xref: /linux/mm/memcontrol.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/pagevec.h>
37 #include <linux/vm_event_item.h>
38 #include <linux/smp.h>
39 #include <linux/page-flags.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bit_spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/limits.h>
44 #include <linux/export.h>
45 #include <linux/mutex.h>
46 #include <linux/rbtree.h>
47 #include <linux/slab.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/spinlock.h>
51 #include <linux/eventfd.h>
52 #include <linux/poll.h>
53 #include <linux/sort.h>
54 #include <linux/fs.h>
55 #include <linux/seq_file.h>
56 #include <linux/vmpressure.h>
57 #include <linux/memremap.h>
58 #include <linux/mm_inline.h>
59 #include <linux/swap_cgroup.h>
60 #include <linux/cpu.h>
61 #include <linux/oom.h>
62 #include <linux/lockdep.h>
63 #include <linux/file.h>
64 #include <linux/resume_user_mode.h>
65 #include <linux/psi.h>
66 #include <linux/seq_buf.h>
67 #include <linux/sched/isolation.h>
68 #include <linux/kmemleak.h>
69 #include "internal.h"
70 #include <net/sock.h>
71 #include <net/ip.h>
72 #include "slab.h"
73 #include "swap.h"
74 
75 #include <linux/uaccess.h>
76 
77 #include <trace/events/vmscan.h>
78 
79 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
80 EXPORT_SYMBOL(memory_cgrp_subsys);
81 
82 struct mem_cgroup *root_mem_cgroup __read_mostly;
83 
84 /* Active memory cgroup to use from an interrupt context */
85 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
86 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
87 
88 /* Socket memory accounting disabled? */
89 static bool cgroup_memory_nosocket __ro_after_init;
90 
91 /* Kernel memory accounting disabled? */
92 static bool cgroup_memory_nokmem __ro_after_init;
93 
94 /* BPF memory accounting disabled? */
95 static bool cgroup_memory_nobpf __ro_after_init;
96 
97 #ifdef CONFIG_CGROUP_WRITEBACK
98 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99 #endif
100 
101 /* Whether legacy memory+swap accounting is active */
102 static bool do_memsw_account(void)
103 {
104 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
105 }
106 
107 #define THRESHOLDS_EVENTS_TARGET 128
108 #define SOFTLIMIT_EVENTS_TARGET 1024
109 
110 /*
111  * Cgroups above their limits are maintained in a RB-Tree, independent of
112  * their hierarchy representation
113  */
114 
115 struct mem_cgroup_tree_per_node {
116 	struct rb_root rb_root;
117 	struct rb_node *rb_rightmost;
118 	spinlock_t lock;
119 };
120 
121 struct mem_cgroup_tree {
122 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123 };
124 
125 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126 
127 /* for OOM */
128 struct mem_cgroup_eventfd_list {
129 	struct list_head list;
130 	struct eventfd_ctx *eventfd;
131 };
132 
133 /*
134  * cgroup_event represents events which userspace want to receive.
135  */
136 struct mem_cgroup_event {
137 	/*
138 	 * memcg which the event belongs to.
139 	 */
140 	struct mem_cgroup *memcg;
141 	/*
142 	 * eventfd to signal userspace about the event.
143 	 */
144 	struct eventfd_ctx *eventfd;
145 	/*
146 	 * Each of these stored in a list by the cgroup.
147 	 */
148 	struct list_head list;
149 	/*
150 	 * register_event() callback will be used to add new userspace
151 	 * waiter for changes related to this event.  Use eventfd_signal()
152 	 * on eventfd to send notification to userspace.
153 	 */
154 	int (*register_event)(struct mem_cgroup *memcg,
155 			      struct eventfd_ctx *eventfd, const char *args);
156 	/*
157 	 * unregister_event() callback will be called when userspace closes
158 	 * the eventfd or on cgroup removing.  This callback must be set,
159 	 * if you want provide notification functionality.
160 	 */
161 	void (*unregister_event)(struct mem_cgroup *memcg,
162 				 struct eventfd_ctx *eventfd);
163 	/*
164 	 * All fields below needed to unregister event when
165 	 * userspace closes eventfd.
166 	 */
167 	poll_table pt;
168 	wait_queue_head_t *wqh;
169 	wait_queue_entry_t wait;
170 	struct work_struct remove;
171 };
172 
173 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
174 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
175 
176 /* Stuffs for move charges at task migration. */
177 /*
178  * Types of charges to be moved.
179  */
180 #define MOVE_ANON	0x1U
181 #define MOVE_FILE	0x2U
182 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
183 
184 /* "mc" and its members are protected by cgroup_mutex */
185 static struct move_charge_struct {
186 	spinlock_t	  lock; /* for from, to */
187 	struct mm_struct  *mm;
188 	struct mem_cgroup *from;
189 	struct mem_cgroup *to;
190 	unsigned long flags;
191 	unsigned long precharge;
192 	unsigned long moved_charge;
193 	unsigned long moved_swap;
194 	struct task_struct *moving_task;	/* a task moving charges */
195 	wait_queue_head_t waitq;		/* a waitq for other context */
196 } mc = {
197 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
198 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
199 };
200 
201 /*
202  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
203  * limit reclaim to prevent infinite loops, if they ever occur.
204  */
205 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
206 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
207 
208 /* for encoding cft->private value on file */
209 enum res_type {
210 	_MEM,
211 	_MEMSWAP,
212 	_KMEM,
213 	_TCP,
214 };
215 
216 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
217 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val)	((val) & 0xffff)
219 
220 /*
221  * Iteration constructs for visiting all cgroups (under a tree).  If
222  * loops are exited prematurely (break), mem_cgroup_iter_break() must
223  * be used for reference counting.
224  */
225 #define for_each_mem_cgroup_tree(iter, root)		\
226 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
227 	     iter != NULL;				\
228 	     iter = mem_cgroup_iter(root, iter, NULL))
229 
230 #define for_each_mem_cgroup(iter)			\
231 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
232 	     iter != NULL;				\
233 	     iter = mem_cgroup_iter(NULL, iter, NULL))
234 
235 static inline bool task_is_dying(void)
236 {
237 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
238 		(current->flags & PF_EXITING);
239 }
240 
241 /* Some nice accessors for the vmpressure. */
242 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
243 {
244 	if (!memcg)
245 		memcg = root_mem_cgroup;
246 	return &memcg->vmpressure;
247 }
248 
249 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
250 {
251 	return container_of(vmpr, struct mem_cgroup, vmpressure);
252 }
253 
254 #define CURRENT_OBJCG_UPDATE_BIT 0
255 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
256 
257 #ifdef CONFIG_MEMCG_KMEM
258 static DEFINE_SPINLOCK(objcg_lock);
259 
260 bool mem_cgroup_kmem_disabled(void)
261 {
262 	return cgroup_memory_nokmem;
263 }
264 
265 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
266 				      unsigned int nr_pages);
267 
268 static void obj_cgroup_release(struct percpu_ref *ref)
269 {
270 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
271 	unsigned int nr_bytes;
272 	unsigned int nr_pages;
273 	unsigned long flags;
274 
275 	/*
276 	 * At this point all allocated objects are freed, and
277 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
278 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
279 	 *
280 	 * The following sequence can lead to it:
281 	 * 1) CPU0: objcg == stock->cached_objcg
282 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
283 	 *          PAGE_SIZE bytes are charged
284 	 * 3) CPU1: a process from another memcg is allocating something,
285 	 *          the stock if flushed,
286 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
287 	 * 5) CPU0: we do release this object,
288 	 *          92 bytes are added to stock->nr_bytes
289 	 * 6) CPU0: stock is flushed,
290 	 *          92 bytes are added to objcg->nr_charged_bytes
291 	 *
292 	 * In the result, nr_charged_bytes == PAGE_SIZE.
293 	 * This page will be uncharged in obj_cgroup_release().
294 	 */
295 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
296 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
297 	nr_pages = nr_bytes >> PAGE_SHIFT;
298 
299 	if (nr_pages)
300 		obj_cgroup_uncharge_pages(objcg, nr_pages);
301 
302 	spin_lock_irqsave(&objcg_lock, flags);
303 	list_del(&objcg->list);
304 	spin_unlock_irqrestore(&objcg_lock, flags);
305 
306 	percpu_ref_exit(ref);
307 	kfree_rcu(objcg, rcu);
308 }
309 
310 static struct obj_cgroup *obj_cgroup_alloc(void)
311 {
312 	struct obj_cgroup *objcg;
313 	int ret;
314 
315 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
316 	if (!objcg)
317 		return NULL;
318 
319 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
320 			      GFP_KERNEL);
321 	if (ret) {
322 		kfree(objcg);
323 		return NULL;
324 	}
325 	INIT_LIST_HEAD(&objcg->list);
326 	return objcg;
327 }
328 
329 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
330 				  struct mem_cgroup *parent)
331 {
332 	struct obj_cgroup *objcg, *iter;
333 
334 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
335 
336 	spin_lock_irq(&objcg_lock);
337 
338 	/* 1) Ready to reparent active objcg. */
339 	list_add(&objcg->list, &memcg->objcg_list);
340 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
341 	list_for_each_entry(iter, &memcg->objcg_list, list)
342 		WRITE_ONCE(iter->memcg, parent);
343 	/* 3) Move already reparented objcgs to the parent's list */
344 	list_splice(&memcg->objcg_list, &parent->objcg_list);
345 
346 	spin_unlock_irq(&objcg_lock);
347 
348 	percpu_ref_kill(&objcg->refcnt);
349 }
350 
351 /*
352  * A lot of the calls to the cache allocation functions are expected to be
353  * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
354  * conditional to this static branch, we'll have to allow modules that does
355  * kmem_cache_alloc and the such to see this symbol as well
356  */
357 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
358 EXPORT_SYMBOL(memcg_kmem_online_key);
359 
360 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
361 EXPORT_SYMBOL(memcg_bpf_enabled_key);
362 #endif
363 
364 /**
365  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
366  * @folio: folio of interest
367  *
368  * If memcg is bound to the default hierarchy, css of the memcg associated
369  * with @folio is returned.  The returned css remains associated with @folio
370  * until it is released.
371  *
372  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
373  * is returned.
374  */
375 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
376 {
377 	struct mem_cgroup *memcg = folio_memcg(folio);
378 
379 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
380 		memcg = root_mem_cgroup;
381 
382 	return &memcg->css;
383 }
384 
385 /**
386  * page_cgroup_ino - return inode number of the memcg a page is charged to
387  * @page: the page
388  *
389  * Look up the closest online ancestor of the memory cgroup @page is charged to
390  * and return its inode number or 0 if @page is not charged to any cgroup. It
391  * is safe to call this function without holding a reference to @page.
392  *
393  * Note, this function is inherently racy, because there is nothing to prevent
394  * the cgroup inode from getting torn down and potentially reallocated a moment
395  * after page_cgroup_ino() returns, so it only should be used by callers that
396  * do not care (such as procfs interfaces).
397  */
398 ino_t page_cgroup_ino(struct page *page)
399 {
400 	struct mem_cgroup *memcg;
401 	unsigned long ino = 0;
402 
403 	rcu_read_lock();
404 	/* page_folio() is racy here, but the entire function is racy anyway */
405 	memcg = folio_memcg_check(page_folio(page));
406 
407 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
408 		memcg = parent_mem_cgroup(memcg);
409 	if (memcg)
410 		ino = cgroup_ino(memcg->css.cgroup);
411 	rcu_read_unlock();
412 	return ino;
413 }
414 
415 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
416 					 struct mem_cgroup_tree_per_node *mctz,
417 					 unsigned long new_usage_in_excess)
418 {
419 	struct rb_node **p = &mctz->rb_root.rb_node;
420 	struct rb_node *parent = NULL;
421 	struct mem_cgroup_per_node *mz_node;
422 	bool rightmost = true;
423 
424 	if (mz->on_tree)
425 		return;
426 
427 	mz->usage_in_excess = new_usage_in_excess;
428 	if (!mz->usage_in_excess)
429 		return;
430 	while (*p) {
431 		parent = *p;
432 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
433 					tree_node);
434 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
435 			p = &(*p)->rb_left;
436 			rightmost = false;
437 		} else {
438 			p = &(*p)->rb_right;
439 		}
440 	}
441 
442 	if (rightmost)
443 		mctz->rb_rightmost = &mz->tree_node;
444 
445 	rb_link_node(&mz->tree_node, parent, p);
446 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
447 	mz->on_tree = true;
448 }
449 
450 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
451 					 struct mem_cgroup_tree_per_node *mctz)
452 {
453 	if (!mz->on_tree)
454 		return;
455 
456 	if (&mz->tree_node == mctz->rb_rightmost)
457 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
458 
459 	rb_erase(&mz->tree_node, &mctz->rb_root);
460 	mz->on_tree = false;
461 }
462 
463 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
464 				       struct mem_cgroup_tree_per_node *mctz)
465 {
466 	unsigned long flags;
467 
468 	spin_lock_irqsave(&mctz->lock, flags);
469 	__mem_cgroup_remove_exceeded(mz, mctz);
470 	spin_unlock_irqrestore(&mctz->lock, flags);
471 }
472 
473 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
474 {
475 	unsigned long nr_pages = page_counter_read(&memcg->memory);
476 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
477 	unsigned long excess = 0;
478 
479 	if (nr_pages > soft_limit)
480 		excess = nr_pages - soft_limit;
481 
482 	return excess;
483 }
484 
485 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
486 {
487 	unsigned long excess;
488 	struct mem_cgroup_per_node *mz;
489 	struct mem_cgroup_tree_per_node *mctz;
490 
491 	if (lru_gen_enabled()) {
492 		if (soft_limit_excess(memcg))
493 			lru_gen_soft_reclaim(memcg, nid);
494 		return;
495 	}
496 
497 	mctz = soft_limit_tree.rb_tree_per_node[nid];
498 	if (!mctz)
499 		return;
500 	/*
501 	 * Necessary to update all ancestors when hierarchy is used.
502 	 * because their event counter is not touched.
503 	 */
504 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
505 		mz = memcg->nodeinfo[nid];
506 		excess = soft_limit_excess(memcg);
507 		/*
508 		 * We have to update the tree if mz is on RB-tree or
509 		 * mem is over its softlimit.
510 		 */
511 		if (excess || mz->on_tree) {
512 			unsigned long flags;
513 
514 			spin_lock_irqsave(&mctz->lock, flags);
515 			/* if on-tree, remove it */
516 			if (mz->on_tree)
517 				__mem_cgroup_remove_exceeded(mz, mctz);
518 			/*
519 			 * Insert again. mz->usage_in_excess will be updated.
520 			 * If excess is 0, no tree ops.
521 			 */
522 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
523 			spin_unlock_irqrestore(&mctz->lock, flags);
524 		}
525 	}
526 }
527 
528 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
529 {
530 	struct mem_cgroup_tree_per_node *mctz;
531 	struct mem_cgroup_per_node *mz;
532 	int nid;
533 
534 	for_each_node(nid) {
535 		mz = memcg->nodeinfo[nid];
536 		mctz = soft_limit_tree.rb_tree_per_node[nid];
537 		if (mctz)
538 			mem_cgroup_remove_exceeded(mz, mctz);
539 	}
540 }
541 
542 static struct mem_cgroup_per_node *
543 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
544 {
545 	struct mem_cgroup_per_node *mz;
546 
547 retry:
548 	mz = NULL;
549 	if (!mctz->rb_rightmost)
550 		goto done;		/* Nothing to reclaim from */
551 
552 	mz = rb_entry(mctz->rb_rightmost,
553 		      struct mem_cgroup_per_node, tree_node);
554 	/*
555 	 * Remove the node now but someone else can add it back,
556 	 * we will to add it back at the end of reclaim to its correct
557 	 * position in the tree.
558 	 */
559 	__mem_cgroup_remove_exceeded(mz, mctz);
560 	if (!soft_limit_excess(mz->memcg) ||
561 	    !css_tryget(&mz->memcg->css))
562 		goto retry;
563 done:
564 	return mz;
565 }
566 
567 static struct mem_cgroup_per_node *
568 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
569 {
570 	struct mem_cgroup_per_node *mz;
571 
572 	spin_lock_irq(&mctz->lock);
573 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
574 	spin_unlock_irq(&mctz->lock);
575 	return mz;
576 }
577 
578 /* Subset of node_stat_item for memcg stats */
579 static const unsigned int memcg_node_stat_items[] = {
580 	NR_INACTIVE_ANON,
581 	NR_ACTIVE_ANON,
582 	NR_INACTIVE_FILE,
583 	NR_ACTIVE_FILE,
584 	NR_UNEVICTABLE,
585 	NR_SLAB_RECLAIMABLE_B,
586 	NR_SLAB_UNRECLAIMABLE_B,
587 	WORKINGSET_REFAULT_ANON,
588 	WORKINGSET_REFAULT_FILE,
589 	WORKINGSET_ACTIVATE_ANON,
590 	WORKINGSET_ACTIVATE_FILE,
591 	WORKINGSET_RESTORE_ANON,
592 	WORKINGSET_RESTORE_FILE,
593 	WORKINGSET_NODERECLAIM,
594 	NR_ANON_MAPPED,
595 	NR_FILE_MAPPED,
596 	NR_FILE_PAGES,
597 	NR_FILE_DIRTY,
598 	NR_WRITEBACK,
599 	NR_SHMEM,
600 	NR_SHMEM_THPS,
601 	NR_FILE_THPS,
602 	NR_ANON_THPS,
603 	NR_KERNEL_STACK_KB,
604 	NR_PAGETABLE,
605 	NR_SECONDARY_PAGETABLE,
606 #ifdef CONFIG_SWAP
607 	NR_SWAPCACHE,
608 #endif
609 };
610 
611 static const unsigned int memcg_stat_items[] = {
612 	MEMCG_SWAP,
613 	MEMCG_SOCK,
614 	MEMCG_PERCPU_B,
615 	MEMCG_VMALLOC,
616 	MEMCG_KMEM,
617 	MEMCG_ZSWAP_B,
618 	MEMCG_ZSWAPPED,
619 };
620 
621 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
622 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
623 			   ARRAY_SIZE(memcg_stat_items))
624 static int8_t mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
625 
626 static void init_memcg_stats(void)
627 {
628 	int8_t i, j = 0;
629 
630 	BUILD_BUG_ON(MEMCG_NR_STAT >= S8_MAX);
631 
632 	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i)
633 		mem_cgroup_stats_index[memcg_node_stat_items[i]] = ++j;
634 
635 	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i)
636 		mem_cgroup_stats_index[memcg_stat_items[i]] = ++j;
637 }
638 
639 static inline int memcg_stats_index(int idx)
640 {
641 	return mem_cgroup_stats_index[idx] - 1;
642 }
643 
644 struct lruvec_stats_percpu {
645 	/* Local (CPU and cgroup) state */
646 	long state[NR_MEMCG_NODE_STAT_ITEMS];
647 
648 	/* Delta calculation for lockless upward propagation */
649 	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
650 };
651 
652 struct lruvec_stats {
653 	/* Aggregated (CPU and subtree) state */
654 	long state[NR_MEMCG_NODE_STAT_ITEMS];
655 
656 	/* Non-hierarchical (CPU aggregated) state */
657 	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
658 
659 	/* Pending child counts during tree propagation */
660 	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
661 };
662 
663 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
664 {
665 	struct mem_cgroup_per_node *pn;
666 	long x;
667 	int i;
668 
669 	if (mem_cgroup_disabled())
670 		return node_page_state(lruvec_pgdat(lruvec), idx);
671 
672 	i = memcg_stats_index(idx);
673 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
674 		return 0;
675 
676 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
677 	x = READ_ONCE(pn->lruvec_stats->state[i]);
678 #ifdef CONFIG_SMP
679 	if (x < 0)
680 		x = 0;
681 #endif
682 	return x;
683 }
684 
685 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
686 				      enum node_stat_item idx)
687 {
688 	struct mem_cgroup_per_node *pn;
689 	long x;
690 	int i;
691 
692 	if (mem_cgroup_disabled())
693 		return node_page_state(lruvec_pgdat(lruvec), idx);
694 
695 	i = memcg_stats_index(idx);
696 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
697 		return 0;
698 
699 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
700 	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
701 #ifdef CONFIG_SMP
702 	if (x < 0)
703 		x = 0;
704 #endif
705 	return x;
706 }
707 
708 /* Subset of vm_event_item to report for memcg event stats */
709 static const unsigned int memcg_vm_event_stat[] = {
710 	PGPGIN,
711 	PGPGOUT,
712 	PGSCAN_KSWAPD,
713 	PGSCAN_DIRECT,
714 	PGSCAN_KHUGEPAGED,
715 	PGSTEAL_KSWAPD,
716 	PGSTEAL_DIRECT,
717 	PGSTEAL_KHUGEPAGED,
718 	PGFAULT,
719 	PGMAJFAULT,
720 	PGREFILL,
721 	PGACTIVATE,
722 	PGDEACTIVATE,
723 	PGLAZYFREE,
724 	PGLAZYFREED,
725 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
726 	ZSWPIN,
727 	ZSWPOUT,
728 	ZSWPWB,
729 #endif
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 	THP_FAULT_ALLOC,
732 	THP_COLLAPSE_ALLOC,
733 	THP_SWPOUT,
734 	THP_SWPOUT_FALLBACK,
735 #endif
736 };
737 
738 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
739 static int8_t mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
740 
741 static void init_memcg_events(void)
742 {
743 	int8_t i;
744 
745 	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= S8_MAX);
746 
747 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
748 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
749 }
750 
751 static inline int memcg_events_index(enum vm_event_item idx)
752 {
753 	return mem_cgroup_events_index[idx] - 1;
754 }
755 
756 struct memcg_vmstats_percpu {
757 	/* Stats updates since the last flush */
758 	unsigned int			stats_updates;
759 
760 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
761 	struct memcg_vmstats_percpu	*parent;
762 	struct memcg_vmstats		*vmstats;
763 
764 	/* The above should fit a single cacheline for memcg_rstat_updated() */
765 
766 	/* Local (CPU and cgroup) page state & events */
767 	long			state[MEMCG_VMSTAT_SIZE];
768 	unsigned long		events[NR_MEMCG_EVENTS];
769 
770 	/* Delta calculation for lockless upward propagation */
771 	long			state_prev[MEMCG_VMSTAT_SIZE];
772 	unsigned long		events_prev[NR_MEMCG_EVENTS];
773 
774 	/* Cgroup1: threshold notifications & softlimit tree updates */
775 	unsigned long		nr_page_events;
776 	unsigned long		targets[MEM_CGROUP_NTARGETS];
777 } ____cacheline_aligned;
778 
779 struct memcg_vmstats {
780 	/* Aggregated (CPU and subtree) page state & events */
781 	long			state[MEMCG_VMSTAT_SIZE];
782 	unsigned long		events[NR_MEMCG_EVENTS];
783 
784 	/* Non-hierarchical (CPU aggregated) page state & events */
785 	long			state_local[MEMCG_VMSTAT_SIZE];
786 	unsigned long		events_local[NR_MEMCG_EVENTS];
787 
788 	/* Pending child counts during tree propagation */
789 	long			state_pending[MEMCG_VMSTAT_SIZE];
790 	unsigned long		events_pending[NR_MEMCG_EVENTS];
791 
792 	/* Stats updates since the last flush */
793 	atomic64_t		stats_updates;
794 };
795 
796 /*
797  * memcg and lruvec stats flushing
798  *
799  * Many codepaths leading to stats update or read are performance sensitive and
800  * adding stats flushing in such codepaths is not desirable. So, to optimize the
801  * flushing the kernel does:
802  *
803  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
804  *    rstat update tree grow unbounded.
805  *
806  * 2) Flush the stats synchronously on reader side only when there are more than
807  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
808  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
809  *    only for 2 seconds due to (1).
810  */
811 static void flush_memcg_stats_dwork(struct work_struct *w);
812 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
813 static u64 flush_last_time;
814 
815 #define FLUSH_TIME (2UL*HZ)
816 
817 /*
818  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
819  * not rely on this as part of an acquired spinlock_t lock. These functions are
820  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
821  * is sufficient.
822  */
823 static void memcg_stats_lock(void)
824 {
825 	preempt_disable_nested();
826 	VM_WARN_ON_IRQS_ENABLED();
827 }
828 
829 static void __memcg_stats_lock(void)
830 {
831 	preempt_disable_nested();
832 }
833 
834 static void memcg_stats_unlock(void)
835 {
836 	preempt_enable_nested();
837 }
838 
839 
840 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
841 {
842 	return atomic64_read(&vmstats->stats_updates) >
843 		MEMCG_CHARGE_BATCH * num_online_cpus();
844 }
845 
846 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
847 {
848 	struct memcg_vmstats_percpu *statc;
849 	int cpu = smp_processor_id();
850 	unsigned int stats_updates;
851 
852 	if (!val)
853 		return;
854 
855 	cgroup_rstat_updated(memcg->css.cgroup, cpu);
856 	statc = this_cpu_ptr(memcg->vmstats_percpu);
857 	for (; statc; statc = statc->parent) {
858 		stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
859 		WRITE_ONCE(statc->stats_updates, stats_updates);
860 		if (stats_updates < MEMCG_CHARGE_BATCH)
861 			continue;
862 
863 		/*
864 		 * If @memcg is already flush-able, increasing stats_updates is
865 		 * redundant. Avoid the overhead of the atomic update.
866 		 */
867 		if (!memcg_vmstats_needs_flush(statc->vmstats))
868 			atomic64_add(stats_updates,
869 				     &statc->vmstats->stats_updates);
870 		WRITE_ONCE(statc->stats_updates, 0);
871 	}
872 }
873 
874 static void do_flush_stats(struct mem_cgroup *memcg)
875 {
876 	if (mem_cgroup_is_root(memcg))
877 		WRITE_ONCE(flush_last_time, jiffies_64);
878 
879 	cgroup_rstat_flush(memcg->css.cgroup);
880 }
881 
882 /*
883  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
884  * @memcg: root of the subtree to flush
885  *
886  * Flushing is serialized by the underlying global rstat lock. There is also a
887  * minimum amount of work to be done even if there are no stat updates to flush.
888  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
889  * avoids unnecessary work and contention on the underlying lock.
890  */
891 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
892 {
893 	if (mem_cgroup_disabled())
894 		return;
895 
896 	if (!memcg)
897 		memcg = root_mem_cgroup;
898 
899 	if (memcg_vmstats_needs_flush(memcg->vmstats))
900 		do_flush_stats(memcg);
901 }
902 
903 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
904 {
905 	/* Only flush if the periodic flusher is one full cycle late */
906 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
907 		mem_cgroup_flush_stats(memcg);
908 }
909 
910 static void flush_memcg_stats_dwork(struct work_struct *w)
911 {
912 	/*
913 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
914 	 * in latency-sensitive paths is as cheap as possible.
915 	 */
916 	do_flush_stats(root_mem_cgroup);
917 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
918 }
919 
920 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
921 {
922 	long x;
923 	int i = memcg_stats_index(idx);
924 
925 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
926 		return 0;
927 
928 	x = READ_ONCE(memcg->vmstats->state[i]);
929 #ifdef CONFIG_SMP
930 	if (x < 0)
931 		x = 0;
932 #endif
933 	return x;
934 }
935 
936 static int memcg_page_state_unit(int item);
937 
938 /*
939  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
940  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
941  */
942 static int memcg_state_val_in_pages(int idx, int val)
943 {
944 	int unit = memcg_page_state_unit(idx);
945 
946 	if (!val || unit == PAGE_SIZE)
947 		return val;
948 	else
949 		return max(val * unit / PAGE_SIZE, 1UL);
950 }
951 
952 /**
953  * __mod_memcg_state - update cgroup memory statistics
954  * @memcg: the memory cgroup
955  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
956  * @val: delta to add to the counter, can be negative
957  */
958 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
959 		       int val)
960 {
961 	int i = memcg_stats_index(idx);
962 
963 	if (mem_cgroup_disabled())
964 		return;
965 
966 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
967 		return;
968 
969 	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
970 	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
971 }
972 
973 /* idx can be of type enum memcg_stat_item or node_stat_item. */
974 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
975 {
976 	long x;
977 	int i = memcg_stats_index(idx);
978 
979 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
980 		return 0;
981 
982 	x = READ_ONCE(memcg->vmstats->state_local[i]);
983 #ifdef CONFIG_SMP
984 	if (x < 0)
985 		x = 0;
986 #endif
987 	return x;
988 }
989 
990 static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
991 				     enum node_stat_item idx,
992 				     int val)
993 {
994 	struct mem_cgroup_per_node *pn;
995 	struct mem_cgroup *memcg;
996 	int i = memcg_stats_index(idx);
997 
998 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
999 		return;
1000 
1001 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1002 	memcg = pn->memcg;
1003 
1004 	/*
1005 	 * The caller from rmap relies on disabled preemption because they never
1006 	 * update their counter from in-interrupt context. For these two
1007 	 * counters we check that the update is never performed from an
1008 	 * interrupt context while other caller need to have disabled interrupt.
1009 	 */
1010 	__memcg_stats_lock();
1011 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
1012 		switch (idx) {
1013 		case NR_ANON_MAPPED:
1014 		case NR_FILE_MAPPED:
1015 		case NR_ANON_THPS:
1016 			WARN_ON_ONCE(!in_task());
1017 			break;
1018 		default:
1019 			VM_WARN_ON_IRQS_ENABLED();
1020 		}
1021 	}
1022 
1023 	/* Update memcg */
1024 	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
1025 
1026 	/* Update lruvec */
1027 	__this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
1028 
1029 	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
1030 	memcg_stats_unlock();
1031 }
1032 
1033 /**
1034  * __mod_lruvec_state - update lruvec memory statistics
1035  * @lruvec: the lruvec
1036  * @idx: the stat item
1037  * @val: delta to add to the counter, can be negative
1038  *
1039  * The lruvec is the intersection of the NUMA node and a cgroup. This
1040  * function updates the all three counters that are affected by a
1041  * change of state at this level: per-node, per-cgroup, per-lruvec.
1042  */
1043 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1044 			int val)
1045 {
1046 	/* Update node */
1047 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1048 
1049 	/* Update memcg and lruvec */
1050 	if (!mem_cgroup_disabled())
1051 		__mod_memcg_lruvec_state(lruvec, idx, val);
1052 }
1053 
1054 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
1055 			     int val)
1056 {
1057 	struct mem_cgroup *memcg;
1058 	pg_data_t *pgdat = folio_pgdat(folio);
1059 	struct lruvec *lruvec;
1060 
1061 	rcu_read_lock();
1062 	memcg = folio_memcg(folio);
1063 	/* Untracked pages have no memcg, no lruvec. Update only the node */
1064 	if (!memcg) {
1065 		rcu_read_unlock();
1066 		__mod_node_page_state(pgdat, idx, val);
1067 		return;
1068 	}
1069 
1070 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
1071 	__mod_lruvec_state(lruvec, idx, val);
1072 	rcu_read_unlock();
1073 }
1074 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
1075 
1076 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
1077 {
1078 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
1079 	struct mem_cgroup *memcg;
1080 	struct lruvec *lruvec;
1081 
1082 	rcu_read_lock();
1083 	memcg = mem_cgroup_from_slab_obj(p);
1084 
1085 	/*
1086 	 * Untracked pages have no memcg, no lruvec. Update only the
1087 	 * node. If we reparent the slab objects to the root memcg,
1088 	 * when we free the slab object, we need to update the per-memcg
1089 	 * vmstats to keep it correct for the root memcg.
