xref: /linux/mm/memcontrol.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "swap.h"
71 
72 #include <linux/uaccess.h>
73 
74 #include <trace/events/vmscan.h>
75 
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78 
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80 
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84 
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87 
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90 
91 /* Whether the swap controller is active */
92 #ifdef CONFIG_MEMCG_SWAP
93 static bool cgroup_memory_noswap __ro_after_init;
94 #else
95 #define cgroup_memory_noswap		1
96 #endif
97 
98 #ifdef CONFIG_CGROUP_WRITEBACK
99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100 #endif
101 
102 /* Whether legacy memory+swap accounting is active */
103 static bool do_memsw_account(void)
104 {
105 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
106 }
107 
108 #define THRESHOLDS_EVENTS_TARGET 128
109 #define SOFTLIMIT_EVENTS_TARGET 1024
110 
111 /*
112  * Cgroups above their limits are maintained in a RB-Tree, independent of
113  * their hierarchy representation
114  */
115 
116 struct mem_cgroup_tree_per_node {
117 	struct rb_root rb_root;
118 	struct rb_node *rb_rightmost;
119 	spinlock_t lock;
120 };
121 
122 struct mem_cgroup_tree {
123 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
124 };
125 
126 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
127 
128 /* for OOM */
129 struct mem_cgroup_eventfd_list {
130 	struct list_head list;
131 	struct eventfd_ctx *eventfd;
132 };
133 
134 /*
135  * cgroup_event represents events which userspace want to receive.
136  */
137 struct mem_cgroup_event {
138 	/*
139 	 * memcg which the event belongs to.
140 	 */
141 	struct mem_cgroup *memcg;
142 	/*
143 	 * eventfd to signal userspace about the event.
144 	 */
145 	struct eventfd_ctx *eventfd;
146 	/*
147 	 * Each of these stored in a list by the cgroup.
148 	 */
149 	struct list_head list;
150 	/*
151 	 * register_event() callback will be used to add new userspace
152 	 * waiter for changes related to this event.  Use eventfd_signal()
153 	 * on eventfd to send notification to userspace.
154 	 */
155 	int (*register_event)(struct mem_cgroup *memcg,
156 			      struct eventfd_ctx *eventfd, const char *args);
157 	/*
158 	 * unregister_event() callback will be called when userspace closes
159 	 * the eventfd or on cgroup removing.  This callback must be set,
160 	 * if you want provide notification functionality.
161 	 */
162 	void (*unregister_event)(struct mem_cgroup *memcg,
163 				 struct eventfd_ctx *eventfd);
164 	/*
165 	 * All fields below needed to unregister event when
166 	 * userspace closes eventfd.
167 	 */
168 	poll_table pt;
169 	wait_queue_head_t *wqh;
170 	wait_queue_entry_t wait;
171 	struct work_struct remove;
172 };
173 
174 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
175 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
176 
177 /* Stuffs for move charges at task migration. */
178 /*
179  * Types of charges to be moved.
180  */
181 #define MOVE_ANON	0x1U
182 #define MOVE_FILE	0x2U
183 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
184 
185 /* "mc" and its members are protected by cgroup_mutex */
186 static struct move_charge_struct {
187 	spinlock_t	  lock; /* for from, to */
188 	struct mm_struct  *mm;
189 	struct mem_cgroup *from;
190 	struct mem_cgroup *to;
191 	unsigned long flags;
192 	unsigned long precharge;
193 	unsigned long moved_charge;
194 	unsigned long moved_swap;
195 	struct task_struct *moving_task;	/* a task moving charges */
196 	wait_queue_head_t waitq;		/* a waitq for other context */
197 } mc = {
198 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
199 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
200 };
201 
202 /*
203  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
204  * limit reclaim to prevent infinite loops, if they ever occur.
205  */
206 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
207 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
208 
209 /* for encoding cft->private value on file */
210 enum res_type {
211 	_MEM,
212 	_MEMSWAP,
213 	_KMEM,
214 	_TCP,
215 };
216 
217 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
218 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val)	((val) & 0xffff)
220 
221 /*
222  * Iteration constructs for visiting all cgroups (under a tree).  If
223  * loops are exited prematurely (break), mem_cgroup_iter_break() must
224  * be used for reference counting.
225  */
226 #define for_each_mem_cgroup_tree(iter, root)		\
227 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
228 	     iter != NULL;				\
229 	     iter = mem_cgroup_iter(root, iter, NULL))
230 
231 #define for_each_mem_cgroup(iter)			\
232 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
233 	     iter != NULL;				\
234 	     iter = mem_cgroup_iter(NULL, iter, NULL))
235 
236 static inline bool task_is_dying(void)
237 {
238 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 		(current->flags & PF_EXITING);
240 }
241 
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 	if (!memcg)
246 		memcg = root_mem_cgroup;
247 	return &memcg->vmpressure;
248 }
249 
250 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
251 {
252 	return container_of(vmpr, struct mem_cgroup, vmpressure);
253 }
254 
255 #ifdef CONFIG_MEMCG_KMEM
256 static DEFINE_SPINLOCK(objcg_lock);
257 
258 bool mem_cgroup_kmem_disabled(void)
259 {
260 	return cgroup_memory_nokmem;
261 }
262 
263 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
264 				      unsigned int nr_pages);
265 
266 static void obj_cgroup_release(struct percpu_ref *ref)
267 {
268 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
269 	unsigned int nr_bytes;
270 	unsigned int nr_pages;
271 	unsigned long flags;
272 
273 	/*
274 	 * At this point all allocated objects are freed, and
275 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
276 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
277 	 *
278 	 * The following sequence can lead to it:
279 	 * 1) CPU0: objcg == stock->cached_objcg
280 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
281 	 *          PAGE_SIZE bytes are charged
282 	 * 3) CPU1: a process from another memcg is allocating something,
283 	 *          the stock if flushed,
284 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
285 	 * 5) CPU0: we do release this object,
286 	 *          92 bytes are added to stock->nr_bytes
287 	 * 6) CPU0: stock is flushed,
288 	 *          92 bytes are added to objcg->nr_charged_bytes
289 	 *
290 	 * In the result, nr_charged_bytes == PAGE_SIZE.
291 	 * This page will be uncharged in obj_cgroup_release().
292 	 */
293 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
294 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
295 	nr_pages = nr_bytes >> PAGE_SHIFT;
296 
297 	if (nr_pages)
298 		obj_cgroup_uncharge_pages(objcg, nr_pages);
299 
300 	spin_lock_irqsave(&objcg_lock, flags);
301 	list_del(&objcg->list);
302 	spin_unlock_irqrestore(&objcg_lock, flags);
303 
304 	percpu_ref_exit(ref);
305 	kfree_rcu(objcg, rcu);
306 }
307 
308 static struct obj_cgroup *obj_cgroup_alloc(void)
309 {
310 	struct obj_cgroup *objcg;
311 	int ret;
312 
313 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
314 	if (!objcg)
315 		return NULL;
316 
317 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
318 			      GFP_KERNEL);
319 	if (ret) {
320 		kfree(objcg);
321 		return NULL;
322 	}
323 	INIT_LIST_HEAD(&objcg->list);
324 	return objcg;
325 }
326 
327 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
328 				  struct mem_cgroup *parent)
329 {
330 	struct obj_cgroup *objcg, *iter;
331 
332 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
333 
334 	spin_lock_irq(&objcg_lock);
335 
336 	/* 1) Ready to reparent active objcg. */
337 	list_add(&objcg->list, &memcg->objcg_list);
338 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
339 	list_for_each_entry(iter, &memcg->objcg_list, list)
340 		WRITE_ONCE(iter->memcg, parent);
341 	/* 3) Move already reparented objcgs to the parent's list */
342 	list_splice(&memcg->objcg_list, &parent->objcg_list);
343 
344 	spin_unlock_irq(&objcg_lock);
345 
346 	percpu_ref_kill(&objcg->refcnt);
347 }
348 
349 /*
350  * A lot of the calls to the cache allocation functions are expected to be
351  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
352  * conditional to this static branch, we'll have to allow modules that does
353  * kmem_cache_alloc and the such to see this symbol as well
354  */
355 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
356 EXPORT_SYMBOL(memcg_kmem_enabled_key);
357 #endif
358 
359 /**
360  * mem_cgroup_css_from_page - css of the memcg associated with a page
361  * @page: page of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @page is returned.  The returned css remains associated with @page
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
371 {
372 	struct mem_cgroup *memcg;
373 
374 	memcg = page_memcg(page);
375 
376 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
377 		memcg = root_mem_cgroup;
378 
379 	return &memcg->css;
380 }
381 
382 /**
383  * page_cgroup_ino - return inode number of the memcg a page is charged to
384  * @page: the page
385  *
386  * Look up the closest online ancestor of the memory cgroup @page is charged to
387  * and return its inode number or 0 if @page is not charged to any cgroup. It
388  * is safe to call this function without holding a reference to @page.
389  *
390  * Note, this function is inherently racy, because there is nothing to prevent
391  * the cgroup inode from getting torn down and potentially reallocated a moment
392  * after page_cgroup_ino() returns, so it only should be used by callers that
393  * do not care (such as procfs interfaces).
394  */
395 ino_t page_cgroup_ino(struct page *page)
396 {
397 	struct mem_cgroup *memcg;
398 	unsigned long ino = 0;
399 
400 	rcu_read_lock();
401 	memcg = page_memcg_check(page);
402 
403 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
404 		memcg = parent_mem_cgroup(memcg);
405 	if (memcg)
406 		ino = cgroup_ino(memcg->css.cgroup);
407 	rcu_read_unlock();
408 	return ino;
409 }
410 
411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
412 					 struct mem_cgroup_tree_per_node *mctz,
413 					 unsigned long new_usage_in_excess)
414 {
415 	struct rb_node **p = &mctz->rb_root.rb_node;
416 	struct rb_node *parent = NULL;
417 	struct mem_cgroup_per_node *mz_node;
418 	bool rightmost = true;
419 
420 	if (mz->on_tree)
421 		return;
422 
423 	mz->usage_in_excess = new_usage_in_excess;
424 	if (!mz->usage_in_excess)
425 		return;
426 	while (*p) {
427 		parent = *p;
428 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
429 					tree_node);
430 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
431 			p = &(*p)->rb_left;
432 			rightmost = false;
433 		} else {
434 			p = &(*p)->rb_right;
435 		}
436 	}
437 
438 	if (rightmost)
439 		mctz->rb_rightmost = &mz->tree_node;
440 
441 	rb_link_node(&mz->tree_node, parent, p);
442 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
443 	mz->on_tree = true;
444 }
445 
446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
447 					 struct mem_cgroup_tree_per_node *mctz)
448 {
449 	if (!mz->on_tree)
450 		return;
451 
452 	if (&mz->tree_node == mctz->rb_rightmost)
453 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
454 
455 	rb_erase(&mz->tree_node, &mctz->rb_root);
456 	mz->on_tree = false;
457 }
458 
459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
460 				       struct mem_cgroup_tree_per_node *mctz)
461 {
462 	unsigned long flags;
463 
464 	spin_lock_irqsave(&mctz->lock, flags);
465 	__mem_cgroup_remove_exceeded(mz, mctz);
466 	spin_unlock_irqrestore(&mctz->lock, flags);
467 }
468 
469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
470 {
471 	unsigned long nr_pages = page_counter_read(&memcg->memory);
472 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
473 	unsigned long excess = 0;
474 
475 	if (nr_pages > soft_limit)
476 		excess = nr_pages - soft_limit;
477 
478 	return excess;
479 }
480 
481 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
482 {
483 	unsigned long excess;
484 	struct mem_cgroup_per_node *mz;
485 	struct mem_cgroup_tree_per_node *mctz;
486 
487 	mctz = soft_limit_tree.rb_tree_per_node[nid];
488 	if (!mctz)
489 		return;
490 	/*
491 	 * Necessary to update all ancestors when hierarchy is used.
492 	 * because their event counter is not touched.
493 	 */
494 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
495 		mz = memcg->nodeinfo[nid];
496 		excess = soft_limit_excess(memcg);
497 		/*
498 		 * We have to update the tree if mz is on RB-tree or
499 		 * mem is over its softlimit.
500 		 */
501 		if (excess || mz->on_tree) {
502 			unsigned long flags;
503 
504 			spin_lock_irqsave(&mctz->lock, flags);
505 			/* if on-tree, remove it */
506 			if (mz->on_tree)
507 				__mem_cgroup_remove_exceeded(mz, mctz);
508 			/*
509 			 * Insert again. mz->usage_in_excess will be updated.
510 			 * If excess is 0, no tree ops.
511 			 */
512 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
513 			spin_unlock_irqrestore(&mctz->lock, flags);
514 		}
515 	}
516 }
517 
518 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
519 {
520 	struct mem_cgroup_tree_per_node *mctz;
521 	struct mem_cgroup_per_node *mz;
522 	int nid;
523 
524 	for_each_node(nid) {
525 		mz = memcg->nodeinfo[nid];
526 		mctz = soft_limit_tree.rb_tree_per_node[nid];
527 		if (mctz)
528 			mem_cgroup_remove_exceeded(mz, mctz);
529 	}
530 }
531 
532 static struct mem_cgroup_per_node *
533 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 	struct mem_cgroup_per_node *mz;
536 
537 retry:
538 	mz = NULL;
539 	if (!mctz->rb_rightmost)
540 		goto done;		/* Nothing to reclaim from */
541 
542 	mz = rb_entry(mctz->rb_rightmost,
543 		      struct mem_cgroup_per_node, tree_node);
544 	/*
545 	 * Remove the node now but someone else can add it back,
546 	 * we will to add it back at the end of reclaim to its correct
547 	 * position in the tree.
548 	 */
549 	__mem_cgroup_remove_exceeded(mz, mctz);
550 	if (!soft_limit_excess(mz->memcg) ||
551 	    !css_tryget(&mz->memcg->css))
552 		goto retry;
553 done:
554 	return mz;
555 }
556 
557 static struct mem_cgroup_per_node *
558 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
559 {
560 	struct mem_cgroup_per_node *mz;
561 
562 	spin_lock_irq(&mctz->lock);
563 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
564 	spin_unlock_irq(&mctz->lock);
565 	return mz;
566 }
567 
568 /*
569  * memcg and lruvec stats flushing
570  *
571  * Many codepaths leading to stats update or read are performance sensitive and
572  * adding stats flushing in such codepaths is not desirable. So, to optimize the
573  * flushing the kernel does:
574  *
575  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
576  *    rstat update tree grow unbounded.
577  *
578  * 2) Flush the stats synchronously on reader side only when there are more than
579  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
580  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
581  *    only for 2 seconds due to (1).
582  */
583 static void flush_memcg_stats_dwork(struct work_struct *w);
584 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
585 static DEFINE_SPINLOCK(stats_flush_lock);
586 static DEFINE_PER_CPU(unsigned int, stats_updates);
587 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
588 static u64 flush_next_time;
589 
590 #define FLUSH_TIME (2UL*HZ)
591 
592 /*
593  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
594  * not rely on this as part of an acquired spinlock_t lock. These functions are
595  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
596  * is sufficient.
597  */
598 static void memcg_stats_lock(void)
599 {
600 #ifdef CONFIG_PREEMPT_RT
601       preempt_disable();
602 #else
603       VM_BUG_ON(!irqs_disabled());
604 #endif
605 }
606 
607 static void __memcg_stats_lock(void)
608 {
609 #ifdef CONFIG_PREEMPT_RT
610       preempt_disable();
611 #endif
612 }
613 
614 static void memcg_stats_unlock(void)
615 {
616 #ifdef CONFIG_PREEMPT_RT
617       preempt_enable();
618 #endif
619 }
620 
621 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
622 {
623 	unsigned int x;
624 
625 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
626 
627 	x = __this_cpu_add_return(stats_updates, abs(val));
628 	if (x > MEMCG_CHARGE_BATCH) {
629 		/*
630 		 * If stats_flush_threshold exceeds the threshold
631 		 * (>num_online_cpus()), cgroup stats update will be triggered
632 		 * in __mem_cgroup_flush_stats(). Increasing this var further
633 		 * is redundant and simply adds overhead in atomic update.
634 		 */
635 		if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
636 			atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
637 		__this_cpu_write(stats_updates, 0);
638 	}
639 }
640 
641 static void __mem_cgroup_flush_stats(void)
642 {
643 	unsigned long flag;
644 
645 	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
646 		return;
647 
648 	flush_next_time = jiffies_64 + 2*FLUSH_TIME;
649 	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
650 	atomic_set(&stats_flush_threshold, 0);
651 	spin_unlock_irqrestore(&stats_flush_lock, flag);
652 }
653 
654 void mem_cgroup_flush_stats(void)
655 {
656 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
657 		__mem_cgroup_flush_stats();
658 }
659 
660 void mem_cgroup_flush_stats_delayed(void)
661 {
662 	if (time_after64(jiffies_64, flush_next_time))
663 		mem_cgroup_flush_stats();
664 }
665 
666 static void flush_memcg_stats_dwork(struct work_struct *w)
667 {
668 	__mem_cgroup_flush_stats();
669 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
670 }
671 
672 /**
673  * __mod_memcg_state - update cgroup memory statistics
674  * @memcg: the memory cgroup
675  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
676  * @val: delta to add to the counter, can be negative
677  */
678 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
679 {
680 	if (mem_cgroup_disabled())
681 		return;
682 
683 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
684 	memcg_rstat_updated(memcg, val);
685 }
686 
687 /* idx can be of type enum memcg_stat_item or node_stat_item. */
688 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
689 {
690 	long x = 0;
691 	int cpu;
692 
693 	for_each_possible_cpu(cpu)
694 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
695 #ifdef CONFIG_SMP
696 	if (x < 0)
697 		x = 0;
698 #endif
699 	return x;
700 }
701 
702 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
703 			      int val)
704 {
705 	struct mem_cgroup_per_node *pn;
706 	struct mem_cgroup *memcg;
707 
708 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
709 	memcg = pn->memcg;
710 
711 	/*
712 	 * The caller from rmap relay on disabled preemption becase they never
713 	 * update their counter from in-interrupt context. For these two
714 	 * counters we check that the update is never performed from an
715 	 * interrupt context while other caller need to have disabled interrupt.
716 	 */
717 	__memcg_stats_lock();
718 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
719 		switch (idx) {
720 		case NR_ANON_MAPPED:
721 		case NR_FILE_MAPPED:
722 		case NR_ANON_THPS:
723 		case NR_SHMEM_PMDMAPPED:
724 		case NR_FILE_PMDMAPPED:
725 			WARN_ON_ONCE(!in_task());
726 			break;
727 		default:
728 			WARN_ON_ONCE(!irqs_disabled());
729 		}
730 	}
731 
732 	/* Update memcg */
733 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
734 
735 	/* Update lruvec */
736 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
737 
738 	memcg_rstat_updated(memcg, val);
739 	memcg_stats_unlock();
740 }
741 
742 /**
743  * __mod_lruvec_state - update lruvec memory statistics
744  * @lruvec: the lruvec
745  * @idx: the stat item
746  * @val: delta to add to the counter, can be negative
747  *
748  * The lruvec is the intersection of the NUMA node and a cgroup. This
749  * function updates the all three counters that are affected by a
750  * change of state at this level: per-node, per-cgroup, per-lruvec.
751  */
752 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
753 			int val)
754 {
755 	/* Update node */
756 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
757 
758 	/* Update memcg and lruvec */
759 	if (!mem_cgroup_disabled())
760 		__mod_memcg_lruvec_state(lruvec, idx, val);
761 }
762 
763 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
764 			     int val)
765 {
766 	struct page *head = compound_head(page); /* rmap on tail pages */
767 	struct mem_cgroup *memcg;
768 	pg_data_t *pgdat = page_pgdat(page);
769 	struct lruvec *lruvec;
770 
771 	rcu_read_lock();
772 	memcg = page_memcg(head);
773 	/* Untracked pages have no memcg, no lruvec. Update only the node */
774 	if (!memcg) {
775 		rcu_read_unlock();
776 		__mod_node_page_state(pgdat, idx, val);
777 		return;
778 	}
779 
780 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
781 	__mod_lruvec_state(lruvec, idx, val);
782 	rcu_read_unlock();
783 }
784 EXPORT_SYMBOL(__mod_lruvec_page_state);
785 
786 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
787 {
788 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
789 	struct mem_cgroup *memcg;
790 	struct lruvec *lruvec;
791 
792 	rcu_read_lock();
793 	memcg = mem_cgroup_from_slab_obj(p);
794 
795 	/*
796 	 * Untracked pages have no memcg, no lruvec. Update only the
797 	 * node. If we reparent the slab objects to the root memcg,
798 	 * when we free the slab object, we need to update the per-memcg
799 	 * vmstats to keep it correct for the root memcg.
800 	 */
801 	if (!memcg) {
802 		__mod_node_page_state(pgdat, idx, val);
803 	} else {
804 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
805 		__mod_lruvec_state(lruvec, idx, val);
806 	}
807 	rcu_read_unlock();
808 }
809 
810 /**
811  * __count_memcg_events - account VM events in a cgroup
812  * @memcg: the memory cgroup
813  * @idx: the event item
814  * @count: the number of events that occurred
815  */
816 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
817 			  unsigned long count)
818 {
819 	if (mem_cgroup_disabled())
820 		return;
821 
822 	memcg_stats_lock();
823 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
824 	memcg_rstat_updated(memcg, count);
825 	memcg_stats_unlock();
826 }
827 
828 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
829 {
830 	return READ_ONCE(memcg->vmstats.events[event]);
831 }
832 
833 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
834 {
835 	long x = 0;
836 	int cpu;
837 
838 	for_each_possible_cpu(cpu)
839 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
840 	return x;
841 }
842 
843 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
844 					 int nr_pages)
845 {
846 	/* pagein of a big page is an event. So, ignore page size */
847 	if (nr_pages > 0)
848 		__count_memcg_events(memcg, PGPGIN, 1);
849 	else {
850 		__count_memcg_events(memcg, PGPGOUT, 1);
851 		nr_pages = -nr_pages; /* for event */
852 	}
853 
854 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
855 }
856 
857 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
858 				       enum mem_cgroup_events_target target)
859 {
860 	unsigned long val, next;
861 
862 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
863 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
864 	/* from time_after() in jiffies.h */
865 	if ((long)(next - val) < 0) {
866 		switch (target) {
867 		case MEM_CGROUP_TARGET_THRESH:
868 			next = val + THRESHOLDS_EVENTS_TARGET;
869 			break;
870 		case MEM_CGROUP_TARGET_SOFTLIMIT:
871 			next = val + SOFTLIMIT_EVENTS_TARGET;
872 			break;
873 		default:
874 			break;
875 		}
876 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
877 		return true;
878 	}
879 	return false;
880 }
881 
882 /*
883  * Check events in order.
884  *
885  */
886 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
887 {
888 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
889 		return;
890 
891 	/* threshold event is triggered in finer grain than soft limit */
892 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
893 						MEM_CGROUP_TARGET_THRESH))) {
894 		bool do_softlimit;
895 
896 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
897 						MEM_CGROUP_TARGET_SOFTLIMIT);
898 		mem_cgroup_threshold(memcg);
899 		if (unlikely(do_softlimit))
900 			mem_cgroup_update_tree(memcg, nid);
901 	}
902 }
903 
904 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
905 {
906 	/*
907 	 * mm_update_next_owner() may clear mm->owner to NULL
908 	 * if it races with swapoff, page migration, etc.
909 	 * So this can be called with p == NULL.
910 	 */
911 	if (unlikely(!p))
912 		return NULL;
913 
914 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
915 }
916 EXPORT_SYMBOL(mem_cgroup_from_task);
917 
918 static __always_inline struct mem_cgroup *active_memcg(void)
919 {
920 	if (!in_task())
921 		return this_cpu_read(int_active_memcg);
922 	else
923 		return current->active_memcg;
924 }
925 
926 /**
927  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
928  * @mm: mm from which memcg should be extracted. It can be NULL.
929  *
930  * Obtain a reference on mm->memcg and returns it if successful. If mm
931  * is NULL, then the memcg is chosen as follows:
932  * 1) The active memcg, if set.
933  * 2) current->mm->memcg, if available
934  * 3) root memcg
935  * If mem_cgroup is disabled, NULL is returned.
936  */
937 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
938 {
939 	struct mem_cgroup *memcg;
940 
941 	if (mem_cgroup_disabled())
942 		return NULL;
943 
944 	/*
945 	 * Page cache insertions can happen without an
946 	 * actual mm context, e.g. during disk probing
947 	 * on boot, loopback IO, acct() writes etc.
948 	 *
949 	 * No need to css_get on root memcg as the reference
950 	 * counting is disabled on the root level in the
951 	 * cgroup core. See CSS_NO_REF.
952 	 */
953 	if (unlikely(!mm)) {
954 		memcg = active_memcg();
955 		if (unlikely(memcg)) {
956 			/* remote memcg must hold a ref */
957 			css_get(&memcg->css);
958 			return memcg;
959 		}
960 		mm = current->mm;
961 		if (unlikely(!mm))
962 			return root_mem_cgroup;
963 	}
964 
965 	rcu_read_lock();
966 	do {
967 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
968 		if (unlikely(!memcg))
969 			memcg = root_mem_cgroup;
970 	} while (!css_tryget(&memcg->css));
971 	rcu_read_unlock();
972 	return memcg;
973 }
974 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
975 
976 static __always_inline bool memcg_kmem_bypass(void)
977 {
978 	/* Allow remote memcg charging from any context. */
979 	if (unlikely(active_memcg()))
980 		return false;
981 
982 	/* Memcg to charge can't be determined. */
983 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
984 		return true;
985 
986 	return false;
987 }
988 
989 /**
990  * mem_cgroup_iter - iterate over memory cgroup hierarchy
991  * @root: hierarchy root
992  * @prev: previously returned memcg, NULL on first invocation
993  * @reclaim: cookie for shared reclaim walks, NULL for full walks
994  *
995  * Returns references to children of the hierarchy below @root, or
996  * @root itself, or %NULL after a full round-trip.
997  *
998  * Caller must pass the return value in @prev on subsequent
999  * invocations for reference counting, or use mem_cgroup_iter_break()
1000  * to cancel a hierarchy walk before the round-trip is complete.
1001  *
1002  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1003  * in the hierarchy among all concurrent reclaimers operating on the
1004  * same node.
1005  */
1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1007 				   struct mem_cgroup *prev,
1008 				   struct mem_cgroup_reclaim_cookie *reclaim)
1009 {
1010 	struct mem_cgroup_reclaim_iter *iter;
1011 	struct cgroup_subsys_state *css = NULL;
1012 	struct mem_cgroup *memcg = NULL;
1013 	struct mem_cgroup *pos = NULL;
1014 
1015 	if (mem_cgroup_disabled())
1016 		return NULL;
1017 
1018 	if (!root)
1019 		root = root_mem_cgroup;
1020 
1021 	rcu_read_lock();
1022 
1023 	if (reclaim) {
1024 		struct mem_cgroup_per_node *mz;
1025 
1026 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1027 		iter = &mz->iter;
1028 
1029 		/*
1030 		 * On start, join the current reclaim iteration cycle.
1031 		 * Exit when a concurrent walker completes it.
1032 		 */
1033 		if (!prev)
1034 			reclaim->generation = iter->generation;
1035 		else if (reclaim->generation != iter->generation)
1036 			goto out_unlock;
1037 
1038 		while (1) {
1039 			pos = READ_ONCE(iter->position);
1040 			if (!pos || css_tryget(&pos->css))
1041 				break;
1042 			/*
1043 			 * css reference reached zero, so iter->position will
1044 			 * be cleared by ->css_released. However, we should not
1045 			 * rely on this happening soon, because ->css_released
1046 			 * is called from a work queue, and by busy-waiting we
1047 			 * might block it. So we clear iter->position right
1048 			 * away.
1049 			 */
1050 			(void)cmpxchg(&iter->position, pos, NULL);
1051 		}
1052 	} else if (prev) {
1053 		pos = prev;
1054 	}
1055 
1056 	if (pos)
1057 		css = &pos->css;
1058 
1059 	for (;;) {
1060 		css = css_next_descendant_pre(css, &root->css);
1061 		if (!css) {
1062 			/*
1063 			 * Reclaimers share the hierarchy walk, and a
1064 			 * new one might jump in right at the end of
1065 			 * the hierarchy - make sure they see at least
1066 			 * one group and restart from the beginning.
1067 			 */
1068 			if (!prev)
1069 				continue;
1070 			break;
1071 		}
1072 
1073 		/*
1074 		 * Verify the css and acquire a reference.  The root
1075 		 * is provided by the caller, so we know it's alive
1076 		 * and kicking, and don't take an extra reference.
