xref: /linux/mm/memcontrol.c (revision 1b7871550330c8777c45e07b84781529f27e2b3c)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61 
62 #include <asm/uaccess.h>
63 
64 #include <trace/events/vmscan.h>
65 
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68 
69 #define MEM_CGROUP_RECLAIM_RETRIES	5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75 
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82 
83 #else
84 #define do_swap_account		0
85 #endif
86 
87 
88 /*
89  * Statistics for memory cgroup.
90  */
91 enum mem_cgroup_stat_index {
92 	/*
93 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 	 */
95 	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
96 	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
97 	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
98 	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
99 	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 	MEM_CGROUP_STAT_NSTATS,
101 };
102 
103 static const char * const mem_cgroup_stat_names[] = {
104 	"cache",
105 	"rss",
106 	"rss_huge",
107 	"mapped_file",
108 	"swap",
109 };
110 
111 enum mem_cgroup_events_index {
112 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
113 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
115 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 	MEM_CGROUP_EVENTS_NSTATS,
117 };
118 
119 static const char * const mem_cgroup_events_names[] = {
120 	"pgpgin",
121 	"pgpgout",
122 	"pgfault",
123 	"pgmajfault",
124 };
125 
126 static const char * const mem_cgroup_lru_names[] = {
127 	"inactive_anon",
128 	"active_anon",
129 	"inactive_file",
130 	"active_file",
131 	"unevictable",
132 };
133 
134 /*
135  * Per memcg event counter is incremented at every pagein/pageout. With THP,
136  * it will be incremated by the number of pages. This counter is used for
137  * for trigger some periodic events. This is straightforward and better
138  * than using jiffies etc. to handle periodic memcg event.
139  */
140 enum mem_cgroup_events_target {
141 	MEM_CGROUP_TARGET_THRESH,
142 	MEM_CGROUP_TARGET_SOFTLIMIT,
143 	MEM_CGROUP_TARGET_NUMAINFO,
144 	MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET	1024
149 
150 struct mem_cgroup_stat_cpu {
151 	long count[MEM_CGROUP_STAT_NSTATS];
152 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 	unsigned long nr_page_events;
154 	unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156 
157 struct mem_cgroup_reclaim_iter {
158 	/*
159 	 * last scanned hierarchy member. Valid only if last_dead_count
160 	 * matches memcg->dead_count of the hierarchy root group.
161 	 */
162 	struct mem_cgroup *last_visited;
163 	unsigned long last_dead_count;
164 
165 	/* scan generation, increased every round-trip */
166 	unsigned int generation;
167 };
168 
169 /*
170  * per-zone information in memory controller.
171  */
172 struct mem_cgroup_per_zone {
173 	struct lruvec		lruvec;
174 	unsigned long		lru_size[NR_LRU_LISTS];
175 
176 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177 
178 	struct rb_node		tree_node;	/* RB tree node */
179 	unsigned long long	usage_in_excess;/* Set to the value by which */
180 						/* the soft limit is exceeded*/
181 	bool			on_tree;
182 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183 						/* use container_of	   */
184 };
185 
186 struct mem_cgroup_per_node {
187 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189 
190 struct mem_cgroup_lru_info {
191 	struct mem_cgroup_per_node *nodeinfo[0];
192 };
193 
194 /*
195  * Cgroups above their limits are maintained in a RB-Tree, independent of
196  * their hierarchy representation
197  */
198 
199 struct mem_cgroup_tree_per_zone {
200 	struct rb_root rb_root;
201 	spinlock_t lock;
202 };
203 
204 struct mem_cgroup_tree_per_node {
205 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
206 };
207 
208 struct mem_cgroup_tree {
209 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
210 };
211 
212 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
213 
214 struct mem_cgroup_threshold {
215 	struct eventfd_ctx *eventfd;
216 	u64 threshold;
217 };
218 
219 /* For threshold */
220 struct mem_cgroup_threshold_ary {
221 	/* An array index points to threshold just below or equal to usage. */
222 	int current_threshold;
223 	/* Size of entries[] */
224 	unsigned int size;
225 	/* Array of thresholds */
226 	struct mem_cgroup_threshold entries[0];
227 };
228 
229 struct mem_cgroup_thresholds {
230 	/* Primary thresholds array */
231 	struct mem_cgroup_threshold_ary *primary;
232 	/*
233 	 * Spare threshold array.
234 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
235 	 * It must be able to store at least primary->size - 1 entries.
236 	 */
237 	struct mem_cgroup_threshold_ary *spare;
238 };
239 
240 /* for OOM */
241 struct mem_cgroup_eventfd_list {
242 	struct list_head list;
243 	struct eventfd_ctx *eventfd;
244 };
245 
246 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
247 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
248 
249 /*
250  * The memory controller data structure. The memory controller controls both
251  * page cache and RSS per cgroup. We would eventually like to provide
252  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
253  * to help the administrator determine what knobs to tune.
254  *
255  * TODO: Add a water mark for the memory controller. Reclaim will begin when
256  * we hit the water mark. May be even add a low water mark, such that
257  * no reclaim occurs from a cgroup at it's low water mark, this is
258  * a feature that will be implemented much later in the future.
259  */
260 struct mem_cgroup {
261 	struct cgroup_subsys_state css;
262 	/*
263 	 * the counter to account for memory usage
264 	 */
265 	struct res_counter res;
266 
267 	/* vmpressure notifications */
268 	struct vmpressure vmpressure;
269 
270 	union {
271 		/*
272 		 * the counter to account for mem+swap usage.
273 		 */
274 		struct res_counter memsw;
275 
276 		/*
277 		 * rcu_freeing is used only when freeing struct mem_cgroup,
278 		 * so put it into a union to avoid wasting more memory.
279 		 * It must be disjoint from the css field.  It could be
280 		 * in a union with the res field, but res plays a much
281 		 * larger part in mem_cgroup life than memsw, and might
282 		 * be of interest, even at time of free, when debugging.
283 		 * So share rcu_head with the less interesting memsw.
284 		 */
285 		struct rcu_head rcu_freeing;
286 		/*
287 		 * We also need some space for a worker in deferred freeing.
288 		 * By the time we call it, rcu_freeing is no longer in use.
289 		 */
290 		struct work_struct work_freeing;
291 	};
292 
293 	/*
294 	 * the counter to account for kernel memory usage.
295 	 */
296 	struct res_counter kmem;
297 	/*
298 	 * Should the accounting and control be hierarchical, per subtree?
299 	 */
300 	bool use_hierarchy;
301 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
302 
303 	bool		oom_lock;
304 	atomic_t	under_oom;
305 
306 	atomic_t	refcnt;
307 
308 	int	swappiness;
309 	/* OOM-Killer disable */
310 	int		oom_kill_disable;
311 
312 	/* set when res.limit == memsw.limit */
313 	bool		memsw_is_minimum;
314 
315 	/* protect arrays of thresholds */
316 	struct mutex thresholds_lock;
317 
318 	/* thresholds for memory usage. RCU-protected */
319 	struct mem_cgroup_thresholds thresholds;
320 
321 	/* thresholds for mem+swap usage. RCU-protected */
322 	struct mem_cgroup_thresholds memsw_thresholds;
323 
324 	/* For oom notifier event fd */
325 	struct list_head oom_notify;
326 
327 	/*
328 	 * Should we move charges of a task when a task is moved into this
329 	 * mem_cgroup ? And what type of charges should we move ?
330 	 */
331 	unsigned long 	move_charge_at_immigrate;
332 	/*
333 	 * set > 0 if pages under this cgroup are moving to other cgroup.
334 	 */
335 	atomic_t	moving_account;
336 	/* taken only while moving_account > 0 */
337 	spinlock_t	move_lock;
338 	/*
339 	 * percpu counter.
340 	 */
341 	struct mem_cgroup_stat_cpu __percpu *stat;
342 	/*
343 	 * used when a cpu is offlined or other synchronizations
344 	 * See mem_cgroup_read_stat().
345 	 */
346 	struct mem_cgroup_stat_cpu nocpu_base;
347 	spinlock_t pcp_counter_lock;
348 
349 	atomic_t	dead_count;
350 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
351 	struct tcp_memcontrol tcp_mem;
352 #endif
353 #if defined(CONFIG_MEMCG_KMEM)
354 	/* analogous to slab_common's slab_caches list. per-memcg */
355 	struct list_head memcg_slab_caches;
356 	/* Not a spinlock, we can take a lot of time walking the list */
357 	struct mutex slab_caches_mutex;
358         /* Index in the kmem_cache->memcg_params->memcg_caches array */
359 	int kmemcg_id;
360 #endif
361 
362 	int last_scanned_node;
363 #if MAX_NUMNODES > 1
364 	nodemask_t	scan_nodes;
365 	atomic_t	numainfo_events;
366 	atomic_t	numainfo_updating;
367 #endif
368 
369 	/*
370 	 * Per cgroup active and inactive list, similar to the
371 	 * per zone LRU lists.
372 	 *
373 	 * WARNING: This has to be the last element of the struct. Don't
374 	 * add new fields after this point.
375 	 */
376 	struct mem_cgroup_lru_info info;
377 };
378 
379 static size_t memcg_size(void)
380 {
381 	return sizeof(struct mem_cgroup) +
382 		nr_node_ids * sizeof(struct mem_cgroup_per_node);
383 }
384 
385 /* internal only representation about the status of kmem accounting. */
386 enum {
387 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
388 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
389 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
390 };
391 
392 /* We account when limit is on, but only after call sites are patched */
393 #define KMEM_ACCOUNTED_MASK \
394 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
395 
396 #ifdef CONFIG_MEMCG_KMEM
397 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
398 {
399 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
400 }
401 
402 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
403 {
404 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
405 }
406 
407 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
408 {
409 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
410 }
411 
412 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
413 {
414 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
415 }
416 
417 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
418 {
419 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
420 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
421 }
422 
423 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
424 {
425 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
426 				  &memcg->kmem_account_flags);
427 }
428 #endif
429 
430 /* Stuffs for move charges at task migration. */
431 /*
432  * Types of charges to be moved. "move_charge_at_immitgrate" and
433  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
434  */
435 enum move_type {
436 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
437 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
438 	NR_MOVE_TYPE,
439 };
440 
441 /* "mc" and its members are protected by cgroup_mutex */
442 static struct move_charge_struct {
443 	spinlock_t	  lock; /* for from, to */
444 	struct mem_cgroup *from;
445 	struct mem_cgroup *to;
446 	unsigned long immigrate_flags;
447 	unsigned long precharge;
448 	unsigned long moved_charge;
449 	unsigned long moved_swap;
450 	struct task_struct *moving_task;	/* a task moving charges */
451 	wait_queue_head_t waitq;		/* a waitq for other context */
452 } mc = {
453 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
454 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
455 };
456 
457 static bool move_anon(void)
458 {
459 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
460 }
461 
462 static bool move_file(void)
463 {
464 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
465 }
466 
467 /*
468  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
469  * limit reclaim to prevent infinite loops, if they ever occur.
470  */
471 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
472 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
473 
474 enum charge_type {
475 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
476 	MEM_CGROUP_CHARGE_TYPE_ANON,
477 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
478 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
479 	NR_CHARGE_TYPE,
480 };
481 
482 /* for encoding cft->private value on file */
483 enum res_type {
484 	_MEM,
485 	_MEMSWAP,
486 	_OOM_TYPE,
487 	_KMEM,
488 };
489 
490 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
491 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
492 #define MEMFILE_ATTR(val)	((val) & 0xffff)
493 /* Used for OOM nofiier */
494 #define OOM_CONTROL		(0)
495 
496 /*
497  * Reclaim flags for mem_cgroup_hierarchical_reclaim
498  */
499 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
500 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
501 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
502 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
503 
504 /*
505  * The memcg_create_mutex will be held whenever a new cgroup is created.
506  * As a consequence, any change that needs to protect against new child cgroups
507  * appearing has to hold it as well.
508  */
509 static DEFINE_MUTEX(memcg_create_mutex);
510 
511 static void mem_cgroup_get(struct mem_cgroup *memcg);
512 static void mem_cgroup_put(struct mem_cgroup *memcg);
513 
514 static inline
515 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
516 {
517 	return container_of(s, struct mem_cgroup, css);
518 }
519 
520 /* Some nice accessors for the vmpressure. */
521 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
522 {
523 	if (!memcg)
524 		memcg = root_mem_cgroup;
525 	return &memcg->vmpressure;
526 }
527 
528 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
529 {
530 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
531 }
532 
533 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
534 {
535 	return &mem_cgroup_from_css(css)->vmpressure;
536 }
537 
538 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
539 {
540 	return (memcg == root_mem_cgroup);
541 }
542 
543 /* Writing them here to avoid exposing memcg's inner layout */
544 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
545 
546 void sock_update_memcg(struct sock *sk)
547 {
548 	if (mem_cgroup_sockets_enabled) {
549 		struct mem_cgroup *memcg;
550 		struct cg_proto *cg_proto;
551 
552 		BUG_ON(!sk->sk_prot->proto_cgroup);
553 
554 		/* Socket cloning can throw us here with sk_cgrp already
555 		 * filled. It won't however, necessarily happen from
556 		 * process context. So the test for root memcg given
557 		 * the current task's memcg won't help us in this case.
558 		 *
559 		 * Respecting the original socket's memcg is a better
560 		 * decision in this case.
561 		 */
562 		if (sk->sk_cgrp) {
563 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
564 			mem_cgroup_get(sk->sk_cgrp->memcg);
565 			return;
566 		}
567 
568 		rcu_read_lock();
569 		memcg = mem_cgroup_from_task(current);
570 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
571 		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
572 			mem_cgroup_get(memcg);
573 			sk->sk_cgrp = cg_proto;
574 		}
575 		rcu_read_unlock();
576 	}
577 }
578 EXPORT_SYMBOL(sock_update_memcg);
579 
580 void sock_release_memcg(struct sock *sk)
581 {
582 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
583 		struct mem_cgroup *memcg;
584 		WARN_ON(!sk->sk_cgrp->memcg);
585 		memcg = sk->sk_cgrp->memcg;
586 		mem_cgroup_put(memcg);
587 	}
588 }
589 
590 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
591 {
592 	if (!memcg || mem_cgroup_is_root(memcg))
593 		return NULL;
594 
595 	return &memcg->tcp_mem.cg_proto;
596 }
597 EXPORT_SYMBOL(tcp_proto_cgroup);
598 
599 static void disarm_sock_keys(struct mem_cgroup *memcg)
600 {
601 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
602 		return;
603 	static_key_slow_dec(&memcg_socket_limit_enabled);
604 }
605 #else
606 static void disarm_sock_keys(struct mem_cgroup *memcg)
607 {
608 }
609 #endif
610 
611 #ifdef CONFIG_MEMCG_KMEM
612 /*
613  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
614  * There are two main reasons for not using the css_id for this:
615  *  1) this works better in sparse environments, where we have a lot of memcgs,
616  *     but only a few kmem-limited. Or also, if we have, for instance, 200
617  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
618  *     200 entry array for that.
619  *
620  *  2) In order not to violate the cgroup API, we would like to do all memory
621  *     allocation in ->create(). At that point, we haven't yet allocated the
622  *     css_id. Having a separate index prevents us from messing with the cgroup
623  *     core for this
624  *
625  * The current size of the caches array is stored in
626  * memcg_limited_groups_array_size.  It will double each time we have to
627  * increase it.
628  */
629 static DEFINE_IDA(kmem_limited_groups);
630 int memcg_limited_groups_array_size;
631 
632 /*
633  * MIN_SIZE is different than 1, because we would like to avoid going through
634  * the alloc/free process all the time. In a small machine, 4 kmem-limited
635  * cgroups is a reasonable guess. In the future, it could be a parameter or
636  * tunable, but that is strictly not necessary.
637  *
638  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
639  * this constant directly from cgroup, but it is understandable that this is
640  * better kept as an internal representation in cgroup.c. In any case, the
641  * css_id space is not getting any smaller, and we don't have to necessarily
642  * increase ours as well if it increases.
643  */
644 #define MEMCG_CACHES_MIN_SIZE 4
645 #define MEMCG_CACHES_MAX_SIZE 65535
646 
647 /*
648  * A lot of the calls to the cache allocation functions are expected to be
649  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
650  * conditional to this static branch, we'll have to allow modules that does
651  * kmem_cache_alloc and the such to see this symbol as well
652  */
653 struct static_key memcg_kmem_enabled_key;
654 EXPORT_SYMBOL(memcg_kmem_enabled_key);
655 
656 static void disarm_kmem_keys(struct mem_cgroup *memcg)
657 {
658 	if (memcg_kmem_is_active(memcg)) {
659 		static_key_slow_dec(&memcg_kmem_enabled_key);
660 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
661 	}
662 	/*
663 	 * This check can't live in kmem destruction function,
664 	 * since the charges will outlive the cgroup
665 	 */
666 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
667 }
668 #else
669 static void disarm_kmem_keys(struct mem_cgroup *memcg)
670 {
671 }
672 #endif /* CONFIG_MEMCG_KMEM */
673 
674 static void disarm_static_keys(struct mem_cgroup *memcg)
675 {
676 	disarm_sock_keys(memcg);
677 	disarm_kmem_keys(memcg);
678 }
679 
680 static void drain_all_stock_async(struct mem_cgroup *memcg);
681 
682 static struct mem_cgroup_per_zone *
683 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
684 {
685 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
686 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
687 }
688 
689 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
690 {
691 	return &memcg->css;
692 }
693 
694 static struct mem_cgroup_per_zone *
695 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
696 {
697 	int nid = page_to_nid(page);
698 	int zid = page_zonenum(page);
699 
700 	return mem_cgroup_zoneinfo(memcg, nid, zid);
701 }
702 
703 static struct mem_cgroup_tree_per_zone *
704 soft_limit_tree_node_zone(int nid, int zid)
705 {
706 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
707 }
708 
709 static struct mem_cgroup_tree_per_zone *
710 soft_limit_tree_from_page(struct page *page)
711 {
712 	int nid = page_to_nid(page);
713 	int zid = page_zonenum(page);
714 
715 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
716 }
717 
718 static void
719 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
720 				struct mem_cgroup_per_zone *mz,
721 				struct mem_cgroup_tree_per_zone *mctz,
722 				unsigned long long new_usage_in_excess)
723 {
724 	struct rb_node **p = &mctz->rb_root.rb_node;
725 	struct rb_node *parent = NULL;
726 	struct mem_cgroup_per_zone *mz_node;
727 
728 	if (mz->on_tree)
729 		return;
730 
731 	mz->usage_in_excess = new_usage_in_excess;
732 	if (!mz->usage_in_excess)
733 		return;
734 	while (*p) {
735 		parent = *p;
736 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
737 					tree_node);
738 		if (mz->usage_in_excess < mz_node->usage_in_excess)
739 			p = &(*p)->rb_left;
740 		/*
741 		 * We can't avoid mem cgroups that are over their soft
742 		 * limit by the same amount
743 		 */
744 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
745 			p = &(*p)->rb_right;
746 	}
747 	rb_link_node(&mz->tree_node, parent, p);
748 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
749 	mz->on_tree = true;
750 }
751 
752 static void
753 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
754 				struct mem_cgroup_per_zone *mz,
755 				struct mem_cgroup_tree_per_zone *mctz)
756 {
757 	if (!mz->on_tree)
758 		return;
759 	rb_erase(&mz->tree_node, &mctz->rb_root);
760 	mz->on_tree = false;
761 }
762 
763 static void
764 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
765 				struct mem_cgroup_per_zone *mz,
766 				struct mem_cgroup_tree_per_zone *mctz)
767 {
768 	spin_lock(&mctz->lock);
769 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
770 	spin_unlock(&mctz->lock);
771 }
772 
773 
774 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
775 {
776 	unsigned long long excess;
777 	struct mem_cgroup_per_zone *mz;
778 	struct mem_cgroup_tree_per_zone *mctz;
779 	int nid = page_to_nid(page);
780 	int zid = page_zonenum(page);
781 	mctz = soft_limit_tree_from_page(page);
782 
783 	/*
784 	 * Necessary to update all ancestors when hierarchy is used.
785 	 * because their event counter is not touched.
786 	 */
787 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
788 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
789 		excess = res_counter_soft_limit_excess(&memcg->res);
790 		/*
791 		 * We have to update the tree if mz is on RB-tree or
792 		 * mem is over its softlimit.
793 		 */
794 		if (excess || mz->on_tree) {
795 			spin_lock(&mctz->lock);
796 			/* if on-tree, remove it */
797 			if (mz->on_tree)
798 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
799 			/*
800 			 * Insert again. mz->usage_in_excess will be updated.
801 			 * If excess is 0, no tree ops.
802 			 */
803 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
804 			spin_unlock(&mctz->lock);
805 		}
806 	}
807 }
808 
809 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
810 {
811 	int node, zone;
812 	struct mem_cgroup_per_zone *mz;
813 	struct mem_cgroup_tree_per_zone *mctz;
814 
815 	for_each_node(node) {
816 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
817 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
818 			mctz = soft_limit_tree_node_zone(node, zone);
819 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
820 		}
821 	}
822 }
823 
824 static struct mem_cgroup_per_zone *
825 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
826 {
827 	struct rb_node *rightmost = NULL;
828 	struct mem_cgroup_per_zone *mz;
829 
830 retry:
831 	mz = NULL;
832 	rightmost = rb_last(&mctz->rb_root);
833 	if (!rightmost)
834 		goto done;		/* Nothing to reclaim from */
835 
836 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
837 	/*
838 	 * Remove the node now but someone else can add it back,
839 	 * we will to add it back at the end of reclaim to its correct
840 	 * position in the tree.
841 	 */
842 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
843 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
844 		!css_tryget(&mz->memcg->css))
845 		goto retry;
846 done:
847 	return mz;
848 }
849 
850 static struct mem_cgroup_per_zone *
851 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
852 {
853 	struct mem_cgroup_per_zone *mz;
854 
855 	spin_lock(&mctz->lock);
856 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
857 	spin_unlock(&mctz->lock);
858 	return mz;
859 }
860 
861 /*
862  * Implementation Note: reading percpu statistics for memcg.
863  *
864  * Both of vmstat[] and percpu_counter has threshold and do periodic
865  * synchronization to implement "quick" read. There are trade-off between
866  * reading cost and precision of value. Then, we may have a chance to implement
867  * a periodic synchronizion of counter in memcg's counter.
868  *
869  * But this _read() function is used for user interface now. The user accounts
870  * memory usage by memory cgroup and he _always_ requires exact value because
871  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
872  * have to visit all online cpus and make sum. So, for now, unnecessary
873  * synchronization is not implemented. (just implemented for cpu hotplug)
874  *
875  * If there are kernel internal actions which can make use of some not-exact
876  * value, and reading all cpu value can be performance bottleneck in some
877  * common workload, threashold and synchonization as vmstat[] should be
878  * implemented.
879  */
880 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
881 				 enum mem_cgroup_stat_index idx)
882 {
883 	long val = 0;
884 	int cpu;
885 
886 	get_online_cpus();
887 	for_each_online_cpu(cpu)
888 		val += per_cpu(memcg->stat->count[idx], cpu);
889 #ifdef CONFIG_HOTPLUG_CPU
890 	spin_lock(&memcg->pcp_counter_lock);
891 	val += memcg->nocpu_base.count[idx];
892 	spin_unlock(&memcg->pcp_counter_lock);
893 #endif
894 	put_online_cpus();
895 	return val;
896 }
897 
898 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
899 					 bool charge)
900 {
901 	int val = (charge) ? 1 : -1;
902 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
903 }
904 
905 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
906 					    enum mem_cgroup_events_index idx)
907 {
908 	unsigned long val = 0;
909 	int cpu;
910 
911 	for_each_online_cpu(cpu)
912 		val += per_cpu(memcg->stat->events[idx], cpu);
913 #ifdef CONFIG_HOTPLUG_CPU
914 	spin_lock(&memcg->pcp_counter_lock);
915 	val += memcg->nocpu_base.events[idx];
916 	spin_unlock(&memcg->pcp_counter_lock);
917 #endif
918 	return val;
919 }
920 
921 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
922 					 struct page *page,
923 					 bool anon, int nr_pages)
924 {
925 	preempt_disable();
926 
927 	/*
928 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
929 	 * counted as CACHE even if it's on ANON LRU.
930 	 */
931 	if (anon)
932 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
933 				nr_pages);
934 	else
935 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
936 				nr_pages);
937 
938 	if (PageTransHuge(page))
939 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
940 				nr_pages);
941 
942 	/* pagein of a big page is an event. So, ignore page size */
943 	if (nr_pages > 0)
944 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
945 	else {
946 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
947 		nr_pages = -nr_pages; /* for event */
948 	}
949 
950 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
951 
952 	preempt_enable();
953 }
954 
955 unsigned long
956 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
957 {
958 	struct mem_cgroup_per_zone *mz;
959 
960 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
961 	return mz->lru_size[lru];
962 }
963 
964 static unsigned long
965 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
966 			unsigned int lru_mask)
967 {
968 	struct mem_cgroup_per_zone *mz;
969 	enum lru_list lru;
970 	unsigned long ret = 0;
971 
972 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
973 
974 	for_each_lru(lru) {
975 		if (BIT(lru) & lru_mask)
976 			ret += mz->lru_size[lru];
977 	}
978 	return ret;
979 }
980 
981 static unsigned long
982 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
983 			int nid, unsigned int lru_mask)
984 {
985 	u64 total = 0;
986 	int zid;
987 
988 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
989 		total += mem_cgroup_zone_nr_lru_pages(memcg,
990 						nid, zid, lru_mask);
991 
992 	return total;
993 }
994 
995 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
996 			unsigned int lru_mask)
997 {
998 	int nid;
999 	u64 total = 0;
1000 
1001 	for_each_node_state(nid, N_MEMORY)
1002 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1003 	return total;
1004 }
1005 
1006 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1007 				       enum mem_cgroup_events_target target)
1008 {
1009 	unsigned long val, next;
1010 
1011 	val = __this_cpu_read(memcg->stat->nr_page_events);
1012 	next = __this_cpu_read(memcg->stat->targets[target]);
1013 	/* from time_after() in jiffies.h */
1014 	if ((long)next - (long)val < 0) {
1015 		switch (target) {
1016 		case MEM_CGROUP_TARGET_THRESH:
1017 			next = val + THRESHOLDS_EVENTS_TARGET;
1018 			break;
1019 		case MEM_CGROUP_TARGET_SOFTLIMIT:
1020 			next = val + SOFTLIMIT_EVENTS_TARGET;
1021 			break;
1022 		case MEM_CGROUP_TARGET_NUMAINFO:
1023 			next = val + NUMAINFO_EVENTS_TARGET;
1024 			break;
1025 		default:
1026 			break;
1027 		}
1028 		__this_cpu_write(memcg->stat->targets[target], next);
1029 		return true;
1030 	}
1031 	return false;
1032 }
1033 
1034 /*
1035  * Check events in order.
