parent_usage; 6619 struct mem_cgroup *parent; 6620 6621 if (mem_cgroup_disabled()) 6622 return; 6623 6624 if (!root) 6625 root = root_mem_cgroup; 6626 6627 /* 6628 * Effective values of the reclaim targets are ignored so they 6629 * can be stale. Have a look at mem_cgroup_protection for more 6630 * details. 6631 * TODO: calculation should be more robust so that we do not need 6632 * that special casing. 6633 */ 6634 if (memcg == root) 6635 return; 6636 6637 usage = page_counter_read(&memcg->memory); 6638 if (!usage) 6639 return; 6640 6641 parent = parent_mem_cgroup(memcg); 6642 /* No parent means a non-hierarchical mode on v1 memcg */ 6643 if (!parent) 6644 return; 6645 6646 if (parent == root) { 6647 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6648 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6649 return; 6650 } 6651 6652 parent_usage = page_counter_read(&parent->memory); 6653 6654 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6655 READ_ONCE(memcg->memory.min), 6656 READ_ONCE(parent->memory.emin), 6657 atomic_long_read(&parent->memory.children_min_usage))); 6658 6659 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6660 READ_ONCE(memcg->memory.low), 6661 READ_ONCE(parent->memory.elow), 6662 atomic_long_read(&parent->memory.children_low_usage))); 6663 } 6664 6665 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6666 gfp_t gfp) 6667 { 6668 long nr_pages = folio_nr_pages(folio); 6669 int ret; 6670 6671 ret = try_charge(memcg, gfp, nr_pages); 6672 if (ret) 6673 goto out; 6674 6675 css_get(&memcg->css); 6676 commit_charge(folio, memcg); 6677 6678 local_irq_disable(); 6679 mem_cgroup_charge_statistics(memcg, nr_pages); 6680 memcg_check_events(memcg, folio_nid(folio)); 6681 local_irq_enable(); 6682 out: 6683 return ret; 6684 } 6685 6686 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6687 { 6688 struct mem_cgroup *memcg; 6689 int ret; 6690 6691 memcg = get_mem_cgroup_from_mm(mm); 6692 ret = charge_memcg(folio, memcg, gfp); 6693 css_put(&memcg->css); 6694 6695 return ret; 6696 } 6697 6698 /** 6699 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin 6700 * @page: page to charge 6701 * @mm: mm context of the victim 6702 * @gfp: reclaim mode 6703 * @entry: swap entry for which the page is allocated 6704 * 6705 * This function charges a page allocated for swapin. Please call this before 6706 * adding the page to the swapcache. 6707 * 6708 * Returns 0 on success. Otherwise, an error code is returned. 6709 */ 6710 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 6711 gfp_t gfp, swp_entry_t entry) 6712 { 6713 struct folio *folio = page_folio(page); 6714 struct mem_cgroup *memcg; 6715 unsigned short id; 6716 int ret; 6717 6718 if (mem_cgroup_disabled()) 6719 return 0; 6720 6721 id = lookup_swap_cgroup_id(entry); 6722 rcu_read_lock(); 6723 memcg = mem_cgroup_from_id(id); 6724 if (!memcg || !css_tryget_online(&memcg->css)) 6725 memcg = get_mem_cgroup_from_mm(mm); 6726 rcu_read_unlock(); 6727 6728 ret = charge_memcg(folio, memcg, gfp); 6729 6730 css_put(&memcg->css); 6731 return ret; 6732 } 6733 6734 /* 6735 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 6736 * @entry: swap entry for which the page is charged 6737 * 6738 * Call this function after successfully adding the charged page to swapcache. 6739 * 6740 * Note: This function assumes the page for which swap slot is being uncharged 6741 * is order 0 page. 6742 */ 6743 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 6744 { 6745 /* 6746 * Cgroup1's unified memory+swap counter has been charged with the 6747 * new swapcache page, finish the transfer by uncharging the swap 6748 * slot. The swap slot would also get uncharged when it dies, but 6749 * it can stick around indefinitely and we'd count the page twice 6750 * the entire time. 6751 * 6752 * Cgroup2 has separate resource counters for memory and swap, 6753 * so this is a non-issue here. Memory and swap charge lifetimes 6754 * correspond 1:1 to page and swap slot lifetimes: we charge the 6755 * page to memory here, and uncharge swap when the slot is freed. 