1077 		 */
1078 		if (css == &root->css || css_tryget(css)) {
1079 			memcg = mem_cgroup_from_css(css);
1080 			break;
1081 		}
1082 	}
1083 
1084 	if (reclaim) {
1085 		/*
1086 		 * The position could have already been updated by a competing
1087 		 * thread, so check that the value hasn't changed since we read
1088 		 * it to avoid reclaiming from the same cgroup twice.
1089 		 */
1090 		(void)cmpxchg(&iter->position, pos, memcg);
1091 
1092 		if (pos)
1093 			css_put(&pos->css);
1094 
1095 		if (!memcg)
1096 			iter->generation++;
1097 	}
1098 
1099 out_unlock:
1100 	rcu_read_unlock();
1101 	if (prev && prev != root)
1102 		css_put(&prev->css);
1103 
1104 	return memcg;
1105 }
1106 
1107 /**
1108  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1109  * @root: hierarchy root
1110  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1111  */
1112 void mem_cgroup_iter_break(struct mem_cgroup *root,
1113 			   struct mem_cgroup *prev)
1114 {
1115 	if (!root)
1116 		root = root_mem_cgroup;
1117 	if (prev && prev != root)
1118 		css_put(&prev->css);
1119 }
1120 
1121 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1122 					struct mem_cgroup *dead_memcg)
1123 {
1124 	struct mem_cgroup_reclaim_iter *iter;
1125 	struct mem_cgroup_per_node *mz;
1126 	int nid;
1127 
1128 	for_each_node(nid) {
1129 		mz = from->nodeinfo[nid];
1130 		iter = &mz->iter;
1131 		cmpxchg(&iter->position, dead_memcg, NULL);
1132 	}
1133 }
1134 
1135 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1136 {
1137 	struct mem_cgroup *memcg = dead_memcg;
1138 	struct mem_cgroup *last;
1139 
1140 	do {
1141 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1142 		last = memcg;
1143 	} while ((memcg = parent_mem_cgroup(memcg)));
1144 
1145 	/*
1146 	 * When cgruop1 non-hierarchy mode is used,
1147 	 * parent_mem_cgroup() does not walk all the way up to the
1148 	 * cgroup root (root_mem_cgroup). So we have to handle
1149 	 * dead_memcg from cgroup root separately.
1150 	 */
1151 	if (last != root_mem_cgroup)
1152 		__invalidate_reclaim_iterators(root_mem_cgroup,
1153 						dead_memcg);
1154 }
1155 
1156 /**
1157  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1158  * @memcg: hierarchy root
1159  * @fn: function to call for each task
1160  * @arg: argument passed to @fn
1161  *
1162  * This function iterates over tasks attached to @memcg or to any of its
1163  * descendants and calls @fn for each task. If @fn returns a non-zero
1164  * value, the function breaks the iteration loop and returns the value.
1165  * Otherwise, it will iterate over all tasks and return 0.
1166  *
1167  * This function must not be called for the root memory cgroup.
1168  */
1169 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1170 			  int (*fn)(struct task_struct *, void *), void *arg)
1171 {
1172 	struct mem_cgroup *iter;
1173 	int ret = 0;
1174 
1175 	BUG_ON(memcg == root_mem_cgroup);
1176 
1177 	for_each_mem_cgroup_tree(iter, memcg) {
1178 		struct css_task_iter it;
1179 		struct task_struct *task;
1180 
1181 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1182 		while (!ret && (task = css_task_iter_next(&it)))
1183 			ret = fn(task, arg);
1184 		css_task_iter_end(&it);
1185 		if (ret) {
1186 			mem_cgroup_iter_break(memcg, iter);
1187 			break;
1188 		}
1189 	}
1190 	return ret;
1191 }
1192 
1193 #ifdef CONFIG_DEBUG_VM
1194 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1195 {
1196 	struct mem_cgroup *memcg;
1197 
1198 	if (mem_cgroup_disabled())
1199 		return;
1200 
1201 	memcg = folio_memcg(folio);
1202 
1203 	if (!memcg)
1204 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1205 	else
1206 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1207 }
1208 #endif
1209 
1210 /**
1211  * folio_lruvec_lock - Lock the lruvec for a folio.
1212  * @folio: Pointer to the folio.
1213  *
1214  * These functions are safe to use under any of the following conditions:
1215  * - folio locked
1216  * - folio_test_lru false
1217  * - folio_memcg_lock()
1218  * - folio frozen (refcount of 0)
1219  *
1220  * Return: The lruvec this folio is on with its lock held.
1221  */
1222 struct lruvec *folio_lruvec_lock(struct folio *folio)
1223 {
1224 	struct lruvec *lruvec = folio_lruvec(folio);
1225 
1226 	spin_lock(&lruvec->lru_lock);
1227 	lruvec_memcg_debug(lruvec, folio);
1228 
1229 	return lruvec;
1230 }
1231 
1232 /**
1233  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1234  * @folio: Pointer to the folio.
1235  *
1236  * These functions are safe to use under any of the following conditions:
1237  * - folio locked
1238  * - folio_test_lru false
1239  * - folio_memcg_lock()
1240  * - folio frozen (refcount of 0)
1241  *
1242  * Return: The lruvec this folio is on with its lock held and interrupts
1243  * disabled.
1244  */
1245 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1246 {
1247 	struct lruvec *lruvec = folio_lruvec(folio);
1248 
1249 	spin_lock_irq(&lruvec->lru_lock);
1250 	lruvec_memcg_debug(lruvec, folio);
1251 
1252 	return lruvec;
1253 }
1254 
1255 /**
1256  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1257  * @folio: Pointer to the folio.
1258  * @flags: Pointer to irqsave flags.
1259  *
1260  * These functions are safe to use under any of the following conditions:
1261  * - folio locked
1262  * - folio_test_lru false
1263  * - folio_memcg_lock()
1264  * - folio frozen (refcount of 0)
1265  *
1266  * Return: The lruvec this folio is on with its lock held and interrupts
1267  * disabled.
1268  */
1269 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1270 		unsigned long *flags)
1271 {
1272 	struct lruvec *lruvec = folio_lruvec(folio);
1273 
1274 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1275 	lruvec_memcg_debug(lruvec, folio);
1276 
1277 	return lruvec;
1278 }
1279 
1280 /**
1281  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1282  * @lruvec: mem_cgroup per zone lru vector
1283  * @lru: index of lru list the page is sitting on
1284  * @zid: zone id of the accounted pages
1285  * @nr_pages: positive when adding or negative when removing
1286  *
1287  * This function must be called under lru_lock, just before a page is added
1288  * to or just after a page is removed from an lru list.
1289  */
1290 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1291 				int zid, int nr_pages)
1292 {
1293 	struct mem_cgroup_per_node *mz;
1294 	unsigned long *lru_size;
1295 	long size;
1296 
1297 	if (mem_cgroup_disabled())
1298 		return;
1299 
1300 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1301 	lru_size = &mz->lru_zone_size[zid][lru];
1302 
1303 	if (nr_pages < 0)
1304 		*lru_size += nr_pages;
1305 
1306 	size = *lru_size;
1307 	if (WARN_ONCE(size < 0,
1308 		"%s(%p, %d, %d): lru_size %ld\n",
1309 		__func__, lruvec, lru, nr_pages, size)) {
1310 		VM_BUG_ON(1);
1311 		*lru_size = 0;
1312 	}
1313 
1314 	if (nr_pages > 0)
1315 		*lru_size += nr_pages;
1316 }
1317 
1318 /**
1319  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1320  * @memcg: the memory cgroup
1321  *
1322  * Returns the maximum amount of memory @mem can be charged with, in
1323  * pages.
1324  */
1325 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1326 {
1327 	unsigned long margin = 0;
1328 	unsigned long count;
1329 	unsigned long limit;
1330 
1331 	count = page_counter_read(&memcg->memory);
1332 	limit = READ_ONCE(memcg->memory.max);
1333 	if (count < limit)
1334 		margin = limit - count;
1335 
1336 	if (do_memsw_account()) {
1337 		count = page_counter_read(&memcg->memsw);
1338 		limit = READ_ONCE(memcg->memsw.max);
1339 		if (count < limit)
1340 			margin = min(margin, limit - count);
1341 		else
1342 			margin = 0;
1343 	}
1344 
1345 	return margin;
1346 }
1347 
1348 /*
1349  * A routine for checking "mem" is under move_account() or not.
1350  *
1351  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1352  * moving cgroups. This is for waiting at high-memory pressure
1353  * caused by "move".
1354  */
1355 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1356 {
1357 	struct mem_cgroup *from;
1358 	struct mem_cgroup *to;
1359 	bool ret = false;
1360 	/*
1361 	 * Unlike task_move routines, we access mc.to, mc.from not under
1362 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1363 	 */
1364 	spin_lock(&mc.lock);
1365 	from = mc.from;
1366 	to = mc.to;
1367 	if (!from)
1368 		goto unlock;
1369 
1370 	ret = mem_cgroup_is_descendant(from, memcg) ||
1371 		mem_cgroup_is_descendant(to, memcg);
1372 unlock:
1373 	spin_unlock(&mc.lock);
1374 	return ret;
1375 }
1376 
1377 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1378 {
1379 	if (mc.moving_task && current != mc.moving_task) {
1380 		if (mem_cgroup_under_move(memcg)) {
1381 			DEFINE_WAIT(wait);
1382 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1383 			/* moving charge context might have finished. */
1384 			if (mc.moving_task)
1385 				schedule();
1386 			finish_wait(&mc.waitq, &wait);
1387 			return true;
1388 		}
1389 	}
1390 	return false;
1391 }
1392 
1393 struct memory_stat {
1394 	const char *name;
1395 	unsigned int idx;
1396 };
1397 
1398 static const struct memory_stat memory_stats[] = {
1399 	{ "anon",			NR_ANON_MAPPED			},
1400 	{ "file",			NR_FILE_PAGES			},
1401 	{ "kernel",			MEMCG_KMEM			},
1402 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1403 	{ "pagetables",			NR_PAGETABLE			},
1404 	{ "percpu",			MEMCG_PERCPU_B			},
1405 	{ "sock",			MEMCG_SOCK			},
1406 	{ "vmalloc",			MEMCG_VMALLOC			},
1407 	{ "shmem",			NR_SHMEM			},
1408 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1409 	{ "zswap",			MEMCG_ZSWAP_B			},
1410 	{ "zswapped",			MEMCG_ZSWAPPED			},
1411 #endif
1412 	{ "file_mapped",		NR_FILE_MAPPED			},
1413 	{ "file_dirty",			NR_FILE_DIRTY			},
1414 	{ "file_writeback",		NR_WRITEBACK			},
1415 #ifdef CONFIG_SWAP
1416 	{ "swapcached",			NR_SWAPCACHE			},
1417 #endif
1418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1419 	{ "anon_thp",			NR_ANON_THPS			},
1420 	{ "file_thp",			NR_FILE_THPS			},
1421 	{ "shmem_thp",			NR_SHMEM_THPS			},
1422 #endif
1423 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1424 	{ "active_anon",		NR_ACTIVE_ANON			},
1425 	{ "inactive_file",		NR_INACTIVE_FILE		},
1426 	{ "active_file",		NR_ACTIVE_FILE			},
1427 	{ "unevictable",		NR_UNEVICTABLE			},
1428 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1429 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1430 
1431 	/* The memory events */
1432 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1433 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1434 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1435 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1436 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1437 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1438 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1439 };
1440 
1441 /* Translate stat items to the correct unit for memory.stat output */
1442 static int memcg_page_state_unit(int item)
1443 {
1444 	switch (item) {
1445 	case MEMCG_PERCPU_B:
1446 	case MEMCG_ZSWAP_B:
1447 	case NR_SLAB_RECLAIMABLE_B:
1448 	case NR_SLAB_UNRECLAIMABLE_B:
1449 	case WORKINGSET_REFAULT_ANON:
1450 	case WORKINGSET_REFAULT_FILE:
1451 	case WORKINGSET_ACTIVATE_ANON:
1452 	case WORKINGSET_ACTIVATE_FILE:
1453 	case WORKINGSET_RESTORE_ANON:
1454 	case WORKINGSET_RESTORE_FILE:
1455 	case WORKINGSET_NODERECLAIM:
1456 		return 1;
1457 	case NR_KERNEL_STACK_KB:
1458 		return SZ_1K;
1459 	default:
1460 		return PAGE_SIZE;
1461 	}
1462 }
1463 
1464 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1465 						    int item)
1466 {
1467 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1468 }
1469 
1470 /* Subset of vm_event_item to report for memcg event stats */
1471 static const unsigned int memcg_vm_event_stat[] = {
1472 	PGSCAN_KSWAPD,
1473 	PGSCAN_DIRECT,
1474 	PGSTEAL_KSWAPD,
1475 	PGSTEAL_DIRECT,
1476 	PGFAULT,
1477 	PGMAJFAULT,
1478 	PGREFILL,
1479 	PGACTIVATE,
1480 	PGDEACTIVATE,
1481 	PGLAZYFREE,
1482 	PGLAZYFREED,
1483 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1484 	ZSWPIN,
1485 	ZSWPOUT,
1486 #endif
1487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 	THP_FAULT_ALLOC,
1489 	THP_COLLAPSE_ALLOC,
1490 #endif
1491 };
1492 
1493 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1494 {
1495 	struct seq_buf s;
1496 	int i;
1497 
1498 	seq_buf_init(&s, buf, bufsize);
1499 
1500 	/*
1501 	 * Provide statistics on the state of the memory subsystem as
1502 	 * well as cumulative event counters that show past behavior.
1503 	 *
1504 	 * This list is ordered following a combination of these gradients:
1505 	 * 1) generic big picture -> specifics and details
1506 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1507 	 *
1508 	 * Current memory state:
1509 	 */
1510 	mem_cgroup_flush_stats();
1511 
1512 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1513 		u64 size;
1514 
1515 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1516 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1517 
1518 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1519 			size += memcg_page_state_output(memcg,
1520 							NR_SLAB_RECLAIMABLE_B);
1521 			seq_buf_printf(&s, "slab %llu\n", size);
1522 		}
1523 	}
1524 
1525 	/* Accumulated memory events */
1526 	seq_buf_printf(&s, "pgscan %lu\n",
1527 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1528 		       memcg_events(memcg, PGSCAN_DIRECT));
1529 	seq_buf_printf(&s, "pgsteal %lu\n",
1530 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1531 		       memcg_events(memcg, PGSTEAL_DIRECT));
1532 
1533 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++)
1534 		seq_buf_printf(&s, "%s %lu\n",
1535 			       vm_event_name(memcg_vm_event_stat[i]),
1536 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1537 
1538 	/* The above should easily fit into one page */
1539 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1540 }
1541 
1542 #define K(x) ((x) << (PAGE_SHIFT-10))
1543 /**
1544  * mem_cgroup_print_oom_context: Print OOM information relevant to
1545  * memory controller.
1546  * @memcg: The memory cgroup that went over limit
1547  * @p: Task that is going to be killed
1548  *
1549  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1550  * enabled
1551  */
1552 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1553 {
1554 	rcu_read_lock();
1555 
1556 	if (memcg) {
1557 		pr_cont(",oom_memcg=");
1558 		pr_cont_cgroup_path(memcg->css.cgroup);
1559 	} else
1560 		pr_cont(",global_oom");
1561 	if (p) {
1562 		pr_cont(",task_memcg=");
1563 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1564 	}
1565 	rcu_read_unlock();
1566 }
1567 
1568 /**
1569  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1570  * memory controller.
1571  * @memcg: The memory cgroup that went over limit
1572  */
1573 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1574 {
1575 	/* Use static buffer, for the caller is holding oom_lock. */
1576 	static char buf[PAGE_SIZE];
1577 
1578 	lockdep_assert_held(&oom_lock);
1579 
1580 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1581 		K((u64)page_counter_read(&memcg->memory)),
1582 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1583 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1584 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1585 			K((u64)page_counter_read(&memcg->swap)),
1586 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1587 	else {
1588 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1589 			K((u64)page_counter_read(&memcg->memsw)),
1590 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1591 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1592 			K((u64)page_counter_read(&memcg->kmem)),
1593 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1594 	}
1595 
1596 	pr_info("Memory cgroup stats for ");
1597 	pr_cont_cgroup_path(memcg->css.cgroup);
1598 	pr_cont(":");
1599 	memory_stat_format(memcg, buf, sizeof(buf));
1600 	pr_info("%s", buf);
1601 }
1602 
1603 /*
1604  * Return the memory (and swap, if configured) limit for a memcg.
1605  */
1606 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1607 {
1608 	unsigned long max = READ_ONCE(memcg->memory.max);
1609 
1610 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1611 		if (mem_cgroup_swappiness(memcg))
1612 			max += min(READ_ONCE(memcg->swap.max),
1613 				   (unsigned long)total_swap_pages);
1614 	} else { /* v1 */
1615 		if (mem_cgroup_swappiness(memcg)) {
1616 			/* Calculate swap excess capacity from memsw limit */
1617 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1618 
1619 			max += min(swap, (unsigned long)total_swap_pages);
1620 		}
1621 	}
1622 	return max;
1623 }
1624 
1625 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1626 {
1627 	return page_counter_read(&memcg->memory);
1628 }
1629 
1630 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1631 				     int order)
1632 {
1633 	struct oom_control oc = {
1634 		.zonelist = NULL,
1635 		.nodemask = NULL,
1636 		.memcg = memcg,
1637 		.gfp_mask = gfp_mask,
1638 		.order = order,
1639 	};
1640 	bool ret = true;
1641 
1642 	if (mutex_lock_killable(&oom_lock))
1643 		return true;
1644 
1645 	if (mem_cgroup_margin(memcg) >= (1 << order))
1646 		goto unlock;
1647 
1648 	/*
1649 	 * A few threads which were not waiting at mutex_lock_killable() can
1650 	 * fail to bail out. Therefore, check again after holding oom_lock.
1651 	 */
1652 	ret = task_is_dying() || out_of_memory(&oc);
1653 
1654 unlock:
1655 	mutex_unlock(&oom_lock);
1656 	return ret;
1657 }
1658 
1659 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1660 				   pg_data_t *pgdat,
1661 				   gfp_t gfp_mask,
1662 				   unsigned long *total_scanned)
1663 {
1664 	struct mem_cgroup *victim = NULL;
1665 	int total = 0;
1666 	int loop = 0;
1667 	unsigned long excess;
1668 	unsigned long nr_scanned;
1669 	struct mem_cgroup_reclaim_cookie reclaim = {
1670 		.pgdat = pgdat,
1671 	};
1672 
1673 	excess = soft_limit_excess(root_memcg);
1674 
1675 	while (1) {
1676 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1677 		if (!victim) {
1678 			loop++;
1679 			if (loop >= 2) {
1680 				/*
1681 				 * If we have not been able to reclaim
1682 				 * anything, it might because there are
1683 				 * no reclaimable pages under this hierarchy
1684 				 */
1685 				if (!total)
1686 					break;
1687 				/*
1688 				 * We want to do more targeted reclaim.
1689 				 * excess >> 2 is not to excessive so as to
1690 				 * reclaim too much, nor too less that we keep
1691 				 * coming back to reclaim from this cgroup
1692 				 */
1693 				if (total >= (excess >> 2) ||
1694 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1695 					break;
1696 			}
1697 			continue;
1698 		}
1699 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1700 					pgdat, &nr_scanned);
1701 		*total_scanned += nr_scanned;
1702 		if (!soft_limit_excess(root_memcg))
1703 			break;
1704 	}
1705 	mem_cgroup_iter_break(root_memcg, victim);
1706 	return total;
1707 }
1708 
1709 #ifdef CONFIG_LOCKDEP
1710 static struct lockdep_map memcg_oom_lock_dep_map = {
1711 	.name = "memcg_oom_lock",
1712 };
1713 #endif
1714 
1715 static DEFINE_SPINLOCK(memcg_oom_lock);
1716 
1717 /*
1718  * Check OOM-Killer is already running under our hierarchy.
1719  * If someone is running, return false.
1720  */
1721 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1722 {
1723 	struct mem_cgroup *iter, *failed = NULL;
1724 
1725 	spin_lock(&memcg_oom_lock);
1726 
1727 	for_each_mem_cgroup_tree(iter, memcg) {
1728 		if (iter->oom_lock) {
1729 			/*
1730 			 * this subtree of our hierarchy is already locked
1731 			 * so we cannot give a lock.
1732 			 */
1733 			failed = iter;
1734 			mem_cgroup_iter_break(memcg, iter);
1735 			break;
1736 		} else
1737 			iter->oom_lock = true;
1738 	}
1739 
1740 	if (failed) {
1741 		/*
1742 		 * OK, we failed to lock the whole subtree so we have
1743 		 * to clean up what we set up to the failing subtree
1744 		 */
1745 		for_each_mem_cgroup_tree(iter, memcg) {
1746 			if (iter == failed) {
1747 				mem_cgroup_iter_break(memcg, iter);
1748 				break;
1749 			}
1750 			iter->oom_lock = false;
1751 		}
1752 	} else
1753 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1754 
1755 	spin_unlock(&memcg_oom_lock);
1756 
1757 	return !failed;
1758 }
1759 
1760 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1761 {
1762 	struct mem_cgroup *iter;
1763 
1764 	spin_lock(&memcg_oom_lock);
1765 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1766 	for_each_mem_cgroup_tree(iter, memcg)
1767 		iter->oom_lock = false;
1768 	spin_unlock(&memcg_oom_lock);
1769 }
1770 
1771 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1772 {
1773 	struct mem_cgroup *iter;
1774 
1775 	spin_lock(&memcg_oom_lock);
1776 	for_each_mem_cgroup_tree(iter, memcg)
1777 		iter->under_oom++;
1778 	spin_unlock(&memcg_oom_lock);
1779 }
1780 
1781 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1782 {
1783 	struct mem_cgroup *iter;
1784 
1785 	/*
1786 	 * Be careful about under_oom underflows because a child memcg
1787 	 * could have been added after mem_cgroup_mark_under_oom.
1788 	 */
1789 	spin_lock(&memcg_oom_lock);
1790 	for_each_mem_cgroup_tree(iter, memcg)
1791 		if (iter->under_oom > 0)
1792 			iter->under_oom--;
1793 	spin_unlock(&memcg_oom_lock);
1794 }
1795 
1796 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1797 
1798 struct oom_wait_info {
1799 	struct mem_cgroup *memcg;
1800 	wait_queue_entry_t	wait;
1801 };
1802 
1803 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1804 	unsigned mode, int sync, void *arg)
1805 {
1806 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1807 	struct mem_cgroup *oom_wait_memcg;
1808 	struct oom_wait_info *oom_wait_info;
1809 
1810 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1811 	oom_wait_memcg = oom_wait_info->memcg;
1812 
1813 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1814 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1815 		return 0;
1816 	return autoremove_wake_function(wait, mode, sync, arg);
1817 }
1818 
1819 static void memcg_oom_recover(struct mem_cgroup *memcg)
1820 {
1821 	/*
1822 	 * For the following lockless ->under_oom test, the only required
1823 	 * guarantee is that it must see the state asserted by an OOM when
1824 	 * this function is called as a result of userland actions
1825 	 * triggered by the notification of the OOM.  This is trivially
1826 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1827 	 * triggering notification.
1828 	 */
1829 	if (memcg && memcg->under_oom)
1830 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1831 }
1832 
1833 /*
1834  * Returns true if successfully killed one or more processes. Though in some
1835  * corner cases it can return true even without killing any process.
1836  */
1837 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1838 {
1839 	bool locked, ret;
1840 
1841 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1842 		return false;
1843 
1844 	memcg_memory_event(memcg, MEMCG_OOM);
1845 
1846 	/*
1847 	 * We are in the middle of the charge context here, so we
1848 	 * don't want to block when potentially sitting on a callstack
1849 	 * that holds all kinds of filesystem and mm locks.
1850 	 *
1851 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1852 	 * handling until the charge can succeed; remember the context and put
1853 	 * the task to sleep at the end of the page fault when all locks are
1854 	 * released.
1855 	 *
1856 	 * On the other hand, in-kernel OOM killer allows for an async victim
1857 	 * memory reclaim (oom_reaper) and that means that we are not solely
1858 	 * relying on the oom victim to make a forward progress and we can
1859 	 * invoke the oom killer here.
1860 	 *
1861 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1862 	 * victim and then we have to bail out from the charge path.
1863 	 */
1864 	if (memcg->oom_kill_disable) {
1865 		if (current->in_user_fault) {
1866 			css_get(&memcg->css);
1867 			current->memcg_in_oom = memcg;
1868 			current->memcg_oom_gfp_mask = mask;
1869 			current->memcg_oom_order = order;
1870 		}
1871 		return false;
1872 	}
1873 
1874 	mem_cgroup_mark_under_oom(memcg);
1875 
1876 	locked = mem_cgroup_oom_trylock(memcg);
1877 
1878 	if (locked)
1879 		mem_cgroup_oom_notify(memcg);
1880 
1881 	mem_cgroup_unmark_under_oom(memcg);
1882 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1883 
1884 	if (locked)
1885 		mem_cgroup_oom_unlock(memcg);
1886 
1887 	return ret;
1888 }
1889 
1890 /**
1891  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1892  * @handle: actually kill/wait or just clean up the OOM state
1893  *
1894  * This has to be called at the end of a page fault if the memcg OOM
1895  * handler was enabled.
1896  *
1897  * Memcg supports userspace OOM handling where failed allocations must
1898  * sleep on a waitqueue until the userspace task resolves the
1899  * situation.  Sleeping directly in the charge context with all kinds
1900  * of locks held is not a good idea, instead we remember an OOM state
1901  * in the task and mem_cgroup_oom_synchronize() has to be called at
1902  * the end of the page fault to complete the OOM handling.
1903  *
1904  * Returns %true if an ongoing memcg OOM situation was detected and
1905  * completed, %false otherwise.
1906  */
1907 bool mem_cgroup_oom_synchronize(bool handle)
1908 {
1909 	struct mem_cgroup *memcg = current->memcg_in_oom;
1910 	struct oom_wait_info owait;
1911 	bool locked;
1912 
1913 	/* OOM is global, do not handle */
1914 	if (!memcg)
1915 		return false;
1916 
1917 	if (!handle)
1918 		goto cleanup;
1919 
1920 	owait.memcg = memcg;
1921 	owait.wait.flags = 0;
1922 	owait.wait.func = memcg_oom_wake_function;
1923 	owait.wait.private = current;
1924 	INIT_LIST_HEAD(&owait.wait.entry);
1925 
1926 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1927 	mem_cgroup_mark_under_oom(memcg);
1928 
1929 	locked = mem_cgroup_oom_trylock(memcg);
1930 
1931 	if (locked)
1932 		mem_cgroup_oom_notify(memcg);
1933 
1934 	if (locked && !memcg->oom_kill_disable) {
1935 		mem_cgroup_unmark_under_oom(memcg);
1936 		finish_wait(&memcg_oom_waitq, &owait.wait);
1937 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1938 					 current->memcg_oom_order);
1939 	} else {
1940 		schedule();
1941 		mem_cgroup_unmark_under_oom(memcg);
1942 		finish_wait(&memcg_oom_waitq, &owait.wait);
1943 	}
1944 
1945 	if (locked) {
1946 		mem_cgroup_oom_unlock(memcg);
1947 		/*
1948 		 * There is no guarantee that an OOM-lock contender
1949 		 * sees the wakeups triggered by the OOM kill
1950 		 * uncharges.  Wake any sleepers explicitly.
1951 		 */
1952 		memcg_oom_recover(memcg);
1953 	}
1954 cleanup:
1955 	current->memcg_in_oom = NULL;
1956 	css_put(&memcg->css);
1957 	return true;
1958 }
1959 
1960 /**
1961  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1962  * @victim: task to be killed by the OOM killer
1963  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1964  *
1965  * Returns a pointer to a memory cgroup, which has to be cleaned up
1966  * by killing all belonging OOM-killable tasks.
1967  *
1968  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1969  */
1970 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1971 					    struct mem_cgroup *oom_domain)
1972 {
1973 	struct mem_cgroup *oom_group = NULL;
1974 	struct mem_cgroup *memcg;
1975 
1976 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1977 		return NULL;
1978 
1979 	if (!oom_domain)
1980 		oom_domain = root_mem_cgroup;
1981 
1982 	rcu_read_lock();
1983 
1984 	memcg = mem_cgroup_from_task(victim);
1985 	if (memcg == root_mem_cgroup)
1986 		goto out;
1987 
1988 	/*
1989 	 * If the victim task has been asynchronously moved to a different
1990 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1991 	 * In this case it's better to ignore memory.group.oom.