1036  *
1037  */
1038 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1039 {
1040 	preempt_disable();
1041 	/* threshold event is triggered in finer grain than soft limit */
1042 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1043 						MEM_CGROUP_TARGET_THRESH))) {
1044 		bool do_softlimit;
1045 		bool do_numainfo __maybe_unused;
1046 
1047 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1048 						MEM_CGROUP_TARGET_SOFTLIMIT);
1049 #if MAX_NUMNODES > 1
1050 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1051 						MEM_CGROUP_TARGET_NUMAINFO);
1052 #endif
1053 		preempt_enable();
1054 
1055 		mem_cgroup_threshold(memcg);
1056 		if (unlikely(do_softlimit))
1057 			mem_cgroup_update_tree(memcg, page);
1058 #if MAX_NUMNODES > 1
1059 		if (unlikely(do_numainfo))
1060 			atomic_inc(&memcg->numainfo_events);
1061 #endif
1062 	} else
1063 		preempt_enable();
1064 }
1065 
1066 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1067 {
1068 	return mem_cgroup_from_css(
1069 		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1070 }
1071 
1072 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1073 {
1074 	/*
1075 	 * mm_update_next_owner() may clear mm->owner to NULL
1076 	 * if it races with swapoff, page migration, etc.
1077 	 * So this can be called with p == NULL.
1078 	 */
1079 	if (unlikely(!p))
1080 		return NULL;
1081 
1082 	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1083 }
1084 
1085 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1086 {
1087 	struct mem_cgroup *memcg = NULL;
1088 
1089 	if (!mm)
1090 		return NULL;
1091 	/*
1092 	 * Because we have no locks, mm->owner's may be being moved to other
1093 	 * cgroup. We use css_tryget() here even if this looks
1094 	 * pessimistic (rather than adding locks here).
1095 	 */
1096 	rcu_read_lock();
1097 	do {
1098 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1099 		if (unlikely(!memcg))
1100 			break;
1101 	} while (!css_tryget(&memcg->css));
1102 	rcu_read_unlock();
1103 	return memcg;
1104 }
1105 
1106 /*
1107  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1108  * ref. count) or NULL if the whole root's subtree has been visited.
1109  *
1110  * helper function to be used by mem_cgroup_iter
1111  */
1112 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1113 		struct mem_cgroup *last_visited)
1114 {
1115 	struct cgroup *prev_cgroup, *next_cgroup;
1116 
1117 	/*
1118 	 * Root is not visited by cgroup iterators so it needs an
1119 	 * explicit visit.
1120 	 */
1121 	if (!last_visited)
1122 		return root;
1123 
1124 	prev_cgroup = (last_visited == root) ? NULL
1125 		: last_visited->css.cgroup;
1126 skip_node:
1127 	next_cgroup = cgroup_next_descendant_pre(
1128 			prev_cgroup, root->css.cgroup);
1129 
1130 	/*
1131 	 * Even if we found a group we have to make sure it is
1132 	 * alive. css && !memcg means that the groups should be
1133 	 * skipped and we should continue the tree walk.
1134 	 * last_visited css is safe to use because it is
1135 	 * protected by css_get and the tree walk is rcu safe.
1136 	 */
1137 	if (next_cgroup) {
1138 		struct mem_cgroup *mem = mem_cgroup_from_cont(
1139 				next_cgroup);
1140 		if (css_tryget(&mem->css))
1141 			return mem;
1142 		else {
1143 			prev_cgroup = next_cgroup;
1144 			goto skip_node;
1145 		}
1146 	}
1147 
1148 	return NULL;
1149 }
1150 
1151 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1152 {
1153 	/*
1154 	 * When a group in the hierarchy below root is destroyed, the
1155 	 * hierarchy iterator can no longer be trusted since it might
1156 	 * have pointed to the destroyed group.  Invalidate it.
1157 	 */
1158 	atomic_inc(&root->dead_count);
1159 }
1160 
1161 static struct mem_cgroup *
1162 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1163 		     struct mem_cgroup *root,
1164 		     int *sequence)
1165 {
1166 	struct mem_cgroup *position = NULL;
1167 	/*
1168 	 * A cgroup destruction happens in two stages: offlining and
1169 	 * release.  They are separated by a RCU grace period.
1170 	 *
1171 	 * If the iterator is valid, we may still race with an
1172 	 * offlining.  The RCU lock ensures the object won't be
1173 	 * released, tryget will fail if we lost the race.
1174 	 */
1175 	*sequence = atomic_read(&root->dead_count);
1176 	if (iter->last_dead_count == *sequence) {
1177 		smp_rmb();
1178 		position = iter->last_visited;
1179 		if (position && !css_tryget(&position->css))
1180 			position = NULL;
1181 	}
1182 	return position;
1183 }
1184 
1185 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1186 				   struct mem_cgroup *last_visited,
1187 				   struct mem_cgroup *new_position,
1188 				   int sequence)
1189 {
1190 	if (last_visited)
1191 		css_put(&last_visited->css);
1192 	/*
1193 	 * We store the sequence count from the time @last_visited was
1194 	 * loaded successfully instead of rereading it here so that we
1195 	 * don't lose destruction events in between.  We could have
1196 	 * raced with the destruction of @new_position after all.
1197 	 */
1198 	iter->last_visited = new_position;
1199 	smp_wmb();
1200 	iter->last_dead_count = sequence;
1201 }
1202 
1203 /**
1204  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1205  * @root: hierarchy root
1206  * @prev: previously returned memcg, NULL on first invocation
1207  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1208  *
1209  * Returns references to children of the hierarchy below @root, or
1210  * @root itself, or %NULL after a full round-trip.
1211  *
1212  * Caller must pass the return value in @prev on subsequent
1213  * invocations for reference counting, or use mem_cgroup_iter_break()
1214  * to cancel a hierarchy walk before the round-trip is complete.
1215  *
1216  * Reclaimers can specify a zone and a priority level in @reclaim to
1217  * divide up the memcgs in the hierarchy among all concurrent
1218  * reclaimers operating on the same zone and priority.
1219  */
1220 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1221 				   struct mem_cgroup *prev,
1222 				   struct mem_cgroup_reclaim_cookie *reclaim)
1223 {
1224 	struct mem_cgroup *memcg = NULL;
1225 	struct mem_cgroup *last_visited = NULL;
1226 
1227 	if (mem_cgroup_disabled())
1228 		return NULL;
1229 
1230 	if (!root)
1231 		root = root_mem_cgroup;
1232 
1233 	if (prev && !reclaim)
1234 		last_visited = prev;
1235 
1236 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1237 		if (prev)
1238 			goto out_css_put;
1239 		return root;
1240 	}
1241 
1242 	rcu_read_lock();
1243 	while (!memcg) {
1244 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1245 		int uninitialized_var(seq);
1246 
1247 		if (reclaim) {
1248 			int nid = zone_to_nid(reclaim->zone);
1249 			int zid = zone_idx(reclaim->zone);
1250 			struct mem_cgroup_per_zone *mz;
1251 
1252 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1253 			iter = &mz->reclaim_iter[reclaim->priority];
1254 			if (prev && reclaim->generation != iter->generation) {
1255 				iter->last_visited = NULL;
1256 				goto out_unlock;
1257 			}
1258 
1259 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1260 		}
1261 
1262 		memcg = __mem_cgroup_iter_next(root, last_visited);
1263 
1264 		if (reclaim) {
1265 			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1266 
1267 			if (!memcg)
1268 				iter->generation++;
1269 			else if (!prev && memcg)
1270 				reclaim->generation = iter->generation;
1271 		}
1272 
1273 		if (prev && !memcg)
1274 			goto out_unlock;
1275 	}
1276 out_unlock:
1277 	rcu_read_unlock();
1278 out_css_put:
1279 	if (prev && prev != root)
1280 		css_put(&prev->css);
1281 
1282 	return memcg;
1283 }
1284 
1285 /**
1286  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1287  * @root: hierarchy root
1288  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1289  */
1290 void mem_cgroup_iter_break(struct mem_cgroup *root,
1291 			   struct mem_cgroup *prev)
1292 {
1293 	if (!root)
1294 		root = root_mem_cgroup;
1295 	if (prev && prev != root)
1296 		css_put(&prev->css);
1297 }
1298 
1299 /*
1300  * Iteration constructs for visiting all cgroups (under a tree).  If
1301  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1302  * be used for reference counting.
1303  */
1304 #define for_each_mem_cgroup_tree(iter, root)		\
1305 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1306 	     iter != NULL;				\
1307 	     iter = mem_cgroup_iter(root, iter, NULL))
1308 
1309 #define for_each_mem_cgroup(iter)			\
1310 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1311 	     iter != NULL;				\
1312 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1313 
1314 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1315 {
1316 	struct mem_cgroup *memcg;
1317 
1318 	rcu_read_lock();
1319 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1320 	if (unlikely(!memcg))
1321 		goto out;
1322 
1323 	switch (idx) {
1324 	case PGFAULT:
1325 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1326 		break;
1327 	case PGMAJFAULT:
1328 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1329 		break;
1330 	default:
1331 		BUG();
1332 	}
1333 out:
1334 	rcu_read_unlock();
1335 }
1336 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1337 
1338 /**
1339  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1340  * @zone: zone of the wanted lruvec
1341  * @memcg: memcg of the wanted lruvec
1342  *
1343  * Returns the lru list vector holding pages for the given @zone and
1344  * @mem.  This can be the global zone lruvec, if the memory controller
1345  * is disabled.
1346  */
1347 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1348 				      struct mem_cgroup *memcg)
1349 {
1350 	struct mem_cgroup_per_zone *mz;
1351 	struct lruvec *lruvec;
1352 
1353 	if (mem_cgroup_disabled()) {
1354 		lruvec = &zone->lruvec;
1355 		goto out;
1356 	}
1357 
1358 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1359 	lruvec = &mz->lruvec;
1360 out:
1361 	/*
1362 	 * Since a node can be onlined after the mem_cgroup was created,
1363 	 * we have to be prepared to initialize lruvec->zone here;
1364 	 * and if offlined then reonlined, we need to reinitialize it.
1365 	 */
1366 	if (unlikely(lruvec->zone != zone))
1367 		lruvec->zone = zone;
1368 	return lruvec;
1369 }
1370 
1371 /*
1372  * Following LRU functions are allowed to be used without PCG_LOCK.
1373  * Operations are called by routine of global LRU independently from memcg.
1374  * What we have to take care of here is validness of pc->mem_cgroup.
1375  *
1376  * Changes to pc->mem_cgroup happens when
1377  * 1. charge
1378  * 2. moving account
1379  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1380  * It is added to LRU before charge.
1381  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1382  * When moving account, the page is not on LRU. It's isolated.
1383  */
1384 
1385 /**
1386  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1387  * @page: the page
1388  * @zone: zone of the page
1389  */
1390 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1391 {
1392 	struct mem_cgroup_per_zone *mz;
1393 	struct mem_cgroup *memcg;
1394 	struct page_cgroup *pc;
1395 	struct lruvec *lruvec;
1396 
1397 	if (mem_cgroup_disabled()) {
1398 		lruvec = &zone->lruvec;
1399 		goto out;
1400 	}
1401 
1402 	pc = lookup_page_cgroup(page);
1403 	memcg = pc->mem_cgroup;
1404 
1405 	/*
1406 	 * Surreptitiously switch any uncharged offlist page to root:
1407 	 * an uncharged page off lru does nothing to secure
1408 	 * its former mem_cgroup from sudden removal.
1409 	 *
1410 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1411 	 * under page_cgroup lock: between them, they make all uses
1412 	 * of pc->mem_cgroup safe.
1413 	 */
1414 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1415 		pc->mem_cgroup = memcg = root_mem_cgroup;
1416 
1417 	mz = page_cgroup_zoneinfo(memcg, page);
1418 	lruvec = &mz->lruvec;
1419 out:
1420 	/*
1421 	 * Since a node can be onlined after the mem_cgroup was created,
1422 	 * we have to be prepared to initialize lruvec->zone here;
1423 	 * and if offlined then reonlined, we need to reinitialize it.
1424 	 */
1425 	if (unlikely(lruvec->zone != zone))
1426 		lruvec->zone = zone;
1427 	return lruvec;
1428 }
1429 
1430 /**
1431  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1432  * @lruvec: mem_cgroup per zone lru vector
1433  * @lru: index of lru list the page is sitting on
1434  * @nr_pages: positive when adding or negative when removing
1435  *
1436  * This function must be called when a page is added to or removed from an
1437  * lru list.
1438  */
1439 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1440 				int nr_pages)
1441 {
1442 	struct mem_cgroup_per_zone *mz;
1443 	unsigned long *lru_size;
1444 
1445 	if (mem_cgroup_disabled())
1446 		return;
1447 
1448 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1449 	lru_size = mz->lru_size + lru;
1450 	*lru_size += nr_pages;
1451 	VM_BUG_ON((long)(*lru_size) < 0);
1452 }
1453 
1454 /*
1455  * Checks whether given mem is same or in the root_mem_cgroup's
1456  * hierarchy subtree
1457  */
1458 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1459 				  struct mem_cgroup *memcg)
1460 {
1461 	if (root_memcg == memcg)
1462 		return true;
1463 	if (!root_memcg->use_hierarchy || !memcg)
1464 		return false;
1465 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1466 }
1467 
1468 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1469 				       struct mem_cgroup *memcg)
1470 {
1471 	bool ret;
1472 
1473 	rcu_read_lock();
1474 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1475 	rcu_read_unlock();
1476 	return ret;
1477 }
1478 
1479 bool task_in_mem_cgroup(struct task_struct *task,
1480 			const struct mem_cgroup *memcg)
1481 {
1482 	struct mem_cgroup *curr = NULL;
1483 	struct task_struct *p;
1484 	bool ret;
1485 
1486 	p = find_lock_task_mm(task);
1487 	if (p) {
1488 		curr = try_get_mem_cgroup_from_mm(p->mm);
1489 		task_unlock(p);
1490 	} else {
1491 		/*
1492 		 * All threads may have already detached their mm's, but the oom
1493 		 * killer still needs to detect if they have already been oom
1494 		 * killed to prevent needlessly killing additional tasks.
1495 		 */
1496 		rcu_read_lock();
1497 		curr = mem_cgroup_from_task(task);
1498 		if (curr)
1499 			css_get(&curr->css);
1500 		rcu_read_unlock();
1501 	}
1502 	if (!curr)
1503 		return false;
1504 	/*
1505 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1506 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1507 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1508 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1509 	 */
1510 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1511 	css_put(&curr->css);
1512 	return ret;
1513 }
1514 
1515 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1516 {
1517 	unsigned long inactive_ratio;
1518 	unsigned long inactive;
1519 	unsigned long active;
1520 	unsigned long gb;
1521 
1522 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1523 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1524 
1525 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1526 	if (gb)
1527 		inactive_ratio = int_sqrt(10 * gb);
1528 	else
1529 		inactive_ratio = 1;
1530 
1531 	return inactive * inactive_ratio < active;
1532 }
1533 
1534 #define mem_cgroup_from_res_counter(counter, member)	\
1535 	container_of(counter, struct mem_cgroup, member)
1536 
1537 /**
1538  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1539  * @memcg: the memory cgroup
1540  *
1541  * Returns the maximum amount of memory @mem can be charged with, in
1542  * pages.
1543  */
1544 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1545 {
1546 	unsigned long long margin;
1547 
1548 	margin = res_counter_margin(&memcg->res);
1549 	if (do_swap_account)
1550 		margin = min(margin, res_counter_margin(&memcg->memsw));
1551 	return margin >> PAGE_SHIFT;
1552 }
1553 
1554 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1555 {
1556 	struct cgroup *cgrp = memcg->css.cgroup;
1557 
1558 	/* root ? */
1559 	if (cgrp->parent == NULL)
1560 		return vm_swappiness;
1561 
1562 	return memcg->swappiness;
1563 }
1564 
1565 /*
1566  * memcg->moving_account is used for checking possibility that some thread is
1567  * calling move_account(). When a thread on CPU-A starts moving pages under
1568  * a memcg, other threads should check memcg->moving_account under
1569  * rcu_read_lock(), like this:
1570  *
1571  *         CPU-A                                    CPU-B
1572  *                                              rcu_read_lock()
1573  *         memcg->moving_account+1              if (memcg->mocing_account)
1574  *                                                   take heavy locks.
1575  *         synchronize_rcu()                    update something.
1576  *                                              rcu_read_unlock()
1577  *         start move here.
1578  */
1579 
1580 /* for quick checking without looking up memcg */
1581 atomic_t memcg_moving __read_mostly;
1582 
1583 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1584 {
1585 	atomic_inc(&memcg_moving);
1586 	atomic_inc(&memcg->moving_account);
1587 	synchronize_rcu();
1588 }
1589 
1590 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1591 {
1592 	/*
1593 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1594 	 * We check NULL in callee rather than caller.
1595 	 */
1596 	if (memcg) {
1597 		atomic_dec(&memcg_moving);
1598 		atomic_dec(&memcg->moving_account);
1599 	}
1600 }
1601 
1602 /*
1603  * 2 routines for checking "mem" is under move_account() or not.
1604  *
1605  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1606  *			  is used for avoiding races in accounting.  If true,
1607  *			  pc->mem_cgroup may be overwritten.
1608  *
1609  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1610  *			  under hierarchy of moving cgroups. This is for
1611  *			  waiting at hith-memory prressure caused by "move".
1612  */
1613 
1614 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1615 {
1616 	VM_BUG_ON(!rcu_read_lock_held());
1617 	return atomic_read(&memcg->moving_account) > 0;
1618 }
1619 
1620 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1621 {
1622 	struct mem_cgroup *from;
1623 	struct mem_cgroup *to;
1624 	bool ret = false;
1625 	/*
1626 	 * Unlike task_move routines, we access mc.to, mc.from not under
1627 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1628 	 */
1629 	spin_lock(&mc.lock);
1630 	from = mc.from;
1631 	to = mc.to;
1632 	if (!from)
1633 		goto unlock;
1634 
1635 	ret = mem_cgroup_same_or_subtree(memcg, from)
1636 		|| mem_cgroup_same_or_subtree(memcg, to);
1637 unlock:
1638 	spin_unlock(&mc.lock);
1639 	return ret;
1640 }
1641 
1642 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1643 {
1644 	if (mc.moving_task && current != mc.moving_task) {
1645 		if (mem_cgroup_under_move(memcg)) {
1646 			DEFINE_WAIT(wait);
1647 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1648 			/* moving charge context might have finished. */
1649 			if (mc.moving_task)
1650 				schedule();
1651 			finish_wait(&mc.waitq, &wait);
1652 			return true;
1653 		}
1654 	}
1655 	return false;
1656 }
1657 
1658 /*
1659  * Take this lock when
1660  * - a code tries to modify page's memcg while it's USED.
1661  * - a code tries to modify page state accounting in a memcg.
1662  * see mem_cgroup_stolen(), too.
1663  */
1664 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1665 				  unsigned long *flags)
1666 {
1667 	spin_lock_irqsave(&memcg->move_lock, *flags);
1668 }
1669 
1670 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1671 				unsigned long *flags)
1672 {
1673 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1674 }
1675 
1676 #define K(x) ((x) << (PAGE_SHIFT-10))
1677 /**
1678  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1679  * @memcg: The memory cgroup that went over limit
1680  * @p: Task that is going to be killed
1681  *
1682  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1683  * enabled
1684  */
1685 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1686 {
1687 	struct cgroup *task_cgrp;
1688 	struct cgroup *mem_cgrp;
1689 	/*
1690 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1691 	 * on the assumption that OOM is serialized for memory controller.
1692 	 * If this assumption is broken, revisit this code.
1693 	 */
1694 	static char memcg_name[PATH_MAX];
1695 	int ret;
1696 	struct mem_cgroup *iter;
1697 	unsigned int i;
1698 
1699 	if (!p)
1700 		return;
1701 
1702 	rcu_read_lock();
1703 
1704 	mem_cgrp = memcg->css.cgroup;
1705 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1706 
1707 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1708 	if (ret < 0) {
1709 		/*
1710 		 * Unfortunately, we are unable to convert to a useful name
1711 		 * But we'll still print out the usage information
1712 		 */
1713 		rcu_read_unlock();
1714 		goto done;
1715 	}
1716 	rcu_read_unlock();
1717 
1718 	pr_info("Task in %s killed", memcg_name);
1719 
1720 	rcu_read_lock();
1721 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1722 	if (ret < 0) {
1723 		rcu_read_unlock();
1724 		goto done;
1725 	}
1726 	rcu_read_unlock();
1727 
1728 	/*
1729 	 * Continues from above, so we don't need an KERN_ level
1730 	 */
1731 	pr_cont(" as a result of limit of %s\n", memcg_name);
1732 done:
1733 
1734 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1735 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1736 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1737 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1738 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1739 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1740 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1741 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1742 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1743 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1744 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1745 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1746 
1747 	for_each_mem_cgroup_tree(iter, memcg) {
1748 		pr_info("Memory cgroup stats");
1749 
1750 		rcu_read_lock();
1751 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1752 		if (!ret)
1753 			pr_cont(" for %s", memcg_name);
1754 		rcu_read_unlock();
1755 		pr_cont(":");
1756 
1757 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1758 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1759 				continue;
1760 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1761 				K(mem_cgroup_read_stat(iter, i)));
1762 		}
1763 
1764 		for (i = 0; i < NR_LRU_LISTS; i++)
1765 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1766 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1767 
1768 		pr_cont("\n");
1769 	}
1770 }
1771 
1772 /*
1773  * This function returns the number of memcg under hierarchy tree. Returns
1774  * 1(self count) if no children.
1775  */
1776 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1777 {
1778 	int num = 0;
1779 	struct mem_cgroup *iter;
1780 
1781 	for_each_mem_cgroup_tree(iter, memcg)
1782 		num++;
1783 	return num;
1784 }
1785 
1786 /*
1787  * Return the memory (and swap, if configured) limit for a memcg.
1788  */
1789 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1790 {
1791 	u64 limit;
1792 
1793 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1794 
1795 	/*
1796 	 * Do not consider swap space if we cannot swap due to swappiness
1797 	 */
1798 	if (mem_cgroup_swappiness(memcg)) {
1799 		u64 memsw;
1800 
1801 		limit += total_swap_pages << PAGE_SHIFT;
1802 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1803 
1804 		/*
1805 		 * If memsw is finite and limits the amount of swap space
1806 		 * available to this memcg, return that limit.
1807 		 */
1808 		limit = min(limit, memsw);
1809 	}
1810 
1811 	return limit;
1812 }
1813 
1814 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1815 				     int order)
1816 {
1817 	struct mem_cgroup *iter;
1818 	unsigned long chosen_points = 0;
1819 	unsigned long totalpages;
1820 	unsigned int points = 0;
1821 	struct task_struct *chosen = NULL;
1822 
1823 	/*
1824 	 * If current has a pending SIGKILL or is exiting, then automatically
1825 	 * select it.  The goal is to allow it to allocate so that it may
1826 	 * quickly exit and free its memory.
1827 	 */
1828 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1829 		set_thread_flag(TIF_MEMDIE);
1830 		return;
1831 	}
1832 
1833 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1834 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1835 	for_each_mem_cgroup_tree(iter, memcg) {
1836 		struct cgroup *cgroup = iter->css.cgroup;
1837 		struct cgroup_iter it;
1838 		struct task_struct *task;
1839 
1840 		cgroup_iter_start(cgroup, &it);
1841 		while ((task = cgroup_iter_next(cgroup, &it))) {
1842 			switch (oom_scan_process_thread(task, totalpages, NULL,
1843 							false)) {
1844 			case OOM_SCAN_SELECT:
1845 				if (chosen)
1846 					put_task_struct(chosen);
1847 				chosen = task;
1848 				chosen_points = ULONG_MAX;
1849 				get_task_struct(chosen);
1850 				/* fall through */
1851 			case OOM_SCAN_CONTINUE:
1852 				continue;
1853 			case OOM_SCAN_ABORT:
1854 				cgroup_iter_end(cgroup, &it);
1855 				mem_cgroup_iter_break(memcg, iter);
1856 				if (chosen)
1857 					put_task_struct(chosen);
1858 				return;
1859 			case OOM_SCAN_OK:
1860 				break;
1861 			};
1862 			points = oom_badness(task, memcg, NULL, totalpages);
1863 			if (points > chosen_points) {
1864 				if (chosen)
1865 					put_task_struct(chosen);
1866 				chosen = task;
1867 				chosen_points = points;
1868 				get_task_struct(chosen);
1869 			}
1870 		}
1871 		cgroup_iter_end(cgroup, &it);
1872 	}
1873 
1874 	if (!chosen)
1875 		return;
1876 	points = chosen_points * 1000 / totalpages;
1877 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1878 			 NULL, "Memory cgroup out of memory");
1879 }
1880 
1881 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1882 					gfp_t gfp_mask,
1883 					unsigned long flags)
1884 {
1885 	unsigned long total = 0;
1886 	bool noswap = false;
1887 	int loop;
1888 
1889 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1890 		noswap = true;
1891 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1892 		noswap = true;
1893 
1894 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1895 		if (loop)
1896 			drain_all_stock_async(memcg);
1897 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1898 		/*
1899 		 * Allow limit shrinkers, which are triggered directly
1900 		 * by userspace, to catch signals and stop reclaim
1901 		 * after minimal progress, regardless of the margin.
1902 		 */
1903 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1904 			break;
1905 		if (mem_cgroup_margin(memcg))
1906 			break;
1907 		/*
1908 		 * If nothing was reclaimed after two attempts, there
1909 		 * may be no reclaimable pages in this hierarchy.
1910 		 */
1911 		if (loop && !total)
1912 			break;
1913 	}
1914 	return total;
1915 }
1916 
1917 /**
1918  * test_mem_cgroup_node_reclaimable
1919  * @memcg: the target memcg
1920  * @nid: the node ID to be checked.
1921  * @noswap : specify true here if the user wants flle only information.
1922  *
1923  * This function returns whether the specified memcg contains any
1924  * reclaimable pages on a node. Returns true if there are any reclaimable
1925  * pages in the node.
1926  */
1927 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1928 		int nid, bool noswap)
1929 {
1930 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1931 		return true;
1932 	if (noswap || !total_swap_pages)
1933 		return false;
1934 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1935 		return true;
1936 	return false;
1937 
1938 }
1939 #if MAX_NUMNODES > 1
1940 
1941 /*
1942  * Always updating the nodemask is not very good - even if we have an empty
1943  * list or the wrong list here, we can start from some node and traverse all
1944  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1945  *
1946  */
1947 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1948 {
1949 	int nid;
1950 	/*
1951 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1952 	 * pagein/pageout changes since the last update.
