xref: /linux/mm/memcontrol.c (revision 424f0750edd5af866f80f5e65998e0610503cb5c)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 
54 #include <asm/uaccess.h>
55 
56 #include <trace/events/vmscan.h>
57 
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
59 #define MEM_CGROUP_RECLAIM_RETRIES	5
60 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly;
65 
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata = 1;
69 #else
70 static int really_do_swap_account __initdata = 0;
71 #endif
72 
73 #else
74 #define do_swap_account		(0)
75 #endif
76 
77 
78 /*
79  * Statistics for memory cgroup.
80  */
81 enum mem_cgroup_stat_index {
82 	/*
83 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 	 */
85 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 	MEM_CGROUP_STAT_NSTATS,
92 };
93 
94 enum mem_cgroup_events_index {
95 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
96 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
97 	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
99 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 	MEM_CGROUP_EVENTS_NSTATS,
101 };
102 /*
103  * Per memcg event counter is incremented at every pagein/pageout. With THP,
104  * it will be incremated by the number of pages. This counter is used for
105  * for trigger some periodic events. This is straightforward and better
106  * than using jiffies etc. to handle periodic memcg event.
107  */
108 enum mem_cgroup_events_target {
109 	MEM_CGROUP_TARGET_THRESH,
110 	MEM_CGROUP_TARGET_SOFTLIMIT,
111 	MEM_CGROUP_TARGET_NUMAINFO,
112 	MEM_CGROUP_NTARGETS,
113 };
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET	(1024)
117 
118 struct mem_cgroup_stat_cpu {
119 	long count[MEM_CGROUP_STAT_NSTATS];
120 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121 	unsigned long targets[MEM_CGROUP_NTARGETS];
122 };
123 
124 /*
125  * per-zone information in memory controller.
126  */
127 struct mem_cgroup_per_zone {
128 	/*
129 	 * spin_lock to protect the per cgroup LRU
130 	 */
131 	struct list_head	lists[NR_LRU_LISTS];
132 	unsigned long		count[NR_LRU_LISTS];
133 
134 	struct zone_reclaim_stat reclaim_stat;
135 	struct rb_node		tree_node;	/* RB tree node */
136 	unsigned long long	usage_in_excess;/* Set to the value by which */
137 						/* the soft limit is exceeded*/
138 	bool			on_tree;
139 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
140 						/* use container_of	   */
141 };
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
144 
145 struct mem_cgroup_per_node {
146 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
147 };
148 
149 struct mem_cgroup_lru_info {
150 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
151 };
152 
153 /*
154  * Cgroups above their limits are maintained in a RB-Tree, independent of
155  * their hierarchy representation
156  */
157 
158 struct mem_cgroup_tree_per_zone {
159 	struct rb_root rb_root;
160 	spinlock_t lock;
161 };
162 
163 struct mem_cgroup_tree_per_node {
164 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
165 };
166 
167 struct mem_cgroup_tree {
168 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
169 };
170 
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172 
173 struct mem_cgroup_threshold {
174 	struct eventfd_ctx *eventfd;
175 	u64 threshold;
176 };
177 
178 /* For threshold */
179 struct mem_cgroup_threshold_ary {
180 	/* An array index points to threshold just below usage. */
181 	int current_threshold;
182 	/* Size of entries[] */
183 	unsigned int size;
184 	/* Array of thresholds */
185 	struct mem_cgroup_threshold entries[0];
186 };
187 
188 struct mem_cgroup_thresholds {
189 	/* Primary thresholds array */
190 	struct mem_cgroup_threshold_ary *primary;
191 	/*
192 	 * Spare threshold array.
193 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 	 * It must be able to store at least primary->size - 1 entries.
195 	 */
196 	struct mem_cgroup_threshold_ary *spare;
197 };
198 
199 /* for OOM */
200 struct mem_cgroup_eventfd_list {
201 	struct list_head list;
202 	struct eventfd_ctx *eventfd;
203 };
204 
205 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
206 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
207 
208 /*
209  * The memory controller data structure. The memory controller controls both
210  * page cache and RSS per cgroup. We would eventually like to provide
211  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
212  * to help the administrator determine what knobs to tune.
213  *
214  * TODO: Add a water mark for the memory controller. Reclaim will begin when
215  * we hit the water mark. May be even add a low water mark, such that
216  * no reclaim occurs from a cgroup at it's low water mark, this is
217  * a feature that will be implemented much later in the future.
218  */
219 struct mem_cgroup {
220 	struct cgroup_subsys_state css;
221 	/*
222 	 * the counter to account for memory usage
223 	 */
224 	struct res_counter res;
225 	/*
226 	 * the counter to account for mem+swap usage.
227 	 */
228 	struct res_counter memsw;
229 	/*
230 	 * Per cgroup active and inactive list, similar to the
231 	 * per zone LRU lists.
232 	 */
233 	struct mem_cgroup_lru_info info;
234 	/*
235 	 * While reclaiming in a hierarchy, we cache the last child we
236 	 * reclaimed from.
237 	 */
238 	int last_scanned_child;
239 	int last_scanned_node;
240 #if MAX_NUMNODES > 1
241 	nodemask_t	scan_nodes;
242 	atomic_t	numainfo_events;
243 	atomic_t	numainfo_updating;
244 #endif
245 	/*
246 	 * Should the accounting and control be hierarchical, per subtree?
247 	 */
248 	bool use_hierarchy;
249 
250 	bool		oom_lock;
251 	atomic_t	under_oom;
252 
253 	atomic_t	refcnt;
254 
255 	int	swappiness;
256 	/* OOM-Killer disable */
257 	int		oom_kill_disable;
258 
259 	/* set when res.limit == memsw.limit */
260 	bool		memsw_is_minimum;
261 
262 	/* protect arrays of thresholds */
263 	struct mutex thresholds_lock;
264 
265 	/* thresholds for memory usage. RCU-protected */
266 	struct mem_cgroup_thresholds thresholds;
267 
268 	/* thresholds for mem+swap usage. RCU-protected */
269 	struct mem_cgroup_thresholds memsw_thresholds;
270 
271 	/* For oom notifier event fd */
272 	struct list_head oom_notify;
273 
274 	/*
275 	 * Should we move charges of a task when a task is moved into this
276 	 * mem_cgroup ? And what type of charges should we move ?
277 	 */
278 	unsigned long 	move_charge_at_immigrate;
279 	/*
280 	 * percpu counter.
281 	 */
282 	struct mem_cgroup_stat_cpu *stat;
283 	/*
284 	 * used when a cpu is offlined or other synchronizations
285 	 * See mem_cgroup_read_stat().
286 	 */
287 	struct mem_cgroup_stat_cpu nocpu_base;
288 	spinlock_t pcp_counter_lock;
289 };
290 
291 /* Stuffs for move charges at task migration. */
292 /*
293  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
294  * left-shifted bitmap of these types.
295  */
296 enum move_type {
297 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
298 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
299 	NR_MOVE_TYPE,
300 };
301 
302 /* "mc" and its members are protected by cgroup_mutex */
303 static struct move_charge_struct {
304 	spinlock_t	  lock; /* for from, to */
305 	struct mem_cgroup *from;
306 	struct mem_cgroup *to;
307 	unsigned long precharge;
308 	unsigned long moved_charge;
309 	unsigned long moved_swap;
310 	struct task_struct *moving_task;	/* a task moving charges */
311 	wait_queue_head_t waitq;		/* a waitq for other context */
312 } mc = {
313 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
314 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
315 };
316 
317 static bool move_anon(void)
318 {
319 	return test_bit(MOVE_CHARGE_TYPE_ANON,
320 					&mc.to->move_charge_at_immigrate);
321 }
322 
323 static bool move_file(void)
324 {
325 	return test_bit(MOVE_CHARGE_TYPE_FILE,
326 					&mc.to->move_charge_at_immigrate);
327 }
328 
329 /*
330  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
331  * limit reclaim to prevent infinite loops, if they ever occur.
332  */
333 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
334 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
335 
336 enum charge_type {
337 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
338 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
339 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
340 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
341 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
342 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
343 	NR_CHARGE_TYPE,
344 };
345 
346 /* for encoding cft->private value on file */
347 #define _MEM			(0)
348 #define _MEMSWAP		(1)
349 #define _OOM_TYPE		(2)
350 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
351 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
352 #define MEMFILE_ATTR(val)	((val) & 0xffff)
353 /* Used for OOM nofiier */
354 #define OOM_CONTROL		(0)
355 
356 /*
357  * Reclaim flags for mem_cgroup_hierarchical_reclaim
358  */
359 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
360 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
361 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
362 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
363 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
364 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
365 
366 static void mem_cgroup_get(struct mem_cgroup *memcg);
367 static void mem_cgroup_put(struct mem_cgroup *memcg);
368 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
369 static void drain_all_stock_async(struct mem_cgroup *memcg);
370 
371 static struct mem_cgroup_per_zone *
372 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
373 {
374 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
375 }
376 
377 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
378 {
379 	return &memcg->css;
380 }
381 
382 static struct mem_cgroup_per_zone *
383 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
384 {
385 	int nid = page_to_nid(page);
386 	int zid = page_zonenum(page);
387 
388 	return mem_cgroup_zoneinfo(memcg, nid, zid);
389 }
390 
391 static struct mem_cgroup_tree_per_zone *
392 soft_limit_tree_node_zone(int nid, int zid)
393 {
394 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
395 }
396 
397 static struct mem_cgroup_tree_per_zone *
398 soft_limit_tree_from_page(struct page *page)
399 {
400 	int nid = page_to_nid(page);
401 	int zid = page_zonenum(page);
402 
403 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
404 }
405 
406 static void
407 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
408 				struct mem_cgroup_per_zone *mz,
409 				struct mem_cgroup_tree_per_zone *mctz,
410 				unsigned long long new_usage_in_excess)
411 {
412 	struct rb_node **p = &mctz->rb_root.rb_node;
413 	struct rb_node *parent = NULL;
414 	struct mem_cgroup_per_zone *mz_node;
415 
416 	if (mz->on_tree)
417 		return;
418 
419 	mz->usage_in_excess = new_usage_in_excess;
420 	if (!mz->usage_in_excess)
421 		return;
422 	while (*p) {
423 		parent = *p;
424 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
425 					tree_node);
426 		if (mz->usage_in_excess < mz_node->usage_in_excess)
427 			p = &(*p)->rb_left;
428 		/*
429 		 * We can't avoid mem cgroups that are over their soft
430 		 * limit by the same amount
431 		 */
432 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
433 			p = &(*p)->rb_right;
434 	}
435 	rb_link_node(&mz->tree_node, parent, p);
436 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
437 	mz->on_tree = true;
438 }
439 
440 static void
441 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
442 				struct mem_cgroup_per_zone *mz,
443 				struct mem_cgroup_tree_per_zone *mctz)
444 {
445 	if (!mz->on_tree)
446 		return;
447 	rb_erase(&mz->tree_node, &mctz->rb_root);
448 	mz->on_tree = false;
449 }
450 
451 static void
452 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
453 				struct mem_cgroup_per_zone *mz,
454 				struct mem_cgroup_tree_per_zone *mctz)
455 {
456 	spin_lock(&mctz->lock);
457 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
458 	spin_unlock(&mctz->lock);
459 }
460 
461 
462 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
463 {
464 	unsigned long long excess;
465 	struct mem_cgroup_per_zone *mz;
466 	struct mem_cgroup_tree_per_zone *mctz;
467 	int nid = page_to_nid(page);
468 	int zid = page_zonenum(page);
469 	mctz = soft_limit_tree_from_page(page);
470 
471 	/*
472 	 * Necessary to update all ancestors when hierarchy is used.
473 	 * because their event counter is not touched.
474 	 */
475 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
476 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
477 		excess = res_counter_soft_limit_excess(&memcg->res);
478 		/*
479 		 * We have to update the tree if mz is on RB-tree or
480 		 * mem is over its softlimit.
481 		 */
482 		if (excess || mz->on_tree) {
483 			spin_lock(&mctz->lock);
484 			/* if on-tree, remove it */
485 			if (mz->on_tree)
486 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
487 			/*
488 			 * Insert again. mz->usage_in_excess will be updated.
489 			 * If excess is 0, no tree ops.
490 			 */
491 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
492 			spin_unlock(&mctz->lock);
493 		}
494 	}
495 }
496 
497 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
498 {
499 	int node, zone;
500 	struct mem_cgroup_per_zone *mz;
501 	struct mem_cgroup_tree_per_zone *mctz;
502 
503 	for_each_node_state(node, N_POSSIBLE) {
504 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
505 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
506 			mctz = soft_limit_tree_node_zone(node, zone);
507 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
508 		}
509 	}
510 }
511 
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 {
515 	struct rb_node *rightmost = NULL;
516 	struct mem_cgroup_per_zone *mz;
517 
518 retry:
519 	mz = NULL;
520 	rightmost = rb_last(&mctz->rb_root);
521 	if (!rightmost)
522 		goto done;		/* Nothing to reclaim from */
523 
524 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 	/*
526 	 * Remove the node now but someone else can add it back,
527 	 * we will to add it back at the end of reclaim to its correct
528 	 * position in the tree.
529 	 */
530 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 		!css_tryget(&mz->mem->css))
533 		goto retry;
534 done:
535 	return mz;
536 }
537 
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 {
541 	struct mem_cgroup_per_zone *mz;
542 
543 	spin_lock(&mctz->lock);
544 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 	spin_unlock(&mctz->lock);
546 	return mz;
547 }
548 
549 /*
550  * Implementation Note: reading percpu statistics for memcg.
551  *
552  * Both of vmstat[] and percpu_counter has threshold and do periodic
553  * synchronization to implement "quick" read. There are trade-off between
554  * reading cost and precision of value. Then, we may have a chance to implement
555  * a periodic synchronizion of counter in memcg's counter.
556  *
557  * But this _read() function is used for user interface now. The user accounts
558  * memory usage by memory cgroup and he _always_ requires exact value because
559  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560  * have to visit all online cpus and make sum. So, for now, unnecessary
561  * synchronization is not implemented. (just implemented for cpu hotplug)
562  *
563  * If there are kernel internal actions which can make use of some not-exact
564  * value, and reading all cpu value can be performance bottleneck in some
565  * common workload, threashold and synchonization as vmstat[] should be
566  * implemented.
567  */
568 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
569 				 enum mem_cgroup_stat_index idx)
570 {
571 	long val = 0;
572 	int cpu;
573 
574 	get_online_cpus();
575 	for_each_online_cpu(cpu)
576 		val += per_cpu(memcg->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578 	spin_lock(&memcg->pcp_counter_lock);
579 	val += memcg->nocpu_base.count[idx];
580 	spin_unlock(&memcg->pcp_counter_lock);
581 #endif
582 	put_online_cpus();
583 	return val;
584 }
585 
586 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
587 					 bool charge)
588 {
589 	int val = (charge) ? 1 : -1;
590 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
591 }
592 
593 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
594 {
595 	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
596 }
597 
598 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
599 {
600 	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
601 }
602 
603 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
604 					    enum mem_cgroup_events_index idx)
605 {
606 	unsigned long val = 0;
607 	int cpu;
608 
609 	for_each_online_cpu(cpu)
610 		val += per_cpu(memcg->stat->events[idx], cpu);
611 #ifdef CONFIG_HOTPLUG_CPU
612 	spin_lock(&memcg->pcp_counter_lock);
613 	val += memcg->nocpu_base.events[idx];
614 	spin_unlock(&memcg->pcp_counter_lock);
615 #endif
616 	return val;
617 }
618 
619 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
620 					 bool file, int nr_pages)
621 {
622 	preempt_disable();
623 
624 	if (file)
625 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
626 				nr_pages);
627 	else
628 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
629 				nr_pages);
630 
631 	/* pagein of a big page is an event. So, ignore page size */
632 	if (nr_pages > 0)
633 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 	else {
635 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 		nr_pages = -nr_pages; /* for event */
637 	}
638 
639 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
640 
641 	preempt_enable();
642 }
643 
644 unsigned long
645 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
646 			unsigned int lru_mask)
647 {
648 	struct mem_cgroup_per_zone *mz;
649 	enum lru_list l;
650 	unsigned long ret = 0;
651 
652 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
653 
654 	for_each_lru(l) {
655 		if (BIT(l) & lru_mask)
656 			ret += MEM_CGROUP_ZSTAT(mz, l);
657 	}
658 	return ret;
659 }
660 
661 static unsigned long
662 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
663 			int nid, unsigned int lru_mask)
664 {
665 	u64 total = 0;
666 	int zid;
667 
668 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
669 		total += mem_cgroup_zone_nr_lru_pages(memcg,
670 						nid, zid, lru_mask);
671 
672 	return total;
673 }
674 
675 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
676 			unsigned int lru_mask)
677 {
678 	int nid;
679 	u64 total = 0;
680 
681 	for_each_node_state(nid, N_HIGH_MEMORY)
682 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
683 	return total;
684 }
685 
686 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
687 {
688 	unsigned long val, next;
689 
690 	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
691 	next = __this_cpu_read(memcg->stat->targets[target]);
692 	/* from time_after() in jiffies.h */
693 	return ((long)next - (long)val < 0);
694 }
695 
696 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
697 {
698 	unsigned long val, next;
699 
700 	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
701 
702 	switch (target) {
703 	case MEM_CGROUP_TARGET_THRESH:
704 		next = val + THRESHOLDS_EVENTS_TARGET;
705 		break;
706 	case MEM_CGROUP_TARGET_SOFTLIMIT:
707 		next = val + SOFTLIMIT_EVENTS_TARGET;
708 		break;
709 	case MEM_CGROUP_TARGET_NUMAINFO:
710 		next = val + NUMAINFO_EVENTS_TARGET;
711 		break;
712 	default:
713 		return;
714 	}
715 
716 	__this_cpu_write(memcg->stat->targets[target], next);
717 }
718 
719 /*
720  * Check events in order.
721  *
722  */
723 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
724 {
725 	preempt_disable();
726 	/* threshold event is triggered in finer grain than soft limit */
727 	if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
728 		mem_cgroup_threshold(memcg);
729 		__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
730 		if (unlikely(__memcg_event_check(memcg,
731 			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
732 			mem_cgroup_update_tree(memcg, page);
733 			__mem_cgroup_target_update(memcg,
734 						   MEM_CGROUP_TARGET_SOFTLIMIT);
735 		}
736 #if MAX_NUMNODES > 1
737 		if (unlikely(__memcg_event_check(memcg,
738 			MEM_CGROUP_TARGET_NUMAINFO))) {
739 			atomic_inc(&memcg->numainfo_events);
740 			__mem_cgroup_target_update(memcg,
741 				MEM_CGROUP_TARGET_NUMAINFO);
742 		}
743 #endif
744 	}
745 	preempt_enable();
746 }
747 
748 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
749 {
750 	return container_of(cgroup_subsys_state(cont,
751 				mem_cgroup_subsys_id), struct mem_cgroup,
752 				css);
753 }
754 
755 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
756 {
757 	/*
758 	 * mm_update_next_owner() may clear mm->owner to NULL
759 	 * if it races with swapoff, page migration, etc.
760 	 * So this can be called with p == NULL.
761 	 */
762 	if (unlikely(!p))
763 		return NULL;
764 
765 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
766 				struct mem_cgroup, css);
767 }
768 
769 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
770 {
771 	struct mem_cgroup *memcg = NULL;
772 
773 	if (!mm)
774 		return NULL;
775 	/*
776 	 * Because we have no locks, mm->owner's may be being moved to other
777 	 * cgroup. We use css_tryget() here even if this looks
778 	 * pessimistic (rather than adding locks here).
