1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include "internal.h" 60 #include <net/sock.h> 61 #include <net/ip.h> 62 #include <net/tcp_memcontrol.h> 63 #include "slab.h" 64 65 #include <asm/uaccess.h> 66 67 #include <trace/events/vmscan.h> 68 69 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 70 EXPORT_SYMBOL(memory_cgrp_subsys); 71 72 #define MEM_CGROUP_RECLAIM_RETRIES 5 73 static struct mem_cgroup *root_mem_cgroup __read_mostly; 74 75 /* Whether the swap controller is active */ 76 #ifdef CONFIG_MEMCG_SWAP 77 int do_swap_account __read_mostly; 78 #else 79 #define do_swap_account 0 80 #endif 81 82 static const char * const mem_cgroup_stat_names[] = { 83 "cache", 84 "rss", 85 "rss_huge", 86 "mapped_file", 87 "writeback", 88 "swap", 89 }; 90 91 static const char * const mem_cgroup_events_names[] = { 92 "pgpgin", 93 "pgpgout", 94 "pgfault", 95 "pgmajfault", 96 }; 97 98 static const char * const mem_cgroup_lru_names[] = { 99 "inactive_anon", 100 "active_anon", 101 "inactive_file", 102 "active_file", 103 "unevictable", 104 }; 105 106 /* 107 * Per memcg event counter is incremented at every pagein/pageout. With THP, 108 * it will be incremated by the number of pages. This counter is used for 109 * for trigger some periodic events. This is straightforward and better 110 * than using jiffies etc. to handle periodic memcg event. 111 */ 112 enum mem_cgroup_events_target { 113 MEM_CGROUP_TARGET_THRESH, 114 MEM_CGROUP_TARGET_SOFTLIMIT, 115 MEM_CGROUP_TARGET_NUMAINFO, 116 MEM_CGROUP_NTARGETS, 117 }; 118 #define THRESHOLDS_EVENTS_TARGET 128 119 #define SOFTLIMIT_EVENTS_TARGET 1024 120 #define NUMAINFO_EVENTS_TARGET 1024 121 122 struct mem_cgroup_stat_cpu { 123 long count[MEM_CGROUP_STAT_NSTATS]; 124 unsigned long events[MEMCG_NR_EVENTS]; 125 unsigned long nr_page_events; 126 unsigned long targets[MEM_CGROUP_NTARGETS]; 127 }; 128 129 struct reclaim_iter { 130 struct mem_cgroup *position; 131 /* scan generation, increased every round-trip */ 132 unsigned int generation; 133 }; 134 135 /* 136 * per-zone information in memory controller. 137 */ 138 struct mem_cgroup_per_zone { 139 struct lruvec lruvec; 140 unsigned long lru_size[NR_LRU_LISTS]; 141 142 struct reclaim_iter iter[DEF_PRIORITY + 1]; 143 144 struct rb_node tree_node; /* RB tree node */ 145 unsigned long usage_in_excess;/* Set to the value by which */ 146 /* the soft limit is exceeded*/ 147 bool on_tree; 148 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 149 /* use container_of */ 150 }; 151 152 struct mem_cgroup_per_node { 153 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 154 }; 155 156 /* 157 * Cgroups above their limits are maintained in a RB-Tree, independent of 158 * their hierarchy representation 159 */ 160 161 struct mem_cgroup_tree_per_zone { 162 struct rb_root rb_root; 163 spinlock_t lock; 164 }; 165 166 struct mem_cgroup_tree_per_node { 167 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 168 }; 169 170 struct mem_cgroup_tree { 171 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 172 }; 173 174 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 175 176 struct mem_cgroup_threshold { 177 struct eventfd_ctx *eventfd; 178 unsigned long threshold; 179 }; 180 181 /* For threshold */ 182 struct mem_cgroup_threshold_ary { 183 /* An array index points to threshold just below or equal to usage. */ 184 int current_threshold; 185 /* Size of entries[] */ 186 unsigned int size; 187 /* Array of thresholds */ 188 struct mem_cgroup_threshold entries[0]; 189 }; 190 191 struct mem_cgroup_thresholds { 192 /* Primary thresholds array */ 193 struct mem_cgroup_threshold_ary *primary; 194 /* 195 * Spare threshold array. 196 * This is needed to make mem_cgroup_unregister_event() "never fail". 197 * It must be able to store at least primary->size - 1 entries. 198 */ 199 struct mem_cgroup_threshold_ary *spare; 200 }; 201 202 /* for OOM */ 203 struct mem_cgroup_eventfd_list { 204 struct list_head list; 205 struct eventfd_ctx *eventfd; 206 }; 207 208 /* 209 * cgroup_event represents events which userspace want to receive. 210 */ 211 struct mem_cgroup_event { 212 /* 213 * memcg which the event belongs to. 214 */ 215 struct mem_cgroup *memcg; 216 /* 217 * eventfd to signal userspace about the event. 218 */ 219 struct eventfd_ctx *eventfd; 220 /* 221 * Each of these stored in a list by the cgroup. 222 */ 223 struct list_head list; 224 /* 225 * register_event() callback will be used to add new userspace 226 * waiter for changes related to this event. Use eventfd_signal() 227 * on eventfd to send notification to userspace. 228 */ 229 int (*register_event)(struct mem_cgroup *memcg, 230 struct eventfd_ctx *eventfd, const char *args); 231 /* 232 * unregister_event() callback will be called when userspace closes 233 * the eventfd or on cgroup removing. This callback must be set, 234 * if you want provide notification functionality. 235 */ 236 void (*unregister_event)(struct mem_cgroup *memcg, 237 struct eventfd_ctx *eventfd); 238 /* 239 * All fields below needed to unregister event when 240 * userspace closes eventfd. 241 */ 242 poll_table pt; 243 wait_queue_head_t *wqh; 244 wait_queue_t wait; 245 struct work_struct remove; 246 }; 247 248 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 249 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 250 251 /* 252 * The memory controller data structure. The memory controller controls both 253 * page cache and RSS per cgroup. We would eventually like to provide 254 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 255 * to help the administrator determine what knobs to tune. 256 * 257 * TODO: Add a water mark for the memory controller. Reclaim will begin when 258 * we hit the water mark. May be even add a low water mark, such that 259 * no reclaim occurs from a cgroup at it's low water mark, this is 260 * a feature that will be implemented much later in the future. 261 */ 262 struct mem_cgroup { 263 struct cgroup_subsys_state css; 264 265 /* Accounted resources */ 266 struct page_counter memory; 267 struct page_counter memsw; 268 struct page_counter kmem; 269 270 /* Normal memory consumption range */ 271 unsigned long low; 272 unsigned long high; 273 274 unsigned long soft_limit; 275 276 /* vmpressure notifications */ 277 struct vmpressure vmpressure; 278 279 /* css_online() has been completed */ 280 int initialized; 281 282 /* 283 * Should the accounting and control be hierarchical, per subtree? 284 */ 285 bool use_hierarchy; 286 287 bool oom_lock; 288 atomic_t under_oom; 289 atomic_t oom_wakeups; 290 291 int swappiness; 292 /* OOM-Killer disable */ 293 int oom_kill_disable; 294 295 /* protect arrays of thresholds */ 296 struct mutex thresholds_lock; 297 298 /* thresholds for memory usage. RCU-protected */ 299 struct mem_cgroup_thresholds thresholds; 300 301 /* thresholds for mem+swap usage. RCU-protected */ 302 struct mem_cgroup_thresholds memsw_thresholds; 303 304 /* For oom notifier event fd */ 305 struct list_head oom_notify; 306 307 /* 308 * Should we move charges of a task when a task is moved into this 309 * mem_cgroup ? And what type of charges should we move ? 310 */ 311 unsigned long move_charge_at_immigrate; 312 /* 313 * set > 0 if pages under this cgroup are moving to other cgroup. 314 */ 315 atomic_t moving_account; 316 /* taken only while moving_account > 0 */ 317 spinlock_t move_lock; 318 struct task_struct *move_lock_task; 319 unsigned long move_lock_flags; 320 /* 321 * percpu counter. 322 */ 323 struct mem_cgroup_stat_cpu __percpu *stat; 324 /* 325 * used when a cpu is offlined or other synchronizations 326 * See mem_cgroup_read_stat(). 327 */ 328 struct mem_cgroup_stat_cpu nocpu_base; 329 spinlock_t pcp_counter_lock; 330 331 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 332 struct cg_proto tcp_mem; 333 #endif 334 #if defined(CONFIG_MEMCG_KMEM) 335 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 336 int kmemcg_id; 337 bool kmem_acct_activated; 338 bool kmem_acct_active; 339 #endif 340 341 int last_scanned_node; 342 #if MAX_NUMNODES > 1 343 nodemask_t scan_nodes; 344 atomic_t numainfo_events; 345 atomic_t numainfo_updating; 346 #endif 347 348 /* List of events which userspace want to receive */ 349 struct list_head event_list; 350 spinlock_t event_list_lock; 351 352 struct mem_cgroup_per_node *nodeinfo[0]; 353 /* WARNING: nodeinfo must be the last member here */ 354 }; 355 356 #ifdef CONFIG_MEMCG_KMEM 357 bool memcg_kmem_is_active(struct mem_cgroup *memcg) 358 { 359 return memcg->kmem_acct_active; 360 } 361 #endif 362 363 /* Stuffs for move charges at task migration. */ 364 /* 365 * Types of charges to be moved. 366 */ 367 #define MOVE_ANON 0x1U 368 #define MOVE_FILE 0x2U 369 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 370 371 /* "mc" and its members are protected by cgroup_mutex */ 372 static struct move_charge_struct { 373 spinlock_t lock; /* for from, to */ 374 struct mem_cgroup *from; 375 struct mem_cgroup *to; 376 unsigned long flags; 377 unsigned long precharge; 378 unsigned long moved_charge; 379 unsigned long moved_swap; 380 struct task_struct *moving_task; /* a task moving charges */ 381 wait_queue_head_t waitq; /* a waitq for other context */ 382 } mc = { 383 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 384 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 385 }; 386 387 /* 388 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 389 * limit reclaim to prevent infinite loops, if they ever occur. 390 */ 391 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 392 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 393 394 enum charge_type { 395 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 396 MEM_CGROUP_CHARGE_TYPE_ANON, 397 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 398 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 399 NR_CHARGE_TYPE, 400 }; 401 402 /* for encoding cft->private value on file */ 403 enum res_type { 404 _MEM, 405 _MEMSWAP, 406 _OOM_TYPE, 407 _KMEM, 408 }; 409 410 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 411 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 412 #define MEMFILE_ATTR(val) ((val) & 0xffff) 413 /* Used for OOM nofiier */ 414 #define OOM_CONTROL (0) 415 416 /* 417 * The memcg_create_mutex will be held whenever a new cgroup is created. 418 * As a consequence, any change that needs to protect against new child cgroups 419 * appearing has to hold it as well. 420 */ 421 static DEFINE_MUTEX(memcg_create_mutex); 422 423 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 424 { 425 return s ? container_of(s, struct mem_cgroup, css) : NULL; 426 } 427 428 /* Some nice accessors for the vmpressure. */ 429 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 430 { 431 if (!memcg) 432 memcg = root_mem_cgroup; 433 return &memcg->vmpressure; 434 } 435 436 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 437 { 438 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 439 } 440 441 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 442 { 443 return (memcg == root_mem_cgroup); 444 } 445 446 /* 447 * We restrict the id in the range of [1, 65535], so it can fit into 448 * an unsigned short. 449 */ 450 #define MEM_CGROUP_ID_MAX USHRT_MAX 451 452 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 453 { 454 return memcg->css.id; 455 } 456 457 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 458 { 459 struct cgroup_subsys_state *css; 460 461 css = css_from_id(id, &memory_cgrp_subsys); 462 return mem_cgroup_from_css(css); 463 } 464 465 /* Writing them here to avoid exposing memcg's inner layout */ 466 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 467 468 void sock_update_memcg(struct sock *sk) 469 { 470 if (mem_cgroup_sockets_enabled) { 471 struct mem_cgroup *memcg; 472 struct cg_proto *cg_proto; 473 474 BUG_ON(!sk->sk_prot->proto_cgroup); 475 476 /* Socket cloning can throw us here with sk_cgrp already 477 * filled. It won't however, necessarily happen from 478 * process context. So the test for root memcg given 479 * the current task's memcg won't help us in this case. 480 * 481 * Respecting the original socket's memcg is a better 482 * decision in this case. 483 */ 484 if (sk->sk_cgrp) { 485 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 486 css_get(&sk->sk_cgrp->memcg->css); 487 return; 488 } 489 490 rcu_read_lock(); 491 memcg = mem_cgroup_from_task(current); 492 cg_proto = sk->sk_prot->proto_cgroup(memcg); 493 if (!mem_cgroup_is_root(memcg) && 494 memcg_proto_active(cg_proto) && 495 css_tryget_online(&memcg->css)) { 496 sk->sk_cgrp = cg_proto; 497 } 498 rcu_read_unlock(); 499 } 500 } 501 EXPORT_SYMBOL(sock_update_memcg); 502 503 void sock_release_memcg(struct sock *sk) 504 { 505 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 506 struct mem_cgroup *memcg; 507 WARN_ON(!sk->sk_cgrp->memcg); 508 memcg = sk->sk_cgrp->memcg; 509 css_put(&sk->sk_cgrp->memcg->css); 510 } 511 } 512 513 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 514 { 515 if (!memcg || mem_cgroup_is_root(memcg)) 516 return NULL; 517 518 return &memcg->tcp_mem; 519 } 520 EXPORT_SYMBOL(tcp_proto_cgroup); 521 522 #endif 523 524 #ifdef CONFIG_MEMCG_KMEM 525 /* 526 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 527 * The main reason for not using cgroup id for this: 528 * this works better in sparse environments, where we have a lot of memcgs, 529 * but only a few kmem-limited. Or also, if we have, for instance, 200 530 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 531 * 200 entry array for that. 532 * 533 * The current size of the caches array is stored in memcg_nr_cache_ids. It 534 * will double each time we have to increase it. 535 */ 536 static DEFINE_IDA(memcg_cache_ida); 537 int memcg_nr_cache_ids; 538 539 /* Protects memcg_nr_cache_ids */ 540 static DECLARE_RWSEM(memcg_cache_ids_sem); 541 542 void memcg_get_cache_ids(void) 543 { 544 down_read(&memcg_cache_ids_sem); 545 } 546 547 void memcg_put_cache_ids(void) 548 { 549 up_read(&memcg_cache_ids_sem); 550 } 551 552 /* 553 * MIN_SIZE is different than 1, because we would like to avoid going through 554 * the alloc/free process all the time. In a small machine, 4 kmem-limited 555 * cgroups is a reasonable guess. In the future, it could be a parameter or 556 * tunable, but that is strictly not necessary. 557 * 558 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 559 * this constant directly from cgroup, but it is understandable that this is 560 * better kept as an internal representation in cgroup.c. In any case, the 561 * cgrp_id space is not getting any smaller, and we don't have to necessarily 562 * increase ours as well if it increases. 563 */ 564 #define MEMCG_CACHES_MIN_SIZE 4 565 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 566 567 /* 568 * A lot of the calls to the cache allocation functions are expected to be 569 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 570 * conditional to this static branch, we'll have to allow modules that does 571 * kmem_cache_alloc and the such to see this symbol as well 572 */ 573 struct static_key memcg_kmem_enabled_key; 574 EXPORT_SYMBOL(memcg_kmem_enabled_key); 575 576 #endif /* CONFIG_MEMCG_KMEM */ 577 578 static struct mem_cgroup_per_zone * 579 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) 580 { 581 int nid = zone_to_nid(zone); 582 int zid = zone_idx(zone); 583 584 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 585 } 586 587 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 588 { 589 return &memcg->css; 590 } 591 592 static struct mem_cgroup_per_zone * 593 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) 594 { 595 int nid = page_to_nid(page); 596 int zid = page_zonenum(page); 597 598 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 599 } 600 601 static struct mem_cgroup_tree_per_zone * 602 soft_limit_tree_node_zone(int nid, int zid) 603 { 604 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 605 } 606 607 static struct mem_cgroup_tree_per_zone * 608 soft_limit_tree_from_page(struct page *page) 609 { 610 int nid = page_to_nid(page); 611 int zid = page_zonenum(page); 612 613 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 614 } 615 616 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, 617 struct mem_cgroup_tree_per_zone *mctz, 618 unsigned long new_usage_in_excess) 619 { 620 struct rb_node **p = &mctz->rb_root.rb_node; 621 struct rb_node *parent = NULL; 622 struct mem_cgroup_per_zone *mz_node; 623 624 if (mz->on_tree) 625 return; 626 627 mz->usage_in_excess = new_usage_in_excess; 628 if (!mz->usage_in_excess) 629 return; 630 while (*p) { 631 parent = *p; 632 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 633 tree_node); 634 if (mz->usage_in_excess < mz_node->usage_in_excess) 635 p = &(*p)->rb_left; 636 /* 637 * We can't avoid mem cgroups that are over their soft 638 * limit by the same amount 639 */ 640 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 641 p = &(*p)->rb_right; 642 } 643 rb_link_node(&mz->tree_node, parent, p); 644 rb_insert_color(&mz->tree_node, &mctz->rb_root); 645 mz->on_tree = true; 646 } 647 648 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 649 struct mem_cgroup_tree_per_zone *mctz) 650 { 651 if (!mz->on_tree) 652 return; 653 rb_erase(&mz->tree_node, &mctz->rb_root); 654 mz->on_tree = false; 655 } 656 657 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 658 struct mem_cgroup_tree_per_zone *mctz) 659 { 660 unsigned long flags; 661 662 spin_lock_irqsave(&mctz->lock, flags); 663 __mem_cgroup_remove_exceeded(mz, mctz); 664 spin_unlock_irqrestore(&mctz->lock, flags); 665 } 666 667 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 668 { 669 unsigned long nr_pages = page_counter_read(&memcg->memory); 670 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit); 671 unsigned long excess = 0; 672 673 if (nr_pages > soft_limit) 674 excess = nr_pages - soft_limit; 675 676 return excess; 677 } 678 679 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 680 { 681 unsigned long excess; 682 struct mem_cgroup_per_zone *mz; 683 struct mem_cgroup_tree_per_zone *mctz; 684 685 mctz = soft_limit_tree_from_page(page); 686 /* 687 * Necessary to update all ancestors when hierarchy is used. 688 * because their event counter is not touched. 689 */ 690 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 691 mz = mem_cgroup_page_zoneinfo(memcg, page); 692 excess = soft_limit_excess(memcg); 693 /* 694 * We have to update the tree if mz is on RB-tree or 695 * mem is over its softlimit. 696 */ 697 if (excess || mz->on_tree) { 698 unsigned long flags; 699 700 spin_lock_irqsave(&mctz->lock, flags); 701 /* if on-tree, remove it */ 702 if (mz->on_tree) 703 __mem_cgroup_remove_exceeded(mz, mctz); 704 /* 705 * Insert again. mz->usage_in_excess will be updated. 706 * If excess is 0, no tree ops. 707 */ 708 __mem_cgroup_insert_exceeded(mz, mctz, excess); 709 spin_unlock_irqrestore(&mctz->lock, flags); 710 } 711 } 712 } 713 714 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 715 { 716 struct mem_cgroup_tree_per_zone *mctz; 717 struct mem_cgroup_per_zone *mz; 718 int nid, zid; 719 720 for_each_node(nid) { 721 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 722 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 723 mctz = soft_limit_tree_node_zone(nid, zid); 724 mem_cgroup_remove_exceeded(mz, mctz); 725 } 726 } 727 } 728 729 static struct mem_cgroup_per_zone * 730 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 731 { 732 struct rb_node *rightmost = NULL; 733 struct mem_cgroup_per_zone *mz; 734 735 retry: 736 mz = NULL; 737 rightmost = rb_last(&mctz->rb_root); 738 if (!rightmost) 739 goto done; /* Nothing to reclaim from */ 740 741 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 742 /* 743 * Remove the node now but someone else can add it back, 744 * we will to add it back at the end of reclaim to its correct 745 * position in the tree. 746 */ 747 __mem_cgroup_remove_exceeded(mz, mctz); 748 if (!soft_limit_excess(mz->memcg) || 749 !css_tryget_online(&mz->memcg->css)) 750 goto retry; 751 done: 752 return mz; 753 } 754 755 static struct mem_cgroup_per_zone * 756 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 757 { 758 struct mem_cgroup_per_zone *mz; 759 760 spin_lock_irq(&mctz->lock); 761 mz = __mem_cgroup_largest_soft_limit_node(mctz); 762 spin_unlock_irq(&mctz->lock); 763 return mz; 764 } 765 766 /* 767 * Implementation Note: reading percpu statistics for memcg. 768 * 769 * Both of vmstat[] and percpu_counter has threshold and do periodic 770 * synchronization to implement "quick" read. There are trade-off between 771 * reading cost and precision of value. Then, we may have a chance to implement 772 * a periodic synchronizion of counter in memcg's counter. 773 * 774 * But this _read() function is used for user interface now. The user accounts 775 * memory usage by memory cgroup and he _always_ requires exact value because 776 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 777 * have to visit all online cpus and make sum. So, for now, unnecessary 778 * synchronization is not implemented. (just implemented for cpu hotplug) 779 * 780 * If there are kernel internal actions which can make use of some not-exact 781 * value, and reading all cpu value can be performance bottleneck in some 782 * common workload, threashold and synchonization as vmstat[] should be 783 * implemented. 