1953 	 */
1954 	if (!atomic_read(&memcg->numainfo_events))
1955 		return;
1956 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1957 		return;
1958 
1959 	/* make a nodemask where this memcg uses memory from */
1960 	memcg->scan_nodes = node_states[N_MEMORY];
1961 
1962 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1963 
1964 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1965 			node_clear(nid, memcg->scan_nodes);
1966 	}
1967 
1968 	atomic_set(&memcg->numainfo_events, 0);
1969 	atomic_set(&memcg->numainfo_updating, 0);
1970 }
1971 
1972 /*
1973  * Selecting a node where we start reclaim from. Because what we need is just
1974  * reducing usage counter, start from anywhere is O,K. Considering
1975  * memory reclaim from current node, there are pros. and cons.
1976  *
1977  * Freeing memory from current node means freeing memory from a node which
1978  * we'll use or we've used. So, it may make LRU bad. And if several threads
1979  * hit limits, it will see a contention on a node. But freeing from remote
1980  * node means more costs for memory reclaim because of memory latency.
1981  *
1982  * Now, we use round-robin. Better algorithm is welcomed.
1983  */
1984 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1985 {
1986 	int node;
1987 
1988 	mem_cgroup_may_update_nodemask(memcg);
1989 	node = memcg->last_scanned_node;
1990 
1991 	node = next_node(node, memcg->scan_nodes);
1992 	if (node == MAX_NUMNODES)
1993 		node = first_node(memcg->scan_nodes);
1994 	/*
1995 	 * We call this when we hit limit, not when pages are added to LRU.
1996 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1997 	 * memcg is too small and all pages are not on LRU. In that case,
1998 	 * we use curret node.
1999 	 */
2000 	if (unlikely(node == MAX_NUMNODES))
2001 		node = numa_node_id();
2002 
2003 	memcg->last_scanned_node = node;
2004 	return node;
2005 }
2006 
2007 /*
2008  * Check all nodes whether it contains reclaimable pages or not.
2009  * For quick scan, we make use of scan_nodes. This will allow us to skip
2010  * unused nodes. But scan_nodes is lazily updated and may not cotain
2011  * enough new information. We need to do double check.
2012  */
2013 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2014 {
2015 	int nid;
2016 
2017 	/*
2018 	 * quick check...making use of scan_node.
2019 	 * We can skip unused nodes.
2020 	 */
2021 	if (!nodes_empty(memcg->scan_nodes)) {
2022 		for (nid = first_node(memcg->scan_nodes);
2023 		     nid < MAX_NUMNODES;
2024 		     nid = next_node(nid, memcg->scan_nodes)) {
2025 
2026 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2027 				return true;
2028 		}
2029 	}
2030 	/*
2031 	 * Check rest of nodes.
2032 	 */
2033 	for_each_node_state(nid, N_MEMORY) {
2034 		if (node_isset(nid, memcg->scan_nodes))
2035 			continue;
2036 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2037 			return true;
2038 	}
2039 	return false;
2040 }
2041 
2042 #else
2043 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2044 {
2045 	return 0;
2046 }
2047 
2048 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2049 {
2050 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2051 }
2052 #endif
2053 
2054 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2055 				   struct zone *zone,
2056 				   gfp_t gfp_mask,
2057 				   unsigned long *total_scanned)
2058 {
2059 	struct mem_cgroup *victim = NULL;
2060 	int total = 0;
2061 	int loop = 0;
2062 	unsigned long excess;
2063 	unsigned long nr_scanned;
2064 	struct mem_cgroup_reclaim_cookie reclaim = {
2065 		.zone = zone,
2066 		.priority = 0,
2067 	};
2068 
2069 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2070 
2071 	while (1) {
2072 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2073 		if (!victim) {
2074 			loop++;
2075 			if (loop >= 2) {
2076 				/*
2077 				 * If we have not been able to reclaim
2078 				 * anything, it might because there are
2079 				 * no reclaimable pages under this hierarchy
2080 				 */
2081 				if (!total)
2082 					break;
2083 				/*
2084 				 * We want to do more targeted reclaim.
2085 				 * excess >> 2 is not to excessive so as to
2086 				 * reclaim too much, nor too less that we keep
2087 				 * coming back to reclaim from this cgroup
2088 				 */
2089 				if (total >= (excess >> 2) ||
2090 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2091 					break;
2092 			}
2093 			continue;
2094 		}
2095 		if (!mem_cgroup_reclaimable(victim, false))
2096 			continue;
2097 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2098 						     zone, &nr_scanned);
2099 		*total_scanned += nr_scanned;
2100 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2101 			break;
2102 	}
2103 	mem_cgroup_iter_break(root_memcg, victim);
2104 	return total;
2105 }
2106 
2107 /*
2108  * Check OOM-Killer is already running under our hierarchy.
2109  * If someone is running, return false.
2110  * Has to be called with memcg_oom_lock
2111  */
2112 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2113 {
2114 	struct mem_cgroup *iter, *failed = NULL;
2115 
2116 	for_each_mem_cgroup_tree(iter, memcg) {
2117 		if (iter->oom_lock) {
2118 			/*
2119 			 * this subtree of our hierarchy is already locked
2120 			 * so we cannot give a lock.
2121 			 */
2122 			failed = iter;
2123 			mem_cgroup_iter_break(memcg, iter);
2124 			break;
2125 		} else
2126 			iter->oom_lock = true;
2127 	}
2128 
2129 	if (!failed)
2130 		return true;
2131 
2132 	/*
2133 	 * OK, we failed to lock the whole subtree so we have to clean up
2134 	 * what we set up to the failing subtree
2135 	 */
2136 	for_each_mem_cgroup_tree(iter, memcg) {
2137 		if (iter == failed) {
2138 			mem_cgroup_iter_break(memcg, iter);
2139 			break;
2140 		}
2141 		iter->oom_lock = false;
2142 	}
2143 	return false;
2144 }
2145 
2146 /*
2147  * Has to be called with memcg_oom_lock
2148  */
2149 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2150 {
2151 	struct mem_cgroup *iter;
2152 
2153 	for_each_mem_cgroup_tree(iter, memcg)
2154 		iter->oom_lock = false;
2155 	return 0;
2156 }
2157 
2158 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2159 {
2160 	struct mem_cgroup *iter;
2161 
2162 	for_each_mem_cgroup_tree(iter, memcg)
2163 		atomic_inc(&iter->under_oom);
2164 }
2165 
2166 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2167 {
2168 	struct mem_cgroup *iter;
2169 
2170 	/*
2171 	 * When a new child is created while the hierarchy is under oom,
2172 	 * mem_cgroup_oom_lock() may not be called. We have to use
2173 	 * atomic_add_unless() here.
2174 	 */
2175 	for_each_mem_cgroup_tree(iter, memcg)
2176 		atomic_add_unless(&iter->under_oom, -1, 0);
2177 }
2178 
2179 static DEFINE_SPINLOCK(memcg_oom_lock);
2180 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2181 
2182 struct oom_wait_info {
2183 	struct mem_cgroup *memcg;
2184 	wait_queue_t	wait;
2185 };
2186 
2187 static int memcg_oom_wake_function(wait_queue_t *wait,
2188 	unsigned mode, int sync, void *arg)
2189 {
2190 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2191 	struct mem_cgroup *oom_wait_memcg;
2192 	struct oom_wait_info *oom_wait_info;
2193 
2194 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2195 	oom_wait_memcg = oom_wait_info->memcg;
2196 
2197 	/*
2198 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2199 	 * Then we can use css_is_ancestor without taking care of RCU.
2200 	 */
2201 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2202 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2203 		return 0;
2204 	return autoremove_wake_function(wait, mode, sync, arg);
2205 }
2206 
2207 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2208 {
2209 	/* for filtering, pass "memcg" as argument. */
2210 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2211 }
2212 
2213 static void memcg_oom_recover(struct mem_cgroup *memcg)
2214 {
2215 	if (memcg && atomic_read(&memcg->under_oom))
2216 		memcg_wakeup_oom(memcg);
2217 }
2218 
2219 /*
2220  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2221  */
2222 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2223 				  int order)
2224 {
2225 	struct oom_wait_info owait;
2226 	bool locked, need_to_kill;
2227 
2228 	owait.memcg = memcg;
2229 	owait.wait.flags = 0;
2230 	owait.wait.func = memcg_oom_wake_function;
2231 	owait.wait.private = current;
2232 	INIT_LIST_HEAD(&owait.wait.task_list);
2233 	need_to_kill = true;
2234 	mem_cgroup_mark_under_oom(memcg);
2235 
2236 	/* At first, try to OOM lock hierarchy under memcg.*/
2237 	spin_lock(&memcg_oom_lock);
2238 	locked = mem_cgroup_oom_lock(memcg);
2239 	/*
2240 	 * Even if signal_pending(), we can't quit charge() loop without
2241 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2242 	 * under OOM is always welcomed, use TASK_KILLABLE here.
2243 	 */
2244 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2245 	if (!locked || memcg->oom_kill_disable)
2246 		need_to_kill = false;
2247 	if (locked)
2248 		mem_cgroup_oom_notify(memcg);
2249 	spin_unlock(&memcg_oom_lock);
2250 
2251 	if (need_to_kill) {
2252 		finish_wait(&memcg_oom_waitq, &owait.wait);
2253 		mem_cgroup_out_of_memory(memcg, mask, order);
2254 	} else {
2255 		schedule();
2256 		finish_wait(&memcg_oom_waitq, &owait.wait);
2257 	}
2258 	spin_lock(&memcg_oom_lock);
2259 	if (locked)
2260 		mem_cgroup_oom_unlock(memcg);
2261 	memcg_wakeup_oom(memcg);
2262 	spin_unlock(&memcg_oom_lock);
2263 
2264 	mem_cgroup_unmark_under_oom(memcg);
2265 
2266 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2267 		return false;
2268 	/* Give chance to dying process */
2269 	schedule_timeout_uninterruptible(1);
2270 	return true;
2271 }
2272 
2273 /*
2274  * Currently used to update mapped file statistics, but the routine can be
2275  * generalized to update other statistics as well.
2276  *
2277  * Notes: Race condition
2278  *
2279  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2280  * it tends to be costly. But considering some conditions, we doesn't need
2281  * to do so _always_.
2282  *
2283  * Considering "charge", lock_page_cgroup() is not required because all
2284  * file-stat operations happen after a page is attached to radix-tree. There
2285  * are no race with "charge".
2286  *
2287  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2288  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2289  * if there are race with "uncharge". Statistics itself is properly handled
2290  * by flags.
2291  *
2292  * Considering "move", this is an only case we see a race. To make the race
2293  * small, we check mm->moving_account and detect there are possibility of race
2294  * If there is, we take a lock.
2295  */
2296 
2297 void __mem_cgroup_begin_update_page_stat(struct page *page,
2298 				bool *locked, unsigned long *flags)
2299 {
2300 	struct mem_cgroup *memcg;
2301 	struct page_cgroup *pc;
2302 
2303 	pc = lookup_page_cgroup(page);
2304 again:
2305 	memcg = pc->mem_cgroup;
2306 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2307 		return;
2308 	/*
2309 	 * If this memory cgroup is not under account moving, we don't
2310 	 * need to take move_lock_mem_cgroup(). Because we already hold
2311 	 * rcu_read_lock(), any calls to move_account will be delayed until
2312 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2313 	 */
2314 	if (!mem_cgroup_stolen(memcg))
2315 		return;
2316 
2317 	move_lock_mem_cgroup(memcg, flags);
2318 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2319 		move_unlock_mem_cgroup(memcg, flags);
2320 		goto again;
2321 	}
2322 	*locked = true;
2323 }
2324 
2325 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2326 {
2327 	struct page_cgroup *pc = lookup_page_cgroup(page);
2328 
2329 	/*
2330 	 * It's guaranteed that pc->mem_cgroup never changes while
2331 	 * lock is held because a routine modifies pc->mem_cgroup
2332 	 * should take move_lock_mem_cgroup().
2333 	 */
2334 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2335 }
2336 
2337 void mem_cgroup_update_page_stat(struct page *page,
2338 				 enum mem_cgroup_page_stat_item idx, int val)
2339 {
2340 	struct mem_cgroup *memcg;
2341 	struct page_cgroup *pc = lookup_page_cgroup(page);
2342 	unsigned long uninitialized_var(flags);
2343 
2344 	if (mem_cgroup_disabled())
2345 		return;
2346 
2347 	memcg = pc->mem_cgroup;
2348 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2349 		return;
2350 
2351 	switch (idx) {
2352 	case MEMCG_NR_FILE_MAPPED:
2353 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2354 		break;
2355 	default:
2356 		BUG();
2357 	}
2358 
2359 	this_cpu_add(memcg->stat->count[idx], val);
2360 }
2361 
2362 /*
2363  * size of first charge trial. "32" comes from vmscan.c's magic value.
2364  * TODO: maybe necessary to use big numbers in big irons.
2365  */
2366 #define CHARGE_BATCH	32U
2367 struct memcg_stock_pcp {
2368 	struct mem_cgroup *cached; /* this never be root cgroup */
2369 	unsigned int nr_pages;
2370 	struct work_struct work;
2371 	unsigned long flags;
2372 #define FLUSHING_CACHED_CHARGE	0
2373 };
2374 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2375 static DEFINE_MUTEX(percpu_charge_mutex);
2376 
2377 /**
2378  * consume_stock: Try to consume stocked charge on this cpu.
2379  * @memcg: memcg to consume from.
2380  * @nr_pages: how many pages to charge.
2381  *
2382  * The charges will only happen if @memcg matches the current cpu's memcg
2383  * stock, and at least @nr_pages are available in that stock.  Failure to
2384  * service an allocation will refill the stock.
2385  *
2386  * returns true if successful, false otherwise.
2387  */
2388 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2389 {
2390 	struct memcg_stock_pcp *stock;
2391 	bool ret = true;
2392 
2393 	if (nr_pages > CHARGE_BATCH)
2394 		return false;
2395 
2396 	stock = &get_cpu_var(memcg_stock);
2397 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2398 		stock->nr_pages -= nr_pages;
2399 	else /* need to call res_counter_charge */
2400 		ret = false;
2401 	put_cpu_var(memcg_stock);
2402 	return ret;
2403 }
2404 
2405 /*
2406  * Returns stocks cached in percpu to res_counter and reset cached information.
2407  */
2408 static void drain_stock(struct memcg_stock_pcp *stock)
2409 {
2410 	struct mem_cgroup *old = stock->cached;
2411 
2412 	if (stock->nr_pages) {
2413 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2414 
2415 		res_counter_uncharge(&old->res, bytes);
2416 		if (do_swap_account)
2417 			res_counter_uncharge(&old->memsw, bytes);
2418 		stock->nr_pages = 0;
2419 	}
2420 	stock->cached = NULL;
2421 }
2422 
2423 /*
2424  * This must be called under preempt disabled or must be called by
2425  * a thread which is pinned to local cpu.
2426  */
2427 static void drain_local_stock(struct work_struct *dummy)
2428 {
2429 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2430 	drain_stock(stock);
2431 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2432 }
2433 
2434 static void __init memcg_stock_init(void)
2435 {
2436 	int cpu;
2437 
2438 	for_each_possible_cpu(cpu) {
2439 		struct memcg_stock_pcp *stock =
2440 					&per_cpu(memcg_stock, cpu);
2441 		INIT_WORK(&stock->work, drain_local_stock);
2442 	}
2443 }
2444 
2445 /*
2446  * Cache charges(val) which is from res_counter, to local per_cpu area.
2447  * This will be consumed by consume_stock() function, later.
2448  */
2449 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2450 {
2451 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2452 
2453 	if (stock->cached != memcg) { /* reset if necessary */
2454 		drain_stock(stock);
2455 		stock->cached = memcg;
2456 	}
2457 	stock->nr_pages += nr_pages;
2458 	put_cpu_var(memcg_stock);
2459 }
2460 
2461 /*
2462  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2463  * of the hierarchy under it. sync flag says whether we should block
2464  * until the work is done.
2465  */
2466 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2467 {
2468 	int cpu, curcpu;
2469 
2470 	/* Notify other cpus that system-wide "drain" is running */
2471 	get_online_cpus();
2472 	curcpu = get_cpu();
2473 	for_each_online_cpu(cpu) {
2474 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2475 		struct mem_cgroup *memcg;
2476 
2477 		memcg = stock->cached;
2478 		if (!memcg || !stock->nr_pages)
2479 			continue;
2480 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2481 			continue;
2482 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2483 			if (cpu == curcpu)
2484 				drain_local_stock(&stock->work);
2485 			else
2486 				schedule_work_on(cpu, &stock->work);
2487 		}
2488 	}
2489 	put_cpu();
2490 
2491 	if (!sync)
2492 		goto out;
2493 
2494 	for_each_online_cpu(cpu) {
2495 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2496 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2497 			flush_work(&stock->work);
2498 	}
2499 out:
2500  	put_online_cpus();
2501 }
2502 
2503 /*
2504  * Tries to drain stocked charges in other cpus. This function is asynchronous
2505  * and just put a work per cpu for draining localy on each cpu. Caller can
2506  * expects some charges will be back to res_counter later but cannot wait for
2507  * it.
2508  */
2509 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2510 {
2511 	/*
2512 	 * If someone calls draining, avoid adding more kworker runs.
2513 	 */
2514 	if (!mutex_trylock(&percpu_charge_mutex))
2515 		return;
2516 	drain_all_stock(root_memcg, false);
2517 	mutex_unlock(&percpu_charge_mutex);
2518 }
2519 
2520 /* This is a synchronous drain interface. */
2521 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2522 {
2523 	/* called when force_empty is called */
2524 	mutex_lock(&percpu_charge_mutex);
2525 	drain_all_stock(root_memcg, true);
2526 	mutex_unlock(&percpu_charge_mutex);
2527 }
2528 
2529 /*
2530  * This function drains percpu counter value from DEAD cpu and
2531  * move it to local cpu. Note that this function can be preempted.
2532  */
2533 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2534 {
2535 	int i;
2536 
2537 	spin_lock(&memcg->pcp_counter_lock);
2538 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2539 		long x = per_cpu(memcg->stat->count[i], cpu);
2540 
2541 		per_cpu(memcg->stat->count[i], cpu) = 0;
2542 		memcg->nocpu_base.count[i] += x;
2543 	}
2544 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2545 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2546 
2547 		per_cpu(memcg->stat->events[i], cpu) = 0;
2548 		memcg->nocpu_base.events[i] += x;
2549 	}
2550 	spin_unlock(&memcg->pcp_counter_lock);
2551 }
2552 
2553 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2554 					unsigned long action,
2555 					void *hcpu)
2556 {
2557 	int cpu = (unsigned long)hcpu;
2558 	struct memcg_stock_pcp *stock;
2559 	struct mem_cgroup *iter;
2560 
2561 	if (action == CPU_ONLINE)
2562 		return NOTIFY_OK;
2563 
2564 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2565 		return NOTIFY_OK;
2566 
2567 	for_each_mem_cgroup(iter)
2568 		mem_cgroup_drain_pcp_counter(iter, cpu);
2569 
2570 	stock = &per_cpu(memcg_stock, cpu);
2571 	drain_stock(stock);
2572 	return NOTIFY_OK;
2573 }
2574 
2575 
2576 /* See __mem_cgroup_try_charge() for details */
2577 enum {
2578 	CHARGE_OK,		/* success */
2579 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2580 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2581 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2582 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2583 };
2584 
2585 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2586 				unsigned int nr_pages, unsigned int min_pages,
2587 				bool oom_check)
2588 {
2589 	unsigned long csize = nr_pages * PAGE_SIZE;
2590 	struct mem_cgroup *mem_over_limit;
2591 	struct res_counter *fail_res;
2592 	unsigned long flags = 0;
2593 	int ret;
2594 
2595 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2596 
2597 	if (likely(!ret)) {
2598 		if (!do_swap_account)
2599 			return CHARGE_OK;
2600 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2601 		if (likely(!ret))
2602 			return CHARGE_OK;
2603 
2604 		res_counter_uncharge(&memcg->res, csize);
2605 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2606 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2607 	} else
2608 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2609 	/*
2610 	 * Never reclaim on behalf of optional batching, retry with a
2611 	 * single page instead.
2612 	 */
2613 	if (nr_pages > min_pages)
2614 		return CHARGE_RETRY;
2615 
2616 	if (!(gfp_mask & __GFP_WAIT))
2617 		return CHARGE_WOULDBLOCK;
2618 
2619 	if (gfp_mask & __GFP_NORETRY)
2620 		return CHARGE_NOMEM;
2621 
2622 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2623 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2624 		return CHARGE_RETRY;
2625 	/*
2626 	 * Even though the limit is exceeded at this point, reclaim
2627 	 * may have been able to free some pages.  Retry the charge
2628 	 * before killing the task.
2629 	 *
2630 	 * Only for regular pages, though: huge pages are rather
2631 	 * unlikely to succeed so close to the limit, and we fall back
2632 	 * to regular pages anyway in case of failure.
2633 	 */
2634 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2635 		return CHARGE_RETRY;
2636 
2637 	/*
2638 	 * At task move, charge accounts can be doubly counted. So, it's
2639 	 * better to wait until the end of task_move if something is going on.
2640 	 */
2641 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2642 		return CHARGE_RETRY;
2643 
2644 	/* If we don't need to call oom-killer at el, return immediately */
2645 	if (!oom_check)
2646 		return CHARGE_NOMEM;
2647 	/* check OOM */
2648 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2649 		return CHARGE_OOM_DIE;
2650 
2651 	return CHARGE_RETRY;
2652 }
2653 
2654 /*
2655  * __mem_cgroup_try_charge() does
2656  * 1. detect memcg to be charged against from passed *mm and *ptr,
2657  * 2. update res_counter
2658  * 3. call memory reclaim if necessary.
2659  *
2660  * In some special case, if the task is fatal, fatal_signal_pending() or
2661  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2662  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2663  * as possible without any hazards. 2: all pages should have a valid
2664  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2665  * pointer, that is treated as a charge to root_mem_cgroup.
2666  *
2667  * So __mem_cgroup_try_charge() will return
2668  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2669  *  -ENOMEM ...  charge failure because of resource limits.
2670  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2671  *
2672  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2673  * the oom-killer can be invoked.
2674  */
2675 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2676 				   gfp_t gfp_mask,
2677 				   unsigned int nr_pages,
2678 				   struct mem_cgroup **ptr,
2679 				   bool oom)
2680 {
2681 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2682 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2683 	struct mem_cgroup *memcg = NULL;
2684 	int ret;
2685 
2686 	/*
2687 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2688 	 * in system level. So, allow to go ahead dying process in addition to
2689 	 * MEMDIE process.
2690 	 */
2691 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2692 		     || fatal_signal_pending(current)))
2693 		goto bypass;
2694 
2695 	/*
2696 	 * We always charge the cgroup the mm_struct belongs to.
2697 	 * The mm_struct's mem_cgroup changes on task migration if the
2698 	 * thread group leader migrates. It's possible that mm is not
2699 	 * set, if so charge the root memcg (happens for pagecache usage).
2700 	 */
2701 	if (!*ptr && !mm)
2702 		*ptr = root_mem_cgroup;
2703 again:
2704 	if (*ptr) { /* css should be a valid one */
2705 		memcg = *ptr;
2706 		if (mem_cgroup_is_root(memcg))
2707 			goto done;
2708 		if (consume_stock(memcg, nr_pages))
2709 			goto done;
2710 		css_get(&memcg->css);
2711 	} else {
2712 		struct task_struct *p;
2713 
2714 		rcu_read_lock();
2715 		p = rcu_dereference(mm->owner);
2716 		/*
2717 		 * Because we don't have task_lock(), "p" can exit.
2718 		 * In that case, "memcg" can point to root or p can be NULL with
2719 		 * race with swapoff. Then, we have small risk of mis-accouning.
2720 		 * But such kind of mis-account by race always happens because
2721 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2722 		 * small race, here.
2723 		 * (*) swapoff at el will charge against mm-struct not against
2724 		 * task-struct. So, mm->owner can be NULL.
2725 		 */
2726 		memcg = mem_cgroup_from_task(p);
2727 		if (!memcg)
2728 			memcg = root_mem_cgroup;
2729 		if (mem_cgroup_is_root(memcg)) {
2730 			rcu_read_unlock();
2731 			goto done;
2732 		}
2733 		if (consume_stock(memcg, nr_pages)) {
2734 			/*
2735 			 * It seems dagerous to access memcg without css_get().
2736 			 * But considering how consume_stok works, it's not
2737 			 * necessary. If consume_stock success, some charges
2738 			 * from this memcg are cached on this cpu. So, we
2739 			 * don't need to call css_get()/css_tryget() before
2740 			 * calling consume_stock().
2741 			 */
2742 			rcu_read_unlock();
2743 			goto done;
2744 		}
2745 		/* after here, we may be blocked. we need to get refcnt */
2746 		if (!css_tryget(&memcg->css)) {
2747 			rcu_read_unlock();
2748 			goto again;
2749 		}
2750 		rcu_read_unlock();
2751 	}
2752 
2753 	do {
2754 		bool oom_check;
2755 
2756 		/* If killed, bypass charge */
2757 		if (fatal_signal_pending(current)) {
2758 			css_put(&memcg->css);
2759 			goto bypass;
2760 		}
2761 
2762 		oom_check = false;
2763 		if (oom && !nr_oom_retries) {
2764 			oom_check = true;
2765 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2766 		}
2767 
2768 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2769 		    oom_check);
2770 		switch (ret) {
2771 		case CHARGE_OK:
2772 			break;
2773 		case CHARGE_RETRY: /* not in OOM situation but retry */
2774 			batch = nr_pages;
2775 			css_put(&memcg->css);
2776 			memcg = NULL;
2777 			goto again;
2778 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2779 			css_put(&memcg->css);
2780 			goto nomem;
2781 		case CHARGE_NOMEM: /* OOM routine works */
2782 			if (!oom) {
2783 				css_put(&memcg->css);
2784 				goto nomem;
2785 			}
2786 			/* If oom, we never return -ENOMEM */
2787 			nr_oom_retries--;
2788 			break;
2789 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2790 			css_put(&memcg->css);
2791 			goto bypass;
2792 		}
2793 	} while (ret != CHARGE_OK);
2794 
2795 	if (batch > nr_pages)
2796 		refill_stock(memcg, batch - nr_pages);
2797 	css_put(&memcg->css);
2798 done:
2799 	*ptr = memcg;
2800 	return 0;
2801 nomem:
2802 	*ptr = NULL;
2803 	return -ENOMEM;
2804 bypass:
2805 	*ptr = root_mem_cgroup;
2806 	return -EINTR;
2807 }
2808 
2809 /*
2810  * Somemtimes we have to undo a charge we got by try_charge().
