1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/list.h> 46 #include <linux/mutex.h> 47 #include <linux/rbtree.h> 48 #include <linux/slab.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/fs.h> 52 #include <linux/seq_file.h> 53 #include <linux/parser.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #define CREATE_TRACE_POINTS 75 #include <trace/events/memcg.h> 76 #undef CREATE_TRACE_POINTS 77 78 #include <trace/events/vmscan.h> 79 80 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 81 EXPORT_SYMBOL(memory_cgrp_subsys); 82 83 struct mem_cgroup *root_mem_cgroup __read_mostly; 84 85 /* Active memory cgroup to use from an interrupt context */ 86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 88 89 /* Socket memory accounting disabled? */ 90 static bool cgroup_memory_nosocket __ro_after_init; 91 92 /* Kernel memory accounting disabled? */ 93 static bool cgroup_memory_nokmem __ro_after_init; 94 95 /* BPF memory accounting disabled? */ 96 static bool cgroup_memory_nobpf __ro_after_init; 97 98 #ifdef CONFIG_CGROUP_WRITEBACK 99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 100 #endif 101 102 static inline bool task_is_dying(void) 103 { 104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 105 (current->flags & PF_EXITING); 106 } 107 108 /* Some nice accessors for the vmpressure. */ 109 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 110 { 111 if (!memcg) 112 memcg = root_mem_cgroup; 113 return &memcg->vmpressure; 114 } 115 116 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 117 { 118 return container_of(vmpr, struct mem_cgroup, vmpressure); 119 } 120 121 #define SEQ_BUF_SIZE SZ_4K 122 #define CURRENT_OBJCG_UPDATE_BIT 0 123 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 124 125 static DEFINE_SPINLOCK(objcg_lock); 126 127 bool mem_cgroup_kmem_disabled(void) 128 { 129 return cgroup_memory_nokmem; 130 } 131 132 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 133 134 static void obj_cgroup_release(struct percpu_ref *ref) 135 { 136 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 137 unsigned int nr_bytes; 138 unsigned int nr_pages; 139 unsigned long flags; 140 141 /* 142 * At this point all allocated objects are freed, and 143 * objcg->nr_charged_bytes can't have an arbitrary byte value. 144 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 145 * 146 * The following sequence can lead to it: 147 * 1) CPU0: objcg == stock->cached_objcg 148 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 149 * PAGE_SIZE bytes are charged 150 * 3) CPU1: a process from another memcg is allocating something, 151 * the stock if flushed, 152 * objcg->nr_charged_bytes = PAGE_SIZE - 92 153 * 5) CPU0: we do release this object, 154 * 92 bytes are added to stock->nr_bytes 155 * 6) CPU0: stock is flushed, 156 * 92 bytes are added to objcg->nr_charged_bytes 157 * 158 * In the result, nr_charged_bytes == PAGE_SIZE. 159 * This page will be uncharged in obj_cgroup_release(). 160 */ 161 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 162 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 163 nr_pages = nr_bytes >> PAGE_SHIFT; 164 165 if (nr_pages) { 166 struct mem_cgroup *memcg; 167 168 memcg = get_mem_cgroup_from_objcg(objcg); 169 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 170 memcg1_account_kmem(memcg, -nr_pages); 171 if (!mem_cgroup_is_root(memcg)) 172 memcg_uncharge(memcg, nr_pages); 173 mem_cgroup_put(memcg); 174 } 175 176 spin_lock_irqsave(&objcg_lock, flags); 177 list_del(&objcg->list); 178 spin_unlock_irqrestore(&objcg_lock, flags); 179 180 percpu_ref_exit(ref); 181 kfree_rcu(objcg, rcu); 182 } 183 184 static struct obj_cgroup *obj_cgroup_alloc(void) 185 { 186 struct obj_cgroup *objcg; 187 int ret; 188 189 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 190 if (!objcg) 191 return NULL; 192 193 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 194 GFP_KERNEL); 195 if (ret) { 196 kfree(objcg); 197 return NULL; 198 } 199 INIT_LIST_HEAD(&objcg->list); 200 return objcg; 201 } 202 203 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 204 struct mem_cgroup *parent) 205 { 206 struct obj_cgroup *objcg, *iter; 207 208 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 209 210 spin_lock_irq(&objcg_lock); 211 212 /* 1) Ready to reparent active objcg. */ 213 list_add(&objcg->list, &memcg->objcg_list); 214 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 215 list_for_each_entry(iter, &memcg->objcg_list, list) 216 WRITE_ONCE(iter->memcg, parent); 217 /* 3) Move already reparented objcgs to the parent's list */ 218 list_splice(&memcg->objcg_list, &parent->objcg_list); 219 220 spin_unlock_irq(&objcg_lock); 221 222 percpu_ref_kill(&objcg->refcnt); 223 } 224 225 /* 226 * A lot of the calls to the cache allocation functions are expected to be 227 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 228 * conditional to this static branch, we'll have to allow modules that does 229 * kmem_cache_alloc and the such to see this symbol as well 230 */ 231 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 232 EXPORT_SYMBOL(memcg_kmem_online_key); 233 234 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 235 EXPORT_SYMBOL(memcg_bpf_enabled_key); 236 237 /** 238 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 239 * @folio: folio of interest 240 * 241 * If memcg is bound to the default hierarchy, css of the memcg associated 242 * with @folio is returned. The returned css remains associated with @folio 243 * until it is released. 244 * 245 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 246 * is returned. 247 */ 248 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 249 { 250 struct mem_cgroup *memcg = folio_memcg(folio); 251 252 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 253 memcg = root_mem_cgroup; 254 255 return &memcg->css; 256 } 257 258 /** 259 * page_cgroup_ino - return inode number of the memcg a page is charged to 260 * @page: the page 261 * 262 * Look up the closest online ancestor of the memory cgroup @page is charged to 263 * and return its inode number or 0 if @page is not charged to any cgroup. It 264 * is safe to call this function without holding a reference to @page. 265 * 266 * Note, this function is inherently racy, because there is nothing to prevent 267 * the cgroup inode from getting torn down and potentially reallocated a moment 268 * after page_cgroup_ino() returns, so it only should be used by callers that 269 * do not care (such as procfs interfaces). 270 */ 271 ino_t page_cgroup_ino(struct page *page) 272 { 273 struct mem_cgroup *memcg; 274 unsigned long ino = 0; 275 276 rcu_read_lock(); 277 /* page_folio() is racy here, but the entire function is racy anyway */ 278 memcg = folio_memcg_check(page_folio(page)); 279 280 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 281 memcg = parent_mem_cgroup(memcg); 282 if (memcg) 283 ino = cgroup_ino(memcg->css.cgroup); 284 rcu_read_unlock(); 285 return ino; 286 } 287 288 /* Subset of node_stat_item for memcg stats */ 289 static const unsigned int memcg_node_stat_items[] = { 290 NR_INACTIVE_ANON, 291 NR_ACTIVE_ANON, 292 NR_INACTIVE_FILE, 293 NR_ACTIVE_FILE, 294 NR_UNEVICTABLE, 295 NR_SLAB_RECLAIMABLE_B, 296 NR_SLAB_UNRECLAIMABLE_B, 297 WORKINGSET_REFAULT_ANON, 298 WORKINGSET_REFAULT_FILE, 299 WORKINGSET_ACTIVATE_ANON, 300 WORKINGSET_ACTIVATE_FILE, 301 WORKINGSET_RESTORE_ANON, 302 WORKINGSET_RESTORE_FILE, 303 WORKINGSET_NODERECLAIM, 304 NR_ANON_MAPPED, 305 NR_FILE_MAPPED, 306 NR_FILE_PAGES, 307 NR_FILE_DIRTY, 308 NR_WRITEBACK, 309 NR_SHMEM, 310 NR_SHMEM_THPS, 311 NR_FILE_THPS, 312 NR_ANON_THPS, 313 NR_KERNEL_STACK_KB, 314 NR_PAGETABLE, 315 NR_SECONDARY_PAGETABLE, 316 #ifdef CONFIG_SWAP 317 NR_SWAPCACHE, 318 #endif 319 #ifdef CONFIG_NUMA_BALANCING 320 PGPROMOTE_SUCCESS, 321 #endif 322 PGDEMOTE_KSWAPD, 323 PGDEMOTE_DIRECT, 324 PGDEMOTE_KHUGEPAGED, 325 PGDEMOTE_PROACTIVE, 326 #ifdef CONFIG_HUGETLB_PAGE 327 NR_HUGETLB, 328 #endif 329 }; 330 331 static const unsigned int memcg_stat_items[] = { 332 MEMCG_SWAP, 333 MEMCG_SOCK, 334 MEMCG_PERCPU_B, 335 MEMCG_VMALLOC, 336 MEMCG_KMEM, 337 MEMCG_ZSWAP_B, 338 MEMCG_ZSWAPPED, 339 }; 340 341 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 342 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 343 ARRAY_SIZE(memcg_stat_items)) 344 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 345 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 346 347 static void init_memcg_stats(void) 348 { 349 u8 i, j = 0; 350 351 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 352 353 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 354 355 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 356 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 357 358 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 359 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 360 } 361 362 static inline int memcg_stats_index(int idx) 363 { 364 return mem_cgroup_stats_index[idx]; 365 } 366 367 struct lruvec_stats_percpu { 368 /* Local (CPU and cgroup) state */ 369 long state[NR_MEMCG_NODE_STAT_ITEMS]; 370 371 /* Delta calculation for lockless upward propagation */ 372 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 373 }; 374 375 struct