1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include <linux/sched/isolation.h> 67 #include <linux/kmemleak.h> 68 #include "internal.h" 69 #include <net/sock.h> 70 #include <net/ip.h> 71 #include "slab.h" 72 #include "swap.h" 73 74 #include <linux/uaccess.h> 75 76 #include <trace/events/vmscan.h> 77 78 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 79 EXPORT_SYMBOL(memory_cgrp_subsys); 80 81 struct mem_cgroup *root_mem_cgroup __read_mostly; 82 83 /* Active memory cgroup to use from an interrupt context */ 84 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 85 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 86 87 /* Socket memory accounting disabled? */ 88 static bool cgroup_memory_nosocket __ro_after_init; 89 90 /* Kernel memory accounting disabled? */ 91 static bool cgroup_memory_nokmem __ro_after_init; 92 93 /* BPF memory accounting disabled? */ 94 static bool cgroup_memory_nobpf __ro_after_init; 95 96 #ifdef CONFIG_CGROUP_WRITEBACK 97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 98 #endif 99 100 /* Whether legacy memory+swap accounting is active */ 101 static bool do_memsw_account(void) 102 { 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys); 104 } 105 106 #define THRESHOLDS_EVENTS_TARGET 128 107 #define SOFTLIMIT_EVENTS_TARGET 1024 108 109 /* 110 * Cgroups above their limits are maintained in a RB-Tree, independent of 111 * their hierarchy representation 112 */ 113 114 struct mem_cgroup_tree_per_node { 115 struct rb_root rb_root; 116 struct rb_node *rb_rightmost; 117 spinlock_t lock; 118 }; 119 120 struct mem_cgroup_tree { 121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 122 }; 123 124 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 125 126 /* for OOM */ 127 struct mem_cgroup_eventfd_list { 128 struct list_head list; 129 struct eventfd_ctx *eventfd; 130 }; 131 132 /* 133 * cgroup_event represents events which userspace want to receive. 134 */ 135 struct mem_cgroup_event { 136 /* 137 * memcg which the event belongs to. 138 */ 139 struct mem_cgroup *memcg; 140 /* 141 * eventfd to signal userspace about the event. 142 */ 143 struct eventfd_ctx *eventfd; 144 /* 145 * Each of these stored in a list by the cgroup. 146 */ 147 struct list_head list; 148 /* 149 * register_event() callback will be used to add new userspace 150 * waiter for changes related to this event. Use eventfd_signal() 151 * on eventfd to send notification to userspace. 152 */ 153 int (*register_event)(struct mem_cgroup *memcg, 154 struct eventfd_ctx *eventfd, const char *args); 155 /* 156 * unregister_event() callback will be called when userspace closes 157 * the eventfd or on cgroup removing. This callback must be set, 158 * if you want provide notification functionality. 159 */ 160 void (*unregister_event)(struct mem_cgroup *memcg, 161 struct eventfd_ctx *eventfd); 162 /* 163 * All fields below needed to unregister event when 164 * userspace closes eventfd. 165 */ 166 poll_table pt; 167 wait_queue_head_t *wqh; 168 wait_queue_entry_t wait; 169 struct work_struct remove; 170 }; 171 172 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 174 175 /* Stuffs for move charges at task migration. */ 176 /* 177 * Types of charges to be moved. 178 */ 179 #define MOVE_ANON 0x1U 180 #define MOVE_FILE 0x2U 181 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 182 183 /* "mc" and its members are protected by cgroup_mutex */ 184 static struct move_charge_struct { 185 spinlock_t lock; /* for from, to */ 186 struct mm_struct *mm; 187 struct mem_cgroup *from; 188 struct mem_cgroup *to; 189 unsigned long flags; 190 unsigned long precharge; 191 unsigned long moved_charge; 192 unsigned long moved_swap; 193 struct task_struct *moving_task; /* a task moving charges */ 194 wait_queue_head_t waitq; /* a waitq for other context */ 195 } mc = { 196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 198 }; 199 200 /* 201 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft 202 * limit reclaim to prevent infinite loops, if they ever occur. 203 */ 204 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 205 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 206 207 /* for encoding cft->private value on file */ 208 enum res_type { 209 _MEM, 210 _MEMSWAP, 211 _KMEM, 212 _TCP, 213 }; 214 215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 217 #define MEMFILE_ATTR(val) ((val) & 0xffff) 218 219 /* 220 * Iteration constructs for visiting all cgroups (under a tree). If 221 * loops are exited prematurely (break), mem_cgroup_iter_break() must 222 * be used for reference counting. 223 */ 224 #define for_each_mem_cgroup_tree(iter, root) \ 225 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 226 iter != NULL; \ 227 iter = mem_cgroup_iter(root, iter, NULL)) 228 229 #define for_each_mem_cgroup(iter) \ 230 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 231 iter != NULL; \ 232 iter = mem_cgroup_iter(NULL, iter, NULL)) 233 234 static inline bool task_is_dying(void) 235 { 236 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 237 (current->flags & PF_EXITING); 238 } 239 240 /* Some nice accessors for the vmpressure. */ 241 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 242 { 243 if (!memcg) 244 memcg = root_mem_cgroup; 245 return &memcg->vmpressure; 246 } 247 248 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 249 { 250 return container_of(vmpr, struct mem_cgroup, vmpressure); 251 } 252 253 #define CURRENT_OBJCG_UPDATE_BIT 0 254 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 255 256 #ifdef CONFIG_MEMCG_KMEM 257 static DEFINE_SPINLOCK(objcg_lock); 258 259 bool mem_cgroup_kmem_disabled(void) 260 { 261 return cgroup_memory_nokmem; 262 } 263 264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 265 unsigned int nr_pages); 266 267 static void obj_cgroup_release(struct percpu_ref *ref) 268 { 269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 270 unsigned int nr_bytes; 271 unsigned int nr_pages; 272 unsigned long flags; 273 274 /* 275 * At this point all allocated objects are freed, and 276 * objcg->nr_charged_bytes can't have an arbitrary byte value. 277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 278 * 279 * The following sequence can lead to it: 280 * 1) CPU0: objcg == stock->cached_objcg 281 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 282 * PAGE_SIZE bytes are charged 283 * 3) CPU1: a process from another memcg is allocating something, 284 * the stock if flushed, 285 * objcg->nr_charged_bytes = PAGE_SIZE - 92 286 * 5) CPU0: we do release this object, 287 * 92 bytes are added to stock->nr_bytes 288 * 6) CPU0: stock is flushed, 289 * 92 bytes are added to objcg->nr_charged_bytes 290 * 291 * In the result, nr_charged_bytes == PAGE_SIZE. 292 * This page will be uncharged in obj_cgroup_release(). 293 */ 294 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 296 nr_pages = nr_bytes >> PAGE_SHIFT; 297 298 if (nr_pages) 299 obj_cgroup_uncharge_pages(objcg, nr_pages); 300 301 spin_lock_irqsave(&objcg_lock, flags); 302 list_del(&objcg->list); 303 spin_unlock_irqrestore(&objcg_lock, flags); 304 305 percpu_ref_exit(ref); 306 kfree_rcu(objcg, rcu); 307 } 308 309 static struct obj_cgroup *obj_cgroup_alloc(void) 310 { 311 struct obj_cgroup *objcg; 312 int ret; 313 314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 315 if (!objcg) 316 return NULL; 317 318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 319 GFP_KERNEL); 320 if (ret) { 321 kfree(objcg); 322 return NULL; 323 } 324 INIT_LIST_HEAD(&objcg->list); 325 return objcg; 326 } 327 328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 329 struct mem_cgroup *parent) 330 { 331 struct obj_cgroup *objcg, *iter; 332 333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 334 335 spin_lock_irq(&objcg_lock); 336 337 /* 1) Ready to reparent active objcg. */ 338 list_add(&objcg->list, &memcg->objcg_list); 339 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 340 list_for_each_entry(iter, &memcg->objcg_list, list) 341 WRITE_ONCE(iter->memcg, parent); 342 /* 3) Move already reparented objcgs to the parent's list */ 343 list_splice(&memcg->objcg_list, &parent->objcg_list); 344 345 spin_unlock_irq(&objcg_lock); 346 347 percpu_ref_kill(&objcg->refcnt); 348 } 349 350 /* 351 * A lot of the calls to the cache allocation functions are expected to be 352 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 353 * conditional to this static branch, we'll have to allow modules that does 354 * kmem_cache_alloc and the such to see this symbol as well 355 */ 356 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 357 EXPORT_SYMBOL(memcg_kmem_online_key); 358 359 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 360 EXPORT_SYMBOL(memcg_bpf_enabled_key); 361 #endif 362 363 /** 364 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 365 * @folio: folio of interest 366 * 367 * If memcg is bound to the default hierarchy, css of the memcg associated 368 * with @folio is returned. The returned css remains associated with @folio 369 * until it is released. 370 * 371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 372 * is returned. 373 */ 374 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 375 { 376 struct mem_cgroup *memcg = folio_memcg(folio); 377 378 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 379 memcg = root_mem_cgroup; 380 381 return &memcg->css; 382 } 383 384 /** 385 * page_cgroup_ino - return inode number of the memcg a page is charged to 386 * @page: the page 387 * 388 * Look up the closest online ancestor of the memory cgroup @page is charged to 389 * and return its inode number or 0 if @page is not charged to any cgroup. It 390 * is safe to call this function without holding a reference to @page. 391 * 392 * Note, this function is inherently racy, because there is nothing to prevent 393 * the cgroup inode from getting torn down and potentially reallocated a moment 394 * after page_cgroup_ino() returns, so it only should be used by callers that 395 * do not care (such as procfs interfaces). 396 */ 397 ino_t page_cgroup_ino(struct page *page) 398 { 399 struct mem_cgroup *memcg; 400 unsigned long ino = 0; 401 402 rcu_read_lock(); 403 /* page_folio() is racy here, but the entire function is racy anyway */ 404 memcg = folio_memcg_check(page_folio(page)); 405 406 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 407 memcg = parent_mem_cgroup(memcg); 408 if (memcg) 409 ino = cgroup_ino(memcg->css.cgroup); 410 rcu_read_unlock(); 411 return ino; 412 } 413 414 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 415 struct mem_cgroup_tree_per_node *mctz, 416 unsigned long new_usage_in_excess) 417 { 418 struct rb_node **p = &mctz->rb_root.rb_node; 419 struct rb_node *parent = NULL; 420 struct mem_cgroup_per_node *mz_node; 421 bool rightmost = true; 422 423 if (mz->on_tree) 424 return; 425 426 mz->usage_in_excess = new_usage_in_excess; 427 if (!mz->usage_in_excess) 428 return; 429 while (*p) { 430 parent = *p; 431 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 432 tree_node); 433 if (mz->usage_in_excess < mz_node->usage_in_excess) { 434 p = &(*p)->rb_left; 435 rightmost = false; 436 } else { 437 p = &(*p)->rb_right; 438 } 439 } 440 441 if (rightmost) 442 mctz->rb_rightmost = &mz->tree_node; 443 444 rb_link_node(&mz->tree_node, parent, p); 445 rb_insert_color(&mz->tree_node, &mctz->rb_root); 446 mz->on_tree = true; 447 } 448 449 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 450 struct mem_cgroup_tree_per_node *mctz) 451 { 452 if (!mz->on_tree) 453 return; 454 455 if (&mz->tree_node == mctz->rb_rightmost) 456 mctz->rb_rightmost = rb_prev(&mz->tree_node); 457 458 rb_erase(&mz->tree_node, &mctz->rb_root); 459 mz->on_tree = false; 460 } 461 462 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 463 struct mem_cgroup_tree_per_node *mctz) 464 { 465 unsigned long flags; 466 467 spin_lock_irqsave(&mctz->lock, flags); 468 __mem_cgroup_remove_exceeded(mz, mctz); 469 spin_unlock_irqrestore(&mctz->lock, flags); 470 } 471 472 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 473 { 474 unsigned long nr_pages = page_counter_read(&memcg->memory); 475 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 476 unsigned long excess = 0; 477 478 if (nr_pages > soft_limit) 479 excess = nr_pages - soft_limit; 480 481 return excess; 482 } 483 484 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 485 { 486 unsigned long excess; 487 struct mem_cgroup_per_node *mz; 488 struct mem_cgroup_tree_per_node *mctz; 489 490 if (lru_gen_enabled()) { 491 if (soft_limit_excess(memcg)) 492 lru_gen_soft_reclaim(memcg, nid); 493 return; 494 } 495 496 mctz = soft_limit_tree.rb_tree_per_node[nid]; 497 if (!mctz) 498 return; 499 /* 500 * Necessary to update all ancestors when hierarchy is used. 501 * because their event counter is not touched. 502 */ 503 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 504 mz = memcg->nodeinfo[nid]; 505 excess = soft_limit_excess(memcg); 506 /* 507 * We have to update the tree if mz is on RB-tree or 508 * mem is over its softlimit. 509 */ 510 if (excess || mz->on_tree) { 511 unsigned long flags; 512 513 spin_lock_irqsave(&mctz->lock, flags); 514 /* if on-tree, remove it */ 515 if (mz->on_tree) 516 __mem_cgroup_remove_exceeded(mz, mctz); 517 /* 518 * Insert again. mz->usage_in_excess will be updated. 519 * If excess is 0, no tree ops. 520 */ 521 __mem_cgroup_insert_exceeded(mz, mctz, excess); 522 spin_unlock_irqrestore(&mctz->lock, flags); 523 } 524 } 525 } 526 527 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 528 { 529 struct mem_cgroup_tree_per_node *mctz; 530 struct mem_cgroup_per_node *mz; 531 int nid; 532 533 for_each_node(nid) { 534 mz = memcg->nodeinfo[nid]; 535 mctz = soft_limit_tree.rb_tree_per_node[nid]; 536 if (mctz) 537 mem_cgroup_remove_exceeded(mz, mctz); 538 } 539 } 540 541 static struct mem_cgroup_per_node * 542 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 543 { 544 struct mem_cgroup_per_node *mz; 545 546 retry: 547 mz = NULL; 548 if (!mctz->rb_rightmost) 549 goto done; /* Nothing to reclaim from */ 550 551 mz = rb_entry(mctz->rb_rightmost, 552 struct mem_cgroup_per_node, tree_node); 553 /* 554 * Remove the node now but someone else can add it back, 555 * we will to add it back at the end of reclaim to its correct 556 * position in the tree. 557 */ 558 __mem_cgroup_remove_exceeded(mz, mctz); 559 if (!soft_limit_excess(mz->memcg) || 560 !css_tryget(&mz->memcg->css)) 561 goto retry; 562 done: 563 return mz; 564 } 565 566 static struct mem_cgroup_per_node * 567 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 568 { 569 struct mem_cgroup_per_node *mz; 570 571 spin_lock_irq(&mctz->lock); 572 mz = __mem_cgroup_largest_soft_limit_node(mctz); 573 spin_unlock_irq(&mctz->lock); 574 return mz; 575 } 576 577 /* Subset of vm_event_item to report for memcg event stats */ 578 static const unsigned int memcg_vm_event_stat[] = { 579 PGPGIN, 580 PGPGOUT, 581 PGSCAN_KSWAPD, 582 PGSCAN_DIRECT, 583 PGSCAN_KHUGEPAGED, 584 PGSTEAL_KSWAPD, 585 PGSTEAL_DIRECT, 586 PGSTEAL_KHUGEPAGED, 587 PGFAULT, 588 PGMAJFAULT, 589 PGREFILL, 590 PGACTIVATE, 591 PGDEACTIVATE, 592 PGLAZYFREE, 593 PGLAZYFREED, 594 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 595 ZSWPIN, 596 ZSWPOUT, 597 ZSWPWB, 598 #endif 599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 600 THP_FAULT_ALLOC, 601 THP_COLLAPSE_ALLOC, 602 THP_SWPOUT, 603 THP_SWPOUT_FALLBACK, 604 #endif 605 }; 606 607 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 608 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 609 610 static void init_memcg_events(void) 611 { 612 int i; 613 614 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 615 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; 616 } 617 618 static inline int memcg_events_index(enum vm_event_item idx) 619 { 620 return mem_cgroup_events_index[idx] - 1; 621 } 622 623 struct memcg_vmstats_percpu { 624 /* Stats updates since the last flush */ 625 unsigned int stats_updates; 626 627 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 628 struct memcg_vmstats_percpu *parent; 629 struct memcg_vmstats *vmstats; 630 631 /* The above should fit a single cacheline for memcg_rstat_updated() */ 632 633 /* Local (CPU and cgroup) page state & events */ 634 long state[MEMCG_NR_STAT]; 635 unsigned long events[NR_MEMCG_EVENTS]; 636 637 /* Delta calculation for lockless upward propagation */ 638 long state_prev[MEMCG_NR_STAT]; 639 unsigned long events_prev[NR_MEMCG_EVENTS]; 640 641 /* Cgroup1: threshold notifications & softlimit tree updates */ 642 unsigned long nr_page_events; 643 unsigned long targets[MEM_CGROUP_NTARGETS]; 644 } ____cacheline_aligned; 645 646 struct memcg_vmstats { 647 /* Aggregated (CPU and subtree) page state & events */ 648 long state[MEMCG_NR_STAT]; 649 unsigned long events[NR_MEMCG_EVENTS]; 650 651 /* Non-hierarchical (CPU aggregated) page state & events */ 652 long state_local[MEMCG_NR_STAT]; 653 unsigned long events_local[NR_MEMCG_EVENTS]; 654 655 /* Pending child counts during tree propagation */ 656 long state_pending[MEMCG_NR_STAT]; 657 unsigned long events_pending[NR_MEMCG_EVENTS]; 658 659 /* Stats updates since the last flush */ 660 atomic64_t stats_updates; 661 }; 662 663 /* 664 * memcg and lruvec stats flushing 665 * 666 * Many codepaths leading to stats update or read are performance sensitive and 667 * adding stats flushing in such codepaths is not desirable. So, to optimize the 668 * flushing the kernel does: 669 * 670 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 671 * rstat update tree grow unbounded. 672 * 673 * 2) Flush the stats synchronously on reader side only when there are more than 674 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 675 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 676 * only for 2 seconds due to (1). 677 */ 678 static void flush_memcg_stats_dwork(struct work_struct *w); 679 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 680 static u64 flush_last_time; 681 682 #define FLUSH_TIME (2UL*HZ) 683 684 /* 685 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 686 * not rely on this as part of an acquired spinlock_t lock. These functions are 687 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 688 * is sufficient. 689 */ 690 static void memcg_stats_lock(void) 691 { 692 preempt_disable_nested(); 693 VM_WARN_ON_IRQS_ENABLED(); 694 } 695 696 static void __memcg_stats_lock(void) 697 { 698 preempt_disable_nested(); 699 } 700 701 static void memcg_stats_unlock(void) 702 { 703 preempt_enable_nested(); 704 } 705 706 707 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 708 { 709 return atomic64_read(&vmstats->stats_updates) > 710 MEMCG_CHARGE_BATCH * num_online_cpus(); 711 } 712 713 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 714 { 715 struct memcg_vmstats_percpu *statc; 716 int cpu = smp_processor_id(); 717 718 if (!val) 719 return; 720 721 cgroup_rstat_updated(memcg->css.cgroup, cpu); 722 statc = this_cpu_ptr(memcg->vmstats_percpu); 723 for (; statc; statc = statc->parent) { 724 statc->stats_updates += abs(val); 725 if (statc->stats_updates < MEMCG_CHARGE_BATCH) 726 continue; 727 728 /* 729 * If @memcg is already flush-able, increasing stats_updates is 730 * redundant. Avoid the overhead of the atomic update. 731 */ 732 if (!memcg_vmstats_needs_flush(statc->vmstats)) 733 atomic64_add(statc->stats_updates, 734 &statc->vmstats->stats_updates); 735 statc->stats_updates = 0; 736 } 737 } 738 739 static void do_flush_stats(struct mem_cgroup *memcg) 740 { 741 if (mem_cgroup_is_root(memcg)) 742 WRITE_ONCE(flush_last_time, jiffies_64); 743 744 cgroup_rstat_flush(memcg->css.cgroup); 745 } 746 747 /* 748 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 749 * @memcg: root of the subtree to flush 750 * 751 * Flushing is serialized by the underlying global rstat lock. There is also a 752 * minimum amount of work to be done even if there are no stat updates to flush. 753 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 754 * avoids unnecessary work and contention on the underlying lock. 755 */ 756 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 757 { 758 if (mem_cgroup_disabled()) 759 return; 760 761 if (!memcg) 762 memcg = root_mem_cgroup; 763 764 if (memcg_vmstats_needs_flush(memcg->vmstats)) 765 do_flush_stats(memcg); 766 } 767 768 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 769 { 770 /* Only flush if the periodic flusher is one full cycle late */ 771 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 772 mem_cgroup_flush_stats(memcg); 773 } 774 775 static void flush_memcg_stats_dwork(struct work_struct *w) 776 { 777 /* 778 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 779 * in latency-sensitive paths is as cheap as possible. 780 */ 781 do_flush_stats(root_mem_cgroup); 782 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 783 } 784 785 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 786 { 787 long x = READ_ONCE(memcg->vmstats->state[idx]); 788 #ifdef CONFIG_SMP 789 if (x < 0) 790 x = 0; 791 #endif 792 return x; 793 } 794 795 static int memcg_page_state_unit(int item); 796 797 /* 798 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 799 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 800 */ 801 static int memcg_state_val_in_pages(int idx, int val) 802 { 803 int unit = memcg_page_state_unit(idx); 804 805 if (!val || unit == PAGE_SIZE) 806 return val; 807 else 808 return max(val * unit / PAGE_SIZE, 1UL); 809 } 810 811 /** 812 * __mod_memcg_state - update cgroup memory statistics 813 * @memcg: the memory cgroup 814 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 815 * @val: delta to add to the counter, can be negative 816 */ 817 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 818 { 819 if (mem_cgroup_disabled()) 820 return; 821 822 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 823 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 824 } 825 826 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 827 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 828 { 829 long x = READ_ONCE(memcg->vmstats->state_local[idx]); 830 831 #ifdef CONFIG_SMP 832 if (x < 0) 833 x = 0; 834 #endif 835 return x; 836 } 837 838 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 839 int val) 840 { 841 struct mem_cgroup_per_node *pn; 842 struct mem_cgroup *memcg; 843 844 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 845 memcg = pn->memcg; 846 847 /* 848 * The caller from rmap relies on disabled preemption because they never 849 * update their counter from in-interrupt context. For these two 850 * counters we check that the update is never performed from an 851 * interrupt context while other caller need to have disabled interrupt. 852 */ 853 __memcg_stats_lock(); 854 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 855 switch (idx) { 856 case NR_ANON_MAPPED: 857 case NR_FILE_MAPPED: 858 case NR_ANON_THPS: 859 case NR_SHMEM_PMDMAPPED: 860 case NR_FILE_PMDMAPPED: 861 WARN_ON_ONCE(!in_task()); 862 break; 863 default: 864 VM_WARN_ON_IRQS_ENABLED(); 865 } 866 } 867 868 /* Update memcg */ 869 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 870 871 /* Update lruvec */ 872 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 873 874 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 875 memcg_stats_unlock(); 876 } 877 878 /** 879 * __mod_lruvec_state - update lruvec memory statistics 880 * @lruvec: the lruvec 881 * @idx: the stat item 882 * @val: delta to add to the counter, can be negative 883 * 884 * The lruvec is the intersection of the NUMA node and a cgroup. This 885 * function updates the all three counters that are affected by a 886 * change of state at this level: per-node, per-cgroup, per-lruvec. 887 */ 888 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 889 int val) 890 { 891 /* Update node */ 892 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 893 894 /* Update memcg and lruvec */ 895 if (!mem_cgroup_disabled()) 896 __mod_memcg_lruvec_state(lruvec, idx, val); 897 } 898 899 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 900 int val) 901 { 902 struct mem_cgroup *memcg; 903 pg_data_t *pgdat = folio_pgdat(folio); 904 struct lruvec *lruvec; 905 906 rcu_read_lock(); 907 memcg = folio_memcg(folio); 908 /* Untracked pages have no memcg, no lruvec. Update only the node */ 909 if (!memcg) { 910 rcu_read_unlock(); 911 __mod_node_page_state(pgdat, idx, val); 912 return; 913 } 914 915 lruvec = mem_cgroup_lruvec(memcg, pgdat); 916 __mod_lruvec_state(lruvec, idx, val); 917 rcu_read_unlock(); 918 } 919 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 920 921 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 922 { 923 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 924 struct mem_cgroup *memcg; 925 struct lruvec *lruvec; 926 927 rcu_read_lock(); 928 memcg = mem_cgroup_from_slab_obj(p); 929 930 /* 931 * Untracked pages have no memcg, no lruvec. Update only the 932 * node. If we reparent the slab objects to the root memcg, 933 * when we free the slab object, we need to update the per-memcg 934 * vmstats to keep it correct for the root memcg. 935 */ 936 if (!memcg) { 937 __mod_node_page_state(pgdat, idx, val); 938 } else { 939 lruvec = mem_cgroup_lruvec(memcg, pgdat); 940 __mod_lruvec_state(lruvec, idx, val); 941 } 942 rcu_read_unlock(); 943 } 944 945 /** 946 * __count_memcg_events - account VM events in a cgroup 947 * @memcg: the memory cgroup 948 * @idx: the event item 949 * @count: the number of events that occurred 950 */ 951 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 952 unsigned long count) 953 { 954 int index = memcg_events_index(idx); 955 956 if (mem_cgroup_disabled() || index < 0) 957 return; 958 959 memcg_stats_lock(); 960 __this_cpu_add(memcg->vmstats_percpu->events[index], count); 961 memcg_rstat_updated(memcg, count); 962 memcg_stats_unlock(); 963 } 964 965 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 966 { 967 int index = memcg_events_index(event); 968 969 if (index < 0) 970 return 0; 971 return READ_ONCE(memcg->vmstats->events[index]); 972 } 973 974 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 975 { 976 int index = memcg_events_index(event); 977 978 if (index < 0) 979 return 0; 980 981 return READ_ONCE(memcg->vmstats->events_local[index]); 982 } 983 984 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 985 int nr_pages) 986 { 987 /* pagein of a big page is an event. So, ignore page size */ 988 if (nr_pages > 0) 989 __count_memcg_events(memcg, PGPGIN, 1); 990 else { 991 __count_memcg_events(memcg, PGPGOUT, 1); 992 nr_pages = -nr_pages; /* for event */ 993 } 994 995 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 996 } 997 998 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 999 enum mem_cgroup_events_target target) 1000 { 1001 unsigned long val, next; 1002 1003 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 1004 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 1005 /* from time_after() in jiffies.h */ 1006 if ((long)(next - val) < 0) { 1007 switch (target) { 1008 case MEM_CGROUP_TARGET_THRESH: 1009 next = val + THRESHOLDS_EVENTS_TARGET; 1010 break; 1011 case MEM_CGROUP_TARGET_SOFTLIMIT: 1012 next = val + SOFTLIMIT_EVENTS_TARGET; 1013 break; 1014 default: 1015 break; 1016 } 1017 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 1018 return true; 1019 } 1020 return false; 1021 } 1022 1023 /* 1024 * Check events in order. 1025 * 1026 */ 1027 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 1028 { 1029 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1030 return; 1031 1032 /* threshold event is triggered in finer grain than soft limit */ 1033 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1034 MEM_CGROUP_TARGET_THRESH))) { 1035 bool do_softlimit; 1036 1037 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1038 MEM_CGROUP_TARGET_SOFTLIMIT); 1039 mem_cgroup_threshold(memcg); 1040 if (unlikely(do_softlimit)) 1041 mem_cgroup_update_tree(memcg, nid); 1042 } 1043 } 1044 1045 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1046 { 1047 /* 1048 * mm_update_next_owner() may clear mm->owner to NULL 1049 * if it races with swapoff, page migration, etc. 1050 * So this can be called with p == NULL. 1051 */ 1052 if (unlikely(!p)) 1053 return NULL; 1054 1055 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1056 } 1057 EXPORT_SYMBOL(mem_cgroup_from_task); 1058 1059 static __always_inline struct mem_cgroup *active_memcg(void) 1060 { 1061 if (!in_task()) 1062 return this_cpu_read(int_active_memcg); 1063 else 1064 return current->active_memcg; 1065 } 1066 1067 /** 1068 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1069 * @mm: mm from which memcg should be extracted. It can be NULL. 1070 * 1071 * Obtain a reference on mm->memcg and returns it if successful. If mm 1072 * is NULL, then the memcg is chosen as follows: 1073 * 1) The active memcg, if set. 1074 * 2) current->mm->memcg, if available 1075 * 3) root memcg 1076 * If mem_cgroup is disabled, NULL is returned. 1077 */ 1078 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1079 { 1080 struct mem_cgroup *memcg; 1081 1082 if (mem_cgroup_disabled()) 1083 return NULL; 1084 1085 /* 1086 * Page cache insertions can happen without an 1087 * actual mm context, e.g. during disk probing 1088 * on boot, loopback IO, acct() writes etc. 1089 * 1090 * No need to css_get on root memcg as the reference 1091 * counting is disabled on the root level in the 1092 * cgroup core. See CSS_NO_REF. 1093 */ 1094 if (unlikely(!mm)) { 1095 memcg = active_memcg(); 1096 if (unlikely(memcg)) { 1097 /* remote memcg must hold a ref */ 1098 css_get(&memcg->css); 1099 return memcg; 1100 } 1101 mm = current->mm; 1102 if (unlikely(!mm)) 1103 return root_mem_cgroup; 1104 } 1105 1106 rcu_read_lock(); 1107 do { 1108 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1109 if (unlikely(!memcg)) 1110 memcg = root_mem_cgroup; 1111 } while (!css_tryget(&memcg->css)); 1112 rcu_read_unlock(); 1113 return memcg; 1114 } 1115 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1116 1117 /** 1118 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 1119 */ 1120 struct mem_cgroup *get_mem_cgroup_from_current(void) 1121 { 1122 struct mem_cgroup *memcg; 1123 1124 if (mem_cgroup_disabled()) 1125 return NULL; 1126 1127 again: 1128 rcu_read_lock(); 1129 memcg = mem_cgroup_from_task(current); 1130 if (!css_tryget(&memcg->css)) { 1131 rcu_read_unlock(); 1132 goto again; 1133 } 1134 rcu_read_unlock(); 1135 return memcg; 1136 } 1137 1138 /** 1139 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1140 * @root: hierarchy root 1141 * @prev: previously returned memcg, NULL on first invocation 1142 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1143 * 1144 * Returns references to children of the hierarchy below @root, or 1145 * @root itself, or %NULL after a full round-trip. 1146 * 1147 * Caller must pass the return value in @prev on subsequent 1148 * invocations for reference counting, or use mem_cgroup_iter_break() 1149 * to cancel a hierarchy walk before the round-trip is complete. 