2811  * This function is for that and do uncharge, put css's refcnt.
2812  * gotten by try_charge().
2813  */
2814 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2815 				       unsigned int nr_pages)
2816 {
2817 	if (!mem_cgroup_is_root(memcg)) {
2818 		unsigned long bytes = nr_pages * PAGE_SIZE;
2819 
2820 		res_counter_uncharge(&memcg->res, bytes);
2821 		if (do_swap_account)
2822 			res_counter_uncharge(&memcg->memsw, bytes);
2823 	}
2824 }
2825 
2826 /*
2827  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2828  * This is useful when moving usage to parent cgroup.
2829  */
2830 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2831 					unsigned int nr_pages)
2832 {
2833 	unsigned long bytes = nr_pages * PAGE_SIZE;
2834 
2835 	if (mem_cgroup_is_root(memcg))
2836 		return;
2837 
2838 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2839 	if (do_swap_account)
2840 		res_counter_uncharge_until(&memcg->memsw,
2841 						memcg->memsw.parent, bytes);
2842 }
2843 
2844 /*
2845  * A helper function to get mem_cgroup from ID. must be called under
2846  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2847  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2848  * called against removed memcg.)
2849  */
2850 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2851 {
2852 	struct cgroup_subsys_state *css;
2853 
2854 	/* ID 0 is unused ID */
2855 	if (!id)
2856 		return NULL;
2857 	css = css_lookup(&mem_cgroup_subsys, id);
2858 	if (!css)
2859 		return NULL;
2860 	return mem_cgroup_from_css(css);
2861 }
2862 
2863 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2864 {
2865 	struct mem_cgroup *memcg = NULL;
2866 	struct page_cgroup *pc;
2867 	unsigned short id;
2868 	swp_entry_t ent;
2869 
2870 	VM_BUG_ON(!PageLocked(page));
2871 
2872 	pc = lookup_page_cgroup(page);
2873 	lock_page_cgroup(pc);
2874 	if (PageCgroupUsed(pc)) {
2875 		memcg = pc->mem_cgroup;
2876 		if (memcg && !css_tryget(&memcg->css))
2877 			memcg = NULL;
2878 	} else if (PageSwapCache(page)) {
2879 		ent.val = page_private(page);
2880 		id = lookup_swap_cgroup_id(ent);
2881 		rcu_read_lock();
2882 		memcg = mem_cgroup_lookup(id);
2883 		if (memcg && !css_tryget(&memcg->css))
2884 			memcg = NULL;
2885 		rcu_read_unlock();
2886 	}
2887 	unlock_page_cgroup(pc);
2888 	return memcg;
2889 }
2890 
2891 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2892 				       struct page *page,
2893 				       unsigned int nr_pages,
2894 				       enum charge_type ctype,
2895 				       bool lrucare)
2896 {
2897 	struct page_cgroup *pc = lookup_page_cgroup(page);
2898 	struct zone *uninitialized_var(zone);
2899 	struct lruvec *lruvec;
2900 	bool was_on_lru = false;
2901 	bool anon;
2902 
2903 	lock_page_cgroup(pc);
2904 	VM_BUG_ON(PageCgroupUsed(pc));
2905 	/*
2906 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2907 	 * accessed by any other context at this point.
2908 	 */
2909 
2910 	/*
2911 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2912 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2913 	 */
2914 	if (lrucare) {
2915 		zone = page_zone(page);
2916 		spin_lock_irq(&zone->lru_lock);
2917 		if (PageLRU(page)) {
2918 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2919 			ClearPageLRU(page);
2920 			del_page_from_lru_list(page, lruvec, page_lru(page));
2921 			was_on_lru = true;
2922 		}
2923 	}
2924 
2925 	pc->mem_cgroup = memcg;
2926 	/*
2927 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2928 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2929 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2930 	 * before USED bit, we need memory barrier here.
2931 	 * See mem_cgroup_add_lru_list(), etc.
2932  	 */
2933 	smp_wmb();
2934 	SetPageCgroupUsed(pc);
2935 
2936 	if (lrucare) {
2937 		if (was_on_lru) {
2938 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2939 			VM_BUG_ON(PageLRU(page));
2940 			SetPageLRU(page);
2941 			add_page_to_lru_list(page, lruvec, page_lru(page));
2942 		}
2943 		spin_unlock_irq(&zone->lru_lock);
2944 	}
2945 
2946 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2947 		anon = true;
2948 	else
2949 		anon = false;
2950 
2951 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2952 	unlock_page_cgroup(pc);
2953 
2954 	/*
2955 	 * "charge_statistics" updated event counter. Then, check it.
2956 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2957 	 * if they exceeds softlimit.
2958 	 */
2959 	memcg_check_events(memcg, page);
2960 }
2961 
2962 static DEFINE_MUTEX(set_limit_mutex);
2963 
2964 #ifdef CONFIG_MEMCG_KMEM
2965 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2966 {
2967 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2968 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2969 }
2970 
2971 /*
2972  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2973  * in the memcg_cache_params struct.
2974  */
2975 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2976 {
2977 	struct kmem_cache *cachep;
2978 
2979 	VM_BUG_ON(p->is_root_cache);
2980 	cachep = p->root_cache;
2981 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2982 }
2983 
2984 #ifdef CONFIG_SLABINFO
2985 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2986 					struct seq_file *m)
2987 {
2988 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2989 	struct memcg_cache_params *params;
2990 
2991 	if (!memcg_can_account_kmem(memcg))
2992 		return -EIO;
2993 
2994 	print_slabinfo_header(m);
2995 
2996 	mutex_lock(&memcg->slab_caches_mutex);
2997 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2998 		cache_show(memcg_params_to_cache(params), m);
2999 	mutex_unlock(&memcg->slab_caches_mutex);
3000 
3001 	return 0;
3002 }
3003 #endif
3004 
3005 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3006 {
3007 	struct res_counter *fail_res;
3008 	struct mem_cgroup *_memcg;
3009 	int ret = 0;
3010 	bool may_oom;
3011 
3012 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3013 	if (ret)
3014 		return ret;
3015 
3016 	/*
3017 	 * Conditions under which we can wait for the oom_killer. Those are
3018 	 * the same conditions tested by the core page allocator
3019 	 */
3020 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3021 
3022 	_memcg = memcg;
3023 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3024 				      &_memcg, may_oom);
3025 
3026 	if (ret == -EINTR)  {
3027 		/*
3028 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
3029 		 * OOM kill or fatal signal.  Since our only options are to
3030 		 * either fail the allocation or charge it to this cgroup, do
3031 		 * it as a temporary condition. But we can't fail. From a
3032 		 * kmem/slab perspective, the cache has already been selected,
3033 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3034 		 * our minds.
3035 		 *
3036 		 * This condition will only trigger if the task entered
3037 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
3038 		 * __mem_cgroup_try_charge() above. Tasks that were already
3039 		 * dying when the allocation triggers should have been already
3040 		 * directed to the root cgroup in memcontrol.h
3041 		 */
3042 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
3043 		if (do_swap_account)
3044 			res_counter_charge_nofail(&memcg->memsw, size,
3045 						  &fail_res);
3046 		ret = 0;
3047 	} else if (ret)
3048 		res_counter_uncharge(&memcg->kmem, size);
3049 
3050 	return ret;
3051 }
3052 
3053 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3054 {
3055 	res_counter_uncharge(&memcg->res, size);
3056 	if (do_swap_account)
3057 		res_counter_uncharge(&memcg->memsw, size);
3058 
3059 	/* Not down to 0 */
3060 	if (res_counter_uncharge(&memcg->kmem, size))
3061 		return;
3062 
3063 	if (memcg_kmem_test_and_clear_dead(memcg))
3064 		mem_cgroup_put(memcg);
3065 }
3066 
3067 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3068 {
3069 	if (!memcg)
3070 		return;
3071 
3072 	mutex_lock(&memcg->slab_caches_mutex);
3073 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3074 	mutex_unlock(&memcg->slab_caches_mutex);
3075 }
3076 
3077 /*
3078  * helper for acessing a memcg's index. It will be used as an index in the
3079  * child cache array in kmem_cache, and also to derive its name. This function
3080  * will return -1 when this is not a kmem-limited memcg.
3081  */
3082 int memcg_cache_id(struct mem_cgroup *memcg)
3083 {
3084 	return memcg ? memcg->kmemcg_id : -1;
3085 }
3086 
3087 /*
3088  * This ends up being protected by the set_limit mutex, during normal
3089  * operation, because that is its main call site.
3090  *
3091  * But when we create a new cache, we can call this as well if its parent
3092  * is kmem-limited. That will have to hold set_limit_mutex as well.
3093  */
3094 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3095 {
3096 	int num, ret;
3097 
3098 	num = ida_simple_get(&kmem_limited_groups,
3099 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3100 	if (num < 0)
3101 		return num;
3102 	/*
3103 	 * After this point, kmem_accounted (that we test atomically in
3104 	 * the beginning of this conditional), is no longer 0. This
3105 	 * guarantees only one process will set the following boolean
3106 	 * to true. We don't need test_and_set because we're protected
3107 	 * by the set_limit_mutex anyway.
3108 	 */
3109 	memcg_kmem_set_activated(memcg);
3110 
3111 	ret = memcg_update_all_caches(num+1);
3112 	if (ret) {
3113 		ida_simple_remove(&kmem_limited_groups, num);
3114 		memcg_kmem_clear_activated(memcg);
3115 		return ret;
3116 	}
3117 
3118 	memcg->kmemcg_id = num;
3119 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3120 	mutex_init(&memcg->slab_caches_mutex);
3121 	return 0;
3122 }
3123 
3124 static size_t memcg_caches_array_size(int num_groups)
3125 {
3126 	ssize_t size;
3127 	if (num_groups <= 0)
3128 		return 0;
3129 
3130 	size = 2 * num_groups;
3131 	if (size < MEMCG_CACHES_MIN_SIZE)
3132 		size = MEMCG_CACHES_MIN_SIZE;
3133 	else if (size > MEMCG_CACHES_MAX_SIZE)
3134 		size = MEMCG_CACHES_MAX_SIZE;
3135 
3136 	return size;
3137 }
3138 
3139 /*
3140  * We should update the current array size iff all caches updates succeed. This
3141  * can only be done from the slab side. The slab mutex needs to be held when
3142  * calling this.
3143  */
3144 void memcg_update_array_size(int num)
3145 {
3146 	if (num > memcg_limited_groups_array_size)
3147 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3148 }
3149 
3150 static void kmem_cache_destroy_work_func(struct work_struct *w);
3151 
3152 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3153 {
3154 	struct memcg_cache_params *cur_params = s->memcg_params;
3155 
3156 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3157 
3158 	if (num_groups > memcg_limited_groups_array_size) {
3159 		int i;
3160 		ssize_t size = memcg_caches_array_size(num_groups);
3161 
3162 		size *= sizeof(void *);
3163 		size += sizeof(struct memcg_cache_params);
3164 
3165 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3166 		if (!s->memcg_params) {
3167 			s->memcg_params = cur_params;
3168 			return -ENOMEM;
3169 		}
3170 
3171 		s->memcg_params->is_root_cache = true;
3172 
3173 		/*
3174 		 * There is the chance it will be bigger than
3175 		 * memcg_limited_groups_array_size, if we failed an allocation
3176 		 * in a cache, in which case all caches updated before it, will
3177 		 * have a bigger array.
3178 		 *
3179 		 * But if that is the case, the data after
3180 		 * memcg_limited_groups_array_size is certainly unused
3181 		 */
3182 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3183 			if (!cur_params->memcg_caches[i])
3184 				continue;
3185 			s->memcg_params->memcg_caches[i] =
3186 						cur_params->memcg_caches[i];
3187 		}
3188 
3189 		/*
3190 		 * Ideally, we would wait until all caches succeed, and only
3191 		 * then free the old one. But this is not worth the extra
3192 		 * pointer per-cache we'd have to have for this.
3193 		 *
3194 		 * It is not a big deal if some caches are left with a size
3195 		 * bigger than the others. And all updates will reset this
3196 		 * anyway.
3197 		 */
3198 		kfree(cur_params);
3199 	}
3200 	return 0;
3201 }
3202 
3203 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3204 			 struct kmem_cache *root_cache)
3205 {
3206 	size_t size = sizeof(struct memcg_cache_params);
3207 
3208 	if (!memcg_kmem_enabled())
3209 		return 0;
3210 
3211 	if (!memcg)
3212 		size += memcg_limited_groups_array_size * sizeof(void *);
3213 
3214 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3215 	if (!s->memcg_params)
3216 		return -ENOMEM;
3217 
3218 	INIT_WORK(&s->memcg_params->destroy,
3219 			kmem_cache_destroy_work_func);
3220 	if (memcg) {
3221 		s->memcg_params->memcg = memcg;
3222 		s->memcg_params->root_cache = root_cache;
3223 	} else
3224 		s->memcg_params->is_root_cache = true;
3225 
3226 	return 0;
3227 }
3228 
3229 void memcg_release_cache(struct kmem_cache *s)
3230 {
3231 	struct kmem_cache *root;
3232 	struct mem_cgroup *memcg;
3233 	int id;
3234 
3235 	/*
3236 	 * This happens, for instance, when a root cache goes away before we
3237 	 * add any memcg.
3238 	 */
3239 	if (!s->memcg_params)
3240 		return;
3241 
3242 	if (s->memcg_params->is_root_cache)
3243 		goto out;
3244 
3245 	memcg = s->memcg_params->memcg;
3246 	id  = memcg_cache_id(memcg);
3247 
3248 	root = s->memcg_params->root_cache;
3249 	root->memcg_params->memcg_caches[id] = NULL;
3250 
3251 	mutex_lock(&memcg->slab_caches_mutex);
3252 	list_del(&s->memcg_params->list);
3253 	mutex_unlock(&memcg->slab_caches_mutex);
3254 
3255 	mem_cgroup_put(memcg);
3256 out:
3257 	kfree(s->memcg_params);
3258 }
3259 
3260 /*
3261  * During the creation a new cache, we need to disable our accounting mechanism
3262  * altogether. This is true even if we are not creating, but rather just
3263  * enqueing new caches to be created.
3264  *
3265  * This is because that process will trigger allocations; some visible, like
3266  * explicit kmallocs to auxiliary data structures, name strings and internal
3267  * cache structures; some well concealed, like INIT_WORK() that can allocate
3268  * objects during debug.
3269  *
3270  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3271  * to it. This may not be a bounded recursion: since the first cache creation
3272  * failed to complete (waiting on the allocation), we'll just try to create the
3273  * cache again, failing at the same point.
3274  *
3275  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3276  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3277  * inside the following two functions.
3278  */
3279 static inline void memcg_stop_kmem_account(void)
3280 {
3281 	VM_BUG_ON(!current->mm);
3282 	current->memcg_kmem_skip_account++;
3283 }
3284 
3285 static inline void memcg_resume_kmem_account(void)
3286 {
3287 	VM_BUG_ON(!current->mm);
3288 	current->memcg_kmem_skip_account--;
3289 }
3290 
3291 static void kmem_cache_destroy_work_func(struct work_struct *w)
3292 {
3293 	struct kmem_cache *cachep;
3294 	struct memcg_cache_params *p;
3295 
3296 	p = container_of(w, struct memcg_cache_params, destroy);
3297 
3298 	cachep = memcg_params_to_cache(p);
3299 
3300 	/*
3301 	 * If we get down to 0 after shrink, we could delete right away.
3302 	 * However, memcg_release_pages() already puts us back in the workqueue
3303 	 * in that case. If we proceed deleting, we'll get a dangling
3304 	 * reference, and removing the object from the workqueue in that case
3305 	 * is unnecessary complication. We are not a fast path.
3306 	 *
3307 	 * Note that this case is fundamentally different from racing with
3308 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3309 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3310 	 * into the queue, but doing so from inside the worker racing to
3311 	 * destroy it.
3312 	 *
3313 	 * So if we aren't down to zero, we'll just schedule a worker and try
3314 	 * again
3315 	 */
3316 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3317 		kmem_cache_shrink(cachep);
3318 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3319 			return;
3320 	} else
3321 		kmem_cache_destroy(cachep);
3322 }
3323 
3324 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3325 {
3326 	if (!cachep->memcg_params->dead)
3327 		return;
3328 
3329 	/*
3330 	 * There are many ways in which we can get here.
3331 	 *
3332 	 * We can get to a memory-pressure situation while the delayed work is
3333 	 * still pending to run. The vmscan shrinkers can then release all
3334 	 * cache memory and get us to destruction. If this is the case, we'll
3335 	 * be executed twice, which is a bug (the second time will execute over
3336 	 * bogus data). In this case, cancelling the work should be fine.
3337 	 *
3338 	 * But we can also get here from the worker itself, if
3339 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3340 	 * get the page count to 0. In this case, we'll deadlock if we try to
3341 	 * cancel the work (the worker runs with an internal lock held, which
3342 	 * is the same lock we would hold for cancel_work_sync().)
3343 	 *
3344 	 * Since we can't possibly know who got us here, just refrain from
3345 	 * running if there is already work pending
3346 	 */
3347 	if (work_pending(&cachep->memcg_params->destroy))
3348 		return;
3349 	/*
3350 	 * We have to defer the actual destroying to a workqueue, because
3351 	 * we might currently be in a context that cannot sleep.
3352 	 */
3353 	schedule_work(&cachep->memcg_params->destroy);
3354 }
3355 
3356 /*
3357  * This lock protects updaters, not readers. We want readers to be as fast as
3358  * they can, and they will either see NULL or a valid cache value. Our model
3359  * allow them to see NULL, in which case the root memcg will be selected.
3360  *
3361  * We need this lock because multiple allocations to the same cache from a non
3362  * will span more than one worker. Only one of them can create the cache.
3363  */
3364 static DEFINE_MUTEX(memcg_cache_mutex);
3365 
3366 /*
3367  * Called with memcg_cache_mutex held
3368  */
3369 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3370 					 struct kmem_cache *s)
3371 {
3372 	struct kmem_cache *new;
3373 	static char *tmp_name = NULL;
3374 
3375 	lockdep_assert_held(&memcg_cache_mutex);
3376 
3377 	/*
3378 	 * kmem_cache_create_memcg duplicates the given name and
3379 	 * cgroup_name for this name requires RCU context.
3380 	 * This static temporary buffer is used to prevent from
3381 	 * pointless shortliving allocation.
3382 	 */
3383 	if (!tmp_name) {
3384 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3385 		if (!tmp_name)
3386 			return NULL;
3387 	}
3388 
3389 	rcu_read_lock();
3390 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3391 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3392 	rcu_read_unlock();
3393 
3394 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3395 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3396 
3397 	if (new)
3398 		new->allocflags |= __GFP_KMEMCG;
3399 
3400 	return new;
3401 }
3402 
3403 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3404 						  struct kmem_cache *cachep)
3405 {
3406 	struct kmem_cache *new_cachep;
3407 	int idx;
3408 
3409 	BUG_ON(!memcg_can_account_kmem(memcg));
3410 
3411 	idx = memcg_cache_id(memcg);
3412 
3413 	mutex_lock(&memcg_cache_mutex);
3414 	new_cachep = cachep->memcg_params->memcg_caches[idx];
3415 	if (new_cachep)
3416 		goto out;
3417 
3418 	new_cachep = kmem_cache_dup(memcg, cachep);
3419 	if (new_cachep == NULL) {
3420 		new_cachep = cachep;
3421 		goto out;
3422 	}
3423 
3424 	mem_cgroup_get(memcg);
3425 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3426 
3427 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3428 	/*
3429 	 * the readers won't lock, make sure everybody sees the updated value,
3430 	 * so they won't put stuff in the queue again for no reason
3431 	 */
3432 	wmb();
3433 out:
3434 	mutex_unlock(&memcg_cache_mutex);
3435 	return new_cachep;
3436 }
3437 
3438 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3439 {
3440 	struct kmem_cache *c;
3441 	int i;
3442 
3443 	if (!s->memcg_params)
3444 		return;
3445 	if (!s->memcg_params->is_root_cache)
3446 		return;
3447 
3448 	/*
3449 	 * If the cache is being destroyed, we trust that there is no one else
3450 	 * requesting objects from it. Even if there are, the sanity checks in
3451 	 * kmem_cache_destroy should caught this ill-case.
3452 	 *
3453 	 * Still, we don't want anyone else freeing memcg_caches under our
3454 	 * noses, which can happen if a new memcg comes to life. As usual,
3455 	 * we'll take the set_limit_mutex to protect ourselves against this.
3456 	 */
3457 	mutex_lock(&set_limit_mutex);
3458 	for (i = 0; i < memcg_limited_groups_array_size; i++) {
3459 		c = s->memcg_params->memcg_caches[i];
3460 		if (!c)
3461 			continue;
3462 
3463 		/*
3464 		 * We will now manually delete the caches, so to avoid races
3465 		 * we need to cancel all pending destruction workers and
3466 		 * proceed with destruction ourselves.
3467 		 *
3468 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3469 		 * and that could spawn the workers again: it is likely that
3470 		 * the cache still have active pages until this very moment.
3471 		 * This would lead us back to mem_cgroup_destroy_cache.
3472 		 *
3473 		 * But that will not execute at all if the "dead" flag is not
3474 		 * set, so flip it down to guarantee we are in control.
3475 		 */
3476 		c->memcg_params->dead = false;
3477 		cancel_work_sync(&c->memcg_params->destroy);
3478 		kmem_cache_destroy(c);
3479 	}
3480 	mutex_unlock(&set_limit_mutex);
3481 }
3482 
3483 struct create_work {
3484 	struct mem_cgroup *memcg;
3485 	struct kmem_cache *cachep;
3486 	struct work_struct work;
3487 };
3488 
3489 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3490 {
3491 	struct kmem_cache *cachep;
3492 	struct memcg_cache_params *params;
3493 
3494 	if (!memcg_kmem_is_active(memcg))
3495 		return;
3496 
3497 	mutex_lock(&memcg->slab_caches_mutex);
3498 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3499 		cachep = memcg_params_to_cache(params);
3500 		cachep->memcg_params->dead = true;
3501 		schedule_work(&cachep->memcg_params->destroy);
3502 	}
3503 	mutex_unlock(&memcg->slab_caches_mutex);
3504 }
3505 
3506 static void memcg_create_cache_work_func(struct work_struct *w)
3507 {
3508 	struct create_work *cw;
3509 
3510 	cw = container_of(w, struct create_work, work);
3511 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3512 	/* Drop the reference gotten when we enqueued. */
3513 	css_put(&cw->memcg->css);
3514 	kfree(cw);
3515 }
3516 
3517 /*
3518  * Enqueue the creation of a per-memcg kmem_cache.
3519  */
3520 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3521 					 struct kmem_cache *cachep)
3522 {
3523 	struct create_work *cw;
3524 
3525 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3526 	if (cw == NULL) {
3527 		css_put(&memcg->css);
3528 		return;
3529 	}
3530 
3531 	cw->memcg = memcg;
3532 	cw->cachep = cachep;
3533 
3534 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3535 	schedule_work(&cw->work);
3536 }
3537 
3538 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3539 				       struct kmem_cache *cachep)
3540 {
3541 	/*
3542 	 * We need to stop accounting when we kmalloc, because if the
3543 	 * corresponding kmalloc cache is not yet created, the first allocation
3544 	 * in __memcg_create_cache_enqueue will recurse.
3545 	 *
3546 	 * However, it is better to enclose the whole function. Depending on
3547 	 * the debugging options enabled, INIT_WORK(), for instance, can
3548 	 * trigger an allocation. This too, will make us recurse. Because at
3549 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3550 	 * the safest choice is to do it like this, wrapping the whole function.
3551 	 */
3552 	memcg_stop_kmem_account();
3553 	__memcg_create_cache_enqueue(memcg, cachep);
3554 	memcg_resume_kmem_account();
3555 }
3556 /*
3557  * Return the kmem_cache we're supposed to use for a slab allocation.
3558  * We try to use the current memcg's version of the cache.
3559  *
3560  * If the cache does not exist yet, if we are the first user of it,
3561  * we either create it immediately, if possible, or create it asynchronously
3562  * in a workqueue.
3563  * In the latter case, we will let the current allocation go through with
3564  * the original cache.
3565  *
3566  * Can't be called in interrupt context or from kernel threads.
3567  * This function needs to be called with rcu_read_lock() held.
3568  */
3569 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3570 					  gfp_t gfp)
3571 {
3572 	struct mem_cgroup *memcg;
3573 	int idx;
3574 
3575 	VM_BUG_ON(!cachep->memcg_params);
3576 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3577 
3578 	if (!current->mm || current->memcg_kmem_skip_account)
3579 		return cachep;
3580 
3581 	rcu_read_lock();
3582 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3583 
3584 	if (!memcg_can_account_kmem(memcg))
3585 		goto out;
3586 
3587 	idx = memcg_cache_id(memcg);
3588 
3589 	/*
3590 	 * barrier to mare sure we're always seeing the up to date value.  The
3591 	 * code updating memcg_caches will issue a write barrier to match this.
3592 	 */
3593 	read_barrier_depends();
3594 	if (likely(cachep->memcg_params->memcg_caches[idx])) {
3595 		cachep = cachep->memcg_params->memcg_caches[idx];
3596 		goto out;
3597 	}
3598 
3599 	/* The corresponding put will be done in the workqueue. */
3600 	if (!css_tryget(&memcg->css))
3601 		goto out;
3602 	rcu_read_unlock();
3603 
3604 	/*
3605 	 * If we are in a safe context (can wait, and not in interrupt
3606 	 * context), we could be be predictable and return right away.
3607 	 * This would guarantee that the allocation being performed
3608 	 * already belongs in the new cache.
3609 	 *
3610 	 * However, there are some clashes that can arrive from locking.
3611 	 * For instance, because we acquire the slab_mutex while doing
3612 	 * kmem_cache_dup, this means no further allocation could happen
3613 	 * with the slab_mutex held.
3614 	 *
3615 	 * Also, because cache creation issue get_online_cpus(), this
3616 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3617 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3618 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3619 	 * better to defer everything.
3620 	 */
3621 	memcg_create_cache_enqueue(memcg, cachep);
3622 	return cachep;
3623 out:
3624 	rcu_read_unlock();
3625 	return cachep;
3626 }
3627 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3628 
3629 /*
3630  * We need to verify if the allocation against current->mm->owner's memcg is
3631  * possible for the given order. But the page is not allocated yet, so we'll
3632  * need a further commit step to do the final arrangements.
