1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/list.h> 46 #include <linux/mutex.h> 47 #include <linux/rbtree.h> 48 #include <linux/slab.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/fs.h> 52 #include <linux/seq_file.h> 53 #include <linux/parser.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #include <trace/events/vmscan.h> 75 76 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 77 EXPORT_SYMBOL(memory_cgrp_subsys); 78 79 struct mem_cgroup *root_mem_cgroup __read_mostly; 80 81 /* Active memory cgroup to use from an interrupt context */ 82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 84 85 /* Socket memory accounting disabled? */ 86 static bool cgroup_memory_nosocket __ro_after_init; 87 88 /* Kernel memory accounting disabled? */ 89 static bool cgroup_memory_nokmem __ro_after_init; 90 91 /* BPF memory accounting disabled? */ 92 static bool cgroup_memory_nobpf __ro_after_init; 93 94 #ifdef CONFIG_CGROUP_WRITEBACK 95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 96 #endif 97 98 static inline bool task_is_dying(void) 99 { 100 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 101 (current->flags & PF_EXITING); 102 } 103 104 /* Some nice accessors for the vmpressure. */ 105 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 106 { 107 if (!memcg) 108 memcg = root_mem_cgroup; 109 return &memcg->vmpressure; 110 } 111 112 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 113 { 114 return container_of(vmpr, struct mem_cgroup, vmpressure); 115 } 116 117 #define CURRENT_OBJCG_UPDATE_BIT 0 118 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 119 120 static DEFINE_SPINLOCK(objcg_lock); 121 122 bool mem_cgroup_kmem_disabled(void) 123 { 124 return cgroup_memory_nokmem; 125 } 126 127 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 128 unsigned int nr_pages); 129 130 static void obj_cgroup_release(struct percpu_ref *ref) 131 { 132 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 133 unsigned int nr_bytes; 134 unsigned int nr_pages; 135 unsigned long flags; 136 137 /* 138 * At this point all allocated objects are freed, and 139 * objcg->nr_charged_bytes can't have an arbitrary byte value. 140 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 141 * 142 * The following sequence can lead to it: 143 * 1) CPU0: objcg == stock->cached_objcg 144 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 145 * PAGE_SIZE bytes are charged 146 * 3) CPU1: a process from another memcg is allocating something, 147 * the stock if flushed, 148 * objcg->nr_charged_bytes = PAGE_SIZE - 92 149 * 5) CPU0: we do release this object, 150 * 92 bytes are added to stock->nr_bytes 151 * 6) CPU0: stock is flushed, 152 * 92 bytes are added to objcg->nr_charged_bytes 153 * 154 * In the result, nr_charged_bytes == PAGE_SIZE. 155 * This page will be uncharged in obj_cgroup_release(). 156 */ 157 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 158 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 159 nr_pages = nr_bytes >> PAGE_SHIFT; 160 161 if (nr_pages) 162 obj_cgroup_uncharge_pages(objcg, nr_pages); 163 164 spin_lock_irqsave(&objcg_lock, flags); 165 list_del(&objcg->list); 166 spin_unlock_irqrestore(&objcg_lock, flags); 167 168 percpu_ref_exit(ref); 169 kfree_rcu(objcg, rcu); 170 } 171 172 static struct obj_cgroup *obj_cgroup_alloc(void) 173 { 174 struct obj_cgroup *objcg; 175 int ret; 176 177 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 178 if (!objcg) 179 return NULL; 180 181 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 182 GFP_KERNEL); 183 if (ret) { 184 kfree(objcg); 185 return NULL; 186 } 187 INIT_LIST_HEAD(&objcg->list); 188 return objcg; 189 } 190 191 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 192 struct mem_cgroup *parent) 193 { 194 struct obj_cgroup *objcg, *iter; 195 196 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 197 198 spin_lock_irq(&objcg_lock); 199 200 /* 1) Ready to reparent active objcg. */ 201 list_add(&objcg->list, &memcg->objcg_list); 202 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 203 list_for_each_entry(iter, &memcg->objcg_list, list) 204 WRITE_ONCE(iter->memcg, parent); 205 /* 3) Move already reparented objcgs to the parent's list */ 206 list_splice(&memcg->objcg_list, &parent->objcg_list); 207 208 spin_unlock_irq(&objcg_lock); 209 210 percpu_ref_kill(&objcg->refcnt); 211 } 212 213 /* 214 * A lot of the calls to the cache allocation functions are expected to be 215 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 216 * conditional to this static branch, we'll have to allow modules that does 217 * kmem_cache_alloc and the such to see this symbol as well 218 */ 219 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 220 EXPORT_SYMBOL(memcg_kmem_online_key); 221 222 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 223 EXPORT_SYMBOL(memcg_bpf_enabled_key); 224 225 /** 226 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 227 * @folio: folio of interest 228 * 229 * If memcg is bound to the default hierarchy, css of the memcg associated 230 * with @folio is returned. The returned css remains associated with @folio 231 * until it is released. 232 * 233 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 234 * is returned. 235 */ 236 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 237 { 238 struct mem_cgroup *memcg = folio_memcg(folio); 239 240 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 241 memcg = root_mem_cgroup; 242 243 return &memcg->css; 244 } 245 246 /** 247 * page_cgroup_ino - return inode number of the memcg a page is charged to 248 * @page: the page 249 * 250 * Look up the closest online ancestor of the memory cgroup @page is charged to 251 * and return its inode number or 0 if @page is not charged to any cgroup. It 252 * is safe to call this function without holding a reference to @page. 253 * 254 * Note, this function is inherently racy, because there is nothing to prevent 255 * the cgroup inode from getting torn down and potentially reallocated a moment 256 * after page_cgroup_ino() returns, so it only should be used by callers that 257 * do not care (such as procfs interfaces). 258 */ 259 ino_t page_cgroup_ino(struct page *page) 260 { 261 struct mem_cgroup *memcg; 262 unsigned long ino = 0; 263 264 rcu_read_lock(); 265 /* page_folio() is racy here, but the entire function is racy anyway */ 266 memcg = folio_memcg_check(page_folio(page)); 267 268 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 269 memcg = parent_mem_cgroup(memcg); 270 if (memcg) 271 ino = cgroup_ino(memcg->css.cgroup); 272 rcu_read_unlock(); 273 return ino; 274 } 275 276 /* Subset of node_stat_item for memcg stats */ 277 static const unsigned int memcg_node_stat_items[] = { 278 NR_INACTIVE_ANON, 279 NR_ACTIVE_ANON, 280 NR_INACTIVE_FILE, 281 NR_ACTIVE_FILE, 282 NR_UNEVICTABLE, 283 NR_SLAB_RECLAIMABLE_B, 284 NR_SLAB_UNRECLAIMABLE_B, 285 WORKINGSET_REFAULT_ANON, 286 WORKINGSET_REFAULT_FILE, 287 WORKINGSET_ACTIVATE_ANON, 288 WORKINGSET_ACTIVATE_FILE, 289 WORKINGSET_RESTORE_ANON, 290 WORKINGSET_RESTORE_FILE, 291 WORKINGSET_NODERECLAIM, 292 NR_ANON_MAPPED, 293 NR_FILE_MAPPED, 294 NR_FILE_PAGES, 295 NR_FILE_DIRTY, 296 NR_WRITEBACK, 297 NR_SHMEM, 298 NR_SHMEM_THPS, 299 NR_FILE_THPS, 300 NR_ANON_THPS, 301 NR_KERNEL_STACK_KB, 302 NR_PAGETABLE, 303 NR_SECONDARY_PAGETABLE, 304 #ifdef CONFIG_SWAP 305 NR_SWAPCACHE, 306 #endif 307 #ifdef CONFIG_NUMA_BALANCING 308 PGPROMOTE_SUCCESS, 309 #endif 310 PGDEMOTE_KSWAPD, 311 PGDEMOTE_DIRECT, 312 PGDEMOTE_KHUGEPAGED, 313 }; 314 315 static const unsigned int memcg_stat_items[] = { 316 MEMCG_SWAP, 317 MEMCG_SOCK, 318 MEMCG_PERCPU_B, 319 MEMCG_VMALLOC, 320 MEMCG_KMEM, 321 MEMCG_ZSWAP_B, 322 MEMCG_ZSWAPPED, 323 }; 324 325 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 326 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 327 ARRAY_SIZE(memcg_stat_items)) 328 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 329 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 330 331 static void init_memcg_stats(void) 332 { 333 u8 i, j = 0; 334 335 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 336 337 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 338 339 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 340 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 341 342 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 343 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 344 } 345 346 static inline int memcg_stats_index(int idx) 347 { 348 return mem_cgroup_stats_index[idx]; 349 } 350 351 struct lruvec_stats_percpu { 352 /* Local (CPU and cgroup) state */ 353 long state[NR_MEMCG_NODE_STAT_ITEMS]; 354 355 /* Delta calculation for lockless upward propagation */ 356 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 357 }; 358 359 struct lruvec_stats { 360 /* Aggregated (CPU and subtree) state */ 361 long state[NR_MEMCG_NODE_STAT_ITEMS]; 362 363 /* Non-hierarchical (CPU aggregated) state */ 364 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 365 366 /* Pending child counts during tree propagation */ 367 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 368 }; 369 370 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 371 { 372 struct mem_cgroup_per_node *pn; 373 long x; 374 int i; 375 376 if (mem_cgroup_disabled()) 377 return node_page_state(lruvec_pgdat(lruvec), idx); 378 379 i = memcg_stats_index(idx); 380 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 381 return 0; 382 383 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 384 x = READ_ONCE(pn->lruvec_stats->state[i]); 385 #ifdef CONFIG_SMP 386 if (x < 0) 387 x = 0; 388 #endif 389 return x; 390 } 391 392 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 393 enum node_stat_item idx) 394 { 395 struct mem_cgroup_per_node *pn; 396 long x; 397 int i; 398 399 if (mem_cgroup_disabled()) 400 return node_page_state(lruvec_pgdat(lruvec), idx); 401 402 i = memcg_stats_index(idx); 403 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 404 return 0; 405 406 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 407 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 408 #ifdef CONFIG_SMP 409 if (x < 0) 410 x = 0; 411 #endif 412 return x; 413 } 414 415 /* Subset of vm_event_item to report for memcg event stats */ 416 static const unsigned int memcg_vm_event_stat[] = { 417 #ifdef CONFIG_MEMCG_V1 418 PGPGIN, 419 PGPGOUT, 420 #endif 421 PGSCAN_KSWAPD, 422 PGSCAN_DIRECT, 423 PGSCAN_KHUGEPAGED, 424 PGSTEAL_KSWAPD, 425 PGSTEAL_DIRECT, 426 PGSTEAL_KHUGEPAGED, 427 PGFAULT, 428 PGMAJFAULT, 429 PGREFILL, 430 PGACTIVATE, 431 PGDEACTIVATE, 432 PGLAZYFREE, 433 PGLAZYFREED, 434 #ifdef CONFIG_ZSWAP 435 ZSWPIN, 436 ZSWPOUT, 437 ZSWPWB, 438 #endif 439 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 440 THP_FAULT_ALLOC, 441 THP_COLLAPSE_ALLOC, 442 THP_SWPOUT, 443 THP_SWPOUT_FALLBACK, 444 #endif 445 #ifdef CONFIG_NUMA_BALANCING 446 NUMA_PAGE_MIGRATE, 447 NUMA_PTE_UPDATES, 448 NUMA_HINT_FAULTS, 449 #endif 450 }; 451 452 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 453 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 454 455 static void init_memcg_events(void) 456 { 457 u8 i; 458 459 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 460 461 memset(mem_cgroup_events_index, U8_MAX, 462 sizeof(mem_cgroup_events_index)); 463 464 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 465 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 466 } 467 468 static inline int memcg_events_index(enum vm_event_item idx) 469 { 470 return mem_cgroup_events_index[idx]; 471 } 472 473 struct memcg_vmstats_percpu { 474 /* Stats updates since the last flush */ 475 unsigned int stats_updates; 476 477 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 478 struct memcg_vmstats_percpu *parent; 479 struct memcg_vmstats *vmstats; 480 481 /* The above should fit a single cacheline for memcg_rstat_updated() */ 482 483 /* Local (CPU and cgroup) page state & events */ 484 long state[MEMCG_VMSTAT_SIZE]; 485 unsigned long events[NR_MEMCG_EVENTS]; 486 487 /* Delta calculation for lockless upward propagation */ 488 long state_prev[MEMCG_VMSTAT_SIZE]; 489 unsigned long events_prev[NR_MEMCG_EVENTS]; 490 } ____cacheline_aligned; 491 492 struct memcg_vmstats { 493 /* Aggregated (CPU and subtree) page state & events */ 494 long state[MEMCG_VMSTAT_SIZE]; 495 unsigned long events[NR_MEMCG_EVENTS]; 496 497 /* Non-hierarchical (CPU aggregated) page state & events */ 498 long state_local[MEMCG_VMSTAT_SIZE]; 499 unsigned long events_local[NR_MEMCG_EVENTS]; 500 501 /* Pending child counts during tree propagation */ 502 long state_pending[MEMCG_VMSTAT_SIZE]; 503 unsigned long events_pending[NR_MEMCG_EVENTS]; 504 505 /* Stats updates since the last flush */ 506 atomic64_t stats_updates; 507 }; 508 509 /* 510 * memcg and lruvec stats flushing 511 * 512 * Many codepaths leading to stats update or read are performance sensitive and 513 * adding stats flushing in such codepaths is not desirable. So, to optimize the 514 * flushing the kernel does: 515 * 516 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 517 * rstat update tree grow unbounded. 518 * 519 * 2) Flush the stats synchronously on reader side only when there are more than 520 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 521 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 522 * only for 2 seconds due to (1). 523 */ 524 static void flush_memcg_stats_dwork(struct work_struct *w); 525 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 526 static u64 flush_last_time; 527 528 #define FLUSH_TIME (2UL*HZ) 529 530 /* 531 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 532 * not rely on this as part of an acquired spinlock_t lock. These functions are 533 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 534 * is sufficient. 535 */ 536 static void memcg_stats_lock(void) 537 { 538 preempt_disable_nested(); 539 VM_WARN_ON_IRQS_ENABLED(); 540 } 541 542 static void __memcg_stats_lock(void) 543 { 544 preempt_disable_nested(); 545 } 546 547 static void memcg_stats_unlock(void) 548 { 549 preempt_enable_nested(); 550 } 551 552 553 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 554 { 555 return atomic64_read(&vmstats->stats_updates) > 556 MEMCG_CHARGE_BATCH * num_online_cpus(); 557 } 558 559 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 560 { 561 struct memcg_vmstats_percpu *statc; 562 int cpu = smp_processor_id(); 563 unsigned int stats_updates; 564 565 if (!val) 566 return; 567 568 cgroup_rstat_updated(memcg->css.cgroup, cpu); 569 statc = this_cpu_ptr(memcg->vmstats_percpu); 570 for (; statc; statc = statc->parent) { 571 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 572 WRITE_ONCE(statc->stats_updates, stats_updates); 573 if (stats_updates < MEMCG_CHARGE_BATCH) 574 continue; 575 576 /* 577 * If @memcg is already flush-able, increasing stats_updates is 578 * redundant. Avoid the overhead of the atomic update. 579 */ 580 if (!memcg_vmstats_needs_flush(statc->vmstats)) 581 atomic64_add(stats_updates, 582 &statc->vmstats->stats_updates); 583 WRITE_ONCE(statc->stats_updates, 0); 584 } 585 } 586 587 static void do_flush_stats(struct mem_cgroup *memcg) 588 { 589 if (mem_cgroup_is_root(memcg)) 590 WRITE_ONCE(flush_last_time, jiffies_64); 591 592 cgroup_rstat_flush(memcg->css.cgroup); 593 } 594 595 /* 596 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 597 * @memcg: root of the subtree to flush 598 * 599 * Flushing is serialized by the underlying global rstat lock. There is also a 600 * minimum amount of work to be done even if there are no stat updates to flush. 601 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 602 * avoids unnecessary work and contention on the underlying lock. 603 */ 604 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 605 { 606 if (mem_cgroup_disabled()) 607 return; 608 609 if (!memcg) 610 memcg = root_mem_cgroup; 611 612 if (memcg_vmstats_needs_flush(memcg->vmstats)) 613 do_flush_stats(memcg); 614 } 615 616 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 617 { 618 /* Only flush if the periodic flusher is one full cycle late */ 619 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 620 mem_cgroup_flush_stats(memcg); 621 } 622 623 static void flush_memcg_stats_dwork(struct work_struct *w) 624 { 625 /* 626 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 627 * in latency-sensitive paths is as cheap as possible. 628 */ 629 do_flush_stats(root_mem_cgroup); 630 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 631 } 632 633 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 634 { 635 long x; 636 int i = memcg_stats_index(idx); 637 638 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 639 return 0; 640 641 x = READ_ONCE(memcg->vmstats->state[i]); 642 #ifdef CONFIG_SMP 643 if (x < 0) 644 x = 0; 645 #endif 646 return x; 647 } 648 649 static int memcg_page_state_unit(int item); 650 651 /* 652 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 653 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 654 */ 655 static int memcg_state_val_in_pages(int idx, int val) 656 { 657 int unit = memcg_page_state_unit(idx); 658 659 if (!val || unit == PAGE_SIZE) 660 return val; 661 else 662 return max(val * unit / PAGE_SIZE, 1UL); 663 } 664 665 /** 666 * __mod_memcg_state - update cgroup memory statistics 667 * @memcg: the memory cgroup 668 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 669 * @val: delta to add to the counter, can be negative 670 */ 671 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 672 int val) 673 { 674 int i = memcg_stats_index(idx); 675 676 if (mem_cgroup_disabled()) 677 return; 678 679 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 680 return; 681 682 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 683 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 684 } 685 686 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 687 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 688 { 689 long x; 690 int i = memcg_stats_index(idx); 691 692 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 693 return 0; 694 695 x = READ_ONCE(memcg->vmstats->state_local[i]); 696 #ifdef CONFIG_SMP 697 if (x < 0) 698 x = 0; 699 #endif 700 return x; 701 } 702 703 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 704 enum node_stat_item idx, 705 int val) 706 { 707 struct mem_cgroup_per_node *pn; 708 struct mem_cgroup *memcg; 709 int i = memcg_stats_index(idx); 710 711 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 712 return; 713 714 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 715 memcg = pn->memcg; 716 717 /* 718 * The caller from rmap relies on disabled preemption because they never 719 * update their counter from in-interrupt context. For these two 720 * counters we check that the update is never performed from an 721 * interrupt context while other caller need to have disabled interrupt. 722 */ 723 __memcg_stats_lock(); 724 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 725 switch (idx) { 726 case NR_ANON_MAPPED: 727 case NR_FILE_MAPPED: 728 case NR_ANON_THPS: 729 WARN_ON_ONCE(!in_task()); 730 break; 731 default: 732 VM_WARN_ON_IRQS_ENABLED(); 733 } 734 } 735 736 /* Update memcg */ 737 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 738 739 /* Update lruvec */ 740 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 741 742 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 743 memcg_stats_unlock(); 744 } 745 746 /** 747 * __mod_lruvec_state - update lruvec memory statistics 748 * @lruvec: the lruvec 749 * @idx: the stat item 750 * @val: delta to add to the counter, can be negative 751 * 752 * The lruvec is the intersection of the NUMA node and a cgroup. This 753 * function updates the all three counters that are affected by a 754 * change of state at this level: per-node, per-cgroup, per-lruvec. 