1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/list.h> 46 #include <linux/mutex.h> 47 #include <linux/rbtree.h> 48 #include <linux/slab.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/fs.h> 52 #include <linux/seq_file.h> 53 #include <linux/parser.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #define CREATE_TRACE_POINTS 75 #include <trace/events/memcg.h> 76 #undef CREATE_TRACE_POINTS 77 78 #include <trace/events/vmscan.h> 79 80 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 81 EXPORT_SYMBOL(memory_cgrp_subsys); 82 83 struct mem_cgroup *root_mem_cgroup __read_mostly; 84 85 /* Active memory cgroup to use from an interrupt context */ 86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 88 89 /* Socket memory accounting disabled? */ 90 static bool cgroup_memory_nosocket __ro_after_init; 91 92 /* Kernel memory accounting disabled? */ 93 static bool cgroup_memory_nokmem __ro_after_init; 94 95 /* BPF memory accounting disabled? */ 96 static bool cgroup_memory_nobpf __ro_after_init; 97 98 #ifdef CONFIG_CGROUP_WRITEBACK 99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 100 #endif 101 102 static inline bool task_is_dying(void) 103 { 104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 105 (current->flags & PF_EXITING); 106 } 107 108 /* Some nice accessors for the vmpressure. */ 109 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 110 { 111 if (!memcg) 112 memcg = root_mem_cgroup; 113 return &memcg->vmpressure; 114 } 115 116 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 117 { 118 return container_of(vmpr, struct mem_cgroup, vmpressure); 119 } 120 121 #define SEQ_BUF_SIZE SZ_4K 122 #define CURRENT_OBJCG_UPDATE_BIT 0 123 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 124 125 static DEFINE_SPINLOCK(objcg_lock); 126 127 bool mem_cgroup_kmem_disabled(void) 128 { 129 return cgroup_memory_nokmem; 130 } 131 132 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 133 unsigned int nr_pages); 134 135 static void obj_cgroup_release(struct percpu_ref *ref) 136 { 137 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 138 unsigned int nr_bytes; 139 unsigned int nr_pages; 140 unsigned long flags; 141 142 /* 143 * At this point all allocated objects are freed, and 144 * objcg->nr_charged_bytes can't have an arbitrary byte value. 145 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 146 * 147 * The following sequence can lead to it: 148 * 1) CPU0: objcg == stock->cached_objcg 149 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 150 * PAGE_SIZE bytes are charged 151 * 3) CPU1: a process from another memcg is allocating something, 152 * the stock if flushed, 153 * objcg->nr_charged_bytes = PAGE_SIZE - 92 154 * 5) CPU0: we do release this object, 155 * 92 bytes are added to stock->nr_bytes 156 * 6) CPU0: stock is flushed, 157 * 92 bytes are added to objcg->nr_charged_bytes 158 * 159 * In the result, nr_charged_bytes == PAGE_SIZE. 160 * This page will be uncharged in obj_cgroup_release(). 161 */ 162 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 163 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 164 nr_pages = nr_bytes >> PAGE_SHIFT; 165 166 if (nr_pages) 167 obj_cgroup_uncharge_pages(objcg, nr_pages); 168 169 spin_lock_irqsave(&objcg_lock, flags); 170 list_del(&objcg->list); 171 spin_unlock_irqrestore(&objcg_lock, flags); 172 173 percpu_ref_exit(ref); 174 kfree_rcu(objcg, rcu); 175 } 176 177 static struct obj_cgroup *obj_cgroup_alloc(void) 178 { 179 struct obj_cgroup *objcg; 180 int ret; 181 182 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 183 if (!objcg) 184 return NULL; 185 186 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 187 GFP_KERNEL); 188 if (ret) { 189 kfree(objcg); 190 return NULL; 191 } 192 INIT_LIST_HEAD(&objcg->list); 193 return objcg; 194 } 195 196 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 197 struct mem_cgroup *parent) 198 { 199 struct obj_cgroup *objcg, *iter; 200 201 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 202 203 spin_lock_irq(&objcg_lock); 204 205 /* 1) Ready to reparent active objcg. */ 206 list_add(&objcg->list, &memcg->objcg_list); 207 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 208 list_for_each_entry(iter, &memcg->objcg_list, list) 209 WRITE_ONCE(iter->memcg, parent); 210 /* 3) Move already reparented objcgs to the parent's list */ 211 list_splice(&memcg->objcg_list, &parent->objcg_list); 212 213 spin_unlock_irq(&objcg_lock); 214 215 percpu_ref_kill(&objcg->refcnt); 216 } 217 218 /* 219 * A lot of the calls to the cache allocation functions are expected to be 220 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 221 * conditional to this static branch, we'll have to allow modules that does 222 * kmem_cache_alloc and the such to see this symbol as well 223 */ 224 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 225 EXPORT_SYMBOL(memcg_kmem_online_key); 226 227 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 228 EXPORT_SYMBOL(memcg_bpf_enabled_key); 229 230 /** 231 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 232 * @folio: folio of interest 233 * 234 * If memcg is bound to the default hierarchy, css of the memcg associated 235 * with @folio is returned. The returned css remains associated with @folio 236 * until it is released. 237 * 238 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 239 * is returned. 240 */ 241 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 242 { 243 struct mem_cgroup *memcg = folio_memcg(folio); 244 245 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 246 memcg = root_mem_cgroup; 247 248 return &memcg->css; 249 } 250 251 /** 252 * page_cgroup_ino - return inode number of the memcg a page is charged to 253 * @page: the page 254 * 255 * Look up the closest online ancestor of the memory cgroup @page is charged to 256 * and return its inode number or 0 if @page is not charged to any cgroup. It 257 * is safe to call this function without holding a reference to @page. 258 * 259 * Note, this function is inherently racy, because there is nothing to prevent 260 * the cgroup inode from getting torn down and potentially reallocated a moment 261 * after page_cgroup_ino() returns, so it only should be used by callers that 262 * do not care (such as procfs interfaces). 263 */ 264 ino_t page_cgroup_ino(struct page *page) 265 { 266 struct mem_cgroup *memcg; 267 unsigned long ino = 0; 268 269 rcu_read_lock(); 270 /* page_folio() is racy here, but the entire function is racy anyway */ 271 memcg = folio_memcg_check(page_folio(page)); 272 273 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 274 memcg = parent_mem_cgroup(memcg); 275 if (memcg) 276 ino = cgroup_ino(memcg->css.cgroup); 277 rcu_read_unlock(); 278 return ino; 279 } 280 281 /* Subset of node_stat_item for memcg stats */ 282 static const unsigned int memcg_node_stat_items[] = { 283 NR_INACTIVE_ANON, 284 NR_ACTIVE_ANON, 285 NR_INACTIVE_FILE, 286 NR_ACTIVE_FILE, 287 NR_UNEVICTABLE, 288 NR_SLAB_RECLAIMABLE_B, 289 NR_SLAB_UNRECLAIMABLE_B, 290 WORKINGSET_REFAULT_ANON, 291 WORKINGSET_REFAULT_FILE, 292 WORKINGSET_ACTIVATE_ANON, 293 WORKINGSET_ACTIVATE_FILE, 294 WORKINGSET_RESTORE_ANON, 295 WORKINGSET_RESTORE_FILE, 296 WORKINGSET_NODERECLAIM, 297 NR_ANON_MAPPED, 298 NR_FILE_MAPPED, 299 NR_FILE_PAGES, 300 NR_FILE_DIRTY, 301 NR_WRITEBACK, 302 NR_SHMEM, 303 NR_SHMEM_THPS, 304 NR_FILE_THPS, 305 NR_ANON_THPS, 306 NR_KERNEL_STACK_KB, 307 NR_PAGETABLE, 308 NR_SECONDARY_PAGETABLE, 309 #ifdef CONFIG_SWAP 310 NR_SWAPCACHE, 311 #endif 312 #ifdef CONFIG_NUMA_BALANCING 313 PGPROMOTE_SUCCESS, 314 #endif 315 PGDEMOTE_KSWAPD, 316 PGDEMOTE_DIRECT, 317 PGDEMOTE_KHUGEPAGED, 318 PGDEMOTE_PROACTIVE, 319 #ifdef CONFIG_HUGETLB_PAGE 320 NR_HUGETLB, 321 #endif 322 }; 323 324 static const unsigned int memcg_stat_items[] = { 325 MEMCG_SWAP, 326 MEMCG_SOCK, 327 MEMCG_PERCPU_B, 328 MEMCG_VMALLOC, 329 MEMCG_KMEM, 330 MEMCG_ZSWAP_B, 331 MEMCG_ZSWAPPED, 332 }; 333 334 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 335 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 336 ARRAY_SIZE(memcg_stat_items)) 337 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 338 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 339 340 static void init_memcg_stats(void) 341 { 342 u8 i, j = 0; 343 344 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 345 346 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 347 348 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 349 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 350 351 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 352 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 353 } 354 355 static inline int memcg_stats_index(int idx) 356 { 357 return mem_cgroup_stats_index[idx]; 358 } 359 360 struct lruvec_stats_percpu { 361 /* Local (CPU and cgroup) state */ 362 long state[NR_MEMCG_NODE_STAT_ITEMS]; 363 364 /* Delta calculation for lockless upward propagation */ 365 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 366 }; 367 368 struct lruvec_stats { 369 /* Aggregated (CPU and subtree) state */ 370 long state[NR_MEMCG_NODE_STAT_ITEMS]; 371 372 /* Non-hierarchical (CPU aggregated) state */ 373 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 374 375 /* Pending child counts during tree propagation */ 376 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 377 }; 378 379 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 380 { 381 struct mem_cgroup_per_node *pn; 382 long x; 383 int i; 384 385 if (mem_cgroup_disabled()) 386 return node_page_state(lruvec_pgdat(lruvec), idx); 387 388 i = memcg_stats_index(idx); 389 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 390 return 0; 391 392 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 393 x = READ_ONCE(pn->lruvec_stats->state[i]); 394 #ifdef CONFIG_SMP 395 if (x < 0) 396 x = 0; 397 #endif 398 return x; 399 } 400 401 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 402 enum node_stat_item idx) 403 { 404 struct mem_cgroup_per_node *pn; 405 long x; 406 int i; 407 408 if (mem_cgroup_disabled()) 409 return node_page_state(lruvec_pgdat(lruvec), idx); 410 411 i = memcg_stats_index(idx); 412 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 413 return 0; 414 415 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 416 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 417 #ifdef CONFIG_SMP 418 if (x < 0) 419 x = 0; 420 #endif 421 return x; 422 } 423 424 /* Subset of vm_event_item to report for memcg event stats */ 425 static const unsigned int memcg_vm_event_stat[] = { 426 #ifdef CONFIG_MEMCG_V1 427 PGPGIN, 428 PGPGOUT, 429 #endif 430 PSWPIN, 431 PSWPOUT, 432 PGSCAN_KSWAPD, 433 PGSCAN_DIRECT, 434 PGSCAN_KHUGEPAGED, 435 PGSCAN_PROACTIVE, 436 PGSTEAL_KSWAPD, 437 PGSTEAL_DIRECT, 438 PGSTEAL_KHUGEPAGED, 439 PGSTEAL_PROACTIVE, 440 PGFAULT, 441 PGMAJFAULT, 442 PGREFILL, 443 PGACTIVATE, 444 PGDEACTIVATE, 445 PGLAZYFREE, 446 PGLAZYFREED, 447 #ifdef CONFIG_SWAP 448 SWPIN_ZERO, 449 SWPOUT_ZERO, 450 #endif 451 #ifdef CONFIG_ZSWAP 452 ZSWPIN, 453 ZSWPOUT, 454 ZSWPWB, 455 #endif 456 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 457 THP_FAULT_ALLOC, 458 THP_COLLAPSE_ALLOC, 459 THP_SWPOUT, 460 THP_SWPOUT_FALLBACK, 461 #endif 462 #ifdef CONFIG_NUMA_BALANCING 463 NUMA_PAGE_MIGRATE, 464 NUMA_PTE_UPDATES, 465 NUMA_HINT_FAULTS, 466 #endif 467 }; 468 469 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 470 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 471 472 static void init_memcg_events(void) 473 { 474 u8 i; 475 476 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 477 478 memset(mem_cgroup_events_index, U8_MAX, 479 sizeof(mem_cgroup_events_index)); 480 481 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 482 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 483 } 484 485 static inline int memcg_events_index(enum vm_event_item idx) 486 { 487 return mem_cgroup_events_index[idx]; 488 } 489 490 struct memcg_vmstats_percpu { 491 /* Stats updates since the last flush */ 492 unsigned int stats_updates; 493 494 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 495 struct memcg_vmstats_percpu *parent; 496 struct memcg_vmstats *vmstats; 497 498 /* The above should fit a single cacheline for memcg_rstat_updated() */ 499 500 /* Local (CPU and cgroup) page state & events */ 501 long state[MEMCG_VMSTAT_SIZE]; 502 unsigned long events[NR_MEMCG_EVENTS]; 503 504 /* Delta calculation for lockless upward propagation */ 505 long state_prev[MEMCG_VMSTAT_SIZE]; 506 unsigned long events_prev[NR_MEMCG_EVENTS]; 507 } ____cacheline_aligned; 508 509 struct memcg_vmstats { 510 /* Aggregated (CPU and subtree) page state & events */ 511 long state[MEMCG_VMSTAT_SIZE]; 512 unsigned long events[NR_MEMCG_EVENTS]; 513 514 /* Non-hierarchical (CPU aggregated) page state & events */ 515 long state_local[MEMCG_VMSTAT_SIZE]; 516 unsigned long events_local[NR_MEMCG_EVENTS]; 517 518 /* Pending child counts during tree propagation */ 519 long state_pending[MEMCG_VMSTAT_SIZE]; 520 unsigned long events_pending[NR_MEMCG_EVENTS]; 521 522 /* Stats updates since the last flush */ 523 atomic64_t stats_updates; 524 }; 525 526 /* 527 * memcg and lruvec stats flushing 528 * 529 * Many codepaths leading to stats update or read are performance sensitive and 530 * adding stats flushing in such codepaths is not desirable. So, to optimize the 531 * flushing the kernel does: 532 * 533 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 534 * rstat update tree grow unbounded. 535 * 536 * 2) Flush the stats synchronously on reader side only when there are more than 537 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 538 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 539 * only for 2 seconds due to (1). 540 */ 541 static void flush_memcg_stats_dwork(struct work_struct *w); 542 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 543 static u64 flush_last_time; 544 545 #define FLUSH_TIME (2UL*HZ) 546 547 /* 548 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 549 * not rely on this as part of an acquired spinlock_t lock. These functions are 550 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 551 * is sufficient. 552 */ 553 static void memcg_stats_lock(void) 554 { 555 preempt_disable_nested(); 556 VM_WARN_ON_IRQS_ENABLED(); 557 } 558 559 static void __memcg_stats_lock(void) 560 { 561 preempt_disable_nested(); 562 } 563 564 static void memcg_stats_unlock(void) 565 { 566 preempt_enable_nested(); 567 } 568 569 570 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 571 { 572 return atomic64_read(&vmstats->stats_updates) > 573 MEMCG_CHARGE_BATCH * num_online_cpus(); 574 } 575 576 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 577 { 578 struct memcg_vmstats_percpu *statc; 579 int cpu = smp_processor_id(); 580 unsigned int stats_updates; 581 582 if (!val) 583 return; 584 585 css_rstat_updated(&memcg->css, cpu); 586 statc = this_cpu_ptr(memcg->vmstats_percpu); 587 for (; statc; statc = statc->parent) { 588 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 589 WRITE_ONCE(statc->stats_updates, stats_updates); 590 if (stats_updates < MEMCG_CHARGE_BATCH) 591 continue; 592 593 /* 594 * If @memcg is already flush-able, increasing stats_updates is 595 * redundant. Avoid the overhead of the atomic update. 596 */ 597 if (!memcg_vmstats_needs_flush(statc->vmstats)) 598 atomic64_add(stats_updates, 599 &statc->vmstats->stats_updates); 600 WRITE_ONCE(statc->stats_updates, 0); 601 } 602 } 603 604 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 605 { 606 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 607 608 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates), 609 force, needs_flush); 610 611 if (!force && !needs_flush) 612 return; 613 614 if (mem_cgroup_is_root(memcg)) 615 WRITE_ONCE(flush_last_time, jiffies_64); 616 617 css_rstat_flush(&memcg->css); 618 } 619 620 /* 621 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 622 * @memcg: root of the subtree to flush 623 * 624 * Flushing is serialized by the underlying global rstat lock. There is also a 625 * minimum amount of work to be done even if there are no stat updates to flush. 626 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 627 * avoids unnecessary work and contention on the underlying lock. 628 */ 629 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 630 { 631 if (mem_cgroup_disabled()) 632 return; 633 634 if (!memcg) 635 memcg = root_mem_cgroup; 636 637 __mem_cgroup_flush_stats(memcg, false); 638 } 639 640 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 641 { 642 /* Only flush if the periodic flusher is one full cycle late */ 643 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 644 mem_cgroup_flush_stats(memcg); 645 } 646 647 static void flush_memcg_stats_dwork(struct work_struct *w) 648 { 649 /* 650 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 651 * in latency-sensitive paths is as cheap as possible. 652 */ 653 __mem_cgroup_flush_stats(root_mem_cgroup, true); 654 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 655 } 656 657 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 658 { 659 long x; 660 int i = memcg_stats_index(idx); 661 662 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 663 return 0; 664 665 x = READ_ONCE(memcg->vmstats->state[i]); 666 #ifdef CONFIG_SMP 667 if (x < 0) 668 x = 0; 669 #endif 670 return x; 671 } 672 673 static int memcg_page_state_unit(int item); 674 675 /* 676 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 677 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 678 */ 679 static int memcg_state_val_in_pages(int idx, int val) 680 { 681 int unit = memcg_page_state_unit(idx); 682 683 if (!val || unit == PAGE_SIZE) 684 return val; 685 else 686 return max(val * unit / PAGE_SIZE, 1UL); 687 } 688 689 /** 690 * __mod_memcg_state - update cgroup memory statistics 691 * @memcg: the memory cgroup 692 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 693 * @val: delta to add to the counter, can be negative 694 */ 695 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 696 int val) 697 { 698 int i = memcg_stats_index(idx); 699 700 if (mem_cgroup_disabled()) 701 return; 702 703 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 704 return; 705 706 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 707 val = memcg_state_val_in_pages(idx, val); 708 memcg_rstat_updated(memcg, val); 709 trace_mod_memcg_state(memcg, idx, val); 710 } 711 712 #ifdef CONFIG_MEMCG_V1 713 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 714 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 715 { 716 long x; 717 int i = memcg_stats_index(idx); 718 719 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 720 return 0; 721 722 x = READ_ONCE(memcg->vmstats->state_local[i]); 723 #ifdef CONFIG_SMP 724 if (x < 0) 725 x = 0; 726 #endif 727 return x; 728 } 729 #endif 730 731 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 732 enum node_stat_item idx, 733 int val) 734 { 735 struct mem_cgroup_per_node *pn; 736 struct mem_cgroup *memcg; 737 int i = memcg_stats_index(idx); 738 739 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 740 return; 741 742 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 743 memcg = pn->memcg; 744 745 /* 746 * The caller from rmap relies on disabled preemption because they never 747 * update their counter from in-interrupt context. For these two 748 * counters we check that the update is never performed from an 749 * interrupt context while other caller need to have disabled interrupt. 