3633  *
3634  * It is possible for the task to switch cgroups in this mean time, so at
3635  * commit time, we can't rely on task conversion any longer.  We'll then use
3636  * the handle argument to return to the caller which cgroup we should commit
3637  * against. We could also return the memcg directly and avoid the pointer
3638  * passing, but a boolean return value gives better semantics considering
3639  * the compiled-out case as well.
3640  *
3641  * Returning true means the allocation is possible.
3642  */
3643 bool
3644 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3645 {
3646 	struct mem_cgroup *memcg;
3647 	int ret;
3648 
3649 	*_memcg = NULL;
3650 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3651 
3652 	/*
3653 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3654 	 * isn't much we can do without complicating this too much, and it would
3655 	 * be gfp-dependent anyway. Just let it go
3656 	 */
3657 	if (unlikely(!memcg))
3658 		return true;
3659 
3660 	if (!memcg_can_account_kmem(memcg)) {
3661 		css_put(&memcg->css);
3662 		return true;
3663 	}
3664 
3665 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3666 	if (!ret)
3667 		*_memcg = memcg;
3668 
3669 	css_put(&memcg->css);
3670 	return (ret == 0);
3671 }
3672 
3673 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3674 			      int order)
3675 {
3676 	struct page_cgroup *pc;
3677 
3678 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3679 
3680 	/* The page allocation failed. Revert */
3681 	if (!page) {
3682 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3683 		return;
3684 	}
3685 
3686 	pc = lookup_page_cgroup(page);
3687 	lock_page_cgroup(pc);
3688 	pc->mem_cgroup = memcg;
3689 	SetPageCgroupUsed(pc);
3690 	unlock_page_cgroup(pc);
3691 }
3692 
3693 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3694 {
3695 	struct mem_cgroup *memcg = NULL;
3696 	struct page_cgroup *pc;
3697 
3698 
3699 	pc = lookup_page_cgroup(page);
3700 	/*
3701 	 * Fast unlocked return. Theoretically might have changed, have to
3702 	 * check again after locking.
3703 	 */
3704 	if (!PageCgroupUsed(pc))
3705 		return;
3706 
3707 	lock_page_cgroup(pc);
3708 	if (PageCgroupUsed(pc)) {
3709 		memcg = pc->mem_cgroup;
3710 		ClearPageCgroupUsed(pc);
3711 	}
3712 	unlock_page_cgroup(pc);
3713 
3714 	/*
3715 	 * We trust that only if there is a memcg associated with the page, it
3716 	 * is a valid allocation
3717 	 */
3718 	if (!memcg)
3719 		return;
3720 
3721 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3722 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3723 }
3724 #else
3725 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3726 {
3727 }
3728 #endif /* CONFIG_MEMCG_KMEM */
3729 
3730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3731 
3732 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3733 /*
3734  * Because tail pages are not marked as "used", set it. We're under
3735  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3736  * charge/uncharge will be never happen and move_account() is done under
3737  * compound_lock(), so we don't have to take care of races.
3738  */
3739 void mem_cgroup_split_huge_fixup(struct page *head)
3740 {
3741 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3742 	struct page_cgroup *pc;
3743 	struct mem_cgroup *memcg;
3744 	int i;
3745 
3746 	if (mem_cgroup_disabled())
3747 		return;
3748 
3749 	memcg = head_pc->mem_cgroup;
3750 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3751 		pc = head_pc + i;
3752 		pc->mem_cgroup = memcg;
3753 		smp_wmb();/* see __commit_charge() */
3754 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3755 	}
3756 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3757 		       HPAGE_PMD_NR);
3758 }
3759 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3760 
3761 /**
3762  * mem_cgroup_move_account - move account of the page
3763  * @page: the page
3764  * @nr_pages: number of regular pages (>1 for huge pages)
3765  * @pc:	page_cgroup of the page.
3766  * @from: mem_cgroup which the page is moved from.
3767  * @to:	mem_cgroup which the page is moved to. @from != @to.
3768  *
3769  * The caller must confirm following.
3770  * - page is not on LRU (isolate_page() is useful.)
3771  * - compound_lock is held when nr_pages > 1
3772  *
3773  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3774  * from old cgroup.
3775  */
3776 static int mem_cgroup_move_account(struct page *page,
3777 				   unsigned int nr_pages,
3778 				   struct page_cgroup *pc,
3779 				   struct mem_cgroup *from,
3780 				   struct mem_cgroup *to)
3781 {
3782 	unsigned long flags;
3783 	int ret;
3784 	bool anon = PageAnon(page);
3785 
3786 	VM_BUG_ON(from == to);
3787 	VM_BUG_ON(PageLRU(page));
3788 	/*
3789 	 * The page is isolated from LRU. So, collapse function
3790 	 * will not handle this page. But page splitting can happen.
3791 	 * Do this check under compound_page_lock(). The caller should
3792 	 * hold it.
3793 	 */
3794 	ret = -EBUSY;
3795 	if (nr_pages > 1 && !PageTransHuge(page))
3796 		goto out;
3797 
3798 	lock_page_cgroup(pc);
3799 
3800 	ret = -EINVAL;
3801 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3802 		goto unlock;
3803 
3804 	move_lock_mem_cgroup(from, &flags);
3805 
3806 	if (!anon && page_mapped(page)) {
3807 		/* Update mapped_file data for mem_cgroup */
3808 		preempt_disable();
3809 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3810 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3811 		preempt_enable();
3812 	}
3813 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3814 
3815 	/* caller should have done css_get */
3816 	pc->mem_cgroup = to;
3817 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3818 	move_unlock_mem_cgroup(from, &flags);
3819 	ret = 0;
3820 unlock:
3821 	unlock_page_cgroup(pc);
3822 	/*
3823 	 * check events
3824 	 */
3825 	memcg_check_events(to, page);
3826 	memcg_check_events(from, page);
3827 out:
3828 	return ret;
3829 }
3830 
3831 /**
3832  * mem_cgroup_move_parent - moves page to the parent group
3833  * @page: the page to move
3834  * @pc: page_cgroup of the page
3835  * @child: page's cgroup
3836  *
3837  * move charges to its parent or the root cgroup if the group has no
3838  * parent (aka use_hierarchy==0).
3839  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3840  * mem_cgroup_move_account fails) the failure is always temporary and
3841  * it signals a race with a page removal/uncharge or migration. In the
3842  * first case the page is on the way out and it will vanish from the LRU
3843  * on the next attempt and the call should be retried later.
3844  * Isolation from the LRU fails only if page has been isolated from
3845  * the LRU since we looked at it and that usually means either global
3846  * reclaim or migration going on. The page will either get back to the
3847  * LRU or vanish.
3848  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3849  * (!PageCgroupUsed) or moved to a different group. The page will
3850  * disappear in the next attempt.
3851  */
3852 static int mem_cgroup_move_parent(struct page *page,
3853 				  struct page_cgroup *pc,
3854 				  struct mem_cgroup *child)
3855 {
3856 	struct mem_cgroup *parent;
3857 	unsigned int nr_pages;
3858 	unsigned long uninitialized_var(flags);
3859 	int ret;
3860 
3861 	VM_BUG_ON(mem_cgroup_is_root(child));
3862 
3863 	ret = -EBUSY;
3864 	if (!get_page_unless_zero(page))
3865 		goto out;
3866 	if (isolate_lru_page(page))
3867 		goto put;
3868 
3869 	nr_pages = hpage_nr_pages(page);
3870 
3871 	parent = parent_mem_cgroup(child);
3872 	/*
3873 	 * If no parent, move charges to root cgroup.
3874 	 */
3875 	if (!parent)
3876 		parent = root_mem_cgroup;
3877 
3878 	if (nr_pages > 1) {
3879 		VM_BUG_ON(!PageTransHuge(page));
3880 		flags = compound_lock_irqsave(page);
3881 	}
3882 
3883 	ret = mem_cgroup_move_account(page, nr_pages,
3884 				pc, child, parent);
3885 	if (!ret)
3886 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3887 
3888 	if (nr_pages > 1)
3889 		compound_unlock_irqrestore(page, flags);
3890 	putback_lru_page(page);
3891 put:
3892 	put_page(page);
3893 out:
3894 	return ret;
3895 }
3896 
3897 /*
3898  * Charge the memory controller for page usage.
3899  * Return
3900  * 0 if the charge was successful
3901  * < 0 if the cgroup is over its limit
3902  */
3903 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3904 				gfp_t gfp_mask, enum charge_type ctype)
3905 {
3906 	struct mem_cgroup *memcg = NULL;
3907 	unsigned int nr_pages = 1;
3908 	bool oom = true;
3909 	int ret;
3910 
3911 	if (PageTransHuge(page)) {
3912 		nr_pages <<= compound_order(page);
3913 		VM_BUG_ON(!PageTransHuge(page));
3914 		/*
3915 		 * Never OOM-kill a process for a huge page.  The
3916 		 * fault handler will fall back to regular pages.
3917 		 */
3918 		oom = false;
3919 	}
3920 
3921 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3922 	if (ret == -ENOMEM)
3923 		return ret;
3924 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3925 	return 0;
3926 }
3927 
3928 int mem_cgroup_newpage_charge(struct page *page,
3929 			      struct mm_struct *mm, gfp_t gfp_mask)
3930 {
3931 	if (mem_cgroup_disabled())
3932 		return 0;
3933 	VM_BUG_ON(page_mapped(page));
3934 	VM_BUG_ON(page->mapping && !PageAnon(page));
3935 	VM_BUG_ON(!mm);
3936 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3937 					MEM_CGROUP_CHARGE_TYPE_ANON);
3938 }
3939 
3940 /*
3941  * While swap-in, try_charge -> commit or cancel, the page is locked.
3942  * And when try_charge() successfully returns, one refcnt to memcg without
3943  * struct page_cgroup is acquired. This refcnt will be consumed by
3944  * "commit()" or removed by "cancel()"
3945  */
3946 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3947 					  struct page *page,
3948 					  gfp_t mask,
3949 					  struct mem_cgroup **memcgp)
3950 {
3951 	struct mem_cgroup *memcg;
3952 	struct page_cgroup *pc;
3953 	int ret;
3954 
3955 	pc = lookup_page_cgroup(page);
3956 	/*
3957 	 * Every swap fault against a single page tries to charge the
3958 	 * page, bail as early as possible.  shmem_unuse() encounters
3959 	 * already charged pages, too.  The USED bit is protected by
3960 	 * the page lock, which serializes swap cache removal, which
3961 	 * in turn serializes uncharging.
3962 	 */
3963 	if (PageCgroupUsed(pc))
3964 		return 0;
3965 	if (!do_swap_account)
3966 		goto charge_cur_mm;
3967 	memcg = try_get_mem_cgroup_from_page(page);
3968 	if (!memcg)
3969 		goto charge_cur_mm;
3970 	*memcgp = memcg;
3971 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3972 	css_put(&memcg->css);
3973 	if (ret == -EINTR)
3974 		ret = 0;
3975 	return ret;
3976 charge_cur_mm:
3977 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3978 	if (ret == -EINTR)
3979 		ret = 0;
3980 	return ret;
3981 }
3982 
3983 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3984 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3985 {
3986 	*memcgp = NULL;
3987 	if (mem_cgroup_disabled())
3988 		return 0;
3989 	/*
3990 	 * A racing thread's fault, or swapoff, may have already
3991 	 * updated the pte, and even removed page from swap cache: in
3992 	 * those cases unuse_pte()'s pte_same() test will fail; but
3993 	 * there's also a KSM case which does need to charge the page.
3994 	 */
3995 	if (!PageSwapCache(page)) {
3996 		int ret;
3997 
3998 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3999 		if (ret == -EINTR)
4000 			ret = 0;
4001 		return ret;
4002 	}
4003 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4004 }
4005 
4006 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4007 {
4008 	if (mem_cgroup_disabled())
4009 		return;
4010 	if (!memcg)
4011 		return;
4012 	__mem_cgroup_cancel_charge(memcg, 1);
4013 }
4014 
4015 static void
4016 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4017 					enum charge_type ctype)
4018 {
4019 	if (mem_cgroup_disabled())
4020 		return;
4021 	if (!memcg)
4022 		return;
4023 
4024 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4025 	/*
4026 	 * Now swap is on-memory. This means this page may be
4027 	 * counted both as mem and swap....double count.
4028 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4029 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4030 	 * may call delete_from_swap_cache() before reach here.
4031 	 */
4032 	if (do_swap_account && PageSwapCache(page)) {
4033 		swp_entry_t ent = {.val = page_private(page)};
4034 		mem_cgroup_uncharge_swap(ent);
4035 	}
4036 }
4037 
4038 void mem_cgroup_commit_charge_swapin(struct page *page,
4039 				     struct mem_cgroup *memcg)
4040 {
4041 	__mem_cgroup_commit_charge_swapin(page, memcg,
4042 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4043 }
4044 
4045 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4046 				gfp_t gfp_mask)
4047 {
4048 	struct mem_cgroup *memcg = NULL;
4049 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4050 	int ret;
4051 
4052 	if (mem_cgroup_disabled())
4053 		return 0;
4054 	if (PageCompound(page))
4055 		return 0;
4056 
4057 	if (!PageSwapCache(page))
4058 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4059 	else { /* page is swapcache/shmem */
4060 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4061 						     gfp_mask, &memcg);
4062 		if (!ret)
4063 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4064 	}
4065 	return ret;
4066 }
4067 
4068 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4069 				   unsigned int nr_pages,
4070 				   const enum charge_type ctype)
4071 {
4072 	struct memcg_batch_info *batch = NULL;
4073 	bool uncharge_memsw = true;
4074 
4075 	/* If swapout, usage of swap doesn't decrease */
4076 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4077 		uncharge_memsw = false;
4078 
4079 	batch = &current->memcg_batch;
4080 	/*
4081 	 * In usual, we do css_get() when we remember memcg pointer.
4082 	 * But in this case, we keep res->usage until end of a series of
4083 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4084 	 */
4085 	if (!batch->memcg)
4086 		batch->memcg = memcg;
4087 	/*
4088 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4089 	 * In those cases, all pages freed continuously can be expected to be in
4090 	 * the same cgroup and we have chance to coalesce uncharges.
4091 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4092 	 * because we want to do uncharge as soon as possible.
4093 	 */
4094 
4095 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4096 		goto direct_uncharge;
4097 
4098 	if (nr_pages > 1)
4099 		goto direct_uncharge;
4100 
4101 	/*
4102 	 * In typical case, batch->memcg == mem. This means we can
4103 	 * merge a series of uncharges to an uncharge of res_counter.
4104 	 * If not, we uncharge res_counter ony by one.
4105 	 */
4106 	if (batch->memcg != memcg)
4107 		goto direct_uncharge;
4108 	/* remember freed charge and uncharge it later */
4109 	batch->nr_pages++;
4110 	if (uncharge_memsw)
4111 		batch->memsw_nr_pages++;
4112 	return;
4113 direct_uncharge:
4114 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4115 	if (uncharge_memsw)
4116 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4117 	if (unlikely(batch->memcg != memcg))
4118 		memcg_oom_recover(memcg);
4119 }
4120 
4121 /*
4122  * uncharge if !page_mapped(page)
4123  */
4124 static struct mem_cgroup *
4125 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4126 			     bool end_migration)
4127 {
4128 	struct mem_cgroup *memcg = NULL;
4129 	unsigned int nr_pages = 1;
4130 	struct page_cgroup *pc;
4131 	bool anon;
4132 
4133 	if (mem_cgroup_disabled())
4134 		return NULL;
4135 
4136 	if (PageTransHuge(page)) {
4137 		nr_pages <<= compound_order(page);
4138 		VM_BUG_ON(!PageTransHuge(page));
4139 	}
4140 	/*
4141 	 * Check if our page_cgroup is valid
4142 	 */
4143 	pc = lookup_page_cgroup(page);
4144 	if (unlikely(!PageCgroupUsed(pc)))
4145 		return NULL;
4146 
4147 	lock_page_cgroup(pc);
4148 
4149 	memcg = pc->mem_cgroup;
4150 
4151 	if (!PageCgroupUsed(pc))
4152 		goto unlock_out;
4153 
4154 	anon = PageAnon(page);
4155 
4156 	switch (ctype) {
4157 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4158 		/*
4159 		 * Generally PageAnon tells if it's the anon statistics to be
4160 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4161 		 * used before page reached the stage of being marked PageAnon.
4162 		 */
4163 		anon = true;
4164 		/* fallthrough */
4165 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4166 		/* See mem_cgroup_prepare_migration() */
4167 		if (page_mapped(page))
4168 			goto unlock_out;
4169 		/*
4170 		 * Pages under migration may not be uncharged.  But
4171 		 * end_migration() /must/ be the one uncharging the
4172 		 * unused post-migration page and so it has to call
4173 		 * here with the migration bit still set.  See the
4174 		 * res_counter handling below.
4175 		 */
4176 		if (!end_migration && PageCgroupMigration(pc))
4177 			goto unlock_out;
4178 		break;
4179 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4180 		if (!PageAnon(page)) {	/* Shared memory */
4181 			if (page->mapping && !page_is_file_cache(page))
4182 				goto unlock_out;
4183 		} else if (page_mapped(page)) /* Anon */
4184 				goto unlock_out;
4185 		break;
4186 	default:
4187 		break;
4188 	}
4189 
4190 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4191 
4192 	ClearPageCgroupUsed(pc);
4193 	/*
4194 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4195 	 * freed from LRU. This is safe because uncharged page is expected not
4196 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4197 	 * special functions.
4198 	 */
4199 
4200 	unlock_page_cgroup(pc);
4201 	/*
4202 	 * even after unlock, we have memcg->res.usage here and this memcg
4203 	 * will never be freed.
4204 	 */
4205 	memcg_check_events(memcg, page);
4206 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4207 		mem_cgroup_swap_statistics(memcg, true);
4208 		mem_cgroup_get(memcg);
4209 	}
4210 	/*
4211 	 * Migration does not charge the res_counter for the
4212 	 * replacement page, so leave it alone when phasing out the
4213 	 * page that is unused after the migration.
4214 	 */
4215 	if (!end_migration && !mem_cgroup_is_root(memcg))
4216 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4217 
4218 	return memcg;
4219 
4220 unlock_out:
4221 	unlock_page_cgroup(pc);
4222 	return NULL;
4223 }
4224 
4225 void mem_cgroup_uncharge_page(struct page *page)
4226 {
4227 	/* early check. */
4228 	if (page_mapped(page))
4229 		return;
4230 	VM_BUG_ON(page->mapping && !PageAnon(page));
4231 	/*
4232 	 * If the page is in swap cache, uncharge should be deferred
4233 	 * to the swap path, which also properly accounts swap usage
4234 	 * and handles memcg lifetime.
4235 	 *
4236 	 * Note that this check is not stable and reclaim may add the
4237 	 * page to swap cache at any time after this.  However, if the
4238 	 * page is not in swap cache by the time page->mapcount hits
4239 	 * 0, there won't be any page table references to the swap
4240 	 * slot, and reclaim will free it and not actually write the
4241 	 * page to disk.
4242 	 */
4243 	if (PageSwapCache(page))
4244 		return;
4245 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4246 }
4247 
4248 void mem_cgroup_uncharge_cache_page(struct page *page)
4249 {
4250 	VM_BUG_ON(page_mapped(page));
4251 	VM_BUG_ON(page->mapping);
4252 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4253 }
4254 
4255 /*
4256  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4257  * In that cases, pages are freed continuously and we can expect pages
4258  * are in the same memcg. All these calls itself limits the number of
4259  * pages freed at once, then uncharge_start/end() is called properly.
4260  * This may be called prural(2) times in a context,
4261  */
4262 
4263 void mem_cgroup_uncharge_start(void)
4264 {
4265 	current->memcg_batch.do_batch++;
4266 	/* We can do nest. */
4267 	if (current->memcg_batch.do_batch == 1) {
4268 		current->memcg_batch.memcg = NULL;
4269 		current->memcg_batch.nr_pages = 0;
4270 		current->memcg_batch.memsw_nr_pages = 0;
4271 	}
4272 }
4273 
4274 void mem_cgroup_uncharge_end(void)
4275 {
4276 	struct memcg_batch_info *batch = &current->memcg_batch;
4277 
4278 	if (!batch->do_batch)
4279 		return;
4280 
4281 	batch->do_batch--;
4282 	if (batch->do_batch) /* If stacked, do nothing. */
4283 		return;
4284 
4285 	if (!batch->memcg)
4286 		return;
4287 	/*
4288 	 * This "batch->memcg" is valid without any css_get/put etc...
4289 	 * bacause we hide charges behind us.
4290 	 */
4291 	if (batch->nr_pages)
4292 		res_counter_uncharge(&batch->memcg->res,
4293 				     batch->nr_pages * PAGE_SIZE);
4294 	if (batch->memsw_nr_pages)
4295 		res_counter_uncharge(&batch->memcg->memsw,
4296 				     batch->memsw_nr_pages * PAGE_SIZE);
4297 	memcg_oom_recover(batch->memcg);
4298 	/* forget this pointer (for sanity check) */
4299 	batch->memcg = NULL;
4300 }
4301 
4302 #ifdef CONFIG_SWAP
4303 /*
4304  * called after __delete_from_swap_cache() and drop "page" account.
4305  * memcg information is recorded to swap_cgroup of "ent"
4306  */
4307 void
4308 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4309 {
4310 	struct mem_cgroup *memcg;
4311 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4312 
4313 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4314 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4315 
4316 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4317 
4318 	/*
4319 	 * record memcg information,  if swapout && memcg != NULL,
4320 	 * mem_cgroup_get() was called in uncharge().
4321 	 */
4322 	if (do_swap_account && swapout && memcg)
4323 		swap_cgroup_record(ent, css_id(&memcg->css));
4324 }
4325 #endif
4326 
4327 #ifdef CONFIG_MEMCG_SWAP
4328 /*
4329  * called from swap_entry_free(). remove record in swap_cgroup and
4330  * uncharge "memsw" account.
4331  */
4332 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4333 {
4334 	struct mem_cgroup *memcg;
4335 	unsigned short id;
4336 
4337 	if (!do_swap_account)
4338 		return;
4339 
4340 	id = swap_cgroup_record(ent, 0);
4341 	rcu_read_lock();
4342 	memcg = mem_cgroup_lookup(id);
4343 	if (memcg) {
4344 		/*
4345 		 * We uncharge this because swap is freed.
4346 		 * This memcg can be obsolete one. We avoid calling css_tryget
4347 		 */
4348 		if (!mem_cgroup_is_root(memcg))
4349 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4350 		mem_cgroup_swap_statistics(memcg, false);
4351 		mem_cgroup_put(memcg);
4352 	}
4353 	rcu_read_unlock();
4354 }
4355 
4356 /**
4357  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4358  * @entry: swap entry to be moved
4359  * @from:  mem_cgroup which the entry is moved from
4360  * @to:  mem_cgroup which the entry is moved to
4361  *
4362  * It succeeds only when the swap_cgroup's record for this entry is the same
4363  * as the mem_cgroup's id of @from.
4364  *
4365  * Returns 0 on success, -EINVAL on failure.
4366  *
4367  * The caller must have charged to @to, IOW, called res_counter_charge() about
4368  * both res and memsw, and called css_get().
4369  */
4370 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4371 				struct mem_cgroup *from, struct mem_cgroup *to)
4372 {
4373 	unsigned short old_id, new_id;
4374 
4375 	old_id = css_id(&from->css);
4376 	new_id = css_id(&to->css);
4377 
4378 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4379 		mem_cgroup_swap_statistics(from, false);
4380 		mem_cgroup_swap_statistics(to, true);
4381 		/*
4382 		 * This function is only called from task migration context now.
4383 		 * It postpones res_counter and refcount handling till the end
4384 		 * of task migration(mem_cgroup_clear_mc()) for performance
4385 		 * improvement. But we cannot postpone mem_cgroup_get(to)
4386 		 * because if the process that has been moved to @to does
4387 		 * swap-in, the refcount of @to might be decreased to 0.
4388 		 */
4389 		mem_cgroup_get(to);
4390 		return 0;
4391 	}
4392 	return -EINVAL;
4393 }
4394 #else
4395 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4396 				struct mem_cgroup *from, struct mem_cgroup *to)
4397 {
4398 	return -EINVAL;
4399 }
4400 #endif
4401 
4402 /*
4403  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4404  * page belongs to.
4405  */
4406 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4407 				  struct mem_cgroup **memcgp)
4408 {
4409 	struct mem_cgroup *memcg = NULL;
4410 	unsigned int nr_pages = 1;
4411 	struct page_cgroup *pc;
4412 	enum charge_type ctype;
4413 
4414 	*memcgp = NULL;
4415 
4416 	if (mem_cgroup_disabled())
4417 		return;
4418 
4419 	if (PageTransHuge(page))
4420 		nr_pages <<= compound_order(page);
4421 
4422 	pc = lookup_page_cgroup(page);
4423 	lock_page_cgroup(pc);
4424 	if (PageCgroupUsed(pc)) {
4425 		memcg = pc->mem_cgroup;
4426 		css_get(&memcg->css);
4427 		/*
4428 		 * At migrating an anonymous page, its mapcount goes down
4429 		 * to 0 and uncharge() will be called. But, even if it's fully
4430 		 * unmapped, migration may fail and this page has to be
4431 		 * charged again. We set MIGRATION flag here and delay uncharge
4432 		 * until end_migration() is called
4433 		 *
4434 		 * Corner Case Thinking
4435 		 * A)
4436 		 * When the old page was mapped as Anon and it's unmap-and-freed
4437 		 * while migration was ongoing.
4438 		 * If unmap finds the old page, uncharge() of it will be delayed
4439 		 * until end_migration(). If unmap finds a new page, it's
4440 		 * uncharged when it make mapcount to be 1->0. If unmap code
4441 		 * finds swap_migration_entry, the new page will not be mapped
4442 		 * and end_migration() will find it(mapcount==0).
4443 		 *
4444 		 * B)
4445 		 * When the old page was mapped but migraion fails, the kernel
4446 		 * remaps it. A charge for it is kept by MIGRATION flag even
4447 		 * if mapcount goes down to 0. We can do remap successfully
4448 		 * without charging it again.
4449 		 *
4450 		 * C)
4451 		 * The "old" page is under lock_page() until the end of
4452 		 * migration, so, the old page itself will not be swapped-out.
4453 		 * If the new page is swapped out before end_migraton, our
4454 		 * hook to usual swap-out path will catch the event.
4455 		 */
4456 		if (PageAnon(page))
4457 			SetPageCgroupMigration(pc);
4458 	}
4459 	unlock_page_cgroup(pc);
4460 	/*
4461 	 * If the page is not charged at this point,
4462 	 * we return here.