1150 * 1151 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1152 * in the hierarchy among all concurrent reclaimers operating on the 1153 * same node. 1154 */ 1155 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1156 struct mem_cgroup *prev, 1157 struct mem_cgroup_reclaim_cookie *reclaim) 1158 { 1159 struct mem_cgroup_reclaim_iter *iter; 1160 struct cgroup_subsys_state *css = NULL; 1161 struct mem_cgroup *memcg = NULL; 1162 struct mem_cgroup *pos = NULL; 1163 1164 if (mem_cgroup_disabled()) 1165 return NULL; 1166 1167 if (!root) 1168 root = root_mem_cgroup; 1169 1170 rcu_read_lock(); 1171 1172 if (reclaim) { 1173 struct mem_cgroup_per_node *mz; 1174 1175 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1176 iter = &mz->iter; 1177 1178 /* 1179 * On start, join the current reclaim iteration cycle. 1180 * Exit when a concurrent walker completes it. 1181 */ 1182 if (!prev) 1183 reclaim->generation = iter->generation; 1184 else if (reclaim->generation != iter->generation) 1185 goto out_unlock; 1186 1187 while (1) { 1188 pos = READ_ONCE(iter->position); 1189 if (!pos || css_tryget(&pos->css)) 1190 break; 1191 /* 1192 * css reference reached zero, so iter->position will 1193 * be cleared by ->css_released. However, we should not 1194 * rely on this happening soon, because ->css_released 1195 * is called from a work queue, and by busy-waiting we 1196 * might block it. So we clear iter->position right 1197 * away. 1198 */ 1199 (void)cmpxchg(&iter->position, pos, NULL); 1200 } 1201 } else if (prev) { 1202 pos = prev; 1203 } 1204 1205 if (pos) 1206 css = &pos->css; 1207 1208 for (;;) { 1209 css = css_next_descendant_pre(css, &root->css); 1210 if (!css) { 1211 /* 1212 * Reclaimers share the hierarchy walk, and a 1213 * new one might jump in right at the end of 1214 * the hierarchy - make sure they see at least 1215 * one group and restart from the beginning. 1216 */ 1217 if (!prev) 1218 continue; 1219 break; 1220 } 1221 1222 /* 1223 * Verify the css and acquire a reference. The root 1224 * is provided by the caller, so we know it's alive 1225 * and kicking, and don't take an extra reference. 1226 */ 1227 if (css == &root->css || css_tryget(css)) { 1228 memcg = mem_cgroup_from_css(css); 1229 break; 1230 } 1231 } 1232 1233 if (reclaim) { 1234 /* 1235 * The position could have already been updated by a competing 1236 * thread, so check that the value hasn't changed since we read 1237 * it to avoid reclaiming from the same cgroup twice. 1238 */ 1239 (void)cmpxchg(&iter->position, pos, memcg); 1240 1241 if (pos) 1242 css_put(&pos->css); 1243 1244 if (!memcg) 1245 iter->generation++; 1246 } 1247 1248 out_unlock: 1249 rcu_read_unlock(); 1250 if (prev && prev != root) 1251 css_put(&prev->css); 1252 1253 return memcg; 1254 } 1255 1256 /** 1257 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1258 * @root: hierarchy root 1259 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1260 */ 1261 void mem_cgroup_iter_break(struct mem_cgroup *root, 1262 struct mem_cgroup *prev) 1263 { 1264 if (!root) 1265 root = root_mem_cgroup; 1266 if (prev && prev != root) 1267 css_put(&prev->css); 1268 } 1269 1270 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1271 struct mem_cgroup *dead_memcg) 1272 { 1273 struct mem_cgroup_reclaim_iter *iter; 1274 struct mem_cgroup_per_node *mz; 1275 int nid; 1276 1277 for_each_node(nid) { 1278 mz = from->nodeinfo[nid]; 1279 iter = &mz->iter; 1280 cmpxchg(&iter->position, dead_memcg, NULL); 1281 } 1282 } 1283 1284 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1285 { 1286 struct mem_cgroup *memcg = dead_memcg; 1287 struct mem_cgroup *last; 1288 1289 do { 1290 __invalidate_reclaim_iterators(memcg, dead_memcg); 1291 last = memcg; 1292 } while ((memcg = parent_mem_cgroup(memcg))); 1293 1294 /* 1295 * When cgroup1 non-hierarchy mode is used, 1296 * parent_mem_cgroup() does not walk all the way up to the 1297 * cgroup root (root_mem_cgroup). So we have to handle 1298 * dead_memcg from cgroup root separately. 1299 */ 1300 if (!mem_cgroup_is_root(last)) 1301 __invalidate_reclaim_iterators(root_mem_cgroup, 1302 dead_memcg); 1303 } 1304 1305 /** 1306 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1307 * @memcg: hierarchy root 1308 * @fn: function to call for each task 1309 * @arg: argument passed to @fn 1310 * 1311 * This function iterates over tasks attached to @memcg or to any of its 1312 * descendants and calls @fn for each task. If @fn returns a non-zero 1313 * value, the function breaks the iteration loop. Otherwise, it will iterate 1314 * over all tasks and return 0. 1315 * 1316 * This function must not be called for the root memory cgroup. 1317 */ 1318 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1319 int (*fn)(struct task_struct *, void *), void *arg) 1320 { 1321 struct mem_cgroup *iter; 1322 int ret = 0; 1323 1324 BUG_ON(mem_cgroup_is_root(memcg)); 1325 1326 for_each_mem_cgroup_tree(iter, memcg) { 1327 struct css_task_iter it; 1328 struct task_struct *task; 1329 1330 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1331 while (!ret && (task = css_task_iter_next(&it))) 1332 ret = fn(task, arg); 1333 css_task_iter_end(&it); 1334 if (ret) { 1335 mem_cgroup_iter_break(memcg, iter); 1336 break; 1337 } 1338 } 1339 } 1340 1341 #ifdef CONFIG_DEBUG_VM 1342 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1343 { 1344 struct mem_cgroup *memcg; 1345 1346 if (mem_cgroup_disabled()) 1347 return; 1348 1349 memcg = folio_memcg(folio); 1350 1351 if (!memcg) 1352 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1353 else 1354 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1355 } 1356 #endif 1357 1358 /** 1359 * folio_lruvec_lock - Lock the lruvec for a folio. 1360 * @folio: Pointer to the folio. 1361 * 1362 * These functions are safe to use under any of the following conditions: 1363 * - folio locked 1364 * - folio_test_lru false 1365 * - folio_memcg_lock() 1366 * - folio frozen (refcount of 0) 1367 * 1368 * Return: The lruvec this folio is on with its lock held. 1369 */ 1370 struct lruvec *folio_lruvec_lock(struct folio *folio) 1371 { 1372 struct lruvec *lruvec = folio_lruvec(folio); 1373 1374 spin_lock(&lruvec->lru_lock); 1375 lruvec_memcg_debug(lruvec, folio); 1376 1377 return lruvec; 1378 } 1379 1380 /** 1381 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1382 * @folio: Pointer to the folio. 1383 * 1384 * These functions are safe to use under any of the following conditions: 1385 * - folio locked 1386 * - folio_test_lru false 1387 * - folio_memcg_lock() 1388 * - folio frozen (refcount of 0) 1389 * 1390 * Return: The lruvec this folio is on with its lock held and interrupts 1391 * disabled. 1392 */ 1393 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1394 { 1395 struct lruvec *lruvec = folio_lruvec(folio); 1396 1397 spin_lock_irq(&lruvec->lru_lock); 1398 lruvec_memcg_debug(lruvec, folio); 1399 1400 return lruvec; 1401 } 1402 1403 /** 1404 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1405 * @folio: Pointer to the folio. 1406 * @flags: Pointer to irqsave flags. 1407 * 1408 * These functions are safe to use under any of the following conditions: 1409 * - folio locked 1410 * - folio_test_lru false 1411 * - folio_memcg_lock() 1412 * - folio frozen (refcount of 0) 1413 * 1414 * Return: The lruvec this folio is on with its lock held and interrupts 1415 * disabled. 1416 */ 1417 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1418 unsigned long *flags) 1419 { 1420 struct lruvec *lruvec = folio_lruvec(folio); 1421 1422 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1423 lruvec_memcg_debug(lruvec, folio); 1424 1425 return lruvec; 1426 } 1427 1428 /** 1429 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1430 * @lruvec: mem_cgroup per zone lru vector 1431 * @lru: index of lru list the page is sitting on 1432 * @zid: zone id of the accounted pages 1433 * @nr_pages: positive when adding or negative when removing 1434 * 1435 * This function must be called under lru_lock, just before a page is added 1436 * to or just after a page is removed from an lru list. 1437 */ 1438 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1439 int zid, int nr_pages) 1440 { 1441 struct mem_cgroup_per_node *mz; 1442 unsigned long *lru_size; 1443 long size; 1444 1445 if (mem_cgroup_disabled()) 1446 return; 1447 1448 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1449 lru_size = &mz->lru_zone_size[zid][lru]; 1450 1451 if (nr_pages < 0) 1452 *lru_size += nr_pages; 1453 1454 size = *lru_size; 1455 if (WARN_ONCE(size < 0, 1456 "%s(%p, %d, %d): lru_size %ld\n", 1457 __func__, lruvec, lru, nr_pages, size)) { 1458 VM_BUG_ON(1); 1459 *lru_size = 0; 1460 } 1461 1462 if (nr_pages > 0) 1463 *lru_size += nr_pages; 1464 } 1465 1466 /** 1467 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1468 * @memcg: the memory cgroup 1469 * 1470 * Returns the maximum amount of memory @mem can be charged with, in 1471 * pages. 1472 */ 1473 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1474 { 1475 unsigned long margin = 0; 1476 unsigned long count; 1477 unsigned long limit; 1478 1479 count = page_counter_read(&memcg->memory); 1480 limit = READ_ONCE(memcg->memory.max); 1481 if (count < limit) 1482 margin = limit - count; 1483 1484 if (do_memsw_account()) { 1485 count = page_counter_read(&memcg->memsw); 1486 limit = READ_ONCE(memcg->memsw.max); 1487 if (count < limit) 1488 margin = min(margin, limit - count); 1489 else 1490 margin = 0; 1491 } 1492 1493 return margin; 1494 } 1495 1496 /* 1497 * A routine for checking "mem" is under move_account() or not. 1498 * 1499 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1500 * moving cgroups. This is for waiting at high-memory pressure 1501 * caused by "move". 1502 */ 1503 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1504 { 1505 struct mem_cgroup *from; 1506 struct mem_cgroup *to; 1507 bool ret = false; 1508 /* 1509 * Unlike task_move routines, we access mc.to, mc.from not under 1510 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1511 */ 1512 spin_lock(&mc.lock); 1513 from = mc.from; 1514 to = mc.to; 1515 if (!from) 1516 goto unlock; 1517 1518 ret = mem_cgroup_is_descendant(from, memcg) || 1519 mem_cgroup_is_descendant(to, memcg); 1520 unlock: 1521 spin_unlock(&mc.lock); 1522 return ret; 1523 } 1524 1525 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1526 { 1527 if (mc.moving_task && current != mc.moving_task) { 1528 if (mem_cgroup_under_move(memcg)) { 1529 DEFINE_WAIT(wait); 1530 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1531 /* moving charge context might have finished. */ 1532 if (mc.moving_task) 1533 schedule(); 1534 finish_wait(&mc.waitq, &wait); 1535 return true; 1536 } 1537 } 1538 return false; 1539 } 1540 1541 struct memory_stat { 1542 const char *name; 1543 unsigned int idx; 1544 }; 1545 1546 static const struct memory_stat memory_stats[] = { 1547 { "anon", NR_ANON_MAPPED }, 1548 { "file", NR_FILE_PAGES }, 1549 { "kernel", MEMCG_KMEM }, 1550 { "kernel_stack", NR_KERNEL_STACK_KB }, 1551 { "pagetables", NR_PAGETABLE }, 1552 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1553 { "percpu", MEMCG_PERCPU_B }, 1554 { "sock", MEMCG_SOCK }, 1555 { "vmalloc", MEMCG_VMALLOC }, 1556 { "shmem", NR_SHMEM }, 1557 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1558 { "zswap", MEMCG_ZSWAP_B }, 1559 { "zswapped", MEMCG_ZSWAPPED }, 1560 #endif 1561 { "file_mapped", NR_FILE_MAPPED }, 1562 { "file_dirty", NR_FILE_DIRTY }, 1563 { "file_writeback", NR_WRITEBACK }, 1564 #ifdef CONFIG_SWAP 1565 { "swapcached", NR_SWAPCACHE }, 1566 #endif 1567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1568 { "anon_thp", NR_ANON_THPS }, 1569 { "file_thp", NR_FILE_THPS }, 1570 { "shmem_thp", NR_SHMEM_THPS }, 1571 #endif 1572 { "inactive_anon", NR_INACTIVE_ANON }, 1573 { "active_anon", NR_ACTIVE_ANON }, 1574 { "inactive_file", NR_INACTIVE_FILE }, 1575 { "active_file", NR_ACTIVE_FILE }, 1576 { "unevictable", NR_UNEVICTABLE }, 1577 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1578 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1579 1580 /* The memory events */ 1581 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1582 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1583 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1584 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1585 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1586 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1587 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1588 }; 1589 1590 /* The actual unit of the state item, not the same as the output unit */ 1591 static int memcg_page_state_unit(int item) 1592 { 1593 switch (item) { 1594 case MEMCG_PERCPU_B: 1595 case MEMCG_ZSWAP_B: 1596 case NR_SLAB_RECLAIMABLE_B: 1597 case NR_SLAB_UNRECLAIMABLE_B: 1598 return 1; 1599 case NR_KERNEL_STACK_KB: 1600 return SZ_1K; 1601 default: 1602 return PAGE_SIZE; 1603 } 1604 } 1605 1606 /* Translate stat items to the correct unit for memory.stat output */ 1607 static int memcg_page_state_output_unit(int item) 1608 { 1609 /* 1610 * Workingset state is actually in pages, but we export it to userspace 1611 * as a scalar count of events, so special case it here. 1612 */ 1613 switch (item) { 1614 case WORKINGSET_REFAULT_ANON: 1615 case WORKINGSET_REFAULT_FILE: 1616 case WORKINGSET_ACTIVATE_ANON: 1617 case WORKINGSET_ACTIVATE_FILE: 1618 case WORKINGSET_RESTORE_ANON: 1619 case WORKINGSET_RESTORE_FILE: 1620 case WORKINGSET_NODERECLAIM: 1621 return 1; 1622 default: 1623 return memcg_page_state_unit(item); 1624 } 1625 } 1626 1627 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1628 int item) 1629 { 1630 return memcg_page_state(memcg, item) * 1631 memcg_page_state_output_unit(item); 1632 } 1633 1634 static inline unsigned long memcg_page_state_local_output( 1635 struct mem_cgroup *memcg, int item) 1636 { 1637 return memcg_page_state_local(memcg, item) * 1638 memcg_page_state_output_unit(item); 1639 } 1640 1641 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1642 { 1643 int i; 1644 1645 /* 1646 * Provide statistics on the state of the memory subsystem as 1647 * well as cumulative event counters that show past behavior. 1648 * 1649 * This list is ordered following a combination of these gradients: 1650 * 1) generic big picture -> specifics and details 1651 * 2) reflecting userspace activity -> reflecting kernel heuristics 1652 * 1653 * Current memory state: 1654 */ 1655 mem_cgroup_flush_stats(memcg); 1656 1657 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1658 u64 size; 1659 1660 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1661 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1662 1663 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1664 size += memcg_page_state_output(memcg, 1665 NR_SLAB_RECLAIMABLE_B); 1666 seq_buf_printf(s, "slab %llu\n", size); 1667 } 1668 } 1669 1670 /* Accumulated memory events */ 1671 seq_buf_printf(s, "pgscan %lu\n", 1672 memcg_events(memcg, PGSCAN_KSWAPD) + 1673 memcg_events(memcg, PGSCAN_DIRECT) + 1674 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1675 seq_buf_printf(s, "pgsteal %lu\n", 1676 memcg_events(memcg, PGSTEAL_KSWAPD) + 1677 memcg_events(memcg, PGSTEAL_DIRECT) + 1678 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1679 1680 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1681 if (memcg_vm_event_stat[i] == PGPGIN || 1682 memcg_vm_event_stat[i] == PGPGOUT) 1683 continue; 1684 1685 seq_buf_printf(s, "%s %lu\n", 1686 vm_event_name(memcg_vm_event_stat[i]), 1687 memcg_events(memcg, memcg_vm_event_stat[i])); 1688 } 1689 1690 /* The above should easily fit into one page */ 1691 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1692 } 1693 1694 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s); 1695 1696 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1697 { 1698 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1699 memcg_stat_format(memcg, s); 1700 else 1701 memcg1_stat_format(memcg, s); 1702 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1703 } 1704 1705 /** 1706 * mem_cgroup_print_oom_context: Print OOM information relevant to 1707 * memory controller. 1708 * @memcg: The memory cgroup that went over limit 1709 * @p: Task that is going to be killed 1710 * 1711 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1712 * enabled 1713 */ 1714 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1715 { 1716 rcu_read_lock(); 1717 1718 if (memcg) { 1719 pr_cont(",oom_memcg="); 1720 pr_cont_cgroup_path(memcg->css.cgroup); 1721 } else 1722 pr_cont(",global_oom"); 1723 if (p) { 1724 pr_cont(",task_memcg="); 1725 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1726 } 1727 rcu_read_unlock(); 1728 } 1729 1730 /** 1731 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1732 * memory controller. 1733 * @memcg: The memory cgroup that went over limit 1734 */ 1735 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1736 { 1737 /* Use static buffer, for the caller is holding oom_lock. */ 1738 static char buf[PAGE_SIZE]; 1739 struct seq_buf s; 1740 1741 lockdep_assert_held(&oom_lock); 1742 1743 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1744 K((u64)page_counter_read(&memcg->memory)), 1745 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1746 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1747 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1748 K((u64)page_counter_read(&memcg->swap)), 1749 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1750 else { 1751 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1752 K((u64)page_counter_read(&memcg->memsw)), 1753 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1754 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1755 K((u64)page_counter_read(&memcg->kmem)), 1756 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1757 } 1758 1759 pr_info("Memory cgroup stats for "); 1760 pr_cont_cgroup_path(memcg->css.cgroup); 1761 pr_cont(":"); 1762 seq_buf_init(&s, buf, sizeof(buf)); 1763 memory_stat_format(memcg, &s); 1764 seq_buf_do_printk(&s, KERN_INFO); 1765 } 1766 1767 /* 1768 * Return the memory (and swap, if configured) limit for a memcg. 1769 */ 1770 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1771 { 1772 unsigned long max = READ_ONCE(memcg->memory.max); 1773 1774 if (do_memsw_account()) { 1775 if (mem_cgroup_swappiness(memcg)) { 1776 /* Calculate swap excess capacity from memsw limit */ 1777 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1778 1779 max += min(swap, (unsigned long)total_swap_pages); 1780 } 1781 } else { 1782 if (mem_cgroup_swappiness(memcg)) 1783 max += min(READ_ONCE(memcg->swap.max), 1784 (unsigned long)total_swap_pages); 1785 } 1786 return max; 1787 } 1788 1789 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1790 { 1791 return page_counter_read(&memcg->memory); 1792 } 1793 1794 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1795 int order) 1796 { 1797 struct oom_control oc = { 1798 .zonelist = NULL, 1799 .nodemask = NULL, 1800 .memcg = memcg, 1801 .gfp_mask = gfp_mask, 1802 .order = order, 1803 }; 1804 bool ret = true; 1805 1806 if (mutex_lock_killable(&oom_lock)) 1807 return true; 1808 1809 if (mem_cgroup_margin(memcg) >= (1 << order)) 1810 goto unlock; 1811 1812 /* 1813 * A few threads which were not waiting at mutex_lock_killable() can 1814 * fail to bail out. Therefore, check again after holding oom_lock. 1815 */ 1816 ret = task_is_dying() || out_of_memory(&oc); 1817 1818 unlock: 1819 mutex_unlock(&oom_lock); 1820 return ret; 1821 } 1822 1823 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1824 pg_data_t *pgdat, 1825 gfp_t gfp_mask, 1826 unsigned long *total_scanned) 1827 { 1828 struct mem_cgroup *victim = NULL; 1829 int total = 0; 1830 int loop = 0; 1831 unsigned long excess; 1832 unsigned long nr_scanned; 1833 struct mem_cgroup_reclaim_cookie reclaim = { 1834 .pgdat = pgdat, 1835 }; 1836 1837 excess = soft_limit_excess(root_memcg); 1838 1839 while (1) { 1840 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1841 if (!victim) { 1842 loop++; 1843 if (loop >= 2) { 1844 /* 1845 * If we have not been able to reclaim 1846 * anything, it might because there are 1847 * no reclaimable pages under this hierarchy 1848 */ 1849 if (!total) 1850 break; 1851 /* 1852 * We want to do more targeted reclaim. 1853 * excess >> 2 is not to excessive so as to 1854 * reclaim too much, nor too less that we keep 1855 * coming back to reclaim from this cgroup 1856 */ 1857 if (total >= (excess >> 2) || 1858 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1859 break; 1860 } 1861 continue; 1862 } 1863 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1864 pgdat, &nr_scanned); 1865 *total_scanned += nr_scanned; 1866 if (!soft_limit_excess(root_memcg)) 1867 break; 1868 } 1869 mem_cgroup_iter_break(root_memcg, victim); 1870 return total; 1871 } 1872 1873 #ifdef CONFIG_LOCKDEP 1874 static struct lockdep_map memcg_oom_lock_dep_map = { 1875 .name = "memcg_oom_lock", 1876 }; 1877 #endif 1878 1879 static DEFINE_SPINLOCK(memcg_oom_lock); 1880 1881 /* 1882 * Check OOM-Killer is already running under our hierarchy. 1883 * If someone is running, return false. 1884 */ 1885 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1886 { 1887 struct mem_cgroup *iter, *failed = NULL; 1888 1889 spin_lock(&memcg_oom_lock); 1890 1891 for_each_mem_cgroup_tree(iter, memcg) { 1892 if (iter->oom_lock) { 1893 /* 1894 * this subtree of our hierarchy is already locked 1895 * so we cannot give a lock. 1896 */ 1897 failed = iter; 1898 mem_cgroup_iter_break(memcg, iter); 1899 break; 1900 } else 1901 iter->oom_lock = true; 1902 } 1903 1904 if (failed) { 1905 /* 1906 * OK, we failed to lock the whole subtree so we have 1907 * to clean up what we set up to the failing subtree 1908 */ 1909 for_each_mem_cgroup_tree(iter, memcg) { 1910 if (iter == failed) { 1911 mem_cgroup_iter_break(memcg, iter); 1912 break; 1913 } 1914 iter->oom_lock = false; 1915 } 1916 } else 1917 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1918 1919 spin_unlock(&memcg_oom_lock); 1920 1921 return !failed; 1922 } 1923 1924 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1925 { 1926 struct mem_cgroup *iter; 1927 1928 spin_lock(&memcg_oom_lock); 1929 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1930 for_each_mem_cgroup_tree(iter, memcg) 1931 iter->oom_lock = false; 1932 spin_unlock(&memcg_oom_lock); 1933 } 1934 1935 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1936 { 1937 struct mem_cgroup *iter; 1938 1939 spin_lock(&memcg_oom_lock); 1940 for_each_mem_cgroup_tree(iter, memcg) 1941 iter->under_oom++; 1942 spin_unlock(&memcg_oom_lock); 1943 } 1944 1945 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1946 { 1947 struct mem_cgroup *iter; 1948 1949 /* 1950 * Be careful about under_oom underflows because a child memcg 1951 * could have been added after mem_cgroup_mark_under_oom. 1952 */ 1953 spin_lock(&memcg_oom_lock); 1954 for_each_mem_cgroup_tree(iter, memcg) 1955 if (iter->under_oom > 0) 1956 iter->under_oom--; 1957 spin_unlock(&memcg_oom_lock); 1958 } 1959 1960 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1961 1962 struct oom_wait_info { 1963 struct mem_cgroup *memcg; 1964 wait_queue_entry_t wait; 1965 }; 1966 1967 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1968 unsigned mode, int sync, void *arg) 1969 { 1970 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1971 struct mem_cgroup *oom_wait_memcg; 1972 struct oom_wait_info *oom_wait_info; 1973 1974 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1975 oom_wait_memcg = oom_wait_info->memcg; 1976 1977 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1978 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1979 return 0; 1980 return autoremove_wake_function(wait, mode, sync, arg); 1981 } 1982 1983 static void memcg_oom_recover(struct mem_cgroup *memcg) 1984 { 1985 /* 1986 * For the following lockless ->under_oom test, the only required 1987 * guarantee is that it must see the state asserted by an OOM when 1988 * this function is called as a result of userland actions 1989 * triggered by the notification of the OOM. This is trivially 1990 * achieved by invoking mem_cgroup_mark_under_oom() before 1991 * triggering notification. 1992 */ 1993 if (memcg && memcg->under_oom) 1994 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1995 } 1996 1997 /* 1998 * Returns true if successfully killed one or more processes. Though in some 1999 * corner cases it can return true even without killing any process. 2000 */ 2001 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 2002 { 2003 bool locked, ret; 2004 2005 if (order > PAGE_ALLOC_COSTLY_ORDER) 2006 return false; 2007 2008 memcg_memory_event(memcg, MEMCG_OOM); 2009 2010 /* 2011 * We are in the middle of the charge context here, so we 2012 * don't want to block when potentially sitting on a callstack 2013 * that holds all kinds of filesystem and mm locks. 2014 * 2015 * cgroup1 allows disabling the OOM killer and waiting for outside 2016 * handling until the charge can succeed; remember the context and put 2017 * the task to sleep at the end of the page fault when all locks are 2018 * released. 2019 * 2020 * On the other hand, in-kernel OOM killer allows for an async victim 2021 * memory reclaim (oom_reaper) and that means that we are not solely 2022 * relying on the oom victim to make a forward progress and we can 2023 * invoke the oom killer here. 2024 * 2025 * Please note that mem_cgroup_out_of_memory might fail to find a 2026 * victim and then we have to bail out from the charge path. 2027 */ 2028 if (READ_ONCE(memcg->oom_kill_disable)) { 2029 if (current->in_user_fault) { 2030 css_get(&memcg->css); 2031 current->memcg_in_oom = memcg; 2032 current->memcg_oom_gfp_mask = mask; 2033 current->memcg_oom_order = order; 2034 } 2035 return false; 2036 } 2037 2038 mem_cgroup_mark_under_oom(memcg); 2039 2040 locked = mem_cgroup_oom_trylock(memcg); 2041 2042 if (locked) 2043 mem_cgroup_oom_notify(memcg); 2044 2045 mem_cgroup_unmark_under_oom(memcg); 2046 ret = mem_cgroup_out_of_memory(memcg, mask, order); 2047 2048 if (locked) 2049 mem_cgroup_oom_unlock(memcg); 2050 2051 return ret; 2052 } 2053 2054 /** 2055 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2056 * @handle: actually kill/wait or just clean up the OOM state 2057 * 2058 * This has to be called at the end of a page fault if the memcg OOM 2059 * handler was enabled. 2060 * 2061 * Memcg supports userspace OOM handling where failed allocations must 2062 * sleep on a waitqueue until the userspace task resolves the 2063 * situation. Sleeping directly in the charge context with all kinds 2064 * of locks held is not a good idea, instead we remember an OOM state 2065 * in the task and mem_cgroup_oom_synchronize() has to be called at 2066 * the end of the page fault to complete the OOM handling. 2067 * 2068 * Returns %true if an ongoing memcg OOM situation was detected and 2069 * completed, %false otherwise. 2070 */ 2071 bool mem_cgroup_oom_synchronize(bool handle) 2072 { 2073 struct mem_cgroup *memcg = current->memcg_in_oom; 2074 struct oom_wait_info owait; 2075 bool locked; 2076 2077 /* OOM is global, do not handle */ 2078 if (!memcg) 2079 return false; 2080 2081 if (!handle) 2082 goto cleanup; 2083 2084 owait.memcg = memcg; 2085 owait.wait.flags = 0; 2086 owait.wait.func = memcg_oom_wake_function; 2087 owait.wait.private = current; 2088 INIT_LIST_HEAD(&owait.wait.entry); 2089 2090 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2091 mem_cgroup_mark_under_oom(memcg); 2092 2093 locked = mem_cgroup_oom_trylock(memcg); 2094 2095 if (locked) 2096 mem_cgroup_oom_notify(memcg); 2097 2098 schedule(); 2099 mem_cgroup_unmark_under_oom(memcg); 2100 finish_wait(&memcg_oom_waitq, &owait.wait); 2101 2102 if (locked) 2103 mem_cgroup_oom_unlock(memcg); 2104 cleanup: 2105 current->memcg_in_oom = NULL; 2106 css_put(&memcg->css); 2107 return true; 2108 } 2109 2110 /** 2111 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2112 * @victim: task to be killed by the OOM killer 2113 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2114 * 2115 * Returns a pointer to a memory cgroup, which has to be cleaned up 2116 * by killing all belonging OOM-killable tasks. 2117 * 2118 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2119 */ 2120 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2121 struct mem_cgroup *oom_domain) 2122 { 2123 struct mem_cgroup *oom_group = NULL; 2124 struct mem_cgroup *memcg; 2125 2126 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2127 return NULL; 2128 2129 if (!oom_domain) 2130 oom_domain = root_mem_cgroup; 2131 2132 rcu_read_lock(); 2133 2134 memcg = mem_cgroup_from_task(victim); 2135 if (mem_cgroup_is_root(memcg)) 2136 goto out; 2137 2138 /* 2139 * If the victim task has been asynchronously moved to a different 2140 * memory cgroup, we might end up killing tasks outside oom_domain. 