1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/mutex.h> 46 #include <linux/rbtree.h> 47 #include <linux/slab.h> 48 #include <linux/swap.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/eventfd.h> 52 #include <linux/poll.h> 53 #include <linux/sort.h> 54 #include <linux/fs.h> 55 #include <linux/seq_file.h> 56 #include <linux/vmpressure.h> 57 #include <linux/memremap.h> 58 #include <linux/mm_inline.h> 59 #include <linux/swap_cgroup.h> 60 #include <linux/cpu.h> 61 #include <linux/oom.h> 62 #include <linux/lockdep.h> 63 #include <linux/file.h> 64 #include <linux/resume_user_mode.h> 65 #include <linux/psi.h> 66 #include <linux/seq_buf.h> 67 #include <linux/sched/isolation.h> 68 #include <linux/kmemleak.h> 69 #include "internal.h" 70 #include <net/sock.h> 71 #include <net/ip.h> 72 #include "slab.h" 73 #include "swap.h" 74 75 #include <linux/uaccess.h> 76 77 #include <trace/events/vmscan.h> 78 79 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 80 EXPORT_SYMBOL(memory_cgrp_subsys); 81 82 struct mem_cgroup *root_mem_cgroup __read_mostly; 83 84 /* Active memory cgroup to use from an interrupt context */ 85 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 86 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 87 88 /* Socket memory accounting disabled? */ 89 static bool cgroup_memory_nosocket __ro_after_init; 90 91 /* Kernel memory accounting disabled? */ 92 static bool cgroup_memory_nokmem __ro_after_init; 93 94 /* BPF memory accounting disabled? */ 95 static bool cgroup_memory_nobpf __ro_after_init; 96 97 #ifdef CONFIG_CGROUP_WRITEBACK 98 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 99 #endif 100 101 /* Whether legacy memory+swap accounting is active */ 102 static bool do_memsw_account(void) 103 { 104 return !cgroup_subsys_on_dfl(memory_cgrp_subsys); 105 } 106 107 #define THRESHOLDS_EVENTS_TARGET 128 108 #define SOFTLIMIT_EVENTS_TARGET 1024 109 110 /* 111 * Cgroups above their limits are maintained in a RB-Tree, independent of 112 * their hierarchy representation 113 */ 114 115 struct mem_cgroup_tree_per_node { 116 struct rb_root rb_root; 117 struct rb_node *rb_rightmost; 118 spinlock_t lock; 119 }; 120 121 struct mem_cgroup_tree { 122 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 123 }; 124 125 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 126 127 /* for OOM */ 128 struct mem_cgroup_eventfd_list { 129 struct list_head list; 130 struct eventfd_ctx *eventfd; 131 }; 132 133 /* 134 * cgroup_event represents events which userspace want to receive. 135 */ 136 struct mem_cgroup_event { 137 /* 138 * memcg which the event belongs to. 139 */ 140 struct mem_cgroup *memcg; 141 /* 142 * eventfd to signal userspace about the event. 143 */ 144 struct eventfd_ctx *eventfd; 145 /* 146 * Each of these stored in a list by the cgroup. 147 */ 148 struct list_head list; 149 /* 150 * register_event() callback will be used to add new userspace 151 * waiter for changes related to this event. Use eventfd_signal() 152 * on eventfd to send notification to userspace. 153 */ 154 int (*register_event)(struct mem_cgroup *memcg, 155 struct eventfd_ctx *eventfd, const char *args); 156 /* 157 * unregister_event() callback will be called when userspace closes 158 * the eventfd or on cgroup removing. This callback must be set, 159 * if you want provide notification functionality. 160 */ 161 void (*unregister_event)(struct mem_cgroup *memcg, 162 struct eventfd_ctx *eventfd); 163 /* 164 * All fields below needed to unregister event when 165 * userspace closes eventfd. 166 */ 167 poll_table pt; 168 wait_queue_head_t *wqh; 169 wait_queue_entry_t wait; 170 struct work_struct remove; 171 }; 172 173 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 174 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 175 176 /* Stuffs for move charges at task migration. */ 177 /* 178 * Types of charges to be moved. 179 */ 180 #define MOVE_ANON 0x1U 181 #define MOVE_FILE 0x2U 182 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 183 184 /* "mc" and its members are protected by cgroup_mutex */ 185 static struct move_charge_struct { 186 spinlock_t lock; /* for from, to */ 187 struct mm_struct *mm; 188 struct mem_cgroup *from; 189 struct mem_cgroup *to; 190 unsigned long flags; 191 unsigned long precharge; 192 unsigned long moved_charge; 193 unsigned long moved_swap; 194 struct task_struct *moving_task; /* a task moving charges */ 195 wait_queue_head_t waitq; /* a waitq for other context */ 196 } mc = { 197 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 198 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 199 }; 200 201 /* 202 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft 203 * limit reclaim to prevent infinite loops, if they ever occur. 204 */ 205 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 206 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 207 208 /* for encoding cft->private value on file */ 209 enum res_type { 210 _MEM, 211 _MEMSWAP, 212 _KMEM, 213 _TCP, 214 }; 215 216 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 217 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 218 #define MEMFILE_ATTR(val) ((val) & 0xffff) 219 220 /* 221 * Iteration constructs for visiting all cgroups (under a tree). If 222 * loops are exited prematurely (break), mem_cgroup_iter_break() must 223 * be used for reference counting. 224 */ 225 #define for_each_mem_cgroup_tree(iter, root) \ 226 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 227 iter != NULL; \ 228 iter = mem_cgroup_iter(root, iter, NULL)) 229 230 #define for_each_mem_cgroup(iter) \ 231 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 232 iter != NULL; \ 233 iter = mem_cgroup_iter(NULL, iter, NULL)) 234 235 static inline bool task_is_dying(void) 236 { 237 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 238 (current->flags & PF_EXITING); 239 } 240 241 /* Some nice accessors for the vmpressure. */ 242 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 243 { 244 if (!memcg) 245 memcg = root_mem_cgroup; 246 return &memcg->vmpressure; 247 } 248 249 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 250 { 251 return container_of(vmpr, struct mem_cgroup, vmpressure); 252 } 253 254 #define CURRENT_OBJCG_UPDATE_BIT 0 255 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 256 257 #ifdef CONFIG_MEMCG_KMEM 258 static DEFINE_SPINLOCK(objcg_lock); 259 260 bool mem_cgroup_kmem_disabled(void) 261 { 262 return cgroup_memory_nokmem; 263 } 264 265 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 266 unsigned int nr_pages); 267 268 static void obj_cgroup_release(struct percpu_ref *ref) 269 { 270 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 271 unsigned int nr_bytes; 272 unsigned int nr_pages; 273 unsigned long flags; 274 275 /* 276 * At this point all allocated objects are freed, and 277 * objcg->nr_charged_bytes can't have an arbitrary byte value. 278 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 279 * 280 * The following sequence can lead to it: 281 * 1) CPU0: objcg == stock->cached_objcg 282 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 283 * PAGE_SIZE bytes are charged 284 * 3) CPU1: a process from another memcg is allocating something, 285 * the stock if flushed, 286 * objcg->nr_charged_bytes = PAGE_SIZE - 92 287 * 5) CPU0: we do release this object, 288 * 92 bytes are added to stock->nr_bytes 289 * 6) CPU0: stock is flushed, 290 * 92 bytes are added to objcg->nr_charged_bytes 291 * 292 * In the result, nr_charged_bytes == PAGE_SIZE. 293 * This page will be uncharged in obj_cgroup_release(). 294 */ 295 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 296 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 297 nr_pages = nr_bytes >> PAGE_SHIFT; 298 299 if (nr_pages) 300 obj_cgroup_uncharge_pages(objcg, nr_pages); 301 302 spin_lock_irqsave(&objcg_lock, flags); 303 list_del(&objcg->list); 304 spin_unlock_irqrestore(&objcg_lock, flags); 305 306 percpu_ref_exit(ref); 307 kfree_rcu(objcg, rcu); 308 } 309 310 static struct obj_cgroup *obj_cgroup_alloc(void) 311 { 312 struct obj_cgroup *objcg; 313 int ret; 314 315 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 316 if (!objcg) 317 return NULL; 318 319 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 320 GFP_KERNEL); 321 if (ret) { 322 kfree(objcg); 323 return NULL; 324 } 325 INIT_LIST_HEAD(&objcg->list); 326 return objcg; 327 } 328 329 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 330 struct mem_cgroup *parent) 331 { 332 struct obj_cgroup *objcg, *iter; 333 334 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 335 336 spin_lock_irq(&objcg_lock); 337 338 /* 1) Ready to reparent active objcg. */ 339 list_add(&objcg->list, &memcg->objcg_list); 340 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 341 list_for_each_entry(iter, &memcg->objcg_list, list) 342 WRITE_ONCE(iter->memcg, parent); 343 /* 3) Move already reparented objcgs to the parent's list */ 344 list_splice(&memcg->objcg_list, &parent->objcg_list); 345 346 spin_unlock_irq(&objcg_lock); 347 348 percpu_ref_kill(&objcg->refcnt); 349 } 350 351 /* 352 * A lot of the calls to the cache allocation functions are expected to be 353 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 354 * conditional to this static branch, we'll have to allow modules that does 355 * kmem_cache_alloc and the such to see this symbol as well 356 */ 357 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 358 EXPORT_SYMBOL(memcg_kmem_online_key); 359 360 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 361 EXPORT_SYMBOL(memcg_bpf_enabled_key); 362 #endif 363 364 /** 365 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 366 * @folio: folio of interest 367 * 368 * If memcg is bound to the default hierarchy, css of the memcg associated 369 * with @folio is returned. The returned css remains associated with @folio 370 * until it is released. 371 * 372 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 373 * is returned. 374 */ 375 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 376 { 377 struct mem_cgroup *memcg = folio_memcg(folio); 378 379 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 380 memcg = root_mem_cgroup; 381 382 return &memcg->css; 383 } 384 385 /** 386 * page_cgroup_ino - return inode number of the memcg a page is charged to 387 * @page: the page 388 * 389 * Look up the closest online ancestor of the memory cgroup @page is charged to 390 * and return its inode number or 0 if @page is not charged to any cgroup. It 391 * is safe to call this function without holding a reference to @page. 392 * 393 * Note, this function is inherently racy, because there is nothing to prevent 394 * the cgroup inode from getting torn down and potentially reallocated a moment 395 * after page_cgroup_ino() returns, so it only should be used by callers that 396 * do not care (such as procfs interfaces). 397 */ 398 ino_t page_cgroup_ino(struct page *page) 399 { 400 struct mem_cgroup *memcg; 401 unsigned long ino = 0; 402 403 rcu_read_lock(); 404 /* page_folio() is racy here, but the entire function is racy anyway */ 405 memcg = folio_memcg_check(page_folio(page)); 406 407 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 408 memcg = parent_mem_cgroup(memcg); 409 if (memcg) 410 ino = cgroup_ino(memcg->css.cgroup); 411 rcu_read_unlock(); 412 return ino; 413 } 414 415 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 416 struct mem_cgroup_tree_per_node *mctz, 417 unsigned long new_usage_in_excess) 418 { 419 struct rb_node **p = &mctz->rb_root.rb_node; 420 struct rb_node *parent = NULL; 421 struct mem_cgroup_per_node *mz_node; 422 bool rightmost = true; 423 424 if (mz->on_tree) 425 return; 426 427 mz->usage_in_excess = new_usage_in_excess; 428 if (!mz->usage_in_excess) 429 return; 430 while (*p) { 431 parent = *p; 432 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 433 tree_node); 434 if (mz->usage_in_excess < mz_node->usage_in_excess) { 435 p = &(*p)->rb_left; 436 rightmost = false; 437 } else { 438 p = &(*p)->rb_right; 439 } 440 } 441 442 if (rightmost) 443 mctz->rb_rightmost = &mz->tree_node; 444 445 rb_link_node(&mz->tree_node, parent, p); 446 rb_insert_color(&mz->tree_node, &mctz->rb_root); 447 mz->on_tree = true; 448 } 449 450 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 451 struct mem_cgroup_tree_per_node *mctz) 452 { 453 if (!mz->on_tree) 454 return; 455 456 if (&mz->tree_node == mctz->rb_rightmost) 457 mctz->rb_rightmost = rb_prev(&mz->tree_node); 458 459 rb_erase(&mz->tree_node, &mctz->rb_root); 460 mz->on_tree = false; 461 } 462 463 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 464 struct mem_cgroup_tree_per_node *mctz) 465 { 466 unsigned long flags; 467 468 spin_lock_irqsave(&mctz->lock, flags); 469 __mem_cgroup_remove_exceeded(mz, mctz); 470 spin_unlock_irqrestore(&mctz->lock, flags); 471 } 472 473 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 474 { 475 unsigned long nr_pages = page_counter_read(&memcg->memory); 476 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 477 unsigned long excess = 0; 478 479 if (nr_pages > soft_limit) 480 excess = nr_pages - soft_limit; 481 482 return excess; 483 } 484 485 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 486 { 487 unsigned long excess; 488 struct mem_cgroup_per_node *mz; 489 struct mem_cgroup_tree_per_node *mctz; 490 491 if (lru_gen_enabled()) { 492 if (soft_limit_excess(memcg)) 493 lru_gen_soft_reclaim(memcg, nid); 494 return; 495 } 496 497 mctz = soft_limit_tree.rb_tree_per_node[nid]; 498 if (!mctz) 499 return; 500 /* 501 * Necessary to update all ancestors when hierarchy is used. 502 * because their event counter is not touched. 503 */ 504 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 505 mz = memcg->nodeinfo[nid]; 506 excess = soft_limit_excess(memcg); 507 /* 508 * We have to update the tree if mz is on RB-tree or 509 * mem is over its softlimit. 510 */ 511 if (excess || mz->on_tree) { 512 unsigned long flags; 513 514 spin_lock_irqsave(&mctz->lock, flags); 515 /* if on-tree, remove it */ 516 if (mz->on_tree) 517 __mem_cgroup_remove_exceeded(mz, mctz); 518 /* 519 * Insert again. mz->usage_in_excess will be updated. 520 * If excess is 0, no tree ops. 521 */ 522 __mem_cgroup_insert_exceeded(mz, mctz, excess); 523 spin_unlock_irqrestore(&mctz->lock, flags); 524 } 525 } 526 } 527 528 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 529 { 530 struct mem_cgroup_tree_per_node *mctz; 531 struct mem_cgroup_per_node *mz; 532 int nid; 533 534 for_each_node(nid) { 535 mz = memcg->nodeinfo[nid]; 536 mctz = soft_limit_tree.rb_tree_per_node[nid]; 537 if (mctz) 538 mem_cgroup_remove_exceeded(mz, mctz); 539 } 540 } 541 542 static struct mem_cgroup_per_node * 543 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 544 { 545 struct mem_cgroup_per_node *mz; 546 547 retry: 548 mz = NULL; 549 if (!mctz->rb_rightmost) 550 goto done; /* Nothing to reclaim from */ 551 552 mz = rb_entry(mctz->rb_rightmost, 553 struct mem_cgroup_per_node, tree_node); 554 /* 555 * Remove the node now but someone else can add it back, 556 * we will to add it back at the end of reclaim to its correct 557 * position in the tree. 558 */ 559 __mem_cgroup_remove_exceeded(mz, mctz); 560 if (!soft_limit_excess(mz->memcg) || 561 !css_tryget(&mz->memcg->css)) 562 goto retry; 563 done: 564 return mz; 565 } 566 567 static struct mem_cgroup_per_node * 568 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 569 { 570 struct mem_cgroup_per_node *mz; 571 572 spin_lock_irq(&mctz->lock); 573 mz = __mem_cgroup_largest_soft_limit_node(mctz); 574 spin_unlock_irq(&mctz->lock); 575 return mz; 576 } 577 578 /* Subset of vm_event_item to report for memcg event stats */ 579 static const unsigned int memcg_vm_event_stat[] = { 580 PGPGIN, 581 PGPGOUT, 582 PGSCAN_KSWAPD, 583 PGSCAN_DIRECT, 584 PGSCAN_KHUGEPAGED, 585 PGSTEAL_KSWAPD, 586 PGSTEAL_DIRECT, 587 PGSTEAL_KHUGEPAGED, 588 PGFAULT, 589 PGMAJFAULT, 590 PGREFILL, 591 PGACTIVATE, 592 PGDEACTIVATE, 593 PGLAZYFREE, 594 PGLAZYFREED, 595 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 596 ZSWPIN, 597 ZSWPOUT, 598 ZSWPWB, 599 #endif 600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 601 THP_FAULT_ALLOC, 602 THP_COLLAPSE_ALLOC, 603 THP_SWPOUT, 604 THP_SWPOUT_FALLBACK, 605 #endif 606 }; 607 608 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 609 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 610 611 static void init_memcg_events(void) 612 { 613 int i; 614 615 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 616 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; 617 } 618 619 static inline int memcg_events_index(enum vm_event_item idx) 620 { 621 return mem_cgroup_events_index[idx] - 1; 622 } 623 624 struct memcg_vmstats_percpu { 625 /* Stats updates since the last flush */ 626 unsigned int stats_updates; 627 628 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 629 struct memcg_vmstats_percpu *parent; 630 struct memcg_vmstats *vmstats; 631 632 /* The above should fit a single cacheline for memcg_rstat_updated() */ 633 634 /* Local (CPU and cgroup) page state & events */ 635 long state[MEMCG_NR_STAT]; 636 unsigned long events[NR_MEMCG_EVENTS]; 637 638 /* Delta calculation for lockless upward propagation */ 639 long state_prev[MEMCG_NR_STAT]; 640 unsigned long events_prev[NR_MEMCG_EVENTS]; 641 642 /* Cgroup1: threshold notifications & softlimit tree updates */ 643 unsigned long nr_page_events; 644 unsigned long targets[MEM_CGROUP_NTARGETS]; 645 } ____cacheline_aligned; 646 647 struct memcg_vmstats { 648 /* Aggregated (CPU and subtree) page state & events */ 649 long state[MEMCG_NR_STAT]; 650 unsigned long events[NR_MEMCG_EVENTS]; 651 652 /* Non-hierarchical (CPU aggregated) page state & events */ 653 long state_local[MEMCG_NR_STAT]; 654 unsigned long events_local[NR_MEMCG_EVENTS]; 655 656 /* Pending child counts during tree propagation */ 657 long state_pending[MEMCG_NR_STAT]; 658 unsigned long events_pending[NR_MEMCG_EVENTS]; 659 660 /* Stats updates since the last flush */ 661 atomic64_t stats_updates; 662 }; 663 664 /* 665 * memcg and lruvec stats flushing 666 * 667 * Many codepaths leading to stats update or read are performance sensitive and 668 * adding stats flushing in such codepaths is not desirable. So, to optimize the 669 * flushing the kernel does: 670 * 671 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 672 * rstat update tree grow unbounded. 673 * 674 * 2) Flush the stats synchronously on reader side only when there are more than 675 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 676 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 677 * only for 2 seconds due to (1). 678 */ 679 static void flush_memcg_stats_dwork(struct work_struct *w); 680 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 681 static u64 flush_last_time; 682 683 #define FLUSH_TIME (2UL*HZ) 684 685 /* 686 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 687 * not rely on this as part of an acquired spinlock_t lock. These functions are 688 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 689 * is sufficient. 690 */ 691 static void memcg_stats_lock(void) 692 { 693 preempt_disable_nested(); 694 VM_WARN_ON_IRQS_ENABLED(); 695 } 696 697 static void __memcg_stats_lock(void) 698 { 699 preempt_disable_nested(); 700 } 701 702 static void memcg_stats_unlock(void) 703 { 704 preempt_enable_nested(); 705 } 706 707 708 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 709 { 710 return atomic64_read(&vmstats->stats_updates) > 711 MEMCG_CHARGE_BATCH * num_online_cpus(); 712 } 713 714 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 715 { 716 struct memcg_vmstats_percpu *statc; 717 int cpu = smp_processor_id(); 718 719 if (!val) 720 return; 721 722 cgroup_rstat_updated(memcg->css.cgroup, cpu); 723 statc = this_cpu_ptr(memcg->vmstats_percpu); 724 for (; statc; statc = statc->parent) { 725 statc->stats_updates += abs(val); 726 if (statc->stats_updates < MEMCG_CHARGE_BATCH) 727 continue; 728 729 /* 730 * If @memcg is already flush-able, increasing stats_updates is 731 * redundant. Avoid the overhead of the atomic update. 732 */ 733 if (!memcg_vmstats_needs_flush(statc->vmstats)) 734 atomic64_add(statc->stats_updates, 735 &statc->vmstats->stats_updates); 736 statc->stats_updates = 0; 737 } 738 } 739 740 static void do_flush_stats(struct mem_cgroup *memcg) 741 { 742 if (mem_cgroup_is_root(memcg)) 743 WRITE_ONCE(flush_last_time, jiffies_64); 744 745 cgroup_rstat_flush(memcg->css.cgroup); 746 } 747 748 /* 749 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 750 * @memcg: root of the subtree to flush 751 * 752 * Flushing is serialized by the underlying global rstat lock. There is also a 753 * minimum amount of work to be done even if there are no stat updates to flush. 754 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 755 * avoids unnecessary work and contention on the underlying lock. 756 */ 757 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 758 { 759 if (mem_cgroup_disabled()) 760 return; 761 762 if (!memcg) 763 memcg = root_mem_cgroup; 764 765 if (memcg_vmstats_needs_flush(memcg->vmstats)) 766 do_flush_stats(memcg); 767 } 768 769 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 770 { 771 /* Only flush if the periodic flusher is one full cycle late */ 772 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 773 mem_cgroup_flush_stats(memcg); 774 } 775 776 static void flush_memcg_stats_dwork(struct work_struct *w) 777 { 778 /* 779 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 780 * in latency-sensitive paths is as cheap as possible. 781 */ 782 do_flush_stats(root_mem_cgroup); 783 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 784 } 785 786 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 787 { 788 long x = READ_ONCE(memcg->vmstats->state[idx]); 789 #ifdef CONFIG_SMP 790 if (x < 0) 791 x = 0; 792 #endif 793 return x; 794 } 795 796 static int memcg_page_state_unit(int item); 797 798 /* 799 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 800 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 801 */ 802 static int memcg_state_val_in_pages(int idx, int val) 803 { 804 int unit = memcg_page_state_unit(idx); 805 806 if (!val || unit == PAGE_SIZE) 807 return val; 808 else 809 return max(val * unit / PAGE_SIZE, 1UL); 810 } 811 812 /** 813 * __mod_memcg_state - update cgroup memory statistics 814 * @memcg: the memory cgroup 815 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 816 * @val: delta to add to the counter, can be negative 817 */ 818 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 819 { 820 if (mem_cgroup_disabled()) 821 return; 822 823 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 824 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 825 } 826 827 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 828 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 829 { 830 long x = READ_ONCE(memcg->vmstats->state_local[idx]); 831 832 #ifdef CONFIG_SMP 833 if (x < 0) 834 x = 0; 835 #endif 836 return x; 837 } 838 839 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 840 int val) 841 { 842 struct mem_cgroup_per_node *pn; 843 struct mem_cgroup *memcg; 844 845 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 846 memcg = pn->memcg; 847 848 /* 849 * The caller from rmap relies on disabled preemption because they never 850 * update their counter from in-interrupt context. For these two 851 * counters we check that the update is never performed from an 852 * interrupt context while other caller need to have disabled interrupt. 853 */ 854 __memcg_stats_lock(); 855 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 856 switch (idx) { 857 case NR_ANON_MAPPED: 858 case NR_FILE_MAPPED: 859 case NR_ANON_THPS: 860 case NR_SHMEM_PMDMAPPED: 861 case NR_FILE_PMDMAPPED: 862 WARN_ON_ONCE(!in_task()); 863 break; 864 default: 865 VM_WARN_ON_IRQS_ENABLED(); 866 } 867 } 868 869 /* Update memcg */ 870 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 871 872 /* Update lruvec */ 873 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 874 875 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 876 memcg_stats_unlock(); 877 } 878 879 /** 880 * __mod_lruvec_state - update lruvec memory statistics 881 * @lruvec: the lruvec 882 * @idx: the stat item 883 * @val: delta to add to the counter, can be negative 884 * 885 * The lruvec is the intersection of the NUMA node and a cgroup. This 886 * function updates the all three counters that are affected by a 887 * change of state at this level: per-node, per-cgroup, per-lruvec. 888 */ 889 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 890 int val) 891 { 892 /* Update node */ 893 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 894 895 /* Update memcg and lruvec */ 896 if (!mem_cgroup_disabled()) 897 __mod_memcg_lruvec_state(lruvec, idx, val); 898 } 899 900 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 901 int val) 902 { 903 struct mem_cgroup *memcg; 904 pg_data_t *pgdat = folio_pgdat(folio); 905 struct lruvec *lruvec; 906 907 rcu_read_lock(); 908 memcg = folio_memcg(folio); 909 /* Untracked pages have no memcg, no lruvec. Update only the node */ 910 if (!memcg) { 911 rcu_read_unlock(); 912 __mod_node_page_state(pgdat, idx, val); 913 return; 914 } 915 916 lruvec = mem_cgroup_lruvec(memcg, pgdat); 917 __mod_lruvec_state(lruvec, idx, val); 918 rcu_read_unlock(); 919 } 920 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 921 922 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 923 { 924 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 925 struct mem_cgroup *memcg; 926 struct lruvec *lruvec; 927 928 rcu_read_lock(); 929 memcg = mem_cgroup_from_slab_obj(p); 930 931 /* 932 * Untracked pages have no memcg, no lruvec. Update only the 933 * node. If we reparent the slab objects to the root memcg, 934 * when we free the slab object, we need to update the per-memcg 935 * vmstats to keep it correct for the root memcg. 936 */ 937 if (!memcg) { 938 __mod_node_page_state(pgdat, idx, val); 939 } else { 940 lruvec = mem_cgroup_lruvec(memcg, pgdat); 941 __mod_lruvec_state(lruvec, idx, val); 942 } 943 rcu_read_unlock(); 944 } 945 946 /** 947 * __count_memcg_events - account VM events in a cgroup 948 * @memcg: the memory cgroup 949 * @idx: the event item 950 * @count: the number of events that occurred 951 */ 952 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 953 unsigned long count) 954 { 955 int index = memcg_events_index(idx); 956 957 if (mem_cgroup_disabled() || index < 0) 958 return; 959 960 memcg_stats_lock(); 961 __this_cpu_add(memcg->vmstats_percpu->events[index], count); 962 memcg_rstat_updated(memcg, count); 963 memcg_stats_unlock(); 964 } 965 966 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 967 { 968 int index = memcg_events_index(event); 969 970 if (index < 0) 971 return 0; 972 return READ_ONCE(memcg->vmstats->events[index]); 973 } 974 975 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 976 { 977 int index = memcg_events_index(event); 978 979 if (index < 0) 980 return 0; 981 982 return READ_ONCE(memcg->vmstats->events_local[index]); 983 } 984 985 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 986 int nr_pages) 987 { 988 /* pagein of a big page is an event. So, ignore page size */ 989 if (nr_pages > 0) 990 __count_memcg_events(memcg, PGPGIN, 1); 991 else { 992 __count_memcg_events(memcg, PGPGOUT, 1); 993 nr_pages = -nr_pages; /* for event */ 994 } 995 996 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 997 } 998 999 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 1000 enum mem_cgroup_events_target target) 1001 { 1002 unsigned long val, next; 1003 1004 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 1005 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 1006 /* from time_after() in jiffies.h */ 1007 if ((long)(next - val) < 0) { 1008 switch (target) { 1009 case MEM_CGROUP_TARGET_THRESH: 1010 next = val + THRESHOLDS_EVENTS_TARGET; 1011 break; 1012 case MEM_CGROUP_TARGET_SOFTLIMIT: 1013 next = val + SOFTLIMIT_EVENTS_TARGET; 1014 break; 1015 default: 1016 break; 1017 } 1018 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 1019 return true; 1020 } 1021 return false; 1022 } 1023 1024 /* 1025 * Check events in order. 1026 * 1027 */ 1028 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 1029 { 1030 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1031 return; 1032 1033 /* threshold event is triggered in finer grain than soft limit */ 1034 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1035 MEM_CGROUP_TARGET_THRESH))) { 1036 bool do_softlimit; 1037 1038 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1039 MEM_CGROUP_TARGET_SOFTLIMIT); 1040 mem_cgroup_threshold(memcg); 1041 if (unlikely(do_softlimit)) 1042 mem_cgroup_update_tree(memcg, nid); 1043 } 1044 } 1045 1046 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1047 { 1048 /* 1049 * mm_update_next_owner() may clear mm->owner to NULL 1050 * if it races with swapoff, page migration, etc. 1051 * So this can be called with p == NULL. 1052 */ 1053 if (unlikely(!p)) 1054 return NULL; 1055 1056 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1057 } 1058 EXPORT_SYMBOL(mem_cgroup_from_task); 1059 1060 static __always_inline struct mem_cgroup *active_memcg(void) 1061 { 1062 if (!in_task()) 1063 return this_cpu_read(int_active_memcg); 1064 else 1065 return current->active_memcg; 1066 } 1067 1068 /** 1069 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1070 * @mm: mm from which memcg should be extracted. It can be NULL. 1071 * 1072 * Obtain a reference on mm->memcg and returns it if successful. If mm 1073 * is NULL, then the memcg is chosen as follows: 1074 * 1) The active memcg, if set. 1075 * 2) current->mm->memcg, if available 1076 * 3) root memcg 1077 * If mem_cgroup is disabled, NULL is returned. 