755 */ 756 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 757 int val) 758 { 759 /* Update node */ 760 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 761 762 /* Update memcg and lruvec */ 763 if (!mem_cgroup_disabled()) 764 __mod_memcg_lruvec_state(lruvec, idx, val); 765 } 766 767 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 768 int val) 769 { 770 struct mem_cgroup *memcg; 771 pg_data_t *pgdat = folio_pgdat(folio); 772 struct lruvec *lruvec; 773 774 rcu_read_lock(); 775 memcg = folio_memcg(folio); 776 /* Untracked pages have no memcg, no lruvec. Update only the node */ 777 if (!memcg) { 778 rcu_read_unlock(); 779 __mod_node_page_state(pgdat, idx, val); 780 return; 781 } 782 783 lruvec = mem_cgroup_lruvec(memcg, pgdat); 784 __mod_lruvec_state(lruvec, idx, val); 785 rcu_read_unlock(); 786 } 787 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 788 789 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 790 { 791 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 792 struct mem_cgroup *memcg; 793 struct lruvec *lruvec; 794 795 rcu_read_lock(); 796 memcg = mem_cgroup_from_slab_obj(p); 797 798 /* 799 * Untracked pages have no memcg, no lruvec. Update only the 800 * node. If we reparent the slab objects to the root memcg, 801 * when we free the slab object, we need to update the per-memcg 802 * vmstats to keep it correct for the root memcg. 803 */ 804 if (!memcg) { 805 __mod_node_page_state(pgdat, idx, val); 806 } else { 807 lruvec = mem_cgroup_lruvec(memcg, pgdat); 808 __mod_lruvec_state(lruvec, idx, val); 809 } 810 rcu_read_unlock(); 811 } 812 813 /** 814 * __count_memcg_events - account VM events in a cgroup 815 * @memcg: the memory cgroup 816 * @idx: the event item 817 * @count: the number of events that occurred 818 */ 819 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 820 unsigned long count) 821 { 822 int i = memcg_events_index(idx); 823 824 if (mem_cgroup_disabled()) 825 return; 826 827 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 828 return; 829 830 memcg_stats_lock(); 831 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 832 memcg_rstat_updated(memcg, count); 833 memcg_stats_unlock(); 834 } 835 836 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 837 { 838 int i = memcg_events_index(event); 839 840 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 841 return 0; 842 843 return READ_ONCE(memcg->vmstats->events[i]); 844 } 845 846 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 847 { 848 int i = memcg_events_index(event); 849 850 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 851 return 0; 852 853 return READ_ONCE(memcg->vmstats->events_local[i]); 854 } 855 856 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 857 { 858 /* 859 * mm_update_next_owner() may clear mm->owner to NULL 860 * if it races with swapoff, page migration, etc. 861 * So this can be called with p == NULL. 862 */ 863 if (unlikely(!p)) 864 return NULL; 865 866 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 867 } 868 EXPORT_SYMBOL(mem_cgroup_from_task); 869 870 static __always_inline struct mem_cgroup *active_memcg(void) 871 { 872 if (!in_task()) 873 return this_cpu_read(int_active_memcg); 874 else 875 return current->active_memcg; 876 } 877 878 /** 879 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 880 * @mm: mm from which memcg should be extracted. It can be NULL. 881 * 882 * Obtain a reference on mm->memcg and returns it if successful. If mm 883 * is NULL, then the memcg is chosen as follows: 884 * 1) The active memcg, if set. 885 * 2) current->mm->memcg, if available 886 * 3) root memcg 887 * If mem_cgroup is disabled, NULL is returned. 888 */ 889 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 890 { 891 struct mem_cgroup *memcg; 892 893 if (mem_cgroup_disabled()) 894 return NULL; 895 896 /* 897 * Page cache insertions can happen without an 898 * actual mm context, e.g. during disk probing 899 * on boot, loopback IO, acct() writes etc. 900 * 901 * No need to css_get on root memcg as the reference 902 * counting is disabled on the root level in the 903 * cgroup core. See CSS_NO_REF. 904 */ 905 if (unlikely(!mm)) { 906 memcg = active_memcg(); 907 if (unlikely(memcg)) { 908 /* remote memcg must hold a ref */ 909 css_get(&memcg->css); 910 return memcg; 911 } 912 mm = current->mm; 913 if (unlikely(!mm)) 914 return root_mem_cgroup; 915 } 916 917 rcu_read_lock(); 918 do { 919 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 920 if (unlikely(!memcg)) 921 memcg = root_mem_cgroup; 922 } while (!css_tryget(&memcg->css)); 923 rcu_read_unlock(); 924 return memcg; 925 } 926 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 927 928 /** 929 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 930 */ 931 struct mem_cgroup *get_mem_cgroup_from_current(void) 932 { 933 struct mem_cgroup *memcg; 934 935 if (mem_cgroup_disabled()) 936 return NULL; 937 938 again: 939 rcu_read_lock(); 940 memcg = mem_cgroup_from_task(current); 941 if (!css_tryget(&memcg->css)) { 942 rcu_read_unlock(); 943 goto again; 944 } 945 rcu_read_unlock(); 946 return memcg; 947 } 948 949 /** 950 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 951 * @folio: folio from which memcg should be extracted. 952 */ 953 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 954 { 955 struct mem_cgroup *memcg = folio_memcg(folio); 956 957 if (mem_cgroup_disabled()) 958 return NULL; 959 960 rcu_read_lock(); 961 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 962 memcg = root_mem_cgroup; 963 rcu_read_unlock(); 964 return memcg; 965 } 966 967 /** 968 * mem_cgroup_iter - iterate over memory cgroup hierarchy 969 * @root: hierarchy root 970 * @prev: previously returned memcg, NULL on first invocation 971 * @reclaim: cookie for shared reclaim walks, NULL for full walks 972 * 973 * Returns references to children of the hierarchy below @root, or 974 * @root itself, or %NULL after a full round-trip. 975 * 976 * Caller must pass the return value in @prev on subsequent 977 * invocations for reference counting, or use mem_cgroup_iter_break() 978 * to cancel a hierarchy walk before the round-trip is complete. 979 * 980 * Reclaimers can specify a node in @reclaim to divide up the memcgs 981 * in the hierarchy among all concurrent reclaimers operating on the 982 * same node. 983 */ 984 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 985 struct mem_cgroup *prev, 986 struct mem_cgroup_reclaim_cookie *reclaim) 987 { 988 struct mem_cgroup_reclaim_iter *iter; 989 struct cgroup_subsys_state *css; 990 struct mem_cgroup *pos; 991 struct mem_cgroup *next; 992 993 if (mem_cgroup_disabled()) 994 return NULL; 995 996 if (!root) 997 root = root_mem_cgroup; 998 999 rcu_read_lock(); 1000 restart: 1001 next = NULL; 1002 1003 if (reclaim) { 1004 int gen; 1005 int nid = reclaim->pgdat->node_id; 1006 1007 iter = &root->nodeinfo[nid]->iter; 1008 gen = atomic_read(&iter->generation); 1009 1010 /* 1011 * On start, join the current reclaim iteration cycle. 1012 * Exit when a concurrent walker completes it. 1013 */ 1014 if (!prev) 1015 reclaim->generation = gen; 1016 else if (reclaim->generation != gen) 1017 goto out_unlock; 1018 1019 pos = READ_ONCE(iter->position); 1020 } else 1021 pos = prev; 1022 1023 css = pos ? &pos->css : NULL; 1024 1025 while ((css = css_next_descendant_pre(css, &root->css))) { 1026 /* 1027 * Verify the css and acquire a reference. The root 1028 * is provided by the caller, so we know it's alive 1029 * and kicking, and don't take an extra reference. 1030 */ 1031 if (css == &root->css || css_tryget(css)) 1032 break; 1033 } 1034 1035 next = mem_cgroup_from_css(css); 1036 1037 if (reclaim) { 1038 /* 1039 * The position could have already been updated by a competing 1040 * thread, so check that the value hasn't changed since we read 1041 * it to avoid reclaiming from the same cgroup twice. 1042 */ 1043 if (cmpxchg(&iter->position, pos, next) != pos) { 1044 if (css && css != &root->css) 1045 css_put(css); 1046 goto restart; 1047 } 1048 1049 if (!next) { 1050 atomic_inc(&iter->generation); 1051 1052 /* 1053 * Reclaimers share the hierarchy walk, and a 1054 * new one might jump in right at the end of 1055 * the hierarchy - make sure they see at least 1056 * one group and restart from the beginning. 1057 */ 1058 if (!prev) 1059 goto restart; 1060 } 1061 } 1062 1063 out_unlock: 1064 rcu_read_unlock(); 1065 if (prev && prev != root) 1066 css_put(&prev->css); 1067 1068 return next; 1069 } 1070 1071 /** 1072 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1073 * @root: hierarchy root 1074 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1075 */ 1076 void mem_cgroup_iter_break(struct mem_cgroup *root, 1077 struct mem_cgroup *prev) 1078 { 1079 if (!root) 1080 root = root_mem_cgroup; 1081 if (prev && prev != root) 1082 css_put(&prev->css); 1083 } 1084 1085 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1086 struct mem_cgroup *dead_memcg) 1087 { 1088 struct mem_cgroup_reclaim_iter *iter; 1089 struct mem_cgroup_per_node *mz; 1090 int nid; 1091 1092 for_each_node(nid) { 1093 mz = from->nodeinfo[nid]; 1094 iter = &mz->iter; 1095 cmpxchg(&iter->position, dead_memcg, NULL); 1096 } 1097 } 1098 1099 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1100 { 1101 struct mem_cgroup *memcg = dead_memcg; 1102 struct mem_cgroup *last; 1103 1104 do { 1105 __invalidate_reclaim_iterators(memcg, dead_memcg); 1106 last = memcg; 1107 } while ((memcg = parent_mem_cgroup(memcg))); 1108 1109 /* 1110 * When cgroup1 non-hierarchy mode is used, 1111 * parent_mem_cgroup() does not walk all the way up to the 1112 * cgroup root (root_mem_cgroup). So we have to handle 1113 * dead_memcg from cgroup root separately. 1114 */ 1115 if (!mem_cgroup_is_root(last)) 1116 __invalidate_reclaim_iterators(root_mem_cgroup, 1117 dead_memcg); 1118 } 1119 1120 /** 1121 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1122 * @memcg: hierarchy root 1123 * @fn: function to call for each task 1124 * @arg: argument passed to @fn 1125 * 1126 * This function iterates over tasks attached to @memcg or to any of its 1127 * descendants and calls @fn for each task. If @fn returns a non-zero 1128 * value, the function breaks the iteration loop. Otherwise, it will iterate 1129 * over all tasks and return 0. 1130 * 1131 * This function must not be called for the root memory cgroup. 1132 */ 1133 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1134 int (*fn)(struct task_struct *, void *), void *arg) 1135 { 1136 struct mem_cgroup *iter; 1137 int ret = 0; 1138 1139 BUG_ON(mem_cgroup_is_root(memcg)); 1140 1141 for_each_mem_cgroup_tree(iter, memcg) { 1142 struct css_task_iter it; 1143 struct task_struct *task; 1144 1145 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1146 while (!ret && (task = css_task_iter_next(&it))) 1147 ret = fn(task, arg); 1148 css_task_iter_end(&it); 1149 if (ret) { 1150 mem_cgroup_iter_break(memcg, iter); 1151 break; 1152 } 1153 } 1154 } 1155 1156 #ifdef CONFIG_DEBUG_VM 1157 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1158 { 1159 struct mem_cgroup *memcg; 1160 1161 if (mem_cgroup_disabled()) 1162 return; 1163 1164 memcg = folio_memcg(folio); 1165 1166 if (!memcg) 1167 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1168 else 1169 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1170 } 1171 #endif 1172 1173 /** 1174 * folio_lruvec_lock - Lock the lruvec for a folio. 1175 * @folio: Pointer to the folio. 1176 * 1177 * These functions are safe to use under any of the following conditions: 1178 * - folio locked 1179 * - folio_test_lru false 1180 * - folio_memcg_lock() 1181 * - folio frozen (refcount of 0) 1182 * 1183 * Return: The lruvec this folio is on with its lock held. 1184 */ 1185 struct lruvec *folio_lruvec_lock(struct folio *folio) 1186 { 1187 struct lruvec *lruvec = folio_lruvec(folio); 1188 1189 spin_lock(&lruvec->lru_lock); 1190 lruvec_memcg_debug(lruvec, folio); 1191 1192 return lruvec; 1193 } 1194 1195 /** 1196 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1197 * @folio: Pointer to the folio. 1198 * 1199 * These functions are safe to use under any of the following conditions: 1200 * - folio locked 1201 * - folio_test_lru false 1202 * - folio_memcg_lock() 1203 * - folio frozen (refcount of 0) 1204 * 1205 * Return: The lruvec this folio is on with its lock held and interrupts 1206 * disabled. 1207 */ 1208 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1209 { 1210 struct lruvec *lruvec = folio_lruvec(folio); 1211 1212 spin_lock_irq(&lruvec->lru_lock); 1213 lruvec_memcg_debug(lruvec, folio); 1214 1215 return lruvec; 1216 } 1217 1218 /** 1219 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1220 * @folio: Pointer to the folio. 1221 * @flags: Pointer to irqsave flags. 1222 * 1223 * These functions are safe to use under any of the following conditions: 1224 * - folio locked 1225 * - folio_test_lru false 1226 * - folio_memcg_lock() 1227 * - folio frozen (refcount of 0) 1228 * 1229 * Return: The lruvec this folio is on with its lock held and interrupts 1230 * disabled. 1231 */ 1232 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1233 unsigned long *flags) 1234 { 1235 struct lruvec *lruvec = folio_lruvec(folio); 1236 1237 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1238 lruvec_memcg_debug(lruvec, folio); 1239 1240 return lruvec; 1241 } 1242 1243 /** 1244 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1245 * @lruvec: mem_cgroup per zone lru vector 1246 * @lru: index of lru list the page is sitting on 1247 * @zid: zone id of the accounted pages 1248 * @nr_pages: positive when adding or negative when removing 1249 * 1250 * This function must be called under lru_lock, just before a page is added 1251 * to or just after a page is removed from an lru list. 1252 */ 1253 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1254 int zid, int nr_pages) 1255 { 1256 struct mem_cgroup_per_node *mz; 1257 unsigned long *lru_size; 1258 long size; 1259 1260 if (mem_cgroup_disabled()) 1261 return; 1262 1263 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1264 lru_size = &mz->lru_zone_size[zid][lru]; 1265 1266 if (nr_pages < 0) 1267 *lru_size += nr_pages; 1268 1269 size = *lru_size; 1270 if (WARN_ONCE(size < 0, 1271 "%s(%p, %d, %d): lru_size %ld\n", 1272 __func__, lruvec, lru, nr_pages, size)) { 1273 VM_BUG_ON(1); 1274 *lru_size = 0; 1275 } 1276 1277 if (nr_pages > 0) 1278 *lru_size += nr_pages; 1279 } 1280 1281 /** 1282 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1283 * @memcg: the memory cgroup 1284 * 1285 * Returns the maximum amount of memory @mem can be charged with, in 1286 * pages. 1287 */ 1288 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1289 { 1290 unsigned long margin = 0; 1291 unsigned long count; 1292 unsigned long limit; 1293 1294 count = page_counter_read(&memcg->memory); 1295 limit = READ_ONCE(memcg->memory.max); 1296 if (count < limit) 1297 margin = limit - count; 1298 1299 if (do_memsw_account()) { 1300 count = page_counter_read(&memcg->memsw); 1301 limit = READ_ONCE(memcg->memsw.max); 1302 if (count < limit) 1303 margin = min(margin, limit - count); 1304 else 1305 margin = 0; 1306 } 1307 1308 return margin; 1309 } 1310 1311 struct memory_stat { 1312 const char *name; 1313 unsigned int idx; 1314 }; 1315 1316 static const struct memory_stat memory_stats[] = { 1317 { "anon", NR_ANON_MAPPED }, 1318 { "file", NR_FILE_PAGES }, 1319 { "kernel", MEMCG_KMEM }, 1320 { "kernel_stack", NR_KERNEL_STACK_KB }, 1321 { "pagetables", NR_PAGETABLE }, 1322 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1323 { "percpu", MEMCG_PERCPU_B }, 1324 { "sock", MEMCG_SOCK }, 1325 { "vmalloc", MEMCG_VMALLOC }, 1326 { "shmem", NR_SHMEM }, 1327 #ifdef CONFIG_ZSWAP 1328 { "zswap", MEMCG_ZSWAP_B }, 1329 { "zswapped", MEMCG_ZSWAPPED }, 1330 #endif 1331 { "file_mapped", NR_FILE_MAPPED }, 1332 { "file_dirty", NR_FILE_DIRTY }, 1333 { "file_writeback", NR_WRITEBACK }, 1334 #ifdef CONFIG_SWAP 1335 { "swapcached", NR_SWAPCACHE }, 1336 #endif 1337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1338 { "anon_thp", NR_ANON_THPS }, 1339 { "file_thp", NR_FILE_THPS }, 1340 { "shmem_thp", NR_SHMEM_THPS }, 1341 #endif 1342 { "inactive_anon", NR_INACTIVE_ANON }, 1343 { "active_anon", NR_ACTIVE_ANON }, 1344 { "inactive_file", NR_INACTIVE_FILE }, 1345 { "active_file", NR_ACTIVE_FILE }, 1346 { "unevictable", NR_UNEVICTABLE }, 1347 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1348 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1349 1350 /* The memory events */ 1351 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1352 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1353 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1354 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1355 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1356 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1357 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1358 1359 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1360 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1361 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1362 #ifdef CONFIG_NUMA_BALANCING 1363 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1364 #endif 1365 }; 1366 1367 /* The actual unit of the state item, not the same as the output unit */ 1368 static int memcg_page_state_unit(int item) 1369 { 1370 switch (item) { 1371 case MEMCG_PERCPU_B: 1372 case MEMCG_ZSWAP_B: 1373 case NR_SLAB_RECLAIMABLE_B: 1374 case NR_SLAB_UNRECLAIMABLE_B: 1375 return 1; 1376 case NR_KERNEL_STACK_KB: 1377 return SZ_1K; 1378 default: 1379 return PAGE_SIZE; 1380 } 1381 } 1382 1383 /* Translate stat items to the correct unit for memory.stat output */ 1384 static int memcg_page_state_output_unit(int item) 1385 { 1386 /* 1387 * Workingset state is actually in pages, but we export it to userspace 1388 * as a scalar count of events, so special case it here. 1389 * 1390 * Demotion and promotion activities are exported in pages, consistent 1391 * with their global counterparts. 1392 */ 1393 switch (item) { 1394 case WORKINGSET_REFAULT_ANON: 1395 case WORKINGSET_REFAULT_FILE: 1396 case WORKINGSET_ACTIVATE_ANON: 1397 case WORKINGSET_ACTIVATE_FILE: 1398 case WORKINGSET_RESTORE_ANON: 1399 case WORKINGSET_RESTORE_FILE: 1400 case WORKINGSET_NODERECLAIM: 1401 case PGDEMOTE_KSWAPD: 1402 case PGDEMOTE_DIRECT: 1403 case PGDEMOTE_KHUGEPAGED: 1404 #ifdef CONFIG_NUMA_BALANCING 1405 case PGPROMOTE_SUCCESS: 1406 #endif 1407 return 1; 1408 default: 1409 return memcg_page_state_unit(item); 1410 } 1411 } 1412 1413 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1414 { 1415 return memcg_page_state(memcg, item) * 1416 memcg_page_state_output_unit(item); 1417 } 1418 1419 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1420 { 1421 return memcg_page_state_local(memcg, item) * 1422 memcg_page_state_output_unit(item); 1423 } 1424 1425 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1426 { 1427 int i; 1428 1429 /* 1430 * Provide statistics on the state of the memory subsystem as 1431 * well as cumulative event counters that show past behavior. 