1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/mutex.h> 46 #include <linux/rbtree.h> 47 #include <linux/slab.h> 48 #include <linux/swap.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/eventfd.h> 52 #include <linux/poll.h> 53 #include <linux/sort.h> 54 #include <linux/fs.h> 55 #include <linux/seq_file.h> 56 #include <linux/vmpressure.h> 57 #include <linux/memremap.h> 58 #include <linux/mm_inline.h> 59 #include <linux/swap_cgroup.h> 60 #include <linux/cpu.h> 61 #include <linux/oom.h> 62 #include <linux/lockdep.h> 63 #include <linux/file.h> 64 #include <linux/resume_user_mode.h> 65 #include <linux/psi.h> 66 #include <linux/seq_buf.h> 67 #include <linux/sched/isolation.h> 68 #include <linux/kmemleak.h> 69 #include "internal.h" 70 #include <net/sock.h> 71 #include <net/ip.h> 72 #include "slab.h" 73 #include "swap.h" 74 75 #include <linux/uaccess.h> 76 77 #include <trace/events/vmscan.h> 78 79 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 80 EXPORT_SYMBOL(memory_cgrp_subsys); 81 82 struct mem_cgroup *root_mem_cgroup __read_mostly; 83 84 /* Active memory cgroup to use from an interrupt context */ 85 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 86 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 87 88 /* Socket memory accounting disabled? */ 89 static bool cgroup_memory_nosocket __ro_after_init; 90 91 /* Kernel memory accounting disabled? */ 92 static bool cgroup_memory_nokmem __ro_after_init; 93 94 /* BPF memory accounting disabled? */ 95 static bool cgroup_memory_nobpf __ro_after_init; 96 97 #ifdef CONFIG_CGROUP_WRITEBACK 98 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 99 #endif 100 101 /* Whether legacy memory+swap accounting is active */ 102 static bool do_memsw_account(void) 103 { 104 return !cgroup_subsys_on_dfl(memory_cgrp_subsys); 105 } 106 107 #define THRESHOLDS_EVENTS_TARGET 128 108 #define SOFTLIMIT_EVENTS_TARGET 1024 109 110 /* 111 * Cgroups above their limits are maintained in a RB-Tree, independent of 112 * their hierarchy representation 113 */ 114 115 struct mem_cgroup_tree_per_node { 116 struct rb_root rb_root; 117 struct rb_node *rb_rightmost; 118 spinlock_t lock; 119 }; 120 121 struct mem_cgroup_tree { 122 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 123 }; 124 125 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 126 127 /* for OOM */ 128 struct mem_cgroup_eventfd_list { 129 struct list_head list; 130 struct eventfd_ctx *eventfd; 131 }; 132 133 /* 134 * cgroup_event represents events which userspace want to receive. 135 */ 136 struct mem_cgroup_event { 137 /* 138 * memcg which the event belongs to. 139 */ 140 struct mem_cgroup *memcg; 141 /* 142 * eventfd to signal userspace about the event. 143 */ 144 struct eventfd_ctx *eventfd; 145 /* 146 * Each of these stored in a list by the cgroup. 147 */ 148 struct list_head list; 149 /* 150 * register_event() callback will be used to add new userspace 151 * waiter for changes related to this event. Use eventfd_signal() 152 * on eventfd to send notification to userspace. 153 */ 154 int (*register_event)(struct mem_cgroup *memcg, 155 struct eventfd_ctx *eventfd, const char *args); 156 /* 157 * unregister_event() callback will be called when userspace closes 158 * the eventfd or on cgroup removing. This callback must be set, 159 * if you want provide notification functionality. 160 */ 161 void (*unregister_event)(struct mem_cgroup *memcg, 162 struct eventfd_ctx *eventfd); 163 /* 164 * All fields below needed to unregister event when 165 * userspace closes eventfd. 166 */ 167 poll_table pt; 168 wait_queue_head_t *wqh; 169 wait_queue_entry_t wait; 170 struct work_struct remove; 171 }; 172 173 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 174 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 175 176 /* Stuffs for move charges at task migration. */ 177 /* 178 * Types of charges to be moved. 179 */ 180 #define MOVE_ANON 0x1U 181 #define MOVE_FILE 0x2U 182 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 183 184 /* "mc" and its members are protected by cgroup_mutex */ 185 static struct move_charge_struct { 186 spinlock_t lock; /* for from, to */ 187 struct mm_struct *mm; 188 struct mem_cgroup *from; 189 struct mem_cgroup *to; 190 unsigned long flags; 191 unsigned long precharge; 192 unsigned long moved_charge; 193 unsigned long moved_swap; 194 struct task_struct *moving_task; /* a task moving charges */ 195 wait_queue_head_t waitq; /* a waitq for other context */ 196 } mc = { 197 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 198 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 199 }; 200 201 /* 202 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft 203 * limit reclaim to prevent infinite loops, if they ever occur. 204 */ 205 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 206 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 207 208 /* for encoding cft->private value on file */ 209 enum res_type { 210 _MEM, 211 _MEMSWAP, 212 _KMEM, 213 _TCP, 214 }; 215 216 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 217 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 218 #define MEMFILE_ATTR(val) ((val) & 0xffff) 219 220 /* 221 * Iteration constructs for visiting all cgroups (under a tree). If 222 * loops are exited prematurely (break), mem_cgroup_iter_break() must 223 * be used for reference counting. 224 */ 225 #define for_each_mem_cgroup_tree(iter, root) \ 226 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 227 iter != NULL; \ 228 iter = mem_cgroup_iter(root, iter, NULL)) 229 230 #define for_each_mem_cgroup(iter) \ 231 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 232 iter != NULL; \ 233 iter = mem_cgroup_iter(NULL, iter, NULL)) 234 235 static inline bool task_is_dying(void) 236 { 237 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 238 (current->flags & PF_EXITING); 239 } 240 241 /* Some nice accessors for the vmpressure. */ 242 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 243 { 244 if (!memcg) 245 memcg = root_mem_cgroup; 246 return &memcg->vmpressure; 247 } 248 249 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 250 { 251 return container_of(vmpr, struct mem_cgroup, vmpressure); 252 } 253 254 #define CURRENT_OBJCG_UPDATE_BIT 0 255 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 256 257 #ifdef CONFIG_MEMCG_KMEM 258 static DEFINE_SPINLOCK(objcg_lock); 259 260 bool mem_cgroup_kmem_disabled(void) 261 { 262 return cgroup_memory_nokmem; 263 } 264 265 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 266 unsigned int nr_pages); 267 268 static void obj_cgroup_release(struct percpu_ref *ref) 269 { 270 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 271 unsigned int nr_bytes; 272 unsigned int nr_pages; 273 unsigned long flags; 274 275 /* 276 * At this point all allocated objects are freed, and 277 * objcg->nr_charged_bytes can't have an arbitrary byte value. 278 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 279 * 280 * The following sequence can lead to it: 281 * 1) CPU0: objcg == stock->cached_objcg 282 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 283 * PAGE_SIZE bytes are charged 284 * 3) CPU1: a process from another memcg is allocating something, 285 * the stock if flushed, 286 * objcg->nr_charged_bytes = PAGE_SIZE - 92 287 * 5) CPU0: we do release this object, 288 * 92 bytes are added to stock->nr_bytes 289 * 6) CPU0: stock is flushed, 290 * 92 bytes are added to objcg->nr_charged_bytes 291 * 292 * In the result, nr_charged_bytes == PAGE_SIZE. 293 * This page will be uncharged in obj_cgroup_release(). 294 */ 295 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 296 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 297 nr_pages = nr_bytes >> PAGE_SHIFT; 298 299 if (nr_pages) 300 obj_cgroup_uncharge_pages(objcg, nr_pages); 301 302 spin_lock_irqsave(&objcg_lock, flags); 303 list_del(&objcg->list); 304 spin_unlock_irqrestore(&objcg_lock, flags); 305 306 percpu_ref_exit(ref); 307 kfree_rcu(objcg, rcu); 308 } 309 310 static struct obj_cgroup *obj_cgroup_alloc(void) 311 { 312 struct obj_cgroup *objcg; 313 int ret; 314 315 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 316 if (!objcg) 317 return NULL; 318 319 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 320 GFP_KERNEL); 321 if (ret) { 322 kfree(objcg); 323 return NULL; 324 } 325 INIT_LIST_HEAD(&objcg->list); 326 return objcg; 327 } 328 329 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 330 struct mem_cgroup *parent) 331 { 332 struct obj_cgroup *objcg, *iter; 333 334 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 335 336 spin_lock_irq(&objcg_lock); 337 338 /* 1) Ready to reparent active objcg. */ 339 list_add(&objcg->list, &memcg->objcg_list); 340 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 341 list_for_each_entry(iter, &memcg->objcg_list, list) 342 WRITE_ONCE(iter->memcg, parent); 343 /* 3) Move already reparented objcgs to the parent's list */ 344 list_splice(&memcg->objcg_list, &parent->objcg_list); 345 346 spin_unlock_irq(&objcg_lock); 347 348 percpu_ref_kill(&objcg->refcnt); 349 } 350 351 /* 352 * A lot of the calls to the cache allocation functions are expected to be 353 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 354 * conditional to this static branch, we'll have to allow modules that does 355 * kmem_cache_alloc and the such to see this symbol as well 356 */ 357 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 358 EXPORT_SYMBOL(memcg_kmem_online_key); 359 360 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 361 EXPORT_SYMBOL(memcg_bpf_enabled_key); 362 #endif 363 364 /** 365 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 366 * @folio: folio of interest 367 * 368 * If memcg is bound to the default hierarchy, css of the memcg associated 369 * with @folio is returned. The returned css remains associated with @folio 370 * until it is released. 371 * 372 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 373 * is returned. 374 */ 375 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 376 { 377 struct mem_cgroup *memcg = folio_memcg(folio); 378 379 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 380 memcg = root_mem_cgroup; 381 382 return &memcg->css; 383 } 384 385 /** 386 * page_cgroup_ino - return inode number of the memcg a page is charged to 387 * @page: the page 388 * 389 * Look up the closest online ancestor of the memory cgroup @page is charged to 390 * and return its inode number or 0 if @page is not charged to any cgroup. It 391 * is safe to call this function without holding a reference to @page. 392 * 393 * Note, this function is inherently racy, because there is nothing to prevent 394 * the cgroup inode from getting torn down and potentially reallocated a moment 395 * after page_cgroup_ino() returns, so it only should be used by callers that 396 * do not care (such as procfs interfaces). 397 */ 398 ino_t page_cgroup_ino(struct page *page) 399 { 400 struct mem_cgroup *memcg; 401 unsigned long ino = 0; 402 403 rcu_read_lock(); 404 /* page_folio() is racy here, but the entire function is racy anyway */ 405 memcg = folio_memcg_check(page_folio(page)); 406 407 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 408 memcg = parent_mem_cgroup(memcg); 409 if (memcg) 410 ino = cgroup_ino(memcg->css.cgroup); 411 rcu_read_unlock(); 412 return ino; 413 } 414 415 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 416 struct mem_cgroup_tree_per_node *mctz, 417 unsigned long new_usage_in_excess) 418 { 419 struct rb_node **p = &mctz->rb_root.rb_node; 420 struct rb_node *parent = NULL; 421 struct mem_cgroup_per_node *mz_node; 422 bool rightmost = true; 423 424 if (mz->on_tree) 425 return; 426 427 mz->usage_in_excess = new_usage_in_excess; 428 if (!mz->usage_in_excess) 429 return; 430 while (*p) { 431 parent = *p; 432 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 433 tree_node); 434 if (mz->usage_in_excess < mz_node->usage_in_excess) { 435 p = &(*p)->rb_left; 436 rightmost = false; 437 } else { 438 p = &(*p)->rb_right; 439 } 440 } 441 442 if (rightmost) 443 mctz->rb_rightmost = &mz->tree_node; 444 445 rb_link_node(&mz->tree_node, parent, p); 446 rb_insert_color(&mz->tree_node, &mctz->rb_root); 447 mz->on_tree = true; 448 } 449 450 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 451 struct mem_cgroup_tree_per_node *mctz) 452 { 453 if (!mz->on_tree) 454 return; 455 456 if (&mz->tree_node == mctz->rb_rightmost) 457 mctz->rb_rightmost = rb_prev(&mz->tree_node); 458 459 rb_erase(&mz->tree_node, &mctz->rb_root); 460 mz->on_tree = false; 461 } 462 463 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 464 struct mem_cgroup_tree_per_node *mctz) 465 { 466 unsigned long flags; 467 468 spin_lock_irqsave(&mctz->lock, flags); 469 __mem_cgroup_remove_exceeded(mz, mctz); 470 spin_unlock_irqrestore(&mctz->lock, flags); 471 } 472 473 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 474 { 475 unsigned long nr_pages = page_counter_read(&memcg->memory); 476 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 477 unsigned long excess = 0; 478 479 if (nr_pages > soft_limit) 480 excess = nr_pages - soft_limit; 481 482 return excess; 483 } 484 485 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 486 { 487 unsigned long excess; 488 struct mem_cgroup_per_node *mz; 489 struct mem_cgroup_tree_per_node *mctz; 490 491 if (lru_gen_enabled()) { 492 if (soft_limit_excess(memcg)) 493 lru_gen_soft_reclaim(memcg, nid); 494 return; 495 } 496 497 mctz = soft_limit_tree.rb_tree_per_node[nid]; 498 if (!mctz) 499 return; 500 /* 501 * Necessary to update all ancestors when hierarchy is used. 502 * because their event counter is not touched. 503 */ 504 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 505 mz = memcg->nodeinfo[nid]; 506 excess = soft_limit_excess(memcg); 507 /* 508 * We have to update the tree if mz is on RB-tree or 509 * mem is over its softlimit. 510 */ 511 if (excess || mz->on_tree) { 512 unsigned long flags; 513 514 spin_lock_irqsave(&mctz->lock, flags); 515 /* if on-tree, remove it */ 516 if (mz->on_tree) 517 __mem_cgroup_remove_exceeded(mz, mctz); 518 /* 519 * Insert again. mz->usage_in_excess will be updated. 520 * If excess is 0, no tree ops. 521 */ 522 __mem_cgroup_insert_exceeded(mz, mctz, excess); 523 spin_unlock_irqrestore(&mctz->lock, flags); 524 } 525 } 526 } 527 528 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 529 { 530 struct mem_cgroup_tree_per_node *mctz; 531 struct mem_cgroup_per_node *mz; 532 int nid; 533 534 for_each_node(nid) { 535 mz = memcg->nodeinfo[nid]; 536 mctz = soft_limit_tree.rb_tree_per_node[nid]; 537 if (mctz) 538 mem_cgroup_remove_exceeded(mz, mctz); 539 } 540 } 541 542 static struct mem_cgroup_per_node * 543 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 544 { 545 struct mem_cgroup_per_node *mz; 546 547 retry: 548 mz = NULL; 549 if (!mctz->rb_rightmost) 550 goto done; /* Nothing to reclaim from */ 551 552 mz = rb_entry(mctz->rb_rightmost, 553 struct mem_cgroup_per_node, tree_node); 554 /* 555 * Remove the node now but someone else can add it back, 556 * we will to add it back at the end of reclaim to its correct 557 * position in the tree. 558 */ 559 __mem_cgroup_remove_exceeded(mz, mctz); 560 if (!soft_limit_excess(mz->memcg) || 561 !css_tryget(&mz->memcg->css)) 562 goto retry; 563 done: 564 return mz; 565 } 566 567 static struct mem_cgroup_per_node * 568 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 569 { 570 struct mem_cgroup_per_node *mz; 571 572 spin_lock_irq(&mctz->lock); 573 mz = __mem_cgroup_largest_soft_limit_node(mctz); 574 spin_unlock_irq(&mctz->lock); 575 return mz; 576 } 577 578 /* Subset of node_stat_item for memcg stats */ 579 static const unsigned int memcg_node_stat_items[] = { 580 NR_INACTIVE_ANON, 581 NR_ACTIVE_ANON, 582 NR_INACTIVE_FILE, 583 NR_ACTIVE_FILE, 584 NR_UNEVICTABLE, 585 NR_SLAB_RECLAIMABLE_B, 586 NR_SLAB_UNRECLAIMABLE_B, 587 WORKINGSET_REFAULT_ANON, 588 WORKINGSET_REFAULT_FILE, 589 WORKINGSET_ACTIVATE_ANON, 590 WORKINGSET_ACTIVATE_FILE, 591 WORKINGSET_RESTORE_ANON, 592 WORKINGSET_RESTORE_FILE, 593 WORKINGSET_NODERECLAIM, 594 NR_ANON_MAPPED, 595 NR_FILE_MAPPED, 596 NR_FILE_PAGES, 597 NR_FILE_DIRTY, 598 NR_WRITEBACK, 599 NR_SHMEM, 600 NR_SHMEM_THPS, 601 NR_FILE_THPS, 602 NR_ANON_THPS, 603 NR_KERNEL_STACK_KB, 604 NR_PAGETABLE, 605 NR_SECONDARY_PAGETABLE, 606 #ifdef CONFIG_SWAP 607 NR_SWAPCACHE, 608 #endif 609 }; 610 611 static const unsigned int memcg_stat_items[] = { 612 MEMCG_SWAP, 613 MEMCG_SOCK, 614 MEMCG_PERCPU_B, 615 MEMCG_VMALLOC, 616 MEMCG_KMEM, 617 MEMCG_ZSWAP_B, 618 MEMCG_ZSWAPPED, 619 }; 620 621 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 622 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 623 ARRAY_SIZE(memcg_stat_items)) 624 static int8_t mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 625 626 static void init_memcg_stats(void) 627 { 628 int8_t i, j = 0; 629 630 BUILD_BUG_ON(MEMCG_NR_STAT >= S8_MAX); 631 632 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i) 633 mem_cgroup_stats_index[memcg_node_stat_items[i]] = ++j; 634 635 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i) 636 mem_cgroup_stats_index[memcg_stat_items[i]] = ++j; 637 } 638 639 static inline int memcg_stats_index(int idx) 640 { 641 return mem_cgroup_stats_index[idx] - 1; 642 } 643 644 struct lruvec_stats_percpu { 645 /* Local (CPU and cgroup) state */ 646 long state[NR_MEMCG_NODE_STAT_ITEMS]; 647 648 /* Delta calculation for lockless upward propagation */ 649 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 650 }; 651 652 struct lruvec_stats { 653 /* Aggregated (CPU and subtree) state */ 654 long state[NR_MEMCG_NODE_STAT_ITEMS]; 655 656 /* Non-hierarchical (CPU aggregated) state */ 657 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 658 659 /* Pending child counts during tree propagation */ 660 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 661 }; 662 663 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 664 { 665 struct mem_cgroup_per_node *pn; 666 long x; 667 int i; 668 669 if (mem_cgroup_disabled()) 670 return node_page_state(lruvec_pgdat(lruvec), idx); 671 672 i = memcg_stats_index(idx); 673 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 674 return 0; 675 676 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 677 x = READ_ONCE(pn->lruvec_stats->state[i]); 678 #ifdef CONFIG_SMP 679 if (x < 0) 680 x = 0; 681 #endif 682 return x; 683 } 684 685 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 686 enum node_stat_item idx) 687 { 688 struct mem_cgroup_per_node *pn; 689 long x; 690 int i; 691 692 if (mem_cgroup_disabled()) 693 return node_page_state(lruvec_pgdat(lruvec), idx); 694 695 i = memcg_stats_index(idx); 696 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 697 return 0; 698 699 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 700 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 701 #ifdef CONFIG_SMP 702 if (x < 0) 703 x = 0; 704 #endif 705 return x; 706 } 707 708 /* Subset of vm_event_item to report for memcg event stats */ 709 static const unsigned int memcg_vm_event_stat[] = { 710 PGPGIN, 711 PGPGOUT, 712 PGSCAN_KSWAPD, 713 PGSCAN_DIRECT, 714 PGSCAN_KHUGEPAGED, 715 PGSTEAL_KSWAPD, 716 PGSTEAL_DIRECT, 717 PGSTEAL_KHUGEPAGED, 718 PGFAULT, 719 PGMAJFAULT, 720 PGREFILL, 721 PGACTIVATE, 722 PGDEACTIVATE, 723 PGLAZYFREE, 724 PGLAZYFREED, 725 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 726 ZSWPIN, 727 ZSWPOUT, 728 ZSWPWB, 729 #endif 730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 731 THP_FAULT_ALLOC, 732 THP_COLLAPSE_ALLOC, 733 THP_SWPOUT, 734 THP_SWPOUT_FALLBACK, 735 #endif 736 }; 737 738 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 739 static int8_t mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 740 741 static void init_memcg_events(void) 742 { 743 int8_t i; 744 745 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= S8_MAX); 746 747 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 748 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; 749 } 750 751 static inline int memcg_events_index(enum vm_event_item idx) 752 { 753 return mem_cgroup_events_index[idx] - 1; 754 } 755 756 struct memcg_vmstats_percpu { 757 /* Stats updates since the last flush */ 758 unsigned int stats_updates; 759 760 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 761 struct memcg_vmstats_percpu *parent; 762 struct memcg_vmstats *vmstats; 763 764 /* The above should fit a single cacheline for memcg_rstat_updated() */ 765 766 /* Local (CPU and cgroup) page state & events */ 767 long state[MEMCG_VMSTAT_SIZE]; 768 unsigned long events[NR_MEMCG_EVENTS]; 769 770 /* Delta calculation for lockless upward propagation */ 771 long state_prev[MEMCG_VMSTAT_SIZE]; 772 unsigned long events_prev[NR_MEMCG_EVENTS]; 773 774 /* Cgroup1: threshold notifications & softlimit tree updates */ 775 unsigned long nr_page_events; 776 unsigned long targets[MEM_CGROUP_NTARGETS]; 777 } ____cacheline_aligned; 778 779 struct memcg_vmstats { 780 /* Aggregated (CPU and subtree) page state & events */ 781 long state[MEMCG_VMSTAT_SIZE]; 782 unsigned long events[NR_MEMCG_EVENTS]; 783 784 /* Non-hierarchical (CPU aggregated) page state & events */ 785 long state_local[MEMCG_VMSTAT_SIZE]; 786 unsigned long events_local[NR_MEMCG_EVENTS]; 787 788 /* Pending child counts during tree propagation */ 789 long state_pending[MEMCG_VMSTAT_SIZE]; 790 unsigned long events_pending[NR_MEMCG_EVENTS]; 791 792 /* Stats updates since the last flush */ 793 atomic64_t stats_updates; 794 }; 795 796 /* 797 * memcg and lruvec stats flushing 798 * 799 * Many codepaths leading to stats update or read are performance sensitive and 800 * adding stats flushing in such codepaths is not desirable. So, to optimize the 801 * flushing the kernel does: 802 * 803 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 804 * rstat update tree grow unbounded. 805 * 806 * 2) Flush the stats synchronously on reader side only when there are more than 807 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 808 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 809 * only for 2 seconds due to (1). 810 */ 811 static void flush_memcg_stats_dwork(struct work_struct *w); 812 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 813 static u64 flush_last_time; 814 815 #define FLUSH_TIME (2UL*HZ) 816 817 /* 818 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 819 * not rely on this as part of an acquired spinlock_t lock. These functions are 820 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 821 * is sufficient. 822 */ 823 static void memcg_stats_lock(void) 824 { 825 preempt_disable_nested(); 826 VM_WARN_ON_IRQS_ENABLED(); 827 } 828 829 static void __memcg_stats_lock(void) 830 { 831 preempt_disable_nested(); 832 } 833 834 static void memcg_stats_unlock(void) 835 { 836 preempt_enable_nested(); 837 } 838 839 840 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 841 { 842 return atomic64_read(&vmstats->stats_updates) > 843 MEMCG_CHARGE_BATCH * num_online_cpus(); 844 } 845 846 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 847 { 848 struct memcg_vmstats_percpu *statc; 849 int cpu = smp_processor_id(); 850 unsigned int stats_updates; 851 852 if (!val) 853 return; 854 855 cgroup_rstat_updated(memcg->css.cgroup, cpu); 856 statc = this_cpu_ptr(memcg->vmstats_percpu); 857 for (; statc; statc = statc->parent) { 858 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 859 WRITE_ONCE(statc->stats_updates, stats_updates); 860 if (stats_updates < MEMCG_CHARGE_BATCH) 861 continue; 862 863 /* 864 * If @memcg is already flush-able, increasing stats_updates is 865 * redundant. Avoid the overhead of the atomic update. 866 */ 867 if (!memcg_vmstats_needs_flush(statc->vmstats)) 868 atomic64_add(stats_updates, 869 &statc->vmstats->stats_updates); 870 WRITE_ONCE(statc->stats_updates, 0); 871 } 872 } 873 874 static void do_flush_stats(struct mem_cgroup *memcg) 875 { 876 if (mem_cgroup_is_root(memcg)) 877 WRITE_ONCE(flush_last_time, jiffies_64); 878 879 cgroup_rstat_flush(memcg->css.cgroup); 880 } 881 882 /* 883 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 884 * @memcg: root of the subtree to flush 885 * 886 * Flushing is serialized by the underlying global rstat lock. There is also a 887 * minimum amount of work to be done even if there are no stat updates to flush. 888 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 889 * avoids unnecessary work and contention on the underlying lock. 890 */ 891 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 892 { 893 if (mem_cgroup_disabled()) 894 return; 895 896 if (!memcg) 897 memcg = root_mem_cgroup; 898 899 if (memcg_vmstats_needs_flush(memcg->vmstats)) 900 do_flush_stats(memcg); 901 } 902 903 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 904 { 905 /* Only flush if the periodic flusher is one full cycle late */ 906 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 907 mem_cgroup_flush_stats(memcg); 908 } 909 910 static void flush_memcg_stats_dwork(struct work_struct *w) 911 { 912 /* 913 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 914 * in latency-sensitive paths is as cheap as possible. 915 */ 916 do_flush_stats(root_mem_cgroup); 917 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 918 } 919 920 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 921 { 922 long x; 923 int i = memcg_stats_index(idx); 924 925 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 926 return 0; 927 928 x = READ_ONCE(memcg->vmstats->state[i]); 929 #ifdef CONFIG_SMP 930 if (x < 0) 931 x = 0; 932 #endif 933 return x; 934 } 935 936 static int memcg_page_state_unit(int item); 937 938 /* 939 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 940 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 941 */ 942 static int memcg_state_val_in_pages(int idx, int val) 943 { 944 int unit = memcg_page_state_unit(idx); 945 946 if (!val || unit == PAGE_SIZE) 947 return val; 948 else 949 return max(val * unit / PAGE_SIZE, 1UL); 950 } 951 952 /** 953 * __mod_memcg_state - update cgroup memory statistics 954 * @memcg: the memory cgroup 955 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 956 * @val: delta to add to the counter, can be negative 957 */ 958 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 959 int val) 960 { 961 int i = memcg_stats_index(idx); 962 963 if (mem_cgroup_disabled()) 964 return; 965 966 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 967 return; 968 969 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 970 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 971 } 972 973 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 974 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 975 { 976 long x; 977 int i = memcg_stats_index(idx); 978 979 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 980 return 0; 981 982 x = READ_ONCE(memcg->vmstats->state_local[i]); 983 #ifdef CONFIG_SMP 984 if (x < 0) 985 x = 0; 986 #endif 987 return x; 988 } 989 990 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 991 enum node_stat_item idx, 992 int val) 993 { 994 struct mem_cgroup_per_node *pn; 995 struct mem_cgroup *memcg; 996 int i = memcg_stats_index(idx); 997 998 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 999 return; 1000 1001 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1002 memcg = pn->memcg; 1003 1004 /* 1005 * The caller from rmap relies on disabled preemption because they never 1006 * update their counter from in-interrupt context. For these two 1007 * counters we check that the update is never performed from an 1008 * interrupt context while other caller need to have disabled interrupt. 1009 */ 1010 __memcg_stats_lock(); 1011 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 1012 switch (idx) { 1013 case NR_ANON_MAPPED: 1014 case NR_FILE_MAPPED: 1015 case NR_ANON_THPS: 1016 WARN_ON_ONCE(!in_task()); 1017 break; 1018 default: 1019 VM_WARN_ON_IRQS_ENABLED(); 1020 } 1021 } 1022 1023 /* Update memcg */ 1024 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 1025 1026 /* Update lruvec */ 1027 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 1028 1029 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 1030 memcg_stats_unlock(); 1031 } 1032 1033 /** 1034 * __mod_lruvec_state - update lruvec memory statistics 1035 * @lruvec: the lruvec 1036 * @idx: the stat item 1037 * @val: delta to add to the counter, can be negative 1038 * 1039 * The lruvec is the intersection of the NUMA node and a cgroup. This 1040 * function updates the all three counters that are affected by a 1041 * change of state at this level: per-node, per-cgroup, per-lruvec. 1042 */ 1043 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1044 int val) 1045 { 1046 /* Update node */ 1047 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1048 1049 /* Update memcg and lruvec */ 1050 if (!mem_cgroup_disabled()) 1051 __mod_memcg_lruvec_state(lruvec, idx, val); 1052 } 1053 1054 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 1055 int val) 1056 { 1057 struct mem_cgroup *memcg; 1058 pg_data_t *pgdat = folio_pgdat(folio); 1059 struct lruvec *lruvec; 1060 1061 rcu_read_lock(); 1062 memcg = folio_memcg(folio); 1063 /* Untracked pages have no memcg, no lruvec. Update only the node */ 1064 if (!memcg) { 1065 rcu_read_unlock(); 1066 __mod_node_page_state(pgdat, idx, val); 1067 return; 1068 } 1069 1070 lruvec = mem_cgroup_lruvec(memcg, pgdat); 1071 __mod_lruvec_state(lruvec, idx, val); 1072 rcu_read_unlock(); 1073 } 1074 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 1075 1076 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 1077 { 1078 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 1079 struct mem_cgroup *memcg; 1080 struct lruvec *lruvec; 1081 1082 rcu_read_lock(); 1083 memcg = mem_cgroup_from_slab_obj(p); 1084 1085 /* 1086 * Untracked pages have no memcg, no lruvec. Update only the 1087 * node. If we reparent the slab objects to the root memcg, 1088 * when we free the slab object, we need to update the per-memcg 1089 * vmstats to keep it correct for the root memcg. 