xref: /linux/mm/memcontrol.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85 
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88 
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91 
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94 
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98 
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104 
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 /* for encoding cft->private value on file */
207 enum res_type {
208 	_MEM,
209 	_MEMSWAP,
210 	_KMEM,
211 	_TCP,
212 };
213 
214 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
215 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val)	((val) & 0xffff)
217 
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)		\
224 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
225 	     iter != NULL;				\
226 	     iter = mem_cgroup_iter(root, iter, NULL))
227 
228 #define for_each_mem_cgroup(iter)			\
229 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
230 	     iter != NULL;				\
231 	     iter = mem_cgroup_iter(NULL, iter, NULL))
232 
233 static inline bool task_is_dying(void)
234 {
235 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 		(current->flags & PF_EXITING);
237 }
238 
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 	if (!memcg)
243 		memcg = root_mem_cgroup;
244 	return &memcg->vmpressure;
245 }
246 
247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249 	return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251 
252 #define CURRENT_OBJCG_UPDATE_BIT 0
253 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
254 
255 #ifdef CONFIG_MEMCG_KMEM
256 static DEFINE_SPINLOCK(objcg_lock);
257 
258 bool mem_cgroup_kmem_disabled(void)
259 {
260 	return cgroup_memory_nokmem;
261 }
262 
263 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
264 				      unsigned int nr_pages);
265 
266 static void obj_cgroup_release(struct percpu_ref *ref)
267 {
268 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
269 	unsigned int nr_bytes;
270 	unsigned int nr_pages;
271 	unsigned long flags;
272 
273 	/*
274 	 * At this point all allocated objects are freed, and
275 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
276 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
277 	 *
278 	 * The following sequence can lead to it:
279 	 * 1) CPU0: objcg == stock->cached_objcg
280 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
281 	 *          PAGE_SIZE bytes are charged
282 	 * 3) CPU1: a process from another memcg is allocating something,
283 	 *          the stock if flushed,
284 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
285 	 * 5) CPU0: we do release this object,
286 	 *          92 bytes are added to stock->nr_bytes
287 	 * 6) CPU0: stock is flushed,
288 	 *          92 bytes are added to objcg->nr_charged_bytes
289 	 *
290 	 * In the result, nr_charged_bytes == PAGE_SIZE.
291 	 * This page will be uncharged in obj_cgroup_release().
292 	 */
293 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
294 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
295 	nr_pages = nr_bytes >> PAGE_SHIFT;
296 
297 	if (nr_pages)
298 		obj_cgroup_uncharge_pages(objcg, nr_pages);
299 
300 	spin_lock_irqsave(&objcg_lock, flags);
301 	list_del(&objcg->list);
302 	spin_unlock_irqrestore(&objcg_lock, flags);
303 
304 	percpu_ref_exit(ref);
305 	kfree_rcu(objcg, rcu);
306 }
307 
308 static struct obj_cgroup *obj_cgroup_alloc(void)
309 {
310 	struct obj_cgroup *objcg;
311 	int ret;
312 
313 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
314 	if (!objcg)
315 		return NULL;
316 
317 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
318 			      GFP_KERNEL);
319 	if (ret) {
320 		kfree(objcg);
321 		return NULL;
322 	}
323 	INIT_LIST_HEAD(&objcg->list);
324 	return objcg;
325 }
326 
327 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
328 				  struct mem_cgroup *parent)
329 {
330 	struct obj_cgroup *objcg, *iter;
331 
332 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
333 
334 	spin_lock_irq(&objcg_lock);
335 
336 	/* 1) Ready to reparent active objcg. */
337 	list_add(&objcg->list, &memcg->objcg_list);
338 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
339 	list_for_each_entry(iter, &memcg->objcg_list, list)
340 		WRITE_ONCE(iter->memcg, parent);
341 	/* 3) Move already reparented objcgs to the parent's list */
342 	list_splice(&memcg->objcg_list, &parent->objcg_list);
343 
344 	spin_unlock_irq(&objcg_lock);
345 
346 	percpu_ref_kill(&objcg->refcnt);
347 }
348 
349 /*
350  * A lot of the calls to the cache allocation functions are expected to be
351  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
352  * conditional to this static branch, we'll have to allow modules that does
353  * kmem_cache_alloc and the such to see this symbol as well
354  */
355 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
356 EXPORT_SYMBOL(memcg_kmem_online_key);
357 
358 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
359 EXPORT_SYMBOL(memcg_bpf_enabled_key);
360 #endif
361 
362 /**
363  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
364  * @folio: folio of interest
365  *
366  * If memcg is bound to the default hierarchy, css of the memcg associated
367  * with @folio is returned.  The returned css remains associated with @folio
368  * until it is released.
369  *
370  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
371  * is returned.
372  */
373 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
374 {
375 	struct mem_cgroup *memcg = folio_memcg(folio);
376 
377 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
378 		memcg = root_mem_cgroup;
379 
380 	return &memcg->css;
381 }
382 
383 /**
384  * page_cgroup_ino - return inode number of the memcg a page is charged to
385  * @page: the page
386  *
387  * Look up the closest online ancestor of the memory cgroup @page is charged to
388  * and return its inode number or 0 if @page is not charged to any cgroup. It
389  * is safe to call this function without holding a reference to @page.
390  *
391  * Note, this function is inherently racy, because there is nothing to prevent
392  * the cgroup inode from getting torn down and potentially reallocated a moment
393  * after page_cgroup_ino() returns, so it only should be used by callers that
394  * do not care (such as procfs interfaces).
395  */
396 ino_t page_cgroup_ino(struct page *page)
397 {
398 	struct mem_cgroup *memcg;
399 	unsigned long ino = 0;
400 
401 	rcu_read_lock();
402 	/* page_folio() is racy here, but the entire function is racy anyway */
403 	memcg = folio_memcg_check(page_folio(page));
404 
405 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
406 		memcg = parent_mem_cgroup(memcg);
407 	if (memcg)
408 		ino = cgroup_ino(memcg->css.cgroup);
409 	rcu_read_unlock();
410 	return ino;
411 }
412 
413 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
414 					 struct mem_cgroup_tree_per_node *mctz,
415 					 unsigned long new_usage_in_excess)
416 {
417 	struct rb_node **p = &mctz->rb_root.rb_node;
418 	struct rb_node *parent = NULL;
419 	struct mem_cgroup_per_node *mz_node;
420 	bool rightmost = true;
421 
422 	if (mz->on_tree)
423 		return;
424 
425 	mz->usage_in_excess = new_usage_in_excess;
426 	if (!mz->usage_in_excess)
427 		return;
428 	while (*p) {
429 		parent = *p;
430 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
431 					tree_node);
432 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
433 			p = &(*p)->rb_left;
434 			rightmost = false;
435 		} else {
436 			p = &(*p)->rb_right;
437 		}
438 	}
439 
440 	if (rightmost)
441 		mctz->rb_rightmost = &mz->tree_node;
442 
443 	rb_link_node(&mz->tree_node, parent, p);
444 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
445 	mz->on_tree = true;
446 }
447 
448 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
449 					 struct mem_cgroup_tree_per_node *mctz)
450 {
451 	if (!mz->on_tree)
452 		return;
453 
454 	if (&mz->tree_node == mctz->rb_rightmost)
455 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
456 
457 	rb_erase(&mz->tree_node, &mctz->rb_root);
458 	mz->on_tree = false;
459 }
460 
461 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
462 				       struct mem_cgroup_tree_per_node *mctz)
463 {
464 	unsigned long flags;
465 
466 	spin_lock_irqsave(&mctz->lock, flags);
467 	__mem_cgroup_remove_exceeded(mz, mctz);
468 	spin_unlock_irqrestore(&mctz->lock, flags);
469 }
470 
471 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
472 {
473 	unsigned long nr_pages = page_counter_read(&memcg->memory);
474 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
475 	unsigned long excess = 0;
476 
477 	if (nr_pages > soft_limit)
478 		excess = nr_pages - soft_limit;
479 
480 	return excess;
481 }
482 
483 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
484 {
485 	unsigned long excess;
486 	struct mem_cgroup_per_node *mz;
487 	struct mem_cgroup_tree_per_node *mctz;
488 
489 	if (lru_gen_enabled()) {
490 		if (soft_limit_excess(memcg))
491 			lru_gen_soft_reclaim(memcg, nid);
492 		return;
493 	}
494 
495 	mctz = soft_limit_tree.rb_tree_per_node[nid];
496 	if (!mctz)
497 		return;
498 	/*
499 	 * Necessary to update all ancestors when hierarchy is used.
500 	 * because their event counter is not touched.
501 	 */
502 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
503 		mz = memcg->nodeinfo[nid];
504 		excess = soft_limit_excess(memcg);
505 		/*
506 		 * We have to update the tree if mz is on RB-tree or
507 		 * mem is over its softlimit.
508 		 */
509 		if (excess || mz->on_tree) {
510 			unsigned long flags;
511 
512 			spin_lock_irqsave(&mctz->lock, flags);
513 			/* if on-tree, remove it */
514 			if (mz->on_tree)
515 				__mem_cgroup_remove_exceeded(mz, mctz);
516 			/*
517 			 * Insert again. mz->usage_in_excess will be updated.
518 			 * If excess is 0, no tree ops.
519 			 */
520 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
521 			spin_unlock_irqrestore(&mctz->lock, flags);
522 		}
523 	}
524 }
525 
526 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
527 {
528 	struct mem_cgroup_tree_per_node *mctz;
529 	struct mem_cgroup_per_node *mz;
530 	int nid;
531 
532 	for_each_node(nid) {
533 		mz = memcg->nodeinfo[nid];
534 		mctz = soft_limit_tree.rb_tree_per_node[nid];
535 		if (mctz)
536 			mem_cgroup_remove_exceeded(mz, mctz);
537 	}
538 }
539 
540 static struct mem_cgroup_per_node *
541 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
542 {
543 	struct mem_cgroup_per_node *mz;
544 
545 retry:
546 	mz = NULL;
547 	if (!mctz->rb_rightmost)
548 		goto done;		/* Nothing to reclaim from */
549 
550 	mz = rb_entry(mctz->rb_rightmost,
551 		      struct mem_cgroup_per_node, tree_node);
552 	/*
553 	 * Remove the node now but someone else can add it back,
554 	 * we will to add it back at the end of reclaim to its correct
555 	 * position in the tree.
556 	 */
557 	__mem_cgroup_remove_exceeded(mz, mctz);
558 	if (!soft_limit_excess(mz->memcg) ||
559 	    !css_tryget(&mz->memcg->css))
560 		goto retry;
561 done:
562 	return mz;
563 }
564 
565 static struct mem_cgroup_per_node *
566 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
567 {
568 	struct mem_cgroup_per_node *mz;
569 
570 	spin_lock_irq(&mctz->lock);
571 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
572 	spin_unlock_irq(&mctz->lock);
573 	return mz;
574 }
575 
576 /*
577  * memcg and lruvec stats flushing
578  *
579  * Many codepaths leading to stats update or read are performance sensitive and
580  * adding stats flushing in such codepaths is not desirable. So, to optimize the
581  * flushing the kernel does:
582  *
583  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
584  *    rstat update tree grow unbounded.
585  *
586  * 2) Flush the stats synchronously on reader side only when there are more than
587  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
588  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
589  *    only for 2 seconds due to (1).
590  */
591 static void flush_memcg_stats_dwork(struct work_struct *w);
592 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
593 static DEFINE_PER_CPU(unsigned int, stats_updates);
594 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
595 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
596 static u64 flush_next_time;
597 
598 #define FLUSH_TIME (2UL*HZ)
599 
600 /*
601  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
602  * not rely on this as part of an acquired spinlock_t lock. These functions are
603  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
604  * is sufficient.
605  */
606 static void memcg_stats_lock(void)
607 {
608 	preempt_disable_nested();
609 	VM_WARN_ON_IRQS_ENABLED();
610 }
611 
612 static void __memcg_stats_lock(void)
613 {
614 	preempt_disable_nested();
615 }
616 
617 static void memcg_stats_unlock(void)
618 {
619 	preempt_enable_nested();
620 }
621 
622 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
623 {
624 	unsigned int x;
625 
626 	if (!val)
627 		return;
628 
629 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
630 
631 	x = __this_cpu_add_return(stats_updates, abs(val));
632 	if (x > MEMCG_CHARGE_BATCH) {
633 		/*
634 		 * If stats_flush_threshold exceeds the threshold
635 		 * (>num_online_cpus()), cgroup stats update will be triggered
636 		 * in __mem_cgroup_flush_stats(). Increasing this var further
637 		 * is redundant and simply adds overhead in atomic update.
638 		 */
639 		if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
640 			atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
641 		__this_cpu_write(stats_updates, 0);
642 	}
643 }
644 
645 static void do_flush_stats(void)
646 {
647 	/*
648 	 * We always flush the entire tree, so concurrent flushers can just
649 	 * skip. This avoids a thundering herd problem on the rstat global lock
650 	 * from memcg flushers (e.g. reclaim, refault, etc).
651 	 */
652 	if (atomic_read(&stats_flush_ongoing) ||
653 	    atomic_xchg(&stats_flush_ongoing, 1))
654 		return;
655 
656 	WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
657 
658 	cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
659 
660 	atomic_set(&stats_flush_threshold, 0);
661 	atomic_set(&stats_flush_ongoing, 0);
662 }
663 
664 void mem_cgroup_flush_stats(void)
665 {
666 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
667 		do_flush_stats();
668 }
669 
670 void mem_cgroup_flush_stats_ratelimited(void)
671 {
672 	if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
673 		mem_cgroup_flush_stats();
674 }
675 
676 static void flush_memcg_stats_dwork(struct work_struct *w)
677 {
678 	/*
679 	 * Always flush here so that flushing in latency-sensitive paths is
680 	 * as cheap as possible.
681 	 */
682 	do_flush_stats();
683 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
684 }
685 
686 /* Subset of vm_event_item to report for memcg event stats */
687 static const unsigned int memcg_vm_event_stat[] = {
688 	PGPGIN,
689 	PGPGOUT,
690 	PGSCAN_KSWAPD,
691 	PGSCAN_DIRECT,
692 	PGSCAN_KHUGEPAGED,
693 	PGSTEAL_KSWAPD,
694 	PGSTEAL_DIRECT,
695 	PGSTEAL_KHUGEPAGED,
696 	PGFAULT,
697 	PGMAJFAULT,
698 	PGREFILL,
699 	PGACTIVATE,
700 	PGDEACTIVATE,
701 	PGLAZYFREE,
702 	PGLAZYFREED,
703 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
704 	ZSWPIN,
705 	ZSWPOUT,
706 #endif
707 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
708 	THP_FAULT_ALLOC,
709 	THP_COLLAPSE_ALLOC,
710 	THP_SWPOUT,
711 	THP_SWPOUT_FALLBACK,
712 #endif
713 };
714 
715 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
716 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
717 
718 static void init_memcg_events(void)
719 {
720 	int i;
721 
722 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
723 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
724 }
725 
726 static inline int memcg_events_index(enum vm_event_item idx)
727 {
728 	return mem_cgroup_events_index[idx] - 1;
729 }
730 
731 struct memcg_vmstats_percpu {
732 	/* Local (CPU and cgroup) page state & events */
733 	long			state[MEMCG_NR_STAT];
734 	unsigned long		events[NR_MEMCG_EVENTS];
735 
736 	/* Delta calculation for lockless upward propagation */
737 	long			state_prev[MEMCG_NR_STAT];
738 	unsigned long		events_prev[NR_MEMCG_EVENTS];
739 
740 	/* Cgroup1: threshold notifications & softlimit tree updates */
741 	unsigned long		nr_page_events;
742 	unsigned long		targets[MEM_CGROUP_NTARGETS];
743 };
744 
745 struct memcg_vmstats {
746 	/* Aggregated (CPU and subtree) page state & events */
747 	long			state[MEMCG_NR_STAT];
748 	unsigned long		events[NR_MEMCG_EVENTS];
749 
750 	/* Non-hierarchical (CPU aggregated) page state & events */
751 	long			state_local[MEMCG_NR_STAT];
752 	unsigned long		events_local[NR_MEMCG_EVENTS];
753 
754 	/* Pending child counts during tree propagation */
755 	long			state_pending[MEMCG_NR_STAT];
756 	unsigned long		events_pending[NR_MEMCG_EVENTS];
757 };
758 
759 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
760 {
761 	long x = READ_ONCE(memcg->vmstats->state[idx]);
762 #ifdef CONFIG_SMP
763 	if (x < 0)
764 		x = 0;
765 #endif
766 	return x;
767 }
768 
769 static int memcg_page_state_unit(int item);
770 
771 /*
772  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
773  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
774  */
775 static int memcg_state_val_in_pages(int idx, int val)
776 {
777 	int unit = memcg_page_state_unit(idx);
778 
779 	if (!val || unit == PAGE_SIZE)
780 		return val;
781 	else
782 		return max(val * unit / PAGE_SIZE, 1UL);
783 }
784 
785 /**
786  * __mod_memcg_state - update cgroup memory statistics
787  * @memcg: the memory cgroup
788  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
789  * @val: delta to add to the counter, can be negative
790  */
791 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
792 {
793 	if (mem_cgroup_disabled())
794 		return;
795 
796 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
797 	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
798 }
799 
800 /* idx can be of type enum memcg_stat_item or node_stat_item. */
801 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
802 {
803 	long x = READ_ONCE(memcg->vmstats->state_local[idx]);
804 
805 #ifdef CONFIG_SMP
806 	if (x < 0)
807 		x = 0;
808 #endif
809 	return x;
810 }
811 
812 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
813 			      int val)
814 {
815 	struct mem_cgroup_per_node *pn;
816 	struct mem_cgroup *memcg;
817 
818 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
819 	memcg = pn->memcg;
820 
821 	/*
822 	 * The caller from rmap relies on disabled preemption because they never
823 	 * update their counter from in-interrupt context. For these two
824 	 * counters we check that the update is never performed from an
825 	 * interrupt context while other caller need to have disabled interrupt.
826 	 */
827 	__memcg_stats_lock();
828 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
829 		switch (idx) {
830 		case NR_ANON_MAPPED:
831 		case NR_FILE_MAPPED:
832 		case NR_ANON_THPS:
833 		case NR_SHMEM_PMDMAPPED:
834 		case NR_FILE_PMDMAPPED:
835 			WARN_ON_ONCE(!in_task());
836 			break;
837 		default:
838 			VM_WARN_ON_IRQS_ENABLED();
839 		}
840 	}
841 
842 	/* Update memcg */
843 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
844 
845 	/* Update lruvec */
846 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
847 
848 	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
849 	memcg_stats_unlock();
850 }
851 
852 /**
853  * __mod_lruvec_state - update lruvec memory statistics
854  * @lruvec: the lruvec
855  * @idx: the stat item
856  * @val: delta to add to the counter, can be negative
857  *
858  * The lruvec is the intersection of the NUMA node and a cgroup. This
859  * function updates the all three counters that are affected by a
860  * change of state at this level: per-node, per-cgroup, per-lruvec.
861  */
862 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
863 			int val)
864 {
865 	/* Update node */
866 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
867 
868 	/* Update memcg and lruvec */
869 	if (!mem_cgroup_disabled())
870 		__mod_memcg_lruvec_state(lruvec, idx, val);
871 }
872 
873 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
874 			     int val)
875 {
876 	struct page *head = compound_head(page); /* rmap on tail pages */
877 	struct mem_cgroup *memcg;
878 	pg_data_t *pgdat = page_pgdat(page);
879 	struct lruvec *lruvec;
880 
881 	rcu_read_lock();
882 	memcg = page_memcg(head);
883 	/* Untracked pages have no memcg, no lruvec. Update only the node */
884 	if (!memcg) {
885 		rcu_read_unlock();
886 		__mod_node_page_state(pgdat, idx, val);
887 		return;
888 	}
889 
890 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
891 	__mod_lruvec_state(lruvec, idx, val);
892 	rcu_read_unlock();
893 }
894 EXPORT_SYMBOL(__mod_lruvec_page_state);
895 
896 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
897 {
898 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
899 	struct mem_cgroup *memcg;
900 	struct lruvec *lruvec;
901 
902 	rcu_read_lock();
903 	memcg = mem_cgroup_from_slab_obj(p);
904 
905 	/*
906 	 * Untracked pages have no memcg, no lruvec. Update only the
907 	 * node. If we reparent the slab objects to the root memcg,
908 	 * when we free the slab object, we need to update the per-memcg
909 	 * vmstats to keep it correct for the root memcg.
910 	 */
911 	if (!memcg) {
912 		__mod_node_page_state(pgdat, idx, val);
913 	} else {
914 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
915 		__mod_lruvec_state(lruvec, idx, val);
916 	}
917 	rcu_read_unlock();
918 }
919 
920 /**
921  * __count_memcg_events - account VM events in a cgroup
922  * @memcg: the memory cgroup
923  * @idx: the event item
924  * @count: the number of events that occurred
925  */
926 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
927 			  unsigned long count)
928 {
929 	int index = memcg_events_index(idx);
930 
931 	if (mem_cgroup_disabled() || index < 0)
932 		return;
933 
934 	memcg_stats_lock();
935 	__this_cpu_add(memcg->vmstats_percpu->events[index], count);
936 	memcg_rstat_updated(memcg, count);
937 	memcg_stats_unlock();
938 }
939 
940 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
941 {
942 	int index = memcg_events_index(event);
943 
944 	if (index < 0)
945 		return 0;
946 	return READ_ONCE(memcg->vmstats->events[index]);
947 }
948 
949 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
950 {
951 	int index = memcg_events_index(event);
952 
953 	if (index < 0)
954 		return 0;
955 
956 	return READ_ONCE(memcg->vmstats->events_local[index]);
957 }
958 
959 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
960 					 int nr_pages)
961 {
962 	/* pagein of a big page is an event. So, ignore page size */
963 	if (nr_pages > 0)
964 		__count_memcg_events(memcg, PGPGIN, 1);
965 	else {
966 		__count_memcg_events(memcg, PGPGOUT, 1);
967 		nr_pages = -nr_pages; /* for event */
968 	}
969 
970 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
971 }
972 
973 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
974 				       enum mem_cgroup_events_target target)
975 {
976 	unsigned long val, next;
977 
978 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
979 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
980 	/* from time_after() in jiffies.h */
981 	if ((long)(next - val) < 0) {
982 		switch (target) {
983 		case MEM_CGROUP_TARGET_THRESH:
984 			next = val + THRESHOLDS_EVENTS_TARGET;
985 			break;
986 		case MEM_CGROUP_TARGET_SOFTLIMIT:
987 			next = val + SOFTLIMIT_EVENTS_TARGET;
988 			break;
989 		default:
990 			break;
991 		}
992 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
993 		return true;
994 	}
995 	return false;
996 }
997 
998 /*
999  * Check events in order.
1000  *
1001  */
1002 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1003 {
1004 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
1005 		return;
1006 
1007 	/* threshold event is triggered in finer grain than soft limit */
1008 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1009 						MEM_CGROUP_TARGET_THRESH))) {
1010 		bool do_softlimit;
1011 
1012 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1013 						MEM_CGROUP_TARGET_SOFTLIMIT);
1014 		mem_cgroup_threshold(memcg);
1015 		if (unlikely(do_softlimit))
1016 			mem_cgroup_update_tree(memcg, nid);
1017 	}
1018 }
1019 
1020 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1021 {
1022 	/*
1023 	 * mm_update_next_owner() may clear mm->owner to NULL
1024 	 * if it races with swapoff, page migration, etc.
1025 	 * So this can be called with p == NULL.
1026 	 */
1027 	if (unlikely(!p))
1028 		return NULL;
1029 
1030 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1031 }
1032 EXPORT_SYMBOL(mem_cgroup_from_task);
1033 
1034 static __always_inline struct mem_cgroup *active_memcg(void)
1035 {
1036 	if (!in_task())
1037 		return this_cpu_read(int_active_memcg);
1038 	else
1039 		return current->active_memcg;
1040 }
1041 
1042 /**
1043  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1044  * @mm: mm from which memcg should be extracted. It can be NULL.
1045  *
1046  * Obtain a reference on mm->memcg and returns it if successful. If mm
1047  * is NULL, then the memcg is chosen as follows:
1048  * 1) The active memcg, if set.
1049  * 2) current->mm->memcg, if available
1050  * 3) root memcg
1051  * If mem_cgroup is disabled, NULL is returned.
1052  */
1053 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1054 {
1055 	struct mem_cgroup *memcg;
1056 
1057 	if (mem_cgroup_disabled())
1058 		return NULL;
1059 
1060 	/*
1061 	 * Page cache insertions can happen without an
1062 	 * actual mm context, e.g. during disk probing
1063 	 * on boot, loopback IO, acct() writes etc.
1064 	 *
1065 	 * No need to css_get on root memcg as the reference
1066 	 * counting is disabled on the root level in the
1067 	 * cgroup core. See CSS_NO_REF.
1068 	 */
1069 	if (unlikely(!mm)) {
1070 		memcg = active_memcg();
1071 		if (unlikely(memcg)) {
1072 			/* remote memcg must hold a ref */
1073 			css_get(&memcg->css);
1074 			return memcg;
1075 		}
1076 		mm = current->mm;
1077 		if (unlikely(!mm))
1078 			return root_mem_cgroup;
1079 	}
1080 
1081 	rcu_read_lock();
1082 	do {
1083 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1084 		if (unlikely(!memcg))
1085 			memcg = root_mem_cgroup;
1086 	} while (!css_tryget(&memcg->css));
1087 	rcu_read_unlock();
1088 	return memcg;
1089 }
1090 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1091 
1092 /**
1093  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1094  */
1095 struct mem_cgroup *get_mem_cgroup_from_current(void)
1096 {
1097 	struct mem_cgroup *memcg;
1098 
1099 	if (mem_cgroup_disabled())
1100 		return NULL;
1101 
1102 again:
1103 	rcu_read_lock();
1104 	memcg = mem_cgroup_from_task(current);
1105 	if (!css_tryget(&memcg->css)) {
1106 		rcu_read_unlock();
1107 		goto again;
1108 	}
1109 	rcu_read_unlock();
1110 	return memcg;
1111 }
1112 
1113 /**
1114  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1115  * @root: hierarchy root
1116  * @prev: previously returned memcg, NULL on first invocation
1117  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1118  *
1119  * Returns references to children of the hierarchy below @root, or
1120  * @root itself, or %NULL after a full round-trip.
1121  *
1122  * Caller must pass the return value in @prev on subsequent
1123  * invocations for reference counting, or use mem_cgroup_iter_break()
1124  * to cancel a hierarchy walk before the round-trip is complete.
1125  *
1126  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1127  * in the hierarchy among all concurrent reclaimers operating on the
1128  * same node.
1129  */
1130 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1131 				   struct mem_cgroup *prev,
1132 				   struct mem_cgroup_reclaim_cookie *reclaim)
1133 {
1134 	struct mem_cgroup_reclaim_iter *iter;
1135 	struct cgroup_subsys_state *css = NULL;
1136 	struct mem_cgroup *memcg = NULL;
1137 	struct mem_cgroup *pos = NULL;
1138 
1139 	if (mem_cgroup_disabled())
1140 		return NULL;
1141 
1142 	if (!root)
1143 		root = root_mem_cgroup;
1144 
1145 	rcu_read_lock();
1146 
1147 	if (reclaim) {
1148 		struct mem_cgroup_per_node *mz;
1149 
1150 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1151 		iter = &mz->iter;
1152 
1153 		/*
1154 		 * On start, join the current reclaim iteration cycle.
1155 		 * Exit when a concurrent walker completes it.
1156 		 */
1157 		if (!prev)
1158 			reclaim->generation = iter->generation;
1159 		else if (reclaim->generation != iter->generation)
1160 			goto out_unlock;
1161 
1162 		while (1) {
1163 			pos = READ_ONCE(iter->position);
1164 			if (!pos || css_tryget(&pos->css))
1165 				break;
1166 			/*
1167 			 * css reference reached zero, so iter->position will
1168 			 * be cleared by ->css_released. However, we should not
1169 			 * rely on this happening soon, because ->css_released
1170 			 * is called from a work queue, and by busy-waiting we
1171 			 * might block it. So we clear iter->position right
1172 			 * away.
1173 			 */
1174 			(void)cmpxchg(&iter->position, pos, NULL);
1175 		}
1176 	} else if (prev) {
1177 		pos = prev;
1178 	}
1179 
1180 	if (pos)
1181 		css = &pos->css;
1182 
1183 	for (;;) {
1184 		css = css_next_descendant_pre(css, &root->css);
1185 		if (!css) {
1186 			/*
1187 			 * Reclaimers share the hierarchy walk, and a
1188 			 * new one might jump in right at the end of
1189 			 * the hierarchy - make sure they see at least
1190 			 * one group and restart from the beginning.
1191 			 */
1192 			if (!prev)
1193 				continue;
1194 			break;
1195 		}
1196 
1197 		/*
1198 		 * Verify the css and acquire a reference.  The root
1199 		 * is provided by the caller, so we know it's alive
1200 		 * and kicking, and don't take an extra reference.
1201 		 */
1202 		if (css == &root->css || css_tryget(css)) {
1203 			memcg = mem_cgroup_from_css(css);
1204 			break;
1205 		}
1206 	}
1207 
1208 	if (reclaim) {
1209 		/*
1210 		 * The position could have already been updated by a competing
1211 		 * thread, so check that the value hasn't changed since we read
1212 		 * it to avoid reclaiming from the same cgroup twice.