lruvec_stats { 376 /* Aggregated (CPU and subtree) state */ 377 long state[NR_MEMCG_NODE_STAT_ITEMS]; 378 379 /* Non-hierarchical (CPU aggregated) state */ 380 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 381 382 /* Pending child counts during tree propagation */ 383 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 384 }; 385 386 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 387 { 388 struct mem_cgroup_per_node *pn; 389 long x; 390 int i; 391 392 if (mem_cgroup_disabled()) 393 return node_page_state(lruvec_pgdat(lruvec), idx); 394 395 i = memcg_stats_index(idx); 396 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 397 return 0; 398 399 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 400 x = READ_ONCE(pn->lruvec_stats->state[i]); 401 #ifdef CONFIG_SMP 402 if (x < 0) 403 x = 0; 404 #endif 405 return x; 406 } 407 408 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 409 enum node_stat_item idx) 410 { 411 struct mem_cgroup_per_node *pn; 412 long x; 413 int i; 414 415 if (mem_cgroup_disabled()) 416 return node_page_state(lruvec_pgdat(lruvec), idx); 417 418 i = memcg_stats_index(idx); 419 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 420 return 0; 421 422 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 423 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 424 #ifdef CONFIG_SMP 425 if (x < 0) 426 x = 0; 427 #endif 428 return x; 429 } 430 431 /* Subset of vm_event_item to report for memcg event stats */ 432 static const unsigned int memcg_vm_event_stat[] = { 433 #ifdef CONFIG_MEMCG_V1 434 PGPGIN, 435 PGPGOUT, 436 #endif 437 PSWPIN, 438 PSWPOUT, 439 PGSCAN_KSWAPD, 440 PGSCAN_DIRECT, 441 PGSCAN_KHUGEPAGED, 442 PGSCAN_PROACTIVE, 443 PGSTEAL_KSWAPD, 444 PGSTEAL_DIRECT, 445 PGSTEAL_KHUGEPAGED, 446 PGSTEAL_PROACTIVE, 447 PGFAULT, 448 PGMAJFAULT, 449 PGREFILL, 450 PGACTIVATE, 451 PGDEACTIVATE, 452 PGLAZYFREE, 453 PGLAZYFREED, 454 #ifdef CONFIG_SWAP 455 SWPIN_ZERO, 456 SWPOUT_ZERO, 457 #endif 458 #ifdef CONFIG_ZSWAP 459 ZSWPIN, 460 ZSWPOUT, 461 ZSWPWB, 462 #endif 463 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 464 THP_FAULT_ALLOC, 465 THP_COLLAPSE_ALLOC, 466 THP_SWPOUT, 467 THP_SWPOUT_FALLBACK, 468 #endif 469 #ifdef CONFIG_NUMA_BALANCING 470 NUMA_PAGE_MIGRATE, 471 NUMA_PTE_UPDATES, 472 NUMA_HINT_FAULTS, 473 #endif 474 }; 475 476 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 477 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 478 479 static void init_memcg_events(void) 480 { 481 u8 i; 482 483 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 484 485 memset(mem_cgroup_events_index, U8_MAX, 486 sizeof(mem_cgroup_events_index)); 487 488 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 489 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 490 } 491 492 static inline int memcg_events_index(enum vm_event_item idx) 493 { 494 return mem_cgroup_events_index[idx]; 495 } 496 497 struct memcg_vmstats_percpu { 498 /* Stats updates since the last flush */ 499 unsigned int stats_updates; 500 501 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 502 struct memcg_vmstats_percpu *parent; 503 struct memcg_vmstats *vmstats; 504 505 /* The above should fit a single cacheline for memcg_rstat_updated() */ 506 507 /* Local (CPU and cgroup) page state & events */ 508 long state[MEMCG_VMSTAT_SIZE]; 509 unsigned long events[NR_MEMCG_EVENTS]; 510 511 /* Delta calculation for lockless upward propagation */ 512 long state_prev[MEMCG_VMSTAT_SIZE]; 513 unsigned long events_prev[NR_MEMCG_EVENTS]; 514 } ____cacheline_aligned; 515 516 struct memcg_vmstats { 517 /* Aggregated (CPU and subtree) page state & events */ 518 long state[MEMCG_VMSTAT_SIZE]; 519 unsigned long events[NR_MEMCG_EVENTS]; 520 521 /* Non-hierarchical (CPU aggregated) page state & events */ 522 long state_local[MEMCG_VMSTAT_SIZE]; 523 unsigned long events_local[NR_MEMCG_EVENTS]; 524 525 /* Pending child counts during tree propagation */ 526 long state_pending[MEMCG_VMSTAT_SIZE]; 527 unsigned long events_pending[NR_MEMCG_EVENTS]; 528 529 /* Stats updates since the last flush */ 530 atomic64_t stats_updates; 531 }; 532 533 /* 534 * memcg and lruvec stats flushing 535 * 536 * Many codepaths leading to stats update or read are performance sensitive and 537 * adding stats flushing in such codepaths is not desirable. So, to optimize the 538 * flushing the kernel does: 539 * 540 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 541 * rstat update tree grow unbounded. 542 * 543 * 2) Flush the stats synchronously on reader side only when there are more than 544 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 545 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 546 * only for 2 seconds due to (1). 547 */ 548 static void flush_memcg_stats_dwork(struct work_struct *w); 549 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 550 static u64 flush_last_time; 551 552 #define FLUSH_TIME (2UL*HZ) 553 554 /* 555 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 556 * not rely on this as part of an acquired spinlock_t lock. These functions are 557 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 558 * is sufficient. 559 */ 560 static void memcg_stats_lock(void) 561 { 562 preempt_disable_nested(); 563 VM_WARN_ON_IRQS_ENABLED(); 564 } 565 566 static void __memcg_stats_lock(void) 567 { 568 preempt_disable_nested(); 569 } 570 571 static void memcg_stats_unlock(void) 572 { 573 preempt_enable_nested(); 574 } 575 576 577 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 578 { 579 return atomic64_read(&vmstats->stats_updates) > 580 MEMCG_CHARGE_BATCH * num_online_cpus(); 581 } 582 583 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 584 { 585 struct memcg_vmstats_percpu *statc; 586 int cpu = smp_processor_id(); 587 unsigned int stats_updates; 588 589 if (!val) 590 return; 591 592 cgroup_rstat_updated(memcg->css.cgroup, cpu); 593 statc = this_cpu_ptr(memcg->vmstats_percpu); 594 for (; statc; statc = statc->parent) { 595 /* 596 * If @memcg is already flushable then all its ancestors are 597 * flushable as well and also there is no need to increase 598 * stats_updates. 599 */ 600 if (memcg_vmstats_needs_flush(statc->vmstats)) 601 break; 602 603 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 604 WRITE_ONCE(statc->stats_updates, stats_updates); 605 if (stats_updates < MEMCG_CHARGE_BATCH) 606 continue; 607 608 atomic64_add(stats_updates, &statc->vmstats->stats_updates); 609 WRITE_ONCE(statc->stats_updates, 0); 610 } 611 } 612 613 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 614 { 615 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 616 617 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates), 618 force, needs_flush); 619 620 if (!force && !needs_flush) 621 return; 622 623 if (mem_cgroup_is_root(memcg)) 624 WRITE_ONCE(flush_last_time, jiffies_64); 625 626 cgroup_rstat_flush(memcg->css.cgroup); 627 } 628 629 /* 630 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 631 * @memcg: root of the subtree to flush 632 * 633 * Flushing is serialized by the underlying global rstat lock. There is also a 634 * minimum amount of work to be done even if there are no stat updates to flush. 635 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 636 * avoids unnecessary work and contention on the underlying lock. 637 */ 638 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 639 { 640 if (mem_cgroup_disabled()) 641 return; 642 643 if (!memcg) 644 memcg = root_mem_cgroup; 645 646 __mem_cgroup_flush_stats(memcg, false); 647 } 648 649 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 650 { 651 /* Only flush if the periodic flusher is one full cycle late */ 652 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 653 mem_cgroup_flush_stats(memcg); 654 } 655 656 static void flush_memcg_stats_dwork(struct work_struct *w) 657 { 658 /* 659 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 660 * in latency-sensitive paths is as cheap as possible. 