750 */ 751 __memcg_stats_lock(); 752 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 753 switch (idx) { 754 case NR_ANON_MAPPED: 755 case NR_FILE_MAPPED: 756 case NR_ANON_THPS: 757 WARN_ON_ONCE(!in_task()); 758 break; 759 default: 760 VM_WARN_ON_IRQS_ENABLED(); 761 } 762 } 763 764 /* Update memcg */ 765 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 766 767 /* Update lruvec */ 768 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 769 770 val = memcg_state_val_in_pages(idx, val); 771 memcg_rstat_updated(memcg, val); 772 trace_mod_memcg_lruvec_state(memcg, idx, val); 773 memcg_stats_unlock(); 774 } 775 776 /** 777 * __mod_lruvec_state - update lruvec memory statistics 778 * @lruvec: the lruvec 779 * @idx: the stat item 780 * @val: delta to add to the counter, can be negative 781 * 782 * The lruvec is the intersection of the NUMA node and a cgroup. This 783 * function updates the all three counters that are affected by a 784 * change of state at this level: per-node, per-cgroup, per-lruvec. 785 */ 786 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 787 int val) 788 { 789 /* Update node */ 790 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 791 792 /* Update memcg and lruvec */ 793 if (!mem_cgroup_disabled()) 794 __mod_memcg_lruvec_state(lruvec, idx, val); 795 } 796 797 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 798 int val) 799 { 800 struct mem_cgroup *memcg; 801 pg_data_t *pgdat = folio_pgdat(folio); 802 struct lruvec *lruvec; 803 804 rcu_read_lock(); 805 memcg = folio_memcg(folio); 806 /* Untracked pages have no memcg, no lruvec. Update only the node */ 807 if (!memcg) { 808 rcu_read_unlock(); 809 __mod_node_page_state(pgdat, idx, val); 810 return; 811 } 812 813 lruvec = mem_cgroup_lruvec(memcg, pgdat); 814 __mod_lruvec_state(lruvec, idx, val); 815 rcu_read_unlock(); 816 } 817 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 818 819 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 820 { 821 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 822 struct mem_cgroup *memcg; 823 struct lruvec *lruvec; 824 825 rcu_read_lock(); 826 memcg = mem_cgroup_from_slab_obj(p); 827 828 /* 829 * Untracked pages have no memcg, no lruvec. Update only the 830 * node. If we reparent the slab objects to the root memcg, 831 * when we free the slab object, we need to update the per-memcg 832 * vmstats to keep it correct for the root memcg. 833 */ 834 if (!memcg) { 835 __mod_node_page_state(pgdat, idx, val); 836 } else { 837 lruvec = mem_cgroup_lruvec(memcg, pgdat); 838 __mod_lruvec_state(lruvec, idx, val); 839 } 840 rcu_read_unlock(); 841 } 842 843 /** 844 * __count_memcg_events - account VM events in a cgroup 845 * @memcg: the memory cgroup 846 * @idx: the event item 847 * @count: the number of events that occurred 848 */ 849 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 850 unsigned long count) 851 { 852 int i = memcg_events_index(idx); 853 854 if (mem_cgroup_disabled()) 855 return; 856 857 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 858 return; 859 860 memcg_stats_lock(); 861 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 862 memcg_rstat_updated(memcg, count); 863 trace_count_memcg_events(memcg, idx, count); 864 memcg_stats_unlock(); 865 } 866 867 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 868 { 869 int i = memcg_events_index(event); 870 871 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 872 return 0; 873 874 return READ_ONCE(memcg->vmstats->events[i]); 875 } 876 877 #ifdef CONFIG_MEMCG_V1 878 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 879 { 880 int i = memcg_events_index(event); 881 882 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 883 return 0; 884 885 return READ_ONCE(memcg->vmstats->events_local[i]); 886 } 887 #endif 888 889 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 890 { 891 /* 892 * mm_update_next_owner() may clear mm->owner to NULL 893 * if it races with swapoff, page migration, etc. 894 * So this can be called with p == NULL. 895 */ 896 if (unlikely(!p)) 897 return NULL; 898 899 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 900 } 901 EXPORT_SYMBOL(mem_cgroup_from_task); 902 903 static __always_inline struct mem_cgroup *active_memcg(void) 904 { 905 if (!in_task()) 906 return this_cpu_read(int_active_memcg); 907 else 908 return current->active_memcg; 909 } 910 911 /** 912 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 913 * @mm: mm from which memcg should be extracted. It can be NULL. 914 * 915 * Obtain a reference on mm->memcg and returns it if successful. If mm 916 * is NULL, then the memcg is chosen as follows: 917 * 1) The active memcg, if set. 918 * 2) current->mm->memcg, if available 919 * 3) root memcg 920 * If mem_cgroup is disabled, NULL is returned. 921 */ 922 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 923 { 924 struct mem_cgroup *memcg; 925 926 if (mem_cgroup_disabled()) 927 return NULL; 928 929 /* 930 * Page cache insertions can happen without an 931 * actual mm context, e.g. during disk probing 932 * on boot, loopback IO, acct() writes etc. 933 * 934 * No need to css_get on root memcg as the reference 935 * counting is disabled on the root level in the 936 * cgroup core. See CSS_NO_REF. 937 */ 938 if (unlikely(!mm)) { 939 memcg = active_memcg(); 940 if (unlikely(memcg)) { 941 /* remote memcg must hold a ref */ 942 css_get(&memcg->css); 943 return memcg; 944 } 945 mm = current->mm; 946 if (unlikely(!mm)) 947 return root_mem_cgroup; 948 } 949 950 rcu_read_lock(); 951 do { 952 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 953 if (unlikely(!memcg)) 954 memcg = root_mem_cgroup; 955 } while (!css_tryget(&memcg->css)); 956 rcu_read_unlock(); 957 return memcg; 958 } 959 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 960 961 /** 962 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 963 */ 964 struct mem_cgroup *get_mem_cgroup_from_current(void) 965 { 966 struct mem_cgroup *memcg; 967 968 if (mem_cgroup_disabled()) 969 return NULL; 970 971 again: 972 rcu_read_lock(); 973 memcg = mem_cgroup_from_task(current); 974 if (!css_tryget(&memcg->css)) { 975 rcu_read_unlock(); 976 goto again; 977 } 978 rcu_read_unlock(); 979 return memcg; 980 } 981 982 /** 983 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 984 * @folio: folio from which memcg should be extracted. 985 */ 986 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 987 { 988 struct mem_cgroup *memcg = folio_memcg(folio); 989 990 if (mem_cgroup_disabled()) 991 return NULL; 992 993 rcu_read_lock(); 994 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 995 memcg = root_mem_cgroup; 996 rcu_read_unlock(); 997 return memcg; 998 } 999 1000 /** 1001 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1002 * @root: hierarchy root 1003 * @prev: previously returned memcg, NULL on first invocation 1004 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1005 * 1006 * Returns references to children of the hierarchy below @root, or 1007 * @root itself, or %NULL after a full round-trip. 1008 * 1009 * Caller must pass the return value in @prev on subsequent 1010 * invocations for reference counting, or use mem_cgroup_iter_break() 1011 * to cancel a hierarchy walk before the round-trip is complete. 1012 * 1013 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1014 * in the hierarchy among all concurrent reclaimers operating on the 1015 * same node. 1016 */ 1017 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1018 struct mem_cgroup *prev, 1019 struct mem_cgroup_reclaim_cookie *reclaim) 1020 { 1021 struct mem_cgroup_reclaim_iter *iter; 1022 struct cgroup_subsys_state *css; 1023 struct mem_cgroup *pos; 1024 struct mem_cgroup *next; 1025 1026 if (mem_cgroup_disabled()) 1027 return NULL; 1028 1029 if (!root) 1030 root = root_mem_cgroup; 1031 1032 rcu_read_lock(); 1033 restart: 1034 next = NULL; 1035 1036 if (reclaim) { 1037 int gen; 1038 int nid = reclaim->pgdat->node_id; 1039 1040 iter = &root->nodeinfo[nid]->iter; 1041 gen = atomic_read(&iter->generation); 1042 1043 /* 1044 * On start, join the current reclaim iteration cycle. 1045 * Exit when a concurrent walker completes it. 1046 */ 1047 if (!prev) 1048 reclaim->generation = gen; 1049 else if (reclaim->generation != gen) 1050 goto out_unlock; 1051 1052 pos = READ_ONCE(iter->position); 1053 } else 1054 pos = prev; 1055 1056 css = pos ? &pos->css : NULL; 1057 1058 while ((css = css_next_descendant_pre(css, &root->css))) { 1059 /* 1060 * Verify the css and acquire a reference. The root 1061 * is provided by the caller, so we know it's alive 1062 * and kicking, and don't take an extra reference. 1063 */ 1064 if (css == &root->css || css_tryget(css)) 1065 break; 1066 } 1067 1068 next = mem_cgroup_from_css(css); 1069 1070 if (reclaim) { 1071 /* 1072 * The position could have already been updated by a competing 1073 * thread, so check that the value hasn't changed since we read 1074 * it to avoid reclaiming from the same cgroup twice. 1075 */ 1076 if (cmpxchg(&iter->position, pos, next) != pos) { 1077 if (css && css != &root->css) 1078 css_put(css); 1079 goto restart; 1080 } 1081 1082 if (!next) { 1083 atomic_inc(&iter->generation); 1084 1085 /* 1086 * Reclaimers share the hierarchy walk, and a 1087 * new one might jump in right at the end of 1088 * the hierarchy - make sure they see at least 1089 * one group and restart from the beginning. 1090 */ 1091 if (!prev) 1092 goto restart; 1093 } 1094 } 1095 1096 out_unlock: 1097 rcu_read_unlock(); 1098 if (prev && prev != root) 1099 css_put(&prev->css); 1100 1101 return next; 1102 } 1103 1104 /** 1105 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1106 * @root: hierarchy root 1107 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1108 */ 1109 void mem_cgroup_iter_break(struct mem_cgroup *root, 1110 struct mem_cgroup *prev) 1111 { 1112 if (!root) 1113 root = root_mem_cgroup; 1114 if (prev && prev != root) 1115 css_put(&prev->css); 1116 } 1117 1118 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1119 struct mem_cgroup *dead_memcg) 1120 { 1121 struct mem_cgroup_reclaim_iter *iter; 1122 struct mem_cgroup_per_node *mz; 1123 int nid; 1124 1125 for_each_node(nid) { 1126 mz = from->nodeinfo[nid]; 1127 iter = &mz->iter; 1128 cmpxchg(&iter->position, dead_memcg, NULL); 1129 } 1130 } 1131 1132 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1133 { 1134 struct mem_cgroup *memcg = dead_memcg; 1135 struct mem_cgroup *last; 1136 1137 do { 1138 __invalidate_reclaim_iterators(memcg, dead_memcg); 1139 last = memcg; 1140 } while ((memcg = parent_mem_cgroup(memcg))); 1141 1142 /* 1143 * When cgroup1 non-hierarchy mode is used, 1144 * parent_mem_cgroup() does not walk all the way up to the 1145 * cgroup root (root_mem_cgroup). So we have to handle 1146 * dead_memcg from cgroup root separately. 1147 */ 1148 if (!mem_cgroup_is_root(last)) 1149 __invalidate_reclaim_iterators(root_mem_cgroup, 1150 dead_memcg); 1151 } 1152 1153 /** 1154 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1155 * @memcg: hierarchy root 1156 * @fn: function to call for each task 1157 * @arg: argument passed to @fn 1158 * 1159 * This function iterates over tasks attached to @memcg or to any of its 1160 * descendants and calls @fn for each task. If @fn returns a non-zero 1161 * value, the function breaks the iteration loop. Otherwise, it will iterate 1162 * over all tasks and return 0. 1163 * 1164 * This function must not be called for the root memory cgroup. 1165 */ 1166 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1167 int (*fn)(struct task_struct *, void *), void *arg) 1168 { 1169 struct mem_cgroup *iter; 1170 int ret = 0; 1171 1172 BUG_ON(mem_cgroup_is_root(memcg)); 1173 1174 for_each_mem_cgroup_tree(iter, memcg) { 1175 struct css_task_iter it; 1176 struct task_struct *task; 1177 1178 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1179 while (!ret && (task = css_task_iter_next(&it))) { 1180 ret = fn(task, arg); 1181 /* Avoid potential softlockup warning */ 1182 cond_resched(); 1183 } 1184 css_task_iter_end(&it); 1185 if (ret) { 1186 mem_cgroup_iter_break(memcg, iter); 1187 break; 1188 } 1189 } 1190 } 1191 1192 #ifdef CONFIG_DEBUG_VM 1193 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1194 { 1195 struct mem_cgroup *memcg; 1196 1197 if (mem_cgroup_disabled()) 1198 return; 1199 1200 memcg = folio_memcg(folio); 1201 1202 if (!memcg) 1203 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1204 else 1205 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1206 } 1207 #endif 1208 1209 /** 1210 * folio_lruvec_lock - Lock the lruvec for a folio. 1211 * @folio: Pointer to the folio. 1212 * 1213 * These functions are safe to use under any of the following conditions: 1214 * - folio locked 1215 * - folio_test_lru false 1216 * - folio frozen (refcount of 0) 1217 * 1218 * Return: The lruvec this folio is on with its lock held. 1219 */ 1220 struct lruvec *folio_lruvec_lock(struct folio *folio) 1221 { 1222 struct lruvec *lruvec = folio_lruvec(folio); 1223 1224 spin_lock(&lruvec->lru_lock); 1225 lruvec_memcg_debug(lruvec, folio); 1226 1227 return lruvec; 1228 } 1229 1230 /** 1231 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1232 * @folio: Pointer to the folio. 1233 * 1234 * These functions are safe to use under any of the following conditions: 1235 * - folio locked 1236 * - folio_test_lru false 1237 * - folio frozen (refcount of 0) 1238 * 1239 * Return: The lruvec this folio is on with its lock held and interrupts 1240 * disabled. 1241 */ 1242 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1243 { 1244 struct lruvec *lruvec = folio_lruvec(folio); 1245 1246 spin_lock_irq(&lruvec->lru_lock); 1247 lruvec_memcg_debug(lruvec, folio); 1248 1249 return lruvec; 1250 } 1251 1252 /** 1253 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1254 * @folio: Pointer to the folio. 1255 * @flags: Pointer to irqsave flags. 1256 * 1257 * These functions are safe to use under any of the following conditions: 1258 * - folio locked 1259 * - folio_test_lru false 1260 * - folio frozen (refcount of 0) 1261 * 1262 * Return: The lruvec this folio is on with its lock held and interrupts 1263 * disabled. 1264 */ 1265 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1266 unsigned long *flags) 1267 { 1268 struct lruvec *lruvec = folio_lruvec(folio); 1269 1270 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1271 lruvec_memcg_debug(lruvec, folio); 1272 1273 return lruvec; 1274 } 1275 1276 /** 1277 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1278 * @lruvec: mem_cgroup per zone lru vector 1279 * @lru: index of lru list the page is sitting on 1280 * @zid: zone id of the accounted pages 1281 * @nr_pages: positive when adding or negative when removing 1282 * 1283 * This function must be called under lru_lock, just before a page is added 1284 * to or just after a page is removed from an lru list. 1285 */ 1286 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1287 int zid, int nr_pages) 1288 { 1289 struct mem_cgroup_per_node *mz; 1290 unsigned long *lru_size; 1291 long size; 1292 1293 if (mem_cgroup_disabled()) 1294 return; 1295 1296 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1297 lru_size = &mz->lru_zone_size[zid][lru]; 1298 1299 if (nr_pages < 0) 1300 *lru_size += nr_pages; 1301 1302 size = *lru_size; 1303 if (WARN_ONCE(size < 0, 1304 "%s(%p, %d, %d): lru_size %ld\n", 1305 __func__, lruvec, lru, nr_pages, size)) { 1306 VM_BUG_ON(1); 1307 *lru_size = 0; 1308 } 1309 1310 if (nr_pages > 0) 1311 *lru_size += nr_pages; 1312 } 1313 1314 /** 1315 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1316 * @memcg: the memory cgroup 1317 * 1318 * Returns the maximum amount of memory @mem can be charged with, in 1319 * pages. 1320 */ 1321 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1322 { 1323 unsigned long margin = 0; 1324 unsigned long count; 1325 unsigned long limit; 1326 1327 count = page_counter_read(&memcg->memory); 1328 limit = READ_ONCE(memcg->memory.max); 1329 if (count < limit) 1330 margin = limit - count; 1331 1332 if (do_memsw_account()) { 1333 count = page_counter_read(&memcg->memsw); 1334 limit = READ_ONCE(memcg->memsw.max); 1335 if (count < limit) 1336 margin = min(margin, limit - count); 1337 else 1338 margin = 0; 1339 } 1340 1341 return margin; 1342 } 1343 1344 struct memory_stat { 1345 const char *name; 1346 unsigned int idx; 1347 }; 1348 1349 static const struct memory_stat memory_stats[] = { 1350 { "anon", NR_ANON_MAPPED }, 1351 { "file", NR_FILE_PAGES }, 1352 { "kernel", MEMCG_KMEM }, 1353 { "kernel_stack", NR_KERNEL_STACK_KB }, 1354 { "pagetables", NR_PAGETABLE }, 1355 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1356 { "percpu", MEMCG_PERCPU_B }, 1357 { "sock", MEMCG_SOCK }, 1358 { "vmalloc", MEMCG_VMALLOC }, 1359 { "shmem", NR_SHMEM }, 1360 #ifdef CONFIG_ZSWAP 1361 { "zswap", MEMCG_ZSWAP_B }, 1362 { "zswapped", MEMCG_ZSWAPPED }, 1363 #endif 1364 { "file_mapped", NR_FILE_MAPPED }, 1365 { "file_dirty", NR_FILE_DIRTY }, 1366 { "file_writeback", NR_WRITEBACK }, 1367 #ifdef CONFIG_SWAP 1368 { "swapcached", NR_SWAPCACHE }, 1369 #endif 1370 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1371 { "anon_thp", NR_ANON_THPS }, 1372 { "file_thp", NR_FILE_THPS }, 1373 { "shmem_thp", NR_SHMEM_THPS }, 1374 #endif 1375 { "inactive_anon", NR_INACTIVE_ANON }, 1376 { "active_anon", NR_ACTIVE_ANON }, 1377 { "inactive_file", NR_INACTIVE_FILE }, 1378 { "active_file", NR_ACTIVE_FILE }, 1379 { "unevictable", NR_UNEVICTABLE }, 1380 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1381 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1382 #ifdef CONFIG_HUGETLB_PAGE 1383 { "hugetlb", NR_HUGETLB }, 1384 #endif 1385 1386 /* The memory events */ 1387 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1388 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1389 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1390 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1391 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1392 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1393 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1394 1395 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1396 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1397 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1398 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1399 #ifdef CONFIG_NUMA_BALANCING 1400 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1401 #endif 1402 }; 1403 1404 /* The actual unit of the state item, not the same as the output unit */ 1405 static int memcg_page_state_unit(int item) 1406 { 1407 switch (item) { 1408 case MEMCG_PERCPU_B: 1409 case MEMCG_ZSWAP_B: 1410 case NR_SLAB_RECLAIMABLE_B: 1411 case NR_SLAB_UNRECLAIMABLE_B: 1412 return 1; 1413 case NR_KERNEL_STACK_KB: 1414 return SZ_1K; 1415 default: 1416 return PAGE_SIZE; 1417 } 1418 } 1419 1420 /* Translate stat items to the correct unit for memory.stat output */ 1421 static int memcg_page_state_output_unit(int item) 1422 { 1423 /* 1424 * Workingset state is actually in pages, but we export it to userspace 1425 * as a scalar count of events, so special case it here. 1426 * 1427 * Demotion and promotion activities are exported in pages, consistent 1428 * with their global counterparts. 