6756 */ 6757 if (!mem_cgroup_disabled() && do_memsw_account()) { 6758 /* 6759 * The swap entry might not get freed for a long time, 6760 * let's not wait for it. The page already received a 6761 * memory+swap charge, drop the swap entry duplicate. 6762 */ 6763 mem_cgroup_uncharge_swap(entry, 1); 6764 } 6765 } 6766 6767 struct uncharge_gather { 6768 struct mem_cgroup *memcg; 6769 unsigned long nr_memory; 6770 unsigned long pgpgout; 6771 unsigned long nr_kmem; 6772 int nid; 6773 }; 6774 6775 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6776 { 6777 memset(ug, 0, sizeof(*ug)); 6778 } 6779 6780 static void uncharge_batch(const struct uncharge_gather *ug) 6781 { 6782 unsigned long flags; 6783 6784 if (ug->nr_memory) { 6785 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 6786 if (do_memsw_account()) 6787 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 6788 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6789 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6790 memcg_oom_recover(ug->memcg); 6791 } 6792 6793 local_irq_save(flags); 6794 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6795 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 6796 memcg_check_events(ug->memcg, ug->nid); 6797 local_irq_restore(flags); 6798 6799 /* drop reference from uncharge_folio */ 6800 css_put(&ug->memcg->css); 6801 } 6802 6803 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 6804 { 6805 long nr_pages; 6806 struct mem_cgroup *memcg; 6807 struct obj_cgroup *objcg; 6808 bool use_objcg = folio_memcg_kmem(folio); 6809 6810 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 6811 6812 /* 6813 * Nobody should be changing or seriously looking at 6814 * folio memcg or objcg at this point, we have fully 6815 * exclusive access to the folio. 6816 */ 6817 if (use_objcg) { 6818 objcg = __folio_objcg(folio); 6819 /* 6820 * This get matches the put at the end of the function and 6821 * kmem pages do not hold memcg references anymore. 6822 */ 6823 memcg = get_mem_cgroup_from_objcg(objcg); 6824 } else { 6825 memcg = __folio_memcg(folio); 6826 } 6827 6828 if (!memcg) 6829 return; 6830 6831 if (ug->memcg != memcg) { 6832 if (ug->memcg) { 6833 uncharge_batch(ug); 6834 uncharge_gather_clear(ug); 6835 } 6836 ug->memcg = memcg; 6837 ug->nid = folio_nid(folio); 6838 6839 /* pairs with css_put in uncharge_batch */ 6840 css_get(&memcg->css); 6841 } 6842 6843 nr_pages = folio_nr_pages(folio); 6844 6845 if (use_objcg) { 6846 ug->nr_memory += nr_pages; 6847 ug->nr_kmem += nr_pages; 6848 6849 folio->memcg_data = 0; 6850 obj_cgroup_put(objcg); 6851 } else { 6852 /* LRU pages aren't accounted at the root level */ 6853 if (!mem_cgroup_is_root(memcg)) 6854 ug->nr_memory += nr_pages; 6855 ug->pgpgout++; 6856 6857 folio->memcg_data = 0; 6858 } 6859 6860 css_put(&memcg->css); 6861 } 6862 6863 void __mem_cgroup_uncharge(struct folio *folio) 6864 { 6865 struct uncharge_gather ug; 6866 6867 /* Don't touch folio->lru of any random page, pre-check: */ 6868 if (!folio_memcg(folio)) 6869 return; 6870 6871 uncharge_gather_clear(&ug); 6872 uncharge_folio(folio, &ug); 6873 uncharge_batch(&ug); 6874 } 6875 6876 /** 6877 * __mem_cgroup_uncharge_list - uncharge a list of page 6878 * @page_list: list of pages to uncharge 6879 * 6880 * Uncharge a list of pages previously charged with 6881 * __mem_cgroup_charge(). 6882 */ 6883 void __mem_cgroup_uncharge_list(struct list_head *page_list) 6884 { 6885 struct uncharge_gather ug; 6886 struct folio *folio; 6887 6888 uncharge_gather_clear(&ug); 6889 list_for_each_entry(folio, page_list, lru) 6890 uncharge_folio(folio, &ug); 6891 if (ug.memcg) 6892 uncharge_batch(&ug); 6893 } 6894 6895 /** 6896 * mem_cgroup_migrate - Charge a folio's replacement. 6897 * @old: Currently circulating folio. 