1090 */ 1091 if (!memcg) { 1092 __mod_node_page_state(pgdat, idx, val); 1093 } else { 1094 lruvec = mem_cgroup_lruvec(memcg, pgdat); 1095 __mod_lruvec_state(lruvec, idx, val); 1096 } 1097 rcu_read_unlock(); 1098 } 1099 1100 /** 1101 * __count_memcg_events - account VM events in a cgroup 1102 * @memcg: the memory cgroup 1103 * @idx: the event item 1104 * @count: the number of events that occurred 1105 */ 1106 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1107 unsigned long count) 1108 { 1109 int i = memcg_events_index(idx); 1110 1111 if (mem_cgroup_disabled()) 1112 return; 1113 1114 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 1115 return; 1116 1117 memcg_stats_lock(); 1118 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 1119 memcg_rstat_updated(memcg, count); 1120 memcg_stats_unlock(); 1121 } 1122 1123 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 1124 { 1125 int i = memcg_events_index(event); 1126 1127 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, event)) 1128 return 0; 1129 1130 return READ_ONCE(memcg->vmstats->events[i]); 1131 } 1132 1133 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 1134 { 1135 int i = memcg_events_index(event); 1136 1137 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, event)) 1138 return 0; 1139 1140 return READ_ONCE(memcg->vmstats->events_local[i]); 1141 } 1142 1143 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 1144 int nr_pages) 1145 { 1146 /* pagein of a big page is an event. So, ignore page size */ 1147 if (nr_pages > 0) 1148 __count_memcg_events(memcg, PGPGIN, 1); 1149 else { 1150 __count_memcg_events(memcg, PGPGOUT, 1); 1151 nr_pages = -nr_pages; /* for event */ 1152 } 1153 1154 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 1155 } 1156 1157 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 1158 enum mem_cgroup_events_target target) 1159 { 1160 unsigned long val, next; 1161 1162 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 1163 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 1164 /* from time_after() in jiffies.h */ 1165 if ((long)(next - val) < 0) { 1166 switch (target) { 1167 case MEM_CGROUP_TARGET_THRESH: 1168 next = val + THRESHOLDS_EVENTS_TARGET; 1169 break; 1170 case MEM_CGROUP_TARGET_SOFTLIMIT: 1171 next = val + SOFTLIMIT_EVENTS_TARGET; 1172 break; 1173 default: 1174 break; 1175 } 1176 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 1177 return true; 1178 } 1179 return false; 1180 } 1181 1182 /* 1183 * Check events in order. 1184 * 1185 */ 1186 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 1187 { 1188 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1189 return; 1190 1191 /* threshold event is triggered in finer grain than soft limit */ 1192 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1193 MEM_CGROUP_TARGET_THRESH))) { 1194 bool do_softlimit; 1195 1196 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1197 MEM_CGROUP_TARGET_SOFTLIMIT); 1198 mem_cgroup_threshold(memcg); 1199 if (unlikely(do_softlimit)) 1200 mem_cgroup_update_tree(memcg, nid); 1201 } 1202 } 1203 1204 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1205 { 1206 /* 1207 * mm_update_next_owner() may clear mm->owner to NULL 1208 * if it races with swapoff, page migration, etc. 1209 * So this can be called with p == NULL. 1210 */ 1211 if (unlikely(!p)) 1212 return NULL; 1213 1214 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1215 } 1216 EXPORT_SYMBOL(mem_cgroup_from_task); 1217 1218 static __always_inline struct mem_cgroup *active_memcg(void) 1219 { 1220 if (!in_task()) 1221 return this_cpu_read(int_active_memcg); 1222 else 1223 return current->active_memcg; 1224 } 1225 1226 /** 1227 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1228 * @mm: mm from which memcg should be extracted. It can be NULL. 1229 * 1230 * Obtain a reference on mm->memcg and returns it if successful. If mm 1231 * is NULL, then the memcg is chosen as follows: 1232 * 1) The active memcg, if set. 1233 * 2) current->mm->memcg, if available 1234 * 3) root memcg 1235 * If mem_cgroup is disabled, NULL is returned. 1236 */ 1237 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1238 { 1239 struct mem_cgroup *memcg; 1240 1241 if (mem_cgroup_disabled()) 1242 return NULL; 1243 1244 /* 1245 * Page cache insertions can happen without an 1246 * actual mm context, e.g. during disk probing 1247 * on boot, loopback IO, acct() writes etc. 1248 * 1249 * No need to css_get on root memcg as the reference 1250 * counting is disabled on the root level in the 1251 * cgroup core. See CSS_NO_REF. 1252 */ 1253 if (unlikely(!mm)) { 1254 memcg = active_memcg(); 1255 if (unlikely(memcg)) { 1256 /* remote memcg must hold a ref */ 1257 css_get(&memcg->css); 1258 return memcg; 1259 } 1260 mm = current->mm; 1261 if (unlikely(!mm)) 1262 return root_mem_cgroup; 1263 } 1264 1265 rcu_read_lock(); 1266 do { 1267 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1268 if (unlikely(!memcg)) 1269 memcg = root_mem_cgroup; 1270 } while (!css_tryget(&memcg->css)); 1271 rcu_read_unlock(); 1272 return memcg; 1273 } 1274 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1275 1276 /** 1277 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 1278 */ 1279 struct mem_cgroup *get_mem_cgroup_from_current(void) 1280 { 1281 struct mem_cgroup *memcg; 1282 1283 if (mem_cgroup_disabled()) 1284 return NULL; 1285 1286 again: 1287 rcu_read_lock(); 1288 memcg = mem_cgroup_from_task(current); 1289 if (!css_tryget(&memcg->css)) { 1290 rcu_read_unlock(); 1291 goto again; 1292 } 1293 rcu_read_unlock(); 1294 return memcg; 1295 } 1296 1297 /** 1298 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1299 * @root: hierarchy root 1300 * @prev: previously returned memcg, NULL on first invocation 1301 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1302 * 1303 * Returns references to children of the hierarchy below @root, or 1304 * @root itself, or %NULL after a full round-trip. 1305 * 1306 * Caller must pass the return value in @prev on subsequent 1307 * invocations for reference counting, or use mem_cgroup_iter_break() 1308 * to cancel a hierarchy walk before the round-trip is complete. 1309 * 1310 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1311 * in the hierarchy among all concurrent reclaimers operating on the 1312 * same node. 1313 */ 1314 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1315 struct mem_cgroup *prev, 1316 struct mem_cgroup_reclaim_cookie *reclaim) 1317 { 1318 struct mem_cgroup_reclaim_iter *iter; 1319 struct cgroup_subsys_state *css = NULL; 1320 struct mem_cgroup *memcg = NULL; 1321 struct mem_cgroup *pos = NULL; 1322 1323 if (mem_cgroup_disabled()) 1324 return NULL; 1325 1326 if (!root) 1327 root = root_mem_cgroup; 1328 1329 rcu_read_lock(); 1330 1331 if (reclaim) { 1332 struct mem_cgroup_per_node *mz; 1333 1334 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1335 iter = &mz->iter; 1336 1337 /* 1338 * On start, join the current reclaim iteration cycle. 1339 * Exit when a concurrent walker completes it. 1340 */ 1341 if (!prev) 1342 reclaim->generation = iter->generation; 1343 else if (reclaim->generation != iter->generation) 1344 goto out_unlock; 1345 1346 while (1) { 1347 pos = READ_ONCE(iter->position); 1348 if (!pos || css_tryget(&pos->css)) 1349 break; 1350 /* 1351 * css reference reached zero, so iter->position will 1352 * be cleared by ->css_released. However, we should not 1353 * rely on this happening soon, because ->css_released 1354 * is called from a work queue, and by busy-waiting we 1355 * might block it. So we clear iter->position right 1356 * away. 1357 */ 1358 (void)cmpxchg(&iter->position, pos, NULL); 1359 } 1360 } else if (prev) { 1361 pos = prev; 1362 } 1363 1364 if (pos) 1365 css = &pos->css; 1366 1367 for (;;) { 1368 css = css_next_descendant_pre(css, &root->css); 1369 if (!css) { 1370 /* 1371 * Reclaimers share the hierarchy walk, and a 1372 * new one might jump in right at the end of 1373 * the hierarchy - make sure they see at least 1374 * one group and restart from the beginning. 1375 */ 1376 if (!prev) 1377 continue; 1378 break; 1379 } 1380 1381 /* 1382 * Verify the css and acquire a reference. The root 1383 * is provided by the caller, so we know it's alive 1384 * and kicking, and don't take an extra reference. 1385 */ 1386 if (css == &root->css || css_tryget(css)) { 1387 memcg = mem_cgroup_from_css(css); 1388 break; 1389 } 1390 } 1391 1392 if (reclaim) { 1393 /* 1394 * The position could have already been updated by a competing 1395 * thread, so check that the value hasn't changed since we read 1396 * it to avoid reclaiming from the same cgroup twice. 1397 */ 1398 (void)cmpxchg(&iter->position, pos, memcg); 1399 1400 if (pos) 1401 css_put(&pos->css); 1402 1403 if (!memcg) 1404 iter->generation++; 1405 } 1406 1407 out_unlock: 1408 rcu_read_unlock(); 1409 if (prev && prev != root) 1410 css_put(&prev->css); 1411 1412 return memcg; 1413 } 1414 1415 /** 1416 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1417 * @root: hierarchy root 1418 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1419 */ 1420 void mem_cgroup_iter_break(struct mem_cgroup *root, 1421 struct mem_cgroup *prev) 1422 { 1423 if (!root) 1424 root = root_mem_cgroup; 1425 if (prev && prev != root) 1426 css_put(&prev->css); 1427 } 1428 1429 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1430 struct mem_cgroup *dead_memcg) 1431 { 1432 struct mem_cgroup_reclaim_iter *iter; 1433 struct mem_cgroup_per_node *mz; 1434 int nid; 1435 1436 for_each_node(nid) { 1437 mz = from->nodeinfo[nid]; 1438 iter = &mz->iter; 1439 cmpxchg(&iter->position, dead_memcg, NULL); 1440 } 1441 } 1442 1443 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1444 { 1445 struct mem_cgroup *memcg = dead_memcg; 1446 struct mem_cgroup *last; 1447 1448 do { 1449 __invalidate_reclaim_iterators(memcg, dead_memcg); 1450 last = memcg; 1451 } while ((memcg = parent_mem_cgroup(memcg))); 1452 1453 /* 1454 * When cgroup1 non-hierarchy mode is used, 1455 * parent_mem_cgroup() does not walk all the way up to the 1456 * cgroup root (root_mem_cgroup). So we have to handle 1457 * dead_memcg from cgroup root separately. 1458 */ 1459 if (!mem_cgroup_is_root(last)) 1460 __invalidate_reclaim_iterators(root_mem_cgroup, 1461 dead_memcg); 1462 } 1463 1464 /** 1465 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1466 * @memcg: hierarchy root 1467 * @fn: function to call for each task 1468 * @arg: argument passed to @fn 1469 * 1470 * This function iterates over tasks attached to @memcg or to any of its 1471 * descendants and calls @fn for each task. If @fn returns a non-zero 1472 * value, the function breaks the iteration loop. Otherwise, it will iterate 1473 * over all tasks and return 0. 1474 * 1475 * This function must not be called for the root memory cgroup. 1476 */ 1477 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1478 int (*fn)(struct task_struct *, void *), void *arg) 1479 { 1480 struct mem_cgroup *iter; 1481 int ret = 0; 1482 1483 BUG_ON(mem_cgroup_is_root(memcg)); 1484 1485 for_each_mem_cgroup_tree(iter, memcg) { 1486 struct css_task_iter it; 1487 struct task_struct *task; 1488 1489 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1490 while (!ret && (task = css_task_iter_next(&it))) 1491 ret = fn(task, arg); 1492 css_task_iter_end(&it); 1493 if (ret) { 1494 mem_cgroup_iter_break(memcg, iter); 1495 break; 1496 } 1497 } 1498 } 1499 1500 #ifdef CONFIG_DEBUG_VM 1501 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1502 { 1503 struct mem_cgroup *memcg; 1504 1505 if (mem_cgroup_disabled()) 1506 return; 1507 1508 memcg = folio_memcg(folio); 1509 1510 if (!memcg) 1511 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1512 else 1513 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1514 } 1515 #endif 1516 1517 /** 1518 * folio_lruvec_lock - Lock the lruvec for a folio. 1519 * @folio: Pointer to the folio. 1520 * 1521 * These functions are safe to use under any of the following conditions: 1522 * - folio locked 1523 * - folio_test_lru false 1524 * - folio_memcg_lock() 1525 * - folio frozen (refcount of 0) 1526 * 1527 * Return: The lruvec this folio is on with its lock held. 1528 */ 1529 struct lruvec *folio_lruvec_lock(struct folio *folio) 1530 { 1531 struct lruvec *lruvec = folio_lruvec(folio); 1532 1533 spin_lock(&lruvec->lru_lock); 1534 lruvec_memcg_debug(lruvec, folio); 1535 1536 return lruvec; 1537 } 1538 1539 /** 1540 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1541 * @folio: Pointer to the folio. 1542 * 1543 * These functions are safe to use under any of the following conditions: 1544 * - folio locked 1545 * - folio_test_lru false 1546 * - folio_memcg_lock() 1547 * - folio frozen (refcount of 0) 1548 * 1549 * Return: The lruvec this folio is on with its lock held and interrupts 1550 * disabled. 1551 */ 1552 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1553 { 1554 struct lruvec *lruvec = folio_lruvec(folio); 1555 1556 spin_lock_irq(&lruvec->lru_lock); 1557 lruvec_memcg_debug(lruvec, folio); 1558 1559 return lruvec; 1560 } 1561 1562 /** 1563 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1564 * @folio: Pointer to the folio. 1565 * @flags: Pointer to irqsave flags. 1566 * 1567 * These functions are safe to use under any of the following conditions: 1568 * - folio locked 1569 * - folio_test_lru false 1570 * - folio_memcg_lock() 1571 * - folio frozen (refcount of 0) 1572 * 1573 * Return: The lruvec this folio is on with its lock held and interrupts 1574 * disabled. 1575 */ 1576 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1577 unsigned long *flags) 1578 { 1579 struct lruvec *lruvec = folio_lruvec(folio); 1580 1581 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1582 lruvec_memcg_debug(lruvec, folio); 1583 1584 return lruvec; 1585 } 1586 1587 /** 1588 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1589 * @lruvec: mem_cgroup per zone lru vector 1590 * @lru: index of lru list the page is sitting on 1591 * @zid: zone id of the accounted pages 1592 * @nr_pages: positive when adding or negative when removing 1593 * 1594 * This function must be called under lru_lock, just before a page is added 1595 * to or just after a page is removed from an lru list. 1596 */ 1597 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1598 int zid, int nr_pages) 1599 { 1600 struct mem_cgroup_per_node *mz; 1601 unsigned long *lru_size; 1602 long size; 1603 1604 if (mem_cgroup_disabled()) 1605 return; 1606 1607 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1608 lru_size = &mz->lru_zone_size[zid][lru]; 1609 1610 if (nr_pages < 0) 1611 *lru_size += nr_pages; 1612 1613 size = *lru_size; 1614 if (WARN_ONCE(size < 0, 1615 "%s(%p, %d, %d): lru_size %ld\n", 1616 __func__, lruvec, lru, nr_pages, size)) { 1617 VM_BUG_ON(1); 1618 *lru_size = 0; 1619 } 1620 1621 if (nr_pages > 0) 1622 *lru_size += nr_pages; 1623 } 1624 1625 /** 1626 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1627 * @memcg: the memory cgroup 1628 * 1629 * Returns the maximum amount of memory @mem can be charged with, in 1630 * pages. 1631 */ 1632 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1633 { 1634 unsigned long margin = 0; 1635 unsigned long count; 1636 unsigned long limit; 1637 1638 count = page_counter_read(&memcg->memory); 1639 limit = READ_ONCE(memcg->memory.max); 1640 if (count < limit) 1641 margin = limit - count; 1642 1643 if (do_memsw_account()) { 1644 count = page_counter_read(&memcg->memsw); 1645 limit = READ_ONCE(memcg->memsw.max); 1646 if (count < limit) 1647 margin = min(margin, limit - count); 1648 else 1649 margin = 0; 1650 } 1651 1652 return margin; 1653 } 1654 1655 /* 1656 * A routine for checking "mem" is under move_account() or not. 1657 * 1658 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1659 * moving cgroups. This is for waiting at high-memory pressure 1660 * caused by "move". 1661 */ 1662 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1663 { 1664 struct mem_cgroup *from; 1665 struct mem_cgroup *to; 1666 bool ret = false; 1667 /* 1668 * Unlike task_move routines, we access mc.to, mc.from not under 1669 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1670 */ 1671 spin_lock(&mc.lock); 1672 from = mc.from; 1673 to = mc.to; 1674 if (!from) 1675 goto unlock; 1676 1677 ret = mem_cgroup_is_descendant(from, memcg) || 1678 mem_cgroup_is_descendant(to, memcg); 1679 unlock: 1680 spin_unlock(&mc.lock); 1681 return ret; 1682 } 1683 1684 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1685 { 1686 if (mc.moving_task && current != mc.moving_task) { 1687 if (mem_cgroup_under_move(memcg)) { 1688 DEFINE_WAIT(wait); 1689 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1690 /* moving charge context might have finished. */ 1691 if (mc.moving_task) 1692 schedule(); 1693 finish_wait(&mc.waitq, &wait); 1694 return true; 1695 } 1696 } 1697 return false; 1698 } 1699 1700 struct memory_stat { 1701 const char *name; 1702 unsigned int idx; 1703 }; 1704 1705 static const struct memory_stat memory_stats[] = { 1706 { "anon", NR_ANON_MAPPED }, 1707 { "file", NR_FILE_PAGES }, 1708 { "kernel", MEMCG_KMEM }, 1709 { "kernel_stack", NR_KERNEL_STACK_KB }, 1710 { "pagetables", NR_PAGETABLE }, 1711 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1712 { "percpu", MEMCG_PERCPU_B }, 1713 { "sock", MEMCG_SOCK }, 1714 { "vmalloc", MEMCG_VMALLOC }, 1715 { "shmem", NR_SHMEM }, 1716 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1717 { "zswap", MEMCG_ZSWAP_B }, 1718 { "zswapped", MEMCG_ZSWAPPED }, 1719 #endif 1720 { "file_mapped", NR_FILE_MAPPED }, 1721 { "file_dirty", NR_FILE_DIRTY }, 1722 { "file_writeback", NR_WRITEBACK }, 1723 #ifdef CONFIG_SWAP 1724 { "swapcached", NR_SWAPCACHE }, 1725 #endif 1726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1727 { "anon_thp", NR_ANON_THPS }, 1728 { "file_thp", NR_FILE_THPS }, 1729 { "shmem_thp", NR_SHMEM_THPS }, 1730 #endif 1731 { "inactive_anon", NR_INACTIVE_ANON }, 1732 { "active_anon", NR_ACTIVE_ANON }, 1733 { "inactive_file", NR_INACTIVE_FILE }, 1734 { "active_file", NR_ACTIVE_FILE }, 1735 { "unevictable", NR_UNEVICTABLE }, 1736 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1737 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1738 1739 /* The memory events */ 1740 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1741 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1742 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1743 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1744 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1745 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1746 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1747 }; 1748 1749 /* The actual unit of the state item, not the same as the output unit */ 1750 static int memcg_page_state_unit(int item) 1751 { 1752 switch (item) { 1753 case MEMCG_PERCPU_B: 1754 case MEMCG_ZSWAP_B: 1755 case NR_SLAB_RECLAIMABLE_B: 1756 case NR_SLAB_UNRECLAIMABLE_B: 1757 return 1; 1758 case NR_KERNEL_STACK_KB: 1759 return SZ_1K; 1760 default: 1761 return PAGE_SIZE; 1762 } 1763 } 1764 1765 /* Translate stat items to the correct unit for memory.stat output */ 1766 static int memcg_page_state_output_unit(int item) 1767 { 1768 /* 1769 * Workingset state is actually in pages, but we export it to userspace 1770 * as a scalar count of events, so special case it here. 1771 */ 1772 switch (item) { 1773 case WORKINGSET_REFAULT_ANON: 1774 case WORKINGSET_REFAULT_FILE: 1775 case WORKINGSET_ACTIVATE_ANON: 1776 case WORKINGSET_ACTIVATE_FILE: 1777 case WORKINGSET_RESTORE_ANON: 1778 case WORKINGSET_RESTORE_FILE: 1779 case WORKINGSET_NODERECLAIM: 1780 return 1; 1781 default: 1782 return memcg_page_state_unit(item); 1783 } 1784 } 1785 1786 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1787 int item) 1788 { 1789 return memcg_page_state(memcg, item) * 1790 memcg_page_state_output_unit(item); 1791 } 1792 1793 static inline unsigned long memcg_page_state_local_output( 1794 struct mem_cgroup *memcg, int item) 1795 { 1796 return memcg_page_state_local(memcg, item) * 1797 memcg_page_state_output_unit(item); 1798 } 1799 1800 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1801 { 1802 int i; 1803 1804 /* 1805 * Provide statistics on the state of the memory subsystem as 1806 * well as cumulative event counters that show past behavior. 1807 * 1808 * This list is ordered following a combination of these gradients: 1809 * 1) generic big picture -> specifics and details 1810 * 2) reflecting userspace activity -> reflecting kernel heuristics 1811 * 1812 * Current memory state: 1813 */ 1814 mem_cgroup_flush_stats(memcg); 1815 1816 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1817 u64 size; 1818 1819 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1820 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1821 1822 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1823 size += memcg_page_state_output(memcg, 1824 NR_SLAB_RECLAIMABLE_B); 1825 seq_buf_printf(s, "slab %llu\n", size); 1826 } 1827 } 1828 1829 /* Accumulated memory events */ 1830 seq_buf_printf(s, "pgscan %lu\n", 1831 memcg_events(memcg, PGSCAN_KSWAPD) + 1832 memcg_events(memcg, PGSCAN_DIRECT) + 1833 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1834 seq_buf_printf(s, "pgsteal %lu\n", 1835 memcg_events(memcg, PGSTEAL_KSWAPD) + 1836 memcg_events(memcg, PGSTEAL_DIRECT) + 1837 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1838 1839 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1840 if (memcg_vm_event_stat[i] == PGPGIN || 1841 memcg_vm_event_stat[i] == PGPGOUT) 1842 continue; 1843 1844 seq_buf_printf(s, "%s %lu\n", 1845 vm_event_name(memcg_vm_event_stat[i]), 1846 memcg_events(memcg, memcg_vm_event_stat[i])); 1847 } 1848 1849 /* The above should easily fit into one page */ 1850 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1851 } 1852 1853 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s); 1854 1855 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1856 { 1857 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1858 memcg_stat_format(memcg, s); 1859 else 1860 memcg1_stat_format(memcg, s); 1861 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1862 } 1863 1864 /** 1865 * mem_cgroup_print_oom_context: Print OOM information relevant to 1866 * memory controller. 1867 * @memcg: The memory cgroup that went over limit 1868 * @p: Task that is going to be killed 1869 * 1870 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1871 * enabled 1872 */ 1873 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1874 { 1875 rcu_read_lock(); 1876 1877 if (memcg) { 1878 pr_cont(",oom_memcg="); 1879 pr_cont_cgroup_path(memcg->css.cgroup); 1880 } else 1881 pr_cont(",global_oom"); 1882 if (p) { 1883 pr_cont(",task_memcg="); 1884 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1885 } 1886 rcu_read_unlock(); 1887 } 1888 1889 /** 1890 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1891 * memory controller. 1892 * @memcg: The memory cgroup that went over limit 1893 */ 1894 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1895 { 1896 /* Use static buffer, for the caller is holding oom_lock. */ 1897 static char buf[PAGE_SIZE]; 1898 struct seq_buf s; 1899 1900 lockdep_assert_held(&oom_lock); 1901 1902 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1903 K((u64)page_counter_read(&memcg->memory)), 1904 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1905 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1906 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1907 K((u64)page_counter_read(&memcg->swap)), 1908 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1909 else { 1910 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1911 K((u64)page_counter_read(&memcg->memsw)), 1912 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1913 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1914 K((u64)page_counter_read(&memcg->kmem)), 1915 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1916 } 1917 1918 pr_info("Memory cgroup stats for "); 1919 pr_cont_cgroup_path(memcg->css.cgroup); 1920 pr_cont(":"); 1921 seq_buf_init(&s, buf, sizeof(buf)); 1922 memory_stat_format(memcg, &s); 1923 seq_buf_do_printk(&s, KERN_INFO); 1924 } 1925 1926 /* 1927 * Return the memory (and swap, if configured) limit for a memcg. 1928 */ 1929 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1930 { 1931 unsigned long max = READ_ONCE(memcg->memory.max); 1932 1933 if (do_memsw_account()) { 1934 if (mem_cgroup_swappiness(memcg)) { 1935 /* Calculate swap excess capacity from memsw limit */ 1936 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1937 1938 max += min(swap, (unsigned long)total_swap_pages); 1939 } 1940 } else { 1941 if (mem_cgroup_swappiness(memcg)) 1942 max += min(READ_ONCE(memcg->swap.max), 1943 (unsigned long)total_swap_pages); 1944 } 1945 return max; 1946 } 1947 1948 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1949 { 1950 return page_counter_read(&memcg->memory); 1951 } 1952 1953 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1954 int order) 1955 { 1956 struct oom_control oc = { 1957 .zonelist = NULL, 1958 .nodemask = NULL, 1959 .memcg = memcg, 1960 .gfp_mask = gfp_mask, 1961 .order = order, 1962 }; 1963 bool ret = true; 1964 1965 if (mutex_lock_killable(&oom_lock)) 1966 return true; 1967 1968 if (mem_cgroup_margin(memcg) >= (1 << order)) 1969 goto unlock; 1970 1971 /* 1972 * A few threads which were not waiting at mutex_lock_killable() can 1973 * fail to bail out. Therefore, check again after holding oom_lock. 1974 */ 1975 ret = task_is_dying() || out_of_memory(&oc); 1976 1977 unlock: 1978 mutex_unlock(&oom_lock); 1979 return ret; 1980 } 1981 1982 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1983 pg_data_t *pgdat, 1984 gfp_t gfp_mask, 1985 unsigned long *total_scanned) 1986 { 1987 struct mem_cgroup *victim = NULL; 1988 int total = 0; 1989 int loop = 0; 1990 unsigned long excess; 1991 unsigned long nr_scanned; 1992 struct mem_cgroup_reclaim_cookie reclaim = { 1993 .pgdat = pgdat, 1994 }; 1995 1996 excess = soft_limit_excess(root_memcg); 1997 1998 while (1) { 1999 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 2000 if (!victim) { 2001 loop++; 2002 if (loop >= 2) { 2003 /* 2004 * If we have not been able to reclaim 2005 * anything, it might because there are 2006 * no reclaimable pages under this hierarchy 2007 */ 2008 if (!total) 2009 break; 2010 /* 2011 * We want to do more targeted reclaim. 2012 * excess >> 2 is not to excessive so as to 2013 * reclaim too much, nor too less that we keep 2014 * coming back to reclaim from this cgroup 2015 */ 2016 if (total >= (excess >> 2) || 2017 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 2018 break; 2019 } 2020 continue; 2021 } 2022 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 2023 pgdat, &nr_scanned); 2024 *total_scanned += nr_scanned; 2025 if (!soft_limit_excess(root_memcg)) 2026 break; 2027 } 2028 mem_cgroup_iter_break(root_memcg, victim); 2029 return total; 2030 } 2031 2032 #ifdef CONFIG_LOCKDEP 2033 static struct lockdep_map memcg_oom_lock_dep_map = { 2034 .name = "memcg_oom_lock", 2035 }; 2036 #endif 2037 2038 static DEFINE_SPINLOCK(memcg_oom_lock); 2039 2040 /* 2041 * Check OOM-Killer is already running under our hierarchy. 2042 * If someone is running, return false. 2043 */ 2044 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 2045 { 2046 struct mem_cgroup *iter, *failed = NULL; 2047 2048 spin_lock(&memcg_oom_lock); 2049 2050 for_each_mem_cgroup_tree(iter, memcg) { 2051 if (iter->oom_lock) { 2052 /* 2053 * this subtree of our hierarchy is already locked 2054 * so we cannot give a lock. 2055 */ 2056 failed = iter; 2057 mem_cgroup_iter_break(memcg, iter); 2058 break; 2059 } else 2060 iter->oom_lock = true; 2061 } 2062 2063 if (failed) { 2064 /* 2065 * OK, we failed to lock the whole subtree so we have 2066 * to clean up what we set up to the failing subtree 2067 */ 2068 for_each_mem_cgroup_tree(iter, memcg) { 2069 if (iter == failed) { 2070 mem_cgroup_iter_break(memcg, iter); 2071 break; 2072 } 2073 iter->oom_lock = false; 2074 } 2075 } else 2076 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 2077 2078 spin_unlock(&memcg_oom_lock); 2079 2080 return !failed; 2081 } 2082 2083 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2084 { 2085 struct mem_cgroup *iter; 2086 2087 spin_lock(&memcg_oom_lock); 2088 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 2089 for_each_mem_cgroup_tree(iter, memcg) 2090 iter->oom_lock = false; 2091 spin_unlock(&memcg_oom_lock); 2092 } 2093 2094 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2095 { 2096 struct mem_cgroup *iter; 2097 2098 spin_lock(&memcg_oom_lock); 2099 for_each_mem_cgroup_tree(iter, memcg) 2100 iter->under_oom++; 2101 spin_unlock(&memcg_oom_lock); 2102 } 2103 2104 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2105 { 2106 struct mem_cgroup *iter; 2107 2108 /* 2109 * Be careful about under_oom underflows because a child memcg 2110 * could have been added after mem_cgroup_mark_under_oom. 2111 */ 2112 spin_lock(&memcg_oom_lock); 2113 for_each_mem_cgroup_tree(iter, memcg) 2114 if (iter->under_oom > 0) 2115 iter->under_oom--; 2116 spin_unlock(&memcg_oom_lock); 2117 } 2118 2119 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2120 2121 struct oom_wait_info { 2122 struct mem_cgroup *memcg; 2123 wait_queue_entry_t wait; 2124 }; 2125 2126 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 2127 unsigned mode, int sync, void *arg) 2128 { 2129 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2130 struct mem_cgroup *oom_wait_memcg; 2131 struct oom_wait_info *oom_wait_info; 2132 2133 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2134 oom_wait_memcg = oom_wait_info->memcg; 2135 2136 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 2137 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 2138 return 0; 2139 return autoremove_wake_function(wait, mode, sync, arg); 2140 } 2141 2142 static void memcg_oom_recover(struct mem_cgroup *memcg) 2143 { 2144 /* 2145 * For the following lockless ->under_oom test, the only required 2146 * guarantee is that it must see the state asserted by an OOM when 2147 * this function is called as a result of userland actions 2148 * triggered by the notification of the OOM. This is trivially 2149 * achieved by invoking mem_cgroup_mark_under_oom() before 2150 * triggering notification. 2151 */ 2152 if (memcg && memcg->under_oom) 2153 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2154 } 2155 2156 /* 2157 * Returns true if successfully killed one or more processes. Though in some 2158 * corner cases it can return true even without killing any process. 2159 */ 2160 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 2161 { 2162 bool locked, ret; 2163 2164 if (order > PAGE_ALLOC_COSTLY_ORDER) 2165 return false; 2166 2167 memcg_memory_event(memcg, MEMCG_OOM); 2168 2169 /* 2170 * We are in the middle of the charge context here, so we 2171 * don't want to block when potentially sitting on a callstack 2172 * that holds all kinds of filesystem and mm locks. 2173 * 2174 * cgroup1 allows disabling the OOM killer and waiting for outside 2175 * handling until the charge can succeed; remember the context and put 2176 * the task to sleep at the end of the page fault when all locks are 2177 * released. 2178 * 2179 * On the other hand, in-kernel OOM killer allows for an async victim 2180 * memory reclaim (oom_reaper) and that means that we are not solely 2181 * relying on the oom victim to make a forward progress and we can 2182 * invoke the oom killer here. 2183 * 2184 * Please note that mem_cgroup_out_of_memory might fail to find a 2185 * victim and then we have to bail out from the charge path. 2186 */ 2187 if (READ_ONCE(memcg->oom_kill_disable)) { 2188 if (current->in_user_fault) { 2189 css_get(&memcg->css); 2190 current->memcg_in_oom = memcg; 2191 } 2192 return false; 2193 } 2194 2195 mem_cgroup_mark_under_oom(memcg); 2196 2197 locked = mem_cgroup_oom_trylock(memcg); 2198 2199 if (locked) 2200 mem_cgroup_oom_notify(memcg); 2201 2202 mem_cgroup_unmark_under_oom(memcg); 2203 ret = mem_cgroup_out_of_memory(memcg, mask, order); 2204 2205 if (locked) 2206 mem_cgroup_oom_unlock(memcg); 2207 2208 return ret; 2209 } 2210 2211 /** 2212 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2213 * @handle: actually kill/wait or just clean up the OOM state 2214 * 2215 * This has to be called at the end of a page fault if the memcg OOM 2216 * handler was enabled. 