1213 		 */
1214 		(void)cmpxchg(&iter->position, pos, memcg);
1215 
1216 		if (pos)
1217 			css_put(&pos->css);
1218 
1219 		if (!memcg)
1220 			iter->generation++;
1221 	}
1222 
1223 out_unlock:
1224 	rcu_read_unlock();
1225 	if (prev && prev != root)
1226 		css_put(&prev->css);
1227 
1228 	return memcg;
1229 }
1230 
1231 /**
1232  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1233  * @root: hierarchy root
1234  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1235  */
1236 void mem_cgroup_iter_break(struct mem_cgroup *root,
1237 			   struct mem_cgroup *prev)
1238 {
1239 	if (!root)
1240 		root = root_mem_cgroup;
1241 	if (prev && prev != root)
1242 		css_put(&prev->css);
1243 }
1244 
1245 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1246 					struct mem_cgroup *dead_memcg)
1247 {
1248 	struct mem_cgroup_reclaim_iter *iter;
1249 	struct mem_cgroup_per_node *mz;
1250 	int nid;
1251 
1252 	for_each_node(nid) {
1253 		mz = from->nodeinfo[nid];
1254 		iter = &mz->iter;
1255 		cmpxchg(&iter->position, dead_memcg, NULL);
1256 	}
1257 }
1258 
1259 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1260 {
1261 	struct mem_cgroup *memcg = dead_memcg;
1262 	struct mem_cgroup *last;
1263 
1264 	do {
1265 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1266 		last = memcg;
1267 	} while ((memcg = parent_mem_cgroup(memcg)));
1268 
1269 	/*
1270 	 * When cgroup1 non-hierarchy mode is used,
1271 	 * parent_mem_cgroup() does not walk all the way up to the
1272 	 * cgroup root (root_mem_cgroup). So we have to handle
1273 	 * dead_memcg from cgroup root separately.
1274 	 */
1275 	if (!mem_cgroup_is_root(last))
1276 		__invalidate_reclaim_iterators(root_mem_cgroup,
1277 						dead_memcg);
1278 }
1279 
1280 /**
1281  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1282  * @memcg: hierarchy root
1283  * @fn: function to call for each task
1284  * @arg: argument passed to @fn
1285  *
1286  * This function iterates over tasks attached to @memcg or to any of its
1287  * descendants and calls @fn for each task. If @fn returns a non-zero
1288  * value, the function breaks the iteration loop. Otherwise, it will iterate
1289  * over all tasks and return 0.
1290  *
1291  * This function must not be called for the root memory cgroup.
1292  */
1293 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1294 			   int (*fn)(struct task_struct *, void *), void *arg)
1295 {
1296 	struct mem_cgroup *iter;
1297 	int ret = 0;
1298 
1299 	BUG_ON(mem_cgroup_is_root(memcg));
1300 
1301 	for_each_mem_cgroup_tree(iter, memcg) {
1302 		struct css_task_iter it;
1303 		struct task_struct *task;
1304 
1305 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1306 		while (!ret && (task = css_task_iter_next(&it)))
1307 			ret = fn(task, arg);
1308 		css_task_iter_end(&it);
1309 		if (ret) {
1310 			mem_cgroup_iter_break(memcg, iter);
1311 			break;
1312 		}
1313 	}
1314 }
1315 
1316 #ifdef CONFIG_DEBUG_VM
1317 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1318 {
1319 	struct mem_cgroup *memcg;
1320 
1321 	if (mem_cgroup_disabled())
1322 		return;
1323 
1324 	memcg = folio_memcg(folio);
1325 
1326 	if (!memcg)
1327 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1328 	else
1329 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1330 }
1331 #endif
1332 
1333 /**
1334  * folio_lruvec_lock - Lock the lruvec for a folio.
1335  * @folio: Pointer to the folio.
1336  *
1337  * These functions are safe to use under any of the following conditions:
1338  * - folio locked
1339  * - folio_test_lru false
1340  * - folio_memcg_lock()
1341  * - folio frozen (refcount of 0)
1342  *
1343  * Return: The lruvec this folio is on with its lock held.
1344  */
1345 struct lruvec *folio_lruvec_lock(struct folio *folio)
1346 {
1347 	struct lruvec *lruvec = folio_lruvec(folio);
1348 
1349 	spin_lock(&lruvec->lru_lock);
1350 	lruvec_memcg_debug(lruvec, folio);
1351 
1352 	return lruvec;
1353 }
1354 
1355 /**
1356  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1357  * @folio: Pointer to the folio.
1358  *
1359  * These functions are safe to use under any of the following conditions:
1360  * - folio locked
1361  * - folio_test_lru false
1362  * - folio_memcg_lock()
1363  * - folio frozen (refcount of 0)
1364  *
1365  * Return: The lruvec this folio is on with its lock held and interrupts
1366  * disabled.
1367  */
1368 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1369 {
1370 	struct lruvec *lruvec = folio_lruvec(folio);
1371 
1372 	spin_lock_irq(&lruvec->lru_lock);
1373 	lruvec_memcg_debug(lruvec, folio);
1374 
1375 	return lruvec;
1376 }
1377 
1378 /**
1379  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1380  * @folio: Pointer to the folio.
1381  * @flags: Pointer to irqsave flags.
1382  *
1383  * These functions are safe to use under any of the following conditions:
1384  * - folio locked
1385  * - folio_test_lru false
1386  * - folio_memcg_lock()
1387  * - folio frozen (refcount of 0)
1388  *
1389  * Return: The lruvec this folio is on with its lock held and interrupts
1390  * disabled.
1391  */
1392 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1393 		unsigned long *flags)
1394 {
1395 	struct lruvec *lruvec = folio_lruvec(folio);
1396 
1397 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1398 	lruvec_memcg_debug(lruvec, folio);
1399 
1400 	return lruvec;
1401 }
1402 
1403 /**
1404  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1405  * @lruvec: mem_cgroup per zone lru vector
1406  * @lru: index of lru list the page is sitting on
1407  * @zid: zone id of the accounted pages
1408  * @nr_pages: positive when adding or negative when removing
1409  *
1410  * This function must be called under lru_lock, just before a page is added
1411  * to or just after a page is removed from an lru list.
1412  */
1413 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1414 				int zid, int nr_pages)
1415 {
1416 	struct mem_cgroup_per_node *mz;
1417 	unsigned long *lru_size;
1418 	long size;
1419 
1420 	if (mem_cgroup_disabled())
1421 		return;
1422 
1423 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1424 	lru_size = &mz->lru_zone_size[zid][lru];
1425 
1426 	if (nr_pages < 0)
1427 		*lru_size += nr_pages;
1428 
1429 	size = *lru_size;
1430 	if (WARN_ONCE(size < 0,
1431 		"%s(%p, %d, %d): lru_size %ld\n",
1432 		__func__, lruvec, lru, nr_pages, size)) {
1433 		VM_BUG_ON(1);
1434 		*lru_size = 0;
1435 	}
1436 
1437 	if (nr_pages > 0)
1438 		*lru_size += nr_pages;
1439 }
1440 
1441 /**
1442  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1443  * @memcg: the memory cgroup
1444  *
1445  * Returns the maximum amount of memory @mem can be charged with, in
1446  * pages.
1447  */
1448 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1449 {
1450 	unsigned long margin = 0;
1451 	unsigned long count;
1452 	unsigned long limit;
1453 
1454 	count = page_counter_read(&memcg->memory);
1455 	limit = READ_ONCE(memcg->memory.max);
1456 	if (count < limit)
1457 		margin = limit - count;
1458 
1459 	if (do_memsw_account()) {
1460 		count = page_counter_read(&memcg->memsw);
1461 		limit = READ_ONCE(memcg->memsw.max);
1462 		if (count < limit)
1463 			margin = min(margin, limit - count);
1464 		else
1465 			margin = 0;
1466 	}
1467 
1468 	return margin;
1469 }
1470 
1471 /*
1472  * A routine for checking "mem" is under move_account() or not.
1473  *
1474  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1475  * moving cgroups. This is for waiting at high-memory pressure
1476  * caused by "move".
1477  */
1478 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1479 {
1480 	struct mem_cgroup *from;
1481 	struct mem_cgroup *to;
1482 	bool ret = false;
1483 	/*
1484 	 * Unlike task_move routines, we access mc.to, mc.from not under
1485 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1486 	 */
1487 	spin_lock(&mc.lock);
1488 	from = mc.from;
1489 	to = mc.to;
1490 	if (!from)
1491 		goto unlock;
1492 
1493 	ret = mem_cgroup_is_descendant(from, memcg) ||
1494 		mem_cgroup_is_descendant(to, memcg);
1495 unlock:
1496 	spin_unlock(&mc.lock);
1497 	return ret;
1498 }
1499 
1500 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1501 {
1502 	if (mc.moving_task && current != mc.moving_task) {
1503 		if (mem_cgroup_under_move(memcg)) {
1504 			DEFINE_WAIT(wait);
1505 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1506 			/* moving charge context might have finished. */
1507 			if (mc.moving_task)
1508 				schedule();
1509 			finish_wait(&mc.waitq, &wait);
1510 			return true;
1511 		}
1512 	}
1513 	return false;
1514 }
1515 
1516 struct memory_stat {
1517 	const char *name;
1518 	unsigned int idx;
1519 };
1520 
1521 static const struct memory_stat memory_stats[] = {
1522 	{ "anon",			NR_ANON_MAPPED			},
1523 	{ "file",			NR_FILE_PAGES			},
1524 	{ "kernel",			MEMCG_KMEM			},
1525 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1526 	{ "pagetables",			NR_PAGETABLE			},
1527 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1528 	{ "percpu",			MEMCG_PERCPU_B			},
1529 	{ "sock",			MEMCG_SOCK			},
1530 	{ "vmalloc",			MEMCG_VMALLOC			},
1531 	{ "shmem",			NR_SHMEM			},
1532 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1533 	{ "zswap",			MEMCG_ZSWAP_B			},
1534 	{ "zswapped",			MEMCG_ZSWAPPED			},
1535 #endif
1536 	{ "file_mapped",		NR_FILE_MAPPED			},
1537 	{ "file_dirty",			NR_FILE_DIRTY			},
1538 	{ "file_writeback",		NR_WRITEBACK			},
1539 #ifdef CONFIG_SWAP
1540 	{ "swapcached",			NR_SWAPCACHE			},
1541 #endif
1542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1543 	{ "anon_thp",			NR_ANON_THPS			},
1544 	{ "file_thp",			NR_FILE_THPS			},
1545 	{ "shmem_thp",			NR_SHMEM_THPS			},
1546 #endif
1547 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1548 	{ "active_anon",		NR_ACTIVE_ANON			},
1549 	{ "inactive_file",		NR_INACTIVE_FILE		},
1550 	{ "active_file",		NR_ACTIVE_FILE			},
1551 	{ "unevictable",		NR_UNEVICTABLE			},
1552 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1553 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1554 
1555 	/* The memory events */
1556 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1557 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1558 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1559 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1560 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1561 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1562 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1563 };
1564 
1565 /* The actual unit of the state item, not the same as the output unit */
1566 static int memcg_page_state_unit(int item)
1567 {
1568 	switch (item) {
1569 	case MEMCG_PERCPU_B:
1570 	case MEMCG_ZSWAP_B:
1571 	case NR_SLAB_RECLAIMABLE_B:
1572 	case NR_SLAB_UNRECLAIMABLE_B:
1573 		return 1;
1574 	case NR_KERNEL_STACK_KB:
1575 		return SZ_1K;
1576 	default:
1577 		return PAGE_SIZE;
1578 	}
1579 }
1580 
1581 /* Translate stat items to the correct unit for memory.stat output */
1582 static int memcg_page_state_output_unit(int item)
1583 {
1584 	/*
1585 	 * Workingset state is actually in pages, but we export it to userspace
1586 	 * as a scalar count of events, so special case it here.
1587 	 */
1588 	switch (item) {
1589 	case WORKINGSET_REFAULT_ANON:
1590 	case WORKINGSET_REFAULT_FILE:
1591 	case WORKINGSET_ACTIVATE_ANON:
1592 	case WORKINGSET_ACTIVATE_FILE:
1593 	case WORKINGSET_RESTORE_ANON:
1594 	case WORKINGSET_RESTORE_FILE:
1595 	case WORKINGSET_NODERECLAIM:
1596 		return 1;
1597 	default:
1598 		return memcg_page_state_unit(item);
1599 	}
1600 }
1601 
1602 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1603 						    int item)
1604 {
1605 	return memcg_page_state(memcg, item) *
1606 		memcg_page_state_output_unit(item);
1607 }
1608 
1609 static inline unsigned long memcg_page_state_local_output(
1610 		struct mem_cgroup *memcg, int item)
1611 {
1612 	return memcg_page_state_local(memcg, item) *
1613 		memcg_page_state_output_unit(item);
1614 }
1615 
1616 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1617 {
1618 	int i;
1619 
1620 	/*
1621 	 * Provide statistics on the state of the memory subsystem as
1622 	 * well as cumulative event counters that show past behavior.
1623 	 *
1624 	 * This list is ordered following a combination of these gradients:
1625 	 * 1) generic big picture -> specifics and details
1626 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1627 	 *
1628 	 * Current memory state:
1629 	 */
1630 	mem_cgroup_flush_stats();
1631 
1632 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1633 		u64 size;
1634 
1635 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1636 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1637 
1638 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1639 			size += memcg_page_state_output(memcg,
1640 							NR_SLAB_RECLAIMABLE_B);
1641 			seq_buf_printf(s, "slab %llu\n", size);
1642 		}
1643 	}
1644 
1645 	/* Accumulated memory events */
1646 	seq_buf_printf(s, "pgscan %lu\n",
1647 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1648 		       memcg_events(memcg, PGSCAN_DIRECT) +
1649 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1650 	seq_buf_printf(s, "pgsteal %lu\n",
1651 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1652 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1653 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1654 
1655 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1656 		if (memcg_vm_event_stat[i] == PGPGIN ||
1657 		    memcg_vm_event_stat[i] == PGPGOUT)
1658 			continue;
1659 
1660 		seq_buf_printf(s, "%s %lu\n",
1661 			       vm_event_name(memcg_vm_event_stat[i]),
1662 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1663 	}
1664 
1665 	/* The above should easily fit into one page */
1666 	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1667 }
1668 
1669 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1670 
1671 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1672 {
1673 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1674 		memcg_stat_format(memcg, s);
1675 	else
1676 		memcg1_stat_format(memcg, s);
1677 	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1678 }
1679 
1680 /**
1681  * mem_cgroup_print_oom_context: Print OOM information relevant to
1682  * memory controller.
1683  * @memcg: The memory cgroup that went over limit
1684  * @p: Task that is going to be killed
1685  *
1686  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1687  * enabled
1688  */
1689 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1690 {
1691 	rcu_read_lock();
1692 
1693 	if (memcg) {
1694 		pr_cont(",oom_memcg=");
1695 		pr_cont_cgroup_path(memcg->css.cgroup);
1696 	} else
1697 		pr_cont(",global_oom");
1698 	if (p) {
1699 		pr_cont(",task_memcg=");
1700 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1701 	}
1702 	rcu_read_unlock();
1703 }
1704 
1705 /**
1706  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1707  * memory controller.
1708  * @memcg: The memory cgroup that went over limit
1709  */
1710 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1711 {
1712 	/* Use static buffer, for the caller is holding oom_lock. */
1713 	static char buf[PAGE_SIZE];
1714 	struct seq_buf s;
1715 
1716 	lockdep_assert_held(&oom_lock);
1717 
1718 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1719 		K((u64)page_counter_read(&memcg->memory)),
1720 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1721 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1722 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1723 			K((u64)page_counter_read(&memcg->swap)),
1724 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1725 	else {
1726 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1727 			K((u64)page_counter_read(&memcg->memsw)),
1728 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1729 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1730 			K((u64)page_counter_read(&memcg->kmem)),
1731 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1732 	}
1733 
1734 	pr_info("Memory cgroup stats for ");
1735 	pr_cont_cgroup_path(memcg->css.cgroup);
1736 	pr_cont(":");
1737 	seq_buf_init(&s, buf, sizeof(buf));
1738 	memory_stat_format(memcg, &s);
1739 	seq_buf_do_printk(&s, KERN_INFO);
1740 }
1741 
1742 /*
1743  * Return the memory (and swap, if configured) limit for a memcg.
1744  */
1745 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1746 {
1747 	unsigned long max = READ_ONCE(memcg->memory.max);
1748 
1749 	if (do_memsw_account()) {
1750 		if (mem_cgroup_swappiness(memcg)) {
1751 			/* Calculate swap excess capacity from memsw limit */
1752 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1753 
1754 			max += min(swap, (unsigned long)total_swap_pages);
1755 		}
1756 	} else {
1757 		if (mem_cgroup_swappiness(memcg))
1758 			max += min(READ_ONCE(memcg->swap.max),
1759 				   (unsigned long)total_swap_pages);
1760 	}
1761 	return max;
1762 }
1763 
1764 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1765 {
1766 	return page_counter_read(&memcg->memory);
1767 }
1768 
1769 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1770 				     int order)
1771 {
1772 	struct oom_control oc = {
1773 		.zonelist = NULL,
1774 		.nodemask = NULL,
1775 		.memcg = memcg,
1776 		.gfp_mask = gfp_mask,
1777 		.order = order,
1778 	};
1779 	bool ret = true;
1780 
1781 	if (mutex_lock_killable(&oom_lock))
1782 		return true;
1783 
1784 	if (mem_cgroup_margin(memcg) >= (1 << order))
1785 		goto unlock;
1786 
1787 	/*
1788 	 * A few threads which were not waiting at mutex_lock_killable() can
1789 	 * fail to bail out. Therefore, check again after holding oom_lock.
1790 	 */
1791 	ret = task_is_dying() || out_of_memory(&oc);
1792 
1793 unlock:
1794 	mutex_unlock(&oom_lock);
1795 	return ret;
1796 }
1797 
1798 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1799 				   pg_data_t *pgdat,
1800 				   gfp_t gfp_mask,
1801 				   unsigned long *total_scanned)
1802 {
1803 	struct mem_cgroup *victim = NULL;
1804 	int total = 0;
1805 	int loop = 0;
1806 	unsigned long excess;
1807 	unsigned long nr_scanned;
1808 	struct mem_cgroup_reclaim_cookie reclaim = {
1809 		.pgdat = pgdat,
1810 	};
1811 
1812 	excess = soft_limit_excess(root_memcg);
1813 
1814 	while (1) {
1815 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1816 		if (!victim) {
1817 			loop++;
1818 			if (loop >= 2) {
1819 				/*
1820 				 * If we have not been able to reclaim
1821 				 * anything, it might because there are
1822 				 * no reclaimable pages under this hierarchy
1823 				 */
1824 				if (!total)
1825 					break;
1826 				/*
1827 				 * We want to do more targeted reclaim.
1828 				 * excess >> 2 is not to excessive so as to
1829 				 * reclaim too much, nor too less that we keep
1830 				 * coming back to reclaim from this cgroup
1831 				 */
1832 				if (total >= (excess >> 2) ||
1833 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1834 					break;
1835 			}
1836 			continue;
1837 		}
1838 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1839 					pgdat, &nr_scanned);
1840 		*total_scanned += nr_scanned;
1841 		if (!soft_limit_excess(root_memcg))
1842 			break;
1843 	}
1844 	mem_cgroup_iter_break(root_memcg, victim);
1845 	return total;
1846 }
1847 
1848 #ifdef CONFIG_LOCKDEP
1849 static struct lockdep_map memcg_oom_lock_dep_map = {
1850 	.name = "memcg_oom_lock",
1851 };
1852 #endif
1853 
1854 static DEFINE_SPINLOCK(memcg_oom_lock);
1855 
1856 /*
1857  * Check OOM-Killer is already running under our hierarchy.
1858  * If someone is running, return false.
1859  */
1860 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1861 {
1862 	struct mem_cgroup *iter, *failed = NULL;
1863 
1864 	spin_lock(&memcg_oom_lock);
1865 
1866 	for_each_mem_cgroup_tree(iter, memcg) {
1867 		if (iter->oom_lock) {
1868 			/*
1869 			 * this subtree of our hierarchy is already locked
1870 			 * so we cannot give a lock.
1871 			 */
1872 			failed = iter;
1873 			mem_cgroup_iter_break(memcg, iter);
1874 			break;
1875 		} else
1876 			iter->oom_lock = true;
1877 	}
1878 
1879 	if (failed) {
1880 		/*
1881 		 * OK, we failed to lock the whole subtree so we have
1882 		 * to clean up what we set up to the failing subtree
1883 		 */
1884 		for_each_mem_cgroup_tree(iter, memcg) {
1885 			if (iter == failed) {
1886 				mem_cgroup_iter_break(memcg, iter);
1887 				break;
1888 			}
1889 			iter->oom_lock = false;
1890 		}
1891 	} else
1892 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1893 
1894 	spin_unlock(&memcg_oom_lock);
1895 
1896 	return !failed;
1897 }
1898 
1899 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1900 {
1901 	struct mem_cgroup *iter;
1902 
1903 	spin_lock(&memcg_oom_lock);
1904 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1905 	for_each_mem_cgroup_tree(iter, memcg)
1906 		iter->oom_lock = false;
1907 	spin_unlock(&memcg_oom_lock);
1908 }
1909 
1910 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1911 {
1912 	struct mem_cgroup *iter;
1913 
1914 	spin_lock(&memcg_oom_lock);
1915 	for_each_mem_cgroup_tree(iter, memcg)
1916 		iter->under_oom++;
1917 	spin_unlock(&memcg_oom_lock);
1918 }
1919 
1920 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1921 {
1922 	struct mem_cgroup *iter;
1923 
1924 	/*
1925 	 * Be careful about under_oom underflows because a child memcg
1926 	 * could have been added after mem_cgroup_mark_under_oom.
1927 	 */
1928 	spin_lock(&memcg_oom_lock);
1929 	for_each_mem_cgroup_tree(iter, memcg)
1930 		if (iter->under_oom > 0)
1931 			iter->under_oom--;
1932 	spin_unlock(&memcg_oom_lock);
1933 }
1934 
1935 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1936 
1937 struct oom_wait_info {
1938 	struct mem_cgroup *memcg;
1939 	wait_queue_entry_t	wait;
1940 };
1941 
1942 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1943 	unsigned mode, int sync, void *arg)
1944 {
1945 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1946 	struct mem_cgroup *oom_wait_memcg;
1947 	struct oom_wait_info *oom_wait_info;
1948 
1949 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1950 	oom_wait_memcg = oom_wait_info->memcg;
1951 
1952 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1953 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1954 		return 0;
1955 	return autoremove_wake_function(wait, mode, sync, arg);
1956 }
1957 
1958 static void memcg_oom_recover(struct mem_cgroup *memcg)
1959 {
1960 	/*
1961 	 * For the following lockless ->under_oom test, the only required
1962 	 * guarantee is that it must see the state asserted by an OOM when
1963 	 * this function is called as a result of userland actions
1964 	 * triggered by the notification of the OOM.  This is trivially
1965 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1966 	 * triggering notification.
1967 	 */
1968 	if (memcg && memcg->under_oom)
1969 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1970 }
1971 
1972 /*
1973  * Returns true if successfully killed one or more processes. Though in some
1974  * corner cases it can return true even without killing any process.
1975  */
1976 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1977 {
1978 	bool locked, ret;
1979 
1980 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1981 		return false;
1982 
1983 	memcg_memory_event(memcg, MEMCG_OOM);
1984 
1985 	/*
1986 	 * We are in the middle of the charge context here, so we
1987 	 * don't want to block when potentially sitting on a callstack
1988 	 * that holds all kinds of filesystem and mm locks.
1989 	 *
1990 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1991 	 * handling until the charge can succeed; remember the context and put
1992 	 * the task to sleep at the end of the page fault when all locks are
1993 	 * released.
1994 	 *
1995 	 * On the other hand, in-kernel OOM killer allows for an async victim
1996 	 * memory reclaim (oom_reaper) and that means that we are not solely
1997 	 * relying on the oom victim to make a forward progress and we can
1998 	 * invoke the oom killer here.
1999 	 *
2000 	 * Please note that mem_cgroup_out_of_memory might fail to find a
2001 	 * victim and then we have to bail out from the charge path.
2002 	 */
2003 	if (READ_ONCE(memcg->oom_kill_disable)) {
2004 		if (current->in_user_fault) {
2005 			css_get(&memcg->css);
2006 			current->memcg_in_oom = memcg;
2007 			current->memcg_oom_gfp_mask = mask;
2008 			current->memcg_oom_order = order;
2009 		}
2010 		return false;
2011 	}
2012 
2013 	mem_cgroup_mark_under_oom(memcg);
2014 
2015 	locked = mem_cgroup_oom_trylock(memcg);
2016 
2017 	if (locked)
2018 		mem_cgroup_oom_notify(memcg);
2019 
2020 	mem_cgroup_unmark_under_oom(memcg);
2021 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
2022 
2023 	if (locked)
2024 		mem_cgroup_oom_unlock(memcg);
2025 
2026 	return ret;
2027 }
2028 
2029 /**
2030  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2031  * @handle: actually kill/wait or just clean up the OOM state
2032  *
2033  * This has to be called at the end of a page fault if the memcg OOM
2034  * handler was enabled.
2035  *
2036  * Memcg supports userspace OOM handling where failed allocations must
2037  * sleep on a waitqueue until the userspace task resolves the
2038  * situation.  Sleeping directly in the charge context with all kinds
2039  * of locks held is not a good idea, instead we remember an OOM state
2040  * in the task and mem_cgroup_oom_synchronize() has to be called at
2041  * the end of the page fault to complete the OOM handling.
2042  *
2043  * Returns %true if an ongoing memcg OOM situation was detected and
2044  * completed, %false otherwise.
2045  */
2046 bool mem_cgroup_oom_synchronize(bool handle)
2047 {
2048 	struct mem_cgroup *memcg = current->memcg_in_oom;
2049 	struct oom_wait_info owait;
2050 	bool locked;
2051 
2052 	/* OOM is global, do not handle */
2053 	if (!memcg)
2054 		return false;
2055 
2056 	if (!handle)
2057 		goto cleanup;
2058 
2059 	owait.memcg = memcg;
2060 	owait.wait.flags = 0;
2061 	owait.wait.func = memcg_oom_wake_function;
2062 	owait.wait.private = current;
2063 	INIT_LIST_HEAD(&owait.wait.entry);
2064 
2065 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2066 	mem_cgroup_mark_under_oom(memcg);
2067 
2068 	locked = mem_cgroup_oom_trylock(memcg);
2069 
2070 	if (locked)
2071 		mem_cgroup_oom_notify(memcg);
2072 
2073 	schedule();
2074 	mem_cgroup_unmark_under_oom(memcg);
2075 	finish_wait(&memcg_oom_waitq, &owait.wait);
2076 
2077 	if (locked)
2078 		mem_cgroup_oom_unlock(memcg);
2079 cleanup:
2080 	current->memcg_in_oom = NULL;
2081 	css_put(&memcg->css);
2082 	return true;
2083 }
2084 
2085 /**
2086  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2087  * @victim: task to be killed by the OOM killer
2088  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2089  *
2090  * Returns a pointer to a memory cgroup, which has to be cleaned up
2091  * by killing all belonging OOM-killable tasks.
2092  *
2093  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2094  */
2095 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2096 					    struct mem_cgroup *oom_domain)
2097 {
2098 	struct mem_cgroup *oom_group = NULL;
2099 	struct mem_cgroup *memcg;
2100 
2101 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2102 		return NULL;
2103 
2104 	if (!oom_domain)
2105 		oom_domain = root_mem_cgroup;
2106 
2107 	rcu_read_lock();
2108 
2109 	memcg = mem_cgroup_from_task(victim);
2110 	if (mem_cgroup_is_root(memcg))
2111 		goto out;
2112 
2113 	/*
2114 	 * If the victim task has been asynchronously moved to a different
2115 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2116 	 * In this case it's better to ignore memory.group.oom.
2117 	 */
2118 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2119 		goto out;
2120 
2121 	/*
2122 	 * Traverse the memory cgroup hierarchy from the victim task's
2123 	 * cgroup up to the OOMing cgroup (or root) to find the
2124 	 * highest-level memory cgroup with oom.group set.
2125 	 */
2126 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2127 		if (READ_ONCE(memcg->oom_group))
2128 			oom_group = memcg;
2129 
2130 		if (memcg == oom_domain)
2131 			break;
2132 	}
2133 
2134 	if (oom_group)
2135 		css_get(&oom_group->css);
2136 out:
2137 	rcu_read_unlock();
2138 
2139 	return oom_group;
2140 }
2141 
2142 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2143 {
2144 	pr_info("Tasks in ");
2145 	pr_cont_cgroup_path(memcg->css.cgroup);
2146 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2147 }
2148 
2149 /**
2150  * folio_memcg_lock - Bind a folio to its memcg.
2151  * @folio: The folio.
2152  *
2153  * This function prevents unlocked LRU folios from being moved to
2154  * another cgroup.
2155  *
2156  * It ensures lifetime of the bound memcg.  The caller is responsible
2157  * for the lifetime of the folio.
2158  */
2159 void folio_memcg_lock(struct folio *folio)
2160 {
2161 	struct mem_cgroup *memcg;
2162 	unsigned long flags;
2163 
2164 	/*
2165 	 * The RCU lock is held throughout the transaction.  The fast
2166 	 * path can get away without acquiring the memcg->move_lock
2167 	 * because page moving starts with an RCU grace period.
2168          */
2169 	rcu_read_lock();
2170 
2171 	if (mem_cgroup_disabled())
2172 		return;
2173 again:
2174 	memcg = folio_memcg(folio);
2175 	if (unlikely(!memcg))
2176 		return;
2177 
2178 #ifdef CONFIG_PROVE_LOCKING
2179 	local_irq_save(flags);
2180 	might_lock(&memcg->move_lock);
2181 	local_irq_restore(flags);
2182 #endif
2183 
2184 	if (atomic_read(&memcg->moving_account) <= 0)
2185 		return;
2186 
2187 	spin_lock_irqsave(&memcg->move_lock, flags);
2188 	if (memcg != folio_memcg(folio)) {
2189 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2190 		goto again;
2191 	}
2192 
2193 	/*
2194 	 * When charge migration first begins, we can have multiple
2195 	 * critical sections holding the fast-path RCU lock and one
2196 	 * holding the slowpath move_lock. Track the task who has the
2197 	 * move_lock for folio_memcg_unlock().
2198 	 */
2199 	memcg->move_lock_task = current;
2200 	memcg->move_lock_flags = flags;
2201 }
2202 
2203 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2204 {
2205 	if (memcg && memcg->move_lock_task == current) {
2206 		unsigned long flags = memcg->move_lock_flags;
2207 
2208 		memcg->move_lock_task = NULL;
2209 		memcg->move_lock_flags = 0;
2210 
2211 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2212 	}
2213 
2214 	rcu_read_unlock();
2215 }
2216 
2217 /**
2218  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2219  * @folio: The folio.
