xref: /linux/mm/memcontrol.c (revision 303f8e2d02002dbe331cab7813ee091aead3cd39)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76 
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78 
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82 
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85 
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem __ro_after_init;
88 
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap		1
94 #endif
95 
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99 
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105 
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
108 
109 /*
110  * Cgroups above their limits are maintained in a RB-Tree, independent of
111  * their hierarchy representation
112  */
113 
114 struct mem_cgroup_tree_per_node {
115 	struct rb_root rb_root;
116 	struct rb_node *rb_rightmost;
117 	spinlock_t lock;
118 };
119 
120 struct mem_cgroup_tree {
121 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 };
123 
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125 
126 /* for OOM */
127 struct mem_cgroup_eventfd_list {
128 	struct list_head list;
129 	struct eventfd_ctx *eventfd;
130 };
131 
132 /*
133  * cgroup_event represents events which userspace want to receive.
134  */
135 struct mem_cgroup_event {
136 	/*
137 	 * memcg which the event belongs to.
138 	 */
139 	struct mem_cgroup *memcg;
140 	/*
141 	 * eventfd to signal userspace about the event.
142 	 */
143 	struct eventfd_ctx *eventfd;
144 	/*
145 	 * Each of these stored in a list by the cgroup.
146 	 */
147 	struct list_head list;
148 	/*
149 	 * register_event() callback will be used to add new userspace
150 	 * waiter for changes related to this event.  Use eventfd_signal()
151 	 * on eventfd to send notification to userspace.
152 	 */
153 	int (*register_event)(struct mem_cgroup *memcg,
154 			      struct eventfd_ctx *eventfd, const char *args);
155 	/*
156 	 * unregister_event() callback will be called when userspace closes
157 	 * the eventfd or on cgroup removing.  This callback must be set,
158 	 * if you want provide notification functionality.
159 	 */
160 	void (*unregister_event)(struct mem_cgroup *memcg,
161 				 struct eventfd_ctx *eventfd);
162 	/*
163 	 * All fields below needed to unregister event when
164 	 * userspace closes eventfd.
165 	 */
166 	poll_table pt;
167 	wait_queue_head_t *wqh;
168 	wait_queue_entry_t wait;
169 	struct work_struct remove;
170 };
171 
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174 
175 /* Stuffs for move charges at task migration. */
176 /*
177  * Types of charges to be moved.
178  */
179 #define MOVE_ANON	0x1U
180 #define MOVE_FILE	0x2U
181 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
182 
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 	spinlock_t	  lock; /* for from, to */
186 	struct mm_struct  *mm;
187 	struct mem_cgroup *from;
188 	struct mem_cgroup *to;
189 	unsigned long flags;
190 	unsigned long precharge;
191 	unsigned long moved_charge;
192 	unsigned long moved_swap;
193 	struct task_struct *moving_task;	/* a task moving charges */
194 	wait_queue_head_t waitq;		/* a waitq for other context */
195 } mc = {
196 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198 };
199 
200 /*
201  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202  * limit reclaim to prevent infinite loops, if they ever occur.
203  */
204 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
205 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
206 
207 /* for encoding cft->private value on file */
208 enum res_type {
209 	_MEM,
210 	_MEMSWAP,
211 	_OOM_TYPE,
212 	_KMEM,
213 	_TCP,
214 };
215 
216 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
217 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val)	((val) & 0xffff)
219 /* Used for OOM notifier */
220 #define OOM_CONTROL		(0)
221 
222 /*
223  * Iteration constructs for visiting all cgroups (under a tree).  If
224  * loops are exited prematurely (break), mem_cgroup_iter_break() must
225  * be used for reference counting.
226  */
227 #define for_each_mem_cgroup_tree(iter, root)		\
228 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
229 	     iter != NULL;				\
230 	     iter = mem_cgroup_iter(root, iter, NULL))
231 
232 #define for_each_mem_cgroup(iter)			\
233 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
234 	     iter != NULL;				\
235 	     iter = mem_cgroup_iter(NULL, iter, NULL))
236 
237 static inline bool task_is_dying(void)
238 {
239 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 		(current->flags & PF_EXITING);
241 }
242 
243 /* Some nice accessors for the vmpressure. */
244 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245 {
246 	if (!memcg)
247 		memcg = root_mem_cgroup;
248 	return &memcg->vmpressure;
249 }
250 
251 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
252 {
253 	return container_of(vmpr, struct mem_cgroup, vmpressure);
254 }
255 
256 #ifdef CONFIG_MEMCG_KMEM
257 extern spinlock_t css_set_lock;
258 
259 bool mem_cgroup_kmem_disabled(void)
260 {
261 	return cgroup_memory_nokmem;
262 }
263 
264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 				      unsigned int nr_pages);
266 
267 static void obj_cgroup_release(struct percpu_ref *ref)
268 {
269 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 	unsigned int nr_bytes;
271 	unsigned int nr_pages;
272 	unsigned long flags;
273 
274 	/*
275 	 * At this point all allocated objects are freed, and
276 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 	 *
279 	 * The following sequence can lead to it:
280 	 * 1) CPU0: objcg == stock->cached_objcg
281 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 	 *          PAGE_SIZE bytes are charged
283 	 * 3) CPU1: a process from another memcg is allocating something,
284 	 *          the stock if flushed,
285 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
286 	 * 5) CPU0: we do release this object,
287 	 *          92 bytes are added to stock->nr_bytes
288 	 * 6) CPU0: stock is flushed,
289 	 *          92 bytes are added to objcg->nr_charged_bytes
290 	 *
291 	 * In the result, nr_charged_bytes == PAGE_SIZE.
292 	 * This page will be uncharged in obj_cgroup_release().
293 	 */
294 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 	nr_pages = nr_bytes >> PAGE_SHIFT;
297 
298 	if (nr_pages)
299 		obj_cgroup_uncharge_pages(objcg, nr_pages);
300 
301 	spin_lock_irqsave(&css_set_lock, flags);
302 	list_del(&objcg->list);
303 	spin_unlock_irqrestore(&css_set_lock, flags);
304 
305 	percpu_ref_exit(ref);
306 	kfree_rcu(objcg, rcu);
307 }
308 
309 static struct obj_cgroup *obj_cgroup_alloc(void)
310 {
311 	struct obj_cgroup *objcg;
312 	int ret;
313 
314 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 	if (!objcg)
316 		return NULL;
317 
318 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 			      GFP_KERNEL);
320 	if (ret) {
321 		kfree(objcg);
322 		return NULL;
323 	}
324 	INIT_LIST_HEAD(&objcg->list);
325 	return objcg;
326 }
327 
328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 				  struct mem_cgroup *parent)
330 {
331 	struct obj_cgroup *objcg, *iter;
332 
333 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334 
335 	spin_lock_irq(&css_set_lock);
336 
337 	/* 1) Ready to reparent active objcg. */
338 	list_add(&objcg->list, &memcg->objcg_list);
339 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
340 	list_for_each_entry(iter, &memcg->objcg_list, list)
341 		WRITE_ONCE(iter->memcg, parent);
342 	/* 3) Move already reparented objcgs to the parent's list */
343 	list_splice(&memcg->objcg_list, &parent->objcg_list);
344 
345 	spin_unlock_irq(&css_set_lock);
346 
347 	percpu_ref_kill(&objcg->refcnt);
348 }
349 
350 /*
351  * This will be used as a shrinker list's index.
352  * The main reason for not using cgroup id for this:
353  *  this works better in sparse environments, where we have a lot of memcgs,
354  *  but only a few kmem-limited. Or also, if we have, for instance, 200
355  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
356  *  200 entry array for that.
357  *
358  * The current size of the caches array is stored in memcg_nr_cache_ids. It
359  * will double each time we have to increase it.
360  */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363 
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366 
367 void memcg_get_cache_ids(void)
368 {
369 	down_read(&memcg_cache_ids_sem);
370 }
371 
372 void memcg_put_cache_ids(void)
373 {
374 	up_read(&memcg_cache_ids_sem);
375 }
376 
377 /*
378  * MIN_SIZE is different than 1, because we would like to avoid going through
379  * the alloc/free process all the time. In a small machine, 4 kmem-limited
380  * cgroups is a reasonable guess. In the future, it could be a parameter or
381  * tunable, but that is strictly not necessary.
382  *
383  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384  * this constant directly from cgroup, but it is understandable that this is
385  * better kept as an internal representation in cgroup.c. In any case, the
386  * cgrp_id space is not getting any smaller, and we don't have to necessarily
387  * increase ours as well if it increases.
388  */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391 
392 /*
393  * A lot of the calls to the cache allocation functions are expected to be
394  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395  * conditional to this static branch, we'll have to allow modules that does
396  * kmem_cache_alloc and the such to see this symbol as well
397  */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401 
402 /**
403  * mem_cgroup_css_from_page - css of the memcg associated with a page
404  * @page: page of interest
405  *
406  * If memcg is bound to the default hierarchy, css of the memcg associated
407  * with @page is returned.  The returned css remains associated with @page
408  * until it is released.
409  *
410  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411  * is returned.
412  */
413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414 {
415 	struct mem_cgroup *memcg;
416 
417 	memcg = page_memcg(page);
418 
419 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 		memcg = root_mem_cgroup;
421 
422 	return &memcg->css;
423 }
424 
425 /**
426  * page_cgroup_ino - return inode number of the memcg a page is charged to
427  * @page: the page
428  *
429  * Look up the closest online ancestor of the memory cgroup @page is charged to
430  * and return its inode number or 0 if @page is not charged to any cgroup. It
431  * is safe to call this function without holding a reference to @page.
432  *
433  * Note, this function is inherently racy, because there is nothing to prevent
434  * the cgroup inode from getting torn down and potentially reallocated a moment
435  * after page_cgroup_ino() returns, so it only should be used by callers that
436  * do not care (such as procfs interfaces).
437  */
438 ino_t page_cgroup_ino(struct page *page)
439 {
440 	struct mem_cgroup *memcg;
441 	unsigned long ino = 0;
442 
443 	rcu_read_lock();
444 	memcg = page_memcg_check(page);
445 
446 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 		memcg = parent_mem_cgroup(memcg);
448 	if (memcg)
449 		ino = cgroup_ino(memcg->css.cgroup);
450 	rcu_read_unlock();
451 	return ino;
452 }
453 
454 static struct mem_cgroup_per_node *
455 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
456 {
457 	int nid = page_to_nid(page);
458 
459 	return memcg->nodeinfo[nid];
460 }
461 
462 static struct mem_cgroup_tree_per_node *
463 soft_limit_tree_node(int nid)
464 {
465 	return soft_limit_tree.rb_tree_per_node[nid];
466 }
467 
468 static struct mem_cgroup_tree_per_node *
469 soft_limit_tree_from_page(struct page *page)
470 {
471 	int nid = page_to_nid(page);
472 
473 	return soft_limit_tree.rb_tree_per_node[nid];
474 }
475 
476 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
477 					 struct mem_cgroup_tree_per_node *mctz,
478 					 unsigned long new_usage_in_excess)
479 {
480 	struct rb_node **p = &mctz->rb_root.rb_node;
481 	struct rb_node *parent = NULL;
482 	struct mem_cgroup_per_node *mz_node;
483 	bool rightmost = true;
484 
485 	if (mz->on_tree)
486 		return;
487 
488 	mz->usage_in_excess = new_usage_in_excess;
489 	if (!mz->usage_in_excess)
490 		return;
491 	while (*p) {
492 		parent = *p;
493 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
494 					tree_node);
495 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
496 			p = &(*p)->rb_left;
497 			rightmost = false;
498 		} else {
499 			p = &(*p)->rb_right;
500 		}
501 	}
502 
503 	if (rightmost)
504 		mctz->rb_rightmost = &mz->tree_node;
505 
506 	rb_link_node(&mz->tree_node, parent, p);
507 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
508 	mz->on_tree = true;
509 }
510 
511 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
512 					 struct mem_cgroup_tree_per_node *mctz)
513 {
514 	if (!mz->on_tree)
515 		return;
516 
517 	if (&mz->tree_node == mctz->rb_rightmost)
518 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
519 
520 	rb_erase(&mz->tree_node, &mctz->rb_root);
521 	mz->on_tree = false;
522 }
523 
524 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
525 				       struct mem_cgroup_tree_per_node *mctz)
526 {
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&mctz->lock, flags);
530 	__mem_cgroup_remove_exceeded(mz, mctz);
531 	spin_unlock_irqrestore(&mctz->lock, flags);
532 }
533 
534 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
535 {
536 	unsigned long nr_pages = page_counter_read(&memcg->memory);
537 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
538 	unsigned long excess = 0;
539 
540 	if (nr_pages > soft_limit)
541 		excess = nr_pages - soft_limit;
542 
543 	return excess;
544 }
545 
546 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
547 {
548 	unsigned long excess;
549 	struct mem_cgroup_per_node *mz;
550 	struct mem_cgroup_tree_per_node *mctz;
551 
552 	mctz = soft_limit_tree_from_page(page);
553 	if (!mctz)
554 		return;
555 	/*
556 	 * Necessary to update all ancestors when hierarchy is used.
557 	 * because their event counter is not touched.
558 	 */
559 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
560 		mz = mem_cgroup_page_nodeinfo(memcg, page);
561 		excess = soft_limit_excess(memcg);
562 		/*
563 		 * We have to update the tree if mz is on RB-tree or
564 		 * mem is over its softlimit.
565 		 */
566 		if (excess || mz->on_tree) {
567 			unsigned long flags;
568 
569 			spin_lock_irqsave(&mctz->lock, flags);
570 			/* if on-tree, remove it */
571 			if (mz->on_tree)
572 				__mem_cgroup_remove_exceeded(mz, mctz);
573 			/*
574 			 * Insert again. mz->usage_in_excess will be updated.
575 			 * If excess is 0, no tree ops.
576 			 */
577 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
578 			spin_unlock_irqrestore(&mctz->lock, flags);
579 		}
580 	}
581 }
582 
583 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584 {
585 	struct mem_cgroup_tree_per_node *mctz;
586 	struct mem_cgroup_per_node *mz;
587 	int nid;
588 
589 	for_each_node(nid) {
590 		mz = memcg->nodeinfo[nid];
591 		mctz = soft_limit_tree_node(nid);
592 		if (mctz)
593 			mem_cgroup_remove_exceeded(mz, mctz);
594 	}
595 }
596 
597 static struct mem_cgroup_per_node *
598 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
599 {
600 	struct mem_cgroup_per_node *mz;
601 
602 retry:
603 	mz = NULL;
604 	if (!mctz->rb_rightmost)
605 		goto done;		/* Nothing to reclaim from */
606 
607 	mz = rb_entry(mctz->rb_rightmost,
608 		      struct mem_cgroup_per_node, tree_node);
609 	/*
610 	 * Remove the node now but someone else can add it back,
611 	 * we will to add it back at the end of reclaim to its correct
612 	 * position in the tree.
613 	 */
614 	__mem_cgroup_remove_exceeded(mz, mctz);
615 	if (!soft_limit_excess(mz->memcg) ||
616 	    !css_tryget(&mz->memcg->css))
617 		goto retry;
618 done:
619 	return mz;
620 }
621 
622 static struct mem_cgroup_per_node *
623 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
624 {
625 	struct mem_cgroup_per_node *mz;
626 
627 	spin_lock_irq(&mctz->lock);
628 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
629 	spin_unlock_irq(&mctz->lock);
630 	return mz;
631 }
632 
633 /*
634  * memcg and lruvec stats flushing
635  *
636  * Many codepaths leading to stats update or read are performance sensitive and
637  * adding stats flushing in such codepaths is not desirable. So, to optimize the
638  * flushing the kernel does:
639  *
640  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
641  *    rstat update tree grow unbounded.
642  *
643  * 2) Flush the stats synchronously on reader side only when there are more than
644  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
645  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
646  *    only for 2 seconds due to (1).
647  */
648 static void flush_memcg_stats_dwork(struct work_struct *w);
649 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
650 static DEFINE_SPINLOCK(stats_flush_lock);
651 static DEFINE_PER_CPU(unsigned int, stats_updates);
652 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
653 
654 static inline void memcg_rstat_updated(struct mem_cgroup *memcg)
655 {
656 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
657 	if (!(__this_cpu_inc_return(stats_updates) % MEMCG_CHARGE_BATCH))
658 		atomic_inc(&stats_flush_threshold);
659 }
660 
661 static void __mem_cgroup_flush_stats(void)
662 {
663 	unsigned long flag;
664 
665 	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
666 		return;
667 
668 	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
669 	atomic_set(&stats_flush_threshold, 0);
670 	spin_unlock_irqrestore(&stats_flush_lock, flag);
671 }
672 
673 void mem_cgroup_flush_stats(void)
674 {
675 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
676 		__mem_cgroup_flush_stats();
677 }
678 
679 static void flush_memcg_stats_dwork(struct work_struct *w)
680 {
681 	mem_cgroup_flush_stats();
682 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
683 }
684 
685 /**
686  * __mod_memcg_state - update cgroup memory statistics
687  * @memcg: the memory cgroup
688  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689  * @val: delta to add to the counter, can be negative
690  */
691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692 {
693 	if (mem_cgroup_disabled())
694 		return;
695 
696 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
697 	memcg_rstat_updated(memcg);
698 }
699 
700 /* idx can be of type enum memcg_stat_item or node_stat_item. */
701 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
702 {
703 	long x = 0;
704 	int cpu;
705 
706 	for_each_possible_cpu(cpu)
707 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
708 #ifdef CONFIG_SMP
709 	if (x < 0)
710 		x = 0;
711 #endif
712 	return x;
713 }
714 
715 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
716 			      int val)
717 {
718 	struct mem_cgroup_per_node *pn;
719 	struct mem_cgroup *memcg;
720 
721 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
722 	memcg = pn->memcg;
723 
724 	/* Update memcg */
725 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
726 
727 	/* Update lruvec */
728 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
729 
730 	memcg_rstat_updated(memcg);
731 }
732 
733 /**
734  * __mod_lruvec_state - update lruvec memory statistics
735  * @lruvec: the lruvec
736  * @idx: the stat item
737  * @val: delta to add to the counter, can be negative
738  *
739  * The lruvec is the intersection of the NUMA node and a cgroup. This
740  * function updates the all three counters that are affected by a
741  * change of state at this level: per-node, per-cgroup, per-lruvec.
742  */
743 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
744 			int val)
745 {
746 	/* Update node */
747 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
748 
749 	/* Update memcg and lruvec */
750 	if (!mem_cgroup_disabled())
751 		__mod_memcg_lruvec_state(lruvec, idx, val);
752 }
753 
754 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
755 			     int val)
756 {
757 	struct page *head = compound_head(page); /* rmap on tail pages */
758 	struct mem_cgroup *memcg;
759 	pg_data_t *pgdat = page_pgdat(page);
760 	struct lruvec *lruvec;
761 
762 	rcu_read_lock();
763 	memcg = page_memcg(head);
764 	/* Untracked pages have no memcg, no lruvec. Update only the node */
765 	if (!memcg) {
766 		rcu_read_unlock();
767 		__mod_node_page_state(pgdat, idx, val);
768 		return;
769 	}
770 
771 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
772 	__mod_lruvec_state(lruvec, idx, val);
773 	rcu_read_unlock();
774 }
775 EXPORT_SYMBOL(__mod_lruvec_page_state);
776 
777 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
778 {
779 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
780 	struct mem_cgroup *memcg;
781 	struct lruvec *lruvec;
782 
783 	rcu_read_lock();
784 	memcg = mem_cgroup_from_obj(p);
785 
786 	/*
787 	 * Untracked pages have no memcg, no lruvec. Update only the
788 	 * node. If we reparent the slab objects to the root memcg,
789 	 * when we free the slab object, we need to update the per-memcg
790 	 * vmstats to keep it correct for the root memcg.
791 	 */
792 	if (!memcg) {
793 		__mod_node_page_state(pgdat, idx, val);
794 	} else {
795 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
796 		__mod_lruvec_state(lruvec, idx, val);
797 	}
798 	rcu_read_unlock();
799 }
800 
801 /*
802  * mod_objcg_mlstate() may be called with irq enabled, so
803  * mod_memcg_lruvec_state() should be used.
804  */
805 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
806 				     struct pglist_data *pgdat,
807 				     enum node_stat_item idx, int nr)
808 {
809 	struct mem_cgroup *memcg;
810 	struct lruvec *lruvec;
811 
812 	rcu_read_lock();
813 	memcg = obj_cgroup_memcg(objcg);
814 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
815 	mod_memcg_lruvec_state(lruvec, idx, nr);
816 	rcu_read_unlock();
817 }
818 
819 /**
820  * __count_memcg_events - account VM events in a cgroup
821  * @memcg: the memory cgroup
822  * @idx: the event item
823  * @count: the number of events that occurred
824  */
825 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
826 			  unsigned long count)
827 {
828 	if (mem_cgroup_disabled())
829 		return;
830 
831 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
832 	memcg_rstat_updated(memcg);
833 }
834 
835 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
836 {
837 	return READ_ONCE(memcg->vmstats.events[event]);
838 }
839 
840 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
841 {
842 	long x = 0;
843 	int cpu;
844 
845 	for_each_possible_cpu(cpu)
846 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
847 	return x;
848 }
849 
850 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
851 					 struct page *page,
852 					 int nr_pages)
853 {
854 	/* pagein of a big page is an event. So, ignore page size */
855 	if (nr_pages > 0)
856 		__count_memcg_events(memcg, PGPGIN, 1);
857 	else {
858 		__count_memcg_events(memcg, PGPGOUT, 1);
859 		nr_pages = -nr_pages; /* for event */
860 	}
861 
862 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
863 }
864 
865 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
866 				       enum mem_cgroup_events_target target)
867 {
868 	unsigned long val, next;
869 
870 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
871 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
872 	/* from time_after() in jiffies.h */
873 	if ((long)(next - val) < 0) {
874 		switch (target) {
875 		case MEM_CGROUP_TARGET_THRESH:
876 			next = val + THRESHOLDS_EVENTS_TARGET;
877 			break;
878 		case MEM_CGROUP_TARGET_SOFTLIMIT:
879 			next = val + SOFTLIMIT_EVENTS_TARGET;
880 			break;
881 		default:
882 			break;
883 		}
884 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
885 		return true;
886 	}
887 	return false;
888 }
889 
890 /*
891  * Check events in order.
892  *
893  */
894 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
895 {
896 	/* threshold event is triggered in finer grain than soft limit */
897 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
898 						MEM_CGROUP_TARGET_THRESH))) {
899 		bool do_softlimit;
900 
901 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
902 						MEM_CGROUP_TARGET_SOFTLIMIT);
903 		mem_cgroup_threshold(memcg);
904 		if (unlikely(do_softlimit))
905 			mem_cgroup_update_tree(memcg, page);
906 	}
907 }
908 
909 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
910 {
911 	/*
912 	 * mm_update_next_owner() may clear mm->owner to NULL
913 	 * if it races with swapoff, page migration, etc.
914 	 * So this can be called with p == NULL.
915 	 */
916 	if (unlikely(!p))
917 		return NULL;
918 
919 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
920 }
921 EXPORT_SYMBOL(mem_cgroup_from_task);
922 
923 static __always_inline struct mem_cgroup *active_memcg(void)
924 {
925 	if (!in_task())
926 		return this_cpu_read(int_active_memcg);
927 	else
928 		return current->active_memcg;
929 }
930 
931 /**
932  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
933  * @mm: mm from which memcg should be extracted. It can be NULL.
934  *
935  * Obtain a reference on mm->memcg and returns it if successful. If mm
936  * is NULL, then the memcg is chosen as follows:
937  * 1) The active memcg, if set.
938  * 2) current->mm->memcg, if available
939  * 3) root memcg
940  * If mem_cgroup is disabled, NULL is returned.
941  */
942 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
943 {
944 	struct mem_cgroup *memcg;
945 
946 	if (mem_cgroup_disabled())
947 		return NULL;
948 
949 	/*
950 	 * Page cache insertions can happen without an
951 	 * actual mm context, e.g. during disk probing
952 	 * on boot, loopback IO, acct() writes etc.
953 	 *
954 	 * No need to css_get on root memcg as the reference
955 	 * counting is disabled on the root level in the
956 	 * cgroup core. See CSS_NO_REF.
957 	 */
958 	if (unlikely(!mm)) {
959 		memcg = active_memcg();
960 		if (unlikely(memcg)) {
961 			/* remote memcg must hold a ref */
962 			css_get(&memcg->css);
963 			return memcg;
964 		}
965 		mm = current->mm;
966 		if (unlikely(!mm))
967 			return root_mem_cgroup;
968 	}
969 
970 	rcu_read_lock();
971 	do {
972 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
973 		if (unlikely(!memcg))
974 			memcg = root_mem_cgroup;
975 	} while (!css_tryget(&memcg->css));
976 	rcu_read_unlock();
977 	return memcg;
978 }
979 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
980 
981 static __always_inline bool memcg_kmem_bypass(void)
982 {
983 	/* Allow remote memcg charging from any context. */
984 	if (unlikely(active_memcg()))
985 		return false;
986 
987 	/* Memcg to charge can't be determined. */
988 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
989 		return true;
990 
991 	return false;
992 }
993 
994 /**
995  * mem_cgroup_iter - iterate over memory cgroup hierarchy
996  * @root: hierarchy root
997  * @prev: previously returned memcg, NULL on first invocation
998  * @reclaim: cookie for shared reclaim walks, NULL for full walks
999  *
1000  * Returns references to children of the hierarchy below @root, or
1001  * @root itself, or %NULL after a full round-trip.
1002  *
1003  * Caller must pass the return value in @prev on subsequent
1004  * invocations for reference counting, or use mem_cgroup_iter_break()
1005  * to cancel a hierarchy walk before the round-trip is complete.
1006  *
1007  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1008  * in the hierarchy among all concurrent reclaimers operating on the
1009  * same node.
1010  */
1011 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1012 				   struct mem_cgroup *prev,
1013 				   struct mem_cgroup_reclaim_cookie *reclaim)
1014 {
1015 	struct mem_cgroup_reclaim_iter *iter;
1016 	struct cgroup_subsys_state *css = NULL;
1017 	struct mem_cgroup *memcg = NULL;
1018 	struct mem_cgroup *pos = NULL;
1019 
1020 	if (mem_cgroup_disabled())
1021 		return NULL;
1022 
1023 	if (!root)
1024 		root = root_mem_cgroup;
1025 
1026 	if (prev && !reclaim)
1027 		pos = prev;
1028 
1029 	rcu_read_lock();
1030 
1031 	if (reclaim) {
1032 		struct mem_cgroup_per_node *mz;
1033 
1034 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1035 		iter = &mz->iter;
1036 
1037 		if (prev && reclaim->generation != iter->generation)
1038 			goto out_unlock;
1039 
1040 		while (1) {
1041 			pos = READ_ONCE(iter->position);
1042 			if (!pos || css_tryget(&pos->css))
1043 				break;
1044 			/*
1045 			 * css reference reached zero, so iter->position will
1046 			 * be cleared by ->css_released. However, we should not
1047 			 * rely on this happening soon, because ->css_released
1048 			 * is called from a work queue, and by busy-waiting we
1049 			 * might block it. So we clear iter->position right
1050 			 * away.
1051 			 */
1052 			(void)cmpxchg(&iter->position, pos, NULL);
1053 		}
1054 	}
1055 
1056 	if (pos)
1057 		css = &pos->css;
1058 
1059 	for (;;) {
1060 		css = css_next_descendant_pre(css, &root->css);
1061 		if (!css) {
1062 			/*
1063 			 * Reclaimers share the hierarchy walk, and a
1064 			 * new one might jump in right at the end of
1065 			 * the hierarchy - make sure they see at least
1066 			 * one group and restart from the beginning.