2217 * 2218 * Memcg supports userspace OOM handling where failed allocations must 2219 * sleep on a waitqueue until the userspace task resolves the 2220 * situation. Sleeping directly in the charge context with all kinds 2221 * of locks held is not a good idea, instead we remember an OOM state 2222 * in the task and mem_cgroup_oom_synchronize() has to be called at 2223 * the end of the page fault to complete the OOM handling. 2224 * 2225 * Returns %true if an ongoing memcg OOM situation was detected and 2226 * completed, %false otherwise. 2227 */ 2228 bool mem_cgroup_oom_synchronize(bool handle) 2229 { 2230 struct mem_cgroup *memcg = current->memcg_in_oom; 2231 struct oom_wait_info owait; 2232 bool locked; 2233 2234 /* OOM is global, do not handle */ 2235 if (!memcg) 2236 return false; 2237 2238 if (!handle) 2239 goto cleanup; 2240 2241 owait.memcg = memcg; 2242 owait.wait.flags = 0; 2243 owait.wait.func = memcg_oom_wake_function; 2244 owait.wait.private = current; 2245 INIT_LIST_HEAD(&owait.wait.entry); 2246 2247 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2248 mem_cgroup_mark_under_oom(memcg); 2249 2250 locked = mem_cgroup_oom_trylock(memcg); 2251 2252 if (locked) 2253 mem_cgroup_oom_notify(memcg); 2254 2255 schedule(); 2256 mem_cgroup_unmark_under_oom(memcg); 2257 finish_wait(&memcg_oom_waitq, &owait.wait); 2258 2259 if (locked) 2260 mem_cgroup_oom_unlock(memcg); 2261 cleanup: 2262 current->memcg_in_oom = NULL; 2263 css_put(&memcg->css); 2264 return true; 2265 } 2266 2267 /** 2268 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2269 * @victim: task to be killed by the OOM killer 2270 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2271 * 2272 * Returns a pointer to a memory cgroup, which has to be cleaned up 2273 * by killing all belonging OOM-killable tasks. 2274 * 2275 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2276 */ 2277 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2278 struct mem_cgroup *oom_domain) 2279 { 2280 struct mem_cgroup *oom_group = NULL; 2281 struct mem_cgroup *memcg; 2282 2283 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2284 return NULL; 2285 2286 if (!oom_domain) 2287 oom_domain = root_mem_cgroup; 2288 2289 rcu_read_lock(); 2290 2291 memcg = mem_cgroup_from_task(victim); 2292 if (mem_cgroup_is_root(memcg)) 2293 goto out; 2294 2295 /* 2296 * If the victim task has been asynchronously moved to a different 2297 * memory cgroup, we might end up killing tasks outside oom_domain. 2298 * In this case it's better to ignore memory.group.oom. 2299 */ 2300 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2301 goto out; 2302 2303 /* 2304 * Traverse the memory cgroup hierarchy from the victim task's 2305 * cgroup up to the OOMing cgroup (or root) to find the 2306 * highest-level memory cgroup with oom.group set. 2307 */ 2308 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2309 if (READ_ONCE(memcg->oom_group)) 2310 oom_group = memcg; 2311 2312 if (memcg == oom_domain) 2313 break; 2314 } 2315 2316 if (oom_group) 2317 css_get(&oom_group->css); 2318 out: 2319 rcu_read_unlock(); 2320 2321 return oom_group; 2322 } 2323 2324 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2325 { 2326 pr_info("Tasks in "); 2327 pr_cont_cgroup_path(memcg->css.cgroup); 2328 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2329 } 2330 2331 /** 2332 * folio_memcg_lock - Bind a folio to its memcg. 2333 * @folio: The folio. 2334 * 2335 * This function prevents unlocked LRU folios from being moved to 2336 * another cgroup. 2337 * 2338 * It ensures lifetime of the bound memcg. The caller is responsible 2339 * for the lifetime of the folio. 2340 */ 2341 void folio_memcg_lock(struct folio *folio) 2342 { 2343 struct mem_cgroup *memcg; 2344 unsigned long flags; 2345 2346 /* 2347 * The RCU lock is held throughout the transaction. The fast 2348 * path can get away without acquiring the memcg->move_lock 2349 * because page moving starts with an RCU grace period. 2350 */ 2351 rcu_read_lock(); 2352 2353 if (mem_cgroup_disabled()) 2354 return; 2355 again: 2356 memcg = folio_memcg(folio); 2357 if (unlikely(!memcg)) 2358 return; 2359 2360 #ifdef CONFIG_PROVE_LOCKING 2361 local_irq_save(flags); 2362 might_lock(&memcg->move_lock); 2363 local_irq_restore(flags); 2364 #endif 2365 2366 if (atomic_read(&memcg->moving_account) <= 0) 2367 return; 2368 2369 spin_lock_irqsave(&memcg->move_lock, flags); 2370 if (memcg != folio_memcg(folio)) { 2371 spin_unlock_irqrestore(&memcg->move_lock, flags); 2372 goto again; 2373 } 2374 2375 /* 2376 * When charge migration first begins, we can have multiple 2377 * critical sections holding the fast-path RCU lock and one 2378 * holding the slowpath move_lock. Track the task who has the 2379 * move_lock for folio_memcg_unlock(). 2380 */ 2381 memcg->move_lock_task = current; 2382 memcg->move_lock_flags = flags; 2383 } 2384 2385 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2386 { 2387 if (memcg && memcg->move_lock_task == current) { 2388 unsigned long flags = memcg->move_lock_flags; 2389 2390 memcg->move_lock_task = NULL; 2391 memcg->move_lock_flags = 0; 2392 2393 spin_unlock_irqrestore(&memcg->move_lock, flags); 2394 } 2395 2396 rcu_read_unlock(); 2397 } 2398 2399 /** 2400 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2401 * @folio: The folio. 2402 * 2403 * This releases the binding created by folio_memcg_lock(). This does 2404 * not change the accounting of this folio to its memcg, but it does 2405 * permit others to change it. 2406 */ 2407 void folio_memcg_unlock(struct folio *folio) 2408 { 2409 __folio_memcg_unlock(folio_memcg(folio)); 2410 } 2411 2412 struct memcg_stock_pcp { 2413 local_lock_t stock_lock; 2414 struct mem_cgroup *cached; /* this never be root cgroup */ 2415 unsigned int nr_pages; 2416 2417 #ifdef CONFIG_MEMCG_KMEM 2418 struct obj_cgroup *cached_objcg; 2419 struct pglist_data *cached_pgdat; 2420 unsigned int nr_bytes; 2421 int nr_slab_reclaimable_b; 2422 int nr_slab_unreclaimable_b; 2423 #endif 2424 2425 struct work_struct work; 2426 unsigned long flags; 2427 #define FLUSHING_CACHED_CHARGE 0 2428 }; 2429 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2430 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2431 }; 2432 static DEFINE_MUTEX(percpu_charge_mutex); 2433 2434 #ifdef CONFIG_MEMCG_KMEM 2435 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2436 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2437 struct mem_cgroup *root_memcg); 2438 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2439 2440 #else 2441 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2442 { 2443 return NULL; 2444 } 2445 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2446 struct mem_cgroup *root_memcg) 2447 { 2448 return false; 2449 } 2450 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2451 { 2452 } 2453 #endif 2454 2455 /** 2456 * consume_stock: Try to consume stocked charge on this cpu. 2457 * @memcg: memcg to consume from. 2458 * @nr_pages: how many pages to charge. 2459 * 2460 * The charges will only happen if @memcg matches the current cpu's memcg 2461 * stock, and at least @nr_pages are available in that stock. Failure to 2462 * service an allocation will refill the stock. 2463 * 2464 * returns true if successful, false otherwise. 2465 */ 2466 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2467 { 2468 struct memcg_stock_pcp *stock; 2469 unsigned int stock_pages; 2470 unsigned long flags; 2471 bool ret = false; 2472 2473 if (nr_pages > MEMCG_CHARGE_BATCH) 2474 return ret; 2475 2476 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2477 2478 stock = this_cpu_ptr(&memcg_stock); 2479 stock_pages = READ_ONCE(stock->nr_pages); 2480 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 2481 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 2482 ret = true; 2483 } 2484 2485 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2486 2487 return ret; 2488 } 2489 2490 /* 2491 * Returns stocks cached in percpu and reset cached information. 2492 */ 2493 static void drain_stock(struct memcg_stock_pcp *stock) 2494 { 2495 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 2496 struct mem_cgroup *old = READ_ONCE(stock->cached); 2497 2498 if (!old) 2499 return; 2500 2501 if (stock_pages) { 2502 page_counter_uncharge(&old->memory, stock_pages); 2503 if (do_memsw_account()) 2504 page_counter_uncharge(&old->memsw, stock_pages); 2505 2506 WRITE_ONCE(stock->nr_pages, 0); 2507 } 2508 2509 css_put(&old->css); 2510 WRITE_ONCE(stock->cached, NULL); 2511 } 2512 2513 static void drain_local_stock(struct work_struct *dummy) 2514 { 2515 struct memcg_stock_pcp *stock; 2516 struct obj_cgroup *old = NULL; 2517 unsigned long flags; 2518 2519 /* 2520 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2521 * drain_stock races is that we always operate on local CPU stock 2522 * here with IRQ disabled 2523 */ 2524 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2525 2526 stock = this_cpu_ptr(&memcg_stock); 2527 old = drain_obj_stock(stock); 2528 drain_stock(stock); 2529 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2530 2531 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2532 obj_cgroup_put(old); 2533 } 2534 2535 /* 2536 * Cache charges(val) to local per_cpu area. 2537 * This will be consumed by consume_stock() function, later. 2538 */ 2539 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2540 { 2541 struct memcg_stock_pcp *stock; 2542 unsigned int stock_pages; 2543 2544 stock = this_cpu_ptr(&memcg_stock); 2545 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 2546 drain_stock(stock); 2547 css_get(&memcg->css); 2548 WRITE_ONCE(stock->cached, memcg); 2549 } 2550 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 2551 WRITE_ONCE(stock->nr_pages, stock_pages); 2552 2553 if (stock_pages > MEMCG_CHARGE_BATCH) 2554 drain_stock(stock); 2555 } 2556 2557 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2558 { 2559 unsigned long flags; 2560 2561 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2562 __refill_stock(memcg, nr_pages); 2563 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2564 } 2565 2566 /* 2567 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2568 * of the hierarchy under it. 2569 */ 2570 static void drain_all_stock(struct mem_cgroup *root_memcg) 2571 { 2572 int cpu, curcpu; 2573 2574 /* If someone's already draining, avoid adding running more workers. */ 2575 if (!mutex_trylock(&percpu_charge_mutex)) 2576 return; 2577 /* 2578 * Notify other cpus that system-wide "drain" is running 2579 * We do not care about races with the cpu hotplug because cpu down 2580 * as well as workers from this path always operate on the local 2581 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2582 */ 2583 migrate_disable(); 2584 curcpu = smp_processor_id(); 2585 for_each_online_cpu(cpu) { 2586 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2587 struct mem_cgroup *memcg; 2588 bool flush = false; 2589 2590 rcu_read_lock(); 2591 memcg = READ_ONCE(stock->cached); 2592 if (memcg && READ_ONCE(stock->nr_pages) && 2593 mem_cgroup_is_descendant(memcg, root_memcg)) 2594 flush = true; 2595 else if (obj_stock_flush_required(stock, root_memcg)) 2596 flush = true; 2597 rcu_read_unlock(); 2598 2599 if (flush && 2600 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2601 if (cpu == curcpu) 2602 drain_local_stock(&stock->work); 2603 else if (!cpu_is_isolated(cpu)) 2604 schedule_work_on(cpu, &stock->work); 2605 } 2606 } 2607 migrate_enable(); 2608 mutex_unlock(&percpu_charge_mutex); 2609 } 2610 2611 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2612 { 2613 struct memcg_stock_pcp *stock; 2614 2615 stock = &per_cpu(memcg_stock, cpu); 2616 drain_stock(stock); 2617 2618 return 0; 2619 } 2620 2621 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2622 unsigned int nr_pages, 2623 gfp_t gfp_mask) 2624 { 2625 unsigned long nr_reclaimed = 0; 2626 2627 do { 2628 unsigned long pflags; 2629 2630 if (page_counter_read(&memcg->memory) <= 2631 READ_ONCE(memcg->memory.high)) 2632 continue; 2633 2634 memcg_memory_event(memcg, MEMCG_HIGH); 2635 2636 psi_memstall_enter(&pflags); 2637 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2638 gfp_mask, 2639 MEMCG_RECLAIM_MAY_SWAP); 2640 psi_memstall_leave(&pflags); 2641 } while ((memcg = parent_mem_cgroup(memcg)) && 2642 !mem_cgroup_is_root(memcg)); 2643 2644 return nr_reclaimed; 2645 } 2646 2647 static void high_work_func(struct work_struct *work) 2648 { 2649 struct mem_cgroup *memcg; 2650 2651 memcg = container_of(work, struct mem_cgroup, high_work); 2652 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2653 } 2654 2655 /* 2656 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2657 * enough to still cause a significant slowdown in most cases, while still 2658 * allowing diagnostics and tracing to proceed without becoming stuck. 2659 */ 2660 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2661 2662 /* 2663 * When calculating the delay, we use these either side of the exponentiation to 2664 * maintain precision and scale to a reasonable number of jiffies (see the table 2665 * below. 2666 * 2667 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2668 * overage ratio to a delay. 2669 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2670 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2671 * to produce a reasonable delay curve. 2672 * 2673 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2674 * reasonable delay curve compared to precision-adjusted overage, not 2675 * penalising heavily at first, but still making sure that growth beyond the 2676 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2677 * example, with a high of 100 megabytes: 2678 * 2679 * +-------+------------------------+ 2680 * | usage | time to allocate in ms | 2681 * +-------+------------------------+ 2682 * | 100M | 0 | 2683 * | 101M | 6 | 2684 * | 102M | 25 | 2685 * | 103M | 57 | 2686 * | 104M | 102 | 2687 * | 105M | 159 | 2688 * | 106M | 230 | 2689 * | 107M | 313 | 2690 * | 108M | 409 | 2691 * | 109M | 518 | 2692 * | 110M | 639 | 2693 * | 111M | 774 | 2694 * | 112M | 921 | 2695 * | 113M | 1081 | 2696 * | 114M | 1254 | 2697 * | 115M | 1439 | 2698 * | 116M | 1638 | 2699 * | 117M | 1849 | 2700 * | 118M | 2000 | 2701 * | 119M | 2000 | 2702 * | 120M | 2000 | 2703 * +-------+------------------------+ 2704 */ 2705 #define MEMCG_DELAY_PRECISION_SHIFT 20 2706 #define MEMCG_DELAY_SCALING_SHIFT 14 2707 2708 static u64 calculate_overage(unsigned long usage, unsigned long high) 2709 { 2710 u64 overage; 2711 2712 if (usage <= high) 2713 return 0; 2714 2715 /* 2716 * Prevent division by 0 in overage calculation by acting as if 2717 * it was a threshold of 1 page 2718 */ 2719 high = max(high, 1UL); 2720 2721 overage = usage - high; 2722 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2723 return div64_u64(overage, high); 2724 } 2725 2726 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2727 { 2728 u64 overage, max_overage = 0; 2729 2730 do { 2731 overage = calculate_overage(page_counter_read(&memcg->memory), 2732 READ_ONCE(memcg->memory.high)); 2733 max_overage = max(overage, max_overage); 2734 } while ((memcg = parent_mem_cgroup(memcg)) && 2735 !mem_cgroup_is_root(memcg)); 2736 2737 return max_overage; 2738 } 2739 2740 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2741 { 2742 u64 overage, max_overage = 0; 2743 2744 do { 2745 overage = calculate_overage(page_counter_read(&memcg->swap), 2746 READ_ONCE(memcg->swap.high)); 2747 if (overage) 2748 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2749 max_overage = max(overage, max_overage); 2750 } while ((memcg = parent_mem_cgroup(memcg)) && 2751 !mem_cgroup_is_root(memcg)); 2752 2753 return max_overage; 2754 } 2755 2756 /* 2757 * Get the number of jiffies that we should penalise a mischievous cgroup which 2758 * is exceeding its memory.high by checking both it and its ancestors. 2759 */ 2760 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2761 unsigned int nr_pages, 2762 u64 max_overage) 2763 { 2764 unsigned long penalty_jiffies; 2765 2766 if (!max_overage) 2767 return 0; 2768 2769 /* 2770 * We use overage compared to memory.high to calculate the number of 2771 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2772 * fairly lenient on small overages, and increasingly harsh when the 2773 * memcg in question makes it clear that it has no intention of stopping 2774 * its crazy behaviour, so we exponentially increase the delay based on 2775 * overage amount. 2776 */ 2777 penalty_jiffies = max_overage * max_overage * HZ; 2778 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2779 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2780 2781 /* 2782 * Factor in the task's own contribution to the overage, such that four 2783 * N-sized allocations are throttled approximately the same as one 2784 * 4N-sized allocation. 2785 * 2786 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2787 * larger the current charge patch is than that. 2788 */ 2789 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2790 } 2791 2792 /* 2793 * Reclaims memory over the high limit. Called directly from 2794 * try_charge() (context permitting), as well as from the userland 2795 * return path where reclaim is always able to block. 2796 */ 2797 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2798 { 2799 unsigned long penalty_jiffies; 2800 unsigned long pflags; 2801 unsigned long nr_reclaimed; 2802 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2803 int nr_retries = MAX_RECLAIM_RETRIES; 2804 struct mem_cgroup *memcg; 2805 bool in_retry = false; 2806 2807 if (likely(!nr_pages)) 2808 return; 2809 2810 memcg = get_mem_cgroup_from_mm(current->mm); 2811 current->memcg_nr_pages_over_high = 0; 2812 2813 retry_reclaim: 2814 /* 2815 * Bail if the task is already exiting. Unlike memory.max, 2816 * memory.high enforcement isn't as strict, and there is no 2817 * OOM killer involved, which means the excess could already 2818 * be much bigger (and still growing) than it could for 2819 * memory.max; the dying task could get stuck in fruitless 2820 * reclaim for a long time, which isn't desirable. 2821 */ 2822 if (task_is_dying()) 2823 goto out; 2824 2825 /* 2826 * The allocating task should reclaim at least the batch size, but for 2827 * subsequent retries we only want to do what's necessary to prevent oom 2828 * or breaching resource isolation. 2829 * 2830 * This is distinct from memory.max or page allocator behaviour because 2831 * memory.high is currently batched, whereas memory.max and the page 2832 * allocator run every time an allocation is made. 2833 */ 2834 nr_reclaimed = reclaim_high(memcg, 2835 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2836 gfp_mask); 2837 2838 /* 2839 * memory.high is breached and reclaim is unable to keep up. Throttle 2840 * allocators proactively to slow down excessive growth. 2841 */ 2842 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2843 mem_find_max_overage(memcg)); 2844 2845 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2846 swap_find_max_overage(memcg)); 2847 2848 /* 2849 * Clamp the max delay per usermode return so as to still keep the 2850 * application moving forwards and also permit diagnostics, albeit 2851 * extremely slowly. 2852 */ 2853 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2854 2855 /* 2856 * Don't sleep if the amount of jiffies this memcg owes us is so low 2857 * that it's not even worth doing, in an attempt to be nice to those who 2858 * go only a small amount over their memory.high value and maybe haven't 2859 * been aggressively reclaimed enough yet. 2860 */ 2861 if (penalty_jiffies <= HZ / 100) 2862 goto out; 2863 2864 /* 2865 * If reclaim is making forward progress but we're still over 2866 * memory.high, we want to encourage that rather than doing allocator 2867 * throttling. 2868 */ 2869 if (nr_reclaimed || nr_retries--) { 2870 in_retry = true; 2871 goto retry_reclaim; 2872 } 2873 2874 /* 2875 * Reclaim didn't manage to push usage below the limit, slow 2876 * this allocating task down. 2877 * 2878 * If we exit early, we're guaranteed to die (since 2879 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2880 * need to account for any ill-begotten jiffies to pay them off later. 2881 */ 2882 psi_memstall_enter(&pflags); 2883 schedule_timeout_killable(penalty_jiffies); 2884 psi_memstall_leave(&pflags); 2885 2886 out: 2887 css_put(&memcg->css); 2888 } 2889 2890 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2891 unsigned int nr_pages) 2892 { 2893 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2894 int nr_retries = MAX_RECLAIM_RETRIES; 2895 struct mem_cgroup *mem_over_limit; 2896 struct page_counter *counter; 2897 unsigned long nr_reclaimed; 2898 bool passed_oom = false; 2899 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2900 bool drained = false; 2901 bool raised_max_event = false; 2902 unsigned long pflags; 2903 2904 retry: 2905 if (consume_stock(memcg, nr_pages)) 2906 return 0; 2907 2908 if (!do_memsw_account() || 2909 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2910 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2911 goto done_restock; 2912 if (do_memsw_account()) 2913 page_counter_uncharge(&memcg->memsw, batch); 2914 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2915 } else { 2916 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2917 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2918 } 2919 2920 if (batch > nr_pages) { 2921 batch = nr_pages; 2922 goto retry; 2923 } 2924 2925 /* 2926 * Prevent unbounded recursion when reclaim operations need to 2927 * allocate memory. This might exceed the limits temporarily, 2928 * but we prefer facilitating memory reclaim and getting back 2929 * under the limit over triggering OOM kills in these cases. 2930 */ 2931 if (unlikely(current->flags & PF_MEMALLOC)) 2932 goto force; 2933 2934 if (unlikely(task_in_memcg_oom(current))) 2935 goto nomem; 2936 2937 if (!gfpflags_allow_blocking(gfp_mask)) 2938 goto nomem; 2939 2940 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2941 raised_max_event = true; 2942 2943 psi_memstall_enter(&pflags); 2944 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2945 gfp_mask, reclaim_options); 2946 psi_memstall_leave(&pflags); 2947 2948 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2949 goto retry; 2950 2951 if (!drained) { 2952 drain_all_stock(mem_over_limit); 2953 drained = true; 2954 goto retry; 2955 } 2956 2957 if (gfp_mask & __GFP_NORETRY) 2958 goto nomem; 2959 /* 2960 * Even though the limit is exceeded at this point, reclaim 2961 * may have been able to free some pages. Retry the charge 2962 * before killing the task. 2963 * 2964 * Only for regular pages, though: huge pages are rather 2965 * unlikely to succeed so close to the limit, and we fall back 2966 * to regular pages anyway in case of failure. 2967 */ 2968 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2969 goto retry; 2970 /* 2971 * At task move, charge accounts can be doubly counted. So, it's 2972 * better to wait until the end of task_move if something is going on. 2973 */ 2974 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2975 goto retry; 2976 2977 if (nr_retries--) 2978 goto retry; 2979 2980 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2981 goto nomem; 2982 2983 /* Avoid endless loop for tasks bypassed by the oom killer */ 2984 if (passed_oom && task_is_dying()) 2985 goto nomem; 2986 2987 /* 2988 * keep retrying as long as the memcg oom killer is able to make 2989 * a forward progress or bypass the charge if the oom killer 2990 * couldn't make any progress. 2991 */ 2992 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2993 get_order(nr_pages * PAGE_SIZE))) { 2994 passed_oom = true; 2995 nr_retries = MAX_RECLAIM_RETRIES; 2996 goto retry; 2997 } 2998 nomem: 2999 /* 3000 * Memcg doesn't have a dedicated reserve for atomic 3001 * allocations. But like the global atomic pool, we need to 3002 * put the burden of reclaim on regular allocation requests 3003 * and let these go through as privileged allocations. 3004 */ 3005 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 3006 return -ENOMEM; 3007 force: 3008 /* 3009 * If the allocation has to be enforced, don't forget to raise 3010 * a MEMCG_MAX event. 3011 */ 3012 if (!raised_max_event) 3013 memcg_memory_event(mem_over_limit, MEMCG_MAX); 3014 3015 /* 3016 * The allocation either can't fail or will lead to more memory 3017 * being freed very soon. Allow memory usage go over the limit 3018 * temporarily by force charging it. 3019 */ 3020 page_counter_charge(&memcg->memory, nr_pages); 3021 if (do_memsw_account()) 3022 page_counter_charge(&memcg->memsw, nr_pages); 3023 3024 return 0; 3025 3026 done_restock: 3027 if (batch > nr_pages) 3028 refill_stock(memcg, batch - nr_pages); 3029 3030 /* 3031 * If the hierarchy is above the normal consumption range, schedule 3032 * reclaim on returning to userland. We can perform reclaim here 3033 * if __GFP_RECLAIM but let's always punt for simplicity and so that 3034 * GFP_KERNEL can consistently be used during reclaim. @memcg is 3035 * not recorded as it most likely matches current's and won't 3036 * change in the meantime. As high limit is checked again before 3037 * reclaim, the cost of mismatch is negligible. 3038 */ 3039 do { 3040 bool mem_high, swap_high; 3041 3042 mem_high = page_counter_read(&memcg->memory) > 3043 READ_ONCE(memcg->memory.high); 3044 swap_high = page_counter_read(&memcg->swap) > 3045 READ_ONCE(memcg->swap.high); 3046 3047 /* Don't bother a random interrupted task */ 3048 if (!in_task()) { 3049 if (mem_high) { 3050 schedule_work(&memcg->high_work); 3051 break; 3052 } 3053 continue; 3054 } 3055 3056 if (mem_high || swap_high) { 3057 /* 3058 * The allocating tasks in this cgroup will need to do 3059 * reclaim or be throttled to prevent further growth 3060 * of the memory or swap footprints. 3061 * 3062 * Target some best-effort fairness between the tasks, 3063 * and distribute reclaim work and delay penalties 3064 * based on how much each task is actually allocating. 3065 */ 3066 current->memcg_nr_pages_over_high += batch; 3067 set_notify_resume(current); 3068 break; 3069 } 3070 } while ((memcg = parent_mem_cgroup(memcg))); 3071 3072 /* 3073 * Reclaim is set up above to be called from the userland 3074 * return path. But also attempt synchronous reclaim to avoid 3075 * excessive overrun while the task is still inside the 3076 * kernel. If this is successful, the return path will see it 3077 * when it rechecks the overage and simply bail out. 3078 */ 3079 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 3080 !(current->flags & PF_MEMALLOC) && 3081 gfpflags_allow_blocking(gfp_mask)) 3082 mem_cgroup_handle_over_high(gfp_mask); 3083 return 0; 3084 } 3085 3086 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 3087 unsigned int nr_pages) 3088 { 3089 if (mem_cgroup_is_root(memcg)) 3090 return 0; 3091 3092 return try_charge_memcg(memcg, gfp_mask, nr_pages); 3093 } 3094 3095 /** 3096 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. 3097 * @memcg: memcg previously charged. 3098 * @nr_pages: number of pages previously charged. 3099 */ 3100 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 3101 { 3102 if (mem_cgroup_is_root(memcg)) 3103 return; 3104 3105 page_counter_uncharge(&memcg->memory, nr_pages); 3106 if (do_memsw_account()) 3107 page_counter_uncharge(&memcg->memsw, nr_pages); 3108 } 3109 3110 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 3111 { 3112 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 3113 /* 3114 * Any of the following ensures page's memcg stability: 3115 * 3116 * - the page lock 3117 * - LRU isolation 3118 * - folio_memcg_lock() 3119 * - exclusive reference 3120 * - mem_cgroup_trylock_pages() 3121 */ 3122 folio->memcg_data = (unsigned long)memcg; 3123 } 3124 3125 /** 3126 * mem_cgroup_commit_charge - commit a previously successful try_charge(). 3127 * @folio: folio to commit the charge to. 3128 * @memcg: memcg previously charged. 3129 */ 3130 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 3131 { 3132 css_get(&memcg->css); 3133 commit_charge(folio, memcg); 3134 3135 local_irq_disable(); 3136 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio)); 3137 memcg_check_events(memcg, folio_nid(folio)); 3138 local_irq_enable(); 3139 } 3140 3141 #ifdef CONFIG_MEMCG_KMEM 3142 3143 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 3144 struct pglist_data *pgdat, 3145 enum node_stat_item idx, int nr) 3146 { 3147 struct mem_cgroup *memcg; 3148 struct lruvec *lruvec; 3149 3150 rcu_read_lock(); 3151 memcg = obj_cgroup_memcg(objcg); 3152 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3153 __mod_memcg_lruvec_state(lruvec, idx, nr); 3154 rcu_read_unlock(); 3155 } 3156 3157 static __always_inline 3158 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 3159 { 3160 /* 3161 * Slab objects are accounted individually, not per-page. 3162 * Memcg membership data for each individual object is saved in 3163 * slab->obj_exts. 3164 */ 3165 if (folio_test_slab(folio)) { 3166 struct slabobj_ext *obj_exts; 3167 struct slab *slab; 3168 unsigned int off; 3169 3170 slab = folio_slab(folio); 3171 obj_exts = slab_obj_exts(slab); 3172 if (!obj_exts) 3173 return NULL; 3174 3175 off = obj_to_index(slab->slab_cache, slab, p); 3176 if (obj_exts[off].objcg) 3177 return obj_cgroup_memcg(obj_exts[off].objcg); 3178 3179 return NULL; 3180 } 3181 3182 /* 3183 * folio_memcg_check() is used here, because in theory we can encounter 3184 * a folio where the slab flag has been cleared already, but 3185 * slab->obj_exts has not been freed yet 3186 * folio_memcg_check() will guarantee that a proper memory 3187 * cgroup pointer or NULL will be returned. 3188 */ 3189 return folio_memcg_check(folio); 3190 } 3191 3192 /* 3193 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3194 * 3195 * A passed kernel object can be a slab object, vmalloc object or a generic 3196 * kernel page, so different mechanisms for getting the memory cgroup pointer 3197 * should be used. 3198 * 3199 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 3200 * can not know for sure how the kernel object is implemented. 3201 * mem_cgroup_from_obj() can be safely used in such cases. 