1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/sched/mm.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/hugetlb.h> 41 #include <linux/pagemap.h> 42 #include <linux/vm_event_item.h> 43 #include <linux/smp.h> 44 #include <linux/page-flags.h> 45 #include <linux/backing-dev.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/rcupdate.h> 48 #include <linux/limits.h> 49 #include <linux/export.h> 50 #include <linux/mutex.h> 51 #include <linux/rbtree.h> 52 #include <linux/slab.h> 53 #include <linux/swap.h> 54 #include <linux/swapops.h> 55 #include <linux/spinlock.h> 56 #include <linux/eventfd.h> 57 #include <linux/poll.h> 58 #include <linux/sort.h> 59 #include <linux/fs.h> 60 #include <linux/seq_file.h> 61 #include <linux/vmpressure.h> 62 #include <linux/mm_inline.h> 63 #include <linux/swap_cgroup.h> 64 #include <linux/cpu.h> 65 #include <linux/oom.h> 66 #include <linux/lockdep.h> 67 #include <linux/file.h> 68 #include <linux/tracehook.h> 69 #include "internal.h" 70 #include <net/sock.h> 71 #include <net/ip.h> 72 #include "slab.h" 73 74 #include <linux/uaccess.h> 75 76 #include <trace/events/vmscan.h> 77 78 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 79 EXPORT_SYMBOL(memory_cgrp_subsys); 80 81 struct mem_cgroup *root_mem_cgroup __read_mostly; 82 83 #define MEM_CGROUP_RECLAIM_RETRIES 5 84 85 /* Socket memory accounting disabled? */ 86 static bool cgroup_memory_nosocket; 87 88 /* Kernel memory accounting disabled? */ 89 static bool cgroup_memory_nokmem; 90 91 /* Whether the swap controller is active */ 92 #ifdef CONFIG_MEMCG_SWAP 93 int do_swap_account __read_mostly; 94 #else 95 #define do_swap_account 0 96 #endif 97 98 /* Whether legacy memory+swap accounting is active */ 99 static bool do_memsw_account(void) 100 { 101 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 102 } 103 104 static const char *const mem_cgroup_lru_names[] = { 105 "inactive_anon", 106 "active_anon", 107 "inactive_file", 108 "active_file", 109 "unevictable", 110 }; 111 112 #define THRESHOLDS_EVENTS_TARGET 128 113 #define SOFTLIMIT_EVENTS_TARGET 1024 114 #define NUMAINFO_EVENTS_TARGET 1024 115 116 /* 117 * Cgroups above their limits are maintained in a RB-Tree, independent of 118 * their hierarchy representation 119 */ 120 121 struct mem_cgroup_tree_per_node { 122 struct rb_root rb_root; 123 struct rb_node *rb_rightmost; 124 spinlock_t lock; 125 }; 126 127 struct mem_cgroup_tree { 128 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 129 }; 130 131 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 132 133 /* for OOM */ 134 struct mem_cgroup_eventfd_list { 135 struct list_head list; 136 struct eventfd_ctx *eventfd; 137 }; 138 139 /* 140 * cgroup_event represents events which userspace want to receive. 141 */ 142 struct mem_cgroup_event { 143 /* 144 * memcg which the event belongs to. 145 */ 146 struct mem_cgroup *memcg; 147 /* 148 * eventfd to signal userspace about the event. 149 */ 150 struct eventfd_ctx *eventfd; 151 /* 152 * Each of these stored in a list by the cgroup. 153 */ 154 struct list_head list; 155 /* 156 * register_event() callback will be used to add new userspace 157 * waiter for changes related to this event. Use eventfd_signal() 158 * on eventfd to send notification to userspace. 159 */ 160 int (*register_event)(struct mem_cgroup *memcg, 161 struct eventfd_ctx *eventfd, const char *args); 162 /* 163 * unregister_event() callback will be called when userspace closes 164 * the eventfd or on cgroup removing. This callback must be set, 165 * if you want provide notification functionality. 166 */ 167 void (*unregister_event)(struct mem_cgroup *memcg, 168 struct eventfd_ctx *eventfd); 169 /* 170 * All fields below needed to unregister event when 171 * userspace closes eventfd. 172 */ 173 poll_table pt; 174 wait_queue_head_t *wqh; 175 wait_queue_entry_t wait; 176 struct work_struct remove; 177 }; 178 179 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 180 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 181 182 /* Stuffs for move charges at task migration. */ 183 /* 184 * Types of charges to be moved. 185 */ 186 #define MOVE_ANON 0x1U 187 #define MOVE_FILE 0x2U 188 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 189 190 /* "mc" and its members are protected by cgroup_mutex */ 191 static struct move_charge_struct { 192 spinlock_t lock; /* for from, to */ 193 struct mm_struct *mm; 194 struct mem_cgroup *from; 195 struct mem_cgroup *to; 196 unsigned long flags; 197 unsigned long precharge; 198 unsigned long moved_charge; 199 unsigned long moved_swap; 200 struct task_struct *moving_task; /* a task moving charges */ 201 wait_queue_head_t waitq; /* a waitq for other context */ 202 } mc = { 203 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 204 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 205 }; 206 207 /* 208 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 209 * limit reclaim to prevent infinite loops, if they ever occur. 210 */ 211 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 212 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 213 214 enum charge_type { 215 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 216 MEM_CGROUP_CHARGE_TYPE_ANON, 217 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 218 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 219 NR_CHARGE_TYPE, 220 }; 221 222 /* for encoding cft->private value on file */ 223 enum res_type { 224 _MEM, 225 _MEMSWAP, 226 _OOM_TYPE, 227 _KMEM, 228 _TCP, 229 }; 230 231 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 232 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 233 #define MEMFILE_ATTR(val) ((val) & 0xffff) 234 /* Used for OOM nofiier */ 235 #define OOM_CONTROL (0) 236 237 /* 238 * Iteration constructs for visiting all cgroups (under a tree). If 239 * loops are exited prematurely (break), mem_cgroup_iter_break() must 240 * be used for reference counting. 241 */ 242 #define for_each_mem_cgroup_tree(iter, root) \ 243 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 244 iter != NULL; \ 245 iter = mem_cgroup_iter(root, iter, NULL)) 246 247 #define for_each_mem_cgroup(iter) \ 248 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 249 iter != NULL; \ 250 iter = mem_cgroup_iter(NULL, iter, NULL)) 251 252 static inline bool should_force_charge(void) 253 { 254 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 255 (current->flags & PF_EXITING); 256 } 257 258 /* Some nice accessors for the vmpressure. */ 259 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 260 { 261 if (!memcg) 262 memcg = root_mem_cgroup; 263 return &memcg->vmpressure; 264 } 265 266 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 267 { 268 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 269 } 270 271 #ifdef CONFIG_MEMCG_KMEM 272 /* 273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 274 * The main reason for not using cgroup id for this: 275 * this works better in sparse environments, where we have a lot of memcgs, 276 * but only a few kmem-limited. Or also, if we have, for instance, 200 277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 278 * 200 entry array for that. 279 * 280 * The current size of the caches array is stored in memcg_nr_cache_ids. It 281 * will double each time we have to increase it. 282 */ 283 static DEFINE_IDA(memcg_cache_ida); 284 int memcg_nr_cache_ids; 285 286 /* Protects memcg_nr_cache_ids */ 287 static DECLARE_RWSEM(memcg_cache_ids_sem); 288 289 void memcg_get_cache_ids(void) 290 { 291 down_read(&memcg_cache_ids_sem); 292 } 293 294 void memcg_put_cache_ids(void) 295 { 296 up_read(&memcg_cache_ids_sem); 297 } 298 299 /* 300 * MIN_SIZE is different than 1, because we would like to avoid going through 301 * the alloc/free process all the time. In a small machine, 4 kmem-limited 302 * cgroups is a reasonable guess. In the future, it could be a parameter or 303 * tunable, but that is strictly not necessary. 304 * 305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 306 * this constant directly from cgroup, but it is understandable that this is 307 * better kept as an internal representation in cgroup.c. In any case, the 308 * cgrp_id space is not getting any smaller, and we don't have to necessarily 309 * increase ours as well if it increases. 310 */ 311 #define MEMCG_CACHES_MIN_SIZE 4 312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 313 314 /* 315 * A lot of the calls to the cache allocation functions are expected to be 316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 317 * conditional to this static branch, we'll have to allow modules that does 318 * kmem_cache_alloc and the such to see this symbol as well 319 */ 320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 321 EXPORT_SYMBOL(memcg_kmem_enabled_key); 322 323 struct workqueue_struct *memcg_kmem_cache_wq; 324 325 static int memcg_shrinker_map_size; 326 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 327 328 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 329 { 330 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 331 } 332 333 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 334 int size, int old_size) 335 { 336 struct memcg_shrinker_map *new, *old; 337 int nid; 338 339 lockdep_assert_held(&memcg_shrinker_map_mutex); 340 341 for_each_node(nid) { 342 old = rcu_dereference_protected( 343 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 344 /* Not yet online memcg */ 345 if (!old) 346 return 0; 347 348 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 349 if (!new) 350 return -ENOMEM; 351 352 /* Set all old bits, clear all new bits */ 353 memset(new->map, (int)0xff, old_size); 354 memset((void *)new->map + old_size, 0, size - old_size); 355 356 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 357 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 358 } 359 360 return 0; 361 } 362 363 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 364 { 365 struct mem_cgroup_per_node *pn; 366 struct memcg_shrinker_map *map; 367 int nid; 368 369 if (mem_cgroup_is_root(memcg)) 370 return; 371 372 for_each_node(nid) { 373 pn = mem_cgroup_nodeinfo(memcg, nid); 374 map = rcu_dereference_protected(pn->shrinker_map, true); 375 if (map) 376 kvfree(map); 377 rcu_assign_pointer(pn->shrinker_map, NULL); 378 } 379 } 380 381 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 382 { 383 struct memcg_shrinker_map *map; 384 int nid, size, ret = 0; 385 386 if (mem_cgroup_is_root(memcg)) 387 return 0; 388 389 mutex_lock(&memcg_shrinker_map_mutex); 390 size = memcg_shrinker_map_size; 391 for_each_node(nid) { 392 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 393 if (!map) { 394 memcg_free_shrinker_maps(memcg); 395 ret = -ENOMEM; 396 break; 397 } 398 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 399 } 400 mutex_unlock(&memcg_shrinker_map_mutex); 401 402 return ret; 403 } 404 405 int memcg_expand_shrinker_maps(int new_id) 406 { 407 int size, old_size, ret = 0; 408 struct mem_cgroup *memcg; 409 410 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 411 old_size = memcg_shrinker_map_size; 412 if (size <= old_size) 413 return 0; 414 415 mutex_lock(&memcg_shrinker_map_mutex); 416 if (!root_mem_cgroup) 417 goto unlock; 418 419 for_each_mem_cgroup(memcg) { 420 if (mem_cgroup_is_root(memcg)) 421 continue; 422 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 423 if (ret) 424 goto unlock; 425 } 426 unlock: 427 if (!ret) 428 memcg_shrinker_map_size = size; 429 mutex_unlock(&memcg_shrinker_map_mutex); 430 return ret; 431 } 432 433 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 434 { 435 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 436 struct memcg_shrinker_map *map; 437 438 rcu_read_lock(); 439 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 440 /* Pairs with smp mb in shrink_slab() */ 441 smp_mb__before_atomic(); 442 set_bit(shrinker_id, map->map); 443 rcu_read_unlock(); 444 } 445 } 446 447 #else /* CONFIG_MEMCG_KMEM */ 448 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 449 { 450 return 0; 451 } 452 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { } 453 #endif /* CONFIG_MEMCG_KMEM */ 454 455 /** 456 * mem_cgroup_css_from_page - css of the memcg associated with a page 457 * @page: page of interest 458 * 459 * If memcg is bound to the default hierarchy, css of the memcg associated 460 * with @page is returned. The returned css remains associated with @page 461 * until it is released. 462 * 463 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 464 * is returned. 465 */ 466 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 467 { 468 struct mem_cgroup *memcg; 469 470 memcg = page->mem_cgroup; 471 472 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 473 memcg = root_mem_cgroup; 474 475 return &memcg->css; 476 } 477 478 /** 479 * page_cgroup_ino - return inode number of the memcg a page is charged to 480 * @page: the page 481 * 482 * Look up the closest online ancestor of the memory cgroup @page is charged to 483 * and return its inode number or 0 if @page is not charged to any cgroup. It 484 * is safe to call this function without holding a reference to @page. 485 * 486 * Note, this function is inherently racy, because there is nothing to prevent 487 * the cgroup inode from getting torn down and potentially reallocated a moment 488 * after page_cgroup_ino() returns, so it only should be used by callers that 489 * do not care (such as procfs interfaces). 490 */ 491 ino_t page_cgroup_ino(struct page *page) 492 { 493 struct mem_cgroup *memcg; 494 unsigned long ino = 0; 495 496 rcu_read_lock(); 497 memcg = READ_ONCE(page->mem_cgroup); 498 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 499 memcg = parent_mem_cgroup(memcg); 500 if (memcg) 501 ino = cgroup_ino(memcg->css.cgroup); 502 rcu_read_unlock(); 503 return ino; 504 } 505 506 static struct mem_cgroup_per_node * 507 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 508 { 509 int nid = page_to_nid(page); 510 511 return memcg->nodeinfo[nid]; 512 } 513 514 static struct mem_cgroup_tree_per_node * 515 soft_limit_tree_node(int nid) 516 { 517 return soft_limit_tree.rb_tree_per_node[nid]; 518 } 519 520 static struct mem_cgroup_tree_per_node * 521 soft_limit_tree_from_page(struct page *page) 522 { 523 int nid = page_to_nid(page); 524 525 return soft_limit_tree.rb_tree_per_node[nid]; 526 } 527 528 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 529 struct mem_cgroup_tree_per_node *mctz, 530 unsigned long new_usage_in_excess) 531 { 532 struct rb_node **p = &mctz->rb_root.rb_node; 533 struct rb_node *parent = NULL; 534 struct mem_cgroup_per_node *mz_node; 535 bool rightmost = true; 536 537 if (mz->on_tree) 538 return; 539 540 mz->usage_in_excess = new_usage_in_excess; 541 if (!mz->usage_in_excess) 542 return; 543 while (*p) { 544 parent = *p; 545 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 546 tree_node); 547 if (mz->usage_in_excess < mz_node->usage_in_excess) { 548 p = &(*p)->rb_left; 549 rightmost = false; 550 } 551 552 /* 553 * We can't avoid mem cgroups that are over their soft 554 * limit by the same amount 555 */ 556 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 557 p = &(*p)->rb_right; 558 } 559 560 if (rightmost) 561 mctz->rb_rightmost = &mz->tree_node; 562 563 rb_link_node(&mz->tree_node, parent, p); 564 rb_insert_color(&mz->tree_node, &mctz->rb_root); 565 mz->on_tree = true; 566 } 567 568 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 569 struct mem_cgroup_tree_per_node *mctz) 570 { 571 if (!mz->on_tree) 572 return; 573 574 if (&mz->tree_node == mctz->rb_rightmost) 575 mctz->rb_rightmost = rb_prev(&mz->tree_node); 576 577 rb_erase(&mz->tree_node, &mctz->rb_root); 578 mz->on_tree = false; 579 } 580 581 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 582 struct mem_cgroup_tree_per_node *mctz) 583 { 584 unsigned long flags; 585 586 spin_lock_irqsave(&mctz->lock, flags); 587 __mem_cgroup_remove_exceeded(mz, mctz); 588 spin_unlock_irqrestore(&mctz->lock, flags); 589 } 590 591 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 592 { 593 unsigned long nr_pages = page_counter_read(&memcg->memory); 594 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 595 unsigned long excess = 0; 596 597 if (nr_pages > soft_limit) 598 excess = nr_pages - soft_limit; 599 600 return excess; 601 } 602 603 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 604 { 605 unsigned long excess; 606 struct mem_cgroup_per_node *mz; 607 struct mem_cgroup_tree_per_node *mctz; 608 609 mctz = soft_limit_tree_from_page(page); 610 if (!mctz) 611 return; 612 /* 613 * Necessary to update all ancestors when hierarchy is used. 614 * because their event counter is not touched. 615 */ 616 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 617 mz = mem_cgroup_page_nodeinfo(memcg, page); 618 excess = soft_limit_excess(memcg); 619 /* 620 * We have to update the tree if mz is on RB-tree or 621 * mem is over its softlimit. 622 */ 623 if (excess || mz->on_tree) { 624 unsigned long flags; 625 626 spin_lock_irqsave(&mctz->lock, flags); 627 /* if on-tree, remove it */ 628 if (mz->on_tree) 629 __mem_cgroup_remove_exceeded(mz, mctz); 630 /* 631 * Insert again. mz->usage_in_excess will be updated. 632 * If excess is 0, no tree ops. 633 */ 634 __mem_cgroup_insert_exceeded(mz, mctz, excess); 635 spin_unlock_irqrestore(&mctz->lock, flags); 636 } 637 } 638 } 639 640 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 641 { 642 struct mem_cgroup_tree_per_node *mctz; 643 struct mem_cgroup_per_node *mz; 644 int nid; 645 646 for_each_node(nid) { 647 mz = mem_cgroup_nodeinfo(memcg, nid); 648 mctz = soft_limit_tree_node(nid); 649 if (mctz) 650 mem_cgroup_remove_exceeded(mz, mctz); 651 } 652 } 653 654 static struct mem_cgroup_per_node * 655 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 656 { 657 struct mem_cgroup_per_node *mz; 658 659 retry: 660 mz = NULL; 661 if (!mctz->rb_rightmost) 662 goto done; /* Nothing to reclaim from */ 663 664 mz = rb_entry(mctz->rb_rightmost, 665 struct mem_cgroup_per_node, tree_node); 666 /* 667 * Remove the node now but someone else can add it back, 668 * we will to add it back at the end of reclaim to its correct 669 * position in the tree. 670 */ 671 __mem_cgroup_remove_exceeded(mz, mctz); 672 if (!soft_limit_excess(mz->memcg) || 673 !css_tryget_online(&mz->memcg->css)) 674 goto retry; 675 done: 676 return mz; 677 } 678 679 static struct mem_cgroup_per_node * 680 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 681 { 682 struct mem_cgroup_per_node *mz; 683 684 spin_lock_irq(&mctz->lock); 685 mz = __mem_cgroup_largest_soft_limit_node(mctz); 686 spin_unlock_irq(&mctz->lock); 687 return mz; 688 } 689 690 static unsigned long memcg_sum_events(struct mem_cgroup *memcg, 691 int event) 692 { 693 return atomic_long_read(&memcg->events[event]); 694 } 695 696 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 697 struct page *page, 698 bool compound, int nr_pages) 699 { 700 /* 701 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 702 * counted as CACHE even if it's on ANON LRU. 703 */ 704 if (PageAnon(page)) 705 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 706 else { 707 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 708 if (PageSwapBacked(page)) 709 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 710 } 711 712 if (compound) { 713 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 714 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 715 } 716 717 /* pagein of a big page is an event. So, ignore page size */ 718 if (nr_pages > 0) 719 __count_memcg_events(memcg, PGPGIN, 1); 720 else { 721 __count_memcg_events(memcg, PGPGOUT, 1); 722 nr_pages = -nr_pages; /* for event */ 723 } 724 725 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages); 726 } 727 728 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 729 int nid, unsigned int lru_mask) 730 { 731 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 732 unsigned long nr = 0; 733 enum lru_list lru; 734 735 VM_BUG_ON((unsigned)nid >= nr_node_ids); 736 737 for_each_lru(lru) { 738 if (!(BIT(lru) & lru_mask)) 739 continue; 740 nr += mem_cgroup_get_lru_size(lruvec, lru); 741 } 742 return nr; 743 } 744 745 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 746 unsigned int lru_mask) 747 { 748 unsigned long nr = 0; 749 int nid; 750 751 for_each_node_state(nid, N_MEMORY) 752 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 753 return nr; 754 } 755 756 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 757 enum mem_cgroup_events_target target) 758 { 759 unsigned long val, next; 760 761 val = __this_cpu_read(memcg->stat_cpu->nr_page_events); 762 next = __this_cpu_read(memcg->stat_cpu->targets[target]); 763 /* from time_after() in jiffies.h */ 764 if ((long)(next - val) < 0) { 765 switch (target) { 766 case MEM_CGROUP_TARGET_THRESH: 767 next = val + THRESHOLDS_EVENTS_TARGET; 768 break; 769 case MEM_CGROUP_TARGET_SOFTLIMIT: 770 next = val + SOFTLIMIT_EVENTS_TARGET; 771 break; 772 case MEM_CGROUP_TARGET_NUMAINFO: 773 next = val + NUMAINFO_EVENTS_TARGET; 774 break; 775 default: 776 break; 777 } 778 __this_cpu_write(memcg->stat_cpu->targets[target], next); 779 return true; 780 } 781 return false; 782 } 783 784 /* 785 * Check events in order. 786 * 787 */ 788 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 789 { 790 /* threshold event is triggered in finer grain than soft limit */ 791 if (unlikely(mem_cgroup_event_ratelimit(memcg, 792 MEM_CGROUP_TARGET_THRESH))) { 793 bool do_softlimit; 794 bool do_numainfo __maybe_unused; 795 796 do_softlimit = mem_cgroup_event_ratelimit(memcg, 797 MEM_CGROUP_TARGET_SOFTLIMIT); 798 #if MAX_NUMNODES > 1 799 do_numainfo = mem_cgroup_event_ratelimit(memcg, 800 MEM_CGROUP_TARGET_NUMAINFO); 801 #endif 802 mem_cgroup_threshold(memcg); 803 if (unlikely(do_softlimit)) 804 mem_cgroup_update_tree(memcg, page); 805 #if MAX_NUMNODES > 1 806 if (unlikely(do_numainfo)) 807 atomic_inc(&memcg->numainfo_events); 808 #endif 809 } 810 } 811 812 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 813 { 814 /* 815 * mm_update_next_owner() may clear mm->owner to NULL 816 * if it races with swapoff, page migration, etc. 817 * So this can be called with p == NULL. 818 */ 819 if (unlikely(!p)) 820 return NULL; 821 822 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 823 } 824 EXPORT_SYMBOL(mem_cgroup_from_task); 825 826 /** 827 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 828 * @mm: mm from which memcg should be extracted. It can be NULL. 829 * 830 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 831 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 832 * returned. 833 */ 834 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 835 { 836 struct mem_cgroup *memcg; 837 838 if (mem_cgroup_disabled()) 839 return NULL; 840 841 rcu_read_lock(); 842 do { 843 /* 844 * Page cache insertions can happen withou an 845 * actual mm context, e.g. during disk probing 846 * on boot, loopback IO, acct() writes etc. 847 */ 848 if (unlikely(!mm)) 849 memcg = root_mem_cgroup; 850 else { 851 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 852 if (unlikely(!memcg)) 853 memcg = root_mem_cgroup; 854 } 855 } while (!css_tryget_online(&memcg->css)); 856 rcu_read_unlock(); 857 return memcg; 858 } 859 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 860 861 /** 862 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 863 * @page: page from which memcg should be extracted. 864 * 865 * Obtain a reference on page->memcg and returns it if successful. Otherwise 866 * root_mem_cgroup is returned. 