1067 			 */
1068 			if (!prev)
1069 				continue;
1070 			break;
1071 		}
1072 
1073 		/*
1074 		 * Verify the css and acquire a reference.  The root
1075 		 * is provided by the caller, so we know it's alive
1076 		 * and kicking, and don't take an extra reference.
1077 		 */
1078 		memcg = mem_cgroup_from_css(css);
1079 
1080 		if (css == &root->css)
1081 			break;
1082 
1083 		if (css_tryget(css))
1084 			break;
1085 
1086 		memcg = NULL;
1087 	}
1088 
1089 	if (reclaim) {
1090 		/*
1091 		 * The position could have already been updated by a competing
1092 		 * thread, so check that the value hasn't changed since we read
1093 		 * it to avoid reclaiming from the same cgroup twice.
1094 		 */
1095 		(void)cmpxchg(&iter->position, pos, memcg);
1096 
1097 		if (pos)
1098 			css_put(&pos->css);
1099 
1100 		if (!memcg)
1101 			iter->generation++;
1102 		else if (!prev)
1103 			reclaim->generation = iter->generation;
1104 	}
1105 
1106 out_unlock:
1107 	rcu_read_unlock();
1108 	if (prev && prev != root)
1109 		css_put(&prev->css);
1110 
1111 	return memcg;
1112 }
1113 
1114 /**
1115  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1116  * @root: hierarchy root
1117  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1118  */
1119 void mem_cgroup_iter_break(struct mem_cgroup *root,
1120 			   struct mem_cgroup *prev)
1121 {
1122 	if (!root)
1123 		root = root_mem_cgroup;
1124 	if (prev && prev != root)
1125 		css_put(&prev->css);
1126 }
1127 
1128 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1129 					struct mem_cgroup *dead_memcg)
1130 {
1131 	struct mem_cgroup_reclaim_iter *iter;
1132 	struct mem_cgroup_per_node *mz;
1133 	int nid;
1134 
1135 	for_each_node(nid) {
1136 		mz = from->nodeinfo[nid];
1137 		iter = &mz->iter;
1138 		cmpxchg(&iter->position, dead_memcg, NULL);
1139 	}
1140 }
1141 
1142 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1143 {
1144 	struct mem_cgroup *memcg = dead_memcg;
1145 	struct mem_cgroup *last;
1146 
1147 	do {
1148 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1149 		last = memcg;
1150 	} while ((memcg = parent_mem_cgroup(memcg)));
1151 
1152 	/*
1153 	 * When cgruop1 non-hierarchy mode is used,
1154 	 * parent_mem_cgroup() does not walk all the way up to the
1155 	 * cgroup root (root_mem_cgroup). So we have to handle
1156 	 * dead_memcg from cgroup root separately.
1157 	 */
1158 	if (last != root_mem_cgroup)
1159 		__invalidate_reclaim_iterators(root_mem_cgroup,
1160 						dead_memcg);
1161 }
1162 
1163 /**
1164  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1165  * @memcg: hierarchy root
1166  * @fn: function to call for each task
1167  * @arg: argument passed to @fn
1168  *
1169  * This function iterates over tasks attached to @memcg or to any of its
1170  * descendants and calls @fn for each task. If @fn returns a non-zero
1171  * value, the function breaks the iteration loop and returns the value.
1172  * Otherwise, it will iterate over all tasks and return 0.
1173  *
1174  * This function must not be called for the root memory cgroup.
1175  */
1176 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1177 			  int (*fn)(struct task_struct *, void *), void *arg)
1178 {
1179 	struct mem_cgroup *iter;
1180 	int ret = 0;
1181 
1182 	BUG_ON(memcg == root_mem_cgroup);
1183 
1184 	for_each_mem_cgroup_tree(iter, memcg) {
1185 		struct css_task_iter it;
1186 		struct task_struct *task;
1187 
1188 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1189 		while (!ret && (task = css_task_iter_next(&it)))
1190 			ret = fn(task, arg);
1191 		css_task_iter_end(&it);
1192 		if (ret) {
1193 			mem_cgroup_iter_break(memcg, iter);
1194 			break;
1195 		}
1196 	}
1197 	return ret;
1198 }
1199 
1200 #ifdef CONFIG_DEBUG_VM
1201 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1202 {
1203 	struct mem_cgroup *memcg;
1204 
1205 	if (mem_cgroup_disabled())
1206 		return;
1207 
1208 	memcg = page_memcg(page);
1209 
1210 	if (!memcg)
1211 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1212 	else
1213 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1214 }
1215 #endif
1216 
1217 /**
1218  * lock_page_lruvec - lock and return lruvec for a given page.
1219  * @page: the page
1220  *
1221  * These functions are safe to use under any of the following conditions:
1222  * - page locked
1223  * - PageLRU cleared
1224  * - lock_page_memcg()
1225  * - page->_refcount is zero
1226  */
1227 struct lruvec *lock_page_lruvec(struct page *page)
1228 {
1229 	struct lruvec *lruvec;
1230 
1231 	lruvec = mem_cgroup_page_lruvec(page);
1232 	spin_lock(&lruvec->lru_lock);
1233 
1234 	lruvec_memcg_debug(lruvec, page);
1235 
1236 	return lruvec;
1237 }
1238 
1239 struct lruvec *lock_page_lruvec_irq(struct page *page)
1240 {
1241 	struct lruvec *lruvec;
1242 
1243 	lruvec = mem_cgroup_page_lruvec(page);
1244 	spin_lock_irq(&lruvec->lru_lock);
1245 
1246 	lruvec_memcg_debug(lruvec, page);
1247 
1248 	return lruvec;
1249 }
1250 
1251 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1252 {
1253 	struct lruvec *lruvec;
1254 
1255 	lruvec = mem_cgroup_page_lruvec(page);
1256 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1257 
1258 	lruvec_memcg_debug(lruvec, page);
1259 
1260 	return lruvec;
1261 }
1262 
1263 /**
1264  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1265  * @lruvec: mem_cgroup per zone lru vector
1266  * @lru: index of lru list the page is sitting on
1267  * @zid: zone id of the accounted pages
1268  * @nr_pages: positive when adding or negative when removing
1269  *
1270  * This function must be called under lru_lock, just before a page is added
1271  * to or just after a page is removed from an lru list (that ordering being
1272  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1273  */
1274 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1275 				int zid, int nr_pages)
1276 {
1277 	struct mem_cgroup_per_node *mz;
1278 	unsigned long *lru_size;
1279 	long size;
1280 
1281 	if (mem_cgroup_disabled())
1282 		return;
1283 
1284 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1285 	lru_size = &mz->lru_zone_size[zid][lru];
1286 
1287 	if (nr_pages < 0)
1288 		*lru_size += nr_pages;
1289 
1290 	size = *lru_size;
1291 	if (WARN_ONCE(size < 0,
1292 		"%s(%p, %d, %d): lru_size %ld\n",
1293 		__func__, lruvec, lru, nr_pages, size)) {
1294 		VM_BUG_ON(1);
1295 		*lru_size = 0;
1296 	}
1297 
1298 	if (nr_pages > 0)
1299 		*lru_size += nr_pages;
1300 }
1301 
1302 /**
1303  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1304  * @memcg: the memory cgroup
1305  *
1306  * Returns the maximum amount of memory @mem can be charged with, in
1307  * pages.
1308  */
1309 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1310 {
1311 	unsigned long margin = 0;
1312 	unsigned long count;
1313 	unsigned long limit;
1314 
1315 	count = page_counter_read(&memcg->memory);
1316 	limit = READ_ONCE(memcg->memory.max);
1317 	if (count < limit)
1318 		margin = limit - count;
1319 
1320 	if (do_memsw_account()) {
1321 		count = page_counter_read(&memcg->memsw);
1322 		limit = READ_ONCE(memcg->memsw.max);
1323 		if (count < limit)
1324 			margin = min(margin, limit - count);
1325 		else
1326 			margin = 0;
1327 	}
1328 
1329 	return margin;
1330 }
1331 
1332 /*
1333  * A routine for checking "mem" is under move_account() or not.
1334  *
1335  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1336  * moving cgroups. This is for waiting at high-memory pressure
1337  * caused by "move".
1338  */
1339 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1340 {
1341 	struct mem_cgroup *from;
1342 	struct mem_cgroup *to;
1343 	bool ret = false;
1344 	/*
1345 	 * Unlike task_move routines, we access mc.to, mc.from not under
1346 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1347 	 */
1348 	spin_lock(&mc.lock);
1349 	from = mc.from;
1350 	to = mc.to;
1351 	if (!from)
1352 		goto unlock;
1353 
1354 	ret = mem_cgroup_is_descendant(from, memcg) ||
1355 		mem_cgroup_is_descendant(to, memcg);
1356 unlock:
1357 	spin_unlock(&mc.lock);
1358 	return ret;
1359 }
1360 
1361 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1362 {
1363 	if (mc.moving_task && current != mc.moving_task) {
1364 		if (mem_cgroup_under_move(memcg)) {
1365 			DEFINE_WAIT(wait);
1366 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1367 			/* moving charge context might have finished. */
1368 			if (mc.moving_task)
1369 				schedule();
1370 			finish_wait(&mc.waitq, &wait);
1371 			return true;
1372 		}
1373 	}
1374 	return false;
1375 }
1376 
1377 struct memory_stat {
1378 	const char *name;
1379 	unsigned int idx;
1380 };
1381 
1382 static const struct memory_stat memory_stats[] = {
1383 	{ "anon",			NR_ANON_MAPPED			},
1384 	{ "file",			NR_FILE_PAGES			},
1385 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1386 	{ "pagetables",			NR_PAGETABLE			},
1387 	{ "percpu",			MEMCG_PERCPU_B			},
1388 	{ "sock",			MEMCG_SOCK			},
1389 	{ "shmem",			NR_SHMEM			},
1390 	{ "file_mapped",		NR_FILE_MAPPED			},
1391 	{ "file_dirty",			NR_FILE_DIRTY			},
1392 	{ "file_writeback",		NR_WRITEBACK			},
1393 #ifdef CONFIG_SWAP
1394 	{ "swapcached",			NR_SWAPCACHE			},
1395 #endif
1396 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1397 	{ "anon_thp",			NR_ANON_THPS			},
1398 	{ "file_thp",			NR_FILE_THPS			},
1399 	{ "shmem_thp",			NR_SHMEM_THPS			},
1400 #endif
1401 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1402 	{ "active_anon",		NR_ACTIVE_ANON			},
1403 	{ "inactive_file",		NR_INACTIVE_FILE		},
1404 	{ "active_file",		NR_ACTIVE_FILE			},
1405 	{ "unevictable",		NR_UNEVICTABLE			},
1406 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1407 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1408 
1409 	/* The memory events */
1410 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1411 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1412 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1413 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1414 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1415 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1416 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1417 };
1418 
1419 /* Translate stat items to the correct unit for memory.stat output */
1420 static int memcg_page_state_unit(int item)
1421 {
1422 	switch (item) {
1423 	case MEMCG_PERCPU_B:
1424 	case NR_SLAB_RECLAIMABLE_B:
1425 	case NR_SLAB_UNRECLAIMABLE_B:
1426 	case WORKINGSET_REFAULT_ANON:
1427 	case WORKINGSET_REFAULT_FILE:
1428 	case WORKINGSET_ACTIVATE_ANON:
1429 	case WORKINGSET_ACTIVATE_FILE:
1430 	case WORKINGSET_RESTORE_ANON:
1431 	case WORKINGSET_RESTORE_FILE:
1432 	case WORKINGSET_NODERECLAIM:
1433 		return 1;
1434 	case NR_KERNEL_STACK_KB:
1435 		return SZ_1K;
1436 	default:
1437 		return PAGE_SIZE;
1438 	}
1439 }
1440 
1441 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1442 						    int item)
1443 {
1444 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1445 }
1446 
1447 static char *memory_stat_format(struct mem_cgroup *memcg)
1448 {
1449 	struct seq_buf s;
1450 	int i;
1451 
1452 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1453 	if (!s.buffer)
1454 		return NULL;
1455 
1456 	/*
1457 	 * Provide statistics on the state of the memory subsystem as
1458 	 * well as cumulative event counters that show past behavior.
1459 	 *
1460 	 * This list is ordered following a combination of these gradients:
1461 	 * 1) generic big picture -> specifics and details
1462 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1463 	 *
1464 	 * Current memory state:
1465 	 */
1466 	mem_cgroup_flush_stats();
1467 
1468 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1469 		u64 size;
1470 
1471 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1472 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1473 
1474 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1475 			size += memcg_page_state_output(memcg,
1476 							NR_SLAB_RECLAIMABLE_B);
1477 			seq_buf_printf(&s, "slab %llu\n", size);
1478 		}
1479 	}
1480 
1481 	/* Accumulated memory events */
1482 
1483 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1484 		       memcg_events(memcg, PGFAULT));
1485 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1486 		       memcg_events(memcg, PGMAJFAULT));
1487 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1488 		       memcg_events(memcg, PGREFILL));
1489 	seq_buf_printf(&s, "pgscan %lu\n",
1490 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1491 		       memcg_events(memcg, PGSCAN_DIRECT));
1492 	seq_buf_printf(&s, "pgsteal %lu\n",
1493 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1494 		       memcg_events(memcg, PGSTEAL_DIRECT));
1495 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1496 		       memcg_events(memcg, PGACTIVATE));
1497 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1498 		       memcg_events(memcg, PGDEACTIVATE));
1499 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1500 		       memcg_events(memcg, PGLAZYFREE));
1501 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1502 		       memcg_events(memcg, PGLAZYFREED));
1503 
1504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1505 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1506 		       memcg_events(memcg, THP_FAULT_ALLOC));
1507 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1508 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1509 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1510 
1511 	/* The above should easily fit into one page */
1512 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1513 
1514 	return s.buffer;
1515 }
1516 
1517 #define K(x) ((x) << (PAGE_SHIFT-10))
1518 /**
1519  * mem_cgroup_print_oom_context: Print OOM information relevant to
1520  * memory controller.
1521  * @memcg: The memory cgroup that went over limit
1522  * @p: Task that is going to be killed
1523  *
1524  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1525  * enabled
1526  */
1527 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1528 {
1529 	rcu_read_lock();
1530 
1531 	if (memcg) {
1532 		pr_cont(",oom_memcg=");
1533 		pr_cont_cgroup_path(memcg->css.cgroup);
1534 	} else
1535 		pr_cont(",global_oom");
1536 	if (p) {
1537 		pr_cont(",task_memcg=");
1538 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1539 	}
1540 	rcu_read_unlock();
1541 }
1542 
1543 /**
1544  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1545  * memory controller.
1546  * @memcg: The memory cgroup that went over limit
1547  */
1548 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1549 {
1550 	char *buf;
1551 
1552 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1553 		K((u64)page_counter_read(&memcg->memory)),
1554 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1555 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1556 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1557 			K((u64)page_counter_read(&memcg->swap)),
1558 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1559 	else {
1560 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1561 			K((u64)page_counter_read(&memcg->memsw)),
1562 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1563 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1564 			K((u64)page_counter_read(&memcg->kmem)),
1565 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1566 	}
1567 
1568 	pr_info("Memory cgroup stats for ");
1569 	pr_cont_cgroup_path(memcg->css.cgroup);
1570 	pr_cont(":");
1571 	buf = memory_stat_format(memcg);
1572 	if (!buf)
1573 		return;
1574 	pr_info("%s", buf);
1575 	kfree(buf);
1576 }
1577 
1578 /*
1579  * Return the memory (and swap, if configured) limit for a memcg.
1580  */
1581 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1582 {
1583 	unsigned long max = READ_ONCE(memcg->memory.max);
1584 
1585 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1586 		if (mem_cgroup_swappiness(memcg))
1587 			max += min(READ_ONCE(memcg->swap.max),
1588 				   (unsigned long)total_swap_pages);
1589 	} else { /* v1 */
1590 		if (mem_cgroup_swappiness(memcg)) {
1591 			/* Calculate swap excess capacity from memsw limit */
1592 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1593 
1594 			max += min(swap, (unsigned long)total_swap_pages);
1595 		}
1596 	}
1597 	return max;
1598 }
1599 
1600 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1601 {
1602 	return page_counter_read(&memcg->memory);
1603 }
1604 
1605 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1606 				     int order)
1607 {
1608 	struct oom_control oc = {
1609 		.zonelist = NULL,
1610 		.nodemask = NULL,
1611 		.memcg = memcg,
1612 		.gfp_mask = gfp_mask,
1613 		.order = order,
1614 	};
1615 	bool ret = true;
1616 
1617 	if (mutex_lock_killable(&oom_lock))
1618 		return true;
1619 
1620 	if (mem_cgroup_margin(memcg) >= (1 << order))
1621 		goto unlock;
1622 
1623 	/*
1624 	 * A few threads which were not waiting at mutex_lock_killable() can
1625 	 * fail to bail out. Therefore, check again after holding oom_lock.
1626 	 */
1627 	ret = task_is_dying() || out_of_memory(&oc);
1628 
1629 unlock:
1630 	mutex_unlock(&oom_lock);
1631 	return ret;
1632 }
1633 
1634 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1635 				   pg_data_t *pgdat,
1636 				   gfp_t gfp_mask,
1637 				   unsigned long *total_scanned)
1638 {
1639 	struct mem_cgroup *victim = NULL;
1640 	int total = 0;
1641 	int loop = 0;
1642 	unsigned long excess;
1643 	unsigned long nr_scanned;
1644 	struct mem_cgroup_reclaim_cookie reclaim = {
1645 		.pgdat = pgdat,
1646 	};
1647 
1648 	excess = soft_limit_excess(root_memcg);
1649 
1650 	while (1) {
1651 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1652 		if (!victim) {
1653 			loop++;
1654 			if (loop >= 2) {
1655 				/*
1656 				 * If we have not been able to reclaim
1657 				 * anything, it might because there are
1658 				 * no reclaimable pages under this hierarchy
1659 				 */
1660 				if (!total)
1661 					break;
1662 				/*
1663 				 * We want to do more targeted reclaim.
1664 				 * excess >> 2 is not to excessive so as to
1665 				 * reclaim too much, nor too less that we keep
1666 				 * coming back to reclaim from this cgroup
1667 				 */
1668 				if (total >= (excess >> 2) ||
1669 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1670 					break;
1671 			}
1672 			continue;
1673 		}
1674 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1675 					pgdat, &nr_scanned);
1676 		*total_scanned += nr_scanned;
1677 		if (!soft_limit_excess(root_memcg))
1678 			break;
1679 	}
1680 	mem_cgroup_iter_break(root_memcg, victim);
1681 	return total;
1682 }
1683 
1684 #ifdef CONFIG_LOCKDEP
1685 static struct lockdep_map memcg_oom_lock_dep_map = {
1686 	.name = "memcg_oom_lock",
1687 };
1688 #endif
1689 
1690 static DEFINE_SPINLOCK(memcg_oom_lock);
1691 
1692 /*
1693  * Check OOM-Killer is already running under our hierarchy.
1694  * If someone is running, return false.
1695  */
1696 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1697 {
1698 	struct mem_cgroup *iter, *failed = NULL;
1699 
1700 	spin_lock(&memcg_oom_lock);
1701 
1702 	for_each_mem_cgroup_tree(iter, memcg) {
1703 		if (iter->oom_lock) {
1704 			/*
1705 			 * this subtree of our hierarchy is already locked
1706 			 * so we cannot give a lock.
1707 			 */
1708 			failed = iter;
1709 			mem_cgroup_iter_break(memcg, iter);
1710 			break;
1711 		} else
1712 			iter->oom_lock = true;
1713 	}
1714 
1715 	if (failed) {
1716 		/*
1717 		 * OK, we failed to lock the whole subtree so we have
1718 		 * to clean up what we set up to the failing subtree
1719 		 */
1720 		for_each_mem_cgroup_tree(iter, memcg) {
1721 			if (iter == failed) {
1722 				mem_cgroup_iter_break(memcg, iter);
1723 				break;
1724 			}
1725 			iter->oom_lock = false;
1726 		}
1727 	} else
1728 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1729 
1730 	spin_unlock(&memcg_oom_lock);
1731 
1732 	return !failed;
1733 }
1734 
1735 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1736 {
1737 	struct mem_cgroup *iter;
1738 
1739 	spin_lock(&memcg_oom_lock);
1740 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1741 	for_each_mem_cgroup_tree(iter, memcg)
1742 		iter->oom_lock = false;
1743 	spin_unlock(&memcg_oom_lock);
1744 }
1745 
1746 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1747 {
1748 	struct mem_cgroup *iter;
1749 
1750 	spin_lock(&memcg_oom_lock);
1751 	for_each_mem_cgroup_tree(iter, memcg)
1752 		iter->under_oom++;
1753 	spin_unlock(&memcg_oom_lock);
1754 }
1755 
1756 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1757 {
1758 	struct mem_cgroup *iter;
1759 
1760 	/*
1761 	 * Be careful about under_oom underflows because a child memcg
1762 	 * could have been added after mem_cgroup_mark_under_oom.
1763 	 */
1764 	spin_lock(&memcg_oom_lock);
1765 	for_each_mem_cgroup_tree(iter, memcg)
1766 		if (iter->under_oom > 0)
1767 			iter->under_oom--;
1768 	spin_unlock(&memcg_oom_lock);
1769 }
1770 
1771 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1772 
1773 struct oom_wait_info {
1774 	struct mem_cgroup *memcg;
1775 	wait_queue_entry_t	wait;
1776 };
1777 
1778 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1779 	unsigned mode, int sync, void *arg)
1780 {
1781 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1782 	struct mem_cgroup *oom_wait_memcg;
1783 	struct oom_wait_info *oom_wait_info;
1784 
1785 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1786 	oom_wait_memcg = oom_wait_info->memcg;
1787 
1788 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1789 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1790 		return 0;
1791 	return autoremove_wake_function(wait, mode, sync, arg);
1792 }
1793 
1794 static void memcg_oom_recover(struct mem_cgroup *memcg)
1795 {
1796 	/*
1797 	 * For the following lockless ->under_oom test, the only required
1798 	 * guarantee is that it must see the state asserted by an OOM when
1799 	 * this function is called as a result of userland actions
1800 	 * triggered by the notification of the OOM.  This is trivially
1801 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1802 	 * triggering notification.
1803 	 */
1804 	if (memcg && memcg->under_oom)
1805 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1806 }
1807 
1808 enum oom_status {
1809 	OOM_SUCCESS,
1810 	OOM_FAILED,
1811 	OOM_ASYNC,
1812 	OOM_SKIPPED
1813 };
1814 
1815 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1816 {
1817 	enum oom_status ret;
1818 	bool locked;
1819 
1820 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1821 		return OOM_SKIPPED;
1822 
1823 	memcg_memory_event(memcg, MEMCG_OOM);
1824 
1825 	/*
1826 	 * We are in the middle of the charge context here, so we
1827 	 * don't want to block when potentially sitting on a callstack
1828 	 * that holds all kinds of filesystem and mm locks.
1829 	 *
1830 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1831 	 * handling until the charge can succeed; remember the context and put
1832 	 * the task to sleep at the end of the page fault when all locks are
1833 	 * released.
1834 	 *
1835 	 * On the other hand, in-kernel OOM killer allows for an async victim
1836 	 * memory reclaim (oom_reaper) and that means that we are not solely
1837 	 * relying on the oom victim to make a forward progress and we can
1838 	 * invoke the oom killer here.
1839 	 *
1840 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1841 	 * victim and then we have to bail out from the charge path.
1842 	 */
1843 	if (memcg->oom_kill_disable) {
1844 		if (!current->in_user_fault)
1845 			return OOM_SKIPPED;
1846 		css_get(&memcg->css);
1847 		current->memcg_in_oom = memcg;
1848 		current->memcg_oom_gfp_mask = mask;
1849 		current->memcg_oom_order = order;
1850 
1851 		return OOM_ASYNC;
1852 	}
1853 
1854 	mem_cgroup_mark_under_oom(memcg);
1855 
1856 	locked = mem_cgroup_oom_trylock(memcg);
1857 
1858 	if (locked)
1859 		mem_cgroup_oom_notify(memcg);
1860 
1861 	mem_cgroup_unmark_under_oom(memcg);
1862 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1863 		ret = OOM_SUCCESS;
1864 	else
1865 		ret = OOM_FAILED;
1866 
1867 	if (locked)
1868 		mem_cgroup_oom_unlock(memcg);
1869 
1870 	return ret;
1871 }
1872 
1873 /**
1874  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1875  * @handle: actually kill/wait or just clean up the OOM state
1876  *
1877  * This has to be called at the end of a page fault if the memcg OOM
1878  * handler was enabled.
1879  *
1880  * Memcg supports userspace OOM handling where failed allocations must
1881  * sleep on a waitqueue until the userspace task resolves the
1882  * situation.  Sleeping directly in the charge context with all kinds
1883  * of locks held is not a good idea, instead we remember an OOM state
1884  * in the task and mem_cgroup_oom_synchronize() has to be called at
1885  * the end of the page fault to complete the OOM handling.
1886  *
1887  * Returns %true if an ongoing memcg OOM situation was detected and
1888  * completed, %false otherwise.
1889  */
1890 bool mem_cgroup_oom_synchronize(bool handle)
1891 {
1892 	struct mem_cgroup *memcg = current->memcg_in_oom;
1893 	struct oom_wait_info owait;
1894 	bool locked;
1895 
1896 	/* OOM is global, do not handle */
1897 	if (!memcg)
1898 		return false;
1899 
1900 	if (!handle)
1901 		goto cleanup;
1902 
1903 	owait.memcg = memcg;
1904 	owait.wait.flags = 0;
1905 	owait.wait.func = memcg_oom_wake_function;
1906 	owait.wait.private = current;
1907 	INIT_LIST_HEAD(&owait.wait.entry);
1908 
1909 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1910 	mem_cgroup_mark_under_oom(memcg);
1911 
1912 	locked = mem_cgroup_oom_trylock(memcg);
1913 
1914 	if (locked)
1915 		mem_cgroup_oom_notify(memcg);
1916 
1917 	if (locked && !memcg->oom_kill_disable) {
1918 		mem_cgroup_unmark_under_oom(memcg);
1919 		finish_wait(&memcg_oom_waitq, &owait.wait);
1920 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1921 					 current->memcg_oom_order);
1922 	} else {
1923 		schedule();
1924 		mem_cgroup_unmark_under_oom(memcg);
1925 		finish_wait(&memcg_oom_waitq, &owait.wait);
1926 	}
1927 
1928 	if (locked) {
1929 		mem_cgroup_oom_unlock(memcg);
1930 		/*
1931 		 * There is no guarantee that an OOM-lock contender
1932 		 * sees the wakeups triggered by the OOM kill
1933 		 * uncharges.  Wake any sleepers explicitly.
1934 		 */
1935 		memcg_oom_recover(memcg);
1936 	}
1937 cleanup:
1938 	current->memcg_in_oom = NULL;
1939 	css_put(&memcg->css);
1940 	return true;
1941 }
1942 
1943 /**
1944  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1945  * @victim: task to be killed by the OOM killer
1946  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1947  *
1948  * Returns a pointer to a memory cgroup, which has to be cleaned up
1949  * by killing all belonging OOM-killable tasks.
1950  *
1951  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1952  */
1953 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1954 					    struct mem_cgroup *oom_domain)
1955 {
1956 	struct mem_cgroup *oom_group = NULL;
1957 	struct mem_cgroup *memcg;
1958 
1959 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1960 		return NULL;
1961 
1962 	if (!oom_domain)
1963 		oom_domain = root_mem_cgroup;
1964 
1965 	rcu_read_lock();
1966 
1967 	memcg = mem_cgroup_from_task(victim);
1968 	if (memcg == root_mem_cgroup)
1969 		goto out;
1970 
1971 	/*
1972 	 * If the victim task has been asynchronously moved to a different
1973 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1974 	 * In this case it's better to ignore memory.group.oom.