1090 	 */
1091 	if (!memcg) {
1092 		__mod_node_page_state(pgdat, idx, val);
1093 	} else {
1094 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
1095 		__mod_lruvec_state(lruvec, idx, val);
1096 	}
1097 	rcu_read_unlock();
1098 }
1099 
1100 /**
1101  * __count_memcg_events - account VM events in a cgroup
1102  * @memcg: the memory cgroup
1103  * @idx: the event item
1104  * @count: the number of events that occurred
1105  */
1106 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1107 			  unsigned long count)
1108 {
1109 	int i = memcg_events_index(idx);
1110 
1111 	if (mem_cgroup_disabled())
1112 		return;
1113 
1114 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
1115 		return;
1116 
1117 	memcg_stats_lock();
1118 	__this_cpu_add(memcg->vmstats_percpu->events[i], count);
1119 	memcg_rstat_updated(memcg, count);
1120 	memcg_stats_unlock();
1121 }
1122 
1123 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
1124 {
1125 	int i = memcg_events_index(event);
1126 
1127 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, event))
1128 		return 0;
1129 
1130 	return READ_ONCE(memcg->vmstats->events[i]);
1131 }
1132 
1133 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
1134 {
1135 	int i = memcg_events_index(event);
1136 
1137 	if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, event))
1138 		return 0;
1139 
1140 	return READ_ONCE(memcg->vmstats->events_local[i]);
1141 }
1142 
1143 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
1144 					 int nr_pages)
1145 {
1146 	/* pagein of a big page is an event. So, ignore page size */
1147 	if (nr_pages > 0)
1148 		__count_memcg_events(memcg, PGPGIN, 1);
1149 	else {
1150 		__count_memcg_events(memcg, PGPGOUT, 1);
1151 		nr_pages = -nr_pages; /* for event */
1152 	}
1153 
1154 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
1155 }
1156 
1157 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1158 				       enum mem_cgroup_events_target target)
1159 {
1160 	unsigned long val, next;
1161 
1162 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
1163 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
1164 	/* from time_after() in jiffies.h */
1165 	if ((long)(next - val) < 0) {
1166 		switch (target) {
1167 		case MEM_CGROUP_TARGET_THRESH:
1168 			next = val + THRESHOLDS_EVENTS_TARGET;
1169 			break;
1170 		case MEM_CGROUP_TARGET_SOFTLIMIT:
1171 			next = val + SOFTLIMIT_EVENTS_TARGET;
1172 			break;
1173 		default:
1174 			break;
1175 		}
1176 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
1177 		return true;
1178 	}
1179 	return false;
1180 }
1181 
1182 /*
1183  * Check events in order.
1184  *
1185  */
1186 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1187 {
1188 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
1189 		return;
1190 
1191 	/* threshold event is triggered in finer grain than soft limit */
1192 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1193 						MEM_CGROUP_TARGET_THRESH))) {
1194 		bool do_softlimit;
1195 
1196 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1197 						MEM_CGROUP_TARGET_SOFTLIMIT);
1198 		mem_cgroup_threshold(memcg);
1199 		if (unlikely(do_softlimit))
1200 			mem_cgroup_update_tree(memcg, nid);
1201 	}
1202 }
1203 
1204 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1205 {
1206 	/*
1207 	 * mm_update_next_owner() may clear mm->owner to NULL
1208 	 * if it races with swapoff, page migration, etc.
1209 	 * So this can be called with p == NULL.
1210 	 */
1211 	if (unlikely(!p))
1212 		return NULL;
1213 
1214 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1215 }
1216 EXPORT_SYMBOL(mem_cgroup_from_task);
1217 
1218 static __always_inline struct mem_cgroup *active_memcg(void)
1219 {
1220 	if (!in_task())
1221 		return this_cpu_read(int_active_memcg);
1222 	else
1223 		return current->active_memcg;
1224 }
1225 
1226 /**
1227  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1228  * @mm: mm from which memcg should be extracted. It can be NULL.
1229  *
1230  * Obtain a reference on mm->memcg and returns it if successful. If mm
1231  * is NULL, then the memcg is chosen as follows:
1232  * 1) The active memcg, if set.
1233  * 2) current->mm->memcg, if available
1234  * 3) root memcg
1235  * If mem_cgroup is disabled, NULL is returned.
1236  */
1237 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1238 {
1239 	struct mem_cgroup *memcg;
1240 
1241 	if (mem_cgroup_disabled())
1242 		return NULL;
1243 
1244 	/*
1245 	 * Page cache insertions can happen without an
1246 	 * actual mm context, e.g. during disk probing
1247 	 * on boot, loopback IO, acct() writes etc.
1248 	 *
1249 	 * No need to css_get on root memcg as the reference
1250 	 * counting is disabled on the root level in the
1251 	 * cgroup core. See CSS_NO_REF.
1252 	 */
1253 	if (unlikely(!mm)) {
1254 		memcg = active_memcg();
1255 		if (unlikely(memcg)) {
1256 			/* remote memcg must hold a ref */
1257 			css_get(&memcg->css);
1258 			return memcg;
1259 		}
1260 		mm = current->mm;
1261 		if (unlikely(!mm))
1262 			return root_mem_cgroup;
1263 	}
1264 
1265 	rcu_read_lock();
1266 	do {
1267 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1268 		if (unlikely(!memcg))
1269 			memcg = root_mem_cgroup;
1270 	} while (!css_tryget(&memcg->css));
1271 	rcu_read_unlock();
1272 	return memcg;
1273 }
1274 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1275 
1276 /**
1277  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1278  */
1279 struct mem_cgroup *get_mem_cgroup_from_current(void)
1280 {
1281 	struct mem_cgroup *memcg;
1282 
1283 	if (mem_cgroup_disabled())
1284 		return NULL;
1285 
1286 again:
1287 	rcu_read_lock();
1288 	memcg = mem_cgroup_from_task(current);
1289 	if (!css_tryget(&memcg->css)) {
1290 		rcu_read_unlock();
1291 		goto again;
1292 	}
1293 	rcu_read_unlock();
1294 	return memcg;
1295 }
1296 
1297 /**
1298  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1299  * @root: hierarchy root
1300  * @prev: previously returned memcg, NULL on first invocation
1301  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1302  *
1303  * Returns references to children of the hierarchy below @root, or
1304  * @root itself, or %NULL after a full round-trip.
1305  *
1306  * Caller must pass the return value in @prev on subsequent
1307  * invocations for reference counting, or use mem_cgroup_iter_break()
1308  * to cancel a hierarchy walk before the round-trip is complete.
1309  *
1310  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1311  * in the hierarchy among all concurrent reclaimers operating on the
1312  * same node.
1313  */
1314 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1315 				   struct mem_cgroup *prev,
1316 				   struct mem_cgroup_reclaim_cookie *reclaim)
1317 {
1318 	struct mem_cgroup_reclaim_iter *iter;
1319 	struct cgroup_subsys_state *css = NULL;
1320 	struct mem_cgroup *memcg = NULL;
1321 	struct mem_cgroup *pos = NULL;
1322 
1323 	if (mem_cgroup_disabled())
1324 		return NULL;
1325 
1326 	if (!root)
1327 		root = root_mem_cgroup;
1328 
1329 	rcu_read_lock();
1330 
1331 	if (reclaim) {
1332 		struct mem_cgroup_per_node *mz;
1333 
1334 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1335 		iter = &mz->iter;
1336 
1337 		/*
1338 		 * On start, join the current reclaim iteration cycle.
1339 		 * Exit when a concurrent walker completes it.
1340 		 */
1341 		if (!prev)
1342 			reclaim->generation = iter->generation;
1343 		else if (reclaim->generation != iter->generation)
1344 			goto out_unlock;
1345 
1346 		while (1) {
1347 			pos = READ_ONCE(iter->position);
1348 			if (!pos || css_tryget(&pos->css))
1349 				break;
1350 			/*
1351 			 * css reference reached zero, so iter->position will
1352 			 * be cleared by ->css_released. However, we should not
1353 			 * rely on this happening soon, because ->css_released
1354 			 * is called from a work queue, and by busy-waiting we
1355 			 * might block it. So we clear iter->position right
1356 			 * away.
1357 			 */
1358 			(void)cmpxchg(&iter->position, pos, NULL);
1359 		}
1360 	} else if (prev) {
1361 		pos = prev;
1362 	}
1363 
1364 	if (pos)
1365 		css = &pos->css;
1366 
1367 	for (;;) {
1368 		css = css_next_descendant_pre(css, &root->css);
1369 		if (!css) {
1370 			/*
1371 			 * Reclaimers share the hierarchy walk, and a
1372 			 * new one might jump in right at the end of
1373 			 * the hierarchy - make sure they see at least
1374 			 * one group and restart from the beginning.
1375 			 */
1376 			if (!prev)
1377 				continue;
1378 			break;
1379 		}
1380 
1381 		/*
1382 		 * Verify the css and acquire a reference.  The root
1383 		 * is provided by the caller, so we know it's alive
1384 		 * and kicking, and don't take an extra reference.
1385 		 */
1386 		if (css == &root->css || css_tryget(css)) {
1387 			memcg = mem_cgroup_from_css(css);
1388 			break;
1389 		}
1390 	}
1391 
1392 	if (reclaim) {
1393 		/*
1394 		 * The position could have already been updated by a competing
1395 		 * thread, so check that the value hasn't changed since we read
1396 		 * it to avoid reclaiming from the same cgroup twice.
1397 		 */
1398 		(void)cmpxchg(&iter->position, pos, memcg);
1399 
1400 		if (pos)
1401 			css_put(&pos->css);
1402 
1403 		if (!memcg)
1404 			iter->generation++;
1405 	}
1406 
1407 out_unlock:
1408 	rcu_read_unlock();
1409 	if (prev && prev != root)
1410 		css_put(&prev->css);
1411 
1412 	return memcg;
1413 }
1414 
1415 /**
1416  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1417  * @root: hierarchy root
1418  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1419  */
1420 void mem_cgroup_iter_break(struct mem_cgroup *root,
1421 			   struct mem_cgroup *prev)
1422 {
1423 	if (!root)
1424 		root = root_mem_cgroup;
1425 	if (prev && prev != root)
1426 		css_put(&prev->css);
1427 }
1428 
1429 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1430 					struct mem_cgroup *dead_memcg)
1431 {
1432 	struct mem_cgroup_reclaim_iter *iter;
1433 	struct mem_cgroup_per_node *mz;
1434 	int nid;
1435 
1436 	for_each_node(nid) {
1437 		mz = from->nodeinfo[nid];
1438 		iter = &mz->iter;
1439 		cmpxchg(&iter->position, dead_memcg, NULL);
1440 	}
1441 }
1442 
1443 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1444 {
1445 	struct mem_cgroup *memcg = dead_memcg;
1446 	struct mem_cgroup *last;
1447 
1448 	do {
1449 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1450 		last = memcg;
1451 	} while ((memcg = parent_mem_cgroup(memcg)));
1452 
1453 	/*
1454 	 * When cgroup1 non-hierarchy mode is used,
1455 	 * parent_mem_cgroup() does not walk all the way up to the
1456 	 * cgroup root (root_mem_cgroup). So we have to handle
1457 	 * dead_memcg from cgroup root separately.
1458 	 */
1459 	if (!mem_cgroup_is_root(last))
1460 		__invalidate_reclaim_iterators(root_mem_cgroup,
1461 						dead_memcg);
1462 }
1463 
1464 /**
1465  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1466  * @memcg: hierarchy root
1467  * @fn: function to call for each task
1468  * @arg: argument passed to @fn
1469  *
1470  * This function iterates over tasks attached to @memcg or to any of its
1471  * descendants and calls @fn for each task. If @fn returns a non-zero
1472  * value, the function breaks the iteration loop. Otherwise, it will iterate
1473  * over all tasks and return 0.
1474  *
1475  * This function must not be called for the root memory cgroup.
1476  */
1477 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1478 			   int (*fn)(struct task_struct *, void *), void *arg)
1479 {
1480 	struct mem_cgroup *iter;
1481 	int ret = 0;
1482 
1483 	BUG_ON(mem_cgroup_is_root(memcg));
1484 
1485 	for_each_mem_cgroup_tree(iter, memcg) {
1486 		struct css_task_iter it;
1487 		struct task_struct *task;
1488 
1489 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1490 		while (!ret && (task = css_task_iter_next(&it)))
1491 			ret = fn(task, arg);
1492 		css_task_iter_end(&it);
1493 		if (ret) {
1494 			mem_cgroup_iter_break(memcg, iter);
1495 			break;
1496 		}
1497 	}
1498 }
1499 
1500 #ifdef CONFIG_DEBUG_VM
1501 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1502 {
1503 	struct mem_cgroup *memcg;
1504 
1505 	if (mem_cgroup_disabled())
1506 		return;
1507 
1508 	memcg = folio_memcg(folio);
1509 
1510 	if (!memcg)
1511 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1512 	else
1513 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1514 }
1515 #endif
1516 
1517 /**
1518  * folio_lruvec_lock - Lock the lruvec for a folio.
1519  * @folio: Pointer to the folio.
1520  *
1521  * These functions are safe to use under any of the following conditions:
1522  * - folio locked
1523  * - folio_test_lru false
1524  * - folio_memcg_lock()
1525  * - folio frozen (refcount of 0)
1526  *
1527  * Return: The lruvec this folio is on with its lock held.
1528  */
1529 struct lruvec *folio_lruvec_lock(struct folio *folio)
1530 {
1531 	struct lruvec *lruvec = folio_lruvec(folio);
1532 
1533 	spin_lock(&lruvec->lru_lock);
1534 	lruvec_memcg_debug(lruvec, folio);
1535 
1536 	return lruvec;
1537 }
1538 
1539 /**
1540  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1541  * @folio: Pointer to the folio.
1542  *
1543  * These functions are safe to use under any of the following conditions:
1544  * - folio locked
1545  * - folio_test_lru false
1546  * - folio_memcg_lock()
1547  * - folio frozen (refcount of 0)
1548  *
1549  * Return: The lruvec this folio is on with its lock held and interrupts
1550  * disabled.
1551  */
1552 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1553 {
1554 	struct lruvec *lruvec = folio_lruvec(folio);
1555 
1556 	spin_lock_irq(&lruvec->lru_lock);
1557 	lruvec_memcg_debug(lruvec, folio);
1558 
1559 	return lruvec;
1560 }
1561 
1562 /**
1563  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1564  * @folio: Pointer to the folio.
1565  * @flags: Pointer to irqsave flags.
1566  *
1567  * These functions are safe to use under any of the following conditions:
1568  * - folio locked
1569  * - folio_test_lru false
1570  * - folio_memcg_lock()
1571  * - folio frozen (refcount of 0)
1572  *
1573  * Return: The lruvec this folio is on with its lock held and interrupts
1574  * disabled.
1575  */
1576 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1577 		unsigned long *flags)
1578 {
1579 	struct lruvec *lruvec = folio_lruvec(folio);
1580 
1581 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1582 	lruvec_memcg_debug(lruvec, folio);
1583 
1584 	return lruvec;
1585 }
1586 
1587 /**
1588  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1589  * @lruvec: mem_cgroup per zone lru vector
1590  * @lru: index of lru list the page is sitting on
1591  * @zid: zone id of the accounted pages
1592  * @nr_pages: positive when adding or negative when removing
1593  *
1594  * This function must be called under lru_lock, just before a page is added
1595  * to or just after a page is removed from an lru list.
1596  */
1597 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1598 				int zid, int nr_pages)
1599 {
1600 	struct mem_cgroup_per_node *mz;
1601 	unsigned long *lru_size;
1602 	long size;
1603 
1604 	if (mem_cgroup_disabled())
1605 		return;
1606 
1607 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1608 	lru_size = &mz->lru_zone_size[zid][lru];
1609 
1610 	if (nr_pages < 0)
1611 		*lru_size += nr_pages;
1612 
1613 	size = *lru_size;
1614 	if (WARN_ONCE(size < 0,
1615 		"%s(%p, %d, %d): lru_size %ld\n",
1616 		__func__, lruvec, lru, nr_pages, size)) {
1617 		VM_BUG_ON(1);
1618 		*lru_size = 0;
1619 	}
1620 
1621 	if (nr_pages > 0)
1622 		*lru_size += nr_pages;
1623 }
1624 
1625 /**
1626  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1627  * @memcg: the memory cgroup
1628  *
1629  * Returns the maximum amount of memory @mem can be charged with, in
1630  * pages.
1631  */
1632 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1633 {
1634 	unsigned long margin = 0;
1635 	unsigned long count;
1636 	unsigned long limit;
1637 
1638 	count = page_counter_read(&memcg->memory);
1639 	limit = READ_ONCE(memcg->memory.max);
1640 	if (count < limit)
1641 		margin = limit - count;
1642 
1643 	if (do_memsw_account()) {
1644 		count = page_counter_read(&memcg->memsw);
1645 		limit = READ_ONCE(memcg->memsw.max);
1646 		if (count < limit)
1647 			margin = min(margin, limit - count);
1648 		else
1649 			margin = 0;
1650 	}
1651 
1652 	return margin;
1653 }
1654 
1655 /*
1656  * A routine for checking "mem" is under move_account() or not.
1657  *
1658  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1659  * moving cgroups. This is for waiting at high-memory pressure
1660  * caused by "move".
1661  */
1662 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1663 {
1664 	struct mem_cgroup *from;
1665 	struct mem_cgroup *to;
1666 	bool ret = false;
1667 	/*
1668 	 * Unlike task_move routines, we access mc.to, mc.from not under
1669 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1670 	 */
1671 	spin_lock(&mc.lock);
1672 	from = mc.from;
1673 	to = mc.to;
1674 	if (!from)
1675 		goto unlock;
1676 
1677 	ret = mem_cgroup_is_descendant(from, memcg) ||
1678 		mem_cgroup_is_descendant(to, memcg);
1679 unlock:
1680 	spin_unlock(&mc.lock);
1681 	return ret;
1682 }
1683 
1684 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1685 {
1686 	if (mc.moving_task && current != mc.moving_task) {
1687 		if (mem_cgroup_under_move(memcg)) {
1688 			DEFINE_WAIT(wait);
1689 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1690 			/* moving charge context might have finished. */
1691 			if (mc.moving_task)
1692 				schedule();
1693 			finish_wait(&mc.waitq, &wait);
1694 			return true;
1695 		}
1696 	}
1697 	return false;
1698 }
1699 
1700 struct memory_stat {
1701 	const char *name;
1702 	unsigned int idx;
1703 };
1704 
1705 static const struct memory_stat memory_stats[] = {
1706 	{ "anon",			NR_ANON_MAPPED			},
1707 	{ "file",			NR_FILE_PAGES			},
1708 	{ "kernel",			MEMCG_KMEM			},
1709 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1710 	{ "pagetables",			NR_PAGETABLE			},
1711 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1712 	{ "percpu",			MEMCG_PERCPU_B			},
1713 	{ "sock",			MEMCG_SOCK			},
1714 	{ "vmalloc",			MEMCG_VMALLOC			},
1715 	{ "shmem",			NR_SHMEM			},
1716 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1717 	{ "zswap",			MEMCG_ZSWAP_B			},
1718 	{ "zswapped",			MEMCG_ZSWAPPED			},
1719 #endif
1720 	{ "file_mapped",		NR_FILE_MAPPED			},
1721 	{ "file_dirty",			NR_FILE_DIRTY			},
1722 	{ "file_writeback",		NR_WRITEBACK			},
1723 #ifdef CONFIG_SWAP
1724 	{ "swapcached",			NR_SWAPCACHE			},
1725 #endif
1726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1727 	{ "anon_thp",			NR_ANON_THPS			},
1728 	{ "file_thp",			NR_FILE_THPS			},
1729 	{ "shmem_thp",			NR_SHMEM_THPS			},
1730 #endif
1731 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1732 	{ "active_anon",		NR_ACTIVE_ANON			},
1733 	{ "inactive_file",		NR_INACTIVE_FILE		},
1734 	{ "active_file",		NR_ACTIVE_FILE			},
1735 	{ "unevictable",		NR_UNEVICTABLE			},
1736 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1737 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1738 
1739 	/* The memory events */
1740 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1741 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1742 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1743 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1744 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1745 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1746 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1747 };
1748 
1749 /* The actual unit of the state item, not the same as the output unit */
1750 static int memcg_page_state_unit(int item)
1751 {
1752 	switch (item) {
1753 	case MEMCG_PERCPU_B:
1754 	case MEMCG_ZSWAP_B:
1755 	case NR_SLAB_RECLAIMABLE_B:
1756 	case NR_SLAB_UNRECLAIMABLE_B:
1757 		return 1;
1758 	case NR_KERNEL_STACK_KB:
1759 		return SZ_1K;
1760 	default:
1761 		return PAGE_SIZE;
1762 	}
1763 }
1764 
1765 /* Translate stat items to the correct unit for memory.stat output */
1766 static int memcg_page_state_output_unit(int item)
1767 {
1768 	/*
1769 	 * Workingset state is actually in pages, but we export it to userspace
1770 	 * as a scalar count of events, so special case it here.
1771 	 */
1772 	switch (item) {
1773 	case WORKINGSET_REFAULT_ANON:
1774 	case WORKINGSET_REFAULT_FILE:
1775 	case WORKINGSET_ACTIVATE_ANON:
1776 	case WORKINGSET_ACTIVATE_FILE:
1777 	case WORKINGSET_RESTORE_ANON:
1778 	case WORKINGSET_RESTORE_FILE:
1779 	case WORKINGSET_NODERECLAIM:
1780 		return 1;
1781 	default:
1782 		return memcg_page_state_unit(item);
1783 	}
1784 }
1785 
1786 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1787 						    int item)
1788 {
1789 	return memcg_page_state(memcg, item) *
1790 		memcg_page_state_output_unit(item);
1791 }
1792 
1793 static inline unsigned long memcg_page_state_local_output(
1794 		struct mem_cgroup *memcg, int item)
1795 {
1796 	return memcg_page_state_local(memcg, item) *
1797 		memcg_page_state_output_unit(item);
1798 }
1799 
1800 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1801 {
1802 	int i;
1803 
1804 	/*
1805 	 * Provide statistics on the state of the memory subsystem as
1806 	 * well as cumulative event counters that show past behavior.
1807 	 *
1808 	 * This list is ordered following a combination of these gradients:
1809 	 * 1) generic big picture -> specifics and details
1810 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1811 	 *
1812 	 * Current memory state:
1813 	 */
1814 	mem_cgroup_flush_stats(memcg);
1815 
1816 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1817 		u64 size;
1818 
1819 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1820 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1821 
1822 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1823 			size += memcg_page_state_output(memcg,
1824 							NR_SLAB_RECLAIMABLE_B);
1825 			seq_buf_printf(s, "slab %llu\n", size);
1826 		}
1827 	}
1828 
1829 	/* Accumulated memory events */
1830 	seq_buf_printf(s, "pgscan %lu\n",
1831 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1832 		       memcg_events(memcg, PGSCAN_DIRECT) +
1833 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1834 	seq_buf_printf(s, "pgsteal %lu\n",
1835 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1836 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1837 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1838 
1839 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1840 		if (memcg_vm_event_stat[i] == PGPGIN ||
1841 		    memcg_vm_event_stat[i] == PGPGOUT)
1842 			continue;
1843 
1844 		seq_buf_printf(s, "%s %lu\n",
1845 			       vm_event_name(memcg_vm_event_stat[i]),
1846 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1847 	}
1848 
1849 	/* The above should easily fit into one page */
1850 	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1851 }
1852 
1853 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1854 
1855 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1856 {
1857 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1858 		memcg_stat_format(memcg, s);
1859 	else
1860 		memcg1_stat_format(memcg, s);
1861 	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1862 }
1863 
1864 /**
1865  * mem_cgroup_print_oom_context: Print OOM information relevant to
1866  * memory controller.
1867  * @memcg: The memory cgroup that went over limit
1868  * @p: Task that is going to be killed
1869  *
1870  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1871  * enabled
1872  */
1873 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1874 {
1875 	rcu_read_lock();
1876 
1877 	if (memcg) {
1878 		pr_cont(",oom_memcg=");
1879 		pr_cont_cgroup_path(memcg->css.cgroup);
1880 	} else
1881 		pr_cont(",global_oom");
1882 	if (p) {
1883 		pr_cont(",task_memcg=");
1884 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1885 	}
1886 	rcu_read_unlock();
1887 }
1888 
1889 /**
1890  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1891  * memory controller.
1892  * @memcg: The memory cgroup that went over limit
1893  */
1894 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1895 {
1896 	/* Use static buffer, for the caller is holding oom_lock. */
1897 	static char buf[PAGE_SIZE];
1898 	struct seq_buf s;
1899 
1900 	lockdep_assert_held(&oom_lock);
1901 
1902 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1903 		K((u64)page_counter_read(&memcg->memory)),
1904 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1905 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1906 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1907 			K((u64)page_counter_read(&memcg->swap)),
1908 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1909 	else {
1910 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1911 			K((u64)page_counter_read(&memcg->memsw)),
1912 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1913 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1914 			K((u64)page_counter_read(&memcg->kmem)),
1915 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1916 	}
1917 
1918 	pr_info("Memory cgroup stats for ");
1919 	pr_cont_cgroup_path(memcg->css.cgroup);
1920 	pr_cont(":");
1921 	seq_buf_init(&s, buf, sizeof(buf));
1922 	memory_stat_format(memcg, &s);
1923 	seq_buf_do_printk(&s, KERN_INFO);
1924 }
1925 
1926 /*
1927  * Return the memory (and swap, if configured) limit for a memcg.
1928  */
1929 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1930 {
1931 	unsigned long max = READ_ONCE(memcg->memory.max);
1932 
1933 	if (do_memsw_account()) {
1934 		if (mem_cgroup_swappiness(memcg)) {
1935 			/* Calculate swap excess capacity from memsw limit */
1936 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1937 
1938 			max += min(swap, (unsigned long)total_swap_pages);
1939 		}
1940 	} else {
1941 		if (mem_cgroup_swappiness(memcg))
1942 			max += min(READ_ONCE(memcg->swap.max),
1943 				   (unsigned long)total_swap_pages);
1944 	}
1945 	return max;
1946 }
1947 
1948 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1949 {
1950 	return page_counter_read(&memcg->memory);
1951 }
1952 
1953 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1954 				     int order)
1955 {
1956 	struct oom_control oc = {
1957 		.zonelist = NULL,
1958 		.nodemask = NULL,
1959 		.memcg = memcg,
1960 		.gfp_mask = gfp_mask,
1961 		.order = order,
1962 	};
1963 	bool ret = true;
1964 
1965 	if (mutex_lock_killable(&oom_lock))
1966 		return true;
1967 
1968 	if (mem_cgroup_margin(memcg) >= (1 << order))
1969 		goto unlock;
1970 
1971 	/*
1972 	 * A few threads which were not waiting at mutex_lock_killable() can
1973 	 * fail to bail out. Therefore, check again after holding oom_lock.
1974 	 */
1975 	ret = task_is_dying() || out_of_memory(&oc);
1976 
1977 unlock:
1978 	mutex_unlock(&oom_lock);
1979 	return ret;
1980 }
1981 
1982 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1983 				   pg_data_t *pgdat,
1984 				   gfp_t gfp_mask,
1985 				   unsigned long *total_scanned)
1986 {
1987 	struct mem_cgroup *victim = NULL;
1988 	int total = 0;
1989 	int loop = 0;
1990 	unsigned long excess;
1991 	unsigned long nr_scanned;
1992 	struct mem_cgroup_reclaim_cookie reclaim = {
1993 		.pgdat = pgdat,
1994 	};
1995 
1996 	excess = soft_limit_excess(root_memcg);
1997 
1998 	while (1) {
1999 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2000 		if (!victim) {
2001 			loop++;
2002 			if (loop >= 2) {
2003 				/*
2004 				 * If we have not been able to reclaim
2005 				 * anything, it might because there are
2006 				 * no reclaimable pages under this hierarchy
2007 				 */
2008 				if (!total)
2009 					break;
2010 				/*
2011 				 * We want to do more targeted reclaim.
2012 				 * excess >> 2 is not to excessive so as to
2013 				 * reclaim too much, nor too less that we keep
2014 				 * coming back to reclaim from this cgroup
2015 				 */
2016 				if (total >= (excess >> 2) ||
2017 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2018 					break;
2019 			}
2020 			continue;
2021 		}
2022 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
2023 					pgdat, &nr_scanned);
2024 		*total_scanned += nr_scanned;
2025 		if (!soft_limit_excess(root_memcg))
2026 			break;
2027 	}
2028 	mem_cgroup_iter_break(root_memcg, victim);
2029 	return total;
2030 }
2031 
2032 #ifdef CONFIG_LOCKDEP
2033 static struct lockdep_map memcg_oom_lock_dep_map = {
2034 	.name = "memcg_oom_lock",
2035 };
2036 #endif
2037 
2038 static DEFINE_SPINLOCK(memcg_oom_lock);
2039 
2040 /*
2041  * Check OOM-Killer is already running under our hierarchy.
2042  * If someone is running, return false.
2043  */
2044 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2045 {
2046 	struct mem_cgroup *iter, *failed = NULL;
2047 
2048 	spin_lock(&memcg_oom_lock);
2049 
2050 	for_each_mem_cgroup_tree(iter, memcg) {
2051 		if (iter->oom_lock) {
2052 			/*
2053 			 * this subtree of our hierarchy is already locked
2054 			 * so we cannot give a lock.
2055 			 */
2056 			failed = iter;
2057 			mem_cgroup_iter_break(memcg, iter);
2058 			break;
2059 		} else
2060 			iter->oom_lock = true;
2061 	}
2062 
2063 	if (failed) {
2064 		/*
2065 		 * OK, we failed to lock the whole subtree so we have
2066 		 * to clean up what we set up to the failing subtree
2067 		 */
2068 		for_each_mem_cgroup_tree(iter, memcg) {
2069 			if (iter == failed) {
2070 				mem_cgroup_iter_break(memcg, iter);
2071 				break;
2072 			}
2073 			iter->oom_lock = false;
2074 		}
2075 	} else
2076 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2077 
2078 	spin_unlock(&memcg_oom_lock);
2079 
2080 	return !failed;
2081 }
2082 
2083 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2084 {
2085 	struct mem_cgroup *iter;
2086 
2087 	spin_lock(&memcg_oom_lock);
2088 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
2089 	for_each_mem_cgroup_tree(iter, memcg)
2090 		iter->oom_lock = false;
2091 	spin_unlock(&memcg_oom_lock);
2092 }
2093 
2094 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2095 {
2096 	struct mem_cgroup *iter;
2097 
2098 	spin_lock(&memcg_oom_lock);
2099 	for_each_mem_cgroup_tree(iter, memcg)
2100 		iter->under_oom++;
2101 	spin_unlock(&memcg_oom_lock);
2102 }
2103 
2104 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2105 {
2106 	struct mem_cgroup *iter;
2107 
2108 	/*
2109 	 * Be careful about under_oom underflows because a child memcg
2110 	 * could have been added after mem_cgroup_mark_under_oom.
2111 	 */
2112 	spin_lock(&memcg_oom_lock);
2113 	for_each_mem_cgroup_tree(iter, memcg)
2114 		if (iter->under_oom > 0)
2115 			iter->under_oom--;
2116 	spin_unlock(&memcg_oom_lock);
2117 }
2118 
2119 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2120 
2121 struct oom_wait_info {
2122 	struct mem_cgroup *memcg;
2123 	wait_queue_entry_t	wait;
2124 };
2125 
2126 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
2127 	unsigned mode, int sync, void *arg)
2128 {
2129 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2130 	struct mem_cgroup *oom_wait_memcg;
2131 	struct oom_wait_info *oom_wait_info;
2132 
2133 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2134 	oom_wait_memcg = oom_wait_info->memcg;
2135 
2136 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
2137 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
2138 		return 0;
2139 	return autoremove_wake_function(wait, mode, sync, arg);
2140 }
2141 
2142 static void memcg_oom_recover(struct mem_cgroup *memcg)
2143 {
2144 	/*
2145 	 * For the following lockless ->under_oom test, the only required
2146 	 * guarantee is that it must see the state asserted by an OOM when
2147 	 * this function is called as a result of userland actions
2148 	 * triggered by the notification of the OOM.  This is trivially
2149 	 * achieved by invoking mem_cgroup_mark_under_oom() before
2150 	 * triggering notification.
2151 	 */
2152 	if (memcg && memcg->under_oom)
2153 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2154 }
2155 
2156 /*
2157  * Returns true if successfully killed one or more processes. Though in some
2158  * corner cases it can return true even without killing any process.
2159  */
2160 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2161 {
2162 	bool locked, ret;
2163 
2164 	if (order > PAGE_ALLOC_COSTLY_ORDER)
2165 		return false;
2166 
2167 	memcg_memory_event(memcg, MEMCG_OOM);
2168 
2169 	/*
2170 	 * We are in the middle of the charge context here, so we
2171 	 * don't want to block when potentially sitting on a callstack
2172 	 * that holds all kinds of filesystem and mm locks.
2173 	 *
2174 	 * cgroup1 allows disabling the OOM killer and waiting for outside
2175 	 * handling until the charge can succeed; remember the context and put
2176 	 * the task to sleep at the end of the page fault when all locks are
2177 	 * released.
2178 	 *
2179 	 * On the other hand, in-kernel OOM killer allows for an async victim
2180 	 * memory reclaim (oom_reaper) and that means that we are not solely
2181 	 * relying on the oom victim to make a forward progress and we can
2182 	 * invoke the oom killer here.
2183 	 *
2184 	 * Please note that mem_cgroup_out_of_memory might fail to find a
2185 	 * victim and then we have to bail out from the charge path.