779 	 */
780 	rcu_read_lock();
781 	do {
782 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
783 		if (unlikely(!memcg))
784 			break;
785 	} while (!css_tryget(&memcg->css));
786 	rcu_read_unlock();
787 	return memcg;
788 }
789 
790 /* The caller has to guarantee "mem" exists before calling this */
791 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
792 {
793 	struct cgroup_subsys_state *css;
794 	int found;
795 
796 	if (!memcg) /* ROOT cgroup has the smallest ID */
797 		return root_mem_cgroup; /*css_put/get against root is ignored*/
798 	if (!memcg->use_hierarchy) {
799 		if (css_tryget(&memcg->css))
800 			return memcg;
801 		return NULL;
802 	}
803 	rcu_read_lock();
804 	/*
805 	 * searching a memory cgroup which has the smallest ID under given
806 	 * ROOT cgroup. (ID >= 1)
807 	 */
808 	css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
809 	if (css && css_tryget(css))
810 		memcg = container_of(css, struct mem_cgroup, css);
811 	else
812 		memcg = NULL;
813 	rcu_read_unlock();
814 	return memcg;
815 }
816 
817 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
818 					struct mem_cgroup *root,
819 					bool cond)
820 {
821 	int nextid = css_id(&iter->css) + 1;
822 	int found;
823 	int hierarchy_used;
824 	struct cgroup_subsys_state *css;
825 
826 	hierarchy_used = iter->use_hierarchy;
827 
828 	css_put(&iter->css);
829 	/* If no ROOT, walk all, ignore hierarchy */
830 	if (!cond || (root && !hierarchy_used))
831 		return NULL;
832 
833 	if (!root)
834 		root = root_mem_cgroup;
835 
836 	do {
837 		iter = NULL;
838 		rcu_read_lock();
839 
840 		css = css_get_next(&mem_cgroup_subsys, nextid,
841 				&root->css, &found);
842 		if (css && css_tryget(css))
843 			iter = container_of(css, struct mem_cgroup, css);
844 		rcu_read_unlock();
845 		/* If css is NULL, no more cgroups will be found */
846 		nextid = found + 1;
847 	} while (css && !iter);
848 
849 	return iter;
850 }
851 /*
852  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
853  * be careful that "break" loop is not allowed. We have reference count.
854  * Instead of that modify "cond" to be false and "continue" to exit the loop.
855  */
856 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
857 	for (iter = mem_cgroup_start_loop(root);\
858 	     iter != NULL;\
859 	     iter = mem_cgroup_get_next(iter, root, cond))
860 
861 #define for_each_mem_cgroup_tree(iter, root) \
862 	for_each_mem_cgroup_tree_cond(iter, root, true)
863 
864 #define for_each_mem_cgroup_all(iter) \
865 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
866 
867 
868 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
869 {
870 	return (memcg == root_mem_cgroup);
871 }
872 
873 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
874 {
875 	struct mem_cgroup *memcg;
876 
877 	if (!mm)
878 		return;
879 
880 	rcu_read_lock();
881 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
882 	if (unlikely(!memcg))
883 		goto out;
884 
885 	switch (idx) {
886 	case PGMAJFAULT:
887 		mem_cgroup_pgmajfault(memcg, 1);
888 		break;
889 	case PGFAULT:
890 		mem_cgroup_pgfault(memcg, 1);
891 		break;
892 	default:
893 		BUG();
894 	}
895 out:
896 	rcu_read_unlock();
897 }
898 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
899 
900 /*
901  * Following LRU functions are allowed to be used without PCG_LOCK.
902  * Operations are called by routine of global LRU independently from memcg.
903  * What we have to take care of here is validness of pc->mem_cgroup.
904  *
905  * Changes to pc->mem_cgroup happens when
906  * 1. charge
907  * 2. moving account
908  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
909  * It is added to LRU before charge.
910  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
911  * When moving account, the page is not on LRU. It's isolated.
912  */
913 
914 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
915 {
916 	struct page_cgroup *pc;
917 	struct mem_cgroup_per_zone *mz;
918 
919 	if (mem_cgroup_disabled())
920 		return;
921 	pc = lookup_page_cgroup(page);
922 	/* can happen while we handle swapcache. */
923 	if (!TestClearPageCgroupAcctLRU(pc))
924 		return;
925 	VM_BUG_ON(!pc->mem_cgroup);
926 	/*
927 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
928 	 * removed from global LRU.
929 	 */
930 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
931 	/* huge page split is done under lru_lock. so, we have no races. */
932 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
933 	if (mem_cgroup_is_root(pc->mem_cgroup))
934 		return;
935 	VM_BUG_ON(list_empty(&pc->lru));
936 	list_del_init(&pc->lru);
937 }
938 
939 void mem_cgroup_del_lru(struct page *page)
940 {
941 	mem_cgroup_del_lru_list(page, page_lru(page));
942 }
943 
944 /*
945  * Writeback is about to end against a page which has been marked for immediate
946  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
947  * inactive list.
948  */
949 void mem_cgroup_rotate_reclaimable_page(struct page *page)
950 {
951 	struct mem_cgroup_per_zone *mz;
952 	struct page_cgroup *pc;
953 	enum lru_list lru = page_lru(page);
954 
955 	if (mem_cgroup_disabled())
956 		return;
957 
958 	pc = lookup_page_cgroup(page);
959 	/* unused or root page is not rotated. */
960 	if (!PageCgroupUsed(pc))
961 		return;
962 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
963 	smp_rmb();
964 	if (mem_cgroup_is_root(pc->mem_cgroup))
965 		return;
966 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
967 	list_move_tail(&pc->lru, &mz->lists[lru]);
968 }
969 
970 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
971 {
972 	struct mem_cgroup_per_zone *mz;
973 	struct page_cgroup *pc;
974 
975 	if (mem_cgroup_disabled())
976 		return;
977 
978 	pc = lookup_page_cgroup(page);
979 	/* unused or root page is not rotated. */
980 	if (!PageCgroupUsed(pc))
981 		return;
982 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
983 	smp_rmb();
984 	if (mem_cgroup_is_root(pc->mem_cgroup))
985 		return;
986 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
987 	list_move(&pc->lru, &mz->lists[lru]);
988 }
989 
990 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
991 {
992 	struct page_cgroup *pc;
993 	struct mem_cgroup_per_zone *mz;
994 
995 	if (mem_cgroup_disabled())
996 		return;
997 	pc = lookup_page_cgroup(page);
998 	VM_BUG_ON(PageCgroupAcctLRU(pc));
999 	/*
1000 	 * putback:				charge:
1001 	 * SetPageLRU				SetPageCgroupUsed
1002 	 * smp_mb				smp_mb
1003 	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
1004 	 *
1005 	 * Ensure that one of the two sides adds the page to the memcg
1006 	 * LRU during a race.
1007 	 */
1008 	smp_mb();
1009 	if (!PageCgroupUsed(pc))
1010 		return;
1011 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1012 	smp_rmb();
1013 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1014 	/* huge page split is done under lru_lock. so, we have no races. */
1015 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1016 	SetPageCgroupAcctLRU(pc);
1017 	if (mem_cgroup_is_root(pc->mem_cgroup))
1018 		return;
1019 	list_add(&pc->lru, &mz->lists[lru]);
1020 }
1021 
1022 /*
1023  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1024  * while it's linked to lru because the page may be reused after it's fully
1025  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1026  * It's done under lock_page and expected that zone->lru_lock isnever held.
1027  */
1028 static void mem_cgroup_lru_del_before_commit(struct page *page)
1029 {
1030 	unsigned long flags;
1031 	struct zone *zone = page_zone(page);
1032 	struct page_cgroup *pc = lookup_page_cgroup(page);
1033 
1034 	/*
1035 	 * Doing this check without taking ->lru_lock seems wrong but this
1036 	 * is safe. Because if page_cgroup's USED bit is unset, the page
1037 	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1038 	 * set, the commit after this will fail, anyway.
1039 	 * This all charge/uncharge is done under some mutual execustion.
1040 	 * So, we don't need to taking care of changes in USED bit.
1041 	 */
1042 	if (likely(!PageLRU(page)))
1043 		return;
1044 
1045 	spin_lock_irqsave(&zone->lru_lock, flags);
1046 	/*
1047 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1048 	 * is guarded by lock_page() because the page is SwapCache.
1049 	 */
1050 	if (!PageCgroupUsed(pc))
1051 		mem_cgroup_del_lru_list(page, page_lru(page));
1052 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1053 }
1054 
1055 static void mem_cgroup_lru_add_after_commit(struct page *page)
1056 {
1057 	unsigned long flags;
1058 	struct zone *zone = page_zone(page);
1059 	struct page_cgroup *pc = lookup_page_cgroup(page);
1060 	/*
1061 	 * putback:				charge:
1062 	 * SetPageLRU				SetPageCgroupUsed
1063 	 * smp_mb				smp_mb
1064 	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
1065 	 *
1066 	 * Ensure that one of the two sides adds the page to the memcg
1067 	 * LRU during a race.
1068 	 */
1069 	smp_mb();
1070 	/* taking care of that the page is added to LRU while we commit it */
1071 	if (likely(!PageLRU(page)))
1072 		return;
1073 	spin_lock_irqsave(&zone->lru_lock, flags);
1074 	/* link when the page is linked to LRU but page_cgroup isn't */
1075 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1076 		mem_cgroup_add_lru_list(page, page_lru(page));
1077 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1078 }
1079 
1080 
1081 void mem_cgroup_move_lists(struct page *page,
1082 			   enum lru_list from, enum lru_list to)
1083 {
1084 	if (mem_cgroup_disabled())
1085 		return;
1086 	mem_cgroup_del_lru_list(page, from);
1087 	mem_cgroup_add_lru_list(page, to);
1088 }
1089 
1090 /*
1091  * Checks whether given mem is same or in the root_mem_cgroup's
1092  * hierarchy subtree
1093  */
1094 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1095 		struct mem_cgroup *memcg)
1096 {
1097 	if (root_memcg != memcg) {
1098 		return (root_memcg->use_hierarchy &&
1099 			css_is_ancestor(&memcg->css, &root_memcg->css));
1100 	}
1101 
1102 	return true;
1103 }
1104 
1105 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1106 {
1107 	int ret;
1108 	struct mem_cgroup *curr = NULL;
1109 	struct task_struct *p;
1110 
1111 	p = find_lock_task_mm(task);
1112 	if (!p)
1113 		return 0;
1114 	curr = try_get_mem_cgroup_from_mm(p->mm);
1115 	task_unlock(p);
1116 	if (!curr)
1117 		return 0;
1118 	/*
1119 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1120 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1121 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1122 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1123 	 */
1124 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1125 	css_put(&curr->css);
1126 	return ret;
1127 }
1128 
1129 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1130 {
1131 	unsigned long inactive_ratio;
1132 	int nid = zone_to_nid(zone);
1133 	int zid = zone_idx(zone);
1134 	unsigned long inactive;
1135 	unsigned long active;
1136 	unsigned long gb;
1137 
1138 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1139 						BIT(LRU_INACTIVE_ANON));
1140 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1141 					      BIT(LRU_ACTIVE_ANON));
1142 
1143 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1144 	if (gb)
1145 		inactive_ratio = int_sqrt(10 * gb);
1146 	else
1147 		inactive_ratio = 1;
1148 
1149 	return inactive * inactive_ratio < active;
1150 }
1151 
1152 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1153 {
1154 	unsigned long active;
1155 	unsigned long inactive;
1156 	int zid = zone_idx(zone);
1157 	int nid = zone_to_nid(zone);
1158 
1159 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1160 						BIT(LRU_INACTIVE_FILE));
1161 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1162 					      BIT(LRU_ACTIVE_FILE));
1163 
1164 	return (active > inactive);
1165 }
1166 
1167 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1168 						      struct zone *zone)
1169 {
1170 	int nid = zone_to_nid(zone);
1171 	int zid = zone_idx(zone);
1172 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1173 
1174 	return &mz->reclaim_stat;
1175 }
1176 
1177 struct zone_reclaim_stat *
1178 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1179 {
1180 	struct page_cgroup *pc;
1181 	struct mem_cgroup_per_zone *mz;
1182 
1183 	if (mem_cgroup_disabled())
1184 		return NULL;
1185 
1186 	pc = lookup_page_cgroup(page);
1187 	if (!PageCgroupUsed(pc))
1188 		return NULL;
1189 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1190 	smp_rmb();
1191 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1192 	return &mz->reclaim_stat;
1193 }
1194 
1195 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1196 					struct list_head *dst,
1197 					unsigned long *scanned, int order,
1198 					isolate_mode_t mode,
1199 					struct zone *z,
1200 					struct mem_cgroup *mem_cont,
1201 					int active, int file)
1202 {
1203 	unsigned long nr_taken = 0;
1204 	struct page *page;
1205 	unsigned long scan;
1206 	LIST_HEAD(pc_list);
1207 	struct list_head *src;
1208 	struct page_cgroup *pc, *tmp;
1209 	int nid = zone_to_nid(z);
1210 	int zid = zone_idx(z);
1211 	struct mem_cgroup_per_zone *mz;
1212 	int lru = LRU_FILE * file + active;
1213 	int ret;
1214 
1215 	BUG_ON(!mem_cont);
1216 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1217 	src = &mz->lists[lru];
1218 
1219 	scan = 0;
1220 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1221 		if (scan >= nr_to_scan)
1222 			break;
1223 
1224 		if (unlikely(!PageCgroupUsed(pc)))
1225 			continue;
1226 
1227 		page = lookup_cgroup_page(pc);
1228 
1229 		if (unlikely(!PageLRU(page)))
1230 			continue;
1231 
1232 		scan++;
1233 		ret = __isolate_lru_page(page, mode, file);
1234 		switch (ret) {
1235 		case 0:
1236 			list_move(&page->lru, dst);
1237 			mem_cgroup_del_lru(page);
1238 			nr_taken += hpage_nr_pages(page);
1239 			break;
1240 		case -EBUSY:
1241 			/* we don't affect global LRU but rotate in our LRU */
1242 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1243 			break;
1244 		default:
1245 			break;
1246 		}
1247 	}
1248 
1249 	*scanned = scan;
1250 
1251 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1252 				      0, 0, 0, mode);
1253 
1254 	return nr_taken;
1255 }
1256 
1257 #define mem_cgroup_from_res_counter(counter, member)	\
1258 	container_of(counter, struct mem_cgroup, member)
1259 
1260 /**
1261  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1262  * @mem: the memory cgroup
1263  *
1264  * Returns the maximum amount of memory @mem can be charged with, in
1265  * pages.
1266  */
1267 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1268 {
1269 	unsigned long long margin;
1270 
1271 	margin = res_counter_margin(&memcg->res);
1272 	if (do_swap_account)
1273 		margin = min(margin, res_counter_margin(&memcg->memsw));
1274 	return margin >> PAGE_SHIFT;
1275 }
1276 
1277 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1278 {
1279 	struct cgroup *cgrp = memcg->css.cgroup;
1280 
1281 	/* root ? */
1282 	if (cgrp->parent == NULL)
1283 		return vm_swappiness;
1284 
1285 	return memcg->swappiness;
1286 }
1287 
1288 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1289 {
1290 	int cpu;
1291 
1292 	get_online_cpus();
1293 	spin_lock(&memcg->pcp_counter_lock);
1294 	for_each_online_cpu(cpu)
1295 		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1296 	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1297 	spin_unlock(&memcg->pcp_counter_lock);
1298 	put_online_cpus();
1299 
1300 	synchronize_rcu();
1301 }
1302 
1303 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1304 {
1305 	int cpu;
1306 
1307 	if (!memcg)
1308 		return;
1309 	get_online_cpus();
1310 	spin_lock(&memcg->pcp_counter_lock);
1311 	for_each_online_cpu(cpu)
1312 		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1313 	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1314 	spin_unlock(&memcg->pcp_counter_lock);
1315 	put_online_cpus();
1316 }
1317 /*
1318  * 2 routines for checking "mem" is under move_account() or not.
1319  *
1320  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1321  *			  for avoiding race in accounting. If true,
1322  *			  pc->mem_cgroup may be overwritten.
1323  *
1324  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1325  *			  under hierarchy of moving cgroups. This is for
1326  *			  waiting at hith-memory prressure caused by "move".
1327  */
1328 
1329 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1330 {
1331 	VM_BUG_ON(!rcu_read_lock_held());
1332 	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1333 }
1334 
1335 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1336 {
1337 	struct mem_cgroup *from;
1338 	struct mem_cgroup *to;
1339 	bool ret = false;
1340 	/*
1341 	 * Unlike task_move routines, we access mc.to, mc.from not under
1342 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1343 	 */
1344 	spin_lock(&mc.lock);
1345 	from = mc.from;
1346 	to = mc.to;
1347 	if (!from)
1348 		goto unlock;
1349 
1350 	ret = mem_cgroup_same_or_subtree(memcg, from)
1351 		|| mem_cgroup_same_or_subtree(memcg, to);
1352 unlock:
1353 	spin_unlock(&mc.lock);
1354 	return ret;
1355 }
1356 
1357 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1358 {
1359 	if (mc.moving_task && current != mc.moving_task) {
1360 		if (mem_cgroup_under_move(memcg)) {
1361 			DEFINE_WAIT(wait);
1362 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1363 			/* moving charge context might have finished. */
1364 			if (mc.moving_task)
1365 				schedule();
1366 			finish_wait(&mc.waitq, &wait);
1367 			return true;
1368 		}
1369 	}
1370 	return false;
1371 }
1372 
1373 /**
1374  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375  * @memcg: The memory cgroup that went over limit
1376  * @p: Task that is going to be killed
1377  *
1378  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1379  * enabled
1380  */
1381 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1382 {
1383 	struct cgroup *task_cgrp;
1384 	struct cgroup *mem_cgrp;
1385 	/*
1386 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1387 	 * on the assumption that OOM is serialized for memory controller.
1388 	 * If this assumption is broken, revisit this code.
1389 	 */
1390 	static char memcg_name[PATH_MAX];
1391 	int ret;
1392 
1393 	if (!memcg || !p)
1394 		return;
1395 
1396 
1397 	rcu_read_lock();
1398 
1399 	mem_cgrp = memcg->css.cgroup;
1400 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1401 
1402 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1403 	if (ret < 0) {
1404 		/*
1405 		 * Unfortunately, we are unable to convert to a useful name
1406 		 * But we'll still print out the usage information
1407 		 */
1408 		rcu_read_unlock();
1409 		goto done;
1410 	}
1411 	rcu_read_unlock();
1412 
1413 	printk(KERN_INFO "Task in %s killed", memcg_name);
1414 
1415 	rcu_read_lock();
1416 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1417 	if (ret < 0) {
1418 		rcu_read_unlock();
1419 		goto done;
1420 	}
1421 	rcu_read_unlock();
1422 
1423 	/*
1424 	 * Continues from above, so we don't need an KERN_ level
1425 	 */
1426 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1427 done:
1428 
1429 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1430 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1431 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1432 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1433 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1434 		"failcnt %llu\n",
1435 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1436 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1437 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1438 }
1439 
1440 /*
1441  * This function returns the number of memcg under hierarchy tree. Returns
1442  * 1(self count) if no children.
1443  */
1444 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1445 {
1446 	int num = 0;
1447 	struct mem_cgroup *iter;
1448 
1449 	for_each_mem_cgroup_tree(iter, memcg)
1450 		num++;
1451 	return num;
1452 }
1453 
1454 /*
1455  * Return the memory (and swap, if configured) limit for a memcg.
1456  */
1457 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1458 {
1459 	u64 limit;
1460 	u64 memsw;
1461 
1462 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1463 	limit += total_swap_pages << PAGE_SHIFT;
1464 
1465 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1466 	/*
1467 	 * If memsw is finite and limits the amount of swap space available
1468 	 * to this memcg, return that limit.
1469 	 */
1470 	return min(limit, memsw);
1471 }
1472 
1473 /*
1474  * Visit the first child (need not be the first child as per the ordering
1475  * of the cgroup list, since we track last_scanned_child) of @mem and use
1476  * that to reclaim free pages from.
1477  */
1478 static struct mem_cgroup *
1479 mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
1480 {
1481 	struct mem_cgroup *ret = NULL;
1482 	struct cgroup_subsys_state *css;
1483 	int nextid, found;
1484 
1485 	if (!root_memcg->use_hierarchy) {
1486 		css_get(&root_memcg->css);
1487 		ret = root_memcg;
1488 	}
1489 
1490 	while (!ret) {
1491 		rcu_read_lock();
1492 		nextid = root_memcg->last_scanned_child + 1;
1493 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
1494 				   &found);
1495 		if (css && css_tryget(css))
1496 			ret = container_of(css, struct mem_cgroup, css);
1497 
1498 		rcu_read_unlock();
1499 		/* Updates scanning parameter */
1500 		if (!css) {
1501 			/* this means start scan from ID:1 */
1502 			root_memcg->last_scanned_child = 0;
1503 		} else
1504 			root_memcg->last_scanned_child = found;
1505 	}
1506 
1507 	return ret;
1508 }
1509 
1510 /**
1511  * test_mem_cgroup_node_reclaimable
1512  * @mem: the target memcg
1513  * @nid: the node ID to be checked.
1514  * @noswap : specify true here if the user wants flle only information.
1515  *
1516  * This function returns whether the specified memcg contains any
1517  * reclaimable pages on a node. Returns true if there are any reclaimable
1518  * pages in the node.