1432 * 1433 * This list is ordered following a combination of these gradients: 1434 * 1) generic big picture -> specifics and details 1435 * 2) reflecting userspace activity -> reflecting kernel heuristics 1436 * 1437 * Current memory state: 1438 */ 1439 mem_cgroup_flush_stats(memcg); 1440 1441 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1442 u64 size; 1443 1444 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1445 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1446 1447 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1448 size += memcg_page_state_output(memcg, 1449 NR_SLAB_RECLAIMABLE_B); 1450 seq_buf_printf(s, "slab %llu\n", size); 1451 } 1452 } 1453 1454 /* Accumulated memory events */ 1455 seq_buf_printf(s, "pgscan %lu\n", 1456 memcg_events(memcg, PGSCAN_KSWAPD) + 1457 memcg_events(memcg, PGSCAN_DIRECT) + 1458 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1459 seq_buf_printf(s, "pgsteal %lu\n", 1460 memcg_events(memcg, PGSTEAL_KSWAPD) + 1461 memcg_events(memcg, PGSTEAL_DIRECT) + 1462 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1463 1464 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1465 #ifdef CONFIG_MEMCG_V1 1466 if (memcg_vm_event_stat[i] == PGPGIN || 1467 memcg_vm_event_stat[i] == PGPGOUT) 1468 continue; 1469 #endif 1470 seq_buf_printf(s, "%s %lu\n", 1471 vm_event_name(memcg_vm_event_stat[i]), 1472 memcg_events(memcg, memcg_vm_event_stat[i])); 1473 } 1474 } 1475 1476 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1477 { 1478 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1479 memcg_stat_format(memcg, s); 1480 else 1481 memcg1_stat_format(memcg, s); 1482 if (seq_buf_has_overflowed(s)) 1483 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1484 } 1485 1486 /** 1487 * mem_cgroup_print_oom_context: Print OOM information relevant to 1488 * memory controller. 1489 * @memcg: The memory cgroup that went over limit 1490 * @p: Task that is going to be killed 1491 * 1492 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1493 * enabled 1494 */ 1495 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1496 { 1497 rcu_read_lock(); 1498 1499 if (memcg) { 1500 pr_cont(",oom_memcg="); 1501 pr_cont_cgroup_path(memcg->css.cgroup); 1502 } else 1503 pr_cont(",global_oom"); 1504 if (p) { 1505 pr_cont(",task_memcg="); 1506 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1507 } 1508 rcu_read_unlock(); 1509 } 1510 1511 /** 1512 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1513 * memory controller. 1514 * @memcg: The memory cgroup that went over limit 1515 */ 1516 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1517 { 1518 /* Use static buffer, for the caller is holding oom_lock. */ 1519 static char buf[PAGE_SIZE]; 1520 struct seq_buf s; 1521 1522 lockdep_assert_held(&oom_lock); 1523 1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1525 K((u64)page_counter_read(&memcg->memory)), 1526 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1527 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1528 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1529 K((u64)page_counter_read(&memcg->swap)), 1530 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1531 #ifdef CONFIG_MEMCG_V1 1532 else { 1533 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1534 K((u64)page_counter_read(&memcg->memsw)), 1535 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1536 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1537 K((u64)page_counter_read(&memcg->kmem)), 1538 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1539 } 1540 #endif 1541 1542 pr_info("Memory cgroup stats for "); 1543 pr_cont_cgroup_path(memcg->css.cgroup); 1544 pr_cont(":"); 1545 seq_buf_init(&s, buf, sizeof(buf)); 1546 memory_stat_format(memcg, &s); 1547 seq_buf_do_printk(&s, KERN_INFO); 1548 } 1549 1550 /* 1551 * Return the memory (and swap, if configured) limit for a memcg. 1552 */ 1553 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1554 { 1555 unsigned long max = READ_ONCE(memcg->memory.max); 1556 1557 if (do_memsw_account()) { 1558 if (mem_cgroup_swappiness(memcg)) { 1559 /* Calculate swap excess capacity from memsw limit */ 1560 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1561 1562 max += min(swap, (unsigned long)total_swap_pages); 1563 } 1564 } else { 1565 if (mem_cgroup_swappiness(memcg)) 1566 max += min(READ_ONCE(memcg->swap.max), 1567 (unsigned long)total_swap_pages); 1568 } 1569 return max; 1570 } 1571 1572 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1573 { 1574 return page_counter_read(&memcg->memory); 1575 } 1576 1577 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1578 int order) 1579 { 1580 struct oom_control oc = { 1581 .zonelist = NULL, 1582 .nodemask = NULL, 1583 .memcg = memcg, 1584 .gfp_mask = gfp_mask, 1585 .order = order, 1586 }; 1587 bool ret = true; 1588 1589 if (mutex_lock_killable(&oom_lock)) 1590 return true; 1591 1592 if (mem_cgroup_margin(memcg) >= (1 << order)) 1593 goto unlock; 1594 1595 /* 1596 * A few threads which were not waiting at mutex_lock_killable() can 1597 * fail to bail out. Therefore, check again after holding oom_lock. 1598 */ 1599 ret = task_is_dying() || out_of_memory(&oc); 1600 1601 unlock: 1602 mutex_unlock(&oom_lock); 1603 return ret; 1604 } 1605 1606 /* 1607 * Returns true if successfully killed one or more processes. Though in some 1608 * corner cases it can return true even without killing any process. 1609 */ 1610 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1611 { 1612 bool locked, ret; 1613 1614 if (order > PAGE_ALLOC_COSTLY_ORDER) 1615 return false; 1616 1617 memcg_memory_event(memcg, MEMCG_OOM); 1618 1619 if (!memcg1_oom_prepare(memcg, &locked)) 1620 return false; 1621 1622 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1623 1624 memcg1_oom_finish(memcg, locked); 1625 1626 return ret; 1627 } 1628 1629 /** 1630 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1631 * @victim: task to be killed by the OOM killer 1632 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1633 * 1634 * Returns a pointer to a memory cgroup, which has to be cleaned up 1635 * by killing all belonging OOM-killable tasks. 1636 * 1637 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1638 */ 1639 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1640 struct mem_cgroup *oom_domain) 1641 { 1642 struct mem_cgroup *oom_group = NULL; 1643 struct mem_cgroup *memcg; 1644 1645 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1646 return NULL; 1647 1648 if (!oom_domain) 1649 oom_domain = root_mem_cgroup; 1650 1651 rcu_read_lock(); 1652 1653 memcg = mem_cgroup_from_task(victim); 1654 if (mem_cgroup_is_root(memcg)) 1655 goto out; 1656 1657 /* 1658 * If the victim task has been asynchronously moved to a different 1659 * memory cgroup, we might end up killing tasks outside oom_domain. 1660 * In this case it's better to ignore memory.group.oom. 1661 */ 1662 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1663 goto out; 1664 1665 /* 1666 * Traverse the memory cgroup hierarchy from the victim task's 1667 * cgroup up to the OOMing cgroup (or root) to find the 1668 * highest-level memory cgroup with oom.group set. 1669 */ 1670 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1671 if (READ_ONCE(memcg->oom_group)) 1672 oom_group = memcg; 1673 1674 if (memcg == oom_domain) 1675 break; 1676 } 1677 1678 if (oom_group) 1679 css_get(&oom_group->css); 1680 out: 1681 rcu_read_unlock(); 1682 1683 return oom_group; 1684 } 1685 1686 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1687 { 1688 pr_info("Tasks in "); 1689 pr_cont_cgroup_path(memcg->css.cgroup); 1690 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1691 } 1692 1693 struct memcg_stock_pcp { 1694 local_lock_t stock_lock; 1695 struct mem_cgroup *cached; /* this never be root cgroup */ 1696 unsigned int nr_pages; 1697 1698 struct obj_cgroup *cached_objcg; 1699 struct pglist_data *cached_pgdat; 1700 unsigned int nr_bytes; 1701 int nr_slab_reclaimable_b; 1702 int nr_slab_unreclaimable_b; 1703 1704 struct work_struct work; 1705 unsigned long flags; 1706 #define FLUSHING_CACHED_CHARGE 0 1707 }; 1708 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 1709 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 1710 }; 1711 static DEFINE_MUTEX(percpu_charge_mutex); 1712 1713 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 1714 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1715 struct mem_cgroup *root_memcg); 1716 1717 /** 1718 * consume_stock: Try to consume stocked charge on this cpu. 1719 * @memcg: memcg to consume from. 1720 * @nr_pages: how many pages to charge. 1721 * 1722 * The charges will only happen if @memcg matches the current cpu's memcg 1723 * stock, and at least @nr_pages are available in that stock. Failure to 1724 * service an allocation will refill the stock. 1725 * 1726 * returns true if successful, false otherwise. 1727 */ 1728 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1729 { 1730 struct memcg_stock_pcp *stock; 1731 unsigned int stock_pages; 1732 unsigned long flags; 1733 bool ret = false; 1734 1735 if (nr_pages > MEMCG_CHARGE_BATCH) 1736 return ret; 1737 1738 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1739 1740 stock = this_cpu_ptr(&memcg_stock); 1741 stock_pages = READ_ONCE(stock->nr_pages); 1742 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 1743 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 1744 ret = true; 1745 } 1746 1747 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1748 1749 return ret; 1750 } 1751 1752 /* 1753 * Returns stocks cached in percpu and reset cached information. 1754 */ 1755 static void drain_stock(struct memcg_stock_pcp *stock) 1756 { 1757 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 1758 struct mem_cgroup *old = READ_ONCE(stock->cached); 1759 1760 if (!old) 1761 return; 1762 1763 if (stock_pages) { 1764 page_counter_uncharge(&old->memory, stock_pages); 1765 if (do_memsw_account()) 1766 page_counter_uncharge(&old->memsw, stock_pages); 1767 1768 WRITE_ONCE(stock->nr_pages, 0); 1769 } 1770 1771 css_put(&old->css); 1772 WRITE_ONCE(stock->cached, NULL); 1773 } 1774 1775 static void drain_local_stock(struct work_struct *dummy) 1776 { 1777 struct memcg_stock_pcp *stock; 1778 struct obj_cgroup *old = NULL; 1779 unsigned long flags; 1780 1781 /* 1782 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1783 * drain_stock races is that we always operate on local CPU stock 1784 * here with IRQ disabled 1785 */ 1786 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1787 1788 stock = this_cpu_ptr(&memcg_stock); 1789 old = drain_obj_stock(stock); 1790 drain_stock(stock); 1791 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1792 1793 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1794 obj_cgroup_put(old); 1795 } 1796 1797 /* 1798 * Cache charges(val) to local per_cpu area. 1799 * This will be consumed by consume_stock() function, later. 1800 */ 1801 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1802 { 1803 struct memcg_stock_pcp *stock; 1804 unsigned int stock_pages; 1805 1806 stock = this_cpu_ptr(&memcg_stock); 1807 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 1808 drain_stock(stock); 1809 css_get(&memcg->css); 1810 WRITE_ONCE(stock->cached, memcg); 1811 } 1812 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 1813 WRITE_ONCE(stock->nr_pages, stock_pages); 1814 1815 if (stock_pages > MEMCG_CHARGE_BATCH) 1816 drain_stock(stock); 1817 } 1818 1819 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1820 { 1821 unsigned long flags; 1822 1823 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1824 __refill_stock(memcg, nr_pages); 1825 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1826 } 1827 1828 /* 1829 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1830 * of the hierarchy under it. 1831 */ 1832 void drain_all_stock(struct mem_cgroup *root_memcg) 1833 { 1834 int cpu, curcpu; 1835 1836 /* If someone's already draining, avoid adding running more workers. */ 1837 if (!mutex_trylock(&percpu_charge_mutex)) 1838 return; 1839 /* 1840 * Notify other cpus that system-wide "drain" is running 1841 * We do not care about races with the cpu hotplug because cpu down 1842 * as well as workers from this path always operate on the local 1843 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1844 */ 1845 migrate_disable(); 1846 curcpu = smp_processor_id(); 1847 for_each_online_cpu(cpu) { 1848 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1849 struct mem_cgroup *memcg; 1850 bool flush = false; 1851 1852 rcu_read_lock(); 1853 memcg = READ_ONCE(stock->cached); 1854 if (memcg && READ_ONCE(stock->nr_pages) && 1855 mem_cgroup_is_descendant(memcg, root_memcg)) 1856 flush = true; 1857 else if (obj_stock_flush_required(stock, root_memcg)) 1858 flush = true; 1859 rcu_read_unlock(); 1860 1861 if (flush && 1862 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1863 if (cpu == curcpu) 1864 drain_local_stock(&stock->work); 1865 else if (!cpu_is_isolated(cpu)) 1866 schedule_work_on(cpu, &stock->work); 1867 } 1868 } 1869 migrate_enable(); 1870 mutex_unlock(&percpu_charge_mutex); 1871 } 1872 1873 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1874 { 1875 struct memcg_stock_pcp *stock; 1876 1877 stock = &per_cpu(memcg_stock, cpu); 1878 drain_stock(stock); 1879 1880 return 0; 1881 } 1882 1883 static unsigned long reclaim_high(struct mem_cgroup *memcg, 1884 unsigned int nr_pages, 1885 gfp_t gfp_mask) 1886 { 1887 unsigned long nr_reclaimed = 0; 1888 1889 do { 1890 unsigned long pflags; 1891 1892 if (page_counter_read(&memcg->memory) <= 1893 READ_ONCE(memcg->memory.high)) 1894 continue; 1895 1896 memcg_memory_event(memcg, MEMCG_HIGH); 1897 1898 psi_memstall_enter(&pflags); 1899 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 1900 gfp_mask, 1901 MEMCG_RECLAIM_MAY_SWAP, 1902 NULL); 1903 psi_memstall_leave(&pflags); 1904 } while ((memcg = parent_mem_cgroup(memcg)) && 1905 !mem_cgroup_is_root(memcg)); 1906 1907 return nr_reclaimed; 1908 } 1909 1910 static void high_work_func(struct work_struct *work) 1911 { 1912 struct mem_cgroup *memcg; 1913 1914 memcg = container_of(work, struct mem_cgroup, high_work); 1915 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 1916 } 1917 1918 /* 1919 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 1920 * enough to still cause a significant slowdown in most cases, while still 1921 * allowing diagnostics and tracing to proceed without becoming stuck. 1922 */ 1923 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 1924 1925 /* 1926 * When calculating the delay, we use these either side of the exponentiation to 1927 * maintain precision and scale to a reasonable number of jiffies (see the table 1928 * below. 1929 * 1930 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 1931 * overage ratio to a delay. 1932 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 1933 * proposed penalty in order to reduce to a reasonable number of jiffies, and 1934 * to produce a reasonable delay curve. 1935 * 1936 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 1937 * reasonable delay curve compared to precision-adjusted overage, not 1938 * penalising heavily at first, but still making sure that growth beyond the 1939 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 1940 * example, with a high of 100 megabytes: 1941 * 1942 * +-------+------------------------+ 1943 * | usage | time to allocate in ms | 1944 * +-------+------------------------+ 1945 * | 100M | 0 | 1946 * | 101M | 6 | 1947 * | 102M | 25 | 1948 * | 103M | 57 | 1949 * | 104M | 102 | 1950 * | 105M | 159 | 1951 * | 106M | 230 | 1952 * | 107M | 313 | 1953 * | 108M | 409 | 1954 * | 109M | 518 | 1955 * | 110M | 639 | 1956 * | 111M | 774 | 1957 * | 112M | 921 | 1958 * | 113M | 1081 | 1959 * | 114M | 1254 | 1960 * | 115M | 1439 | 1961 * | 116M | 1638 | 1962 * | 117M | 1849 | 1963 * | 118M | 2000 | 1964 * | 119M | 2000 | 1965 * | 120M | 2000 | 1966 * +-------+------------------------+ 1967 */ 1968 #define MEMCG_DELAY_PRECISION_SHIFT 20 1969 #define MEMCG_DELAY_SCALING_SHIFT 14 1970 1971 static u64 calculate_overage(unsigned long usage, unsigned long high) 1972 { 1973 u64 overage; 1974 1975 if (usage <= high) 1976 return 0; 1977 1978 /* 1979 * Prevent division by 0 in overage calculation by acting as if 1980 * it was a threshold of 1 page 1981 */ 1982 high = max(high, 1UL); 1983 1984 overage = usage - high; 1985 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 1986 return div64_u64(overage, high); 1987 } 1988 1989 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 1990 { 1991 u64 overage, max_overage = 0; 1992 1993 do { 1994 overage = calculate_overage(page_counter_read(&memcg->memory), 1995 READ_ONCE(memcg->memory.high)); 1996 max_overage = max(overage, max_overage); 1997 } while ((memcg = parent_mem_cgroup(memcg)) && 1998 !mem_cgroup_is_root(memcg)); 1999 2000 return max_overage; 2001 } 2002 2003 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2004 { 2005 u64 overage, max_overage = 0; 2006 2007 do { 2008 overage = calculate_overage(page_counter_read(&memcg->swap), 2009 READ_ONCE(memcg->swap.high)); 2010 if (overage) 2011 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2012 max_overage = max(overage, max_overage); 2013 } while ((memcg = parent_mem_cgroup(memcg)) && 2014 !mem_cgroup_is_root(memcg)); 2015 2016 return max_overage; 2017 } 2018 2019 /* 2020 * Get the number of jiffies that we should penalise a mischievous cgroup which 2021 * is exceeding its memory.high by checking both it and its ancestors. 2022 */ 2023 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2024 unsigned int nr_pages, 2025 u64 max_overage) 2026 { 2027 unsigned long penalty_jiffies; 2028 2029 if (!max_overage) 2030 return 0; 2031 2032 /* 2033 * We use overage compared to memory.high to calculate the number of 2034 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2035 * fairly lenient on small overages, and increasingly harsh when the 2036 * memcg in question makes it clear that it has no intention of stopping 2037 * its crazy behaviour, so we exponentially increase the delay based on 2038 * overage amount. 2039 */ 2040 penalty_jiffies = max_overage * max_overage * HZ; 2041 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2042 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2043 2044 /* 2045 * Factor in the task's own contribution to the overage, such that four 2046 * N-sized allocations are throttled approximately the same as one 2047 * 4N-sized allocation. 2048 * 2049 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2050 * larger the current charge patch is than that. 2051 */ 2052 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2053 } 2054 2055 /* 2056 * Reclaims memory over the high limit. Called directly from 2057 * try_charge() (context permitting), as well as from the userland 2058 * return path where reclaim is always able to block. 2059 */ 2060 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2061 { 2062 unsigned long penalty_jiffies; 2063 unsigned long pflags; 2064 unsigned long nr_reclaimed; 2065 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2066 int nr_retries = MAX_RECLAIM_RETRIES; 2067 struct mem_cgroup *memcg; 2068 bool in_retry = false; 2069 2070 if (likely(!nr_pages)) 2071 return; 2072 2073 memcg = get_mem_cgroup_from_mm(current->mm); 2074 current->memcg_nr_pages_over_high = 0; 2075 2076 retry_reclaim: 2077 /* 2078 * Bail if the task is already exiting. Unlike memory.max, 2079 * memory.high enforcement isn't as strict, and there is no 2080 * OOM killer involved, which means the excess could already 2081 * be much bigger (and still growing) than it could for 2082 * memory.max; the dying task could get stuck in fruitless 2083 * reclaim for a long time, which isn't desirable. 2084 */ 2085 if (task_is_dying()) 2086 goto out; 2087 2088 /* 2089 * The allocating task should reclaim at least the batch size, but for 2090 * subsequent retries we only want to do what's necessary to prevent oom 2091 * or breaching resource isolation. 