2186 	 */
2187 	if (READ_ONCE(memcg->oom_kill_disable)) {
2188 		if (current->in_user_fault) {
2189 			css_get(&memcg->css);
2190 			current->memcg_in_oom = memcg;
2191 		}
2192 		return false;
2193 	}
2194 
2195 	mem_cgroup_mark_under_oom(memcg);
2196 
2197 	locked = mem_cgroup_oom_trylock(memcg);
2198 
2199 	if (locked)
2200 		mem_cgroup_oom_notify(memcg);
2201 
2202 	mem_cgroup_unmark_under_oom(memcg);
2203 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
2204 
2205 	if (locked)
2206 		mem_cgroup_oom_unlock(memcg);
2207 
2208 	return ret;
2209 }
2210 
2211 /**
2212  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2213  * @handle: actually kill/wait or just clean up the OOM state
2214  *
2215  * This has to be called at the end of a page fault if the memcg OOM
2216  * handler was enabled.
2217  *
2218  * Memcg supports userspace OOM handling where failed allocations must
2219  * sleep on a waitqueue until the userspace task resolves the
2220  * situation.  Sleeping directly in the charge context with all kinds
2221  * of locks held is not a good idea, instead we remember an OOM state
2222  * in the task and mem_cgroup_oom_synchronize() has to be called at
2223  * the end of the page fault to complete the OOM handling.
2224  *
2225  * Returns %true if an ongoing memcg OOM situation was detected and
2226  * completed, %false otherwise.
2227  */
2228 bool mem_cgroup_oom_synchronize(bool handle)
2229 {
2230 	struct mem_cgroup *memcg = current->memcg_in_oom;
2231 	struct oom_wait_info owait;
2232 	bool locked;
2233 
2234 	/* OOM is global, do not handle */
2235 	if (!memcg)
2236 		return false;
2237 
2238 	if (!handle)
2239 		goto cleanup;
2240 
2241 	owait.memcg = memcg;
2242 	owait.wait.flags = 0;
2243 	owait.wait.func = memcg_oom_wake_function;
2244 	owait.wait.private = current;
2245 	INIT_LIST_HEAD(&owait.wait.entry);
2246 
2247 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2248 	mem_cgroup_mark_under_oom(memcg);
2249 
2250 	locked = mem_cgroup_oom_trylock(memcg);
2251 
2252 	if (locked)
2253 		mem_cgroup_oom_notify(memcg);
2254 
2255 	schedule();
2256 	mem_cgroup_unmark_under_oom(memcg);
2257 	finish_wait(&memcg_oom_waitq, &owait.wait);
2258 
2259 	if (locked)
2260 		mem_cgroup_oom_unlock(memcg);
2261 cleanup:
2262 	current->memcg_in_oom = NULL;
2263 	css_put(&memcg->css);
2264 	return true;
2265 }
2266 
2267 /**
2268  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2269  * @victim: task to be killed by the OOM killer
2270  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2271  *
2272  * Returns a pointer to a memory cgroup, which has to be cleaned up
2273  * by killing all belonging OOM-killable tasks.
2274  *
2275  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2276  */
2277 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2278 					    struct mem_cgroup *oom_domain)
2279 {
2280 	struct mem_cgroup *oom_group = NULL;
2281 	struct mem_cgroup *memcg;
2282 
2283 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2284 		return NULL;
2285 
2286 	if (!oom_domain)
2287 		oom_domain = root_mem_cgroup;
2288 
2289 	rcu_read_lock();
2290 
2291 	memcg = mem_cgroup_from_task(victim);
2292 	if (mem_cgroup_is_root(memcg))
2293 		goto out;
2294 
2295 	/*
2296 	 * If the victim task has been asynchronously moved to a different
2297 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2298 	 * In this case it's better to ignore memory.group.oom.
2299 	 */
2300 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2301 		goto out;
2302 
2303 	/*
2304 	 * Traverse the memory cgroup hierarchy from the victim task's
2305 	 * cgroup up to the OOMing cgroup (or root) to find the
2306 	 * highest-level memory cgroup with oom.group set.
2307 	 */
2308 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2309 		if (READ_ONCE(memcg->oom_group))
2310 			oom_group = memcg;
2311 
2312 		if (memcg == oom_domain)
2313 			break;
2314 	}
2315 
2316 	if (oom_group)
2317 		css_get(&oom_group->css);
2318 out:
2319 	rcu_read_unlock();
2320 
2321 	return oom_group;
2322 }
2323 
2324 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2325 {
2326 	pr_info("Tasks in ");
2327 	pr_cont_cgroup_path(memcg->css.cgroup);
2328 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2329 }
2330 
2331 /**
2332  * folio_memcg_lock - Bind a folio to its memcg.
2333  * @folio: The folio.
2334  *
2335  * This function prevents unlocked LRU folios from being moved to
2336  * another cgroup.
2337  *
2338  * It ensures lifetime of the bound memcg.  The caller is responsible
2339  * for the lifetime of the folio.
2340  */
2341 void folio_memcg_lock(struct folio *folio)
2342 {
2343 	struct mem_cgroup *memcg;
2344 	unsigned long flags;
2345 
2346 	/*
2347 	 * The RCU lock is held throughout the transaction.  The fast
2348 	 * path can get away without acquiring the memcg->move_lock
2349 	 * because page moving starts with an RCU grace period.
2350          */
2351 	rcu_read_lock();
2352 
2353 	if (mem_cgroup_disabled())
2354 		return;
2355 again:
2356 	memcg = folio_memcg(folio);
2357 	if (unlikely(!memcg))
2358 		return;
2359 
2360 #ifdef CONFIG_PROVE_LOCKING
2361 	local_irq_save(flags);
2362 	might_lock(&memcg->move_lock);
2363 	local_irq_restore(flags);
2364 #endif
2365 
2366 	if (atomic_read(&memcg->moving_account) <= 0)
2367 		return;
2368 
2369 	spin_lock_irqsave(&memcg->move_lock, flags);
2370 	if (memcg != folio_memcg(folio)) {
2371 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2372 		goto again;
2373 	}
2374 
2375 	/*
2376 	 * When charge migration first begins, we can have multiple
2377 	 * critical sections holding the fast-path RCU lock and one
2378 	 * holding the slowpath move_lock. Track the task who has the
2379 	 * move_lock for folio_memcg_unlock().
2380 	 */
2381 	memcg->move_lock_task = current;
2382 	memcg->move_lock_flags = flags;
2383 }
2384 
2385 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2386 {
2387 	if (memcg && memcg->move_lock_task == current) {
2388 		unsigned long flags = memcg->move_lock_flags;
2389 
2390 		memcg->move_lock_task = NULL;
2391 		memcg->move_lock_flags = 0;
2392 
2393 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2394 	}
2395 
2396 	rcu_read_unlock();
2397 }
2398 
2399 /**
2400  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2401  * @folio: The folio.
2402  *
2403  * This releases the binding created by folio_memcg_lock().  This does
2404  * not change the accounting of this folio to its memcg, but it does
2405  * permit others to change it.
2406  */
2407 void folio_memcg_unlock(struct folio *folio)
2408 {
2409 	__folio_memcg_unlock(folio_memcg(folio));
2410 }
2411 
2412 struct memcg_stock_pcp {
2413 	local_lock_t stock_lock;
2414 	struct mem_cgroup *cached; /* this never be root cgroup */
2415 	unsigned int nr_pages;
2416 
2417 #ifdef CONFIG_MEMCG_KMEM
2418 	struct obj_cgroup *cached_objcg;
2419 	struct pglist_data *cached_pgdat;
2420 	unsigned int nr_bytes;
2421 	int nr_slab_reclaimable_b;
2422 	int nr_slab_unreclaimable_b;
2423 #endif
2424 
2425 	struct work_struct work;
2426 	unsigned long flags;
2427 #define FLUSHING_CACHED_CHARGE	0
2428 };
2429 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2430 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2431 };
2432 static DEFINE_MUTEX(percpu_charge_mutex);
2433 
2434 #ifdef CONFIG_MEMCG_KMEM
2435 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2436 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2437 				     struct mem_cgroup *root_memcg);
2438 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2439 
2440 #else
2441 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2442 {
2443 	return NULL;
2444 }
2445 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2446 				     struct mem_cgroup *root_memcg)
2447 {
2448 	return false;
2449 }
2450 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2451 {
2452 }
2453 #endif
2454 
2455 /**
2456  * consume_stock: Try to consume stocked charge on this cpu.
2457  * @memcg: memcg to consume from.
2458  * @nr_pages: how many pages to charge.
2459  *
2460  * The charges will only happen if @memcg matches the current cpu's memcg
2461  * stock, and at least @nr_pages are available in that stock.  Failure to
2462  * service an allocation will refill the stock.
2463  *
2464  * returns true if successful, false otherwise.
2465  */
2466 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2467 {
2468 	struct memcg_stock_pcp *stock;
2469 	unsigned int stock_pages;
2470 	unsigned long flags;
2471 	bool ret = false;
2472 
2473 	if (nr_pages > MEMCG_CHARGE_BATCH)
2474 		return ret;
2475 
2476 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2477 
2478 	stock = this_cpu_ptr(&memcg_stock);
2479 	stock_pages = READ_ONCE(stock->nr_pages);
2480 	if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
2481 		WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
2482 		ret = true;
2483 	}
2484 
2485 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2486 
2487 	return ret;
2488 }
2489 
2490 /*
2491  * Returns stocks cached in percpu and reset cached information.
2492  */
2493 static void drain_stock(struct memcg_stock_pcp *stock)
2494 {
2495 	unsigned int stock_pages = READ_ONCE(stock->nr_pages);
2496 	struct mem_cgroup *old = READ_ONCE(stock->cached);
2497 
2498 	if (!old)
2499 		return;
2500 
2501 	if (stock_pages) {
2502 		page_counter_uncharge(&old->memory, stock_pages);
2503 		if (do_memsw_account())
2504 			page_counter_uncharge(&old->memsw, stock_pages);
2505 
2506 		WRITE_ONCE(stock->nr_pages, 0);
2507 	}
2508 
2509 	css_put(&old->css);
2510 	WRITE_ONCE(stock->cached, NULL);
2511 }
2512 
2513 static void drain_local_stock(struct work_struct *dummy)
2514 {
2515 	struct memcg_stock_pcp *stock;
2516 	struct obj_cgroup *old = NULL;
2517 	unsigned long flags;
2518 
2519 	/*
2520 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2521 	 * drain_stock races is that we always operate on local CPU stock
2522 	 * here with IRQ disabled
2523 	 */
2524 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2525 
2526 	stock = this_cpu_ptr(&memcg_stock);
2527 	old = drain_obj_stock(stock);
2528 	drain_stock(stock);
2529 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2530 
2531 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2532 	obj_cgroup_put(old);
2533 }
2534 
2535 /*
2536  * Cache charges(val) to local per_cpu area.
2537  * This will be consumed by consume_stock() function, later.
2538  */
2539 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2540 {
2541 	struct memcg_stock_pcp *stock;
2542 	unsigned int stock_pages;
2543 
2544 	stock = this_cpu_ptr(&memcg_stock);
2545 	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2546 		drain_stock(stock);
2547 		css_get(&memcg->css);
2548 		WRITE_ONCE(stock->cached, memcg);
2549 	}
2550 	stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
2551 	WRITE_ONCE(stock->nr_pages, stock_pages);
2552 
2553 	if (stock_pages > MEMCG_CHARGE_BATCH)
2554 		drain_stock(stock);
2555 }
2556 
2557 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2558 {
2559 	unsigned long flags;
2560 
2561 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2562 	__refill_stock(memcg, nr_pages);
2563 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2564 }
2565 
2566 /*
2567  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2568  * of the hierarchy under it.
2569  */
2570 static void drain_all_stock(struct mem_cgroup *root_memcg)
2571 {
2572 	int cpu, curcpu;
2573 
2574 	/* If someone's already draining, avoid adding running more workers. */
2575 	if (!mutex_trylock(&percpu_charge_mutex))
2576 		return;
2577 	/*
2578 	 * Notify other cpus that system-wide "drain" is running
2579 	 * We do not care about races with the cpu hotplug because cpu down
2580 	 * as well as workers from this path always operate on the local
2581 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2582 	 */
2583 	migrate_disable();
2584 	curcpu = smp_processor_id();
2585 	for_each_online_cpu(cpu) {
2586 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2587 		struct mem_cgroup *memcg;
2588 		bool flush = false;
2589 
2590 		rcu_read_lock();
2591 		memcg = READ_ONCE(stock->cached);
2592 		if (memcg && READ_ONCE(stock->nr_pages) &&
2593 		    mem_cgroup_is_descendant(memcg, root_memcg))
2594 			flush = true;
2595 		else if (obj_stock_flush_required(stock, root_memcg))
2596 			flush = true;
2597 		rcu_read_unlock();
2598 
2599 		if (flush &&
2600 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2601 			if (cpu == curcpu)
2602 				drain_local_stock(&stock->work);
2603 			else if (!cpu_is_isolated(cpu))
2604 				schedule_work_on(cpu, &stock->work);
2605 		}
2606 	}
2607 	migrate_enable();
2608 	mutex_unlock(&percpu_charge_mutex);
2609 }
2610 
2611 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2612 {
2613 	struct memcg_stock_pcp *stock;
2614 
2615 	stock = &per_cpu(memcg_stock, cpu);
2616 	drain_stock(stock);
2617 
2618 	return 0;
2619 }
2620 
2621 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2622 				  unsigned int nr_pages,
2623 				  gfp_t gfp_mask)
2624 {
2625 	unsigned long nr_reclaimed = 0;
2626 
2627 	do {
2628 		unsigned long pflags;
2629 
2630 		if (page_counter_read(&memcg->memory) <=
2631 		    READ_ONCE(memcg->memory.high))
2632 			continue;
2633 
2634 		memcg_memory_event(memcg, MEMCG_HIGH);
2635 
2636 		psi_memstall_enter(&pflags);
2637 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2638 							gfp_mask,
2639 							MEMCG_RECLAIM_MAY_SWAP);
2640 		psi_memstall_leave(&pflags);
2641 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2642 		 !mem_cgroup_is_root(memcg));
2643 
2644 	return nr_reclaimed;
2645 }
2646 
2647 static void high_work_func(struct work_struct *work)
2648 {
2649 	struct mem_cgroup *memcg;
2650 
2651 	memcg = container_of(work, struct mem_cgroup, high_work);
2652 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2653 }
2654 
2655 /*
2656  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2657  * enough to still cause a significant slowdown in most cases, while still
2658  * allowing diagnostics and tracing to proceed without becoming stuck.
2659  */
2660 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2661 
2662 /*
2663  * When calculating the delay, we use these either side of the exponentiation to
2664  * maintain precision and scale to a reasonable number of jiffies (see the table
2665  * below.
2666  *
2667  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2668  *   overage ratio to a delay.
2669  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2670  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2671  *   to produce a reasonable delay curve.
2672  *
2673  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2674  * reasonable delay curve compared to precision-adjusted overage, not
2675  * penalising heavily at first, but still making sure that growth beyond the
2676  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2677  * example, with a high of 100 megabytes:
2678  *
2679  *  +-------+------------------------+
2680  *  | usage | time to allocate in ms |
2681  *  +-------+------------------------+
2682  *  | 100M  |                      0 |
2683  *  | 101M  |                      6 |
2684  *  | 102M  |                     25 |
2685  *  | 103M  |                     57 |
2686  *  | 104M  |                    102 |
2687  *  | 105M  |                    159 |
2688  *  | 106M  |                    230 |
2689  *  | 107M  |                    313 |
2690  *  | 108M  |                    409 |
2691  *  | 109M  |                    518 |
2692  *  | 110M  |                    639 |
2693  *  | 111M  |                    774 |
2694  *  | 112M  |                    921 |
2695  *  | 113M  |                   1081 |
2696  *  | 114M  |                   1254 |
2697  *  | 115M  |                   1439 |
2698  *  | 116M  |                   1638 |
2699  *  | 117M  |                   1849 |
2700  *  | 118M  |                   2000 |
2701  *  | 119M  |                   2000 |
2702  *  | 120M  |                   2000 |
2703  *  +-------+------------------------+
2704  */
2705  #define MEMCG_DELAY_PRECISION_SHIFT 20
2706  #define MEMCG_DELAY_SCALING_SHIFT 14
2707 
2708 static u64 calculate_overage(unsigned long usage, unsigned long high)
2709 {
2710 	u64 overage;
2711 
2712 	if (usage <= high)
2713 		return 0;
2714 
2715 	/*
2716 	 * Prevent division by 0 in overage calculation by acting as if
2717 	 * it was a threshold of 1 page
2718 	 */
2719 	high = max(high, 1UL);
2720 
2721 	overage = usage - high;
2722 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2723 	return div64_u64(overage, high);
2724 }
2725 
2726 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2727 {
2728 	u64 overage, max_overage = 0;
2729 
2730 	do {
2731 		overage = calculate_overage(page_counter_read(&memcg->memory),
2732 					    READ_ONCE(memcg->memory.high));
2733 		max_overage = max(overage, max_overage);
2734 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2735 		 !mem_cgroup_is_root(memcg));
2736 
2737 	return max_overage;
2738 }
2739 
2740 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2741 {
2742 	u64 overage, max_overage = 0;
2743 
2744 	do {
2745 		overage = calculate_overage(page_counter_read(&memcg->swap),
2746 					    READ_ONCE(memcg->swap.high));
2747 		if (overage)
2748 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2749 		max_overage = max(overage, max_overage);
2750 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2751 		 !mem_cgroup_is_root(memcg));
2752 
2753 	return max_overage;
2754 }
2755 
2756 /*
2757  * Get the number of jiffies that we should penalise a mischievous cgroup which
2758  * is exceeding its memory.high by checking both it and its ancestors.
2759  */
2760 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2761 					  unsigned int nr_pages,
2762 					  u64 max_overage)
2763 {
2764 	unsigned long penalty_jiffies;
2765 
2766 	if (!max_overage)
2767 		return 0;
2768 
2769 	/*
2770 	 * We use overage compared to memory.high to calculate the number of
2771 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2772 	 * fairly lenient on small overages, and increasingly harsh when the
2773 	 * memcg in question makes it clear that it has no intention of stopping
2774 	 * its crazy behaviour, so we exponentially increase the delay based on
2775 	 * overage amount.
2776 	 */
2777 	penalty_jiffies = max_overage * max_overage * HZ;
2778 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2779 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2780 
2781 	/*
2782 	 * Factor in the task's own contribution to the overage, such that four
2783 	 * N-sized allocations are throttled approximately the same as one
2784 	 * 4N-sized allocation.
2785 	 *
2786 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2787 	 * larger the current charge patch is than that.
2788 	 */
2789 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2790 }
2791 
2792 /*
2793  * Reclaims memory over the high limit. Called directly from
2794  * try_charge() (context permitting), as well as from the userland
2795  * return path where reclaim is always able to block.
2796  */
2797 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2798 {
2799 	unsigned long penalty_jiffies;
2800 	unsigned long pflags;
2801 	unsigned long nr_reclaimed;
2802 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2803 	int nr_retries = MAX_RECLAIM_RETRIES;
2804 	struct mem_cgroup *memcg;
2805 	bool in_retry = false;
2806 
2807 	if (likely(!nr_pages))
2808 		return;
2809 
2810 	memcg = get_mem_cgroup_from_mm(current->mm);
2811 	current->memcg_nr_pages_over_high = 0;
2812 
2813 retry_reclaim:
2814 	/*
2815 	 * Bail if the task is already exiting. Unlike memory.max,
2816 	 * memory.high enforcement isn't as strict, and there is no
2817 	 * OOM killer involved, which means the excess could already
2818 	 * be much bigger (and still growing) than it could for
2819 	 * memory.max; the dying task could get stuck in fruitless
2820 	 * reclaim for a long time, which isn't desirable.
2821 	 */
2822 	if (task_is_dying())
2823 		goto out;
2824 
2825 	/*
2826 	 * The allocating task should reclaim at least the batch size, but for
2827 	 * subsequent retries we only want to do what's necessary to prevent oom
2828 	 * or breaching resource isolation.
2829 	 *
2830 	 * This is distinct from memory.max or page allocator behaviour because
2831 	 * memory.high is currently batched, whereas memory.max and the page
2832 	 * allocator run every time an allocation is made.
2833 	 */
2834 	nr_reclaimed = reclaim_high(memcg,
2835 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2836 				    gfp_mask);
2837 
2838 	/*
2839 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2840 	 * allocators proactively to slow down excessive growth.
2841 	 */
2842 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2843 					       mem_find_max_overage(memcg));
2844 
2845 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2846 						swap_find_max_overage(memcg));
2847 
2848 	/*
2849 	 * Clamp the max delay per usermode return so as to still keep the
2850 	 * application moving forwards and also permit diagnostics, albeit
2851 	 * extremely slowly.
2852 	 */
2853 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2854 
2855 	/*
2856 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2857 	 * that it's not even worth doing, in an attempt to be nice to those who
2858 	 * go only a small amount over their memory.high value and maybe haven't
2859 	 * been aggressively reclaimed enough yet.
2860 	 */
2861 	if (penalty_jiffies <= HZ / 100)
2862 		goto out;
2863 
2864 	/*
2865 	 * If reclaim is making forward progress but we're still over
2866 	 * memory.high, we want to encourage that rather than doing allocator
2867 	 * throttling.
2868 	 */
2869 	if (nr_reclaimed || nr_retries--) {
2870 		in_retry = true;
2871 		goto retry_reclaim;
2872 	}
2873 
2874 	/*
2875 	 * Reclaim didn't manage to push usage below the limit, slow
2876 	 * this allocating task down.
2877 	 *
2878 	 * If we exit early, we're guaranteed to die (since
2879 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2880 	 * need to account for any ill-begotten jiffies to pay them off later.
2881 	 */
2882 	psi_memstall_enter(&pflags);
2883 	schedule_timeout_killable(penalty_jiffies);
2884 	psi_memstall_leave(&pflags);
2885 
2886 out:
2887 	css_put(&memcg->css);
2888 }
2889 
2890 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2891 			unsigned int nr_pages)
2892 {
2893 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2894 	int nr_retries = MAX_RECLAIM_RETRIES;
2895 	struct mem_cgroup *mem_over_limit;
2896 	struct page_counter *counter;
2897 	unsigned long nr_reclaimed;
2898 	bool passed_oom = false;
2899 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2900 	bool drained = false;
2901 	bool raised_max_event = false;
2902 	unsigned long pflags;
2903 
2904 retry:
2905 	if (consume_stock(memcg, nr_pages))
2906 		return 0;
2907 
2908 	if (!do_memsw_account() ||
2909 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2910 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2911 			goto done_restock;
2912 		if (do_memsw_account())
2913 			page_counter_uncharge(&memcg->memsw, batch);
2914 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2915 	} else {
2916 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2917 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2918 	}
2919 
2920 	if (batch > nr_pages) {
2921 		batch = nr_pages;
2922 		goto retry;
2923 	}
2924 
2925 	/*
2926 	 * Prevent unbounded recursion when reclaim operations need to
2927 	 * allocate memory. This might exceed the limits temporarily,
2928 	 * but we prefer facilitating memory reclaim and getting back
2929 	 * under the limit over triggering OOM kills in these cases.
2930 	 */
2931 	if (unlikely(current->flags & PF_MEMALLOC))
2932 		goto force;
2933 
2934 	if (unlikely(task_in_memcg_oom(current)))
2935 		goto nomem;
2936 
2937 	if (!gfpflags_allow_blocking(gfp_mask))
2938 		goto nomem;
2939 
2940 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2941 	raised_max_event = true;
2942 
2943 	psi_memstall_enter(&pflags);
2944 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2945 						    gfp_mask, reclaim_options);
2946 	psi_memstall_leave(&pflags);
2947 
2948 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2949 		goto retry;
2950 
2951 	if (!drained) {
2952 		drain_all_stock(mem_over_limit);
2953 		drained = true;
2954 		goto retry;
2955 	}
2956 
2957 	if (gfp_mask & __GFP_NORETRY)
2958 		goto nomem;
2959 	/*
2960 	 * Even though the limit is exceeded at this point, reclaim
2961 	 * may have been able to free some pages.  Retry the charge
2962 	 * before killing the task.
2963 	 *
2964 	 * Only for regular pages, though: huge pages are rather
2965 	 * unlikely to succeed so close to the limit, and we fall back
2966 	 * to regular pages anyway in case of failure.
2967 	 */
2968 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2969 		goto retry;
2970 	/*
2971 	 * At task move, charge accounts can be doubly counted. So, it's
2972 	 * better to wait until the end of task_move if something is going on.
2973 	 */
2974 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2975 		goto retry;
2976 
2977 	if (nr_retries--)
2978 		goto retry;
2979 
2980 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2981 		goto nomem;
2982 
2983 	/* Avoid endless loop for tasks bypassed by the oom killer */
2984 	if (passed_oom && task_is_dying())
2985 		goto nomem;
2986 
2987 	/*
2988 	 * keep retrying as long as the memcg oom killer is able to make
2989 	 * a forward progress or bypass the charge if the oom killer
2990 	 * couldn't make any progress.
2991 	 */
2992 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2993 			   get_order(nr_pages * PAGE_SIZE))) {
2994 		passed_oom = true;
2995 		nr_retries = MAX_RECLAIM_RETRIES;
2996 		goto retry;
2997 	}
2998 nomem:
2999 	/*
3000 	 * Memcg doesn't have a dedicated reserve for atomic
3001 	 * allocations. But like the global atomic pool, we need to
3002 	 * put the burden of reclaim on regular allocation requests
3003 	 * and let these go through as privileged allocations.
3004 	 */
3005 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3006 		return -ENOMEM;
3007 force:
3008 	/*
3009 	 * If the allocation has to be enforced, don't forget to raise
3010 	 * a MEMCG_MAX event.
3011 	 */
3012 	if (!raised_max_event)
3013 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
3014 
3015 	/*
3016 	 * The allocation either can't fail or will lead to more memory
3017 	 * being freed very soon.  Allow memory usage go over the limit
3018 	 * temporarily by force charging it.
3019 	 */
3020 	page_counter_charge(&memcg->memory, nr_pages);
3021 	if (do_memsw_account())
3022 		page_counter_charge(&memcg->memsw, nr_pages);
3023 
3024 	return 0;
3025 
3026 done_restock:
3027 	if (batch > nr_pages)
3028 		refill_stock(memcg, batch - nr_pages);
3029 
3030 	/*
3031 	 * If the hierarchy is above the normal consumption range, schedule
3032 	 * reclaim on returning to userland.  We can perform reclaim here
3033 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
3034 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
3035 	 * not recorded as it most likely matches current's and won't
3036 	 * change in the meantime.  As high limit is checked again before
3037 	 * reclaim, the cost of mismatch is negligible.
3038 	 */
3039 	do {
3040 		bool mem_high, swap_high;
3041 
3042 		mem_high = page_counter_read(&memcg->memory) >
3043 			READ_ONCE(memcg->memory.high);
3044 		swap_high = page_counter_read(&memcg->swap) >
3045 			READ_ONCE(memcg->swap.high);
3046 
3047 		/* Don't bother a random interrupted task */
3048 		if (!in_task()) {
3049 			if (mem_high) {
3050 				schedule_work(&memcg->high_work);
3051 				break;
3052 			}
3053 			continue;
3054 		}
3055 
3056 		if (mem_high || swap_high) {
3057 			/*
3058 			 * The allocating tasks in this cgroup will need to do
3059 			 * reclaim or be throttled to prevent further growth
3060 			 * of the memory or swap footprints.
3061 			 *
3062 			 * Target some best-effort fairness between the tasks,
3063 			 * and distribute reclaim work and delay penalties
3064 			 * based on how much each task is actually allocating.
3065 			 */
3066 			current->memcg_nr_pages_over_high += batch;
3067 			set_notify_resume(current);
3068 			break;
3069 		}
3070 	} while ((memcg = parent_mem_cgroup(memcg)));
3071 
3072 	/*
3073 	 * Reclaim is set up above to be called from the userland
3074 	 * return path. But also attempt synchronous reclaim to avoid
3075 	 * excessive overrun while the task is still inside the
3076 	 * kernel. If this is successful, the return path will see it
3077 	 * when it rechecks the overage and simply bail out.
3078 	 */
3079 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
3080 	    !(current->flags & PF_MEMALLOC) &&
3081 	    gfpflags_allow_blocking(gfp_mask))
3082 		mem_cgroup_handle_over_high(gfp_mask);
3083 	return 0;
3084 }
3085 
3086 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
3087 			     unsigned int nr_pages)
3088 {
3089 	if (mem_cgroup_is_root(memcg))
3090 		return 0;
3091 
3092 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
3093 }
3094 
3095 /**
3096  * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
3097  * @memcg: memcg previously charged.
3098  * @nr_pages: number of pages previously charged.
3099  */
3100 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
3101 {
3102 	if (mem_cgroup_is_root(memcg))
3103 		return;
3104 
3105 	page_counter_uncharge(&memcg->memory, nr_pages);
3106 	if (do_memsw_account())
3107 		page_counter_uncharge(&memcg->memsw, nr_pages);
3108 }
3109 
3110 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
3111 {
3112 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
3113 	/*
3114 	 * Any of the following ensures page's memcg stability:
3115 	 *
3116 	 * - the page lock
3117 	 * - LRU isolation
3118 	 * - folio_memcg_lock()
3119 	 * - exclusive reference
3120 	 * - mem_cgroup_trylock_pages()
3121 	 */
3122 	folio->memcg_data = (unsigned long)memcg;
3123 }
3124 
3125 /**
3126  * mem_cgroup_commit_charge - commit a previously successful try_charge().
3127  * @folio: folio to commit the charge to.
3128  * @memcg: memcg previously charged.
3129  */
3130 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
3131 {
3132 	css_get(&memcg->css);
3133 	commit_charge(folio, memcg);
3134 
3135 	local_irq_disable();
3136 	mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
3137 	memcg_check_events(memcg, folio_nid(folio));
3138 	local_irq_enable();
3139 }
3140 
3141 #ifdef CONFIG_MEMCG_KMEM
3142 
3143 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
3144 				       struct pglist_data *pgdat,
3145 				       enum node_stat_item idx, int nr)
3146 {
3147 	struct mem_cgroup *memcg;
3148 	struct lruvec *lruvec;
3149 
3150 	lockdep_assert_irqs_disabled();
3151 
3152 	rcu_read_lock();
3153 	memcg = obj_cgroup_memcg(objcg);
3154 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
3155 	__mod_memcg_lruvec_state(lruvec, idx, nr);
3156 	rcu_read_unlock();
3157 }
3158 
3159 static __always_inline
3160 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
3161 {
3162 	/*
3163 	 * Slab objects are accounted individually, not per-page.
3164 	 * Memcg membership data for each individual object is saved in
3165 	 * slab->obj_exts.
3166 	 */
3167 	if (folio_test_slab(folio)) {
3168 		struct slabobj_ext *obj_exts;
3169 		struct slab *slab;
3170 		unsigned int off;
3171 
3172 		slab = folio_slab(folio);
3173 		obj_exts = slab_obj_exts(slab);
3174 		if (!obj_exts)
3175 			return NULL;
3176 
3177 		off = obj_to_index(slab->slab_cache, slab, p);
3178 		if (obj_exts[off].objcg)
3179 			return obj_cgroup_memcg(obj_exts[off].objcg);
3180 
3181 		return NULL;
3182 	}
3183 
3184 	/*
3185 	 * folio_memcg_check() is used here, because in theory we can encounter
3186 	 * a folio where the slab flag has been cleared already, but
3187 	 * slab->obj_exts has not been freed yet
3188 	 * folio_memcg_check() will guarantee that a proper memory
3189 	 * cgroup pointer or NULL will be returned.
3190 	 */
3191 	return folio_memcg_check(folio);
3192 }
3193 
3194 /*
3195  * Returns a pointer to the memory cgroup to which the kernel object is charged.
3196  *
3197  * A passed kernel object can be a slab object, vmalloc object or a generic
3198  * kernel page, so different mechanisms for getting the memory cgroup pointer
3199  * should be used.
3200  *
3201  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3202  * can not know for sure how the kernel object is implemented.
3203  * mem_cgroup_from_obj() can be safely used in such cases.
3204  *
3205  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3206  * cgroup_mutex, etc.
3207  */
3208 struct mem_cgroup *mem_cgroup_from_obj(void *p)
3209 {
3210 	struct folio *folio;
3211 
3212 	if (mem_cgroup_disabled())
3213 		return NULL;
3214 
3215 	if (unlikely(is_vmalloc_addr(p)))
3216 		folio = page_folio(vmalloc_to_page(p));
3217 	else
3218 		folio = virt_to_folio(p);
3219 
3220 	return mem_cgroup_from_obj_folio(folio, p);
3221 }
3222 
3223 /*
3224  * Returns a pointer to the memory cgroup to which the kernel object is charged.