3202 * 3203 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3204 * cgroup_mutex, etc. 3205 */ 3206 struct mem_cgroup *mem_cgroup_from_obj(void *p) 3207 { 3208 struct folio *folio; 3209 3210 if (mem_cgroup_disabled()) 3211 return NULL; 3212 3213 if (unlikely(is_vmalloc_addr(p))) 3214 folio = page_folio(vmalloc_to_page(p)); 3215 else 3216 folio = virt_to_folio(p); 3217 3218 return mem_cgroup_from_obj_folio(folio, p); 3219 } 3220 3221 /* 3222 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3223 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 3224 * allocated using vmalloc(). 3225 * 3226 * A passed kernel object must be a slab object or a generic kernel page. 3227 * 3228 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3229 * cgroup_mutex, etc. 3230 */ 3231 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 3232 { 3233 if (mem_cgroup_disabled()) 3234 return NULL; 3235 3236 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 3237 } 3238 3239 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 3240 { 3241 struct obj_cgroup *objcg = NULL; 3242 3243 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3244 objcg = rcu_dereference(memcg->objcg); 3245 if (likely(objcg && obj_cgroup_tryget(objcg))) 3246 break; 3247 objcg = NULL; 3248 } 3249 return objcg; 3250 } 3251 3252 static struct obj_cgroup *current_objcg_update(void) 3253 { 3254 struct mem_cgroup *memcg; 3255 struct obj_cgroup *old, *objcg = NULL; 3256 3257 do { 3258 /* Atomically drop the update bit. */ 3259 old = xchg(¤t->objcg, NULL); 3260 if (old) { 3261 old = (struct obj_cgroup *) 3262 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 3263 obj_cgroup_put(old); 3264 3265 old = NULL; 3266 } 3267 3268 /* If new objcg is NULL, no reason for the second atomic update. */ 3269 if (!current->mm || (current->flags & PF_KTHREAD)) 3270 return NULL; 3271 3272 /* 3273 * Release the objcg pointer from the previous iteration, 3274 * if try_cmpxcg() below fails. 3275 */ 3276 if (unlikely(objcg)) { 3277 obj_cgroup_put(objcg); 3278 objcg = NULL; 3279 } 3280 3281 /* 3282 * Obtain the new objcg pointer. The current task can be 3283 * asynchronously moved to another memcg and the previous 3284 * memcg can be offlined. So let's get the memcg pointer 3285 * and try get a reference to objcg under a rcu read lock. 3286 */ 3287 3288 rcu_read_lock(); 3289 memcg = mem_cgroup_from_task(current); 3290 objcg = __get_obj_cgroup_from_memcg(memcg); 3291 rcu_read_unlock(); 3292 3293 /* 3294 * Try set up a new objcg pointer atomically. If it 3295 * fails, it means the update flag was set concurrently, so 3296 * the whole procedure should be repeated. 3297 */ 3298 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 3299 3300 return objcg; 3301 } 3302 3303 __always_inline struct obj_cgroup *current_obj_cgroup(void) 3304 { 3305 struct mem_cgroup *memcg; 3306 struct obj_cgroup *objcg; 3307 3308 if (in_task()) { 3309 memcg = current->active_memcg; 3310 if (unlikely(memcg)) 3311 goto from_memcg; 3312 3313 objcg = READ_ONCE(current->objcg); 3314 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 3315 objcg = current_objcg_update(); 3316 /* 3317 * Objcg reference is kept by the task, so it's safe 3318 * to use the objcg by the current task. 3319 */ 3320 return objcg; 3321 } 3322 3323 memcg = this_cpu_read(int_active_memcg); 3324 if (unlikely(memcg)) 3325 goto from_memcg; 3326 3327 return NULL; 3328 3329 from_memcg: 3330 objcg = NULL; 3331 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3332 /* 3333 * Memcg pointer is protected by scope (see set_active_memcg()) 3334 * and is pinning the corresponding objcg, so objcg can't go 3335 * away and can be used within the scope without any additional 3336 * protection. 3337 */ 3338 objcg = rcu_dereference_check(memcg->objcg, 1); 3339 if (likely(objcg)) 3340 break; 3341 } 3342 3343 return objcg; 3344 } 3345 3346 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 3347 { 3348 struct obj_cgroup *objcg; 3349 3350 if (!memcg_kmem_online()) 3351 return NULL; 3352 3353 if (folio_memcg_kmem(folio)) { 3354 objcg = __folio_objcg(folio); 3355 obj_cgroup_get(objcg); 3356 } else { 3357 struct mem_cgroup *memcg; 3358 3359 rcu_read_lock(); 3360 memcg = __folio_memcg(folio); 3361 if (memcg) 3362 objcg = __get_obj_cgroup_from_memcg(memcg); 3363 else 3364 objcg = NULL; 3365 rcu_read_unlock(); 3366 } 3367 return objcg; 3368 } 3369 3370 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3371 { 3372 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 3373 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3374 if (nr_pages > 0) 3375 page_counter_charge(&memcg->kmem, nr_pages); 3376 else 3377 page_counter_uncharge(&memcg->kmem, -nr_pages); 3378 } 3379 } 3380 3381 3382 /* 3383 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3384 * @objcg: object cgroup to uncharge 3385 * @nr_pages: number of pages to uncharge 3386 */ 3387 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3388 unsigned int nr_pages) 3389 { 3390 struct mem_cgroup *memcg; 3391 3392 memcg = get_mem_cgroup_from_objcg(objcg); 3393 3394 memcg_account_kmem(memcg, -nr_pages); 3395 refill_stock(memcg, nr_pages); 3396 3397 css_put(&memcg->css); 3398 } 3399 3400 /* 3401 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3402 * @objcg: object cgroup to charge 3403 * @gfp: reclaim mode 3404 * @nr_pages: number of pages to charge 3405 * 3406 * Returns 0 on success, an error code on failure. 3407 */ 3408 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3409 unsigned int nr_pages) 3410 { 3411 struct mem_cgroup *memcg; 3412 int ret; 3413 3414 memcg = get_mem_cgroup_from_objcg(objcg); 3415 3416 ret = try_charge_memcg(memcg, gfp, nr_pages); 3417 if (ret) 3418 goto out; 3419 3420 memcg_account_kmem(memcg, nr_pages); 3421 out: 3422 css_put(&memcg->css); 3423 3424 return ret; 3425 } 3426 3427 /** 3428 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3429 * @page: page to charge 3430 * @gfp: reclaim mode 3431 * @order: allocation order 3432 * 3433 * Returns 0 on success, an error code on failure. 3434 */ 3435 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3436 { 3437 struct obj_cgroup *objcg; 3438 int ret = 0; 3439 3440 objcg = current_obj_cgroup(); 3441 if (objcg) { 3442 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3443 if (!ret) { 3444 obj_cgroup_get(objcg); 3445 page->memcg_data = (unsigned long)objcg | 3446 MEMCG_DATA_KMEM; 3447 return 0; 3448 } 3449 } 3450 return ret; 3451 } 3452 3453 /** 3454 * __memcg_kmem_uncharge_page: uncharge a kmem page 3455 * @page: page to uncharge 3456 * @order: allocation order 3457 */ 3458 void __memcg_kmem_uncharge_page(struct page *page, int order) 3459 { 3460 struct folio *folio = page_folio(page); 3461 struct obj_cgroup *objcg; 3462 unsigned int nr_pages = 1 << order; 3463 3464 if (!folio_memcg_kmem(folio)) 3465 return; 3466 3467 objcg = __folio_objcg(folio); 3468 obj_cgroup_uncharge_pages(objcg, nr_pages); 3469 folio->memcg_data = 0; 3470 obj_cgroup_put(objcg); 3471 } 3472 3473 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3474 enum node_stat_item idx, int nr) 3475 { 3476 struct memcg_stock_pcp *stock; 3477 struct obj_cgroup *old = NULL; 3478 unsigned long flags; 3479 int *bytes; 3480 3481 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3482 stock = this_cpu_ptr(&memcg_stock); 3483 3484 /* 3485 * Save vmstat data in stock and skip vmstat array update unless 3486 * accumulating over a page of vmstat data or when pgdat or idx 3487 * changes. 3488 */ 3489 if (READ_ONCE(stock->cached_objcg) != objcg) { 3490 old = drain_obj_stock(stock); 3491 obj_cgroup_get(objcg); 3492 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3493 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3494 WRITE_ONCE(stock->cached_objcg, objcg); 3495 stock->cached_pgdat = pgdat; 3496 } else if (stock->cached_pgdat != pgdat) { 3497 /* Flush the existing cached vmstat data */ 3498 struct pglist_data *oldpg = stock->cached_pgdat; 3499 3500 if (stock->nr_slab_reclaimable_b) { 3501 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3502 stock->nr_slab_reclaimable_b); 3503 stock->nr_slab_reclaimable_b = 0; 3504 } 3505 if (stock->nr_slab_unreclaimable_b) { 3506 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3507 stock->nr_slab_unreclaimable_b); 3508 stock->nr_slab_unreclaimable_b = 0; 3509 } 3510 stock->cached_pgdat = pgdat; 3511 } 3512 3513 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3514 : &stock->nr_slab_unreclaimable_b; 3515 /* 3516 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3517 * cached locally at least once before pushing it out. 3518 */ 3519 if (!*bytes) { 3520 *bytes = nr; 3521 nr = 0; 3522 } else { 3523 *bytes += nr; 3524 if (abs(*bytes) > PAGE_SIZE) { 3525 nr = *bytes; 3526 *bytes = 0; 3527 } else { 3528 nr = 0; 3529 } 3530 } 3531 if (nr) 3532 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 3533 3534 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3535 obj_cgroup_put(old); 3536 } 3537 3538 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3539 { 3540 struct memcg_stock_pcp *stock; 3541 unsigned long flags; 3542 bool ret = false; 3543 3544 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3545 3546 stock = this_cpu_ptr(&memcg_stock); 3547 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 3548 stock->nr_bytes -= nr_bytes; 3549 ret = true; 3550 } 3551 3552 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3553 3554 return ret; 3555 } 3556 3557 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3558 { 3559 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 3560 3561 if (!old) 3562 return NULL; 3563 3564 if (stock->nr_bytes) { 3565 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3566 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3567 3568 if (nr_pages) { 3569 struct mem_cgroup *memcg; 3570 3571 memcg = get_mem_cgroup_from_objcg(old); 3572 3573 memcg_account_kmem(memcg, -nr_pages); 3574 __refill_stock(memcg, nr_pages); 3575 3576 css_put(&memcg->css); 3577 } 3578 3579 /* 3580 * The leftover is flushed to the centralized per-memcg value. 3581 * On the next attempt to refill obj stock it will be moved 3582 * to a per-cpu stock (probably, on an other CPU), see 3583 * refill_obj_stock(). 3584 * 3585 * How often it's flushed is a trade-off between the memory 3586 * limit enforcement accuracy and potential CPU contention, 3587 * so it might be changed in the future. 3588 */ 3589 atomic_add(nr_bytes, &old->nr_charged_bytes); 3590 stock->nr_bytes = 0; 3591 } 3592 3593 /* 3594 * Flush the vmstat data in current stock 3595 */ 3596 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3597 if (stock->nr_slab_reclaimable_b) { 3598 __mod_objcg_mlstate(old, stock->cached_pgdat, 3599 NR_SLAB_RECLAIMABLE_B, 3600 stock->nr_slab_reclaimable_b); 3601 stock->nr_slab_reclaimable_b = 0; 3602 } 3603 if (stock->nr_slab_unreclaimable_b) { 3604 __mod_objcg_mlstate(old, stock->cached_pgdat, 3605 NR_SLAB_UNRECLAIMABLE_B, 3606 stock->nr_slab_unreclaimable_b); 3607 stock->nr_slab_unreclaimable_b = 0; 3608 } 3609 stock->cached_pgdat = NULL; 3610 } 3611 3612 WRITE_ONCE(stock->cached_objcg, NULL); 3613 /* 3614 * The `old' objects needs to be released by the caller via 3615 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3616 */ 3617 return old; 3618 } 3619 3620 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3621 struct mem_cgroup *root_memcg) 3622 { 3623 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 3624 struct mem_cgroup *memcg; 3625 3626 if (objcg) { 3627 memcg = obj_cgroup_memcg(objcg); 3628 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3629 return true; 3630 } 3631 3632 return false; 3633 } 3634 3635 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3636 bool allow_uncharge) 3637 { 3638 struct memcg_stock_pcp *stock; 3639 struct obj_cgroup *old = NULL; 3640 unsigned long flags; 3641 unsigned int nr_pages = 0; 3642 3643 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3644 3645 stock = this_cpu_ptr(&memcg_stock); 3646 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 3647 old = drain_obj_stock(stock); 3648 obj_cgroup_get(objcg); 3649 WRITE_ONCE(stock->cached_objcg, objcg); 3650 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3651 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3652 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3653 } 3654 stock->nr_bytes += nr_bytes; 3655 3656 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3657 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3658 stock->nr_bytes &= (PAGE_SIZE - 1); 3659 } 3660 3661 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3662 obj_cgroup_put(old); 3663 3664 if (nr_pages) 3665 obj_cgroup_uncharge_pages(objcg, nr_pages); 3666 } 3667 3668 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3669 { 3670 unsigned int nr_pages, nr_bytes; 3671 int ret; 3672 3673 if (consume_obj_stock(objcg, size)) 3674 return 0; 3675 3676 /* 3677 * In theory, objcg->nr_charged_bytes can have enough 3678 * pre-charged bytes to satisfy the allocation. However, 3679 * flushing objcg->nr_charged_bytes requires two atomic 3680 * operations, and objcg->nr_charged_bytes can't be big. 3681 * The shared objcg->nr_charged_bytes can also become a 3682 * performance bottleneck if all tasks of the same memcg are 3683 * trying to update it. So it's better to ignore it and try 3684 * grab some new pages. The stock's nr_bytes will be flushed to 3685 * objcg->nr_charged_bytes later on when objcg changes. 3686 * 3687 * The stock's nr_bytes may contain enough pre-charged bytes 3688 * to allow one less page from being charged, but we can't rely 3689 * on the pre-charged bytes not being changed outside of 3690 * consume_obj_stock() or refill_obj_stock(). So ignore those 3691 * pre-charged bytes as well when charging pages. To avoid a 3692 * page uncharge right after a page charge, we set the 3693 * allow_uncharge flag to false when calling refill_obj_stock() 3694 * to temporarily allow the pre-charged bytes to exceed the page 3695 * size limit. The maximum reachable value of the pre-charged 3696 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3697 * race. 3698 */ 3699 nr_pages = size >> PAGE_SHIFT; 3700 nr_bytes = size & (PAGE_SIZE - 1); 3701 3702 if (nr_bytes) 3703 nr_pages += 1; 3704 3705 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3706 if (!ret && nr_bytes) 3707 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3708 3709 return ret; 3710 } 3711 3712 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3713 { 3714 refill_obj_stock(objcg, size, true); 3715 } 3716 3717 static inline size_t obj_full_size(struct kmem_cache *s) 3718 { 3719 /* 3720 * For each accounted object there is an extra space which is used 3721 * to store obj_cgroup membership. Charge it too. 3722 */ 3723 return s->size + sizeof(struct obj_cgroup *); 3724 } 3725 3726 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3727 gfp_t flags, size_t size, void **p) 3728 { 3729 struct obj_cgroup *objcg; 3730 struct slab *slab; 3731 unsigned long off; 3732 size_t i; 3733 3734 /* 3735 * The obtained objcg pointer is safe to use within the current scope, 3736 * defined by current task or set_active_memcg() pair. 3737 * obj_cgroup_get() is used to get a permanent reference. 3738 */ 3739 objcg = current_obj_cgroup(); 3740 if (!objcg) 3741 return true; 3742 3743 /* 3744 * slab_alloc_node() avoids the NULL check, so we might be called with a 3745 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3746 * the whole requested size. 3747 * return success as there's nothing to free back 3748 */ 3749 if (unlikely(*p == NULL)) 3750 return true; 3751 3752 flags &= gfp_allowed_mask; 3753 3754 if (lru) { 3755 int ret; 3756 struct mem_cgroup *memcg; 3757 3758 memcg = get_mem_cgroup_from_objcg(objcg); 3759 ret = memcg_list_lru_alloc(memcg, lru, flags); 3760 css_put(&memcg->css); 3761 3762 if (ret) 3763 return false; 3764 } 3765 3766 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 3767 return false; 3768 3769 for (i = 0; i < size; i++) { 3770 slab = virt_to_slab(p[i]); 3771 3772 if (!slab_obj_exts(slab) && 3773 alloc_slab_obj_exts(slab, s, flags, false)) { 3774 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3775 continue; 3776 } 3777 3778 off = obj_to_index(s, slab, p[i]); 3779 obj_cgroup_get(objcg); 3780 slab_obj_exts(slab)[off].objcg = objcg; 3781 mod_objcg_state(objcg, slab_pgdat(slab), 3782 cache_vmstat_idx(s), obj_full_size(s)); 3783 } 3784 3785 return true; 3786 } 3787 3788 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3789 void **p, int objects, struct slabobj_ext *obj_exts) 3790 { 3791 for (int i = 0; i < objects; i++) { 3792 struct obj_cgroup *objcg; 3793 unsigned int off; 3794 3795 off = obj_to_index(s, slab, p[i]); 3796 objcg = obj_exts[off].objcg; 3797 if (!objcg) 3798 continue; 3799 3800 obj_exts[off].objcg = NULL; 3801 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3802 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3803 -obj_full_size(s)); 3804 obj_cgroup_put(objcg); 3805 } 3806 } 3807 #endif /* CONFIG_MEMCG_KMEM */ 3808 3809 /* 3810 * Because page_memcg(head) is not set on tails, set it now. 3811 */ 3812 void split_page_memcg(struct page *head, int old_order, int new_order) 3813 { 3814 struct folio *folio = page_folio(head); 3815 struct mem_cgroup *memcg = folio_memcg(folio); 3816 int i; 3817 unsigned int old_nr = 1 << old_order; 3818 unsigned int new_nr = 1 << new_order; 3819 3820 if (mem_cgroup_disabled() || !memcg) 3821 return; 3822 3823 for (i = new_nr; i < old_nr; i += new_nr) 3824 folio_page(folio, i)->memcg_data = folio->memcg_data; 3825 3826 if (folio_memcg_kmem(folio)) 3827 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1); 3828 else 3829 css_get_many(&memcg->css, old_nr / new_nr - 1); 3830 } 3831 3832 #ifdef CONFIG_SWAP 3833 /** 3834 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3835 * @entry: swap entry to be moved 3836 * @from: mem_cgroup which the entry is moved from 3837 * @to: mem_cgroup which the entry is moved to 3838 * 3839 * It succeeds only when the swap_cgroup's record for this entry is the same 3840 * as the mem_cgroup's id of @from. 3841 * 3842 * Returns 0 on success, -EINVAL on failure. 3843 * 3844 * The caller must have charged to @to, IOW, called page_counter_charge() about 3845 * both res and memsw, and called css_get(). 3846 */ 3847 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3848 struct mem_cgroup *from, struct mem_cgroup *to) 3849 { 3850 unsigned short old_id, new_id; 3851 3852 old_id = mem_cgroup_id(from); 3853 new_id = mem_cgroup_id(to); 3854 3855 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3856 mod_memcg_state(from, MEMCG_SWAP, -1); 3857 mod_memcg_state(to, MEMCG_SWAP, 1); 3858 return 0; 3859 } 3860 return -EINVAL; 3861 } 3862 #else 3863 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3864 struct mem_cgroup *from, struct mem_cgroup *to) 3865 { 3866 return -EINVAL; 3867 } 3868 #endif 3869 3870 static DEFINE_MUTEX(memcg_max_mutex); 3871 3872 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3873 unsigned long max, bool memsw) 3874 { 3875 bool enlarge = false; 3876 bool drained = false; 3877 int ret; 3878 bool limits_invariant; 3879 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3880 3881 do { 3882 if (signal_pending(current)) { 3883 ret = -EINTR; 3884 break; 3885 } 3886 3887 mutex_lock(&memcg_max_mutex); 3888 /* 3889 * Make sure that the new limit (memsw or memory limit) doesn't 3890 * break our basic invariant rule memory.max <= memsw.max. 3891 */ 3892 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3893 max <= memcg->memsw.max; 3894 if (!limits_invariant) { 3895 mutex_unlock(&memcg_max_mutex); 3896 ret = -EINVAL; 3897 break; 3898 } 3899 if (max > counter->max) 3900 enlarge = true; 3901 ret = page_counter_set_max(counter, max); 3902 mutex_unlock(&memcg_max_mutex); 3903 3904 if (!ret) 3905 break; 3906 3907 if (!drained) { 3908 drain_all_stock(memcg); 3909 drained = true; 3910 continue; 3911 } 3912 3913 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3914 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { 3915 ret = -EBUSY; 3916 break; 3917 } 3918 } while (true); 3919 3920 if (!ret && enlarge) 3921 memcg_oom_recover(memcg); 3922 3923 return ret; 3924 } 3925 3926 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3927 gfp_t gfp_mask, 3928 unsigned long *total_scanned) 3929 { 3930 unsigned long nr_reclaimed = 0; 3931 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3932 unsigned long reclaimed; 3933 int loop = 0; 3934 struct mem_cgroup_tree_per_node *mctz; 3935 unsigned long excess; 3936 3937 if (lru_gen_enabled()) 3938 return 0; 3939 3940 if (order > 0) 3941 return 0; 3942 3943 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3944 3945 /* 3946 * Do not even bother to check the largest node if the root 3947 * is empty. Do it lockless to prevent lock bouncing. Races 3948 * are acceptable as soft limit is best effort anyway. 3949 */ 3950 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3951 return 0; 3952 3953 /* 3954 * This loop can run a while, specially if mem_cgroup's continuously 3955 * keep exceeding their soft limit and putting the system under 3956 * pressure 3957 */ 3958 do { 3959 if (next_mz) 3960 mz = next_mz; 3961 else 3962 mz = mem_cgroup_largest_soft_limit_node(mctz); 3963 if (!mz) 3964 break; 3965 3966 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3967 gfp_mask, total_scanned); 3968 nr_reclaimed += reclaimed; 3969 spin_lock_irq(&mctz->lock); 3970 3971 /* 3972 * If we failed to reclaim anything from this memory cgroup 3973 * it is time to move on to the next cgroup 3974 */ 3975 next_mz = NULL; 3976 if (!reclaimed) 3977 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3978 3979 excess = soft_limit_excess(mz->memcg); 3980 /* 3981 * One school of thought says that we should not add 3982 * back the node to the tree if reclaim returns 0. 3983 * But our reclaim could return 0, simply because due 3984 * to priority we are exposing a smaller subset of 3985 * memory to reclaim from. Consider this as a longer 3986 * term TODO. 3987 */ 3988 /* If excess == 0, no tree ops */ 3989 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3990 spin_unlock_irq(&mctz->lock); 3991 css_put(&mz->memcg->css); 3992 loop++; 3993 /* 3994 * Could not reclaim anything and there are no more 3995 * mem cgroups to try or we seem to be looping without 3996 * reclaiming anything. 3997 */ 3998 if (!nr_reclaimed && 3999 (next_mz == NULL || 4000 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4001 break; 4002 } while (!nr_reclaimed); 4003 if (next_mz) 4004 css_put(&next_mz->memcg->css); 4005 return nr_reclaimed; 4006 } 4007 4008 /* 4009 * Reclaims as many pages from the given memcg as possible. 4010 * 4011 * Caller is responsible for holding css reference for memcg. 4012 */ 4013 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4014 { 4015 int nr_retries = MAX_RECLAIM_RETRIES; 4016 4017 /* we call try-to-free pages for make this cgroup empty */ 4018 lru_add_drain_all(); 4019 4020 drain_all_stock(memcg); 4021 4022 /* try to free all pages in this cgroup */ 4023 while (nr_retries && page_counter_read(&memcg->memory)) { 4024 if (signal_pending(current)) 4025 return -EINTR; 4026 4027 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 4028 MEMCG_RECLAIM_MAY_SWAP)) 4029 nr_retries--; 4030 } 4031 4032 return 0; 4033 } 4034 4035 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 4036 char *buf, size_t nbytes, 4037 loff_t off) 4038 { 4039 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4040 4041 if (mem_cgroup_is_root(memcg)) 4042 return -EINVAL; 4043 return mem_cgroup_force_empty(memcg) ?: nbytes; 4044 } 4045 4046 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 4047 struct cftype *cft) 4048 { 4049 return 1; 4050 } 4051 4052 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 4053 struct cftype *cft, u64 val) 4054 { 4055 if (val == 1) 4056 return 0; 4057 4058 pr_warn_once("Non-hierarchical mode is deprecated. " 4059 "Please report your usecase to linux-mm@kvack.org if you " 4060 "depend on this functionality.\n"); 4061 4062 return -EINVAL; 4063 } 4064 4065 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 4066 { 4067 unsigned long val; 4068 4069 if (mem_cgroup_is_root(memcg)) { 4070 /* 4071 * Approximate root's usage from global state. This isn't 4072 * perfect, but the root usage was always an approximation. 4073 */ 4074 val = global_node_page_state(NR_FILE_PAGES) + 4075 global_node_page_state(NR_ANON_MAPPED); 4076 if (swap) 4077 val += total_swap_pages - get_nr_swap_pages(); 4078 } else { 4079 if (!swap) 4080 val = page_counter_read(&memcg->memory); 4081 else 4082 val = page_counter_read(&memcg->memsw); 4083 } 4084 return val; 4085 } 4086 4087 enum { 4088 RES_USAGE, 4089 RES_LIMIT, 4090 RES_MAX_USAGE, 4091 RES_FAILCNT, 4092 RES_SOFT_LIMIT, 4093 }; 4094 4095 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 4096 struct cftype *cft) 4097 { 4098 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4099 struct page_counter *counter; 4100 4101 switch (MEMFILE_TYPE(cft->private)) { 4102 case _MEM: 4103 counter = &memcg->memory; 4104 break; 4105 case _MEMSWAP: 4106 counter = &memcg->memsw; 4107 break; 4108 case _KMEM: 4109 counter = &memcg->kmem; 4110 break; 4111 case _TCP: 4112 counter = &memcg->tcpmem; 4113 break; 4114 default: 4115 BUG(); 4116 } 4117 4118 switch (MEMFILE_ATTR(cft->private)) { 4119 case RES_USAGE: 4120 if (counter == &memcg->memory) 4121 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 4122 if (counter == &memcg->memsw) 4123 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 4124 return (u64)page_counter_read(counter) * PAGE_SIZE; 4125 case RES_LIMIT: 4126 return (u64)counter->max * PAGE_SIZE; 4127 case RES_MAX_USAGE: 4128 return (u64)counter->watermark * PAGE_SIZE; 4129 case RES_FAILCNT: 4130 return counter->failcnt; 4131 case RES_SOFT_LIMIT: 4132 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; 4133 default: 4134 BUG(); 4135 } 4136 } 4137 4138 /* 4139 * This function doesn't do anything useful. Its only job is to provide a read 4140 * handler for a file so that cgroup_file_mode() will add read permissions. 4141 */ 4142 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, 4143 __always_unused void *v) 4144 { 4145 return -EINVAL; 4146 } 4147 4148 #ifdef CONFIG_MEMCG_KMEM 4149 static int memcg_online_kmem(struct mem_cgroup *memcg) 4150 { 4151 struct obj_cgroup *objcg; 4152 4153 if (mem_cgroup_kmem_disabled()) 4154 return 0; 4155 4156 if (unlikely(mem_cgroup_is_root(memcg))) 4157 return 0; 4158 4159 objcg = obj_cgroup_alloc(); 4160 if (!objcg) 4161 return -ENOMEM; 4162 4163 objcg->memcg = memcg; 4164 rcu_assign_pointer(memcg->objcg, objcg); 4165 obj_cgroup_get(objcg); 4166 memcg->orig_objcg = objcg; 4167 4168 static_branch_enable(&memcg_kmem_online_key); 4169 4170 memcg->kmemcg_id = memcg->id.id; 4171 4172 return 0; 4173 } 4174 4175 static void memcg_offline_kmem(struct mem_cgroup *memcg) 4176 { 4177 struct mem_cgroup *parent; 4178 4179 if (mem_cgroup_kmem_disabled()) 4180 return; 4181 4182 if (unlikely(mem_cgroup_is_root(memcg))) 4183 return; 4184 4185 parent = parent_mem_cgroup(memcg); 4186 if (!parent) 4187 parent = root_mem_cgroup; 4188 4189 memcg_reparent_objcgs(memcg, parent); 4190 4191 /* 4192 * After we have finished memcg_reparent_objcgs(), all list_lrus 4193 * corresponding to this cgroup are guaranteed to remain empty. 4194 * The ordering is imposed by list_lru_node->lock taken by 4195 * memcg_reparent_list_lrus(). 4196 */ 4197 memcg_reparent_list_lrus(memcg, parent); 4198 } 4199 #else 4200 static int memcg_online_kmem(struct mem_cgroup *memcg) 4201 { 4202 return 0; 4203 } 4204 static void memcg_offline_kmem(struct mem_cgroup *memcg) 4205 { 4206 } 4207 #endif /* CONFIG_MEMCG_KMEM */ 4208 4209 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 4210 { 4211 int ret; 4212 4213 mutex_lock(&memcg_max_mutex); 4214 4215 ret = page_counter_set_max(&memcg->tcpmem, max); 4216 if (ret) 4217 goto out; 4218 4219 if (!memcg->tcpmem_active) { 4220 /* 4221 * The active flag needs to be written after the static_key 4222 * update. This is what guarantees that the socket activation 4223 * function is the last one to run. See mem_cgroup_sk_alloc() 4224 * for details, and note that we don't mark any socket as 4225 * belonging to this memcg until that flag is up. 4226 * 4227 * We need to do this, because static_keys will span multiple 4228 * sites, but we can't control their order. If we mark a socket 4229 * as accounted, but the accounting functions are not patched in 4230 * yet, we'll lose accounting. 4231 * 4232 * We never race with the readers in mem_cgroup_sk_alloc(), 4233 * because when this value change, the code to process it is not 4234 * patched in yet. 4235 */ 4236 static_branch_inc(&memcg_sockets_enabled_key); 4237 memcg->tcpmem_active = true; 4238 } 4239 out: 4240 mutex_unlock(&memcg_max_mutex); 4241 return ret; 4242 } 4243 4244 /* 4245 * The user of this function is... 4246 * RES_LIMIT. 4247 */ 4248 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 4249 char *buf, size_t nbytes, loff_t off) 4250 { 4251 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4252 unsigned long nr_pages; 4253 int ret; 4254 4255 buf = strstrip(buf); 4256 ret = page_counter_memparse(buf, "-1", &nr_pages); 4257 if (ret) 4258 return ret; 4259 4260 switch (MEMFILE_ATTR(of_cft(of)->private)) { 4261 case RES_LIMIT: 4262 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 4263 ret = -EINVAL; 4264 break; 4265 } 4266 switch (MEMFILE_TYPE(of_cft(of)->private)) { 4267 case _MEM: 4268 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 4269 break; 4270 case _MEMSWAP: 4271 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 4272 break; 4273 case _KMEM: 4274 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 4275 "Writing any value to this file has no effect. " 4276 "Please report your usecase to linux-mm@kvack.org if you " 4277 "depend on this functionality.\n"); 4278 ret = 0; 4279 break; 4280 case _TCP: 4281 ret = memcg_update_tcp_max(memcg, nr_pages); 4282 break; 4283 } 4284 break; 4285 case RES_SOFT_LIMIT: 4286 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4287 ret = -EOPNOTSUPP; 4288 } else { 4289 WRITE_ONCE(memcg->soft_limit, nr_pages); 4290 ret = 0; 4291 } 4292 break; 4293 } 4294 return ret ?: nbytes; 4295 } 4296 4297 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 4298 size_t nbytes, loff_t off) 4299 { 4300 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4301 struct page_counter *counter; 4302 4303 switch (MEMFILE_TYPE(of_cft(of)->private)) { 4304 case _MEM: 4305 counter = &memcg->memory; 4306 break; 4307 case _MEMSWAP: 4308 counter = &memcg->memsw; 4309 break; 4310 case _KMEM: 4311 counter = &memcg->kmem; 4312 break; 4313 case _TCP: 4314 counter = &memcg->tcpmem; 4315 break; 4316 default: 4317 BUG(); 4318 } 4319 4320 switch (MEMFILE_ATTR(of_cft(of)->private)) { 4321 case RES_MAX_USAGE: 4322 page_counter_reset_watermark(counter); 4323 break; 4324 case RES_FAILCNT: 4325 counter->failcnt = 0; 4326 break; 4327 default: 4328 BUG(); 4329 } 4330 4331 return nbytes; 4332 } 4333 4334 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 4335 struct cftype *cft) 4336 { 4337 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 4338 } 4339 4340 #ifdef CONFIG_MMU 4341 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4342 struct cftype *cft, u64 val) 4343 { 4344 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4345 4346 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 4347 "Please report your usecase to linux-mm@kvack.org if you " 4348 "depend on this functionality.