1992 	 */
1993 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1994 		goto out;
1995 
1996 	/*
1997 	 * Traverse the memory cgroup hierarchy from the victim task's
1998 	 * cgroup up to the OOMing cgroup (or root) to find the
1999 	 * highest-level memory cgroup with oom.group set.
2000 	 */
2001 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2002 		if (memcg->oom_group)
2003 			oom_group = memcg;
2004 
2005 		if (memcg == oom_domain)
2006 			break;
2007 	}
2008 
2009 	if (oom_group)
2010 		css_get(&oom_group->css);
2011 out:
2012 	rcu_read_unlock();
2013 
2014 	return oom_group;
2015 }
2016 
2017 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2018 {
2019 	pr_info("Tasks in ");
2020 	pr_cont_cgroup_path(memcg->css.cgroup);
2021 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2022 }
2023 
2024 /**
2025  * folio_memcg_lock - Bind a folio to its memcg.
2026  * @folio: The folio.
2027  *
2028  * This function prevents unlocked LRU folios from being moved to
2029  * another cgroup.
2030  *
2031  * It ensures lifetime of the bound memcg.  The caller is responsible
2032  * for the lifetime of the folio.
2033  */
2034 void folio_memcg_lock(struct folio *folio)
2035 {
2036 	struct mem_cgroup *memcg;
2037 	unsigned long flags;
2038 
2039 	/*
2040 	 * The RCU lock is held throughout the transaction.  The fast
2041 	 * path can get away without acquiring the memcg->move_lock
2042 	 * because page moving starts with an RCU grace period.
2043          */
2044 	rcu_read_lock();
2045 
2046 	if (mem_cgroup_disabled())
2047 		return;
2048 again:
2049 	memcg = folio_memcg(folio);
2050 	if (unlikely(!memcg))
2051 		return;
2052 
2053 #ifdef CONFIG_PROVE_LOCKING
2054 	local_irq_save(flags);
2055 	might_lock(&memcg->move_lock);
2056 	local_irq_restore(flags);
2057 #endif
2058 
2059 	if (atomic_read(&memcg->moving_account) <= 0)
2060 		return;
2061 
2062 	spin_lock_irqsave(&memcg->move_lock, flags);
2063 	if (memcg != folio_memcg(folio)) {
2064 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2065 		goto again;
2066 	}
2067 
2068 	/*
2069 	 * When charge migration first begins, we can have multiple
2070 	 * critical sections holding the fast-path RCU lock and one
2071 	 * holding the slowpath move_lock. Track the task who has the
2072 	 * move_lock for unlock_page_memcg().
2073 	 */
2074 	memcg->move_lock_task = current;
2075 	memcg->move_lock_flags = flags;
2076 }
2077 
2078 void lock_page_memcg(struct page *page)
2079 {
2080 	folio_memcg_lock(page_folio(page));
2081 }
2082 
2083 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2084 {
2085 	if (memcg && memcg->move_lock_task == current) {
2086 		unsigned long flags = memcg->move_lock_flags;
2087 
2088 		memcg->move_lock_task = NULL;
2089 		memcg->move_lock_flags = 0;
2090 
2091 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2092 	}
2093 
2094 	rcu_read_unlock();
2095 }
2096 
2097 /**
2098  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2099  * @folio: The folio.
2100  *
2101  * This releases the binding created by folio_memcg_lock().  This does
2102  * not change the accounting of this folio to its memcg, but it does
2103  * permit others to change it.
2104  */
2105 void folio_memcg_unlock(struct folio *folio)
2106 {
2107 	__folio_memcg_unlock(folio_memcg(folio));
2108 }
2109 
2110 void unlock_page_memcg(struct page *page)
2111 {
2112 	folio_memcg_unlock(page_folio(page));
2113 }
2114 
2115 struct memcg_stock_pcp {
2116 	local_lock_t stock_lock;
2117 	struct mem_cgroup *cached; /* this never be root cgroup */
2118 	unsigned int nr_pages;
2119 
2120 #ifdef CONFIG_MEMCG_KMEM
2121 	struct obj_cgroup *cached_objcg;
2122 	struct pglist_data *cached_pgdat;
2123 	unsigned int nr_bytes;
2124 	int nr_slab_reclaimable_b;
2125 	int nr_slab_unreclaimable_b;
2126 #endif
2127 
2128 	struct work_struct work;
2129 	unsigned long flags;
2130 #define FLUSHING_CACHED_CHARGE	0
2131 };
2132 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2133 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2134 };
2135 static DEFINE_MUTEX(percpu_charge_mutex);
2136 
2137 #ifdef CONFIG_MEMCG_KMEM
2138 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2139 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2140 				     struct mem_cgroup *root_memcg);
2141 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2142 
2143 #else
2144 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2145 {
2146 	return NULL;
2147 }
2148 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2149 				     struct mem_cgroup *root_memcg)
2150 {
2151 	return false;
2152 }
2153 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2154 {
2155 }
2156 #endif
2157 
2158 /**
2159  * consume_stock: Try to consume stocked charge on this cpu.
2160  * @memcg: memcg to consume from.
2161  * @nr_pages: how many pages to charge.
2162  *
2163  * The charges will only happen if @memcg matches the current cpu's memcg
2164  * stock, and at least @nr_pages are available in that stock.  Failure to
2165  * service an allocation will refill the stock.
2166  *
2167  * returns true if successful, false otherwise.
2168  */
2169 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2170 {
2171 	struct memcg_stock_pcp *stock;
2172 	unsigned long flags;
2173 	bool ret = false;
2174 
2175 	if (nr_pages > MEMCG_CHARGE_BATCH)
2176 		return ret;
2177 
2178 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2179 
2180 	stock = this_cpu_ptr(&memcg_stock);
2181 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2182 		stock->nr_pages -= nr_pages;
2183 		ret = true;
2184 	}
2185 
2186 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2187 
2188 	return ret;
2189 }
2190 
2191 /*
2192  * Returns stocks cached in percpu and reset cached information.
2193  */
2194 static void drain_stock(struct memcg_stock_pcp *stock)
2195 {
2196 	struct mem_cgroup *old = stock->cached;
2197 
2198 	if (!old)
2199 		return;
2200 
2201 	if (stock->nr_pages) {
2202 		page_counter_uncharge(&old->memory, stock->nr_pages);
2203 		if (do_memsw_account())
2204 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2205 		stock->nr_pages = 0;
2206 	}
2207 
2208 	css_put(&old->css);
2209 	stock->cached = NULL;
2210 }
2211 
2212 static void drain_local_stock(struct work_struct *dummy)
2213 {
2214 	struct memcg_stock_pcp *stock;
2215 	struct obj_cgroup *old = NULL;
2216 	unsigned long flags;
2217 
2218 	/*
2219 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2220 	 * drain_stock races is that we always operate on local CPU stock
2221 	 * here with IRQ disabled
2222 	 */
2223 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2224 
2225 	stock = this_cpu_ptr(&memcg_stock);
2226 	old = drain_obj_stock(stock);
2227 	drain_stock(stock);
2228 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2229 
2230 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2231 	if (old)
2232 		obj_cgroup_put(old);
2233 }
2234 
2235 /*
2236  * Cache charges(val) to local per_cpu area.
2237  * This will be consumed by consume_stock() function, later.
2238  */
2239 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2240 {
2241 	struct memcg_stock_pcp *stock;
2242 
2243 	stock = this_cpu_ptr(&memcg_stock);
2244 	if (stock->cached != memcg) { /* reset if necessary */
2245 		drain_stock(stock);
2246 		css_get(&memcg->css);
2247 		stock->cached = memcg;
2248 	}
2249 	stock->nr_pages += nr_pages;
2250 
2251 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2252 		drain_stock(stock);
2253 }
2254 
2255 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2256 {
2257 	unsigned long flags;
2258 
2259 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2260 	__refill_stock(memcg, nr_pages);
2261 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2262 }
2263 
2264 /*
2265  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2266  * of the hierarchy under it.
2267  */
2268 static void drain_all_stock(struct mem_cgroup *root_memcg)
2269 {
2270 	int cpu, curcpu;
2271 
2272 	/* If someone's already draining, avoid adding running more workers. */
2273 	if (!mutex_trylock(&percpu_charge_mutex))
2274 		return;
2275 	/*
2276 	 * Notify other cpus that system-wide "drain" is running
2277 	 * We do not care about races with the cpu hotplug because cpu down
2278 	 * as well as workers from this path always operate on the local
2279 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2280 	 */
2281 	migrate_disable();
2282 	curcpu = smp_processor_id();
2283 	for_each_online_cpu(cpu) {
2284 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2285 		struct mem_cgroup *memcg;
2286 		bool flush = false;
2287 
2288 		rcu_read_lock();
2289 		memcg = stock->cached;
2290 		if (memcg && stock->nr_pages &&
2291 		    mem_cgroup_is_descendant(memcg, root_memcg))
2292 			flush = true;
2293 		else if (obj_stock_flush_required(stock, root_memcg))
2294 			flush = true;
2295 		rcu_read_unlock();
2296 
2297 		if (flush &&
2298 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2299 			if (cpu == curcpu)
2300 				drain_local_stock(&stock->work);
2301 			else
2302 				schedule_work_on(cpu, &stock->work);
2303 		}
2304 	}
2305 	migrate_enable();
2306 	mutex_unlock(&percpu_charge_mutex);
2307 }
2308 
2309 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2310 {
2311 	struct memcg_stock_pcp *stock;
2312 
2313 	stock = &per_cpu(memcg_stock, cpu);
2314 	drain_stock(stock);
2315 
2316 	return 0;
2317 }
2318 
2319 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2320 				  unsigned int nr_pages,
2321 				  gfp_t gfp_mask)
2322 {
2323 	unsigned long nr_reclaimed = 0;
2324 
2325 	do {
2326 		unsigned long pflags;
2327 
2328 		if (page_counter_read(&memcg->memory) <=
2329 		    READ_ONCE(memcg->memory.high))
2330 			continue;
2331 
2332 		memcg_memory_event(memcg, MEMCG_HIGH);
2333 
2334 		psi_memstall_enter(&pflags);
2335 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2336 							gfp_mask,
2337 							MEMCG_RECLAIM_MAY_SWAP);
2338 		psi_memstall_leave(&pflags);
2339 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2340 		 !mem_cgroup_is_root(memcg));
2341 
2342 	return nr_reclaimed;
2343 }
2344 
2345 static void high_work_func(struct work_struct *work)
2346 {
2347 	struct mem_cgroup *memcg;
2348 
2349 	memcg = container_of(work, struct mem_cgroup, high_work);
2350 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2351 }
2352 
2353 /*
2354  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2355  * enough to still cause a significant slowdown in most cases, while still
2356  * allowing diagnostics and tracing to proceed without becoming stuck.
2357  */
2358 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2359 
2360 /*
2361  * When calculating the delay, we use these either side of the exponentiation to
2362  * maintain precision and scale to a reasonable number of jiffies (see the table
2363  * below.
2364  *
2365  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2366  *   overage ratio to a delay.
2367  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2368  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2369  *   to produce a reasonable delay curve.
2370  *
2371  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2372  * reasonable delay curve compared to precision-adjusted overage, not
2373  * penalising heavily at first, but still making sure that growth beyond the
2374  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2375  * example, with a high of 100 megabytes:
2376  *
2377  *  +-------+------------------------+
2378  *  | usage | time to allocate in ms |
2379  *  +-------+------------------------+
2380  *  | 100M  |                      0 |
2381  *  | 101M  |                      6 |
2382  *  | 102M  |                     25 |
2383  *  | 103M  |                     57 |
2384  *  | 104M  |                    102 |
2385  *  | 105M  |                    159 |
2386  *  | 106M  |                    230 |
2387  *  | 107M  |                    313 |
2388  *  | 108M  |                    409 |
2389  *  | 109M  |                    518 |
2390  *  | 110M  |                    639 |
2391  *  | 111M  |                    774 |
2392  *  | 112M  |                    921 |
2393  *  | 113M  |                   1081 |
2394  *  | 114M  |                   1254 |
2395  *  | 115M  |                   1439 |
2396  *  | 116M  |                   1638 |
2397  *  | 117M  |                   1849 |
2398  *  | 118M  |                   2000 |
2399  *  | 119M  |                   2000 |
2400  *  | 120M  |                   2000 |
2401  *  +-------+------------------------+
2402  */
2403  #define MEMCG_DELAY_PRECISION_SHIFT 20
2404  #define MEMCG_DELAY_SCALING_SHIFT 14
2405 
2406 static u64 calculate_overage(unsigned long usage, unsigned long high)
2407 {
2408 	u64 overage;
2409 
2410 	if (usage <= high)
2411 		return 0;
2412 
2413 	/*
2414 	 * Prevent division by 0 in overage calculation by acting as if
2415 	 * it was a threshold of 1 page
2416 	 */
2417 	high = max(high, 1UL);
2418 
2419 	overage = usage - high;
2420 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2421 	return div64_u64(overage, high);
2422 }
2423 
2424 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2425 {
2426 	u64 overage, max_overage = 0;
2427 
2428 	do {
2429 		overage = calculate_overage(page_counter_read(&memcg->memory),
2430 					    READ_ONCE(memcg->memory.high));
2431 		max_overage = max(overage, max_overage);
2432 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2433 		 !mem_cgroup_is_root(memcg));
2434 
2435 	return max_overage;
2436 }
2437 
2438 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2439 {
2440 	u64 overage, max_overage = 0;
2441 
2442 	do {
2443 		overage = calculate_overage(page_counter_read(&memcg->swap),
2444 					    READ_ONCE(memcg->swap.high));
2445 		if (overage)
2446 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2447 		max_overage = max(overage, max_overage);
2448 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2449 		 !mem_cgroup_is_root(memcg));
2450 
2451 	return max_overage;
2452 }
2453 
2454 /*
2455  * Get the number of jiffies that we should penalise a mischievous cgroup which
2456  * is exceeding its memory.high by checking both it and its ancestors.
2457  */
2458 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2459 					  unsigned int nr_pages,
2460 					  u64 max_overage)
2461 {
2462 	unsigned long penalty_jiffies;
2463 
2464 	if (!max_overage)
2465 		return 0;
2466 
2467 	/*
2468 	 * We use overage compared to memory.high to calculate the number of
2469 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2470 	 * fairly lenient on small overages, and increasingly harsh when the
2471 	 * memcg in question makes it clear that it has no intention of stopping
2472 	 * its crazy behaviour, so we exponentially increase the delay based on
2473 	 * overage amount.
2474 	 */
2475 	penalty_jiffies = max_overage * max_overage * HZ;
2476 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2477 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2478 
2479 	/*
2480 	 * Factor in the task's own contribution to the overage, such that four
2481 	 * N-sized allocations are throttled approximately the same as one
2482 	 * 4N-sized allocation.
2483 	 *
2484 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2485 	 * larger the current charge patch is than that.
2486 	 */
2487 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2488 }
2489 
2490 /*
2491  * Scheduled by try_charge() to be executed from the userland return path
2492  * and reclaims memory over the high limit.
2493  */
2494 void mem_cgroup_handle_over_high(void)
2495 {
2496 	unsigned long penalty_jiffies;
2497 	unsigned long pflags;
2498 	unsigned long nr_reclaimed;
2499 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2500 	int nr_retries = MAX_RECLAIM_RETRIES;
2501 	struct mem_cgroup *memcg;
2502 	bool in_retry = false;
2503 
2504 	if (likely(!nr_pages))
2505 		return;
2506 
2507 	memcg = get_mem_cgroup_from_mm(current->mm);
2508 	current->memcg_nr_pages_over_high = 0;
2509 
2510 retry_reclaim:
2511 	/*
2512 	 * The allocating task should reclaim at least the batch size, but for
2513 	 * subsequent retries we only want to do what's necessary to prevent oom
2514 	 * or breaching resource isolation.
2515 	 *
2516 	 * This is distinct from memory.max or page allocator behaviour because
2517 	 * memory.high is currently batched, whereas memory.max and the page
2518 	 * allocator run every time an allocation is made.
2519 	 */
2520 	nr_reclaimed = reclaim_high(memcg,
2521 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2522 				    GFP_KERNEL);
2523 
2524 	/*
2525 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2526 	 * allocators proactively to slow down excessive growth.
2527 	 */
2528 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2529 					       mem_find_max_overage(memcg));
2530 
2531 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2532 						swap_find_max_overage(memcg));
2533 
2534 	/*
2535 	 * Clamp the max delay per usermode return so as to still keep the
2536 	 * application moving forwards and also permit diagnostics, albeit
2537 	 * extremely slowly.
2538 	 */
2539 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2540 
2541 	/*
2542 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2543 	 * that it's not even worth doing, in an attempt to be nice to those who
2544 	 * go only a small amount over their memory.high value and maybe haven't
2545 	 * been aggressively reclaimed enough yet.
2546 	 */
2547 	if (penalty_jiffies <= HZ / 100)
2548 		goto out;
2549 
2550 	/*
2551 	 * If reclaim is making forward progress but we're still over
2552 	 * memory.high, we want to encourage that rather than doing allocator
2553 	 * throttling.
2554 	 */
2555 	if (nr_reclaimed || nr_retries--) {
2556 		in_retry = true;
2557 		goto retry_reclaim;
2558 	}
2559 
2560 	/*
2561 	 * If we exit early, we're guaranteed to die (since
2562 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2563 	 * need to account for any ill-begotten jiffies to pay them off later.
2564 	 */
2565 	psi_memstall_enter(&pflags);
2566 	schedule_timeout_killable(penalty_jiffies);
2567 	psi_memstall_leave(&pflags);
2568 
2569 out:
2570 	css_put(&memcg->css);
2571 }
2572 
2573 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2574 			unsigned int nr_pages)
2575 {
2576 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2577 	int nr_retries = MAX_RECLAIM_RETRIES;
2578 	struct mem_cgroup *mem_over_limit;
2579 	struct page_counter *counter;
2580 	unsigned long nr_reclaimed;
2581 	bool passed_oom = false;
2582 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2583 	bool drained = false;
2584 	bool raised_max_event = false;
2585 	unsigned long pflags;
2586 
2587 retry:
2588 	if (consume_stock(memcg, nr_pages))
2589 		return 0;
2590 
2591 	if (!do_memsw_account() ||
2592 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2593 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2594 			goto done_restock;
2595 		if (do_memsw_account())
2596 			page_counter_uncharge(&memcg->memsw, batch);
2597 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2598 	} else {
2599 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2600 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2601 	}
2602 
2603 	if (batch > nr_pages) {
2604 		batch = nr_pages;
2605 		goto retry;
2606 	}
2607 
2608 	/*
2609 	 * Prevent unbounded recursion when reclaim operations need to
2610 	 * allocate memory. This might exceed the limits temporarily,
2611 	 * but we prefer facilitating memory reclaim and getting back
2612 	 * under the limit over triggering OOM kills in these cases.
2613 	 */
2614 	if (unlikely(current->flags & PF_MEMALLOC))
2615 		goto force;
2616 
2617 	if (unlikely(task_in_memcg_oom(current)))
2618 		goto nomem;
2619 
2620 	if (!gfpflags_allow_blocking(gfp_mask))
2621 		goto nomem;
2622 
2623 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2624 	raised_max_event = true;
2625 
2626 	psi_memstall_enter(&pflags);
2627 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2628 						    gfp_mask, reclaim_options);
2629 	psi_memstall_leave(&pflags);
2630 
2631 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2632 		goto retry;
2633 
2634 	if (!drained) {
2635 		drain_all_stock(mem_over_limit);
2636 		drained = true;
2637 		goto retry;
2638 	}
2639 
2640 	if (gfp_mask & __GFP_NORETRY)
2641 		goto nomem;
2642 	/*
2643 	 * Even though the limit is exceeded at this point, reclaim
2644 	 * may have been able to free some pages.  Retry the charge
2645 	 * before killing the task.
2646 	 *
2647 	 * Only for regular pages, though: huge pages are rather
2648 	 * unlikely to succeed so close to the limit, and we fall back
2649 	 * to regular pages anyway in case of failure.
2650 	 */
2651 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2652 		goto retry;
2653 	/*
2654 	 * At task move, charge accounts can be doubly counted. So, it's
2655 	 * better to wait until the end of task_move if something is going on.
2656 	 */
2657 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2658 		goto retry;
2659 
2660 	if (nr_retries--)
2661 		goto retry;
2662 
2663 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2664 		goto nomem;
2665 
2666 	/* Avoid endless loop for tasks bypassed by the oom killer */
2667 	if (passed_oom && task_is_dying())
2668 		goto nomem;
2669 
2670 	/*
2671 	 * keep retrying as long as the memcg oom killer is able to make
2672 	 * a forward progress or bypass the charge if the oom killer
2673 	 * couldn't make any progress.
2674 	 */
2675 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2676 			   get_order(nr_pages * PAGE_SIZE))) {
2677 		passed_oom = true;
2678 		nr_retries = MAX_RECLAIM_RETRIES;
2679 		goto retry;
2680 	}
2681 nomem:
2682 	/*
2683 	 * Memcg doesn't have a dedicated reserve for atomic
2684 	 * allocations. But like the global atomic pool, we need to
2685 	 * put the burden of reclaim on regular allocation requests
2686 	 * and let these go through as privileged allocations.
2687 	 */
2688 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2689 		return -ENOMEM;
2690 force:
2691 	/*
2692 	 * If the allocation has to be enforced, don't forget to raise
2693 	 * a MEMCG_MAX event.
2694 	 */
2695 	if (!raised_max_event)
2696 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2697 
2698 	/*
2699 	 * The allocation either can't fail or will lead to more memory
2700 	 * being freed very soon.  Allow memory usage go over the limit
2701 	 * temporarily by force charging it.
2702 	 */
2703 	page_counter_charge(&memcg->memory, nr_pages);
2704 	if (do_memsw_account())
2705 		page_counter_charge(&memcg->memsw, nr_pages);
2706 
2707 	return 0;
2708 
2709 done_restock:
2710 	if (batch > nr_pages)
2711 		refill_stock(memcg, batch - nr_pages);
2712 
2713 	/*
2714 	 * If the hierarchy is above the normal consumption range, schedule
2715 	 * reclaim on returning to userland.  We can perform reclaim here
2716 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2717 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2718 	 * not recorded as it most likely matches current's and won't
2719 	 * change in the meantime.  As high limit is checked again before
2720 	 * reclaim, the cost of mismatch is negligible.
2721 	 */
2722 	do {
2723 		bool mem_high, swap_high;
2724 
2725 		mem_high = page_counter_read(&memcg->memory) >
2726 			READ_ONCE(memcg->memory.high);
2727 		swap_high = page_counter_read(&memcg->swap) >
2728 			READ_ONCE(memcg->swap.high);
2729 
2730 		/* Don't bother a random interrupted task */
2731 		if (!in_task()) {
2732 			if (mem_high) {
2733 				schedule_work(&memcg->high_work);
2734 				break;
2735 			}
2736 			continue;
2737 		}
2738 
2739 		if (mem_high || swap_high) {
2740 			/*
2741 			 * The allocating tasks in this cgroup will need to do
2742 			 * reclaim or be throttled to prevent further growth
2743 			 * of the memory or swap footprints.
2744 			 *
2745 			 * Target some best-effort fairness between the tasks,
2746 			 * and distribute reclaim work and delay penalties
2747 			 * based on how much each task is actually allocating.
2748 			 */
2749 			current->memcg_nr_pages_over_high += batch;
2750 			set_notify_resume(current);
2751 			break;
2752 		}
2753 	} while ((memcg = parent_mem_cgroup(memcg)));
2754 
2755 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2756 	    !(current->flags & PF_MEMALLOC) &&
2757 	    gfpflags_allow_blocking(gfp_mask)) {
2758 		mem_cgroup_handle_over_high();
2759 	}
2760 	return 0;
2761 }
2762 
2763 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2764 			     unsigned int nr_pages)
2765 {
2766 	if (mem_cgroup_is_root(memcg))
2767 		return 0;
2768 
2769 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2770 }
2771 
2772 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2773 {
2774 	if (mem_cgroup_is_root(memcg))
2775 		return;
2776 
2777 	page_counter_uncharge(&memcg->memory, nr_pages);
2778 	if (do_memsw_account())
2779 		page_counter_uncharge(&memcg->memsw, nr_pages);
2780 }
2781 
2782 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2783 {
2784 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2785 	/*
2786 	 * Any of the following ensures page's memcg stability:
2787 	 *
2788 	 * - the page lock
2789 	 * - LRU isolation
2790 	 * - lock_page_memcg()
2791 	 * - exclusive reference
2792 	 */
2793 	folio->memcg_data = (unsigned long)memcg;
2794 }
2795 
2796 #ifdef CONFIG_MEMCG_KMEM
2797 /*
2798  * The allocated objcg pointers array is not accounted directly.
2799  * Moreover, it should not come from DMA buffer and is not readily
2800  * reclaimable. So those GFP bits should be masked off.
2801  */
2802 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2803 
2804 /*
2805  * mod_objcg_mlstate() may be called with irq enabled, so
2806  * mod_memcg_lruvec_state() should be used.
2807  */
2808 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2809 				     struct pglist_data *pgdat,
2810 				     enum node_stat_item idx, int nr)
2811 {
2812 	struct mem_cgroup *memcg;
2813 	struct lruvec *lruvec;
2814 
2815 	rcu_read_lock();
2816 	memcg = obj_cgroup_memcg(objcg);
2817 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2818 	mod_memcg_lruvec_state(lruvec, idx, nr);
2819 	rcu_read_unlock();
2820 }
2821 
2822 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2823 				 gfp_t gfp, bool new_slab)
2824 {
2825 	unsigned int objects = objs_per_slab(s, slab);
2826 	unsigned long memcg_data;
2827 	void *vec;
2828 
2829 	gfp &= ~OBJCGS_CLEAR_MASK;
2830 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2831 			   slab_nid(slab));
2832 	if (!vec)
2833 		return -ENOMEM;
2834 
2835 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2836 	if (new_slab) {
2837 		/*
2838 		 * If the slab is brand new and nobody can yet access its
2839 		 * memcg_data, no synchronization is required and memcg_data can
2840 		 * be simply assigned.
2841 		 */
2842 		slab->memcg_data = memcg_data;
2843 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2844 		/*
2845 		 * If the slab is already in use, somebody can allocate and
2846 		 * assign obj_cgroups in parallel. In this case the existing
2847 		 * objcg vector should be reused.
2848 		 */
2849 		kfree(vec);
2850 		return 0;
2851 	}
2852 
2853 	kmemleak_not_leak(vec);
2854 	return 0;
2855 }
2856 
2857 static __always_inline
2858 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2859 {
2860 	/*
2861 	 * Slab objects are accounted individually, not per-page.
2862 	 * Memcg membership data for each individual object is saved in
2863 	 * slab->memcg_data.
2864 	 */
2865 	if (folio_test_slab(folio)) {
2866 		struct obj_cgroup **objcgs;
2867 		struct slab *slab;
2868 		unsigned int off;
2869 
2870 		slab = folio_slab(folio);
2871 		objcgs = slab_objcgs(slab);
2872 		if (!objcgs)
2873 			return NULL;
2874 
2875 		off = obj_to_index(slab->slab_cache, slab, p);
2876 		if (objcgs[off])
2877 			return obj_cgroup_memcg(objcgs[off]);
2878 
2879 		return NULL;
2880 	}
2881 
2882 	/*
2883 	 * page_memcg_check() is used here, because in theory we can encounter
2884 	 * a folio where the slab flag has been cleared already, but
2885 	 * slab->memcg_data has not been freed yet
2886 	 * page_memcg_check(page) will guarantee that a proper memory
2887 	 * cgroup pointer or NULL will be returned.
2888 	 */
2889 	return page_memcg_check(folio_page(folio, 0));
2890 }
2891 
2892 /*
2893  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2894  *
2895  * A passed kernel object can be a slab object, vmalloc object or a generic
2896  * kernel page, so different mechanisms for getting the memory cgroup pointer
2897  * should be used.
2898  *
2899  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2900  * can not know for sure how the kernel object is implemented.
2901  * mem_cgroup_from_obj() can be safely used in such cases.
2902  *
2903  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2904  * cgroup_mutex, etc.
2905  */
2906 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2907 {
2908 	struct folio *folio;
2909 
2910 	if (mem_cgroup_disabled())
2911 		return NULL;
2912 
2913 	if (unlikely(is_vmalloc_addr(p)))
2914 		folio = page_folio(vmalloc_to_page(p));
2915 	else
2916 		folio = virt_to_folio(p);
2917 
2918 	return mem_cgroup_from_obj_folio(folio, p);
2919 }
2920 
2921 /*
2922  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2923  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2924  * allocated using vmalloc().