2220  *
2221  * This releases the binding created by folio_memcg_lock().  This does
2222  * not change the accounting of this folio to its memcg, but it does
2223  * permit others to change it.
2224  */
2225 void folio_memcg_unlock(struct folio *folio)
2226 {
2227 	__folio_memcg_unlock(folio_memcg(folio));
2228 }
2229 
2230 struct memcg_stock_pcp {
2231 	local_lock_t stock_lock;
2232 	struct mem_cgroup *cached; /* this never be root cgroup */
2233 	unsigned int nr_pages;
2234 
2235 #ifdef CONFIG_MEMCG_KMEM
2236 	struct obj_cgroup *cached_objcg;
2237 	struct pglist_data *cached_pgdat;
2238 	unsigned int nr_bytes;
2239 	int nr_slab_reclaimable_b;
2240 	int nr_slab_unreclaimable_b;
2241 #endif
2242 
2243 	struct work_struct work;
2244 	unsigned long flags;
2245 #define FLUSHING_CACHED_CHARGE	0
2246 };
2247 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2248 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2249 };
2250 static DEFINE_MUTEX(percpu_charge_mutex);
2251 
2252 #ifdef CONFIG_MEMCG_KMEM
2253 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2254 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2255 				     struct mem_cgroup *root_memcg);
2256 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2257 
2258 #else
2259 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2260 {
2261 	return NULL;
2262 }
2263 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2264 				     struct mem_cgroup *root_memcg)
2265 {
2266 	return false;
2267 }
2268 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2269 {
2270 }
2271 #endif
2272 
2273 /**
2274  * consume_stock: Try to consume stocked charge on this cpu.
2275  * @memcg: memcg to consume from.
2276  * @nr_pages: how many pages to charge.
2277  *
2278  * The charges will only happen if @memcg matches the current cpu's memcg
2279  * stock, and at least @nr_pages are available in that stock.  Failure to
2280  * service an allocation will refill the stock.
2281  *
2282  * returns true if successful, false otherwise.
2283  */
2284 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2285 {
2286 	struct memcg_stock_pcp *stock;
2287 	unsigned long flags;
2288 	bool ret = false;
2289 
2290 	if (nr_pages > MEMCG_CHARGE_BATCH)
2291 		return ret;
2292 
2293 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2294 
2295 	stock = this_cpu_ptr(&memcg_stock);
2296 	if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2297 		stock->nr_pages -= nr_pages;
2298 		ret = true;
2299 	}
2300 
2301 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2302 
2303 	return ret;
2304 }
2305 
2306 /*
2307  * Returns stocks cached in percpu and reset cached information.
2308  */
2309 static void drain_stock(struct memcg_stock_pcp *stock)
2310 {
2311 	struct mem_cgroup *old = READ_ONCE(stock->cached);
2312 
2313 	if (!old)
2314 		return;
2315 
2316 	if (stock->nr_pages) {
2317 		page_counter_uncharge(&old->memory, stock->nr_pages);
2318 		if (do_memsw_account())
2319 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2320 		stock->nr_pages = 0;
2321 	}
2322 
2323 	css_put(&old->css);
2324 	WRITE_ONCE(stock->cached, NULL);
2325 }
2326 
2327 static void drain_local_stock(struct work_struct *dummy)
2328 {
2329 	struct memcg_stock_pcp *stock;
2330 	struct obj_cgroup *old = NULL;
2331 	unsigned long flags;
2332 
2333 	/*
2334 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2335 	 * drain_stock races is that we always operate on local CPU stock
2336 	 * here with IRQ disabled
2337 	 */
2338 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2339 
2340 	stock = this_cpu_ptr(&memcg_stock);
2341 	old = drain_obj_stock(stock);
2342 	drain_stock(stock);
2343 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2344 
2345 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2346 	if (old)
2347 		obj_cgroup_put(old);
2348 }
2349 
2350 /*
2351  * Cache charges(val) to local per_cpu area.
2352  * This will be consumed by consume_stock() function, later.
2353  */
2354 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2355 {
2356 	struct memcg_stock_pcp *stock;
2357 
2358 	stock = this_cpu_ptr(&memcg_stock);
2359 	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2360 		drain_stock(stock);
2361 		css_get(&memcg->css);
2362 		WRITE_ONCE(stock->cached, memcg);
2363 	}
2364 	stock->nr_pages += nr_pages;
2365 
2366 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2367 		drain_stock(stock);
2368 }
2369 
2370 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2371 {
2372 	unsigned long flags;
2373 
2374 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2375 	__refill_stock(memcg, nr_pages);
2376 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2377 }
2378 
2379 /*
2380  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2381  * of the hierarchy under it.
2382  */
2383 static void drain_all_stock(struct mem_cgroup *root_memcg)
2384 {
2385 	int cpu, curcpu;
2386 
2387 	/* If someone's already draining, avoid adding running more workers. */
2388 	if (!mutex_trylock(&percpu_charge_mutex))
2389 		return;
2390 	/*
2391 	 * Notify other cpus that system-wide "drain" is running
2392 	 * We do not care about races with the cpu hotplug because cpu down
2393 	 * as well as workers from this path always operate on the local
2394 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2395 	 */
2396 	migrate_disable();
2397 	curcpu = smp_processor_id();
2398 	for_each_online_cpu(cpu) {
2399 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2400 		struct mem_cgroup *memcg;
2401 		bool flush = false;
2402 
2403 		rcu_read_lock();
2404 		memcg = READ_ONCE(stock->cached);
2405 		if (memcg && stock->nr_pages &&
2406 		    mem_cgroup_is_descendant(memcg, root_memcg))
2407 			flush = true;
2408 		else if (obj_stock_flush_required(stock, root_memcg))
2409 			flush = true;
2410 		rcu_read_unlock();
2411 
2412 		if (flush &&
2413 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2414 			if (cpu == curcpu)
2415 				drain_local_stock(&stock->work);
2416 			else if (!cpu_is_isolated(cpu))
2417 				schedule_work_on(cpu, &stock->work);
2418 		}
2419 	}
2420 	migrate_enable();
2421 	mutex_unlock(&percpu_charge_mutex);
2422 }
2423 
2424 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2425 {
2426 	struct memcg_stock_pcp *stock;
2427 
2428 	stock = &per_cpu(memcg_stock, cpu);
2429 	drain_stock(stock);
2430 
2431 	return 0;
2432 }
2433 
2434 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2435 				  unsigned int nr_pages,
2436 				  gfp_t gfp_mask)
2437 {
2438 	unsigned long nr_reclaimed = 0;
2439 
2440 	do {
2441 		unsigned long pflags;
2442 
2443 		if (page_counter_read(&memcg->memory) <=
2444 		    READ_ONCE(memcg->memory.high))
2445 			continue;
2446 
2447 		memcg_memory_event(memcg, MEMCG_HIGH);
2448 
2449 		psi_memstall_enter(&pflags);
2450 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2451 							gfp_mask,
2452 							MEMCG_RECLAIM_MAY_SWAP);
2453 		psi_memstall_leave(&pflags);
2454 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2455 		 !mem_cgroup_is_root(memcg));
2456 
2457 	return nr_reclaimed;
2458 }
2459 
2460 static void high_work_func(struct work_struct *work)
2461 {
2462 	struct mem_cgroup *memcg;
2463 
2464 	memcg = container_of(work, struct mem_cgroup, high_work);
2465 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2466 }
2467 
2468 /*
2469  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2470  * enough to still cause a significant slowdown in most cases, while still
2471  * allowing diagnostics and tracing to proceed without becoming stuck.
2472  */
2473 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2474 
2475 /*
2476  * When calculating the delay, we use these either side of the exponentiation to
2477  * maintain precision and scale to a reasonable number of jiffies (see the table
2478  * below.
2479  *
2480  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2481  *   overage ratio to a delay.
2482  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2483  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2484  *   to produce a reasonable delay curve.
2485  *
2486  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2487  * reasonable delay curve compared to precision-adjusted overage, not
2488  * penalising heavily at first, but still making sure that growth beyond the
2489  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2490  * example, with a high of 100 megabytes:
2491  *
2492  *  +-------+------------------------+
2493  *  | usage | time to allocate in ms |
2494  *  +-------+------------------------+
2495  *  | 100M  |                      0 |
2496  *  | 101M  |                      6 |
2497  *  | 102M  |                     25 |
2498  *  | 103M  |                     57 |
2499  *  | 104M  |                    102 |
2500  *  | 105M  |                    159 |
2501  *  | 106M  |                    230 |
2502  *  | 107M  |                    313 |
2503  *  | 108M  |                    409 |
2504  *  | 109M  |                    518 |
2505  *  | 110M  |                    639 |
2506  *  | 111M  |                    774 |
2507  *  | 112M  |                    921 |
2508  *  | 113M  |                   1081 |
2509  *  | 114M  |                   1254 |
2510  *  | 115M  |                   1439 |
2511  *  | 116M  |                   1638 |
2512  *  | 117M  |                   1849 |
2513  *  | 118M  |                   2000 |
2514  *  | 119M  |                   2000 |
2515  *  | 120M  |                   2000 |
2516  *  +-------+------------------------+
2517  */
2518  #define MEMCG_DELAY_PRECISION_SHIFT 20
2519  #define MEMCG_DELAY_SCALING_SHIFT 14
2520 
2521 static u64 calculate_overage(unsigned long usage, unsigned long high)
2522 {
2523 	u64 overage;
2524 
2525 	if (usage <= high)
2526 		return 0;
2527 
2528 	/*
2529 	 * Prevent division by 0 in overage calculation by acting as if
2530 	 * it was a threshold of 1 page
2531 	 */
2532 	high = max(high, 1UL);
2533 
2534 	overage = usage - high;
2535 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2536 	return div64_u64(overage, high);
2537 }
2538 
2539 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2540 {
2541 	u64 overage, max_overage = 0;
2542 
2543 	do {
2544 		overage = calculate_overage(page_counter_read(&memcg->memory),
2545 					    READ_ONCE(memcg->memory.high));
2546 		max_overage = max(overage, max_overage);
2547 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2548 		 !mem_cgroup_is_root(memcg));
2549 
2550 	return max_overage;
2551 }
2552 
2553 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2554 {
2555 	u64 overage, max_overage = 0;
2556 
2557 	do {
2558 		overage = calculate_overage(page_counter_read(&memcg->swap),
2559 					    READ_ONCE(memcg->swap.high));
2560 		if (overage)
2561 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2562 		max_overage = max(overage, max_overage);
2563 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2564 		 !mem_cgroup_is_root(memcg));
2565 
2566 	return max_overage;
2567 }
2568 
2569 /*
2570  * Get the number of jiffies that we should penalise a mischievous cgroup which
2571  * is exceeding its memory.high by checking both it and its ancestors.
2572  */
2573 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2574 					  unsigned int nr_pages,
2575 					  u64 max_overage)
2576 {
2577 	unsigned long penalty_jiffies;
2578 
2579 	if (!max_overage)
2580 		return 0;
2581 
2582 	/*
2583 	 * We use overage compared to memory.high to calculate the number of
2584 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2585 	 * fairly lenient on small overages, and increasingly harsh when the
2586 	 * memcg in question makes it clear that it has no intention of stopping
2587 	 * its crazy behaviour, so we exponentially increase the delay based on
2588 	 * overage amount.
2589 	 */
2590 	penalty_jiffies = max_overage * max_overage * HZ;
2591 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2592 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2593 
2594 	/*
2595 	 * Factor in the task's own contribution to the overage, such that four
2596 	 * N-sized allocations are throttled approximately the same as one
2597 	 * 4N-sized allocation.
2598 	 *
2599 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2600 	 * larger the current charge patch is than that.
2601 	 */
2602 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2603 }
2604 
2605 /*
2606  * Scheduled by try_charge() to be executed from the userland return path
2607  * and reclaims memory over the high limit.
2608  */
2609 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2610 {
2611 	unsigned long penalty_jiffies;
2612 	unsigned long pflags;
2613 	unsigned long nr_reclaimed;
2614 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2615 	int nr_retries = MAX_RECLAIM_RETRIES;
2616 	struct mem_cgroup *memcg;
2617 	bool in_retry = false;
2618 
2619 	if (likely(!nr_pages))
2620 		return;
2621 
2622 	memcg = get_mem_cgroup_from_mm(current->mm);
2623 	current->memcg_nr_pages_over_high = 0;
2624 
2625 retry_reclaim:
2626 	/*
2627 	 * The allocating task should reclaim at least the batch size, but for
2628 	 * subsequent retries we only want to do what's necessary to prevent oom
2629 	 * or breaching resource isolation.
2630 	 *
2631 	 * This is distinct from memory.max or page allocator behaviour because
2632 	 * memory.high is currently batched, whereas memory.max and the page
2633 	 * allocator run every time an allocation is made.
2634 	 */
2635 	nr_reclaimed = reclaim_high(memcg,
2636 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2637 				    gfp_mask);
2638 
2639 	/*
2640 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2641 	 * allocators proactively to slow down excessive growth.
2642 	 */
2643 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2644 					       mem_find_max_overage(memcg));
2645 
2646 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2647 						swap_find_max_overage(memcg));
2648 
2649 	/*
2650 	 * Clamp the max delay per usermode return so as to still keep the
2651 	 * application moving forwards and also permit diagnostics, albeit
2652 	 * extremely slowly.
2653 	 */
2654 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2655 
2656 	/*
2657 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2658 	 * that it's not even worth doing, in an attempt to be nice to those who
2659 	 * go only a small amount over their memory.high value and maybe haven't
2660 	 * been aggressively reclaimed enough yet.
2661 	 */
2662 	if (penalty_jiffies <= HZ / 100)
2663 		goto out;
2664 
2665 	/*
2666 	 * If reclaim is making forward progress but we're still over
2667 	 * memory.high, we want to encourage that rather than doing allocator
2668 	 * throttling.
2669 	 */
2670 	if (nr_reclaimed || nr_retries--) {
2671 		in_retry = true;
2672 		goto retry_reclaim;
2673 	}
2674 
2675 	/*
2676 	 * If we exit early, we're guaranteed to die (since
2677 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2678 	 * need to account for any ill-begotten jiffies to pay them off later.
2679 	 */
2680 	psi_memstall_enter(&pflags);
2681 	schedule_timeout_killable(penalty_jiffies);
2682 	psi_memstall_leave(&pflags);
2683 
2684 out:
2685 	css_put(&memcg->css);
2686 }
2687 
2688 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2689 			unsigned int nr_pages)
2690 {
2691 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2692 	int nr_retries = MAX_RECLAIM_RETRIES;
2693 	struct mem_cgroup *mem_over_limit;
2694 	struct page_counter *counter;
2695 	unsigned long nr_reclaimed;
2696 	bool passed_oom = false;
2697 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2698 	bool drained = false;
2699 	bool raised_max_event = false;
2700 	unsigned long pflags;
2701 
2702 retry:
2703 	if (consume_stock(memcg, nr_pages))
2704 		return 0;
2705 
2706 	if (!do_memsw_account() ||
2707 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2708 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2709 			goto done_restock;
2710 		if (do_memsw_account())
2711 			page_counter_uncharge(&memcg->memsw, batch);
2712 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2713 	} else {
2714 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2715 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2716 	}
2717 
2718 	if (batch > nr_pages) {
2719 		batch = nr_pages;
2720 		goto retry;
2721 	}
2722 
2723 	/*
2724 	 * Prevent unbounded recursion when reclaim operations need to
2725 	 * allocate memory. This might exceed the limits temporarily,
2726 	 * but we prefer facilitating memory reclaim and getting back
2727 	 * under the limit over triggering OOM kills in these cases.
2728 	 */
2729 	if (unlikely(current->flags & PF_MEMALLOC))
2730 		goto force;
2731 
2732 	if (unlikely(task_in_memcg_oom(current)))
2733 		goto nomem;
2734 
2735 	if (!gfpflags_allow_blocking(gfp_mask))
2736 		goto nomem;
2737 
2738 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2739 	raised_max_event = true;
2740 
2741 	psi_memstall_enter(&pflags);
2742 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2743 						    gfp_mask, reclaim_options);
2744 	psi_memstall_leave(&pflags);
2745 
2746 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2747 		goto retry;
2748 
2749 	if (!drained) {
2750 		drain_all_stock(mem_over_limit);
2751 		drained = true;
2752 		goto retry;
2753 	}
2754 
2755 	if (gfp_mask & __GFP_NORETRY)
2756 		goto nomem;
2757 	/*
2758 	 * Even though the limit is exceeded at this point, reclaim
2759 	 * may have been able to free some pages.  Retry the charge
2760 	 * before killing the task.
2761 	 *
2762 	 * Only for regular pages, though: huge pages are rather
2763 	 * unlikely to succeed so close to the limit, and we fall back
2764 	 * to regular pages anyway in case of failure.
2765 	 */
2766 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2767 		goto retry;
2768 	/*
2769 	 * At task move, charge accounts can be doubly counted. So, it's
2770 	 * better to wait until the end of task_move if something is going on.
2771 	 */
2772 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2773 		goto retry;
2774 
2775 	if (nr_retries--)
2776 		goto retry;
2777 
2778 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2779 		goto nomem;
2780 
2781 	/* Avoid endless loop for tasks bypassed by the oom killer */
2782 	if (passed_oom && task_is_dying())
2783 		goto nomem;
2784 
2785 	/*
2786 	 * keep retrying as long as the memcg oom killer is able to make
2787 	 * a forward progress or bypass the charge if the oom killer
2788 	 * couldn't make any progress.
2789 	 */
2790 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2791 			   get_order(nr_pages * PAGE_SIZE))) {
2792 		passed_oom = true;
2793 		nr_retries = MAX_RECLAIM_RETRIES;
2794 		goto retry;
2795 	}
2796 nomem:
2797 	/*
2798 	 * Memcg doesn't have a dedicated reserve for atomic
2799 	 * allocations. But like the global atomic pool, we need to
2800 	 * put the burden of reclaim on regular allocation requests
2801 	 * and let these go through as privileged allocations.
2802 	 */
2803 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2804 		return -ENOMEM;
2805 force:
2806 	/*
2807 	 * If the allocation has to be enforced, don't forget to raise
2808 	 * a MEMCG_MAX event.
2809 	 */
2810 	if (!raised_max_event)
2811 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2812 
2813 	/*
2814 	 * The allocation either can't fail or will lead to more memory
2815 	 * being freed very soon.  Allow memory usage go over the limit
2816 	 * temporarily by force charging it.
2817 	 */
2818 	page_counter_charge(&memcg->memory, nr_pages);
2819 	if (do_memsw_account())
2820 		page_counter_charge(&memcg->memsw, nr_pages);
2821 
2822 	return 0;
2823 
2824 done_restock:
2825 	if (batch > nr_pages)
2826 		refill_stock(memcg, batch - nr_pages);
2827 
2828 	/*
2829 	 * If the hierarchy is above the normal consumption range, schedule
2830 	 * reclaim on returning to userland.  We can perform reclaim here
2831 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2832 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2833 	 * not recorded as it most likely matches current's and won't
2834 	 * change in the meantime.  As high limit is checked again before
2835 	 * reclaim, the cost of mismatch is negligible.
2836 	 */
2837 	do {
2838 		bool mem_high, swap_high;
2839 
2840 		mem_high = page_counter_read(&memcg->memory) >
2841 			READ_ONCE(memcg->memory.high);
2842 		swap_high = page_counter_read(&memcg->swap) >
2843 			READ_ONCE(memcg->swap.high);
2844 
2845 		/* Don't bother a random interrupted task */
2846 		if (!in_task()) {
2847 			if (mem_high) {
2848 				schedule_work(&memcg->high_work);
2849 				break;
2850 			}
2851 			continue;
2852 		}
2853 
2854 		if (mem_high || swap_high) {
2855 			/*
2856 			 * The allocating tasks in this cgroup will need to do
2857 			 * reclaim or be throttled to prevent further growth
2858 			 * of the memory or swap footprints.
2859 			 *
2860 			 * Target some best-effort fairness between the tasks,
2861 			 * and distribute reclaim work and delay penalties
2862 			 * based on how much each task is actually allocating.
2863 			 */
2864 			current->memcg_nr_pages_over_high += batch;
2865 			set_notify_resume(current);
2866 			break;
2867 		}
2868 	} while ((memcg = parent_mem_cgroup(memcg)));
2869 
2870 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2871 	    !(current->flags & PF_MEMALLOC) &&
2872 	    gfpflags_allow_blocking(gfp_mask)) {
2873 		mem_cgroup_handle_over_high(gfp_mask);
2874 	}
2875 	return 0;
2876 }
2877 
2878 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2879 			     unsigned int nr_pages)
2880 {
2881 	if (mem_cgroup_is_root(memcg))
2882 		return 0;
2883 
2884 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2885 }
2886 
2887 /**
2888  * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2889  * @memcg: memcg previously charged.
2890  * @nr_pages: number of pages previously charged.
2891  */
2892 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2893 {
2894 	if (mem_cgroup_is_root(memcg))
2895 		return;
2896 
2897 	page_counter_uncharge(&memcg->memory, nr_pages);
2898 	if (do_memsw_account())
2899 		page_counter_uncharge(&memcg->memsw, nr_pages);
2900 }
2901 
2902 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2903 {
2904 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2905 	/*
2906 	 * Any of the following ensures page's memcg stability:
2907 	 *
2908 	 * - the page lock
2909 	 * - LRU isolation
2910 	 * - folio_memcg_lock()
2911 	 * - exclusive reference
2912 	 * - mem_cgroup_trylock_pages()
2913 	 */
2914 	folio->memcg_data = (unsigned long)memcg;
2915 }
2916 
2917 /**
2918  * mem_cgroup_commit_charge - commit a previously successful try_charge().
2919  * @folio: folio to commit the charge to.
2920  * @memcg: memcg previously charged.
2921  */
2922 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2923 {
2924 	css_get(&memcg->css);
2925 	commit_charge(folio, memcg);
2926 
2927 	local_irq_disable();
2928 	mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
2929 	memcg_check_events(memcg, folio_nid(folio));
2930 	local_irq_enable();
2931 }
2932 
2933 #ifdef CONFIG_MEMCG_KMEM
2934 /*
2935  * The allocated objcg pointers array is not accounted directly.
2936  * Moreover, it should not come from DMA buffer and is not readily
2937  * reclaimable. So those GFP bits should be masked off.
2938  */
2939 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2940 
2941 /*
2942  * mod_objcg_mlstate() may be called with irq enabled, so
2943  * mod_memcg_lruvec_state() should be used.
2944  */
2945 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2946 				     struct pglist_data *pgdat,
2947 				     enum node_stat_item idx, int nr)
2948 {
2949 	struct mem_cgroup *memcg;
2950 	struct lruvec *lruvec;
2951 
2952 	rcu_read_lock();
2953 	memcg = obj_cgroup_memcg(objcg);
2954 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2955 	mod_memcg_lruvec_state(lruvec, idx, nr);
2956 	rcu_read_unlock();
2957 }
2958 
2959 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2960 				 gfp_t gfp, bool new_slab)
2961 {
2962 	unsigned int objects = objs_per_slab(s, slab);
2963 	unsigned long memcg_data;
2964 	void *vec;
2965 
2966 	gfp &= ~OBJCGS_CLEAR_MASK;
2967 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2968 			   slab_nid(slab));
2969 	if (!vec)
2970 		return -ENOMEM;
2971 
2972 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2973 	if (new_slab) {
2974 		/*
2975 		 * If the slab is brand new and nobody can yet access its
2976 		 * memcg_data, no synchronization is required and memcg_data can
2977 		 * be simply assigned.
2978 		 */
2979 		slab->memcg_data = memcg_data;
2980 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2981 		/*
2982 		 * If the slab is already in use, somebody can allocate and
2983 		 * assign obj_cgroups in parallel. In this case the existing
2984 		 * objcg vector should be reused.
2985 		 */
2986 		kfree(vec);
2987 		return 0;
2988 	}
2989 
2990 	kmemleak_not_leak(vec);
2991 	return 0;
2992 }
2993 
2994 static __always_inline
2995 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2996 {
2997 	/*
2998 	 * Slab objects are accounted individually, not per-page.
2999 	 * Memcg membership data for each individual object is saved in
3000 	 * slab->memcg_data.
3001 	 */
3002 	if (folio_test_slab(folio)) {
3003 		struct obj_cgroup **objcgs;
3004 		struct slab *slab;
3005 		unsigned int off;
3006 
3007 		slab = folio_slab(folio);
3008 		objcgs = slab_objcgs(slab);
3009 		if (!objcgs)
3010 			return NULL;
3011 
3012 		off = obj_to_index(slab->slab_cache, slab, p);
3013 		if (objcgs[off])
3014 			return obj_cgroup_memcg(objcgs[off]);
3015 
3016 		return NULL;
3017 	}
3018 
3019 	/*
3020 	 * folio_memcg_check() is used here, because in theory we can encounter
3021 	 * a folio where the slab flag has been cleared already, but
3022 	 * slab->memcg_data has not been freed yet
3023 	 * folio_memcg_check() will guarantee that a proper memory
3024 	 * cgroup pointer or NULL will be returned.
3025 	 */
3026 	return folio_memcg_check(folio);
3027 }
3028 
3029 /*
3030  * Returns a pointer to the memory cgroup to which the kernel object is charged.
3031  *
3032  * A passed kernel object can be a slab object, vmalloc object or a generic
3033  * kernel page, so different mechanisms for getting the memory cgroup pointer
3034  * should be used.
3035  *
3036  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3037  * can not know for sure how the kernel object is implemented.
3038  * mem_cgroup_from_obj() can be safely used in such cases.
3039  *
3040  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3041  * cgroup_mutex, etc.
3042  */
3043 struct mem_cgroup *mem_cgroup_from_obj(void *p)
3044 {
3045 	struct folio *folio;
3046 
3047 	if (mem_cgroup_disabled())
3048 		return NULL;
3049 
3050 	if (unlikely(is_vmalloc_addr(p)))
3051 		folio = page_folio(vmalloc_to_page(p));
3052 	else
3053 		folio = virt_to_folio(p);
3054 
3055 	return mem_cgroup_from_obj_folio(folio, p);
3056 }
3057 
3058 /*
3059  * Returns a pointer to the memory cgroup to which the kernel object is charged.
3060  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3061  * allocated using vmalloc().
3062  *
3063  * A passed kernel object must be a slab object or a generic kernel page.
3064  *
3065  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3066  * cgroup_mutex, etc.
3067  */
3068 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3069 {
3070 	if (mem_cgroup_disabled())
3071 		return NULL;
3072 
3073 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3074 }
3075 
3076 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3077 {
3078 	struct obj_cgroup *objcg = NULL;
3079 
3080 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3081 		objcg = rcu_dereference(memcg->objcg);
3082 		if (likely(objcg && obj_cgroup_tryget(objcg)))
3083 			break;
3084 		objcg = NULL;
3085 	}
3086 	return objcg;
3087 }
3088 
3089 static struct obj_cgroup *current_objcg_update(void)
3090 {
3091 	struct mem_cgroup *memcg;
3092 	struct obj_cgroup *old, *objcg = NULL;
3093 
3094 	do {
3095 		/* Atomically drop the update bit. */
3096 		old = xchg(&current->objcg, NULL);
3097 		if (old) {
3098 			old = (struct obj_cgroup *)
3099 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3100 			if (old)
3101 				obj_cgroup_put(old);
3102 
3103 			old = NULL;
3104 		}
3105 
3106 		/* If new objcg is NULL, no reason for the second atomic update. */
3107 		if (!current->mm || (current->flags & PF_KTHREAD))
3108 			return NULL;
3109 
3110 		/*
3111 		 * Release the objcg pointer from the previous iteration,
3112 		 * if try_cmpxcg() below fails.
3113 		 */
3114 		if (unlikely(objcg)) {
3115 			obj_cgroup_put(objcg);
3116 			objcg = NULL;
3117 		}
3118 
3119 		/*
3120 		 * Obtain the new objcg pointer. The current task can be
3121 		 * asynchronously moved to another memcg and the previous
3122 		 * memcg can be offlined. So let's get the memcg pointer
3123 		 * and try get a reference to objcg under a rcu read lock.
3124 		 */
3125 
3126 		rcu_read_lock();
3127 		memcg = mem_cgroup_from_task(current);
3128 		objcg = __get_obj_cgroup_from_memcg(memcg);
3129 		rcu_read_unlock();
3130 
3131 		/*
3132 		 * Try set up a new objcg pointer atomically. If it
3133 		 * fails, it means the update flag was set concurrently, so
3134 		 * the whole procedure should be repeated.
3135 		 */
3136 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
3137 
3138 	return objcg;
3139 }
3140 
3141 __always_inline struct obj_cgroup *current_obj_cgroup(void)
3142 {
3143 	struct mem_cgroup *memcg;
3144 	struct obj_cgroup *objcg;
3145 
3146 	if (in_task()) {
3147 		memcg = current->active_memcg;
3148 		if (unlikely(memcg))
3149 			goto from_memcg;
3150 
3151 		objcg = READ_ONCE(current->objcg);
3152 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3153 			objcg = current_objcg_update();
3154 		/*
3155 		 * Objcg reference is kept by the task, so it's safe
3156 		 * to use the objcg by the current task.
3157 		 */
3158 		return objcg;
3159 	}
3160 
3161 	memcg = this_cpu_read(int_active_memcg);
3162 	if (unlikely(memcg))
3163 		goto from_memcg;
3164 
3165 	return NULL;
3166 
3167 from_memcg:
3168 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3169 		/*
3170 		 * Memcg pointer is protected by scope (see set_active_memcg())
3171 		 * and is pinning the corresponding objcg, so objcg can't go
3172 		 * away and can be used within the scope without any additional
3173 		 * protection.