784 */ 785 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 786 enum mem_cgroup_stat_index idx) 787 { 788 long val = 0; 789 int cpu; 790 791 get_online_cpus(); 792 for_each_online_cpu(cpu) 793 val += per_cpu(memcg->stat->count[idx], cpu); 794 #ifdef CONFIG_HOTPLUG_CPU 795 spin_lock(&memcg->pcp_counter_lock); 796 val += memcg->nocpu_base.count[idx]; 797 spin_unlock(&memcg->pcp_counter_lock); 798 #endif 799 put_online_cpus(); 800 return val; 801 } 802 803 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 804 enum mem_cgroup_events_index idx) 805 { 806 unsigned long val = 0; 807 int cpu; 808 809 get_online_cpus(); 810 for_each_online_cpu(cpu) 811 val += per_cpu(memcg->stat->events[idx], cpu); 812 #ifdef CONFIG_HOTPLUG_CPU 813 spin_lock(&memcg->pcp_counter_lock); 814 val += memcg->nocpu_base.events[idx]; 815 spin_unlock(&memcg->pcp_counter_lock); 816 #endif 817 put_online_cpus(); 818 return val; 819 } 820 821 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 822 struct page *page, 823 int nr_pages) 824 { 825 /* 826 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 827 * counted as CACHE even if it's on ANON LRU. 828 */ 829 if (PageAnon(page)) 830 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 831 nr_pages); 832 else 833 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 834 nr_pages); 835 836 if (PageTransHuge(page)) 837 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 838 nr_pages); 839 840 /* pagein of a big page is an event. So, ignore page size */ 841 if (nr_pages > 0) 842 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 843 else { 844 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 845 nr_pages = -nr_pages; /* for event */ 846 } 847 848 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 849 } 850 851 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 852 { 853 struct mem_cgroup_per_zone *mz; 854 855 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 856 return mz->lru_size[lru]; 857 } 858 859 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 860 int nid, 861 unsigned int lru_mask) 862 { 863 unsigned long nr = 0; 864 int zid; 865 866 VM_BUG_ON((unsigned)nid >= nr_node_ids); 867 868 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 869 struct mem_cgroup_per_zone *mz; 870 enum lru_list lru; 871 872 for_each_lru(lru) { 873 if (!(BIT(lru) & lru_mask)) 874 continue; 875 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 876 nr += mz->lru_size[lru]; 877 } 878 } 879 return nr; 880 } 881 882 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 883 unsigned int lru_mask) 884 { 885 unsigned long nr = 0; 886 int nid; 887 888 for_each_node_state(nid, N_MEMORY) 889 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 890 return nr; 891 } 892 893 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 894 enum mem_cgroup_events_target target) 895 { 896 unsigned long val, next; 897 898 val = __this_cpu_read(memcg->stat->nr_page_events); 899 next = __this_cpu_read(memcg->stat->targets[target]); 900 /* from time_after() in jiffies.h */ 901 if ((long)next - (long)val < 0) { 902 switch (target) { 903 case MEM_CGROUP_TARGET_THRESH: 904 next = val + THRESHOLDS_EVENTS_TARGET; 905 break; 906 case MEM_CGROUP_TARGET_SOFTLIMIT: 907 next = val + SOFTLIMIT_EVENTS_TARGET; 908 break; 909 case MEM_CGROUP_TARGET_NUMAINFO: 910 next = val + NUMAINFO_EVENTS_TARGET; 911 break; 912 default: 913 break; 914 } 915 __this_cpu_write(memcg->stat->targets[target], next); 916 return true; 917 } 918 return false; 919 } 920 921 /* 922 * Check events in order. 923 * 924 */ 925 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 926 { 927 /* threshold event is triggered in finer grain than soft limit */ 928 if (unlikely(mem_cgroup_event_ratelimit(memcg, 929 MEM_CGROUP_TARGET_THRESH))) { 930 bool do_softlimit; 931 bool do_numainfo __maybe_unused; 932 933 do_softlimit = mem_cgroup_event_ratelimit(memcg, 934 MEM_CGROUP_TARGET_SOFTLIMIT); 935 #if MAX_NUMNODES > 1 936 do_numainfo = mem_cgroup_event_ratelimit(memcg, 937 MEM_CGROUP_TARGET_NUMAINFO); 938 #endif 939 mem_cgroup_threshold(memcg); 940 if (unlikely(do_softlimit)) 941 mem_cgroup_update_tree(memcg, page); 942 #if MAX_NUMNODES > 1 943 if (unlikely(do_numainfo)) 944 atomic_inc(&memcg->numainfo_events); 945 #endif 946 } 947 } 948 949 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 950 { 951 /* 952 * mm_update_next_owner() may clear mm->owner to NULL 953 * if it races with swapoff, page migration, etc. 954 * So this can be called with p == NULL. 955 */ 956 if (unlikely(!p)) 957 return NULL; 958 959 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 960 } 961 962 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 963 { 964 struct mem_cgroup *memcg = NULL; 965 966 rcu_read_lock(); 967 do { 968 /* 969 * Page cache insertions can happen withou an 970 * actual mm context, e.g. during disk probing 971 * on boot, loopback IO, acct() writes etc. 972 */ 973 if (unlikely(!mm)) 974 memcg = root_mem_cgroup; 975 else { 976 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 977 if (unlikely(!memcg)) 978 memcg = root_mem_cgroup; 979 } 980 } while (!css_tryget_online(&memcg->css)); 981 rcu_read_unlock(); 982 return memcg; 983 } 984 985 /** 986 * mem_cgroup_iter - iterate over memory cgroup hierarchy 987 * @root: hierarchy root 988 * @prev: previously returned memcg, NULL on first invocation 989 * @reclaim: cookie for shared reclaim walks, NULL for full walks 990 * 991 * Returns references to children of the hierarchy below @root, or 992 * @root itself, or %NULL after a full round-trip. 993 * 994 * Caller must pass the return value in @prev on subsequent 995 * invocations for reference counting, or use mem_cgroup_iter_break() 996 * to cancel a hierarchy walk before the round-trip is complete. 997 * 998 * Reclaimers can specify a zone and a priority level in @reclaim to 999 * divide up the memcgs in the hierarchy among all concurrent 1000 * reclaimers operating on the same zone and priority. 1001 */ 1002 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1003 struct mem_cgroup *prev, 1004 struct mem_cgroup_reclaim_cookie *reclaim) 1005 { 1006 struct reclaim_iter *uninitialized_var(iter); 1007 struct cgroup_subsys_state *css = NULL; 1008 struct mem_cgroup *memcg = NULL; 1009 struct mem_cgroup *pos = NULL; 1010 1011 if (mem_cgroup_disabled()) 1012 return NULL; 1013 1014 if (!root) 1015 root = root_mem_cgroup; 1016 1017 if (prev && !reclaim) 1018 pos = prev; 1019 1020 if (!root->use_hierarchy && root != root_mem_cgroup) { 1021 if (prev) 1022 goto out; 1023 return root; 1024 } 1025 1026 rcu_read_lock(); 1027 1028 if (reclaim) { 1029 struct mem_cgroup_per_zone *mz; 1030 1031 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); 1032 iter = &mz->iter[reclaim->priority]; 1033 1034 if (prev && reclaim->generation != iter->generation) 1035 goto out_unlock; 1036 1037 do { 1038 pos = ACCESS_ONCE(iter->position); 1039 /* 1040 * A racing update may change the position and 1041 * put the last reference, hence css_tryget(), 1042 * or retry to see the updated position. 1043 */ 1044 } while (pos && !css_tryget(&pos->css)); 1045 } 1046 1047 if (pos) 1048 css = &pos->css; 1049 1050 for (;;) { 1051 css = css_next_descendant_pre(css, &root->css); 1052 if (!css) { 1053 /* 1054 * Reclaimers share the hierarchy walk, and a 1055 * new one might jump in right at the end of 1056 * the hierarchy - make sure they see at least 1057 * one group and restart from the beginning. 1058 */ 1059 if (!prev) 1060 continue; 1061 break; 1062 } 1063 1064 /* 1065 * Verify the css and acquire a reference. The root 1066 * is provided by the caller, so we know it's alive 1067 * and kicking, and don't take an extra reference. 1068 */ 1069 memcg = mem_cgroup_from_css(css); 1070 1071 if (css == &root->css) 1072 break; 1073 1074 if (css_tryget(css)) { 1075 /* 1076 * Make sure the memcg is initialized: 1077 * mem_cgroup_css_online() orders the the 1078 * initialization against setting the flag. 1079 */ 1080 if (smp_load_acquire(&memcg->initialized)) 1081 break; 1082 1083 css_put(css); 1084 } 1085 1086 memcg = NULL; 1087 } 1088 1089 if (reclaim) { 1090 if (cmpxchg(&iter->position, pos, memcg) == pos) { 1091 if (memcg) 1092 css_get(&memcg->css); 1093 if (pos) 1094 css_put(&pos->css); 1095 } 1096 1097 /* 1098 * pairs with css_tryget when dereferencing iter->position 1099 * above. 1100 */ 1101 if (pos) 1102 css_put(&pos->css); 1103 1104 if (!memcg) 1105 iter->generation++; 1106 else if (!prev) 1107 reclaim->generation = iter->generation; 1108 } 1109 1110 out_unlock: 1111 rcu_read_unlock(); 1112 out: 1113 if (prev && prev != root) 1114 css_put(&prev->css); 1115 1116 return memcg; 1117 } 1118 1119 /** 1120 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1121 * @root: hierarchy root 1122 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1123 */ 1124 void mem_cgroup_iter_break(struct mem_cgroup *root, 1125 struct mem_cgroup *prev) 1126 { 1127 if (!root) 1128 root = root_mem_cgroup; 1129 if (prev && prev != root) 1130 css_put(&prev->css); 1131 } 1132 1133 /* 1134 * Iteration constructs for visiting all cgroups (under a tree). If 1135 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1136 * be used for reference counting. 1137 */ 1138 #define for_each_mem_cgroup_tree(iter, root) \ 1139 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1140 iter != NULL; \ 1141 iter = mem_cgroup_iter(root, iter, NULL)) 1142 1143 #define for_each_mem_cgroup(iter) \ 1144 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1145 iter != NULL; \ 1146 iter = mem_cgroup_iter(NULL, iter, NULL)) 1147 1148 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1149 { 1150 struct mem_cgroup *memcg; 1151 1152 rcu_read_lock(); 1153 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1154 if (unlikely(!memcg)) 1155 goto out; 1156 1157 switch (idx) { 1158 case PGFAULT: 1159 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1160 break; 1161 case PGMAJFAULT: 1162 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1163 break; 1164 default: 1165 BUG(); 1166 } 1167 out: 1168 rcu_read_unlock(); 1169 } 1170 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1171 1172 /** 1173 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1174 * @zone: zone of the wanted lruvec 1175 * @memcg: memcg of the wanted lruvec 1176 * 1177 * Returns the lru list vector holding pages for the given @zone and 1178 * @mem. This can be the global zone lruvec, if the memory controller 1179 * is disabled. 1180 */ 1181 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1182 struct mem_cgroup *memcg) 1183 { 1184 struct mem_cgroup_per_zone *mz; 1185 struct lruvec *lruvec; 1186 1187 if (mem_cgroup_disabled()) { 1188 lruvec = &zone->lruvec; 1189 goto out; 1190 } 1191 1192 mz = mem_cgroup_zone_zoneinfo(memcg, zone); 1193 lruvec = &mz->lruvec; 1194 out: 1195 /* 1196 * Since a node can be onlined after the mem_cgroup was created, 1197 * we have to be prepared to initialize lruvec->zone here; 1198 * and if offlined then reonlined, we need to reinitialize it. 1199 */ 1200 if (unlikely(lruvec->zone != zone)) 1201 lruvec->zone = zone; 1202 return lruvec; 1203 } 1204 1205 /** 1206 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1207 * @page: the page 1208 * @zone: zone of the page 1209 * 1210 * This function is only safe when following the LRU page isolation 1211 * and putback protocol: the LRU lock must be held, and the page must 1212 * either be PageLRU() or the caller must have isolated/allocated it. 1213 */ 1214 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1215 { 1216 struct mem_cgroup_per_zone *mz; 1217 struct mem_cgroup *memcg; 1218 struct lruvec *lruvec; 1219 1220 if (mem_cgroup_disabled()) { 1221 lruvec = &zone->lruvec; 1222 goto out; 1223 } 1224 1225 memcg = page->mem_cgroup; 1226 /* 1227 * Swapcache readahead pages are added to the LRU - and 1228 * possibly migrated - before they are charged. 1229 */ 1230 if (!memcg) 1231 memcg = root_mem_cgroup; 1232 1233 mz = mem_cgroup_page_zoneinfo(memcg, page); 1234 lruvec = &mz->lruvec; 1235 out: 1236 /* 1237 * Since a node can be onlined after the mem_cgroup was created, 1238 * we have to be prepared to initialize lruvec->zone here; 1239 * and if offlined then reonlined, we need to reinitialize it. 1240 */ 1241 if (unlikely(lruvec->zone != zone)) 1242 lruvec->zone = zone; 1243 return lruvec; 1244 } 1245 1246 /** 1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1248 * @lruvec: mem_cgroup per zone lru vector 1249 * @lru: index of lru list the page is sitting on 1250 * @nr_pages: positive when adding or negative when removing 1251 * 1252 * This function must be called when a page is added to or removed from an 1253 * lru list. 1254 */ 1255 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1256 int nr_pages) 1257 { 1258 struct mem_cgroup_per_zone *mz; 1259 unsigned long *lru_size; 1260 1261 if (mem_cgroup_disabled()) 1262 return; 1263 1264 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1265 lru_size = mz->lru_size + lru; 1266 *lru_size += nr_pages; 1267 VM_BUG_ON((long)(*lru_size) < 0); 1268 } 1269 1270 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root) 1271 { 1272 if (root == memcg) 1273 return true; 1274 if (!root->use_hierarchy) 1275 return false; 1276 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 1277 } 1278 1279 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1280 { 1281 struct mem_cgroup *task_memcg; 1282 struct task_struct *p; 1283 bool ret; 1284 1285 p = find_lock_task_mm(task); 1286 if (p) { 1287 task_memcg = get_mem_cgroup_from_mm(p->mm); 1288 task_unlock(p); 1289 } else { 1290 /* 1291 * All threads may have already detached their mm's, but the oom 1292 * killer still needs to detect if they have already been oom 1293 * killed to prevent needlessly killing additional tasks. 1294 */ 1295 rcu_read_lock(); 1296 task_memcg = mem_cgroup_from_task(task); 1297 css_get(&task_memcg->css); 1298 rcu_read_unlock(); 1299 } 1300 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1301 css_put(&task_memcg->css); 1302 return ret; 1303 } 1304 1305 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1306 { 1307 unsigned long inactive_ratio; 1308 unsigned long inactive; 1309 unsigned long active; 1310 unsigned long gb; 1311 1312 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1313 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1314 1315 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1316 if (gb) 1317 inactive_ratio = int_sqrt(10 * gb); 1318 else 1319 inactive_ratio = 1; 1320 1321 return inactive * inactive_ratio < active; 1322 } 1323 1324 bool mem_cgroup_lruvec_online(struct lruvec *lruvec) 1325 { 1326 struct mem_cgroup_per_zone *mz; 1327 struct mem_cgroup *memcg; 1328 1329 if (mem_cgroup_disabled()) 1330 return true; 1331 1332 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1333 memcg = mz->memcg; 1334 1335 return !!(memcg->css.flags & CSS_ONLINE); 1336 } 1337 1338 #define mem_cgroup_from_counter(counter, member) \ 1339 container_of(counter, struct mem_cgroup, member) 1340 1341 /** 1342 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1343 * @memcg: the memory cgroup 1344 * 1345 * Returns the maximum amount of memory @mem can be charged with, in 1346 * pages. 1347 */ 1348 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1349 { 1350 unsigned long margin = 0; 1351 unsigned long count; 1352 unsigned long limit; 1353 1354 count = page_counter_read(&memcg->memory); 1355 limit = ACCESS_ONCE(memcg->memory.limit); 1356 if (count < limit) 1357 margin = limit - count; 1358 1359 if (do_swap_account) { 1360 count = page_counter_read(&memcg->memsw); 1361 limit = ACCESS_ONCE(memcg->memsw.limit); 1362 if (count <= limit) 1363 margin = min(margin, limit - count); 1364 } 1365 1366 return margin; 1367 } 1368 1369 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1370 { 1371 /* root ? */ 1372 if (mem_cgroup_disabled() || !memcg->css.parent) 1373 return vm_swappiness; 1374 1375 return memcg->swappiness; 1376 } 1377 1378 /* 1379 * A routine for checking "mem" is under move_account() or not. 1380 * 1381 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1382 * moving cgroups. This is for waiting at high-memory pressure 1383 * caused by "move". 1384 */ 1385 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1386 { 1387 struct mem_cgroup *from; 1388 struct mem_cgroup *to; 1389 bool ret = false; 1390 /* 1391 * Unlike task_move routines, we access mc.to, mc.from not under 1392 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1393 */ 1394 spin_lock(&mc.lock); 1395 from = mc.from; 1396 to = mc.to; 1397 if (!from) 1398 goto unlock; 1399 1400 ret = mem_cgroup_is_descendant(from, memcg) || 1401 mem_cgroup_is_descendant(to, memcg); 1402 unlock: 1403 spin_unlock(&mc.lock); 1404 return ret; 1405 } 1406 1407 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1408 { 1409 if (mc.moving_task && current != mc.moving_task) { 1410 if (mem_cgroup_under_move(memcg)) { 1411 DEFINE_WAIT(wait); 1412 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1413 /* moving charge context might have finished. */ 1414 if (mc.moving_task) 1415 schedule(); 1416 finish_wait(&mc.waitq, &wait); 1417 return true; 1418 } 1419 } 1420 return false; 1421 } 1422 1423 #define K(x) ((x) << (PAGE_SHIFT-10)) 1424 /** 1425 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1426 * @memcg: The memory cgroup that went over limit 1427 * @p: Task that is going to be killed 1428 * 1429 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1430 * enabled 1431 */ 1432 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1433 { 1434 /* oom_info_lock ensures that parallel ooms do not interleave */ 1435 static DEFINE_MUTEX(oom_info_lock); 1436 struct mem_cgroup *iter; 1437 unsigned int i; 1438 1439 if (!p) 1440 return; 1441 1442 mutex_lock(&oom_info_lock); 1443 rcu_read_lock(); 1444 1445 pr_info("Task in "); 1446 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1447 pr_cont(" killed as a result of limit of "); 1448 pr_cont_cgroup_path(memcg->css.cgroup); 1449 pr_cont("\n"); 1450 1451 rcu_read_unlock(); 1452 1453 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1454 K((u64)page_counter_read(&memcg->memory)), 1455 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1456 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1457 K((u64)page_counter_read(&memcg->memsw)), 1458 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1459 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1460 K((u64)page_counter_read(&memcg->kmem)), 1461 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1462 1463 for_each_mem_cgroup_tree(iter, memcg) { 1464 pr_info("Memory cgroup stats for "); 1465 pr_cont_cgroup_path(iter->css.cgroup); 1466 pr_cont(":"); 1467 1468 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1469 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1470 continue; 1471 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1472 K(mem_cgroup_read_stat(iter, i))); 1473 } 1474 1475 for (i = 0; i < NR_LRU_LISTS; i++) 1476 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1477 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1478 1479 pr_cont("\n"); 1480 } 1481 mutex_unlock(&oom_info_lock); 1482 } 1483 1484 /* 1485 * This function returns the number of memcg under hierarchy tree. Returns 1486 * 1(self count) if no children. 1487 */ 1488 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1489 { 1490 int num = 0; 1491 struct mem_cgroup *iter; 1492 1493 for_each_mem_cgroup_tree(iter, memcg) 1494 num++; 1495 return num; 1496 } 1497 1498 /* 1499 * Return the memory (and swap, if configured) limit for a memcg. 1500 */ 1501 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1502 { 1503 unsigned long limit; 1504 1505 limit = memcg->memory.limit; 1506 if (mem_cgroup_swappiness(memcg)) { 1507 unsigned long memsw_limit; 1508 1509 memsw_limit = memcg->memsw.limit; 1510 limit = min(limit + total_swap_pages, memsw_limit); 1511 } 1512 return limit; 1513 } 1514 1515 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1516 int order) 1517 { 1518 struct mem_cgroup *iter; 1519 unsigned long chosen_points = 0; 1520 unsigned long totalpages; 1521 unsigned int points = 0; 1522 struct task_struct *chosen = NULL; 1523 1524 /* 1525 * If current has a pending SIGKILL or is exiting, then automatically 1526 * select it. The goal is to allow it to allocate so that it may 1527 * quickly exit and free its memory. 