\n"); 4349 4350 if (val & ~MOVE_MASK) 4351 return -EINVAL; 4352 4353 /* 4354 * No kind of locking is needed in here, because ->can_attach() will 4355 * check this value once in the beginning of the process, and then carry 4356 * on with stale data. This means that changes to this value will only 4357 * affect task migrations starting after the change. 4358 */ 4359 memcg->move_charge_at_immigrate = val; 4360 return 0; 4361 } 4362 #else 4363 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4364 struct cftype *cft, u64 val) 4365 { 4366 return -ENOSYS; 4367 } 4368 #endif 4369 4370 #ifdef CONFIG_NUMA 4371 4372 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 4373 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 4374 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 4375 4376 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 4377 int nid, unsigned int lru_mask, bool tree) 4378 { 4379 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4380 unsigned long nr = 0; 4381 enum lru_list lru; 4382 4383 VM_BUG_ON((unsigned)nid >= nr_node_ids); 4384 4385 for_each_lru(lru) { 4386 if (!(BIT(lru) & lru_mask)) 4387 continue; 4388 if (tree) 4389 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 4390 else 4391 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 4392 } 4393 return nr; 4394 } 4395 4396 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 4397 unsigned int lru_mask, 4398 bool tree) 4399 { 4400 unsigned long nr = 0; 4401 enum lru_list lru; 4402 4403 for_each_lru(lru) { 4404 if (!(BIT(lru) & lru_mask)) 4405 continue; 4406 if (tree) 4407 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 4408 else 4409 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 4410 } 4411 return nr; 4412 } 4413 4414 static int memcg_numa_stat_show(struct seq_file *m, void *v) 4415 { 4416 struct numa_stat { 4417 const char *name; 4418 unsigned int lru_mask; 4419 }; 4420 4421 static const struct numa_stat stats[] = { 4422 { "total", LRU_ALL }, 4423 { "file", LRU_ALL_FILE }, 4424 { "anon", LRU_ALL_ANON }, 4425 { "unevictable", BIT(LRU_UNEVICTABLE) }, 4426 }; 4427 const struct numa_stat *stat; 4428 int nid; 4429 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4430 4431 mem_cgroup_flush_stats(memcg); 4432 4433 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4434 seq_printf(m, "%s=%lu", stat->name, 4435 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4436 false)); 4437 for_each_node_state(nid, N_MEMORY) 4438 seq_printf(m, " N%d=%lu", nid, 4439 mem_cgroup_node_nr_lru_pages(memcg, nid, 4440 stat->lru_mask, false)); 4441 seq_putc(m, '\n'); 4442 } 4443 4444 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4445 4446 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4447 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4448 true)); 4449 for_each_node_state(nid, N_MEMORY) 4450 seq_printf(m, " N%d=%lu", nid, 4451 mem_cgroup_node_nr_lru_pages(memcg, nid, 4452 stat->lru_mask, true)); 4453 seq_putc(m, '\n'); 4454 } 4455 4456 return 0; 4457 } 4458 #endif /* CONFIG_NUMA */ 4459 4460 static const unsigned int memcg1_stats[] = { 4461 NR_FILE_PAGES, 4462 NR_ANON_MAPPED, 4463 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4464 NR_ANON_THPS, 4465 #endif 4466 NR_SHMEM, 4467 NR_FILE_MAPPED, 4468 NR_FILE_DIRTY, 4469 NR_WRITEBACK, 4470 WORKINGSET_REFAULT_ANON, 4471 WORKINGSET_REFAULT_FILE, 4472 #ifdef CONFIG_SWAP 4473 MEMCG_SWAP, 4474 NR_SWAPCACHE, 4475 #endif 4476 }; 4477 4478 static const char *const memcg1_stat_names[] = { 4479 "cache", 4480 "rss", 4481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4482 "rss_huge", 4483 #endif 4484 "shmem", 4485 "mapped_file", 4486 "dirty", 4487 "writeback", 4488 "workingset_refault_anon", 4489 "workingset_refault_file", 4490 #ifdef CONFIG_SWAP 4491 "swap", 4492 "swapcached", 4493 #endif 4494 }; 4495 4496 /* Universal VM events cgroup1 shows, original sort order */ 4497 static const unsigned int memcg1_events[] = { 4498 PGPGIN, 4499 PGPGOUT, 4500 PGFAULT, 4501 PGMAJFAULT, 4502 }; 4503 4504 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 4505 { 4506 unsigned long memory, memsw; 4507 struct mem_cgroup *mi; 4508 unsigned int i; 4509 4510 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4511 4512 mem_cgroup_flush_stats(memcg); 4513 4514 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4515 unsigned long nr; 4516 4517 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); 4518 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); 4519 } 4520 4521 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4522 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), 4523 memcg_events_local(memcg, memcg1_events[i])); 4524 4525 for (i = 0; i < NR_LRU_LISTS; i++) 4526 seq_buf_printf(s, "%s %lu\n", lru_list_name(i), 4527 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4528 PAGE_SIZE); 4529 4530 /* Hierarchical information */ 4531 memory = memsw = PAGE_COUNTER_MAX; 4532 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4533 memory = min(memory, READ_ONCE(mi->memory.max)); 4534 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4535 } 4536 seq_buf_printf(s, "hierarchical_memory_limit %llu\n", 4537 (u64)memory * PAGE_SIZE); 4538 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", 4539 (u64)memsw * PAGE_SIZE); 4540 4541 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4542 unsigned long nr; 4543 4544 nr = memcg_page_state_output(memcg, memcg1_stats[i]); 4545 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], 4546 (u64)nr); 4547 } 4548 4549 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4550 seq_buf_printf(s, "total_%s %llu\n", 4551 vm_event_name(memcg1_events[i]), 4552 (u64)memcg_events(memcg, memcg1_events[i])); 4553 4554 for (i = 0; i < NR_LRU_LISTS; i++) 4555 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), 4556 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4557 PAGE_SIZE); 4558 4559 #ifdef CONFIG_DEBUG_VM 4560 { 4561 pg_data_t *pgdat; 4562 struct mem_cgroup_per_node *mz; 4563 unsigned long anon_cost = 0; 4564 unsigned long file_cost = 0; 4565 4566 for_each_online_pgdat(pgdat) { 4567 mz = memcg->nodeinfo[pgdat->node_id]; 4568 4569 anon_cost += mz->lruvec.anon_cost; 4570 file_cost += mz->lruvec.file_cost; 4571 } 4572 seq_buf_printf(s, "anon_cost %lu\n", anon_cost); 4573 seq_buf_printf(s, "file_cost %lu\n", file_cost); 4574 } 4575 #endif 4576 } 4577 4578 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4579 struct cftype *cft) 4580 { 4581 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4582 4583 return mem_cgroup_swappiness(memcg); 4584 } 4585 4586 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4587 struct cftype *cft, u64 val) 4588 { 4589 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4590 4591 if (val > 200) 4592 return -EINVAL; 4593 4594 if (!mem_cgroup_is_root(memcg)) 4595 WRITE_ONCE(memcg->swappiness, val); 4596 else 4597 WRITE_ONCE(vm_swappiness, val); 4598 4599 return 0; 4600 } 4601 4602 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4603 { 4604 struct mem_cgroup_threshold_ary *t; 4605 unsigned long usage; 4606 int i; 4607 4608 rcu_read_lock(); 4609 if (!swap) 4610 t = rcu_dereference(memcg->thresholds.primary); 4611 else 4612 t = rcu_dereference(memcg->memsw_thresholds.primary); 4613 4614 if (!t) 4615 goto unlock; 4616 4617 usage = mem_cgroup_usage(memcg, swap); 4618 4619 /* 4620 * current_threshold points to threshold just below or equal to usage. 4621 * If it's not true, a threshold was crossed after last 4622 * call of __mem_cgroup_threshold(). 4623 */ 4624 i = t->current_threshold; 4625 4626 /* 4627 * Iterate backward over array of thresholds starting from 4628 * current_threshold and check if a threshold is crossed. 4629 * If none of thresholds below usage is crossed, we read 4630 * only one element of the array here. 4631 */ 4632 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4633 eventfd_signal(t->entries[i].eventfd); 4634 4635 /* i = current_threshold + 1 */ 4636 i++; 4637 4638 /* 4639 * Iterate forward over array of thresholds starting from 4640 * current_threshold+1 and check if a threshold is crossed. 4641 * If none of thresholds above usage is crossed, we read 4642 * only one element of the array here. 4643 */ 4644 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4645 eventfd_signal(t->entries[i].eventfd); 4646 4647 /* Update current_threshold */ 4648 t->current_threshold = i - 1; 4649 unlock: 4650 rcu_read_unlock(); 4651 } 4652 4653 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4654 { 4655 while (memcg) { 4656 __mem_cgroup_threshold(memcg, false); 4657 if (do_memsw_account()) 4658 __mem_cgroup_threshold(memcg, true); 4659 4660 memcg = parent_mem_cgroup(memcg); 4661 } 4662 } 4663 4664 static int compare_thresholds(const void *a, const void *b) 4665 { 4666 const struct mem_cgroup_threshold *_a = a; 4667 const struct mem_cgroup_threshold *_b = b; 4668 4669 if (_a->threshold > _b->threshold) 4670 return 1; 4671 4672 if (_a->threshold < _b->threshold) 4673 return -1; 4674 4675 return 0; 4676 } 4677 4678 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4679 { 4680 struct mem_cgroup_eventfd_list *ev; 4681 4682 spin_lock(&memcg_oom_lock); 4683 4684 list_for_each_entry(ev, &memcg->oom_notify, list) 4685 eventfd_signal(ev->eventfd); 4686 4687 spin_unlock(&memcg_oom_lock); 4688 return 0; 4689 } 4690 4691 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4692 { 4693 struct mem_cgroup *iter; 4694 4695 for_each_mem_cgroup_tree(iter, memcg) 4696 mem_cgroup_oom_notify_cb(iter); 4697 } 4698 4699 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4700 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4701 { 4702 struct mem_cgroup_thresholds *thresholds; 4703 struct mem_cgroup_threshold_ary *new; 4704 unsigned long threshold; 4705 unsigned long usage; 4706 int i, size, ret; 4707 4708 ret = page_counter_memparse(args, "-1", &threshold); 4709 if (ret) 4710 return ret; 4711 4712 mutex_lock(&memcg->thresholds_lock); 4713 4714 if (type == _MEM) { 4715 thresholds = &memcg->thresholds; 4716 usage = mem_cgroup_usage(memcg, false); 4717 } else if (type == _MEMSWAP) { 4718 thresholds = &memcg->memsw_thresholds; 4719 usage = mem_cgroup_usage(memcg, true); 4720 } else 4721 BUG(); 4722 4723 /* Check if a threshold crossed before adding a new one */ 4724 if (thresholds->primary) 4725 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4726 4727 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4728 4729 /* Allocate memory for new array of thresholds */ 4730 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4731 if (!new) { 4732 ret = -ENOMEM; 4733 goto unlock; 4734 } 4735 new->size = size; 4736 4737 /* Copy thresholds (if any) to new array */ 4738 if (thresholds->primary) 4739 memcpy(new->entries, thresholds->primary->entries, 4740 flex_array_size(new, entries, size - 1)); 4741 4742 /* Add new threshold */ 4743 new->entries[size - 1].eventfd = eventfd; 4744 new->entries[size - 1].threshold = threshold; 4745 4746 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4747 sort(new->entries, size, sizeof(*new->entries), 4748 compare_thresholds, NULL); 4749 4750 /* Find current threshold */ 4751 new->current_threshold = -1; 4752 for (i = 0; i < size; i++) { 4753 if (new->entries[i].threshold <= usage) { 4754 /* 4755 * new->current_threshold will not be used until 4756 * rcu_assign_pointer(), so it's safe to increment 4757 * it here. 4758 */ 4759 ++new->current_threshold; 4760 } else 4761 break; 4762 } 4763 4764 /* Free old spare buffer and save old primary buffer as spare */ 4765 kfree(thresholds->spare); 4766 thresholds->spare = thresholds->primary; 4767 4768 rcu_assign_pointer(thresholds->primary, new); 4769 4770 /* To be sure that nobody uses thresholds */ 4771 synchronize_rcu(); 4772 4773 unlock: 4774 mutex_unlock(&memcg->thresholds_lock); 4775 4776 return ret; 4777 } 4778 4779 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4780 struct eventfd_ctx *eventfd, const char *args) 4781 { 4782 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4783 } 4784 4785 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4786 struct eventfd_ctx *eventfd, const char *args) 4787 { 4788 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4789 } 4790 4791 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4792 struct eventfd_ctx *eventfd, enum res_type type) 4793 { 4794 struct mem_cgroup_thresholds *thresholds; 4795 struct mem_cgroup_threshold_ary *new; 4796 unsigned long usage; 4797 int i, j, size, entries; 4798 4799 mutex_lock(&memcg->thresholds_lock); 4800 4801 if (type == _MEM) { 4802 thresholds = &memcg->thresholds; 4803 usage = mem_cgroup_usage(memcg, false); 4804 } else if (type == _MEMSWAP) { 4805 thresholds = &memcg->memsw_thresholds; 4806 usage = mem_cgroup_usage(memcg, true); 4807 } else 4808 BUG(); 4809 4810 if (!thresholds->primary) 4811 goto unlock; 4812 4813 /* Check if a threshold crossed before removing */ 4814 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4815 4816 /* Calculate new number of threshold */ 4817 size = entries = 0; 4818 for (i = 0; i < thresholds->primary->size; i++) { 4819 if (thresholds->primary->entries[i].eventfd != eventfd) 4820 size++; 4821 else 4822 entries++; 4823 } 4824 4825 new = thresholds->spare; 4826 4827 /* If no items related to eventfd have been cleared, nothing to do */ 4828 if (!entries) 4829 goto unlock; 4830 4831 /* Set thresholds array to NULL if we don't have thresholds */ 4832 if (!size) { 4833 kfree(new); 4834 new = NULL; 4835 goto swap_buffers; 4836 } 4837 4838 new->size = size; 4839 4840 /* Copy thresholds and find current threshold */ 4841 new->current_threshold = -1; 4842 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4843 if (thresholds->primary->entries[i].eventfd == eventfd) 4844 continue; 4845 4846 new->entries[j] = thresholds->primary->entries[i]; 4847 if (new->entries[j].threshold <= usage) { 4848 /* 4849 * new->current_threshold will not be used 4850 * until rcu_assign_pointer(), so it's safe to increment 4851 * it here. 4852 */ 4853 ++new->current_threshold; 4854 } 4855 j++; 4856 } 4857 4858 swap_buffers: 4859 /* Swap primary and spare array */ 4860 thresholds->spare = thresholds->primary; 4861 4862 rcu_assign_pointer(thresholds->primary, new); 4863 4864 /* To be sure that nobody uses thresholds */ 4865 synchronize_rcu(); 4866 4867 /* If all events are unregistered, free the spare array */ 4868 if (!new) { 4869 kfree(thresholds->spare); 4870 thresholds->spare = NULL; 4871 } 4872 unlock: 4873 mutex_unlock(&memcg->thresholds_lock); 4874 } 4875 4876 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4877 struct eventfd_ctx *eventfd) 4878 { 4879 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4880 } 4881 4882 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4883 struct eventfd_ctx *eventfd) 4884 { 4885 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4886 } 4887 4888 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4889 struct eventfd_ctx *eventfd, const char *args) 4890 { 4891 struct mem_cgroup_eventfd_list *event; 4892 4893 event = kmalloc(sizeof(*event), GFP_KERNEL); 4894 if (!event) 4895 return -ENOMEM; 4896 4897 spin_lock(&memcg_oom_lock); 4898 4899 event->eventfd = eventfd; 4900 list_add(&event->list, &memcg->oom_notify); 4901 4902 /* already in OOM ? */ 4903 if (memcg->under_oom) 4904 eventfd_signal(eventfd); 4905 spin_unlock(&memcg_oom_lock); 4906 4907 return 0; 4908 } 4909 4910 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4911 struct eventfd_ctx *eventfd) 4912 { 4913 struct mem_cgroup_eventfd_list *ev, *tmp; 4914 4915 spin_lock(&memcg_oom_lock); 4916 4917 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4918 if (ev->eventfd == eventfd) { 4919 list_del(&ev->list); 4920 kfree(ev); 4921 } 4922 } 4923 4924 spin_unlock(&memcg_oom_lock); 4925 } 4926 4927 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4928 { 4929 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4930 4931 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); 4932 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4933 seq_printf(sf, "oom_kill %lu\n", 4934 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4935 return 0; 4936 } 4937 4938 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4939 struct cftype *cft, u64 val) 4940 { 4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4942 4943 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4944 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4945 return -EINVAL; 4946 4947 WRITE_ONCE(memcg->oom_kill_disable, val); 4948 if (!val) 4949 memcg_oom_recover(memcg); 4950 4951 return 0; 4952 } 4953 4954 #ifdef CONFIG_CGROUP_WRITEBACK 4955 4956 #include <trace/events/writeback.h> 4957 4958 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4959 { 4960 return wb_domain_init(&memcg->cgwb_domain, gfp); 4961 } 4962 4963 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4964 { 4965 wb_domain_exit(&memcg->cgwb_domain); 4966 } 4967 4968 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4969 { 4970 wb_domain_size_changed(&memcg->cgwb_domain); 4971 } 4972 4973 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4974 { 4975 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4976 4977 if (!memcg->css.parent) 4978 return NULL; 4979 4980 return &memcg->cgwb_domain; 4981 } 4982 4983 /** 4984 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4985 * @wb: bdi_writeback in question 4986 * @pfilepages: out parameter for number of file pages 4987 * @pheadroom: out parameter for number of allocatable pages according to memcg 4988 * @pdirty: out parameter for number of dirty pages 4989 * @pwriteback: out parameter for number of pages under writeback 4990 * 4991 * Determine the numbers of file, headroom, dirty, and writeback pages in 4992 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4993 * is a bit more involved. 4994 * 4995 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4996 * headroom is calculated as the lowest headroom of itself and the 4997 * ancestors. Note that this doesn't consider the actual amount of 4998 * available memory in the system. The caller should further cap 4999 * *@pheadroom accordingly. 5000 */ 5001 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 5002 unsigned long *pheadroom, unsigned long *pdirty, 5003 unsigned long *pwriteback) 5004 { 5005 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 5006 struct mem_cgroup *parent; 5007 5008 mem_cgroup_flush_stats_ratelimited(memcg); 5009 5010 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 5011 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 5012 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 5013 memcg_page_state(memcg, NR_ACTIVE_FILE); 5014 5015 *pheadroom = PAGE_COUNTER_MAX; 5016 while ((parent = parent_mem_cgroup(memcg))) { 5017 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 5018 READ_ONCE(memcg->memory.high)); 5019 unsigned long used = page_counter_read(&memcg->memory); 5020 5021 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 5022 memcg = parent; 5023 } 5024 } 5025 5026 /* 5027 * Foreign dirty flushing 5028 * 5029 * There's an inherent mismatch between memcg and writeback. The former 5030 * tracks ownership per-page while the latter per-inode. This was a 5031 * deliberate design decision because honoring per-page ownership in the 5032 * writeback path is complicated, may lead to higher CPU and IO overheads 5033 * and deemed unnecessary given that write-sharing an inode across 5034 * different cgroups isn't a common use-case. 5035 * 5036 * Combined with inode majority-writer ownership switching, this works well 5037 * enough in most cases but there are some pathological cases. For 5038 * example, let's say there are two cgroups A and B which keep writing to 5039 * different but confined parts of the same inode. B owns the inode and 5040 * A's memory is limited far below B's. A's dirty ratio can rise enough to 5041 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 5042 * triggering background writeback. A will be slowed down without a way to 5043 * make writeback of the dirty pages happen. 5044 * 5045 * Conditions like the above can lead to a cgroup getting repeatedly and 5046 * severely throttled after making some progress after each 5047 * dirty_expire_interval while the underlying IO device is almost 5048 * completely idle. 5049 * 5050 * Solving this problem completely requires matching the ownership tracking 5051 * granularities between memcg and writeback in either direction. However, 5052 * the more egregious behaviors can be avoided by simply remembering the 5053 * most recent foreign dirtying events and initiating remote flushes on 5054 * them when local writeback isn't enough to keep the memory clean enough. 5055 * 5056 * The following two functions implement such mechanism. When a foreign 5057 * page - a page whose memcg and writeback ownerships don't match - is 5058 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 5059 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 5060 * decides that the memcg needs to sleep due to high dirty ratio, it calls 5061 * mem_cgroup_flush_foreign() which queues writeback on the recorded 5062 * foreign bdi_writebacks which haven't expired. Both the numbers of 5063 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 5064 * limited to MEMCG_CGWB_FRN_CNT. 5065 * 5066 * The mechanism only remembers IDs and doesn't hold any object references. 5067 * As being wrong occasionally doesn't matter, updates and accesses to the 5068 * records are lockless and racy. 5069 */ 5070 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 5071 struct bdi_writeback *wb) 5072 { 5073 struct mem_cgroup *memcg = folio_memcg(folio); 5074 struct memcg_cgwb_frn *frn; 5075 u64 now = get_jiffies_64(); 5076 u64 oldest_at = now; 5077 int oldest = -1; 5078 int i; 5079 5080 trace_track_foreign_dirty(folio, wb); 5081 5082 /* 5083 * Pick the slot to use. If there is already a slot for @wb, keep 5084 * using it. If not replace the oldest one which isn't being 5085 * written out. 5086 */ 5087 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 5088 frn = &memcg->cgwb_frn[i]; 5089 if (frn->bdi_id == wb->bdi->id && 5090 frn->memcg_id == wb->memcg_css->id) 5091 break; 5092 if (time_before64(frn->at, oldest_at) && 5093 atomic_read(&frn->done.cnt) == 1) { 5094 oldest = i; 5095 oldest_at = frn->at; 5096 } 5097 } 5098 5099 if (i < MEMCG_CGWB_FRN_CNT) { 5100 /* 5101 * Re-using an existing one. Update timestamp lazily to 5102 * avoid making the cacheline hot. We want them to be 5103 * reasonably up-to-date and significantly shorter than 5104 * dirty_expire_interval as that's what expires the record. 5105 * Use the shorter of 1s and dirty_expire_interval / 8. 5106 */ 5107 unsigned long update_intv = 5108 min_t(unsigned long, HZ, 5109 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 5110 5111 if (time_before64(frn->at, now - update_intv)) 5112 frn->at = now; 5113 } else if (oldest >= 0) { 5114 /* replace the oldest free one */ 5115 frn = &memcg->cgwb_frn[oldest]; 5116 frn->bdi_id = wb->bdi->id; 5117 frn->memcg_id = wb->memcg_css->id; 5118 frn->at = now; 5119 } 5120 } 5121 5122 /* issue foreign writeback flushes for recorded foreign dirtying events */ 5123 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 5124 { 5125 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 5126 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 5127 u64 now = jiffies_64; 5128 int i; 5129 5130 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 5131 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 5132 5133 /* 5134 * If the record is older than dirty_expire_interval, 5135 * writeback on it has already started. No need to kick it 5136 * off again. Also, don't start a new one if there's 5137 * already one in flight. 5138 */ 5139 if (time_after64(frn->at, now - intv) && 5140 atomic_read(&frn->done.cnt) == 1) { 5141 frn->at = 0; 5142 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 5143 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 5144 WB_REASON_FOREIGN_FLUSH, 5145 &frn->done); 5146 } 5147 } 5148 } 5149 5150 #else /* CONFIG_CGROUP_WRITEBACK */ 5151 5152 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 5153 { 5154 return 0; 5155 } 5156 5157 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 5158 { 5159 } 5160 5161 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 5162 { 5163 } 5164 5165 #endif /* CONFIG_CGROUP_WRITEBACK */ 5166 5167 /* 5168 * DO NOT USE IN NEW FILES. 5169 * 5170 * "cgroup.event_control" implementation. 5171 * 5172 * This is way over-engineered. It tries to support fully configurable 5173 * events for each user. Such level of flexibility is completely 5174 * unnecessary especially in the light of the planned unified hierarchy. 5175 * 5176 * Please deprecate this and replace with something simpler if at all 5177 * possible. 5178 */ 5179 5180 /* 5181 * Unregister event and free resources. 5182 * 5183 * Gets called from workqueue. 5184 */ 5185 static void memcg_event_remove(struct work_struct *work) 5186 { 5187 struct mem_cgroup_event *event = 5188 container_of(work, struct mem_cgroup_event, remove); 5189 struct mem_cgroup *memcg = event->memcg; 5190 5191 remove_wait_queue(event->wqh, &event->wait); 5192 5193 event->unregister_event(memcg, event->eventfd); 5194 5195 /* Notify userspace the event is going away. */ 5196 eventfd_signal(event->eventfd); 5197 5198 eventfd_ctx_put(event->eventfd); 5199 kfree(event); 5200 css_put(&memcg->css); 5201 } 5202 5203 /* 5204 * Gets called on EPOLLHUP on eventfd when user closes it. 5205 * 5206 * Called with wqh->lock held and interrupts disabled. 5207 */ 5208 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 5209 int sync, void *key) 5210 { 5211 struct mem_cgroup_event *event = 5212 container_of(wait, struct mem_cgroup_event, wait); 5213 struct mem_cgroup *memcg = event->memcg; 5214 __poll_t flags = key_to_poll(key); 5215 5216 if (flags & EPOLLHUP) { 5217 /* 5218 * If the event has been detached at cgroup removal, we 5219 * can simply return knowing the other side will cleanup 5220 * for us. 5221 * 5222 * We can't race against event freeing since the other 5223 * side will require wqh->lock via remove_wait_queue(), 5224 * which we hold. 5225 */ 5226 spin_lock(&memcg->event_list_lock); 5227 if (!list_empty(&event->list)) { 5228 list_del_init(&event->list); 5229 /* 5230 * We are in atomic context, but cgroup_event_remove() 5231 * may sleep, so we have to call it in workqueue. 5232 */ 5233 schedule_work(&event->remove); 5234 } 5235 spin_unlock(&memcg->event_list_lock); 5236 } 5237 5238 return 0; 5239 } 5240 5241 static void memcg_event_ptable_queue_proc(struct file *file, 5242 wait_queue_head_t *wqh, poll_table *pt) 5243 { 5244 struct mem_cgroup_event *event = 5245 container_of(pt, struct mem_cgroup_event, pt); 5246 5247 event->wqh = wqh; 5248 add_wait_queue(wqh, &event->wait); 5249 } 5250 5251 /* 5252 * DO NOT USE IN NEW FILES. 5253 * 5254 * Parse input and register new cgroup event handler. 5255 * 5256 * Input must be in format '<event_fd> <control_fd> <args>'. 5257 * Interpretation of args is defined by control file implementation. 5258 */ 5259 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 5260 char *buf, size_t nbytes, loff_t off) 5261 { 5262 struct cgroup_subsys_state *css = of_css(of); 5263 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5264 struct mem_cgroup_event *event; 5265 struct cgroup_subsys_state *cfile_css; 5266 unsigned int efd, cfd; 5267 struct fd efile; 5268 struct fd cfile; 5269 struct dentry *cdentry; 5270 const char *name; 5271 char *endp; 5272 int ret; 5273 5274 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 5275 return -EOPNOTSUPP; 5276 5277 buf = strstrip(buf); 5278 5279 efd = simple_strtoul(buf, &endp, 10); 5280 if (*endp != ' ') 5281 return -EINVAL; 5282 buf = endp + 1; 5283 5284 cfd = simple_strtoul(buf, &endp, 10); 5285 if ((*endp != ' ') && (*endp != '\0')) 5286 return -EINVAL; 5287 buf = endp + 1; 5288 5289 event = kzalloc(sizeof(*event), GFP_KERNEL); 5290 if (!event) 5291 return -ENOMEM; 5292 5293 event->memcg = memcg; 5294 INIT_LIST_HEAD(&event->list); 5295 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 5296 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 5297 INIT_WORK(&event->remove, memcg_event_remove); 5298 5299 efile = fdget(efd); 5300 if (!efile.file) { 5301 ret = -EBADF; 5302 goto out_kfree; 5303 } 5304 5305 event->eventfd = eventfd_ctx_fileget(efile.file); 5306 if (IS_ERR(event->eventfd)) { 5307 ret = PTR_ERR(event->eventfd); 5308 goto out_put_efile; 5309 } 5310 5311 cfile = fdget(cfd); 5312 if (!cfile.file) { 5313 ret = -EBADF; 5314 goto out_put_eventfd; 5315 } 5316 5317 /* the process need read permission on control file */ 5318 /* AV: shouldn't we check that it's been opened for read instead? */ 5319 ret = file_permission(cfile.file, MAY_READ); 5320 if (ret < 0) 5321 goto out_put_cfile; 5322 5323 /* 5324 * The control file must be a regular cgroup1 file. As a regular cgroup 5325 * file can't be renamed, it's safe to access its name afterwards. 5326 */ 5327 cdentry = cfile.file->f_path.dentry; 5328 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 5329 ret = -EINVAL; 5330 goto out_put_cfile; 5331 } 5332 5333 /* 5334 * Determine the event callbacks and set them in @event. This used 5335 * to be done via struct cftype but cgroup core no longer knows 5336 * about these events. The following is crude but the whole thing 5337 * is for compatibility anyway. 5338 * 5339 * DO NOT ADD NEW FILES. 