2925  *
2926  * A passed kernel object must be a slab object or a generic kernel page.
2927  *
2928  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2929  * cgroup_mutex, etc.
2930  */
2931 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2932 {
2933 	if (mem_cgroup_disabled())
2934 		return NULL;
2935 
2936 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2937 }
2938 
2939 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2940 {
2941 	struct obj_cgroup *objcg = NULL;
2942 
2943 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2944 		objcg = rcu_dereference(memcg->objcg);
2945 		if (objcg && obj_cgroup_tryget(objcg))
2946 			break;
2947 		objcg = NULL;
2948 	}
2949 	return objcg;
2950 }
2951 
2952 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2953 {
2954 	struct obj_cgroup *objcg = NULL;
2955 	struct mem_cgroup *memcg;
2956 
2957 	if (memcg_kmem_bypass())
2958 		return NULL;
2959 
2960 	rcu_read_lock();
2961 	if (unlikely(active_memcg()))
2962 		memcg = active_memcg();
2963 	else
2964 		memcg = mem_cgroup_from_task(current);
2965 	objcg = __get_obj_cgroup_from_memcg(memcg);
2966 	rcu_read_unlock();
2967 	return objcg;
2968 }
2969 
2970 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
2971 {
2972 	struct obj_cgroup *objcg;
2973 
2974 	if (!memcg_kmem_enabled() || memcg_kmem_bypass())
2975 		return NULL;
2976 
2977 	if (PageMemcgKmem(page)) {
2978 		objcg = __folio_objcg(page_folio(page));
2979 		obj_cgroup_get(objcg);
2980 	} else {
2981 		struct mem_cgroup *memcg;
2982 
2983 		rcu_read_lock();
2984 		memcg = __folio_memcg(page_folio(page));
2985 		if (memcg)
2986 			objcg = __get_obj_cgroup_from_memcg(memcg);
2987 		else
2988 			objcg = NULL;
2989 		rcu_read_unlock();
2990 	}
2991 	return objcg;
2992 }
2993 
2994 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2995 {
2996 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2997 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2998 		if (nr_pages > 0)
2999 			page_counter_charge(&memcg->kmem, nr_pages);
3000 		else
3001 			page_counter_uncharge(&memcg->kmem, -nr_pages);
3002 	}
3003 }
3004 
3005 
3006 /*
3007  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3008  * @objcg: object cgroup to uncharge
3009  * @nr_pages: number of pages to uncharge
3010  */
3011 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3012 				      unsigned int nr_pages)
3013 {
3014 	struct mem_cgroup *memcg;
3015 
3016 	memcg = get_mem_cgroup_from_objcg(objcg);
3017 
3018 	memcg_account_kmem(memcg, -nr_pages);
3019 	refill_stock(memcg, nr_pages);
3020 
3021 	css_put(&memcg->css);
3022 }
3023 
3024 /*
3025  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3026  * @objcg: object cgroup to charge
3027  * @gfp: reclaim mode
3028  * @nr_pages: number of pages to charge
3029  *
3030  * Returns 0 on success, an error code on failure.
3031  */
3032 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3033 				   unsigned int nr_pages)
3034 {
3035 	struct mem_cgroup *memcg;
3036 	int ret;
3037 
3038 	memcg = get_mem_cgroup_from_objcg(objcg);
3039 
3040 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3041 	if (ret)
3042 		goto out;
3043 
3044 	memcg_account_kmem(memcg, nr_pages);
3045 out:
3046 	css_put(&memcg->css);
3047 
3048 	return ret;
3049 }
3050 
3051 /**
3052  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3053  * @page: page to charge
3054  * @gfp: reclaim mode
3055  * @order: allocation order
3056  *
3057  * Returns 0 on success, an error code on failure.
3058  */
3059 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3060 {
3061 	struct obj_cgroup *objcg;
3062 	int ret = 0;
3063 
3064 	objcg = get_obj_cgroup_from_current();
3065 	if (objcg) {
3066 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3067 		if (!ret) {
3068 			page->memcg_data = (unsigned long)objcg |
3069 				MEMCG_DATA_KMEM;
3070 			return 0;
3071 		}
3072 		obj_cgroup_put(objcg);
3073 	}
3074 	return ret;
3075 }
3076 
3077 /**
3078  * __memcg_kmem_uncharge_page: uncharge a kmem page
3079  * @page: page to uncharge
3080  * @order: allocation order
3081  */
3082 void __memcg_kmem_uncharge_page(struct page *page, int order)
3083 {
3084 	struct folio *folio = page_folio(page);
3085 	struct obj_cgroup *objcg;
3086 	unsigned int nr_pages = 1 << order;
3087 
3088 	if (!folio_memcg_kmem(folio))
3089 		return;
3090 
3091 	objcg = __folio_objcg(folio);
3092 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3093 	folio->memcg_data = 0;
3094 	obj_cgroup_put(objcg);
3095 }
3096 
3097 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3098 		     enum node_stat_item idx, int nr)
3099 {
3100 	struct memcg_stock_pcp *stock;
3101 	struct obj_cgroup *old = NULL;
3102 	unsigned long flags;
3103 	int *bytes;
3104 
3105 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3106 	stock = this_cpu_ptr(&memcg_stock);
3107 
3108 	/*
3109 	 * Save vmstat data in stock and skip vmstat array update unless
3110 	 * accumulating over a page of vmstat data or when pgdat or idx
3111 	 * changes.
3112 	 */
3113 	if (stock->cached_objcg != objcg) {
3114 		old = drain_obj_stock(stock);
3115 		obj_cgroup_get(objcg);
3116 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3117 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3118 		stock->cached_objcg = objcg;
3119 		stock->cached_pgdat = pgdat;
3120 	} else if (stock->cached_pgdat != pgdat) {
3121 		/* Flush the existing cached vmstat data */
3122 		struct pglist_data *oldpg = stock->cached_pgdat;
3123 
3124 		if (stock->nr_slab_reclaimable_b) {
3125 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3126 					  stock->nr_slab_reclaimable_b);
3127 			stock->nr_slab_reclaimable_b = 0;
3128 		}
3129 		if (stock->nr_slab_unreclaimable_b) {
3130 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3131 					  stock->nr_slab_unreclaimable_b);
3132 			stock->nr_slab_unreclaimable_b = 0;
3133 		}
3134 		stock->cached_pgdat = pgdat;
3135 	}
3136 
3137 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3138 					       : &stock->nr_slab_unreclaimable_b;
3139 	/*
3140 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3141 	 * cached locally at least once before pushing it out.
3142 	 */
3143 	if (!*bytes) {
3144 		*bytes = nr;
3145 		nr = 0;
3146 	} else {
3147 		*bytes += nr;
3148 		if (abs(*bytes) > PAGE_SIZE) {
3149 			nr = *bytes;
3150 			*bytes = 0;
3151 		} else {
3152 			nr = 0;
3153 		}
3154 	}
3155 	if (nr)
3156 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3157 
3158 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3159 	if (old)
3160 		obj_cgroup_put(old);
3161 }
3162 
3163 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3164 {
3165 	struct memcg_stock_pcp *stock;
3166 	unsigned long flags;
3167 	bool ret = false;
3168 
3169 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3170 
3171 	stock = this_cpu_ptr(&memcg_stock);
3172 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3173 		stock->nr_bytes -= nr_bytes;
3174 		ret = true;
3175 	}
3176 
3177 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3178 
3179 	return ret;
3180 }
3181 
3182 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3183 {
3184 	struct obj_cgroup *old = stock->cached_objcg;
3185 
3186 	if (!old)
3187 		return NULL;
3188 
3189 	if (stock->nr_bytes) {
3190 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3191 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3192 
3193 		if (nr_pages) {
3194 			struct mem_cgroup *memcg;
3195 
3196 			memcg = get_mem_cgroup_from_objcg(old);
3197 
3198 			memcg_account_kmem(memcg, -nr_pages);
3199 			__refill_stock(memcg, nr_pages);
3200 
3201 			css_put(&memcg->css);
3202 		}
3203 
3204 		/*
3205 		 * The leftover is flushed to the centralized per-memcg value.
3206 		 * On the next attempt to refill obj stock it will be moved
3207 		 * to a per-cpu stock (probably, on an other CPU), see
3208 		 * refill_obj_stock().
3209 		 *
3210 		 * How often it's flushed is a trade-off between the memory
3211 		 * limit enforcement accuracy and potential CPU contention,
3212 		 * so it might be changed in the future.
3213 		 */
3214 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3215 		stock->nr_bytes = 0;
3216 	}
3217 
3218 	/*
3219 	 * Flush the vmstat data in current stock
3220 	 */
3221 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3222 		if (stock->nr_slab_reclaimable_b) {
3223 			mod_objcg_mlstate(old, stock->cached_pgdat,
3224 					  NR_SLAB_RECLAIMABLE_B,
3225 					  stock->nr_slab_reclaimable_b);
3226 			stock->nr_slab_reclaimable_b = 0;
3227 		}
3228 		if (stock->nr_slab_unreclaimable_b) {
3229 			mod_objcg_mlstate(old, stock->cached_pgdat,
3230 					  NR_SLAB_UNRECLAIMABLE_B,
3231 					  stock->nr_slab_unreclaimable_b);
3232 			stock->nr_slab_unreclaimable_b = 0;
3233 		}
3234 		stock->cached_pgdat = NULL;
3235 	}
3236 
3237 	stock->cached_objcg = NULL;
3238 	/*
3239 	 * The `old' objects needs to be released by the caller via
3240 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3241 	 */
3242 	return old;
3243 }
3244 
3245 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3246 				     struct mem_cgroup *root_memcg)
3247 {
3248 	struct mem_cgroup *memcg;
3249 
3250 	if (stock->cached_objcg) {
3251 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3252 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3253 			return true;
3254 	}
3255 
3256 	return false;
3257 }
3258 
3259 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3260 			     bool allow_uncharge)
3261 {
3262 	struct memcg_stock_pcp *stock;
3263 	struct obj_cgroup *old = NULL;
3264 	unsigned long flags;
3265 	unsigned int nr_pages = 0;
3266 
3267 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3268 
3269 	stock = this_cpu_ptr(&memcg_stock);
3270 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3271 		old = drain_obj_stock(stock);
3272 		obj_cgroup_get(objcg);
3273 		stock->cached_objcg = objcg;
3274 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3275 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3276 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3277 	}
3278 	stock->nr_bytes += nr_bytes;
3279 
3280 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3281 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3282 		stock->nr_bytes &= (PAGE_SIZE - 1);
3283 	}
3284 
3285 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3286 	if (old)
3287 		obj_cgroup_put(old);
3288 
3289 	if (nr_pages)
3290 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3291 }
3292 
3293 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3294 {
3295 	unsigned int nr_pages, nr_bytes;
3296 	int ret;
3297 
3298 	if (consume_obj_stock(objcg, size))
3299 		return 0;
3300 
3301 	/*
3302 	 * In theory, objcg->nr_charged_bytes can have enough
3303 	 * pre-charged bytes to satisfy the allocation. However,
3304 	 * flushing objcg->nr_charged_bytes requires two atomic
3305 	 * operations, and objcg->nr_charged_bytes can't be big.
3306 	 * The shared objcg->nr_charged_bytes can also become a
3307 	 * performance bottleneck if all tasks of the same memcg are
3308 	 * trying to update it. So it's better to ignore it and try
3309 	 * grab some new pages. The stock's nr_bytes will be flushed to
3310 	 * objcg->nr_charged_bytes later on when objcg changes.
3311 	 *
3312 	 * The stock's nr_bytes may contain enough pre-charged bytes
3313 	 * to allow one less page from being charged, but we can't rely
3314 	 * on the pre-charged bytes not being changed outside of
3315 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3316 	 * pre-charged bytes as well when charging pages. To avoid a
3317 	 * page uncharge right after a page charge, we set the
3318 	 * allow_uncharge flag to false when calling refill_obj_stock()
3319 	 * to temporarily allow the pre-charged bytes to exceed the page
3320 	 * size limit. The maximum reachable value of the pre-charged
3321 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3322 	 * race.
3323 	 */
3324 	nr_pages = size >> PAGE_SHIFT;
3325 	nr_bytes = size & (PAGE_SIZE - 1);
3326 
3327 	if (nr_bytes)
3328 		nr_pages += 1;
3329 
3330 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3331 	if (!ret && nr_bytes)
3332 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3333 
3334 	return ret;
3335 }
3336 
3337 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3338 {
3339 	refill_obj_stock(objcg, size, true);
3340 }
3341 
3342 #endif /* CONFIG_MEMCG_KMEM */
3343 
3344 /*
3345  * Because page_memcg(head) is not set on tails, set it now.
3346  */
3347 void split_page_memcg(struct page *head, unsigned int nr)
3348 {
3349 	struct folio *folio = page_folio(head);
3350 	struct mem_cgroup *memcg = folio_memcg(folio);
3351 	int i;
3352 
3353 	if (mem_cgroup_disabled() || !memcg)
3354 		return;
3355 
3356 	for (i = 1; i < nr; i++)
3357 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3358 
3359 	if (folio_memcg_kmem(folio))
3360 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3361 	else
3362 		css_get_many(&memcg->css, nr - 1);
3363 }
3364 
3365 #ifdef CONFIG_MEMCG_SWAP
3366 /**
3367  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3368  * @entry: swap entry to be moved
3369  * @from:  mem_cgroup which the entry is moved from
3370  * @to:  mem_cgroup which the entry is moved to
3371  *
3372  * It succeeds only when the swap_cgroup's record for this entry is the same
3373  * as the mem_cgroup's id of @from.
3374  *
3375  * Returns 0 on success, -EINVAL on failure.
3376  *
3377  * The caller must have charged to @to, IOW, called page_counter_charge() about
3378  * both res and memsw, and called css_get().
3379  */
3380 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3381 				struct mem_cgroup *from, struct mem_cgroup *to)
3382 {
3383 	unsigned short old_id, new_id;
3384 
3385 	old_id = mem_cgroup_id(from);
3386 	new_id = mem_cgroup_id(to);
3387 
3388 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3389 		mod_memcg_state(from, MEMCG_SWAP, -1);
3390 		mod_memcg_state(to, MEMCG_SWAP, 1);
3391 		return 0;
3392 	}
3393 	return -EINVAL;
3394 }
3395 #else
3396 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3397 				struct mem_cgroup *from, struct mem_cgroup *to)
3398 {
3399 	return -EINVAL;
3400 }
3401 #endif
3402 
3403 static DEFINE_MUTEX(memcg_max_mutex);
3404 
3405 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3406 				 unsigned long max, bool memsw)
3407 {
3408 	bool enlarge = false;
3409 	bool drained = false;
3410 	int ret;
3411 	bool limits_invariant;
3412 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3413 
3414 	do {
3415 		if (signal_pending(current)) {
3416 			ret = -EINTR;
3417 			break;
3418 		}
3419 
3420 		mutex_lock(&memcg_max_mutex);
3421 		/*
3422 		 * Make sure that the new limit (memsw or memory limit) doesn't
3423 		 * break our basic invariant rule memory.max <= memsw.max.
3424 		 */
3425 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3426 					   max <= memcg->memsw.max;
3427 		if (!limits_invariant) {
3428 			mutex_unlock(&memcg_max_mutex);
3429 			ret = -EINVAL;
3430 			break;
3431 		}
3432 		if (max > counter->max)
3433 			enlarge = true;
3434 		ret = page_counter_set_max(counter, max);
3435 		mutex_unlock(&memcg_max_mutex);
3436 
3437 		if (!ret)
3438 			break;
3439 
3440 		if (!drained) {
3441 			drain_all_stock(memcg);
3442 			drained = true;
3443 			continue;
3444 		}
3445 
3446 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3447 					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3448 			ret = -EBUSY;
3449 			break;
3450 		}
3451 	} while (true);
3452 
3453 	if (!ret && enlarge)
3454 		memcg_oom_recover(memcg);
3455 
3456 	return ret;
3457 }
3458 
3459 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3460 					    gfp_t gfp_mask,
3461 					    unsigned long *total_scanned)
3462 {
3463 	unsigned long nr_reclaimed = 0;
3464 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3465 	unsigned long reclaimed;
3466 	int loop = 0;
3467 	struct mem_cgroup_tree_per_node *mctz;
3468 	unsigned long excess;
3469 
3470 	if (order > 0)
3471 		return 0;
3472 
3473 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3474 
3475 	/*
3476 	 * Do not even bother to check the largest node if the root
3477 	 * is empty. Do it lockless to prevent lock bouncing. Races
3478 	 * are acceptable as soft limit is best effort anyway.
3479 	 */
3480 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3481 		return 0;
3482 
3483 	/*
3484 	 * This loop can run a while, specially if mem_cgroup's continuously
3485 	 * keep exceeding their soft limit and putting the system under
3486 	 * pressure
3487 	 */
3488 	do {
3489 		if (next_mz)
3490 			mz = next_mz;
3491 		else
3492 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3493 		if (!mz)
3494 			break;
3495 
3496 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3497 						    gfp_mask, total_scanned);
3498 		nr_reclaimed += reclaimed;
3499 		spin_lock_irq(&mctz->lock);
3500 
3501 		/*
3502 		 * If we failed to reclaim anything from this memory cgroup
3503 		 * it is time to move on to the next cgroup
3504 		 */
3505 		next_mz = NULL;
3506 		if (!reclaimed)
3507 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3508 
3509 		excess = soft_limit_excess(mz->memcg);
3510 		/*
3511 		 * One school of thought says that we should not add
3512 		 * back the node to the tree if reclaim returns 0.
3513 		 * But our reclaim could return 0, simply because due
3514 		 * to priority we are exposing a smaller subset of
3515 		 * memory to reclaim from. Consider this as a longer
3516 		 * term TODO.
3517 		 */
3518 		/* If excess == 0, no tree ops */
3519 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3520 		spin_unlock_irq(&mctz->lock);
3521 		css_put(&mz->memcg->css);
3522 		loop++;
3523 		/*
3524 		 * Could not reclaim anything and there are no more
3525 		 * mem cgroups to try or we seem to be looping without
3526 		 * reclaiming anything.
3527 		 */
3528 		if (!nr_reclaimed &&
3529 			(next_mz == NULL ||
3530 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3531 			break;
3532 	} while (!nr_reclaimed);
3533 	if (next_mz)
3534 		css_put(&next_mz->memcg->css);
3535 	return nr_reclaimed;
3536 }
3537 
3538 /*
3539  * Reclaims as many pages from the given memcg as possible.
3540  *
3541  * Caller is responsible for holding css reference for memcg.
3542  */
3543 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3544 {
3545 	int nr_retries = MAX_RECLAIM_RETRIES;
3546 
3547 	/* we call try-to-free pages for make this cgroup empty */
3548 	lru_add_drain_all();
3549 
3550 	drain_all_stock(memcg);
3551 
3552 	/* try to free all pages in this cgroup */
3553 	while (nr_retries && page_counter_read(&memcg->memory)) {
3554 		if (signal_pending(current))
3555 			return -EINTR;
3556 
3557 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3558 						  MEMCG_RECLAIM_MAY_SWAP))
3559 			nr_retries--;
3560 	}
3561 
3562 	return 0;
3563 }
3564 
3565 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3566 					    char *buf, size_t nbytes,
3567 					    loff_t off)
3568 {
3569 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3570 
3571 	if (mem_cgroup_is_root(memcg))
3572 		return -EINVAL;
3573 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3574 }
3575 
3576 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3577 				     struct cftype *cft)
3578 {
3579 	return 1;
3580 }
3581 
3582 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3583 				      struct cftype *cft, u64 val)
3584 {
3585 	if (val == 1)
3586 		return 0;
3587 
3588 	pr_warn_once("Non-hierarchical mode is deprecated. "
3589 		     "Please report your usecase to linux-mm@kvack.org if you "
3590 		     "depend on this functionality.\n");
3591 
3592 	return -EINVAL;
3593 }
3594 
3595 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3596 {
3597 	unsigned long val;
3598 
3599 	if (mem_cgroup_is_root(memcg)) {
3600 		mem_cgroup_flush_stats();
3601 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3602 			memcg_page_state(memcg, NR_ANON_MAPPED);
3603 		if (swap)
3604 			val += memcg_page_state(memcg, MEMCG_SWAP);
3605 	} else {
3606 		if (!swap)
3607 			val = page_counter_read(&memcg->memory);
3608 		else
3609 			val = page_counter_read(&memcg->memsw);
3610 	}
3611 	return val;
3612 }
3613 
3614 enum {
3615 	RES_USAGE,
3616 	RES_LIMIT,
3617 	RES_MAX_USAGE,
3618 	RES_FAILCNT,
3619 	RES_SOFT_LIMIT,
3620 };
3621 
3622 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3623 			       struct cftype *cft)
3624 {
3625 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3626 	struct page_counter *counter;
3627 
3628 	switch (MEMFILE_TYPE(cft->private)) {
3629 	case _MEM:
3630 		counter = &memcg->memory;
3631 		break;
3632 	case _MEMSWAP:
3633 		counter = &memcg->memsw;
3634 		break;
3635 	case _KMEM:
3636 		counter = &memcg->kmem;
3637 		break;
3638 	case _TCP:
3639 		counter = &memcg->tcpmem;
3640 		break;
3641 	default:
3642 		BUG();
3643 	}
3644 
3645 	switch (MEMFILE_ATTR(cft->private)) {
3646 	case RES_USAGE:
3647 		if (counter == &memcg->memory)
3648 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3649 		if (counter == &memcg->memsw)
3650 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3651 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3652 	case RES_LIMIT:
3653 		return (u64)counter->max * PAGE_SIZE;
3654 	case RES_MAX_USAGE:
3655 		return (u64)counter->watermark * PAGE_SIZE;
3656 	case RES_FAILCNT:
3657 		return counter->failcnt;
3658 	case RES_SOFT_LIMIT:
3659 		return (u64)memcg->soft_limit * PAGE_SIZE;
3660 	default:
3661 		BUG();
3662 	}
3663 }
3664 
3665 #ifdef CONFIG_MEMCG_KMEM
3666 static int memcg_online_kmem(struct mem_cgroup *memcg)
3667 {
3668 	struct obj_cgroup *objcg;
3669 
3670 	if (mem_cgroup_kmem_disabled())
3671 		return 0;
3672 
3673 	if (unlikely(mem_cgroup_is_root(memcg)))
3674 		return 0;
3675 
3676 	objcg = obj_cgroup_alloc();
3677 	if (!objcg)
3678 		return -ENOMEM;
3679 
3680 	objcg->memcg = memcg;
3681 	rcu_assign_pointer(memcg->objcg, objcg);
3682 
3683 	static_branch_enable(&memcg_kmem_enabled_key);
3684 
3685 	memcg->kmemcg_id = memcg->id.id;
3686 
3687 	return 0;
3688 }
3689 
3690 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3691 {
3692 	struct mem_cgroup *parent;
3693 
3694 	if (mem_cgroup_kmem_disabled())
3695 		return;
3696 
3697 	if (unlikely(mem_cgroup_is_root(memcg)))
3698 		return;
3699 
3700 	parent = parent_mem_cgroup(memcg);
3701 	if (!parent)
3702 		parent = root_mem_cgroup;
3703 
3704 	memcg_reparent_objcgs(memcg, parent);
3705 
3706 	/*
3707 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3708 	 * corresponding to this cgroup are guaranteed to remain empty.
3709 	 * The ordering is imposed by list_lru_node->lock taken by
3710 	 * memcg_reparent_list_lrus().
3711 	 */
3712 	memcg_reparent_list_lrus(memcg, parent);
3713 }
3714 #else
3715 static int memcg_online_kmem(struct mem_cgroup *memcg)
3716 {
3717 	return 0;
3718 }
3719 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3720 {
3721 }
3722 #endif /* CONFIG_MEMCG_KMEM */
3723 
3724 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3725 {
3726 	int ret;
3727 
3728 	mutex_lock(&memcg_max_mutex);
3729 
3730 	ret = page_counter_set_max(&memcg->tcpmem, max);
3731 	if (ret)
3732 		goto out;
3733 
3734 	if (!memcg->tcpmem_active) {
3735 		/*
3736 		 * The active flag needs to be written after the static_key
3737 		 * update. This is what guarantees that the socket activation
3738 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3739 		 * for details, and note that we don't mark any socket as
3740 		 * belonging to this memcg until that flag is up.
3741 		 *
3742 		 * We need to do this, because static_keys will span multiple
3743 		 * sites, but we can't control their order. If we mark a socket
3744 		 * as accounted, but the accounting functions are not patched in
3745 		 * yet, we'll lose accounting.
3746 		 *
3747 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3748 		 * because when this value change, the code to process it is not
3749 		 * patched in yet.
3750 		 */
3751 		static_branch_inc(&memcg_sockets_enabled_key);
3752 		memcg->tcpmem_active = true;
3753 	}
3754 out:
3755 	mutex_unlock(&memcg_max_mutex);
3756 	return ret;
3757 }
3758 
3759 /*
3760  * The user of this function is...
3761  * RES_LIMIT.
3762  */
3763 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3764 				char *buf, size_t nbytes, loff_t off)
3765 {
3766 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3767 	unsigned long nr_pages;
3768 	int ret;
3769 
3770 	buf = strstrip(buf);
3771 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3772 	if (ret)
3773 		return ret;
3774 
3775 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3776 	case RES_LIMIT:
3777 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3778 			ret = -EINVAL;
3779 			break;
3780 		}
3781 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3782 		case _MEM:
3783 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3784 			break;
3785 		case _MEMSWAP:
3786 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3787 			break;
3788 		case _KMEM:
3789 			/* kmem.limit_in_bytes is deprecated. */
3790 			ret = -EOPNOTSUPP;
3791 			break;
3792 		case _TCP:
3793 			ret = memcg_update_tcp_max(memcg, nr_pages);
3794 			break;
3795 		}
3796 		break;
3797 	case RES_SOFT_LIMIT:
3798 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3799 			ret = -EOPNOTSUPP;
3800 		} else {
3801 			memcg->soft_limit = nr_pages;
3802 			ret = 0;
3803 		}
3804 		break;
3805 	}
3806 	return ret ?: nbytes;
3807 }
3808 
3809 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3810 				size_t nbytes, loff_t off)
3811 {
3812 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3813 	struct page_counter *counter;
3814 
3815 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3816 	case _MEM:
3817 		counter = &memcg->memory;
3818 		break;
3819 	case _MEMSWAP:
3820 		counter = &memcg->memsw;
3821 		break;
3822 	case _KMEM:
3823 		counter = &memcg->kmem;
3824 		break;
3825 	case _TCP:
3826 		counter = &memcg->tcpmem;
3827 		break;
3828 	default:
3829 		BUG();
3830 	}
3831 
3832 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3833 	case RES_MAX_USAGE:
3834 		page_counter_reset_watermark(counter);
3835 		break;
3836 	case RES_FAILCNT:
3837 		counter->failcnt = 0;
3838 		break;
3839 	default:
3840 		BUG();
3841 	}
3842 
3843 	return nbytes;
3844 }
3845 
3846 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3847 					struct cftype *cft)
3848 {
3849 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3850 }
3851 
3852 #ifdef CONFIG_MMU
3853 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3854 					struct cftype *cft, u64 val)
3855 {
3856 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3857 
3858 	if (val & ~MOVE_MASK)
3859 		return -EINVAL;
3860 
3861 	/*
3862 	 * No kind of locking is needed in here, because ->can_attach() will
3863 	 * check this value once in the beginning of the process, and then carry
3864 	 * on with stale data. This means that changes to this value will only
3865 	 * affect task migrations starting after the change.