1429 */ 1430 switch (item) { 1431 case WORKINGSET_REFAULT_ANON: 1432 case WORKINGSET_REFAULT_FILE: 1433 case WORKINGSET_ACTIVATE_ANON: 1434 case WORKINGSET_ACTIVATE_FILE: 1435 case WORKINGSET_RESTORE_ANON: 1436 case WORKINGSET_RESTORE_FILE: 1437 case WORKINGSET_NODERECLAIM: 1438 case PGDEMOTE_KSWAPD: 1439 case PGDEMOTE_DIRECT: 1440 case PGDEMOTE_KHUGEPAGED: 1441 case PGDEMOTE_PROACTIVE: 1442 #ifdef CONFIG_NUMA_BALANCING 1443 case PGPROMOTE_SUCCESS: 1444 #endif 1445 return 1; 1446 default: 1447 return memcg_page_state_unit(item); 1448 } 1449 } 1450 1451 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1452 { 1453 return memcg_page_state(memcg, item) * 1454 memcg_page_state_output_unit(item); 1455 } 1456 1457 #ifdef CONFIG_MEMCG_V1 1458 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1459 { 1460 return memcg_page_state_local(memcg, item) * 1461 memcg_page_state_output_unit(item); 1462 } 1463 #endif 1464 1465 #ifdef CONFIG_HUGETLB_PAGE 1466 static bool memcg_accounts_hugetlb(void) 1467 { 1468 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1469 } 1470 #else /* CONFIG_HUGETLB_PAGE */ 1471 static bool memcg_accounts_hugetlb(void) 1472 { 1473 return false; 1474 } 1475 #endif /* CONFIG_HUGETLB_PAGE */ 1476 1477 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1478 { 1479 int i; 1480 1481 /* 1482 * Provide statistics on the state of the memory subsystem as 1483 * well as cumulative event counters that show past behavior. 1484 * 1485 * This list is ordered following a combination of these gradients: 1486 * 1) generic big picture -> specifics and details 1487 * 2) reflecting userspace activity -> reflecting kernel heuristics 1488 * 1489 * Current memory state: 1490 */ 1491 mem_cgroup_flush_stats(memcg); 1492 1493 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1494 u64 size; 1495 1496 #ifdef CONFIG_HUGETLB_PAGE 1497 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1498 !memcg_accounts_hugetlb()) 1499 continue; 1500 #endif 1501 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1502 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1503 1504 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1505 size += memcg_page_state_output(memcg, 1506 NR_SLAB_RECLAIMABLE_B); 1507 seq_buf_printf(s, "slab %llu\n", size); 1508 } 1509 } 1510 1511 /* Accumulated memory events */ 1512 seq_buf_printf(s, "pgscan %lu\n", 1513 memcg_events(memcg, PGSCAN_KSWAPD) + 1514 memcg_events(memcg, PGSCAN_DIRECT) + 1515 memcg_events(memcg, PGSCAN_PROACTIVE) + 1516 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1517 seq_buf_printf(s, "pgsteal %lu\n", 1518 memcg_events(memcg, PGSTEAL_KSWAPD) + 1519 memcg_events(memcg, PGSTEAL_DIRECT) + 1520 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1521 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1522 1523 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1524 #ifdef CONFIG_MEMCG_V1 1525 if (memcg_vm_event_stat[i] == PGPGIN || 1526 memcg_vm_event_stat[i] == PGPGOUT) 1527 continue; 1528 #endif 1529 seq_buf_printf(s, "%s %lu\n", 1530 vm_event_name(memcg_vm_event_stat[i]), 1531 memcg_events(memcg, memcg_vm_event_stat[i])); 1532 } 1533 } 1534 1535 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1536 { 1537 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1538 memcg_stat_format(memcg, s); 1539 else 1540 memcg1_stat_format(memcg, s); 1541 if (seq_buf_has_overflowed(s)) 1542 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1543 } 1544 1545 /** 1546 * mem_cgroup_print_oom_context: Print OOM information relevant to 1547 * memory controller. 1548 * @memcg: The memory cgroup that went over limit 1549 * @p: Task that is going to be killed 1550 * 1551 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1552 * enabled 1553 */ 1554 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1555 { 1556 rcu_read_lock(); 1557 1558 if (memcg) { 1559 pr_cont(",oom_memcg="); 1560 pr_cont_cgroup_path(memcg->css.cgroup); 1561 } else 1562 pr_cont(",global_oom"); 1563 if (p) { 1564 pr_cont(",task_memcg="); 1565 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1566 } 1567 rcu_read_unlock(); 1568 } 1569 1570 /** 1571 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1572 * memory controller. 1573 * @memcg: The memory cgroup that went over limit 1574 */ 1575 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1576 { 1577 /* Use static buffer, for the caller is holding oom_lock. */ 1578 static char buf[SEQ_BUF_SIZE]; 1579 struct seq_buf s; 1580 unsigned long memory_failcnt; 1581 1582 lockdep_assert_held(&oom_lock); 1583 1584 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1585 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1586 else 1587 memory_failcnt = memcg->memory.failcnt; 1588 1589 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1590 K((u64)page_counter_read(&memcg->memory)), 1591 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1592 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1593 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1594 K((u64)page_counter_read(&memcg->swap)), 1595 K((u64)READ_ONCE(memcg->swap.max)), 1596 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1597 #ifdef CONFIG_MEMCG_V1 1598 else { 1599 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1600 K((u64)page_counter_read(&memcg->memsw)), 1601 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1602 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1603 K((u64)page_counter_read(&memcg->kmem)), 1604 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1605 } 1606 #endif 1607 1608 pr_info("Memory cgroup stats for "); 1609 pr_cont_cgroup_path(memcg->css.cgroup); 1610 pr_cont(":"); 1611 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1612 memory_stat_format(memcg, &s); 1613 seq_buf_do_printk(&s, KERN_INFO); 1614 } 1615 1616 /* 1617 * Return the memory (and swap, if configured) limit for a memcg. 1618 */ 1619 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1620 { 1621 unsigned long max = READ_ONCE(memcg->memory.max); 1622 1623 if (do_memsw_account()) { 1624 if (mem_cgroup_swappiness(memcg)) { 1625 /* Calculate swap excess capacity from memsw limit */ 1626 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1627 1628 max += min(swap, (unsigned long)total_swap_pages); 1629 } 1630 } else { 1631 if (mem_cgroup_swappiness(memcg)) 1632 max += min(READ_ONCE(memcg->swap.max), 1633 (unsigned long)total_swap_pages); 1634 } 1635 return max; 1636 } 1637 1638 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1639 { 1640 return page_counter_read(&memcg->memory); 1641 } 1642 1643 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1644 int order) 1645 { 1646 struct oom_control oc = { 1647 .zonelist = NULL, 1648 .nodemask = NULL, 1649 .memcg = memcg, 1650 .gfp_mask = gfp_mask, 1651 .order = order, 1652 }; 1653 bool ret = true; 1654 1655 if (mutex_lock_killable(&oom_lock)) 1656 return true; 1657 1658 if (mem_cgroup_margin(memcg) >= (1 << order)) 1659 goto unlock; 1660 1661 /* 1662 * A few threads which were not waiting at mutex_lock_killable() can 1663 * fail to bail out. Therefore, check again after holding oom_lock. 1664 */ 1665 ret = task_is_dying() || out_of_memory(&oc); 1666 1667 unlock: 1668 mutex_unlock(&oom_lock); 1669 return ret; 1670 } 1671 1672 /* 1673 * Returns true if successfully killed one or more processes. Though in some 1674 * corner cases it can return true even without killing any process. 1675 */ 1676 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1677 { 1678 bool locked, ret; 1679 1680 if (order > PAGE_ALLOC_COSTLY_ORDER) 1681 return false; 1682 1683 memcg_memory_event(memcg, MEMCG_OOM); 1684 1685 if (!memcg1_oom_prepare(memcg, &locked)) 1686 return false; 1687 1688 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1689 1690 memcg1_oom_finish(memcg, locked); 1691 1692 return ret; 1693 } 1694 1695 /** 1696 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1697 * @victim: task to be killed by the OOM killer 1698 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1699 * 1700 * Returns a pointer to a memory cgroup, which has to be cleaned up 1701 * by killing all belonging OOM-killable tasks. 1702 * 1703 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1704 */ 1705 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1706 struct mem_cgroup *oom_domain) 1707 { 1708 struct mem_cgroup *oom_group = NULL; 1709 struct mem_cgroup *memcg; 1710 1711 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1712 return NULL; 1713 1714 if (!oom_domain) 1715 oom_domain = root_mem_cgroup; 1716 1717 rcu_read_lock(); 1718 1719 memcg = mem_cgroup_from_task(victim); 1720 if (mem_cgroup_is_root(memcg)) 1721 goto out; 1722 1723 /* 1724 * If the victim task has been asynchronously moved to a different 1725 * memory cgroup, we might end up killing tasks outside oom_domain. 1726 * In this case it's better to ignore memory.group.oom. 1727 */ 1728 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1729 goto out; 1730 1731 /* 1732 * Traverse the memory cgroup hierarchy from the victim task's 1733 * cgroup up to the OOMing cgroup (or root) to find the 1734 * highest-level memory cgroup with oom.group set. 1735 */ 1736 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1737 if (READ_ONCE(memcg->oom_group)) 1738 oom_group = memcg; 1739 1740 if (memcg == oom_domain) 1741 break; 1742 } 1743 1744 if (oom_group) 1745 css_get(&oom_group->css); 1746 out: 1747 rcu_read_unlock(); 1748 1749 return oom_group; 1750 } 1751 1752 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1753 { 1754 pr_info("Tasks in "); 1755 pr_cont_cgroup_path(memcg->css.cgroup); 1756 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1757 } 1758 1759 struct memcg_stock_pcp { 1760 local_trylock_t stock_lock; 1761 struct mem_cgroup *cached; /* this never be root cgroup */ 1762 unsigned int nr_pages; 1763 1764 struct obj_cgroup *cached_objcg; 1765 struct pglist_data *cached_pgdat; 1766 unsigned int nr_bytes; 1767 int nr_slab_reclaimable_b; 1768 int nr_slab_unreclaimable_b; 1769 1770 struct work_struct work; 1771 unsigned long flags; 1772 #define FLUSHING_CACHED_CHARGE 0 1773 }; 1774 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 1775 .stock_lock = INIT_LOCAL_TRYLOCK(stock_lock), 1776 }; 1777 static DEFINE_MUTEX(percpu_charge_mutex); 1778 1779 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 1780 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1781 struct mem_cgroup *root_memcg); 1782 1783 /** 1784 * consume_stock: Try to consume stocked charge on this cpu. 1785 * @memcg: memcg to consume from. 1786 * @nr_pages: how many pages to charge. 1787 * @gfp_mask: allocation mask. 1788 * 1789 * The charges will only happen if @memcg matches the current cpu's memcg 1790 * stock, and at least @nr_pages are available in that stock. Failure to 1791 * service an allocation will refill the stock. 1792 * 1793 * returns true if successful, false otherwise. 1794 */ 1795 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages, 1796 gfp_t gfp_mask) 1797 { 1798 struct memcg_stock_pcp *stock; 1799 unsigned int stock_pages; 1800 unsigned long flags; 1801 bool ret = false; 1802 1803 if (nr_pages > MEMCG_CHARGE_BATCH) 1804 return ret; 1805 1806 if (gfpflags_allow_spinning(gfp_mask)) 1807 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1808 else if (!local_trylock_irqsave(&memcg_stock.stock_lock, flags)) 1809 return ret; 1810 1811 stock = this_cpu_ptr(&memcg_stock); 1812 stock_pages = READ_ONCE(stock->nr_pages); 1813 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 1814 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 1815 ret = true; 1816 } 1817 1818 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1819 1820 return ret; 1821 } 1822 1823 /* 1824 * Returns stocks cached in percpu and reset cached information. 1825 */ 1826 static void drain_stock(struct memcg_stock_pcp *stock) 1827 { 1828 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 1829 struct mem_cgroup *old = READ_ONCE(stock->cached); 1830 1831 if (!old) 1832 return; 1833 1834 if (stock_pages) { 1835 page_counter_uncharge(&old->memory, stock_pages); 1836 if (do_memsw_account()) 1837 page_counter_uncharge(&old->memsw, stock_pages); 1838 1839 WRITE_ONCE(stock->nr_pages, 0); 1840 } 1841 1842 css_put(&old->css); 1843 WRITE_ONCE(stock->cached, NULL); 1844 } 1845 1846 static void drain_local_stock(struct work_struct *dummy) 1847 { 1848 struct memcg_stock_pcp *stock; 1849 struct obj_cgroup *old = NULL; 1850 unsigned long flags; 1851 1852 /* 1853 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1854 * drain_stock races is that we always operate on local CPU stock 1855 * here with IRQ disabled 1856 */ 1857 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1858 1859 stock = this_cpu_ptr(&memcg_stock); 1860 old = drain_obj_stock(stock); 1861 drain_stock(stock); 1862 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1863 1864 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1865 obj_cgroup_put(old); 1866 } 1867 1868 /* 1869 * Cache charges(val) to local per_cpu area. 1870 * This will be consumed by consume_stock() function, later. 1871 */ 1872 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1873 { 1874 struct memcg_stock_pcp *stock; 1875 unsigned int stock_pages; 1876 1877 stock = this_cpu_ptr(&memcg_stock); 1878 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 1879 drain_stock(stock); 1880 css_get(&memcg->css); 1881 WRITE_ONCE(stock->cached, memcg); 1882 } 1883 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 1884 WRITE_ONCE(stock->nr_pages, stock_pages); 1885 1886 if (stock_pages > MEMCG_CHARGE_BATCH) 1887 drain_stock(stock); 1888 } 1889 1890 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1891 { 1892 unsigned long flags; 1893 1894 if (!local_trylock_irqsave(&memcg_stock.stock_lock, flags)) { 1895 /* 1896 * In case of unlikely failure to lock percpu stock_lock 1897 * uncharge memcg directly. 1898 */ 1899 if (mem_cgroup_is_root(memcg)) 1900 return; 1901 page_counter_uncharge(&memcg->memory, nr_pages); 1902 if (do_memsw_account()) 1903 page_counter_uncharge(&memcg->memsw, nr_pages); 1904 return; 1905 } 1906 __refill_stock(memcg, nr_pages); 1907 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1908 } 1909 1910 /* 1911 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1912 * of the hierarchy under it. 1913 */ 1914 void drain_all_stock(struct mem_cgroup *root_memcg) 1915 { 1916 int cpu, curcpu; 1917 1918 /* If someone's already draining, avoid adding running more workers. */ 1919 if (!mutex_trylock(&percpu_charge_mutex)) 1920 return; 1921 /* 1922 * Notify other cpus that system-wide "drain" is running 1923 * We do not care about races with the cpu hotplug because cpu down 1924 * as well as workers from this path always operate on the local 1925 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1926 */ 1927 migrate_disable(); 1928 curcpu = smp_processor_id(); 1929 for_each_online_cpu(cpu) { 1930 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1931 struct mem_cgroup *memcg; 1932 bool flush = false; 1933 1934 rcu_read_lock(); 1935 memcg = READ_ONCE(stock->cached); 1936 if (memcg && READ_ONCE(stock->nr_pages) && 1937 mem_cgroup_is_descendant(memcg, root_memcg)) 1938 flush = true; 1939 else if (obj_stock_flush_required(stock, root_memcg)) 1940 flush = true; 1941 rcu_read_unlock(); 1942 1943 if (flush && 1944 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1945 if (cpu == curcpu) 1946 drain_local_stock(&stock->work); 1947 else if (!cpu_is_isolated(cpu)) 1948 schedule_work_on(cpu, &stock->work); 1949 } 1950 } 1951 migrate_enable(); 1952 mutex_unlock(&percpu_charge_mutex); 1953 } 1954 1955 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1956 { 1957 struct memcg_stock_pcp *stock; 1958 struct obj_cgroup *old; 1959 unsigned long flags; 1960 1961 stock = &per_cpu(memcg_stock, cpu); 1962 1963 /* drain_obj_stock requires stock_lock */ 1964 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1965 old = drain_obj_stock(stock); 1966 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1967 1968 drain_stock(stock); 1969 obj_cgroup_put(old); 1970 1971 return 0; 1972 } 1973 1974 static unsigned long reclaim_high(struct mem_cgroup *memcg, 1975 unsigned int nr_pages, 1976 gfp_t gfp_mask) 1977 { 1978 unsigned long nr_reclaimed = 0; 1979 1980 do { 1981 unsigned long pflags; 1982 1983 if (page_counter_read(&memcg->memory) <= 1984 READ_ONCE(memcg->memory.high)) 1985 continue; 1986 1987 memcg_memory_event(memcg, MEMCG_HIGH); 1988 1989 psi_memstall_enter(&pflags); 1990 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 1991 gfp_mask, 1992 MEMCG_RECLAIM_MAY_SWAP, 1993 NULL); 1994 psi_memstall_leave(&pflags); 1995 } while ((memcg = parent_mem_cgroup(memcg)) && 1996 !mem_cgroup_is_root(memcg)); 1997 1998 return nr_reclaimed; 1999 } 2000 2001 static void high_work_func(struct work_struct *work) 2002 { 2003 struct mem_cgroup *memcg; 2004 2005 memcg = container_of(work, struct mem_cgroup, high_work); 2006 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2007 } 2008 2009 /* 2010 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2011 * enough to still cause a significant slowdown in most cases, while still 2012 * allowing diagnostics and tracing to proceed without becoming stuck. 2013 */ 2014 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2015 2016 /* 2017 * When calculating the delay, we use these either side of the exponentiation to 2018 * maintain precision and scale to a reasonable number of jiffies (see the table 2019 * below. 2020 * 2021 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2022 * overage ratio to a delay. 2023 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2024 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2025 * to produce a reasonable delay curve. 2026 * 2027 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2028 * reasonable delay curve compared to precision-adjusted overage, not 2029 * penalising heavily at first, but still making sure that growth beyond the 2030 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2031 * example, with a high of 100 megabytes: 2032 * 2033 * +-------+------------------------+ 2034 * | usage | time to allocate in ms | 2035 * +-------+------------------------+ 2036 * | 100M | 0 | 2037 * | 101M | 6 | 2038 * | 102M | 25 | 2039 * | 103M | 57 | 2040 * | 104M | 102 | 2041 * | 105M | 159 | 2042 * | 106M | 230 | 2043 * | 107M | 313 | 2044 * | 108M | 409 | 2045 * | 109M | 518 | 2046 * | 110M | 639 | 2047 * | 111M | 774 | 2048 * | 112M | 921 | 2049 * | 113M | 1081 | 2050 * | 114M | 1254 | 2051 * | 115M | 1439 | 2052 * | 116M | 1638 | 2053 * | 117M | 1849 | 2054 * | 118M | 2000 | 2055 * | 119M | 2000 | 2056 * | 120M | 2000 | 2057 * +-------+------------------------+ 2058 */ 2059 #define MEMCG_DELAY_PRECISION_SHIFT 20 2060 #define MEMCG_DELAY_SCALING_SHIFT 14 2061 2062 static u64 calculate_overage(unsigned long usage, unsigned long high) 2063 { 2064 u64 overage; 2065 2066 if (usage <= high) 2067 return 0; 2068 2069 /* 2070 * Prevent division by 0 in overage calculation by acting as if 2071 * it was a threshold of 1 page 2072 */ 2073 high = max(high, 1UL); 2074 2075 overage = usage - high; 2076 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2077 return div64_u64(overage, high); 2078 } 2079 2080 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2081 { 2082 u64 overage, max_overage = 0; 2083 2084 do { 2085 overage = calculate_overage(page_counter_read(&memcg->memory), 2086 READ_ONCE(memcg->memory.high)); 2087 max_overage = max(overage, max_overage); 2088 } while ((memcg = parent_mem_cgroup(memcg)) && 2089 !mem_cgroup_is_root(memcg)); 2090 2091 return max_overage; 2092 } 2093 2094 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2095 { 2096 u64 overage, max_overage = 0; 2097 2098 do { 2099 overage = calculate_overage(page_counter_read(&memcg->swap), 2100 READ_ONCE(memcg->swap.high)); 2101 if (overage) 2102 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2103 max_overage = max(overage, max_overage); 2104 } while ((memcg = parent_mem_cgroup(memcg)) && 2105 !mem_cgroup_is_root(memcg)); 2106 2107 return max_overage; 2108 } 2109 2110 /* 2111 * Get the number of jiffies that we should penalise a mischievous cgroup which 2112 * is exceeding its memory.high by checking both it and its ancestors. 