1078 */ 1079 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1080 { 1081 struct mem_cgroup *memcg; 1082 1083 if (mem_cgroup_disabled()) 1084 return NULL; 1085 1086 /* 1087 * Page cache insertions can happen without an 1088 * actual mm context, e.g. during disk probing 1089 * on boot, loopback IO, acct() writes etc. 1090 * 1091 * No need to css_get on root memcg as the reference 1092 * counting is disabled on the root level in the 1093 * cgroup core. See CSS_NO_REF. 1094 */ 1095 if (unlikely(!mm)) { 1096 memcg = active_memcg(); 1097 if (unlikely(memcg)) { 1098 /* remote memcg must hold a ref */ 1099 css_get(&memcg->css); 1100 return memcg; 1101 } 1102 mm = current->mm; 1103 if (unlikely(!mm)) 1104 return root_mem_cgroup; 1105 } 1106 1107 rcu_read_lock(); 1108 do { 1109 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1110 if (unlikely(!memcg)) 1111 memcg = root_mem_cgroup; 1112 } while (!css_tryget(&memcg->css)); 1113 rcu_read_unlock(); 1114 return memcg; 1115 } 1116 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1117 1118 /** 1119 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 1120 */ 1121 struct mem_cgroup *get_mem_cgroup_from_current(void) 1122 { 1123 struct mem_cgroup *memcg; 1124 1125 if (mem_cgroup_disabled()) 1126 return NULL; 1127 1128 again: 1129 rcu_read_lock(); 1130 memcg = mem_cgroup_from_task(current); 1131 if (!css_tryget(&memcg->css)) { 1132 rcu_read_unlock(); 1133 goto again; 1134 } 1135 rcu_read_unlock(); 1136 return memcg; 1137 } 1138 1139 /** 1140 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1141 * @root: hierarchy root 1142 * @prev: previously returned memcg, NULL on first invocation 1143 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1144 * 1145 * Returns references to children of the hierarchy below @root, or 1146 * @root itself, or %NULL after a full round-trip. 1147 * 1148 * Caller must pass the return value in @prev on subsequent 1149 * invocations for reference counting, or use mem_cgroup_iter_break() 1150 * to cancel a hierarchy walk before the round-trip is complete. 1151 * 1152 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1153 * in the hierarchy among all concurrent reclaimers operating on the 1154 * same node. 1155 */ 1156 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1157 struct mem_cgroup *prev, 1158 struct mem_cgroup_reclaim_cookie *reclaim) 1159 { 1160 struct mem_cgroup_reclaim_iter *iter; 1161 struct cgroup_subsys_state *css = NULL; 1162 struct mem_cgroup *memcg = NULL; 1163 struct mem_cgroup *pos = NULL; 1164 1165 if (mem_cgroup_disabled()) 1166 return NULL; 1167 1168 if (!root) 1169 root = root_mem_cgroup; 1170 1171 rcu_read_lock(); 1172 1173 if (reclaim) { 1174 struct mem_cgroup_per_node *mz; 1175 1176 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1177 iter = &mz->iter; 1178 1179 /* 1180 * On start, join the current reclaim iteration cycle. 1181 * Exit when a concurrent walker completes it. 1182 */ 1183 if (!prev) 1184 reclaim->generation = iter->generation; 1185 else if (reclaim->generation != iter->generation) 1186 goto out_unlock; 1187 1188 while (1) { 1189 pos = READ_ONCE(iter->position); 1190 if (!pos || css_tryget(&pos->css)) 1191 break; 1192 /* 1193 * css reference reached zero, so iter->position will 1194 * be cleared by ->css_released. However, we should not 1195 * rely on this happening soon, because ->css_released 1196 * is called from a work queue, and by busy-waiting we 1197 * might block it. So we clear iter->position right 1198 * away. 1199 */ 1200 (void)cmpxchg(&iter->position, pos, NULL); 1201 } 1202 } else if (prev) { 1203 pos = prev; 1204 } 1205 1206 if (pos) 1207 css = &pos->css; 1208 1209 for (;;) { 1210 css = css_next_descendant_pre(css, &root->css); 1211 if (!css) { 1212 /* 1213 * Reclaimers share the hierarchy walk, and a 1214 * new one might jump in right at the end of 1215 * the hierarchy - make sure they see at least 1216 * one group and restart from the beginning. 1217 */ 1218 if (!prev) 1219 continue; 1220 break; 1221 } 1222 1223 /* 1224 * Verify the css and acquire a reference. The root 1225 * is provided by the caller, so we know it's alive 1226 * and kicking, and don't take an extra reference. 1227 */ 1228 if (css == &root->css || css_tryget(css)) { 1229 memcg = mem_cgroup_from_css(css); 1230 break; 1231 } 1232 } 1233 1234 if (reclaim) { 1235 /* 1236 * The position could have already been updated by a competing 1237 * thread, so check that the value hasn't changed since we read 1238 * it to avoid reclaiming from the same cgroup twice. 1239 */ 1240 (void)cmpxchg(&iter->position, pos, memcg); 1241 1242 if (pos) 1243 css_put(&pos->css); 1244 1245 if (!memcg) 1246 iter->generation++; 1247 } 1248 1249 out_unlock: 1250 rcu_read_unlock(); 1251 if (prev && prev != root) 1252 css_put(&prev->css); 1253 1254 return memcg; 1255 } 1256 1257 /** 1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1259 * @root: hierarchy root 1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1261 */ 1262 void mem_cgroup_iter_break(struct mem_cgroup *root, 1263 struct mem_cgroup *prev) 1264 { 1265 if (!root) 1266 root = root_mem_cgroup; 1267 if (prev && prev != root) 1268 css_put(&prev->css); 1269 } 1270 1271 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1272 struct mem_cgroup *dead_memcg) 1273 { 1274 struct mem_cgroup_reclaim_iter *iter; 1275 struct mem_cgroup_per_node *mz; 1276 int nid; 1277 1278 for_each_node(nid) { 1279 mz = from->nodeinfo[nid]; 1280 iter = &mz->iter; 1281 cmpxchg(&iter->position, dead_memcg, NULL); 1282 } 1283 } 1284 1285 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1286 { 1287 struct mem_cgroup *memcg = dead_memcg; 1288 struct mem_cgroup *last; 1289 1290 do { 1291 __invalidate_reclaim_iterators(memcg, dead_memcg); 1292 last = memcg; 1293 } while ((memcg = parent_mem_cgroup(memcg))); 1294 1295 /* 1296 * When cgroup1 non-hierarchy mode is used, 1297 * parent_mem_cgroup() does not walk all the way up to the 1298 * cgroup root (root_mem_cgroup). So we have to handle 1299 * dead_memcg from cgroup root separately. 1300 */ 1301 if (!mem_cgroup_is_root(last)) 1302 __invalidate_reclaim_iterators(root_mem_cgroup, 1303 dead_memcg); 1304 } 1305 1306 /** 1307 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1308 * @memcg: hierarchy root 1309 * @fn: function to call for each task 1310 * @arg: argument passed to @fn 1311 * 1312 * This function iterates over tasks attached to @memcg or to any of its 1313 * descendants and calls @fn for each task. If @fn returns a non-zero 1314 * value, the function breaks the iteration loop. Otherwise, it will iterate 1315 * over all tasks and return 0. 1316 * 1317 * This function must not be called for the root memory cgroup. 1318 */ 1319 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1320 int (*fn)(struct task_struct *, void *), void *arg) 1321 { 1322 struct mem_cgroup *iter; 1323 int ret = 0; 1324 1325 BUG_ON(mem_cgroup_is_root(memcg)); 1326 1327 for_each_mem_cgroup_tree(iter, memcg) { 1328 struct css_task_iter it; 1329 struct task_struct *task; 1330 1331 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1332 while (!ret && (task = css_task_iter_next(&it))) 1333 ret = fn(task, arg); 1334 css_task_iter_end(&it); 1335 if (ret) { 1336 mem_cgroup_iter_break(memcg, iter); 1337 break; 1338 } 1339 } 1340 } 1341 1342 #ifdef CONFIG_DEBUG_VM 1343 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1344 { 1345 struct mem_cgroup *memcg; 1346 1347 if (mem_cgroup_disabled()) 1348 return; 1349 1350 memcg = folio_memcg(folio); 1351 1352 if (!memcg) 1353 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1354 else 1355 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1356 } 1357 #endif 1358 1359 /** 1360 * folio_lruvec_lock - Lock the lruvec for a folio. 1361 * @folio: Pointer to the folio. 1362 * 1363 * These functions are safe to use under any of the following conditions: 1364 * - folio locked 1365 * - folio_test_lru false 1366 * - folio_memcg_lock() 1367 * - folio frozen (refcount of 0) 1368 * 1369 * Return: The lruvec this folio is on with its lock held. 1370 */ 1371 struct lruvec *folio_lruvec_lock(struct folio *folio) 1372 { 1373 struct lruvec *lruvec = folio_lruvec(folio); 1374 1375 spin_lock(&lruvec->lru_lock); 1376 lruvec_memcg_debug(lruvec, folio); 1377 1378 return lruvec; 1379 } 1380 1381 /** 1382 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1383 * @folio: Pointer to the folio. 1384 * 1385 * These functions are safe to use under any of the following conditions: 1386 * - folio locked 1387 * - folio_test_lru false 1388 * - folio_memcg_lock() 1389 * - folio frozen (refcount of 0) 1390 * 1391 * Return: The lruvec this folio is on with its lock held and interrupts 1392 * disabled. 1393 */ 1394 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1395 { 1396 struct lruvec *lruvec = folio_lruvec(folio); 1397 1398 spin_lock_irq(&lruvec->lru_lock); 1399 lruvec_memcg_debug(lruvec, folio); 1400 1401 return lruvec; 1402 } 1403 1404 /** 1405 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1406 * @folio: Pointer to the folio. 1407 * @flags: Pointer to irqsave flags. 1408 * 1409 * These functions are safe to use under any of the following conditions: 1410 * - folio locked 1411 * - folio_test_lru false 1412 * - folio_memcg_lock() 1413 * - folio frozen (refcount of 0) 1414 * 1415 * Return: The lruvec this folio is on with its lock held and interrupts 1416 * disabled. 1417 */ 1418 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1419 unsigned long *flags) 1420 { 1421 struct lruvec *lruvec = folio_lruvec(folio); 1422 1423 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1424 lruvec_memcg_debug(lruvec, folio); 1425 1426 return lruvec; 1427 } 1428 1429 /** 1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1431 * @lruvec: mem_cgroup per zone lru vector 1432 * @lru: index of lru list the page is sitting on 1433 * @zid: zone id of the accounted pages 1434 * @nr_pages: positive when adding or negative when removing 1435 * 1436 * This function must be called under lru_lock, just before a page is added 1437 * to or just after a page is removed from an lru list. 1438 */ 1439 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1440 int zid, int nr_pages) 1441 { 1442 struct mem_cgroup_per_node *mz; 1443 unsigned long *lru_size; 1444 long size; 1445 1446 if (mem_cgroup_disabled()) 1447 return; 1448 1449 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1450 lru_size = &mz->lru_zone_size[zid][lru]; 1451 1452 if (nr_pages < 0) 1453 *lru_size += nr_pages; 1454 1455 size = *lru_size; 1456 if (WARN_ONCE(size < 0, 1457 "%s(%p, %d, %d): lru_size %ld\n", 1458 __func__, lruvec, lru, nr_pages, size)) { 1459 VM_BUG_ON(1); 1460 *lru_size = 0; 1461 } 1462 1463 if (nr_pages > 0) 1464 *lru_size += nr_pages; 1465 } 1466 1467 /** 1468 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1469 * @memcg: the memory cgroup 1470 * 1471 * Returns the maximum amount of memory @mem can be charged with, in 1472 * pages. 1473 */ 1474 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1475 { 1476 unsigned long margin = 0; 1477 unsigned long count; 1478 unsigned long limit; 1479 1480 count = page_counter_read(&memcg->memory); 1481 limit = READ_ONCE(memcg->memory.max); 1482 if (count < limit) 1483 margin = limit - count; 1484 1485 if (do_memsw_account()) { 1486 count = page_counter_read(&memcg->memsw); 1487 limit = READ_ONCE(memcg->memsw.max); 1488 if (count < limit) 1489 margin = min(margin, limit - count); 1490 else 1491 margin = 0; 1492 } 1493 1494 return margin; 1495 } 1496 1497 /* 1498 * A routine for checking "mem" is under move_account() or not. 1499 * 1500 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1501 * moving cgroups. This is for waiting at high-memory pressure 1502 * caused by "move". 1503 */ 1504 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1505 { 1506 struct mem_cgroup *from; 1507 struct mem_cgroup *to; 1508 bool ret = false; 1509 /* 1510 * Unlike task_move routines, we access mc.to, mc.from not under 1511 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1512 */ 1513 spin_lock(&mc.lock); 1514 from = mc.from; 1515 to = mc.to; 1516 if (!from) 1517 goto unlock; 1518 1519 ret = mem_cgroup_is_descendant(from, memcg) || 1520 mem_cgroup_is_descendant(to, memcg); 1521 unlock: 1522 spin_unlock(&mc.lock); 1523 return ret; 1524 } 1525 1526 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1527 { 1528 if (mc.moving_task && current != mc.moving_task) { 1529 if (mem_cgroup_under_move(memcg)) { 1530 DEFINE_WAIT(wait); 1531 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1532 /* moving charge context might have finished. */ 1533 if (mc.moving_task) 1534 schedule(); 1535 finish_wait(&mc.waitq, &wait); 1536 return true; 1537 } 1538 } 1539 return false; 1540 } 1541 1542 struct memory_stat { 1543 const char *name; 1544 unsigned int idx; 1545 }; 1546 1547 static const struct memory_stat memory_stats[] = { 1548 { "anon", NR_ANON_MAPPED }, 1549 { "file", NR_FILE_PAGES }, 1550 { "kernel", MEMCG_KMEM }, 1551 { "kernel_stack", NR_KERNEL_STACK_KB }, 1552 { "pagetables", NR_PAGETABLE }, 1553 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1554 { "percpu", MEMCG_PERCPU_B }, 1555 { "sock", MEMCG_SOCK }, 1556 { "vmalloc", MEMCG_VMALLOC }, 1557 { "shmem", NR_SHMEM }, 1558 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1559 { "zswap", MEMCG_ZSWAP_B }, 1560 { "zswapped", MEMCG_ZSWAPPED }, 1561 #endif 1562 { "file_mapped", NR_FILE_MAPPED }, 1563 { "file_dirty", NR_FILE_DIRTY }, 1564 { "file_writeback", NR_WRITEBACK }, 1565 #ifdef CONFIG_SWAP 1566 { "swapcached", NR_SWAPCACHE }, 1567 #endif 1568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1569 { "anon_thp", NR_ANON_THPS }, 1570 { "file_thp", NR_FILE_THPS }, 1571 { "shmem_thp", NR_SHMEM_THPS }, 1572 #endif 1573 { "inactive_anon", NR_INACTIVE_ANON }, 1574 { "active_anon", NR_ACTIVE_ANON }, 1575 { "inactive_file", NR_INACTIVE_FILE }, 1576 { "active_file", NR_ACTIVE_FILE }, 1577 { "unevictable", NR_UNEVICTABLE }, 1578 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1579 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1580 1581 /* The memory events */ 1582 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1583 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1584 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1585 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1586 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1587 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1588 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1589 }; 1590 1591 /* The actual unit of the state item, not the same as the output unit */ 1592 static int memcg_page_state_unit(int item) 1593 { 1594 switch (item) { 1595 case MEMCG_PERCPU_B: 1596 case MEMCG_ZSWAP_B: 1597 case NR_SLAB_RECLAIMABLE_B: 1598 case NR_SLAB_UNRECLAIMABLE_B: 1599 return 1; 1600 case NR_KERNEL_STACK_KB: 1601 return SZ_1K; 1602 default: 1603 return PAGE_SIZE; 1604 } 1605 } 1606 1607 /* Translate stat items to the correct unit for memory.stat output */ 1608 static int memcg_page_state_output_unit(int item) 1609 { 1610 /* 1611 * Workingset state is actually in pages, but we export it to userspace 1612 * as a scalar count of events, so special case it here. 1613 */ 1614 switch (item) { 1615 case WORKINGSET_REFAULT_ANON: 1616 case WORKINGSET_REFAULT_FILE: 1617 case WORKINGSET_ACTIVATE_ANON: 1618 case WORKINGSET_ACTIVATE_FILE: 1619 case WORKINGSET_RESTORE_ANON: 1620 case WORKINGSET_RESTORE_FILE: 1621 case WORKINGSET_NODERECLAIM: 1622 return 1; 1623 default: 1624 return memcg_page_state_unit(item); 1625 } 1626 } 1627 1628 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1629 int item) 1630 { 1631 return memcg_page_state(memcg, item) * 1632 memcg_page_state_output_unit(item); 1633 } 1634 1635 static inline unsigned long memcg_page_state_local_output( 1636 struct mem_cgroup *memcg, int item) 1637 { 1638 return memcg_page_state_local(memcg, item) * 1639 memcg_page_state_output_unit(item); 1640 } 1641 1642 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1643 { 1644 int i; 1645 1646 /* 1647 * Provide statistics on the state of the memory subsystem as 1648 * well as cumulative event counters that show past behavior. 1649 * 1650 * This list is ordered following a combination of these gradients: 1651 * 1) generic big picture -> specifics and details 1652 * 2) reflecting userspace activity -> reflecting kernel heuristics 1653 * 1654 * Current memory state: 1655 */ 1656 mem_cgroup_flush_stats(memcg); 1657 1658 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1659 u64 size; 1660 1661 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1662 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1663 1664 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1665 size += memcg_page_state_output(memcg, 1666 NR_SLAB_RECLAIMABLE_B); 1667 seq_buf_printf(s, "slab %llu\n", size); 1668 } 1669 } 1670 1671 /* Accumulated memory events */ 1672 seq_buf_printf(s, "pgscan %lu\n", 1673 memcg_events(memcg, PGSCAN_KSWAPD) + 1674 memcg_events(memcg, PGSCAN_DIRECT) + 1675 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1676 seq_buf_printf(s, "pgsteal %lu\n", 1677 memcg_events(memcg, PGSTEAL_KSWAPD) + 1678 memcg_events(memcg, PGSTEAL_DIRECT) + 1679 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1680 1681 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1682 if (memcg_vm_event_stat[i] == PGPGIN || 1683 memcg_vm_event_stat[i] == PGPGOUT) 1684 continue; 1685 1686 seq_buf_printf(s, "%s %lu\n", 1687 vm_event_name(memcg_vm_event_stat[i]), 1688 memcg_events(memcg, memcg_vm_event_stat[i])); 1689 } 1690 1691 /* The above should easily fit into one page */ 1692 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1693 } 1694 1695 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s); 1696 1697 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1698 { 1699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1700 memcg_stat_format(memcg, s); 1701 else 1702 memcg1_stat_format(memcg, s); 1703 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1704 } 1705 1706 /** 1707 * mem_cgroup_print_oom_context: Print OOM information relevant to 1708 * memory controller. 1709 * @memcg: The memory cgroup that went over limit 1710 * @p: Task that is going to be killed 1711 * 1712 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1713 * enabled 1714 */ 1715 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1716 { 1717 rcu_read_lock(); 1718 1719 if (memcg) { 1720 pr_cont(",oom_memcg="); 1721 pr_cont_cgroup_path(memcg->css.cgroup); 1722 } else 1723 pr_cont(",global_oom"); 1724 if (p) { 1725 pr_cont(",task_memcg="); 1726 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1727 } 1728 rcu_read_unlock(); 1729 } 1730 1731 /** 1732 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1733 * memory controller. 1734 * @memcg: The memory cgroup that went over limit 1735 */ 1736 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1737 { 1738 /* Use static buffer, for the caller is holding oom_lock. */ 1739 static char buf[PAGE_SIZE]; 1740 struct seq_buf s; 1741 1742 lockdep_assert_held(&oom_lock); 1743 1744 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1745 K((u64)page_counter_read(&memcg->memory)), 1746 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1747 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1748 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1749 K((u64)page_counter_read(&memcg->swap)), 1750 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1751 else { 1752 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1753 K((u64)page_counter_read(&memcg->memsw)), 1754 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1755 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1756 K((u64)page_counter_read(&memcg->kmem)), 1757 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1758 } 1759 1760 pr_info("Memory cgroup stats for "); 1761 pr_cont_cgroup_path(memcg->css.cgroup); 1762 pr_cont(":"); 1763 seq_buf_init(&s, buf, sizeof(buf)); 1764 memory_stat_format(memcg, &s); 1765 seq_buf_do_printk(&s, KERN_INFO); 1766 } 1767 1768 /* 1769 * Return the memory (and swap, if configured) limit for a memcg. 1770 */ 1771 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1772 { 1773 unsigned long max = READ_ONCE(memcg->memory.max); 1774 1775 if (do_memsw_account()) { 1776 if (mem_cgroup_swappiness(memcg)) { 1777 /* Calculate swap excess capacity from memsw limit */ 1778 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1779 1780 max += min(swap, (unsigned long)total_swap_pages); 1781 } 1782 } else { 1783 if (mem_cgroup_swappiness(memcg)) 1784 max += min(READ_ONCE(memcg->swap.max), 1785 (unsigned long)total_swap_pages); 1786 } 1787 return max; 1788 } 1789 1790 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1791 { 1792 return page_counter_read(&memcg->memory); 1793 } 1794 1795 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1796 int order) 1797 { 1798 struct oom_control oc = { 1799 .zonelist = NULL, 1800 .nodemask = NULL, 1801 .memcg = memcg, 1802 .gfp_mask = gfp_mask, 1803 .order = order, 1804 }; 1805 bool ret = true; 1806 1807 if (mutex_lock_killable(&oom_lock)) 1808 return true; 1809 1810 if (mem_cgroup_margin(memcg) >= (1 << order)) 1811 goto unlock; 1812 1813 /* 1814 * A few threads which were not waiting at mutex_lock_killable() can 1815 * fail to bail out. Therefore, check again after holding oom_lock. 1816 */ 1817 ret = task_is_dying() || out_of_memory(&oc); 1818 1819 unlock: 1820 mutex_unlock(&oom_lock); 1821 return ret; 1822 } 1823 1824 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1825 pg_data_t *pgdat, 1826 gfp_t gfp_mask, 1827 unsigned long *total_scanned) 1828 { 1829 struct mem_cgroup *victim = NULL; 1830 int total = 0; 1831 int loop = 0; 1832 unsigned long excess; 1833 unsigned long nr_scanned; 1834 struct mem_cgroup_reclaim_cookie reclaim = { 1835 .pgdat = pgdat, 1836 }; 1837 1838 excess = soft_limit_excess(root_memcg); 1839 1840 while (1) { 1841 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1842 if (!victim) { 1843 loop++; 1844 if (loop >= 2) { 1845 /* 1846 * If we have not been able to reclaim 1847 * anything, it might because there are 1848 * no reclaimable pages under this hierarchy 1849 */ 1850 if (!total) 1851 break; 1852 /* 1853 * We want to do more targeted reclaim. 1854 * excess >> 2 is not to excessive so as to 1855 * reclaim too much, nor too less that we keep 1856 * coming back to reclaim from this cgroup 1857 */ 1858 if (total >= (excess >> 2) || 1859 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1860 break; 1861 } 1862 continue; 1863 } 1864 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1865 pgdat, &nr_scanned); 1866 *total_scanned += nr_scanned; 1867 if (!soft_limit_excess(root_memcg)) 1868 break; 1869 } 1870 mem_cgroup_iter_break(root_memcg, victim); 1871 return total; 1872 } 1873 1874 #ifdef CONFIG_LOCKDEP 1875 static struct lockdep_map memcg_oom_lock_dep_map = { 1876 .name = "memcg_oom_lock", 1877 }; 1878 #endif 1879 1880 static DEFINE_SPINLOCK(memcg_oom_lock); 1881 1882 /* 1883 * Check OOM-Killer is already running under our hierarchy. 1884 * If someone is running, return false. 1885 */ 1886 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1887 { 1888 struct mem_cgroup *iter, *failed = NULL; 1889 1890 spin_lock(&memcg_oom_lock); 1891 1892 for_each_mem_cgroup_tree(iter, memcg) { 1893 if (iter->oom_lock) { 1894 /* 1895 * this subtree of our hierarchy is already locked 1896 * so we cannot give a lock. 1897 */ 1898 failed = iter; 1899 mem_cgroup_iter_break(memcg, iter); 1900 break; 1901 } else 1902 iter->oom_lock = true; 1903 } 1904 1905 if (failed) { 1906 /* 1907 * OK, we failed to lock the whole subtree so we have 1908 * to clean up what we set up to the failing subtree 1909 */ 1910 for_each_mem_cgroup_tree(iter, memcg) { 1911 if (iter == failed) { 1912 mem_cgroup_iter_break(memcg, iter); 1913 break; 1914 } 1915 iter->oom_lock = false; 1916 } 1917 } else 1918 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1919 1920 spin_unlock(&memcg_oom_lock); 1921 1922 return !failed; 1923 } 1924 1925 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1926 { 1927 struct mem_cgroup *iter; 1928 1929 spin_lock(&memcg_oom_lock); 1930 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1931 for_each_mem_cgroup_tree(iter, memcg) 1932 iter->oom_lock = false; 1933 spin_unlock(&memcg_oom_lock); 1934 } 1935 1936 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1937 { 1938 struct mem_cgroup *iter; 1939 1940 spin_lock(&memcg_oom_lock); 1941 for_each_mem_cgroup_tree(iter, memcg) 1942 iter->under_oom++; 1943 spin_unlock(&memcg_oom_lock); 1944 } 1945 1946 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1947 { 1948 struct mem_cgroup *iter; 1949 1950 /* 1951 * Be careful about under_oom underflows because a child memcg 1952 * could have been added after mem_cgroup_mark_under_oom. 1953 */ 1954 spin_lock(&memcg_oom_lock); 1955 for_each_mem_cgroup_tree(iter, memcg) 1956 if (iter->under_oom > 0) 1957 iter->under_oom--; 1958 spin_unlock(&memcg_oom_lock); 1959 } 1960 1961 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1962 1963 struct oom_wait_info { 1964 struct mem_cgroup *memcg; 1965 wait_queue_entry_t wait; 1966 }; 1967 1968 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1969 unsigned mode, int sync, void *arg) 1970 { 1971 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1972 struct mem_cgroup *oom_wait_memcg; 1973 struct oom_wait_info *oom_wait_info; 1974 1975 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1976 oom_wait_memcg = oom_wait_info->memcg; 1977 1978 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1979 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1980 return 0; 1981 return autoremove_wake_function(wait, mode, sync, arg); 1982 } 1983 1984 static void memcg_oom_recover(struct mem_cgroup *memcg) 1985 { 1986 /* 1987 * For the following lockless ->under_oom test, the only required 1988 * guarantee is that it must see the state asserted by an OOM when 1989 * this function is called as a result of userland actions 1990 * triggered by the notification of the OOM. This is trivially 1991 * achieved by invoking mem_cgroup_mark_under_oom() before 1992 * triggering notification. 1993 */ 1994 if (memcg && memcg->under_oom) 1995 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1996 } 1997 1998 /* 1999 * Returns true if successfully killed one or more processes. Though in some 2000 * corner cases it can return true even without killing any process. 2001 */ 2002 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 2003 { 2004 bool locked, ret; 2005 2006 if (order > PAGE_ALLOC_COSTLY_ORDER) 2007 return false; 2008 2009 memcg_memory_event(memcg, MEMCG_OOM); 2010 2011 /* 2012 * We are in the middle of the charge context here, so we 2013 * don't want to block when potentially sitting on a callstack 2014 * that holds all kinds of filesystem and mm locks. 2015 * 2016 * cgroup1 allows disabling the OOM killer and waiting for outside 2017 * handling until the charge can succeed; remember the context and put 2018 * the task to sleep at the end of the page fault when all locks are 2019 * released. 2020 * 2021 * On the other hand, in-kernel OOM killer allows for an async victim 2022 * memory reclaim (oom_reaper) and that means that we are not solely 2023 * relying on the oom victim to make a forward progress and we can 2024 * invoke the oom killer here. 2025 * 2026 * Please note that mem_cgroup_out_of_memory might fail to find a 2027 * victim and then we have to bail out from the charge path. 2028 */ 2029 if (READ_ONCE(memcg->oom_kill_disable)) { 2030 if (current->in_user_fault) { 2031 css_get(&memcg->css); 2032 current->memcg_in_oom = memcg; 2033 current->memcg_oom_gfp_mask = mask; 2034 current->memcg_oom_order = order; 2035 } 2036 return false; 2037 } 2038 2039 mem_cgroup_mark_under_oom(memcg); 2040 2041 locked = mem_cgroup_oom_trylock(memcg); 2042 2043 if (locked) 2044 mem_cgroup_oom_notify(memcg); 2045 2046 mem_cgroup_unmark_under_oom(memcg); 2047 ret = mem_cgroup_out_of_memory(memcg, mask, order); 2048 2049 if (locked) 2050 mem_cgroup_oom_unlock(memcg); 2051 2052 return ret; 2053 } 2054 2055 /** 2056 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2057 * @handle: actually kill/wait or just clean up the OOM state 2058 * 2059 * This has to be called at the end of a page fault if the memcg OOM 2060 * handler was enabled. 2061 * 2062 * Memcg supports userspace OOM handling where failed allocations must 2063 * sleep on a waitqueue until the userspace task resolves the 2064 * situation. Sleeping directly in the charge context with all kinds 2065 * of locks held is not a good idea, instead we remember an OOM state 2066 * in the task and mem_cgroup_oom_synchronize() has to be called at 2067 * the end of the page fault to complete the OOM handling. 2068 * 2069 * Returns %true if an ongoing memcg OOM situation was detected and 2070 * completed, %false otherwise. 2071 */ 2072 bool mem_cgroup_oom_synchronize(bool handle) 2073 { 2074 struct mem_cgroup *memcg = current->memcg_in_oom; 2075 struct oom_wait_info owait; 2076 bool locked; 2077 2078 /* OOM is global, do not handle */ 2079 if (!memcg) 2080 return false; 2081 2082 if (!handle) 2083 goto cleanup; 2084 2085 owait.memcg = memcg; 2086 owait.wait.flags = 0; 2087 owait.wait.func = memcg_oom_wake_function; 2088 owait.wait.private = current; 2089 INIT_LIST_HEAD(&owait.wait.entry); 2090 2091 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2092 mem_cgroup_mark_under_oom(memcg); 2093 2094 locked = mem_cgroup_oom_trylock(memcg); 2095 2096 if (locked) 2097 mem_cgroup_oom_notify(memcg); 2098 2099 schedule(); 2100 mem_cgroup_unmark_under_oom(memcg); 2101 finish_wait(&memcg_oom_waitq, &owait.wait); 2102 2103 if (locked) 2104 mem_cgroup_oom_unlock(memcg); 2105 cleanup: 2106 current->memcg_in_oom = NULL; 2107 css_put(&memcg->css); 2108 return true; 2109 } 2110 2111 /** 2112 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2113 * @victim: task to be killed by the OOM killer 2114 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2115 * 2116 * Returns a pointer to a memory cgroup, which has to be cleaned up 2117 * by killing all belonging OOM-killable tasks. 2118 * 2119 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2120 */ 2121 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2122 struct mem_cgroup *oom_domain) 2123 { 2124 struct mem_cgroup *oom_group = NULL; 2125 struct mem_cgroup *memcg; 2126 2127 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2128 return NULL; 2129 2130 if (!oom_domain) 2131 oom_domain = root_mem_cgroup; 2132 2133 rcu_read_lock(); 2134 2135 memcg = mem_cgroup_from_task(victim); 2136 if (mem_cgroup_is_root(memcg)) 2137 goto out; 2138 2139 /* 2140 * If the victim task has been asynchronously moved to a different 2141 * memory cgroup, we might end up killing tasks outside oom_domain. 