3866 	 */
3867 	memcg->move_charge_at_immigrate = val;
3868 	return 0;
3869 }
3870 #else
3871 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3872 					struct cftype *cft, u64 val)
3873 {
3874 	return -ENOSYS;
3875 }
3876 #endif
3877 
3878 #ifdef CONFIG_NUMA
3879 
3880 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3881 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3882 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3883 
3884 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3885 				int nid, unsigned int lru_mask, bool tree)
3886 {
3887 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3888 	unsigned long nr = 0;
3889 	enum lru_list lru;
3890 
3891 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3892 
3893 	for_each_lru(lru) {
3894 		if (!(BIT(lru) & lru_mask))
3895 			continue;
3896 		if (tree)
3897 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3898 		else
3899 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3900 	}
3901 	return nr;
3902 }
3903 
3904 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3905 					     unsigned int lru_mask,
3906 					     bool tree)
3907 {
3908 	unsigned long nr = 0;
3909 	enum lru_list lru;
3910 
3911 	for_each_lru(lru) {
3912 		if (!(BIT(lru) & lru_mask))
3913 			continue;
3914 		if (tree)
3915 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3916 		else
3917 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3918 	}
3919 	return nr;
3920 }
3921 
3922 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3923 {
3924 	struct numa_stat {
3925 		const char *name;
3926 		unsigned int lru_mask;
3927 	};
3928 
3929 	static const struct numa_stat stats[] = {
3930 		{ "total", LRU_ALL },
3931 		{ "file", LRU_ALL_FILE },
3932 		{ "anon", LRU_ALL_ANON },
3933 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3934 	};
3935 	const struct numa_stat *stat;
3936 	int nid;
3937 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3938 
3939 	mem_cgroup_flush_stats();
3940 
3941 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3942 		seq_printf(m, "%s=%lu", stat->name,
3943 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3944 						   false));
3945 		for_each_node_state(nid, N_MEMORY)
3946 			seq_printf(m, " N%d=%lu", nid,
3947 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3948 							stat->lru_mask, false));
3949 		seq_putc(m, '\n');
3950 	}
3951 
3952 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3953 
3954 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3955 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3956 						   true));
3957 		for_each_node_state(nid, N_MEMORY)
3958 			seq_printf(m, " N%d=%lu", nid,
3959 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3960 							stat->lru_mask, true));
3961 		seq_putc(m, '\n');
3962 	}
3963 
3964 	return 0;
3965 }
3966 #endif /* CONFIG_NUMA */
3967 
3968 static const unsigned int memcg1_stats[] = {
3969 	NR_FILE_PAGES,
3970 	NR_ANON_MAPPED,
3971 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3972 	NR_ANON_THPS,
3973 #endif
3974 	NR_SHMEM,
3975 	NR_FILE_MAPPED,
3976 	NR_FILE_DIRTY,
3977 	NR_WRITEBACK,
3978 	MEMCG_SWAP,
3979 };
3980 
3981 static const char *const memcg1_stat_names[] = {
3982 	"cache",
3983 	"rss",
3984 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3985 	"rss_huge",
3986 #endif
3987 	"shmem",
3988 	"mapped_file",
3989 	"dirty",
3990 	"writeback",
3991 	"swap",
3992 };
3993 
3994 /* Universal VM events cgroup1 shows, original sort order */
3995 static const unsigned int memcg1_events[] = {
3996 	PGPGIN,
3997 	PGPGOUT,
3998 	PGFAULT,
3999 	PGMAJFAULT,
4000 };
4001 
4002 static int memcg_stat_show(struct seq_file *m, void *v)
4003 {
4004 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4005 	unsigned long memory, memsw;
4006 	struct mem_cgroup *mi;
4007 	unsigned int i;
4008 
4009 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4010 
4011 	mem_cgroup_flush_stats();
4012 
4013 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4014 		unsigned long nr;
4015 
4016 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4017 			continue;
4018 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4019 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4020 	}
4021 
4022 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4023 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4024 			   memcg_events_local(memcg, memcg1_events[i]));
4025 
4026 	for (i = 0; i < NR_LRU_LISTS; i++)
4027 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4028 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4029 			   PAGE_SIZE);
4030 
4031 	/* Hierarchical information */
4032 	memory = memsw = PAGE_COUNTER_MAX;
4033 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4034 		memory = min(memory, READ_ONCE(mi->memory.max));
4035 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4036 	}
4037 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4038 		   (u64)memory * PAGE_SIZE);
4039 	if (do_memsw_account())
4040 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4041 			   (u64)memsw * PAGE_SIZE);
4042 
4043 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4044 		unsigned long nr;
4045 
4046 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4047 			continue;
4048 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4049 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4050 						(u64)nr * PAGE_SIZE);
4051 	}
4052 
4053 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4054 		seq_printf(m, "total_%s %llu\n",
4055 			   vm_event_name(memcg1_events[i]),
4056 			   (u64)memcg_events(memcg, memcg1_events[i]));
4057 
4058 	for (i = 0; i < NR_LRU_LISTS; i++)
4059 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4060 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4061 			   PAGE_SIZE);
4062 
4063 #ifdef CONFIG_DEBUG_VM
4064 	{
4065 		pg_data_t *pgdat;
4066 		struct mem_cgroup_per_node *mz;
4067 		unsigned long anon_cost = 0;
4068 		unsigned long file_cost = 0;
4069 
4070 		for_each_online_pgdat(pgdat) {
4071 			mz = memcg->nodeinfo[pgdat->node_id];
4072 
4073 			anon_cost += mz->lruvec.anon_cost;
4074 			file_cost += mz->lruvec.file_cost;
4075 		}
4076 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4077 		seq_printf(m, "file_cost %lu\n", file_cost);
4078 	}
4079 #endif
4080 
4081 	return 0;
4082 }
4083 
4084 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4085 				      struct cftype *cft)
4086 {
4087 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4088 
4089 	return mem_cgroup_swappiness(memcg);
4090 }
4091 
4092 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4093 				       struct cftype *cft, u64 val)
4094 {
4095 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4096 
4097 	if (val > 200)
4098 		return -EINVAL;
4099 
4100 	if (!mem_cgroup_is_root(memcg))
4101 		memcg->swappiness = val;
4102 	else
4103 		vm_swappiness = val;
4104 
4105 	return 0;
4106 }
4107 
4108 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4109 {
4110 	struct mem_cgroup_threshold_ary *t;
4111 	unsigned long usage;
4112 	int i;
4113 
4114 	rcu_read_lock();
4115 	if (!swap)
4116 		t = rcu_dereference(memcg->thresholds.primary);
4117 	else
4118 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4119 
4120 	if (!t)
4121 		goto unlock;
4122 
4123 	usage = mem_cgroup_usage(memcg, swap);
4124 
4125 	/*
4126 	 * current_threshold points to threshold just below or equal to usage.
4127 	 * If it's not true, a threshold was crossed after last
4128 	 * call of __mem_cgroup_threshold().
4129 	 */
4130 	i = t->current_threshold;
4131 
4132 	/*
4133 	 * Iterate backward over array of thresholds starting from
4134 	 * current_threshold and check if a threshold is crossed.
4135 	 * If none of thresholds below usage is crossed, we read
4136 	 * only one element of the array here.
4137 	 */
4138 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4139 		eventfd_signal(t->entries[i].eventfd, 1);
4140 
4141 	/* i = current_threshold + 1 */
4142 	i++;
4143 
4144 	/*
4145 	 * Iterate forward over array of thresholds starting from
4146 	 * current_threshold+1 and check if a threshold is crossed.
4147 	 * If none of thresholds above usage is crossed, we read
4148 	 * only one element of the array here.
4149 	 */
4150 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4151 		eventfd_signal(t->entries[i].eventfd, 1);
4152 
4153 	/* Update current_threshold */
4154 	t->current_threshold = i - 1;
4155 unlock:
4156 	rcu_read_unlock();
4157 }
4158 
4159 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4160 {
4161 	while (memcg) {
4162 		__mem_cgroup_threshold(memcg, false);
4163 		if (do_memsw_account())
4164 			__mem_cgroup_threshold(memcg, true);
4165 
4166 		memcg = parent_mem_cgroup(memcg);
4167 	}
4168 }
4169 
4170 static int compare_thresholds(const void *a, const void *b)
4171 {
4172 	const struct mem_cgroup_threshold *_a = a;
4173 	const struct mem_cgroup_threshold *_b = b;
4174 
4175 	if (_a->threshold > _b->threshold)
4176 		return 1;
4177 
4178 	if (_a->threshold < _b->threshold)
4179 		return -1;
4180 
4181 	return 0;
4182 }
4183 
4184 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4185 {
4186 	struct mem_cgroup_eventfd_list *ev;
4187 
4188 	spin_lock(&memcg_oom_lock);
4189 
4190 	list_for_each_entry(ev, &memcg->oom_notify, list)
4191 		eventfd_signal(ev->eventfd, 1);
4192 
4193 	spin_unlock(&memcg_oom_lock);
4194 	return 0;
4195 }
4196 
4197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4198 {
4199 	struct mem_cgroup *iter;
4200 
4201 	for_each_mem_cgroup_tree(iter, memcg)
4202 		mem_cgroup_oom_notify_cb(iter);
4203 }
4204 
4205 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4206 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4207 {
4208 	struct mem_cgroup_thresholds *thresholds;
4209 	struct mem_cgroup_threshold_ary *new;
4210 	unsigned long threshold;
4211 	unsigned long usage;
4212 	int i, size, ret;
4213 
4214 	ret = page_counter_memparse(args, "-1", &threshold);
4215 	if (ret)
4216 		return ret;
4217 
4218 	mutex_lock(&memcg->thresholds_lock);
4219 
4220 	if (type == _MEM) {
4221 		thresholds = &memcg->thresholds;
4222 		usage = mem_cgroup_usage(memcg, false);
4223 	} else if (type == _MEMSWAP) {
4224 		thresholds = &memcg->memsw_thresholds;
4225 		usage = mem_cgroup_usage(memcg, true);
4226 	} else
4227 		BUG();
4228 
4229 	/* Check if a threshold crossed before adding a new one */
4230 	if (thresholds->primary)
4231 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4232 
4233 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4234 
4235 	/* Allocate memory for new array of thresholds */
4236 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4237 	if (!new) {
4238 		ret = -ENOMEM;
4239 		goto unlock;
4240 	}
4241 	new->size = size;
4242 
4243 	/* Copy thresholds (if any) to new array */
4244 	if (thresholds->primary)
4245 		memcpy(new->entries, thresholds->primary->entries,
4246 		       flex_array_size(new, entries, size - 1));
4247 
4248 	/* Add new threshold */
4249 	new->entries[size - 1].eventfd = eventfd;
4250 	new->entries[size - 1].threshold = threshold;
4251 
4252 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4253 	sort(new->entries, size, sizeof(*new->entries),
4254 			compare_thresholds, NULL);
4255 
4256 	/* Find current threshold */
4257 	new->current_threshold = -1;
4258 	for (i = 0; i < size; i++) {
4259 		if (new->entries[i].threshold <= usage) {
4260 			/*
4261 			 * new->current_threshold will not be used until
4262 			 * rcu_assign_pointer(), so it's safe to increment
4263 			 * it here.
4264 			 */
4265 			++new->current_threshold;
4266 		} else
4267 			break;
4268 	}
4269 
4270 	/* Free old spare buffer and save old primary buffer as spare */
4271 	kfree(thresholds->spare);
4272 	thresholds->spare = thresholds->primary;
4273 
4274 	rcu_assign_pointer(thresholds->primary, new);
4275 
4276 	/* To be sure that nobody uses thresholds */
4277 	synchronize_rcu();
4278 
4279 unlock:
4280 	mutex_unlock(&memcg->thresholds_lock);
4281 
4282 	return ret;
4283 }
4284 
4285 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4286 	struct eventfd_ctx *eventfd, const char *args)
4287 {
4288 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4289 }
4290 
4291 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4292 	struct eventfd_ctx *eventfd, const char *args)
4293 {
4294 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4295 }
4296 
4297 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4298 	struct eventfd_ctx *eventfd, enum res_type type)
4299 {
4300 	struct mem_cgroup_thresholds *thresholds;
4301 	struct mem_cgroup_threshold_ary *new;
4302 	unsigned long usage;
4303 	int i, j, size, entries;
4304 
4305 	mutex_lock(&memcg->thresholds_lock);
4306 
4307 	if (type == _MEM) {
4308 		thresholds = &memcg->thresholds;
4309 		usage = mem_cgroup_usage(memcg, false);
4310 	} else if (type == _MEMSWAP) {
4311 		thresholds = &memcg->memsw_thresholds;
4312 		usage = mem_cgroup_usage(memcg, true);
4313 	} else
4314 		BUG();
4315 
4316 	if (!thresholds->primary)
4317 		goto unlock;
4318 
4319 	/* Check if a threshold crossed before removing */
4320 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4321 
4322 	/* Calculate new number of threshold */
4323 	size = entries = 0;
4324 	for (i = 0; i < thresholds->primary->size; i++) {
4325 		if (thresholds->primary->entries[i].eventfd != eventfd)
4326 			size++;
4327 		else
4328 			entries++;
4329 	}
4330 
4331 	new = thresholds->spare;
4332 
4333 	/* If no items related to eventfd have been cleared, nothing to do */
4334 	if (!entries)
4335 		goto unlock;
4336 
4337 	/* Set thresholds array to NULL if we don't have thresholds */
4338 	if (!size) {
4339 		kfree(new);
4340 		new = NULL;
4341 		goto swap_buffers;
4342 	}
4343 
4344 	new->size = size;
4345 
4346 	/* Copy thresholds and find current threshold */
4347 	new->current_threshold = -1;
4348 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4349 		if (thresholds->primary->entries[i].eventfd == eventfd)
4350 			continue;
4351 
4352 		new->entries[j] = thresholds->primary->entries[i];
4353 		if (new->entries[j].threshold <= usage) {
4354 			/*
4355 			 * new->current_threshold will not be used
4356 			 * until rcu_assign_pointer(), so it's safe to increment
4357 			 * it here.
4358 			 */
4359 			++new->current_threshold;
4360 		}
4361 		j++;
4362 	}
4363 
4364 swap_buffers:
4365 	/* Swap primary and spare array */
4366 	thresholds->spare = thresholds->primary;
4367 
4368 	rcu_assign_pointer(thresholds->primary, new);
4369 
4370 	/* To be sure that nobody uses thresholds */
4371 	synchronize_rcu();
4372 
4373 	/* If all events are unregistered, free the spare array */
4374 	if (!new) {
4375 		kfree(thresholds->spare);
4376 		thresholds->spare = NULL;
4377 	}
4378 unlock:
4379 	mutex_unlock(&memcg->thresholds_lock);
4380 }
4381 
4382 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4383 	struct eventfd_ctx *eventfd)
4384 {
4385 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4386 }
4387 
4388 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4389 	struct eventfd_ctx *eventfd)
4390 {
4391 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4392 }
4393 
4394 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4395 	struct eventfd_ctx *eventfd, const char *args)
4396 {
4397 	struct mem_cgroup_eventfd_list *event;
4398 
4399 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4400 	if (!event)
4401 		return -ENOMEM;
4402 
4403 	spin_lock(&memcg_oom_lock);
4404 
4405 	event->eventfd = eventfd;
4406 	list_add(&event->list, &memcg->oom_notify);
4407 
4408 	/* already in OOM ? */
4409 	if (memcg->under_oom)
4410 		eventfd_signal(eventfd, 1);
4411 	spin_unlock(&memcg_oom_lock);
4412 
4413 	return 0;
4414 }
4415 
4416 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4417 	struct eventfd_ctx *eventfd)
4418 {
4419 	struct mem_cgroup_eventfd_list *ev, *tmp;
4420 
4421 	spin_lock(&memcg_oom_lock);
4422 
4423 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4424 		if (ev->eventfd == eventfd) {
4425 			list_del(&ev->list);
4426 			kfree(ev);
4427 		}
4428 	}
4429 
4430 	spin_unlock(&memcg_oom_lock);
4431 }
4432 
4433 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4434 {
4435 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4436 
4437 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4438 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4439 	seq_printf(sf, "oom_kill %lu\n",
4440 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4441 	return 0;
4442 }
4443 
4444 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4445 	struct cftype *cft, u64 val)
4446 {
4447 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4448 
4449 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4450 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4451 		return -EINVAL;
4452 
4453 	memcg->oom_kill_disable = val;
4454 	if (!val)
4455 		memcg_oom_recover(memcg);
4456 
4457 	return 0;
4458 }
4459 
4460 #ifdef CONFIG_CGROUP_WRITEBACK
4461 
4462 #include <trace/events/writeback.h>
4463 
4464 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4465 {
4466 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4467 }
4468 
4469 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4470 {
4471 	wb_domain_exit(&memcg->cgwb_domain);
4472 }
4473 
4474 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4475 {
4476 	wb_domain_size_changed(&memcg->cgwb_domain);
4477 }
4478 
4479 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4480 {
4481 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4482 
4483 	if (!memcg->css.parent)
4484 		return NULL;
4485 
4486 	return &memcg->cgwb_domain;
4487 }
4488 
4489 /**
4490  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4491  * @wb: bdi_writeback in question
4492  * @pfilepages: out parameter for number of file pages
4493  * @pheadroom: out parameter for number of allocatable pages according to memcg
4494  * @pdirty: out parameter for number of dirty pages
4495  * @pwriteback: out parameter for number of pages under writeback
4496  *
4497  * Determine the numbers of file, headroom, dirty, and writeback pages in
4498  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4499  * is a bit more involved.
4500  *
4501  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4502  * headroom is calculated as the lowest headroom of itself and the
4503  * ancestors.  Note that this doesn't consider the actual amount of
4504  * available memory in the system.  The caller should further cap
4505  * *@pheadroom accordingly.
4506  */
4507 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4508 			 unsigned long *pheadroom, unsigned long *pdirty,
4509 			 unsigned long *pwriteback)
4510 {
4511 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4512 	struct mem_cgroup *parent;
4513 
4514 	mem_cgroup_flush_stats();
4515 
4516 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4517 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4518 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4519 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4520 
4521 	*pheadroom = PAGE_COUNTER_MAX;
4522 	while ((parent = parent_mem_cgroup(memcg))) {
4523 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4524 					    READ_ONCE(memcg->memory.high));
4525 		unsigned long used = page_counter_read(&memcg->memory);
4526 
4527 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4528 		memcg = parent;
4529 	}
4530 }
4531 
4532 /*
4533  * Foreign dirty flushing
4534  *
4535  * There's an inherent mismatch between memcg and writeback.  The former
4536  * tracks ownership per-page while the latter per-inode.  This was a
4537  * deliberate design decision because honoring per-page ownership in the
4538  * writeback path is complicated, may lead to higher CPU and IO overheads
4539  * and deemed unnecessary given that write-sharing an inode across
4540  * different cgroups isn't a common use-case.
4541  *
4542  * Combined with inode majority-writer ownership switching, this works well
4543  * enough in most cases but there are some pathological cases.  For
4544  * example, let's say there are two cgroups A and B which keep writing to
4545  * different but confined parts of the same inode.  B owns the inode and
4546  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4547  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4548  * triggering background writeback.  A will be slowed down without a way to
4549  * make writeback of the dirty pages happen.
4550  *
4551  * Conditions like the above can lead to a cgroup getting repeatedly and
4552  * severely throttled after making some progress after each
4553  * dirty_expire_interval while the underlying IO device is almost
4554  * completely idle.
4555  *
4556  * Solving this problem completely requires matching the ownership tracking
4557  * granularities between memcg and writeback in either direction.  However,
4558  * the more egregious behaviors can be avoided by simply remembering the
4559  * most recent foreign dirtying events and initiating remote flushes on
4560  * them when local writeback isn't enough to keep the memory clean enough.
4561  *
4562  * The following two functions implement such mechanism.  When a foreign
4563  * page - a page whose memcg and writeback ownerships don't match - is
4564  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4565  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4566  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4567  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4568  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4569  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4570  * limited to MEMCG_CGWB_FRN_CNT.
4571  *
4572  * The mechanism only remembers IDs and doesn't hold any object references.
4573  * As being wrong occasionally doesn't matter, updates and accesses to the
4574  * records are lockless and racy.
4575  */
4576 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4577 					     struct bdi_writeback *wb)
4578 {
4579 	struct mem_cgroup *memcg = folio_memcg(folio);
4580 	struct memcg_cgwb_frn *frn;
4581 	u64 now = get_jiffies_64();
4582 	u64 oldest_at = now;
4583 	int oldest = -1;
4584 	int i;
4585 
4586 	trace_track_foreign_dirty(folio, wb);
4587 
4588 	/*
4589 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4590 	 * using it.  If not replace the oldest one which isn't being
4591 	 * written out.
4592 	 */
4593 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4594 		frn = &memcg->cgwb_frn[i];
4595 		if (frn->bdi_id == wb->bdi->id &&
4596 		    frn->memcg_id == wb->memcg_css->id)
4597 			break;
4598 		if (time_before64(frn->at, oldest_at) &&
4599 		    atomic_read(&frn->done.cnt) == 1) {
4600 			oldest = i;
4601 			oldest_at = frn->at;
4602 		}
4603 	}
4604 
4605 	if (i < MEMCG_CGWB_FRN_CNT) {
4606 		/*
4607 		 * Re-using an existing one.  Update timestamp lazily to
4608 		 * avoid making the cacheline hot.  We want them to be
4609 		 * reasonably up-to-date and significantly shorter than
4610 		 * dirty_expire_interval as that's what expires the record.
4611 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4612 		 */
4613 		unsigned long update_intv =
4614 			min_t(unsigned long, HZ,
4615 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4616 
4617 		if (time_before64(frn->at, now - update_intv))
4618 			frn->at = now;
4619 	} else if (oldest >= 0) {
4620 		/* replace the oldest free one */
4621 		frn = &memcg->cgwb_frn[oldest];
4622 		frn->bdi_id = wb->bdi->id;
4623 		frn->memcg_id = wb->memcg_css->id;
4624 		frn->at = now;
4625 	}
4626 }
4627 
4628 /* issue foreign writeback flushes for recorded foreign dirtying events */
4629 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4630 {
4631 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4632 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4633 	u64 now = jiffies_64;
4634 	int i;
4635 
4636 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4637 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4638 
4639 		/*
4640 		 * If the record is older than dirty_expire_interval,
4641 		 * writeback on it has already started.  No need to kick it
4642 		 * off again.  Also, don't start a new one if there's
4643 		 * already one in flight.
4644 		 */
4645 		if (time_after64(frn->at, now - intv) &&
4646 		    atomic_read(&frn->done.cnt) == 1) {
4647 			frn->at = 0;
4648 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4649 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4650 					       WB_REASON_FOREIGN_FLUSH,
4651 					       &frn->done);
4652 		}
4653 	}
4654 }
4655 
4656 #else	/* CONFIG_CGROUP_WRITEBACK */
4657 
4658 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4659 {
4660 	return 0;
4661 }
4662 
4663 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4664 {
4665 }
4666 
4667 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4668 {
4669 }
4670 
4671 #endif	/* CONFIG_CGROUP_WRITEBACK */
4672 
4673 /*
4674  * DO NOT USE IN NEW FILES.
4675  *
4676  * "cgroup.event_control" implementation.
4677  *
4678  * This is way over-engineered.  It tries to support fully configurable
4679  * events for each user.  Such level of flexibility is completely
4680  * unnecessary especially in the light of the planned unified hierarchy.
4681  *
4682  * Please deprecate this and replace with something simpler if at all
4683  * possible.
4684  */
4685 
4686 /*
4687  * Unregister event and free resources.
4688  *
4689  * Gets called from workqueue.
4690  */
4691 static void memcg_event_remove(struct work_struct *work)
4692 {
4693 	struct mem_cgroup_event *event =
4694 		container_of(work, struct mem_cgroup_event, remove);
4695 	struct mem_cgroup *memcg = event->memcg;
4696 
4697 	remove_wait_queue(event->wqh, &event->wait);
4698 
4699 	event->unregister_event(memcg, event->eventfd);
4700 
4701 	/* Notify userspace the event is going away. */
4702 	eventfd_signal(event->eventfd, 1);
4703 
4704 	eventfd_ctx_put(event->eventfd);
4705 	kfree(event);
4706 	css_put(&memcg->css);
4707 }
4708 
4709 /*
4710  * Gets called on EPOLLHUP on eventfd when user closes it.
4711  *
4712  * Called with wqh->lock held and interrupts disabled.
4713  */
4714 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4715 			    int sync, void *key)
4716 {
4717 	struct mem_cgroup_event *event =
4718 		container_of(wait, struct mem_cgroup_event, wait);
4719 	struct mem_cgroup *memcg = event->memcg;
4720 	__poll_t flags = key_to_poll(key);
4721 
4722 	if (flags & EPOLLHUP) {
4723 		/*
4724 		 * If the event has been detached at cgroup removal, we
4725 		 * can simply return knowing the other side will cleanup
4726 		 * for us.
4727 		 *
4728 		 * We can't race against event freeing since the other
4729 		 * side will require wqh->lock via remove_wait_queue(),
4730 		 * which we hold.
4731 		 */
4732 		spin_lock(&memcg->event_list_lock);
4733 		if (!list_empty(&event->list)) {
4734 			list_del_init(&event->list);
4735 			/*
4736 			 * We are in atomic context, but cgroup_event_remove()
4737 			 * may sleep, so we have to call it in workqueue.
4738 			 */
4739 			schedule_work(&event->remove);
4740 		}
4741 		spin_unlock(&memcg->event_list_lock);
4742 	}
4743 
4744 	return 0;
4745 }
4746 
4747 static void memcg_event_ptable_queue_proc(struct file *file,
4748 		wait_queue_head_t *wqh, poll_table *pt)
4749 {
4750 	struct mem_cgroup_event *event =
4751 		container_of(pt, struct mem_cgroup_event, pt);
4752 
4753 	event->wqh = wqh;
4754 	add_wait_queue(wqh, &event->wait);
4755 }
4756 
4757 /*
4758  * DO NOT USE IN NEW FILES.
4759  *
4760  * Parse input and register new cgroup event handler.
4761  *
4762  * Input must be in format '<event_fd> <control_fd> <args>'.
4763  * Interpretation of args is defined by control file implementation.
4764  */
4765 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4766 					 char *buf, size_t nbytes, loff_t off)
4767 {
4768 	struct cgroup_subsys_state *css = of_css(of);
4769 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4770 	struct mem_cgroup_event *event;
4771 	struct cgroup_subsys_state *cfile_css;
4772 	unsigned int efd, cfd;
4773 	struct fd efile;
4774 	struct fd cfile;
4775 	const char *name;
4776 	char *endp;
4777 	int ret;
4778 
4779 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
4780 		return -EOPNOTSUPP;
4781 
4782 	buf = strstrip(buf);
4783 
4784 	efd = simple_strtoul(buf, &endp, 10);
4785 	if (*endp != ' ')
4786 		return -EINVAL;
4787 	buf = endp + 1;
4788 
4789 	cfd = simple_strtoul(buf, &endp, 10);
4790 	if ((*endp != ' ') && (*endp != '\0'))
4791 		return -EINVAL;
4792 	buf = endp + 1;
4793 
4794 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4795 	if (!event)
4796 		return -ENOMEM;
4797 
4798 	event->memcg = memcg;
4799 	INIT_LIST_HEAD(&event->list);
4800 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4801 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4802 	INIT_WORK(&event->remove, memcg_event_remove);
4803 
4804 	efile = fdget(efd);
4805 	if (!efile.file) {
4806 		ret = -EBADF;
4807 		goto out_kfree;
4808 	}
4809 
4810 	event->eventfd = eventfd_ctx_fileget(efile.file);
4811 	if (IS_ERR(event->eventfd)) {
4812 		ret = PTR_ERR(event->eventfd);
4813 		goto out_put_efile;
4814 	}
4815 
4816 	cfile = fdget(cfd);
4817 	if (!cfile.file) {
4818 		ret = -EBADF;
4819 		goto out_put_eventfd;
4820 	}
4821 
4822 	/* the process need read permission on control file */
4823 	/* AV: shouldn't we check that it's been opened for read instead? */
4824 	ret = file_permission(cfile.file, MAY_READ);
4825 	if (ret < 0)
4826 		goto out_put_cfile;
4827 
4828 	/*
4829 	 * Determine the event callbacks and set them in @event.  This used
4830 	 * to be done via struct cftype but cgroup core no longer knows
4831 	 * about these events.  The following is crude but the whole thing
4832 	 * is for compatibility anyway.
4833 	 *
4834 	 * DO NOT ADD NEW FILES.
4835 	 */
4836 	name = cfile.file->f_path.dentry->d_name.name;
4837 
4838 	if (!strcmp(name, "memory.usage_in_bytes")) {
4839 		event->register_event = mem_cgroup_usage_register_event;
4840 		event->unregister_event = mem_cgroup_usage_unregister_event;
4841 	} else if (!strcmp(name, "memory.oom_control")) {
4842 		event->register_event = mem_cgroup_oom_register_event;
4843 		event->unregister_event = mem_cgroup_oom_unregister_event;
4844 	} else if (!strcmp(name, "memory.pressure_level")) {
4845 		event->register_event = vmpressure_register_event;
4846 		event->unregister_event = vmpressure_unregister_event;
4847 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4848 		event->register_event = memsw_cgroup_usage_register_event;
4849 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4850 	} else {
4851 		ret = -EINVAL;
4852 		goto out_put_cfile;
4853 	}
4854 
4855 	/*
4856 	 * Verify @cfile should belong to @css.  Also, remaining events are
4857 	 * automatically removed on cgroup destruction but the removal is
4858 	 * asynchronous, so take an extra ref on @css.