1528 */ 1529 if (fatal_signal_pending(current) || task_will_free_mem(current)) { 1530 mark_tsk_oom_victim(current); 1531 return; 1532 } 1533 1534 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1535 totalpages = mem_cgroup_get_limit(memcg) ? : 1; 1536 for_each_mem_cgroup_tree(iter, memcg) { 1537 struct css_task_iter it; 1538 struct task_struct *task; 1539 1540 css_task_iter_start(&iter->css, &it); 1541 while ((task = css_task_iter_next(&it))) { 1542 switch (oom_scan_process_thread(task, totalpages, NULL, 1543 false)) { 1544 case OOM_SCAN_SELECT: 1545 if (chosen) 1546 put_task_struct(chosen); 1547 chosen = task; 1548 chosen_points = ULONG_MAX; 1549 get_task_struct(chosen); 1550 /* fall through */ 1551 case OOM_SCAN_CONTINUE: 1552 continue; 1553 case OOM_SCAN_ABORT: 1554 css_task_iter_end(&it); 1555 mem_cgroup_iter_break(memcg, iter); 1556 if (chosen) 1557 put_task_struct(chosen); 1558 return; 1559 case OOM_SCAN_OK: 1560 break; 1561 }; 1562 points = oom_badness(task, memcg, NULL, totalpages); 1563 if (!points || points < chosen_points) 1564 continue; 1565 /* Prefer thread group leaders for display purposes */ 1566 if (points == chosen_points && 1567 thread_group_leader(chosen)) 1568 continue; 1569 1570 if (chosen) 1571 put_task_struct(chosen); 1572 chosen = task; 1573 chosen_points = points; 1574 get_task_struct(chosen); 1575 } 1576 css_task_iter_end(&it); 1577 } 1578 1579 if (!chosen) 1580 return; 1581 points = chosen_points * 1000 / totalpages; 1582 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1583 NULL, "Memory cgroup out of memory"); 1584 } 1585 1586 #if MAX_NUMNODES > 1 1587 1588 /** 1589 * test_mem_cgroup_node_reclaimable 1590 * @memcg: the target memcg 1591 * @nid: the node ID to be checked. 1592 * @noswap : specify true here if the user wants flle only information. 1593 * 1594 * This function returns whether the specified memcg contains any 1595 * reclaimable pages on a node. Returns true if there are any reclaimable 1596 * pages in the node. 1597 */ 1598 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1599 int nid, bool noswap) 1600 { 1601 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1602 return true; 1603 if (noswap || !total_swap_pages) 1604 return false; 1605 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1606 return true; 1607 return false; 1608 1609 } 1610 1611 /* 1612 * Always updating the nodemask is not very good - even if we have an empty 1613 * list or the wrong list here, we can start from some node and traverse all 1614 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1615 * 1616 */ 1617 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1618 { 1619 int nid; 1620 /* 1621 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1622 * pagein/pageout changes since the last update. 1623 */ 1624 if (!atomic_read(&memcg->numainfo_events)) 1625 return; 1626 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1627 return; 1628 1629 /* make a nodemask where this memcg uses memory from */ 1630 memcg->scan_nodes = node_states[N_MEMORY]; 1631 1632 for_each_node_mask(nid, node_states[N_MEMORY]) { 1633 1634 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1635 node_clear(nid, memcg->scan_nodes); 1636 } 1637 1638 atomic_set(&memcg->numainfo_events, 0); 1639 atomic_set(&memcg->numainfo_updating, 0); 1640 } 1641 1642 /* 1643 * Selecting a node where we start reclaim from. Because what we need is just 1644 * reducing usage counter, start from anywhere is O,K. Considering 1645 * memory reclaim from current node, there are pros. and cons. 1646 * 1647 * Freeing memory from current node means freeing memory from a node which 1648 * we'll use or we've used. So, it may make LRU bad. And if several threads 1649 * hit limits, it will see a contention on a node. But freeing from remote 1650 * node means more costs for memory reclaim because of memory latency. 1651 * 1652 * Now, we use round-robin. Better algorithm is welcomed. 1653 */ 1654 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1655 { 1656 int node; 1657 1658 mem_cgroup_may_update_nodemask(memcg); 1659 node = memcg->last_scanned_node; 1660 1661 node = next_node(node, memcg->scan_nodes); 1662 if (node == MAX_NUMNODES) 1663 node = first_node(memcg->scan_nodes); 1664 /* 1665 * We call this when we hit limit, not when pages are added to LRU. 1666 * No LRU may hold pages because all pages are UNEVICTABLE or 1667 * memcg is too small and all pages are not on LRU. In that case, 1668 * we use curret node. 1669 */ 1670 if (unlikely(node == MAX_NUMNODES)) 1671 node = numa_node_id(); 1672 1673 memcg->last_scanned_node = node; 1674 return node; 1675 } 1676 #else 1677 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1678 { 1679 return 0; 1680 } 1681 #endif 1682 1683 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1684 struct zone *zone, 1685 gfp_t gfp_mask, 1686 unsigned long *total_scanned) 1687 { 1688 struct mem_cgroup *victim = NULL; 1689 int total = 0; 1690 int loop = 0; 1691 unsigned long excess; 1692 unsigned long nr_scanned; 1693 struct mem_cgroup_reclaim_cookie reclaim = { 1694 .zone = zone, 1695 .priority = 0, 1696 }; 1697 1698 excess = soft_limit_excess(root_memcg); 1699 1700 while (1) { 1701 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1702 if (!victim) { 1703 loop++; 1704 if (loop >= 2) { 1705 /* 1706 * If we have not been able to reclaim 1707 * anything, it might because there are 1708 * no reclaimable pages under this hierarchy 1709 */ 1710 if (!total) 1711 break; 1712 /* 1713 * We want to do more targeted reclaim. 1714 * excess >> 2 is not to excessive so as to 1715 * reclaim too much, nor too less that we keep 1716 * coming back to reclaim from this cgroup 1717 */ 1718 if (total >= (excess >> 2) || 1719 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1720 break; 1721 } 1722 continue; 1723 } 1724 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1725 zone, &nr_scanned); 1726 *total_scanned += nr_scanned; 1727 if (!soft_limit_excess(root_memcg)) 1728 break; 1729 } 1730 mem_cgroup_iter_break(root_memcg, victim); 1731 return total; 1732 } 1733 1734 #ifdef CONFIG_LOCKDEP 1735 static struct lockdep_map memcg_oom_lock_dep_map = { 1736 .name = "memcg_oom_lock", 1737 }; 1738 #endif 1739 1740 static DEFINE_SPINLOCK(memcg_oom_lock); 1741 1742 /* 1743 * Check OOM-Killer is already running under our hierarchy. 1744 * If someone is running, return false. 1745 */ 1746 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1747 { 1748 struct mem_cgroup *iter, *failed = NULL; 1749 1750 spin_lock(&memcg_oom_lock); 1751 1752 for_each_mem_cgroup_tree(iter, memcg) { 1753 if (iter->oom_lock) { 1754 /* 1755 * this subtree of our hierarchy is already locked 1756 * so we cannot give a lock. 1757 */ 1758 failed = iter; 1759 mem_cgroup_iter_break(memcg, iter); 1760 break; 1761 } else 1762 iter->oom_lock = true; 1763 } 1764 1765 if (failed) { 1766 /* 1767 * OK, we failed to lock the whole subtree so we have 1768 * to clean up what we set up to the failing subtree 1769 */ 1770 for_each_mem_cgroup_tree(iter, memcg) { 1771 if (iter == failed) { 1772 mem_cgroup_iter_break(memcg, iter); 1773 break; 1774 } 1775 iter->oom_lock = false; 1776 } 1777 } else 1778 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1779 1780 spin_unlock(&memcg_oom_lock); 1781 1782 return !failed; 1783 } 1784 1785 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1786 { 1787 struct mem_cgroup *iter; 1788 1789 spin_lock(&memcg_oom_lock); 1790 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1791 for_each_mem_cgroup_tree(iter, memcg) 1792 iter->oom_lock = false; 1793 spin_unlock(&memcg_oom_lock); 1794 } 1795 1796 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1797 { 1798 struct mem_cgroup *iter; 1799 1800 for_each_mem_cgroup_tree(iter, memcg) 1801 atomic_inc(&iter->under_oom); 1802 } 1803 1804 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1805 { 1806 struct mem_cgroup *iter; 1807 1808 /* 1809 * When a new child is created while the hierarchy is under oom, 1810 * mem_cgroup_oom_lock() may not be called. We have to use 1811 * atomic_add_unless() here. 1812 */ 1813 for_each_mem_cgroup_tree(iter, memcg) 1814 atomic_add_unless(&iter->under_oom, -1, 0); 1815 } 1816 1817 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1818 1819 struct oom_wait_info { 1820 struct mem_cgroup *memcg; 1821 wait_queue_t wait; 1822 }; 1823 1824 static int memcg_oom_wake_function(wait_queue_t *wait, 1825 unsigned mode, int sync, void *arg) 1826 { 1827 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1828 struct mem_cgroup *oom_wait_memcg; 1829 struct oom_wait_info *oom_wait_info; 1830 1831 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1832 oom_wait_memcg = oom_wait_info->memcg; 1833 1834 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1835 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1836 return 0; 1837 return autoremove_wake_function(wait, mode, sync, arg); 1838 } 1839 1840 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 1841 { 1842 atomic_inc(&memcg->oom_wakeups); 1843 /* for filtering, pass "memcg" as argument. */ 1844 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1845 } 1846 1847 static void memcg_oom_recover(struct mem_cgroup *memcg) 1848 { 1849 if (memcg && atomic_read(&memcg->under_oom)) 1850 memcg_wakeup_oom(memcg); 1851 } 1852 1853 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1854 { 1855 if (!current->memcg_oom.may_oom) 1856 return; 1857 /* 1858 * We are in the middle of the charge context here, so we 1859 * don't want to block when potentially sitting on a callstack 1860 * that holds all kinds of filesystem and mm locks. 1861 * 1862 * Also, the caller may handle a failed allocation gracefully 1863 * (like optional page cache readahead) and so an OOM killer 1864 * invocation might not even be necessary. 1865 * 1866 * That's why we don't do anything here except remember the 1867 * OOM context and then deal with it at the end of the page 1868 * fault when the stack is unwound, the locks are released, 1869 * and when we know whether the fault was overall successful. 1870 */ 1871 css_get(&memcg->css); 1872 current->memcg_oom.memcg = memcg; 1873 current->memcg_oom.gfp_mask = mask; 1874 current->memcg_oom.order = order; 1875 } 1876 1877 /** 1878 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1879 * @handle: actually kill/wait or just clean up the OOM state 1880 * 1881 * This has to be called at the end of a page fault if the memcg OOM 1882 * handler was enabled. 1883 * 1884 * Memcg supports userspace OOM handling where failed allocations must 1885 * sleep on a waitqueue until the userspace task resolves the 1886 * situation. Sleeping directly in the charge context with all kinds 1887 * of locks held is not a good idea, instead we remember an OOM state 1888 * in the task and mem_cgroup_oom_synchronize() has to be called at 1889 * the end of the page fault to complete the OOM handling. 1890 * 1891 * Returns %true if an ongoing memcg OOM situation was detected and 1892 * completed, %false otherwise. 1893 */ 1894 bool mem_cgroup_oom_synchronize(bool handle) 1895 { 1896 struct mem_cgroup *memcg = current->memcg_oom.memcg; 1897 struct oom_wait_info owait; 1898 bool locked; 1899 1900 /* OOM is global, do not handle */ 1901 if (!memcg) 1902 return false; 1903 1904 if (!handle || oom_killer_disabled) 1905 goto cleanup; 1906 1907 owait.memcg = memcg; 1908 owait.wait.flags = 0; 1909 owait.wait.func = memcg_oom_wake_function; 1910 owait.wait.private = current; 1911 INIT_LIST_HEAD(&owait.wait.task_list); 1912 1913 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1914 mem_cgroup_mark_under_oom(memcg); 1915 1916 locked = mem_cgroup_oom_trylock(memcg); 1917 1918 if (locked) 1919 mem_cgroup_oom_notify(memcg); 1920 1921 if (locked && !memcg->oom_kill_disable) { 1922 mem_cgroup_unmark_under_oom(memcg); 1923 finish_wait(&memcg_oom_waitq, &owait.wait); 1924 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, 1925 current->memcg_oom.order); 1926 } else { 1927 schedule(); 1928 mem_cgroup_unmark_under_oom(memcg); 1929 finish_wait(&memcg_oom_waitq, &owait.wait); 1930 } 1931 1932 if (locked) { 1933 mem_cgroup_oom_unlock(memcg); 1934 /* 1935 * There is no guarantee that an OOM-lock contender 1936 * sees the wakeups triggered by the OOM kill 1937 * uncharges. Wake any sleepers explicitely. 1938 */ 1939 memcg_oom_recover(memcg); 1940 } 1941 cleanup: 1942 current->memcg_oom.memcg = NULL; 1943 css_put(&memcg->css); 1944 return true; 1945 } 1946 1947 /** 1948 * mem_cgroup_begin_page_stat - begin a page state statistics transaction 1949 * @page: page that is going to change accounted state 1950 * 1951 * This function must mark the beginning of an accounted page state 1952 * change to prevent double accounting when the page is concurrently 1953 * being moved to another memcg: 1954 * 1955 * memcg = mem_cgroup_begin_page_stat(page); 1956 * if (TestClearPageState(page)) 1957 * mem_cgroup_update_page_stat(memcg, state, -1); 1958 * mem_cgroup_end_page_stat(memcg); 1959 */ 1960 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page) 1961 { 1962 struct mem_cgroup *memcg; 1963 unsigned long flags; 1964 1965 /* 1966 * The RCU lock is held throughout the transaction. The fast 1967 * path can get away without acquiring the memcg->move_lock 1968 * because page moving starts with an RCU grace period. 1969 * 1970 * The RCU lock also protects the memcg from being freed when 1971 * the page state that is going to change is the only thing 1972 * preventing the page from being uncharged. 1973 * E.g. end-writeback clearing PageWriteback(), which allows 1974 * migration to go ahead and uncharge the page before the 1975 * account transaction might be complete. 1976 */ 1977 rcu_read_lock(); 1978 1979 if (mem_cgroup_disabled()) 1980 return NULL; 1981 again: 1982 memcg = page->mem_cgroup; 1983 if (unlikely(!memcg)) 1984 return NULL; 1985 1986 if (atomic_read(&memcg->moving_account) <= 0) 1987 return memcg; 1988 1989 spin_lock_irqsave(&memcg->move_lock, flags); 1990 if (memcg != page->mem_cgroup) { 1991 spin_unlock_irqrestore(&memcg->move_lock, flags); 1992 goto again; 1993 } 1994 1995 /* 1996 * When charge migration first begins, we can have locked and 1997 * unlocked page stat updates happening concurrently. Track 1998 * the task who has the lock for mem_cgroup_end_page_stat(). 1999 */ 2000 memcg->move_lock_task = current; 2001 memcg->move_lock_flags = flags; 2002 2003 return memcg; 2004 } 2005 2006 /** 2007 * mem_cgroup_end_page_stat - finish a page state statistics transaction 2008 * @memcg: the memcg that was accounted against 2009 */ 2010 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg) 2011 { 2012 if (memcg && memcg->move_lock_task == current) { 2013 unsigned long flags = memcg->move_lock_flags; 2014 2015 memcg->move_lock_task = NULL; 2016 memcg->move_lock_flags = 0; 2017 2018 spin_unlock_irqrestore(&memcg->move_lock, flags); 2019 } 2020 2021 rcu_read_unlock(); 2022 } 2023 2024 /** 2025 * mem_cgroup_update_page_stat - update page state statistics 2026 * @memcg: memcg to account against 2027 * @idx: page state item to account 2028 * @val: number of pages (positive or negative) 2029 * 2030 * See mem_cgroup_begin_page_stat() for locking requirements. 2031 */ 2032 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg, 2033 enum mem_cgroup_stat_index idx, int val) 2034 { 2035 VM_BUG_ON(!rcu_read_lock_held()); 2036 2037 if (memcg) 2038 this_cpu_add(memcg->stat->count[idx], val); 2039 } 2040 2041 /* 2042 * size of first charge trial. "32" comes from vmscan.c's magic value. 2043 * TODO: maybe necessary to use big numbers in big irons. 2044 */ 2045 #define CHARGE_BATCH 32U 2046 struct memcg_stock_pcp { 2047 struct mem_cgroup *cached; /* this never be root cgroup */ 2048 unsigned int nr_pages; 2049 struct work_struct work; 2050 unsigned long flags; 2051 #define FLUSHING_CACHED_CHARGE 0 2052 }; 2053 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2054 static DEFINE_MUTEX(percpu_charge_mutex); 2055 2056 /** 2057 * consume_stock: Try to consume stocked charge on this cpu. 2058 * @memcg: memcg to consume from. 2059 * @nr_pages: how many pages to charge. 2060 * 2061 * The charges will only happen if @memcg matches the current cpu's memcg 2062 * stock, and at least @nr_pages are available in that stock. Failure to 2063 * service an allocation will refill the stock. 2064 * 2065 * returns true if successful, false otherwise. 2066 */ 2067 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2068 { 2069 struct memcg_stock_pcp *stock; 2070 bool ret = false; 2071 2072 if (nr_pages > CHARGE_BATCH) 2073 return ret; 2074 2075 stock = &get_cpu_var(memcg_stock); 2076 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2077 stock->nr_pages -= nr_pages; 2078 ret = true; 2079 } 2080 put_cpu_var(memcg_stock); 2081 return ret; 2082 } 2083 2084 /* 2085 * Returns stocks cached in percpu and reset cached information. 2086 */ 2087 static void drain_stock(struct memcg_stock_pcp *stock) 2088 { 2089 struct mem_cgroup *old = stock->cached; 2090 2091 if (stock->nr_pages) { 2092 page_counter_uncharge(&old->memory, stock->nr_pages); 2093 if (do_swap_account) 2094 page_counter_uncharge(&old->memsw, stock->nr_pages); 2095 css_put_many(&old->css, stock->nr_pages); 2096 stock->nr_pages = 0; 2097 } 2098 stock->cached = NULL; 2099 } 2100 2101 /* 2102 * This must be called under preempt disabled or must be called by 2103 * a thread which is pinned to local cpu. 2104 */ 2105 static void drain_local_stock(struct work_struct *dummy) 2106 { 2107 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 2108 drain_stock(stock); 2109 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2110 } 2111 2112 /* 2113 * Cache charges(val) to local per_cpu area. 2114 * This will be consumed by consume_stock() function, later. 2115 */ 2116 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2117 { 2118 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2119 2120 if (stock->cached != memcg) { /* reset if necessary */ 2121 drain_stock(stock); 2122 stock->cached = memcg; 2123 } 2124 stock->nr_pages += nr_pages; 2125 put_cpu_var(memcg_stock); 2126 } 2127 2128 /* 2129 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2130 * of the hierarchy under it. 2131 */ 2132 static void drain_all_stock(struct mem_cgroup *root_memcg) 2133 { 2134 int cpu, curcpu; 2135 2136 /* If someone's already draining, avoid adding running more workers. */ 2137 if (!mutex_trylock(&percpu_charge_mutex)) 2138 return; 2139 /* Notify other cpus that system-wide "drain" is running */ 2140 get_online_cpus(); 2141 curcpu = get_cpu(); 2142 for_each_online_cpu(cpu) { 2143 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2144 struct mem_cgroup *memcg; 2145 2146 memcg = stock->cached; 2147 if (!memcg || !stock->nr_pages) 2148 continue; 2149 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 2150 continue; 2151 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2152 if (cpu == curcpu) 2153 drain_local_stock(&stock->work); 2154 else 2155 schedule_work_on(cpu, &stock->work); 2156 } 2157 } 2158 put_cpu(); 2159 put_online_cpus(); 2160 mutex_unlock(&percpu_charge_mutex); 2161 } 2162 2163 /* 2164 * This function drains percpu counter value from DEAD cpu and 2165 * move it to local cpu. Note that this function can be preempted. 2166 */ 2167 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2168 { 2169 int i; 2170 2171 spin_lock(&memcg->pcp_counter_lock); 2172 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2173 long x = per_cpu(memcg->stat->count[i], cpu); 2174 2175 per_cpu(memcg->stat->count[i], cpu) = 0; 2176 memcg->nocpu_base.count[i] += x; 2177 } 2178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2179 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2180 2181 per_cpu(memcg->stat->events[i], cpu) = 0; 2182 memcg->nocpu_base.events[i] += x; 2183 } 2184 spin_unlock(&memcg->pcp_counter_lock); 2185 } 2186 2187 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 2188 unsigned long action, 2189 void *hcpu) 2190 { 2191 int cpu = (unsigned long)hcpu; 2192 struct memcg_stock_pcp *stock; 2193 struct mem_cgroup *iter; 2194 2195 if (action == CPU_ONLINE) 2196 return NOTIFY_OK; 2197 2198 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2199 return NOTIFY_OK; 2200 2201 for_each_mem_cgroup(iter) 2202 mem_cgroup_drain_pcp_counter(iter, cpu); 2203 2204 stock = &per_cpu(memcg_stock, cpu); 2205 drain_stock(stock); 2206 return NOTIFY_OK; 2207 } 2208 2209 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2210 unsigned int nr_pages) 2211 { 2212 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2213 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2214 struct mem_cgroup *mem_over_limit; 2215 struct page_counter *counter; 2216 unsigned long nr_reclaimed; 2217 bool may_swap = true; 2218 bool drained = false; 2219 int ret = 0; 2220 2221 if (mem_cgroup_is_root(memcg)) 2222 goto done; 2223 retry: 2224 if (consume_stock(memcg, nr_pages)) 2225 goto done; 2226 2227 if (!do_swap_account || 2228 !page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2229 if (!page_counter_try_charge(&memcg->memory, batch, &counter)) 2230 goto done_restock; 2231 if (do_swap_account) 2232 page_counter_uncharge(&memcg->memsw, batch); 2233 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2234 } else { 2235 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2236 may_swap = false; 2237 } 2238 2239 if (batch > nr_pages) { 2240 batch = nr_pages; 2241 goto retry; 2242 } 2243 2244 /* 2245 * Unlike in global OOM situations, memcg is not in a physical 2246 * memory shortage. Allow dying and OOM-killed tasks to 2247 * bypass the last charges so that they can exit quickly and 2248 * free their memory. 