2142 * In this case it's better to ignore memory.group.oom. 2143 */ 2144 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2145 goto out; 2146 2147 /* 2148 * Traverse the memory cgroup hierarchy from the victim task's 2149 * cgroup up to the OOMing cgroup (or root) to find the 2150 * highest-level memory cgroup with oom.group set. 2151 */ 2152 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2153 if (READ_ONCE(memcg->oom_group)) 2154 oom_group = memcg; 2155 2156 if (memcg == oom_domain) 2157 break; 2158 } 2159 2160 if (oom_group) 2161 css_get(&oom_group->css); 2162 out: 2163 rcu_read_unlock(); 2164 2165 return oom_group; 2166 } 2167 2168 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2169 { 2170 pr_info("Tasks in "); 2171 pr_cont_cgroup_path(memcg->css.cgroup); 2172 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2173 } 2174 2175 /** 2176 * folio_memcg_lock - Bind a folio to its memcg. 2177 * @folio: The folio. 2178 * 2179 * This function prevents unlocked LRU folios from being moved to 2180 * another cgroup. 2181 * 2182 * It ensures lifetime of the bound memcg. The caller is responsible 2183 * for the lifetime of the folio. 2184 */ 2185 void folio_memcg_lock(struct folio *folio) 2186 { 2187 struct mem_cgroup *memcg; 2188 unsigned long flags; 2189 2190 /* 2191 * The RCU lock is held throughout the transaction. The fast 2192 * path can get away without acquiring the memcg->move_lock 2193 * because page moving starts with an RCU grace period. 2194 */ 2195 rcu_read_lock(); 2196 2197 if (mem_cgroup_disabled()) 2198 return; 2199 again: 2200 memcg = folio_memcg(folio); 2201 if (unlikely(!memcg)) 2202 return; 2203 2204 #ifdef CONFIG_PROVE_LOCKING 2205 local_irq_save(flags); 2206 might_lock(&memcg->move_lock); 2207 local_irq_restore(flags); 2208 #endif 2209 2210 if (atomic_read(&memcg->moving_account) <= 0) 2211 return; 2212 2213 spin_lock_irqsave(&memcg->move_lock, flags); 2214 if (memcg != folio_memcg(folio)) { 2215 spin_unlock_irqrestore(&memcg->move_lock, flags); 2216 goto again; 2217 } 2218 2219 /* 2220 * When charge migration first begins, we can have multiple 2221 * critical sections holding the fast-path RCU lock and one 2222 * holding the slowpath move_lock. Track the task who has the 2223 * move_lock for folio_memcg_unlock(). 2224 */ 2225 memcg->move_lock_task = current; 2226 memcg->move_lock_flags = flags; 2227 } 2228 2229 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2230 { 2231 if (memcg && memcg->move_lock_task == current) { 2232 unsigned long flags = memcg->move_lock_flags; 2233 2234 memcg->move_lock_task = NULL; 2235 memcg->move_lock_flags = 0; 2236 2237 spin_unlock_irqrestore(&memcg->move_lock, flags); 2238 } 2239 2240 rcu_read_unlock(); 2241 } 2242 2243 /** 2244 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2245 * @folio: The folio. 2246 * 2247 * This releases the binding created by folio_memcg_lock(). This does 2248 * not change the accounting of this folio to its memcg, but it does 2249 * permit others to change it. 2250 */ 2251 void folio_memcg_unlock(struct folio *folio) 2252 { 2253 __folio_memcg_unlock(folio_memcg(folio)); 2254 } 2255 2256 struct memcg_stock_pcp { 2257 local_lock_t stock_lock; 2258 struct mem_cgroup *cached; /* this never be root cgroup */ 2259 unsigned int nr_pages; 2260 2261 #ifdef CONFIG_MEMCG_KMEM 2262 struct obj_cgroup *cached_objcg; 2263 struct pglist_data *cached_pgdat; 2264 unsigned int nr_bytes; 2265 int nr_slab_reclaimable_b; 2266 int nr_slab_unreclaimable_b; 2267 #endif 2268 2269 struct work_struct work; 2270 unsigned long flags; 2271 #define FLUSHING_CACHED_CHARGE 0 2272 }; 2273 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2274 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2275 }; 2276 static DEFINE_MUTEX(percpu_charge_mutex); 2277 2278 #ifdef CONFIG_MEMCG_KMEM 2279 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2280 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2281 struct mem_cgroup *root_memcg); 2282 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2283 2284 #else 2285 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2286 { 2287 return NULL; 2288 } 2289 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2290 struct mem_cgroup *root_memcg) 2291 { 2292 return false; 2293 } 2294 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2295 { 2296 } 2297 #endif 2298 2299 /** 2300 * consume_stock: Try to consume stocked charge on this cpu. 2301 * @memcg: memcg to consume from. 2302 * @nr_pages: how many pages to charge. 2303 * 2304 * The charges will only happen if @memcg matches the current cpu's memcg 2305 * stock, and at least @nr_pages are available in that stock. Failure to 2306 * service an allocation will refill the stock. 2307 * 2308 * returns true if successful, false otherwise. 2309 */ 2310 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2311 { 2312 struct memcg_stock_pcp *stock; 2313 unsigned long flags; 2314 bool ret = false; 2315 2316 if (nr_pages > MEMCG_CHARGE_BATCH) 2317 return ret; 2318 2319 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2320 2321 stock = this_cpu_ptr(&memcg_stock); 2322 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) { 2323 stock->nr_pages -= nr_pages; 2324 ret = true; 2325 } 2326 2327 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2328 2329 return ret; 2330 } 2331 2332 /* 2333 * Returns stocks cached in percpu and reset cached information. 2334 */ 2335 static void drain_stock(struct memcg_stock_pcp *stock) 2336 { 2337 struct mem_cgroup *old = READ_ONCE(stock->cached); 2338 2339 if (!old) 2340 return; 2341 2342 if (stock->nr_pages) { 2343 page_counter_uncharge(&old->memory, stock->nr_pages); 2344 if (do_memsw_account()) 2345 page_counter_uncharge(&old->memsw, stock->nr_pages); 2346 stock->nr_pages = 0; 2347 } 2348 2349 css_put(&old->css); 2350 WRITE_ONCE(stock->cached, NULL); 2351 } 2352 2353 static void drain_local_stock(struct work_struct *dummy) 2354 { 2355 struct memcg_stock_pcp *stock; 2356 struct obj_cgroup *old = NULL; 2357 unsigned long flags; 2358 2359 /* 2360 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2361 * drain_stock races is that we always operate on local CPU stock 2362 * here with IRQ disabled 2363 */ 2364 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2365 2366 stock = this_cpu_ptr(&memcg_stock); 2367 old = drain_obj_stock(stock); 2368 drain_stock(stock); 2369 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2370 2371 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2372 obj_cgroup_put(old); 2373 } 2374 2375 /* 2376 * Cache charges(val) to local per_cpu area. 2377 * This will be consumed by consume_stock() function, later. 2378 */ 2379 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2380 { 2381 struct memcg_stock_pcp *stock; 2382 2383 stock = this_cpu_ptr(&memcg_stock); 2384 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 2385 drain_stock(stock); 2386 css_get(&memcg->css); 2387 WRITE_ONCE(stock->cached, memcg); 2388 } 2389 stock->nr_pages += nr_pages; 2390 2391 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2392 drain_stock(stock); 2393 } 2394 2395 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2396 { 2397 unsigned long flags; 2398 2399 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2400 __refill_stock(memcg, nr_pages); 2401 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2402 } 2403 2404 /* 2405 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2406 * of the hierarchy under it. 2407 */ 2408 static void drain_all_stock(struct mem_cgroup *root_memcg) 2409 { 2410 int cpu, curcpu; 2411 2412 /* If someone's already draining, avoid adding running more workers. */ 2413 if (!mutex_trylock(&percpu_charge_mutex)) 2414 return; 2415 /* 2416 * Notify other cpus that system-wide "drain" is running 2417 * We do not care about races with the cpu hotplug because cpu down 2418 * as well as workers from this path always operate on the local 2419 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2420 */ 2421 migrate_disable(); 2422 curcpu = smp_processor_id(); 2423 for_each_online_cpu(cpu) { 2424 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2425 struct mem_cgroup *memcg; 2426 bool flush = false; 2427 2428 rcu_read_lock(); 2429 memcg = READ_ONCE(stock->cached); 2430 if (memcg && stock->nr_pages && 2431 mem_cgroup_is_descendant(memcg, root_memcg)) 2432 flush = true; 2433 else if (obj_stock_flush_required(stock, root_memcg)) 2434 flush = true; 2435 rcu_read_unlock(); 2436 2437 if (flush && 2438 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2439 if (cpu == curcpu) 2440 drain_local_stock(&stock->work); 2441 else if (!cpu_is_isolated(cpu)) 2442 schedule_work_on(cpu, &stock->work); 2443 } 2444 } 2445 migrate_enable(); 2446 mutex_unlock(&percpu_charge_mutex); 2447 } 2448 2449 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2450 { 2451 struct memcg_stock_pcp *stock; 2452 2453 stock = &per_cpu(memcg_stock, cpu); 2454 drain_stock(stock); 2455 2456 return 0; 2457 } 2458 2459 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2460 unsigned int nr_pages, 2461 gfp_t gfp_mask) 2462 { 2463 unsigned long nr_reclaimed = 0; 2464 2465 do { 2466 unsigned long pflags; 2467 2468 if (page_counter_read(&memcg->memory) <= 2469 READ_ONCE(memcg->memory.high)) 2470 continue; 2471 2472 memcg_memory_event(memcg, MEMCG_HIGH); 2473 2474 psi_memstall_enter(&pflags); 2475 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2476 gfp_mask, 2477 MEMCG_RECLAIM_MAY_SWAP); 2478 psi_memstall_leave(&pflags); 2479 } while ((memcg = parent_mem_cgroup(memcg)) && 2480 !mem_cgroup_is_root(memcg)); 2481 2482 return nr_reclaimed; 2483 } 2484 2485 static void high_work_func(struct work_struct *work) 2486 { 2487 struct mem_cgroup *memcg; 2488 2489 memcg = container_of(work, struct mem_cgroup, high_work); 2490 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2491 } 2492 2493 /* 2494 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2495 * enough to still cause a significant slowdown in most cases, while still 2496 * allowing diagnostics and tracing to proceed without becoming stuck. 2497 */ 2498 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2499 2500 /* 2501 * When calculating the delay, we use these either side of the exponentiation to 2502 * maintain precision and scale to a reasonable number of jiffies (see the table 2503 * below. 2504 * 2505 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2506 * overage ratio to a delay. 2507 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2508 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2509 * to produce a reasonable delay curve. 2510 * 2511 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2512 * reasonable delay curve compared to precision-adjusted overage, not 2513 * penalising heavily at first, but still making sure that growth beyond the 2514 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2515 * example, with a high of 100 megabytes: 2516 * 2517 * +-------+------------------------+ 2518 * | usage | time to allocate in ms | 2519 * +-------+------------------------+ 2520 * | 100M | 0 | 2521 * | 101M | 6 | 2522 * | 102M | 25 | 2523 * | 103M | 57 | 2524 * | 104M | 102 | 2525 * | 105M | 159 | 2526 * | 106M | 230 | 2527 * | 107M | 313 | 2528 * | 108M | 409 | 2529 * | 109M | 518 | 2530 * | 110M | 639 | 2531 * | 111M | 774 | 2532 * | 112M | 921 | 2533 * | 113M | 1081 | 2534 * | 114M | 1254 | 2535 * | 115M | 1439 | 2536 * | 116M | 1638 | 2537 * | 117M | 1849 | 2538 * | 118M | 2000 | 2539 * | 119M | 2000 | 2540 * | 120M | 2000 | 2541 * +-------+------------------------+ 2542 */ 2543 #define MEMCG_DELAY_PRECISION_SHIFT 20 2544 #define MEMCG_DELAY_SCALING_SHIFT 14 2545 2546 static u64 calculate_overage(unsigned long usage, unsigned long high) 2547 { 2548 u64 overage; 2549 2550 if (usage <= high) 2551 return 0; 2552 2553 /* 2554 * Prevent division by 0 in overage calculation by acting as if 2555 * it was a threshold of 1 page 2556 */ 2557 high = max(high, 1UL); 2558 2559 overage = usage - high; 2560 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2561 return div64_u64(overage, high); 2562 } 2563 2564 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2565 { 2566 u64 overage, max_overage = 0; 2567 2568 do { 2569 overage = calculate_overage(page_counter_read(&memcg->memory), 2570 READ_ONCE(memcg->memory.high)); 2571 max_overage = max(overage, max_overage); 2572 } while ((memcg = parent_mem_cgroup(memcg)) && 2573 !mem_cgroup_is_root(memcg)); 2574 2575 return max_overage; 2576 } 2577 2578 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2579 { 2580 u64 overage, max_overage = 0; 2581 2582 do { 2583 overage = calculate_overage(page_counter_read(&memcg->swap), 2584 READ_ONCE(memcg->swap.high)); 2585 if (overage) 2586 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2587 max_overage = max(overage, max_overage); 2588 } while ((memcg = parent_mem_cgroup(memcg)) && 2589 !mem_cgroup_is_root(memcg)); 2590 2591 return max_overage; 2592 } 2593 2594 /* 2595 * Get the number of jiffies that we should penalise a mischievous cgroup which 2596 * is exceeding its memory.high by checking both it and its ancestors. 2597 */ 2598 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2599 unsigned int nr_pages, 2600 u64 max_overage) 2601 { 2602 unsigned long penalty_jiffies; 2603 2604 if (!max_overage) 2605 return 0; 2606 2607 /* 2608 * We use overage compared to memory.high to calculate the number of 2609 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2610 * fairly lenient on small overages, and increasingly harsh when the 2611 * memcg in question makes it clear that it has no intention of stopping 2612 * its crazy behaviour, so we exponentially increase the delay based on 2613 * overage amount. 2614 */ 2615 penalty_jiffies = max_overage * max_overage * HZ; 2616 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2617 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2618 2619 /* 2620 * Factor in the task's own contribution to the overage, such that four 2621 * N-sized allocations are throttled approximately the same as one 2622 * 4N-sized allocation. 2623 * 2624 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2625 * larger the current charge patch is than that. 2626 */ 2627 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2628 } 2629 2630 /* 2631 * Reclaims memory over the high limit. Called directly from 2632 * try_charge() (context permitting), as well as from the userland 2633 * return path where reclaim is always able to block. 2634 */ 2635 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2636 { 2637 unsigned long penalty_jiffies; 2638 unsigned long pflags; 2639 unsigned long nr_reclaimed; 2640 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2641 int nr_retries = MAX_RECLAIM_RETRIES; 2642 struct mem_cgroup *memcg; 2643 bool in_retry = false; 2644 2645 if (likely(!nr_pages)) 2646 return; 2647 2648 memcg = get_mem_cgroup_from_mm(current->mm); 2649 current->memcg_nr_pages_over_high = 0; 2650 2651 retry_reclaim: 2652 /* 2653 * Bail if the task is already exiting. Unlike memory.max, 2654 * memory.high enforcement isn't as strict, and there is no 2655 * OOM killer involved, which means the excess could already 2656 * be much bigger (and still growing) than it could for 2657 * memory.max; the dying task could get stuck in fruitless 2658 * reclaim for a long time, which isn't desirable. 2659 */ 2660 if (task_is_dying()) 2661 goto out; 2662 2663 /* 2664 * The allocating task should reclaim at least the batch size, but for 2665 * subsequent retries we only want to do what's necessary to prevent oom 2666 * or breaching resource isolation. 2667 * 2668 * This is distinct from memory.max or page allocator behaviour because 2669 * memory.high is currently batched, whereas memory.max and the page 2670 * allocator run every time an allocation is made. 2671 */ 2672 nr_reclaimed = reclaim_high(memcg, 2673 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2674 gfp_mask); 2675 2676 /* 2677 * memory.high is breached and reclaim is unable to keep up. Throttle 2678 * allocators proactively to slow down excessive growth. 2679 */ 2680 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2681 mem_find_max_overage(memcg)); 2682 2683 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2684 swap_find_max_overage(memcg)); 2685 2686 /* 2687 * Clamp the max delay per usermode return so as to still keep the 2688 * application moving forwards and also permit diagnostics, albeit 2689 * extremely slowly. 2690 */ 2691 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2692 2693 /* 2694 * Don't sleep if the amount of jiffies this memcg owes us is so low 2695 * that it's not even worth doing, in an attempt to be nice to those who 2696 * go only a small amount over their memory.high value and maybe haven't 2697 * been aggressively reclaimed enough yet. 2698 */ 2699 if (penalty_jiffies <= HZ / 100) 2700 goto out; 2701 2702 /* 2703 * If reclaim is making forward progress but we're still over 2704 * memory.high, we want to encourage that rather than doing allocator 2705 * throttling. 2706 */ 2707 if (nr_reclaimed || nr_retries--) { 2708 in_retry = true; 2709 goto retry_reclaim; 2710 } 2711 2712 /* 2713 * Reclaim didn't manage to push usage below the limit, slow 2714 * this allocating task down. 2715 * 2716 * If we exit early, we're guaranteed to die (since 2717 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2718 * need to account for any ill-begotten jiffies to pay them off later. 2719 */ 2720 psi_memstall_enter(&pflags); 2721 schedule_timeout_killable(penalty_jiffies); 2722 psi_memstall_leave(&pflags); 2723 2724 out: 2725 css_put(&memcg->css); 2726 } 2727 2728 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2729 unsigned int nr_pages) 2730 { 2731 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2732 int nr_retries = MAX_RECLAIM_RETRIES; 2733 struct mem_cgroup *mem_over_limit; 2734 struct page_counter *counter; 2735 unsigned long nr_reclaimed; 2736 bool passed_oom = false; 2737 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2738 bool drained = false; 2739 bool raised_max_event = false; 2740 unsigned long pflags; 2741 2742 retry: 2743 if (consume_stock(memcg, nr_pages)) 2744 return 0; 2745 2746 if (!do_memsw_account() || 2747 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2748 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2749 goto done_restock; 2750 if (do_memsw_account()) 2751 page_counter_uncharge(&memcg->memsw, batch); 2752 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2753 } else { 2754 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2755 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2756 } 2757 2758 if (batch > nr_pages) { 2759 batch = nr_pages; 2760 goto retry; 2761 } 2762 2763 /* 2764 * Prevent unbounded recursion when reclaim operations need to 2765 * allocate memory. This might exceed the limits temporarily, 2766 * but we prefer facilitating memory reclaim and getting back 2767 * under the limit over triggering OOM kills in these cases. 2768 */ 2769 if (unlikely(current->flags & PF_MEMALLOC)) 2770 goto force; 2771 2772 if (unlikely(task_in_memcg_oom(current))) 2773 goto nomem; 2774 2775 if (!gfpflags_allow_blocking(gfp_mask)) 2776 goto nomem; 2777 2778 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2779 raised_max_event = true; 2780 2781 psi_memstall_enter(&pflags); 2782 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2783 gfp_mask, reclaim_options); 2784 psi_memstall_leave(&pflags); 2785 2786 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2787 goto retry; 2788 2789 if (!drained) { 2790 drain_all_stock(mem_over_limit); 2791 drained = true; 2792 goto retry; 2793 } 2794 2795 if (gfp_mask & __GFP_NORETRY) 2796 goto nomem; 2797 /* 2798 * Even though the limit is exceeded at this point, reclaim 2799 * may have been able to free some pages. Retry the charge 2800 * before killing the task. 2801 * 2802 * Only for regular pages, though: huge pages are rather 2803 * unlikely to succeed so close to the limit, and we fall back 2804 * to regular pages anyway in case of failure. 2805 */ 2806 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2807 goto retry; 2808 /* 2809 * At task move, charge accounts can be doubly counted. So, it's 2810 * better to wait until the end of task_move if something is going on. 2811 */ 2812 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2813 goto retry; 2814 2815 if (nr_retries--) 2816 goto retry; 2817 2818 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2819 goto nomem; 2820 2821 /* Avoid endless loop for tasks bypassed by the oom killer */ 2822 if (passed_oom && task_is_dying()) 2823 goto nomem; 2824 2825 /* 2826 * keep retrying as long as the memcg oom killer is able to make 2827 * a forward progress or bypass the charge if the oom killer 2828 * couldn't make any progress. 2829 */ 2830 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2831 get_order(nr_pages * PAGE_SIZE))) { 2832 passed_oom = true; 2833 nr_retries = MAX_RECLAIM_RETRIES; 2834 goto retry; 2835 } 2836 nomem: 2837 /* 2838 * Memcg doesn't have a dedicated reserve for atomic 2839 * allocations. But like the global atomic pool, we need to 2840 * put the burden of reclaim on regular allocation requests 2841 * and let these go through as privileged allocations. 2842 */ 2843 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2844 return -ENOMEM; 2845 force: 2846 /* 2847 * If the allocation has to be enforced, don't forget to raise 2848 * a MEMCG_MAX event. 2849 */ 2850 if (!raised_max_event) 2851 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2852 2853 /* 2854 * The allocation either can't fail or will lead to more memory 2855 * being freed very soon. Allow memory usage go over the limit 2856 * temporarily by force charging it. 2857 */ 2858 page_counter_charge(&memcg->memory, nr_pages); 2859 if (do_memsw_account()) 2860 page_counter_charge(&memcg->memsw, nr_pages); 2861 2862 return 0; 2863 2864 done_restock: 2865 if (batch > nr_pages) 2866 refill_stock(memcg, batch - nr_pages); 2867 2868 /* 2869 * If the hierarchy is above the normal consumption range, schedule 2870 * reclaim on returning to userland. We can perform reclaim here 2871 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2872 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2873 * not recorded as it most likely matches current's and won't 2874 * change in the meantime. As high limit is checked again before 2875 * reclaim, the cost of mismatch is negligible. 2876 */ 2877 do { 2878 bool mem_high, swap_high; 2879 2880 mem_high = page_counter_read(&memcg->memory) > 2881 READ_ONCE(memcg->memory.high); 2882 swap_high = page_counter_read(&memcg->swap) > 2883 READ_ONCE(memcg->swap.high); 2884 2885 /* Don't bother a random interrupted task */ 2886 if (!in_task()) { 2887 if (mem_high) { 2888 schedule_work(&memcg->high_work); 2889 break; 2890 } 2891 continue; 2892 } 2893 2894 if (mem_high || swap_high) { 2895 /* 2896 * The allocating tasks in this cgroup will need to do 2897 * reclaim or be throttled to prevent further growth 2898 * of the memory or swap footprints. 2899 * 2900 * Target some best-effort fairness between the tasks, 2901 * and distribute reclaim work and delay penalties 2902 * based on how much each task is actually allocating. 2903 */ 2904 current->memcg_nr_pages_over_high += batch; 2905 set_notify_resume(current); 2906 break; 2907 } 2908 } while ((memcg = parent_mem_cgroup(memcg))); 2909 2910 /* 2911 * Reclaim is set up above to be called from the userland 2912 * return path. But also attempt synchronous reclaim to avoid 2913 * excessive overrun while the task is still inside the 2914 * kernel. If this is successful, the return path will see it 2915 * when it rechecks the overage and simply bail out. 2916 */ 2917 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2918 !(current->flags & PF_MEMALLOC) && 2919 gfpflags_allow_blocking(gfp_mask)) 2920 mem_cgroup_handle_over_high(gfp_mask); 2921 return 0; 2922 } 2923 2924 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2925 unsigned int nr_pages) 2926 { 2927 if (mem_cgroup_is_root(memcg)) 2928 return 0; 2929 2930 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2931 } 2932 2933 /** 2934 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. 2935 * @memcg: memcg previously charged. 2936 * @nr_pages: number of pages previously charged. 2937 */ 2938 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2939 { 2940 if (mem_cgroup_is_root(memcg)) 2941 return; 2942 2943 page_counter_uncharge(&memcg->memory, nr_pages); 2944 if (do_memsw_account()) 2945 page_counter_uncharge(&memcg->memsw, nr_pages); 2946 } 2947 2948 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2949 { 2950 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2951 /* 2952 * Any of the following ensures page's memcg stability: 2953 * 2954 * - the page lock 2955 * - LRU isolation 2956 * - folio_memcg_lock() 2957 * - exclusive reference 2958 * - mem_cgroup_trylock_pages() 2959 */ 2960 folio->memcg_data = (unsigned long)memcg; 2961 } 2962 2963 /** 2964 * mem_cgroup_commit_charge - commit a previously successful try_charge(). 2965 * @folio: folio to commit the charge to. 2966 * @memcg: memcg previously charged. 2967 */ 2968 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2969 { 2970 css_get(&memcg->css); 2971 commit_charge(folio, memcg); 2972 2973 local_irq_disable(); 2974 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio)); 2975 memcg_check_events(memcg, folio_nid(folio)); 2976 local_irq_enable(); 2977 } 2978 2979 #ifdef CONFIG_MEMCG_KMEM 2980 2981 /* 2982 * mod_objcg_mlstate() may be called with irq enabled, so 2983 * mod_memcg_lruvec_state() should be used. 2984 */ 2985 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2986 struct pglist_data *pgdat, 2987 enum node_stat_item idx, int nr) 2988 { 2989 struct mem_cgroup *memcg; 2990 struct lruvec *lruvec; 2991 2992 rcu_read_lock(); 2993 memcg = obj_cgroup_memcg(objcg); 2994 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2995 mod_memcg_lruvec_state(lruvec, idx, nr); 2996 rcu_read_unlock(); 2997 } 2998 2999 static __always_inline 3000 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 3001 { 3002 /* 3003 * Slab objects are accounted individually, not per-page. 3004 * Memcg membership data for each individual object is saved in 3005 * slab->obj_exts. 3006 */ 3007 if (folio_test_slab(folio)) { 3008 struct slabobj_ext *obj_exts; 3009 struct slab *slab; 3010 unsigned int off; 3011 3012 slab = folio_slab(folio); 3013 obj_exts = slab_obj_exts(slab); 3014 if (!obj_exts) 3015 return NULL; 3016 3017 off = obj_to_index(slab->slab_cache, slab, p); 3018 if (obj_exts[off].objcg) 3019 return obj_cgroup_memcg(obj_exts[off].objcg); 3020 3021 return NULL; 3022 } 3023 3024 /* 3025 * folio_memcg_check() is used here, because in theory we can encounter 3026 * a folio where the slab flag has been cleared already, but 3027 * slab->obj_exts has not been freed yet 3028 * folio_memcg_check() will guarantee that a proper memory 3029 * cgroup pointer or NULL will be returned. 3030 */ 3031 return folio_memcg_check(folio); 3032 } 3033 3034 /* 3035 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3036 * 3037 * A passed kernel object can be a slab object, vmalloc object or a generic 3038 * kernel page, so different mechanisms for getting the memory cgroup pointer 3039 * should be used. 3040 * 3041 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 3042 * can not know for sure how the kernel object is implemented. 3043 * mem_cgroup_from_obj() can be safely used in such cases. 3044 * 3045 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3046 * cgroup_mutex, etc. 3047 */ 3048 struct mem_cgroup *mem_cgroup_from_obj(void *p) 3049 { 3050 struct folio *folio; 3051 3052 if (mem_cgroup_disabled()) 3053 return NULL; 3054 3055 if (unlikely(is_vmalloc_addr(p))) 3056 folio = page_folio(vmalloc_to_page(p)); 3057 else 3058 folio = virt_to_folio(p); 3059 3060 return mem_cgroup_from_obj_folio(folio, p); 3061 } 3062 3063 /* 3064 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3065 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 3066 * allocated using vmalloc(). 3067 * 3068 * A passed kernel object must be a slab object or a generic kernel page. 3069 * 3070 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3071 * cgroup_mutex, etc. 3072 */ 3073 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 3074 { 3075 if (mem_cgroup_disabled()) 3076 return NULL; 3077 3078 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 3079 } 3080 3081 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 3082 { 3083 struct obj_cgroup *objcg = NULL; 3084 3085 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3086 objcg = rcu_dereference(memcg->objcg); 3087 if (likely(objcg && obj_cgroup_tryget(objcg))) 3088 break; 3089 objcg = NULL; 3090 } 3091 return objcg; 3092 } 3093 3094 static struct obj_cgroup *current_objcg_update(void) 3095 { 3096 struct mem_cgroup *memcg; 3097 struct obj_cgroup *old, *objcg = NULL; 3098 3099 do { 3100 /* Atomically drop the update bit. */ 3101 old = xchg(¤t->objcg, NULL); 3102 if (old) { 3103 old = (struct obj_cgroup *) 3104 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 3105 obj_cgroup_put(old); 3106 3107 old = NULL; 3108 } 3109 3110 /* If new objcg is NULL, no reason for the second atomic update. */ 3111 if (!current->mm || (current->flags & PF_KTHREAD)) 3112 return NULL; 3113 3114 /* 3115 * Release the objcg pointer from the previous iteration, 3116 * if try_cmpxcg() below fails. 3117 */ 3118 if (unlikely(objcg)) { 3119 obj_cgroup_put(objcg); 3120 objcg = NULL; 3121 } 3122 3123 /* 3124 * Obtain the new objcg pointer. The current task can be 3125 * asynchronously moved to another memcg and the previous 3126 * memcg can be offlined. So let's get the memcg pointer 3127 * and try get a reference to objcg under a rcu read lock. 3128 */ 3129 3130 rcu_read_lock(); 3131 memcg = mem_cgroup_from_task(current); 3132 objcg = __get_obj_cgroup_from_memcg(memcg); 3133 rcu_read_unlock(); 3134 3135 /* 3136 * Try set up a new objcg pointer atomically. If it 3137 * fails, it means the update flag was set concurrently, so 3138 * the whole procedure should be repeated. 