661 */ 662 __mem_cgroup_flush_stats(root_mem_cgroup, true); 663 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 664 } 665 666 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 667 { 668 long x; 669 int i = memcg_stats_index(idx); 670 671 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 672 return 0; 673 674 x = READ_ONCE(memcg->vmstats->state[i]); 675 #ifdef CONFIG_SMP 676 if (x < 0) 677 x = 0; 678 #endif 679 return x; 680 } 681 682 static int memcg_page_state_unit(int item); 683 684 /* 685 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 686 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 687 */ 688 static int memcg_state_val_in_pages(int idx, int val) 689 { 690 int unit = memcg_page_state_unit(idx); 691 692 if (!val || unit == PAGE_SIZE) 693 return val; 694 else 695 return max(val * unit / PAGE_SIZE, 1UL); 696 } 697 698 /** 699 * __mod_memcg_state - update cgroup memory statistics 700 * @memcg: the memory cgroup 701 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 702 * @val: delta to add to the counter, can be negative 703 */ 704 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 705 int val) 706 { 707 int i = memcg_stats_index(idx); 708 709 if (mem_cgroup_disabled()) 710 return; 711 712 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 713 return; 714 715 memcg_stats_lock(); 716 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 717 val = memcg_state_val_in_pages(idx, val); 718 memcg_rstat_updated(memcg, val); 719 trace_mod_memcg_state(memcg, idx, val); 720 memcg_stats_unlock(); 721 } 722 723 #ifdef CONFIG_MEMCG_V1 724 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 725 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 726 { 727 long x; 728 int i = memcg_stats_index(idx); 729 730 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 731 return 0; 732 733 x = READ_ONCE(memcg->vmstats->state_local[i]); 734 #ifdef CONFIG_SMP 735 if (x < 0) 736 x = 0; 737 #endif 738 return x; 739 } 740 #endif 741 742 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 743 enum node_stat_item idx, 744 int val) 745 { 746 struct mem_cgroup_per_node *pn; 747 struct mem_cgroup *memcg; 748 int i = memcg_stats_index(idx); 749 750 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 751 return; 752 753 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 754 memcg = pn->memcg; 755 756 /* 757 * The caller from rmap relies on disabled preemption because they never 758 * update their counter from in-interrupt context. For these two 759 * counters we check that the update is never performed from an 760 * interrupt context while other caller need to have disabled interrupt. 761 */ 762 __memcg_stats_lock(); 763 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 764 switch (idx) { 765 case NR_ANON_MAPPED: 766 case NR_FILE_MAPPED: 767 case NR_ANON_THPS: 768 WARN_ON_ONCE(!in_task()); 769 break; 770 default: 771 VM_WARN_ON_IRQS_ENABLED(); 772 } 773 } 774 775 /* Update memcg */ 776 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 777 778 /* Update lruvec */ 779 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 780 781 val = memcg_state_val_in_pages(idx, val); 782 memcg_rstat_updated(memcg, val); 783 trace_mod_memcg_lruvec_state(memcg, idx, val); 784 memcg_stats_unlock(); 785 } 786 787 /** 788 * __mod_lruvec_state - update lruvec memory statistics 789 * @lruvec: the lruvec 790 * @idx: the stat item 791 * @val: delta to add to the counter, can be negative 792 * 793 * The lruvec is the intersection of the NUMA node and a cgroup. This 794 * function updates the all three counters that are affected by a 795 * change of state at this level: per-node, per-cgroup, per-lruvec. 796 */ 797 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 798 int val) 799 { 800 /* Update node */ 801 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 802 803 /* Update memcg and lruvec */ 804 if (!mem_cgroup_disabled()) 805 __mod_memcg_lruvec_state(lruvec, idx, val); 806 } 807 808 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 809 int val) 810 { 811 struct mem_cgroup *memcg; 812 pg_data_t *pgdat = folio_pgdat(folio); 813 struct lruvec *lruvec; 814 815 rcu_read_lock(); 816 memcg = folio_memcg(folio); 817 /* Untracked pages have no memcg, no lruvec. Update only the node */ 818 if (!memcg) { 819 rcu_read_unlock(); 820 __mod_node_page_state(pgdat, idx, val); 821 return; 822 } 823 824 lruvec = mem_cgroup_lruvec(memcg, pgdat); 825 __mod_lruvec_state(lruvec, idx, val); 826 rcu_read_unlock(); 827 } 828 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 829 830 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 831 { 832 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 833 struct mem_cgroup *memcg; 834 struct lruvec *lruvec; 835 836 rcu_read_lock(); 837 memcg = mem_cgroup_from_slab_obj(p); 838 839 /* 840 * Untracked pages have no memcg, no lruvec. Update only the 841 * node. If we reparent the slab objects to the root memcg, 842 * when we free the slab object, we need to update the per-memcg 843 * vmstats to keep it correct for the root memcg. 844 */ 845 if (!memcg) { 846 __mod_node_page_state(pgdat, idx, val); 847 } else { 848 lruvec = mem_cgroup_lruvec(memcg, pgdat); 849 __mod_lruvec_state(lruvec, idx, val); 850 } 851 rcu_read_unlock(); 852 } 853 854 /** 855 * __count_memcg_events - account VM events in a cgroup 856 * @memcg: the memory cgroup 857 * @idx: the event item 858 * @count: the number of events that occurred 859 */ 860 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 861 unsigned long count) 862 { 863 int i = memcg_events_index(idx); 864 865 if (mem_cgroup_disabled()) 866 return; 867 868 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 869 return; 870 871 memcg_stats_lock(); 872 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 873 memcg_rstat_updated(memcg, count); 874 trace_count_memcg_events(memcg, idx, count); 875 memcg_stats_unlock(); 876 } 877 878 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 879 { 880 int i = memcg_events_index(event); 881 882 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 883 return 0; 884 885 return READ_ONCE(memcg->vmstats->events[i]); 886 } 887 888 #ifdef CONFIG_MEMCG_V1 889 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 890 { 891 int i = memcg_events_index(event); 892 893 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 894 return 0; 895 896 return READ_ONCE(memcg->vmstats->events_local[i]); 897 } 898 #endif 899 900 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 901 { 902 /* 903 * mm_update_next_owner() may clear mm->owner to NULL 904 * if it races with swapoff, page migration, etc. 905 * So this can be called with p == NULL. 906 */ 907 if (unlikely(!p)) 908 return NULL; 909 910 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 911 } 912 EXPORT_SYMBOL(mem_cgroup_from_task); 913 914 static __always_inline struct mem_cgroup *active_memcg(void) 915 { 916 if (!in_task()) 917 return this_cpu_read(int_active_memcg); 918 else 919 return current->active_memcg; 920 } 921 922 /** 923 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 924 * @mm: mm from which memcg should be extracted. It can be NULL. 925 * 926 * Obtain a reference on mm->memcg and returns it if successful. If mm 927 * is NULL, then the memcg is chosen as follows: 928 * 1) The active memcg, if set. 929 * 2) current->mm->memcg, if available 930 * 3) root memcg 931 * If mem_cgroup is disabled, NULL is returned. 932 */ 933 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 934 { 935 struct mem_cgroup *memcg; 936 937 if (mem_cgroup_disabled()) 938 return NULL; 939 940 /* 941 * Page cache insertions can happen without an 942 * actual mm context, e.g. during disk probing 943 * on boot, loopback IO, acct() writes etc. 944 * 945 * No need to css_get on root memcg as the reference 946 * counting is disabled on the root level in the 947 * cgroup core. See CSS_NO_REF. 948 */ 949 if (unlikely(!mm)) { 950 memcg = active_memcg(); 951 if (unlikely(memcg)) { 952 /* remote memcg must hold a ref */ 953 css_get(&memcg->css); 954 return memcg; 955 } 956 mm = current->mm; 957 if (unlikely(!mm)) 958 return root_mem_cgroup; 959 } 960 961 rcu_read_lock(); 962 do { 963 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 964 if (unlikely(!memcg)) 965 memcg = root_mem_cgroup; 966 } while (!css_tryget(&memcg->css)); 967 rcu_read_unlock(); 968 return memcg; 969 } 970 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 971 972 /** 973 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 974 */ 975 struct mem_cgroup *get_mem_cgroup_from_current(void) 976 { 977 struct mem_cgroup *memcg; 978 979 if (mem_cgroup_disabled()) 980 return NULL; 981 982 again: 983 rcu_read_lock(); 984 memcg = mem_cgroup_from_task(current); 985 if (!css_tryget(&memcg->css)) { 986 rcu_read_unlock(); 987 goto again; 988 } 989 rcu_read_unlock(); 990 return memcg; 991 } 992 993 /** 994 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 995 * @folio: folio from which memcg should be extracted. 996 */ 997 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 998 { 999 struct mem_cgroup *memcg = folio_memcg(folio); 1000 1001 if (mem_cgroup_disabled()) 1002 return NULL; 1003 1004 rcu_read_lock(); 1005 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 1006 memcg = root_mem_cgroup; 1007 rcu_read_unlock(); 1008 return memcg; 1009 } 1010 1011 /** 1012 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1013 * @root: hierarchy root 1014 * @prev: previously returned memcg, NULL on first invocation 1015 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1016 * 1017 * Returns references to children of the hierarchy below @root, or 1018 * @root itself, or %NULL after a full round-trip. 1019 * 1020 * Caller must pass the return value in @prev on subsequent 1021 * invocations for reference counting, or use mem_cgroup_iter_break() 1022 * to cancel a hierarchy walk before the round-trip is complete. 1023 * 1024 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1025 * in the hierarchy among all concurrent reclaimers operating on the 1026 * same node. 1027 */ 1028 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1029 struct mem_cgroup *prev, 1030 struct mem_cgroup_reclaim_cookie *reclaim) 1031 { 1032 struct mem_cgroup_reclaim_iter *iter; 1033 struct cgroup_subsys_state *css; 1034 struct mem_cgroup *pos; 1035 struct mem_cgroup *next; 1036 1037 if (mem_cgroup_disabled()) 1038 return NULL; 1039 1040 if (!root) 1041 root = root_mem_cgroup; 1042 1043 rcu_read_lock(); 1044 restart: 1045 next = NULL; 1046 1047 if (reclaim) { 1048 int gen; 1049 int nid = reclaim->pgdat->node_id; 1050 1051 iter = &root->nodeinfo[nid]->iter; 1052 gen = atomic_read(&iter->generation); 1053 1054 /* 1055 * On start, join the current reclaim iteration cycle. 