6898 * @new: Replacement folio. 6899 * 6900 * Charge @new as a replacement folio for @old. @old will 6901 * be uncharged upon free. 6902 * 6903 * Both folios must be locked, @new->mapping must be set up. 6904 */ 6905 void mem_cgroup_migrate(struct folio *old, struct folio *new) 6906 { 6907 struct mem_cgroup *memcg; 6908 long nr_pages = folio_nr_pages(new); 6909 unsigned long flags; 6910 6911 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 6912 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 6913 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 6914 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 6915 6916 if (mem_cgroup_disabled()) 6917 return; 6918 6919 /* Page cache replacement: new folio already charged? */ 6920 if (folio_memcg(new)) 6921 return; 6922 6923 memcg = folio_memcg(old); 6924 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 6925 if (!memcg) 6926 return; 6927 6928 /* Force-charge the new page. The old one will be freed soon */ 6929 if (!mem_cgroup_is_root(memcg)) { 6930 page_counter_charge(&memcg->memory, nr_pages); 6931 if (do_memsw_account()) 6932 page_counter_charge(&memcg->memsw, nr_pages); 6933 } 6934 6935 css_get(&memcg->css); 6936 commit_charge(new, memcg); 6937 6938 local_irq_save(flags); 6939 mem_cgroup_charge_statistics(memcg, nr_pages); 6940 memcg_check_events(memcg, folio_nid(new)); 6941 local_irq_restore(flags); 6942 } 6943 6944 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6945 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6946 6947 void mem_cgroup_sk_alloc(struct sock *sk) 6948 { 6949 struct mem_cgroup *memcg; 6950 6951 if (!mem_cgroup_sockets_enabled) 6952 return; 6953 6954 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6955 if (in_interrupt()) 6956 return; 6957 6958 rcu_read_lock(); 6959 memcg = mem_cgroup_from_task(current); 6960 if (memcg == root_mem_cgroup) 6961 goto out; 6962 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6963 goto out; 6964 if (css_tryget(&memcg->css)) 6965 sk->sk_memcg = memcg; 6966 out: 6967 rcu_read_unlock(); 6968 } 6969 6970 void mem_cgroup_sk_free(struct sock *sk) 6971 { 6972 if (sk->sk_memcg) 6973 css_put(&sk->sk_memcg->css); 6974 } 6975 6976 /** 6977 * mem_cgroup_charge_skmem - charge socket memory 6978 * @memcg: memcg to charge 6979 * @nr_pages: number of pages to charge 6980 * @gfp_mask: reclaim mode 6981 * 6982 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6983 * @memcg's configured limit, %false if it doesn't. 6984 */ 6985 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 6986 gfp_t gfp_mask) 6987 { 6988 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6989 struct page_counter *fail; 6990 6991 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6992 memcg->tcpmem_pressure = 0; 6993 return true; 6994 } 6995 memcg->tcpmem_pressure = 1; 6996 if (gfp_mask & __GFP_NOFAIL) { 6997 page_counter_charge(&memcg->tcpmem, nr_pages); 6998 return true; 6999 } 7000 return false; 7001 } 7002 7003 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7004 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7005 return true; 7006 } 7007 7008 return false; 7009 } 7010 7011 /** 7012 * mem_cgroup_uncharge_skmem - uncharge socket memory 7013 * @memcg: memcg to uncharge 7014 * @nr_pages: number of pages to uncharge 7015 */ 7016 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7017 { 7018 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7019 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7020 return; 7021 } 7022 7023 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7024 7025 refill_stock(memcg, nr_pages); 7026 } 7027 7028 static int __init cgroup_memory(char *s) 7029 { 7030 char *token; 7031 7032 while ((token = strsep(&s, ",")) != NULL) { 7033 if (!