4859 	 */
4860 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4861 					       &memory_cgrp_subsys);
4862 	ret = -EINVAL;
4863 	if (IS_ERR(cfile_css))
4864 		goto out_put_cfile;
4865 	if (cfile_css != css) {
4866 		css_put(cfile_css);
4867 		goto out_put_cfile;
4868 	}
4869 
4870 	ret = event->register_event(memcg, event->eventfd, buf);
4871 	if (ret)
4872 		goto out_put_css;
4873 
4874 	vfs_poll(efile.file, &event->pt);
4875 
4876 	spin_lock_irq(&memcg->event_list_lock);
4877 	list_add(&event->list, &memcg->event_list);
4878 	spin_unlock_irq(&memcg->event_list_lock);
4879 
4880 	fdput(cfile);
4881 	fdput(efile);
4882 
4883 	return nbytes;
4884 
4885 out_put_css:
4886 	css_put(css);
4887 out_put_cfile:
4888 	fdput(cfile);
4889 out_put_eventfd:
4890 	eventfd_ctx_put(event->eventfd);
4891 out_put_efile:
4892 	fdput(efile);
4893 out_kfree:
4894 	kfree(event);
4895 
4896 	return ret;
4897 }
4898 
4899 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4900 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4901 {
4902 	/*
4903 	 * Deprecated.
4904 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4905 	 */
4906 	return 0;
4907 }
4908 #endif
4909 
4910 static struct cftype mem_cgroup_legacy_files[] = {
4911 	{
4912 		.name = "usage_in_bytes",
4913 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4914 		.read_u64 = mem_cgroup_read_u64,
4915 	},
4916 	{
4917 		.name = "max_usage_in_bytes",
4918 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4919 		.write = mem_cgroup_reset,
4920 		.read_u64 = mem_cgroup_read_u64,
4921 	},
4922 	{
4923 		.name = "limit_in_bytes",
4924 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4925 		.write = mem_cgroup_write,
4926 		.read_u64 = mem_cgroup_read_u64,
4927 	},
4928 	{
4929 		.name = "soft_limit_in_bytes",
4930 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4931 		.write = mem_cgroup_write,
4932 		.read_u64 = mem_cgroup_read_u64,
4933 	},
4934 	{
4935 		.name = "failcnt",
4936 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4937 		.write = mem_cgroup_reset,
4938 		.read_u64 = mem_cgroup_read_u64,
4939 	},
4940 	{
4941 		.name = "stat",
4942 		.seq_show = memcg_stat_show,
4943 	},
4944 	{
4945 		.name = "force_empty",
4946 		.write = mem_cgroup_force_empty_write,
4947 	},
4948 	{
4949 		.name = "use_hierarchy",
4950 		.write_u64 = mem_cgroup_hierarchy_write,
4951 		.read_u64 = mem_cgroup_hierarchy_read,
4952 	},
4953 	{
4954 		.name = "cgroup.event_control",		/* XXX: for compat */
4955 		.write = memcg_write_event_control,
4956 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4957 	},
4958 	{
4959 		.name = "swappiness",
4960 		.read_u64 = mem_cgroup_swappiness_read,
4961 		.write_u64 = mem_cgroup_swappiness_write,
4962 	},
4963 	{
4964 		.name = "move_charge_at_immigrate",
4965 		.read_u64 = mem_cgroup_move_charge_read,
4966 		.write_u64 = mem_cgroup_move_charge_write,
4967 	},
4968 	{
4969 		.name = "oom_control",
4970 		.seq_show = mem_cgroup_oom_control_read,
4971 		.write_u64 = mem_cgroup_oom_control_write,
4972 	},
4973 	{
4974 		.name = "pressure_level",
4975 	},
4976 #ifdef CONFIG_NUMA
4977 	{
4978 		.name = "numa_stat",
4979 		.seq_show = memcg_numa_stat_show,
4980 	},
4981 #endif
4982 	{
4983 		.name = "kmem.limit_in_bytes",
4984 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4985 		.write = mem_cgroup_write,
4986 		.read_u64 = mem_cgroup_read_u64,
4987 	},
4988 	{
4989 		.name = "kmem.usage_in_bytes",
4990 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4991 		.read_u64 = mem_cgroup_read_u64,
4992 	},
4993 	{
4994 		.name = "kmem.failcnt",
4995 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4996 		.write = mem_cgroup_reset,
4997 		.read_u64 = mem_cgroup_read_u64,
4998 	},
4999 	{
5000 		.name = "kmem.max_usage_in_bytes",
5001 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5002 		.write = mem_cgroup_reset,
5003 		.read_u64 = mem_cgroup_read_u64,
5004 	},
5005 #if defined(CONFIG_MEMCG_KMEM) && \
5006 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5007 	{
5008 		.name = "kmem.slabinfo",
5009 		.seq_show = mem_cgroup_slab_show,
5010 	},
5011 #endif
5012 	{
5013 		.name = "kmem.tcp.limit_in_bytes",
5014 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5015 		.write = mem_cgroup_write,
5016 		.read_u64 = mem_cgroup_read_u64,
5017 	},
5018 	{
5019 		.name = "kmem.tcp.usage_in_bytes",
5020 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5021 		.read_u64 = mem_cgroup_read_u64,
5022 	},
5023 	{
5024 		.name = "kmem.tcp.failcnt",
5025 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5026 		.write = mem_cgroup_reset,
5027 		.read_u64 = mem_cgroup_read_u64,
5028 	},
5029 	{
5030 		.name = "kmem.tcp.max_usage_in_bytes",
5031 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5032 		.write = mem_cgroup_reset,
5033 		.read_u64 = mem_cgroup_read_u64,
5034 	},
5035 	{ },	/* terminate */
5036 };
5037 
5038 /*
5039  * Private memory cgroup IDR
5040  *
5041  * Swap-out records and page cache shadow entries need to store memcg
5042  * references in constrained space, so we maintain an ID space that is
5043  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5044  * memory-controlled cgroups to 64k.
5045  *
5046  * However, there usually are many references to the offline CSS after
5047  * the cgroup has been destroyed, such as page cache or reclaimable
5048  * slab objects, that don't need to hang on to the ID. We want to keep
5049  * those dead CSS from occupying IDs, or we might quickly exhaust the
5050  * relatively small ID space and prevent the creation of new cgroups
5051  * even when there are much fewer than 64k cgroups - possibly none.
5052  *
5053  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5054  * be freed and recycled when it's no longer needed, which is usually
5055  * when the CSS is offlined.
5056  *
5057  * The only exception to that are records of swapped out tmpfs/shmem
5058  * pages that need to be attributed to live ancestors on swapin. But
5059  * those references are manageable from userspace.
5060  */
5061 
5062 static DEFINE_IDR(mem_cgroup_idr);
5063 
5064 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5065 {
5066 	if (memcg->id.id > 0) {
5067 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5068 		memcg->id.id = 0;
5069 	}
5070 }
5071 
5072 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5073 						  unsigned int n)
5074 {
5075 	refcount_add(n, &memcg->id.ref);
5076 }
5077 
5078 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5079 {
5080 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5081 		mem_cgroup_id_remove(memcg);
5082 
5083 		/* Memcg ID pins CSS */
5084 		css_put(&memcg->css);
5085 	}
5086 }
5087 
5088 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5089 {
5090 	mem_cgroup_id_put_many(memcg, 1);
5091 }
5092 
5093 /**
5094  * mem_cgroup_from_id - look up a memcg from a memcg id
5095  * @id: the memcg id to look up
5096  *
5097  * Caller must hold rcu_read_lock().
5098  */
5099 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5100 {
5101 	WARN_ON_ONCE(!rcu_read_lock_held());
5102 	return idr_find(&mem_cgroup_idr, id);
5103 }
5104 
5105 #ifdef CONFIG_SHRINKER_DEBUG
5106 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5107 {
5108 	struct cgroup *cgrp;
5109 	struct cgroup_subsys_state *css;
5110 	struct mem_cgroup *memcg;
5111 
5112 	cgrp = cgroup_get_from_id(ino);
5113 	if (!cgrp)
5114 		return ERR_PTR(-ENOENT);
5115 
5116 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5117 	if (css)
5118 		memcg = container_of(css, struct mem_cgroup, css);
5119 	else
5120 		memcg = ERR_PTR(-ENOENT);
5121 
5122 	cgroup_put(cgrp);
5123 
5124 	return memcg;
5125 }
5126 #endif
5127 
5128 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5129 {
5130 	struct mem_cgroup_per_node *pn;
5131 
5132 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5133 	if (!pn)
5134 		return 1;
5135 
5136 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5137 						   GFP_KERNEL_ACCOUNT);
5138 	if (!pn->lruvec_stats_percpu) {
5139 		kfree(pn);
5140 		return 1;
5141 	}
5142 
5143 	lruvec_init(&pn->lruvec);
5144 	pn->memcg = memcg;
5145 
5146 	memcg->nodeinfo[node] = pn;
5147 	return 0;
5148 }
5149 
5150 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5151 {
5152 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5153 
5154 	if (!pn)
5155 		return;
5156 
5157 	free_percpu(pn->lruvec_stats_percpu);
5158 	kfree(pn);
5159 }
5160 
5161 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5162 {
5163 	int node;
5164 
5165 	for_each_node(node)
5166 		free_mem_cgroup_per_node_info(memcg, node);
5167 	free_percpu(memcg->vmstats_percpu);
5168 	kfree(memcg);
5169 }
5170 
5171 static void mem_cgroup_free(struct mem_cgroup *memcg)
5172 {
5173 	memcg_wb_domain_exit(memcg);
5174 	__mem_cgroup_free(memcg);
5175 }
5176 
5177 static struct mem_cgroup *mem_cgroup_alloc(void)
5178 {
5179 	struct mem_cgroup *memcg;
5180 	int node;
5181 	int __maybe_unused i;
5182 	long error = -ENOMEM;
5183 
5184 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5185 	if (!memcg)
5186 		return ERR_PTR(error);
5187 
5188 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5189 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5190 	if (memcg->id.id < 0) {
5191 		error = memcg->id.id;
5192 		goto fail;
5193 	}
5194 
5195 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5196 						 GFP_KERNEL_ACCOUNT);
5197 	if (!memcg->vmstats_percpu)
5198 		goto fail;
5199 
5200 	for_each_node(node)
5201 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5202 			goto fail;
5203 
5204 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5205 		goto fail;
5206 
5207 	INIT_WORK(&memcg->high_work, high_work_func);
5208 	INIT_LIST_HEAD(&memcg->oom_notify);
5209 	mutex_init(&memcg->thresholds_lock);
5210 	spin_lock_init(&memcg->move_lock);
5211 	vmpressure_init(&memcg->vmpressure);
5212 	INIT_LIST_HEAD(&memcg->event_list);
5213 	spin_lock_init(&memcg->event_list_lock);
5214 	memcg->socket_pressure = jiffies;
5215 #ifdef CONFIG_MEMCG_KMEM
5216 	memcg->kmemcg_id = -1;
5217 	INIT_LIST_HEAD(&memcg->objcg_list);
5218 #endif
5219 #ifdef CONFIG_CGROUP_WRITEBACK
5220 	INIT_LIST_HEAD(&memcg->cgwb_list);
5221 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5222 		memcg->cgwb_frn[i].done =
5223 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5224 #endif
5225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5226 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5227 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5228 	memcg->deferred_split_queue.split_queue_len = 0;
5229 #endif
5230 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5231 	return memcg;
5232 fail:
5233 	mem_cgroup_id_remove(memcg);
5234 	__mem_cgroup_free(memcg);
5235 	return ERR_PTR(error);
5236 }
5237 
5238 static struct cgroup_subsys_state * __ref
5239 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5240 {
5241 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5242 	struct mem_cgroup *memcg, *old_memcg;
5243 
5244 	old_memcg = set_active_memcg(parent);
5245 	memcg = mem_cgroup_alloc();
5246 	set_active_memcg(old_memcg);
5247 	if (IS_ERR(memcg))
5248 		return ERR_CAST(memcg);
5249 
5250 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5251 	memcg->soft_limit = PAGE_COUNTER_MAX;
5252 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5253 	memcg->zswap_max = PAGE_COUNTER_MAX;
5254 #endif
5255 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5256 	if (parent) {
5257 		memcg->swappiness = mem_cgroup_swappiness(parent);
5258 		memcg->oom_kill_disable = parent->oom_kill_disable;
5259 
5260 		page_counter_init(&memcg->memory, &parent->memory);
5261 		page_counter_init(&memcg->swap, &parent->swap);
5262 		page_counter_init(&memcg->kmem, &parent->kmem);
5263 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5264 	} else {
5265 		page_counter_init(&memcg->memory, NULL);
5266 		page_counter_init(&memcg->swap, NULL);
5267 		page_counter_init(&memcg->kmem, NULL);
5268 		page_counter_init(&memcg->tcpmem, NULL);
5269 
5270 		root_mem_cgroup = memcg;
5271 		return &memcg->css;
5272 	}
5273 
5274 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5275 		static_branch_inc(&memcg_sockets_enabled_key);
5276 
5277 	return &memcg->css;
5278 }
5279 
5280 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5281 {
5282 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5283 
5284 	if (memcg_online_kmem(memcg))
5285 		goto remove_id;
5286 
5287 	/*
5288 	 * A memcg must be visible for expand_shrinker_info()
5289 	 * by the time the maps are allocated. So, we allocate maps
5290 	 * here, when for_each_mem_cgroup() can't skip it.
5291 	 */
5292 	if (alloc_shrinker_info(memcg))
5293 		goto offline_kmem;
5294 
5295 	/* Online state pins memcg ID, memcg ID pins CSS */
5296 	refcount_set(&memcg->id.ref, 1);
5297 	css_get(css);
5298 
5299 	if (unlikely(mem_cgroup_is_root(memcg)))
5300 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5301 				   2UL*HZ);
5302 	return 0;
5303 offline_kmem:
5304 	memcg_offline_kmem(memcg);
5305 remove_id:
5306 	mem_cgroup_id_remove(memcg);
5307 	return -ENOMEM;
5308 }
5309 
5310 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5311 {
5312 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5313 	struct mem_cgroup_event *event, *tmp;
5314 
5315 	/*
5316 	 * Unregister events and notify userspace.
5317 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5318 	 * directory to avoid race between userspace and kernelspace.
5319 	 */
5320 	spin_lock_irq(&memcg->event_list_lock);
5321 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5322 		list_del_init(&event->list);
5323 		schedule_work(&event->remove);
5324 	}
5325 	spin_unlock_irq(&memcg->event_list_lock);
5326 
5327 	page_counter_set_min(&memcg->memory, 0);
5328 	page_counter_set_low(&memcg->memory, 0);
5329 
5330 	memcg_offline_kmem(memcg);
5331 	reparent_shrinker_deferred(memcg);
5332 	wb_memcg_offline(memcg);
5333 
5334 	drain_all_stock(memcg);
5335 
5336 	mem_cgroup_id_put(memcg);
5337 }
5338 
5339 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5340 {
5341 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5342 
5343 	invalidate_reclaim_iterators(memcg);
5344 }
5345 
5346 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5347 {
5348 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5349 	int __maybe_unused i;
5350 
5351 #ifdef CONFIG_CGROUP_WRITEBACK
5352 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5353 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5354 #endif
5355 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5356 		static_branch_dec(&memcg_sockets_enabled_key);
5357 
5358 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5359 		static_branch_dec(&memcg_sockets_enabled_key);
5360 
5361 	vmpressure_cleanup(&memcg->vmpressure);
5362 	cancel_work_sync(&memcg->high_work);
5363 	mem_cgroup_remove_from_trees(memcg);
5364 	free_shrinker_info(memcg);
5365 	mem_cgroup_free(memcg);
5366 }
5367 
5368 /**
5369  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5370  * @css: the target css
5371  *
5372  * Reset the states of the mem_cgroup associated with @css.  This is
5373  * invoked when the userland requests disabling on the default hierarchy
5374  * but the memcg is pinned through dependency.  The memcg should stop
5375  * applying policies and should revert to the vanilla state as it may be
5376  * made visible again.
5377  *
5378  * The current implementation only resets the essential configurations.
5379  * This needs to be expanded to cover all the visible parts.
5380  */
5381 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5382 {
5383 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5384 
5385 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5386 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5387 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5388 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5389 	page_counter_set_min(&memcg->memory, 0);
5390 	page_counter_set_low(&memcg->memory, 0);
5391 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5392 	memcg->soft_limit = PAGE_COUNTER_MAX;
5393 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5394 	memcg_wb_domain_size_changed(memcg);
5395 }
5396 
5397 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5398 {
5399 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5400 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5401 	struct memcg_vmstats_percpu *statc;
5402 	long delta, v;
5403 	int i, nid;
5404 
5405 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5406 
5407 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5408 		/*
5409 		 * Collect the aggregated propagation counts of groups
5410 		 * below us. We're in a per-cpu loop here and this is
5411 		 * a global counter, so the first cycle will get them.
5412 		 */
5413 		delta = memcg->vmstats.state_pending[i];
5414 		if (delta)
5415 			memcg->vmstats.state_pending[i] = 0;
5416 
5417 		/* Add CPU changes on this level since the last flush */
5418 		v = READ_ONCE(statc->state[i]);
5419 		if (v != statc->state_prev[i]) {
5420 			delta += v - statc->state_prev[i];
5421 			statc->state_prev[i] = v;
5422 		}
5423 
5424 		if (!delta)
5425 			continue;
5426 
5427 		/* Aggregate counts on this level and propagate upwards */
5428 		memcg->vmstats.state[i] += delta;
5429 		if (parent)
5430 			parent->vmstats.state_pending[i] += delta;
5431 	}
5432 
5433 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5434 		delta = memcg->vmstats.events_pending[i];
5435 		if (delta)
5436 			memcg->vmstats.events_pending[i] = 0;
5437 
5438 		v = READ_ONCE(statc->events[i]);
5439 		if (v != statc->events_prev[i]) {
5440 			delta += v - statc->events_prev[i];
5441 			statc->events_prev[i] = v;
5442 		}
5443 
5444 		if (!delta)
5445 			continue;
5446 
5447 		memcg->vmstats.events[i] += delta;
5448 		if (parent)
5449 			parent->vmstats.events_pending[i] += delta;
5450 	}
5451 
5452 	for_each_node_state(nid, N_MEMORY) {
5453 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5454 		struct mem_cgroup_per_node *ppn = NULL;
5455 		struct lruvec_stats_percpu *lstatc;
5456 
5457 		if (parent)
5458 			ppn = parent->nodeinfo[nid];
5459 
5460 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5461 
5462 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5463 			delta = pn->lruvec_stats.state_pending[i];
5464 			if (delta)
5465 				pn->lruvec_stats.state_pending[i] = 0;
5466 
5467 			v = READ_ONCE(lstatc->state[i]);
5468 			if (v != lstatc->state_prev[i]) {
5469 				delta += v - lstatc->state_prev[i];
5470 				lstatc->state_prev[i] = v;
5471 			}
5472 
5473 			if (!delta)
5474 				continue;
5475 
5476 			pn->lruvec_stats.state[i] += delta;
5477 			if (ppn)
5478 				ppn->lruvec_stats.state_pending[i] += delta;
5479 		}
5480 	}
5481 }
5482 
5483 #ifdef CONFIG_MMU
5484 /* Handlers for move charge at task migration. */
5485 static int mem_cgroup_do_precharge(unsigned long count)
5486 {
5487 	int ret;
5488 
5489 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5490 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5491 	if (!ret) {
5492 		mc.precharge += count;
5493 		return ret;
5494 	}
5495 
5496 	/* Try charges one by one with reclaim, but do not retry */
5497 	while (count--) {
5498 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5499 		if (ret)
5500 			return ret;
5501 		mc.precharge++;
5502 		cond_resched();
5503 	}
5504 	return 0;
5505 }
5506 
5507 union mc_target {
5508 	struct page	*page;
5509 	swp_entry_t	ent;
5510 };
5511 
5512 enum mc_target_type {
5513 	MC_TARGET_NONE = 0,
5514 	MC_TARGET_PAGE,
5515 	MC_TARGET_SWAP,
5516 	MC_TARGET_DEVICE,
5517 };
5518 
5519 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5520 						unsigned long addr, pte_t ptent)
5521 {
5522 	struct page *page = vm_normal_page(vma, addr, ptent);
5523 
5524 	if (!page || !page_mapped(page))
5525 		return NULL;
5526 	if (PageAnon(page)) {
5527 		if (!(mc.flags & MOVE_ANON))
5528 			return NULL;
5529 	} else {
5530 		if (!(mc.flags & MOVE_FILE))
5531 			return NULL;
5532 	}
5533 	if (!get_page_unless_zero(page))
5534 		return NULL;
5535 
5536 	return page;
5537 }
5538 
5539 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5540 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5541 			pte_t ptent, swp_entry_t *entry)
5542 {
5543 	struct page *page = NULL;
5544 	swp_entry_t ent = pte_to_swp_entry(ptent);
5545 
5546 	if (!(mc.flags & MOVE_ANON))
5547 		return NULL;
5548 
5549 	/*
5550 	 * Handle device private pages that are not accessible by the CPU, but
5551 	 * stored as special swap entries in the page table.
5552 	 */
5553 	if (is_device_private_entry(ent)) {
5554 		page = pfn_swap_entry_to_page(ent);
5555 		if (!get_page_unless_zero(page))
5556 			return NULL;
5557 		return page;
5558 	}
5559 
5560 	if (non_swap_entry(ent))
5561 		return NULL;
5562 
5563 	/*
5564 	 * Because lookup_swap_cache() updates some statistics counter,
5565 	 * we call find_get_page() with swapper_space directly.
5566 	 */
5567 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5568 	entry->val = ent.val;
5569 
5570 	return page;
5571 }
5572 #else
5573 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5574 			pte_t ptent, swp_entry_t *entry)
5575 {
5576 	return NULL;
5577 }
5578 #endif
5579 
5580 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5581 			unsigned long addr, pte_t ptent)
5582 {
5583 	if (!vma->vm_file) /* anonymous vma */
5584 		return NULL;
5585 	if (!(mc.flags & MOVE_FILE))
5586 		return NULL;
5587 
5588 	/* page is moved even if it's not RSS of this task(page-faulted). */
5589 	/* shmem/tmpfs may report page out on swap: account for that too. */
5590 	return find_get_incore_page(vma->vm_file->f_mapping,
5591 			linear_page_index(vma, addr));
5592 }
5593 
5594 /**
5595  * mem_cgroup_move_account - move account of the page
5596  * @page: the page
5597  * @compound: charge the page as compound or small page
5598  * @from: mem_cgroup which the page is moved from.
5599  * @to:	mem_cgroup which the page is moved to. @from != @to.
5600  *
5601  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5602  *
5603  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5604  * from old cgroup.
5605  */
5606 static int mem_cgroup_move_account(struct page *page,
5607 				   bool compound,
5608 				   struct mem_cgroup *from,
5609 				   struct mem_cgroup *to)
5610 {
5611 	struct folio *folio = page_folio(page);
5612 	struct lruvec *from_vec, *to_vec;
5613 	struct pglist_data *pgdat;
5614 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5615 	int nid, ret;
5616 
5617 	VM_BUG_ON(from == to);
5618 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5619 	VM_BUG_ON(compound && !folio_test_large(folio));
5620 
5621 	/*
5622 	 * Prevent mem_cgroup_migrate() from looking at
5623 	 * page's memory cgroup of its source page while we change it.
5624 	 */
5625 	ret = -EBUSY;
5626 	if (!folio_trylock(folio))
5627 		goto out;
5628 
5629 	ret = -EINVAL;
5630 	if (folio_memcg(folio) != from)
5631 		goto out_unlock;
5632 
5633 	pgdat = folio_pgdat(folio);
5634 	from_vec = mem_cgroup_lruvec(from, pgdat);
5635 	to_vec = mem_cgroup_lruvec(to, pgdat);
5636 
5637 	folio_memcg_lock(folio);
5638 
5639 	if (folio_test_anon(folio)) {
5640 		if (folio_mapped(folio)) {
5641 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5642 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5643 			if (folio_test_transhuge(folio)) {
5644 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5645 						   -nr_pages);
5646 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5647 						   nr_pages);
5648 			}
5649 		}
5650 	} else {
5651 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5652 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5653 
5654 		if (folio_test_swapbacked(folio)) {
5655 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5656 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5657 		}
5658 
5659 		if (folio_mapped(folio)) {
5660 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5661 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5662 		}
5663 
5664 		if (folio_test_dirty(folio)) {
5665 			struct address_space *mapping = folio_mapping(folio);
5666 
5667 			if (mapping_can_writeback(mapping)) {
5668 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5669 						   -nr_pages);
5670 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5671 						   nr_pages);
5672 			}
5673 		}
5674 	}
5675 
5676 	if (folio_test_writeback(folio)) {
5677 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5678 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5679 	}
5680 
5681 	/*
5682 	 * All state has been migrated, let's switch to the new memcg.
5683 	 *
5684 	 * It is safe to change page's memcg here because the page
5685 	 * is referenced, charged, isolated, and locked: we can't race
5686 	 * with (un)charging, migration, LRU putback, or anything else
5687 	 * that would rely on a stable page's memory cgroup.
5688 	 *
5689 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5690 	 * to save space. As soon as we switch page's memory cgroup to a
5691 	 * new memcg that isn't locked, the above state can change
5692 	 * concurrently again. Make sure we're truly done with it.
5693 	 */
5694 	smp_mb();
5695 
5696 	css_get(&to->css);
5697 	css_put(&from->css);
5698 
5699 	folio->memcg_data = (unsigned long)to;
5700 
5701 	__folio_memcg_unlock(from);
5702 
5703 	ret = 0;
5704 	nid = folio_nid(folio);
5705 
5706 	local_irq_disable();
5707 	mem_cgroup_charge_statistics(to, nr_pages);
5708 	memcg_check_events(to, nid);
5709 	mem_cgroup_charge_statistics(from, -nr_pages);
5710 	memcg_check_events(from, nid);
5711 	local_irq_enable();
5712 out_unlock:
5713 	folio_unlock(folio);
5714 out:
5715 	return ret;
5716 }
5717 
5718 /**
5719  * get_mctgt_type - get target type of moving charge
5720  * @vma: the vma the pte to be checked belongs
5721  * @addr: the address corresponding to the pte to be checked
5722  * @ptent: the pte to be checked
5723  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5724  *
5725  * Returns
5726  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5727  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5728  *     move charge. if @target is not NULL, the page is stored in target->page
5729  *     with extra refcnt got(Callers should handle it).
5730  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5731  *     target for charge migration. if @target is not NULL, the entry is stored
5732  *     in target->ent.
5733  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5734  *   thus not on the lru.
5735  *     For now we such page is charge like a regular page would be as for all
5736  *     intent and purposes it is just special memory taking the place of a
5737  *     regular page.
5738  *
5739  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5740  *
5741  * Called with pte lock held.
5742  */
5743 
5744 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5745 		unsigned long addr, pte_t ptent, union mc_target *target)
5746 {
5747 	struct page *page = NULL;
5748 	enum mc_target_type ret = MC_TARGET_NONE;
5749 	swp_entry_t ent = { .val = 0 };
5750 
5751 	if (pte_present(ptent))
5752 		page = mc_handle_present_pte(vma, addr, ptent);
5753 	else if (pte_none_mostly(ptent))
5754 		/*
5755 		 * PTE markers should be treated as a none pte here, separated
5756 		 * from other swap handling below.
5757 		 */
5758 		page = mc_handle_file_pte(vma, addr, ptent);
5759 	else if (is_swap_pte(ptent))
5760 		page = mc_handle_swap_pte(vma, ptent, &ent);
5761 
5762 	if (!page && !ent.val)
5763 		return ret;
5764 	if (page) {
5765 		/*
5766 		 * Do only loose check w/o serialization.
5767 		 * mem_cgroup_move_account() checks the page is valid or
5768 		 * not under LRU exclusion.
5769 		 */
5770 		if (page_memcg(page) == mc.from) {
5771 			ret = MC_TARGET_PAGE;
5772 			if (is_device_private_page(page) ||
5773 			    is_device_coherent_page(page))
5774 				ret = MC_TARGET_DEVICE;
5775 			if (target)
5776 				target->page = page;
5777 		}
5778 		if (!ret || !target)
5779 			put_page(page);
5780 	}
5781 	/*
5782 	 * There is a swap entry and a page doesn't exist or isn't charged.
5783 	 * But we cannot move a tail-page in a THP.