2249 */ 2250 if (unlikely(test_thread_flag(TIF_MEMDIE) || 2251 fatal_signal_pending(current) || 2252 current->flags & PF_EXITING)) 2253 goto bypass; 2254 2255 if (unlikely(task_in_memcg_oom(current))) 2256 goto nomem; 2257 2258 if (!(gfp_mask & __GFP_WAIT)) 2259 goto nomem; 2260 2261 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 2262 2263 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2264 gfp_mask, may_swap); 2265 2266 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2267 goto retry; 2268 2269 if (!drained) { 2270 drain_all_stock(mem_over_limit); 2271 drained = true; 2272 goto retry; 2273 } 2274 2275 if (gfp_mask & __GFP_NORETRY) 2276 goto nomem; 2277 /* 2278 * Even though the limit is exceeded at this point, reclaim 2279 * may have been able to free some pages. Retry the charge 2280 * before killing the task. 2281 * 2282 * Only for regular pages, though: huge pages are rather 2283 * unlikely to succeed so close to the limit, and we fall back 2284 * to regular pages anyway in case of failure. 2285 */ 2286 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2287 goto retry; 2288 /* 2289 * At task move, charge accounts can be doubly counted. So, it's 2290 * better to wait until the end of task_move if something is going on. 2291 */ 2292 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2293 goto retry; 2294 2295 if (nr_retries--) 2296 goto retry; 2297 2298 if (gfp_mask & __GFP_NOFAIL) 2299 goto bypass; 2300 2301 if (fatal_signal_pending(current)) 2302 goto bypass; 2303 2304 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 2305 2306 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages)); 2307 nomem: 2308 if (!(gfp_mask & __GFP_NOFAIL)) 2309 return -ENOMEM; 2310 bypass: 2311 return -EINTR; 2312 2313 done_restock: 2314 css_get_many(&memcg->css, batch); 2315 if (batch > nr_pages) 2316 refill_stock(memcg, batch - nr_pages); 2317 /* 2318 * If the hierarchy is above the normal consumption range, 2319 * make the charging task trim their excess contribution. 2320 */ 2321 do { 2322 if (page_counter_read(&memcg->memory) <= memcg->high) 2323 continue; 2324 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 2325 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2326 } while ((memcg = parent_mem_cgroup(memcg))); 2327 done: 2328 return ret; 2329 } 2330 2331 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2332 { 2333 if (mem_cgroup_is_root(memcg)) 2334 return; 2335 2336 page_counter_uncharge(&memcg->memory, nr_pages); 2337 if (do_swap_account) 2338 page_counter_uncharge(&memcg->memsw, nr_pages); 2339 2340 css_put_many(&memcg->css, nr_pages); 2341 } 2342 2343 /* 2344 * A helper function to get mem_cgroup from ID. must be called under 2345 * rcu_read_lock(). The caller is responsible for calling 2346 * css_tryget_online() if the mem_cgroup is used for charging. (dropping 2347 * refcnt from swap can be called against removed memcg.) 2348 */ 2349 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2350 { 2351 /* ID 0 is unused ID */ 2352 if (!id) 2353 return NULL; 2354 return mem_cgroup_from_id(id); 2355 } 2356 2357 /* 2358 * try_get_mem_cgroup_from_page - look up page's memcg association 2359 * @page: the page 2360 * 2361 * Look up, get a css reference, and return the memcg that owns @page. 2362 * 2363 * The page must be locked to prevent racing with swap-in and page 2364 * cache charges. If coming from an unlocked page table, the caller 2365 * must ensure the page is on the LRU or this can race with charging. 2366 */ 2367 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2368 { 2369 struct mem_cgroup *memcg; 2370 unsigned short id; 2371 swp_entry_t ent; 2372 2373 VM_BUG_ON_PAGE(!PageLocked(page), page); 2374 2375 memcg = page->mem_cgroup; 2376 if (memcg) { 2377 if (!css_tryget_online(&memcg->css)) 2378 memcg = NULL; 2379 } else if (PageSwapCache(page)) { 2380 ent.val = page_private(page); 2381 id = lookup_swap_cgroup_id(ent); 2382 rcu_read_lock(); 2383 memcg = mem_cgroup_lookup(id); 2384 if (memcg && !css_tryget_online(&memcg->css)) 2385 memcg = NULL; 2386 rcu_read_unlock(); 2387 } 2388 return memcg; 2389 } 2390 2391 static void lock_page_lru(struct page *page, int *isolated) 2392 { 2393 struct zone *zone = page_zone(page); 2394 2395 spin_lock_irq(&zone->lru_lock); 2396 if (PageLRU(page)) { 2397 struct lruvec *lruvec; 2398 2399 lruvec = mem_cgroup_page_lruvec(page, zone); 2400 ClearPageLRU(page); 2401 del_page_from_lru_list(page, lruvec, page_lru(page)); 2402 *isolated = 1; 2403 } else 2404 *isolated = 0; 2405 } 2406 2407 static void unlock_page_lru(struct page *page, int isolated) 2408 { 2409 struct zone *zone = page_zone(page); 2410 2411 if (isolated) { 2412 struct lruvec *lruvec; 2413 2414 lruvec = mem_cgroup_page_lruvec(page, zone); 2415 VM_BUG_ON_PAGE(PageLRU(page), page); 2416 SetPageLRU(page); 2417 add_page_to_lru_list(page, lruvec, page_lru(page)); 2418 } 2419 spin_unlock_irq(&zone->lru_lock); 2420 } 2421 2422 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2423 bool lrucare) 2424 { 2425 int isolated; 2426 2427 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2428 2429 /* 2430 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2431 * may already be on some other mem_cgroup's LRU. Take care of it. 2432 */ 2433 if (lrucare) 2434 lock_page_lru(page, &isolated); 2435 2436 /* 2437 * Nobody should be changing or seriously looking at 2438 * page->mem_cgroup at this point: 2439 * 2440 * - the page is uncharged 2441 * 2442 * - the page is off-LRU 2443 * 2444 * - an anonymous fault has exclusive page access, except for 2445 * a locked page table 2446 * 2447 * - a page cache insertion, a swapin fault, or a migration 2448 * have the page locked 2449 */ 2450 page->mem_cgroup = memcg; 2451 2452 if (lrucare) 2453 unlock_page_lru(page, isolated); 2454 } 2455 2456 #ifdef CONFIG_MEMCG_KMEM 2457 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, 2458 unsigned long nr_pages) 2459 { 2460 struct page_counter *counter; 2461 int ret = 0; 2462 2463 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter); 2464 if (ret < 0) 2465 return ret; 2466 2467 ret = try_charge(memcg, gfp, nr_pages); 2468 if (ret == -EINTR) { 2469 /* 2470 * try_charge() chose to bypass to root due to OOM kill or 2471 * fatal signal. Since our only options are to either fail 2472 * the allocation or charge it to this cgroup, do it as a 2473 * temporary condition. But we can't fail. From a kmem/slab 2474 * perspective, the cache has already been selected, by 2475 * mem_cgroup_kmem_get_cache(), so it is too late to change 2476 * our minds. 2477 * 2478 * This condition will only trigger if the task entered 2479 * memcg_charge_kmem in a sane state, but was OOM-killed 2480 * during try_charge() above. Tasks that were already dying 2481 * when the allocation triggers should have been already 2482 * directed to the root cgroup in memcontrol.h 2483 */ 2484 page_counter_charge(&memcg->memory, nr_pages); 2485 if (do_swap_account) 2486 page_counter_charge(&memcg->memsw, nr_pages); 2487 css_get_many(&memcg->css, nr_pages); 2488 ret = 0; 2489 } else if (ret) 2490 page_counter_uncharge(&memcg->kmem, nr_pages); 2491 2492 return ret; 2493 } 2494 2495 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages) 2496 { 2497 page_counter_uncharge(&memcg->memory, nr_pages); 2498 if (do_swap_account) 2499 page_counter_uncharge(&memcg->memsw, nr_pages); 2500 2501 page_counter_uncharge(&memcg->kmem, nr_pages); 2502 2503 css_put_many(&memcg->css, nr_pages); 2504 } 2505 2506 /* 2507 * helper for acessing a memcg's index. It will be used as an index in the 2508 * child cache array in kmem_cache, and also to derive its name. This function 2509 * will return -1 when this is not a kmem-limited memcg. 2510 */ 2511 int memcg_cache_id(struct mem_cgroup *memcg) 2512 { 2513 return memcg ? memcg->kmemcg_id : -1; 2514 } 2515 2516 static int memcg_alloc_cache_id(void) 2517 { 2518 int id, size; 2519 int err; 2520 2521 id = ida_simple_get(&memcg_cache_ida, 2522 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2523 if (id < 0) 2524 return id; 2525 2526 if (id < memcg_nr_cache_ids) 2527 return id; 2528 2529 /* 2530 * There's no space for the new id in memcg_caches arrays, 2531 * so we have to grow them. 2532 */ 2533 down_write(&memcg_cache_ids_sem); 2534 2535 size = 2 * (id + 1); 2536 if (size < MEMCG_CACHES_MIN_SIZE) 2537 size = MEMCG_CACHES_MIN_SIZE; 2538 else if (size > MEMCG_CACHES_MAX_SIZE) 2539 size = MEMCG_CACHES_MAX_SIZE; 2540 2541 err = memcg_update_all_caches(size); 2542 if (!err) 2543 err = memcg_update_all_list_lrus(size); 2544 if (!err) 2545 memcg_nr_cache_ids = size; 2546 2547 up_write(&memcg_cache_ids_sem); 2548 2549 if (err) { 2550 ida_simple_remove(&memcg_cache_ida, id); 2551 return err; 2552 } 2553 return id; 2554 } 2555 2556 static void memcg_free_cache_id(int id) 2557 { 2558 ida_simple_remove(&memcg_cache_ida, id); 2559 } 2560 2561 struct memcg_kmem_cache_create_work { 2562 struct mem_cgroup *memcg; 2563 struct kmem_cache *cachep; 2564 struct work_struct work; 2565 }; 2566 2567 static void memcg_kmem_cache_create_func(struct work_struct *w) 2568 { 2569 struct memcg_kmem_cache_create_work *cw = 2570 container_of(w, struct memcg_kmem_cache_create_work, work); 2571 struct mem_cgroup *memcg = cw->memcg; 2572 struct kmem_cache *cachep = cw->cachep; 2573 2574 memcg_create_kmem_cache(memcg, cachep); 2575 2576 css_put(&memcg->css); 2577 kfree(cw); 2578 } 2579 2580 /* 2581 * Enqueue the creation of a per-memcg kmem_cache. 2582 */ 2583 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2584 struct kmem_cache *cachep) 2585 { 2586 struct memcg_kmem_cache_create_work *cw; 2587 2588 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2589 if (!cw) 2590 return; 2591 2592 css_get(&memcg->css); 2593 2594 cw->memcg = memcg; 2595 cw->cachep = cachep; 2596 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2597 2598 schedule_work(&cw->work); 2599 } 2600 2601 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2602 struct kmem_cache *cachep) 2603 { 2604 /* 2605 * We need to stop accounting when we kmalloc, because if the 2606 * corresponding kmalloc cache is not yet created, the first allocation 2607 * in __memcg_schedule_kmem_cache_create will recurse. 2608 * 2609 * However, it is better to enclose the whole function. Depending on 2610 * the debugging options enabled, INIT_WORK(), for instance, can 2611 * trigger an allocation. This too, will make us recurse. Because at 2612 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2613 * the safest choice is to do it like this, wrapping the whole function. 2614 */ 2615 current->memcg_kmem_skip_account = 1; 2616 __memcg_schedule_kmem_cache_create(memcg, cachep); 2617 current->memcg_kmem_skip_account = 0; 2618 } 2619 2620 /* 2621 * Return the kmem_cache we're supposed to use for a slab allocation. 2622 * We try to use the current memcg's version of the cache. 2623 * 2624 * If the cache does not exist yet, if we are the first user of it, 2625 * we either create it immediately, if possible, or create it asynchronously 2626 * in a workqueue. 2627 * In the latter case, we will let the current allocation go through with 2628 * the original cache. 2629 * 2630 * Can't be called in interrupt context or from kernel threads. 2631 * This function needs to be called with rcu_read_lock() held. 2632 */ 2633 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep) 2634 { 2635 struct mem_cgroup *memcg; 2636 struct kmem_cache *memcg_cachep; 2637 int kmemcg_id; 2638 2639 VM_BUG_ON(!is_root_cache(cachep)); 2640 2641 if (current->memcg_kmem_skip_account) 2642 return cachep; 2643 2644 memcg = get_mem_cgroup_from_mm(current->mm); 2645 kmemcg_id = ACCESS_ONCE(memcg->kmemcg_id); 2646 if (kmemcg_id < 0) 2647 goto out; 2648 2649 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2650 if (likely(memcg_cachep)) 2651 return memcg_cachep; 2652 2653 /* 2654 * If we are in a safe context (can wait, and not in interrupt 2655 * context), we could be be predictable and return right away. 2656 * This would guarantee that the allocation being performed 2657 * already belongs in the new cache. 2658 * 2659 * However, there are some clashes that can arrive from locking. 2660 * For instance, because we acquire the slab_mutex while doing 2661 * memcg_create_kmem_cache, this means no further allocation 2662 * could happen with the slab_mutex held. So it's better to 2663 * defer everything. 2664 */ 2665 memcg_schedule_kmem_cache_create(memcg, cachep); 2666 out: 2667 css_put(&memcg->css); 2668 return cachep; 2669 } 2670 2671 void __memcg_kmem_put_cache(struct kmem_cache *cachep) 2672 { 2673 if (!is_root_cache(cachep)) 2674 css_put(&cachep->memcg_params.memcg->css); 2675 } 2676 2677 /* 2678 * We need to verify if the allocation against current->mm->owner's memcg is 2679 * possible for the given order. But the page is not allocated yet, so we'll 2680 * need a further commit step to do the final arrangements. 2681 * 2682 * It is possible for the task to switch cgroups in this mean time, so at 2683 * commit time, we can't rely on task conversion any longer. We'll then use 2684 * the handle argument to return to the caller which cgroup we should commit 2685 * against. We could also return the memcg directly and avoid the pointer 2686 * passing, but a boolean return value gives better semantics considering 2687 * the compiled-out case as well. 2688 * 2689 * Returning true means the allocation is possible. 2690 */ 2691 bool 2692 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 2693 { 2694 struct mem_cgroup *memcg; 2695 int ret; 2696 2697 *_memcg = NULL; 2698 2699 memcg = get_mem_cgroup_from_mm(current->mm); 2700 2701 if (!memcg_kmem_is_active(memcg)) { 2702 css_put(&memcg->css); 2703 return true; 2704 } 2705 2706 ret = memcg_charge_kmem(memcg, gfp, 1 << order); 2707 if (!ret) 2708 *_memcg = memcg; 2709 2710 css_put(&memcg->css); 2711 return (ret == 0); 2712 } 2713 2714 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 2715 int order) 2716 { 2717 VM_BUG_ON(mem_cgroup_is_root(memcg)); 2718 2719 /* The page allocation failed. Revert */ 2720 if (!page) { 2721 memcg_uncharge_kmem(memcg, 1 << order); 2722 return; 2723 } 2724 page->mem_cgroup = memcg; 2725 } 2726 2727 void __memcg_kmem_uncharge_pages(struct page *page, int order) 2728 { 2729 struct mem_cgroup *memcg = page->mem_cgroup; 2730 2731 if (!memcg) 2732 return; 2733 2734 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2735 2736 memcg_uncharge_kmem(memcg, 1 << order); 2737 page->mem_cgroup = NULL; 2738 } 2739 2740 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr) 2741 { 2742 struct mem_cgroup *memcg = NULL; 2743 struct kmem_cache *cachep; 2744 struct page *page; 2745 2746 page = virt_to_head_page(ptr); 2747 if (PageSlab(page)) { 2748 cachep = page->slab_cache; 2749 if (!is_root_cache(cachep)) 2750 memcg = cachep->memcg_params.memcg; 2751 } else 2752 /* page allocated by alloc_kmem_pages */ 2753 memcg = page->mem_cgroup; 2754 2755 return memcg; 2756 } 2757 #endif /* CONFIG_MEMCG_KMEM */ 2758 2759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2760 2761 /* 2762 * Because tail pages are not marked as "used", set it. We're under 2763 * zone->lru_lock, 'splitting on pmd' and compound_lock. 2764 * charge/uncharge will be never happen and move_account() is done under 2765 * compound_lock(), so we don't have to take care of races. 2766 */ 2767 void mem_cgroup_split_huge_fixup(struct page *head) 2768 { 2769 int i; 2770 2771 if (mem_cgroup_disabled()) 2772 return; 2773 2774 for (i = 1; i < HPAGE_PMD_NR; i++) 2775 head[i].mem_cgroup = head->mem_cgroup; 2776 2777 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2778 HPAGE_PMD_NR); 2779 } 2780 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2781 2782 /** 2783 * mem_cgroup_move_account - move account of the page 2784 * @page: the page 2785 * @nr_pages: number of regular pages (>1 for huge pages) 2786 * @from: mem_cgroup which the page is moved from. 2787 * @to: mem_cgroup which the page is moved to. @from != @to. 2788 * 2789 * The caller must confirm following. 2790 * - page is not on LRU (isolate_page() is useful.) 2791 * - compound_lock is held when nr_pages > 1 2792 * 2793 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 2794 * from old cgroup. 2795 */ 2796 static int mem_cgroup_move_account(struct page *page, 2797 unsigned int nr_pages, 2798 struct mem_cgroup *from, 2799 struct mem_cgroup *to) 2800 { 2801 unsigned long flags; 2802 int ret; 2803 2804 VM_BUG_ON(from == to); 2805 VM_BUG_ON_PAGE(PageLRU(page), page); 2806 /* 2807 * The page is isolated from LRU. So, collapse function 2808 * will not handle this page. But page splitting can happen. 2809 * Do this check under compound_page_lock(). The caller should 2810 * hold it. 2811 */ 2812 ret = -EBUSY; 2813 if (nr_pages > 1 && !PageTransHuge(page)) 2814 goto out; 2815 2816 /* 2817 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup 2818 * of its source page while we change it: page migration takes 2819 * both pages off the LRU, but page cache replacement doesn't. 2820 */ 2821 if (!trylock_page(page)) 2822 goto out; 2823 2824 ret = -EINVAL; 2825 if (page->mem_cgroup != from) 2826 goto out_unlock; 2827 2828 spin_lock_irqsave(&from->move_lock, flags); 2829 2830 if (!PageAnon(page) && page_mapped(page)) { 2831 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 2832 nr_pages); 2833 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 2834 nr_pages); 2835 } 2836 2837 if (PageWriteback(page)) { 2838 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 2839 nr_pages); 2840 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 2841 nr_pages); 2842 } 2843 2844 /* 2845 * It is safe to change page->mem_cgroup here because the page 2846 * is referenced, charged, and isolated - we can't race with 2847 * uncharging, charging, migration, or LRU putback. 2848 */ 2849 2850 /* caller should have done css_get */ 2851 page->mem_cgroup = to; 2852 spin_unlock_irqrestore(&from->move_lock, flags); 2853 2854 ret = 0; 2855 2856 local_irq_disable(); 2857 mem_cgroup_charge_statistics(to, page, nr_pages); 2858 memcg_check_events(to, page); 2859 mem_cgroup_charge_statistics(from, page, -nr_pages); 2860 memcg_check_events(from, page); 2861 local_irq_enable(); 2862 out_unlock: 2863 unlock_page(page); 2864 out: 2865 return ret; 2866 } 2867 2868 #ifdef CONFIG_MEMCG_SWAP 2869 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2870 bool charge) 2871 { 2872 int val = (charge) ? 1 : -1; 2873 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2874 } 2875 2876 /** 2877 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2878 * @entry: swap entry to be moved 2879 * @from: mem_cgroup which the entry is moved from 2880 * @to: mem_cgroup which the entry is moved to 2881 * 2882 * It succeeds only when the swap_cgroup's record for this entry is the same 2883 * as the mem_cgroup's id of @from. 2884 * 2885 * Returns 0 on success, -EINVAL on failure. 2886 * 2887 * The caller must have charged to @to, IOW, called page_counter_charge() about 2888 * both res and memsw, and called css_get(). 