867 */ 868 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 869 { 870 struct mem_cgroup *memcg = page->mem_cgroup; 871 872 if (mem_cgroup_disabled()) 873 return NULL; 874 875 rcu_read_lock(); 876 if (!memcg || !css_tryget_online(&memcg->css)) 877 memcg = root_mem_cgroup; 878 rcu_read_unlock(); 879 return memcg; 880 } 881 EXPORT_SYMBOL(get_mem_cgroup_from_page); 882 883 /** 884 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 885 */ 886 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 887 { 888 if (unlikely(current->active_memcg)) { 889 struct mem_cgroup *memcg = root_mem_cgroup; 890 891 rcu_read_lock(); 892 if (css_tryget_online(¤t->active_memcg->css)) 893 memcg = current->active_memcg; 894 rcu_read_unlock(); 895 return memcg; 896 } 897 return get_mem_cgroup_from_mm(current->mm); 898 } 899 900 /** 901 * mem_cgroup_iter - iterate over memory cgroup hierarchy 902 * @root: hierarchy root 903 * @prev: previously returned memcg, NULL on first invocation 904 * @reclaim: cookie for shared reclaim walks, NULL for full walks 905 * 906 * Returns references to children of the hierarchy below @root, or 907 * @root itself, or %NULL after a full round-trip. 908 * 909 * Caller must pass the return value in @prev on subsequent 910 * invocations for reference counting, or use mem_cgroup_iter_break() 911 * to cancel a hierarchy walk before the round-trip is complete. 912 * 913 * Reclaimers can specify a node and a priority level in @reclaim to 914 * divide up the memcgs in the hierarchy among all concurrent 915 * reclaimers operating on the same node and priority. 916 */ 917 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 918 struct mem_cgroup *prev, 919 struct mem_cgroup_reclaim_cookie *reclaim) 920 { 921 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 922 struct cgroup_subsys_state *css = NULL; 923 struct mem_cgroup *memcg = NULL; 924 struct mem_cgroup *pos = NULL; 925 926 if (mem_cgroup_disabled()) 927 return NULL; 928 929 if (!root) 930 root = root_mem_cgroup; 931 932 if (prev && !reclaim) 933 pos = prev; 934 935 if (!root->use_hierarchy && root != root_mem_cgroup) { 936 if (prev) 937 goto out; 938 return root; 939 } 940 941 rcu_read_lock(); 942 943 if (reclaim) { 944 struct mem_cgroup_per_node *mz; 945 946 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 947 iter = &mz->iter[reclaim->priority]; 948 949 if (prev && reclaim->generation != iter->generation) 950 goto out_unlock; 951 952 while (1) { 953 pos = READ_ONCE(iter->position); 954 if (!pos || css_tryget(&pos->css)) 955 break; 956 /* 957 * css reference reached zero, so iter->position will 958 * be cleared by ->css_released. However, we should not 959 * rely on this happening soon, because ->css_released 960 * is called from a work queue, and by busy-waiting we 961 * might block it. So we clear iter->position right 962 * away. 963 */ 964 (void)cmpxchg(&iter->position, pos, NULL); 965 } 966 } 967 968 if (pos) 969 css = &pos->css; 970 971 for (;;) { 972 css = css_next_descendant_pre(css, &root->css); 973 if (!css) { 974 /* 975 * Reclaimers share the hierarchy walk, and a 976 * new one might jump in right at the end of 977 * the hierarchy - make sure they see at least 978 * one group and restart from the beginning. 979 */ 980 if (!prev) 981 continue; 982 break; 983 } 984 985 /* 986 * Verify the css and acquire a reference. The root 987 * is provided by the caller, so we know it's alive 988 * and kicking, and don't take an extra reference. 989 */ 990 memcg = mem_cgroup_from_css(css); 991 992 if (css == &root->css) 993 break; 994 995 if (css_tryget(css)) 996 break; 997 998 memcg = NULL; 999 } 1000 1001 if (reclaim) { 1002 /* 1003 * The position could have already been updated by a competing 1004 * thread, so check that the value hasn't changed since we read 1005 * it to avoid reclaiming from the same cgroup twice. 1006 */ 1007 (void)cmpxchg(&iter->position, pos, memcg); 1008 1009 if (pos) 1010 css_put(&pos->css); 1011 1012 if (!memcg) 1013 iter->generation++; 1014 else if (!prev) 1015 reclaim->generation = iter->generation; 1016 } 1017 1018 out_unlock: 1019 rcu_read_unlock(); 1020 out: 1021 if (prev && prev != root) 1022 css_put(&prev->css); 1023 1024 return memcg; 1025 } 1026 1027 /** 1028 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1029 * @root: hierarchy root 1030 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1031 */ 1032 void mem_cgroup_iter_break(struct mem_cgroup *root, 1033 struct mem_cgroup *prev) 1034 { 1035 if (!root) 1036 root = root_mem_cgroup; 1037 if (prev && prev != root) 1038 css_put(&prev->css); 1039 } 1040 1041 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1042 { 1043 struct mem_cgroup *memcg = dead_memcg; 1044 struct mem_cgroup_reclaim_iter *iter; 1045 struct mem_cgroup_per_node *mz; 1046 int nid; 1047 int i; 1048 1049 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1050 for_each_node(nid) { 1051 mz = mem_cgroup_nodeinfo(memcg, nid); 1052 for (i = 0; i <= DEF_PRIORITY; i++) { 1053 iter = &mz->iter[i]; 1054 cmpxchg(&iter->position, 1055 dead_memcg, NULL); 1056 } 1057 } 1058 } 1059 } 1060 1061 /** 1062 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1063 * @memcg: hierarchy root 1064 * @fn: function to call for each task 1065 * @arg: argument passed to @fn 1066 * 1067 * This function iterates over tasks attached to @memcg or to any of its 1068 * descendants and calls @fn for each task. If @fn returns a non-zero 1069 * value, the function breaks the iteration loop and returns the value. 1070 * Otherwise, it will iterate over all tasks and return 0. 1071 * 1072 * This function must not be called for the root memory cgroup. 1073 */ 1074 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1075 int (*fn)(struct task_struct *, void *), void *arg) 1076 { 1077 struct mem_cgroup *iter; 1078 int ret = 0; 1079 1080 BUG_ON(memcg == root_mem_cgroup); 1081 1082 for_each_mem_cgroup_tree(iter, memcg) { 1083 struct css_task_iter it; 1084 struct task_struct *task; 1085 1086 css_task_iter_start(&iter->css, 0, &it); 1087 while (!ret && (task = css_task_iter_next(&it))) 1088 ret = fn(task, arg); 1089 css_task_iter_end(&it); 1090 if (ret) { 1091 mem_cgroup_iter_break(memcg, iter); 1092 break; 1093 } 1094 } 1095 return ret; 1096 } 1097 1098 /** 1099 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1100 * @page: the page 1101 * @pgdat: pgdat of the page 1102 * 1103 * This function is only safe when following the LRU page isolation 1104 * and putback protocol: the LRU lock must be held, and the page must 1105 * either be PageLRU() or the caller must have isolated/allocated it. 1106 */ 1107 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1108 { 1109 struct mem_cgroup_per_node *mz; 1110 struct mem_cgroup *memcg; 1111 struct lruvec *lruvec; 1112 1113 if (mem_cgroup_disabled()) { 1114 lruvec = &pgdat->lruvec; 1115 goto out; 1116 } 1117 1118 memcg = page->mem_cgroup; 1119 /* 1120 * Swapcache readahead pages are added to the LRU - and 1121 * possibly migrated - before they are charged. 1122 */ 1123 if (!memcg) 1124 memcg = root_mem_cgroup; 1125 1126 mz = mem_cgroup_page_nodeinfo(memcg, page); 1127 lruvec = &mz->lruvec; 1128 out: 1129 /* 1130 * Since a node can be onlined after the mem_cgroup was created, 1131 * we have to be prepared to initialize lruvec->zone here; 1132 * and if offlined then reonlined, we need to reinitialize it. 1133 */ 1134 if (unlikely(lruvec->pgdat != pgdat)) 1135 lruvec->pgdat = pgdat; 1136 return lruvec; 1137 } 1138 1139 /** 1140 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1141 * @lruvec: mem_cgroup per zone lru vector 1142 * @lru: index of lru list the page is sitting on 1143 * @zid: zone id of the accounted pages 1144 * @nr_pages: positive when adding or negative when removing 1145 * 1146 * This function must be called under lru_lock, just before a page is added 1147 * to or just after a page is removed from an lru list (that ordering being 1148 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1149 */ 1150 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1151 int zid, int nr_pages) 1152 { 1153 struct mem_cgroup_per_node *mz; 1154 unsigned long *lru_size; 1155 long size; 1156 1157 if (mem_cgroup_disabled()) 1158 return; 1159 1160 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1161 lru_size = &mz->lru_zone_size[zid][lru]; 1162 1163 if (nr_pages < 0) 1164 *lru_size += nr_pages; 1165 1166 size = *lru_size; 1167 if (WARN_ONCE(size < 0, 1168 "%s(%p, %d, %d): lru_size %ld\n", 1169 __func__, lruvec, lru, nr_pages, size)) { 1170 VM_BUG_ON(1); 1171 *lru_size = 0; 1172 } 1173 1174 if (nr_pages > 0) 1175 *lru_size += nr_pages; 1176 } 1177 1178 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1179 { 1180 struct mem_cgroup *task_memcg; 1181 struct task_struct *p; 1182 bool ret; 1183 1184 p = find_lock_task_mm(task); 1185 if (p) { 1186 task_memcg = get_mem_cgroup_from_mm(p->mm); 1187 task_unlock(p); 1188 } else { 1189 /* 1190 * All threads may have already detached their mm's, but the oom 1191 * killer still needs to detect if they have already been oom 1192 * killed to prevent needlessly killing additional tasks. 1193 */ 1194 rcu_read_lock(); 1195 task_memcg = mem_cgroup_from_task(task); 1196 css_get(&task_memcg->css); 1197 rcu_read_unlock(); 1198 } 1199 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1200 css_put(&task_memcg->css); 1201 return ret; 1202 } 1203 1204 /** 1205 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1206 * @memcg: the memory cgroup 1207 * 1208 * Returns the maximum amount of memory @mem can be charged with, in 1209 * pages. 1210 */ 1211 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1212 { 1213 unsigned long margin = 0; 1214 unsigned long count; 1215 unsigned long limit; 1216 1217 count = page_counter_read(&memcg->memory); 1218 limit = READ_ONCE(memcg->memory.max); 1219 if (count < limit) 1220 margin = limit - count; 1221 1222 if (do_memsw_account()) { 1223 count = page_counter_read(&memcg->memsw); 1224 limit = READ_ONCE(memcg->memsw.max); 1225 if (count <= limit) 1226 margin = min(margin, limit - count); 1227 else 1228 margin = 0; 1229 } 1230 1231 return margin; 1232 } 1233 1234 /* 1235 * A routine for checking "mem" is under move_account() or not. 1236 * 1237 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1238 * moving cgroups. This is for waiting at high-memory pressure 1239 * caused by "move". 1240 */ 1241 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1242 { 1243 struct mem_cgroup *from; 1244 struct mem_cgroup *to; 1245 bool ret = false; 1246 /* 1247 * Unlike task_move routines, we access mc.to, mc.from not under 1248 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1249 */ 1250 spin_lock(&mc.lock); 1251 from = mc.from; 1252 to = mc.to; 1253 if (!from) 1254 goto unlock; 1255 1256 ret = mem_cgroup_is_descendant(from, memcg) || 1257 mem_cgroup_is_descendant(to, memcg); 1258 unlock: 1259 spin_unlock(&mc.lock); 1260 return ret; 1261 } 1262 1263 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1264 { 1265 if (mc.moving_task && current != mc.moving_task) { 1266 if (mem_cgroup_under_move(memcg)) { 1267 DEFINE_WAIT(wait); 1268 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1269 /* moving charge context might have finished. */ 1270 if (mc.moving_task) 1271 schedule(); 1272 finish_wait(&mc.waitq, &wait); 1273 return true; 1274 } 1275 } 1276 return false; 1277 } 1278 1279 static const unsigned int memcg1_stats[] = { 1280 MEMCG_CACHE, 1281 MEMCG_RSS, 1282 MEMCG_RSS_HUGE, 1283 NR_SHMEM, 1284 NR_FILE_MAPPED, 1285 NR_FILE_DIRTY, 1286 NR_WRITEBACK, 1287 MEMCG_SWAP, 1288 }; 1289 1290 static const char *const memcg1_stat_names[] = { 1291 "cache", 1292 "rss", 1293 "rss_huge", 1294 "shmem", 1295 "mapped_file", 1296 "dirty", 1297 "writeback", 1298 "swap", 1299 }; 1300 1301 #define K(x) ((x) << (PAGE_SHIFT-10)) 1302 /** 1303 * mem_cgroup_print_oom_context: Print OOM information relevant to 1304 * memory controller. 1305 * @memcg: The memory cgroup that went over limit 1306 * @p: Task that is going to be killed 1307 * 1308 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1309 * enabled 1310 */ 1311 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1312 { 1313 rcu_read_lock(); 1314 1315 if (memcg) { 1316 pr_cont(",oom_memcg="); 1317 pr_cont_cgroup_path(memcg->css.cgroup); 1318 } else 1319 pr_cont(",global_oom"); 1320 if (p) { 1321 pr_cont(",task_memcg="); 1322 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1323 } 1324 rcu_read_unlock(); 1325 } 1326 1327 /** 1328 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1329 * memory controller. 1330 * @memcg: The memory cgroup that went over limit 1331 */ 1332 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1333 { 1334 struct mem_cgroup *iter; 1335 unsigned int i; 1336 1337 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1338 K((u64)page_counter_read(&memcg->memory)), 1339 K((u64)memcg->memory.max), memcg->memory.failcnt); 1340 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1341 K((u64)page_counter_read(&memcg->memsw)), 1342 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1343 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1344 K((u64)page_counter_read(&memcg->kmem)), 1345 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1346 1347 for_each_mem_cgroup_tree(iter, memcg) { 1348 pr_info("Memory cgroup stats for "); 1349 pr_cont_cgroup_path(iter->css.cgroup); 1350 pr_cont(":"); 1351 1352 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 1353 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account) 1354 continue; 1355 pr_cont(" %s:%luKB", memcg1_stat_names[i], 1356 K(memcg_page_state(iter, memcg1_stats[i]))); 1357 } 1358 1359 for (i = 0; i < NR_LRU_LISTS; i++) 1360 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1361 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1362 1363 pr_cont("\n"); 1364 } 1365 } 1366 1367 /* 1368 * Return the memory (and swap, if configured) limit for a memcg. 1369 */ 1370 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1371 { 1372 unsigned long max; 1373 1374 max = memcg->memory.max; 1375 if (mem_cgroup_swappiness(memcg)) { 1376 unsigned long memsw_max; 1377 unsigned long swap_max; 1378 1379 memsw_max = memcg->memsw.max; 1380 swap_max = memcg->swap.max; 1381 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1382 max = min(max + swap_max, memsw_max); 1383 } 1384 return max; 1385 } 1386 1387 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1388 int order) 1389 { 1390 struct oom_control oc = { 1391 .zonelist = NULL, 1392 .nodemask = NULL, 1393 .memcg = memcg, 1394 .gfp_mask = gfp_mask, 1395 .order = order, 1396 }; 1397 bool ret; 1398 1399 if (mutex_lock_killable(&oom_lock)) 1400 return true; 1401 /* 1402 * A few threads which were not waiting at mutex_lock_killable() can 1403 * fail to bail out. Therefore, check again after holding oom_lock. 1404 */ 1405 ret = should_force_charge() || out_of_memory(&oc); 1406 mutex_unlock(&oom_lock); 1407 return ret; 1408 } 1409 1410 #if MAX_NUMNODES > 1 1411 1412 /** 1413 * test_mem_cgroup_node_reclaimable 1414 * @memcg: the target memcg 1415 * @nid: the node ID to be checked. 1416 * @noswap : specify true here if the user wants flle only information. 1417 * 1418 * This function returns whether the specified memcg contains any 1419 * reclaimable pages on a node. Returns true if there are any reclaimable 1420 * pages in the node. 1421 */ 1422 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1423 int nid, bool noswap) 1424 { 1425 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1426 return true; 1427 if (noswap || !total_swap_pages) 1428 return false; 1429 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1430 return true; 1431 return false; 1432 1433 } 1434 1435 /* 1436 * Always updating the nodemask is not very good - even if we have an empty 1437 * list or the wrong list here, we can start from some node and traverse all 1438 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1439 * 1440 */ 1441 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1442 { 1443 int nid; 1444 /* 1445 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1446 * pagein/pageout changes since the last update. 1447 */ 1448 if (!atomic_read(&memcg->numainfo_events)) 1449 return; 1450 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1451 return; 1452 1453 /* make a nodemask where this memcg uses memory from */ 1454 memcg->scan_nodes = node_states[N_MEMORY]; 1455 1456 for_each_node_mask(nid, node_states[N_MEMORY]) { 1457 1458 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1459 node_clear(nid, memcg->scan_nodes); 1460 } 1461 1462 atomic_set(&memcg->numainfo_events, 0); 1463 atomic_set(&memcg->numainfo_updating, 0); 1464 } 1465 1466 /* 1467 * Selecting a node where we start reclaim from. Because what we need is just 1468 * reducing usage counter, start from anywhere is O,K. Considering 1469 * memory reclaim from current node, there are pros. and cons. 1470 * 1471 * Freeing memory from current node means freeing memory from a node which 1472 * we'll use or we've used. So, it may make LRU bad. And if several threads 1473 * hit limits, it will see a contention on a node. But freeing from remote 1474 * node means more costs for memory reclaim because of memory latency. 1475 * 1476 * Now, we use round-robin. Better algorithm is welcomed. 1477 */ 1478 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1479 { 1480 int node; 1481 1482 mem_cgroup_may_update_nodemask(memcg); 1483 node = memcg->last_scanned_node; 1484 1485 node = next_node_in(node, memcg->scan_nodes); 1486 /* 1487 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1488 * last time it really checked all the LRUs due to rate limiting. 1489 * Fallback to the current node in that case for simplicity. 1490 */ 1491 if (unlikely(node == MAX_NUMNODES)) 1492 node = numa_node_id(); 1493 1494 memcg->last_scanned_node = node; 1495 return node; 1496 } 1497 #else 1498 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1499 { 1500 return 0; 1501 } 1502 #endif 1503 1504 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1505 pg_data_t *pgdat, 1506 gfp_t gfp_mask, 1507 unsigned long *total_scanned) 1508 { 1509 struct mem_cgroup *victim = NULL; 1510 int total = 0; 1511 int loop = 0; 1512 unsigned long excess; 1513 unsigned long nr_scanned; 1514 struct mem_cgroup_reclaim_cookie reclaim = { 1515 .pgdat = pgdat, 1516 .priority = 0, 1517 }; 1518 1519 excess = soft_limit_excess(root_memcg); 1520 1521 while (1) { 1522 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1523 if (!victim) { 1524 loop++; 1525 if (loop >= 2) { 1526 /* 1527 * If we have not been able to reclaim 1528 * anything, it might because there are 1529 * no reclaimable pages under this hierarchy 1530 */ 1531 if (!total) 1532 break; 1533 /* 1534 * We want to do more targeted reclaim. 1535 * excess >> 2 is not to excessive so as to 1536 * reclaim too much, nor too less that we keep 1537 * coming back to reclaim from this cgroup 1538 */ 1539 if (total >= (excess >> 2) || 1540 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1541 break; 1542 } 1543 continue; 1544 } 1545 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1546 pgdat, &nr_scanned); 1547 *total_scanned += nr_scanned; 1548 if (!soft_limit_excess(root_memcg)) 1549 break; 1550 } 1551 mem_cgroup_iter_break(root_memcg, victim); 1552 return total; 1553 } 1554 1555 #ifdef CONFIG_LOCKDEP 1556 static struct lockdep_map memcg_oom_lock_dep_map = { 1557 .name = "memcg_oom_lock", 1558 }; 1559 #endif 1560 1561 static DEFINE_SPINLOCK(memcg_oom_lock); 1562 1563 /* 1564 * Check OOM-Killer is already running under our hierarchy. 1565 * If someone is running, return false. 1566 */ 1567 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1568 { 1569 struct mem_cgroup *iter, *failed = NULL; 1570 1571 spin_lock(&memcg_oom_lock); 1572 1573 for_each_mem_cgroup_tree(iter, memcg) { 1574 if (iter->oom_lock) { 1575 /* 1576 * this subtree of our hierarchy is already locked 1577 * so we cannot give a lock. 1578 */ 1579 failed = iter; 1580 mem_cgroup_iter_break(memcg, iter); 1581 break; 1582 } else 1583 iter->oom_lock = true; 1584 } 1585 1586 if (failed) { 1587 /* 1588 * OK, we failed to lock the whole subtree so we have 1589 * to clean up what we set up to the failing subtree 1590 */ 1591 for_each_mem_cgroup_tree(iter, memcg) { 1592 if (iter == failed) { 1593 mem_cgroup_iter_break(memcg, iter); 1594 break; 1595 } 1596 iter->oom_lock = false; 1597 } 1598 } else 1599 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1600 1601 spin_unlock(&memcg_oom_lock); 1602 1603 return !failed; 1604 } 1605 1606 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1607 { 1608 struct mem_cgroup *iter; 1609 1610 spin_lock(&memcg_oom_lock); 1611 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1612 for_each_mem_cgroup_tree(iter, memcg) 1613 iter->oom_lock = false; 1614 spin_unlock(&memcg_oom_lock); 1615 } 1616 1617 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1618 { 1619 struct mem_cgroup *iter; 1620 1621 spin_lock(&memcg_oom_lock); 1622 for_each_mem_cgroup_tree(iter, memcg) 1623 iter->under_oom++; 1624 spin_unlock(&memcg_oom_lock); 1625 } 1626 1627 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1628 { 1629 struct mem_cgroup *iter; 1630 1631 /* 1632 * When a new child is created while the hierarchy is under oom, 1633 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1634 */ 1635 spin_lock(&memcg_oom_lock); 1636 for_each_mem_cgroup_tree(iter, memcg) 1637 if (iter->under_oom > 0) 1638 iter->under_oom--; 1639 spin_unlock(&memcg_oom_lock); 1640 } 1641 1642 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1643 1644 struct oom_wait_info { 1645 struct mem_cgroup *memcg; 1646 wait_queue_entry_t wait; 1647 }; 1648 1649 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1650 unsigned mode, int sync, void *arg) 1651 { 1652 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1653 struct mem_cgroup *oom_wait_memcg; 1654 struct oom_wait_info *oom_wait_info; 1655 1656 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1657 oom_wait_memcg = oom_wait_info->memcg; 1658 1659 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1660 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1661 return 0; 1662 return autoremove_wake_function(wait, mode, sync, arg); 1663 } 1664 1665 static void memcg_oom_recover(struct mem_cgroup *memcg) 1666 { 1667 /* 1668 * For the following lockless ->under_oom test, the only required 1669 * guarantee is that it must see the state asserted by an OOM when 1670 * this function is called as a result of userland actions 1671 * triggered by the notification of the OOM. This is trivially 1672 * achieved by invoking mem_cgroup_mark_under_oom() before 1673 * triggering notification. 1674 */ 1675 if (memcg && memcg->under_oom) 1676 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1677 } 1678 1679 enum oom_status { 1680 OOM_SUCCESS, 1681 OOM_FAILED, 1682 OOM_ASYNC, 1683 OOM_SKIPPED 1684 }; 1685 1686 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1687 { 1688 enum oom_status ret; 1689 bool locked; 1690 1691 if (order > PAGE_ALLOC_COSTLY_ORDER) 1692 return OOM_SKIPPED; 1693 1694 memcg_memory_event(memcg, MEMCG_OOM); 1695 1696 /* 1697 * We are in the middle of the charge context here, so we 1698 * don't want to block when potentially sitting on a callstack 1699 * that holds all kinds of filesystem and mm locks. 1700 * 1701 * cgroup1 allows disabling the OOM killer and waiting for outside 1702 * handling until the charge can succeed; remember the context and put 1703 * the task to sleep at the end of the page fault when all locks are 1704 * released. 1705 * 1706 * On the other hand, in-kernel OOM killer allows for an async victim 1707 * memory reclaim (oom_reaper) and that means that we are not solely 1708 * relying on the oom victim to make a forward progress and we can 1709 * invoke the oom killer here. 1710 * 1711 * Please note that mem_cgroup_out_of_memory might fail to find a 1712 * victim and then we have to bail out from the charge path. 1713 */ 1714 if (memcg->oom_kill_disable) { 1715 if (!current->in_user_fault) 1716 return OOM_SKIPPED; 1717 css_get(&memcg->css); 1718 current->memcg_in_oom = memcg; 1719 current->memcg_oom_gfp_mask = mask; 1720 current->memcg_oom_order = order; 1721 1722 return OOM_ASYNC; 1723 } 1724 1725 mem_cgroup_mark_under_oom(memcg); 1726 1727 locked = mem_cgroup_oom_trylock(memcg); 1728 1729 if (locked) 1730 mem_cgroup_oom_notify(memcg); 1731 1732 mem_cgroup_unmark_under_oom(memcg); 1733 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1734 ret = OOM_SUCCESS; 1735 else 1736 ret = OOM_FAILED; 1737 1738 if (locked) 1739 mem_cgroup_oom_unlock(memcg); 1740 1741 return ret; 1742 } 1743 1744 /** 1745 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1746 * @handle: actually kill/wait or just clean up the OOM state 1747 * 1748 * This has to be called at the end of a page fault if the memcg OOM 1749 * handler was enabled. 