1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 #define MEM_CGROUP_RECLAIM_RETRIES 5 77 78 /* Socket memory accounting disabled? */ 79 static bool cgroup_memory_nosocket; 80 81 /* Kernel memory accounting disabled? */ 82 static bool cgroup_memory_nokmem; 83 84 /* Whether the swap controller is active */ 85 #ifdef CONFIG_MEMCG_SWAP 86 int do_swap_account __read_mostly; 87 #else 88 #define do_swap_account 0 89 #endif 90 91 #ifdef CONFIG_CGROUP_WRITEBACK 92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char *const mem_cgroup_lru_names[] = { 102 "inactive_anon", 103 "active_anon", 104 "inactive_file", 105 "active_file", 106 "unevictable", 107 }; 108 109 #define THRESHOLDS_EVENTS_TARGET 128 110 #define SOFTLIMIT_EVENTS_TARGET 1024 111 112 /* 113 * Cgroups above their limits are maintained in a RB-Tree, independent of 114 * their hierarchy representation 115 */ 116 117 struct mem_cgroup_tree_per_node { 118 struct rb_root rb_root; 119 struct rb_node *rb_rightmost; 120 spinlock_t lock; 121 }; 122 123 struct mem_cgroup_tree { 124 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 125 }; 126 127 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 128 129 /* for OOM */ 130 struct mem_cgroup_eventfd_list { 131 struct list_head list; 132 struct eventfd_ctx *eventfd; 133 }; 134 135 /* 136 * cgroup_event represents events which userspace want to receive. 137 */ 138 struct mem_cgroup_event { 139 /* 140 * memcg which the event belongs to. 141 */ 142 struct mem_cgroup *memcg; 143 /* 144 * eventfd to signal userspace about the event. 145 */ 146 struct eventfd_ctx *eventfd; 147 /* 148 * Each of these stored in a list by the cgroup. 149 */ 150 struct list_head list; 151 /* 152 * register_event() callback will be used to add new userspace 153 * waiter for changes related to this event. Use eventfd_signal() 154 * on eventfd to send notification to userspace. 155 */ 156 int (*register_event)(struct mem_cgroup *memcg, 157 struct eventfd_ctx *eventfd, const char *args); 158 /* 159 * unregister_event() callback will be called when userspace closes 160 * the eventfd or on cgroup removing. This callback must be set, 161 * if you want provide notification functionality. 162 */ 163 void (*unregister_event)(struct mem_cgroup *memcg, 164 struct eventfd_ctx *eventfd); 165 /* 166 * All fields below needed to unregister event when 167 * userspace closes eventfd. 168 */ 169 poll_table pt; 170 wait_queue_head_t *wqh; 171 wait_queue_entry_t wait; 172 struct work_struct remove; 173 }; 174 175 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 176 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 177 178 /* Stuffs for move charges at task migration. */ 179 /* 180 * Types of charges to be moved. 181 */ 182 #define MOVE_ANON 0x1U 183 #define MOVE_FILE 0x2U 184 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 185 186 /* "mc" and its members are protected by cgroup_mutex */ 187 static struct move_charge_struct { 188 spinlock_t lock; /* for from, to */ 189 struct mm_struct *mm; 190 struct mem_cgroup *from; 191 struct mem_cgroup *to; 192 unsigned long flags; 193 unsigned long precharge; 194 unsigned long moved_charge; 195 unsigned long moved_swap; 196 struct task_struct *moving_task; /* a task moving charges */ 197 wait_queue_head_t waitq; /* a waitq for other context */ 198 } mc = { 199 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 200 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 201 }; 202 203 /* 204 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 205 * limit reclaim to prevent infinite loops, if they ever occur. 206 */ 207 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 208 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 209 210 enum charge_type { 211 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 212 MEM_CGROUP_CHARGE_TYPE_ANON, 213 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 214 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 215 NR_CHARGE_TYPE, 216 }; 217 218 /* for encoding cft->private value on file */ 219 enum res_type { 220 _MEM, 221 _MEMSWAP, 222 _OOM_TYPE, 223 _KMEM, 224 _TCP, 225 }; 226 227 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 228 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 229 #define MEMFILE_ATTR(val) ((val) & 0xffff) 230 /* Used for OOM nofiier */ 231 #define OOM_CONTROL (0) 232 233 /* 234 * Iteration constructs for visiting all cgroups (under a tree). If 235 * loops are exited prematurely (break), mem_cgroup_iter_break() must 236 * be used for reference counting. 237 */ 238 #define for_each_mem_cgroup_tree(iter, root) \ 239 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 240 iter != NULL; \ 241 iter = mem_cgroup_iter(root, iter, NULL)) 242 243 #define for_each_mem_cgroup(iter) \ 244 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 245 iter != NULL; \ 246 iter = mem_cgroup_iter(NULL, iter, NULL)) 247 248 static inline bool should_force_charge(void) 249 { 250 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 251 (current->flags & PF_EXITING); 252 } 253 254 /* Some nice accessors for the vmpressure. */ 255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 256 { 257 if (!memcg) 258 memcg = root_mem_cgroup; 259 return &memcg->vmpressure; 260 } 261 262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 263 { 264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 265 } 266 267 #ifdef CONFIG_MEMCG_KMEM 268 /* 269 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 270 * The main reason for not using cgroup id for this: 271 * this works better in sparse environments, where we have a lot of memcgs, 272 * but only a few kmem-limited. Or also, if we have, for instance, 200 273 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 274 * 200 entry array for that. 275 * 276 * The current size of the caches array is stored in memcg_nr_cache_ids. It 277 * will double each time we have to increase it. 278 */ 279 static DEFINE_IDA(memcg_cache_ida); 280 int memcg_nr_cache_ids; 281 282 /* Protects memcg_nr_cache_ids */ 283 static DECLARE_RWSEM(memcg_cache_ids_sem); 284 285 void memcg_get_cache_ids(void) 286 { 287 down_read(&memcg_cache_ids_sem); 288 } 289 290 void memcg_put_cache_ids(void) 291 { 292 up_read(&memcg_cache_ids_sem); 293 } 294 295 /* 296 * MIN_SIZE is different than 1, because we would like to avoid going through 297 * the alloc/free process all the time. In a small machine, 4 kmem-limited 298 * cgroups is a reasonable guess. In the future, it could be a parameter or 299 * tunable, but that is strictly not necessary. 300 * 301 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 302 * this constant directly from cgroup, but it is understandable that this is 303 * better kept as an internal representation in cgroup.c. In any case, the 304 * cgrp_id space is not getting any smaller, and we don't have to necessarily 305 * increase ours as well if it increases. 306 */ 307 #define MEMCG_CACHES_MIN_SIZE 4 308 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 309 310 /* 311 * A lot of the calls to the cache allocation functions are expected to be 312 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 313 * conditional to this static branch, we'll have to allow modules that does 314 * kmem_cache_alloc and the such to see this symbol as well 315 */ 316 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 317 EXPORT_SYMBOL(memcg_kmem_enabled_key); 318 319 struct workqueue_struct *memcg_kmem_cache_wq; 320 #endif 321 322 static int memcg_shrinker_map_size; 323 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 324 325 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 326 { 327 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 328 } 329 330 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 331 int size, int old_size) 332 { 333 struct memcg_shrinker_map *new, *old; 334 int nid; 335 336 lockdep_assert_held(&memcg_shrinker_map_mutex); 337 338 for_each_node(nid) { 339 old = rcu_dereference_protected( 340 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 341 /* Not yet online memcg */ 342 if (!old) 343 return 0; 344 345 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 346 if (!new) 347 return -ENOMEM; 348 349 /* Set all old bits, clear all new bits */ 350 memset(new->map, (int)0xff, old_size); 351 memset((void *)new->map + old_size, 0, size - old_size); 352 353 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 354 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 355 } 356 357 return 0; 358 } 359 360 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 361 { 362 struct mem_cgroup_per_node *pn; 363 struct memcg_shrinker_map *map; 364 int nid; 365 366 if (mem_cgroup_is_root(memcg)) 367 return; 368 369 for_each_node(nid) { 370 pn = mem_cgroup_nodeinfo(memcg, nid); 371 map = rcu_dereference_protected(pn->shrinker_map, true); 372 if (map) 373 kvfree(map); 374 rcu_assign_pointer(pn->shrinker_map, NULL); 375 } 376 } 377 378 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 379 { 380 struct memcg_shrinker_map *map; 381 int nid, size, ret = 0; 382 383 if (mem_cgroup_is_root(memcg)) 384 return 0; 385 386 mutex_lock(&memcg_shrinker_map_mutex); 387 size = memcg_shrinker_map_size; 388 for_each_node(nid) { 389 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 390 if (!map) { 391 memcg_free_shrinker_maps(memcg); 392 ret = -ENOMEM; 393 break; 394 } 395 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 396 } 397 mutex_unlock(&memcg_shrinker_map_mutex); 398 399 return ret; 400 } 401 402 int memcg_expand_shrinker_maps(int new_id) 403 { 404 int size, old_size, ret = 0; 405 struct mem_cgroup *memcg; 406 407 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 408 old_size = memcg_shrinker_map_size; 409 if (size <= old_size) 410 return 0; 411 412 mutex_lock(&memcg_shrinker_map_mutex); 413 if (!root_mem_cgroup) 414 goto unlock; 415 416 for_each_mem_cgroup(memcg) { 417 if (mem_cgroup_is_root(memcg)) 418 continue; 419 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 420 if (ret) 421 goto unlock; 422 } 423 unlock: 424 if (!ret) 425 memcg_shrinker_map_size = size; 426 mutex_unlock(&memcg_shrinker_map_mutex); 427 return ret; 428 } 429 430 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 431 { 432 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 433 struct memcg_shrinker_map *map; 434 435 rcu_read_lock(); 436 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 437 /* Pairs with smp mb in shrink_slab() */ 438 smp_mb__before_atomic(); 439 set_bit(shrinker_id, map->map); 440 rcu_read_unlock(); 441 } 442 } 443 444 /** 445 * mem_cgroup_css_from_page - css of the memcg associated with a page 446 * @page: page of interest 447 * 448 * If memcg is bound to the default hierarchy, css of the memcg associated 449 * with @page is returned. The returned css remains associated with @page 450 * until it is released. 451 * 452 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 453 * is returned. 454 */ 455 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 456 { 457 struct mem_cgroup *memcg; 458 459 memcg = page->mem_cgroup; 460 461 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 462 memcg = root_mem_cgroup; 463 464 return &memcg->css; 465 } 466 467 /** 468 * page_cgroup_ino - return inode number of the memcg a page is charged to 469 * @page: the page 470 * 471 * Look up the closest online ancestor of the memory cgroup @page is charged to 472 * and return its inode number or 0 if @page is not charged to any cgroup. It 473 * is safe to call this function without holding a reference to @page. 474 * 475 * Note, this function is inherently racy, because there is nothing to prevent 476 * the cgroup inode from getting torn down and potentially reallocated a moment 477 * after page_cgroup_ino() returns, so it only should be used by callers that 478 * do not care (such as procfs interfaces). 479 */ 480 ino_t page_cgroup_ino(struct page *page) 481 { 482 struct mem_cgroup *memcg; 483 unsigned long ino = 0; 484 485 rcu_read_lock(); 486 if (PageSlab(page) && !PageTail(page)) 487 memcg = memcg_from_slab_page(page); 488 else 489 memcg = READ_ONCE(page->mem_cgroup); 490 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 491 memcg = parent_mem_cgroup(memcg); 492 if (memcg) 493 ino = cgroup_ino(memcg->css.cgroup); 494 rcu_read_unlock(); 495 return ino; 496 } 497 498 static struct mem_cgroup_per_node * 499 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 500 { 501 int nid = page_to_nid(page); 502 503 return memcg->nodeinfo[nid]; 504 } 505 506 static struct mem_cgroup_tree_per_node * 507 soft_limit_tree_node(int nid) 508 { 509 return soft_limit_tree.rb_tree_per_node[nid]; 510 } 511 512 static struct mem_cgroup_tree_per_node * 513 soft_limit_tree_from_page(struct page *page) 514 { 515 int nid = page_to_nid(page); 516 517 return soft_limit_tree.rb_tree_per_node[nid]; 518 } 519 520 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 521 struct mem_cgroup_tree_per_node *mctz, 522 unsigned long new_usage_in_excess) 523 { 524 struct rb_node **p = &mctz->rb_root.rb_node; 525 struct rb_node *parent = NULL; 526 struct mem_cgroup_per_node *mz_node; 527 bool rightmost = true; 528 529 if (mz->on_tree) 530 return; 531 532 mz->usage_in_excess = new_usage_in_excess; 533 if (!mz->usage_in_excess) 534 return; 535 while (*p) { 536 parent = *p; 537 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 538 tree_node); 539 if (mz->usage_in_excess < mz_node->usage_in_excess) { 540 p = &(*p)->rb_left; 541 rightmost = false; 542 } 543 544 /* 545 * We can't avoid mem cgroups that are over their soft 546 * limit by the same amount 547 */ 548 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 549 p = &(*p)->rb_right; 550 } 551 552 if (rightmost) 553 mctz->rb_rightmost = &mz->tree_node; 554 555 rb_link_node(&mz->tree_node, parent, p); 556 rb_insert_color(&mz->tree_node, &mctz->rb_root); 557 mz->on_tree = true; 558 } 559 560 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 561 struct mem_cgroup_tree_per_node *mctz) 562 { 563 if (!mz->on_tree) 564 return; 565 566 if (&mz->tree_node == mctz->rb_rightmost) 567 mctz->rb_rightmost = rb_prev(&mz->tree_node); 568 569 rb_erase(&mz->tree_node, &mctz->rb_root); 570 mz->on_tree = false; 571 } 572 573 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 574 struct mem_cgroup_tree_per_node *mctz) 575 { 576 unsigned long flags; 577 578 spin_lock_irqsave(&mctz->lock, flags); 579 __mem_cgroup_remove_exceeded(mz, mctz); 580 spin_unlock_irqrestore(&mctz->lock, flags); 581 } 582 583 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 584 { 585 unsigned long nr_pages = page_counter_read(&memcg->memory); 586 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 587 unsigned long excess = 0; 588 589 if (nr_pages > soft_limit) 590 excess = nr_pages - soft_limit; 591 592 return excess; 593 } 594 595 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 596 { 597 unsigned long excess; 598 struct mem_cgroup_per_node *mz; 599 struct mem_cgroup_tree_per_node *mctz; 600 601 mctz = soft_limit_tree_from_page(page); 602 if (!mctz) 603 return; 604 /* 605 * Necessary to update all ancestors when hierarchy is used. 606 * because their event counter is not touched. 607 */ 608 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 609 mz = mem_cgroup_page_nodeinfo(memcg, page); 610 excess = soft_limit_excess(memcg); 611 /* 612 * We have to update the tree if mz is on RB-tree or 613 * mem is over its softlimit. 614 */ 615 if (excess || mz->on_tree) { 616 unsigned long flags; 617 618 spin_lock_irqsave(&mctz->lock, flags); 619 /* if on-tree, remove it */ 620 if (mz->on_tree) 621 __mem_cgroup_remove_exceeded(mz, mctz); 622 /* 623 * Insert again. mz->usage_in_excess will be updated. 624 * If excess is 0, no tree ops. 625 */ 626 __mem_cgroup_insert_exceeded(mz, mctz, excess); 627 spin_unlock_irqrestore(&mctz->lock, flags); 628 } 629 } 630 } 631 632 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 633 { 634 struct mem_cgroup_tree_per_node *mctz; 635 struct mem_cgroup_per_node *mz; 636 int nid; 637 638 for_each_node(nid) { 639 mz = mem_cgroup_nodeinfo(memcg, nid); 640 mctz = soft_limit_tree_node(nid); 641 if (mctz) 642 mem_cgroup_remove_exceeded(mz, mctz); 643 } 644 } 645 646 static struct mem_cgroup_per_node * 647 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 648 { 649 struct mem_cgroup_per_node *mz; 650 651 retry: 652 mz = NULL; 653 if (!mctz->rb_rightmost) 654 goto done; /* Nothing to reclaim from */ 655 656 mz = rb_entry(mctz->rb_rightmost, 657 struct mem_cgroup_per_node, tree_node); 658 /* 659 * Remove the node now but someone else can add it back, 660 * we will to add it back at the end of reclaim to its correct 661 * position in the tree. 662 */ 663 __mem_cgroup_remove_exceeded(mz, mctz); 664 if (!soft_limit_excess(mz->memcg) || 665 !css_tryget_online(&mz->memcg->css)) 666 goto retry; 667 done: 668 return mz; 669 } 670 671 static struct mem_cgroup_per_node * 672 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 673 { 674 struct mem_cgroup_per_node *mz; 675 676 spin_lock_irq(&mctz->lock); 677 mz = __mem_cgroup_largest_soft_limit_node(mctz); 678 spin_unlock_irq(&mctz->lock); 679 return mz; 680 } 681 682 /** 683 * __mod_memcg_state - update cgroup memory statistics 684 * @memcg: the memory cgroup 685 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 686 * @val: delta to add to the counter, can be negative 687 */ 688 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 689 { 690 long x; 691 692 if (mem_cgroup_disabled()) 693 return; 694 695 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 696 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 697 struct mem_cgroup *mi; 698 699 /* 700 * Batch local counters to keep them in sync with 701 * the hierarchical ones. 702 */ 703 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 704 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 705 atomic_long_add(x, &mi->vmstats[idx]); 706 x = 0; 707 } 708 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 709 } 710 711 static struct mem_cgroup_per_node * 712 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 713 { 714 struct mem_cgroup *parent; 715 716 parent = parent_mem_cgroup(pn->memcg); 717 if (!parent) 718 return NULL; 719 return mem_cgroup_nodeinfo(parent, nid); 720 } 721 722 /** 723 * __mod_lruvec_state - update lruvec memory statistics 724 * @lruvec: the lruvec 725 * @idx: the stat item 726 * @val: delta to add to the counter, can be negative 727 * 728 * The lruvec is the intersection of the NUMA node and a cgroup. This 729 * function updates the all three counters that are affected by a 730 * change of state at this level: per-node, per-cgroup, per-lruvec. 731 */ 732 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 733 int val) 734 { 735 pg_data_t *pgdat = lruvec_pgdat(lruvec); 736 struct mem_cgroup_per_node *pn; 737 struct mem_cgroup *memcg; 738 long x; 739 740 /* Update node */ 741 __mod_node_page_state(pgdat, idx, val); 742 743 if (mem_cgroup_disabled()) 744 return; 745 746 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 747 memcg = pn->memcg; 748 749 /* Update memcg */ 750 __mod_memcg_state(memcg, idx, val); 751 752 /* Update lruvec */ 753 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 754 755 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 756 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 757 struct mem_cgroup_per_node *pi; 758 759 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 760 atomic_long_add(x, &pi->lruvec_stat[idx]); 761 x = 0; 762 } 763 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 764 } 765 766 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 767 { 768 struct page *page = virt_to_head_page(p); 769 pg_data_t *pgdat = page_pgdat(page); 770 struct mem_cgroup *memcg; 771 struct lruvec *lruvec; 772 773 rcu_read_lock(); 774 memcg = memcg_from_slab_page(page); 775 776 /* Untracked pages have no memcg, no lruvec. Update only the node */ 777 if (!memcg || memcg == root_mem_cgroup) { 778 __mod_node_page_state(pgdat, idx, val); 779 } else { 780 lruvec = mem_cgroup_lruvec(memcg, pgdat); 781 __mod_lruvec_state(lruvec, idx, val); 782 } 783 rcu_read_unlock(); 784 } 785 786 /** 787 * __count_memcg_events - account VM events in a cgroup 788 * @memcg: the memory cgroup 789 * @idx: the event item 790 * @count: the number of events that occured 791 */ 792 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 793 unsigned long count) 794 { 795 unsigned long x; 796 797 if (mem_cgroup_disabled()) 798 return; 799 800 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 801 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 802 struct mem_cgroup *mi; 803 804 /* 805 * Batch local counters to keep them in sync with 806 * the hierarchical ones. 807 */ 808 __this_cpu_add(memcg->vmstats_local->events[idx], x); 809 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 810 atomic_long_add(x, &mi->vmevents[idx]); 811 x = 0; 812 } 813 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 814 } 815 816 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 817 { 818 return atomic_long_read(&memcg->vmevents[event]); 819 } 820 821 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 822 { 823 long x = 0; 824 int cpu; 825 826 for_each_possible_cpu(cpu) 827 x += per_cpu(memcg->vmstats_local->events[event], cpu); 828 return x; 829 } 830 831 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 832 struct page *page, 833 bool compound, int nr_pages) 834 { 835 /* 836 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 837 * counted as CACHE even if it's on ANON LRU. 838 */ 839 if (PageAnon(page)) 840 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 841 else { 842 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 843 if (PageSwapBacked(page)) 844 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 845 } 846 847 if (compound) { 848 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 849 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 850 } 851 852 /* pagein of a big page is an event. So, ignore page size */ 853 if (nr_pages > 0) 854 __count_memcg_events(memcg, PGPGIN, 1); 855 else { 856 __count_memcg_events(memcg, PGPGOUT, 1); 857 nr_pages = -nr_pages; /* for event */ 858 } 859 860 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 861 } 862 863 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 864 enum mem_cgroup_events_target target) 865 { 866 unsigned long val, next; 867 868 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 869 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 870 /* from time_after() in jiffies.h */ 871 if ((long)(next - val) < 0) { 872 switch (target) { 873 case MEM_CGROUP_TARGET_THRESH: 874 next = val + THRESHOLDS_EVENTS_TARGET; 875 break; 876 case MEM_CGROUP_TARGET_SOFTLIMIT: 877 next = val + SOFTLIMIT_EVENTS_TARGET; 878 break; 879 default: 880 break; 881 } 882 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 883 return true; 884 } 885 return false; 886 } 887 888 /* 889 * Check events in order. 890 * 891 */ 892 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 893 { 894 /* threshold event is triggered in finer grain than soft limit */ 895 if (unlikely(mem_cgroup_event_ratelimit(memcg, 896 MEM_CGROUP_TARGET_THRESH))) { 897 bool do_softlimit; 898 899 do_softlimit = mem_cgroup_event_ratelimit(memcg, 900 MEM_CGROUP_TARGET_SOFTLIMIT); 901 mem_cgroup_threshold(memcg); 902 if (unlikely(do_softlimit)) 903 mem_cgroup_update_tree(memcg, page); 904 } 905 } 906 907 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 908 { 909 /* 910 * mm_update_next_owner() may clear mm->owner to NULL 911 * if it races with swapoff, page migration, etc. 912 * So this can be called with p == NULL. 913 */ 914 if (unlikely(!p)) 915 return NULL; 916 917 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 918 } 919 EXPORT_SYMBOL(mem_cgroup_from_task); 920 921 /** 922 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 923 * @mm: mm from which memcg should be extracted. It can be NULL. 924 * 925 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 926 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 927 * returned. 928 */ 929 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 930 { 931 struct mem_cgroup *memcg; 932 933 if (mem_cgroup_disabled()) 934 return NULL; 935 936 rcu_read_lock(); 937 do { 938 /* 939 * Page cache insertions can happen withou an 940 * actual mm context, e.g. during disk probing 941 * on boot, loopback IO, acct() writes etc. 942 */ 943 if (unlikely(!mm)) 944 memcg = root_mem_cgroup; 945 else { 946 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 947 if (unlikely(!memcg)) 948 memcg = root_mem_cgroup; 949 } 950 } while (!css_tryget(&memcg->css)); 951 rcu_read_unlock(); 952 return memcg; 953 } 954 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 955 956 /** 957 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 958 * @page: page from which memcg should be extracted. 959 * 960 * Obtain a reference on page->memcg and returns it if successful. Otherwise 961 * root_mem_cgroup is returned. 962 */ 963 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 964 { 965 struct mem_cgroup *memcg = page->mem_cgroup; 966 967 if (mem_cgroup_disabled()) 968 return NULL; 969 970 rcu_read_lock(); 971 if (!memcg || !css_tryget_online(&memcg->css)) 972 memcg = root_mem_cgroup; 973 rcu_read_unlock(); 974 return memcg; 975 } 976 EXPORT_SYMBOL(get_mem_cgroup_from_page); 977 978 /** 979 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 980 */ 981 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 982 { 983 if (unlikely(current->active_memcg)) { 984 struct mem_cgroup *memcg = root_mem_cgroup; 985 986 rcu_read_lock(); 987 if (css_tryget_online(¤t->active_memcg->css)) 988 memcg = current->active_memcg; 989 rcu_read_unlock(); 990 return memcg; 991 } 992 return get_mem_cgroup_from_mm(current->mm); 993 } 994 995 /** 996 * mem_cgroup_iter - iterate over memory cgroup hierarchy 997 * @root: hierarchy root 998 * @prev: previously returned memcg, NULL on first invocation 999 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1000 * 1001 * Returns references to children of the hierarchy below @root, or 1002 * @root itself, or %NULL after a full round-trip. 1003 * 1004 * Caller must pass the return value in @prev on subsequent 1005 * invocations for reference counting, or use mem_cgroup_iter_break() 1006 * to cancel a hierarchy walk before the round-trip is complete. 