2889 */ 2890 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2891 struct mem_cgroup *from, struct mem_cgroup *to) 2892 { 2893 unsigned short old_id, new_id; 2894 2895 old_id = mem_cgroup_id(from); 2896 new_id = mem_cgroup_id(to); 2897 2898 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2899 mem_cgroup_swap_statistics(from, false); 2900 mem_cgroup_swap_statistics(to, true); 2901 return 0; 2902 } 2903 return -EINVAL; 2904 } 2905 #else 2906 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2907 struct mem_cgroup *from, struct mem_cgroup *to) 2908 { 2909 return -EINVAL; 2910 } 2911 #endif 2912 2913 static DEFINE_MUTEX(memcg_limit_mutex); 2914 2915 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2916 unsigned long limit) 2917 { 2918 unsigned long curusage; 2919 unsigned long oldusage; 2920 bool enlarge = false; 2921 int retry_count; 2922 int ret; 2923 2924 /* 2925 * For keeping hierarchical_reclaim simple, how long we should retry 2926 * is depends on callers. We set our retry-count to be function 2927 * of # of children which we should visit in this loop. 2928 */ 2929 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2930 mem_cgroup_count_children(memcg); 2931 2932 oldusage = page_counter_read(&memcg->memory); 2933 2934 do { 2935 if (signal_pending(current)) { 2936 ret = -EINTR; 2937 break; 2938 } 2939 2940 mutex_lock(&memcg_limit_mutex); 2941 if (limit > memcg->memsw.limit) { 2942 mutex_unlock(&memcg_limit_mutex); 2943 ret = -EINVAL; 2944 break; 2945 } 2946 if (limit > memcg->memory.limit) 2947 enlarge = true; 2948 ret = page_counter_limit(&memcg->memory, limit); 2949 mutex_unlock(&memcg_limit_mutex); 2950 2951 if (!ret) 2952 break; 2953 2954 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2955 2956 curusage = page_counter_read(&memcg->memory); 2957 /* Usage is reduced ? */ 2958 if (curusage >= oldusage) 2959 retry_count--; 2960 else 2961 oldusage = curusage; 2962 } while (retry_count); 2963 2964 if (!ret && enlarge) 2965 memcg_oom_recover(memcg); 2966 2967 return ret; 2968 } 2969 2970 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2971 unsigned long limit) 2972 { 2973 unsigned long curusage; 2974 unsigned long oldusage; 2975 bool enlarge = false; 2976 int retry_count; 2977 int ret; 2978 2979 /* see mem_cgroup_resize_res_limit */ 2980 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2981 mem_cgroup_count_children(memcg); 2982 2983 oldusage = page_counter_read(&memcg->memsw); 2984 2985 do { 2986 if (signal_pending(current)) { 2987 ret = -EINTR; 2988 break; 2989 } 2990 2991 mutex_lock(&memcg_limit_mutex); 2992 if (limit < memcg->memory.limit) { 2993 mutex_unlock(&memcg_limit_mutex); 2994 ret = -EINVAL; 2995 break; 2996 } 2997 if (limit > memcg->memsw.limit) 2998 enlarge = true; 2999 ret = page_counter_limit(&memcg->memsw, limit); 3000 mutex_unlock(&memcg_limit_mutex); 3001 3002 if (!ret) 3003 break; 3004 3005 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 3006 3007 curusage = page_counter_read(&memcg->memsw); 3008 /* Usage is reduced ? */ 3009 if (curusage >= oldusage) 3010 retry_count--; 3011 else 3012 oldusage = curusage; 3013 } while (retry_count); 3014 3015 if (!ret && enlarge) 3016 memcg_oom_recover(memcg); 3017 3018 return ret; 3019 } 3020 3021 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3022 gfp_t gfp_mask, 3023 unsigned long *total_scanned) 3024 { 3025 unsigned long nr_reclaimed = 0; 3026 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3027 unsigned long reclaimed; 3028 int loop = 0; 3029 struct mem_cgroup_tree_per_zone *mctz; 3030 unsigned long excess; 3031 unsigned long nr_scanned; 3032 3033 if (order > 0) 3034 return 0; 3035 3036 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3037 /* 3038 * This loop can run a while, specially if mem_cgroup's continuously 3039 * keep exceeding their soft limit and putting the system under 3040 * pressure 3041 */ 3042 do { 3043 if (next_mz) 3044 mz = next_mz; 3045 else 3046 mz = mem_cgroup_largest_soft_limit_node(mctz); 3047 if (!mz) 3048 break; 3049 3050 nr_scanned = 0; 3051 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 3052 gfp_mask, &nr_scanned); 3053 nr_reclaimed += reclaimed; 3054 *total_scanned += nr_scanned; 3055 spin_lock_irq(&mctz->lock); 3056 __mem_cgroup_remove_exceeded(mz, mctz); 3057 3058 /* 3059 * If we failed to reclaim anything from this memory cgroup 3060 * it is time to move on to the next cgroup 3061 */ 3062 next_mz = NULL; 3063 if (!reclaimed) 3064 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3065 3066 excess = soft_limit_excess(mz->memcg); 3067 /* 3068 * One school of thought says that we should not add 3069 * back the node to the tree if reclaim returns 0. 3070 * But our reclaim could return 0, simply because due 3071 * to priority we are exposing a smaller subset of 3072 * memory to reclaim from. Consider this as a longer 3073 * term TODO. 3074 */ 3075 /* If excess == 0, no tree ops */ 3076 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3077 spin_unlock_irq(&mctz->lock); 3078 css_put(&mz->memcg->css); 3079 loop++; 3080 /* 3081 * Could not reclaim anything and there are no more 3082 * mem cgroups to try or we seem to be looping without 3083 * reclaiming anything. 3084 */ 3085 if (!nr_reclaimed && 3086 (next_mz == NULL || 3087 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3088 break; 3089 } while (!nr_reclaimed); 3090 if (next_mz) 3091 css_put(&next_mz->memcg->css); 3092 return nr_reclaimed; 3093 } 3094 3095 /* 3096 * Test whether @memcg has children, dead or alive. Note that this 3097 * function doesn't care whether @memcg has use_hierarchy enabled and 3098 * returns %true if there are child csses according to the cgroup 3099 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3100 */ 3101 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3102 { 3103 bool ret; 3104 3105 /* 3106 * The lock does not prevent addition or deletion of children, but 3107 * it prevents a new child from being initialized based on this 3108 * parent in css_online(), so it's enough to decide whether 3109 * hierarchically inherited attributes can still be changed or not. 3110 */ 3111 lockdep_assert_held(&memcg_create_mutex); 3112 3113 rcu_read_lock(); 3114 ret = css_next_child(NULL, &memcg->css); 3115 rcu_read_unlock(); 3116 return ret; 3117 } 3118 3119 /* 3120 * Reclaims as many pages from the given memcg as possible and moves 3121 * the rest to the parent. 3122 * 3123 * Caller is responsible for holding css reference for memcg. 3124 */ 3125 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3126 { 3127 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3128 3129 /* we call try-to-free pages for make this cgroup empty */ 3130 lru_add_drain_all(); 3131 /* try to free all pages in this cgroup */ 3132 while (nr_retries && page_counter_read(&memcg->memory)) { 3133 int progress; 3134 3135 if (signal_pending(current)) 3136 return -EINTR; 3137 3138 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3139 GFP_KERNEL, true); 3140 if (!progress) { 3141 nr_retries--; 3142 /* maybe some writeback is necessary */ 3143 congestion_wait(BLK_RW_ASYNC, HZ/10); 3144 } 3145 3146 } 3147 3148 return 0; 3149 } 3150 3151 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3152 char *buf, size_t nbytes, 3153 loff_t off) 3154 { 3155 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3156 3157 if (mem_cgroup_is_root(memcg)) 3158 return -EINVAL; 3159 return mem_cgroup_force_empty(memcg) ?: nbytes; 3160 } 3161 3162 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3163 struct cftype *cft) 3164 { 3165 return mem_cgroup_from_css(css)->use_hierarchy; 3166 } 3167 3168 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3169 struct cftype *cft, u64 val) 3170 { 3171 int retval = 0; 3172 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3173 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3174 3175 mutex_lock(&memcg_create_mutex); 3176 3177 if (memcg->use_hierarchy == val) 3178 goto out; 3179 3180 /* 3181 * If parent's use_hierarchy is set, we can't make any modifications 3182 * in the child subtrees. If it is unset, then the change can 3183 * occur, provided the current cgroup has no children. 3184 * 3185 * For the root cgroup, parent_mem is NULL, we allow value to be 3186 * set if there are no children. 3187 */ 3188 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3189 (val == 1 || val == 0)) { 3190 if (!memcg_has_children(memcg)) 3191 memcg->use_hierarchy = val; 3192 else 3193 retval = -EBUSY; 3194 } else 3195 retval = -EINVAL; 3196 3197 out: 3198 mutex_unlock(&memcg_create_mutex); 3199 3200 return retval; 3201 } 3202 3203 static unsigned long tree_stat(struct mem_cgroup *memcg, 3204 enum mem_cgroup_stat_index idx) 3205 { 3206 struct mem_cgroup *iter; 3207 long val = 0; 3208 3209 /* Per-cpu values can be negative, use a signed accumulator */ 3210 for_each_mem_cgroup_tree(iter, memcg) 3211 val += mem_cgroup_read_stat(iter, idx); 3212 3213 if (val < 0) /* race ? */ 3214 val = 0; 3215 return val; 3216 } 3217 3218 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3219 { 3220 u64 val; 3221 3222 if (mem_cgroup_is_root(memcg)) { 3223 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE); 3224 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS); 3225 if (swap) 3226 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP); 3227 } else { 3228 if (!swap) 3229 val = page_counter_read(&memcg->memory); 3230 else 3231 val = page_counter_read(&memcg->memsw); 3232 } 3233 return val << PAGE_SHIFT; 3234 } 3235 3236 enum { 3237 RES_USAGE, 3238 RES_LIMIT, 3239 RES_MAX_USAGE, 3240 RES_FAILCNT, 3241 RES_SOFT_LIMIT, 3242 }; 3243 3244 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3245 struct cftype *cft) 3246 { 3247 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3248 struct page_counter *counter; 3249 3250 switch (MEMFILE_TYPE(cft->private)) { 3251 case _MEM: 3252 counter = &memcg->memory; 3253 break; 3254 case _MEMSWAP: 3255 counter = &memcg->memsw; 3256 break; 3257 case _KMEM: 3258 counter = &memcg->kmem; 3259 break; 3260 default: 3261 BUG(); 3262 } 3263 3264 switch (MEMFILE_ATTR(cft->private)) { 3265 case RES_USAGE: 3266 if (counter == &memcg->memory) 3267 return mem_cgroup_usage(memcg, false); 3268 if (counter == &memcg->memsw) 3269 return mem_cgroup_usage(memcg, true); 3270 return (u64)page_counter_read(counter) * PAGE_SIZE; 3271 case RES_LIMIT: 3272 return (u64)counter->limit * PAGE_SIZE; 3273 case RES_MAX_USAGE: 3274 return (u64)counter->watermark * PAGE_SIZE; 3275 case RES_FAILCNT: 3276 return counter->failcnt; 3277 case RES_SOFT_LIMIT: 3278 return (u64)memcg->soft_limit * PAGE_SIZE; 3279 default: 3280 BUG(); 3281 } 3282 } 3283 3284 #ifdef CONFIG_MEMCG_KMEM 3285 static int memcg_activate_kmem(struct mem_cgroup *memcg, 3286 unsigned long nr_pages) 3287 { 3288 int err = 0; 3289 int memcg_id; 3290 3291 BUG_ON(memcg->kmemcg_id >= 0); 3292 BUG_ON(memcg->kmem_acct_activated); 3293 BUG_ON(memcg->kmem_acct_active); 3294 3295 /* 3296 * For simplicity, we won't allow this to be disabled. It also can't 3297 * be changed if the cgroup has children already, or if tasks had 3298 * already joined. 3299 * 3300 * If tasks join before we set the limit, a person looking at 3301 * kmem.usage_in_bytes will have no way to determine when it took 3302 * place, which makes the value quite meaningless. 3303 * 3304 * After it first became limited, changes in the value of the limit are 3305 * of course permitted. 3306 */ 3307 mutex_lock(&memcg_create_mutex); 3308 if (cgroup_has_tasks(memcg->css.cgroup) || 3309 (memcg->use_hierarchy && memcg_has_children(memcg))) 3310 err = -EBUSY; 3311 mutex_unlock(&memcg_create_mutex); 3312 if (err) 3313 goto out; 3314 3315 memcg_id = memcg_alloc_cache_id(); 3316 if (memcg_id < 0) { 3317 err = memcg_id; 3318 goto out; 3319 } 3320 3321 /* 3322 * We couldn't have accounted to this cgroup, because it hasn't got 3323 * activated yet, so this should succeed. 3324 */ 3325 err = page_counter_limit(&memcg->kmem, nr_pages); 3326 VM_BUG_ON(err); 3327 3328 static_key_slow_inc(&memcg_kmem_enabled_key); 3329 /* 3330 * A memory cgroup is considered kmem-active as soon as it gets 3331 * kmemcg_id. Setting the id after enabling static branching will 3332 * guarantee no one starts accounting before all call sites are 3333 * patched. 3334 */ 3335 memcg->kmemcg_id = memcg_id; 3336 memcg->kmem_acct_activated = true; 3337 memcg->kmem_acct_active = true; 3338 out: 3339 return err; 3340 } 3341 3342 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 3343 unsigned long limit) 3344 { 3345 int ret; 3346 3347 mutex_lock(&memcg_limit_mutex); 3348 if (!memcg_kmem_is_active(memcg)) 3349 ret = memcg_activate_kmem(memcg, limit); 3350 else 3351 ret = page_counter_limit(&memcg->kmem, limit); 3352 mutex_unlock(&memcg_limit_mutex); 3353 return ret; 3354 } 3355 3356 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 3357 { 3358 int ret = 0; 3359 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3360 3361 if (!parent) 3362 return 0; 3363 3364 mutex_lock(&memcg_limit_mutex); 3365 /* 3366 * If the parent cgroup is not kmem-active now, it cannot be activated 3367 * after this point, because it has at least one child already. 3368 */ 3369 if (memcg_kmem_is_active(parent)) 3370 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX); 3371 mutex_unlock(&memcg_limit_mutex); 3372 return ret; 3373 } 3374 #else 3375 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 3376 unsigned long limit) 3377 { 3378 return -EINVAL; 3379 } 3380 #endif /* CONFIG_MEMCG_KMEM */ 3381 3382 /* 3383 * The user of this function is... 3384 * RES_LIMIT. 3385 */ 3386 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3387 char *buf, size_t nbytes, loff_t off) 3388 { 3389 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3390 unsigned long nr_pages; 3391 int ret; 3392 3393 buf = strstrip(buf); 3394 ret = page_counter_memparse(buf, "-1", &nr_pages); 3395 if (ret) 3396 return ret; 3397 3398 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3399 case RES_LIMIT: 3400 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3401 ret = -EINVAL; 3402 break; 3403 } 3404 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3405 case _MEM: 3406 ret = mem_cgroup_resize_limit(memcg, nr_pages); 3407 break; 3408 case _MEMSWAP: 3409 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 3410 break; 3411 case _KMEM: 3412 ret = memcg_update_kmem_limit(memcg, nr_pages); 3413 break; 3414 } 3415 break; 3416 case RES_SOFT_LIMIT: 3417 memcg->soft_limit = nr_pages; 3418 ret = 0; 3419 break; 3420 } 3421 return ret ?: nbytes; 3422 } 3423 3424 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3425 size_t nbytes, loff_t off) 3426 { 3427 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3428 struct page_counter *counter; 3429 3430 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3431 case _MEM: 3432 counter = &memcg->memory; 3433 break; 3434 case _MEMSWAP: 3435 counter = &memcg->memsw; 3436 break; 3437 case _KMEM: 3438 counter = &memcg->kmem; 3439 break; 3440 default: 3441 BUG(); 3442 } 3443 3444 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3445 case RES_MAX_USAGE: 3446 page_counter_reset_watermark(counter); 3447 break; 3448 case RES_FAILCNT: 3449 counter->failcnt = 0; 3450 break; 3451 default: 3452 BUG(); 3453 } 3454 3455 return nbytes; 3456 } 3457 3458 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3459 struct cftype *cft) 3460 { 3461 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3462 } 3463 3464 #ifdef CONFIG_MMU 3465 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3466 struct cftype *cft, u64 val) 3467 { 3468 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3469 3470 if (val & ~MOVE_MASK) 3471 return -EINVAL; 3472 3473 /* 3474 * No kind of locking is needed in here, because ->can_attach() will 3475 * check this value once in the beginning of the process, and then carry 3476 * on with stale data. This means that changes to this value will only 3477 * affect task migrations starting after the change. 3478 */ 3479 memcg->move_charge_at_immigrate = val; 3480 return 0; 3481 } 3482 #else 3483 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3484 struct cftype *cft, u64 val) 3485 { 3486 return -ENOSYS; 3487 } 3488 #endif 3489 3490 #ifdef CONFIG_NUMA 3491 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3492 { 3493 struct numa_stat { 3494 const char *name; 3495 unsigned int lru_mask; 3496 }; 3497 3498 static const struct numa_stat stats[] = { 3499 { "total", LRU_ALL }, 3500 { "file", LRU_ALL_FILE }, 3501 { "anon", LRU_ALL_ANON }, 3502 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3503 }; 3504 const struct numa_stat *stat; 3505 int nid; 3506 unsigned long nr; 3507 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3508 3509 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3510 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3511 seq_printf(m, "%s=%lu", stat->name, nr); 3512 for_each_node_state(nid, N_MEMORY) { 3513 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3514 stat->lru_mask); 3515 seq_printf(m, " N%d=%lu", nid, nr); 3516 } 3517 seq_putc(m, '\n'); 3518 } 3519 3520 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3521 struct mem_cgroup *iter; 3522 3523 nr = 0; 3524 for_each_mem_cgroup_tree(iter, memcg) 3525 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3526 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3527 for_each_node_state(nid, N_MEMORY) { 3528 nr = 0; 3529 for_each_mem_cgroup_tree(iter, memcg) 3530 nr += mem_cgroup_node_nr_lru_pages( 3531 iter, nid, stat->lru_mask); 3532 seq_printf(m, " N%d=%lu", nid, nr); 3533 } 3534 seq_putc(m, '\n'); 3535 } 3536 3537 return 0; 3538 } 3539 #endif /* CONFIG_NUMA */ 3540 3541 static int memcg_stat_show(struct seq_file *m, void *v) 3542 { 3543 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3544 unsigned long memory, memsw; 3545 struct mem_cgroup *mi; 3546 unsigned int i; 3547 3548 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3549 MEM_CGROUP_STAT_NSTATS); 3550 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3551 MEM_CGROUP_EVENTS_NSTATS); 3552 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3553 3554 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3555 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 3556 continue; 3557 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 3558 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3559 } 3560 3561 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3562 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3563 mem_cgroup_read_events(memcg, i)); 3564 3565 for (i = 0; i < NR_LRU_LISTS; i++) 3566 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3567 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3568 3569 /* Hierarchical information */ 3570 memory = memsw = PAGE_COUNTER_MAX; 3571 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3572 memory = min(memory, mi->memory.limit); 3573 memsw = min(memsw, mi->memsw.limit); 3574 } 3575 seq_printf(m, "hierarchical_memory_limit %llu\n", 3576 (u64)memory * PAGE_SIZE); 3577 if (do_swap_account) 3578 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3579 (u64)memsw * PAGE_SIZE); 3580 3581 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3582 long long val = 0; 3583 3584 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 3585 continue; 3586 for_each_mem_cgroup_tree(mi, memcg) 3587 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3588 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 3589 } 3590 3591 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3592 unsigned long long val = 0; 3593 3594 for_each_mem_cgroup_tree(mi, memcg) 3595 val += mem_cgroup_read_events(mi, i); 3596 seq_printf(m, "total_%s %llu\n", 3597 mem_cgroup_events_names[i], val); 3598 } 3599 3600 for (i = 0; i < NR_LRU_LISTS; i++) { 3601 unsigned long long val = 0; 3602 3603 for_each_mem_cgroup_tree(mi, memcg) 3604 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3605 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3606 } 3607 3608 #ifdef CONFIG_DEBUG_VM 3609 { 3610 int nid, zid; 3611 struct mem_cgroup_per_zone *mz; 3612 struct zone_reclaim_stat *rstat; 3613 unsigned long recent_rotated[2] = {0, 0}; 3614 unsigned long recent_scanned[2] = {0, 0}; 3615 3616 for_each_online_node(nid) 3617 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 3618 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 3619 rstat = &mz->lruvec.reclaim_stat; 3620 3621 recent_rotated[0] += rstat->recent_rotated[0]; 3622 recent_rotated[1] += rstat->recent_rotated[1]; 3623 recent_scanned[0] += rstat->recent_scanned[0]; 3624 recent_scanned[1] += rstat->recent_scanned[1]; 3625 } 3626 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3627 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3628 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3629 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3630 } 3631 #endif 3632 3633 return 0; 3634 } 3635 3636 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3637 struct cftype *cft) 3638 { 3639 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3640 3641 return mem_cgroup_swappiness(memcg); 3642 } 3643 3644 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3645 struct cftype *cft, u64 val) 3646 { 3647 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3648 3649 if (val > 100) 3650 return -EINVAL; 3651 3652 if (css->parent) 3653 memcg->swappiness = val; 3654 else 3655 vm_swappiness = val; 3656 3657 return 0; 3658 } 3659 3660 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3661 { 3662 struct mem_cgroup_threshold_ary *t; 3663 unsigned long usage; 3664 int i; 3665 3666 rcu_read_lock(); 3667 if (!swap) 3668 t = rcu_dereference(memcg->thresholds.primary); 3669 else 3670 t = rcu_dereference(memcg->memsw_thresholds.primary); 3671 3672 if (!t) 3673 goto unlock; 3674 3675 usage = mem_cgroup_usage(memcg, swap); 3676 3677 /* 3678 * current_threshold points to threshold just below or equal to usage. 3679 * If it's not true, a threshold was crossed after last 3680 * call of __mem_cgroup_threshold(). 3681 */ 3682 i = t->current_threshold; 3683 3684 /* 3685 * Iterate backward over array of thresholds starting from 3686 * current_threshold and check if a threshold is crossed. 3687 * If none of thresholds below usage is crossed, we read 3688 * only one element of the array here. 3689 */ 3690 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3691 eventfd_signal(t->entries[i].eventfd, 1); 3692 3693 /* i = current_threshold + 1 */ 3694 i++; 3695 3696 /* 3697 * Iterate forward over array of thresholds starting from 3698 * current_threshold+1 and check if a threshold is crossed. 