4463 	 */
4464 	if (!memcg)
4465 		return;
4466 
4467 	*memcgp = memcg;
4468 	/*
4469 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4470 	 * is called before end_migration, we can catch all events on this new
4471 	 * page. In the case new page is migrated but not remapped, new page's
4472 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4473 	 */
4474 	if (PageAnon(page))
4475 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4476 	else
4477 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4478 	/*
4479 	 * The page is committed to the memcg, but it's not actually
4480 	 * charged to the res_counter since we plan on replacing the
4481 	 * old one and only one page is going to be left afterwards.
4482 	 */
4483 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4484 }
4485 
4486 /* remove redundant charge if migration failed*/
4487 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4488 	struct page *oldpage, struct page *newpage, bool migration_ok)
4489 {
4490 	struct page *used, *unused;
4491 	struct page_cgroup *pc;
4492 	bool anon;
4493 
4494 	if (!memcg)
4495 		return;
4496 
4497 	if (!migration_ok) {
4498 		used = oldpage;
4499 		unused = newpage;
4500 	} else {
4501 		used = newpage;
4502 		unused = oldpage;
4503 	}
4504 	anon = PageAnon(used);
4505 	__mem_cgroup_uncharge_common(unused,
4506 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4507 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4508 				     true);
4509 	css_put(&memcg->css);
4510 	/*
4511 	 * We disallowed uncharge of pages under migration because mapcount
4512 	 * of the page goes down to zero, temporarly.
4513 	 * Clear the flag and check the page should be charged.
4514 	 */
4515 	pc = lookup_page_cgroup(oldpage);
4516 	lock_page_cgroup(pc);
4517 	ClearPageCgroupMigration(pc);
4518 	unlock_page_cgroup(pc);
4519 
4520 	/*
4521 	 * If a page is a file cache, radix-tree replacement is very atomic
4522 	 * and we can skip this check. When it was an Anon page, its mapcount
4523 	 * goes down to 0. But because we added MIGRATION flage, it's not
4524 	 * uncharged yet. There are several case but page->mapcount check
4525 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4526 	 * check. (see prepare_charge() also)
4527 	 */
4528 	if (anon)
4529 		mem_cgroup_uncharge_page(used);
4530 }
4531 
4532 /*
4533  * At replace page cache, newpage is not under any memcg but it's on
4534  * LRU. So, this function doesn't touch res_counter but handles LRU
4535  * in correct way. Both pages are locked so we cannot race with uncharge.
4536  */
4537 void mem_cgroup_replace_page_cache(struct page *oldpage,
4538 				  struct page *newpage)
4539 {
4540 	struct mem_cgroup *memcg = NULL;
4541 	struct page_cgroup *pc;
4542 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4543 
4544 	if (mem_cgroup_disabled())
4545 		return;
4546 
4547 	pc = lookup_page_cgroup(oldpage);
4548 	/* fix accounting on old pages */
4549 	lock_page_cgroup(pc);
4550 	if (PageCgroupUsed(pc)) {
4551 		memcg = pc->mem_cgroup;
4552 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4553 		ClearPageCgroupUsed(pc);
4554 	}
4555 	unlock_page_cgroup(pc);
4556 
4557 	/*
4558 	 * When called from shmem_replace_page(), in some cases the
4559 	 * oldpage has already been charged, and in some cases not.
4560 	 */
4561 	if (!memcg)
4562 		return;
4563 	/*
4564 	 * Even if newpage->mapping was NULL before starting replacement,
4565 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4566 	 * LRU while we overwrite pc->mem_cgroup.
4567 	 */
4568 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4569 }
4570 
4571 #ifdef CONFIG_DEBUG_VM
4572 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4573 {
4574 	struct page_cgroup *pc;
4575 
4576 	pc = lookup_page_cgroup(page);
4577 	/*
4578 	 * Can be NULL while feeding pages into the page allocator for
4579 	 * the first time, i.e. during boot or memory hotplug;
4580 	 * or when mem_cgroup_disabled().
4581 	 */
4582 	if (likely(pc) && PageCgroupUsed(pc))
4583 		return pc;
4584 	return NULL;
4585 }
4586 
4587 bool mem_cgroup_bad_page_check(struct page *page)
4588 {
4589 	if (mem_cgroup_disabled())
4590 		return false;
4591 
4592 	return lookup_page_cgroup_used(page) != NULL;
4593 }
4594 
4595 void mem_cgroup_print_bad_page(struct page *page)
4596 {
4597 	struct page_cgroup *pc;
4598 
4599 	pc = lookup_page_cgroup_used(page);
4600 	if (pc) {
4601 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4602 			 pc, pc->flags, pc->mem_cgroup);
4603 	}
4604 }
4605 #endif
4606 
4607 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4608 				unsigned long long val)
4609 {
4610 	int retry_count;
4611 	u64 memswlimit, memlimit;
4612 	int ret = 0;
4613 	int children = mem_cgroup_count_children(memcg);
4614 	u64 curusage, oldusage;
4615 	int enlarge;
4616 
4617 	/*
4618 	 * For keeping hierarchical_reclaim simple, how long we should retry
4619 	 * is depends on callers. We set our retry-count to be function
4620 	 * of # of children which we should visit in this loop.
4621 	 */
4622 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4623 
4624 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4625 
4626 	enlarge = 0;
4627 	while (retry_count) {
4628 		if (signal_pending(current)) {
4629 			ret = -EINTR;
4630 			break;
4631 		}
4632 		/*
4633 		 * Rather than hide all in some function, I do this in
4634 		 * open coded manner. You see what this really does.
4635 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4636 		 */
4637 		mutex_lock(&set_limit_mutex);
4638 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4639 		if (memswlimit < val) {
4640 			ret = -EINVAL;
4641 			mutex_unlock(&set_limit_mutex);
4642 			break;
4643 		}
4644 
4645 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4646 		if (memlimit < val)
4647 			enlarge = 1;
4648 
4649 		ret = res_counter_set_limit(&memcg->res, val);
4650 		if (!ret) {
4651 			if (memswlimit == val)
4652 				memcg->memsw_is_minimum = true;
4653 			else
4654 				memcg->memsw_is_minimum = false;
4655 		}
4656 		mutex_unlock(&set_limit_mutex);
4657 
4658 		if (!ret)
4659 			break;
4660 
4661 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4662 				   MEM_CGROUP_RECLAIM_SHRINK);
4663 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4664 		/* Usage is reduced ? */
4665   		if (curusage >= oldusage)
4666 			retry_count--;
4667 		else
4668 			oldusage = curusage;
4669 	}
4670 	if (!ret && enlarge)
4671 		memcg_oom_recover(memcg);
4672 
4673 	return ret;
4674 }
4675 
4676 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4677 					unsigned long long val)
4678 {
4679 	int retry_count;
4680 	u64 memlimit, memswlimit, oldusage, curusage;
4681 	int children = mem_cgroup_count_children(memcg);
4682 	int ret = -EBUSY;
4683 	int enlarge = 0;
4684 
4685 	/* see mem_cgroup_resize_res_limit */
4686  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4687 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4688 	while (retry_count) {
4689 		if (signal_pending(current)) {
4690 			ret = -EINTR;
4691 			break;
4692 		}
4693 		/*
4694 		 * Rather than hide all in some function, I do this in
4695 		 * open coded manner. You see what this really does.
4696 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4697 		 */
4698 		mutex_lock(&set_limit_mutex);
4699 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4700 		if (memlimit > val) {
4701 			ret = -EINVAL;
4702 			mutex_unlock(&set_limit_mutex);
4703 			break;
4704 		}
4705 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4706 		if (memswlimit < val)
4707 			enlarge = 1;
4708 		ret = res_counter_set_limit(&memcg->memsw, val);
4709 		if (!ret) {
4710 			if (memlimit == val)
4711 				memcg->memsw_is_minimum = true;
4712 			else
4713 				memcg->memsw_is_minimum = false;
4714 		}
4715 		mutex_unlock(&set_limit_mutex);
4716 
4717 		if (!ret)
4718 			break;
4719 
4720 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4721 				   MEM_CGROUP_RECLAIM_NOSWAP |
4722 				   MEM_CGROUP_RECLAIM_SHRINK);
4723 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4724 		/* Usage is reduced ? */
4725 		if (curusage >= oldusage)
4726 			retry_count--;
4727 		else
4728 			oldusage = curusage;
4729 	}
4730 	if (!ret && enlarge)
4731 		memcg_oom_recover(memcg);
4732 	return ret;
4733 }
4734 
4735 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4736 					    gfp_t gfp_mask,
4737 					    unsigned long *total_scanned)
4738 {
4739 	unsigned long nr_reclaimed = 0;
4740 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4741 	unsigned long reclaimed;
4742 	int loop = 0;
4743 	struct mem_cgroup_tree_per_zone *mctz;
4744 	unsigned long long excess;
4745 	unsigned long nr_scanned;
4746 
4747 	if (order > 0)
4748 		return 0;
4749 
4750 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4751 	/*
4752 	 * This loop can run a while, specially if mem_cgroup's continuously
4753 	 * keep exceeding their soft limit and putting the system under
4754 	 * pressure
4755 	 */
4756 	do {
4757 		if (next_mz)
4758 			mz = next_mz;
4759 		else
4760 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4761 		if (!mz)
4762 			break;
4763 
4764 		nr_scanned = 0;
4765 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4766 						    gfp_mask, &nr_scanned);
4767 		nr_reclaimed += reclaimed;
4768 		*total_scanned += nr_scanned;
4769 		spin_lock(&mctz->lock);
4770 
4771 		/*
4772 		 * If we failed to reclaim anything from this memory cgroup
4773 		 * it is time to move on to the next cgroup
4774 		 */
4775 		next_mz = NULL;
4776 		if (!reclaimed) {
4777 			do {
4778 				/*
4779 				 * Loop until we find yet another one.
4780 				 *
4781 				 * By the time we get the soft_limit lock
4782 				 * again, someone might have aded the
4783 				 * group back on the RB tree. Iterate to
4784 				 * make sure we get a different mem.
4785 				 * mem_cgroup_largest_soft_limit_node returns
4786 				 * NULL if no other cgroup is present on
4787 				 * the tree
4788 				 */
4789 				next_mz =
4790 				__mem_cgroup_largest_soft_limit_node(mctz);
4791 				if (next_mz == mz)
4792 					css_put(&next_mz->memcg->css);
4793 				else /* next_mz == NULL or other memcg */
4794 					break;
4795 			} while (1);
4796 		}
4797 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4798 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4799 		/*
4800 		 * One school of thought says that we should not add
4801 		 * back the node to the tree if reclaim returns 0.
4802 		 * But our reclaim could return 0, simply because due
4803 		 * to priority we are exposing a smaller subset of
4804 		 * memory to reclaim from. Consider this as a longer
4805 		 * term TODO.
4806 		 */
4807 		/* If excess == 0, no tree ops */
4808 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4809 		spin_unlock(&mctz->lock);
4810 		css_put(&mz->memcg->css);
4811 		loop++;
4812 		/*
4813 		 * Could not reclaim anything and there are no more
4814 		 * mem cgroups to try or we seem to be looping without
4815 		 * reclaiming anything.
4816 		 */
4817 		if (!nr_reclaimed &&
4818 			(next_mz == NULL ||
4819 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4820 			break;
4821 	} while (!nr_reclaimed);
4822 	if (next_mz)
4823 		css_put(&next_mz->memcg->css);
4824 	return nr_reclaimed;
4825 }
4826 
4827 /**
4828  * mem_cgroup_force_empty_list - clears LRU of a group
4829  * @memcg: group to clear
4830  * @node: NUMA node
4831  * @zid: zone id
4832  * @lru: lru to to clear
4833  *
4834  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4835  * reclaim the pages page themselves - pages are moved to the parent (or root)
4836  * group.
4837  */
4838 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4839 				int node, int zid, enum lru_list lru)
4840 {
4841 	struct lruvec *lruvec;
4842 	unsigned long flags;
4843 	struct list_head *list;
4844 	struct page *busy;
4845 	struct zone *zone;
4846 
4847 	zone = &NODE_DATA(node)->node_zones[zid];
4848 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4849 	list = &lruvec->lists[lru];
4850 
4851 	busy = NULL;
4852 	do {
4853 		struct page_cgroup *pc;
4854 		struct page *page;
4855 
4856 		spin_lock_irqsave(&zone->lru_lock, flags);
4857 		if (list_empty(list)) {
4858 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4859 			break;
4860 		}
4861 		page = list_entry(list->prev, struct page, lru);
4862 		if (busy == page) {
4863 			list_move(&page->lru, list);
4864 			busy = NULL;
4865 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4866 			continue;
4867 		}
4868 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4869 
4870 		pc = lookup_page_cgroup(page);
4871 
4872 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4873 			/* found lock contention or "pc" is obsolete. */
4874 			busy = page;
4875 			cond_resched();
4876 		} else
4877 			busy = NULL;
4878 	} while (!list_empty(list));
4879 }
4880 
4881 /*
4882  * make mem_cgroup's charge to be 0 if there is no task by moving
4883  * all the charges and pages to the parent.
4884  * This enables deleting this mem_cgroup.
4885  *
4886  * Caller is responsible for holding css reference on the memcg.
4887  */
4888 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4889 {
4890 	int node, zid;
4891 	u64 usage;
4892 
4893 	do {
4894 		/* This is for making all *used* pages to be on LRU. */
4895 		lru_add_drain_all();
4896 		drain_all_stock_sync(memcg);
4897 		mem_cgroup_start_move(memcg);
4898 		for_each_node_state(node, N_MEMORY) {
4899 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4900 				enum lru_list lru;
4901 				for_each_lru(lru) {
4902 					mem_cgroup_force_empty_list(memcg,
4903 							node, zid, lru);
4904 				}
4905 			}
4906 		}
4907 		mem_cgroup_end_move(memcg);
4908 		memcg_oom_recover(memcg);
4909 		cond_resched();
4910 
4911 		/*
4912 		 * Kernel memory may not necessarily be trackable to a specific
4913 		 * process. So they are not migrated, and therefore we can't
4914 		 * expect their value to drop to 0 here.
4915 		 * Having res filled up with kmem only is enough.
4916 		 *
4917 		 * This is a safety check because mem_cgroup_force_empty_list
4918 		 * could have raced with mem_cgroup_replace_page_cache callers
4919 		 * so the lru seemed empty but the page could have been added
4920 		 * right after the check. RES_USAGE should be safe as we always
4921 		 * charge before adding to the LRU.
4922 		 */
4923 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4924 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4925 	} while (usage > 0);
4926 }
4927 
4928 /*
4929  * This mainly exists for tests during the setting of set of use_hierarchy.
4930  * Since this is the very setting we are changing, the current hierarchy value
4931  * is meaningless
4932  */
4933 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4934 {
4935 	struct cgroup *pos;
4936 
4937 	/* bounce at first found */
4938 	cgroup_for_each_child(pos, memcg->css.cgroup)
4939 		return true;
4940 	return false;
4941 }
4942 
4943 /*
4944  * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4945  * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4946  * from mem_cgroup_count_children(), in the sense that we don't really care how
4947  * many children we have; we only need to know if we have any.  It also counts
4948  * any memcg without hierarchy as infertile.
4949  */
4950 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4951 {
4952 	return memcg->use_hierarchy && __memcg_has_children(memcg);
4953 }
4954 
4955 /*
4956  * Reclaims as many pages from the given memcg as possible and moves
4957  * the rest to the parent.
4958  *
4959  * Caller is responsible for holding css reference for memcg.
4960  */
4961 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4962 {
4963 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4964 	struct cgroup *cgrp = memcg->css.cgroup;
4965 
4966 	/* returns EBUSY if there is a task or if we come here twice. */
4967 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4968 		return -EBUSY;
4969 
4970 	/* we call try-to-free pages for make this cgroup empty */
4971 	lru_add_drain_all();
4972 	/* try to free all pages in this cgroup */
4973 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4974 		int progress;
4975 
4976 		if (signal_pending(current))
4977 			return -EINTR;
4978 
4979 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4980 						false);
4981 		if (!progress) {
4982 			nr_retries--;
4983 			/* maybe some writeback is necessary */
4984 			congestion_wait(BLK_RW_ASYNC, HZ/10);
4985 		}
4986 
4987 	}
4988 	lru_add_drain();
4989 	mem_cgroup_reparent_charges(memcg);
4990 
4991 	return 0;
4992 }
4993 
4994 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4995 {
4996 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4997 	int ret;
4998 
4999 	if (mem_cgroup_is_root(memcg))
5000 		return -EINVAL;
5001 	css_get(&memcg->css);
5002 	ret = mem_cgroup_force_empty(memcg);
5003 	css_put(&memcg->css);
5004 
5005 	return ret;
5006 }
5007 
5008 
5009 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5010 {
5011 	return mem_cgroup_from_cont(cont)->use_hierarchy;
5012 }
5013 
5014 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5015 					u64 val)
5016 {
5017 	int retval = 0;
5018 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5019 	struct cgroup *parent = cont->parent;
5020 	struct mem_cgroup *parent_memcg = NULL;
5021 
5022 	if (parent)
5023 		parent_memcg = mem_cgroup_from_cont(parent);
5024 
5025 	mutex_lock(&memcg_create_mutex);
5026 
5027 	if (memcg->use_hierarchy == val)
5028 		goto out;
5029 
5030 	/*
5031 	 * If parent's use_hierarchy is set, we can't make any modifications
5032 	 * in the child subtrees. If it is unset, then the change can
5033 	 * occur, provided the current cgroup has no children.
5034 	 *
5035 	 * For the root cgroup, parent_mem is NULL, we allow value to be
5036 	 * set if there are no children.
5037 	 */
5038 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5039 				(val == 1 || val == 0)) {
5040 		if (!__memcg_has_children(memcg))
5041 			memcg->use_hierarchy = val;
5042 		else
5043 			retval = -EBUSY;
5044 	} else
5045 		retval = -EINVAL;
5046 
5047 out:
5048 	mutex_unlock(&memcg_create_mutex);
5049 
5050 	return retval;
5051 }
5052 
5053 
5054 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5055 					       enum mem_cgroup_stat_index idx)
5056 {
5057 	struct mem_cgroup *iter;
5058 	long val = 0;
5059 
5060 	/* Per-cpu values can be negative, use a signed accumulator */
5061 	for_each_mem_cgroup_tree(iter, memcg)
5062 		val += mem_cgroup_read_stat(iter, idx);
5063 
5064 	if (val < 0) /* race ? */
5065 		val = 0;
5066 	return val;
5067 }
5068 
5069 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5070 {
5071 	u64 val;
5072 
5073 	if (!mem_cgroup_is_root(memcg)) {
5074 		if (!swap)
5075 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5076 		else
5077 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5078 	}
5079 
5080 	/*
5081 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5082 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5083 	 */
5084 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5085 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5086 
5087 	if (swap)
5088 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5089 
5090 	return val << PAGE_SHIFT;
5091 }
5092 
5093 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5094 			       struct file *file, char __user *buf,
5095 			       size_t nbytes, loff_t *ppos)
5096 {
5097 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5098 	char str[64];
5099 	u64 val;
5100 	int name, len;
5101 	enum res_type type;
5102 
5103 	type = MEMFILE_TYPE(cft->private);
5104 	name = MEMFILE_ATTR(cft->private);
5105 
5106 	switch (type) {
5107 	case _MEM:
5108 		if (name == RES_USAGE)
5109 			val = mem_cgroup_usage(memcg, false);
5110 		else
5111 			val = res_counter_read_u64(&memcg->res, name);
5112 		break;
5113 	case _MEMSWAP:
5114 		if (name == RES_USAGE)
5115 			val = mem_cgroup_usage(memcg, true);
5116 		else
5117 			val = res_counter_read_u64(&memcg->memsw, name);
5118 		break;
5119 	case _KMEM:
5120 		val = res_counter_read_u64(&memcg->kmem, name);
5121 		break;
5122 	default:
5123 		BUG();
5124 	}
5125 
5126 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5127 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5128 }
5129 
5130 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5131 {
5132 	int ret = -EINVAL;
5133 #ifdef CONFIG_MEMCG_KMEM
5134 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5135 	/*
5136 	 * For simplicity, we won't allow this to be disabled.  It also can't
5137 	 * be changed if the cgroup has children already, or if tasks had
5138 	 * already joined.
5139 	 *
5140 	 * If tasks join before we set the limit, a person looking at
5141 	 * kmem.usage_in_bytes will have no way to determine when it took
5142 	 * place, which makes the value quite meaningless.
5143 	 *
5144 	 * After it first became limited, changes in the value of the limit are
5145 	 * of course permitted.
5146 	 */
5147 	mutex_lock(&memcg_create_mutex);
5148 	mutex_lock(&set_limit_mutex);
5149 	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5150 		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5151 			ret = -EBUSY;
5152 			goto out;
5153 		}
5154 		ret = res_counter_set_limit(&memcg->kmem, val);
5155 		VM_BUG_ON(ret);
5156 
5157 		ret = memcg_update_cache_sizes(memcg);
5158 		if (ret) {
5159 			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5160 			goto out;
5161 		}
5162 		static_key_slow_inc(&memcg_kmem_enabled_key);
5163 		/*
5164 		 * setting the active bit after the inc will guarantee no one
5165 		 * starts accounting before all call sites are patched
5166 		 */
5167 		memcg_kmem_set_active(memcg);
5168 
5169 		/*
5170 		 * kmem charges can outlive the cgroup. In the case of slab
5171 		 * pages, for instance, a page contain objects from various
5172 		 * processes, so it is unfeasible to migrate them away. We
5173 		 * need to reference count the memcg because of that.
5174 		 */
5175 		mem_cgroup_get(memcg);
5176 	} else
5177 		ret = res_counter_set_limit(&memcg->kmem, val);
5178 out:
5179 	mutex_unlock(&set_limit_mutex);
5180 	mutex_unlock(&memcg_create_mutex);
5181 #endif
5182 	return ret;
5183 }
5184 
5185 #ifdef CONFIG_MEMCG_KMEM
5186 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5187 {
5188 	int ret = 0;
5189 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5190 	if (!parent)
5191 		goto out;
5192 
5193 	memcg->kmem_account_flags = parent->kmem_account_flags;
5194 	/*
5195 	 * When that happen, we need to disable the static branch only on those
5196 	 * memcgs that enabled it. To achieve this, we would be forced to
5197 	 * complicate the code by keeping track of which memcgs were the ones
5198 	 * that actually enabled limits, and which ones got it from its
5199 	 * parents.
5200 	 *
5201 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5202 	 * that is accounted.
5203 	 */
5204 	if (!memcg_kmem_is_active(memcg))
5205 		goto out;
5206 
5207 	/*
5208 	 * destroy(), called if we fail, will issue static_key_slow_inc() and
5209 	 * mem_cgroup_put() if kmem is enabled. We have to either call them
5210 	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5211 	 * this more consistent, since it always leads to the same destroy path
5212 	 */
5213 	mem_cgroup_get(memcg);
5214 	static_key_slow_inc(&memcg_kmem_enabled_key);
5215 
5216 	mutex_lock(&set_limit_mutex);
5217 	ret = memcg_update_cache_sizes(memcg);
5218 	mutex_unlock(&set_limit_mutex);
5219 out:
5220 	return ret;
5221 }
5222 #endif /* CONFIG_MEMCG_KMEM */
5223 
5224 /*
5225  * The user of this function is...
5226  * RES_LIMIT.
5227  */
5228 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5229 			    const char *buffer)
5230 {
5231 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5232 	enum res_type type;
5233 	int name;
5234 	unsigned long long val;
5235 	int ret;
5236 
5237 	type = MEMFILE_TYPE(cft->private);
5238 	name = MEMFILE_ATTR(cft->private);
5239 
5240 	switch (name) {
5241 	case RES_LIMIT:
5242 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5243 			ret = -EINVAL;
5244 			break;
5245 		}
5246 		/* This function does all necessary parse...reuse it */
5247 		ret = res_counter_memparse_write_strategy(buffer, &val);
5248 		if (ret)
5249 			break;
5250 		if (type == _MEM)
5251 			ret = mem_cgroup_resize_limit(memcg, val);
5252 		else if (type == _MEMSWAP)
5253 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5254 		else if (type == _KMEM)
5255 			ret = memcg_update_kmem_limit(cont, val);
5256 		else
5257 			return -EINVAL;
5258 		break;
5259 	case RES_SOFT_LIMIT:
5260 		ret = res_counter_memparse_write_strategy(buffer, &val);
5261 		if (ret)
5262 			break;
5263 		/*
5264 		 * For memsw, soft limits are hard to implement in terms
5265 		 * of semantics, for now, we support soft limits for
5266 		 * control without swap
5267 		 */
5268 		if (type == _MEM)
5269 			ret = res_counter_set_soft_limit(&memcg->res, val);
5270 		else
5271 			ret = -EINVAL;
5272 		break;
5273 	default:
5274 		ret = -EINVAL; /* should be BUG() ? */
5275 		break;
5276 	}
5277 	return ret;
5278 }
5279 
5280 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5281 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5282 {
5283 	struct cgroup *cgroup;
5284 	unsigned long long min_limit, min_memsw_limit, tmp;
5285 
5286 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5287 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5288 	cgroup = memcg->css.cgroup;
5289 	if (!memcg->use_hierarchy)
5290 		goto out;
5291 
5292 	while (cgroup->parent) {
5293 		cgroup = cgroup->parent;
5294 		memcg = mem_cgroup_from_cont(cgroup);
5295 		if (!memcg->use_hierarchy)
5296 			break;
5297 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5298 		min_limit = min(min_limit, tmp);
5299 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5300 		min_memsw_limit = min(min_memsw_limit, tmp);
5301 	}
5302 out:
5303 	*mem_limit = min_limit;
5304 	*memsw_limit = min_memsw_limit;
5305 }
5306 
5307 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5308 {
5309 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5310 	int name;
5311 	enum res_type type;
5312 
5313 	type = MEMFILE_TYPE(event);
5314 	name = MEMFILE_ATTR(event);
5315 
5316 	switch (name) {
5317 	case RES_MAX_USAGE:
5318 		if (type == _MEM)
5319 			res_counter_reset_max(&memcg->res);
5320 		else if (type == _MEMSWAP)
5321 			res_counter_reset_max(&memcg->memsw);
5322 		else if (type == _KMEM)
5323 			res_counter_reset_max(&memcg->kmem);
5324 		else
5325 			return -EINVAL;
5326 		break;
5327 	case RES_FAILCNT:
5328 		if (type == _MEM)
5329 			res_counter_reset_failcnt(&memcg->res);
5330 		else if (type == _MEMSWAP)
5331 			res_counter_reset_failcnt(&memcg->memsw);
5332 		else if (type == _KMEM)
5333 			res_counter_reset_failcnt(&memcg->kmem);
5334 		else
5335 			return -EINVAL;
5336 		break;
5337 	}
5338 
5339 	return 0;
5340 }
5341 
5342 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5343 					struct cftype *cft)
5344 {
5345 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5346 }
5347 
5348 #ifdef CONFIG_MMU
5349 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5350 					struct cftype *cft, u64 val)
5351 {
5352 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5353 
5354 	if (val >= (1 << NR_MOVE_TYPE))
5355 		return -EINVAL;
5356 
5357 	/*
5358 	 * No kind of locking is needed in here, because ->can_attach() will
5359 	 * check this value once in the beginning of the process, and then carry
5360 	 * on with stale data. This means that changes to this value will only
5361 	 * affect task migrations starting after the change.