1750 * 1751 * Memcg supports userspace OOM handling where failed allocations must 1752 * sleep on a waitqueue until the userspace task resolves the 1753 * situation. Sleeping directly in the charge context with all kinds 1754 * of locks held is not a good idea, instead we remember an OOM state 1755 * in the task and mem_cgroup_oom_synchronize() has to be called at 1756 * the end of the page fault to complete the OOM handling. 1757 * 1758 * Returns %true if an ongoing memcg OOM situation was detected and 1759 * completed, %false otherwise. 1760 */ 1761 bool mem_cgroup_oom_synchronize(bool handle) 1762 { 1763 struct mem_cgroup *memcg = current->memcg_in_oom; 1764 struct oom_wait_info owait; 1765 bool locked; 1766 1767 /* OOM is global, do not handle */ 1768 if (!memcg) 1769 return false; 1770 1771 if (!handle) 1772 goto cleanup; 1773 1774 owait.memcg = memcg; 1775 owait.wait.flags = 0; 1776 owait.wait.func = memcg_oom_wake_function; 1777 owait.wait.private = current; 1778 INIT_LIST_HEAD(&owait.wait.entry); 1779 1780 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1781 mem_cgroup_mark_under_oom(memcg); 1782 1783 locked = mem_cgroup_oom_trylock(memcg); 1784 1785 if (locked) 1786 mem_cgroup_oom_notify(memcg); 1787 1788 if (locked && !memcg->oom_kill_disable) { 1789 mem_cgroup_unmark_under_oom(memcg); 1790 finish_wait(&memcg_oom_waitq, &owait.wait); 1791 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1792 current->memcg_oom_order); 1793 } else { 1794 schedule(); 1795 mem_cgroup_unmark_under_oom(memcg); 1796 finish_wait(&memcg_oom_waitq, &owait.wait); 1797 } 1798 1799 if (locked) { 1800 mem_cgroup_oom_unlock(memcg); 1801 /* 1802 * There is no guarantee that an OOM-lock contender 1803 * sees the wakeups triggered by the OOM kill 1804 * uncharges. Wake any sleepers explicitely. 1805 */ 1806 memcg_oom_recover(memcg); 1807 } 1808 cleanup: 1809 current->memcg_in_oom = NULL; 1810 css_put(&memcg->css); 1811 return true; 1812 } 1813 1814 /** 1815 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1816 * @victim: task to be killed by the OOM killer 1817 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1818 * 1819 * Returns a pointer to a memory cgroup, which has to be cleaned up 1820 * by killing all belonging OOM-killable tasks. 1821 * 1822 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1823 */ 1824 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1825 struct mem_cgroup *oom_domain) 1826 { 1827 struct mem_cgroup *oom_group = NULL; 1828 struct mem_cgroup *memcg; 1829 1830 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1831 return NULL; 1832 1833 if (!oom_domain) 1834 oom_domain = root_mem_cgroup; 1835 1836 rcu_read_lock(); 1837 1838 memcg = mem_cgroup_from_task(victim); 1839 if (memcg == root_mem_cgroup) 1840 goto out; 1841 1842 /* 1843 * Traverse the memory cgroup hierarchy from the victim task's 1844 * cgroup up to the OOMing cgroup (or root) to find the 1845 * highest-level memory cgroup with oom.group set. 1846 */ 1847 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1848 if (memcg->oom_group) 1849 oom_group = memcg; 1850 1851 if (memcg == oom_domain) 1852 break; 1853 } 1854 1855 if (oom_group) 1856 css_get(&oom_group->css); 1857 out: 1858 rcu_read_unlock(); 1859 1860 return oom_group; 1861 } 1862 1863 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1864 { 1865 pr_info("Tasks in "); 1866 pr_cont_cgroup_path(memcg->css.cgroup); 1867 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1868 } 1869 1870 /** 1871 * lock_page_memcg - lock a page->mem_cgroup binding 1872 * @page: the page 1873 * 1874 * This function protects unlocked LRU pages from being moved to 1875 * another cgroup. 1876 * 1877 * It ensures lifetime of the returned memcg. Caller is responsible 1878 * for the lifetime of the page; __unlock_page_memcg() is available 1879 * when @page might get freed inside the locked section. 1880 */ 1881 struct mem_cgroup *lock_page_memcg(struct page *page) 1882 { 1883 struct mem_cgroup *memcg; 1884 unsigned long flags; 1885 1886 /* 1887 * The RCU lock is held throughout the transaction. The fast 1888 * path can get away without acquiring the memcg->move_lock 1889 * because page moving starts with an RCU grace period. 1890 * 1891 * The RCU lock also protects the memcg from being freed when 1892 * the page state that is going to change is the only thing 1893 * preventing the page itself from being freed. E.g. writeback 1894 * doesn't hold a page reference and relies on PG_writeback to 1895 * keep off truncation, migration and so forth. 1896 */ 1897 rcu_read_lock(); 1898 1899 if (mem_cgroup_disabled()) 1900 return NULL; 1901 again: 1902 memcg = page->mem_cgroup; 1903 if (unlikely(!memcg)) 1904 return NULL; 1905 1906 if (atomic_read(&memcg->moving_account) <= 0) 1907 return memcg; 1908 1909 spin_lock_irqsave(&memcg->move_lock, flags); 1910 if (memcg != page->mem_cgroup) { 1911 spin_unlock_irqrestore(&memcg->move_lock, flags); 1912 goto again; 1913 } 1914 1915 /* 1916 * When charge migration first begins, we can have locked and 1917 * unlocked page stat updates happening concurrently. Track 1918 * the task who has the lock for unlock_page_memcg(). 1919 */ 1920 memcg->move_lock_task = current; 1921 memcg->move_lock_flags = flags; 1922 1923 return memcg; 1924 } 1925 EXPORT_SYMBOL(lock_page_memcg); 1926 1927 /** 1928 * __unlock_page_memcg - unlock and unpin a memcg 1929 * @memcg: the memcg 1930 * 1931 * Unlock and unpin a memcg returned by lock_page_memcg(). 1932 */ 1933 void __unlock_page_memcg(struct mem_cgroup *memcg) 1934 { 1935 if (memcg && memcg->move_lock_task == current) { 1936 unsigned long flags = memcg->move_lock_flags; 1937 1938 memcg->move_lock_task = NULL; 1939 memcg->move_lock_flags = 0; 1940 1941 spin_unlock_irqrestore(&memcg->move_lock, flags); 1942 } 1943 1944 rcu_read_unlock(); 1945 } 1946 1947 /** 1948 * unlock_page_memcg - unlock a page->mem_cgroup binding 1949 * @page: the page 1950 */ 1951 void unlock_page_memcg(struct page *page) 1952 { 1953 __unlock_page_memcg(page->mem_cgroup); 1954 } 1955 EXPORT_SYMBOL(unlock_page_memcg); 1956 1957 struct memcg_stock_pcp { 1958 struct mem_cgroup *cached; /* this never be root cgroup */ 1959 unsigned int nr_pages; 1960 struct work_struct work; 1961 unsigned long flags; 1962 #define FLUSHING_CACHED_CHARGE 0 1963 }; 1964 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1965 static DEFINE_MUTEX(percpu_charge_mutex); 1966 1967 /** 1968 * consume_stock: Try to consume stocked charge on this cpu. 1969 * @memcg: memcg to consume from. 1970 * @nr_pages: how many pages to charge. 1971 * 1972 * The charges will only happen if @memcg matches the current cpu's memcg 1973 * stock, and at least @nr_pages are available in that stock. Failure to 1974 * service an allocation will refill the stock. 1975 * 1976 * returns true if successful, false otherwise. 1977 */ 1978 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1979 { 1980 struct memcg_stock_pcp *stock; 1981 unsigned long flags; 1982 bool ret = false; 1983 1984 if (nr_pages > MEMCG_CHARGE_BATCH) 1985 return ret; 1986 1987 local_irq_save(flags); 1988 1989 stock = this_cpu_ptr(&memcg_stock); 1990 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1991 stock->nr_pages -= nr_pages; 1992 ret = true; 1993 } 1994 1995 local_irq_restore(flags); 1996 1997 return ret; 1998 } 1999 2000 /* 2001 * Returns stocks cached in percpu and reset cached information. 2002 */ 2003 static void drain_stock(struct memcg_stock_pcp *stock) 2004 { 2005 struct mem_cgroup *old = stock->cached; 2006 2007 if (stock->nr_pages) { 2008 page_counter_uncharge(&old->memory, stock->nr_pages); 2009 if (do_memsw_account()) 2010 page_counter_uncharge(&old->memsw, stock->nr_pages); 2011 css_put_many(&old->css, stock->nr_pages); 2012 stock->nr_pages = 0; 2013 } 2014 stock->cached = NULL; 2015 } 2016 2017 static void drain_local_stock(struct work_struct *dummy) 2018 { 2019 struct memcg_stock_pcp *stock; 2020 unsigned long flags; 2021 2022 /* 2023 * The only protection from memory hotplug vs. drain_stock races is 2024 * that we always operate on local CPU stock here with IRQ disabled 2025 */ 2026 local_irq_save(flags); 2027 2028 stock = this_cpu_ptr(&memcg_stock); 2029 drain_stock(stock); 2030 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2031 2032 local_irq_restore(flags); 2033 } 2034 2035 /* 2036 * Cache charges(val) to local per_cpu area. 2037 * This will be consumed by consume_stock() function, later. 2038 */ 2039 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2040 { 2041 struct memcg_stock_pcp *stock; 2042 unsigned long flags; 2043 2044 local_irq_save(flags); 2045 2046 stock = this_cpu_ptr(&memcg_stock); 2047 if (stock->cached != memcg) { /* reset if necessary */ 2048 drain_stock(stock); 2049 stock->cached = memcg; 2050 } 2051 stock->nr_pages += nr_pages; 2052 2053 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2054 drain_stock(stock); 2055 2056 local_irq_restore(flags); 2057 } 2058 2059 /* 2060 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2061 * of the hierarchy under it. 2062 */ 2063 static void drain_all_stock(struct mem_cgroup *root_memcg) 2064 { 2065 int cpu, curcpu; 2066 2067 /* If someone's already draining, avoid adding running more workers. */ 2068 if (!mutex_trylock(&percpu_charge_mutex)) 2069 return; 2070 /* 2071 * Notify other cpus that system-wide "drain" is running 2072 * We do not care about races with the cpu hotplug because cpu down 2073 * as well as workers from this path always operate on the local 2074 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2075 */ 2076 curcpu = get_cpu(); 2077 for_each_online_cpu(cpu) { 2078 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2079 struct mem_cgroup *memcg; 2080 2081 memcg = stock->cached; 2082 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 2083 continue; 2084 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 2085 css_put(&memcg->css); 2086 continue; 2087 } 2088 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2089 if (cpu == curcpu) 2090 drain_local_stock(&stock->work); 2091 else 2092 schedule_work_on(cpu, &stock->work); 2093 } 2094 css_put(&memcg->css); 2095 } 2096 put_cpu(); 2097 mutex_unlock(&percpu_charge_mutex); 2098 } 2099 2100 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2101 { 2102 struct memcg_stock_pcp *stock; 2103 struct mem_cgroup *memcg; 2104 2105 stock = &per_cpu(memcg_stock, cpu); 2106 drain_stock(stock); 2107 2108 for_each_mem_cgroup(memcg) { 2109 int i; 2110 2111 for (i = 0; i < MEMCG_NR_STAT; i++) { 2112 int nid; 2113 long x; 2114 2115 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0); 2116 if (x) 2117 atomic_long_add(x, &memcg->stat[i]); 2118 2119 if (i >= NR_VM_NODE_STAT_ITEMS) 2120 continue; 2121 2122 for_each_node(nid) { 2123 struct mem_cgroup_per_node *pn; 2124 2125 pn = mem_cgroup_nodeinfo(memcg, nid); 2126 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2127 if (x) 2128 atomic_long_add(x, &pn->lruvec_stat[i]); 2129 } 2130 } 2131 2132 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2133 long x; 2134 2135 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0); 2136 if (x) 2137 atomic_long_add(x, &memcg->events[i]); 2138 } 2139 } 2140 2141 return 0; 2142 } 2143 2144 static void reclaim_high(struct mem_cgroup *memcg, 2145 unsigned int nr_pages, 2146 gfp_t gfp_mask) 2147 { 2148 do { 2149 if (page_counter_read(&memcg->memory) <= memcg->high) 2150 continue; 2151 memcg_memory_event(memcg, MEMCG_HIGH); 2152 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2153 } while ((memcg = parent_mem_cgroup(memcg))); 2154 } 2155 2156 static void high_work_func(struct work_struct *work) 2157 { 2158 struct mem_cgroup *memcg; 2159 2160 memcg = container_of(work, struct mem_cgroup, high_work); 2161 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2162 } 2163 2164 /* 2165 * Scheduled by try_charge() to be executed from the userland return path 2166 * and reclaims memory over the high limit. 2167 */ 2168 void mem_cgroup_handle_over_high(void) 2169 { 2170 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2171 struct mem_cgroup *memcg; 2172 2173 if (likely(!nr_pages)) 2174 return; 2175 2176 memcg = get_mem_cgroup_from_mm(current->mm); 2177 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2178 css_put(&memcg->css); 2179 current->memcg_nr_pages_over_high = 0; 2180 } 2181 2182 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2183 unsigned int nr_pages) 2184 { 2185 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2186 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2187 struct mem_cgroup *mem_over_limit; 2188 struct page_counter *counter; 2189 unsigned long nr_reclaimed; 2190 bool may_swap = true; 2191 bool drained = false; 2192 bool oomed = false; 2193 enum oom_status oom_status; 2194 2195 if (mem_cgroup_is_root(memcg)) 2196 return 0; 2197 retry: 2198 if (consume_stock(memcg, nr_pages)) 2199 return 0; 2200 2201 if (!do_memsw_account() || 2202 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2203 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2204 goto done_restock; 2205 if (do_memsw_account()) 2206 page_counter_uncharge(&memcg->memsw, batch); 2207 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2208 } else { 2209 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2210 may_swap = false; 2211 } 2212 2213 if (batch > nr_pages) { 2214 batch = nr_pages; 2215 goto retry; 2216 } 2217 2218 /* 2219 * Unlike in global OOM situations, memcg is not in a physical 2220 * memory shortage. Allow dying and OOM-killed tasks to 2221 * bypass the last charges so that they can exit quickly and 2222 * free their memory. 2223 */ 2224 if (unlikely(should_force_charge())) 2225 goto force; 2226 2227 /* 2228 * Prevent unbounded recursion when reclaim operations need to 2229 * allocate memory. This might exceed the limits temporarily, 2230 * but we prefer facilitating memory reclaim and getting back 2231 * under the limit over triggering OOM kills in these cases. 2232 */ 2233 if (unlikely(current->flags & PF_MEMALLOC)) 2234 goto force; 2235 2236 if (unlikely(task_in_memcg_oom(current))) 2237 goto nomem; 2238 2239 if (!gfpflags_allow_blocking(gfp_mask)) 2240 goto nomem; 2241 2242 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2243 2244 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2245 gfp_mask, may_swap); 2246 2247 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2248 goto retry; 2249 2250 if (!drained) { 2251 drain_all_stock(mem_over_limit); 2252 drained = true; 2253 goto retry; 2254 } 2255 2256 if (gfp_mask & __GFP_NORETRY) 2257 goto nomem; 2258 /* 2259 * Even though the limit is exceeded at this point, reclaim 2260 * may have been able to free some pages. Retry the charge 2261 * before killing the task. 2262 * 2263 * Only for regular pages, though: huge pages are rather 2264 * unlikely to succeed so close to the limit, and we fall back 2265 * to regular pages anyway in case of failure. 2266 */ 2267 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2268 goto retry; 2269 /* 2270 * At task move, charge accounts can be doubly counted. So, it's 2271 * better to wait until the end of task_move if something is going on. 2272 */ 2273 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2274 goto retry; 2275 2276 if (nr_retries--) 2277 goto retry; 2278 2279 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed) 2280 goto nomem; 2281 2282 if (gfp_mask & __GFP_NOFAIL) 2283 goto force; 2284 2285 if (fatal_signal_pending(current)) 2286 goto force; 2287 2288 /* 2289 * keep retrying as long as the memcg oom killer is able to make 2290 * a forward progress or bypass the charge if the oom killer 2291 * couldn't make any progress. 2292 */ 2293 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2294 get_order(nr_pages * PAGE_SIZE)); 2295 switch (oom_status) { 2296 case OOM_SUCCESS: 2297 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2298 oomed = true; 2299 goto retry; 2300 case OOM_FAILED: 2301 goto force; 2302 default: 2303 goto nomem; 2304 } 2305 nomem: 2306 if (!(gfp_mask & __GFP_NOFAIL)) 2307 return -ENOMEM; 2308 force: 2309 /* 2310 * The allocation either can't fail or will lead to more memory 2311 * being freed very soon. Allow memory usage go over the limit 2312 * temporarily by force charging it. 2313 */ 2314 page_counter_charge(&memcg->memory, nr_pages); 2315 if (do_memsw_account()) 2316 page_counter_charge(&memcg->memsw, nr_pages); 2317 css_get_many(&memcg->css, nr_pages); 2318 2319 return 0; 2320 2321 done_restock: 2322 css_get_many(&memcg->css, batch); 2323 if (batch > nr_pages) 2324 refill_stock(memcg, batch - nr_pages); 2325 2326 /* 2327 * If the hierarchy is above the normal consumption range, schedule 2328 * reclaim on returning to userland. We can perform reclaim here 2329 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2330 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2331 * not recorded as it most likely matches current's and won't 2332 * change in the meantime. As high limit is checked again before 2333 * reclaim, the cost of mismatch is negligible. 2334 */ 2335 do { 2336 if (page_counter_read(&memcg->memory) > memcg->high) { 2337 /* Don't bother a random interrupted task */ 2338 if (in_interrupt()) { 2339 schedule_work(&memcg->high_work); 2340 break; 2341 } 2342 current->memcg_nr_pages_over_high += batch; 2343 set_notify_resume(current); 2344 break; 2345 } 2346 } while ((memcg = parent_mem_cgroup(memcg))); 2347 2348 return 0; 2349 } 2350 2351 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2352 { 2353 if (mem_cgroup_is_root(memcg)) 2354 return; 2355 2356 page_counter_uncharge(&memcg->memory, nr_pages); 2357 if (do_memsw_account()) 2358 page_counter_uncharge(&memcg->memsw, nr_pages); 2359 2360 css_put_many(&memcg->css, nr_pages); 2361 } 2362 2363 static void lock_page_lru(struct page *page, int *isolated) 2364 { 2365 pg_data_t *pgdat = page_pgdat(page); 2366 2367 spin_lock_irq(&pgdat->lru_lock); 2368 if (PageLRU(page)) { 2369 struct lruvec *lruvec; 2370 2371 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2372 ClearPageLRU(page); 2373 del_page_from_lru_list(page, lruvec, page_lru(page)); 2374 *isolated = 1; 2375 } else 2376 *isolated = 0; 2377 } 2378 2379 static void unlock_page_lru(struct page *page, int isolated) 2380 { 2381 pg_data_t *pgdat = page_pgdat(page); 2382 2383 if (isolated) { 2384 struct lruvec *lruvec; 2385 2386 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2387 VM_BUG_ON_PAGE(PageLRU(page), page); 2388 SetPageLRU(page); 2389 add_page_to_lru_list(page, lruvec, page_lru(page)); 2390 } 2391 spin_unlock_irq(&pgdat->lru_lock); 2392 } 2393 2394 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2395 bool lrucare) 2396 { 2397 int isolated; 2398 2399 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2400 2401 /* 2402 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2403 * may already be on some other mem_cgroup's LRU. Take care of it. 2404 */ 2405 if (lrucare) 2406 lock_page_lru(page, &isolated); 2407 2408 /* 2409 * Nobody should be changing or seriously looking at 2410 * page->mem_cgroup at this point: 2411 * 2412 * - the page is uncharged 2413 * 2414 * - the page is off-LRU 2415 * 2416 * - an anonymous fault has exclusive page access, except for 2417 * a locked page table 2418 * 2419 * - a page cache insertion, a swapin fault, or a migration 2420 * have the page locked 2421 */ 2422 page->mem_cgroup = memcg; 2423 2424 if (lrucare) 2425 unlock_page_lru(page, isolated); 2426 } 2427 2428 #ifdef CONFIG_MEMCG_KMEM 2429 static int memcg_alloc_cache_id(void) 2430 { 2431 int id, size; 2432 int err; 2433 2434 id = ida_simple_get(&memcg_cache_ida, 2435 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2436 if (id < 0) 2437 return id; 2438 2439 if (id < memcg_nr_cache_ids) 2440 return id; 2441 2442 /* 2443 * There's no space for the new id in memcg_caches arrays, 2444 * so we have to grow them. 2445 */ 2446 down_write(&memcg_cache_ids_sem); 2447 2448 size = 2 * (id + 1); 2449 if (size < MEMCG_CACHES_MIN_SIZE) 2450 size = MEMCG_CACHES_MIN_SIZE; 2451 else if (size > MEMCG_CACHES_MAX_SIZE) 2452 size = MEMCG_CACHES_MAX_SIZE; 2453 2454 err = memcg_update_all_caches(size); 2455 if (!err) 2456 err = memcg_update_all_list_lrus(size); 2457 if (!err) 2458 memcg_nr_cache_ids = size; 2459 2460 up_write(&memcg_cache_ids_sem); 2461 2462 if (err) { 2463 ida_simple_remove(&memcg_cache_ida, id); 2464 return err; 2465 } 2466 return id; 2467 } 2468 2469 static void memcg_free_cache_id(int id) 2470 { 2471 ida_simple_remove(&memcg_cache_ida, id); 2472 } 2473 2474 struct memcg_kmem_cache_create_work { 2475 struct mem_cgroup *memcg; 2476 struct kmem_cache *cachep; 2477 struct work_struct work; 2478 }; 2479 2480 static void memcg_kmem_cache_create_func(struct work_struct *w) 2481 { 2482 struct memcg_kmem_cache_create_work *cw = 2483 container_of(w, struct memcg_kmem_cache_create_work, work); 2484 struct mem_cgroup *memcg = cw->memcg; 2485 struct kmem_cache *cachep = cw->cachep; 2486 2487 memcg_create_kmem_cache(memcg, cachep); 2488 2489 css_put(&memcg->css); 2490 kfree(cw); 2491 } 2492 2493 /* 2494 * Enqueue the creation of a per-memcg kmem_cache. 2495 */ 2496 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2497 struct kmem_cache *cachep) 2498 { 2499 struct memcg_kmem_cache_create_work *cw; 2500 2501 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2502 if (!cw) 2503 return; 2504 2505 css_get(&memcg->css); 2506 2507 cw->memcg = memcg; 2508 cw->cachep = cachep; 2509 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2510 2511 queue_work(memcg_kmem_cache_wq, &cw->work); 2512 } 2513 2514 static inline bool memcg_kmem_bypass(void) 2515 { 2516 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2517 return true; 2518 return false; 2519 } 2520 2521 /** 2522 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2523 * @cachep: the original global kmem cache 2524 * 2525 * Return the kmem_cache we're supposed to use for a slab allocation. 2526 * We try to use the current memcg's version of the cache. 2527 * 2528 * If the cache does not exist yet, if we are the first user of it, we 2529 * create it asynchronously in a workqueue and let the current allocation 2530 * go through with the original cache. 2531 * 2532 * This function takes a reference to the cache it returns to assure it 2533 * won't get destroyed while we are working with it. Once the caller is 2534 * done with it, memcg_kmem_put_cache() must be called to release the 2535 * reference. 2536 */ 2537 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2538 { 2539 struct mem_cgroup *memcg; 2540 struct kmem_cache *memcg_cachep; 2541 int kmemcg_id; 2542 2543 VM_BUG_ON(!is_root_cache(cachep)); 2544 2545 if (memcg_kmem_bypass()) 2546 return cachep; 2547 2548 memcg = get_mem_cgroup_from_current(); 2549 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2550 if (kmemcg_id < 0) 2551 goto out; 2552 2553 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2554 if (likely(memcg_cachep)) 2555 return memcg_cachep; 2556 2557 /* 2558 * If we are in a safe context (can wait, and not in interrupt 2559 * context), we could be be predictable and return right away. 2560 * This would guarantee that the allocation being performed 2561 * already belongs in the new cache. 2562 * 2563 * However, there are some clashes that can arrive from locking. 2564 * For instance, because we acquire the slab_mutex while doing 2565 * memcg_create_kmem_cache, this means no further allocation 2566 * could happen with the slab_mutex held. So it's better to 2567 * defer everything. 