3699 * If none of thresholds above usage is crossed, we read 3700 * only one element of the array here. 3701 */ 3702 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3703 eventfd_signal(t->entries[i].eventfd, 1); 3704 3705 /* Update current_threshold */ 3706 t->current_threshold = i - 1; 3707 unlock: 3708 rcu_read_unlock(); 3709 } 3710 3711 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3712 { 3713 while (memcg) { 3714 __mem_cgroup_threshold(memcg, false); 3715 if (do_swap_account) 3716 __mem_cgroup_threshold(memcg, true); 3717 3718 memcg = parent_mem_cgroup(memcg); 3719 } 3720 } 3721 3722 static int compare_thresholds(const void *a, const void *b) 3723 { 3724 const struct mem_cgroup_threshold *_a = a; 3725 const struct mem_cgroup_threshold *_b = b; 3726 3727 if (_a->threshold > _b->threshold) 3728 return 1; 3729 3730 if (_a->threshold < _b->threshold) 3731 return -1; 3732 3733 return 0; 3734 } 3735 3736 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3737 { 3738 struct mem_cgroup_eventfd_list *ev; 3739 3740 spin_lock(&memcg_oom_lock); 3741 3742 list_for_each_entry(ev, &memcg->oom_notify, list) 3743 eventfd_signal(ev->eventfd, 1); 3744 3745 spin_unlock(&memcg_oom_lock); 3746 return 0; 3747 } 3748 3749 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3750 { 3751 struct mem_cgroup *iter; 3752 3753 for_each_mem_cgroup_tree(iter, memcg) 3754 mem_cgroup_oom_notify_cb(iter); 3755 } 3756 3757 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3758 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3759 { 3760 struct mem_cgroup_thresholds *thresholds; 3761 struct mem_cgroup_threshold_ary *new; 3762 unsigned long threshold; 3763 unsigned long usage; 3764 int i, size, ret; 3765 3766 ret = page_counter_memparse(args, "-1", &threshold); 3767 if (ret) 3768 return ret; 3769 3770 mutex_lock(&memcg->thresholds_lock); 3771 3772 if (type == _MEM) { 3773 thresholds = &memcg->thresholds; 3774 usage = mem_cgroup_usage(memcg, false); 3775 } else if (type == _MEMSWAP) { 3776 thresholds = &memcg->memsw_thresholds; 3777 usage = mem_cgroup_usage(memcg, true); 3778 } else 3779 BUG(); 3780 3781 /* Check if a threshold crossed before adding a new one */ 3782 if (thresholds->primary) 3783 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3784 3785 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3786 3787 /* Allocate memory for new array of thresholds */ 3788 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3789 GFP_KERNEL); 3790 if (!new) { 3791 ret = -ENOMEM; 3792 goto unlock; 3793 } 3794 new->size = size; 3795 3796 /* Copy thresholds (if any) to new array */ 3797 if (thresholds->primary) { 3798 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3799 sizeof(struct mem_cgroup_threshold)); 3800 } 3801 3802 /* Add new threshold */ 3803 new->entries[size - 1].eventfd = eventfd; 3804 new->entries[size - 1].threshold = threshold; 3805 3806 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3807 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3808 compare_thresholds, NULL); 3809 3810 /* Find current threshold */ 3811 new->current_threshold = -1; 3812 for (i = 0; i < size; i++) { 3813 if (new->entries[i].threshold <= usage) { 3814 /* 3815 * new->current_threshold will not be used until 3816 * rcu_assign_pointer(), so it's safe to increment 3817 * it here. 3818 */ 3819 ++new->current_threshold; 3820 } else 3821 break; 3822 } 3823 3824 /* Free old spare buffer and save old primary buffer as spare */ 3825 kfree(thresholds->spare); 3826 thresholds->spare = thresholds->primary; 3827 3828 rcu_assign_pointer(thresholds->primary, new); 3829 3830 /* To be sure that nobody uses thresholds */ 3831 synchronize_rcu(); 3832 3833 unlock: 3834 mutex_unlock(&memcg->thresholds_lock); 3835 3836 return ret; 3837 } 3838 3839 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3840 struct eventfd_ctx *eventfd, const char *args) 3841 { 3842 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3843 } 3844 3845 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3846 struct eventfd_ctx *eventfd, const char *args) 3847 { 3848 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3849 } 3850 3851 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3852 struct eventfd_ctx *eventfd, enum res_type type) 3853 { 3854 struct mem_cgroup_thresholds *thresholds; 3855 struct mem_cgroup_threshold_ary *new; 3856 unsigned long usage; 3857 int i, j, size; 3858 3859 mutex_lock(&memcg->thresholds_lock); 3860 3861 if (type == _MEM) { 3862 thresholds = &memcg->thresholds; 3863 usage = mem_cgroup_usage(memcg, false); 3864 } else if (type == _MEMSWAP) { 3865 thresholds = &memcg->memsw_thresholds; 3866 usage = mem_cgroup_usage(memcg, true); 3867 } else 3868 BUG(); 3869 3870 if (!thresholds->primary) 3871 goto unlock; 3872 3873 /* Check if a threshold crossed before removing */ 3874 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3875 3876 /* Calculate new number of threshold */ 3877 size = 0; 3878 for (i = 0; i < thresholds->primary->size; i++) { 3879 if (thresholds->primary->entries[i].eventfd != eventfd) 3880 size++; 3881 } 3882 3883 new = thresholds->spare; 3884 3885 /* Set thresholds array to NULL if we don't have thresholds */ 3886 if (!size) { 3887 kfree(new); 3888 new = NULL; 3889 goto swap_buffers; 3890 } 3891 3892 new->size = size; 3893 3894 /* Copy thresholds and find current threshold */ 3895 new->current_threshold = -1; 3896 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3897 if (thresholds->primary->entries[i].eventfd == eventfd) 3898 continue; 3899 3900 new->entries[j] = thresholds->primary->entries[i]; 3901 if (new->entries[j].threshold <= usage) { 3902 /* 3903 * new->current_threshold will not be used 3904 * until rcu_assign_pointer(), so it's safe to increment 3905 * it here. 3906 */ 3907 ++new->current_threshold; 3908 } 3909 j++; 3910 } 3911 3912 swap_buffers: 3913 /* Swap primary and spare array */ 3914 thresholds->spare = thresholds->primary; 3915 /* If all events are unregistered, free the spare array */ 3916 if (!new) { 3917 kfree(thresholds->spare); 3918 thresholds->spare = NULL; 3919 } 3920 3921 rcu_assign_pointer(thresholds->primary, new); 3922 3923 /* To be sure that nobody uses thresholds */ 3924 synchronize_rcu(); 3925 unlock: 3926 mutex_unlock(&memcg->thresholds_lock); 3927 } 3928 3929 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3930 struct eventfd_ctx *eventfd) 3931 { 3932 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3933 } 3934 3935 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3936 struct eventfd_ctx *eventfd) 3937 { 3938 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3939 } 3940 3941 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3942 struct eventfd_ctx *eventfd, const char *args) 3943 { 3944 struct mem_cgroup_eventfd_list *event; 3945 3946 event = kmalloc(sizeof(*event), GFP_KERNEL); 3947 if (!event) 3948 return -ENOMEM; 3949 3950 spin_lock(&memcg_oom_lock); 3951 3952 event->eventfd = eventfd; 3953 list_add(&event->list, &memcg->oom_notify); 3954 3955 /* already in OOM ? */ 3956 if (atomic_read(&memcg->under_oom)) 3957 eventfd_signal(eventfd, 1); 3958 spin_unlock(&memcg_oom_lock); 3959 3960 return 0; 3961 } 3962 3963 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3964 struct eventfd_ctx *eventfd) 3965 { 3966 struct mem_cgroup_eventfd_list *ev, *tmp; 3967 3968 spin_lock(&memcg_oom_lock); 3969 3970 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3971 if (ev->eventfd == eventfd) { 3972 list_del(&ev->list); 3973 kfree(ev); 3974 } 3975 } 3976 3977 spin_unlock(&memcg_oom_lock); 3978 } 3979 3980 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3981 { 3982 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3983 3984 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3985 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom)); 3986 return 0; 3987 } 3988 3989 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3990 struct cftype *cft, u64 val) 3991 { 3992 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3993 3994 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3995 if (!css->parent || !((val == 0) || (val == 1))) 3996 return -EINVAL; 3997 3998 memcg->oom_kill_disable = val; 3999 if (!val) 4000 memcg_oom_recover(memcg); 4001 4002 return 0; 4003 } 4004 4005 #ifdef CONFIG_MEMCG_KMEM 4006 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4007 { 4008 int ret; 4009 4010 ret = memcg_propagate_kmem(memcg); 4011 if (ret) 4012 return ret; 4013 4014 return mem_cgroup_sockets_init(memcg, ss); 4015 } 4016 4017 static void memcg_deactivate_kmem(struct mem_cgroup *memcg) 4018 { 4019 struct cgroup_subsys_state *css; 4020 struct mem_cgroup *parent, *child; 4021 int kmemcg_id; 4022 4023 if (!memcg->kmem_acct_active) 4024 return; 4025 4026 /* 4027 * Clear the 'active' flag before clearing memcg_caches arrays entries. 4028 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it 4029 * guarantees no cache will be created for this cgroup after we are 4030 * done (see memcg_create_kmem_cache()). 4031 */ 4032 memcg->kmem_acct_active = false; 4033 4034 memcg_deactivate_kmem_caches(memcg); 4035 4036 kmemcg_id = memcg->kmemcg_id; 4037 BUG_ON(kmemcg_id < 0); 4038 4039 parent = parent_mem_cgroup(memcg); 4040 if (!parent) 4041 parent = root_mem_cgroup; 4042 4043 /* 4044 * Change kmemcg_id of this cgroup and all its descendants to the 4045 * parent's id, and then move all entries from this cgroup's list_lrus 4046 * to ones of the parent. After we have finished, all list_lrus 4047 * corresponding to this cgroup are guaranteed to remain empty. The 4048 * ordering is imposed by list_lru_node->lock taken by 4049 * memcg_drain_all_list_lrus(). 4050 */ 4051 css_for_each_descendant_pre(css, &memcg->css) { 4052 child = mem_cgroup_from_css(css); 4053 BUG_ON(child->kmemcg_id != kmemcg_id); 4054 child->kmemcg_id = parent->kmemcg_id; 4055 if (!memcg->use_hierarchy) 4056 break; 4057 } 4058 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 4059 4060 memcg_free_cache_id(kmemcg_id); 4061 } 4062 4063 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 4064 { 4065 if (memcg->kmem_acct_activated) { 4066 memcg_destroy_kmem_caches(memcg); 4067 static_key_slow_dec(&memcg_kmem_enabled_key); 4068 WARN_ON(page_counter_read(&memcg->kmem)); 4069 } 4070 mem_cgroup_sockets_destroy(memcg); 4071 } 4072 #else 4073 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4074 { 4075 return 0; 4076 } 4077 4078 static void memcg_deactivate_kmem(struct mem_cgroup *memcg) 4079 { 4080 } 4081 4082 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 4083 { 4084 } 4085 #endif 4086 4087 /* 4088 * DO NOT USE IN NEW FILES. 4089 * 4090 * "cgroup.event_control" implementation. 4091 * 4092 * This is way over-engineered. It tries to support fully configurable 4093 * events for each user. Such level of flexibility is completely 4094 * unnecessary especially in the light of the planned unified hierarchy. 4095 * 4096 * Please deprecate this and replace with something simpler if at all 4097 * possible. 4098 */ 4099 4100 /* 4101 * Unregister event and free resources. 4102 * 4103 * Gets called from workqueue. 4104 */ 4105 static void memcg_event_remove(struct work_struct *work) 4106 { 4107 struct mem_cgroup_event *event = 4108 container_of(work, struct mem_cgroup_event, remove); 4109 struct mem_cgroup *memcg = event->memcg; 4110 4111 remove_wait_queue(event->wqh, &event->wait); 4112 4113 event->unregister_event(memcg, event->eventfd); 4114 4115 /* Notify userspace the event is going away. */ 4116 eventfd_signal(event->eventfd, 1); 4117 4118 eventfd_ctx_put(event->eventfd); 4119 kfree(event); 4120 css_put(&memcg->css); 4121 } 4122 4123 /* 4124 * Gets called on POLLHUP on eventfd when user closes it. 4125 * 4126 * Called with wqh->lock held and interrupts disabled. 4127 */ 4128 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 4129 int sync, void *key) 4130 { 4131 struct mem_cgroup_event *event = 4132 container_of(wait, struct mem_cgroup_event, wait); 4133 struct mem_cgroup *memcg = event->memcg; 4134 unsigned long flags = (unsigned long)key; 4135 4136 if (flags & POLLHUP) { 4137 /* 4138 * If the event has been detached at cgroup removal, we 4139 * can simply return knowing the other side will cleanup 4140 * for us. 4141 * 4142 * We can't race against event freeing since the other 4143 * side will require wqh->lock via remove_wait_queue(), 4144 * which we hold. 4145 */ 4146 spin_lock(&memcg->event_list_lock); 4147 if (!list_empty(&event->list)) { 4148 list_del_init(&event->list); 4149 /* 4150 * We are in atomic context, but cgroup_event_remove() 4151 * may sleep, so we have to call it in workqueue. 4152 */ 4153 schedule_work(&event->remove); 4154 } 4155 spin_unlock(&memcg->event_list_lock); 4156 } 4157 4158 return 0; 4159 } 4160 4161 static void memcg_event_ptable_queue_proc(struct file *file, 4162 wait_queue_head_t *wqh, poll_table *pt) 4163 { 4164 struct mem_cgroup_event *event = 4165 container_of(pt, struct mem_cgroup_event, pt); 4166 4167 event->wqh = wqh; 4168 add_wait_queue(wqh, &event->wait); 4169 } 4170 4171 /* 4172 * DO NOT USE IN NEW FILES. 4173 * 4174 * Parse input and register new cgroup event handler. 4175 * 4176 * Input must be in format '<event_fd> <control_fd> <args>'. 4177 * Interpretation of args is defined by control file implementation. 4178 */ 4179 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4180 char *buf, size_t nbytes, loff_t off) 4181 { 4182 struct cgroup_subsys_state *css = of_css(of); 4183 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4184 struct mem_cgroup_event *event; 4185 struct cgroup_subsys_state *cfile_css; 4186 unsigned int efd, cfd; 4187 struct fd efile; 4188 struct fd cfile; 4189 const char *name; 4190 char *endp; 4191 int ret; 4192 4193 buf = strstrip(buf); 4194 4195 efd = simple_strtoul(buf, &endp, 10); 4196 if (*endp != ' ') 4197 return -EINVAL; 4198 buf = endp + 1; 4199 4200 cfd = simple_strtoul(buf, &endp, 10); 4201 if ((*endp != ' ') && (*endp != '\0')) 4202 return -EINVAL; 4203 buf = endp + 1; 4204 4205 event = kzalloc(sizeof(*event), GFP_KERNEL); 4206 if (!event) 4207 return -ENOMEM; 4208 4209 event->memcg = memcg; 4210 INIT_LIST_HEAD(&event->list); 4211 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4212 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4213 INIT_WORK(&event->remove, memcg_event_remove); 4214 4215 efile = fdget(efd); 4216 if (!efile.file) { 4217 ret = -EBADF; 4218 goto out_kfree; 4219 } 4220 4221 event->eventfd = eventfd_ctx_fileget(efile.file); 4222 if (IS_ERR(event->eventfd)) { 4223 ret = PTR_ERR(event->eventfd); 4224 goto out_put_efile; 4225 } 4226 4227 cfile = fdget(cfd); 4228 if (!cfile.file) { 4229 ret = -EBADF; 4230 goto out_put_eventfd; 4231 } 4232 4233 /* the process need read permission on control file */ 4234 /* AV: shouldn't we check that it's been opened for read instead? */ 4235 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4236 if (ret < 0) 4237 goto out_put_cfile; 4238 4239 /* 4240 * Determine the event callbacks and set them in @event. This used 4241 * to be done via struct cftype but cgroup core no longer knows 4242 * about these events. The following is crude but the whole thing 4243 * is for compatibility anyway. 4244 * 4245 * DO NOT ADD NEW FILES. 4246 */ 4247 name = cfile.file->f_path.dentry->d_name.name; 4248 4249 if (!strcmp(name, "memory.usage_in_bytes")) { 4250 event->register_event = mem_cgroup_usage_register_event; 4251 event->unregister_event = mem_cgroup_usage_unregister_event; 4252 } else if (!strcmp(name, "memory.oom_control")) { 4253 event->register_event = mem_cgroup_oom_register_event; 4254 event->unregister_event = mem_cgroup_oom_unregister_event; 4255 } else if (!strcmp(name, "memory.pressure_level")) { 4256 event->register_event = vmpressure_register_event; 4257 event->unregister_event = vmpressure_unregister_event; 4258 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4259 event->register_event = memsw_cgroup_usage_register_event; 4260 event->unregister_event = memsw_cgroup_usage_unregister_event; 4261 } else { 4262 ret = -EINVAL; 4263 goto out_put_cfile; 4264 } 4265 4266 /* 4267 * Verify @cfile should belong to @css. Also, remaining events are 4268 * automatically removed on cgroup destruction but the removal is 4269 * asynchronous, so take an extra ref on @css. 4270 */ 4271 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4272 &memory_cgrp_subsys); 4273 ret = -EINVAL; 4274 if (IS_ERR(cfile_css)) 4275 goto out_put_cfile; 4276 if (cfile_css != css) { 4277 css_put(cfile_css); 4278 goto out_put_cfile; 4279 } 4280 4281 ret = event->register_event(memcg, event->eventfd, buf); 4282 if (ret) 4283 goto out_put_css; 4284 4285 efile.file->f_op->poll(efile.file, &event->pt); 4286 4287 spin_lock(&memcg->event_list_lock); 4288 list_add(&event->list, &memcg->event_list); 4289 spin_unlock(&memcg->event_list_lock); 4290 4291 fdput(cfile); 4292 fdput(efile); 4293 4294 return nbytes; 4295 4296 out_put_css: 4297 css_put(css); 4298 out_put_cfile: 4299 fdput(cfile); 4300 out_put_eventfd: 4301 eventfd_ctx_put(event->eventfd); 4302 out_put_efile: 4303 fdput(efile); 4304 out_kfree: 4305 kfree(event); 4306 4307 return ret; 4308 } 4309 4310 static struct cftype mem_cgroup_legacy_files[] = { 4311 { 4312 .name = "usage_in_bytes", 4313 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4314 .read_u64 = mem_cgroup_read_u64, 4315 }, 4316 { 4317 .name = "max_usage_in_bytes", 4318 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4319 .write = mem_cgroup_reset, 4320 .read_u64 = mem_cgroup_read_u64, 4321 }, 4322 { 4323 .name = "limit_in_bytes", 4324 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4325 .write = mem_cgroup_write, 4326 .read_u64 = mem_cgroup_read_u64, 4327 }, 4328 { 4329 .name = "soft_limit_in_bytes", 4330 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4331 .write = mem_cgroup_write, 4332 .read_u64 = mem_cgroup_read_u64, 4333 }, 4334 { 4335 .name = "failcnt", 4336 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4337 .write = mem_cgroup_reset, 4338 .read_u64 = mem_cgroup_read_u64, 4339 }, 4340 { 4341 .name = "stat", 4342 .seq_show = memcg_stat_show, 4343 }, 4344 { 4345 .name = "force_empty", 4346 .write = mem_cgroup_force_empty_write, 4347 }, 4348 { 4349 .name = "use_hierarchy", 4350 .write_u64 = mem_cgroup_hierarchy_write, 4351 .read_u64 = mem_cgroup_hierarchy_read, 4352 }, 4353 { 4354 .name = "cgroup.event_control", /* XXX: for compat */ 4355 .write = memcg_write_event_control, 4356 .flags = CFTYPE_NO_PREFIX, 4357 .mode = S_IWUGO, 4358 }, 4359 { 4360 .name = "swappiness", 4361 .read_u64 = mem_cgroup_swappiness_read, 4362 .write_u64 = mem_cgroup_swappiness_write, 4363 }, 4364 { 4365 .name = "move_charge_at_immigrate", 4366 .read_u64 = mem_cgroup_move_charge_read, 4367 .write_u64 = mem_cgroup_move_charge_write, 4368 }, 4369 { 4370 .name = "oom_control", 4371 .seq_show = mem_cgroup_oom_control_read, 4372 .write_u64 = mem_cgroup_oom_control_write, 4373 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4374 }, 4375 { 4376 .name = "pressure_level", 4377 }, 4378 #ifdef CONFIG_NUMA 4379 { 4380 .name = "numa_stat", 4381 .seq_show = memcg_numa_stat_show, 4382 }, 4383 #endif 4384 #ifdef CONFIG_MEMCG_KMEM 4385 { 4386 .name = "kmem.limit_in_bytes", 4387 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4388 .write = mem_cgroup_write, 4389 .read_u64 = mem_cgroup_read_u64, 4390 }, 4391 { 4392 .name = "kmem.usage_in_bytes", 4393 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4394 .read_u64 = mem_cgroup_read_u64, 4395 }, 4396 { 4397 .name = "kmem.failcnt", 4398 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4399 .write = mem_cgroup_reset, 4400 .read_u64 = mem_cgroup_read_u64, 4401 }, 4402 { 4403 .name = "kmem.max_usage_in_bytes", 4404 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4405 .write = mem_cgroup_reset, 4406 .read_u64 = mem_cgroup_read_u64, 4407 }, 4408 #ifdef CONFIG_SLABINFO 4409 { 4410 .name = "kmem.slabinfo", 4411 .seq_start = slab_start, 4412 .seq_next = slab_next, 4413 .seq_stop = slab_stop, 4414 .seq_show = memcg_slab_show, 4415 }, 4416 #endif 4417 #endif 4418 { }, /* terminate */ 4419 }; 4420 4421 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4422 { 4423 struct mem_cgroup_per_node *pn; 4424 struct mem_cgroup_per_zone *mz; 4425 int zone, tmp = node; 4426 /* 4427 * This routine is called against possible nodes. 4428 * But it's BUG to call kmalloc() against offline node. 4429 * 4430 * TODO: this routine can waste much memory for nodes which will 4431 * never be onlined. It's better to use memory hotplug callback 4432 * function. 