3225  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3226  * allocated using vmalloc().
3227  *
3228  * A passed kernel object must be a slab object or a generic kernel page.
3229  *
3230  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3231  * cgroup_mutex, etc.
3232  */
3233 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3234 {
3235 	if (mem_cgroup_disabled())
3236 		return NULL;
3237 
3238 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3239 }
3240 
3241 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3242 {
3243 	struct obj_cgroup *objcg = NULL;
3244 
3245 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3246 		objcg = rcu_dereference(memcg->objcg);
3247 		if (likely(objcg && obj_cgroup_tryget(objcg)))
3248 			break;
3249 		objcg = NULL;
3250 	}
3251 	return objcg;
3252 }
3253 
3254 static struct obj_cgroup *current_objcg_update(void)
3255 {
3256 	struct mem_cgroup *memcg;
3257 	struct obj_cgroup *old, *objcg = NULL;
3258 
3259 	do {
3260 		/* Atomically drop the update bit. */
3261 		old = xchg(&current->objcg, NULL);
3262 		if (old) {
3263 			old = (struct obj_cgroup *)
3264 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3265 			obj_cgroup_put(old);
3266 
3267 			old = NULL;
3268 		}
3269 
3270 		/* If new objcg is NULL, no reason for the second atomic update. */
3271 		if (!current->mm || (current->flags & PF_KTHREAD))
3272 			return NULL;
3273 
3274 		/*
3275 		 * Release the objcg pointer from the previous iteration,
3276 		 * if try_cmpxcg() below fails.
3277 		 */
3278 		if (unlikely(objcg)) {
3279 			obj_cgroup_put(objcg);
3280 			objcg = NULL;
3281 		}
3282 
3283 		/*
3284 		 * Obtain the new objcg pointer. The current task can be
3285 		 * asynchronously moved to another memcg and the previous
3286 		 * memcg can be offlined. So let's get the memcg pointer
3287 		 * and try get a reference to objcg under a rcu read lock.
3288 		 */
3289 
3290 		rcu_read_lock();
3291 		memcg = mem_cgroup_from_task(current);
3292 		objcg = __get_obj_cgroup_from_memcg(memcg);
3293 		rcu_read_unlock();
3294 
3295 		/*
3296 		 * Try set up a new objcg pointer atomically. If it
3297 		 * fails, it means the update flag was set concurrently, so
3298 		 * the whole procedure should be repeated.
3299 		 */
3300 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
3301 
3302 	return objcg;
3303 }
3304 
3305 __always_inline struct obj_cgroup *current_obj_cgroup(void)
3306 {
3307 	struct mem_cgroup *memcg;
3308 	struct obj_cgroup *objcg;
3309 
3310 	if (in_task()) {
3311 		memcg = current->active_memcg;
3312 		if (unlikely(memcg))
3313 			goto from_memcg;
3314 
3315 		objcg = READ_ONCE(current->objcg);
3316 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3317 			objcg = current_objcg_update();
3318 		/*
3319 		 * Objcg reference is kept by the task, so it's safe
3320 		 * to use the objcg by the current task.
3321 		 */
3322 		return objcg;
3323 	}
3324 
3325 	memcg = this_cpu_read(int_active_memcg);
3326 	if (unlikely(memcg))
3327 		goto from_memcg;
3328 
3329 	return NULL;
3330 
3331 from_memcg:
3332 	objcg = NULL;
3333 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3334 		/*
3335 		 * Memcg pointer is protected by scope (see set_active_memcg())
3336 		 * and is pinning the corresponding objcg, so objcg can't go
3337 		 * away and can be used within the scope without any additional
3338 		 * protection.
3339 		 */
3340 		objcg = rcu_dereference_check(memcg->objcg, 1);
3341 		if (likely(objcg))
3342 			break;
3343 	}
3344 
3345 	return objcg;
3346 }
3347 
3348 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3349 {
3350 	struct obj_cgroup *objcg;
3351 
3352 	if (!memcg_kmem_online())
3353 		return NULL;
3354 
3355 	if (folio_memcg_kmem(folio)) {
3356 		objcg = __folio_objcg(folio);
3357 		obj_cgroup_get(objcg);
3358 	} else {
3359 		struct mem_cgroup *memcg;
3360 
3361 		rcu_read_lock();
3362 		memcg = __folio_memcg(folio);
3363 		if (memcg)
3364 			objcg = __get_obj_cgroup_from_memcg(memcg);
3365 		else
3366 			objcg = NULL;
3367 		rcu_read_unlock();
3368 	}
3369 	return objcg;
3370 }
3371 
3372 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3373 {
3374 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3375 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3376 		if (nr_pages > 0)
3377 			page_counter_charge(&memcg->kmem, nr_pages);
3378 		else
3379 			page_counter_uncharge(&memcg->kmem, -nr_pages);
3380 	}
3381 }
3382 
3383 
3384 /*
3385  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3386  * @objcg: object cgroup to uncharge
3387  * @nr_pages: number of pages to uncharge
3388  */
3389 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3390 				      unsigned int nr_pages)
3391 {
3392 	struct mem_cgroup *memcg;
3393 
3394 	memcg = get_mem_cgroup_from_objcg(objcg);
3395 
3396 	memcg_account_kmem(memcg, -nr_pages);
3397 	refill_stock(memcg, nr_pages);
3398 
3399 	css_put(&memcg->css);
3400 }
3401 
3402 /*
3403  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3404  * @objcg: object cgroup to charge
3405  * @gfp: reclaim mode
3406  * @nr_pages: number of pages to charge
3407  *
3408  * Returns 0 on success, an error code on failure.
3409  */
3410 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3411 				   unsigned int nr_pages)
3412 {
3413 	struct mem_cgroup *memcg;
3414 	int ret;
3415 
3416 	memcg = get_mem_cgroup_from_objcg(objcg);
3417 
3418 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3419 	if (ret)
3420 		goto out;
3421 
3422 	memcg_account_kmem(memcg, nr_pages);
3423 out:
3424 	css_put(&memcg->css);
3425 
3426 	return ret;
3427 }
3428 
3429 /**
3430  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3431  * @page: page to charge
3432  * @gfp: reclaim mode
3433  * @order: allocation order
3434  *
3435  * Returns 0 on success, an error code on failure.
3436  */
3437 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3438 {
3439 	struct obj_cgroup *objcg;
3440 	int ret = 0;
3441 
3442 	objcg = current_obj_cgroup();
3443 	if (objcg) {
3444 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3445 		if (!ret) {
3446 			obj_cgroup_get(objcg);
3447 			page->memcg_data = (unsigned long)objcg |
3448 				MEMCG_DATA_KMEM;
3449 			return 0;
3450 		}
3451 	}
3452 	return ret;
3453 }
3454 
3455 /**
3456  * __memcg_kmem_uncharge_page: uncharge a kmem page
3457  * @page: page to uncharge
3458  * @order: allocation order
3459  */
3460 void __memcg_kmem_uncharge_page(struct page *page, int order)
3461 {
3462 	struct folio *folio = page_folio(page);
3463 	struct obj_cgroup *objcg;
3464 	unsigned int nr_pages = 1 << order;
3465 
3466 	if (!folio_memcg_kmem(folio))
3467 		return;
3468 
3469 	objcg = __folio_objcg(folio);
3470 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3471 	folio->memcg_data = 0;
3472 	obj_cgroup_put(objcg);
3473 }
3474 
3475 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3476 		     enum node_stat_item idx, int nr)
3477 {
3478 	struct memcg_stock_pcp *stock;
3479 	struct obj_cgroup *old = NULL;
3480 	unsigned long flags;
3481 	int *bytes;
3482 
3483 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3484 	stock = this_cpu_ptr(&memcg_stock);
3485 
3486 	/*
3487 	 * Save vmstat data in stock and skip vmstat array update unless
3488 	 * accumulating over a page of vmstat data or when pgdat or idx
3489 	 * changes.
3490 	 */
3491 	if (READ_ONCE(stock->cached_objcg) != objcg) {
3492 		old = drain_obj_stock(stock);
3493 		obj_cgroup_get(objcg);
3494 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3495 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3496 		WRITE_ONCE(stock->cached_objcg, objcg);
3497 		stock->cached_pgdat = pgdat;
3498 	} else if (stock->cached_pgdat != pgdat) {
3499 		/* Flush the existing cached vmstat data */
3500 		struct pglist_data *oldpg = stock->cached_pgdat;
3501 
3502 		if (stock->nr_slab_reclaimable_b) {
3503 			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3504 					  stock->nr_slab_reclaimable_b);
3505 			stock->nr_slab_reclaimable_b = 0;
3506 		}
3507 		if (stock->nr_slab_unreclaimable_b) {
3508 			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3509 					  stock->nr_slab_unreclaimable_b);
3510 			stock->nr_slab_unreclaimable_b = 0;
3511 		}
3512 		stock->cached_pgdat = pgdat;
3513 	}
3514 
3515 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3516 					       : &stock->nr_slab_unreclaimable_b;
3517 	/*
3518 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3519 	 * cached locally at least once before pushing it out.
3520 	 */
3521 	if (!*bytes) {
3522 		*bytes = nr;
3523 		nr = 0;
3524 	} else {
3525 		*bytes += nr;
3526 		if (abs(*bytes) > PAGE_SIZE) {
3527 			nr = *bytes;
3528 			*bytes = 0;
3529 		} else {
3530 			nr = 0;
3531 		}
3532 	}
3533 	if (nr)
3534 		__mod_objcg_mlstate(objcg, pgdat, idx, nr);
3535 
3536 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3537 	obj_cgroup_put(old);
3538 }
3539 
3540 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3541 {
3542 	struct memcg_stock_pcp *stock;
3543 	unsigned long flags;
3544 	bool ret = false;
3545 
3546 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3547 
3548 	stock = this_cpu_ptr(&memcg_stock);
3549 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3550 		stock->nr_bytes -= nr_bytes;
3551 		ret = true;
3552 	}
3553 
3554 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3555 
3556 	return ret;
3557 }
3558 
3559 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3560 {
3561 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3562 
3563 	if (!old)
3564 		return NULL;
3565 
3566 	if (stock->nr_bytes) {
3567 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3568 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3569 
3570 		if (nr_pages) {
3571 			struct mem_cgroup *memcg;
3572 
3573 			memcg = get_mem_cgroup_from_objcg(old);
3574 
3575 			memcg_account_kmem(memcg, -nr_pages);
3576 			__refill_stock(memcg, nr_pages);
3577 
3578 			css_put(&memcg->css);
3579 		}
3580 
3581 		/*
3582 		 * The leftover is flushed to the centralized per-memcg value.
3583 		 * On the next attempt to refill obj stock it will be moved
3584 		 * to a per-cpu stock (probably, on an other CPU), see
3585 		 * refill_obj_stock().
3586 		 *
3587 		 * How often it's flushed is a trade-off between the memory
3588 		 * limit enforcement accuracy and potential CPU contention,
3589 		 * so it might be changed in the future.
3590 		 */
3591 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3592 		stock->nr_bytes = 0;
3593 	}
3594 
3595 	/*
3596 	 * Flush the vmstat data in current stock
3597 	 */
3598 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3599 		if (stock->nr_slab_reclaimable_b) {
3600 			__mod_objcg_mlstate(old, stock->cached_pgdat,
3601 					  NR_SLAB_RECLAIMABLE_B,
3602 					  stock->nr_slab_reclaimable_b);
3603 			stock->nr_slab_reclaimable_b = 0;
3604 		}
3605 		if (stock->nr_slab_unreclaimable_b) {
3606 			__mod_objcg_mlstate(old, stock->cached_pgdat,
3607 					  NR_SLAB_UNRECLAIMABLE_B,
3608 					  stock->nr_slab_unreclaimable_b);
3609 			stock->nr_slab_unreclaimable_b = 0;
3610 		}
3611 		stock->cached_pgdat = NULL;
3612 	}
3613 
3614 	WRITE_ONCE(stock->cached_objcg, NULL);
3615 	/*
3616 	 * The `old' objects needs to be released by the caller via
3617 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3618 	 */
3619 	return old;
3620 }
3621 
3622 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3623 				     struct mem_cgroup *root_memcg)
3624 {
3625 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3626 	struct mem_cgroup *memcg;
3627 
3628 	if (objcg) {
3629 		memcg = obj_cgroup_memcg(objcg);
3630 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3631 			return true;
3632 	}
3633 
3634 	return false;
3635 }
3636 
3637 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3638 			     bool allow_uncharge)
3639 {
3640 	struct memcg_stock_pcp *stock;
3641 	struct obj_cgroup *old = NULL;
3642 	unsigned long flags;
3643 	unsigned int nr_pages = 0;
3644 
3645 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3646 
3647 	stock = this_cpu_ptr(&memcg_stock);
3648 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3649 		old = drain_obj_stock(stock);
3650 		obj_cgroup_get(objcg);
3651 		WRITE_ONCE(stock->cached_objcg, objcg);
3652 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3653 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3654 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3655 	}
3656 	stock->nr_bytes += nr_bytes;
3657 
3658 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3659 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3660 		stock->nr_bytes &= (PAGE_SIZE - 1);
3661 	}
3662 
3663 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3664 	obj_cgroup_put(old);
3665 
3666 	if (nr_pages)
3667 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3668 }
3669 
3670 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3671 {
3672 	unsigned int nr_pages, nr_bytes;
3673 	int ret;
3674 
3675 	if (consume_obj_stock(objcg, size))
3676 		return 0;
3677 
3678 	/*
3679 	 * In theory, objcg->nr_charged_bytes can have enough
3680 	 * pre-charged bytes to satisfy the allocation. However,
3681 	 * flushing objcg->nr_charged_bytes requires two atomic
3682 	 * operations, and objcg->nr_charged_bytes can't be big.
3683 	 * The shared objcg->nr_charged_bytes can also become a
3684 	 * performance bottleneck if all tasks of the same memcg are
3685 	 * trying to update it. So it's better to ignore it and try
3686 	 * grab some new pages. The stock's nr_bytes will be flushed to
3687 	 * objcg->nr_charged_bytes later on when objcg changes.
3688 	 *
3689 	 * The stock's nr_bytes may contain enough pre-charged bytes
3690 	 * to allow one less page from being charged, but we can't rely
3691 	 * on the pre-charged bytes not being changed outside of
3692 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3693 	 * pre-charged bytes as well when charging pages. To avoid a
3694 	 * page uncharge right after a page charge, we set the
3695 	 * allow_uncharge flag to false when calling refill_obj_stock()
3696 	 * to temporarily allow the pre-charged bytes to exceed the page
3697 	 * size limit. The maximum reachable value of the pre-charged
3698 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3699 	 * race.
3700 	 */
3701 	nr_pages = size >> PAGE_SHIFT;
3702 	nr_bytes = size & (PAGE_SIZE - 1);
3703 
3704 	if (nr_bytes)
3705 		nr_pages += 1;
3706 
3707 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3708 	if (!ret && nr_bytes)
3709 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3710 
3711 	return ret;
3712 }
3713 
3714 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3715 {
3716 	refill_obj_stock(objcg, size, true);
3717 }
3718 
3719 static inline size_t obj_full_size(struct kmem_cache *s)
3720 {
3721 	/*
3722 	 * For each accounted object there is an extra space which is used
3723 	 * to store obj_cgroup membership. Charge it too.
3724 	 */
3725 	return s->size + sizeof(struct obj_cgroup *);
3726 }
3727 
3728 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3729 				  gfp_t flags, size_t size, void **p)
3730 {
3731 	struct obj_cgroup *objcg;
3732 	struct slab *slab;
3733 	unsigned long off;
3734 	size_t i;
3735 
3736 	/*
3737 	 * The obtained objcg pointer is safe to use within the current scope,
3738 	 * defined by current task or set_active_memcg() pair.
3739 	 * obj_cgroup_get() is used to get a permanent reference.
3740 	 */
3741 	objcg = current_obj_cgroup();
3742 	if (!objcg)
3743 		return true;
3744 
3745 	/*
3746 	 * slab_alloc_node() avoids the NULL check, so we might be called with a
3747 	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3748 	 * the whole requested size.
3749 	 * return success as there's nothing to free back
3750 	 */
3751 	if (unlikely(*p == NULL))
3752 		return true;
3753 
3754 	flags &= gfp_allowed_mask;
3755 
3756 	if (lru) {
3757 		int ret;
3758 		struct mem_cgroup *memcg;
3759 
3760 		memcg = get_mem_cgroup_from_objcg(objcg);
3761 		ret = memcg_list_lru_alloc(memcg, lru, flags);
3762 		css_put(&memcg->css);
3763 
3764 		if (ret)
3765 			return false;
3766 	}
3767 
3768 	if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
3769 		return false;
3770 
3771 	for (i = 0; i < size; i++) {
3772 		slab = virt_to_slab(p[i]);
3773 
3774 		if (!slab_obj_exts(slab) &&
3775 		    alloc_slab_obj_exts(slab, s, flags, false)) {
3776 			obj_cgroup_uncharge(objcg, obj_full_size(s));
3777 			continue;
3778 		}
3779 
3780 		off = obj_to_index(s, slab, p[i]);
3781 		obj_cgroup_get(objcg);
3782 		slab_obj_exts(slab)[off].objcg = objcg;
3783 		mod_objcg_state(objcg, slab_pgdat(slab),
3784 				cache_vmstat_idx(s), obj_full_size(s));
3785 	}
3786 
3787 	return true;
3788 }
3789 
3790 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3791 			    void **p, int objects, struct slabobj_ext *obj_exts)
3792 {
3793 	for (int i = 0; i < objects; i++) {
3794 		struct obj_cgroup *objcg;
3795 		unsigned int off;
3796 
3797 		off = obj_to_index(s, slab, p[i]);
3798 		objcg = obj_exts[off].objcg;
3799 		if (!objcg)
3800 			continue;
3801 
3802 		obj_exts[off].objcg = NULL;
3803 		obj_cgroup_uncharge(objcg, obj_full_size(s));
3804 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3805 				-obj_full_size(s));
3806 		obj_cgroup_put(objcg);
3807 	}
3808 }
3809 #endif /* CONFIG_MEMCG_KMEM */
3810 
3811 /*
3812  * Because page_memcg(head) is not set on tails, set it now.
3813  */
3814 void split_page_memcg(struct page *head, int old_order, int new_order)
3815 {
3816 	struct folio *folio = page_folio(head);
3817 	struct mem_cgroup *memcg = folio_memcg(folio);
3818 	int i;
3819 	unsigned int old_nr = 1 << old_order;
3820 	unsigned int new_nr = 1 << new_order;
3821 
3822 	if (mem_cgroup_disabled() || !memcg)
3823 		return;
3824 
3825 	for (i = new_nr; i < old_nr; i += new_nr)
3826 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3827 
3828 	if (folio_memcg_kmem(folio))
3829 		obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3830 	else
3831 		css_get_many(&memcg->css, old_nr / new_nr - 1);
3832 }
3833 
3834 #ifdef CONFIG_SWAP
3835 /**
3836  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3837  * @entry: swap entry to be moved
3838  * @from:  mem_cgroup which the entry is moved from
3839  * @to:  mem_cgroup which the entry is moved to
3840  *
3841  * It succeeds only when the swap_cgroup's record for this entry is the same
3842  * as the mem_cgroup's id of @from.
3843  *
3844  * Returns 0 on success, -EINVAL on failure.
3845  *
3846  * The caller must have charged to @to, IOW, called page_counter_charge() about
3847  * both res and memsw, and called css_get().
3848  */
3849 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3850 				struct mem_cgroup *from, struct mem_cgroup *to)
3851 {
3852 	unsigned short old_id, new_id;
3853 
3854 	old_id = mem_cgroup_id(from);
3855 	new_id = mem_cgroup_id(to);
3856 
3857 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3858 		mod_memcg_state(from, MEMCG_SWAP, -1);
3859 		mod_memcg_state(to, MEMCG_SWAP, 1);
3860 		return 0;
3861 	}
3862 	return -EINVAL;
3863 }
3864 #else
3865 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3866 				struct mem_cgroup *from, struct mem_cgroup *to)
3867 {
3868 	return -EINVAL;
3869 }
3870 #endif
3871 
3872 static DEFINE_MUTEX(memcg_max_mutex);
3873 
3874 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3875 				 unsigned long max, bool memsw)
3876 {
3877 	bool enlarge = false;
3878 	bool drained = false;
3879 	int ret;
3880 	bool limits_invariant;
3881 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3882 
3883 	do {
3884 		if (signal_pending(current)) {
3885 			ret = -EINTR;
3886 			break;
3887 		}
3888 
3889 		mutex_lock(&memcg_max_mutex);
3890 		/*
3891 		 * Make sure that the new limit (memsw or memory limit) doesn't
3892 		 * break our basic invariant rule memory.max <= memsw.max.
3893 		 */
3894 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3895 					   max <= memcg->memsw.max;
3896 		if (!limits_invariant) {
3897 			mutex_unlock(&memcg_max_mutex);
3898 			ret = -EINVAL;
3899 			break;
3900 		}
3901 		if (max > counter->max)
3902 			enlarge = true;
3903 		ret = page_counter_set_max(counter, max);
3904 		mutex_unlock(&memcg_max_mutex);
3905 
3906 		if (!ret)
3907 			break;
3908 
3909 		if (!drained) {
3910 			drain_all_stock(memcg);
3911 			drained = true;
3912 			continue;
3913 		}
3914 
3915 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3916 					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3917 			ret = -EBUSY;
3918 			break;
3919 		}
3920 	} while (true);
3921 
3922 	if (!ret && enlarge)
3923 		memcg_oom_recover(memcg);
3924 
3925 	return ret;
3926 }
3927 
3928 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3929 					    gfp_t gfp_mask,
3930 					    unsigned long *total_scanned)
3931 {
3932 	unsigned long nr_reclaimed = 0;
3933 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3934 	unsigned long reclaimed;
3935 	int loop = 0;
3936 	struct mem_cgroup_tree_per_node *mctz;
3937 	unsigned long excess;
3938 
3939 	if (lru_gen_enabled())
3940 		return 0;
3941 
3942 	if (order > 0)
3943 		return 0;
3944 
3945 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3946 
3947 	/*
3948 	 * Do not even bother to check the largest node if the root
3949 	 * is empty. Do it lockless to prevent lock bouncing. Races
3950 	 * are acceptable as soft limit is best effort anyway.
3951 	 */
3952 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3953 		return 0;
3954 
3955 	/*
3956 	 * This loop can run a while, specially if mem_cgroup's continuously
3957 	 * keep exceeding their soft limit and putting the system under
3958 	 * pressure
3959 	 */
3960 	do {
3961 		if (next_mz)
3962 			mz = next_mz;
3963 		else
3964 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3965 		if (!mz)
3966 			break;
3967 
3968 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3969 						    gfp_mask, total_scanned);
3970 		nr_reclaimed += reclaimed;
3971 		spin_lock_irq(&mctz->lock);
3972 
3973 		/*
3974 		 * If we failed to reclaim anything from this memory cgroup
3975 		 * it is time to move on to the next cgroup
3976 		 */
3977 		next_mz = NULL;
3978 		if (!reclaimed)
3979 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3980 
3981 		excess = soft_limit_excess(mz->memcg);
3982 		/*
3983 		 * One school of thought says that we should not add
3984 		 * back the node to the tree if reclaim returns 0.
3985 		 * But our reclaim could return 0, simply because due
3986 		 * to priority we are exposing a smaller subset of
3987 		 * memory to reclaim from. Consider this as a longer
3988 		 * term TODO.
3989 		 */
3990 		/* If excess == 0, no tree ops */
3991 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3992 		spin_unlock_irq(&mctz->lock);
3993 		css_put(&mz->memcg->css);
3994 		loop++;
3995 		/*
3996 		 * Could not reclaim anything and there are no more
3997 		 * mem cgroups to try or we seem to be looping without
3998 		 * reclaiming anything.
3999 		 */
4000 		if (!nr_reclaimed &&
4001 			(next_mz == NULL ||
4002 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4003 			break;
4004 	} while (!nr_reclaimed);
4005 	if (next_mz)
4006 		css_put(&next_mz->memcg->css);
4007 	return nr_reclaimed;
4008 }
4009 
4010 /*
4011  * Reclaims as many pages from the given memcg as possible.
4012  *
4013  * Caller is responsible for holding css reference for memcg.
4014  */
4015 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4016 {
4017 	int nr_retries = MAX_RECLAIM_RETRIES;
4018 
4019 	/* we call try-to-free pages for make this cgroup empty */
4020 	lru_add_drain_all();
4021 
4022 	drain_all_stock(memcg);
4023 
4024 	/* try to free all pages in this cgroup */
4025 	while (nr_retries && page_counter_read(&memcg->memory)) {
4026 		if (signal_pending(current))
4027 			return -EINTR;
4028 
4029 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
4030 						  MEMCG_RECLAIM_MAY_SWAP))
4031 			nr_retries--;
4032 	}
4033 
4034 	return 0;
4035 }
4036 
4037 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4038 					    char *buf, size_t nbytes,
4039 					    loff_t off)
4040 {
4041 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4042 
4043 	if (mem_cgroup_is_root(memcg))
4044 		return -EINVAL;
4045 	return mem_cgroup_force_empty(memcg) ?: nbytes;
4046 }
4047 
4048 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4049 				     struct cftype *cft)
4050 {
4051 	return 1;
4052 }
4053 
4054 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4055 				      struct cftype *cft, u64 val)
4056 {
4057 	if (val == 1)
4058 		return 0;
4059 
4060 	pr_warn_once("Non-hierarchical mode is deprecated. "
4061 		     "Please report your usecase to linux-mm@kvack.org if you "
4062 		     "depend on this functionality.\n");
4063 
4064 	return -EINVAL;
4065 }
4066 
4067 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4068 {
4069 	unsigned long val;
4070 
4071 	if (mem_cgroup_is_root(memcg)) {
4072 		/*
4073 		 * Approximate root's usage from global state. This isn't
4074 		 * perfect, but the root usage was always an approximation.
4075 		 */
4076 		val = global_node_page_state(NR_FILE_PAGES) +
4077 			global_node_page_state(NR_ANON_MAPPED);
4078 		if (swap)
4079 			val += total_swap_pages - get_nr_swap_pages();
4080 	} else {
4081 		if (!swap)
4082 			val = page_counter_read(&memcg->memory);
4083 		else
4084 			val = page_counter_read(&memcg->memsw);
4085 	}
4086 	return val;
4087 }
4088 
4089 enum {
4090 	RES_USAGE,
4091 	RES_LIMIT,
4092 	RES_MAX_USAGE,
4093 	RES_FAILCNT,
4094 	RES_SOFT_LIMIT,
4095 };
4096 
4097 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4098 			       struct cftype *cft)
4099 {
4100 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4101 	struct page_counter *counter;
4102 
4103 	switch (MEMFILE_TYPE(cft->private)) {
4104 	case _MEM:
4105 		counter = &memcg->memory;
4106 		break;
4107 	case _MEMSWAP:
4108 		counter = &memcg->memsw;
4109 		break;
4110 	case _KMEM:
4111 		counter = &memcg->kmem;
4112 		break;
4113 	case _TCP:
4114 		counter = &memcg->tcpmem;
4115 		break;
4116 	default:
4117 		BUG();
4118 	}
4119 
4120 	switch (MEMFILE_ATTR(cft->private)) {
4121 	case RES_USAGE:
4122 		if (counter == &memcg->memory)
4123 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
4124 		if (counter == &memcg->memsw)
4125 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
4126 		return (u64)page_counter_read(counter) * PAGE_SIZE;
4127 	case RES_LIMIT:
4128 		return (u64)counter->max * PAGE_SIZE;
4129 	case RES_MAX_USAGE:
4130 		return (u64)counter->watermark * PAGE_SIZE;
4131 	case RES_FAILCNT:
4132 		return counter->failcnt;
4133 	case RES_SOFT_LIMIT:
4134 		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
4135 	default:
4136 		BUG();
4137 	}
4138 }
4139 
4140 /*
4141  * This function doesn't do anything useful. Its only job is to provide a read
4142  * handler for a file so that cgroup_file_mode() will add read permissions.
4143  */
4144 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
4145 				     __always_unused void *v)
4146 {
4147 	return -EINVAL;
4148 }
4149 
4150 #ifdef CONFIG_MEMCG_KMEM
4151 static int memcg_online_kmem(struct mem_cgroup *memcg)
4152 {
4153 	struct obj_cgroup *objcg;
4154 
4155 	if (mem_cgroup_kmem_disabled())
4156 		return 0;
4157 
4158 	if (unlikely(mem_cgroup_is_root(memcg)))
4159 		return 0;
4160 
4161 	objcg = obj_cgroup_alloc();
4162 	if (!objcg)
4163 		return -ENOMEM;
4164 
4165 	objcg->memcg = memcg;
4166 	rcu_assign_pointer(memcg->objcg, objcg);
4167 	obj_cgroup_get(objcg);
4168 	memcg->orig_objcg = objcg;
4169 
4170 	static_branch_enable(&memcg_kmem_online_key);
4171 
4172 	memcg->kmemcg_id = memcg->id.id;
4173 
4174 	return 0;
4175 }
4176 
4177 static void memcg_offline_kmem(struct mem_cgroup *memcg)
4178 {
4179 	struct mem_cgroup *parent;
4180 
4181 	if (mem_cgroup_kmem_disabled())
4182 		return;
4183 
4184 	if (unlikely(mem_cgroup_is_root(memcg)))
4185 		return;
4186 
4187 	parent = parent_mem_cgroup(memcg);
4188 	if (!parent)
4189 		parent = root_mem_cgroup;
4190 
4191 	memcg_reparent_objcgs(memcg, parent);
4192 
4193 	/*
4194 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
4195 	 * corresponding to this cgroup are guaranteed to remain empty.
4196 	 * The ordering is imposed by list_lru_node->lock taken by
4197 	 * memcg_reparent_list_lrus().
4198 	 */
4199 	memcg_reparent_list_lrus(memcg, parent);
4200 }
4201 #else
4202 static int memcg_online_kmem(struct mem_cgroup *memcg)
4203 {
4204 	return 0;
4205 }
4206 static void memcg_offline_kmem(struct mem_cgroup *memcg)
4207 {
4208 }
4209 #endif /* CONFIG_MEMCG_KMEM */
4210 
4211 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
4212 {
4213 	int ret;
4214 
4215 	mutex_lock(&memcg_max_mutex);
4216 
4217 	ret = page_counter_set_max(&memcg->tcpmem, max);
4218 	if (ret)
4219 		goto out;
4220 
4221 	if (!memcg->tcpmem_active) {
4222 		/*
4223 		 * The active flag needs to be written after the static_key
4224 		 * update. This is what guarantees that the socket activation
4225 		 * function is the last one to run. See mem_cgroup_sk_alloc()
4226 		 * for details, and note that we don't mark any socket as
4227 		 * belonging to this memcg until that flag is up.
4228 		 *
4229 		 * We need to do this, because static_keys will span multiple
4230 		 * sites, but we can't control their order. If we mark a socket
4231 		 * as accounted, but the accounting functions are not patched in
4232 		 * yet, we'll lose accounting.
4233 		 *
4234 		 * We never race with the readers in mem_cgroup_sk_alloc(),
4235 		 * because when this value change, the code to process it is not
4236 		 * patched in yet.
4237 		 */
4238 		static_branch_inc(&memcg_sockets_enabled_key);
4239 		memcg->tcpmem_active = true;
4240 	}
4241 out:
4242 	mutex_unlock(&memcg_max_mutex);
4243 	return ret;
4244 }
4245 
4246 /*
4247  * The user of this function is...
4248  * RES_LIMIT.