2568 */ 2569 memcg_schedule_kmem_cache_create(memcg, cachep); 2570 out: 2571 css_put(&memcg->css); 2572 return cachep; 2573 } 2574 2575 /** 2576 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2577 * @cachep: the cache returned by memcg_kmem_get_cache 2578 */ 2579 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2580 { 2581 if (!is_root_cache(cachep)) 2582 css_put(&cachep->memcg_params.memcg->css); 2583 } 2584 2585 /** 2586 * __memcg_kmem_charge_memcg: charge a kmem page 2587 * @page: page to charge 2588 * @gfp: reclaim mode 2589 * @order: allocation order 2590 * @memcg: memory cgroup to charge 2591 * 2592 * Returns 0 on success, an error code on failure. 2593 */ 2594 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2595 struct mem_cgroup *memcg) 2596 { 2597 unsigned int nr_pages = 1 << order; 2598 struct page_counter *counter; 2599 int ret; 2600 2601 ret = try_charge(memcg, gfp, nr_pages); 2602 if (ret) 2603 return ret; 2604 2605 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2606 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2607 cancel_charge(memcg, nr_pages); 2608 return -ENOMEM; 2609 } 2610 2611 page->mem_cgroup = memcg; 2612 2613 return 0; 2614 } 2615 2616 /** 2617 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2618 * @page: page to charge 2619 * @gfp: reclaim mode 2620 * @order: allocation order 2621 * 2622 * Returns 0 on success, an error code on failure. 2623 */ 2624 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2625 { 2626 struct mem_cgroup *memcg; 2627 int ret = 0; 2628 2629 if (memcg_kmem_bypass()) 2630 return 0; 2631 2632 memcg = get_mem_cgroup_from_current(); 2633 if (!mem_cgroup_is_root(memcg)) { 2634 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2635 if (!ret) 2636 __SetPageKmemcg(page); 2637 } 2638 css_put(&memcg->css); 2639 return ret; 2640 } 2641 /** 2642 * __memcg_kmem_uncharge: uncharge a kmem page 2643 * @page: page to uncharge 2644 * @order: allocation order 2645 */ 2646 void __memcg_kmem_uncharge(struct page *page, int order) 2647 { 2648 struct mem_cgroup *memcg = page->mem_cgroup; 2649 unsigned int nr_pages = 1 << order; 2650 2651 if (!memcg) 2652 return; 2653 2654 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2655 2656 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2657 page_counter_uncharge(&memcg->kmem, nr_pages); 2658 2659 page_counter_uncharge(&memcg->memory, nr_pages); 2660 if (do_memsw_account()) 2661 page_counter_uncharge(&memcg->memsw, nr_pages); 2662 2663 page->mem_cgroup = NULL; 2664 2665 /* slab pages do not have PageKmemcg flag set */ 2666 if (PageKmemcg(page)) 2667 __ClearPageKmemcg(page); 2668 2669 css_put_many(&memcg->css, nr_pages); 2670 } 2671 #endif /* CONFIG_MEMCG_KMEM */ 2672 2673 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2674 2675 /* 2676 * Because tail pages are not marked as "used", set it. We're under 2677 * pgdat->lru_lock and migration entries setup in all page mappings. 2678 */ 2679 void mem_cgroup_split_huge_fixup(struct page *head) 2680 { 2681 int i; 2682 2683 if (mem_cgroup_disabled()) 2684 return; 2685 2686 for (i = 1; i < HPAGE_PMD_NR; i++) 2687 head[i].mem_cgroup = head->mem_cgroup; 2688 2689 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2690 } 2691 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2692 2693 #ifdef CONFIG_MEMCG_SWAP 2694 /** 2695 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2696 * @entry: swap entry to be moved 2697 * @from: mem_cgroup which the entry is moved from 2698 * @to: mem_cgroup which the entry is moved to 2699 * 2700 * It succeeds only when the swap_cgroup's record for this entry is the same 2701 * as the mem_cgroup's id of @from. 2702 * 2703 * Returns 0 on success, -EINVAL on failure. 2704 * 2705 * The caller must have charged to @to, IOW, called page_counter_charge() about 2706 * both res and memsw, and called css_get(). 2707 */ 2708 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2709 struct mem_cgroup *from, struct mem_cgroup *to) 2710 { 2711 unsigned short old_id, new_id; 2712 2713 old_id = mem_cgroup_id(from); 2714 new_id = mem_cgroup_id(to); 2715 2716 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2717 mod_memcg_state(from, MEMCG_SWAP, -1); 2718 mod_memcg_state(to, MEMCG_SWAP, 1); 2719 return 0; 2720 } 2721 return -EINVAL; 2722 } 2723 #else 2724 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2725 struct mem_cgroup *from, struct mem_cgroup *to) 2726 { 2727 return -EINVAL; 2728 } 2729 #endif 2730 2731 static DEFINE_MUTEX(memcg_max_mutex); 2732 2733 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2734 unsigned long max, bool memsw) 2735 { 2736 bool enlarge = false; 2737 bool drained = false; 2738 int ret; 2739 bool limits_invariant; 2740 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2741 2742 do { 2743 if (signal_pending(current)) { 2744 ret = -EINTR; 2745 break; 2746 } 2747 2748 mutex_lock(&memcg_max_mutex); 2749 /* 2750 * Make sure that the new limit (memsw or memory limit) doesn't 2751 * break our basic invariant rule memory.max <= memsw.max. 2752 */ 2753 limits_invariant = memsw ? max >= memcg->memory.max : 2754 max <= memcg->memsw.max; 2755 if (!limits_invariant) { 2756 mutex_unlock(&memcg_max_mutex); 2757 ret = -EINVAL; 2758 break; 2759 } 2760 if (max > counter->max) 2761 enlarge = true; 2762 ret = page_counter_set_max(counter, max); 2763 mutex_unlock(&memcg_max_mutex); 2764 2765 if (!ret) 2766 break; 2767 2768 if (!drained) { 2769 drain_all_stock(memcg); 2770 drained = true; 2771 continue; 2772 } 2773 2774 if (!try_to_free_mem_cgroup_pages(memcg, 1, 2775 GFP_KERNEL, !memsw)) { 2776 ret = -EBUSY; 2777 break; 2778 } 2779 } while (true); 2780 2781 if (!ret && enlarge) 2782 memcg_oom_recover(memcg); 2783 2784 return ret; 2785 } 2786 2787 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2788 gfp_t gfp_mask, 2789 unsigned long *total_scanned) 2790 { 2791 unsigned long nr_reclaimed = 0; 2792 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2793 unsigned long reclaimed; 2794 int loop = 0; 2795 struct mem_cgroup_tree_per_node *mctz; 2796 unsigned long excess; 2797 unsigned long nr_scanned; 2798 2799 if (order > 0) 2800 return 0; 2801 2802 mctz = soft_limit_tree_node(pgdat->node_id); 2803 2804 /* 2805 * Do not even bother to check the largest node if the root 2806 * is empty. Do it lockless to prevent lock bouncing. Races 2807 * are acceptable as soft limit is best effort anyway. 2808 */ 2809 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 2810 return 0; 2811 2812 /* 2813 * This loop can run a while, specially if mem_cgroup's continuously 2814 * keep exceeding their soft limit and putting the system under 2815 * pressure 2816 */ 2817 do { 2818 if (next_mz) 2819 mz = next_mz; 2820 else 2821 mz = mem_cgroup_largest_soft_limit_node(mctz); 2822 if (!mz) 2823 break; 2824 2825 nr_scanned = 0; 2826 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2827 gfp_mask, &nr_scanned); 2828 nr_reclaimed += reclaimed; 2829 *total_scanned += nr_scanned; 2830 spin_lock_irq(&mctz->lock); 2831 __mem_cgroup_remove_exceeded(mz, mctz); 2832 2833 /* 2834 * If we failed to reclaim anything from this memory cgroup 2835 * it is time to move on to the next cgroup 2836 */ 2837 next_mz = NULL; 2838 if (!reclaimed) 2839 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2840 2841 excess = soft_limit_excess(mz->memcg); 2842 /* 2843 * One school of thought says that we should not add 2844 * back the node to the tree if reclaim returns 0. 2845 * But our reclaim could return 0, simply because due 2846 * to priority we are exposing a smaller subset of 2847 * memory to reclaim from. Consider this as a longer 2848 * term TODO. 2849 */ 2850 /* If excess == 0, no tree ops */ 2851 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2852 spin_unlock_irq(&mctz->lock); 2853 css_put(&mz->memcg->css); 2854 loop++; 2855 /* 2856 * Could not reclaim anything and there are no more 2857 * mem cgroups to try or we seem to be looping without 2858 * reclaiming anything. 2859 */ 2860 if (!nr_reclaimed && 2861 (next_mz == NULL || 2862 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2863 break; 2864 } while (!nr_reclaimed); 2865 if (next_mz) 2866 css_put(&next_mz->memcg->css); 2867 return nr_reclaimed; 2868 } 2869 2870 /* 2871 * Test whether @memcg has children, dead or alive. Note that this 2872 * function doesn't care whether @memcg has use_hierarchy enabled and 2873 * returns %true if there are child csses according to the cgroup 2874 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2875 */ 2876 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2877 { 2878 bool ret; 2879 2880 rcu_read_lock(); 2881 ret = css_next_child(NULL, &memcg->css); 2882 rcu_read_unlock(); 2883 return ret; 2884 } 2885 2886 /* 2887 * Reclaims as many pages from the given memcg as possible. 2888 * 2889 * Caller is responsible for holding css reference for memcg. 2890 */ 2891 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2892 { 2893 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2894 2895 /* we call try-to-free pages for make this cgroup empty */ 2896 lru_add_drain_all(); 2897 2898 drain_all_stock(memcg); 2899 2900 /* try to free all pages in this cgroup */ 2901 while (nr_retries && page_counter_read(&memcg->memory)) { 2902 int progress; 2903 2904 if (signal_pending(current)) 2905 return -EINTR; 2906 2907 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2908 GFP_KERNEL, true); 2909 if (!progress) { 2910 nr_retries--; 2911 /* maybe some writeback is necessary */ 2912 congestion_wait(BLK_RW_ASYNC, HZ/10); 2913 } 2914 2915 } 2916 2917 return 0; 2918 } 2919 2920 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2921 char *buf, size_t nbytes, 2922 loff_t off) 2923 { 2924 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2925 2926 if (mem_cgroup_is_root(memcg)) 2927 return -EINVAL; 2928 return mem_cgroup_force_empty(memcg) ?: nbytes; 2929 } 2930 2931 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2932 struct cftype *cft) 2933 { 2934 return mem_cgroup_from_css(css)->use_hierarchy; 2935 } 2936 2937 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2938 struct cftype *cft, u64 val) 2939 { 2940 int retval = 0; 2941 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2942 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2943 2944 if (memcg->use_hierarchy == val) 2945 return 0; 2946 2947 /* 2948 * If parent's use_hierarchy is set, we can't make any modifications 2949 * in the child subtrees. If it is unset, then the change can 2950 * occur, provided the current cgroup has no children. 2951 * 2952 * For the root cgroup, parent_mem is NULL, we allow value to be 2953 * set if there are no children. 2954 */ 2955 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2956 (val == 1 || val == 0)) { 2957 if (!memcg_has_children(memcg)) 2958 memcg->use_hierarchy = val; 2959 else 2960 retval = -EBUSY; 2961 } else 2962 retval = -EINVAL; 2963 2964 return retval; 2965 } 2966 2967 struct accumulated_stats { 2968 unsigned long stat[MEMCG_NR_STAT]; 2969 unsigned long events[NR_VM_EVENT_ITEMS]; 2970 unsigned long lru_pages[NR_LRU_LISTS]; 2971 const unsigned int *stats_array; 2972 const unsigned int *events_array; 2973 int stats_size; 2974 int events_size; 2975 }; 2976 2977 static void accumulate_memcg_tree(struct mem_cgroup *memcg, 2978 struct accumulated_stats *acc) 2979 { 2980 struct mem_cgroup *mi; 2981 int i; 2982 2983 for_each_mem_cgroup_tree(mi, memcg) { 2984 for (i = 0; i < acc->stats_size; i++) 2985 acc->stat[i] += memcg_page_state(mi, 2986 acc->stats_array ? acc->stats_array[i] : i); 2987 2988 for (i = 0; i < acc->events_size; i++) 2989 acc->events[i] += memcg_sum_events(mi, 2990 acc->events_array ? acc->events_array[i] : i); 2991 2992 for (i = 0; i < NR_LRU_LISTS; i++) 2993 acc->lru_pages[i] += 2994 mem_cgroup_nr_lru_pages(mi, BIT(i)); 2995 } 2996 } 2997 2998 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2999 { 3000 unsigned long val = 0; 3001 3002 if (mem_cgroup_is_root(memcg)) { 3003 struct mem_cgroup *iter; 3004 3005 for_each_mem_cgroup_tree(iter, memcg) { 3006 val += memcg_page_state(iter, MEMCG_CACHE); 3007 val += memcg_page_state(iter, MEMCG_RSS); 3008 if (swap) 3009 val += memcg_page_state(iter, MEMCG_SWAP); 3010 } 3011 } else { 3012 if (!swap) 3013 val = page_counter_read(&memcg->memory); 3014 else 3015 val = page_counter_read(&memcg->memsw); 3016 } 3017 return val; 3018 } 3019 3020 enum { 3021 RES_USAGE, 3022 RES_LIMIT, 3023 RES_MAX_USAGE, 3024 RES_FAILCNT, 3025 RES_SOFT_LIMIT, 3026 }; 3027 3028 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3029 struct cftype *cft) 3030 { 3031 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3032 struct page_counter *counter; 3033 3034 switch (MEMFILE_TYPE(cft->private)) { 3035 case _MEM: 3036 counter = &memcg->memory; 3037 break; 3038 case _MEMSWAP: 3039 counter = &memcg->memsw; 3040 break; 3041 case _KMEM: 3042 counter = &memcg->kmem; 3043 break; 3044 case _TCP: 3045 counter = &memcg->tcpmem; 3046 break; 3047 default: 3048 BUG(); 3049 } 3050 3051 switch (MEMFILE_ATTR(cft->private)) { 3052 case RES_USAGE: 3053 if (counter == &memcg->memory) 3054 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3055 if (counter == &memcg->memsw) 3056 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3057 return (u64)page_counter_read(counter) * PAGE_SIZE; 3058 case RES_LIMIT: 3059 return (u64)counter->max * PAGE_SIZE; 3060 case RES_MAX_USAGE: 3061 return (u64)counter->watermark * PAGE_SIZE; 3062 case RES_FAILCNT: 3063 return counter->failcnt; 3064 case RES_SOFT_LIMIT: 3065 return (u64)memcg->soft_limit * PAGE_SIZE; 3066 default: 3067 BUG(); 3068 } 3069 } 3070 3071 #ifdef CONFIG_MEMCG_KMEM 3072 static int memcg_online_kmem(struct mem_cgroup *memcg) 3073 { 3074 int memcg_id; 3075 3076 if (cgroup_memory_nokmem) 3077 return 0; 3078 3079 BUG_ON(memcg->kmemcg_id >= 0); 3080 BUG_ON(memcg->kmem_state); 3081 3082 memcg_id = memcg_alloc_cache_id(); 3083 if (memcg_id < 0) 3084 return memcg_id; 3085 3086 static_branch_inc(&memcg_kmem_enabled_key); 3087 /* 3088 * A memory cgroup is considered kmem-online as soon as it gets 3089 * kmemcg_id. Setting the id after enabling static branching will 3090 * guarantee no one starts accounting before all call sites are 3091 * patched. 3092 */ 3093 memcg->kmemcg_id = memcg_id; 3094 memcg->kmem_state = KMEM_ONLINE; 3095 INIT_LIST_HEAD(&memcg->kmem_caches); 3096 3097 return 0; 3098 } 3099 3100 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3101 { 3102 struct cgroup_subsys_state *css; 3103 struct mem_cgroup *parent, *child; 3104 int kmemcg_id; 3105 3106 if (memcg->kmem_state != KMEM_ONLINE) 3107 return; 3108 /* 3109 * Clear the online state before clearing memcg_caches array 3110 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3111 * guarantees that no cache will be created for this cgroup 3112 * after we are done (see memcg_create_kmem_cache()). 3113 */ 3114 memcg->kmem_state = KMEM_ALLOCATED; 3115 3116 memcg_deactivate_kmem_caches(memcg); 3117 3118 kmemcg_id = memcg->kmemcg_id; 3119 BUG_ON(kmemcg_id < 0); 3120 3121 parent = parent_mem_cgroup(memcg); 3122 if (!parent) 3123 parent = root_mem_cgroup; 3124 3125 /* 3126 * Change kmemcg_id of this cgroup and all its descendants to the 3127 * parent's id, and then move all entries from this cgroup's list_lrus 3128 * to ones of the parent. After we have finished, all list_lrus 3129 * corresponding to this cgroup are guaranteed to remain empty. The 3130 * ordering is imposed by list_lru_node->lock taken by 3131 * memcg_drain_all_list_lrus(). 3132 */ 3133 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3134 css_for_each_descendant_pre(css, &memcg->css) { 3135 child = mem_cgroup_from_css(css); 3136 BUG_ON(child->kmemcg_id != kmemcg_id); 3137 child->kmemcg_id = parent->kmemcg_id; 3138 if (!memcg->use_hierarchy) 3139 break; 3140 } 3141 rcu_read_unlock(); 3142 3143 memcg_drain_all_list_lrus(kmemcg_id, parent); 3144 3145 memcg_free_cache_id(kmemcg_id); 3146 } 3147 3148 static void memcg_free_kmem(struct mem_cgroup *memcg) 3149 { 3150 /* css_alloc() failed, offlining didn't happen */ 3151 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3152 memcg_offline_kmem(memcg); 3153 3154 if (memcg->kmem_state == KMEM_ALLOCATED) { 3155 memcg_destroy_kmem_caches(memcg); 3156 static_branch_dec(&memcg_kmem_enabled_key); 3157 WARN_ON(page_counter_read(&memcg->kmem)); 3158 } 3159 } 3160 #else 3161 static int memcg_online_kmem(struct mem_cgroup *memcg) 3162 { 3163 return 0; 3164 } 3165 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3166 { 3167 } 3168 static void memcg_free_kmem(struct mem_cgroup *memcg) 3169 { 3170 } 3171 #endif /* CONFIG_MEMCG_KMEM */ 3172 3173 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3174 unsigned long max) 3175 { 3176 int ret; 3177 3178 mutex_lock(&memcg_max_mutex); 3179 ret = page_counter_set_max(&memcg->kmem, max); 3180 mutex_unlock(&memcg_max_mutex); 3181 return ret; 3182 } 3183 3184 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3185 { 3186 int ret; 3187 3188 mutex_lock(&memcg_max_mutex); 3189 3190 ret = page_counter_set_max(&memcg->tcpmem, max); 3191 if (ret) 3192 goto out; 3193 3194 if (!memcg->tcpmem_active) { 3195 /* 3196 * The active flag needs to be written after the static_key 3197 * update. This is what guarantees that the socket activation 3198 * function is the last one to run. See mem_cgroup_sk_alloc() 3199 * for details, and note that we don't mark any socket as 3200 * belonging to this memcg until that flag is up. 3201 * 3202 * We need to do this, because static_keys will span multiple 3203 * sites, but we can't control their order. If we mark a socket 3204 * as accounted, but the accounting functions are not patched in 3205 * yet, we'll lose accounting. 3206 * 3207 * We never race with the readers in mem_cgroup_sk_alloc(), 3208 * because when this value change, the code to process it is not 3209 * patched in yet. 3210 */ 3211 static_branch_inc(&memcg_sockets_enabled_key); 3212 memcg->tcpmem_active = true; 3213 } 3214 out: 3215 mutex_unlock(&memcg_max_mutex); 3216 return ret; 3217 } 3218 3219 /* 3220 * The user of this function is... 3221 * RES_LIMIT. 3222 */ 3223 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3224 char *buf, size_t nbytes, loff_t off) 3225 { 3226 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3227 unsigned long nr_pages; 3228 int ret; 3229 3230 buf = strstrip(buf); 3231 ret = page_counter_memparse(buf, "-1", &nr_pages); 3232 if (ret) 3233 return ret; 3234 3235 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3236 case RES_LIMIT: 3237 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3238 ret = -EINVAL; 3239 break; 3240 } 3241 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3242 case _MEM: 3243 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3244 break; 3245 case _MEMSWAP: 3246 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3247 break; 3248 case _KMEM: 3249 ret = memcg_update_kmem_max(memcg, nr_pages); 3250 break; 3251 case _TCP: 3252 ret = memcg_update_tcp_max(memcg, nr_pages); 3253 break; 3254 } 3255 break; 3256 case RES_SOFT_LIMIT: 3257 memcg->soft_limit = nr_pages; 3258 ret = 0; 3259 break; 3260 } 3261 return ret ?: nbytes; 3262 } 3263 3264 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3265 size_t nbytes, loff_t off) 3266 { 3267 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3268 struct page_counter *counter; 3269 3270 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3271 case _MEM: 3272 counter = &memcg->memory; 3273 break; 3274 case _MEMSWAP: 3275 counter = &memcg->memsw; 3276 break; 3277 case _KMEM: 3278 counter = &memcg->kmem; 3279 break; 3280 case _TCP: 3281 counter = &memcg->tcpmem; 3282 break; 3283 default: 3284 BUG(); 3285 } 3286 3287 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3288 case RES_MAX_USAGE: 3289 page_counter_reset_watermark(counter); 3290 break; 3291 case RES_FAILCNT: 3292 counter->failcnt = 0; 3293 break; 3294 default: 3295 BUG(); 3296 } 3297 3298 return nbytes; 3299 } 3300 3301 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3302 struct cftype *cft) 3303 { 3304 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3305 } 3306 3307 #ifdef CONFIG_MMU 3308 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3309 struct cftype *cft, u64 val) 3310 { 3311 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3312 3313 if (val & ~MOVE_MASK) 3314 return -EINVAL; 3315 3316 /* 3317 * No kind of locking is needed in here, because ->can_attach() will 3318 * check this value once in the beginning of the process, and then carry 3319 * on with stale data. This means that changes to this value will only 3320 * affect task migrations starting after the change. 3321 */ 3322 memcg->move_charge_at_immigrate = val; 3323 return 0; 3324 } 3325 #else 3326 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3327 struct cftype *cft, u64 val) 3328 { 3329 return -ENOSYS; 3330 } 3331 #endif 3332 3333 #ifdef CONFIG_NUMA 3334 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3335 { 3336 struct numa_stat { 3337 const char *name; 3338 unsigned int lru_mask; 3339 }; 3340 3341 static const struct numa_stat stats[] = { 3342 { "total", LRU_ALL }, 3343 { "file", LRU_ALL_FILE }, 3344 { "anon", LRU_ALL_ANON }, 3345 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3346 }; 3347 const struct numa_stat *stat; 3348 int nid; 3349 unsigned long nr; 3350 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3351 3352 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3353 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3354 seq_printf(m, "%s=%lu", stat->name, nr); 3355 for_each_node_state(nid, N_MEMORY) { 3356 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3357 stat->lru_mask); 3358 seq_printf(m, " N%d=%lu", nid, nr); 3359 } 3360 seq_putc(m, '\n'); 3361 } 3362 3363 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3364 struct mem_cgroup *iter; 3365 3366 nr = 0; 3367 for_each_mem_cgroup_tree(iter, memcg) 3368 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3369 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3370 for_each_node_state(nid, N_MEMORY) { 3371 nr = 0; 3372 for_each_mem_cgroup_tree(iter, memcg) 3373 nr += mem_cgroup_node_nr_lru_pages( 3374 iter, nid, stat->lru_mask); 3375 seq_printf(m, " N%d=%lu", nid, nr); 3376 } 3377 seq_putc(m, '\n'); 3378 } 3379 3380 return 0; 3381 } 3382 #endif /* CONFIG_NUMA */ 3383 3384 /* Universal VM events cgroup1 shows, original sort order */ 3385 static const unsigned int memcg1_events[] = { 3386 PGPGIN, 3387 PGPGOUT, 3388 PGFAULT, 3389 PGMAJFAULT, 3390 }; 3391 3392 static const char *const memcg1_event_names[] = { 3393 "pgpgin", 3394 "pgpgout", 3395 "pgfault", 3396 "pgmajfault", 3397 }; 3398 3399 static int memcg_stat_show(struct seq_file *m, void *v) 3400 { 3401 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3402 unsigned long memory, memsw; 3403 struct mem_cgroup *mi; 3404 unsigned int i; 3405 struct accumulated_stats acc; 3406 3407 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3408 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3409 3410 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3411 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3412 continue; 3413 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3414 memcg_page_state(memcg, memcg1_stats[i]) * 3415 PAGE_SIZE); 3416 } 3417 3418 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3419 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3420 memcg_sum_events(memcg, memcg1_events[i])); 3421 3422 for (i = 0; i < NR_LRU_LISTS; i++) 3423 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3424 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3425 3426 /* Hierarchical information */ 3427 memory = memsw = PAGE_COUNTER_MAX; 3428 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3429 memory = min(memory, mi->memory.max); 3430 memsw = min(memsw, mi->memsw.max); 3431 } 3432 seq_printf(m, "hierarchical_memory_limit %llu\n", 3433 (u64)memory * PAGE_SIZE); 3434 if (do_memsw_account()) 3435 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3436 (u64)memsw * PAGE_SIZE); 3437 3438 memset(&acc, 0, sizeof(acc)); 3439 acc.stats_size = ARRAY_SIZE(memcg1_stats); 3440 acc.stats_array = memcg1_stats; 3441 acc.events_size = ARRAY_SIZE(memcg1_events); 3442 acc.events_array = memcg1_events; 3443 accumulate_memcg_tree(memcg, &acc); 3444 3445 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3446 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3447 continue; 3448 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3449 (u64)acc.stat[i] * PAGE_SIZE); 3450 } 3451 3452 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3453 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3454 (u64)acc.events[i]); 3455 3456 for (i = 0; i < NR_LRU_LISTS; i++) 3457 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3458 (u64)acc.lru_pages[i] * PAGE_SIZE); 3459 3460 #ifdef CONFIG_DEBUG_VM 3461 { 3462 pg_data_t *pgdat; 3463 struct mem_cgroup_per_node *mz; 3464 struct zone_reclaim_stat *rstat; 3465 unsigned long recent_rotated[2] = {0, 0}; 3466 unsigned long recent_scanned[2] = {0, 0}; 3467 3468 for_each_online_pgdat(pgdat) { 3469 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3470 rstat = &mz->lruvec.reclaim_stat; 3471 3472 recent_rotated[0] += rstat->recent_rotated[0]; 3473 recent_rotated[1] += rstat->recent_rotated[1]; 3474 recent_scanned[0] += rstat->recent_scanned[0]; 3475 recent_scanned[1] += rstat->recent_scanned[1]; 3476 } 3477 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3478 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3479 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3480 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3481 } 3482 #endif 3483 3484 return 0; 3485 } 3486 3487 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3488 struct cftype *cft) 3489 { 3490 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3491 3492 return mem_cgroup_swappiness(memcg); 3493 } 3494 3495 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3496 struct cftype *cft, u64 val) 3497 { 3498 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3499 3500 if (val > 100) 3501 return -EINVAL; 3502 3503 if (css->parent) 3504 memcg->swappiness = val; 3505 else 3506 vm_swappiness = val; 3507 3508 return 0; 3509 } 3510 3511 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3512 { 3513 struct mem_cgroup_threshold_ary *t; 3514 unsigned long usage; 3515 int i; 3516 3517 rcu_read_lock(); 3518 if (!swap) 3519 t = rcu_dereference(memcg->thresholds.primary); 3520 else 3521 t = rcu_dereference(memcg->memsw_thresholds.primary); 3522 3523 if (!t) 3524 goto unlock; 3525 3526 usage = mem_cgroup_usage(memcg, swap); 3527 3528 /* 3529 * current_threshold points to threshold just below or equal to usage. 