2141 * In this case it's better to ignore memory.group.oom. 2142 */ 2143 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2144 goto out; 2145 2146 /* 2147 * Traverse the memory cgroup hierarchy from the victim task's 2148 * cgroup up to the OOMing cgroup (or root) to find the 2149 * highest-level memory cgroup with oom.group set. 2150 */ 2151 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2152 if (READ_ONCE(memcg->oom_group)) 2153 oom_group = memcg; 2154 2155 if (memcg == oom_domain) 2156 break; 2157 } 2158 2159 if (oom_group) 2160 css_get(&oom_group->css); 2161 out: 2162 rcu_read_unlock(); 2163 2164 return oom_group; 2165 } 2166 2167 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2168 { 2169 pr_info("Tasks in "); 2170 pr_cont_cgroup_path(memcg->css.cgroup); 2171 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2172 } 2173 2174 /** 2175 * folio_memcg_lock - Bind a folio to its memcg. 2176 * @folio: The folio. 2177 * 2178 * This function prevents unlocked LRU folios from being moved to 2179 * another cgroup. 2180 * 2181 * It ensures lifetime of the bound memcg. The caller is responsible 2182 * for the lifetime of the folio. 2183 */ 2184 void folio_memcg_lock(struct folio *folio) 2185 { 2186 struct mem_cgroup *memcg; 2187 unsigned long flags; 2188 2189 /* 2190 * The RCU lock is held throughout the transaction. The fast 2191 * path can get away without acquiring the memcg->move_lock 2192 * because page moving starts with an RCU grace period. 2193 */ 2194 rcu_read_lock(); 2195 2196 if (mem_cgroup_disabled()) 2197 return; 2198 again: 2199 memcg = folio_memcg(folio); 2200 if (unlikely(!memcg)) 2201 return; 2202 2203 #ifdef CONFIG_PROVE_LOCKING 2204 local_irq_save(flags); 2205 might_lock(&memcg->move_lock); 2206 local_irq_restore(flags); 2207 #endif 2208 2209 if (atomic_read(&memcg->moving_account) <= 0) 2210 return; 2211 2212 spin_lock_irqsave(&memcg->move_lock, flags); 2213 if (memcg != folio_memcg(folio)) { 2214 spin_unlock_irqrestore(&memcg->move_lock, flags); 2215 goto again; 2216 } 2217 2218 /* 2219 * When charge migration first begins, we can have multiple 2220 * critical sections holding the fast-path RCU lock and one 2221 * holding the slowpath move_lock. Track the task who has the 2222 * move_lock for folio_memcg_unlock(). 2223 */ 2224 memcg->move_lock_task = current; 2225 memcg->move_lock_flags = flags; 2226 } 2227 2228 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2229 { 2230 if (memcg && memcg->move_lock_task == current) { 2231 unsigned long flags = memcg->move_lock_flags; 2232 2233 memcg->move_lock_task = NULL; 2234 memcg->move_lock_flags = 0; 2235 2236 spin_unlock_irqrestore(&memcg->move_lock, flags); 2237 } 2238 2239 rcu_read_unlock(); 2240 } 2241 2242 /** 2243 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2244 * @folio: The folio. 2245 * 2246 * This releases the binding created by folio_memcg_lock(). This does 2247 * not change the accounting of this folio to its memcg, but it does 2248 * permit others to change it. 2249 */ 2250 void folio_memcg_unlock(struct folio *folio) 2251 { 2252 __folio_memcg_unlock(folio_memcg(folio)); 2253 } 2254 2255 struct memcg_stock_pcp { 2256 local_lock_t stock_lock; 2257 struct mem_cgroup *cached; /* this never be root cgroup */ 2258 unsigned int nr_pages; 2259 2260 #ifdef CONFIG_MEMCG_KMEM 2261 struct obj_cgroup *cached_objcg; 2262 struct pglist_data *cached_pgdat; 2263 unsigned int nr_bytes; 2264 int nr_slab_reclaimable_b; 2265 int nr_slab_unreclaimable_b; 2266 #endif 2267 2268 struct work_struct work; 2269 unsigned long flags; 2270 #define FLUSHING_CACHED_CHARGE 0 2271 }; 2272 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2273 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2274 }; 2275 static DEFINE_MUTEX(percpu_charge_mutex); 2276 2277 #ifdef CONFIG_MEMCG_KMEM 2278 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2279 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2280 struct mem_cgroup *root_memcg); 2281 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2282 2283 #else 2284 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2285 { 2286 return NULL; 2287 } 2288 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2289 struct mem_cgroup *root_memcg) 2290 { 2291 return false; 2292 } 2293 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2294 { 2295 } 2296 #endif 2297 2298 /** 2299 * consume_stock: Try to consume stocked charge on this cpu. 2300 * @memcg: memcg to consume from. 2301 * @nr_pages: how many pages to charge. 2302 * 2303 * The charges will only happen if @memcg matches the current cpu's memcg 2304 * stock, and at least @nr_pages are available in that stock. Failure to 2305 * service an allocation will refill the stock. 2306 * 2307 * returns true if successful, false otherwise. 2308 */ 2309 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2310 { 2311 struct memcg_stock_pcp *stock; 2312 unsigned long flags; 2313 bool ret = false; 2314 2315 if (nr_pages > MEMCG_CHARGE_BATCH) 2316 return ret; 2317 2318 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2319 2320 stock = this_cpu_ptr(&memcg_stock); 2321 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) { 2322 stock->nr_pages -= nr_pages; 2323 ret = true; 2324 } 2325 2326 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2327 2328 return ret; 2329 } 2330 2331 /* 2332 * Returns stocks cached in percpu and reset cached information. 2333 */ 2334 static void drain_stock(struct memcg_stock_pcp *stock) 2335 { 2336 struct mem_cgroup *old = READ_ONCE(stock->cached); 2337 2338 if (!old) 2339 return; 2340 2341 if (stock->nr_pages) { 2342 page_counter_uncharge(&old->memory, stock->nr_pages); 2343 if (do_memsw_account()) 2344 page_counter_uncharge(&old->memsw, stock->nr_pages); 2345 stock->nr_pages = 0; 2346 } 2347 2348 css_put(&old->css); 2349 WRITE_ONCE(stock->cached, NULL); 2350 } 2351 2352 static void drain_local_stock(struct work_struct *dummy) 2353 { 2354 struct memcg_stock_pcp *stock; 2355 struct obj_cgroup *old = NULL; 2356 unsigned long flags; 2357 2358 /* 2359 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2360 * drain_stock races is that we always operate on local CPU stock 2361 * here with IRQ disabled 2362 */ 2363 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2364 2365 stock = this_cpu_ptr(&memcg_stock); 2366 old = drain_obj_stock(stock); 2367 drain_stock(stock); 2368 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2369 2370 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2371 if (old) 2372 obj_cgroup_put(old); 2373 } 2374 2375 /* 2376 * Cache charges(val) to local per_cpu area. 2377 * This will be consumed by consume_stock() function, later. 2378 */ 2379 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2380 { 2381 struct memcg_stock_pcp *stock; 2382 2383 stock = this_cpu_ptr(&memcg_stock); 2384 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 2385 drain_stock(stock); 2386 css_get(&memcg->css); 2387 WRITE_ONCE(stock->cached, memcg); 2388 } 2389 stock->nr_pages += nr_pages; 2390 2391 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2392 drain_stock(stock); 2393 } 2394 2395 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2396 { 2397 unsigned long flags; 2398 2399 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2400 __refill_stock(memcg, nr_pages); 2401 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2402 } 2403 2404 /* 2405 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2406 * of the hierarchy under it. 2407 */ 2408 static void drain_all_stock(struct mem_cgroup *root_memcg) 2409 { 2410 int cpu, curcpu; 2411 2412 /* If someone's already draining, avoid adding running more workers. */ 2413 if (!mutex_trylock(&percpu_charge_mutex)) 2414 return; 2415 /* 2416 * Notify other cpus that system-wide "drain" is running 2417 * We do not care about races with the cpu hotplug because cpu down 2418 * as well as workers from this path always operate on the local 2419 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2420 */ 2421 migrate_disable(); 2422 curcpu = smp_processor_id(); 2423 for_each_online_cpu(cpu) { 2424 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2425 struct mem_cgroup *memcg; 2426 bool flush = false; 2427 2428 rcu_read_lock(); 2429 memcg = READ_ONCE(stock->cached); 2430 if (memcg && stock->nr_pages && 2431 mem_cgroup_is_descendant(memcg, root_memcg)) 2432 flush = true; 2433 else if (obj_stock_flush_required(stock, root_memcg)) 2434 flush = true; 2435 rcu_read_unlock(); 2436 2437 if (flush && 2438 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2439 if (cpu == curcpu) 2440 drain_local_stock(&stock->work); 2441 else if (!cpu_is_isolated(cpu)) 2442 schedule_work_on(cpu, &stock->work); 2443 } 2444 } 2445 migrate_enable(); 2446 mutex_unlock(&percpu_charge_mutex); 2447 } 2448 2449 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2450 { 2451 struct memcg_stock_pcp *stock; 2452 2453 stock = &per_cpu(memcg_stock, cpu); 2454 drain_stock(stock); 2455 2456 return 0; 2457 } 2458 2459 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2460 unsigned int nr_pages, 2461 gfp_t gfp_mask) 2462 { 2463 unsigned long nr_reclaimed = 0; 2464 2465 do { 2466 unsigned long pflags; 2467 2468 if (page_counter_read(&memcg->memory) <= 2469 READ_ONCE(memcg->memory.high)) 2470 continue; 2471 2472 memcg_memory_event(memcg, MEMCG_HIGH); 2473 2474 psi_memstall_enter(&pflags); 2475 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2476 gfp_mask, 2477 MEMCG_RECLAIM_MAY_SWAP); 2478 psi_memstall_leave(&pflags); 2479 } while ((memcg = parent_mem_cgroup(memcg)) && 2480 !mem_cgroup_is_root(memcg)); 2481 2482 return nr_reclaimed; 2483 } 2484 2485 static void high_work_func(struct work_struct *work) 2486 { 2487 struct mem_cgroup *memcg; 2488 2489 memcg = container_of(work, struct mem_cgroup, high_work); 2490 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2491 } 2492 2493 /* 2494 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2495 * enough to still cause a significant slowdown in most cases, while still 2496 * allowing diagnostics and tracing to proceed without becoming stuck. 2497 */ 2498 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2499 2500 /* 2501 * When calculating the delay, we use these either side of the exponentiation to 2502 * maintain precision and scale to a reasonable number of jiffies (see the table 2503 * below. 2504 * 2505 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2506 * overage ratio to a delay. 2507 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2508 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2509 * to produce a reasonable delay curve. 2510 * 2511 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2512 * reasonable delay curve compared to precision-adjusted overage, not 2513 * penalising heavily at first, but still making sure that growth beyond the 2514 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2515 * example, with a high of 100 megabytes: 2516 * 2517 * +-------+------------------------+ 2518 * | usage | time to allocate in ms | 2519 * +-------+------------------------+ 2520 * | 100M | 0 | 2521 * | 101M | 6 | 2522 * | 102M | 25 | 2523 * | 103M | 57 | 2524 * | 104M | 102 | 2525 * | 105M | 159 | 2526 * | 106M | 230 | 2527 * | 107M | 313 | 2528 * | 108M | 409 | 2529 * | 109M | 518 | 2530 * | 110M | 639 | 2531 * | 111M | 774 | 2532 * | 112M | 921 | 2533 * | 113M | 1081 | 2534 * | 114M | 1254 | 2535 * | 115M | 1439 | 2536 * | 116M | 1638 | 2537 * | 117M | 1849 | 2538 * | 118M | 2000 | 2539 * | 119M | 2000 | 2540 * | 120M | 2000 | 2541 * +-------+------------------------+ 2542 */ 2543 #define MEMCG_DELAY_PRECISION_SHIFT 20 2544 #define MEMCG_DELAY_SCALING_SHIFT 14 2545 2546 static u64 calculate_overage(unsigned long usage, unsigned long high) 2547 { 2548 u64 overage; 2549 2550 if (usage <= high) 2551 return 0; 2552 2553 /* 2554 * Prevent division by 0 in overage calculation by acting as if 2555 * it was a threshold of 1 page 2556 */ 2557 high = max(high, 1UL); 2558 2559 overage = usage - high; 2560 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2561 return div64_u64(overage, high); 2562 } 2563 2564 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2565 { 2566 u64 overage, max_overage = 0; 2567 2568 do { 2569 overage = calculate_overage(page_counter_read(&memcg->memory), 2570 READ_ONCE(memcg->memory.high)); 2571 max_overage = max(overage, max_overage); 2572 } while ((memcg = parent_mem_cgroup(memcg)) && 2573 !mem_cgroup_is_root(memcg)); 2574 2575 return max_overage; 2576 } 2577 2578 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2579 { 2580 u64 overage, max_overage = 0; 2581 2582 do { 2583 overage = calculate_overage(page_counter_read(&memcg->swap), 2584 READ_ONCE(memcg->swap.high)); 2585 if (overage) 2586 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2587 max_overage = max(overage, max_overage); 2588 } while ((memcg = parent_mem_cgroup(memcg)) && 2589 !mem_cgroup_is_root(memcg)); 2590 2591 return max_overage; 2592 } 2593 2594 /* 2595 * Get the number of jiffies that we should penalise a mischievous cgroup which 2596 * is exceeding its memory.high by checking both it and its ancestors. 2597 */ 2598 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2599 unsigned int nr_pages, 2600 u64 max_overage) 2601 { 2602 unsigned long penalty_jiffies; 2603 2604 if (!max_overage) 2605 return 0; 2606 2607 /* 2608 * We use overage compared to memory.high to calculate the number of 2609 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2610 * fairly lenient on small overages, and increasingly harsh when the 2611 * memcg in question makes it clear that it has no intention of stopping 2612 * its crazy behaviour, so we exponentially increase the delay based on 2613 * overage amount. 2614 */ 2615 penalty_jiffies = max_overage * max_overage * HZ; 2616 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2617 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2618 2619 /* 2620 * Factor in the task's own contribution to the overage, such that four 2621 * N-sized allocations are throttled approximately the same as one 2622 * 4N-sized allocation. 2623 * 2624 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2625 * larger the current charge patch is than that. 2626 */ 2627 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2628 } 2629 2630 /* 2631 * Reclaims memory over the high limit. Called directly from 2632 * try_charge() (context permitting), as well as from the userland 2633 * return path where reclaim is always able to block. 2634 */ 2635 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2636 { 2637 unsigned long penalty_jiffies; 2638 unsigned long pflags; 2639 unsigned long nr_reclaimed; 2640 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2641 int nr_retries = MAX_RECLAIM_RETRIES; 2642 struct mem_cgroup *memcg; 2643 bool in_retry = false; 2644 2645 if (likely(!nr_pages)) 2646 return; 2647 2648 memcg = get_mem_cgroup_from_mm(current->mm); 2649 current->memcg_nr_pages_over_high = 0; 2650 2651 retry_reclaim: 2652 /* 2653 * Bail if the task is already exiting. Unlike memory.max, 2654 * memory.high enforcement isn't as strict, and there is no 2655 * OOM killer involved, which means the excess could already 2656 * be much bigger (and still growing) than it could for 2657 * memory.max; the dying task could get stuck in fruitless 2658 * reclaim for a long time, which isn't desirable. 2659 */ 2660 if (task_is_dying()) 2661 goto out; 2662 2663 /* 2664 * The allocating task should reclaim at least the batch size, but for 2665 * subsequent retries we only want to do what's necessary to prevent oom 2666 * or breaching resource isolation. 2667 * 2668 * This is distinct from memory.max or page allocator behaviour because 2669 * memory.high is currently batched, whereas memory.max and the page 2670 * allocator run every time an allocation is made. 2671 */ 2672 nr_reclaimed = reclaim_high(memcg, 2673 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2674 gfp_mask); 2675 2676 /* 2677 * memory.high is breached and reclaim is unable to keep up. Throttle 2678 * allocators proactively to slow down excessive growth. 2679 */ 2680 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2681 mem_find_max_overage(memcg)); 2682 2683 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2684 swap_find_max_overage(memcg)); 2685 2686 /* 2687 * Clamp the max delay per usermode return so as to still keep the 2688 * application moving forwards and also permit diagnostics, albeit 2689 * extremely slowly. 2690 */ 2691 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2692 2693 /* 2694 * Don't sleep if the amount of jiffies this memcg owes us is so low 2695 * that it's not even worth doing, in an attempt to be nice to those who 2696 * go only a small amount over their memory.high value and maybe haven't 2697 * been aggressively reclaimed enough yet. 2698 */ 2699 if (penalty_jiffies <= HZ / 100) 2700 goto out; 2701 2702 /* 2703 * If reclaim is making forward progress but we're still over 2704 * memory.high, we want to encourage that rather than doing allocator 2705 * throttling. 2706 */ 2707 if (nr_reclaimed || nr_retries--) { 2708 in_retry = true; 2709 goto retry_reclaim; 2710 } 2711 2712 /* 2713 * Reclaim didn't manage to push usage below the limit, slow 2714 * this allocating task down. 2715 * 2716 * If we exit early, we're guaranteed to die (since 2717 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2718 * need to account for any ill-begotten jiffies to pay them off later. 2719 */ 2720 psi_memstall_enter(&pflags); 2721 schedule_timeout_killable(penalty_jiffies); 2722 psi_memstall_leave(&pflags); 2723 2724 out: 2725 css_put(&memcg->css); 2726 } 2727 2728 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2729 unsigned int nr_pages) 2730 { 2731 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2732 int nr_retries = MAX_RECLAIM_RETRIES; 2733 struct mem_cgroup *mem_over_limit; 2734 struct page_counter *counter; 2735 unsigned long nr_reclaimed; 2736 bool passed_oom = false; 2737 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2738 bool drained = false; 2739 bool raised_max_event = false; 2740 unsigned long pflags; 2741 2742 retry: 2743 if (consume_stock(memcg, nr_pages)) 2744 return 0; 2745 2746 if (!do_memsw_account() || 2747 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2748 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2749 goto done_restock; 2750 if (do_memsw_account()) 2751 page_counter_uncharge(&memcg->memsw, batch); 2752 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2753 } else { 2754 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2755 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2756 } 2757 2758 if (batch > nr_pages) { 2759 batch = nr_pages; 2760 goto retry; 2761 } 2762 2763 /* 2764 * Prevent unbounded recursion when reclaim operations need to 2765 * allocate memory. This might exceed the limits temporarily, 2766 * but we prefer facilitating memory reclaim and getting back 2767 * under the limit over triggering OOM kills in these cases. 2768 */ 2769 if (unlikely(current->flags & PF_MEMALLOC)) 2770 goto force; 2771 2772 if (unlikely(task_in_memcg_oom(current))) 2773 goto nomem; 2774 2775 if (!gfpflags_allow_blocking(gfp_mask)) 2776 goto nomem; 2777 2778 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2779 raised_max_event = true; 2780 2781 psi_memstall_enter(&pflags); 2782 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2783 gfp_mask, reclaim_options); 2784 psi_memstall_leave(&pflags); 2785 2786 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2787 goto retry; 2788 2789 if (!drained) { 2790 drain_all_stock(mem_over_limit); 2791 drained = true; 2792 goto retry; 2793 } 2794 2795 if (gfp_mask & __GFP_NORETRY) 2796 goto nomem; 2797 /* 2798 * Even though the limit is exceeded at this point, reclaim 2799 * may have been able to free some pages. Retry the charge 2800 * before killing the task. 2801 * 2802 * Only for regular pages, though: huge pages are rather 2803 * unlikely to succeed so close to the limit, and we fall back 2804 * to regular pages anyway in case of failure. 2805 */ 2806 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2807 goto retry; 2808 /* 2809 * At task move, charge accounts can be doubly counted. So, it's 2810 * better to wait until the end of task_move if something is going on. 2811 */ 2812 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2813 goto retry; 2814 2815 if (nr_retries--) 2816 goto retry; 2817 2818 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2819 goto nomem; 2820 2821 /* Avoid endless loop for tasks bypassed by the oom killer */ 2822 if (passed_oom && task_is_dying()) 2823 goto nomem; 2824 2825 /* 2826 * keep retrying as long as the memcg oom killer is able to make 2827 * a forward progress or bypass the charge if the oom killer 2828 * couldn't make any progress. 2829 */ 2830 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2831 get_order(nr_pages * PAGE_SIZE))) { 2832 passed_oom = true; 2833 nr_retries = MAX_RECLAIM_RETRIES; 2834 goto retry; 2835 } 2836 nomem: 2837 /* 2838 * Memcg doesn't have a dedicated reserve for atomic 2839 * allocations. But like the global atomic pool, we need to 2840 * put the burden of reclaim on regular allocation requests 2841 * and let these go through as privileged allocations. 2842 */ 2843 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2844 return -ENOMEM; 2845 force: 2846 /* 2847 * If the allocation has to be enforced, don't forget to raise 2848 * a MEMCG_MAX event. 2849 */ 2850 if (!raised_max_event) 2851 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2852 2853 /* 2854 * The allocation either can't fail or will lead to more memory 2855 * being freed very soon. Allow memory usage go over the limit 2856 * temporarily by force charging it. 2857 */ 2858 page_counter_charge(&memcg->memory, nr_pages); 2859 if (do_memsw_account()) 2860 page_counter_charge(&memcg->memsw, nr_pages); 2861 2862 return 0; 2863 2864 done_restock: 2865 if (batch > nr_pages) 2866 refill_stock(memcg, batch - nr_pages); 2867 2868 /* 2869 * If the hierarchy is above the normal consumption range, schedule 2870 * reclaim on returning to userland. We can perform reclaim here 2871 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2872 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2873 * not recorded as it most likely matches current's and won't 2874 * change in the meantime. As high limit is checked again before 2875 * reclaim, the cost of mismatch is negligible. 2876 */ 2877 do { 2878 bool mem_high, swap_high; 2879 2880 mem_high = page_counter_read(&memcg->memory) > 2881 READ_ONCE(memcg->memory.high); 2882 swap_high = page_counter_read(&memcg->swap) > 2883 READ_ONCE(memcg->swap.high); 2884 2885 /* Don't bother a random interrupted task */ 2886 if (!in_task()) { 2887 if (mem_high) { 2888 schedule_work(&memcg->high_work); 2889 break; 2890 } 2891 continue; 2892 } 2893 2894 if (mem_high || swap_high) { 2895 /* 2896 * The allocating tasks in this cgroup will need to do 2897 * reclaim or be throttled to prevent further growth 2898 * of the memory or swap footprints. 2899 * 2900 * Target some best-effort fairness between the tasks, 2901 * and distribute reclaim work and delay penalties 2902 * based on how much each task is actually allocating. 2903 */ 2904 current->memcg_nr_pages_over_high += batch; 2905 set_notify_resume(current); 2906 break; 2907 } 2908 } while ((memcg = parent_mem_cgroup(memcg))); 2909 2910 /* 2911 * Reclaim is set up above to be called from the userland 2912 * return path. But also attempt synchronous reclaim to avoid 2913 * excessive overrun while the task is still inside the 2914 * kernel. If this is successful, the return path will see it 2915 * when it rechecks the overage and simply bail out. 2916 */ 2917 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2918 !(current->flags & PF_MEMALLOC) && 2919 gfpflags_allow_blocking(gfp_mask)) 2920 mem_cgroup_handle_over_high(gfp_mask); 2921 return 0; 2922 } 2923 2924 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2925 unsigned int nr_pages) 2926 { 2927 if (mem_cgroup_is_root(memcg)) 2928 return 0; 2929 2930 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2931 } 2932 2933 /** 2934 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. 2935 * @memcg: memcg previously charged. 2936 * @nr_pages: number of pages previously charged. 2937 */ 2938 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2939 { 2940 if (mem_cgroup_is_root(memcg)) 2941 return; 2942 2943 page_counter_uncharge(&memcg->memory, nr_pages); 2944 if (do_memsw_account()) 2945 page_counter_uncharge(&memcg->memsw, nr_pages); 2946 } 2947 2948 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2949 { 2950 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2951 /* 2952 * Any of the following ensures page's memcg stability: 2953 * 2954 * - the page lock 2955 * - LRU isolation 2956 * - folio_memcg_lock() 2957 * - exclusive reference 2958 * - mem_cgroup_trylock_pages() 2959 */ 2960 folio->memcg_data = (unsigned long)memcg; 2961 } 2962 2963 /** 2964 * mem_cgroup_commit_charge - commit a previously successful try_charge(). 2965 * @folio: folio to commit the charge to. 2966 * @memcg: memcg previously charged. 2967 */ 2968 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2969 { 2970 css_get(&memcg->css); 2971 commit_charge(folio, memcg); 2972 2973 local_irq_disable(); 2974 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio)); 2975 memcg_check_events(memcg, folio_nid(folio)); 2976 local_irq_enable(); 2977 } 2978 2979 #ifdef CONFIG_MEMCG_KMEM 2980 /* 2981 * The allocated objcg pointers array is not accounted directly. 2982 * Moreover, it should not come from DMA buffer and is not readily 2983 * reclaimable. So those GFP bits should be masked off. 2984 */ 2985 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 2986 __GFP_ACCOUNT | __GFP_NOFAIL) 2987 2988 /* 2989 * mod_objcg_mlstate() may be called with irq enabled, so 2990 * mod_memcg_lruvec_state() should be used. 2991 */ 2992 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2993 struct pglist_data *pgdat, 2994 enum node_stat_item idx, int nr) 2995 { 2996 struct mem_cgroup *memcg; 2997 struct lruvec *lruvec; 2998 2999 rcu_read_lock(); 3000 memcg = obj_cgroup_memcg(objcg); 3001 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3002 mod_memcg_lruvec_state(lruvec, idx, nr); 3003 rcu_read_unlock(); 3004 } 3005 3006 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 3007 gfp_t gfp, bool new_slab) 3008 { 3009 unsigned int objects = objs_per_slab(s, slab); 3010 unsigned long memcg_data; 3011 void *vec; 3012 3013 gfp &= ~OBJCGS_CLEAR_MASK; 3014 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 3015 slab_nid(slab)); 3016 if (!vec) 3017 return -ENOMEM; 3018 3019 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 3020 if (new_slab) { 3021 /* 3022 * If the slab is brand new and nobody can yet access its 3023 * memcg_data, no synchronization is required and memcg_data can 3024 * be simply assigned. 3025 */ 3026 slab->memcg_data = memcg_data; 3027 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 3028 /* 3029 * If the slab is already in use, somebody can allocate and 3030 * assign obj_cgroups in parallel. In this case the existing 3031 * objcg vector should be reused. 3032 */ 3033 kfree(vec); 3034 return 0; 3035 } 3036 3037 kmemleak_not_leak(vec); 3038 return 0; 3039 } 3040 3041 static __always_inline 3042 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 3043 { 3044 /* 3045 * Slab objects are accounted individually, not per-page. 3046 * Memcg membership data for each individual object is saved in 3047 * slab->memcg_data. 3048 */ 3049 if (folio_test_slab(folio)) { 3050 struct obj_cgroup **objcgs; 3051 struct slab *slab; 3052 unsigned int off; 3053 3054 slab = folio_slab(folio); 3055 objcgs = slab_objcgs(slab); 3056 if (!objcgs) 3057 return NULL; 3058 3059 off = obj_to_index(slab->slab_cache, slab, p); 3060 if (objcgs[off]) 3061 return obj_cgroup_memcg(objcgs[off]); 3062 3063 return NULL; 3064 } 3065 3066 /* 3067 * folio_memcg_check() is used here, because in theory we can encounter 3068 * a folio where the slab flag has been cleared already, but 3069 * slab->memcg_data has not been freed yet 3070 * folio_memcg_check() will guarantee that a proper memory 3071 * cgroup pointer or NULL will be returned. 3072 */ 3073 return folio_memcg_check(folio); 3074 } 3075 3076 /* 3077 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3078 * 3079 * A passed kernel object can be a slab object, vmalloc object or a generic 3080 * kernel page, so different mechanisms for getting the memory cgroup pointer 3081 * should be used. 3082 * 3083 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 3084 * can not know for sure how the kernel object is implemented. 3085 * mem_cgroup_from_obj() can be safely used in such cases. 3086 * 3087 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3088 * cgroup_mutex, etc. 3089 */ 3090 struct mem_cgroup *mem_cgroup_from_obj(void *p) 3091 { 3092 struct folio *folio; 3093 3094 if (mem_cgroup_disabled()) 3095 return NULL; 3096 3097 if (unlikely(is_vmalloc_addr(p))) 3098 folio = page_folio(vmalloc_to_page(p)); 3099 else 3100 folio = virt_to_folio(p); 3101 3102 return mem_cgroup_from_obj_folio(folio, p); 3103 } 3104 3105 /* 3106 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3107 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 3108 * allocated using vmalloc(). 3109 * 3110 * A passed kernel object must be a slab object or a generic kernel page. 3111 * 3112 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3113 * cgroup_mutex, etc. 3114 */ 3115 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 3116 { 3117 if (mem_cgroup_disabled()) 3118 return NULL; 3119 3120 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 3121 } 3122 3123 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 3124 { 3125 struct obj_cgroup *objcg = NULL; 3126 3127 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3128 objcg = rcu_dereference(memcg->objcg); 3129 if (likely(objcg && obj_cgroup_tryget(objcg))) 3130 break; 3131 objcg = NULL; 3132 } 3133 return objcg; 3134 } 3135 3136 static struct obj_cgroup *current_objcg_update(void) 3137 { 3138 struct mem_cgroup *memcg; 3139 struct obj_cgroup *old, *objcg = NULL; 3140 3141 do { 3142 /* Atomically drop the update bit. */ 3143 old = xchg(¤t->objcg, NULL); 3144 if (old) { 3145 old = (struct obj_cgroup *) 3146 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 3147 if (old) 3148 obj_cgroup_put(old); 3149 3150 old = NULL; 3151 } 3152 3153 /* If new objcg is NULL, no reason for the second atomic update. */ 3154 if (!current->mm || (current->flags & PF_KTHREAD)) 3155 return NULL; 3156 3157 /* 3158 * Release the objcg pointer from the previous iteration, 3159 * if try_cmpxcg() below fails. 