1056 * Exit when a concurrent walker completes it. 1057 */ 1058 if (!prev) 1059 reclaim->generation = gen; 1060 else if (reclaim->generation != gen) 1061 goto out_unlock; 1062 1063 pos = READ_ONCE(iter->position); 1064 } else 1065 pos = prev; 1066 1067 css = pos ? &pos->css : NULL; 1068 1069 while ((css = css_next_descendant_pre(css, &root->css))) { 1070 /* 1071 * Verify the css and acquire a reference. The root 1072 * is provided by the caller, so we know it's alive 1073 * and kicking, and don't take an extra reference. 1074 */ 1075 if (css == &root->css || css_tryget(css)) 1076 break; 1077 } 1078 1079 next = mem_cgroup_from_css(css); 1080 1081 if (reclaim) { 1082 /* 1083 * The position could have already been updated by a competing 1084 * thread, so check that the value hasn't changed since we read 1085 * it to avoid reclaiming from the same cgroup twice. 1086 */ 1087 if (cmpxchg(&iter->position, pos, next) != pos) { 1088 if (css && css != &root->css) 1089 css_put(css); 1090 goto restart; 1091 } 1092 1093 if (!next) { 1094 atomic_inc(&iter->generation); 1095 1096 /* 1097 * Reclaimers share the hierarchy walk, and a 1098 * new one might jump in right at the end of 1099 * the hierarchy - make sure they see at least 1100 * one group and restart from the beginning. 1101 */ 1102 if (!prev) 1103 goto restart; 1104 } 1105 } 1106 1107 out_unlock: 1108 rcu_read_unlock(); 1109 if (prev && prev != root) 1110 css_put(&prev->css); 1111 1112 return next; 1113 } 1114 1115 /** 1116 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1117 * @root: hierarchy root 1118 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1119 */ 1120 void mem_cgroup_iter_break(struct mem_cgroup *root, 1121 struct mem_cgroup *prev) 1122 { 1123 if (!root) 1124 root = root_mem_cgroup; 1125 if (prev && prev != root) 1126 css_put(&prev->css); 1127 } 1128 1129 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1130 struct mem_cgroup *dead_memcg) 1131 { 1132 struct mem_cgroup_reclaim_iter *iter; 1133 struct mem_cgroup_per_node *mz; 1134 int nid; 1135 1136 for_each_node(nid) { 1137 mz = from->nodeinfo[nid]; 1138 iter = &mz->iter; 1139 cmpxchg(&iter->position, dead_memcg, NULL); 1140 } 1141 } 1142 1143 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1144 { 1145 struct mem_cgroup *memcg = dead_memcg; 1146 struct mem_cgroup *last; 1147 1148 do { 1149 __invalidate_reclaim_iterators(memcg, dead_memcg); 1150 last = memcg; 1151 } while ((memcg = parent_mem_cgroup(memcg))); 1152 1153 /* 1154 * When cgroup1 non-hierarchy mode is used, 1155 * parent_mem_cgroup() does not walk all the way up to the 1156 * cgroup root (root_mem_cgroup). So we have to handle 1157 * dead_memcg from cgroup root separately. 1158 */ 1159 if (!mem_cgroup_is_root(last)) 1160 __invalidate_reclaim_iterators(root_mem_cgroup, 1161 dead_memcg); 1162 } 1163 1164 /** 1165 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1166 * @memcg: hierarchy root 1167 * @fn: function to call for each task 1168 * @arg: argument passed to @fn 1169 * 1170 * This function iterates over tasks attached to @memcg or to any of its 1171 * descendants and calls @fn for each task. If @fn returns a non-zero 1172 * value, the function breaks the iteration loop. Otherwise, it will iterate 1173 * over all tasks and return 0. 1174 * 1175 * This function must not be called for the root memory cgroup. 1176 */ 1177 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1178 int (*fn)(struct task_struct *, void *), void *arg) 1179 { 1180 struct mem_cgroup *iter; 1181 int ret = 0; 1182 int i = 0; 1183 1184 BUG_ON(mem_cgroup_is_root(memcg)); 1185 1186 for_each_mem_cgroup_tree(iter, memcg) { 1187 struct css_task_iter it; 1188 struct task_struct *task; 1189 1190 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1191 while (!ret && (task = css_task_iter_next(&it))) { 1192 /* Avoid potential softlockup warning */ 1193 if ((++i & 1023) == 0) 1194 cond_resched(); 1195 ret = fn(task, arg); 1196 } 1197 css_task_iter_end(&it); 1198 if (ret) { 1199 mem_cgroup_iter_break(memcg, iter); 1200 break; 1201 } 1202 } 1203 } 1204 1205 #ifdef CONFIG_DEBUG_VM 1206 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1207 { 1208 struct mem_cgroup *memcg; 1209 1210 if (mem_cgroup_disabled()) 1211 return; 1212 1213 memcg = folio_memcg(folio); 1214 1215 if (!memcg) 1216 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1217 else 1218 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1219 } 1220 #endif 1221 1222 /** 1223 * folio_lruvec_lock - Lock the lruvec for a folio. 1224 * @folio: Pointer to the folio. 1225 * 1226 * These functions are safe to use under any of the following conditions: 1227 * - folio locked 1228 * - folio_test_lru false 1229 * - folio frozen (refcount of 0) 1230 * 1231 * Return: The lruvec this folio is on with its lock held. 1232 */ 1233 struct lruvec *folio_lruvec_lock(struct folio *folio) 1234 { 1235 struct lruvec *lruvec = folio_lruvec(folio); 1236 1237 spin_lock(&lruvec->lru_lock); 1238 lruvec_memcg_debug(lruvec, folio); 1239 1240 return lruvec; 1241 } 1242 1243 /** 1244 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1245 * @folio: Pointer to the folio. 1246 * 1247 * These functions are safe to use under any of the following conditions: 1248 * - folio locked 1249 * - folio_test_lru false 1250 * - folio frozen (refcount of 0) 1251 * 1252 * Return: The lruvec this folio is on with its lock held and interrupts 1253 * disabled. 1254 */ 1255 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1256 { 1257 struct lruvec *lruvec = folio_lruvec(folio); 1258 1259 spin_lock_irq(&lruvec->lru_lock); 1260 lruvec_memcg_debug(lruvec, folio); 1261 1262 return lruvec; 1263 } 1264 1265 /** 1266 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1267 * @folio: Pointer to the folio. 1268 * @flags: Pointer to irqsave flags. 1269 * 1270 * These functions are safe to use under any of the following conditions: 1271 * - folio locked 1272 * - folio_test_lru false 1273 * - folio frozen (refcount of 0) 1274 * 1275 * Return: The lruvec this folio is on with its lock held and interrupts 1276 * disabled. 1277 */ 1278 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1279 unsigned long *flags) 1280 { 1281 struct lruvec *lruvec = folio_lruvec(folio); 1282 1283 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1284 lruvec_memcg_debug(lruvec, folio); 1285 1286 return lruvec; 1287 } 1288 1289 /** 1290 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1291 * @lruvec: mem_cgroup per zone lru vector 1292 * @lru: index of lru list the page is sitting on 1293 * @zid: zone id of the accounted pages 1294 * @nr_pages: positive when adding or negative when removing 1295 * 1296 * This function must be called under lru_lock, just before a page is added 1297 * to or just after a page is removed from an lru list. 1298 */ 1299 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1300 int zid, int nr_pages) 1301 { 1302 struct mem_cgroup_per_node *mz; 1303 unsigned long *lru_size; 1304 long size; 1305 1306 if (mem_cgroup_disabled()) 1307 return; 1308 1309 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1310 lru_size = &mz->lru_zone_size[zid][lru]; 1311 1312 if (nr_pages < 0) 1313 *lru_size += nr_pages; 1314 1315 size = *lru_size; 1316 if (WARN_ONCE(size < 0, 1317 "%s(%p, %d, %d): lru_size %ld\n", 1318 __func__, lruvec, lru, nr_pages, size)) { 1319 VM_BUG_ON(1); 1320 *lru_size = 0; 1321 } 1322 1323 if (nr_pages > 0) 1324 *lru_size += nr_pages; 1325 } 1326 1327 /** 1328 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1329 * @memcg: the memory cgroup 1330 * 1331 * Returns the maximum amount of memory @mem can be charged with, in 1332 * pages. 