3174 		 */
3175 		objcg = rcu_dereference_check(memcg->objcg, 1);
3176 		if (likely(objcg))
3177 			break;
3178 		objcg = NULL;
3179 	}
3180 
3181 	return objcg;
3182 }
3183 
3184 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3185 {
3186 	struct obj_cgroup *objcg;
3187 
3188 	if (!memcg_kmem_online())
3189 		return NULL;
3190 
3191 	if (folio_memcg_kmem(folio)) {
3192 		objcg = __folio_objcg(folio);
3193 		obj_cgroup_get(objcg);
3194 	} else {
3195 		struct mem_cgroup *memcg;
3196 
3197 		rcu_read_lock();
3198 		memcg = __folio_memcg(folio);
3199 		if (memcg)
3200 			objcg = __get_obj_cgroup_from_memcg(memcg);
3201 		else
3202 			objcg = NULL;
3203 		rcu_read_unlock();
3204 	}
3205 	return objcg;
3206 }
3207 
3208 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3209 {
3210 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3211 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3212 		if (nr_pages > 0)
3213 			page_counter_charge(&memcg->kmem, nr_pages);
3214 		else
3215 			page_counter_uncharge(&memcg->kmem, -nr_pages);
3216 	}
3217 }
3218 
3219 
3220 /*
3221  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3222  * @objcg: object cgroup to uncharge
3223  * @nr_pages: number of pages to uncharge
3224  */
3225 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3226 				      unsigned int nr_pages)
3227 {
3228 	struct mem_cgroup *memcg;
3229 
3230 	memcg = get_mem_cgroup_from_objcg(objcg);
3231 
3232 	memcg_account_kmem(memcg, -nr_pages);
3233 	refill_stock(memcg, nr_pages);
3234 
3235 	css_put(&memcg->css);
3236 }
3237 
3238 /*
3239  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3240  * @objcg: object cgroup to charge
3241  * @gfp: reclaim mode
3242  * @nr_pages: number of pages to charge
3243  *
3244  * Returns 0 on success, an error code on failure.
3245  */
3246 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3247 				   unsigned int nr_pages)
3248 {
3249 	struct mem_cgroup *memcg;
3250 	int ret;
3251 
3252 	memcg = get_mem_cgroup_from_objcg(objcg);
3253 
3254 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3255 	if (ret)
3256 		goto out;
3257 
3258 	memcg_account_kmem(memcg, nr_pages);
3259 out:
3260 	css_put(&memcg->css);
3261 
3262 	return ret;
3263 }
3264 
3265 /**
3266  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3267  * @page: page to charge
3268  * @gfp: reclaim mode
3269  * @order: allocation order
3270  *
3271  * Returns 0 on success, an error code on failure.
3272  */
3273 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3274 {
3275 	struct obj_cgroup *objcg;
3276 	int ret = 0;
3277 
3278 	objcg = current_obj_cgroup();
3279 	if (objcg) {
3280 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3281 		if (!ret) {
3282 			obj_cgroup_get(objcg);
3283 			page->memcg_data = (unsigned long)objcg |
3284 				MEMCG_DATA_KMEM;
3285 			return 0;
3286 		}
3287 	}
3288 	return ret;
3289 }
3290 
3291 /**
3292  * __memcg_kmem_uncharge_page: uncharge a kmem page
3293  * @page: page to uncharge
3294  * @order: allocation order
3295  */
3296 void __memcg_kmem_uncharge_page(struct page *page, int order)
3297 {
3298 	struct folio *folio = page_folio(page);
3299 	struct obj_cgroup *objcg;
3300 	unsigned int nr_pages = 1 << order;
3301 
3302 	if (!folio_memcg_kmem(folio))
3303 		return;
3304 
3305 	objcg = __folio_objcg(folio);
3306 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3307 	folio->memcg_data = 0;
3308 	obj_cgroup_put(objcg);
3309 }
3310 
3311 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3312 		     enum node_stat_item idx, int nr)
3313 {
3314 	struct memcg_stock_pcp *stock;
3315 	struct obj_cgroup *old = NULL;
3316 	unsigned long flags;
3317 	int *bytes;
3318 
3319 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3320 	stock = this_cpu_ptr(&memcg_stock);
3321 
3322 	/*
3323 	 * Save vmstat data in stock and skip vmstat array update unless
3324 	 * accumulating over a page of vmstat data or when pgdat or idx
3325 	 * changes.
3326 	 */
3327 	if (READ_ONCE(stock->cached_objcg) != objcg) {
3328 		old = drain_obj_stock(stock);
3329 		obj_cgroup_get(objcg);
3330 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3331 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3332 		WRITE_ONCE(stock->cached_objcg, objcg);
3333 		stock->cached_pgdat = pgdat;
3334 	} else if (stock->cached_pgdat != pgdat) {
3335 		/* Flush the existing cached vmstat data */
3336 		struct pglist_data *oldpg = stock->cached_pgdat;
3337 
3338 		if (stock->nr_slab_reclaimable_b) {
3339 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3340 					  stock->nr_slab_reclaimable_b);
3341 			stock->nr_slab_reclaimable_b = 0;
3342 		}
3343 		if (stock->nr_slab_unreclaimable_b) {
3344 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3345 					  stock->nr_slab_unreclaimable_b);
3346 			stock->nr_slab_unreclaimable_b = 0;
3347 		}
3348 		stock->cached_pgdat = pgdat;
3349 	}
3350 
3351 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3352 					       : &stock->nr_slab_unreclaimable_b;
3353 	/*
3354 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3355 	 * cached locally at least once before pushing it out.
3356 	 */
3357 	if (!*bytes) {
3358 		*bytes = nr;
3359 		nr = 0;
3360 	} else {
3361 		*bytes += nr;
3362 		if (abs(*bytes) > PAGE_SIZE) {
3363 			nr = *bytes;
3364 			*bytes = 0;
3365 		} else {
3366 			nr = 0;
3367 		}
3368 	}
3369 	if (nr)
3370 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3371 
3372 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3373 	if (old)
3374 		obj_cgroup_put(old);
3375 }
3376 
3377 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3378 {
3379 	struct memcg_stock_pcp *stock;
3380 	unsigned long flags;
3381 	bool ret = false;
3382 
3383 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3384 
3385 	stock = this_cpu_ptr(&memcg_stock);
3386 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3387 		stock->nr_bytes -= nr_bytes;
3388 		ret = true;
3389 	}
3390 
3391 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3392 
3393 	return ret;
3394 }
3395 
3396 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3397 {
3398 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3399 
3400 	if (!old)
3401 		return NULL;
3402 
3403 	if (stock->nr_bytes) {
3404 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3405 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3406 
3407 		if (nr_pages) {
3408 			struct mem_cgroup *memcg;
3409 
3410 			memcg = get_mem_cgroup_from_objcg(old);
3411 
3412 			memcg_account_kmem(memcg, -nr_pages);
3413 			__refill_stock(memcg, nr_pages);
3414 
3415 			css_put(&memcg->css);
3416 		}
3417 
3418 		/*
3419 		 * The leftover is flushed to the centralized per-memcg value.
3420 		 * On the next attempt to refill obj stock it will be moved
3421 		 * to a per-cpu stock (probably, on an other CPU), see
3422 		 * refill_obj_stock().
3423 		 *
3424 		 * How often it's flushed is a trade-off between the memory
3425 		 * limit enforcement accuracy and potential CPU contention,
3426 		 * so it might be changed in the future.
3427 		 */
3428 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3429 		stock->nr_bytes = 0;
3430 	}
3431 
3432 	/*
3433 	 * Flush the vmstat data in current stock
3434 	 */
3435 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3436 		if (stock->nr_slab_reclaimable_b) {
3437 			mod_objcg_mlstate(old, stock->cached_pgdat,
3438 					  NR_SLAB_RECLAIMABLE_B,
3439 					  stock->nr_slab_reclaimable_b);
3440 			stock->nr_slab_reclaimable_b = 0;
3441 		}
3442 		if (stock->nr_slab_unreclaimable_b) {
3443 			mod_objcg_mlstate(old, stock->cached_pgdat,
3444 					  NR_SLAB_UNRECLAIMABLE_B,
3445 					  stock->nr_slab_unreclaimable_b);
3446 			stock->nr_slab_unreclaimable_b = 0;
3447 		}
3448 		stock->cached_pgdat = NULL;
3449 	}
3450 
3451 	WRITE_ONCE(stock->cached_objcg, NULL);
3452 	/*
3453 	 * The `old' objects needs to be released by the caller via
3454 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3455 	 */
3456 	return old;
3457 }
3458 
3459 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3460 				     struct mem_cgroup *root_memcg)
3461 {
3462 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3463 	struct mem_cgroup *memcg;
3464 
3465 	if (objcg) {
3466 		memcg = obj_cgroup_memcg(objcg);
3467 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3468 			return true;
3469 	}
3470 
3471 	return false;
3472 }
3473 
3474 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3475 			     bool allow_uncharge)
3476 {
3477 	struct memcg_stock_pcp *stock;
3478 	struct obj_cgroup *old = NULL;
3479 	unsigned long flags;
3480 	unsigned int nr_pages = 0;
3481 
3482 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3483 
3484 	stock = this_cpu_ptr(&memcg_stock);
3485 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3486 		old = drain_obj_stock(stock);
3487 		obj_cgroup_get(objcg);
3488 		WRITE_ONCE(stock->cached_objcg, objcg);
3489 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3490 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3491 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3492 	}
3493 	stock->nr_bytes += nr_bytes;
3494 
3495 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3496 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3497 		stock->nr_bytes &= (PAGE_SIZE - 1);
3498 	}
3499 
3500 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3501 	if (old)
3502 		obj_cgroup_put(old);
3503 
3504 	if (nr_pages)
3505 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3506 }
3507 
3508 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3509 {
3510 	unsigned int nr_pages, nr_bytes;
3511 	int ret;
3512 
3513 	if (consume_obj_stock(objcg, size))
3514 		return 0;
3515 
3516 	/*
3517 	 * In theory, objcg->nr_charged_bytes can have enough
3518 	 * pre-charged bytes to satisfy the allocation. However,
3519 	 * flushing objcg->nr_charged_bytes requires two atomic
3520 	 * operations, and objcg->nr_charged_bytes can't be big.
3521 	 * The shared objcg->nr_charged_bytes can also become a
3522 	 * performance bottleneck if all tasks of the same memcg are
3523 	 * trying to update it. So it's better to ignore it and try
3524 	 * grab some new pages. The stock's nr_bytes will be flushed to
3525 	 * objcg->nr_charged_bytes later on when objcg changes.
3526 	 *
3527 	 * The stock's nr_bytes may contain enough pre-charged bytes
3528 	 * to allow one less page from being charged, but we can't rely
3529 	 * on the pre-charged bytes not being changed outside of
3530 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3531 	 * pre-charged bytes as well when charging pages. To avoid a
3532 	 * page uncharge right after a page charge, we set the
3533 	 * allow_uncharge flag to false when calling refill_obj_stock()
3534 	 * to temporarily allow the pre-charged bytes to exceed the page
3535 	 * size limit. The maximum reachable value of the pre-charged
3536 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3537 	 * race.
3538 	 */
3539 	nr_pages = size >> PAGE_SHIFT;
3540 	nr_bytes = size & (PAGE_SIZE - 1);
3541 
3542 	if (nr_bytes)
3543 		nr_pages += 1;
3544 
3545 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3546 	if (!ret && nr_bytes)
3547 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3548 
3549 	return ret;
3550 }
3551 
3552 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3553 {
3554 	refill_obj_stock(objcg, size, true);
3555 }
3556 
3557 #endif /* CONFIG_MEMCG_KMEM */
3558 
3559 /*
3560  * Because page_memcg(head) is not set on tails, set it now.
3561  */
3562 void split_page_memcg(struct page *head, unsigned int nr)
3563 {
3564 	struct folio *folio = page_folio(head);
3565 	struct mem_cgroup *memcg = folio_memcg(folio);
3566 	int i;
3567 
3568 	if (mem_cgroup_disabled() || !memcg)
3569 		return;
3570 
3571 	for (i = 1; i < nr; i++)
3572 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3573 
3574 	if (folio_memcg_kmem(folio))
3575 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3576 	else
3577 		css_get_many(&memcg->css, nr - 1);
3578 }
3579 
3580 #ifdef CONFIG_SWAP
3581 /**
3582  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3583  * @entry: swap entry to be moved
3584  * @from:  mem_cgroup which the entry is moved from
3585  * @to:  mem_cgroup which the entry is moved to
3586  *
3587  * It succeeds only when the swap_cgroup's record for this entry is the same
3588  * as the mem_cgroup's id of @from.
3589  *
3590  * Returns 0 on success, -EINVAL on failure.
3591  *
3592  * The caller must have charged to @to, IOW, called page_counter_charge() about
3593  * both res and memsw, and called css_get().
3594  */
3595 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3596 				struct mem_cgroup *from, struct mem_cgroup *to)
3597 {
3598 	unsigned short old_id, new_id;
3599 
3600 	old_id = mem_cgroup_id(from);
3601 	new_id = mem_cgroup_id(to);
3602 
3603 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3604 		mod_memcg_state(from, MEMCG_SWAP, -1);
3605 		mod_memcg_state(to, MEMCG_SWAP, 1);
3606 		return 0;
3607 	}
3608 	return -EINVAL;
3609 }
3610 #else
3611 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3612 				struct mem_cgroup *from, struct mem_cgroup *to)
3613 {
3614 	return -EINVAL;
3615 }
3616 #endif
3617 
3618 static DEFINE_MUTEX(memcg_max_mutex);
3619 
3620 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3621 				 unsigned long max, bool memsw)
3622 {
3623 	bool enlarge = false;
3624 	bool drained = false;
3625 	int ret;
3626 	bool limits_invariant;
3627 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3628 
3629 	do {
3630 		if (signal_pending(current)) {
3631 			ret = -EINTR;
3632 			break;
3633 		}
3634 
3635 		mutex_lock(&memcg_max_mutex);
3636 		/*
3637 		 * Make sure that the new limit (memsw or memory limit) doesn't
3638 		 * break our basic invariant rule memory.max <= memsw.max.
3639 		 */
3640 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3641 					   max <= memcg->memsw.max;
3642 		if (!limits_invariant) {
3643 			mutex_unlock(&memcg_max_mutex);
3644 			ret = -EINVAL;
3645 			break;
3646 		}
3647 		if (max > counter->max)
3648 			enlarge = true;
3649 		ret = page_counter_set_max(counter, max);
3650 		mutex_unlock(&memcg_max_mutex);
3651 
3652 		if (!ret)
3653 			break;
3654 
3655 		if (!drained) {
3656 			drain_all_stock(memcg);
3657 			drained = true;
3658 			continue;
3659 		}
3660 
3661 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3662 					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3663 			ret = -EBUSY;
3664 			break;
3665 		}
3666 	} while (true);
3667 
3668 	if (!ret && enlarge)
3669 		memcg_oom_recover(memcg);
3670 
3671 	return ret;
3672 }
3673 
3674 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3675 					    gfp_t gfp_mask,
3676 					    unsigned long *total_scanned)
3677 {
3678 	unsigned long nr_reclaimed = 0;
3679 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3680 	unsigned long reclaimed;
3681 	int loop = 0;
3682 	struct mem_cgroup_tree_per_node *mctz;
3683 	unsigned long excess;
3684 
3685 	if (lru_gen_enabled())
3686 		return 0;
3687 
3688 	if (order > 0)
3689 		return 0;
3690 
3691 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3692 
3693 	/*
3694 	 * Do not even bother to check the largest node if the root
3695 	 * is empty. Do it lockless to prevent lock bouncing. Races
3696 	 * are acceptable as soft limit is best effort anyway.
3697 	 */
3698 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3699 		return 0;
3700 
3701 	/*
3702 	 * This loop can run a while, specially if mem_cgroup's continuously
3703 	 * keep exceeding their soft limit and putting the system under
3704 	 * pressure
3705 	 */
3706 	do {
3707 		if (next_mz)
3708 			mz = next_mz;
3709 		else
3710 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3711 		if (!mz)
3712 			break;
3713 
3714 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3715 						    gfp_mask, total_scanned);
3716 		nr_reclaimed += reclaimed;
3717 		spin_lock_irq(&mctz->lock);
3718 
3719 		/*
3720 		 * If we failed to reclaim anything from this memory cgroup
3721 		 * it is time to move on to the next cgroup
3722 		 */
3723 		next_mz = NULL;
3724 		if (!reclaimed)
3725 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3726 
3727 		excess = soft_limit_excess(mz->memcg);
3728 		/*
3729 		 * One school of thought says that we should not add
3730 		 * back the node to the tree if reclaim returns 0.
3731 		 * But our reclaim could return 0, simply because due
3732 		 * to priority we are exposing a smaller subset of
3733 		 * memory to reclaim from. Consider this as a longer
3734 		 * term TODO.
3735 		 */
3736 		/* If excess == 0, no tree ops */
3737 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3738 		spin_unlock_irq(&mctz->lock);
3739 		css_put(&mz->memcg->css);
3740 		loop++;
3741 		/*
3742 		 * Could not reclaim anything and there are no more
3743 		 * mem cgroups to try or we seem to be looping without
3744 		 * reclaiming anything.
3745 		 */
3746 		if (!nr_reclaimed &&
3747 			(next_mz == NULL ||
3748 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3749 			break;
3750 	} while (!nr_reclaimed);
3751 	if (next_mz)
3752 		css_put(&next_mz->memcg->css);
3753 	return nr_reclaimed;
3754 }
3755 
3756 /*
3757  * Reclaims as many pages from the given memcg as possible.
3758  *
3759  * Caller is responsible for holding css reference for memcg.
3760  */
3761 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3762 {
3763 	int nr_retries = MAX_RECLAIM_RETRIES;
3764 
3765 	/* we call try-to-free pages for make this cgroup empty */
3766 	lru_add_drain_all();
3767 
3768 	drain_all_stock(memcg);
3769 
3770 	/* try to free all pages in this cgroup */
3771 	while (nr_retries && page_counter_read(&memcg->memory)) {
3772 		if (signal_pending(current))
3773 			return -EINTR;
3774 
3775 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3776 						  MEMCG_RECLAIM_MAY_SWAP))
3777 			nr_retries--;
3778 	}
3779 
3780 	return 0;
3781 }
3782 
3783 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3784 					    char *buf, size_t nbytes,
3785 					    loff_t off)
3786 {
3787 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3788 
3789 	if (mem_cgroup_is_root(memcg))
3790 		return -EINVAL;
3791 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3792 }
3793 
3794 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3795 				     struct cftype *cft)
3796 {
3797 	return 1;
3798 }
3799 
3800 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3801 				      struct cftype *cft, u64 val)
3802 {
3803 	if (val == 1)
3804 		return 0;
3805 
3806 	pr_warn_once("Non-hierarchical mode is deprecated. "
3807 		     "Please report your usecase to linux-mm@kvack.org if you "
3808 		     "depend on this functionality.\n");
3809 
3810 	return -EINVAL;
3811 }
3812 
3813 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3814 {
3815 	unsigned long val;
3816 
3817 	if (mem_cgroup_is_root(memcg)) {
3818 		/*
3819 		 * Approximate root's usage from global state. This isn't
3820 		 * perfect, but the root usage was always an approximation.
3821 		 */
3822 		val = global_node_page_state(NR_FILE_PAGES) +
3823 			global_node_page_state(NR_ANON_MAPPED);
3824 		if (swap)
3825 			val += total_swap_pages - get_nr_swap_pages();
3826 	} else {
3827 		if (!swap)
3828 			val = page_counter_read(&memcg->memory);
3829 		else
3830 			val = page_counter_read(&memcg->memsw);
3831 	}
3832 	return val;
3833 }
3834 
3835 enum {
3836 	RES_USAGE,
3837 	RES_LIMIT,
3838 	RES_MAX_USAGE,
3839 	RES_FAILCNT,
3840 	RES_SOFT_LIMIT,
3841 };
3842 
3843 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3844 			       struct cftype *cft)
3845 {
3846 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3847 	struct page_counter *counter;
3848 
3849 	switch (MEMFILE_TYPE(cft->private)) {
3850 	case _MEM:
3851 		counter = &memcg->memory;
3852 		break;
3853 	case _MEMSWAP:
3854 		counter = &memcg->memsw;
3855 		break;
3856 	case _KMEM:
3857 		counter = &memcg->kmem;
3858 		break;
3859 	case _TCP:
3860 		counter = &memcg->tcpmem;
3861 		break;
3862 	default:
3863 		BUG();
3864 	}
3865 
3866 	switch (MEMFILE_ATTR(cft->private)) {
3867 	case RES_USAGE:
3868 		if (counter == &memcg->memory)
3869 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3870 		if (counter == &memcg->memsw)
3871 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3872 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3873 	case RES_LIMIT:
3874 		return (u64)counter->max * PAGE_SIZE;
3875 	case RES_MAX_USAGE:
3876 		return (u64)counter->watermark * PAGE_SIZE;
3877 	case RES_FAILCNT:
3878 		return counter->failcnt;
3879 	case RES_SOFT_LIMIT:
3880 		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3881 	default:
3882 		BUG();
3883 	}
3884 }
3885 
3886 /*
3887  * This function doesn't do anything useful. Its only job is to provide a read
3888  * handler for a file so that cgroup_file_mode() will add read permissions.
3889  */
3890 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3891 				     __always_unused void *v)
3892 {
3893 	return -EINVAL;
3894 }
3895 
3896 #ifdef CONFIG_MEMCG_KMEM
3897 static int memcg_online_kmem(struct mem_cgroup *memcg)
3898 {
3899 	struct obj_cgroup *objcg;
3900 
3901 	if (mem_cgroup_kmem_disabled())
3902 		return 0;
3903 
3904 	if (unlikely(mem_cgroup_is_root(memcg)))
3905 		return 0;
3906 
3907 	objcg = obj_cgroup_alloc();
3908 	if (!objcg)
3909 		return -ENOMEM;
3910 
3911 	objcg->memcg = memcg;
3912 	rcu_assign_pointer(memcg->objcg, objcg);
3913 	obj_cgroup_get(objcg);
3914 	memcg->orig_objcg = objcg;
3915 
3916 	static_branch_enable(&memcg_kmem_online_key);
3917 
3918 	memcg->kmemcg_id = memcg->id.id;
3919 
3920 	return 0;
3921 }
3922 
3923 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3924 {
3925 	struct mem_cgroup *parent;
3926 
3927 	if (mem_cgroup_kmem_disabled())
3928 		return;
3929 
3930 	if (unlikely(mem_cgroup_is_root(memcg)))
3931 		return;
3932 
3933 	parent = parent_mem_cgroup(memcg);
3934 	if (!parent)
3935 		parent = root_mem_cgroup;
3936 
3937 	memcg_reparent_objcgs(memcg, parent);
3938 
3939 	/*
3940 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3941 	 * corresponding to this cgroup are guaranteed to remain empty.
3942 	 * The ordering is imposed by list_lru_node->lock taken by
3943 	 * memcg_reparent_list_lrus().
3944 	 */
3945 	memcg_reparent_list_lrus(memcg, parent);
3946 }
3947 #else
3948 static int memcg_online_kmem(struct mem_cgroup *memcg)
3949 {
3950 	return 0;
3951 }
3952 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3953 {
3954 }
3955 #endif /* CONFIG_MEMCG_KMEM */
3956 
3957 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3958 {
3959 	int ret;
3960 
3961 	mutex_lock(&memcg_max_mutex);
3962 
3963 	ret = page_counter_set_max(&memcg->tcpmem, max);
3964 	if (ret)
3965 		goto out;
3966 
3967 	if (!memcg->tcpmem_active) {
3968 		/*
3969 		 * The active flag needs to be written after the static_key
3970 		 * update. This is what guarantees that the socket activation
3971 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3972 		 * for details, and note that we don't mark any socket as
3973 		 * belonging to this memcg until that flag is up.
3974 		 *
3975 		 * We need to do this, because static_keys will span multiple
3976 		 * sites, but we can't control their order. If we mark a socket
3977 		 * as accounted, but the accounting functions are not patched in
3978 		 * yet, we'll lose accounting.
3979 		 *
3980 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3981 		 * because when this value change, the code to process it is not
3982 		 * patched in yet.
3983 		 */
3984 		static_branch_inc(&memcg_sockets_enabled_key);
3985 		memcg->tcpmem_active = true;
3986 	}
3987 out:
3988 	mutex_unlock(&memcg_max_mutex);
3989 	return ret;
3990 }
3991 
3992 /*
3993  * The user of this function is...
3994  * RES_LIMIT.
3995  */
3996 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3997 				char *buf, size_t nbytes, loff_t off)
3998 {
3999 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4000 	unsigned long nr_pages;
4001 	int ret;
4002 
4003 	buf = strstrip(buf);
4004 	ret = page_counter_memparse(buf, "-1", &nr_pages);
4005 	if (ret)
4006 		return ret;
4007 
4008 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4009 	case RES_LIMIT:
4010 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4011 			ret = -EINVAL;
4012 			break;
4013 		}
4014 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
4015 		case _MEM:
4016 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
4017 			break;
4018 		case _MEMSWAP:
4019 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
4020 			break;
4021 		case _KMEM:
4022 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4023 				     "Writing any value to this file has no effect. "
4024 				     "Please report your usecase to linux-mm@kvack.org if you "
4025 				     "depend on this functionality.\n");
4026 			ret = 0;
4027 			break;
4028 		case _TCP:
4029 			ret = memcg_update_tcp_max(memcg, nr_pages);
4030 			break;
4031 		}
4032 		break;
4033 	case RES_SOFT_LIMIT:
4034 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4035 			ret = -EOPNOTSUPP;
4036 		} else {
4037 			WRITE_ONCE(memcg->soft_limit, nr_pages);
4038 			ret = 0;
4039 		}
4040 		break;
4041 	}
4042 	return ret ?: nbytes;
4043 }
4044 
4045 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4046 				size_t nbytes, loff_t off)
4047 {
4048 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4049 	struct page_counter *counter;
4050 
4051 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
4052 	case _MEM:
4053 		counter = &memcg->memory;
4054 		break;
4055 	case _MEMSWAP:
4056 		counter = &memcg->memsw;
4057 		break;
4058 	case _KMEM:
4059 		counter = &memcg->kmem;
4060 		break;
4061 	case _TCP:
4062 		counter = &memcg->tcpmem;
4063 		break;
4064 	default:
4065 		BUG();
4066 	}
4067 
4068 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4069 	case RES_MAX_USAGE:
4070 		page_counter_reset_watermark(counter);
4071 		break;
4072 	case RES_FAILCNT:
4073 		counter->failcnt = 0;
4074 		break;
4075 	default:
4076 		BUG();
4077 	}
4078 
4079 	return nbytes;
4080 }
4081 
4082 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4083 					struct cftype *cft)
4084 {
4085 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4086 }
4087 
4088 #ifdef CONFIG_MMU
4089 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4090 					struct cftype *cft, u64 val)
4091 {
4092 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4093 
4094 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4095 		     "Please report your usecase to linux-mm@kvack.org if you "
4096 		     "depend on this functionality.\n");
4097 
4098 	if (val & ~MOVE_MASK)
4099 		return -EINVAL;
4100 
4101 	/*
4102 	 * No kind of locking is needed in here, because ->can_attach() will
4103 	 * check this value once in the beginning of the process, and then carry
4104 	 * on with stale data. This means that changes to this value will only
4105 	 * affect task migrations starting after the change.