3139 */ 3140 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 3141 3142 return objcg; 3143 } 3144 3145 __always_inline struct obj_cgroup *current_obj_cgroup(void) 3146 { 3147 struct mem_cgroup *memcg; 3148 struct obj_cgroup *objcg; 3149 3150 if (in_task()) { 3151 memcg = current->active_memcg; 3152 if (unlikely(memcg)) 3153 goto from_memcg; 3154 3155 objcg = READ_ONCE(current->objcg); 3156 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 3157 objcg = current_objcg_update(); 3158 /* 3159 * Objcg reference is kept by the task, so it's safe 3160 * to use the objcg by the current task. 3161 */ 3162 return objcg; 3163 } 3164 3165 memcg = this_cpu_read(int_active_memcg); 3166 if (unlikely(memcg)) 3167 goto from_memcg; 3168 3169 return NULL; 3170 3171 from_memcg: 3172 objcg = NULL; 3173 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3174 /* 3175 * Memcg pointer is protected by scope (see set_active_memcg()) 3176 * and is pinning the corresponding objcg, so objcg can't go 3177 * away and can be used within the scope without any additional 3178 * protection. 3179 */ 3180 objcg = rcu_dereference_check(memcg->objcg, 1); 3181 if (likely(objcg)) 3182 break; 3183 } 3184 3185 return objcg; 3186 } 3187 3188 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 3189 { 3190 struct obj_cgroup *objcg; 3191 3192 if (!memcg_kmem_online()) 3193 return NULL; 3194 3195 if (folio_memcg_kmem(folio)) { 3196 objcg = __folio_objcg(folio); 3197 obj_cgroup_get(objcg); 3198 } else { 3199 struct mem_cgroup *memcg; 3200 3201 rcu_read_lock(); 3202 memcg = __folio_memcg(folio); 3203 if (memcg) 3204 objcg = __get_obj_cgroup_from_memcg(memcg); 3205 else 3206 objcg = NULL; 3207 rcu_read_unlock(); 3208 } 3209 return objcg; 3210 } 3211 3212 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3213 { 3214 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 3215 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3216 if (nr_pages > 0) 3217 page_counter_charge(&memcg->kmem, nr_pages); 3218 else 3219 page_counter_uncharge(&memcg->kmem, -nr_pages); 3220 } 3221 } 3222 3223 3224 /* 3225 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3226 * @objcg: object cgroup to uncharge 3227 * @nr_pages: number of pages to uncharge 3228 */ 3229 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3230 unsigned int nr_pages) 3231 { 3232 struct mem_cgroup *memcg; 3233 3234 memcg = get_mem_cgroup_from_objcg(objcg); 3235 3236 memcg_account_kmem(memcg, -nr_pages); 3237 refill_stock(memcg, nr_pages); 3238 3239 css_put(&memcg->css); 3240 } 3241 3242 /* 3243 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3244 * @objcg: object cgroup to charge 3245 * @gfp: reclaim mode 3246 * @nr_pages: number of pages to charge 3247 * 3248 * Returns 0 on success, an error code on failure. 3249 */ 3250 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3251 unsigned int nr_pages) 3252 { 3253 struct mem_cgroup *memcg; 3254 int ret; 3255 3256 memcg = get_mem_cgroup_from_objcg(objcg); 3257 3258 ret = try_charge_memcg(memcg, gfp, nr_pages); 3259 if (ret) 3260 goto out; 3261 3262 memcg_account_kmem(memcg, nr_pages); 3263 out: 3264 css_put(&memcg->css); 3265 3266 return ret; 3267 } 3268 3269 /** 3270 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3271 * @page: page to charge 3272 * @gfp: reclaim mode 3273 * @order: allocation order 3274 * 3275 * Returns 0 on success, an error code on failure. 3276 */ 3277 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3278 { 3279 struct obj_cgroup *objcg; 3280 int ret = 0; 3281 3282 objcg = current_obj_cgroup(); 3283 if (objcg) { 3284 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3285 if (!ret) { 3286 obj_cgroup_get(objcg); 3287 page->memcg_data = (unsigned long)objcg | 3288 MEMCG_DATA_KMEM; 3289 return 0; 3290 } 3291 } 3292 return ret; 3293 } 3294 3295 /** 3296 * __memcg_kmem_uncharge_page: uncharge a kmem page 3297 * @page: page to uncharge 3298 * @order: allocation order 3299 */ 3300 void __memcg_kmem_uncharge_page(struct page *page, int order) 3301 { 3302 struct folio *folio = page_folio(page); 3303 struct obj_cgroup *objcg; 3304 unsigned int nr_pages = 1 << order; 3305 3306 if (!folio_memcg_kmem(folio)) 3307 return; 3308 3309 objcg = __folio_objcg(folio); 3310 obj_cgroup_uncharge_pages(objcg, nr_pages); 3311 folio->memcg_data = 0; 3312 obj_cgroup_put(objcg); 3313 } 3314 3315 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3316 enum node_stat_item idx, int nr) 3317 { 3318 struct memcg_stock_pcp *stock; 3319 struct obj_cgroup *old = NULL; 3320 unsigned long flags; 3321 int *bytes; 3322 3323 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3324 stock = this_cpu_ptr(&memcg_stock); 3325 3326 /* 3327 * Save vmstat data in stock and skip vmstat array update unless 3328 * accumulating over a page of vmstat data or when pgdat or idx 3329 * changes. 3330 */ 3331 if (READ_ONCE(stock->cached_objcg) != objcg) { 3332 old = drain_obj_stock(stock); 3333 obj_cgroup_get(objcg); 3334 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3335 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3336 WRITE_ONCE(stock->cached_objcg, objcg); 3337 stock->cached_pgdat = pgdat; 3338 } else if (stock->cached_pgdat != pgdat) { 3339 /* Flush the existing cached vmstat data */ 3340 struct pglist_data *oldpg = stock->cached_pgdat; 3341 3342 if (stock->nr_slab_reclaimable_b) { 3343 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3344 stock->nr_slab_reclaimable_b); 3345 stock->nr_slab_reclaimable_b = 0; 3346 } 3347 if (stock->nr_slab_unreclaimable_b) { 3348 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3349 stock->nr_slab_unreclaimable_b); 3350 stock->nr_slab_unreclaimable_b = 0; 3351 } 3352 stock->cached_pgdat = pgdat; 3353 } 3354 3355 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3356 : &stock->nr_slab_unreclaimable_b; 3357 /* 3358 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3359 * cached locally at least once before pushing it out. 3360 */ 3361 if (!*bytes) { 3362 *bytes = nr; 3363 nr = 0; 3364 } else { 3365 *bytes += nr; 3366 if (abs(*bytes) > PAGE_SIZE) { 3367 nr = *bytes; 3368 *bytes = 0; 3369 } else { 3370 nr = 0; 3371 } 3372 } 3373 if (nr) 3374 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3375 3376 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3377 obj_cgroup_put(old); 3378 } 3379 3380 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3381 { 3382 struct memcg_stock_pcp *stock; 3383 unsigned long flags; 3384 bool ret = false; 3385 3386 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3387 3388 stock = this_cpu_ptr(&memcg_stock); 3389 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 3390 stock->nr_bytes -= nr_bytes; 3391 ret = true; 3392 } 3393 3394 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3395 3396 return ret; 3397 } 3398 3399 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3400 { 3401 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 3402 3403 if (!old) 3404 return NULL; 3405 3406 if (stock->nr_bytes) { 3407 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3408 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3409 3410 if (nr_pages) { 3411 struct mem_cgroup *memcg; 3412 3413 memcg = get_mem_cgroup_from_objcg(old); 3414 3415 memcg_account_kmem(memcg, -nr_pages); 3416 __refill_stock(memcg, nr_pages); 3417 3418 css_put(&memcg->css); 3419 } 3420 3421 /* 3422 * The leftover is flushed to the centralized per-memcg value. 3423 * On the next attempt to refill obj stock it will be moved 3424 * to a per-cpu stock (probably, on an other CPU), see 3425 * refill_obj_stock(). 3426 * 3427 * How often it's flushed is a trade-off between the memory 3428 * limit enforcement accuracy and potential CPU contention, 3429 * so it might be changed in the future. 3430 */ 3431 atomic_add(nr_bytes, &old->nr_charged_bytes); 3432 stock->nr_bytes = 0; 3433 } 3434 3435 /* 3436 * Flush the vmstat data in current stock 3437 */ 3438 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3439 if (stock->nr_slab_reclaimable_b) { 3440 mod_objcg_mlstate(old, stock->cached_pgdat, 3441 NR_SLAB_RECLAIMABLE_B, 3442 stock->nr_slab_reclaimable_b); 3443 stock->nr_slab_reclaimable_b = 0; 3444 } 3445 if (stock->nr_slab_unreclaimable_b) { 3446 mod_objcg_mlstate(old, stock->cached_pgdat, 3447 NR_SLAB_UNRECLAIMABLE_B, 3448 stock->nr_slab_unreclaimable_b); 3449 stock->nr_slab_unreclaimable_b = 0; 3450 } 3451 stock->cached_pgdat = NULL; 3452 } 3453 3454 WRITE_ONCE(stock->cached_objcg, NULL); 3455 /* 3456 * The `old' objects needs to be released by the caller via 3457 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3458 */ 3459 return old; 3460 } 3461 3462 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3463 struct mem_cgroup *root_memcg) 3464 { 3465 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 3466 struct mem_cgroup *memcg; 3467 3468 if (objcg) { 3469 memcg = obj_cgroup_memcg(objcg); 3470 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3471 return true; 3472 } 3473 3474 return false; 3475 } 3476 3477 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3478 bool allow_uncharge) 3479 { 3480 struct memcg_stock_pcp *stock; 3481 struct obj_cgroup *old = NULL; 3482 unsigned long flags; 3483 unsigned int nr_pages = 0; 3484 3485 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3486 3487 stock = this_cpu_ptr(&memcg_stock); 3488 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 3489 old = drain_obj_stock(stock); 3490 obj_cgroup_get(objcg); 3491 WRITE_ONCE(stock->cached_objcg, objcg); 3492 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3493 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3494 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3495 } 3496 stock->nr_bytes += nr_bytes; 3497 3498 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3499 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3500 stock->nr_bytes &= (PAGE_SIZE - 1); 3501 } 3502 3503 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3504 obj_cgroup_put(old); 3505 3506 if (nr_pages) 3507 obj_cgroup_uncharge_pages(objcg, nr_pages); 3508 } 3509 3510 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3511 { 3512 unsigned int nr_pages, nr_bytes; 3513 int ret; 3514 3515 if (consume_obj_stock(objcg, size)) 3516 return 0; 3517 3518 /* 3519 * In theory, objcg->nr_charged_bytes can have enough 3520 * pre-charged bytes to satisfy the allocation. However, 3521 * flushing objcg->nr_charged_bytes requires two atomic 3522 * operations, and objcg->nr_charged_bytes can't be big. 3523 * The shared objcg->nr_charged_bytes can also become a 3524 * performance bottleneck if all tasks of the same memcg are 3525 * trying to update it. So it's better to ignore it and try 3526 * grab some new pages. The stock's nr_bytes will be flushed to 3527 * objcg->nr_charged_bytes later on when objcg changes. 3528 * 3529 * The stock's nr_bytes may contain enough pre-charged bytes 3530 * to allow one less page from being charged, but we can't rely 3531 * on the pre-charged bytes not being changed outside of 3532 * consume_obj_stock() or refill_obj_stock(). So ignore those 3533 * pre-charged bytes as well when charging pages. To avoid a 3534 * page uncharge right after a page charge, we set the 3535 * allow_uncharge flag to false when calling refill_obj_stock() 3536 * to temporarily allow the pre-charged bytes to exceed the page 3537 * size limit. The maximum reachable value of the pre-charged 3538 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3539 * race. 3540 */ 3541 nr_pages = size >> PAGE_SHIFT; 3542 nr_bytes = size & (PAGE_SIZE - 1); 3543 3544 if (nr_bytes) 3545 nr_pages += 1; 3546 3547 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3548 if (!ret && nr_bytes) 3549 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3550 3551 return ret; 3552 } 3553 3554 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3555 { 3556 refill_obj_stock(objcg, size, true); 3557 } 3558 3559 static inline size_t obj_full_size(struct kmem_cache *s) 3560 { 3561 /* 3562 * For each accounted object there is an extra space which is used 3563 * to store obj_cgroup membership. Charge it too. 3564 */ 3565 return s->size + sizeof(struct obj_cgroup *); 3566 } 3567 3568 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3569 gfp_t flags, size_t size, void **p) 3570 { 3571 struct obj_cgroup *objcg; 3572 struct slab *slab; 3573 unsigned long off; 3574 size_t i; 3575 3576 /* 3577 * The obtained objcg pointer is safe to use within the current scope, 3578 * defined by current task or set_active_memcg() pair. 3579 * obj_cgroup_get() is used to get a permanent reference. 3580 */ 3581 objcg = current_obj_cgroup(); 3582 if (!objcg) 3583 return true; 3584 3585 /* 3586 * slab_alloc_node() avoids the NULL check, so we might be called with a 3587 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3588 * the whole requested size. 3589 * return success as there's nothing to free back 3590 */ 3591 if (unlikely(*p == NULL)) 3592 return true; 3593 3594 flags &= gfp_allowed_mask; 3595 3596 if (lru) { 3597 int ret; 3598 struct mem_cgroup *memcg; 3599 3600 memcg = get_mem_cgroup_from_objcg(objcg); 3601 ret = memcg_list_lru_alloc(memcg, lru, flags); 3602 css_put(&memcg->css); 3603 3604 if (ret) 3605 return false; 3606 } 3607 3608 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 3609 return false; 3610 3611 for (i = 0; i < size; i++) { 3612 slab = virt_to_slab(p[i]); 3613 3614 if (!slab_obj_exts(slab) && 3615 alloc_slab_obj_exts(slab, s, flags, false)) { 3616 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3617 continue; 3618 } 3619 3620 off = obj_to_index(s, slab, p[i]); 3621 obj_cgroup_get(objcg); 3622 slab_obj_exts(slab)[off].objcg = objcg; 3623 mod_objcg_state(objcg, slab_pgdat(slab), 3624 cache_vmstat_idx(s), obj_full_size(s)); 3625 } 3626 3627 return true; 3628 } 3629 3630 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3631 void **p, int objects, struct slabobj_ext *obj_exts) 3632 { 3633 for (int i = 0; i < objects; i++) { 3634 struct obj_cgroup *objcg; 3635 unsigned int off; 3636 3637 off = obj_to_index(s, slab, p[i]); 3638 objcg = obj_exts[off].objcg; 3639 if (!objcg) 3640 continue; 3641 3642 obj_exts[off].objcg = NULL; 3643 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3644 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3645 -obj_full_size(s)); 3646 obj_cgroup_put(objcg); 3647 } 3648 } 3649 #endif /* CONFIG_MEMCG_KMEM */ 3650 3651 /* 3652 * Because page_memcg(head) is not set on tails, set it now. 3653 */ 3654 void split_page_memcg(struct page *head, int old_order, int new_order) 3655 { 3656 struct folio *folio = page_folio(head); 3657 struct mem_cgroup *memcg = folio_memcg(folio); 3658 int i; 3659 unsigned int old_nr = 1 << old_order; 3660 unsigned int new_nr = 1 << new_order; 3661 3662 if (mem_cgroup_disabled() || !memcg) 3663 return; 3664 3665 for (i = new_nr; i < old_nr; i += new_nr) 3666 folio_page(folio, i)->memcg_data = folio->memcg_data; 3667 3668 if (folio_memcg_kmem(folio)) 3669 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1); 3670 else 3671 css_get_many(&memcg->css, old_nr / new_nr - 1); 3672 } 3673 3674 #ifdef CONFIG_SWAP 3675 /** 3676 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3677 * @entry: swap entry to be moved 3678 * @from: mem_cgroup which the entry is moved from 3679 * @to: mem_cgroup which the entry is moved to 3680 * 3681 * It succeeds only when the swap_cgroup's record for this entry is the same 3682 * as the mem_cgroup's id of @from. 3683 * 3684 * Returns 0 on success, -EINVAL on failure. 3685 * 3686 * The caller must have charged to @to, IOW, called page_counter_charge() about 3687 * both res and memsw, and called css_get(). 3688 */ 3689 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3690 struct mem_cgroup *from, struct mem_cgroup *to) 3691 { 3692 unsigned short old_id, new_id; 3693 3694 old_id = mem_cgroup_id(from); 3695 new_id = mem_cgroup_id(to); 3696 3697 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3698 mod_memcg_state(from, MEMCG_SWAP, -1); 3699 mod_memcg_state(to, MEMCG_SWAP, 1); 3700 return 0; 3701 } 3702 return -EINVAL; 3703 } 3704 #else 3705 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3706 struct mem_cgroup *from, struct mem_cgroup *to) 3707 { 3708 return -EINVAL; 3709 } 3710 #endif 3711 3712 static DEFINE_MUTEX(memcg_max_mutex); 3713 3714 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3715 unsigned long max, bool memsw) 3716 { 3717 bool enlarge = false; 3718 bool drained = false; 3719 int ret; 3720 bool limits_invariant; 3721 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3722 3723 do { 3724 if (signal_pending(current)) { 3725 ret = -EINTR; 3726 break; 3727 } 3728 3729 mutex_lock(&memcg_max_mutex); 3730 /* 3731 * Make sure that the new limit (memsw or memory limit) doesn't 3732 * break our basic invariant rule memory.max <= memsw.max. 3733 */ 3734 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3735 max <= memcg->memsw.max; 3736 if (!limits_invariant) { 3737 mutex_unlock(&memcg_max_mutex); 3738 ret = -EINVAL; 3739 break; 3740 } 3741 if (max > counter->max) 3742 enlarge = true; 3743 ret = page_counter_set_max(counter, max); 3744 mutex_unlock(&memcg_max_mutex); 3745 3746 if (!ret) 3747 break; 3748 3749 if (!drained) { 3750 drain_all_stock(memcg); 3751 drained = true; 3752 continue; 3753 } 3754 3755 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3756 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { 3757 ret = -EBUSY; 3758 break; 3759 } 3760 } while (true); 3761 3762 if (!ret && enlarge) 3763 memcg_oom_recover(memcg); 3764 3765 return ret; 3766 } 3767 3768 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3769 gfp_t gfp_mask, 3770 unsigned long *total_scanned) 3771 { 3772 unsigned long nr_reclaimed = 0; 3773 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3774 unsigned long reclaimed; 3775 int loop = 0; 3776 struct mem_cgroup_tree_per_node *mctz; 3777 unsigned long excess; 3778 3779 if (lru_gen_enabled()) 3780 return 0; 3781 3782 if (order > 0) 3783 return 0; 3784 3785 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3786 3787 /* 3788 * Do not even bother to check the largest node if the root 3789 * is empty. Do it lockless to prevent lock bouncing. Races 3790 * are acceptable as soft limit is best effort anyway. 3791 */ 3792 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3793 return 0; 3794 3795 /* 3796 * This loop can run a while, specially if mem_cgroup's continuously 3797 * keep exceeding their soft limit and putting the system under 3798 * pressure 3799 */ 3800 do { 3801 if (next_mz) 3802 mz = next_mz; 3803 else 3804 mz = mem_cgroup_largest_soft_limit_node(mctz); 3805 if (!mz) 3806 break; 3807 3808 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3809 gfp_mask, total_scanned); 3810 nr_reclaimed += reclaimed; 3811 spin_lock_irq(&mctz->lock); 3812 3813 /* 3814 * If we failed to reclaim anything from this memory cgroup 3815 * it is time to move on to the next cgroup 3816 */ 3817 next_mz = NULL; 3818 if (!reclaimed) 3819 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3820 3821 excess = soft_limit_excess(mz->memcg); 3822 /* 3823 * One school of thought says that we should not add 3824 * back the node to the tree if reclaim returns 0. 3825 * But our reclaim could return 0, simply because due 3826 * to priority we are exposing a smaller subset of 3827 * memory to reclaim from. Consider this as a longer 3828 * term TODO. 3829 */ 3830 /* If excess == 0, no tree ops */ 3831 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3832 spin_unlock_irq(&mctz->lock); 3833 css_put(&mz->memcg->css); 3834 loop++; 3835 /* 3836 * Could not reclaim anything and there are no more 3837 * mem cgroups to try or we seem to be looping without 3838 * reclaiming anything. 3839 */ 3840 if (!nr_reclaimed && 3841 (next_mz == NULL || 3842 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3843 break; 3844 } while (!nr_reclaimed); 3845 if (next_mz) 3846 css_put(&next_mz->memcg->css); 3847 return nr_reclaimed; 3848 } 3849 3850 /* 3851 * Reclaims as many pages from the given memcg as possible. 3852 * 3853 * Caller is responsible for holding css reference for memcg. 3854 */ 3855 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3856 { 3857 int nr_retries = MAX_RECLAIM_RETRIES; 3858 3859 /* we call try-to-free pages for make this cgroup empty */ 3860 lru_add_drain_all(); 3861 3862 drain_all_stock(memcg); 3863 3864 /* try to free all pages in this cgroup */ 3865 while (nr_retries && page_counter_read(&memcg->memory)) { 3866 if (signal_pending(current)) 3867 return -EINTR; 3868 3869 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3870 MEMCG_RECLAIM_MAY_SWAP)) 3871 nr_retries--; 3872 } 3873 3874 return 0; 3875 } 3876 3877 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3878 char *buf, size_t nbytes, 3879 loff_t off) 3880 { 3881 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3882 3883 if (mem_cgroup_is_root(memcg)) 3884 return -EINVAL; 3885 return mem_cgroup_force_empty(memcg) ?: nbytes; 3886 } 3887 3888 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3889 struct cftype *cft) 3890 { 3891 return 1; 3892 } 3893 3894 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3895 struct cftype *cft, u64 val) 3896 { 3897 if (val == 1) 3898 return 0; 3899 3900 pr_warn_once("Non-hierarchical mode is deprecated. " 3901 "Please report your usecase to linux-mm@kvack.org if you " 3902 "depend on this functionality.\n"); 3903 3904 return -EINVAL; 3905 } 3906 3907 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3908 { 3909 unsigned long val; 3910 3911 if (mem_cgroup_is_root(memcg)) { 3912 /* 3913 * Approximate root's usage from global state. This isn't 3914 * perfect, but the root usage was always an approximation. 3915 */ 3916 val = global_node_page_state(NR_FILE_PAGES) + 3917 global_node_page_state(NR_ANON_MAPPED); 3918 if (swap) 3919 val += total_swap_pages - get_nr_swap_pages(); 3920 } else { 3921 if (!swap) 3922 val = page_counter_read(&memcg->memory); 3923 else 3924 val = page_counter_read(&memcg->memsw); 3925 } 3926 return val; 3927 } 3928 3929 enum { 3930 RES_USAGE, 3931 RES_LIMIT, 3932 RES_MAX_USAGE, 3933 RES_FAILCNT, 3934 RES_SOFT_LIMIT, 3935 }; 3936 3937 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3938 struct cftype *cft) 3939 { 3940 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3941 struct page_counter *counter; 3942 3943 switch (MEMFILE_TYPE(cft->private)) { 3944 case _MEM: 3945 counter = &memcg->memory; 3946 break; 3947 case _MEMSWAP: 3948 counter = &memcg->memsw; 3949 break; 3950 case _KMEM: 3951 counter = &memcg->kmem; 3952 break; 3953 case _TCP: 3954 counter = &memcg->tcpmem; 3955 break; 3956 default: 3957 BUG(); 3958 } 3959 3960 switch (MEMFILE_ATTR(cft->private)) { 3961 case RES_USAGE: 3962 if (counter == &memcg->memory) 3963 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3964 if (counter == &memcg->memsw) 3965 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3966 return (u64)page_counter_read(counter) * PAGE_SIZE; 3967 case RES_LIMIT: 3968 return (u64)counter->max * PAGE_SIZE; 3969 case RES_MAX_USAGE: 3970 return (u64)counter->watermark * PAGE_SIZE; 3971 case RES_FAILCNT: 3972 return counter->failcnt; 3973 case RES_SOFT_LIMIT: 3974 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; 3975 default: 3976 BUG(); 3977 } 3978 } 3979 3980 /* 3981 * This function doesn't do anything useful. Its only job is to provide a read 3982 * handler for a file so that cgroup_file_mode() will add read permissions. 3983 */ 3984 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, 3985 __always_unused void *v) 3986 { 3987 return -EINVAL; 3988 } 3989 3990 #ifdef CONFIG_MEMCG_KMEM 3991 static int memcg_online_kmem(struct mem_cgroup *memcg) 3992 { 3993 struct obj_cgroup *objcg; 3994 3995 if (mem_cgroup_kmem_disabled()) 3996 return 0; 3997 3998 if (unlikely(mem_cgroup_is_root(memcg))) 3999 return 0; 4000 4001 objcg = obj_cgroup_alloc(); 4002 if (!objcg) 4003 return -ENOMEM; 4004 4005 objcg->memcg = memcg; 4006 rcu_assign_pointer(memcg->objcg, objcg); 4007 obj_cgroup_get(objcg); 4008 memcg->orig_objcg = objcg; 4009 4010 static_branch_enable(&memcg_kmem_online_key); 4011 4012 memcg->kmemcg_id = memcg->id.id; 4013 4014 return 0; 4015 } 4016 4017 static void memcg_offline_kmem(struct mem_cgroup *memcg) 4018 { 4019 struct mem_cgroup *parent; 4020 4021 if (mem_cgroup_kmem_disabled()) 4022 return; 4023 4024 if (unlikely(mem_cgroup_is_root(memcg))) 4025 return; 4026 4027 parent = parent_mem_cgroup(memcg); 4028 if (!parent) 4029 parent = root_mem_cgroup; 4030 4031 memcg_reparent_objcgs(memcg, parent); 4032 4033 /* 4034 * After we have finished memcg_reparent_objcgs(), all list_lrus 4035 * corresponding to this cgroup are guaranteed to remain empty. 4036 * The ordering is imposed by list_lru_node->lock taken by 4037 * memcg_reparent_list_lrus(). 4038 */ 4039 memcg_reparent_list_lrus(memcg, parent); 4040 } 4041 #else 4042 static int memcg_online_kmem(struct mem_cgroup *memcg) 4043 { 4044 return 0; 4045 } 4046 static void memcg_offline_kmem(struct mem_cgroup *memcg) 4047 { 4048 } 4049 #endif /* CONFIG_MEMCG_KMEM */ 4050 4051 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 4052 { 4053 int ret; 4054 4055 mutex_lock(&memcg_max_mutex); 4056 4057 ret = page_counter_set_max(&memcg->tcpmem, max); 4058 if (ret) 4059 goto out; 4060 4061 if (!memcg->tcpmem_active) { 4062 /* 4063 * The active flag needs to be written after the static_key 4064 * update. This is what guarantees that the socket activation 4065 * function is the last one to run. See mem_cgroup_sk_alloc() 4066 * for details, and note that we don't mark any socket as 4067 * belonging to this memcg until that flag is up. 4068 * 4069 * We need to do this, because static_keys will span multiple 4070 * sites, but we can't control their order. If we mark a socket 4071 * as accounted, but the accounting functions are not patched in 4072 * yet, we'll lose accounting. 4073 * 4074 * We never race with the readers in mem_cgroup_sk_alloc(), 4075 * because when this value change, the code to process it is not 4076 * patched in yet. 4077 */ 4078 static_branch_inc(&memcg_sockets_enabled_key); 4079 memcg->tcpmem_active = true; 4080 } 4081 out: 4082 mutex_unlock(&memcg_max_mutex); 4083 return ret; 4084 } 4085 4086 /* 4087 * The user of this function is... 4088 * RES_LIMIT. 4089 */ 4090 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 4091 char *buf, size_t nbytes, loff_t off) 4092 { 4093 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4094 unsigned long nr_pages; 4095 int ret; 4096 4097 buf = strstrip(buf); 4098 ret = page_counter_memparse(buf, "-1", &nr_pages); 4099 if (ret) 4100 return ret; 4101 4102 switch (MEMFILE_ATTR(of_cft(of)->private)) { 4103 case RES_LIMIT: 4104 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 4105 ret = -EINVAL; 4106 break; 4107 } 4108 switch (MEMFILE_TYPE(of_cft(of)->private)) { 4109 case _MEM: 4110 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 4111 break; 4112 case _MEMSWAP: 4113 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 4114 break; 4115 case _KMEM: 4116 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 4117 "Writing any value to this file has no effect. " 4118 "Please report your usecase to linux-mm@kvack.org if you " 4119 "depend on this functionality.\n"); 4120 ret = 0; 4121 break; 4122 case _TCP: 4123 ret = memcg_update_tcp_max(memcg, nr_pages); 4124 break; 4125 } 4126 break; 4127 case RES_SOFT_LIMIT: 4128 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4129 ret = -EOPNOTSUPP; 4130 } else { 4131 WRITE_ONCE(memcg->soft_limit, nr_pages); 4132 ret = 0; 4133 } 4134 break; 4135 } 4136 return ret ?: nbytes; 4137 } 4138 4139 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 4140 size_t nbytes, loff_t off) 4141 { 4142 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4143 struct page_counter *counter; 4144 4145 switch (MEMFILE_TYPE(of_cft(of)->private)) { 4146 case _MEM: 4147 counter = &memcg->memory; 4148 break; 4149 case _MEMSWAP: 4150 counter = &memcg->memsw; 4151 break; 4152 case _KMEM: 4153 counter = &memcg->kmem; 4154 break; 4155 case _TCP: 4156 counter = &memcg->tcpmem; 4157 break; 4158 default: 4159 BUG(); 4160 } 4161 4162 switch (MEMFILE_ATTR(of_cft(of)->private)) { 4163 case RES_MAX_USAGE: 4164 page_counter_reset_watermark(counter); 4165 break; 4166 case RES_FAILCNT: 4167 counter->failcnt = 0; 4168 break; 4169 default: 4170 BUG(); 4171 } 4172 4173 return nbytes; 4174 } 4175 4176 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 4177 struct cftype *cft) 4178 { 4179 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 4180 } 4181 4182 #ifdef CONFIG_MMU 4183 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4184 struct cftype *cft, u64 val) 4185 { 4186 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4187 4188 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 4189 "Please report your usecase to linux-mm@kvack.org if you " 4190 "depend on this functionality.\n"); 4191 4192 if (val & ~MOVE_MASK) 4193 return -EINVAL; 4194 4195 /* 4196 * No kind of locking is needed in here, because ->can_attach() will 4197 * check this value once in the beginning of the process, and then carry 4198 * on with stale data. This means that changes to this value will only 4199 * affect task migrations starting after the change. 4200 */ 4201 memcg->move_charge_at_immigrate = val; 4202 return 0; 4203 } 4204 #else 4205 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4206 struct cftype *cft, u64 val) 4207 { 4208 return -ENOSYS; 4209 } 4210 #endif 4211 4212 #ifdef CONFIG_NUMA 4213 4214 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 4215 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 4216 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 4217 4218 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 4219 int nid, unsigned int lru_mask, bool tree) 4220 { 4221 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4222 unsigned long nr = 0; 4223 enum lru_list lru; 4224 4225 VM_BUG_ON((unsigned)nid >= nr_node_ids); 4226 4227 for_each_lru(lru) { 4228 if (!(BIT(lru) & lru_mask)) 4229 continue; 4230 if (tree) 4231 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 4232 else 4233 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 4234 } 4235 return nr; 4236 } 4237 4238 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 4239 unsigned int lru_mask, 4240 bool tree) 4241 { 4242 unsigned long nr = 0; 4243 enum lru_list lru; 4244 4245 for_each_lru(lru) { 4246 if (!