1007 * 1008 * Reclaimers can specify a node and a priority level in @reclaim to 1009 * divide up the memcgs in the hierarchy among all concurrent 1010 * reclaimers operating on the same node and priority. 1011 */ 1012 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1013 struct mem_cgroup *prev, 1014 struct mem_cgroup_reclaim_cookie *reclaim) 1015 { 1016 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1017 struct cgroup_subsys_state *css = NULL; 1018 struct mem_cgroup *memcg = NULL; 1019 struct mem_cgroup *pos = NULL; 1020 1021 if (mem_cgroup_disabled()) 1022 return NULL; 1023 1024 if (!root) 1025 root = root_mem_cgroup; 1026 1027 if (prev && !reclaim) 1028 pos = prev; 1029 1030 if (!root->use_hierarchy && root != root_mem_cgroup) { 1031 if (prev) 1032 goto out; 1033 return root; 1034 } 1035 1036 rcu_read_lock(); 1037 1038 if (reclaim) { 1039 struct mem_cgroup_per_node *mz; 1040 1041 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1042 iter = &mz->iter; 1043 1044 if (prev && reclaim->generation != iter->generation) 1045 goto out_unlock; 1046 1047 while (1) { 1048 pos = READ_ONCE(iter->position); 1049 if (!pos || css_tryget(&pos->css)) 1050 break; 1051 /* 1052 * css reference reached zero, so iter->position will 1053 * be cleared by ->css_released. However, we should not 1054 * rely on this happening soon, because ->css_released 1055 * is called from a work queue, and by busy-waiting we 1056 * might block it. So we clear iter->position right 1057 * away. 1058 */ 1059 (void)cmpxchg(&iter->position, pos, NULL); 1060 } 1061 } 1062 1063 if (pos) 1064 css = &pos->css; 1065 1066 for (;;) { 1067 css = css_next_descendant_pre(css, &root->css); 1068 if (!css) { 1069 /* 1070 * Reclaimers share the hierarchy walk, and a 1071 * new one might jump in right at the end of 1072 * the hierarchy - make sure they see at least 1073 * one group and restart from the beginning. 1074 */ 1075 if (!prev) 1076 continue; 1077 break; 1078 } 1079 1080 /* 1081 * Verify the css and acquire a reference. The root 1082 * is provided by the caller, so we know it's alive 1083 * and kicking, and don't take an extra reference. 1084 */ 1085 memcg = mem_cgroup_from_css(css); 1086 1087 if (css == &root->css) 1088 break; 1089 1090 if (css_tryget(css)) 1091 break; 1092 1093 memcg = NULL; 1094 } 1095 1096 if (reclaim) { 1097 /* 1098 * The position could have already been updated by a competing 1099 * thread, so check that the value hasn't changed since we read 1100 * it to avoid reclaiming from the same cgroup twice. 1101 */ 1102 (void)cmpxchg(&iter->position, pos, memcg); 1103 1104 if (pos) 1105 css_put(&pos->css); 1106 1107 if (!memcg) 1108 iter->generation++; 1109 else if (!prev) 1110 reclaim->generation = iter->generation; 1111 } 1112 1113 out_unlock: 1114 rcu_read_unlock(); 1115 out: 1116 if (prev && prev != root) 1117 css_put(&prev->css); 1118 1119 return memcg; 1120 } 1121 1122 /** 1123 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1124 * @root: hierarchy root 1125 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1126 */ 1127 void mem_cgroup_iter_break(struct mem_cgroup *root, 1128 struct mem_cgroup *prev) 1129 { 1130 if (!root) 1131 root = root_mem_cgroup; 1132 if (prev && prev != root) 1133 css_put(&prev->css); 1134 } 1135 1136 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1137 struct mem_cgroup *dead_memcg) 1138 { 1139 struct mem_cgroup_reclaim_iter *iter; 1140 struct mem_cgroup_per_node *mz; 1141 int nid; 1142 1143 for_each_node(nid) { 1144 mz = mem_cgroup_nodeinfo(from, nid); 1145 iter = &mz->iter; 1146 cmpxchg(&iter->position, dead_memcg, NULL); 1147 } 1148 } 1149 1150 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1151 { 1152 struct mem_cgroup *memcg = dead_memcg; 1153 struct mem_cgroup *last; 1154 1155 do { 1156 __invalidate_reclaim_iterators(memcg, dead_memcg); 1157 last = memcg; 1158 } while ((memcg = parent_mem_cgroup(memcg))); 1159 1160 /* 1161 * When cgruop1 non-hierarchy mode is used, 1162 * parent_mem_cgroup() does not walk all the way up to the 1163 * cgroup root (root_mem_cgroup). So we have to handle 1164 * dead_memcg from cgroup root separately. 1165 */ 1166 if (last != root_mem_cgroup) 1167 __invalidate_reclaim_iterators(root_mem_cgroup, 1168 dead_memcg); 1169 } 1170 1171 /** 1172 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1173 * @memcg: hierarchy root 1174 * @fn: function to call for each task 1175 * @arg: argument passed to @fn 1176 * 1177 * This function iterates over tasks attached to @memcg or to any of its 1178 * descendants and calls @fn for each task. If @fn returns a non-zero 1179 * value, the function breaks the iteration loop and returns the value. 1180 * Otherwise, it will iterate over all tasks and return 0. 1181 * 1182 * This function must not be called for the root memory cgroup. 1183 */ 1184 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1185 int (*fn)(struct task_struct *, void *), void *arg) 1186 { 1187 struct mem_cgroup *iter; 1188 int ret = 0; 1189 1190 BUG_ON(memcg == root_mem_cgroup); 1191 1192 for_each_mem_cgroup_tree(iter, memcg) { 1193 struct css_task_iter it; 1194 struct task_struct *task; 1195 1196 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1197 while (!ret && (task = css_task_iter_next(&it))) 1198 ret = fn(task, arg); 1199 css_task_iter_end(&it); 1200 if (ret) { 1201 mem_cgroup_iter_break(memcg, iter); 1202 break; 1203 } 1204 } 1205 return ret; 1206 } 1207 1208 /** 1209 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1210 * @page: the page 1211 * @pgdat: pgdat of the page 1212 * 1213 * This function is only safe when following the LRU page isolation 1214 * and putback protocol: the LRU lock must be held, and the page must 1215 * either be PageLRU() or the caller must have isolated/allocated it. 1216 */ 1217 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1218 { 1219 struct mem_cgroup_per_node *mz; 1220 struct mem_cgroup *memcg; 1221 struct lruvec *lruvec; 1222 1223 if (mem_cgroup_disabled()) { 1224 lruvec = &pgdat->__lruvec; 1225 goto out; 1226 } 1227 1228 memcg = page->mem_cgroup; 1229 /* 1230 * Swapcache readahead pages are added to the LRU - and 1231 * possibly migrated - before they are charged. 1232 */ 1233 if (!memcg) 1234 memcg = root_mem_cgroup; 1235 1236 mz = mem_cgroup_page_nodeinfo(memcg, page); 1237 lruvec = &mz->lruvec; 1238 out: 1239 /* 1240 * Since a node can be onlined after the mem_cgroup was created, 1241 * we have to be prepared to initialize lruvec->zone here; 1242 * and if offlined then reonlined, we need to reinitialize it. 1243 */ 1244 if (unlikely(lruvec->pgdat != pgdat)) 1245 lruvec->pgdat = pgdat; 1246 return lruvec; 1247 } 1248 1249 /** 1250 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1251 * @lruvec: mem_cgroup per zone lru vector 1252 * @lru: index of lru list the page is sitting on 1253 * @zid: zone id of the accounted pages 1254 * @nr_pages: positive when adding or negative when removing 1255 * 1256 * This function must be called under lru_lock, just before a page is added 1257 * to or just after a page is removed from an lru list (that ordering being 1258 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1259 */ 1260 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1261 int zid, int nr_pages) 1262 { 1263 struct mem_cgroup_per_node *mz; 1264 unsigned long *lru_size; 1265 long size; 1266 1267 if (mem_cgroup_disabled()) 1268 return; 1269 1270 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1271 lru_size = &mz->lru_zone_size[zid][lru]; 1272 1273 if (nr_pages < 0) 1274 *lru_size += nr_pages; 1275 1276 size = *lru_size; 1277 if (WARN_ONCE(size < 0, 1278 "%s(%p, %d, %d): lru_size %ld\n", 1279 __func__, lruvec, lru, nr_pages, size)) { 1280 VM_BUG_ON(1); 1281 *lru_size = 0; 1282 } 1283 1284 if (nr_pages > 0) 1285 *lru_size += nr_pages; 1286 } 1287 1288 /** 1289 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1290 * @memcg: the memory cgroup 1291 * 1292 * Returns the maximum amount of memory @mem can be charged with, in 1293 * pages. 1294 */ 1295 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1296 { 1297 unsigned long margin = 0; 1298 unsigned long count; 1299 unsigned long limit; 1300 1301 count = page_counter_read(&memcg->memory); 1302 limit = READ_ONCE(memcg->memory.max); 1303 if (count < limit) 1304 margin = limit - count; 1305 1306 if (do_memsw_account()) { 1307 count = page_counter_read(&memcg->memsw); 1308 limit = READ_ONCE(memcg->memsw.max); 1309 if (count <= limit) 1310 margin = min(margin, limit - count); 1311 else 1312 margin = 0; 1313 } 1314 1315 return margin; 1316 } 1317 1318 /* 1319 * A routine for checking "mem" is under move_account() or not. 1320 * 1321 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1322 * moving cgroups. This is for waiting at high-memory pressure 1323 * caused by "move". 1324 */ 1325 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1326 { 1327 struct mem_cgroup *from; 1328 struct mem_cgroup *to; 1329 bool ret = false; 1330 /* 1331 * Unlike task_move routines, we access mc.to, mc.from not under 1332 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1333 */ 1334 spin_lock(&mc.lock); 1335 from = mc.from; 1336 to = mc.to; 1337 if (!from) 1338 goto unlock; 1339 1340 ret = mem_cgroup_is_descendant(from, memcg) || 1341 mem_cgroup_is_descendant(to, memcg); 1342 unlock: 1343 spin_unlock(&mc.lock); 1344 return ret; 1345 } 1346 1347 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1348 { 1349 if (mc.moving_task && current != mc.moving_task) { 1350 if (mem_cgroup_under_move(memcg)) { 1351 DEFINE_WAIT(wait); 1352 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1353 /* moving charge context might have finished. */ 1354 if (mc.moving_task) 1355 schedule(); 1356 finish_wait(&mc.waitq, &wait); 1357 return true; 1358 } 1359 } 1360 return false; 1361 } 1362 1363 static char *memory_stat_format(struct mem_cgroup *memcg) 1364 { 1365 struct seq_buf s; 1366 int i; 1367 1368 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1369 if (!s.buffer) 1370 return NULL; 1371 1372 /* 1373 * Provide statistics on the state of the memory subsystem as 1374 * well as cumulative event counters that show past behavior. 1375 * 1376 * This list is ordered following a combination of these gradients: 1377 * 1) generic big picture -> specifics and details 1378 * 2) reflecting userspace activity -> reflecting kernel heuristics 1379 * 1380 * Current memory state: 1381 */ 1382 1383 seq_buf_printf(&s, "anon %llu\n", 1384 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1385 PAGE_SIZE); 1386 seq_buf_printf(&s, "file %llu\n", 1387 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1388 PAGE_SIZE); 1389 seq_buf_printf(&s, "kernel_stack %llu\n", 1390 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1391 1024); 1392 seq_buf_printf(&s, "slab %llu\n", 1393 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1394 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1395 PAGE_SIZE); 1396 seq_buf_printf(&s, "sock %llu\n", 1397 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1398 PAGE_SIZE); 1399 1400 seq_buf_printf(&s, "shmem %llu\n", 1401 (u64)memcg_page_state(memcg, NR_SHMEM) * 1402 PAGE_SIZE); 1403 seq_buf_printf(&s, "file_mapped %llu\n", 1404 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1405 PAGE_SIZE); 1406 seq_buf_printf(&s, "file_dirty %llu\n", 1407 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1408 PAGE_SIZE); 1409 seq_buf_printf(&s, "file_writeback %llu\n", 1410 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1411 PAGE_SIZE); 1412 1413 /* 1414 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1415 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1416 * arse because it requires migrating the work out of rmap to a place 1417 * where the page->mem_cgroup is set up and stable. 1418 */ 1419 seq_buf_printf(&s, "anon_thp %llu\n", 1420 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1421 PAGE_SIZE); 1422 1423 for (i = 0; i < NR_LRU_LISTS; i++) 1424 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i], 1425 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1426 PAGE_SIZE); 1427 1428 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1429 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1430 PAGE_SIZE); 1431 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1432 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1433 PAGE_SIZE); 1434 1435 /* Accumulated memory events */ 1436 1437 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT)); 1438 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT)); 1439 1440 seq_buf_printf(&s, "workingset_refault %lu\n", 1441 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1442 seq_buf_printf(&s, "workingset_activate %lu\n", 1443 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1444 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1445 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1446 1447 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL)); 1448 seq_buf_printf(&s, "pgscan %lu\n", 1449 memcg_events(memcg, PGSCAN_KSWAPD) + 1450 memcg_events(memcg, PGSCAN_DIRECT)); 1451 seq_buf_printf(&s, "pgsteal %lu\n", 1452 memcg_events(memcg, PGSTEAL_KSWAPD) + 1453 memcg_events(memcg, PGSTEAL_DIRECT)); 1454 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE)); 1455 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE)); 1456 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE)); 1457 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED)); 1458 1459 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1460 seq_buf_printf(&s, "thp_fault_alloc %lu\n", 1461 memcg_events(memcg, THP_FAULT_ALLOC)); 1462 seq_buf_printf(&s, "thp_collapse_alloc %lu\n", 1463 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1464 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1465 1466 /* The above should easily fit into one page */ 1467 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1468 1469 return s.buffer; 1470 } 1471 1472 #define K(x) ((x) << (PAGE_SHIFT-10)) 1473 /** 1474 * mem_cgroup_print_oom_context: Print OOM information relevant to 1475 * memory controller. 1476 * @memcg: The memory cgroup that went over limit 1477 * @p: Task that is going to be killed 1478 * 1479 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1480 * enabled 1481 */ 1482 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1483 { 1484 rcu_read_lock(); 1485 1486 if (memcg) { 1487 pr_cont(",oom_memcg="); 1488 pr_cont_cgroup_path(memcg->css.cgroup); 1489 } else 1490 pr_cont(",global_oom"); 1491 if (p) { 1492 pr_cont(",task_memcg="); 1493 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1494 } 1495 rcu_read_unlock(); 1496 } 1497 1498 /** 1499 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1500 * memory controller. 1501 * @memcg: The memory cgroup that went over limit 1502 */ 1503 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1504 { 1505 char *buf; 1506 1507 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1508 K((u64)page_counter_read(&memcg->memory)), 1509 K((u64)memcg->memory.max), memcg->memory.failcnt); 1510 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1511 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1512 K((u64)page_counter_read(&memcg->swap)), 1513 K((u64)memcg->swap.max), memcg->swap.failcnt); 1514 else { 1515 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1516 K((u64)page_counter_read(&memcg->memsw)), 1517 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1518 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1519 K((u64)page_counter_read(&memcg->kmem)), 1520 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1521 } 1522 1523 pr_info("Memory cgroup stats for "); 1524 pr_cont_cgroup_path(memcg->css.cgroup); 1525 pr_cont(":"); 1526 buf = memory_stat_format(memcg); 1527 if (!buf) 1528 return; 1529 pr_info("%s", buf); 1530 kfree(buf); 1531 } 1532 1533 /* 1534 * Return the memory (and swap, if configured) limit for a memcg. 1535 */ 1536 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1537 { 1538 unsigned long max; 1539 1540 max = memcg->memory.max; 1541 if (mem_cgroup_swappiness(memcg)) { 1542 unsigned long memsw_max; 1543 unsigned long swap_max; 1544 1545 memsw_max = memcg->memsw.max; 1546 swap_max = memcg->swap.max; 1547 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1548 max = min(max + swap_max, memsw_max); 1549 } 1550 return max; 1551 } 1552 1553 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1554 { 1555 return page_counter_read(&memcg->memory); 1556 } 1557 1558 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1559 int order) 1560 { 1561 struct oom_control oc = { 1562 .zonelist = NULL, 1563 .nodemask = NULL, 1564 .memcg = memcg, 1565 .gfp_mask = gfp_mask, 1566 .order = order, 1567 }; 1568 bool ret; 1569 1570 if (mutex_lock_killable(&oom_lock)) 1571 return true; 1572 /* 1573 * A few threads which were not waiting at mutex_lock_killable() can 1574 * fail to bail out. Therefore, check again after holding oom_lock. 1575 */ 1576 ret = should_force_charge() || out_of_memory(&oc); 1577 mutex_unlock(&oom_lock); 1578 return ret; 1579 } 1580 1581 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1582 pg_data_t *pgdat, 1583 gfp_t gfp_mask, 1584 unsigned long *total_scanned) 1585 { 1586 struct mem_cgroup *victim = NULL; 1587 int total = 0; 1588 int loop = 0; 1589 unsigned long excess; 1590 unsigned long nr_scanned; 1591 struct mem_cgroup_reclaim_cookie reclaim = { 1592 .pgdat = pgdat, 1593 }; 1594 1595 excess = soft_limit_excess(root_memcg); 1596 1597 while (1) { 1598 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1599 if (!victim) { 1600 loop++; 1601 if (loop >= 2) { 1602 /* 1603 * If we have not been able to reclaim 1604 * anything, it might because there are 1605 * no reclaimable pages under this hierarchy 1606 */ 1607 if (!total) 1608 break; 1609 /* 1610 * We want to do more targeted reclaim. 1611 * excess >> 2 is not to excessive so as to 1612 * reclaim too much, nor too less that we keep 1613 * coming back to reclaim from this cgroup 1614 */ 1615 if (total >= (excess >> 2) || 1616 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1617 break; 1618 } 1619 continue; 1620 } 1621 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1622 pgdat, &nr_scanned); 1623 *total_scanned += nr_scanned; 1624 if (!soft_limit_excess(root_memcg)) 1625 break; 1626 } 1627 mem_cgroup_iter_break(root_memcg, victim); 1628 return total; 1629 } 1630 1631 #ifdef CONFIG_LOCKDEP 1632 static struct lockdep_map memcg_oom_lock_dep_map = { 1633 .name = "memcg_oom_lock", 1634 }; 1635 #endif 1636 1637 static DEFINE_SPINLOCK(memcg_oom_lock); 1638 1639 /* 1640 * Check OOM-Killer is already running under our hierarchy. 1641 * If someone is running, return false. 1642 */ 1643 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1644 { 1645 struct mem_cgroup *iter, *failed = NULL; 1646 1647 spin_lock(&memcg_oom_lock); 1648 1649 for_each_mem_cgroup_tree(iter, memcg) { 1650 if (iter->oom_lock) { 1651 /* 1652 * this subtree of our hierarchy is already locked 1653 * so we cannot give a lock. 1654 */ 1655 failed = iter; 1656 mem_cgroup_iter_break(memcg, iter); 1657 break; 1658 } else 1659 iter->oom_lock = true; 1660 } 1661 1662 if (failed) { 1663 /* 1664 * OK, we failed to lock the whole subtree so we have 1665 * to clean up what we set up to the failing subtree 1666 */ 1667 for_each_mem_cgroup_tree(iter, memcg) { 1668 if (iter == failed) { 1669 mem_cgroup_iter_break(memcg, iter); 1670 break; 1671 } 1672 iter->oom_lock = false; 1673 } 1674 } else 1675 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1676 1677 spin_unlock(&memcg_oom_lock); 1678 1679 return !failed; 1680 } 1681 1682 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1683 { 1684 struct mem_cgroup *iter; 1685 1686 spin_lock(&memcg_oom_lock); 1687 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1688 for_each_mem_cgroup_tree(iter, memcg) 1689 iter->oom_lock = false; 1690 spin_unlock(&memcg_oom_lock); 1691 } 1692 1693 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1694 { 1695 struct mem_cgroup *iter; 1696 1697 spin_lock(&memcg_oom_lock); 1698 for_each_mem_cgroup_tree(iter, memcg) 1699 iter->under_oom++; 1700 spin_unlock(&memcg_oom_lock); 1701 } 1702 1703 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1704 { 1705 struct mem_cgroup *iter; 1706 1707 /* 1708 * When a new child is created while the hierarchy is under oom, 1709 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1710 */ 1711 spin_lock(&memcg_oom_lock); 1712 for_each_mem_cgroup_tree(iter, memcg) 1713 if (iter->under_oom > 0) 1714 iter->under_oom--; 1715 spin_unlock(&memcg_oom_lock); 1716 } 1717 1718 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1719 1720 struct oom_wait_info { 1721 struct mem_cgroup *memcg; 1722 wait_queue_entry_t wait; 1723 }; 1724 1725 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1726 unsigned mode, int sync, void *arg) 1727 { 1728 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1729 struct mem_cgroup *oom_wait_memcg; 1730 struct oom_wait_info *oom_wait_info; 1731 1732 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1733 oom_wait_memcg = oom_wait_info->memcg; 1734 1735 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1736 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1737 return 0; 1738 return autoremove_wake_function(wait, mode, sync, arg); 1739 } 1740 1741 static void memcg_oom_recover(struct mem_cgroup *memcg) 1742 { 1743 /* 1744 * For the following lockless ->under_oom test, the only required 1745 * guarantee is that it must see the state asserted by an OOM when 1746 * this function is called as a result of userland actions 1747 * triggered by the notification of the OOM. This is trivially 1748 * achieved by invoking mem_cgroup_mark_under_oom() before 1749 * triggering notification. 1750 */ 1751 if (memcg && memcg->under_oom) 1752 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1753 } 1754 1755 enum oom_status { 1756 OOM_SUCCESS, 1757 OOM_FAILED, 1758 OOM_ASYNC, 1759 OOM_SKIPPED 1760 }; 1761 1762 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1763 { 1764 enum oom_status ret; 1765 bool locked; 1766 1767 if (order > PAGE_ALLOC_COSTLY_ORDER) 1768 return OOM_SKIPPED; 1769 1770 memcg_memory_event(memcg, MEMCG_OOM); 1771 1772 /* 1773 * We are in the middle of the charge context here, so we 1774 * don't want to block when potentially sitting on a callstack 1775 * that holds all kinds of filesystem and mm locks. 1776 * 1777 * cgroup1 allows disabling the OOM killer and waiting for outside 1778 * handling until the charge can succeed; remember the context and put 1779 * the task to sleep at the end of the page fault when all locks are 1780 * released. 1781 * 1782 * On the other hand, in-kernel OOM killer allows for an async victim 1783 * memory reclaim (oom_reaper) and that means that we are not solely 1784 * relying on the oom victim to make a forward progress and we can 1785 * invoke the oom killer here. 1786 * 1787 * Please note that mem_cgroup_out_of_memory might fail to find a 1788 * victim and then we have to bail out from the charge path. 1789 */ 1790 if (memcg->oom_kill_disable) { 1791 if (!current->in_user_fault) 1792 return OOM_SKIPPED; 1793 css_get(&memcg->css); 1794 current->memcg_in_oom = memcg; 1795 current->memcg_oom_gfp_mask = mask; 1796 current->memcg_oom_order = order; 1797 1798 return OOM_ASYNC; 1799 } 1800 1801 mem_cgroup_mark_under_oom(memcg); 1802 1803 locked = mem_cgroup_oom_trylock(memcg); 1804 1805 if (locked) 1806 mem_cgroup_oom_notify(memcg); 1807 1808 mem_cgroup_unmark_under_oom(memcg); 1809 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1810 ret = OOM_SUCCESS; 1811 else 1812 ret = OOM_FAILED; 1813 1814 if (locked) 1815 mem_cgroup_oom_unlock(memcg); 1816 1817 return ret; 1818 } 1819 1820 /** 1821 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1822 * @handle: actually kill/wait or just clean up the OOM state 1823 * 1824 * This has to be called at the end of a page fault if the memcg OOM 1825 * handler was enabled. 1826 * 1827 * Memcg supports userspace OOM handling where failed allocations must 1828 * sleep on a waitqueue until the userspace task resolves the 1829 * situation. Sleeping directly in the charge context with all kinds 1830 * of locks held is not a good idea, instead we remember an OOM state 1831 * in the task and mem_cgroup_oom_synchronize() has to be called at 1832 * the end of the page fault to complete the OOM handling. 1833 * 1834 * Returns %true if an ongoing memcg OOM situation was detected and 1835 * completed, %false otherwise. 1836 */ 1837 bool mem_cgroup_oom_synchronize(bool handle) 1838 { 1839 struct mem_cgroup *memcg = current->memcg_in_oom; 1840 struct oom_wait_info owait; 1841 bool locked; 1842 1843 /* OOM is global, do not handle */ 1844 if (!memcg) 1845 return false; 1846 1847 if (!handle) 1848 goto cleanup; 1849 1850 owait.memcg = memcg; 1851 owait.wait.flags = 0; 1852 owait.wait.func = memcg_oom_wake_function; 1853 owait.wait.private = current; 1854 INIT_LIST_HEAD(&owait.wait.entry); 1855 1856 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1857 mem_cgroup_mark_under_oom(memcg); 1858 1859 locked = mem_cgroup_oom_trylock(memcg); 1860 1861 if (locked) 1862 mem_cgroup_oom_notify(memcg); 1863 1864 if (locked && !memcg->oom_kill_disable) { 1865 mem_cgroup_unmark_under_oom(memcg); 1866 finish_wait(&memcg_oom_waitq, &owait.wait); 1867 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1868 current->memcg_oom_order); 1869 } else { 1870 schedule(); 1871 mem_cgroup_unmark_under_oom(memcg); 1872 finish_wait(&memcg_oom_waitq, &owait.wait); 1873 } 1874 1875 if (locked) { 1876 mem_cgroup_oom_unlock(memcg); 1877 /* 1878 * There is no guarantee that an OOM-lock contender 1879 * sees the wakeups triggered by the OOM kill 1880 * uncharges. Wake any sleepers explicitely. 