1519  */
1520 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1521 		int nid, bool noswap)
1522 {
1523 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1524 		return true;
1525 	if (noswap || !total_swap_pages)
1526 		return false;
1527 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1528 		return true;
1529 	return false;
1530 
1531 }
1532 #if MAX_NUMNODES > 1
1533 
1534 /*
1535  * Always updating the nodemask is not very good - even if we have an empty
1536  * list or the wrong list here, we can start from some node and traverse all
1537  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1538  *
1539  */
1540 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1541 {
1542 	int nid;
1543 	/*
1544 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1545 	 * pagein/pageout changes since the last update.
1546 	 */
1547 	if (!atomic_read(&memcg->numainfo_events))
1548 		return;
1549 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1550 		return;
1551 
1552 	/* make a nodemask where this memcg uses memory from */
1553 	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1554 
1555 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1556 
1557 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1558 			node_clear(nid, memcg->scan_nodes);
1559 	}
1560 
1561 	atomic_set(&memcg->numainfo_events, 0);
1562 	atomic_set(&memcg->numainfo_updating, 0);
1563 }
1564 
1565 /*
1566  * Selecting a node where we start reclaim from. Because what we need is just
1567  * reducing usage counter, start from anywhere is O,K. Considering
1568  * memory reclaim from current node, there are pros. and cons.
1569  *
1570  * Freeing memory from current node means freeing memory from a node which
1571  * we'll use or we've used. So, it may make LRU bad. And if several threads
1572  * hit limits, it will see a contention on a node. But freeing from remote
1573  * node means more costs for memory reclaim because of memory latency.
1574  *
1575  * Now, we use round-robin. Better algorithm is welcomed.
1576  */
1577 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1578 {
1579 	int node;
1580 
1581 	mem_cgroup_may_update_nodemask(memcg);
1582 	node = memcg->last_scanned_node;
1583 
1584 	node = next_node(node, memcg->scan_nodes);
1585 	if (node == MAX_NUMNODES)
1586 		node = first_node(memcg->scan_nodes);
1587 	/*
1588 	 * We call this when we hit limit, not when pages are added to LRU.
1589 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1590 	 * memcg is too small and all pages are not on LRU. In that case,
1591 	 * we use curret node.
1592 	 */
1593 	if (unlikely(node == MAX_NUMNODES))
1594 		node = numa_node_id();
1595 
1596 	memcg->last_scanned_node = node;
1597 	return node;
1598 }
1599 
1600 /*
1601  * Check all nodes whether it contains reclaimable pages or not.
1602  * For quick scan, we make use of scan_nodes. This will allow us to skip
1603  * unused nodes. But scan_nodes is lazily updated and may not cotain
1604  * enough new information. We need to do double check.
1605  */
1606 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1607 {
1608 	int nid;
1609 
1610 	/*
1611 	 * quick check...making use of scan_node.
1612 	 * We can skip unused nodes.
1613 	 */
1614 	if (!nodes_empty(memcg->scan_nodes)) {
1615 		for (nid = first_node(memcg->scan_nodes);
1616 		     nid < MAX_NUMNODES;
1617 		     nid = next_node(nid, memcg->scan_nodes)) {
1618 
1619 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1620 				return true;
1621 		}
1622 	}
1623 	/*
1624 	 * Check rest of nodes.
1625 	 */
1626 	for_each_node_state(nid, N_HIGH_MEMORY) {
1627 		if (node_isset(nid, memcg->scan_nodes))
1628 			continue;
1629 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1630 			return true;
1631 	}
1632 	return false;
1633 }
1634 
1635 #else
1636 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1637 {
1638 	return 0;
1639 }
1640 
1641 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1642 {
1643 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1644 }
1645 #endif
1646 
1647 /*
1648  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1649  * we reclaimed from, so that we don't end up penalizing one child extensively
1650  * based on its position in the children list.
1651  *
1652  * root_memcg is the original ancestor that we've been reclaim from.
1653  *
1654  * We give up and return to the caller when we visit root_memcg twice.
1655  * (other groups can be removed while we're walking....)
1656  *
1657  * If shrink==true, for avoiding to free too much, this returns immedieately.
1658  */
1659 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1660 						struct zone *zone,
1661 						gfp_t gfp_mask,
1662 						unsigned long reclaim_options,
1663 						unsigned long *total_scanned)
1664 {
1665 	struct mem_cgroup *victim;
1666 	int ret, total = 0;
1667 	int loop = 0;
1668 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1669 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1670 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1671 	unsigned long excess;
1672 	unsigned long nr_scanned;
1673 
1674 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1675 
1676 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1677 	if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1678 		noswap = true;
1679 
1680 	while (1) {
1681 		victim = mem_cgroup_select_victim(root_memcg);
1682 		if (victim == root_memcg) {
1683 			loop++;
1684 			/*
1685 			 * We are not draining per cpu cached charges during
1686 			 * soft limit reclaim  because global reclaim doesn't
1687 			 * care about charges. It tries to free some memory and
1688 			 * charges will not give any.
1689 			 */
1690 			if (!check_soft && loop >= 1)
1691 				drain_all_stock_async(root_memcg);
1692 			if (loop >= 2) {
1693 				/*
1694 				 * If we have not been able to reclaim
1695 				 * anything, it might because there are
1696 				 * no reclaimable pages under this hierarchy
1697 				 */
1698 				if (!check_soft || !total) {
1699 					css_put(&victim->css);
1700 					break;
1701 				}
1702 				/*
1703 				 * We want to do more targeted reclaim.
1704 				 * excess >> 2 is not to excessive so as to
1705 				 * reclaim too much, nor too less that we keep
1706 				 * coming back to reclaim from this cgroup
1707 				 */
1708 				if (total >= (excess >> 2) ||
1709 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1710 					css_put(&victim->css);
1711 					break;
1712 				}
1713 			}
1714 		}
1715 		if (!mem_cgroup_reclaimable(victim, noswap)) {
1716 			/* this cgroup's local usage == 0 */
1717 			css_put(&victim->css);
1718 			continue;
1719 		}
1720 		/* we use swappiness of local cgroup */
1721 		if (check_soft) {
1722 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1723 				noswap, zone, &nr_scanned);
1724 			*total_scanned += nr_scanned;
1725 		} else
1726 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1727 						noswap);
1728 		css_put(&victim->css);
1729 		/*
1730 		 * At shrinking usage, we can't check we should stop here or
1731 		 * reclaim more. It's depends on callers. last_scanned_child
1732 		 * will work enough for keeping fairness under tree.
1733 		 */
1734 		if (shrink)
1735 			return ret;
1736 		total += ret;
1737 		if (check_soft) {
1738 			if (!res_counter_soft_limit_excess(&root_memcg->res))
1739 				return total;
1740 		} else if (mem_cgroup_margin(root_memcg))
1741 			return total;
1742 	}
1743 	return total;
1744 }
1745 
1746 /*
1747  * Check OOM-Killer is already running under our hierarchy.
1748  * If someone is running, return false.
1749  * Has to be called with memcg_oom_lock
1750  */
1751 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1752 {
1753 	struct mem_cgroup *iter, *failed = NULL;
1754 	bool cond = true;
1755 
1756 	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1757 		if (iter->oom_lock) {
1758 			/*
1759 			 * this subtree of our hierarchy is already locked
1760 			 * so we cannot give a lock.
1761 			 */
1762 			failed = iter;
1763 			cond = false;
1764 		} else
1765 			iter->oom_lock = true;
1766 	}
1767 
1768 	if (!failed)
1769 		return true;
1770 
1771 	/*
1772 	 * OK, we failed to lock the whole subtree so we have to clean up
1773 	 * what we set up to the failing subtree
1774 	 */
1775 	cond = true;
1776 	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1777 		if (iter == failed) {
1778 			cond = false;
1779 			continue;
1780 		}
1781 		iter->oom_lock = false;
1782 	}
1783 	return false;
1784 }
1785 
1786 /*
1787  * Has to be called with memcg_oom_lock
1788  */
1789 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1790 {
1791 	struct mem_cgroup *iter;
1792 
1793 	for_each_mem_cgroup_tree(iter, memcg)
1794 		iter->oom_lock = false;
1795 	return 0;
1796 }
1797 
1798 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1799 {
1800 	struct mem_cgroup *iter;
1801 
1802 	for_each_mem_cgroup_tree(iter, memcg)
1803 		atomic_inc(&iter->under_oom);
1804 }
1805 
1806 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1807 {
1808 	struct mem_cgroup *iter;
1809 
1810 	/*
1811 	 * When a new child is created while the hierarchy is under oom,
1812 	 * mem_cgroup_oom_lock() may not be called. We have to use
1813 	 * atomic_add_unless() here.
1814 	 */
1815 	for_each_mem_cgroup_tree(iter, memcg)
1816 		atomic_add_unless(&iter->under_oom, -1, 0);
1817 }
1818 
1819 static DEFINE_SPINLOCK(memcg_oom_lock);
1820 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1821 
1822 struct oom_wait_info {
1823 	struct mem_cgroup *mem;
1824 	wait_queue_t	wait;
1825 };
1826 
1827 static int memcg_oom_wake_function(wait_queue_t *wait,
1828 	unsigned mode, int sync, void *arg)
1829 {
1830 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1831 			  *oom_wait_memcg;
1832 	struct oom_wait_info *oom_wait_info;
1833 
1834 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1835 	oom_wait_memcg = oom_wait_info->mem;
1836 
1837 	/*
1838 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1839 	 * Then we can use css_is_ancestor without taking care of RCU.
1840 	 */
1841 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1842 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1843 		return 0;
1844 	return autoremove_wake_function(wait, mode, sync, arg);
1845 }
1846 
1847 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1848 {
1849 	/* for filtering, pass "memcg" as argument. */
1850 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1851 }
1852 
1853 static void memcg_oom_recover(struct mem_cgroup *memcg)
1854 {
1855 	if (memcg && atomic_read(&memcg->under_oom))
1856 		memcg_wakeup_oom(memcg);
1857 }
1858 
1859 /*
1860  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1861  */
1862 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1863 {
1864 	struct oom_wait_info owait;
1865 	bool locked, need_to_kill;
1866 
1867 	owait.mem = memcg;
1868 	owait.wait.flags = 0;
1869 	owait.wait.func = memcg_oom_wake_function;
1870 	owait.wait.private = current;
1871 	INIT_LIST_HEAD(&owait.wait.task_list);
1872 	need_to_kill = true;
1873 	mem_cgroup_mark_under_oom(memcg);
1874 
1875 	/* At first, try to OOM lock hierarchy under memcg.*/
1876 	spin_lock(&memcg_oom_lock);
1877 	locked = mem_cgroup_oom_lock(memcg);
1878 	/*
1879 	 * Even if signal_pending(), we can't quit charge() loop without
1880 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1881 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1882 	 */
1883 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1884 	if (!locked || memcg->oom_kill_disable)
1885 		need_to_kill = false;
1886 	if (locked)
1887 		mem_cgroup_oom_notify(memcg);
1888 	spin_unlock(&memcg_oom_lock);
1889 
1890 	if (need_to_kill) {
1891 		finish_wait(&memcg_oom_waitq, &owait.wait);
1892 		mem_cgroup_out_of_memory(memcg, mask);
1893 	} else {
1894 		schedule();
1895 		finish_wait(&memcg_oom_waitq, &owait.wait);
1896 	}
1897 	spin_lock(&memcg_oom_lock);
1898 	if (locked)
1899 		mem_cgroup_oom_unlock(memcg);
1900 	memcg_wakeup_oom(memcg);
1901 	spin_unlock(&memcg_oom_lock);
1902 
1903 	mem_cgroup_unmark_under_oom(memcg);
1904 
1905 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1906 		return false;
1907 	/* Give chance to dying process */
1908 	schedule_timeout_uninterruptible(1);
1909 	return true;
1910 }
1911 
1912 /*
1913  * Currently used to update mapped file statistics, but the routine can be
1914  * generalized to update other statistics as well.
1915  *
1916  * Notes: Race condition
1917  *
1918  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1919  * it tends to be costly. But considering some conditions, we doesn't need
1920  * to do so _always_.
1921  *
1922  * Considering "charge", lock_page_cgroup() is not required because all
1923  * file-stat operations happen after a page is attached to radix-tree. There
1924  * are no race with "charge".
1925  *
1926  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1927  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1928  * if there are race with "uncharge". Statistics itself is properly handled
1929  * by flags.
1930  *
1931  * Considering "move", this is an only case we see a race. To make the race
1932  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1933  * possibility of race condition. If there is, we take a lock.
1934  */
1935 
1936 void mem_cgroup_update_page_stat(struct page *page,
1937 				 enum mem_cgroup_page_stat_item idx, int val)
1938 {
1939 	struct mem_cgroup *memcg;
1940 	struct page_cgroup *pc = lookup_page_cgroup(page);
1941 	bool need_unlock = false;
1942 	unsigned long uninitialized_var(flags);
1943 
1944 	if (unlikely(!pc))
1945 		return;
1946 
1947 	rcu_read_lock();
1948 	memcg = pc->mem_cgroup;
1949 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1950 		goto out;
1951 	/* pc->mem_cgroup is unstable ? */
1952 	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1953 		/* take a lock against to access pc->mem_cgroup */
1954 		move_lock_page_cgroup(pc, &flags);
1955 		need_unlock = true;
1956 		memcg = pc->mem_cgroup;
1957 		if (!memcg || !PageCgroupUsed(pc))
1958 			goto out;
1959 	}
1960 
1961 	switch (idx) {
1962 	case MEMCG_NR_FILE_MAPPED:
1963 		if (val > 0)
1964 			SetPageCgroupFileMapped(pc);
1965 		else if (!page_mapped(page))
1966 			ClearPageCgroupFileMapped(pc);
1967 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1968 		break;
1969 	default:
1970 		BUG();
1971 	}
1972 
1973 	this_cpu_add(memcg->stat->count[idx], val);
1974 
1975 out:
1976 	if (unlikely(need_unlock))
1977 		move_unlock_page_cgroup(pc, &flags);
1978 	rcu_read_unlock();
1979 	return;
1980 }
1981 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1982 
1983 /*
1984  * size of first charge trial. "32" comes from vmscan.c's magic value.
1985  * TODO: maybe necessary to use big numbers in big irons.
1986  */
1987 #define CHARGE_BATCH	32U
1988 struct memcg_stock_pcp {
1989 	struct mem_cgroup *cached; /* this never be root cgroup */
1990 	unsigned int nr_pages;
1991 	struct work_struct work;
1992 	unsigned long flags;
1993 #define FLUSHING_CACHED_CHARGE	(0)
1994 };
1995 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1996 static DEFINE_MUTEX(percpu_charge_mutex);
1997 
1998 /*
1999  * Try to consume stocked charge on this cpu. If success, one page is consumed
2000  * from local stock and true is returned. If the stock is 0 or charges from a
2001  * cgroup which is not current target, returns false. This stock will be
2002  * refilled.
2003  */
2004 static bool consume_stock(struct mem_cgroup *memcg)
2005 {
2006 	struct memcg_stock_pcp *stock;
2007 	bool ret = true;
2008 
2009 	stock = &get_cpu_var(memcg_stock);
2010 	if (memcg == stock->cached && stock->nr_pages)
2011 		stock->nr_pages--;
2012 	else /* need to call res_counter_charge */
2013 		ret = false;
2014 	put_cpu_var(memcg_stock);
2015 	return ret;
2016 }
2017 
2018 /*
2019  * Returns stocks cached in percpu to res_counter and reset cached information.
2020  */
2021 static void drain_stock(struct memcg_stock_pcp *stock)
2022 {
2023 	struct mem_cgroup *old = stock->cached;
2024 
2025 	if (stock->nr_pages) {
2026 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2027 
2028 		res_counter_uncharge(&old->res, bytes);
2029 		if (do_swap_account)
2030 			res_counter_uncharge(&old->memsw, bytes);
2031 		stock->nr_pages = 0;
2032 	}
2033 	stock->cached = NULL;
2034 }
2035 
2036 /*
2037  * This must be called under preempt disabled or must be called by
2038  * a thread which is pinned to local cpu.
2039  */
2040 static void drain_local_stock(struct work_struct *dummy)
2041 {
2042 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2043 	drain_stock(stock);
2044 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2045 }
2046 
2047 /*
2048  * Cache charges(val) which is from res_counter, to local per_cpu area.
2049  * This will be consumed by consume_stock() function, later.
2050  */
2051 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2052 {
2053 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2054 
2055 	if (stock->cached != memcg) { /* reset if necessary */
2056 		drain_stock(stock);
2057 		stock->cached = memcg;
2058 	}
2059 	stock->nr_pages += nr_pages;
2060 	put_cpu_var(memcg_stock);
2061 }
2062 
2063 /*
2064  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2065  * of the hierarchy under it. sync flag says whether we should block
2066  * until the work is done.
2067  */
2068 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2069 {
2070 	int cpu, curcpu;
2071 
2072 	/* Notify other cpus that system-wide "drain" is running */
2073 	get_online_cpus();
2074 	curcpu = get_cpu();
2075 	for_each_online_cpu(cpu) {
2076 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2077 		struct mem_cgroup *memcg;
2078 
2079 		memcg = stock->cached;
2080 		if (!memcg || !stock->nr_pages)
2081 			continue;
2082 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2083 			continue;
2084 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2085 			if (cpu == curcpu)
2086 				drain_local_stock(&stock->work);
2087 			else
2088 				schedule_work_on(cpu, &stock->work);
2089 		}
2090 	}
2091 	put_cpu();
2092 
2093 	if (!sync)
2094 		goto out;
2095 
2096 	for_each_online_cpu(cpu) {
2097 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2098 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2099 			flush_work(&stock->work);
2100 	}
2101 out:
2102  	put_online_cpus();
2103 }
2104 
2105 /*
2106  * Tries to drain stocked charges in other cpus. This function is asynchronous
2107  * and just put a work per cpu for draining localy on each cpu. Caller can
2108  * expects some charges will be back to res_counter later but cannot wait for
2109  * it.
2110  */
2111 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2112 {
2113 	/*
2114 	 * If someone calls draining, avoid adding more kworker runs.
2115 	 */
2116 	if (!mutex_trylock(&percpu_charge_mutex))
2117 		return;
2118 	drain_all_stock(root_memcg, false);
2119 	mutex_unlock(&percpu_charge_mutex);
2120 }
2121 
2122 /* This is a synchronous drain interface. */
2123 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2124 {
2125 	/* called when force_empty is called */
2126 	mutex_lock(&percpu_charge_mutex);
2127 	drain_all_stock(root_memcg, true);
2128 	mutex_unlock(&percpu_charge_mutex);
2129 }
2130 
2131 /*
2132  * This function drains percpu counter value from DEAD cpu and
2133  * move it to local cpu. Note that this function can be preempted.
2134  */
2135 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2136 {
2137 	int i;
2138 
2139 	spin_lock(&memcg->pcp_counter_lock);
2140 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2141 		long x = per_cpu(memcg->stat->count[i], cpu);
2142 
2143 		per_cpu(memcg->stat->count[i], cpu) = 0;
2144 		memcg->nocpu_base.count[i] += x;
2145 	}
2146 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2147 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2148 
2149 		per_cpu(memcg->stat->events[i], cpu) = 0;
2150 		memcg->nocpu_base.events[i] += x;
2151 	}
2152 	/* need to clear ON_MOVE value, works as a kind of lock. */
2153 	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2154 	spin_unlock(&memcg->pcp_counter_lock);
2155 }
2156 
2157 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2158 {
2159 	int idx = MEM_CGROUP_ON_MOVE;
2160 
2161 	spin_lock(&memcg->pcp_counter_lock);
2162 	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2163 	spin_unlock(&memcg->pcp_counter_lock);
2164 }
2165 
2166 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2167 					unsigned long action,
2168 					void *hcpu)
2169 {
2170 	int cpu = (unsigned long)hcpu;
2171 	struct memcg_stock_pcp *stock;
2172 	struct mem_cgroup *iter;
2173 
2174 	if ((action == CPU_ONLINE)) {
2175 		for_each_mem_cgroup_all(iter)
2176 			synchronize_mem_cgroup_on_move(iter, cpu);
2177 		return NOTIFY_OK;
2178 	}
2179 
2180 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2181 		return NOTIFY_OK;
2182 
2183 	for_each_mem_cgroup_all(iter)
2184 		mem_cgroup_drain_pcp_counter(iter, cpu);
2185 
2186 	stock = &per_cpu(memcg_stock, cpu);
2187 	drain_stock(stock);
2188 	return NOTIFY_OK;
2189 }
2190 
2191 
2192 /* See __mem_cgroup_try_charge() for details */
2193 enum {
2194 	CHARGE_OK,		/* success */
2195 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2196 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2197 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2198 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2199 };
2200 
2201 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2202 				unsigned int nr_pages, bool oom_check)
2203 {
2204 	unsigned long csize = nr_pages * PAGE_SIZE;
2205 	struct mem_cgroup *mem_over_limit;
2206 	struct res_counter *fail_res;
2207 	unsigned long flags = 0;
2208 	int ret;
2209 
2210 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2211 
2212 	if (likely(!ret)) {
2213 		if (!do_swap_account)
2214 			return CHARGE_OK;
2215 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2216 		if (likely(!ret))
2217 			return CHARGE_OK;
2218 
2219 		res_counter_uncharge(&memcg->res, csize);
2220 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2221 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2222 	} else
2223 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2224 	/*
2225 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2226 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2227 	 *
2228 	 * Never reclaim on behalf of optional batching, retry with a
2229 	 * single page instead.