2092 * 2093 * This is distinct from memory.max or page allocator behaviour because 2094 * memory.high is currently batched, whereas memory.max and the page 2095 * allocator run every time an allocation is made. 2096 */ 2097 nr_reclaimed = reclaim_high(memcg, 2098 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2099 gfp_mask); 2100 2101 /* 2102 * memory.high is breached and reclaim is unable to keep up. Throttle 2103 * allocators proactively to slow down excessive growth. 2104 */ 2105 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2106 mem_find_max_overage(memcg)); 2107 2108 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2109 swap_find_max_overage(memcg)); 2110 2111 /* 2112 * Clamp the max delay per usermode return so as to still keep the 2113 * application moving forwards and also permit diagnostics, albeit 2114 * extremely slowly. 2115 */ 2116 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2117 2118 /* 2119 * Don't sleep if the amount of jiffies this memcg owes us is so low 2120 * that it's not even worth doing, in an attempt to be nice to those who 2121 * go only a small amount over their memory.high value and maybe haven't 2122 * been aggressively reclaimed enough yet. 2123 */ 2124 if (penalty_jiffies <= HZ / 100) 2125 goto out; 2126 2127 /* 2128 * If reclaim is making forward progress but we're still over 2129 * memory.high, we want to encourage that rather than doing allocator 2130 * throttling. 2131 */ 2132 if (nr_reclaimed || nr_retries--) { 2133 in_retry = true; 2134 goto retry_reclaim; 2135 } 2136 2137 /* 2138 * Reclaim didn't manage to push usage below the limit, slow 2139 * this allocating task down. 2140 * 2141 * If we exit early, we're guaranteed to die (since 2142 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2143 * need to account for any ill-begotten jiffies to pay them off later. 2144 */ 2145 psi_memstall_enter(&pflags); 2146 schedule_timeout_killable(penalty_jiffies); 2147 psi_memstall_leave(&pflags); 2148 2149 out: 2150 css_put(&memcg->css); 2151 } 2152 2153 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2154 unsigned int nr_pages) 2155 { 2156 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2157 int nr_retries = MAX_RECLAIM_RETRIES; 2158 struct mem_cgroup *mem_over_limit; 2159 struct page_counter *counter; 2160 unsigned long nr_reclaimed; 2161 bool passed_oom = false; 2162 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2163 bool drained = false; 2164 bool raised_max_event = false; 2165 unsigned long pflags; 2166 2167 retry: 2168 if (consume_stock(memcg, nr_pages)) 2169 return 0; 2170 2171 if (!do_memsw_account() || 2172 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2173 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2174 goto done_restock; 2175 if (do_memsw_account()) 2176 page_counter_uncharge(&memcg->memsw, batch); 2177 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2178 } else { 2179 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2180 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2181 } 2182 2183 if (batch > nr_pages) { 2184 batch = nr_pages; 2185 goto retry; 2186 } 2187 2188 /* 2189 * Prevent unbounded recursion when reclaim operations need to 2190 * allocate memory. This might exceed the limits temporarily, 2191 * but we prefer facilitating memory reclaim and getting back 2192 * under the limit over triggering OOM kills in these cases. 2193 */ 2194 if (unlikely(current->flags & PF_MEMALLOC)) 2195 goto force; 2196 2197 if (unlikely(task_in_memcg_oom(current))) 2198 goto nomem; 2199 2200 if (!gfpflags_allow_blocking(gfp_mask)) 2201 goto nomem; 2202 2203 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2204 raised_max_event = true; 2205 2206 psi_memstall_enter(&pflags); 2207 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2208 gfp_mask, reclaim_options, NULL); 2209 psi_memstall_leave(&pflags); 2210 2211 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2212 goto retry; 2213 2214 if (!drained) { 2215 drain_all_stock(mem_over_limit); 2216 drained = true; 2217 goto retry; 2218 } 2219 2220 if (gfp_mask & __GFP_NORETRY) 2221 goto nomem; 2222 /* 2223 * Even though the limit is exceeded at this point, reclaim 2224 * may have been able to free some pages. Retry the charge 2225 * before killing the task. 2226 * 2227 * Only for regular pages, though: huge pages are rather 2228 * unlikely to succeed so close to the limit, and we fall back 2229 * to regular pages anyway in case of failure. 2230 */ 2231 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2232 goto retry; 2233 /* 2234 * At task move, charge accounts can be doubly counted. So, it's 2235 * better to wait until the end of task_move if something is going on. 2236 */ 2237 if (memcg1_wait_acct_move(mem_over_limit)) 2238 goto retry; 2239 2240 if (nr_retries--) 2241 goto retry; 2242 2243 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2244 goto nomem; 2245 2246 /* Avoid endless loop for tasks bypassed by the oom killer */ 2247 if (passed_oom && task_is_dying()) 2248 goto nomem; 2249 2250 /* 2251 * keep retrying as long as the memcg oom killer is able to make 2252 * a forward progress or bypass the charge if the oom killer 2253 * couldn't make any progress. 2254 */ 2255 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2256 get_order(nr_pages * PAGE_SIZE))) { 2257 passed_oom = true; 2258 nr_retries = MAX_RECLAIM_RETRIES; 2259 goto retry; 2260 } 2261 nomem: 2262 /* 2263 * Memcg doesn't have a dedicated reserve for atomic 2264 * allocations. But like the global atomic pool, we need to 2265 * put the burden of reclaim on regular allocation requests 2266 * and let these go through as privileged allocations. 2267 */ 2268 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2269 return -ENOMEM; 2270 force: 2271 /* 2272 * If the allocation has to be enforced, don't forget to raise 2273 * a MEMCG_MAX event. 2274 */ 2275 if (!raised_max_event) 2276 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2277 2278 /* 2279 * The allocation either can't fail or will lead to more memory 2280 * being freed very soon. Allow memory usage go over the limit 2281 * temporarily by force charging it. 2282 */ 2283 page_counter_charge(&memcg->memory, nr_pages); 2284 if (do_memsw_account()) 2285 page_counter_charge(&memcg->memsw, nr_pages); 2286 2287 return 0; 2288 2289 done_restock: 2290 if (batch > nr_pages) 2291 refill_stock(memcg, batch - nr_pages); 2292 2293 /* 2294 * If the hierarchy is above the normal consumption range, schedule 2295 * reclaim on returning to userland. We can perform reclaim here 2296 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2297 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2298 * not recorded as it most likely matches current's and won't 2299 * change in the meantime. As high limit is checked again before 2300 * reclaim, the cost of mismatch is negligible. 2301 */ 2302 do { 2303 bool mem_high, swap_high; 2304 2305 mem_high = page_counter_read(&memcg->memory) > 2306 READ_ONCE(memcg->memory.high); 2307 swap_high = page_counter_read(&memcg->swap) > 2308 READ_ONCE(memcg->swap.high); 2309 2310 /* Don't bother a random interrupted task */ 2311 if (!in_task()) { 2312 if (mem_high) { 2313 schedule_work(&memcg->high_work); 2314 break; 2315 } 2316 continue; 2317 } 2318 2319 if (mem_high || swap_high) { 2320 /* 2321 * The allocating tasks in this cgroup will need to do 2322 * reclaim or be throttled to prevent further growth 2323 * of the memory or swap footprints. 2324 * 2325 * Target some best-effort fairness between the tasks, 2326 * and distribute reclaim work and delay penalties 2327 * based on how much each task is actually allocating. 2328 */ 2329 current->memcg_nr_pages_over_high += batch; 2330 set_notify_resume(current); 2331 break; 2332 } 2333 } while ((memcg = parent_mem_cgroup(memcg))); 2334 2335 /* 2336 * Reclaim is set up above to be called from the userland 2337 * return path. But also attempt synchronous reclaim to avoid 2338 * excessive overrun while the task is still inside the 2339 * kernel. If this is successful, the return path will see it 2340 * when it rechecks the overage and simply bail out. 2341 */ 2342 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2343 !(current->flags & PF_MEMALLOC) && 2344 gfpflags_allow_blocking(gfp_mask)) 2345 mem_cgroup_handle_over_high(gfp_mask); 2346 return 0; 2347 } 2348 2349 /** 2350 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. 2351 * @memcg: memcg previously charged. 2352 * @nr_pages: number of pages previously charged. 2353 */ 2354 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2355 { 2356 if (mem_cgroup_is_root(memcg)) 2357 return; 2358 2359 page_counter_uncharge(&memcg->memory, nr_pages); 2360 if (do_memsw_account()) 2361 page_counter_uncharge(&memcg->memsw, nr_pages); 2362 } 2363 2364 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2365 { 2366 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2367 /* 2368 * Any of the following ensures page's memcg stability: 2369 * 2370 * - the page lock 2371 * - LRU isolation 2372 * - folio_memcg_lock() 2373 * - exclusive reference 2374 * - mem_cgroup_trylock_pages() 2375 */ 2376 folio->memcg_data = (unsigned long)memcg; 2377 } 2378 2379 /** 2380 * mem_cgroup_commit_charge - commit a previously successful try_charge(). 2381 * @folio: folio to commit the charge to. 2382 * @memcg: memcg previously charged. 2383 */ 2384 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2385 { 2386 css_get(&memcg->css); 2387 commit_charge(folio, memcg); 2388 memcg1_commit_charge(folio, memcg); 2389 } 2390 2391 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2392 struct pglist_data *pgdat, 2393 enum node_stat_item idx, int nr) 2394 { 2395 struct mem_cgroup *memcg; 2396 struct lruvec *lruvec; 2397 2398 rcu_read_lock(); 2399 memcg = obj_cgroup_memcg(objcg); 2400 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2401 __mod_memcg_lruvec_state(lruvec, idx, nr); 2402 rcu_read_unlock(); 2403 } 2404 2405 static __always_inline 2406 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2407 { 2408 /* 2409 * Slab objects are accounted individually, not per-page. 2410 * Memcg membership data for each individual object is saved in 2411 * slab->obj_exts. 2412 */ 2413 if (folio_test_slab(folio)) { 2414 struct slabobj_ext *obj_exts; 2415 struct slab *slab; 2416 unsigned int off; 2417 2418 slab = folio_slab(folio); 2419 obj_exts = slab_obj_exts(slab); 2420 if (!obj_exts) 2421 return NULL; 2422 2423 off = obj_to_index(slab->slab_cache, slab, p); 2424 if (obj_exts[off].objcg) 2425 return obj_cgroup_memcg(obj_exts[off].objcg); 2426 2427 return NULL; 2428 } 2429 2430 /* 2431 * folio_memcg_check() is used here, because in theory we can encounter 2432 * a folio where the slab flag has been cleared already, but 2433 * slab->obj_exts has not been freed yet 2434 * folio_memcg_check() will guarantee that a proper memory 2435 * cgroup pointer or NULL will be returned. 2436 */ 2437 return folio_memcg_check(folio); 2438 } 2439 2440 /* 2441 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2442 * It is not suitable for objects allocated using vmalloc(). 2443 * 2444 * A passed kernel object must be a slab object or a generic kernel page. 2445 * 2446 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2447 * cgroup_mutex, etc. 2448 */ 2449 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2450 { 2451 if (mem_cgroup_disabled()) 2452 return NULL; 2453 2454 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2455 } 2456 2457 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2458 { 2459 struct obj_cgroup *objcg = NULL; 2460 2461 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2462 objcg = rcu_dereference(memcg->objcg); 2463 if (likely(objcg && obj_cgroup_tryget(objcg))) 2464 break; 2465 objcg = NULL; 2466 } 2467 return objcg; 2468 } 2469 2470 static struct obj_cgroup *current_objcg_update(void) 2471 { 2472 struct mem_cgroup *memcg; 2473 struct obj_cgroup *old, *objcg = NULL; 2474 2475 do { 2476 /* Atomically drop the update bit. */ 2477 old = xchg(¤t->objcg, NULL); 2478 if (old) { 2479 old = (struct obj_cgroup *) 2480 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2481 obj_cgroup_put(old); 2482 2483 old = NULL; 2484 } 2485 2486 /* If new objcg is NULL, no reason for the second atomic update. */ 2487 if (!current->mm || (current->flags & PF_KTHREAD)) 2488 return NULL; 2489 2490 /* 2491 * Release the objcg pointer from the previous iteration, 2492 * if try_cmpxcg() below fails. 2493 */ 2494 if (unlikely(objcg)) { 2495 obj_cgroup_put(objcg); 2496 objcg = NULL; 2497 } 2498 2499 /* 2500 * Obtain the new objcg pointer. The current task can be 2501 * asynchronously moved to another memcg and the previous 2502 * memcg can be offlined. So let's get the memcg pointer 2503 * and try get a reference to objcg under a rcu read lock. 2504 */ 2505 2506 rcu_read_lock(); 2507 memcg = mem_cgroup_from_task(current); 2508 objcg = __get_obj_cgroup_from_memcg(memcg); 2509 rcu_read_unlock(); 2510 2511 /* 2512 * Try set up a new objcg pointer atomically. If it 2513 * fails, it means the update flag was set concurrently, so 2514 * the whole procedure should be repeated. 2515 */ 2516 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2517 2518 return objcg; 2519 } 2520 2521 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2522 { 2523 struct mem_cgroup *memcg; 2524 struct obj_cgroup *objcg; 2525 2526 if (in_task()) { 2527 memcg = current->active_memcg; 2528 if (unlikely(memcg)) 2529 goto from_memcg; 2530 2531 objcg = READ_ONCE(current->objcg); 2532 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2533 objcg = current_objcg_update(); 2534 /* 2535 * Objcg reference is kept by the task, so it's safe 2536 * to use the objcg by the current task. 2537 */ 2538 return objcg; 2539 } 2540 2541 memcg = this_cpu_read(int_active_memcg); 2542 if (unlikely(memcg)) 2543 goto from_memcg; 2544 2545 return NULL; 2546 2547 from_memcg: 2548 objcg = NULL; 2549 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2550 /* 2551 * Memcg pointer is protected by scope (see set_active_memcg()) 2552 * and is pinning the corresponding objcg, so objcg can't go 2553 * away and can be used within the scope without any additional 2554 * protection. 2555 */ 2556 objcg = rcu_dereference_check(memcg->objcg, 1); 2557 if (likely(objcg)) 2558 break; 2559 } 2560 2561 return objcg; 2562 } 2563 2564 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2565 { 2566 struct obj_cgroup *objcg; 2567 2568 if (!memcg_kmem_online()) 2569 return NULL; 2570 2571 if (folio_memcg_kmem(folio)) { 2572 objcg = __folio_objcg(folio); 2573 obj_cgroup_get(objcg); 2574 } else { 2575 struct mem_cgroup *memcg; 2576 2577 rcu_read_lock(); 2578 memcg = __folio_memcg(folio); 2579 if (memcg) 2580 objcg = __get_obj_cgroup_from_memcg(memcg); 2581 else 2582 objcg = NULL; 2583 rcu_read_unlock(); 2584 } 2585 return objcg; 2586 } 2587 2588 /* 2589 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2590 * @objcg: object cgroup to uncharge 2591 * @nr_pages: number of pages to uncharge 2592 */ 2593 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2594 unsigned int nr_pages) 2595 { 2596 struct mem_cgroup *memcg; 2597 2598 memcg = get_mem_cgroup_from_objcg(objcg); 2599 2600 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2601 memcg1_account_kmem(memcg, -nr_pages); 2602 refill_stock(memcg, nr_pages); 2603 2604 css_put(&memcg->css); 2605 } 2606 2607 /* 2608 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2609 * @objcg: object cgroup to charge 2610 * @gfp: reclaim mode 2611 * @nr_pages: number of pages to charge 2612 * 2613 * Returns 0 on success, an error code on failure. 2614 */ 2615 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2616 unsigned int nr_pages) 2617 { 2618 struct mem_cgroup *memcg; 2619 int ret; 2620 2621 memcg = get_mem_cgroup_from_objcg(objcg); 2622 2623 ret = try_charge_memcg(memcg, gfp, nr_pages); 2624 if (ret) 2625 goto out; 2626 2627 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2628 memcg1_account_kmem(memcg, nr_pages); 2629 out: 2630 css_put(&memcg->css); 2631 2632 return ret; 2633 } 2634 2635 /** 2636 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2637 * @page: page to charge 2638 * @gfp: reclaim mode 2639 * @order: allocation order 2640 * 2641 * Returns 0 on success, an error code on failure. 2642 */ 2643 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2644 { 2645 struct obj_cgroup *objcg; 2646 int ret = 0; 2647 2648 objcg = current_obj_cgroup(); 2649 if (objcg) { 2650 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2651 if (!ret) { 2652 obj_cgroup_get(objcg); 2653 page->memcg_data = (unsigned long)objcg | 2654 MEMCG_DATA_KMEM; 2655 return 0; 2656 } 2657 } 2658 return ret; 2659 } 2660 2661 /** 2662 * __memcg_kmem_uncharge_page: uncharge a kmem page 2663 * @page: page to uncharge 2664 * @order: allocation order 2665 */ 2666 void __memcg_kmem_uncharge_page(struct page *page, int order) 2667 { 2668 struct folio *folio = page_folio(page); 2669 struct obj_cgroup *objcg; 2670 unsigned int nr_pages = 1 << order; 2671 2672 if (!folio_memcg_kmem(folio)) 2673 return; 2674 2675 objcg = __folio_objcg(folio); 2676 obj_cgroup_uncharge_pages(objcg, nr_pages); 2677 folio->memcg_data = 0; 2678 obj_cgroup_put(objcg); 2679 } 2680 2681 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 2682 enum node_stat_item idx, int nr) 2683 { 2684 struct memcg_stock_pcp *stock; 2685 struct obj_cgroup *old = NULL; 2686 unsigned long flags; 2687 int *bytes; 2688 2689 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2690 stock = this_cpu_ptr(&memcg_stock); 2691 2692 /* 2693 * Save vmstat data in stock and skip vmstat array update unless 2694 * accumulating over a page of vmstat data or when pgdat or idx 2695 * changes. 2696 */ 2697 if (READ_ONCE(stock->cached_objcg) != objcg) { 2698 old = drain_obj_stock(stock); 2699 obj_cgroup_get(objcg); 2700 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2701 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2702 WRITE_ONCE(stock->cached_objcg, objcg); 2703 stock->cached_pgdat = pgdat; 2704 } else if (stock->cached_pgdat != pgdat) { 2705 /* Flush the existing cached vmstat data */ 2706 struct pglist_data *oldpg = stock->cached_pgdat; 2707 2708 if (stock->nr_slab_reclaimable_b) { 2709 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2710 stock->nr_slab_reclaimable_b); 2711 stock->nr_slab_reclaimable_b = 0; 2712 } 2713 if (stock->nr_slab_unreclaimable_b) { 2714 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2715 stock->nr_slab_unreclaimable_b); 2716 stock->nr_slab_unreclaimable_b = 0; 2717 } 2718 stock->cached_pgdat = pgdat; 2719 } 2720 2721 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2722 : &stock->nr_slab_unreclaimable_b; 2723 /* 2724 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2725 * cached locally at least once before pushing it out. 2726 */ 2727 if (!