3160 */ 3161 if (unlikely(objcg)) { 3162 obj_cgroup_put(objcg); 3163 objcg = NULL; 3164 } 3165 3166 /* 3167 * Obtain the new objcg pointer. The current task can be 3168 * asynchronously moved to another memcg and the previous 3169 * memcg can be offlined. So let's get the memcg pointer 3170 * and try get a reference to objcg under a rcu read lock. 3171 */ 3172 3173 rcu_read_lock(); 3174 memcg = mem_cgroup_from_task(current); 3175 objcg = __get_obj_cgroup_from_memcg(memcg); 3176 rcu_read_unlock(); 3177 3178 /* 3179 * Try set up a new objcg pointer atomically. If it 3180 * fails, it means the update flag was set concurrently, so 3181 * the whole procedure should be repeated. 3182 */ 3183 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 3184 3185 return objcg; 3186 } 3187 3188 __always_inline struct obj_cgroup *current_obj_cgroup(void) 3189 { 3190 struct mem_cgroup *memcg; 3191 struct obj_cgroup *objcg; 3192 3193 if (in_task()) { 3194 memcg = current->active_memcg; 3195 if (unlikely(memcg)) 3196 goto from_memcg; 3197 3198 objcg = READ_ONCE(current->objcg); 3199 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 3200 objcg = current_objcg_update(); 3201 /* 3202 * Objcg reference is kept by the task, so it's safe 3203 * to use the objcg by the current task. 3204 */ 3205 return objcg; 3206 } 3207 3208 memcg = this_cpu_read(int_active_memcg); 3209 if (unlikely(memcg)) 3210 goto from_memcg; 3211 3212 return NULL; 3213 3214 from_memcg: 3215 objcg = NULL; 3216 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3217 /* 3218 * Memcg pointer is protected by scope (see set_active_memcg()) 3219 * and is pinning the corresponding objcg, so objcg can't go 3220 * away and can be used within the scope without any additional 3221 * protection. 3222 */ 3223 objcg = rcu_dereference_check(memcg->objcg, 1); 3224 if (likely(objcg)) 3225 break; 3226 } 3227 3228 return objcg; 3229 } 3230 3231 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 3232 { 3233 struct obj_cgroup *objcg; 3234 3235 if (!memcg_kmem_online()) 3236 return NULL; 3237 3238 if (folio_memcg_kmem(folio)) { 3239 objcg = __folio_objcg(folio); 3240 obj_cgroup_get(objcg); 3241 } else { 3242 struct mem_cgroup *memcg; 3243 3244 rcu_read_lock(); 3245 memcg = __folio_memcg(folio); 3246 if (memcg) 3247 objcg = __get_obj_cgroup_from_memcg(memcg); 3248 else 3249 objcg = NULL; 3250 rcu_read_unlock(); 3251 } 3252 return objcg; 3253 } 3254 3255 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3256 { 3257 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 3258 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3259 if (nr_pages > 0) 3260 page_counter_charge(&memcg->kmem, nr_pages); 3261 else 3262 page_counter_uncharge(&memcg->kmem, -nr_pages); 3263 } 3264 } 3265 3266 3267 /* 3268 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3269 * @objcg: object cgroup to uncharge 3270 * @nr_pages: number of pages to uncharge 3271 */ 3272 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3273 unsigned int nr_pages) 3274 { 3275 struct mem_cgroup *memcg; 3276 3277 memcg = get_mem_cgroup_from_objcg(objcg); 3278 3279 memcg_account_kmem(memcg, -nr_pages); 3280 refill_stock(memcg, nr_pages); 3281 3282 css_put(&memcg->css); 3283 } 3284 3285 /* 3286 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3287 * @objcg: object cgroup to charge 3288 * @gfp: reclaim mode 3289 * @nr_pages: number of pages to charge 3290 * 3291 * Returns 0 on success, an error code on failure. 3292 */ 3293 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3294 unsigned int nr_pages) 3295 { 3296 struct mem_cgroup *memcg; 3297 int ret; 3298 3299 memcg = get_mem_cgroup_from_objcg(objcg); 3300 3301 ret = try_charge_memcg(memcg, gfp, nr_pages); 3302 if (ret) 3303 goto out; 3304 3305 memcg_account_kmem(memcg, nr_pages); 3306 out: 3307 css_put(&memcg->css); 3308 3309 return ret; 3310 } 3311 3312 /** 3313 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3314 * @page: page to charge 3315 * @gfp: reclaim mode 3316 * @order: allocation order 3317 * 3318 * Returns 0 on success, an error code on failure. 3319 */ 3320 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3321 { 3322 struct obj_cgroup *objcg; 3323 int ret = 0; 3324 3325 objcg = current_obj_cgroup(); 3326 if (objcg) { 3327 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3328 if (!ret) { 3329 obj_cgroup_get(objcg); 3330 page->memcg_data = (unsigned long)objcg | 3331 MEMCG_DATA_KMEM; 3332 return 0; 3333 } 3334 } 3335 return ret; 3336 } 3337 3338 /** 3339 * __memcg_kmem_uncharge_page: uncharge a kmem page 3340 * @page: page to uncharge 3341 * @order: allocation order 3342 */ 3343 void __memcg_kmem_uncharge_page(struct page *page, int order) 3344 { 3345 struct folio *folio = page_folio(page); 3346 struct obj_cgroup *objcg; 3347 unsigned int nr_pages = 1 << order; 3348 3349 if (!folio_memcg_kmem(folio)) 3350 return; 3351 3352 objcg = __folio_objcg(folio); 3353 obj_cgroup_uncharge_pages(objcg, nr_pages); 3354 folio->memcg_data = 0; 3355 obj_cgroup_put(objcg); 3356 } 3357 3358 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3359 enum node_stat_item idx, int nr) 3360 { 3361 struct memcg_stock_pcp *stock; 3362 struct obj_cgroup *old = NULL; 3363 unsigned long flags; 3364 int *bytes; 3365 3366 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3367 stock = this_cpu_ptr(&memcg_stock); 3368 3369 /* 3370 * Save vmstat data in stock and skip vmstat array update unless 3371 * accumulating over a page of vmstat data or when pgdat or idx 3372 * changes. 3373 */ 3374 if (READ_ONCE(stock->cached_objcg) != objcg) { 3375 old = drain_obj_stock(stock); 3376 obj_cgroup_get(objcg); 3377 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3378 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3379 WRITE_ONCE(stock->cached_objcg, objcg); 3380 stock->cached_pgdat = pgdat; 3381 } else if (stock->cached_pgdat != pgdat) { 3382 /* Flush the existing cached vmstat data */ 3383 struct pglist_data *oldpg = stock->cached_pgdat; 3384 3385 if (stock->nr_slab_reclaimable_b) { 3386 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3387 stock->nr_slab_reclaimable_b); 3388 stock->nr_slab_reclaimable_b = 0; 3389 } 3390 if (stock->nr_slab_unreclaimable_b) { 3391 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3392 stock->nr_slab_unreclaimable_b); 3393 stock->nr_slab_unreclaimable_b = 0; 3394 } 3395 stock->cached_pgdat = pgdat; 3396 } 3397 3398 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3399 : &stock->nr_slab_unreclaimable_b; 3400 /* 3401 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3402 * cached locally at least once before pushing it out. 3403 */ 3404 if (!*bytes) { 3405 *bytes = nr; 3406 nr = 0; 3407 } else { 3408 *bytes += nr; 3409 if (abs(*bytes) > PAGE_SIZE) { 3410 nr = *bytes; 3411 *bytes = 0; 3412 } else { 3413 nr = 0; 3414 } 3415 } 3416 if (nr) 3417 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3418 3419 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3420 if (old) 3421 obj_cgroup_put(old); 3422 } 3423 3424 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3425 { 3426 struct memcg_stock_pcp *stock; 3427 unsigned long flags; 3428 bool ret = false; 3429 3430 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3431 3432 stock = this_cpu_ptr(&memcg_stock); 3433 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 3434 stock->nr_bytes -= nr_bytes; 3435 ret = true; 3436 } 3437 3438 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3439 3440 return ret; 3441 } 3442 3443 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3444 { 3445 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 3446 3447 if (!old) 3448 return NULL; 3449 3450 if (stock->nr_bytes) { 3451 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3452 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3453 3454 if (nr_pages) { 3455 struct mem_cgroup *memcg; 3456 3457 memcg = get_mem_cgroup_from_objcg(old); 3458 3459 memcg_account_kmem(memcg, -nr_pages); 3460 __refill_stock(memcg, nr_pages); 3461 3462 css_put(&memcg->css); 3463 } 3464 3465 /* 3466 * The leftover is flushed to the centralized per-memcg value. 3467 * On the next attempt to refill obj stock it will be moved 3468 * to a per-cpu stock (probably, on an other CPU), see 3469 * refill_obj_stock(). 3470 * 3471 * How often it's flushed is a trade-off between the memory 3472 * limit enforcement accuracy and potential CPU contention, 3473 * so it might be changed in the future. 3474 */ 3475 atomic_add(nr_bytes, &old->nr_charged_bytes); 3476 stock->nr_bytes = 0; 3477 } 3478 3479 /* 3480 * Flush the vmstat data in current stock 3481 */ 3482 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3483 if (stock->nr_slab_reclaimable_b) { 3484 mod_objcg_mlstate(old, stock->cached_pgdat, 3485 NR_SLAB_RECLAIMABLE_B, 3486 stock->nr_slab_reclaimable_b); 3487 stock->nr_slab_reclaimable_b = 0; 3488 } 3489 if (stock->nr_slab_unreclaimable_b) { 3490 mod_objcg_mlstate(old, stock->cached_pgdat, 3491 NR_SLAB_UNRECLAIMABLE_B, 3492 stock->nr_slab_unreclaimable_b); 3493 stock->nr_slab_unreclaimable_b = 0; 3494 } 3495 stock->cached_pgdat = NULL; 3496 } 3497 3498 WRITE_ONCE(stock->cached_objcg, NULL); 3499 /* 3500 * The `old' objects needs to be released by the caller via 3501 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3502 */ 3503 return old; 3504 } 3505 3506 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3507 struct mem_cgroup *root_memcg) 3508 { 3509 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 3510 struct mem_cgroup *memcg; 3511 3512 if (objcg) { 3513 memcg = obj_cgroup_memcg(objcg); 3514 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3515 return true; 3516 } 3517 3518 return false; 3519 } 3520 3521 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3522 bool allow_uncharge) 3523 { 3524 struct memcg_stock_pcp *stock; 3525 struct obj_cgroup *old = NULL; 3526 unsigned long flags; 3527 unsigned int nr_pages = 0; 3528 3529 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3530 3531 stock = this_cpu_ptr(&memcg_stock); 3532 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 3533 old = drain_obj_stock(stock); 3534 obj_cgroup_get(objcg); 3535 WRITE_ONCE(stock->cached_objcg, objcg); 3536 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3537 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3538 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3539 } 3540 stock->nr_bytes += nr_bytes; 3541 3542 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3543 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3544 stock->nr_bytes &= (PAGE_SIZE - 1); 3545 } 3546 3547 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3548 if (old) 3549 obj_cgroup_put(old); 3550 3551 if (nr_pages) 3552 obj_cgroup_uncharge_pages(objcg, nr_pages); 3553 } 3554 3555 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3556 { 3557 unsigned int nr_pages, nr_bytes; 3558 int ret; 3559 3560 if (consume_obj_stock(objcg, size)) 3561 return 0; 3562 3563 /* 3564 * In theory, objcg->nr_charged_bytes can have enough 3565 * pre-charged bytes to satisfy the allocation. However, 3566 * flushing objcg->nr_charged_bytes requires two atomic 3567 * operations, and objcg->nr_charged_bytes can't be big. 3568 * The shared objcg->nr_charged_bytes can also become a 3569 * performance bottleneck if all tasks of the same memcg are 3570 * trying to update it. So it's better to ignore it and try 3571 * grab some new pages. The stock's nr_bytes will be flushed to 3572 * objcg->nr_charged_bytes later on when objcg changes. 3573 * 3574 * The stock's nr_bytes may contain enough pre-charged bytes 3575 * to allow one less page from being charged, but we can't rely 3576 * on the pre-charged bytes not being changed outside of 3577 * consume_obj_stock() or refill_obj_stock(). So ignore those 3578 * pre-charged bytes as well when charging pages. To avoid a 3579 * page uncharge right after a page charge, we set the 3580 * allow_uncharge flag to false when calling refill_obj_stock() 3581 * to temporarily allow the pre-charged bytes to exceed the page 3582 * size limit. The maximum reachable value of the pre-charged 3583 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3584 * race. 3585 */ 3586 nr_pages = size >> PAGE_SHIFT; 3587 nr_bytes = size & (PAGE_SIZE - 1); 3588 3589 if (nr_bytes) 3590 nr_pages += 1; 3591 3592 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3593 if (!ret && nr_bytes) 3594 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3595 3596 return ret; 3597 } 3598 3599 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3600 { 3601 refill_obj_stock(objcg, size, true); 3602 } 3603 3604 #endif /* CONFIG_MEMCG_KMEM */ 3605 3606 /* 3607 * Because page_memcg(head) is not set on tails, set it now. 3608 */ 3609 void split_page_memcg(struct page *head, unsigned int nr) 3610 { 3611 struct folio *folio = page_folio(head); 3612 struct mem_cgroup *memcg = folio_memcg(folio); 3613 int i; 3614 3615 if (mem_cgroup_disabled() || !memcg) 3616 return; 3617 3618 for (i = 1; i < nr; i++) 3619 folio_page(folio, i)->memcg_data = folio->memcg_data; 3620 3621 if (folio_memcg_kmem(folio)) 3622 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3623 else 3624 css_get_many(&memcg->css, nr - 1); 3625 } 3626 3627 #ifdef CONFIG_SWAP 3628 /** 3629 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3630 * @entry: swap entry to be moved 3631 * @from: mem_cgroup which the entry is moved from 3632 * @to: mem_cgroup which the entry is moved to 3633 * 3634 * It succeeds only when the swap_cgroup's record for this entry is the same 3635 * as the mem_cgroup's id of @from. 3636 * 3637 * Returns 0 on success, -EINVAL on failure. 3638 * 3639 * The caller must have charged to @to, IOW, called page_counter_charge() about 3640 * both res and memsw, and called css_get(). 3641 */ 3642 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3643 struct mem_cgroup *from, struct mem_cgroup *to) 3644 { 3645 unsigned short old_id, new_id; 3646 3647 old_id = mem_cgroup_id(from); 3648 new_id = mem_cgroup_id(to); 3649 3650 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3651 mod_memcg_state(from, MEMCG_SWAP, -1); 3652 mod_memcg_state(to, MEMCG_SWAP, 1); 3653 return 0; 3654 } 3655 return -EINVAL; 3656 } 3657 #else 3658 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3659 struct mem_cgroup *from, struct mem_cgroup *to) 3660 { 3661 return -EINVAL; 3662 } 3663 #endif 3664 3665 static DEFINE_MUTEX(memcg_max_mutex); 3666 3667 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3668 unsigned long max, bool memsw) 3669 { 3670 bool enlarge = false; 3671 bool drained = false; 3672 int ret; 3673 bool limits_invariant; 3674 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3675 3676 do { 3677 if (signal_pending(current)) { 3678 ret = -EINTR; 3679 break; 3680 } 3681 3682 mutex_lock(&memcg_max_mutex); 3683 /* 3684 * Make sure that the new limit (memsw or memory limit) doesn't 3685 * break our basic invariant rule memory.max <= memsw.max. 3686 */ 3687 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3688 max <= memcg->memsw.max; 3689 if (!limits_invariant) { 3690 mutex_unlock(&memcg_max_mutex); 3691 ret = -EINVAL; 3692 break; 3693 } 3694 if (max > counter->max) 3695 enlarge = true; 3696 ret = page_counter_set_max(counter, max); 3697 mutex_unlock(&memcg_max_mutex); 3698 3699 if (!ret) 3700 break; 3701 3702 if (!drained) { 3703 drain_all_stock(memcg); 3704 drained = true; 3705 continue; 3706 } 3707 3708 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3709 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { 3710 ret = -EBUSY; 3711 break; 3712 } 3713 } while (true); 3714 3715 if (!ret && enlarge) 3716 memcg_oom_recover(memcg); 3717 3718 return ret; 3719 } 3720 3721 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3722 gfp_t gfp_mask, 3723 unsigned long *total_scanned) 3724 { 3725 unsigned long nr_reclaimed = 0; 3726 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3727 unsigned long reclaimed; 3728 int loop = 0; 3729 struct mem_cgroup_tree_per_node *mctz; 3730 unsigned long excess; 3731 3732 if (lru_gen_enabled()) 3733 return 0; 3734 3735 if (order > 0) 3736 return 0; 3737 3738 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3739 3740 /* 3741 * Do not even bother to check the largest node if the root 3742 * is empty. Do it lockless to prevent lock bouncing. Races 3743 * are acceptable as soft limit is best effort anyway. 3744 */ 3745 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3746 return 0; 3747 3748 /* 3749 * This loop can run a while, specially if mem_cgroup's continuously 3750 * keep exceeding their soft limit and putting the system under 3751 * pressure 3752 */ 3753 do { 3754 if (next_mz) 3755 mz = next_mz; 3756 else 3757 mz = mem_cgroup_largest_soft_limit_node(mctz); 3758 if (!mz) 3759 break; 3760 3761 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3762 gfp_mask, total_scanned); 3763 nr_reclaimed += reclaimed; 3764 spin_lock_irq(&mctz->lock); 3765 3766 /* 3767 * If we failed to reclaim anything from this memory cgroup 3768 * it is time to move on to the next cgroup 3769 */ 3770 next_mz = NULL; 3771 if (!reclaimed) 3772 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3773 3774 excess = soft_limit_excess(mz->memcg); 3775 /* 3776 * One school of thought says that we should not add 3777 * back the node to the tree if reclaim returns 0. 3778 * But our reclaim could return 0, simply because due 3779 * to priority we are exposing a smaller subset of 3780 * memory to reclaim from. Consider this as a longer 3781 * term TODO. 3782 */ 3783 /* If excess == 0, no tree ops */ 3784 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3785 spin_unlock_irq(&mctz->lock); 3786 css_put(&mz->memcg->css); 3787 loop++; 3788 /* 3789 * Could not reclaim anything and there are no more 3790 * mem cgroups to try or we seem to be looping without 3791 * reclaiming anything. 3792 */ 3793 if (!nr_reclaimed && 3794 (next_mz == NULL || 3795 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3796 break; 3797 } while (!nr_reclaimed); 3798 if (next_mz) 3799 css_put(&next_mz->memcg->css); 3800 return nr_reclaimed; 3801 } 3802 3803 /* 3804 * Reclaims as many pages from the given memcg as possible. 3805 * 3806 * Caller is responsible for holding css reference for memcg. 3807 */ 3808 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3809 { 3810 int nr_retries = MAX_RECLAIM_RETRIES; 3811 3812 /* we call try-to-free pages for make this cgroup empty */ 3813 lru_add_drain_all(); 3814 3815 drain_all_stock(memcg); 3816 3817 /* try to free all pages in this cgroup */ 3818 while (nr_retries && page_counter_read(&memcg->memory)) { 3819 if (signal_pending(current)) 3820 return -EINTR; 3821 3822 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3823 MEMCG_RECLAIM_MAY_SWAP)) 3824 nr_retries--; 3825 } 3826 3827 return 0; 3828 } 3829 3830 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3831 char *buf, size_t nbytes, 3832 loff_t off) 3833 { 3834 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3835 3836 if (mem_cgroup_is_root(memcg)) 3837 return -EINVAL; 3838 return mem_cgroup_force_empty(memcg) ?: nbytes; 3839 } 3840 3841 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3842 struct cftype *cft) 3843 { 3844 return 1; 3845 } 3846 3847 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3848 struct cftype *cft, u64 val) 3849 { 3850 if (val == 1) 3851 return 0; 3852 3853 pr_warn_once("Non-hierarchical mode is deprecated. " 3854 "Please report your usecase to linux-mm@kvack.org if you " 3855 "depend on this functionality.\n"); 3856 3857 return -EINVAL; 3858 } 3859 3860 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3861 { 3862 unsigned long val; 3863 3864 if (mem_cgroup_is_root(memcg)) { 3865 /* 3866 * Approximate root's usage from global state. This isn't 3867 * perfect, but the root usage was always an approximation. 3868 */ 3869 val = global_node_page_state(NR_FILE_PAGES) + 3870 global_node_page_state(NR_ANON_MAPPED); 3871 if (swap) 3872 val += total_swap_pages - get_nr_swap_pages(); 3873 } else { 3874 if (!swap) 3875 val = page_counter_read(&memcg->memory); 3876 else 3877 val = page_counter_read(&memcg->memsw); 3878 } 3879 return val; 3880 } 3881 3882 enum { 3883 RES_USAGE, 3884 RES_LIMIT, 3885 RES_MAX_USAGE, 3886 RES_FAILCNT, 3887 RES_SOFT_LIMIT, 3888 }; 3889 3890 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3891 struct cftype *cft) 3892 { 3893 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3894 struct page_counter *counter; 3895 3896 switch (MEMFILE_TYPE(cft->private)) { 3897 case _MEM: 3898 counter = &memcg->memory; 3899 break; 3900 case _MEMSWAP: 3901 counter = &memcg->memsw; 3902 break; 3903 case _KMEM: 3904 counter = &memcg->kmem; 3905 break; 3906 case _TCP: 3907 counter = &memcg->tcpmem; 3908 break; 3909 default: 3910 BUG(); 3911 } 3912 3913 switch (MEMFILE_ATTR(cft->private)) { 3914 case RES_USAGE: 3915 if (counter == &memcg->memory) 3916 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3917 if (counter == &memcg->memsw) 3918 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3919 return (u64)page_counter_read(counter) * PAGE_SIZE; 3920 case RES_LIMIT: 3921 return (u64)counter->max * PAGE_SIZE; 3922 case RES_MAX_USAGE: 3923 return (u64)counter->watermark * PAGE_SIZE; 3924 case RES_FAILCNT: 3925 return counter->failcnt; 3926 case RES_SOFT_LIMIT: 3927 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; 3928 default: 3929 BUG(); 3930 } 3931 } 3932 3933 /* 3934 * This function doesn't do anything useful. Its only job is to provide a read 3935 * handler for a file so that cgroup_file_mode() will add read permissions. 3936 */ 3937 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, 3938 __always_unused void *v) 3939 { 3940 return -EINVAL; 3941 } 3942 3943 #ifdef CONFIG_MEMCG_KMEM 3944 static int memcg_online_kmem(struct mem_cgroup *memcg) 3945 { 3946 struct obj_cgroup *objcg; 3947 3948 if (mem_cgroup_kmem_disabled()) 3949 return 0; 3950 3951 if (unlikely(mem_cgroup_is_root(memcg))) 3952 return 0; 3953 3954 objcg = obj_cgroup_alloc(); 3955 if (!objcg) 3956 return -ENOMEM; 3957 3958 objcg->memcg = memcg; 3959 rcu_assign_pointer(memcg->objcg, objcg); 3960 obj_cgroup_get(objcg); 3961 memcg->orig_objcg = objcg; 3962 3963 static_branch_enable(&memcg_kmem_online_key); 3964 3965 memcg->kmemcg_id = memcg->id.id; 3966 3967 return 0; 3968 } 3969 3970 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3971 { 3972 struct mem_cgroup *parent; 3973 3974 if (mem_cgroup_kmem_disabled()) 3975 return; 3976 3977 if (unlikely(mem_cgroup_is_root(memcg))) 3978 return; 3979 3980 parent = parent_mem_cgroup(memcg); 3981 if (!parent) 3982 parent = root_mem_cgroup; 3983 3984 memcg_reparent_objcgs(memcg, parent); 3985 3986 /* 3987 * After we have finished memcg_reparent_objcgs(), all list_lrus 3988 * corresponding to this cgroup are guaranteed to remain empty. 3989 * The ordering is imposed by list_lru_node->lock taken by 3990 * memcg_reparent_list_lrus(). 3991 */ 3992 memcg_reparent_list_lrus(memcg, parent); 3993 } 3994 #else 3995 static int memcg_online_kmem(struct mem_cgroup *memcg) 3996 { 3997 return 0; 3998 } 3999 static void memcg_offline_kmem(struct mem_cgroup *memcg) 4000 { 4001 } 4002 #endif /* CONFIG_MEMCG_KMEM */ 4003 4004 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 4005 { 4006 int ret; 4007 4008 mutex_lock(&memcg_max_mutex); 4009 4010 ret = page_counter_set_max(&memcg->tcpmem, max); 4011 if (ret) 4012 goto out; 4013 4014 if (!memcg->tcpmem_active) { 4015 /* 4016 * The active flag needs to be written after the static_key 4017 * update. This is what guarantees that the socket activation 4018 * function is the last one to run. See mem_cgroup_sk_alloc() 4019 * for details, and note that we don't mark any socket as 4020 * belonging to this memcg until that flag is up. 4021 * 4022 * We need to do this, because static_keys will span multiple 4023 * sites, but we can't control their order. If we mark a socket 4024 * as accounted, but the accounting functions are not patched in 4025 * yet, we'll lose accounting. 4026 * 4027 * We never race with the readers in mem_cgroup_sk_alloc(), 4028 * because when this value change, the code to process it is not 4029 * patched in yet. 4030 */ 4031 static_branch_inc(&memcg_sockets_enabled_key); 4032 memcg->tcpmem_active = true; 4033 } 4034 out: 4035 mutex_unlock(&memcg_max_mutex); 4036 return ret; 4037 } 4038 4039 /* 4040 * The user of this function is... 4041 * RES_LIMIT. 4042 */ 4043 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 4044 char *buf, size_t nbytes, loff_t off) 4045 { 4046 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4047 unsigned long nr_pages; 4048 int ret; 4049 4050 buf = strstrip(buf); 4051 ret = page_counter_memparse(buf, "-1", &nr_pages); 4052 if (ret) 4053 return ret; 4054 4055 switch (MEMFILE_ATTR(of_cft(of)->private)) { 4056 case RES_LIMIT: 4057 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 4058 ret = -EINVAL; 4059 break; 4060 } 4061 switch (MEMFILE_TYPE(of_cft(of)->private)) { 4062 case _MEM: 4063 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 4064 break; 4065 case _MEMSWAP: 4066 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 4067 break; 4068 case _KMEM: 4069 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 4070 "Writing any value to this file has no effect. " 4071 "Please report your usecase to linux-mm@kvack.org if you " 4072 "depend on this functionality.\n"); 4073 ret = 0; 4074 break; 4075 case _TCP: 4076 ret = memcg_update_tcp_max(memcg, nr_pages); 4077 break; 4078 } 4079 break; 4080 case RES_SOFT_LIMIT: 4081 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4082 ret = -EOPNOTSUPP; 4083 } else { 4084 WRITE_ONCE(memcg->soft_limit, nr_pages); 4085 ret = 0; 4086 } 4087 break; 4088 } 4089 return ret ?: nbytes; 4090 } 4091 4092 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 4093 size_t nbytes, loff_t off) 4094 { 4095 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4096 struct page_counter *counter; 4097 4098 switch (MEMFILE_TYPE(of_cft(of)->private)) { 4099 case _MEM: 4100 counter = &memcg->memory; 4101 break; 4102 case _MEMSWAP: 4103 counter = &memcg->memsw; 4104 break; 4105 case _KMEM: 4106 counter = &memcg->kmem; 4107 break; 4108 case _TCP: 4109 counter = &memcg->tcpmem; 4110 break; 4111 default: 4112 BUG(); 4113 } 4114 4115 switch (MEMFILE_ATTR(of_cft(of)->private)) { 4116 case RES_MAX_USAGE: 4117 page_counter_reset_watermark(counter); 4118 break; 4119 case RES_FAILCNT: 4120 counter->failcnt = 0; 4121 break; 4122 default: 4123 BUG(); 4124 } 4125 4126 return nbytes; 4127 } 4128 4129 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 4130 struct cftype *cft) 4131 { 4132 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 4133 } 4134 4135 #ifdef CONFIG_MMU 4136 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4137 struct cftype *cft, u64 val) 4138 { 4139 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4140 4141 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 4142 "Please report your usecase to linux-mm@kvack.org if you " 4143 "depend on this functionality.\n"); 4144 4145 if (val & ~MOVE_MASK) 4146 return -EINVAL; 4147 4148 /* 4149 * No kind of locking is needed in here, because ->can_attach() will 4150 * check this value once in the beginning of the process, and then carry 4151 * on with stale data. This means that changes to this value will only 4152 * affect task migrations starting after the change. 4153 */ 4154 memcg->move_charge_at_immigrate = val; 4155 return 0; 4156 } 4157 #else 4158 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4159 struct cftype *cft, u64 val) 4160 { 4161 return -ENOSYS; 4162 } 4163 #endif 4164 4165 #ifdef CONFIG_NUMA 4166 4167 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 4168 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 4169 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 4170 4171 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 4172 int nid, unsigned int lru_mask, bool tree) 4173 { 4174 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4175 unsigned long nr = 0; 4176 enum lru_list lru; 4177 4178 VM_BUG_ON((unsigned)nid >= nr_node_ids); 4179 4180 for_each_lru(lru) { 4181 if (!(BIT(lru) & lru_mask)) 4182 continue; 4183 if (tree) 4184 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 4185 else 4186 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 4187 } 4188 return nr; 4189 } 4190 4191 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 4192 unsigned int lru_mask, 4193 bool tree) 4194 { 4195 unsigned long nr = 0; 4196 enum lru_list lru; 4197 4198 for_each_lru(lru) { 4199 if (!