1975 	 */
1976 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1977 		goto out;
1978 
1979 	/*
1980 	 * Traverse the memory cgroup hierarchy from the victim task's
1981 	 * cgroup up to the OOMing cgroup (or root) to find the
1982 	 * highest-level memory cgroup with oom.group set.
1983 	 */
1984 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1985 		if (memcg->oom_group)
1986 			oom_group = memcg;
1987 
1988 		if (memcg == oom_domain)
1989 			break;
1990 	}
1991 
1992 	if (oom_group)
1993 		css_get(&oom_group->css);
1994 out:
1995 	rcu_read_unlock();
1996 
1997 	return oom_group;
1998 }
1999 
2000 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2001 {
2002 	pr_info("Tasks in ");
2003 	pr_cont_cgroup_path(memcg->css.cgroup);
2004 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2005 }
2006 
2007 /**
2008  * lock_page_memcg - lock a page and memcg binding
2009  * @page: the page
2010  *
2011  * This function protects unlocked LRU pages from being moved to
2012  * another cgroup.
2013  *
2014  * It ensures lifetime of the locked memcg. Caller is responsible
2015  * for the lifetime of the page.
2016  */
2017 void lock_page_memcg(struct page *page)
2018 {
2019 	struct page *head = compound_head(page); /* rmap on tail pages */
2020 	struct mem_cgroup *memcg;
2021 	unsigned long flags;
2022 
2023 	/*
2024 	 * The RCU lock is held throughout the transaction.  The fast
2025 	 * path can get away without acquiring the memcg->move_lock
2026 	 * because page moving starts with an RCU grace period.
2027          */
2028 	rcu_read_lock();
2029 
2030 	if (mem_cgroup_disabled())
2031 		return;
2032 again:
2033 	memcg = page_memcg(head);
2034 	if (unlikely(!memcg))
2035 		return;
2036 
2037 #ifdef CONFIG_PROVE_LOCKING
2038 	local_irq_save(flags);
2039 	might_lock(&memcg->move_lock);
2040 	local_irq_restore(flags);
2041 #endif
2042 
2043 	if (atomic_read(&memcg->moving_account) <= 0)
2044 		return;
2045 
2046 	spin_lock_irqsave(&memcg->move_lock, flags);
2047 	if (memcg != page_memcg(head)) {
2048 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2049 		goto again;
2050 	}
2051 
2052 	/*
2053 	 * When charge migration first begins, we can have multiple
2054 	 * critical sections holding the fast-path RCU lock and one
2055 	 * holding the slowpath move_lock. Track the task who has the
2056 	 * move_lock for unlock_page_memcg().
2057 	 */
2058 	memcg->move_lock_task = current;
2059 	memcg->move_lock_flags = flags;
2060 }
2061 EXPORT_SYMBOL(lock_page_memcg);
2062 
2063 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2064 {
2065 	if (memcg && memcg->move_lock_task == current) {
2066 		unsigned long flags = memcg->move_lock_flags;
2067 
2068 		memcg->move_lock_task = NULL;
2069 		memcg->move_lock_flags = 0;
2070 
2071 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2072 	}
2073 
2074 	rcu_read_unlock();
2075 }
2076 
2077 /**
2078  * unlock_page_memcg - unlock a page and memcg binding
2079  * @page: the page
2080  */
2081 void unlock_page_memcg(struct page *page)
2082 {
2083 	struct page *head = compound_head(page);
2084 
2085 	__unlock_page_memcg(page_memcg(head));
2086 }
2087 EXPORT_SYMBOL(unlock_page_memcg);
2088 
2089 struct obj_stock {
2090 #ifdef CONFIG_MEMCG_KMEM
2091 	struct obj_cgroup *cached_objcg;
2092 	struct pglist_data *cached_pgdat;
2093 	unsigned int nr_bytes;
2094 	int nr_slab_reclaimable_b;
2095 	int nr_slab_unreclaimable_b;
2096 #else
2097 	int dummy[0];
2098 #endif
2099 };
2100 
2101 struct memcg_stock_pcp {
2102 	struct mem_cgroup *cached; /* this never be root cgroup */
2103 	unsigned int nr_pages;
2104 	struct obj_stock task_obj;
2105 	struct obj_stock irq_obj;
2106 
2107 	struct work_struct work;
2108 	unsigned long flags;
2109 #define FLUSHING_CACHED_CHARGE	0
2110 };
2111 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2112 static DEFINE_MUTEX(percpu_charge_mutex);
2113 
2114 #ifdef CONFIG_MEMCG_KMEM
2115 static void drain_obj_stock(struct obj_stock *stock);
2116 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2117 				     struct mem_cgroup *root_memcg);
2118 
2119 #else
2120 static inline void drain_obj_stock(struct obj_stock *stock)
2121 {
2122 }
2123 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2124 				     struct mem_cgroup *root_memcg)
2125 {
2126 	return false;
2127 }
2128 #endif
2129 
2130 /*
2131  * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2132  * sequence used in this case to access content from object stock is slow.
2133  * To optimize for user context access, there are now two object stocks for
2134  * task context and interrupt context access respectively.
2135  *
2136  * The task context object stock can be accessed by disabling preemption only
2137  * which is cheap in non-preempt kernel. The interrupt context object stock
2138  * can only be accessed after disabling interrupt. User context code can
2139  * access interrupt object stock, but not vice versa.
2140  */
2141 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2142 {
2143 	struct memcg_stock_pcp *stock;
2144 
2145 	if (likely(in_task())) {
2146 		*pflags = 0UL;
2147 		preempt_disable();
2148 		stock = this_cpu_ptr(&memcg_stock);
2149 		return &stock->task_obj;
2150 	}
2151 
2152 	local_irq_save(*pflags);
2153 	stock = this_cpu_ptr(&memcg_stock);
2154 	return &stock->irq_obj;
2155 }
2156 
2157 static inline void put_obj_stock(unsigned long flags)
2158 {
2159 	if (likely(in_task()))
2160 		preempt_enable();
2161 	else
2162 		local_irq_restore(flags);
2163 }
2164 
2165 /**
2166  * consume_stock: Try to consume stocked charge on this cpu.
2167  * @memcg: memcg to consume from.
2168  * @nr_pages: how many pages to charge.
2169  *
2170  * The charges will only happen if @memcg matches the current cpu's memcg
2171  * stock, and at least @nr_pages are available in that stock.  Failure to
2172  * service an allocation will refill the stock.
2173  *
2174  * returns true if successful, false otherwise.
2175  */
2176 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2177 {
2178 	struct memcg_stock_pcp *stock;
2179 	unsigned long flags;
2180 	bool ret = false;
2181 
2182 	if (nr_pages > MEMCG_CHARGE_BATCH)
2183 		return ret;
2184 
2185 	local_irq_save(flags);
2186 
2187 	stock = this_cpu_ptr(&memcg_stock);
2188 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2189 		stock->nr_pages -= nr_pages;
2190 		ret = true;
2191 	}
2192 
2193 	local_irq_restore(flags);
2194 
2195 	return ret;
2196 }
2197 
2198 /*
2199  * Returns stocks cached in percpu and reset cached information.
2200  */
2201 static void drain_stock(struct memcg_stock_pcp *stock)
2202 {
2203 	struct mem_cgroup *old = stock->cached;
2204 
2205 	if (!old)
2206 		return;
2207 
2208 	if (stock->nr_pages) {
2209 		page_counter_uncharge(&old->memory, stock->nr_pages);
2210 		if (do_memsw_account())
2211 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2212 		stock->nr_pages = 0;
2213 	}
2214 
2215 	css_put(&old->css);
2216 	stock->cached = NULL;
2217 }
2218 
2219 static void drain_local_stock(struct work_struct *dummy)
2220 {
2221 	struct memcg_stock_pcp *stock;
2222 	unsigned long flags;
2223 
2224 	/*
2225 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2226 	 * drain_stock races is that we always operate on local CPU stock
2227 	 * here with IRQ disabled
2228 	 */
2229 	local_irq_save(flags);
2230 
2231 	stock = this_cpu_ptr(&memcg_stock);
2232 	drain_obj_stock(&stock->irq_obj);
2233 	if (in_task())
2234 		drain_obj_stock(&stock->task_obj);
2235 	drain_stock(stock);
2236 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2237 
2238 	local_irq_restore(flags);
2239 }
2240 
2241 /*
2242  * Cache charges(val) to local per_cpu area.
2243  * This will be consumed by consume_stock() function, later.
2244  */
2245 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2246 {
2247 	struct memcg_stock_pcp *stock;
2248 	unsigned long flags;
2249 
2250 	local_irq_save(flags);
2251 
2252 	stock = this_cpu_ptr(&memcg_stock);
2253 	if (stock->cached != memcg) { /* reset if necessary */
2254 		drain_stock(stock);
2255 		css_get(&memcg->css);
2256 		stock->cached = memcg;
2257 	}
2258 	stock->nr_pages += nr_pages;
2259 
2260 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2261 		drain_stock(stock);
2262 
2263 	local_irq_restore(flags);
2264 }
2265 
2266 /*
2267  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2268  * of the hierarchy under it.
2269  */
2270 static void drain_all_stock(struct mem_cgroup *root_memcg)
2271 {
2272 	int cpu, curcpu;
2273 
2274 	/* If someone's already draining, avoid adding running more workers. */
2275 	if (!mutex_trylock(&percpu_charge_mutex))
2276 		return;
2277 	/*
2278 	 * Notify other cpus that system-wide "drain" is running
2279 	 * We do not care about races with the cpu hotplug because cpu down
2280 	 * as well as workers from this path always operate on the local
2281 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2282 	 */
2283 	curcpu = get_cpu();
2284 	for_each_online_cpu(cpu) {
2285 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2286 		struct mem_cgroup *memcg;
2287 		bool flush = false;
2288 
2289 		rcu_read_lock();
2290 		memcg = stock->cached;
2291 		if (memcg && stock->nr_pages &&
2292 		    mem_cgroup_is_descendant(memcg, root_memcg))
2293 			flush = true;
2294 		else if (obj_stock_flush_required(stock, root_memcg))
2295 			flush = true;
2296 		rcu_read_unlock();
2297 
2298 		if (flush &&
2299 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2300 			if (cpu == curcpu)
2301 				drain_local_stock(&stock->work);
2302 			else
2303 				schedule_work_on(cpu, &stock->work);
2304 		}
2305 	}
2306 	put_cpu();
2307 	mutex_unlock(&percpu_charge_mutex);
2308 }
2309 
2310 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2311 {
2312 	struct memcg_stock_pcp *stock;
2313 
2314 	stock = &per_cpu(memcg_stock, cpu);
2315 	drain_stock(stock);
2316 
2317 	return 0;
2318 }
2319 
2320 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2321 				  unsigned int nr_pages,
2322 				  gfp_t gfp_mask)
2323 {
2324 	unsigned long nr_reclaimed = 0;
2325 
2326 	do {
2327 		unsigned long pflags;
2328 
2329 		if (page_counter_read(&memcg->memory) <=
2330 		    READ_ONCE(memcg->memory.high))
2331 			continue;
2332 
2333 		memcg_memory_event(memcg, MEMCG_HIGH);
2334 
2335 		psi_memstall_enter(&pflags);
2336 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2337 							     gfp_mask, true);
2338 		psi_memstall_leave(&pflags);
2339 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2340 		 !mem_cgroup_is_root(memcg));
2341 
2342 	return nr_reclaimed;
2343 }
2344 
2345 static void high_work_func(struct work_struct *work)
2346 {
2347 	struct mem_cgroup *memcg;
2348 
2349 	memcg = container_of(work, struct mem_cgroup, high_work);
2350 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2351 }
2352 
2353 /*
2354  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2355  * enough to still cause a significant slowdown in most cases, while still
2356  * allowing diagnostics and tracing to proceed without becoming stuck.
2357  */
2358 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2359 
2360 /*
2361  * When calculating the delay, we use these either side of the exponentiation to
2362  * maintain precision and scale to a reasonable number of jiffies (see the table
2363  * below.
2364  *
2365  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2366  *   overage ratio to a delay.
2367  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2368  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2369  *   to produce a reasonable delay curve.
2370  *
2371  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2372  * reasonable delay curve compared to precision-adjusted overage, not
2373  * penalising heavily at first, but still making sure that growth beyond the
2374  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2375  * example, with a high of 100 megabytes:
2376  *
2377  *  +-------+------------------------+
2378  *  | usage | time to allocate in ms |
2379  *  +-------+------------------------+
2380  *  | 100M  |                      0 |
2381  *  | 101M  |                      6 |
2382  *  | 102M  |                     25 |
2383  *  | 103M  |                     57 |
2384  *  | 104M  |                    102 |
2385  *  | 105M  |                    159 |
2386  *  | 106M  |                    230 |
2387  *  | 107M  |                    313 |
2388  *  | 108M  |                    409 |
2389  *  | 109M  |                    518 |
2390  *  | 110M  |                    639 |
2391  *  | 111M  |                    774 |
2392  *  | 112M  |                    921 |
2393  *  | 113M  |                   1081 |
2394  *  | 114M  |                   1254 |
2395  *  | 115M  |                   1439 |
2396  *  | 116M  |                   1638 |
2397  *  | 117M  |                   1849 |
2398  *  | 118M  |                   2000 |
2399  *  | 119M  |                   2000 |
2400  *  | 120M  |                   2000 |
2401  *  +-------+------------------------+
2402  */
2403  #define MEMCG_DELAY_PRECISION_SHIFT 20
2404  #define MEMCG_DELAY_SCALING_SHIFT 14
2405 
2406 static u64 calculate_overage(unsigned long usage, unsigned long high)
2407 {
2408 	u64 overage;
2409 
2410 	if (usage <= high)
2411 		return 0;
2412 
2413 	/*
2414 	 * Prevent division by 0 in overage calculation by acting as if
2415 	 * it was a threshold of 1 page
2416 	 */
2417 	high = max(high, 1UL);
2418 
2419 	overage = usage - high;
2420 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2421 	return div64_u64(overage, high);
2422 }
2423 
2424 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2425 {
2426 	u64 overage, max_overage = 0;
2427 
2428 	do {
2429 		overage = calculate_overage(page_counter_read(&memcg->memory),
2430 					    READ_ONCE(memcg->memory.high));
2431 		max_overage = max(overage, max_overage);
2432 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2433 		 !mem_cgroup_is_root(memcg));
2434 
2435 	return max_overage;
2436 }
2437 
2438 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2439 {
2440 	u64 overage, max_overage = 0;
2441 
2442 	do {
2443 		overage = calculate_overage(page_counter_read(&memcg->swap),
2444 					    READ_ONCE(memcg->swap.high));
2445 		if (overage)
2446 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2447 		max_overage = max(overage, max_overage);
2448 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2449 		 !mem_cgroup_is_root(memcg));
2450 
2451 	return max_overage;
2452 }
2453 
2454 /*
2455  * Get the number of jiffies that we should penalise a mischievous cgroup which
2456  * is exceeding its memory.high by checking both it and its ancestors.
2457  */
2458 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2459 					  unsigned int nr_pages,
2460 					  u64 max_overage)
2461 {
2462 	unsigned long penalty_jiffies;
2463 
2464 	if (!max_overage)
2465 		return 0;
2466 
2467 	/*
2468 	 * We use overage compared to memory.high to calculate the number of
2469 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2470 	 * fairly lenient on small overages, and increasingly harsh when the
2471 	 * memcg in question makes it clear that it has no intention of stopping
2472 	 * its crazy behaviour, so we exponentially increase the delay based on
2473 	 * overage amount.
2474 	 */
2475 	penalty_jiffies = max_overage * max_overage * HZ;
2476 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2477 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2478 
2479 	/*
2480 	 * Factor in the task's own contribution to the overage, such that four
2481 	 * N-sized allocations are throttled approximately the same as one
2482 	 * 4N-sized allocation.
2483 	 *
2484 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2485 	 * larger the current charge patch is than that.
2486 	 */
2487 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2488 }
2489 
2490 /*
2491  * Scheduled by try_charge() to be executed from the userland return path
2492  * and reclaims memory over the high limit.
2493  */
2494 void mem_cgroup_handle_over_high(void)
2495 {
2496 	unsigned long penalty_jiffies;
2497 	unsigned long pflags;
2498 	unsigned long nr_reclaimed;
2499 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2500 	int nr_retries = MAX_RECLAIM_RETRIES;
2501 	struct mem_cgroup *memcg;
2502 	bool in_retry = false;
2503 
2504 	if (likely(!nr_pages))
2505 		return;
2506 
2507 	memcg = get_mem_cgroup_from_mm(current->mm);
2508 	current->memcg_nr_pages_over_high = 0;
2509 
2510 retry_reclaim:
2511 	/*
2512 	 * The allocating task should reclaim at least the batch size, but for
2513 	 * subsequent retries we only want to do what's necessary to prevent oom
2514 	 * or breaching resource isolation.
2515 	 *
2516 	 * This is distinct from memory.max or page allocator behaviour because
2517 	 * memory.high is currently batched, whereas memory.max and the page
2518 	 * allocator run every time an allocation is made.
2519 	 */
2520 	nr_reclaimed = reclaim_high(memcg,
2521 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2522 				    GFP_KERNEL);
2523 
2524 	/*
2525 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2526 	 * allocators proactively to slow down excessive growth.
2527 	 */
2528 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2529 					       mem_find_max_overage(memcg));
2530 
2531 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2532 						swap_find_max_overage(memcg));
2533 
2534 	/*
2535 	 * Clamp the max delay per usermode return so as to still keep the
2536 	 * application moving forwards and also permit diagnostics, albeit
2537 	 * extremely slowly.
2538 	 */
2539 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2540 
2541 	/*
2542 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2543 	 * that it's not even worth doing, in an attempt to be nice to those who
2544 	 * go only a small amount over their memory.high value and maybe haven't
2545 	 * been aggressively reclaimed enough yet.
2546 	 */
2547 	if (penalty_jiffies <= HZ / 100)
2548 		goto out;
2549 
2550 	/*
2551 	 * If reclaim is making forward progress but we're still over
2552 	 * memory.high, we want to encourage that rather than doing allocator
2553 	 * throttling.
2554 	 */
2555 	if (nr_reclaimed || nr_retries--) {
2556 		in_retry = true;
2557 		goto retry_reclaim;
2558 	}
2559 
2560 	/*
2561 	 * If we exit early, we're guaranteed to die (since
2562 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2563 	 * need to account for any ill-begotten jiffies to pay them off later.
2564 	 */
2565 	psi_memstall_enter(&pflags);
2566 	schedule_timeout_killable(penalty_jiffies);
2567 	psi_memstall_leave(&pflags);
2568 
2569 out:
2570 	css_put(&memcg->css);
2571 }
2572 
2573 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2574 			unsigned int nr_pages)
2575 {
2576 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2577 	int nr_retries = MAX_RECLAIM_RETRIES;
2578 	struct mem_cgroup *mem_over_limit;
2579 	struct page_counter *counter;
2580 	enum oom_status oom_status;
2581 	unsigned long nr_reclaimed;
2582 	bool passed_oom = false;
2583 	bool may_swap = true;
2584 	bool drained = false;
2585 	unsigned long pflags;
2586 
2587 retry:
2588 	if (consume_stock(memcg, nr_pages))
2589 		return 0;
2590 
2591 	if (!do_memsw_account() ||
2592 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2593 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2594 			goto done_restock;
2595 		if (do_memsw_account())
2596 			page_counter_uncharge(&memcg->memsw, batch);
2597 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2598 	} else {
2599 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2600 		may_swap = false;
2601 	}
2602 
2603 	if (batch > nr_pages) {
2604 		batch = nr_pages;
2605 		goto retry;
2606 	}
2607 
2608 	/*
2609 	 * Memcg doesn't have a dedicated reserve for atomic
2610 	 * allocations. But like the global atomic pool, we need to
2611 	 * put the burden of reclaim on regular allocation requests
2612 	 * and let these go through as privileged allocations.
2613 	 */
2614 	if (gfp_mask & __GFP_ATOMIC)
2615 		goto force;
2616 
2617 	/*
2618 	 * Prevent unbounded recursion when reclaim operations need to
2619 	 * allocate memory. This might exceed the limits temporarily,
2620 	 * but we prefer facilitating memory reclaim and getting back
2621 	 * under the limit over triggering OOM kills in these cases.
2622 	 */
2623 	if (unlikely(current->flags & PF_MEMALLOC))
2624 		goto force;
2625 
2626 	if (unlikely(task_in_memcg_oom(current)))
2627 		goto nomem;
2628 
2629 	if (!gfpflags_allow_blocking(gfp_mask))
2630 		goto nomem;
2631 
2632 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2633 
2634 	psi_memstall_enter(&pflags);
2635 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2636 						    gfp_mask, may_swap);
2637 	psi_memstall_leave(&pflags);
2638 
2639 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2640 		goto retry;
2641 
2642 	if (!drained) {
2643 		drain_all_stock(mem_over_limit);
2644 		drained = true;
2645 		goto retry;
2646 	}
2647 
2648 	if (gfp_mask & __GFP_NORETRY)
2649 		goto nomem;
2650 	/*
2651 	 * Even though the limit is exceeded at this point, reclaim
2652 	 * may have been able to free some pages.  Retry the charge
2653 	 * before killing the task.
2654 	 *
2655 	 * Only for regular pages, though: huge pages are rather
2656 	 * unlikely to succeed so close to the limit, and we fall back
2657 	 * to regular pages anyway in case of failure.
2658 	 */
2659 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2660 		goto retry;
2661 	/*
2662 	 * At task move, charge accounts can be doubly counted. So, it's
2663 	 * better to wait until the end of task_move if something is going on.
2664 	 */
2665 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2666 		goto retry;
2667 
2668 	if (nr_retries--)
2669 		goto retry;
2670 
2671 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2672 		goto nomem;
2673 
2674 	/* Avoid endless loop for tasks bypassed by the oom killer */
2675 	if (passed_oom && task_is_dying())
2676 		goto nomem;
2677 
2678 	/*
2679 	 * keep retrying as long as the memcg oom killer is able to make
2680 	 * a forward progress or bypass the charge if the oom killer
2681 	 * couldn't make any progress.
2682 	 */
2683 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2684 		       get_order(nr_pages * PAGE_SIZE));
2685 	if (oom_status == OOM_SUCCESS) {
2686 		passed_oom = true;
2687 		nr_retries = MAX_RECLAIM_RETRIES;
2688 		goto retry;
2689 	}
2690 nomem:
2691 	if (!(gfp_mask & __GFP_NOFAIL))
2692 		return -ENOMEM;
2693 force:
2694 	/*
2695 	 * The allocation either can't fail or will lead to more memory
2696 	 * being freed very soon.  Allow memory usage go over the limit
2697 	 * temporarily by force charging it.
2698 	 */
2699 	page_counter_charge(&memcg->memory, nr_pages);
2700 	if (do_memsw_account())
2701 		page_counter_charge(&memcg->memsw, nr_pages);
2702 
2703 	return 0;
2704 
2705 done_restock:
2706 	if (batch > nr_pages)
2707 		refill_stock(memcg, batch - nr_pages);
2708 
2709 	/*
2710 	 * If the hierarchy is above the normal consumption range, schedule
2711 	 * reclaim on returning to userland.  We can perform reclaim here
2712 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2713 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2714 	 * not recorded as it most likely matches current's and won't
2715 	 * change in the meantime.  As high limit is checked again before
2716 	 * reclaim, the cost of mismatch is negligible.
2717 	 */
2718 	do {
2719 		bool mem_high, swap_high;
2720 
2721 		mem_high = page_counter_read(&memcg->memory) >
2722 			READ_ONCE(memcg->memory.high);
2723 		swap_high = page_counter_read(&memcg->swap) >
2724 			READ_ONCE(memcg->swap.high);
2725 
2726 		/* Don't bother a random interrupted task */
2727 		if (in_interrupt()) {
2728 			if (mem_high) {
2729 				schedule_work(&memcg->high_work);
2730 				break;
2731 			}
2732 			continue;
2733 		}
2734 
2735 		if (mem_high || swap_high) {
2736 			/*
2737 			 * The allocating tasks in this cgroup will need to do
2738 			 * reclaim or be throttled to prevent further growth
2739 			 * of the memory or swap footprints.
2740 			 *
2741 			 * Target some best-effort fairness between the tasks,
2742 			 * and distribute reclaim work and delay penalties
2743 			 * based on how much each task is actually allocating.
2744 			 */
2745 			current->memcg_nr_pages_over_high += batch;
2746 			set_notify_resume(current);
2747 			break;
2748 		}
2749 	} while ((memcg = parent_mem_cgroup(memcg)));
2750 
2751 	return 0;
2752 }
2753 
2754 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2755 			     unsigned int nr_pages)
2756 {
2757 	if (mem_cgroup_is_root(memcg))
2758 		return 0;
2759 
2760 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2761 }
2762 
2763 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2764 {
2765 	if (mem_cgroup_is_root(memcg))
2766 		return;
2767 
2768 	page_counter_uncharge(&memcg->memory, nr_pages);
2769 	if (do_memsw_account())
2770 		page_counter_uncharge(&memcg->memsw, nr_pages);
2771 }
2772 
2773 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2774 {
2775 	VM_BUG_ON_PAGE(page_memcg(page), page);
2776 	/*
2777 	 * Any of the following ensures page's memcg stability:
2778 	 *
2779 	 * - the page lock
2780 	 * - LRU isolation
2781 	 * - lock_page_memcg()
2782 	 * - exclusive reference
2783 	 */
2784 	page->memcg_data = (unsigned long)memcg;
2785 }
2786 
2787 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2788 {
2789 	struct mem_cgroup *memcg;
2790 
2791 	rcu_read_lock();
2792 retry:
2793 	memcg = obj_cgroup_memcg(objcg);
2794 	if (unlikely(!css_tryget(&memcg->css)))
2795 		goto retry;
2796 	rcu_read_unlock();
2797 
2798 	return memcg;
2799 }
2800 
2801 #ifdef CONFIG_MEMCG_KMEM
2802 /*
2803  * The allocated objcg pointers array is not accounted directly.
2804  * Moreover, it should not come from DMA buffer and is not readily
2805  * reclaimable. So those GFP bits should be masked off.
2806  */
2807 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2808 
2809 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2810 				 gfp_t gfp, bool new_page)
2811 {
2812 	unsigned int objects = objs_per_slab_page(s, page);
2813 	unsigned long memcg_data;
2814 	void *vec;
2815 
2816 	gfp &= ~OBJCGS_CLEAR_MASK;
2817 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2818 			   page_to_nid(page));
2819 	if (!vec)
2820 		return -ENOMEM;
2821 
2822 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2823 	if (new_page) {
2824 		/*
2825 		 * If the slab page is brand new and nobody can yet access
2826 		 * it's memcg_data, no synchronization is required and
2827 		 * memcg_data can be simply assigned.
2828 		 */
2829 		page->memcg_data = memcg_data;
2830 	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2831 		/*
2832 		 * If the slab page is already in use, somebody can allocate
2833 		 * and assign obj_cgroups in parallel. In this case the existing
2834 		 * objcg vector should be reused.
2835 		 */
2836 		kfree(vec);
2837 		return 0;
2838 	}
2839 
2840 	kmemleak_not_leak(vec);
2841 	return 0;
2842 }
2843 
2844 /*
2845  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2846  *
2847  * A passed kernel object can be a slab object or a generic kernel page, so
2848  * different mechanisms for getting the memory cgroup pointer should be used.
2849  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2850  * can not know for sure how the kernel object is implemented.
2851  * mem_cgroup_from_obj() can be safely used in such cases.
2852  *
2853  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2854  * cgroup_mutex, etc.