4249  */
4250 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4251 				char *buf, size_t nbytes, loff_t off)
4252 {
4253 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4254 	unsigned long nr_pages;
4255 	int ret;
4256 
4257 	buf = strstrip(buf);
4258 	ret = page_counter_memparse(buf, "-1", &nr_pages);
4259 	if (ret)
4260 		return ret;
4261 
4262 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4263 	case RES_LIMIT:
4264 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4265 			ret = -EINVAL;
4266 			break;
4267 		}
4268 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
4269 		case _MEM:
4270 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
4271 			break;
4272 		case _MEMSWAP:
4273 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
4274 			break;
4275 		case _KMEM:
4276 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4277 				     "Writing any value to this file has no effect. "
4278 				     "Please report your usecase to linux-mm@kvack.org if you "
4279 				     "depend on this functionality.\n");
4280 			ret = 0;
4281 			break;
4282 		case _TCP:
4283 			ret = memcg_update_tcp_max(memcg, nr_pages);
4284 			break;
4285 		}
4286 		break;
4287 	case RES_SOFT_LIMIT:
4288 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4289 			ret = -EOPNOTSUPP;
4290 		} else {
4291 			WRITE_ONCE(memcg->soft_limit, nr_pages);
4292 			ret = 0;
4293 		}
4294 		break;
4295 	}
4296 	return ret ?: nbytes;
4297 }
4298 
4299 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4300 				size_t nbytes, loff_t off)
4301 {
4302 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4303 	struct page_counter *counter;
4304 
4305 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
4306 	case _MEM:
4307 		counter = &memcg->memory;
4308 		break;
4309 	case _MEMSWAP:
4310 		counter = &memcg->memsw;
4311 		break;
4312 	case _KMEM:
4313 		counter = &memcg->kmem;
4314 		break;
4315 	case _TCP:
4316 		counter = &memcg->tcpmem;
4317 		break;
4318 	default:
4319 		BUG();
4320 	}
4321 
4322 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4323 	case RES_MAX_USAGE:
4324 		page_counter_reset_watermark(counter);
4325 		break;
4326 	case RES_FAILCNT:
4327 		counter->failcnt = 0;
4328 		break;
4329 	default:
4330 		BUG();
4331 	}
4332 
4333 	return nbytes;
4334 }
4335 
4336 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4337 					struct cftype *cft)
4338 {
4339 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4340 }
4341 
4342 #ifdef CONFIG_MMU
4343 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4344 					struct cftype *cft, u64 val)
4345 {
4346 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4347 
4348 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4349 		     "Please report your usecase to linux-mm@kvack.org if you "
4350 		     "depend on this functionality.\n");
4351 
4352 	if (val & ~MOVE_MASK)
4353 		return -EINVAL;
4354 
4355 	/*
4356 	 * No kind of locking is needed in here, because ->can_attach() will
4357 	 * check this value once in the beginning of the process, and then carry
4358 	 * on with stale data. This means that changes to this value will only
4359 	 * affect task migrations starting after the change.
4360 	 */
4361 	memcg->move_charge_at_immigrate = val;
4362 	return 0;
4363 }
4364 #else
4365 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4366 					struct cftype *cft, u64 val)
4367 {
4368 	return -ENOSYS;
4369 }
4370 #endif
4371 
4372 #ifdef CONFIG_NUMA
4373 
4374 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4375 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4376 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
4377 
4378 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4379 				int nid, unsigned int lru_mask, bool tree)
4380 {
4381 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4382 	unsigned long nr = 0;
4383 	enum lru_list lru;
4384 
4385 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
4386 
4387 	for_each_lru(lru) {
4388 		if (!(BIT(lru) & lru_mask))
4389 			continue;
4390 		if (tree)
4391 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4392 		else
4393 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4394 	}
4395 	return nr;
4396 }
4397 
4398 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4399 					     unsigned int lru_mask,
4400 					     bool tree)
4401 {
4402 	unsigned long nr = 0;
4403 	enum lru_list lru;
4404 
4405 	for_each_lru(lru) {
4406 		if (!(BIT(lru) & lru_mask))
4407 			continue;
4408 		if (tree)
4409 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4410 		else
4411 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4412 	}
4413 	return nr;
4414 }
4415 
4416 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4417 {
4418 	struct numa_stat {
4419 		const char *name;
4420 		unsigned int lru_mask;
4421 	};
4422 
4423 	static const struct numa_stat stats[] = {
4424 		{ "total", LRU_ALL },
4425 		{ "file", LRU_ALL_FILE },
4426 		{ "anon", LRU_ALL_ANON },
4427 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4428 	};
4429 	const struct numa_stat *stat;
4430 	int nid;
4431 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4432 
4433 	mem_cgroup_flush_stats(memcg);
4434 
4435 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4436 		seq_printf(m, "%s=%lu", stat->name,
4437 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4438 						   false));
4439 		for_each_node_state(nid, N_MEMORY)
4440 			seq_printf(m, " N%d=%lu", nid,
4441 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4442 							stat->lru_mask, false));
4443 		seq_putc(m, '\n');
4444 	}
4445 
4446 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4447 
4448 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4449 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4450 						   true));
4451 		for_each_node_state(nid, N_MEMORY)
4452 			seq_printf(m, " N%d=%lu", nid,
4453 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4454 							stat->lru_mask, true));
4455 		seq_putc(m, '\n');
4456 	}
4457 
4458 	return 0;
4459 }
4460 #endif /* CONFIG_NUMA */
4461 
4462 static const unsigned int memcg1_stats[] = {
4463 	NR_FILE_PAGES,
4464 	NR_ANON_MAPPED,
4465 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4466 	NR_ANON_THPS,
4467 #endif
4468 	NR_SHMEM,
4469 	NR_FILE_MAPPED,
4470 	NR_FILE_DIRTY,
4471 	NR_WRITEBACK,
4472 	WORKINGSET_REFAULT_ANON,
4473 	WORKINGSET_REFAULT_FILE,
4474 #ifdef CONFIG_SWAP
4475 	MEMCG_SWAP,
4476 	NR_SWAPCACHE,
4477 #endif
4478 };
4479 
4480 static const char *const memcg1_stat_names[] = {
4481 	"cache",
4482 	"rss",
4483 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4484 	"rss_huge",
4485 #endif
4486 	"shmem",
4487 	"mapped_file",
4488 	"dirty",
4489 	"writeback",
4490 	"workingset_refault_anon",
4491 	"workingset_refault_file",
4492 #ifdef CONFIG_SWAP
4493 	"swap",
4494 	"swapcached",
4495 #endif
4496 };
4497 
4498 /* Universal VM events cgroup1 shows, original sort order */
4499 static const unsigned int memcg1_events[] = {
4500 	PGPGIN,
4501 	PGPGOUT,
4502 	PGFAULT,
4503 	PGMAJFAULT,
4504 };
4505 
4506 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4507 {
4508 	unsigned long memory, memsw;
4509 	struct mem_cgroup *mi;
4510 	unsigned int i;
4511 
4512 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4513 
4514 	mem_cgroup_flush_stats(memcg);
4515 
4516 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4517 		unsigned long nr;
4518 
4519 		nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4520 		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
4521 	}
4522 
4523 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4524 		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4525 			       memcg_events_local(memcg, memcg1_events[i]));
4526 
4527 	for (i = 0; i < NR_LRU_LISTS; i++)
4528 		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4529 			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4530 			       PAGE_SIZE);
4531 
4532 	/* Hierarchical information */
4533 	memory = memsw = PAGE_COUNTER_MAX;
4534 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4535 		memory = min(memory, READ_ONCE(mi->memory.max));
4536 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4537 	}
4538 	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4539 		       (u64)memory * PAGE_SIZE);
4540 	seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4541 		       (u64)memsw * PAGE_SIZE);
4542 
4543 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4544 		unsigned long nr;
4545 
4546 		nr = memcg_page_state_output(memcg, memcg1_stats[i]);
4547 		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4548 			       (u64)nr);
4549 	}
4550 
4551 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4552 		seq_buf_printf(s, "total_%s %llu\n",
4553 			       vm_event_name(memcg1_events[i]),
4554 			       (u64)memcg_events(memcg, memcg1_events[i]));
4555 
4556 	for (i = 0; i < NR_LRU_LISTS; i++)
4557 		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4558 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4559 			       PAGE_SIZE);
4560 
4561 #ifdef CONFIG_DEBUG_VM
4562 	{
4563 		pg_data_t *pgdat;
4564 		struct mem_cgroup_per_node *mz;
4565 		unsigned long anon_cost = 0;
4566 		unsigned long file_cost = 0;
4567 
4568 		for_each_online_pgdat(pgdat) {
4569 			mz = memcg->nodeinfo[pgdat->node_id];
4570 
4571 			anon_cost += mz->lruvec.anon_cost;
4572 			file_cost += mz->lruvec.file_cost;
4573 		}
4574 		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4575 		seq_buf_printf(s, "file_cost %lu\n", file_cost);
4576 	}
4577 #endif
4578 }
4579 
4580 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4581 				      struct cftype *cft)
4582 {
4583 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4584 
4585 	return mem_cgroup_swappiness(memcg);
4586 }
4587 
4588 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4589 				       struct cftype *cft, u64 val)
4590 {
4591 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4592 
4593 	if (val > 200)
4594 		return -EINVAL;
4595 
4596 	if (!mem_cgroup_is_root(memcg))
4597 		WRITE_ONCE(memcg->swappiness, val);
4598 	else
4599 		WRITE_ONCE(vm_swappiness, val);
4600 
4601 	return 0;
4602 }
4603 
4604 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4605 {
4606 	struct mem_cgroup_threshold_ary *t;
4607 	unsigned long usage;
4608 	int i;
4609 
4610 	rcu_read_lock();
4611 	if (!swap)
4612 		t = rcu_dereference(memcg->thresholds.primary);
4613 	else
4614 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4615 
4616 	if (!t)
4617 		goto unlock;
4618 
4619 	usage = mem_cgroup_usage(memcg, swap);
4620 
4621 	/*
4622 	 * current_threshold points to threshold just below or equal to usage.
4623 	 * If it's not true, a threshold was crossed after last
4624 	 * call of __mem_cgroup_threshold().
4625 	 */
4626 	i = t->current_threshold;
4627 
4628 	/*
4629 	 * Iterate backward over array of thresholds starting from
4630 	 * current_threshold and check if a threshold is crossed.
4631 	 * If none of thresholds below usage is crossed, we read
4632 	 * only one element of the array here.
4633 	 */
4634 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4635 		eventfd_signal(t->entries[i].eventfd);
4636 
4637 	/* i = current_threshold + 1 */
4638 	i++;
4639 
4640 	/*
4641 	 * Iterate forward over array of thresholds starting from
4642 	 * current_threshold+1 and check if a threshold is crossed.
4643 	 * If none of thresholds above usage is crossed, we read
4644 	 * only one element of the array here.
4645 	 */
4646 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4647 		eventfd_signal(t->entries[i].eventfd);
4648 
4649 	/* Update current_threshold */
4650 	t->current_threshold = i - 1;
4651 unlock:
4652 	rcu_read_unlock();
4653 }
4654 
4655 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4656 {
4657 	while (memcg) {
4658 		__mem_cgroup_threshold(memcg, false);
4659 		if (do_memsw_account())
4660 			__mem_cgroup_threshold(memcg, true);
4661 
4662 		memcg = parent_mem_cgroup(memcg);
4663 	}
4664 }
4665 
4666 static int compare_thresholds(const void *a, const void *b)
4667 {
4668 	const struct mem_cgroup_threshold *_a = a;
4669 	const struct mem_cgroup_threshold *_b = b;
4670 
4671 	if (_a->threshold > _b->threshold)
4672 		return 1;
4673 
4674 	if (_a->threshold < _b->threshold)
4675 		return -1;
4676 
4677 	return 0;
4678 }
4679 
4680 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4681 {
4682 	struct mem_cgroup_eventfd_list *ev;
4683 
4684 	spin_lock(&memcg_oom_lock);
4685 
4686 	list_for_each_entry(ev, &memcg->oom_notify, list)
4687 		eventfd_signal(ev->eventfd);
4688 
4689 	spin_unlock(&memcg_oom_lock);
4690 	return 0;
4691 }
4692 
4693 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4694 {
4695 	struct mem_cgroup *iter;
4696 
4697 	for_each_mem_cgroup_tree(iter, memcg)
4698 		mem_cgroup_oom_notify_cb(iter);
4699 }
4700 
4701 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4702 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4703 {
4704 	struct mem_cgroup_thresholds *thresholds;
4705 	struct mem_cgroup_threshold_ary *new;
4706 	unsigned long threshold;
4707 	unsigned long usage;
4708 	int i, size, ret;
4709 
4710 	ret = page_counter_memparse(args, "-1", &threshold);
4711 	if (ret)
4712 		return ret;
4713 
4714 	mutex_lock(&memcg->thresholds_lock);
4715 
4716 	if (type == _MEM) {
4717 		thresholds = &memcg->thresholds;
4718 		usage = mem_cgroup_usage(memcg, false);
4719 	} else if (type == _MEMSWAP) {
4720 		thresholds = &memcg->memsw_thresholds;
4721 		usage = mem_cgroup_usage(memcg, true);
4722 	} else
4723 		BUG();
4724 
4725 	/* Check if a threshold crossed before adding a new one */
4726 	if (thresholds->primary)
4727 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4728 
4729 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4730 
4731 	/* Allocate memory for new array of thresholds */
4732 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4733 	if (!new) {
4734 		ret = -ENOMEM;
4735 		goto unlock;
4736 	}
4737 	new->size = size;
4738 
4739 	/* Copy thresholds (if any) to new array */
4740 	if (thresholds->primary)
4741 		memcpy(new->entries, thresholds->primary->entries,
4742 		       flex_array_size(new, entries, size - 1));
4743 
4744 	/* Add new threshold */
4745 	new->entries[size - 1].eventfd = eventfd;
4746 	new->entries[size - 1].threshold = threshold;
4747 
4748 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4749 	sort(new->entries, size, sizeof(*new->entries),
4750 			compare_thresholds, NULL);
4751 
4752 	/* Find current threshold */
4753 	new->current_threshold = -1;
4754 	for (i = 0; i < size; i++) {
4755 		if (new->entries[i].threshold <= usage) {
4756 			/*
4757 			 * new->current_threshold will not be used until
4758 			 * rcu_assign_pointer(), so it's safe to increment
4759 			 * it here.
4760 			 */
4761 			++new->current_threshold;
4762 		} else
4763 			break;
4764 	}
4765 
4766 	/* Free old spare buffer and save old primary buffer as spare */
4767 	kfree(thresholds->spare);
4768 	thresholds->spare = thresholds->primary;
4769 
4770 	rcu_assign_pointer(thresholds->primary, new);
4771 
4772 	/* To be sure that nobody uses thresholds */
4773 	synchronize_rcu();
4774 
4775 unlock:
4776 	mutex_unlock(&memcg->thresholds_lock);
4777 
4778 	return ret;
4779 }
4780 
4781 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4782 	struct eventfd_ctx *eventfd, const char *args)
4783 {
4784 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4785 }
4786 
4787 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4788 	struct eventfd_ctx *eventfd, const char *args)
4789 {
4790 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4791 }
4792 
4793 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4794 	struct eventfd_ctx *eventfd, enum res_type type)
4795 {
4796 	struct mem_cgroup_thresholds *thresholds;
4797 	struct mem_cgroup_threshold_ary *new;
4798 	unsigned long usage;
4799 	int i, j, size, entries;
4800 
4801 	mutex_lock(&memcg->thresholds_lock);
4802 
4803 	if (type == _MEM) {
4804 		thresholds = &memcg->thresholds;
4805 		usage = mem_cgroup_usage(memcg, false);
4806 	} else if (type == _MEMSWAP) {
4807 		thresholds = &memcg->memsw_thresholds;
4808 		usage = mem_cgroup_usage(memcg, true);
4809 	} else
4810 		BUG();
4811 
4812 	if (!thresholds->primary)
4813 		goto unlock;
4814 
4815 	/* Check if a threshold crossed before removing */
4816 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4817 
4818 	/* Calculate new number of threshold */
4819 	size = entries = 0;
4820 	for (i = 0; i < thresholds->primary->size; i++) {
4821 		if (thresholds->primary->entries[i].eventfd != eventfd)
4822 			size++;
4823 		else
4824 			entries++;
4825 	}
4826 
4827 	new = thresholds->spare;
4828 
4829 	/* If no items related to eventfd have been cleared, nothing to do */
4830 	if (!entries)
4831 		goto unlock;
4832 
4833 	/* Set thresholds array to NULL if we don't have thresholds */
4834 	if (!size) {
4835 		kfree(new);
4836 		new = NULL;
4837 		goto swap_buffers;
4838 	}
4839 
4840 	new->size = size;
4841 
4842 	/* Copy thresholds and find current threshold */
4843 	new->current_threshold = -1;
4844 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4845 		if (thresholds->primary->entries[i].eventfd == eventfd)
4846 			continue;
4847 
4848 		new->entries[j] = thresholds->primary->entries[i];
4849 		if (new->entries[j].threshold <= usage) {
4850 			/*
4851 			 * new->current_threshold will not be used
4852 			 * until rcu_assign_pointer(), so it's safe to increment
4853 			 * it here.
4854 			 */
4855 			++new->current_threshold;
4856 		}
4857 		j++;
4858 	}
4859 
4860 swap_buffers:
4861 	/* Swap primary and spare array */
4862 	thresholds->spare = thresholds->primary;
4863 
4864 	rcu_assign_pointer(thresholds->primary, new);
4865 
4866 	/* To be sure that nobody uses thresholds */
4867 	synchronize_rcu();
4868 
4869 	/* If all events are unregistered, free the spare array */
4870 	if (!new) {
4871 		kfree(thresholds->spare);
4872 		thresholds->spare = NULL;
4873 	}
4874 unlock:
4875 	mutex_unlock(&memcg->thresholds_lock);
4876 }
4877 
4878 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4879 	struct eventfd_ctx *eventfd)
4880 {
4881 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4882 }
4883 
4884 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4885 	struct eventfd_ctx *eventfd)
4886 {
4887 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4888 }
4889 
4890 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4891 	struct eventfd_ctx *eventfd, const char *args)
4892 {
4893 	struct mem_cgroup_eventfd_list *event;
4894 
4895 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4896 	if (!event)
4897 		return -ENOMEM;
4898 
4899 	spin_lock(&memcg_oom_lock);
4900 
4901 	event->eventfd = eventfd;
4902 	list_add(&event->list, &memcg->oom_notify);
4903 
4904 	/* already in OOM ? */
4905 	if (memcg->under_oom)
4906 		eventfd_signal(eventfd);
4907 	spin_unlock(&memcg_oom_lock);
4908 
4909 	return 0;
4910 }
4911 
4912 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4913 	struct eventfd_ctx *eventfd)
4914 {
4915 	struct mem_cgroup_eventfd_list *ev, *tmp;
4916 
4917 	spin_lock(&memcg_oom_lock);
4918 
4919 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4920 		if (ev->eventfd == eventfd) {
4921 			list_del(&ev->list);
4922 			kfree(ev);
4923 		}
4924 	}
4925 
4926 	spin_unlock(&memcg_oom_lock);
4927 }
4928 
4929 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4930 {
4931 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4932 
4933 	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4934 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4935 	seq_printf(sf, "oom_kill %lu\n",
4936 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4937 	return 0;
4938 }
4939 
4940 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4941 	struct cftype *cft, u64 val)
4942 {
4943 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4944 
4945 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4946 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4947 		return -EINVAL;
4948 
4949 	WRITE_ONCE(memcg->oom_kill_disable, val);
4950 	if (!val)
4951 		memcg_oom_recover(memcg);
4952 
4953 	return 0;
4954 }
4955 
4956 #ifdef CONFIG_CGROUP_WRITEBACK
4957 
4958 #include <trace/events/writeback.h>
4959 
4960 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4961 {
4962 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4963 }
4964 
4965 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4966 {
4967 	wb_domain_exit(&memcg->cgwb_domain);
4968 }
4969 
4970 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4971 {
4972 	wb_domain_size_changed(&memcg->cgwb_domain);
4973 }
4974 
4975 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4976 {
4977 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4978 
4979 	if (!memcg->css.parent)
4980 		return NULL;
4981 
4982 	return &memcg->cgwb_domain;
4983 }
4984 
4985 /**
4986  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4987  * @wb: bdi_writeback in question
4988  * @pfilepages: out parameter for number of file pages
4989  * @pheadroom: out parameter for number of allocatable pages according to memcg
4990  * @pdirty: out parameter for number of dirty pages
4991  * @pwriteback: out parameter for number of pages under writeback
4992  *
4993  * Determine the numbers of file, headroom, dirty, and writeback pages in
4994  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4995  * is a bit more involved.
4996  *
4997  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4998  * headroom is calculated as the lowest headroom of itself and the
4999  * ancestors.  Note that this doesn't consider the actual amount of
5000  * available memory in the system.  The caller should further cap
5001  * *@pheadroom accordingly.
5002  */
5003 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
5004 			 unsigned long *pheadroom, unsigned long *pdirty,
5005 			 unsigned long *pwriteback)
5006 {
5007 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
5008 	struct mem_cgroup *parent;
5009 
5010 	mem_cgroup_flush_stats_ratelimited(memcg);
5011 
5012 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
5013 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
5014 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
5015 			memcg_page_state(memcg, NR_ACTIVE_FILE);
5016 
5017 	*pheadroom = PAGE_COUNTER_MAX;
5018 	while ((parent = parent_mem_cgroup(memcg))) {
5019 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
5020 					    READ_ONCE(memcg->memory.high));
5021 		unsigned long used = page_counter_read(&memcg->memory);
5022 
5023 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
5024 		memcg = parent;
5025 	}
5026 }
5027 
5028 /*
5029  * Foreign dirty flushing
5030  *
5031  * There's an inherent mismatch between memcg and writeback.  The former
5032  * tracks ownership per-page while the latter per-inode.  This was a
5033  * deliberate design decision because honoring per-page ownership in the
5034  * writeback path is complicated, may lead to higher CPU and IO overheads
5035  * and deemed unnecessary given that write-sharing an inode across
5036  * different cgroups isn't a common use-case.
5037  *
5038  * Combined with inode majority-writer ownership switching, this works well
5039  * enough in most cases but there are some pathological cases.  For
5040  * example, let's say there are two cgroups A and B which keep writing to
5041  * different but confined parts of the same inode.  B owns the inode and
5042  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
5043  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
5044  * triggering background writeback.  A will be slowed down without a way to
5045  * make writeback of the dirty pages happen.
5046  *
5047  * Conditions like the above can lead to a cgroup getting repeatedly and
5048  * severely throttled after making some progress after each
5049  * dirty_expire_interval while the underlying IO device is almost
5050  * completely idle.
5051  *
5052  * Solving this problem completely requires matching the ownership tracking
5053  * granularities between memcg and writeback in either direction.  However,
5054  * the more egregious behaviors can be avoided by simply remembering the
5055  * most recent foreign dirtying events and initiating remote flushes on
5056  * them when local writeback isn't enough to keep the memory clean enough.
5057  *
5058  * The following two functions implement such mechanism.  When a foreign
5059  * page - a page whose memcg and writeback ownerships don't match - is
5060  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
5061  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
5062  * decides that the memcg needs to sleep due to high dirty ratio, it calls
5063  * mem_cgroup_flush_foreign() which queues writeback on the recorded
5064  * foreign bdi_writebacks which haven't expired.  Both the numbers of
5065  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
5066  * limited to MEMCG_CGWB_FRN_CNT.
5067  *
5068  * The mechanism only remembers IDs and doesn't hold any object references.
5069  * As being wrong occasionally doesn't matter, updates and accesses to the
5070  * records are lockless and racy.
5071  */
5072 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
5073 					     struct bdi_writeback *wb)
5074 {
5075 	struct mem_cgroup *memcg = folio_memcg(folio);
5076 	struct memcg_cgwb_frn *frn;
5077 	u64 now = get_jiffies_64();
5078 	u64 oldest_at = now;
5079 	int oldest = -1;
5080 	int i;
5081 
5082 	trace_track_foreign_dirty(folio, wb);
5083 
5084 	/*
5085 	 * Pick the slot to use.  If there is already a slot for @wb, keep
5086 	 * using it.  If not replace the oldest one which isn't being
5087 	 * written out.
5088 	 */
5089 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
5090 		frn = &memcg->cgwb_frn[i];
5091 		if (frn->bdi_id == wb->bdi->id &&
5092 		    frn->memcg_id == wb->memcg_css->id)
5093 			break;
5094 		if (time_before64(frn->at, oldest_at) &&
5095 		    atomic_read(&frn->done.cnt) == 1) {
5096 			oldest = i;
5097 			oldest_at = frn->at;
5098 		}
5099 	}
5100 
5101 	if (i < MEMCG_CGWB_FRN_CNT) {
5102 		/*
5103 		 * Re-using an existing one.  Update timestamp lazily to
5104 		 * avoid making the cacheline hot.  We want them to be
5105 		 * reasonably up-to-date and significantly shorter than
5106 		 * dirty_expire_interval as that's what expires the record.
5107 		 * Use the shorter of 1s and dirty_expire_interval / 8.
5108 		 */
5109 		unsigned long update_intv =
5110 			min_t(unsigned long, HZ,
5111 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
5112 
5113 		if (time_before64(frn->at, now - update_intv))
5114 			frn->at = now;
5115 	} else if (oldest >= 0) {
5116 		/* replace the oldest free one */
5117 		frn = &memcg->cgwb_frn[oldest];
5118 		frn->bdi_id = wb->bdi->id;
5119 		frn->memcg_id = wb->memcg_css->id;
5120 		frn->at = now;
5121 	}
5122 }
5123 
5124 /* issue foreign writeback flushes for recorded foreign dirtying events */
5125 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
5126 {
5127 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
5128 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
5129 	u64 now = jiffies_64;
5130 	int i;
5131 
5132 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
5133 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
5134 
5135 		/*
5136 		 * If the record is older than dirty_expire_interval,
5137 		 * writeback on it has already started.  No need to kick it
5138 		 * off again.  Also, don't start a new one if there's
5139 		 * already one in flight.
5140 		 */
5141 		if (time_after64(frn->at, now - intv) &&
5142 		    atomic_read(&frn->done.cnt) == 1) {
5143 			frn->at = 0;
5144 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
5145 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
5146 					       WB_REASON_FOREIGN_FLUSH,
5147 					       &frn->done);
5148 		}
5149 	}
5150 }
5151 
5152 #else	/* CONFIG_CGROUP_WRITEBACK */
5153 
5154 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
5155 {
5156 	return 0;
5157 }
5158 
5159 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
5160 {
5161 }
5162 
5163 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
5164 {
5165 }
5166 
5167 #endif	/* CONFIG_CGROUP_WRITEBACK */
5168 
5169 /*
5170  * DO NOT USE IN NEW FILES.
5171  *
5172  * "cgroup.event_control" implementation.
5173  *
5174  * This is way over-engineered.  It tries to support fully configurable
5175  * events for each user.  Such level of flexibility is completely
5176  * unnecessary especially in the light of the planned unified hierarchy.
5177  *
5178  * Please deprecate this and replace with something simpler if at all
5179  * possible.
5180  */
5181 
5182 /*
5183  * Unregister event and free resources.
5184  *
5185  * Gets called from workqueue.
5186  */
5187 static void memcg_event_remove(struct work_struct *work)
5188 {
5189 	struct mem_cgroup_event *event =
5190 		container_of(work, struct mem_cgroup_event, remove);
5191 	struct mem_cgroup *memcg = event->memcg;
5192 
5193 	remove_wait_queue(event->wqh, &event->wait);
5194 
5195 	event->unregister_event(memcg, event->eventfd);
5196 
5197 	/* Notify userspace the event is going away. */
5198 	eventfd_signal(event->eventfd);
5199 
5200 	eventfd_ctx_put(event->eventfd);
5201 	kfree(event);
5202 	css_put(&memcg->css);
5203 }
5204 
5205 /*
5206  * Gets called on EPOLLHUP on eventfd when user closes it.
5207  *
5208  * Called with wqh->lock held and interrupts disabled.
5209  */
5210 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
5211 			    int sync, void *key)
5212 {
5213 	struct mem_cgroup_event *event =
5214 		container_of(wait, struct mem_cgroup_event, wait);
5215 	struct mem_cgroup *memcg = event->memcg;
5216 	__poll_t flags = key_to_poll(key);
5217 
5218 	if (flags & EPOLLHUP) {
5219 		/*
5220 		 * If the event has been detached at cgroup removal, we
5221 		 * can simply return knowing the other side will cleanup
5222 		 * for us.
5223 		 *
5224 		 * We can't race against event freeing since the other
5225 		 * side will require wqh->lock via remove_wait_queue(),
5226 		 * which we hold.
5227 		 */
5228 		spin_lock(&memcg->event_list_lock);
5229 		if (!list_empty(&event->list)) {
5230 			list_del_init(&event->list);
5231 			/*
5232 			 * We are in atomic context, but cgroup_event_remove()
5233 			 * may sleep, so we have to call it in workqueue.
5234 			 */
5235 			schedule_work(&event->remove);
5236 		}
5237 		spin_unlock(&memcg->event_list_lock);
5238 	}
5239 
5240 	return 0;
5241 }
5242 
5243 static void memcg_event_ptable_queue_proc(struct file *file,
5244 		wait_queue_head_t *wqh, poll_table *pt)
5245 {
5246 	struct mem_cgroup_event *event =
5247 		container_of(pt, struct mem_cgroup_event, pt);
5248 
5249 	event->wqh = wqh;
5250 	add_wait_queue(wqh, &event->wait);
5251 }
5252 
5253 /*
5254  * DO NOT USE IN NEW FILES.
5255  *
5256  * Parse input and register new cgroup event handler.
5257  *
5258  * Input must be in format '<event_fd> <control_fd> <args>'.
5259  * Interpretation of args is defined by control file implementation.
5260  */
5261 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5262 					 char *buf, size_t nbytes, loff_t off)
5263 {
5264 	struct cgroup_subsys_state *css = of_css(of);
5265 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5266 	struct mem_cgroup_event *event;
5267 	struct cgroup_subsys_state *cfile_css;
5268 	unsigned int efd, cfd;
5269 	struct fd efile;
5270 	struct fd cfile;
5271 	struct dentry *cdentry;
5272 	const char *name;
5273 	char *endp;
5274 	int ret;
5275 
5276 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
5277 		return -EOPNOTSUPP;
5278 
5279 	buf = strstrip(buf);
5280 
5281 	efd = simple_strtoul(buf, &endp, 10);
5282 	if (*endp != ' ')
5283 		return -EINVAL;
5284 	buf = endp + 1;
5285 
5286 	cfd = simple_strtoul(buf, &endp, 10);
5287 	if ((*endp != ' ') && (*endp != '\0'))
5288 		return -EINVAL;
5289 	buf = endp + 1;
5290 
5291 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5292 	if (!event)
5293 		return -ENOMEM;
5294 
5295 	event->memcg = memcg;
5296 	INIT_LIST_HEAD(&event->list);
5297 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5298 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5299 	INIT_WORK(&event->remove, memcg_event_remove);
5300 
5301 	efile = fdget(efd);
5302 	if (!efile.file) {
5303 		ret = -EBADF;
5304 		goto out_kfree;
5305 	}
5306 
5307 	event->eventfd = eventfd_ctx_fileget(efile.file);
5308 	if (IS_ERR(event->eventfd)) {
5309 		ret = PTR_ERR(event->eventfd);
5310 		goto out_put_efile;
5311 	}
5312 
5313 	cfile = fdget(cfd);
5314 	if (!cfile.file) {
5315 		ret = -EBADF;
5316 		goto out_put_eventfd;
5317 	}
5318 
5319 	/* the process need read permission on control file */
5320 	/* AV: shouldn't we check that it's been opened for read instead? */
5321 	ret = file_permission(cfile.file, MAY_READ);
5322 	if (ret < 0)
5323 		goto out_put_cfile;
5324 
5325 	/*
5326 	 * The control file must be a regular cgroup1 file. As a regular cgroup
5327 	 * file can't be renamed, it's safe to access its name afterwards.
5328 	 */
5329 	cdentry = cfile.file->f_path.dentry;
5330 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5331 		ret = -EINVAL;
5332 		goto out_put_cfile;
5333 	}
5334 
5335 	/*
5336 	 * Determine the event callbacks and set them in @event.  This used
5337 	 * to be done via struct cftype but cgroup core no longer knows
5338 	 * about these events.  The following is crude but the whole thing
5339 	 * is for compatibility anyway.
5340 	 *
5341 	 * DO NOT ADD NEW FILES.
5342 	 */
5343 	name = cdentry->d_name.name;
5344 
5345 	if (!strcmp(name, "memory.usage_in_bytes")) {
5346 		event->register_event = mem_cgroup_usage_register_event;
5347 		event->unregister_event = mem_cgroup_usage_unregister_event;
5348 	} else if (!strcmp(name, "memory.oom_control")) {
5349 		event->register_event = mem_cgroup_oom_register_event;
5350 		event->unregister_event = mem_cgroup_oom_unregister_event;
5351 	} else if (!strcmp(name, "memory.pressure_level")) {
5352 		event->register_event = vmpressure_register_event;
5353 		event->unregister_event = vmpressure_unregister_event;
5354 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5355 		event->register_event = memsw_cgroup_usage_register_event;
5356 		event->unregister_event = memsw_cgroup_usage_unregister_event;
5357 	} else {
5358 		ret = -EINVAL;
5359 		goto out_put_cfile;
5360 	}
5361 
5362 	/*
5363 	 * Verify @cfile should belong to @css.  Also, remaining events are
5364 	 * automatically removed on cgroup destruction but the removal is
5365 	 * asynchronous, so take an extra ref on @css.