(BIT(lru) & lru_mask)) 4200 continue; 4201 if (tree) 4202 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 4203 else 4204 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 4205 } 4206 return nr; 4207 } 4208 4209 static int memcg_numa_stat_show(struct seq_file *m, void *v) 4210 { 4211 struct numa_stat { 4212 const char *name; 4213 unsigned int lru_mask; 4214 }; 4215 4216 static const struct numa_stat stats[] = { 4217 { "total", LRU_ALL }, 4218 { "file", LRU_ALL_FILE }, 4219 { "anon", LRU_ALL_ANON }, 4220 { "unevictable", BIT(LRU_UNEVICTABLE) }, 4221 }; 4222 const struct numa_stat *stat; 4223 int nid; 4224 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4225 4226 mem_cgroup_flush_stats(memcg); 4227 4228 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4229 seq_printf(m, "%s=%lu", stat->name, 4230 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4231 false)); 4232 for_each_node_state(nid, N_MEMORY) 4233 seq_printf(m, " N%d=%lu", nid, 4234 mem_cgroup_node_nr_lru_pages(memcg, nid, 4235 stat->lru_mask, false)); 4236 seq_putc(m, '\n'); 4237 } 4238 4239 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4240 4241 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4242 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4243 true)); 4244 for_each_node_state(nid, N_MEMORY) 4245 seq_printf(m, " N%d=%lu", nid, 4246 mem_cgroup_node_nr_lru_pages(memcg, nid, 4247 stat->lru_mask, true)); 4248 seq_putc(m, '\n'); 4249 } 4250 4251 return 0; 4252 } 4253 #endif /* CONFIG_NUMA */ 4254 4255 static const unsigned int memcg1_stats[] = { 4256 NR_FILE_PAGES, 4257 NR_ANON_MAPPED, 4258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4259 NR_ANON_THPS, 4260 #endif 4261 NR_SHMEM, 4262 NR_FILE_MAPPED, 4263 NR_FILE_DIRTY, 4264 NR_WRITEBACK, 4265 WORKINGSET_REFAULT_ANON, 4266 WORKINGSET_REFAULT_FILE, 4267 #ifdef CONFIG_SWAP 4268 MEMCG_SWAP, 4269 NR_SWAPCACHE, 4270 #endif 4271 }; 4272 4273 static const char *const memcg1_stat_names[] = { 4274 "cache", 4275 "rss", 4276 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4277 "rss_huge", 4278 #endif 4279 "shmem", 4280 "mapped_file", 4281 "dirty", 4282 "writeback", 4283 "workingset_refault_anon", 4284 "workingset_refault_file", 4285 #ifdef CONFIG_SWAP 4286 "swap", 4287 "swapcached", 4288 #endif 4289 }; 4290 4291 /* Universal VM events cgroup1 shows, original sort order */ 4292 static const unsigned int memcg1_events[] = { 4293 PGPGIN, 4294 PGPGOUT, 4295 PGFAULT, 4296 PGMAJFAULT, 4297 }; 4298 4299 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 4300 { 4301 unsigned long memory, memsw; 4302 struct mem_cgroup *mi; 4303 unsigned int i; 4304 4305 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4306 4307 mem_cgroup_flush_stats(memcg); 4308 4309 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4310 unsigned long nr; 4311 4312 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); 4313 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); 4314 } 4315 4316 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4317 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), 4318 memcg_events_local(memcg, memcg1_events[i])); 4319 4320 for (i = 0; i < NR_LRU_LISTS; i++) 4321 seq_buf_printf(s, "%s %lu\n", lru_list_name(i), 4322 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4323 PAGE_SIZE); 4324 4325 /* Hierarchical information */ 4326 memory = memsw = PAGE_COUNTER_MAX; 4327 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4328 memory = min(memory, READ_ONCE(mi->memory.max)); 4329 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4330 } 4331 seq_buf_printf(s, "hierarchical_memory_limit %llu\n", 4332 (u64)memory * PAGE_SIZE); 4333 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", 4334 (u64)memsw * PAGE_SIZE); 4335 4336 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4337 unsigned long nr; 4338 4339 nr = memcg_page_state_output(memcg, memcg1_stats[i]); 4340 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], 4341 (u64)nr); 4342 } 4343 4344 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4345 seq_buf_printf(s, "total_%s %llu\n", 4346 vm_event_name(memcg1_events[i]), 4347 (u64)memcg_events(memcg, memcg1_events[i])); 4348 4349 for (i = 0; i < NR_LRU_LISTS; i++) 4350 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), 4351 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4352 PAGE_SIZE); 4353 4354 #ifdef CONFIG_DEBUG_VM 4355 { 4356 pg_data_t *pgdat; 4357 struct mem_cgroup_per_node *mz; 4358 unsigned long anon_cost = 0; 4359 unsigned long file_cost = 0; 4360 4361 for_each_online_pgdat(pgdat) { 4362 mz = memcg->nodeinfo[pgdat->node_id]; 4363 4364 anon_cost += mz->lruvec.anon_cost; 4365 file_cost += mz->lruvec.file_cost; 4366 } 4367 seq_buf_printf(s, "anon_cost %lu\n", anon_cost); 4368 seq_buf_printf(s, "file_cost %lu\n", file_cost); 4369 } 4370 #endif 4371 } 4372 4373 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4374 struct cftype *cft) 4375 { 4376 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4377 4378 return mem_cgroup_swappiness(memcg); 4379 } 4380 4381 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4382 struct cftype *cft, u64 val) 4383 { 4384 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4385 4386 if (val > 200) 4387 return -EINVAL; 4388 4389 if (!mem_cgroup_is_root(memcg)) 4390 WRITE_ONCE(memcg->swappiness, val); 4391 else 4392 WRITE_ONCE(vm_swappiness, val); 4393 4394 return 0; 4395 } 4396 4397 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4398 { 4399 struct mem_cgroup_threshold_ary *t; 4400 unsigned long usage; 4401 int i; 4402 4403 rcu_read_lock(); 4404 if (!swap) 4405 t = rcu_dereference(memcg->thresholds.primary); 4406 else 4407 t = rcu_dereference(memcg->memsw_thresholds.primary); 4408 4409 if (!t) 4410 goto unlock; 4411 4412 usage = mem_cgroup_usage(memcg, swap); 4413 4414 /* 4415 * current_threshold points to threshold just below or equal to usage. 4416 * If it's not true, a threshold was crossed after last 4417 * call of __mem_cgroup_threshold(). 4418 */ 4419 i = t->current_threshold; 4420 4421 /* 4422 * Iterate backward over array of thresholds starting from 4423 * current_threshold and check if a threshold is crossed. 4424 * If none of thresholds below usage is crossed, we read 4425 * only one element of the array here. 4426 */ 4427 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4428 eventfd_signal(t->entries[i].eventfd); 4429 4430 /* i = current_threshold + 1 */ 4431 i++; 4432 4433 /* 4434 * Iterate forward over array of thresholds starting from 4435 * current_threshold+1 and check if a threshold is crossed. 4436 * If none of thresholds above usage is crossed, we read 4437 * only one element of the array here. 4438 */ 4439 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4440 eventfd_signal(t->entries[i].eventfd); 4441 4442 /* Update current_threshold */ 4443 t->current_threshold = i - 1; 4444 unlock: 4445 rcu_read_unlock(); 4446 } 4447 4448 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4449 { 4450 while (memcg) { 4451 __mem_cgroup_threshold(memcg, false); 4452 if (do_memsw_account()) 4453 __mem_cgroup_threshold(memcg, true); 4454 4455 memcg = parent_mem_cgroup(memcg); 4456 } 4457 } 4458 4459 static int compare_thresholds(const void *a, const void *b) 4460 { 4461 const struct mem_cgroup_threshold *_a = a; 4462 const struct mem_cgroup_threshold *_b = b; 4463 4464 if (_a->threshold > _b->threshold) 4465 return 1; 4466 4467 if (_a->threshold < _b->threshold) 4468 return -1; 4469 4470 return 0; 4471 } 4472 4473 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4474 { 4475 struct mem_cgroup_eventfd_list *ev; 4476 4477 spin_lock(&memcg_oom_lock); 4478 4479 list_for_each_entry(ev, &memcg->oom_notify, list) 4480 eventfd_signal(ev->eventfd); 4481 4482 spin_unlock(&memcg_oom_lock); 4483 return 0; 4484 } 4485 4486 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4487 { 4488 struct mem_cgroup *iter; 4489 4490 for_each_mem_cgroup_tree(iter, memcg) 4491 mem_cgroup_oom_notify_cb(iter); 4492 } 4493 4494 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4495 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4496 { 4497 struct mem_cgroup_thresholds *thresholds; 4498 struct mem_cgroup_threshold_ary *new; 4499 unsigned long threshold; 4500 unsigned long usage; 4501 int i, size, ret; 4502 4503 ret = page_counter_memparse(args, "-1", &threshold); 4504 if (ret) 4505 return ret; 4506 4507 mutex_lock(&memcg->thresholds_lock); 4508 4509 if (type == _MEM) { 4510 thresholds = &memcg->thresholds; 4511 usage = mem_cgroup_usage(memcg, false); 4512 } else if (type == _MEMSWAP) { 4513 thresholds = &memcg->memsw_thresholds; 4514 usage = mem_cgroup_usage(memcg, true); 4515 } else 4516 BUG(); 4517 4518 /* Check if a threshold crossed before adding a new one */ 4519 if (thresholds->primary) 4520 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4521 4522 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4523 4524 /* Allocate memory for new array of thresholds */ 4525 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4526 if (!new) { 4527 ret = -ENOMEM; 4528 goto unlock; 4529 } 4530 new->size = size; 4531 4532 /* Copy thresholds (if any) to new array */ 4533 if (thresholds->primary) 4534 memcpy(new->entries, thresholds->primary->entries, 4535 flex_array_size(new, entries, size - 1)); 4536 4537 /* Add new threshold */ 4538 new->entries[size - 1].eventfd = eventfd; 4539 new->entries[size - 1].threshold = threshold; 4540 4541 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4542 sort(new->entries, size, sizeof(*new->entries), 4543 compare_thresholds, NULL); 4544 4545 /* Find current threshold */ 4546 new->current_threshold = -1; 4547 for (i = 0; i < size; i++) { 4548 if (new->entries[i].threshold <= usage) { 4549 /* 4550 * new->current_threshold will not be used until 4551 * rcu_assign_pointer(), so it's safe to increment 4552 * it here. 4553 */ 4554 ++new->current_threshold; 4555 } else 4556 break; 4557 } 4558 4559 /* Free old spare buffer and save old primary buffer as spare */ 4560 kfree(thresholds->spare); 4561 thresholds->spare = thresholds->primary; 4562 4563 rcu_assign_pointer(thresholds->primary, new); 4564 4565 /* To be sure that nobody uses thresholds */ 4566 synchronize_rcu(); 4567 4568 unlock: 4569 mutex_unlock(&memcg->thresholds_lock); 4570 4571 return ret; 4572 } 4573 4574 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4575 struct eventfd_ctx *eventfd, const char *args) 4576 { 4577 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4578 } 4579 4580 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4581 struct eventfd_ctx *eventfd, const char *args) 4582 { 4583 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4584 } 4585 4586 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4587 struct eventfd_ctx *eventfd, enum res_type type) 4588 { 4589 struct mem_cgroup_thresholds *thresholds; 4590 struct mem_cgroup_threshold_ary *new; 4591 unsigned long usage; 4592 int i, j, size, entries; 4593 4594 mutex_lock(&memcg->thresholds_lock); 4595 4596 if (type == _MEM) { 4597 thresholds = &memcg->thresholds; 4598 usage = mem_cgroup_usage(memcg, false); 4599 } else if (type == _MEMSWAP) { 4600 thresholds = &memcg->memsw_thresholds; 4601 usage = mem_cgroup_usage(memcg, true); 4602 } else 4603 BUG(); 4604 4605 if (!thresholds->primary) 4606 goto unlock; 4607 4608 /* Check if a threshold crossed before removing */ 4609 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4610 4611 /* Calculate new number of threshold */ 4612 size = entries = 0; 4613 for (i = 0; i < thresholds->primary->size; i++) { 4614 if (thresholds->primary->entries[i].eventfd != eventfd) 4615 size++; 4616 else 4617 entries++; 4618 } 4619 4620 new = thresholds->spare; 4621 4622 /* If no items related to eventfd have been cleared, nothing to do */ 4623 if (!entries) 4624 goto unlock; 4625 4626 /* Set thresholds array to NULL if we don't have thresholds */ 4627 if (!size) { 4628 kfree(new); 4629 new = NULL; 4630 goto swap_buffers; 4631 } 4632 4633 new->size = size; 4634 4635 /* Copy thresholds and find current threshold */ 4636 new->current_threshold = -1; 4637 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4638 if (thresholds->primary->entries[i].eventfd == eventfd) 4639 continue; 4640 4641 new->entries[j] = thresholds->primary->entries[i]; 4642 if (new->entries[j].threshold <= usage) { 4643 /* 4644 * new->current_threshold will not be used 4645 * until rcu_assign_pointer(), so it's safe to increment 4646 * it here. 4647 */ 4648 ++new->current_threshold; 4649 } 4650 j++; 4651 } 4652 4653 swap_buffers: 4654 /* Swap primary and spare array */ 4655 thresholds->spare = thresholds->primary; 4656 4657 rcu_assign_pointer(thresholds->primary, new); 4658 4659 /* To be sure that nobody uses thresholds */ 4660 synchronize_rcu(); 4661 4662 /* If all events are unregistered, free the spare array */ 4663 if (!new) { 4664 kfree(thresholds->spare); 4665 thresholds->spare = NULL; 4666 } 4667 unlock: 4668 mutex_unlock(&memcg->thresholds_lock); 4669 } 4670 4671 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4672 struct eventfd_ctx *eventfd) 4673 { 4674 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4675 } 4676 4677 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4678 struct eventfd_ctx *eventfd) 4679 { 4680 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4681 } 4682 4683 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4684 struct eventfd_ctx *eventfd, const char *args) 4685 { 4686 struct mem_cgroup_eventfd_list *event; 4687 4688 event = kmalloc(sizeof(*event), GFP_KERNEL); 4689 if (!event) 4690 return -ENOMEM; 4691 4692 spin_lock(&memcg_oom_lock); 4693 4694 event->eventfd = eventfd; 4695 list_add(&event->list, &memcg->oom_notify); 4696 4697 /* already in OOM ? */ 4698 if (memcg->under_oom) 4699 eventfd_signal(eventfd); 4700 spin_unlock(&memcg_oom_lock); 4701 4702 return 0; 4703 } 4704 4705 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4706 struct eventfd_ctx *eventfd) 4707 { 4708 struct mem_cgroup_eventfd_list *ev, *tmp; 4709 4710 spin_lock(&memcg_oom_lock); 4711 4712 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4713 if (ev->eventfd == eventfd) { 4714 list_del(&ev->list); 4715 kfree(ev); 4716 } 4717 } 4718 4719 spin_unlock(&memcg_oom_lock); 4720 } 4721 4722 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4723 { 4724 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4725 4726 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); 4727 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4728 seq_printf(sf, "oom_kill %lu\n", 4729 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4730 return 0; 4731 } 4732 4733 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4734 struct cftype *cft, u64 val) 4735 { 4736 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4737 4738 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4739 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4740 return -EINVAL; 4741 4742 WRITE_ONCE(memcg->oom_kill_disable, val); 4743 if (!val) 4744 memcg_oom_recover(memcg); 4745 4746 return 0; 4747 } 4748 4749 #ifdef CONFIG_CGROUP_WRITEBACK 4750 4751 #include <trace/events/writeback.h> 4752 4753 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4754 { 4755 return wb_domain_init(&memcg->cgwb_domain, gfp); 4756 } 4757 4758 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4759 { 4760 wb_domain_exit(&memcg->cgwb_domain); 4761 } 4762 4763 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4764 { 4765 wb_domain_size_changed(&memcg->cgwb_domain); 4766 } 4767 4768 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4769 { 4770 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4771 4772 if (!memcg->css.parent) 4773 return NULL; 4774 4775 return &memcg->cgwb_domain; 4776 } 4777 4778 /** 4779 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4780 * @wb: bdi_writeback in question 4781 * @pfilepages: out parameter for number of file pages 4782 * @pheadroom: out parameter for number of allocatable pages according to memcg 4783 * @pdirty: out parameter for number of dirty pages 4784 * @pwriteback: out parameter for number of pages under writeback 4785 * 4786 * Determine the numbers of file, headroom, dirty, and writeback pages in 4787 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4788 * is a bit more involved. 4789 * 4790 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4791 * headroom is calculated as the lowest headroom of itself and the 4792 * ancestors. Note that this doesn't consider the actual amount of 4793 * available memory in the system. The caller should further cap 4794 * *@pheadroom accordingly. 4795 */ 4796 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4797 unsigned long *pheadroom, unsigned long *pdirty, 4798 unsigned long *pwriteback) 4799 { 4800 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4801 struct mem_cgroup *parent; 4802 4803 mem_cgroup_flush_stats(memcg); 4804 4805 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4806 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4807 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4808 memcg_page_state(memcg, NR_ACTIVE_FILE); 4809 4810 *pheadroom = PAGE_COUNTER_MAX; 4811 while ((parent = parent_mem_cgroup(memcg))) { 4812 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4813 READ_ONCE(memcg->memory.high)); 4814 unsigned long used = page_counter_read(&memcg->memory); 4815 4816 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4817 memcg = parent; 4818 } 4819 } 4820 4821 /* 4822 * Foreign dirty flushing 4823 * 4824 * There's an inherent mismatch between memcg and writeback. The former 4825 * tracks ownership per-page while the latter per-inode. This was a 4826 * deliberate design decision because honoring per-page ownership in the 4827 * writeback path is complicated, may lead to higher CPU and IO overheads 4828 * and deemed unnecessary given that write-sharing an inode across 4829 * different cgroups isn't a common use-case. 4830 * 4831 * Combined with inode majority-writer ownership switching, this works well 4832 * enough in most cases but there are some pathological cases. For 4833 * example, let's say there are two cgroups A and B which keep writing to 4834 * different but confined parts of the same inode. B owns the inode and 4835 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4836 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4837 * triggering background writeback. A will be slowed down without a way to 4838 * make writeback of the dirty pages happen. 4839 * 4840 * Conditions like the above can lead to a cgroup getting repeatedly and 4841 * severely throttled after making some progress after each 4842 * dirty_expire_interval while the underlying IO device is almost 4843 * completely idle. 4844 * 4845 * Solving this problem completely requires matching the ownership tracking 4846 * granularities between memcg and writeback in either direction. However, 4847 * the more egregious behaviors can be avoided by simply remembering the 4848 * most recent foreign dirtying events and initiating remote flushes on 4849 * them when local writeback isn't enough to keep the memory clean enough. 4850 * 4851 * The following two functions implement such mechanism. When a foreign 4852 * page - a page whose memcg and writeback ownerships don't match - is 4853 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4854 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4855 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4856 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4857 * foreign bdi_writebacks which haven't expired. Both the numbers of 4858 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4859 * limited to MEMCG_CGWB_FRN_CNT. 4860 * 4861 * The mechanism only remembers IDs and doesn't hold any object references. 4862 * As being wrong occasionally doesn't matter, updates and accesses to the 4863 * records are lockless and racy. 4864 */ 4865 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4866 struct bdi_writeback *wb) 4867 { 4868 struct mem_cgroup *memcg = folio_memcg(folio); 4869 struct memcg_cgwb_frn *frn; 4870 u64 now = get_jiffies_64(); 4871 u64 oldest_at = now; 4872 int oldest = -1; 4873 int i; 4874 4875 trace_track_foreign_dirty(folio, wb); 4876 4877 /* 4878 * Pick the slot to use. If there is already a slot for @wb, keep 4879 * using it. If not replace the oldest one which isn't being 4880 * written out. 4881 */ 4882 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4883 frn = &memcg->cgwb_frn[i]; 4884 if (frn->bdi_id == wb->bdi->id && 4885 frn->memcg_id == wb->memcg_css->id) 4886 break; 4887 if (time_before64(frn->at, oldest_at) && 4888 atomic_read(&frn->done.cnt) == 1) { 4889 oldest = i; 4890 oldest_at = frn->at; 4891 } 4892 } 4893 4894 if (i < MEMCG_CGWB_FRN_CNT) { 4895 /* 4896 * Re-using an existing one. Update timestamp lazily to 4897 * avoid making the cacheline hot. We want them to be 4898 * reasonably up-to-date and significantly shorter than 4899 * dirty_expire_interval as that's what expires the record. 4900 * Use the shorter of 1s and dirty_expire_interval / 8. 4901 */ 4902 unsigned long update_intv = 4903 min_t(unsigned long, HZ, 4904 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4905 4906 if (time_before64(frn->at, now - update_intv)) 4907 frn->at = now; 4908 } else if (oldest >= 0) { 4909 /* replace the oldest free one */ 4910 frn = &memcg->cgwb_frn[oldest]; 4911 frn->bdi_id = wb->bdi->id; 4912 frn->memcg_id = wb->memcg_css->id; 4913 frn->at = now; 4914 } 4915 } 4916 4917 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4918 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4919 { 4920 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4921 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4922 u64 now = jiffies_64; 4923 int i; 4924 4925 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4926 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4927 4928 /* 4929 * If the record is older than dirty_expire_interval, 4930 * writeback on it has already started. No need to kick it 4931 * off again. Also, don't start a new one if there's 4932 * already one in flight. 4933 */ 4934 if (time_after64(frn->at, now - intv) && 4935 atomic_read(&frn->done.cnt) == 1) { 4936 frn->at = 0; 4937 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4938 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4939 WB_REASON_FOREIGN_FLUSH, 4940 &frn->done); 4941 } 4942 } 4943 } 4944 4945 #else /* CONFIG_CGROUP_WRITEBACK */ 4946 4947 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4948 { 4949 return 0; 4950 } 4951 4952 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4953 { 4954 } 4955 4956 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4957 { 4958 } 4959 4960 #endif /* CONFIG_CGROUP_WRITEBACK */ 4961 4962 /* 4963 * DO NOT USE IN NEW FILES. 4964 * 4965 * "cgroup.event_control" implementation. 4966 * 4967 * This is way over-engineered. It tries to support fully configurable 4968 * events for each user. Such level of flexibility is completely 4969 * unnecessary especially in the light of the planned unified hierarchy. 4970 * 4971 * Please deprecate this and replace with something simpler if at all 4972 * possible. 4973 */ 4974 4975 /* 4976 * Unregister event and free resources. 4977 * 4978 * Gets called from workqueue. 4979 */ 4980 static void memcg_event_remove(struct work_struct *work) 4981 { 4982 struct mem_cgroup_event *event = 4983 container_of(work, struct mem_cgroup_event, remove); 4984 struct mem_cgroup *memcg = event->memcg; 4985 4986 remove_wait_queue(event->wqh, &event->wait); 4987 4988 event->unregister_event(memcg, event->eventfd); 4989 4990 /* Notify userspace the event is going away. */ 4991 eventfd_signal(event->eventfd); 4992 4993 eventfd_ctx_put(event->eventfd); 4994 kfree(event); 4995 css_put(&memcg->css); 4996 } 4997 4998 /* 4999 * Gets called on EPOLLHUP on eventfd when user closes it. 5000 * 5001 * Called with wqh->lock held and interrupts disabled. 5002 */ 5003 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 5004 int sync, void *key) 5005 { 5006 struct mem_cgroup_event *event = 5007 container_of(wait, struct mem_cgroup_event, wait); 5008 struct mem_cgroup *memcg = event->memcg; 5009 __poll_t flags = key_to_poll(key); 5010 5011 if (flags & EPOLLHUP) { 5012 /* 5013 * If the event has been detached at cgroup removal, we 5014 * can simply return knowing the other side will cleanup 5015 * for us. 5016 * 5017 * We can't race against event freeing since the other 5018 * side will require wqh->lock via remove_wait_queue(), 5019 * which we hold. 5020 */ 5021 spin_lock(&memcg->event_list_lock); 5022 if (!list_empty(&event->list)) { 5023 list_del_init(&event->list); 5024 /* 5025 * We are in atomic context, but cgroup_event_remove() 5026 * may sleep, so we have to call it in workqueue. 5027 */ 5028 schedule_work(&event->remove); 5029 } 5030 spin_unlock(&memcg->event_list_lock); 5031 } 5032 5033 return 0; 5034 } 5035 5036 static void memcg_event_ptable_queue_proc(struct file *file, 5037 wait_queue_head_t *wqh, poll_table *pt) 5038 { 5039 struct mem_cgroup_event *event = 5040 container_of(pt, struct mem_cgroup_event, pt); 5041 5042 event->wqh = wqh; 5043 add_wait_queue(wqh, &event->wait); 5044 } 5045 5046 /* 5047 * DO NOT USE IN NEW FILES. 5048 * 5049 * Parse input and register new cgroup event handler. 5050 * 5051 * Input must be in format '<event_fd> <control_fd> <args>'. 5052 * Interpretation of args is defined by control file implementation. 5053 */ 5054 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 5055 char *buf, size_t nbytes, loff_t off) 5056 { 5057 struct cgroup_subsys_state *css = of_css(of); 5058 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5059 struct mem_cgroup_event *event; 5060 struct cgroup_subsys_state *cfile_css; 5061 unsigned int efd, cfd; 5062 struct fd efile; 5063 struct fd cfile; 5064 struct dentry *cdentry; 5065 const char *name; 5066 char *endp; 5067 int ret; 5068 5069 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 5070 return -EOPNOTSUPP; 5071 5072 buf = strstrip(buf); 5073 5074 efd = simple_strtoul(buf, &endp, 10); 5075 if (*endp != ' ') 5076 return -EINVAL; 5077 buf = endp + 1; 5078 5079 cfd = simple_strtoul(buf, &endp, 10); 5080 if ((*endp != ' ') && (*endp != '\0')) 5081 return -EINVAL; 5082 buf = endp + 1; 5083 5084 event = kzalloc(sizeof(*event), GFP_KERNEL); 5085 if (!event) 5086 return -ENOMEM; 5087 5088 event->memcg = memcg; 5089 INIT_LIST_HEAD(&event->list); 5090 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 5091 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 5092 INIT_WORK(&event->remove, memcg_event_remove); 5093 5094 efile = fdget(efd); 5095 if (!efile.file) { 5096 ret = -EBADF; 5097 goto out_kfree; 5098 } 5099 5100 event->eventfd = eventfd_ctx_fileget(efile.file); 5101 if (IS_ERR(event->eventfd)) { 5102 ret = PTR_ERR(event->eventfd); 5103 goto out_put_efile; 5104 } 5105 5106 cfile = fdget(cfd); 5107 if (!cfile.file) { 5108 ret = -EBADF; 5109 goto out_put_eventfd; 5110 } 5111 5112 /* the process need read permission on control file */ 5113 /* AV: shouldn't we check that it's been opened for read instead? */ 5114 ret = file_permission(cfile.file, MAY_READ); 5115 if (ret < 0) 5116 goto out_put_cfile; 5117 5118 /* 5119 * The control file must be a regular cgroup1 file. As a regular cgroup 5120 * file can't be renamed, it's safe to access its name afterwards. 5121 */ 5122 cdentry = cfile.file->f_path.dentry; 5123 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 5124 ret = -EINVAL; 5125 goto out_put_cfile; 5126 } 5127 5128 /* 5129 * Determine the event callbacks and set them in @event. This used 5130 * to be done via struct cftype but cgroup core no longer knows 5131 * about these events. The following is crude but the whole thing 5132 * is for compatibility anyway. 5133 * 5134 * DO NOT ADD NEW FILES. 5135 */ 5136 name = cdentry->d_name.name; 5137 5138 if (!strcmp(name, "memory.usage_in_bytes")) { 5139 event->register_event = mem_cgroup_usage_register_event; 5140 event->unregister_event = mem_cgroup_usage_unregister_event; 5141 } else if (!strcmp(name, "memory.oom_control")) { 5142 event->register_event = mem_cgroup_oom_register_event; 5143 event->unregister_event = mem_cgroup_oom_unregister_event; 5144 } else if (!strcmp(name, "memory.pressure_level")) { 5145 event->register_event = vmpressure_register_event; 5146 event->unregister_event = vmpressure_unregister_event; 5147 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 5148 event->register_event = memsw_cgroup_usage_register_event; 5149 event->unregister_event = memsw_cgroup_usage_unregister_event; 5150 } else { 5151 ret = -EINVAL; 5152 goto out_put_cfile; 5153 } 5154 5155 /* 5156 * Verify @cfile should belong to @css. Also, remaining events are 5157 * automatically removed on cgroup destruction but the removal is 5158 * asynchronous, so take an extra ref on @css. 5159 */ 5160 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 5161 &memory_cgrp_subsys); 5162 ret = -EINVAL; 5163 if (IS_ERR(cfile_css)) 5164 goto out_put_cfile; 5165 if (cfile_css != css) { 5166 css_put(cfile_css); 5167 goto out_put_cfile; 5168 } 5169 5170 ret = event->register_event(memcg, event->eventfd, buf); 5171 if (ret) 5172 goto out_put_css; 5173 5174 vfs_poll(efile.file, &event->pt); 5175 5176 spin_lock_irq(&memcg->event_list_lock); 5177 list_add(&event->list, &memcg->event_list); 5178 spin_unlock_irq(&memcg->event_list_lock); 5179 5180 fdput(cfile); 5181 fdput(efile); 5182 5183 return nbytes; 5184 5185 out_put_css: 5186 css_put(css); 5187 out_put_cfile: 5188 fdput(cfile); 5189 out_put_eventfd: 5190 eventfd_ctx_put(event->eventfd); 5191 out_put_efile: 5192 fdput(efile); 5193 out_kfree: 5194 kfree(event); 5195 5196 return ret; 5197 } 5198 5199 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG) 5200 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 5201 { 5202 /* 5203 * Deprecated. 