1881 */ 1882 memcg_oom_recover(memcg); 1883 } 1884 cleanup: 1885 current->memcg_in_oom = NULL; 1886 css_put(&memcg->css); 1887 return true; 1888 } 1889 1890 /** 1891 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1892 * @victim: task to be killed by the OOM killer 1893 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1894 * 1895 * Returns a pointer to a memory cgroup, which has to be cleaned up 1896 * by killing all belonging OOM-killable tasks. 1897 * 1898 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1899 */ 1900 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1901 struct mem_cgroup *oom_domain) 1902 { 1903 struct mem_cgroup *oom_group = NULL; 1904 struct mem_cgroup *memcg; 1905 1906 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1907 return NULL; 1908 1909 if (!oom_domain) 1910 oom_domain = root_mem_cgroup; 1911 1912 rcu_read_lock(); 1913 1914 memcg = mem_cgroup_from_task(victim); 1915 if (memcg == root_mem_cgroup) 1916 goto out; 1917 1918 /* 1919 * Traverse the memory cgroup hierarchy from the victim task's 1920 * cgroup up to the OOMing cgroup (or root) to find the 1921 * highest-level memory cgroup with oom.group set. 1922 */ 1923 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1924 if (memcg->oom_group) 1925 oom_group = memcg; 1926 1927 if (memcg == oom_domain) 1928 break; 1929 } 1930 1931 if (oom_group) 1932 css_get(&oom_group->css); 1933 out: 1934 rcu_read_unlock(); 1935 1936 return oom_group; 1937 } 1938 1939 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1940 { 1941 pr_info("Tasks in "); 1942 pr_cont_cgroup_path(memcg->css.cgroup); 1943 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1944 } 1945 1946 /** 1947 * lock_page_memcg - lock a page->mem_cgroup binding 1948 * @page: the page 1949 * 1950 * This function protects unlocked LRU pages from being moved to 1951 * another cgroup. 1952 * 1953 * It ensures lifetime of the returned memcg. Caller is responsible 1954 * for the lifetime of the page; __unlock_page_memcg() is available 1955 * when @page might get freed inside the locked section. 1956 */ 1957 struct mem_cgroup *lock_page_memcg(struct page *page) 1958 { 1959 struct mem_cgroup *memcg; 1960 unsigned long flags; 1961 1962 /* 1963 * The RCU lock is held throughout the transaction. The fast 1964 * path can get away without acquiring the memcg->move_lock 1965 * because page moving starts with an RCU grace period. 1966 * 1967 * The RCU lock also protects the memcg from being freed when 1968 * the page state that is going to change is the only thing 1969 * preventing the page itself from being freed. E.g. writeback 1970 * doesn't hold a page reference and relies on PG_writeback to 1971 * keep off truncation, migration and so forth. 1972 */ 1973 rcu_read_lock(); 1974 1975 if (mem_cgroup_disabled()) 1976 return NULL; 1977 again: 1978 memcg = page->mem_cgroup; 1979 if (unlikely(!memcg)) 1980 return NULL; 1981 1982 if (atomic_read(&memcg->moving_account) <= 0) 1983 return memcg; 1984 1985 spin_lock_irqsave(&memcg->move_lock, flags); 1986 if (memcg != page->mem_cgroup) { 1987 spin_unlock_irqrestore(&memcg->move_lock, flags); 1988 goto again; 1989 } 1990 1991 /* 1992 * When charge migration first begins, we can have locked and 1993 * unlocked page stat updates happening concurrently. Track 1994 * the task who has the lock for unlock_page_memcg(). 1995 */ 1996 memcg->move_lock_task = current; 1997 memcg->move_lock_flags = flags; 1998 1999 return memcg; 2000 } 2001 EXPORT_SYMBOL(lock_page_memcg); 2002 2003 /** 2004 * __unlock_page_memcg - unlock and unpin a memcg 2005 * @memcg: the memcg 2006 * 2007 * Unlock and unpin a memcg returned by lock_page_memcg(). 2008 */ 2009 void __unlock_page_memcg(struct mem_cgroup *memcg) 2010 { 2011 if (memcg && memcg->move_lock_task == current) { 2012 unsigned long flags = memcg->move_lock_flags; 2013 2014 memcg->move_lock_task = NULL; 2015 memcg->move_lock_flags = 0; 2016 2017 spin_unlock_irqrestore(&memcg->move_lock, flags); 2018 } 2019 2020 rcu_read_unlock(); 2021 } 2022 2023 /** 2024 * unlock_page_memcg - unlock a page->mem_cgroup binding 2025 * @page: the page 2026 */ 2027 void unlock_page_memcg(struct page *page) 2028 { 2029 __unlock_page_memcg(page->mem_cgroup); 2030 } 2031 EXPORT_SYMBOL(unlock_page_memcg); 2032 2033 struct memcg_stock_pcp { 2034 struct mem_cgroup *cached; /* this never be root cgroup */ 2035 unsigned int nr_pages; 2036 struct work_struct work; 2037 unsigned long flags; 2038 #define FLUSHING_CACHED_CHARGE 0 2039 }; 2040 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2041 static DEFINE_MUTEX(percpu_charge_mutex); 2042 2043 /** 2044 * consume_stock: Try to consume stocked charge on this cpu. 2045 * @memcg: memcg to consume from. 2046 * @nr_pages: how many pages to charge. 2047 * 2048 * The charges will only happen if @memcg matches the current cpu's memcg 2049 * stock, and at least @nr_pages are available in that stock. Failure to 2050 * service an allocation will refill the stock. 2051 * 2052 * returns true if successful, false otherwise. 2053 */ 2054 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2055 { 2056 struct memcg_stock_pcp *stock; 2057 unsigned long flags; 2058 bool ret = false; 2059 2060 if (nr_pages > MEMCG_CHARGE_BATCH) 2061 return ret; 2062 2063 local_irq_save(flags); 2064 2065 stock = this_cpu_ptr(&memcg_stock); 2066 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2067 stock->nr_pages -= nr_pages; 2068 ret = true; 2069 } 2070 2071 local_irq_restore(flags); 2072 2073 return ret; 2074 } 2075 2076 /* 2077 * Returns stocks cached in percpu and reset cached information. 2078 */ 2079 static void drain_stock(struct memcg_stock_pcp *stock) 2080 { 2081 struct mem_cgroup *old = stock->cached; 2082 2083 if (stock->nr_pages) { 2084 page_counter_uncharge(&old->memory, stock->nr_pages); 2085 if (do_memsw_account()) 2086 page_counter_uncharge(&old->memsw, stock->nr_pages); 2087 css_put_many(&old->css, stock->nr_pages); 2088 stock->nr_pages = 0; 2089 } 2090 stock->cached = NULL; 2091 } 2092 2093 static void drain_local_stock(struct work_struct *dummy) 2094 { 2095 struct memcg_stock_pcp *stock; 2096 unsigned long flags; 2097 2098 /* 2099 * The only protection from memory hotplug vs. drain_stock races is 2100 * that we always operate on local CPU stock here with IRQ disabled 2101 */ 2102 local_irq_save(flags); 2103 2104 stock = this_cpu_ptr(&memcg_stock); 2105 drain_stock(stock); 2106 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2107 2108 local_irq_restore(flags); 2109 } 2110 2111 /* 2112 * Cache charges(val) to local per_cpu area. 2113 * This will be consumed by consume_stock() function, later. 2114 */ 2115 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2116 { 2117 struct memcg_stock_pcp *stock; 2118 unsigned long flags; 2119 2120 local_irq_save(flags); 2121 2122 stock = this_cpu_ptr(&memcg_stock); 2123 if (stock->cached != memcg) { /* reset if necessary */ 2124 drain_stock(stock); 2125 stock->cached = memcg; 2126 } 2127 stock->nr_pages += nr_pages; 2128 2129 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2130 drain_stock(stock); 2131 2132 local_irq_restore(flags); 2133 } 2134 2135 /* 2136 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2137 * of the hierarchy under it. 2138 */ 2139 static void drain_all_stock(struct mem_cgroup *root_memcg) 2140 { 2141 int cpu, curcpu; 2142 2143 /* If someone's already draining, avoid adding running more workers. */ 2144 if (!mutex_trylock(&percpu_charge_mutex)) 2145 return; 2146 /* 2147 * Notify other cpus that system-wide "drain" is running 2148 * We do not care about races with the cpu hotplug because cpu down 2149 * as well as workers from this path always operate on the local 2150 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2151 */ 2152 curcpu = get_cpu(); 2153 for_each_online_cpu(cpu) { 2154 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2155 struct mem_cgroup *memcg; 2156 bool flush = false; 2157 2158 rcu_read_lock(); 2159 memcg = stock->cached; 2160 if (memcg && stock->nr_pages && 2161 mem_cgroup_is_descendant(memcg, root_memcg)) 2162 flush = true; 2163 rcu_read_unlock(); 2164 2165 if (flush && 2166 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2167 if (cpu == curcpu) 2168 drain_local_stock(&stock->work); 2169 else 2170 schedule_work_on(cpu, &stock->work); 2171 } 2172 } 2173 put_cpu(); 2174 mutex_unlock(&percpu_charge_mutex); 2175 } 2176 2177 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2178 { 2179 struct memcg_stock_pcp *stock; 2180 struct mem_cgroup *memcg, *mi; 2181 2182 stock = &per_cpu(memcg_stock, cpu); 2183 drain_stock(stock); 2184 2185 for_each_mem_cgroup(memcg) { 2186 int i; 2187 2188 for (i = 0; i < MEMCG_NR_STAT; i++) { 2189 int nid; 2190 long x; 2191 2192 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2193 if (x) 2194 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2195 atomic_long_add(x, &memcg->vmstats[i]); 2196 2197 if (i >= NR_VM_NODE_STAT_ITEMS) 2198 continue; 2199 2200 for_each_node(nid) { 2201 struct mem_cgroup_per_node *pn; 2202 2203 pn = mem_cgroup_nodeinfo(memcg, nid); 2204 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2205 if (x) 2206 do { 2207 atomic_long_add(x, &pn->lruvec_stat[i]); 2208 } while ((pn = parent_nodeinfo(pn, nid))); 2209 } 2210 } 2211 2212 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2213 long x; 2214 2215 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2216 if (x) 2217 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2218 atomic_long_add(x, &memcg->vmevents[i]); 2219 } 2220 } 2221 2222 return 0; 2223 } 2224 2225 static void reclaim_high(struct mem_cgroup *memcg, 2226 unsigned int nr_pages, 2227 gfp_t gfp_mask) 2228 { 2229 do { 2230 if (page_counter_read(&memcg->memory) <= memcg->high) 2231 continue; 2232 memcg_memory_event(memcg, MEMCG_HIGH); 2233 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2234 } while ((memcg = parent_mem_cgroup(memcg))); 2235 } 2236 2237 static void high_work_func(struct work_struct *work) 2238 { 2239 struct mem_cgroup *memcg; 2240 2241 memcg = container_of(work, struct mem_cgroup, high_work); 2242 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2243 } 2244 2245 /* 2246 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2247 * enough to still cause a significant slowdown in most cases, while still 2248 * allowing diagnostics and tracing to proceed without becoming stuck. 2249 */ 2250 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2251 2252 /* 2253 * When calculating the delay, we use these either side of the exponentiation to 2254 * maintain precision and scale to a reasonable number of jiffies (see the table 2255 * below. 2256 * 2257 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2258 * overage ratio to a delay. 2259 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2260 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2261 * to produce a reasonable delay curve. 2262 * 2263 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2264 * reasonable delay curve compared to precision-adjusted overage, not 2265 * penalising heavily at first, but still making sure that growth beyond the 2266 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2267 * example, with a high of 100 megabytes: 2268 * 2269 * +-------+------------------------+ 2270 * | usage | time to allocate in ms | 2271 * +-------+------------------------+ 2272 * | 100M | 0 | 2273 * | 101M | 6 | 2274 * | 102M | 25 | 2275 * | 103M | 57 | 2276 * | 104M | 102 | 2277 * | 105M | 159 | 2278 * | 106M | 230 | 2279 * | 107M | 313 | 2280 * | 108M | 409 | 2281 * | 109M | 518 | 2282 * | 110M | 639 | 2283 * | 111M | 774 | 2284 * | 112M | 921 | 2285 * | 113M | 1081 | 2286 * | 114M | 1254 | 2287 * | 115M | 1439 | 2288 * | 116M | 1638 | 2289 * | 117M | 1849 | 2290 * | 118M | 2000 | 2291 * | 119M | 2000 | 2292 * | 120M | 2000 | 2293 * +-------+------------------------+ 2294 */ 2295 #define MEMCG_DELAY_PRECISION_SHIFT 20 2296 #define MEMCG_DELAY_SCALING_SHIFT 14 2297 2298 /* 2299 * Scheduled by try_charge() to be executed from the userland return path 2300 * and reclaims memory over the high limit. 2301 */ 2302 void mem_cgroup_handle_over_high(void) 2303 { 2304 unsigned long usage, high, clamped_high; 2305 unsigned long pflags; 2306 unsigned long penalty_jiffies, overage; 2307 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2308 struct mem_cgroup *memcg; 2309 2310 if (likely(!nr_pages)) 2311 return; 2312 2313 memcg = get_mem_cgroup_from_mm(current->mm); 2314 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2315 current->memcg_nr_pages_over_high = 0; 2316 2317 /* 2318 * memory.high is breached and reclaim is unable to keep up. Throttle 2319 * allocators proactively to slow down excessive growth. 2320 * 2321 * We use overage compared to memory.high to calculate the number of 2322 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2323 * fairly lenient on small overages, and increasingly harsh when the 2324 * memcg in question makes it clear that it has no intention of stopping 2325 * its crazy behaviour, so we exponentially increase the delay based on 2326 * overage amount. 2327 */ 2328 2329 usage = page_counter_read(&memcg->memory); 2330 high = READ_ONCE(memcg->high); 2331 2332 if (usage <= high) 2333 goto out; 2334 2335 /* 2336 * Prevent division by 0 in overage calculation by acting as if it was a 2337 * threshold of 1 page 2338 */ 2339 clamped_high = max(high, 1UL); 2340 2341 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT, 2342 clamped_high); 2343 2344 penalty_jiffies = ((u64)overage * overage * HZ) 2345 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT); 2346 2347 /* 2348 * Factor in the task's own contribution to the overage, such that four 2349 * N-sized allocations are throttled approximately the same as one 2350 * 4N-sized allocation. 2351 * 2352 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2353 * larger the current charge patch is than that. 2354 */ 2355 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2356 2357 /* 2358 * Clamp the max delay per usermode return so as to still keep the 2359 * application moving forwards and also permit diagnostics, albeit 2360 * extremely slowly. 2361 */ 2362 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2363 2364 /* 2365 * Don't sleep if the amount of jiffies this memcg owes us is so low 2366 * that it's not even worth doing, in an attempt to be nice to those who 2367 * go only a small amount over their memory.high value and maybe haven't 2368 * been aggressively reclaimed enough yet. 2369 */ 2370 if (penalty_jiffies <= HZ / 100) 2371 goto out; 2372 2373 /* 2374 * If we exit early, we're guaranteed to die (since 2375 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2376 * need to account for any ill-begotten jiffies to pay them off later. 2377 */ 2378 psi_memstall_enter(&pflags); 2379 schedule_timeout_killable(penalty_jiffies); 2380 psi_memstall_leave(&pflags); 2381 2382 out: 2383 css_put(&memcg->css); 2384 } 2385 2386 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2387 unsigned int nr_pages) 2388 { 2389 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2390 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2391 struct mem_cgroup *mem_over_limit; 2392 struct page_counter *counter; 2393 unsigned long nr_reclaimed; 2394 bool may_swap = true; 2395 bool drained = false; 2396 enum oom_status oom_status; 2397 2398 if (mem_cgroup_is_root(memcg)) 2399 return 0; 2400 retry: 2401 if (consume_stock(memcg, nr_pages)) 2402 return 0; 2403 2404 if (!do_memsw_account() || 2405 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2406 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2407 goto done_restock; 2408 if (do_memsw_account()) 2409 page_counter_uncharge(&memcg->memsw, batch); 2410 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2411 } else { 2412 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2413 may_swap = false; 2414 } 2415 2416 if (batch > nr_pages) { 2417 batch = nr_pages; 2418 goto retry; 2419 } 2420 2421 /* 2422 * Memcg doesn't have a dedicated reserve for atomic 2423 * allocations. But like the global atomic pool, we need to 2424 * put the burden of reclaim on regular allocation requests 2425 * and let these go through as privileged allocations. 2426 */ 2427 if (gfp_mask & __GFP_ATOMIC) 2428 goto force; 2429 2430 /* 2431 * Unlike in global OOM situations, memcg is not in a physical 2432 * memory shortage. Allow dying and OOM-killed tasks to 2433 * bypass the last charges so that they can exit quickly and 2434 * free their memory. 2435 */ 2436 if (unlikely(should_force_charge())) 2437 goto force; 2438 2439 /* 2440 * Prevent unbounded recursion when reclaim operations need to 2441 * allocate memory. This might exceed the limits temporarily, 2442 * but we prefer facilitating memory reclaim and getting back 2443 * under the limit over triggering OOM kills in these cases. 2444 */ 2445 if (unlikely(current->flags & PF_MEMALLOC)) 2446 goto force; 2447 2448 if (unlikely(task_in_memcg_oom(current))) 2449 goto nomem; 2450 2451 if (!gfpflags_allow_blocking(gfp_mask)) 2452 goto nomem; 2453 2454 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2455 2456 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2457 gfp_mask, may_swap); 2458 2459 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2460 goto retry; 2461 2462 if (!drained) { 2463 drain_all_stock(mem_over_limit); 2464 drained = true; 2465 goto retry; 2466 } 2467 2468 if (gfp_mask & __GFP_NORETRY) 2469 goto nomem; 2470 /* 2471 * Even though the limit is exceeded at this point, reclaim 2472 * may have been able to free some pages. Retry the charge 2473 * before killing the task. 2474 * 2475 * Only for regular pages, though: huge pages are rather 2476 * unlikely to succeed so close to the limit, and we fall back 2477 * to regular pages anyway in case of failure. 2478 */ 2479 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2480 goto retry; 2481 /* 2482 * At task move, charge accounts can be doubly counted. So, it's 2483 * better to wait until the end of task_move if something is going on. 2484 */ 2485 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2486 goto retry; 2487 2488 if (nr_retries--) 2489 goto retry; 2490 2491 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2492 goto nomem; 2493 2494 if (gfp_mask & __GFP_NOFAIL) 2495 goto force; 2496 2497 if (fatal_signal_pending(current)) 2498 goto force; 2499 2500 /* 2501 * keep retrying as long as the memcg oom killer is able to make 2502 * a forward progress or bypass the charge if the oom killer 2503 * couldn't make any progress. 2504 */ 2505 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2506 get_order(nr_pages * PAGE_SIZE)); 2507 switch (oom_status) { 2508 case OOM_SUCCESS: 2509 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2510 goto retry; 2511 case OOM_FAILED: 2512 goto force; 2513 default: 2514 goto nomem; 2515 } 2516 nomem: 2517 if (!(gfp_mask & __GFP_NOFAIL)) 2518 return -ENOMEM; 2519 force: 2520 /* 2521 * The allocation either can't fail or will lead to more memory 2522 * being freed very soon. Allow memory usage go over the limit 2523 * temporarily by force charging it. 2524 */ 2525 page_counter_charge(&memcg->memory, nr_pages); 2526 if (do_memsw_account()) 2527 page_counter_charge(&memcg->memsw, nr_pages); 2528 css_get_many(&memcg->css, nr_pages); 2529 2530 return 0; 2531 2532 done_restock: 2533 css_get_many(&memcg->css, batch); 2534 if (batch > nr_pages) 2535 refill_stock(memcg, batch - nr_pages); 2536 2537 /* 2538 * If the hierarchy is above the normal consumption range, schedule 2539 * reclaim on returning to userland. We can perform reclaim here 2540 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2541 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2542 * not recorded as it most likely matches current's and won't 2543 * change in the meantime. As high limit is checked again before 2544 * reclaim, the cost of mismatch is negligible. 2545 */ 2546 do { 2547 if (page_counter_read(&memcg->memory) > memcg->high) { 2548 /* Don't bother a random interrupted task */ 2549 if (in_interrupt()) { 2550 schedule_work(&memcg->high_work); 2551 break; 2552 } 2553 current->memcg_nr_pages_over_high += batch; 2554 set_notify_resume(current); 2555 break; 2556 } 2557 } while ((memcg = parent_mem_cgroup(memcg))); 2558 2559 return 0; 2560 } 2561 2562 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2563 { 2564 if (mem_cgroup_is_root(memcg)) 2565 return; 2566 2567 page_counter_uncharge(&memcg->memory, nr_pages); 2568 if (do_memsw_account()) 2569 page_counter_uncharge(&memcg->memsw, nr_pages); 2570 2571 css_put_many(&memcg->css, nr_pages); 2572 } 2573 2574 static void lock_page_lru(struct page *page, int *isolated) 2575 { 2576 pg_data_t *pgdat = page_pgdat(page); 2577 2578 spin_lock_irq(&pgdat->lru_lock); 2579 if (PageLRU(page)) { 2580 struct lruvec *lruvec; 2581 2582 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2583 ClearPageLRU(page); 2584 del_page_from_lru_list(page, lruvec, page_lru(page)); 2585 *isolated = 1; 2586 } else 2587 *isolated = 0; 2588 } 2589 2590 static void unlock_page_lru(struct page *page, int isolated) 2591 { 2592 pg_data_t *pgdat = page_pgdat(page); 2593 2594 if (isolated) { 2595 struct lruvec *lruvec; 2596 2597 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2598 VM_BUG_ON_PAGE(PageLRU(page), page); 2599 SetPageLRU(page); 2600 add_page_to_lru_list(page, lruvec, page_lru(page)); 2601 } 2602 spin_unlock_irq(&pgdat->lru_lock); 2603 } 2604 2605 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2606 bool lrucare) 2607 { 2608 int isolated; 2609 2610 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2611 2612 /* 2613 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2614 * may already be on some other mem_cgroup's LRU. Take care of it. 2615 */ 2616 if (lrucare) 2617 lock_page_lru(page, &isolated); 2618 2619 /* 2620 * Nobody should be changing or seriously looking at 2621 * page->mem_cgroup at this point: 2622 * 2623 * - the page is uncharged 2624 * 2625 * - the page is off-LRU 2626 * 2627 * - an anonymous fault has exclusive page access, except for 2628 * a locked page table 2629 * 2630 * - a page cache insertion, a swapin fault, or a migration 2631 * have the page locked 2632 */ 2633 page->mem_cgroup = memcg; 2634 2635 if (lrucare) 2636 unlock_page_lru(page, isolated); 2637 } 2638 2639 #ifdef CONFIG_MEMCG_KMEM 2640 static int memcg_alloc_cache_id(void) 2641 { 2642 int id, size; 2643 int err; 2644 2645 id = ida_simple_get(&memcg_cache_ida, 2646 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2647 if (id < 0) 2648 return id; 2649 2650 if (id < memcg_nr_cache_ids) 2651 return id; 2652 2653 /* 2654 * There's no space for the new id in memcg_caches arrays, 2655 * so we have to grow them. 2656 */ 2657 down_write(&memcg_cache_ids_sem); 2658 2659 size = 2 * (id + 1); 2660 if (size < MEMCG_CACHES_MIN_SIZE) 2661 size = MEMCG_CACHES_MIN_SIZE; 2662 else if (size > MEMCG_CACHES_MAX_SIZE) 2663 size = MEMCG_CACHES_MAX_SIZE; 2664 2665 err = memcg_update_all_caches(size); 2666 if (!err) 2667 err = memcg_update_all_list_lrus(size); 2668 if (!err) 2669 memcg_nr_cache_ids = size; 2670 2671 up_write(&memcg_cache_ids_sem); 2672 2673 if (err) { 2674 ida_simple_remove(&memcg_cache_ida, id); 2675 return err; 2676 } 2677 return id; 2678 } 2679 2680 static void memcg_free_cache_id(int id) 2681 { 2682 ida_simple_remove(&memcg_cache_ida, id); 2683 } 2684 2685 struct memcg_kmem_cache_create_work { 2686 struct mem_cgroup *memcg; 2687 struct kmem_cache *cachep; 2688 struct work_struct work; 2689 }; 2690 2691 static void memcg_kmem_cache_create_func(struct work_struct *w) 2692 { 2693 struct memcg_kmem_cache_create_work *cw = 2694 container_of(w, struct memcg_kmem_cache_create_work, work); 2695 struct mem_cgroup *memcg = cw->memcg; 2696 struct kmem_cache *cachep = cw->cachep; 2697 2698 memcg_create_kmem_cache(memcg, cachep); 2699 2700 css_put(&memcg->css); 2701 kfree(cw); 2702 } 2703 2704 /* 2705 * Enqueue the creation of a per-memcg kmem_cache. 2706 */ 2707 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2708 struct kmem_cache *cachep) 2709 { 2710 struct memcg_kmem_cache_create_work *cw; 2711 2712 if (!css_tryget_online(&memcg->css)) 2713 return; 2714 2715 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2716 if (!cw) 2717 return; 2718 2719 cw->memcg = memcg; 2720 cw->cachep = cachep; 2721 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2722 2723 queue_work(memcg_kmem_cache_wq, &cw->work); 2724 } 2725 2726 static inline bool memcg_kmem_bypass(void) 2727 { 2728 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2729 return true; 2730 return false; 2731 } 2732 2733 /** 2734 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2735 * @cachep: the original global kmem cache 2736 * 2737 * Return the kmem_cache we're supposed to use for a slab allocation. 2738 * We try to use the current memcg's version of the cache. 2739 * 2740 * If the cache does not exist yet, if we are the first user of it, we 2741 * create it asynchronously in a workqueue and let the current allocation 2742 * go through with the original cache. 2743 * 2744 * This function takes a reference to the cache it returns to assure it 2745 * won't get destroyed while we are working with it. Once the caller is 2746 * done with it, memcg_kmem_put_cache() must be called to release the 2747 * reference. 