2855  */
2856 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2857 {
2858 	struct page *page;
2859 
2860 	if (mem_cgroup_disabled())
2861 		return NULL;
2862 
2863 	page = virt_to_head_page(p);
2864 
2865 	/*
2866 	 * Slab objects are accounted individually, not per-page.
2867 	 * Memcg membership data for each individual object is saved in
2868 	 * the page->obj_cgroups.
2869 	 */
2870 	if (page_objcgs_check(page)) {
2871 		struct obj_cgroup *objcg;
2872 		unsigned int off;
2873 
2874 		off = obj_to_index(page->slab_cache, page, p);
2875 		objcg = page_objcgs(page)[off];
2876 		if (objcg)
2877 			return obj_cgroup_memcg(objcg);
2878 
2879 		return NULL;
2880 	}
2881 
2882 	/*
2883 	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2884 	 * check above could fail because the object cgroups vector wasn't set
2885 	 * at that moment, but it can be set concurrently.
2886 	 * page_memcg_check(page) will guarantee that a proper memory
2887 	 * cgroup pointer or NULL will be returned.
2888 	 */
2889 	return page_memcg_check(page);
2890 }
2891 
2892 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2893 {
2894 	struct obj_cgroup *objcg = NULL;
2895 	struct mem_cgroup *memcg;
2896 
2897 	if (memcg_kmem_bypass())
2898 		return NULL;
2899 
2900 	rcu_read_lock();
2901 	if (unlikely(active_memcg()))
2902 		memcg = active_memcg();
2903 	else
2904 		memcg = mem_cgroup_from_task(current);
2905 
2906 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2907 		objcg = rcu_dereference(memcg->objcg);
2908 		if (objcg && obj_cgroup_tryget(objcg))
2909 			break;
2910 		objcg = NULL;
2911 	}
2912 	rcu_read_unlock();
2913 
2914 	return objcg;
2915 }
2916 
2917 static int memcg_alloc_cache_id(void)
2918 {
2919 	int id, size;
2920 	int err;
2921 
2922 	id = ida_simple_get(&memcg_cache_ida,
2923 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2924 	if (id < 0)
2925 		return id;
2926 
2927 	if (id < memcg_nr_cache_ids)
2928 		return id;
2929 
2930 	/*
2931 	 * There's no space for the new id in memcg_caches arrays,
2932 	 * so we have to grow them.
2933 	 */
2934 	down_write(&memcg_cache_ids_sem);
2935 
2936 	size = 2 * (id + 1);
2937 	if (size < MEMCG_CACHES_MIN_SIZE)
2938 		size = MEMCG_CACHES_MIN_SIZE;
2939 	else if (size > MEMCG_CACHES_MAX_SIZE)
2940 		size = MEMCG_CACHES_MAX_SIZE;
2941 
2942 	err = memcg_update_all_list_lrus(size);
2943 	if (!err)
2944 		memcg_nr_cache_ids = size;
2945 
2946 	up_write(&memcg_cache_ids_sem);
2947 
2948 	if (err) {
2949 		ida_simple_remove(&memcg_cache_ida, id);
2950 		return err;
2951 	}
2952 	return id;
2953 }
2954 
2955 static void memcg_free_cache_id(int id)
2956 {
2957 	ida_simple_remove(&memcg_cache_ida, id);
2958 }
2959 
2960 /*
2961  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2962  * @objcg: object cgroup to uncharge
2963  * @nr_pages: number of pages to uncharge
2964  */
2965 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2966 				      unsigned int nr_pages)
2967 {
2968 	struct mem_cgroup *memcg;
2969 
2970 	memcg = get_mem_cgroup_from_objcg(objcg);
2971 
2972 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2973 		page_counter_uncharge(&memcg->kmem, nr_pages);
2974 	refill_stock(memcg, nr_pages);
2975 
2976 	css_put(&memcg->css);
2977 }
2978 
2979 /*
2980  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2981  * @objcg: object cgroup to charge
2982  * @gfp: reclaim mode
2983  * @nr_pages: number of pages to charge
2984  *
2985  * Returns 0 on success, an error code on failure.
2986  */
2987 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2988 				   unsigned int nr_pages)
2989 {
2990 	struct mem_cgroup *memcg;
2991 	int ret;
2992 
2993 	memcg = get_mem_cgroup_from_objcg(objcg);
2994 
2995 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2996 	if (ret)
2997 		goto out;
2998 
2999 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3000 		page_counter_charge(&memcg->kmem, nr_pages);
3001 out:
3002 	css_put(&memcg->css);
3003 
3004 	return ret;
3005 }
3006 
3007 /**
3008  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3009  * @page: page to charge
3010  * @gfp: reclaim mode
3011  * @order: allocation order
3012  *
3013  * Returns 0 on success, an error code on failure.
3014  */
3015 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3016 {
3017 	struct obj_cgroup *objcg;
3018 	int ret = 0;
3019 
3020 	objcg = get_obj_cgroup_from_current();
3021 	if (objcg) {
3022 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3023 		if (!ret) {
3024 			page->memcg_data = (unsigned long)objcg |
3025 				MEMCG_DATA_KMEM;
3026 			return 0;
3027 		}
3028 		obj_cgroup_put(objcg);
3029 	}
3030 	return ret;
3031 }
3032 
3033 /**
3034  * __memcg_kmem_uncharge_page: uncharge a kmem page
3035  * @page: page to uncharge
3036  * @order: allocation order
3037  */
3038 void __memcg_kmem_uncharge_page(struct page *page, int order)
3039 {
3040 	struct obj_cgroup *objcg;
3041 	unsigned int nr_pages = 1 << order;
3042 
3043 	if (!PageMemcgKmem(page))
3044 		return;
3045 
3046 	objcg = __page_objcg(page);
3047 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3048 	page->memcg_data = 0;
3049 	obj_cgroup_put(objcg);
3050 }
3051 
3052 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3053 		     enum node_stat_item idx, int nr)
3054 {
3055 	unsigned long flags;
3056 	struct obj_stock *stock = get_obj_stock(&flags);
3057 	int *bytes;
3058 
3059 	/*
3060 	 * Save vmstat data in stock and skip vmstat array update unless
3061 	 * accumulating over a page of vmstat data or when pgdat or idx
3062 	 * changes.
3063 	 */
3064 	if (stock->cached_objcg != objcg) {
3065 		drain_obj_stock(stock);
3066 		obj_cgroup_get(objcg);
3067 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3068 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3069 		stock->cached_objcg = objcg;
3070 		stock->cached_pgdat = pgdat;
3071 	} else if (stock->cached_pgdat != pgdat) {
3072 		/* Flush the existing cached vmstat data */
3073 		struct pglist_data *oldpg = stock->cached_pgdat;
3074 
3075 		if (stock->nr_slab_reclaimable_b) {
3076 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3077 					  stock->nr_slab_reclaimable_b);
3078 			stock->nr_slab_reclaimable_b = 0;
3079 		}
3080 		if (stock->nr_slab_unreclaimable_b) {
3081 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3082 					  stock->nr_slab_unreclaimable_b);
3083 			stock->nr_slab_unreclaimable_b = 0;
3084 		}
3085 		stock->cached_pgdat = pgdat;
3086 	}
3087 
3088 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3089 					       : &stock->nr_slab_unreclaimable_b;
3090 	/*
3091 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3092 	 * cached locally at least once before pushing it out.
3093 	 */
3094 	if (!*bytes) {
3095 		*bytes = nr;
3096 		nr = 0;
3097 	} else {
3098 		*bytes += nr;
3099 		if (abs(*bytes) > PAGE_SIZE) {
3100 			nr = *bytes;
3101 			*bytes = 0;
3102 		} else {
3103 			nr = 0;
3104 		}
3105 	}
3106 	if (nr)
3107 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3108 
3109 	put_obj_stock(flags);
3110 }
3111 
3112 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3113 {
3114 	unsigned long flags;
3115 	struct obj_stock *stock = get_obj_stock(&flags);
3116 	bool ret = false;
3117 
3118 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3119 		stock->nr_bytes -= nr_bytes;
3120 		ret = true;
3121 	}
3122 
3123 	put_obj_stock(flags);
3124 
3125 	return ret;
3126 }
3127 
3128 static void drain_obj_stock(struct obj_stock *stock)
3129 {
3130 	struct obj_cgroup *old = stock->cached_objcg;
3131 
3132 	if (!old)
3133 		return;
3134 
3135 	if (stock->nr_bytes) {
3136 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3137 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3138 
3139 		if (nr_pages)
3140 			obj_cgroup_uncharge_pages(old, nr_pages);
3141 
3142 		/*
3143 		 * The leftover is flushed to the centralized per-memcg value.
3144 		 * On the next attempt to refill obj stock it will be moved
3145 		 * to a per-cpu stock (probably, on an other CPU), see
3146 		 * refill_obj_stock().
3147 		 *
3148 		 * How often it's flushed is a trade-off between the memory
3149 		 * limit enforcement accuracy and potential CPU contention,
3150 		 * so it might be changed in the future.
3151 		 */
3152 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3153 		stock->nr_bytes = 0;
3154 	}
3155 
3156 	/*
3157 	 * Flush the vmstat data in current stock
3158 	 */
3159 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3160 		if (stock->nr_slab_reclaimable_b) {
3161 			mod_objcg_mlstate(old, stock->cached_pgdat,
3162 					  NR_SLAB_RECLAIMABLE_B,
3163 					  stock->nr_slab_reclaimable_b);
3164 			stock->nr_slab_reclaimable_b = 0;
3165 		}
3166 		if (stock->nr_slab_unreclaimable_b) {
3167 			mod_objcg_mlstate(old, stock->cached_pgdat,
3168 					  NR_SLAB_UNRECLAIMABLE_B,
3169 					  stock->nr_slab_unreclaimable_b);
3170 			stock->nr_slab_unreclaimable_b = 0;
3171 		}
3172 		stock->cached_pgdat = NULL;
3173 	}
3174 
3175 	obj_cgroup_put(old);
3176 	stock->cached_objcg = NULL;
3177 }
3178 
3179 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3180 				     struct mem_cgroup *root_memcg)
3181 {
3182 	struct mem_cgroup *memcg;
3183 
3184 	if (in_task() && stock->task_obj.cached_objcg) {
3185 		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3186 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3187 			return true;
3188 	}
3189 	if (stock->irq_obj.cached_objcg) {
3190 		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3191 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3192 			return true;
3193 	}
3194 
3195 	return false;
3196 }
3197 
3198 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3199 			     bool allow_uncharge)
3200 {
3201 	unsigned long flags;
3202 	struct obj_stock *stock = get_obj_stock(&flags);
3203 	unsigned int nr_pages = 0;
3204 
3205 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3206 		drain_obj_stock(stock);
3207 		obj_cgroup_get(objcg);
3208 		stock->cached_objcg = objcg;
3209 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3210 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3211 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3212 	}
3213 	stock->nr_bytes += nr_bytes;
3214 
3215 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3216 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3217 		stock->nr_bytes &= (PAGE_SIZE - 1);
3218 	}
3219 
3220 	put_obj_stock(flags);
3221 
3222 	if (nr_pages)
3223 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3224 }
3225 
3226 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3227 {
3228 	unsigned int nr_pages, nr_bytes;
3229 	int ret;
3230 
3231 	if (consume_obj_stock(objcg, size))
3232 		return 0;
3233 
3234 	/*
3235 	 * In theory, objcg->nr_charged_bytes can have enough
3236 	 * pre-charged bytes to satisfy the allocation. However,
3237 	 * flushing objcg->nr_charged_bytes requires two atomic
3238 	 * operations, and objcg->nr_charged_bytes can't be big.
3239 	 * The shared objcg->nr_charged_bytes can also become a
3240 	 * performance bottleneck if all tasks of the same memcg are
3241 	 * trying to update it. So it's better to ignore it and try
3242 	 * grab some new pages. The stock's nr_bytes will be flushed to
3243 	 * objcg->nr_charged_bytes later on when objcg changes.
3244 	 *
3245 	 * The stock's nr_bytes may contain enough pre-charged bytes
3246 	 * to allow one less page from being charged, but we can't rely
3247 	 * on the pre-charged bytes not being changed outside of
3248 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3249 	 * pre-charged bytes as well when charging pages. To avoid a
3250 	 * page uncharge right after a page charge, we set the
3251 	 * allow_uncharge flag to false when calling refill_obj_stock()
3252 	 * to temporarily allow the pre-charged bytes to exceed the page
3253 	 * size limit. The maximum reachable value of the pre-charged
3254 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3255 	 * race.
3256 	 */
3257 	nr_pages = size >> PAGE_SHIFT;
3258 	nr_bytes = size & (PAGE_SIZE - 1);
3259 
3260 	if (nr_bytes)
3261 		nr_pages += 1;
3262 
3263 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3264 	if (!ret && nr_bytes)
3265 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3266 
3267 	return ret;
3268 }
3269 
3270 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3271 {
3272 	refill_obj_stock(objcg, size, true);
3273 }
3274 
3275 #endif /* CONFIG_MEMCG_KMEM */
3276 
3277 /*
3278  * Because page_memcg(head) is not set on tails, set it now.
3279  */
3280 void split_page_memcg(struct page *head, unsigned int nr)
3281 {
3282 	struct mem_cgroup *memcg = page_memcg(head);
3283 	int i;
3284 
3285 	if (mem_cgroup_disabled() || !memcg)
3286 		return;
3287 
3288 	for (i = 1; i < nr; i++)
3289 		head[i].memcg_data = head->memcg_data;
3290 
3291 	if (PageMemcgKmem(head))
3292 		obj_cgroup_get_many(__page_objcg(head), nr - 1);
3293 	else
3294 		css_get_many(&memcg->css, nr - 1);
3295 }
3296 
3297 #ifdef CONFIG_MEMCG_SWAP
3298 /**
3299  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3300  * @entry: swap entry to be moved
3301  * @from:  mem_cgroup which the entry is moved from
3302  * @to:  mem_cgroup which the entry is moved to
3303  *
3304  * It succeeds only when the swap_cgroup's record for this entry is the same
3305  * as the mem_cgroup's id of @from.
3306  *
3307  * Returns 0 on success, -EINVAL on failure.
3308  *
3309  * The caller must have charged to @to, IOW, called page_counter_charge() about
3310  * both res and memsw, and called css_get().
3311  */
3312 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3313 				struct mem_cgroup *from, struct mem_cgroup *to)
3314 {
3315 	unsigned short old_id, new_id;
3316 
3317 	old_id = mem_cgroup_id(from);
3318 	new_id = mem_cgroup_id(to);
3319 
3320 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3321 		mod_memcg_state(from, MEMCG_SWAP, -1);
3322 		mod_memcg_state(to, MEMCG_SWAP, 1);
3323 		return 0;
3324 	}
3325 	return -EINVAL;
3326 }
3327 #else
3328 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3329 				struct mem_cgroup *from, struct mem_cgroup *to)
3330 {
3331 	return -EINVAL;
3332 }
3333 #endif
3334 
3335 static DEFINE_MUTEX(memcg_max_mutex);
3336 
3337 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3338 				 unsigned long max, bool memsw)
3339 {
3340 	bool enlarge = false;
3341 	bool drained = false;
3342 	int ret;
3343 	bool limits_invariant;
3344 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3345 
3346 	do {
3347 		if (signal_pending(current)) {
3348 			ret = -EINTR;
3349 			break;
3350 		}
3351 
3352 		mutex_lock(&memcg_max_mutex);
3353 		/*
3354 		 * Make sure that the new limit (memsw or memory limit) doesn't
3355 		 * break our basic invariant rule memory.max <= memsw.max.
3356 		 */
3357 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3358 					   max <= memcg->memsw.max;
3359 		if (!limits_invariant) {
3360 			mutex_unlock(&memcg_max_mutex);
3361 			ret = -EINVAL;
3362 			break;
3363 		}
3364 		if (max > counter->max)
3365 			enlarge = true;
3366 		ret = page_counter_set_max(counter, max);
3367 		mutex_unlock(&memcg_max_mutex);
3368 
3369 		if (!ret)
3370 			break;
3371 
3372 		if (!drained) {
3373 			drain_all_stock(memcg);
3374 			drained = true;
3375 			continue;
3376 		}
3377 
3378 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3379 					GFP_KERNEL, !memsw)) {
3380 			ret = -EBUSY;
3381 			break;
3382 		}
3383 	} while (true);
3384 
3385 	if (!ret && enlarge)
3386 		memcg_oom_recover(memcg);
3387 
3388 	return ret;
3389 }
3390 
3391 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3392 					    gfp_t gfp_mask,
3393 					    unsigned long *total_scanned)
3394 {
3395 	unsigned long nr_reclaimed = 0;
3396 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3397 	unsigned long reclaimed;
3398 	int loop = 0;
3399 	struct mem_cgroup_tree_per_node *mctz;
3400 	unsigned long excess;
3401 	unsigned long nr_scanned;
3402 
3403 	if (order > 0)
3404 		return 0;
3405 
3406 	mctz = soft_limit_tree_node(pgdat->node_id);
3407 
3408 	/*
3409 	 * Do not even bother to check the largest node if the root
3410 	 * is empty. Do it lockless to prevent lock bouncing. Races
3411 	 * are acceptable as soft limit is best effort anyway.
3412 	 */
3413 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3414 		return 0;
3415 
3416 	/*
3417 	 * This loop can run a while, specially if mem_cgroup's continuously
3418 	 * keep exceeding their soft limit and putting the system under
3419 	 * pressure
3420 	 */
3421 	do {
3422 		if (next_mz)
3423 			mz = next_mz;
3424 		else
3425 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3426 		if (!mz)
3427 			break;
3428 
3429 		nr_scanned = 0;
3430 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3431 						    gfp_mask, &nr_scanned);
3432 		nr_reclaimed += reclaimed;
3433 		*total_scanned += nr_scanned;
3434 		spin_lock_irq(&mctz->lock);
3435 		__mem_cgroup_remove_exceeded(mz, mctz);
3436 
3437 		/*
3438 		 * If we failed to reclaim anything from this memory cgroup
3439 		 * it is time to move on to the next cgroup
3440 		 */
3441 		next_mz = NULL;
3442 		if (!reclaimed)
3443 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3444 
3445 		excess = soft_limit_excess(mz->memcg);
3446 		/*
3447 		 * One school of thought says that we should not add
3448 		 * back the node to the tree if reclaim returns 0.
3449 		 * But our reclaim could return 0, simply because due
3450 		 * to priority we are exposing a smaller subset of
3451 		 * memory to reclaim from. Consider this as a longer
3452 		 * term TODO.
3453 		 */
3454 		/* If excess == 0, no tree ops */
3455 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3456 		spin_unlock_irq(&mctz->lock);
3457 		css_put(&mz->memcg->css);
3458 		loop++;
3459 		/*
3460 		 * Could not reclaim anything and there are no more
3461 		 * mem cgroups to try or we seem to be looping without
3462 		 * reclaiming anything.
3463 		 */
3464 		if (!nr_reclaimed &&
3465 			(next_mz == NULL ||
3466 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3467 			break;
3468 	} while (!nr_reclaimed);
3469 	if (next_mz)
3470 		css_put(&next_mz->memcg->css);
3471 	return nr_reclaimed;
3472 }
3473 
3474 /*
3475  * Reclaims as many pages from the given memcg as possible.
3476  *
3477  * Caller is responsible for holding css reference for memcg.
3478  */
3479 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3480 {
3481 	int nr_retries = MAX_RECLAIM_RETRIES;
3482 
3483 	/* we call try-to-free pages for make this cgroup empty */
3484 	lru_add_drain_all();
3485 
3486 	drain_all_stock(memcg);
3487 
3488 	/* try to free all pages in this cgroup */
3489 	while (nr_retries && page_counter_read(&memcg->memory)) {
3490 		if (signal_pending(current))
3491 			return -EINTR;
3492 
3493 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3494 			nr_retries--;
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3501 					    char *buf, size_t nbytes,
3502 					    loff_t off)
3503 {
3504 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3505 
3506 	if (mem_cgroup_is_root(memcg))
3507 		return -EINVAL;
3508 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3509 }
3510 
3511 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3512 				     struct cftype *cft)
3513 {
3514 	return 1;
3515 }
3516 
3517 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3518 				      struct cftype *cft, u64 val)
3519 {
3520 	if (val == 1)
3521 		return 0;
3522 
3523 	pr_warn_once("Non-hierarchical mode is deprecated. "
3524 		     "Please report your usecase to linux-mm@kvack.org if you "
3525 		     "depend on this functionality.\n");
3526 
3527 	return -EINVAL;
3528 }
3529 
3530 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3531 {
3532 	unsigned long val;
3533 
3534 	if (mem_cgroup_is_root(memcg)) {
3535 		mem_cgroup_flush_stats();
3536 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3537 			memcg_page_state(memcg, NR_ANON_MAPPED);
3538 		if (swap)
3539 			val += memcg_page_state(memcg, MEMCG_SWAP);
3540 	} else {
3541 		if (!swap)
3542 			val = page_counter_read(&memcg->memory);
3543 		else
3544 			val = page_counter_read(&memcg->memsw);
3545 	}
3546 	return val;
3547 }
3548 
3549 enum {
3550 	RES_USAGE,
3551 	RES_LIMIT,
3552 	RES_MAX_USAGE,
3553 	RES_FAILCNT,
3554 	RES_SOFT_LIMIT,
3555 };
3556 
3557 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3558 			       struct cftype *cft)
3559 {
3560 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3561 	struct page_counter *counter;
3562 
3563 	switch (MEMFILE_TYPE(cft->private)) {
3564 	case _MEM:
3565 		counter = &memcg->memory;
3566 		break;
3567 	case _MEMSWAP:
3568 		counter = &memcg->memsw;
3569 		break;
3570 	case _KMEM:
3571 		counter = &memcg->kmem;
3572 		break;
3573 	case _TCP:
3574 		counter = &memcg->tcpmem;
3575 		break;
3576 	default:
3577 		BUG();
3578 	}
3579 
3580 	switch (MEMFILE_ATTR(cft->private)) {
3581 	case RES_USAGE:
3582 		if (counter == &memcg->memory)
3583 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3584 		if (counter == &memcg->memsw)
3585 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3586 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3587 	case RES_LIMIT:
3588 		return (u64)counter->max * PAGE_SIZE;
3589 	case RES_MAX_USAGE:
3590 		return (u64)counter->watermark * PAGE_SIZE;
3591 	case RES_FAILCNT:
3592 		return counter->failcnt;
3593 	case RES_SOFT_LIMIT:
3594 		return (u64)memcg->soft_limit * PAGE_SIZE;
3595 	default:
3596 		BUG();
3597 	}
3598 }
3599 
3600 #ifdef CONFIG_MEMCG_KMEM
3601 static int memcg_online_kmem(struct mem_cgroup *memcg)
3602 {
3603 	struct obj_cgroup *objcg;
3604 	int memcg_id;
3605 
3606 	if (cgroup_memory_nokmem)
3607 		return 0;
3608 
3609 	BUG_ON(memcg->kmemcg_id >= 0);
3610 
3611 	memcg_id = memcg_alloc_cache_id();
3612 	if (memcg_id < 0)
3613 		return memcg_id;
3614 
3615 	objcg = obj_cgroup_alloc();
3616 	if (!objcg) {
3617 		memcg_free_cache_id(memcg_id);
3618 		return -ENOMEM;
3619 	}
3620 	objcg->memcg = memcg;
3621 	rcu_assign_pointer(memcg->objcg, objcg);
3622 
3623 	static_branch_enable(&memcg_kmem_enabled_key);
3624 
3625 	memcg->kmemcg_id = memcg_id;
3626 
3627 	return 0;
3628 }
3629 
3630 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3631 {
3632 	struct mem_cgroup *parent;
3633 	int kmemcg_id;
3634 
3635 	if (memcg->kmemcg_id == -1)
3636 		return;
3637 
3638 	parent = parent_mem_cgroup(memcg);
3639 	if (!parent)
3640 		parent = root_mem_cgroup;
3641 
3642 	memcg_reparent_objcgs(memcg, parent);
3643 
3644 	kmemcg_id = memcg->kmemcg_id;
3645 	BUG_ON(kmemcg_id < 0);
3646 
3647 	/*
3648 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3649 	 * corresponding to this cgroup are guaranteed to remain empty.
3650 	 * The ordering is imposed by list_lru_node->lock taken by
3651 	 * memcg_drain_all_list_lrus().
3652 	 */
3653 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3654 
3655 	memcg_free_cache_id(kmemcg_id);
3656 	memcg->kmemcg_id = -1;
3657 }
3658 #else
3659 static int memcg_online_kmem(struct mem_cgroup *memcg)
3660 {
3661 	return 0;
3662 }
3663 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3664 {
3665 }
3666 #endif /* CONFIG_MEMCG_KMEM */
3667 
3668 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3669 {
3670 	int ret;
3671 
3672 	mutex_lock(&memcg_max_mutex);
3673 
3674 	ret = page_counter_set_max(&memcg->tcpmem, max);
3675 	if (ret)
3676 		goto out;
3677 
3678 	if (!memcg->tcpmem_active) {
3679 		/*
3680 		 * The active flag needs to be written after the static_key
3681 		 * update. This is what guarantees that the socket activation
3682 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3683 		 * for details, and note that we don't mark any socket as
3684 		 * belonging to this memcg until that flag is up.
3685 		 *
3686 		 * We need to do this, because static_keys will span multiple
3687 		 * sites, but we can't control their order. If we mark a socket
3688 		 * as accounted, but the accounting functions are not patched in
3689 		 * yet, we'll lose accounting.
3690 		 *
3691 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3692 		 * because when this value change, the code to process it is not
3693 		 * patched in yet.
3694 		 */
3695 		static_branch_inc(&memcg_sockets_enabled_key);
3696 		memcg->tcpmem_active = true;
3697 	}
3698 out:
3699 	mutex_unlock(&memcg_max_mutex);
3700 	return ret;
3701 }
3702 
3703 /*
3704  * The user of this function is...
3705  * RES_LIMIT.
3706  */
3707 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3708 				char *buf, size_t nbytes, loff_t off)
3709 {
3710 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3711 	unsigned long nr_pages;
3712 	int ret;
3713 
3714 	buf = strstrip(buf);
3715 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3716 	if (ret)
3717 		return ret;
3718 
3719 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3720 	case RES_LIMIT:
3721 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3722 			ret = -EINVAL;
3723 			break;
3724 		}
3725 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3726 		case _MEM:
3727 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3728 			break;
3729 		case _MEMSWAP:
3730 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3731 			break;
3732 		case _KMEM:
3733 			/* kmem.limit_in_bytes is deprecated. */
3734 			ret = -EOPNOTSUPP;
3735 			break;
3736 		case _TCP:
3737 			ret = memcg_update_tcp_max(memcg, nr_pages);
3738 			break;
3739 		}
3740 		break;
3741 	case RES_SOFT_LIMIT:
3742 		memcg->soft_limit = nr_pages;
3743 		ret = 0;
3744 		break;
3745 	}
3746 	return ret ?: nbytes;
3747 }
3748 
3749 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3750 				size_t nbytes, loff_t off)
3751 {
3752 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3753 	struct page_counter *counter;
3754 
3755 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3756 	case _MEM:
3757 		counter = &memcg->memory;
3758 		break;
3759 	case _MEMSWAP:
3760 		counter = &memcg->memsw;
3761 		break;
3762 	case _KMEM:
3763 		counter = &memcg->kmem;
3764 		break;
3765 	case _TCP:
3766 		counter = &memcg->tcpmem;
3767 		break;
3768 	default:
3769 		BUG();
3770 	}
3771 
3772 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3773 	case RES_MAX_USAGE:
3774 		page_counter_reset_watermark(counter);
3775 		break;
3776 	case RES_FAILCNT:
3777 		counter->failcnt = 0;
3778 		break;
3779 	default:
3780 		BUG();
3781 	}
3782 
3783 	return nbytes;
3784 }
3785 
3786 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3787 					struct cftype *cft)
3788 {
3789 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3790 }
3791 
3792 #ifdef CONFIG_MMU
3793 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3794 					struct cftype *cft, u64 val)
3795 {
3796 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3797 
3798 	if (val & ~MOVE_MASK)
3799 		return -EINVAL;
3800 
3801 	/*
3802 	 * No kind of locking is needed in here, because ->can_attach() will
3803 	 * check this value once in the beginning of the process, and then carry
3804 	 * on with stale data. This means that changes to this value will only
3805 	 * affect task migrations starting after the change.