5366 	 */
5367 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5368 					       &memory_cgrp_subsys);
5369 	ret = -EINVAL;
5370 	if (IS_ERR(cfile_css))
5371 		goto out_put_cfile;
5372 	if (cfile_css != css) {
5373 		css_put(cfile_css);
5374 		goto out_put_cfile;
5375 	}
5376 
5377 	ret = event->register_event(memcg, event->eventfd, buf);
5378 	if (ret)
5379 		goto out_put_css;
5380 
5381 	vfs_poll(efile.file, &event->pt);
5382 
5383 	spin_lock_irq(&memcg->event_list_lock);
5384 	list_add(&event->list, &memcg->event_list);
5385 	spin_unlock_irq(&memcg->event_list_lock);
5386 
5387 	fdput(cfile);
5388 	fdput(efile);
5389 
5390 	return nbytes;
5391 
5392 out_put_css:
5393 	css_put(css);
5394 out_put_cfile:
5395 	fdput(cfile);
5396 out_put_eventfd:
5397 	eventfd_ctx_put(event->eventfd);
5398 out_put_efile:
5399 	fdput(efile);
5400 out_kfree:
5401 	kfree(event);
5402 
5403 	return ret;
5404 }
5405 
5406 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5407 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5408 {
5409 	/*
5410 	 * Deprecated.
5411 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5412 	 */
5413 	return 0;
5414 }
5415 #endif
5416 
5417 static int memory_stat_show(struct seq_file *m, void *v);
5418 
5419 static struct cftype mem_cgroup_legacy_files[] = {
5420 	{
5421 		.name = "usage_in_bytes",
5422 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5423 		.read_u64 = mem_cgroup_read_u64,
5424 	},
5425 	{
5426 		.name = "max_usage_in_bytes",
5427 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5428 		.write = mem_cgroup_reset,
5429 		.read_u64 = mem_cgroup_read_u64,
5430 	},
5431 	{
5432 		.name = "limit_in_bytes",
5433 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5434 		.write = mem_cgroup_write,
5435 		.read_u64 = mem_cgroup_read_u64,
5436 	},
5437 	{
5438 		.name = "soft_limit_in_bytes",
5439 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5440 		.write = mem_cgroup_write,
5441 		.read_u64 = mem_cgroup_read_u64,
5442 	},
5443 	{
5444 		.name = "failcnt",
5445 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5446 		.write = mem_cgroup_reset,
5447 		.read_u64 = mem_cgroup_read_u64,
5448 	},
5449 	{
5450 		.name = "stat",
5451 		.seq_show = memory_stat_show,
5452 	},
5453 	{
5454 		.name = "force_empty",
5455 		.write = mem_cgroup_force_empty_write,
5456 	},
5457 	{
5458 		.name = "use_hierarchy",
5459 		.write_u64 = mem_cgroup_hierarchy_write,
5460 		.read_u64 = mem_cgroup_hierarchy_read,
5461 	},
5462 	{
5463 		.name = "cgroup.event_control",		/* XXX: for compat */
5464 		.write = memcg_write_event_control,
5465 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5466 	},
5467 	{
5468 		.name = "swappiness",
5469 		.read_u64 = mem_cgroup_swappiness_read,
5470 		.write_u64 = mem_cgroup_swappiness_write,
5471 	},
5472 	{
5473 		.name = "move_charge_at_immigrate",
5474 		.read_u64 = mem_cgroup_move_charge_read,
5475 		.write_u64 = mem_cgroup_move_charge_write,
5476 	},
5477 	{
5478 		.name = "oom_control",
5479 		.seq_show = mem_cgroup_oom_control_read,
5480 		.write_u64 = mem_cgroup_oom_control_write,
5481 	},
5482 	{
5483 		.name = "pressure_level",
5484 		.seq_show = mem_cgroup_dummy_seq_show,
5485 	},
5486 #ifdef CONFIG_NUMA
5487 	{
5488 		.name = "numa_stat",
5489 		.seq_show = memcg_numa_stat_show,
5490 	},
5491 #endif
5492 	{
5493 		.name = "kmem.limit_in_bytes",
5494 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5495 		.write = mem_cgroup_write,
5496 		.read_u64 = mem_cgroup_read_u64,
5497 	},
5498 	{
5499 		.name = "kmem.usage_in_bytes",
5500 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5501 		.read_u64 = mem_cgroup_read_u64,
5502 	},
5503 	{
5504 		.name = "kmem.failcnt",
5505 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5506 		.write = mem_cgroup_reset,
5507 		.read_u64 = mem_cgroup_read_u64,
5508 	},
5509 	{
5510 		.name = "kmem.max_usage_in_bytes",
5511 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5512 		.write = mem_cgroup_reset,
5513 		.read_u64 = mem_cgroup_read_u64,
5514 	},
5515 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5516 	{
5517 		.name = "kmem.slabinfo",
5518 		.seq_show = mem_cgroup_slab_show,
5519 	},
5520 #endif
5521 	{
5522 		.name = "kmem.tcp.limit_in_bytes",
5523 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5524 		.write = mem_cgroup_write,
5525 		.read_u64 = mem_cgroup_read_u64,
5526 	},
5527 	{
5528 		.name = "kmem.tcp.usage_in_bytes",
5529 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5530 		.read_u64 = mem_cgroup_read_u64,
5531 	},
5532 	{
5533 		.name = "kmem.tcp.failcnt",
5534 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5535 		.write = mem_cgroup_reset,
5536 		.read_u64 = mem_cgroup_read_u64,
5537 	},
5538 	{
5539 		.name = "kmem.tcp.max_usage_in_bytes",
5540 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5541 		.write = mem_cgroup_reset,
5542 		.read_u64 = mem_cgroup_read_u64,
5543 	},
5544 	{ },	/* terminate */
5545 };
5546 
5547 /*
5548  * Private memory cgroup IDR
5549  *
5550  * Swap-out records and page cache shadow entries need to store memcg
5551  * references in constrained space, so we maintain an ID space that is
5552  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5553  * memory-controlled cgroups to 64k.
5554  *
5555  * However, there usually are many references to the offline CSS after
5556  * the cgroup has been destroyed, such as page cache or reclaimable
5557  * slab objects, that don't need to hang on to the ID. We want to keep
5558  * those dead CSS from occupying IDs, or we might quickly exhaust the
5559  * relatively small ID space and prevent the creation of new cgroups
5560  * even when there are much fewer than 64k cgroups - possibly none.
5561  *
5562  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5563  * be freed and recycled when it's no longer needed, which is usually
5564  * when the CSS is offlined.
5565  *
5566  * The only exception to that are records of swapped out tmpfs/shmem
5567  * pages that need to be attributed to live ancestors on swapin. But
5568  * those references are manageable from userspace.
5569  */
5570 
5571 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5572 static DEFINE_IDR(mem_cgroup_idr);
5573 
5574 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5575 {
5576 	if (memcg->id.id > 0) {
5577 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5578 		memcg->id.id = 0;
5579 	}
5580 }
5581 
5582 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5583 						  unsigned int n)
5584 {
5585 	refcount_add(n, &memcg->id.ref);
5586 }
5587 
5588 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5589 {
5590 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5591 		mem_cgroup_id_remove(memcg);
5592 
5593 		/* Memcg ID pins CSS */
5594 		css_put(&memcg->css);
5595 	}
5596 }
5597 
5598 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5599 {
5600 	mem_cgroup_id_put_many(memcg, 1);
5601 }
5602 
5603 /**
5604  * mem_cgroup_from_id - look up a memcg from a memcg id
5605  * @id: the memcg id to look up
5606  *
5607  * Caller must hold rcu_read_lock().
5608  */
5609 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5610 {
5611 	WARN_ON_ONCE(!rcu_read_lock_held());
5612 	return idr_find(&mem_cgroup_idr, id);
5613 }
5614 
5615 #ifdef CONFIG_SHRINKER_DEBUG
5616 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5617 {
5618 	struct cgroup *cgrp;
5619 	struct cgroup_subsys_state *css;
5620 	struct mem_cgroup *memcg;
5621 
5622 	cgrp = cgroup_get_from_id(ino);
5623 	if (IS_ERR(cgrp))
5624 		return ERR_CAST(cgrp);
5625 
5626 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5627 	if (css)
5628 		memcg = container_of(css, struct mem_cgroup, css);
5629 	else
5630 		memcg = ERR_PTR(-ENOENT);
5631 
5632 	cgroup_put(cgrp);
5633 
5634 	return memcg;
5635 }
5636 #endif
5637 
5638 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5639 {
5640 	struct mem_cgroup_per_node *pn;
5641 
5642 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5643 	if (!pn)
5644 		return false;
5645 
5646 	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
5647 					GFP_KERNEL_ACCOUNT, node);
5648 	if (!pn->lruvec_stats)
5649 		goto fail;
5650 
5651 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5652 						   GFP_KERNEL_ACCOUNT);
5653 	if (!pn->lruvec_stats_percpu)
5654 		goto fail;
5655 
5656 	lruvec_init(&pn->lruvec);
5657 	pn->memcg = memcg;
5658 
5659 	memcg->nodeinfo[node] = pn;
5660 	return true;
5661 fail:
5662 	kfree(pn->lruvec_stats);
5663 	kfree(pn);
5664 	return false;
5665 }
5666 
5667 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5668 {
5669 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5670 
5671 	if (!pn)
5672 		return;
5673 
5674 	free_percpu(pn->lruvec_stats_percpu);
5675 	kfree(pn->lruvec_stats);
5676 	kfree(pn);
5677 }
5678 
5679 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5680 {
5681 	int node;
5682 
5683 	obj_cgroup_put(memcg->orig_objcg);
5684 
5685 	for_each_node(node)
5686 		free_mem_cgroup_per_node_info(memcg, node);
5687 	kfree(memcg->vmstats);
5688 	free_percpu(memcg->vmstats_percpu);
5689 	kfree(memcg);
5690 }
5691 
5692 static void mem_cgroup_free(struct mem_cgroup *memcg)
5693 {
5694 	lru_gen_exit_memcg(memcg);
5695 	memcg_wb_domain_exit(memcg);
5696 	__mem_cgroup_free(memcg);
5697 }
5698 
5699 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
5700 {
5701 	struct memcg_vmstats_percpu *statc, *pstatc;
5702 	struct mem_cgroup *memcg;
5703 	int node, cpu;
5704 	int __maybe_unused i;
5705 	long error = -ENOMEM;
5706 
5707 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5708 	if (!memcg)
5709 		return ERR_PTR(error);
5710 
5711 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5712 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5713 	if (memcg->id.id < 0) {
5714 		error = memcg->id.id;
5715 		goto fail;
5716 	}
5717 
5718 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
5719 				 GFP_KERNEL_ACCOUNT);
5720 	if (!memcg->vmstats)
5721 		goto fail;
5722 
5723 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5724 						 GFP_KERNEL_ACCOUNT);
5725 	if (!memcg->vmstats_percpu)
5726 		goto fail;
5727 
5728 	for_each_possible_cpu(cpu) {
5729 		if (parent)
5730 			pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
5731 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5732 		statc->parent = parent ? pstatc : NULL;
5733 		statc->vmstats = memcg->vmstats;
5734 	}
5735 
5736 	for_each_node(node)
5737 		if (!alloc_mem_cgroup_per_node_info(memcg, node))
5738 			goto fail;
5739 
5740 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5741 		goto fail;
5742 
5743 	INIT_WORK(&memcg->high_work, high_work_func);
5744 	INIT_LIST_HEAD(&memcg->oom_notify);
5745 	mutex_init(&memcg->thresholds_lock);
5746 	spin_lock_init(&memcg->move_lock);
5747 	vmpressure_init(&memcg->vmpressure);
5748 	INIT_LIST_HEAD(&memcg->event_list);
5749 	spin_lock_init(&memcg->event_list_lock);
5750 	memcg->socket_pressure = jiffies;
5751 #ifdef CONFIG_MEMCG_KMEM
5752 	memcg->kmemcg_id = -1;
5753 	INIT_LIST_HEAD(&memcg->objcg_list);
5754 #endif
5755 #ifdef CONFIG_CGROUP_WRITEBACK
5756 	INIT_LIST_HEAD(&memcg->cgwb_list);
5757 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5758 		memcg->cgwb_frn[i].done =
5759 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5760 #endif
5761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5762 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5763 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5764 	memcg->deferred_split_queue.split_queue_len = 0;
5765 #endif
5766 	lru_gen_init_memcg(memcg);
5767 	return memcg;
5768 fail:
5769 	mem_cgroup_id_remove(memcg);
5770 	__mem_cgroup_free(memcg);
5771 	return ERR_PTR(error);
5772 }
5773 
5774 static struct cgroup_subsys_state * __ref
5775 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5776 {
5777 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5778 	struct mem_cgroup *memcg, *old_memcg;
5779 
5780 	old_memcg = set_active_memcg(parent);
5781 	memcg = mem_cgroup_alloc(parent);
5782 	set_active_memcg(old_memcg);
5783 	if (IS_ERR(memcg))
5784 		return ERR_CAST(memcg);
5785 
5786 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5787 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5788 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5789 	memcg->zswap_max = PAGE_COUNTER_MAX;
5790 	WRITE_ONCE(memcg->zswap_writeback,
5791 		!parent || READ_ONCE(parent->zswap_writeback));
5792 #endif
5793 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5794 	if (parent) {
5795 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5796 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5797 
5798 		page_counter_init(&memcg->memory, &parent->memory);
5799 		page_counter_init(&memcg->swap, &parent->swap);
5800 		page_counter_init(&memcg->kmem, &parent->kmem);
5801 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5802 	} else {
5803 		init_memcg_stats();
5804 		init_memcg_events();
5805 		page_counter_init(&memcg->memory, NULL);
5806 		page_counter_init(&memcg->swap, NULL);
5807 		page_counter_init(&memcg->kmem, NULL);
5808 		page_counter_init(&memcg->tcpmem, NULL);
5809 
5810 		root_mem_cgroup = memcg;
5811 		return &memcg->css;
5812 	}
5813 
5814 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5815 		static_branch_inc(&memcg_sockets_enabled_key);
5816 
5817 #if defined(CONFIG_MEMCG_KMEM)
5818 	if (!cgroup_memory_nobpf)
5819 		static_branch_inc(&memcg_bpf_enabled_key);
5820 #endif
5821 
5822 	return &memcg->css;
5823 }
5824 
5825 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5826 {
5827 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5828 
5829 	if (memcg_online_kmem(memcg))
5830 		goto remove_id;
5831 
5832 	/*
5833 	 * A memcg must be visible for expand_shrinker_info()
5834 	 * by the time the maps are allocated. So, we allocate maps
5835 	 * here, when for_each_mem_cgroup() can't skip it.
5836 	 */
5837 	if (alloc_shrinker_info(memcg))
5838 		goto offline_kmem;
5839 
5840 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
5841 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5842 				   FLUSH_TIME);
5843 	lru_gen_online_memcg(memcg);
5844 
5845 	/* Online state pins memcg ID, memcg ID pins CSS */
5846 	refcount_set(&memcg->id.ref, 1);
5847 	css_get(css);
5848 
5849 	/*
5850 	 * Ensure mem_cgroup_from_id() works once we're fully online.
5851 	 *
5852 	 * We could do this earlier and require callers to filter with
5853 	 * css_tryget_online(). But right now there are no users that
5854 	 * need earlier access, and the workingset code relies on the
5855 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5856 	 * publish it here at the end of onlining. This matches the
5857 	 * regular ID destruction during offlining.
5858 	 */
5859 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5860 
5861 	return 0;
5862 offline_kmem:
5863 	memcg_offline_kmem(memcg);
5864 remove_id:
5865 	mem_cgroup_id_remove(memcg);
5866 	return -ENOMEM;
5867 }
5868 
5869 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5870 {
5871 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5872 	struct mem_cgroup_event *event, *tmp;
5873 
5874 	/*
5875 	 * Unregister events and notify userspace.
5876 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5877 	 * directory to avoid race between userspace and kernelspace.
5878 	 */
5879 	spin_lock_irq(&memcg->event_list_lock);
5880 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5881 		list_del_init(&event->list);
5882 		schedule_work(&event->remove);
5883 	}
5884 	spin_unlock_irq(&memcg->event_list_lock);
5885 
5886 	page_counter_set_min(&memcg->memory, 0);
5887 	page_counter_set_low(&memcg->memory, 0);
5888 
5889 	zswap_memcg_offline_cleanup(memcg);
5890 
5891 	memcg_offline_kmem(memcg);
5892 	reparent_shrinker_deferred(memcg);
5893 	wb_memcg_offline(memcg);
5894 	lru_gen_offline_memcg(memcg);
5895 
5896 	drain_all_stock(memcg);
5897 
5898 	mem_cgroup_id_put(memcg);
5899 }
5900 
5901 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5902 {
5903 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5904 
5905 	invalidate_reclaim_iterators(memcg);
5906 	lru_gen_release_memcg(memcg);
5907 }
5908 
5909 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5910 {
5911 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5912 	int __maybe_unused i;
5913 
5914 #ifdef CONFIG_CGROUP_WRITEBACK
5915 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5916 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5917 #endif
5918 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5919 		static_branch_dec(&memcg_sockets_enabled_key);
5920 
5921 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5922 		static_branch_dec(&memcg_sockets_enabled_key);
5923 
5924 #if defined(CONFIG_MEMCG_KMEM)
5925 	if (!cgroup_memory_nobpf)
5926 		static_branch_dec(&memcg_bpf_enabled_key);
5927 #endif
5928 
5929 	vmpressure_cleanup(&memcg->vmpressure);
5930 	cancel_work_sync(&memcg->high_work);
5931 	mem_cgroup_remove_from_trees(memcg);
5932 	free_shrinker_info(memcg);
5933 	mem_cgroup_free(memcg);
5934 }
5935 
5936 /**
5937  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5938  * @css: the target css
5939  *
5940  * Reset the states of the mem_cgroup associated with @css.  This is
5941  * invoked when the userland requests disabling on the default hierarchy
5942  * but the memcg is pinned through dependency.  The memcg should stop
5943  * applying policies and should revert to the vanilla state as it may be
5944  * made visible again.
5945  *
5946  * The current implementation only resets the essential configurations.
5947  * This needs to be expanded to cover all the visible parts.
5948  */
5949 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5950 {
5951 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5952 
5953 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5954 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5955 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5956 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5957 	page_counter_set_min(&memcg->memory, 0);
5958 	page_counter_set_low(&memcg->memory, 0);
5959 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5960 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5961 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5962 	memcg_wb_domain_size_changed(memcg);
5963 }
5964 
5965 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5966 {
5967 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5968 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5969 	struct memcg_vmstats_percpu *statc;
5970 	long delta, delta_cpu, v;
5971 	int i, nid;
5972 
5973 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5974 
5975 	for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) {
5976 		/*
5977 		 * Collect the aggregated propagation counts of groups
5978 		 * below us. We're in a per-cpu loop here and this is
5979 		 * a global counter, so the first cycle will get them.
5980 		 */
5981 		delta = memcg->vmstats->state_pending[i];
5982 		if (delta)
5983 			memcg->vmstats->state_pending[i] = 0;
5984 
5985 		/* Add CPU changes on this level since the last flush */
5986 		delta_cpu = 0;
5987 		v = READ_ONCE(statc->state[i]);
5988 		if (v != statc->state_prev[i]) {
5989 			delta_cpu = v - statc->state_prev[i];
5990 			delta += delta_cpu;
5991 			statc->state_prev[i] = v;
5992 		}
5993 
5994 		/* Aggregate counts on this level and propagate upwards */
5995 		if (delta_cpu)
5996 			memcg->vmstats->state_local[i] += delta_cpu;
5997 
5998 		if (delta) {
5999 			memcg->vmstats->state[i] += delta;
6000 			if (parent)
6001 				parent->vmstats->state_pending[i] += delta;
6002 		}
6003 	}
6004 
6005 	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
6006 		delta = memcg->vmstats->events_pending[i];
6007 		if (delta)
6008 			memcg->vmstats->events_pending[i] = 0;
6009 
6010 		delta_cpu = 0;
6011 		v = READ_ONCE(statc->events[i]);
6012 		if (v != statc->events_prev[i]) {
6013 			delta_cpu = v - statc->events_prev[i];
6014 			delta += delta_cpu;
6015 			statc->events_prev[i] = v;
6016 		}
6017 
6018 		if (delta_cpu)
6019 			memcg->vmstats->events_local[i] += delta_cpu;
6020 
6021 		if (delta) {
6022 			memcg->vmstats->events[i] += delta;
6023 			if (parent)
6024 				parent->vmstats->events_pending[i] += delta;
6025 		}
6026 	}
6027 
6028 	for_each_node_state(nid, N_MEMORY) {
6029 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
6030 		struct lruvec_stats *lstats = pn->lruvec_stats;
6031 		struct lruvec_stats *plstats = NULL;
6032 		struct lruvec_stats_percpu *lstatc;
6033 
6034 		if (parent)
6035 			plstats = parent->nodeinfo[nid]->lruvec_stats;
6036 
6037 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
6038 
6039 		for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) {
6040 			delta = lstats->state_pending[i];
6041 			if (delta)
6042 				lstats->state_pending[i] = 0;
6043 
6044 			delta_cpu = 0;
6045 			v = READ_ONCE(lstatc->state[i]);
6046 			if (v != lstatc->state_prev[i]) {
6047 				delta_cpu = v - lstatc->state_prev[i];
6048 				delta += delta_cpu;
6049 				lstatc->state_prev[i] = v;
6050 			}
6051 
6052 			if (delta_cpu)
6053 				lstats->state_local[i] += delta_cpu;
6054 
6055 			if (delta) {
6056 				lstats->state[i] += delta;
6057 				if (plstats)
6058 					plstats->state_pending[i] += delta;
6059 			}
6060 		}
6061 	}
6062 	WRITE_ONCE(statc->stats_updates, 0);
6063 	/* We are in a per-cpu loop here, only do the atomic write once */
6064 	if (atomic64_read(&memcg->vmstats->stats_updates))
6065 		atomic64_set(&memcg->vmstats->stats_updates, 0);
6066 }
6067 
6068 #ifdef CONFIG_MMU
6069 /* Handlers for move charge at task migration. */
6070 static int mem_cgroup_do_precharge(unsigned long count)
6071 {
6072 	int ret;
6073 
6074 	/* Try a single bulk charge without reclaim first, kswapd may wake */
6075 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
6076 	if (!ret) {
6077 		mc.precharge += count;
6078 		return ret;
6079 	}
6080 
6081 	/* Try charges one by one with reclaim, but do not retry */
6082 	while (count--) {
6083 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
6084 		if (ret)
6085 			return ret;
6086 		mc.precharge++;
6087 		cond_resched();
6088 	}
6089 	return 0;
6090 }
6091 
6092 union mc_target {
6093 	struct folio	*folio;
6094 	swp_entry_t	ent;
6095 };
6096 
6097 enum mc_target_type {
6098 	MC_TARGET_NONE = 0,
6099 	MC_TARGET_PAGE,
6100 	MC_TARGET_SWAP,
6101 	MC_TARGET_DEVICE,
6102 };
6103 
6104 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6105 						unsigned long addr, pte_t ptent)
6106 {
6107 	struct page *page = vm_normal_page(vma, addr, ptent);
6108 
6109 	if (!page)
6110 		return NULL;
6111 	if (PageAnon(page)) {
6112 		if (!(mc.flags & MOVE_ANON))
6113 			return NULL;
6114 	} else {
6115 		if (!(mc.flags & MOVE_FILE))
6116 			return NULL;
6117 	}
6118 	get_page(page);
6119 
6120 	return page;
6121 }
6122 
6123 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
6124 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6125 			pte_t ptent, swp_entry_t *entry)
6126 {
6127 	struct page *page = NULL;
6128 	swp_entry_t ent = pte_to_swp_entry(ptent);
6129 
6130 	if (!(mc.flags & MOVE_ANON))
6131 		return NULL;
6132 
6133 	/*
6134 	 * Handle device private pages that are not accessible by the CPU, but
6135 	 * stored as special swap entries in the page table.
6136 	 */
6137 	if (is_device_private_entry(ent)) {
6138 		page = pfn_swap_entry_to_page(ent);
6139 		if (!get_page_unless_zero(page))
6140 			return NULL;
6141 		return page;
6142 	}
6143 
6144 	if (non_swap_entry(ent))
6145 		return NULL;
6146 
6147 	/*
6148 	 * Because swap_cache_get_folio() updates some statistics counter,
6149 	 * we call find_get_page() with swapper_space directly.
6150 	 */
6151 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
6152 	entry->val = ent.val;
6153 
6154 	return page;
6155 }
6156 #else
6157 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6158 			pte_t ptent, swp_entry_t *entry)
6159 {
6160 	return NULL;
6161 }
6162 #endif
6163 
6164 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6165 			unsigned long addr, pte_t ptent)
6166 {
6167 	unsigned long index;
6168 	struct folio *folio;
6169 
6170 	if (!vma->vm_file) /* anonymous vma */
6171 		return NULL;
6172 	if (!(mc.flags & MOVE_FILE))
6173 		return NULL;
6174 
6175 	/* folio is moved even if it's not RSS of this task(page-faulted). */
6176 	/* shmem/tmpfs may report page out on swap: account for that too. */
6177 	index = linear_page_index(vma, addr);
6178 	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
6179 	if (IS_ERR(folio))
6180 		return NULL;
6181 	return folio_file_page(folio, index);
6182 }
6183 
6184 /**
6185  * mem_cgroup_move_account - move account of the folio
6186  * @folio: The folio.
6187  * @compound: charge the page as compound or small page
6188  * @from: mem_cgroup which the folio is moved from.
6189  * @to:	mem_cgroup which the folio is moved to. @from != @to.
6190  *
6191  * The folio must be locked and not on the LRU.
6192  *
6193  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
6194  * from old cgroup.
6195  */
6196 static int mem_cgroup_move_account(struct folio *folio,
6197 				   bool compound,
6198 				   struct mem_cgroup *from,
6199 				   struct mem_cgroup *to)
6200 {
6201 	struct lruvec *from_vec, *to_vec;
6202 	struct pglist_data *pgdat;
6203 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
6204 	int nid, ret;
6205 
6206 	VM_BUG_ON(from == to);
6207 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
6208 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6209 	VM_BUG_ON(compound && !folio_test_large(folio));
6210 
6211 	ret = -EINVAL;
6212 	if (folio_memcg(folio) != from)
6213 		goto out;
6214 
6215 	pgdat = folio_pgdat(folio);
6216 	from_vec = mem_cgroup_lruvec(from, pgdat);
6217 	to_vec = mem_cgroup_lruvec(to, pgdat);
6218 
6219 	folio_memcg_lock(folio);
6220 
6221 	if (folio_test_anon(folio)) {
6222 		if (folio_mapped(folio)) {
6223 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
6224 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
6225 			if (folio_test_pmd_mappable(folio)) {
6226 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
6227 						   -nr_pages);
6228 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
6229 						   nr_pages);
6230 			}
6231 		}
6232 	} else {
6233 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
6234 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
6235 
6236 		if (folio_test_swapbacked(folio)) {
6237 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
6238 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
6239 		}
6240 
6241 		if (folio_mapped(folio)) {
6242 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
6243 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
6244 		}
6245 
6246 		if (folio_test_dirty(folio)) {
6247 			struct address_space *mapping = folio_mapping(folio);
6248 
6249 			if (mapping_can_writeback(mapping)) {
6250 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
6251 						   -nr_pages);
6252 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
6253 						   nr_pages);
6254 			}
6255 		}
6256 	}
6257 
6258 #ifdef CONFIG_SWAP
6259 	if (folio_test_swapcache(folio)) {
6260 		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
6261 		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
6262 	}
6263 #endif
6264 	if (folio_test_writeback(folio)) {
6265 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
6266 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
6267 	}
6268 
6269 	/*
6270 	 * All state has been migrated, let's switch to the new memcg.
6271 	 *
6272 	 * It is safe to change page's memcg here because the page
6273 	 * is referenced, charged, isolated, and locked: we can't race
6274 	 * with (un)charging, migration, LRU putback, or anything else
6275 	 * that would rely on a stable page's memory cgroup.
6276 	 *
6277 	 * Note that folio_memcg_lock is a memcg lock, not a page lock,
6278 	 * to save space. As soon as we switch page's memory cgroup to a
6279 	 * new memcg that isn't locked, the above state can change
6280 	 * concurrently again. Make sure we're truly done with it.
6281 	 */
6282 	smp_mb();
6283 
6284 	css_get(&to->css);
6285 	css_put(&from->css);
6286 
6287 	folio->memcg_data = (unsigned long)to;
6288 
6289 	__folio_memcg_unlock(from);
6290 
6291 	ret = 0;
6292 	nid = folio_nid(folio);
6293 
6294 	local_irq_disable();
6295 	mem_cgroup_charge_statistics(to, nr_pages);
6296 	memcg_check_events(to, nid);
6297 	mem_cgroup_charge_statistics(from, -nr_pages);
6298 	memcg_check_events(from, nid);
6299 	local_irq_enable();
6300 out:
6301 	return ret;
6302 }
6303 
6304 /**
6305  * get_mctgt_type - get target type of moving charge
6306  * @vma: the vma the pte to be checked belongs
6307  * @addr: the address corresponding to the pte to be checked
6308  * @ptent: the pte to be checked
6309  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6310  *
6311  * Context: Called with pte lock held.
6312  * Return:
6313  * * MC_TARGET_NONE - If the pte is not a target for move charge.
6314  * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6315  *   move charge. If @target is not NULL, the folio is stored in target->folio
6316  *   with extra refcnt taken (Caller should release it).
6317  * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6318  *   target for charge migration.  If @target is not NULL, the entry is
6319  *   stored in target->ent.
6320  * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6321  *   thus not on the lru.  For now such page is charged like a regular page
6322  *   would be as it is just special memory taking the place of a regular page.
6323  *   See Documentations/vm/hmm.txt and include/linux/hmm.h
6324  */
6325 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6326 		unsigned long addr, pte_t ptent, union mc_target *target)
6327 {
6328 	struct page *page = NULL;
6329 	struct folio *folio;
6330 	enum mc_target_type ret = MC_TARGET_NONE;
6331 	swp_entry_t ent = { .val = 0 };
6332 
6333 	if (pte_present(ptent))
6334 		page = mc_handle_present_pte(vma, addr, ptent);
6335 	else if (pte_none_mostly(ptent))
6336 		/*
6337 		 * PTE markers should be treated as a none pte here, separated
6338 		 * from other swap handling below.
6339 		 */
6340 		page = mc_handle_file_pte(vma, addr, ptent);
6341 	else if (is_swap_pte(ptent))
6342 		page = mc_handle_swap_pte(vma, ptent, &ent);
6343 
6344 	if (page)
6345 		folio = page_folio(page);
6346 	if (target && page) {
6347 		if (!folio_trylock(folio)) {
6348 			folio_put(folio);
6349 			return ret;
6350 		}
6351 		/*
6352 		 * page_mapped() must be stable during the move. This
6353 		 * pte is locked, so if it's present, the page cannot
6354 		 * become unmapped. If it isn't, we have only partial
6355 		 * control over the mapped state: the page lock will
6356 		 * prevent new faults against pagecache and swapcache,
6357 		 * so an unmapped page cannot become mapped. However,
6358 		 * if the page is already mapped elsewhere, it can
6359 		 * unmap, and there is nothing we can do about it.
6360 		 * Alas, skip moving the page in this case.
6361 		 */
6362 		if (!pte_present(ptent) && page_mapped(page)) {
6363 			folio_unlock(folio);
6364 			folio_put(folio);
6365 			return ret;
6366 		}
6367 	}
6368 
6369 	if (!page && !ent.val)
6370 		return ret;
6371 	if (page) {
6372 		/*
6373 		 * Do only loose check w/o serialization.
6374 		 * mem_cgroup_move_account() checks the page is valid or
6375 		 * not under LRU exclusion.