*token) 7034 continue; 7035 if (!strcmp(token, "nosocket")) 7036 cgroup_memory_nosocket = true; 7037 if (!strcmp(token, "nokmem")) 7038 cgroup_memory_nokmem = true; 7039 } 7040 return 0; 7041 } 7042 __setup("cgroup.memory=", cgroup_memory); 7043 7044 /* 7045 * subsys_initcall() for memory controller. 7046 * 7047 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7048 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7049 * basically everything that doesn't depend on a specific mem_cgroup structure 7050 * should be initialized from here. 7051 */ 7052 static int __init mem_cgroup_init(void) 7053 { 7054 int cpu, node; 7055 7056 /* 7057 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7058 * used for per-memcg-per-cpu caching of per-node statistics. In order 7059 * to work fine, we should make sure that the overfill threshold can't 7060 * exceed S32_MAX / PAGE_SIZE. 7061 */ 7062 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7063 7064 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7065 memcg_hotplug_cpu_dead); 7066 7067 for_each_possible_cpu(cpu) 7068 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7069 drain_local_stock); 7070 7071 for_each_node(node) { 7072 struct mem_cgroup_tree_per_node *rtpn; 7073 7074 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7075 node_online(node) ? node : NUMA_NO_NODE); 7076 7077 rtpn->rb_root = RB_ROOT; 7078 rtpn->rb_rightmost = NULL; 7079 spin_lock_init(&rtpn->lock); 7080 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7081 } 7082 7083 return 0; 7084 } 7085 subsys_initcall(mem_cgroup_init); 7086 7087 #ifdef CONFIG_MEMCG_SWAP 7088 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7089 { 7090 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7091 /* 7092 * The root cgroup cannot be destroyed, so it's refcount must 7093 * always be >= 1. 7094 */ 7095 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7096 VM_BUG_ON(1); 7097 break; 7098 } 7099 memcg = parent_mem_cgroup(memcg); 7100 if (!memcg) 7101 memcg = root_mem_cgroup; 7102 } 7103 return memcg; 7104 } 7105 7106 /** 7107 * mem_cgroup_swapout - transfer a memsw charge to swap 7108 * @page: page whose memsw charge to transfer 7109 * @entry: swap entry to move the charge to 7110 * 7111 * Transfer the memsw charge of @page to @entry. 7112 */ 7113 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 7114 { 7115 struct mem_cgroup *memcg, *swap_memcg; 7116 unsigned int nr_entries; 7117 unsigned short oldid; 7118 7119 VM_BUG_ON_PAGE(PageLRU(page), page); 7120 VM_BUG_ON_PAGE(page_count(page), page); 7121 7122 if (mem_cgroup_disabled()) 7123 return; 7124 7125 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7126 return; 7127 7128 memcg = page_memcg(page); 7129 7130 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7131 if (!memcg) 7132 return; 7133 7134 /* 7135 * In case the memcg owning these pages has been offlined and doesn't 7136 * have an ID allocated to it anymore, charge the closest online 7137 * ancestor for the swap instead and transfer the memory+swap charge. 7138 */ 7139 swap_memcg = mem_cgroup_id_get_online(memcg); 7140 nr_entries = thp_nr_pages(page); 7141 /* Get references for the tail pages, too */ 7142 if (nr_entries > 1) 7143 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7144 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7145 nr_entries); 7146 VM_BUG_ON_PAGE(oldid, page); 7147 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7148 7149 page->memcg_data = 0; 7150 7151 if (!mem_cgroup_is_root(memcg)) 7152 page_counter_uncharge(&memcg->memory, nr_entries); 7153 7154 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7155 if (!mem_cgroup_is_root(swap_memcg)) 7156 page_counter_charge(&swap_memcg->memsw, nr_entries); 7157 page_counter_uncharge(&memcg->memsw, nr_entries); 7158 } 7159 7160 /* 7161 * Interrupts should be disabled here because the caller holds the 7162 * i_pages lock which is taken with interrupts-off. It is 7163 * important here to have the interrupts disabled because it is the 7164 * only synchronisation we have for updating the per-CPU variables. 