5340 */ 5341 name = cdentry->d_name.name; 5342 5343 if (!strcmp(name, "memory.usage_in_bytes")) { 5344 event->register_event = mem_cgroup_usage_register_event; 5345 event->unregister_event = mem_cgroup_usage_unregister_event; 5346 } else if (!strcmp(name, "memory.oom_control")) { 5347 event->register_event = mem_cgroup_oom_register_event; 5348 event->unregister_event = mem_cgroup_oom_unregister_event; 5349 } else if (!strcmp(name, "memory.pressure_level")) { 5350 event->register_event = vmpressure_register_event; 5351 event->unregister_event = vmpressure_unregister_event; 5352 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 5353 event->register_event = memsw_cgroup_usage_register_event; 5354 event->unregister_event = memsw_cgroup_usage_unregister_event; 5355 } else { 5356 ret = -EINVAL; 5357 goto out_put_cfile; 5358 } 5359 5360 /* 5361 * Verify @cfile should belong to @css. Also, remaining events are 5362 * automatically removed on cgroup destruction but the removal is 5363 * asynchronous, so take an extra ref on @css. 5364 */ 5365 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 5366 &memory_cgrp_subsys); 5367 ret = -EINVAL; 5368 if (IS_ERR(cfile_css)) 5369 goto out_put_cfile; 5370 if (cfile_css != css) { 5371 css_put(cfile_css); 5372 goto out_put_cfile; 5373 } 5374 5375 ret = event->register_event(memcg, event->eventfd, buf); 5376 if (ret) 5377 goto out_put_css; 5378 5379 vfs_poll(efile.file, &event->pt); 5380 5381 spin_lock_irq(&memcg->event_list_lock); 5382 list_add(&event->list, &memcg->event_list); 5383 spin_unlock_irq(&memcg->event_list_lock); 5384 5385 fdput(cfile); 5386 fdput(efile); 5387 5388 return nbytes; 5389 5390 out_put_css: 5391 css_put(css); 5392 out_put_cfile: 5393 fdput(cfile); 5394 out_put_eventfd: 5395 eventfd_ctx_put(event->eventfd); 5396 out_put_efile: 5397 fdput(efile); 5398 out_kfree: 5399 kfree(event); 5400 5401 return ret; 5402 } 5403 5404 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG) 5405 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 5406 { 5407 /* 5408 * Deprecated. 5409 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 5410 */ 5411 return 0; 5412 } 5413 #endif 5414 5415 static int memory_stat_show(struct seq_file *m, void *v); 5416 5417 static struct cftype mem_cgroup_legacy_files[] = { 5418 { 5419 .name = "usage_in_bytes", 5420 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5421 .read_u64 = mem_cgroup_read_u64, 5422 }, 5423 { 5424 .name = "max_usage_in_bytes", 5425 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5426 .write = mem_cgroup_reset, 5427 .read_u64 = mem_cgroup_read_u64, 5428 }, 5429 { 5430 .name = "limit_in_bytes", 5431 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5432 .write = mem_cgroup_write, 5433 .read_u64 = mem_cgroup_read_u64, 5434 }, 5435 { 5436 .name = "soft_limit_in_bytes", 5437 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5438 .write = mem_cgroup_write, 5439 .read_u64 = mem_cgroup_read_u64, 5440 }, 5441 { 5442 .name = "failcnt", 5443 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5444 .write = mem_cgroup_reset, 5445 .read_u64 = mem_cgroup_read_u64, 5446 }, 5447 { 5448 .name = "stat", 5449 .seq_show = memory_stat_show, 5450 }, 5451 { 5452 .name = "force_empty", 5453 .write = mem_cgroup_force_empty_write, 5454 }, 5455 { 5456 .name = "use_hierarchy", 5457 .write_u64 = mem_cgroup_hierarchy_write, 5458 .read_u64 = mem_cgroup_hierarchy_read, 5459 }, 5460 { 5461 .name = "cgroup.event_control", /* XXX: for compat */ 5462 .write = memcg_write_event_control, 5463 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5464 }, 5465 { 5466 .name = "swappiness", 5467 .read_u64 = mem_cgroup_swappiness_read, 5468 .write_u64 = mem_cgroup_swappiness_write, 5469 }, 5470 { 5471 .name = "move_charge_at_immigrate", 5472 .read_u64 = mem_cgroup_move_charge_read, 5473 .write_u64 = mem_cgroup_move_charge_write, 5474 }, 5475 { 5476 .name = "oom_control", 5477 .seq_show = mem_cgroup_oom_control_read, 5478 .write_u64 = mem_cgroup_oom_control_write, 5479 }, 5480 { 5481 .name = "pressure_level", 5482 .seq_show = mem_cgroup_dummy_seq_show, 5483 }, 5484 #ifdef CONFIG_NUMA 5485 { 5486 .name = "numa_stat", 5487 .seq_show = memcg_numa_stat_show, 5488 }, 5489 #endif 5490 { 5491 .name = "kmem.limit_in_bytes", 5492 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5493 .write = mem_cgroup_write, 5494 .read_u64 = mem_cgroup_read_u64, 5495 }, 5496 { 5497 .name = "kmem.usage_in_bytes", 5498 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5499 .read_u64 = mem_cgroup_read_u64, 5500 }, 5501 { 5502 .name = "kmem.failcnt", 5503 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5504 .write = mem_cgroup_reset, 5505 .read_u64 = mem_cgroup_read_u64, 5506 }, 5507 { 5508 .name = "kmem.max_usage_in_bytes", 5509 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5510 .write = mem_cgroup_reset, 5511 .read_u64 = mem_cgroup_read_u64, 5512 }, 5513 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG) 5514 { 5515 .name = "kmem.slabinfo", 5516 .seq_show = mem_cgroup_slab_show, 5517 }, 5518 #endif 5519 { 5520 .name = "kmem.tcp.limit_in_bytes", 5521 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5522 .write = mem_cgroup_write, 5523 .read_u64 = mem_cgroup_read_u64, 5524 }, 5525 { 5526 .name = "kmem.tcp.usage_in_bytes", 5527 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5528 .read_u64 = mem_cgroup_read_u64, 5529 }, 5530 { 5531 .name = "kmem.tcp.failcnt", 5532 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5533 .write = mem_cgroup_reset, 5534 .read_u64 = mem_cgroup_read_u64, 5535 }, 5536 { 5537 .name = "kmem.tcp.max_usage_in_bytes", 5538 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5539 .write = mem_cgroup_reset, 5540 .read_u64 = mem_cgroup_read_u64, 5541 }, 5542 { }, /* terminate */ 5543 }; 5544 5545 /* 5546 * Private memory cgroup IDR 5547 * 5548 * Swap-out records and page cache shadow entries need to store memcg 5549 * references in constrained space, so we maintain an ID space that is 5550 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5551 * memory-controlled cgroups to 64k. 5552 * 5553 * However, there usually are many references to the offline CSS after 5554 * the cgroup has been destroyed, such as page cache or reclaimable 5555 * slab objects, that don't need to hang on to the ID. We want to keep 5556 * those dead CSS from occupying IDs, or we might quickly exhaust the 5557 * relatively small ID space and prevent the creation of new cgroups 5558 * even when there are much fewer than 64k cgroups - possibly none. 5559 * 5560 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5561 * be freed and recycled when it's no longer needed, which is usually 5562 * when the CSS is offlined. 5563 * 5564 * The only exception to that are records of swapped out tmpfs/shmem 5565 * pages that need to be attributed to live ancestors on swapin. But 5566 * those references are manageable from userspace. 5567 */ 5568 5569 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 5570 static DEFINE_IDR(mem_cgroup_idr); 5571 5572 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5573 { 5574 if (memcg->id.id > 0) { 5575 idr_remove(&mem_cgroup_idr, memcg->id.id); 5576 memcg->id.id = 0; 5577 } 5578 } 5579 5580 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5581 unsigned int n) 5582 { 5583 refcount_add(n, &memcg->id.ref); 5584 } 5585 5586 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5587 { 5588 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5589 mem_cgroup_id_remove(memcg); 5590 5591 /* Memcg ID pins CSS */ 5592 css_put(&memcg->css); 5593 } 5594 } 5595 5596 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5597 { 5598 mem_cgroup_id_put_many(memcg, 1); 5599 } 5600 5601 /** 5602 * mem_cgroup_from_id - look up a memcg from a memcg id 5603 * @id: the memcg id to look up 5604 * 5605 * Caller must hold rcu_read_lock(). 5606 */ 5607 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5608 { 5609 WARN_ON_ONCE(!rcu_read_lock_held()); 5610 return idr_find(&mem_cgroup_idr, id); 5611 } 5612 5613 #ifdef CONFIG_SHRINKER_DEBUG 5614 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5615 { 5616 struct cgroup *cgrp; 5617 struct cgroup_subsys_state *css; 5618 struct mem_cgroup *memcg; 5619 5620 cgrp = cgroup_get_from_id(ino); 5621 if (IS_ERR(cgrp)) 5622 return ERR_CAST(cgrp); 5623 5624 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5625 if (css) 5626 memcg = container_of(css, struct mem_cgroup, css); 5627 else 5628 memcg = ERR_PTR(-ENOENT); 5629 5630 cgroup_put(cgrp); 5631 5632 return memcg; 5633 } 5634 #endif 5635 5636 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5637 { 5638 struct mem_cgroup_per_node *pn; 5639 5640 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5641 if (!pn) 5642 return false; 5643 5644 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 5645 GFP_KERNEL_ACCOUNT, node); 5646 if (!pn->lruvec_stats) 5647 goto fail; 5648 5649 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5650 GFP_KERNEL_ACCOUNT); 5651 if (!pn->lruvec_stats_percpu) 5652 goto fail; 5653 5654 lruvec_init(&pn->lruvec); 5655 pn->memcg = memcg; 5656 5657 memcg->nodeinfo[node] = pn; 5658 return true; 5659 fail: 5660 kfree(pn->lruvec_stats); 5661 kfree(pn); 5662 return false; 5663 } 5664 5665 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5666 { 5667 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5668 5669 if (!pn) 5670 return; 5671 5672 free_percpu(pn->lruvec_stats_percpu); 5673 kfree(pn->lruvec_stats); 5674 kfree(pn); 5675 } 5676 5677 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5678 { 5679 int node; 5680 5681 obj_cgroup_put(memcg->orig_objcg); 5682 5683 for_each_node(node) 5684 free_mem_cgroup_per_node_info(memcg, node); 5685 kfree(memcg->vmstats); 5686 free_percpu(memcg->vmstats_percpu); 5687 kfree(memcg); 5688 } 5689 5690 static void mem_cgroup_free(struct mem_cgroup *memcg) 5691 { 5692 lru_gen_exit_memcg(memcg); 5693 memcg_wb_domain_exit(memcg); 5694 __mem_cgroup_free(memcg); 5695 } 5696 5697 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 5698 { 5699 struct memcg_vmstats_percpu *statc, *pstatc; 5700 struct mem_cgroup *memcg; 5701 int node, cpu; 5702 int __maybe_unused i; 5703 long error = -ENOMEM; 5704 5705 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5706 if (!memcg) 5707 return ERR_PTR(error); 5708 5709 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5710 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5711 if (memcg->id.id < 0) { 5712 error = memcg->id.id; 5713 goto fail; 5714 } 5715 5716 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 5717 GFP_KERNEL_ACCOUNT); 5718 if (!memcg->vmstats) 5719 goto fail; 5720 5721 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5722 GFP_KERNEL_ACCOUNT); 5723 if (!memcg->vmstats_percpu) 5724 goto fail; 5725 5726 for_each_possible_cpu(cpu) { 5727 if (parent) 5728 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 5729 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5730 statc->parent = parent ? pstatc : NULL; 5731 statc->vmstats = memcg->vmstats; 5732 } 5733 5734 for_each_node(node) 5735 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 5736 goto fail; 5737 5738 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5739 goto fail; 5740 5741 INIT_WORK(&memcg->high_work, high_work_func); 5742 INIT_LIST_HEAD(&memcg->oom_notify); 5743 mutex_init(&memcg->thresholds_lock); 5744 spin_lock_init(&memcg->move_lock); 5745 vmpressure_init(&memcg->vmpressure); 5746 INIT_LIST_HEAD(&memcg->event_list); 5747 spin_lock_init(&memcg->event_list_lock); 5748 memcg->socket_pressure = jiffies; 5749 #ifdef CONFIG_MEMCG_KMEM 5750 memcg->kmemcg_id = -1; 5751 INIT_LIST_HEAD(&memcg->objcg_list); 5752 #endif 5753 #ifdef CONFIG_CGROUP_WRITEBACK 5754 INIT_LIST_HEAD(&memcg->cgwb_list); 5755 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5756 memcg->cgwb_frn[i].done = 5757 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5758 #endif 5759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5760 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5761 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5762 memcg->deferred_split_queue.split_queue_len = 0; 5763 #endif 5764 lru_gen_init_memcg(memcg); 5765 return memcg; 5766 fail: 5767 mem_cgroup_id_remove(memcg); 5768 __mem_cgroup_free(memcg); 5769 return ERR_PTR(error); 5770 } 5771 5772 static struct cgroup_subsys_state * __ref 5773 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5774 { 5775 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5776 struct mem_cgroup *memcg, *old_memcg; 5777 5778 old_memcg = set_active_memcg(parent); 5779 memcg = mem_cgroup_alloc(parent); 5780 set_active_memcg(old_memcg); 5781 if (IS_ERR(memcg)) 5782 return ERR_CAST(memcg); 5783 5784 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5785 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5786 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5787 memcg->zswap_max = PAGE_COUNTER_MAX; 5788 WRITE_ONCE(memcg->zswap_writeback, 5789 !parent || READ_ONCE(parent->zswap_writeback)); 5790 #endif 5791 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5792 if (parent) { 5793 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 5794 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 5795 5796 page_counter_init(&memcg->memory, &parent->memory); 5797 page_counter_init(&memcg->swap, &parent->swap); 5798 page_counter_init(&memcg->kmem, &parent->kmem); 5799 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5800 } else { 5801 init_memcg_stats(); 5802 init_memcg_events(); 5803 page_counter_init(&memcg->memory, NULL); 5804 page_counter_init(&memcg->swap, NULL); 5805 page_counter_init(&memcg->kmem, NULL); 5806 page_counter_init(&memcg->tcpmem, NULL); 5807 5808 root_mem_cgroup = memcg; 5809 return &memcg->css; 5810 } 5811 5812 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5813 static_branch_inc(&memcg_sockets_enabled_key); 5814 5815 #if defined(CONFIG_MEMCG_KMEM) 5816 if (!cgroup_memory_nobpf) 5817 static_branch_inc(&memcg_bpf_enabled_key); 5818 #endif 5819 5820 return &memcg->css; 5821 } 5822 5823 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5824 { 5825 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5826 5827 if (memcg_online_kmem(memcg)) 5828 goto remove_id; 5829 5830 /* 5831 * A memcg must be visible for expand_shrinker_info() 5832 * by the time the maps are allocated. So, we allocate maps 5833 * here, when for_each_mem_cgroup() can't skip it. 5834 */ 5835 if (alloc_shrinker_info(memcg)) 5836 goto offline_kmem; 5837 5838 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 5839 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5840 FLUSH_TIME); 5841 lru_gen_online_memcg(memcg); 5842 5843 /* Online state pins memcg ID, memcg ID pins CSS */ 5844 refcount_set(&memcg->id.ref, 1); 5845 css_get(css); 5846 5847 /* 5848 * Ensure mem_cgroup_from_id() works once we're fully online. 5849 * 5850 * We could do this earlier and require callers to filter with 5851 * css_tryget_online(). But right now there are no users that 5852 * need earlier access, and the workingset code relies on the 5853 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 5854 * publish it here at the end of onlining. This matches the 5855 * regular ID destruction during offlining. 5856 */ 5857 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5858 5859 return 0; 5860 offline_kmem: 5861 memcg_offline_kmem(memcg); 5862 remove_id: 5863 mem_cgroup_id_remove(memcg); 5864 return -ENOMEM; 5865 } 5866 5867 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5868 { 5869 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5870 struct mem_cgroup_event *event, *tmp; 5871 5872 /* 5873 * Unregister events and notify userspace. 5874 * Notify userspace about cgroup removing only after rmdir of cgroup 5875 * directory to avoid race between userspace and kernelspace. 5876 */ 5877 spin_lock_irq(&memcg->event_list_lock); 5878 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5879 list_del_init(&event->list); 5880 schedule_work(&event->remove); 5881 } 5882 spin_unlock_irq(&memcg->event_list_lock); 5883 5884 page_counter_set_min(&memcg->memory, 0); 5885 page_counter_set_low(&memcg->memory, 0); 5886 5887 zswap_memcg_offline_cleanup(memcg); 5888 5889 memcg_offline_kmem(memcg); 5890 reparent_shrinker_deferred(memcg); 5891 wb_memcg_offline(memcg); 5892 lru_gen_offline_memcg(memcg); 5893 5894 drain_all_stock(memcg); 5895 5896 mem_cgroup_id_put(memcg); 5897 } 5898 5899 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5900 { 5901 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5902 5903 invalidate_reclaim_iterators(memcg); 5904 lru_gen_release_memcg(memcg); 5905 } 5906 5907 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5908 { 5909 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5910 int __maybe_unused i; 5911 5912 #ifdef CONFIG_CGROUP_WRITEBACK 5913 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5914 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5915 #endif 5916 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5917 static_branch_dec(&memcg_sockets_enabled_key); 5918 5919 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5920 static_branch_dec(&memcg_sockets_enabled_key); 5921 5922 #if defined(CONFIG_MEMCG_KMEM) 5923 if (!cgroup_memory_nobpf) 5924 static_branch_dec(&memcg_bpf_enabled_key); 5925 #endif 5926 5927 vmpressure_cleanup(&memcg->vmpressure); 5928 cancel_work_sync(&memcg->high_work); 5929 mem_cgroup_remove_from_trees(memcg); 5930 free_shrinker_info(memcg); 5931 mem_cgroup_free(memcg); 5932 } 5933 5934 /** 5935 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5936 * @css: the target css 5937 * 5938 * Reset the states of the mem_cgroup associated with @css. This is 5939 * invoked when the userland requests disabling on the default hierarchy 5940 * but the memcg is pinned through dependency. The memcg should stop 5941 * applying policies and should revert to the vanilla state as it may be 5942 * made visible again. 5943 * 5944 * The current implementation only resets the essential configurations. 5945 * This needs to be expanded to cover all the visible parts. 5946 */ 5947 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5948 { 5949 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5950 5951 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5952 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5953 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5954 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5955 page_counter_set_min(&memcg->memory, 0); 5956 page_counter_set_low(&memcg->memory, 0); 5957 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5958 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5959 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5960 memcg_wb_domain_size_changed(memcg); 5961 } 5962 5963 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5964 { 5965 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5966 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5967 struct memcg_vmstats_percpu *statc; 5968 long delta, delta_cpu, v; 5969 int i, nid; 5970 5971 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5972 5973 for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) { 5974 /* 5975 * Collect the aggregated propagation counts of groups 5976 * below us. We're in a per-cpu loop here and this is 5977 * a global counter, so the first cycle will get them. 5978 */ 5979 delta = memcg->vmstats->state_pending[i]; 5980 if (delta) 5981 memcg->vmstats->state_pending[i] = 0; 5982 5983 /* Add CPU changes on this level since the last flush */ 5984 delta_cpu = 0; 5985 v = READ_ONCE(statc->state[i]); 5986 if (v != statc->state_prev[i]) { 5987 delta_cpu = v - statc->state_prev[i]; 5988 delta += delta_cpu; 5989 statc->state_prev[i] = v; 5990 } 5991 5992 /* Aggregate counts on this level and propagate upwards */ 5993 if (delta_cpu) 5994 memcg->vmstats->state_local[i] += delta_cpu; 5995 5996 if (delta) { 5997 memcg->vmstats->state[i] += delta; 5998 if (parent) 5999 parent->vmstats->state_pending[i] += delta; 6000 } 6001 } 6002 6003 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 6004 delta = memcg->vmstats->events_pending[i]; 6005 if (delta) 6006 memcg->vmstats->events_pending[i] = 0; 6007 6008 delta_cpu = 0; 6009 v = READ_ONCE(statc->events[i]); 6010 if (v != statc->events_prev[i]) { 6011 delta_cpu = v - statc->events_prev[i]; 6012 delta += delta_cpu; 6013 statc->events_prev[i] = v; 6014 } 6015 6016 if (delta_cpu) 6017 memcg->vmstats->events_local[i] += delta_cpu; 6018 6019 if (delta) { 6020 memcg->vmstats->events[i] += delta; 6021 if (parent) 6022 parent->vmstats->events_pending[i] += delta; 6023 } 6024 } 6025 6026 for_each_node_state(nid, N_MEMORY) { 6027 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 6028 struct lruvec_stats *lstats = pn->lruvec_stats; 6029 struct lruvec_stats *plstats = NULL; 6030 struct lruvec_stats_percpu *lstatc; 6031 6032 if (parent) 6033 plstats = parent->nodeinfo[nid]->lruvec_stats; 6034 6035 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 6036 6037 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) { 6038 delta = lstats->state_pending[i]; 6039 if (delta) 6040 lstats->state_pending[i] = 0; 6041 6042 delta_cpu = 0; 6043 v = READ_ONCE(lstatc->state[i]); 6044 if (v != lstatc->state_prev[i]) { 6045 delta_cpu = v - lstatc->state_prev[i]; 6046 delta += delta_cpu; 6047 lstatc->state_prev[i] = v; 6048 } 6049 6050 if (delta_cpu) 6051 lstats->state_local[i] += delta_cpu; 6052 6053 if (delta) { 6054 lstats->state[i] += delta; 6055 if (plstats) 6056 plstats->state_pending[i] += delta; 6057 } 6058 } 6059 } 6060 WRITE_ONCE(statc->stats_updates, 0); 6061 /* We are in a per-cpu loop here, only do the atomic write once */ 6062 if (atomic64_read(&memcg->vmstats->stats_updates)) 6063 atomic64_set(&memcg->vmstats->stats_updates, 0); 6064 } 6065 6066 #ifdef CONFIG_MMU 6067 /* Handlers for move charge at task migration. */ 6068 static int mem_cgroup_do_precharge(unsigned long count) 6069 { 6070 int ret; 6071 6072 /* Try a single bulk charge without reclaim first, kswapd may wake */ 6073 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 6074 if (!ret) { 6075 mc.precharge += count; 6076 return ret; 6077 } 6078 6079 /* Try charges one by one with reclaim, but do not retry */ 6080 while (count--) { 6081 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 6082 if (ret) 6083 return ret; 6084 mc.precharge++; 6085 cond_resched(); 6086 } 6087 return 0; 6088 } 6089 6090 union mc_target { 6091 struct folio *folio; 6092 swp_entry_t ent; 6093 }; 6094 6095 enum mc_target_type { 6096 MC_TARGET_NONE = 0, 6097 MC_TARGET_PAGE, 6098 MC_TARGET_SWAP, 6099 MC_TARGET_DEVICE, 6100 }; 6101 6102 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6103 unsigned long addr, pte_t ptent) 6104 { 6105 struct page *page = vm_normal_page(vma, addr, ptent); 6106 6107 if (!page) 6108 return NULL; 6109 if (PageAnon(page)) { 6110 if (!(mc.flags & MOVE_ANON)) 6111 return NULL; 6112 } else { 6113 if (!(mc.flags & MOVE_FILE)) 6114 return NULL; 6115 } 6116 get_page(page); 6117 6118 return page; 6119 } 6120 6121 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 6122 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6123 pte_t ptent, swp_entry_t *entry) 6124 { 6125 struct page *page = NULL; 6126 swp_entry_t ent = pte_to_swp_entry(ptent); 6127 6128 if (!(mc.flags & MOVE_ANON)) 6129 return NULL; 6130 6131 /* 6132 * Handle device private pages that are not accessible by the CPU, but 6133 * stored as special swap entries in the page table. 6134 */ 6135 if (is_device_private_entry(ent)) { 6136 page = pfn_swap_entry_to_page(ent); 6137 if (!get_page_unless_zero(page)) 6138 return NULL; 6139 return page; 6140 } 6141 6142 if (non_swap_entry(ent)) 6143 return NULL; 6144 6145 /* 6146 * Because swap_cache_get_folio() updates some statistics counter, 6147 * we call find_get_page() with swapper_space directly. 6148 */ 6149 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 6150 entry->val = ent.val; 6151 6152 return page; 6153 } 6154 #else 6155 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6156 pte_t ptent, swp_entry_t *entry) 6157 { 6158 return NULL; 6159 } 6160 #endif 6161 6162 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6163 unsigned long addr, pte_t ptent) 6164 { 6165 unsigned long index; 6166 struct folio *folio; 6167 6168 if (!vma->vm_file) /* anonymous vma */ 6169 return NULL; 6170 if (!(mc.flags & MOVE_FILE)) 6171 return NULL; 6172 6173 /* folio is moved even if it's not RSS of this task(page-faulted). */ 6174 /* shmem/tmpfs may report page out on swap: account for that too. */ 6175 index = linear_page_index(vma, addr); 6176 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 6177 if (IS_ERR(folio)) 6178 return NULL; 6179 return folio_file_page(folio, index); 6180 } 6181 6182 /** 6183 * mem_cgroup_move_account - move account of the folio 6184 * @folio: The folio. 6185 * @compound: charge the page as compound or small page 6186 * @from: mem_cgroup which the folio is moved from. 6187 * @to: mem_cgroup which the folio is moved to. @from != @to. 6188 * 6189 * The folio must be locked and not on the LRU. 6190 * 6191 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 6192 * from old cgroup. 6193 */ 6194 static int mem_cgroup_move_account(struct folio *folio, 6195 bool compound, 6196 struct mem_cgroup *from, 6197 struct mem_cgroup *to) 6198 { 6199 struct lruvec *from_vec, *to_vec; 6200 struct pglist_data *pgdat; 6201 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 6202 int nid, ret; 6203 6204 VM_BUG_ON(from == to); 6205 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 6206 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 6207 VM_BUG_ON(compound && !folio_test_large(folio)); 6208 6209 ret = -EINVAL; 6210 if (folio_memcg(folio) != from) 6211 goto out; 6212 6213 pgdat = folio_pgdat(folio); 6214 from_vec = mem_cgroup_lruvec(from, pgdat); 6215 to_vec = mem_cgroup_lruvec(to, pgdat); 6216 6217 folio_memcg_lock(folio); 6218 6219 if (folio_test_anon(folio)) { 6220 if (folio_mapped(folio)) { 6221 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 6222 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 6223 if (folio_test_pmd_mappable(folio)) { 6224 __mod_lruvec_state(from_vec, NR_ANON_THPS, 6225 -nr_pages); 6226 __mod_lruvec_state(to_vec, NR_ANON_THPS, 6227 nr_pages); 6228 } 6229 } 6230 } else { 6231 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 6232 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 6233 6234 if (folio_test_swapbacked(folio)) { 6235 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 6236 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 6237 } 6238 6239 if (folio_mapped(folio)) { 6240 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 6241 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 6242 } 6243 6244 if (folio_test_dirty(folio)) { 6245 struct address_space *mapping = folio_mapping(folio); 6246 6247 if (mapping_can_writeback(mapping)) { 6248 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 6249 -nr_pages); 6250 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 6251 nr_pages); 6252 } 6253 } 6254 } 6255 6256 #ifdef CONFIG_SWAP 6257 if (folio_test_swapcache(folio)) { 6258 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 6259 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 6260 } 6261 #endif 6262 if (folio_test_writeback(folio)) { 6263 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 6264 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 6265 } 6266 6267 /* 6268 * All state has been migrated, let's switch to the new memcg. 6269 * 6270 * It is safe to change page's memcg here because the page 6271 * is referenced, charged, isolated, and locked: we can't race 6272 * with (un)charging, migration, LRU putback, or anything else 6273 * that would rely on a stable page's memory cgroup. 6274 * 6275 * Note that folio_memcg_lock is a memcg lock, not a page lock, 6276 * to save space. As soon as we switch page's memory cgroup to a 6277 * new memcg that isn't locked, the above state can change 6278 * concurrently again. Make sure we're truly done with it. 6279 */ 6280 smp_mb(); 6281 6282 css_get(&to->css); 6283 css_put(&from->css); 6284 6285 folio->memcg_data = (unsigned long)to; 6286 6287 __folio_memcg_unlock(from); 6288 6289 ret = 0; 6290 nid = folio_nid(folio); 6291 6292 local_irq_disable(); 6293 mem_cgroup_charge_statistics(to, nr_pages); 6294 memcg_check_events(to, nid); 6295 mem_cgroup_charge_statistics(from, -nr_pages); 6296 memcg_check_events(from, nid); 6297 local_irq_enable(); 6298 out: 6299 return ret; 6300 } 6301 6302 /** 6303 * get_mctgt_type - get target type of moving charge 6304 * @vma: the vma the pte to be checked belongs 6305 * @addr: the address corresponding to the pte to be checked 6306 * @ptent: the pte to be checked 6307 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6308 * 6309 * Context: Called with pte lock held. 6310 * Return: 6311 * * MC_TARGET_NONE - If the pte is not a target for move charge. 6312 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for 6313 * move charge. If @target is not NULL, the folio is stored in target->folio 6314 * with extra refcnt taken (Caller should release it). 6315 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a 6316 * target for charge migration. If @target is not NULL, the entry is 6317 * stored in target->ent. 6318 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and 6319 * thus not on the lru. For now such page is charged like a regular page 6320 * would be as it is just special memory taking the place of a regular page. 6321 * See Documentations/vm/hmm.txt and include/linux/hmm.h 6322 */ 6323 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6324 unsigned long addr, pte_t ptent, union mc_target *target) 6325 { 6326 struct page *page = NULL; 6327 struct folio *folio; 6328 enum mc_target_type ret = MC_TARGET_NONE; 6329 swp_entry_t ent = { .val = 0 }; 6330 6331 if (pte_present(ptent)) 6332 page = mc_handle_present_pte(vma, addr, ptent); 6333 else if (pte_none_mostly(ptent)) 6334 /* 6335 * PTE markers should be treated as a none pte here, separated 6336 * from other swap handling below. 6337 */ 6338 page = mc_handle_file_pte(vma, addr, ptent); 6339 else if (is_swap_pte(ptent)) 6340 page = mc_handle_swap_pte(vma, ptent, &ent); 6341 6342 if (page) 6343 folio = page_folio(page); 6344 if (target && page) { 6345 if (!folio_trylock(folio)) { 6346 folio_put(folio); 6347 return ret; 6348 } 6349 /* 6350 * page_mapped() must be stable during the move. This 6351 * pte is locked, so if it's present, the page cannot 6352 * become unmapped. If it isn't, we have only partial 6353 * control over the mapped state: the page lock will 6354 * prevent new faults against pagecache and swapcache, 6355 * so an unmapped page cannot become mapped. However, 6356 * if the page is already mapped elsewhere, it can 6357 * unmap, and there is nothing we can do about it. 6358 * Alas, skip moving the page in this case. 6359 */ 6360 if (!pte_present(ptent) && page_mapped(page)) { 6361 folio_unlock(folio); 6362 folio_put(folio); 6363 return ret; 6364 } 6365 } 6366 6367 if (!page && !ent.val) 6368 return ret; 6369 if (page) { 6370 /* 6371 * Do only loose check w/o serialization. 6372 * mem_cgroup_move_account() checks the page is valid or 6373 * not under LRU exclusion. 6374 */ 6375 if (folio_memcg(folio) == mc.from) { 6376 ret = MC_TARGET_PAGE; 6377 if (folio_is_device_private(folio) || 6378 folio_is_device_coherent(folio)) 6379 ret = MC_TARGET_DEVICE; 6380 if (target) 6381 target->folio = folio; 6382 } 6383 if (!ret || !target) { 6384 if (target) 6385 folio_unlock(folio); 6386 folio_put(folio); 6387 } 6388 } 6389 /* 6390 * There is a swap entry and a page doesn't exist or isn't charged. 