5204 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 5205 */ 5206 return 0; 5207 } 5208 #endif 5209 5210 static int memory_stat_show(struct seq_file *m, void *v); 5211 5212 static struct cftype mem_cgroup_legacy_files[] = { 5213 { 5214 .name = "usage_in_bytes", 5215 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5216 .read_u64 = mem_cgroup_read_u64, 5217 }, 5218 { 5219 .name = "max_usage_in_bytes", 5220 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5221 .write = mem_cgroup_reset, 5222 .read_u64 = mem_cgroup_read_u64, 5223 }, 5224 { 5225 .name = "limit_in_bytes", 5226 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5227 .write = mem_cgroup_write, 5228 .read_u64 = mem_cgroup_read_u64, 5229 }, 5230 { 5231 .name = "soft_limit_in_bytes", 5232 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5233 .write = mem_cgroup_write, 5234 .read_u64 = mem_cgroup_read_u64, 5235 }, 5236 { 5237 .name = "failcnt", 5238 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5239 .write = mem_cgroup_reset, 5240 .read_u64 = mem_cgroup_read_u64, 5241 }, 5242 { 5243 .name = "stat", 5244 .seq_show = memory_stat_show, 5245 }, 5246 { 5247 .name = "force_empty", 5248 .write = mem_cgroup_force_empty_write, 5249 }, 5250 { 5251 .name = "use_hierarchy", 5252 .write_u64 = mem_cgroup_hierarchy_write, 5253 .read_u64 = mem_cgroup_hierarchy_read, 5254 }, 5255 { 5256 .name = "cgroup.event_control", /* XXX: for compat */ 5257 .write = memcg_write_event_control, 5258 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5259 }, 5260 { 5261 .name = "swappiness", 5262 .read_u64 = mem_cgroup_swappiness_read, 5263 .write_u64 = mem_cgroup_swappiness_write, 5264 }, 5265 { 5266 .name = "move_charge_at_immigrate", 5267 .read_u64 = mem_cgroup_move_charge_read, 5268 .write_u64 = mem_cgroup_move_charge_write, 5269 }, 5270 { 5271 .name = "oom_control", 5272 .seq_show = mem_cgroup_oom_control_read, 5273 .write_u64 = mem_cgroup_oom_control_write, 5274 }, 5275 { 5276 .name = "pressure_level", 5277 .seq_show = mem_cgroup_dummy_seq_show, 5278 }, 5279 #ifdef CONFIG_NUMA 5280 { 5281 .name = "numa_stat", 5282 .seq_show = memcg_numa_stat_show, 5283 }, 5284 #endif 5285 { 5286 .name = "kmem.limit_in_bytes", 5287 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5288 .write = mem_cgroup_write, 5289 .read_u64 = mem_cgroup_read_u64, 5290 }, 5291 { 5292 .name = "kmem.usage_in_bytes", 5293 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5294 .read_u64 = mem_cgroup_read_u64, 5295 }, 5296 { 5297 .name = "kmem.failcnt", 5298 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5299 .write = mem_cgroup_reset, 5300 .read_u64 = mem_cgroup_read_u64, 5301 }, 5302 { 5303 .name = "kmem.max_usage_in_bytes", 5304 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5305 .write = mem_cgroup_reset, 5306 .read_u64 = mem_cgroup_read_u64, 5307 }, 5308 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG) 5309 { 5310 .name = "kmem.slabinfo", 5311 .seq_show = mem_cgroup_slab_show, 5312 }, 5313 #endif 5314 { 5315 .name = "kmem.tcp.limit_in_bytes", 5316 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5317 .write = mem_cgroup_write, 5318 .read_u64 = mem_cgroup_read_u64, 5319 }, 5320 { 5321 .name = "kmem.tcp.usage_in_bytes", 5322 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5323 .read_u64 = mem_cgroup_read_u64, 5324 }, 5325 { 5326 .name = "kmem.tcp.failcnt", 5327 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5328 .write = mem_cgroup_reset, 5329 .read_u64 = mem_cgroup_read_u64, 5330 }, 5331 { 5332 .name = "kmem.tcp.max_usage_in_bytes", 5333 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5334 .write = mem_cgroup_reset, 5335 .read_u64 = mem_cgroup_read_u64, 5336 }, 5337 { }, /* terminate */ 5338 }; 5339 5340 /* 5341 * Private memory cgroup IDR 5342 * 5343 * Swap-out records and page cache shadow entries need to store memcg 5344 * references in constrained space, so we maintain an ID space that is 5345 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5346 * memory-controlled cgroups to 64k. 5347 * 5348 * However, there usually are many references to the offline CSS after 5349 * the cgroup has been destroyed, such as page cache or reclaimable 5350 * slab objects, that don't need to hang on to the ID. We want to keep 5351 * those dead CSS from occupying IDs, or we might quickly exhaust the 5352 * relatively small ID space and prevent the creation of new cgroups 5353 * even when there are much fewer than 64k cgroups - possibly none. 5354 * 5355 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5356 * be freed and recycled when it's no longer needed, which is usually 5357 * when the CSS is offlined. 5358 * 5359 * The only exception to that are records of swapped out tmpfs/shmem 5360 * pages that need to be attributed to live ancestors on swapin. But 5361 * those references are manageable from userspace. 5362 */ 5363 5364 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 5365 static DEFINE_IDR(mem_cgroup_idr); 5366 5367 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5368 { 5369 if (memcg->id.id > 0) { 5370 idr_remove(&mem_cgroup_idr, memcg->id.id); 5371 memcg->id.id = 0; 5372 } 5373 } 5374 5375 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5376 unsigned int n) 5377 { 5378 refcount_add(n, &memcg->id.ref); 5379 } 5380 5381 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5382 { 5383 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5384 mem_cgroup_id_remove(memcg); 5385 5386 /* Memcg ID pins CSS */ 5387 css_put(&memcg->css); 5388 } 5389 } 5390 5391 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5392 { 5393 mem_cgroup_id_put_many(memcg, 1); 5394 } 5395 5396 /** 5397 * mem_cgroup_from_id - look up a memcg from a memcg id 5398 * @id: the memcg id to look up 5399 * 5400 * Caller must hold rcu_read_lock(). 5401 */ 5402 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5403 { 5404 WARN_ON_ONCE(!rcu_read_lock_held()); 5405 return idr_find(&mem_cgroup_idr, id); 5406 } 5407 5408 #ifdef CONFIG_SHRINKER_DEBUG 5409 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5410 { 5411 struct cgroup *cgrp; 5412 struct cgroup_subsys_state *css; 5413 struct mem_cgroup *memcg; 5414 5415 cgrp = cgroup_get_from_id(ino); 5416 if (IS_ERR(cgrp)) 5417 return ERR_CAST(cgrp); 5418 5419 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5420 if (css) 5421 memcg = container_of(css, struct mem_cgroup, css); 5422 else 5423 memcg = ERR_PTR(-ENOENT); 5424 5425 cgroup_put(cgrp); 5426 5427 return memcg; 5428 } 5429 #endif 5430 5431 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5432 { 5433 struct mem_cgroup_per_node *pn; 5434 5435 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5436 if (!pn) 5437 return 1; 5438 5439 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5440 GFP_KERNEL_ACCOUNT); 5441 if (!pn->lruvec_stats_percpu) { 5442 kfree(pn); 5443 return 1; 5444 } 5445 5446 lruvec_init(&pn->lruvec); 5447 pn->memcg = memcg; 5448 5449 memcg->nodeinfo[node] = pn; 5450 return 0; 5451 } 5452 5453 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5454 { 5455 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5456 5457 if (!pn) 5458 return; 5459 5460 free_percpu(pn->lruvec_stats_percpu); 5461 kfree(pn); 5462 } 5463 5464 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5465 { 5466 int node; 5467 5468 if (memcg->orig_objcg) 5469 obj_cgroup_put(memcg->orig_objcg); 5470 5471 for_each_node(node) 5472 free_mem_cgroup_per_node_info(memcg, node); 5473 kfree(memcg->vmstats); 5474 free_percpu(memcg->vmstats_percpu); 5475 kfree(memcg); 5476 } 5477 5478 static void mem_cgroup_free(struct mem_cgroup *memcg) 5479 { 5480 lru_gen_exit_memcg(memcg); 5481 memcg_wb_domain_exit(memcg); 5482 __mem_cgroup_free(memcg); 5483 } 5484 5485 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 5486 { 5487 struct memcg_vmstats_percpu *statc, *pstatc; 5488 struct mem_cgroup *memcg; 5489 int node, cpu; 5490 int __maybe_unused i; 5491 long error = -ENOMEM; 5492 5493 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5494 if (!memcg) 5495 return ERR_PTR(error); 5496 5497 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5498 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5499 if (memcg->id.id < 0) { 5500 error = memcg->id.id; 5501 goto fail; 5502 } 5503 5504 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL); 5505 if (!memcg->vmstats) 5506 goto fail; 5507 5508 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5509 GFP_KERNEL_ACCOUNT); 5510 if (!memcg->vmstats_percpu) 5511 goto fail; 5512 5513 for_each_possible_cpu(cpu) { 5514 if (parent) 5515 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 5516 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5517 statc->parent = parent ? pstatc : NULL; 5518 statc->vmstats = memcg->vmstats; 5519 } 5520 5521 for_each_node(node) 5522 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5523 goto fail; 5524 5525 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5526 goto fail; 5527 5528 INIT_WORK(&memcg->high_work, high_work_func); 5529 INIT_LIST_HEAD(&memcg->oom_notify); 5530 mutex_init(&memcg->thresholds_lock); 5531 spin_lock_init(&memcg->move_lock); 5532 vmpressure_init(&memcg->vmpressure); 5533 INIT_LIST_HEAD(&memcg->event_list); 5534 spin_lock_init(&memcg->event_list_lock); 5535 memcg->socket_pressure = jiffies; 5536 #ifdef CONFIG_MEMCG_KMEM 5537 memcg->kmemcg_id = -1; 5538 INIT_LIST_HEAD(&memcg->objcg_list); 5539 #endif 5540 #ifdef CONFIG_CGROUP_WRITEBACK 5541 INIT_LIST_HEAD(&memcg->cgwb_list); 5542 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5543 memcg->cgwb_frn[i].done = 5544 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5545 #endif 5546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5547 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5548 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5549 memcg->deferred_split_queue.split_queue_len = 0; 5550 #endif 5551 lru_gen_init_memcg(memcg); 5552 return memcg; 5553 fail: 5554 mem_cgroup_id_remove(memcg); 5555 __mem_cgroup_free(memcg); 5556 return ERR_PTR(error); 5557 } 5558 5559 static struct cgroup_subsys_state * __ref 5560 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5561 { 5562 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5563 struct mem_cgroup *memcg, *old_memcg; 5564 5565 old_memcg = set_active_memcg(parent); 5566 memcg = mem_cgroup_alloc(parent); 5567 set_active_memcg(old_memcg); 5568 if (IS_ERR(memcg)) 5569 return ERR_CAST(memcg); 5570 5571 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5572 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5573 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5574 memcg->zswap_max = PAGE_COUNTER_MAX; 5575 WRITE_ONCE(memcg->zswap_writeback, 5576 !parent || READ_ONCE(parent->zswap_writeback)); 5577 #endif 5578 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5579 if (parent) { 5580 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 5581 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 5582 5583 page_counter_init(&memcg->memory, &parent->memory); 5584 page_counter_init(&memcg->swap, &parent->swap); 5585 page_counter_init(&memcg->kmem, &parent->kmem); 5586 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5587 } else { 5588 init_memcg_events(); 5589 page_counter_init(&memcg->memory, NULL); 5590 page_counter_init(&memcg->swap, NULL); 5591 page_counter_init(&memcg->kmem, NULL); 5592 page_counter_init(&memcg->tcpmem, NULL); 5593 5594 root_mem_cgroup = memcg; 5595 return &memcg->css; 5596 } 5597 5598 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5599 static_branch_inc(&memcg_sockets_enabled_key); 5600 5601 #if defined(CONFIG_MEMCG_KMEM) 5602 if (!cgroup_memory_nobpf) 5603 static_branch_inc(&memcg_bpf_enabled_key); 5604 #endif 5605 5606 return &memcg->css; 5607 } 5608 5609 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5610 { 5611 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5612 5613 if (memcg_online_kmem(memcg)) 5614 goto remove_id; 5615 5616 /* 5617 * A memcg must be visible for expand_shrinker_info() 5618 * by the time the maps are allocated. So, we allocate maps 5619 * here, when for_each_mem_cgroup() can't skip it. 5620 */ 5621 if (alloc_shrinker_info(memcg)) 5622 goto offline_kmem; 5623 5624 if (unlikely(mem_cgroup_is_root(memcg))) 5625 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5626 FLUSH_TIME); 5627 lru_gen_online_memcg(memcg); 5628 5629 /* Online state pins memcg ID, memcg ID pins CSS */ 5630 refcount_set(&memcg->id.ref, 1); 5631 css_get(css); 5632 5633 /* 5634 * Ensure mem_cgroup_from_id() works once we're fully online. 5635 * 5636 * We could do this earlier and require callers to filter with 5637 * css_tryget_online(). But right now there are no users that 5638 * need earlier access, and the workingset code relies on the 5639 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 5640 * publish it here at the end of onlining. This matches the 5641 * regular ID destruction during offlining. 5642 */ 5643 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5644 5645 return 0; 5646 offline_kmem: 5647 memcg_offline_kmem(memcg); 5648 remove_id: 5649 mem_cgroup_id_remove(memcg); 5650 return -ENOMEM; 5651 } 5652 5653 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5654 { 5655 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5656 struct mem_cgroup_event *event, *tmp; 5657 5658 /* 5659 * Unregister events and notify userspace. 5660 * Notify userspace about cgroup removing only after rmdir of cgroup 5661 * directory to avoid race between userspace and kernelspace. 5662 */ 5663 spin_lock_irq(&memcg->event_list_lock); 5664 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5665 list_del_init(&event->list); 5666 schedule_work(&event->remove); 5667 } 5668 spin_unlock_irq(&memcg->event_list_lock); 5669 5670 page_counter_set_min(&memcg->memory, 0); 5671 page_counter_set_low(&memcg->memory, 0); 5672 5673 zswap_memcg_offline_cleanup(memcg); 5674 5675 memcg_offline_kmem(memcg); 5676 reparent_shrinker_deferred(memcg); 5677 wb_memcg_offline(memcg); 5678 lru_gen_offline_memcg(memcg); 5679 5680 drain_all_stock(memcg); 5681 5682 mem_cgroup_id_put(memcg); 5683 } 5684 5685 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5686 { 5687 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5688 5689 invalidate_reclaim_iterators(memcg); 5690 lru_gen_release_memcg(memcg); 5691 } 5692 5693 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5694 { 5695 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5696 int __maybe_unused i; 5697 5698 #ifdef CONFIG_CGROUP_WRITEBACK 5699 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5700 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5701 #endif 5702 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5703 static_branch_dec(&memcg_sockets_enabled_key); 5704 5705 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5706 static_branch_dec(&memcg_sockets_enabled_key); 5707 5708 #if defined(CONFIG_MEMCG_KMEM) 5709 if (!cgroup_memory_nobpf) 5710 static_branch_dec(&memcg_bpf_enabled_key); 5711 #endif 5712 5713 vmpressure_cleanup(&memcg->vmpressure); 5714 cancel_work_sync(&memcg->high_work); 5715 mem_cgroup_remove_from_trees(memcg); 5716 free_shrinker_info(memcg); 5717 mem_cgroup_free(memcg); 5718 } 5719 5720 /** 5721 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5722 * @css: the target css 5723 * 5724 * Reset the states of the mem_cgroup associated with @css. This is 5725 * invoked when the userland requests disabling on the default hierarchy 5726 * but the memcg is pinned through dependency. The memcg should stop 5727 * applying policies and should revert to the vanilla state as it may be 5728 * made visible again. 5729 * 5730 * The current implementation only resets the essential configurations. 5731 * This needs to be expanded to cover all the visible parts. 5732 */ 5733 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5734 { 5735 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5736 5737 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5738 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5739 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5740 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5741 page_counter_set_min(&memcg->memory, 0); 5742 page_counter_set_low(&memcg->memory, 0); 5743 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5744 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5745 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5746 memcg_wb_domain_size_changed(memcg); 5747 } 5748 5749 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5750 { 5751 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5752 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5753 struct memcg_vmstats_percpu *statc; 5754 long delta, delta_cpu, v; 5755 int i, nid; 5756 5757 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5758 5759 for (i = 0; i < MEMCG_NR_STAT; i++) { 5760 /* 5761 * Collect the aggregated propagation counts of groups 5762 * below us. We're in a per-cpu loop here and this is 5763 * a global counter, so the first cycle will get them. 5764 */ 5765 delta = memcg->vmstats->state_pending[i]; 5766 if (delta) 5767 memcg->vmstats->state_pending[i] = 0; 5768 5769 /* Add CPU changes on this level since the last flush */ 5770 delta_cpu = 0; 5771 v = READ_ONCE(statc->state[i]); 5772 if (v != statc->state_prev[i]) { 5773 delta_cpu = v - statc->state_prev[i]; 5774 delta += delta_cpu; 5775 statc->state_prev[i] = v; 5776 } 5777 5778 /* Aggregate counts on this level and propagate upwards */ 5779 if (delta_cpu) 5780 memcg->vmstats->state_local[i] += delta_cpu; 5781 5782 if (delta) { 5783 memcg->vmstats->state[i] += delta; 5784 if (parent) 5785 parent->vmstats->state_pending[i] += delta; 5786 } 5787 } 5788 5789 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 5790 delta = memcg->vmstats->events_pending[i]; 5791 if (delta) 5792 memcg->vmstats->events_pending[i] = 0; 5793 5794 delta_cpu = 0; 5795 v = READ_ONCE(statc->events[i]); 5796 if (v != statc->events_prev[i]) { 5797 delta_cpu = v - statc->events_prev[i]; 5798 delta += delta_cpu; 5799 statc->events_prev[i] = v; 5800 } 5801 5802 if (delta_cpu) 5803 memcg->vmstats->events_local[i] += delta_cpu; 5804 5805 if (delta) { 5806 memcg->vmstats->events[i] += delta; 5807 if (parent) 5808 parent->vmstats->events_pending[i] += delta; 5809 } 5810 } 5811 5812 for_each_node_state(nid, N_MEMORY) { 5813 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5814 struct mem_cgroup_per_node *ppn = NULL; 5815 struct lruvec_stats_percpu *lstatc; 5816 5817 if (parent) 5818 ppn = parent->nodeinfo[nid]; 5819 5820 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5821 5822 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5823 delta = pn->lruvec_stats.state_pending[i]; 5824 if (delta) 5825 pn->lruvec_stats.state_pending[i] = 0; 5826 5827 delta_cpu = 0; 5828 v = READ_ONCE(lstatc->state[i]); 5829 if (v != lstatc->state_prev[i]) { 5830 delta_cpu = v - lstatc->state_prev[i]; 5831 delta += delta_cpu; 5832 lstatc->state_prev[i] = v; 5833 } 5834 5835 if (delta_cpu) 5836 pn->lruvec_stats.state_local[i] += delta_cpu; 5837 5838 if (delta) { 5839 pn->lruvec_stats.state[i] += delta; 5840 if (ppn) 5841 ppn->lruvec_stats.state_pending[i] += delta; 5842 } 5843 } 5844 } 5845 statc->stats_updates = 0; 5846 /* We are in a per-cpu loop here, only do the atomic write once */ 5847 if (atomic64_read(&memcg->vmstats->stats_updates)) 5848 atomic64_set(&memcg->vmstats->stats_updates, 0); 5849 } 5850 5851 #ifdef CONFIG_MMU 5852 /* Handlers for move charge at task migration. */ 5853 static int mem_cgroup_do_precharge(unsigned long count) 5854 { 5855 int ret; 5856 5857 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5858 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5859 if (!ret) { 5860 mc.precharge += count; 5861 return ret; 5862 } 5863 5864 /* Try charges one by one with reclaim, but do not retry */ 5865 while (count--) { 5866 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5867 if (ret) 5868 return ret; 5869 mc.precharge++; 5870 cond_resched(); 5871 } 5872 return 0; 5873 } 5874 5875 union mc_target { 5876 struct page *page; 5877 swp_entry_t ent; 5878 }; 5879 5880 enum mc_target_type { 5881 MC_TARGET_NONE = 0, 5882 MC_TARGET_PAGE, 5883 MC_TARGET_SWAP, 5884 MC_TARGET_DEVICE, 5885 }; 5886 5887 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5888 unsigned long addr, pte_t ptent) 5889 { 5890 struct page *page = vm_normal_page(vma, addr, ptent); 5891 5892 if (!page) 5893 return NULL; 5894 if (PageAnon(page)) { 5895 if (!(mc.flags & MOVE_ANON)) 5896 return NULL; 5897 } else { 5898 if (!(mc.flags & MOVE_FILE)) 5899 return NULL; 5900 } 5901 get_page(page); 5902 5903 return page; 5904 } 5905 5906 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5907 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5908 pte_t ptent, swp_entry_t *entry) 5909 { 5910 struct page *page = NULL; 5911 swp_entry_t ent = pte_to_swp_entry(ptent); 5912 5913 if (!(mc.flags & MOVE_ANON)) 5914 return NULL; 5915 5916 /* 5917 * Handle device private pages that are not accessible by the CPU, but 5918 * stored as special swap entries in the page table. 5919 */ 5920 if (is_device_private_entry(ent)) { 5921 page = pfn_swap_entry_to_page(ent); 5922 if (!get_page_unless_zero(page)) 5923 return NULL; 5924 return page; 5925 } 5926 5927 if (non_swap_entry(ent)) 5928 return NULL; 5929 5930 /* 5931 * Because swap_cache_get_folio() updates some statistics counter, 5932 * we call find_get_page() with swapper_space directly. 5933 */ 5934 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5935 entry->val = ent.val; 5936 5937 return page; 5938 } 5939 #else 5940 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5941 pte_t ptent, swp_entry_t *entry) 5942 { 5943 return NULL; 5944 } 5945 #endif 5946 5947 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5948 unsigned long addr, pte_t ptent) 5949 { 5950 unsigned long index; 5951 struct folio *folio; 5952 5953 if (!vma->vm_file) /* anonymous vma */ 5954 return NULL; 5955 if (!(mc.flags & MOVE_FILE)) 5956 return NULL; 5957 5958 /* folio is moved even if it's not RSS of this task(page-faulted). */ 5959 /* shmem/tmpfs may report page out on swap: account for that too. */ 5960 index = linear_page_index(vma, addr); 5961 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 5962 if (IS_ERR(folio)) 5963 return NULL; 5964 return folio_file_page(folio, index); 5965 } 5966 5967 /** 5968 * mem_cgroup_move_account - move account of the page 5969 * @page: the page 5970 * @compound: charge the page as compound or small page 5971 * @from: mem_cgroup which the page is moved from. 5972 * @to: mem_cgroup which the page is moved to. @from != @to. 5973 * 5974 * The page must be locked and not on the LRU. 5975 * 5976 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5977 * from old cgroup. 5978 */ 5979 static int mem_cgroup_move_account(struct page *page, 5980 bool compound, 5981 struct mem_cgroup *from, 5982 struct mem_cgroup *to) 5983 { 5984 struct folio *folio = page_folio(page); 5985 struct lruvec *from_vec, *to_vec; 5986 struct pglist_data *pgdat; 5987 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5988 int nid, ret; 5989 5990 VM_BUG_ON(from == to); 5991 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5992 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5993 VM_BUG_ON(compound && !folio_test_large(folio)); 5994 5995 ret = -EINVAL; 5996 if (folio_memcg(folio) != from) 5997 goto out; 5998 5999 pgdat = folio_pgdat(folio); 6000 from_vec = mem_cgroup_lruvec(from, pgdat); 6001 to_vec = mem_cgroup_lruvec(to, pgdat); 6002 6003 folio_memcg_lock(folio); 6004 6005 if (folio_test_anon(folio)) { 6006 if (folio_mapped(folio)) { 6007 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 6008 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 6009 if (folio_test_pmd_mappable(folio)) { 6010 __mod_lruvec_state(from_vec, NR_ANON_THPS, 6011 -nr_pages); 6012 __mod_lruvec_state(to_vec, NR_ANON_THPS, 6013 nr_pages); 6014 } 6015 } 6016 } else { 6017 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 6018 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 6019 6020 if (folio_test_swapbacked(folio)) { 6021 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 6022 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 6023 } 6024 6025 if (folio_mapped(folio)) { 6026 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 6027 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 6028 } 6029 6030 if (folio_test_dirty(folio)) { 6031 struct address_space *mapping = folio_mapping(folio); 6032 6033 if (mapping_can_writeback(mapping)) { 6034 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 6035 -nr_pages); 6036 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 6037 nr_pages); 6038 } 6039 } 6040 } 6041 6042 #ifdef CONFIG_SWAP 6043 if (folio_test_swapcache(folio)) { 6044 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 6045 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 6046 } 6047 #endif 6048 if (folio_test_writeback(folio)) { 6049 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 6050 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 6051 } 6052 6053 /* 6054 * All state has been migrated, let's switch to the new memcg. 6055 * 6056 * It is safe to change page's memcg here because the page 6057 * is referenced, charged, isolated, and locked: we can't race 6058 * with (un)charging, migration, LRU putback, or anything else 6059 * that would rely on a stable page's memory cgroup. 6060 * 6061 * Note that folio_memcg_lock is a memcg lock, not a page lock, 6062 * to save space. As soon as we switch page's memory cgroup to a 6063 * new memcg that isn't locked, the above state can change 6064 * concurrently again. Make sure we're truly done with it. 6065 */ 6066 smp_mb(); 6067 6068 css_get(&to->css); 6069 css_put(&from->css); 6070 6071 folio->memcg_data = (unsigned long)to; 6072 6073 __folio_memcg_unlock(from); 6074 6075 ret = 0; 6076 nid = folio_nid(folio); 6077 6078 local_irq_disable(); 6079 mem_cgroup_charge_statistics(to, nr_pages); 6080 memcg_check_events(to, nid); 6081 mem_cgroup_charge_statistics(from, -nr_pages); 6082 memcg_check_events(from, nid); 6083 local_irq_enable(); 6084 out: 6085 return ret; 6086 } 6087 6088 /** 6089 * get_mctgt_type - get target type of moving charge 6090 * @vma: the vma the pte to be checked belongs 6091 * @addr: the address corresponding to the pte to be checked 6092 * @ptent: the pte to be checked 6093 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6094 * 6095 * Context: Called with pte lock held. 6096 * Return: 6097 * * MC_TARGET_NONE - If the pte is not a target for move charge. 6098 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for 6099 * move charge. If @target is not NULL, the page is stored in target->page 6100 * with extra refcnt taken (Caller should release it). 6101 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a 6102 * target for charge migration. If @target is not NULL, the entry is 6103 * stored in target->ent. 6104 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and 6105 * thus not on the lru. For now such page is charged like a regular page 6106 * would be as it is just special memory taking the place of a regular page. 6107 * See Documentations/vm/hmm.txt and include/linux/hmm.h 6108 */ 6109 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6110 unsigned long addr, pte_t ptent, union mc_target *target) 6111 { 6112 struct page *page = NULL; 6113 enum mc_target_type ret = MC_TARGET_NONE; 6114 swp_entry_t ent = { .val = 0 }; 6115 6116 if (pte_present(ptent)) 6117 page = mc_handle_present_pte(vma, addr, ptent); 6118 else if (pte_none_mostly(ptent)) 6119 /* 6120 * PTE markers should be treated as a none pte here, separated 6121 * from other swap handling below. 6122 */ 6123 page = mc_handle_file_pte(vma, addr, ptent); 6124 else if (is_swap_pte(ptent)) 6125 page = mc_handle_swap_pte(vma, ptent, &ent); 6126 6127 if (target && page) { 6128 if (!trylock_page(page)) { 6129 put_page(page); 6130 return ret; 6131 } 6132 /* 6133 * page_mapped() must be stable during the move. This 6134 * pte is locked, so if it's present, the page cannot 6135 * become unmapped. If it isn't, we have only partial 6136 * control over the mapped state: the page lock will 6137 * prevent new faults against pagecache and swapcache, 6138 * so an unmapped page cannot become mapped. However, 6139 * if the page is already mapped elsewhere, it can 6140 * unmap, and there is nothing we can do about it. 6141 * Alas, skip moving the page in this case. 6142 */ 6143 if (!pte_present(ptent) && page_mapped(page)) { 6144 unlock_page(page); 6145 put_page(page); 6146 return ret; 6147 } 6148 } 6149 6150 if (!page && !ent.val) 6151 return ret; 6152 if (page) { 6153 /* 6154 * Do only loose check w/o serialization. 6155 * mem_cgroup_move_account() checks the page is valid or 6156 * not under LRU exclusion. 6157 */ 6158 if (page_memcg(page) == mc.from) { 6159 ret = MC_TARGET_PAGE; 6160 if (is_device_private_page(page) || 6161 is_device_coherent_page(page)) 6162 ret = MC_TARGET_DEVICE; 6163 if (target) 6164 target->page = page; 6165 } 6166 if (!ret || !target) { 6167 if (target) 6168 unlock_page(page); 6169 put_page(page); 6170 } 6171 } 6172 /* 6173 * There is a swap entry and a page doesn't exist or isn't charged. 6174 * But we cannot move a tail-page in a THP. 6175 */ 6176 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 6177 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 6178 ret = MC_TARGET_SWAP; 6179 if (target) 6180 target->ent = ent; 6181 } 6182 return ret; 6183 } 6184 6185 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6186 /* 6187 * We don't consider PMD mapped swapping or file mapped pages because THP does 6188 * not support them for now. 6189 * Caller should make sure that pmd_trans_huge(pmd) is true. 6190 */ 6191 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6192 unsigned long addr, pmd_t pmd, union mc_target *target) 6193 { 6194 struct page *page = NULL; 6195 enum mc_target_type ret = MC_TARGET_NONE; 6196 6197 if (unlikely(is_swap_pmd(pmd))) { 6198 VM_BUG_ON(thp_migration_supported() && 6199 !is_pmd_migration_entry(pmd)); 6200 return ret; 6201 } 6202 page = pmd_page(pmd); 6203 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 6204 if (!(mc.flags & MOVE_ANON)) 6205 return ret; 6206 if (page_memcg(page) == mc.from) { 6207 ret = MC_TARGET_PAGE; 6208 if (target) { 6209 get_page(page); 6210 if (!trylock_page(page)) { 6211 put_page(page); 6212 return MC_TARGET_NONE; 6213 } 6214 target->page = page; 6215 } 6216 } 6217 return ret; 6218 } 6219 #else 6220 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6221 unsigned long addr, pmd_t pmd, union mc_target *target) 6222 { 6223 return MC_TARGET_NONE; 6224 } 6225 #endif 6226 6227 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6228 unsigned long addr, unsigned long end, 6229 struct mm_walk *walk) 6230 { 6231 struct vm_area_struct *vma = walk->vma; 6232 pte_t *pte; 6233 spinlock_t *ptl; 6234 6235 ptl = pmd_trans_huge_lock(pmd, vma); 6236 if (ptl) { 6237 /* 6238 * Note their can not be MC_TARGET_DEVICE for now as we do not 6239 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 6240 * this might change. 