6376 		 */
6377 		if (folio_memcg(folio) == mc.from) {
6378 			ret = MC_TARGET_PAGE;
6379 			if (folio_is_device_private(folio) ||
6380 			    folio_is_device_coherent(folio))
6381 				ret = MC_TARGET_DEVICE;
6382 			if (target)
6383 				target->folio = folio;
6384 		}
6385 		if (!ret || !target) {
6386 			if (target)
6387 				folio_unlock(folio);
6388 			folio_put(folio);
6389 		}
6390 	}
6391 	/*
6392 	 * There is a swap entry and a page doesn't exist or isn't charged.
6393 	 * But we cannot move a tail-page in a THP.
6394 	 */
6395 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6396 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6397 		ret = MC_TARGET_SWAP;
6398 		if (target)
6399 			target->ent = ent;
6400 	}
6401 	return ret;
6402 }
6403 
6404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6405 /*
6406  * We don't consider PMD mapped swapping or file mapped pages because THP does
6407  * not support them for now.
6408  * Caller should make sure that pmd_trans_huge(pmd) is true.
6409  */
6410 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6411 		unsigned long addr, pmd_t pmd, union mc_target *target)
6412 {
6413 	struct page *page = NULL;
6414 	struct folio *folio;
6415 	enum mc_target_type ret = MC_TARGET_NONE;
6416 
6417 	if (unlikely(is_swap_pmd(pmd))) {
6418 		VM_BUG_ON(thp_migration_supported() &&
6419 				  !is_pmd_migration_entry(pmd));
6420 		return ret;
6421 	}
6422 	page = pmd_page(pmd);
6423 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6424 	folio = page_folio(page);
6425 	if (!(mc.flags & MOVE_ANON))
6426 		return ret;
6427 	if (folio_memcg(folio) == mc.from) {
6428 		ret = MC_TARGET_PAGE;
6429 		if (target) {
6430 			folio_get(folio);
6431 			if (!folio_trylock(folio)) {
6432 				folio_put(folio);
6433 				return MC_TARGET_NONE;
6434 			}
6435 			target->folio = folio;
6436 		}
6437 	}
6438 	return ret;
6439 }
6440 #else
6441 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6442 		unsigned long addr, pmd_t pmd, union mc_target *target)
6443 {
6444 	return MC_TARGET_NONE;
6445 }
6446 #endif
6447 
6448 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6449 					unsigned long addr, unsigned long end,
6450 					struct mm_walk *walk)
6451 {
6452 	struct vm_area_struct *vma = walk->vma;
6453 	pte_t *pte;
6454 	spinlock_t *ptl;
6455 
6456 	ptl = pmd_trans_huge_lock(pmd, vma);
6457 	if (ptl) {
6458 		/*
6459 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
6460 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6461 		 * this might change.
6462 		 */
6463 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6464 			mc.precharge += HPAGE_PMD_NR;
6465 		spin_unlock(ptl);
6466 		return 0;
6467 	}
6468 
6469 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6470 	if (!pte)
6471 		return 0;
6472 	for (; addr != end; pte++, addr += PAGE_SIZE)
6473 		if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6474 			mc.precharge++;	/* increment precharge temporarily */
6475 	pte_unmap_unlock(pte - 1, ptl);
6476 	cond_resched();
6477 
6478 	return 0;
6479 }
6480 
6481 static const struct mm_walk_ops precharge_walk_ops = {
6482 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
6483 	.walk_lock	= PGWALK_RDLOCK,
6484 };
6485 
6486 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6487 {
6488 	unsigned long precharge;
6489 
6490 	mmap_read_lock(mm);
6491 	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6492 	mmap_read_unlock(mm);
6493 
6494 	precharge = mc.precharge;
6495 	mc.precharge = 0;
6496 
6497 	return precharge;
6498 }
6499 
6500 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6501 {
6502 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6503 
6504 	VM_BUG_ON(mc.moving_task);
6505 	mc.moving_task = current;
6506 	return mem_cgroup_do_precharge(precharge);
6507 }
6508 
6509 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6510 static void __mem_cgroup_clear_mc(void)
6511 {
6512 	struct mem_cgroup *from = mc.from;
6513 	struct mem_cgroup *to = mc.to;
6514 
6515 	/* we must uncharge all the leftover precharges from mc.to */
6516 	if (mc.precharge) {
6517 		mem_cgroup_cancel_charge(mc.to, mc.precharge);
6518 		mc.precharge = 0;
6519 	}
6520 	/*
6521 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6522 	 * we must uncharge here.
6523 	 */
6524 	if (mc.moved_charge) {
6525 		mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6526 		mc.moved_charge = 0;
6527 	}
6528 	/* we must fixup refcnts and charges */
6529 	if (mc.moved_swap) {
6530 		/* uncharge swap account from the old cgroup */
6531 		if (!mem_cgroup_is_root(mc.from))
6532 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6533 
6534 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6535 
6536 		/*
6537 		 * we charged both to->memory and to->memsw, so we
6538 		 * should uncharge to->memory.
6539 		 */
6540 		if (!mem_cgroup_is_root(mc.to))
6541 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6542 
6543 		mc.moved_swap = 0;
6544 	}
6545 	memcg_oom_recover(from);
6546 	memcg_oom_recover(to);
6547 	wake_up_all(&mc.waitq);
6548 }
6549 
6550 static void mem_cgroup_clear_mc(void)
6551 {
6552 	struct mm_struct *mm = mc.mm;
6553 
6554 	/*
6555 	 * we must clear moving_task before waking up waiters at the end of
6556 	 * task migration.
6557 	 */
6558 	mc.moving_task = NULL;
6559 	__mem_cgroup_clear_mc();
6560 	spin_lock(&mc.lock);
6561 	mc.from = NULL;
6562 	mc.to = NULL;
6563 	mc.mm = NULL;
6564 	spin_unlock(&mc.lock);
6565 
6566 	mmput(mm);
6567 }
6568 
6569 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6570 {
6571 	struct cgroup_subsys_state *css;
6572 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6573 	struct mem_cgroup *from;
6574 	struct task_struct *leader, *p;
6575 	struct mm_struct *mm;
6576 	unsigned long move_flags;
6577 	int ret = 0;
6578 
6579 	/* charge immigration isn't supported on the default hierarchy */
6580 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6581 		return 0;
6582 
6583 	/*
6584 	 * Multi-process migrations only happen on the default hierarchy
6585 	 * where charge immigration is not used.  Perform charge
6586 	 * immigration if @tset contains a leader and whine if there are
6587 	 * multiple.
6588 	 */
6589 	p = NULL;
6590 	cgroup_taskset_for_each_leader(leader, css, tset) {
6591 		WARN_ON_ONCE(p);
6592 		p = leader;
6593 		memcg = mem_cgroup_from_css(css);
6594 	}
6595 	if (!p)
6596 		return 0;
6597 
6598 	/*
6599 	 * We are now committed to this value whatever it is. Changes in this
6600 	 * tunable will only affect upcoming migrations, not the current one.
6601 	 * So we need to save it, and keep it going.
6602 	 */
6603 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6604 	if (!move_flags)
6605 		return 0;
6606 
6607 	from = mem_cgroup_from_task(p);
6608 
6609 	VM_BUG_ON(from == memcg);
6610 
6611 	mm = get_task_mm(p);
6612 	if (!mm)
6613 		return 0;
6614 	/* We move charges only when we move a owner of the mm */
6615 	if (mm->owner == p) {
6616 		VM_BUG_ON(mc.from);
6617 		VM_BUG_ON(mc.to);
6618 		VM_BUG_ON(mc.precharge);
6619 		VM_BUG_ON(mc.moved_charge);
6620 		VM_BUG_ON(mc.moved_swap);
6621 
6622 		spin_lock(&mc.lock);
6623 		mc.mm = mm;
6624 		mc.from = from;
6625 		mc.to = memcg;
6626 		mc.flags = move_flags;
6627 		spin_unlock(&mc.lock);
6628 		/* We set mc.moving_task later */
6629 
6630 		ret = mem_cgroup_precharge_mc(mm);
6631 		if (ret)
6632 			mem_cgroup_clear_mc();
6633 	} else {
6634 		mmput(mm);
6635 	}
6636 	return ret;
6637 }
6638 
6639 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6640 {
6641 	if (mc.to)
6642 		mem_cgroup_clear_mc();
6643 }
6644 
6645 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6646 				unsigned long addr, unsigned long end,
6647 				struct mm_walk *walk)
6648 {
6649 	int ret = 0;
6650 	struct vm_area_struct *vma = walk->vma;
6651 	pte_t *pte;
6652 	spinlock_t *ptl;
6653 	enum mc_target_type target_type;
6654 	union mc_target target;
6655 	struct folio *folio;
6656 
6657 	ptl = pmd_trans_huge_lock(pmd, vma);
6658 	if (ptl) {
6659 		if (mc.precharge < HPAGE_PMD_NR) {
6660 			spin_unlock(ptl);
6661 			return 0;
6662 		}
6663 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6664 		if (target_type == MC_TARGET_PAGE) {
6665 			folio = target.folio;
6666 			if (folio_isolate_lru(folio)) {
6667 				if (!mem_cgroup_move_account(folio, true,
6668 							     mc.from, mc.to)) {
6669 					mc.precharge -= HPAGE_PMD_NR;
6670 					mc.moved_charge += HPAGE_PMD_NR;
6671 				}
6672 				folio_putback_lru(folio);
6673 			}
6674 			folio_unlock(folio);
6675 			folio_put(folio);
6676 		} else if (target_type == MC_TARGET_DEVICE) {
6677 			folio = target.folio;
6678 			if (!mem_cgroup_move_account(folio, true,
6679 						     mc.from, mc.to)) {
6680 				mc.precharge -= HPAGE_PMD_NR;
6681 				mc.moved_charge += HPAGE_PMD_NR;
6682 			}
6683 			folio_unlock(folio);
6684 			folio_put(folio);
6685 		}
6686 		spin_unlock(ptl);
6687 		return 0;
6688 	}
6689 
6690 retry:
6691 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6692 	if (!pte)
6693 		return 0;
6694 	for (; addr != end; addr += PAGE_SIZE) {
6695 		pte_t ptent = ptep_get(pte++);
6696 		bool device = false;
6697 		swp_entry_t ent;
6698 
6699 		if (!mc.precharge)
6700 			break;
6701 
6702 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6703 		case MC_TARGET_DEVICE:
6704 			device = true;
6705 			fallthrough;
6706 		case MC_TARGET_PAGE:
6707 			folio = target.folio;
6708 			/*
6709 			 * We can have a part of the split pmd here. Moving it
6710 			 * can be done but it would be too convoluted so simply
6711 			 * ignore such a partial THP and keep it in original
6712 			 * memcg. There should be somebody mapping the head.
6713 			 */
6714 			if (folio_test_large(folio))
6715 				goto put;
6716 			if (!device && !folio_isolate_lru(folio))
6717 				goto put;
6718 			if (!mem_cgroup_move_account(folio, false,
6719 						mc.from, mc.to)) {
6720 				mc.precharge--;
6721 				/* we uncharge from mc.from later. */
6722 				mc.moved_charge++;
6723 			}
6724 			if (!device)
6725 				folio_putback_lru(folio);
6726 put:			/* get_mctgt_type() gets & locks the page */
6727 			folio_unlock(folio);
6728 			folio_put(folio);
6729 			break;
6730 		case MC_TARGET_SWAP:
6731 			ent = target.ent;
6732 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6733 				mc.precharge--;
6734 				mem_cgroup_id_get_many(mc.to, 1);
6735 				/* we fixup other refcnts and charges later. */
6736 				mc.moved_swap++;
6737 			}
6738 			break;
6739 		default:
6740 			break;
6741 		}
6742 	}
6743 	pte_unmap_unlock(pte - 1, ptl);
6744 	cond_resched();
6745 
6746 	if (addr != end) {
6747 		/*
6748 		 * We have consumed all precharges we got in can_attach().
6749 		 * We try charge one by one, but don't do any additional
6750 		 * charges to mc.to if we have failed in charge once in attach()
6751 		 * phase.
6752 		 */
6753 		ret = mem_cgroup_do_precharge(1);
6754 		if (!ret)
6755 			goto retry;
6756 	}
6757 
6758 	return ret;
6759 }
6760 
6761 static const struct mm_walk_ops charge_walk_ops = {
6762 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6763 	.walk_lock	= PGWALK_RDLOCK,
6764 };
6765 
6766 static void mem_cgroup_move_charge(void)
6767 {
6768 	lru_add_drain_all();
6769 	/*
6770 	 * Signal folio_memcg_lock() to take the memcg's move_lock
6771 	 * while we're moving its pages to another memcg. Then wait
6772 	 * for already started RCU-only updates to finish.
6773 	 */
6774 	atomic_inc(&mc.from->moving_account);
6775 	synchronize_rcu();
6776 retry:
6777 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6778 		/*
6779 		 * Someone who are holding the mmap_lock might be waiting in
6780 		 * waitq. So we cancel all extra charges, wake up all waiters,
6781 		 * and retry. Because we cancel precharges, we might not be able
6782 		 * to move enough charges, but moving charge is a best-effort
6783 		 * feature anyway, so it wouldn't be a big problem.
6784 		 */
6785 		__mem_cgroup_clear_mc();
6786 		cond_resched();
6787 		goto retry;
6788 	}
6789 	/*
6790 	 * When we have consumed all precharges and failed in doing
6791 	 * additional charge, the page walk just aborts.
6792 	 */
6793 	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6794 	mmap_read_unlock(mc.mm);
6795 	atomic_dec(&mc.from->moving_account);
6796 }
6797 
6798 static void mem_cgroup_move_task(void)
6799 {
6800 	if (mc.to) {
6801 		mem_cgroup_move_charge();
6802 		mem_cgroup_clear_mc();
6803 	}
6804 }
6805 
6806 #else	/* !CONFIG_MMU */
6807 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6808 {
6809 	return 0;
6810 }
6811 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6812 {
6813 }
6814 static void mem_cgroup_move_task(void)
6815 {
6816 }
6817 #endif
6818 
6819 #ifdef CONFIG_MEMCG_KMEM
6820 static void mem_cgroup_fork(struct task_struct *task)
6821 {
6822 	/*
6823 	 * Set the update flag to cause task->objcg to be initialized lazily
6824 	 * on the first allocation. It can be done without any synchronization
6825 	 * because it's always performed on the current task, so does
6826 	 * current_objcg_update().
6827 	 */
6828 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6829 }
6830 
6831 static void mem_cgroup_exit(struct task_struct *task)
6832 {
6833 	struct obj_cgroup *objcg = task->objcg;
6834 
6835 	objcg = (struct obj_cgroup *)
6836 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6837 	obj_cgroup_put(objcg);
6838 
6839 	/*
6840 	 * Some kernel allocations can happen after this point,
6841 	 * but let's ignore them. It can be done without any synchronization
6842 	 * because it's always performed on the current task, so does
6843 	 * current_objcg_update().
6844 	 */
6845 	task->objcg = NULL;
6846 }
6847 #endif
6848 
6849 #ifdef CONFIG_LRU_GEN
6850 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
6851 {
6852 	struct task_struct *task;
6853 	struct cgroup_subsys_state *css;
6854 
6855 	/* find the first leader if there is any */
6856 	cgroup_taskset_for_each_leader(task, css, tset)
6857 		break;
6858 
6859 	if (!task)
6860 		return;
6861 
6862 	task_lock(task);
6863 	if (task->mm && READ_ONCE(task->mm->owner) == task)
6864 		lru_gen_migrate_mm(task->mm);
6865 	task_unlock(task);
6866 }
6867 #else
6868 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6869 #endif /* CONFIG_LRU_GEN */
6870 
6871 #ifdef CONFIG_MEMCG_KMEM
6872 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6873 {
6874 	struct task_struct *task;
6875 	struct cgroup_subsys_state *css;
6876 
6877 	cgroup_taskset_for_each(task, css, tset) {
6878 		/* atomically set the update bit */
6879 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6880 	}
6881 }
6882 #else
6883 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6884 #endif /* CONFIG_MEMCG_KMEM */
6885 
6886 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
6887 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6888 {
6889 	mem_cgroup_lru_gen_attach(tset);
6890 	mem_cgroup_kmem_attach(tset);
6891 }
6892 #endif
6893 
6894 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6895 {
6896 	if (value == PAGE_COUNTER_MAX)
6897 		seq_puts(m, "max\n");
6898 	else
6899 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6900 
6901 	return 0;
6902 }
6903 
6904 static u64 memory_current_read(struct cgroup_subsys_state *css,
6905 			       struct cftype *cft)
6906 {
6907 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6908 
6909 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6910 }
6911 
6912 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6913 			    struct cftype *cft)
6914 {
6915 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6916 
6917 	return (u64)memcg->memory.watermark * PAGE_SIZE;
6918 }
6919 
6920 static int memory_min_show(struct seq_file *m, void *v)
6921 {
6922 	return seq_puts_memcg_tunable(m,
6923 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6924 }
6925 
6926 static ssize_t memory_min_write(struct kernfs_open_file *of,
6927 				char *buf, size_t nbytes, loff_t off)
6928 {
6929 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6930 	unsigned long min;
6931 	int err;
6932 
6933 	buf = strstrip(buf);
6934 	err = page_counter_memparse(buf, "max", &min);
6935 	if (err)
6936 		return err;
6937 
6938 	page_counter_set_min(&memcg->memory, min);
6939 
6940 	return nbytes;
6941 }
6942 
6943 static int memory_low_show(struct seq_file *m, void *v)
6944 {
6945 	return seq_puts_memcg_tunable(m,
6946 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6947 }
6948 
6949 static ssize_t memory_low_write(struct kernfs_open_file *of,
6950 				char *buf, size_t nbytes, loff_t off)
6951 {
6952 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6953 	unsigned long low;
6954 	int err;
6955 
6956 	buf = strstrip(buf);
6957 	err = page_counter_memparse(buf, "max", &low);
6958 	if (err)
6959 		return err;
6960 
6961 	page_counter_set_low(&memcg->memory, low);
6962 
6963 	return nbytes;
6964 }
6965 
6966 static int memory_high_show(struct seq_file *m, void *v)
6967 {
6968 	return seq_puts_memcg_tunable(m,
6969 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6970 }
6971 
6972 static ssize_t memory_high_write(struct kernfs_open_file *of,
6973 				 char *buf, size_t nbytes, loff_t off)
6974 {
6975 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6976 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6977 	bool drained = false;
6978 	unsigned long high;
6979 	int err;
6980 
6981 	buf = strstrip(buf);
6982 	err = page_counter_memparse(buf, "max", &high);
6983 	if (err)
6984 		return err;
6985 
6986 	page_counter_set_high(&memcg->memory, high);
6987 
6988 	for (;;) {
6989 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6990 		unsigned long reclaimed;
6991 
6992 		if (nr_pages <= high)
6993 			break;
6994 
6995 		if (signal_pending(current))
6996 			break;
6997 
6998 		if (!drained) {
6999 			drain_all_stock(memcg);
7000 			drained = true;
7001 			continue;
7002 		}
7003 
7004 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
7005 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
7006 
7007 		if (!reclaimed && !nr_retries--)
7008 			break;
7009 	}
7010 
7011 	memcg_wb_domain_size_changed(memcg);
7012 	return nbytes;
7013 }
7014 
7015 static int memory_max_show(struct seq_file *m, void *v)
7016 {
7017 	return seq_puts_memcg_tunable(m,
7018 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
7019 }
7020 
7021 static ssize_t memory_max_write(struct kernfs_open_file *of,
7022 				char *buf, size_t nbytes, loff_t off)
7023 {
7024 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7025 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
7026 	bool drained = false;
7027 	unsigned long max;
7028 	int err;
7029 
7030 	buf = strstrip(buf);
7031 	err = page_counter_memparse(buf, "max", &max);
7032 	if (err)
7033 		return err;
7034 
7035 	xchg(&memcg->memory.max, max);
7036 
7037 	for (;;) {
7038 		unsigned long nr_pages = page_counter_read(&memcg->memory);
7039 
7040 		if (nr_pages <= max)
7041 			break;
7042 
7043 		if (signal_pending(current))
7044 			break;
7045 
7046 		if (!drained) {
7047 			drain_all_stock(memcg);
7048 			drained = true;
7049 			continue;
7050 		}
7051 
7052 		if (nr_reclaims) {
7053 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
7054 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
7055 				nr_reclaims--;
7056 			continue;
7057 		}
7058 
7059 		memcg_memory_event(memcg, MEMCG_OOM);
7060 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
7061 			break;
7062 	}
7063 
7064 	memcg_wb_domain_size_changed(memcg);
7065 	return nbytes;
7066 }
7067 
7068 /*
7069  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
7070  * if any new events become available.
7071  */
7072 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
7073 {
7074 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
7075 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
7076 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
7077 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
7078 	seq_printf(m, "oom_kill %lu\n",
7079 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
7080 	seq_printf(m, "oom_group_kill %lu\n",
7081 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
7082 }
7083 
7084 static int memory_events_show(struct seq_file *m, void *v)
7085 {
7086 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7087 
7088 	__memory_events_show(m, memcg->memory_events);
7089 	return 0;
7090 }
7091 
7092 static int memory_events_local_show(struct seq_file *m, void *v)
7093 {
7094 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7095 
7096 	__memory_events_show(m, memcg->memory_events_local);
7097 	return 0;
7098 }
7099 
7100 static int memory_stat_show(struct seq_file *m, void *v)
7101 {
7102 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7103 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
7104 	struct seq_buf s;
7105 
7106 	if (!buf)
7107 		return -ENOMEM;
7108 	seq_buf_init(&s, buf, PAGE_SIZE);
7109 	memory_stat_format(memcg, &s);
7110 	seq_puts(m, buf);
7111 	kfree(buf);
7112 	return 0;
7113 }
7114 
7115 #ifdef CONFIG_NUMA
7116 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
7117 						     int item)
7118 {
7119 	return lruvec_page_state(lruvec, item) *
7120 		memcg_page_state_output_unit(item);
7121 }
7122 
7123 static int memory_numa_stat_show(struct seq_file *m, void *v)
7124 {
7125 	int i;
7126 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7127 
7128 	mem_cgroup_flush_stats(memcg);
7129 
7130 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
7131 		int nid;
7132 
7133 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
7134 			continue;
7135 
7136 		seq_printf(m, "%s", memory_stats[i].name);
7137 		for_each_node_state(nid, N_MEMORY) {
7138 			u64 size;
7139 			struct lruvec *lruvec;
7140 
7141 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
7142 			size = lruvec_page_state_output(lruvec,
7143 							memory_stats[i].idx);
7144 			seq_printf(m, " N%d=%llu", nid, size);
7145 		}
7146 		seq_putc(m, '\n');
7147 	}
7148 
7149 	return 0;
7150 }
7151 #endif
7152 
7153 static int memory_oom_group_show(struct seq_file *m, void *v)
7154 {
7155 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7156 
7157 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
7158 
7159 	return 0;
7160 }
7161 
7162 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
7163 				      char *buf, size_t nbytes, loff_t off)
7164 {
7165 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7166 	int ret, oom_group;
7167 
7168 	buf = strstrip(buf);
7169 	if (!buf)
7170 		return -EINVAL;
7171 
7172 	ret = kstrtoint(buf, 0, &oom_group);
7173 	if (ret)
7174 		return ret;
7175 
7176 	if (oom_group != 0 && oom_group != 1)
7177 		return -EINVAL;
7178 
7179 	WRITE_ONCE(memcg->oom_group, oom_group);
7180 
7181 	return nbytes;
7182 }
7183 
7184 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
7185 			      size_t nbytes, loff_t off)
7186 {
7187 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7188 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
7189 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
7190 	unsigned int reclaim_options;
7191 	int err;
7192 
7193 	buf = strstrip(buf);
7194 	err = page_counter_memparse(buf, "", &nr_to_reclaim);
7195 	if (err)
7196 		return err;
7197 
7198 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
7199 	while (nr_reclaimed < nr_to_reclaim) {
7200 		/* Will converge on zero, but reclaim enforces a minimum */
7201 		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
7202 		unsigned long reclaimed;
7203 
7204 		if (signal_pending(current))
7205 			return -EINTR;
7206 
7207 		/*
7208 		 * This is the final attempt, drain percpu lru caches in the
7209 		 * hope of introducing more evictable pages for
7210 		 * try_to_free_mem_cgroup_pages().
7211 		 */
7212 		if (!nr_retries)
7213 			lru_add_drain_all();
7214 
7215 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
7216 					batch_size, GFP_KERNEL, reclaim_options);
7217 
7218 		if (!reclaimed && !nr_retries--)
7219 			return -EAGAIN;
7220 
7221 		nr_reclaimed += reclaimed;
7222 	}
7223 
7224 	return nbytes;
7225 }
7226 
7227 static struct cftype memory_files[] = {
7228 	{
7229 		.name = "current",
7230 		.flags = CFTYPE_NOT_ON_ROOT,
7231 		.read_u64 = memory_current_read,
7232 	},
7233 	{
7234 		.name = "peak",
7235 		.flags = CFTYPE_NOT_ON_ROOT,
7236 		.read_u64 = memory_peak_read,
7237 	},
7238 	{
7239 		.name = "min",
7240 		.flags = CFTYPE_NOT_ON_ROOT,
7241 		.seq_show = memory_min_show,
7242 		.write = memory_min_write,
7243 	},
7244 	{
7245 		.name = "low",
7246 		.flags = CFTYPE_NOT_ON_ROOT,
7247 		.seq_show = memory_low_show,
7248 		.write = memory_low_write,
7249 	},
7250 	{
7251 		.name = "high",
7252 		.flags = CFTYPE_NOT_ON_ROOT,
7253 		.seq_show = memory_high_show,
7254 		.write = memory_high_write,
7255 	},
7256 	{
7257 		.name = "max",
7258 		.flags = CFTYPE_NOT_ON_ROOT,
7259 		.seq_show = memory_max_show,
7260 		.write = memory_max_write,
7261 	},
7262 	{
7263 		.name = "events",
7264 		.flags = CFTYPE_NOT_ON_ROOT,
7265 		.file_offset = offsetof(struct mem_cgroup, events_file),
7266 		.seq_show = memory_events_show,
7267 	},
7268 	{
7269 		.name = "events.local",
7270 		.flags = CFTYPE_NOT_ON_ROOT,
7271 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
7272 		.seq_show = memory_events_local_show,
7273 	},
7274 	{
7275 		.name = "stat",
7276 		.seq_show = memory_stat_show,
7277 	},
7278 #ifdef CONFIG_NUMA
7279 	{
7280 		.name = "numa_stat",
7281 		.seq_show = memory_numa_stat_show,
7282 	},
7283 #endif
7284 	{
7285 		.name = "oom.group",
7286 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
7287 		.seq_show = memory_oom_group_show,
7288 		.write = memory_oom_group_write,
7289 	},
7290 	{
7291 		.name = "reclaim",
7292 		.flags = CFTYPE_NS_DELEGATABLE,
7293 		.write = memory_reclaim,
7294 	},
7295 	{ }	/* terminate */
7296 };
7297 
7298 struct cgroup_subsys memory_cgrp_subsys = {
7299 	.css_alloc = mem_cgroup_css_alloc,
7300 	.css_online = mem_cgroup_css_online,
7301 	.css_offline = mem_cgroup_css_offline,
7302 	.css_released = mem_cgroup_css_released,
7303 	.css_free = mem_cgroup_css_free,
7304 	.css_reset = mem_cgroup_css_reset,
7305 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
7306 	.can_attach = mem_cgroup_can_attach,
7307 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
7308 	.attach = mem_cgroup_attach,
7309 #endif
7310 	.cancel_attach = mem_cgroup_cancel_attach,
7311 	.post_attach = mem_cgroup_move_task,
7312 #ifdef CONFIG_MEMCG_KMEM
7313 	.fork = mem_cgroup_fork,
7314 	.exit = mem_cgroup_exit,
7315 #endif
7316 	.dfl_cftypes = memory_files,
7317 	.legacy_cftypes = mem_cgroup_legacy_files,
7318 	.early_init = 0,
7319 };
7320 
7321 /*
7322  * This function calculates an individual cgroup's effective
7323  * protection which is derived from its own memory.min/low, its
7324  * parent's and siblings' settings, as well as the actual memory
7325  * distribution in the tree.
7326  *
7327  * The following rules apply to the effective protection values:
7328  *
7329  * 1. At the first level of reclaim, effective protection is equal to
7330  *    the declared protection in memory.min and memory.low.
7331  *
7332  * 2. To enable safe delegation of the protection configuration, at
7333  *    subsequent levels the effective protection is capped to the
7334  *    parent's effective protection.
7335  *
7336  * 3. To make complex and dynamic subtrees easier to configure, the
7337  *    user is allowed to overcommit the declared protection at a given
7338  *    level. If that is the case, the parent's effective protection is
7339  *    distributed to the children in proportion to how much protection
7340  *    they have declared and how much of it they are utilizing.
7341  *
7342  *    This makes distribution proportional, but also work-conserving:
7343  *    if one cgroup claims much more protection than it uses memory,
7344  *    the unused remainder is available to its siblings.
7345  *
7346  * 4. Conversely, when the declared protection is undercommitted at a
7347  *    given level, the distribution of the larger parental protection
7348  *    budget is NOT proportional. A cgroup's protection from a sibling
7349  *    is capped to its own memory.min/low setting.
7350  *
7351  * 5. However, to allow protecting recursive subtrees from each other
7352  *    without having to declare each individual cgroup's fixed share
7353  *    of the ancestor's claim to protection, any unutilized -
7354  *    "floating" - protection from up the tree is distributed in
7355  *    proportion to each cgroup's *usage*. This makes the protection
7356  *    neutral wrt sibling cgroups and lets them compete freely over
7357  *    the shared parental protection budget, but it protects the
7358  *    subtree as a whole from neighboring subtrees.
7359  *
7360  * Note that 4. and 5. are not in conflict: 4. is about protecting
7361  * against immediate siblings whereas 5. is about protecting against
7362  * neighboring subtrees.
7363  */
7364 static unsigned long effective_protection(unsigned long usage,
7365 					  unsigned long parent_usage,
7366 					  unsigned long setting,
7367 					  unsigned long parent_effective,
7368 					  unsigned long siblings_protected)
7369 {
7370 	unsigned long protected;
7371 	unsigned long ep;
7372 
7373 	protected = min(usage, setting);
7374 	/*
7375 	 * If all cgroups at this level combined claim and use more
7376 	 * protection than what the parent affords them, distribute
7377 	 * shares in proportion to utilization.
7378 	 *
7379 	 * We are using actual utilization rather than the statically
7380 	 * claimed protection in order to be work-conserving: claimed
7381 	 * but unused protection is available to siblings that would
7382 	 * otherwise get a smaller chunk than what they claimed.
7383 	 */
7384 	if (siblings_protected > parent_effective)
7385 		return protected * parent_effective / siblings_protected;
7386 
7387 	/*
7388 	 * Ok, utilized protection of all children is within what the
7389 	 * parent affords them, so we know whatever this child claims
7390 	 * and utilizes is effectively protected.
7391 	 *
7392 	 * If there is unprotected usage beyond this value, reclaim
7393 	 * will apply pressure in proportion to that amount.
7394 	 *
7395 	 * If there is unutilized protection, the cgroup will be fully
7396 	 * shielded from reclaim, but we do return a smaller value for
7397 	 * protection than what the group could enjoy in theory. This
7398 	 * is okay. With the overcommit distribution above, effective
7399 	 * protection is always dependent on how memory is actually
7400 	 * consumed among the siblings anyway.
7401 	 */
7402 	ep = protected;
7403 
7404 	/*
7405 	 * If the children aren't claiming (all of) the protection
7406 	 * afforded to them by the parent, distribute the remainder in
7407 	 * proportion to the (unprotected) memory of each cgroup. That
7408 	 * way, cgroups that aren't explicitly prioritized wrt each
7409 	 * other compete freely over the allowance, but they are
7410 	 * collectively protected from neighboring trees.
7411 	 *
7412 	 * We're using unprotected memory for the weight so that if
7413 	 * some cgroups DO claim explicit protection, we don't protect
7414 	 * the same bytes twice.
7415 	 *
7416 	 * Check both usage and parent_usage against the respective
7417 	 * protected values. One should imply the other, but they
7418 	 * aren't read atomically - make sure the division is sane.
7419 	 */
7420 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7421 		return ep;
7422 	if (parent_effective > siblings_protected &&
7423 	    parent_usage > siblings_protected &&
7424 	    usage > protected) {
7425 		unsigned long unclaimed;
7426 
7427 		unclaimed = parent_effective - siblings_protected;
7428 		unclaimed *= usage - protected;
7429 		unclaimed /= parent_usage - siblings_protected;
7430 
7431 		ep += unclaimed;
7432 	}
7433 
7434 	return ep;
7435 }
7436 
7437 /**
7438  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7439  * @root: the top ancestor of the sub-tree being checked
7440  * @memcg: the memory cgroup to check
7441  *
7442  * WARNING: This function is not stateless! It can only be used as part
7443  *          of a top-down tree iteration, not for isolated queries.