(BIT(lru) & lru_mask)) 4247 continue; 4248 if (tree) 4249 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 4250 else 4251 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 4252 } 4253 return nr; 4254 } 4255 4256 static int memcg_numa_stat_show(struct seq_file *m, void *v) 4257 { 4258 struct numa_stat { 4259 const char *name; 4260 unsigned int lru_mask; 4261 }; 4262 4263 static const struct numa_stat stats[] = { 4264 { "total", LRU_ALL }, 4265 { "file", LRU_ALL_FILE }, 4266 { "anon", LRU_ALL_ANON }, 4267 { "unevictable", BIT(LRU_UNEVICTABLE) }, 4268 }; 4269 const struct numa_stat *stat; 4270 int nid; 4271 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4272 4273 mem_cgroup_flush_stats(memcg); 4274 4275 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4276 seq_printf(m, "%s=%lu", stat->name, 4277 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4278 false)); 4279 for_each_node_state(nid, N_MEMORY) 4280 seq_printf(m, " N%d=%lu", nid, 4281 mem_cgroup_node_nr_lru_pages(memcg, nid, 4282 stat->lru_mask, false)); 4283 seq_putc(m, '\n'); 4284 } 4285 4286 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4287 4288 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4289 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4290 true)); 4291 for_each_node_state(nid, N_MEMORY) 4292 seq_printf(m, " N%d=%lu", nid, 4293 mem_cgroup_node_nr_lru_pages(memcg, nid, 4294 stat->lru_mask, true)); 4295 seq_putc(m, '\n'); 4296 } 4297 4298 return 0; 4299 } 4300 #endif /* CONFIG_NUMA */ 4301 4302 static const unsigned int memcg1_stats[] = { 4303 NR_FILE_PAGES, 4304 NR_ANON_MAPPED, 4305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4306 NR_ANON_THPS, 4307 #endif 4308 NR_SHMEM, 4309 NR_FILE_MAPPED, 4310 NR_FILE_DIRTY, 4311 NR_WRITEBACK, 4312 WORKINGSET_REFAULT_ANON, 4313 WORKINGSET_REFAULT_FILE, 4314 #ifdef CONFIG_SWAP 4315 MEMCG_SWAP, 4316 NR_SWAPCACHE, 4317 #endif 4318 }; 4319 4320 static const char *const memcg1_stat_names[] = { 4321 "cache", 4322 "rss", 4323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4324 "rss_huge", 4325 #endif 4326 "shmem", 4327 "mapped_file", 4328 "dirty", 4329 "writeback", 4330 "workingset_refault_anon", 4331 "workingset_refault_file", 4332 #ifdef CONFIG_SWAP 4333 "swap", 4334 "swapcached", 4335 #endif 4336 }; 4337 4338 /* Universal VM events cgroup1 shows, original sort order */ 4339 static const unsigned int memcg1_events[] = { 4340 PGPGIN, 4341 PGPGOUT, 4342 PGFAULT, 4343 PGMAJFAULT, 4344 }; 4345 4346 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 4347 { 4348 unsigned long memory, memsw; 4349 struct mem_cgroup *mi; 4350 unsigned int i; 4351 4352 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4353 4354 mem_cgroup_flush_stats(memcg); 4355 4356 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4357 unsigned long nr; 4358 4359 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); 4360 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); 4361 } 4362 4363 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4364 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), 4365 memcg_events_local(memcg, memcg1_events[i])); 4366 4367 for (i = 0; i < NR_LRU_LISTS; i++) 4368 seq_buf_printf(s, "%s %lu\n", lru_list_name(i), 4369 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4370 PAGE_SIZE); 4371 4372 /* Hierarchical information */ 4373 memory = memsw = PAGE_COUNTER_MAX; 4374 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4375 memory = min(memory, READ_ONCE(mi->memory.max)); 4376 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4377 } 4378 seq_buf_printf(s, "hierarchical_memory_limit %llu\n", 4379 (u64)memory * PAGE_SIZE); 4380 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", 4381 (u64)memsw * PAGE_SIZE); 4382 4383 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4384 unsigned long nr; 4385 4386 nr = memcg_page_state_output(memcg, memcg1_stats[i]); 4387 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], 4388 (u64)nr); 4389 } 4390 4391 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4392 seq_buf_printf(s, "total_%s %llu\n", 4393 vm_event_name(memcg1_events[i]), 4394 (u64)memcg_events(memcg, memcg1_events[i])); 4395 4396 for (i = 0; i < NR_LRU_LISTS; i++) 4397 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), 4398 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4399 PAGE_SIZE); 4400 4401 #ifdef CONFIG_DEBUG_VM 4402 { 4403 pg_data_t *pgdat; 4404 struct mem_cgroup_per_node *mz; 4405 unsigned long anon_cost = 0; 4406 unsigned long file_cost = 0; 4407 4408 for_each_online_pgdat(pgdat) { 4409 mz = memcg->nodeinfo[pgdat->node_id]; 4410 4411 anon_cost += mz->lruvec.anon_cost; 4412 file_cost += mz->lruvec.file_cost; 4413 } 4414 seq_buf_printf(s, "anon_cost %lu\n", anon_cost); 4415 seq_buf_printf(s, "file_cost %lu\n", file_cost); 4416 } 4417 #endif 4418 } 4419 4420 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4421 struct cftype *cft) 4422 { 4423 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4424 4425 return mem_cgroup_swappiness(memcg); 4426 } 4427 4428 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4429 struct cftype *cft, u64 val) 4430 { 4431 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4432 4433 if (val > 200) 4434 return -EINVAL; 4435 4436 if (!mem_cgroup_is_root(memcg)) 4437 WRITE_ONCE(memcg->swappiness, val); 4438 else 4439 WRITE_ONCE(vm_swappiness, val); 4440 4441 return 0; 4442 } 4443 4444 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4445 { 4446 struct mem_cgroup_threshold_ary *t; 4447 unsigned long usage; 4448 int i; 4449 4450 rcu_read_lock(); 4451 if (!swap) 4452 t = rcu_dereference(memcg->thresholds.primary); 4453 else 4454 t = rcu_dereference(memcg->memsw_thresholds.primary); 4455 4456 if (!t) 4457 goto unlock; 4458 4459 usage = mem_cgroup_usage(memcg, swap); 4460 4461 /* 4462 * current_threshold points to threshold just below or equal to usage. 4463 * If it's not true, a threshold was crossed after last 4464 * call of __mem_cgroup_threshold(). 4465 */ 4466 i = t->current_threshold; 4467 4468 /* 4469 * Iterate backward over array of thresholds starting from 4470 * current_threshold and check if a threshold is crossed. 4471 * If none of thresholds below usage is crossed, we read 4472 * only one element of the array here. 4473 */ 4474 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4475 eventfd_signal(t->entries[i].eventfd); 4476 4477 /* i = current_threshold + 1 */ 4478 i++; 4479 4480 /* 4481 * Iterate forward over array of thresholds starting from 4482 * current_threshold+1 and check if a threshold is crossed. 4483 * If none of thresholds above usage is crossed, we read 4484 * only one element of the array here. 4485 */ 4486 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4487 eventfd_signal(t->entries[i].eventfd); 4488 4489 /* Update current_threshold */ 4490 t->current_threshold = i - 1; 4491 unlock: 4492 rcu_read_unlock(); 4493 } 4494 4495 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4496 { 4497 while (memcg) { 4498 __mem_cgroup_threshold(memcg, false); 4499 if (do_memsw_account()) 4500 __mem_cgroup_threshold(memcg, true); 4501 4502 memcg = parent_mem_cgroup(memcg); 4503 } 4504 } 4505 4506 static int compare_thresholds(const void *a, const void *b) 4507 { 4508 const struct mem_cgroup_threshold *_a = a; 4509 const struct mem_cgroup_threshold *_b = b; 4510 4511 if (_a->threshold > _b->threshold) 4512 return 1; 4513 4514 if (_a->threshold < _b->threshold) 4515 return -1; 4516 4517 return 0; 4518 } 4519 4520 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4521 { 4522 struct mem_cgroup_eventfd_list *ev; 4523 4524 spin_lock(&memcg_oom_lock); 4525 4526 list_for_each_entry(ev, &memcg->oom_notify, list) 4527 eventfd_signal(ev->eventfd); 4528 4529 spin_unlock(&memcg_oom_lock); 4530 return 0; 4531 } 4532 4533 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4534 { 4535 struct mem_cgroup *iter; 4536 4537 for_each_mem_cgroup_tree(iter, memcg) 4538 mem_cgroup_oom_notify_cb(iter); 4539 } 4540 4541 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4542 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4543 { 4544 struct mem_cgroup_thresholds *thresholds; 4545 struct mem_cgroup_threshold_ary *new; 4546 unsigned long threshold; 4547 unsigned long usage; 4548 int i, size, ret; 4549 4550 ret = page_counter_memparse(args, "-1", &threshold); 4551 if (ret) 4552 return ret; 4553 4554 mutex_lock(&memcg->thresholds_lock); 4555 4556 if (type == _MEM) { 4557 thresholds = &memcg->thresholds; 4558 usage = mem_cgroup_usage(memcg, false); 4559 } else if (type == _MEMSWAP) { 4560 thresholds = &memcg->memsw_thresholds; 4561 usage = mem_cgroup_usage(memcg, true); 4562 } else 4563 BUG(); 4564 4565 /* Check if a threshold crossed before adding a new one */ 4566 if (thresholds->primary) 4567 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4568 4569 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4570 4571 /* Allocate memory for new array of thresholds */ 4572 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4573 if (!new) { 4574 ret = -ENOMEM; 4575 goto unlock; 4576 } 4577 new->size = size; 4578 4579 /* Copy thresholds (if any) to new array */ 4580 if (thresholds->primary) 4581 memcpy(new->entries, thresholds->primary->entries, 4582 flex_array_size(new, entries, size - 1)); 4583 4584 /* Add new threshold */ 4585 new->entries[size - 1].eventfd = eventfd; 4586 new->entries[size - 1].threshold = threshold; 4587 4588 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4589 sort(new->entries, size, sizeof(*new->entries), 4590 compare_thresholds, NULL); 4591 4592 /* Find current threshold */ 4593 new->current_threshold = -1; 4594 for (i = 0; i < size; i++) { 4595 if (new->entries[i].threshold <= usage) { 4596 /* 4597 * new->current_threshold will not be used until 4598 * rcu_assign_pointer(), so it's safe to increment 4599 * it here. 4600 */ 4601 ++new->current_threshold; 4602 } else 4603 break; 4604 } 4605 4606 /* Free old spare buffer and save old primary buffer as spare */ 4607 kfree(thresholds->spare); 4608 thresholds->spare = thresholds->primary; 4609 4610 rcu_assign_pointer(thresholds->primary, new); 4611 4612 /* To be sure that nobody uses thresholds */ 4613 synchronize_rcu(); 4614 4615 unlock: 4616 mutex_unlock(&memcg->thresholds_lock); 4617 4618 return ret; 4619 } 4620 4621 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4622 struct eventfd_ctx *eventfd, const char *args) 4623 { 4624 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4625 } 4626 4627 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4628 struct eventfd_ctx *eventfd, const char *args) 4629 { 4630 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4631 } 4632 4633 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4634 struct eventfd_ctx *eventfd, enum res_type type) 4635 { 4636 struct mem_cgroup_thresholds *thresholds; 4637 struct mem_cgroup_threshold_ary *new; 4638 unsigned long usage; 4639 int i, j, size, entries; 4640 4641 mutex_lock(&memcg->thresholds_lock); 4642 4643 if (type == _MEM) { 4644 thresholds = &memcg->thresholds; 4645 usage = mem_cgroup_usage(memcg, false); 4646 } else if (type == _MEMSWAP) { 4647 thresholds = &memcg->memsw_thresholds; 4648 usage = mem_cgroup_usage(memcg, true); 4649 } else 4650 BUG(); 4651 4652 if (!thresholds->primary) 4653 goto unlock; 4654 4655 /* Check if a threshold crossed before removing */ 4656 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4657 4658 /* Calculate new number of threshold */ 4659 size = entries = 0; 4660 for (i = 0; i < thresholds->primary->size; i++) { 4661 if (thresholds->primary->entries[i].eventfd != eventfd) 4662 size++; 4663 else 4664 entries++; 4665 } 4666 4667 new = thresholds->spare; 4668 4669 /* If no items related to eventfd have been cleared, nothing to do */ 4670 if (!entries) 4671 goto unlock; 4672 4673 /* Set thresholds array to NULL if we don't have thresholds */ 4674 if (!size) { 4675 kfree(new); 4676 new = NULL; 4677 goto swap_buffers; 4678 } 4679 4680 new->size = size; 4681 4682 /* Copy thresholds and find current threshold */ 4683 new->current_threshold = -1; 4684 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4685 if (thresholds->primary->entries[i].eventfd == eventfd) 4686 continue; 4687 4688 new->entries[j] = thresholds->primary->entries[i]; 4689 if (new->entries[j].threshold <= usage) { 4690 /* 4691 * new->current_threshold will not be used 4692 * until rcu_assign_pointer(), so it's safe to increment 4693 * it here. 4694 */ 4695 ++new->current_threshold; 4696 } 4697 j++; 4698 } 4699 4700 swap_buffers: 4701 /* Swap primary and spare array */ 4702 thresholds->spare = thresholds->primary; 4703 4704 rcu_assign_pointer(thresholds->primary, new); 4705 4706 /* To be sure that nobody uses thresholds */ 4707 synchronize_rcu(); 4708 4709 /* If all events are unregistered, free the spare array */ 4710 if (!new) { 4711 kfree(thresholds->spare); 4712 thresholds->spare = NULL; 4713 } 4714 unlock: 4715 mutex_unlock(&memcg->thresholds_lock); 4716 } 4717 4718 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4719 struct eventfd_ctx *eventfd) 4720 { 4721 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4722 } 4723 4724 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4725 struct eventfd_ctx *eventfd) 4726 { 4727 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4728 } 4729 4730 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4731 struct eventfd_ctx *eventfd, const char *args) 4732 { 4733 struct mem_cgroup_eventfd_list *event; 4734 4735 event = kmalloc(sizeof(*event), GFP_KERNEL); 4736 if (!event) 4737 return -ENOMEM; 4738 4739 spin_lock(&memcg_oom_lock); 4740 4741 event->eventfd = eventfd; 4742 list_add(&event->list, &memcg->oom_notify); 4743 4744 /* already in OOM ? */ 4745 if (memcg->under_oom) 4746 eventfd_signal(eventfd); 4747 spin_unlock(&memcg_oom_lock); 4748 4749 return 0; 4750 } 4751 4752 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4753 struct eventfd_ctx *eventfd) 4754 { 4755 struct mem_cgroup_eventfd_list *ev, *tmp; 4756 4757 spin_lock(&memcg_oom_lock); 4758 4759 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4760 if (ev->eventfd == eventfd) { 4761 list_del(&ev->list); 4762 kfree(ev); 4763 } 4764 } 4765 4766 spin_unlock(&memcg_oom_lock); 4767 } 4768 4769 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4770 { 4771 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4772 4773 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); 4774 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4775 seq_printf(sf, "oom_kill %lu\n", 4776 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4777 return 0; 4778 } 4779 4780 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4781 struct cftype *cft, u64 val) 4782 { 4783 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4784 4785 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4786 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4787 return -EINVAL; 4788 4789 WRITE_ONCE(memcg->oom_kill_disable, val); 4790 if (!val) 4791 memcg_oom_recover(memcg); 4792 4793 return 0; 4794 } 4795 4796 #ifdef CONFIG_CGROUP_WRITEBACK 4797 4798 #include <trace/events/writeback.h> 4799 4800 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4801 { 4802 return wb_domain_init(&memcg->cgwb_domain, gfp); 4803 } 4804 4805 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4806 { 4807 wb_domain_exit(&memcg->cgwb_domain); 4808 } 4809 4810 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4811 { 4812 wb_domain_size_changed(&memcg->cgwb_domain); 4813 } 4814 4815 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4816 { 4817 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4818 4819 if (!memcg->css.parent) 4820 return NULL; 4821 4822 return &memcg->cgwb_domain; 4823 } 4824 4825 /** 4826 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4827 * @wb: bdi_writeback in question 4828 * @pfilepages: out parameter for number of file pages 4829 * @pheadroom: out parameter for number of allocatable pages according to memcg 4830 * @pdirty: out parameter for number of dirty pages 4831 * @pwriteback: out parameter for number of pages under writeback 4832 * 4833 * Determine the numbers of file, headroom, dirty, and writeback pages in 4834 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4835 * is a bit more involved. 4836 * 4837 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4838 * headroom is calculated as the lowest headroom of itself and the 4839 * ancestors. Note that this doesn't consider the actual amount of 4840 * available memory in the system. The caller should further cap 4841 * *@pheadroom accordingly. 4842 */ 4843 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4844 unsigned long *pheadroom, unsigned long *pdirty, 4845 unsigned long *pwriteback) 4846 { 4847 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4848 struct mem_cgroup *parent; 4849 4850 mem_cgroup_flush_stats_ratelimited(memcg); 4851 4852 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4853 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4854 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4855 memcg_page_state(memcg, NR_ACTIVE_FILE); 4856 4857 *pheadroom = PAGE_COUNTER_MAX; 4858 while ((parent = parent_mem_cgroup(memcg))) { 4859 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4860 READ_ONCE(memcg->memory.high)); 4861 unsigned long used = page_counter_read(&memcg->memory); 4862 4863 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4864 memcg = parent; 4865 } 4866 } 4867 4868 /* 4869 * Foreign dirty flushing 4870 * 4871 * There's an inherent mismatch between memcg and writeback. The former 4872 * tracks ownership per-page while the latter per-inode. This was a 4873 * deliberate design decision because honoring per-page ownership in the 4874 * writeback path is complicated, may lead to higher CPU and IO overheads 4875 * and deemed unnecessary given that write-sharing an inode across 4876 * different cgroups isn't a common use-case. 4877 * 4878 * Combined with inode majority-writer ownership switching, this works well 4879 * enough in most cases but there are some pathological cases. For 4880 * example, let's say there are two cgroups A and B which keep writing to 4881 * different but confined parts of the same inode. B owns the inode and 4882 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4883 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4884 * triggering background writeback. A will be slowed down without a way to 4885 * make writeback of the dirty pages happen. 4886 * 4887 * Conditions like the above can lead to a cgroup getting repeatedly and 4888 * severely throttled after making some progress after each 4889 * dirty_expire_interval while the underlying IO device is almost 4890 * completely idle. 4891 * 4892 * Solving this problem completely requires matching the ownership tracking 4893 * granularities between memcg and writeback in either direction. However, 4894 * the more egregious behaviors can be avoided by simply remembering the 4895 * most recent foreign dirtying events and initiating remote flushes on 4896 * them when local writeback isn't enough to keep the memory clean enough. 4897 * 4898 * The following two functions implement such mechanism. When a foreign 4899 * page - a page whose memcg and writeback ownerships don't match - is 4900 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4901 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4902 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4903 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4904 * foreign bdi_writebacks which haven't expired. Both the numbers of 4905 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4906 * limited to MEMCG_CGWB_FRN_CNT. 4907 * 4908 * The mechanism only remembers IDs and doesn't hold any object references. 4909 * As being wrong occasionally doesn't matter, updates and accesses to the 4910 * records are lockless and racy. 4911 */ 4912 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4913 struct bdi_writeback *wb) 4914 { 4915 struct mem_cgroup *memcg = folio_memcg(folio); 4916 struct memcg_cgwb_frn *frn; 4917 u64 now = get_jiffies_64(); 4918 u64 oldest_at = now; 4919 int oldest = -1; 4920 int i; 4921 4922 trace_track_foreign_dirty(folio, wb); 4923 4924 /* 4925 * Pick the slot to use. If there is already a slot for @wb, keep 4926 * using it. If not replace the oldest one which isn't being 4927 * written out. 4928 */ 4929 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4930 frn = &memcg->cgwb_frn[i]; 4931 if (frn->bdi_id == wb->bdi->id && 4932 frn->memcg_id == wb->memcg_css->id) 4933 break; 4934 if (time_before64(frn->at, oldest_at) && 4935 atomic_read(&frn->done.cnt) == 1) { 4936 oldest = i; 4937 oldest_at = frn->at; 4938 } 4939 } 4940 4941 if (i < MEMCG_CGWB_FRN_CNT) { 4942 /* 4943 * Re-using an existing one. Update timestamp lazily to 4944 * avoid making the cacheline hot. We want them to be 4945 * reasonably up-to-date and significantly shorter than 4946 * dirty_expire_interval as that's what expires the record. 4947 * Use the shorter of 1s and dirty_expire_interval / 8. 4948 */ 4949 unsigned long update_intv = 4950 min_t(unsigned long, HZ, 4951 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4952 4953 if (time_before64(frn->at, now - update_intv)) 4954 frn->at = now; 4955 } else if (oldest >= 0) { 4956 /* replace the oldest free one */ 4957 frn = &memcg->cgwb_frn[oldest]; 4958 frn->bdi_id = wb->bdi->id; 4959 frn->memcg_id = wb->memcg_css->id; 4960 frn->at = now; 4961 } 4962 } 4963 4964 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4965 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4966 { 4967 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4968 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4969 u64 now = jiffies_64; 4970 int i; 4971 4972 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4973 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4974 4975 /* 4976 * If the record is older than dirty_expire_interval, 4977 * writeback on it has already started. No need to kick it 4978 * off again. Also, don't start a new one if there's 4979 * already one in flight. 4980 */ 4981 if (time_after64(frn->at, now - intv) && 4982 atomic_read(&frn->done.cnt) == 1) { 4983 frn->at = 0; 4984 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4985 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4986 WB_REASON_FOREIGN_FLUSH, 4987 &frn->done); 4988 } 4989 } 4990 } 4991 4992 #else /* CONFIG_CGROUP_WRITEBACK */ 4993 4994 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4995 { 4996 return 0; 4997 } 4998 4999 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 5000 { 5001 } 5002 5003 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 5004 { 5005 } 5006 5007 #endif /* CONFIG_CGROUP_WRITEBACK */ 5008 5009 /* 5010 * DO NOT USE IN NEW FILES. 5011 * 5012 * "cgroup.event_control" implementation. 5013 * 5014 * This is way over-engineered. It tries to support fully configurable 5015 * events for each user. Such level of flexibility is completely 5016 * unnecessary especially in the light of the planned unified hierarchy. 5017 * 5018 * Please deprecate this and replace with something simpler if at all 5019 * possible. 5020 */ 5021 5022 /* 5023 * Unregister event and free resources. 5024 * 5025 * Gets called from workqueue. 5026 */ 5027 static void memcg_event_remove(struct work_struct *work) 5028 { 5029 struct mem_cgroup_event *event = 5030 container_of(work, struct mem_cgroup_event, remove); 5031 struct mem_cgroup *memcg = event->memcg; 5032 5033 remove_wait_queue(event->wqh, &event->wait); 5034 5035 event->unregister_event(memcg, event->eventfd); 5036 5037 /* Notify userspace the event is going away. */ 5038 eventfd_signal(event->eventfd); 5039 5040 eventfd_ctx_put(event->eventfd); 5041 kfree(event); 5042 css_put(&memcg->css); 5043 } 5044 5045 /* 5046 * Gets called on EPOLLHUP on eventfd when user closes it. 5047 * 5048 * Called with wqh->lock held and interrupts disabled. 5049 */ 5050 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 5051 int sync, void *key) 5052 { 5053 struct mem_cgroup_event *event = 5054 container_of(wait, struct mem_cgroup_event, wait); 5055 struct mem_cgroup *memcg = event->memcg; 5056 __poll_t flags = key_to_poll(key); 5057 5058 if (flags & EPOLLHUP) { 5059 /* 5060 * If the event has been detached at cgroup removal, we 5061 * can simply return knowing the other side will cleanup 5062 * for us. 5063 * 5064 * We can't race against event freeing since the other 5065 * side will require wqh->lock via remove_wait_queue(), 5066 * which we hold. 5067 */ 5068 spin_lock(&memcg->event_list_lock); 5069 if (!list_empty(&event->list)) { 5070 list_del_init(&event->list); 5071 /* 5072 * We are in atomic context, but cgroup_event_remove() 5073 * may sleep, so we have to call it in workqueue. 5074 */ 5075 schedule_work(&event->remove); 5076 } 5077 spin_unlock(&memcg->event_list_lock); 5078 } 5079 5080 return 0; 5081 } 5082 5083 static void memcg_event_ptable_queue_proc(struct file *file, 5084 wait_queue_head_t *wqh, poll_table *pt) 5085 { 5086 struct mem_cgroup_event *event = 5087 container_of(pt, struct mem_cgroup_event, pt); 5088 5089 event->wqh = wqh; 5090 add_wait_queue(wqh, &event->wait); 5091 } 5092 5093 /* 5094 * DO NOT USE IN NEW FILES. 5095 * 5096 * Parse input and register new cgroup event handler. 5097 * 5098 * Input must be in format '<event_fd> <control_fd> <args>'. 5099 * Interpretation of args is defined by control file implementation. 5100 */ 5101 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 5102 char *buf, size_t nbytes, loff_t off) 5103 { 5104 struct cgroup_subsys_state *css = of_css(of); 5105 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5106 struct mem_cgroup_event *event; 5107 struct cgroup_subsys_state *cfile_css; 5108 unsigned int efd, cfd; 5109 struct fd efile; 5110 struct fd cfile; 5111 struct dentry *cdentry; 5112 const char *name; 5113 char *endp; 5114 int ret; 5115 5116 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 5117 return -EOPNOTSUPP; 5118 5119 buf = strstrip(buf); 5120 5121 efd = simple_strtoul(buf, &endp, 10); 5122 if (*endp != ' ') 5123 return -EINVAL; 5124 buf = endp + 1; 5125 5126 cfd = simple_strtoul(buf, &endp, 10); 5127 if ((*endp != ' ') && (*endp != '\0')) 5128 return -EINVAL; 5129 buf = endp + 1; 5130 5131 event = kzalloc(sizeof(*event), GFP_KERNEL); 5132 if (!event) 5133 return -ENOMEM; 5134 5135 event->memcg = memcg; 5136 INIT_LIST_HEAD(&event->list); 5137 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 5138 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 5139 INIT_WORK(&event->remove, memcg_event_remove); 5140 5141 efile = fdget(efd); 5142 if (!efile.file) { 5143 ret = -EBADF; 5144 goto out_kfree; 5145 } 5146 5147 event->eventfd = eventfd_ctx_fileget(efile.file); 5148 if (IS_ERR(event->eventfd)) { 5149 ret = PTR_ERR(event->eventfd); 5150 goto out_put_efile; 5151 } 5152 5153 cfile = fdget(cfd); 5154 if (!cfile.file) { 5155 ret = -EBADF; 5156 goto out_put_eventfd; 5157 } 5158 5159 /* the process need read permission on control file */ 5160 /* AV: shouldn't we check that it's been opened for read instead? */ 5161 ret = file_permission(cfile.file, MAY_READ); 5162 if (ret < 0) 5163 goto out_put_cfile; 5164 5165 /* 5166 * The control file must be a regular cgroup1 file. As a regular cgroup 5167 * file can't be renamed, it's safe to access its name afterwards. 5168 */ 5169 cdentry = cfile.file->f_path.dentry; 5170 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 5171 ret = -EINVAL; 5172 goto out_put_cfile; 5173 } 5174 5175 /* 5176 * Determine the event callbacks and set them in @event. This used 5177 * to be done via struct cftype but cgroup core no longer knows 5178 * about these events. The following is crude but the whole thing 5179 * is for compatibility anyway. 5180 * 5181 * DO NOT ADD NEW FILES. 5182 */ 5183 name = cdentry->d_name.name; 5184 5185 if (!strcmp(name, "memory.usage_in_bytes")) { 5186 event->register_event = mem_cgroup_usage_register_event; 5187 event->unregister_event = mem_cgroup_usage_unregister_event; 5188 } else if (!strcmp(name, "memory.oom_control")) { 5189 event->register_event = mem_cgroup_oom_register_event; 5190 event->unregister_event = mem_cgroup_oom_unregister_event; 5191 } else if (!strcmp(name, "memory.pressure_level")) { 5192 event->register_event = vmpressure_register_event; 5193 event->unregister_event = vmpressure_unregister_event; 5194 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 5195 event->register_event = memsw_cgroup_usage_register_event; 5196 event->unregister_event = memsw_cgroup_usage_unregister_event; 5197 } else { 5198 ret = -EINVAL; 5199 goto out_put_cfile; 5200 } 5201 5202 /* 5203 * Verify @cfile should belong to @css. Also, remaining events are 5204 * automatically removed on cgroup destruction but the removal is 5205 * asynchronous, so take an extra ref on @css. 5206 */ 5207 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 5208 &memory_cgrp_subsys); 5209 ret = -EINVAL; 5210 if (IS_ERR(cfile_css)) 5211 goto out_put_cfile; 5212 if (cfile_css != css) { 5213 css_put(cfile_css); 5214 goto out_put_cfile; 5215 } 5216 5217 ret = event->register_event(memcg, event->eventfd, buf); 5218 if (ret) 5219 goto out_put_css; 5220 5221 vfs_poll(efile.file, &event->pt); 5222 5223 spin_lock_irq(&memcg->event_list_lock); 5224 list_add(&event->list, &memcg->event_list); 5225 spin_unlock_irq(&memcg->event_list_lock); 5226 5227 fdput(cfile); 5228 fdput(efile); 5229 5230 return nbytes; 5231 5232 out_put_css: 5233 css_put(css); 5234 out_put_cfile: 5235 fdput(cfile); 5236 out_put_eventfd: 5237 eventfd_ctx_put(event->eventfd); 5238 out_put_efile: 5239 fdput(efile); 5240 out_kfree: 5241 kfree(event); 5242 5243 return ret; 5244 } 5245 5246 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG) 5247 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 5248 { 5249 /* 5250 * Deprecated. 