2113 */ 2114 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2115 unsigned int nr_pages, 2116 u64 max_overage) 2117 { 2118 unsigned long penalty_jiffies; 2119 2120 if (!max_overage) 2121 return 0; 2122 2123 /* 2124 * We use overage compared to memory.high to calculate the number of 2125 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2126 * fairly lenient on small overages, and increasingly harsh when the 2127 * memcg in question makes it clear that it has no intention of stopping 2128 * its crazy behaviour, so we exponentially increase the delay based on 2129 * overage amount. 2130 */ 2131 penalty_jiffies = max_overage * max_overage * HZ; 2132 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2133 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2134 2135 /* 2136 * Factor in the task's own contribution to the overage, such that four 2137 * N-sized allocations are throttled approximately the same as one 2138 * 4N-sized allocation. 2139 * 2140 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2141 * larger the current charge patch is than that. 2142 */ 2143 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2144 } 2145 2146 /* 2147 * Reclaims memory over the high limit. Called directly from 2148 * try_charge() (context permitting), as well as from the userland 2149 * return path where reclaim is always able to block. 2150 */ 2151 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2152 { 2153 unsigned long penalty_jiffies; 2154 unsigned long pflags; 2155 unsigned long nr_reclaimed; 2156 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2157 int nr_retries = MAX_RECLAIM_RETRIES; 2158 struct mem_cgroup *memcg; 2159 bool in_retry = false; 2160 2161 if (likely(!nr_pages)) 2162 return; 2163 2164 memcg = get_mem_cgroup_from_mm(current->mm); 2165 current->memcg_nr_pages_over_high = 0; 2166 2167 retry_reclaim: 2168 /* 2169 * Bail if the task is already exiting. Unlike memory.max, 2170 * memory.high enforcement isn't as strict, and there is no 2171 * OOM killer involved, which means the excess could already 2172 * be much bigger (and still growing) than it could for 2173 * memory.max; the dying task could get stuck in fruitless 2174 * reclaim for a long time, which isn't desirable. 2175 */ 2176 if (task_is_dying()) 2177 goto out; 2178 2179 /* 2180 * The allocating task should reclaim at least the batch size, but for 2181 * subsequent retries we only want to do what's necessary to prevent oom 2182 * or breaching resource isolation. 2183 * 2184 * This is distinct from memory.max or page allocator behaviour because 2185 * memory.high is currently batched, whereas memory.max and the page 2186 * allocator run every time an allocation is made. 2187 */ 2188 nr_reclaimed = reclaim_high(memcg, 2189 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2190 gfp_mask); 2191 2192 /* 2193 * memory.high is breached and reclaim is unable to keep up. Throttle 2194 * allocators proactively to slow down excessive growth. 2195 */ 2196 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2197 mem_find_max_overage(memcg)); 2198 2199 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2200 swap_find_max_overage(memcg)); 2201 2202 /* 2203 * Clamp the max delay per usermode return so as to still keep the 2204 * application moving forwards and also permit diagnostics, albeit 2205 * extremely slowly. 2206 */ 2207 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2208 2209 /* 2210 * Don't sleep if the amount of jiffies this memcg owes us is so low 2211 * that it's not even worth doing, in an attempt to be nice to those who 2212 * go only a small amount over their memory.high value and maybe haven't 2213 * been aggressively reclaimed enough yet. 2214 */ 2215 if (penalty_jiffies <= HZ / 100) 2216 goto out; 2217 2218 /* 2219 * If reclaim is making forward progress but we're still over 2220 * memory.high, we want to encourage that rather than doing allocator 2221 * throttling. 2222 */ 2223 if (nr_reclaimed || nr_retries--) { 2224 in_retry = true; 2225 goto retry_reclaim; 2226 } 2227 2228 /* 2229 * Reclaim didn't manage to push usage below the limit, slow 2230 * this allocating task down. 2231 * 2232 * If we exit early, we're guaranteed to die (since 2233 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2234 * need to account for any ill-begotten jiffies to pay them off later. 2235 */ 2236 psi_memstall_enter(&pflags); 2237 schedule_timeout_killable(penalty_jiffies); 2238 psi_memstall_leave(&pflags); 2239 2240 out: 2241 css_put(&memcg->css); 2242 } 2243 2244 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2245 unsigned int nr_pages) 2246 { 2247 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2248 int nr_retries = MAX_RECLAIM_RETRIES; 2249 struct mem_cgroup *mem_over_limit; 2250 struct page_counter *counter; 2251 unsigned long nr_reclaimed; 2252 bool passed_oom = false; 2253 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2254 bool drained = false; 2255 bool raised_max_event = false; 2256 unsigned long pflags; 2257 2258 retry: 2259 if (consume_stock(memcg, nr_pages, gfp_mask)) 2260 return 0; 2261 2262 if (!gfpflags_allow_spinning(gfp_mask)) 2263 /* Avoid the refill and flush of the older stock */ 2264 batch = nr_pages; 2265 2266 if (!do_memsw_account() || 2267 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2268 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2269 goto done_restock; 2270 if (do_memsw_account()) 2271 page_counter_uncharge(&memcg->memsw, batch); 2272 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2273 } else { 2274 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2275 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2276 } 2277 2278 if (batch > nr_pages) { 2279 batch = nr_pages; 2280 goto retry; 2281 } 2282 2283 /* 2284 * Prevent unbounded recursion when reclaim operations need to 2285 * allocate memory. This might exceed the limits temporarily, 2286 * but we prefer facilitating memory reclaim and getting back 2287 * under the limit over triggering OOM kills in these cases. 2288 */ 2289 if (unlikely(current->flags & PF_MEMALLOC)) 2290 goto force; 2291 2292 if (unlikely(task_in_memcg_oom(current))) 2293 goto nomem; 2294 2295 if (!gfpflags_allow_blocking(gfp_mask)) 2296 goto nomem; 2297 2298 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2299 raised_max_event = true; 2300 2301 psi_memstall_enter(&pflags); 2302 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2303 gfp_mask, reclaim_options, NULL); 2304 psi_memstall_leave(&pflags); 2305 2306 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2307 goto retry; 2308 2309 if (!drained) { 2310 drain_all_stock(mem_over_limit); 2311 drained = true; 2312 goto retry; 2313 } 2314 2315 if (gfp_mask & __GFP_NORETRY) 2316 goto nomem; 2317 /* 2318 * Even though the limit is exceeded at this point, reclaim 2319 * may have been able to free some pages. Retry the charge 2320 * before killing the task. 2321 * 2322 * Only for regular pages, though: huge pages are rather 2323 * unlikely to succeed so close to the limit, and we fall back 2324 * to regular pages anyway in case of failure. 2325 */ 2326 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2327 goto retry; 2328 2329 if (nr_retries--) 2330 goto retry; 2331 2332 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2333 goto nomem; 2334 2335 /* Avoid endless loop for tasks bypassed by the oom killer */ 2336 if (passed_oom && task_is_dying()) 2337 goto nomem; 2338 2339 /* 2340 * keep retrying as long as the memcg oom killer is able to make 2341 * a forward progress or bypass the charge if the oom killer 2342 * couldn't make any progress. 2343 */ 2344 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2345 get_order(nr_pages * PAGE_SIZE))) { 2346 passed_oom = true; 2347 nr_retries = MAX_RECLAIM_RETRIES; 2348 goto retry; 2349 } 2350 nomem: 2351 /* 2352 * Memcg doesn't have a dedicated reserve for atomic 2353 * allocations. But like the global atomic pool, we need to 2354 * put the burden of reclaim on regular allocation requests 2355 * and let these go through as privileged allocations. 2356 */ 2357 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2358 return -ENOMEM; 2359 force: 2360 /* 2361 * If the allocation has to be enforced, don't forget to raise 2362 * a MEMCG_MAX event. 2363 */ 2364 if (!raised_max_event) 2365 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2366 2367 /* 2368 * The allocation either can't fail or will lead to more memory 2369 * being freed very soon. Allow memory usage go over the limit 2370 * temporarily by force charging it. 2371 */ 2372 page_counter_charge(&memcg->memory, nr_pages); 2373 if (do_memsw_account()) 2374 page_counter_charge(&memcg->memsw, nr_pages); 2375 2376 return 0; 2377 2378 done_restock: 2379 if (batch > nr_pages) 2380 refill_stock(memcg, batch - nr_pages); 2381 2382 /* 2383 * If the hierarchy is above the normal consumption range, schedule 2384 * reclaim on returning to userland. We can perform reclaim here 2385 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2386 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2387 * not recorded as it most likely matches current's and won't 2388 * change in the meantime. As high limit is checked again before 2389 * reclaim, the cost of mismatch is negligible. 2390 */ 2391 do { 2392 bool mem_high, swap_high; 2393 2394 mem_high = page_counter_read(&memcg->memory) > 2395 READ_ONCE(memcg->memory.high); 2396 swap_high = page_counter_read(&memcg->swap) > 2397 READ_ONCE(memcg->swap.high); 2398 2399 /* Don't bother a random interrupted task */ 2400 if (!in_task()) { 2401 if (mem_high) { 2402 schedule_work(&memcg->high_work); 2403 break; 2404 } 2405 continue; 2406 } 2407 2408 if (mem_high || swap_high) { 2409 /* 2410 * The allocating tasks in this cgroup will need to do 2411 * reclaim or be throttled to prevent further growth 2412 * of the memory or swap footprints. 2413 * 2414 * Target some best-effort fairness between the tasks, 2415 * and distribute reclaim work and delay penalties 2416 * based on how much each task is actually allocating. 2417 */ 2418 current->memcg_nr_pages_over_high += batch; 2419 set_notify_resume(current); 2420 break; 2421 } 2422 } while ((memcg = parent_mem_cgroup(memcg))); 2423 2424 /* 2425 * Reclaim is set up above to be called from the userland 2426 * return path. But also attempt synchronous reclaim to avoid 2427 * excessive overrun while the task is still inside the 2428 * kernel. If this is successful, the return path will see it 2429 * when it rechecks the overage and simply bail out. 2430 */ 2431 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2432 !(current->flags & PF_MEMALLOC) && 2433 gfpflags_allow_blocking(gfp_mask)) 2434 mem_cgroup_handle_over_high(gfp_mask); 2435 return 0; 2436 } 2437 2438 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2439 unsigned int nr_pages) 2440 { 2441 if (mem_cgroup_is_root(memcg)) 2442 return 0; 2443 2444 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2445 } 2446 2447 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2448 { 2449 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2450 /* 2451 * Any of the following ensures page's memcg stability: 2452 * 2453 * - the page lock 2454 * - LRU isolation 2455 * - exclusive reference 2456 */ 2457 folio->memcg_data = (unsigned long)memcg; 2458 } 2459 2460 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2461 struct pglist_data *pgdat, 2462 enum node_stat_item idx, int nr) 2463 { 2464 struct mem_cgroup *memcg; 2465 struct lruvec *lruvec; 2466 2467 rcu_read_lock(); 2468 memcg = obj_cgroup_memcg(objcg); 2469 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2470 __mod_memcg_lruvec_state(lruvec, idx, nr); 2471 rcu_read_unlock(); 2472 } 2473 2474 static __always_inline 2475 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2476 { 2477 /* 2478 * Slab objects are accounted individually, not per-page. 2479 * Memcg membership data for each individual object is saved in 2480 * slab->obj_exts. 2481 */ 2482 if (folio_test_slab(folio)) { 2483 struct slabobj_ext *obj_exts; 2484 struct slab *slab; 2485 unsigned int off; 2486 2487 slab = folio_slab(folio); 2488 obj_exts = slab_obj_exts(slab); 2489 if (!obj_exts) 2490 return NULL; 2491 2492 off = obj_to_index(slab->slab_cache, slab, p); 2493 if (obj_exts[off].objcg) 2494 return obj_cgroup_memcg(obj_exts[off].objcg); 2495 2496 return NULL; 2497 } 2498 2499 /* 2500 * folio_memcg_check() is used here, because in theory we can encounter 2501 * a folio where the slab flag has been cleared already, but 2502 * slab->obj_exts has not been freed yet 2503 * folio_memcg_check() will guarantee that a proper memory 2504 * cgroup pointer or NULL will be returned. 2505 */ 2506 return folio_memcg_check(folio); 2507 } 2508 2509 /* 2510 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2511 * It is not suitable for objects allocated using vmalloc(). 2512 * 2513 * A passed kernel object must be a slab object or a generic kernel page. 2514 * 2515 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2516 * cgroup_mutex, etc. 2517 */ 2518 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2519 { 2520 if (mem_cgroup_disabled()) 2521 return NULL; 2522 2523 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2524 } 2525 2526 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2527 { 2528 struct obj_cgroup *objcg = NULL; 2529 2530 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2531 objcg = rcu_dereference(memcg->objcg); 2532 if (likely(objcg && obj_cgroup_tryget(objcg))) 2533 break; 2534 objcg = NULL; 2535 } 2536 return objcg; 2537 } 2538 2539 static struct obj_cgroup *current_objcg_update(void) 2540 { 2541 struct mem_cgroup *memcg; 2542 struct obj_cgroup *old, *objcg = NULL; 2543 2544 do { 2545 /* Atomically drop the update bit. */ 2546 old = xchg(¤t->objcg, NULL); 2547 if (old) { 2548 old = (struct obj_cgroup *) 2549 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2550 obj_cgroup_put(old); 2551 2552 old = NULL; 2553 } 2554 2555 /* If new objcg is NULL, no reason for the second atomic update. */ 2556 if (!current->mm || (current->flags & PF_KTHREAD)) 2557 return NULL; 2558 2559 /* 2560 * Release the objcg pointer from the previous iteration, 2561 * if try_cmpxcg() below fails. 2562 */ 2563 if (unlikely(objcg)) { 2564 obj_cgroup_put(objcg); 2565 objcg = NULL; 2566 } 2567 2568 /* 2569 * Obtain the new objcg pointer. The current task can be 2570 * asynchronously moved to another memcg and the previous 2571 * memcg can be offlined. So let's get the memcg pointer 2572 * and try get a reference to objcg under a rcu read lock. 2573 */ 2574 2575 rcu_read_lock(); 2576 memcg = mem_cgroup_from_task(current); 2577 objcg = __get_obj_cgroup_from_memcg(memcg); 2578 rcu_read_unlock(); 2579 2580 /* 2581 * Try set up a new objcg pointer atomically. If it 2582 * fails, it means the update flag was set concurrently, so 2583 * the whole procedure should be repeated. 2584 */ 2585 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2586 2587 return objcg; 2588 } 2589 2590 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2591 { 2592 struct mem_cgroup *memcg; 2593 struct obj_cgroup *objcg; 2594 2595 if (in_task()) { 2596 memcg = current->active_memcg; 2597 if (unlikely(memcg)) 2598 goto from_memcg; 2599 2600 objcg = READ_ONCE(current->objcg); 2601 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2602 objcg = current_objcg_update(); 2603 /* 2604 * Objcg reference is kept by the task, so it's safe 2605 * to use the objcg by the current task. 2606 */ 2607 return objcg; 2608 } 2609 2610 memcg = this_cpu_read(int_active_memcg); 2611 if (unlikely(memcg)) 2612 goto from_memcg; 2613 2614 return NULL; 2615 2616 from_memcg: 2617 objcg = NULL; 2618 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2619 /* 2620 * Memcg pointer is protected by scope (see set_active_memcg()) 2621 * and is pinning the corresponding objcg, so objcg can't go 2622 * away and can be used within the scope without any additional 2623 * protection. 2624 */ 2625 objcg = rcu_dereference_check(memcg->objcg, 1); 2626 if (likely(objcg)) 2627 break; 2628 } 2629 2630 return objcg; 2631 } 2632 2633 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2634 { 2635 struct obj_cgroup *objcg; 2636 2637 if (!memcg_kmem_online()) 2638 return NULL; 2639 2640 if (folio_memcg_kmem(folio)) { 2641 objcg = __folio_objcg(folio); 2642 obj_cgroup_get(objcg); 2643 } else { 2644 struct mem_cgroup *memcg; 2645 2646 rcu_read_lock(); 2647 memcg = __folio_memcg(folio); 2648 if (memcg) 2649 objcg = __get_obj_cgroup_from_memcg(memcg); 2650 else 2651 objcg = NULL; 2652 rcu_read_unlock(); 2653 } 2654 return objcg; 2655 } 2656 2657 /* 2658 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2659 * @objcg: object cgroup to uncharge 2660 * @nr_pages: number of pages to uncharge 2661 */ 2662 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2663 unsigned int nr_pages) 2664 { 2665 struct mem_cgroup *memcg; 2666 2667 memcg = get_mem_cgroup_from_objcg(objcg); 2668 2669 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2670 memcg1_account_kmem(memcg, -nr_pages); 2671 if (!mem_cgroup_is_root(memcg)) 2672 refill_stock(memcg, nr_pages); 2673 2674 css_put(&memcg->css); 2675 } 2676 2677 /* 2678 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2679 * @objcg: object cgroup to charge 2680 * @gfp: reclaim mode 2681 * @nr_pages: number of pages to charge 2682 * 2683 * Returns 0 on success, an error code on failure. 2684 */ 2685 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2686 unsigned int nr_pages) 2687 { 2688 struct mem_cgroup *memcg; 2689 int ret; 2690 2691 memcg = get_mem_cgroup_from_objcg(objcg); 2692 2693 ret = try_charge_memcg(memcg, gfp, nr_pages); 2694 if (ret) 2695 goto out; 2696 2697 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2698 memcg1_account_kmem(memcg, nr_pages); 2699 out: 2700 css_put(&memcg->css); 2701 2702 return ret; 2703 } 2704 2705 static struct obj_cgroup *page_objcg(const struct page *page) 2706 { 2707 unsigned long memcg_data = page->memcg_data; 2708 2709 if (mem_cgroup_disabled() || !memcg_data) 2710 return NULL; 2711 2712 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2713 page); 2714 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2715 } 2716 2717 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2718 { 2719 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2720 } 2721 2722 /** 2723 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2724 * @page: page to charge 2725 * @gfp: reclaim mode 2726 * @order: allocation order 2727 * 2728 * Returns 0 on success, an error code on failure. 