2748 */ 2749 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2750 { 2751 struct mem_cgroup *memcg; 2752 struct kmem_cache *memcg_cachep; 2753 struct memcg_cache_array *arr; 2754 int kmemcg_id; 2755 2756 VM_BUG_ON(!is_root_cache(cachep)); 2757 2758 if (memcg_kmem_bypass()) 2759 return cachep; 2760 2761 rcu_read_lock(); 2762 2763 if (unlikely(current->active_memcg)) 2764 memcg = current->active_memcg; 2765 else 2766 memcg = mem_cgroup_from_task(current); 2767 2768 if (!memcg || memcg == root_mem_cgroup) 2769 goto out_unlock; 2770 2771 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2772 if (kmemcg_id < 0) 2773 goto out_unlock; 2774 2775 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2776 2777 /* 2778 * Make sure we will access the up-to-date value. The code updating 2779 * memcg_caches issues a write barrier to match the data dependency 2780 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2781 */ 2782 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2783 2784 /* 2785 * If we are in a safe context (can wait, and not in interrupt 2786 * context), we could be be predictable and return right away. 2787 * This would guarantee that the allocation being performed 2788 * already belongs in the new cache. 2789 * 2790 * However, there are some clashes that can arrive from locking. 2791 * For instance, because we acquire the slab_mutex while doing 2792 * memcg_create_kmem_cache, this means no further allocation 2793 * could happen with the slab_mutex held. So it's better to 2794 * defer everything. 2795 * 2796 * If the memcg is dying or memcg_cache is about to be released, 2797 * don't bother creating new kmem_caches. Because memcg_cachep 2798 * is ZEROed as the fist step of kmem offlining, we don't need 2799 * percpu_ref_tryget_live() here. css_tryget_online() check in 2800 * memcg_schedule_kmem_cache_create() will prevent us from 2801 * creation of a new kmem_cache. 2802 */ 2803 if (unlikely(!memcg_cachep)) 2804 memcg_schedule_kmem_cache_create(memcg, cachep); 2805 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2806 cachep = memcg_cachep; 2807 out_unlock: 2808 rcu_read_unlock(); 2809 return cachep; 2810 } 2811 2812 /** 2813 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2814 * @cachep: the cache returned by memcg_kmem_get_cache 2815 */ 2816 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2817 { 2818 if (!is_root_cache(cachep)) 2819 percpu_ref_put(&cachep->memcg_params.refcnt); 2820 } 2821 2822 /** 2823 * __memcg_kmem_charge_memcg: charge a kmem page 2824 * @page: page to charge 2825 * @gfp: reclaim mode 2826 * @order: allocation order 2827 * @memcg: memory cgroup to charge 2828 * 2829 * Returns 0 on success, an error code on failure. 2830 */ 2831 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2832 struct mem_cgroup *memcg) 2833 { 2834 unsigned int nr_pages = 1 << order; 2835 struct page_counter *counter; 2836 int ret; 2837 2838 ret = try_charge(memcg, gfp, nr_pages); 2839 if (ret) 2840 return ret; 2841 2842 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2843 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2844 2845 /* 2846 * Enforce __GFP_NOFAIL allocation because callers are not 2847 * prepared to see failures and likely do not have any failure 2848 * handling code. 2849 */ 2850 if (gfp & __GFP_NOFAIL) { 2851 page_counter_charge(&memcg->kmem, nr_pages); 2852 return 0; 2853 } 2854 cancel_charge(memcg, nr_pages); 2855 return -ENOMEM; 2856 } 2857 return 0; 2858 } 2859 2860 /** 2861 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2862 * @page: page to charge 2863 * @gfp: reclaim mode 2864 * @order: allocation order 2865 * 2866 * Returns 0 on success, an error code on failure. 2867 */ 2868 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2869 { 2870 struct mem_cgroup *memcg; 2871 int ret = 0; 2872 2873 if (memcg_kmem_bypass()) 2874 return 0; 2875 2876 memcg = get_mem_cgroup_from_current(); 2877 if (!mem_cgroup_is_root(memcg)) { 2878 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2879 if (!ret) { 2880 page->mem_cgroup = memcg; 2881 __SetPageKmemcg(page); 2882 } 2883 } 2884 css_put(&memcg->css); 2885 return ret; 2886 } 2887 2888 /** 2889 * __memcg_kmem_uncharge_memcg: uncharge a kmem page 2890 * @memcg: memcg to uncharge 2891 * @nr_pages: number of pages to uncharge 2892 */ 2893 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 2894 unsigned int nr_pages) 2895 { 2896 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2897 page_counter_uncharge(&memcg->kmem, nr_pages); 2898 2899 page_counter_uncharge(&memcg->memory, nr_pages); 2900 if (do_memsw_account()) 2901 page_counter_uncharge(&memcg->memsw, nr_pages); 2902 } 2903 /** 2904 * __memcg_kmem_uncharge: uncharge a kmem page 2905 * @page: page to uncharge 2906 * @order: allocation order 2907 */ 2908 void __memcg_kmem_uncharge(struct page *page, int order) 2909 { 2910 struct mem_cgroup *memcg = page->mem_cgroup; 2911 unsigned int nr_pages = 1 << order; 2912 2913 if (!memcg) 2914 return; 2915 2916 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2917 __memcg_kmem_uncharge_memcg(memcg, nr_pages); 2918 page->mem_cgroup = NULL; 2919 2920 /* slab pages do not have PageKmemcg flag set */ 2921 if (PageKmemcg(page)) 2922 __ClearPageKmemcg(page); 2923 2924 css_put_many(&memcg->css, nr_pages); 2925 } 2926 #endif /* CONFIG_MEMCG_KMEM */ 2927 2928 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2929 2930 /* 2931 * Because tail pages are not marked as "used", set it. We're under 2932 * pgdat->lru_lock and migration entries setup in all page mappings. 2933 */ 2934 void mem_cgroup_split_huge_fixup(struct page *head) 2935 { 2936 int i; 2937 2938 if (mem_cgroup_disabled()) 2939 return; 2940 2941 for (i = 1; i < HPAGE_PMD_NR; i++) 2942 head[i].mem_cgroup = head->mem_cgroup; 2943 2944 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2945 } 2946 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2947 2948 #ifdef CONFIG_MEMCG_SWAP 2949 /** 2950 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2951 * @entry: swap entry to be moved 2952 * @from: mem_cgroup which the entry is moved from 2953 * @to: mem_cgroup which the entry is moved to 2954 * 2955 * It succeeds only when the swap_cgroup's record for this entry is the same 2956 * as the mem_cgroup's id of @from. 2957 * 2958 * Returns 0 on success, -EINVAL on failure. 2959 * 2960 * The caller must have charged to @to, IOW, called page_counter_charge() about 2961 * both res and memsw, and called css_get(). 2962 */ 2963 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2964 struct mem_cgroup *from, struct mem_cgroup *to) 2965 { 2966 unsigned short old_id, new_id; 2967 2968 old_id = mem_cgroup_id(from); 2969 new_id = mem_cgroup_id(to); 2970 2971 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2972 mod_memcg_state(from, MEMCG_SWAP, -1); 2973 mod_memcg_state(to, MEMCG_SWAP, 1); 2974 return 0; 2975 } 2976 return -EINVAL; 2977 } 2978 #else 2979 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2980 struct mem_cgroup *from, struct mem_cgroup *to) 2981 { 2982 return -EINVAL; 2983 } 2984 #endif 2985 2986 static DEFINE_MUTEX(memcg_max_mutex); 2987 2988 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2989 unsigned long max, bool memsw) 2990 { 2991 bool enlarge = false; 2992 bool drained = false; 2993 int ret; 2994 bool limits_invariant; 2995 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2996 2997 do { 2998 if (signal_pending(current)) { 2999 ret = -EINTR; 3000 break; 3001 } 3002 3003 mutex_lock(&memcg_max_mutex); 3004 /* 3005 * Make sure that the new limit (memsw or memory limit) doesn't 3006 * break our basic invariant rule memory.max <= memsw.max. 3007 */ 3008 limits_invariant = memsw ? max >= memcg->memory.max : 3009 max <= memcg->memsw.max; 3010 if (!limits_invariant) { 3011 mutex_unlock(&memcg_max_mutex); 3012 ret = -EINVAL; 3013 break; 3014 } 3015 if (max > counter->max) 3016 enlarge = true; 3017 ret = page_counter_set_max(counter, max); 3018 mutex_unlock(&memcg_max_mutex); 3019 3020 if (!ret) 3021 break; 3022 3023 if (!drained) { 3024 drain_all_stock(memcg); 3025 drained = true; 3026 continue; 3027 } 3028 3029 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3030 GFP_KERNEL, !memsw)) { 3031 ret = -EBUSY; 3032 break; 3033 } 3034 } while (true); 3035 3036 if (!ret && enlarge) 3037 memcg_oom_recover(memcg); 3038 3039 return ret; 3040 } 3041 3042 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3043 gfp_t gfp_mask, 3044 unsigned long *total_scanned) 3045 { 3046 unsigned long nr_reclaimed = 0; 3047 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3048 unsigned long reclaimed; 3049 int loop = 0; 3050 struct mem_cgroup_tree_per_node *mctz; 3051 unsigned long excess; 3052 unsigned long nr_scanned; 3053 3054 if (order > 0) 3055 return 0; 3056 3057 mctz = soft_limit_tree_node(pgdat->node_id); 3058 3059 /* 3060 * Do not even bother to check the largest node if the root 3061 * is empty. Do it lockless to prevent lock bouncing. Races 3062 * are acceptable as soft limit is best effort anyway. 3063 */ 3064 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3065 return 0; 3066 3067 /* 3068 * This loop can run a while, specially if mem_cgroup's continuously 3069 * keep exceeding their soft limit and putting the system under 3070 * pressure 3071 */ 3072 do { 3073 if (next_mz) 3074 mz = next_mz; 3075 else 3076 mz = mem_cgroup_largest_soft_limit_node(mctz); 3077 if (!mz) 3078 break; 3079 3080 nr_scanned = 0; 3081 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3082 gfp_mask, &nr_scanned); 3083 nr_reclaimed += reclaimed; 3084 *total_scanned += nr_scanned; 3085 spin_lock_irq(&mctz->lock); 3086 __mem_cgroup_remove_exceeded(mz, mctz); 3087 3088 /* 3089 * If we failed to reclaim anything from this memory cgroup 3090 * it is time to move on to the next cgroup 3091 */ 3092 next_mz = NULL; 3093 if (!reclaimed) 3094 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3095 3096 excess = soft_limit_excess(mz->memcg); 3097 /* 3098 * One school of thought says that we should not add 3099 * back the node to the tree if reclaim returns 0. 3100 * But our reclaim could return 0, simply because due 3101 * to priority we are exposing a smaller subset of 3102 * memory to reclaim from. Consider this as a longer 3103 * term TODO. 3104 */ 3105 /* If excess == 0, no tree ops */ 3106 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3107 spin_unlock_irq(&mctz->lock); 3108 css_put(&mz->memcg->css); 3109 loop++; 3110 /* 3111 * Could not reclaim anything and there are no more 3112 * mem cgroups to try or we seem to be looping without 3113 * reclaiming anything. 3114 */ 3115 if (!nr_reclaimed && 3116 (next_mz == NULL || 3117 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3118 break; 3119 } while (!nr_reclaimed); 3120 if (next_mz) 3121 css_put(&next_mz->memcg->css); 3122 return nr_reclaimed; 3123 } 3124 3125 /* 3126 * Test whether @memcg has children, dead or alive. Note that this 3127 * function doesn't care whether @memcg has use_hierarchy enabled and 3128 * returns %true if there are child csses according to the cgroup 3129 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3130 */ 3131 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3132 { 3133 bool ret; 3134 3135 rcu_read_lock(); 3136 ret = css_next_child(NULL, &memcg->css); 3137 rcu_read_unlock(); 3138 return ret; 3139 } 3140 3141 /* 3142 * Reclaims as many pages from the given memcg as possible. 3143 * 3144 * Caller is responsible for holding css reference for memcg. 3145 */ 3146 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3147 { 3148 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3149 3150 /* we call try-to-free pages for make this cgroup empty */ 3151 lru_add_drain_all(); 3152 3153 drain_all_stock(memcg); 3154 3155 /* try to free all pages in this cgroup */ 3156 while (nr_retries && page_counter_read(&memcg->memory)) { 3157 int progress; 3158 3159 if (signal_pending(current)) 3160 return -EINTR; 3161 3162 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3163 GFP_KERNEL, true); 3164 if (!progress) { 3165 nr_retries--; 3166 /* maybe some writeback is necessary */ 3167 congestion_wait(BLK_RW_ASYNC, HZ/10); 3168 } 3169 3170 } 3171 3172 return 0; 3173 } 3174 3175 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3176 char *buf, size_t nbytes, 3177 loff_t off) 3178 { 3179 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3180 3181 if (mem_cgroup_is_root(memcg)) 3182 return -EINVAL; 3183 return mem_cgroup_force_empty(memcg) ?: nbytes; 3184 } 3185 3186 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3187 struct cftype *cft) 3188 { 3189 return mem_cgroup_from_css(css)->use_hierarchy; 3190 } 3191 3192 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3193 struct cftype *cft, u64 val) 3194 { 3195 int retval = 0; 3196 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3197 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3198 3199 if (memcg->use_hierarchy == val) 3200 return 0; 3201 3202 /* 3203 * If parent's use_hierarchy is set, we can't make any modifications 3204 * in the child subtrees. If it is unset, then the change can 3205 * occur, provided the current cgroup has no children. 3206 * 3207 * For the root cgroup, parent_mem is NULL, we allow value to be 3208 * set if there are no children. 3209 */ 3210 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3211 (val == 1 || val == 0)) { 3212 if (!memcg_has_children(memcg)) 3213 memcg->use_hierarchy = val; 3214 else 3215 retval = -EBUSY; 3216 } else 3217 retval = -EINVAL; 3218 3219 return retval; 3220 } 3221 3222 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3223 { 3224 unsigned long val; 3225 3226 if (mem_cgroup_is_root(memcg)) { 3227 val = memcg_page_state(memcg, MEMCG_CACHE) + 3228 memcg_page_state(memcg, MEMCG_RSS); 3229 if (swap) 3230 val += memcg_page_state(memcg, MEMCG_SWAP); 3231 } else { 3232 if (!swap) 3233 val = page_counter_read(&memcg->memory); 3234 else 3235 val = page_counter_read(&memcg->memsw); 3236 } 3237 return val; 3238 } 3239 3240 enum { 3241 RES_USAGE, 3242 RES_LIMIT, 3243 RES_MAX_USAGE, 3244 RES_FAILCNT, 3245 RES_SOFT_LIMIT, 3246 }; 3247 3248 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3249 struct cftype *cft) 3250 { 3251 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3252 struct page_counter *counter; 3253 3254 switch (MEMFILE_TYPE(cft->private)) { 3255 case _MEM: 3256 counter = &memcg->memory; 3257 break; 3258 case _MEMSWAP: 3259 counter = &memcg->memsw; 3260 break; 3261 case _KMEM: 3262 counter = &memcg->kmem; 3263 break; 3264 case _TCP: 3265 counter = &memcg->tcpmem; 3266 break; 3267 default: 3268 BUG(); 3269 } 3270 3271 switch (MEMFILE_ATTR(cft->private)) { 3272 case RES_USAGE: 3273 if (counter == &memcg->memory) 3274 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3275 if (counter == &memcg->memsw) 3276 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3277 return (u64)page_counter_read(counter) * PAGE_SIZE; 3278 case RES_LIMIT: 3279 return (u64)counter->max * PAGE_SIZE; 3280 case RES_MAX_USAGE: 3281 return (u64)counter->watermark * PAGE_SIZE; 3282 case RES_FAILCNT: 3283 return counter->failcnt; 3284 case RES_SOFT_LIMIT: 3285 return (u64)memcg->soft_limit * PAGE_SIZE; 3286 default: 3287 BUG(); 3288 } 3289 } 3290 3291 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only) 3292 { 3293 unsigned long stat[MEMCG_NR_STAT]; 3294 struct mem_cgroup *mi; 3295 int node, cpu, i; 3296 int min_idx, max_idx; 3297 3298 if (slab_only) { 3299 min_idx = NR_SLAB_RECLAIMABLE; 3300 max_idx = NR_SLAB_UNRECLAIMABLE; 3301 } else { 3302 min_idx = 0; 3303 max_idx = MEMCG_NR_STAT; 3304 } 3305 3306 for (i = min_idx; i < max_idx; i++) 3307 stat[i] = 0; 3308 3309 for_each_online_cpu(cpu) 3310 for (i = min_idx; i < max_idx; i++) 3311 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3312 3313 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3314 for (i = min_idx; i < max_idx; i++) 3315 atomic_long_add(stat[i], &mi->vmstats[i]); 3316 3317 if (!slab_only) 3318 max_idx = NR_VM_NODE_STAT_ITEMS; 3319 3320 for_each_node(node) { 3321 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3322 struct mem_cgroup_per_node *pi; 3323 3324 for (i = min_idx; i < max_idx; i++) 3325 stat[i] = 0; 3326 3327 for_each_online_cpu(cpu) 3328 for (i = min_idx; i < max_idx; i++) 3329 stat[i] += per_cpu( 3330 pn->lruvec_stat_cpu->count[i], cpu); 3331 3332 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3333 for (i = min_idx; i < max_idx; i++) 3334 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3335 } 3336 } 3337 3338 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3339 { 3340 unsigned long events[NR_VM_EVENT_ITEMS]; 3341 struct mem_cgroup *mi; 3342 int cpu, i; 3343 3344 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3345 events[i] = 0; 3346 3347 for_each_online_cpu(cpu) 3348 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3349 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3350 cpu); 3351 3352 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3353 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3354 atomic_long_add(events[i], &mi->vmevents[i]); 3355 } 3356 3357 #ifdef CONFIG_MEMCG_KMEM 3358 static int memcg_online_kmem(struct mem_cgroup *memcg) 3359 { 3360 int memcg_id; 3361 3362 if (cgroup_memory_nokmem) 3363 return 0; 3364 3365 BUG_ON(memcg->kmemcg_id >= 0); 3366 BUG_ON(memcg->kmem_state); 3367 3368 memcg_id = memcg_alloc_cache_id(); 3369 if (memcg_id < 0) 3370 return memcg_id; 3371 3372 static_branch_inc(&memcg_kmem_enabled_key); 3373 /* 3374 * A memory cgroup is considered kmem-online as soon as it gets 3375 * kmemcg_id. Setting the id after enabling static branching will 3376 * guarantee no one starts accounting before all call sites are 3377 * patched. 3378 */ 3379 memcg->kmemcg_id = memcg_id; 3380 memcg->kmem_state = KMEM_ONLINE; 3381 INIT_LIST_HEAD(&memcg->kmem_caches); 3382 3383 return 0; 3384 } 3385 3386 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3387 { 3388 struct cgroup_subsys_state *css; 3389 struct mem_cgroup *parent, *child; 3390 int kmemcg_id; 3391 3392 if (memcg->kmem_state != KMEM_ONLINE) 3393 return; 3394 /* 3395 * Clear the online state before clearing memcg_caches array 3396 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3397 * guarantees that no cache will be created for this cgroup 3398 * after we are done (see memcg_create_kmem_cache()). 3399 */ 3400 memcg->kmem_state = KMEM_ALLOCATED; 3401 3402 parent = parent_mem_cgroup(memcg); 3403 if (!parent) 3404 parent = root_mem_cgroup; 3405 3406 /* 3407 * Deactivate and reparent kmem_caches. Then flush percpu 3408 * slab statistics to have precise values at the parent and 3409 * all ancestor levels. It's required to keep slab stats 3410 * accurate after the reparenting of kmem_caches. 3411 */ 3412 memcg_deactivate_kmem_caches(memcg, parent); 3413 memcg_flush_percpu_vmstats(memcg, true); 3414 3415 kmemcg_id = memcg->kmemcg_id; 3416 BUG_ON(kmemcg_id < 0); 3417 3418 /* 3419 * Change kmemcg_id of this cgroup and all its descendants to the 3420 * parent's id, and then move all entries from this cgroup's list_lrus 3421 * to ones of the parent. After we have finished, all list_lrus 3422 * corresponding to this cgroup are guaranteed to remain empty. The 3423 * ordering is imposed by list_lru_node->lock taken by 3424 * memcg_drain_all_list_lrus(). 3425 */ 3426 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3427 css_for_each_descendant_pre(css, &memcg->css) { 3428 child = mem_cgroup_from_css(css); 3429 BUG_ON(child->kmemcg_id != kmemcg_id); 3430 child->kmemcg_id = parent->kmemcg_id; 3431 if (!memcg->use_hierarchy) 3432 break; 3433 } 3434 rcu_read_unlock(); 3435 3436 memcg_drain_all_list_lrus(kmemcg_id, parent); 3437 3438 memcg_free_cache_id(kmemcg_id); 3439 } 3440 3441 static void memcg_free_kmem(struct mem_cgroup *memcg) 3442 { 3443 /* css_alloc() failed, offlining didn't happen */ 3444 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3445 memcg_offline_kmem(memcg); 3446 3447 if (memcg->kmem_state == KMEM_ALLOCATED) { 3448 WARN_ON(!list_empty(&memcg->kmem_caches)); 3449 static_branch_dec(&memcg_kmem_enabled_key); 3450 } 3451 } 3452 #else 3453 static int memcg_online_kmem(struct mem_cgroup *memcg) 3454 { 3455 return 0; 3456 } 3457 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3458 { 3459 } 3460 static void memcg_free_kmem(struct mem_cgroup *memcg) 3461 { 3462 } 3463 #endif /* CONFIG_MEMCG_KMEM */ 3464 3465 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3466 unsigned long max) 3467 { 3468 int ret; 3469 3470 mutex_lock(&memcg_max_mutex); 3471 ret = page_counter_set_max(&memcg->kmem, max); 3472 mutex_unlock(&memcg_max_mutex); 3473 return ret; 3474 } 3475 3476 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3477 { 3478 int ret; 3479 3480 mutex_lock(&memcg_max_mutex); 3481 3482 ret = page_counter_set_max(&memcg->tcpmem, max); 3483 if (ret) 3484 goto out; 3485 3486 if (!memcg->tcpmem_active) { 3487 /* 3488 * The active flag needs to be written after the static_key 3489 * update. This is what guarantees that the socket activation 3490 * function is the last one to run. See mem_cgroup_sk_alloc() 3491 * for details, and note that we don't mark any socket as 3492 * belonging to this memcg until that flag is up. 3493 * 3494 * We need to do this, because static_keys will span multiple 3495 * sites, but we can't control their order. If we mark a socket 3496 * as accounted, but the accounting functions are not patched in 3497 * yet, we'll lose accounting. 3498 * 3499 * We never race with the readers in mem_cgroup_sk_alloc(), 3500 * because when this value change, the code to process it is not 3501 * patched in yet. 3502 */ 3503 static_branch_inc(&memcg_sockets_enabled_key); 3504 memcg->tcpmem_active = true; 3505 } 3506 out: 3507 mutex_unlock(&memcg_max_mutex); 3508 return ret; 3509 } 3510 3511 /* 3512 * The user of this function is... 3513 * RES_LIMIT. 3514 */ 3515 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3516 char *buf, size_t nbytes, loff_t off) 3517 { 3518 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3519 unsigned long nr_pages; 3520 int ret; 3521 3522 buf = strstrip(buf); 3523 ret = page_counter_memparse(buf, "-1", &nr_pages); 3524 if (ret) 3525 return ret; 3526 3527 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3528 case RES_LIMIT: 3529 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3530 ret = -EINVAL; 3531 break; 3532 } 3533 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3534 case _MEM: 3535 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3536 break; 3537 case _MEMSWAP: 3538 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3539 break; 3540 case _KMEM: 3541 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3542 "Please report your usecase to linux-mm@kvack.org if you " 3543 "depend on this functionality.\n"); 3544 ret = memcg_update_kmem_max(memcg, nr_pages); 3545 break; 3546 case _TCP: 3547 ret = memcg_update_tcp_max(memcg, nr_pages); 3548 break; 3549 } 3550 break; 3551 case RES_SOFT_LIMIT: 3552 memcg->soft_limit = nr_pages; 3553 ret = 0; 3554 break; 3555 } 3556 return ret ?: nbytes; 3557 } 3558 3559 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3560 size_t nbytes, loff_t off) 3561 { 3562 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3563 struct page_counter *counter; 3564 3565 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3566 case _MEM: 3567 counter = &memcg->memory; 3568 break; 3569 case _MEMSWAP: 3570 counter = &memcg->memsw; 3571 break; 3572 case _KMEM: 3573 counter = &memcg->kmem; 3574 break; 3575 case _TCP: 3576 counter = &memcg->tcpmem; 3577 break; 3578 default: 3579 BUG(); 3580 } 3581 3582 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3583 case RES_MAX_USAGE: 3584 page_counter_reset_watermark(counter); 3585 break; 3586 case RES_FAILCNT: 3587 counter->failcnt = 0; 3588 break; 3589 default: 3590 BUG(); 3591 } 3592 3593 return nbytes; 3594 } 3595 3596 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3597 struct cftype *cft) 3598 { 3599 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3600 } 3601 3602 #ifdef CONFIG_MMU 3603 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3604 struct cftype *cft, u64 val) 3605 { 3606 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3607 3608 if (val & ~MOVE_MASK) 3609 return -EINVAL; 3610 3611 /* 3612 * No kind of locking is needed in here, because ->can_attach() will 3613 * check this value once in the beginning of the process, and then carry 3614 * on with stale data. This means that changes to this value will only 3615 * affect task migrations starting after the change. 3616 */ 3617 memcg->move_charge_at_immigrate = val; 3618 return 0; 3619 } 3620 #else 3621 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3622 struct cftype *cft, u64 val) 3623 { 3624 return -ENOSYS; 3625 } 3626 #endif 3627 3628 #ifdef CONFIG_NUMA 3629 3630 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3631 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3632 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3633 3634 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3635 int nid, unsigned int lru_mask) 3636 { 3637 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3638 unsigned long nr = 0; 3639 enum lru_list lru; 3640 3641 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3642 3643 for_each_lru(lru) { 3644 if (!(BIT(lru) & lru_mask)) 3645 continue; 3646 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3647 } 3648 return nr; 3649 } 3650 3651 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3652 unsigned int lru_mask) 3653 { 3654 unsigned long nr = 0; 3655 enum lru_list lru; 3656 3657 for_each_lru(lru) { 3658 if (!