*bytes) { 2728 *bytes = nr; 2729 nr = 0; 2730 } else { 2731 *bytes += nr; 2732 if (abs(*bytes) > PAGE_SIZE) { 2733 nr = *bytes; 2734 *bytes = 0; 2735 } else { 2736 nr = 0; 2737 } 2738 } 2739 if (nr) 2740 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2741 2742 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2743 obj_cgroup_put(old); 2744 } 2745 2746 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 2747 { 2748 struct memcg_stock_pcp *stock; 2749 unsigned long flags; 2750 bool ret = false; 2751 2752 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2753 2754 stock = this_cpu_ptr(&memcg_stock); 2755 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2756 stock->nr_bytes -= nr_bytes; 2757 ret = true; 2758 } 2759 2760 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2761 2762 return ret; 2763 } 2764 2765 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2766 { 2767 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2768 2769 if (!old) 2770 return NULL; 2771 2772 if (stock->nr_bytes) { 2773 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2774 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2775 2776 if (nr_pages) { 2777 struct mem_cgroup *memcg; 2778 2779 memcg = get_mem_cgroup_from_objcg(old); 2780 2781 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2782 memcg1_account_kmem(memcg, -nr_pages); 2783 __refill_stock(memcg, nr_pages); 2784 2785 css_put(&memcg->css); 2786 } 2787 2788 /* 2789 * The leftover is flushed to the centralized per-memcg value. 2790 * On the next attempt to refill obj stock it will be moved 2791 * to a per-cpu stock (probably, on an other CPU), see 2792 * refill_obj_stock(). 2793 * 2794 * How often it's flushed is a trade-off between the memory 2795 * limit enforcement accuracy and potential CPU contention, 2796 * so it might be changed in the future. 2797 */ 2798 atomic_add(nr_bytes, &old->nr_charged_bytes); 2799 stock->nr_bytes = 0; 2800 } 2801 2802 /* 2803 * Flush the vmstat data in current stock 2804 */ 2805 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2806 if (stock->nr_slab_reclaimable_b) { 2807 __mod_objcg_mlstate(old, stock->cached_pgdat, 2808 NR_SLAB_RECLAIMABLE_B, 2809 stock->nr_slab_reclaimable_b); 2810 stock->nr_slab_reclaimable_b = 0; 2811 } 2812 if (stock->nr_slab_unreclaimable_b) { 2813 __mod_objcg_mlstate(old, stock->cached_pgdat, 2814 NR_SLAB_UNRECLAIMABLE_B, 2815 stock->nr_slab_unreclaimable_b); 2816 stock->nr_slab_unreclaimable_b = 0; 2817 } 2818 stock->cached_pgdat = NULL; 2819 } 2820 2821 WRITE_ONCE(stock->cached_objcg, NULL); 2822 /* 2823 * The `old' objects needs to be released by the caller via 2824 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 2825 */ 2826 return old; 2827 } 2828 2829 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2830 struct mem_cgroup *root_memcg) 2831 { 2832 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2833 struct mem_cgroup *memcg; 2834 2835 if (objcg) { 2836 memcg = obj_cgroup_memcg(objcg); 2837 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2838 return true; 2839 } 2840 2841 return false; 2842 } 2843 2844 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2845 bool allow_uncharge) 2846 { 2847 struct memcg_stock_pcp *stock; 2848 struct obj_cgroup *old = NULL; 2849 unsigned long flags; 2850 unsigned int nr_pages = 0; 2851 2852 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2853 2854 stock = this_cpu_ptr(&memcg_stock); 2855 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2856 old = drain_obj_stock(stock); 2857 obj_cgroup_get(objcg); 2858 WRITE_ONCE(stock->cached_objcg, objcg); 2859 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2860 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2861 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2862 } 2863 stock->nr_bytes += nr_bytes; 2864 2865 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 2866 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2867 stock->nr_bytes &= (PAGE_SIZE - 1); 2868 } 2869 2870 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2871 obj_cgroup_put(old); 2872 2873 if (nr_pages) 2874 obj_cgroup_uncharge_pages(objcg, nr_pages); 2875 } 2876 2877 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 2878 { 2879 unsigned int nr_pages, nr_bytes; 2880 int ret; 2881 2882 if (consume_obj_stock(objcg, size)) 2883 return 0; 2884 2885 /* 2886 * In theory, objcg->nr_charged_bytes can have enough 2887 * pre-charged bytes to satisfy the allocation. However, 2888 * flushing objcg->nr_charged_bytes requires two atomic 2889 * operations, and objcg->nr_charged_bytes can't be big. 2890 * The shared objcg->nr_charged_bytes can also become a 2891 * performance bottleneck if all tasks of the same memcg are 2892 * trying to update it. So it's better to ignore it and try 2893 * grab some new pages. The stock's nr_bytes will be flushed to 2894 * objcg->nr_charged_bytes later on when objcg changes. 2895 * 2896 * The stock's nr_bytes may contain enough pre-charged bytes 2897 * to allow one less page from being charged, but we can't rely 2898 * on the pre-charged bytes not being changed outside of 2899 * consume_obj_stock() or refill_obj_stock(). So ignore those 2900 * pre-charged bytes as well when charging pages. To avoid a 2901 * page uncharge right after a page charge, we set the 2902 * allow_uncharge flag to false when calling refill_obj_stock() 2903 * to temporarily allow the pre-charged bytes to exceed the page 2904 * size limit. The maximum reachable value of the pre-charged 2905 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 2906 * race. 2907 */ 2908 nr_pages = size >> PAGE_SHIFT; 2909 nr_bytes = size & (PAGE_SIZE - 1); 2910 2911 if (nr_bytes) 2912 nr_pages += 1; 2913 2914 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 2915 if (!ret && nr_bytes) 2916 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 2917 2918 return ret; 2919 } 2920 2921 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 2922 { 2923 refill_obj_stock(objcg, size, true); 2924 } 2925 2926 static inline size_t obj_full_size(struct kmem_cache *s) 2927 { 2928 /* 2929 * For each accounted object there is an extra space which is used 2930 * to store obj_cgroup membership. Charge it too. 2931 */ 2932 return s->size + sizeof(struct obj_cgroup *); 2933 } 2934 2935 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2936 gfp_t flags, size_t size, void **p) 2937 { 2938 struct obj_cgroup *objcg; 2939 struct slab *slab; 2940 unsigned long off; 2941 size_t i; 2942 2943 /* 2944 * The obtained objcg pointer is safe to use within the current scope, 2945 * defined by current task or set_active_memcg() pair. 2946 * obj_cgroup_get() is used to get a permanent reference. 2947 */ 2948 objcg = current_obj_cgroup(); 2949 if (!objcg) 2950 return true; 2951 2952 /* 2953 * slab_alloc_node() avoids the NULL check, so we might be called with a 2954 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 2955 * the whole requested size. 2956 * return success as there's nothing to free back 2957 */ 2958 if (unlikely(*p == NULL)) 2959 return true; 2960 2961 flags &= gfp_allowed_mask; 2962 2963 if (lru) { 2964 int ret; 2965 struct mem_cgroup *memcg; 2966 2967 memcg = get_mem_cgroup_from_objcg(objcg); 2968 ret = memcg_list_lru_alloc(memcg, lru, flags); 2969 css_put(&memcg->css); 2970 2971 if (ret) 2972 return false; 2973 } 2974 2975 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 2976 return false; 2977 2978 for (i = 0; i < size; i++) { 2979 slab = virt_to_slab(p[i]); 2980 2981 if (!slab_obj_exts(slab) && 2982 alloc_slab_obj_exts(slab, s, flags, false)) { 2983 obj_cgroup_uncharge(objcg, obj_full_size(s)); 2984 continue; 2985 } 2986 2987 off = obj_to_index(s, slab, p[i]); 2988 obj_cgroup_get(objcg); 2989 slab_obj_exts(slab)[off].objcg = objcg; 2990 mod_objcg_state(objcg, slab_pgdat(slab), 2991 cache_vmstat_idx(s), obj_full_size(s)); 2992 } 2993 2994 return true; 2995 } 2996 2997 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2998 void **p, int objects, struct slabobj_ext *obj_exts) 2999 { 3000 for (int i = 0; i < objects; i++) { 3001 struct obj_cgroup *objcg; 3002 unsigned int off; 3003 3004 off = obj_to_index(s, slab, p[i]); 3005 objcg = obj_exts[off].objcg; 3006 if (!objcg) 3007 continue; 3008 3009 obj_exts[off].objcg = NULL; 3010 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3011 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3012 -obj_full_size(s)); 3013 obj_cgroup_put(objcg); 3014 } 3015 } 3016 3017 /* 3018 * Because folio_memcg(head) is not set on tails, set it now. 3019 */ 3020 void split_page_memcg(struct page *head, int old_order, int new_order) 3021 { 3022 struct folio *folio = page_folio(head); 3023 int i; 3024 unsigned int old_nr = 1 << old_order; 3025 unsigned int new_nr = 1 << new_order; 3026 3027 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3028 return; 3029 3030 for (i = new_nr; i < old_nr; i += new_nr) 3031 folio_page(folio, i)->memcg_data = folio->memcg_data; 3032 3033 if (folio_memcg_kmem(folio)) 3034 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1); 3035 else 3036 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1); 3037 } 3038 3039 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3040 { 3041 unsigned long val; 3042 3043 if (mem_cgroup_is_root(memcg)) { 3044 /* 3045 * Approximate root's usage from global state. This isn't 3046 * perfect, but the root usage was always an approximation. 3047 */ 3048 val = global_node_page_state(NR_FILE_PAGES) + 3049 global_node_page_state(NR_ANON_MAPPED); 3050 if (swap) 3051 val += total_swap_pages - get_nr_swap_pages(); 3052 } else { 3053 if (!swap) 3054 val = page_counter_read(&memcg->memory); 3055 else 3056 val = page_counter_read(&memcg->memsw); 3057 } 3058 return val; 3059 } 3060 3061 static int memcg_online_kmem(struct mem_cgroup *memcg) 3062 { 3063 struct obj_cgroup *objcg; 3064 3065 if (mem_cgroup_kmem_disabled()) 3066 return 0; 3067 3068 if (unlikely(mem_cgroup_is_root(memcg))) 3069 return 0; 3070 3071 objcg = obj_cgroup_alloc(); 3072 if (!objcg) 3073 return -ENOMEM; 3074 3075 objcg->memcg = memcg; 3076 rcu_assign_pointer(memcg->objcg, objcg); 3077 obj_cgroup_get(objcg); 3078 memcg->orig_objcg = objcg; 3079 3080 static_branch_enable(&memcg_kmem_online_key); 3081 3082 memcg->kmemcg_id = memcg->id.id; 3083 3084 return 0; 3085 } 3086 3087 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3088 { 3089 struct mem_cgroup *parent; 3090 3091 if (mem_cgroup_kmem_disabled()) 3092 return; 3093 3094 if (unlikely(mem_cgroup_is_root(memcg))) 3095 return; 3096 3097 parent = parent_mem_cgroup(memcg); 3098 if (!parent) 3099 parent = root_mem_cgroup; 3100 3101 memcg_reparent_objcgs(memcg, parent); 3102 3103 /* 3104 * After we have finished memcg_reparent_objcgs(), all list_lrus 3105 * corresponding to this cgroup are guaranteed to remain empty. 3106 * The ordering is imposed by list_lru_node->lock taken by 3107 * memcg_reparent_list_lrus(). 3108 */ 3109 memcg_reparent_list_lrus(memcg, parent); 3110 } 3111 3112 #ifdef CONFIG_CGROUP_WRITEBACK 3113 3114 #include <trace/events/writeback.h> 3115 3116 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3117 { 3118 return wb_domain_init(&memcg->cgwb_domain, gfp); 3119 } 3120 3121 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3122 { 3123 wb_domain_exit(&memcg->cgwb_domain); 3124 } 3125 3126 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3127 { 3128 wb_domain_size_changed(&memcg->cgwb_domain); 3129 } 3130 3131 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3132 { 3133 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3134 3135 if (!memcg->css.parent) 3136 return NULL; 3137 3138 return &memcg->cgwb_domain; 3139 } 3140 3141 /** 3142 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3143 * @wb: bdi_writeback in question 3144 * @pfilepages: out parameter for number of file pages 3145 * @pheadroom: out parameter for number of allocatable pages according to memcg 3146 * @pdirty: out parameter for number of dirty pages 3147 * @pwriteback: out parameter for number of pages under writeback 3148 * 3149 * Determine the numbers of file, headroom, dirty, and writeback pages in 3150 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3151 * is a bit more involved. 3152 * 3153 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3154 * headroom is calculated as the lowest headroom of itself and the 3155 * ancestors. Note that this doesn't consider the actual amount of 3156 * available memory in the system. The caller should further cap 3157 * *@pheadroom accordingly. 3158 */ 3159 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3160 unsigned long *pheadroom, unsigned long *pdirty, 3161 unsigned long *pwriteback) 3162 { 3163 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3164 struct mem_cgroup *parent; 3165 3166 mem_cgroup_flush_stats_ratelimited(memcg); 3167 3168 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3169 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3170 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3171 memcg_page_state(memcg, NR_ACTIVE_FILE); 3172 3173 *pheadroom = PAGE_COUNTER_MAX; 3174 while ((parent = parent_mem_cgroup(memcg))) { 3175 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3176 READ_ONCE(memcg->memory.high)); 3177 unsigned long used = page_counter_read(&memcg->memory); 3178 3179 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3180 memcg = parent; 3181 } 3182 } 3183 3184 /* 3185 * Foreign dirty flushing 3186 * 3187 * There's an inherent mismatch between memcg and writeback. The former 3188 * tracks ownership per-page while the latter per-inode. This was a 3189 * deliberate design decision because honoring per-page ownership in the 3190 * writeback path is complicated, may lead to higher CPU and IO overheads 3191 * and deemed unnecessary given that write-sharing an inode across 3192 * different cgroups isn't a common use-case. 3193 * 3194 * Combined with inode majority-writer ownership switching, this works well 3195 * enough in most cases but there are some pathological cases. For 3196 * example, let's say there are two cgroups A and B which keep writing to 3197 * different but confined parts of the same inode. B owns the inode and 3198 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3199 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3200 * triggering background writeback. A will be slowed down without a way to 3201 * make writeback of the dirty pages happen. 3202 * 3203 * Conditions like the above can lead to a cgroup getting repeatedly and 3204 * severely throttled after making some progress after each 3205 * dirty_expire_interval while the underlying IO device is almost 3206 * completely idle. 3207 * 3208 * Solving this problem completely requires matching the ownership tracking 3209 * granularities between memcg and writeback in either direction. However, 3210 * the more egregious behaviors can be avoided by simply remembering the 3211 * most recent foreign dirtying events and initiating remote flushes on 3212 * them when local writeback isn't enough to keep the memory clean enough. 3213 * 3214 * The following two functions implement such mechanism. When a foreign 3215 * page - a page whose memcg and writeback ownerships don't match - is 3216 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3217 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3218 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3219 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3220 * foreign bdi_writebacks which haven't expired. Both the numbers of 3221 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3222 * limited to MEMCG_CGWB_FRN_CNT. 3223 * 3224 * The mechanism only remembers IDs and doesn't hold any object references. 3225 * As being wrong occasionally doesn't matter, updates and accesses to the 3226 * records are lockless and racy. 3227 */ 3228 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3229 struct bdi_writeback *wb) 3230 { 3231 struct mem_cgroup *memcg = folio_memcg(folio); 3232 struct memcg_cgwb_frn *frn; 3233 u64 now = get_jiffies_64(); 3234 u64 oldest_at = now; 3235 int oldest = -1; 3236 int i; 3237 3238 trace_track_foreign_dirty(folio, wb); 3239 3240 /* 3241 * Pick the slot to use. If there is already a slot for @wb, keep 3242 * using it. If not replace the oldest one which isn't being 3243 * written out. 3244 */ 3245 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3246 frn = &memcg->cgwb_frn[i]; 3247 if (frn->bdi_id == wb->bdi->id && 3248 frn->memcg_id == wb->memcg_css->id) 3249 break; 3250 if (time_before64(frn->at, oldest_at) && 3251 atomic_read(&frn->done.cnt) == 1) { 3252 oldest = i; 3253 oldest_at = frn->at; 3254 } 3255 } 3256 3257 if (i < MEMCG_CGWB_FRN_CNT) { 3258 /* 3259 * Re-using an existing one. Update timestamp lazily to 3260 * avoid making the cacheline hot. We want them to be 3261 * reasonably up-to-date and significantly shorter than 3262 * dirty_expire_interval as that's what expires the record. 3263 * Use the shorter of 1s and dirty_expire_interval / 8. 3264 */ 3265 unsigned long update_intv = 3266 min_t(unsigned long, HZ, 3267 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3268 3269 if (time_before64(frn->at, now - update_intv)) 3270 frn->at = now; 3271 } else if (oldest >= 0) { 3272 /* replace the oldest free one */ 3273 frn = &memcg->cgwb_frn[oldest]; 3274 frn->bdi_id = wb->bdi->id; 3275 frn->memcg_id = wb->memcg_css->id; 3276 frn->at = now; 3277 } 3278 } 3279 3280 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3281 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3282 { 3283 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3284 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3285 u64 now = jiffies_64; 3286 int i; 3287 3288 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3289 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3290 3291 /* 3292 * If the record is older than dirty_expire_interval, 3293 * writeback on it has already started. No need to kick it 3294 * off again. Also, don't start a new one if there's 3295 * already one in flight. 3296 */ 3297 if (time_after64(frn->at, now - intv) && 3298 atomic_read(&frn->done.cnt) == 1) { 3299 frn->at = 0; 3300 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3301 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3302 WB_REASON_FOREIGN_FLUSH, 3303 &frn->done); 3304 } 3305 } 3306 } 3307 3308 #else /* CONFIG_CGROUP_WRITEBACK */ 3309 3310 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3311 { 3312 return 0; 3313 } 3314 3315 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3316 { 3317 } 3318 3319 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3320 { 3321 } 3322 3323 #endif /* CONFIG_CGROUP_WRITEBACK */ 3324 3325 /* 3326 * Private memory cgroup IDR 3327 * 3328 * Swap-out records and page cache shadow entries need to store memcg 3329 * references in constrained space, so we maintain an ID space that is 3330 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3331 * memory-controlled cgroups to 64k. 3332 * 3333 * However, there usually are many references to the offline CSS after 3334 * the cgroup has been destroyed, such as page cache or reclaimable 3335 * slab objects, that don't need to hang on to the ID. We want to keep 3336 * those dead CSS from occupying IDs, or we might quickly exhaust the 3337 * relatively small ID space and prevent the creation of new cgroups 3338 * even when there are much fewer than 64k cgroups - possibly none. 3339 * 3340 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3341 * be freed and recycled when it's no longer needed, which is usually 3342 * when the CSS is offlined. 3343 * 3344 * The only exception to that are records of swapped out tmpfs/shmem 3345 * pages that need to be attributed to live ancestors on swapin. But 3346 * those references are manageable from userspace. 3347 */ 3348 3349 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3350 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3351 3352 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3353 { 3354 if (memcg->id.id > 0) { 3355 xa_erase(&mem_cgroup_ids, memcg->id.id); 3356 memcg->id.id = 0; 3357 } 3358 } 3359 3360 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3361 unsigned int n) 3362 { 3363 refcount_add(n, &memcg->id.ref); 3364 } 3365 3366 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3367 { 3368 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3369 mem_cgroup_id_remove(memcg); 3370 3371 /* Memcg ID pins CSS */ 3372 css_put(&memcg->css); 3373 } 3374 } 3375 3376 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3377 { 3378 mem_cgroup_id_put_many(memcg, 1); 3379 } 3380 3381 /** 3382 * mem_cgroup_from_id - look up a memcg from a memcg id 3383 * @id: the memcg id to look up 3384 * 3385 * Caller must hold rcu_read_lock(). 