1333 */ 1334 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1335 { 1336 unsigned long margin = 0; 1337 unsigned long count; 1338 unsigned long limit; 1339 1340 count = page_counter_read(&memcg->memory); 1341 limit = READ_ONCE(memcg->memory.max); 1342 if (count < limit) 1343 margin = limit - count; 1344 1345 if (do_memsw_account()) { 1346 count = page_counter_read(&memcg->memsw); 1347 limit = READ_ONCE(memcg->memsw.max); 1348 if (count < limit) 1349 margin = min(margin, limit - count); 1350 else 1351 margin = 0; 1352 } 1353 1354 return margin; 1355 } 1356 1357 struct memory_stat { 1358 const char *name; 1359 unsigned int idx; 1360 }; 1361 1362 static const struct memory_stat memory_stats[] = { 1363 { "anon", NR_ANON_MAPPED }, 1364 { "file", NR_FILE_PAGES }, 1365 { "kernel", MEMCG_KMEM }, 1366 { "kernel_stack", NR_KERNEL_STACK_KB }, 1367 { "pagetables", NR_PAGETABLE }, 1368 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1369 { "percpu", MEMCG_PERCPU_B }, 1370 { "sock", MEMCG_SOCK }, 1371 { "vmalloc", MEMCG_VMALLOC }, 1372 { "shmem", NR_SHMEM }, 1373 #ifdef CONFIG_ZSWAP 1374 { "zswap", MEMCG_ZSWAP_B }, 1375 { "zswapped", MEMCG_ZSWAPPED }, 1376 #endif 1377 { "file_mapped", NR_FILE_MAPPED }, 1378 { "file_dirty", NR_FILE_DIRTY }, 1379 { "file_writeback", NR_WRITEBACK }, 1380 #ifdef CONFIG_SWAP 1381 { "swapcached", NR_SWAPCACHE }, 1382 #endif 1383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1384 { "anon_thp", NR_ANON_THPS }, 1385 { "file_thp", NR_FILE_THPS }, 1386 { "shmem_thp", NR_SHMEM_THPS }, 1387 #endif 1388 { "inactive_anon", NR_INACTIVE_ANON }, 1389 { "active_anon", NR_ACTIVE_ANON }, 1390 { "inactive_file", NR_INACTIVE_FILE }, 1391 { "active_file", NR_ACTIVE_FILE }, 1392 { "unevictable", NR_UNEVICTABLE }, 1393 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1394 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1395 #ifdef CONFIG_HUGETLB_PAGE 1396 { "hugetlb", NR_HUGETLB }, 1397 #endif 1398 1399 /* The memory events */ 1400 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1401 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1402 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1403 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1404 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1405 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1406 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1407 1408 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1409 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1410 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1411 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1412 #ifdef CONFIG_NUMA_BALANCING 1413 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1414 #endif 1415 }; 1416 1417 /* The actual unit of the state item, not the same as the output unit */ 1418 static int memcg_page_state_unit(int item) 1419 { 1420 switch (item) { 1421 case MEMCG_PERCPU_B: 1422 case MEMCG_ZSWAP_B: 1423 case NR_SLAB_RECLAIMABLE_B: 1424 case NR_SLAB_UNRECLAIMABLE_B: 1425 return 1; 1426 case NR_KERNEL_STACK_KB: 1427 return SZ_1K; 1428 default: 1429 return PAGE_SIZE; 1430 } 1431 } 1432 1433 /* Translate stat items to the correct unit for memory.stat output */ 1434 static int memcg_page_state_output_unit(int item) 1435 { 1436 /* 1437 * Workingset state is actually in pages, but we export it to userspace 1438 * as a scalar count of events, so special case it here. 1439 * 1440 * Demotion and promotion activities are exported in pages, consistent 1441 * with their global counterparts. 1442 */ 1443 switch (item) { 1444 case WORKINGSET_REFAULT_ANON: 1445 case WORKINGSET_REFAULT_FILE: 1446 case WORKINGSET_ACTIVATE_ANON: 1447 case WORKINGSET_ACTIVATE_FILE: 1448 case WORKINGSET_RESTORE_ANON: 1449 case WORKINGSET_RESTORE_FILE: 1450 case WORKINGSET_NODERECLAIM: 1451 case PGDEMOTE_KSWAPD: 1452 case PGDEMOTE_DIRECT: 1453 case PGDEMOTE_KHUGEPAGED: 1454 case PGDEMOTE_PROACTIVE: 1455 #ifdef CONFIG_NUMA_BALANCING 1456 case PGPROMOTE_SUCCESS: 1457 #endif 1458 return 1; 1459 default: 1460 return memcg_page_state_unit(item); 1461 } 1462 } 1463 1464 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1465 { 1466 return memcg_page_state(memcg, item) * 1467 memcg_page_state_output_unit(item); 1468 } 1469 1470 #ifdef CONFIG_MEMCG_V1 1471 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1472 { 1473 return memcg_page_state_local(memcg, item) * 1474 memcg_page_state_output_unit(item); 1475 } 1476 #endif 1477 1478 #ifdef CONFIG_HUGETLB_PAGE 1479 static bool memcg_accounts_hugetlb(void) 1480 { 1481 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1482 } 1483 #else /* CONFIG_HUGETLB_PAGE */ 1484 static bool memcg_accounts_hugetlb(void) 1485 { 1486 return false; 1487 } 1488 #endif /* CONFIG_HUGETLB_PAGE */ 1489 1490 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1491 { 1492 int i; 1493 1494 /* 1495 * Provide statistics on the state of the memory subsystem as 1496 * well as cumulative event counters that show past behavior. 1497 * 1498 * This list is ordered following a combination of these gradients: 1499 * 1) generic big picture -> specifics and details 1500 * 2) reflecting userspace activity -> reflecting kernel heuristics 1501 * 1502 * Current memory state: 1503 */ 1504 mem_cgroup_flush_stats(memcg); 1505 1506 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1507 u64 size; 1508 1509 #ifdef CONFIG_HUGETLB_PAGE 1510 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1511 !memcg_accounts_hugetlb()) 1512 continue; 1513 #endif 1514 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1515 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1516 1517 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1518 size += memcg_page_state_output(memcg, 1519 NR_SLAB_RECLAIMABLE_B); 1520 seq_buf_printf(s, "slab %llu\n", size); 1521 } 1522 } 1523 1524 /* Accumulated memory events */ 1525 seq_buf_printf(s, "pgscan %lu\n", 1526 memcg_events(memcg, PGSCAN_KSWAPD) + 1527 memcg_events(memcg, PGSCAN_DIRECT) + 1528 memcg_events(memcg, PGSCAN_PROACTIVE) + 1529 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1530 seq_buf_printf(s, "pgsteal %lu\n", 1531 memcg_events(memcg, PGSTEAL_KSWAPD) + 1532 memcg_events(memcg, PGSTEAL_DIRECT) + 1533 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1534 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1535 1536 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1537 #ifdef CONFIG_MEMCG_V1 1538 if (memcg_vm_event_stat[i] == PGPGIN || 1539 memcg_vm_event_stat[i] == PGPGOUT) 1540 continue; 1541 #endif 1542 seq_buf_printf(s, "%s %lu\n", 1543 vm_event_name(memcg_vm_event_stat[i]), 1544 memcg_events(memcg, memcg_vm_event_stat[i])); 1545 } 1546 } 1547 1548 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1549 { 1550 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1551 memcg_stat_format(memcg, s); 1552 else 1553 memcg1_stat_format(memcg, s); 1554 if (seq_buf_has_overflowed(s)) 1555 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1556 } 1557 1558 /** 1559 * mem_cgroup_print_oom_context: Print OOM information relevant to 1560 * memory controller. 1561 * @memcg: The memory cgroup that went over limit 1562 * @p: Task that is going to be killed 1563 * 1564 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1565 * enabled 1566 */ 1567 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1568 { 1569 rcu_read_lock(); 1570 1571 if (memcg) { 1572 pr_cont(",oom_memcg="); 1573 pr_cont_cgroup_path(memcg->css.cgroup); 1574 } else 1575 pr_cont(",global_oom"); 1576 if (p) { 1577 pr_cont(",task_memcg="); 1578 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1579 } 1580 rcu_read_unlock(); 1581 } 1582 1583 /** 1584 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1585 * memory controller. 1586 * @memcg: The memory cgroup that went over limit 1587 */ 1588 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1589 { 1590 /* Use static buffer, for the caller is holding oom_lock. */ 1591 static char buf[SEQ_BUF_SIZE]; 1592 struct seq_buf s; 1593 unsigned long memory_failcnt; 1594 1595 lockdep_assert_held(&oom_lock); 1596 1597 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1598 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1599 else 1600 memory_failcnt = memcg->memory.failcnt; 1601 1602 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1603 K((u64)page_counter_read(&memcg->memory)), 1604 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1605 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1606 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1607 K((u64)page_counter_read(&memcg->swap)), 1608 K((u64)READ_ONCE(memcg->swap.max)), 1609 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1610 #ifdef CONFIG_MEMCG_V1 1611 else { 1612 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1613 K((u64)page_counter_read(&memcg->memsw)), 1614 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1615 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1616 K((u64)page_counter_read(&memcg->kmem)), 1617 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1618 } 1619 #endif 1620 1621 pr_info("Memory cgroup stats for "); 1622 pr_cont_cgroup_path(memcg->css.cgroup); 1623 pr_cont(":"); 1624 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1625 memory_stat_format(memcg, &s); 1626 seq_buf_do_printk(&s, KERN_INFO); 1627 } 1628 1629 /* 1630 * Return the memory (and swap, if configured) limit for a memcg. 1631 */ 1632 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1633 { 1634 unsigned long max = READ_ONCE(memcg->memory.max); 1635 1636 if (do_memsw_account()) { 1637 if (mem_cgroup_swappiness(memcg)) { 1638 /* Calculate swap excess capacity from memsw limit */ 1639 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1640 1641 max += min(swap, (unsigned long)total_swap_pages); 1642 } 1643 } else { 1644 if (mem_cgroup_swappiness(memcg)) 1645 max += min(READ_ONCE(memcg->swap.max), 1646 (unsigned long)total_swap_pages); 1647 } 1648 return max; 1649 } 1650 1651 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1652 { 1653 return page_counter_read(&memcg->memory); 1654 } 1655 1656 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1657 int order) 1658 { 1659 struct oom_control oc = { 1660 .zonelist = NULL, 1661 .nodemask = NULL, 1662 .memcg = memcg, 1663 .gfp_mask = gfp_mask, 1664 .order = order, 1665 }; 1666 bool ret = true; 1667 1668 if (mutex_lock_killable(&oom_lock)) 1669 return true; 1670 1671 if (mem_cgroup_margin(memcg) >= (1 << order)) 1672 goto unlock; 1673 1674 /* 1675 * A few threads which were not waiting at mutex_lock_killable() can 1676 * fail to bail out. Therefore, check again after holding oom_lock. 1677 */ 1678 ret = out_of_memory(&oc); 1679 1680 unlock: 1681 mutex_unlock(&oom_lock); 1682 return ret; 1683 } 1684 1685 /* 1686 * Returns true if successfully killed one or more processes. Though in some 1687 * corner cases it can return true even without killing any process. 