5362 	 */
5363 	memcg->move_charge_at_immigrate = val;
5364 	return 0;
5365 }
5366 #else
5367 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5368 					struct cftype *cft, u64 val)
5369 {
5370 	return -ENOSYS;
5371 }
5372 #endif
5373 
5374 #ifdef CONFIG_NUMA
5375 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5376 				      struct seq_file *m)
5377 {
5378 	int nid;
5379 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5380 	unsigned long node_nr;
5381 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5382 
5383 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5384 	seq_printf(m, "total=%lu", total_nr);
5385 	for_each_node_state(nid, N_MEMORY) {
5386 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5387 		seq_printf(m, " N%d=%lu", nid, node_nr);
5388 	}
5389 	seq_putc(m, '\n');
5390 
5391 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5392 	seq_printf(m, "file=%lu", file_nr);
5393 	for_each_node_state(nid, N_MEMORY) {
5394 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5395 				LRU_ALL_FILE);
5396 		seq_printf(m, " N%d=%lu", nid, node_nr);
5397 	}
5398 	seq_putc(m, '\n');
5399 
5400 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5401 	seq_printf(m, "anon=%lu", anon_nr);
5402 	for_each_node_state(nid, N_MEMORY) {
5403 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5404 				LRU_ALL_ANON);
5405 		seq_printf(m, " N%d=%lu", nid, node_nr);
5406 	}
5407 	seq_putc(m, '\n');
5408 
5409 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5410 	seq_printf(m, "unevictable=%lu", unevictable_nr);
5411 	for_each_node_state(nid, N_MEMORY) {
5412 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5413 				BIT(LRU_UNEVICTABLE));
5414 		seq_printf(m, " N%d=%lu", nid, node_nr);
5415 	}
5416 	seq_putc(m, '\n');
5417 	return 0;
5418 }
5419 #endif /* CONFIG_NUMA */
5420 
5421 static inline void mem_cgroup_lru_names_not_uptodate(void)
5422 {
5423 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5424 }
5425 
5426 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5427 				 struct seq_file *m)
5428 {
5429 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5430 	struct mem_cgroup *mi;
5431 	unsigned int i;
5432 
5433 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5434 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5435 			continue;
5436 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5437 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5438 	}
5439 
5440 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5441 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5442 			   mem_cgroup_read_events(memcg, i));
5443 
5444 	for (i = 0; i < NR_LRU_LISTS; i++)
5445 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5446 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5447 
5448 	/* Hierarchical information */
5449 	{
5450 		unsigned long long limit, memsw_limit;
5451 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5452 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5453 		if (do_swap_account)
5454 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5455 				   memsw_limit);
5456 	}
5457 
5458 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5459 		long long val = 0;
5460 
5461 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5462 			continue;
5463 		for_each_mem_cgroup_tree(mi, memcg)
5464 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5465 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5466 	}
5467 
5468 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5469 		unsigned long long val = 0;
5470 
5471 		for_each_mem_cgroup_tree(mi, memcg)
5472 			val += mem_cgroup_read_events(mi, i);
5473 		seq_printf(m, "total_%s %llu\n",
5474 			   mem_cgroup_events_names[i], val);
5475 	}
5476 
5477 	for (i = 0; i < NR_LRU_LISTS; i++) {
5478 		unsigned long long val = 0;
5479 
5480 		for_each_mem_cgroup_tree(mi, memcg)
5481 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5482 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5483 	}
5484 
5485 #ifdef CONFIG_DEBUG_VM
5486 	{
5487 		int nid, zid;
5488 		struct mem_cgroup_per_zone *mz;
5489 		struct zone_reclaim_stat *rstat;
5490 		unsigned long recent_rotated[2] = {0, 0};
5491 		unsigned long recent_scanned[2] = {0, 0};
5492 
5493 		for_each_online_node(nid)
5494 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5495 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5496 				rstat = &mz->lruvec.reclaim_stat;
5497 
5498 				recent_rotated[0] += rstat->recent_rotated[0];
5499 				recent_rotated[1] += rstat->recent_rotated[1];
5500 				recent_scanned[0] += rstat->recent_scanned[0];
5501 				recent_scanned[1] += rstat->recent_scanned[1];
5502 			}
5503 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5504 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5505 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5506 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5507 	}
5508 #endif
5509 
5510 	return 0;
5511 }
5512 
5513 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5514 {
5515 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5516 
5517 	return mem_cgroup_swappiness(memcg);
5518 }
5519 
5520 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5521 				       u64 val)
5522 {
5523 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5524 	struct mem_cgroup *parent;
5525 
5526 	if (val > 100)
5527 		return -EINVAL;
5528 
5529 	if (cgrp->parent == NULL)
5530 		return -EINVAL;
5531 
5532 	parent = mem_cgroup_from_cont(cgrp->parent);
5533 
5534 	mutex_lock(&memcg_create_mutex);
5535 
5536 	/* If under hierarchy, only empty-root can set this value */
5537 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5538 		mutex_unlock(&memcg_create_mutex);
5539 		return -EINVAL;
5540 	}
5541 
5542 	memcg->swappiness = val;
5543 
5544 	mutex_unlock(&memcg_create_mutex);
5545 
5546 	return 0;
5547 }
5548 
5549 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5550 {
5551 	struct mem_cgroup_threshold_ary *t;
5552 	u64 usage;
5553 	int i;
5554 
5555 	rcu_read_lock();
5556 	if (!swap)
5557 		t = rcu_dereference(memcg->thresholds.primary);
5558 	else
5559 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5560 
5561 	if (!t)
5562 		goto unlock;
5563 
5564 	usage = mem_cgroup_usage(memcg, swap);
5565 
5566 	/*
5567 	 * current_threshold points to threshold just below or equal to usage.
5568 	 * If it's not true, a threshold was crossed after last
5569 	 * call of __mem_cgroup_threshold().
5570 	 */
5571 	i = t->current_threshold;
5572 
5573 	/*
5574 	 * Iterate backward over array of thresholds starting from
5575 	 * current_threshold and check if a threshold is crossed.
5576 	 * If none of thresholds below usage is crossed, we read
5577 	 * only one element of the array here.
5578 	 */
5579 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5580 		eventfd_signal(t->entries[i].eventfd, 1);
5581 
5582 	/* i = current_threshold + 1 */
5583 	i++;
5584 
5585 	/*
5586 	 * Iterate forward over array of thresholds starting from
5587 	 * current_threshold+1 and check if a threshold is crossed.
5588 	 * If none of thresholds above usage is crossed, we read
5589 	 * only one element of the array here.
5590 	 */
5591 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5592 		eventfd_signal(t->entries[i].eventfd, 1);
5593 
5594 	/* Update current_threshold */
5595 	t->current_threshold = i - 1;
5596 unlock:
5597 	rcu_read_unlock();
5598 }
5599 
5600 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5601 {
5602 	while (memcg) {
5603 		__mem_cgroup_threshold(memcg, false);
5604 		if (do_swap_account)
5605 			__mem_cgroup_threshold(memcg, true);
5606 
5607 		memcg = parent_mem_cgroup(memcg);
5608 	}
5609 }
5610 
5611 static int compare_thresholds(const void *a, const void *b)
5612 {
5613 	const struct mem_cgroup_threshold *_a = a;
5614 	const struct mem_cgroup_threshold *_b = b;
5615 
5616 	return _a->threshold - _b->threshold;
5617 }
5618 
5619 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5620 {
5621 	struct mem_cgroup_eventfd_list *ev;
5622 
5623 	list_for_each_entry(ev, &memcg->oom_notify, list)
5624 		eventfd_signal(ev->eventfd, 1);
5625 	return 0;
5626 }
5627 
5628 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5629 {
5630 	struct mem_cgroup *iter;
5631 
5632 	for_each_mem_cgroup_tree(iter, memcg)
5633 		mem_cgroup_oom_notify_cb(iter);
5634 }
5635 
5636 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5637 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5638 {
5639 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5640 	struct mem_cgroup_thresholds *thresholds;
5641 	struct mem_cgroup_threshold_ary *new;
5642 	enum res_type type = MEMFILE_TYPE(cft->private);
5643 	u64 threshold, usage;
5644 	int i, size, ret;
5645 
5646 	ret = res_counter_memparse_write_strategy(args, &threshold);
5647 	if (ret)
5648 		return ret;
5649 
5650 	mutex_lock(&memcg->thresholds_lock);
5651 
5652 	if (type == _MEM)
5653 		thresholds = &memcg->thresholds;
5654 	else if (type == _MEMSWAP)
5655 		thresholds = &memcg->memsw_thresholds;
5656 	else
5657 		BUG();
5658 
5659 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5660 
5661 	/* Check if a threshold crossed before adding a new one */
5662 	if (thresholds->primary)
5663 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5664 
5665 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5666 
5667 	/* Allocate memory for new array of thresholds */
5668 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5669 			GFP_KERNEL);
5670 	if (!new) {
5671 		ret = -ENOMEM;
5672 		goto unlock;
5673 	}
5674 	new->size = size;
5675 
5676 	/* Copy thresholds (if any) to new array */
5677 	if (thresholds->primary) {
5678 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5679 				sizeof(struct mem_cgroup_threshold));
5680 	}
5681 
5682 	/* Add new threshold */
5683 	new->entries[size - 1].eventfd = eventfd;
5684 	new->entries[size - 1].threshold = threshold;
5685 
5686 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5687 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5688 			compare_thresholds, NULL);
5689 
5690 	/* Find current threshold */
5691 	new->current_threshold = -1;
5692 	for (i = 0; i < size; i++) {
5693 		if (new->entries[i].threshold <= usage) {
5694 			/*
5695 			 * new->current_threshold will not be used until
5696 			 * rcu_assign_pointer(), so it's safe to increment
5697 			 * it here.
5698 			 */
5699 			++new->current_threshold;
5700 		} else
5701 			break;
5702 	}
5703 
5704 	/* Free old spare buffer and save old primary buffer as spare */
5705 	kfree(thresholds->spare);
5706 	thresholds->spare = thresholds->primary;
5707 
5708 	rcu_assign_pointer(thresholds->primary, new);
5709 
5710 	/* To be sure that nobody uses thresholds */
5711 	synchronize_rcu();
5712 
5713 unlock:
5714 	mutex_unlock(&memcg->thresholds_lock);
5715 
5716 	return ret;
5717 }
5718 
5719 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5720 	struct cftype *cft, struct eventfd_ctx *eventfd)
5721 {
5722 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5723 	struct mem_cgroup_thresholds *thresholds;
5724 	struct mem_cgroup_threshold_ary *new;
5725 	enum res_type type = MEMFILE_TYPE(cft->private);
5726 	u64 usage;
5727 	int i, j, size;
5728 
5729 	mutex_lock(&memcg->thresholds_lock);
5730 	if (type == _MEM)
5731 		thresholds = &memcg->thresholds;
5732 	else if (type == _MEMSWAP)
5733 		thresholds = &memcg->memsw_thresholds;
5734 	else
5735 		BUG();
5736 
5737 	if (!thresholds->primary)
5738 		goto unlock;
5739 
5740 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5741 
5742 	/* Check if a threshold crossed before removing */
5743 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5744 
5745 	/* Calculate new number of threshold */
5746 	size = 0;
5747 	for (i = 0; i < thresholds->primary->size; i++) {
5748 		if (thresholds->primary->entries[i].eventfd != eventfd)
5749 			size++;
5750 	}
5751 
5752 	new = thresholds->spare;
5753 
5754 	/* Set thresholds array to NULL if we don't have thresholds */
5755 	if (!size) {
5756 		kfree(new);
5757 		new = NULL;
5758 		goto swap_buffers;
5759 	}
5760 
5761 	new->size = size;
5762 
5763 	/* Copy thresholds and find current threshold */
5764 	new->current_threshold = -1;
5765 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5766 		if (thresholds->primary->entries[i].eventfd == eventfd)
5767 			continue;
5768 
5769 		new->entries[j] = thresholds->primary->entries[i];
5770 		if (new->entries[j].threshold <= usage) {
5771 			/*
5772 			 * new->current_threshold will not be used
5773 			 * until rcu_assign_pointer(), so it's safe to increment
5774 			 * it here.
5775 			 */
5776 			++new->current_threshold;
5777 		}
5778 		j++;
5779 	}
5780 
5781 swap_buffers:
5782 	/* Swap primary and spare array */
5783 	thresholds->spare = thresholds->primary;
5784 	/* If all events are unregistered, free the spare array */
5785 	if (!new) {
5786 		kfree(thresholds->spare);
5787 		thresholds->spare = NULL;
5788 	}
5789 
5790 	rcu_assign_pointer(thresholds->primary, new);
5791 
5792 	/* To be sure that nobody uses thresholds */
5793 	synchronize_rcu();
5794 unlock:
5795 	mutex_unlock(&memcg->thresholds_lock);
5796 }
5797 
5798 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5799 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5800 {
5801 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5802 	struct mem_cgroup_eventfd_list *event;
5803 	enum res_type type = MEMFILE_TYPE(cft->private);
5804 
5805 	BUG_ON(type != _OOM_TYPE);
5806 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5807 	if (!event)
5808 		return -ENOMEM;
5809 
5810 	spin_lock(&memcg_oom_lock);
5811 
5812 	event->eventfd = eventfd;
5813 	list_add(&event->list, &memcg->oom_notify);
5814 
5815 	/* already in OOM ? */
5816 	if (atomic_read(&memcg->under_oom))
5817 		eventfd_signal(eventfd, 1);
5818 	spin_unlock(&memcg_oom_lock);
5819 
5820 	return 0;
5821 }
5822 
5823 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5824 	struct cftype *cft, struct eventfd_ctx *eventfd)
5825 {
5826 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5827 	struct mem_cgroup_eventfd_list *ev, *tmp;
5828 	enum res_type type = MEMFILE_TYPE(cft->private);
5829 
5830 	BUG_ON(type != _OOM_TYPE);
5831 
5832 	spin_lock(&memcg_oom_lock);
5833 
5834 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5835 		if (ev->eventfd == eventfd) {
5836 			list_del(&ev->list);
5837 			kfree(ev);
5838 		}
5839 	}
5840 
5841 	spin_unlock(&memcg_oom_lock);
5842 }
5843 
5844 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5845 	struct cftype *cft,  struct cgroup_map_cb *cb)
5846 {
5847 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5848 
5849 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5850 
5851 	if (atomic_read(&memcg->under_oom))
5852 		cb->fill(cb, "under_oom", 1);
5853 	else
5854 		cb->fill(cb, "under_oom", 0);
5855 	return 0;
5856 }
5857 
5858 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5859 	struct cftype *cft, u64 val)
5860 {
5861 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5862 	struct mem_cgroup *parent;
5863 
5864 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5865 	if (!cgrp->parent || !((val == 0) || (val == 1)))
5866 		return -EINVAL;
5867 
5868 	parent = mem_cgroup_from_cont(cgrp->parent);
5869 
5870 	mutex_lock(&memcg_create_mutex);
5871 	/* oom-kill-disable is a flag for subhierarchy. */
5872 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5873 		mutex_unlock(&memcg_create_mutex);
5874 		return -EINVAL;
5875 	}
5876 	memcg->oom_kill_disable = val;
5877 	if (!val)
5878 		memcg_oom_recover(memcg);
5879 	mutex_unlock(&memcg_create_mutex);
5880 	return 0;
5881 }
5882 
5883 #ifdef CONFIG_MEMCG_KMEM
5884 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5885 {
5886 	int ret;
5887 
5888 	memcg->kmemcg_id = -1;
5889 	ret = memcg_propagate_kmem(memcg);
5890 	if (ret)
5891 		return ret;
5892 
5893 	return mem_cgroup_sockets_init(memcg, ss);
5894 }
5895 
5896 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5897 {
5898 	mem_cgroup_sockets_destroy(memcg);
5899 
5900 	memcg_kmem_mark_dead(memcg);
5901 
5902 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5903 		return;
5904 
5905 	/*
5906 	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5907 	 * path here, being careful not to race with memcg_uncharge_kmem: it is
5908 	 * possible that the charges went down to 0 between mark_dead and the
5909 	 * res_counter read, so in that case, we don't need the put
5910 	 */
5911 	if (memcg_kmem_test_and_clear_dead(memcg))
5912 		mem_cgroup_put(memcg);
5913 }
5914 #else
5915 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5916 {
5917 	return 0;
5918 }
5919 
5920 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5921 {
5922 }
5923 #endif
5924 
5925 static struct cftype mem_cgroup_files[] = {
5926 	{
5927 		.name = "usage_in_bytes",
5928 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5929 		.read = mem_cgroup_read,
5930 		.register_event = mem_cgroup_usage_register_event,
5931 		.unregister_event = mem_cgroup_usage_unregister_event,
5932 	},
5933 	{
5934 		.name = "max_usage_in_bytes",
5935 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5936 		.trigger = mem_cgroup_reset,
5937 		.read = mem_cgroup_read,
5938 	},
5939 	{
5940 		.name = "limit_in_bytes",
5941 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5942 		.write_string = mem_cgroup_write,
5943 		.read = mem_cgroup_read,
5944 	},
5945 	{
5946 		.name = "soft_limit_in_bytes",
5947 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5948 		.write_string = mem_cgroup_write,
5949 		.read = mem_cgroup_read,
5950 	},
5951 	{
5952 		.name = "failcnt",
5953 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5954 		.trigger = mem_cgroup_reset,
5955 		.read = mem_cgroup_read,
5956 	},
5957 	{
5958 		.name = "stat",
5959 		.read_seq_string = memcg_stat_show,
5960 	},
5961 	{
5962 		.name = "force_empty",
5963 		.trigger = mem_cgroup_force_empty_write,
5964 	},
5965 	{
5966 		.name = "use_hierarchy",
5967 		.flags = CFTYPE_INSANE,
5968 		.write_u64 = mem_cgroup_hierarchy_write,
5969 		.read_u64 = mem_cgroup_hierarchy_read,
5970 	},
5971 	{
5972 		.name = "swappiness",
5973 		.read_u64 = mem_cgroup_swappiness_read,
5974 		.write_u64 = mem_cgroup_swappiness_write,
5975 	},
5976 	{
5977 		.name = "move_charge_at_immigrate",
5978 		.read_u64 = mem_cgroup_move_charge_read,
5979 		.write_u64 = mem_cgroup_move_charge_write,
5980 	},
5981 	{
5982 		.name = "oom_control",
5983 		.read_map = mem_cgroup_oom_control_read,
5984 		.write_u64 = mem_cgroup_oom_control_write,
5985 		.register_event = mem_cgroup_oom_register_event,
5986 		.unregister_event = mem_cgroup_oom_unregister_event,
5987 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5988 	},
5989 	{
5990 		.name = "pressure_level",
5991 		.register_event = vmpressure_register_event,
5992 		.unregister_event = vmpressure_unregister_event,
5993 	},
5994 #ifdef CONFIG_NUMA
5995 	{
5996 		.name = "numa_stat",
5997 		.read_seq_string = memcg_numa_stat_show,
5998 	},
5999 #endif
6000 #ifdef CONFIG_MEMCG_KMEM
6001 	{
6002 		.name = "kmem.limit_in_bytes",
6003 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6004 		.write_string = mem_cgroup_write,
6005 		.read = mem_cgroup_read,
6006 	},
6007 	{
6008 		.name = "kmem.usage_in_bytes",
6009 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6010 		.read = mem_cgroup_read,
6011 	},
6012 	{
6013 		.name = "kmem.failcnt",
6014 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6015 		.trigger = mem_cgroup_reset,
6016 		.read = mem_cgroup_read,
6017 	},
6018 	{
6019 		.name = "kmem.max_usage_in_bytes",
6020 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6021 		.trigger = mem_cgroup_reset,
6022 		.read = mem_cgroup_read,
6023 	},
6024 #ifdef CONFIG_SLABINFO
6025 	{
6026 		.name = "kmem.slabinfo",
6027 		.read_seq_string = mem_cgroup_slabinfo_read,
6028 	},
6029 #endif
6030 #endif
6031 	{ },	/* terminate */
6032 };
6033 
6034 #ifdef CONFIG_MEMCG_SWAP
6035 static struct cftype memsw_cgroup_files[] = {
6036 	{
6037 		.name = "memsw.usage_in_bytes",
6038 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6039 		.read = mem_cgroup_read,
6040 		.register_event = mem_cgroup_usage_register_event,
6041 		.unregister_event = mem_cgroup_usage_unregister_event,
6042 	},
6043 	{
6044 		.name = "memsw.max_usage_in_bytes",
6045 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6046 		.trigger = mem_cgroup_reset,
6047 		.read = mem_cgroup_read,
6048 	},
6049 	{
6050 		.name = "memsw.limit_in_bytes",
6051 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6052 		.write_string = mem_cgroup_write,
6053 		.read = mem_cgroup_read,
6054 	},
6055 	{
6056 		.name = "memsw.failcnt",
6057 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6058 		.trigger = mem_cgroup_reset,
6059 		.read = mem_cgroup_read,
6060 	},
6061 	{ },	/* terminate */
6062 };
6063 #endif
6064 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6065 {
6066 	struct mem_cgroup_per_node *pn;
6067 	struct mem_cgroup_per_zone *mz;
6068 	int zone, tmp = node;
6069 	/*
6070 	 * This routine is called against possible nodes.
6071 	 * But it's BUG to call kmalloc() against offline node.
6072 	 *
6073 	 * TODO: this routine can waste much memory for nodes which will
6074 	 *       never be onlined. It's better to use memory hotplug callback
6075 	 *       function.
6076 	 */
6077 	if (!node_state(node, N_NORMAL_MEMORY))
6078 		tmp = -1;
6079 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6080 	if (!pn)
6081 		return 1;
6082 
6083 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6084 		mz = &pn->zoneinfo[zone];
6085 		lruvec_init(&mz->lruvec);
6086 		mz->usage_in_excess = 0;
6087 		mz->on_tree = false;
6088 		mz->memcg = memcg;
6089 	}
6090 	memcg->info.nodeinfo[node] = pn;
6091 	return 0;
6092 }
6093 
6094 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6095 {
6096 	kfree(memcg->info.nodeinfo[node]);
6097 }
6098 
6099 static struct mem_cgroup *mem_cgroup_alloc(void)
6100 {
6101 	struct mem_cgroup *memcg;
6102 	size_t size = memcg_size();
6103 
6104 	/* Can be very big if nr_node_ids is very big */
6105 	if (size < PAGE_SIZE)
6106 		memcg = kzalloc(size, GFP_KERNEL);
6107 	else
6108 		memcg = vzalloc(size);
6109 
6110 	if (!memcg)
6111 		return NULL;
6112 
6113 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6114 	if (!memcg->stat)
6115 		goto out_free;
6116 	spin_lock_init(&memcg->pcp_counter_lock);
6117 	return memcg;
6118 
6119 out_free:
6120 	if (size < PAGE_SIZE)
6121 		kfree(memcg);
6122 	else
6123 		vfree(memcg);
6124 	return NULL;
6125 }
6126 
6127 /*
6128  * At destroying mem_cgroup, references from swap_cgroup can remain.
6129  * (scanning all at force_empty is too costly...)
6130  *
6131  * Instead of clearing all references at force_empty, we remember
6132  * the number of reference from swap_cgroup and free mem_cgroup when
6133  * it goes down to 0.
6134  *
6135  * Removal of cgroup itself succeeds regardless of refs from swap.
6136  */
6137 
6138 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6139 {
6140 	int node;
6141 	size_t size = memcg_size();
6142 
6143 	mem_cgroup_remove_from_trees(memcg);
6144 	free_css_id(&mem_cgroup_subsys, &memcg->css);
6145 
6146 	for_each_node(node)
6147 		free_mem_cgroup_per_zone_info(memcg, node);
6148 
6149 	free_percpu(memcg->stat);
6150 
6151 	/*
6152 	 * We need to make sure that (at least for now), the jump label
6153 	 * destruction code runs outside of the cgroup lock. This is because
6154 	 * get_online_cpus(), which is called from the static_branch update,
6155 	 * can't be called inside the cgroup_lock. cpusets are the ones
6156 	 * enforcing this dependency, so if they ever change, we might as well.
6157 	 *
6158 	 * schedule_work() will guarantee this happens. Be careful if you need
6159 	 * to move this code around, and make sure it is outside
6160 	 * the cgroup_lock.
6161 	 */
6162 	disarm_static_keys(memcg);
6163 	if (size < PAGE_SIZE)
6164 		kfree(memcg);
6165 	else
6166 		vfree(memcg);
6167 }
6168 
6169 
6170 /*
6171  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6172  * but in process context.  The work_freeing structure is overlaid
6173  * on the rcu_freeing structure, which itself is overlaid on memsw.