4433 */ 4434 if (!node_state(node, N_NORMAL_MEMORY)) 4435 tmp = -1; 4436 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4437 if (!pn) 4438 return 1; 4439 4440 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4441 mz = &pn->zoneinfo[zone]; 4442 lruvec_init(&mz->lruvec); 4443 mz->usage_in_excess = 0; 4444 mz->on_tree = false; 4445 mz->memcg = memcg; 4446 } 4447 memcg->nodeinfo[node] = pn; 4448 return 0; 4449 } 4450 4451 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4452 { 4453 kfree(memcg->nodeinfo[node]); 4454 } 4455 4456 static struct mem_cgroup *mem_cgroup_alloc(void) 4457 { 4458 struct mem_cgroup *memcg; 4459 size_t size; 4460 4461 size = sizeof(struct mem_cgroup); 4462 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4463 4464 memcg = kzalloc(size, GFP_KERNEL); 4465 if (!memcg) 4466 return NULL; 4467 4468 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4469 if (!memcg->stat) 4470 goto out_free; 4471 spin_lock_init(&memcg->pcp_counter_lock); 4472 return memcg; 4473 4474 out_free: 4475 kfree(memcg); 4476 return NULL; 4477 } 4478 4479 /* 4480 * At destroying mem_cgroup, references from swap_cgroup can remain. 4481 * (scanning all at force_empty is too costly...) 4482 * 4483 * Instead of clearing all references at force_empty, we remember 4484 * the number of reference from swap_cgroup and free mem_cgroup when 4485 * it goes down to 0. 4486 * 4487 * Removal of cgroup itself succeeds regardless of refs from swap. 4488 */ 4489 4490 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4491 { 4492 int node; 4493 4494 mem_cgroup_remove_from_trees(memcg); 4495 4496 for_each_node(node) 4497 free_mem_cgroup_per_zone_info(memcg, node); 4498 4499 free_percpu(memcg->stat); 4500 kfree(memcg); 4501 } 4502 4503 /* 4504 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4505 */ 4506 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 4507 { 4508 if (!memcg->memory.parent) 4509 return NULL; 4510 return mem_cgroup_from_counter(memcg->memory.parent, memory); 4511 } 4512 EXPORT_SYMBOL(parent_mem_cgroup); 4513 4514 static struct cgroup_subsys_state * __ref 4515 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4516 { 4517 struct mem_cgroup *memcg; 4518 long error = -ENOMEM; 4519 int node; 4520 4521 memcg = mem_cgroup_alloc(); 4522 if (!memcg) 4523 return ERR_PTR(error); 4524 4525 for_each_node(node) 4526 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4527 goto free_out; 4528 4529 /* root ? */ 4530 if (parent_css == NULL) { 4531 root_mem_cgroup = memcg; 4532 page_counter_init(&memcg->memory, NULL); 4533 memcg->high = PAGE_COUNTER_MAX; 4534 memcg->soft_limit = PAGE_COUNTER_MAX; 4535 page_counter_init(&memcg->memsw, NULL); 4536 page_counter_init(&memcg->kmem, NULL); 4537 } 4538 4539 memcg->last_scanned_node = MAX_NUMNODES; 4540 INIT_LIST_HEAD(&memcg->oom_notify); 4541 memcg->move_charge_at_immigrate = 0; 4542 mutex_init(&memcg->thresholds_lock); 4543 spin_lock_init(&memcg->move_lock); 4544 vmpressure_init(&memcg->vmpressure); 4545 INIT_LIST_HEAD(&memcg->event_list); 4546 spin_lock_init(&memcg->event_list_lock); 4547 #ifdef CONFIG_MEMCG_KMEM 4548 memcg->kmemcg_id = -1; 4549 #endif 4550 4551 return &memcg->css; 4552 4553 free_out: 4554 __mem_cgroup_free(memcg); 4555 return ERR_PTR(error); 4556 } 4557 4558 static int 4559 mem_cgroup_css_online(struct cgroup_subsys_state *css) 4560 { 4561 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4562 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent); 4563 int ret; 4564 4565 if (css->id > MEM_CGROUP_ID_MAX) 4566 return -ENOSPC; 4567 4568 if (!parent) 4569 return 0; 4570 4571 mutex_lock(&memcg_create_mutex); 4572 4573 memcg->use_hierarchy = parent->use_hierarchy; 4574 memcg->oom_kill_disable = parent->oom_kill_disable; 4575 memcg->swappiness = mem_cgroup_swappiness(parent); 4576 4577 if (parent->use_hierarchy) { 4578 page_counter_init(&memcg->memory, &parent->memory); 4579 memcg->high = PAGE_COUNTER_MAX; 4580 memcg->soft_limit = PAGE_COUNTER_MAX; 4581 page_counter_init(&memcg->memsw, &parent->memsw); 4582 page_counter_init(&memcg->kmem, &parent->kmem); 4583 4584 /* 4585 * No need to take a reference to the parent because cgroup 4586 * core guarantees its existence. 4587 */ 4588 } else { 4589 page_counter_init(&memcg->memory, NULL); 4590 memcg->high = PAGE_COUNTER_MAX; 4591 memcg->soft_limit = PAGE_COUNTER_MAX; 4592 page_counter_init(&memcg->memsw, NULL); 4593 page_counter_init(&memcg->kmem, NULL); 4594 /* 4595 * Deeper hierachy with use_hierarchy == false doesn't make 4596 * much sense so let cgroup subsystem know about this 4597 * unfortunate state in our controller. 4598 */ 4599 if (parent != root_mem_cgroup) 4600 memory_cgrp_subsys.broken_hierarchy = true; 4601 } 4602 mutex_unlock(&memcg_create_mutex); 4603 4604 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys); 4605 if (ret) 4606 return ret; 4607 4608 /* 4609 * Make sure the memcg is initialized: mem_cgroup_iter() 4610 * orders reading memcg->initialized against its callers 4611 * reading the memcg members. 4612 */ 4613 smp_store_release(&memcg->initialized, 1); 4614 4615 return 0; 4616 } 4617 4618 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4619 { 4620 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4621 struct mem_cgroup_event *event, *tmp; 4622 4623 /* 4624 * Unregister events and notify userspace. 4625 * Notify userspace about cgroup removing only after rmdir of cgroup 4626 * directory to avoid race between userspace and kernelspace. 4627 */ 4628 spin_lock(&memcg->event_list_lock); 4629 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4630 list_del_init(&event->list); 4631 schedule_work(&event->remove); 4632 } 4633 spin_unlock(&memcg->event_list_lock); 4634 4635 vmpressure_cleanup(&memcg->vmpressure); 4636 4637 memcg_deactivate_kmem(memcg); 4638 } 4639 4640 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4641 { 4642 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4643 4644 memcg_destroy_kmem(memcg); 4645 __mem_cgroup_free(memcg); 4646 } 4647 4648 /** 4649 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4650 * @css: the target css 4651 * 4652 * Reset the states of the mem_cgroup associated with @css. This is 4653 * invoked when the userland requests disabling on the default hierarchy 4654 * but the memcg is pinned through dependency. The memcg should stop 4655 * applying policies and should revert to the vanilla state as it may be 4656 * made visible again. 4657 * 4658 * The current implementation only resets the essential configurations. 4659 * This needs to be expanded to cover all the visible parts. 4660 */ 4661 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4662 { 4663 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4664 4665 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX); 4666 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX); 4667 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX); 4668 memcg->low = 0; 4669 memcg->high = PAGE_COUNTER_MAX; 4670 memcg->soft_limit = PAGE_COUNTER_MAX; 4671 } 4672 4673 #ifdef CONFIG_MMU 4674 /* Handlers for move charge at task migration. */ 4675 static int mem_cgroup_do_precharge(unsigned long count) 4676 { 4677 int ret; 4678 4679 /* Try a single bulk charge without reclaim first */ 4680 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count); 4681 if (!ret) { 4682 mc.precharge += count; 4683 return ret; 4684 } 4685 if (ret == -EINTR) { 4686 cancel_charge(root_mem_cgroup, count); 4687 return ret; 4688 } 4689 4690 /* Try charges one by one with reclaim */ 4691 while (count--) { 4692 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 4693 /* 4694 * In case of failure, any residual charges against 4695 * mc.to will be dropped by mem_cgroup_clear_mc() 4696 * later on. However, cancel any charges that are 4697 * bypassed to root right away or they'll be lost. 4698 */ 4699 if (ret == -EINTR) 4700 cancel_charge(root_mem_cgroup, 1); 4701 if (ret) 4702 return ret; 4703 mc.precharge++; 4704 cond_resched(); 4705 } 4706 return 0; 4707 } 4708 4709 /** 4710 * get_mctgt_type - get target type of moving charge 4711 * @vma: the vma the pte to be checked belongs 4712 * @addr: the address corresponding to the pte to be checked 4713 * @ptent: the pte to be checked 4714 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4715 * 4716 * Returns 4717 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4718 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4719 * move charge. if @target is not NULL, the page is stored in target->page 4720 * with extra refcnt got(Callers should handle it). 4721 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4722 * target for charge migration. if @target is not NULL, the entry is stored 4723 * in target->ent. 4724 * 4725 * Called with pte lock held. 4726 */ 4727 union mc_target { 4728 struct page *page; 4729 swp_entry_t ent; 4730 }; 4731 4732 enum mc_target_type { 4733 MC_TARGET_NONE = 0, 4734 MC_TARGET_PAGE, 4735 MC_TARGET_SWAP, 4736 }; 4737 4738 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4739 unsigned long addr, pte_t ptent) 4740 { 4741 struct page *page = vm_normal_page(vma, addr, ptent); 4742 4743 if (!page || !page_mapped(page)) 4744 return NULL; 4745 if (PageAnon(page)) { 4746 if (!(mc.flags & MOVE_ANON)) 4747 return NULL; 4748 } else { 4749 if (!(mc.flags & MOVE_FILE)) 4750 return NULL; 4751 } 4752 if (!get_page_unless_zero(page)) 4753 return NULL; 4754 4755 return page; 4756 } 4757 4758 #ifdef CONFIG_SWAP 4759 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4760 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4761 { 4762 struct page *page = NULL; 4763 swp_entry_t ent = pte_to_swp_entry(ptent); 4764 4765 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4766 return NULL; 4767 /* 4768 * Because lookup_swap_cache() updates some statistics counter, 4769 * we call find_get_page() with swapper_space directly. 4770 */ 4771 page = find_get_page(swap_address_space(ent), ent.val); 4772 if (do_swap_account) 4773 entry->val = ent.val; 4774 4775 return page; 4776 } 4777 #else 4778 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4779 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4780 { 4781 return NULL; 4782 } 4783 #endif 4784 4785 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4786 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4787 { 4788 struct page *page = NULL; 4789 struct address_space *mapping; 4790 pgoff_t pgoff; 4791 4792 if (!vma->vm_file) /* anonymous vma */ 4793 return NULL; 4794 if (!(mc.flags & MOVE_FILE)) 4795 return NULL; 4796 4797 mapping = vma->vm_file->f_mapping; 4798 pgoff = linear_page_index(vma, addr); 4799 4800 /* page is moved even if it's not RSS of this task(page-faulted). */ 4801 #ifdef CONFIG_SWAP 4802 /* shmem/tmpfs may report page out on swap: account for that too. */ 4803 if (shmem_mapping(mapping)) { 4804 page = find_get_entry(mapping, pgoff); 4805 if (radix_tree_exceptional_entry(page)) { 4806 swp_entry_t swp = radix_to_swp_entry(page); 4807 if (do_swap_account) 4808 *entry = swp; 4809 page = find_get_page(swap_address_space(swp), swp.val); 4810 } 4811 } else 4812 page = find_get_page(mapping, pgoff); 4813 #else 4814 page = find_get_page(mapping, pgoff); 4815 #endif 4816 return page; 4817 } 4818 4819 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4820 unsigned long addr, pte_t ptent, union mc_target *target) 4821 { 4822 struct page *page = NULL; 4823 enum mc_target_type ret = MC_TARGET_NONE; 4824 swp_entry_t ent = { .val = 0 }; 4825 4826 if (pte_present(ptent)) 4827 page = mc_handle_present_pte(vma, addr, ptent); 4828 else if (is_swap_pte(ptent)) 4829 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 4830 else if (pte_none(ptent)) 4831 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4832 4833 if (!page && !ent.val) 4834 return ret; 4835 if (page) { 4836 /* 4837 * Do only loose check w/o serialization. 4838 * mem_cgroup_move_account() checks the page is valid or 4839 * not under LRU exclusion. 4840 */ 4841 if (page->mem_cgroup == mc.from) { 4842 ret = MC_TARGET_PAGE; 4843 if (target) 4844 target->page = page; 4845 } 4846 if (!ret || !target) 4847 put_page(page); 4848 } 4849 /* There is a swap entry and a page doesn't exist or isn't charged */ 4850 if (ent.val && !ret && 4851 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4852 ret = MC_TARGET_SWAP; 4853 if (target) 4854 target->ent = ent; 4855 } 4856 return ret; 4857 } 4858 4859 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4860 /* 4861 * We don't consider swapping or file mapped pages because THP does not 4862 * support them for now. 4863 * Caller should make sure that pmd_trans_huge(pmd) is true. 4864 */ 4865 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4866 unsigned long addr, pmd_t pmd, union mc_target *target) 4867 { 4868 struct page *page = NULL; 4869 enum mc_target_type ret = MC_TARGET_NONE; 4870 4871 page = pmd_page(pmd); 4872 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4873 if (!(mc.flags & MOVE_ANON)) 4874 return ret; 4875 if (page->mem_cgroup == mc.from) { 4876 ret = MC_TARGET_PAGE; 4877 if (target) { 4878 get_page(page); 4879 target->page = page; 4880 } 4881 } 4882 return ret; 4883 } 4884 #else 4885 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4886 unsigned long addr, pmd_t pmd, union mc_target *target) 4887 { 4888 return MC_TARGET_NONE; 4889 } 4890 #endif 4891 4892 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4893 unsigned long addr, unsigned long end, 4894 struct mm_walk *walk) 4895 { 4896 struct vm_area_struct *vma = walk->vma; 4897 pte_t *pte; 4898 spinlock_t *ptl; 4899 4900 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 4901 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4902 mc.precharge += HPAGE_PMD_NR; 4903 spin_unlock(ptl); 4904 return 0; 4905 } 4906 4907 if (pmd_trans_unstable(pmd)) 4908 return 0; 4909 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4910 for (; addr != end; pte++, addr += PAGE_SIZE) 4911 if (get_mctgt_type(vma, addr, *pte, NULL)) 4912 mc.precharge++; /* increment precharge temporarily */ 4913 pte_unmap_unlock(pte - 1, ptl); 4914 cond_resched(); 4915 4916 return 0; 4917 } 4918 4919 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4920 { 4921 unsigned long precharge; 4922 4923 struct mm_walk mem_cgroup_count_precharge_walk = { 4924 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4925 .mm = mm, 4926 }; 4927 down_read(&mm->mmap_sem); 4928 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); 4929 up_read(&mm->mmap_sem); 4930 4931 precharge = mc.precharge; 4932 mc.precharge = 0; 4933 4934 return precharge; 4935 } 4936 4937 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4938 { 4939 unsigned long precharge = mem_cgroup_count_precharge(mm); 4940 4941 VM_BUG_ON(mc.moving_task); 4942 mc.moving_task = current; 4943 return mem_cgroup_do_precharge(precharge); 4944 } 4945 4946 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4947 static void __mem_cgroup_clear_mc(void) 4948 { 4949 struct mem_cgroup *from = mc.from; 4950 struct mem_cgroup *to = mc.to; 4951 4952 /* we must uncharge all the leftover precharges from mc.to */ 4953 if (mc.precharge) { 4954 cancel_charge(mc.to, mc.precharge); 4955 mc.precharge = 0; 4956 } 4957 /* 4958 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4959 * we must uncharge here. 4960 */ 4961 if (mc.moved_charge) { 4962 cancel_charge(mc.from, mc.moved_charge); 4963 mc.moved_charge = 0; 4964 } 4965 /* we must fixup refcnts and charges */ 4966 if (mc.moved_swap) { 4967 /* uncharge swap account from the old cgroup */ 4968 if (!mem_cgroup_is_root(mc.from)) 4969 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4970 4971 /* 4972 * we charged both to->memory and to->memsw, so we 4973 * should uncharge to->memory. 4974 */ 4975 if (!mem_cgroup_is_root(mc.to)) 4976 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4977 4978 css_put_many(&mc.from->css, mc.moved_swap); 4979 4980 /* we've already done css_get(mc.to) */ 4981 mc.moved_swap = 0; 4982 } 4983 memcg_oom_recover(from); 4984 memcg_oom_recover(to); 4985 wake_up_all(&mc.waitq); 4986 } 4987 4988 static void mem_cgroup_clear_mc(void) 4989 { 4990 /* 4991 * we must clear moving_task before waking up waiters at the end of 4992 * task migration. 4993 */ 4994 mc.moving_task = NULL; 4995 __mem_cgroup_clear_mc(); 4996 spin_lock(&mc.lock); 4997 mc.from = NULL; 4998 mc.to = NULL; 4999 spin_unlock(&mc.lock); 5000 } 5001 5002 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 5003 struct cgroup_taskset *tset) 5004 { 5005 struct task_struct *p = cgroup_taskset_first(tset); 5006 int ret = 0; 5007 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5008 unsigned long move_flags; 5009 5010 /* 5011 * We are now commited to this value whatever it is. Changes in this 5012 * tunable will only affect upcoming migrations, not the current one. 5013 * So we need to save it, and keep it going. 5014 */ 5015 move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate); 5016 if (move_flags) { 5017 struct mm_struct *mm; 5018 struct mem_cgroup *from = mem_cgroup_from_task(p); 5019 5020 VM_BUG_ON(from == memcg); 5021 5022 mm = get_task_mm(p); 5023 if (!mm) 5024 return 0; 5025 /* We move charges only when we move a owner of the mm */ 5026 if (mm->owner == p) { 5027 VM_BUG_ON(mc.from); 5028 VM_BUG_ON(mc.to); 5029 VM_BUG_ON(mc.precharge); 5030 VM_BUG_ON(mc.moved_charge); 5031 VM_BUG_ON(mc.moved_swap); 5032 5033 spin_lock(&mc.lock); 5034 mc.from = from; 5035 mc.to = memcg; 5036 mc.flags = move_flags; 5037 spin_unlock(&mc.lock); 5038 /* We set mc.moving_task later */ 5039 5040 ret = mem_cgroup_precharge_mc(mm); 5041 if (ret) 5042 mem_cgroup_clear_mc(); 5043 } 5044 mmput(mm); 5045 } 5046 return ret; 5047 } 5048 5049 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 5050 struct cgroup_taskset *tset) 5051 { 5052 if (mc.to) 5053 mem_cgroup_clear_mc(); 5054 } 5055 5056 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5057 unsigned long addr, unsigned long end, 5058 struct mm_walk *walk) 5059 { 5060 int ret = 0; 5061 struct vm_area_struct *vma = walk->vma; 5062 pte_t *pte; 5063 spinlock_t *ptl; 5064 enum mc_target_type target_type; 5065 union mc_target target; 5066 struct page *page; 5067 5068 /* 5069 * We don't take compound_lock() here but no race with splitting thp 5070 * happens because: 5071 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 5072 * under splitting, which means there's no concurrent thp split, 5073 * - if another thread runs into split_huge_page() just after we 5074 * entered this if-block, the thread must wait for page table lock 5075 * to be unlocked in __split_huge_page_splitting(), where the main 5076 * part of thp split is not executed yet. 5077 */ 5078 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 5079 if (mc.precharge < HPAGE_PMD_NR) { 5080 spin_unlock(ptl); 5081 return 0; 5082 } 5083 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5084 if (target_type == MC_TARGET_PAGE) { 5085 page = target.page; 5086 if (!isolate_lru_page(page)) { 5087 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 5088 mc.from, mc.to)) { 5089 mc.precharge -= HPAGE_PMD_NR; 5090 mc.moved_charge += HPAGE_PMD_NR; 5091 } 5092 putback_lru_page(page); 5093 } 5094 put_page(page); 5095 } 5096 spin_unlock(ptl); 5097 return 0; 5098 } 5099 5100 if (pmd_trans_unstable(pmd)) 5101 return 0; 5102 retry: 5103 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5104 for (; addr != end; addr += PAGE_SIZE) { 5105 pte_t ptent = *(pte++); 5106 swp_entry_t ent; 5107 5108 if (!mc.precharge) 5109 break; 5110 5111 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5112 case MC_TARGET_PAGE: 5113 page = target.page; 5114 if (isolate_lru_page(page)) 5115 goto put; 5116 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) { 5117 mc.precharge--; 5118 /* we uncharge from mc.from later. */ 5119 mc.moved_charge++; 5120 } 5121 putback_lru_page(page); 5122 put: /* get_mctgt_type() gets the page */ 5123 put_page(page); 5124 break; 5125 case MC_TARGET_SWAP: 5126 ent = target.ent; 5127 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5128 mc.precharge--; 5129 /* we fixup refcnts and charges later. */ 5130 mc.moved_swap++; 5131 } 5132 break; 5133 default: 5134 break; 5135 } 5136 } 5137 pte_unmap_unlock(pte - 1, ptl); 5138 cond_resched(); 5139 5140 if (addr != end) { 5141 /* 5142 * We have consumed all precharges we got in can_attach(). 5143 * We try charge one by one, but don't do any additional 5144 * charges to mc.to if we have failed in charge once in attach() 5145 * phase. 5146 */ 5147 ret = mem_cgroup_do_precharge(1); 5148 if (!ret) 5149 goto retry; 5150 } 5151 5152 return ret; 5153 } 5154 5155 static void mem_cgroup_move_charge(struct mm_struct *mm) 5156 { 5157 struct mm_walk mem_cgroup_move_charge_walk = { 5158 .pmd_entry = mem_cgroup_move_charge_pte_range, 5159 .mm = mm, 5160 }; 5161 5162 lru_add_drain_all(); 5163 /* 5164 * Signal mem_cgroup_begin_page_stat() to take the memcg's 5165 * move_lock while we're moving its pages to another memcg. 5166 * Then wait for already started RCU-only updates to finish. 5167 */ 5168 atomic_inc(&mc.from->moving_account); 5169 synchronize_rcu(); 5170 retry: 5171 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5172 /* 5173 * Someone who are holding the mmap_sem might be waiting in 5174 * waitq. So we cancel all extra charges, wake up all waiters, 5175 * and retry. Because we cancel precharges, we might not be able 5176 * to move enough charges, but moving charge is a best-effort 5177 * feature anyway, so it wouldn't be a big problem. 