3386 */ 3387 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3388 { 3389 WARN_ON_ONCE(!rcu_read_lock_held()); 3390 return xa_load(&mem_cgroup_ids, id); 3391 } 3392 3393 #ifdef CONFIG_SHRINKER_DEBUG 3394 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3395 { 3396 struct cgroup *cgrp; 3397 struct cgroup_subsys_state *css; 3398 struct mem_cgroup *memcg; 3399 3400 cgrp = cgroup_get_from_id(ino); 3401 if (IS_ERR(cgrp)) 3402 return ERR_CAST(cgrp); 3403 3404 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3405 if (css) 3406 memcg = container_of(css, struct mem_cgroup, css); 3407 else 3408 memcg = ERR_PTR(-ENOENT); 3409 3410 cgroup_put(cgrp); 3411 3412 return memcg; 3413 } 3414 #endif 3415 3416 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3417 { 3418 struct mem_cgroup_per_node *pn; 3419 3420 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3421 if (!pn) 3422 return false; 3423 3424 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3425 GFP_KERNEL_ACCOUNT, node); 3426 if (!pn->lruvec_stats) 3427 goto fail; 3428 3429 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3430 GFP_KERNEL_ACCOUNT); 3431 if (!pn->lruvec_stats_percpu) 3432 goto fail; 3433 3434 lruvec_init(&pn->lruvec); 3435 pn->memcg = memcg; 3436 3437 memcg->nodeinfo[node] = pn; 3438 return true; 3439 fail: 3440 kfree(pn->lruvec_stats); 3441 kfree(pn); 3442 return false; 3443 } 3444 3445 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3446 { 3447 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3448 3449 if (!pn) 3450 return; 3451 3452 free_percpu(pn->lruvec_stats_percpu); 3453 kfree(pn->lruvec_stats); 3454 kfree(pn); 3455 } 3456 3457 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3458 { 3459 int node; 3460 3461 obj_cgroup_put(memcg->orig_objcg); 3462 3463 for_each_node(node) 3464 free_mem_cgroup_per_node_info(memcg, node); 3465 memcg1_free_events(memcg); 3466 kfree(memcg->vmstats); 3467 free_percpu(memcg->vmstats_percpu); 3468 kfree(memcg); 3469 } 3470 3471 static void mem_cgroup_free(struct mem_cgroup *memcg) 3472 { 3473 lru_gen_exit_memcg(memcg); 3474 memcg_wb_domain_exit(memcg); 3475 __mem_cgroup_free(memcg); 3476 } 3477 3478 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3479 { 3480 struct memcg_vmstats_percpu *statc, *pstatc; 3481 struct mem_cgroup *memcg; 3482 int node, cpu; 3483 int __maybe_unused i; 3484 long error; 3485 3486 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3487 if (!memcg) 3488 return ERR_PTR(-ENOMEM); 3489 3490 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3491 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3492 if (error) 3493 goto fail; 3494 error = -ENOMEM; 3495 3496 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3497 GFP_KERNEL_ACCOUNT); 3498 if (!memcg->vmstats) 3499 goto fail; 3500 3501 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3502 GFP_KERNEL_ACCOUNT); 3503 if (!memcg->vmstats_percpu) 3504 goto fail; 3505 3506 if (!memcg1_alloc_events(memcg)) 3507 goto fail; 3508 3509 for_each_possible_cpu(cpu) { 3510 if (parent) 3511 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3512 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3513 statc->parent = parent ? pstatc : NULL; 3514 statc->vmstats = memcg->vmstats; 3515 } 3516 3517 for_each_node(node) 3518 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3519 goto fail; 3520 3521 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3522 goto fail; 3523 3524 INIT_WORK(&memcg->high_work, high_work_func); 3525 vmpressure_init(&memcg->vmpressure); 3526 INIT_LIST_HEAD(&memcg->memory_peaks); 3527 INIT_LIST_HEAD(&memcg->swap_peaks); 3528 spin_lock_init(&memcg->peaks_lock); 3529 memcg->socket_pressure = jiffies; 3530 memcg1_memcg_init(memcg); 3531 memcg->kmemcg_id = -1; 3532 INIT_LIST_HEAD(&memcg->objcg_list); 3533 #ifdef CONFIG_CGROUP_WRITEBACK 3534 INIT_LIST_HEAD(&memcg->cgwb_list); 3535 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3536 memcg->cgwb_frn[i].done = 3537 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3538 #endif 3539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3540 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3541 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3542 memcg->deferred_split_queue.split_queue_len = 0; 3543 #endif 3544 lru_gen_init_memcg(memcg); 3545 return memcg; 3546 fail: 3547 mem_cgroup_id_remove(memcg); 3548 __mem_cgroup_free(memcg); 3549 return ERR_PTR(error); 3550 } 3551 3552 static struct cgroup_subsys_state * __ref 3553 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3554 { 3555 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3556 struct mem_cgroup *memcg, *old_memcg; 3557 3558 old_memcg = set_active_memcg(parent); 3559 memcg = mem_cgroup_alloc(parent); 3560 set_active_memcg(old_memcg); 3561 if (IS_ERR(memcg)) 3562 return ERR_CAST(memcg); 3563 3564 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3565 memcg1_soft_limit_reset(memcg); 3566 #ifdef CONFIG_ZSWAP 3567 memcg->zswap_max = PAGE_COUNTER_MAX; 3568 WRITE_ONCE(memcg->zswap_writeback, true); 3569 #endif 3570 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3571 if (parent) { 3572 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3573 3574 page_counter_init(&memcg->memory, &parent->memory, true); 3575 page_counter_init(&memcg->swap, &parent->swap, false); 3576 #ifdef CONFIG_MEMCG_V1 3577 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3578 page_counter_init(&memcg->kmem, &parent->kmem, false); 3579 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3580 #endif 3581 } else { 3582 init_memcg_stats(); 3583 init_memcg_events(); 3584 page_counter_init(&memcg->memory, NULL, true); 3585 page_counter_init(&memcg->swap, NULL, false); 3586 #ifdef CONFIG_MEMCG_V1 3587 page_counter_init(&memcg->kmem, NULL, false); 3588 page_counter_init(&memcg->tcpmem, NULL, false); 3589 #endif 3590 root_mem_cgroup = memcg; 3591 return &memcg->css; 3592 } 3593 3594 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3595 static_branch_inc(&memcg_sockets_enabled_key); 3596 3597 if (!cgroup_memory_nobpf) 3598 static_branch_inc(&memcg_bpf_enabled_key); 3599 3600 return &memcg->css; 3601 } 3602 3603 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3604 { 3605 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3606 3607 if (memcg_online_kmem(memcg)) 3608 goto remove_id; 3609 3610 /* 3611 * A memcg must be visible for expand_shrinker_info() 3612 * by the time the maps are allocated. So, we allocate maps 3613 * here, when for_each_mem_cgroup() can't skip it. 3614 */ 3615 if (alloc_shrinker_info(memcg)) 3616 goto offline_kmem; 3617 3618 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3619 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3620 FLUSH_TIME); 3621 lru_gen_online_memcg(memcg); 3622 3623 /* Online state pins memcg ID, memcg ID pins CSS */ 3624 refcount_set(&memcg->id.ref, 1); 3625 css_get(css); 3626 3627 /* 3628 * Ensure mem_cgroup_from_id() works once we're fully online. 3629 * 3630 * We could do this earlier and require callers to filter with 3631 * css_tryget_online(). But right now there are no users that 3632 * need earlier access, and the workingset code relies on the 3633 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3634 * publish it here at the end of onlining. This matches the 3635 * regular ID destruction during offlining. 3636 */ 3637 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3638 3639 return 0; 3640 offline_kmem: 3641 memcg_offline_kmem(memcg); 3642 remove_id: 3643 mem_cgroup_id_remove(memcg); 3644 return -ENOMEM; 3645 } 3646 3647 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3648 { 3649 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3650 3651 memcg1_css_offline(memcg); 3652 3653 page_counter_set_min(&memcg->memory, 0); 3654 page_counter_set_low(&memcg->memory, 0); 3655 3656 zswap_memcg_offline_cleanup(memcg); 3657 3658 memcg_offline_kmem(memcg); 3659 reparent_shrinker_deferred(memcg); 3660 wb_memcg_offline(memcg); 3661 lru_gen_offline_memcg(memcg); 3662 3663 drain_all_stock(memcg); 3664 3665 mem_cgroup_id_put(memcg); 3666 } 3667 3668 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3669 { 3670 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3671 3672 invalidate_reclaim_iterators(memcg); 3673 lru_gen_release_memcg(memcg); 3674 } 3675 3676 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3677 { 3678 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3679 int __maybe_unused i; 3680 3681 #ifdef CONFIG_CGROUP_WRITEBACK 3682 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3683 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3684 #endif 3685 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3686 static_branch_dec(&memcg_sockets_enabled_key); 3687 3688 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3689 static_branch_dec(&memcg_sockets_enabled_key); 3690 3691 if (!cgroup_memory_nobpf) 3692 static_branch_dec(&memcg_bpf_enabled_key); 3693 3694 vmpressure_cleanup(&memcg->vmpressure); 3695 cancel_work_sync(&memcg->high_work); 3696 memcg1_remove_from_trees(memcg); 3697 free_shrinker_info(memcg); 3698 mem_cgroup_free(memcg); 3699 } 3700 3701 /** 3702 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3703 * @css: the target css 3704 * 3705 * Reset the states of the mem_cgroup associated with @css. This is 3706 * invoked when the userland requests disabling on the default hierarchy 3707 * but the memcg is pinned through dependency. The memcg should stop 3708 * applying policies and should revert to the vanilla state as it may be 3709 * made visible again. 3710 * 3711 * The current implementation only resets the essential configurations. 3712 * This needs to be expanded to cover all the visible parts. 3713 */ 3714 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3715 { 3716 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3717 3718 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3719 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3720 #ifdef CONFIG_MEMCG_V1 3721 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3722 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3723 #endif 3724 page_counter_set_min(&memcg->memory, 0); 3725 page_counter_set_low(&memcg->memory, 0); 3726 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3727 memcg1_soft_limit_reset(memcg); 3728 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3729 memcg_wb_domain_size_changed(memcg); 3730 } 3731 3732 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3733 { 3734 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3735 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3736 struct memcg_vmstats_percpu *statc; 3737 long delta, delta_cpu, v; 3738 int i, nid; 3739 3740 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3741 3742 for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) { 3743 /* 3744 * Collect the aggregated propagation counts of groups 3745 * below us. We're in a per-cpu loop here and this is 3746 * a global counter, so the first cycle will get them. 3747 */ 3748 delta = memcg->vmstats->state_pending[i]; 3749 if (delta) 3750 memcg->vmstats->state_pending[i] = 0; 3751 3752 /* Add CPU changes on this level since the last flush */ 3753 delta_cpu = 0; 3754 v = READ_ONCE(statc->state[i]); 3755 if (v != statc->state_prev[i]) { 3756 delta_cpu = v - statc->state_prev[i]; 3757 delta += delta_cpu; 3758 statc->state_prev[i] = v; 3759 } 3760 3761 /* Aggregate counts on this level and propagate upwards */ 3762 if (delta_cpu) 3763 memcg->vmstats->state_local[i] += delta_cpu; 3764 3765 if (delta) { 3766 memcg->vmstats->state[i] += delta; 3767 if (parent) 3768 parent->vmstats->state_pending[i] += delta; 3769 } 3770 } 3771 3772 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 3773 delta = memcg->vmstats->events_pending[i]; 3774 if (delta) 3775 memcg->vmstats->events_pending[i] = 0; 3776 3777 delta_cpu = 0; 3778 v = READ_ONCE(statc->events[i]); 3779 if (v != statc->events_prev[i]) { 3780 delta_cpu = v - statc->events_prev[i]; 3781 delta += delta_cpu; 3782 statc->events_prev[i] = v; 3783 } 3784 3785 if (delta_cpu) 3786 memcg->vmstats->events_local[i] += delta_cpu; 3787 3788 if (delta) { 3789 memcg->vmstats->events[i] += delta; 3790 if (parent) 3791 parent->vmstats->events_pending[i] += delta; 3792 } 3793 } 3794 3795 for_each_node_state(nid, N_MEMORY) { 3796 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3797 struct lruvec_stats *lstats = pn->lruvec_stats; 3798 struct lruvec_stats *plstats = NULL; 3799 struct lruvec_stats_percpu *lstatc; 3800 3801 if (parent) 3802 plstats = parent->nodeinfo[nid]->lruvec_stats; 3803 3804 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 3805 3806 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) { 3807 delta = lstats->state_pending[i]; 3808 if (delta) 3809 lstats->state_pending[i] = 0; 3810 3811 delta_cpu = 0; 3812 v = READ_ONCE(lstatc->state[i]); 3813 if (v != lstatc->state_prev[i]) { 3814 delta_cpu = v - lstatc->state_prev[i]; 3815 delta += delta_cpu; 3816 lstatc->state_prev[i] = v; 3817 } 3818 3819 if (delta_cpu) 3820 lstats->state_local[i] += delta_cpu; 3821 3822 if (delta) { 3823 lstats->state[i] += delta; 3824 if (plstats) 3825 plstats->state_pending[i] += delta; 3826 } 3827 } 3828 } 3829 WRITE_ONCE(statc->stats_updates, 0); 3830 /* We are in a per-cpu loop here, only do the atomic write once */ 3831 if (atomic64_read(&memcg->vmstats->stats_updates)) 3832 atomic64_set(&memcg->vmstats->stats_updates, 0); 3833 } 3834 3835 static void mem_cgroup_fork(struct task_struct *task) 3836 { 3837 /* 3838 * Set the update flag to cause task->objcg to be initialized lazily 3839 * on the first allocation. It can be done without any synchronization 3840 * because it's always performed on the current task, so does 3841 * current_objcg_update(). 3842 */ 3843 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 3844 } 3845 3846 static void mem_cgroup_exit(struct task_struct *task) 3847 { 3848 struct obj_cgroup *objcg = task->objcg; 3849 3850 objcg = (struct obj_cgroup *) 3851 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 3852 obj_cgroup_put(objcg); 3853 3854 /* 3855 * Some kernel allocations can happen after this point, 3856 * but let's ignore them. It can be done without any synchronization 3857 * because it's always performed on the current task, so does 3858 * current_objcg_update(). 3859 */ 3860 task->objcg = NULL; 3861 } 3862 3863 #ifdef CONFIG_LRU_GEN 3864 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 3865 { 3866 struct task_struct *task; 3867 struct cgroup_subsys_state *css; 3868 3869 /* find the first leader if there is any */ 3870 cgroup_taskset_for_each_leader(task, css, tset) 3871 break; 3872 3873 if (!task) 3874 return; 3875 3876 task_lock(task); 3877 if (task->mm && READ_ONCE(task->mm->owner) == task) 3878 lru_gen_migrate_mm(task->mm); 3879 task_unlock(task); 3880 } 3881 #else 3882 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 3883 #endif /* CONFIG_LRU_GEN */ 3884 3885 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 3886 { 3887 struct task_struct *task; 3888 struct cgroup_subsys_state *css; 3889 3890 cgroup_taskset_for_each(task, css, tset) { 3891 /* atomically set the update bit */ 3892 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 3893 } 3894 } 3895 3896 static void mem_cgroup_attach(struct cgroup_taskset *tset) 3897 { 3898 mem_cgroup_lru_gen_attach(tset); 3899 mem_cgroup_kmem_attach(tset); 3900 } 3901 3902 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 3903 { 3904 if (value == PAGE_COUNTER_MAX) 3905 seq_puts(m, "max\n"); 3906 else 3907 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 3908 3909 return 0; 3910 } 3911 3912 static u64 memory_current_read(struct cgroup_subsys_state *css, 3913 struct cftype *cft) 3914 { 3915 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3916 3917 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 3918 } 3919 3920 #define OFP_PEAK_UNSET (((-1UL))) 3921 3922 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 3923 { 3924 struct cgroup_of_peak *ofp = of_peak(sf->private); 3925 u64 fd_peak = READ_ONCE(ofp->value), peak; 3926 3927 /* User wants global or local peak? */ 3928 if (fd_peak == OFP_PEAK_UNSET) 3929 peak = pc->watermark; 3930 else 3931 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 3932 3933 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 3934 return 0; 3935 } 3936 3937 static int memory_peak_show(struct seq_file *sf, void *v) 3938 { 3939 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3940 3941 return peak_show(sf, v, &memcg->memory); 3942 } 3943 3944 static int peak_open(struct kernfs_open_file *of) 3945 { 3946 struct cgroup_of_peak *ofp = of_peak(of); 3947 3948 ofp->value = OFP_PEAK_UNSET; 3949 return 0; 3950 } 3951 3952 static void peak_release(struct kernfs_open_file *of) 3953 { 3954 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3955 struct cgroup_of_peak *ofp = of_peak(of); 3956 3957 if (ofp->value == OFP_PEAK_UNSET) { 3958 /* fast path (no writes on this fd) */ 3959 return; 3960 } 3961 spin_lock(&memcg->peaks_lock); 3962 list_del(&ofp->list); 3963 spin_unlock(&memcg->peaks_lock); 3964 } 3965 3966 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 3967 loff_t off, struct page_counter *pc, 3968 struct list_head *watchers) 3969 { 3970 unsigned long usage; 3971 struct cgroup_of_peak *peer_ctx; 3972 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3973 struct cgroup_of_peak *ofp = of_peak(of); 3974 3975 spin_lock(&memcg->peaks_lock); 3976 3977 usage = page_counter_read(pc); 3978 WRITE_ONCE(pc->local_watermark, usage); 3979 3980 list_for_each_entry(peer_ctx, watchers, list) 3981 if (usage > peer_ctx->value) 3982 WRITE_ONCE(peer_ctx->value, usage); 3983 3984 /* initial write, register watcher */ 3985 if (ofp->value == -1) 3986 list_add(&ofp->list, watchers); 3987 3988 WRITE_ONCE(ofp->value, usage); 3989 spin_unlock(&memcg->peaks_lock); 3990 3991 return nbytes; 3992 } 3993 3994 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 3995 size_t nbytes, loff_t off) 3996 { 3997 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3998 3999 return peak_write(of, buf, nbytes, off, &memcg->memory, 4000 &memcg->memory_peaks); 4001 } 4002 4003 #undef OFP_PEAK_UNSET 4004 4005 static int memory_min_show(struct seq_file *m, void *v) 4006 { 4007 return seq_puts_memcg_tunable(m, 4008 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4009 } 4010 4011 static ssize_t memory_min_write(struct kernfs_open_file *of, 4012 char *buf, size_t nbytes, loff_t off) 4013 { 4014 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4015 unsigned long min; 4016 int err; 4017 4018 buf = strstrip(buf); 4019 err = page_counter_memparse(buf, "max", &min); 4020 if (err) 4021 return err; 4022 4023 page_counter_set_min(&memcg->memory, min); 4024 4025 return nbytes; 4026 } 4027 4028 static int memory_low_show(struct seq_file *m, void *v) 4029 { 4030 return seq_puts_memcg_tunable(m, 4031 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4032 } 4033 4034 static ssize_t memory_low_write(struct kernfs_open_file *of, 4035 char *buf, size_t nbytes, loff_t off) 4036 { 4037 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4038 unsigned long low; 4039 int err; 4040 4041 buf = strstrip(buf); 4042 err = page_counter_memparse(buf, "max", &low); 4043 if (err) 4044 return err; 4045 4046 page_counter_set_low(&memcg->memory, low); 4047 4048 return nbytes; 4049 } 4050 4051 static int memory_high_show(struct seq_file *m, void *v) 4052 { 4053 return seq_puts_memcg_tunable(m, 4054 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4055 } 4056 4057 static ssize_t memory_high_write(struct kernfs_open_file *of, 4058 char *buf, size_t nbytes, loff_t off) 4059 { 4060 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4061 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4062 bool drained = false; 4063 unsigned long high; 4064 int err; 4065 4066 buf = strstrip(buf); 4067 err = page_counter_memparse(buf, "max", &high); 4068 if (err) 4069 return err; 4070 4071 page_counter_set_high(&memcg->memory, high); 4072 4073 for (;;) { 4074 unsigned long nr_pages = page_counter_read(&memcg->memory); 4075 unsigned long reclaimed; 4076 4077 if (nr_pages <= high) 4078 break; 4079 4080 if (signal_pending(current)) 4081 break; 4082 4083 if (!drained) { 4084 drain_all_stock(memcg); 4085 drained = true; 4086 continue; 4087 } 4088 4089 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4090 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4091 4092 if (!reclaimed && !nr_retries--) 4093 break; 4094 } 4095 4096 memcg_wb_domain_size_changed(memcg); 4097 return nbytes; 4098 } 4099 4100 static int memory_max_show(struct seq_file *m, void *v) 4101 { 4102 return seq_puts_memcg_tunable(m, 4103 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4104 } 4105 4106 static ssize_t memory_max_write(struct kernfs_open_file *of, 4107 char *buf, size_t nbytes, loff_t off) 4108 { 4109 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4110 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4111 bool drained = false; 4112 unsigned long max; 4113 int err; 4114 4115 buf = strstrip(buf); 4116 err = page_counter_memparse(buf, "max", &max); 4117 if (err) 4118 return err; 4119 4120 xchg(&memcg->memory.max, max); 4121 4122 for (;;) { 4123 unsigned long nr_pages = page_counter_read(&memcg->memory); 4124 4125 if (nr_pages <= max) 4126 break; 4127 4128 if (signal_pending(current)) 4129 break; 4130 4131 if (!drained) { 4132 drain_all_stock(memcg); 4133 drained = true; 4134 continue; 4135 } 4136 4137 if (nr_reclaims) { 4138 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4139 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4140 nr_reclaims--; 4141 continue; 4142 } 4143 4144 memcg_memory_event(memcg, MEMCG_OOM); 4145 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4146 break; 4147 } 4148 4149 memcg_wb_domain_size_changed(memcg); 4150 return nbytes; 4151 } 4152 4153 /* 4154 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4155 * if any new events become available. 