5251 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 5252 */ 5253 return 0; 5254 } 5255 #endif 5256 5257 static int memory_stat_show(struct seq_file *m, void *v); 5258 5259 static struct cftype mem_cgroup_legacy_files[] = { 5260 { 5261 .name = "usage_in_bytes", 5262 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5263 .read_u64 = mem_cgroup_read_u64, 5264 }, 5265 { 5266 .name = "max_usage_in_bytes", 5267 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5268 .write = mem_cgroup_reset, 5269 .read_u64 = mem_cgroup_read_u64, 5270 }, 5271 { 5272 .name = "limit_in_bytes", 5273 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5274 .write = mem_cgroup_write, 5275 .read_u64 = mem_cgroup_read_u64, 5276 }, 5277 { 5278 .name = "soft_limit_in_bytes", 5279 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5280 .write = mem_cgroup_write, 5281 .read_u64 = mem_cgroup_read_u64, 5282 }, 5283 { 5284 .name = "failcnt", 5285 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5286 .write = mem_cgroup_reset, 5287 .read_u64 = mem_cgroup_read_u64, 5288 }, 5289 { 5290 .name = "stat", 5291 .seq_show = memory_stat_show, 5292 }, 5293 { 5294 .name = "force_empty", 5295 .write = mem_cgroup_force_empty_write, 5296 }, 5297 { 5298 .name = "use_hierarchy", 5299 .write_u64 = mem_cgroup_hierarchy_write, 5300 .read_u64 = mem_cgroup_hierarchy_read, 5301 }, 5302 { 5303 .name = "cgroup.event_control", /* XXX: for compat */ 5304 .write = memcg_write_event_control, 5305 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5306 }, 5307 { 5308 .name = "swappiness", 5309 .read_u64 = mem_cgroup_swappiness_read, 5310 .write_u64 = mem_cgroup_swappiness_write, 5311 }, 5312 { 5313 .name = "move_charge_at_immigrate", 5314 .read_u64 = mem_cgroup_move_charge_read, 5315 .write_u64 = mem_cgroup_move_charge_write, 5316 }, 5317 { 5318 .name = "oom_control", 5319 .seq_show = mem_cgroup_oom_control_read, 5320 .write_u64 = mem_cgroup_oom_control_write, 5321 }, 5322 { 5323 .name = "pressure_level", 5324 .seq_show = mem_cgroup_dummy_seq_show, 5325 }, 5326 #ifdef CONFIG_NUMA 5327 { 5328 .name = "numa_stat", 5329 .seq_show = memcg_numa_stat_show, 5330 }, 5331 #endif 5332 { 5333 .name = "kmem.limit_in_bytes", 5334 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5335 .write = mem_cgroup_write, 5336 .read_u64 = mem_cgroup_read_u64, 5337 }, 5338 { 5339 .name = "kmem.usage_in_bytes", 5340 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5341 .read_u64 = mem_cgroup_read_u64, 5342 }, 5343 { 5344 .name = "kmem.failcnt", 5345 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5346 .write = mem_cgroup_reset, 5347 .read_u64 = mem_cgroup_read_u64, 5348 }, 5349 { 5350 .name = "kmem.max_usage_in_bytes", 5351 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5352 .write = mem_cgroup_reset, 5353 .read_u64 = mem_cgroup_read_u64, 5354 }, 5355 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG) 5356 { 5357 .name = "kmem.slabinfo", 5358 .seq_show = mem_cgroup_slab_show, 5359 }, 5360 #endif 5361 { 5362 .name = "kmem.tcp.limit_in_bytes", 5363 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5364 .write = mem_cgroup_write, 5365 .read_u64 = mem_cgroup_read_u64, 5366 }, 5367 { 5368 .name = "kmem.tcp.usage_in_bytes", 5369 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5370 .read_u64 = mem_cgroup_read_u64, 5371 }, 5372 { 5373 .name = "kmem.tcp.failcnt", 5374 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5375 .write = mem_cgroup_reset, 5376 .read_u64 = mem_cgroup_read_u64, 5377 }, 5378 { 5379 .name = "kmem.tcp.max_usage_in_bytes", 5380 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5381 .write = mem_cgroup_reset, 5382 .read_u64 = mem_cgroup_read_u64, 5383 }, 5384 { }, /* terminate */ 5385 }; 5386 5387 /* 5388 * Private memory cgroup IDR 5389 * 5390 * Swap-out records and page cache shadow entries need to store memcg 5391 * references in constrained space, so we maintain an ID space that is 5392 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5393 * memory-controlled cgroups to 64k. 5394 * 5395 * However, there usually are many references to the offline CSS after 5396 * the cgroup has been destroyed, such as page cache or reclaimable 5397 * slab objects, that don't need to hang on to the ID. We want to keep 5398 * those dead CSS from occupying IDs, or we might quickly exhaust the 5399 * relatively small ID space and prevent the creation of new cgroups 5400 * even when there are much fewer than 64k cgroups - possibly none. 5401 * 5402 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5403 * be freed and recycled when it's no longer needed, which is usually 5404 * when the CSS is offlined. 5405 * 5406 * The only exception to that are records of swapped out tmpfs/shmem 5407 * pages that need to be attributed to live ancestors on swapin. But 5408 * those references are manageable from userspace. 5409 */ 5410 5411 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 5412 static DEFINE_IDR(mem_cgroup_idr); 5413 5414 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5415 { 5416 if (memcg->id.id > 0) { 5417 idr_remove(&mem_cgroup_idr, memcg->id.id); 5418 memcg->id.id = 0; 5419 } 5420 } 5421 5422 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5423 unsigned int n) 5424 { 5425 refcount_add(n, &memcg->id.ref); 5426 } 5427 5428 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5429 { 5430 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5431 mem_cgroup_id_remove(memcg); 5432 5433 /* Memcg ID pins CSS */ 5434 css_put(&memcg->css); 5435 } 5436 } 5437 5438 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5439 { 5440 mem_cgroup_id_put_many(memcg, 1); 5441 } 5442 5443 /** 5444 * mem_cgroup_from_id - look up a memcg from a memcg id 5445 * @id: the memcg id to look up 5446 * 5447 * Caller must hold rcu_read_lock(). 5448 */ 5449 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5450 { 5451 WARN_ON_ONCE(!rcu_read_lock_held()); 5452 return idr_find(&mem_cgroup_idr, id); 5453 } 5454 5455 #ifdef CONFIG_SHRINKER_DEBUG 5456 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5457 { 5458 struct cgroup *cgrp; 5459 struct cgroup_subsys_state *css; 5460 struct mem_cgroup *memcg; 5461 5462 cgrp = cgroup_get_from_id(ino); 5463 if (IS_ERR(cgrp)) 5464 return ERR_CAST(cgrp); 5465 5466 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5467 if (css) 5468 memcg = container_of(css, struct mem_cgroup, css); 5469 else 5470 memcg = ERR_PTR(-ENOENT); 5471 5472 cgroup_put(cgrp); 5473 5474 return memcg; 5475 } 5476 #endif 5477 5478 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5479 { 5480 struct mem_cgroup_per_node *pn; 5481 5482 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5483 if (!pn) 5484 return 1; 5485 5486 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5487 GFP_KERNEL_ACCOUNT); 5488 if (!pn->lruvec_stats_percpu) { 5489 kfree(pn); 5490 return 1; 5491 } 5492 5493 lruvec_init(&pn->lruvec); 5494 pn->memcg = memcg; 5495 5496 memcg->nodeinfo[node] = pn; 5497 return 0; 5498 } 5499 5500 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5501 { 5502 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5503 5504 if (!pn) 5505 return; 5506 5507 free_percpu(pn->lruvec_stats_percpu); 5508 kfree(pn); 5509 } 5510 5511 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5512 { 5513 int node; 5514 5515 obj_cgroup_put(memcg->orig_objcg); 5516 5517 for_each_node(node) 5518 free_mem_cgroup_per_node_info(memcg, node); 5519 kfree(memcg->vmstats); 5520 free_percpu(memcg->vmstats_percpu); 5521 kfree(memcg); 5522 } 5523 5524 static void mem_cgroup_free(struct mem_cgroup *memcg) 5525 { 5526 lru_gen_exit_memcg(memcg); 5527 memcg_wb_domain_exit(memcg); 5528 __mem_cgroup_free(memcg); 5529 } 5530 5531 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 5532 { 5533 struct memcg_vmstats_percpu *statc, *pstatc; 5534 struct mem_cgroup *memcg; 5535 int node, cpu; 5536 int __maybe_unused i; 5537 long error = -ENOMEM; 5538 5539 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5540 if (!memcg) 5541 return ERR_PTR(error); 5542 5543 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5544 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5545 if (memcg->id.id < 0) { 5546 error = memcg->id.id; 5547 goto fail; 5548 } 5549 5550 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL); 5551 if (!memcg->vmstats) 5552 goto fail; 5553 5554 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5555 GFP_KERNEL_ACCOUNT); 5556 if (!memcg->vmstats_percpu) 5557 goto fail; 5558 5559 for_each_possible_cpu(cpu) { 5560 if (parent) 5561 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 5562 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5563 statc->parent = parent ? pstatc : NULL; 5564 statc->vmstats = memcg->vmstats; 5565 } 5566 5567 for_each_node(node) 5568 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5569 goto fail; 5570 5571 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5572 goto fail; 5573 5574 INIT_WORK(&memcg->high_work, high_work_func); 5575 INIT_LIST_HEAD(&memcg->oom_notify); 5576 mutex_init(&memcg->thresholds_lock); 5577 spin_lock_init(&memcg->move_lock); 5578 vmpressure_init(&memcg->vmpressure); 5579 INIT_LIST_HEAD(&memcg->event_list); 5580 spin_lock_init(&memcg->event_list_lock); 5581 memcg->socket_pressure = jiffies; 5582 #ifdef CONFIG_MEMCG_KMEM 5583 memcg->kmemcg_id = -1; 5584 INIT_LIST_HEAD(&memcg->objcg_list); 5585 #endif 5586 #ifdef CONFIG_CGROUP_WRITEBACK 5587 INIT_LIST_HEAD(&memcg->cgwb_list); 5588 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5589 memcg->cgwb_frn[i].done = 5590 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5591 #endif 5592 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5593 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5594 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5595 memcg->deferred_split_queue.split_queue_len = 0; 5596 #endif 5597 lru_gen_init_memcg(memcg); 5598 return memcg; 5599 fail: 5600 mem_cgroup_id_remove(memcg); 5601 __mem_cgroup_free(memcg); 5602 return ERR_PTR(error); 5603 } 5604 5605 static struct cgroup_subsys_state * __ref 5606 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5607 { 5608 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5609 struct mem_cgroup *memcg, *old_memcg; 5610 5611 old_memcg = set_active_memcg(parent); 5612 memcg = mem_cgroup_alloc(parent); 5613 set_active_memcg(old_memcg); 5614 if (IS_ERR(memcg)) 5615 return ERR_CAST(memcg); 5616 5617 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5618 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5619 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5620 memcg->zswap_max = PAGE_COUNTER_MAX; 5621 WRITE_ONCE(memcg->zswap_writeback, 5622 !parent || READ_ONCE(parent->zswap_writeback)); 5623 #endif 5624 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5625 if (parent) { 5626 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 5627 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 5628 5629 page_counter_init(&memcg->memory, &parent->memory); 5630 page_counter_init(&memcg->swap, &parent->swap); 5631 page_counter_init(&memcg->kmem, &parent->kmem); 5632 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5633 } else { 5634 init_memcg_events(); 5635 page_counter_init(&memcg->memory, NULL); 5636 page_counter_init(&memcg->swap, NULL); 5637 page_counter_init(&memcg->kmem, NULL); 5638 page_counter_init(&memcg->tcpmem, NULL); 5639 5640 root_mem_cgroup = memcg; 5641 return &memcg->css; 5642 } 5643 5644 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5645 static_branch_inc(&memcg_sockets_enabled_key); 5646 5647 #if defined(CONFIG_MEMCG_KMEM) 5648 if (!cgroup_memory_nobpf) 5649 static_branch_inc(&memcg_bpf_enabled_key); 5650 #endif 5651 5652 return &memcg->css; 5653 } 5654 5655 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5656 { 5657 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5658 5659 if (memcg_online_kmem(memcg)) 5660 goto remove_id; 5661 5662 /* 5663 * A memcg must be visible for expand_shrinker_info() 5664 * by the time the maps are allocated. So, we allocate maps 5665 * here, when for_each_mem_cgroup() can't skip it. 5666 */ 5667 if (alloc_shrinker_info(memcg)) 5668 goto offline_kmem; 5669 5670 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 5671 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5672 FLUSH_TIME); 5673 lru_gen_online_memcg(memcg); 5674 5675 /* Online state pins memcg ID, memcg ID pins CSS */ 5676 refcount_set(&memcg->id.ref, 1); 5677 css_get(css); 5678 5679 /* 5680 * Ensure mem_cgroup_from_id() works once we're fully online. 5681 * 5682 * We could do this earlier and require callers to filter with 5683 * css_tryget_online(). But right now there are no users that 5684 * need earlier access, and the workingset code relies on the 5685 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 5686 * publish it here at the end of onlining. This matches the 5687 * regular ID destruction during offlining. 5688 */ 5689 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5690 5691 return 0; 5692 offline_kmem: 5693 memcg_offline_kmem(memcg); 5694 remove_id: 5695 mem_cgroup_id_remove(memcg); 5696 return -ENOMEM; 5697 } 5698 5699 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5700 { 5701 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5702 struct mem_cgroup_event *event, *tmp; 5703 5704 /* 5705 * Unregister events and notify userspace. 5706 * Notify userspace about cgroup removing only after rmdir of cgroup 5707 * directory to avoid race between userspace and kernelspace. 5708 */ 5709 spin_lock_irq(&memcg->event_list_lock); 5710 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5711 list_del_init(&event->list); 5712 schedule_work(&event->remove); 5713 } 5714 spin_unlock_irq(&memcg->event_list_lock); 5715 5716 page_counter_set_min(&memcg->memory, 0); 5717 page_counter_set_low(&memcg->memory, 0); 5718 5719 zswap_memcg_offline_cleanup(memcg); 5720 5721 memcg_offline_kmem(memcg); 5722 reparent_shrinker_deferred(memcg); 5723 wb_memcg_offline(memcg); 5724 lru_gen_offline_memcg(memcg); 5725 5726 drain_all_stock(memcg); 5727 5728 mem_cgroup_id_put(memcg); 5729 } 5730 5731 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5732 { 5733 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5734 5735 invalidate_reclaim_iterators(memcg); 5736 lru_gen_release_memcg(memcg); 5737 } 5738 5739 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5740 { 5741 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5742 int __maybe_unused i; 5743 5744 #ifdef CONFIG_CGROUP_WRITEBACK 5745 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5746 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5747 #endif 5748 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5749 static_branch_dec(&memcg_sockets_enabled_key); 5750 5751 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5752 static_branch_dec(&memcg_sockets_enabled_key); 5753 5754 #if defined(CONFIG_MEMCG_KMEM) 5755 if (!cgroup_memory_nobpf) 5756 static_branch_dec(&memcg_bpf_enabled_key); 5757 #endif 5758 5759 vmpressure_cleanup(&memcg->vmpressure); 5760 cancel_work_sync(&memcg->high_work); 5761 mem_cgroup_remove_from_trees(memcg); 5762 free_shrinker_info(memcg); 5763 mem_cgroup_free(memcg); 5764 } 5765 5766 /** 5767 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5768 * @css: the target css 5769 * 5770 * Reset the states of the mem_cgroup associated with @css. This is 5771 * invoked when the userland requests disabling on the default hierarchy 5772 * but the memcg is pinned through dependency. The memcg should stop 5773 * applying policies and should revert to the vanilla state as it may be 5774 * made visible again. 5775 * 5776 * The current implementation only resets the essential configurations. 5777 * This needs to be expanded to cover all the visible parts. 5778 */ 5779 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5780 { 5781 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5782 5783 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5784 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5785 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5786 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5787 page_counter_set_min(&memcg->memory, 0); 5788 page_counter_set_low(&memcg->memory, 0); 5789 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5790 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5791 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5792 memcg_wb_domain_size_changed(memcg); 5793 } 5794 5795 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5796 { 5797 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5798 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5799 struct memcg_vmstats_percpu *statc; 5800 long delta, delta_cpu, v; 5801 int i, nid; 5802 5803 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5804 5805 for (i = 0; i < MEMCG_NR_STAT; i++) { 5806 /* 5807 * Collect the aggregated propagation counts of groups 5808 * below us. We're in a per-cpu loop here and this is 5809 * a global counter, so the first cycle will get them. 5810 */ 5811 delta = memcg->vmstats->state_pending[i]; 5812 if (delta) 5813 memcg->vmstats->state_pending[i] = 0; 5814 5815 /* Add CPU changes on this level since the last flush */ 5816 delta_cpu = 0; 5817 v = READ_ONCE(statc->state[i]); 5818 if (v != statc->state_prev[i]) { 5819 delta_cpu = v - statc->state_prev[i]; 5820 delta += delta_cpu; 5821 statc->state_prev[i] = v; 5822 } 5823 5824 /* Aggregate counts on this level and propagate upwards */ 5825 if (delta_cpu) 5826 memcg->vmstats->state_local[i] += delta_cpu; 5827 5828 if (delta) { 5829 memcg->vmstats->state[i] += delta; 5830 if (parent) 5831 parent->vmstats->state_pending[i] += delta; 5832 } 5833 } 5834 5835 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 5836 delta = memcg->vmstats->events_pending[i]; 5837 if (delta) 5838 memcg->vmstats->events_pending[i] = 0; 5839 5840 delta_cpu = 0; 5841 v = READ_ONCE(statc->events[i]); 5842 if (v != statc->events_prev[i]) { 5843 delta_cpu = v - statc->events_prev[i]; 5844 delta += delta_cpu; 5845 statc->events_prev[i] = v; 5846 } 5847 5848 if (delta_cpu) 5849 memcg->vmstats->events_local[i] += delta_cpu; 5850 5851 if (delta) { 5852 memcg->vmstats->events[i] += delta; 5853 if (parent) 5854 parent->vmstats->events_pending[i] += delta; 5855 } 5856 } 5857 5858 for_each_node_state(nid, N_MEMORY) { 5859 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5860 struct mem_cgroup_per_node *ppn = NULL; 5861 struct lruvec_stats_percpu *lstatc; 5862 5863 if (parent) 5864 ppn = parent->nodeinfo[nid]; 5865 5866 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5867 5868 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5869 delta = pn->lruvec_stats.state_pending[i]; 5870 if (delta) 5871 pn->lruvec_stats.state_pending[i] = 0; 5872 5873 delta_cpu = 0; 5874 v = READ_ONCE(lstatc->state[i]); 5875 if (v != lstatc->state_prev[i]) { 5876 delta_cpu = v - lstatc->state_prev[i]; 5877 delta += delta_cpu; 5878 lstatc->state_prev[i] = v; 5879 } 5880 5881 if (delta_cpu) 5882 pn->lruvec_stats.state_local[i] += delta_cpu; 5883 5884 if (delta) { 5885 pn->lruvec_stats.state[i] += delta; 5886 if (ppn) 5887 ppn->lruvec_stats.state_pending[i] += delta; 5888 } 5889 } 5890 } 5891 statc->stats_updates = 0; 5892 /* We are in a per-cpu loop here, only do the atomic write once */ 5893 if (atomic64_read(&memcg->vmstats->stats_updates)) 5894 atomic64_set(&memcg->vmstats->stats_updates, 0); 5895 } 5896 5897 #ifdef CONFIG_MMU 5898 /* Handlers for move charge at task migration. */ 5899 static int mem_cgroup_do_precharge(unsigned long count) 5900 { 5901 int ret; 5902 5903 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5904 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5905 if (!ret) { 5906 mc.precharge += count; 5907 return ret; 5908 } 5909 5910 /* Try charges one by one with reclaim, but do not retry */ 5911 while (count--) { 5912 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5913 if (ret) 5914 return ret; 5915 mc.precharge++; 5916 cond_resched(); 5917 } 5918 return 0; 5919 } 5920 5921 union mc_target { 5922 struct folio *folio; 5923 swp_entry_t ent; 5924 }; 5925 5926 enum mc_target_type { 5927 MC_TARGET_NONE = 0, 5928 MC_TARGET_PAGE, 5929 MC_TARGET_SWAP, 5930 MC_TARGET_DEVICE, 5931 }; 5932 5933 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5934 unsigned long addr, pte_t ptent) 5935 { 5936 struct page *page = vm_normal_page(vma, addr, ptent); 5937 5938 if (!page) 5939 return NULL; 5940 if (PageAnon(page)) { 5941 if (!(mc.flags & MOVE_ANON)) 5942 return NULL; 5943 } else { 5944 if (!(mc.flags & MOVE_FILE)) 5945 return NULL; 5946 } 5947 get_page(page); 5948 5949 return page; 5950 } 5951 5952 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5953 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5954 pte_t ptent, swp_entry_t *entry) 5955 { 5956 struct page *page = NULL; 5957 swp_entry_t ent = pte_to_swp_entry(ptent); 5958 5959 if (!(mc.flags & MOVE_ANON)) 5960 return NULL; 5961 5962 /* 5963 * Handle device private pages that are not accessible by the CPU, but 5964 * stored as special swap entries in the page table. 5965 */ 5966 if (is_device_private_entry(ent)) { 5967 page = pfn_swap_entry_to_page(ent); 5968 if (!get_page_unless_zero(page)) 5969 return NULL; 5970 return page; 5971 } 5972 5973 if (non_swap_entry(ent)) 5974 return NULL; 5975 5976 /* 5977 * Because swap_cache_get_folio() updates some statistics counter, 5978 * we call find_get_page() with swapper_space directly. 5979 */ 5980 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5981 entry->val = ent.val; 5982 5983 return page; 5984 } 5985 #else 5986 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5987 pte_t ptent, swp_entry_t *entry) 5988 { 5989 return NULL; 5990 } 5991 #endif 5992 5993 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5994 unsigned long addr, pte_t ptent) 5995 { 5996 unsigned long index; 5997 struct folio *folio; 5998 5999 if (!vma->vm_file) /* anonymous vma */ 6000 return NULL; 6001 if (!(mc.flags & MOVE_FILE)) 6002 return NULL; 6003 6004 /* folio is moved even if it's not RSS of this task(page-faulted). */ 6005 /* shmem/tmpfs may report page out on swap: account for that too. */ 6006 index = linear_page_index(vma, addr); 6007 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 6008 if (IS_ERR(folio)) 6009 return NULL; 6010 return folio_file_page(folio, index); 6011 } 6012 6013 /** 6014 * mem_cgroup_move_account - move account of the folio 6015 * @folio: The folio. 6016 * @compound: charge the page as compound or small page 6017 * @from: mem_cgroup which the folio is moved from. 6018 * @to: mem_cgroup which the folio is moved to. @from != @to. 6019 * 6020 * The folio must be locked and not on the LRU. 6021 * 6022 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 6023 * from old cgroup. 6024 */ 6025 static int mem_cgroup_move_account(struct folio *folio, 6026 bool compound, 6027 struct mem_cgroup *from, 6028 struct mem_cgroup *to) 6029 { 6030 struct lruvec *from_vec, *to_vec; 6031 struct pglist_data *pgdat; 6032 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 6033 int nid, ret; 6034 6035 VM_BUG_ON(from == to); 6036 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 6037 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 6038 VM_BUG_ON(compound && !folio_test_large(folio)); 6039 6040 ret = -EINVAL; 6041 if (folio_memcg(folio) != from) 6042 goto out; 6043 6044 pgdat = folio_pgdat(folio); 6045 from_vec = mem_cgroup_lruvec(from, pgdat); 6046 to_vec = mem_cgroup_lruvec(to, pgdat); 6047 6048 folio_memcg_lock(folio); 6049 6050 if (folio_test_anon(folio)) { 6051 if (folio_mapped(folio)) { 6052 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 6053 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 6054 if (folio_test_pmd_mappable(folio)) { 6055 __mod_lruvec_state(from_vec, NR_ANON_THPS, 6056 -nr_pages); 6057 __mod_lruvec_state(to_vec, NR_ANON_THPS, 6058 nr_pages); 6059 } 6060 } 6061 } else { 6062 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 6063 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 6064 6065 if (folio_test_swapbacked(folio)) { 6066 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 6067 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 6068 } 6069 6070 if (folio_mapped(folio)) { 6071 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 6072 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 6073 } 6074 6075 if (folio_test_dirty(folio)) { 6076 struct address_space *mapping = folio_mapping(folio); 6077 6078 if (mapping_can_writeback(mapping)) { 6079 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 6080 -nr_pages); 6081 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 6082 nr_pages); 6083 } 6084 } 6085 } 6086 6087 #ifdef CONFIG_SWAP 6088 if (folio_test_swapcache(folio)) { 6089 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 6090 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 6091 } 6092 #endif 6093 if (folio_test_writeback(folio)) { 6094 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 6095 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 6096 } 6097 6098 /* 6099 * All state has been migrated, let's switch to the new memcg. 6100 * 6101 * It is safe to change page's memcg here because the page 6102 * is referenced, charged, isolated, and locked: we can't race 6103 * with (un)charging, migration, LRU putback, or anything else 6104 * that would rely on a stable page's memory cgroup. 6105 * 6106 * Note that folio_memcg_lock is a memcg lock, not a page lock, 6107 * to save space. As soon as we switch page's memory cgroup to a 6108 * new memcg that isn't locked, the above state can change 6109 * concurrently again. Make sure we're truly done with it. 6110 */ 6111 smp_mb(); 6112 6113 css_get(&to->css); 6114 css_put(&from->css); 6115 6116 folio->memcg_data = (unsigned long)to; 6117 6118 __folio_memcg_unlock(from); 6119 6120 ret = 0; 6121 nid = folio_nid(folio); 6122 6123 local_irq_disable(); 6124 mem_cgroup_charge_statistics(to, nr_pages); 6125 memcg_check_events(to, nid); 6126 mem_cgroup_charge_statistics(from, -nr_pages); 6127 memcg_check_events(from, nid); 6128 local_irq_enable(); 6129 out: 6130 return ret; 6131 } 6132 6133 /** 6134 * get_mctgt_type - get target type of moving charge 6135 * @vma: the vma the pte to be checked belongs 6136 * @addr: the address corresponding to the pte to be checked 6137 * @ptent: the pte to be checked 6138 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6139 * 6140 * Context: Called with pte lock held. 6141 * Return: 6142 * * MC_TARGET_NONE - If the pte is not a target for move charge. 6143 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for 6144 * move charge. If @target is not NULL, the folio is stored in target->folio 6145 * with extra refcnt taken (Caller should release it). 6146 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a 6147 * target for charge migration. If @target is not NULL, the entry is 6148 * stored in target->ent. 6149 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and 6150 * thus not on the lru. For now such page is charged like a regular page 6151 * would be as it is just special memory taking the place of a regular page. 6152 * See Documentations/vm/hmm.txt and include/linux/hmm.h 6153 */ 6154 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6155 unsigned long addr, pte_t ptent, union mc_target *target) 6156 { 6157 struct page *page = NULL; 6158 struct folio *folio; 6159 enum mc_target_type ret = MC_TARGET_NONE; 6160 swp_entry_t ent = { .val = 0 }; 6161 6162 if (pte_present(ptent)) 6163 page = mc_handle_present_pte(vma, addr, ptent); 6164 else if (pte_none_mostly(ptent)) 6165 /* 6166 * PTE markers should be treated as a none pte here, separated 6167 * from other swap handling below. 6168 */ 6169 page = mc_handle_file_pte(vma, addr, ptent); 6170 else if (is_swap_pte(ptent)) 6171 page = mc_handle_swap_pte(vma, ptent, &ent); 6172 6173 if (page) 6174 folio = page_folio(page); 6175 if (target && page) { 6176 if (!folio_trylock(folio)) { 6177 folio_put(folio); 6178 return ret; 6179 } 6180 /* 6181 * page_mapped() must be stable during the move. This 6182 * pte is locked, so if it's present, the page cannot 6183 * become unmapped. If it isn't, we have only partial 6184 * control over the mapped state: the page lock will 6185 * prevent new faults against pagecache and swapcache, 6186 * so an unmapped page cannot become mapped. However, 6187 * if the page is already mapped elsewhere, it can 6188 * unmap, and there is nothing we can do about it. 6189 * Alas, skip moving the page in this case. 6190 */ 6191 if (!pte_present(ptent) && page_mapped(page)) { 6192 folio_unlock(folio); 6193 folio_put(folio); 6194 return ret; 6195 } 6196 } 6197 6198 if (!page && !ent.val) 6199 return ret; 6200 if (page) { 6201 /* 6202 * Do only loose check w/o serialization. 6203 * mem_cgroup_move_account() checks the page is valid or 6204 * not under LRU exclusion. 6205 */ 6206 if (folio_memcg(folio) == mc.from) { 6207 ret = MC_TARGET_PAGE; 6208 if (folio_is_device_private(folio) || 6209 folio_is_device_coherent(folio)) 6210 ret = MC_TARGET_DEVICE; 6211 if (target) 6212 target->folio = folio; 6213 } 6214 if (!ret || !target) { 6215 if (target) 6216 folio_unlock(folio); 6217 folio_put(folio); 6218 } 6219 } 6220 /* 6221 * There is a swap entry and a page doesn't exist or isn't charged. 6222 * But we cannot move a tail-page in a THP. 6223 */ 6224 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 6225 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 6226 ret = MC_TARGET_SWAP; 6227 if (target) 6228 target->ent = ent; 6229 } 6230 return ret; 6231 } 6232 6233 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6234 /* 6235 * We don't consider PMD mapped swapping or file mapped pages because THP does 6236 * not support them for now. 6237 * Caller should make sure that pmd_trans_huge(pmd) is true. 6238 */ 6239 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6240 unsigned long addr, pmd_t pmd, union mc_target *target) 6241 { 6242 struct page *page = NULL; 6243 struct folio *folio; 6244 enum mc_target_type ret = MC_TARGET_NONE; 6245 6246 if (unlikely(is_swap_pmd(pmd))) { 6247 VM_BUG_ON(thp_migration_supported() && 6248 !is_pmd_migration_entry(pmd)); 6249 return ret; 6250 } 6251 page = pmd_page(pmd); 6252 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 6253 folio = page_folio(page); 6254 if (!