(BIT(lru) & lru_mask)) 3659 continue; 3660 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3661 } 3662 return nr; 3663 } 3664 3665 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3666 { 3667 struct numa_stat { 3668 const char *name; 3669 unsigned int lru_mask; 3670 }; 3671 3672 static const struct numa_stat stats[] = { 3673 { "total", LRU_ALL }, 3674 { "file", LRU_ALL_FILE }, 3675 { "anon", LRU_ALL_ANON }, 3676 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3677 }; 3678 const struct numa_stat *stat; 3679 int nid; 3680 unsigned long nr; 3681 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3682 3683 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3684 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3685 seq_printf(m, "%s=%lu", stat->name, nr); 3686 for_each_node_state(nid, N_MEMORY) { 3687 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3688 stat->lru_mask); 3689 seq_printf(m, " N%d=%lu", nid, nr); 3690 } 3691 seq_putc(m, '\n'); 3692 } 3693 3694 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3695 struct mem_cgroup *iter; 3696 3697 nr = 0; 3698 for_each_mem_cgroup_tree(iter, memcg) 3699 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3700 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3701 for_each_node_state(nid, N_MEMORY) { 3702 nr = 0; 3703 for_each_mem_cgroup_tree(iter, memcg) 3704 nr += mem_cgroup_node_nr_lru_pages( 3705 iter, nid, stat->lru_mask); 3706 seq_printf(m, " N%d=%lu", nid, nr); 3707 } 3708 seq_putc(m, '\n'); 3709 } 3710 3711 return 0; 3712 } 3713 #endif /* CONFIG_NUMA */ 3714 3715 static const unsigned int memcg1_stats[] = { 3716 MEMCG_CACHE, 3717 MEMCG_RSS, 3718 MEMCG_RSS_HUGE, 3719 NR_SHMEM, 3720 NR_FILE_MAPPED, 3721 NR_FILE_DIRTY, 3722 NR_WRITEBACK, 3723 MEMCG_SWAP, 3724 }; 3725 3726 static const char *const memcg1_stat_names[] = { 3727 "cache", 3728 "rss", 3729 "rss_huge", 3730 "shmem", 3731 "mapped_file", 3732 "dirty", 3733 "writeback", 3734 "swap", 3735 }; 3736 3737 /* Universal VM events cgroup1 shows, original sort order */ 3738 static const unsigned int memcg1_events[] = { 3739 PGPGIN, 3740 PGPGOUT, 3741 PGFAULT, 3742 PGMAJFAULT, 3743 }; 3744 3745 static const char *const memcg1_event_names[] = { 3746 "pgpgin", 3747 "pgpgout", 3748 "pgfault", 3749 "pgmajfault", 3750 }; 3751 3752 static int memcg_stat_show(struct seq_file *m, void *v) 3753 { 3754 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3755 unsigned long memory, memsw; 3756 struct mem_cgroup *mi; 3757 unsigned int i; 3758 3759 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3760 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3761 3762 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3763 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3764 continue; 3765 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3766 memcg_page_state_local(memcg, memcg1_stats[i]) * 3767 PAGE_SIZE); 3768 } 3769 3770 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3771 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3772 memcg_events_local(memcg, memcg1_events[i])); 3773 3774 for (i = 0; i < NR_LRU_LISTS; i++) 3775 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3776 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3777 PAGE_SIZE); 3778 3779 /* Hierarchical information */ 3780 memory = memsw = PAGE_COUNTER_MAX; 3781 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3782 memory = min(memory, mi->memory.max); 3783 memsw = min(memsw, mi->memsw.max); 3784 } 3785 seq_printf(m, "hierarchical_memory_limit %llu\n", 3786 (u64)memory * PAGE_SIZE); 3787 if (do_memsw_account()) 3788 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3789 (u64)memsw * PAGE_SIZE); 3790 3791 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3792 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3793 continue; 3794 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3795 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3796 PAGE_SIZE); 3797 } 3798 3799 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3800 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3801 (u64)memcg_events(memcg, memcg1_events[i])); 3802 3803 for (i = 0; i < NR_LRU_LISTS; i++) 3804 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3805 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3806 PAGE_SIZE); 3807 3808 #ifdef CONFIG_DEBUG_VM 3809 { 3810 pg_data_t *pgdat; 3811 struct mem_cgroup_per_node *mz; 3812 struct zone_reclaim_stat *rstat; 3813 unsigned long recent_rotated[2] = {0, 0}; 3814 unsigned long recent_scanned[2] = {0, 0}; 3815 3816 for_each_online_pgdat(pgdat) { 3817 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3818 rstat = &mz->lruvec.reclaim_stat; 3819 3820 recent_rotated[0] += rstat->recent_rotated[0]; 3821 recent_rotated[1] += rstat->recent_rotated[1]; 3822 recent_scanned[0] += rstat->recent_scanned[0]; 3823 recent_scanned[1] += rstat->recent_scanned[1]; 3824 } 3825 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3826 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3827 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3828 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3829 } 3830 #endif 3831 3832 return 0; 3833 } 3834 3835 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3836 struct cftype *cft) 3837 { 3838 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3839 3840 return mem_cgroup_swappiness(memcg); 3841 } 3842 3843 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3844 struct cftype *cft, u64 val) 3845 { 3846 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3847 3848 if (val > 100) 3849 return -EINVAL; 3850 3851 if (css->parent) 3852 memcg->swappiness = val; 3853 else 3854 vm_swappiness = val; 3855 3856 return 0; 3857 } 3858 3859 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3860 { 3861 struct mem_cgroup_threshold_ary *t; 3862 unsigned long usage; 3863 int i; 3864 3865 rcu_read_lock(); 3866 if (!swap) 3867 t = rcu_dereference(memcg->thresholds.primary); 3868 else 3869 t = rcu_dereference(memcg->memsw_thresholds.primary); 3870 3871 if (!t) 3872 goto unlock; 3873 3874 usage = mem_cgroup_usage(memcg, swap); 3875 3876 /* 3877 * current_threshold points to threshold just below or equal to usage. 3878 * If it's not true, a threshold was crossed after last 3879 * call of __mem_cgroup_threshold(). 3880 */ 3881 i = t->current_threshold; 3882 3883 /* 3884 * Iterate backward over array of thresholds starting from 3885 * current_threshold and check if a threshold is crossed. 3886 * If none of thresholds below usage is crossed, we read 3887 * only one element of the array here. 3888 */ 3889 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3890 eventfd_signal(t->entries[i].eventfd, 1); 3891 3892 /* i = current_threshold + 1 */ 3893 i++; 3894 3895 /* 3896 * Iterate forward over array of thresholds starting from 3897 * current_threshold+1 and check if a threshold is crossed. 3898 * If none of thresholds above usage is crossed, we read 3899 * only one element of the array here. 3900 */ 3901 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3902 eventfd_signal(t->entries[i].eventfd, 1); 3903 3904 /* Update current_threshold */ 3905 t->current_threshold = i - 1; 3906 unlock: 3907 rcu_read_unlock(); 3908 } 3909 3910 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3911 { 3912 while (memcg) { 3913 __mem_cgroup_threshold(memcg, false); 3914 if (do_memsw_account()) 3915 __mem_cgroup_threshold(memcg, true); 3916 3917 memcg = parent_mem_cgroup(memcg); 3918 } 3919 } 3920 3921 static int compare_thresholds(const void *a, const void *b) 3922 { 3923 const struct mem_cgroup_threshold *_a = a; 3924 const struct mem_cgroup_threshold *_b = b; 3925 3926 if (_a->threshold > _b->threshold) 3927 return 1; 3928 3929 if (_a->threshold < _b->threshold) 3930 return -1; 3931 3932 return 0; 3933 } 3934 3935 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3936 { 3937 struct mem_cgroup_eventfd_list *ev; 3938 3939 spin_lock(&memcg_oom_lock); 3940 3941 list_for_each_entry(ev, &memcg->oom_notify, list) 3942 eventfd_signal(ev->eventfd, 1); 3943 3944 spin_unlock(&memcg_oom_lock); 3945 return 0; 3946 } 3947 3948 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3949 { 3950 struct mem_cgroup *iter; 3951 3952 for_each_mem_cgroup_tree(iter, memcg) 3953 mem_cgroup_oom_notify_cb(iter); 3954 } 3955 3956 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3957 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3958 { 3959 struct mem_cgroup_thresholds *thresholds; 3960 struct mem_cgroup_threshold_ary *new; 3961 unsigned long threshold; 3962 unsigned long usage; 3963 int i, size, ret; 3964 3965 ret = page_counter_memparse(args, "-1", &threshold); 3966 if (ret) 3967 return ret; 3968 3969 mutex_lock(&memcg->thresholds_lock); 3970 3971 if (type == _MEM) { 3972 thresholds = &memcg->thresholds; 3973 usage = mem_cgroup_usage(memcg, false); 3974 } else if (type == _MEMSWAP) { 3975 thresholds = &memcg->memsw_thresholds; 3976 usage = mem_cgroup_usage(memcg, true); 3977 } else 3978 BUG(); 3979 3980 /* Check if a threshold crossed before adding a new one */ 3981 if (thresholds->primary) 3982 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3983 3984 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3985 3986 /* Allocate memory for new array of thresholds */ 3987 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 3988 if (!new) { 3989 ret = -ENOMEM; 3990 goto unlock; 3991 } 3992 new->size = size; 3993 3994 /* Copy thresholds (if any) to new array */ 3995 if (thresholds->primary) { 3996 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3997 sizeof(struct mem_cgroup_threshold)); 3998 } 3999 4000 /* Add new threshold */ 4001 new->entries[size - 1].eventfd = eventfd; 4002 new->entries[size - 1].threshold = threshold; 4003 4004 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4005 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4006 compare_thresholds, NULL); 4007 4008 /* Find current threshold */ 4009 new->current_threshold = -1; 4010 for (i = 0; i < size; i++) { 4011 if (new->entries[i].threshold <= usage) { 4012 /* 4013 * new->current_threshold will not be used until 4014 * rcu_assign_pointer(), so it's safe to increment 4015 * it here. 4016 */ 4017 ++new->current_threshold; 4018 } else 4019 break; 4020 } 4021 4022 /* Free old spare buffer and save old primary buffer as spare */ 4023 kfree(thresholds->spare); 4024 thresholds->spare = thresholds->primary; 4025 4026 rcu_assign_pointer(thresholds->primary, new); 4027 4028 /* To be sure that nobody uses thresholds */ 4029 synchronize_rcu(); 4030 4031 unlock: 4032 mutex_unlock(&memcg->thresholds_lock); 4033 4034 return ret; 4035 } 4036 4037 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4038 struct eventfd_ctx *eventfd, const char *args) 4039 { 4040 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4041 } 4042 4043 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4044 struct eventfd_ctx *eventfd, const char *args) 4045 { 4046 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4047 } 4048 4049 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4050 struct eventfd_ctx *eventfd, enum res_type type) 4051 { 4052 struct mem_cgroup_thresholds *thresholds; 4053 struct mem_cgroup_threshold_ary *new; 4054 unsigned long usage; 4055 int i, j, size; 4056 4057 mutex_lock(&memcg->thresholds_lock); 4058 4059 if (type == _MEM) { 4060 thresholds = &memcg->thresholds; 4061 usage = mem_cgroup_usage(memcg, false); 4062 } else if (type == _MEMSWAP) { 4063 thresholds = &memcg->memsw_thresholds; 4064 usage = mem_cgroup_usage(memcg, true); 4065 } else 4066 BUG(); 4067 4068 if (!thresholds->primary) 4069 goto unlock; 4070 4071 /* Check if a threshold crossed before removing */ 4072 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4073 4074 /* Calculate new number of threshold */ 4075 size = 0; 4076 for (i = 0; i < thresholds->primary->size; i++) { 4077 if (thresholds->primary->entries[i].eventfd != eventfd) 4078 size++; 4079 } 4080 4081 new = thresholds->spare; 4082 4083 /* Set thresholds array to NULL if we don't have thresholds */ 4084 if (!size) { 4085 kfree(new); 4086 new = NULL; 4087 goto swap_buffers; 4088 } 4089 4090 new->size = size; 4091 4092 /* Copy thresholds and find current threshold */ 4093 new->current_threshold = -1; 4094 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4095 if (thresholds->primary->entries[i].eventfd == eventfd) 4096 continue; 4097 4098 new->entries[j] = thresholds->primary->entries[i]; 4099 if (new->entries[j].threshold <= usage) { 4100 /* 4101 * new->current_threshold will not be used 4102 * until rcu_assign_pointer(), so it's safe to increment 4103 * it here. 4104 */ 4105 ++new->current_threshold; 4106 } 4107 j++; 4108 } 4109 4110 swap_buffers: 4111 /* Swap primary and spare array */ 4112 thresholds->spare = thresholds->primary; 4113 4114 rcu_assign_pointer(thresholds->primary, new); 4115 4116 /* To be sure that nobody uses thresholds */ 4117 synchronize_rcu(); 4118 4119 /* If all events are unregistered, free the spare array */ 4120 if (!new) { 4121 kfree(thresholds->spare); 4122 thresholds->spare = NULL; 4123 } 4124 unlock: 4125 mutex_unlock(&memcg->thresholds_lock); 4126 } 4127 4128 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4129 struct eventfd_ctx *eventfd) 4130 { 4131 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4132 } 4133 4134 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4135 struct eventfd_ctx *eventfd) 4136 { 4137 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4138 } 4139 4140 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4141 struct eventfd_ctx *eventfd, const char *args) 4142 { 4143 struct mem_cgroup_eventfd_list *event; 4144 4145 event = kmalloc(sizeof(*event), GFP_KERNEL); 4146 if (!event) 4147 return -ENOMEM; 4148 4149 spin_lock(&memcg_oom_lock); 4150 4151 event->eventfd = eventfd; 4152 list_add(&event->list, &memcg->oom_notify); 4153 4154 /* already in OOM ? */ 4155 if (memcg->under_oom) 4156 eventfd_signal(eventfd, 1); 4157 spin_unlock(&memcg_oom_lock); 4158 4159 return 0; 4160 } 4161 4162 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4163 struct eventfd_ctx *eventfd) 4164 { 4165 struct mem_cgroup_eventfd_list *ev, *tmp; 4166 4167 spin_lock(&memcg_oom_lock); 4168 4169 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4170 if (ev->eventfd == eventfd) { 4171 list_del(&ev->list); 4172 kfree(ev); 4173 } 4174 } 4175 4176 spin_unlock(&memcg_oom_lock); 4177 } 4178 4179 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4180 { 4181 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4182 4183 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4184 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4185 seq_printf(sf, "oom_kill %lu\n", 4186 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4187 return 0; 4188 } 4189 4190 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4191 struct cftype *cft, u64 val) 4192 { 4193 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4194 4195 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4196 if (!css->parent || !((val == 0) || (val == 1))) 4197 return -EINVAL; 4198 4199 memcg->oom_kill_disable = val; 4200 if (!val) 4201 memcg_oom_recover(memcg); 4202 4203 return 0; 4204 } 4205 4206 #ifdef CONFIG_CGROUP_WRITEBACK 4207 4208 #include <trace/events/writeback.h> 4209 4210 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4211 { 4212 return wb_domain_init(&memcg->cgwb_domain, gfp); 4213 } 4214 4215 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4216 { 4217 wb_domain_exit(&memcg->cgwb_domain); 4218 } 4219 4220 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4221 { 4222 wb_domain_size_changed(&memcg->cgwb_domain); 4223 } 4224 4225 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4226 { 4227 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4228 4229 if (!memcg->css.parent) 4230 return NULL; 4231 4232 return &memcg->cgwb_domain; 4233 } 4234 4235 /* 4236 * idx can be of type enum memcg_stat_item or node_stat_item. 4237 * Keep in sync with memcg_exact_page(). 4238 */ 4239 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4240 { 4241 long x = atomic_long_read(&memcg->vmstats[idx]); 4242 int cpu; 4243 4244 for_each_online_cpu(cpu) 4245 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4246 if (x < 0) 4247 x = 0; 4248 return x; 4249 } 4250 4251 /** 4252 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4253 * @wb: bdi_writeback in question 4254 * @pfilepages: out parameter for number of file pages 4255 * @pheadroom: out parameter for number of allocatable pages according to memcg 4256 * @pdirty: out parameter for number of dirty pages 4257 * @pwriteback: out parameter for number of pages under writeback 4258 * 4259 * Determine the numbers of file, headroom, dirty, and writeback pages in 4260 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4261 * is a bit more involved. 4262 * 4263 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4264 * headroom is calculated as the lowest headroom of itself and the 4265 * ancestors. Note that this doesn't consider the actual amount of 4266 * available memory in the system. The caller should further cap 4267 * *@pheadroom accordingly. 4268 */ 4269 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4270 unsigned long *pheadroom, unsigned long *pdirty, 4271 unsigned long *pwriteback) 4272 { 4273 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4274 struct mem_cgroup *parent; 4275 4276 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4277 4278 /* this should eventually include NR_UNSTABLE_NFS */ 4279 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4280 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4281 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4282 *pheadroom = PAGE_COUNTER_MAX; 4283 4284 while ((parent = parent_mem_cgroup(memcg))) { 4285 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4286 unsigned long used = page_counter_read(&memcg->memory); 4287 4288 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4289 memcg = parent; 4290 } 4291 } 4292 4293 /* 4294 * Foreign dirty flushing 4295 * 4296 * There's an inherent mismatch between memcg and writeback. The former 4297 * trackes ownership per-page while the latter per-inode. This was a 4298 * deliberate design decision because honoring per-page ownership in the 4299 * writeback path is complicated, may lead to higher CPU and IO overheads 4300 * and deemed unnecessary given that write-sharing an inode across 4301 * different cgroups isn't a common use-case. 4302 * 4303 * Combined with inode majority-writer ownership switching, this works well 4304 * enough in most cases but there are some pathological cases. For 4305 * example, let's say there are two cgroups A and B which keep writing to 4306 * different but confined parts of the same inode. B owns the inode and 4307 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4308 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4309 * triggering background writeback. A will be slowed down without a way to 4310 * make writeback of the dirty pages happen. 4311 * 4312 * Conditions like the above can lead to a cgroup getting repatedly and 4313 * severely throttled after making some progress after each 4314 * dirty_expire_interval while the underyling IO device is almost 4315 * completely idle. 4316 * 4317 * Solving this problem completely requires matching the ownership tracking 4318 * granularities between memcg and writeback in either direction. However, 4319 * the more egregious behaviors can be avoided by simply remembering the 4320 * most recent foreign dirtying events and initiating remote flushes on 4321 * them when local writeback isn't enough to keep the memory clean enough. 4322 * 4323 * The following two functions implement such mechanism. When a foreign 4324 * page - a page whose memcg and writeback ownerships don't match - is 4325 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4326 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4327 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4328 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4329 * foreign bdi_writebacks which haven't expired. Both the numbers of 4330 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4331 * limited to MEMCG_CGWB_FRN_CNT. 4332 * 4333 * The mechanism only remembers IDs and doesn't hold any object references. 4334 * As being wrong occasionally doesn't matter, updates and accesses to the 4335 * records are lockless and racy. 4336 */ 4337 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4338 struct bdi_writeback *wb) 4339 { 4340 struct mem_cgroup *memcg = page->mem_cgroup; 4341 struct memcg_cgwb_frn *frn; 4342 u64 now = get_jiffies_64(); 4343 u64 oldest_at = now; 4344 int oldest = -1; 4345 int i; 4346 4347 trace_track_foreign_dirty(page, wb); 4348 4349 /* 4350 * Pick the slot to use. If there is already a slot for @wb, keep 4351 * using it. If not replace the oldest one which isn't being 4352 * written out. 4353 */ 4354 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4355 frn = &memcg->cgwb_frn[i]; 4356 if (frn->bdi_id == wb->bdi->id && 4357 frn->memcg_id == wb->memcg_css->id) 4358 break; 4359 if (time_before64(frn->at, oldest_at) && 4360 atomic_read(&frn->done.cnt) == 1) { 4361 oldest = i; 4362 oldest_at = frn->at; 4363 } 4364 } 4365 4366 if (i < MEMCG_CGWB_FRN_CNT) { 4367 /* 4368 * Re-using an existing one. Update timestamp lazily to 4369 * avoid making the cacheline hot. We want them to be 4370 * reasonably up-to-date and significantly shorter than 4371 * dirty_expire_interval as that's what expires the record. 4372 * Use the shorter of 1s and dirty_expire_interval / 8. 4373 */ 4374 unsigned long update_intv = 4375 min_t(unsigned long, HZ, 4376 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4377 4378 if (time_before64(frn->at, now - update_intv)) 4379 frn->at = now; 4380 } else if (oldest >= 0) { 4381 /* replace the oldest free one */ 4382 frn = &memcg->cgwb_frn[oldest]; 4383 frn->bdi_id = wb->bdi->id; 4384 frn->memcg_id = wb->memcg_css->id; 4385 frn->at = now; 4386 } 4387 } 4388 4389 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4390 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4391 { 4392 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4393 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4394 u64 now = jiffies_64; 4395 int i; 4396 4397 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4398 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4399 4400 /* 4401 * If the record is older than dirty_expire_interval, 4402 * writeback on it has already started. No need to kick it 4403 * off again. Also, don't start a new one if there's 4404 * already one in flight. 4405 */ 4406 if (time_after64(frn->at, now - intv) && 4407 atomic_read(&frn->done.cnt) == 1) { 4408 frn->at = 0; 4409 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4410 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4411 WB_REASON_FOREIGN_FLUSH, 4412 &frn->done); 4413 } 4414 } 4415 } 4416 4417 #else /* CONFIG_CGROUP_WRITEBACK */ 4418 4419 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4420 { 4421 return 0; 4422 } 4423 4424 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4425 { 4426 } 4427 4428 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4429 { 4430 } 4431 4432 #endif /* CONFIG_CGROUP_WRITEBACK */ 4433 4434 /* 4435 * DO NOT USE IN NEW FILES. 4436 * 4437 * "cgroup.event_control" implementation. 4438 * 4439 * This is way over-engineered. It tries to support fully configurable 4440 * events for each user. Such level of flexibility is completely 4441 * unnecessary especially in the light of the planned unified hierarchy. 4442 * 4443 * Please deprecate this and replace with something simpler if at all 4444 * possible. 4445 */ 4446 4447 /* 4448 * Unregister event and free resources. 4449 * 4450 * Gets called from workqueue. 4451 */ 4452 static void memcg_event_remove(struct work_struct *work) 4453 { 4454 struct mem_cgroup_event *event = 4455 container_of(work, struct mem_cgroup_event, remove); 4456 struct mem_cgroup *memcg = event->memcg; 4457 4458 remove_wait_queue(event->wqh, &event->wait); 4459 4460 event->unregister_event(memcg, event->eventfd); 4461 4462 /* Notify userspace the event is going away. */ 4463 eventfd_signal(event->eventfd, 1); 4464 4465 eventfd_ctx_put(event->eventfd); 4466 kfree(event); 4467 css_put(&memcg->css); 4468 } 4469 4470 /* 4471 * Gets called on EPOLLHUP on eventfd when user closes it. 4472 * 4473 * Called with wqh->lock held and interrupts disabled. 4474 */ 4475 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4476 int sync, void *key) 4477 { 4478 struct mem_cgroup_event *event = 4479 container_of(wait, struct mem_cgroup_event, wait); 4480 struct mem_cgroup *memcg = event->memcg; 4481 __poll_t flags = key_to_poll(key); 4482 4483 if (flags & EPOLLHUP) { 4484 /* 4485 * If the event has been detached at cgroup removal, we 4486 * can simply return knowing the other side will cleanup 4487 * for us. 4488 * 4489 * We can't race against event freeing since the other 4490 * side will require wqh->lock via remove_wait_queue(), 4491 * which we hold. 4492 */ 4493 spin_lock(&memcg->event_list_lock); 4494 if (!list_empty(&event->list)) { 4495 list_del_init(&event->list); 4496 /* 4497 * We are in atomic context, but cgroup_event_remove() 4498 * may sleep, so we have to call it in workqueue. 4499 */ 4500 schedule_work(&event->remove); 4501 } 4502 spin_unlock(&memcg->event_list_lock); 4503 } 4504 4505 return 0; 4506 } 4507 4508 static void memcg_event_ptable_queue_proc(struct file *file, 4509 wait_queue_head_t *wqh, poll_table *pt) 4510 { 4511 struct mem_cgroup_event *event = 4512 container_of(pt, struct mem_cgroup_event, pt); 4513 4514 event->wqh = wqh; 4515 add_wait_queue(wqh, &event->wait); 4516 } 4517 4518 /* 4519 * DO NOT USE IN NEW FILES. 4520 * 4521 * Parse input and register new cgroup event handler. 4522 * 4523 * Input must be in format '<event_fd> <control_fd> <args>'. 4524 * Interpretation of args is defined by control file implementation. 