3530 * If it's not true, a threshold was crossed after last 3531 * call of __mem_cgroup_threshold(). 3532 */ 3533 i = t->current_threshold; 3534 3535 /* 3536 * Iterate backward over array of thresholds starting from 3537 * current_threshold and check if a threshold is crossed. 3538 * If none of thresholds below usage is crossed, we read 3539 * only one element of the array here. 3540 */ 3541 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3542 eventfd_signal(t->entries[i].eventfd, 1); 3543 3544 /* i = current_threshold + 1 */ 3545 i++; 3546 3547 /* 3548 * Iterate forward over array of thresholds starting from 3549 * current_threshold+1 and check if a threshold is crossed. 3550 * If none of thresholds above usage is crossed, we read 3551 * only one element of the array here. 3552 */ 3553 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3554 eventfd_signal(t->entries[i].eventfd, 1); 3555 3556 /* Update current_threshold */ 3557 t->current_threshold = i - 1; 3558 unlock: 3559 rcu_read_unlock(); 3560 } 3561 3562 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3563 { 3564 while (memcg) { 3565 __mem_cgroup_threshold(memcg, false); 3566 if (do_memsw_account()) 3567 __mem_cgroup_threshold(memcg, true); 3568 3569 memcg = parent_mem_cgroup(memcg); 3570 } 3571 } 3572 3573 static int compare_thresholds(const void *a, const void *b) 3574 { 3575 const struct mem_cgroup_threshold *_a = a; 3576 const struct mem_cgroup_threshold *_b = b; 3577 3578 if (_a->threshold > _b->threshold) 3579 return 1; 3580 3581 if (_a->threshold < _b->threshold) 3582 return -1; 3583 3584 return 0; 3585 } 3586 3587 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3588 { 3589 struct mem_cgroup_eventfd_list *ev; 3590 3591 spin_lock(&memcg_oom_lock); 3592 3593 list_for_each_entry(ev, &memcg->oom_notify, list) 3594 eventfd_signal(ev->eventfd, 1); 3595 3596 spin_unlock(&memcg_oom_lock); 3597 return 0; 3598 } 3599 3600 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3601 { 3602 struct mem_cgroup *iter; 3603 3604 for_each_mem_cgroup_tree(iter, memcg) 3605 mem_cgroup_oom_notify_cb(iter); 3606 } 3607 3608 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3609 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3610 { 3611 struct mem_cgroup_thresholds *thresholds; 3612 struct mem_cgroup_threshold_ary *new; 3613 unsigned long threshold; 3614 unsigned long usage; 3615 int i, size, ret; 3616 3617 ret = page_counter_memparse(args, "-1", &threshold); 3618 if (ret) 3619 return ret; 3620 3621 mutex_lock(&memcg->thresholds_lock); 3622 3623 if (type == _MEM) { 3624 thresholds = &memcg->thresholds; 3625 usage = mem_cgroup_usage(memcg, false); 3626 } else if (type == _MEMSWAP) { 3627 thresholds = &memcg->memsw_thresholds; 3628 usage = mem_cgroup_usage(memcg, true); 3629 } else 3630 BUG(); 3631 3632 /* Check if a threshold crossed before adding a new one */ 3633 if (thresholds->primary) 3634 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3635 3636 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3637 3638 /* Allocate memory for new array of thresholds */ 3639 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 3640 if (!new) { 3641 ret = -ENOMEM; 3642 goto unlock; 3643 } 3644 new->size = size; 3645 3646 /* Copy thresholds (if any) to new array */ 3647 if (thresholds->primary) { 3648 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3649 sizeof(struct mem_cgroup_threshold)); 3650 } 3651 3652 /* Add new threshold */ 3653 new->entries[size - 1].eventfd = eventfd; 3654 new->entries[size - 1].threshold = threshold; 3655 3656 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3657 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3658 compare_thresholds, NULL); 3659 3660 /* Find current threshold */ 3661 new->current_threshold = -1; 3662 for (i = 0; i < size; i++) { 3663 if (new->entries[i].threshold <= usage) { 3664 /* 3665 * new->current_threshold will not be used until 3666 * rcu_assign_pointer(), so it's safe to increment 3667 * it here. 3668 */ 3669 ++new->current_threshold; 3670 } else 3671 break; 3672 } 3673 3674 /* Free old spare buffer and save old primary buffer as spare */ 3675 kfree(thresholds->spare); 3676 thresholds->spare = thresholds->primary; 3677 3678 rcu_assign_pointer(thresholds->primary, new); 3679 3680 /* To be sure that nobody uses thresholds */ 3681 synchronize_rcu(); 3682 3683 unlock: 3684 mutex_unlock(&memcg->thresholds_lock); 3685 3686 return ret; 3687 } 3688 3689 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3690 struct eventfd_ctx *eventfd, const char *args) 3691 { 3692 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3693 } 3694 3695 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3696 struct eventfd_ctx *eventfd, const char *args) 3697 { 3698 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3699 } 3700 3701 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3702 struct eventfd_ctx *eventfd, enum res_type type) 3703 { 3704 struct mem_cgroup_thresholds *thresholds; 3705 struct mem_cgroup_threshold_ary *new; 3706 unsigned long usage; 3707 int i, j, size; 3708 3709 mutex_lock(&memcg->thresholds_lock); 3710 3711 if (type == _MEM) { 3712 thresholds = &memcg->thresholds; 3713 usage = mem_cgroup_usage(memcg, false); 3714 } else if (type == _MEMSWAP) { 3715 thresholds = &memcg->memsw_thresholds; 3716 usage = mem_cgroup_usage(memcg, true); 3717 } else 3718 BUG(); 3719 3720 if (!thresholds->primary) 3721 goto unlock; 3722 3723 /* Check if a threshold crossed before removing */ 3724 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3725 3726 /* Calculate new number of threshold */ 3727 size = 0; 3728 for (i = 0; i < thresholds->primary->size; i++) { 3729 if (thresholds->primary->entries[i].eventfd != eventfd) 3730 size++; 3731 } 3732 3733 new = thresholds->spare; 3734 3735 /* Set thresholds array to NULL if we don't have thresholds */ 3736 if (!size) { 3737 kfree(new); 3738 new = NULL; 3739 goto swap_buffers; 3740 } 3741 3742 new->size = size; 3743 3744 /* Copy thresholds and find current threshold */ 3745 new->current_threshold = -1; 3746 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3747 if (thresholds->primary->entries[i].eventfd == eventfd) 3748 continue; 3749 3750 new->entries[j] = thresholds->primary->entries[i]; 3751 if (new->entries[j].threshold <= usage) { 3752 /* 3753 * new->current_threshold will not be used 3754 * until rcu_assign_pointer(), so it's safe to increment 3755 * it here. 3756 */ 3757 ++new->current_threshold; 3758 } 3759 j++; 3760 } 3761 3762 swap_buffers: 3763 /* Swap primary and spare array */ 3764 thresholds->spare = thresholds->primary; 3765 3766 rcu_assign_pointer(thresholds->primary, new); 3767 3768 /* To be sure that nobody uses thresholds */ 3769 synchronize_rcu(); 3770 3771 /* If all events are unregistered, free the spare array */ 3772 if (!new) { 3773 kfree(thresholds->spare); 3774 thresholds->spare = NULL; 3775 } 3776 unlock: 3777 mutex_unlock(&memcg->thresholds_lock); 3778 } 3779 3780 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3781 struct eventfd_ctx *eventfd) 3782 { 3783 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3784 } 3785 3786 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3787 struct eventfd_ctx *eventfd) 3788 { 3789 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3790 } 3791 3792 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3793 struct eventfd_ctx *eventfd, const char *args) 3794 { 3795 struct mem_cgroup_eventfd_list *event; 3796 3797 event = kmalloc(sizeof(*event), GFP_KERNEL); 3798 if (!event) 3799 return -ENOMEM; 3800 3801 spin_lock(&memcg_oom_lock); 3802 3803 event->eventfd = eventfd; 3804 list_add(&event->list, &memcg->oom_notify); 3805 3806 /* already in OOM ? */ 3807 if (memcg->under_oom) 3808 eventfd_signal(eventfd, 1); 3809 spin_unlock(&memcg_oom_lock); 3810 3811 return 0; 3812 } 3813 3814 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3815 struct eventfd_ctx *eventfd) 3816 { 3817 struct mem_cgroup_eventfd_list *ev, *tmp; 3818 3819 spin_lock(&memcg_oom_lock); 3820 3821 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3822 if (ev->eventfd == eventfd) { 3823 list_del(&ev->list); 3824 kfree(ev); 3825 } 3826 } 3827 3828 spin_unlock(&memcg_oom_lock); 3829 } 3830 3831 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3832 { 3833 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 3834 3835 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3836 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3837 seq_printf(sf, "oom_kill %lu\n", 3838 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 3839 return 0; 3840 } 3841 3842 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3843 struct cftype *cft, u64 val) 3844 { 3845 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3846 3847 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3848 if (!css->parent || !((val == 0) || (val == 1))) 3849 return -EINVAL; 3850 3851 memcg->oom_kill_disable = val; 3852 if (!val) 3853 memcg_oom_recover(memcg); 3854 3855 return 0; 3856 } 3857 3858 #ifdef CONFIG_CGROUP_WRITEBACK 3859 3860 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3861 { 3862 return wb_domain_init(&memcg->cgwb_domain, gfp); 3863 } 3864 3865 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3866 { 3867 wb_domain_exit(&memcg->cgwb_domain); 3868 } 3869 3870 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3871 { 3872 wb_domain_size_changed(&memcg->cgwb_domain); 3873 } 3874 3875 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3876 { 3877 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3878 3879 if (!memcg->css.parent) 3880 return NULL; 3881 3882 return &memcg->cgwb_domain; 3883 } 3884 3885 /* 3886 * idx can be of type enum memcg_stat_item or node_stat_item. 3887 * Keep in sync with memcg_exact_page(). 3888 */ 3889 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 3890 { 3891 long x = atomic_long_read(&memcg->stat[idx]); 3892 int cpu; 3893 3894 for_each_online_cpu(cpu) 3895 x += per_cpu_ptr(memcg->stat_cpu, cpu)->count[idx]; 3896 if (x < 0) 3897 x = 0; 3898 return x; 3899 } 3900 3901 /** 3902 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3903 * @wb: bdi_writeback in question 3904 * @pfilepages: out parameter for number of file pages 3905 * @pheadroom: out parameter for number of allocatable pages according to memcg 3906 * @pdirty: out parameter for number of dirty pages 3907 * @pwriteback: out parameter for number of pages under writeback 3908 * 3909 * Determine the numbers of file, headroom, dirty, and writeback pages in 3910 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3911 * is a bit more involved. 3912 * 3913 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3914 * headroom is calculated as the lowest headroom of itself and the 3915 * ancestors. Note that this doesn't consider the actual amount of 3916 * available memory in the system. The caller should further cap 3917 * *@pheadroom accordingly. 3918 */ 3919 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3920 unsigned long *pheadroom, unsigned long *pdirty, 3921 unsigned long *pwriteback) 3922 { 3923 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3924 struct mem_cgroup *parent; 3925 3926 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 3927 3928 /* this should eventually include NR_UNSTABLE_NFS */ 3929 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 3930 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3931 (1 << LRU_ACTIVE_FILE)); 3932 *pheadroom = PAGE_COUNTER_MAX; 3933 3934 while ((parent = parent_mem_cgroup(memcg))) { 3935 unsigned long ceiling = min(memcg->memory.max, memcg->high); 3936 unsigned long used = page_counter_read(&memcg->memory); 3937 3938 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3939 memcg = parent; 3940 } 3941 } 3942 3943 #else /* CONFIG_CGROUP_WRITEBACK */ 3944 3945 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3946 { 3947 return 0; 3948 } 3949 3950 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3951 { 3952 } 3953 3954 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3955 { 3956 } 3957 3958 #endif /* CONFIG_CGROUP_WRITEBACK */ 3959 3960 /* 3961 * DO NOT USE IN NEW FILES. 3962 * 3963 * "cgroup.event_control" implementation. 3964 * 3965 * This is way over-engineered. It tries to support fully configurable 3966 * events for each user. Such level of flexibility is completely 3967 * unnecessary especially in the light of the planned unified hierarchy. 3968 * 3969 * Please deprecate this and replace with something simpler if at all 3970 * possible. 3971 */ 3972 3973 /* 3974 * Unregister event and free resources. 3975 * 3976 * Gets called from workqueue. 3977 */ 3978 static void memcg_event_remove(struct work_struct *work) 3979 { 3980 struct mem_cgroup_event *event = 3981 container_of(work, struct mem_cgroup_event, remove); 3982 struct mem_cgroup *memcg = event->memcg; 3983 3984 remove_wait_queue(event->wqh, &event->wait); 3985 3986 event->unregister_event(memcg, event->eventfd); 3987 3988 /* Notify userspace the event is going away. */ 3989 eventfd_signal(event->eventfd, 1); 3990 3991 eventfd_ctx_put(event->eventfd); 3992 kfree(event); 3993 css_put(&memcg->css); 3994 } 3995 3996 /* 3997 * Gets called on EPOLLHUP on eventfd when user closes it. 3998 * 3999 * Called with wqh->lock held and interrupts disabled. 4000 */ 4001 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4002 int sync, void *key) 4003 { 4004 struct mem_cgroup_event *event = 4005 container_of(wait, struct mem_cgroup_event, wait); 4006 struct mem_cgroup *memcg = event->memcg; 4007 __poll_t flags = key_to_poll(key); 4008 4009 if (flags & EPOLLHUP) { 4010 /* 4011 * If the event has been detached at cgroup removal, we 4012 * can simply return knowing the other side will cleanup 4013 * for us. 4014 * 4015 * We can't race against event freeing since the other 4016 * side will require wqh->lock via remove_wait_queue(), 4017 * which we hold. 4018 */ 4019 spin_lock(&memcg->event_list_lock); 4020 if (!list_empty(&event->list)) { 4021 list_del_init(&event->list); 4022 /* 4023 * We are in atomic context, but cgroup_event_remove() 4024 * may sleep, so we have to call it in workqueue. 4025 */ 4026 schedule_work(&event->remove); 4027 } 4028 spin_unlock(&memcg->event_list_lock); 4029 } 4030 4031 return 0; 4032 } 4033 4034 static void memcg_event_ptable_queue_proc(struct file *file, 4035 wait_queue_head_t *wqh, poll_table *pt) 4036 { 4037 struct mem_cgroup_event *event = 4038 container_of(pt, struct mem_cgroup_event, pt); 4039 4040 event->wqh = wqh; 4041 add_wait_queue(wqh, &event->wait); 4042 } 4043 4044 /* 4045 * DO NOT USE IN NEW FILES. 4046 * 4047 * Parse input and register new cgroup event handler. 4048 * 4049 * Input must be in format '<event_fd> <control_fd> <args>'. 4050 * Interpretation of args is defined by control file implementation. 4051 */ 4052 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4053 char *buf, size_t nbytes, loff_t off) 4054 { 4055 struct cgroup_subsys_state *css = of_css(of); 4056 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4057 struct mem_cgroup_event *event; 4058 struct cgroup_subsys_state *cfile_css; 4059 unsigned int efd, cfd; 4060 struct fd efile; 4061 struct fd cfile; 4062 const char *name; 4063 char *endp; 4064 int ret; 4065 4066 buf = strstrip(buf); 4067 4068 efd = simple_strtoul(buf, &endp, 10); 4069 if (*endp != ' ') 4070 return -EINVAL; 4071 buf = endp + 1; 4072 4073 cfd = simple_strtoul(buf, &endp, 10); 4074 if ((*endp != ' ') && (*endp != '\0')) 4075 return -EINVAL; 4076 buf = endp + 1; 4077 4078 event = kzalloc(sizeof(*event), GFP_KERNEL); 4079 if (!event) 4080 return -ENOMEM; 4081 4082 event->memcg = memcg; 4083 INIT_LIST_HEAD(&event->list); 4084 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4085 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4086 INIT_WORK(&event->remove, memcg_event_remove); 4087 4088 efile = fdget(efd); 4089 if (!efile.file) { 4090 ret = -EBADF; 4091 goto out_kfree; 4092 } 4093 4094 event->eventfd = eventfd_ctx_fileget(efile.file); 4095 if (IS_ERR(event->eventfd)) { 4096 ret = PTR_ERR(event->eventfd); 4097 goto out_put_efile; 4098 } 4099 4100 cfile = fdget(cfd); 4101 if (!cfile.file) { 4102 ret = -EBADF; 4103 goto out_put_eventfd; 4104 } 4105 4106 /* the process need read permission on control file */ 4107 /* AV: shouldn't we check that it's been opened for read instead? */ 4108 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4109 if (ret < 0) 4110 goto out_put_cfile; 4111 4112 /* 4113 * Determine the event callbacks and set them in @event. This used 4114 * to be done via struct cftype but cgroup core no longer knows 4115 * about these events. The following is crude but the whole thing 4116 * is for compatibility anyway. 4117 * 4118 * DO NOT ADD NEW FILES. 4119 */ 4120 name = cfile.file->f_path.dentry->d_name.name; 4121 4122 if (!strcmp(name, "memory.usage_in_bytes")) { 4123 event->register_event = mem_cgroup_usage_register_event; 4124 event->unregister_event = mem_cgroup_usage_unregister_event; 4125 } else if (!strcmp(name, "memory.oom_control")) { 4126 event->register_event = mem_cgroup_oom_register_event; 4127 event->unregister_event = mem_cgroup_oom_unregister_event; 4128 } else if (!strcmp(name, "memory.pressure_level")) { 4129 event->register_event = vmpressure_register_event; 4130 event->unregister_event = vmpressure_unregister_event; 4131 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4132 event->register_event = memsw_cgroup_usage_register_event; 4133 event->unregister_event = memsw_cgroup_usage_unregister_event; 4134 } else { 4135 ret = -EINVAL; 4136 goto out_put_cfile; 4137 } 4138 4139 /* 4140 * Verify @cfile should belong to @css. Also, remaining events are 4141 * automatically removed on cgroup destruction but the removal is 4142 * asynchronous, so take an extra ref on @css. 4143 */ 4144 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4145 &memory_cgrp_subsys); 4146 ret = -EINVAL; 4147 if (IS_ERR(cfile_css)) 4148 goto out_put_cfile; 4149 if (cfile_css != css) { 4150 css_put(cfile_css); 4151 goto out_put_cfile; 4152 } 4153 4154 ret = event->register_event(memcg, event->eventfd, buf); 4155 if (ret) 4156 goto out_put_css; 4157 4158 vfs_poll(efile.file, &event->pt); 4159 4160 spin_lock(&memcg->event_list_lock); 4161 list_add(&event->list, &memcg->event_list); 4162 spin_unlock(&memcg->event_list_lock); 4163 4164 fdput(cfile); 4165 fdput(efile); 4166 4167 return nbytes; 4168 4169 out_put_css: 4170 css_put(css); 4171 out_put_cfile: 4172 fdput(cfile); 4173 out_put_eventfd: 4174 eventfd_ctx_put(event->eventfd); 4175 out_put_efile: 4176 fdput(efile); 4177 out_kfree: 4178 kfree(event); 4179 4180 return ret; 4181 } 4182 4183 static struct cftype mem_cgroup_legacy_files[] = { 4184 { 4185 .name = "usage_in_bytes", 4186 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4187 .read_u64 = mem_cgroup_read_u64, 4188 }, 4189 { 4190 .name = "max_usage_in_bytes", 4191 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4192 .write = mem_cgroup_reset, 4193 .read_u64 = mem_cgroup_read_u64, 4194 }, 4195 { 4196 .name = "limit_in_bytes", 4197 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4198 .write = mem_cgroup_write, 4199 .read_u64 = mem_cgroup_read_u64, 4200 }, 4201 { 4202 .name = "soft_limit_in_bytes", 4203 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4204 .write = mem_cgroup_write, 4205 .read_u64 = mem_cgroup_read_u64, 4206 }, 4207 { 4208 .name = "failcnt", 4209 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4210 .write = mem_cgroup_reset, 4211 .read_u64 = mem_cgroup_read_u64, 4212 }, 4213 { 4214 .name = "stat", 4215 .seq_show = memcg_stat_show, 4216 }, 4217 { 4218 .name = "force_empty", 4219 .write = mem_cgroup_force_empty_write, 4220 }, 4221 { 4222 .name = "use_hierarchy", 4223 .write_u64 = mem_cgroup_hierarchy_write, 4224 .read_u64 = mem_cgroup_hierarchy_read, 4225 }, 4226 { 4227 .name = "cgroup.event_control", /* XXX: for compat */ 4228 .write = memcg_write_event_control, 4229 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4230 }, 4231 { 4232 .name = "swappiness", 4233 .read_u64 = mem_cgroup_swappiness_read, 4234 .write_u64 = mem_cgroup_swappiness_write, 4235 }, 4236 { 4237 .name = "move_charge_at_immigrate", 4238 .read_u64 = mem_cgroup_move_charge_read, 4239 .write_u64 = mem_cgroup_move_charge_write, 4240 }, 4241 { 4242 .name = "oom_control", 4243 .seq_show = mem_cgroup_oom_control_read, 4244 .write_u64 = mem_cgroup_oom_control_write, 4245 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4246 }, 4247 { 4248 .name = "pressure_level", 4249 }, 4250 #ifdef CONFIG_NUMA 4251 { 4252 .name = "numa_stat", 4253 .seq_show = memcg_numa_stat_show, 4254 }, 4255 #endif 4256 { 4257 .name = "kmem.limit_in_bytes", 4258 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4259 .write = mem_cgroup_write, 4260 .read_u64 = mem_cgroup_read_u64, 4261 }, 4262 { 4263 .name = "kmem.usage_in_bytes", 4264 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4265 .read_u64 = mem_cgroup_read_u64, 4266 }, 4267 { 4268 .name = "kmem.failcnt", 4269 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4270 .write = mem_cgroup_reset, 4271 .read_u64 = mem_cgroup_read_u64, 4272 }, 4273 { 4274 .name = "kmem.max_usage_in_bytes", 4275 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4276 .write = mem_cgroup_reset, 4277 .read_u64 = mem_cgroup_read_u64, 4278 }, 4279 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4280 { 4281 .name = "kmem.slabinfo", 4282 .seq_start = memcg_slab_start, 4283 .seq_next = memcg_slab_next, 4284 .seq_stop = memcg_slab_stop, 4285 .seq_show = memcg_slab_show, 4286 }, 4287 #endif 4288 { 4289 .name = "kmem.tcp.limit_in_bytes", 4290 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4291 .write = mem_cgroup_write, 4292 .read_u64 = mem_cgroup_read_u64, 4293 }, 4294 { 4295 .name = "kmem.tcp.usage_in_bytes", 4296 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4297 .read_u64 = mem_cgroup_read_u64, 4298 }, 4299 { 4300 .name = "kmem.tcp.failcnt", 4301 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4302 .write = mem_cgroup_reset, 4303 .read_u64 = mem_cgroup_read_u64, 4304 }, 4305 { 4306 .name = "kmem.tcp.max_usage_in_bytes", 4307 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4308 .write = mem_cgroup_reset, 4309 .read_u64 = mem_cgroup_read_u64, 4310 }, 4311 { }, /* terminate */ 4312 }; 4313 4314 /* 4315 * Private memory cgroup IDR 4316 * 4317 * Swap-out records and page cache shadow entries need to store memcg 4318 * references in constrained space, so we maintain an ID space that is 4319 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4320 * memory-controlled cgroups to 64k. 4321 * 4322 * However, there usually are many references to the oflline CSS after 4323 * the cgroup has been destroyed, such as page cache or reclaimable 4324 * slab objects, that don't need to hang on to the ID. We want to keep 4325 * those dead CSS from occupying IDs, or we might quickly exhaust the 4326 * relatively small ID space and prevent the creation of new cgroups 4327 * even when there are much fewer than 64k cgroups - possibly none. 4328 * 4329 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4330 * be freed and recycled when it's no longer needed, which is usually 4331 * when the CSS is offlined. 