2230 	 */
2231 	if (nr_pages == CHARGE_BATCH)
2232 		return CHARGE_RETRY;
2233 
2234 	if (!(gfp_mask & __GFP_WAIT))
2235 		return CHARGE_WOULDBLOCK;
2236 
2237 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2238 					      gfp_mask, flags, NULL);
2239 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2240 		return CHARGE_RETRY;
2241 	/*
2242 	 * Even though the limit is exceeded at this point, reclaim
2243 	 * may have been able to free some pages.  Retry the charge
2244 	 * before killing the task.
2245 	 *
2246 	 * Only for regular pages, though: huge pages are rather
2247 	 * unlikely to succeed so close to the limit, and we fall back
2248 	 * to regular pages anyway in case of failure.
2249 	 */
2250 	if (nr_pages == 1 && ret)
2251 		return CHARGE_RETRY;
2252 
2253 	/*
2254 	 * At task move, charge accounts can be doubly counted. So, it's
2255 	 * better to wait until the end of task_move if something is going on.
2256 	 */
2257 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2258 		return CHARGE_RETRY;
2259 
2260 	/* If we don't need to call oom-killer at el, return immediately */
2261 	if (!oom_check)
2262 		return CHARGE_NOMEM;
2263 	/* check OOM */
2264 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2265 		return CHARGE_OOM_DIE;
2266 
2267 	return CHARGE_RETRY;
2268 }
2269 
2270 /*
2271  * Unlike exported interface, "oom" parameter is added. if oom==true,
2272  * oom-killer can be invoked.
2273  */
2274 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2275 				   gfp_t gfp_mask,
2276 				   unsigned int nr_pages,
2277 				   struct mem_cgroup **ptr,
2278 				   bool oom)
2279 {
2280 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2281 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2282 	struct mem_cgroup *memcg = NULL;
2283 	int ret;
2284 
2285 	/*
2286 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2287 	 * in system level. So, allow to go ahead dying process in addition to
2288 	 * MEMDIE process.
2289 	 */
2290 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2291 		     || fatal_signal_pending(current)))
2292 		goto bypass;
2293 
2294 	/*
2295 	 * We always charge the cgroup the mm_struct belongs to.
2296 	 * The mm_struct's mem_cgroup changes on task migration if the
2297 	 * thread group leader migrates. It's possible that mm is not
2298 	 * set, if so charge the init_mm (happens for pagecache usage).
2299 	 */
2300 	if (!*ptr && !mm)
2301 		goto bypass;
2302 again:
2303 	if (*ptr) { /* css should be a valid one */
2304 		memcg = *ptr;
2305 		VM_BUG_ON(css_is_removed(&memcg->css));
2306 		if (mem_cgroup_is_root(memcg))
2307 			goto done;
2308 		if (nr_pages == 1 && consume_stock(memcg))
2309 			goto done;
2310 		css_get(&memcg->css);
2311 	} else {
2312 		struct task_struct *p;
2313 
2314 		rcu_read_lock();
2315 		p = rcu_dereference(mm->owner);
2316 		/*
2317 		 * Because we don't have task_lock(), "p" can exit.
2318 		 * In that case, "memcg" can point to root or p can be NULL with
2319 		 * race with swapoff. Then, we have small risk of mis-accouning.
2320 		 * But such kind of mis-account by race always happens because
2321 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2322 		 * small race, here.
2323 		 * (*) swapoff at el will charge against mm-struct not against
2324 		 * task-struct. So, mm->owner can be NULL.
2325 		 */
2326 		memcg = mem_cgroup_from_task(p);
2327 		if (!memcg || mem_cgroup_is_root(memcg)) {
2328 			rcu_read_unlock();
2329 			goto done;
2330 		}
2331 		if (nr_pages == 1 && consume_stock(memcg)) {
2332 			/*
2333 			 * It seems dagerous to access memcg without css_get().
2334 			 * But considering how consume_stok works, it's not
2335 			 * necessary. If consume_stock success, some charges
2336 			 * from this memcg are cached on this cpu. So, we
2337 			 * don't need to call css_get()/css_tryget() before
2338 			 * calling consume_stock().
2339 			 */
2340 			rcu_read_unlock();
2341 			goto done;
2342 		}
2343 		/* after here, we may be blocked. we need to get refcnt */
2344 		if (!css_tryget(&memcg->css)) {
2345 			rcu_read_unlock();
2346 			goto again;
2347 		}
2348 		rcu_read_unlock();
2349 	}
2350 
2351 	do {
2352 		bool oom_check;
2353 
2354 		/* If killed, bypass charge */
2355 		if (fatal_signal_pending(current)) {
2356 			css_put(&memcg->css);
2357 			goto bypass;
2358 		}
2359 
2360 		oom_check = false;
2361 		if (oom && !nr_oom_retries) {
2362 			oom_check = true;
2363 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2364 		}
2365 
2366 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2367 		switch (ret) {
2368 		case CHARGE_OK:
2369 			break;
2370 		case CHARGE_RETRY: /* not in OOM situation but retry */
2371 			batch = nr_pages;
2372 			css_put(&memcg->css);
2373 			memcg = NULL;
2374 			goto again;
2375 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2376 			css_put(&memcg->css);
2377 			goto nomem;
2378 		case CHARGE_NOMEM: /* OOM routine works */
2379 			if (!oom) {
2380 				css_put(&memcg->css);
2381 				goto nomem;
2382 			}
2383 			/* If oom, we never return -ENOMEM */
2384 			nr_oom_retries--;
2385 			break;
2386 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2387 			css_put(&memcg->css);
2388 			goto bypass;
2389 		}
2390 	} while (ret != CHARGE_OK);
2391 
2392 	if (batch > nr_pages)
2393 		refill_stock(memcg, batch - nr_pages);
2394 	css_put(&memcg->css);
2395 done:
2396 	*ptr = memcg;
2397 	return 0;
2398 nomem:
2399 	*ptr = NULL;
2400 	return -ENOMEM;
2401 bypass:
2402 	*ptr = NULL;
2403 	return 0;
2404 }
2405 
2406 /*
2407  * Somemtimes we have to undo a charge we got by try_charge().
2408  * This function is for that and do uncharge, put css's refcnt.
2409  * gotten by try_charge().
2410  */
2411 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2412 				       unsigned int nr_pages)
2413 {
2414 	if (!mem_cgroup_is_root(memcg)) {
2415 		unsigned long bytes = nr_pages * PAGE_SIZE;
2416 
2417 		res_counter_uncharge(&memcg->res, bytes);
2418 		if (do_swap_account)
2419 			res_counter_uncharge(&memcg->memsw, bytes);
2420 	}
2421 }
2422 
2423 /*
2424  * A helper function to get mem_cgroup from ID. must be called under
2425  * rcu_read_lock(). The caller must check css_is_removed() or some if
2426  * it's concern. (dropping refcnt from swap can be called against removed
2427  * memcg.)
2428  */
2429 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2430 {
2431 	struct cgroup_subsys_state *css;
2432 
2433 	/* ID 0 is unused ID */
2434 	if (!id)
2435 		return NULL;
2436 	css = css_lookup(&mem_cgroup_subsys, id);
2437 	if (!css)
2438 		return NULL;
2439 	return container_of(css, struct mem_cgroup, css);
2440 }
2441 
2442 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2443 {
2444 	struct mem_cgroup *memcg = NULL;
2445 	struct page_cgroup *pc;
2446 	unsigned short id;
2447 	swp_entry_t ent;
2448 
2449 	VM_BUG_ON(!PageLocked(page));
2450 
2451 	pc = lookup_page_cgroup(page);
2452 	lock_page_cgroup(pc);
2453 	if (PageCgroupUsed(pc)) {
2454 		memcg = pc->mem_cgroup;
2455 		if (memcg && !css_tryget(&memcg->css))
2456 			memcg = NULL;
2457 	} else if (PageSwapCache(page)) {
2458 		ent.val = page_private(page);
2459 		id = lookup_swap_cgroup(ent);
2460 		rcu_read_lock();
2461 		memcg = mem_cgroup_lookup(id);
2462 		if (memcg && !css_tryget(&memcg->css))
2463 			memcg = NULL;
2464 		rcu_read_unlock();
2465 	}
2466 	unlock_page_cgroup(pc);
2467 	return memcg;
2468 }
2469 
2470 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2471 				       struct page *page,
2472 				       unsigned int nr_pages,
2473 				       struct page_cgroup *pc,
2474 				       enum charge_type ctype)
2475 {
2476 	lock_page_cgroup(pc);
2477 	if (unlikely(PageCgroupUsed(pc))) {
2478 		unlock_page_cgroup(pc);
2479 		__mem_cgroup_cancel_charge(memcg, nr_pages);
2480 		return;
2481 	}
2482 	/*
2483 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2484 	 * accessed by any other context at this point.
2485 	 */
2486 	pc->mem_cgroup = memcg;
2487 	/*
2488 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2489 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2490 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2491 	 * before USED bit, we need memory barrier here.
2492 	 * See mem_cgroup_add_lru_list(), etc.
2493  	 */
2494 	smp_wmb();
2495 	switch (ctype) {
2496 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2497 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2498 		SetPageCgroupCache(pc);
2499 		SetPageCgroupUsed(pc);
2500 		break;
2501 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2502 		ClearPageCgroupCache(pc);
2503 		SetPageCgroupUsed(pc);
2504 		break;
2505 	default:
2506 		break;
2507 	}
2508 
2509 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2510 	unlock_page_cgroup(pc);
2511 	/*
2512 	 * "charge_statistics" updated event counter. Then, check it.
2513 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2514 	 * if they exceeds softlimit.
2515 	 */
2516 	memcg_check_events(memcg, page);
2517 }
2518 
2519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2520 
2521 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2522 			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2523 /*
2524  * Because tail pages are not marked as "used", set it. We're under
2525  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2526  */
2527 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2528 {
2529 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2530 	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2531 	unsigned long flags;
2532 
2533 	if (mem_cgroup_disabled())
2534 		return;
2535 	/*
2536 	 * We have no races with charge/uncharge but will have races with
2537 	 * page state accounting.
2538 	 */
2539 	move_lock_page_cgroup(head_pc, &flags);
2540 
2541 	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2542 	smp_wmb(); /* see __commit_charge() */
2543 	if (PageCgroupAcctLRU(head_pc)) {
2544 		enum lru_list lru;
2545 		struct mem_cgroup_per_zone *mz;
2546 
2547 		/*
2548 		 * LRU flags cannot be copied because we need to add tail
2549 		 *.page to LRU by generic call and our hook will be called.
2550 		 * We hold lru_lock, then, reduce counter directly.
2551 		 */
2552 		lru = page_lru(head);
2553 		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2554 		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2555 	}
2556 	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2557 	move_unlock_page_cgroup(head_pc, &flags);
2558 }
2559 #endif
2560 
2561 /**
2562  * mem_cgroup_move_account - move account of the page
2563  * @page: the page
2564  * @nr_pages: number of regular pages (>1 for huge pages)
2565  * @pc:	page_cgroup of the page.
2566  * @from: mem_cgroup which the page is moved from.
2567  * @to:	mem_cgroup which the page is moved to. @from != @to.
2568  * @uncharge: whether we should call uncharge and css_put against @from.
2569  *
2570  * The caller must confirm following.
2571  * - page is not on LRU (isolate_page() is useful.)
2572  * - compound_lock is held when nr_pages > 1
2573  *
2574  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2575  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2576  * true, this function does "uncharge" from old cgroup, but it doesn't if
2577  * @uncharge is false, so a caller should do "uncharge".
2578  */
2579 static int mem_cgroup_move_account(struct page *page,
2580 				   unsigned int nr_pages,
2581 				   struct page_cgroup *pc,
2582 				   struct mem_cgroup *from,
2583 				   struct mem_cgroup *to,
2584 				   bool uncharge)
2585 {
2586 	unsigned long flags;
2587 	int ret;
2588 
2589 	VM_BUG_ON(from == to);
2590 	VM_BUG_ON(PageLRU(page));
2591 	/*
2592 	 * The page is isolated from LRU. So, collapse function
2593 	 * will not handle this page. But page splitting can happen.
2594 	 * Do this check under compound_page_lock(). The caller should
2595 	 * hold it.
2596 	 */
2597 	ret = -EBUSY;
2598 	if (nr_pages > 1 && !PageTransHuge(page))
2599 		goto out;
2600 
2601 	lock_page_cgroup(pc);
2602 
2603 	ret = -EINVAL;
2604 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2605 		goto unlock;
2606 
2607 	move_lock_page_cgroup(pc, &flags);
2608 
2609 	if (PageCgroupFileMapped(pc)) {
2610 		/* Update mapped_file data for mem_cgroup */
2611 		preempt_disable();
2612 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2613 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2614 		preempt_enable();
2615 	}
2616 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2617 	if (uncharge)
2618 		/* This is not "cancel", but cancel_charge does all we need. */
2619 		__mem_cgroup_cancel_charge(from, nr_pages);
2620 
2621 	/* caller should have done css_get */
2622 	pc->mem_cgroup = to;
2623 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2624 	/*
2625 	 * We charges against "to" which may not have any tasks. Then, "to"
2626 	 * can be under rmdir(). But in current implementation, caller of
2627 	 * this function is just force_empty() and move charge, so it's
2628 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2629 	 * status here.
2630 	 */
2631 	move_unlock_page_cgroup(pc, &flags);
2632 	ret = 0;
2633 unlock:
2634 	unlock_page_cgroup(pc);
2635 	/*
2636 	 * check events
2637 	 */
2638 	memcg_check_events(to, page);
2639 	memcg_check_events(from, page);
2640 out:
2641 	return ret;
2642 }
2643 
2644 /*
2645  * move charges to its parent.
2646  */
2647 
2648 static int mem_cgroup_move_parent(struct page *page,
2649 				  struct page_cgroup *pc,
2650 				  struct mem_cgroup *child,
2651 				  gfp_t gfp_mask)
2652 {
2653 	struct cgroup *cg = child->css.cgroup;
2654 	struct cgroup *pcg = cg->parent;
2655 	struct mem_cgroup *parent;
2656 	unsigned int nr_pages;
2657 	unsigned long uninitialized_var(flags);
2658 	int ret;
2659 
2660 	/* Is ROOT ? */
2661 	if (!pcg)
2662 		return -EINVAL;
2663 
2664 	ret = -EBUSY;
2665 	if (!get_page_unless_zero(page))
2666 		goto out;
2667 	if (isolate_lru_page(page))
2668 		goto put;
2669 
2670 	nr_pages = hpage_nr_pages(page);
2671 
2672 	parent = mem_cgroup_from_cont(pcg);
2673 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2674 	if (ret || !parent)
2675 		goto put_back;
2676 
2677 	if (nr_pages > 1)
2678 		flags = compound_lock_irqsave(page);
2679 
2680 	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2681 	if (ret)
2682 		__mem_cgroup_cancel_charge(parent, nr_pages);
2683 
2684 	if (nr_pages > 1)
2685 		compound_unlock_irqrestore(page, flags);
2686 put_back:
2687 	putback_lru_page(page);
2688 put:
2689 	put_page(page);
2690 out:
2691 	return ret;
2692 }
2693 
2694 /*
2695  * Charge the memory controller for page usage.
2696  * Return
2697  * 0 if the charge was successful
2698  * < 0 if the cgroup is over its limit
2699  */
2700 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2701 				gfp_t gfp_mask, enum charge_type ctype)
2702 {
2703 	struct mem_cgroup *memcg = NULL;
2704 	unsigned int nr_pages = 1;
2705 	struct page_cgroup *pc;
2706 	bool oom = true;
2707 	int ret;
2708 
2709 	if (PageTransHuge(page)) {
2710 		nr_pages <<= compound_order(page);
2711 		VM_BUG_ON(!PageTransHuge(page));
2712 		/*
2713 		 * Never OOM-kill a process for a huge page.  The
2714 		 * fault handler will fall back to regular pages.
2715 		 */
2716 		oom = false;
2717 	}
2718 
2719 	pc = lookup_page_cgroup(page);
2720 	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2721 
2722 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2723 	if (ret || !memcg)
2724 		return ret;
2725 
2726 	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2727 	return 0;
2728 }
2729 
2730 int mem_cgroup_newpage_charge(struct page *page,
2731 			      struct mm_struct *mm, gfp_t gfp_mask)
2732 {
2733 	if (mem_cgroup_disabled())
2734 		return 0;
2735 	/*
2736 	 * If already mapped, we don't have to account.
2737 	 * If page cache, page->mapping has address_space.
2738 	 * But page->mapping may have out-of-use anon_vma pointer,
2739 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2740 	 * is NULL.
2741   	 */
2742 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2743 		return 0;
2744 	if (unlikely(!mm))
2745 		mm = &init_mm;
2746 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2747 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2748 }
2749 
2750 static void
2751 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2752 					enum charge_type ctype);
2753 
2754 static void
2755 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2756 					enum charge_type ctype)
2757 {
2758 	struct page_cgroup *pc = lookup_page_cgroup(page);
2759 	/*
2760 	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2761 	 * is already on LRU. It means the page may on some other page_cgroup's
2762 	 * LRU. Take care of it.
2763 	 */
2764 	mem_cgroup_lru_del_before_commit(page);
2765 	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2766 	mem_cgroup_lru_add_after_commit(page);
2767 	return;
2768 }
2769 
2770 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2771 				gfp_t gfp_mask)
2772 {
2773 	struct mem_cgroup *memcg = NULL;
2774 	int ret;
2775 
2776 	if (mem_cgroup_disabled())
2777 		return 0;
2778 	if (PageCompound(page))
2779 		return 0;
2780 
2781 	if (unlikely(!mm))
2782 		mm = &init_mm;
2783 
2784 	if (page_is_file_cache(page)) {
2785 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2786 		if (ret || !memcg)
2787 			return ret;
2788 
2789 		/*
2790 		 * FUSE reuses pages without going through the final
2791 		 * put that would remove them from the LRU list, make
2792 		 * sure that they get relinked properly.
2793 		 */
2794 		__mem_cgroup_commit_charge_lrucare(page, memcg,
2795 					MEM_CGROUP_CHARGE_TYPE_CACHE);
2796 		return ret;
2797 	}
2798 	/* shmem */
2799 	if (PageSwapCache(page)) {
2800 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2801 		if (!ret)
2802 			__mem_cgroup_commit_charge_swapin(page, memcg,
2803 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2804 	} else
2805 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2806 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2807 
2808 	return ret;
2809 }
2810 
2811 /*
2812  * While swap-in, try_charge -> commit or cancel, the page is locked.
2813  * And when try_charge() successfully returns, one refcnt to memcg without
2814  * struct page_cgroup is acquired. This refcnt will be consumed by
2815  * "commit()" or removed by "cancel()"
2816  */
2817 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2818 				 struct page *page,
2819 				 gfp_t mask, struct mem_cgroup **ptr)
2820 {
2821 	struct mem_cgroup *memcg;
2822 	int ret;
2823 
2824 	*ptr = NULL;
2825 
2826 	if (mem_cgroup_disabled())
2827 		return 0;
2828 
2829 	if (!do_swap_account)
2830 		goto charge_cur_mm;
2831 	/*
2832 	 * A racing thread's fault, or swapoff, may have already updated
2833 	 * the pte, and even removed page from swap cache: in those cases
2834 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2835 	 * KSM case which does need to charge the page.
2836 	 */
2837 	if (!PageSwapCache(page))
2838 		goto charge_cur_mm;
2839 	memcg = try_get_mem_cgroup_from_page(page);
2840 	if (!memcg)
2841 		goto charge_cur_mm;
2842 	*ptr = memcg;
2843 	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2844 	css_put(&memcg->css);
2845 	return ret;
2846 charge_cur_mm:
2847 	if (unlikely(!mm))
2848 		mm = &init_mm;
2849 	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2850 }
2851 
2852 static void
2853 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2854 					enum charge_type ctype)
2855 {
2856 	if (mem_cgroup_disabled())
2857 		return;
2858 	if (!ptr)
2859 		return;
2860 	cgroup_exclude_rmdir(&ptr->css);
2861 
2862 	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2863 	/*
2864 	 * Now swap is on-memory. This means this page may be
2865 	 * counted both as mem and swap....double count.