2729 */ 2730 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2731 { 2732 struct obj_cgroup *objcg; 2733 int ret = 0; 2734 2735 objcg = current_obj_cgroup(); 2736 if (objcg) { 2737 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2738 if (!ret) { 2739 obj_cgroup_get(objcg); 2740 page_set_objcg(page, objcg); 2741 return 0; 2742 } 2743 } 2744 return ret; 2745 } 2746 2747 /** 2748 * __memcg_kmem_uncharge_page: uncharge a kmem page 2749 * @page: page to uncharge 2750 * @order: allocation order 2751 */ 2752 void __memcg_kmem_uncharge_page(struct page *page, int order) 2753 { 2754 struct obj_cgroup *objcg = page_objcg(page); 2755 unsigned int nr_pages = 1 << order; 2756 2757 if (!objcg) 2758 return; 2759 2760 obj_cgroup_uncharge_pages(objcg, nr_pages); 2761 page->memcg_data = 0; 2762 obj_cgroup_put(objcg); 2763 } 2764 2765 /* Replace the stock objcg with objcg, return the old objcg */ 2766 static struct obj_cgroup *replace_stock_objcg(struct memcg_stock_pcp *stock, 2767 struct obj_cgroup *objcg) 2768 { 2769 struct obj_cgroup *old = NULL; 2770 2771 old = drain_obj_stock(stock); 2772 obj_cgroup_get(objcg); 2773 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2774 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2775 WRITE_ONCE(stock->cached_objcg, objcg); 2776 return old; 2777 } 2778 2779 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 2780 enum node_stat_item idx, int nr) 2781 { 2782 struct memcg_stock_pcp *stock; 2783 struct obj_cgroup *old = NULL; 2784 unsigned long flags; 2785 int *bytes; 2786 2787 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2788 stock = this_cpu_ptr(&memcg_stock); 2789 2790 /* 2791 * Save vmstat data in stock and skip vmstat array update unless 2792 * accumulating over a page of vmstat data or when pgdat or idx 2793 * changes. 2794 */ 2795 if (READ_ONCE(stock->cached_objcg) != objcg) { 2796 old = replace_stock_objcg(stock, objcg); 2797 stock->cached_pgdat = pgdat; 2798 } else if (stock->cached_pgdat != pgdat) { 2799 /* Flush the existing cached vmstat data */ 2800 struct pglist_data *oldpg = stock->cached_pgdat; 2801 2802 if (stock->nr_slab_reclaimable_b) { 2803 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2804 stock->nr_slab_reclaimable_b); 2805 stock->nr_slab_reclaimable_b = 0; 2806 } 2807 if (stock->nr_slab_unreclaimable_b) { 2808 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2809 stock->nr_slab_unreclaimable_b); 2810 stock->nr_slab_unreclaimable_b = 0; 2811 } 2812 stock->cached_pgdat = pgdat; 2813 } 2814 2815 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2816 : &stock->nr_slab_unreclaimable_b; 2817 /* 2818 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2819 * cached locally at least once before pushing it out. 2820 */ 2821 if (!*bytes) { 2822 *bytes = nr; 2823 nr = 0; 2824 } else { 2825 *bytes += nr; 2826 if (abs(*bytes) > PAGE_SIZE) { 2827 nr = *bytes; 2828 *bytes = 0; 2829 } else { 2830 nr = 0; 2831 } 2832 } 2833 if (nr) 2834 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2835 2836 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2837 obj_cgroup_put(old); 2838 } 2839 2840 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 2841 { 2842 struct memcg_stock_pcp *stock; 2843 unsigned long flags; 2844 bool ret = false; 2845 2846 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2847 2848 stock = this_cpu_ptr(&memcg_stock); 2849 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2850 stock->nr_bytes -= nr_bytes; 2851 ret = true; 2852 } 2853 2854 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2855 2856 return ret; 2857 } 2858 2859 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2860 { 2861 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2862 2863 if (!old) 2864 return NULL; 2865 2866 if (stock->nr_bytes) { 2867 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2868 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2869 2870 if (nr_pages) { 2871 struct mem_cgroup *memcg; 2872 2873 memcg = get_mem_cgroup_from_objcg(old); 2874 2875 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2876 memcg1_account_kmem(memcg, -nr_pages); 2877 __refill_stock(memcg, nr_pages); 2878 2879 css_put(&memcg->css); 2880 } 2881 2882 /* 2883 * The leftover is flushed to the centralized per-memcg value. 2884 * On the next attempt to refill obj stock it will be moved 2885 * to a per-cpu stock (probably, on an other CPU), see 2886 * refill_obj_stock(). 2887 * 2888 * How often it's flushed is a trade-off between the memory 2889 * limit enforcement accuracy and potential CPU contention, 2890 * so it might be changed in the future. 2891 */ 2892 atomic_add(nr_bytes, &old->nr_charged_bytes); 2893 stock->nr_bytes = 0; 2894 } 2895 2896 /* 2897 * Flush the vmstat data in current stock 2898 */ 2899 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2900 if (stock->nr_slab_reclaimable_b) { 2901 __mod_objcg_mlstate(old, stock->cached_pgdat, 2902 NR_SLAB_RECLAIMABLE_B, 2903 stock->nr_slab_reclaimable_b); 2904 stock->nr_slab_reclaimable_b = 0; 2905 } 2906 if (stock->nr_slab_unreclaimable_b) { 2907 __mod_objcg_mlstate(old, stock->cached_pgdat, 2908 NR_SLAB_UNRECLAIMABLE_B, 2909 stock->nr_slab_unreclaimable_b); 2910 stock->nr_slab_unreclaimable_b = 0; 2911 } 2912 stock->cached_pgdat = NULL; 2913 } 2914 2915 WRITE_ONCE(stock->cached_objcg, NULL); 2916 /* 2917 * The `old' objects needs to be released by the caller via 2918 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 2919 */ 2920 return old; 2921 } 2922 2923 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2924 struct mem_cgroup *root_memcg) 2925 { 2926 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2927 struct mem_cgroup *memcg; 2928 2929 if (objcg) { 2930 memcg = obj_cgroup_memcg(objcg); 2931 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2932 return true; 2933 } 2934 2935 return false; 2936 } 2937 2938 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2939 bool allow_uncharge) 2940 { 2941 struct memcg_stock_pcp *stock; 2942 struct obj_cgroup *old = NULL; 2943 unsigned long flags; 2944 unsigned int nr_pages = 0; 2945 2946 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2947 2948 stock = this_cpu_ptr(&memcg_stock); 2949 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2950 old = replace_stock_objcg(stock, objcg); 2951 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2952 } 2953 stock->nr_bytes += nr_bytes; 2954 2955 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 2956 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2957 stock->nr_bytes &= (PAGE_SIZE - 1); 2958 } 2959 2960 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2961 obj_cgroup_put(old); 2962 2963 if (nr_pages) 2964 obj_cgroup_uncharge_pages(objcg, nr_pages); 2965 } 2966 2967 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 2968 { 2969 unsigned int nr_pages, nr_bytes; 2970 int ret; 2971 2972 if (consume_obj_stock(objcg, size)) 2973 return 0; 2974 2975 /* 2976 * In theory, objcg->nr_charged_bytes can have enough 2977 * pre-charged bytes to satisfy the allocation. However, 2978 * flushing objcg->nr_charged_bytes requires two atomic 2979 * operations, and objcg->nr_charged_bytes can't be big. 2980 * The shared objcg->nr_charged_bytes can also become a 2981 * performance bottleneck if all tasks of the same memcg are 2982 * trying to update it. So it's better to ignore it and try 2983 * grab some new pages. The stock's nr_bytes will be flushed to 2984 * objcg->nr_charged_bytes later on when objcg changes. 2985 * 2986 * The stock's nr_bytes may contain enough pre-charged bytes 2987 * to allow one less page from being charged, but we can't rely 2988 * on the pre-charged bytes not being changed outside of 2989 * consume_obj_stock() or refill_obj_stock(). So ignore those 2990 * pre-charged bytes as well when charging pages. To avoid a 2991 * page uncharge right after a page charge, we set the 2992 * allow_uncharge flag to false when calling refill_obj_stock() 2993 * to temporarily allow the pre-charged bytes to exceed the page 2994 * size limit. The maximum reachable value of the pre-charged 2995 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 2996 * race. 2997 */ 2998 nr_pages = size >> PAGE_SHIFT; 2999 nr_bytes = size & (PAGE_SIZE - 1); 3000 3001 if (nr_bytes) 3002 nr_pages += 1; 3003 3004 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3005 if (!ret && nr_bytes) 3006 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3007 3008 return ret; 3009 } 3010 3011 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3012 { 3013 refill_obj_stock(objcg, size, true); 3014 } 3015 3016 static inline size_t obj_full_size(struct kmem_cache *s) 3017 { 3018 /* 3019 * For each accounted object there is an extra space which is used 3020 * to store obj_cgroup membership. Charge it too. 3021 */ 3022 return s->size + sizeof(struct obj_cgroup *); 3023 } 3024 3025 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3026 gfp_t flags, size_t size, void **p) 3027 { 3028 struct obj_cgroup *objcg; 3029 struct slab *slab; 3030 unsigned long off; 3031 size_t i; 3032 3033 /* 3034 * The obtained objcg pointer is safe to use within the current scope, 3035 * defined by current task or set_active_memcg() pair. 3036 * obj_cgroup_get() is used to get a permanent reference. 3037 */ 3038 objcg = current_obj_cgroup(); 3039 if (!objcg) 3040 return true; 3041 3042 /* 3043 * slab_alloc_node() avoids the NULL check, so we might be called with a 3044 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3045 * the whole requested size. 3046 * return success as there's nothing to free back 3047 */ 3048 if (unlikely(*p == NULL)) 3049 return true; 3050 3051 flags &= gfp_allowed_mask; 3052 3053 if (lru) { 3054 int ret; 3055 struct mem_cgroup *memcg; 3056 3057 memcg = get_mem_cgroup_from_objcg(objcg); 3058 ret = memcg_list_lru_alloc(memcg, lru, flags); 3059 css_put(&memcg->css); 3060 3061 if (ret) 3062 return false; 3063 } 3064 3065 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 3066 return false; 3067 3068 for (i = 0; i < size; i++) { 3069 slab = virt_to_slab(p[i]); 3070 3071 if (!slab_obj_exts(slab) && 3072 alloc_slab_obj_exts(slab, s, flags, false)) { 3073 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3074 continue; 3075 } 3076 3077 off = obj_to_index(s, slab, p[i]); 3078 obj_cgroup_get(objcg); 3079 slab_obj_exts(slab)[off].objcg = objcg; 3080 mod_objcg_state(objcg, slab_pgdat(slab), 3081 cache_vmstat_idx(s), obj_full_size(s)); 3082 } 3083 3084 return true; 3085 } 3086 3087 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3088 void **p, int objects, struct slabobj_ext *obj_exts) 3089 { 3090 for (int i = 0; i < objects; i++) { 3091 struct obj_cgroup *objcg; 3092 unsigned int off; 3093 3094 off = obj_to_index(s, slab, p[i]); 3095 objcg = obj_exts[off].objcg; 3096 if (!objcg) 3097 continue; 3098 3099 obj_exts[off].objcg = NULL; 3100 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3101 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3102 -obj_full_size(s)); 3103 obj_cgroup_put(objcg); 3104 } 3105 } 3106 3107 /* 3108 * The objcg is only set on the first page, so transfer it to all the 3109 * other pages. 3110 */ 3111 void split_page_memcg(struct page *page, unsigned order) 3112 { 3113 struct obj_cgroup *objcg = page_objcg(page); 3114 unsigned int i, nr = 1 << order; 3115 3116 if (!objcg) 3117 return; 3118 3119 for (i = 1; i < nr; i++) 3120 page_set_objcg(&page[i], objcg); 3121 3122 obj_cgroup_get_many(objcg, nr - 1); 3123 } 3124 3125 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3126 unsigned new_order) 3127 { 3128 unsigned new_refs; 3129 3130 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3131 return; 3132 3133 new_refs = (1 << (old_order - new_order)) - 1; 3134 css_get_many(&__folio_memcg(folio)->css, new_refs); 3135 } 3136 3137 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3138 { 3139 unsigned long val; 3140 3141 if (mem_cgroup_is_root(memcg)) { 3142 /* 3143 * Approximate root's usage from global state. This isn't 3144 * perfect, but the root usage was always an approximation. 3145 */ 3146 val = global_node_page_state(NR_FILE_PAGES) + 3147 global_node_page_state(NR_ANON_MAPPED); 3148 if (swap) 3149 val += total_swap_pages - get_nr_swap_pages(); 3150 } else { 3151 if (!swap) 3152 val = page_counter_read(&memcg->memory); 3153 else 3154 val = page_counter_read(&memcg->memsw); 3155 } 3156 return val; 3157 } 3158 3159 static int memcg_online_kmem(struct mem_cgroup *memcg) 3160 { 3161 struct obj_cgroup *objcg; 3162 3163 if (mem_cgroup_kmem_disabled()) 3164 return 0; 3165 3166 if (unlikely(mem_cgroup_is_root(memcg))) 3167 return 0; 3168 3169 objcg = obj_cgroup_alloc(); 3170 if (!objcg) 3171 return -ENOMEM; 3172 3173 objcg->memcg = memcg; 3174 rcu_assign_pointer(memcg->objcg, objcg); 3175 obj_cgroup_get(objcg); 3176 memcg->orig_objcg = objcg; 3177 3178 static_branch_enable(&memcg_kmem_online_key); 3179 3180 memcg->kmemcg_id = memcg->id.id; 3181 3182 return 0; 3183 } 3184 3185 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3186 { 3187 struct mem_cgroup *parent; 3188 3189 if (mem_cgroup_kmem_disabled()) 3190 return; 3191 3192 if (unlikely(mem_cgroup_is_root(memcg))) 3193 return; 3194 3195 parent = parent_mem_cgroup(memcg); 3196 if (!parent) 3197 parent = root_mem_cgroup; 3198 3199 memcg_reparent_list_lrus(memcg, parent); 3200 3201 /* 3202 * Objcg's reparenting must be after list_lru's, make sure list_lru 3203 * helpers won't use parent's list_lru until child is drained. 3204 */ 3205 memcg_reparent_objcgs(memcg, parent); 3206 } 3207 3208 #ifdef CONFIG_CGROUP_WRITEBACK 3209 3210 #include <trace/events/writeback.h> 3211 3212 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3213 { 3214 return wb_domain_init(&memcg->cgwb_domain, gfp); 3215 } 3216 3217 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3218 { 3219 wb_domain_exit(&memcg->cgwb_domain); 3220 } 3221 3222 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3223 { 3224 wb_domain_size_changed(&memcg->cgwb_domain); 3225 } 3226 3227 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3228 { 3229 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3230 3231 if (!memcg->css.parent) 3232 return NULL; 3233 3234 return &memcg->cgwb_domain; 3235 } 3236 3237 /** 3238 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3239 * @wb: bdi_writeback in question 3240 * @pfilepages: out parameter for number of file pages 3241 * @pheadroom: out parameter for number of allocatable pages according to memcg 3242 * @pdirty: out parameter for number of dirty pages 3243 * @pwriteback: out parameter for number of pages under writeback 3244 * 3245 * Determine the numbers of file, headroom, dirty, and writeback pages in 3246 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3247 * is a bit more involved. 3248 * 3249 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3250 * headroom is calculated as the lowest headroom of itself and the 3251 * ancestors. Note that this doesn't consider the actual amount of 3252 * available memory in the system. The caller should further cap 3253 * *@pheadroom accordingly. 3254 */ 3255 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3256 unsigned long *pheadroom, unsigned long *pdirty, 3257 unsigned long *pwriteback) 3258 { 3259 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3260 struct mem_cgroup *parent; 3261 3262 mem_cgroup_flush_stats_ratelimited(memcg); 3263 3264 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3265 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3266 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3267 memcg_page_state(memcg, NR_ACTIVE_FILE); 3268 3269 *pheadroom = PAGE_COUNTER_MAX; 3270 while ((parent = parent_mem_cgroup(memcg))) { 3271 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3272 READ_ONCE(memcg->memory.high)); 3273 unsigned long used = page_counter_read(&memcg->memory); 3274 3275 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3276 memcg = parent; 3277 } 3278 } 3279 3280 /* 3281 * Foreign dirty flushing 3282 * 3283 * There's an inherent mismatch between memcg and writeback. The former 3284 * tracks ownership per-page while the latter per-inode. This was a 3285 * deliberate design decision because honoring per-page ownership in the 3286 * writeback path is complicated, may lead to higher CPU and IO overheads 3287 * and deemed unnecessary given that write-sharing an inode across 3288 * different cgroups isn't a common use-case. 3289 * 3290 * Combined with inode majority-writer ownership switching, this works well 3291 * enough in most cases but there are some pathological cases. For 3292 * example, let's say there are two cgroups A and B which keep writing to 3293 * different but confined parts of the same inode. B owns the inode and 3294 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3295 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3296 * triggering background writeback. A will be slowed down without a way to 3297 * make writeback of the dirty pages happen. 3298 * 3299 * Conditions like the above can lead to a cgroup getting repeatedly and 3300 * severely throttled after making some progress after each 3301 * dirty_expire_interval while the underlying IO device is almost 3302 * completely idle. 3303 * 3304 * Solving this problem completely requires matching the ownership tracking 3305 * granularities between memcg and writeback in either direction. However, 3306 * the more egregious behaviors can be avoided by simply remembering the 3307 * most recent foreign dirtying events and initiating remote flushes on 3308 * them when local writeback isn't enough to keep the memory clean enough. 3309 * 3310 * The following two functions implement such mechanism. When a foreign 3311 * page - a page whose memcg and writeback ownerships don't match - is 3312 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3313 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3314 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3315 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3316 * foreign bdi_writebacks which haven't expired. Both the numbers of 3317 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3318 * limited to MEMCG_CGWB_FRN_CNT. 3319 * 3320 * The mechanism only remembers IDs and doesn't hold any object references. 3321 * As being wrong occasionally doesn't matter, updates and accesses to the 3322 * records are lockless and racy. 3323 */ 3324 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3325 struct bdi_writeback *wb) 3326 { 3327 struct mem_cgroup *memcg = folio_memcg(folio); 3328 struct memcg_cgwb_frn *frn; 3329 u64 now = get_jiffies_64(); 3330 u64 oldest_at = now; 3331 int oldest = -1; 3332 int i; 3333 3334 trace_track_foreign_dirty(folio, wb); 3335 3336 /* 3337 * Pick the slot to use. If there is already a slot for @wb, keep 3338 * using it. If not replace the oldest one which isn't being 3339 * written out. 3340 */ 3341 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3342 frn = &memcg->cgwb_frn[i]; 3343 if (frn->bdi_id == wb->bdi->id && 3344 frn->memcg_id == wb->memcg_css->id) 3345 break; 3346 if (time_before64(frn->at, oldest_at) && 3347 atomic_read(&frn->done.cnt) == 1) { 3348 oldest = i; 3349 oldest_at = frn->at; 3350 } 3351 } 3352 3353 if (i < MEMCG_CGWB_FRN_CNT) { 3354 /* 3355 * Re-using an existing one. Update timestamp lazily to 3356 * avoid making the cacheline hot. We want them to be 3357 * reasonably up-to-date and significantly shorter than 3358 * dirty_expire_interval as that's what expires the record. 3359 * Use the shorter of 1s and dirty_expire_interval / 8. 3360 */ 3361 unsigned long update_intv = 3362 min_t(unsigned long, HZ, 3363 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3364 3365 if (time_before64(frn->at, now - update_intv)) 3366 frn->at = now; 3367 } else if (oldest >= 0) { 3368 /* replace the oldest free one */ 3369 frn = &memcg->cgwb_frn[oldest]; 3370 frn->bdi_id = wb->bdi->id; 3371 frn->memcg_id = wb->memcg_css->id; 3372 frn->at = now; 3373 } 3374 } 3375 3376 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3377 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3378 { 3379 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3380 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3381 u64 now = jiffies_64; 3382 int i; 3383 3384 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3385 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3386 3387 /* 3388 * If the record is older than dirty_expire_interval, 3389 * writeback on it has already started. No need to kick it 3390 * off again. Also, don't start a new one if there's 3391 * already one in flight. 