3806 	 */
3807 	memcg->move_charge_at_immigrate = val;
3808 	return 0;
3809 }
3810 #else
3811 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3812 					struct cftype *cft, u64 val)
3813 {
3814 	return -ENOSYS;
3815 }
3816 #endif
3817 
3818 #ifdef CONFIG_NUMA
3819 
3820 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3821 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3822 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3823 
3824 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3825 				int nid, unsigned int lru_mask, bool tree)
3826 {
3827 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3828 	unsigned long nr = 0;
3829 	enum lru_list lru;
3830 
3831 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3832 
3833 	for_each_lru(lru) {
3834 		if (!(BIT(lru) & lru_mask))
3835 			continue;
3836 		if (tree)
3837 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3838 		else
3839 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3840 	}
3841 	return nr;
3842 }
3843 
3844 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3845 					     unsigned int lru_mask,
3846 					     bool tree)
3847 {
3848 	unsigned long nr = 0;
3849 	enum lru_list lru;
3850 
3851 	for_each_lru(lru) {
3852 		if (!(BIT(lru) & lru_mask))
3853 			continue;
3854 		if (tree)
3855 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3856 		else
3857 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3858 	}
3859 	return nr;
3860 }
3861 
3862 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3863 {
3864 	struct numa_stat {
3865 		const char *name;
3866 		unsigned int lru_mask;
3867 	};
3868 
3869 	static const struct numa_stat stats[] = {
3870 		{ "total", LRU_ALL },
3871 		{ "file", LRU_ALL_FILE },
3872 		{ "anon", LRU_ALL_ANON },
3873 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3874 	};
3875 	const struct numa_stat *stat;
3876 	int nid;
3877 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3878 
3879 	mem_cgroup_flush_stats();
3880 
3881 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3882 		seq_printf(m, "%s=%lu", stat->name,
3883 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3884 						   false));
3885 		for_each_node_state(nid, N_MEMORY)
3886 			seq_printf(m, " N%d=%lu", nid,
3887 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3888 							stat->lru_mask, false));
3889 		seq_putc(m, '\n');
3890 	}
3891 
3892 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3893 
3894 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3895 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3896 						   true));
3897 		for_each_node_state(nid, N_MEMORY)
3898 			seq_printf(m, " N%d=%lu", nid,
3899 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3900 							stat->lru_mask, true));
3901 		seq_putc(m, '\n');
3902 	}
3903 
3904 	return 0;
3905 }
3906 #endif /* CONFIG_NUMA */
3907 
3908 static const unsigned int memcg1_stats[] = {
3909 	NR_FILE_PAGES,
3910 	NR_ANON_MAPPED,
3911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3912 	NR_ANON_THPS,
3913 #endif
3914 	NR_SHMEM,
3915 	NR_FILE_MAPPED,
3916 	NR_FILE_DIRTY,
3917 	NR_WRITEBACK,
3918 	MEMCG_SWAP,
3919 };
3920 
3921 static const char *const memcg1_stat_names[] = {
3922 	"cache",
3923 	"rss",
3924 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3925 	"rss_huge",
3926 #endif
3927 	"shmem",
3928 	"mapped_file",
3929 	"dirty",
3930 	"writeback",
3931 	"swap",
3932 };
3933 
3934 /* Universal VM events cgroup1 shows, original sort order */
3935 static const unsigned int memcg1_events[] = {
3936 	PGPGIN,
3937 	PGPGOUT,
3938 	PGFAULT,
3939 	PGMAJFAULT,
3940 };
3941 
3942 static int memcg_stat_show(struct seq_file *m, void *v)
3943 {
3944 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3945 	unsigned long memory, memsw;
3946 	struct mem_cgroup *mi;
3947 	unsigned int i;
3948 
3949 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3950 
3951 	mem_cgroup_flush_stats();
3952 
3953 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3954 		unsigned long nr;
3955 
3956 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3957 			continue;
3958 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3959 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3960 	}
3961 
3962 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3963 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3964 			   memcg_events_local(memcg, memcg1_events[i]));
3965 
3966 	for (i = 0; i < NR_LRU_LISTS; i++)
3967 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3968 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3969 			   PAGE_SIZE);
3970 
3971 	/* Hierarchical information */
3972 	memory = memsw = PAGE_COUNTER_MAX;
3973 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3974 		memory = min(memory, READ_ONCE(mi->memory.max));
3975 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3976 	}
3977 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3978 		   (u64)memory * PAGE_SIZE);
3979 	if (do_memsw_account())
3980 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3981 			   (u64)memsw * PAGE_SIZE);
3982 
3983 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3984 		unsigned long nr;
3985 
3986 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3987 			continue;
3988 		nr = memcg_page_state(memcg, memcg1_stats[i]);
3989 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3990 						(u64)nr * PAGE_SIZE);
3991 	}
3992 
3993 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3994 		seq_printf(m, "total_%s %llu\n",
3995 			   vm_event_name(memcg1_events[i]),
3996 			   (u64)memcg_events(memcg, memcg1_events[i]));
3997 
3998 	for (i = 0; i < NR_LRU_LISTS; i++)
3999 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4000 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4001 			   PAGE_SIZE);
4002 
4003 #ifdef CONFIG_DEBUG_VM
4004 	{
4005 		pg_data_t *pgdat;
4006 		struct mem_cgroup_per_node *mz;
4007 		unsigned long anon_cost = 0;
4008 		unsigned long file_cost = 0;
4009 
4010 		for_each_online_pgdat(pgdat) {
4011 			mz = memcg->nodeinfo[pgdat->node_id];
4012 
4013 			anon_cost += mz->lruvec.anon_cost;
4014 			file_cost += mz->lruvec.file_cost;
4015 		}
4016 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4017 		seq_printf(m, "file_cost %lu\n", file_cost);
4018 	}
4019 #endif
4020 
4021 	return 0;
4022 }
4023 
4024 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4025 				      struct cftype *cft)
4026 {
4027 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4028 
4029 	return mem_cgroup_swappiness(memcg);
4030 }
4031 
4032 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4033 				       struct cftype *cft, u64 val)
4034 {
4035 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4036 
4037 	if (val > 200)
4038 		return -EINVAL;
4039 
4040 	if (!mem_cgroup_is_root(memcg))
4041 		memcg->swappiness = val;
4042 	else
4043 		vm_swappiness = val;
4044 
4045 	return 0;
4046 }
4047 
4048 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4049 {
4050 	struct mem_cgroup_threshold_ary *t;
4051 	unsigned long usage;
4052 	int i;
4053 
4054 	rcu_read_lock();
4055 	if (!swap)
4056 		t = rcu_dereference(memcg->thresholds.primary);
4057 	else
4058 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4059 
4060 	if (!t)
4061 		goto unlock;
4062 
4063 	usage = mem_cgroup_usage(memcg, swap);
4064 
4065 	/*
4066 	 * current_threshold points to threshold just below or equal to usage.
4067 	 * If it's not true, a threshold was crossed after last
4068 	 * call of __mem_cgroup_threshold().
4069 	 */
4070 	i = t->current_threshold;
4071 
4072 	/*
4073 	 * Iterate backward over array of thresholds starting from
4074 	 * current_threshold and check if a threshold is crossed.
4075 	 * If none of thresholds below usage is crossed, we read
4076 	 * only one element of the array here.
4077 	 */
4078 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4079 		eventfd_signal(t->entries[i].eventfd, 1);
4080 
4081 	/* i = current_threshold + 1 */
4082 	i++;
4083 
4084 	/*
4085 	 * Iterate forward over array of thresholds starting from
4086 	 * current_threshold+1 and check if a threshold is crossed.
4087 	 * If none of thresholds above usage is crossed, we read
4088 	 * only one element of the array here.
4089 	 */
4090 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4091 		eventfd_signal(t->entries[i].eventfd, 1);
4092 
4093 	/* Update current_threshold */
4094 	t->current_threshold = i - 1;
4095 unlock:
4096 	rcu_read_unlock();
4097 }
4098 
4099 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4100 {
4101 	while (memcg) {
4102 		__mem_cgroup_threshold(memcg, false);
4103 		if (do_memsw_account())
4104 			__mem_cgroup_threshold(memcg, true);
4105 
4106 		memcg = parent_mem_cgroup(memcg);
4107 	}
4108 }
4109 
4110 static int compare_thresholds(const void *a, const void *b)
4111 {
4112 	const struct mem_cgroup_threshold *_a = a;
4113 	const struct mem_cgroup_threshold *_b = b;
4114 
4115 	if (_a->threshold > _b->threshold)
4116 		return 1;
4117 
4118 	if (_a->threshold < _b->threshold)
4119 		return -1;
4120 
4121 	return 0;
4122 }
4123 
4124 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4125 {
4126 	struct mem_cgroup_eventfd_list *ev;
4127 
4128 	spin_lock(&memcg_oom_lock);
4129 
4130 	list_for_each_entry(ev, &memcg->oom_notify, list)
4131 		eventfd_signal(ev->eventfd, 1);
4132 
4133 	spin_unlock(&memcg_oom_lock);
4134 	return 0;
4135 }
4136 
4137 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4138 {
4139 	struct mem_cgroup *iter;
4140 
4141 	for_each_mem_cgroup_tree(iter, memcg)
4142 		mem_cgroup_oom_notify_cb(iter);
4143 }
4144 
4145 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4146 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4147 {
4148 	struct mem_cgroup_thresholds *thresholds;
4149 	struct mem_cgroup_threshold_ary *new;
4150 	unsigned long threshold;
4151 	unsigned long usage;
4152 	int i, size, ret;
4153 
4154 	ret = page_counter_memparse(args, "-1", &threshold);
4155 	if (ret)
4156 		return ret;
4157 
4158 	mutex_lock(&memcg->thresholds_lock);
4159 
4160 	if (type == _MEM) {
4161 		thresholds = &memcg->thresholds;
4162 		usage = mem_cgroup_usage(memcg, false);
4163 	} else if (type == _MEMSWAP) {
4164 		thresholds = &memcg->memsw_thresholds;
4165 		usage = mem_cgroup_usage(memcg, true);
4166 	} else
4167 		BUG();
4168 
4169 	/* Check if a threshold crossed before adding a new one */
4170 	if (thresholds->primary)
4171 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4172 
4173 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4174 
4175 	/* Allocate memory for new array of thresholds */
4176 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4177 	if (!new) {
4178 		ret = -ENOMEM;
4179 		goto unlock;
4180 	}
4181 	new->size = size;
4182 
4183 	/* Copy thresholds (if any) to new array */
4184 	if (thresholds->primary)
4185 		memcpy(new->entries, thresholds->primary->entries,
4186 		       flex_array_size(new, entries, size - 1));
4187 
4188 	/* Add new threshold */
4189 	new->entries[size - 1].eventfd = eventfd;
4190 	new->entries[size - 1].threshold = threshold;
4191 
4192 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4193 	sort(new->entries, size, sizeof(*new->entries),
4194 			compare_thresholds, NULL);
4195 
4196 	/* Find current threshold */
4197 	new->current_threshold = -1;
4198 	for (i = 0; i < size; i++) {
4199 		if (new->entries[i].threshold <= usage) {
4200 			/*
4201 			 * new->current_threshold will not be used until
4202 			 * rcu_assign_pointer(), so it's safe to increment
4203 			 * it here.
4204 			 */
4205 			++new->current_threshold;
4206 		} else
4207 			break;
4208 	}
4209 
4210 	/* Free old spare buffer and save old primary buffer as spare */
4211 	kfree(thresholds->spare);
4212 	thresholds->spare = thresholds->primary;
4213 
4214 	rcu_assign_pointer(thresholds->primary, new);
4215 
4216 	/* To be sure that nobody uses thresholds */
4217 	synchronize_rcu();
4218 
4219 unlock:
4220 	mutex_unlock(&memcg->thresholds_lock);
4221 
4222 	return ret;
4223 }
4224 
4225 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4226 	struct eventfd_ctx *eventfd, const char *args)
4227 {
4228 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4229 }
4230 
4231 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4232 	struct eventfd_ctx *eventfd, const char *args)
4233 {
4234 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4235 }
4236 
4237 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4238 	struct eventfd_ctx *eventfd, enum res_type type)
4239 {
4240 	struct mem_cgroup_thresholds *thresholds;
4241 	struct mem_cgroup_threshold_ary *new;
4242 	unsigned long usage;
4243 	int i, j, size, entries;
4244 
4245 	mutex_lock(&memcg->thresholds_lock);
4246 
4247 	if (type == _MEM) {
4248 		thresholds = &memcg->thresholds;
4249 		usage = mem_cgroup_usage(memcg, false);
4250 	} else if (type == _MEMSWAP) {
4251 		thresholds = &memcg->memsw_thresholds;
4252 		usage = mem_cgroup_usage(memcg, true);
4253 	} else
4254 		BUG();
4255 
4256 	if (!thresholds->primary)
4257 		goto unlock;
4258 
4259 	/* Check if a threshold crossed before removing */
4260 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4261 
4262 	/* Calculate new number of threshold */
4263 	size = entries = 0;
4264 	for (i = 0; i < thresholds->primary->size; i++) {
4265 		if (thresholds->primary->entries[i].eventfd != eventfd)
4266 			size++;
4267 		else
4268 			entries++;
4269 	}
4270 
4271 	new = thresholds->spare;
4272 
4273 	/* If no items related to eventfd have been cleared, nothing to do */
4274 	if (!entries)
4275 		goto unlock;
4276 
4277 	/* Set thresholds array to NULL if we don't have thresholds */
4278 	if (!size) {
4279 		kfree(new);
4280 		new = NULL;
4281 		goto swap_buffers;
4282 	}
4283 
4284 	new->size = size;
4285 
4286 	/* Copy thresholds and find current threshold */
4287 	new->current_threshold = -1;
4288 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4289 		if (thresholds->primary->entries[i].eventfd == eventfd)
4290 			continue;
4291 
4292 		new->entries[j] = thresholds->primary->entries[i];
4293 		if (new->entries[j].threshold <= usage) {
4294 			/*
4295 			 * new->current_threshold will not be used
4296 			 * until rcu_assign_pointer(), so it's safe to increment
4297 			 * it here.
4298 			 */
4299 			++new->current_threshold;
4300 		}
4301 		j++;
4302 	}
4303 
4304 swap_buffers:
4305 	/* Swap primary and spare array */
4306 	thresholds->spare = thresholds->primary;
4307 
4308 	rcu_assign_pointer(thresholds->primary, new);
4309 
4310 	/* To be sure that nobody uses thresholds */
4311 	synchronize_rcu();
4312 
4313 	/* If all events are unregistered, free the spare array */
4314 	if (!new) {
4315 		kfree(thresholds->spare);
4316 		thresholds->spare = NULL;
4317 	}
4318 unlock:
4319 	mutex_unlock(&memcg->thresholds_lock);
4320 }
4321 
4322 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4323 	struct eventfd_ctx *eventfd)
4324 {
4325 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4326 }
4327 
4328 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4329 	struct eventfd_ctx *eventfd)
4330 {
4331 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4332 }
4333 
4334 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4335 	struct eventfd_ctx *eventfd, const char *args)
4336 {
4337 	struct mem_cgroup_eventfd_list *event;
4338 
4339 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4340 	if (!event)
4341 		return -ENOMEM;
4342 
4343 	spin_lock(&memcg_oom_lock);
4344 
4345 	event->eventfd = eventfd;
4346 	list_add(&event->list, &memcg->oom_notify);
4347 
4348 	/* already in OOM ? */
4349 	if (memcg->under_oom)
4350 		eventfd_signal(eventfd, 1);
4351 	spin_unlock(&memcg_oom_lock);
4352 
4353 	return 0;
4354 }
4355 
4356 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4357 	struct eventfd_ctx *eventfd)
4358 {
4359 	struct mem_cgroup_eventfd_list *ev, *tmp;
4360 
4361 	spin_lock(&memcg_oom_lock);
4362 
4363 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4364 		if (ev->eventfd == eventfd) {
4365 			list_del(&ev->list);
4366 			kfree(ev);
4367 		}
4368 	}
4369 
4370 	spin_unlock(&memcg_oom_lock);
4371 }
4372 
4373 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4374 {
4375 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4376 
4377 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4378 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4379 	seq_printf(sf, "oom_kill %lu\n",
4380 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4381 	return 0;
4382 }
4383 
4384 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4385 	struct cftype *cft, u64 val)
4386 {
4387 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4388 
4389 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4390 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4391 		return -EINVAL;
4392 
4393 	memcg->oom_kill_disable = val;
4394 	if (!val)
4395 		memcg_oom_recover(memcg);
4396 
4397 	return 0;
4398 }
4399 
4400 #ifdef CONFIG_CGROUP_WRITEBACK
4401 
4402 #include <trace/events/writeback.h>
4403 
4404 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4405 {
4406 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4407 }
4408 
4409 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4410 {
4411 	wb_domain_exit(&memcg->cgwb_domain);
4412 }
4413 
4414 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4415 {
4416 	wb_domain_size_changed(&memcg->cgwb_domain);
4417 }
4418 
4419 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4420 {
4421 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4422 
4423 	if (!memcg->css.parent)
4424 		return NULL;
4425 
4426 	return &memcg->cgwb_domain;
4427 }
4428 
4429 /**
4430  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4431  * @wb: bdi_writeback in question
4432  * @pfilepages: out parameter for number of file pages
4433  * @pheadroom: out parameter for number of allocatable pages according to memcg
4434  * @pdirty: out parameter for number of dirty pages
4435  * @pwriteback: out parameter for number of pages under writeback
4436  *
4437  * Determine the numbers of file, headroom, dirty, and writeback pages in
4438  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4439  * is a bit more involved.
4440  *
4441  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4442  * headroom is calculated as the lowest headroom of itself and the
4443  * ancestors.  Note that this doesn't consider the actual amount of
4444  * available memory in the system.  The caller should further cap
4445  * *@pheadroom accordingly.
4446  */
4447 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4448 			 unsigned long *pheadroom, unsigned long *pdirty,
4449 			 unsigned long *pwriteback)
4450 {
4451 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4452 	struct mem_cgroup *parent;
4453 
4454 	mem_cgroup_flush_stats();
4455 
4456 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4457 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4458 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4459 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4460 
4461 	*pheadroom = PAGE_COUNTER_MAX;
4462 	while ((parent = parent_mem_cgroup(memcg))) {
4463 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4464 					    READ_ONCE(memcg->memory.high));
4465 		unsigned long used = page_counter_read(&memcg->memory);
4466 
4467 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4468 		memcg = parent;
4469 	}
4470 }
4471 
4472 /*
4473  * Foreign dirty flushing
4474  *
4475  * There's an inherent mismatch between memcg and writeback.  The former
4476  * tracks ownership per-page while the latter per-inode.  This was a
4477  * deliberate design decision because honoring per-page ownership in the
4478  * writeback path is complicated, may lead to higher CPU and IO overheads
4479  * and deemed unnecessary given that write-sharing an inode across
4480  * different cgroups isn't a common use-case.
4481  *
4482  * Combined with inode majority-writer ownership switching, this works well
4483  * enough in most cases but there are some pathological cases.  For
4484  * example, let's say there are two cgroups A and B which keep writing to
4485  * different but confined parts of the same inode.  B owns the inode and
4486  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4487  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4488  * triggering background writeback.  A will be slowed down without a way to
4489  * make writeback of the dirty pages happen.
4490  *
4491  * Conditions like the above can lead to a cgroup getting repeatedly and
4492  * severely throttled after making some progress after each
4493  * dirty_expire_interval while the underlying IO device is almost
4494  * completely idle.
4495  *
4496  * Solving this problem completely requires matching the ownership tracking
4497  * granularities between memcg and writeback in either direction.  However,
4498  * the more egregious behaviors can be avoided by simply remembering the
4499  * most recent foreign dirtying events and initiating remote flushes on
4500  * them when local writeback isn't enough to keep the memory clean enough.
4501  *
4502  * The following two functions implement such mechanism.  When a foreign
4503  * page - a page whose memcg and writeback ownerships don't match - is
4504  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4505  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4506  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4507  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4508  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4509  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4510  * limited to MEMCG_CGWB_FRN_CNT.
4511  *
4512  * The mechanism only remembers IDs and doesn't hold any object references.
4513  * As being wrong occasionally doesn't matter, updates and accesses to the
4514  * records are lockless and racy.
4515  */
4516 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4517 					     struct bdi_writeback *wb)
4518 {
4519 	struct mem_cgroup *memcg = page_memcg(page);
4520 	struct memcg_cgwb_frn *frn;
4521 	u64 now = get_jiffies_64();
4522 	u64 oldest_at = now;
4523 	int oldest = -1;
4524 	int i;
4525 
4526 	trace_track_foreign_dirty(page, wb);
4527 
4528 	/*
4529 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4530 	 * using it.  If not replace the oldest one which isn't being
4531 	 * written out.
4532 	 */
4533 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4534 		frn = &memcg->cgwb_frn[i];
4535 		if (frn->bdi_id == wb->bdi->id &&
4536 		    frn->memcg_id == wb->memcg_css->id)
4537 			break;
4538 		if (time_before64(frn->at, oldest_at) &&
4539 		    atomic_read(&frn->done.cnt) == 1) {
4540 			oldest = i;
4541 			oldest_at = frn->at;
4542 		}
4543 	}
4544 
4545 	if (i < MEMCG_CGWB_FRN_CNT) {
4546 		/*
4547 		 * Re-using an existing one.  Update timestamp lazily to
4548 		 * avoid making the cacheline hot.  We want them to be
4549 		 * reasonably up-to-date and significantly shorter than
4550 		 * dirty_expire_interval as that's what expires the record.
4551 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4552 		 */
4553 		unsigned long update_intv =
4554 			min_t(unsigned long, HZ,
4555 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4556 
4557 		if (time_before64(frn->at, now - update_intv))
4558 			frn->at = now;
4559 	} else if (oldest >= 0) {
4560 		/* replace the oldest free one */
4561 		frn = &memcg->cgwb_frn[oldest];
4562 		frn->bdi_id = wb->bdi->id;
4563 		frn->memcg_id = wb->memcg_css->id;
4564 		frn->at = now;
4565 	}
4566 }
4567 
4568 /* issue foreign writeback flushes for recorded foreign dirtying events */
4569 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4570 {
4571 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4572 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4573 	u64 now = jiffies_64;
4574 	int i;
4575 
4576 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4577 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4578 
4579 		/*
4580 		 * If the record is older than dirty_expire_interval,
4581 		 * writeback on it has already started.  No need to kick it
4582 		 * off again.  Also, don't start a new one if there's
4583 		 * already one in flight.
4584 		 */
4585 		if (time_after64(frn->at, now - intv) &&
4586 		    atomic_read(&frn->done.cnt) == 1) {
4587 			frn->at = 0;
4588 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4589 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4590 					       WB_REASON_FOREIGN_FLUSH,
4591 					       &frn->done);
4592 		}
4593 	}
4594 }
4595 
4596 #else	/* CONFIG_CGROUP_WRITEBACK */
4597 
4598 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4599 {
4600 	return 0;
4601 }
4602 
4603 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4604 {
4605 }
4606 
4607 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4608 {
4609 }
4610 
4611 #endif	/* CONFIG_CGROUP_WRITEBACK */
4612 
4613 /*
4614  * DO NOT USE IN NEW FILES.
4615  *
4616  * "cgroup.event_control" implementation.
4617  *
4618  * This is way over-engineered.  It tries to support fully configurable
4619  * events for each user.  Such level of flexibility is completely
4620  * unnecessary especially in the light of the planned unified hierarchy.
4621  *
4622  * Please deprecate this and replace with something simpler if at all
4623  * possible.
4624  */
4625 
4626 /*
4627  * Unregister event and free resources.
4628  *
4629  * Gets called from workqueue.
4630  */
4631 static void memcg_event_remove(struct work_struct *work)
4632 {
4633 	struct mem_cgroup_event *event =
4634 		container_of(work, struct mem_cgroup_event, remove);
4635 	struct mem_cgroup *memcg = event->memcg;
4636 
4637 	remove_wait_queue(event->wqh, &event->wait);
4638 
4639 	event->unregister_event(memcg, event->eventfd);
4640 
4641 	/* Notify userspace the event is going away. */
4642 	eventfd_signal(event->eventfd, 1);
4643 
4644 	eventfd_ctx_put(event->eventfd);
4645 	kfree(event);
4646 	css_put(&memcg->css);
4647 }
4648 
4649 /*
4650  * Gets called on EPOLLHUP on eventfd when user closes it.
4651  *
4652  * Called with wqh->lock held and interrupts disabled.
4653  */
4654 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4655 			    int sync, void *key)
4656 {
4657 	struct mem_cgroup_event *event =
4658 		container_of(wait, struct mem_cgroup_event, wait);
4659 	struct mem_cgroup *memcg = event->memcg;
4660 	__poll_t flags = key_to_poll(key);
4661 
4662 	if (flags & EPOLLHUP) {
4663 		/*
4664 		 * If the event has been detached at cgroup removal, we
4665 		 * can simply return knowing the other side will cleanup
4666 		 * for us.
4667 		 *
4668 		 * We can't race against event freeing since the other
4669 		 * side will require wqh->lock via remove_wait_queue(),
4670 		 * which we hold.
4671 		 */
4672 		spin_lock(&memcg->event_list_lock);
4673 		if (!list_empty(&event->list)) {
4674 			list_del_init(&event->list);
4675 			/*
4676 			 * We are in atomic context, but cgroup_event_remove()
4677 			 * may sleep, so we have to call it in workqueue.
4678 			 */
4679 			schedule_work(&event->remove);
4680 		}
4681 		spin_unlock(&memcg->event_list_lock);
4682 	}
4683 
4684 	return 0;
4685 }
4686 
4687 static void memcg_event_ptable_queue_proc(struct file *file,
4688 		wait_queue_head_t *wqh, poll_table *pt)
4689 {
4690 	struct mem_cgroup_event *event =
4691 		container_of(pt, struct mem_cgroup_event, pt);
4692 
4693 	event->wqh = wqh;
4694 	add_wait_queue(wqh, &event->wait);
4695 }
4696 
4697 /*
4698  * DO NOT USE IN NEW FILES.
4699  *
4700  * Parse input and register new cgroup event handler.
4701  *
4702  * Input must be in format '<event_fd> <control_fd> <args>'.
4703  * Interpretation of args is defined by control file implementation.