2866 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2867 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2868 	 * may call delete_from_swap_cache() before reach here.
2869 	 */
2870 	if (do_swap_account && PageSwapCache(page)) {
2871 		swp_entry_t ent = {.val = page_private(page)};
2872 		unsigned short id;
2873 		struct mem_cgroup *memcg;
2874 
2875 		id = swap_cgroup_record(ent, 0);
2876 		rcu_read_lock();
2877 		memcg = mem_cgroup_lookup(id);
2878 		if (memcg) {
2879 			/*
2880 			 * This recorded memcg can be obsolete one. So, avoid
2881 			 * calling css_tryget
2882 			 */
2883 			if (!mem_cgroup_is_root(memcg))
2884 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2885 			mem_cgroup_swap_statistics(memcg, false);
2886 			mem_cgroup_put(memcg);
2887 		}
2888 		rcu_read_unlock();
2889 	}
2890 	/*
2891 	 * At swapin, we may charge account against cgroup which has no tasks.
2892 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2893 	 * In that case, we need to call pre_destroy() again. check it here.
2894 	 */
2895 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2896 }
2897 
2898 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2899 {
2900 	__mem_cgroup_commit_charge_swapin(page, ptr,
2901 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2902 }
2903 
2904 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2905 {
2906 	if (mem_cgroup_disabled())
2907 		return;
2908 	if (!memcg)
2909 		return;
2910 	__mem_cgroup_cancel_charge(memcg, 1);
2911 }
2912 
2913 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2914 				   unsigned int nr_pages,
2915 				   const enum charge_type ctype)
2916 {
2917 	struct memcg_batch_info *batch = NULL;
2918 	bool uncharge_memsw = true;
2919 
2920 	/* If swapout, usage of swap doesn't decrease */
2921 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2922 		uncharge_memsw = false;
2923 
2924 	batch = &current->memcg_batch;
2925 	/*
2926 	 * In usual, we do css_get() when we remember memcg pointer.
2927 	 * But in this case, we keep res->usage until end of a series of
2928 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2929 	 */
2930 	if (!batch->memcg)
2931 		batch->memcg = memcg;
2932 	/*
2933 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2934 	 * In those cases, all pages freed continuously can be expected to be in
2935 	 * the same cgroup and we have chance to coalesce uncharges.
2936 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2937 	 * because we want to do uncharge as soon as possible.
2938 	 */
2939 
2940 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2941 		goto direct_uncharge;
2942 
2943 	if (nr_pages > 1)
2944 		goto direct_uncharge;
2945 
2946 	/*
2947 	 * In typical case, batch->memcg == mem. This means we can
2948 	 * merge a series of uncharges to an uncharge of res_counter.
2949 	 * If not, we uncharge res_counter ony by one.
2950 	 */
2951 	if (batch->memcg != memcg)
2952 		goto direct_uncharge;
2953 	/* remember freed charge and uncharge it later */
2954 	batch->nr_pages++;
2955 	if (uncharge_memsw)
2956 		batch->memsw_nr_pages++;
2957 	return;
2958 direct_uncharge:
2959 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2960 	if (uncharge_memsw)
2961 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2962 	if (unlikely(batch->memcg != memcg))
2963 		memcg_oom_recover(memcg);
2964 	return;
2965 }
2966 
2967 /*
2968  * uncharge if !page_mapped(page)
2969  */
2970 static struct mem_cgroup *
2971 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2972 {
2973 	struct mem_cgroup *memcg = NULL;
2974 	unsigned int nr_pages = 1;
2975 	struct page_cgroup *pc;
2976 
2977 	if (mem_cgroup_disabled())
2978 		return NULL;
2979 
2980 	if (PageSwapCache(page))
2981 		return NULL;
2982 
2983 	if (PageTransHuge(page)) {
2984 		nr_pages <<= compound_order(page);
2985 		VM_BUG_ON(!PageTransHuge(page));
2986 	}
2987 	/*
2988 	 * Check if our page_cgroup is valid
2989 	 */
2990 	pc = lookup_page_cgroup(page);
2991 	if (unlikely(!pc || !PageCgroupUsed(pc)))
2992 		return NULL;
2993 
2994 	lock_page_cgroup(pc);
2995 
2996 	memcg = pc->mem_cgroup;
2997 
2998 	if (!PageCgroupUsed(pc))
2999 		goto unlock_out;
3000 
3001 	switch (ctype) {
3002 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3003 	case MEM_CGROUP_CHARGE_TYPE_DROP:
3004 		/* See mem_cgroup_prepare_migration() */
3005 		if (page_mapped(page) || PageCgroupMigration(pc))
3006 			goto unlock_out;
3007 		break;
3008 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3009 		if (!PageAnon(page)) {	/* Shared memory */
3010 			if (page->mapping && !page_is_file_cache(page))
3011 				goto unlock_out;
3012 		} else if (page_mapped(page)) /* Anon */
3013 				goto unlock_out;
3014 		break;
3015 	default:
3016 		break;
3017 	}
3018 
3019 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3020 
3021 	ClearPageCgroupUsed(pc);
3022 	/*
3023 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3024 	 * freed from LRU. This is safe because uncharged page is expected not
3025 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3026 	 * special functions.
3027 	 */
3028 
3029 	unlock_page_cgroup(pc);
3030 	/*
3031 	 * even after unlock, we have memcg->res.usage here and this memcg
3032 	 * will never be freed.
3033 	 */
3034 	memcg_check_events(memcg, page);
3035 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3036 		mem_cgroup_swap_statistics(memcg, true);
3037 		mem_cgroup_get(memcg);
3038 	}
3039 	if (!mem_cgroup_is_root(memcg))
3040 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3041 
3042 	return memcg;
3043 
3044 unlock_out:
3045 	unlock_page_cgroup(pc);
3046 	return NULL;
3047 }
3048 
3049 void mem_cgroup_uncharge_page(struct page *page)
3050 {
3051 	/* early check. */
3052 	if (page_mapped(page))
3053 		return;
3054 	if (page->mapping && !PageAnon(page))
3055 		return;
3056 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3057 }
3058 
3059 void mem_cgroup_uncharge_cache_page(struct page *page)
3060 {
3061 	VM_BUG_ON(page_mapped(page));
3062 	VM_BUG_ON(page->mapping);
3063 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3064 }
3065 
3066 /*
3067  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3068  * In that cases, pages are freed continuously and we can expect pages
3069  * are in the same memcg. All these calls itself limits the number of
3070  * pages freed at once, then uncharge_start/end() is called properly.
3071  * This may be called prural(2) times in a context,
3072  */
3073 
3074 void mem_cgroup_uncharge_start(void)
3075 {
3076 	current->memcg_batch.do_batch++;
3077 	/* We can do nest. */
3078 	if (current->memcg_batch.do_batch == 1) {
3079 		current->memcg_batch.memcg = NULL;
3080 		current->memcg_batch.nr_pages = 0;
3081 		current->memcg_batch.memsw_nr_pages = 0;
3082 	}
3083 }
3084 
3085 void mem_cgroup_uncharge_end(void)
3086 {
3087 	struct memcg_batch_info *batch = &current->memcg_batch;
3088 
3089 	if (!batch->do_batch)
3090 		return;
3091 
3092 	batch->do_batch--;
3093 	if (batch->do_batch) /* If stacked, do nothing. */
3094 		return;
3095 
3096 	if (!batch->memcg)
3097 		return;
3098 	/*
3099 	 * This "batch->memcg" is valid without any css_get/put etc...
3100 	 * bacause we hide charges behind us.
3101 	 */
3102 	if (batch->nr_pages)
3103 		res_counter_uncharge(&batch->memcg->res,
3104 				     batch->nr_pages * PAGE_SIZE);
3105 	if (batch->memsw_nr_pages)
3106 		res_counter_uncharge(&batch->memcg->memsw,
3107 				     batch->memsw_nr_pages * PAGE_SIZE);
3108 	memcg_oom_recover(batch->memcg);
3109 	/* forget this pointer (for sanity check) */
3110 	batch->memcg = NULL;
3111 }
3112 
3113 #ifdef CONFIG_SWAP
3114 /*
3115  * called after __delete_from_swap_cache() and drop "page" account.
3116  * memcg information is recorded to swap_cgroup of "ent"
3117  */
3118 void
3119 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3120 {
3121 	struct mem_cgroup *memcg;
3122 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3123 
3124 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3125 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3126 
3127 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3128 
3129 	/*
3130 	 * record memcg information,  if swapout && memcg != NULL,
3131 	 * mem_cgroup_get() was called in uncharge().
3132 	 */
3133 	if (do_swap_account && swapout && memcg)
3134 		swap_cgroup_record(ent, css_id(&memcg->css));
3135 }
3136 #endif
3137 
3138 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3139 /*
3140  * called from swap_entry_free(). remove record in swap_cgroup and
3141  * uncharge "memsw" account.
3142  */
3143 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3144 {
3145 	struct mem_cgroup *memcg;
3146 	unsigned short id;
3147 
3148 	if (!do_swap_account)
3149 		return;
3150 
3151 	id = swap_cgroup_record(ent, 0);
3152 	rcu_read_lock();
3153 	memcg = mem_cgroup_lookup(id);
3154 	if (memcg) {
3155 		/*
3156 		 * We uncharge this because swap is freed.
3157 		 * This memcg can be obsolete one. We avoid calling css_tryget
3158 		 */
3159 		if (!mem_cgroup_is_root(memcg))
3160 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3161 		mem_cgroup_swap_statistics(memcg, false);
3162 		mem_cgroup_put(memcg);
3163 	}
3164 	rcu_read_unlock();
3165 }
3166 
3167 /**
3168  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3169  * @entry: swap entry to be moved
3170  * @from:  mem_cgroup which the entry is moved from
3171  * @to:  mem_cgroup which the entry is moved to
3172  * @need_fixup: whether we should fixup res_counters and refcounts.
3173  *
3174  * It succeeds only when the swap_cgroup's record for this entry is the same
3175  * as the mem_cgroup's id of @from.
3176  *
3177  * Returns 0 on success, -EINVAL on failure.
3178  *
3179  * The caller must have charged to @to, IOW, called res_counter_charge() about
3180  * both res and memsw, and called css_get().
3181  */
3182 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3183 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3184 {
3185 	unsigned short old_id, new_id;
3186 
3187 	old_id = css_id(&from->css);
3188 	new_id = css_id(&to->css);
3189 
3190 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3191 		mem_cgroup_swap_statistics(from, false);
3192 		mem_cgroup_swap_statistics(to, true);
3193 		/*
3194 		 * This function is only called from task migration context now.
3195 		 * It postpones res_counter and refcount handling till the end
3196 		 * of task migration(mem_cgroup_clear_mc()) for performance
3197 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3198 		 * because if the process that has been moved to @to does
3199 		 * swap-in, the refcount of @to might be decreased to 0.
3200 		 */
3201 		mem_cgroup_get(to);
3202 		if (need_fixup) {
3203 			if (!mem_cgroup_is_root(from))
3204 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3205 			mem_cgroup_put(from);
3206 			/*
3207 			 * we charged both to->res and to->memsw, so we should
3208 			 * uncharge to->res.
3209 			 */
3210 			if (!mem_cgroup_is_root(to))
3211 				res_counter_uncharge(&to->res, PAGE_SIZE);
3212 		}
3213 		return 0;
3214 	}
3215 	return -EINVAL;
3216 }
3217 #else
3218 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3219 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3220 {
3221 	return -EINVAL;
3222 }
3223 #endif
3224 
3225 /*
3226  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3227  * page belongs to.
3228  */
3229 int mem_cgroup_prepare_migration(struct page *page,
3230 	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3231 {
3232 	struct mem_cgroup *memcg = NULL;
3233 	struct page_cgroup *pc;
3234 	enum charge_type ctype;
3235 	int ret = 0;
3236 
3237 	*ptr = NULL;
3238 
3239 	VM_BUG_ON(PageTransHuge(page));
3240 	if (mem_cgroup_disabled())
3241 		return 0;
3242 
3243 	pc = lookup_page_cgroup(page);
3244 	lock_page_cgroup(pc);
3245 	if (PageCgroupUsed(pc)) {
3246 		memcg = pc->mem_cgroup;
3247 		css_get(&memcg->css);
3248 		/*
3249 		 * At migrating an anonymous page, its mapcount goes down
3250 		 * to 0 and uncharge() will be called. But, even if it's fully
3251 		 * unmapped, migration may fail and this page has to be
3252 		 * charged again. We set MIGRATION flag here and delay uncharge
3253 		 * until end_migration() is called
3254 		 *
3255 		 * Corner Case Thinking
3256 		 * A)
3257 		 * When the old page was mapped as Anon and it's unmap-and-freed
3258 		 * while migration was ongoing.
3259 		 * If unmap finds the old page, uncharge() of it will be delayed
3260 		 * until end_migration(). If unmap finds a new page, it's
3261 		 * uncharged when it make mapcount to be 1->0. If unmap code
3262 		 * finds swap_migration_entry, the new page will not be mapped
3263 		 * and end_migration() will find it(mapcount==0).
3264 		 *
3265 		 * B)
3266 		 * When the old page was mapped but migraion fails, the kernel
3267 		 * remaps it. A charge for it is kept by MIGRATION flag even
3268 		 * if mapcount goes down to 0. We can do remap successfully
3269 		 * without charging it again.
3270 		 *
3271 		 * C)
3272 		 * The "old" page is under lock_page() until the end of
3273 		 * migration, so, the old page itself will not be swapped-out.
3274 		 * If the new page is swapped out before end_migraton, our
3275 		 * hook to usual swap-out path will catch the event.
3276 		 */
3277 		if (PageAnon(page))
3278 			SetPageCgroupMigration(pc);
3279 	}
3280 	unlock_page_cgroup(pc);
3281 	/*
3282 	 * If the page is not charged at this point,
3283 	 * we return here.
3284 	 */
3285 	if (!memcg)
3286 		return 0;
3287 
3288 	*ptr = memcg;
3289 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3290 	css_put(&memcg->css);/* drop extra refcnt */
3291 	if (ret || *ptr == NULL) {
3292 		if (PageAnon(page)) {
3293 			lock_page_cgroup(pc);
3294 			ClearPageCgroupMigration(pc);
3295 			unlock_page_cgroup(pc);
3296 			/*
3297 			 * The old page may be fully unmapped while we kept it.
3298 			 */
3299 			mem_cgroup_uncharge_page(page);
3300 		}
3301 		return -ENOMEM;
3302 	}
3303 	/*
3304 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3305 	 * is called before end_migration, we can catch all events on this new
3306 	 * page. In the case new page is migrated but not remapped, new page's
3307 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3308 	 */
3309 	pc = lookup_page_cgroup(newpage);
3310 	if (PageAnon(page))
3311 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3312 	else if (page_is_file_cache(page))
3313 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3314 	else
3315 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3316 	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3317 	return ret;
3318 }
3319 
3320 /* remove redundant charge if migration failed*/
3321 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3322 	struct page *oldpage, struct page *newpage, bool migration_ok)
3323 {
3324 	struct page *used, *unused;
3325 	struct page_cgroup *pc;
3326 
3327 	if (!memcg)
3328 		return;
3329 	/* blocks rmdir() */
3330 	cgroup_exclude_rmdir(&memcg->css);
3331 	if (!migration_ok) {
3332 		used = oldpage;
3333 		unused = newpage;
3334 	} else {
3335 		used = newpage;
3336 		unused = oldpage;
3337 	}
3338 	/*
3339 	 * We disallowed uncharge of pages under migration because mapcount
3340 	 * of the page goes down to zero, temporarly.
3341 	 * Clear the flag and check the page should be charged.
3342 	 */
3343 	pc = lookup_page_cgroup(oldpage);
3344 	lock_page_cgroup(pc);
3345 	ClearPageCgroupMigration(pc);
3346 	unlock_page_cgroup(pc);
3347 
3348 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3349 
3350 	/*
3351 	 * If a page is a file cache, radix-tree replacement is very atomic
3352 	 * and we can skip this check. When it was an Anon page, its mapcount
3353 	 * goes down to 0. But because we added MIGRATION flage, it's not
3354 	 * uncharged yet. There are several case but page->mapcount check
3355 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3356 	 * check. (see prepare_charge() also)
3357 	 */
3358 	if (PageAnon(used))
3359 		mem_cgroup_uncharge_page(used);
3360 	/*
3361 	 * At migration, we may charge account against cgroup which has no
3362 	 * tasks.
3363 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3364 	 * In that case, we need to call pre_destroy() again. check it here.
3365 	 */
3366 	cgroup_release_and_wakeup_rmdir(&memcg->css);
3367 }
3368 
3369 #ifdef CONFIG_DEBUG_VM
3370 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3371 {
3372 	struct page_cgroup *pc;
3373 
3374 	pc = lookup_page_cgroup(page);
3375 	if (likely(pc) && PageCgroupUsed(pc))
3376 		return pc;
3377 	return NULL;
3378 }
3379 
3380 bool mem_cgroup_bad_page_check(struct page *page)
3381 {
3382 	if (mem_cgroup_disabled())
3383 		return false;
3384 
3385 	return lookup_page_cgroup_used(page) != NULL;
3386 }
3387 
3388 void mem_cgroup_print_bad_page(struct page *page)
3389 {
3390 	struct page_cgroup *pc;
3391 
3392 	pc = lookup_page_cgroup_used(page);
3393 	if (pc) {
3394 		int ret = -1;
3395 		char *path;
3396 
3397 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3398 		       pc, pc->flags, pc->mem_cgroup);
3399 
3400 		path = kmalloc(PATH_MAX, GFP_KERNEL);
3401 		if (path) {
3402 			rcu_read_lock();
3403 			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3404 							path, PATH_MAX);
3405 			rcu_read_unlock();
3406 		}
3407 
3408 		printk(KERN_CONT "(%s)\n",
3409 				(ret < 0) ? "cannot get the path" : path);
3410 		kfree(path);
3411 	}
3412 }
3413 #endif
3414 
3415 static DEFINE_MUTEX(set_limit_mutex);
3416 
3417 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3418 				unsigned long long val)
3419 {
3420 	int retry_count;
3421 	u64 memswlimit, memlimit;
3422 	int ret = 0;
3423 	int children = mem_cgroup_count_children(memcg);
3424 	u64 curusage, oldusage;
3425 	int enlarge;
3426 
3427 	/*
3428 	 * For keeping hierarchical_reclaim simple, how long we should retry
3429 	 * is depends on callers. We set our retry-count to be function
3430 	 * of # of children which we should visit in this loop.
3431 	 */
3432 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3433 
3434 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3435 
3436 	enlarge = 0;
3437 	while (retry_count) {
3438 		if (signal_pending(current)) {
3439 			ret = -EINTR;
3440 			break;
3441 		}
3442 		/*
3443 		 * Rather than hide all in some function, I do this in
3444 		 * open coded manner. You see what this really does.
3445 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3446 		 */
3447 		mutex_lock(&set_limit_mutex);
3448 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3449 		if (memswlimit < val) {
3450 			ret = -EINVAL;
3451 			mutex_unlock(&set_limit_mutex);
3452 			break;
3453 		}
3454 
3455 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3456 		if (memlimit < val)
3457 			enlarge = 1;
3458 
3459 		ret = res_counter_set_limit(&memcg->res, val);
3460 		if (!ret) {
3461 			if (memswlimit == val)
3462 				memcg->memsw_is_minimum = true;
3463 			else
3464 				memcg->memsw_is_minimum = false;
3465 		}
3466 		mutex_unlock(&set_limit_mutex);
3467 
3468 		if (!ret)
3469 			break;
3470 
3471 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3472 						MEM_CGROUP_RECLAIM_SHRINK,
3473 						NULL);
3474 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3475 		/* Usage is reduced ? */
3476   		if (curusage >= oldusage)
3477 			retry_count--;
3478 		else
3479 			oldusage = curusage;
3480 	}
3481 	if (!ret && enlarge)
3482 		memcg_oom_recover(memcg);
3483 
3484 	return ret;
3485 }
3486 
3487 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3488 					unsigned long long val)
3489 {
3490 	int retry_count;
3491 	u64 memlimit, memswlimit, oldusage, curusage;
3492 	int children = mem_cgroup_count_children(memcg);
3493 	int ret = -EBUSY;
3494 	int enlarge = 0;
3495 
3496 	/* see mem_cgroup_resize_res_limit */
3497  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3498 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3499 	while (retry_count) {
3500 		if (signal_pending(current)) {
3501 			ret = -EINTR;
3502 			break;
3503 		}
3504 		/*
3505 		 * Rather than hide all in some function, I do this in
3506 		 * open coded manner. You see what this really does.