6241 */ 6242 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6243 mc.precharge += HPAGE_PMD_NR; 6244 spin_unlock(ptl); 6245 return 0; 6246 } 6247 6248 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6249 if (!pte) 6250 return 0; 6251 for (; addr != end; pte++, addr += PAGE_SIZE) 6252 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL)) 6253 mc.precharge++; /* increment precharge temporarily */ 6254 pte_unmap_unlock(pte - 1, ptl); 6255 cond_resched(); 6256 6257 return 0; 6258 } 6259 6260 static const struct mm_walk_ops precharge_walk_ops = { 6261 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6262 .walk_lock = PGWALK_RDLOCK, 6263 }; 6264 6265 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6266 { 6267 unsigned long precharge; 6268 6269 mmap_read_lock(mm); 6270 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 6271 mmap_read_unlock(mm); 6272 6273 precharge = mc.precharge; 6274 mc.precharge = 0; 6275 6276 return precharge; 6277 } 6278 6279 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6280 { 6281 unsigned long precharge = mem_cgroup_count_precharge(mm); 6282 6283 VM_BUG_ON(mc.moving_task); 6284 mc.moving_task = current; 6285 return mem_cgroup_do_precharge(precharge); 6286 } 6287 6288 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6289 static void __mem_cgroup_clear_mc(void) 6290 { 6291 struct mem_cgroup *from = mc.from; 6292 struct mem_cgroup *to = mc.to; 6293 6294 /* we must uncharge all the leftover precharges from mc.to */ 6295 if (mc.precharge) { 6296 mem_cgroup_cancel_charge(mc.to, mc.precharge); 6297 mc.precharge = 0; 6298 } 6299 /* 6300 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6301 * we must uncharge here. 6302 */ 6303 if (mc.moved_charge) { 6304 mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6305 mc.moved_charge = 0; 6306 } 6307 /* we must fixup refcnts and charges */ 6308 if (mc.moved_swap) { 6309 /* uncharge swap account from the old cgroup */ 6310 if (!mem_cgroup_is_root(mc.from)) 6311 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 6312 6313 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 6314 6315 /* 6316 * we charged both to->memory and to->memsw, so we 6317 * should uncharge to->memory. 6318 */ 6319 if (!mem_cgroup_is_root(mc.to)) 6320 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 6321 6322 mc.moved_swap = 0; 6323 } 6324 memcg_oom_recover(from); 6325 memcg_oom_recover(to); 6326 wake_up_all(&mc.waitq); 6327 } 6328 6329 static void mem_cgroup_clear_mc(void) 6330 { 6331 struct mm_struct *mm = mc.mm; 6332 6333 /* 6334 * we must clear moving_task before waking up waiters at the end of 6335 * task migration. 6336 */ 6337 mc.moving_task = NULL; 6338 __mem_cgroup_clear_mc(); 6339 spin_lock(&mc.lock); 6340 mc.from = NULL; 6341 mc.to = NULL; 6342 mc.mm = NULL; 6343 spin_unlock(&mc.lock); 6344 6345 mmput(mm); 6346 } 6347 6348 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6349 { 6350 struct cgroup_subsys_state *css; 6351 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 6352 struct mem_cgroup *from; 6353 struct task_struct *leader, *p; 6354 struct mm_struct *mm; 6355 unsigned long move_flags; 6356 int ret = 0; 6357 6358 /* charge immigration isn't supported on the default hierarchy */ 6359 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6360 return 0; 6361 6362 /* 6363 * Multi-process migrations only happen on the default hierarchy 6364 * where charge immigration is not used. Perform charge 6365 * immigration if @tset contains a leader and whine if there are 6366 * multiple. 6367 */ 6368 p = NULL; 6369 cgroup_taskset_for_each_leader(leader, css, tset) { 6370 WARN_ON_ONCE(p); 6371 p = leader; 6372 memcg = mem_cgroup_from_css(css); 6373 } 6374 if (!p) 6375 return 0; 6376 6377 /* 6378 * We are now committed to this value whatever it is. Changes in this 6379 * tunable will only affect upcoming migrations, not the current one. 6380 * So we need to save it, and keep it going. 6381 */ 6382 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6383 if (!move_flags) 6384 return 0; 6385 6386 from = mem_cgroup_from_task(p); 6387 6388 VM_BUG_ON(from == memcg); 6389 6390 mm = get_task_mm(p); 6391 if (!mm) 6392 return 0; 6393 /* We move charges only when we move a owner of the mm */ 6394 if (mm->owner == p) { 6395 VM_BUG_ON(mc.from); 6396 VM_BUG_ON(mc.to); 6397 VM_BUG_ON(mc.precharge); 6398 VM_BUG_ON(mc.moved_charge); 6399 VM_BUG_ON(mc.moved_swap); 6400 6401 spin_lock(&mc.lock); 6402 mc.mm = mm; 6403 mc.from = from; 6404 mc.to = memcg; 6405 mc.flags = move_flags; 6406 spin_unlock(&mc.lock); 6407 /* We set mc.moving_task later */ 6408 6409 ret = mem_cgroup_precharge_mc(mm); 6410 if (ret) 6411 mem_cgroup_clear_mc(); 6412 } else { 6413 mmput(mm); 6414 } 6415 return ret; 6416 } 6417 6418 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6419 { 6420 if (mc.to) 6421 mem_cgroup_clear_mc(); 6422 } 6423 6424 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6425 unsigned long addr, unsigned long end, 6426 struct mm_walk *walk) 6427 { 6428 int ret = 0; 6429 struct vm_area_struct *vma = walk->vma; 6430 pte_t *pte; 6431 spinlock_t *ptl; 6432 enum mc_target_type target_type; 6433 union mc_target target; 6434 struct page *page; 6435 6436 ptl = pmd_trans_huge_lock(pmd, vma); 6437 if (ptl) { 6438 if (mc.precharge < HPAGE_PMD_NR) { 6439 spin_unlock(ptl); 6440 return 0; 6441 } 6442 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6443 if (target_type == MC_TARGET_PAGE) { 6444 page = target.page; 6445 if (isolate_lru_page(page)) { 6446 if (!mem_cgroup_move_account(page, true, 6447 mc.from, mc.to)) { 6448 mc.precharge -= HPAGE_PMD_NR; 6449 mc.moved_charge += HPAGE_PMD_NR; 6450 } 6451 putback_lru_page(page); 6452 } 6453 unlock_page(page); 6454 put_page(page); 6455 } else if (target_type == MC_TARGET_DEVICE) { 6456 page = target.page; 6457 if (!mem_cgroup_move_account(page, true, 6458 mc.from, mc.to)) { 6459 mc.precharge -= HPAGE_PMD_NR; 6460 mc.moved_charge += HPAGE_PMD_NR; 6461 } 6462 unlock_page(page); 6463 put_page(page); 6464 } 6465 spin_unlock(ptl); 6466 return 0; 6467 } 6468 6469 retry: 6470 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6471 if (!pte) 6472 return 0; 6473 for (; addr != end; addr += PAGE_SIZE) { 6474 pte_t ptent = ptep_get(pte++); 6475 bool device = false; 6476 swp_entry_t ent; 6477 6478 if (!mc.precharge) 6479 break; 6480 6481 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6482 case MC_TARGET_DEVICE: 6483 device = true; 6484 fallthrough; 6485 case MC_TARGET_PAGE: 6486 page = target.page; 6487 /* 6488 * We can have a part of the split pmd here. Moving it 6489 * can be done but it would be too convoluted so simply 6490 * ignore such a partial THP and keep it in original 6491 * memcg. There should be somebody mapping the head. 6492 */ 6493 if (PageTransCompound(page)) 6494 goto put; 6495 if (!device && !isolate_lru_page(page)) 6496 goto put; 6497 if (!mem_cgroup_move_account(page, false, 6498 mc.from, mc.to)) { 6499 mc.precharge--; 6500 /* we uncharge from mc.from later. */ 6501 mc.moved_charge++; 6502 } 6503 if (!device) 6504 putback_lru_page(page); 6505 put: /* get_mctgt_type() gets & locks the page */ 6506 unlock_page(page); 6507 put_page(page); 6508 break; 6509 case MC_TARGET_SWAP: 6510 ent = target.ent; 6511 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6512 mc.precharge--; 6513 mem_cgroup_id_get_many(mc.to, 1); 6514 /* we fixup other refcnts and charges later. */ 6515 mc.moved_swap++; 6516 } 6517 break; 6518 default: 6519 break; 6520 } 6521 } 6522 pte_unmap_unlock(pte - 1, ptl); 6523 cond_resched(); 6524 6525 if (addr != end) { 6526 /* 6527 * We have consumed all precharges we got in can_attach(). 6528 * We try charge one by one, but don't do any additional 6529 * charges to mc.to if we have failed in charge once in attach() 6530 * phase. 6531 */ 6532 ret = mem_cgroup_do_precharge(1); 6533 if (!ret) 6534 goto retry; 6535 } 6536 6537 return ret; 6538 } 6539 6540 static const struct mm_walk_ops charge_walk_ops = { 6541 .pmd_entry = mem_cgroup_move_charge_pte_range, 6542 .walk_lock = PGWALK_RDLOCK, 6543 }; 6544 6545 static void mem_cgroup_move_charge(void) 6546 { 6547 lru_add_drain_all(); 6548 /* 6549 * Signal folio_memcg_lock() to take the memcg's move_lock 6550 * while we're moving its pages to another memcg. Then wait 6551 * for already started RCU-only updates to finish. 6552 */ 6553 atomic_inc(&mc.from->moving_account); 6554 synchronize_rcu(); 6555 retry: 6556 if (unlikely(!mmap_read_trylock(mc.mm))) { 6557 /* 6558 * Someone who are holding the mmap_lock might be waiting in 6559 * waitq. So we cancel all extra charges, wake up all waiters, 6560 * and retry. Because we cancel precharges, we might not be able 6561 * to move enough charges, but moving charge is a best-effort 6562 * feature anyway, so it wouldn't be a big problem. 6563 */ 6564 __mem_cgroup_clear_mc(); 6565 cond_resched(); 6566 goto retry; 6567 } 6568 /* 6569 * When we have consumed all precharges and failed in doing 6570 * additional charge, the page walk just aborts. 6571 */ 6572 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 6573 mmap_read_unlock(mc.mm); 6574 atomic_dec(&mc.from->moving_account); 6575 } 6576 6577 static void mem_cgroup_move_task(void) 6578 { 6579 if (mc.to) { 6580 mem_cgroup_move_charge(); 6581 mem_cgroup_clear_mc(); 6582 } 6583 } 6584 6585 #else /* !CONFIG_MMU */ 6586 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6587 { 6588 return 0; 6589 } 6590 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6591 { 6592 } 6593 static void mem_cgroup_move_task(void) 6594 { 6595 } 6596 #endif 6597 6598 #ifdef CONFIG_MEMCG_KMEM 6599 static void mem_cgroup_fork(struct task_struct *task) 6600 { 6601 /* 6602 * Set the update flag to cause task->objcg to be initialized lazily 6603 * on the first allocation. It can be done without any synchronization 6604 * because it's always performed on the current task, so does 6605 * current_objcg_update(). 6606 */ 6607 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 6608 } 6609 6610 static void mem_cgroup_exit(struct task_struct *task) 6611 { 6612 struct obj_cgroup *objcg = task->objcg; 6613 6614 objcg = (struct obj_cgroup *) 6615 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 6616 if (objcg) 6617 obj_cgroup_put(objcg); 6618 6619 /* 6620 * Some kernel allocations can happen after this point, 6621 * but let's ignore them. It can be done without any synchronization 6622 * because it's always performed on the current task, so does 6623 * current_objcg_update(). 6624 */ 6625 task->objcg = NULL; 6626 } 6627 #endif 6628 6629 #ifdef CONFIG_LRU_GEN 6630 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 6631 { 6632 struct task_struct *task; 6633 struct cgroup_subsys_state *css; 6634 6635 /* find the first leader if there is any */ 6636 cgroup_taskset_for_each_leader(task, css, tset) 6637 break; 6638 6639 if (!task) 6640 return; 6641 6642 task_lock(task); 6643 if (task->mm && READ_ONCE(task->mm->owner) == task) 6644 lru_gen_migrate_mm(task->mm); 6645 task_unlock(task); 6646 } 6647 #else 6648 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 6649 #endif /* CONFIG_LRU_GEN */ 6650 6651 #ifdef CONFIG_MEMCG_KMEM 6652 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 6653 { 6654 struct task_struct *task; 6655 struct cgroup_subsys_state *css; 6656 6657 cgroup_taskset_for_each(task, css, tset) { 6658 /* atomically set the update bit */ 6659 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 6660 } 6661 } 6662 #else 6663 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {} 6664 #endif /* CONFIG_MEMCG_KMEM */ 6665 6666 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) 6667 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6668 { 6669 mem_cgroup_lru_gen_attach(tset); 6670 mem_cgroup_kmem_attach(tset); 6671 } 6672 #endif 6673 6674 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6675 { 6676 if (value == PAGE_COUNTER_MAX) 6677 seq_puts(m, "max\n"); 6678 else 6679 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6680 6681 return 0; 6682 } 6683 6684 static u64 memory_current_read(struct cgroup_subsys_state *css, 6685 struct cftype *cft) 6686 { 6687 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6688 6689 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6690 } 6691 6692 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6693 struct cftype *cft) 6694 { 6695 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6696 6697 return (u64)memcg->memory.watermark * PAGE_SIZE; 6698 } 6699 6700 static int memory_min_show(struct seq_file *m, void *v) 6701 { 6702 return seq_puts_memcg_tunable(m, 6703 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6704 } 6705 6706 static ssize_t memory_min_write(struct kernfs_open_file *of, 6707 char *buf, size_t nbytes, loff_t off) 6708 { 6709 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6710 unsigned long min; 6711 int err; 6712 6713 buf = strstrip(buf); 6714 err = page_counter_memparse(buf, "max", &min); 6715 if (err) 6716 return err; 6717 6718 page_counter_set_min(&memcg->memory, min); 6719 6720 return nbytes; 6721 } 6722 6723 static int memory_low_show(struct seq_file *m, void *v) 6724 { 6725 return seq_puts_memcg_tunable(m, 6726 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6727 } 6728 6729 static ssize_t memory_low_write(struct kernfs_open_file *of, 6730 char *buf, size_t nbytes, loff_t off) 6731 { 6732 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6733 unsigned long low; 6734 int err; 6735 6736 buf = strstrip(buf); 6737 err = page_counter_memparse(buf, "max", &low); 6738 if (err) 6739 return err; 6740 6741 page_counter_set_low(&memcg->memory, low); 6742 6743 return nbytes; 6744 } 6745 6746 static int memory_high_show(struct seq_file *m, void *v) 6747 { 6748 return seq_puts_memcg_tunable(m, 6749 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6750 } 6751 6752 static ssize_t memory_high_write(struct kernfs_open_file *of, 6753 char *buf, size_t nbytes, loff_t off) 6754 { 6755 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6756 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6757 bool drained = false; 6758 unsigned long high; 6759 int err; 6760 6761 buf = strstrip(buf); 6762 err = page_counter_memparse(buf, "max", &high); 6763 if (err) 6764 return err; 6765 6766 page_counter_set_high(&memcg->memory, high); 6767 6768 for (;;) { 6769 unsigned long nr_pages = page_counter_read(&memcg->memory); 6770 unsigned long reclaimed; 6771 6772 if (nr_pages <= high) 6773 break; 6774 6775 if (signal_pending(current)) 6776 break; 6777 6778 if (!drained) { 6779 drain_all_stock(memcg); 6780 drained = true; 6781 continue; 6782 } 6783 6784 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6785 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); 6786 6787 if (!reclaimed && !nr_retries--) 6788 break; 6789 } 6790 6791 memcg_wb_domain_size_changed(memcg); 6792 return nbytes; 6793 } 6794 6795 static int memory_max_show(struct seq_file *m, void *v) 6796 { 6797 return seq_puts_memcg_tunable(m, 6798 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6799 } 6800 6801 static ssize_t memory_max_write(struct kernfs_open_file *of, 6802 char *buf, size_t nbytes, loff_t off) 6803 { 6804 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6805 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6806 bool drained = false; 6807 unsigned long max; 6808 int err; 6809 6810 buf = strstrip(buf); 6811 err = page_counter_memparse(buf, "max", &max); 6812 if (err) 6813 return err; 6814 6815 xchg(&memcg->memory.max, max); 6816 6817 for (;;) { 6818 unsigned long nr_pages = page_counter_read(&memcg->memory); 6819 6820 if (nr_pages <= max) 6821 break; 6822 6823 if (signal_pending(current)) 6824 break; 6825 6826 if (!drained) { 6827 drain_all_stock(memcg); 6828 drained = true; 6829 continue; 6830 } 6831 6832 if (nr_reclaims) { 6833 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6834 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) 6835 nr_reclaims--; 6836 continue; 6837 } 6838 6839 memcg_memory_event(memcg, MEMCG_OOM); 6840 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6841 break; 6842 } 6843 6844 memcg_wb_domain_size_changed(memcg); 6845 return nbytes; 6846 } 6847 6848 /* 6849 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 6850 * if any new events become available. 6851 */ 6852 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6853 { 6854 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6855 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6856 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6857 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6858 seq_printf(m, "oom_kill %lu\n", 6859 atomic_long_read(&events[MEMCG_OOM_KILL])); 6860 seq_printf(m, "oom_group_kill %lu\n", 6861 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6862 } 6863 6864 static int memory_events_show(struct seq_file *m, void *v) 6865 { 6866 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6867 6868 __memory_events_show(m, memcg->memory_events); 6869 return 0; 6870 } 6871 6872 static int memory_events_local_show(struct seq_file *m, void *v) 6873 { 6874 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6875 6876 __memory_events_show(m, memcg->memory_events_local); 6877 return 0; 6878 } 6879 6880 static int memory_stat_show(struct seq_file *m, void *v) 6881 { 6882 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6883 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 6884 struct seq_buf s; 6885 6886 if (!buf) 6887 return -ENOMEM; 6888 seq_buf_init(&s, buf, PAGE_SIZE); 6889 memory_stat_format(memcg, &s); 6890 seq_puts(m, buf); 6891 kfree(buf); 6892 return 0; 6893 } 6894 6895 #ifdef CONFIG_NUMA 6896 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6897 int item) 6898 { 6899 return lruvec_page_state(lruvec, item) * 6900 memcg_page_state_output_unit(item); 6901 } 6902 6903 static int memory_numa_stat_show(struct seq_file *m, void *v) 6904 { 6905 int i; 6906 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6907 6908 mem_cgroup_flush_stats(memcg); 6909 6910 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6911 int nid; 6912 6913 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6914 continue; 6915 6916 seq_printf(m, "%s", memory_stats[i].name); 6917 for_each_node_state(nid, N_MEMORY) { 6918 u64 size; 6919 struct lruvec *lruvec; 6920 6921 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6922 size = lruvec_page_state_output(lruvec, 6923 memory_stats[i].idx); 6924 seq_printf(m, " N%d=%llu", nid, size); 6925 } 6926 seq_putc(m, '\n'); 6927 } 6928 6929 return 0; 6930 } 6931 #endif 6932 6933 static int memory_oom_group_show(struct seq_file *m, void *v) 6934 { 6935 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6936 6937 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 6938 6939 return 0; 6940 } 6941 6942 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6943 char *buf, size_t nbytes, loff_t off) 6944 { 6945 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6946 int ret, oom_group; 6947 6948 buf = strstrip(buf); 6949 if (!buf) 6950 return -EINVAL; 6951 6952 ret = kstrtoint(buf, 0, &oom_group); 6953 if (ret) 6954 return ret; 6955 6956 if (oom_group != 0 && oom_group != 1) 6957 return -EINVAL; 6958 6959 WRITE_ONCE(memcg->oom_group, oom_group); 6960 6961 return nbytes; 6962 } 6963 6964 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6965 size_t nbytes, loff_t off) 6966 { 6967 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6968 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6969 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6970 unsigned int reclaim_options; 6971 int err; 6972 6973 buf = strstrip(buf); 6974 err = page_counter_memparse(buf, "", &nr_to_reclaim); 6975 if (err) 6976 return err; 6977 6978 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 6979 while (nr_reclaimed < nr_to_reclaim) { 6980 unsigned long reclaimed; 6981 6982 if (signal_pending(current)) 6983 return -EINTR; 6984 6985 /* 6986 * This is the final attempt, drain percpu lru caches in the 6987 * hope of introducing more evictable pages for 6988 * try_to_free_mem_cgroup_pages(). 6989 */ 6990 if (!nr_retries) 6991 lru_add_drain_all(); 6992 6993 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6994 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX), 6995 GFP_KERNEL, reclaim_options); 6996 6997 if (!reclaimed && !nr_retries--) 6998 return -EAGAIN; 6999 7000 nr_reclaimed += reclaimed; 7001 } 7002 7003 return nbytes; 7004 } 7005 7006 static struct cftype memory_files[] = { 7007 { 7008 .name = "current", 7009 .flags = CFTYPE_NOT_ON_ROOT, 7010 .read_u64 = memory_current_read, 7011 }, 7012 { 7013 .name = "peak", 7014 .flags = CFTYPE_NOT_ON_ROOT, 7015 .read_u64 = memory_peak_read, 7016 }, 7017 { 7018 .name = "min", 7019 .flags = CFTYPE_NOT_ON_ROOT, 7020 .seq_show = memory_min_show, 7021 .write = memory_min_write, 7022 }, 7023 { 7024 .name = "low", 7025 .flags = CFTYPE_NOT_ON_ROOT, 7026 .seq_show = memory_low_show, 7027 .write = memory_low_write, 7028 }, 7029 { 7030 .name = "high", 7031 .flags = CFTYPE_NOT_ON_ROOT, 7032 .seq_show = memory_high_show, 7033 .write = memory_high_write, 7034 }, 7035 { 7036 .name = "max", 7037 .flags = CFTYPE_NOT_ON_ROOT, 7038 .seq_show = memory_max_show, 7039 .write = memory_max_write, 7040 }, 7041 { 7042 .name = "events", 7043 .flags = CFTYPE_NOT_ON_ROOT, 7044 .file_offset = offsetof(struct mem_cgroup, events_file), 7045 .seq_show = memory_events_show, 7046 }, 7047 { 7048 .name = "events.local", 7049 .flags = CFTYPE_NOT_ON_ROOT, 7050 .file_offset = offsetof(struct mem_cgroup, events_local_file), 7051 .seq_show = memory_events_local_show, 7052 }, 7053 { 7054 .name = "stat", 7055 .seq_show = memory_stat_show, 7056 }, 7057 #ifdef CONFIG_NUMA 7058 { 7059 .name = "numa_stat", 7060 .seq_show = memory_numa_stat_show, 7061 }, 7062 #endif 7063 { 7064 .name = "oom.group", 7065 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 7066 .seq_show = memory_oom_group_show, 7067 .write = memory_oom_group_write, 7068 }, 7069 { 7070 .name = "reclaim", 7071 .flags = CFTYPE_NS_DELEGATABLE, 7072 .write = memory_reclaim, 7073 }, 7074 { } /* terminate */ 7075 }; 7076 7077 struct cgroup_subsys memory_cgrp_subsys = { 7078 .css_alloc = mem_cgroup_css_alloc, 7079 .css_online = mem_cgroup_css_online, 7080 .css_offline = mem_cgroup_css_offline, 7081 .css_released = mem_cgroup_css_released, 7082 .css_free = mem_cgroup_css_free, 7083 .css_reset = mem_cgroup_css_reset, 7084 .css_rstat_flush = mem_cgroup_css_rstat_flush, 7085 .can_attach = mem_cgroup_can_attach, 7086 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) 7087 .attach = mem_cgroup_attach, 7088 #endif 7089 .cancel_attach = mem_cgroup_cancel_attach, 7090 .post_attach = mem_cgroup_move_task, 7091 #ifdef CONFIG_MEMCG_KMEM 7092 .fork = mem_cgroup_fork, 7093 .exit = mem_cgroup_exit, 7094 #endif 7095 .dfl_cftypes = memory_files, 7096 .legacy_cftypes = mem_cgroup_legacy_files, 7097 .early_init = 0, 7098 }; 7099 7100 /* 7101 * This function calculates an individual cgroup's effective 7102 * protection which is derived from its own memory.min/low, its 7103 * parent's and siblings' settings, as well as the actual memory 7104 * distribution in the tree. 7105 * 7106 * The following rules apply to the effective protection values: 7107 * 7108 * 1. At the first level of reclaim, effective protection is equal to 7109 * the declared protection in memory.min and memory.low. 7110 * 7111 * 2. To enable safe delegation of the protection configuration, at 7112 * subsequent levels the effective protection is capped to the 7113 * parent's effective protection. 7114 * 7115 * 3. To make complex and dynamic subtrees easier to configure, the 7116 * user is allowed to overcommit the declared protection at a given 7117 * level. If that is the case, the parent's effective protection is 7118 * distributed to the children in proportion to how much protection 7119 * they have declared and how much of it they are utilizing. 7120 * 7121 * This makes distribution proportional, but also work-conserving: 7122 * if one cgroup claims much more protection than it uses memory, 7123 * the unused remainder is available to its siblings. 7124 * 7125 * 4. Conversely, when the declared protection is undercommitted at a 7126 * given level, the distribution of the larger parental protection 7127 * budget is NOT proportional. A cgroup's protection from a sibling 7128 * is capped to its own memory.min/low setting. 7129 * 7130 * 5. However, to allow protecting recursive subtrees from each other 7131 * without having to declare each individual cgroup's fixed share 7132 * of the ancestor's claim to protection, any unutilized - 7133 * "floating" - protection from up the tree is distributed in 7134 * proportion to each cgroup's *usage*. This makes the protection 7135 * neutral wrt sibling cgroups and lets them compete freely over 7136 * the shared parental protection budget, but it protects the 7137 * subtree as a whole from neighboring subtrees. 7138 * 7139 * Note that 4. and 5. are not in conflict: 4. is about protecting 7140 * against immediate siblings whereas 5. is about protecting against 7141 * neighboring subtrees. 7142 */ 7143 static unsigned long effective_protection(unsigned long usage, 7144 unsigned long parent_usage, 7145 unsigned long setting, 7146 unsigned long parent_effective, 7147 unsigned long siblings_protected) 7148 { 7149 unsigned long protected; 7150 unsigned long ep; 7151 7152 protected = min(usage, setting); 7153 /* 7154 * If all cgroups at this level combined claim and use more 7155 * protection than what the parent affords them, distribute 7156 * shares in proportion to utilization. 7157 * 7158 * We are using actual utilization rather than the statically 7159 * claimed protection in order to be work-conserving: claimed 7160 * but unused protection is available to siblings that would 7161 * otherwise get a smaller chunk than what they claimed. 7162 */ 7163 if (siblings_protected > parent_effective) 7164 return protected * parent_effective / siblings_protected; 7165 7166 /* 7167 * Ok, utilized protection of all children is within what the 7168 * parent affords them, so we know whatever this child claims 7169 * and utilizes is effectively protected. 7170 * 7171 * If there is unprotected usage beyond this value, reclaim 7172 * will apply pressure in proportion to that amount. 7173 * 7174 * If there is unutilized protection, the cgroup will be fully 7175 * shielded from reclaim, but we do return a smaller value for 7176 * protection than what the group could enjoy in theory. This 7177 * is okay. With the overcommit distribution above, effective 7178 * protection is always dependent on how memory is actually 7179 * consumed among the siblings anyway. 7180 */ 7181 ep = protected; 7182 7183 /* 7184 * If the children aren't claiming (all of) the protection 7185 * afforded to them by the parent, distribute the remainder in 7186 * proportion to the (unprotected) memory of each cgroup. That 7187 * way, cgroups that aren't explicitly prioritized wrt each 7188 * other compete freely over the allowance, but they are 7189 * collectively protected from neighboring trees. 7190 * 7191 * We're using unprotected memory for the weight so that if 7192 * some cgroups DO claim explicit protection, we don't protect 7193 * the same bytes twice. 7194 * 7195 * Check both usage and parent_usage against the respective 7196 * protected values. One should imply the other, but they 7197 * aren't read atomically - make sure the division is sane. 7198 */ 7199 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 7200 return ep; 7201 if (parent_effective > siblings_protected && 7202 parent_usage > siblings_protected && 7203 usage > protected) { 7204 unsigned long unclaimed; 7205 7206 unclaimed = parent_effective - siblings_protected; 7207 unclaimed *= usage - protected; 7208 unclaimed /= parent_usage - siblings_protected; 7209 7210 ep += unclaimed; 7211 } 7212 7213 return ep; 7214 } 7215 7216 /** 7217 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 7218 * @root: the top ancestor of the sub-tree being checked 7219 * @memcg: the memory cgroup to check 7220 * 7221 * WARNING: This function is not stateless! It can only be used as part 7222 * of a top-down tree iteration, not for isolated queries. 7223 */ 7224 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 7225 struct mem_cgroup *memcg) 7226 { 7227 unsigned long usage, parent_usage; 7228 struct mem_cgroup *parent; 7229 7230 if (mem_cgroup_disabled()) 7231 return; 7232 7233 if (!root) 7234 root = root_mem_cgroup; 7235 7236 /* 7237 * Effective values of the reclaim targets are ignored so they 7238 * can be stale. Have a look at mem_cgroup_protection for more 7239 * details. 7240 * TODO: calculation should be more robust so that we do not need 7241 * that special casing. 7242 */ 7243 if (memcg == root) 7244 return; 7245 7246 usage = page_counter_read(&memcg->memory); 7247 if (!usage) 7248 return; 7249 7250 parent = parent_mem_cgroup(memcg); 7251 7252 if (parent == root) { 7253 memcg->memory.emin = READ_ONCE(memcg->memory.min); 7254 memcg->memory.elow = READ_ONCE(memcg->memory.low); 7255 return; 7256 } 7257 7258 parent_usage = page_counter_read(&parent->memory); 7259 7260 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 7261 READ_ONCE(memcg->memory.min), 7262 READ_ONCE(parent->memory.emin), 7263 atomic_long_read(&parent->memory.children_min_usage))); 7264 7265 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 7266 READ_ONCE(memcg->memory.low), 7267 READ_ONCE(parent->memory.elow), 7268 atomic_long_read(&parent->memory.children_low_usage))); 7269 } 7270 7271 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 7272 gfp_t gfp) 7273 { 7274 int ret; 7275 7276 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 7277 if (ret) 7278 goto out; 7279 7280 mem_cgroup_commit_charge(folio, memcg); 7281 out: 7282 return ret; 7283 } 7284 7285 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 7286 { 7287 struct mem_cgroup *memcg; 7288 int ret; 7289 7290 memcg = get_mem_cgroup_from_mm(mm); 7291 ret = charge_memcg(folio, memcg, gfp); 7292 css_put(&memcg->css); 7293 7294 return ret; 7295 } 7296 7297 /** 7298 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio 7299 * @memcg: memcg to charge. 