4106 	 */
4107 	memcg->move_charge_at_immigrate = val;
4108 	return 0;
4109 }
4110 #else
4111 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4112 					struct cftype *cft, u64 val)
4113 {
4114 	return -ENOSYS;
4115 }
4116 #endif
4117 
4118 #ifdef CONFIG_NUMA
4119 
4120 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4121 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4122 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
4123 
4124 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4125 				int nid, unsigned int lru_mask, bool tree)
4126 {
4127 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4128 	unsigned long nr = 0;
4129 	enum lru_list lru;
4130 
4131 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
4132 
4133 	for_each_lru(lru) {
4134 		if (!(BIT(lru) & lru_mask))
4135 			continue;
4136 		if (tree)
4137 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4138 		else
4139 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4140 	}
4141 	return nr;
4142 }
4143 
4144 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4145 					     unsigned int lru_mask,
4146 					     bool tree)
4147 {
4148 	unsigned long nr = 0;
4149 	enum lru_list lru;
4150 
4151 	for_each_lru(lru) {
4152 		if (!(BIT(lru) & lru_mask))
4153 			continue;
4154 		if (tree)
4155 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4156 		else
4157 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4158 	}
4159 	return nr;
4160 }
4161 
4162 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4163 {
4164 	struct numa_stat {
4165 		const char *name;
4166 		unsigned int lru_mask;
4167 	};
4168 
4169 	static const struct numa_stat stats[] = {
4170 		{ "total", LRU_ALL },
4171 		{ "file", LRU_ALL_FILE },
4172 		{ "anon", LRU_ALL_ANON },
4173 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4174 	};
4175 	const struct numa_stat *stat;
4176 	int nid;
4177 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4178 
4179 	mem_cgroup_flush_stats();
4180 
4181 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4182 		seq_printf(m, "%s=%lu", stat->name,
4183 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4184 						   false));
4185 		for_each_node_state(nid, N_MEMORY)
4186 			seq_printf(m, " N%d=%lu", nid,
4187 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4188 							stat->lru_mask, false));
4189 		seq_putc(m, '\n');
4190 	}
4191 
4192 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4193 
4194 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4195 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4196 						   true));
4197 		for_each_node_state(nid, N_MEMORY)
4198 			seq_printf(m, " N%d=%lu", nid,
4199 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4200 							stat->lru_mask, true));
4201 		seq_putc(m, '\n');
4202 	}
4203 
4204 	return 0;
4205 }
4206 #endif /* CONFIG_NUMA */
4207 
4208 static const unsigned int memcg1_stats[] = {
4209 	NR_FILE_PAGES,
4210 	NR_ANON_MAPPED,
4211 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4212 	NR_ANON_THPS,
4213 #endif
4214 	NR_SHMEM,
4215 	NR_FILE_MAPPED,
4216 	NR_FILE_DIRTY,
4217 	NR_WRITEBACK,
4218 	WORKINGSET_REFAULT_ANON,
4219 	WORKINGSET_REFAULT_FILE,
4220 #ifdef CONFIG_SWAP
4221 	MEMCG_SWAP,
4222 	NR_SWAPCACHE,
4223 #endif
4224 };
4225 
4226 static const char *const memcg1_stat_names[] = {
4227 	"cache",
4228 	"rss",
4229 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4230 	"rss_huge",
4231 #endif
4232 	"shmem",
4233 	"mapped_file",
4234 	"dirty",
4235 	"writeback",
4236 	"workingset_refault_anon",
4237 	"workingset_refault_file",
4238 #ifdef CONFIG_SWAP
4239 	"swap",
4240 	"swapcached",
4241 #endif
4242 };
4243 
4244 /* Universal VM events cgroup1 shows, original sort order */
4245 static const unsigned int memcg1_events[] = {
4246 	PGPGIN,
4247 	PGPGOUT,
4248 	PGFAULT,
4249 	PGMAJFAULT,
4250 };
4251 
4252 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4253 {
4254 	unsigned long memory, memsw;
4255 	struct mem_cgroup *mi;
4256 	unsigned int i;
4257 
4258 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4259 
4260 	mem_cgroup_flush_stats();
4261 
4262 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4263 		unsigned long nr;
4264 
4265 		nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4266 		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
4267 	}
4268 
4269 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4270 		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4271 			       memcg_events_local(memcg, memcg1_events[i]));
4272 
4273 	for (i = 0; i < NR_LRU_LISTS; i++)
4274 		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4275 			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4276 			       PAGE_SIZE);
4277 
4278 	/* Hierarchical information */
4279 	memory = memsw = PAGE_COUNTER_MAX;
4280 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4281 		memory = min(memory, READ_ONCE(mi->memory.max));
4282 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4283 	}
4284 	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4285 		       (u64)memory * PAGE_SIZE);
4286 	seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4287 		       (u64)memsw * PAGE_SIZE);
4288 
4289 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4290 		unsigned long nr;
4291 
4292 		nr = memcg_page_state_output(memcg, memcg1_stats[i]);
4293 		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4294 			       (u64)nr);
4295 	}
4296 
4297 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4298 		seq_buf_printf(s, "total_%s %llu\n",
4299 			       vm_event_name(memcg1_events[i]),
4300 			       (u64)memcg_events(memcg, memcg1_events[i]));
4301 
4302 	for (i = 0; i < NR_LRU_LISTS; i++)
4303 		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4304 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4305 			       PAGE_SIZE);
4306 
4307 #ifdef CONFIG_DEBUG_VM
4308 	{
4309 		pg_data_t *pgdat;
4310 		struct mem_cgroup_per_node *mz;
4311 		unsigned long anon_cost = 0;
4312 		unsigned long file_cost = 0;
4313 
4314 		for_each_online_pgdat(pgdat) {
4315 			mz = memcg->nodeinfo[pgdat->node_id];
4316 
4317 			anon_cost += mz->lruvec.anon_cost;
4318 			file_cost += mz->lruvec.file_cost;
4319 		}
4320 		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4321 		seq_buf_printf(s, "file_cost %lu\n", file_cost);
4322 	}
4323 #endif
4324 }
4325 
4326 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4327 				      struct cftype *cft)
4328 {
4329 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4330 
4331 	return mem_cgroup_swappiness(memcg);
4332 }
4333 
4334 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4335 				       struct cftype *cft, u64 val)
4336 {
4337 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4338 
4339 	if (val > 200)
4340 		return -EINVAL;
4341 
4342 	if (!mem_cgroup_is_root(memcg))
4343 		WRITE_ONCE(memcg->swappiness, val);
4344 	else
4345 		WRITE_ONCE(vm_swappiness, val);
4346 
4347 	return 0;
4348 }
4349 
4350 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4351 {
4352 	struct mem_cgroup_threshold_ary *t;
4353 	unsigned long usage;
4354 	int i;
4355 
4356 	rcu_read_lock();
4357 	if (!swap)
4358 		t = rcu_dereference(memcg->thresholds.primary);
4359 	else
4360 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4361 
4362 	if (!t)
4363 		goto unlock;
4364 
4365 	usage = mem_cgroup_usage(memcg, swap);
4366 
4367 	/*
4368 	 * current_threshold points to threshold just below or equal to usage.
4369 	 * If it's not true, a threshold was crossed after last
4370 	 * call of __mem_cgroup_threshold().
4371 	 */
4372 	i = t->current_threshold;
4373 
4374 	/*
4375 	 * Iterate backward over array of thresholds starting from
4376 	 * current_threshold and check if a threshold is crossed.
4377 	 * If none of thresholds below usage is crossed, we read
4378 	 * only one element of the array here.
4379 	 */
4380 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4381 		eventfd_signal(t->entries[i].eventfd, 1);
4382 
4383 	/* i = current_threshold + 1 */
4384 	i++;
4385 
4386 	/*
4387 	 * Iterate forward over array of thresholds starting from
4388 	 * current_threshold+1 and check if a threshold is crossed.
4389 	 * If none of thresholds above usage is crossed, we read
4390 	 * only one element of the array here.
4391 	 */
4392 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4393 		eventfd_signal(t->entries[i].eventfd, 1);
4394 
4395 	/* Update current_threshold */
4396 	t->current_threshold = i - 1;
4397 unlock:
4398 	rcu_read_unlock();
4399 }
4400 
4401 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4402 {
4403 	while (memcg) {
4404 		__mem_cgroup_threshold(memcg, false);
4405 		if (do_memsw_account())
4406 			__mem_cgroup_threshold(memcg, true);
4407 
4408 		memcg = parent_mem_cgroup(memcg);
4409 	}
4410 }
4411 
4412 static int compare_thresholds(const void *a, const void *b)
4413 {
4414 	const struct mem_cgroup_threshold *_a = a;
4415 	const struct mem_cgroup_threshold *_b = b;
4416 
4417 	if (_a->threshold > _b->threshold)
4418 		return 1;
4419 
4420 	if (_a->threshold < _b->threshold)
4421 		return -1;
4422 
4423 	return 0;
4424 }
4425 
4426 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4427 {
4428 	struct mem_cgroup_eventfd_list *ev;
4429 
4430 	spin_lock(&memcg_oom_lock);
4431 
4432 	list_for_each_entry(ev, &memcg->oom_notify, list)
4433 		eventfd_signal(ev->eventfd, 1);
4434 
4435 	spin_unlock(&memcg_oom_lock);
4436 	return 0;
4437 }
4438 
4439 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4440 {
4441 	struct mem_cgroup *iter;
4442 
4443 	for_each_mem_cgroup_tree(iter, memcg)
4444 		mem_cgroup_oom_notify_cb(iter);
4445 }
4446 
4447 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4448 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4449 {
4450 	struct mem_cgroup_thresholds *thresholds;
4451 	struct mem_cgroup_threshold_ary *new;
4452 	unsigned long threshold;
4453 	unsigned long usage;
4454 	int i, size, ret;
4455 
4456 	ret = page_counter_memparse(args, "-1", &threshold);
4457 	if (ret)
4458 		return ret;
4459 
4460 	mutex_lock(&memcg->thresholds_lock);
4461 
4462 	if (type == _MEM) {
4463 		thresholds = &memcg->thresholds;
4464 		usage = mem_cgroup_usage(memcg, false);
4465 	} else if (type == _MEMSWAP) {
4466 		thresholds = &memcg->memsw_thresholds;
4467 		usage = mem_cgroup_usage(memcg, true);
4468 	} else
4469 		BUG();
4470 
4471 	/* Check if a threshold crossed before adding a new one */
4472 	if (thresholds->primary)
4473 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4474 
4475 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4476 
4477 	/* Allocate memory for new array of thresholds */
4478 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4479 	if (!new) {
4480 		ret = -ENOMEM;
4481 		goto unlock;
4482 	}
4483 	new->size = size;
4484 
4485 	/* Copy thresholds (if any) to new array */
4486 	if (thresholds->primary)
4487 		memcpy(new->entries, thresholds->primary->entries,
4488 		       flex_array_size(new, entries, size - 1));
4489 
4490 	/* Add new threshold */
4491 	new->entries[size - 1].eventfd = eventfd;
4492 	new->entries[size - 1].threshold = threshold;
4493 
4494 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4495 	sort(new->entries, size, sizeof(*new->entries),
4496 			compare_thresholds, NULL);
4497 
4498 	/* Find current threshold */
4499 	new->current_threshold = -1;
4500 	for (i = 0; i < size; i++) {
4501 		if (new->entries[i].threshold <= usage) {
4502 			/*
4503 			 * new->current_threshold will not be used until
4504 			 * rcu_assign_pointer(), so it's safe to increment
4505 			 * it here.
4506 			 */
4507 			++new->current_threshold;
4508 		} else
4509 			break;
4510 	}
4511 
4512 	/* Free old spare buffer and save old primary buffer as spare */
4513 	kfree(thresholds->spare);
4514 	thresholds->spare = thresholds->primary;
4515 
4516 	rcu_assign_pointer(thresholds->primary, new);
4517 
4518 	/* To be sure that nobody uses thresholds */
4519 	synchronize_rcu();
4520 
4521 unlock:
4522 	mutex_unlock(&memcg->thresholds_lock);
4523 
4524 	return ret;
4525 }
4526 
4527 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4528 	struct eventfd_ctx *eventfd, const char *args)
4529 {
4530 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4531 }
4532 
4533 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4534 	struct eventfd_ctx *eventfd, const char *args)
4535 {
4536 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4537 }
4538 
4539 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4540 	struct eventfd_ctx *eventfd, enum res_type type)
4541 {
4542 	struct mem_cgroup_thresholds *thresholds;
4543 	struct mem_cgroup_threshold_ary *new;
4544 	unsigned long usage;
4545 	int i, j, size, entries;
4546 
4547 	mutex_lock(&memcg->thresholds_lock);
4548 
4549 	if (type == _MEM) {
4550 		thresholds = &memcg->thresholds;
4551 		usage = mem_cgroup_usage(memcg, false);
4552 	} else if (type == _MEMSWAP) {
4553 		thresholds = &memcg->memsw_thresholds;
4554 		usage = mem_cgroup_usage(memcg, true);
4555 	} else
4556 		BUG();
4557 
4558 	if (!thresholds->primary)
4559 		goto unlock;
4560 
4561 	/* Check if a threshold crossed before removing */
4562 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4563 
4564 	/* Calculate new number of threshold */
4565 	size = entries = 0;
4566 	for (i = 0; i < thresholds->primary->size; i++) {
4567 		if (thresholds->primary->entries[i].eventfd != eventfd)
4568 			size++;
4569 		else
4570 			entries++;
4571 	}
4572 
4573 	new = thresholds->spare;
4574 
4575 	/* If no items related to eventfd have been cleared, nothing to do */
4576 	if (!entries)
4577 		goto unlock;
4578 
4579 	/* Set thresholds array to NULL if we don't have thresholds */
4580 	if (!size) {
4581 		kfree(new);
4582 		new = NULL;
4583 		goto swap_buffers;
4584 	}
4585 
4586 	new->size = size;
4587 
4588 	/* Copy thresholds and find current threshold */
4589 	new->current_threshold = -1;
4590 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4591 		if (thresholds->primary->entries[i].eventfd == eventfd)
4592 			continue;
4593 
4594 		new->entries[j] = thresholds->primary->entries[i];
4595 		if (new->entries[j].threshold <= usage) {
4596 			/*
4597 			 * new->current_threshold will not be used
4598 			 * until rcu_assign_pointer(), so it's safe to increment
4599 			 * it here.
4600 			 */
4601 			++new->current_threshold;
4602 		}
4603 		j++;
4604 	}
4605 
4606 swap_buffers:
4607 	/* Swap primary and spare array */
4608 	thresholds->spare = thresholds->primary;
4609 
4610 	rcu_assign_pointer(thresholds->primary, new);
4611 
4612 	/* To be sure that nobody uses thresholds */
4613 	synchronize_rcu();
4614 
4615 	/* If all events are unregistered, free the spare array */
4616 	if (!new) {
4617 		kfree(thresholds->spare);
4618 		thresholds->spare = NULL;
4619 	}
4620 unlock:
4621 	mutex_unlock(&memcg->thresholds_lock);
4622 }
4623 
4624 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4625 	struct eventfd_ctx *eventfd)
4626 {
4627 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4628 }
4629 
4630 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4631 	struct eventfd_ctx *eventfd)
4632 {
4633 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4634 }
4635 
4636 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4637 	struct eventfd_ctx *eventfd, const char *args)
4638 {
4639 	struct mem_cgroup_eventfd_list *event;
4640 
4641 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4642 	if (!event)
4643 		return -ENOMEM;
4644 
4645 	spin_lock(&memcg_oom_lock);
4646 
4647 	event->eventfd = eventfd;
4648 	list_add(&event->list, &memcg->oom_notify);
4649 
4650 	/* already in OOM ? */
4651 	if (memcg->under_oom)
4652 		eventfd_signal(eventfd, 1);
4653 	spin_unlock(&memcg_oom_lock);
4654 
4655 	return 0;
4656 }
4657 
4658 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4659 	struct eventfd_ctx *eventfd)
4660 {
4661 	struct mem_cgroup_eventfd_list *ev, *tmp;
4662 
4663 	spin_lock(&memcg_oom_lock);
4664 
4665 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4666 		if (ev->eventfd == eventfd) {
4667 			list_del(&ev->list);
4668 			kfree(ev);
4669 		}
4670 	}
4671 
4672 	spin_unlock(&memcg_oom_lock);
4673 }
4674 
4675 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4676 {
4677 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4678 
4679 	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4680 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4681 	seq_printf(sf, "oom_kill %lu\n",
4682 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4683 	return 0;
4684 }
4685 
4686 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4687 	struct cftype *cft, u64 val)
4688 {
4689 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4690 
4691 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4692 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4693 		return -EINVAL;
4694 
4695 	WRITE_ONCE(memcg->oom_kill_disable, val);
4696 	if (!val)
4697 		memcg_oom_recover(memcg);
4698 
4699 	return 0;
4700 }
4701 
4702 #ifdef CONFIG_CGROUP_WRITEBACK
4703 
4704 #include <trace/events/writeback.h>
4705 
4706 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4707 {
4708 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4709 }
4710 
4711 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4712 {
4713 	wb_domain_exit(&memcg->cgwb_domain);
4714 }
4715 
4716 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4717 {
4718 	wb_domain_size_changed(&memcg->cgwb_domain);
4719 }
4720 
4721 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4722 {
4723 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4724 
4725 	if (!memcg->css.parent)
4726 		return NULL;
4727 
4728 	return &memcg->cgwb_domain;
4729 }
4730 
4731 /**
4732  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4733  * @wb: bdi_writeback in question
4734  * @pfilepages: out parameter for number of file pages
4735  * @pheadroom: out parameter for number of allocatable pages according to memcg
4736  * @pdirty: out parameter for number of dirty pages
4737  * @pwriteback: out parameter for number of pages under writeback
4738  *
4739  * Determine the numbers of file, headroom, dirty, and writeback pages in
4740  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4741  * is a bit more involved.
4742  *
4743  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4744  * headroom is calculated as the lowest headroom of itself and the
4745  * ancestors.  Note that this doesn't consider the actual amount of
4746  * available memory in the system.  The caller should further cap
4747  * *@pheadroom accordingly.
4748  */
4749 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4750 			 unsigned long *pheadroom, unsigned long *pdirty,
4751 			 unsigned long *pwriteback)
4752 {
4753 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4754 	struct mem_cgroup *parent;
4755 
4756 	mem_cgroup_flush_stats();
4757 
4758 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4759 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4760 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4761 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4762 
4763 	*pheadroom = PAGE_COUNTER_MAX;
4764 	while ((parent = parent_mem_cgroup(memcg))) {
4765 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4766 					    READ_ONCE(memcg->memory.high));
4767 		unsigned long used = page_counter_read(&memcg->memory);
4768 
4769 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4770 		memcg = parent;
4771 	}
4772 }
4773 
4774 /*
4775  * Foreign dirty flushing
4776  *
4777  * There's an inherent mismatch between memcg and writeback.  The former
4778  * tracks ownership per-page while the latter per-inode.  This was a
4779  * deliberate design decision because honoring per-page ownership in the
4780  * writeback path is complicated, may lead to higher CPU and IO overheads
4781  * and deemed unnecessary given that write-sharing an inode across
4782  * different cgroups isn't a common use-case.
4783  *
4784  * Combined with inode majority-writer ownership switching, this works well
4785  * enough in most cases but there are some pathological cases.  For
4786  * example, let's say there are two cgroups A and B which keep writing to
4787  * different but confined parts of the same inode.  B owns the inode and
4788  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4789  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4790  * triggering background writeback.  A will be slowed down without a way to
4791  * make writeback of the dirty pages happen.
4792  *
4793  * Conditions like the above can lead to a cgroup getting repeatedly and
4794  * severely throttled after making some progress after each
4795  * dirty_expire_interval while the underlying IO device is almost
4796  * completely idle.
4797  *
4798  * Solving this problem completely requires matching the ownership tracking
4799  * granularities between memcg and writeback in either direction.  However,
4800  * the more egregious behaviors can be avoided by simply remembering the
4801  * most recent foreign dirtying events and initiating remote flushes on
4802  * them when local writeback isn't enough to keep the memory clean enough.
4803  *
4804  * The following two functions implement such mechanism.  When a foreign
4805  * page - a page whose memcg and writeback ownerships don't match - is
4806  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4807  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4808  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4809  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4810  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4811  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4812  * limited to MEMCG_CGWB_FRN_CNT.
4813  *
4814  * The mechanism only remembers IDs and doesn't hold any object references.
4815  * As being wrong occasionally doesn't matter, updates and accesses to the
4816  * records are lockless and racy.
4817  */
4818 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4819 					     struct bdi_writeback *wb)
4820 {
4821 	struct mem_cgroup *memcg = folio_memcg(folio);
4822 	struct memcg_cgwb_frn *frn;
4823 	u64 now = get_jiffies_64();
4824 	u64 oldest_at = now;
4825 	int oldest = -1;
4826 	int i;
4827 
4828 	trace_track_foreign_dirty(folio, wb);
4829 
4830 	/*
4831 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4832 	 * using it.  If not replace the oldest one which isn't being
4833 	 * written out.
4834 	 */
4835 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4836 		frn = &memcg->cgwb_frn[i];
4837 		if (frn->bdi_id == wb->bdi->id &&
4838 		    frn->memcg_id == wb->memcg_css->id)
4839 			break;
4840 		if (time_before64(frn->at, oldest_at) &&
4841 		    atomic_read(&frn->done.cnt) == 1) {
4842 			oldest = i;
4843 			oldest_at = frn->at;
4844 		}
4845 	}
4846 
4847 	if (i < MEMCG_CGWB_FRN_CNT) {
4848 		/*
4849 		 * Re-using an existing one.  Update timestamp lazily to
4850 		 * avoid making the cacheline hot.  We want them to be
4851 		 * reasonably up-to-date and significantly shorter than
4852 		 * dirty_expire_interval as that's what expires the record.
4853 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4854 		 */
4855 		unsigned long update_intv =
4856 			min_t(unsigned long, HZ,
4857 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4858 
4859 		if (time_before64(frn->at, now - update_intv))
4860 			frn->at = now;
4861 	} else if (oldest >= 0) {
4862 		/* replace the oldest free one */
4863 		frn = &memcg->cgwb_frn[oldest];
4864 		frn->bdi_id = wb->bdi->id;
4865 		frn->memcg_id = wb->memcg_css->id;
4866 		frn->at = now;
4867 	}
4868 }
4869 
4870 /* issue foreign writeback flushes for recorded foreign dirtying events */
4871 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4872 {
4873 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4874 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4875 	u64 now = jiffies_64;
4876 	int i;
4877 
4878 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4879 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4880 
4881 		/*
4882 		 * If the record is older than dirty_expire_interval,
4883 		 * writeback on it has already started.  No need to kick it
4884 		 * off again.  Also, don't start a new one if there's
4885 		 * already one in flight.
4886 		 */
4887 		if (time_after64(frn->at, now - intv) &&
4888 		    atomic_read(&frn->done.cnt) == 1) {
4889 			frn->at = 0;
4890 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4891 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4892 					       WB_REASON_FOREIGN_FLUSH,
4893 					       &frn->done);
4894 		}
4895 	}
4896 }
4897 
4898 #else	/* CONFIG_CGROUP_WRITEBACK */
4899 
4900 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4901 {
4902 	return 0;
4903 }
4904 
4905 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4906 {
4907 }
4908 
4909 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4910 {
4911 }
4912 
4913 #endif	/* CONFIG_CGROUP_WRITEBACK */
4914 
4915 /*
4916  * DO NOT USE IN NEW FILES.
4917  *
4918  * "cgroup.event_control" implementation.
4919  *
4920  * This is way over-engineered.  It tries to support fully configurable
4921  * events for each user.  Such level of flexibility is completely
4922  * unnecessary especially in the light of the planned unified hierarchy.
4923  *
4924  * Please deprecate this and replace with something simpler if at all
4925  * possible.
4926  */
4927 
4928 /*
4929  * Unregister event and free resources.
4930  *
4931  * Gets called from workqueue.
4932  */
4933 static void memcg_event_remove(struct work_struct *work)
4934 {
4935 	struct mem_cgroup_event *event =
4936 		container_of(work, struct mem_cgroup_event, remove);
4937 	struct mem_cgroup *memcg = event->memcg;
4938 
4939 	remove_wait_queue(event->wqh, &event->wait);
4940 
4941 	event->unregister_event(memcg, event->eventfd);
4942 
4943 	/* Notify userspace the event is going away. */
4944 	eventfd_signal(event->eventfd, 1);
4945 
4946 	eventfd_ctx_put(event->eventfd);
4947 	kfree(event);
4948 	css_put(&memcg->css);
4949 }
4950 
4951 /*
4952  * Gets called on EPOLLHUP on eventfd when user closes it.
4953  *
4954  * Called with wqh->lock held and interrupts disabled.
4955  */
4956 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4957 			    int sync, void *key)
4958 {
4959 	struct mem_cgroup_event *event =
4960 		container_of(wait, struct mem_cgroup_event, wait);
4961 	struct mem_cgroup *memcg = event->memcg;
4962 	__poll_t flags = key_to_poll(key);
4963 
4964 	if (flags & EPOLLHUP) {
4965 		/*
4966 		 * If the event has been detached at cgroup removal, we
4967 		 * can simply return knowing the other side will cleanup
4968 		 * for us.
4969 		 *
4970 		 * We can't race against event freeing since the other
4971 		 * side will require wqh->lock via remove_wait_queue(),
4972 		 * which we hold.
4973 		 */
4974 		spin_lock(&memcg->event_list_lock);
4975 		if (!list_empty(&event->list)) {
4976 			list_del_init(&event->list);
4977 			/*
4978 			 * We are in atomic context, but cgroup_event_remove()
4979 			 * may sleep, so we have to call it in workqueue.
4980 			 */
4981 			schedule_work(&event->remove);
4982 		}
4983 		spin_unlock(&memcg->event_list_lock);
4984 	}
4985 
4986 	return 0;
4987 }
4988 
4989 static void memcg_event_ptable_queue_proc(struct file *file,
4990 		wait_queue_head_t *wqh, poll_table *pt)
4991 {
4992 	struct mem_cgroup_event *event =
4993 		container_of(pt, struct mem_cgroup_event, pt);
4994 
4995 	event->wqh = wqh;
4996 	add_wait_queue(wqh, &event->wait);
4997 }
4998 
4999 /*
5000  * DO NOT USE IN NEW FILES.
5001  *
5002  * Parse input and register new cgroup event handler.
5003  *
5004  * Input must be in format '<event_fd> <control_fd> <args>'.
5005  * Interpretation of args is defined by control file implementation.
5006  */
5007 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5008 					 char *buf, size_t nbytes, loff_t off)
5009 {
5010 	struct cgroup_subsys_state *css = of_css(of);
5011 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5012 	struct mem_cgroup_event *event;
5013 	struct cgroup_subsys_state *cfile_css;
5014 	unsigned int efd, cfd;
5015 	struct fd efile;
5016 	struct fd cfile;
5017 	struct dentry *cdentry;
5018 	const char *name;
5019 	char *endp;
5020 	int ret;
5021 
5022 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
5023 		return -EOPNOTSUPP;
5024 
5025 	buf = strstrip(buf);
5026 
5027 	efd = simple_strtoul(buf, &endp, 10);
5028 	if (*endp != ' ')
5029 		return -EINVAL;
5030 	buf = endp + 1;
5031 
5032 	cfd = simple_strtoul(buf, &endp, 10);
5033 	if ((*endp != ' ') && (*endp != '\0'))
5034 		return -EINVAL;
5035 	buf = endp + 1;
5036 
5037 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5038 	if (!event)
5039 		return -ENOMEM;
5040 
5041 	event->memcg = memcg;
5042 	INIT_LIST_HEAD(&event->list);
5043 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5044 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5045 	INIT_WORK(&event->remove, memcg_event_remove);
5046 
5047 	efile = fdget(efd);
5048 	if (!efile.file) {
5049 		ret = -EBADF;
5050 		goto out_kfree;
5051 	}
5052 
5053 	event->eventfd = eventfd_ctx_fileget(efile.file);
5054 	if (IS_ERR(event->eventfd)) {
5055 		ret = PTR_ERR(event->eventfd);
5056 		goto out_put_efile;
5057 	}
5058 
5059 	cfile = fdget(cfd);
5060 	if (!cfile.file) {
5061 		ret = -EBADF;
5062 		goto out_put_eventfd;
5063 	}
5064 
5065 	/* the process need read permission on control file */
5066 	/* AV: shouldn't we check that it's been opened for read instead? */
5067 	ret = file_permission(cfile.file, MAY_READ);
5068 	if (ret < 0)
5069 		goto out_put_cfile;
5070 
5071 	/*
5072 	 * The control file must be a regular cgroup1 file. As a regular cgroup
5073 	 * file can't be renamed, it's safe to access its name afterwards.
5074 	 */
5075 	cdentry = cfile.file->f_path.dentry;
5076 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5077 		ret = -EINVAL;
5078 		goto out_put_cfile;
5079 	}
5080 
5081 	/*
5082 	 * Determine the event callbacks and set them in @event.  This used
5083 	 * to be done via struct cftype but cgroup core no longer knows
5084 	 * about these events.  The following is crude but the whole thing
5085 	 * is for compatibility anyway.
5086 	 *
5087 	 * DO NOT ADD NEW FILES.
5088 	 */
5089 	name = cdentry->d_name.name;
5090 
5091 	if (!strcmp(name, "memory.usage_in_bytes")) {
5092 		event->register_event = mem_cgroup_usage_register_event;
5093 		event->unregister_event = mem_cgroup_usage_unregister_event;
5094 	} else if (!strcmp(name, "memory.oom_control")) {
5095 		event->register_event = mem_cgroup_oom_register_event;
5096 		event->unregister_event = mem_cgroup_oom_unregister_event;
5097 	} else if (!strcmp(name, "memory.pressure_level")) {
5098 		event->register_event = vmpressure_register_event;
5099 		event->unregister_event = vmpressure_unregister_event;
5100 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5101 		event->register_event = memsw_cgroup_usage_register_event;
5102 		event->unregister_event = memsw_cgroup_usage_unregister_event;
5103 	} else {
5104 		ret = -EINVAL;
5105 		goto out_put_cfile;
5106 	}
5107 
5108 	/*
5109 	 * Verify @cfile should belong to @css.  Also, remaining events are
5110 	 * automatically removed on cgroup destruction but the removal is
5111 	 * asynchronous, so take an extra ref on @css.
5112 	 */
5113 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5114 					       &memory_cgrp_subsys);
5115 	ret = -EINVAL;
5116 	if (IS_ERR(cfile_css))
5117 		goto out_put_cfile;
5118 	if (cfile_css != css) {
5119 		css_put(cfile_css);
5120 		goto out_put_cfile;
5121 	}
5122 
5123 	ret = event->register_event(memcg, event->eventfd, buf);
5124 	if (ret)
5125 		goto out_put_css;
5126 
5127 	vfs_poll(efile.file, &event->pt);
5128 
5129 	spin_lock_irq(&memcg->event_list_lock);
5130 	list_add(&event->list, &memcg->event_list);
5131 	spin_unlock_irq(&memcg->event_list_lock);
5132 
5133 	fdput(cfile);
5134 	fdput(efile);
5135 
5136 	return nbytes;
5137 
5138 out_put_css:
5139 	css_put(css);
5140 out_put_cfile:
5141 	fdput(cfile);
5142 out_put_eventfd:
5143 	eventfd_ctx_put(event->eventfd);
5144 out_put_efile:
5145 	fdput(efile);
5146 out_kfree:
5147 	kfree(event);
5148 
5149 	return ret;
5150 }
5151 
5152 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5153 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5154 {
5155 	/*
5156 	 * Deprecated.