6391 * But we cannot move a tail-page in a THP. 6392 */ 6393 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 6394 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 6395 ret = MC_TARGET_SWAP; 6396 if (target) 6397 target->ent = ent; 6398 } 6399 return ret; 6400 } 6401 6402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6403 /* 6404 * We don't consider PMD mapped swapping or file mapped pages because THP does 6405 * not support them for now. 6406 * Caller should make sure that pmd_trans_huge(pmd) is true. 6407 */ 6408 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6409 unsigned long addr, pmd_t pmd, union mc_target *target) 6410 { 6411 struct page *page = NULL; 6412 struct folio *folio; 6413 enum mc_target_type ret = MC_TARGET_NONE; 6414 6415 if (unlikely(is_swap_pmd(pmd))) { 6416 VM_BUG_ON(thp_migration_supported() && 6417 !is_pmd_migration_entry(pmd)); 6418 return ret; 6419 } 6420 page = pmd_page(pmd); 6421 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 6422 folio = page_folio(page); 6423 if (!(mc.flags & MOVE_ANON)) 6424 return ret; 6425 if (folio_memcg(folio) == mc.from) { 6426 ret = MC_TARGET_PAGE; 6427 if (target) { 6428 folio_get(folio); 6429 if (!folio_trylock(folio)) { 6430 folio_put(folio); 6431 return MC_TARGET_NONE; 6432 } 6433 target->folio = folio; 6434 } 6435 } 6436 return ret; 6437 } 6438 #else 6439 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6440 unsigned long addr, pmd_t pmd, union mc_target *target) 6441 { 6442 return MC_TARGET_NONE; 6443 } 6444 #endif 6445 6446 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6447 unsigned long addr, unsigned long end, 6448 struct mm_walk *walk) 6449 { 6450 struct vm_area_struct *vma = walk->vma; 6451 pte_t *pte; 6452 spinlock_t *ptl; 6453 6454 ptl = pmd_trans_huge_lock(pmd, vma); 6455 if (ptl) { 6456 /* 6457 * Note their can not be MC_TARGET_DEVICE for now as we do not 6458 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 6459 * this might change. 6460 */ 6461 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6462 mc.precharge += HPAGE_PMD_NR; 6463 spin_unlock(ptl); 6464 return 0; 6465 } 6466 6467 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6468 if (!pte) 6469 return 0; 6470 for (; addr != end; pte++, addr += PAGE_SIZE) 6471 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL)) 6472 mc.precharge++; /* increment precharge temporarily */ 6473 pte_unmap_unlock(pte - 1, ptl); 6474 cond_resched(); 6475 6476 return 0; 6477 } 6478 6479 static const struct mm_walk_ops precharge_walk_ops = { 6480 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6481 .walk_lock = PGWALK_RDLOCK, 6482 }; 6483 6484 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6485 { 6486 unsigned long precharge; 6487 6488 mmap_read_lock(mm); 6489 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 6490 mmap_read_unlock(mm); 6491 6492 precharge = mc.precharge; 6493 mc.precharge = 0; 6494 6495 return precharge; 6496 } 6497 6498 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6499 { 6500 unsigned long precharge = mem_cgroup_count_precharge(mm); 6501 6502 VM_BUG_ON(mc.moving_task); 6503 mc.moving_task = current; 6504 return mem_cgroup_do_precharge(precharge); 6505 } 6506 6507 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6508 static void __mem_cgroup_clear_mc(void) 6509 { 6510 struct mem_cgroup *from = mc.from; 6511 struct mem_cgroup *to = mc.to; 6512 6513 /* we must uncharge all the leftover precharges from mc.to */ 6514 if (mc.precharge) { 6515 mem_cgroup_cancel_charge(mc.to, mc.precharge); 6516 mc.precharge = 0; 6517 } 6518 /* 6519 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6520 * we must uncharge here. 6521 */ 6522 if (mc.moved_charge) { 6523 mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6524 mc.moved_charge = 0; 6525 } 6526 /* we must fixup refcnts and charges */ 6527 if (mc.moved_swap) { 6528 /* uncharge swap account from the old cgroup */ 6529 if (!mem_cgroup_is_root(mc.from)) 6530 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 6531 6532 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 6533 6534 /* 6535 * we charged both to->memory and to->memsw, so we 6536 * should uncharge to->memory. 6537 */ 6538 if (!mem_cgroup_is_root(mc.to)) 6539 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 6540 6541 mc.moved_swap = 0; 6542 } 6543 memcg_oom_recover(from); 6544 memcg_oom_recover(to); 6545 wake_up_all(&mc.waitq); 6546 } 6547 6548 static void mem_cgroup_clear_mc(void) 6549 { 6550 struct mm_struct *mm = mc.mm; 6551 6552 /* 6553 * we must clear moving_task before waking up waiters at the end of 6554 * task migration. 6555 */ 6556 mc.moving_task = NULL; 6557 __mem_cgroup_clear_mc(); 6558 spin_lock(&mc.lock); 6559 mc.from = NULL; 6560 mc.to = NULL; 6561 mc.mm = NULL; 6562 spin_unlock(&mc.lock); 6563 6564 mmput(mm); 6565 } 6566 6567 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6568 { 6569 struct cgroup_subsys_state *css; 6570 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 6571 struct mem_cgroup *from; 6572 struct task_struct *leader, *p; 6573 struct mm_struct *mm; 6574 unsigned long move_flags; 6575 int ret = 0; 6576 6577 /* charge immigration isn't supported on the default hierarchy */ 6578 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6579 return 0; 6580 6581 /* 6582 * Multi-process migrations only happen on the default hierarchy 6583 * where charge immigration is not used. Perform charge 6584 * immigration if @tset contains a leader and whine if there are 6585 * multiple. 6586 */ 6587 p = NULL; 6588 cgroup_taskset_for_each_leader(leader, css, tset) { 6589 WARN_ON_ONCE(p); 6590 p = leader; 6591 memcg = mem_cgroup_from_css(css); 6592 } 6593 if (!p) 6594 return 0; 6595 6596 /* 6597 * We are now committed to this value whatever it is. Changes in this 6598 * tunable will only affect upcoming migrations, not the current one. 6599 * So we need to save it, and keep it going. 6600 */ 6601 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6602 if (!move_flags) 6603 return 0; 6604 6605 from = mem_cgroup_from_task(p); 6606 6607 VM_BUG_ON(from == memcg); 6608 6609 mm = get_task_mm(p); 6610 if (!mm) 6611 return 0; 6612 /* We move charges only when we move a owner of the mm */ 6613 if (mm->owner == p) { 6614 VM_BUG_ON(mc.from); 6615 VM_BUG_ON(mc.to); 6616 VM_BUG_ON(mc.precharge); 6617 VM_BUG_ON(mc.moved_charge); 6618 VM_BUG_ON(mc.moved_swap); 6619 6620 spin_lock(&mc.lock); 6621 mc.mm = mm; 6622 mc.from = from; 6623 mc.to = memcg; 6624 mc.flags = move_flags; 6625 spin_unlock(&mc.lock); 6626 /* We set mc.moving_task later */ 6627 6628 ret = mem_cgroup_precharge_mc(mm); 6629 if (ret) 6630 mem_cgroup_clear_mc(); 6631 } else { 6632 mmput(mm); 6633 } 6634 return ret; 6635 } 6636 6637 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6638 { 6639 if (mc.to) 6640 mem_cgroup_clear_mc(); 6641 } 6642 6643 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6644 unsigned long addr, unsigned long end, 6645 struct mm_walk *walk) 6646 { 6647 int ret = 0; 6648 struct vm_area_struct *vma = walk->vma; 6649 pte_t *pte; 6650 spinlock_t *ptl; 6651 enum mc_target_type target_type; 6652 union mc_target target; 6653 struct folio *folio; 6654 6655 ptl = pmd_trans_huge_lock(pmd, vma); 6656 if (ptl) { 6657 if (mc.precharge < HPAGE_PMD_NR) { 6658 spin_unlock(ptl); 6659 return 0; 6660 } 6661 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6662 if (target_type == MC_TARGET_PAGE) { 6663 folio = target.folio; 6664 if (folio_isolate_lru(folio)) { 6665 if (!mem_cgroup_move_account(folio, true, 6666 mc.from, mc.to)) { 6667 mc.precharge -= HPAGE_PMD_NR; 6668 mc.moved_charge += HPAGE_PMD_NR; 6669 } 6670 folio_putback_lru(folio); 6671 } 6672 folio_unlock(folio); 6673 folio_put(folio); 6674 } else if (target_type == MC_TARGET_DEVICE) { 6675 folio = target.folio; 6676 if (!mem_cgroup_move_account(folio, true, 6677 mc.from, mc.to)) { 6678 mc.precharge -= HPAGE_PMD_NR; 6679 mc.moved_charge += HPAGE_PMD_NR; 6680 } 6681 folio_unlock(folio); 6682 folio_put(folio); 6683 } 6684 spin_unlock(ptl); 6685 return 0; 6686 } 6687 6688 retry: 6689 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6690 if (!pte) 6691 return 0; 6692 for (; addr != end; addr += PAGE_SIZE) { 6693 pte_t ptent = ptep_get(pte++); 6694 bool device = false; 6695 swp_entry_t ent; 6696 6697 if (!mc.precharge) 6698 break; 6699 6700 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6701 case MC_TARGET_DEVICE: 6702 device = true; 6703 fallthrough; 6704 case MC_TARGET_PAGE: 6705 folio = target.folio; 6706 /* 6707 * We can have a part of the split pmd here. Moving it 6708 * can be done but it would be too convoluted so simply 6709 * ignore such a partial THP and keep it in original 6710 * memcg. There should be somebody mapping the head. 6711 */ 6712 if (folio_test_large(folio)) 6713 goto put; 6714 if (!device && !folio_isolate_lru(folio)) 6715 goto put; 6716 if (!mem_cgroup_move_account(folio, false, 6717 mc.from, mc.to)) { 6718 mc.precharge--; 6719 /* we uncharge from mc.from later. */ 6720 mc.moved_charge++; 6721 } 6722 if (!device) 6723 folio_putback_lru(folio); 6724 put: /* get_mctgt_type() gets & locks the page */ 6725 folio_unlock(folio); 6726 folio_put(folio); 6727 break; 6728 case MC_TARGET_SWAP: 6729 ent = target.ent; 6730 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6731 mc.precharge--; 6732 mem_cgroup_id_get_many(mc.to, 1); 6733 /* we fixup other refcnts and charges later. */ 6734 mc.moved_swap++; 6735 } 6736 break; 6737 default: 6738 break; 6739 } 6740 } 6741 pte_unmap_unlock(pte - 1, ptl); 6742 cond_resched(); 6743 6744 if (addr != end) { 6745 /* 6746 * We have consumed all precharges we got in can_attach(). 6747 * We try charge one by one, but don't do any additional 6748 * charges to mc.to if we have failed in charge once in attach() 6749 * phase. 6750 */ 6751 ret = mem_cgroup_do_precharge(1); 6752 if (!ret) 6753 goto retry; 6754 } 6755 6756 return ret; 6757 } 6758 6759 static const struct mm_walk_ops charge_walk_ops = { 6760 .pmd_entry = mem_cgroup_move_charge_pte_range, 6761 .walk_lock = PGWALK_RDLOCK, 6762 }; 6763 6764 static void mem_cgroup_move_charge(void) 6765 { 6766 lru_add_drain_all(); 6767 /* 6768 * Signal folio_memcg_lock() to take the memcg's move_lock 6769 * while we're moving its pages to another memcg. Then wait 6770 * for already started RCU-only updates to finish. 6771 */ 6772 atomic_inc(&mc.from->moving_account); 6773 synchronize_rcu(); 6774 retry: 6775 if (unlikely(!mmap_read_trylock(mc.mm))) { 6776 /* 6777 * Someone who are holding the mmap_lock might be waiting in 6778 * waitq. So we cancel all extra charges, wake up all waiters, 6779 * and retry. Because we cancel precharges, we might not be able 6780 * to move enough charges, but moving charge is a best-effort 6781 * feature anyway, so it wouldn't be a big problem. 6782 */ 6783 __mem_cgroup_clear_mc(); 6784 cond_resched(); 6785 goto retry; 6786 } 6787 /* 6788 * When we have consumed all precharges and failed in doing 6789 * additional charge, the page walk just aborts. 6790 */ 6791 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 6792 mmap_read_unlock(mc.mm); 6793 atomic_dec(&mc.from->moving_account); 6794 } 6795 6796 static void mem_cgroup_move_task(void) 6797 { 6798 if (mc.to) { 6799 mem_cgroup_move_charge(); 6800 mem_cgroup_clear_mc(); 6801 } 6802 } 6803 6804 #else /* !CONFIG_MMU */ 6805 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6806 { 6807 return 0; 6808 } 6809 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6810 { 6811 } 6812 static void mem_cgroup_move_task(void) 6813 { 6814 } 6815 #endif 6816 6817 #ifdef CONFIG_MEMCG_KMEM 6818 static void mem_cgroup_fork(struct task_struct *task) 6819 { 6820 /* 6821 * Set the update flag to cause task->objcg to be initialized lazily 6822 * on the first allocation. It can be done without any synchronization 6823 * because it's always performed on the current task, so does 6824 * current_objcg_update(). 6825 */ 6826 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 6827 } 6828 6829 static void mem_cgroup_exit(struct task_struct *task) 6830 { 6831 struct obj_cgroup *objcg = task->objcg; 6832 6833 objcg = (struct obj_cgroup *) 6834 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 6835 obj_cgroup_put(objcg); 6836 6837 /* 6838 * Some kernel allocations can happen after this point, 6839 * but let's ignore them. It can be done without any synchronization 6840 * because it's always performed on the current task, so does 6841 * current_objcg_update(). 6842 */ 6843 task->objcg = NULL; 6844 } 6845 #endif 6846 6847 #ifdef CONFIG_LRU_GEN 6848 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 6849 { 6850 struct task_struct *task; 6851 struct cgroup_subsys_state *css; 6852 6853 /* find the first leader if there is any */ 6854 cgroup_taskset_for_each_leader(task, css, tset) 6855 break; 6856 6857 if (!task) 6858 return; 6859 6860 task_lock(task); 6861 if (task->mm && READ_ONCE(task->mm->owner) == task) 6862 lru_gen_migrate_mm(task->mm); 6863 task_unlock(task); 6864 } 6865 #else 6866 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 6867 #endif /* CONFIG_LRU_GEN */ 6868 6869 #ifdef CONFIG_MEMCG_KMEM 6870 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 6871 { 6872 struct task_struct *task; 6873 struct cgroup_subsys_state *css; 6874 6875 cgroup_taskset_for_each(task, css, tset) { 6876 /* atomically set the update bit */ 6877 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 6878 } 6879 } 6880 #else 6881 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {} 6882 #endif /* CONFIG_MEMCG_KMEM */ 6883 6884 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) 6885 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6886 { 6887 mem_cgroup_lru_gen_attach(tset); 6888 mem_cgroup_kmem_attach(tset); 6889 } 6890 #endif 6891 6892 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6893 { 6894 if (value == PAGE_COUNTER_MAX) 6895 seq_puts(m, "max\n"); 6896 else 6897 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6898 6899 return 0; 6900 } 6901 6902 static u64 memory_current_read(struct cgroup_subsys_state *css, 6903 struct cftype *cft) 6904 { 6905 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6906 6907 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6908 } 6909 6910 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6911 struct cftype *cft) 6912 { 6913 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6914 6915 return (u64)memcg->memory.watermark * PAGE_SIZE; 6916 } 6917 6918 static int memory_min_show(struct seq_file *m, void *v) 6919 { 6920 return seq_puts_memcg_tunable(m, 6921 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6922 } 6923 6924 static ssize_t memory_min_write(struct kernfs_open_file *of, 6925 char *buf, size_t nbytes, loff_t off) 6926 { 6927 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6928 unsigned long min; 6929 int err; 6930 6931 buf = strstrip(buf); 6932 err = page_counter_memparse(buf, "max", &min); 6933 if (err) 6934 return err; 6935 6936 page_counter_set_min(&memcg->memory, min); 6937 6938 return nbytes; 6939 } 6940 6941 static int memory_low_show(struct seq_file *m, void *v) 6942 { 6943 return seq_puts_memcg_tunable(m, 6944 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6945 } 6946 6947 static ssize_t memory_low_write(struct kernfs_open_file *of, 6948 char *buf, size_t nbytes, loff_t off) 6949 { 6950 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6951 unsigned long low; 6952 int err; 6953 6954 buf = strstrip(buf); 6955 err = page_counter_memparse(buf, "max", &low); 6956 if (err) 6957 return err; 6958 6959 page_counter_set_low(&memcg->memory, low); 6960 6961 return nbytes; 6962 } 6963 6964 static int memory_high_show(struct seq_file *m, void *v) 6965 { 6966 return seq_puts_memcg_tunable(m, 6967 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6968 } 6969 6970 static ssize_t memory_high_write(struct kernfs_open_file *of, 6971 char *buf, size_t nbytes, loff_t off) 6972 { 6973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6974 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6975 bool drained = false; 6976 unsigned long high; 6977 int err; 6978 6979 buf = strstrip(buf); 6980 err = page_counter_memparse(buf, "max", &high); 6981 if (err) 6982 return err; 6983 6984 page_counter_set_high(&memcg->memory, high); 6985 6986 for (;;) { 6987 unsigned long nr_pages = page_counter_read(&memcg->memory); 6988 unsigned long reclaimed; 6989 6990 if (nr_pages <= high) 6991 break; 6992 6993 if (signal_pending(current)) 6994 break; 6995 6996 if (!drained) { 6997 drain_all_stock(memcg); 6998 drained = true; 6999 continue; 7000 } 7001 7002 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 7003 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); 7004 7005 if (!reclaimed && !nr_retries--) 7006 break; 7007 } 7008 7009 memcg_wb_domain_size_changed(memcg); 7010 return nbytes; 7011 } 7012 7013 static int memory_max_show(struct seq_file *m, void *v) 7014 { 7015 return seq_puts_memcg_tunable(m, 7016 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 7017 } 7018 7019 static ssize_t memory_max_write(struct kernfs_open_file *of, 7020 char *buf, size_t nbytes, loff_t off) 7021 { 7022 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7023 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 7024 bool drained = false; 7025 unsigned long max; 7026 int err; 7027 7028 buf = strstrip(buf); 7029 err = page_counter_memparse(buf, "max", &max); 7030 if (err) 7031 return err; 7032 7033 xchg(&memcg->memory.max, max); 7034 7035 for (;;) { 7036 unsigned long nr_pages = page_counter_read(&memcg->memory); 7037 7038 if (nr_pages <= max) 7039 break; 7040 7041 if (signal_pending(current)) 7042 break; 7043 7044 if (!drained) { 7045 drain_all_stock(memcg); 7046 drained = true; 7047 continue; 7048 } 7049 7050 if (nr_reclaims) { 7051 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 7052 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) 7053 nr_reclaims--; 7054 continue; 7055 } 7056 7057 memcg_memory_event(memcg, MEMCG_OOM); 7058 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 7059 break; 7060 } 7061 7062 memcg_wb_domain_size_changed(memcg); 7063 return nbytes; 7064 } 7065 7066 /* 7067 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 7068 * if any new events become available. 7069 */ 7070 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 7071 { 7072 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 7073 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 7074 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 7075 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 7076 seq_printf(m, "oom_kill %lu\n", 7077 atomic_long_read(&events[MEMCG_OOM_KILL])); 7078 seq_printf(m, "oom_group_kill %lu\n", 7079 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 7080 } 7081 7082 static int memory_events_show(struct seq_file *m, void *v) 7083 { 7084 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7085 7086 __memory_events_show(m, memcg->memory_events); 7087 return 0; 7088 } 7089 7090 static int memory_events_local_show(struct seq_file *m, void *v) 7091 { 7092 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7093 7094 __memory_events_show(m, memcg->memory_events_local); 7095 return 0; 7096 } 7097 7098 static int memory_stat_show(struct seq_file *m, void *v) 7099 { 7100 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7101 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 7102 struct seq_buf s; 7103 7104 if (!buf) 7105 return -ENOMEM; 7106 seq_buf_init(&s, buf, PAGE_SIZE); 7107 memory_stat_format(memcg, &s); 7108 seq_puts(m, buf); 7109 kfree(buf); 7110 return 0; 7111 } 7112 7113 #ifdef CONFIG_NUMA 7114 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 7115 int item) 7116 { 7117 return lruvec_page_state(lruvec, item) * 7118 memcg_page_state_output_unit(item); 7119 } 7120 7121 static int memory_numa_stat_show(struct seq_file *m, void *v) 7122 { 7123 int i; 7124 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7125 7126 mem_cgroup_flush_stats(memcg); 7127 7128 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 7129 int nid; 7130 7131 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 7132 continue; 7133 7134 seq_printf(m, "%s", memory_stats[i].name); 7135 for_each_node_state(nid, N_MEMORY) { 7136 u64 size; 7137 struct lruvec *lruvec; 7138 7139 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 7140 size = lruvec_page_state_output(lruvec, 7141 memory_stats[i].idx); 7142 seq_printf(m, " N%d=%llu", nid, size); 7143 } 7144 seq_putc(m, '\n'); 7145 } 7146 7147 return 0; 7148 } 7149 #endif 7150 7151 static int memory_oom_group_show(struct seq_file *m, void *v) 7152 { 7153 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7154 7155 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 7156 7157 return 0; 7158 } 7159 7160 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 7161 char *buf, size_t nbytes, loff_t off) 7162 { 7163 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7164 int ret, oom_group; 7165 7166 buf = strstrip(buf); 7167 if (!buf) 7168 return -EINVAL; 7169 7170 ret = kstrtoint(buf, 0, &oom_group); 7171 if (ret) 7172 return ret; 7173 7174 if (oom_group != 0 && oom_group != 1) 7175 return -EINVAL; 7176 7177 WRITE_ONCE(memcg->oom_group, oom_group); 7178 7179 return nbytes; 7180 } 7181 7182 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 7183 size_t nbytes, loff_t off) 7184 { 7185 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7186 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 7187 unsigned long nr_to_reclaim, nr_reclaimed = 0; 7188 unsigned int reclaim_options; 7189 int err; 7190 7191 buf = strstrip(buf); 7192 err = page_counter_memparse(buf, "", &nr_to_reclaim); 7193 if (err) 7194 return err; 7195 7196 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 7197 while (nr_reclaimed < nr_to_reclaim) { 7198 /* Will converge on zero, but reclaim enforces a minimum */ 7199 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 7200 unsigned long reclaimed; 7201 7202 if (signal_pending(current)) 7203 return -EINTR; 7204 7205 /* 7206 * This is the final attempt, drain percpu lru caches in the 7207 * hope of introducing more evictable pages for 7208 * try_to_free_mem_cgroup_pages(). 7209 */ 7210 if (!nr_retries) 7211 lru_add_drain_all(); 7212 7213 reclaimed = try_to_free_mem_cgroup_pages(memcg, 7214 batch_size, GFP_KERNEL, reclaim_options); 7215 7216 if (!reclaimed && !nr_retries--) 7217 return -EAGAIN; 7218 7219 nr_reclaimed += reclaimed; 7220 } 7221 7222 return nbytes; 7223 } 7224 7225 static struct cftype memory_files[] = { 7226 { 7227 .name = "current", 7228 .flags = CFTYPE_NOT_ON_ROOT, 7229 .read_u64 = memory_current_read, 7230 }, 7231 { 7232 .name = "peak", 7233 .flags = CFTYPE_NOT_ON_ROOT, 7234 .read_u64 = memory_peak_read, 7235 }, 7236 { 7237 .name = "min", 7238 .flags = CFTYPE_NOT_ON_ROOT, 7239 .seq_show = memory_min_show, 7240 .write = memory_min_write, 7241 }, 7242 { 7243 .name = "low", 7244 .flags = CFTYPE_NOT_ON_ROOT, 7245 .seq_show = memory_low_show, 7246 .write = memory_low_write, 7247 }, 7248 { 7249 .name = "high", 7250 .flags = CFTYPE_NOT_ON_ROOT, 7251 .seq_show = memory_high_show, 7252 .write = memory_high_write, 7253 }, 7254 { 7255 .name = "max", 7256 .flags = CFTYPE_NOT_ON_ROOT, 7257 .seq_show = memory_max_show, 7258 .write = memory_max_write, 7259 }, 7260 { 7261 .name = "events", 7262 .flags = CFTYPE_NOT_ON_ROOT, 7263 .file_offset = offsetof(struct mem_cgroup, events_file), 7264 .seq_show = memory_events_show, 7265 }, 7266 { 7267 .name = "events.local", 7268 .flags = CFTYPE_NOT_ON_ROOT, 7269 .file_offset = offsetof(struct mem_cgroup, events_local_file), 7270 .seq_show = memory_events_local_show, 7271 }, 7272 { 7273 .name = "stat", 7274 .seq_show = memory_stat_show, 7275 }, 7276 #ifdef CONFIG_NUMA 7277 { 7278 .name = "numa_stat", 7279 .seq_show = memory_numa_stat_show, 7280 }, 7281 #endif 7282 { 7283 .name = "oom.group", 7284 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 7285 .seq_show = memory_oom_group_show, 7286 .write = memory_oom_group_write, 7287 }, 7288 { 7289 .name = "reclaim", 7290 .flags = CFTYPE_NS_DELEGATABLE, 7291 .write = memory_reclaim, 7292 }, 7293 { } /* terminate */ 7294 }; 7295 7296 struct cgroup_subsys memory_cgrp_subsys = { 7297 .css_alloc = mem_cgroup_css_alloc, 7298 .css_online = mem_cgroup_css_online, 7299 .css_offline = mem_cgroup_css_offline, 7300 .css_released = mem_cgroup_css_released, 7301 .css_free = mem_cgroup_css_free, 7302 .css_reset = mem_cgroup_css_reset, 7303 .css_rstat_flush = mem_cgroup_css_rstat_flush, 7304 .can_attach = mem_cgroup_can_attach, 7305 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) 7306 .attach = mem_cgroup_attach, 7307 #endif 7308 .cancel_attach = mem_cgroup_cancel_attach, 7309 .post_attach = mem_cgroup_move_task, 7310 #ifdef CONFIG_MEMCG_KMEM 7311 .fork = mem_cgroup_fork, 7312 .exit = mem_cgroup_exit, 7313 #endif 7314 .dfl_cftypes = memory_files, 7315 .legacy_cftypes = mem_cgroup_legacy_files, 7316 .early_init = 0, 7317 }; 7318 7319 /* 7320 * This function calculates an individual cgroup's effective 7321 * protection which is derived from its own memory.min/low, its 7322 * parent's and siblings' settings, as well as the actual memory 7323 * distribution in the tree. 7324 * 7325 * The following rules apply to the effective protection values: 7326 * 7327 * 1. At the first level of reclaim, effective protection is equal to 7328 * the declared protection in memory.min and memory.low. 7329 * 7330 * 2. To enable safe delegation of the protection configuration, at 7331 * subsequent levels the effective protection is capped to the 7332 * parent's effective protection. 7333 * 7334 * 3. To make complex and dynamic subtrees easier to configure, the 7335 * user is allowed to overcommit the declared protection at a given 7336 * level. If that is the case, the parent's effective protection is 7337 * distributed to the children in proportion to how much protection 7338 * they have declared and how much of it they are utilizing. 7339 * 7340 * This makes distribution proportional, but also work-conserving: 7341 * if one cgroup claims much more protection than it uses memory, 7342 * the unused remainder is available to its siblings. 7343 * 7344 * 4. Conversely, when the declared protection is undercommitted at a 7345 * given level, the distribution of the larger parental protection 7346 * budget is NOT proportional. A cgroup's protection from a sibling 7347 * is capped to its own memory.min/low setting. 7348 * 7349 * 5. However, to allow protecting recursive subtrees from each other 7350 * without having to declare each individual cgroup's fixed share 7351 * of the ancestor's claim to protection, any unutilized - 7352 * "floating" - protection from up the tree is distributed in 7353 * proportion to each cgroup's *usage*. This makes the protection 7354 * neutral wrt sibling cgroups and lets them compete freely over 7355 * the shared parental protection budget, but it protects the 7356 * subtree as a whole from neighboring subtrees. 7357 * 7358 * Note that 4. and 5. are not in conflict: 4. is about protecting 7359 * against immediate siblings whereas 5. is about protecting against 7360 * neighboring subtrees. 7361 */ 7362 static unsigned long effective_protection(unsigned long usage, 7363 unsigned long parent_usage, 7364 unsigned long setting, 7365 unsigned long parent_effective, 7366 unsigned long siblings_protected) 7367 { 7368 unsigned long protected; 7369 unsigned long ep; 7370 7371 protected = min(usage, setting); 7372 /* 7373 * If all cgroups at this level combined claim and use more 7374 * protection than what the parent affords them, distribute 7375 * shares in proportion to utilization. 7376 * 7377 * We are using actual utilization rather than the statically 7378 * claimed protection in order to be work-conserving: claimed 7379 * but unused protection is available to siblings that would 7380 * otherwise get a smaller chunk than what they claimed. 7381 */ 7382 if (siblings_protected > parent_effective) 7383 return protected * parent_effective / siblings_protected; 7384 7385 /* 7386 * Ok, utilized protection of all children is within what the 7387 * parent affords them, so we know whatever this child claims 7388 * and utilizes is effectively protected. 7389 * 7390 * If there is unprotected usage beyond this value, reclaim 7391 * will apply pressure in proportion to that amount. 7392 * 7393 * If there is unutilized protection, the cgroup will be fully 7394 * shielded from reclaim, but we do return a smaller value for 7395 * protection than what the group could enjoy in theory. This 7396 * is okay. With the overcommit distribution above, effective 7397 * protection is always dependent on how memory is actually 7398 * consumed among the siblings anyway. 7399 */ 7400 ep = protected; 7401 7402 /* 7403 * If the children aren't claiming (all of) the protection 7404 * afforded to them by the parent, distribute the remainder in 7405 * proportion to the (unprotected) memory of each cgroup. That 7406 * way, cgroups that aren't explicitly prioritized wrt each 7407 * other compete freely over the allowance, but they are 7408 * collectively protected from neighboring trees. 7409 * 7410 * We're using unprotected memory for the weight so that if 7411 * some cgroups DO claim explicit protection, we don't protect 7412 * the same bytes twice. 7413 * 7414 * Check both usage and parent_usage against the respective 7415 * protected values. One should imply the other, but they 7416 * aren't read atomically - make sure the division is sane. 7417 */ 7418 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 7419 return ep; 7420 if (parent_effective > siblings_protected && 7421 parent_usage > siblings_protected && 7422 usage > protected) { 7423 unsigned long unclaimed; 7424 7425 unclaimed = parent_effective - siblings_protected; 7426 unclaimed *= usage - protected; 7427 unclaimed /= parent_usage - siblings_protected; 7428 7429 ep += unclaimed; 7430 } 7431 7432 return ep; 7433 } 7434 7435 /** 7436 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 7437 * @root: the top ancestor of the sub-tree being checked 7438 * @memcg: the memory cgroup to check 7439 * 7440 * WARNING: This function is not stateless! It can only be used as part 7441 * of a top-down tree iteration, not for isolated queries. 7442 */ 7443 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 7444 struct mem_cgroup *memcg) 7445 { 7446 unsigned long usage, parent_usage; 7447 struct mem_cgroup *parent; 7448 7449 if (mem_cgroup_disabled()) 7450 return; 7451 7452 if (!root) 7453 root = root_mem_cgroup; 7454 7455 /* 7456 * Effective values of the reclaim targets are ignored so they 7457 * can be stale. Have a look at mem_cgroup_protection for more 7458 * details. 7459 * TODO: calculation should be more robust so that we do not need 7460 * that special casing. 