5178 */ 5179 __mem_cgroup_clear_mc(); 5180 cond_resched(); 5181 goto retry; 5182 } 5183 /* 5184 * When we have consumed all precharges and failed in doing 5185 * additional charge, the page walk just aborts. 5186 */ 5187 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); 5188 up_read(&mm->mmap_sem); 5189 atomic_dec(&mc.from->moving_account); 5190 } 5191 5192 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 5193 struct cgroup_taskset *tset) 5194 { 5195 struct task_struct *p = cgroup_taskset_first(tset); 5196 struct mm_struct *mm = get_task_mm(p); 5197 5198 if (mm) { 5199 if (mc.to) 5200 mem_cgroup_move_charge(mm); 5201 mmput(mm); 5202 } 5203 if (mc.to) 5204 mem_cgroup_clear_mc(); 5205 } 5206 #else /* !CONFIG_MMU */ 5207 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 5208 struct cgroup_taskset *tset) 5209 { 5210 return 0; 5211 } 5212 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 5213 struct cgroup_taskset *tset) 5214 { 5215 } 5216 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 5217 struct cgroup_taskset *tset) 5218 { 5219 } 5220 #endif 5221 5222 /* 5223 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5224 * to verify whether we're attached to the default hierarchy on each mount 5225 * attempt. 5226 */ 5227 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5228 { 5229 /* 5230 * use_hierarchy is forced on the default hierarchy. cgroup core 5231 * guarantees that @root doesn't have any children, so turning it 5232 * on for the root memcg is enough. 5233 */ 5234 if (cgroup_on_dfl(root_css->cgroup)) 5235 root_mem_cgroup->use_hierarchy = true; 5236 else 5237 root_mem_cgroup->use_hierarchy = false; 5238 } 5239 5240 static u64 memory_current_read(struct cgroup_subsys_state *css, 5241 struct cftype *cft) 5242 { 5243 return mem_cgroup_usage(mem_cgroup_from_css(css), false); 5244 } 5245 5246 static int memory_low_show(struct seq_file *m, void *v) 5247 { 5248 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5249 unsigned long low = ACCESS_ONCE(memcg->low); 5250 5251 if (low == PAGE_COUNTER_MAX) 5252 seq_puts(m, "max\n"); 5253 else 5254 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5255 5256 return 0; 5257 } 5258 5259 static ssize_t memory_low_write(struct kernfs_open_file *of, 5260 char *buf, size_t nbytes, loff_t off) 5261 { 5262 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5263 unsigned long low; 5264 int err; 5265 5266 buf = strstrip(buf); 5267 err = page_counter_memparse(buf, "max", &low); 5268 if (err) 5269 return err; 5270 5271 memcg->low = low; 5272 5273 return nbytes; 5274 } 5275 5276 static int memory_high_show(struct seq_file *m, void *v) 5277 { 5278 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5279 unsigned long high = ACCESS_ONCE(memcg->high); 5280 5281 if (high == PAGE_COUNTER_MAX) 5282 seq_puts(m, "max\n"); 5283 else 5284 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5285 5286 return 0; 5287 } 5288 5289 static ssize_t memory_high_write(struct kernfs_open_file *of, 5290 char *buf, size_t nbytes, loff_t off) 5291 { 5292 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5293 unsigned long high; 5294 int err; 5295 5296 buf = strstrip(buf); 5297 err = page_counter_memparse(buf, "max", &high); 5298 if (err) 5299 return err; 5300 5301 memcg->high = high; 5302 5303 return nbytes; 5304 } 5305 5306 static int memory_max_show(struct seq_file *m, void *v) 5307 { 5308 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5309 unsigned long max = ACCESS_ONCE(memcg->memory.limit); 5310 5311 if (max == PAGE_COUNTER_MAX) 5312 seq_puts(m, "max\n"); 5313 else 5314 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5315 5316 return 0; 5317 } 5318 5319 static ssize_t memory_max_write(struct kernfs_open_file *of, 5320 char *buf, size_t nbytes, loff_t off) 5321 { 5322 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5323 unsigned long max; 5324 int err; 5325 5326 buf = strstrip(buf); 5327 err = page_counter_memparse(buf, "max", &max); 5328 if (err) 5329 return err; 5330 5331 err = mem_cgroup_resize_limit(memcg, max); 5332 if (err) 5333 return err; 5334 5335 return nbytes; 5336 } 5337 5338 static int memory_events_show(struct seq_file *m, void *v) 5339 { 5340 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5341 5342 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5343 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5344 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5345 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5346 5347 return 0; 5348 } 5349 5350 static struct cftype memory_files[] = { 5351 { 5352 .name = "current", 5353 .read_u64 = memory_current_read, 5354 }, 5355 { 5356 .name = "low", 5357 .flags = CFTYPE_NOT_ON_ROOT, 5358 .seq_show = memory_low_show, 5359 .write = memory_low_write, 5360 }, 5361 { 5362 .name = "high", 5363 .flags = CFTYPE_NOT_ON_ROOT, 5364 .seq_show = memory_high_show, 5365 .write = memory_high_write, 5366 }, 5367 { 5368 .name = "max", 5369 .flags = CFTYPE_NOT_ON_ROOT, 5370 .seq_show = memory_max_show, 5371 .write = memory_max_write, 5372 }, 5373 { 5374 .name = "events", 5375 .flags = CFTYPE_NOT_ON_ROOT, 5376 .seq_show = memory_events_show, 5377 }, 5378 { } /* terminate */ 5379 }; 5380 5381 struct cgroup_subsys memory_cgrp_subsys = { 5382 .css_alloc = mem_cgroup_css_alloc, 5383 .css_online = mem_cgroup_css_online, 5384 .css_offline = mem_cgroup_css_offline, 5385 .css_free = mem_cgroup_css_free, 5386 .css_reset = mem_cgroup_css_reset, 5387 .can_attach = mem_cgroup_can_attach, 5388 .cancel_attach = mem_cgroup_cancel_attach, 5389 .attach = mem_cgroup_move_task, 5390 .bind = mem_cgroup_bind, 5391 .dfl_cftypes = memory_files, 5392 .legacy_cftypes = mem_cgroup_legacy_files, 5393 .early_init = 0, 5394 }; 5395 5396 /** 5397 * mem_cgroup_events - count memory events against a cgroup 5398 * @memcg: the memory cgroup 5399 * @idx: the event index 5400 * @nr: the number of events to account for 5401 */ 5402 void mem_cgroup_events(struct mem_cgroup *memcg, 5403 enum mem_cgroup_events_index idx, 5404 unsigned int nr) 5405 { 5406 this_cpu_add(memcg->stat->events[idx], nr); 5407 } 5408 5409 /** 5410 * mem_cgroup_low - check if memory consumption is below the normal range 5411 * @root: the highest ancestor to consider 5412 * @memcg: the memory cgroup to check 5413 * 5414 * Returns %true if memory consumption of @memcg, and that of all 5415 * configurable ancestors up to @root, is below the normal range. 5416 */ 5417 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5418 { 5419 if (mem_cgroup_disabled()) 5420 return false; 5421 5422 /* 5423 * The toplevel group doesn't have a configurable range, so 5424 * it's never low when looked at directly, and it is not 5425 * considered an ancestor when assessing the hierarchy. 5426 */ 5427 5428 if (memcg == root_mem_cgroup) 5429 return false; 5430 5431 if (page_counter_read(&memcg->memory) >= memcg->low) 5432 return false; 5433 5434 while (memcg != root) { 5435 memcg = parent_mem_cgroup(memcg); 5436 5437 if (memcg == root_mem_cgroup) 5438 break; 5439 5440 if (page_counter_read(&memcg->memory) >= memcg->low) 5441 return false; 5442 } 5443 return true; 5444 } 5445 5446 /** 5447 * mem_cgroup_try_charge - try charging a page 5448 * @page: page to charge 5449 * @mm: mm context of the victim 5450 * @gfp_mask: reclaim mode 5451 * @memcgp: charged memcg return 5452 * 5453 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5454 * pages according to @gfp_mask if necessary. 5455 * 5456 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5457 * Otherwise, an error code is returned. 5458 * 5459 * After page->mapping has been set up, the caller must finalize the 5460 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5461 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5462 */ 5463 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5464 gfp_t gfp_mask, struct mem_cgroup **memcgp) 5465 { 5466 struct mem_cgroup *memcg = NULL; 5467 unsigned int nr_pages = 1; 5468 int ret = 0; 5469 5470 if (mem_cgroup_disabled()) 5471 goto out; 5472 5473 if (PageSwapCache(page)) { 5474 /* 5475 * Every swap fault against a single page tries to charge the 5476 * page, bail as early as possible. shmem_unuse() encounters 5477 * already charged pages, too. The USED bit is protected by 5478 * the page lock, which serializes swap cache removal, which 5479 * in turn serializes uncharging. 5480 */ 5481 if (page->mem_cgroup) 5482 goto out; 5483 } 5484 5485 if (PageTransHuge(page)) { 5486 nr_pages <<= compound_order(page); 5487 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5488 } 5489 5490 if (do_swap_account && PageSwapCache(page)) 5491 memcg = try_get_mem_cgroup_from_page(page); 5492 if (!memcg) 5493 memcg = get_mem_cgroup_from_mm(mm); 5494 5495 ret = try_charge(memcg, gfp_mask, nr_pages); 5496 5497 css_put(&memcg->css); 5498 5499 if (ret == -EINTR) { 5500 memcg = root_mem_cgroup; 5501 ret = 0; 5502 } 5503 out: 5504 *memcgp = memcg; 5505 return ret; 5506 } 5507 5508 /** 5509 * mem_cgroup_commit_charge - commit a page charge 5510 * @page: page to charge 5511 * @memcg: memcg to charge the page to 5512 * @lrucare: page might be on LRU already 5513 * 5514 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5515 * after page->mapping has been set up. This must happen atomically 5516 * as part of the page instantiation, i.e. under the page table lock 5517 * for anonymous pages, under the page lock for page and swap cache. 5518 * 5519 * In addition, the page must not be on the LRU during the commit, to 5520 * prevent racing with task migration. If it might be, use @lrucare. 5521 * 5522 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5523 */ 5524 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5525 bool lrucare) 5526 { 5527 unsigned int nr_pages = 1; 5528 5529 VM_BUG_ON_PAGE(!page->mapping, page); 5530 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5531 5532 if (mem_cgroup_disabled()) 5533 return; 5534 /* 5535 * Swap faults will attempt to charge the same page multiple 5536 * times. But reuse_swap_page() might have removed the page 5537 * from swapcache already, so we can't check PageSwapCache(). 5538 */ 5539 if (!memcg) 5540 return; 5541 5542 commit_charge(page, memcg, lrucare); 5543 5544 if (PageTransHuge(page)) { 5545 nr_pages <<= compound_order(page); 5546 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5547 } 5548 5549 local_irq_disable(); 5550 mem_cgroup_charge_statistics(memcg, page, nr_pages); 5551 memcg_check_events(memcg, page); 5552 local_irq_enable(); 5553 5554 if (do_swap_account && PageSwapCache(page)) { 5555 swp_entry_t entry = { .val = page_private(page) }; 5556 /* 5557 * The swap entry might not get freed for a long time, 5558 * let's not wait for it. The page already received a 5559 * memory+swap charge, drop the swap entry duplicate. 5560 */ 5561 mem_cgroup_uncharge_swap(entry); 5562 } 5563 } 5564 5565 /** 5566 * mem_cgroup_cancel_charge - cancel a page charge 5567 * @page: page to charge 5568 * @memcg: memcg to charge the page to 5569 * 5570 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5571 */ 5572 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg) 5573 { 5574 unsigned int nr_pages = 1; 5575 5576 if (mem_cgroup_disabled()) 5577 return; 5578 /* 5579 * Swap faults will attempt to charge the same page multiple 5580 * times. But reuse_swap_page() might have removed the page 5581 * from swapcache already, so we can't check PageSwapCache(). 5582 */ 5583 if (!memcg) 5584 return; 5585 5586 if (PageTransHuge(page)) { 5587 nr_pages <<= compound_order(page); 5588 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5589 } 5590 5591 cancel_charge(memcg, nr_pages); 5592 } 5593 5594 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5595 unsigned long nr_anon, unsigned long nr_file, 5596 unsigned long nr_huge, struct page *dummy_page) 5597 { 5598 unsigned long nr_pages = nr_anon + nr_file; 5599 unsigned long flags; 5600 5601 if (!mem_cgroup_is_root(memcg)) { 5602 page_counter_uncharge(&memcg->memory, nr_pages); 5603 if (do_swap_account) 5604 page_counter_uncharge(&memcg->memsw, nr_pages); 5605 memcg_oom_recover(memcg); 5606 } 5607 5608 local_irq_save(flags); 5609 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5610 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5611 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5612 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5613 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5614 memcg_check_events(memcg, dummy_page); 5615 local_irq_restore(flags); 5616 5617 if (!mem_cgroup_is_root(memcg)) 5618 css_put_many(&memcg->css, nr_pages); 5619 } 5620 5621 static void uncharge_list(struct list_head *page_list) 5622 { 5623 struct mem_cgroup *memcg = NULL; 5624 unsigned long nr_anon = 0; 5625 unsigned long nr_file = 0; 5626 unsigned long nr_huge = 0; 5627 unsigned long pgpgout = 0; 5628 struct list_head *next; 5629 struct page *page; 5630 5631 next = page_list->next; 5632 do { 5633 unsigned int nr_pages = 1; 5634 5635 page = list_entry(next, struct page, lru); 5636 next = page->lru.next; 5637 5638 VM_BUG_ON_PAGE(PageLRU(page), page); 5639 VM_BUG_ON_PAGE(page_count(page), page); 5640 5641 if (!page->mem_cgroup) 5642 continue; 5643 5644 /* 5645 * Nobody should be changing or seriously looking at 5646 * page->mem_cgroup at this point, we have fully 5647 * exclusive access to the page. 5648 */ 5649 5650 if (memcg != page->mem_cgroup) { 5651 if (memcg) { 5652 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5653 nr_huge, page); 5654 pgpgout = nr_anon = nr_file = nr_huge = 0; 5655 } 5656 memcg = page->mem_cgroup; 5657 } 5658 5659 if (PageTransHuge(page)) { 5660 nr_pages <<= compound_order(page); 5661 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5662 nr_huge += nr_pages; 5663 } 5664 5665 if (PageAnon(page)) 5666 nr_anon += nr_pages; 5667 else 5668 nr_file += nr_pages; 5669 5670 page->mem_cgroup = NULL; 5671 5672 pgpgout++; 5673 } while (next != page_list); 5674 5675 if (memcg) 5676 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5677 nr_huge, page); 5678 } 5679 5680 /** 5681 * mem_cgroup_uncharge - uncharge a page 5682 * @page: page to uncharge 5683 * 5684 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5685 * mem_cgroup_commit_charge(). 5686 */ 5687 void mem_cgroup_uncharge(struct page *page) 5688 { 5689 if (mem_cgroup_disabled()) 5690 return; 5691 5692 /* Don't touch page->lru of any random page, pre-check: */ 5693 if (!page->mem_cgroup) 5694 return; 5695 5696 INIT_LIST_HEAD(&page->lru); 5697 uncharge_list(&page->lru); 5698 } 5699 5700 /** 5701 * mem_cgroup_uncharge_list - uncharge a list of page 5702 * @page_list: list of pages to uncharge 5703 * 5704 * Uncharge a list of pages previously charged with 5705 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5706 */ 5707 void mem_cgroup_uncharge_list(struct list_head *page_list) 5708 { 5709 if (mem_cgroup_disabled()) 5710 return; 5711 5712 if (!list_empty(page_list)) 5713 uncharge_list(page_list); 5714 } 5715 5716 /** 5717 * mem_cgroup_migrate - migrate a charge to another page 5718 * @oldpage: currently charged page 5719 * @newpage: page to transfer the charge to 5720 * @lrucare: either or both pages might be on the LRU already 5721 * 5722 * Migrate the charge from @oldpage to @newpage. 5723 * 5724 * Both pages must be locked, @newpage->mapping must be set up. 5725 */ 5726 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage, 5727 bool lrucare) 5728 { 5729 struct mem_cgroup *memcg; 5730 int isolated; 5731 5732 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5733 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5734 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage); 5735 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage); 5736 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5737 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5738 newpage); 5739 5740 if (mem_cgroup_disabled()) 5741 return; 5742 5743 /* Page cache replacement: new page already charged? */ 5744 if (newpage->mem_cgroup) 5745 return; 5746 5747 /* 5748 * Swapcache readahead pages can get migrated before being 5749 * charged, and migration from compaction can happen to an 5750 * uncharged page when the PFN walker finds a page that 5751 * reclaim just put back on the LRU but has not released yet. 5752 */ 5753 memcg = oldpage->mem_cgroup; 5754 if (!memcg) 5755 return; 5756 5757 if (lrucare) 5758 lock_page_lru(oldpage, &isolated); 5759 5760 oldpage->mem_cgroup = NULL; 5761 5762 if (lrucare) 5763 unlock_page_lru(oldpage, isolated); 5764 5765 commit_charge(newpage, memcg, lrucare); 5766 } 5767 5768 /* 5769 * subsys_initcall() for memory controller. 5770 * 5771 * Some parts like hotcpu_notifier() have to be initialized from this context 5772 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 5773 * everything that doesn't depend on a specific mem_cgroup structure should 5774 * be initialized from here. 5775 */ 5776 static int __init mem_cgroup_init(void) 5777 { 5778 int cpu, node; 5779 5780 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 5781 5782 for_each_possible_cpu(cpu) 5783 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5784 drain_local_stock); 5785 5786 for_each_node(node) { 5787 struct mem_cgroup_tree_per_node *rtpn; 5788 int zone; 5789 5790 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5791 node_online(node) ? node : NUMA_NO_NODE); 5792 5793 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5794 struct mem_cgroup_tree_per_zone *rtpz; 5795 5796 rtpz = &rtpn->rb_tree_per_zone[zone]; 5797 rtpz->rb_root = RB_ROOT; 5798 spin_lock_init(&rtpz->lock); 5799 } 5800 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5801 } 5802 5803 return 0; 5804 } 5805 subsys_initcall(mem_cgroup_init); 5806 5807 #ifdef CONFIG_MEMCG_SWAP 5808 /** 5809 * mem_cgroup_swapout - transfer a memsw charge to swap 5810 * @page: page whose memsw charge to transfer 5811 * @entry: swap entry to move the charge to 5812 * 5813 * Transfer the memsw charge of @page to @entry. 5814 */ 5815 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5816 { 5817 struct mem_cgroup *memcg; 5818 unsigned short oldid; 5819 5820 VM_BUG_ON_PAGE(PageLRU(page), page); 5821 VM_BUG_ON_PAGE(page_count(page), page); 5822 5823 if (!do_swap_account) 5824 return; 5825 5826 memcg = page->mem_cgroup; 5827 5828 /* Readahead page, never charged */ 5829 if (!memcg) 5830 return; 5831 5832 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5833 VM_BUG_ON_PAGE(oldid, page); 5834 mem_cgroup_swap_statistics(memcg, true); 5835 5836 page->mem_cgroup = NULL; 5837 5838 if (!mem_cgroup_is_root(memcg)) 5839 page_counter_uncharge(&memcg->memory, 1); 5840 5841 /* XXX: caller holds IRQ-safe mapping->tree_lock */ 5842 VM_BUG_ON(!irqs_disabled()); 5843 5844 mem_cgroup_charge_statistics(memcg, page, -1); 5845 memcg_check_events(memcg, page); 5846 } 5847 5848 /** 5849 * mem_cgroup_uncharge_swap - uncharge a swap entry 5850 * @entry: swap entry to uncharge 5851 * 5852 * Drop the memsw charge associated with @entry. 5853 */ 5854 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5855 { 5856 struct mem_cgroup *memcg; 5857 unsigned short id; 5858 5859 if (!do_swap_account) 5860 return; 5861 5862 id = swap_cgroup_record(entry, 0); 5863 rcu_read_lock(); 5864 memcg = mem_cgroup_lookup(id); 5865 if (memcg) { 5866 if (!mem_cgroup_is_root(memcg)) 5867 page_counter_uncharge(&memcg->memsw, 1); 5868 mem_cgroup_swap_statistics(memcg, false); 5869 css_put(&memcg->css); 5870 } 5871 rcu_read_unlock(); 5872 } 5873 5874 /* for remember boot option*/ 5875 #ifdef CONFIG_MEMCG_SWAP_ENABLED 5876 static int really_do_swap_account __initdata = 1; 5877 #else 5878 static int really_do_swap_account __initdata; 5879 #endif 5880 5881 static int __init enable_swap_account(char *s) 5882 { 5883 if (!strcmp(s, "1")) 5884 really_do_swap_account = 1; 5885 else if (!strcmp(s, "0")) 5886 really_do_swap_account = 0; 5887 return 1; 5888 } 5889 __setup("swapaccount=", enable_swap_account); 5890 5891 static struct cftype memsw_cgroup_files[] = { 5892 { 5893 .name = "memsw.usage_in_bytes", 5894 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5895 .read_u64 = mem_cgroup_read_u64, 5896 }, 5897 { 5898 .name = "memsw.max_usage_in_bytes", 5899 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5900 .write = mem_cgroup_reset, 5901 .read_u64 = mem_cgroup_read_u64, 5902 }, 5903 { 5904 .name = "memsw.limit_in_bytes", 5905 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5906 .write = mem_cgroup_write, 5907 .read_u64 = mem_cgroup_read_u64, 5908 }, 5909 { 5910 .name = "memsw.failcnt", 5911 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5912 .write = mem_cgroup_reset, 5913 .read_u64 = mem_cgroup_read_u64, 5914 }, 5915 { }, /* terminate */ 5916 }; 5917 5918 static int __init mem_cgroup_swap_init(void) 5919 { 5920 if (!mem_cgroup_disabled() && really_do_swap_account) { 5921 do_swap_account = 1; 5922 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 5923 memsw_cgroup_files)); 5924 } 5925 return 0; 5926 } 5927 subsys_initcall(mem_cgroup_swap_init); 5928 5929 #endif /* CONFIG_MEMCG_SWAP */ 5930