5784 	 */
5785 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5786 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5787 		ret = MC_TARGET_SWAP;
5788 		if (target)
5789 			target->ent = ent;
5790 	}
5791 	return ret;
5792 }
5793 
5794 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5795 /*
5796  * We don't consider PMD mapped swapping or file mapped pages because THP does
5797  * not support them for now.
5798  * Caller should make sure that pmd_trans_huge(pmd) is true.
5799  */
5800 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5801 		unsigned long addr, pmd_t pmd, union mc_target *target)
5802 {
5803 	struct page *page = NULL;
5804 	enum mc_target_type ret = MC_TARGET_NONE;
5805 
5806 	if (unlikely(is_swap_pmd(pmd))) {
5807 		VM_BUG_ON(thp_migration_supported() &&
5808 				  !is_pmd_migration_entry(pmd));
5809 		return ret;
5810 	}
5811 	page = pmd_page(pmd);
5812 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5813 	if (!(mc.flags & MOVE_ANON))
5814 		return ret;
5815 	if (page_memcg(page) == mc.from) {
5816 		ret = MC_TARGET_PAGE;
5817 		if (target) {
5818 			get_page(page);
5819 			target->page = page;
5820 		}
5821 	}
5822 	return ret;
5823 }
5824 #else
5825 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5826 		unsigned long addr, pmd_t pmd, union mc_target *target)
5827 {
5828 	return MC_TARGET_NONE;
5829 }
5830 #endif
5831 
5832 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5833 					unsigned long addr, unsigned long end,
5834 					struct mm_walk *walk)
5835 {
5836 	struct vm_area_struct *vma = walk->vma;
5837 	pte_t *pte;
5838 	spinlock_t *ptl;
5839 
5840 	ptl = pmd_trans_huge_lock(pmd, vma);
5841 	if (ptl) {
5842 		/*
5843 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5844 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5845 		 * this might change.
5846 		 */
5847 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5848 			mc.precharge += HPAGE_PMD_NR;
5849 		spin_unlock(ptl);
5850 		return 0;
5851 	}
5852 
5853 	if (pmd_trans_unstable(pmd))
5854 		return 0;
5855 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5856 	for (; addr != end; pte++, addr += PAGE_SIZE)
5857 		if (get_mctgt_type(vma, addr, *pte, NULL))
5858 			mc.precharge++;	/* increment precharge temporarily */
5859 	pte_unmap_unlock(pte - 1, ptl);
5860 	cond_resched();
5861 
5862 	return 0;
5863 }
5864 
5865 static const struct mm_walk_ops precharge_walk_ops = {
5866 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5867 };
5868 
5869 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5870 {
5871 	unsigned long precharge;
5872 
5873 	mmap_read_lock(mm);
5874 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5875 	mmap_read_unlock(mm);
5876 
5877 	precharge = mc.precharge;
5878 	mc.precharge = 0;
5879 
5880 	return precharge;
5881 }
5882 
5883 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5884 {
5885 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5886 
5887 	VM_BUG_ON(mc.moving_task);
5888 	mc.moving_task = current;
5889 	return mem_cgroup_do_precharge(precharge);
5890 }
5891 
5892 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5893 static void __mem_cgroup_clear_mc(void)
5894 {
5895 	struct mem_cgroup *from = mc.from;
5896 	struct mem_cgroup *to = mc.to;
5897 
5898 	/* we must uncharge all the leftover precharges from mc.to */
5899 	if (mc.precharge) {
5900 		cancel_charge(mc.to, mc.precharge);
5901 		mc.precharge = 0;
5902 	}
5903 	/*
5904 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5905 	 * we must uncharge here.
5906 	 */
5907 	if (mc.moved_charge) {
5908 		cancel_charge(mc.from, mc.moved_charge);
5909 		mc.moved_charge = 0;
5910 	}
5911 	/* we must fixup refcnts and charges */
5912 	if (mc.moved_swap) {
5913 		/* uncharge swap account from the old cgroup */
5914 		if (!mem_cgroup_is_root(mc.from))
5915 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5916 
5917 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5918 
5919 		/*
5920 		 * we charged both to->memory and to->memsw, so we
5921 		 * should uncharge to->memory.
5922 		 */
5923 		if (!mem_cgroup_is_root(mc.to))
5924 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5925 
5926 		mc.moved_swap = 0;
5927 	}
5928 	memcg_oom_recover(from);
5929 	memcg_oom_recover(to);
5930 	wake_up_all(&mc.waitq);
5931 }
5932 
5933 static void mem_cgroup_clear_mc(void)
5934 {
5935 	struct mm_struct *mm = mc.mm;
5936 
5937 	/*
5938 	 * we must clear moving_task before waking up waiters at the end of
5939 	 * task migration.
5940 	 */
5941 	mc.moving_task = NULL;
5942 	__mem_cgroup_clear_mc();
5943 	spin_lock(&mc.lock);
5944 	mc.from = NULL;
5945 	mc.to = NULL;
5946 	mc.mm = NULL;
5947 	spin_unlock(&mc.lock);
5948 
5949 	mmput(mm);
5950 }
5951 
5952 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5953 {
5954 	struct cgroup_subsys_state *css;
5955 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5956 	struct mem_cgroup *from;
5957 	struct task_struct *leader, *p;
5958 	struct mm_struct *mm;
5959 	unsigned long move_flags;
5960 	int ret = 0;
5961 
5962 	/* charge immigration isn't supported on the default hierarchy */
5963 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5964 		return 0;
5965 
5966 	/*
5967 	 * Multi-process migrations only happen on the default hierarchy
5968 	 * where charge immigration is not used.  Perform charge
5969 	 * immigration if @tset contains a leader and whine if there are
5970 	 * multiple.
5971 	 */
5972 	p = NULL;
5973 	cgroup_taskset_for_each_leader(leader, css, tset) {
5974 		WARN_ON_ONCE(p);
5975 		p = leader;
5976 		memcg = mem_cgroup_from_css(css);
5977 	}
5978 	if (!p)
5979 		return 0;
5980 
5981 	/*
5982 	 * We are now committed to this value whatever it is. Changes in this
5983 	 * tunable will only affect upcoming migrations, not the current one.
5984 	 * So we need to save it, and keep it going.
5985 	 */
5986 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5987 	if (!move_flags)
5988 		return 0;
5989 
5990 	from = mem_cgroup_from_task(p);
5991 
5992 	VM_BUG_ON(from == memcg);
5993 
5994 	mm = get_task_mm(p);
5995 	if (!mm)
5996 		return 0;
5997 	/* We move charges only when we move a owner of the mm */
5998 	if (mm->owner == p) {
5999 		VM_BUG_ON(mc.from);
6000 		VM_BUG_ON(mc.to);
6001 		VM_BUG_ON(mc.precharge);
6002 		VM_BUG_ON(mc.moved_charge);
6003 		VM_BUG_ON(mc.moved_swap);
6004 
6005 		spin_lock(&mc.lock);
6006 		mc.mm = mm;
6007 		mc.from = from;
6008 		mc.to = memcg;
6009 		mc.flags = move_flags;
6010 		spin_unlock(&mc.lock);
6011 		/* We set mc.moving_task later */
6012 
6013 		ret = mem_cgroup_precharge_mc(mm);
6014 		if (ret)
6015 			mem_cgroup_clear_mc();
6016 	} else {
6017 		mmput(mm);
6018 	}
6019 	return ret;
6020 }
6021 
6022 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6023 {
6024 	if (mc.to)
6025 		mem_cgroup_clear_mc();
6026 }
6027 
6028 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6029 				unsigned long addr, unsigned long end,
6030 				struct mm_walk *walk)
6031 {
6032 	int ret = 0;
6033 	struct vm_area_struct *vma = walk->vma;
6034 	pte_t *pte;
6035 	spinlock_t *ptl;
6036 	enum mc_target_type target_type;
6037 	union mc_target target;
6038 	struct page *page;
6039 
6040 	ptl = pmd_trans_huge_lock(pmd, vma);
6041 	if (ptl) {
6042 		if (mc.precharge < HPAGE_PMD_NR) {
6043 			spin_unlock(ptl);
6044 			return 0;
6045 		}
6046 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6047 		if (target_type == MC_TARGET_PAGE) {
6048 			page = target.page;
6049 			if (!isolate_lru_page(page)) {
6050 				if (!mem_cgroup_move_account(page, true,
6051 							     mc.from, mc.to)) {
6052 					mc.precharge -= HPAGE_PMD_NR;
6053 					mc.moved_charge += HPAGE_PMD_NR;
6054 				}
6055 				putback_lru_page(page);
6056 			}
6057 			put_page(page);
6058 		} else if (target_type == MC_TARGET_DEVICE) {
6059 			page = target.page;
6060 			if (!mem_cgroup_move_account(page, true,
6061 						     mc.from, mc.to)) {
6062 				mc.precharge -= HPAGE_PMD_NR;
6063 				mc.moved_charge += HPAGE_PMD_NR;
6064 			}
6065 			put_page(page);
6066 		}
6067 		spin_unlock(ptl);
6068 		return 0;
6069 	}
6070 
6071 	if (pmd_trans_unstable(pmd))
6072 		return 0;
6073 retry:
6074 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6075 	for (; addr != end; addr += PAGE_SIZE) {
6076 		pte_t ptent = *(pte++);
6077 		bool device = false;
6078 		swp_entry_t ent;
6079 
6080 		if (!mc.precharge)
6081 			break;
6082 
6083 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6084 		case MC_TARGET_DEVICE:
6085 			device = true;
6086 			fallthrough;
6087 		case MC_TARGET_PAGE:
6088 			page = target.page;
6089 			/*
6090 			 * We can have a part of the split pmd here. Moving it
6091 			 * can be done but it would be too convoluted so simply
6092 			 * ignore such a partial THP and keep it in original
6093 			 * memcg. There should be somebody mapping the head.
6094 			 */
6095 			if (PageTransCompound(page))
6096 				goto put;
6097 			if (!device && isolate_lru_page(page))
6098 				goto put;
6099 			if (!mem_cgroup_move_account(page, false,
6100 						mc.from, mc.to)) {
6101 				mc.precharge--;
6102 				/* we uncharge from mc.from later. */
6103 				mc.moved_charge++;
6104 			}
6105 			if (!device)
6106 				putback_lru_page(page);
6107 put:			/* get_mctgt_type() gets the page */
6108 			put_page(page);
6109 			break;
6110 		case MC_TARGET_SWAP:
6111 			ent = target.ent;
6112 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6113 				mc.precharge--;
6114 				mem_cgroup_id_get_many(mc.to, 1);
6115 				/* we fixup other refcnts and charges later. */
6116 				mc.moved_swap++;
6117 			}
6118 			break;
6119 		default:
6120 			break;
6121 		}
6122 	}
6123 	pte_unmap_unlock(pte - 1, ptl);
6124 	cond_resched();
6125 
6126 	if (addr != end) {
6127 		/*
6128 		 * We have consumed all precharges we got in can_attach().
6129 		 * We try charge one by one, but don't do any additional
6130 		 * charges to mc.to if we have failed in charge once in attach()
6131 		 * phase.
6132 		 */
6133 		ret = mem_cgroup_do_precharge(1);
6134 		if (!ret)
6135 			goto retry;
6136 	}
6137 
6138 	return ret;
6139 }
6140 
6141 static const struct mm_walk_ops charge_walk_ops = {
6142 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6143 };
6144 
6145 static void mem_cgroup_move_charge(void)
6146 {
6147 	lru_add_drain_all();
6148 	/*
6149 	 * Signal lock_page_memcg() to take the memcg's move_lock
6150 	 * while we're moving its pages to another memcg. Then wait
6151 	 * for already started RCU-only updates to finish.
6152 	 */
6153 	atomic_inc(&mc.from->moving_account);
6154 	synchronize_rcu();
6155 retry:
6156 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6157 		/*
6158 		 * Someone who are holding the mmap_lock might be waiting in
6159 		 * waitq. So we cancel all extra charges, wake up all waiters,
6160 		 * and retry. Because we cancel precharges, we might not be able
6161 		 * to move enough charges, but moving charge is a best-effort
6162 		 * feature anyway, so it wouldn't be a big problem.
6163 		 */
6164 		__mem_cgroup_clear_mc();
6165 		cond_resched();
6166 		goto retry;
6167 	}
6168 	/*
6169 	 * When we have consumed all precharges and failed in doing
6170 	 * additional charge, the page walk just aborts.
6171 	 */
6172 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6173 			NULL);
6174 
6175 	mmap_read_unlock(mc.mm);
6176 	atomic_dec(&mc.from->moving_account);
6177 }
6178 
6179 static void mem_cgroup_move_task(void)
6180 {
6181 	if (mc.to) {
6182 		mem_cgroup_move_charge();
6183 		mem_cgroup_clear_mc();
6184 	}
6185 }
6186 #else	/* !CONFIG_MMU */
6187 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6188 {
6189 	return 0;
6190 }
6191 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6192 {
6193 }
6194 static void mem_cgroup_move_task(void)
6195 {
6196 }
6197 #endif
6198 
6199 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6200 {
6201 	if (value == PAGE_COUNTER_MAX)
6202 		seq_puts(m, "max\n");
6203 	else
6204 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6205 
6206 	return 0;
6207 }
6208 
6209 static u64 memory_current_read(struct cgroup_subsys_state *css,
6210 			       struct cftype *cft)
6211 {
6212 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6213 
6214 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6215 }
6216 
6217 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6218 			    struct cftype *cft)
6219 {
6220 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6221 
6222 	return (u64)memcg->memory.watermark * PAGE_SIZE;
6223 }
6224 
6225 static int memory_min_show(struct seq_file *m, void *v)
6226 {
6227 	return seq_puts_memcg_tunable(m,
6228 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6229 }
6230 
6231 static ssize_t memory_min_write(struct kernfs_open_file *of,
6232 				char *buf, size_t nbytes, loff_t off)
6233 {
6234 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6235 	unsigned long min;
6236 	int err;
6237 
6238 	buf = strstrip(buf);
6239 	err = page_counter_memparse(buf, "max", &min);
6240 	if (err)
6241 		return err;
6242 
6243 	page_counter_set_min(&memcg->memory, min);
6244 
6245 	return nbytes;
6246 }
6247 
6248 static int memory_low_show(struct seq_file *m, void *v)
6249 {
6250 	return seq_puts_memcg_tunable(m,
6251 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6252 }
6253 
6254 static ssize_t memory_low_write(struct kernfs_open_file *of,
6255 				char *buf, size_t nbytes, loff_t off)
6256 {
6257 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6258 	unsigned long low;
6259 	int err;
6260 
6261 	buf = strstrip(buf);
6262 	err = page_counter_memparse(buf, "max", &low);
6263 	if (err)
6264 		return err;
6265 
6266 	page_counter_set_low(&memcg->memory, low);
6267 
6268 	return nbytes;
6269 }
6270 
6271 static int memory_high_show(struct seq_file *m, void *v)
6272 {
6273 	return seq_puts_memcg_tunable(m,
6274 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6275 }
6276 
6277 static ssize_t memory_high_write(struct kernfs_open_file *of,
6278 				 char *buf, size_t nbytes, loff_t off)
6279 {
6280 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6281 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6282 	bool drained = false;
6283 	unsigned long high;
6284 	int err;
6285 
6286 	buf = strstrip(buf);
6287 	err = page_counter_memparse(buf, "max", &high);
6288 	if (err)
6289 		return err;
6290 
6291 	page_counter_set_high(&memcg->memory, high);
6292 
6293 	for (;;) {
6294 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6295 		unsigned long reclaimed;
6296 
6297 		if (nr_pages <= high)
6298 			break;
6299 
6300 		if (signal_pending(current))
6301 			break;
6302 
6303 		if (!drained) {
6304 			drain_all_stock(memcg);
6305 			drained = true;
6306 			continue;
6307 		}
6308 
6309 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6310 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6311 
6312 		if (!reclaimed && !nr_retries--)
6313 			break;
6314 	}
6315 
6316 	memcg_wb_domain_size_changed(memcg);
6317 	return nbytes;
6318 }
6319 
6320 static int memory_max_show(struct seq_file *m, void *v)
6321 {
6322 	return seq_puts_memcg_tunable(m,
6323 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6324 }
6325 
6326 static ssize_t memory_max_write(struct kernfs_open_file *of,
6327 				char *buf, size_t nbytes, loff_t off)
6328 {
6329 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6330 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6331 	bool drained = false;
6332 	unsigned long max;
6333 	int err;
6334 
6335 	buf = strstrip(buf);
6336 	err = page_counter_memparse(buf, "max", &max);
6337 	if (err)
6338 		return err;
6339 
6340 	xchg(&memcg->memory.max, max);
6341 
6342 	for (;;) {
6343 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6344 
6345 		if (nr_pages <= max)
6346 			break;
6347 
6348 		if (signal_pending(current))
6349 			break;
6350 
6351 		if (!drained) {
6352 			drain_all_stock(memcg);
6353 			drained = true;
6354 			continue;
6355 		}
6356 
6357 		if (nr_reclaims) {
6358 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6359 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6360 				nr_reclaims--;
6361 			continue;
6362 		}
6363 
6364 		memcg_memory_event(memcg, MEMCG_OOM);
6365 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6366 			break;
6367 	}
6368 
6369 	memcg_wb_domain_size_changed(memcg);
6370 	return nbytes;
6371 }
6372 
6373 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6374 {
6375 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6376 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6377 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6378 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6379 	seq_printf(m, "oom_kill %lu\n",
6380 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6381 	seq_printf(m, "oom_group_kill %lu\n",
6382 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6383 }
6384 
6385 static int memory_events_show(struct seq_file *m, void *v)
6386 {
6387 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6388 
6389 	__memory_events_show(m, memcg->memory_events);
6390 	return 0;
6391 }
6392 
6393 static int memory_events_local_show(struct seq_file *m, void *v)
6394 {
6395 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6396 
6397 	__memory_events_show(m, memcg->memory_events_local);
6398 	return 0;
6399 }
6400 
6401 static int memory_stat_show(struct seq_file *m, void *v)
6402 {
6403 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6404 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6405 
6406 	if (!buf)
6407 		return -ENOMEM;
6408 	memory_stat_format(memcg, buf, PAGE_SIZE);
6409 	seq_puts(m, buf);
6410 	kfree(buf);
6411 	return 0;
6412 }
6413 
6414 #ifdef CONFIG_NUMA
6415 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6416 						     int item)
6417 {
6418 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6419 }
6420 
6421 static int memory_numa_stat_show(struct seq_file *m, void *v)
6422 {
6423 	int i;
6424 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6425 
6426 	mem_cgroup_flush_stats();
6427 
6428 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6429 		int nid;
6430 
6431 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6432 			continue;
6433 
6434 		seq_printf(m, "%s", memory_stats[i].name);
6435 		for_each_node_state(nid, N_MEMORY) {
6436 			u64 size;
6437 			struct lruvec *lruvec;
6438 
6439 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6440 			size = lruvec_page_state_output(lruvec,
6441 							memory_stats[i].idx);
6442 			seq_printf(m, " N%d=%llu", nid, size);
6443 		}
6444 		seq_putc(m, '\n');
6445 	}
6446 
6447 	return 0;
6448 }
6449 #endif
6450 
6451 static int memory_oom_group_show(struct seq_file *m, void *v)
6452 {
6453 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6454 
6455 	seq_printf(m, "%d\n", memcg->oom_group);
6456 
6457 	return 0;
6458 }
6459 
6460 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6461 				      char *buf, size_t nbytes, loff_t off)
6462 {
6463 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6464 	int ret, oom_group;
6465 
6466 	buf = strstrip(buf);
6467 	if (!buf)
6468 		return -EINVAL;
6469 
6470 	ret = kstrtoint(buf, 0, &oom_group);
6471 	if (ret)
6472 		return ret;
6473 
6474 	if (oom_group != 0 && oom_group != 1)
6475 		return -EINVAL;
6476 
6477 	memcg->oom_group = oom_group;
6478 
6479 	return nbytes;
6480 }
6481 
6482 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6483 			      size_t nbytes, loff_t off)
6484 {
6485 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6486 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6487 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6488 	unsigned int reclaim_options;
6489 	int err;
6490 
6491 	buf = strstrip(buf);
6492 	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6493 	if (err)
6494 		return err;
6495 
6496 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6497 	while (nr_reclaimed < nr_to_reclaim) {
6498 		unsigned long reclaimed;
6499 
6500 		if (signal_pending(current))
6501 			return -EINTR;
6502 
6503 		/*
6504 		 * This is the final attempt, drain percpu lru caches in the
6505 		 * hope of introducing more evictable pages for
6506 		 * try_to_free_mem_cgroup_pages().
6507 		 */
6508 		if (!nr_retries)
6509 			lru_add_drain_all();
6510 
6511 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
6512 						nr_to_reclaim - nr_reclaimed,
6513 						GFP_KERNEL, reclaim_options);
6514 
6515 		if (!reclaimed && !nr_retries--)
6516 			return -EAGAIN;
6517 
6518 		nr_reclaimed += reclaimed;
6519 	}
6520 
6521 	return nbytes;
6522 }
6523 
6524 static struct cftype memory_files[] = {
6525 	{
6526 		.name = "current",
6527 		.flags = CFTYPE_NOT_ON_ROOT,
6528 		.read_u64 = memory_current_read,
6529 	},
6530 	{
6531 		.name = "peak",
6532 		.flags = CFTYPE_NOT_ON_ROOT,
6533 		.read_u64 = memory_peak_read,
6534 	},
6535 	{
6536 		.name = "min",
6537 		.flags = CFTYPE_NOT_ON_ROOT,
6538 		.seq_show = memory_min_show,
6539 		.write = memory_min_write,
6540 	},
6541 	{
6542 		.name = "low",
6543 		.flags = CFTYPE_NOT_ON_ROOT,
6544 		.seq_show = memory_low_show,
6545 		.write = memory_low_write,
6546 	},
6547 	{
6548 		.name = "high",
6549 		.flags = CFTYPE_NOT_ON_ROOT,
6550 		.seq_show = memory_high_show,
6551 		.write = memory_high_write,
6552 	},
6553 	{
6554 		.name = "max",
6555 		.flags = CFTYPE_NOT_ON_ROOT,
6556 		.seq_show = memory_max_show,
6557 		.write = memory_max_write,
6558 	},
6559 	{
6560 		.name = "events",
6561 		.flags = CFTYPE_NOT_ON_ROOT,
6562 		.file_offset = offsetof(struct mem_cgroup, events_file),
6563 		.seq_show = memory_events_show,
6564 	},
6565 	{
6566 		.name = "events.local",
6567 		.flags = CFTYPE_NOT_ON_ROOT,
6568 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6569 		.seq_show = memory_events_local_show,
6570 	},
6571 	{
6572 		.name = "stat",
6573 		.seq_show = memory_stat_show,
6574 	},
6575 #ifdef CONFIG_NUMA
6576 	{
6577 		.name = "numa_stat",
6578 		.seq_show = memory_numa_stat_show,
6579 	},
6580 #endif
6581 	{
6582 		.name = "oom.group",
6583 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6584 		.seq_show = memory_oom_group_show,
6585 		.write = memory_oom_group_write,
6586 	},
6587 	{
6588 		.name = "reclaim",
6589 		.flags = CFTYPE_NS_DELEGATABLE,
6590 		.write = memory_reclaim,
6591 	},
6592 	{ }	/* terminate */
6593 };
6594 
6595 struct cgroup_subsys memory_cgrp_subsys = {
6596 	.css_alloc = mem_cgroup_css_alloc,
6597 	.css_online = mem_cgroup_css_online,
6598 	.css_offline = mem_cgroup_css_offline,
6599 	.css_released = mem_cgroup_css_released,
6600 	.css_free = mem_cgroup_css_free,
6601 	.css_reset = mem_cgroup_css_reset,
6602 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6603 	.can_attach = mem_cgroup_can_attach,
6604 	.cancel_attach = mem_cgroup_cancel_attach,
6605 	.post_attach = mem_cgroup_move_task,
6606 	.dfl_cftypes = memory_files,
6607 	.legacy_cftypes = mem_cgroup_legacy_files,
6608 	.early_init = 0,
6609 };
6610 
6611 /*
6612  * This function calculates an individual cgroup's effective
6613  * protection which is derived from its own memory.min/low, its
6614  * parent's and siblings' settings, as well as the actual memory
6615  * distribution in the tree.
6616  *
6617  * The following rules apply to the effective protection values:
6618  *
6619  * 1. At the first level of reclaim, effective protection is equal to
6620  *    the declared protection in memory.min and memory.low.
6621  *
6622  * 2. To enable safe delegation of the protection configuration, at
6623  *    subsequent levels the effective protection is capped to the
6624  *    parent's effective protection.
6625  *
6626  * 3. To make complex and dynamic subtrees easier to configure, the
6627  *    user is allowed to overcommit the declared protection at a given
6628  *    level. If that is the case, the parent's effective protection is
6629  *    distributed to the children in proportion to how much protection
6630  *    they have declared and how much of it they are utilizing.
6631  *
6632  *    This makes distribution proportional, but also work-conserving:
6633  *    if one cgroup claims much more protection than it uses memory,
6634  *    the unused remainder is available to its siblings.
6635  *
6636  * 4. Conversely, when the declared protection is undercommitted at a
6637  *    given level, the distribution of the larger parental protection
6638  *    budget is NOT proportional. A cgroup's protection from a sibling
6639  *    is capped to its own memory.min/low setting.
6640  *
6641  * 5. However, to allow protecting recursive subtrees from each other
6642  *    without having to declare each individual cgroup's fixed share
6643  *    of the ancestor's claim to protection, any unutilized -
6644  *    "floating" - protection from up the tree is distributed in
6645  *    proportion to each cgroup's *usage*. This makes the protection
6646  *    neutral wrt sibling cgroups and lets them compete freely over
6647  *    the shared parental protection budget, but it protects the
6648  *    subtree as a whole from neighboring subtrees.
6649  *
6650  * Note that 4. and 5. are not in conflict: 4. is about protecting
6651  * against immediate siblings whereas 5. is about protecting against
6652  * neighboring subtrees.
6653  */
6654 static unsigned long effective_protection(unsigned long usage,
6655 					  unsigned long parent_usage,
6656 					  unsigned long setting,
6657 					  unsigned long parent_effective,
6658 					  unsigned long siblings_protected)
6659 {
6660 	unsigned long protected;
6661 	unsigned long ep;
6662 
6663 	protected = min(usage, setting);
6664 	/*
6665 	 * If all cgroups at this level combined claim and use more
6666 	 * protection then what the parent affords them, distribute
6667 	 * shares in proportion to utilization.
6668 	 *
6669 	 * We are using actual utilization rather than the statically
6670 	 * claimed protection in order to be work-conserving: claimed
6671 	 * but unused protection is available to siblings that would
6672 	 * otherwise get a smaller chunk than what they claimed.
6673 	 */
6674 	if (siblings_protected > parent_effective)
6675 		return protected * parent_effective / siblings_protected;
6676 
6677 	/*
6678 	 * Ok, utilized protection of all children is within what the
6679 	 * parent affords them, so we know whatever this child claims
6680 	 * and utilizes is effectively protected.
6681 	 *
6682 	 * If there is unprotected usage beyond this value, reclaim
6683 	 * will apply pressure in proportion to that amount.
6684 	 *
6685 	 * If there is unutilized protection, the cgroup will be fully
6686 	 * shielded from reclaim, but we do return a smaller value for
6687 	 * protection than what the group could enjoy in theory. This
6688 	 * is okay. With the overcommit distribution above, effective
6689 	 * protection is always dependent on how memory is actually
6690 	 * consumed among the siblings anyway.
6691 	 */
6692 	ep = protected;
6693 
6694 	/*
6695 	 * If the children aren't claiming (all of) the protection
6696 	 * afforded to them by the parent, distribute the remainder in
6697 	 * proportion to the (unprotected) memory of each cgroup. That
6698 	 * way, cgroups that aren't explicitly prioritized wrt each
6699 	 * other compete freely over the allowance, but they are
6700 	 * collectively protected from neighboring trees.
6701 	 *
6702 	 * We're using unprotected memory for the weight so that if
6703 	 * some cgroups DO claim explicit protection, we don't protect
6704 	 * the same bytes twice.
6705 	 *
6706 	 * Check both usage and parent_usage against the respective
6707 	 * protected values. One should imply the other, but they
6708 	 * aren't read atomically - make sure the division is sane.