3507 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3508 		 */
3509 		mutex_lock(&set_limit_mutex);
3510 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3511 		if (memlimit > val) {
3512 			ret = -EINVAL;
3513 			mutex_unlock(&set_limit_mutex);
3514 			break;
3515 		}
3516 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3517 		if (memswlimit < val)
3518 			enlarge = 1;
3519 		ret = res_counter_set_limit(&memcg->memsw, val);
3520 		if (!ret) {
3521 			if (memlimit == val)
3522 				memcg->memsw_is_minimum = true;
3523 			else
3524 				memcg->memsw_is_minimum = false;
3525 		}
3526 		mutex_unlock(&set_limit_mutex);
3527 
3528 		if (!ret)
3529 			break;
3530 
3531 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3532 						MEM_CGROUP_RECLAIM_NOSWAP |
3533 						MEM_CGROUP_RECLAIM_SHRINK,
3534 						NULL);
3535 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3536 		/* Usage is reduced ? */
3537 		if (curusage >= oldusage)
3538 			retry_count--;
3539 		else
3540 			oldusage = curusage;
3541 	}
3542 	if (!ret && enlarge)
3543 		memcg_oom_recover(memcg);
3544 	return ret;
3545 }
3546 
3547 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3548 					    gfp_t gfp_mask,
3549 					    unsigned long *total_scanned)
3550 {
3551 	unsigned long nr_reclaimed = 0;
3552 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3553 	unsigned long reclaimed;
3554 	int loop = 0;
3555 	struct mem_cgroup_tree_per_zone *mctz;
3556 	unsigned long long excess;
3557 	unsigned long nr_scanned;
3558 
3559 	if (order > 0)
3560 		return 0;
3561 
3562 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3563 	/*
3564 	 * This loop can run a while, specially if mem_cgroup's continuously
3565 	 * keep exceeding their soft limit and putting the system under
3566 	 * pressure
3567 	 */
3568 	do {
3569 		if (next_mz)
3570 			mz = next_mz;
3571 		else
3572 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3573 		if (!mz)
3574 			break;
3575 
3576 		nr_scanned = 0;
3577 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3578 						gfp_mask,
3579 						MEM_CGROUP_RECLAIM_SOFT,
3580 						&nr_scanned);
3581 		nr_reclaimed += reclaimed;
3582 		*total_scanned += nr_scanned;
3583 		spin_lock(&mctz->lock);
3584 
3585 		/*
3586 		 * If we failed to reclaim anything from this memory cgroup
3587 		 * it is time to move on to the next cgroup
3588 		 */
3589 		next_mz = NULL;
3590 		if (!reclaimed) {
3591 			do {
3592 				/*
3593 				 * Loop until we find yet another one.
3594 				 *
3595 				 * By the time we get the soft_limit lock
3596 				 * again, someone might have aded the
3597 				 * group back on the RB tree. Iterate to
3598 				 * make sure we get a different mem.
3599 				 * mem_cgroup_largest_soft_limit_node returns
3600 				 * NULL if no other cgroup is present on
3601 				 * the tree
3602 				 */
3603 				next_mz =
3604 				__mem_cgroup_largest_soft_limit_node(mctz);
3605 				if (next_mz == mz)
3606 					css_put(&next_mz->mem->css);
3607 				else /* next_mz == NULL or other memcg */
3608 					break;
3609 			} while (1);
3610 		}
3611 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3612 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3613 		/*
3614 		 * One school of thought says that we should not add
3615 		 * back the node to the tree if reclaim returns 0.
3616 		 * But our reclaim could return 0, simply because due
3617 		 * to priority we are exposing a smaller subset of
3618 		 * memory to reclaim from. Consider this as a longer
3619 		 * term TODO.
3620 		 */
3621 		/* If excess == 0, no tree ops */
3622 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3623 		spin_unlock(&mctz->lock);
3624 		css_put(&mz->mem->css);
3625 		loop++;
3626 		/*
3627 		 * Could not reclaim anything and there are no more
3628 		 * mem cgroups to try or we seem to be looping without
3629 		 * reclaiming anything.
3630 		 */
3631 		if (!nr_reclaimed &&
3632 			(next_mz == NULL ||
3633 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3634 			break;
3635 	} while (!nr_reclaimed);
3636 	if (next_mz)
3637 		css_put(&next_mz->mem->css);
3638 	return nr_reclaimed;
3639 }
3640 
3641 /*
3642  * This routine traverse page_cgroup in given list and drop them all.
3643  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3644  */
3645 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3646 				int node, int zid, enum lru_list lru)
3647 {
3648 	struct zone *zone;
3649 	struct mem_cgroup_per_zone *mz;
3650 	struct page_cgroup *pc, *busy;
3651 	unsigned long flags, loop;
3652 	struct list_head *list;
3653 	int ret = 0;
3654 
3655 	zone = &NODE_DATA(node)->node_zones[zid];
3656 	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3657 	list = &mz->lists[lru];
3658 
3659 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3660 	/* give some margin against EBUSY etc...*/
3661 	loop += 256;
3662 	busy = NULL;
3663 	while (loop--) {
3664 		struct page *page;
3665 
3666 		ret = 0;
3667 		spin_lock_irqsave(&zone->lru_lock, flags);
3668 		if (list_empty(list)) {
3669 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3670 			break;
3671 		}
3672 		pc = list_entry(list->prev, struct page_cgroup, lru);
3673 		if (busy == pc) {
3674 			list_move(&pc->lru, list);
3675 			busy = NULL;
3676 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3677 			continue;
3678 		}
3679 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3680 
3681 		page = lookup_cgroup_page(pc);
3682 
3683 		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3684 		if (ret == -ENOMEM)
3685 			break;
3686 
3687 		if (ret == -EBUSY || ret == -EINVAL) {
3688 			/* found lock contention or "pc" is obsolete. */
3689 			busy = pc;
3690 			cond_resched();
3691 		} else
3692 			busy = NULL;
3693 	}
3694 
3695 	if (!ret && !list_empty(list))
3696 		return -EBUSY;
3697 	return ret;
3698 }
3699 
3700 /*
3701  * make mem_cgroup's charge to be 0 if there is no task.
3702  * This enables deleting this mem_cgroup.
3703  */
3704 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3705 {
3706 	int ret;
3707 	int node, zid, shrink;
3708 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3709 	struct cgroup *cgrp = memcg->css.cgroup;
3710 
3711 	css_get(&memcg->css);
3712 
3713 	shrink = 0;
3714 	/* should free all ? */
3715 	if (free_all)
3716 		goto try_to_free;
3717 move_account:
3718 	do {
3719 		ret = -EBUSY;
3720 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3721 			goto out;
3722 		ret = -EINTR;
3723 		if (signal_pending(current))
3724 			goto out;
3725 		/* This is for making all *used* pages to be on LRU. */
3726 		lru_add_drain_all();
3727 		drain_all_stock_sync(memcg);
3728 		ret = 0;
3729 		mem_cgroup_start_move(memcg);
3730 		for_each_node_state(node, N_HIGH_MEMORY) {
3731 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3732 				enum lru_list l;
3733 				for_each_lru(l) {
3734 					ret = mem_cgroup_force_empty_list(memcg,
3735 							node, zid, l);
3736 					if (ret)
3737 						break;
3738 				}
3739 			}
3740 			if (ret)
3741 				break;
3742 		}
3743 		mem_cgroup_end_move(memcg);
3744 		memcg_oom_recover(memcg);
3745 		/* it seems parent cgroup doesn't have enough mem */
3746 		if (ret == -ENOMEM)
3747 			goto try_to_free;
3748 		cond_resched();
3749 	/* "ret" should also be checked to ensure all lists are empty. */
3750 	} while (memcg->res.usage > 0 || ret);
3751 out:
3752 	css_put(&memcg->css);
3753 	return ret;
3754 
3755 try_to_free:
3756 	/* returns EBUSY if there is a task or if we come here twice. */
3757 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3758 		ret = -EBUSY;
3759 		goto out;
3760 	}
3761 	/* we call try-to-free pages for make this cgroup empty */
3762 	lru_add_drain_all();
3763 	/* try to free all pages in this cgroup */
3764 	shrink = 1;
3765 	while (nr_retries && memcg->res.usage > 0) {
3766 		int progress;
3767 
3768 		if (signal_pending(current)) {
3769 			ret = -EINTR;
3770 			goto out;
3771 		}
3772 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3773 						false);
3774 		if (!progress) {
3775 			nr_retries--;
3776 			/* maybe some writeback is necessary */
3777 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3778 		}
3779 
3780 	}
3781 	lru_add_drain();
3782 	/* try move_account...there may be some *locked* pages. */
3783 	goto move_account;
3784 }
3785 
3786 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3787 {
3788 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3789 }
3790 
3791 
3792 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3793 {
3794 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3795 }
3796 
3797 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3798 					u64 val)
3799 {
3800 	int retval = 0;
3801 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3802 	struct cgroup *parent = cont->parent;
3803 	struct mem_cgroup *parent_memcg = NULL;
3804 
3805 	if (parent)
3806 		parent_memcg = mem_cgroup_from_cont(parent);
3807 
3808 	cgroup_lock();
3809 	/*
3810 	 * If parent's use_hierarchy is set, we can't make any modifications
3811 	 * in the child subtrees. If it is unset, then the change can
3812 	 * occur, provided the current cgroup has no children.
3813 	 *
3814 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3815 	 * set if there are no children.
3816 	 */
3817 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3818 				(val == 1 || val == 0)) {
3819 		if (list_empty(&cont->children))
3820 			memcg->use_hierarchy = val;
3821 		else
3822 			retval = -EBUSY;
3823 	} else
3824 		retval = -EINVAL;
3825 	cgroup_unlock();
3826 
3827 	return retval;
3828 }
3829 
3830 
3831 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3832 					       enum mem_cgroup_stat_index idx)
3833 {
3834 	struct mem_cgroup *iter;
3835 	long val = 0;
3836 
3837 	/* Per-cpu values can be negative, use a signed accumulator */
3838 	for_each_mem_cgroup_tree(iter, memcg)
3839 		val += mem_cgroup_read_stat(iter, idx);
3840 
3841 	if (val < 0) /* race ? */
3842 		val = 0;
3843 	return val;
3844 }
3845 
3846 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3847 {
3848 	u64 val;
3849 
3850 	if (!mem_cgroup_is_root(memcg)) {
3851 		if (!swap)
3852 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3853 		else
3854 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3855 	}
3856 
3857 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3858 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3859 
3860 	if (swap)
3861 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3862 
3863 	return val << PAGE_SHIFT;
3864 }
3865 
3866 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3867 {
3868 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3869 	u64 val;
3870 	int type, name;
3871 
3872 	type = MEMFILE_TYPE(cft->private);
3873 	name = MEMFILE_ATTR(cft->private);
3874 	switch (type) {
3875 	case _MEM:
3876 		if (name == RES_USAGE)
3877 			val = mem_cgroup_usage(memcg, false);
3878 		else
3879 			val = res_counter_read_u64(&memcg->res, name);
3880 		break;
3881 	case _MEMSWAP:
3882 		if (name == RES_USAGE)
3883 			val = mem_cgroup_usage(memcg, true);
3884 		else
3885 			val = res_counter_read_u64(&memcg->memsw, name);
3886 		break;
3887 	default:
3888 		BUG();
3889 		break;
3890 	}
3891 	return val;
3892 }
3893 /*
3894  * The user of this function is...
3895  * RES_LIMIT.
3896  */
3897 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3898 			    const char *buffer)
3899 {
3900 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3901 	int type, name;
3902 	unsigned long long val;
3903 	int ret;
3904 
3905 	type = MEMFILE_TYPE(cft->private);
3906 	name = MEMFILE_ATTR(cft->private);
3907 	switch (name) {
3908 	case RES_LIMIT:
3909 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3910 			ret = -EINVAL;
3911 			break;
3912 		}
3913 		/* This function does all necessary parse...reuse it */
3914 		ret = res_counter_memparse_write_strategy(buffer, &val);
3915 		if (ret)
3916 			break;
3917 		if (type == _MEM)
3918 			ret = mem_cgroup_resize_limit(memcg, val);
3919 		else
3920 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3921 		break;
3922 	case RES_SOFT_LIMIT:
3923 		ret = res_counter_memparse_write_strategy(buffer, &val);
3924 		if (ret)
3925 			break;
3926 		/*
3927 		 * For memsw, soft limits are hard to implement in terms
3928 		 * of semantics, for now, we support soft limits for
3929 		 * control without swap
3930 		 */
3931 		if (type == _MEM)
3932 			ret = res_counter_set_soft_limit(&memcg->res, val);
3933 		else
3934 			ret = -EINVAL;
3935 		break;
3936 	default:
3937 		ret = -EINVAL; /* should be BUG() ? */
3938 		break;
3939 	}
3940 	return ret;
3941 }
3942 
3943 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3944 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3945 {
3946 	struct cgroup *cgroup;
3947 	unsigned long long min_limit, min_memsw_limit, tmp;
3948 
3949 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3950 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3951 	cgroup = memcg->css.cgroup;
3952 	if (!memcg->use_hierarchy)
3953 		goto out;
3954 
3955 	while (cgroup->parent) {
3956 		cgroup = cgroup->parent;
3957 		memcg = mem_cgroup_from_cont(cgroup);
3958 		if (!memcg->use_hierarchy)
3959 			break;
3960 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3961 		min_limit = min(min_limit, tmp);
3962 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3963 		min_memsw_limit = min(min_memsw_limit, tmp);
3964 	}
3965 out:
3966 	*mem_limit = min_limit;
3967 	*memsw_limit = min_memsw_limit;
3968 	return;
3969 }
3970 
3971 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3972 {
3973 	struct mem_cgroup *memcg;
3974 	int type, name;
3975 
3976 	memcg = mem_cgroup_from_cont(cont);
3977 	type = MEMFILE_TYPE(event);
3978 	name = MEMFILE_ATTR(event);
3979 	switch (name) {
3980 	case RES_MAX_USAGE:
3981 		if (type == _MEM)
3982 			res_counter_reset_max(&memcg->res);
3983 		else
3984 			res_counter_reset_max(&memcg->memsw);
3985 		break;
3986 	case RES_FAILCNT:
3987 		if (type == _MEM)
3988 			res_counter_reset_failcnt(&memcg->res);
3989 		else
3990 			res_counter_reset_failcnt(&memcg->memsw);
3991 		break;
3992 	}
3993 
3994 	return 0;
3995 }
3996 
3997 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3998 					struct cftype *cft)
3999 {
4000 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4001 }
4002 
4003 #ifdef CONFIG_MMU
4004 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4005 					struct cftype *cft, u64 val)
4006 {
4007 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4008 
4009 	if (val >= (1 << NR_MOVE_TYPE))
4010 		return -EINVAL;
4011 	/*
4012 	 * We check this value several times in both in can_attach() and
4013 	 * attach(), so we need cgroup lock to prevent this value from being
4014 	 * inconsistent.
4015 	 */
4016 	cgroup_lock();
4017 	memcg->move_charge_at_immigrate = val;
4018 	cgroup_unlock();
4019 
4020 	return 0;
4021 }
4022 #else
4023 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4024 					struct cftype *cft, u64 val)
4025 {
4026 	return -ENOSYS;
4027 }
4028 #endif
4029 
4030 
4031 /* For read statistics */
4032 enum {
4033 	MCS_CACHE,
4034 	MCS_RSS,
4035 	MCS_FILE_MAPPED,
4036 	MCS_PGPGIN,
4037 	MCS_PGPGOUT,
4038 	MCS_SWAP,
4039 	MCS_PGFAULT,
4040 	MCS_PGMAJFAULT,
4041 	MCS_INACTIVE_ANON,
4042 	MCS_ACTIVE_ANON,
4043 	MCS_INACTIVE_FILE,
4044 	MCS_ACTIVE_FILE,
4045 	MCS_UNEVICTABLE,
4046 	NR_MCS_STAT,
4047 };
4048 
4049 struct mcs_total_stat {
4050 	s64 stat[NR_MCS_STAT];
4051 };
4052 
4053 struct {
4054 	char *local_name;
4055 	char *total_name;
4056 } memcg_stat_strings[NR_MCS_STAT] = {
4057 	{"cache", "total_cache"},
4058 	{"rss", "total_rss"},
4059 	{"mapped_file", "total_mapped_file"},
4060 	{"pgpgin", "total_pgpgin"},
4061 	{"pgpgout", "total_pgpgout"},
4062 	{"swap", "total_swap"},
4063 	{"pgfault", "total_pgfault"},
4064 	{"pgmajfault", "total_pgmajfault"},
4065 	{"inactive_anon", "total_inactive_anon"},
4066 	{"active_anon", "total_active_anon"},
4067 	{"inactive_file", "total_inactive_file"},
4068 	{"active_file", "total_active_file"},
4069 	{"unevictable", "total_unevictable"}
4070 };
4071 
4072 
4073 static void
4074 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4075 {
4076 	s64 val;
4077 
4078 	/* per cpu stat */
4079 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4080 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4081 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4082 	s->stat[MCS_RSS] += val * PAGE_SIZE;
4083 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4084 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4085 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4086 	s->stat[MCS_PGPGIN] += val;
4087 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4088 	s->stat[MCS_PGPGOUT] += val;
4089 	if (do_swap_account) {
4090 		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4091 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4092 	}
4093 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4094 	s->stat[MCS_PGFAULT] += val;
4095 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4096 	s->stat[MCS_PGMAJFAULT] += val;
4097 
4098 	/* per zone stat */
4099 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4100 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4101 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4102 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4103 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4104 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4105 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4106 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4107 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4108 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4109 }
4110 
4111 static void
4112 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4113 {
4114 	struct mem_cgroup *iter;
4115 
4116 	for_each_mem_cgroup_tree(iter, memcg)
4117 		mem_cgroup_get_local_stat(iter, s);
4118 }
4119 
4120 #ifdef CONFIG_NUMA
4121 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4122 {
4123 	int nid;
4124 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4125 	unsigned long node_nr;
4126 	struct cgroup *cont = m->private;
4127 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4128 
4129 	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4130 	seq_printf(m, "total=%lu", total_nr);
4131 	for_each_node_state(nid, N_HIGH_MEMORY) {
4132 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4133 		seq_printf(m, " N%d=%lu", nid, node_nr);
4134 	}
4135 	seq_putc(m, '\n');
4136 
4137 	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4138 	seq_printf(m, "file=%lu", file_nr);
4139 	for_each_node_state(nid, N_HIGH_MEMORY) {
4140 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4141 				LRU_ALL_FILE);
4142 		seq_printf(m, " N%d=%lu", nid, node_nr);
4143 	}
4144 	seq_putc(m, '\n');
4145 
4146 	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4147 	seq_printf(m, "anon=%lu", anon_nr);
4148 	for_each_node_state(nid, N_HIGH_MEMORY) {
4149 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4150 				LRU_ALL_ANON);
4151 		seq_printf(m, " N%d=%lu", nid, node_nr);
4152 	}
4153 	seq_putc(m, '\n');
4154 
4155 	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4156 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4157 	for_each_node_state(nid, N_HIGH_MEMORY) {
4158 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4159 				BIT(LRU_UNEVICTABLE));
4160 		seq_printf(m, " N%d=%lu", nid, node_nr);
4161 	}
4162 	seq_putc(m, '\n');
4163 	return 0;
4164 }
4165 #endif /* CONFIG_NUMA */
4166 
4167 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4168 				 struct cgroup_map_cb *cb)
4169 {
4170 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4171 	struct mcs_total_stat mystat;
4172 	int i;
4173 
4174 	memset(&mystat, 0, sizeof(mystat));
4175 	mem_cgroup_get_local_stat(mem_cont, &mystat);
4176 
4177 
4178 	for (i = 0; i < NR_MCS_STAT; i++) {
4179 		if (i == MCS_SWAP && !do_swap_account)
4180 			continue;
4181 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4182 	}
4183 
4184 	/* Hierarchical information */
4185 	{
4186 		unsigned long long limit, memsw_limit;
4187 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4188 		cb->fill(cb, "hierarchical_memory_limit", limit);
4189 		if (do_swap_account)
4190 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4191 	}
4192 
4193 	memset(&mystat, 0, sizeof(mystat));
4194 	mem_cgroup_get_total_stat(mem_cont, &mystat);
4195 	for (i = 0; i < NR_MCS_STAT; i++) {
4196 		if (i == MCS_SWAP && !do_swap_account)
4197 			continue;
4198 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4199 	}
4200 
4201 #ifdef CONFIG_DEBUG_VM
4202 	{
4203 		int nid, zid;
4204 		struct mem_cgroup_per_zone *mz;
4205 		unsigned long recent_rotated[2] = {0, 0};
4206 		unsigned long recent_scanned[2] = {0, 0};
4207 
4208 		for_each_online_node(nid)
4209 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4210 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4211 
4212 				recent_rotated[0] +=
4213 					mz->reclaim_stat.recent_rotated[0];
4214 				recent_rotated[1] +=
4215 					mz->reclaim_stat.recent_rotated[1];
4216 				recent_scanned[0] +=
4217 					mz->reclaim_stat.recent_scanned[0];
4218 				recent_scanned[1] +=
4219 					mz->reclaim_stat.recent_scanned[1];
4220 			}
4221 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4222 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4223 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4224 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4225 	}
4226 #endif
4227 
4228 	return 0;
4229 }
4230 
4231 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4232 {
4233 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4234 
4235 	return mem_cgroup_swappiness(memcg);
4236 }
4237 
4238 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4239 				       u64 val)
4240 {
4241 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4242 	struct mem_cgroup *parent;
4243 
4244 	if (val > 100)
4245 		return -EINVAL;
4246 
4247 	if (cgrp->parent == NULL)
4248 		return -EINVAL;
4249 
4250 	parent = mem_cgroup_from_cont(cgrp->parent);
4251 
4252 	cgroup_lock();
4253 
4254 	/* If under hierarchy, only empty-root can set this value */
4255 	if ((parent->use_hierarchy) ||
4256 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4257 		cgroup_unlock();
4258 		return -EINVAL;
4259 	}
4260 
4261 	memcg->swappiness = val;
4262 
4263 	cgroup_unlock();
4264 
4265 	return 0;
4266 }
4267 
4268 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4269 {
4270 	struct mem_cgroup_threshold_ary *t;
4271 	u64 usage;
4272 	int i;
4273 
4274 	rcu_read_lock();
4275 	if (!swap)
4276 		t = rcu_dereference(memcg->thresholds.primary);
4277 	else
4278 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4279 
4280 	if (!t)
4281 		goto unlock;
4282 
4283 	usage = mem_cgroup_usage(memcg, swap);
4284 
4285 	/*
4286 	 * current_threshold points to threshold just below usage.