4704  */
4705 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4706 					 char *buf, size_t nbytes, loff_t off)
4707 {
4708 	struct cgroup_subsys_state *css = of_css(of);
4709 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4710 	struct mem_cgroup_event *event;
4711 	struct cgroup_subsys_state *cfile_css;
4712 	unsigned int efd, cfd;
4713 	struct fd efile;
4714 	struct fd cfile;
4715 	const char *name;
4716 	char *endp;
4717 	int ret;
4718 
4719 	buf = strstrip(buf);
4720 
4721 	efd = simple_strtoul(buf, &endp, 10);
4722 	if (*endp != ' ')
4723 		return -EINVAL;
4724 	buf = endp + 1;
4725 
4726 	cfd = simple_strtoul(buf, &endp, 10);
4727 	if ((*endp != ' ') && (*endp != '\0'))
4728 		return -EINVAL;
4729 	buf = endp + 1;
4730 
4731 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4732 	if (!event)
4733 		return -ENOMEM;
4734 
4735 	event->memcg = memcg;
4736 	INIT_LIST_HEAD(&event->list);
4737 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4738 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4739 	INIT_WORK(&event->remove, memcg_event_remove);
4740 
4741 	efile = fdget(efd);
4742 	if (!efile.file) {
4743 		ret = -EBADF;
4744 		goto out_kfree;
4745 	}
4746 
4747 	event->eventfd = eventfd_ctx_fileget(efile.file);
4748 	if (IS_ERR(event->eventfd)) {
4749 		ret = PTR_ERR(event->eventfd);
4750 		goto out_put_efile;
4751 	}
4752 
4753 	cfile = fdget(cfd);
4754 	if (!cfile.file) {
4755 		ret = -EBADF;
4756 		goto out_put_eventfd;
4757 	}
4758 
4759 	/* the process need read permission on control file */
4760 	/* AV: shouldn't we check that it's been opened for read instead? */
4761 	ret = file_permission(cfile.file, MAY_READ);
4762 	if (ret < 0)
4763 		goto out_put_cfile;
4764 
4765 	/*
4766 	 * Determine the event callbacks and set them in @event.  This used
4767 	 * to be done via struct cftype but cgroup core no longer knows
4768 	 * about these events.  The following is crude but the whole thing
4769 	 * is for compatibility anyway.
4770 	 *
4771 	 * DO NOT ADD NEW FILES.
4772 	 */
4773 	name = cfile.file->f_path.dentry->d_name.name;
4774 
4775 	if (!strcmp(name, "memory.usage_in_bytes")) {
4776 		event->register_event = mem_cgroup_usage_register_event;
4777 		event->unregister_event = mem_cgroup_usage_unregister_event;
4778 	} else if (!strcmp(name, "memory.oom_control")) {
4779 		event->register_event = mem_cgroup_oom_register_event;
4780 		event->unregister_event = mem_cgroup_oom_unregister_event;
4781 	} else if (!strcmp(name, "memory.pressure_level")) {
4782 		event->register_event = vmpressure_register_event;
4783 		event->unregister_event = vmpressure_unregister_event;
4784 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4785 		event->register_event = memsw_cgroup_usage_register_event;
4786 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4787 	} else {
4788 		ret = -EINVAL;
4789 		goto out_put_cfile;
4790 	}
4791 
4792 	/*
4793 	 * Verify @cfile should belong to @css.  Also, remaining events are
4794 	 * automatically removed on cgroup destruction but the removal is
4795 	 * asynchronous, so take an extra ref on @css.
4796 	 */
4797 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4798 					       &memory_cgrp_subsys);
4799 	ret = -EINVAL;
4800 	if (IS_ERR(cfile_css))
4801 		goto out_put_cfile;
4802 	if (cfile_css != css) {
4803 		css_put(cfile_css);
4804 		goto out_put_cfile;
4805 	}
4806 
4807 	ret = event->register_event(memcg, event->eventfd, buf);
4808 	if (ret)
4809 		goto out_put_css;
4810 
4811 	vfs_poll(efile.file, &event->pt);
4812 
4813 	spin_lock_irq(&memcg->event_list_lock);
4814 	list_add(&event->list, &memcg->event_list);
4815 	spin_unlock_irq(&memcg->event_list_lock);
4816 
4817 	fdput(cfile);
4818 	fdput(efile);
4819 
4820 	return nbytes;
4821 
4822 out_put_css:
4823 	css_put(css);
4824 out_put_cfile:
4825 	fdput(cfile);
4826 out_put_eventfd:
4827 	eventfd_ctx_put(event->eventfd);
4828 out_put_efile:
4829 	fdput(efile);
4830 out_kfree:
4831 	kfree(event);
4832 
4833 	return ret;
4834 }
4835 
4836 static struct cftype mem_cgroup_legacy_files[] = {
4837 	{
4838 		.name = "usage_in_bytes",
4839 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4840 		.read_u64 = mem_cgroup_read_u64,
4841 	},
4842 	{
4843 		.name = "max_usage_in_bytes",
4844 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4845 		.write = mem_cgroup_reset,
4846 		.read_u64 = mem_cgroup_read_u64,
4847 	},
4848 	{
4849 		.name = "limit_in_bytes",
4850 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4851 		.write = mem_cgroup_write,
4852 		.read_u64 = mem_cgroup_read_u64,
4853 	},
4854 	{
4855 		.name = "soft_limit_in_bytes",
4856 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4857 		.write = mem_cgroup_write,
4858 		.read_u64 = mem_cgroup_read_u64,
4859 	},
4860 	{
4861 		.name = "failcnt",
4862 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4863 		.write = mem_cgroup_reset,
4864 		.read_u64 = mem_cgroup_read_u64,
4865 	},
4866 	{
4867 		.name = "stat",
4868 		.seq_show = memcg_stat_show,
4869 	},
4870 	{
4871 		.name = "force_empty",
4872 		.write = mem_cgroup_force_empty_write,
4873 	},
4874 	{
4875 		.name = "use_hierarchy",
4876 		.write_u64 = mem_cgroup_hierarchy_write,
4877 		.read_u64 = mem_cgroup_hierarchy_read,
4878 	},
4879 	{
4880 		.name = "cgroup.event_control",		/* XXX: for compat */
4881 		.write = memcg_write_event_control,
4882 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4883 	},
4884 	{
4885 		.name = "swappiness",
4886 		.read_u64 = mem_cgroup_swappiness_read,
4887 		.write_u64 = mem_cgroup_swappiness_write,
4888 	},
4889 	{
4890 		.name = "move_charge_at_immigrate",
4891 		.read_u64 = mem_cgroup_move_charge_read,
4892 		.write_u64 = mem_cgroup_move_charge_write,
4893 	},
4894 	{
4895 		.name = "oom_control",
4896 		.seq_show = mem_cgroup_oom_control_read,
4897 		.write_u64 = mem_cgroup_oom_control_write,
4898 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4899 	},
4900 	{
4901 		.name = "pressure_level",
4902 	},
4903 #ifdef CONFIG_NUMA
4904 	{
4905 		.name = "numa_stat",
4906 		.seq_show = memcg_numa_stat_show,
4907 	},
4908 #endif
4909 	{
4910 		.name = "kmem.limit_in_bytes",
4911 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4912 		.write = mem_cgroup_write,
4913 		.read_u64 = mem_cgroup_read_u64,
4914 	},
4915 	{
4916 		.name = "kmem.usage_in_bytes",
4917 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4918 		.read_u64 = mem_cgroup_read_u64,
4919 	},
4920 	{
4921 		.name = "kmem.failcnt",
4922 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4923 		.write = mem_cgroup_reset,
4924 		.read_u64 = mem_cgroup_read_u64,
4925 	},
4926 	{
4927 		.name = "kmem.max_usage_in_bytes",
4928 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4929 		.write = mem_cgroup_reset,
4930 		.read_u64 = mem_cgroup_read_u64,
4931 	},
4932 #if defined(CONFIG_MEMCG_KMEM) && \
4933 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4934 	{
4935 		.name = "kmem.slabinfo",
4936 		.seq_show = memcg_slab_show,
4937 	},
4938 #endif
4939 	{
4940 		.name = "kmem.tcp.limit_in_bytes",
4941 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4942 		.write = mem_cgroup_write,
4943 		.read_u64 = mem_cgroup_read_u64,
4944 	},
4945 	{
4946 		.name = "kmem.tcp.usage_in_bytes",
4947 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4948 		.read_u64 = mem_cgroup_read_u64,
4949 	},
4950 	{
4951 		.name = "kmem.tcp.failcnt",
4952 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4953 		.write = mem_cgroup_reset,
4954 		.read_u64 = mem_cgroup_read_u64,
4955 	},
4956 	{
4957 		.name = "kmem.tcp.max_usage_in_bytes",
4958 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4959 		.write = mem_cgroup_reset,
4960 		.read_u64 = mem_cgroup_read_u64,
4961 	},
4962 	{ },	/* terminate */
4963 };
4964 
4965 /*
4966  * Private memory cgroup IDR
4967  *
4968  * Swap-out records and page cache shadow entries need to store memcg
4969  * references in constrained space, so we maintain an ID space that is
4970  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4971  * memory-controlled cgroups to 64k.
4972  *
4973  * However, there usually are many references to the offline CSS after
4974  * the cgroup has been destroyed, such as page cache or reclaimable
4975  * slab objects, that don't need to hang on to the ID. We want to keep
4976  * those dead CSS from occupying IDs, or we might quickly exhaust the
4977  * relatively small ID space and prevent the creation of new cgroups
4978  * even when there are much fewer than 64k cgroups - possibly none.
4979  *
4980  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4981  * be freed and recycled when it's no longer needed, which is usually
4982  * when the CSS is offlined.
4983  *
4984  * The only exception to that are records of swapped out tmpfs/shmem
4985  * pages that need to be attributed to live ancestors on swapin. But
4986  * those references are manageable from userspace.
4987  */
4988 
4989 static DEFINE_IDR(mem_cgroup_idr);
4990 
4991 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4992 {
4993 	if (memcg->id.id > 0) {
4994 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4995 		memcg->id.id = 0;
4996 	}
4997 }
4998 
4999 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5000 						  unsigned int n)
5001 {
5002 	refcount_add(n, &memcg->id.ref);
5003 }
5004 
5005 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5006 {
5007 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5008 		mem_cgroup_id_remove(memcg);
5009 
5010 		/* Memcg ID pins CSS */
5011 		css_put(&memcg->css);
5012 	}
5013 }
5014 
5015 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5016 {
5017 	mem_cgroup_id_put_many(memcg, 1);
5018 }
5019 
5020 /**
5021  * mem_cgroup_from_id - look up a memcg from a memcg id
5022  * @id: the memcg id to look up
5023  *
5024  * Caller must hold rcu_read_lock().
5025  */
5026 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5027 {
5028 	WARN_ON_ONCE(!rcu_read_lock_held());
5029 	return idr_find(&mem_cgroup_idr, id);
5030 }
5031 
5032 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5033 {
5034 	struct mem_cgroup_per_node *pn;
5035 	int tmp = node;
5036 	/*
5037 	 * This routine is called against possible nodes.
5038 	 * But it's BUG to call kmalloc() against offline node.
5039 	 *
5040 	 * TODO: this routine can waste much memory for nodes which will
5041 	 *       never be onlined. It's better to use memory hotplug callback
5042 	 *       function.
5043 	 */
5044 	if (!node_state(node, N_NORMAL_MEMORY))
5045 		tmp = -1;
5046 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5047 	if (!pn)
5048 		return 1;
5049 
5050 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5051 						   GFP_KERNEL_ACCOUNT);
5052 	if (!pn->lruvec_stats_percpu) {
5053 		kfree(pn);
5054 		return 1;
5055 	}
5056 
5057 	lruvec_init(&pn->lruvec);
5058 	pn->usage_in_excess = 0;
5059 	pn->on_tree = false;
5060 	pn->memcg = memcg;
5061 
5062 	memcg->nodeinfo[node] = pn;
5063 	return 0;
5064 }
5065 
5066 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5067 {
5068 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5069 
5070 	if (!pn)
5071 		return;
5072 
5073 	free_percpu(pn->lruvec_stats_percpu);
5074 	kfree(pn);
5075 }
5076 
5077 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5078 {
5079 	int node;
5080 
5081 	for_each_node(node)
5082 		free_mem_cgroup_per_node_info(memcg, node);
5083 	free_percpu(memcg->vmstats_percpu);
5084 	kfree(memcg);
5085 }
5086 
5087 static void mem_cgroup_free(struct mem_cgroup *memcg)
5088 {
5089 	memcg_wb_domain_exit(memcg);
5090 	__mem_cgroup_free(memcg);
5091 }
5092 
5093 static struct mem_cgroup *mem_cgroup_alloc(void)
5094 {
5095 	struct mem_cgroup *memcg;
5096 	unsigned int size;
5097 	int node;
5098 	int __maybe_unused i;
5099 	long error = -ENOMEM;
5100 
5101 	size = sizeof(struct mem_cgroup);
5102 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5103 
5104 	memcg = kzalloc(size, GFP_KERNEL);
5105 	if (!memcg)
5106 		return ERR_PTR(error);
5107 
5108 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5109 				 1, MEM_CGROUP_ID_MAX,
5110 				 GFP_KERNEL);
5111 	if (memcg->id.id < 0) {
5112 		error = memcg->id.id;
5113 		goto fail;
5114 	}
5115 
5116 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5117 						 GFP_KERNEL_ACCOUNT);
5118 	if (!memcg->vmstats_percpu)
5119 		goto fail;
5120 
5121 	for_each_node(node)
5122 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5123 			goto fail;
5124 
5125 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5126 		goto fail;
5127 
5128 	INIT_WORK(&memcg->high_work, high_work_func);
5129 	INIT_LIST_HEAD(&memcg->oom_notify);
5130 	mutex_init(&memcg->thresholds_lock);
5131 	spin_lock_init(&memcg->move_lock);
5132 	vmpressure_init(&memcg->vmpressure);
5133 	INIT_LIST_HEAD(&memcg->event_list);
5134 	spin_lock_init(&memcg->event_list_lock);
5135 	memcg->socket_pressure = jiffies;
5136 #ifdef CONFIG_MEMCG_KMEM
5137 	memcg->kmemcg_id = -1;
5138 	INIT_LIST_HEAD(&memcg->objcg_list);
5139 #endif
5140 #ifdef CONFIG_CGROUP_WRITEBACK
5141 	INIT_LIST_HEAD(&memcg->cgwb_list);
5142 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5143 		memcg->cgwb_frn[i].done =
5144 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5145 #endif
5146 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5147 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5148 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5149 	memcg->deferred_split_queue.split_queue_len = 0;
5150 #endif
5151 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5152 	return memcg;
5153 fail:
5154 	mem_cgroup_id_remove(memcg);
5155 	__mem_cgroup_free(memcg);
5156 	return ERR_PTR(error);
5157 }
5158 
5159 static struct cgroup_subsys_state * __ref
5160 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5161 {
5162 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5163 	struct mem_cgroup *memcg, *old_memcg;
5164 	long error = -ENOMEM;
5165 
5166 	old_memcg = set_active_memcg(parent);
5167 	memcg = mem_cgroup_alloc();
5168 	set_active_memcg(old_memcg);
5169 	if (IS_ERR(memcg))
5170 		return ERR_CAST(memcg);
5171 
5172 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5173 	memcg->soft_limit = PAGE_COUNTER_MAX;
5174 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5175 	if (parent) {
5176 		memcg->swappiness = mem_cgroup_swappiness(parent);
5177 		memcg->oom_kill_disable = parent->oom_kill_disable;
5178 
5179 		page_counter_init(&memcg->memory, &parent->memory);
5180 		page_counter_init(&memcg->swap, &parent->swap);
5181 		page_counter_init(&memcg->kmem, &parent->kmem);
5182 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5183 	} else {
5184 		page_counter_init(&memcg->memory, NULL);
5185 		page_counter_init(&memcg->swap, NULL);
5186 		page_counter_init(&memcg->kmem, NULL);
5187 		page_counter_init(&memcg->tcpmem, NULL);
5188 
5189 		root_mem_cgroup = memcg;
5190 		return &memcg->css;
5191 	}
5192 
5193 	/* The following stuff does not apply to the root */
5194 	error = memcg_online_kmem(memcg);
5195 	if (error)
5196 		goto fail;
5197 
5198 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5199 		static_branch_inc(&memcg_sockets_enabled_key);
5200 
5201 	return &memcg->css;
5202 fail:
5203 	mem_cgroup_id_remove(memcg);
5204 	mem_cgroup_free(memcg);
5205 	return ERR_PTR(error);
5206 }
5207 
5208 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5209 {
5210 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5211 
5212 	/*
5213 	 * A memcg must be visible for expand_shrinker_info()
5214 	 * by the time the maps are allocated. So, we allocate maps
5215 	 * here, when for_each_mem_cgroup() can't skip it.
5216 	 */
5217 	if (alloc_shrinker_info(memcg)) {
5218 		mem_cgroup_id_remove(memcg);
5219 		return -ENOMEM;
5220 	}
5221 
5222 	/* Online state pins memcg ID, memcg ID pins CSS */
5223 	refcount_set(&memcg->id.ref, 1);
5224 	css_get(css);
5225 
5226 	if (unlikely(mem_cgroup_is_root(memcg)))
5227 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5228 				   2UL*HZ);
5229 	return 0;
5230 }
5231 
5232 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5233 {
5234 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5235 	struct mem_cgroup_event *event, *tmp;
5236 
5237 	/*
5238 	 * Unregister events and notify userspace.
5239 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5240 	 * directory to avoid race between userspace and kernelspace.
5241 	 */
5242 	spin_lock_irq(&memcg->event_list_lock);
5243 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5244 		list_del_init(&event->list);
5245 		schedule_work(&event->remove);
5246 	}
5247 	spin_unlock_irq(&memcg->event_list_lock);
5248 
5249 	page_counter_set_min(&memcg->memory, 0);
5250 	page_counter_set_low(&memcg->memory, 0);
5251 
5252 	memcg_offline_kmem(memcg);
5253 	reparent_shrinker_deferred(memcg);
5254 	wb_memcg_offline(memcg);
5255 
5256 	drain_all_stock(memcg);
5257 
5258 	mem_cgroup_id_put(memcg);
5259 }
5260 
5261 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5262 {
5263 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5264 
5265 	invalidate_reclaim_iterators(memcg);
5266 }
5267 
5268 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5269 {
5270 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5271 	int __maybe_unused i;
5272 
5273 #ifdef CONFIG_CGROUP_WRITEBACK
5274 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5275 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5276 #endif
5277 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5278 		static_branch_dec(&memcg_sockets_enabled_key);
5279 
5280 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5281 		static_branch_dec(&memcg_sockets_enabled_key);
5282 
5283 	vmpressure_cleanup(&memcg->vmpressure);
5284 	cancel_work_sync(&memcg->high_work);
5285 	mem_cgroup_remove_from_trees(memcg);
5286 	free_shrinker_info(memcg);
5287 
5288 	/* Need to offline kmem if online_css() fails */
5289 	memcg_offline_kmem(memcg);
5290 	mem_cgroup_free(memcg);
5291 }
5292 
5293 /**
5294  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5295  * @css: the target css
5296  *
5297  * Reset the states of the mem_cgroup associated with @css.  This is
5298  * invoked when the userland requests disabling on the default hierarchy
5299  * but the memcg is pinned through dependency.  The memcg should stop
5300  * applying policies and should revert to the vanilla state as it may be
5301  * made visible again.
5302  *
5303  * The current implementation only resets the essential configurations.
5304  * This needs to be expanded to cover all the visible parts.
5305  */
5306 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5307 {
5308 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5309 
5310 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5311 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5312 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5313 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5314 	page_counter_set_min(&memcg->memory, 0);
5315 	page_counter_set_low(&memcg->memory, 0);
5316 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5317 	memcg->soft_limit = PAGE_COUNTER_MAX;
5318 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5319 	memcg_wb_domain_size_changed(memcg);
5320 }
5321 
5322 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5323 {
5324 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5325 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5326 	struct memcg_vmstats_percpu *statc;
5327 	long delta, v;
5328 	int i, nid;
5329 
5330 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5331 
5332 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5333 		/*
5334 		 * Collect the aggregated propagation counts of groups
5335 		 * below us. We're in a per-cpu loop here and this is
5336 		 * a global counter, so the first cycle will get them.
5337 		 */
5338 		delta = memcg->vmstats.state_pending[i];
5339 		if (delta)
5340 			memcg->vmstats.state_pending[i] = 0;
5341 
5342 		/* Add CPU changes on this level since the last flush */
5343 		v = READ_ONCE(statc->state[i]);
5344 		if (v != statc->state_prev[i]) {
5345 			delta += v - statc->state_prev[i];
5346 			statc->state_prev[i] = v;
5347 		}
5348 
5349 		if (!delta)
5350 			continue;
5351 
5352 		/* Aggregate counts on this level and propagate upwards */
5353 		memcg->vmstats.state[i] += delta;
5354 		if (parent)
5355 			parent->vmstats.state_pending[i] += delta;
5356 	}
5357 
5358 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5359 		delta = memcg->vmstats.events_pending[i];
5360 		if (delta)
5361 			memcg->vmstats.events_pending[i] = 0;
5362 
5363 		v = READ_ONCE(statc->events[i]);
5364 		if (v != statc->events_prev[i]) {
5365 			delta += v - statc->events_prev[i];
5366 			statc->events_prev[i] = v;
5367 		}
5368 
5369 		if (!delta)
5370 			continue;
5371 
5372 		memcg->vmstats.events[i] += delta;
5373 		if (parent)
5374 			parent->vmstats.events_pending[i] += delta;
5375 	}
5376 
5377 	for_each_node_state(nid, N_MEMORY) {
5378 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5379 		struct mem_cgroup_per_node *ppn = NULL;
5380 		struct lruvec_stats_percpu *lstatc;
5381 
5382 		if (parent)
5383 			ppn = parent->nodeinfo[nid];
5384 
5385 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5386 
5387 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5388 			delta = pn->lruvec_stats.state_pending[i];
5389 			if (delta)
5390 				pn->lruvec_stats.state_pending[i] = 0;
5391 
5392 			v = READ_ONCE(lstatc->state[i]);
5393 			if (v != lstatc->state_prev[i]) {
5394 				delta += v - lstatc->state_prev[i];
5395 				lstatc->state_prev[i] = v;
5396 			}
5397 
5398 			if (!delta)
5399 				continue;
5400 
5401 			pn->lruvec_stats.state[i] += delta;
5402 			if (ppn)
5403 				ppn->lruvec_stats.state_pending[i] += delta;
5404 		}
5405 	}
5406 }
5407 
5408 #ifdef CONFIG_MMU
5409 /* Handlers for move charge at task migration. */
5410 static int mem_cgroup_do_precharge(unsigned long count)
5411 {
5412 	int ret;
5413 
5414 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5415 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5416 	if (!ret) {
5417 		mc.precharge += count;
5418 		return ret;
5419 	}
5420 
5421 	/* Try charges one by one with reclaim, but do not retry */
5422 	while (count--) {
5423 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5424 		if (ret)
5425 			return ret;
5426 		mc.precharge++;
5427 		cond_resched();
5428 	}
5429 	return 0;
5430 }
5431 
5432 union mc_target {
5433 	struct page	*page;
5434 	swp_entry_t	ent;
5435 };
5436 
5437 enum mc_target_type {
5438 	MC_TARGET_NONE = 0,
5439 	MC_TARGET_PAGE,
5440 	MC_TARGET_SWAP,
5441 	MC_TARGET_DEVICE,
5442 };
5443 
5444 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5445 						unsigned long addr, pte_t ptent)
5446 {
5447 	struct page *page = vm_normal_page(vma, addr, ptent);
5448 
5449 	if (!page || !page_mapped(page))
5450 		return NULL;
5451 	if (PageAnon(page)) {
5452 		if (!(mc.flags & MOVE_ANON))
5453 			return NULL;
5454 	} else {
5455 		if (!(mc.flags & MOVE_FILE))
5456 			return NULL;
5457 	}
5458 	if (!get_page_unless_zero(page))
5459 		return NULL;
5460 
5461 	return page;
5462 }
5463 
5464 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5465 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5466 			pte_t ptent, swp_entry_t *entry)
5467 {
5468 	struct page *page = NULL;
5469 	swp_entry_t ent = pte_to_swp_entry(ptent);
5470 
5471 	if (!(mc.flags & MOVE_ANON))
5472 		return NULL;
5473 
5474 	/*
5475 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5476 	 * a device and because they are not accessible by CPU they are store
5477 	 * as special swap entry in the CPU page table.
5478 	 */
5479 	if (is_device_private_entry(ent)) {
5480 		page = pfn_swap_entry_to_page(ent);
5481 		/*
5482 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5483 		 * a refcount of 1 when free (unlike normal page)
5484 		 */
5485 		if (!page_ref_add_unless(page, 1, 1))
5486 			return NULL;
5487 		return page;
5488 	}
5489 
5490 	if (non_swap_entry(ent))
5491 		return NULL;
5492 
5493 	/*
5494 	 * Because lookup_swap_cache() updates some statistics counter,
5495 	 * we call find_get_page() with swapper_space directly.
5496 	 */
5497 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5498 	entry->val = ent.val;
5499 
5500 	return page;
5501 }
5502 #else
5503 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5504 			pte_t ptent, swp_entry_t *entry)
5505 {
5506 	return NULL;
5507 }
5508 #endif
5509 
5510 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5511 			unsigned long addr, pte_t ptent)
5512 {
5513 	if (!vma->vm_file) /* anonymous vma */
5514 		return NULL;
5515 	if (!(mc.flags & MOVE_FILE))
5516 		return NULL;
5517 
5518 	/* page is moved even if it's not RSS of this task(page-faulted). */
5519 	/* shmem/tmpfs may report page out on swap: account for that too. */
5520 	return find_get_incore_page(vma->vm_file->f_mapping,
5521 			linear_page_index(vma, addr));
5522 }
5523 
5524 /**
5525  * mem_cgroup_move_account - move account of the page
5526  * @page: the page
5527  * @compound: charge the page as compound or small page
5528  * @from: mem_cgroup which the page is moved from.
5529  * @to:	mem_cgroup which the page is moved to. @from != @to.
5530  *
5531  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5532  *
5533  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5534  * from old cgroup.
5535  */
5536 static int mem_cgroup_move_account(struct page *page,
5537 				   bool compound,
5538 				   struct mem_cgroup *from,
5539 				   struct mem_cgroup *to)
5540 {
5541 	struct lruvec *from_vec, *to_vec;
5542 	struct pglist_data *pgdat;
5543 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5544 	int ret;
5545 
5546 	VM_BUG_ON(from == to);
5547 	VM_BUG_ON_PAGE(PageLRU(page), page);
5548 	VM_BUG_ON(compound && !PageTransHuge(page));
5549 
5550 	/*
5551 	 * Prevent mem_cgroup_migrate() from looking at
5552 	 * page's memory cgroup of its source page while we change it.
5553 	 */
5554 	ret = -EBUSY;
5555 	if (!trylock_page(page))
5556 		goto out;
5557 
5558 	ret = -EINVAL;
5559 	if (page_memcg(page) != from)
5560 		goto out_unlock;
5561 
5562 	pgdat = page_pgdat(page);
5563 	from_vec = mem_cgroup_lruvec(from, pgdat);
5564 	to_vec = mem_cgroup_lruvec(to, pgdat);
5565 
5566 	lock_page_memcg(page);
5567 
5568 	if (PageAnon(page)) {
5569 		if (page_mapped(page)) {
5570 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5571 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5572 			if (PageTransHuge(page)) {
5573 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5574 						   -nr_pages);
5575 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5576 						   nr_pages);
5577 			}
5578 		}
5579 	} else {
5580 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5581 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5582 
5583 		if (PageSwapBacked(page)) {
5584 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5585 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5586 		}
5587 
5588 		if (page_mapped(page)) {
5589 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5590 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5591 		}
5592 
5593 		if (PageDirty(page)) {
5594 			struct address_space *mapping = page_mapping(page);
5595 
5596 			if (mapping_can_writeback(mapping)) {
5597 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5598 						   -nr_pages);
5599 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5600 						   nr_pages);
5601 			}
5602 		}
5603 	}
5604 
5605 	if (PageWriteback(page)) {
5606 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5607 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5608 	}
5609 
5610 	/*
5611 	 * All state has been migrated, let's switch to the new memcg.