6709 	 */
6710 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6711 		return ep;
6712 	if (parent_effective > siblings_protected &&
6713 	    parent_usage > siblings_protected &&
6714 	    usage > protected) {
6715 		unsigned long unclaimed;
6716 
6717 		unclaimed = parent_effective - siblings_protected;
6718 		unclaimed *= usage - protected;
6719 		unclaimed /= parent_usage - siblings_protected;
6720 
6721 		ep += unclaimed;
6722 	}
6723 
6724 	return ep;
6725 }
6726 
6727 /**
6728  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6729  * @root: the top ancestor of the sub-tree being checked
6730  * @memcg: the memory cgroup to check
6731  *
6732  * WARNING: This function is not stateless! It can only be used as part
6733  *          of a top-down tree iteration, not for isolated queries.
6734  */
6735 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6736 				     struct mem_cgroup *memcg)
6737 {
6738 	unsigned long usage, parent_usage;
6739 	struct mem_cgroup *parent;
6740 
6741 	if (mem_cgroup_disabled())
6742 		return;
6743 
6744 	if (!root)
6745 		root = root_mem_cgroup;
6746 
6747 	/*
6748 	 * Effective values of the reclaim targets are ignored so they
6749 	 * can be stale. Have a look at mem_cgroup_protection for more
6750 	 * details.
6751 	 * TODO: calculation should be more robust so that we do not need
6752 	 * that special casing.
6753 	 */
6754 	if (memcg == root)
6755 		return;
6756 
6757 	usage = page_counter_read(&memcg->memory);
6758 	if (!usage)
6759 		return;
6760 
6761 	parent = parent_mem_cgroup(memcg);
6762 
6763 	if (parent == root) {
6764 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6765 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6766 		return;
6767 	}
6768 
6769 	parent_usage = page_counter_read(&parent->memory);
6770 
6771 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6772 			READ_ONCE(memcg->memory.min),
6773 			READ_ONCE(parent->memory.emin),
6774 			atomic_long_read(&parent->memory.children_min_usage)));
6775 
6776 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6777 			READ_ONCE(memcg->memory.low),
6778 			READ_ONCE(parent->memory.elow),
6779 			atomic_long_read(&parent->memory.children_low_usage)));
6780 }
6781 
6782 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6783 			gfp_t gfp)
6784 {
6785 	long nr_pages = folio_nr_pages(folio);
6786 	int ret;
6787 
6788 	ret = try_charge(memcg, gfp, nr_pages);
6789 	if (ret)
6790 		goto out;
6791 
6792 	css_get(&memcg->css);
6793 	commit_charge(folio, memcg);
6794 
6795 	local_irq_disable();
6796 	mem_cgroup_charge_statistics(memcg, nr_pages);
6797 	memcg_check_events(memcg, folio_nid(folio));
6798 	local_irq_enable();
6799 out:
6800 	return ret;
6801 }
6802 
6803 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6804 {
6805 	struct mem_cgroup *memcg;
6806 	int ret;
6807 
6808 	memcg = get_mem_cgroup_from_mm(mm);
6809 	ret = charge_memcg(folio, memcg, gfp);
6810 	css_put(&memcg->css);
6811 
6812 	return ret;
6813 }
6814 
6815 /**
6816  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6817  * @page: page to charge
6818  * @mm: mm context of the victim
6819  * @gfp: reclaim mode
6820  * @entry: swap entry for which the page is allocated
6821  *
6822  * This function charges a page allocated for swapin. Please call this before
6823  * adding the page to the swapcache.
6824  *
6825  * Returns 0 on success. Otherwise, an error code is returned.
6826  */
6827 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6828 				  gfp_t gfp, swp_entry_t entry)
6829 {
6830 	struct folio *folio = page_folio(page);
6831 	struct mem_cgroup *memcg;
6832 	unsigned short id;
6833 	int ret;
6834 
6835 	if (mem_cgroup_disabled())
6836 		return 0;
6837 
6838 	id = lookup_swap_cgroup_id(entry);
6839 	rcu_read_lock();
6840 	memcg = mem_cgroup_from_id(id);
6841 	if (!memcg || !css_tryget_online(&memcg->css))
6842 		memcg = get_mem_cgroup_from_mm(mm);
6843 	rcu_read_unlock();
6844 
6845 	ret = charge_memcg(folio, memcg, gfp);
6846 
6847 	css_put(&memcg->css);
6848 	return ret;
6849 }
6850 
6851 /*
6852  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6853  * @entry: swap entry for which the page is charged
6854  *
6855  * Call this function after successfully adding the charged page to swapcache.
6856  *
6857  * Note: This function assumes the page for which swap slot is being uncharged
6858  * is order 0 page.
6859  */
6860 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6861 {
6862 	/*
6863 	 * Cgroup1's unified memory+swap counter has been charged with the
6864 	 * new swapcache page, finish the transfer by uncharging the swap
6865 	 * slot. The swap slot would also get uncharged when it dies, but
6866 	 * it can stick around indefinitely and we'd count the page twice
6867 	 * the entire time.
6868 	 *
6869 	 * Cgroup2 has separate resource counters for memory and swap,
6870 	 * so this is a non-issue here. Memory and swap charge lifetimes
6871 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6872 	 * page to memory here, and uncharge swap when the slot is freed.
6873 	 */
6874 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6875 		/*
6876 		 * The swap entry might not get freed for a long time,
6877 		 * let's not wait for it.  The page already received a
6878 		 * memory+swap charge, drop the swap entry duplicate.
6879 		 */
6880 		mem_cgroup_uncharge_swap(entry, 1);
6881 	}
6882 }
6883 
6884 struct uncharge_gather {
6885 	struct mem_cgroup *memcg;
6886 	unsigned long nr_memory;
6887 	unsigned long pgpgout;
6888 	unsigned long nr_kmem;
6889 	int nid;
6890 };
6891 
6892 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6893 {
6894 	memset(ug, 0, sizeof(*ug));
6895 }
6896 
6897 static void uncharge_batch(const struct uncharge_gather *ug)
6898 {
6899 	unsigned long flags;
6900 
6901 	if (ug->nr_memory) {
6902 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6903 		if (do_memsw_account())
6904 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6905 		if (ug->nr_kmem)
6906 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6907 		memcg_oom_recover(ug->memcg);
6908 	}
6909 
6910 	local_irq_save(flags);
6911 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6912 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6913 	memcg_check_events(ug->memcg, ug->nid);
6914 	local_irq_restore(flags);
6915 
6916 	/* drop reference from uncharge_folio */
6917 	css_put(&ug->memcg->css);
6918 }
6919 
6920 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6921 {
6922 	long nr_pages;
6923 	struct mem_cgroup *memcg;
6924 	struct obj_cgroup *objcg;
6925 
6926 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6927 
6928 	/*
6929 	 * Nobody should be changing or seriously looking at
6930 	 * folio memcg or objcg at this point, we have fully
6931 	 * exclusive access to the folio.
6932 	 */
6933 	if (folio_memcg_kmem(folio)) {
6934 		objcg = __folio_objcg(folio);
6935 		/*
6936 		 * This get matches the put at the end of the function and
6937 		 * kmem pages do not hold memcg references anymore.
6938 		 */
6939 		memcg = get_mem_cgroup_from_objcg(objcg);
6940 	} else {
6941 		memcg = __folio_memcg(folio);
6942 	}
6943 
6944 	if (!memcg)
6945 		return;
6946 
6947 	if (ug->memcg != memcg) {
6948 		if (ug->memcg) {
6949 			uncharge_batch(ug);
6950 			uncharge_gather_clear(ug);
6951 		}
6952 		ug->memcg = memcg;
6953 		ug->nid = folio_nid(folio);
6954 
6955 		/* pairs with css_put in uncharge_batch */
6956 		css_get(&memcg->css);
6957 	}
6958 
6959 	nr_pages = folio_nr_pages(folio);
6960 
6961 	if (folio_memcg_kmem(folio)) {
6962 		ug->nr_memory += nr_pages;
6963 		ug->nr_kmem += nr_pages;
6964 
6965 		folio->memcg_data = 0;
6966 		obj_cgroup_put(objcg);
6967 	} else {
6968 		/* LRU pages aren't accounted at the root level */
6969 		if (!mem_cgroup_is_root(memcg))
6970 			ug->nr_memory += nr_pages;
6971 		ug->pgpgout++;
6972 
6973 		folio->memcg_data = 0;
6974 	}
6975 
6976 	css_put(&memcg->css);
6977 }
6978 
6979 void __mem_cgroup_uncharge(struct folio *folio)
6980 {
6981 	struct uncharge_gather ug;
6982 
6983 	/* Don't touch folio->lru of any random page, pre-check: */
6984 	if (!folio_memcg(folio))
6985 		return;
6986 
6987 	uncharge_gather_clear(&ug);
6988 	uncharge_folio(folio, &ug);
6989 	uncharge_batch(&ug);
6990 }
6991 
6992 /**
6993  * __mem_cgroup_uncharge_list - uncharge a list of page
6994  * @page_list: list of pages to uncharge
6995  *
6996  * Uncharge a list of pages previously charged with
6997  * __mem_cgroup_charge().
6998  */
6999 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7000 {
7001 	struct uncharge_gather ug;
7002 	struct folio *folio;
7003 
7004 	uncharge_gather_clear(&ug);
7005 	list_for_each_entry(folio, page_list, lru)
7006 		uncharge_folio(folio, &ug);
7007 	if (ug.memcg)
7008 		uncharge_batch(&ug);
7009 }
7010 
7011 /**
7012  * mem_cgroup_migrate - Charge a folio's replacement.
7013  * @old: Currently circulating folio.
7014  * @new: Replacement folio.
7015  *
7016  * Charge @new as a replacement folio for @old. @old will
7017  * be uncharged upon free.
7018  *
7019  * Both folios must be locked, @new->mapping must be set up.
7020  */
7021 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7022 {
7023 	struct mem_cgroup *memcg;
7024 	long nr_pages = folio_nr_pages(new);
7025 	unsigned long flags;
7026 
7027 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7028 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7029 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7030 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7031 
7032 	if (mem_cgroup_disabled())
7033 		return;
7034 
7035 	/* Page cache replacement: new folio already charged? */
7036 	if (folio_memcg(new))
7037 		return;
7038 
7039 	memcg = folio_memcg(old);
7040 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7041 	if (!memcg)
7042 		return;
7043 
7044 	/* Force-charge the new page. The old one will be freed soon */
7045 	if (!mem_cgroup_is_root(memcg)) {
7046 		page_counter_charge(&memcg->memory, nr_pages);
7047 		if (do_memsw_account())
7048 			page_counter_charge(&memcg->memsw, nr_pages);
7049 	}
7050 
7051 	css_get(&memcg->css);
7052 	commit_charge(new, memcg);
7053 
7054 	local_irq_save(flags);
7055 	mem_cgroup_charge_statistics(memcg, nr_pages);
7056 	memcg_check_events(memcg, folio_nid(new));
7057 	local_irq_restore(flags);
7058 }
7059 
7060 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7061 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7062 
7063 void mem_cgroup_sk_alloc(struct sock *sk)
7064 {
7065 	struct mem_cgroup *memcg;
7066 
7067 	if (!mem_cgroup_sockets_enabled)
7068 		return;
7069 
7070 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7071 	if (!in_task())
7072 		return;
7073 
7074 	rcu_read_lock();
7075 	memcg = mem_cgroup_from_task(current);
7076 	if (memcg == root_mem_cgroup)
7077 		goto out;
7078 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7079 		goto out;
7080 	if (css_tryget(&memcg->css))
7081 		sk->sk_memcg = memcg;
7082 out:
7083 	rcu_read_unlock();
7084 }
7085 
7086 void mem_cgroup_sk_free(struct sock *sk)
7087 {
7088 	if (sk->sk_memcg)
7089 		css_put(&sk->sk_memcg->css);
7090 }
7091 
7092 /**
7093  * mem_cgroup_charge_skmem - charge socket memory
7094  * @memcg: memcg to charge
7095  * @nr_pages: number of pages to charge
7096  * @gfp_mask: reclaim mode
7097  *
7098  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7099  * @memcg's configured limit, %false if it doesn't.
7100  */
7101 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7102 			     gfp_t gfp_mask)
7103 {
7104 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7105 		struct page_counter *fail;
7106 
7107 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7108 			memcg->tcpmem_pressure = 0;
7109 			return true;
7110 		}
7111 		memcg->tcpmem_pressure = 1;
7112 		if (gfp_mask & __GFP_NOFAIL) {
7113 			page_counter_charge(&memcg->tcpmem, nr_pages);
7114 			return true;
7115 		}
7116 		return false;
7117 	}
7118 
7119 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7120 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7121 		return true;
7122 	}
7123 
7124 	return false;
7125 }
7126 
7127 /**
7128  * mem_cgroup_uncharge_skmem - uncharge socket memory
7129  * @memcg: memcg to uncharge
7130  * @nr_pages: number of pages to uncharge
7131  */
7132 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7133 {
7134 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7135 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7136 		return;
7137 	}
7138 
7139 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7140 
7141 	refill_stock(memcg, nr_pages);
7142 }
7143 
7144 static int __init cgroup_memory(char *s)
7145 {
7146 	char *token;
7147 
7148 	while ((token = strsep(&s, ",")) != NULL) {
7149 		if (!*token)
7150 			continue;
7151 		if (!strcmp(token, "nosocket"))
7152 			cgroup_memory_nosocket = true;
7153 		if (!strcmp(token, "nokmem"))
7154 			cgroup_memory_nokmem = true;
7155 	}
7156 	return 1;
7157 }
7158 __setup("cgroup.memory=", cgroup_memory);
7159 
7160 /*
7161  * subsys_initcall() for memory controller.
7162  *
7163  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7164  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7165  * basically everything that doesn't depend on a specific mem_cgroup structure
7166  * should be initialized from here.
7167  */
7168 static int __init mem_cgroup_init(void)
7169 {
7170 	int cpu, node;
7171 
7172 	/*
7173 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7174 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7175 	 * to work fine, we should make sure that the overfill threshold can't
7176 	 * exceed S32_MAX / PAGE_SIZE.
7177 	 */
7178 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7179 
7180 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7181 				  memcg_hotplug_cpu_dead);
7182 
7183 	for_each_possible_cpu(cpu)
7184 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7185 			  drain_local_stock);
7186 
7187 	for_each_node(node) {
7188 		struct mem_cgroup_tree_per_node *rtpn;
7189 
7190 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7191 				    node_online(node) ? node : NUMA_NO_NODE);
7192 
7193 		rtpn->rb_root = RB_ROOT;
7194 		rtpn->rb_rightmost = NULL;
7195 		spin_lock_init(&rtpn->lock);
7196 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7197 	}
7198 
7199 	return 0;
7200 }
7201 subsys_initcall(mem_cgroup_init);
7202 
7203 #ifdef CONFIG_MEMCG_SWAP
7204 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7205 {
7206 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7207 		/*
7208 		 * The root cgroup cannot be destroyed, so it's refcount must
7209 		 * always be >= 1.
7210 		 */
7211 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7212 			VM_BUG_ON(1);
7213 			break;
7214 		}
7215 		memcg = parent_mem_cgroup(memcg);
7216 		if (!memcg)
7217 			memcg = root_mem_cgroup;
7218 	}
7219 	return memcg;
7220 }
7221 
7222 /**
7223  * mem_cgroup_swapout - transfer a memsw charge to swap
7224  * @folio: folio whose memsw charge to transfer
7225  * @entry: swap entry to move the charge to
7226  *
7227  * Transfer the memsw charge of @folio to @entry.
7228  */
7229 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7230 {
7231 	struct mem_cgroup *memcg, *swap_memcg;
7232 	unsigned int nr_entries;
7233 	unsigned short oldid;
7234 
7235 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7236 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7237 
7238 	if (mem_cgroup_disabled())
7239 		return;
7240 
7241 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7242 		return;
7243 
7244 	memcg = folio_memcg(folio);
7245 
7246 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7247 	if (!memcg)
7248 		return;
7249 
7250 	/*
7251 	 * In case the memcg owning these pages has been offlined and doesn't
7252 	 * have an ID allocated to it anymore, charge the closest online
7253 	 * ancestor for the swap instead and transfer the memory+swap charge.
7254 	 */
7255 	swap_memcg = mem_cgroup_id_get_online(memcg);
7256 	nr_entries = folio_nr_pages(folio);
7257 	/* Get references for the tail pages, too */
7258 	if (nr_entries > 1)
7259 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7260 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7261 				   nr_entries);
7262 	VM_BUG_ON_FOLIO(oldid, folio);
7263 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7264 
7265 	folio->memcg_data = 0;
7266 
7267 	if (!mem_cgroup_is_root(memcg))
7268 		page_counter_uncharge(&memcg->memory, nr_entries);
7269 
7270 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7271 		if (!mem_cgroup_is_root(swap_memcg))
7272 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7273 		page_counter_uncharge(&memcg->memsw, nr_entries);
7274 	}
7275 
7276 	/*
7277 	 * Interrupts should be disabled here because the caller holds the
7278 	 * i_pages lock which is taken with interrupts-off. It is
7279 	 * important here to have the interrupts disabled because it is the
7280 	 * only synchronisation we have for updating the per-CPU variables.
7281 	 */
7282 	memcg_stats_lock();
7283 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7284 	memcg_stats_unlock();
7285 	memcg_check_events(memcg, folio_nid(folio));
7286 
7287 	css_put(&memcg->css);
7288 }
7289 
7290 /**
7291  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7292  * @folio: folio being added to swap
7293  * @entry: swap entry to charge
7294  *
7295  * Try to charge @folio's memcg for the swap space at @entry.
7296  *
7297  * Returns 0 on success, -ENOMEM on failure.
7298  */
7299 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7300 {
7301 	unsigned int nr_pages = folio_nr_pages(folio);
7302 	struct page_counter *counter;
7303 	struct mem_cgroup *memcg;
7304 	unsigned short oldid;
7305 
7306 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7307 		return 0;
7308 
7309 	memcg = folio_memcg(folio);
7310 
7311 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7312 	if (!memcg)
7313 		return 0;
7314 
7315 	if (!entry.val) {
7316 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7317 		return 0;
7318 	}
7319 
7320 	memcg = mem_cgroup_id_get_online(memcg);
7321 
7322 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7323 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7324 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7325 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7326 		mem_cgroup_id_put(memcg);
7327 		return -ENOMEM;
7328 	}
7329 
7330 	/* Get references for the tail pages, too */
7331 	if (nr_pages > 1)
7332 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7333 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7334 	VM_BUG_ON_FOLIO(oldid, folio);
7335 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7336 
7337 	return 0;
7338 }
7339 
7340 /**
7341  * __mem_cgroup_uncharge_swap - uncharge swap space
7342  * @entry: swap entry to uncharge
7343  * @nr_pages: the amount of swap space to uncharge
7344  */
7345 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7346 {
7347 	struct mem_cgroup *memcg;
7348 	unsigned short id;
7349 
7350 	id = swap_cgroup_record(entry, 0, nr_pages);
7351 	rcu_read_lock();
7352 	memcg = mem_cgroup_from_id(id);
7353 	if (memcg) {
7354 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7355 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7356 				page_counter_uncharge(&memcg->swap, nr_pages);
7357 			else
7358 				page_counter_uncharge(&memcg->memsw, nr_pages);
7359 		}
7360 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7361 		mem_cgroup_id_put_many(memcg, nr_pages);
7362 	}
7363 	rcu_read_unlock();
7364 }
7365 
7366 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7367 {
7368 	long nr_swap_pages = get_nr_swap_pages();
7369 
7370 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7371 		return nr_swap_pages;
7372 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7373 		nr_swap_pages = min_t(long, nr_swap_pages,
7374 				      READ_ONCE(memcg->swap.max) -
7375 				      page_counter_read(&memcg->swap));
7376 	return nr_swap_pages;
7377 }
7378 
7379 bool mem_cgroup_swap_full(struct page *page)
7380 {
7381 	struct mem_cgroup *memcg;
7382 
7383 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7384 
7385 	if (vm_swap_full())
7386 		return true;
7387 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7388 		return false;
7389 
7390 	memcg = page_memcg(page);
7391 	if (!memcg)
7392 		return false;
7393 
7394 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7395 		unsigned long usage = page_counter_read(&memcg->swap);
7396 
7397 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7398 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7399 			return true;
7400 	}
7401 
7402 	return false;
7403 }
7404 
7405 static int __init setup_swap_account(char *s)
7406 {
7407 	if (!strcmp(s, "1"))
7408 		cgroup_memory_noswap = false;
7409 	else if (!strcmp(s, "0"))
7410 		cgroup_memory_noswap = true;
7411 	return 1;
7412 }
7413 __setup("swapaccount=", setup_swap_account);
7414 
7415 static u64 swap_current_read(struct cgroup_subsys_state *css,
7416 			     struct cftype *cft)
7417 {
7418 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7419 
7420 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7421 }
7422 
7423 static int swap_high_show(struct seq_file *m, void *v)
7424 {
7425 	return seq_puts_memcg_tunable(m,
7426 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7427 }
7428 
7429 static ssize_t swap_high_write(struct kernfs_open_file *of,
7430 			       char *buf, size_t nbytes, loff_t off)
7431 {
7432 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7433 	unsigned long high;
7434 	int err;
7435 
7436 	buf = strstrip(buf);
7437 	err = page_counter_memparse(buf, "max", &high);
7438 	if (err)
7439 		return err;
7440 
7441 	page_counter_set_high(&memcg->swap, high);
7442 
7443 	return nbytes;
7444 }
7445 
7446 static int swap_max_show(struct seq_file *m, void *v)
7447 {
7448 	return seq_puts_memcg_tunable(m,
7449 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7450 }
7451 
7452 static ssize_t swap_max_write(struct kernfs_open_file *of,
7453 			      char *buf, size_t nbytes, loff_t off)
7454 {
7455 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7456 	unsigned long max;
7457 	int err;
7458 
7459 	buf = strstrip(buf);
7460 	err = page_counter_memparse(buf, "max", &max);
7461 	if (err)
7462 		return err;
7463 
7464 	xchg(&memcg->swap.max, max);
7465 
7466 	return nbytes;
7467 }
7468 
7469 static int swap_events_show(struct seq_file *m, void *v)
7470 {
7471 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7472 
7473 	seq_printf(m, "high %lu\n",
7474 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7475 	seq_printf(m, "max %lu\n",
7476 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7477 	seq_printf(m, "fail %lu\n",
7478 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7479 
7480 	return 0;
7481 }
7482 
7483 static struct cftype swap_files[] = {
7484 	{
7485 		.name = "swap.current",
7486 		.flags = CFTYPE_NOT_ON_ROOT,
7487 		.read_u64 = swap_current_read,
7488 	},
7489 	{
7490 		.name = "swap.high",
7491 		.flags = CFTYPE_NOT_ON_ROOT,
7492 		.seq_show = swap_high_show,
7493 		.write = swap_high_write,
7494 	},
7495 	{
7496 		.name = "swap.max",
7497 		.flags = CFTYPE_NOT_ON_ROOT,
7498 		.seq_show = swap_max_show,
7499 		.write = swap_max_write,
7500 	},
7501 	{
7502 		.name = "swap.events",
7503 		.flags = CFTYPE_NOT_ON_ROOT,
7504 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7505 		.seq_show = swap_events_show,
7506 	},
7507 	{ }	/* terminate */
7508 };
7509 
7510 static struct cftype memsw_files[] = {
7511 	{
7512 		.name = "memsw.usage_in_bytes",
7513 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7514 		.read_u64 = mem_cgroup_read_u64,
7515 	},
7516 	{
7517 		.name = "memsw.max_usage_in_bytes",
7518 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7519 		.write = mem_cgroup_reset,
7520 		.read_u64 = mem_cgroup_read_u64,
7521 	},
7522 	{
7523 		.name = "memsw.limit_in_bytes",
7524 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7525 		.write = mem_cgroup_write,
7526 		.read_u64 = mem_cgroup_read_u64,
7527 	},
7528 	{
7529 		.name = "memsw.failcnt",
7530 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7531 		.write = mem_cgroup_reset,
7532 		.read_u64 = mem_cgroup_read_u64,
7533 	},
7534 	{ },	/* terminate */
7535 };
7536 
7537 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7538 /**
7539  * obj_cgroup_may_zswap - check if this cgroup can zswap
7540  * @objcg: the object cgroup
7541  *
7542  * Check if the hierarchical zswap limit has been reached.
7543  *
7544  * This doesn't check for specific headroom, and it is not atomic
7545  * either. But with zswap, the size of the allocation is only known
7546  * once compression has occured, and this optimistic pre-check avoids
7547  * spending cycles on compression when there is already no room left
7548  * or zswap is disabled altogether somewhere in the hierarchy.
7549  */
7550 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7551 {
7552 	struct mem_cgroup *memcg, *original_memcg;
7553 	bool ret = true;
7554 
7555 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7556 		return true;
7557 
7558 	original_memcg = get_mem_cgroup_from_objcg(objcg);
7559 	for (memcg = original_memcg; memcg != root_mem_cgroup;
7560 	     memcg = parent_mem_cgroup(memcg)) {
7561 		unsigned long max = READ_ONCE(memcg->zswap_max);
7562 		unsigned long pages;
7563 
7564 		if (max == PAGE_COUNTER_MAX)
7565 			continue;
7566 		if (max == 0) {
7567 			ret = false;
7568 			break;
7569 		}
7570 
7571 		cgroup_rstat_flush(memcg->css.cgroup);
7572 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7573 		if (pages < max)
7574 			continue;
7575 		ret = false;
7576 		break;
7577 	}
7578 	mem_cgroup_put(original_memcg);
7579 	return ret;
7580 }
7581 
7582 /**
7583  * obj_cgroup_charge_zswap - charge compression backend memory
7584  * @objcg: the object cgroup
7585  * @size: size of compressed object
7586  *
7587  * This forces the charge after obj_cgroup_may_swap() allowed
7588  * compression and storage in zwap for this cgroup to go ahead.
7589  */
7590 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7591 {
7592 	struct mem_cgroup *memcg;
7593 
7594 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7595 		return;
7596 
7597 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7598 
7599 	/* PF_MEMALLOC context, charging must succeed */
7600 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7601 		VM_WARN_ON_ONCE(1);
7602 
7603 	rcu_read_lock();
7604 	memcg = obj_cgroup_memcg(objcg);
7605 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7606 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7607 	rcu_read_unlock();
7608 }
7609 
7610 /**
7611  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7612  * @objcg: the object cgroup
7613  * @size: size of compressed object
7614  *
7615  * Uncharges zswap memory on page in.
7616  */
7617 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7618 {
7619 	struct mem_cgroup *memcg;
7620 
7621 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7622 		return;
7623 
7624 	obj_cgroup_uncharge(objcg, size);
7625 
7626 	rcu_read_lock();
7627 	memcg = obj_cgroup_memcg(objcg);
7628 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7629 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7630 	rcu_read_unlock();
7631 }
7632 
7633 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7634 			      struct cftype *cft)
7635 {
7636 	cgroup_rstat_flush(css->cgroup);
7637 	return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7638 }
7639 
7640 static int zswap_max_show(struct seq_file *m, void *v)
7641 {
7642 	return seq_puts_memcg_tunable(m,
7643 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7644 }
7645 
7646 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7647 			       char *buf, size_t nbytes, loff_t off)
7648 {
7649 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7650 	unsigned long max;
7651 	int err;
7652 
7653 	buf = strstrip(buf);
7654 	err = page_counter_memparse(buf, "max", &max);
7655 	if (err)
7656 		return err;
7657 
7658 	xchg(&memcg->zswap_max, max);
7659 
7660 	return nbytes;
7661 }
7662 
7663 static struct cftype zswap_files[] = {
7664 	{
7665 		.name = "zswap.current",
7666 		.flags = CFTYPE_NOT_ON_ROOT,
7667 		.read_u64 = zswap_current_read,
7668 	},
7669 	{
7670 		.name = "zswap.max",
7671 		.flags = CFTYPE_NOT_ON_ROOT,
7672 		.seq_show = zswap_max_show,
7673 		.write = zswap_max_write,
7674 	},
7675 	{ }	/* terminate */
7676 };
7677 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7678 
7679 /*
7680  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7681  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7682  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7683  * boot parameter. This may result in premature OOPS inside
7684  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7685  */
7686 static int __init mem_cgroup_swap_init(void)
7687 {
7688 	/* No memory control -> no swap control */
7689 	if (mem_cgroup_disabled())
7690 		cgroup_memory_noswap = true;
7691 
7692 	if (cgroup_memory_noswap)
7693 		return 0;
7694 
7695 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7696 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7697 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7698 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7699 #endif
7700 	return 0;
7701 }
7702 core_initcall(mem_cgroup_swap_init);
7703 
7704 #endif /* CONFIG_MEMCG_SWAP */
7705