4287 	 * If it's not true, a threshold was crossed after last
4288 	 * call of __mem_cgroup_threshold().
4289 	 */
4290 	i = t->current_threshold;
4291 
4292 	/*
4293 	 * Iterate backward over array of thresholds starting from
4294 	 * current_threshold and check if a threshold is crossed.
4295 	 * If none of thresholds below usage is crossed, we read
4296 	 * only one element of the array here.
4297 	 */
4298 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4299 		eventfd_signal(t->entries[i].eventfd, 1);
4300 
4301 	/* i = current_threshold + 1 */
4302 	i++;
4303 
4304 	/*
4305 	 * Iterate forward over array of thresholds starting from
4306 	 * current_threshold+1 and check if a threshold is crossed.
4307 	 * If none of thresholds above usage is crossed, we read
4308 	 * only one element of the array here.
4309 	 */
4310 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4311 		eventfd_signal(t->entries[i].eventfd, 1);
4312 
4313 	/* Update current_threshold */
4314 	t->current_threshold = i - 1;
4315 unlock:
4316 	rcu_read_unlock();
4317 }
4318 
4319 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4320 {
4321 	while (memcg) {
4322 		__mem_cgroup_threshold(memcg, false);
4323 		if (do_swap_account)
4324 			__mem_cgroup_threshold(memcg, true);
4325 
4326 		memcg = parent_mem_cgroup(memcg);
4327 	}
4328 }
4329 
4330 static int compare_thresholds(const void *a, const void *b)
4331 {
4332 	const struct mem_cgroup_threshold *_a = a;
4333 	const struct mem_cgroup_threshold *_b = b;
4334 
4335 	return _a->threshold - _b->threshold;
4336 }
4337 
4338 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4339 {
4340 	struct mem_cgroup_eventfd_list *ev;
4341 
4342 	list_for_each_entry(ev, &memcg->oom_notify, list)
4343 		eventfd_signal(ev->eventfd, 1);
4344 	return 0;
4345 }
4346 
4347 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4348 {
4349 	struct mem_cgroup *iter;
4350 
4351 	for_each_mem_cgroup_tree(iter, memcg)
4352 		mem_cgroup_oom_notify_cb(iter);
4353 }
4354 
4355 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4356 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4357 {
4358 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4359 	struct mem_cgroup_thresholds *thresholds;
4360 	struct mem_cgroup_threshold_ary *new;
4361 	int type = MEMFILE_TYPE(cft->private);
4362 	u64 threshold, usage;
4363 	int i, size, ret;
4364 
4365 	ret = res_counter_memparse_write_strategy(args, &threshold);
4366 	if (ret)
4367 		return ret;
4368 
4369 	mutex_lock(&memcg->thresholds_lock);
4370 
4371 	if (type == _MEM)
4372 		thresholds = &memcg->thresholds;
4373 	else if (type == _MEMSWAP)
4374 		thresholds = &memcg->memsw_thresholds;
4375 	else
4376 		BUG();
4377 
4378 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4379 
4380 	/* Check if a threshold crossed before adding a new one */
4381 	if (thresholds->primary)
4382 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4383 
4384 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4385 
4386 	/* Allocate memory for new array of thresholds */
4387 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4388 			GFP_KERNEL);
4389 	if (!new) {
4390 		ret = -ENOMEM;
4391 		goto unlock;
4392 	}
4393 	new->size = size;
4394 
4395 	/* Copy thresholds (if any) to new array */
4396 	if (thresholds->primary) {
4397 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4398 				sizeof(struct mem_cgroup_threshold));
4399 	}
4400 
4401 	/* Add new threshold */
4402 	new->entries[size - 1].eventfd = eventfd;
4403 	new->entries[size - 1].threshold = threshold;
4404 
4405 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4406 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4407 			compare_thresholds, NULL);
4408 
4409 	/* Find current threshold */
4410 	new->current_threshold = -1;
4411 	for (i = 0; i < size; i++) {
4412 		if (new->entries[i].threshold < usage) {
4413 			/*
4414 			 * new->current_threshold will not be used until
4415 			 * rcu_assign_pointer(), so it's safe to increment
4416 			 * it here.
4417 			 */
4418 			++new->current_threshold;
4419 		}
4420 	}
4421 
4422 	/* Free old spare buffer and save old primary buffer as spare */
4423 	kfree(thresholds->spare);
4424 	thresholds->spare = thresholds->primary;
4425 
4426 	rcu_assign_pointer(thresholds->primary, new);
4427 
4428 	/* To be sure that nobody uses thresholds */
4429 	synchronize_rcu();
4430 
4431 unlock:
4432 	mutex_unlock(&memcg->thresholds_lock);
4433 
4434 	return ret;
4435 }
4436 
4437 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4438 	struct cftype *cft, struct eventfd_ctx *eventfd)
4439 {
4440 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4441 	struct mem_cgroup_thresholds *thresholds;
4442 	struct mem_cgroup_threshold_ary *new;
4443 	int type = MEMFILE_TYPE(cft->private);
4444 	u64 usage;
4445 	int i, j, size;
4446 
4447 	mutex_lock(&memcg->thresholds_lock);
4448 	if (type == _MEM)
4449 		thresholds = &memcg->thresholds;
4450 	else if (type == _MEMSWAP)
4451 		thresholds = &memcg->memsw_thresholds;
4452 	else
4453 		BUG();
4454 
4455 	/*
4456 	 * Something went wrong if we trying to unregister a threshold
4457 	 * if we don't have thresholds
4458 	 */
4459 	BUG_ON(!thresholds);
4460 
4461 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4462 
4463 	/* Check if a threshold crossed before removing */
4464 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4465 
4466 	/* Calculate new number of threshold */
4467 	size = 0;
4468 	for (i = 0; i < thresholds->primary->size; i++) {
4469 		if (thresholds->primary->entries[i].eventfd != eventfd)
4470 			size++;
4471 	}
4472 
4473 	new = thresholds->spare;
4474 
4475 	/* Set thresholds array to NULL if we don't have thresholds */
4476 	if (!size) {
4477 		kfree(new);
4478 		new = NULL;
4479 		goto swap_buffers;
4480 	}
4481 
4482 	new->size = size;
4483 
4484 	/* Copy thresholds and find current threshold */
4485 	new->current_threshold = -1;
4486 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4487 		if (thresholds->primary->entries[i].eventfd == eventfd)
4488 			continue;
4489 
4490 		new->entries[j] = thresholds->primary->entries[i];
4491 		if (new->entries[j].threshold < usage) {
4492 			/*
4493 			 * new->current_threshold will not be used
4494 			 * until rcu_assign_pointer(), so it's safe to increment
4495 			 * it here.
4496 			 */
4497 			++new->current_threshold;
4498 		}
4499 		j++;
4500 	}
4501 
4502 swap_buffers:
4503 	/* Swap primary and spare array */
4504 	thresholds->spare = thresholds->primary;
4505 	rcu_assign_pointer(thresholds->primary, new);
4506 
4507 	/* To be sure that nobody uses thresholds */
4508 	synchronize_rcu();
4509 
4510 	mutex_unlock(&memcg->thresholds_lock);
4511 }
4512 
4513 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4514 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4515 {
4516 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4517 	struct mem_cgroup_eventfd_list *event;
4518 	int type = MEMFILE_TYPE(cft->private);
4519 
4520 	BUG_ON(type != _OOM_TYPE);
4521 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4522 	if (!event)
4523 		return -ENOMEM;
4524 
4525 	spin_lock(&memcg_oom_lock);
4526 
4527 	event->eventfd = eventfd;
4528 	list_add(&event->list, &memcg->oom_notify);
4529 
4530 	/* already in OOM ? */
4531 	if (atomic_read(&memcg->under_oom))
4532 		eventfd_signal(eventfd, 1);
4533 	spin_unlock(&memcg_oom_lock);
4534 
4535 	return 0;
4536 }
4537 
4538 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4539 	struct cftype *cft, struct eventfd_ctx *eventfd)
4540 {
4541 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4542 	struct mem_cgroup_eventfd_list *ev, *tmp;
4543 	int type = MEMFILE_TYPE(cft->private);
4544 
4545 	BUG_ON(type != _OOM_TYPE);
4546 
4547 	spin_lock(&memcg_oom_lock);
4548 
4549 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4550 		if (ev->eventfd == eventfd) {
4551 			list_del(&ev->list);
4552 			kfree(ev);
4553 		}
4554 	}
4555 
4556 	spin_unlock(&memcg_oom_lock);
4557 }
4558 
4559 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4560 	struct cftype *cft,  struct cgroup_map_cb *cb)
4561 {
4562 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4563 
4564 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4565 
4566 	if (atomic_read(&memcg->under_oom))
4567 		cb->fill(cb, "under_oom", 1);
4568 	else
4569 		cb->fill(cb, "under_oom", 0);
4570 	return 0;
4571 }
4572 
4573 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4574 	struct cftype *cft, u64 val)
4575 {
4576 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4577 	struct mem_cgroup *parent;
4578 
4579 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4580 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4581 		return -EINVAL;
4582 
4583 	parent = mem_cgroup_from_cont(cgrp->parent);
4584 
4585 	cgroup_lock();
4586 	/* oom-kill-disable is a flag for subhierarchy. */
4587 	if ((parent->use_hierarchy) ||
4588 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4589 		cgroup_unlock();
4590 		return -EINVAL;
4591 	}
4592 	memcg->oom_kill_disable = val;
4593 	if (!val)
4594 		memcg_oom_recover(memcg);
4595 	cgroup_unlock();
4596 	return 0;
4597 }
4598 
4599 #ifdef CONFIG_NUMA
4600 static const struct file_operations mem_control_numa_stat_file_operations = {
4601 	.read = seq_read,
4602 	.llseek = seq_lseek,
4603 	.release = single_release,
4604 };
4605 
4606 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4607 {
4608 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4609 
4610 	file->f_op = &mem_control_numa_stat_file_operations;
4611 	return single_open(file, mem_control_numa_stat_show, cont);
4612 }
4613 #endif /* CONFIG_NUMA */
4614 
4615 static struct cftype mem_cgroup_files[] = {
4616 	{
4617 		.name = "usage_in_bytes",
4618 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4619 		.read_u64 = mem_cgroup_read,
4620 		.register_event = mem_cgroup_usage_register_event,
4621 		.unregister_event = mem_cgroup_usage_unregister_event,
4622 	},
4623 	{
4624 		.name = "max_usage_in_bytes",
4625 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4626 		.trigger = mem_cgroup_reset,
4627 		.read_u64 = mem_cgroup_read,
4628 	},
4629 	{
4630 		.name = "limit_in_bytes",
4631 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4632 		.write_string = mem_cgroup_write,
4633 		.read_u64 = mem_cgroup_read,
4634 	},
4635 	{
4636 		.name = "soft_limit_in_bytes",
4637 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4638 		.write_string = mem_cgroup_write,
4639 		.read_u64 = mem_cgroup_read,
4640 	},
4641 	{
4642 		.name = "failcnt",
4643 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4644 		.trigger = mem_cgroup_reset,
4645 		.read_u64 = mem_cgroup_read,
4646 	},
4647 	{
4648 		.name = "stat",
4649 		.read_map = mem_control_stat_show,
4650 	},
4651 	{
4652 		.name = "force_empty",
4653 		.trigger = mem_cgroup_force_empty_write,
4654 	},
4655 	{
4656 		.name = "use_hierarchy",
4657 		.write_u64 = mem_cgroup_hierarchy_write,
4658 		.read_u64 = mem_cgroup_hierarchy_read,
4659 	},
4660 	{
4661 		.name = "swappiness",
4662 		.read_u64 = mem_cgroup_swappiness_read,
4663 		.write_u64 = mem_cgroup_swappiness_write,
4664 	},
4665 	{
4666 		.name = "move_charge_at_immigrate",
4667 		.read_u64 = mem_cgroup_move_charge_read,
4668 		.write_u64 = mem_cgroup_move_charge_write,
4669 	},
4670 	{
4671 		.name = "oom_control",
4672 		.read_map = mem_cgroup_oom_control_read,
4673 		.write_u64 = mem_cgroup_oom_control_write,
4674 		.register_event = mem_cgroup_oom_register_event,
4675 		.unregister_event = mem_cgroup_oom_unregister_event,
4676 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4677 	},
4678 #ifdef CONFIG_NUMA
4679 	{
4680 		.name = "numa_stat",
4681 		.open = mem_control_numa_stat_open,
4682 		.mode = S_IRUGO,
4683 	},
4684 #endif
4685 };
4686 
4687 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4688 static struct cftype memsw_cgroup_files[] = {
4689 	{
4690 		.name = "memsw.usage_in_bytes",
4691 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4692 		.read_u64 = mem_cgroup_read,
4693 		.register_event = mem_cgroup_usage_register_event,
4694 		.unregister_event = mem_cgroup_usage_unregister_event,
4695 	},
4696 	{
4697 		.name = "memsw.max_usage_in_bytes",
4698 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4699 		.trigger = mem_cgroup_reset,
4700 		.read_u64 = mem_cgroup_read,
4701 	},
4702 	{
4703 		.name = "memsw.limit_in_bytes",
4704 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4705 		.write_string = mem_cgroup_write,
4706 		.read_u64 = mem_cgroup_read,
4707 	},
4708 	{
4709 		.name = "memsw.failcnt",
4710 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4711 		.trigger = mem_cgroup_reset,
4712 		.read_u64 = mem_cgroup_read,
4713 	},
4714 };
4715 
4716 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4717 {
4718 	if (!do_swap_account)
4719 		return 0;
4720 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4721 				ARRAY_SIZE(memsw_cgroup_files));
4722 };
4723 #else
4724 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4725 {
4726 	return 0;
4727 }
4728 #endif
4729 
4730 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4731 {
4732 	struct mem_cgroup_per_node *pn;
4733 	struct mem_cgroup_per_zone *mz;
4734 	enum lru_list l;
4735 	int zone, tmp = node;
4736 	/*
4737 	 * This routine is called against possible nodes.
4738 	 * But it's BUG to call kmalloc() against offline node.
4739 	 *
4740 	 * TODO: this routine can waste much memory for nodes which will
4741 	 *       never be onlined. It's better to use memory hotplug callback
4742 	 *       function.
4743 	 */
4744 	if (!node_state(node, N_NORMAL_MEMORY))
4745 		tmp = -1;
4746 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4747 	if (!pn)
4748 		return 1;
4749 
4750 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4751 		mz = &pn->zoneinfo[zone];
4752 		for_each_lru(l)
4753 			INIT_LIST_HEAD(&mz->lists[l]);
4754 		mz->usage_in_excess = 0;
4755 		mz->on_tree = false;
4756 		mz->mem = memcg;
4757 	}
4758 	memcg->info.nodeinfo[node] = pn;
4759 	return 0;
4760 }
4761 
4762 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4763 {
4764 	kfree(memcg->info.nodeinfo[node]);
4765 }
4766 
4767 static struct mem_cgroup *mem_cgroup_alloc(void)
4768 {
4769 	struct mem_cgroup *mem;
4770 	int size = sizeof(struct mem_cgroup);
4771 
4772 	/* Can be very big if MAX_NUMNODES is very big */
4773 	if (size < PAGE_SIZE)
4774 		mem = kzalloc(size, GFP_KERNEL);
4775 	else
4776 		mem = vzalloc(size);
4777 
4778 	if (!mem)
4779 		return NULL;
4780 
4781 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4782 	if (!mem->stat)
4783 		goto out_free;
4784 	spin_lock_init(&mem->pcp_counter_lock);
4785 	return mem;
4786 
4787 out_free:
4788 	if (size < PAGE_SIZE)
4789 		kfree(mem);
4790 	else
4791 		vfree(mem);
4792 	return NULL;
4793 }
4794 
4795 /*
4796  * At destroying mem_cgroup, references from swap_cgroup can remain.
4797  * (scanning all at force_empty is too costly...)
4798  *
4799  * Instead of clearing all references at force_empty, we remember
4800  * the number of reference from swap_cgroup and free mem_cgroup when
4801  * it goes down to 0.
4802  *
4803  * Removal of cgroup itself succeeds regardless of refs from swap.
4804  */
4805 
4806 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4807 {
4808 	int node;
4809 
4810 	mem_cgroup_remove_from_trees(memcg);
4811 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4812 
4813 	for_each_node_state(node, N_POSSIBLE)
4814 		free_mem_cgroup_per_zone_info(memcg, node);
4815 
4816 	free_percpu(memcg->stat);
4817 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4818 		kfree(memcg);
4819 	else
4820 		vfree(memcg);
4821 }
4822 
4823 static void mem_cgroup_get(struct mem_cgroup *memcg)
4824 {
4825 	atomic_inc(&memcg->refcnt);
4826 }
4827 
4828 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4829 {
4830 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4831 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4832 		__mem_cgroup_free(memcg);
4833 		if (parent)
4834 			mem_cgroup_put(parent);
4835 	}
4836 }
4837 
4838 static void mem_cgroup_put(struct mem_cgroup *memcg)
4839 {
4840 	__mem_cgroup_put(memcg, 1);
4841 }
4842 
4843 /*
4844  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4845  */
4846 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4847 {
4848 	if (!memcg->res.parent)
4849 		return NULL;
4850 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4851 }
4852 
4853 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4854 static void __init enable_swap_cgroup(void)
4855 {
4856 	if (!mem_cgroup_disabled() && really_do_swap_account)
4857 		do_swap_account = 1;
4858 }
4859 #else
4860 static void __init enable_swap_cgroup(void)
4861 {
4862 }
4863 #endif
4864 
4865 static int mem_cgroup_soft_limit_tree_init(void)
4866 {
4867 	struct mem_cgroup_tree_per_node *rtpn;
4868 	struct mem_cgroup_tree_per_zone *rtpz;
4869 	int tmp, node, zone;
4870 
4871 	for_each_node_state(node, N_POSSIBLE) {
4872 		tmp = node;
4873 		if (!node_state(node, N_NORMAL_MEMORY))
4874 			tmp = -1;
4875 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4876 		if (!rtpn)
4877 			return 1;
4878 
4879 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4880 
4881 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4882 			rtpz = &rtpn->rb_tree_per_zone[zone];
4883 			rtpz->rb_root = RB_ROOT;
4884 			spin_lock_init(&rtpz->lock);
4885 		}
4886 	}
4887 	return 0;
4888 }
4889 
4890 static struct cgroup_subsys_state * __ref
4891 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4892 {
4893 	struct mem_cgroup *memcg, *parent;
4894 	long error = -ENOMEM;
4895 	int node;
4896 
4897 	memcg = mem_cgroup_alloc();
4898 	if (!memcg)
4899 		return ERR_PTR(error);
4900 
4901 	for_each_node_state(node, N_POSSIBLE)
4902 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4903 			goto free_out;
4904 
4905 	/* root ? */
4906 	if (cont->parent == NULL) {
4907 		int cpu;
4908 		enable_swap_cgroup();
4909 		parent = NULL;
4910 		root_mem_cgroup = memcg;
4911 		if (mem_cgroup_soft_limit_tree_init())
4912 			goto free_out;
4913 		for_each_possible_cpu(cpu) {
4914 			struct memcg_stock_pcp *stock =
4915 						&per_cpu(memcg_stock, cpu);
4916 			INIT_WORK(&stock->work, drain_local_stock);
4917 		}
4918 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4919 	} else {
4920 		parent = mem_cgroup_from_cont(cont->parent);
4921 		memcg->use_hierarchy = parent->use_hierarchy;
4922 		memcg->oom_kill_disable = parent->oom_kill_disable;
4923 	}
4924 
4925 	if (parent && parent->use_hierarchy) {
4926 		res_counter_init(&memcg->res, &parent->res);
4927 		res_counter_init(&memcg->memsw, &parent->memsw);
4928 		/*
4929 		 * We increment refcnt of the parent to ensure that we can
4930 		 * safely access it on res_counter_charge/uncharge.