3392 */ 3393 if (time_after64(frn->at, now - intv) && 3394 atomic_read(&frn->done.cnt) == 1) { 3395 frn->at = 0; 3396 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3397 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3398 WB_REASON_FOREIGN_FLUSH, 3399 &frn->done); 3400 } 3401 } 3402 } 3403 3404 #else /* CONFIG_CGROUP_WRITEBACK */ 3405 3406 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3407 { 3408 return 0; 3409 } 3410 3411 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3412 { 3413 } 3414 3415 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3416 { 3417 } 3418 3419 #endif /* CONFIG_CGROUP_WRITEBACK */ 3420 3421 /* 3422 * Private memory cgroup IDR 3423 * 3424 * Swap-out records and page cache shadow entries need to store memcg 3425 * references in constrained space, so we maintain an ID space that is 3426 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3427 * memory-controlled cgroups to 64k. 3428 * 3429 * However, there usually are many references to the offline CSS after 3430 * the cgroup has been destroyed, such as page cache or reclaimable 3431 * slab objects, that don't need to hang on to the ID. We want to keep 3432 * those dead CSS from occupying IDs, or we might quickly exhaust the 3433 * relatively small ID space and prevent the creation of new cgroups 3434 * even when there are much fewer than 64k cgroups - possibly none. 3435 * 3436 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3437 * be freed and recycled when it's no longer needed, which is usually 3438 * when the CSS is offlined. 3439 * 3440 * The only exception to that are records of swapped out tmpfs/shmem 3441 * pages that need to be attributed to live ancestors on swapin. But 3442 * those references are manageable from userspace. 3443 */ 3444 3445 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3446 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3447 3448 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3449 { 3450 if (memcg->id.id > 0) { 3451 xa_erase(&mem_cgroup_ids, memcg->id.id); 3452 memcg->id.id = 0; 3453 } 3454 } 3455 3456 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3457 unsigned int n) 3458 { 3459 refcount_add(n, &memcg->id.ref); 3460 } 3461 3462 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3463 { 3464 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3465 mem_cgroup_id_remove(memcg); 3466 3467 /* Memcg ID pins CSS */ 3468 css_put(&memcg->css); 3469 } 3470 } 3471 3472 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3473 { 3474 mem_cgroup_id_put_many(memcg, 1); 3475 } 3476 3477 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 3478 { 3479 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3480 /* 3481 * The root cgroup cannot be destroyed, so it's refcount must 3482 * always be >= 1. 3483 */ 3484 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3485 VM_BUG_ON(1); 3486 break; 3487 } 3488 memcg = parent_mem_cgroup(memcg); 3489 if (!memcg) 3490 memcg = root_mem_cgroup; 3491 } 3492 return memcg; 3493 } 3494 3495 /** 3496 * mem_cgroup_from_id - look up a memcg from a memcg id 3497 * @id: the memcg id to look up 3498 * 3499 * Caller must hold rcu_read_lock(). 3500 */ 3501 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3502 { 3503 WARN_ON_ONCE(!rcu_read_lock_held()); 3504 return xa_load(&mem_cgroup_ids, id); 3505 } 3506 3507 #ifdef CONFIG_SHRINKER_DEBUG 3508 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3509 { 3510 struct cgroup *cgrp; 3511 struct cgroup_subsys_state *css; 3512 struct mem_cgroup *memcg; 3513 3514 cgrp = cgroup_get_from_id(ino); 3515 if (IS_ERR(cgrp)) 3516 return ERR_CAST(cgrp); 3517 3518 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3519 if (css) 3520 memcg = container_of(css, struct mem_cgroup, css); 3521 else 3522 memcg = ERR_PTR(-ENOENT); 3523 3524 cgroup_put(cgrp); 3525 3526 return memcg; 3527 } 3528 #endif 3529 3530 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3531 { 3532 if (!pn) 3533 return; 3534 3535 free_percpu(pn->lruvec_stats_percpu); 3536 kfree(pn->lruvec_stats); 3537 kfree(pn); 3538 } 3539 3540 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3541 { 3542 struct mem_cgroup_per_node *pn; 3543 3544 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3545 if (!pn) 3546 return false; 3547 3548 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3549 GFP_KERNEL_ACCOUNT, node); 3550 if (!pn->lruvec_stats) 3551 goto fail; 3552 3553 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3554 GFP_KERNEL_ACCOUNT); 3555 if (!pn->lruvec_stats_percpu) 3556 goto fail; 3557 3558 lruvec_init(&pn->lruvec); 3559 pn->memcg = memcg; 3560 3561 memcg->nodeinfo[node] = pn; 3562 return true; 3563 fail: 3564 free_mem_cgroup_per_node_info(pn); 3565 return false; 3566 } 3567 3568 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3569 { 3570 int node; 3571 3572 obj_cgroup_put(memcg->orig_objcg); 3573 3574 for_each_node(node) 3575 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3576 memcg1_free_events(memcg); 3577 kfree(memcg->vmstats); 3578 free_percpu(memcg->vmstats_percpu); 3579 kfree(memcg); 3580 } 3581 3582 static void mem_cgroup_free(struct mem_cgroup *memcg) 3583 { 3584 lru_gen_exit_memcg(memcg); 3585 memcg_wb_domain_exit(memcg); 3586 __mem_cgroup_free(memcg); 3587 } 3588 3589 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3590 { 3591 struct memcg_vmstats_percpu *statc, *pstatc; 3592 struct mem_cgroup *memcg; 3593 int node, cpu; 3594 int __maybe_unused i; 3595 long error; 3596 3597 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3598 if (!memcg) 3599 return ERR_PTR(-ENOMEM); 3600 3601 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3602 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3603 if (error) 3604 goto fail; 3605 error = -ENOMEM; 3606 3607 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3608 GFP_KERNEL_ACCOUNT); 3609 if (!memcg->vmstats) 3610 goto fail; 3611 3612 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3613 GFP_KERNEL_ACCOUNT); 3614 if (!memcg->vmstats_percpu) 3615 goto fail; 3616 3617 if (!memcg1_alloc_events(memcg)) 3618 goto fail; 3619 3620 for_each_possible_cpu(cpu) { 3621 if (parent) 3622 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3623 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3624 statc->parent = parent ? pstatc : NULL; 3625 statc->vmstats = memcg->vmstats; 3626 } 3627 3628 for_each_node(node) 3629 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3630 goto fail; 3631 3632 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3633 goto fail; 3634 3635 INIT_WORK(&memcg->high_work, high_work_func); 3636 vmpressure_init(&memcg->vmpressure); 3637 INIT_LIST_HEAD(&memcg->memory_peaks); 3638 INIT_LIST_HEAD(&memcg->swap_peaks); 3639 spin_lock_init(&memcg->peaks_lock); 3640 memcg->socket_pressure = jiffies; 3641 memcg1_memcg_init(memcg); 3642 memcg->kmemcg_id = -1; 3643 INIT_LIST_HEAD(&memcg->objcg_list); 3644 #ifdef CONFIG_CGROUP_WRITEBACK 3645 INIT_LIST_HEAD(&memcg->cgwb_list); 3646 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3647 memcg->cgwb_frn[i].done = 3648 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3649 #endif 3650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3651 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3652 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3653 memcg->deferred_split_queue.split_queue_len = 0; 3654 #endif 3655 lru_gen_init_memcg(memcg); 3656 return memcg; 3657 fail: 3658 mem_cgroup_id_remove(memcg); 3659 __mem_cgroup_free(memcg); 3660 return ERR_PTR(error); 3661 } 3662 3663 static struct cgroup_subsys_state * __ref 3664 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3665 { 3666 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3667 struct mem_cgroup *memcg, *old_memcg; 3668 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3669 3670 old_memcg = set_active_memcg(parent); 3671 memcg = mem_cgroup_alloc(parent); 3672 set_active_memcg(old_memcg); 3673 if (IS_ERR(memcg)) 3674 return ERR_CAST(memcg); 3675 3676 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3677 memcg1_soft_limit_reset(memcg); 3678 #ifdef CONFIG_ZSWAP 3679 memcg->zswap_max = PAGE_COUNTER_MAX; 3680 WRITE_ONCE(memcg->zswap_writeback, true); 3681 #endif 3682 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3683 if (parent) { 3684 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3685 3686 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3687 page_counter_init(&memcg->swap, &parent->swap, false); 3688 #ifdef CONFIG_MEMCG_V1 3689 memcg->memory.track_failcnt = !memcg_on_dfl; 3690 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3691 page_counter_init(&memcg->kmem, &parent->kmem, false); 3692 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3693 #endif 3694 } else { 3695 init_memcg_stats(); 3696 init_memcg_events(); 3697 page_counter_init(&memcg->memory, NULL, true); 3698 page_counter_init(&memcg->swap, NULL, false); 3699 #ifdef CONFIG_MEMCG_V1 3700 page_counter_init(&memcg->kmem, NULL, false); 3701 page_counter_init(&memcg->tcpmem, NULL, false); 3702 #endif 3703 root_mem_cgroup = memcg; 3704 return &memcg->css; 3705 } 3706 3707 if (memcg_on_dfl && !cgroup_memory_nosocket) 3708 static_branch_inc(&memcg_sockets_enabled_key); 3709 3710 if (!cgroup_memory_nobpf) 3711 static_branch_inc(&memcg_bpf_enabled_key); 3712 3713 return &memcg->css; 3714 } 3715 3716 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3717 { 3718 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3719 3720 if (memcg_online_kmem(memcg)) 3721 goto remove_id; 3722 3723 /* 3724 * A memcg must be visible for expand_shrinker_info() 3725 * by the time the maps are allocated. So, we allocate maps 3726 * here, when for_each_mem_cgroup() can't skip it. 3727 */ 3728 if (alloc_shrinker_info(memcg)) 3729 goto offline_kmem; 3730 3731 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3732 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3733 FLUSH_TIME); 3734 lru_gen_online_memcg(memcg); 3735 3736 /* Online state pins memcg ID, memcg ID pins CSS */ 3737 refcount_set(&memcg->id.ref, 1); 3738 css_get(css); 3739 3740 /* 3741 * Ensure mem_cgroup_from_id() works once we're fully online. 3742 * 3743 * We could do this earlier and require callers to filter with 3744 * css_tryget_online(). But right now there are no users that 3745 * need earlier access, and the workingset code relies on the 3746 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3747 * publish it here at the end of onlining. This matches the 3748 * regular ID destruction during offlining. 3749 */ 3750 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3751 3752 return 0; 3753 offline_kmem: 3754 memcg_offline_kmem(memcg); 3755 remove_id: 3756 mem_cgroup_id_remove(memcg); 3757 return -ENOMEM; 3758 } 3759 3760 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3761 { 3762 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3763 3764 memcg1_css_offline(memcg); 3765 3766 page_counter_set_min(&memcg->memory, 0); 3767 page_counter_set_low(&memcg->memory, 0); 3768 3769 zswap_memcg_offline_cleanup(memcg); 3770 3771 memcg_offline_kmem(memcg); 3772 reparent_shrinker_deferred(memcg); 3773 wb_memcg_offline(memcg); 3774 lru_gen_offline_memcg(memcg); 3775 3776 drain_all_stock(memcg); 3777 3778 mem_cgroup_id_put(memcg); 3779 } 3780 3781 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3782 { 3783 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3784 3785 invalidate_reclaim_iterators(memcg); 3786 lru_gen_release_memcg(memcg); 3787 } 3788 3789 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3790 { 3791 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3792 int __maybe_unused i; 3793 3794 #ifdef CONFIG_CGROUP_WRITEBACK 3795 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3796 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3797 #endif 3798 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3799 static_branch_dec(&memcg_sockets_enabled_key); 3800 3801 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3802 static_branch_dec(&memcg_sockets_enabled_key); 3803 3804 if (!cgroup_memory_nobpf) 3805 static_branch_dec(&memcg_bpf_enabled_key); 3806 3807 vmpressure_cleanup(&memcg->vmpressure); 3808 cancel_work_sync(&memcg->high_work); 3809 memcg1_remove_from_trees(memcg); 3810 free_shrinker_info(memcg); 3811 mem_cgroup_free(memcg); 3812 } 3813 3814 /** 3815 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3816 * @css: the target css 3817 * 3818 * Reset the states of the mem_cgroup associated with @css. This is 3819 * invoked when the userland requests disabling on the default hierarchy 3820 * but the memcg is pinned through dependency. The memcg should stop 3821 * applying policies and should revert to the vanilla state as it may be 3822 * made visible again. 3823 * 3824 * The current implementation only resets the essential configurations. 3825 * This needs to be expanded to cover all the visible parts. 3826 */ 3827 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3828 { 3829 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3830 3831 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3832 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3833 #ifdef CONFIG_MEMCG_V1 3834 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3835 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3836 #endif 3837 page_counter_set_min(&memcg->memory, 0); 3838 page_counter_set_low(&memcg->memory, 0); 3839 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3840 memcg1_soft_limit_reset(memcg); 3841 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3842 memcg_wb_domain_size_changed(memcg); 3843 } 3844 3845 struct aggregate_control { 3846 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3847 long *aggregate; 3848 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3849 long *local; 3850 /* pointer to the pending child counters during tree propagation */ 3851 long *pending; 3852 /* pointer to the parent's pending counters, could be NULL */ 3853 long *ppending; 3854 /* pointer to the percpu counters to be aggregated */ 3855 long *cstat; 3856 /* pointer to the percpu counters of the last aggregation*/ 3857 long *cstat_prev; 3858 /* size of the above counters */ 3859 int size; 3860 }; 3861 3862 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3863 { 3864 int i; 3865 long delta, delta_cpu, v; 3866 3867 for (i = 0; i < ac->size; i++) { 3868 /* 3869 * Collect the aggregated propagation counts of groups 3870 * below us. We're in a per-cpu loop here and this is 3871 * a global counter, so the first cycle will get them. 3872 */ 3873 delta = ac->pending[i]; 3874 if (delta) 3875 ac->pending[i] = 0; 3876 3877 /* Add CPU changes on this level since the last flush */ 3878 delta_cpu = 0; 3879 v = READ_ONCE(ac->cstat[i]); 3880 if (v != ac->cstat_prev[i]) { 3881 delta_cpu = v - ac->cstat_prev[i]; 3882 delta += delta_cpu; 3883 ac->cstat_prev[i] = v; 3884 } 3885 3886 /* Aggregate counts on this level and propagate upwards */ 3887 if (delta_cpu) 3888 ac->local[i] += delta_cpu; 3889 3890 if (delta) { 3891 ac->aggregate[i] += delta; 3892 if (ac->ppending) 3893 ac->ppending[i] += delta; 3894 } 3895 } 3896 } 3897 3898 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3899 { 3900 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3901 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3902 struct memcg_vmstats_percpu *statc; 3903 struct aggregate_control ac; 3904 int nid; 3905 3906 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3907 3908 ac = (struct aggregate_control) { 3909 .aggregate = memcg->vmstats->state, 3910 .local = memcg->vmstats->state_local, 3911 .pending = memcg->vmstats->state_pending, 3912 .ppending = parent ? parent->vmstats->state_pending : NULL, 3913 .cstat = statc->state, 3914 .cstat_prev = statc->state_prev, 3915 .size = MEMCG_VMSTAT_SIZE, 3916 }; 3917 mem_cgroup_stat_aggregate(&ac); 3918 3919 ac = (struct aggregate_control) { 3920 .aggregate = memcg->vmstats->events, 3921 .local = memcg->vmstats->events_local, 3922 .pending = memcg->vmstats->events_pending, 3923 .ppending = parent ? parent->vmstats->events_pending : NULL, 3924 .cstat = statc->events, 3925 .cstat_prev = statc->events_prev, 3926 .size = NR_MEMCG_EVENTS, 3927 }; 3928 mem_cgroup_stat_aggregate(&ac); 3929 3930 for_each_node_state(nid, N_MEMORY) { 3931 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3932 struct lruvec_stats *lstats = pn->lruvec_stats; 3933 struct lruvec_stats *plstats = NULL; 3934 struct lruvec_stats_percpu *lstatc; 3935 3936 if (parent) 3937 plstats = parent->nodeinfo[nid]->lruvec_stats; 3938 3939 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 3940 3941 ac = (struct aggregate_control) { 3942 .aggregate = lstats->state, 3943 .local = lstats->state_local, 3944 .pending = lstats->state_pending, 3945 .ppending = plstats ? plstats->state_pending : NULL, 3946 .cstat = lstatc->state, 3947 .cstat_prev = lstatc->state_prev, 3948 .size = NR_MEMCG_NODE_STAT_ITEMS, 3949 }; 3950 mem_cgroup_stat_aggregate(&ac); 3951 3952 } 3953 WRITE_ONCE(statc->stats_updates, 0); 3954 /* We are in a per-cpu loop here, only do the atomic write once */ 3955 if (atomic64_read(&memcg->vmstats->stats_updates)) 3956 atomic64_set(&memcg->vmstats->stats_updates, 0); 3957 } 3958 3959 static void mem_cgroup_fork(struct task_struct *task) 3960 { 3961 /* 3962 * Set the update flag to cause task->objcg to be initialized lazily 3963 * on the first allocation. It can be done without any synchronization 3964 * because it's always performed on the current task, so does 3965 * current_objcg_update(). 3966 */ 3967 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 3968 } 3969 3970 static void mem_cgroup_exit(struct task_struct *task) 3971 { 3972 struct obj_cgroup *objcg = task->objcg; 3973 3974 objcg = (struct obj_cgroup *) 3975 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 3976 obj_cgroup_put(objcg); 3977 3978 /* 3979 * Some kernel allocations can happen after this point, 3980 * but let's ignore them. It can be done without any synchronization 3981 * because it's always performed on the current task, so does 3982 * current_objcg_update(). 