7165 */ 7166 VM_BUG_ON(!irqs_disabled()); 7167 mem_cgroup_charge_statistics(memcg, -nr_entries); 7168 memcg_check_events(memcg, page_to_nid(page)); 7169 7170 css_put(&memcg->css); 7171 } 7172 7173 /** 7174 * __mem_cgroup_try_charge_swap - try charging swap space for a page 7175 * @page: page being added to swap 7176 * @entry: swap entry to charge 7177 * 7178 * Try to charge @page's memcg for the swap space at @entry. 7179 * 7180 * Returns 0 on success, -ENOMEM on failure. 7181 */ 7182 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7183 { 7184 unsigned int nr_pages = thp_nr_pages(page); 7185 struct page_counter *counter; 7186 struct mem_cgroup *memcg; 7187 unsigned short oldid; 7188 7189 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7190 return 0; 7191 7192 memcg = page_memcg(page); 7193 7194 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7195 if (!memcg) 7196 return 0; 7197 7198 if (!entry.val) { 7199 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7200 return 0; 7201 } 7202 7203 memcg = mem_cgroup_id_get_online(memcg); 7204 7205 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7206 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7207 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7208 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7209 mem_cgroup_id_put(memcg); 7210 return -ENOMEM; 7211 } 7212 7213 /* Get references for the tail pages, too */ 7214 if (nr_pages > 1) 7215 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7216 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7217 VM_BUG_ON_PAGE(oldid, page); 7218 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7219 7220 return 0; 7221 } 7222 7223 /** 7224 * __mem_cgroup_uncharge_swap - uncharge swap space 7225 * @entry: swap entry to uncharge 7226 * @nr_pages: the amount of swap space to uncharge 7227 */ 7228 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7229 { 7230 struct mem_cgroup *memcg; 7231 unsigned short id; 7232 7233 id = swap_cgroup_record(entry, 0, nr_pages); 7234 rcu_read_lock(); 7235 memcg = mem_cgroup_from_id(id); 7236 if (memcg) { 7237 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7238 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7239 page_counter_uncharge(&memcg->swap, nr_pages); 7240 else 7241 page_counter_uncharge(&memcg->memsw, nr_pages); 7242 } 7243 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7244 mem_cgroup_id_put_many(memcg, nr_pages); 7245 } 7246 rcu_read_unlock(); 7247 } 7248 7249 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7250 { 7251 long nr_swap_pages = get_nr_swap_pages(); 7252 7253 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7254 return nr_swap_pages; 7255 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7256 nr_swap_pages = min_t(long, nr_swap_pages, 7257 READ_ONCE(memcg->swap.max) - 7258 page_counter_read(&memcg->swap)); 7259 return nr_swap_pages; 7260 } 7261 7262 bool mem_cgroup_swap_full(struct page *page) 7263 { 7264 struct mem_cgroup *memcg; 7265 7266 VM_BUG_ON_PAGE(!PageLocked(page), page); 7267 7268 if (vm_swap_full()) 7269 return true; 7270 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7271 return false; 7272 7273 memcg = page_memcg(page); 7274 if (!memcg) 7275 return false; 7276 7277 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7278 unsigned long usage = page_counter_read(&memcg->swap); 7279 7280 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7281 usage * 2 >= READ_ONCE(memcg->swap.max)) 7282 return true; 7283 } 7284 7285 return false; 7286 } 7287 7288 static int __init setup_swap_account(char *s) 7289 { 7290 if (!strcmp(s, "1")) 7291 cgroup_memory_noswap = false; 7292 else if (!strcmp(s, "0")) 7293 cgroup_memory_noswap = true; 7294 return 1; 7295 } 7296 __setup("swapaccount=", setup_swap_account); 7297 7298 static u64 swap_current_read(struct cgroup_subsys_state *css, 7299 struct cftype *cft) 7300 { 