4332 * 4333 * The only exception to that are records of swapped out tmpfs/shmem 4334 * pages that need to be attributed to live ancestors on swapin. But 4335 * those references are manageable from userspace. 4336 */ 4337 4338 static DEFINE_IDR(mem_cgroup_idr); 4339 4340 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4341 { 4342 if (memcg->id.id > 0) { 4343 idr_remove(&mem_cgroup_idr, memcg->id.id); 4344 memcg->id.id = 0; 4345 } 4346 } 4347 4348 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4349 { 4350 refcount_add(n, &memcg->id.ref); 4351 } 4352 4353 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4354 { 4355 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4356 mem_cgroup_id_remove(memcg); 4357 4358 /* Memcg ID pins CSS */ 4359 css_put(&memcg->css); 4360 } 4361 } 4362 4363 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4364 { 4365 mem_cgroup_id_get_many(memcg, 1); 4366 } 4367 4368 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4369 { 4370 mem_cgroup_id_put_many(memcg, 1); 4371 } 4372 4373 /** 4374 * mem_cgroup_from_id - look up a memcg from a memcg id 4375 * @id: the memcg id to look up 4376 * 4377 * Caller must hold rcu_read_lock(). 4378 */ 4379 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4380 { 4381 WARN_ON_ONCE(!rcu_read_lock_held()); 4382 return idr_find(&mem_cgroup_idr, id); 4383 } 4384 4385 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4386 { 4387 struct mem_cgroup_per_node *pn; 4388 int tmp = node; 4389 /* 4390 * This routine is called against possible nodes. 4391 * But it's BUG to call kmalloc() against offline node. 4392 * 4393 * TODO: this routine can waste much memory for nodes which will 4394 * never be onlined. It's better to use memory hotplug callback 4395 * function. 4396 */ 4397 if (!node_state(node, N_NORMAL_MEMORY)) 4398 tmp = -1; 4399 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4400 if (!pn) 4401 return 1; 4402 4403 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4404 if (!pn->lruvec_stat_cpu) { 4405 kfree(pn); 4406 return 1; 4407 } 4408 4409 lruvec_init(&pn->lruvec); 4410 pn->usage_in_excess = 0; 4411 pn->on_tree = false; 4412 pn->memcg = memcg; 4413 4414 memcg->nodeinfo[node] = pn; 4415 return 0; 4416 } 4417 4418 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4419 { 4420 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4421 4422 if (!pn) 4423 return; 4424 4425 free_percpu(pn->lruvec_stat_cpu); 4426 kfree(pn); 4427 } 4428 4429 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4430 { 4431 int node; 4432 4433 for_each_node(node) 4434 free_mem_cgroup_per_node_info(memcg, node); 4435 free_percpu(memcg->stat_cpu); 4436 kfree(memcg); 4437 } 4438 4439 static void mem_cgroup_free(struct mem_cgroup *memcg) 4440 { 4441 memcg_wb_domain_exit(memcg); 4442 __mem_cgroup_free(memcg); 4443 } 4444 4445 static struct mem_cgroup *mem_cgroup_alloc(void) 4446 { 4447 struct mem_cgroup *memcg; 4448 unsigned int size; 4449 int node; 4450 4451 size = sizeof(struct mem_cgroup); 4452 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4453 4454 memcg = kzalloc(size, GFP_KERNEL); 4455 if (!memcg) 4456 return NULL; 4457 4458 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4459 1, MEM_CGROUP_ID_MAX, 4460 GFP_KERNEL); 4461 if (memcg->id.id < 0) 4462 goto fail; 4463 4464 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu); 4465 if (!memcg->stat_cpu) 4466 goto fail; 4467 4468 for_each_node(node) 4469 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4470 goto fail; 4471 4472 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4473 goto fail; 4474 4475 INIT_WORK(&memcg->high_work, high_work_func); 4476 memcg->last_scanned_node = MAX_NUMNODES; 4477 INIT_LIST_HEAD(&memcg->oom_notify); 4478 mutex_init(&memcg->thresholds_lock); 4479 spin_lock_init(&memcg->move_lock); 4480 vmpressure_init(&memcg->vmpressure); 4481 INIT_LIST_HEAD(&memcg->event_list); 4482 spin_lock_init(&memcg->event_list_lock); 4483 memcg->socket_pressure = jiffies; 4484 #ifdef CONFIG_MEMCG_KMEM 4485 memcg->kmemcg_id = -1; 4486 #endif 4487 #ifdef CONFIG_CGROUP_WRITEBACK 4488 INIT_LIST_HEAD(&memcg->cgwb_list); 4489 #endif 4490 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4491 return memcg; 4492 fail: 4493 mem_cgroup_id_remove(memcg); 4494 __mem_cgroup_free(memcg); 4495 return NULL; 4496 } 4497 4498 static struct cgroup_subsys_state * __ref 4499 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4500 { 4501 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4502 struct mem_cgroup *memcg; 4503 long error = -ENOMEM; 4504 4505 memcg = mem_cgroup_alloc(); 4506 if (!memcg) 4507 return ERR_PTR(error); 4508 4509 memcg->high = PAGE_COUNTER_MAX; 4510 memcg->soft_limit = PAGE_COUNTER_MAX; 4511 if (parent) { 4512 memcg->swappiness = mem_cgroup_swappiness(parent); 4513 memcg->oom_kill_disable = parent->oom_kill_disable; 4514 } 4515 if (parent && parent->use_hierarchy) { 4516 memcg->use_hierarchy = true; 4517 page_counter_init(&memcg->memory, &parent->memory); 4518 page_counter_init(&memcg->swap, &parent->swap); 4519 page_counter_init(&memcg->memsw, &parent->memsw); 4520 page_counter_init(&memcg->kmem, &parent->kmem); 4521 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4522 } else { 4523 page_counter_init(&memcg->memory, NULL); 4524 page_counter_init(&memcg->swap, NULL); 4525 page_counter_init(&memcg->memsw, NULL); 4526 page_counter_init(&memcg->kmem, NULL); 4527 page_counter_init(&memcg->tcpmem, NULL); 4528 /* 4529 * Deeper hierachy with use_hierarchy == false doesn't make 4530 * much sense so let cgroup subsystem know about this 4531 * unfortunate state in our controller. 4532 */ 4533 if (parent != root_mem_cgroup) 4534 memory_cgrp_subsys.broken_hierarchy = true; 4535 } 4536 4537 /* The following stuff does not apply to the root */ 4538 if (!parent) { 4539 root_mem_cgroup = memcg; 4540 return &memcg->css; 4541 } 4542 4543 error = memcg_online_kmem(memcg); 4544 if (error) 4545 goto fail; 4546 4547 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4548 static_branch_inc(&memcg_sockets_enabled_key); 4549 4550 return &memcg->css; 4551 fail: 4552 mem_cgroup_id_remove(memcg); 4553 mem_cgroup_free(memcg); 4554 return ERR_PTR(-ENOMEM); 4555 } 4556 4557 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4558 { 4559 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4560 4561 /* 4562 * A memcg must be visible for memcg_expand_shrinker_maps() 4563 * by the time the maps are allocated. So, we allocate maps 4564 * here, when for_each_mem_cgroup() can't skip it. 4565 */ 4566 if (memcg_alloc_shrinker_maps(memcg)) { 4567 mem_cgroup_id_remove(memcg); 4568 return -ENOMEM; 4569 } 4570 4571 /* Online state pins memcg ID, memcg ID pins CSS */ 4572 refcount_set(&memcg->id.ref, 1); 4573 css_get(css); 4574 return 0; 4575 } 4576 4577 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4578 { 4579 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4580 struct mem_cgroup_event *event, *tmp; 4581 4582 /* 4583 * Unregister events and notify userspace. 4584 * Notify userspace about cgroup removing only after rmdir of cgroup 4585 * directory to avoid race between userspace and kernelspace. 4586 */ 4587 spin_lock(&memcg->event_list_lock); 4588 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4589 list_del_init(&event->list); 4590 schedule_work(&event->remove); 4591 } 4592 spin_unlock(&memcg->event_list_lock); 4593 4594 page_counter_set_min(&memcg->memory, 0); 4595 page_counter_set_low(&memcg->memory, 0); 4596 4597 memcg_offline_kmem(memcg); 4598 wb_memcg_offline(memcg); 4599 4600 drain_all_stock(memcg); 4601 4602 mem_cgroup_id_put(memcg); 4603 } 4604 4605 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4606 { 4607 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4608 4609 invalidate_reclaim_iterators(memcg); 4610 } 4611 4612 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4613 { 4614 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4615 4616 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4617 static_branch_dec(&memcg_sockets_enabled_key); 4618 4619 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4620 static_branch_dec(&memcg_sockets_enabled_key); 4621 4622 vmpressure_cleanup(&memcg->vmpressure); 4623 cancel_work_sync(&memcg->high_work); 4624 mem_cgroup_remove_from_trees(memcg); 4625 memcg_free_shrinker_maps(memcg); 4626 memcg_free_kmem(memcg); 4627 mem_cgroup_free(memcg); 4628 } 4629 4630 /** 4631 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4632 * @css: the target css 4633 * 4634 * Reset the states of the mem_cgroup associated with @css. This is 4635 * invoked when the userland requests disabling on the default hierarchy 4636 * but the memcg is pinned through dependency. The memcg should stop 4637 * applying policies and should revert to the vanilla state as it may be 4638 * made visible again. 4639 * 4640 * The current implementation only resets the essential configurations. 4641 * This needs to be expanded to cover all the visible parts. 4642 */ 4643 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4644 { 4645 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4646 4647 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 4648 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 4649 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 4650 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 4651 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 4652 page_counter_set_min(&memcg->memory, 0); 4653 page_counter_set_low(&memcg->memory, 0); 4654 memcg->high = PAGE_COUNTER_MAX; 4655 memcg->soft_limit = PAGE_COUNTER_MAX; 4656 memcg_wb_domain_size_changed(memcg); 4657 } 4658 4659 #ifdef CONFIG_MMU 4660 /* Handlers for move charge at task migration. */ 4661 static int mem_cgroup_do_precharge(unsigned long count) 4662 { 4663 int ret; 4664 4665 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4666 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4667 if (!ret) { 4668 mc.precharge += count; 4669 return ret; 4670 } 4671 4672 /* Try charges one by one with reclaim, but do not retry */ 4673 while (count--) { 4674 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4675 if (ret) 4676 return ret; 4677 mc.precharge++; 4678 cond_resched(); 4679 } 4680 return 0; 4681 } 4682 4683 union mc_target { 4684 struct page *page; 4685 swp_entry_t ent; 4686 }; 4687 4688 enum mc_target_type { 4689 MC_TARGET_NONE = 0, 4690 MC_TARGET_PAGE, 4691 MC_TARGET_SWAP, 4692 MC_TARGET_DEVICE, 4693 }; 4694 4695 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4696 unsigned long addr, pte_t ptent) 4697 { 4698 struct page *page = _vm_normal_page(vma, addr, ptent, true); 4699 4700 if (!page || !page_mapped(page)) 4701 return NULL; 4702 if (PageAnon(page)) { 4703 if (!(mc.flags & MOVE_ANON)) 4704 return NULL; 4705 } else { 4706 if (!(mc.flags & MOVE_FILE)) 4707 return NULL; 4708 } 4709 if (!get_page_unless_zero(page)) 4710 return NULL; 4711 4712 return page; 4713 } 4714 4715 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 4716 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4717 pte_t ptent, swp_entry_t *entry) 4718 { 4719 struct page *page = NULL; 4720 swp_entry_t ent = pte_to_swp_entry(ptent); 4721 4722 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4723 return NULL; 4724 4725 /* 4726 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 4727 * a device and because they are not accessible by CPU they are store 4728 * as special swap entry in the CPU page table. 4729 */ 4730 if (is_device_private_entry(ent)) { 4731 page = device_private_entry_to_page(ent); 4732 /* 4733 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 4734 * a refcount of 1 when free (unlike normal page) 4735 */ 4736 if (!page_ref_add_unless(page, 1, 1)) 4737 return NULL; 4738 return page; 4739 } 4740 4741 /* 4742 * Because lookup_swap_cache() updates some statistics counter, 4743 * we call find_get_page() with swapper_space directly. 4744 */ 4745 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4746 if (do_memsw_account()) 4747 entry->val = ent.val; 4748 4749 return page; 4750 } 4751 #else 4752 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4753 pte_t ptent, swp_entry_t *entry) 4754 { 4755 return NULL; 4756 } 4757 #endif 4758 4759 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4760 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4761 { 4762 struct page *page = NULL; 4763 struct address_space *mapping; 4764 pgoff_t pgoff; 4765 4766 if (!vma->vm_file) /* anonymous vma */ 4767 return NULL; 4768 if (!(mc.flags & MOVE_FILE)) 4769 return NULL; 4770 4771 mapping = vma->vm_file->f_mapping; 4772 pgoff = linear_page_index(vma, addr); 4773 4774 /* page is moved even if it's not RSS of this task(page-faulted). */ 4775 #ifdef CONFIG_SWAP 4776 /* shmem/tmpfs may report page out on swap: account for that too. */ 4777 if (shmem_mapping(mapping)) { 4778 page = find_get_entry(mapping, pgoff); 4779 if (xa_is_value(page)) { 4780 swp_entry_t swp = radix_to_swp_entry(page); 4781 if (do_memsw_account()) 4782 *entry = swp; 4783 page = find_get_page(swap_address_space(swp), 4784 swp_offset(swp)); 4785 } 4786 } else 4787 page = find_get_page(mapping, pgoff); 4788 #else 4789 page = find_get_page(mapping, pgoff); 4790 #endif 4791 return page; 4792 } 4793 4794 /** 4795 * mem_cgroup_move_account - move account of the page 4796 * @page: the page 4797 * @compound: charge the page as compound or small page 4798 * @from: mem_cgroup which the page is moved from. 4799 * @to: mem_cgroup which the page is moved to. @from != @to. 4800 * 4801 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4802 * 4803 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4804 * from old cgroup. 4805 */ 4806 static int mem_cgroup_move_account(struct page *page, 4807 bool compound, 4808 struct mem_cgroup *from, 4809 struct mem_cgroup *to) 4810 { 4811 unsigned long flags; 4812 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4813 int ret; 4814 bool anon; 4815 4816 VM_BUG_ON(from == to); 4817 VM_BUG_ON_PAGE(PageLRU(page), page); 4818 VM_BUG_ON(compound && !PageTransHuge(page)); 4819 4820 /* 4821 * Prevent mem_cgroup_migrate() from looking at 4822 * page->mem_cgroup of its source page while we change it. 4823 */ 4824 ret = -EBUSY; 4825 if (!trylock_page(page)) 4826 goto out; 4827 4828 ret = -EINVAL; 4829 if (page->mem_cgroup != from) 4830 goto out_unlock; 4831 4832 anon = PageAnon(page); 4833 4834 spin_lock_irqsave(&from->move_lock, flags); 4835 4836 if (!anon && page_mapped(page)) { 4837 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 4838 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 4839 } 4840 4841 /* 4842 * move_lock grabbed above and caller set from->moving_account, so 4843 * mod_memcg_page_state will serialize updates to PageDirty. 4844 * So mapping should be stable for dirty pages. 4845 */ 4846 if (!anon && PageDirty(page)) { 4847 struct address_space *mapping = page_mapping(page); 4848 4849 if (mapping_cap_account_dirty(mapping)) { 4850 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 4851 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 4852 } 4853 } 4854 4855 if (PageWriteback(page)) { 4856 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 4857 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 4858 } 4859 4860 /* 4861 * It is safe to change page->mem_cgroup here because the page 4862 * is referenced, charged, and isolated - we can't race with 4863 * uncharging, charging, migration, or LRU putback. 4864 */ 4865 4866 /* caller should have done css_get */ 4867 page->mem_cgroup = to; 4868 spin_unlock_irqrestore(&from->move_lock, flags); 4869 4870 ret = 0; 4871 4872 local_irq_disable(); 4873 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4874 memcg_check_events(to, page); 4875 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4876 memcg_check_events(from, page); 4877 local_irq_enable(); 4878 out_unlock: 4879 unlock_page(page); 4880 out: 4881 return ret; 4882 } 4883 4884 /** 4885 * get_mctgt_type - get target type of moving charge 4886 * @vma: the vma the pte to be checked belongs 4887 * @addr: the address corresponding to the pte to be checked 4888 * @ptent: the pte to be checked 4889 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4890 * 4891 * Returns 4892 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4893 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4894 * move charge. if @target is not NULL, the page is stored in target->page 4895 * with extra refcnt got(Callers should handle it). 4896 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4897 * target for charge migration. if @target is not NULL, the entry is stored 4898 * in target->ent. 4899 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC 4900 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru). 4901 * For now we such page is charge like a regular page would be as for all 4902 * intent and purposes it is just special memory taking the place of a 4903 * regular page. 4904 * 4905 * See Documentations/vm/hmm.txt and include/linux/hmm.h 4906 * 4907 * Called with pte lock held. 4908 */ 4909 4910 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4911 unsigned long addr, pte_t ptent, union mc_target *target) 4912 { 4913 struct page *page = NULL; 4914 enum mc_target_type ret = MC_TARGET_NONE; 4915 swp_entry_t ent = { .val = 0 }; 4916 4917 if (pte_present(ptent)) 4918 page = mc_handle_present_pte(vma, addr, ptent); 4919 else if (is_swap_pte(ptent)) 4920 page = mc_handle_swap_pte(vma, ptent, &ent); 4921 else if (pte_none(ptent)) 4922 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4923 4924 if (!page && !ent.val) 4925 return ret; 4926 if (page) { 4927 /* 4928 * Do only loose check w/o serialization. 4929 * mem_cgroup_move_account() checks the page is valid or 4930 * not under LRU exclusion. 4931 */ 4932 if (page->mem_cgroup == mc.from) { 4933 ret = MC_TARGET_PAGE; 4934 if (is_device_private_page(page) || 4935 is_device_public_page(page)) 4936 ret = MC_TARGET_DEVICE; 4937 if (target) 4938 target->page = page; 4939 } 4940 if (!ret || !target) 4941 put_page(page); 4942 } 4943 /* 4944 * There is a swap entry and a page doesn't exist or isn't charged. 4945 * But we cannot move a tail-page in a THP. 4946 */ 4947 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 4948 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4949 ret = MC_TARGET_SWAP; 4950 if (target) 4951 target->ent = ent; 4952 } 4953 return ret; 4954 } 4955 4956 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4957 /* 4958 * We don't consider PMD mapped swapping or file mapped pages because THP does 4959 * not support them for now. 4960 * Caller should make sure that pmd_trans_huge(pmd) is true. 4961 */ 4962 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4963 unsigned long addr, pmd_t pmd, union mc_target *target) 4964 { 4965 struct page *page = NULL; 4966 enum mc_target_type ret = MC_TARGET_NONE; 4967 4968 if (unlikely(is_swap_pmd(pmd))) { 4969 VM_BUG_ON(thp_migration_supported() && 4970 !is_pmd_migration_entry(pmd)); 4971 return ret; 4972 } 4973 page = pmd_page(pmd); 4974 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4975 if (!(mc.flags & MOVE_ANON)) 4976 return ret; 4977 if (page->mem_cgroup == mc.from) { 4978 ret = MC_TARGET_PAGE; 4979 if (target) { 4980 get_page(page); 4981 target->page = page; 4982 } 4983 } 4984 return ret; 4985 } 4986 #else 4987 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4988 unsigned long addr, pmd_t pmd, union mc_target *target) 4989 { 4990 return MC_TARGET_NONE; 4991 } 4992 #endif 4993 4994 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4995 unsigned long addr, unsigned long end, 4996 struct mm_walk *walk) 4997 { 4998 struct vm_area_struct *vma = walk->vma; 4999 pte_t *pte; 5000 spinlock_t *ptl; 5001 5002 ptl = pmd_trans_huge_lock(pmd, vma); 5003 if (ptl) { 5004 /* 5005 * Note their can not be MC_TARGET_DEVICE for now as we do not 5006 * support transparent huge page with MEMORY_DEVICE_PUBLIC or 5007 * MEMORY_DEVICE_PRIVATE but this might change. 5008 */ 5009 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5010 mc.precharge += HPAGE_PMD_NR; 5011 spin_unlock(ptl); 5012 return 0; 5013 } 5014 5015 if (pmd_trans_unstable(pmd)) 5016 return 0; 5017 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5018 for (; addr != end; pte++, addr += PAGE_SIZE) 5019 if (get_mctgt_type(vma, addr, *pte, NULL)) 5020 mc.precharge++; /* increment precharge temporarily */ 5021 pte_unmap_unlock(pte - 1, ptl); 5022 cond_resched(); 5023 5024 return 0; 5025 } 5026 5027 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5028 { 5029 unsigned long precharge; 5030 5031 struct mm_walk mem_cgroup_count_precharge_walk = { 5032 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5033 .mm = mm, 5034 }; 5035 down_read(&mm->mmap_sem); 5036 walk_page_range(0, mm->highest_vm_end, 5037 &mem_cgroup_count_precharge_walk); 5038 up_read(&mm->mmap_sem); 5039 5040 precharge = mc.precharge; 5041 mc.precharge = 0; 5042 5043 return precharge; 5044 } 5045 5046 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5047 { 5048 unsigned long precharge = mem_cgroup_count_precharge(mm); 5049 5050 VM_BUG_ON(mc.moving_task); 5051 mc.moving_task = current; 5052 return mem_cgroup_do_precharge(precharge); 5053 } 5054 5055 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5056 static void __mem_cgroup_clear_mc(void) 5057 { 5058 struct mem_cgroup *from = mc.from; 5059 struct mem_cgroup *to = mc.to; 5060 5061 /* we must uncharge all the leftover precharges from mc.to */ 5062 if (mc.precharge) { 5063 cancel_charge(mc.to, mc.precharge); 5064 mc.precharge = 0; 5065 } 5066 /* 5067 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5068 * we must uncharge here. 5069 */ 5070 if (mc.moved_charge) { 5071 cancel_charge(mc.from, mc.moved_charge); 5072 mc.moved_charge = 0; 5073 } 5074 /* we must fixup refcnts and charges */ 5075 if (mc.moved_swap) { 5076 /* uncharge swap account from the old cgroup */ 5077 if (!mem_cgroup_is_root(mc.from)) 5078 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5079 5080 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5081 5082 /* 5083 * we charged both to->memory and to->memsw, so we 5084 * should uncharge to->memory. 