7300 * @gfp: reclaim mode. 7301 * @nr_pages: number of pages to charge. 7302 * 7303 * This function is called when allocating a huge page folio to determine if 7304 * the memcg has the capacity for it. It does not commit the charge yet, 7305 * as the hugetlb folio itself has not been obtained from the hugetlb pool. 7306 * 7307 * Once we have obtained the hugetlb folio, we can call 7308 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the 7309 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect 7310 * of try_charge(). 7311 * 7312 * Returns 0 on success. Otherwise, an error code is returned. 7313 */ 7314 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 7315 long nr_pages) 7316 { 7317 /* 7318 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, 7319 * but do not attempt to commit charge later (or cancel on error) either. 7320 */ 7321 if (mem_cgroup_disabled() || !memcg || 7322 !cgroup_subsys_on_dfl(memory_cgrp_subsys) || 7323 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) 7324 return -EOPNOTSUPP; 7325 7326 if (try_charge(memcg, gfp, nr_pages)) 7327 return -ENOMEM; 7328 7329 return 0; 7330 } 7331 7332 /** 7333 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 7334 * @folio: folio to charge. 7335 * @mm: mm context of the victim 7336 * @gfp: reclaim mode 7337 * @entry: swap entry for which the folio is allocated 7338 * 7339 * This function charges a folio allocated for swapin. Please call this before 7340 * adding the folio to the swapcache. 7341 * 7342 * Returns 0 on success. Otherwise, an error code is returned. 7343 */ 7344 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 7345 gfp_t gfp, swp_entry_t entry) 7346 { 7347 struct mem_cgroup *memcg; 7348 unsigned short id; 7349 int ret; 7350 7351 if (mem_cgroup_disabled()) 7352 return 0; 7353 7354 id = lookup_swap_cgroup_id(entry); 7355 rcu_read_lock(); 7356 memcg = mem_cgroup_from_id(id); 7357 if (!memcg || !css_tryget_online(&memcg->css)) 7358 memcg = get_mem_cgroup_from_mm(mm); 7359 rcu_read_unlock(); 7360 7361 ret = charge_memcg(folio, memcg, gfp); 7362 7363 css_put(&memcg->css); 7364 return ret; 7365 } 7366 7367 /* 7368 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 7369 * @entry: swap entry for which the page is charged 7370 * 7371 * Call this function after successfully adding the charged page to swapcache. 7372 * 7373 * Note: This function assumes the page for which swap slot is being uncharged 7374 * is order 0 page. 7375 */ 7376 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 7377 { 7378 /* 7379 * Cgroup1's unified memory+swap counter has been charged with the 7380 * new swapcache page, finish the transfer by uncharging the swap 7381 * slot. The swap slot would also get uncharged when it dies, but 7382 * it can stick around indefinitely and we'd count the page twice 7383 * the entire time. 7384 * 7385 * Cgroup2 has separate resource counters for memory and swap, 7386 * so this is a non-issue here. Memory and swap charge lifetimes 7387 * correspond 1:1 to page and swap slot lifetimes: we charge the 7388 * page to memory here, and uncharge swap when the slot is freed. 7389 */ 7390 if (!mem_cgroup_disabled() && do_memsw_account()) { 7391 /* 7392 * The swap entry might not get freed for a long time, 7393 * let's not wait for it. The page already received a 7394 * memory+swap charge, drop the swap entry duplicate. 7395 */ 7396 mem_cgroup_uncharge_swap(entry, 1); 7397 } 7398 } 7399 7400 struct uncharge_gather { 7401 struct mem_cgroup *memcg; 7402 unsigned long nr_memory; 7403 unsigned long pgpgout; 7404 unsigned long nr_kmem; 7405 int nid; 7406 }; 7407 7408 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 7409 { 7410 memset(ug, 0, sizeof(*ug)); 7411 } 7412 7413 static void uncharge_batch(const struct uncharge_gather *ug) 7414 { 7415 unsigned long flags; 7416 7417 if (ug->nr_memory) { 7418 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 7419 if (do_memsw_account()) 7420 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 7421 if (ug->nr_kmem) 7422 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 7423 memcg_oom_recover(ug->memcg); 7424 } 7425 7426 local_irq_save(flags); 7427 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 7428 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 7429 memcg_check_events(ug->memcg, ug->nid); 7430 local_irq_restore(flags); 7431 7432 /* drop reference from uncharge_folio */ 7433 css_put(&ug->memcg->css); 7434 } 7435 7436 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 7437 { 7438 long nr_pages; 7439 struct mem_cgroup *memcg; 7440 struct obj_cgroup *objcg; 7441 7442 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7443 7444 /* 7445 * Nobody should be changing or seriously looking at 7446 * folio memcg or objcg at this point, we have fully 7447 * exclusive access to the folio. 7448 */ 7449 if (folio_memcg_kmem(folio)) { 7450 objcg = __folio_objcg(folio); 7451 /* 7452 * This get matches the put at the end of the function and 7453 * kmem pages do not hold memcg references anymore. 7454 */ 7455 memcg = get_mem_cgroup_from_objcg(objcg); 7456 } else { 7457 memcg = __folio_memcg(folio); 7458 } 7459 7460 if (!memcg) 7461 return; 7462 7463 if (ug->memcg != memcg) { 7464 if (ug->memcg) { 7465 uncharge_batch(ug); 7466 uncharge_gather_clear(ug); 7467 } 7468 ug->memcg = memcg; 7469 ug->nid = folio_nid(folio); 7470 7471 /* pairs with css_put in uncharge_batch */ 7472 css_get(&memcg->css); 7473 } 7474 7475 nr_pages = folio_nr_pages(folio); 7476 7477 if (folio_memcg_kmem(folio)) { 7478 ug->nr_memory += nr_pages; 7479 ug->nr_kmem += nr_pages; 7480 7481 folio->memcg_data = 0; 7482 obj_cgroup_put(objcg); 7483 } else { 7484 /* LRU pages aren't accounted at the root level */ 7485 if (!mem_cgroup_is_root(memcg)) 7486 ug->nr_memory += nr_pages; 7487 ug->pgpgout++; 7488 7489 folio->memcg_data = 0; 7490 } 7491 7492 css_put(&memcg->css); 7493 } 7494 7495 void __mem_cgroup_uncharge(struct folio *folio) 7496 { 7497 struct uncharge_gather ug; 7498 7499 /* Don't touch folio->lru of any random page, pre-check: */ 7500 if (!folio_memcg(folio)) 7501 return; 7502 7503 uncharge_gather_clear(&ug); 7504 uncharge_folio(folio, &ug); 7505 uncharge_batch(&ug); 7506 } 7507 7508 /** 7509 * __mem_cgroup_uncharge_list - uncharge a list of page 7510 * @page_list: list of pages to uncharge 7511 * 7512 * Uncharge a list of pages previously charged with 7513 * __mem_cgroup_charge(). 7514 */ 7515 void __mem_cgroup_uncharge_list(struct list_head *page_list) 7516 { 7517 struct uncharge_gather ug; 7518 struct folio *folio; 7519 7520 uncharge_gather_clear(&ug); 7521 list_for_each_entry(folio, page_list, lru) 7522 uncharge_folio(folio, &ug); 7523 if (ug.memcg) 7524 uncharge_batch(&ug); 7525 } 7526 7527 /** 7528 * mem_cgroup_replace_folio - Charge a folio's replacement. 7529 * @old: Currently circulating folio. 7530 * @new: Replacement folio. 7531 * 7532 * Charge @new as a replacement folio for @old. @old will 7533 * be uncharged upon free. This is only used by the page cache 7534 * (in replace_page_cache_folio()). 7535 * 7536 * Both folios must be locked, @new->mapping must be set up. 7537 */ 7538 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 7539 { 7540 struct mem_cgroup *memcg; 7541 long nr_pages = folio_nr_pages(new); 7542 unsigned long flags; 7543 7544 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7545 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7546 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7547 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7548 7549 if (mem_cgroup_disabled()) 7550 return; 7551 7552 /* Page cache replacement: new folio already charged? */ 7553 if (folio_memcg(new)) 7554 return; 7555 7556 memcg = folio_memcg(old); 7557 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7558 if (!memcg) 7559 return; 7560 7561 /* Force-charge the new page. The old one will be freed soon */ 7562 if (!mem_cgroup_is_root(memcg)) { 7563 page_counter_charge(&memcg->memory, nr_pages); 7564 if (do_memsw_account()) 7565 page_counter_charge(&memcg->memsw, nr_pages); 7566 } 7567 7568 css_get(&memcg->css); 7569 commit_charge(new, memcg); 7570 7571 local_irq_save(flags); 7572 mem_cgroup_charge_statistics(memcg, nr_pages); 7573 memcg_check_events(memcg, folio_nid(new)); 7574 local_irq_restore(flags); 7575 } 7576 7577 /** 7578 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 7579 * @old: Currently circulating folio. 7580 * @new: Replacement folio. 7581 * 7582 * Transfer the memcg data from the old folio to the new folio for migration. 7583 * The old folio's data info will be cleared. Note that the memory counters 7584 * will remain unchanged throughout the process. 7585 * 7586 * Both folios must be locked, @new->mapping must be set up. 7587 */ 7588 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7589 { 7590 struct mem_cgroup *memcg; 7591 7592 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7593 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7594 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7595 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 7596 7597 if (mem_cgroup_disabled()) 7598 return; 7599 7600 memcg = folio_memcg(old); 7601 /* 7602 * Note that it is normal to see !memcg for a hugetlb folio. 7603 * For e.g, itt could have been allocated when memory_hugetlb_accounting 7604 * was not selected. 7605 */ 7606 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 7607 if (!memcg) 7608 return; 7609 7610 /* Transfer the charge and the css ref */ 7611 commit_charge(new, memcg); 7612 /* 7613 * If the old folio is a large folio and is in the split queue, it needs 7614 * to be removed from the split queue now, in case getting an incorrect 7615 * split queue in destroy_large_folio() after the memcg of the old folio 7616 * is cleared. 7617 * 7618 * In addition, the old folio is about to be freed after migration, so 7619 * removing from the split queue a bit earlier seems reasonable. 7620 */ 7621 if (folio_test_large(old) && folio_test_large_rmappable(old)) 7622 folio_undo_large_rmappable(old); 7623 old->memcg_data = 0; 7624 } 7625 7626 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7627 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7628 7629 void mem_cgroup_sk_alloc(struct sock *sk) 7630 { 7631 struct mem_cgroup *memcg; 7632 7633 if (!mem_cgroup_sockets_enabled) 7634 return; 7635 7636 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7637 if (!in_task()) 7638 return; 7639 7640 rcu_read_lock(); 7641 memcg = mem_cgroup_from_task(current); 7642 if (mem_cgroup_is_root(memcg)) 7643 goto out; 7644 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7645 goto out; 7646 if (css_tryget(&memcg->css)) 7647 sk->sk_memcg = memcg; 7648 out: 7649 rcu_read_unlock(); 7650 } 7651 7652 void mem_cgroup_sk_free(struct sock *sk) 7653 { 7654 if (sk->sk_memcg) 7655 css_put(&sk->sk_memcg->css); 7656 } 7657 7658 /** 7659 * mem_cgroup_charge_skmem - charge socket memory 7660 * @memcg: memcg to charge 7661 * @nr_pages: number of pages to charge 7662 * @gfp_mask: reclaim mode 7663 * 7664 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7665 * @memcg's configured limit, %false if it doesn't. 7666 */ 7667 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7668 gfp_t gfp_mask) 7669 { 7670 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7671 struct page_counter *fail; 7672 7673 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7674 memcg->tcpmem_pressure = 0; 7675 return true; 7676 } 7677 memcg->tcpmem_pressure = 1; 7678 if (gfp_mask & __GFP_NOFAIL) { 7679 page_counter_charge(&memcg->tcpmem, nr_pages); 7680 return true; 7681 } 7682 return false; 7683 } 7684 7685 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7686 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7687 return true; 7688 } 7689 7690 return false; 7691 } 7692 7693 /** 7694 * mem_cgroup_uncharge_skmem - uncharge socket memory 7695 * @memcg: memcg to uncharge 7696 * @nr_pages: number of pages to uncharge 7697 */ 7698 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7699 { 7700 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7701 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7702 return; 7703 } 7704 7705 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7706 7707 refill_stock(memcg, nr_pages); 7708 } 7709 7710 static int __init cgroup_memory(char *s) 7711 { 7712 char *token; 7713 7714 while ((token = strsep(&s, ",")) != NULL) { 7715 if (!*token) 7716 continue; 7717 if (!strcmp(token, "nosocket")) 7718 cgroup_memory_nosocket = true; 7719 if (!strcmp(token, "nokmem")) 7720 cgroup_memory_nokmem = true; 7721 if (!strcmp(token, "nobpf")) 7722 cgroup_memory_nobpf = true; 7723 } 7724 return 1; 7725 } 7726 __setup("cgroup.memory=", cgroup_memory); 7727 7728 /* 7729 * subsys_initcall() for memory controller. 7730 * 7731 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7732 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7733 * basically everything that doesn't depend on a specific mem_cgroup structure 7734 * should be initialized from here. 7735 */ 7736 static int __init mem_cgroup_init(void) 7737 { 7738 int cpu, node; 7739 7740 /* 7741 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7742 * used for per-memcg-per-cpu caching of per-node statistics. In order 7743 * to work fine, we should make sure that the overfill threshold can't 7744 * exceed S32_MAX / PAGE_SIZE. 7745 */ 7746 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7747 7748 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7749 memcg_hotplug_cpu_dead); 7750 7751 for_each_possible_cpu(cpu) 7752 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7753 drain_local_stock); 7754 7755 for_each_node(node) { 7756 struct mem_cgroup_tree_per_node *rtpn; 7757 7758 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); 7759 7760 rtpn->rb_root = RB_ROOT; 7761 rtpn->rb_rightmost = NULL; 7762 spin_lock_init(&rtpn->lock); 7763 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7764 } 7765 7766 return 0; 7767 } 7768 subsys_initcall(mem_cgroup_init); 7769 7770 #ifdef CONFIG_SWAP 7771 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7772 { 7773 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7774 /* 7775 * The root cgroup cannot be destroyed, so it's refcount must 7776 * always be >= 1. 7777 */ 7778 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 7779 VM_BUG_ON(1); 7780 break; 7781 } 7782 memcg = parent_mem_cgroup(memcg); 7783 if (!memcg) 7784 memcg = root_mem_cgroup; 7785 } 7786 return memcg; 7787 } 7788 7789 /** 7790 * mem_cgroup_swapout - transfer a memsw charge to swap 7791 * @folio: folio whose memsw charge to transfer 7792 * @entry: swap entry to move the charge to 7793 * 7794 * Transfer the memsw charge of @folio to @entry. 7795 */ 7796 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7797 { 7798 struct mem_cgroup *memcg, *swap_memcg; 7799 unsigned int nr_entries; 7800 unsigned short oldid; 7801 7802 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7803 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7804 7805 if (mem_cgroup_disabled()) 7806 return; 7807 7808 if (!do_memsw_account()) 7809 return; 7810 7811 memcg = folio_memcg(folio); 7812 7813 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7814 if (!memcg) 7815 return; 7816 7817 /* 7818 * In case the memcg owning these pages has been offlined and doesn't 7819 * have an ID allocated to it anymore, charge the closest online 7820 * ancestor for the swap instead and transfer the memory+swap charge. 7821 */ 7822 swap_memcg = mem_cgroup_id_get_online(memcg); 7823 nr_entries = folio_nr_pages(folio); 7824 /* Get references for the tail pages, too */ 7825 if (nr_entries > 1) 7826 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7827 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7828 nr_entries); 7829 VM_BUG_ON_FOLIO(oldid, folio); 7830 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7831 7832 folio->memcg_data = 0; 7833 7834 if (!mem_cgroup_is_root(memcg)) 7835 page_counter_uncharge(&memcg->memory, nr_entries); 7836 7837 if (memcg != swap_memcg) { 7838 if (!mem_cgroup_is_root(swap_memcg)) 7839 page_counter_charge(&swap_memcg->memsw, nr_entries); 7840 page_counter_uncharge(&memcg->memsw, nr_entries); 7841 } 7842 7843 /* 7844 * Interrupts should be disabled here because the caller holds the 7845 * i_pages lock which is taken with interrupts-off. It is 7846 * important here to have the interrupts disabled because it is the 7847 * only synchronisation we have for updating the per-CPU variables. 7848 */ 7849 memcg_stats_lock(); 7850 mem_cgroup_charge_statistics(memcg, -nr_entries); 7851 memcg_stats_unlock(); 7852 memcg_check_events(memcg, folio_nid(folio)); 7853 7854 css_put(&memcg->css); 7855 } 7856 7857 /** 7858 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7859 * @folio: folio being added to swap 7860 * @entry: swap entry to charge 7861 * 7862 * Try to charge @folio's memcg for the swap space at @entry. 7863 * 7864 * Returns 0 on success, -ENOMEM on failure. 7865 */ 7866 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7867 { 7868 unsigned int nr_pages = folio_nr_pages(folio); 7869 struct page_counter *counter; 7870 struct mem_cgroup *memcg; 7871 unsigned short oldid; 7872 7873 if (do_memsw_account()) 7874 return 0; 7875 7876 memcg = folio_memcg(folio); 7877 7878 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7879 if (!memcg) 7880 return 0; 7881 7882 if (!entry.val) { 7883 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7884 return 0; 7885 } 7886 7887 memcg = mem_cgroup_id_get_online(memcg); 7888 7889 if (!mem_cgroup_is_root(memcg) && 7890 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7891 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7892 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7893 mem_cgroup_id_put(memcg); 7894 return -ENOMEM; 7895 } 7896 7897 /* Get references for the tail pages, too */ 7898 if (nr_pages > 1) 7899 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7900 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7901 VM_BUG_ON_FOLIO(oldid, folio); 7902 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7903 7904 return 0; 7905 } 7906 7907 /** 7908 * __mem_cgroup_uncharge_swap - uncharge swap space 7909 * @entry: swap entry to uncharge 7910 * @nr_pages: the amount of swap space to uncharge 7911 */ 7912 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7913 { 7914 struct mem_cgroup *memcg; 7915 unsigned short id; 7916 7917 id = swap_cgroup_record(entry, 0, nr_pages); 7918 rcu_read_lock(); 7919 memcg = mem_cgroup_from_id(id); 7920 if (memcg) { 7921 if (!mem_cgroup_is_root(memcg)) { 7922 if (do_memsw_account()) 7923 page_counter_uncharge(&memcg->memsw, nr_pages); 7924 else 7925 page_counter_uncharge(&memcg->swap, nr_pages); 7926 } 7927 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7928 mem_cgroup_id_put_many(memcg, nr_pages); 7929 } 7930 rcu_read_unlock(); 7931 } 7932 7933 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7934 { 7935 long nr_swap_pages = get_nr_swap_pages(); 7936 7937 if (mem_cgroup_disabled() || do_memsw_account()) 7938 return nr_swap_pages; 7939 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 7940 nr_swap_pages = min_t(long, nr_swap_pages, 7941 READ_ONCE(memcg->swap.max) - 7942 page_counter_read(&memcg->swap)); 7943 return nr_swap_pages; 7944 } 7945 7946 bool mem_cgroup_swap_full(struct folio *folio) 7947 { 7948 struct mem_cgroup *memcg; 7949 7950 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 7951 7952 if (vm_swap_full()) 7953 return true; 7954 if (do_memsw_account()) 7955 return false; 7956 7957 memcg = folio_memcg(folio); 7958 if (!memcg) 7959 return false; 7960 7961 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 7962 unsigned long usage = page_counter_read(&memcg->swap); 7963 7964 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7965 usage * 2 >= READ_ONCE(memcg->swap.max)) 7966 return true; 7967 } 7968 7969 return false; 7970 } 7971 7972 static int __init setup_swap_account(char *s) 7973 { 7974 bool res; 7975 7976 if (!kstrtobool(s, &res) && !res) 7977 pr_warn_once("The swapaccount=0 commandline option is deprecated " 7978 "in favor of configuring swap control via cgroupfs. " 7979 "Please report your usecase to linux-mm@kvack.org if you " 7980 "depend on this functionality.\n"); 7981 return 1; 7982 } 7983 __setup("swapaccount=", setup_swap_account); 7984 7985 static u64 swap_current_read(struct cgroup_subsys_state *css, 7986 struct cftype *cft) 7987 { 7988 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7989 7990 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7991 } 7992 7993 static u64 swap_peak_read(struct cgroup_subsys_state *css, 7994 struct cftype *cft) 7995 { 7996 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7997 7998 return (u64)memcg->swap.watermark * PAGE_SIZE; 7999 } 8000 8001 static int swap_high_show(struct seq_file *m, void *v) 8002 { 8003 return seq_puts_memcg_tunable(m, 8004 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 8005 } 8006 8007 static ssize_t swap_high_write(struct kernfs_open_file *of, 8008 char *buf, size_t nbytes, loff_t off) 8009 { 8010 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8011 unsigned long high; 8012 int err; 8013 8014 buf = strstrip(buf); 8015 err = page_counter_memparse(buf, "max", &high); 8016 if (err) 8017 return err; 8018 8019 page_counter_set_high(&memcg->swap, high); 8020 8021 return nbytes; 8022 } 8023 8024 static int swap_max_show(struct seq_file *m, void *v) 8025 { 8026 return seq_puts_memcg_tunable(m, 8027 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 8028 } 8029 8030 static ssize_t swap_max_write(struct kernfs_open_file *of, 8031 char *buf, size_t nbytes, loff_t off) 8032 { 8033 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8034 unsigned long max; 8035 int err; 8036 8037 buf = strstrip(buf); 8038 err = page_counter_memparse(buf, "max", &max); 8039 if (err) 8040 return err; 8041 8042 xchg(&memcg->swap.max, max); 8043 8044 return nbytes; 8045 } 8046 8047 static int swap_events_show(struct seq_file *m, void *v) 8048 { 8049 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 8050 8051 seq_printf(m, "high %lu\n", 8052 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 8053 seq_printf(m, "max %lu\n", 8054 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 8055 seq_printf(m, "fail %lu\n", 8056 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 8057 8058 return 0; 8059 } 8060 8061 static struct cftype swap_files[] = { 8062 { 8063 .name = "swap.current", 8064 .flags = CFTYPE_NOT_ON_ROOT, 8065 .read_u64 = swap_current_read, 8066 }, 8067 { 8068 .name = "swap.high", 8069 .flags = CFTYPE_NOT_ON_ROOT, 8070 .seq_show = swap_high_show, 8071 .write = swap_high_write, 8072 }, 8073 { 8074 .name = "swap.max", 8075 .flags = CFTYPE_NOT_ON_ROOT, 8076 .seq_show = swap_max_show, 8077 .write = swap_max_write, 8078 }, 8079 { 8080 .name = "swap.peak", 8081 .flags = CFTYPE_NOT_ON_ROOT, 8082 .read_u64 = swap_peak_read, 8083 }, 8084 { 8085 .name = "swap.events", 8086 .flags = CFTYPE_NOT_ON_ROOT, 8087 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 8088 .seq_show = swap_events_show, 8089 }, 8090 { } /* terminate */ 8091 }; 8092 8093 static struct cftype memsw_files[] = { 8094 { 8095 .name = "memsw.usage_in_bytes", 8096 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 8097 .read_u64 = mem_cgroup_read_u64, 8098 }, 8099 { 8100 .name = "memsw.max_usage_in_bytes", 8101 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 8102 .write = mem_cgroup_reset, 8103 .read_u64 = mem_cgroup_read_u64, 8104 }, 8105 { 8106 .name = "memsw.limit_in_bytes", 8107 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 8108 .write = mem_cgroup_write, 8109 .read_u64 = mem_cgroup_read_u64, 8110 }, 8111 { 8112 .name = "memsw.failcnt", 8113 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 8114 .write = mem_cgroup_reset, 8115 .read_u64 = mem_cgroup_read_u64, 8116 }, 8117 { }, /* terminate */ 8118 }; 8119 8120 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 8121 /** 8122 * obj_cgroup_may_zswap - check if this cgroup can zswap 8123 * @objcg: the object cgroup 8124 * 8125 * Check if the hierarchical zswap limit has been reached. 8126 * 8127 * This doesn't check for specific headroom, and it is not atomic 8128 * either. But with zswap, the size of the allocation is only known 8129 * once compression has occurred, and this optimistic pre-check avoids 8130 * spending cycles on compression when there is already no room left 8131 * or zswap is disabled altogether somewhere in the hierarchy. 8132 */ 8133 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 8134 { 8135 struct mem_cgroup *memcg, *original_memcg; 8136 bool ret = true; 8137 8138 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8139 return true; 8140 8141 original_memcg = get_mem_cgroup_from_objcg(objcg); 8142 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 8143 memcg = parent_mem_cgroup(memcg)) { 8144 unsigned long max = READ_ONCE(memcg->zswap_max); 8145 unsigned long pages; 8146 8147 if (max == PAGE_COUNTER_MAX) 8148 continue; 8149 if (max == 0) { 8150 ret = false; 8151 break; 8152 } 8153 8154 /* 8155 * mem_cgroup_flush_stats() ignores small changes. Use 8156 * do_flush_stats() directly to get accurate stats for charging. 8157 */ 8158 do_flush_stats(memcg); 8159 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 8160 if (pages < max) 8161 continue; 8162 ret = false; 8163 break; 8164 } 8165 mem_cgroup_put(original_memcg); 8166 return ret; 8167 } 8168 8169 /** 8170 * obj_cgroup_charge_zswap - charge compression backend memory 8171 * @objcg: the object cgroup 8172 * @size: size of compressed object 8173 * 8174 * This forces the charge after obj_cgroup_may_zswap() allowed 8175 * compression and storage in zwap for this cgroup to go ahead. 8176 */ 8177 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 8178 { 8179 struct mem_cgroup *memcg; 8180 8181 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8182 return; 8183 8184 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 8185 8186 /* PF_MEMALLOC context, charging must succeed */ 8187 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 8188 VM_WARN_ON_ONCE(1); 8189 8190 rcu_read_lock(); 8191 memcg = obj_cgroup_memcg(objcg); 8192 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 8193 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 8194 rcu_read_unlock(); 8195 } 8196 8197 /** 8198 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 8199 * @objcg: the object cgroup 8200 * @size: size of compressed object 8201 * 8202 * Uncharges zswap memory on page in. 8203 */ 8204 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 8205 { 8206 struct mem_cgroup *memcg; 8207 8208 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8209 return; 8210 8211 obj_cgroup_uncharge(objcg, size); 8212 8213 rcu_read_lock(); 8214 memcg = obj_cgroup_memcg(objcg); 8215 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 8216 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 8217 rcu_read_unlock(); 8218 } 8219 8220 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 8221 { 8222 /* if zswap is disabled, do not block pages going to the swapping device */ 8223 return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback); 8224 } 8225 8226 static u64 zswap_current_read(struct cgroup_subsys_state *css, 8227 struct cftype *cft) 8228 { 8229 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 8230 8231 mem_cgroup_flush_stats(memcg); 8232 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 8233 } 8234 8235 static int zswap_max_show(struct seq_file *m, void *v) 8236 { 8237 return seq_puts_memcg_tunable(m, 8238 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 8239 } 8240 8241 static ssize_t zswap_max_write(struct kernfs_open_file *of, 8242 char *buf, size_t nbytes, loff_t off) 8243 { 8244 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8245 unsigned long max; 8246 int err; 8247 8248 buf = strstrip(buf); 8249 err = page_counter_memparse(buf, "max", &max); 8250 if (err) 8251 return err; 8252 8253 xchg(&memcg->zswap_max, max); 8254 8255 return nbytes; 8256 } 8257 8258 static int zswap_writeback_show(struct seq_file *m, void *v) 8259 { 8260 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 8261 8262 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 8263 return 0; 8264 } 8265 8266 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 8267 char *buf, size_t nbytes, loff_t off) 8268 { 8269 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8270 int zswap_writeback; 8271 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 8272 8273 if (parse_ret) 8274 return parse_ret; 8275 8276 if (zswap_writeback != 0 && zswap_writeback != 1) 8277 return -EINVAL; 8278 8279 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 8280 return nbytes; 8281 } 8282 8283 static struct cftype zswap_files[] = { 8284 { 8285 .name = "zswap.current", 8286 .flags = CFTYPE_NOT_ON_ROOT, 8287 .read_u64 = zswap_current_read, 8288 }, 8289 { 8290 .name = "zswap.max", 8291 .flags = CFTYPE_NOT_ON_ROOT, 8292 .seq_show = zswap_max_show, 8293 .write = zswap_max_write, 8294 }, 8295 { 8296 .name = "zswap.writeback", 8297 .seq_show = zswap_writeback_show, 8298 .write = zswap_writeback_write, 8299 }, 8300 { } /* terminate */ 8301 }; 8302 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 8303 8304 static int __init mem_cgroup_swap_init(void) 8305 { 8306 if (mem_cgroup_disabled()) 8307 return 0; 8308 8309 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 8310 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 8311 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 8312 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 8313 #endif 8314 return 0; 8315 } 8316 subsys_initcall(mem_cgroup_swap_init); 8317 8318 #endif /* CONFIG_SWAP */ 8319