3983 */ 3984 task->objcg = NULL; 3985 } 3986 3987 #ifdef CONFIG_LRU_GEN 3988 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 3989 { 3990 struct task_struct *task; 3991 struct cgroup_subsys_state *css; 3992 3993 /* find the first leader if there is any */ 3994 cgroup_taskset_for_each_leader(task, css, tset) 3995 break; 3996 3997 if (!task) 3998 return; 3999 4000 task_lock(task); 4001 if (task->mm && READ_ONCE(task->mm->owner) == task) 4002 lru_gen_migrate_mm(task->mm); 4003 task_unlock(task); 4004 } 4005 #else 4006 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4007 #endif /* CONFIG_LRU_GEN */ 4008 4009 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4010 { 4011 struct task_struct *task; 4012 struct cgroup_subsys_state *css; 4013 4014 cgroup_taskset_for_each(task, css, tset) { 4015 /* atomically set the update bit */ 4016 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4017 } 4018 } 4019 4020 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4021 { 4022 mem_cgroup_lru_gen_attach(tset); 4023 mem_cgroup_kmem_attach(tset); 4024 } 4025 4026 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4027 { 4028 if (value == PAGE_COUNTER_MAX) 4029 seq_puts(m, "max\n"); 4030 else 4031 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4032 4033 return 0; 4034 } 4035 4036 static u64 memory_current_read(struct cgroup_subsys_state *css, 4037 struct cftype *cft) 4038 { 4039 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4040 4041 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4042 } 4043 4044 #define OFP_PEAK_UNSET (((-1UL))) 4045 4046 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4047 { 4048 struct cgroup_of_peak *ofp = of_peak(sf->private); 4049 u64 fd_peak = READ_ONCE(ofp->value), peak; 4050 4051 /* User wants global or local peak? */ 4052 if (fd_peak == OFP_PEAK_UNSET) 4053 peak = pc->watermark; 4054 else 4055 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4056 4057 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4058 return 0; 4059 } 4060 4061 static int memory_peak_show(struct seq_file *sf, void *v) 4062 { 4063 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4064 4065 return peak_show(sf, v, &memcg->memory); 4066 } 4067 4068 static int peak_open(struct kernfs_open_file *of) 4069 { 4070 struct cgroup_of_peak *ofp = of_peak(of); 4071 4072 ofp->value = OFP_PEAK_UNSET; 4073 return 0; 4074 } 4075 4076 static void peak_release(struct kernfs_open_file *of) 4077 { 4078 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4079 struct cgroup_of_peak *ofp = of_peak(of); 4080 4081 if (ofp->value == OFP_PEAK_UNSET) { 4082 /* fast path (no writes on this fd) */ 4083 return; 4084 } 4085 spin_lock(&memcg->peaks_lock); 4086 list_del(&ofp->list); 4087 spin_unlock(&memcg->peaks_lock); 4088 } 4089 4090 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4091 loff_t off, struct page_counter *pc, 4092 struct list_head *watchers) 4093 { 4094 unsigned long usage; 4095 struct cgroup_of_peak *peer_ctx; 4096 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4097 struct cgroup_of_peak *ofp = of_peak(of); 4098 4099 spin_lock(&memcg->peaks_lock); 4100 4101 usage = page_counter_read(pc); 4102 WRITE_ONCE(pc->local_watermark, usage); 4103 4104 list_for_each_entry(peer_ctx, watchers, list) 4105 if (usage > peer_ctx->value) 4106 WRITE_ONCE(peer_ctx->value, usage); 4107 4108 /* initial write, register watcher */ 4109 if (ofp->value == OFP_PEAK_UNSET) 4110 list_add(&ofp->list, watchers); 4111 4112 WRITE_ONCE(ofp->value, usage); 4113 spin_unlock(&memcg->peaks_lock); 4114 4115 return nbytes; 4116 } 4117 4118 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4119 size_t nbytes, loff_t off) 4120 { 4121 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4122 4123 return peak_write(of, buf, nbytes, off, &memcg->memory, 4124 &memcg->memory_peaks); 4125 } 4126 4127 #undef OFP_PEAK_UNSET 4128 4129 static int memory_min_show(struct seq_file *m, void *v) 4130 { 4131 return seq_puts_memcg_tunable(m, 4132 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4133 } 4134 4135 static ssize_t memory_min_write(struct kernfs_open_file *of, 4136 char *buf, size_t nbytes, loff_t off) 4137 { 4138 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4139 unsigned long min; 4140 int err; 4141 4142 buf = strstrip(buf); 4143 err = page_counter_memparse(buf, "max", &min); 4144 if (err) 4145 return err; 4146 4147 page_counter_set_min(&memcg->memory, min); 4148 4149 return nbytes; 4150 } 4151 4152 static int memory_low_show(struct seq_file *m, void *v) 4153 { 4154 return seq_puts_memcg_tunable(m, 4155 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4156 } 4157 4158 static ssize_t memory_low_write(struct kernfs_open_file *of, 4159 char *buf, size_t nbytes, loff_t off) 4160 { 4161 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4162 unsigned long low; 4163 int err; 4164 4165 buf = strstrip(buf); 4166 err = page_counter_memparse(buf, "max", &low); 4167 if (err) 4168 return err; 4169 4170 page_counter_set_low(&memcg->memory, low); 4171 4172 return nbytes; 4173 } 4174 4175 static int memory_high_show(struct seq_file *m, void *v) 4176 { 4177 return seq_puts_memcg_tunable(m, 4178 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4179 } 4180 4181 static ssize_t memory_high_write(struct kernfs_open_file *of, 4182 char *buf, size_t nbytes, loff_t off) 4183 { 4184 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4185 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4186 bool drained = false; 4187 unsigned long high; 4188 int err; 4189 4190 buf = strstrip(buf); 4191 err = page_counter_memparse(buf, "max", &high); 4192 if (err) 4193 return err; 4194 4195 page_counter_set_high(&memcg->memory, high); 4196 4197 for (;;) { 4198 unsigned long nr_pages = page_counter_read(&memcg->memory); 4199 unsigned long reclaimed; 4200 4201 if (nr_pages <= high) 4202 break; 4203 4204 if (signal_pending(current)) 4205 break; 4206 4207 if (!drained) { 4208 drain_all_stock(memcg); 4209 drained = true; 4210 continue; 4211 } 4212 4213 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4214 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4215 4216 if (!reclaimed && !nr_retries--) 4217 break; 4218 } 4219 4220 memcg_wb_domain_size_changed(memcg); 4221 return nbytes; 4222 } 4223 4224 static int memory_max_show(struct seq_file *m, void *v) 4225 { 4226 return seq_puts_memcg_tunable(m, 4227 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4228 } 4229 4230 static ssize_t memory_max_write(struct kernfs_open_file *of, 4231 char *buf, size_t nbytes, loff_t off) 4232 { 4233 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4234 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4235 bool drained = false; 4236 unsigned long max; 4237 int err; 4238 4239 buf = strstrip(buf); 4240 err = page_counter_memparse(buf, "max", &max); 4241 if (err) 4242 return err; 4243 4244 xchg(&memcg->memory.max, max); 4245 4246 for (;;) { 4247 unsigned long nr_pages = page_counter_read(&memcg->memory); 4248 4249 if (nr_pages <= max) 4250 break; 4251 4252 if (signal_pending(current)) 4253 break; 4254 4255 if (!drained) { 4256 drain_all_stock(memcg); 4257 drained = true; 4258 continue; 4259 } 4260 4261 if (nr_reclaims) { 4262 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4263 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4264 nr_reclaims--; 4265 continue; 4266 } 4267 4268 memcg_memory_event(memcg, MEMCG_OOM); 4269 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4270 break; 4271 cond_resched(); 4272 } 4273 4274 memcg_wb_domain_size_changed(memcg); 4275 return nbytes; 4276 } 4277 4278 /* 4279 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4280 * if any new events become available. 4281 */ 4282 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4283 { 4284 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4285 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4286 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4287 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4288 seq_printf(m, "oom_kill %lu\n", 4289 atomic_long_read(&events[MEMCG_OOM_KILL])); 4290 seq_printf(m, "oom_group_kill %lu\n", 4291 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4292 } 4293 4294 static int memory_events_show(struct seq_file *m, void *v) 4295 { 4296 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4297 4298 __memory_events_show(m, memcg->memory_events); 4299 return 0; 4300 } 4301 4302 static int memory_events_local_show(struct seq_file *m, void *v) 4303 { 4304 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4305 4306 __memory_events_show(m, memcg->memory_events_local); 4307 return 0; 4308 } 4309 4310 int memory_stat_show(struct seq_file *m, void *v) 4311 { 4312 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4313 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4314 struct seq_buf s; 4315 4316 if (!buf) 4317 return -ENOMEM; 4318 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4319 memory_stat_format(memcg, &s); 4320 seq_puts(m, buf); 4321 kfree(buf); 4322 return 0; 4323 } 4324 4325 #ifdef CONFIG_NUMA 4326 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4327 int item) 4328 { 4329 return lruvec_page_state(lruvec, item) * 4330 memcg_page_state_output_unit(item); 4331 } 4332 4333 static int memory_numa_stat_show(struct seq_file *m, void *v) 4334 { 4335 int i; 4336 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4337 4338 mem_cgroup_flush_stats(memcg); 4339 4340 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4341 int nid; 4342 4343 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4344 continue; 4345 4346 seq_printf(m, "%s", memory_stats[i].name); 4347 for_each_node_state(nid, N_MEMORY) { 4348 u64 size; 4349 struct lruvec *lruvec; 4350 4351 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4352 size = lruvec_page_state_output(lruvec, 4353 memory_stats[i].idx); 4354 seq_printf(m, " N%d=%llu", nid, size); 4355 } 4356 seq_putc(m, '\n'); 4357 } 4358 4359 return 0; 4360 } 4361 #endif 4362 4363 static int memory_oom_group_show(struct seq_file *m, void *v) 4364 { 4365 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4366 4367 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4368 4369 return 0; 4370 } 4371 4372 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4373 char *buf, size_t nbytes, loff_t off) 4374 { 4375 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4376 int ret, oom_group; 4377 4378 buf = strstrip(buf); 4379 if (!buf) 4380 return -EINVAL; 4381 4382 ret = kstrtoint(buf, 0, &oom_group); 4383 if (ret) 4384 return ret; 4385 4386 if (oom_group != 0 && oom_group != 1) 4387 return -EINVAL; 4388 4389 WRITE_ONCE(memcg->oom_group, oom_group); 4390 4391 return nbytes; 4392 } 4393 4394 enum { 4395 MEMORY_RECLAIM_SWAPPINESS = 0, 4396 MEMORY_RECLAIM_NULL, 4397 }; 4398 4399 static const match_table_t tokens = { 4400 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4401 { MEMORY_RECLAIM_NULL, NULL }, 4402 }; 4403 4404 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4405 size_t nbytes, loff_t off) 4406 { 4407 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4408 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4409 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4410 int swappiness = -1; 4411 unsigned int reclaim_options; 4412 char *old_buf, *start; 4413 substring_t args[MAX_OPT_ARGS]; 4414 4415 buf = strstrip(buf); 4416 4417 old_buf = buf; 4418 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4419 if (buf == old_buf) 4420 return -EINVAL; 4421 4422 buf = strstrip(buf); 4423 4424 while ((start = strsep(&buf, " ")) != NULL) { 4425 if (!strlen(start)) 4426 continue; 4427 switch (match_token(start, tokens, args)) { 4428 case MEMORY_RECLAIM_SWAPPINESS: 4429 if (match_int(&args[0], &swappiness)) 4430 return -EINVAL; 4431 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4432 return -EINVAL; 4433 break; 4434 default: 4435 return -EINVAL; 4436 } 4437 } 4438 4439 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4440 while (nr_reclaimed < nr_to_reclaim) { 4441 /* Will converge on zero, but reclaim enforces a minimum */ 4442 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4443 unsigned long reclaimed; 4444 4445 if (signal_pending(current)) 4446 return -EINTR; 4447 4448 /* 4449 * This is the final attempt, drain percpu lru caches in the 4450 * hope of introducing more evictable pages for 4451 * try_to_free_mem_cgroup_pages(). 4452 */ 4453 if (!nr_retries) 4454 lru_add_drain_all(); 4455 4456 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4457 batch_size, GFP_KERNEL, 4458 reclaim_options, 4459 swappiness == -1 ? NULL : &swappiness); 4460 4461 if (!reclaimed && !nr_retries--) 4462 return -EAGAIN; 4463 4464 nr_reclaimed += reclaimed; 4465 } 4466 4467 return nbytes; 4468 } 4469 4470 static struct cftype memory_files[] = { 4471 { 4472 .name = "current", 4473 .flags = CFTYPE_NOT_ON_ROOT, 4474 .read_u64 = memory_current_read, 4475 }, 4476 { 4477 .name = "peak", 4478 .flags = CFTYPE_NOT_ON_ROOT, 4479 .open = peak_open, 4480 .release = peak_release, 4481 .seq_show = memory_peak_show, 4482 .write = memory_peak_write, 4483 }, 4484 { 4485 .name = "min", 4486 .flags = CFTYPE_NOT_ON_ROOT, 4487 .seq_show = memory_min_show, 4488 .write = memory_min_write, 4489 }, 4490 { 4491 .name = "low", 4492 .flags = CFTYPE_NOT_ON_ROOT, 4493 .seq_show = memory_low_show, 4494 .write = memory_low_write, 4495 }, 4496 { 4497 .name = "high", 4498 .flags = CFTYPE_NOT_ON_ROOT, 4499 .seq_show = memory_high_show, 4500 .write = memory_high_write, 4501 }, 4502 { 4503 .name = "max", 4504 .flags = CFTYPE_NOT_ON_ROOT, 4505 .seq_show = memory_max_show, 4506 .write = memory_max_write, 4507 }, 4508 { 4509 .name = "events", 4510 .flags = CFTYPE_NOT_ON_ROOT, 4511 .file_offset = offsetof(struct mem_cgroup, events_file), 4512 .seq_show = memory_events_show, 4513 }, 4514 { 4515 .name = "events.local", 4516 .flags = CFTYPE_NOT_ON_ROOT, 4517 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4518 .seq_show = memory_events_local_show, 4519 }, 4520 { 4521 .name = "stat", 4522 .seq_show = memory_stat_show, 4523 }, 4524 #ifdef CONFIG_NUMA 4525 { 4526 .name = "numa_stat", 4527 .seq_show = memory_numa_stat_show, 4528 }, 4529 #endif 4530 { 4531 .name = "oom.group", 4532 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4533 .seq_show = memory_oom_group_show, 4534 .write = memory_oom_group_write, 4535 }, 4536 { 4537 .name = "reclaim", 4538 .flags = CFTYPE_NS_DELEGATABLE, 4539 .write = memory_reclaim, 4540 }, 4541 { } /* terminate */ 4542 }; 4543 4544 struct cgroup_subsys memory_cgrp_subsys = { 4545 .css_alloc = mem_cgroup_css_alloc, 4546 .css_online = mem_cgroup_css_online, 4547 .css_offline = mem_cgroup_css_offline, 4548 .css_released = mem_cgroup_css_released, 4549 .css_free = mem_cgroup_css_free, 4550 .css_reset = mem_cgroup_css_reset, 4551 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4552 .attach = mem_cgroup_attach, 4553 .fork = mem_cgroup_fork, 4554 .exit = mem_cgroup_exit, 4555 .dfl_cftypes = memory_files, 4556 #ifdef CONFIG_MEMCG_V1 4557 .legacy_cftypes = mem_cgroup_legacy_files, 4558 #endif 4559 .early_init = 0, 4560 }; 4561 4562 /** 4563 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4564 * @root: the top ancestor of the sub-tree being checked 4565 * @memcg: the memory cgroup to check 4566 * 4567 * WARNING: This function is not stateless! It can only be used as part 4568 * of a top-down tree iteration, not for isolated queries. 4569 */ 4570 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4571 struct mem_cgroup *memcg) 4572 { 4573 bool recursive_protection = 4574 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4575 4576 if (mem_cgroup_disabled()) 4577 return; 4578 4579 if (!root) 4580 root = root_mem_cgroup; 4581 4582 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4583 } 4584 4585 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4586 gfp_t gfp) 4587 { 4588 int ret; 4589 4590 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4591 if (ret) 4592 goto out; 4593 4594 css_get(&memcg->css); 4595 commit_charge(folio, memcg); 4596 memcg1_commit_charge(folio, memcg); 4597 out: 4598 return ret; 4599 } 4600 4601 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4602 { 4603 struct mem_cgroup *memcg; 4604 int ret; 4605 4606 memcg = get_mem_cgroup_from_mm(mm); 4607 ret = charge_memcg(folio, memcg, gfp); 4608 css_put(&memcg->css); 4609 4610 return ret; 4611 } 4612 4613 /** 4614 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4615 * @folio: folio being charged 4616 * @gfp: reclaim mode 4617 * 4618 * This function is called when allocating a huge page folio, after the page has 4619 * already been obtained and charged to the appropriate hugetlb cgroup 4620 * controller (if it is enabled). 4621 * 4622 * Returns ENOMEM if the memcg is already full. 4623 * Returns 0 if either the charge was successful, or if we skip the charging. 4624 */ 4625 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4626 { 4627 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4628 int ret = 0; 4629 4630 /* 4631 * Even memcg does not account for hugetlb, we still want to update 4632 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4633 * charging the memcg. 4634 */ 4635 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4636 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4637 goto out; 4638 4639 if (charge_memcg(folio, memcg, gfp)) 4640 ret = -ENOMEM; 4641 4642 out: 4643 mem_cgroup_put(memcg); 4644 return ret; 4645 } 4646 4647 /** 4648 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4649 * @folio: folio to charge. 4650 * @mm: mm context of the victim 4651 * @gfp: reclaim mode 4652 * @entry: swap entry for which the folio is allocated 4653 * 4654 * This function charges a folio allocated for swapin. Please call this before 4655 * adding the folio to the swapcache. 4656 * 4657 * Returns 0 on success. Otherwise, an error code is returned. 4658 */ 4659 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4660 gfp_t gfp, swp_entry_t entry) 4661 { 4662 struct mem_cgroup *memcg; 4663 unsigned short id; 4664 int ret; 4665 4666 if (mem_cgroup_disabled()) 4667 return 0; 4668 4669 id = lookup_swap_cgroup_id(entry); 4670 rcu_read_lock(); 4671 memcg = mem_cgroup_from_id(id); 4672 if (!memcg || !css_tryget_online(&memcg->css)) 4673 memcg = get_mem_cgroup_from_mm(mm); 4674 rcu_read_unlock(); 4675 4676 ret = charge_memcg(folio, memcg, gfp); 4677 4678 css_put(&memcg->css); 4679 return ret; 4680 } 4681 4682 struct uncharge_gather { 4683 struct mem_cgroup *memcg; 4684 unsigned long nr_memory; 4685 unsigned long pgpgout; 4686 unsigned long nr_kmem; 4687 int nid; 4688 }; 4689 4690 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4691 { 4692 memset(ug, 0, sizeof(*ug)); 4693 } 4694 4695 static void uncharge_batch(const struct uncharge_gather *ug) 4696 { 4697 if (ug->nr_memory) { 4698 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 4699 if (do_memsw_account()) 4700 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 4701 if (ug->nr_kmem) { 4702 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4703 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4704 } 4705 memcg1_oom_recover(ug->memcg); 4706 } 4707 4708 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4709 4710 /* drop reference from uncharge_folio */ 4711 css_put(&ug->memcg->css); 4712 } 4713 4714 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4715 { 4716 long nr_pages; 4717 struct mem_cgroup *memcg; 4718 struct obj_cgroup *objcg; 4719 4720 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4721 4722 /* 4723 * Nobody should be changing or seriously looking at 4724 * folio memcg or objcg at this point, we have fully 4725 * exclusive access to the folio. 4726 */ 4727 if (folio_memcg_kmem(folio)) { 4728 objcg = __folio_objcg(folio); 4729 /* 4730 * This get matches the put at the end of the function and 4731 * kmem pages do not hold memcg references anymore. 