5085 */ 5086 if (!mem_cgroup_is_root(mc.to)) 5087 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5088 5089 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5090 css_put_many(&mc.to->css, mc.moved_swap); 5091 5092 mc.moved_swap = 0; 5093 } 5094 memcg_oom_recover(from); 5095 memcg_oom_recover(to); 5096 wake_up_all(&mc.waitq); 5097 } 5098 5099 static void mem_cgroup_clear_mc(void) 5100 { 5101 struct mm_struct *mm = mc.mm; 5102 5103 /* 5104 * we must clear moving_task before waking up waiters at the end of 5105 * task migration. 5106 */ 5107 mc.moving_task = NULL; 5108 __mem_cgroup_clear_mc(); 5109 spin_lock(&mc.lock); 5110 mc.from = NULL; 5111 mc.to = NULL; 5112 mc.mm = NULL; 5113 spin_unlock(&mc.lock); 5114 5115 mmput(mm); 5116 } 5117 5118 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5119 { 5120 struct cgroup_subsys_state *css; 5121 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5122 struct mem_cgroup *from; 5123 struct task_struct *leader, *p; 5124 struct mm_struct *mm; 5125 unsigned long move_flags; 5126 int ret = 0; 5127 5128 /* charge immigration isn't supported on the default hierarchy */ 5129 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5130 return 0; 5131 5132 /* 5133 * Multi-process migrations only happen on the default hierarchy 5134 * where charge immigration is not used. Perform charge 5135 * immigration if @tset contains a leader and whine if there are 5136 * multiple. 5137 */ 5138 p = NULL; 5139 cgroup_taskset_for_each_leader(leader, css, tset) { 5140 WARN_ON_ONCE(p); 5141 p = leader; 5142 memcg = mem_cgroup_from_css(css); 5143 } 5144 if (!p) 5145 return 0; 5146 5147 /* 5148 * We are now commited to this value whatever it is. Changes in this 5149 * tunable will only affect upcoming migrations, not the current one. 5150 * So we need to save it, and keep it going. 5151 */ 5152 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5153 if (!move_flags) 5154 return 0; 5155 5156 from = mem_cgroup_from_task(p); 5157 5158 VM_BUG_ON(from == memcg); 5159 5160 mm = get_task_mm(p); 5161 if (!mm) 5162 return 0; 5163 /* We move charges only when we move a owner of the mm */ 5164 if (mm->owner == p) { 5165 VM_BUG_ON(mc.from); 5166 VM_BUG_ON(mc.to); 5167 VM_BUG_ON(mc.precharge); 5168 VM_BUG_ON(mc.moved_charge); 5169 VM_BUG_ON(mc.moved_swap); 5170 5171 spin_lock(&mc.lock); 5172 mc.mm = mm; 5173 mc.from = from; 5174 mc.to = memcg; 5175 mc.flags = move_flags; 5176 spin_unlock(&mc.lock); 5177 /* We set mc.moving_task later */ 5178 5179 ret = mem_cgroup_precharge_mc(mm); 5180 if (ret) 5181 mem_cgroup_clear_mc(); 5182 } else { 5183 mmput(mm); 5184 } 5185 return ret; 5186 } 5187 5188 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5189 { 5190 if (mc.to) 5191 mem_cgroup_clear_mc(); 5192 } 5193 5194 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5195 unsigned long addr, unsigned long end, 5196 struct mm_walk *walk) 5197 { 5198 int ret = 0; 5199 struct vm_area_struct *vma = walk->vma; 5200 pte_t *pte; 5201 spinlock_t *ptl; 5202 enum mc_target_type target_type; 5203 union mc_target target; 5204 struct page *page; 5205 5206 ptl = pmd_trans_huge_lock(pmd, vma); 5207 if (ptl) { 5208 if (mc.precharge < HPAGE_PMD_NR) { 5209 spin_unlock(ptl); 5210 return 0; 5211 } 5212 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5213 if (target_type == MC_TARGET_PAGE) { 5214 page = target.page; 5215 if (!isolate_lru_page(page)) { 5216 if (!mem_cgroup_move_account(page, true, 5217 mc.from, mc.to)) { 5218 mc.precharge -= HPAGE_PMD_NR; 5219 mc.moved_charge += HPAGE_PMD_NR; 5220 } 5221 putback_lru_page(page); 5222 } 5223 put_page(page); 5224 } else if (target_type == MC_TARGET_DEVICE) { 5225 page = target.page; 5226 if (!mem_cgroup_move_account(page, true, 5227 mc.from, mc.to)) { 5228 mc.precharge -= HPAGE_PMD_NR; 5229 mc.moved_charge += HPAGE_PMD_NR; 5230 } 5231 put_page(page); 5232 } 5233 spin_unlock(ptl); 5234 return 0; 5235 } 5236 5237 if (pmd_trans_unstable(pmd)) 5238 return 0; 5239 retry: 5240 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5241 for (; addr != end; addr += PAGE_SIZE) { 5242 pte_t ptent = *(pte++); 5243 bool device = false; 5244 swp_entry_t ent; 5245 5246 if (!mc.precharge) 5247 break; 5248 5249 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5250 case MC_TARGET_DEVICE: 5251 device = true; 5252 /* fall through */ 5253 case MC_TARGET_PAGE: 5254 page = target.page; 5255 /* 5256 * We can have a part of the split pmd here. Moving it 5257 * can be done but it would be too convoluted so simply 5258 * ignore such a partial THP and keep it in original 5259 * memcg. There should be somebody mapping the head. 5260 */ 5261 if (PageTransCompound(page)) 5262 goto put; 5263 if (!device && isolate_lru_page(page)) 5264 goto put; 5265 if (!mem_cgroup_move_account(page, false, 5266 mc.from, mc.to)) { 5267 mc.precharge--; 5268 /* we uncharge from mc.from later. */ 5269 mc.moved_charge++; 5270 } 5271 if (!device) 5272 putback_lru_page(page); 5273 put: /* get_mctgt_type() gets the page */ 5274 put_page(page); 5275 break; 5276 case MC_TARGET_SWAP: 5277 ent = target.ent; 5278 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5279 mc.precharge--; 5280 /* we fixup refcnts and charges later. */ 5281 mc.moved_swap++; 5282 } 5283 break; 5284 default: 5285 break; 5286 } 5287 } 5288 pte_unmap_unlock(pte - 1, ptl); 5289 cond_resched(); 5290 5291 if (addr != end) { 5292 /* 5293 * We have consumed all precharges we got in can_attach(). 5294 * We try charge one by one, but don't do any additional 5295 * charges to mc.to if we have failed in charge once in attach() 5296 * phase. 5297 */ 5298 ret = mem_cgroup_do_precharge(1); 5299 if (!ret) 5300 goto retry; 5301 } 5302 5303 return ret; 5304 } 5305 5306 static void mem_cgroup_move_charge(void) 5307 { 5308 struct mm_walk mem_cgroup_move_charge_walk = { 5309 .pmd_entry = mem_cgroup_move_charge_pte_range, 5310 .mm = mc.mm, 5311 }; 5312 5313 lru_add_drain_all(); 5314 /* 5315 * Signal lock_page_memcg() to take the memcg's move_lock 5316 * while we're moving its pages to another memcg. Then wait 5317 * for already started RCU-only updates to finish. 5318 */ 5319 atomic_inc(&mc.from->moving_account); 5320 synchronize_rcu(); 5321 retry: 5322 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5323 /* 5324 * Someone who are holding the mmap_sem might be waiting in 5325 * waitq. So we cancel all extra charges, wake up all waiters, 5326 * and retry. Because we cancel precharges, we might not be able 5327 * to move enough charges, but moving charge is a best-effort 5328 * feature anyway, so it wouldn't be a big problem. 5329 */ 5330 __mem_cgroup_clear_mc(); 5331 cond_resched(); 5332 goto retry; 5333 } 5334 /* 5335 * When we have consumed all precharges and failed in doing 5336 * additional charge, the page walk just aborts. 5337 */ 5338 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5339 5340 up_read(&mc.mm->mmap_sem); 5341 atomic_dec(&mc.from->moving_account); 5342 } 5343 5344 static void mem_cgroup_move_task(void) 5345 { 5346 if (mc.to) { 5347 mem_cgroup_move_charge(); 5348 mem_cgroup_clear_mc(); 5349 } 5350 } 5351 #else /* !CONFIG_MMU */ 5352 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5353 { 5354 return 0; 5355 } 5356 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5357 { 5358 } 5359 static void mem_cgroup_move_task(void) 5360 { 5361 } 5362 #endif 5363 5364 /* 5365 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5366 * to verify whether we're attached to the default hierarchy on each mount 5367 * attempt. 5368 */ 5369 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5370 { 5371 /* 5372 * use_hierarchy is forced on the default hierarchy. cgroup core 5373 * guarantees that @root doesn't have any children, so turning it 5374 * on for the root memcg is enough. 5375 */ 5376 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5377 root_mem_cgroup->use_hierarchy = true; 5378 else 5379 root_mem_cgroup->use_hierarchy = false; 5380 } 5381 5382 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5383 { 5384 if (value == PAGE_COUNTER_MAX) 5385 seq_puts(m, "max\n"); 5386 else 5387 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5388 5389 return 0; 5390 } 5391 5392 static u64 memory_current_read(struct cgroup_subsys_state *css, 5393 struct cftype *cft) 5394 { 5395 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5396 5397 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5398 } 5399 5400 static int memory_min_show(struct seq_file *m, void *v) 5401 { 5402 return seq_puts_memcg_tunable(m, 5403 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5404 } 5405 5406 static ssize_t memory_min_write(struct kernfs_open_file *of, 5407 char *buf, size_t nbytes, loff_t off) 5408 { 5409 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5410 unsigned long min; 5411 int err; 5412 5413 buf = strstrip(buf); 5414 err = page_counter_memparse(buf, "max", &min); 5415 if (err) 5416 return err; 5417 5418 page_counter_set_min(&memcg->memory, min); 5419 5420 return nbytes; 5421 } 5422 5423 static int memory_low_show(struct seq_file *m, void *v) 5424 { 5425 return seq_puts_memcg_tunable(m, 5426 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5427 } 5428 5429 static ssize_t memory_low_write(struct kernfs_open_file *of, 5430 char *buf, size_t nbytes, loff_t off) 5431 { 5432 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5433 unsigned long low; 5434 int err; 5435 5436 buf = strstrip(buf); 5437 err = page_counter_memparse(buf, "max", &low); 5438 if (err) 5439 return err; 5440 5441 page_counter_set_low(&memcg->memory, low); 5442 5443 return nbytes; 5444 } 5445 5446 static int memory_high_show(struct seq_file *m, void *v) 5447 { 5448 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 5449 } 5450 5451 static ssize_t memory_high_write(struct kernfs_open_file *of, 5452 char *buf, size_t nbytes, loff_t off) 5453 { 5454 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5455 unsigned long nr_pages; 5456 unsigned long high; 5457 int err; 5458 5459 buf = strstrip(buf); 5460 err = page_counter_memparse(buf, "max", &high); 5461 if (err) 5462 return err; 5463 5464 memcg->high = high; 5465 5466 nr_pages = page_counter_read(&memcg->memory); 5467 if (nr_pages > high) 5468 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5469 GFP_KERNEL, true); 5470 5471 memcg_wb_domain_size_changed(memcg); 5472 return nbytes; 5473 } 5474 5475 static int memory_max_show(struct seq_file *m, void *v) 5476 { 5477 return seq_puts_memcg_tunable(m, 5478 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 5479 } 5480 5481 static ssize_t memory_max_write(struct kernfs_open_file *of, 5482 char *buf, size_t nbytes, loff_t off) 5483 { 5484 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5485 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5486 bool drained = false; 5487 unsigned long max; 5488 int err; 5489 5490 buf = strstrip(buf); 5491 err = page_counter_memparse(buf, "max", &max); 5492 if (err) 5493 return err; 5494 5495 xchg(&memcg->memory.max, max); 5496 5497 for (;;) { 5498 unsigned long nr_pages = page_counter_read(&memcg->memory); 5499 5500 if (nr_pages <= max) 5501 break; 5502 5503 if (signal_pending(current)) { 5504 err = -EINTR; 5505 break; 5506 } 5507 5508 if (!drained) { 5509 drain_all_stock(memcg); 5510 drained = true; 5511 continue; 5512 } 5513 5514 if (nr_reclaims) { 5515 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5516 GFP_KERNEL, true)) 5517 nr_reclaims--; 5518 continue; 5519 } 5520 5521 memcg_memory_event(memcg, MEMCG_OOM); 5522 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5523 break; 5524 } 5525 5526 memcg_wb_domain_size_changed(memcg); 5527 return nbytes; 5528 } 5529 5530 static int memory_events_show(struct seq_file *m, void *v) 5531 { 5532 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5533 5534 seq_printf(m, "low %lu\n", 5535 atomic_long_read(&memcg->memory_events[MEMCG_LOW])); 5536 seq_printf(m, "high %lu\n", 5537 atomic_long_read(&memcg->memory_events[MEMCG_HIGH])); 5538 seq_printf(m, "max %lu\n", 5539 atomic_long_read(&memcg->memory_events[MEMCG_MAX])); 5540 seq_printf(m, "oom %lu\n", 5541 atomic_long_read(&memcg->memory_events[MEMCG_OOM])); 5542 seq_printf(m, "oom_kill %lu\n", 5543 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 5544 5545 return 0; 5546 } 5547 5548 static int memory_stat_show(struct seq_file *m, void *v) 5549 { 5550 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5551 struct accumulated_stats acc; 5552 int i; 5553 5554 /* 5555 * Provide statistics on the state of the memory subsystem as 5556 * well as cumulative event counters that show past behavior. 5557 * 5558 * This list is ordered following a combination of these gradients: 5559 * 1) generic big picture -> specifics and details 5560 * 2) reflecting userspace activity -> reflecting kernel heuristics 5561 * 5562 * Current memory state: 5563 */ 5564 5565 memset(&acc, 0, sizeof(acc)); 5566 acc.stats_size = MEMCG_NR_STAT; 5567 acc.events_size = NR_VM_EVENT_ITEMS; 5568 accumulate_memcg_tree(memcg, &acc); 5569 5570 seq_printf(m, "anon %llu\n", 5571 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE); 5572 seq_printf(m, "file %llu\n", 5573 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE); 5574 seq_printf(m, "kernel_stack %llu\n", 5575 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024); 5576 seq_printf(m, "slab %llu\n", 5577 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] + 5578 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5579 seq_printf(m, "sock %llu\n", 5580 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE); 5581 5582 seq_printf(m, "shmem %llu\n", 5583 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE); 5584 seq_printf(m, "file_mapped %llu\n", 5585 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE); 5586 seq_printf(m, "file_dirty %llu\n", 5587 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE); 5588 seq_printf(m, "file_writeback %llu\n", 5589 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE); 5590 5591 /* 5592 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 5593 * with the NR_ANON_THP vm counter, but right now it's a pain in the 5594 * arse because it requires migrating the work out of rmap to a place 5595 * where the page->mem_cgroup is set up and stable. 5596 */ 5597 seq_printf(m, "anon_thp %llu\n", 5598 (u64)acc.stat[MEMCG_RSS_HUGE] * PAGE_SIZE); 5599 5600 for (i = 0; i < NR_LRU_LISTS; i++) 5601 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i], 5602 (u64)acc.lru_pages[i] * PAGE_SIZE); 5603 5604 seq_printf(m, "slab_reclaimable %llu\n", 5605 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE); 5606 seq_printf(m, "slab_unreclaimable %llu\n", 5607 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5608 5609 /* Accumulated memory events */ 5610 5611 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]); 5612 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]); 5613 5614 seq_printf(m, "workingset_refault %lu\n", 5615 acc.stat[WORKINGSET_REFAULT]); 5616 seq_printf(m, "workingset_activate %lu\n", 5617 acc.stat[WORKINGSET_ACTIVATE]); 5618 seq_printf(m, "workingset_nodereclaim %lu\n", 5619 acc.stat[WORKINGSET_NODERECLAIM]); 5620 5621 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]); 5622 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] + 5623 acc.events[PGSCAN_DIRECT]); 5624 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] + 5625 acc.events[PGSTEAL_DIRECT]); 5626 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]); 5627 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]); 5628 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]); 5629 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]); 5630 5631 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5632 seq_printf(m, "thp_fault_alloc %lu\n", acc.events[THP_FAULT_ALLOC]); 5633 seq_printf(m, "thp_collapse_alloc %lu\n", 5634 acc.events[THP_COLLAPSE_ALLOC]); 5635 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5636 5637 return 0; 5638 } 5639 5640 static int memory_oom_group_show(struct seq_file *m, void *v) 5641 { 5642 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5643 5644 seq_printf(m, "%d\n", memcg->oom_group); 5645 5646 return 0; 5647 } 5648 5649 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 5650 char *buf, size_t nbytes, loff_t off) 5651 { 5652 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5653 int ret, oom_group; 5654 5655 buf = strstrip(buf); 5656 if (!buf) 5657 return -EINVAL; 5658 5659 ret = kstrtoint(buf, 0, &oom_group); 5660 if (ret) 5661 return ret; 5662 5663 if (oom_group != 0 && oom_group != 1) 5664 return -EINVAL; 5665 5666 memcg->oom_group = oom_group; 5667 5668 return nbytes; 5669 } 5670 5671 static struct cftype memory_files[] = { 5672 { 5673 .name = "current", 5674 .flags = CFTYPE_NOT_ON_ROOT, 5675 .read_u64 = memory_current_read, 5676 }, 5677 { 5678 .name = "min", 5679 .flags = CFTYPE_NOT_ON_ROOT, 5680 .seq_show = memory_min_show, 5681 .write = memory_min_write, 5682 }, 5683 { 5684 .name = "low", 5685 .flags = CFTYPE_NOT_ON_ROOT, 5686 .seq_show = memory_low_show, 5687 .write = memory_low_write, 5688 }, 5689 { 5690 .name = "high", 5691 .flags = CFTYPE_NOT_ON_ROOT, 5692 .seq_show = memory_high_show, 5693 .write = memory_high_write, 5694 }, 5695 { 5696 .name = "max", 5697 .flags = CFTYPE_NOT_ON_ROOT, 5698 .seq_show = memory_max_show, 5699 .write = memory_max_write, 5700 }, 5701 { 5702 .name = "events", 5703 .flags = CFTYPE_NOT_ON_ROOT, 5704 .file_offset = offsetof(struct mem_cgroup, events_file), 5705 .seq_show = memory_events_show, 5706 }, 5707 { 5708 .name = "stat", 5709 .flags = CFTYPE_NOT_ON_ROOT, 5710 .seq_show = memory_stat_show, 5711 }, 5712 { 5713 .name = "oom.group", 5714 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 5715 .seq_show = memory_oom_group_show, 5716 .write = memory_oom_group_write, 5717 }, 5718 { } /* terminate */ 5719 }; 5720 5721 struct cgroup_subsys memory_cgrp_subsys = { 5722 .css_alloc = mem_cgroup_css_alloc, 5723 .css_online = mem_cgroup_css_online, 5724 .css_offline = mem_cgroup_css_offline, 5725 .css_released = mem_cgroup_css_released, 5726 .css_free = mem_cgroup_css_free, 5727 .css_reset = mem_cgroup_css_reset, 5728 .can_attach = mem_cgroup_can_attach, 5729 .cancel_attach = mem_cgroup_cancel_attach, 5730 .post_attach = mem_cgroup_move_task, 5731 .bind = mem_cgroup_bind, 5732 .dfl_cftypes = memory_files, 5733 .legacy_cftypes = mem_cgroup_legacy_files, 5734 .early_init = 0, 5735 }; 5736 5737 /** 5738 * mem_cgroup_protected - check if memory consumption is in the normal range 5739 * @root: the top ancestor of the sub-tree being checked 5740 * @memcg: the memory cgroup to check 5741 * 5742 * WARNING: This function is not stateless! It can only be used as part 5743 * of a top-down tree iteration, not for isolated queries. 5744 * 5745 * Returns one of the following: 5746 * MEMCG_PROT_NONE: cgroup memory is not protected 5747 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 5748 * an unprotected supply of reclaimable memory from other cgroups. 5749 * MEMCG_PROT_MIN: cgroup memory is protected 5750 * 5751 * @root is exclusive; it is never protected when looked at directly 5752 * 5753 * To provide a proper hierarchical behavior, effective memory.min/low values 5754 * are used. Below is the description of how effective memory.low is calculated. 5755 * Effective memory.min values is calculated in the same way. 5756 * 5757 * Effective memory.low is always equal or less than the original memory.low. 5758 * If there is no memory.low overcommittment (which is always true for 5759 * top-level memory cgroups), these two values are equal. 5760 * Otherwise, it's a part of parent's effective memory.low, 5761 * calculated as a cgroup's memory.low usage divided by sum of sibling's 5762 * memory.low usages, where memory.low usage is the size of actually 5763 * protected memory. 5764 * 5765 * low_usage 5766 * elow = min( memory.low, parent->elow * ------------------ ), 5767 * siblings_low_usage 5768 * 5769 * | memory.current, if memory.current < memory.low 5770 * low_usage = | 5771 * | 0, otherwise. 5772 * 5773 * 5774 * Such definition of the effective memory.low provides the expected 5775 * hierarchical behavior: parent's memory.low value is limiting 5776 * children, unprotected memory is reclaimed first and cgroups, 5777 * which are not using their guarantee do not affect actual memory 5778 * distribution. 5779 * 5780 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 5781 * 5782 * A A/memory.low = 2G, A/memory.current = 6G 5783 * //\\ 5784 * BC DE B/memory.low = 3G B/memory.current = 2G 5785 * C/memory.low = 1G C/memory.current = 2G 5786 * D/memory.low = 0 D/memory.current = 2G 5787 * E/memory.low = 10G E/memory.current = 0 5788 * 5789 * and the memory pressure is applied, the following memory distribution 5790 * is expected (approximately): 5791 * 5792 * A/memory.current = 2G 5793 * 5794 * B/memory.current = 1.3G 5795 * C/memory.current = 0.6G 5796 * D/memory.current = 0 5797 * E/memory.current = 0 5798 * 5799 * These calculations require constant tracking of the actual low usages 5800 * (see propagate_protected_usage()), as well as recursive calculation of 5801 * effective memory.low values. But as we do call mem_cgroup_protected() 5802 * path for each memory cgroup top-down from the reclaim, 5803 * it's possible to optimize this part, and save calculated elow 5804 * for next usage. This part is intentionally racy, but it's ok, 5805 * as memory.low is a best-effort mechanism. 5806 */ 5807 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 5808 struct mem_cgroup *memcg) 5809 { 5810 struct mem_cgroup *parent; 5811 unsigned long emin, parent_emin; 5812 unsigned long elow, parent_elow; 5813 unsigned long usage; 5814 5815 if (mem_cgroup_disabled()) 5816 return MEMCG_PROT_NONE; 5817 5818 if (!root) 5819 root = root_mem_cgroup; 5820 if (memcg == root) 5821 return MEMCG_PROT_NONE; 5822 5823 usage = page_counter_read(&memcg->memory); 5824 if (!usage) 5825 return MEMCG_PROT_NONE; 5826 5827 emin = memcg->memory.min; 5828 elow = memcg->memory.low; 5829 5830 parent = parent_mem_cgroup(memcg); 5831 /* No parent means a non-hierarchical mode on v1 memcg */ 5832 if (!parent) 5833 return MEMCG_PROT_NONE; 5834 5835 if (parent == root) 5836 goto exit; 5837 5838 parent_emin = READ_ONCE(parent->memory.emin); 5839 emin = min(emin, parent_emin); 5840 if (emin && parent_emin) { 5841 unsigned long min_usage, siblings_min_usage; 5842 5843 min_usage = min(usage, memcg->memory.min); 5844 siblings_min_usage = atomic_long_read( 5845 &parent->memory.children_min_usage); 5846 5847 if (min_usage && siblings_min_usage) 5848 emin = min(emin, parent_emin * min_usage / 5849 siblings_min_usage); 5850 } 5851 5852 parent_elow = READ_ONCE(parent->memory.elow); 5853 elow = min(elow, parent_elow); 5854 if (elow && parent_elow) { 5855 unsigned long low_usage, siblings_low_usage; 5856 5857 low_usage = min(usage, memcg->memory.low); 5858 siblings_low_usage = atomic_long_read( 5859 &parent->memory.children_low_usage); 5860 5861 if (low_usage && siblings_low_usage) 5862 elow = min(elow, parent_elow * low_usage / 5863 siblings_low_usage); 5864 } 5865 5866 exit: 5867 memcg->memory.emin = emin; 5868 memcg->memory.elow = elow; 5869 5870 if (usage <= emin) 5871 return MEMCG_PROT_MIN; 5872 else if (usage <= elow) 5873 return MEMCG_PROT_LOW; 5874 else 5875 return MEMCG_PROT_NONE; 5876 } 5877 5878 /** 5879 * mem_cgroup_try_charge - try charging a page 5880 * @page: page to charge 5881 * @mm: mm context of the victim 5882 * @gfp_mask: reclaim mode 5883 * @memcgp: charged memcg return 5884 * @compound: charge the page as compound or small page 5885 * 5886 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5887 * pages according to @gfp_mask if necessary. 