1688 */ 1689 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1690 { 1691 bool locked, ret; 1692 1693 if (order > PAGE_ALLOC_COSTLY_ORDER) 1694 return false; 1695 1696 memcg_memory_event(memcg, MEMCG_OOM); 1697 1698 if (!memcg1_oom_prepare(memcg, &locked)) 1699 return false; 1700 1701 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1702 1703 memcg1_oom_finish(memcg, locked); 1704 1705 return ret; 1706 } 1707 1708 /** 1709 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1710 * @victim: task to be killed by the OOM killer 1711 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1712 * 1713 * Returns a pointer to a memory cgroup, which has to be cleaned up 1714 * by killing all belonging OOM-killable tasks. 1715 * 1716 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1717 */ 1718 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1719 struct mem_cgroup *oom_domain) 1720 { 1721 struct mem_cgroup *oom_group = NULL; 1722 struct mem_cgroup *memcg; 1723 1724 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1725 return NULL; 1726 1727 if (!oom_domain) 1728 oom_domain = root_mem_cgroup; 1729 1730 rcu_read_lock(); 1731 1732 memcg = mem_cgroup_from_task(victim); 1733 if (mem_cgroup_is_root(memcg)) 1734 goto out; 1735 1736 /* 1737 * If the victim task has been asynchronously moved to a different 1738 * memory cgroup, we might end up killing tasks outside oom_domain. 1739 * In this case it's better to ignore memory.group.oom. 1740 */ 1741 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1742 goto out; 1743 1744 /* 1745 * Traverse the memory cgroup hierarchy from the victim task's 1746 * cgroup up to the OOMing cgroup (or root) to find the 1747 * highest-level memory cgroup with oom.group set. 1748 */ 1749 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1750 if (READ_ONCE(memcg->oom_group)) 1751 oom_group = memcg; 1752 1753 if (memcg == oom_domain) 1754 break; 1755 } 1756 1757 if (oom_group) 1758 css_get(&oom_group->css); 1759 out: 1760 rcu_read_unlock(); 1761 1762 return oom_group; 1763 } 1764 1765 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1766 { 1767 pr_info("Tasks in "); 1768 pr_cont_cgroup_path(memcg->css.cgroup); 1769 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1770 } 1771 1772 struct memcg_stock_pcp { 1773 local_trylock_t stock_lock; 1774 struct mem_cgroup *cached; /* this never be root cgroup */ 1775 unsigned int nr_pages; 1776 1777 struct obj_cgroup *cached_objcg; 1778 struct pglist_data *cached_pgdat; 1779 unsigned int nr_bytes; 1780 int nr_slab_reclaimable_b; 1781 int nr_slab_unreclaimable_b; 1782 1783 struct work_struct work; 1784 unsigned long flags; 1785 #define FLUSHING_CACHED_CHARGE 0 1786 }; 1787 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 1788 .stock_lock = INIT_LOCAL_TRYLOCK(stock_lock), 1789 }; 1790 static DEFINE_MUTEX(percpu_charge_mutex); 1791 1792 static void drain_obj_stock(struct memcg_stock_pcp *stock); 1793 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1794 struct mem_cgroup *root_memcg); 1795 1796 /** 1797 * consume_stock: Try to consume stocked charge on this cpu. 1798 * @memcg: memcg to consume from. 1799 * @nr_pages: how many pages to charge. 1800 * @gfp_mask: allocation mask. 1801 * 1802 * The charges will only happen if @memcg matches the current cpu's memcg 1803 * stock, and at least @nr_pages are available in that stock. Failure to 1804 * service an allocation will refill the stock. 1805 * 1806 * returns true if successful, false otherwise. 1807 */ 1808 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages, 1809 gfp_t gfp_mask) 1810 { 1811 struct memcg_stock_pcp *stock; 1812 unsigned int stock_pages; 1813 unsigned long flags; 1814 bool ret = false; 1815 1816 if (nr_pages > MEMCG_CHARGE_BATCH) 1817 return ret; 1818 1819 if (gfpflags_allow_spinning(gfp_mask)) 1820 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1821 else if (!local_trylock_irqsave(&memcg_stock.stock_lock, flags)) 1822 return ret; 1823 1824 stock = this_cpu_ptr(&memcg_stock); 1825 stock_pages = READ_ONCE(stock->nr_pages); 1826 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 1827 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 1828 ret = true; 1829 } 1830 1831 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1832 1833 return ret; 1834 } 1835 1836 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 1837 { 1838 page_counter_uncharge(&memcg->memory, nr_pages); 1839 if (do_memsw_account()) 1840 page_counter_uncharge(&memcg->memsw, nr_pages); 1841 } 1842 1843 /* 1844 * Returns stocks cached in percpu and reset cached information. 1845 */ 1846 static void drain_stock(struct memcg_stock_pcp *stock) 1847 { 1848 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 1849 struct mem_cgroup *old = READ_ONCE(stock->cached); 1850 1851 if (!old) 1852 return; 1853 1854 if (stock_pages) { 1855 memcg_uncharge(old, stock_pages); 1856 WRITE_ONCE(stock->nr_pages, 0); 1857 } 1858 1859 css_put(&old->css); 1860 WRITE_ONCE(stock->cached, NULL); 1861 } 1862 1863 static void drain_local_stock(struct work_struct *dummy) 1864 { 1865 struct memcg_stock_pcp *stock; 1866 unsigned long flags; 1867 1868 /* 1869 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1870 * drain_stock races is that we always operate on local CPU stock 1871 * here with IRQ disabled 1872 */ 1873 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1874 1875 stock = this_cpu_ptr(&memcg_stock); 1876 drain_obj_stock(stock); 1877 drain_stock(stock); 1878 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1879 1880 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1881 } 1882 1883 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1884 { 1885 struct memcg_stock_pcp *stock; 1886 unsigned int stock_pages; 1887 unsigned long flags; 1888 1889 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); 1890 1891 if (!local_trylock_irqsave(&memcg_stock.stock_lock, flags)) { 1892 /* 1893 * In case of unlikely failure to lock percpu stock_lock 1894 * uncharge memcg directly. 1895 */ 1896 memcg_uncharge(memcg, nr_pages); 1897 return; 1898 } 1899 1900 stock = this_cpu_ptr(&memcg_stock); 1901 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 1902 drain_stock(stock); 1903 css_get(&memcg->css); 1904 WRITE_ONCE(stock->cached, memcg); 1905 } 1906 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 1907 WRITE_ONCE(stock->nr_pages, stock_pages); 1908 1909 if (stock_pages > MEMCG_CHARGE_BATCH) 1910 drain_stock(stock); 1911 1912 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1913 } 1914 1915 /* 1916 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1917 * of the hierarchy under it. 1918 */ 1919 void drain_all_stock(struct mem_cgroup *root_memcg) 1920 { 1921 int cpu, curcpu; 1922 1923 /* If someone's already draining, avoid adding running more workers. */ 1924 if (!mutex_trylock(&percpu_charge_mutex)) 1925 return; 1926 /* 1927 * Notify other cpus that system-wide "drain" is running 1928 * We do not care about races with the cpu hotplug because cpu down 1929 * as well as workers from this path always operate on the local 1930 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1931 */ 1932 migrate_disable(); 1933 curcpu = smp_processor_id(); 1934 for_each_online_cpu(cpu) { 1935 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1936 struct mem_cgroup *memcg; 1937 bool flush = false; 1938 1939 rcu_read_lock(); 1940 memcg = READ_ONCE(stock->cached); 1941 if (memcg && READ_ONCE(stock->nr_pages) && 1942 mem_cgroup_is_descendant(memcg, root_memcg)) 1943 flush = true; 1944 else if (obj_stock_flush_required(stock, root_memcg)) 1945 flush = true; 1946 rcu_read_unlock(); 1947 1948 if (flush && 1949 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1950 if (cpu == curcpu) 1951 drain_local_stock(&stock->work); 1952 else if (!cpu_is_isolated(cpu)) 1953 schedule_work_on(cpu, &stock->work); 1954 } 1955 } 1956 migrate_enable(); 1957 mutex_unlock(&percpu_charge_mutex); 1958 } 1959 1960 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1961 { 1962 struct memcg_stock_pcp *stock; 1963 unsigned long flags; 1964 1965 stock = &per_cpu(memcg_stock, cpu); 1966 1967 /* drain_obj_stock requires stock_lock */ 1968 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1969 drain_obj_stock(stock); 1970 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1971 1972 drain_stock(stock); 1973 1974 return 0; 1975 } 1976 1977 static unsigned long reclaim_high(struct mem_cgroup *memcg, 1978 unsigned int nr_pages, 1979 gfp_t gfp_mask) 1980 { 1981 unsigned long nr_reclaimed = 0; 1982 1983 do { 1984 unsigned long pflags; 1985 1986 if (page_counter_read(&memcg->memory) <= 1987 READ_ONCE(memcg->memory.high)) 1988 continue; 1989 1990 memcg_memory_event(memcg, MEMCG_HIGH); 1991 1992 psi_memstall_enter(&pflags); 1993 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 1994 gfp_mask, 1995 MEMCG_RECLAIM_MAY_SWAP, 1996 NULL); 1997 psi_memstall_leave(&pflags); 1998 } while ((memcg = parent_mem_cgroup(memcg)) && 1999 !mem_cgroup_is_root(memcg)); 2000 2001 return nr_reclaimed; 2002 } 2003 2004 static void high_work_func(struct work_struct *work) 2005 { 2006 struct mem_cgroup *memcg; 2007 2008 memcg = container_of(work, struct mem_cgroup, high_work); 2009 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2010 } 2011 2012 /* 2013 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2014 * enough to still cause a significant slowdown in most cases, while still 2015 * allowing diagnostics and tracing to proceed without becoming stuck. 