4931 		 * This refcnt will be decremented when freeing this
4932 		 * mem_cgroup(see mem_cgroup_put).
4933 		 */
4934 		mem_cgroup_get(parent);
4935 	} else {
4936 		res_counter_init(&memcg->res, NULL);
4937 		res_counter_init(&memcg->memsw, NULL);
4938 	}
4939 	memcg->last_scanned_child = 0;
4940 	memcg->last_scanned_node = MAX_NUMNODES;
4941 	INIT_LIST_HEAD(&memcg->oom_notify);
4942 
4943 	if (parent)
4944 		memcg->swappiness = mem_cgroup_swappiness(parent);
4945 	atomic_set(&memcg->refcnt, 1);
4946 	memcg->move_charge_at_immigrate = 0;
4947 	mutex_init(&memcg->thresholds_lock);
4948 	return &memcg->css;
4949 free_out:
4950 	__mem_cgroup_free(memcg);
4951 	root_mem_cgroup = NULL;
4952 	return ERR_PTR(error);
4953 }
4954 
4955 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4956 					struct cgroup *cont)
4957 {
4958 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4959 
4960 	return mem_cgroup_force_empty(memcg, false);
4961 }
4962 
4963 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4964 				struct cgroup *cont)
4965 {
4966 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4967 
4968 	mem_cgroup_put(memcg);
4969 }
4970 
4971 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4972 				struct cgroup *cont)
4973 {
4974 	int ret;
4975 
4976 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4977 				ARRAY_SIZE(mem_cgroup_files));
4978 
4979 	if (!ret)
4980 		ret = register_memsw_files(cont, ss);
4981 	return ret;
4982 }
4983 
4984 #ifdef CONFIG_MMU
4985 /* Handlers for move charge at task migration. */
4986 #define PRECHARGE_COUNT_AT_ONCE	256
4987 static int mem_cgroup_do_precharge(unsigned long count)
4988 {
4989 	int ret = 0;
4990 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4991 	struct mem_cgroup *memcg = mc.to;
4992 
4993 	if (mem_cgroup_is_root(memcg)) {
4994 		mc.precharge += count;
4995 		/* we don't need css_get for root */
4996 		return ret;
4997 	}
4998 	/* try to charge at once */
4999 	if (count > 1) {
5000 		struct res_counter *dummy;
5001 		/*
5002 		 * "memcg" cannot be under rmdir() because we've already checked
5003 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5004 		 * are still under the same cgroup_mutex. So we can postpone
5005 		 * css_get().
5006 		 */
5007 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5008 			goto one_by_one;
5009 		if (do_swap_account && res_counter_charge(&memcg->memsw,
5010 						PAGE_SIZE * count, &dummy)) {
5011 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5012 			goto one_by_one;
5013 		}
5014 		mc.precharge += count;
5015 		return ret;
5016 	}
5017 one_by_one:
5018 	/* fall back to one by one charge */
5019 	while (count--) {
5020 		if (signal_pending(current)) {
5021 			ret = -EINTR;
5022 			break;
5023 		}
5024 		if (!batch_count--) {
5025 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5026 			cond_resched();
5027 		}
5028 		ret = __mem_cgroup_try_charge(NULL,
5029 					GFP_KERNEL, 1, &memcg, false);
5030 		if (ret || !memcg)
5031 			/* mem_cgroup_clear_mc() will do uncharge later */
5032 			return -ENOMEM;
5033 		mc.precharge++;
5034 	}
5035 	return ret;
5036 }
5037 
5038 /**
5039  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5040  * @vma: the vma the pte to be checked belongs
5041  * @addr: the address corresponding to the pte to be checked
5042  * @ptent: the pte to be checked
5043  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5044  *
5045  * Returns
5046  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5047  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5048  *     move charge. if @target is not NULL, the page is stored in target->page
5049  *     with extra refcnt got(Callers should handle it).
5050  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5051  *     target for charge migration. if @target is not NULL, the entry is stored
5052  *     in target->ent.
5053  *
5054  * Called with pte lock held.
5055  */
5056 union mc_target {
5057 	struct page	*page;
5058 	swp_entry_t	ent;
5059 };
5060 
5061 enum mc_target_type {
5062 	MC_TARGET_NONE,	/* not used */
5063 	MC_TARGET_PAGE,
5064 	MC_TARGET_SWAP,
5065 };
5066 
5067 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5068 						unsigned long addr, pte_t ptent)
5069 {
5070 	struct page *page = vm_normal_page(vma, addr, ptent);
5071 
5072 	if (!page || !page_mapped(page))
5073 		return NULL;
5074 	if (PageAnon(page)) {
5075 		/* we don't move shared anon */
5076 		if (!move_anon() || page_mapcount(page) > 2)
5077 			return NULL;
5078 	} else if (!move_file())
5079 		/* we ignore mapcount for file pages */
5080 		return NULL;
5081 	if (!get_page_unless_zero(page))
5082 		return NULL;
5083 
5084 	return page;
5085 }
5086 
5087 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5088 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5089 {
5090 	int usage_count;
5091 	struct page *page = NULL;
5092 	swp_entry_t ent = pte_to_swp_entry(ptent);
5093 
5094 	if (!move_anon() || non_swap_entry(ent))
5095 		return NULL;
5096 	usage_count = mem_cgroup_count_swap_user(ent, &page);
5097 	if (usage_count > 1) { /* we don't move shared anon */
5098 		if (page)
5099 			put_page(page);
5100 		return NULL;
5101 	}
5102 	if (do_swap_account)
5103 		entry->val = ent.val;
5104 
5105 	return page;
5106 }
5107 
5108 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5109 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5110 {
5111 	struct page *page = NULL;
5112 	struct inode *inode;
5113 	struct address_space *mapping;
5114 	pgoff_t pgoff;
5115 
5116 	if (!vma->vm_file) /* anonymous vma */
5117 		return NULL;
5118 	if (!move_file())
5119 		return NULL;
5120 
5121 	inode = vma->vm_file->f_path.dentry->d_inode;
5122 	mapping = vma->vm_file->f_mapping;
5123 	if (pte_none(ptent))
5124 		pgoff = linear_page_index(vma, addr);
5125 	else /* pte_file(ptent) is true */
5126 		pgoff = pte_to_pgoff(ptent);
5127 
5128 	/* page is moved even if it's not RSS of this task(page-faulted). */
5129 	page = find_get_page(mapping, pgoff);
5130 
5131 #ifdef CONFIG_SWAP
5132 	/* shmem/tmpfs may report page out on swap: account for that too. */
5133 	if (radix_tree_exceptional_entry(page)) {
5134 		swp_entry_t swap = radix_to_swp_entry(page);
5135 		if (do_swap_account)
5136 			*entry = swap;
5137 		page = find_get_page(&swapper_space, swap.val);
5138 	}
5139 #endif
5140 	return page;
5141 }
5142 
5143 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5144 		unsigned long addr, pte_t ptent, union mc_target *target)
5145 {
5146 	struct page *page = NULL;
5147 	struct page_cgroup *pc;
5148 	int ret = 0;
5149 	swp_entry_t ent = { .val = 0 };
5150 
5151 	if (pte_present(ptent))
5152 		page = mc_handle_present_pte(vma, addr, ptent);
5153 	else if (is_swap_pte(ptent))
5154 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5155 	else if (pte_none(ptent) || pte_file(ptent))
5156 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5157 
5158 	if (!page && !ent.val)
5159 		return 0;
5160 	if (page) {
5161 		pc = lookup_page_cgroup(page);
5162 		/*
5163 		 * Do only loose check w/o page_cgroup lock.
5164 		 * mem_cgroup_move_account() checks the pc is valid or not under
5165 		 * the lock.
5166 		 */
5167 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5168 			ret = MC_TARGET_PAGE;
5169 			if (target)
5170 				target->page = page;
5171 		}
5172 		if (!ret || !target)
5173 			put_page(page);
5174 	}
5175 	/* There is a swap entry and a page doesn't exist or isn't charged */
5176 	if (ent.val && !ret &&
5177 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5178 		ret = MC_TARGET_SWAP;
5179 		if (target)
5180 			target->ent = ent;
5181 	}
5182 	return ret;
5183 }
5184 
5185 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5186 					unsigned long addr, unsigned long end,
5187 					struct mm_walk *walk)
5188 {
5189 	struct vm_area_struct *vma = walk->private;
5190 	pte_t *pte;
5191 	spinlock_t *ptl;
5192 
5193 	split_huge_page_pmd(walk->mm, pmd);
5194 
5195 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5196 	for (; addr != end; pte++, addr += PAGE_SIZE)
5197 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5198 			mc.precharge++;	/* increment precharge temporarily */
5199 	pte_unmap_unlock(pte - 1, ptl);
5200 	cond_resched();
5201 
5202 	return 0;
5203 }
5204 
5205 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5206 {
5207 	unsigned long precharge;
5208 	struct vm_area_struct *vma;
5209 
5210 	down_read(&mm->mmap_sem);
5211 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5212 		struct mm_walk mem_cgroup_count_precharge_walk = {
5213 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5214 			.mm = mm,
5215 			.private = vma,
5216 		};
5217 		if (is_vm_hugetlb_page(vma))
5218 			continue;
5219 		walk_page_range(vma->vm_start, vma->vm_end,
5220 					&mem_cgroup_count_precharge_walk);
5221 	}
5222 	up_read(&mm->mmap_sem);
5223 
5224 	precharge = mc.precharge;
5225 	mc.precharge = 0;
5226 
5227 	return precharge;
5228 }
5229 
5230 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5231 {
5232 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5233 
5234 	VM_BUG_ON(mc.moving_task);
5235 	mc.moving_task = current;
5236 	return mem_cgroup_do_precharge(precharge);
5237 }
5238 
5239 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5240 static void __mem_cgroup_clear_mc(void)
5241 {
5242 	struct mem_cgroup *from = mc.from;
5243 	struct mem_cgroup *to = mc.to;
5244 
5245 	/* we must uncharge all the leftover precharges from mc.to */
5246 	if (mc.precharge) {
5247 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5248 		mc.precharge = 0;
5249 	}
5250 	/*
5251 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5252 	 * we must uncharge here.
5253 	 */
5254 	if (mc.moved_charge) {
5255 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5256 		mc.moved_charge = 0;
5257 	}
5258 	/* we must fixup refcnts and charges */
5259 	if (mc.moved_swap) {
5260 		/* uncharge swap account from the old cgroup */
5261 		if (!mem_cgroup_is_root(mc.from))
5262 			res_counter_uncharge(&mc.from->memsw,
5263 						PAGE_SIZE * mc.moved_swap);
5264 		__mem_cgroup_put(mc.from, mc.moved_swap);
5265 
5266 		if (!mem_cgroup_is_root(mc.to)) {
5267 			/*
5268 			 * we charged both to->res and to->memsw, so we should
5269 			 * uncharge to->res.
5270 			 */
5271 			res_counter_uncharge(&mc.to->res,
5272 						PAGE_SIZE * mc.moved_swap);
5273 		}
5274 		/* we've already done mem_cgroup_get(mc.to) */
5275 		mc.moved_swap = 0;
5276 	}
5277 	memcg_oom_recover(from);
5278 	memcg_oom_recover(to);
5279 	wake_up_all(&mc.waitq);
5280 }
5281 
5282 static void mem_cgroup_clear_mc(void)
5283 {
5284 	struct mem_cgroup *from = mc.from;
5285 
5286 	/*
5287 	 * we must clear moving_task before waking up waiters at the end of
5288 	 * task migration.
5289 	 */
5290 	mc.moving_task = NULL;
5291 	__mem_cgroup_clear_mc();
5292 	spin_lock(&mc.lock);
5293 	mc.from = NULL;
5294 	mc.to = NULL;
5295 	spin_unlock(&mc.lock);
5296 	mem_cgroup_end_move(from);
5297 }
5298 
5299 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5300 				struct cgroup *cgroup,
5301 				struct task_struct *p)
5302 {
5303 	int ret = 0;
5304 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5305 
5306 	if (memcg->move_charge_at_immigrate) {
5307 		struct mm_struct *mm;
5308 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5309 
5310 		VM_BUG_ON(from == memcg);
5311 
5312 		mm = get_task_mm(p);
5313 		if (!mm)
5314 			return 0;
5315 		/* We move charges only when we move a owner of the mm */
5316 		if (mm->owner == p) {
5317 			VM_BUG_ON(mc.from);
5318 			VM_BUG_ON(mc.to);
5319 			VM_BUG_ON(mc.precharge);
5320 			VM_BUG_ON(mc.moved_charge);
5321 			VM_BUG_ON(mc.moved_swap);
5322 			mem_cgroup_start_move(from);
5323 			spin_lock(&mc.lock);
5324 			mc.from = from;
5325 			mc.to = memcg;
5326 			spin_unlock(&mc.lock);
5327 			/* We set mc.moving_task later */
5328 
5329 			ret = mem_cgroup_precharge_mc(mm);
5330 			if (ret)
5331 				mem_cgroup_clear_mc();
5332 		}
5333 		mmput(mm);
5334 	}
5335 	return ret;
5336 }
5337 
5338 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5339 				struct cgroup *cgroup,
5340 				struct task_struct *p)
5341 {
5342 	mem_cgroup_clear_mc();
5343 }
5344 
5345 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5346 				unsigned long addr, unsigned long end,
5347 				struct mm_walk *walk)
5348 {
5349 	int ret = 0;
5350 	struct vm_area_struct *vma = walk->private;
5351 	pte_t *pte;
5352 	spinlock_t *ptl;
5353 
5354 	split_huge_page_pmd(walk->mm, pmd);
5355 retry:
5356 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5357 	for (; addr != end; addr += PAGE_SIZE) {
5358 		pte_t ptent = *(pte++);
5359 		union mc_target target;
5360 		int type;
5361 		struct page *page;
5362 		struct page_cgroup *pc;
5363 		swp_entry_t ent;
5364 
5365 		if (!mc.precharge)
5366 			break;
5367 
5368 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5369 		switch (type) {
5370 		case MC_TARGET_PAGE:
5371 			page = target.page;
5372 			if (isolate_lru_page(page))
5373 				goto put;
5374 			pc = lookup_page_cgroup(page);
5375 			if (!mem_cgroup_move_account(page, 1, pc,
5376 						     mc.from, mc.to, false)) {
5377 				mc.precharge--;
5378 				/* we uncharge from mc.from later. */
5379 				mc.moved_charge++;
5380 			}
5381 			putback_lru_page(page);
5382 put:			/* is_target_pte_for_mc() gets the page */
5383 			put_page(page);
5384 			break;
5385 		case MC_TARGET_SWAP:
5386 			ent = target.ent;
5387 			if (!mem_cgroup_move_swap_account(ent,
5388 						mc.from, mc.to, false)) {
5389 				mc.precharge--;
5390 				/* we fixup refcnts and charges later. */
5391 				mc.moved_swap++;
5392 			}
5393 			break;
5394 		default:
5395 			break;
5396 		}
5397 	}
5398 	pte_unmap_unlock(pte - 1, ptl);
5399 	cond_resched();
5400 
5401 	if (addr != end) {
5402 		/*
5403 		 * We have consumed all precharges we got in can_attach().
5404 		 * We try charge one by one, but don't do any additional
5405 		 * charges to mc.to if we have failed in charge once in attach()
5406 		 * phase.
5407 		 */
5408 		ret = mem_cgroup_do_precharge(1);
5409 		if (!ret)
5410 			goto retry;
5411 	}
5412 
5413 	return ret;
5414 }
5415 
5416 static void mem_cgroup_move_charge(struct mm_struct *mm)
5417 {
5418 	struct vm_area_struct *vma;
5419 
5420 	lru_add_drain_all();
5421 retry:
5422 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5423 		/*
5424 		 * Someone who are holding the mmap_sem might be waiting in
5425 		 * waitq. So we cancel all extra charges, wake up all waiters,
5426 		 * and retry. Because we cancel precharges, we might not be able
5427 		 * to move enough charges, but moving charge is a best-effort
5428 		 * feature anyway, so it wouldn't be a big problem.
5429 		 */
5430 		__mem_cgroup_clear_mc();
5431 		cond_resched();
5432 		goto retry;
5433 	}
5434 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5435 		int ret;
5436 		struct mm_walk mem_cgroup_move_charge_walk = {
5437 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5438 			.mm = mm,
5439 			.private = vma,
5440 		};
5441 		if (is_vm_hugetlb_page(vma))
5442 			continue;
5443 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5444 						&mem_cgroup_move_charge_walk);
5445 		if (ret)
5446 			/*
5447 			 * means we have consumed all precharges and failed in
5448 			 * doing additional charge. Just abandon here.
5449 			 */
5450 			break;
5451 	}
5452 	up_read(&mm->mmap_sem);
5453 }
5454 
5455 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5456 				struct cgroup *cont,
5457 				struct cgroup *old_cont,
5458 				struct task_struct *p)
5459 {
5460 	struct mm_struct *mm = get_task_mm(p);
5461 
5462 	if (mm) {
5463 		if (mc.to)
5464 			mem_cgroup_move_charge(mm);
5465 		put_swap_token(mm);
5466 		mmput(mm);
5467 	}
5468 	if (mc.to)
5469 		mem_cgroup_clear_mc();
5470 }
5471 #else	/* !CONFIG_MMU */
5472 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5473 				struct cgroup *cgroup,
5474 				struct task_struct *p)
5475 {
5476 	return 0;
5477 }
5478 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5479 				struct cgroup *cgroup,
5480 				struct task_struct *p)
5481 {
5482 }
5483 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5484 				struct cgroup *cont,
5485 				struct cgroup *old_cont,
5486 				struct task_struct *p)
5487 {
5488 }
5489 #endif
5490 
5491 struct cgroup_subsys mem_cgroup_subsys = {
5492 	.name = "memory",
5493 	.subsys_id = mem_cgroup_subsys_id,
5494 	.create = mem_cgroup_create,
5495 	.pre_destroy = mem_cgroup_pre_destroy,
5496 	.destroy = mem_cgroup_destroy,
5497 	.populate = mem_cgroup_populate,
5498 	.can_attach = mem_cgroup_can_attach,
5499 	.cancel_attach = mem_cgroup_cancel_attach,
5500 	.attach = mem_cgroup_move_task,
5501 	.early_init = 0,
5502 	.use_id = 1,
5503 };
5504 
5505 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5506 static int __init enable_swap_account(char *s)
5507 {
5508 	/* consider enabled if no parameter or 1 is given */
5509 	if (!strcmp(s, "1"))
5510 		really_do_swap_account = 1;
5511 	else if (!strcmp(s, "0"))
5512 		really_do_swap_account = 0;
5513 	return 1;
5514 }
5515 __setup("swapaccount=", enable_swap_account);
5516 
5517 #endif
5518