5888 * 5889 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5890 * Otherwise, an error code is returned. 5891 * 5892 * After page->mapping has been set up, the caller must finalize the 5893 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5894 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5895 */ 5896 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5897 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5898 bool compound) 5899 { 5900 struct mem_cgroup *memcg = NULL; 5901 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5902 int ret = 0; 5903 5904 if (mem_cgroup_disabled()) 5905 goto out; 5906 5907 if (PageSwapCache(page)) { 5908 /* 5909 * Every swap fault against a single page tries to charge the 5910 * page, bail as early as possible. shmem_unuse() encounters 5911 * already charged pages, too. The USED bit is protected by 5912 * the page lock, which serializes swap cache removal, which 5913 * in turn serializes uncharging. 5914 */ 5915 VM_BUG_ON_PAGE(!PageLocked(page), page); 5916 if (compound_head(page)->mem_cgroup) 5917 goto out; 5918 5919 if (do_swap_account) { 5920 swp_entry_t ent = { .val = page_private(page), }; 5921 unsigned short id = lookup_swap_cgroup_id(ent); 5922 5923 rcu_read_lock(); 5924 memcg = mem_cgroup_from_id(id); 5925 if (memcg && !css_tryget_online(&memcg->css)) 5926 memcg = NULL; 5927 rcu_read_unlock(); 5928 } 5929 } 5930 5931 if (!memcg) 5932 memcg = get_mem_cgroup_from_mm(mm); 5933 5934 ret = try_charge(memcg, gfp_mask, nr_pages); 5935 5936 css_put(&memcg->css); 5937 out: 5938 *memcgp = memcg; 5939 return ret; 5940 } 5941 5942 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 5943 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5944 bool compound) 5945 { 5946 struct mem_cgroup *memcg; 5947 int ret; 5948 5949 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 5950 memcg = *memcgp; 5951 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 5952 return ret; 5953 } 5954 5955 /** 5956 * mem_cgroup_commit_charge - commit a page charge 5957 * @page: page to charge 5958 * @memcg: memcg to charge the page to 5959 * @lrucare: page might be on LRU already 5960 * @compound: charge the page as compound or small page 5961 * 5962 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5963 * after page->mapping has been set up. This must happen atomically 5964 * as part of the page instantiation, i.e. under the page table lock 5965 * for anonymous pages, under the page lock for page and swap cache. 5966 * 5967 * In addition, the page must not be on the LRU during the commit, to 5968 * prevent racing with task migration. If it might be, use @lrucare. 5969 * 5970 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5971 */ 5972 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5973 bool lrucare, bool compound) 5974 { 5975 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5976 5977 VM_BUG_ON_PAGE(!page->mapping, page); 5978 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5979 5980 if (mem_cgroup_disabled()) 5981 return; 5982 /* 5983 * Swap faults will attempt to charge the same page multiple 5984 * times. But reuse_swap_page() might have removed the page 5985 * from swapcache already, so we can't check PageSwapCache(). 5986 */ 5987 if (!memcg) 5988 return; 5989 5990 commit_charge(page, memcg, lrucare); 5991 5992 local_irq_disable(); 5993 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5994 memcg_check_events(memcg, page); 5995 local_irq_enable(); 5996 5997 if (do_memsw_account() && PageSwapCache(page)) { 5998 swp_entry_t entry = { .val = page_private(page) }; 5999 /* 6000 * The swap entry might not get freed for a long time, 6001 * let's not wait for it. The page already received a 6002 * memory+swap charge, drop the swap entry duplicate. 6003 */ 6004 mem_cgroup_uncharge_swap(entry, nr_pages); 6005 } 6006 } 6007 6008 /** 6009 * mem_cgroup_cancel_charge - cancel a page charge 6010 * @page: page to charge 6011 * @memcg: memcg to charge the page to 6012 * @compound: charge the page as compound or small page 6013 * 6014 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6015 */ 6016 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6017 bool compound) 6018 { 6019 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6020 6021 if (mem_cgroup_disabled()) 6022 return; 6023 /* 6024 * Swap faults will attempt to charge the same page multiple 6025 * times. But reuse_swap_page() might have removed the page 6026 * from swapcache already, so we can't check PageSwapCache(). 6027 */ 6028 if (!memcg) 6029 return; 6030 6031 cancel_charge(memcg, nr_pages); 6032 } 6033 6034 struct uncharge_gather { 6035 struct mem_cgroup *memcg; 6036 unsigned long pgpgout; 6037 unsigned long nr_anon; 6038 unsigned long nr_file; 6039 unsigned long nr_kmem; 6040 unsigned long nr_huge; 6041 unsigned long nr_shmem; 6042 struct page *dummy_page; 6043 }; 6044 6045 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6046 { 6047 memset(ug, 0, sizeof(*ug)); 6048 } 6049 6050 static void uncharge_batch(const struct uncharge_gather *ug) 6051 { 6052 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6053 unsigned long flags; 6054 6055 if (!mem_cgroup_is_root(ug->memcg)) { 6056 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6057 if (do_memsw_account()) 6058 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6059 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6060 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6061 memcg_oom_recover(ug->memcg); 6062 } 6063 6064 local_irq_save(flags); 6065 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6066 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6067 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6068 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6069 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6070 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages); 6071 memcg_check_events(ug->memcg, ug->dummy_page); 6072 local_irq_restore(flags); 6073 6074 if (!mem_cgroup_is_root(ug->memcg)) 6075 css_put_many(&ug->memcg->css, nr_pages); 6076 } 6077 6078 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6079 { 6080 VM_BUG_ON_PAGE(PageLRU(page), page); 6081 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6082 !PageHWPoison(page) , page); 6083 6084 if (!page->mem_cgroup) 6085 return; 6086 6087 /* 6088 * Nobody should be changing or seriously looking at 6089 * page->mem_cgroup at this point, we have fully 6090 * exclusive access to the page. 6091 */ 6092 6093 if (ug->memcg != page->mem_cgroup) { 6094 if (ug->memcg) { 6095 uncharge_batch(ug); 6096 uncharge_gather_clear(ug); 6097 } 6098 ug->memcg = page->mem_cgroup; 6099 } 6100 6101 if (!PageKmemcg(page)) { 6102 unsigned int nr_pages = 1; 6103 6104 if (PageTransHuge(page)) { 6105 nr_pages <<= compound_order(page); 6106 ug->nr_huge += nr_pages; 6107 } 6108 if (PageAnon(page)) 6109 ug->nr_anon += nr_pages; 6110 else { 6111 ug->nr_file += nr_pages; 6112 if (PageSwapBacked(page)) 6113 ug->nr_shmem += nr_pages; 6114 } 6115 ug->pgpgout++; 6116 } else { 6117 ug->nr_kmem += 1 << compound_order(page); 6118 __ClearPageKmemcg(page); 6119 } 6120 6121 ug->dummy_page = page; 6122 page->mem_cgroup = NULL; 6123 } 6124 6125 static void uncharge_list(struct list_head *page_list) 6126 { 6127 struct uncharge_gather ug; 6128 struct list_head *next; 6129 6130 uncharge_gather_clear(&ug); 6131 6132 /* 6133 * Note that the list can be a single page->lru; hence the 6134 * do-while loop instead of a simple list_for_each_entry(). 6135 */ 6136 next = page_list->next; 6137 do { 6138 struct page *page; 6139 6140 page = list_entry(next, struct page, lru); 6141 next = page->lru.next; 6142 6143 uncharge_page(page, &ug); 6144 } while (next != page_list); 6145 6146 if (ug.memcg) 6147 uncharge_batch(&ug); 6148 } 6149 6150 /** 6151 * mem_cgroup_uncharge - uncharge a page 6152 * @page: page to uncharge 6153 * 6154 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6155 * mem_cgroup_commit_charge(). 6156 */ 6157 void mem_cgroup_uncharge(struct page *page) 6158 { 6159 struct uncharge_gather ug; 6160 6161 if (mem_cgroup_disabled()) 6162 return; 6163 6164 /* Don't touch page->lru of any random page, pre-check: */ 6165 if (!page->mem_cgroup) 6166 return; 6167 6168 uncharge_gather_clear(&ug); 6169 uncharge_page(page, &ug); 6170 uncharge_batch(&ug); 6171 } 6172 6173 /** 6174 * mem_cgroup_uncharge_list - uncharge a list of page 6175 * @page_list: list of pages to uncharge 6176 * 6177 * Uncharge a list of pages previously charged with 6178 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6179 */ 6180 void mem_cgroup_uncharge_list(struct list_head *page_list) 6181 { 6182 if (mem_cgroup_disabled()) 6183 return; 6184 6185 if (!list_empty(page_list)) 6186 uncharge_list(page_list); 6187 } 6188 6189 /** 6190 * mem_cgroup_migrate - charge a page's replacement 6191 * @oldpage: currently circulating page 6192 * @newpage: replacement page 6193 * 6194 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6195 * be uncharged upon free. 6196 * 6197 * Both pages must be locked, @newpage->mapping must be set up. 6198 */ 6199 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6200 { 6201 struct mem_cgroup *memcg; 6202 unsigned int nr_pages; 6203 bool compound; 6204 unsigned long flags; 6205 6206 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6207 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6208 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6209 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6210 newpage); 6211 6212 if (mem_cgroup_disabled()) 6213 return; 6214 6215 /* Page cache replacement: new page already charged? */ 6216 if (newpage->mem_cgroup) 6217 return; 6218 6219 /* Swapcache readahead pages can get replaced before being charged */ 6220 memcg = oldpage->mem_cgroup; 6221 if (!memcg) 6222 return; 6223 6224 /* Force-charge the new page. The old one will be freed soon */ 6225 compound = PageTransHuge(newpage); 6226 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6227 6228 page_counter_charge(&memcg->memory, nr_pages); 6229 if (do_memsw_account()) 6230 page_counter_charge(&memcg->memsw, nr_pages); 6231 css_get_many(&memcg->css, nr_pages); 6232 6233 commit_charge(newpage, memcg, false); 6234 6235 local_irq_save(flags); 6236 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6237 memcg_check_events(memcg, newpage); 6238 local_irq_restore(flags); 6239 } 6240 6241 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6242 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6243 6244 void mem_cgroup_sk_alloc(struct sock *sk) 6245 { 6246 struct mem_cgroup *memcg; 6247 6248 if (!mem_cgroup_sockets_enabled) 6249 return; 6250 6251 /* 6252 * Socket cloning can throw us here with sk_memcg already 6253 * filled. It won't however, necessarily happen from 6254 * process context. So the test for root memcg given 6255 * the current task's memcg won't help us in this case. 6256 * 6257 * Respecting the original socket's memcg is a better 6258 * decision in this case. 6259 */ 6260 if (sk->sk_memcg) { 6261 css_get(&sk->sk_memcg->css); 6262 return; 6263 } 6264 6265 rcu_read_lock(); 6266 memcg = mem_cgroup_from_task(current); 6267 if (memcg == root_mem_cgroup) 6268 goto out; 6269 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6270 goto out; 6271 if (css_tryget_online(&memcg->css)) 6272 sk->sk_memcg = memcg; 6273 out: 6274 rcu_read_unlock(); 6275 } 6276 6277 void mem_cgroup_sk_free(struct sock *sk) 6278 { 6279 if (sk->sk_memcg) 6280 css_put(&sk->sk_memcg->css); 6281 } 6282 6283 /** 6284 * mem_cgroup_charge_skmem - charge socket memory 6285 * @memcg: memcg to charge 6286 * @nr_pages: number of pages to charge 6287 * 6288 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6289 * @memcg's configured limit, %false if the charge had to be forced. 6290 */ 6291 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6292 { 6293 gfp_t gfp_mask = GFP_KERNEL; 6294 6295 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6296 struct page_counter *fail; 6297 6298 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6299 memcg->tcpmem_pressure = 0; 6300 return true; 6301 } 6302 page_counter_charge(&memcg->tcpmem, nr_pages); 6303 memcg->tcpmem_pressure = 1; 6304 return false; 6305 } 6306 6307 /* Don't block in the packet receive path */ 6308 if (in_softirq()) 6309 gfp_mask = GFP_NOWAIT; 6310 6311 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6312 6313 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6314 return true; 6315 6316 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6317 return false; 6318 } 6319 6320 /** 6321 * mem_cgroup_uncharge_skmem - uncharge socket memory 6322 * @memcg: memcg to uncharge 6323 * @nr_pages: number of pages to uncharge 6324 */ 6325 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6326 { 6327 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6328 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6329 return; 6330 } 6331 6332 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6333 6334 refill_stock(memcg, nr_pages); 6335 } 6336 6337 static int __init cgroup_memory(char *s) 6338 { 6339 char *token; 6340 6341 while ((token = strsep(&s, ",")) != NULL) { 6342 if (!*token) 6343 continue; 6344 if (!strcmp(token, "nosocket")) 6345 cgroup_memory_nosocket = true; 6346 if (!strcmp(token, "nokmem")) 6347 cgroup_memory_nokmem = true; 6348 } 6349 return 0; 6350 } 6351 __setup("cgroup.memory=", cgroup_memory); 6352 6353 /* 6354 * subsys_initcall() for memory controller. 6355 * 6356 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6357 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6358 * basically everything that doesn't depend on a specific mem_cgroup structure 6359 * should be initialized from here. 6360 */ 6361 static int __init mem_cgroup_init(void) 6362 { 6363 int cpu, node; 6364 6365 #ifdef CONFIG_MEMCG_KMEM 6366 /* 6367 * Kmem cache creation is mostly done with the slab_mutex held, 6368 * so use a workqueue with limited concurrency to avoid stalling 6369 * all worker threads in case lots of cgroups are created and 6370 * destroyed simultaneously. 6371 */ 6372 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6373 BUG_ON(!memcg_kmem_cache_wq); 6374 #endif 6375 6376 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6377 memcg_hotplug_cpu_dead); 6378 6379 for_each_possible_cpu(cpu) 6380 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6381 drain_local_stock); 6382 6383 for_each_node(node) { 6384 struct mem_cgroup_tree_per_node *rtpn; 6385 6386 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6387 node_online(node) ? node : NUMA_NO_NODE); 6388 6389 rtpn->rb_root = RB_ROOT; 6390 rtpn->rb_rightmost = NULL; 6391 spin_lock_init(&rtpn->lock); 6392 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6393 } 6394 6395 return 0; 6396 } 6397 subsys_initcall(mem_cgroup_init); 6398 6399 #ifdef CONFIG_MEMCG_SWAP 6400 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6401 { 6402 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6403 /* 6404 * The root cgroup cannot be destroyed, so it's refcount must 6405 * always be >= 1. 6406 */ 6407 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6408 VM_BUG_ON(1); 6409 break; 6410 } 6411 memcg = parent_mem_cgroup(memcg); 6412 if (!memcg) 6413 memcg = root_mem_cgroup; 6414 } 6415 return memcg; 6416 } 6417 6418 /** 6419 * mem_cgroup_swapout - transfer a memsw charge to swap 6420 * @page: page whose memsw charge to transfer 6421 * @entry: swap entry to move the charge to 6422 * 6423 * Transfer the memsw charge of @page to @entry. 6424 */ 6425 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6426 { 6427 struct mem_cgroup *memcg, *swap_memcg; 6428 unsigned int nr_entries; 6429 unsigned short oldid; 6430 6431 VM_BUG_ON_PAGE(PageLRU(page), page); 6432 VM_BUG_ON_PAGE(page_count(page), page); 6433 6434 if (!do_memsw_account()) 6435 return; 6436 6437 memcg = page->mem_cgroup; 6438 6439 /* Readahead page, never charged */ 6440 if (!memcg) 6441 return; 6442 6443 /* 6444 * In case the memcg owning these pages has been offlined and doesn't 6445 * have an ID allocated to it anymore, charge the closest online 6446 * ancestor for the swap instead and transfer the memory+swap charge. 6447 */ 6448 swap_memcg = mem_cgroup_id_get_online(memcg); 6449 nr_entries = hpage_nr_pages(page); 6450 /* Get references for the tail pages, too */ 6451 if (nr_entries > 1) 6452 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6453 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6454 nr_entries); 6455 VM_BUG_ON_PAGE(oldid, page); 6456 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6457 6458 page->mem_cgroup = NULL; 6459 6460 if (!mem_cgroup_is_root(memcg)) 6461 page_counter_uncharge(&memcg->memory, nr_entries); 6462 6463 if (memcg != swap_memcg) { 6464 if (!mem_cgroup_is_root(swap_memcg)) 6465 page_counter_charge(&swap_memcg->memsw, nr_entries); 6466 page_counter_uncharge(&memcg->memsw, nr_entries); 6467 } 6468 6469 /* 6470 * Interrupts should be disabled here because the caller holds the 6471 * i_pages lock which is taken with interrupts-off. It is 6472 * important here to have the interrupts disabled because it is the 6473 * only synchronisation we have for updating the per-CPU variables. 6474 */ 6475 VM_BUG_ON(!irqs_disabled()); 6476 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6477 -nr_entries); 6478 memcg_check_events(memcg, page); 6479 6480 if (!mem_cgroup_is_root(memcg)) 6481 css_put_many(&memcg->css, nr_entries); 6482 } 6483 6484 /** 6485 * mem_cgroup_try_charge_swap - try charging swap space for a page 6486 * @page: page being added to swap 6487 * @entry: swap entry to charge 6488 * 6489 * Try to charge @page's memcg for the swap space at @entry. 6490 * 6491 * Returns 0 on success, -ENOMEM on failure. 6492 */ 6493 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6494 { 6495 unsigned int nr_pages = hpage_nr_pages(page); 6496 struct page_counter *counter; 6497 struct mem_cgroup *memcg; 6498 unsigned short oldid; 6499 6500 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6501 return 0; 6502 6503 memcg = page->mem_cgroup; 6504 6505 /* Readahead page, never charged */ 6506 if (!memcg) 6507 return 0; 6508 6509 if (!entry.val) { 6510 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6511 return 0; 6512 } 6513 6514 memcg = mem_cgroup_id_get_online(memcg); 6515 6516 if (!mem_cgroup_is_root(memcg) && 6517 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6518 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6519 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6520 mem_cgroup_id_put(memcg); 6521 return -ENOMEM; 6522 } 6523 6524 /* Get references for the tail pages, too */ 6525 if (nr_pages > 1) 6526 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6527 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6528 VM_BUG_ON_PAGE(oldid, page); 6529 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6530 6531 return 0; 6532 } 6533 6534 /** 6535 * mem_cgroup_uncharge_swap - uncharge swap space 6536 * @entry: swap entry to uncharge 6537 * @nr_pages: the amount of swap space to uncharge 6538 */ 6539 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6540 { 6541 struct mem_cgroup *memcg; 6542 unsigned short id; 6543 6544 if (!do_swap_account) 6545 return; 6546 6547 id = swap_cgroup_record(entry, 0, nr_pages); 6548 rcu_read_lock(); 6549 memcg = mem_cgroup_from_id(id); 6550 if (memcg) { 6551 if (!mem_cgroup_is_root(memcg)) { 6552 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6553 page_counter_uncharge(&memcg->swap, nr_pages); 6554 else 6555 page_counter_uncharge(&memcg->memsw, nr_pages); 6556 } 6557 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6558 mem_cgroup_id_put_many(memcg, nr_pages); 6559 } 6560 rcu_read_unlock(); 6561 } 6562 6563 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6564 { 6565 long nr_swap_pages = get_nr_swap_pages(); 6566 6567 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6568 return nr_swap_pages; 6569 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6570 nr_swap_pages = min_t(long, nr_swap_pages, 6571 READ_ONCE(memcg->swap.max) - 6572 page_counter_read(&memcg->swap)); 6573 return nr_swap_pages; 6574 } 6575 6576 bool mem_cgroup_swap_full(struct page *page) 6577 { 6578 struct mem_cgroup *memcg; 6579 6580 VM_BUG_ON_PAGE(!PageLocked(page), page); 6581 6582 if (vm_swap_full()) 6583 return true; 6584 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6585 return false; 6586 6587 memcg = page->mem_cgroup; 6588 if (!memcg) 6589 return false; 6590 6591 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6592 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 6593 return true; 6594 6595 return false; 6596 } 6597 6598 /* for remember boot option*/ 6599 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6600 static int really_do_swap_account __initdata = 1; 6601 #else 6602 static int really_do_swap_account __initdata; 6603 #endif 6604 6605 static int __init enable_swap_account(char *s) 6606 { 6607 if (!strcmp(s, "1")) 6608 really_do_swap_account = 1; 6609 else if (!strcmp(s, "0")) 6610 really_do_swap_account = 0; 6611 return 1; 6612 } 6613 __setup("swapaccount=", enable_swap_account); 6614 6615 static u64 swap_current_read(struct cgroup_subsys_state *css, 6616 struct cftype *cft) 6617 { 6618 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6619 6620 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6621 } 6622 6623 static int swap_max_show(struct seq_file *m, void *v) 6624 { 6625 return seq_puts_memcg_tunable(m, 6626 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 6627 } 6628 6629 static ssize_t swap_max_write(struct kernfs_open_file *of, 6630 char *buf, size_t nbytes, loff_t off) 6631 { 6632 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6633 unsigned long max; 6634 int err; 6635 6636 buf = strstrip(buf); 6637 err = page_counter_memparse(buf, "max", &max); 6638 if (err) 6639 return err; 6640 6641 xchg(&memcg->swap.max, max); 6642 6643 return nbytes; 6644 } 6645 6646 static int swap_events_show(struct seq_file *m, void *v) 6647 { 6648 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6649 6650 seq_printf(m, "max %lu\n", 6651 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 6652 seq_printf(m, "fail %lu\n", 6653 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 6654 6655 return 0; 6656 } 6657 6658 static struct cftype swap_files[] = { 6659 { 6660 .name = "swap.current", 6661 .flags = CFTYPE_NOT_ON_ROOT, 6662 .read_u64 = swap_current_read, 6663 }, 6664 { 6665 .name = "swap.max", 6666 .flags = CFTYPE_NOT_ON_ROOT, 6667 .seq_show = swap_max_show, 6668 .write = swap_max_write, 6669 }, 6670 { 6671 .name = "swap.events", 6672 .flags = CFTYPE_NOT_ON_ROOT, 6673 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 6674 .seq_show = swap_events_show, 6675 }, 6676 { } /* terminate */ 6677 }; 6678 6679 static struct cftype memsw_cgroup_files[] = { 6680 { 6681 .name = "memsw.usage_in_bytes", 6682 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6683 .read_u64 = mem_cgroup_read_u64, 6684 }, 6685 { 6686 .name = "memsw.max_usage_in_bytes", 6687 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6688 .write = mem_cgroup_reset, 6689 .read_u64 = mem_cgroup_read_u64, 6690 }, 6691 { 6692 .name = "memsw.limit_in_bytes", 6693 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6694 .write = mem_cgroup_write, 6695 .read_u64 = mem_cgroup_read_u64, 6696 }, 6697 { 6698 .name = "memsw.failcnt", 6699 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6700 .write = mem_cgroup_reset, 6701 .read_u64 = mem_cgroup_read_u64, 6702 }, 6703 { }, /* terminate */ 6704 }; 6705 6706 static int __init mem_cgroup_swap_init(void) 6707 { 6708 if (!mem_cgroup_disabled() && really_do_swap_account) { 6709 do_swap_account = 1; 6710 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6711 swap_files)); 6712 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6713 memsw_cgroup_files)); 6714 } 6715 return 0; 6716 } 6717 subsys_initcall(mem_cgroup_swap_init); 6718 6719 #endif /* CONFIG_MEMCG_SWAP */ 6720