5157 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5158 	 */
5159 	return 0;
5160 }
5161 #endif
5162 
5163 static int memory_stat_show(struct seq_file *m, void *v);
5164 
5165 static struct cftype mem_cgroup_legacy_files[] = {
5166 	{
5167 		.name = "usage_in_bytes",
5168 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5169 		.read_u64 = mem_cgroup_read_u64,
5170 	},
5171 	{
5172 		.name = "max_usage_in_bytes",
5173 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5174 		.write = mem_cgroup_reset,
5175 		.read_u64 = mem_cgroup_read_u64,
5176 	},
5177 	{
5178 		.name = "limit_in_bytes",
5179 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5180 		.write = mem_cgroup_write,
5181 		.read_u64 = mem_cgroup_read_u64,
5182 	},
5183 	{
5184 		.name = "soft_limit_in_bytes",
5185 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5186 		.write = mem_cgroup_write,
5187 		.read_u64 = mem_cgroup_read_u64,
5188 	},
5189 	{
5190 		.name = "failcnt",
5191 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5192 		.write = mem_cgroup_reset,
5193 		.read_u64 = mem_cgroup_read_u64,
5194 	},
5195 	{
5196 		.name = "stat",
5197 		.seq_show = memory_stat_show,
5198 	},
5199 	{
5200 		.name = "force_empty",
5201 		.write = mem_cgroup_force_empty_write,
5202 	},
5203 	{
5204 		.name = "use_hierarchy",
5205 		.write_u64 = mem_cgroup_hierarchy_write,
5206 		.read_u64 = mem_cgroup_hierarchy_read,
5207 	},
5208 	{
5209 		.name = "cgroup.event_control",		/* XXX: for compat */
5210 		.write = memcg_write_event_control,
5211 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5212 	},
5213 	{
5214 		.name = "swappiness",
5215 		.read_u64 = mem_cgroup_swappiness_read,
5216 		.write_u64 = mem_cgroup_swappiness_write,
5217 	},
5218 	{
5219 		.name = "move_charge_at_immigrate",
5220 		.read_u64 = mem_cgroup_move_charge_read,
5221 		.write_u64 = mem_cgroup_move_charge_write,
5222 	},
5223 	{
5224 		.name = "oom_control",
5225 		.seq_show = mem_cgroup_oom_control_read,
5226 		.write_u64 = mem_cgroup_oom_control_write,
5227 	},
5228 	{
5229 		.name = "pressure_level",
5230 		.seq_show = mem_cgroup_dummy_seq_show,
5231 	},
5232 #ifdef CONFIG_NUMA
5233 	{
5234 		.name = "numa_stat",
5235 		.seq_show = memcg_numa_stat_show,
5236 	},
5237 #endif
5238 	{
5239 		.name = "kmem.limit_in_bytes",
5240 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5241 		.write = mem_cgroup_write,
5242 		.read_u64 = mem_cgroup_read_u64,
5243 	},
5244 	{
5245 		.name = "kmem.usage_in_bytes",
5246 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5247 		.read_u64 = mem_cgroup_read_u64,
5248 	},
5249 	{
5250 		.name = "kmem.failcnt",
5251 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5252 		.write = mem_cgroup_reset,
5253 		.read_u64 = mem_cgroup_read_u64,
5254 	},
5255 	{
5256 		.name = "kmem.max_usage_in_bytes",
5257 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5258 		.write = mem_cgroup_reset,
5259 		.read_u64 = mem_cgroup_read_u64,
5260 	},
5261 #if defined(CONFIG_MEMCG_KMEM) && \
5262 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5263 	{
5264 		.name = "kmem.slabinfo",
5265 		.seq_show = mem_cgroup_slab_show,
5266 	},
5267 #endif
5268 	{
5269 		.name = "kmem.tcp.limit_in_bytes",
5270 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5271 		.write = mem_cgroup_write,
5272 		.read_u64 = mem_cgroup_read_u64,
5273 	},
5274 	{
5275 		.name = "kmem.tcp.usage_in_bytes",
5276 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5277 		.read_u64 = mem_cgroup_read_u64,
5278 	},
5279 	{
5280 		.name = "kmem.tcp.failcnt",
5281 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5282 		.write = mem_cgroup_reset,
5283 		.read_u64 = mem_cgroup_read_u64,
5284 	},
5285 	{
5286 		.name = "kmem.tcp.max_usage_in_bytes",
5287 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5288 		.write = mem_cgroup_reset,
5289 		.read_u64 = mem_cgroup_read_u64,
5290 	},
5291 	{ },	/* terminate */
5292 };
5293 
5294 /*
5295  * Private memory cgroup IDR
5296  *
5297  * Swap-out records and page cache shadow entries need to store memcg
5298  * references in constrained space, so we maintain an ID space that is
5299  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5300  * memory-controlled cgroups to 64k.
5301  *
5302  * However, there usually are many references to the offline CSS after
5303  * the cgroup has been destroyed, such as page cache or reclaimable
5304  * slab objects, that don't need to hang on to the ID. We want to keep
5305  * those dead CSS from occupying IDs, or we might quickly exhaust the
5306  * relatively small ID space and prevent the creation of new cgroups
5307  * even when there are much fewer than 64k cgroups - possibly none.
5308  *
5309  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5310  * be freed and recycled when it's no longer needed, which is usually
5311  * when the CSS is offlined.
5312  *
5313  * The only exception to that are records of swapped out tmpfs/shmem
5314  * pages that need to be attributed to live ancestors on swapin. But
5315  * those references are manageable from userspace.
5316  */
5317 
5318 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5319 static DEFINE_IDR(mem_cgroup_idr);
5320 
5321 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5322 {
5323 	if (memcg->id.id > 0) {
5324 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5325 		memcg->id.id = 0;
5326 	}
5327 }
5328 
5329 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5330 						  unsigned int n)
5331 {
5332 	refcount_add(n, &memcg->id.ref);
5333 }
5334 
5335 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5336 {
5337 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5338 		mem_cgroup_id_remove(memcg);
5339 
5340 		/* Memcg ID pins CSS */
5341 		css_put(&memcg->css);
5342 	}
5343 }
5344 
5345 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5346 {
5347 	mem_cgroup_id_put_many(memcg, 1);
5348 }
5349 
5350 /**
5351  * mem_cgroup_from_id - look up a memcg from a memcg id
5352  * @id: the memcg id to look up
5353  *
5354  * Caller must hold rcu_read_lock().
5355  */
5356 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5357 {
5358 	WARN_ON_ONCE(!rcu_read_lock_held());
5359 	return idr_find(&mem_cgroup_idr, id);
5360 }
5361 
5362 #ifdef CONFIG_SHRINKER_DEBUG
5363 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5364 {
5365 	struct cgroup *cgrp;
5366 	struct cgroup_subsys_state *css;
5367 	struct mem_cgroup *memcg;
5368 
5369 	cgrp = cgroup_get_from_id(ino);
5370 	if (IS_ERR(cgrp))
5371 		return ERR_CAST(cgrp);
5372 
5373 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5374 	if (css)
5375 		memcg = container_of(css, struct mem_cgroup, css);
5376 	else
5377 		memcg = ERR_PTR(-ENOENT);
5378 
5379 	cgroup_put(cgrp);
5380 
5381 	return memcg;
5382 }
5383 #endif
5384 
5385 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5386 {
5387 	struct mem_cgroup_per_node *pn;
5388 
5389 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5390 	if (!pn)
5391 		return 1;
5392 
5393 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5394 						   GFP_KERNEL_ACCOUNT);
5395 	if (!pn->lruvec_stats_percpu) {
5396 		kfree(pn);
5397 		return 1;
5398 	}
5399 
5400 	lruvec_init(&pn->lruvec);
5401 	pn->memcg = memcg;
5402 
5403 	memcg->nodeinfo[node] = pn;
5404 	return 0;
5405 }
5406 
5407 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5408 {
5409 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5410 
5411 	if (!pn)
5412 		return;
5413 
5414 	free_percpu(pn->lruvec_stats_percpu);
5415 	kfree(pn);
5416 }
5417 
5418 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5419 {
5420 	int node;
5421 
5422 	if (memcg->orig_objcg)
5423 		obj_cgroup_put(memcg->orig_objcg);
5424 
5425 	for_each_node(node)
5426 		free_mem_cgroup_per_node_info(memcg, node);
5427 	kfree(memcg->vmstats);
5428 	free_percpu(memcg->vmstats_percpu);
5429 	kfree(memcg);
5430 }
5431 
5432 static void mem_cgroup_free(struct mem_cgroup *memcg)
5433 {
5434 	lru_gen_exit_memcg(memcg);
5435 	memcg_wb_domain_exit(memcg);
5436 	__mem_cgroup_free(memcg);
5437 }
5438 
5439 static struct mem_cgroup *mem_cgroup_alloc(void)
5440 {
5441 	struct mem_cgroup *memcg;
5442 	int node;
5443 	int __maybe_unused i;
5444 	long error = -ENOMEM;
5445 
5446 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5447 	if (!memcg)
5448 		return ERR_PTR(error);
5449 
5450 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5451 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5452 	if (memcg->id.id < 0) {
5453 		error = memcg->id.id;
5454 		goto fail;
5455 	}
5456 
5457 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5458 	if (!memcg->vmstats)
5459 		goto fail;
5460 
5461 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5462 						 GFP_KERNEL_ACCOUNT);
5463 	if (!memcg->vmstats_percpu)
5464 		goto fail;
5465 
5466 	for_each_node(node)
5467 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5468 			goto fail;
5469 
5470 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5471 		goto fail;
5472 
5473 	INIT_WORK(&memcg->high_work, high_work_func);
5474 	INIT_LIST_HEAD(&memcg->oom_notify);
5475 	mutex_init(&memcg->thresholds_lock);
5476 	spin_lock_init(&memcg->move_lock);
5477 	vmpressure_init(&memcg->vmpressure);
5478 	INIT_LIST_HEAD(&memcg->event_list);
5479 	spin_lock_init(&memcg->event_list_lock);
5480 	memcg->socket_pressure = jiffies;
5481 #ifdef CONFIG_MEMCG_KMEM
5482 	memcg->kmemcg_id = -1;
5483 	INIT_LIST_HEAD(&memcg->objcg_list);
5484 #endif
5485 #ifdef CONFIG_CGROUP_WRITEBACK
5486 	INIT_LIST_HEAD(&memcg->cgwb_list);
5487 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5488 		memcg->cgwb_frn[i].done =
5489 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5490 #endif
5491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5492 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5493 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5494 	memcg->deferred_split_queue.split_queue_len = 0;
5495 #endif
5496 	lru_gen_init_memcg(memcg);
5497 	return memcg;
5498 fail:
5499 	mem_cgroup_id_remove(memcg);
5500 	__mem_cgroup_free(memcg);
5501 	return ERR_PTR(error);
5502 }
5503 
5504 static struct cgroup_subsys_state * __ref
5505 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5506 {
5507 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5508 	struct mem_cgroup *memcg, *old_memcg;
5509 
5510 	old_memcg = set_active_memcg(parent);
5511 	memcg = mem_cgroup_alloc();
5512 	set_active_memcg(old_memcg);
5513 	if (IS_ERR(memcg))
5514 		return ERR_CAST(memcg);
5515 
5516 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5517 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5518 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5519 	memcg->zswap_max = PAGE_COUNTER_MAX;
5520 #endif
5521 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5522 	if (parent) {
5523 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5524 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5525 
5526 		page_counter_init(&memcg->memory, &parent->memory);
5527 		page_counter_init(&memcg->swap, &parent->swap);
5528 		page_counter_init(&memcg->kmem, &parent->kmem);
5529 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5530 	} else {
5531 		init_memcg_events();
5532 		page_counter_init(&memcg->memory, NULL);
5533 		page_counter_init(&memcg->swap, NULL);
5534 		page_counter_init(&memcg->kmem, NULL);
5535 		page_counter_init(&memcg->tcpmem, NULL);
5536 
5537 		root_mem_cgroup = memcg;
5538 		return &memcg->css;
5539 	}
5540 
5541 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5542 		static_branch_inc(&memcg_sockets_enabled_key);
5543 
5544 #if defined(CONFIG_MEMCG_KMEM)
5545 	if (!cgroup_memory_nobpf)
5546 		static_branch_inc(&memcg_bpf_enabled_key);
5547 #endif
5548 
5549 	return &memcg->css;
5550 }
5551 
5552 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5553 {
5554 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5555 
5556 	if (memcg_online_kmem(memcg))
5557 		goto remove_id;
5558 
5559 	/*
5560 	 * A memcg must be visible for expand_shrinker_info()
5561 	 * by the time the maps are allocated. So, we allocate maps
5562 	 * here, when for_each_mem_cgroup() can't skip it.
5563 	 */
5564 	if (alloc_shrinker_info(memcg))
5565 		goto offline_kmem;
5566 
5567 	if (unlikely(mem_cgroup_is_root(memcg)))
5568 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5569 				   FLUSH_TIME);
5570 	lru_gen_online_memcg(memcg);
5571 
5572 	/* Online state pins memcg ID, memcg ID pins CSS */
5573 	refcount_set(&memcg->id.ref, 1);
5574 	css_get(css);
5575 
5576 	/*
5577 	 * Ensure mem_cgroup_from_id() works once we're fully online.
5578 	 *
5579 	 * We could do this earlier and require callers to filter with
5580 	 * css_tryget_online(). But right now there are no users that
5581 	 * need earlier access, and the workingset code relies on the
5582 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5583 	 * publish it here at the end of onlining. This matches the
5584 	 * regular ID destruction during offlining.
5585 	 */
5586 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5587 
5588 	return 0;
5589 offline_kmem:
5590 	memcg_offline_kmem(memcg);
5591 remove_id:
5592 	mem_cgroup_id_remove(memcg);
5593 	return -ENOMEM;
5594 }
5595 
5596 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5597 {
5598 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5599 	struct mem_cgroup_event *event, *tmp;
5600 
5601 	/*
5602 	 * Unregister events and notify userspace.
5603 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5604 	 * directory to avoid race between userspace and kernelspace.
5605 	 */
5606 	spin_lock_irq(&memcg->event_list_lock);
5607 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5608 		list_del_init(&event->list);
5609 		schedule_work(&event->remove);
5610 	}
5611 	spin_unlock_irq(&memcg->event_list_lock);
5612 
5613 	page_counter_set_min(&memcg->memory, 0);
5614 	page_counter_set_low(&memcg->memory, 0);
5615 
5616 	memcg_offline_kmem(memcg);
5617 	reparent_shrinker_deferred(memcg);
5618 	wb_memcg_offline(memcg);
5619 	lru_gen_offline_memcg(memcg);
5620 
5621 	drain_all_stock(memcg);
5622 
5623 	mem_cgroup_id_put(memcg);
5624 }
5625 
5626 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5627 {
5628 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5629 
5630 	invalidate_reclaim_iterators(memcg);
5631 	lru_gen_release_memcg(memcg);
5632 }
5633 
5634 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5635 {
5636 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5637 	int __maybe_unused i;
5638 
5639 #ifdef CONFIG_CGROUP_WRITEBACK
5640 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5641 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5642 #endif
5643 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5644 		static_branch_dec(&memcg_sockets_enabled_key);
5645 
5646 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5647 		static_branch_dec(&memcg_sockets_enabled_key);
5648 
5649 #if defined(CONFIG_MEMCG_KMEM)
5650 	if (!cgroup_memory_nobpf)
5651 		static_branch_dec(&memcg_bpf_enabled_key);
5652 #endif
5653 
5654 	vmpressure_cleanup(&memcg->vmpressure);
5655 	cancel_work_sync(&memcg->high_work);
5656 	mem_cgroup_remove_from_trees(memcg);
5657 	free_shrinker_info(memcg);
5658 	mem_cgroup_free(memcg);
5659 }
5660 
5661 /**
5662  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5663  * @css: the target css
5664  *
5665  * Reset the states of the mem_cgroup associated with @css.  This is
5666  * invoked when the userland requests disabling on the default hierarchy
5667  * but the memcg is pinned through dependency.  The memcg should stop
5668  * applying policies and should revert to the vanilla state as it may be
5669  * made visible again.
5670  *
5671  * The current implementation only resets the essential configurations.
5672  * This needs to be expanded to cover all the visible parts.
5673  */
5674 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5675 {
5676 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5677 
5678 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5679 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5680 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5681 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5682 	page_counter_set_min(&memcg->memory, 0);
5683 	page_counter_set_low(&memcg->memory, 0);
5684 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5685 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5686 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5687 	memcg_wb_domain_size_changed(memcg);
5688 }
5689 
5690 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5691 {
5692 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5693 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5694 	struct memcg_vmstats_percpu *statc;
5695 	long delta, delta_cpu, v;
5696 	int i, nid;
5697 
5698 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5699 
5700 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5701 		/*
5702 		 * Collect the aggregated propagation counts of groups
5703 		 * below us. We're in a per-cpu loop here and this is
5704 		 * a global counter, so the first cycle will get them.
5705 		 */
5706 		delta = memcg->vmstats->state_pending[i];
5707 		if (delta)
5708 			memcg->vmstats->state_pending[i] = 0;
5709 
5710 		/* Add CPU changes on this level since the last flush */
5711 		delta_cpu = 0;
5712 		v = READ_ONCE(statc->state[i]);
5713 		if (v != statc->state_prev[i]) {
5714 			delta_cpu = v - statc->state_prev[i];
5715 			delta += delta_cpu;
5716 			statc->state_prev[i] = v;
5717 		}
5718 
5719 		/* Aggregate counts on this level and propagate upwards */
5720 		if (delta_cpu)
5721 			memcg->vmstats->state_local[i] += delta_cpu;
5722 
5723 		if (delta) {
5724 			memcg->vmstats->state[i] += delta;
5725 			if (parent)
5726 				parent->vmstats->state_pending[i] += delta;
5727 		}
5728 	}
5729 
5730 	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5731 		delta = memcg->vmstats->events_pending[i];
5732 		if (delta)
5733 			memcg->vmstats->events_pending[i] = 0;
5734 
5735 		delta_cpu = 0;
5736 		v = READ_ONCE(statc->events[i]);
5737 		if (v != statc->events_prev[i]) {
5738 			delta_cpu = v - statc->events_prev[i];
5739 			delta += delta_cpu;
5740 			statc->events_prev[i] = v;
5741 		}
5742 
5743 		if (delta_cpu)
5744 			memcg->vmstats->events_local[i] += delta_cpu;
5745 
5746 		if (delta) {
5747 			memcg->vmstats->events[i] += delta;
5748 			if (parent)
5749 				parent->vmstats->events_pending[i] += delta;
5750 		}
5751 	}
5752 
5753 	for_each_node_state(nid, N_MEMORY) {
5754 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5755 		struct mem_cgroup_per_node *ppn = NULL;
5756 		struct lruvec_stats_percpu *lstatc;
5757 
5758 		if (parent)
5759 			ppn = parent->nodeinfo[nid];
5760 
5761 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5762 
5763 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5764 			delta = pn->lruvec_stats.state_pending[i];
5765 			if (delta)
5766 				pn->lruvec_stats.state_pending[i] = 0;
5767 
5768 			delta_cpu = 0;
5769 			v = READ_ONCE(lstatc->state[i]);
5770 			if (v != lstatc->state_prev[i]) {
5771 				delta_cpu = v - lstatc->state_prev[i];
5772 				delta += delta_cpu;
5773 				lstatc->state_prev[i] = v;
5774 			}
5775 
5776 			if (delta_cpu)
5777 				pn->lruvec_stats.state_local[i] += delta_cpu;
5778 
5779 			if (delta) {
5780 				pn->lruvec_stats.state[i] += delta;
5781 				if (ppn)
5782 					ppn->lruvec_stats.state_pending[i] += delta;
5783 			}
5784 		}
5785 	}
5786 }
5787 
5788 #ifdef CONFIG_MMU
5789 /* Handlers for move charge at task migration. */
5790 static int mem_cgroup_do_precharge(unsigned long count)
5791 {
5792 	int ret;
5793 
5794 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5795 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5796 	if (!ret) {
5797 		mc.precharge += count;
5798 		return ret;
5799 	}
5800 
5801 	/* Try charges one by one with reclaim, but do not retry */
5802 	while (count--) {
5803 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5804 		if (ret)
5805 			return ret;
5806 		mc.precharge++;
5807 		cond_resched();
5808 	}
5809 	return 0;
5810 }
5811 
5812 union mc_target {
5813 	struct page	*page;
5814 	swp_entry_t	ent;
5815 };
5816 
5817 enum mc_target_type {
5818 	MC_TARGET_NONE = 0,
5819 	MC_TARGET_PAGE,
5820 	MC_TARGET_SWAP,
5821 	MC_TARGET_DEVICE,
5822 };
5823 
5824 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5825 						unsigned long addr, pte_t ptent)
5826 {
5827 	struct page *page = vm_normal_page(vma, addr, ptent);
5828 
5829 	if (!page)
5830 		return NULL;
5831 	if (PageAnon(page)) {
5832 		if (!(mc.flags & MOVE_ANON))
5833 			return NULL;
5834 	} else {
5835 		if (!(mc.flags & MOVE_FILE))
5836 			return NULL;
5837 	}
5838 	get_page(page);
5839 
5840 	return page;
5841 }
5842 
5843 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5844 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5845 			pte_t ptent, swp_entry_t *entry)
5846 {
5847 	struct page *page = NULL;
5848 	swp_entry_t ent = pte_to_swp_entry(ptent);
5849 
5850 	if (!(mc.flags & MOVE_ANON))
5851 		return NULL;
5852 
5853 	/*
5854 	 * Handle device private pages that are not accessible by the CPU, but
5855 	 * stored as special swap entries in the page table.
5856 	 */
5857 	if (is_device_private_entry(ent)) {
5858 		page = pfn_swap_entry_to_page(ent);
5859 		if (!get_page_unless_zero(page))
5860 			return NULL;
5861 		return page;
5862 	}
5863 
5864 	if (non_swap_entry(ent))
5865 		return NULL;
5866 
5867 	/*
5868 	 * Because swap_cache_get_folio() updates some statistics counter,
5869 	 * we call find_get_page() with swapper_space directly.
5870 	 */
5871 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5872 	entry->val = ent.val;
5873 
5874 	return page;
5875 }
5876 #else
5877 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5878 			pte_t ptent, swp_entry_t *entry)
5879 {
5880 	return NULL;
5881 }
5882 #endif
5883 
5884 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5885 			unsigned long addr, pte_t ptent)
5886 {
5887 	unsigned long index;
5888 	struct folio *folio;
5889 
5890 	if (!vma->vm_file) /* anonymous vma */
5891 		return NULL;
5892 	if (!(mc.flags & MOVE_FILE))
5893 		return NULL;
5894 
5895 	/* folio is moved even if it's not RSS of this task(page-faulted). */
5896 	/* shmem/tmpfs may report page out on swap: account for that too. */
5897 	index = linear_page_index(vma, addr);
5898 	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5899 	if (IS_ERR(folio))
5900 		return NULL;
5901 	return folio_file_page(folio, index);
5902 }
5903 
5904 /**
5905  * mem_cgroup_move_account - move account of the page
5906  * @page: the page
5907  * @compound: charge the page as compound or small page
5908  * @from: mem_cgroup which the page is moved from.
5909  * @to:	mem_cgroup which the page is moved to. @from != @to.
5910  *
5911  * The page must be locked and not on the LRU.
5912  *
5913  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5914  * from old cgroup.
5915  */
5916 static int mem_cgroup_move_account(struct page *page,
5917 				   bool compound,
5918 				   struct mem_cgroup *from,
5919 				   struct mem_cgroup *to)
5920 {
5921 	struct folio *folio = page_folio(page);
5922 	struct lruvec *from_vec, *to_vec;
5923 	struct pglist_data *pgdat;
5924 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5925 	int nid, ret;
5926 
5927 	VM_BUG_ON(from == to);
5928 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5929 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5930 	VM_BUG_ON(compound && !folio_test_large(folio));
5931 
5932 	ret = -EINVAL;
5933 	if (folio_memcg(folio) != from)
5934 		goto out;
5935 
5936 	pgdat = folio_pgdat(folio);
5937 	from_vec = mem_cgroup_lruvec(from, pgdat);
5938 	to_vec = mem_cgroup_lruvec(to, pgdat);
5939 
5940 	folio_memcg_lock(folio);
5941 
5942 	if (folio_test_anon(folio)) {
5943 		if (folio_mapped(folio)) {
5944 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5945 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5946 			if (folio_test_pmd_mappable(folio)) {
5947 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5948 						   -nr_pages);
5949 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5950 						   nr_pages);
5951 			}
5952 		}
5953 	} else {
5954 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5955 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5956 
5957 		if (folio_test_swapbacked(folio)) {
5958 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5959 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5960 		}
5961 
5962 		if (folio_mapped(folio)) {
5963 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5964 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5965 		}
5966 
5967 		if (folio_test_dirty(folio)) {
5968 			struct address_space *mapping = folio_mapping(folio);
5969 
5970 			if (mapping_can_writeback(mapping)) {
5971 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5972 						   -nr_pages);
5973 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5974 						   nr_pages);
5975 			}
5976 		}
5977 	}
5978 
5979 #ifdef CONFIG_SWAP
5980 	if (folio_test_swapcache(folio)) {
5981 		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5982 		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5983 	}
5984 #endif
5985 	if (folio_test_writeback(folio)) {
5986 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5987 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5988 	}
5989 
5990 	/*
5991 	 * All state has been migrated, let's switch to the new memcg.
5992 	 *
5993 	 * It is safe to change page's memcg here because the page
5994 	 * is referenced, charged, isolated, and locked: we can't race
5995 	 * with (un)charging, migration, LRU putback, or anything else
5996 	 * that would rely on a stable page's memory cgroup.
5997 	 *
5998 	 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5999 	 * to save space. As soon as we switch page's memory cgroup to a
6000 	 * new memcg that isn't locked, the above state can change
6001 	 * concurrently again. Make sure we're truly done with it.
6002 	 */
6003 	smp_mb();
6004 
6005 	css_get(&to->css);
6006 	css_put(&from->css);
6007 
6008 	folio->memcg_data = (unsigned long)to;
6009 
6010 	__folio_memcg_unlock(from);
6011 
6012 	ret = 0;
6013 	nid = folio_nid(folio);
6014 
6015 	local_irq_disable();
6016 	mem_cgroup_charge_statistics(to, nr_pages);
6017 	memcg_check_events(to, nid);
6018 	mem_cgroup_charge_statistics(from, -nr_pages);
6019 	memcg_check_events(from, nid);
6020 	local_irq_enable();
6021 out:
6022 	return ret;
6023 }
6024 
6025 /**
6026  * get_mctgt_type - get target type of moving charge
6027  * @vma: the vma the pte to be checked belongs
6028  * @addr: the address corresponding to the pte to be checked
6029  * @ptent: the pte to be checked
6030  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6031  *
6032  * Context: Called with pte lock held.
6033  * Return:
6034  * * MC_TARGET_NONE - If the pte is not a target for move charge.
6035  * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6036  *   move charge. If @target is not NULL, the page is stored in target->page
6037  *   with extra refcnt taken (Caller should release it).
6038  * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6039  *   target for charge migration.  If @target is not NULL, the entry is
6040  *   stored in target->ent.
6041  * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6042  *   thus not on the lru.  For now such page is charged like a regular page
6043  *   would be as it is just special memory taking the place of a regular page.
6044  *   See Documentations/vm/hmm.txt and include/linux/hmm.h
6045  */
6046 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6047 		unsigned long addr, pte_t ptent, union mc_target *target)
6048 {
6049 	struct page *page = NULL;
6050 	enum mc_target_type ret = MC_TARGET_NONE;
6051 	swp_entry_t ent = { .val = 0 };
6052 
6053 	if (pte_present(ptent))
6054 		page = mc_handle_present_pte(vma, addr, ptent);
6055 	else if (pte_none_mostly(ptent))
6056 		/*
6057 		 * PTE markers should be treated as a none pte here, separated
6058 		 * from other swap handling below.
6059 		 */
6060 		page = mc_handle_file_pte(vma, addr, ptent);
6061 	else if (is_swap_pte(ptent))
6062 		page = mc_handle_swap_pte(vma, ptent, &ent);
6063 
6064 	if (target && page) {
6065 		if (!trylock_page(page)) {
6066 			put_page(page);
6067 			return ret;
6068 		}
6069 		/*
6070 		 * page_mapped() must be stable during the move. This
6071 		 * pte is locked, so if it's present, the page cannot
6072 		 * become unmapped. If it isn't, we have only partial
6073 		 * control over the mapped state: the page lock will
6074 		 * prevent new faults against pagecache and swapcache,
6075 		 * so an unmapped page cannot become mapped. However,
6076 		 * if the page is already mapped elsewhere, it can
6077 		 * unmap, and there is nothing we can do about it.
6078 		 * Alas, skip moving the page in this case.
6079 		 */
6080 		if (!pte_present(ptent) && page_mapped(page)) {
6081 			unlock_page(page);
6082 			put_page(page);
6083 			return ret;
6084 		}
6085 	}
6086 
6087 	if (!page && !ent.val)
6088 		return ret;
6089 	if (page) {
6090 		/*
6091 		 * Do only loose check w/o serialization.
6092 		 * mem_cgroup_move_account() checks the page is valid or
6093 		 * not under LRU exclusion.
6094 		 */
6095 		if (page_memcg(page) == mc.from) {
6096 			ret = MC_TARGET_PAGE;
6097 			if (is_device_private_page(page) ||
6098 			    is_device_coherent_page(page))
6099 				ret = MC_TARGET_DEVICE;
6100 			if (target)
6101 				target->page = page;
6102 		}
6103 		if (!ret || !target) {
6104 			if (target)
6105 				unlock_page(page);
6106 			put_page(page);
6107 		}
6108 	}
6109 	/*
6110 	 * There is a swap entry and a page doesn't exist or isn't charged.
6111 	 * But we cannot move a tail-page in a THP.
6112 	 */
6113 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6114 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6115 		ret = MC_TARGET_SWAP;
6116 		if (target)
6117 			target->ent = ent;
6118 	}
6119 	return ret;
6120 }
6121 
6122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6123 /*
6124  * We don't consider PMD mapped swapping or file mapped pages because THP does
6125  * not support them for now.
6126  * Caller should make sure that pmd_trans_huge(pmd) is true.
6127  */
6128 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6129 		unsigned long addr, pmd_t pmd, union mc_target *target)
6130 {
6131 	struct page *page = NULL;
6132 	enum mc_target_type ret = MC_TARGET_NONE;
6133 
6134 	if (unlikely(is_swap_pmd(pmd))) {
6135 		VM_BUG_ON(thp_migration_supported() &&
6136 				  !is_pmd_migration_entry(pmd));
6137 		return ret;
6138 	}
6139 	page = pmd_page(pmd);
6140 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6141 	if (!(mc.flags & MOVE_ANON))
6142 		return ret;
6143 	if (page_memcg(page) == mc.from) {
6144 		ret = MC_TARGET_PAGE;
6145 		if (target) {
6146 			get_page(page);
6147 			if (!trylock_page(page)) {
6148 				put_page(page);
6149 				return MC_TARGET_NONE;
6150 			}
6151 			target->page = page;
6152 		}
6153 	}
6154 	return ret;
6155 }
6156 #else
6157 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6158 		unsigned long addr, pmd_t pmd, union mc_target *target)
6159 {
6160 	return MC_TARGET_NONE;
6161 }
6162 #endif
6163 
6164 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6165 					unsigned long addr, unsigned long end,
6166 					struct mm_walk *walk)
6167 {
6168 	struct vm_area_struct *vma = walk->vma;
6169 	pte_t *pte;
6170 	spinlock_t *ptl;
6171 
6172 	ptl = pmd_trans_huge_lock(pmd, vma);
6173 	if (ptl) {
6174 		/*
6175 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
6176 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6177 		 * this might change.