(mc.flags & MOVE_ANON)) 6255 return ret; 6256 if (folio_memcg(folio) == mc.from) { 6257 ret = MC_TARGET_PAGE; 6258 if (target) { 6259 folio_get(folio); 6260 if (!folio_trylock(folio)) { 6261 folio_put(folio); 6262 return MC_TARGET_NONE; 6263 } 6264 target->folio = folio; 6265 } 6266 } 6267 return ret; 6268 } 6269 #else 6270 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6271 unsigned long addr, pmd_t pmd, union mc_target *target) 6272 { 6273 return MC_TARGET_NONE; 6274 } 6275 #endif 6276 6277 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6278 unsigned long addr, unsigned long end, 6279 struct mm_walk *walk) 6280 { 6281 struct vm_area_struct *vma = walk->vma; 6282 pte_t *pte; 6283 spinlock_t *ptl; 6284 6285 ptl = pmd_trans_huge_lock(pmd, vma); 6286 if (ptl) { 6287 /* 6288 * Note their can not be MC_TARGET_DEVICE for now as we do not 6289 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 6290 * this might change. 6291 */ 6292 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6293 mc.precharge += HPAGE_PMD_NR; 6294 spin_unlock(ptl); 6295 return 0; 6296 } 6297 6298 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6299 if (!pte) 6300 return 0; 6301 for (; addr != end; pte++, addr += PAGE_SIZE) 6302 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL)) 6303 mc.precharge++; /* increment precharge temporarily */ 6304 pte_unmap_unlock(pte - 1, ptl); 6305 cond_resched(); 6306 6307 return 0; 6308 } 6309 6310 static const struct mm_walk_ops precharge_walk_ops = { 6311 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6312 .walk_lock = PGWALK_RDLOCK, 6313 }; 6314 6315 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6316 { 6317 unsigned long precharge; 6318 6319 mmap_read_lock(mm); 6320 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 6321 mmap_read_unlock(mm); 6322 6323 precharge = mc.precharge; 6324 mc.precharge = 0; 6325 6326 return precharge; 6327 } 6328 6329 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6330 { 6331 unsigned long precharge = mem_cgroup_count_precharge(mm); 6332 6333 VM_BUG_ON(mc.moving_task); 6334 mc.moving_task = current; 6335 return mem_cgroup_do_precharge(precharge); 6336 } 6337 6338 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6339 static void __mem_cgroup_clear_mc(void) 6340 { 6341 struct mem_cgroup *from = mc.from; 6342 struct mem_cgroup *to = mc.to; 6343 6344 /* we must uncharge all the leftover precharges from mc.to */ 6345 if (mc.precharge) { 6346 mem_cgroup_cancel_charge(mc.to, mc.precharge); 6347 mc.precharge = 0; 6348 } 6349 /* 6350 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6351 * we must uncharge here. 6352 */ 6353 if (mc.moved_charge) { 6354 mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6355 mc.moved_charge = 0; 6356 } 6357 /* we must fixup refcnts and charges */ 6358 if (mc.moved_swap) { 6359 /* uncharge swap account from the old cgroup */ 6360 if (!mem_cgroup_is_root(mc.from)) 6361 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 6362 6363 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 6364 6365 /* 6366 * we charged both to->memory and to->memsw, so we 6367 * should uncharge to->memory. 6368 */ 6369 if (!mem_cgroup_is_root(mc.to)) 6370 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 6371 6372 mc.moved_swap = 0; 6373 } 6374 memcg_oom_recover(from); 6375 memcg_oom_recover(to); 6376 wake_up_all(&mc.waitq); 6377 } 6378 6379 static void mem_cgroup_clear_mc(void) 6380 { 6381 struct mm_struct *mm = mc.mm; 6382 6383 /* 6384 * we must clear moving_task before waking up waiters at the end of 6385 * task migration. 6386 */ 6387 mc.moving_task = NULL; 6388 __mem_cgroup_clear_mc(); 6389 spin_lock(&mc.lock); 6390 mc.from = NULL; 6391 mc.to = NULL; 6392 mc.mm = NULL; 6393 spin_unlock(&mc.lock); 6394 6395 mmput(mm); 6396 } 6397 6398 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6399 { 6400 struct cgroup_subsys_state *css; 6401 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 6402 struct mem_cgroup *from; 6403 struct task_struct *leader, *p; 6404 struct mm_struct *mm; 6405 unsigned long move_flags; 6406 int ret = 0; 6407 6408 /* charge immigration isn't supported on the default hierarchy */ 6409 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6410 return 0; 6411 6412 /* 6413 * Multi-process migrations only happen on the default hierarchy 6414 * where charge immigration is not used. Perform charge 6415 * immigration if @tset contains a leader and whine if there are 6416 * multiple. 6417 */ 6418 p = NULL; 6419 cgroup_taskset_for_each_leader(leader, css, tset) { 6420 WARN_ON_ONCE(p); 6421 p = leader; 6422 memcg = mem_cgroup_from_css(css); 6423 } 6424 if (!p) 6425 return 0; 6426 6427 /* 6428 * We are now committed to this value whatever it is. Changes in this 6429 * tunable will only affect upcoming migrations, not the current one. 6430 * So we need to save it, and keep it going. 6431 */ 6432 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6433 if (!move_flags) 6434 return 0; 6435 6436 from = mem_cgroup_from_task(p); 6437 6438 VM_BUG_ON(from == memcg); 6439 6440 mm = get_task_mm(p); 6441 if (!mm) 6442 return 0; 6443 /* We move charges only when we move a owner of the mm */ 6444 if (mm->owner == p) { 6445 VM_BUG_ON(mc.from); 6446 VM_BUG_ON(mc.to); 6447 VM_BUG_ON(mc.precharge); 6448 VM_BUG_ON(mc.moved_charge); 6449 VM_BUG_ON(mc.moved_swap); 6450 6451 spin_lock(&mc.lock); 6452 mc.mm = mm; 6453 mc.from = from; 6454 mc.to = memcg; 6455 mc.flags = move_flags; 6456 spin_unlock(&mc.lock); 6457 /* We set mc.moving_task later */ 6458 6459 ret = mem_cgroup_precharge_mc(mm); 6460 if (ret) 6461 mem_cgroup_clear_mc(); 6462 } else { 6463 mmput(mm); 6464 } 6465 return ret; 6466 } 6467 6468 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6469 { 6470 if (mc.to) 6471 mem_cgroup_clear_mc(); 6472 } 6473 6474 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6475 unsigned long addr, unsigned long end, 6476 struct mm_walk *walk) 6477 { 6478 int ret = 0; 6479 struct vm_area_struct *vma = walk->vma; 6480 pte_t *pte; 6481 spinlock_t *ptl; 6482 enum mc_target_type target_type; 6483 union mc_target target; 6484 struct folio *folio; 6485 6486 ptl = pmd_trans_huge_lock(pmd, vma); 6487 if (ptl) { 6488 if (mc.precharge < HPAGE_PMD_NR) { 6489 spin_unlock(ptl); 6490 return 0; 6491 } 6492 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6493 if (target_type == MC_TARGET_PAGE) { 6494 folio = target.folio; 6495 if (folio_isolate_lru(folio)) { 6496 if (!mem_cgroup_move_account(folio, true, 6497 mc.from, mc.to)) { 6498 mc.precharge -= HPAGE_PMD_NR; 6499 mc.moved_charge += HPAGE_PMD_NR; 6500 } 6501 folio_putback_lru(folio); 6502 } 6503 folio_unlock(folio); 6504 folio_put(folio); 6505 } else if (target_type == MC_TARGET_DEVICE) { 6506 folio = target.folio; 6507 if (!mem_cgroup_move_account(folio, true, 6508 mc.from, mc.to)) { 6509 mc.precharge -= HPAGE_PMD_NR; 6510 mc.moved_charge += HPAGE_PMD_NR; 6511 } 6512 folio_unlock(folio); 6513 folio_put(folio); 6514 } 6515 spin_unlock(ptl); 6516 return 0; 6517 } 6518 6519 retry: 6520 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6521 if (!pte) 6522 return 0; 6523 for (; addr != end; addr += PAGE_SIZE) { 6524 pte_t ptent = ptep_get(pte++); 6525 bool device = false; 6526 swp_entry_t ent; 6527 6528 if (!mc.precharge) 6529 break; 6530 6531 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6532 case MC_TARGET_DEVICE: 6533 device = true; 6534 fallthrough; 6535 case MC_TARGET_PAGE: 6536 folio = target.folio; 6537 /* 6538 * We can have a part of the split pmd here. Moving it 6539 * can be done but it would be too convoluted so simply 6540 * ignore such a partial THP and keep it in original 6541 * memcg. There should be somebody mapping the head. 6542 */ 6543 if (folio_test_large(folio)) 6544 goto put; 6545 if (!device && !folio_isolate_lru(folio)) 6546 goto put; 6547 if (!mem_cgroup_move_account(folio, false, 6548 mc.from, mc.to)) { 6549 mc.precharge--; 6550 /* we uncharge from mc.from later. */ 6551 mc.moved_charge++; 6552 } 6553 if (!device) 6554 folio_putback_lru(folio); 6555 put: /* get_mctgt_type() gets & locks the page */ 6556 folio_unlock(folio); 6557 folio_put(folio); 6558 break; 6559 case MC_TARGET_SWAP: 6560 ent = target.ent; 6561 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6562 mc.precharge--; 6563 mem_cgroup_id_get_many(mc.to, 1); 6564 /* we fixup other refcnts and charges later. */ 6565 mc.moved_swap++; 6566 } 6567 break; 6568 default: 6569 break; 6570 } 6571 } 6572 pte_unmap_unlock(pte - 1, ptl); 6573 cond_resched(); 6574 6575 if (addr != end) { 6576 /* 6577 * We have consumed all precharges we got in can_attach(). 6578 * We try charge one by one, but don't do any additional 6579 * charges to mc.to if we have failed in charge once in attach() 6580 * phase. 6581 */ 6582 ret = mem_cgroup_do_precharge(1); 6583 if (!ret) 6584 goto retry; 6585 } 6586 6587 return ret; 6588 } 6589 6590 static const struct mm_walk_ops charge_walk_ops = { 6591 .pmd_entry = mem_cgroup_move_charge_pte_range, 6592 .walk_lock = PGWALK_RDLOCK, 6593 }; 6594 6595 static void mem_cgroup_move_charge(void) 6596 { 6597 lru_add_drain_all(); 6598 /* 6599 * Signal folio_memcg_lock() to take the memcg's move_lock 6600 * while we're moving its pages to another memcg. Then wait 6601 * for already started RCU-only updates to finish. 6602 */ 6603 atomic_inc(&mc.from->moving_account); 6604 synchronize_rcu(); 6605 retry: 6606 if (unlikely(!mmap_read_trylock(mc.mm))) { 6607 /* 6608 * Someone who are holding the mmap_lock might be waiting in 6609 * waitq. So we cancel all extra charges, wake up all waiters, 6610 * and retry. Because we cancel precharges, we might not be able 6611 * to move enough charges, but moving charge is a best-effort 6612 * feature anyway, so it wouldn't be a big problem. 6613 */ 6614 __mem_cgroup_clear_mc(); 6615 cond_resched(); 6616 goto retry; 6617 } 6618 /* 6619 * When we have consumed all precharges and failed in doing 6620 * additional charge, the page walk just aborts. 6621 */ 6622 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 6623 mmap_read_unlock(mc.mm); 6624 atomic_dec(&mc.from->moving_account); 6625 } 6626 6627 static void mem_cgroup_move_task(void) 6628 { 6629 if (mc.to) { 6630 mem_cgroup_move_charge(); 6631 mem_cgroup_clear_mc(); 6632 } 6633 } 6634 6635 #else /* !CONFIG_MMU */ 6636 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6637 { 6638 return 0; 6639 } 6640 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6641 { 6642 } 6643 static void mem_cgroup_move_task(void) 6644 { 6645 } 6646 #endif 6647 6648 #ifdef CONFIG_MEMCG_KMEM 6649 static void mem_cgroup_fork(struct task_struct *task) 6650 { 6651 /* 6652 * Set the update flag to cause task->objcg to be initialized lazily 6653 * on the first allocation. It can be done without any synchronization 6654 * because it's always performed on the current task, so does 6655 * current_objcg_update(). 6656 */ 6657 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 6658 } 6659 6660 static void mem_cgroup_exit(struct task_struct *task) 6661 { 6662 struct obj_cgroup *objcg = task->objcg; 6663 6664 objcg = (struct obj_cgroup *) 6665 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 6666 obj_cgroup_put(objcg); 6667 6668 /* 6669 * Some kernel allocations can happen after this point, 6670 * but let's ignore them. It can be done without any synchronization 6671 * because it's always performed on the current task, so does 6672 * current_objcg_update(). 6673 */ 6674 task->objcg = NULL; 6675 } 6676 #endif 6677 6678 #ifdef CONFIG_LRU_GEN 6679 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 6680 { 6681 struct task_struct *task; 6682 struct cgroup_subsys_state *css; 6683 6684 /* find the first leader if there is any */ 6685 cgroup_taskset_for_each_leader(task, css, tset) 6686 break; 6687 6688 if (!task) 6689 return; 6690 6691 task_lock(task); 6692 if (task->mm && READ_ONCE(task->mm->owner) == task) 6693 lru_gen_migrate_mm(task->mm); 6694 task_unlock(task); 6695 } 6696 #else 6697 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 6698 #endif /* CONFIG_LRU_GEN */ 6699 6700 #ifdef CONFIG_MEMCG_KMEM 6701 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 6702 { 6703 struct task_struct *task; 6704 struct cgroup_subsys_state *css; 6705 6706 cgroup_taskset_for_each(task, css, tset) { 6707 /* atomically set the update bit */ 6708 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 6709 } 6710 } 6711 #else 6712 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {} 6713 #endif /* CONFIG_MEMCG_KMEM */ 6714 6715 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) 6716 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6717 { 6718 mem_cgroup_lru_gen_attach(tset); 6719 mem_cgroup_kmem_attach(tset); 6720 } 6721 #endif 6722 6723 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6724 { 6725 if (value == PAGE_COUNTER_MAX) 6726 seq_puts(m, "max\n"); 6727 else 6728 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6729 6730 return 0; 6731 } 6732 6733 static u64 memory_current_read(struct cgroup_subsys_state *css, 6734 struct cftype *cft) 6735 { 6736 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6737 6738 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6739 } 6740 6741 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6742 struct cftype *cft) 6743 { 6744 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6745 6746 return (u64)memcg->memory.watermark * PAGE_SIZE; 6747 } 6748 6749 static int memory_min_show(struct seq_file *m, void *v) 6750 { 6751 return seq_puts_memcg_tunable(m, 6752 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6753 } 6754 6755 static ssize_t memory_min_write(struct kernfs_open_file *of, 6756 char *buf, size_t nbytes, loff_t off) 6757 { 6758 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6759 unsigned long min; 6760 int err; 6761 6762 buf = strstrip(buf); 6763 err = page_counter_memparse(buf, "max", &min); 6764 if (err) 6765 return err; 6766 6767 page_counter_set_min(&memcg->memory, min); 6768 6769 return nbytes; 6770 } 6771 6772 static int memory_low_show(struct seq_file *m, void *v) 6773 { 6774 return seq_puts_memcg_tunable(m, 6775 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6776 } 6777 6778 static ssize_t memory_low_write(struct kernfs_open_file *of, 6779 char *buf, size_t nbytes, loff_t off) 6780 { 6781 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6782 unsigned long low; 6783 int err; 6784 6785 buf = strstrip(buf); 6786 err = page_counter_memparse(buf, "max", &low); 6787 if (err) 6788 return err; 6789 6790 page_counter_set_low(&memcg->memory, low); 6791 6792 return nbytes; 6793 } 6794 6795 static int memory_high_show(struct seq_file *m, void *v) 6796 { 6797 return seq_puts_memcg_tunable(m, 6798 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6799 } 6800 6801 static ssize_t memory_high_write(struct kernfs_open_file *of, 6802 char *buf, size_t nbytes, loff_t off) 6803 { 6804 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6805 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6806 bool drained = false; 6807 unsigned long high; 6808 int err; 6809 6810 buf = strstrip(buf); 6811 err = page_counter_memparse(buf, "max", &high); 6812 if (err) 6813 return err; 6814 6815 page_counter_set_high(&memcg->memory, high); 6816 6817 for (;;) { 6818 unsigned long nr_pages = page_counter_read(&memcg->memory); 6819 unsigned long reclaimed; 6820 6821 if (nr_pages <= high) 6822 break; 6823 6824 if (signal_pending(current)) 6825 break; 6826 6827 if (!drained) { 6828 drain_all_stock(memcg); 6829 drained = true; 6830 continue; 6831 } 6832 6833 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6834 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); 6835 6836 if (!reclaimed && !nr_retries--) 6837 break; 6838 } 6839 6840 memcg_wb_domain_size_changed(memcg); 6841 return nbytes; 6842 } 6843 6844 static int memory_max_show(struct seq_file *m, void *v) 6845 { 6846 return seq_puts_memcg_tunable(m, 6847 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6848 } 6849 6850 static ssize_t memory_max_write(struct kernfs_open_file *of, 6851 char *buf, size_t nbytes, loff_t off) 6852 { 6853 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6854 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6855 bool drained = false; 6856 unsigned long max; 6857 int err; 6858 6859 buf = strstrip(buf); 6860 err = page_counter_memparse(buf, "max", &max); 6861 if (err) 6862 return err; 6863 6864 xchg(&memcg->memory.max, max); 6865 6866 for (;;) { 6867 unsigned long nr_pages = page_counter_read(&memcg->memory); 6868 6869 if (nr_pages <= max) 6870 break; 6871 6872 if (signal_pending(current)) 6873 break; 6874 6875 if (!drained) { 6876 drain_all_stock(memcg); 6877 drained = true; 6878 continue; 6879 } 6880 6881 if (nr_reclaims) { 6882 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6883 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) 6884 nr_reclaims--; 6885 continue; 6886 } 6887 6888 memcg_memory_event(memcg, MEMCG_OOM); 6889 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6890 break; 6891 } 6892 6893 memcg_wb_domain_size_changed(memcg); 6894 return nbytes; 6895 } 6896 6897 /* 6898 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 6899 * if any new events become available. 6900 */ 6901 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6902 { 6903 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6904 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6905 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6906 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6907 seq_printf(m, "oom_kill %lu\n", 6908 atomic_long_read(&events[MEMCG_OOM_KILL])); 6909 seq_printf(m, "oom_group_kill %lu\n", 6910 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6911 } 6912 6913 static int memory_events_show(struct seq_file *m, void *v) 6914 { 6915 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6916 6917 __memory_events_show(m, memcg->memory_events); 6918 return 0; 6919 } 6920 6921 static int memory_events_local_show(struct seq_file *m, void *v) 6922 { 6923 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6924 6925 __memory_events_show(m, memcg->memory_events_local); 6926 return 0; 6927 } 6928 6929 static int memory_stat_show(struct seq_file *m, void *v) 6930 { 6931 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6932 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 6933 struct seq_buf s; 6934 6935 if (!buf) 6936 return -ENOMEM; 6937 seq_buf_init(&s, buf, PAGE_SIZE); 6938 memory_stat_format(memcg, &s); 6939 seq_puts(m, buf); 6940 kfree(buf); 6941 return 0; 6942 } 6943 6944 #ifdef CONFIG_NUMA 6945 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6946 int item) 6947 { 6948 return lruvec_page_state(lruvec, item) * 6949 memcg_page_state_output_unit(item); 6950 } 6951 6952 static int memory_numa_stat_show(struct seq_file *m, void *v) 6953 { 6954 int i; 6955 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6956 6957 mem_cgroup_flush_stats(memcg); 6958 6959 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6960 int nid; 6961 6962 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6963 continue; 6964 6965 seq_printf(m, "%s", memory_stats[i].name); 6966 for_each_node_state(nid, N_MEMORY) { 6967 u64 size; 6968 struct lruvec *lruvec; 6969 6970 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6971 size = lruvec_page_state_output(lruvec, 6972 memory_stats[i].idx); 6973 seq_printf(m, " N%d=%llu", nid, size); 6974 } 6975 seq_putc(m, '\n'); 6976 } 6977 6978 return 0; 6979 } 6980 #endif 6981 6982 static int memory_oom_group_show(struct seq_file *m, void *v) 6983 { 6984 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6985 6986 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 6987 6988 return 0; 6989 } 6990 6991 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6992 char *buf, size_t nbytes, loff_t off) 6993 { 6994 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6995 int ret, oom_group; 6996 6997 buf = strstrip(buf); 6998 if (!buf) 6999 return -EINVAL; 7000 7001 ret = kstrtoint(buf, 0, &oom_group); 7002 if (ret) 7003 return ret; 7004 7005 if (oom_group != 0 && oom_group != 1) 7006 return -EINVAL; 7007 7008 WRITE_ONCE(memcg->oom_group, oom_group); 7009 7010 return nbytes; 7011 } 7012 7013 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 7014 size_t nbytes, loff_t off) 7015 { 7016 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7017 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 7018 unsigned long nr_to_reclaim, nr_reclaimed = 0; 7019 unsigned int reclaim_options; 7020 int err; 7021 7022 buf = strstrip(buf); 7023 err = page_counter_memparse(buf, "", &nr_to_reclaim); 7024 if (err) 7025 return err; 7026 7027 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 7028 while (nr_reclaimed < nr_to_reclaim) { 7029 /* Will converge on zero, but reclaim enforces a minimum */ 7030 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 7031 unsigned long reclaimed; 7032 7033 if (signal_pending(current)) 7034 return -EINTR; 7035 7036 /* 7037 * This is the final attempt, drain percpu lru caches in the 7038 * hope of introducing more evictable pages for 7039 * try_to_free_mem_cgroup_pages(). 7040 */ 7041 if (!nr_retries) 7042 lru_add_drain_all(); 7043 7044 reclaimed = try_to_free_mem_cgroup_pages(memcg, 7045 batch_size, GFP_KERNEL, reclaim_options); 7046 7047 if (!reclaimed && !nr_retries--) 7048 return -EAGAIN; 7049 7050 nr_reclaimed += reclaimed; 7051 } 7052 7053 return nbytes; 7054 } 7055 7056 static struct cftype memory_files[] = { 7057 { 7058 .name = "current", 7059 .flags = CFTYPE_NOT_ON_ROOT, 7060 .read_u64 = memory_current_read, 7061 }, 7062 { 7063 .name = "peak", 7064 .flags = CFTYPE_NOT_ON_ROOT, 7065 .read_u64 = memory_peak_read, 7066 }, 7067 { 7068 .name = "min", 7069 .flags = CFTYPE_NOT_ON_ROOT, 7070 .seq_show = memory_min_show, 7071 .write = memory_min_write, 7072 }, 7073 { 7074 .name = "low", 7075 .flags = CFTYPE_NOT_ON_ROOT, 7076 .seq_show = memory_low_show, 7077 .write = memory_low_write, 7078 }, 7079 { 7080 .name = "high", 7081 .flags = CFTYPE_NOT_ON_ROOT, 7082 .seq_show = memory_high_show, 7083 .write = memory_high_write, 7084 }, 7085 { 7086 .name = "max", 7087 .flags = CFTYPE_NOT_ON_ROOT, 7088 .seq_show = memory_max_show, 7089 .write = memory_max_write, 7090 }, 7091 { 7092 .name = "events", 7093 .flags = CFTYPE_NOT_ON_ROOT, 7094 .file_offset = offsetof(struct mem_cgroup, events_file), 7095 .seq_show = memory_events_show, 7096 }, 7097 { 7098 .name = "events.local", 7099 .flags = CFTYPE_NOT_ON_ROOT, 7100 .file_offset = offsetof(struct mem_cgroup, events_local_file), 7101 .seq_show = memory_events_local_show, 7102 }, 7103 { 7104 .name = "stat", 7105 .seq_show = memory_stat_show, 7106 }, 7107 #ifdef CONFIG_NUMA 7108 { 7109 .name = "numa_stat", 7110 .seq_show = memory_numa_stat_show, 7111 }, 7112 #endif 7113 { 7114 .name = "oom.group", 7115 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 7116 .seq_show = memory_oom_group_show, 7117 .write = memory_oom_group_write, 7118 }, 7119 { 7120 .name = "reclaim", 7121 .flags = CFTYPE_NS_DELEGATABLE, 7122 .write = memory_reclaim, 7123 }, 7124 { } /* terminate */ 7125 }; 7126 7127 struct cgroup_subsys memory_cgrp_subsys = { 7128 .css_alloc = mem_cgroup_css_alloc, 7129 .css_online = mem_cgroup_css_online, 7130 .css_offline = mem_cgroup_css_offline, 7131 .css_released = mem_cgroup_css_released, 7132 .css_free = mem_cgroup_css_free, 7133 .css_reset = mem_cgroup_css_reset, 7134 .css_rstat_flush = mem_cgroup_css_rstat_flush, 7135 .can_attach = mem_cgroup_can_attach, 7136 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) 7137 .attach = mem_cgroup_attach, 7138 #endif 7139 .cancel_attach = mem_cgroup_cancel_attach, 7140 .post_attach = mem_cgroup_move_task, 7141 #ifdef CONFIG_MEMCG_KMEM 7142 .fork = mem_cgroup_fork, 7143 .exit = mem_cgroup_exit, 7144 #endif 7145 .dfl_cftypes = memory_files, 7146 .legacy_cftypes = mem_cgroup_legacy_files, 7147 .early_init = 0, 7148 }; 7149 7150 /* 7151 * This function calculates an individual cgroup's effective 7152 * protection which is derived from its own memory.min/low, its 7153 * parent's and siblings' settings, as well as the actual memory 7154 * distribution in the tree. 7155 * 7156 * The following rules apply to the effective protection values: 7157 * 7158 * 1. At the first level of reclaim, effective protection is equal to 7159 * the declared protection in memory.min and memory.low. 7160 * 7161 * 2. To enable safe delegation of the protection configuration, at 7162 * subsequent levels the effective protection is capped to the 7163 * parent's effective protection. 7164 * 7165 * 3. To make complex and dynamic subtrees easier to configure, the 7166 * user is allowed to overcommit the declared protection at a given 7167 * level. If that is the case, the parent's effective protection is 7168 * distributed to the children in proportion to how much protection 7169 * they have declared and how much of it they are utilizing. 7170 * 7171 * This makes distribution proportional, but also work-conserving: 7172 * if one cgroup claims much more protection than it uses memory, 7173 * the unused remainder is available to its siblings. 7174 * 7175 * 4. Conversely, when the declared protection is undercommitted at a 7176 * given level, the distribution of the larger parental protection 7177 * budget is NOT proportional. A cgroup's protection from a sibling 7178 * is capped to its own memory.min/low setting. 7179 * 7180 * 5. However, to allow protecting recursive subtrees from each other 7181 * without having to declare each individual cgroup's fixed share 7182 * of the ancestor's claim to protection, any unutilized - 7183 * "floating" - protection from up the tree is distributed in 7184 * proportion to each cgroup's *usage*. This makes the protection 7185 * neutral wrt sibling cgroups and lets them compete freely over 7186 * the shared parental protection budget, but it protects the 7187 * subtree as a whole from neighboring subtrees. 7188 * 7189 * Note that 4. and 5. are not in conflict: 4. is about protecting 7190 * against immediate siblings whereas 5. is about protecting against 7191 * neighboring subtrees. 7192 */ 7193 static unsigned long effective_protection(unsigned long usage, 7194 unsigned long parent_usage, 7195 unsigned long setting, 7196 unsigned long parent_effective, 7197 unsigned long siblings_protected) 7198 { 7199 unsigned long protected; 7200 unsigned long ep; 7201 7202 protected = min(usage, setting); 7203 /* 7204 * If all cgroups at this level combined claim and use more 7205 * protection than what the parent affords them, distribute 7206 * shares in proportion to utilization. 7207 * 7208 * We are using actual utilization rather than the statically 7209 * claimed protection in order to be work-conserving: claimed 7210 * but unused protection is available to siblings that would 7211 * otherwise get a smaller chunk than what they claimed. 7212 */ 7213 if (siblings_protected > parent_effective) 7214 return protected * parent_effective / siblings_protected; 7215 7216 /* 7217 * Ok, utilized protection of all children is within what the 7218 * parent affords them, so we know whatever this child claims 7219 * and utilizes is effectively protected. 7220 * 7221 * If there is unprotected usage beyond this value, reclaim 7222 * will apply pressure in proportion to that amount. 7223 * 7224 * If there is unutilized protection, the cgroup will be fully 7225 * shielded from reclaim, but we do return a smaller value for 7226 * protection than what the group could enjoy in theory. This 7227 * is okay. With the overcommit distribution above, effective 7228 * protection is always dependent on how memory is actually 7229 * consumed among the siblings anyway. 7230 */ 7231 ep = protected; 7232 7233 /* 7234 * If the children aren't claiming (all of) the protection 7235 * afforded to them by the parent, distribute the remainder in 7236 * proportion to the (unprotected) memory of each cgroup. That 7237 * way, cgroups that aren't explicitly prioritized wrt each 7238 * other compete freely over the allowance, but they are 7239 * collectively protected from neighboring trees. 7240 * 7241 * We're using unprotected memory for the weight so that if 7242 * some cgroups DO claim explicit protection, we don't protect 7243 * the same bytes twice. 7244 * 7245 * Check both usage and parent_usage against the respective 7246 * protected values. One should imply the other, but they 7247 * aren't read atomically - make sure the division is sane. 7248 */ 7249 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 7250 return ep; 7251 if (parent_effective > siblings_protected && 7252 parent_usage > siblings_protected && 7253 usage > protected) { 7254 unsigned long unclaimed; 7255 7256 unclaimed = parent_effective - siblings_protected; 7257 unclaimed *= usage - protected; 7258 unclaimed /= parent_usage - siblings_protected; 7259 7260 ep += unclaimed; 7261 } 7262 7263 return ep; 7264 } 7265 7266 /** 7267 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 7268 * @root: the top ancestor of the sub-tree being checked 7269 * @memcg: the memory cgroup to check 7270 * 7271 * WARNING: This function is not stateless! It can only be used as part 7272 * of a top-down tree iteration, not for isolated queries. 7273 */ 7274 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 7275 struct mem_cgroup *memcg) 7276 { 7277 unsigned long usage, parent_usage; 7278 struct mem_cgroup *parent; 7279 7280 if (mem_cgroup_disabled()) 7281 return; 7282 7283 if (!root) 7284 root = root_mem_cgroup; 7285 7286 /* 7287 * Effective values of the reclaim targets are ignored so they 7288 * can be stale. Have a look at mem_cgroup_protection for more 7289 * details. 7290 * TODO: calculation should be more robust so that we do not need 7291 * that special casing. 7292 */ 7293 if (memcg == root) 7294 return; 7295 7296 usage = page_counter_read(&memcg->memory); 7297 if (!usage) 7298 return; 7299 7300 parent = parent_mem_cgroup(memcg); 7301 7302 if (parent == root) { 7303 memcg->memory.emin = READ_ONCE(memcg->memory.min); 7304 memcg->memory.elow = READ_ONCE(memcg->memory.low); 7305 return; 7306 } 7307 7308 parent_usage = page_counter_read(&parent->memory); 7309 7310 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 7311 READ_ONCE(memcg->memory.min), 7312 READ_ONCE(parent->memory.emin), 7313 atomic_long_read(&parent->memory.children_min_usage))); 7314 7315 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 7316 READ_ONCE(memcg->memory.low), 7317 READ_ONCE(parent->memory.elow), 7318 atomic_long_read(&parent->memory.children_low_usage))); 7319 } 7320 7321 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 7322 gfp_t gfp) 7323 { 7324 int ret; 7325 7326 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 7327 if (ret) 7328 goto out; 7329 7330 mem_cgroup_commit_charge(folio, memcg); 7331 out: 7332 return ret; 7333 } 7334 7335 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 7336 { 7337 struct mem_cgroup *memcg; 7338 int ret; 7339 7340 memcg = get_mem_cgroup_from_mm(mm); 7341 ret = charge_memcg(folio, memcg, gfp); 7342 css_put(&memcg->css); 7343 7344 return ret; 7345 } 7346 7347 /** 7348 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio 7349 * @memcg: memcg to charge. 