2016 */ 2017 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2018 2019 /* 2020 * When calculating the delay, we use these either side of the exponentiation to 2021 * maintain precision and scale to a reasonable number of jiffies (see the table 2022 * below. 2023 * 2024 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2025 * overage ratio to a delay. 2026 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2027 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2028 * to produce a reasonable delay curve. 2029 * 2030 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2031 * reasonable delay curve compared to precision-adjusted overage, not 2032 * penalising heavily at first, but still making sure that growth beyond the 2033 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2034 * example, with a high of 100 megabytes: 2035 * 2036 * +-------+------------------------+ 2037 * | usage | time to allocate in ms | 2038 * +-------+------------------------+ 2039 * | 100M | 0 | 2040 * | 101M | 6 | 2041 * | 102M | 25 | 2042 * | 103M | 57 | 2043 * | 104M | 102 | 2044 * | 105M | 159 | 2045 * | 106M | 230 | 2046 * | 107M | 313 | 2047 * | 108M | 409 | 2048 * | 109M | 518 | 2049 * | 110M | 639 | 2050 * | 111M | 774 | 2051 * | 112M | 921 | 2052 * | 113M | 1081 | 2053 * | 114M | 1254 | 2054 * | 115M | 1439 | 2055 * | 116M | 1638 | 2056 * | 117M | 1849 | 2057 * | 118M | 2000 | 2058 * | 119M | 2000 | 2059 * | 120M | 2000 | 2060 * +-------+------------------------+ 2061 */ 2062 #define MEMCG_DELAY_PRECISION_SHIFT 20 2063 #define MEMCG_DELAY_SCALING_SHIFT 14 2064 2065 static u64 calculate_overage(unsigned long usage, unsigned long high) 2066 { 2067 u64 overage; 2068 2069 if (usage <= high) 2070 return 0; 2071 2072 /* 2073 * Prevent division by 0 in overage calculation by acting as if 2074 * it was a threshold of 1 page 2075 */ 2076 high = max(high, 1UL); 2077 2078 overage = usage - high; 2079 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2080 return div64_u64(overage, high); 2081 } 2082 2083 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2084 { 2085 u64 overage, max_overage = 0; 2086 2087 do { 2088 overage = calculate_overage(page_counter_read(&memcg->memory), 2089 READ_ONCE(memcg->memory.high)); 2090 max_overage = max(overage, max_overage); 2091 } while ((memcg = parent_mem_cgroup(memcg)) && 2092 !mem_cgroup_is_root(memcg)); 2093 2094 return max_overage; 2095 } 2096 2097 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2098 { 2099 u64 overage, max_overage = 0; 2100 2101 do { 2102 overage = calculate_overage(page_counter_read(&memcg->swap), 2103 READ_ONCE(memcg->swap.high)); 2104 if (overage) 2105 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2106 max_overage = max(overage, max_overage); 2107 } while ((memcg = parent_mem_cgroup(memcg)) && 2108 !mem_cgroup_is_root(memcg)); 2109 2110 return max_overage; 2111 } 2112 2113 /* 2114 * Get the number of jiffies that we should penalise a mischievous cgroup which 2115 * is exceeding its memory.high by checking both it and its ancestors. 2116 */ 2117 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2118 unsigned int nr_pages, 2119 u64 max_overage) 2120 { 2121 unsigned long penalty_jiffies; 2122 2123 if (!max_overage) 2124 return 0; 2125 2126 /* 2127 * We use overage compared to memory.high to calculate the number of 2128 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2129 * fairly lenient on small overages, and increasingly harsh when the 2130 * memcg in question makes it clear that it has no intention of stopping 2131 * its crazy behaviour, so we exponentially increase the delay based on 2132 * overage amount. 2133 */ 2134 penalty_jiffies = max_overage * max_overage * HZ; 2135 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2136 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2137 2138 /* 2139 * Factor in the task's own contribution to the overage, such that four 2140 * N-sized allocations are throttled approximately the same as one 2141 * 4N-sized allocation. 2142 * 2143 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2144 * larger the current charge patch is than that. 2145 */ 2146 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2147 } 2148 2149 /* 2150 * Reclaims memory over the high limit. Called directly from 2151 * try_charge() (context permitting), as well as from the userland 2152 * return path where reclaim is always able to block. 2153 */ 2154 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2155 { 2156 unsigned long penalty_jiffies; 2157 unsigned long pflags; 2158 unsigned long nr_reclaimed; 2159 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2160 int nr_retries = MAX_RECLAIM_RETRIES; 2161 struct mem_cgroup *memcg; 2162 bool in_retry = false; 2163 2164 if (likely(!nr_pages)) 2165 return; 2166 2167 memcg = get_mem_cgroup_from_mm(current->mm); 2168 current->memcg_nr_pages_over_high = 0; 2169 2170 retry_reclaim: 2171 /* 2172 * Bail if the task is already exiting. Unlike memory.max, 2173 * memory.high enforcement isn't as strict, and there is no 2174 * OOM killer involved, which means the excess could already 2175 * be much bigger (and still growing) than it could for 2176 * memory.max; the dying task could get stuck in fruitless 2177 * reclaim for a long time, which isn't desirable. 2178 */ 2179 if (task_is_dying()) 2180 goto out; 2181 2182 /* 2183 * The allocating task should reclaim at least the batch size, but for 2184 * subsequent retries we only want to do what's necessary to prevent oom 2185 * or breaching resource isolation. 2186 * 2187 * This is distinct from memory.max or page allocator behaviour because 2188 * memory.high is currently batched, whereas memory.max and the page 2189 * allocator run every time an allocation is made. 2190 */ 2191 nr_reclaimed = reclaim_high(memcg, 2192 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2193 gfp_mask); 2194 2195 /* 2196 * memory.high is breached and reclaim is unable to keep up. Throttle 2197 * allocators proactively to slow down excessive growth. 2198 */ 2199 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2200 mem_find_max_overage(memcg)); 2201 2202 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2203 swap_find_max_overage(memcg)); 2204 2205 /* 2206 * Clamp the max delay per usermode return so as to still keep the 2207 * application moving forwards and also permit diagnostics, albeit 2208 * extremely slowly. 2209 */ 2210 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2211 2212 /* 2213 * Don't sleep if the amount of jiffies this memcg owes us is so low 2214 * that it's not even worth doing, in an attempt to be nice to those who 2215 * go only a small amount over their memory.high value and maybe haven't 2216 * been aggressively reclaimed enough yet. 2217 */ 2218 if (penalty_jiffies <= HZ / 100) 2219 goto out; 2220 2221 /* 2222 * If reclaim is making forward progress but we're still over 2223 * memory.high, we want to encourage that rather than doing allocator 2224 * throttling. 2225 */ 2226 if (nr_reclaimed || nr_retries--) { 2227 in_retry = true; 2228 goto retry_reclaim; 2229 } 2230 2231 /* 2232 * Reclaim didn't manage to push usage below the limit, slow 2233 * this allocating task down. 2234 * 2235 * If we exit early, we're guaranteed to die (since 2236 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2237 * need to account for any ill-begotten jiffies to pay them off later. 2238 */ 2239 psi_memstall_enter(&pflags); 2240 schedule_timeout_killable(penalty_jiffies); 2241 psi_memstall_leave(&pflags); 2242 2243 out: 2244 css_put(&memcg->css); 2245 } 2246 2247 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2248 unsigned int nr_pages) 2249 { 2250 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2251 int nr_retries = MAX_RECLAIM_RETRIES; 2252 struct mem_cgroup *mem_over_limit; 2253 struct page_counter *counter; 2254 unsigned long nr_reclaimed; 2255 bool passed_oom = false; 2256 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2257 bool drained = false; 2258 bool raised_max_event = false; 2259 unsigned long pflags; 2260 2261 retry: 2262 if (consume_stock(memcg, nr_pages, gfp_mask)) 2263 return 0; 2264 2265 if (!gfpflags_allow_spinning(gfp_mask)) 2266 /* Avoid the refill and flush of the older stock */ 2267 batch = nr_pages; 2268 2269 if (!do_memsw_account() || 2270 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2271 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2272 goto done_restock; 2273 if (do_memsw_account()) 2274 page_counter_uncharge(&memcg->memsw, batch); 2275 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2276 } else { 2277 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2278 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2279 } 2280 2281 if (batch > nr_pages) { 2282 batch = nr_pages; 2283 goto retry; 2284 } 2285 2286 /* 2287 * Prevent unbounded recursion when reclaim operations need to 2288 * allocate memory. This might exceed the limits temporarily, 2289 * but we prefer facilitating memory reclaim and getting back 2290 * under the limit over triggering OOM kills in these cases. 