6178 		 */
6179 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6180 			mc.precharge += HPAGE_PMD_NR;
6181 		spin_unlock(ptl);
6182 		return 0;
6183 	}
6184 
6185 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6186 	if (!pte)
6187 		return 0;
6188 	for (; addr != end; pte++, addr += PAGE_SIZE)
6189 		if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6190 			mc.precharge++;	/* increment precharge temporarily */
6191 	pte_unmap_unlock(pte - 1, ptl);
6192 	cond_resched();
6193 
6194 	return 0;
6195 }
6196 
6197 static const struct mm_walk_ops precharge_walk_ops = {
6198 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
6199 	.walk_lock	= PGWALK_RDLOCK,
6200 };
6201 
6202 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6203 {
6204 	unsigned long precharge;
6205 
6206 	mmap_read_lock(mm);
6207 	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6208 	mmap_read_unlock(mm);
6209 
6210 	precharge = mc.precharge;
6211 	mc.precharge = 0;
6212 
6213 	return precharge;
6214 }
6215 
6216 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6217 {
6218 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6219 
6220 	VM_BUG_ON(mc.moving_task);
6221 	mc.moving_task = current;
6222 	return mem_cgroup_do_precharge(precharge);
6223 }
6224 
6225 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6226 static void __mem_cgroup_clear_mc(void)
6227 {
6228 	struct mem_cgroup *from = mc.from;
6229 	struct mem_cgroup *to = mc.to;
6230 
6231 	/* we must uncharge all the leftover precharges from mc.to */
6232 	if (mc.precharge) {
6233 		mem_cgroup_cancel_charge(mc.to, mc.precharge);
6234 		mc.precharge = 0;
6235 	}
6236 	/*
6237 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6238 	 * we must uncharge here.
6239 	 */
6240 	if (mc.moved_charge) {
6241 		mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6242 		mc.moved_charge = 0;
6243 	}
6244 	/* we must fixup refcnts and charges */
6245 	if (mc.moved_swap) {
6246 		/* uncharge swap account from the old cgroup */
6247 		if (!mem_cgroup_is_root(mc.from))
6248 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6249 
6250 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6251 
6252 		/*
6253 		 * we charged both to->memory and to->memsw, so we
6254 		 * should uncharge to->memory.
6255 		 */
6256 		if (!mem_cgroup_is_root(mc.to))
6257 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6258 
6259 		mc.moved_swap = 0;
6260 	}
6261 	memcg_oom_recover(from);
6262 	memcg_oom_recover(to);
6263 	wake_up_all(&mc.waitq);
6264 }
6265 
6266 static void mem_cgroup_clear_mc(void)
6267 {
6268 	struct mm_struct *mm = mc.mm;
6269 
6270 	/*
6271 	 * we must clear moving_task before waking up waiters at the end of
6272 	 * task migration.
6273 	 */
6274 	mc.moving_task = NULL;
6275 	__mem_cgroup_clear_mc();
6276 	spin_lock(&mc.lock);
6277 	mc.from = NULL;
6278 	mc.to = NULL;
6279 	mc.mm = NULL;
6280 	spin_unlock(&mc.lock);
6281 
6282 	mmput(mm);
6283 }
6284 
6285 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6286 {
6287 	struct cgroup_subsys_state *css;
6288 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6289 	struct mem_cgroup *from;
6290 	struct task_struct *leader, *p;
6291 	struct mm_struct *mm;
6292 	unsigned long move_flags;
6293 	int ret = 0;
6294 
6295 	/* charge immigration isn't supported on the default hierarchy */
6296 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6297 		return 0;
6298 
6299 	/*
6300 	 * Multi-process migrations only happen on the default hierarchy
6301 	 * where charge immigration is not used.  Perform charge
6302 	 * immigration if @tset contains a leader and whine if there are
6303 	 * multiple.
6304 	 */
6305 	p = NULL;
6306 	cgroup_taskset_for_each_leader(leader, css, tset) {
6307 		WARN_ON_ONCE(p);
6308 		p = leader;
6309 		memcg = mem_cgroup_from_css(css);
6310 	}
6311 	if (!p)
6312 		return 0;
6313 
6314 	/*
6315 	 * We are now committed to this value whatever it is. Changes in this
6316 	 * tunable will only affect upcoming migrations, not the current one.
6317 	 * So we need to save it, and keep it going.
6318 	 */
6319 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6320 	if (!move_flags)
6321 		return 0;
6322 
6323 	from = mem_cgroup_from_task(p);
6324 
6325 	VM_BUG_ON(from == memcg);
6326 
6327 	mm = get_task_mm(p);
6328 	if (!mm)
6329 		return 0;
6330 	/* We move charges only when we move a owner of the mm */
6331 	if (mm->owner == p) {
6332 		VM_BUG_ON(mc.from);
6333 		VM_BUG_ON(mc.to);
6334 		VM_BUG_ON(mc.precharge);
6335 		VM_BUG_ON(mc.moved_charge);
6336 		VM_BUG_ON(mc.moved_swap);
6337 
6338 		spin_lock(&mc.lock);
6339 		mc.mm = mm;
6340 		mc.from = from;
6341 		mc.to = memcg;
6342 		mc.flags = move_flags;
6343 		spin_unlock(&mc.lock);
6344 		/* We set mc.moving_task later */
6345 
6346 		ret = mem_cgroup_precharge_mc(mm);
6347 		if (ret)
6348 			mem_cgroup_clear_mc();
6349 	} else {
6350 		mmput(mm);
6351 	}
6352 	return ret;
6353 }
6354 
6355 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6356 {
6357 	if (mc.to)
6358 		mem_cgroup_clear_mc();
6359 }
6360 
6361 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6362 				unsigned long addr, unsigned long end,
6363 				struct mm_walk *walk)
6364 {
6365 	int ret = 0;
6366 	struct vm_area_struct *vma = walk->vma;
6367 	pte_t *pte;
6368 	spinlock_t *ptl;
6369 	enum mc_target_type target_type;
6370 	union mc_target target;
6371 	struct page *page;
6372 
6373 	ptl = pmd_trans_huge_lock(pmd, vma);
6374 	if (ptl) {
6375 		if (mc.precharge < HPAGE_PMD_NR) {
6376 			spin_unlock(ptl);
6377 			return 0;
6378 		}
6379 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6380 		if (target_type == MC_TARGET_PAGE) {
6381 			page = target.page;
6382 			if (isolate_lru_page(page)) {
6383 				if (!mem_cgroup_move_account(page, true,
6384 							     mc.from, mc.to)) {
6385 					mc.precharge -= HPAGE_PMD_NR;
6386 					mc.moved_charge += HPAGE_PMD_NR;
6387 				}
6388 				putback_lru_page(page);
6389 			}
6390 			unlock_page(page);
6391 			put_page(page);
6392 		} else if (target_type == MC_TARGET_DEVICE) {
6393 			page = target.page;
6394 			if (!mem_cgroup_move_account(page, true,
6395 						     mc.from, mc.to)) {
6396 				mc.precharge -= HPAGE_PMD_NR;
6397 				mc.moved_charge += HPAGE_PMD_NR;
6398 			}
6399 			unlock_page(page);
6400 			put_page(page);
6401 		}
6402 		spin_unlock(ptl);
6403 		return 0;
6404 	}
6405 
6406 retry:
6407 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6408 	if (!pte)
6409 		return 0;
6410 	for (; addr != end; addr += PAGE_SIZE) {
6411 		pte_t ptent = ptep_get(pte++);
6412 		bool device = false;
6413 		swp_entry_t ent;
6414 
6415 		if (!mc.precharge)
6416 			break;
6417 
6418 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6419 		case MC_TARGET_DEVICE:
6420 			device = true;
6421 			fallthrough;
6422 		case MC_TARGET_PAGE:
6423 			page = target.page;
6424 			/*
6425 			 * We can have a part of the split pmd here. Moving it
6426 			 * can be done but it would be too convoluted so simply
6427 			 * ignore such a partial THP and keep it in original
6428 			 * memcg. There should be somebody mapping the head.
6429 			 */
6430 			if (PageTransCompound(page))
6431 				goto put;
6432 			if (!device && !isolate_lru_page(page))
6433 				goto put;
6434 			if (!mem_cgroup_move_account(page, false,
6435 						mc.from, mc.to)) {
6436 				mc.precharge--;
6437 				/* we uncharge from mc.from later. */
6438 				mc.moved_charge++;
6439 			}
6440 			if (!device)
6441 				putback_lru_page(page);
6442 put:			/* get_mctgt_type() gets & locks the page */
6443 			unlock_page(page);
6444 			put_page(page);
6445 			break;
6446 		case MC_TARGET_SWAP:
6447 			ent = target.ent;
6448 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6449 				mc.precharge--;
6450 				mem_cgroup_id_get_many(mc.to, 1);
6451 				/* we fixup other refcnts and charges later. */
6452 				mc.moved_swap++;
6453 			}
6454 			break;
6455 		default:
6456 			break;
6457 		}
6458 	}
6459 	pte_unmap_unlock(pte - 1, ptl);
6460 	cond_resched();
6461 
6462 	if (addr != end) {
6463 		/*
6464 		 * We have consumed all precharges we got in can_attach().
6465 		 * We try charge one by one, but don't do any additional
6466 		 * charges to mc.to if we have failed in charge once in attach()
6467 		 * phase.
6468 		 */
6469 		ret = mem_cgroup_do_precharge(1);
6470 		if (!ret)
6471 			goto retry;
6472 	}
6473 
6474 	return ret;
6475 }
6476 
6477 static const struct mm_walk_ops charge_walk_ops = {
6478 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6479 	.walk_lock	= PGWALK_RDLOCK,
6480 };
6481 
6482 static void mem_cgroup_move_charge(void)
6483 {
6484 	lru_add_drain_all();
6485 	/*
6486 	 * Signal folio_memcg_lock() to take the memcg's move_lock
6487 	 * while we're moving its pages to another memcg. Then wait
6488 	 * for already started RCU-only updates to finish.
6489 	 */
6490 	atomic_inc(&mc.from->moving_account);
6491 	synchronize_rcu();
6492 retry:
6493 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6494 		/*
6495 		 * Someone who are holding the mmap_lock might be waiting in
6496 		 * waitq. So we cancel all extra charges, wake up all waiters,
6497 		 * and retry. Because we cancel precharges, we might not be able
6498 		 * to move enough charges, but moving charge is a best-effort
6499 		 * feature anyway, so it wouldn't be a big problem.
6500 		 */
6501 		__mem_cgroup_clear_mc();
6502 		cond_resched();
6503 		goto retry;
6504 	}
6505 	/*
6506 	 * When we have consumed all precharges and failed in doing
6507 	 * additional charge, the page walk just aborts.
6508 	 */
6509 	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6510 	mmap_read_unlock(mc.mm);
6511 	atomic_dec(&mc.from->moving_account);
6512 }
6513 
6514 static void mem_cgroup_move_task(void)
6515 {
6516 	if (mc.to) {
6517 		mem_cgroup_move_charge();
6518 		mem_cgroup_clear_mc();
6519 	}
6520 }
6521 
6522 #else	/* !CONFIG_MMU */
6523 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6524 {
6525 	return 0;
6526 }
6527 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6528 {
6529 }
6530 static void mem_cgroup_move_task(void)
6531 {
6532 }
6533 #endif
6534 
6535 #ifdef CONFIG_MEMCG_KMEM
6536 static void mem_cgroup_fork(struct task_struct *task)
6537 {
6538 	/*
6539 	 * Set the update flag to cause task->objcg to be initialized lazily
6540 	 * on the first allocation. It can be done without any synchronization
6541 	 * because it's always performed on the current task, so does
6542 	 * current_objcg_update().
6543 	 */
6544 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6545 }
6546 
6547 static void mem_cgroup_exit(struct task_struct *task)
6548 {
6549 	struct obj_cgroup *objcg = task->objcg;
6550 
6551 	objcg = (struct obj_cgroup *)
6552 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6553 	if (objcg)
6554 		obj_cgroup_put(objcg);
6555 
6556 	/*
6557 	 * Some kernel allocations can happen after this point,
6558 	 * but let's ignore them. It can be done without any synchronization
6559 	 * because it's always performed on the current task, so does
6560 	 * current_objcg_update().
6561 	 */
6562 	task->objcg = NULL;
6563 }
6564 #endif
6565 
6566 #ifdef CONFIG_LRU_GEN
6567 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
6568 {
6569 	struct task_struct *task;
6570 	struct cgroup_subsys_state *css;
6571 
6572 	/* find the first leader if there is any */
6573 	cgroup_taskset_for_each_leader(task, css, tset)
6574 		break;
6575 
6576 	if (!task)
6577 		return;
6578 
6579 	task_lock(task);
6580 	if (task->mm && READ_ONCE(task->mm->owner) == task)
6581 		lru_gen_migrate_mm(task->mm);
6582 	task_unlock(task);
6583 }
6584 #else
6585 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6586 #endif /* CONFIG_LRU_GEN */
6587 
6588 #ifdef CONFIG_MEMCG_KMEM
6589 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6590 {
6591 	struct task_struct *task;
6592 	struct cgroup_subsys_state *css;
6593 
6594 	cgroup_taskset_for_each(task, css, tset) {
6595 		/* atomically set the update bit */
6596 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6597 	}
6598 }
6599 #else
6600 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6601 #endif /* CONFIG_MEMCG_KMEM */
6602 
6603 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
6604 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6605 {
6606 	mem_cgroup_lru_gen_attach(tset);
6607 	mem_cgroup_kmem_attach(tset);
6608 }
6609 #endif
6610 
6611 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6612 {
6613 	if (value == PAGE_COUNTER_MAX)
6614 		seq_puts(m, "max\n");
6615 	else
6616 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6617 
6618 	return 0;
6619 }
6620 
6621 static u64 memory_current_read(struct cgroup_subsys_state *css,
6622 			       struct cftype *cft)
6623 {
6624 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6625 
6626 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6627 }
6628 
6629 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6630 			    struct cftype *cft)
6631 {
6632 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6633 
6634 	return (u64)memcg->memory.watermark * PAGE_SIZE;
6635 }
6636 
6637 static int memory_min_show(struct seq_file *m, void *v)
6638 {
6639 	return seq_puts_memcg_tunable(m,
6640 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6641 }
6642 
6643 static ssize_t memory_min_write(struct kernfs_open_file *of,
6644 				char *buf, size_t nbytes, loff_t off)
6645 {
6646 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6647 	unsigned long min;
6648 	int err;
6649 
6650 	buf = strstrip(buf);
6651 	err = page_counter_memparse(buf, "max", &min);
6652 	if (err)
6653 		return err;
6654 
6655 	page_counter_set_min(&memcg->memory, min);
6656 
6657 	return nbytes;
6658 }
6659 
6660 static int memory_low_show(struct seq_file *m, void *v)
6661 {
6662 	return seq_puts_memcg_tunable(m,
6663 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6664 }
6665 
6666 static ssize_t memory_low_write(struct kernfs_open_file *of,
6667 				char *buf, size_t nbytes, loff_t off)
6668 {
6669 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6670 	unsigned long low;
6671 	int err;
6672 
6673 	buf = strstrip(buf);
6674 	err = page_counter_memparse(buf, "max", &low);
6675 	if (err)
6676 		return err;
6677 
6678 	page_counter_set_low(&memcg->memory, low);
6679 
6680 	return nbytes;
6681 }
6682 
6683 static int memory_high_show(struct seq_file *m, void *v)
6684 {
6685 	return seq_puts_memcg_tunable(m,
6686 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6687 }
6688 
6689 static ssize_t memory_high_write(struct kernfs_open_file *of,
6690 				 char *buf, size_t nbytes, loff_t off)
6691 {
6692 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6693 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6694 	bool drained = false;
6695 	unsigned long high;
6696 	int err;
6697 
6698 	buf = strstrip(buf);
6699 	err = page_counter_memparse(buf, "max", &high);
6700 	if (err)
6701 		return err;
6702 
6703 	page_counter_set_high(&memcg->memory, high);
6704 
6705 	for (;;) {
6706 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6707 		unsigned long reclaimed;
6708 
6709 		if (nr_pages <= high)
6710 			break;
6711 
6712 		if (signal_pending(current))
6713 			break;
6714 
6715 		if (!drained) {
6716 			drain_all_stock(memcg);
6717 			drained = true;
6718 			continue;
6719 		}
6720 
6721 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6722 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6723 
6724 		if (!reclaimed && !nr_retries--)
6725 			break;
6726 	}
6727 
6728 	memcg_wb_domain_size_changed(memcg);
6729 	return nbytes;
6730 }
6731 
6732 static int memory_max_show(struct seq_file *m, void *v)
6733 {
6734 	return seq_puts_memcg_tunable(m,
6735 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6736 }
6737 
6738 static ssize_t memory_max_write(struct kernfs_open_file *of,
6739 				char *buf, size_t nbytes, loff_t off)
6740 {
6741 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6742 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6743 	bool drained = false;
6744 	unsigned long max;
6745 	int err;
6746 
6747 	buf = strstrip(buf);
6748 	err = page_counter_memparse(buf, "max", &max);
6749 	if (err)
6750 		return err;
6751 
6752 	xchg(&memcg->memory.max, max);
6753 
6754 	for (;;) {
6755 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6756 
6757 		if (nr_pages <= max)
6758 			break;
6759 
6760 		if (signal_pending(current))
6761 			break;
6762 
6763 		if (!drained) {
6764 			drain_all_stock(memcg);
6765 			drained = true;
6766 			continue;
6767 		}
6768 
6769 		if (nr_reclaims) {
6770 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6771 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6772 				nr_reclaims--;
6773 			continue;
6774 		}
6775 
6776 		memcg_memory_event(memcg, MEMCG_OOM);
6777 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6778 			break;
6779 	}
6780 
6781 	memcg_wb_domain_size_changed(memcg);
6782 	return nbytes;
6783 }
6784 
6785 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6786 {
6787 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6788 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6789 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6790 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6791 	seq_printf(m, "oom_kill %lu\n",
6792 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6793 	seq_printf(m, "oom_group_kill %lu\n",
6794 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6795 }
6796 
6797 static int memory_events_show(struct seq_file *m, void *v)
6798 {
6799 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6800 
6801 	__memory_events_show(m, memcg->memory_events);
6802 	return 0;
6803 }
6804 
6805 static int memory_events_local_show(struct seq_file *m, void *v)
6806 {
6807 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6808 
6809 	__memory_events_show(m, memcg->memory_events_local);
6810 	return 0;
6811 }
6812 
6813 static int memory_stat_show(struct seq_file *m, void *v)
6814 {
6815 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6816 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6817 	struct seq_buf s;
6818 
6819 	if (!buf)
6820 		return -ENOMEM;
6821 	seq_buf_init(&s, buf, PAGE_SIZE);
6822 	memory_stat_format(memcg, &s);
6823 	seq_puts(m, buf);
6824 	kfree(buf);
6825 	return 0;
6826 }
6827 
6828 #ifdef CONFIG_NUMA
6829 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6830 						     int item)
6831 {
6832 	return lruvec_page_state(lruvec, item) *
6833 		memcg_page_state_output_unit(item);
6834 }
6835 
6836 static int memory_numa_stat_show(struct seq_file *m, void *v)
6837 {
6838 	int i;
6839 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6840 
6841 	mem_cgroup_flush_stats();
6842 
6843 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6844 		int nid;
6845 
6846 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6847 			continue;
6848 
6849 		seq_printf(m, "%s", memory_stats[i].name);
6850 		for_each_node_state(nid, N_MEMORY) {
6851 			u64 size;
6852 			struct lruvec *lruvec;
6853 
6854 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6855 			size = lruvec_page_state_output(lruvec,
6856 							memory_stats[i].idx);
6857 			seq_printf(m, " N%d=%llu", nid, size);
6858 		}
6859 		seq_putc(m, '\n');
6860 	}
6861 
6862 	return 0;
6863 }
6864 #endif
6865 
6866 static int memory_oom_group_show(struct seq_file *m, void *v)
6867 {
6868 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6869 
6870 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6871 
6872 	return 0;
6873 }
6874 
6875 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6876 				      char *buf, size_t nbytes, loff_t off)
6877 {
6878 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6879 	int ret, oom_group;
6880 
6881 	buf = strstrip(buf);
6882 	if (!buf)
6883 		return -EINVAL;
6884 
6885 	ret = kstrtoint(buf, 0, &oom_group);
6886 	if (ret)
6887 		return ret;
6888 
6889 	if (oom_group != 0 && oom_group != 1)
6890 		return -EINVAL;
6891 
6892 	WRITE_ONCE(memcg->oom_group, oom_group);
6893 
6894 	return nbytes;
6895 }
6896 
6897 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6898 			      size_t nbytes, loff_t off)
6899 {
6900 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6901 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6902 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6903 	unsigned int reclaim_options;
6904 	int err;
6905 
6906 	buf = strstrip(buf);
6907 	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6908 	if (err)
6909 		return err;
6910 
6911 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6912 	while (nr_reclaimed < nr_to_reclaim) {
6913 		unsigned long reclaimed;
6914 
6915 		if (signal_pending(current))
6916 			return -EINTR;
6917 
6918 		/*
6919 		 * This is the final attempt, drain percpu lru caches in the
6920 		 * hope of introducing more evictable pages for
6921 		 * try_to_free_mem_cgroup_pages().
6922 		 */
6923 		if (!nr_retries)
6924 			lru_add_drain_all();
6925 
6926 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
6927 					min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6928 					GFP_KERNEL, reclaim_options);
6929 
6930 		if (!reclaimed && !nr_retries--)
6931 			return -EAGAIN;
6932 
6933 		nr_reclaimed += reclaimed;
6934 	}
6935 
6936 	return nbytes;
6937 }
6938 
6939 static struct cftype memory_files[] = {
6940 	{
6941 		.name = "current",
6942 		.flags = CFTYPE_NOT_ON_ROOT,
6943 		.read_u64 = memory_current_read,
6944 	},
6945 	{
6946 		.name = "peak",
6947 		.flags = CFTYPE_NOT_ON_ROOT,
6948 		.read_u64 = memory_peak_read,
6949 	},
6950 	{
6951 		.name = "min",
6952 		.flags = CFTYPE_NOT_ON_ROOT,
6953 		.seq_show = memory_min_show,
6954 		.write = memory_min_write,
6955 	},
6956 	{
6957 		.name = "low",
6958 		.flags = CFTYPE_NOT_ON_ROOT,
6959 		.seq_show = memory_low_show,
6960 		.write = memory_low_write,
6961 	},
6962 	{
6963 		.name = "high",
6964 		.flags = CFTYPE_NOT_ON_ROOT,
6965 		.seq_show = memory_high_show,
6966 		.write = memory_high_write,
6967 	},
6968 	{
6969 		.name = "max",
6970 		.flags = CFTYPE_NOT_ON_ROOT,
6971 		.seq_show = memory_max_show,
6972 		.write = memory_max_write,
6973 	},
6974 	{
6975 		.name = "events",
6976 		.flags = CFTYPE_NOT_ON_ROOT,
6977 		.file_offset = offsetof(struct mem_cgroup, events_file),
6978 		.seq_show = memory_events_show,
6979 	},
6980 	{
6981 		.name = "events.local",
6982 		.flags = CFTYPE_NOT_ON_ROOT,
6983 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6984 		.seq_show = memory_events_local_show,
6985 	},
6986 	{
6987 		.name = "stat",
6988 		.seq_show = memory_stat_show,
6989 	},
6990 #ifdef CONFIG_NUMA
6991 	{
6992 		.name = "numa_stat",
6993 		.seq_show = memory_numa_stat_show,
6994 	},
6995 #endif
6996 	{
6997 		.name = "oom.group",
6998 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6999 		.seq_show = memory_oom_group_show,
7000 		.write = memory_oom_group_write,
7001 	},
7002 	{
7003 		.name = "reclaim",
7004 		.flags = CFTYPE_NS_DELEGATABLE,
7005 		.write = memory_reclaim,
7006 	},
7007 	{ }	/* terminate */
7008 };
7009 
7010 struct cgroup_subsys memory_cgrp_subsys = {
7011 	.css_alloc = mem_cgroup_css_alloc,
7012 	.css_online = mem_cgroup_css_online,
7013 	.css_offline = mem_cgroup_css_offline,
7014 	.css_released = mem_cgroup_css_released,
7015 	.css_free = mem_cgroup_css_free,
7016 	.css_reset = mem_cgroup_css_reset,
7017 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
7018 	.can_attach = mem_cgroup_can_attach,
7019 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
7020 	.attach = mem_cgroup_attach,
7021 #endif
7022 	.cancel_attach = mem_cgroup_cancel_attach,
7023 	.post_attach = mem_cgroup_move_task,
7024 #ifdef CONFIG_MEMCG_KMEM
7025 	.fork = mem_cgroup_fork,
7026 	.exit = mem_cgroup_exit,
7027 #endif
7028 	.dfl_cftypes = memory_files,
7029 	.legacy_cftypes = mem_cgroup_legacy_files,
7030 	.early_init = 0,
7031 };
7032 
7033 /*
7034  * This function calculates an individual cgroup's effective
7035  * protection which is derived from its own memory.min/low, its
7036  * parent's and siblings' settings, as well as the actual memory
7037  * distribution in the tree.
7038  *
7039  * The following rules apply to the effective protection values:
7040  *
7041  * 1. At the first level of reclaim, effective protection is equal to
7042  *    the declared protection in memory.min and memory.low.
7043  *
7044  * 2. To enable safe delegation of the protection configuration, at
7045  *    subsequent levels the effective protection is capped to the
7046  *    parent's effective protection.
7047  *
7048  * 3. To make complex and dynamic subtrees easier to configure, the
7049  *    user is allowed to overcommit the declared protection at a given
7050  *    level. If that is the case, the parent's effective protection is
7051  *    distributed to the children in proportion to how much protection
7052  *    they have declared and how much of it they are utilizing.
7053  *
7054  *    This makes distribution proportional, but also work-conserving:
7055  *    if one cgroup claims much more protection than it uses memory,
7056  *    the unused remainder is available to its siblings.
7057  *
7058  * 4. Conversely, when the declared protection is undercommitted at a
7059  *    given level, the distribution of the larger parental protection
7060  *    budget is NOT proportional. A cgroup's protection from a sibling
7061  *    is capped to its own memory.min/low setting.
7062  *
7063  * 5. However, to allow protecting recursive subtrees from each other
7064  *    without having to declare each individual cgroup's fixed share
7065  *    of the ancestor's claim to protection, any unutilized -
7066  *    "floating" - protection from up the tree is distributed in
7067  *    proportion to each cgroup's *usage*. This makes the protection
7068  *    neutral wrt sibling cgroups and lets them compete freely over
7069  *    the shared parental protection budget, but it protects the
7070  *    subtree as a whole from neighboring subtrees.
7071  *
7072  * Note that 4. and 5. are not in conflict: 4. is about protecting
7073  * against immediate siblings whereas 5. is about protecting against
7074  * neighboring subtrees.
7075  */
7076 static unsigned long effective_protection(unsigned long usage,
7077 					  unsigned long parent_usage,
7078 					  unsigned long setting,
7079 					  unsigned long parent_effective,
7080 					  unsigned long siblings_protected)
7081 {
7082 	unsigned long protected;
7083 	unsigned long ep;
7084 
7085 	protected = min(usage, setting);
7086 	/*
7087 	 * If all cgroups at this level combined claim and use more
7088 	 * protection than what the parent affords them, distribute
7089 	 * shares in proportion to utilization.
7090 	 *
7091 	 * We are using actual utilization rather than the statically
7092 	 * claimed protection in order to be work-conserving: claimed
7093 	 * but unused protection is available to siblings that would
7094 	 * otherwise get a smaller chunk than what they claimed.
7095 	 */
7096 	if (siblings_protected > parent_effective)
7097 		return protected * parent_effective / siblings_protected;
7098 
7099 	/*
7100 	 * Ok, utilized protection of all children is within what the
7101 	 * parent affords them, so we know whatever this child claims
7102 	 * and utilizes is effectively protected.
7103 	 *
7104 	 * If there is unprotected usage beyond this value, reclaim
7105 	 * will apply pressure in proportion to that amount.
7106 	 *
7107 	 * If there is unutilized protection, the cgroup will be fully
7108 	 * shielded from reclaim, but we do return a smaller value for
7109 	 * protection than what the group could enjoy in theory. This
7110 	 * is okay. With the overcommit distribution above, effective
7111 	 * protection is always dependent on how memory is actually
7112 	 * consumed among the siblings anyway.
7113 	 */
7114 	ep = protected;
7115 
7116 	/*
7117 	 * If the children aren't claiming (all of) the protection
7118 	 * afforded to them by the parent, distribute the remainder in
7119 	 * proportion to the (unprotected) memory of each cgroup. That
7120 	 * way, cgroups that aren't explicitly prioritized wrt each
7121 	 * other compete freely over the allowance, but they are
7122 	 * collectively protected from neighboring trees.
7123 	 *
7124 	 * We're using unprotected memory for the weight so that if
7125 	 * some cgroups DO claim explicit protection, we don't protect
7126 	 * the same bytes twice.
7127 	 *
7128 	 * Check both usage and parent_usage against the respective
7129 	 * protected values. One should imply the other, but they
7130 	 * aren't read atomically - make sure the division is sane.
7131 	 */
7132 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7133 		return ep;
7134 	if (parent_effective > siblings_protected &&
7135 	    parent_usage > siblings_protected &&
7136 	    usage > protected) {
7137 		unsigned long unclaimed;
7138 
7139 		unclaimed = parent_effective - siblings_protected;
7140 		unclaimed *= usage - protected;
7141 		unclaimed /= parent_usage - siblings_protected;
7142 
7143 		ep += unclaimed;
7144 	}
7145 
7146 	return ep;
7147 }
7148 
7149 /**
7150  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7151  * @root: the top ancestor of the sub-tree being checked
7152  * @memcg: the memory cgroup to check
7153  *
7154  * WARNING: This function is not stateless! It can only be used as part
7155  *          of a top-down tree iteration, not for isolated queries.