7461 */ 7462 if (memcg == root) 7463 return; 7464 7465 usage = page_counter_read(&memcg->memory); 7466 if (!usage) 7467 return; 7468 7469 parent = parent_mem_cgroup(memcg); 7470 7471 if (parent == root) { 7472 memcg->memory.emin = READ_ONCE(memcg->memory.min); 7473 memcg->memory.elow = READ_ONCE(memcg->memory.low); 7474 return; 7475 } 7476 7477 parent_usage = page_counter_read(&parent->memory); 7478 7479 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 7480 READ_ONCE(memcg->memory.min), 7481 READ_ONCE(parent->memory.emin), 7482 atomic_long_read(&parent->memory.children_min_usage))); 7483 7484 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 7485 READ_ONCE(memcg->memory.low), 7486 READ_ONCE(parent->memory.elow), 7487 atomic_long_read(&parent->memory.children_low_usage))); 7488 } 7489 7490 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 7491 gfp_t gfp) 7492 { 7493 int ret; 7494 7495 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 7496 if (ret) 7497 goto out; 7498 7499 mem_cgroup_commit_charge(folio, memcg); 7500 out: 7501 return ret; 7502 } 7503 7504 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 7505 { 7506 struct mem_cgroup *memcg; 7507 int ret; 7508 7509 memcg = get_mem_cgroup_from_mm(mm); 7510 ret = charge_memcg(folio, memcg, gfp); 7511 css_put(&memcg->css); 7512 7513 return ret; 7514 } 7515 7516 /** 7517 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio 7518 * @memcg: memcg to charge. 7519 * @gfp: reclaim mode. 7520 * @nr_pages: number of pages to charge. 7521 * 7522 * This function is called when allocating a huge page folio to determine if 7523 * the memcg has the capacity for it. It does not commit the charge yet, 7524 * as the hugetlb folio itself has not been obtained from the hugetlb pool. 7525 * 7526 * Once we have obtained the hugetlb folio, we can call 7527 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the 7528 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect 7529 * of try_charge(). 7530 * 7531 * Returns 0 on success. Otherwise, an error code is returned. 7532 */ 7533 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 7534 long nr_pages) 7535 { 7536 /* 7537 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, 7538 * but do not attempt to commit charge later (or cancel on error) either. 7539 */ 7540 if (mem_cgroup_disabled() || !memcg || 7541 !cgroup_subsys_on_dfl(memory_cgrp_subsys) || 7542 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) 7543 return -EOPNOTSUPP; 7544 7545 if (try_charge(memcg, gfp, nr_pages)) 7546 return -ENOMEM; 7547 7548 return 0; 7549 } 7550 7551 /** 7552 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 7553 * @folio: folio to charge. 7554 * @mm: mm context of the victim 7555 * @gfp: reclaim mode 7556 * @entry: swap entry for which the folio is allocated 7557 * 7558 * This function charges a folio allocated for swapin. Please call this before 7559 * adding the folio to the swapcache. 7560 * 7561 * Returns 0 on success. Otherwise, an error code is returned. 7562 */ 7563 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 7564 gfp_t gfp, swp_entry_t entry) 7565 { 7566 struct mem_cgroup *memcg; 7567 unsigned short id; 7568 int ret; 7569 7570 if (mem_cgroup_disabled()) 7571 return 0; 7572 7573 id = lookup_swap_cgroup_id(entry); 7574 rcu_read_lock(); 7575 memcg = mem_cgroup_from_id(id); 7576 if (!memcg || !css_tryget_online(&memcg->css)) 7577 memcg = get_mem_cgroup_from_mm(mm); 7578 rcu_read_unlock(); 7579 7580 ret = charge_memcg(folio, memcg, gfp); 7581 7582 css_put(&memcg->css); 7583 return ret; 7584 } 7585 7586 /* 7587 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 7588 * @entry: swap entry for which the page is charged 7589 * 7590 * Call this function after successfully adding the charged page to swapcache. 7591 * 7592 * Note: This function assumes the page for which swap slot is being uncharged 7593 * is order 0 page. 7594 */ 7595 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 7596 { 7597 /* 7598 * Cgroup1's unified memory+swap counter has been charged with the 7599 * new swapcache page, finish the transfer by uncharging the swap 7600 * slot. The swap slot would also get uncharged when it dies, but 7601 * it can stick around indefinitely and we'd count the page twice 7602 * the entire time. 7603 * 7604 * Cgroup2 has separate resource counters for memory and swap, 7605 * so this is a non-issue here. Memory and swap charge lifetimes 7606 * correspond 1:1 to page and swap slot lifetimes: we charge the 7607 * page to memory here, and uncharge swap when the slot is freed. 7608 */ 7609 if (!mem_cgroup_disabled() && do_memsw_account()) { 7610 /* 7611 * The swap entry might not get freed for a long time, 7612 * let's not wait for it. The page already received a 7613 * memory+swap charge, drop the swap entry duplicate. 7614 */ 7615 mem_cgroup_uncharge_swap(entry, 1); 7616 } 7617 } 7618 7619 struct uncharge_gather { 7620 struct mem_cgroup *memcg; 7621 unsigned long nr_memory; 7622 unsigned long pgpgout; 7623 unsigned long nr_kmem; 7624 int nid; 7625 }; 7626 7627 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 7628 { 7629 memset(ug, 0, sizeof(*ug)); 7630 } 7631 7632 static void uncharge_batch(const struct uncharge_gather *ug) 7633 { 7634 unsigned long flags; 7635 7636 if (ug->nr_memory) { 7637 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 7638 if (do_memsw_account()) 7639 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 7640 if (ug->nr_kmem) 7641 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 7642 memcg_oom_recover(ug->memcg); 7643 } 7644 7645 local_irq_save(flags); 7646 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 7647 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 7648 memcg_check_events(ug->memcg, ug->nid); 7649 local_irq_restore(flags); 7650 7651 /* drop reference from uncharge_folio */ 7652 css_put(&ug->memcg->css); 7653 } 7654 7655 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 7656 { 7657 long nr_pages; 7658 struct mem_cgroup *memcg; 7659 struct obj_cgroup *objcg; 7660 7661 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7662 VM_BUG_ON_FOLIO(folio_order(folio) > 1 && 7663 !folio_test_hugetlb(folio) && 7664 !list_empty(&folio->_deferred_list), folio); 7665 7666 /* 7667 * Nobody should be changing or seriously looking at 7668 * folio memcg or objcg at this point, we have fully 7669 * exclusive access to the folio. 7670 */ 7671 if (folio_memcg_kmem(folio)) { 7672 objcg = __folio_objcg(folio); 7673 /* 7674 * This get matches the put at the end of the function and 7675 * kmem pages do not hold memcg references anymore. 7676 */ 7677 memcg = get_mem_cgroup_from_objcg(objcg); 7678 } else { 7679 memcg = __folio_memcg(folio); 7680 } 7681 7682 if (!memcg) 7683 return; 7684 7685 if (ug->memcg != memcg) { 7686 if (ug->memcg) { 7687 uncharge_batch(ug); 7688 uncharge_gather_clear(ug); 7689 } 7690 ug->memcg = memcg; 7691 ug->nid = folio_nid(folio); 7692 7693 /* pairs with css_put in uncharge_batch */ 7694 css_get(&memcg->css); 7695 } 7696 7697 nr_pages = folio_nr_pages(folio); 7698 7699 if (folio_memcg_kmem(folio)) { 7700 ug->nr_memory += nr_pages; 7701 ug->nr_kmem += nr_pages; 7702 7703 folio->memcg_data = 0; 7704 obj_cgroup_put(objcg); 7705 } else { 7706 /* LRU pages aren't accounted at the root level */ 7707 if (!mem_cgroup_is_root(memcg)) 7708 ug->nr_memory += nr_pages; 7709 ug->pgpgout++; 7710 7711 folio->memcg_data = 0; 7712 } 7713 7714 css_put(&memcg->css); 7715 } 7716 7717 void __mem_cgroup_uncharge(struct folio *folio) 7718 { 7719 struct uncharge_gather ug; 7720 7721 /* Don't touch folio->lru of any random page, pre-check: */ 7722 if (!folio_memcg(folio)) 7723 return; 7724 7725 uncharge_gather_clear(&ug); 7726 uncharge_folio(folio, &ug); 7727 uncharge_batch(&ug); 7728 } 7729 7730 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 7731 { 7732 struct uncharge_gather ug; 7733 unsigned int i; 7734 7735 uncharge_gather_clear(&ug); 7736 for (i = 0; i < folios->nr; i++) 7737 uncharge_folio(folios->folios[i], &ug); 7738 if (ug.memcg) 7739 uncharge_batch(&ug); 7740 } 7741 7742 /** 7743 * mem_cgroup_replace_folio - Charge a folio's replacement. 7744 * @old: Currently circulating folio. 7745 * @new: Replacement folio. 7746 * 7747 * Charge @new as a replacement folio for @old. @old will 7748 * be uncharged upon free. This is only used by the page cache 7749 * (in replace_page_cache_folio()). 7750 * 7751 * Both folios must be locked, @new->mapping must be set up. 7752 */ 7753 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 7754 { 7755 struct mem_cgroup *memcg; 7756 long nr_pages = folio_nr_pages(new); 7757 unsigned long flags; 7758 7759 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7760 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7761 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7762 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7763 7764 if (mem_cgroup_disabled()) 7765 return; 7766 7767 /* Page cache replacement: new folio already charged? */ 7768 if (folio_memcg(new)) 7769 return; 7770 7771 memcg = folio_memcg(old); 7772 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7773 if (!memcg) 7774 return; 7775 7776 /* Force-charge the new page. The old one will be freed soon */ 7777 if (!mem_cgroup_is_root(memcg)) { 7778 page_counter_charge(&memcg->memory, nr_pages); 7779 if (do_memsw_account()) 7780 page_counter_charge(&memcg->memsw, nr_pages); 7781 } 7782 7783 css_get(&memcg->css); 7784 commit_charge(new, memcg); 7785 7786 local_irq_save(flags); 7787 mem_cgroup_charge_statistics(memcg, nr_pages); 7788 memcg_check_events(memcg, folio_nid(new)); 7789 local_irq_restore(flags); 7790 } 7791 7792 /** 7793 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 7794 * @old: Currently circulating folio. 7795 * @new: Replacement folio. 7796 * 7797 * Transfer the memcg data from the old folio to the new folio for migration. 7798 * The old folio's data info will be cleared. Note that the memory counters 7799 * will remain unchanged throughout the process. 7800 * 7801 * Both folios must be locked, @new->mapping must be set up. 7802 */ 7803 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7804 { 7805 struct mem_cgroup *memcg; 7806 7807 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7808 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7809 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7810 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 7811 7812 if (mem_cgroup_disabled()) 7813 return; 7814 7815 memcg = folio_memcg(old); 7816 /* 7817 * Note that it is normal to see !memcg for a hugetlb folio. 7818 * For e.g, itt could have been allocated when memory_hugetlb_accounting 7819 * was not selected. 7820 */ 7821 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 7822 if (!memcg) 7823 return; 7824 7825 /* Transfer the charge and the css ref */ 7826 commit_charge(new, memcg); 7827 /* 7828 * If the old folio is a large folio and is in the split queue, it needs 7829 * to be removed from the split queue now, in case getting an incorrect 7830 * split queue in destroy_large_folio() after the memcg of the old folio 7831 * is cleared. 7832 * 7833 * In addition, the old folio is about to be freed after migration, so 7834 * removing from the split queue a bit earlier seems reasonable. 7835 */ 7836 if (folio_test_large(old) && folio_test_large_rmappable(old)) 7837 folio_undo_large_rmappable(old); 7838 old->memcg_data = 0; 7839 } 7840 7841 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7842 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7843 7844 void mem_cgroup_sk_alloc(struct sock *sk) 7845 { 7846 struct mem_cgroup *memcg; 7847 7848 if (!mem_cgroup_sockets_enabled) 7849 return; 7850 7851 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7852 if (!in_task()) 7853 return; 7854 7855 rcu_read_lock(); 7856 memcg = mem_cgroup_from_task(current); 7857 if (mem_cgroup_is_root(memcg)) 7858 goto out; 7859 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7860 goto out; 7861 if (css_tryget(&memcg->css)) 7862 sk->sk_memcg = memcg; 7863 out: 7864 rcu_read_unlock(); 7865 } 7866 7867 void mem_cgroup_sk_free(struct sock *sk) 7868 { 7869 if (sk->sk_memcg) 7870 css_put(&sk->sk_memcg->css); 7871 } 7872 7873 /** 7874 * mem_cgroup_charge_skmem - charge socket memory 7875 * @memcg: memcg to charge 7876 * @nr_pages: number of pages to charge 7877 * @gfp_mask: reclaim mode 7878 * 7879 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7880 * @memcg's configured limit, %false if it doesn't. 7881 */ 7882 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7883 gfp_t gfp_mask) 7884 { 7885 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7886 struct page_counter *fail; 7887 7888 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7889 memcg->tcpmem_pressure = 0; 7890 return true; 7891 } 7892 memcg->tcpmem_pressure = 1; 7893 if (gfp_mask & __GFP_NOFAIL) { 7894 page_counter_charge(&memcg->tcpmem, nr_pages); 7895 return true; 7896 } 7897 return false; 7898 } 7899 7900 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7901 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7902 return true; 7903 } 7904 7905 return false; 7906 } 7907 7908 /** 7909 * mem_cgroup_uncharge_skmem - uncharge socket memory 7910 * @memcg: memcg to uncharge 7911 * @nr_pages: number of pages to uncharge 7912 */ 7913 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7914 { 7915 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7916 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7917 return; 7918 } 7919 7920 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7921 7922 refill_stock(memcg, nr_pages); 7923 } 7924 7925 static int __init cgroup_memory(char *s) 7926 { 7927 char *token; 7928 7929 while ((token = strsep(&s, ",")) != NULL) { 7930 if (!*token) 7931 continue; 7932 if (!strcmp(token, "nosocket")) 7933 cgroup_memory_nosocket = true; 7934 if (!strcmp(token, "nokmem")) 7935 cgroup_memory_nokmem = true; 7936 if (!strcmp(token, "nobpf")) 7937 cgroup_memory_nobpf = true; 7938 } 7939 return 1; 7940 } 7941 __setup("cgroup.memory=", cgroup_memory); 7942 7943 /* 7944 * subsys_initcall() for memory controller. 7945 * 7946 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7947 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7948 * basically everything that doesn't depend on a specific mem_cgroup structure 7949 * should be initialized from here. 7950 */ 7951 static int __init mem_cgroup_init(void) 7952 { 7953 int cpu, node; 7954 7955 /* 7956 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7957 * used for per-memcg-per-cpu caching of per-node statistics. In order 7958 * to work fine, we should make sure that the overfill threshold can't 7959 * exceed S32_MAX / PAGE_SIZE. 7960 */ 7961 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7962 7963 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7964 memcg_hotplug_cpu_dead); 7965 7966 for_each_possible_cpu(cpu) 7967 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7968 drain_local_stock); 7969 7970 for_each_node(node) { 7971 struct mem_cgroup_tree_per_node *rtpn; 7972 7973 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); 7974 7975 rtpn->rb_root = RB_ROOT; 7976 rtpn->rb_rightmost = NULL; 7977 spin_lock_init(&rtpn->lock); 7978 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7979 } 7980 7981 return 0; 7982 } 7983 subsys_initcall(mem_cgroup_init); 7984 7985 #ifdef CONFIG_SWAP 7986 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7987 { 7988 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7989 /* 7990 * The root cgroup cannot be destroyed, so it's refcount must 7991 * always be >= 1. 7992 */ 7993 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 7994 VM_BUG_ON(1); 7995 break; 7996 } 7997 memcg = parent_mem_cgroup(memcg); 7998 if (!memcg) 7999 memcg = root_mem_cgroup; 8000 } 8001 return memcg; 8002 } 8003 8004 /** 8005 * mem_cgroup_swapout - transfer a memsw charge to swap 8006 * @folio: folio whose memsw charge to transfer 8007 * @entry: swap entry to move the charge to 8008 * 8009 * Transfer the memsw charge of @folio to @entry. 8010 */ 8011 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 8012 { 8013 struct mem_cgroup *memcg, *swap_memcg; 8014 unsigned int nr_entries; 8015 unsigned short oldid; 8016 8017 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 8018 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 8019 8020 if (mem_cgroup_disabled()) 8021 return; 8022 8023 if (!do_memsw_account()) 8024 return; 8025 8026 memcg = folio_memcg(folio); 8027 8028 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 8029 if (!memcg) 8030 return; 8031 8032 /* 8033 * In case the memcg owning these pages has been offlined and doesn't 8034 * have an ID allocated to it anymore, charge the closest online 8035 * ancestor for the swap instead and transfer the memory+swap charge. 8036 */ 8037 swap_memcg = mem_cgroup_id_get_online(memcg); 8038 nr_entries = folio_nr_pages(folio); 8039 /* Get references for the tail pages, too */ 8040 if (nr_entries > 1) 8041 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 8042 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 8043 nr_entries); 8044 VM_BUG_ON_FOLIO(oldid, folio); 8045 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 8046 8047 folio->memcg_data = 0; 8048 8049 if (!mem_cgroup_is_root(memcg)) 8050 page_counter_uncharge(&memcg->memory, nr_entries); 8051 8052 if (memcg != swap_memcg) { 8053 if (!mem_cgroup_is_root(swap_memcg)) 8054 page_counter_charge(&swap_memcg->memsw, nr_entries); 8055 page_counter_uncharge(&memcg->memsw, nr_entries); 8056 } 8057 8058 /* 8059 * Interrupts should be disabled here because the caller holds the 8060 * i_pages lock which is taken with interrupts-off. It is 8061 * important here to have the interrupts disabled because it is the 8062 * only synchronisation we have for updating the per-CPU variables. 8063 */ 8064 memcg_stats_lock(); 8065 mem_cgroup_charge_statistics(memcg, -nr_entries); 8066 memcg_stats_unlock(); 8067 memcg_check_events(memcg, folio_nid(folio)); 8068 8069 css_put(&memcg->css); 8070 } 8071 8072 /** 8073 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 8074 * @folio: folio being added to swap 8075 * @entry: swap entry to charge 8076 * 8077 * Try to charge @folio's memcg for the swap space at @entry. 8078 * 8079 * Returns 0 on success, -ENOMEM on failure. 8080 */ 8081 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 8082 { 8083 unsigned int nr_pages = folio_nr_pages(folio); 8084 struct page_counter *counter; 8085 struct mem_cgroup *memcg; 8086 unsigned short oldid; 8087 8088 if (do_memsw_account()) 8089 return 0; 8090 8091 memcg = folio_memcg(folio); 8092 8093 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 8094 if (!memcg) 8095 return 0; 8096 8097 if (!entry.val) { 8098 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 8099 return 0; 8100 } 8101 8102 memcg = mem_cgroup_id_get_online(memcg); 8103 8104 if (!mem_cgroup_is_root(memcg) && 8105 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 8106 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 8107 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 8108 mem_cgroup_id_put(memcg); 8109 return -ENOMEM; 8110 } 8111 8112 /* Get references for the tail pages, too */ 8113 if (nr_pages > 1) 8114 mem_cgroup_id_get_many(memcg, nr_pages - 1); 8115 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 8116 VM_BUG_ON_FOLIO(oldid, folio); 8117 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 8118 8119 return 0; 8120 } 8121 8122 /** 8123 * __mem_cgroup_uncharge_swap - uncharge swap space 8124 * @entry: swap entry to uncharge 8125 * @nr_pages: the amount of swap space to uncharge 8126 */ 8127 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 8128 { 8129 struct mem_cgroup *memcg; 8130 unsigned short id; 8131 8132 id = swap_cgroup_record(entry, 0, nr_pages); 8133 rcu_read_lock(); 8134 memcg = mem_cgroup_from_id(id); 8135 if (memcg) { 8136 if (!mem_cgroup_is_root(memcg)) { 8137 if (do_memsw_account()) 8138 page_counter_uncharge(&memcg->memsw, nr_pages); 8139 else 8140 page_counter_uncharge(&memcg->swap, nr_pages); 8141 } 8142 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 8143 mem_cgroup_id_put_many(memcg, nr_pages); 8144 } 8145 rcu_read_unlock(); 8146 } 8147 8148 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 8149 { 8150 long nr_swap_pages = get_nr_swap_pages(); 8151 8152 if (mem_cgroup_disabled() || do_memsw_account()) 8153 return nr_swap_pages; 8154 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 8155 nr_swap_pages = min_t(long, nr_swap_pages, 8156 READ_ONCE(memcg->swap.max) - 8157 page_counter_read(&memcg->swap)); 8158 return nr_swap_pages; 8159 } 8160 8161 bool mem_cgroup_swap_full(struct folio *folio) 8162 { 8163 struct mem_cgroup *memcg; 8164 8165 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 8166 8167 if (vm_swap_full()) 8168 return true; 8169 if (do_memsw_account()) 8170 return false; 8171 8172 memcg = folio_memcg(folio); 8173 if (!memcg) 8174 return false; 8175 8176 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 8177 unsigned long usage = page_counter_read(&memcg->swap); 8178 8179 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 8180 usage * 2 >= READ_ONCE(memcg->swap.max)) 8181 return true; 8182 } 8183 8184 return false; 8185 } 8186 8187 static int __init setup_swap_account(char *s) 8188 { 8189 bool res; 8190 8191 if (!kstrtobool(s, &res) && !res) 8192 pr_warn_once("The swapaccount=0 commandline option is deprecated " 8193 "in favor of configuring swap control via cgroupfs. " 8194 "Please report your usecase to linux-mm@kvack.org if you " 8195 "depend on this functionality.\n"); 8196 return 1; 8197 } 8198 __setup("swapaccount=", setup_swap_account); 8199 8200 static u64 swap_current_read(struct cgroup_subsys_state *css, 8201 struct cftype *cft) 8202 { 8203 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 8204 8205 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 8206 } 8207 8208 static u64 swap_peak_read(struct cgroup_subsys_state *css, 8209 struct cftype *cft) 8210 { 8211 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 8212 8213 return (u64)memcg->swap.watermark * PAGE_SIZE; 8214 } 8215 8216 static int swap_high_show(struct seq_file *m, void *v) 8217 { 8218 return seq_puts_memcg_tunable(m, 8219 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 8220 } 8221 8222 static ssize_t swap_high_write(struct kernfs_open_file *of, 8223 char *buf, size_t nbytes, loff_t off) 8224 { 8225 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8226 unsigned long high; 8227 int err; 8228 8229 buf = strstrip(buf); 8230 err = page_counter_memparse(buf, "max", &high); 8231 if (err) 8232 return err; 8233 8234 page_counter_set_high(&memcg->swap, high); 8235 8236 return nbytes; 8237 } 8238 8239 static int swap_max_show(struct seq_file *m, void *v) 8240 { 8241 return seq_puts_memcg_tunable(m, 8242 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 8243 } 8244 8245 static ssize_t swap_max_write(struct kernfs_open_file *of, 8246 char *buf, size_t nbytes, loff_t off) 8247 { 8248 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8249 unsigned long max; 8250 int err; 8251 8252 buf = strstrip(buf); 8253 err = page_counter_memparse(buf, "max", &max); 8254 if (err) 8255 return err; 8256 8257 xchg(&memcg->swap.max, max); 8258 8259 return nbytes; 8260 } 8261 8262 static int swap_events_show(struct seq_file *m, void *v) 8263 { 8264 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 8265 8266 seq_printf(m, "high %lu\n", 8267 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 8268 seq_printf(m, "max %lu\n", 8269 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 8270 seq_printf(m, "fail %lu\n", 8271 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 8272 8273 return 0; 8274 } 8275 8276 static struct cftype swap_files[] = { 8277 { 8278 .name = "swap.current", 8279 .flags = CFTYPE_NOT_ON_ROOT, 8280 .read_u64 = swap_current_read, 8281 }, 8282 { 8283 .name = "swap.high", 8284 .flags = CFTYPE_NOT_ON_ROOT, 8285 .seq_show = swap_high_show, 8286 .write = swap_high_write, 8287 }, 8288 { 8289 .name = "swap.max", 8290 .flags = CFTYPE_NOT_ON_ROOT, 8291 .seq_show = swap_max_show, 8292 .write = swap_max_write, 8293 }, 8294 { 8295 .name = "swap.peak", 8296 .flags = CFTYPE_NOT_ON_ROOT, 8297 .read_u64 = swap_peak_read, 8298 }, 8299 { 8300 .name = "swap.events", 8301 .flags = CFTYPE_NOT_ON_ROOT, 8302 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 8303 .seq_show = swap_events_show, 8304 }, 8305 { } /* terminate */ 8306 }; 8307 8308 static struct cftype memsw_files[] = { 8309 { 8310 .name = "memsw.usage_in_bytes", 8311 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 8312 .read_u64 = mem_cgroup_read_u64, 8313 }, 8314 { 8315 .name = "memsw.max_usage_in_bytes", 8316 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 8317 .write = mem_cgroup_reset, 8318 .read_u64 = mem_cgroup_read_u64, 8319 }, 8320 { 8321 .name = "memsw.limit_in_bytes", 8322 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 8323 .write = mem_cgroup_write, 8324 .read_u64 = mem_cgroup_read_u64, 8325 }, 8326 { 8327 .name = "memsw.failcnt", 8328 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 8329 .write = mem_cgroup_reset, 8330 .read_u64 = mem_cgroup_read_u64, 8331 }, 8332 { }, /* terminate */ 8333 }; 8334 8335 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 8336 /** 8337 * obj_cgroup_may_zswap - check if this cgroup can zswap 8338 * @objcg: the object cgroup 8339 * 8340 * Check if the hierarchical zswap limit has been reached. 8341 * 8342 * This doesn't check for specific headroom, and it is not atomic 8343 * either. But with zswap, the size of the allocation is only known 8344 * once compression has occurred, and this optimistic pre-check avoids 8345 * spending cycles on compression when there is already no room left 8346 * or zswap is disabled altogether somewhere in the hierarchy. 8347 */ 8348 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 8349 { 8350 struct mem_cgroup *memcg, *original_memcg; 8351 bool ret = true; 8352 8353 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8354 return true; 8355 8356 original_memcg = get_mem_cgroup_from_objcg(objcg); 8357 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 8358 memcg = parent_mem_cgroup(memcg)) { 8359 unsigned long max = READ_ONCE(memcg->zswap_max); 8360 unsigned long pages; 8361 8362 if (max == PAGE_COUNTER_MAX) 8363 continue; 8364 if (max == 0) { 8365 ret = false; 8366 break; 8367 } 8368 8369 /* 8370 * mem_cgroup_flush_stats() ignores small changes. Use 8371 * do_flush_stats() directly to get accurate stats for charging. 8372 */ 8373 do_flush_stats(memcg); 8374 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 8375 if (pages < max) 8376 continue; 8377 ret = false; 8378 break; 8379 } 8380 mem_cgroup_put(original_memcg); 8381 return ret; 8382 } 8383 8384 /** 8385 * obj_cgroup_charge_zswap - charge compression backend memory 8386 * @objcg: the object cgroup 8387 * @size: size of compressed object 8388 * 8389 * This forces the charge after obj_cgroup_may_zswap() allowed 8390 * compression and storage in zwap for this cgroup to go ahead. 8391 */ 8392 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 8393 { 8394 struct mem_cgroup *memcg; 8395 8396 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8397 return; 8398 8399 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 8400 8401 /* PF_MEMALLOC context, charging must succeed */ 8402 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 8403 VM_WARN_ON_ONCE(1); 8404 8405 rcu_read_lock(); 8406 memcg = obj_cgroup_memcg(objcg); 8407 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 8408 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 8409 rcu_read_unlock(); 8410 } 8411 8412 /** 8413 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 8414 * @objcg: the object cgroup 8415 * @size: size of compressed object 8416 * 8417 * Uncharges zswap memory on page in. 8418 */ 8419 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 8420 { 8421 struct mem_cgroup *memcg; 8422 8423 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8424 return; 8425 8426 obj_cgroup_uncharge(objcg, size); 8427 8428 rcu_read_lock(); 8429 memcg = obj_cgroup_memcg(objcg); 8430 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 8431 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 8432 rcu_read_unlock(); 8433 } 8434 8435 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 8436 { 8437 /* if zswap is disabled, do not block pages going to the swapping device */ 8438 return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback); 8439 } 8440 8441 static u64 zswap_current_read(struct cgroup_subsys_state *css, 8442 struct cftype *cft) 8443 { 8444 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 8445 8446 mem_cgroup_flush_stats(memcg); 8447 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 8448 } 8449 8450 static int zswap_max_show(struct seq_file *m, void *v) 8451 { 8452 return seq_puts_memcg_tunable(m, 8453 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 8454 } 8455 8456 static ssize_t zswap_max_write(struct kernfs_open_file *of, 8457 char *buf, size_t nbytes, loff_t off) 8458 { 8459 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8460 unsigned long max; 8461 int err; 8462 8463 buf = strstrip(buf); 8464 err = page_counter_memparse(buf, "max", &max); 8465 if (err) 8466 return err; 8467 8468 xchg(&memcg->zswap_max, max); 8469 8470 return nbytes; 8471 } 8472 8473 static int zswap_writeback_show(struct seq_file *m, void *v) 8474 { 8475 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 8476 8477 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 8478 return 0; 8479 } 8480 8481 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 8482 char *buf, size_t nbytes, loff_t off) 8483 { 8484 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8485 int zswap_writeback; 8486 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 8487 8488 if (parse_ret) 8489 return parse_ret; 8490 8491 if (zswap_writeback != 0 && zswap_writeback != 1) 8492 return -EINVAL; 8493 8494 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 8495 return nbytes; 8496 } 8497 8498 static struct cftype zswap_files[] = { 8499 { 8500 .name = "zswap.current", 8501 .flags = CFTYPE_NOT_ON_ROOT, 8502 .read_u64 = zswap_current_read, 8503 }, 8504 { 8505 .name = "zswap.max", 8506 .flags = CFTYPE_NOT_ON_ROOT, 8507 .seq_show = zswap_max_show, 8508 .write = zswap_max_write, 8509 }, 8510 { 8511 .name = "zswap.writeback", 8512 .seq_show = zswap_writeback_show, 8513 .write = zswap_writeback_write, 8514 }, 8515 { } /* terminate */ 8516 }; 8517 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 8518 8519 static int __init mem_cgroup_swap_init(void) 8520 { 8521 if (mem_cgroup_disabled()) 8522 return 0; 8523 8524 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 8525 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 8526 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 8527 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 8528 #endif 8529 return 0; 8530 } 8531 subsys_initcall(mem_cgroup_swap_init); 8532 8533 #endif /* CONFIG_SWAP */ 8534