4525 */ 4526 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4527 char *buf, size_t nbytes, loff_t off) 4528 { 4529 struct cgroup_subsys_state *css = of_css(of); 4530 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4531 struct mem_cgroup_event *event; 4532 struct cgroup_subsys_state *cfile_css; 4533 unsigned int efd, cfd; 4534 struct fd efile; 4535 struct fd cfile; 4536 const char *name; 4537 char *endp; 4538 int ret; 4539 4540 buf = strstrip(buf); 4541 4542 efd = simple_strtoul(buf, &endp, 10); 4543 if (*endp != ' ') 4544 return -EINVAL; 4545 buf = endp + 1; 4546 4547 cfd = simple_strtoul(buf, &endp, 10); 4548 if ((*endp != ' ') && (*endp != '\0')) 4549 return -EINVAL; 4550 buf = endp + 1; 4551 4552 event = kzalloc(sizeof(*event), GFP_KERNEL); 4553 if (!event) 4554 return -ENOMEM; 4555 4556 event->memcg = memcg; 4557 INIT_LIST_HEAD(&event->list); 4558 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4559 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4560 INIT_WORK(&event->remove, memcg_event_remove); 4561 4562 efile = fdget(efd); 4563 if (!efile.file) { 4564 ret = -EBADF; 4565 goto out_kfree; 4566 } 4567 4568 event->eventfd = eventfd_ctx_fileget(efile.file); 4569 if (IS_ERR(event->eventfd)) { 4570 ret = PTR_ERR(event->eventfd); 4571 goto out_put_efile; 4572 } 4573 4574 cfile = fdget(cfd); 4575 if (!cfile.file) { 4576 ret = -EBADF; 4577 goto out_put_eventfd; 4578 } 4579 4580 /* the process need read permission on control file */ 4581 /* AV: shouldn't we check that it's been opened for read instead? */ 4582 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4583 if (ret < 0) 4584 goto out_put_cfile; 4585 4586 /* 4587 * Determine the event callbacks and set them in @event. This used 4588 * to be done via struct cftype but cgroup core no longer knows 4589 * about these events. The following is crude but the whole thing 4590 * is for compatibility anyway. 4591 * 4592 * DO NOT ADD NEW FILES. 4593 */ 4594 name = cfile.file->f_path.dentry->d_name.name; 4595 4596 if (!strcmp(name, "memory.usage_in_bytes")) { 4597 event->register_event = mem_cgroup_usage_register_event; 4598 event->unregister_event = mem_cgroup_usage_unregister_event; 4599 } else if (!strcmp(name, "memory.oom_control")) { 4600 event->register_event = mem_cgroup_oom_register_event; 4601 event->unregister_event = mem_cgroup_oom_unregister_event; 4602 } else if (!strcmp(name, "memory.pressure_level")) { 4603 event->register_event = vmpressure_register_event; 4604 event->unregister_event = vmpressure_unregister_event; 4605 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4606 event->register_event = memsw_cgroup_usage_register_event; 4607 event->unregister_event = memsw_cgroup_usage_unregister_event; 4608 } else { 4609 ret = -EINVAL; 4610 goto out_put_cfile; 4611 } 4612 4613 /* 4614 * Verify @cfile should belong to @css. Also, remaining events are 4615 * automatically removed on cgroup destruction but the removal is 4616 * asynchronous, so take an extra ref on @css. 4617 */ 4618 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4619 &memory_cgrp_subsys); 4620 ret = -EINVAL; 4621 if (IS_ERR(cfile_css)) 4622 goto out_put_cfile; 4623 if (cfile_css != css) { 4624 css_put(cfile_css); 4625 goto out_put_cfile; 4626 } 4627 4628 ret = event->register_event(memcg, event->eventfd, buf); 4629 if (ret) 4630 goto out_put_css; 4631 4632 vfs_poll(efile.file, &event->pt); 4633 4634 spin_lock(&memcg->event_list_lock); 4635 list_add(&event->list, &memcg->event_list); 4636 spin_unlock(&memcg->event_list_lock); 4637 4638 fdput(cfile); 4639 fdput(efile); 4640 4641 return nbytes; 4642 4643 out_put_css: 4644 css_put(css); 4645 out_put_cfile: 4646 fdput(cfile); 4647 out_put_eventfd: 4648 eventfd_ctx_put(event->eventfd); 4649 out_put_efile: 4650 fdput(efile); 4651 out_kfree: 4652 kfree(event); 4653 4654 return ret; 4655 } 4656 4657 static struct cftype mem_cgroup_legacy_files[] = { 4658 { 4659 .name = "usage_in_bytes", 4660 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4661 .read_u64 = mem_cgroup_read_u64, 4662 }, 4663 { 4664 .name = "max_usage_in_bytes", 4665 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4666 .write = mem_cgroup_reset, 4667 .read_u64 = mem_cgroup_read_u64, 4668 }, 4669 { 4670 .name = "limit_in_bytes", 4671 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4672 .write = mem_cgroup_write, 4673 .read_u64 = mem_cgroup_read_u64, 4674 }, 4675 { 4676 .name = "soft_limit_in_bytes", 4677 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4678 .write = mem_cgroup_write, 4679 .read_u64 = mem_cgroup_read_u64, 4680 }, 4681 { 4682 .name = "failcnt", 4683 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4684 .write = mem_cgroup_reset, 4685 .read_u64 = mem_cgroup_read_u64, 4686 }, 4687 { 4688 .name = "stat", 4689 .seq_show = memcg_stat_show, 4690 }, 4691 { 4692 .name = "force_empty", 4693 .write = mem_cgroup_force_empty_write, 4694 }, 4695 { 4696 .name = "use_hierarchy", 4697 .write_u64 = mem_cgroup_hierarchy_write, 4698 .read_u64 = mem_cgroup_hierarchy_read, 4699 }, 4700 { 4701 .name = "cgroup.event_control", /* XXX: for compat */ 4702 .write = memcg_write_event_control, 4703 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4704 }, 4705 { 4706 .name = "swappiness", 4707 .read_u64 = mem_cgroup_swappiness_read, 4708 .write_u64 = mem_cgroup_swappiness_write, 4709 }, 4710 { 4711 .name = "move_charge_at_immigrate", 4712 .read_u64 = mem_cgroup_move_charge_read, 4713 .write_u64 = mem_cgroup_move_charge_write, 4714 }, 4715 { 4716 .name = "oom_control", 4717 .seq_show = mem_cgroup_oom_control_read, 4718 .write_u64 = mem_cgroup_oom_control_write, 4719 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4720 }, 4721 { 4722 .name = "pressure_level", 4723 }, 4724 #ifdef CONFIG_NUMA 4725 { 4726 .name = "numa_stat", 4727 .seq_show = memcg_numa_stat_show, 4728 }, 4729 #endif 4730 { 4731 .name = "kmem.limit_in_bytes", 4732 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4733 .write = mem_cgroup_write, 4734 .read_u64 = mem_cgroup_read_u64, 4735 }, 4736 { 4737 .name = "kmem.usage_in_bytes", 4738 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4739 .read_u64 = mem_cgroup_read_u64, 4740 }, 4741 { 4742 .name = "kmem.failcnt", 4743 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4744 .write = mem_cgroup_reset, 4745 .read_u64 = mem_cgroup_read_u64, 4746 }, 4747 { 4748 .name = "kmem.max_usage_in_bytes", 4749 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4750 .write = mem_cgroup_reset, 4751 .read_u64 = mem_cgroup_read_u64, 4752 }, 4753 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4754 { 4755 .name = "kmem.slabinfo", 4756 .seq_start = memcg_slab_start, 4757 .seq_next = memcg_slab_next, 4758 .seq_stop = memcg_slab_stop, 4759 .seq_show = memcg_slab_show, 4760 }, 4761 #endif 4762 { 4763 .name = "kmem.tcp.limit_in_bytes", 4764 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4765 .write = mem_cgroup_write, 4766 .read_u64 = mem_cgroup_read_u64, 4767 }, 4768 { 4769 .name = "kmem.tcp.usage_in_bytes", 4770 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4771 .read_u64 = mem_cgroup_read_u64, 4772 }, 4773 { 4774 .name = "kmem.tcp.failcnt", 4775 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4776 .write = mem_cgroup_reset, 4777 .read_u64 = mem_cgroup_read_u64, 4778 }, 4779 { 4780 .name = "kmem.tcp.max_usage_in_bytes", 4781 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4782 .write = mem_cgroup_reset, 4783 .read_u64 = mem_cgroup_read_u64, 4784 }, 4785 { }, /* terminate */ 4786 }; 4787 4788 /* 4789 * Private memory cgroup IDR 4790 * 4791 * Swap-out records and page cache shadow entries need to store memcg 4792 * references in constrained space, so we maintain an ID space that is 4793 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4794 * memory-controlled cgroups to 64k. 4795 * 4796 * However, there usually are many references to the oflline CSS after 4797 * the cgroup has been destroyed, such as page cache or reclaimable 4798 * slab objects, that don't need to hang on to the ID. We want to keep 4799 * those dead CSS from occupying IDs, or we might quickly exhaust the 4800 * relatively small ID space and prevent the creation of new cgroups 4801 * even when there are much fewer than 64k cgroups - possibly none. 4802 * 4803 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4804 * be freed and recycled when it's no longer needed, which is usually 4805 * when the CSS is offlined. 4806 * 4807 * The only exception to that are records of swapped out tmpfs/shmem 4808 * pages that need to be attributed to live ancestors on swapin. But 4809 * those references are manageable from userspace. 4810 */ 4811 4812 static DEFINE_IDR(mem_cgroup_idr); 4813 4814 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4815 { 4816 if (memcg->id.id > 0) { 4817 idr_remove(&mem_cgroup_idr, memcg->id.id); 4818 memcg->id.id = 0; 4819 } 4820 } 4821 4822 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4823 { 4824 refcount_add(n, &memcg->id.ref); 4825 } 4826 4827 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4828 { 4829 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4830 mem_cgroup_id_remove(memcg); 4831 4832 /* Memcg ID pins CSS */ 4833 css_put(&memcg->css); 4834 } 4835 } 4836 4837 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4838 { 4839 mem_cgroup_id_put_many(memcg, 1); 4840 } 4841 4842 /** 4843 * mem_cgroup_from_id - look up a memcg from a memcg id 4844 * @id: the memcg id to look up 4845 * 4846 * Caller must hold rcu_read_lock(). 4847 */ 4848 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4849 { 4850 WARN_ON_ONCE(!rcu_read_lock_held()); 4851 return idr_find(&mem_cgroup_idr, id); 4852 } 4853 4854 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4855 { 4856 struct mem_cgroup_per_node *pn; 4857 int tmp = node; 4858 /* 4859 * This routine is called against possible nodes. 4860 * But it's BUG to call kmalloc() against offline node. 4861 * 4862 * TODO: this routine can waste much memory for nodes which will 4863 * never be onlined. It's better to use memory hotplug callback 4864 * function. 4865 */ 4866 if (!node_state(node, N_NORMAL_MEMORY)) 4867 tmp = -1; 4868 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4869 if (!pn) 4870 return 1; 4871 4872 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4873 if (!pn->lruvec_stat_local) { 4874 kfree(pn); 4875 return 1; 4876 } 4877 4878 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4879 if (!pn->lruvec_stat_cpu) { 4880 free_percpu(pn->lruvec_stat_local); 4881 kfree(pn); 4882 return 1; 4883 } 4884 4885 lruvec_init(&pn->lruvec); 4886 pn->usage_in_excess = 0; 4887 pn->on_tree = false; 4888 pn->memcg = memcg; 4889 4890 memcg->nodeinfo[node] = pn; 4891 return 0; 4892 } 4893 4894 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4895 { 4896 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4897 4898 if (!pn) 4899 return; 4900 4901 free_percpu(pn->lruvec_stat_cpu); 4902 free_percpu(pn->lruvec_stat_local); 4903 kfree(pn); 4904 } 4905 4906 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4907 { 4908 int node; 4909 4910 for_each_node(node) 4911 free_mem_cgroup_per_node_info(memcg, node); 4912 free_percpu(memcg->vmstats_percpu); 4913 free_percpu(memcg->vmstats_local); 4914 kfree(memcg); 4915 } 4916 4917 static void mem_cgroup_free(struct mem_cgroup *memcg) 4918 { 4919 memcg_wb_domain_exit(memcg); 4920 /* 4921 * Flush percpu vmstats and vmevents to guarantee the value correctness 4922 * on parent's and all ancestor levels. 4923 */ 4924 memcg_flush_percpu_vmstats(memcg, false); 4925 memcg_flush_percpu_vmevents(memcg); 4926 __mem_cgroup_free(memcg); 4927 } 4928 4929 static struct mem_cgroup *mem_cgroup_alloc(void) 4930 { 4931 struct mem_cgroup *memcg; 4932 unsigned int size; 4933 int node; 4934 int __maybe_unused i; 4935 4936 size = sizeof(struct mem_cgroup); 4937 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4938 4939 memcg = kzalloc(size, GFP_KERNEL); 4940 if (!memcg) 4941 return NULL; 4942 4943 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4944 1, MEM_CGROUP_ID_MAX, 4945 GFP_KERNEL); 4946 if (memcg->id.id < 0) 4947 goto fail; 4948 4949 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 4950 if (!memcg->vmstats_local) 4951 goto fail; 4952 4953 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 4954 if (!memcg->vmstats_percpu) 4955 goto fail; 4956 4957 for_each_node(node) 4958 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4959 goto fail; 4960 4961 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4962 goto fail; 4963 4964 INIT_WORK(&memcg->high_work, high_work_func); 4965 INIT_LIST_HEAD(&memcg->oom_notify); 4966 mutex_init(&memcg->thresholds_lock); 4967 spin_lock_init(&memcg->move_lock); 4968 vmpressure_init(&memcg->vmpressure); 4969 INIT_LIST_HEAD(&memcg->event_list); 4970 spin_lock_init(&memcg->event_list_lock); 4971 memcg->socket_pressure = jiffies; 4972 #ifdef CONFIG_MEMCG_KMEM 4973 memcg->kmemcg_id = -1; 4974 #endif 4975 #ifdef CONFIG_CGROUP_WRITEBACK 4976 INIT_LIST_HEAD(&memcg->cgwb_list); 4977 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 4978 memcg->cgwb_frn[i].done = 4979 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 4980 #endif 4981 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4982 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 4983 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 4984 memcg->deferred_split_queue.split_queue_len = 0; 4985 #endif 4986 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4987 return memcg; 4988 fail: 4989 mem_cgroup_id_remove(memcg); 4990 __mem_cgroup_free(memcg); 4991 return NULL; 4992 } 4993 4994 static struct cgroup_subsys_state * __ref 4995 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4996 { 4997 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4998 struct mem_cgroup *memcg; 4999 long error = -ENOMEM; 5000 5001 memcg = mem_cgroup_alloc(); 5002 if (!memcg) 5003 return ERR_PTR(error); 5004 5005 memcg->high = PAGE_COUNTER_MAX; 5006 memcg->soft_limit = PAGE_COUNTER_MAX; 5007 if (parent) { 5008 memcg->swappiness = mem_cgroup_swappiness(parent); 5009 memcg->oom_kill_disable = parent->oom_kill_disable; 5010 } 5011 if (parent && parent->use_hierarchy) { 5012 memcg->use_hierarchy = true; 5013 page_counter_init(&memcg->memory, &parent->memory); 5014 page_counter_init(&memcg->swap, &parent->swap); 5015 page_counter_init(&memcg->memsw, &parent->memsw); 5016 page_counter_init(&memcg->kmem, &parent->kmem); 5017 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5018 } else { 5019 page_counter_init(&memcg->memory, NULL); 5020 page_counter_init(&memcg->swap, NULL); 5021 page_counter_init(&memcg->memsw, NULL); 5022 page_counter_init(&memcg->kmem, NULL); 5023 page_counter_init(&memcg->tcpmem, NULL); 5024 /* 5025 * Deeper hierachy with use_hierarchy == false doesn't make 5026 * much sense so let cgroup subsystem know about this 5027 * unfortunate state in our controller. 5028 */ 5029 if (parent != root_mem_cgroup) 5030 memory_cgrp_subsys.broken_hierarchy = true; 5031 } 5032 5033 /* The following stuff does not apply to the root */ 5034 if (!parent) { 5035 #ifdef CONFIG_MEMCG_KMEM 5036 INIT_LIST_HEAD(&memcg->kmem_caches); 5037 #endif 5038 root_mem_cgroup = memcg; 5039 return &memcg->css; 5040 } 5041 5042 error = memcg_online_kmem(memcg); 5043 if (error) 5044 goto fail; 5045 5046 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5047 static_branch_inc(&memcg_sockets_enabled_key); 5048 5049 return &memcg->css; 5050 fail: 5051 mem_cgroup_id_remove(memcg); 5052 mem_cgroup_free(memcg); 5053 return ERR_PTR(-ENOMEM); 5054 } 5055 5056 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5057 { 5058 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5059 5060 /* 5061 * A memcg must be visible for memcg_expand_shrinker_maps() 5062 * by the time the maps are allocated. So, we allocate maps 5063 * here, when for_each_mem_cgroup() can't skip it. 5064 */ 5065 if (memcg_alloc_shrinker_maps(memcg)) { 5066 mem_cgroup_id_remove(memcg); 5067 return -ENOMEM; 5068 } 5069 5070 /* Online state pins memcg ID, memcg ID pins CSS */ 5071 refcount_set(&memcg->id.ref, 1); 5072 css_get(css); 5073 return 0; 5074 } 5075 5076 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5077 { 5078 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5079 struct mem_cgroup_event *event, *tmp; 5080 5081 /* 5082 * Unregister events and notify userspace. 5083 * Notify userspace about cgroup removing only after rmdir of cgroup 5084 * directory to avoid race between userspace and kernelspace. 5085 */ 5086 spin_lock(&memcg->event_list_lock); 5087 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5088 list_del_init(&event->list); 5089 schedule_work(&event->remove); 5090 } 5091 spin_unlock(&memcg->event_list_lock); 5092 5093 page_counter_set_min(&memcg->memory, 0); 5094 page_counter_set_low(&memcg->memory, 0); 5095 5096 memcg_offline_kmem(memcg); 5097 wb_memcg_offline(memcg); 5098 5099 drain_all_stock(memcg); 5100 5101 mem_cgroup_id_put(memcg); 5102 } 5103 5104 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5105 { 5106 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5107 5108 invalidate_reclaim_iterators(memcg); 5109 } 5110 5111 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5112 { 5113 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5114 int __maybe_unused i; 5115 5116 #ifdef CONFIG_CGROUP_WRITEBACK 5117 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5118 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5119 #endif 5120 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5121 static_branch_dec(&memcg_sockets_enabled_key); 5122 5123 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5124 static_branch_dec(&memcg_sockets_enabled_key); 5125 5126 vmpressure_cleanup(&memcg->vmpressure); 5127 cancel_work_sync(&memcg->high_work); 5128 mem_cgroup_remove_from_trees(memcg); 5129 memcg_free_shrinker_maps(memcg); 5130 memcg_free_kmem(memcg); 5131 mem_cgroup_free(memcg); 5132 } 5133 5134 /** 5135 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5136 * @css: the target css 5137 * 5138 * Reset the states of the mem_cgroup associated with @css. This is 5139 * invoked when the userland requests disabling on the default hierarchy 5140 * but the memcg is pinned through dependency. The memcg should stop 5141 * applying policies and should revert to the vanilla state as it may be 5142 * made visible again. 5143 * 5144 * The current implementation only resets the essential configurations. 5145 * This needs to be expanded to cover all the visible parts. 5146 */ 5147 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5148 { 5149 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5150 5151 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5152 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5153 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5154 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5155 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5156 page_counter_set_min(&memcg->memory, 0); 5157 page_counter_set_low(&memcg->memory, 0); 5158 memcg->high = PAGE_COUNTER_MAX; 5159 memcg->soft_limit = PAGE_COUNTER_MAX; 5160 memcg_wb_domain_size_changed(memcg); 5161 } 5162 5163 #ifdef CONFIG_MMU 5164 /* Handlers for move charge at task migration. */ 5165 static int mem_cgroup_do_precharge(unsigned long count) 5166 { 5167 int ret; 5168 5169 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5170 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5171 if (!ret) { 5172 mc.precharge += count; 5173 return ret; 5174 } 5175 5176 /* Try charges one by one with reclaim, but do not retry */ 5177 while (count--) { 5178 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5179 if (ret) 5180 return ret; 5181 mc.precharge++; 5182 cond_resched(); 5183 } 5184 return 0; 5185 } 5186 5187 union mc_target { 5188 struct page *page; 5189 swp_entry_t ent; 5190 }; 5191 5192 enum mc_target_type { 5193 MC_TARGET_NONE = 0, 5194 MC_TARGET_PAGE, 5195 MC_TARGET_SWAP, 5196 MC_TARGET_DEVICE, 5197 }; 5198 5199 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5200 unsigned long addr, pte_t ptent) 5201 { 5202 struct page *page = vm_normal_page(vma, addr, ptent); 5203 5204 if (!page || !page_mapped(page)) 5205 return NULL; 5206 if (PageAnon(page)) { 5207 if (!(mc.flags & MOVE_ANON)) 5208 return NULL; 5209 } else { 5210 if (!(mc.flags & MOVE_FILE)) 5211 return NULL; 5212 } 5213 if (!get_page_unless_zero(page)) 5214 return NULL; 5215 5216 return page; 5217 } 5218 5219 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5220 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5221 pte_t ptent, swp_entry_t *entry) 5222 { 5223 struct page *page = NULL; 5224 swp_entry_t ent = pte_to_swp_entry(ptent); 5225 5226 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5227 return NULL; 5228 5229 /* 5230 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5231 * a device and because they are not accessible by CPU they are store 5232 * as special swap entry in the CPU page table. 5233 */ 5234 if (is_device_private_entry(ent)) { 5235 page = device_private_entry_to_page(ent); 5236 /* 5237 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5238 * a refcount of 1 when free (unlike normal page) 5239 */ 5240 if (!page_ref_add_unless(page, 1, 1)) 5241 return NULL; 5242 return page; 5243 } 5244 5245 /* 5246 * Because lookup_swap_cache() updates some statistics counter, 5247 * we call find_get_page() with swapper_space directly. 5248 */ 5249 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5250 if (do_memsw_account()) 5251 entry->val = ent.val; 5252 5253 return page; 5254 } 5255 #else 5256 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5257 pte_t ptent, swp_entry_t *entry) 5258 { 5259 return NULL; 5260 } 5261 #endif 5262 5263 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5264 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5265 { 5266 struct page *page = NULL; 5267 struct address_space *mapping; 5268 pgoff_t pgoff; 5269 5270 if (!vma->vm_file) /* anonymous vma */ 5271 return NULL; 5272 if (!(mc.flags & MOVE_FILE)) 5273 return NULL; 5274 5275 mapping = vma->vm_file->f_mapping; 5276 pgoff = linear_page_index(vma, addr); 5277 5278 /* page is moved even if it's not RSS of this task(page-faulted). */ 5279 #ifdef CONFIG_SWAP 5280 /* shmem/tmpfs may report page out on swap: account for that too. */ 5281 if (shmem_mapping(mapping)) { 5282 page = find_get_entry(mapping, pgoff); 5283 if (xa_is_value(page)) { 5284 swp_entry_t swp = radix_to_swp_entry(page); 5285 if (do_memsw_account()) 5286 *entry = swp; 5287 page = find_get_page(swap_address_space(swp), 5288 swp_offset(swp)); 5289 } 5290 } else 5291 page = find_get_page(mapping, pgoff); 5292 #else 5293 page = find_get_page(mapping, pgoff); 5294 #endif 5295 return page; 5296 } 5297 5298 /** 5299 * mem_cgroup_move_account - move account of the page 5300 * @page: the page 5301 * @compound: charge the page as compound or small page 5302 * @from: mem_cgroup which the page is moved from. 5303 * @to: mem_cgroup which the page is moved to. @from != @to. 5304 * 5305 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5306 * 5307 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5308 * from old cgroup. 5309 */ 5310 static int mem_cgroup_move_account(struct page *page, 5311 bool compound, 5312 struct mem_cgroup *from, 5313 struct mem_cgroup *to) 5314 { 5315 struct lruvec *from_vec, *to_vec; 5316 struct pglist_data *pgdat; 5317 unsigned long flags; 5318 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5319 int ret; 5320 bool anon; 5321 5322 VM_BUG_ON(from == to); 5323 VM_BUG_ON_PAGE(PageLRU(page), page); 5324 VM_BUG_ON(compound && !PageTransHuge(page)); 5325 5326 /* 5327 * Prevent mem_cgroup_migrate() from looking at 5328 * page->mem_cgroup of its source page while we change it. 5329 */ 5330 ret = -EBUSY; 5331 if (!trylock_page(page)) 5332 goto out; 5333 5334 ret = -EINVAL; 5335 if (page->mem_cgroup != from) 5336 goto out_unlock; 5337 5338 anon = PageAnon(page); 5339 5340 pgdat = page_pgdat(page); 5341 from_vec = mem_cgroup_lruvec(from, pgdat); 5342 to_vec = mem_cgroup_lruvec(to, pgdat); 5343 5344 spin_lock_irqsave(&from->move_lock, flags); 5345 5346 if (!anon && page_mapped(page)) { 5347 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5348 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5349 } 5350 5351 /* 5352 * move_lock grabbed above and caller set from->moving_account, so 5353 * mod_memcg_page_state will serialize updates to PageDirty. 5354 * So mapping should be stable for dirty pages. 5355 */ 5356 if (!anon && PageDirty(page)) { 5357 struct address_space *mapping = page_mapping(page); 5358 5359 if (mapping_cap_account_dirty(mapping)) { 5360 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages); 5361 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages); 5362 } 5363 } 5364 5365 if (PageWriteback(page)) { 5366 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5367 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5368 } 5369 5370 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5371 if (compound && !list_empty(page_deferred_list(page))) { 5372 spin_lock(&from->deferred_split_queue.split_queue_lock); 5373 list_del_init(page_deferred_list(page)); 5374 from->deferred_split_queue.split_queue_len--; 5375 spin_unlock(&from->deferred_split_queue.split_queue_lock); 5376 } 5377 #endif 5378 /* 5379 * It is safe to change page->mem_cgroup here because the page 5380 * is referenced, charged, and isolated - we can't race with 5381 * uncharging, charging, migration, or LRU putback. 