7444  */
7445 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7446 				     struct mem_cgroup *memcg)
7447 {
7448 	unsigned long usage, parent_usage;
7449 	struct mem_cgroup *parent;
7450 
7451 	if (mem_cgroup_disabled())
7452 		return;
7453 
7454 	if (!root)
7455 		root = root_mem_cgroup;
7456 
7457 	/*
7458 	 * Effective values of the reclaim targets are ignored so they
7459 	 * can be stale. Have a look at mem_cgroup_protection for more
7460 	 * details.
7461 	 * TODO: calculation should be more robust so that we do not need
7462 	 * that special casing.
7463 	 */
7464 	if (memcg == root)
7465 		return;
7466 
7467 	usage = page_counter_read(&memcg->memory);
7468 	if (!usage)
7469 		return;
7470 
7471 	parent = parent_mem_cgroup(memcg);
7472 
7473 	if (parent == root) {
7474 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
7475 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
7476 		return;
7477 	}
7478 
7479 	parent_usage = page_counter_read(&parent->memory);
7480 
7481 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7482 			READ_ONCE(memcg->memory.min),
7483 			READ_ONCE(parent->memory.emin),
7484 			atomic_long_read(&parent->memory.children_min_usage)));
7485 
7486 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7487 			READ_ONCE(memcg->memory.low),
7488 			READ_ONCE(parent->memory.elow),
7489 			atomic_long_read(&parent->memory.children_low_usage)));
7490 }
7491 
7492 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7493 			gfp_t gfp)
7494 {
7495 	int ret;
7496 
7497 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
7498 	if (ret)
7499 		goto out;
7500 
7501 	mem_cgroup_commit_charge(folio, memcg);
7502 out:
7503 	return ret;
7504 }
7505 
7506 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7507 {
7508 	struct mem_cgroup *memcg;
7509 	int ret;
7510 
7511 	memcg = get_mem_cgroup_from_mm(mm);
7512 	ret = charge_memcg(folio, memcg, gfp);
7513 	css_put(&memcg->css);
7514 
7515 	return ret;
7516 }
7517 
7518 /**
7519  * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7520  * @memcg: memcg to charge.
7521  * @gfp: reclaim mode.
7522  * @nr_pages: number of pages to charge.
7523  *
7524  * This function is called when allocating a huge page folio to determine if
7525  * the memcg has the capacity for it. It does not commit the charge yet,
7526  * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7527  *
7528  * Once we have obtained the hugetlb folio, we can call
7529  * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7530  * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7531  * of try_charge().
7532  *
7533  * Returns 0 on success. Otherwise, an error code is returned.
7534  */
7535 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7536 			long nr_pages)
7537 {
7538 	/*
7539 	 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7540 	 * but do not attempt to commit charge later (or cancel on error) either.
7541 	 */
7542 	if (mem_cgroup_disabled() || !memcg ||
7543 		!cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7544 		!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7545 		return -EOPNOTSUPP;
7546 
7547 	if (try_charge(memcg, gfp, nr_pages))
7548 		return -ENOMEM;
7549 
7550 	return 0;
7551 }
7552 
7553 /**
7554  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7555  * @folio: folio to charge.
7556  * @mm: mm context of the victim
7557  * @gfp: reclaim mode
7558  * @entry: swap entry for which the folio is allocated
7559  *
7560  * This function charges a folio allocated for swapin. Please call this before
7561  * adding the folio to the swapcache.
7562  *
7563  * Returns 0 on success. Otherwise, an error code is returned.
7564  */
7565 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7566 				  gfp_t gfp, swp_entry_t entry)
7567 {
7568 	struct mem_cgroup *memcg;
7569 	unsigned short id;
7570 	int ret;
7571 
7572 	if (mem_cgroup_disabled())
7573 		return 0;
7574 
7575 	id = lookup_swap_cgroup_id(entry);
7576 	rcu_read_lock();
7577 	memcg = mem_cgroup_from_id(id);
7578 	if (!memcg || !css_tryget_online(&memcg->css))
7579 		memcg = get_mem_cgroup_from_mm(mm);
7580 	rcu_read_unlock();
7581 
7582 	ret = charge_memcg(folio, memcg, gfp);
7583 
7584 	css_put(&memcg->css);
7585 	return ret;
7586 }
7587 
7588 /*
7589  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7590  * @entry: swap entry for which the page is charged
7591  *
7592  * Call this function after successfully adding the charged page to swapcache.
7593  *
7594  * Note: This function assumes the page for which swap slot is being uncharged
7595  * is order 0 page.
7596  */
7597 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7598 {
7599 	/*
7600 	 * Cgroup1's unified memory+swap counter has been charged with the
7601 	 * new swapcache page, finish the transfer by uncharging the swap
7602 	 * slot. The swap slot would also get uncharged when it dies, but
7603 	 * it can stick around indefinitely and we'd count the page twice
7604 	 * the entire time.
7605 	 *
7606 	 * Cgroup2 has separate resource counters for memory and swap,
7607 	 * so this is a non-issue here. Memory and swap charge lifetimes
7608 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
7609 	 * page to memory here, and uncharge swap when the slot is freed.
7610 	 */
7611 	if (!mem_cgroup_disabled() && do_memsw_account()) {
7612 		/*
7613 		 * The swap entry might not get freed for a long time,
7614 		 * let's not wait for it.  The page already received a
7615 		 * memory+swap charge, drop the swap entry duplicate.
7616 		 */
7617 		mem_cgroup_uncharge_swap(entry, 1);
7618 	}
7619 }
7620 
7621 struct uncharge_gather {
7622 	struct mem_cgroup *memcg;
7623 	unsigned long nr_memory;
7624 	unsigned long pgpgout;
7625 	unsigned long nr_kmem;
7626 	int nid;
7627 };
7628 
7629 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7630 {
7631 	memset(ug, 0, sizeof(*ug));
7632 }
7633 
7634 static void uncharge_batch(const struct uncharge_gather *ug)
7635 {
7636 	unsigned long flags;
7637 
7638 	if (ug->nr_memory) {
7639 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7640 		if (do_memsw_account())
7641 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7642 		if (ug->nr_kmem)
7643 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7644 		memcg_oom_recover(ug->memcg);
7645 	}
7646 
7647 	local_irq_save(flags);
7648 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7649 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7650 	memcg_check_events(ug->memcg, ug->nid);
7651 	local_irq_restore(flags);
7652 
7653 	/* drop reference from uncharge_folio */
7654 	css_put(&ug->memcg->css);
7655 }
7656 
7657 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7658 {
7659 	long nr_pages;
7660 	struct mem_cgroup *memcg;
7661 	struct obj_cgroup *objcg;
7662 
7663 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7664 	VM_BUG_ON_FOLIO(folio_order(folio) > 1 &&
7665 			!folio_test_hugetlb(folio) &&
7666 			!list_empty(&folio->_deferred_list), folio);
7667 
7668 	/*
7669 	 * Nobody should be changing or seriously looking at
7670 	 * folio memcg or objcg at this point, we have fully
7671 	 * exclusive access to the folio.
7672 	 */
7673 	if (folio_memcg_kmem(folio)) {
7674 		objcg = __folio_objcg(folio);
7675 		/*
7676 		 * This get matches the put at the end of the function and
7677 		 * kmem pages do not hold memcg references anymore.
7678 		 */
7679 		memcg = get_mem_cgroup_from_objcg(objcg);
7680 	} else {
7681 		memcg = __folio_memcg(folio);
7682 	}
7683 
7684 	if (!memcg)
7685 		return;
7686 
7687 	if (ug->memcg != memcg) {
7688 		if (ug->memcg) {
7689 			uncharge_batch(ug);
7690 			uncharge_gather_clear(ug);
7691 		}
7692 		ug->memcg = memcg;
7693 		ug->nid = folio_nid(folio);
7694 
7695 		/* pairs with css_put in uncharge_batch */
7696 		css_get(&memcg->css);
7697 	}
7698 
7699 	nr_pages = folio_nr_pages(folio);
7700 
7701 	if (folio_memcg_kmem(folio)) {
7702 		ug->nr_memory += nr_pages;
7703 		ug->nr_kmem += nr_pages;
7704 
7705 		folio->memcg_data = 0;
7706 		obj_cgroup_put(objcg);
7707 	} else {
7708 		/* LRU pages aren't accounted at the root level */
7709 		if (!mem_cgroup_is_root(memcg))
7710 			ug->nr_memory += nr_pages;
7711 		ug->pgpgout++;
7712 
7713 		folio->memcg_data = 0;
7714 	}
7715 
7716 	css_put(&memcg->css);
7717 }
7718 
7719 void __mem_cgroup_uncharge(struct folio *folio)
7720 {
7721 	struct uncharge_gather ug;
7722 
7723 	/* Don't touch folio->lru of any random page, pre-check: */
7724 	if (!folio_memcg(folio))
7725 		return;
7726 
7727 	uncharge_gather_clear(&ug);
7728 	uncharge_folio(folio, &ug);
7729 	uncharge_batch(&ug);
7730 }
7731 
7732 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
7733 {
7734 	struct uncharge_gather ug;
7735 	unsigned int i;
7736 
7737 	uncharge_gather_clear(&ug);
7738 	for (i = 0; i < folios->nr; i++)
7739 		uncharge_folio(folios->folios[i], &ug);
7740 	if (ug.memcg)
7741 		uncharge_batch(&ug);
7742 }
7743 
7744 /**
7745  * mem_cgroup_replace_folio - Charge a folio's replacement.
7746  * @old: Currently circulating folio.
7747  * @new: Replacement folio.
7748  *
7749  * Charge @new as a replacement folio for @old. @old will
7750  * be uncharged upon free. This is only used by the page cache
7751  * (in replace_page_cache_folio()).
7752  *
7753  * Both folios must be locked, @new->mapping must be set up.
7754  */
7755 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
7756 {
7757 	struct mem_cgroup *memcg;
7758 	long nr_pages = folio_nr_pages(new);
7759 	unsigned long flags;
7760 
7761 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7762 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7763 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7764 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7765 
7766 	if (mem_cgroup_disabled())
7767 		return;
7768 
7769 	/* Page cache replacement: new folio already charged? */
7770 	if (folio_memcg(new))
7771 		return;
7772 
7773 	memcg = folio_memcg(old);
7774 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7775 	if (!memcg)
7776 		return;
7777 
7778 	/* Force-charge the new page. The old one will be freed soon */
7779 	if (!mem_cgroup_is_root(memcg)) {
7780 		page_counter_charge(&memcg->memory, nr_pages);
7781 		if (do_memsw_account())
7782 			page_counter_charge(&memcg->memsw, nr_pages);
7783 	}
7784 
7785 	css_get(&memcg->css);
7786 	commit_charge(new, memcg);
7787 
7788 	local_irq_save(flags);
7789 	mem_cgroup_charge_statistics(memcg, nr_pages);
7790 	memcg_check_events(memcg, folio_nid(new));
7791 	local_irq_restore(flags);
7792 }
7793 
7794 /**
7795  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7796  * @old: Currently circulating folio.
7797  * @new: Replacement folio.
7798  *
7799  * Transfer the memcg data from the old folio to the new folio for migration.
7800  * The old folio's data info will be cleared. Note that the memory counters
7801  * will remain unchanged throughout the process.
7802  *
7803  * Both folios must be locked, @new->mapping must be set up.
7804  */
7805 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7806 {
7807 	struct mem_cgroup *memcg;
7808 
7809 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7810 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7811 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7812 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7813 
7814 	if (mem_cgroup_disabled())
7815 		return;
7816 
7817 	memcg = folio_memcg(old);
7818 	/*
7819 	 * Note that it is normal to see !memcg for a hugetlb folio.
7820 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7821 	 * was not selected.
7822 	 */
7823 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
7824 	if (!memcg)
7825 		return;
7826 
7827 	/* Transfer the charge and the css ref */
7828 	commit_charge(new, memcg);
7829 	/*
7830 	 * If the old folio is a large folio and is in the split queue, it needs
7831 	 * to be removed from the split queue now, in case getting an incorrect
7832 	 * split queue in destroy_large_folio() after the memcg of the old folio
7833 	 * is cleared.
7834 	 *
7835 	 * In addition, the old folio is about to be freed after migration, so
7836 	 * removing from the split queue a bit earlier seems reasonable.
7837 	 */
7838 	if (folio_test_large(old) && folio_test_large_rmappable(old))
7839 		folio_undo_large_rmappable(old);
7840 	old->memcg_data = 0;
7841 }
7842 
7843 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7844 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7845 
7846 void mem_cgroup_sk_alloc(struct sock *sk)
7847 {
7848 	struct mem_cgroup *memcg;
7849 
7850 	if (!mem_cgroup_sockets_enabled)
7851 		return;
7852 
7853 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7854 	if (!in_task())
7855 		return;
7856 
7857 	rcu_read_lock();
7858 	memcg = mem_cgroup_from_task(current);
7859 	if (mem_cgroup_is_root(memcg))
7860 		goto out;
7861 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7862 		goto out;
7863 	if (css_tryget(&memcg->css))
7864 		sk->sk_memcg = memcg;
7865 out:
7866 	rcu_read_unlock();
7867 }
7868 
7869 void mem_cgroup_sk_free(struct sock *sk)
7870 {
7871 	if (sk->sk_memcg)
7872 		css_put(&sk->sk_memcg->css);
7873 }
7874 
7875 /**
7876  * mem_cgroup_charge_skmem - charge socket memory
7877  * @memcg: memcg to charge
7878  * @nr_pages: number of pages to charge
7879  * @gfp_mask: reclaim mode
7880  *
7881  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7882  * @memcg's configured limit, %false if it doesn't.
7883  */
7884 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7885 			     gfp_t gfp_mask)
7886 {
7887 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7888 		struct page_counter *fail;
7889 
7890 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7891 			memcg->tcpmem_pressure = 0;
7892 			return true;
7893 		}
7894 		memcg->tcpmem_pressure = 1;
7895 		if (gfp_mask & __GFP_NOFAIL) {
7896 			page_counter_charge(&memcg->tcpmem, nr_pages);
7897 			return true;
7898 		}
7899 		return false;
7900 	}
7901 
7902 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7903 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7904 		return true;
7905 	}
7906 
7907 	return false;
7908 }
7909 
7910 /**
7911  * mem_cgroup_uncharge_skmem - uncharge socket memory
7912  * @memcg: memcg to uncharge
7913  * @nr_pages: number of pages to uncharge
7914  */
7915 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7916 {
7917 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7918 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7919 		return;
7920 	}
7921 
7922 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7923 
7924 	refill_stock(memcg, nr_pages);
7925 }
7926 
7927 static int __init cgroup_memory(char *s)
7928 {
7929 	char *token;
7930 
7931 	while ((token = strsep(&s, ",")) != NULL) {
7932 		if (!*token)
7933 			continue;
7934 		if (!strcmp(token, "nosocket"))
7935 			cgroup_memory_nosocket = true;
7936 		if (!strcmp(token, "nokmem"))
7937 			cgroup_memory_nokmem = true;
7938 		if (!strcmp(token, "nobpf"))
7939 			cgroup_memory_nobpf = true;
7940 	}
7941 	return 1;
7942 }
7943 __setup("cgroup.memory=", cgroup_memory);
7944 
7945 /*
7946  * subsys_initcall() for memory controller.
7947  *
7948  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7949  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7950  * basically everything that doesn't depend on a specific mem_cgroup structure
7951  * should be initialized from here.
7952  */
7953 static int __init mem_cgroup_init(void)
7954 {
7955 	int cpu, node;
7956 
7957 	/*
7958 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7959 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7960 	 * to work fine, we should make sure that the overfill threshold can't
7961 	 * exceed S32_MAX / PAGE_SIZE.
7962 	 */
7963 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7964 
7965 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7966 				  memcg_hotplug_cpu_dead);
7967 
7968 	for_each_possible_cpu(cpu)
7969 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7970 			  drain_local_stock);
7971 
7972 	for_each_node(node) {
7973 		struct mem_cgroup_tree_per_node *rtpn;
7974 
7975 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7976 
7977 		rtpn->rb_root = RB_ROOT;
7978 		rtpn->rb_rightmost = NULL;
7979 		spin_lock_init(&rtpn->lock);
7980 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7981 	}
7982 
7983 	return 0;
7984 }
7985 subsys_initcall(mem_cgroup_init);
7986 
7987 #ifdef CONFIG_SWAP
7988 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7989 {
7990 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7991 		/*
7992 		 * The root cgroup cannot be destroyed, so it's refcount must
7993 		 * always be >= 1.
7994 		 */
7995 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7996 			VM_BUG_ON(1);
7997 			break;
7998 		}
7999 		memcg = parent_mem_cgroup(memcg);
8000 		if (!memcg)
8001 			memcg = root_mem_cgroup;
8002 	}
8003 	return memcg;
8004 }
8005 
8006 /**
8007  * mem_cgroup_swapout - transfer a memsw charge to swap
8008  * @folio: folio whose memsw charge to transfer
8009  * @entry: swap entry to move the charge to
8010  *
8011  * Transfer the memsw charge of @folio to @entry.
8012  */
8013 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
8014 {
8015 	struct mem_cgroup *memcg, *swap_memcg;
8016 	unsigned int nr_entries;
8017 	unsigned short oldid;
8018 
8019 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
8020 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
8021 
8022 	if (mem_cgroup_disabled())
8023 		return;
8024 
8025 	if (!do_memsw_account())
8026 		return;
8027 
8028 	memcg = folio_memcg(folio);
8029 
8030 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
8031 	if (!memcg)
8032 		return;
8033 
8034 	/*
8035 	 * In case the memcg owning these pages has been offlined and doesn't
8036 	 * have an ID allocated to it anymore, charge the closest online
8037 	 * ancestor for the swap instead and transfer the memory+swap charge.
8038 	 */
8039 	swap_memcg = mem_cgroup_id_get_online(memcg);
8040 	nr_entries = folio_nr_pages(folio);
8041 	/* Get references for the tail pages, too */
8042 	if (nr_entries > 1)
8043 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
8044 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
8045 				   nr_entries);
8046 	VM_BUG_ON_FOLIO(oldid, folio);
8047 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
8048 
8049 	folio->memcg_data = 0;
8050 
8051 	if (!mem_cgroup_is_root(memcg))
8052 		page_counter_uncharge(&memcg->memory, nr_entries);
8053 
8054 	if (memcg != swap_memcg) {
8055 		if (!mem_cgroup_is_root(swap_memcg))
8056 			page_counter_charge(&swap_memcg->memsw, nr_entries);
8057 		page_counter_uncharge(&memcg->memsw, nr_entries);
8058 	}
8059 
8060 	/*
8061 	 * Interrupts should be disabled here because the caller holds the
8062 	 * i_pages lock which is taken with interrupts-off. It is
8063 	 * important here to have the interrupts disabled because it is the
8064 	 * only synchronisation we have for updating the per-CPU variables.
8065 	 */
8066 	memcg_stats_lock();
8067 	mem_cgroup_charge_statistics(memcg, -nr_entries);
8068 	memcg_stats_unlock();
8069 	memcg_check_events(memcg, folio_nid(folio));
8070 
8071 	css_put(&memcg->css);
8072 }
8073 
8074 /**
8075  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
8076  * @folio: folio being added to swap
8077  * @entry: swap entry to charge
8078  *
8079  * Try to charge @folio's memcg for the swap space at @entry.
8080  *
8081  * Returns 0 on success, -ENOMEM on failure.
8082  */
8083 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
8084 {
8085 	unsigned int nr_pages = folio_nr_pages(folio);
8086 	struct page_counter *counter;
8087 	struct mem_cgroup *memcg;
8088 	unsigned short oldid;
8089 
8090 	if (do_memsw_account())
8091 		return 0;
8092 
8093 	memcg = folio_memcg(folio);
8094 
8095 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
8096 	if (!memcg)
8097 		return 0;
8098 
8099 	if (!entry.val) {
8100 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
8101 		return 0;
8102 	}
8103 
8104 	memcg = mem_cgroup_id_get_online(memcg);
8105 
8106 	if (!mem_cgroup_is_root(memcg) &&
8107 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
8108 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
8109 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
8110 		mem_cgroup_id_put(memcg);
8111 		return -ENOMEM;
8112 	}
8113 
8114 	/* Get references for the tail pages, too */
8115 	if (nr_pages > 1)
8116 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
8117 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
8118 	VM_BUG_ON_FOLIO(oldid, folio);
8119 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
8120 
8121 	return 0;
8122 }
8123 
8124 /**
8125  * __mem_cgroup_uncharge_swap - uncharge swap space
8126  * @entry: swap entry to uncharge
8127  * @nr_pages: the amount of swap space to uncharge
8128  */
8129 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
8130 {
8131 	struct mem_cgroup *memcg;
8132 	unsigned short id;
8133 
8134 	id = swap_cgroup_record(entry, 0, nr_pages);
8135 	rcu_read_lock();
8136 	memcg = mem_cgroup_from_id(id);
8137 	if (memcg) {
8138 		if (!mem_cgroup_is_root(memcg)) {
8139 			if (do_memsw_account())
8140 				page_counter_uncharge(&memcg->memsw, nr_pages);
8141 			else
8142 				page_counter_uncharge(&memcg->swap, nr_pages);
8143 		}
8144 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
8145 		mem_cgroup_id_put_many(memcg, nr_pages);
8146 	}
8147 	rcu_read_unlock();
8148 }
8149 
8150 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
8151 {
8152 	long nr_swap_pages = get_nr_swap_pages();
8153 
8154 	if (mem_cgroup_disabled() || do_memsw_account())
8155 		return nr_swap_pages;
8156 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
8157 		nr_swap_pages = min_t(long, nr_swap_pages,
8158 				      READ_ONCE(memcg->swap.max) -
8159 				      page_counter_read(&memcg->swap));
8160 	return nr_swap_pages;
8161 }
8162 
8163 bool mem_cgroup_swap_full(struct folio *folio)
8164 {
8165 	struct mem_cgroup *memcg;
8166 
8167 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
8168 
8169 	if (vm_swap_full())
8170 		return true;
8171 	if (do_memsw_account())
8172 		return false;
8173 
8174 	memcg = folio_memcg(folio);
8175 	if (!memcg)
8176 		return false;
8177 
8178 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
8179 		unsigned long usage = page_counter_read(&memcg->swap);
8180 
8181 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
8182 		    usage * 2 >= READ_ONCE(memcg->swap.max))
8183 			return true;
8184 	}
8185 
8186 	return false;
8187 }
8188 
8189 static int __init setup_swap_account(char *s)
8190 {
8191 	bool res;
8192 
8193 	if (!kstrtobool(s, &res) && !res)
8194 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
8195 			     "in favor of configuring swap control via cgroupfs. "
8196 			     "Please report your usecase to linux-mm@kvack.org if you "
8197 			     "depend on this functionality.\n");
8198 	return 1;
8199 }
8200 __setup("swapaccount=", setup_swap_account);
8201 
8202 static u64 swap_current_read(struct cgroup_subsys_state *css,
8203 			     struct cftype *cft)
8204 {
8205 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8206 
8207 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
8208 }
8209 
8210 static u64 swap_peak_read(struct cgroup_subsys_state *css,
8211 			  struct cftype *cft)
8212 {
8213 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8214 
8215 	return (u64)memcg->swap.watermark * PAGE_SIZE;
8216 }
8217 
8218 static int swap_high_show(struct seq_file *m, void *v)
8219 {
8220 	return seq_puts_memcg_tunable(m,
8221 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
8222 }
8223 
8224 static ssize_t swap_high_write(struct kernfs_open_file *of,
8225 			       char *buf, size_t nbytes, loff_t off)
8226 {
8227 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8228 	unsigned long high;
8229 	int err;
8230 
8231 	buf = strstrip(buf);
8232 	err = page_counter_memparse(buf, "max", &high);
8233 	if (err)
8234 		return err;
8235 
8236 	page_counter_set_high(&memcg->swap, high);
8237 
8238 	return nbytes;
8239 }
8240 
8241 static int swap_max_show(struct seq_file *m, void *v)
8242 {
8243 	return seq_puts_memcg_tunable(m,
8244 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
8245 }
8246 
8247 static ssize_t swap_max_write(struct kernfs_open_file *of,
8248 			      char *buf, size_t nbytes, loff_t off)
8249 {
8250 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8251 	unsigned long max;
8252 	int err;
8253 
8254 	buf = strstrip(buf);
8255 	err = page_counter_memparse(buf, "max", &max);
8256 	if (err)
8257 		return err;
8258 
8259 	xchg(&memcg->swap.max, max);
8260 
8261 	return nbytes;
8262 }
8263 
8264 static int swap_events_show(struct seq_file *m, void *v)
8265 {
8266 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8267 
8268 	seq_printf(m, "high %lu\n",
8269 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
8270 	seq_printf(m, "max %lu\n",
8271 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
8272 	seq_printf(m, "fail %lu\n",
8273 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
8274 
8275 	return 0;
8276 }
8277 
8278 static struct cftype swap_files[] = {
8279 	{
8280 		.name = "swap.current",
8281 		.flags = CFTYPE_NOT_ON_ROOT,
8282 		.read_u64 = swap_current_read,
8283 	},
8284 	{
8285 		.name = "swap.high",
8286 		.flags = CFTYPE_NOT_ON_ROOT,
8287 		.seq_show = swap_high_show,
8288 		.write = swap_high_write,
8289 	},
8290 	{
8291 		.name = "swap.max",
8292 		.flags = CFTYPE_NOT_ON_ROOT,
8293 		.seq_show = swap_max_show,
8294 		.write = swap_max_write,
8295 	},
8296 	{
8297 		.name = "swap.peak",
8298 		.flags = CFTYPE_NOT_ON_ROOT,
8299 		.read_u64 = swap_peak_read,
8300 	},
8301 	{
8302 		.name = "swap.events",
8303 		.flags = CFTYPE_NOT_ON_ROOT,
8304 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
8305 		.seq_show = swap_events_show,
8306 	},
8307 	{ }	/* terminate */
8308 };
8309 
8310 static struct cftype memsw_files[] = {
8311 	{
8312 		.name = "memsw.usage_in_bytes",
8313 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8314 		.read_u64 = mem_cgroup_read_u64,
8315 	},
8316 	{
8317 		.name = "memsw.max_usage_in_bytes",
8318 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8319 		.write = mem_cgroup_reset,
8320 		.read_u64 = mem_cgroup_read_u64,
8321 	},
8322 	{
8323 		.name = "memsw.limit_in_bytes",
8324 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8325 		.write = mem_cgroup_write,
8326 		.read_u64 = mem_cgroup_read_u64,
8327 	},
8328 	{
8329 		.name = "memsw.failcnt",
8330 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8331 		.write = mem_cgroup_reset,
8332 		.read_u64 = mem_cgroup_read_u64,
8333 	},
8334 	{ },	/* terminate */
8335 };
8336 
8337 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8338 /**
8339  * obj_cgroup_may_zswap - check if this cgroup can zswap
8340  * @objcg: the object cgroup
8341  *
8342  * Check if the hierarchical zswap limit has been reached.
8343  *
8344  * This doesn't check for specific headroom, and it is not atomic
8345  * either. But with zswap, the size of the allocation is only known
8346  * once compression has occurred, and this optimistic pre-check avoids
8347  * spending cycles on compression when there is already no room left
8348  * or zswap is disabled altogether somewhere in the hierarchy.
8349  */
8350 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8351 {
8352 	struct mem_cgroup *memcg, *original_memcg;
8353 	bool ret = true;
8354 
8355 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8356 		return true;
8357 
8358 	original_memcg = get_mem_cgroup_from_objcg(objcg);
8359 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
8360 	     memcg = parent_mem_cgroup(memcg)) {
8361 		unsigned long max = READ_ONCE(memcg->zswap_max);
8362 		unsigned long pages;
8363 
8364 		if (max == PAGE_COUNTER_MAX)
8365 			continue;
8366 		if (max == 0) {
8367 			ret = false;
8368 			break;
8369 		}
8370 
8371 		/*
8372 		 * mem_cgroup_flush_stats() ignores small changes. Use
8373 		 * do_flush_stats() directly to get accurate stats for charging.
8374 		 */
8375 		do_flush_stats(memcg);
8376 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8377 		if (pages < max)
8378 			continue;
8379 		ret = false;
8380 		break;
8381 	}
8382 	mem_cgroup_put(original_memcg);
8383 	return ret;
8384 }
8385 
8386 /**
8387  * obj_cgroup_charge_zswap - charge compression backend memory
8388  * @objcg: the object cgroup
8389  * @size: size of compressed object
8390  *
8391  * This forces the charge after obj_cgroup_may_zswap() allowed
8392  * compression and storage in zwap for this cgroup to go ahead.
8393  */
8394 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8395 {
8396 	struct mem_cgroup *memcg;
8397 
8398 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8399 		return;
8400 
8401 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8402 
8403 	/* PF_MEMALLOC context, charging must succeed */
8404 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8405 		VM_WARN_ON_ONCE(1);
8406 
8407 	rcu_read_lock();
8408 	memcg = obj_cgroup_memcg(objcg);
8409 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8410 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8411 	rcu_read_unlock();
8412 }
8413 
8414 /**
8415  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8416  * @objcg: the object cgroup
8417  * @size: size of compressed object
8418  *
8419  * Uncharges zswap memory on page in.
8420  */
8421 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8422 {
8423 	struct mem_cgroup *memcg;
8424 
8425 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8426 		return;
8427 
8428 	obj_cgroup_uncharge(objcg, size);
8429 
8430 	rcu_read_lock();
8431 	memcg = obj_cgroup_memcg(objcg);
8432 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8433 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8434 	rcu_read_unlock();
8435 }
8436 
8437 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
8438 {
8439 	/* if zswap is disabled, do not block pages going to the swapping device */
8440 	return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback);
8441 }
8442 
8443 static u64 zswap_current_read(struct cgroup_subsys_state *css,
8444 			      struct cftype *cft)
8445 {
8446 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8447 
8448 	mem_cgroup_flush_stats(memcg);
8449 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
8450 }
8451 
8452 static int zswap_max_show(struct seq_file *m, void *v)
8453 {
8454 	return seq_puts_memcg_tunable(m,
8455 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8456 }
8457 
8458 static ssize_t zswap_max_write(struct kernfs_open_file *of,
8459 			       char *buf, size_t nbytes, loff_t off)
8460 {
8461 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8462 	unsigned long max;
8463 	int err;
8464 
8465 	buf = strstrip(buf);
8466 	err = page_counter_memparse(buf, "max", &max);
8467 	if (err)
8468 		return err;
8469 
8470 	xchg(&memcg->zswap_max, max);
8471 
8472 	return nbytes;
8473 }
8474 
8475 static int zswap_writeback_show(struct seq_file *m, void *v)
8476 {
8477 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8478 
8479 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
8480 	return 0;
8481 }
8482 
8483 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
8484 				char *buf, size_t nbytes, loff_t off)
8485 {
8486 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8487 	int zswap_writeback;
8488 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
8489 
8490 	if (parse_ret)
8491 		return parse_ret;
8492 
8493 	if (zswap_writeback != 0 && zswap_writeback != 1)
8494 		return -EINVAL;
8495 
8496 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
8497 	return nbytes;
8498 }
8499 
8500 static struct cftype zswap_files[] = {
8501 	{
8502 		.name = "zswap.current",
8503 		.flags = CFTYPE_NOT_ON_ROOT,
8504 		.read_u64 = zswap_current_read,
8505 	},
8506 	{
8507 		.name = "zswap.max",
8508 		.flags = CFTYPE_NOT_ON_ROOT,
8509 		.seq_show = zswap_max_show,
8510 		.write = zswap_max_write,
8511 	},
8512 	{
8513 		.name = "zswap.writeback",
8514 		.seq_show = zswap_writeback_show,
8515 		.write = zswap_writeback_write,
8516 	},
8517 	{ }	/* terminate */
8518 };
8519 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8520 
8521 static int __init mem_cgroup_swap_init(void)
8522 {
8523 	if (mem_cgroup_disabled())
8524 		return 0;
8525 
8526 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8527 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
8528 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8529 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8530 #endif
8531 	return 0;
8532 }
8533 subsys_initcall(mem_cgroup_swap_init);
8534 
8535 #endif /* CONFIG_SWAP */
8536