7156  */
7157 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7158 				     struct mem_cgroup *memcg)
7159 {
7160 	unsigned long usage, parent_usage;
7161 	struct mem_cgroup *parent;
7162 
7163 	if (mem_cgroup_disabled())
7164 		return;
7165 
7166 	if (!root)
7167 		root = root_mem_cgroup;
7168 
7169 	/*
7170 	 * Effective values of the reclaim targets are ignored so they
7171 	 * can be stale. Have a look at mem_cgroup_protection for more
7172 	 * details.
7173 	 * TODO: calculation should be more robust so that we do not need
7174 	 * that special casing.
7175 	 */
7176 	if (memcg == root)
7177 		return;
7178 
7179 	usage = page_counter_read(&memcg->memory);
7180 	if (!usage)
7181 		return;
7182 
7183 	parent = parent_mem_cgroup(memcg);
7184 
7185 	if (parent == root) {
7186 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
7187 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
7188 		return;
7189 	}
7190 
7191 	parent_usage = page_counter_read(&parent->memory);
7192 
7193 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7194 			READ_ONCE(memcg->memory.min),
7195 			READ_ONCE(parent->memory.emin),
7196 			atomic_long_read(&parent->memory.children_min_usage)));
7197 
7198 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7199 			READ_ONCE(memcg->memory.low),
7200 			READ_ONCE(parent->memory.elow),
7201 			atomic_long_read(&parent->memory.children_low_usage)));
7202 }
7203 
7204 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7205 			gfp_t gfp)
7206 {
7207 	int ret;
7208 
7209 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
7210 	if (ret)
7211 		goto out;
7212 
7213 	mem_cgroup_commit_charge(folio, memcg);
7214 out:
7215 	return ret;
7216 }
7217 
7218 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7219 {
7220 	struct mem_cgroup *memcg;
7221 	int ret;
7222 
7223 	memcg = get_mem_cgroup_from_mm(mm);
7224 	ret = charge_memcg(folio, memcg, gfp);
7225 	css_put(&memcg->css);
7226 
7227 	return ret;
7228 }
7229 
7230 /**
7231  * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7232  * @memcg: memcg to charge.
7233  * @gfp: reclaim mode.
7234  * @nr_pages: number of pages to charge.
7235  *
7236  * This function is called when allocating a huge page folio to determine if
7237  * the memcg has the capacity for it. It does not commit the charge yet,
7238  * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7239  *
7240  * Once we have obtained the hugetlb folio, we can call
7241  * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7242  * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7243  * of try_charge().
7244  *
7245  * Returns 0 on success. Otherwise, an error code is returned.
7246  */
7247 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7248 			long nr_pages)
7249 {
7250 	/*
7251 	 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7252 	 * but do not attempt to commit charge later (or cancel on error) either.
7253 	 */
7254 	if (mem_cgroup_disabled() || !memcg ||
7255 		!cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7256 		!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7257 		return -EOPNOTSUPP;
7258 
7259 	if (try_charge(memcg, gfp, nr_pages))
7260 		return -ENOMEM;
7261 
7262 	return 0;
7263 }
7264 
7265 /**
7266  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7267  * @folio: folio to charge.
7268  * @mm: mm context of the victim
7269  * @gfp: reclaim mode
7270  * @entry: swap entry for which the folio is allocated
7271  *
7272  * This function charges a folio allocated for swapin. Please call this before
7273  * adding the folio to the swapcache.
7274  *
7275  * Returns 0 on success. Otherwise, an error code is returned.
7276  */
7277 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7278 				  gfp_t gfp, swp_entry_t entry)
7279 {
7280 	struct mem_cgroup *memcg;
7281 	unsigned short id;
7282 	int ret;
7283 
7284 	if (mem_cgroup_disabled())
7285 		return 0;
7286 
7287 	id = lookup_swap_cgroup_id(entry);
7288 	rcu_read_lock();
7289 	memcg = mem_cgroup_from_id(id);
7290 	if (!memcg || !css_tryget_online(&memcg->css))
7291 		memcg = get_mem_cgroup_from_mm(mm);
7292 	rcu_read_unlock();
7293 
7294 	ret = charge_memcg(folio, memcg, gfp);
7295 
7296 	css_put(&memcg->css);
7297 	return ret;
7298 }
7299 
7300 /*
7301  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7302  * @entry: swap entry for which the page is charged
7303  *
7304  * Call this function after successfully adding the charged page to swapcache.
7305  *
7306  * Note: This function assumes the page for which swap slot is being uncharged
7307  * is order 0 page.
7308  */
7309 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7310 {
7311 	/*
7312 	 * Cgroup1's unified memory+swap counter has been charged with the
7313 	 * new swapcache page, finish the transfer by uncharging the swap
7314 	 * slot. The swap slot would also get uncharged when it dies, but
7315 	 * it can stick around indefinitely and we'd count the page twice
7316 	 * the entire time.
7317 	 *
7318 	 * Cgroup2 has separate resource counters for memory and swap,
7319 	 * so this is a non-issue here. Memory and swap charge lifetimes
7320 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
7321 	 * page to memory here, and uncharge swap when the slot is freed.
7322 	 */
7323 	if (!mem_cgroup_disabled() && do_memsw_account()) {
7324 		/*
7325 		 * The swap entry might not get freed for a long time,
7326 		 * let's not wait for it.  The page already received a
7327 		 * memory+swap charge, drop the swap entry duplicate.
7328 		 */
7329 		mem_cgroup_uncharge_swap(entry, 1);
7330 	}
7331 }
7332 
7333 struct uncharge_gather {
7334 	struct mem_cgroup *memcg;
7335 	unsigned long nr_memory;
7336 	unsigned long pgpgout;
7337 	unsigned long nr_kmem;
7338 	int nid;
7339 };
7340 
7341 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7342 {
7343 	memset(ug, 0, sizeof(*ug));
7344 }
7345 
7346 static void uncharge_batch(const struct uncharge_gather *ug)
7347 {
7348 	unsigned long flags;
7349 
7350 	if (ug->nr_memory) {
7351 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7352 		if (do_memsw_account())
7353 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7354 		if (ug->nr_kmem)
7355 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7356 		memcg_oom_recover(ug->memcg);
7357 	}
7358 
7359 	local_irq_save(flags);
7360 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7361 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7362 	memcg_check_events(ug->memcg, ug->nid);
7363 	local_irq_restore(flags);
7364 
7365 	/* drop reference from uncharge_folio */
7366 	css_put(&ug->memcg->css);
7367 }
7368 
7369 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7370 {
7371 	long nr_pages;
7372 	struct mem_cgroup *memcg;
7373 	struct obj_cgroup *objcg;
7374 
7375 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7376 
7377 	/*
7378 	 * Nobody should be changing or seriously looking at
7379 	 * folio memcg or objcg at this point, we have fully
7380 	 * exclusive access to the folio.
7381 	 */
7382 	if (folio_memcg_kmem(folio)) {
7383 		objcg = __folio_objcg(folio);
7384 		/*
7385 		 * This get matches the put at the end of the function and
7386 		 * kmem pages do not hold memcg references anymore.
7387 		 */
7388 		memcg = get_mem_cgroup_from_objcg(objcg);
7389 	} else {
7390 		memcg = __folio_memcg(folio);
7391 	}
7392 
7393 	if (!memcg)
7394 		return;
7395 
7396 	if (ug->memcg != memcg) {
7397 		if (ug->memcg) {
7398 			uncharge_batch(ug);
7399 			uncharge_gather_clear(ug);
7400 		}
7401 		ug->memcg = memcg;
7402 		ug->nid = folio_nid(folio);
7403 
7404 		/* pairs with css_put in uncharge_batch */
7405 		css_get(&memcg->css);
7406 	}
7407 
7408 	nr_pages = folio_nr_pages(folio);
7409 
7410 	if (folio_memcg_kmem(folio)) {
7411 		ug->nr_memory += nr_pages;
7412 		ug->nr_kmem += nr_pages;
7413 
7414 		folio->memcg_data = 0;
7415 		obj_cgroup_put(objcg);
7416 	} else {
7417 		/* LRU pages aren't accounted at the root level */
7418 		if (!mem_cgroup_is_root(memcg))
7419 			ug->nr_memory += nr_pages;
7420 		ug->pgpgout++;
7421 
7422 		folio->memcg_data = 0;
7423 	}
7424 
7425 	css_put(&memcg->css);
7426 }
7427 
7428 void __mem_cgroup_uncharge(struct folio *folio)
7429 {
7430 	struct uncharge_gather ug;
7431 
7432 	/* Don't touch folio->lru of any random page, pre-check: */
7433 	if (!folio_memcg(folio))
7434 		return;
7435 
7436 	uncharge_gather_clear(&ug);
7437 	uncharge_folio(folio, &ug);
7438 	uncharge_batch(&ug);
7439 }
7440 
7441 /**
7442  * __mem_cgroup_uncharge_list - uncharge a list of page
7443  * @page_list: list of pages to uncharge
7444  *
7445  * Uncharge a list of pages previously charged with
7446  * __mem_cgroup_charge().
7447  */
7448 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7449 {
7450 	struct uncharge_gather ug;
7451 	struct folio *folio;
7452 
7453 	uncharge_gather_clear(&ug);
7454 	list_for_each_entry(folio, page_list, lru)
7455 		uncharge_folio(folio, &ug);
7456 	if (ug.memcg)
7457 		uncharge_batch(&ug);
7458 }
7459 
7460 /**
7461  * mem_cgroup_replace_folio - Charge a folio's replacement.
7462  * @old: Currently circulating folio.
7463  * @new: Replacement folio.
7464  *
7465  * Charge @new as a replacement folio for @old. @old will
7466  * be uncharged upon free. This is only used by the page cache
7467  * (in replace_page_cache_folio()).
7468  *
7469  * Both folios must be locked, @new->mapping must be set up.
7470  */
7471 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
7472 {
7473 	struct mem_cgroup *memcg;
7474 	long nr_pages = folio_nr_pages(new);
7475 	unsigned long flags;
7476 
7477 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7478 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7479 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7480 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7481 
7482 	if (mem_cgroup_disabled())
7483 		return;
7484 
7485 	/* Page cache replacement: new folio already charged? */
7486 	if (folio_memcg(new))
7487 		return;
7488 
7489 	memcg = folio_memcg(old);
7490 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7491 	if (!memcg)
7492 		return;
7493 
7494 	/* Force-charge the new page. The old one will be freed soon */
7495 	if (!mem_cgroup_is_root(memcg)) {
7496 		page_counter_charge(&memcg->memory, nr_pages);
7497 		if (do_memsw_account())
7498 			page_counter_charge(&memcg->memsw, nr_pages);
7499 	}
7500 
7501 	css_get(&memcg->css);
7502 	commit_charge(new, memcg);
7503 
7504 	local_irq_save(flags);
7505 	mem_cgroup_charge_statistics(memcg, nr_pages);
7506 	memcg_check_events(memcg, folio_nid(new));
7507 	local_irq_restore(flags);
7508 }
7509 
7510 /**
7511  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7512  * @old: Currently circulating folio.
7513  * @new: Replacement folio.
7514  *
7515  * Transfer the memcg data from the old folio to the new folio for migration.
7516  * The old folio's data info will be cleared. Note that the memory counters
7517  * will remain unchanged throughout the process.
7518  *
7519  * Both folios must be locked, @new->mapping must be set up.
7520  */
7521 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7522 {
7523 	struct mem_cgroup *memcg;
7524 
7525 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7526 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7527 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7528 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7529 
7530 	if (mem_cgroup_disabled())
7531 		return;
7532 
7533 	memcg = folio_memcg(old);
7534 	/*
7535 	 * Note that it is normal to see !memcg for a hugetlb folio.
7536 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7537 	 * was not selected.
7538 	 */
7539 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
7540 	if (!memcg)
7541 		return;
7542 
7543 	/* Transfer the charge and the css ref */
7544 	commit_charge(new, memcg);
7545 	old->memcg_data = 0;
7546 }
7547 
7548 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7549 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7550 
7551 void mem_cgroup_sk_alloc(struct sock *sk)
7552 {
7553 	struct mem_cgroup *memcg;
7554 
7555 	if (!mem_cgroup_sockets_enabled)
7556 		return;
7557 
7558 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7559 	if (!in_task())
7560 		return;
7561 
7562 	rcu_read_lock();
7563 	memcg = mem_cgroup_from_task(current);
7564 	if (mem_cgroup_is_root(memcg))
7565 		goto out;
7566 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7567 		goto out;
7568 	if (css_tryget(&memcg->css))
7569 		sk->sk_memcg = memcg;
7570 out:
7571 	rcu_read_unlock();
7572 }
7573 
7574 void mem_cgroup_sk_free(struct sock *sk)
7575 {
7576 	if (sk->sk_memcg)
7577 		css_put(&sk->sk_memcg->css);
7578 }
7579 
7580 /**
7581  * mem_cgroup_charge_skmem - charge socket memory
7582  * @memcg: memcg to charge
7583  * @nr_pages: number of pages to charge
7584  * @gfp_mask: reclaim mode
7585  *
7586  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7587  * @memcg's configured limit, %false if it doesn't.
7588  */
7589 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7590 			     gfp_t gfp_mask)
7591 {
7592 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7593 		struct page_counter *fail;
7594 
7595 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7596 			memcg->tcpmem_pressure = 0;
7597 			return true;
7598 		}
7599 		memcg->tcpmem_pressure = 1;
7600 		if (gfp_mask & __GFP_NOFAIL) {
7601 			page_counter_charge(&memcg->tcpmem, nr_pages);
7602 			return true;
7603 		}
7604 		return false;
7605 	}
7606 
7607 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7608 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7609 		return true;
7610 	}
7611 
7612 	return false;
7613 }
7614 
7615 /**
7616  * mem_cgroup_uncharge_skmem - uncharge socket memory
7617  * @memcg: memcg to uncharge
7618  * @nr_pages: number of pages to uncharge
7619  */
7620 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7621 {
7622 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7623 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7624 		return;
7625 	}
7626 
7627 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7628 
7629 	refill_stock(memcg, nr_pages);
7630 }
7631 
7632 static int __init cgroup_memory(char *s)
7633 {
7634 	char *token;
7635 
7636 	while ((token = strsep(&s, ",")) != NULL) {
7637 		if (!*token)
7638 			continue;
7639 		if (!strcmp(token, "nosocket"))
7640 			cgroup_memory_nosocket = true;
7641 		if (!strcmp(token, "nokmem"))
7642 			cgroup_memory_nokmem = true;
7643 		if (!strcmp(token, "nobpf"))
7644 			cgroup_memory_nobpf = true;
7645 	}
7646 	return 1;
7647 }
7648 __setup("cgroup.memory=", cgroup_memory);
7649 
7650 /*
7651  * subsys_initcall() for memory controller.
7652  *
7653  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7654  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7655  * basically everything that doesn't depend on a specific mem_cgroup structure
7656  * should be initialized from here.
7657  */
7658 static int __init mem_cgroup_init(void)
7659 {
7660 	int cpu, node;
7661 
7662 	/*
7663 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7664 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7665 	 * to work fine, we should make sure that the overfill threshold can't
7666 	 * exceed S32_MAX / PAGE_SIZE.
7667 	 */
7668 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7669 
7670 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7671 				  memcg_hotplug_cpu_dead);
7672 
7673 	for_each_possible_cpu(cpu)
7674 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7675 			  drain_local_stock);
7676 
7677 	for_each_node(node) {
7678 		struct mem_cgroup_tree_per_node *rtpn;
7679 
7680 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7681 
7682 		rtpn->rb_root = RB_ROOT;
7683 		rtpn->rb_rightmost = NULL;
7684 		spin_lock_init(&rtpn->lock);
7685 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7686 	}
7687 
7688 	return 0;
7689 }
7690 subsys_initcall(mem_cgroup_init);
7691 
7692 #ifdef CONFIG_SWAP
7693 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7694 {
7695 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7696 		/*
7697 		 * The root cgroup cannot be destroyed, so it's refcount must
7698 		 * always be >= 1.
7699 		 */
7700 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7701 			VM_BUG_ON(1);
7702 			break;
7703 		}
7704 		memcg = parent_mem_cgroup(memcg);
7705 		if (!memcg)
7706 			memcg = root_mem_cgroup;
7707 	}
7708 	return memcg;
7709 }
7710 
7711 /**
7712  * mem_cgroup_swapout - transfer a memsw charge to swap
7713  * @folio: folio whose memsw charge to transfer
7714  * @entry: swap entry to move the charge to
7715  *
7716  * Transfer the memsw charge of @folio to @entry.
7717  */
7718 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7719 {
7720 	struct mem_cgroup *memcg, *swap_memcg;
7721 	unsigned int nr_entries;
7722 	unsigned short oldid;
7723 
7724 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7725 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7726 
7727 	if (mem_cgroup_disabled())
7728 		return;
7729 
7730 	if (!do_memsw_account())
7731 		return;
7732 
7733 	memcg = folio_memcg(folio);
7734 
7735 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7736 	if (!memcg)
7737 		return;
7738 
7739 	/*
7740 	 * In case the memcg owning these pages has been offlined and doesn't
7741 	 * have an ID allocated to it anymore, charge the closest online
7742 	 * ancestor for the swap instead and transfer the memory+swap charge.
7743 	 */
7744 	swap_memcg = mem_cgroup_id_get_online(memcg);
7745 	nr_entries = folio_nr_pages(folio);
7746 	/* Get references for the tail pages, too */
7747 	if (nr_entries > 1)
7748 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7749 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7750 				   nr_entries);
7751 	VM_BUG_ON_FOLIO(oldid, folio);
7752 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7753 
7754 	folio->memcg_data = 0;
7755 
7756 	if (!mem_cgroup_is_root(memcg))
7757 		page_counter_uncharge(&memcg->memory, nr_entries);
7758 
7759 	if (memcg != swap_memcg) {
7760 		if (!mem_cgroup_is_root(swap_memcg))
7761 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7762 		page_counter_uncharge(&memcg->memsw, nr_entries);
7763 	}
7764 
7765 	/*
7766 	 * Interrupts should be disabled here because the caller holds the
7767 	 * i_pages lock which is taken with interrupts-off. It is
7768 	 * important here to have the interrupts disabled because it is the
7769 	 * only synchronisation we have for updating the per-CPU variables.
7770 	 */
7771 	memcg_stats_lock();
7772 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7773 	memcg_stats_unlock();
7774 	memcg_check_events(memcg, folio_nid(folio));
7775 
7776 	css_put(&memcg->css);
7777 }
7778 
7779 /**
7780  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7781  * @folio: folio being added to swap
7782  * @entry: swap entry to charge
7783  *
7784  * Try to charge @folio's memcg for the swap space at @entry.
7785  *
7786  * Returns 0 on success, -ENOMEM on failure.
7787  */
7788 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7789 {
7790 	unsigned int nr_pages = folio_nr_pages(folio);
7791 	struct page_counter *counter;
7792 	struct mem_cgroup *memcg;
7793 	unsigned short oldid;
7794 
7795 	if (do_memsw_account())
7796 		return 0;
7797 
7798 	memcg = folio_memcg(folio);
7799 
7800 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7801 	if (!memcg)
7802 		return 0;
7803 
7804 	if (!entry.val) {
7805 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7806 		return 0;
7807 	}
7808 
7809 	memcg = mem_cgroup_id_get_online(memcg);
7810 
7811 	if (!mem_cgroup_is_root(memcg) &&
7812 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7813 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7814 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7815 		mem_cgroup_id_put(memcg);
7816 		return -ENOMEM;
7817 	}
7818 
7819 	/* Get references for the tail pages, too */
7820 	if (nr_pages > 1)
7821 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7822 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7823 	VM_BUG_ON_FOLIO(oldid, folio);
7824 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7825 
7826 	return 0;
7827 }
7828 
7829 /**
7830  * __mem_cgroup_uncharge_swap - uncharge swap space
7831  * @entry: swap entry to uncharge
7832  * @nr_pages: the amount of swap space to uncharge
7833  */
7834 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7835 {
7836 	struct mem_cgroup *memcg;
7837 	unsigned short id;
7838 
7839 	id = swap_cgroup_record(entry, 0, nr_pages);
7840 	rcu_read_lock();
7841 	memcg = mem_cgroup_from_id(id);
7842 	if (memcg) {
7843 		if (!mem_cgroup_is_root(memcg)) {
7844 			if (do_memsw_account())
7845 				page_counter_uncharge(&memcg->memsw, nr_pages);
7846 			else
7847 				page_counter_uncharge(&memcg->swap, nr_pages);
7848 		}
7849 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7850 		mem_cgroup_id_put_many(memcg, nr_pages);
7851 	}
7852 	rcu_read_unlock();
7853 }
7854 
7855 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7856 {
7857 	long nr_swap_pages = get_nr_swap_pages();
7858 
7859 	if (mem_cgroup_disabled() || do_memsw_account())
7860 		return nr_swap_pages;
7861 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7862 		nr_swap_pages = min_t(long, nr_swap_pages,
7863 				      READ_ONCE(memcg->swap.max) -
7864 				      page_counter_read(&memcg->swap));
7865 	return nr_swap_pages;
7866 }
7867 
7868 bool mem_cgroup_swap_full(struct folio *folio)
7869 {
7870 	struct mem_cgroup *memcg;
7871 
7872 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7873 
7874 	if (vm_swap_full())
7875 		return true;
7876 	if (do_memsw_account())
7877 		return false;
7878 
7879 	memcg = folio_memcg(folio);
7880 	if (!memcg)
7881 		return false;
7882 
7883 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7884 		unsigned long usage = page_counter_read(&memcg->swap);
7885 
7886 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7887 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7888 			return true;
7889 	}
7890 
7891 	return false;
7892 }
7893 
7894 static int __init setup_swap_account(char *s)
7895 {
7896 	pr_warn_once("The swapaccount= commandline option is deprecated. "
7897 		     "Please report your usecase to linux-mm@kvack.org if you "
7898 		     "depend on this functionality.\n");
7899 	return 1;
7900 }
7901 __setup("swapaccount=", setup_swap_account);
7902 
7903 static u64 swap_current_read(struct cgroup_subsys_state *css,
7904 			     struct cftype *cft)
7905 {
7906 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7907 
7908 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7909 }
7910 
7911 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7912 			  struct cftype *cft)
7913 {
7914 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7915 
7916 	return (u64)memcg->swap.watermark * PAGE_SIZE;
7917 }
7918 
7919 static int swap_high_show(struct seq_file *m, void *v)
7920 {
7921 	return seq_puts_memcg_tunable(m,
7922 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7923 }
7924 
7925 static ssize_t swap_high_write(struct kernfs_open_file *of,
7926 			       char *buf, size_t nbytes, loff_t off)
7927 {
7928 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7929 	unsigned long high;
7930 	int err;
7931 
7932 	buf = strstrip(buf);
7933 	err = page_counter_memparse(buf, "max", &high);
7934 	if (err)
7935 		return err;
7936 
7937 	page_counter_set_high(&memcg->swap, high);
7938 
7939 	return nbytes;
7940 }
7941 
7942 static int swap_max_show(struct seq_file *m, void *v)
7943 {
7944 	return seq_puts_memcg_tunable(m,
7945 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7946 }
7947 
7948 static ssize_t swap_max_write(struct kernfs_open_file *of,
7949 			      char *buf, size_t nbytes, loff_t off)
7950 {
7951 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7952 	unsigned long max;
7953 	int err;
7954 
7955 	buf = strstrip(buf);
7956 	err = page_counter_memparse(buf, "max", &max);
7957 	if (err)
7958 		return err;
7959 
7960 	xchg(&memcg->swap.max, max);
7961 
7962 	return nbytes;
7963 }
7964 
7965 static int swap_events_show(struct seq_file *m, void *v)
7966 {
7967 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7968 
7969 	seq_printf(m, "high %lu\n",
7970 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7971 	seq_printf(m, "max %lu\n",
7972 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7973 	seq_printf(m, "fail %lu\n",
7974 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7975 
7976 	return 0;
7977 }
7978 
7979 static struct cftype swap_files[] = {
7980 	{
7981 		.name = "swap.current",
7982 		.flags = CFTYPE_NOT_ON_ROOT,
7983 		.read_u64 = swap_current_read,
7984 	},
7985 	{
7986 		.name = "swap.high",
7987 		.flags = CFTYPE_NOT_ON_ROOT,
7988 		.seq_show = swap_high_show,
7989 		.write = swap_high_write,
7990 	},
7991 	{
7992 		.name = "swap.max",
7993 		.flags = CFTYPE_NOT_ON_ROOT,
7994 		.seq_show = swap_max_show,
7995 		.write = swap_max_write,
7996 	},
7997 	{
7998 		.name = "swap.peak",
7999 		.flags = CFTYPE_NOT_ON_ROOT,
8000 		.read_u64 = swap_peak_read,
8001 	},
8002 	{
8003 		.name = "swap.events",
8004 		.flags = CFTYPE_NOT_ON_ROOT,
8005 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
8006 		.seq_show = swap_events_show,
8007 	},
8008 	{ }	/* terminate */
8009 };
8010 
8011 static struct cftype memsw_files[] = {
8012 	{
8013 		.name = "memsw.usage_in_bytes",
8014 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8015 		.read_u64 = mem_cgroup_read_u64,
8016 	},
8017 	{
8018 		.name = "memsw.max_usage_in_bytes",
8019 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8020 		.write = mem_cgroup_reset,
8021 		.read_u64 = mem_cgroup_read_u64,
8022 	},
8023 	{
8024 		.name = "memsw.limit_in_bytes",
8025 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8026 		.write = mem_cgroup_write,
8027 		.read_u64 = mem_cgroup_read_u64,
8028 	},
8029 	{
8030 		.name = "memsw.failcnt",
8031 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8032 		.write = mem_cgroup_reset,
8033 		.read_u64 = mem_cgroup_read_u64,
8034 	},
8035 	{ },	/* terminate */
8036 };
8037 
8038 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8039 /**
8040  * obj_cgroup_may_zswap - check if this cgroup can zswap
8041  * @objcg: the object cgroup
8042  *
8043  * Check if the hierarchical zswap limit has been reached.
8044  *
8045  * This doesn't check for specific headroom, and it is not atomic
8046  * either. But with zswap, the size of the allocation is only known
8047  * once compression has occurred, and this optimistic pre-check avoids
8048  * spending cycles on compression when there is already no room left
8049  * or zswap is disabled altogether somewhere in the hierarchy.
8050  */
8051 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8052 {
8053 	struct mem_cgroup *memcg, *original_memcg;
8054 	bool ret = true;
8055 
8056 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8057 		return true;
8058 
8059 	original_memcg = get_mem_cgroup_from_objcg(objcg);
8060 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
8061 	     memcg = parent_mem_cgroup(memcg)) {
8062 		unsigned long max = READ_ONCE(memcg->zswap_max);
8063 		unsigned long pages;
8064 
8065 		if (max == PAGE_COUNTER_MAX)
8066 			continue;
8067 		if (max == 0) {
8068 			ret = false;
8069 			break;
8070 		}
8071 
8072 		cgroup_rstat_flush(memcg->css.cgroup);
8073 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8074 		if (pages < max)
8075 			continue;
8076 		ret = false;
8077 		break;
8078 	}
8079 	mem_cgroup_put(original_memcg);
8080 	return ret;
8081 }
8082 
8083 /**
8084  * obj_cgroup_charge_zswap - charge compression backend memory
8085  * @objcg: the object cgroup
8086  * @size: size of compressed object
8087  *
8088  * This forces the charge after obj_cgroup_may_zswap() allowed
8089  * compression and storage in zwap for this cgroup to go ahead.
8090  */
8091 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8092 {
8093 	struct mem_cgroup *memcg;
8094 
8095 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8096 		return;
8097 
8098 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8099 
8100 	/* PF_MEMALLOC context, charging must succeed */
8101 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8102 		VM_WARN_ON_ONCE(1);
8103 
8104 	rcu_read_lock();
8105 	memcg = obj_cgroup_memcg(objcg);
8106 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8107 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8108 	rcu_read_unlock();
8109 }
8110 
8111 /**
8112  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8113  * @objcg: the object cgroup
8114  * @size: size of compressed object
8115  *
8116  * Uncharges zswap memory on page in.
8117  */
8118 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8119 {
8120 	struct mem_cgroup *memcg;
8121 
8122 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8123 		return;
8124 
8125 	obj_cgroup_uncharge(objcg, size);
8126 
8127 	rcu_read_lock();
8128 	memcg = obj_cgroup_memcg(objcg);
8129 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8130 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8131 	rcu_read_unlock();
8132 }
8133 
8134 static u64 zswap_current_read(struct cgroup_subsys_state *css,
8135 			      struct cftype *cft)
8136 {
8137 	cgroup_rstat_flush(css->cgroup);
8138 	return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
8139 }
8140 
8141 static int zswap_max_show(struct seq_file *m, void *v)
8142 {
8143 	return seq_puts_memcg_tunable(m,
8144 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8145 }
8146 
8147 static ssize_t zswap_max_write(struct kernfs_open_file *of,
8148 			       char *buf, size_t nbytes, loff_t off)
8149 {
8150 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8151 	unsigned long max;
8152 	int err;
8153 
8154 	buf = strstrip(buf);
8155 	err = page_counter_memparse(buf, "max", &max);
8156 	if (err)
8157 		return err;
8158 
8159 	xchg(&memcg->zswap_max, max);
8160 
8161 	return nbytes;
8162 }
8163 
8164 static struct cftype zswap_files[] = {
8165 	{
8166 		.name = "zswap.current",
8167 		.flags = CFTYPE_NOT_ON_ROOT,
8168 		.read_u64 = zswap_current_read,
8169 	},
8170 	{
8171 		.name = "zswap.max",
8172 		.flags = CFTYPE_NOT_ON_ROOT,
8173 		.seq_show = zswap_max_show,
8174 		.write = zswap_max_write,
8175 	},
8176 	{ }	/* terminate */
8177 };
8178 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8179 
8180 static int __init mem_cgroup_swap_init(void)
8181 {
8182 	if (mem_cgroup_disabled())
8183 		return 0;
8184 
8185 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8186 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
8187 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8188 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8189 #endif
8190 	return 0;
8191 }
8192 subsys_initcall(mem_cgroup_swap_init);
8193 
8194 #endif /* CONFIG_SWAP */
8195