5382 */ 5383 5384 /* caller should have done css_get */ 5385 page->mem_cgroup = to; 5386 5387 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5388 if (compound && list_empty(page_deferred_list(page))) { 5389 spin_lock(&to->deferred_split_queue.split_queue_lock); 5390 list_add_tail(page_deferred_list(page), 5391 &to->deferred_split_queue.split_queue); 5392 to->deferred_split_queue.split_queue_len++; 5393 spin_unlock(&to->deferred_split_queue.split_queue_lock); 5394 } 5395 #endif 5396 5397 spin_unlock_irqrestore(&from->move_lock, flags); 5398 5399 ret = 0; 5400 5401 local_irq_disable(); 5402 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5403 memcg_check_events(to, page); 5404 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5405 memcg_check_events(from, page); 5406 local_irq_enable(); 5407 out_unlock: 5408 unlock_page(page); 5409 out: 5410 return ret; 5411 } 5412 5413 /** 5414 * get_mctgt_type - get target type of moving charge 5415 * @vma: the vma the pte to be checked belongs 5416 * @addr: the address corresponding to the pte to be checked 5417 * @ptent: the pte to be checked 5418 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5419 * 5420 * Returns 5421 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5422 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5423 * move charge. if @target is not NULL, the page is stored in target->page 5424 * with extra refcnt got(Callers should handle it). 5425 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5426 * target for charge migration. if @target is not NULL, the entry is stored 5427 * in target->ent. 5428 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5429 * (so ZONE_DEVICE page and thus not on the lru). 5430 * For now we such page is charge like a regular page would be as for all 5431 * intent and purposes it is just special memory taking the place of a 5432 * regular page. 5433 * 5434 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5435 * 5436 * Called with pte lock held. 5437 */ 5438 5439 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5440 unsigned long addr, pte_t ptent, union mc_target *target) 5441 { 5442 struct page *page = NULL; 5443 enum mc_target_type ret = MC_TARGET_NONE; 5444 swp_entry_t ent = { .val = 0 }; 5445 5446 if (pte_present(ptent)) 5447 page = mc_handle_present_pte(vma, addr, ptent); 5448 else if (is_swap_pte(ptent)) 5449 page = mc_handle_swap_pte(vma, ptent, &ent); 5450 else if (pte_none(ptent)) 5451 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5452 5453 if (!page && !ent.val) 5454 return ret; 5455 if (page) { 5456 /* 5457 * Do only loose check w/o serialization. 5458 * mem_cgroup_move_account() checks the page is valid or 5459 * not under LRU exclusion. 5460 */ 5461 if (page->mem_cgroup == mc.from) { 5462 ret = MC_TARGET_PAGE; 5463 if (is_device_private_page(page)) 5464 ret = MC_TARGET_DEVICE; 5465 if (target) 5466 target->page = page; 5467 } 5468 if (!ret || !target) 5469 put_page(page); 5470 } 5471 /* 5472 * There is a swap entry and a page doesn't exist or isn't charged. 5473 * But we cannot move a tail-page in a THP. 5474 */ 5475 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5476 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5477 ret = MC_TARGET_SWAP; 5478 if (target) 5479 target->ent = ent; 5480 } 5481 return ret; 5482 } 5483 5484 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5485 /* 5486 * We don't consider PMD mapped swapping or file mapped pages because THP does 5487 * not support them for now. 5488 * Caller should make sure that pmd_trans_huge(pmd) is true. 5489 */ 5490 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5491 unsigned long addr, pmd_t pmd, union mc_target *target) 5492 { 5493 struct page *page = NULL; 5494 enum mc_target_type ret = MC_TARGET_NONE; 5495 5496 if (unlikely(is_swap_pmd(pmd))) { 5497 VM_BUG_ON(thp_migration_supported() && 5498 !is_pmd_migration_entry(pmd)); 5499 return ret; 5500 } 5501 page = pmd_page(pmd); 5502 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5503 if (!(mc.flags & MOVE_ANON)) 5504 return ret; 5505 if (page->mem_cgroup == mc.from) { 5506 ret = MC_TARGET_PAGE; 5507 if (target) { 5508 get_page(page); 5509 target->page = page; 5510 } 5511 } 5512 return ret; 5513 } 5514 #else 5515 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5516 unsigned long addr, pmd_t pmd, union mc_target *target) 5517 { 5518 return MC_TARGET_NONE; 5519 } 5520 #endif 5521 5522 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5523 unsigned long addr, unsigned long end, 5524 struct mm_walk *walk) 5525 { 5526 struct vm_area_struct *vma = walk->vma; 5527 pte_t *pte; 5528 spinlock_t *ptl; 5529 5530 ptl = pmd_trans_huge_lock(pmd, vma); 5531 if (ptl) { 5532 /* 5533 * Note their can not be MC_TARGET_DEVICE for now as we do not 5534 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5535 * this might change. 5536 */ 5537 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5538 mc.precharge += HPAGE_PMD_NR; 5539 spin_unlock(ptl); 5540 return 0; 5541 } 5542 5543 if (pmd_trans_unstable(pmd)) 5544 return 0; 5545 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5546 for (; addr != end; pte++, addr += PAGE_SIZE) 5547 if (get_mctgt_type(vma, addr, *pte, NULL)) 5548 mc.precharge++; /* increment precharge temporarily */ 5549 pte_unmap_unlock(pte - 1, ptl); 5550 cond_resched(); 5551 5552 return 0; 5553 } 5554 5555 static const struct mm_walk_ops precharge_walk_ops = { 5556 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5557 }; 5558 5559 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5560 { 5561 unsigned long precharge; 5562 5563 down_read(&mm->mmap_sem); 5564 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5565 up_read(&mm->mmap_sem); 5566 5567 precharge = mc.precharge; 5568 mc.precharge = 0; 5569 5570 return precharge; 5571 } 5572 5573 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5574 { 5575 unsigned long precharge = mem_cgroup_count_precharge(mm); 5576 5577 VM_BUG_ON(mc.moving_task); 5578 mc.moving_task = current; 5579 return mem_cgroup_do_precharge(precharge); 5580 } 5581 5582 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5583 static void __mem_cgroup_clear_mc(void) 5584 { 5585 struct mem_cgroup *from = mc.from; 5586 struct mem_cgroup *to = mc.to; 5587 5588 /* we must uncharge all the leftover precharges from mc.to */ 5589 if (mc.precharge) { 5590 cancel_charge(mc.to, mc.precharge); 5591 mc.precharge = 0; 5592 } 5593 /* 5594 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5595 * we must uncharge here. 5596 */ 5597 if (mc.moved_charge) { 5598 cancel_charge(mc.from, mc.moved_charge); 5599 mc.moved_charge = 0; 5600 } 5601 /* we must fixup refcnts and charges */ 5602 if (mc.moved_swap) { 5603 /* uncharge swap account from the old cgroup */ 5604 if (!mem_cgroup_is_root(mc.from)) 5605 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5606 5607 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5608 5609 /* 5610 * we charged both to->memory and to->memsw, so we 5611 * should uncharge to->memory. 5612 */ 5613 if (!mem_cgroup_is_root(mc.to)) 5614 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5615 5616 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5617 css_put_many(&mc.to->css, mc.moved_swap); 5618 5619 mc.moved_swap = 0; 5620 } 5621 memcg_oom_recover(from); 5622 memcg_oom_recover(to); 5623 wake_up_all(&mc.waitq); 5624 } 5625 5626 static void mem_cgroup_clear_mc(void) 5627 { 5628 struct mm_struct *mm = mc.mm; 5629 5630 /* 5631 * we must clear moving_task before waking up waiters at the end of 5632 * task migration. 5633 */ 5634 mc.moving_task = NULL; 5635 __mem_cgroup_clear_mc(); 5636 spin_lock(&mc.lock); 5637 mc.from = NULL; 5638 mc.to = NULL; 5639 mc.mm = NULL; 5640 spin_unlock(&mc.lock); 5641 5642 mmput(mm); 5643 } 5644 5645 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5646 { 5647 struct cgroup_subsys_state *css; 5648 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5649 struct mem_cgroup *from; 5650 struct task_struct *leader, *p; 5651 struct mm_struct *mm; 5652 unsigned long move_flags; 5653 int ret = 0; 5654 5655 /* charge immigration isn't supported on the default hierarchy */ 5656 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5657 return 0; 5658 5659 /* 5660 * Multi-process migrations only happen on the default hierarchy 5661 * where charge immigration is not used. Perform charge 5662 * immigration if @tset contains a leader and whine if there are 5663 * multiple. 5664 */ 5665 p = NULL; 5666 cgroup_taskset_for_each_leader(leader, css, tset) { 5667 WARN_ON_ONCE(p); 5668 p = leader; 5669 memcg = mem_cgroup_from_css(css); 5670 } 5671 if (!p) 5672 return 0; 5673 5674 /* 5675 * We are now commited to this value whatever it is. Changes in this 5676 * tunable will only affect upcoming migrations, not the current one. 5677 * So we need to save it, and keep it going. 5678 */ 5679 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5680 if (!move_flags) 5681 return 0; 5682 5683 from = mem_cgroup_from_task(p); 5684 5685 VM_BUG_ON(from == memcg); 5686 5687 mm = get_task_mm(p); 5688 if (!mm) 5689 return 0; 5690 /* We move charges only when we move a owner of the mm */ 5691 if (mm->owner == p) { 5692 VM_BUG_ON(mc.from); 5693 VM_BUG_ON(mc.to); 5694 VM_BUG_ON(mc.precharge); 5695 VM_BUG_ON(mc.moved_charge); 5696 VM_BUG_ON(mc.moved_swap); 5697 5698 spin_lock(&mc.lock); 5699 mc.mm = mm; 5700 mc.from = from; 5701 mc.to = memcg; 5702 mc.flags = move_flags; 5703 spin_unlock(&mc.lock); 5704 /* We set mc.moving_task later */ 5705 5706 ret = mem_cgroup_precharge_mc(mm); 5707 if (ret) 5708 mem_cgroup_clear_mc(); 5709 } else { 5710 mmput(mm); 5711 } 5712 return ret; 5713 } 5714 5715 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5716 { 5717 if (mc.to) 5718 mem_cgroup_clear_mc(); 5719 } 5720 5721 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5722 unsigned long addr, unsigned long end, 5723 struct mm_walk *walk) 5724 { 5725 int ret = 0; 5726 struct vm_area_struct *vma = walk->vma; 5727 pte_t *pte; 5728 spinlock_t *ptl; 5729 enum mc_target_type target_type; 5730 union mc_target target; 5731 struct page *page; 5732 5733 ptl = pmd_trans_huge_lock(pmd, vma); 5734 if (ptl) { 5735 if (mc.precharge < HPAGE_PMD_NR) { 5736 spin_unlock(ptl); 5737 return 0; 5738 } 5739 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5740 if (target_type == MC_TARGET_PAGE) { 5741 page = target.page; 5742 if (!isolate_lru_page(page)) { 5743 if (!mem_cgroup_move_account(page, true, 5744 mc.from, mc.to)) { 5745 mc.precharge -= HPAGE_PMD_NR; 5746 mc.moved_charge += HPAGE_PMD_NR; 5747 } 5748 putback_lru_page(page); 5749 } 5750 put_page(page); 5751 } else if (target_type == MC_TARGET_DEVICE) { 5752 page = target.page; 5753 if (!mem_cgroup_move_account(page, true, 5754 mc.from, mc.to)) { 5755 mc.precharge -= HPAGE_PMD_NR; 5756 mc.moved_charge += HPAGE_PMD_NR; 5757 } 5758 put_page(page); 5759 } 5760 spin_unlock(ptl); 5761 return 0; 5762 } 5763 5764 if (pmd_trans_unstable(pmd)) 5765 return 0; 5766 retry: 5767 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5768 for (; addr != end; addr += PAGE_SIZE) { 5769 pte_t ptent = *(pte++); 5770 bool device = false; 5771 swp_entry_t ent; 5772 5773 if (!mc.precharge) 5774 break; 5775 5776 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5777 case MC_TARGET_DEVICE: 5778 device = true; 5779 /* fall through */ 5780 case MC_TARGET_PAGE: 5781 page = target.page; 5782 /* 5783 * We can have a part of the split pmd here. Moving it 5784 * can be done but it would be too convoluted so simply 5785 * ignore such a partial THP and keep it in original 5786 * memcg. There should be somebody mapping the head. 5787 */ 5788 if (PageTransCompound(page)) 5789 goto put; 5790 if (!device && isolate_lru_page(page)) 5791 goto put; 5792 if (!mem_cgroup_move_account(page, false, 5793 mc.from, mc.to)) { 5794 mc.precharge--; 5795 /* we uncharge from mc.from later. */ 5796 mc.moved_charge++; 5797 } 5798 if (!device) 5799 putback_lru_page(page); 5800 put: /* get_mctgt_type() gets the page */ 5801 put_page(page); 5802 break; 5803 case MC_TARGET_SWAP: 5804 ent = target.ent; 5805 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5806 mc.precharge--; 5807 /* we fixup refcnts and charges later. */ 5808 mc.moved_swap++; 5809 } 5810 break; 5811 default: 5812 break; 5813 } 5814 } 5815 pte_unmap_unlock(pte - 1, ptl); 5816 cond_resched(); 5817 5818 if (addr != end) { 5819 /* 5820 * We have consumed all precharges we got in can_attach(). 5821 * We try charge one by one, but don't do any additional 5822 * charges to mc.to if we have failed in charge once in attach() 5823 * phase. 5824 */ 5825 ret = mem_cgroup_do_precharge(1); 5826 if (!ret) 5827 goto retry; 5828 } 5829 5830 return ret; 5831 } 5832 5833 static const struct mm_walk_ops charge_walk_ops = { 5834 .pmd_entry = mem_cgroup_move_charge_pte_range, 5835 }; 5836 5837 static void mem_cgroup_move_charge(void) 5838 { 5839 lru_add_drain_all(); 5840 /* 5841 * Signal lock_page_memcg() to take the memcg's move_lock 5842 * while we're moving its pages to another memcg. Then wait 5843 * for already started RCU-only updates to finish. 5844 */ 5845 atomic_inc(&mc.from->moving_account); 5846 synchronize_rcu(); 5847 retry: 5848 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5849 /* 5850 * Someone who are holding the mmap_sem might be waiting in 5851 * waitq. So we cancel all extra charges, wake up all waiters, 5852 * and retry. Because we cancel precharges, we might not be able 5853 * to move enough charges, but moving charge is a best-effort 5854 * feature anyway, so it wouldn't be a big problem. 5855 */ 5856 __mem_cgroup_clear_mc(); 5857 cond_resched(); 5858 goto retry; 5859 } 5860 /* 5861 * When we have consumed all precharges and failed in doing 5862 * additional charge, the page walk just aborts. 5863 */ 5864 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 5865 NULL); 5866 5867 up_read(&mc.mm->mmap_sem); 5868 atomic_dec(&mc.from->moving_account); 5869 } 5870 5871 static void mem_cgroup_move_task(void) 5872 { 5873 if (mc.to) { 5874 mem_cgroup_move_charge(); 5875 mem_cgroup_clear_mc(); 5876 } 5877 } 5878 #else /* !CONFIG_MMU */ 5879 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5880 { 5881 return 0; 5882 } 5883 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5884 { 5885 } 5886 static void mem_cgroup_move_task(void) 5887 { 5888 } 5889 #endif 5890 5891 /* 5892 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5893 * to verify whether we're attached to the default hierarchy on each mount 5894 * attempt. 5895 */ 5896 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5897 { 5898 /* 5899 * use_hierarchy is forced on the default hierarchy. cgroup core 5900 * guarantees that @root doesn't have any children, so turning it 5901 * on for the root memcg is enough. 5902 */ 5903 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5904 root_mem_cgroup->use_hierarchy = true; 5905 else 5906 root_mem_cgroup->use_hierarchy = false; 5907 } 5908 5909 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5910 { 5911 if (value == PAGE_COUNTER_MAX) 5912 seq_puts(m, "max\n"); 5913 else 5914 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5915 5916 return 0; 5917 } 5918 5919 static u64 memory_current_read(struct cgroup_subsys_state *css, 5920 struct cftype *cft) 5921 { 5922 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5923 5924 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5925 } 5926 5927 static int memory_min_show(struct seq_file *m, void *v) 5928 { 5929 return seq_puts_memcg_tunable(m, 5930 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5931 } 5932 5933 static ssize_t memory_min_write(struct kernfs_open_file *of, 5934 char *buf, size_t nbytes, loff_t off) 5935 { 5936 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5937 unsigned long min; 5938 int err; 5939 5940 buf = strstrip(buf); 5941 err = page_counter_memparse(buf, "max", &min); 5942 if (err) 5943 return err; 5944 5945 page_counter_set_min(&memcg->memory, min); 5946 5947 return nbytes; 5948 } 5949 5950 static int memory_low_show(struct seq_file *m, void *v) 5951 { 5952 return seq_puts_memcg_tunable(m, 5953 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5954 } 5955 5956 static ssize_t memory_low_write(struct kernfs_open_file *of, 5957 char *buf, size_t nbytes, loff_t off) 5958 { 5959 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5960 unsigned long low; 5961 int err; 5962 5963 buf = strstrip(buf); 5964 err = page_counter_memparse(buf, "max", &low); 5965 if (err) 5966 return err; 5967 5968 page_counter_set_low(&memcg->memory, low); 5969 5970 return nbytes; 5971 } 5972 5973 static int memory_high_show(struct seq_file *m, void *v) 5974 { 5975 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 5976 } 5977 5978 static ssize_t memory_high_write(struct kernfs_open_file *of, 5979 char *buf, size_t nbytes, loff_t off) 5980 { 5981 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5982 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 5983 bool drained = false; 5984 unsigned long high; 5985 int err; 5986 5987 buf = strstrip(buf); 5988 err = page_counter_memparse(buf, "max", &high); 5989 if (err) 5990 return err; 5991 5992 memcg->high = high; 5993 5994 for (;;) { 5995 unsigned long nr_pages = page_counter_read(&memcg->memory); 5996 unsigned long reclaimed; 5997 5998 if (nr_pages <= high) 5999 break; 6000 6001 if (signal_pending(current)) 6002 break; 6003 6004 if (!drained) { 6005 drain_all_stock(memcg); 6006 drained = true; 6007 continue; 6008 } 6009 6010 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6011 GFP_KERNEL, true); 6012 6013 if (!reclaimed && !nr_retries--) 6014 break; 6015 } 6016 6017 return nbytes; 6018 } 6019 6020 static int memory_max_show(struct seq_file *m, void *v) 6021 { 6022 return seq_puts_memcg_tunable(m, 6023 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6024 } 6025 6026 static ssize_t memory_max_write(struct kernfs_open_file *of, 6027 char *buf, size_t nbytes, loff_t off) 6028 { 6029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6030 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 6031 bool drained = false; 6032 unsigned long max; 6033 int err; 6034 6035 buf = strstrip(buf); 6036 err = page_counter_memparse(buf, "max", &max); 6037 if (err) 6038 return err; 6039 6040 xchg(&memcg->memory.max, max); 6041 6042 for (;;) { 6043 unsigned long nr_pages = page_counter_read(&memcg->memory); 6044 6045 if (nr_pages <= max) 6046 break; 6047 6048 if (signal_pending(current)) 6049 break; 6050 6051 if (!drained) { 6052 drain_all_stock(memcg); 6053 drained = true; 6054 continue; 6055 } 6056 6057 if (nr_reclaims) { 6058 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6059 GFP_KERNEL, true)) 6060 nr_reclaims--; 6061 continue; 6062 } 6063 6064 memcg_memory_event(memcg, MEMCG_OOM); 6065 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6066 break; 6067 } 6068 6069 memcg_wb_domain_size_changed(memcg); 6070 return nbytes; 6071 } 6072 6073 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6074 { 6075 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6076 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6077 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6078 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6079 seq_printf(m, "oom_kill %lu\n", 6080 atomic_long_read(&events[MEMCG_OOM_KILL])); 6081 } 6082 6083 static int memory_events_show(struct seq_file *m, void *v) 6084 { 6085 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6086 6087 __memory_events_show(m, memcg->memory_events); 6088 return 0; 6089 } 6090 6091 static int memory_events_local_show(struct seq_file *m, void *v) 6092 { 6093 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6094 6095 __memory_events_show(m, memcg->memory_events_local); 6096 return 0; 6097 } 6098 6099 static int memory_stat_show(struct seq_file *m, void *v) 6100 { 6101 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6102 char *buf; 6103 6104 buf = memory_stat_format(memcg); 6105 if (!buf) 6106 return -ENOMEM; 6107 seq_puts(m, buf); 6108 kfree(buf); 6109 return 0; 6110 } 6111 6112 static int memory_oom_group_show(struct seq_file *m, void *v) 6113 { 6114 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6115 6116 seq_printf(m, "%d\n", memcg->oom_group); 6117 6118 return 0; 6119 } 6120 6121 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6122 char *buf, size_t nbytes, loff_t off) 6123 { 6124 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6125 int ret, oom_group; 6126 6127 buf = strstrip(buf); 6128 if (!buf) 6129 return -EINVAL; 6130 6131 ret = kstrtoint(buf, 0, &oom_group); 6132 if (ret) 6133 return ret; 6134 6135 if (oom_group != 0 && oom_group != 1) 6136 return -EINVAL; 6137 6138 memcg->oom_group = oom_group; 6139 6140 return nbytes; 6141 } 6142 6143 static struct cftype memory_files[] = { 6144 { 6145 .name = "current", 6146 .flags = CFTYPE_NOT_ON_ROOT, 6147 .read_u64 = memory_current_read, 6148 }, 6149 { 6150 .name = "min", 6151 .flags = CFTYPE_NOT_ON_ROOT, 6152 .seq_show = memory_min_show, 6153 .write = memory_min_write, 6154 }, 6155 { 6156 .name = "low", 6157 .flags = CFTYPE_NOT_ON_ROOT, 6158 .seq_show = memory_low_show, 6159 .write = memory_low_write, 6160 }, 6161 { 6162 .name = "high", 6163 .flags = CFTYPE_NOT_ON_ROOT, 6164 .seq_show = memory_high_show, 6165 .write = memory_high_write, 6166 }, 6167 { 6168 .name = "max", 6169 .flags = CFTYPE_NOT_ON_ROOT, 6170 .seq_show = memory_max_show, 6171 .write = memory_max_write, 6172 }, 6173 { 6174 .name = "events", 6175 .flags = CFTYPE_NOT_ON_ROOT, 6176 .file_offset = offsetof(struct mem_cgroup, events_file), 6177 .seq_show = memory_events_show, 6178 }, 6179 { 6180 .name = "events.local", 6181 .flags = CFTYPE_NOT_ON_ROOT, 6182 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6183 .seq_show = memory_events_local_show, 6184 }, 6185 { 6186 .name = "stat", 6187 .flags = CFTYPE_NOT_ON_ROOT, 6188 .seq_show = memory_stat_show, 6189 }, 6190 { 6191 .name = "oom.group", 6192 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6193 .seq_show = memory_oom_group_show, 6194 .write = memory_oom_group_write, 6195 }, 6196 { } /* terminate */ 6197 }; 6198 6199 struct cgroup_subsys memory_cgrp_subsys = { 6200 .css_alloc = mem_cgroup_css_alloc, 6201 .css_online = mem_cgroup_css_online, 6202 .css_offline = mem_cgroup_css_offline, 6203 .css_released = mem_cgroup_css_released, 6204 .css_free = mem_cgroup_css_free, 6205 .css_reset = mem_cgroup_css_reset, 6206 .can_attach = mem_cgroup_can_attach, 6207 .cancel_attach = mem_cgroup_cancel_attach, 6208 .post_attach = mem_cgroup_move_task, 6209 .bind = mem_cgroup_bind, 6210 .dfl_cftypes = memory_files, 6211 .legacy_cftypes = mem_cgroup_legacy_files, 6212 .early_init = 0, 6213 }; 6214 6215 /** 6216 * mem_cgroup_protected - check if memory consumption is in the normal range 6217 * @root: the top ancestor of the sub-tree being checked 6218 * @memcg: the memory cgroup to check 6219 * 6220 * WARNING: This function is not stateless! It can only be used as part 6221 * of a top-down tree iteration, not for isolated queries. 6222 * 6223 * Returns one of the following: 6224 * MEMCG_PROT_NONE: cgroup memory is not protected 6225 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6226 * an unprotected supply of reclaimable memory from other cgroups. 6227 * MEMCG_PROT_MIN: cgroup memory is protected 6228 * 6229 * @root is exclusive; it is never protected when looked at directly 6230 * 6231 * To provide a proper hierarchical behavior, effective memory.min/low values 6232 * are used. Below is the description of how effective memory.low is calculated. 6233 * Effective memory.min values is calculated in the same way. 6234 * 6235 * Effective memory.low is always equal or less than the original memory.low. 6236 * If there is no memory.low overcommittment (which is always true for 6237 * top-level memory cgroups), these two values are equal. 6238 * Otherwise, it's a part of parent's effective memory.low, 6239 * calculated as a cgroup's memory.low usage divided by sum of sibling's 6240 * memory.low usages, where memory.low usage is the size of actually 6241 * protected memory. 6242 * 6243 * low_usage 6244 * elow = min( memory.low, parent->elow * ------------------ ), 6245 * siblings_low_usage 6246 * 6247 * | memory.current, if memory.current < memory.low 6248 * low_usage = | 6249 * | 0, otherwise. 6250 * 6251 * 6252 * Such definition of the effective memory.low provides the expected 6253 * hierarchical behavior: parent's memory.low value is limiting 6254 * children, unprotected memory is reclaimed first and cgroups, 6255 * which are not using their guarantee do not affect actual memory 6256 * distribution. 6257 * 6258 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 6259 * 6260 * A A/memory.low = 2G, A/memory.current = 6G 6261 * //\\ 6262 * BC DE B/memory.low = 3G B/memory.current = 2G 6263 * C/memory.low = 1G C/memory.current = 2G 6264 * D/memory.low = 0 D/memory.current = 2G 6265 * E/memory.low = 10G E/memory.current = 0 6266 * 6267 * and the memory pressure is applied, the following memory distribution 6268 * is expected (approximately): 6269 * 6270 * A/memory.current = 2G 6271 * 6272 * B/memory.current = 1.3G 6273 * C/memory.current = 0.6G 6274 * D/memory.current = 0 6275 * E/memory.current = 0 6276 * 6277 * These calculations require constant tracking of the actual low usages 6278 * (see propagate_protected_usage()), as well as recursive calculation of 6279 * effective memory.low values. But as we do call mem_cgroup_protected() 6280 * path for each memory cgroup top-down from the reclaim, 6281 * it's possible to optimize this part, and save calculated elow 6282 * for next usage. This part is intentionally racy, but it's ok, 6283 * as memory.low is a best-effort mechanism. 