6174  */
6175 static void free_work(struct work_struct *work)
6176 {
6177 	struct mem_cgroup *memcg;
6178 
6179 	memcg = container_of(work, struct mem_cgroup, work_freeing);
6180 	__mem_cgroup_free(memcg);
6181 }
6182 
6183 static void free_rcu(struct rcu_head *rcu_head)
6184 {
6185 	struct mem_cgroup *memcg;
6186 
6187 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6188 	INIT_WORK(&memcg->work_freeing, free_work);
6189 	schedule_work(&memcg->work_freeing);
6190 }
6191 
6192 static void mem_cgroup_get(struct mem_cgroup *memcg)
6193 {
6194 	atomic_inc(&memcg->refcnt);
6195 }
6196 
6197 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6198 {
6199 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
6200 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6201 		call_rcu(&memcg->rcu_freeing, free_rcu);
6202 		if (parent)
6203 			mem_cgroup_put(parent);
6204 	}
6205 }
6206 
6207 static void mem_cgroup_put(struct mem_cgroup *memcg)
6208 {
6209 	__mem_cgroup_put(memcg, 1);
6210 }
6211 
6212 /*
6213  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6214  */
6215 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6216 {
6217 	if (!memcg->res.parent)
6218 		return NULL;
6219 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6220 }
6221 EXPORT_SYMBOL(parent_mem_cgroup);
6222 
6223 static void __init mem_cgroup_soft_limit_tree_init(void)
6224 {
6225 	struct mem_cgroup_tree_per_node *rtpn;
6226 	struct mem_cgroup_tree_per_zone *rtpz;
6227 	int tmp, node, zone;
6228 
6229 	for_each_node(node) {
6230 		tmp = node;
6231 		if (!node_state(node, N_NORMAL_MEMORY))
6232 			tmp = -1;
6233 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6234 		BUG_ON(!rtpn);
6235 
6236 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6237 
6238 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6239 			rtpz = &rtpn->rb_tree_per_zone[zone];
6240 			rtpz->rb_root = RB_ROOT;
6241 			spin_lock_init(&rtpz->lock);
6242 		}
6243 	}
6244 }
6245 
6246 static struct cgroup_subsys_state * __ref
6247 mem_cgroup_css_alloc(struct cgroup *cont)
6248 {
6249 	struct mem_cgroup *memcg;
6250 	long error = -ENOMEM;
6251 	int node;
6252 
6253 	memcg = mem_cgroup_alloc();
6254 	if (!memcg)
6255 		return ERR_PTR(error);
6256 
6257 	for_each_node(node)
6258 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6259 			goto free_out;
6260 
6261 	/* root ? */
6262 	if (cont->parent == NULL) {
6263 		root_mem_cgroup = memcg;
6264 		res_counter_init(&memcg->res, NULL);
6265 		res_counter_init(&memcg->memsw, NULL);
6266 		res_counter_init(&memcg->kmem, NULL);
6267 	}
6268 
6269 	memcg->last_scanned_node = MAX_NUMNODES;
6270 	INIT_LIST_HEAD(&memcg->oom_notify);
6271 	atomic_set(&memcg->refcnt, 1);
6272 	memcg->move_charge_at_immigrate = 0;
6273 	mutex_init(&memcg->thresholds_lock);
6274 	spin_lock_init(&memcg->move_lock);
6275 	vmpressure_init(&memcg->vmpressure);
6276 
6277 	return &memcg->css;
6278 
6279 free_out:
6280 	__mem_cgroup_free(memcg);
6281 	return ERR_PTR(error);
6282 }
6283 
6284 static int
6285 mem_cgroup_css_online(struct cgroup *cont)
6286 {
6287 	struct mem_cgroup *memcg, *parent;
6288 	int error = 0;
6289 
6290 	if (!cont->parent)
6291 		return 0;
6292 
6293 	mutex_lock(&memcg_create_mutex);
6294 	memcg = mem_cgroup_from_cont(cont);
6295 	parent = mem_cgroup_from_cont(cont->parent);
6296 
6297 	memcg->use_hierarchy = parent->use_hierarchy;
6298 	memcg->oom_kill_disable = parent->oom_kill_disable;
6299 	memcg->swappiness = mem_cgroup_swappiness(parent);
6300 
6301 	if (parent->use_hierarchy) {
6302 		res_counter_init(&memcg->res, &parent->res);
6303 		res_counter_init(&memcg->memsw, &parent->memsw);
6304 		res_counter_init(&memcg->kmem, &parent->kmem);
6305 
6306 		/*
6307 		 * We increment refcnt of the parent to ensure that we can
6308 		 * safely access it on res_counter_charge/uncharge.
6309 		 * This refcnt will be decremented when freeing this
6310 		 * mem_cgroup(see mem_cgroup_put).
6311 		 */
6312 		mem_cgroup_get(parent);
6313 	} else {
6314 		res_counter_init(&memcg->res, NULL);
6315 		res_counter_init(&memcg->memsw, NULL);
6316 		res_counter_init(&memcg->kmem, NULL);
6317 		/*
6318 		 * Deeper hierachy with use_hierarchy == false doesn't make
6319 		 * much sense so let cgroup subsystem know about this
6320 		 * unfortunate state in our controller.
6321 		 */
6322 		if (parent != root_mem_cgroup)
6323 			mem_cgroup_subsys.broken_hierarchy = true;
6324 	}
6325 
6326 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6327 	mutex_unlock(&memcg_create_mutex);
6328 	if (error) {
6329 		/*
6330 		 * We call put now because our (and parent's) refcnts
6331 		 * are already in place. mem_cgroup_put() will internally
6332 		 * call __mem_cgroup_free, so return directly
6333 		 */
6334 		mem_cgroup_put(memcg);
6335 		if (parent->use_hierarchy)
6336 			mem_cgroup_put(parent);
6337 	}
6338 	return error;
6339 }
6340 
6341 /*
6342  * Announce all parents that a group from their hierarchy is gone.
6343  */
6344 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6345 {
6346 	struct mem_cgroup *parent = memcg;
6347 
6348 	while ((parent = parent_mem_cgroup(parent)))
6349 		mem_cgroup_iter_invalidate(parent);
6350 
6351 	/*
6352 	 * if the root memcg is not hierarchical we have to check it
6353 	 * explicitely.
6354 	 */
6355 	if (!root_mem_cgroup->use_hierarchy)
6356 		mem_cgroup_iter_invalidate(root_mem_cgroup);
6357 }
6358 
6359 static void mem_cgroup_css_offline(struct cgroup *cont)
6360 {
6361 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6362 
6363 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6364 	mem_cgroup_reparent_charges(memcg);
6365 	mem_cgroup_destroy_all_caches(memcg);
6366 }
6367 
6368 static void mem_cgroup_css_free(struct cgroup *cont)
6369 {
6370 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6371 
6372 	kmem_cgroup_destroy(memcg);
6373 
6374 	mem_cgroup_put(memcg);
6375 }
6376 
6377 #ifdef CONFIG_MMU
6378 /* Handlers for move charge at task migration. */
6379 #define PRECHARGE_COUNT_AT_ONCE	256
6380 static int mem_cgroup_do_precharge(unsigned long count)
6381 {
6382 	int ret = 0;
6383 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6384 	struct mem_cgroup *memcg = mc.to;
6385 
6386 	if (mem_cgroup_is_root(memcg)) {
6387 		mc.precharge += count;
6388 		/* we don't need css_get for root */
6389 		return ret;
6390 	}
6391 	/* try to charge at once */
6392 	if (count > 1) {
6393 		struct res_counter *dummy;
6394 		/*
6395 		 * "memcg" cannot be under rmdir() because we've already checked
6396 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6397 		 * are still under the same cgroup_mutex. So we can postpone
6398 		 * css_get().
6399 		 */
6400 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6401 			goto one_by_one;
6402 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6403 						PAGE_SIZE * count, &dummy)) {
6404 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6405 			goto one_by_one;
6406 		}
6407 		mc.precharge += count;
6408 		return ret;
6409 	}
6410 one_by_one:
6411 	/* fall back to one by one charge */
6412 	while (count--) {
6413 		if (signal_pending(current)) {
6414 			ret = -EINTR;
6415 			break;
6416 		}
6417 		if (!batch_count--) {
6418 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6419 			cond_resched();
6420 		}
6421 		ret = __mem_cgroup_try_charge(NULL,
6422 					GFP_KERNEL, 1, &memcg, false);
6423 		if (ret)
6424 			/* mem_cgroup_clear_mc() will do uncharge later */
6425 			return ret;
6426 		mc.precharge++;
6427 	}
6428 	return ret;
6429 }
6430 
6431 /**
6432  * get_mctgt_type - get target type of moving charge
6433  * @vma: the vma the pte to be checked belongs
6434  * @addr: the address corresponding to the pte to be checked
6435  * @ptent: the pte to be checked
6436  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6437  *
6438  * Returns
6439  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6440  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6441  *     move charge. if @target is not NULL, the page is stored in target->page
6442  *     with extra refcnt got(Callers should handle it).
6443  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6444  *     target for charge migration. if @target is not NULL, the entry is stored
6445  *     in target->ent.
6446  *
6447  * Called with pte lock held.
6448  */
6449 union mc_target {
6450 	struct page	*page;
6451 	swp_entry_t	ent;
6452 };
6453 
6454 enum mc_target_type {
6455 	MC_TARGET_NONE = 0,
6456 	MC_TARGET_PAGE,
6457 	MC_TARGET_SWAP,
6458 };
6459 
6460 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6461 						unsigned long addr, pte_t ptent)
6462 {
6463 	struct page *page = vm_normal_page(vma, addr, ptent);
6464 
6465 	if (!page || !page_mapped(page))
6466 		return NULL;
6467 	if (PageAnon(page)) {
6468 		/* we don't move shared anon */
6469 		if (!move_anon())
6470 			return NULL;
6471 	} else if (!move_file())
6472 		/* we ignore mapcount for file pages */
6473 		return NULL;
6474 	if (!get_page_unless_zero(page))
6475 		return NULL;
6476 
6477 	return page;
6478 }
6479 
6480 #ifdef CONFIG_SWAP
6481 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6482 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6483 {
6484 	struct page *page = NULL;
6485 	swp_entry_t ent = pte_to_swp_entry(ptent);
6486 
6487 	if (!move_anon() || non_swap_entry(ent))
6488 		return NULL;
6489 	/*
6490 	 * Because lookup_swap_cache() updates some statistics counter,
6491 	 * we call find_get_page() with swapper_space directly.
6492 	 */
6493 	page = find_get_page(swap_address_space(ent), ent.val);
6494 	if (do_swap_account)
6495 		entry->val = ent.val;
6496 
6497 	return page;
6498 }
6499 #else
6500 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6501 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6502 {
6503 	return NULL;
6504 }
6505 #endif
6506 
6507 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6508 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6509 {
6510 	struct page *page = NULL;
6511 	struct address_space *mapping;
6512 	pgoff_t pgoff;
6513 
6514 	if (!vma->vm_file) /* anonymous vma */
6515 		return NULL;
6516 	if (!move_file())
6517 		return NULL;
6518 
6519 	mapping = vma->vm_file->f_mapping;
6520 	if (pte_none(ptent))
6521 		pgoff = linear_page_index(vma, addr);
6522 	else /* pte_file(ptent) is true */
6523 		pgoff = pte_to_pgoff(ptent);
6524 
6525 	/* page is moved even if it's not RSS of this task(page-faulted). */
6526 	page = find_get_page(mapping, pgoff);
6527 
6528 #ifdef CONFIG_SWAP
6529 	/* shmem/tmpfs may report page out on swap: account for that too. */
6530 	if (radix_tree_exceptional_entry(page)) {
6531 		swp_entry_t swap = radix_to_swp_entry(page);
6532 		if (do_swap_account)
6533 			*entry = swap;
6534 		page = find_get_page(swap_address_space(swap), swap.val);
6535 	}
6536 #endif
6537 	return page;
6538 }
6539 
6540 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6541 		unsigned long addr, pte_t ptent, union mc_target *target)
6542 {
6543 	struct page *page = NULL;
6544 	struct page_cgroup *pc;
6545 	enum mc_target_type ret = MC_TARGET_NONE;
6546 	swp_entry_t ent = { .val = 0 };
6547 
6548 	if (pte_present(ptent))
6549 		page = mc_handle_present_pte(vma, addr, ptent);
6550 	else if (is_swap_pte(ptent))
6551 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6552 	else if (pte_none(ptent) || pte_file(ptent))
6553 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6554 
6555 	if (!page && !ent.val)
6556 		return ret;
6557 	if (page) {
6558 		pc = lookup_page_cgroup(page);
6559 		/*
6560 		 * Do only loose check w/o page_cgroup lock.
6561 		 * mem_cgroup_move_account() checks the pc is valid or not under
6562 		 * the lock.
6563 		 */
6564 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6565 			ret = MC_TARGET_PAGE;
6566 			if (target)
6567 				target->page = page;
6568 		}
6569 		if (!ret || !target)
6570 			put_page(page);
6571 	}
6572 	/* There is a swap entry and a page doesn't exist or isn't charged */
6573 	if (ent.val && !ret &&
6574 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6575 		ret = MC_TARGET_SWAP;
6576 		if (target)
6577 			target->ent = ent;
6578 	}
6579 	return ret;
6580 }
6581 
6582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6583 /*
6584  * We don't consider swapping or file mapped pages because THP does not
6585  * support them for now.
6586  * Caller should make sure that pmd_trans_huge(pmd) is true.
6587  */
6588 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6589 		unsigned long addr, pmd_t pmd, union mc_target *target)
6590 {
6591 	struct page *page = NULL;
6592 	struct page_cgroup *pc;
6593 	enum mc_target_type ret = MC_TARGET_NONE;
6594 
6595 	page = pmd_page(pmd);
6596 	VM_BUG_ON(!page || !PageHead(page));
6597 	if (!move_anon())
6598 		return ret;
6599 	pc = lookup_page_cgroup(page);
6600 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6601 		ret = MC_TARGET_PAGE;
6602 		if (target) {
6603 			get_page(page);
6604 			target->page = page;
6605 		}
6606 	}
6607 	return ret;
6608 }
6609 #else
6610 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6611 		unsigned long addr, pmd_t pmd, union mc_target *target)
6612 {
6613 	return MC_TARGET_NONE;
6614 }
6615 #endif
6616 
6617 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6618 					unsigned long addr, unsigned long end,
6619 					struct mm_walk *walk)
6620 {
6621 	struct vm_area_struct *vma = walk->private;
6622 	pte_t *pte;
6623 	spinlock_t *ptl;
6624 
6625 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6626 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6627 			mc.precharge += HPAGE_PMD_NR;
6628 		spin_unlock(&vma->vm_mm->page_table_lock);
6629 		return 0;
6630 	}
6631 
6632 	if (pmd_trans_unstable(pmd))
6633 		return 0;
6634 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6635 	for (; addr != end; pte++, addr += PAGE_SIZE)
6636 		if (get_mctgt_type(vma, addr, *pte, NULL))
6637 			mc.precharge++;	/* increment precharge temporarily */
6638 	pte_unmap_unlock(pte - 1, ptl);
6639 	cond_resched();
6640 
6641 	return 0;
6642 }
6643 
6644 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6645 {
6646 	unsigned long precharge;
6647 	struct vm_area_struct *vma;
6648 
6649 	down_read(&mm->mmap_sem);
6650 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6651 		struct mm_walk mem_cgroup_count_precharge_walk = {
6652 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6653 			.mm = mm,
6654 			.private = vma,
6655 		};
6656 		if (is_vm_hugetlb_page(vma))
6657 			continue;
6658 		walk_page_range(vma->vm_start, vma->vm_end,
6659 					&mem_cgroup_count_precharge_walk);
6660 	}
6661 	up_read(&mm->mmap_sem);
6662 
6663 	precharge = mc.precharge;
6664 	mc.precharge = 0;
6665 
6666 	return precharge;
6667 }
6668 
6669 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6670 {
6671 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6672 
6673 	VM_BUG_ON(mc.moving_task);
6674 	mc.moving_task = current;
6675 	return mem_cgroup_do_precharge(precharge);
6676 }
6677 
6678 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6679 static void __mem_cgroup_clear_mc(void)
6680 {
6681 	struct mem_cgroup *from = mc.from;
6682 	struct mem_cgroup *to = mc.to;
6683 
6684 	/* we must uncharge all the leftover precharges from mc.to */
6685 	if (mc.precharge) {
6686 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6687 		mc.precharge = 0;
6688 	}
6689 	/*
6690 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6691 	 * we must uncharge here.
6692 	 */
6693 	if (mc.moved_charge) {
6694 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6695 		mc.moved_charge = 0;
6696 	}
6697 	/* we must fixup refcnts and charges */
6698 	if (mc.moved_swap) {
6699 		/* uncharge swap account from the old cgroup */
6700 		if (!mem_cgroup_is_root(mc.from))
6701 			res_counter_uncharge(&mc.from->memsw,
6702 						PAGE_SIZE * mc.moved_swap);
6703 		__mem_cgroup_put(mc.from, mc.moved_swap);
6704 
6705 		if (!mem_cgroup_is_root(mc.to)) {
6706 			/*
6707 			 * we charged both to->res and to->memsw, so we should
6708 			 * uncharge to->res.
6709 			 */
6710 			res_counter_uncharge(&mc.to->res,
6711 						PAGE_SIZE * mc.moved_swap);
6712 		}
6713 		/* we've already done mem_cgroup_get(mc.to) */
6714 		mc.moved_swap = 0;
6715 	}
6716 	memcg_oom_recover(from);
6717 	memcg_oom_recover(to);
6718 	wake_up_all(&mc.waitq);
6719 }
6720 
6721 static void mem_cgroup_clear_mc(void)
6722 {
6723 	struct mem_cgroup *from = mc.from;
6724 
6725 	/*
6726 	 * we must clear moving_task before waking up waiters at the end of
6727 	 * task migration.
6728 	 */
6729 	mc.moving_task = NULL;
6730 	__mem_cgroup_clear_mc();
6731 	spin_lock(&mc.lock);
6732 	mc.from = NULL;
6733 	mc.to = NULL;
6734 	spin_unlock(&mc.lock);
6735 	mem_cgroup_end_move(from);
6736 }
6737 
6738 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6739 				 struct cgroup_taskset *tset)
6740 {
6741 	struct task_struct *p = cgroup_taskset_first(tset);
6742 	int ret = 0;
6743 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6744 	unsigned long move_charge_at_immigrate;
6745 
6746 	/*
6747 	 * We are now commited to this value whatever it is. Changes in this
6748 	 * tunable will only affect upcoming migrations, not the current one.
6749 	 * So we need to save it, and keep it going.
6750 	 */
6751 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6752 	if (move_charge_at_immigrate) {
6753 		struct mm_struct *mm;
6754 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6755 
6756 		VM_BUG_ON(from == memcg);
6757 
6758 		mm = get_task_mm(p);
6759 		if (!mm)
6760 			return 0;
6761 		/* We move charges only when we move a owner of the mm */
6762 		if (mm->owner == p) {
6763 			VM_BUG_ON(mc.from);
6764 			VM_BUG_ON(mc.to);
6765 			VM_BUG_ON(mc.precharge);
6766 			VM_BUG_ON(mc.moved_charge);
6767 			VM_BUG_ON(mc.moved_swap);
6768 			mem_cgroup_start_move(from);
6769 			spin_lock(&mc.lock);
6770 			mc.from = from;
6771 			mc.to = memcg;
6772 			mc.immigrate_flags = move_charge_at_immigrate;
6773 			spin_unlock(&mc.lock);
6774 			/* We set mc.moving_task later */
6775 
6776 			ret = mem_cgroup_precharge_mc(mm);
6777 			if (ret)
6778 				mem_cgroup_clear_mc();
6779 		}
6780 		mmput(mm);
6781 	}
6782 	return ret;
6783 }
6784 
6785 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6786 				     struct cgroup_taskset *tset)
6787 {
6788 	mem_cgroup_clear_mc();
6789 }
6790 
6791 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6792 				unsigned long addr, unsigned long end,
6793 				struct mm_walk *walk)
6794 {
6795 	int ret = 0;
6796 	struct vm_area_struct *vma = walk->private;
6797 	pte_t *pte;
6798 	spinlock_t *ptl;
6799 	enum mc_target_type target_type;
6800 	union mc_target target;
6801 	struct page *page;
6802 	struct page_cgroup *pc;
6803 
6804 	/*
6805 	 * We don't take compound_lock() here but no race with splitting thp
6806 	 * happens because:
6807 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6808 	 *    under splitting, which means there's no concurrent thp split,
6809 	 *  - if another thread runs into split_huge_page() just after we
6810 	 *    entered this if-block, the thread must wait for page table lock
6811 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6812 	 *    part of thp split is not executed yet.
6813 	 */
6814 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6815 		if (mc.precharge < HPAGE_PMD_NR) {
6816 			spin_unlock(&vma->vm_mm->page_table_lock);
6817 			return 0;
6818 		}
6819 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6820 		if (target_type == MC_TARGET_PAGE) {
6821 			page = target.page;
6822 			if (!isolate_lru_page(page)) {
6823 				pc = lookup_page_cgroup(page);
6824 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6825 							pc, mc.from, mc.to)) {
6826 					mc.precharge -= HPAGE_PMD_NR;
6827 					mc.moved_charge += HPAGE_PMD_NR;
6828 				}
6829 				putback_lru_page(page);
6830 			}
6831 			put_page(page);
6832 		}
6833 		spin_unlock(&vma->vm_mm->page_table_lock);
6834 		return 0;
6835 	}
6836 
6837 	if (pmd_trans_unstable(pmd))
6838 		return 0;
6839 retry:
6840 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6841 	for (; addr != end; addr += PAGE_SIZE) {
6842 		pte_t ptent = *(pte++);
6843 		swp_entry_t ent;
6844 
6845 		if (!mc.precharge)
6846 			break;
6847 
6848 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6849 		case MC_TARGET_PAGE:
6850 			page = target.page;
6851 			if (isolate_lru_page(page))
6852 				goto put;
6853 			pc = lookup_page_cgroup(page);
6854 			if (!mem_cgroup_move_account(page, 1, pc,
6855 						     mc.from, mc.to)) {
6856 				mc.precharge--;
6857 				/* we uncharge from mc.from later. */
6858 				mc.moved_charge++;
6859 			}
6860 			putback_lru_page(page);
6861 put:			/* get_mctgt_type() gets the page */
6862 			put_page(page);
6863 			break;
6864 		case MC_TARGET_SWAP:
6865 			ent = target.ent;
6866 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6867 				mc.precharge--;
6868 				/* we fixup refcnts and charges later. */
6869 				mc.moved_swap++;
6870 			}
6871 			break;
6872 		default:
6873 			break;
6874 		}
6875 	}
6876 	pte_unmap_unlock(pte - 1, ptl);
6877 	cond_resched();
6878 
6879 	if (addr != end) {
6880 		/*
6881 		 * We have consumed all precharges we got in can_attach().
6882 		 * We try charge one by one, but don't do any additional
6883 		 * charges to mc.to if we have failed in charge once in attach()
6884 		 * phase.
6885 		 */
6886 		ret = mem_cgroup_do_precharge(1);
6887 		if (!ret)
6888 			goto retry;
6889 	}
6890 
6891 	return ret;
6892 }
6893 
6894 static void mem_cgroup_move_charge(struct mm_struct *mm)
6895 {
6896 	struct vm_area_struct *vma;
6897 
6898 	lru_add_drain_all();
6899 retry:
6900 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6901 		/*
6902 		 * Someone who are holding the mmap_sem might be waiting in
6903 		 * waitq. So we cancel all extra charges, wake up all waiters,
6904 		 * and retry. Because we cancel precharges, we might not be able
6905 		 * to move enough charges, but moving charge is a best-effort
6906 		 * feature anyway, so it wouldn't be a big problem.
6907 		 */
6908 		__mem_cgroup_clear_mc();
6909 		cond_resched();
6910 		goto retry;
6911 	}
6912 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6913 		int ret;
6914 		struct mm_walk mem_cgroup_move_charge_walk = {
6915 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6916 			.mm = mm,
6917 			.private = vma,
6918 		};
6919 		if (is_vm_hugetlb_page(vma))
6920 			continue;
6921 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6922 						&mem_cgroup_move_charge_walk);
6923 		if (ret)
6924 			/*
6925 			 * means we have consumed all precharges and failed in
6926 			 * doing additional charge. Just abandon here.
6927 			 */
6928 			break;
6929 	}
6930 	up_read(&mm->mmap_sem);
6931 }
6932 
6933 static void mem_cgroup_move_task(struct cgroup *cont,
6934 				 struct cgroup_taskset *tset)
6935 {
6936 	struct task_struct *p = cgroup_taskset_first(tset);
6937 	struct mm_struct *mm = get_task_mm(p);
6938 
6939 	if (mm) {
6940 		if (mc.to)
6941 			mem_cgroup_move_charge(mm);
6942 		mmput(mm);
6943 	}
6944 	if (mc.to)
6945 		mem_cgroup_clear_mc();
6946 }
6947 #else	/* !CONFIG_MMU */
6948 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6949 				 struct cgroup_taskset *tset)
6950 {
6951 	return 0;
6952 }
6953 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6954 				     struct cgroup_taskset *tset)
6955 {
6956 }
6957 static void mem_cgroup_move_task(struct cgroup *cont,
6958 				 struct cgroup_taskset *tset)
6959 {
6960 }
6961 #endif
6962 
6963 /*
6964  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6965  * to verify sane_behavior flag on each mount attempt.
6966  */
6967 static void mem_cgroup_bind(struct cgroup *root)
6968 {
6969 	/*
6970 	 * use_hierarchy is forced with sane_behavior.  cgroup core
6971 	 * guarantees that @root doesn't have any children, so turning it
6972 	 * on for the root memcg is enough.
6973 	 */
6974 	if (cgroup_sane_behavior(root))
6975 		mem_cgroup_from_cont(root)->use_hierarchy = true;
6976 }
6977 
6978 struct cgroup_subsys mem_cgroup_subsys = {
6979 	.name = "memory",
6980 	.subsys_id = mem_cgroup_subsys_id,
6981 	.css_alloc = mem_cgroup_css_alloc,
6982 	.css_online = mem_cgroup_css_online,
6983 	.css_offline = mem_cgroup_css_offline,
6984 	.css_free = mem_cgroup_css_free,
6985 	.can_attach = mem_cgroup_can_attach,
6986 	.cancel_attach = mem_cgroup_cancel_attach,
6987 	.attach = mem_cgroup_move_task,
6988 	.bind = mem_cgroup_bind,
6989 	.base_cftypes = mem_cgroup_files,
6990 	.early_init = 0,
6991 	.use_id = 1,
6992 };
6993 
6994 #ifdef CONFIG_MEMCG_SWAP
6995 static int __init enable_swap_account(char *s)
6996 {
6997 	/* consider enabled if no parameter or 1 is given */
6998 	if (!strcmp(s, "1"))
6999 		really_do_swap_account = 1;
7000 	else if (!strcmp(s, "0"))
7001 		really_do_swap_account = 0;
7002 	return 1;
7003 }
7004 __setup("swapaccount=", enable_swap_account);
7005 
7006 static void __init memsw_file_init(void)
7007 {
7008 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7009 }
7010 
7011 static void __init enable_swap_cgroup(void)
7012 {
7013 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7014 		do_swap_account = 1;
7015 		memsw_file_init();
7016 	}
7017 }
7018 
7019 #else
7020 static void __init enable_swap_cgroup(void)
7021 {
7022 }
7023 #endif
7024 
7025 /*
7026  * subsys_initcall() for memory controller.
7027  *
7028  * Some parts like hotcpu_notifier() have to be initialized from this context
7029  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7030  * everything that doesn't depend on a specific mem_cgroup structure should
7031  * be initialized from here.
7032  */
7033 static int __init mem_cgroup_init(void)
7034 {
7035 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7036 	enable_swap_cgroup();
7037 	mem_cgroup_soft_limit_tree_init();
7038 	memcg_stock_init();
7039 	return 0;
7040 }
7041 subsys_initcall(mem_cgroup_init);
7042