4732 */ 4733 memcg = get_mem_cgroup_from_objcg(objcg); 4734 } else { 4735 memcg = __folio_memcg(folio); 4736 } 4737 4738 if (!memcg) 4739 return; 4740 4741 if (ug->memcg != memcg) { 4742 if (ug->memcg) { 4743 uncharge_batch(ug); 4744 uncharge_gather_clear(ug); 4745 } 4746 ug->memcg = memcg; 4747 ug->nid = folio_nid(folio); 4748 4749 /* pairs with css_put in uncharge_batch */ 4750 css_get(&memcg->css); 4751 } 4752 4753 nr_pages = folio_nr_pages(folio); 4754 4755 if (folio_memcg_kmem(folio)) { 4756 ug->nr_memory += nr_pages; 4757 ug->nr_kmem += nr_pages; 4758 4759 folio->memcg_data = 0; 4760 obj_cgroup_put(objcg); 4761 } else { 4762 /* LRU pages aren't accounted at the root level */ 4763 if (!mem_cgroup_is_root(memcg)) 4764 ug->nr_memory += nr_pages; 4765 ug->pgpgout++; 4766 4767 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4768 folio->memcg_data = 0; 4769 } 4770 4771 css_put(&memcg->css); 4772 } 4773 4774 void __mem_cgroup_uncharge(struct folio *folio) 4775 { 4776 struct uncharge_gather ug; 4777 4778 /* Don't touch folio->lru of any random page, pre-check: */ 4779 if (!folio_memcg_charged(folio)) 4780 return; 4781 4782 uncharge_gather_clear(&ug); 4783 uncharge_folio(folio, &ug); 4784 uncharge_batch(&ug); 4785 } 4786 4787 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4788 { 4789 struct uncharge_gather ug; 4790 unsigned int i; 4791 4792 uncharge_gather_clear(&ug); 4793 for (i = 0; i < folios->nr; i++) 4794 uncharge_folio(folios->folios[i], &ug); 4795 if (ug.memcg) 4796 uncharge_batch(&ug); 4797 } 4798 4799 /** 4800 * mem_cgroup_replace_folio - Charge a folio's replacement. 4801 * @old: Currently circulating folio. 4802 * @new: Replacement folio. 4803 * 4804 * Charge @new as a replacement folio for @old. @old will 4805 * be uncharged upon free. 4806 * 4807 * Both folios must be locked, @new->mapping must be set up. 4808 */ 4809 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4810 { 4811 struct mem_cgroup *memcg; 4812 long nr_pages = folio_nr_pages(new); 4813 4814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4816 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4817 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4818 4819 if (mem_cgroup_disabled()) 4820 return; 4821 4822 /* Page cache replacement: new folio already charged? */ 4823 if (folio_memcg_charged(new)) 4824 return; 4825 4826 memcg = folio_memcg(old); 4827 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4828 if (!memcg) 4829 return; 4830 4831 /* Force-charge the new page. The old one will be freed soon */ 4832 if (!mem_cgroup_is_root(memcg)) { 4833 page_counter_charge(&memcg->memory, nr_pages); 4834 if (do_memsw_account()) 4835 page_counter_charge(&memcg->memsw, nr_pages); 4836 } 4837 4838 css_get(&memcg->css); 4839 commit_charge(new, memcg); 4840 memcg1_commit_charge(new, memcg); 4841 } 4842 4843 /** 4844 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4845 * @old: Currently circulating folio. 4846 * @new: Replacement folio. 4847 * 4848 * Transfer the memcg data from the old folio to the new folio for migration. 4849 * The old folio's data info will be cleared. Note that the memory counters 4850 * will remain unchanged throughout the process. 4851 * 4852 * Both folios must be locked, @new->mapping must be set up. 4853 */ 4854 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4855 { 4856 struct mem_cgroup *memcg; 4857 4858 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4859 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4860 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4861 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4862 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4863 4864 if (mem_cgroup_disabled()) 4865 return; 4866 4867 memcg = folio_memcg(old); 4868 /* 4869 * Note that it is normal to see !memcg for a hugetlb folio. 4870 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4871 * was not selected. 4872 */ 4873 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4874 if (!memcg) 4875 return; 4876 4877 /* Transfer the charge and the css ref */ 4878 commit_charge(new, memcg); 4879 4880 /* Warning should never happen, so don't worry about refcount non-0 */ 4881 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4882 old->memcg_data = 0; 4883 } 4884 4885 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4886 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4887 4888 void mem_cgroup_sk_alloc(struct sock *sk) 4889 { 4890 struct mem_cgroup *memcg; 4891 4892 if (!mem_cgroup_sockets_enabled) 4893 return; 4894 4895 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4896 if (!in_task()) 4897 return; 4898 4899 rcu_read_lock(); 4900 memcg = mem_cgroup_from_task(current); 4901 if (mem_cgroup_is_root(memcg)) 4902 goto out; 4903 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4904 goto out; 4905 if (css_tryget(&memcg->css)) 4906 sk->sk_memcg = memcg; 4907 out: 4908 rcu_read_unlock(); 4909 } 4910 4911 void mem_cgroup_sk_free(struct sock *sk) 4912 { 4913 if (sk->sk_memcg) 4914 css_put(&sk->sk_memcg->css); 4915 } 4916 4917 /** 4918 * mem_cgroup_charge_skmem - charge socket memory 4919 * @memcg: memcg to charge 4920 * @nr_pages: number of pages to charge 4921 * @gfp_mask: reclaim mode 4922 * 4923 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4924 * @memcg's configured limit, %false if it doesn't. 4925 */ 4926 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4927 gfp_t gfp_mask) 4928 { 4929 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4930 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4931 4932 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 4933 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 4934 return true; 4935 } 4936 4937 return false; 4938 } 4939 4940 /** 4941 * mem_cgroup_uncharge_skmem - uncharge socket memory 4942 * @memcg: memcg to uncharge 4943 * @nr_pages: number of pages to uncharge 4944 */ 4945 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 4946 { 4947 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 4948 memcg1_uncharge_skmem(memcg, nr_pages); 4949 return; 4950 } 4951 4952 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 4953 4954 refill_stock(memcg, nr_pages); 4955 } 4956 4957 static int __init cgroup_memory(char *s) 4958 { 4959 char *token; 4960 4961 while ((token = strsep(&s, ",")) != NULL) { 4962 if (!*token) 4963 continue; 4964 if (!strcmp(token, "nosocket")) 4965 cgroup_memory_nosocket = true; 4966 if (!strcmp(token, "nokmem")) 4967 cgroup_memory_nokmem = true; 4968 if (!strcmp(token, "nobpf")) 4969 cgroup_memory_nobpf = true; 4970 } 4971 return 1; 4972 } 4973 __setup("cgroup.memory=", cgroup_memory); 4974 4975 /* 4976 * subsys_initcall() for memory controller. 4977 * 4978 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 4979 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 4980 * basically everything that doesn't depend on a specific mem_cgroup structure 4981 * should be initialized from here. 4982 */ 4983 static int __init mem_cgroup_init(void) 4984 { 4985 int cpu; 4986 4987 /* 4988 * Currently s32 type (can refer to struct batched_lruvec_stat) is 4989 * used for per-memcg-per-cpu caching of per-node statistics. In order 4990 * to work fine, we should make sure that the overfill threshold can't 4991 * exceed S32_MAX / PAGE_SIZE. 4992 */ 4993 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 4994 4995 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 4996 memcg_hotplug_cpu_dead); 4997 4998 for_each_possible_cpu(cpu) 4999 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5000 drain_local_stock); 5001 5002 return 0; 5003 } 5004 subsys_initcall(mem_cgroup_init); 5005 5006 #ifdef CONFIG_SWAP 5007 /** 5008 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5009 * @folio: folio being added to swap 5010 * @entry: swap entry to charge 5011 * 5012 * Try to charge @folio's memcg for the swap space at @entry. 5013 * 5014 * Returns 0 on success, -ENOMEM on failure. 5015 */ 5016 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5017 { 5018 unsigned int nr_pages = folio_nr_pages(folio); 5019 struct page_counter *counter; 5020 struct mem_cgroup *memcg; 5021 5022 if (do_memsw_account()) 5023 return 0; 5024 5025 memcg = folio_memcg(folio); 5026 5027 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5028 if (!memcg) 5029 return 0; 5030 5031 if (!entry.val) { 5032 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5033 return 0; 5034 } 5035 5036 memcg = mem_cgroup_id_get_online(memcg); 5037 5038 if (!mem_cgroup_is_root(memcg) && 5039 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5040 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5041 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5042 mem_cgroup_id_put(memcg); 5043 return -ENOMEM; 5044 } 5045 5046 /* Get references for the tail pages, too */ 5047 if (nr_pages > 1) 5048 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5049 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5050 5051 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5052 5053 return 0; 5054 } 5055 5056 /** 5057 * __mem_cgroup_uncharge_swap - uncharge swap space 5058 * @entry: swap entry to uncharge 5059 * @nr_pages: the amount of swap space to uncharge 5060 */ 5061 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5062 { 5063 struct mem_cgroup *memcg; 5064 unsigned short id; 5065 5066 id = swap_cgroup_clear(entry, nr_pages); 5067 rcu_read_lock(); 5068 memcg = mem_cgroup_from_id(id); 5069 if (memcg) { 5070 if (!mem_cgroup_is_root(memcg)) { 5071 if (do_memsw_account()) 5072 page_counter_uncharge(&memcg->memsw, nr_pages); 5073 else 5074 page_counter_uncharge(&memcg->swap, nr_pages); 5075 } 5076 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5077 mem_cgroup_id_put_many(memcg, nr_pages); 5078 } 5079 rcu_read_unlock(); 5080 } 5081 5082 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5083 { 5084 long nr_swap_pages = get_nr_swap_pages(); 5085 5086 if (mem_cgroup_disabled() || do_memsw_account()) 5087 return nr_swap_pages; 5088 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5089 nr_swap_pages = min_t(long, nr_swap_pages, 5090 READ_ONCE(memcg->swap.max) - 5091 page_counter_read(&memcg->swap)); 5092 return nr_swap_pages; 5093 } 5094 5095 bool mem_cgroup_swap_full(struct folio *folio) 5096 { 5097 struct mem_cgroup *memcg; 5098 5099 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5100 5101 if (vm_swap_full()) 5102 return true; 5103 if (do_memsw_account()) 5104 return false; 5105 5106 memcg = folio_memcg(folio); 5107 if (!memcg) 5108 return false; 5109 5110 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5111 unsigned long usage = page_counter_read(&memcg->swap); 5112 5113 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5114 usage * 2 >= READ_ONCE(memcg->swap.max)) 5115 return true; 5116 } 5117 5118 return false; 5119 } 5120 5121 static int __init setup_swap_account(char *s) 5122 { 5123 bool res; 5124 5125 if (!kstrtobool(s, &res) && !res) 5126 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5127 "in favor of configuring swap control via cgroupfs. " 5128 "Please report your usecase to linux-mm@kvack.org if you " 5129 "depend on this functionality.\n"); 5130 return 1; 5131 } 5132 __setup("swapaccount=", setup_swap_account); 5133 5134 static u64 swap_current_read(struct cgroup_subsys_state *css, 5135 struct cftype *cft) 5136 { 5137 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5138 5139 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5140 } 5141 5142 static int swap_peak_show(struct seq_file *sf, void *v) 5143 { 5144 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5145 5146 return peak_show(sf, v, &memcg->swap); 5147 } 5148 5149 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5150 size_t nbytes, loff_t off) 5151 { 5152 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5153 5154 return peak_write(of, buf, nbytes, off, &memcg->swap, 5155 &memcg->swap_peaks); 5156 } 5157 5158 static int swap_high_show(struct seq_file *m, void *v) 5159 { 5160 return seq_puts_memcg_tunable(m, 5161 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5162 } 5163 5164 static ssize_t swap_high_write(struct kernfs_open_file *of, 5165 char *buf, size_t nbytes, loff_t off) 5166 { 5167 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5168 unsigned long high; 5169 int err; 5170 5171 buf = strstrip(buf); 5172 err = page_counter_memparse(buf, "max", &high); 5173 if (err) 5174 return err; 5175 5176 page_counter_set_high(&memcg->swap, high); 5177 5178 return nbytes; 5179 } 5180 5181 static int swap_max_show(struct seq_file *m, void *v) 5182 { 5183 return seq_puts_memcg_tunable(m, 5184 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5185 } 5186 5187 static ssize_t swap_max_write(struct kernfs_open_file *of, 5188 char *buf, size_t nbytes, loff_t off) 5189 { 5190 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5191 unsigned long max; 5192 int err; 5193 5194 buf = strstrip(buf); 5195 err = page_counter_memparse(buf, "max", &max); 5196 if (err) 5197 return err; 5198 5199 xchg(&memcg->swap.max, max); 5200 5201 return nbytes; 5202 } 5203 5204 static int swap_events_show(struct seq_file *m, void *v) 5205 { 5206 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5207 5208 seq_printf(m, "high %lu\n", 5209 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5210 seq_printf(m, "max %lu\n", 5211 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5212 seq_printf(m, "fail %lu\n", 5213 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5214 5215 return 0; 5216 } 5217 5218 static struct cftype swap_files[] = { 5219 { 5220 .name = "swap.current", 5221 .flags = CFTYPE_NOT_ON_ROOT, 5222 .read_u64 = swap_current_read, 5223 }, 5224 { 5225 .name = "swap.high", 5226 .flags = CFTYPE_NOT_ON_ROOT, 5227 .seq_show = swap_high_show, 5228 .write = swap_high_write, 5229 }, 5230 { 5231 .name = "swap.max", 5232 .flags = CFTYPE_NOT_ON_ROOT, 5233 .seq_show = swap_max_show, 5234 .write = swap_max_write, 5235 }, 5236 { 5237 .name = "swap.peak", 5238 .flags = CFTYPE_NOT_ON_ROOT, 5239 .open = peak_open, 5240 .release = peak_release, 5241 .seq_show = swap_peak_show, 5242 .write = swap_peak_write, 5243 }, 5244 { 5245 .name = "swap.events", 5246 .flags = CFTYPE_NOT_ON_ROOT, 5247 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5248 .seq_show = swap_events_show, 5249 }, 5250 { } /* terminate */ 5251 }; 5252 5253 #ifdef CONFIG_ZSWAP 5254 /** 5255 * obj_cgroup_may_zswap - check if this cgroup can zswap 5256 * @objcg: the object cgroup 5257 * 5258 * Check if the hierarchical zswap limit has been reached. 5259 * 5260 * This doesn't check for specific headroom, and it is not atomic 5261 * either. But with zswap, the size of the allocation is only known 5262 * once compression has occurred, and this optimistic pre-check avoids 5263 * spending cycles on compression when there is already no room left 5264 * or zswap is disabled altogether somewhere in the hierarchy. 5265 */ 5266 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5267 { 5268 struct mem_cgroup *memcg, *original_memcg; 5269 bool ret = true; 5270 5271 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5272 return true; 5273 5274 original_memcg = get_mem_cgroup_from_objcg(objcg); 5275 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5276 memcg = parent_mem_cgroup(memcg)) { 5277 unsigned long max = READ_ONCE(memcg->zswap_max); 5278 unsigned long pages; 5279 5280 if (max == PAGE_COUNTER_MAX) 5281 continue; 5282 if (max == 0) { 5283 ret = false; 5284 break; 5285 } 5286 5287 /* Force flush to get accurate stats for charging */ 5288 __mem_cgroup_flush_stats(memcg, true); 5289 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5290 if (pages < max) 5291 continue; 5292 ret = false; 5293 break; 5294 } 5295 mem_cgroup_put(original_memcg); 5296 return ret; 5297 } 5298 5299 /** 5300 * obj_cgroup_charge_zswap - charge compression backend memory 5301 * @objcg: the object cgroup 5302 * @size: size of compressed object 5303 * 5304 * This forces the charge after obj_cgroup_may_zswap() allowed 5305 * compression and storage in zwap for this cgroup to go ahead. 5306 */ 5307 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5308 { 5309 struct mem_cgroup *memcg; 5310 5311 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5312 return; 5313 5314 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5315 5316 /* PF_MEMALLOC context, charging must succeed */ 5317 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5318 VM_WARN_ON_ONCE(1); 5319 5320 rcu_read_lock(); 5321 memcg = obj_cgroup_memcg(objcg); 5322 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5323 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5324 rcu_read_unlock(); 5325 } 5326 5327 /** 5328 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5329 * @objcg: the object cgroup 5330 * @size: size of compressed object 5331 * 5332 * Uncharges zswap memory on page in. 5333 */ 5334 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5335 { 5336 struct mem_cgroup *memcg; 5337 5338 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5339 return; 5340 5341 obj_cgroup_uncharge(objcg, size); 5342 5343 rcu_read_lock(); 5344 memcg = obj_cgroup_memcg(objcg); 5345 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5346 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5347 rcu_read_unlock(); 5348 } 5349 5350 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5351 { 5352 /* if zswap is disabled, do not block pages going to the swapping device */ 5353 if (!zswap_is_enabled()) 5354 return true; 5355 5356 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5357 if (!READ_ONCE(memcg->zswap_writeback)) 5358 return false; 5359 5360 return true; 5361 } 5362 5363 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5364 struct cftype *cft) 5365 { 5366 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5367 5368 mem_cgroup_flush_stats(memcg); 5369 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5370 } 5371 5372 static int zswap_max_show(struct seq_file *m, void *v) 5373 { 5374 return seq_puts_memcg_tunable(m, 5375 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5376 } 5377 5378 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5379 char *buf, size_t nbytes, loff_t off) 5380 { 5381 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5382 unsigned long max; 5383 int err; 5384 5385 buf = strstrip(buf); 5386 err = page_counter_memparse(buf, "max", &max); 5387 if (err) 5388 return err; 5389 5390 xchg(&memcg->zswap_max, max); 5391 5392 return nbytes; 5393 } 5394 5395 static int zswap_writeback_show(struct seq_file *m, void *v) 5396 { 5397 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5398 5399 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5400 return 0; 5401 } 5402 5403 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5404 char *buf, size_t nbytes, loff_t off) 5405 { 5406 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5407 int zswap_writeback; 5408 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5409 5410 if (parse_ret) 5411 return parse_ret; 5412 5413 if (zswap_writeback != 0 && zswap_writeback != 1) 5414 return -EINVAL; 5415 5416 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5417 return nbytes; 5418 } 5419 5420 static struct cftype zswap_files[] = { 5421 { 5422 .name = "zswap.current", 5423 .flags = CFTYPE_NOT_ON_ROOT, 5424 .read_u64 = zswap_current_read, 5425 }, 5426 { 5427 .name = "zswap.max", 5428 .flags = CFTYPE_NOT_ON_ROOT, 5429 .seq_show = zswap_max_show, 5430 .write = zswap_max_write, 5431 }, 5432 { 5433 .name = "zswap.writeback", 5434 .seq_show = zswap_writeback_show, 5435 .write = zswap_writeback_write, 5436 }, 5437 { } /* terminate */ 5438 }; 5439 #endif /* CONFIG_ZSWAP */ 5440 5441 static int __init mem_cgroup_swap_init(void) 5442 { 5443 if (mem_cgroup_disabled()) 5444 return 0; 5445 5446 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5447 #ifdef CONFIG_MEMCG_V1 5448 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5449 #endif 5450 #ifdef CONFIG_ZSWAP 5451 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5452 #endif 5453 return 0; 5454 } 5455 subsys_initcall(mem_cgroup_swap_init); 5456 5457 #endif /* CONFIG_SWAP */ 5458