4156 */ 4157 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4158 { 4159 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4160 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4161 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4162 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4163 seq_printf(m, "oom_kill %lu\n", 4164 atomic_long_read(&events[MEMCG_OOM_KILL])); 4165 seq_printf(m, "oom_group_kill %lu\n", 4166 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4167 } 4168 4169 static int memory_events_show(struct seq_file *m, void *v) 4170 { 4171 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4172 4173 __memory_events_show(m, memcg->memory_events); 4174 return 0; 4175 } 4176 4177 static int memory_events_local_show(struct seq_file *m, void *v) 4178 { 4179 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4180 4181 __memory_events_show(m, memcg->memory_events_local); 4182 return 0; 4183 } 4184 4185 int memory_stat_show(struct seq_file *m, void *v) 4186 { 4187 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4188 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 4189 struct seq_buf s; 4190 4191 if (!buf) 4192 return -ENOMEM; 4193 seq_buf_init(&s, buf, PAGE_SIZE); 4194 memory_stat_format(memcg, &s); 4195 seq_puts(m, buf); 4196 kfree(buf); 4197 return 0; 4198 } 4199 4200 #ifdef CONFIG_NUMA 4201 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4202 int item) 4203 { 4204 return lruvec_page_state(lruvec, item) * 4205 memcg_page_state_output_unit(item); 4206 } 4207 4208 static int memory_numa_stat_show(struct seq_file *m, void *v) 4209 { 4210 int i; 4211 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4212 4213 mem_cgroup_flush_stats(memcg); 4214 4215 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4216 int nid; 4217 4218 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4219 continue; 4220 4221 seq_printf(m, "%s", memory_stats[i].name); 4222 for_each_node_state(nid, N_MEMORY) { 4223 u64 size; 4224 struct lruvec *lruvec; 4225 4226 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4227 size = lruvec_page_state_output(lruvec, 4228 memory_stats[i].idx); 4229 seq_printf(m, " N%d=%llu", nid, size); 4230 } 4231 seq_putc(m, '\n'); 4232 } 4233 4234 return 0; 4235 } 4236 #endif 4237 4238 static int memory_oom_group_show(struct seq_file *m, void *v) 4239 { 4240 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4241 4242 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4243 4244 return 0; 4245 } 4246 4247 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4248 char *buf, size_t nbytes, loff_t off) 4249 { 4250 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4251 int ret, oom_group; 4252 4253 buf = strstrip(buf); 4254 if (!buf) 4255 return -EINVAL; 4256 4257 ret = kstrtoint(buf, 0, &oom_group); 4258 if (ret) 4259 return ret; 4260 4261 if (oom_group != 0 && oom_group != 1) 4262 return -EINVAL; 4263 4264 WRITE_ONCE(memcg->oom_group, oom_group); 4265 4266 return nbytes; 4267 } 4268 4269 enum { 4270 MEMORY_RECLAIM_SWAPPINESS = 0, 4271 MEMORY_RECLAIM_NULL, 4272 }; 4273 4274 static const match_table_t tokens = { 4275 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4276 { MEMORY_RECLAIM_NULL, NULL }, 4277 }; 4278 4279 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4280 size_t nbytes, loff_t off) 4281 { 4282 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4283 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4284 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4285 int swappiness = -1; 4286 unsigned int reclaim_options; 4287 char *old_buf, *start; 4288 substring_t args[MAX_OPT_ARGS]; 4289 4290 buf = strstrip(buf); 4291 4292 old_buf = buf; 4293 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4294 if (buf == old_buf) 4295 return -EINVAL; 4296 4297 buf = strstrip(buf); 4298 4299 while ((start = strsep(&buf, " ")) != NULL) { 4300 if (!strlen(start)) 4301 continue; 4302 switch (match_token(start, tokens, args)) { 4303 case MEMORY_RECLAIM_SWAPPINESS: 4304 if (match_int(&args[0], &swappiness)) 4305 return -EINVAL; 4306 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4307 return -EINVAL; 4308 break; 4309 default: 4310 return -EINVAL; 4311 } 4312 } 4313 4314 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4315 while (nr_reclaimed < nr_to_reclaim) { 4316 /* Will converge on zero, but reclaim enforces a minimum */ 4317 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4318 unsigned long reclaimed; 4319 4320 if (signal_pending(current)) 4321 return -EINTR; 4322 4323 /* 4324 * This is the final attempt, drain percpu lru caches in the 4325 * hope of introducing more evictable pages for 4326 * try_to_free_mem_cgroup_pages(). 4327 */ 4328 if (!nr_retries) 4329 lru_add_drain_all(); 4330 4331 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4332 batch_size, GFP_KERNEL, 4333 reclaim_options, 4334 swappiness == -1 ? NULL : &swappiness); 4335 4336 if (!reclaimed && !nr_retries--) 4337 return -EAGAIN; 4338 4339 nr_reclaimed += reclaimed; 4340 } 4341 4342 return nbytes; 4343 } 4344 4345 static struct cftype memory_files[] = { 4346 { 4347 .name = "current", 4348 .flags = CFTYPE_NOT_ON_ROOT, 4349 .read_u64 = memory_current_read, 4350 }, 4351 { 4352 .name = "peak", 4353 .flags = CFTYPE_NOT_ON_ROOT, 4354 .open = peak_open, 4355 .release = peak_release, 4356 .seq_show = memory_peak_show, 4357 .write = memory_peak_write, 4358 }, 4359 { 4360 .name = "min", 4361 .flags = CFTYPE_NOT_ON_ROOT, 4362 .seq_show = memory_min_show, 4363 .write = memory_min_write, 4364 }, 4365 { 4366 .name = "low", 4367 .flags = CFTYPE_NOT_ON_ROOT, 4368 .seq_show = memory_low_show, 4369 .write = memory_low_write, 4370 }, 4371 { 4372 .name = "high", 4373 .flags = CFTYPE_NOT_ON_ROOT, 4374 .seq_show = memory_high_show, 4375 .write = memory_high_write, 4376 }, 4377 { 4378 .name = "max", 4379 .flags = CFTYPE_NOT_ON_ROOT, 4380 .seq_show = memory_max_show, 4381 .write = memory_max_write, 4382 }, 4383 { 4384 .name = "events", 4385 .flags = CFTYPE_NOT_ON_ROOT, 4386 .file_offset = offsetof(struct mem_cgroup, events_file), 4387 .seq_show = memory_events_show, 4388 }, 4389 { 4390 .name = "events.local", 4391 .flags = CFTYPE_NOT_ON_ROOT, 4392 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4393 .seq_show = memory_events_local_show, 4394 }, 4395 { 4396 .name = "stat", 4397 .seq_show = memory_stat_show, 4398 }, 4399 #ifdef CONFIG_NUMA 4400 { 4401 .name = "numa_stat", 4402 .seq_show = memory_numa_stat_show, 4403 }, 4404 #endif 4405 { 4406 .name = "oom.group", 4407 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4408 .seq_show = memory_oom_group_show, 4409 .write = memory_oom_group_write, 4410 }, 4411 { 4412 .name = "reclaim", 4413 .flags = CFTYPE_NS_DELEGATABLE, 4414 .write = memory_reclaim, 4415 }, 4416 { } /* terminate */ 4417 }; 4418 4419 struct cgroup_subsys memory_cgrp_subsys = { 4420 .css_alloc = mem_cgroup_css_alloc, 4421 .css_online = mem_cgroup_css_online, 4422 .css_offline = mem_cgroup_css_offline, 4423 .css_released = mem_cgroup_css_released, 4424 .css_free = mem_cgroup_css_free, 4425 .css_reset = mem_cgroup_css_reset, 4426 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4427 .attach = mem_cgroup_attach, 4428 .fork = mem_cgroup_fork, 4429 .exit = mem_cgroup_exit, 4430 .dfl_cftypes = memory_files, 4431 #ifdef CONFIG_MEMCG_V1 4432 .can_attach = memcg1_can_attach, 4433 .cancel_attach = memcg1_cancel_attach, 4434 .post_attach = memcg1_move_task, 4435 .legacy_cftypes = mem_cgroup_legacy_files, 4436 #endif 4437 .early_init = 0, 4438 }; 4439 4440 /** 4441 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4442 * @root: the top ancestor of the sub-tree being checked 4443 * @memcg: the memory cgroup to check 4444 * 4445 * WARNING: This function is not stateless! It can only be used as part 4446 * of a top-down tree iteration, not for isolated queries. 4447 */ 4448 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4449 struct mem_cgroup *memcg) 4450 { 4451 bool recursive_protection = 4452 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4453 4454 if (mem_cgroup_disabled()) 4455 return; 4456 4457 if (!root) 4458 root = root_mem_cgroup; 4459 4460 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4461 } 4462 4463 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4464 gfp_t gfp) 4465 { 4466 int ret; 4467 4468 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4469 if (ret) 4470 goto out; 4471 4472 mem_cgroup_commit_charge(folio, memcg); 4473 out: 4474 return ret; 4475 } 4476 4477 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4478 { 4479 struct mem_cgroup *memcg; 4480 int ret; 4481 4482 memcg = get_mem_cgroup_from_mm(mm); 4483 ret = charge_memcg(folio, memcg, gfp); 4484 css_put(&memcg->css); 4485 4486 return ret; 4487 } 4488 4489 /** 4490 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio 4491 * @memcg: memcg to charge. 4492 * @gfp: reclaim mode. 4493 * @nr_pages: number of pages to charge. 4494 * 4495 * This function is called when allocating a huge page folio to determine if 4496 * the memcg has the capacity for it. It does not commit the charge yet, 4497 * as the hugetlb folio itself has not been obtained from the hugetlb pool. 4498 * 4499 * Once we have obtained the hugetlb folio, we can call 4500 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the 4501 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect 4502 * of try_charge(). 4503 * 4504 * Returns 0 on success. Otherwise, an error code is returned. 4505 */ 4506 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 4507 long nr_pages) 4508 { 4509 /* 4510 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, 4511 * but do not attempt to commit charge later (or cancel on error) either. 4512 */ 4513 if (mem_cgroup_disabled() || !memcg || 4514 !cgroup_subsys_on_dfl(memory_cgrp_subsys) || 4515 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) 4516 return -EOPNOTSUPP; 4517 4518 if (try_charge(memcg, gfp, nr_pages)) 4519 return -ENOMEM; 4520 4521 return 0; 4522 } 4523 4524 /** 4525 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4526 * @folio: folio to charge. 4527 * @mm: mm context of the victim 4528 * @gfp: reclaim mode 4529 * @entry: swap entry for which the folio is allocated 4530 * 4531 * This function charges a folio allocated for swapin. Please call this before 4532 * adding the folio to the swapcache. 4533 * 4534 * Returns 0 on success. Otherwise, an error code is returned. 4535 */ 4536 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4537 gfp_t gfp, swp_entry_t entry) 4538 { 4539 struct mem_cgroup *memcg; 4540 unsigned short id; 4541 int ret; 4542 4543 if (mem_cgroup_disabled()) 4544 return 0; 4545 4546 id = lookup_swap_cgroup_id(entry); 4547 rcu_read_lock(); 4548 memcg = mem_cgroup_from_id(id); 4549 if (!memcg || !css_tryget_online(&memcg->css)) 4550 memcg = get_mem_cgroup_from_mm(mm); 4551 rcu_read_unlock(); 4552 4553 ret = charge_memcg(folio, memcg, gfp); 4554 4555 css_put(&memcg->css); 4556 return ret; 4557 } 4558 4559 /* 4560 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 4561 * @entry: the first swap entry for which the pages are charged 4562 * @nr_pages: number of pages which will be uncharged 4563 * 4564 * Call this function after successfully adding the charged page to swapcache. 4565 * 4566 * Note: This function assumes the page for which swap slot is being uncharged 4567 * is order 0 page. 4568 */ 4569 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 4570 { 4571 /* 4572 * Cgroup1's unified memory+swap counter has been charged with the 4573 * new swapcache page, finish the transfer by uncharging the swap 4574 * slot. The swap slot would also get uncharged when it dies, but 4575 * it can stick around indefinitely and we'd count the page twice 4576 * the entire time. 4577 * 4578 * Cgroup2 has separate resource counters for memory and swap, 4579 * so this is a non-issue here. Memory and swap charge lifetimes 4580 * correspond 1:1 to page and swap slot lifetimes: we charge the 4581 * page to memory here, and uncharge swap when the slot is freed. 4582 */ 4583 if (!mem_cgroup_disabled() && do_memsw_account()) { 4584 /* 4585 * The swap entry might not get freed for a long time, 4586 * let's not wait for it. The page already received a 4587 * memory+swap charge, drop the swap entry duplicate. 4588 */ 4589 mem_cgroup_uncharge_swap(entry, nr_pages); 4590 } 4591 } 4592 4593 struct uncharge_gather { 4594 struct mem_cgroup *memcg; 4595 unsigned long nr_memory; 4596 unsigned long pgpgout; 4597 unsigned long nr_kmem; 4598 int nid; 4599 }; 4600 4601 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4602 { 4603 memset(ug, 0, sizeof(*ug)); 4604 } 4605 4606 static void uncharge_batch(const struct uncharge_gather *ug) 4607 { 4608 if (ug->nr_memory) { 4609 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 4610 if (do_memsw_account()) 4611 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 4612 if (ug->nr_kmem) { 4613 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4614 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4615 } 4616 memcg1_oom_recover(ug->memcg); 4617 } 4618 4619 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4620 4621 /* drop reference from uncharge_folio */ 4622 css_put(&ug->memcg->css); 4623 } 4624 4625 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4626 { 4627 long nr_pages; 4628 struct mem_cgroup *memcg; 4629 struct obj_cgroup *objcg; 4630 4631 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4632 VM_BUG_ON_FOLIO(folio_order(folio) > 1 && 4633 !folio_test_hugetlb(folio) && 4634 !list_empty(&folio->_deferred_list) && 4635 folio_test_partially_mapped(folio), folio); 4636 4637 /* 4638 * Nobody should be changing or seriously looking at 4639 * folio memcg or objcg at this point, we have fully 4640 * exclusive access to the folio. 4641 */ 4642 if (folio_memcg_kmem(folio)) { 4643 objcg = __folio_objcg(folio); 4644 /* 4645 * This get matches the put at the end of the function and 4646 * kmem pages do not hold memcg references anymore. 4647 */ 4648 memcg = get_mem_cgroup_from_objcg(objcg); 4649 } else { 4650 memcg = __folio_memcg(folio); 4651 } 4652 4653 if (!memcg) 4654 return; 4655 4656 if (ug->memcg != memcg) { 4657 if (ug->memcg) { 4658 uncharge_batch(ug); 4659 uncharge_gather_clear(ug); 4660 } 4661 ug->memcg = memcg; 4662 ug->nid = folio_nid(folio); 4663 4664 /* pairs with css_put in uncharge_batch */ 4665 css_get(&memcg->css); 4666 } 4667 4668 nr_pages = folio_nr_pages(folio); 4669 4670 if (folio_memcg_kmem(folio)) { 4671 ug->nr_memory += nr_pages; 4672 ug->nr_kmem += nr_pages; 4673 4674 folio->memcg_data = 0; 4675 obj_cgroup_put(objcg); 4676 } else { 4677 /* LRU pages aren't accounted at the root level */ 4678 if (!mem_cgroup_is_root(memcg)) 4679 ug->nr_memory += nr_pages; 4680 ug->pgpgout++; 4681 4682 folio->memcg_data = 0; 4683 } 4684 4685 css_put(&memcg->css); 4686 } 4687 4688 void __mem_cgroup_uncharge(struct folio *folio) 4689 { 4690 struct uncharge_gather ug; 4691 4692 /* Don't touch folio->lru of any random page, pre-check: */ 4693 if (!folio_memcg_charged(folio)) 4694 return; 4695 4696 uncharge_gather_clear(&ug); 4697 uncharge_folio(folio, &ug); 4698 uncharge_batch(&ug); 4699 } 4700 4701 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4702 { 4703 struct uncharge_gather ug; 4704 unsigned int i; 4705 4706 uncharge_gather_clear(&ug); 4707 for (i = 0; i < folios->nr; i++) 4708 uncharge_folio(folios->folios[i], &ug); 4709 if (ug.memcg) 4710 uncharge_batch(&ug); 4711 } 4712 4713 /** 4714 * mem_cgroup_replace_folio - Charge a folio's replacement. 4715 * @old: Currently circulating folio. 4716 * @new: Replacement folio. 4717 * 4718 * Charge @new as a replacement folio for @old. @old will 4719 * be uncharged upon free. 4720 * 4721 * Both folios must be locked, @new->mapping must be set up. 4722 */ 4723 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4724 { 4725 struct mem_cgroup *memcg; 4726 long nr_pages = folio_nr_pages(new); 4727 4728 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4729 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4730 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4731 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4732 4733 if (mem_cgroup_disabled()) 4734 return; 4735 4736 /* Page cache replacement: new folio already charged? */ 4737 if (folio_memcg_charged(new)) 4738 return; 4739 4740 memcg = folio_memcg(old); 4741 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4742 if (!memcg) 4743 return; 4744 4745 /* Force-charge the new page. The old one will be freed soon */ 4746 if (!mem_cgroup_is_root(memcg)) { 4747 page_counter_charge(&memcg->memory, nr_pages); 4748 if (do_memsw_account()) 4749 page_counter_charge(&memcg->memsw, nr_pages); 4750 } 4751 4752 css_get(&memcg->css); 4753 commit_charge(new, memcg); 4754 memcg1_commit_charge(new, memcg); 4755 } 4756 4757 /** 4758 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4759 * @old: Currently circulating folio. 