7301 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7302 7303 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7304 } 7305 7306 static int swap_high_show(struct seq_file *m, void *v) 7307 { 7308 return seq_puts_memcg_tunable(m, 7309 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7310 } 7311 7312 static ssize_t swap_high_write(struct kernfs_open_file *of, 7313 char *buf, size_t nbytes, loff_t off) 7314 { 7315 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7316 unsigned long high; 7317 int err; 7318 7319 buf = strstrip(buf); 7320 err = page_counter_memparse(buf, "max", &high); 7321 if (err) 7322 return err; 7323 7324 page_counter_set_high(&memcg->swap, high); 7325 7326 return nbytes; 7327 } 7328 7329 static int swap_max_show(struct seq_file *m, void *v) 7330 { 7331 return seq_puts_memcg_tunable(m, 7332 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7333 } 7334 7335 static ssize_t swap_max_write(struct kernfs_open_file *of, 7336 char *buf, size_t nbytes, loff_t off) 7337 { 7338 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7339 unsigned long max; 7340 int err; 7341 7342 buf = strstrip(buf); 7343 err = page_counter_memparse(buf, "max", &max); 7344 if (err) 7345 return err; 7346 7347 xchg(&memcg->swap.max, max); 7348 7349 return nbytes; 7350 } 7351 7352 static int swap_events_show(struct seq_file *m, void *v) 7353 { 7354 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7355 7356 seq_printf(m, "high %lu\n", 7357 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7358 seq_printf(m, "max %lu\n", 7359 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7360 seq_printf(m, "fail %lu\n", 7361 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7362 7363 return 0; 7364 } 7365 7366 static struct cftype swap_files[] = { 7367 { 7368 .name = "swap.current", 7369 .flags = CFTYPE_NOT_ON_ROOT, 7370 .read_u64 = swap_current_read, 7371 }, 7372 { 7373 .name = "swap.high", 7374 .flags = CFTYPE_NOT_ON_ROOT, 7375 .seq_show = swap_high_show, 7376 .write = swap_high_write, 7377 }, 7378 { 7379 .name = "swap.max", 7380 .flags = CFTYPE_NOT_ON_ROOT, 7381 .seq_show = swap_max_show, 7382 .write = swap_max_write, 7383 }, 7384 { 7385 .name = "swap.events", 7386 .flags = CFTYPE_NOT_ON_ROOT, 7387 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7388 .seq_show = swap_events_show, 7389 }, 7390 { } /* terminate */ 7391 }; 7392 7393 static struct cftype memsw_files[] = { 7394 { 7395 .name = "memsw.usage_in_bytes", 7396 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7397 .read_u64 = mem_cgroup_read_u64, 7398 }, 7399 { 7400 .name = "memsw.max_usage_in_bytes", 7401 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7402 .write = mem_cgroup_reset, 7403 .read_u64 = mem_cgroup_read_u64, 7404 }, 7405 { 7406 .name = "memsw.limit_in_bytes", 7407 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7408 .write = mem_cgroup_write, 7409 .read_u64 = mem_cgroup_read_u64, 7410 }, 7411 { 7412 .name = "memsw.failcnt", 7413 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7414 .write = mem_cgroup_reset, 7415 .read_u64 = mem_cgroup_read_u64, 7416 }, 7417 { }, /* terminate */ 7418 }; 7419 7420 /* 7421 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7422 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7423 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7424 * boot parameter. This may result in premature OOPS inside 7425 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7426 */ 7427 static int __init mem_cgroup_swap_init(void) 7428 { 7429 /* No memory control -> no swap control */ 7430 if (mem_cgroup_disabled()) 7431 cgroup_memory_noswap = true; 7432 7433 if (cgroup_memory_noswap) 7434 return 0; 7435 7436 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7437 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7438 7439 return 0; 7440 } 7441 core_initcall(mem_cgroup_swap_init); 7442 7443 #endif /* CONFIG_MEMCG_SWAP */ 7444