5612 	 *
5613 	 * It is safe to change page's memcg here because the page
5614 	 * is referenced, charged, isolated, and locked: we can't race
5615 	 * with (un)charging, migration, LRU putback, or anything else
5616 	 * that would rely on a stable page's memory cgroup.
5617 	 *
5618 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5619 	 * to save space. As soon as we switch page's memory cgroup to a
5620 	 * new memcg that isn't locked, the above state can change
5621 	 * concurrently again. Make sure we're truly done with it.
5622 	 */
5623 	smp_mb();
5624 
5625 	css_get(&to->css);
5626 	css_put(&from->css);
5627 
5628 	page->memcg_data = (unsigned long)to;
5629 
5630 	__unlock_page_memcg(from);
5631 
5632 	ret = 0;
5633 
5634 	local_irq_disable();
5635 	mem_cgroup_charge_statistics(to, page, nr_pages);
5636 	memcg_check_events(to, page);
5637 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5638 	memcg_check_events(from, page);
5639 	local_irq_enable();
5640 out_unlock:
5641 	unlock_page(page);
5642 out:
5643 	return ret;
5644 }
5645 
5646 /**
5647  * get_mctgt_type - get target type of moving charge
5648  * @vma: the vma the pte to be checked belongs
5649  * @addr: the address corresponding to the pte to be checked
5650  * @ptent: the pte to be checked
5651  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5652  *
5653  * Returns
5654  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5655  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5656  *     move charge. if @target is not NULL, the page is stored in target->page
5657  *     with extra refcnt got(Callers should handle it).
5658  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5659  *     target for charge migration. if @target is not NULL, the entry is stored
5660  *     in target->ent.
5661  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5662  *     (so ZONE_DEVICE page and thus not on the lru).
5663  *     For now we such page is charge like a regular page would be as for all
5664  *     intent and purposes it is just special memory taking the place of a
5665  *     regular page.
5666  *
5667  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5668  *
5669  * Called with pte lock held.
5670  */
5671 
5672 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5673 		unsigned long addr, pte_t ptent, union mc_target *target)
5674 {
5675 	struct page *page = NULL;
5676 	enum mc_target_type ret = MC_TARGET_NONE;
5677 	swp_entry_t ent = { .val = 0 };
5678 
5679 	if (pte_present(ptent))
5680 		page = mc_handle_present_pte(vma, addr, ptent);
5681 	else if (is_swap_pte(ptent))
5682 		page = mc_handle_swap_pte(vma, ptent, &ent);
5683 	else if (pte_none(ptent))
5684 		page = mc_handle_file_pte(vma, addr, ptent);
5685 
5686 	if (!page && !ent.val)
5687 		return ret;
5688 	if (page) {
5689 		/*
5690 		 * Do only loose check w/o serialization.
5691 		 * mem_cgroup_move_account() checks the page is valid or
5692 		 * not under LRU exclusion.
5693 		 */
5694 		if (page_memcg(page) == mc.from) {
5695 			ret = MC_TARGET_PAGE;
5696 			if (is_device_private_page(page))
5697 				ret = MC_TARGET_DEVICE;
5698 			if (target)
5699 				target->page = page;
5700 		}
5701 		if (!ret || !target)
5702 			put_page(page);
5703 	}
5704 	/*
5705 	 * There is a swap entry and a page doesn't exist or isn't charged.
5706 	 * But we cannot move a tail-page in a THP.
5707 	 */
5708 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5709 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5710 		ret = MC_TARGET_SWAP;
5711 		if (target)
5712 			target->ent = ent;
5713 	}
5714 	return ret;
5715 }
5716 
5717 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5718 /*
5719  * We don't consider PMD mapped swapping or file mapped pages because THP does
5720  * not support them for now.
5721  * Caller should make sure that pmd_trans_huge(pmd) is true.
5722  */
5723 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5724 		unsigned long addr, pmd_t pmd, union mc_target *target)
5725 {
5726 	struct page *page = NULL;
5727 	enum mc_target_type ret = MC_TARGET_NONE;
5728 
5729 	if (unlikely(is_swap_pmd(pmd))) {
5730 		VM_BUG_ON(thp_migration_supported() &&
5731 				  !is_pmd_migration_entry(pmd));
5732 		return ret;
5733 	}
5734 	page = pmd_page(pmd);
5735 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5736 	if (!(mc.flags & MOVE_ANON))
5737 		return ret;
5738 	if (page_memcg(page) == mc.from) {
5739 		ret = MC_TARGET_PAGE;
5740 		if (target) {
5741 			get_page(page);
5742 			target->page = page;
5743 		}
5744 	}
5745 	return ret;
5746 }
5747 #else
5748 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5749 		unsigned long addr, pmd_t pmd, union mc_target *target)
5750 {
5751 	return MC_TARGET_NONE;
5752 }
5753 #endif
5754 
5755 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5756 					unsigned long addr, unsigned long end,
5757 					struct mm_walk *walk)
5758 {
5759 	struct vm_area_struct *vma = walk->vma;
5760 	pte_t *pte;
5761 	spinlock_t *ptl;
5762 
5763 	ptl = pmd_trans_huge_lock(pmd, vma);
5764 	if (ptl) {
5765 		/*
5766 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5767 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5768 		 * this might change.
5769 		 */
5770 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5771 			mc.precharge += HPAGE_PMD_NR;
5772 		spin_unlock(ptl);
5773 		return 0;
5774 	}
5775 
5776 	if (pmd_trans_unstable(pmd))
5777 		return 0;
5778 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5779 	for (; addr != end; pte++, addr += PAGE_SIZE)
5780 		if (get_mctgt_type(vma, addr, *pte, NULL))
5781 			mc.precharge++;	/* increment precharge temporarily */
5782 	pte_unmap_unlock(pte - 1, ptl);
5783 	cond_resched();
5784 
5785 	return 0;
5786 }
5787 
5788 static const struct mm_walk_ops precharge_walk_ops = {
5789 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5790 };
5791 
5792 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5793 {
5794 	unsigned long precharge;
5795 
5796 	mmap_read_lock(mm);
5797 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5798 	mmap_read_unlock(mm);
5799 
5800 	precharge = mc.precharge;
5801 	mc.precharge = 0;
5802 
5803 	return precharge;
5804 }
5805 
5806 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5807 {
5808 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5809 
5810 	VM_BUG_ON(mc.moving_task);
5811 	mc.moving_task = current;
5812 	return mem_cgroup_do_precharge(precharge);
5813 }
5814 
5815 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5816 static void __mem_cgroup_clear_mc(void)
5817 {
5818 	struct mem_cgroup *from = mc.from;
5819 	struct mem_cgroup *to = mc.to;
5820 
5821 	/* we must uncharge all the leftover precharges from mc.to */
5822 	if (mc.precharge) {
5823 		cancel_charge(mc.to, mc.precharge);
5824 		mc.precharge = 0;
5825 	}
5826 	/*
5827 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5828 	 * we must uncharge here.
5829 	 */
5830 	if (mc.moved_charge) {
5831 		cancel_charge(mc.from, mc.moved_charge);
5832 		mc.moved_charge = 0;
5833 	}
5834 	/* we must fixup refcnts and charges */
5835 	if (mc.moved_swap) {
5836 		/* uncharge swap account from the old cgroup */
5837 		if (!mem_cgroup_is_root(mc.from))
5838 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5839 
5840 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5841 
5842 		/*
5843 		 * we charged both to->memory and to->memsw, so we
5844 		 * should uncharge to->memory.
5845 		 */
5846 		if (!mem_cgroup_is_root(mc.to))
5847 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5848 
5849 		mc.moved_swap = 0;
5850 	}
5851 	memcg_oom_recover(from);
5852 	memcg_oom_recover(to);
5853 	wake_up_all(&mc.waitq);
5854 }
5855 
5856 static void mem_cgroup_clear_mc(void)
5857 {
5858 	struct mm_struct *mm = mc.mm;
5859 
5860 	/*
5861 	 * we must clear moving_task before waking up waiters at the end of
5862 	 * task migration.
5863 	 */
5864 	mc.moving_task = NULL;
5865 	__mem_cgroup_clear_mc();
5866 	spin_lock(&mc.lock);
5867 	mc.from = NULL;
5868 	mc.to = NULL;
5869 	mc.mm = NULL;
5870 	spin_unlock(&mc.lock);
5871 
5872 	mmput(mm);
5873 }
5874 
5875 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5876 {
5877 	struct cgroup_subsys_state *css;
5878 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5879 	struct mem_cgroup *from;
5880 	struct task_struct *leader, *p;
5881 	struct mm_struct *mm;
5882 	unsigned long move_flags;
5883 	int ret = 0;
5884 
5885 	/* charge immigration isn't supported on the default hierarchy */
5886 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5887 		return 0;
5888 
5889 	/*
5890 	 * Multi-process migrations only happen on the default hierarchy
5891 	 * where charge immigration is not used.  Perform charge
5892 	 * immigration if @tset contains a leader and whine if there are
5893 	 * multiple.
5894 	 */
5895 	p = NULL;
5896 	cgroup_taskset_for_each_leader(leader, css, tset) {
5897 		WARN_ON_ONCE(p);
5898 		p = leader;
5899 		memcg = mem_cgroup_from_css(css);
5900 	}
5901 	if (!p)
5902 		return 0;
5903 
5904 	/*
5905 	 * We are now committed to this value whatever it is. Changes in this
5906 	 * tunable will only affect upcoming migrations, not the current one.
5907 	 * So we need to save it, and keep it going.
5908 	 */
5909 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5910 	if (!move_flags)
5911 		return 0;
5912 
5913 	from = mem_cgroup_from_task(p);
5914 
5915 	VM_BUG_ON(from == memcg);
5916 
5917 	mm = get_task_mm(p);
5918 	if (!mm)
5919 		return 0;
5920 	/* We move charges only when we move a owner of the mm */
5921 	if (mm->owner == p) {
5922 		VM_BUG_ON(mc.from);
5923 		VM_BUG_ON(mc.to);
5924 		VM_BUG_ON(mc.precharge);
5925 		VM_BUG_ON(mc.moved_charge);
5926 		VM_BUG_ON(mc.moved_swap);
5927 
5928 		spin_lock(&mc.lock);
5929 		mc.mm = mm;
5930 		mc.from = from;
5931 		mc.to = memcg;
5932 		mc.flags = move_flags;
5933 		spin_unlock(&mc.lock);
5934 		/* We set mc.moving_task later */
5935 
5936 		ret = mem_cgroup_precharge_mc(mm);
5937 		if (ret)
5938 			mem_cgroup_clear_mc();
5939 	} else {
5940 		mmput(mm);
5941 	}
5942 	return ret;
5943 }
5944 
5945 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5946 {
5947 	if (mc.to)
5948 		mem_cgroup_clear_mc();
5949 }
5950 
5951 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5952 				unsigned long addr, unsigned long end,
5953 				struct mm_walk *walk)
5954 {
5955 	int ret = 0;
5956 	struct vm_area_struct *vma = walk->vma;
5957 	pte_t *pte;
5958 	spinlock_t *ptl;
5959 	enum mc_target_type target_type;
5960 	union mc_target target;
5961 	struct page *page;
5962 
5963 	ptl = pmd_trans_huge_lock(pmd, vma);
5964 	if (ptl) {
5965 		if (mc.precharge < HPAGE_PMD_NR) {
5966 			spin_unlock(ptl);
5967 			return 0;
5968 		}
5969 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5970 		if (target_type == MC_TARGET_PAGE) {
5971 			page = target.page;
5972 			if (!isolate_lru_page(page)) {
5973 				if (!mem_cgroup_move_account(page, true,
5974 							     mc.from, mc.to)) {
5975 					mc.precharge -= HPAGE_PMD_NR;
5976 					mc.moved_charge += HPAGE_PMD_NR;
5977 				}
5978 				putback_lru_page(page);
5979 			}
5980 			put_page(page);
5981 		} else if (target_type == MC_TARGET_DEVICE) {
5982 			page = target.page;
5983 			if (!mem_cgroup_move_account(page, true,
5984 						     mc.from, mc.to)) {
5985 				mc.precharge -= HPAGE_PMD_NR;
5986 				mc.moved_charge += HPAGE_PMD_NR;
5987 			}
5988 			put_page(page);
5989 		}
5990 		spin_unlock(ptl);
5991 		return 0;
5992 	}
5993 
5994 	if (pmd_trans_unstable(pmd))
5995 		return 0;
5996 retry:
5997 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5998 	for (; addr != end; addr += PAGE_SIZE) {
5999 		pte_t ptent = *(pte++);
6000 		bool device = false;
6001 		swp_entry_t ent;
6002 
6003 		if (!mc.precharge)
6004 			break;
6005 
6006 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6007 		case MC_TARGET_DEVICE:
6008 			device = true;
6009 			fallthrough;
6010 		case MC_TARGET_PAGE:
6011 			page = target.page;
6012 			/*
6013 			 * We can have a part of the split pmd here. Moving it
6014 			 * can be done but it would be too convoluted so simply
6015 			 * ignore such a partial THP and keep it in original
6016 			 * memcg. There should be somebody mapping the head.
6017 			 */
6018 			if (PageTransCompound(page))
6019 				goto put;
6020 			if (!device && isolate_lru_page(page))
6021 				goto put;
6022 			if (!mem_cgroup_move_account(page, false,
6023 						mc.from, mc.to)) {
6024 				mc.precharge--;
6025 				/* we uncharge from mc.from later. */
6026 				mc.moved_charge++;
6027 			}
6028 			if (!device)
6029 				putback_lru_page(page);
6030 put:			/* get_mctgt_type() gets the page */
6031 			put_page(page);
6032 			break;
6033 		case MC_TARGET_SWAP:
6034 			ent = target.ent;
6035 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6036 				mc.precharge--;
6037 				mem_cgroup_id_get_many(mc.to, 1);
6038 				/* we fixup other refcnts and charges later. */
6039 				mc.moved_swap++;
6040 			}
6041 			break;
6042 		default:
6043 			break;
6044 		}
6045 	}
6046 	pte_unmap_unlock(pte - 1, ptl);
6047 	cond_resched();
6048 
6049 	if (addr != end) {
6050 		/*
6051 		 * We have consumed all precharges we got in can_attach().
6052 		 * We try charge one by one, but don't do any additional
6053 		 * charges to mc.to if we have failed in charge once in attach()
6054 		 * phase.
6055 		 */
6056 		ret = mem_cgroup_do_precharge(1);
6057 		if (!ret)
6058 			goto retry;
6059 	}
6060 
6061 	return ret;
6062 }
6063 
6064 static const struct mm_walk_ops charge_walk_ops = {
6065 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6066 };
6067 
6068 static void mem_cgroup_move_charge(void)
6069 {
6070 	lru_add_drain_all();
6071 	/*
6072 	 * Signal lock_page_memcg() to take the memcg's move_lock
6073 	 * while we're moving its pages to another memcg. Then wait
6074 	 * for already started RCU-only updates to finish.
6075 	 */
6076 	atomic_inc(&mc.from->moving_account);
6077 	synchronize_rcu();
6078 retry:
6079 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6080 		/*
6081 		 * Someone who are holding the mmap_lock might be waiting in
6082 		 * waitq. So we cancel all extra charges, wake up all waiters,
6083 		 * and retry. Because we cancel precharges, we might not be able
6084 		 * to move enough charges, but moving charge is a best-effort
6085 		 * feature anyway, so it wouldn't be a big problem.
6086 		 */
6087 		__mem_cgroup_clear_mc();
6088 		cond_resched();
6089 		goto retry;
6090 	}
6091 	/*
6092 	 * When we have consumed all precharges and failed in doing
6093 	 * additional charge, the page walk just aborts.
6094 	 */
6095 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6096 			NULL);
6097 
6098 	mmap_read_unlock(mc.mm);
6099 	atomic_dec(&mc.from->moving_account);
6100 }
6101 
6102 static void mem_cgroup_move_task(void)
6103 {
6104 	if (mc.to) {
6105 		mem_cgroup_move_charge();
6106 		mem_cgroup_clear_mc();
6107 	}
6108 }
6109 #else	/* !CONFIG_MMU */
6110 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6111 {
6112 	return 0;
6113 }
6114 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6115 {
6116 }
6117 static void mem_cgroup_move_task(void)
6118 {
6119 }
6120 #endif
6121 
6122 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6123 {
6124 	if (value == PAGE_COUNTER_MAX)
6125 		seq_puts(m, "max\n");
6126 	else
6127 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6128 
6129 	return 0;
6130 }
6131 
6132 static u64 memory_current_read(struct cgroup_subsys_state *css,
6133 			       struct cftype *cft)
6134 {
6135 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6136 
6137 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6138 }
6139 
6140 static int memory_min_show(struct seq_file *m, void *v)
6141 {
6142 	return seq_puts_memcg_tunable(m,
6143 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6144 }
6145 
6146 static ssize_t memory_min_write(struct kernfs_open_file *of,
6147 				char *buf, size_t nbytes, loff_t off)
6148 {
6149 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6150 	unsigned long min;
6151 	int err;
6152 
6153 	buf = strstrip(buf);
6154 	err = page_counter_memparse(buf, "max", &min);
6155 	if (err)
6156 		return err;
6157 
6158 	page_counter_set_min(&memcg->memory, min);
6159 
6160 	return nbytes;
6161 }
6162 
6163 static int memory_low_show(struct seq_file *m, void *v)
6164 {
6165 	return seq_puts_memcg_tunable(m,
6166 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6167 }
6168 
6169 static ssize_t memory_low_write(struct kernfs_open_file *of,
6170 				char *buf, size_t nbytes, loff_t off)
6171 {
6172 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6173 	unsigned long low;
6174 	int err;
6175 
6176 	buf = strstrip(buf);
6177 	err = page_counter_memparse(buf, "max", &low);
6178 	if (err)
6179 		return err;
6180 
6181 	page_counter_set_low(&memcg->memory, low);
6182 
6183 	return nbytes;
6184 }
6185 
6186 static int memory_high_show(struct seq_file *m, void *v)
6187 {
6188 	return seq_puts_memcg_tunable(m,
6189 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6190 }
6191 
6192 static ssize_t memory_high_write(struct kernfs_open_file *of,
6193 				 char *buf, size_t nbytes, loff_t off)
6194 {
6195 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6196 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6197 	bool drained = false;
6198 	unsigned long high;
6199 	int err;
6200 
6201 	buf = strstrip(buf);
6202 	err = page_counter_memparse(buf, "max", &high);
6203 	if (err)
6204 		return err;
6205 
6206 	page_counter_set_high(&memcg->memory, high);
6207 
6208 	for (;;) {
6209 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6210 		unsigned long reclaimed;
6211 
6212 		if (nr_pages <= high)
6213 			break;
6214 
6215 		if (signal_pending(current))
6216 			break;
6217 
6218 		if (!drained) {
6219 			drain_all_stock(memcg);
6220 			drained = true;
6221 			continue;
6222 		}
6223 
6224 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6225 							 GFP_KERNEL, true);
6226 
6227 		if (!reclaimed && !nr_retries--)
6228 			break;
6229 	}
6230 
6231 	memcg_wb_domain_size_changed(memcg);
6232 	return nbytes;
6233 }
6234 
6235 static int memory_max_show(struct seq_file *m, void *v)
6236 {
6237 	return seq_puts_memcg_tunable(m,
6238 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6239 }
6240 
6241 static ssize_t memory_max_write(struct kernfs_open_file *of,
6242 				char *buf, size_t nbytes, loff_t off)
6243 {
6244 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6245 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6246 	bool drained = false;
6247 	unsigned long max;
6248 	int err;
6249 
6250 	buf = strstrip(buf);
6251 	err = page_counter_memparse(buf, "max", &max);
6252 	if (err)
6253 		return err;
6254 
6255 	xchg(&memcg->memory.max, max);
6256 
6257 	for (;;) {
6258 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6259 
6260 		if (nr_pages <= max)
6261 			break;
6262 
6263 		if (signal_pending(current))
6264 			break;
6265 
6266 		if (!drained) {
6267 			drain_all_stock(memcg);
6268 			drained = true;
6269 			continue;
6270 		}
6271 
6272 		if (nr_reclaims) {
6273 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6274 							  GFP_KERNEL, true))
6275 				nr_reclaims--;
6276 			continue;
6277 		}
6278 
6279 		memcg_memory_event(memcg, MEMCG_OOM);
6280 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6281 			break;
6282 	}
6283 
6284 	memcg_wb_domain_size_changed(memcg);
6285 	return nbytes;
6286 }
6287 
6288 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6289 {
6290 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6291 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6292 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6293 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6294 	seq_printf(m, "oom_kill %lu\n",
6295 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6296 }
6297 
6298 static int memory_events_show(struct seq_file *m, void *v)
6299 {
6300 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6301 
6302 	__memory_events_show(m, memcg->memory_events);
6303 	return 0;
6304 }
6305 
6306 static int memory_events_local_show(struct seq_file *m, void *v)
6307 {
6308 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6309 
6310 	__memory_events_show(m, memcg->memory_events_local);
6311 	return 0;
6312 }
6313 
6314 static int memory_stat_show(struct seq_file *m, void *v)
6315 {
6316 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6317 	char *buf;
6318 
6319 	buf = memory_stat_format(memcg);
6320 	if (!buf)
6321 		return -ENOMEM;
6322 	seq_puts(m, buf);
6323 	kfree(buf);
6324 	return 0;
6325 }
6326 
6327 #ifdef CONFIG_NUMA
6328 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6329 						     int item)
6330 {
6331 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6332 }
6333 
6334 static int memory_numa_stat_show(struct seq_file *m, void *v)
6335 {
6336 	int i;
6337 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6338 
6339 	mem_cgroup_flush_stats();
6340 
6341 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6342 		int nid;
6343 
6344 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6345 			continue;
6346 
6347 		seq_printf(m, "%s", memory_stats[i].name);
6348 		for_each_node_state(nid, N_MEMORY) {
6349 			u64 size;
6350 			struct lruvec *lruvec;
6351 
6352 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6353 			size = lruvec_page_state_output(lruvec,
6354 							memory_stats[i].idx);
6355 			seq_printf(m, " N%d=%llu", nid, size);
6356 		}
6357 		seq_putc(m, '\n');
6358 	}
6359 
6360 	return 0;
6361 }
6362 #endif
6363 
6364 static int memory_oom_group_show(struct seq_file *m, void *v)
6365 {
6366 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6367 
6368 	seq_printf(m, "%d\n", memcg->oom_group);
6369 
6370 	return 0;
6371 }
6372 
6373 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6374 				      char *buf, size_t nbytes, loff_t off)
6375 {
6376 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6377 	int ret, oom_group;
6378 
6379 	buf = strstrip(buf);
6380 	if (!buf)
6381 		return -EINVAL;
6382 
6383 	ret = kstrtoint(buf, 0, &oom_group);
6384 	if (ret)
6385 		return ret;
6386 
6387 	if (oom_group != 0 && oom_group != 1)
6388 		return -EINVAL;
6389 
6390 	memcg->oom_group = oom_group;
6391 
6392 	return nbytes;
6393 }
6394 
6395 static struct cftype memory_files[] = {
6396 	{
6397 		.name = "current",
6398 		.flags = CFTYPE_NOT_ON_ROOT,
6399 		.read_u64 = memory_current_read,
6400 	},
6401 	{
6402 		.name = "min",
6403 		.flags = CFTYPE_NOT_ON_ROOT,
6404 		.seq_show = memory_min_show,
6405 		.write = memory_min_write,
6406 	},
6407 	{
6408 		.name = "low",
6409 		.flags = CFTYPE_NOT_ON_ROOT,
6410 		.seq_show = memory_low_show,
6411 		.write = memory_low_write,
6412 	},
6413 	{
6414 		.name = "high",
6415 		.flags = CFTYPE_NOT_ON_ROOT,
6416 		.seq_show = memory_high_show,
6417 		.write = memory_high_write,
6418 	},
6419 	{
6420 		.name = "max",
6421 		.flags = CFTYPE_NOT_ON_ROOT,
6422 		.seq_show = memory_max_show,
6423 		.write = memory_max_write,
6424 	},
6425 	{
6426 		.name = "events",
6427 		.flags = CFTYPE_NOT_ON_ROOT,
6428 		.file_offset = offsetof(struct mem_cgroup, events_file),
6429 		.seq_show = memory_events_show,
6430 	},
6431 	{
6432 		.name = "events.local",
6433 		.flags = CFTYPE_NOT_ON_ROOT,
6434 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6435 		.seq_show = memory_events_local_show,
6436 	},
6437 	{
6438 		.name = "stat",
6439 		.seq_show = memory_stat_show,
6440 	},
6441 #ifdef CONFIG_NUMA
6442 	{
6443 		.name = "numa_stat",
6444 		.seq_show = memory_numa_stat_show,
6445 	},
6446 #endif
6447 	{
6448 		.name = "oom.group",
6449 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6450 		.seq_show = memory_oom_group_show,
6451 		.write = memory_oom_group_write,
6452 	},
6453 	{ }	/* terminate */
6454 };
6455 
6456 struct cgroup_subsys memory_cgrp_subsys = {
6457 	.css_alloc = mem_cgroup_css_alloc,
6458 	.css_online = mem_cgroup_css_online,
6459 	.css_offline = mem_cgroup_css_offline,
6460 	.css_released = mem_cgroup_css_released,
6461 	.css_free = mem_cgroup_css_free,
6462 	.css_reset = mem_cgroup_css_reset,
6463 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6464 	.can_attach = mem_cgroup_can_attach,
6465 	.cancel_attach = mem_cgroup_cancel_attach,
6466 	.post_attach = mem_cgroup_move_task,
6467 	.dfl_cftypes = memory_files,
6468 	.legacy_cftypes = mem_cgroup_legacy_files,
6469 	.early_init = 0,
6470 };
6471 
6472 /*
6473  * This function calculates an individual cgroup's effective
6474  * protection which is derived from its own memory.min/low, its
6475  * parent's and siblings' settings, as well as the actual memory
6476  * distribution in the tree.
6477  *
6478  * The following rules apply to the effective protection values:
6479  *
6480  * 1. At the first level of reclaim, effective protection is equal to
6481  *    the declared protection in memory.min and memory.low.
6482  *
6483  * 2. To enable safe delegation of the protection configuration, at
6484  *    subsequent levels the effective protection is capped to the
6485  *    parent's effective protection.
6486  *
6487  * 3. To make complex and dynamic subtrees easier to configure, the
6488  *    user is allowed to overcommit the declared protection at a given
6489  *    level. If that is the case, the parent's effective protection is
6490  *    distributed to the children in proportion to how much protection
6491  *    they have declared and how much of it they are utilizing.
6492  *
6493  *    This makes distribution proportional, but also work-conserving:
6494  *    if one cgroup claims much more protection than it uses memory,
6495  *    the unused remainder is available to its siblings.
6496  *
6497  * 4. Conversely, when the declared protection is undercommitted at a
6498  *    given level, the distribution of the larger parental protection
6499  *    budget is NOT proportional. A cgroup's protection from a sibling
6500  *    is capped to its own memory.min/low setting.
6501  *
6502  * 5. However, to allow protecting recursive subtrees from each other
6503  *    without having to declare each individual cgroup's fixed share
6504  *    of the ancestor's claim to protection, any unutilized -
6505  *    "floating" - protection from up the tree is distributed in
6506  *    proportion to each cgroup's *usage*. This makes the protection
6507  *    neutral wrt sibling cgroups and lets them compete freely over
6508  *    the shared parental protection budget, but it protects the
6509  *    subtree as a whole from neighboring subtrees.
6510  *
6511  * Note that 4. and 5. are not in conflict: 4. is about protecting
6512  * against immediate siblings whereas 5. is about protecting against
6513  * neighboring subtrees.