4760 * @new: Replacement folio. 4761 * 4762 * Transfer the memcg data from the old folio to the new folio for migration. 4763 * The old folio's data info will be cleared. Note that the memory counters 4764 * will remain unchanged throughout the process. 4765 * 4766 * Both folios must be locked, @new->mapping must be set up. 4767 */ 4768 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4769 { 4770 struct mem_cgroup *memcg; 4771 4772 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4773 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4774 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4775 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4776 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4777 4778 if (mem_cgroup_disabled()) 4779 return; 4780 4781 memcg = folio_memcg(old); 4782 /* 4783 * Note that it is normal to see !memcg for a hugetlb folio. 4784 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4785 * was not selected. 4786 */ 4787 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4788 if (!memcg) 4789 return; 4790 4791 /* Transfer the charge and the css ref */ 4792 commit_charge(new, memcg); 4793 old->memcg_data = 0; 4794 } 4795 4796 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4797 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4798 4799 void mem_cgroup_sk_alloc(struct sock *sk) 4800 { 4801 struct mem_cgroup *memcg; 4802 4803 if (!mem_cgroup_sockets_enabled) 4804 return; 4805 4806 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4807 if (!in_task()) 4808 return; 4809 4810 rcu_read_lock(); 4811 memcg = mem_cgroup_from_task(current); 4812 if (mem_cgroup_is_root(memcg)) 4813 goto out; 4814 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4815 goto out; 4816 if (css_tryget(&memcg->css)) 4817 sk->sk_memcg = memcg; 4818 out: 4819 rcu_read_unlock(); 4820 } 4821 4822 void mem_cgroup_sk_free(struct sock *sk) 4823 { 4824 if (sk->sk_memcg) 4825 css_put(&sk->sk_memcg->css); 4826 } 4827 4828 /** 4829 * mem_cgroup_charge_skmem - charge socket memory 4830 * @memcg: memcg to charge 4831 * @nr_pages: number of pages to charge 4832 * @gfp_mask: reclaim mode 4833 * 4834 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4835 * @memcg's configured limit, %false if it doesn't. 4836 */ 4837 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4838 gfp_t gfp_mask) 4839 { 4840 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4841 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4842 4843 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 4844 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 4845 return true; 4846 } 4847 4848 return false; 4849 } 4850 4851 /** 4852 * mem_cgroup_uncharge_skmem - uncharge socket memory 4853 * @memcg: memcg to uncharge 4854 * @nr_pages: number of pages to uncharge 4855 */ 4856 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 4857 { 4858 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 4859 memcg1_uncharge_skmem(memcg, nr_pages); 4860 return; 4861 } 4862 4863 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 4864 4865 refill_stock(memcg, nr_pages); 4866 } 4867 4868 static int __init cgroup_memory(char *s) 4869 { 4870 char *token; 4871 4872 while ((token = strsep(&s, ",")) != NULL) { 4873 if (!*token) 4874 continue; 4875 if (!strcmp(token, "nosocket")) 4876 cgroup_memory_nosocket = true; 4877 if (!strcmp(token, "nokmem")) 4878 cgroup_memory_nokmem = true; 4879 if (!strcmp(token, "nobpf")) 4880 cgroup_memory_nobpf = true; 4881 } 4882 return 1; 4883 } 4884 __setup("cgroup.memory=", cgroup_memory); 4885 4886 /* 4887 * subsys_initcall() for memory controller. 4888 * 4889 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 4890 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 4891 * basically everything that doesn't depend on a specific mem_cgroup structure 4892 * should be initialized from here. 4893 */ 4894 static int __init mem_cgroup_init(void) 4895 { 4896 int cpu; 4897 4898 /* 4899 * Currently s32 type (can refer to struct batched_lruvec_stat) is 4900 * used for per-memcg-per-cpu caching of per-node statistics. In order 4901 * to work fine, we should make sure that the overfill threshold can't 4902 * exceed S32_MAX / PAGE_SIZE. 4903 */ 4904 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 4905 4906 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 4907 memcg_hotplug_cpu_dead); 4908 4909 for_each_possible_cpu(cpu) 4910 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 4911 drain_local_stock); 4912 4913 return 0; 4914 } 4915 subsys_initcall(mem_cgroup_init); 4916 4917 #ifdef CONFIG_SWAP 4918 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 4919 { 4920 while (!refcount_inc_not_zero(&memcg->id.ref)) { 4921 /* 4922 * The root cgroup cannot be destroyed, so it's refcount must 4923 * always be >= 1. 4924 */ 4925 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 4926 VM_BUG_ON(1); 4927 break; 4928 } 4929 memcg = parent_mem_cgroup(memcg); 4930 if (!memcg) 4931 memcg = root_mem_cgroup; 4932 } 4933 return memcg; 4934 } 4935 4936 /** 4937 * mem_cgroup_swapout - transfer a memsw charge to swap 4938 * @folio: folio whose memsw charge to transfer 4939 * @entry: swap entry to move the charge to 4940 * 4941 * Transfer the memsw charge of @folio to @entry. 4942 */ 4943 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 4944 { 4945 struct mem_cgroup *memcg, *swap_memcg; 4946 unsigned int nr_entries; 4947 unsigned short oldid; 4948 4949 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4950 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 4951 4952 if (mem_cgroup_disabled()) 4953 return; 4954 4955 if (!do_memsw_account()) 4956 return; 4957 4958 memcg = folio_memcg(folio); 4959 4960 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 4961 if (!memcg) 4962 return; 4963 4964 /* 4965 * In case the memcg owning these pages has been offlined and doesn't 4966 * have an ID allocated to it anymore, charge the closest online 4967 * ancestor for the swap instead and transfer the memory+swap charge. 4968 */ 4969 swap_memcg = mem_cgroup_id_get_online(memcg); 4970 nr_entries = folio_nr_pages(folio); 4971 /* Get references for the tail pages, too */ 4972 if (nr_entries > 1) 4973 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 4974 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 4975 nr_entries); 4976 VM_BUG_ON_FOLIO(oldid, folio); 4977 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 4978 4979 folio->memcg_data = 0; 4980 4981 if (!mem_cgroup_is_root(memcg)) 4982 page_counter_uncharge(&memcg->memory, nr_entries); 4983 4984 if (memcg != swap_memcg) { 4985 if (!mem_cgroup_is_root(swap_memcg)) 4986 page_counter_charge(&swap_memcg->memsw, nr_entries); 4987 page_counter_uncharge(&memcg->memsw, nr_entries); 4988 } 4989 4990 memcg1_swapout(folio, memcg); 4991 css_put(&memcg->css); 4992 } 4993 4994 /** 4995 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 4996 * @folio: folio being added to swap 4997 * @entry: swap entry to charge 4998 * 4999 * Try to charge @folio's memcg for the swap space at @entry. 5000 * 5001 * Returns 0 on success, -ENOMEM on failure. 5002 */ 5003 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5004 { 5005 unsigned int nr_pages = folio_nr_pages(folio); 5006 struct page_counter *counter; 5007 struct mem_cgroup *memcg; 5008 unsigned short oldid; 5009 5010 if (do_memsw_account()) 5011 return 0; 5012 5013 memcg = folio_memcg(folio); 5014 5015 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5016 if (!memcg) 5017 return 0; 5018 5019 if (!entry.val) { 5020 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5021 return 0; 5022 } 5023 5024 memcg = mem_cgroup_id_get_online(memcg); 5025 5026 if (!mem_cgroup_is_root(memcg) && 5027 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5028 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5029 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5030 mem_cgroup_id_put(memcg); 5031 return -ENOMEM; 5032 } 5033 5034 /* Get references for the tail pages, too */ 5035 if (nr_pages > 1) 5036 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5037 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 5038 VM_BUG_ON_FOLIO(oldid, folio); 5039 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5040 5041 return 0; 5042 } 5043 5044 /** 5045 * __mem_cgroup_uncharge_swap - uncharge swap space 5046 * @entry: swap entry to uncharge 5047 * @nr_pages: the amount of swap space to uncharge 5048 */ 5049 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5050 { 5051 struct mem_cgroup *memcg; 5052 unsigned short id; 5053 5054 id = swap_cgroup_record(entry, 0, nr_pages); 5055 rcu_read_lock(); 5056 memcg = mem_cgroup_from_id(id); 5057 if (memcg) { 5058 if (!mem_cgroup_is_root(memcg)) { 5059 if (do_memsw_account()) 5060 page_counter_uncharge(&memcg->memsw, nr_pages); 5061 else 5062 page_counter_uncharge(&memcg->swap, nr_pages); 5063 } 5064 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5065 mem_cgroup_id_put_many(memcg, nr_pages); 5066 } 5067 rcu_read_unlock(); 5068 } 5069 5070 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5071 { 5072 long nr_swap_pages = get_nr_swap_pages(); 5073 5074 if (mem_cgroup_disabled() || do_memsw_account()) 5075 return nr_swap_pages; 5076 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5077 nr_swap_pages = min_t(long, nr_swap_pages, 5078 READ_ONCE(memcg->swap.max) - 5079 page_counter_read(&memcg->swap)); 5080 return nr_swap_pages; 5081 } 5082 5083 bool mem_cgroup_swap_full(struct folio *folio) 5084 { 5085 struct mem_cgroup *memcg; 5086 5087 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5088 5089 if (vm_swap_full()) 5090 return true; 5091 if (do_memsw_account()) 5092 return false; 5093 5094 memcg = folio_memcg(folio); 5095 if (!memcg) 5096 return false; 5097 5098 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5099 unsigned long usage = page_counter_read(&memcg->swap); 5100 5101 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5102 usage * 2 >= READ_ONCE(memcg->swap.max)) 5103 return true; 5104 } 5105 5106 return false; 5107 } 5108 5109 static int __init setup_swap_account(char *s) 5110 { 5111 bool res; 5112 5113 if (!kstrtobool(s, &res) && !res) 5114 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5115 "in favor of configuring swap control via cgroupfs. " 5116 "Please report your usecase to linux-mm@kvack.org if you " 5117 "depend on this functionality.\n"); 5118 return 1; 5119 } 5120 __setup("swapaccount=", setup_swap_account); 5121 5122 static u64 swap_current_read(struct cgroup_subsys_state *css, 5123 struct cftype *cft) 5124 { 5125 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5126 5127 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5128 } 5129 5130 static int swap_peak_show(struct seq_file *sf, void *v) 5131 { 5132 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5133 5134 return peak_show(sf, v, &memcg->swap); 5135 } 5136 5137 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5138 size_t nbytes, loff_t off) 5139 { 5140 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5141 5142 return peak_write(of, buf, nbytes, off, &memcg->swap, 5143 &memcg->swap_peaks); 5144 } 5145 5146 static int swap_high_show(struct seq_file *m, void *v) 5147 { 5148 return seq_puts_memcg_tunable(m, 5149 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5150 } 5151 5152 static ssize_t swap_high_write(struct kernfs_open_file *of, 5153 char *buf, size_t nbytes, loff_t off) 5154 { 5155 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5156 unsigned long high; 5157 int err; 5158 5159 buf = strstrip(buf); 5160 err = page_counter_memparse(buf, "max", &high); 5161 if (err) 5162 return err; 5163 5164 page_counter_set_high(&memcg->swap, high); 5165 5166 return nbytes; 5167 } 5168 5169 static int swap_max_show(struct seq_file *m, void *v) 5170 { 5171 return seq_puts_memcg_tunable(m, 5172 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5173 } 5174 5175 static ssize_t swap_max_write(struct kernfs_open_file *of, 5176 char *buf, size_t nbytes, loff_t off) 5177 { 5178 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5179 unsigned long max; 5180 int err; 5181 5182 buf = strstrip(buf); 5183 err = page_counter_memparse(buf, "max", &max); 5184 if (err) 5185 return err; 5186 5187 xchg(&memcg->swap.max, max); 5188 5189 return nbytes; 5190 } 5191 5192 static int swap_events_show(struct seq_file *m, void *v) 5193 { 5194 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5195 5196 seq_printf(m, "high %lu\n", 5197 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5198 seq_printf(m, "max %lu\n", 5199 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5200 seq_printf(m, "fail %lu\n", 5201 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5202 5203 return 0; 5204 } 5205 5206 static struct cftype swap_files[] = { 5207 { 5208 .name = "swap.current", 5209 .flags = CFTYPE_NOT_ON_ROOT, 5210 .read_u64 = swap_current_read, 5211 }, 5212 { 5213 .name = "swap.high", 5214 .flags = CFTYPE_NOT_ON_ROOT, 5215 .seq_show = swap_high_show, 5216 .write = swap_high_write, 5217 }, 5218 { 5219 .name = "swap.max", 5220 .flags = CFTYPE_NOT_ON_ROOT, 5221 .seq_show = swap_max_show, 5222 .write = swap_max_write, 5223 }, 5224 { 5225 .name = "swap.peak", 5226 .flags = CFTYPE_NOT_ON_ROOT, 5227 .open = peak_open, 5228 .release = peak_release, 5229 .seq_show = swap_peak_show, 5230 .write = swap_peak_write, 5231 }, 5232 { 5233 .name = "swap.events", 5234 .flags = CFTYPE_NOT_ON_ROOT, 5235 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5236 .seq_show = swap_events_show, 5237 }, 5238 { } /* terminate */ 5239 }; 5240 5241 #ifdef CONFIG_ZSWAP 5242 /** 5243 * obj_cgroup_may_zswap - check if this cgroup can zswap 5244 * @objcg: the object cgroup 5245 * 5246 * Check if the hierarchical zswap limit has been reached. 5247 * 5248 * This doesn't check for specific headroom, and it is not atomic 5249 * either. But with zswap, the size of the allocation is only known 5250 * once compression has occurred, and this optimistic pre-check avoids 5251 * spending cycles on compression when there is already no room left 5252 * or zswap is disabled altogether somewhere in the hierarchy. 5253 */ 5254 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5255 { 5256 struct mem_cgroup *memcg, *original_memcg; 5257 bool ret = true; 5258 5259 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5260 return true; 5261 5262 original_memcg = get_mem_cgroup_from_objcg(objcg); 5263 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5264 memcg = parent_mem_cgroup(memcg)) { 5265 unsigned long max = READ_ONCE(memcg->zswap_max); 5266 unsigned long pages; 5267 5268 if (max == PAGE_COUNTER_MAX) 5269 continue; 5270 if (max == 0) { 5271 ret = false; 5272 break; 5273 } 5274 5275 /* 5276 * mem_cgroup_flush_stats() ignores small changes. Use 5277 * do_flush_stats() directly to get accurate stats for charging. 5278 */ 5279 do_flush_stats(memcg); 5280 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5281 if (pages < max) 5282 continue; 5283 ret = false; 5284 break; 5285 } 5286 mem_cgroup_put(original_memcg); 5287 return ret; 5288 } 5289 5290 /** 5291 * obj_cgroup_charge_zswap - charge compression backend memory 5292 * @objcg: the object cgroup 5293 * @size: size of compressed object 5294 * 5295 * This forces the charge after obj_cgroup_may_zswap() allowed 5296 * compression and storage in zwap for this cgroup to go ahead. 5297 */ 5298 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5299 { 5300 struct mem_cgroup *memcg; 5301 5302 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5303 return; 5304 5305 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5306 5307 /* PF_MEMALLOC context, charging must succeed */ 5308 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5309 VM_WARN_ON_ONCE(1); 5310 5311 rcu_read_lock(); 5312 memcg = obj_cgroup_memcg(objcg); 5313 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5314 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5315 rcu_read_unlock(); 5316 } 5317 5318 /** 5319 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5320 * @objcg: the object cgroup 5321 * @size: size of compressed object 5322 * 5323 * Uncharges zswap memory on page in. 5324 */ 5325 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5326 { 5327 struct mem_cgroup *memcg; 5328 5329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5330 return; 5331 5332 obj_cgroup_uncharge(objcg, size); 5333 5334 rcu_read_lock(); 5335 memcg = obj_cgroup_memcg(objcg); 5336 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5337 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5338 rcu_read_unlock(); 5339 } 5340 5341 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5342 { 5343 /* if zswap is disabled, do not block pages going to the swapping device */ 5344 if (!zswap_is_enabled()) 5345 return true; 5346 5347 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5348 if (!READ_ONCE(memcg->zswap_writeback)) 5349 return false; 5350 5351 return true; 5352 } 5353 5354 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5355 struct cftype *cft) 5356 { 5357 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5358 5359 mem_cgroup_flush_stats(memcg); 5360 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5361 } 5362 5363 static int zswap_max_show(struct seq_file *m, void *v) 5364 { 5365 return seq_puts_memcg_tunable(m, 5366 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5367 } 5368 5369 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5370 char *buf, size_t nbytes, loff_t off) 5371 { 5372 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5373 unsigned long max; 5374 int err; 5375 5376 buf = strstrip(buf); 5377 err = page_counter_memparse(buf, "max", &max); 5378 if (err) 5379 return err; 5380 5381 xchg(&memcg->zswap_max, max); 5382 5383 return nbytes; 5384 } 5385 5386 static int zswap_writeback_show(struct seq_file *m, void *v) 5387 { 5388 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5389 5390 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5391 return 0; 5392 } 5393 5394 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5395 char *buf, size_t nbytes, loff_t off) 5396 { 5397 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5398 int zswap_writeback; 5399 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5400 5401 if (parse_ret) 5402 return parse_ret; 5403 5404 if (zswap_writeback != 0 && zswap_writeback != 1) 5405 return -EINVAL; 5406 5407 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5408 return nbytes; 5409 } 5410 5411 static struct cftype zswap_files[] = { 5412 { 5413 .name = "zswap.current", 5414 .flags = CFTYPE_NOT_ON_ROOT, 5415 .read_u64 = zswap_current_read, 5416 }, 5417 { 5418 .name = "zswap.max", 5419 .flags = CFTYPE_NOT_ON_ROOT, 5420 .seq_show = zswap_max_show, 5421 .write = zswap_max_write, 5422 }, 5423 { 5424 .name = "zswap.writeback", 5425 .seq_show = zswap_writeback_show, 5426 .write = zswap_writeback_write, 5427 }, 5428 { } /* terminate */ 5429 }; 5430 #endif /* CONFIG_ZSWAP */ 5431 5432 static int __init mem_cgroup_swap_init(void) 5433 { 5434 if (mem_cgroup_disabled()) 5435 return 0; 5436 5437 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5438 #ifdef CONFIG_MEMCG_V1 5439 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5440 #endif 5441 #ifdef CONFIG_ZSWAP 5442 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5443 #endif 5444 return 0; 5445 } 5446 subsys_initcall(mem_cgroup_swap_init); 5447 5448 #endif /* CONFIG_SWAP */ 5449