7350 * @gfp: reclaim mode. 7351 * @nr_pages: number of pages to charge. 7352 * 7353 * This function is called when allocating a huge page folio to determine if 7354 * the memcg has the capacity for it. It does not commit the charge yet, 7355 * as the hugetlb folio itself has not been obtained from the hugetlb pool. 7356 * 7357 * Once we have obtained the hugetlb folio, we can call 7358 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the 7359 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect 7360 * of try_charge(). 7361 * 7362 * Returns 0 on success. Otherwise, an error code is returned. 7363 */ 7364 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 7365 long nr_pages) 7366 { 7367 /* 7368 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, 7369 * but do not attempt to commit charge later (or cancel on error) either. 7370 */ 7371 if (mem_cgroup_disabled() || !memcg || 7372 !cgroup_subsys_on_dfl(memory_cgrp_subsys) || 7373 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) 7374 return -EOPNOTSUPP; 7375 7376 if (try_charge(memcg, gfp, nr_pages)) 7377 return -ENOMEM; 7378 7379 return 0; 7380 } 7381 7382 /** 7383 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 7384 * @folio: folio to charge. 7385 * @mm: mm context of the victim 7386 * @gfp: reclaim mode 7387 * @entry: swap entry for which the folio is allocated 7388 * 7389 * This function charges a folio allocated for swapin. Please call this before 7390 * adding the folio to the swapcache. 7391 * 7392 * Returns 0 on success. Otherwise, an error code is returned. 7393 */ 7394 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 7395 gfp_t gfp, swp_entry_t entry) 7396 { 7397 struct mem_cgroup *memcg; 7398 unsigned short id; 7399 int ret; 7400 7401 if (mem_cgroup_disabled()) 7402 return 0; 7403 7404 id = lookup_swap_cgroup_id(entry); 7405 rcu_read_lock(); 7406 memcg = mem_cgroup_from_id(id); 7407 if (!memcg || !css_tryget_online(&memcg->css)) 7408 memcg = get_mem_cgroup_from_mm(mm); 7409 rcu_read_unlock(); 7410 7411 ret = charge_memcg(folio, memcg, gfp); 7412 7413 css_put(&memcg->css); 7414 return ret; 7415 } 7416 7417 /* 7418 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 7419 * @entry: swap entry for which the page is charged 7420 * 7421 * Call this function after successfully adding the charged page to swapcache. 7422 * 7423 * Note: This function assumes the page for which swap slot is being uncharged 7424 * is order 0 page. 7425 */ 7426 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 7427 { 7428 /* 7429 * Cgroup1's unified memory+swap counter has been charged with the 7430 * new swapcache page, finish the transfer by uncharging the swap 7431 * slot. The swap slot would also get uncharged when it dies, but 7432 * it can stick around indefinitely and we'd count the page twice 7433 * the entire time. 7434 * 7435 * Cgroup2 has separate resource counters for memory and swap, 7436 * so this is a non-issue here. Memory and swap charge lifetimes 7437 * correspond 1:1 to page and swap slot lifetimes: we charge the 7438 * page to memory here, and uncharge swap when the slot is freed. 7439 */ 7440 if (!mem_cgroup_disabled() && do_memsw_account()) { 7441 /* 7442 * The swap entry might not get freed for a long time, 7443 * let's not wait for it. The page already received a 7444 * memory+swap charge, drop the swap entry duplicate. 7445 */ 7446 mem_cgroup_uncharge_swap(entry, 1); 7447 } 7448 } 7449 7450 struct uncharge_gather { 7451 struct mem_cgroup *memcg; 7452 unsigned long nr_memory; 7453 unsigned long pgpgout; 7454 unsigned long nr_kmem; 7455 int nid; 7456 }; 7457 7458 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 7459 { 7460 memset(ug, 0, sizeof(*ug)); 7461 } 7462 7463 static void uncharge_batch(const struct uncharge_gather *ug) 7464 { 7465 unsigned long flags; 7466 7467 if (ug->nr_memory) { 7468 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 7469 if (do_memsw_account()) 7470 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 7471 if (ug->nr_kmem) 7472 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 7473 memcg_oom_recover(ug->memcg); 7474 } 7475 7476 local_irq_save(flags); 7477 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 7478 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 7479 memcg_check_events(ug->memcg, ug->nid); 7480 local_irq_restore(flags); 7481 7482 /* drop reference from uncharge_folio */ 7483 css_put(&ug->memcg->css); 7484 } 7485 7486 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 7487 { 7488 long nr_pages; 7489 struct mem_cgroup *memcg; 7490 struct obj_cgroup *objcg; 7491 7492 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7493 VM_BUG_ON_FOLIO(folio_order(folio) > 1 && 7494 !folio_test_hugetlb(folio) && 7495 !list_empty(&folio->_deferred_list), folio); 7496 7497 /* 7498 * Nobody should be changing or seriously looking at 7499 * folio memcg or objcg at this point, we have fully 7500 * exclusive access to the folio. 7501 */ 7502 if (folio_memcg_kmem(folio)) { 7503 objcg = __folio_objcg(folio); 7504 /* 7505 * This get matches the put at the end of the function and 7506 * kmem pages do not hold memcg references anymore. 7507 */ 7508 memcg = get_mem_cgroup_from_objcg(objcg); 7509 } else { 7510 memcg = __folio_memcg(folio); 7511 } 7512 7513 if (!memcg) 7514 return; 7515 7516 if (ug->memcg != memcg) { 7517 if (ug->memcg) { 7518 uncharge_batch(ug); 7519 uncharge_gather_clear(ug); 7520 } 7521 ug->memcg = memcg; 7522 ug->nid = folio_nid(folio); 7523 7524 /* pairs with css_put in uncharge_batch */ 7525 css_get(&memcg->css); 7526 } 7527 7528 nr_pages = folio_nr_pages(folio); 7529 7530 if (folio_memcg_kmem(folio)) { 7531 ug->nr_memory += nr_pages; 7532 ug->nr_kmem += nr_pages; 7533 7534 folio->memcg_data = 0; 7535 obj_cgroup_put(objcg); 7536 } else { 7537 /* LRU pages aren't accounted at the root level */ 7538 if (!mem_cgroup_is_root(memcg)) 7539 ug->nr_memory += nr_pages; 7540 ug->pgpgout++; 7541 7542 folio->memcg_data = 0; 7543 } 7544 7545 css_put(&memcg->css); 7546 } 7547 7548 void __mem_cgroup_uncharge(struct folio *folio) 7549 { 7550 struct uncharge_gather ug; 7551 7552 /* Don't touch folio->lru of any random page, pre-check: */ 7553 if (!folio_memcg(folio)) 7554 return; 7555 7556 uncharge_gather_clear(&ug); 7557 uncharge_folio(folio, &ug); 7558 uncharge_batch(&ug); 7559 } 7560 7561 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 7562 { 7563 struct uncharge_gather ug; 7564 unsigned int i; 7565 7566 uncharge_gather_clear(&ug); 7567 for (i = 0; i < folios->nr; i++) 7568 uncharge_folio(folios->folios[i], &ug); 7569 if (ug.memcg) 7570 uncharge_batch(&ug); 7571 } 7572 7573 /** 7574 * mem_cgroup_replace_folio - Charge a folio's replacement. 7575 * @old: Currently circulating folio. 7576 * @new: Replacement folio. 7577 * 7578 * Charge @new as a replacement folio for @old. @old will 7579 * be uncharged upon free. This is only used by the page cache 7580 * (in replace_page_cache_folio()). 7581 * 7582 * Both folios must be locked, @new->mapping must be set up. 7583 */ 7584 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 7585 { 7586 struct mem_cgroup *memcg; 7587 long nr_pages = folio_nr_pages(new); 7588 unsigned long flags; 7589 7590 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7591 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7592 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7593 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7594 7595 if (mem_cgroup_disabled()) 7596 return; 7597 7598 /* Page cache replacement: new folio already charged? */ 7599 if (folio_memcg(new)) 7600 return; 7601 7602 memcg = folio_memcg(old); 7603 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7604 if (!memcg) 7605 return; 7606 7607 /* Force-charge the new page. The old one will be freed soon */ 7608 if (!mem_cgroup_is_root(memcg)) { 7609 page_counter_charge(&memcg->memory, nr_pages); 7610 if (do_memsw_account()) 7611 page_counter_charge(&memcg->memsw, nr_pages); 7612 } 7613 7614 css_get(&memcg->css); 7615 commit_charge(new, memcg); 7616 7617 local_irq_save(flags); 7618 mem_cgroup_charge_statistics(memcg, nr_pages); 7619 memcg_check_events(memcg, folio_nid(new)); 7620 local_irq_restore(flags); 7621 } 7622 7623 /** 7624 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 7625 * @old: Currently circulating folio. 7626 * @new: Replacement folio. 7627 * 7628 * Transfer the memcg data from the old folio to the new folio for migration. 7629 * The old folio's data info will be cleared. Note that the memory counters 7630 * will remain unchanged throughout the process. 7631 * 7632 * Both folios must be locked, @new->mapping must be set up. 7633 */ 7634 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7635 { 7636 struct mem_cgroup *memcg; 7637 7638 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7639 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7640 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7641 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 7642 7643 if (mem_cgroup_disabled()) 7644 return; 7645 7646 memcg = folio_memcg(old); 7647 /* 7648 * Note that it is normal to see !memcg for a hugetlb folio. 7649 * For e.g, itt could have been allocated when memory_hugetlb_accounting 7650 * was not selected. 7651 */ 7652 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 7653 if (!memcg) 7654 return; 7655 7656 /* Transfer the charge and the css ref */ 7657 commit_charge(new, memcg); 7658 /* 7659 * If the old folio is a large folio and is in the split queue, it needs 7660 * to be removed from the split queue now, in case getting an incorrect 7661 * split queue in destroy_large_folio() after the memcg of the old folio 7662 * is cleared. 7663 * 7664 * In addition, the old folio is about to be freed after migration, so 7665 * removing from the split queue a bit earlier seems reasonable. 7666 */ 7667 if (folio_test_large(old) && folio_test_large_rmappable(old)) 7668 folio_undo_large_rmappable(old); 7669 old->memcg_data = 0; 7670 } 7671 7672 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7673 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7674 7675 void mem_cgroup_sk_alloc(struct sock *sk) 7676 { 7677 struct mem_cgroup *memcg; 7678 7679 if (!mem_cgroup_sockets_enabled) 7680 return; 7681 7682 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7683 if (!in_task()) 7684 return; 7685 7686 rcu_read_lock(); 7687 memcg = mem_cgroup_from_task(current); 7688 if (mem_cgroup_is_root(memcg)) 7689 goto out; 7690 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7691 goto out; 7692 if (css_tryget(&memcg->css)) 7693 sk->sk_memcg = memcg; 7694 out: 7695 rcu_read_unlock(); 7696 } 7697 7698 void mem_cgroup_sk_free(struct sock *sk) 7699 { 7700 if (sk->sk_memcg) 7701 css_put(&sk->sk_memcg->css); 7702 } 7703 7704 /** 7705 * mem_cgroup_charge_skmem - charge socket memory 7706 * @memcg: memcg to charge 7707 * @nr_pages: number of pages to charge 7708 * @gfp_mask: reclaim mode 7709 * 7710 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7711 * @memcg's configured limit, %false if it doesn't. 7712 */ 7713 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7714 gfp_t gfp_mask) 7715 { 7716 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7717 struct page_counter *fail; 7718 7719 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7720 memcg->tcpmem_pressure = 0; 7721 return true; 7722 } 7723 memcg->tcpmem_pressure = 1; 7724 if (gfp_mask & __GFP_NOFAIL) { 7725 page_counter_charge(&memcg->tcpmem, nr_pages); 7726 return true; 7727 } 7728 return false; 7729 } 7730 7731 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7732 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7733 return true; 7734 } 7735 7736 return false; 7737 } 7738 7739 /** 7740 * mem_cgroup_uncharge_skmem - uncharge socket memory 7741 * @memcg: memcg to uncharge 7742 * @nr_pages: number of pages to uncharge 7743 */ 7744 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7745 { 7746 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7747 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7748 return; 7749 } 7750 7751 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7752 7753 refill_stock(memcg, nr_pages); 7754 } 7755 7756 static int __init cgroup_memory(char *s) 7757 { 7758 char *token; 7759 7760 while ((token = strsep(&s, ",")) != NULL) { 7761 if (!*token) 7762 continue; 7763 if (!strcmp(token, "nosocket")) 7764 cgroup_memory_nosocket = true; 7765 if (!strcmp(token, "nokmem")) 7766 cgroup_memory_nokmem = true; 7767 if (!strcmp(token, "nobpf")) 7768 cgroup_memory_nobpf = true; 7769 } 7770 return 1; 7771 } 7772 __setup("cgroup.memory=", cgroup_memory); 7773 7774 /* 7775 * subsys_initcall() for memory controller. 7776 * 7777 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7778 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7779 * basically everything that doesn't depend on a specific mem_cgroup structure 7780 * should be initialized from here. 7781 */ 7782 static int __init mem_cgroup_init(void) 7783 { 7784 int cpu, node; 7785 7786 /* 7787 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7788 * used for per-memcg-per-cpu caching of per-node statistics. In order 7789 * to work fine, we should make sure that the overfill threshold can't 7790 * exceed S32_MAX / PAGE_SIZE. 7791 */ 7792 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7793 7794 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7795 memcg_hotplug_cpu_dead); 7796 7797 for_each_possible_cpu(cpu) 7798 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7799 drain_local_stock); 7800 7801 for_each_node(node) { 7802 struct mem_cgroup_tree_per_node *rtpn; 7803 7804 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); 7805 7806 rtpn->rb_root = RB_ROOT; 7807 rtpn->rb_rightmost = NULL; 7808 spin_lock_init(&rtpn->lock); 7809 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7810 } 7811 7812 return 0; 7813 } 7814 subsys_initcall(mem_cgroup_init); 7815 7816 #ifdef CONFIG_SWAP 7817 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7818 { 7819 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7820 /* 7821 * The root cgroup cannot be destroyed, so it's refcount must 7822 * always be >= 1. 7823 */ 7824 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 7825 VM_BUG_ON(1); 7826 break; 7827 } 7828 memcg = parent_mem_cgroup(memcg); 7829 if (!memcg) 7830 memcg = root_mem_cgroup; 7831 } 7832 return memcg; 7833 } 7834 7835 /** 7836 * mem_cgroup_swapout - transfer a memsw charge to swap 7837 * @folio: folio whose memsw charge to transfer 7838 * @entry: swap entry to move the charge to 7839 * 7840 * Transfer the memsw charge of @folio to @entry. 7841 */ 7842 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7843 { 7844 struct mem_cgroup *memcg, *swap_memcg; 7845 unsigned int nr_entries; 7846 unsigned short oldid; 7847 7848 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7849 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7850 7851 if (mem_cgroup_disabled()) 7852 return; 7853 7854 if (!do_memsw_account()) 7855 return; 7856 7857 memcg = folio_memcg(folio); 7858 7859 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7860 if (!memcg) 7861 return; 7862 7863 /* 7864 * In case the memcg owning these pages has been offlined and doesn't 7865 * have an ID allocated to it anymore, charge the closest online 7866 * ancestor for the swap instead and transfer the memory+swap charge. 7867 */ 7868 swap_memcg = mem_cgroup_id_get_online(memcg); 7869 nr_entries = folio_nr_pages(folio); 7870 /* Get references for the tail pages, too */ 7871 if (nr_entries > 1) 7872 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7873 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7874 nr_entries); 7875 VM_BUG_ON_FOLIO(oldid, folio); 7876 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7877 7878 folio->memcg_data = 0; 7879 7880 if (!mem_cgroup_is_root(memcg)) 7881 page_counter_uncharge(&memcg->memory, nr_entries); 7882 7883 if (memcg != swap_memcg) { 7884 if (!mem_cgroup_is_root(swap_memcg)) 7885 page_counter_charge(&swap_memcg->memsw, nr_entries); 7886 page_counter_uncharge(&memcg->memsw, nr_entries); 7887 } 7888 7889 /* 7890 * Interrupts should be disabled here because the caller holds the 7891 * i_pages lock which is taken with interrupts-off. It is 7892 * important here to have the interrupts disabled because it is the 7893 * only synchronisation we have for updating the per-CPU variables. 7894 */ 7895 memcg_stats_lock(); 7896 mem_cgroup_charge_statistics(memcg, -nr_entries); 7897 memcg_stats_unlock(); 7898 memcg_check_events(memcg, folio_nid(folio)); 7899 7900 css_put(&memcg->css); 7901 } 7902 7903 /** 7904 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7905 * @folio: folio being added to swap 7906 * @entry: swap entry to charge 7907 * 7908 * Try to charge @folio's memcg for the swap space at @entry. 7909 * 7910 * Returns 0 on success, -ENOMEM on failure. 7911 */ 7912 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7913 { 7914 unsigned int nr_pages = folio_nr_pages(folio); 7915 struct page_counter *counter; 7916 struct mem_cgroup *memcg; 7917 unsigned short oldid; 7918 7919 if (do_memsw_account()) 7920 return 0; 7921 7922 memcg = folio_memcg(folio); 7923 7924 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7925 if (!memcg) 7926 return 0; 7927 7928 if (!entry.val) { 7929 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7930 return 0; 7931 } 7932 7933 memcg = mem_cgroup_id_get_online(memcg); 7934 7935 if (!mem_cgroup_is_root(memcg) && 7936 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7937 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7938 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7939 mem_cgroup_id_put(memcg); 7940 return -ENOMEM; 7941 } 7942 7943 /* Get references for the tail pages, too */ 7944 if (nr_pages > 1) 7945 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7946 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7947 VM_BUG_ON_FOLIO(oldid, folio); 7948 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7949 7950 return 0; 7951 } 7952 7953 /** 7954 * __mem_cgroup_uncharge_swap - uncharge swap space 7955 * @entry: swap entry to uncharge 7956 * @nr_pages: the amount of swap space to uncharge 7957 */ 7958 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7959 { 7960 struct mem_cgroup *memcg; 7961 unsigned short id; 7962 7963 id = swap_cgroup_record(entry, 0, nr_pages); 7964 rcu_read_lock(); 7965 memcg = mem_cgroup_from_id(id); 7966 if (memcg) { 7967 if (!mem_cgroup_is_root(memcg)) { 7968 if (do_memsw_account()) 7969 page_counter_uncharge(&memcg->memsw, nr_pages); 7970 else 7971 page_counter_uncharge(&memcg->swap, nr_pages); 7972 } 7973 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7974 mem_cgroup_id_put_many(memcg, nr_pages); 7975 } 7976 rcu_read_unlock(); 7977 } 7978 7979 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7980 { 7981 long nr_swap_pages = get_nr_swap_pages(); 7982 7983 if (mem_cgroup_disabled() || do_memsw_account()) 7984 return nr_swap_pages; 7985 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 7986 nr_swap_pages = min_t(long, nr_swap_pages, 7987 READ_ONCE(memcg->swap.max) - 7988 page_counter_read(&memcg->swap)); 7989 return nr_swap_pages; 7990 } 7991 7992 bool mem_cgroup_swap_full(struct folio *folio) 7993 { 7994 struct mem_cgroup *memcg; 7995 7996 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 7997 7998 if (vm_swap_full()) 7999 return true; 8000 if (do_memsw_account()) 8001 return false; 8002 8003 memcg = folio_memcg(folio); 8004 if (!memcg) 8005 return false; 8006 8007 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 8008 unsigned long usage = page_counter_read(&memcg->swap); 8009 8010 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 8011 usage * 2 >= READ_ONCE(memcg->swap.max)) 8012 return true; 8013 } 8014 8015 return false; 8016 } 8017 8018 static int __init setup_swap_account(char *s) 8019 { 8020 bool res; 8021 8022 if (!kstrtobool(s, &res) && !res) 8023 pr_warn_once("The swapaccount=0 commandline option is deprecated " 8024 "in favor of configuring swap control via cgroupfs. " 8025 "Please report your usecase to linux-mm@kvack.org if you " 8026 "depend on this functionality.\n"); 8027 return 1; 8028 } 8029 __setup("swapaccount=", setup_swap_account); 8030 8031 static u64 swap_current_read(struct cgroup_subsys_state *css, 8032 struct cftype *cft) 8033 { 8034 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 8035 8036 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 8037 } 8038 8039 static u64 swap_peak_read(struct cgroup_subsys_state *css, 8040 struct cftype *cft) 8041 { 8042 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 8043 8044 return (u64)memcg->swap.watermark * PAGE_SIZE; 8045 } 8046 8047 static int swap_high_show(struct seq_file *m, void *v) 8048 { 8049 return seq_puts_memcg_tunable(m, 8050 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 8051 } 8052 8053 static ssize_t swap_high_write(struct kernfs_open_file *of, 8054 char *buf, size_t nbytes, loff_t off) 8055 { 8056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8057 unsigned long high; 8058 int err; 8059 8060 buf = strstrip(buf); 8061 err = page_counter_memparse(buf, "max", &high); 8062 if (err) 8063 return err; 8064 8065 page_counter_set_high(&memcg->swap, high); 8066 8067 return nbytes; 8068 } 8069 8070 static int swap_max_show(struct seq_file *m, void *v) 8071 { 8072 return seq_puts_memcg_tunable(m, 8073 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 8074 } 8075 8076 static ssize_t swap_max_write(struct kernfs_open_file *of, 8077 char *buf, size_t nbytes, loff_t off) 8078 { 8079 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8080 unsigned long max; 8081 int err; 8082 8083 buf = strstrip(buf); 8084 err = page_counter_memparse(buf, "max", &max); 8085 if (err) 8086 return err; 8087 8088 xchg(&memcg->swap.max, max); 8089 8090 return nbytes; 8091 } 8092 8093 static int swap_events_show(struct seq_file *m, void *v) 8094 { 8095 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 8096 8097 seq_printf(m, "high %lu\n", 8098 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 8099 seq_printf(m, "max %lu\n", 8100 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 8101 seq_printf(m, "fail %lu\n", 8102 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 8103 8104 return 0; 8105 } 8106 8107 static struct cftype swap_files[] = { 8108 { 8109 .name = "swap.current", 8110 .flags = CFTYPE_NOT_ON_ROOT, 8111 .read_u64 = swap_current_read, 8112 }, 8113 { 8114 .name = "swap.high", 8115 .flags = CFTYPE_NOT_ON_ROOT, 8116 .seq_show = swap_high_show, 8117 .write = swap_high_write, 8118 }, 8119 { 8120 .name = "swap.max", 8121 .flags = CFTYPE_NOT_ON_ROOT, 8122 .seq_show = swap_max_show, 8123 .write = swap_max_write, 8124 }, 8125 { 8126 .name = "swap.peak", 8127 .flags = CFTYPE_NOT_ON_ROOT, 8128 .read_u64 = swap_peak_read, 8129 }, 8130 { 8131 .name = "swap.events", 8132 .flags = CFTYPE_NOT_ON_ROOT, 8133 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 8134 .seq_show = swap_events_show, 8135 }, 8136 { } /* terminate */ 8137 }; 8138 8139 static struct cftype memsw_files[] = { 8140 { 8141 .name = "memsw.usage_in_bytes", 8142 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 8143 .read_u64 = mem_cgroup_read_u64, 8144 }, 8145 { 8146 .name = "memsw.max_usage_in_bytes", 8147 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 8148 .write = mem_cgroup_reset, 8149 .read_u64 = mem_cgroup_read_u64, 8150 }, 8151 { 8152 .name = "memsw.limit_in_bytes", 8153 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 8154 .write = mem_cgroup_write, 8155 .read_u64 = mem_cgroup_read_u64, 8156 }, 8157 { 8158 .name = "memsw.failcnt", 8159 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 8160 .write = mem_cgroup_reset, 8161 .read_u64 = mem_cgroup_read_u64, 8162 }, 8163 { }, /* terminate */ 8164 }; 8165 8166 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 8167 /** 8168 * obj_cgroup_may_zswap - check if this cgroup can zswap 8169 * @objcg: the object cgroup 8170 * 8171 * Check if the hierarchical zswap limit has been reached. 8172 * 8173 * This doesn't check for specific headroom, and it is not atomic 8174 * either. But with zswap, the size of the allocation is only known 8175 * once compression has occurred, and this optimistic pre-check avoids 8176 * spending cycles on compression when there is already no room left 8177 * or zswap is disabled altogether somewhere in the hierarchy. 8178 */ 8179 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 8180 { 8181 struct mem_cgroup *memcg, *original_memcg; 8182 bool ret = true; 8183 8184 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8185 return true; 8186 8187 original_memcg = get_mem_cgroup_from_objcg(objcg); 8188 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 8189 memcg = parent_mem_cgroup(memcg)) { 8190 unsigned long max = READ_ONCE(memcg->zswap_max); 8191 unsigned long pages; 8192 8193 if (max == PAGE_COUNTER_MAX) 8194 continue; 8195 if (max == 0) { 8196 ret = false; 8197 break; 8198 } 8199 8200 /* 8201 * mem_cgroup_flush_stats() ignores small changes. Use 8202 * do_flush_stats() directly to get accurate stats for charging. 8203 */ 8204 do_flush_stats(memcg); 8205 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 8206 if (pages < max) 8207 continue; 8208 ret = false; 8209 break; 8210 } 8211 mem_cgroup_put(original_memcg); 8212 return ret; 8213 } 8214 8215 /** 8216 * obj_cgroup_charge_zswap - charge compression backend memory 8217 * @objcg: the object cgroup 8218 * @size: size of compressed object 8219 * 8220 * This forces the charge after obj_cgroup_may_zswap() allowed 8221 * compression and storage in zwap for this cgroup to go ahead. 8222 */ 8223 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 8224 { 8225 struct mem_cgroup *memcg; 8226 8227 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8228 return; 8229 8230 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 8231 8232 /* PF_MEMALLOC context, charging must succeed */ 8233 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 8234 VM_WARN_ON_ONCE(1); 8235 8236 rcu_read_lock(); 8237 memcg = obj_cgroup_memcg(objcg); 8238 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 8239 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 8240 rcu_read_unlock(); 8241 } 8242 8243 /** 8244 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 8245 * @objcg: the object cgroup 8246 * @size: size of compressed object 8247 * 8248 * Uncharges zswap memory on page in. 8249 */ 8250 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 8251 { 8252 struct mem_cgroup *memcg; 8253 8254 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8255 return; 8256 8257 obj_cgroup_uncharge(objcg, size); 8258 8259 rcu_read_lock(); 8260 memcg = obj_cgroup_memcg(objcg); 8261 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 8262 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 8263 rcu_read_unlock(); 8264 } 8265 8266 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 8267 { 8268 /* if zswap is disabled, do not block pages going to the swapping device */ 8269 return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback); 8270 } 8271 8272 static u64 zswap_current_read(struct cgroup_subsys_state *css, 8273 struct cftype *cft) 8274 { 8275 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 8276 8277 mem_cgroup_flush_stats(memcg); 8278 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 8279 } 8280 8281 static int zswap_max_show(struct seq_file *m, void *v) 8282 { 8283 return seq_puts_memcg_tunable(m, 8284 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 8285 } 8286 8287 static ssize_t zswap_max_write(struct kernfs_open_file *of, 8288 char *buf, size_t nbytes, loff_t off) 8289 { 8290 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8291 unsigned long max; 8292 int err; 8293 8294 buf = strstrip(buf); 8295 err = page_counter_memparse(buf, "max", &max); 8296 if (err) 8297 return err; 8298 8299 xchg(&memcg->zswap_max, max); 8300 8301 return nbytes; 8302 } 8303 8304 static int zswap_writeback_show(struct seq_file *m, void *v) 8305 { 8306 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 8307 8308 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 8309 return 0; 8310 } 8311 8312 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 8313 char *buf, size_t nbytes, loff_t off) 8314 { 8315 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8316 int zswap_writeback; 8317 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 8318 8319 if (parse_ret) 8320 return parse_ret; 8321 8322 if (zswap_writeback != 0 && zswap_writeback != 1) 8323 return -EINVAL; 8324 8325 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 8326 return nbytes; 8327 } 8328 8329 static struct cftype zswap_files[] = { 8330 { 8331 .name = "zswap.current", 8332 .flags = CFTYPE_NOT_ON_ROOT, 8333 .read_u64 = zswap_current_read, 8334 }, 8335 { 8336 .name = "zswap.max", 8337 .flags = CFTYPE_NOT_ON_ROOT, 8338 .seq_show = zswap_max_show, 8339 .write = zswap_max_write, 8340 }, 8341 { 8342 .name = "zswap.writeback", 8343 .seq_show = zswap_writeback_show, 8344 .write = zswap_writeback_write, 8345 }, 8346 { } /* terminate */ 8347 }; 8348 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 8349 8350 static int __init mem_cgroup_swap_init(void) 8351 { 8352 if (mem_cgroup_disabled()) 8353 return 0; 8354 8355 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 8356 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 8357 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 8358 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 8359 #endif 8360 return 0; 8361 } 8362 subsys_initcall(mem_cgroup_swap_init); 8363 8364 #endif /* CONFIG_SWAP */ 8365