6514  */
6515 static unsigned long effective_protection(unsigned long usage,
6516 					  unsigned long parent_usage,
6517 					  unsigned long setting,
6518 					  unsigned long parent_effective,
6519 					  unsigned long siblings_protected)
6520 {
6521 	unsigned long protected;
6522 	unsigned long ep;
6523 
6524 	protected = min(usage, setting);
6525 	/*
6526 	 * If all cgroups at this level combined claim and use more
6527 	 * protection then what the parent affords them, distribute
6528 	 * shares in proportion to utilization.
6529 	 *
6530 	 * We are using actual utilization rather than the statically
6531 	 * claimed protection in order to be work-conserving: claimed
6532 	 * but unused protection is available to siblings that would
6533 	 * otherwise get a smaller chunk than what they claimed.
6534 	 */
6535 	if (siblings_protected > parent_effective)
6536 		return protected * parent_effective / siblings_protected;
6537 
6538 	/*
6539 	 * Ok, utilized protection of all children is within what the
6540 	 * parent affords them, so we know whatever this child claims
6541 	 * and utilizes is effectively protected.
6542 	 *
6543 	 * If there is unprotected usage beyond this value, reclaim
6544 	 * will apply pressure in proportion to that amount.
6545 	 *
6546 	 * If there is unutilized protection, the cgroup will be fully
6547 	 * shielded from reclaim, but we do return a smaller value for
6548 	 * protection than what the group could enjoy in theory. This
6549 	 * is okay. With the overcommit distribution above, effective
6550 	 * protection is always dependent on how memory is actually
6551 	 * consumed among the siblings anyway.
6552 	 */
6553 	ep = protected;
6554 
6555 	/*
6556 	 * If the children aren't claiming (all of) the protection
6557 	 * afforded to them by the parent, distribute the remainder in
6558 	 * proportion to the (unprotected) memory of each cgroup. That
6559 	 * way, cgroups that aren't explicitly prioritized wrt each
6560 	 * other compete freely over the allowance, but they are
6561 	 * collectively protected from neighboring trees.
6562 	 *
6563 	 * We're using unprotected memory for the weight so that if
6564 	 * some cgroups DO claim explicit protection, we don't protect
6565 	 * the same bytes twice.
6566 	 *
6567 	 * Check both usage and parent_usage against the respective
6568 	 * protected values. One should imply the other, but they
6569 	 * aren't read atomically - make sure the division is sane.
6570 	 */
6571 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6572 		return ep;
6573 	if (parent_effective > siblings_protected &&
6574 	    parent_usage > siblings_protected &&
6575 	    usage > protected) {
6576 		unsigned long unclaimed;
6577 
6578 		unclaimed = parent_effective - siblings_protected;
6579 		unclaimed *= usage - protected;
6580 		unclaimed /= parent_usage - siblings_protected;
6581 
6582 		ep += unclaimed;
6583 	}
6584 
6585 	return ep;
6586 }
6587 
6588 /**
6589  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6590  * @root: the top ancestor of the sub-tree being checked
6591  * @memcg: the memory cgroup to check
6592  *
6593  * WARNING: This function is not stateless! It can only be used as part
6594  *          of a top-down tree iteration, not for isolated queries.
6595  */
6596 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6597 				     struct mem_cgroup *memcg)
6598 {
6599 	unsigned long usage, parent_usage;
6600 	struct mem_cgroup *parent;
6601 
6602 	if (mem_cgroup_disabled())
6603 		return;
6604 
6605 	if (!root)
6606 		root = root_mem_cgroup;
6607 
6608 	/*
6609 	 * Effective values of the reclaim targets are ignored so they
6610 	 * can be stale. Have a look at mem_cgroup_protection for more
6611 	 * details.
6612 	 * TODO: calculation should be more robust so that we do not need
6613 	 * that special casing.
6614 	 */
6615 	if (memcg == root)
6616 		return;
6617 
6618 	usage = page_counter_read(&memcg->memory);
6619 	if (!usage)
6620 		return;
6621 
6622 	parent = parent_mem_cgroup(memcg);
6623 	/* No parent means a non-hierarchical mode on v1 memcg */
6624 	if (!parent)
6625 		return;
6626 
6627 	if (parent == root) {
6628 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6629 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6630 		return;
6631 	}
6632 
6633 	parent_usage = page_counter_read(&parent->memory);
6634 
6635 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6636 			READ_ONCE(memcg->memory.min),
6637 			READ_ONCE(parent->memory.emin),
6638 			atomic_long_read(&parent->memory.children_min_usage)));
6639 
6640 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6641 			READ_ONCE(memcg->memory.low),
6642 			READ_ONCE(parent->memory.elow),
6643 			atomic_long_read(&parent->memory.children_low_usage)));
6644 }
6645 
6646 static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
6647 {
6648 	unsigned int nr_pages = thp_nr_pages(page);
6649 	int ret;
6650 
6651 	ret = try_charge(memcg, gfp, nr_pages);
6652 	if (ret)
6653 		goto out;
6654 
6655 	css_get(&memcg->css);
6656 	commit_charge(page, memcg);
6657 
6658 	local_irq_disable();
6659 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6660 	memcg_check_events(memcg, page);
6661 	local_irq_enable();
6662 out:
6663 	return ret;
6664 }
6665 
6666 /**
6667  * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6668  * @page: page to charge
6669  * @mm: mm context of the victim
6670  * @gfp_mask: reclaim mode
6671  *
6672  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6673  * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6674  * charge to the active memcg.
6675  *
6676  * Do not use this for pages allocated for swapin.
6677  *
6678  * Returns 0 on success. Otherwise, an error code is returned.
6679  */
6680 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6681 			gfp_t gfp_mask)
6682 {
6683 	struct mem_cgroup *memcg;
6684 	int ret;
6685 
6686 	memcg = get_mem_cgroup_from_mm(mm);
6687 	ret = charge_memcg(page, memcg, gfp_mask);
6688 	css_put(&memcg->css);
6689 
6690 	return ret;
6691 }
6692 
6693 /**
6694  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6695  * @page: page to charge
6696  * @mm: mm context of the victim
6697  * @gfp: reclaim mode
6698  * @entry: swap entry for which the page is allocated
6699  *
6700  * This function charges a page allocated for swapin. Please call this before
6701  * adding the page to the swapcache.
6702  *
6703  * Returns 0 on success. Otherwise, an error code is returned.
6704  */
6705 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6706 				  gfp_t gfp, swp_entry_t entry)
6707 {
6708 	struct mem_cgroup *memcg;
6709 	unsigned short id;
6710 	int ret;
6711 
6712 	if (mem_cgroup_disabled())
6713 		return 0;
6714 
6715 	id = lookup_swap_cgroup_id(entry);
6716 	rcu_read_lock();
6717 	memcg = mem_cgroup_from_id(id);
6718 	if (!memcg || !css_tryget_online(&memcg->css))
6719 		memcg = get_mem_cgroup_from_mm(mm);
6720 	rcu_read_unlock();
6721 
6722 	ret = charge_memcg(page, memcg, gfp);
6723 
6724 	css_put(&memcg->css);
6725 	return ret;
6726 }
6727 
6728 /*
6729  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6730  * @entry: swap entry for which the page is charged
6731  *
6732  * Call this function after successfully adding the charged page to swapcache.
6733  *
6734  * Note: This function assumes the page for which swap slot is being uncharged
6735  * is order 0 page.
6736  */
6737 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6738 {
6739 	/*
6740 	 * Cgroup1's unified memory+swap counter has been charged with the
6741 	 * new swapcache page, finish the transfer by uncharging the swap
6742 	 * slot. The swap slot would also get uncharged when it dies, but
6743 	 * it can stick around indefinitely and we'd count the page twice
6744 	 * the entire time.
6745 	 *
6746 	 * Cgroup2 has separate resource counters for memory and swap,
6747 	 * so this is a non-issue here. Memory and swap charge lifetimes
6748 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6749 	 * page to memory here, and uncharge swap when the slot is freed.
6750 	 */
6751 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6752 		/*
6753 		 * The swap entry might not get freed for a long time,
6754 		 * let's not wait for it.  The page already received a
6755 		 * memory+swap charge, drop the swap entry duplicate.
6756 		 */
6757 		mem_cgroup_uncharge_swap(entry, 1);
6758 	}
6759 }
6760 
6761 struct uncharge_gather {
6762 	struct mem_cgroup *memcg;
6763 	unsigned long nr_memory;
6764 	unsigned long pgpgout;
6765 	unsigned long nr_kmem;
6766 	struct page *dummy_page;
6767 };
6768 
6769 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6770 {
6771 	memset(ug, 0, sizeof(*ug));
6772 }
6773 
6774 static void uncharge_batch(const struct uncharge_gather *ug)
6775 {
6776 	unsigned long flags;
6777 
6778 	if (ug->nr_memory) {
6779 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6780 		if (do_memsw_account())
6781 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6782 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6783 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6784 		memcg_oom_recover(ug->memcg);
6785 	}
6786 
6787 	local_irq_save(flags);
6788 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6789 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6790 	memcg_check_events(ug->memcg, ug->dummy_page);
6791 	local_irq_restore(flags);
6792 
6793 	/* drop reference from uncharge_page */
6794 	css_put(&ug->memcg->css);
6795 }
6796 
6797 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6798 {
6799 	unsigned long nr_pages;
6800 	struct mem_cgroup *memcg;
6801 	struct obj_cgroup *objcg;
6802 	bool use_objcg = PageMemcgKmem(page);
6803 
6804 	VM_BUG_ON_PAGE(PageLRU(page), page);
6805 
6806 	/*
6807 	 * Nobody should be changing or seriously looking at
6808 	 * page memcg or objcg at this point, we have fully
6809 	 * exclusive access to the page.
6810 	 */
6811 	if (use_objcg) {
6812 		objcg = __page_objcg(page);
6813 		/*
6814 		 * This get matches the put at the end of the function and
6815 		 * kmem pages do not hold memcg references anymore.
6816 		 */
6817 		memcg = get_mem_cgroup_from_objcg(objcg);
6818 	} else {
6819 		memcg = __page_memcg(page);
6820 	}
6821 
6822 	if (!memcg)
6823 		return;
6824 
6825 	if (ug->memcg != memcg) {
6826 		if (ug->memcg) {
6827 			uncharge_batch(ug);
6828 			uncharge_gather_clear(ug);
6829 		}
6830 		ug->memcg = memcg;
6831 		ug->dummy_page = page;
6832 
6833 		/* pairs with css_put in uncharge_batch */
6834 		css_get(&memcg->css);
6835 	}
6836 
6837 	nr_pages = compound_nr(page);
6838 
6839 	if (use_objcg) {
6840 		ug->nr_memory += nr_pages;
6841 		ug->nr_kmem += nr_pages;
6842 
6843 		page->memcg_data = 0;
6844 		obj_cgroup_put(objcg);
6845 	} else {
6846 		/* LRU pages aren't accounted at the root level */
6847 		if (!mem_cgroup_is_root(memcg))
6848 			ug->nr_memory += nr_pages;
6849 		ug->pgpgout++;
6850 
6851 		page->memcg_data = 0;
6852 	}
6853 
6854 	css_put(&memcg->css);
6855 }
6856 
6857 /**
6858  * __mem_cgroup_uncharge - uncharge a page
6859  * @page: page to uncharge
6860  *
6861  * Uncharge a page previously charged with __mem_cgroup_charge().
6862  */
6863 void __mem_cgroup_uncharge(struct page *page)
6864 {
6865 	struct uncharge_gather ug;
6866 
6867 	/* Don't touch page->lru of any random page, pre-check: */
6868 	if (!page_memcg(page))
6869 		return;
6870 
6871 	uncharge_gather_clear(&ug);
6872 	uncharge_page(page, &ug);
6873 	uncharge_batch(&ug);
6874 }
6875 
6876 /**
6877  * __mem_cgroup_uncharge_list - uncharge a list of page
6878  * @page_list: list of pages to uncharge
6879  *
6880  * Uncharge a list of pages previously charged with
6881  * __mem_cgroup_charge().
6882  */
6883 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6884 {
6885 	struct uncharge_gather ug;
6886 	struct page *page;
6887 
6888 	uncharge_gather_clear(&ug);
6889 	list_for_each_entry(page, page_list, lru)
6890 		uncharge_page(page, &ug);
6891 	if (ug.memcg)
6892 		uncharge_batch(&ug);
6893 }
6894 
6895 /**
6896  * mem_cgroup_migrate - charge a page's replacement
6897  * @oldpage: currently circulating page
6898  * @newpage: replacement page
6899  *
6900  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6901  * be uncharged upon free.
6902  *
6903  * Both pages must be locked, @newpage->mapping must be set up.
6904  */
6905 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6906 {
6907 	struct mem_cgroup *memcg;
6908 	unsigned int nr_pages;
6909 	unsigned long flags;
6910 
6911 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6912 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6913 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6914 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6915 		       newpage);
6916 
6917 	if (mem_cgroup_disabled())
6918 		return;
6919 
6920 	/* Page cache replacement: new page already charged? */
6921 	if (page_memcg(newpage))
6922 		return;
6923 
6924 	memcg = page_memcg(oldpage);
6925 	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6926 	if (!memcg)
6927 		return;
6928 
6929 	/* Force-charge the new page. The old one will be freed soon */
6930 	nr_pages = thp_nr_pages(newpage);
6931 
6932 	if (!mem_cgroup_is_root(memcg)) {
6933 		page_counter_charge(&memcg->memory, nr_pages);
6934 		if (do_memsw_account())
6935 			page_counter_charge(&memcg->memsw, nr_pages);
6936 	}
6937 
6938 	css_get(&memcg->css);
6939 	commit_charge(newpage, memcg);
6940 
6941 	local_irq_save(flags);
6942 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6943 	memcg_check_events(memcg, newpage);
6944 	local_irq_restore(flags);
6945 }
6946 
6947 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6948 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6949 
6950 void mem_cgroup_sk_alloc(struct sock *sk)
6951 {
6952 	struct mem_cgroup *memcg;
6953 
6954 	if (!mem_cgroup_sockets_enabled)
6955 		return;
6956 
6957 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6958 	if (in_interrupt())
6959 		return;
6960 
6961 	rcu_read_lock();
6962 	memcg = mem_cgroup_from_task(current);
6963 	if (memcg == root_mem_cgroup)
6964 		goto out;
6965 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6966 		goto out;
6967 	if (css_tryget(&memcg->css))
6968 		sk->sk_memcg = memcg;
6969 out:
6970 	rcu_read_unlock();
6971 }
6972 
6973 void mem_cgroup_sk_free(struct sock *sk)
6974 {
6975 	if (sk->sk_memcg)
6976 		css_put(&sk->sk_memcg->css);
6977 }
6978 
6979 /**
6980  * mem_cgroup_charge_skmem - charge socket memory
6981  * @memcg: memcg to charge
6982  * @nr_pages: number of pages to charge
6983  * @gfp_mask: reclaim mode
6984  *
6985  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6986  * @memcg's configured limit, %false if it doesn't.
6987  */
6988 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
6989 			     gfp_t gfp_mask)
6990 {
6991 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6992 		struct page_counter *fail;
6993 
6994 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6995 			memcg->tcpmem_pressure = 0;
6996 			return true;
6997 		}
6998 		memcg->tcpmem_pressure = 1;
6999 		if (gfp_mask & __GFP_NOFAIL) {
7000 			page_counter_charge(&memcg->tcpmem, nr_pages);
7001 			return true;
7002 		}
7003 		return false;
7004 	}
7005 
7006 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7007 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7008 		return true;
7009 	}
7010 
7011 	return false;
7012 }
7013 
7014 /**
7015  * mem_cgroup_uncharge_skmem - uncharge socket memory
7016  * @memcg: memcg to uncharge
7017  * @nr_pages: number of pages to uncharge
7018  */
7019 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7020 {
7021 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7022 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7023 		return;
7024 	}
7025 
7026 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7027 
7028 	refill_stock(memcg, nr_pages);
7029 }
7030 
7031 static int __init cgroup_memory(char *s)
7032 {
7033 	char *token;
7034 
7035 	while ((token = strsep(&s, ",")) != NULL) {
7036 		if (!*token)
7037 			continue;
7038 		if (!strcmp(token, "nosocket"))
7039 			cgroup_memory_nosocket = true;
7040 		if (!strcmp(token, "nokmem"))
7041 			cgroup_memory_nokmem = true;
7042 	}
7043 	return 0;
7044 }
7045 __setup("cgroup.memory=", cgroup_memory);
7046 
7047 /*
7048  * subsys_initcall() for memory controller.
7049  *
7050  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7051  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7052  * basically everything that doesn't depend on a specific mem_cgroup structure
7053  * should be initialized from here.
7054  */
7055 static int __init mem_cgroup_init(void)
7056 {
7057 	int cpu, node;
7058 
7059 	/*
7060 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7061 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7062 	 * to work fine, we should make sure that the overfill threshold can't
7063 	 * exceed S32_MAX / PAGE_SIZE.
7064 	 */
7065 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7066 
7067 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7068 				  memcg_hotplug_cpu_dead);
7069 
7070 	for_each_possible_cpu(cpu)
7071 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7072 			  drain_local_stock);
7073 
7074 	for_each_node(node) {
7075 		struct mem_cgroup_tree_per_node *rtpn;
7076 
7077 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7078 				    node_online(node) ? node : NUMA_NO_NODE);
7079 
7080 		rtpn->rb_root = RB_ROOT;
7081 		rtpn->rb_rightmost = NULL;
7082 		spin_lock_init(&rtpn->lock);
7083 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7084 	}
7085 
7086 	return 0;
7087 }
7088 subsys_initcall(mem_cgroup_init);
7089 
7090 #ifdef CONFIG_MEMCG_SWAP
7091 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7092 {
7093 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7094 		/*
7095 		 * The root cgroup cannot be destroyed, so it's refcount must
7096 		 * always be >= 1.
7097 		 */
7098 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7099 			VM_BUG_ON(1);
7100 			break;
7101 		}
7102 		memcg = parent_mem_cgroup(memcg);
7103 		if (!memcg)
7104 			memcg = root_mem_cgroup;
7105 	}
7106 	return memcg;
7107 }
7108 
7109 /**
7110  * mem_cgroup_swapout - transfer a memsw charge to swap
7111  * @page: page whose memsw charge to transfer
7112  * @entry: swap entry to move the charge to
7113  *
7114  * Transfer the memsw charge of @page to @entry.
7115  */
7116 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7117 {
7118 	struct mem_cgroup *memcg, *swap_memcg;
7119 	unsigned int nr_entries;
7120 	unsigned short oldid;
7121 
7122 	VM_BUG_ON_PAGE(PageLRU(page), page);
7123 	VM_BUG_ON_PAGE(page_count(page), page);
7124 
7125 	if (mem_cgroup_disabled())
7126 		return;
7127 
7128 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7129 		return;
7130 
7131 	memcg = page_memcg(page);
7132 
7133 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7134 	if (!memcg)
7135 		return;
7136 
7137 	/*
7138 	 * In case the memcg owning these pages has been offlined and doesn't
7139 	 * have an ID allocated to it anymore, charge the closest online
7140 	 * ancestor for the swap instead and transfer the memory+swap charge.
7141 	 */
7142 	swap_memcg = mem_cgroup_id_get_online(memcg);
7143 	nr_entries = thp_nr_pages(page);
7144 	/* Get references for the tail pages, too */
7145 	if (nr_entries > 1)
7146 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7147 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7148 				   nr_entries);
7149 	VM_BUG_ON_PAGE(oldid, page);
7150 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7151 
7152 	page->memcg_data = 0;
7153 
7154 	if (!mem_cgroup_is_root(memcg))
7155 		page_counter_uncharge(&memcg->memory, nr_entries);
7156 
7157 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7158 		if (!mem_cgroup_is_root(swap_memcg))
7159 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7160 		page_counter_uncharge(&memcg->memsw, nr_entries);
7161 	}
7162 
7163 	/*
7164 	 * Interrupts should be disabled here because the caller holds the
7165 	 * i_pages lock which is taken with interrupts-off. It is
7166 	 * important here to have the interrupts disabled because it is the
7167 	 * only synchronisation we have for updating the per-CPU variables.
7168 	 */
7169 	VM_BUG_ON(!irqs_disabled());
7170 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7171 	memcg_check_events(memcg, page);
7172 
7173 	css_put(&memcg->css);
7174 }
7175 
7176 /**
7177  * __mem_cgroup_try_charge_swap - try charging swap space for a page
7178  * @page: page being added to swap
7179  * @entry: swap entry to charge
7180  *
7181  * Try to charge @page's memcg for the swap space at @entry.
7182  *
7183  * Returns 0 on success, -ENOMEM on failure.
7184  */
7185 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7186 {
7187 	unsigned int nr_pages = thp_nr_pages(page);
7188 	struct page_counter *counter;
7189 	struct mem_cgroup *memcg;
7190 	unsigned short oldid;
7191 
7192 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7193 		return 0;
7194 
7195 	memcg = page_memcg(page);
7196 
7197 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7198 	if (!memcg)
7199 		return 0;
7200 
7201 	if (!entry.val) {
7202 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7203 		return 0;
7204 	}
7205 
7206 	memcg = mem_cgroup_id_get_online(memcg);
7207 
7208 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7209 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7210 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7211 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7212 		mem_cgroup_id_put(memcg);
7213 		return -ENOMEM;
7214 	}
7215 
7216 	/* Get references for the tail pages, too */
7217 	if (nr_pages > 1)
7218 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7219 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7220 	VM_BUG_ON_PAGE(oldid, page);
7221 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7222 
7223 	return 0;
7224 }
7225 
7226 /**
7227  * __mem_cgroup_uncharge_swap - uncharge swap space
7228  * @entry: swap entry to uncharge
7229  * @nr_pages: the amount of swap space to uncharge
7230  */
7231 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7232 {
7233 	struct mem_cgroup *memcg;
7234 	unsigned short id;
7235 
7236 	id = swap_cgroup_record(entry, 0, nr_pages);
7237 	rcu_read_lock();
7238 	memcg = mem_cgroup_from_id(id);
7239 	if (memcg) {
7240 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7241 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7242 				page_counter_uncharge(&memcg->swap, nr_pages);
7243 			else
7244 				page_counter_uncharge(&memcg->memsw, nr_pages);
7245 		}
7246 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7247 		mem_cgroup_id_put_many(memcg, nr_pages);
7248 	}
7249 	rcu_read_unlock();
7250 }
7251 
7252 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7253 {
7254 	long nr_swap_pages = get_nr_swap_pages();
7255 
7256 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7257 		return nr_swap_pages;
7258 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7259 		nr_swap_pages = min_t(long, nr_swap_pages,
7260 				      READ_ONCE(memcg->swap.max) -
7261 				      page_counter_read(&memcg->swap));
7262 	return nr_swap_pages;
7263 }
7264 
7265 bool mem_cgroup_swap_full(struct page *page)
7266 {
7267 	struct mem_cgroup *memcg;
7268 
7269 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7270 
7271 	if (vm_swap_full())
7272 		return true;
7273 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7274 		return false;
7275 
7276 	memcg = page_memcg(page);
7277 	if (!memcg)
7278 		return false;
7279 
7280 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7281 		unsigned long usage = page_counter_read(&memcg->swap);
7282 
7283 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7284 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7285 			return true;
7286 	}
7287 
7288 	return false;
7289 }
7290 
7291 static int __init setup_swap_account(char *s)
7292 {
7293 	if (!strcmp(s, "1"))
7294 		cgroup_memory_noswap = false;
7295 	else if (!strcmp(s, "0"))
7296 		cgroup_memory_noswap = true;
7297 	return 1;
7298 }
7299 __setup("swapaccount=", setup_swap_account);
7300 
7301 static u64 swap_current_read(struct cgroup_subsys_state *css,
7302 			     struct cftype *cft)
7303 {
7304 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7305 
7306 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7307 }
7308 
7309 static int swap_high_show(struct seq_file *m, void *v)
7310 {
7311 	return seq_puts_memcg_tunable(m,
7312 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7313 }
7314 
7315 static ssize_t swap_high_write(struct kernfs_open_file *of,
7316 			       char *buf, size_t nbytes, loff_t off)
7317 {
7318 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7319 	unsigned long high;
7320 	int err;
7321 
7322 	buf = strstrip(buf);
7323 	err = page_counter_memparse(buf, "max", &high);
7324 	if (err)
7325 		return err;
7326 
7327 	page_counter_set_high(&memcg->swap, high);
7328 
7329 	return nbytes;
7330 }
7331 
7332 static int swap_max_show(struct seq_file *m, void *v)
7333 {
7334 	return seq_puts_memcg_tunable(m,
7335 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7336 }
7337 
7338 static ssize_t swap_max_write(struct kernfs_open_file *of,
7339 			      char *buf, size_t nbytes, loff_t off)
7340 {
7341 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7342 	unsigned long max;
7343 	int err;
7344 
7345 	buf = strstrip(buf);
7346 	err = page_counter_memparse(buf, "max", &max);
7347 	if (err)
7348 		return err;
7349 
7350 	xchg(&memcg->swap.max, max);
7351 
7352 	return nbytes;
7353 }
7354 
7355 static int swap_events_show(struct seq_file *m, void *v)
7356 {
7357 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7358 
7359 	seq_printf(m, "high %lu\n",
7360 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7361 	seq_printf(m, "max %lu\n",
7362 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7363 	seq_printf(m, "fail %lu\n",
7364 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7365 
7366 	return 0;
7367 }
7368 
7369 static struct cftype swap_files[] = {
7370 	{
7371 		.name = "swap.current",
7372 		.flags = CFTYPE_NOT_ON_ROOT,
7373 		.read_u64 = swap_current_read,
7374 	},
7375 	{
7376 		.name = "swap.high",
7377 		.flags = CFTYPE_NOT_ON_ROOT,
7378 		.seq_show = swap_high_show,
7379 		.write = swap_high_write,
7380 	},
7381 	{
7382 		.name = "swap.max",
7383 		.flags = CFTYPE_NOT_ON_ROOT,
7384 		.seq_show = swap_max_show,
7385 		.write = swap_max_write,
7386 	},
7387 	{
7388 		.name = "swap.events",
7389 		.flags = CFTYPE_NOT_ON_ROOT,
7390 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7391 		.seq_show = swap_events_show,
7392 	},
7393 	{ }	/* terminate */
7394 };
7395 
7396 static struct cftype memsw_files[] = {
7397 	{
7398 		.name = "memsw.usage_in_bytes",
7399 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7400 		.read_u64 = mem_cgroup_read_u64,
7401 	},
7402 	{
7403 		.name = "memsw.max_usage_in_bytes",
7404 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7405 		.write = mem_cgroup_reset,
7406 		.read_u64 = mem_cgroup_read_u64,
7407 	},
7408 	{
7409 		.name = "memsw.limit_in_bytes",
7410 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7411 		.write = mem_cgroup_write,
7412 		.read_u64 = mem_cgroup_read_u64,
7413 	},
7414 	{
7415 		.name = "memsw.failcnt",
7416 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7417 		.write = mem_cgroup_reset,
7418 		.read_u64 = mem_cgroup_read_u64,
7419 	},
7420 	{ },	/* terminate */
7421 };
7422 
7423 /*
7424  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7425  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7426  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7427  * boot parameter. This may result in premature OOPS inside
7428  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7429  */
7430 static int __init mem_cgroup_swap_init(void)
7431 {
7432 	/* No memory control -> no swap control */
7433 	if (mem_cgroup_disabled())
7434 		cgroup_memory_noswap = true;
7435 
7436 	if (cgroup_memory_noswap)
7437 		return 0;
7438 
7439 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7440 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7441 
7442 	return 0;
7443 }
7444 core_initcall(mem_cgroup_swap_init);
7445 
7446 #endif /* CONFIG_MEMCG_SWAP */
7447