6284 */ 6285 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6286 struct mem_cgroup *memcg) 6287 { 6288 struct mem_cgroup *parent; 6289 unsigned long emin, parent_emin; 6290 unsigned long elow, parent_elow; 6291 unsigned long usage; 6292 6293 if (mem_cgroup_disabled()) 6294 return MEMCG_PROT_NONE; 6295 6296 if (!root) 6297 root = root_mem_cgroup; 6298 if (memcg == root) 6299 return MEMCG_PROT_NONE; 6300 6301 usage = page_counter_read(&memcg->memory); 6302 if (!usage) 6303 return MEMCG_PROT_NONE; 6304 6305 emin = memcg->memory.min; 6306 elow = memcg->memory.low; 6307 6308 parent = parent_mem_cgroup(memcg); 6309 /* No parent means a non-hierarchical mode on v1 memcg */ 6310 if (!parent) 6311 return MEMCG_PROT_NONE; 6312 6313 if (parent == root) 6314 goto exit; 6315 6316 parent_emin = READ_ONCE(parent->memory.emin); 6317 emin = min(emin, parent_emin); 6318 if (emin && parent_emin) { 6319 unsigned long min_usage, siblings_min_usage; 6320 6321 min_usage = min(usage, memcg->memory.min); 6322 siblings_min_usage = atomic_long_read( 6323 &parent->memory.children_min_usage); 6324 6325 if (min_usage && siblings_min_usage) 6326 emin = min(emin, parent_emin * min_usage / 6327 siblings_min_usage); 6328 } 6329 6330 parent_elow = READ_ONCE(parent->memory.elow); 6331 elow = min(elow, parent_elow); 6332 if (elow && parent_elow) { 6333 unsigned long low_usage, siblings_low_usage; 6334 6335 low_usage = min(usage, memcg->memory.low); 6336 siblings_low_usage = atomic_long_read( 6337 &parent->memory.children_low_usage); 6338 6339 if (low_usage && siblings_low_usage) 6340 elow = min(elow, parent_elow * low_usage / 6341 siblings_low_usage); 6342 } 6343 6344 exit: 6345 memcg->memory.emin = emin; 6346 memcg->memory.elow = elow; 6347 6348 if (usage <= emin) 6349 return MEMCG_PROT_MIN; 6350 else if (usage <= elow) 6351 return MEMCG_PROT_LOW; 6352 else 6353 return MEMCG_PROT_NONE; 6354 } 6355 6356 /** 6357 * mem_cgroup_try_charge - try charging a page 6358 * @page: page to charge 6359 * @mm: mm context of the victim 6360 * @gfp_mask: reclaim mode 6361 * @memcgp: charged memcg return 6362 * @compound: charge the page as compound or small page 6363 * 6364 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6365 * pages according to @gfp_mask if necessary. 6366 * 6367 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6368 * Otherwise, an error code is returned. 6369 * 6370 * After page->mapping has been set up, the caller must finalize the 6371 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6372 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6373 */ 6374 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6375 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6376 bool compound) 6377 { 6378 struct mem_cgroup *memcg = NULL; 6379 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6380 int ret = 0; 6381 6382 if (mem_cgroup_disabled()) 6383 goto out; 6384 6385 if (PageSwapCache(page)) { 6386 /* 6387 * Every swap fault against a single page tries to charge the 6388 * page, bail as early as possible. shmem_unuse() encounters 6389 * already charged pages, too. The USED bit is protected by 6390 * the page lock, which serializes swap cache removal, which 6391 * in turn serializes uncharging. 6392 */ 6393 VM_BUG_ON_PAGE(!PageLocked(page), page); 6394 if (compound_head(page)->mem_cgroup) 6395 goto out; 6396 6397 if (do_swap_account) { 6398 swp_entry_t ent = { .val = page_private(page), }; 6399 unsigned short id = lookup_swap_cgroup_id(ent); 6400 6401 rcu_read_lock(); 6402 memcg = mem_cgroup_from_id(id); 6403 if (memcg && !css_tryget_online(&memcg->css)) 6404 memcg = NULL; 6405 rcu_read_unlock(); 6406 } 6407 } 6408 6409 if (!memcg) 6410 memcg = get_mem_cgroup_from_mm(mm); 6411 6412 ret = try_charge(memcg, gfp_mask, nr_pages); 6413 6414 css_put(&memcg->css); 6415 out: 6416 *memcgp = memcg; 6417 return ret; 6418 } 6419 6420 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6421 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6422 bool compound) 6423 { 6424 struct mem_cgroup *memcg; 6425 int ret; 6426 6427 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6428 memcg = *memcgp; 6429 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6430 return ret; 6431 } 6432 6433 /** 6434 * mem_cgroup_commit_charge - commit a page charge 6435 * @page: page to charge 6436 * @memcg: memcg to charge the page to 6437 * @lrucare: page might be on LRU already 6438 * @compound: charge the page as compound or small page 6439 * 6440 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6441 * after page->mapping has been set up. This must happen atomically 6442 * as part of the page instantiation, i.e. under the page table lock 6443 * for anonymous pages, under the page lock for page and swap cache. 6444 * 6445 * In addition, the page must not be on the LRU during the commit, to 6446 * prevent racing with task migration. If it might be, use @lrucare. 6447 * 6448 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6449 */ 6450 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6451 bool lrucare, bool compound) 6452 { 6453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6454 6455 VM_BUG_ON_PAGE(!page->mapping, page); 6456 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6457 6458 if (mem_cgroup_disabled()) 6459 return; 6460 /* 6461 * Swap faults will attempt to charge the same page multiple 6462 * times. But reuse_swap_page() might have removed the page 6463 * from swapcache already, so we can't check PageSwapCache(). 6464 */ 6465 if (!memcg) 6466 return; 6467 6468 commit_charge(page, memcg, lrucare); 6469 6470 local_irq_disable(); 6471 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6472 memcg_check_events(memcg, page); 6473 local_irq_enable(); 6474 6475 if (do_memsw_account() && PageSwapCache(page)) { 6476 swp_entry_t entry = { .val = page_private(page) }; 6477 /* 6478 * The swap entry might not get freed for a long time, 6479 * let's not wait for it. The page already received a 6480 * memory+swap charge, drop the swap entry duplicate. 6481 */ 6482 mem_cgroup_uncharge_swap(entry, nr_pages); 6483 } 6484 } 6485 6486 /** 6487 * mem_cgroup_cancel_charge - cancel a page charge 6488 * @page: page to charge 6489 * @memcg: memcg to charge the page to 6490 * @compound: charge the page as compound or small page 6491 * 6492 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6493 */ 6494 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6495 bool compound) 6496 { 6497 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6498 6499 if (mem_cgroup_disabled()) 6500 return; 6501 /* 6502 * Swap faults will attempt to charge the same page multiple 6503 * times. But reuse_swap_page() might have removed the page 6504 * from swapcache already, so we can't check PageSwapCache(). 6505 */ 6506 if (!memcg) 6507 return; 6508 6509 cancel_charge(memcg, nr_pages); 6510 } 6511 6512 struct uncharge_gather { 6513 struct mem_cgroup *memcg; 6514 unsigned long pgpgout; 6515 unsigned long nr_anon; 6516 unsigned long nr_file; 6517 unsigned long nr_kmem; 6518 unsigned long nr_huge; 6519 unsigned long nr_shmem; 6520 struct page *dummy_page; 6521 }; 6522 6523 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6524 { 6525 memset(ug, 0, sizeof(*ug)); 6526 } 6527 6528 static void uncharge_batch(const struct uncharge_gather *ug) 6529 { 6530 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6531 unsigned long flags; 6532 6533 if (!mem_cgroup_is_root(ug->memcg)) { 6534 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6535 if (do_memsw_account()) 6536 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6537 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6538 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6539 memcg_oom_recover(ug->memcg); 6540 } 6541 6542 local_irq_save(flags); 6543 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6544 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6545 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6546 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6547 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6548 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6549 memcg_check_events(ug->memcg, ug->dummy_page); 6550 local_irq_restore(flags); 6551 6552 if (!mem_cgroup_is_root(ug->memcg)) 6553 css_put_many(&ug->memcg->css, nr_pages); 6554 } 6555 6556 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6557 { 6558 VM_BUG_ON_PAGE(PageLRU(page), page); 6559 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6560 !PageHWPoison(page) , page); 6561 6562 if (!page->mem_cgroup) 6563 return; 6564 6565 /* 6566 * Nobody should be changing or seriously looking at 6567 * page->mem_cgroup at this point, we have fully 6568 * exclusive access to the page. 6569 */ 6570 6571 if (ug->memcg != page->mem_cgroup) { 6572 if (ug->memcg) { 6573 uncharge_batch(ug); 6574 uncharge_gather_clear(ug); 6575 } 6576 ug->memcg = page->mem_cgroup; 6577 } 6578 6579 if (!PageKmemcg(page)) { 6580 unsigned int nr_pages = 1; 6581 6582 if (PageTransHuge(page)) { 6583 nr_pages = compound_nr(page); 6584 ug->nr_huge += nr_pages; 6585 } 6586 if (PageAnon(page)) 6587 ug->nr_anon += nr_pages; 6588 else { 6589 ug->nr_file += nr_pages; 6590 if (PageSwapBacked(page)) 6591 ug->nr_shmem += nr_pages; 6592 } 6593 ug->pgpgout++; 6594 } else { 6595 ug->nr_kmem += compound_nr(page); 6596 __ClearPageKmemcg(page); 6597 } 6598 6599 ug->dummy_page = page; 6600 page->mem_cgroup = NULL; 6601 } 6602 6603 static void uncharge_list(struct list_head *page_list) 6604 { 6605 struct uncharge_gather ug; 6606 struct list_head *next; 6607 6608 uncharge_gather_clear(&ug); 6609 6610 /* 6611 * Note that the list can be a single page->lru; hence the 6612 * do-while loop instead of a simple list_for_each_entry(). 6613 */ 6614 next = page_list->next; 6615 do { 6616 struct page *page; 6617 6618 page = list_entry(next, struct page, lru); 6619 next = page->lru.next; 6620 6621 uncharge_page(page, &ug); 6622 } while (next != page_list); 6623 6624 if (ug.memcg) 6625 uncharge_batch(&ug); 6626 } 6627 6628 /** 6629 * mem_cgroup_uncharge - uncharge a page 6630 * @page: page to uncharge 6631 * 6632 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6633 * mem_cgroup_commit_charge(). 6634 */ 6635 void mem_cgroup_uncharge(struct page *page) 6636 { 6637 struct uncharge_gather ug; 6638 6639 if (mem_cgroup_disabled()) 6640 return; 6641 6642 /* Don't touch page->lru of any random page, pre-check: */ 6643 if (!page->mem_cgroup) 6644 return; 6645 6646 uncharge_gather_clear(&ug); 6647 uncharge_page(page, &ug); 6648 uncharge_batch(&ug); 6649 } 6650 6651 /** 6652 * mem_cgroup_uncharge_list - uncharge a list of page 6653 * @page_list: list of pages to uncharge 6654 * 6655 * Uncharge a list of pages previously charged with 6656 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6657 */ 6658 void mem_cgroup_uncharge_list(struct list_head *page_list) 6659 { 6660 if (mem_cgroup_disabled()) 6661 return; 6662 6663 if (!list_empty(page_list)) 6664 uncharge_list(page_list); 6665 } 6666 6667 /** 6668 * mem_cgroup_migrate - charge a page's replacement 6669 * @oldpage: currently circulating page 6670 * @newpage: replacement page 6671 * 6672 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6673 * be uncharged upon free. 6674 * 6675 * Both pages must be locked, @newpage->mapping must be set up. 6676 */ 6677 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6678 { 6679 struct mem_cgroup *memcg; 6680 unsigned int nr_pages; 6681 bool compound; 6682 unsigned long flags; 6683 6684 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6685 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6686 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6687 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6688 newpage); 6689 6690 if (mem_cgroup_disabled()) 6691 return; 6692 6693 /* Page cache replacement: new page already charged? */ 6694 if (newpage->mem_cgroup) 6695 return; 6696 6697 /* Swapcache readahead pages can get replaced before being charged */ 6698 memcg = oldpage->mem_cgroup; 6699 if (!memcg) 6700 return; 6701 6702 /* Force-charge the new page. The old one will be freed soon */ 6703 compound = PageTransHuge(newpage); 6704 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6705 6706 page_counter_charge(&memcg->memory, nr_pages); 6707 if (do_memsw_account()) 6708 page_counter_charge(&memcg->memsw, nr_pages); 6709 css_get_many(&memcg->css, nr_pages); 6710 6711 commit_charge(newpage, memcg, false); 6712 6713 local_irq_save(flags); 6714 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6715 memcg_check_events(memcg, newpage); 6716 local_irq_restore(flags); 6717 } 6718 6719 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6720 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6721 6722 void mem_cgroup_sk_alloc(struct sock *sk) 6723 { 6724 struct mem_cgroup *memcg; 6725 6726 if (!mem_cgroup_sockets_enabled) 6727 return; 6728 6729 /* 6730 * Socket cloning can throw us here with sk_memcg already 6731 * filled. It won't however, necessarily happen from 6732 * process context. So the test for root memcg given 6733 * the current task's memcg won't help us in this case. 6734 * 6735 * Respecting the original socket's memcg is a better 6736 * decision in this case. 6737 */ 6738 if (sk->sk_memcg) { 6739 css_get(&sk->sk_memcg->css); 6740 return; 6741 } 6742 6743 rcu_read_lock(); 6744 memcg = mem_cgroup_from_task(current); 6745 if (memcg == root_mem_cgroup) 6746 goto out; 6747 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6748 goto out; 6749 if (css_tryget_online(&memcg->css)) 6750 sk->sk_memcg = memcg; 6751 out: 6752 rcu_read_unlock(); 6753 } 6754 6755 void mem_cgroup_sk_free(struct sock *sk) 6756 { 6757 if (sk->sk_memcg) 6758 css_put(&sk->sk_memcg->css); 6759 } 6760 6761 /** 6762 * mem_cgroup_charge_skmem - charge socket memory 6763 * @memcg: memcg to charge 6764 * @nr_pages: number of pages to charge 6765 * 6766 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6767 * @memcg's configured limit, %false if the charge had to be forced. 6768 */ 6769 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6770 { 6771 gfp_t gfp_mask = GFP_KERNEL; 6772 6773 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6774 struct page_counter *fail; 6775 6776 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6777 memcg->tcpmem_pressure = 0; 6778 return true; 6779 } 6780 page_counter_charge(&memcg->tcpmem, nr_pages); 6781 memcg->tcpmem_pressure = 1; 6782 return false; 6783 } 6784 6785 /* Don't block in the packet receive path */ 6786 if (in_softirq()) 6787 gfp_mask = GFP_NOWAIT; 6788 6789 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6790 6791 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6792 return true; 6793 6794 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6795 return false; 6796 } 6797 6798 /** 6799 * mem_cgroup_uncharge_skmem - uncharge socket memory 6800 * @memcg: memcg to uncharge 6801 * @nr_pages: number of pages to uncharge 6802 */ 6803 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6804 { 6805 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6806 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6807 return; 6808 } 6809 6810 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6811 6812 refill_stock(memcg, nr_pages); 6813 } 6814 6815 static int __init cgroup_memory(char *s) 6816 { 6817 char *token; 6818 6819 while ((token = strsep(&s, ",")) != NULL) { 6820 if (!*token) 6821 continue; 6822 if (!strcmp(token, "nosocket")) 6823 cgroup_memory_nosocket = true; 6824 if (!strcmp(token, "nokmem")) 6825 cgroup_memory_nokmem = true; 6826 } 6827 return 0; 6828 } 6829 __setup("cgroup.memory=", cgroup_memory); 6830 6831 /* 6832 * subsys_initcall() for memory controller. 6833 * 6834 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6835 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6836 * basically everything that doesn't depend on a specific mem_cgroup structure 6837 * should be initialized from here. 6838 */ 6839 static int __init mem_cgroup_init(void) 6840 { 6841 int cpu, node; 6842 6843 #ifdef CONFIG_MEMCG_KMEM 6844 /* 6845 * Kmem cache creation is mostly done with the slab_mutex held, 6846 * so use a workqueue with limited concurrency to avoid stalling 6847 * all worker threads in case lots of cgroups are created and 6848 * destroyed simultaneously. 6849 */ 6850 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6851 BUG_ON(!memcg_kmem_cache_wq); 6852 #endif 6853 6854 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6855 memcg_hotplug_cpu_dead); 6856 6857 for_each_possible_cpu(cpu) 6858 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6859 drain_local_stock); 6860 6861 for_each_node(node) { 6862 struct mem_cgroup_tree_per_node *rtpn; 6863 6864 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6865 node_online(node) ? node : NUMA_NO_NODE); 6866 6867 rtpn->rb_root = RB_ROOT; 6868 rtpn->rb_rightmost = NULL; 6869 spin_lock_init(&rtpn->lock); 6870 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6871 } 6872 6873 return 0; 6874 } 6875 subsys_initcall(mem_cgroup_init); 6876 6877 #ifdef CONFIG_MEMCG_SWAP 6878 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6879 { 6880 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6881 /* 6882 * The root cgroup cannot be destroyed, so it's refcount must 6883 * always be >= 1. 6884 */ 6885 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6886 VM_BUG_ON(1); 6887 break; 6888 } 6889 memcg = parent_mem_cgroup(memcg); 6890 if (!memcg) 6891 memcg = root_mem_cgroup; 6892 } 6893 return memcg; 6894 } 6895 6896 /** 6897 * mem_cgroup_swapout - transfer a memsw charge to swap 6898 * @page: page whose memsw charge to transfer 6899 * @entry: swap entry to move the charge to 6900 * 6901 * Transfer the memsw charge of @page to @entry. 6902 */ 6903 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6904 { 6905 struct mem_cgroup *memcg, *swap_memcg; 6906 unsigned int nr_entries; 6907 unsigned short oldid; 6908 6909 VM_BUG_ON_PAGE(PageLRU(page), page); 6910 VM_BUG_ON_PAGE(page_count(page), page); 6911 6912 if (!do_memsw_account()) 6913 return; 6914 6915 memcg = page->mem_cgroup; 6916 6917 /* Readahead page, never charged */ 6918 if (!memcg) 6919 return; 6920 6921 /* 6922 * In case the memcg owning these pages has been offlined and doesn't 6923 * have an ID allocated to it anymore, charge the closest online 6924 * ancestor for the swap instead and transfer the memory+swap charge. 6925 */ 6926 swap_memcg = mem_cgroup_id_get_online(memcg); 6927 nr_entries = hpage_nr_pages(page); 6928 /* Get references for the tail pages, too */ 6929 if (nr_entries > 1) 6930 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6931 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6932 nr_entries); 6933 VM_BUG_ON_PAGE(oldid, page); 6934 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6935 6936 page->mem_cgroup = NULL; 6937 6938 if (!mem_cgroup_is_root(memcg)) 6939 page_counter_uncharge(&memcg->memory, nr_entries); 6940 6941 if (memcg != swap_memcg) { 6942 if (!mem_cgroup_is_root(swap_memcg)) 6943 page_counter_charge(&swap_memcg->memsw, nr_entries); 6944 page_counter_uncharge(&memcg->memsw, nr_entries); 6945 } 6946 6947 /* 6948 * Interrupts should be disabled here because the caller holds the 6949 * i_pages lock which is taken with interrupts-off. It is 6950 * important here to have the interrupts disabled because it is the 6951 * only synchronisation we have for updating the per-CPU variables. 6952 */ 6953 VM_BUG_ON(!irqs_disabled()); 6954 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6955 -nr_entries); 6956 memcg_check_events(memcg, page); 6957 6958 if (!mem_cgroup_is_root(memcg)) 6959 css_put_many(&memcg->css, nr_entries); 6960 } 6961 6962 /** 6963 * mem_cgroup_try_charge_swap - try charging swap space for a page 6964 * @page: page being added to swap 6965 * @entry: swap entry to charge 6966 * 6967 * Try to charge @page's memcg for the swap space at @entry. 6968 * 6969 * Returns 0 on success, -ENOMEM on failure. 6970 */ 6971 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6972 { 6973 unsigned int nr_pages = hpage_nr_pages(page); 6974 struct page_counter *counter; 6975 struct mem_cgroup *memcg; 6976 unsigned short oldid; 6977 6978 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6979 return 0; 6980 6981 memcg = page->mem_cgroup; 6982 6983 /* Readahead page, never charged */ 6984 if (!memcg) 6985 return 0; 6986 6987 if (!entry.val) { 6988 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6989 return 0; 6990 } 6991 6992 memcg = mem_cgroup_id_get_online(memcg); 6993 6994 if (!mem_cgroup_is_root(memcg) && 6995 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6996 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6997 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6998 mem_cgroup_id_put(memcg); 6999 return -ENOMEM; 7000 } 7001 7002 /* Get references for the tail pages, too */ 7003 if (nr_pages > 1) 7004 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7005 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7006 VM_BUG_ON_PAGE(oldid, page); 7007 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7008 7009 return 0; 7010 } 7011 7012 /** 7013 * mem_cgroup_uncharge_swap - uncharge swap space 7014 * @entry: swap entry to uncharge 7015 * @nr_pages: the amount of swap space to uncharge 7016 */ 7017 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7018 { 7019 struct mem_cgroup *memcg; 7020 unsigned short id; 7021 7022 if (!do_swap_account) 7023 return; 7024 7025 id = swap_cgroup_record(entry, 0, nr_pages); 7026 rcu_read_lock(); 7027 memcg = mem_cgroup_from_id(id); 7028 if (memcg) { 7029 if (!mem_cgroup_is_root(memcg)) { 7030 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7031 page_counter_uncharge(&memcg->swap, nr_pages); 7032 else 7033 page_counter_uncharge(&memcg->memsw, nr_pages); 7034 } 7035 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7036 mem_cgroup_id_put_many(memcg, nr_pages); 7037 } 7038 rcu_read_unlock(); 7039 } 7040 7041 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7042 { 7043 long nr_swap_pages = get_nr_swap_pages(); 7044 7045 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7046 return nr_swap_pages; 7047 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7048 nr_swap_pages = min_t(long, nr_swap_pages, 7049 READ_ONCE(memcg->swap.max) - 7050 page_counter_read(&memcg->swap)); 7051 return nr_swap_pages; 7052 } 7053 7054 bool mem_cgroup_swap_full(struct page *page) 7055 { 7056 struct mem_cgroup *memcg; 7057 7058 VM_BUG_ON_PAGE(!PageLocked(page), page); 7059 7060 if (vm_swap_full()) 7061 return true; 7062 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7063 return false; 7064 7065 memcg = page->mem_cgroup; 7066 if (!memcg) 7067 return false; 7068 7069 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7070 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 7071 return true; 7072 7073 return false; 7074 } 7075 7076 /* for remember boot option*/ 7077 #ifdef CONFIG_MEMCG_SWAP_ENABLED 7078 static int really_do_swap_account __initdata = 1; 7079 #else 7080 static int really_do_swap_account __initdata; 7081 #endif 7082 7083 static int __init enable_swap_account(char *s) 7084 { 7085 if (!strcmp(s, "1")) 7086 really_do_swap_account = 1; 7087 else if (!strcmp(s, "0")) 7088 really_do_swap_account = 0; 7089 return 1; 7090 } 7091 __setup("swapaccount=", enable_swap_account); 7092 7093 static u64 swap_current_read(struct cgroup_subsys_state *css, 7094 struct cftype *cft) 7095 { 7096 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7097 7098 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7099 } 7100 7101 static int swap_max_show(struct seq_file *m, void *v) 7102 { 7103 return seq_puts_memcg_tunable(m, 7104 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7105 } 7106 7107 static ssize_t swap_max_write(struct kernfs_open_file *of, 7108 char *buf, size_t nbytes, loff_t off) 7109 { 7110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7111 unsigned long max; 7112 int err; 7113 7114 buf = strstrip(buf); 7115 err = page_counter_memparse(buf, "max", &max); 7116 if (err) 7117 return err; 7118 7119 xchg(&memcg->swap.max, max); 7120 7121 return nbytes; 7122 } 7123 7124 static int swap_events_show(struct seq_file *m, void *v) 7125 { 7126 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7127 7128 seq_printf(m, "max %lu\n", 7129 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7130 seq_printf(m, "fail %lu\n", 7131 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7132 7133 return 0; 7134 } 7135 7136 static struct cftype swap_files[] = { 7137 { 7138 .name = "swap.current", 7139 .flags = CFTYPE_NOT_ON_ROOT, 7140 .read_u64 = swap_current_read, 7141 }, 7142 { 7143 .name = "swap.max", 7144 .flags = CFTYPE_NOT_ON_ROOT, 7145 .seq_show = swap_max_show, 7146 .write = swap_max_write, 7147 }, 7148 { 7149 .name = "swap.events", 7150 .flags = CFTYPE_NOT_ON_ROOT, 7151 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7152 .seq_show = swap_events_show, 7153 }, 7154 { } /* terminate */ 7155 }; 7156 7157 static struct cftype memsw_cgroup_files[] = { 7158 { 7159 .name = "memsw.usage_in_bytes", 7160 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7161 .read_u64 = mem_cgroup_read_u64, 7162 }, 7163 { 7164 .name = "memsw.max_usage_in_bytes", 7165 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7166 .write = mem_cgroup_reset, 7167 .read_u64 = mem_cgroup_read_u64, 7168 }, 7169 { 7170 .name = "memsw.limit_in_bytes", 7171 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7172 .write = mem_cgroup_write, 7173 .read_u64 = mem_cgroup_read_u64, 7174 }, 7175 { 7176 .name = "memsw.failcnt", 7177 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7178 .write = mem_cgroup_reset, 7179 .read_u64 = mem_cgroup_read_u64, 7180 }, 7181 { }, /* terminate */ 7182 }; 7183 7184 static int __init mem_cgroup_swap_init(void) 7185 { 7186 if (!mem_cgroup_disabled() && really_do_swap_account) { 7187 do_swap_account = 1; 7188 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 7189 swap_files)); 7190 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 7191 memsw_cgroup_files)); 7192 } 7193 return 0; 7194 } 7195 subsys_initcall(mem_cgroup_swap_init); 7196 7197 #endif /* CONFIG_MEMCG_SWAP */ 7198