2291 */ 2292 if (unlikely(current->flags & PF_MEMALLOC)) 2293 goto force; 2294 2295 if (unlikely(task_in_memcg_oom(current))) 2296 goto nomem; 2297 2298 if (!gfpflags_allow_blocking(gfp_mask)) 2299 goto nomem; 2300 2301 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2302 raised_max_event = true; 2303 2304 psi_memstall_enter(&pflags); 2305 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2306 gfp_mask, reclaim_options, NULL); 2307 psi_memstall_leave(&pflags); 2308 2309 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2310 goto retry; 2311 2312 if (!drained) { 2313 drain_all_stock(mem_over_limit); 2314 drained = true; 2315 goto retry; 2316 } 2317 2318 if (gfp_mask & __GFP_NORETRY) 2319 goto nomem; 2320 /* 2321 * Even though the limit is exceeded at this point, reclaim 2322 * may have been able to free some pages. Retry the charge 2323 * before killing the task. 2324 * 2325 * Only for regular pages, though: huge pages are rather 2326 * unlikely to succeed so close to the limit, and we fall back 2327 * to regular pages anyway in case of failure. 2328 */ 2329 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2330 goto retry; 2331 2332 if (nr_retries--) 2333 goto retry; 2334 2335 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2336 goto nomem; 2337 2338 /* Avoid endless loop for tasks bypassed by the oom killer */ 2339 if (passed_oom && task_is_dying()) 2340 goto nomem; 2341 2342 /* 2343 * keep retrying as long as the memcg oom killer is able to make 2344 * a forward progress or bypass the charge if the oom killer 2345 * couldn't make any progress. 2346 */ 2347 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2348 get_order(nr_pages * PAGE_SIZE))) { 2349 passed_oom = true; 2350 nr_retries = MAX_RECLAIM_RETRIES; 2351 goto retry; 2352 } 2353 nomem: 2354 /* 2355 * Memcg doesn't have a dedicated reserve for atomic 2356 * allocations. But like the global atomic pool, we need to 2357 * put the burden of reclaim on regular allocation requests 2358 * and let these go through as privileged allocations. 2359 */ 2360 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2361 return -ENOMEM; 2362 force: 2363 /* 2364 * If the allocation has to be enforced, don't forget to raise 2365 * a MEMCG_MAX event. 2366 */ 2367 if (!raised_max_event) 2368 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2369 2370 /* 2371 * The allocation either can't fail or will lead to more memory 2372 * being freed very soon. Allow memory usage go over the limit 2373 * temporarily by force charging it. 2374 */ 2375 page_counter_charge(&memcg->memory, nr_pages); 2376 if (do_memsw_account()) 2377 page_counter_charge(&memcg->memsw, nr_pages); 2378 2379 return 0; 2380 2381 done_restock: 2382 if (batch > nr_pages) 2383 refill_stock(memcg, batch - nr_pages); 2384 2385 /* 2386 * If the hierarchy is above the normal consumption range, schedule 2387 * reclaim on returning to userland. We can perform reclaim here 2388 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2389 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2390 * not recorded as it most likely matches current's and won't 2391 * change in the meantime. As high limit is checked again before 2392 * reclaim, the cost of mismatch is negligible. 2393 */ 2394 do { 2395 bool mem_high, swap_high; 2396 2397 mem_high = page_counter_read(&memcg->memory) > 2398 READ_ONCE(memcg->memory.high); 2399 swap_high = page_counter_read(&memcg->swap) > 2400 READ_ONCE(memcg->swap.high); 2401 2402 /* Don't bother a random interrupted task */ 2403 if (!in_task()) { 2404 if (mem_high) { 2405 schedule_work(&memcg->high_work); 2406 break; 2407 } 2408 continue; 2409 } 2410 2411 if (mem_high || swap_high) { 2412 /* 2413 * The allocating tasks in this cgroup will need to do 2414 * reclaim or be throttled to prevent further growth 2415 * of the memory or swap footprints. 2416 * 2417 * Target some best-effort fairness between the tasks, 2418 * and distribute reclaim work and delay penalties 2419 * based on how much each task is actually allocating. 2420 */ 2421 current->memcg_nr_pages_over_high += batch; 2422 set_notify_resume(current); 2423 break; 2424 } 2425 } while ((memcg = parent_mem_cgroup(memcg))); 2426 2427 /* 2428 * Reclaim is set up above to be called from the userland 2429 * return path. But also attempt synchronous reclaim to avoid 2430 * excessive overrun while the task is still inside the 2431 * kernel. If this is successful, the return path will see it 2432 * when it rechecks the overage and simply bail out. 2433 */ 2434 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2435 !(current->flags & PF_MEMALLOC) && 2436 gfpflags_allow_blocking(gfp_mask)) 2437 mem_cgroup_handle_over_high(gfp_mask); 2438 return 0; 2439 } 2440 2441 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2442 unsigned int nr_pages) 2443 { 2444 if (mem_cgroup_is_root(memcg)) 2445 return 0; 2446 2447 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2448 } 2449 2450 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2451 { 2452 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2453 /* 2454 * Any of the following ensures page's memcg stability: 2455 * 2456 * - the page lock 2457 * - LRU isolation 2458 * - exclusive reference 2459 */ 2460 folio->memcg_data = (unsigned long)memcg; 2461 } 2462 2463 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2464 struct pglist_data *pgdat, 2465 enum node_stat_item idx, int nr) 2466 { 2467 struct mem_cgroup *memcg; 2468 struct lruvec *lruvec; 2469 2470 rcu_read_lock(); 2471 memcg = obj_cgroup_memcg(objcg); 2472 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2473 __mod_memcg_lruvec_state(lruvec, idx, nr); 2474 rcu_read_unlock(); 2475 } 2476 2477 static __always_inline 2478 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2479 { 2480 /* 2481 * Slab objects are accounted individually, not per-page. 2482 * Memcg membership data for each individual object is saved in 2483 * slab->obj_exts. 2484 */ 2485 if (folio_test_slab(folio)) { 2486 struct slabobj_ext *obj_exts; 2487 struct slab *slab; 2488 unsigned int off; 2489 2490 slab = folio_slab(folio); 2491 obj_exts = slab_obj_exts(slab); 2492 if (!obj_exts) 2493 return NULL; 2494 2495 off = obj_to_index(slab->slab_cache, slab, p); 2496 if (obj_exts[off].objcg) 2497 return obj_cgroup_memcg(obj_exts[off].objcg); 2498 2499 return NULL; 2500 } 2501 2502 /* 2503 * folio_memcg_check() is used here, because in theory we can encounter 2504 * a folio where the slab flag has been cleared already, but 2505 * slab->obj_exts has not been freed yet 2506 * folio_memcg_check() will guarantee that a proper memory 2507 * cgroup pointer or NULL will be returned. 2508 */ 2509 return folio_memcg_check(folio); 2510 } 2511 2512 /* 2513 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2514 * It is not suitable for objects allocated using vmalloc(). 2515 * 2516 * A passed kernel object must be a slab object or a generic kernel page. 2517 * 2518 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2519 * cgroup_mutex, etc. 2520 */ 2521 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2522 { 2523 if (mem_cgroup_disabled()) 2524 return NULL; 2525 2526 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2527 } 2528 2529 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2530 { 2531 struct obj_cgroup *objcg = NULL; 2532 2533 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2534 objcg = rcu_dereference(memcg->objcg); 2535 if (likely(objcg && obj_cgroup_tryget(objcg))) 2536 break; 2537 objcg = NULL; 2538 } 2539 return objcg; 2540 } 2541 2542 static struct obj_cgroup *current_objcg_update(void) 2543 { 2544 struct mem_cgroup *memcg; 2545 struct obj_cgroup *old, *objcg = NULL; 2546 2547 do { 2548 /* Atomically drop the update bit. */ 2549 old = xchg(¤t->objcg, NULL); 2550 if (old) { 2551 old = (struct obj_cgroup *) 2552 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2553 obj_cgroup_put(old); 2554 2555 old = NULL; 2556 } 2557 2558 /* If new objcg is NULL, no reason for the second atomic update. */ 2559 if (!current->mm || (current->flags & PF_KTHREAD)) 2560 return NULL; 2561 2562 /* 2563 * Release the objcg pointer from the previous iteration, 2564 * if try_cmpxcg() below fails. 2565 */ 2566 if (unlikely(objcg)) { 2567 obj_cgroup_put(objcg); 2568 objcg = NULL; 2569 } 2570 2571 /* 2572 * Obtain the new objcg pointer. The current task can be 2573 * asynchronously moved to another memcg and the previous 2574 * memcg can be offlined. So let's get the memcg pointer 2575 * and try get a reference to objcg under a rcu read lock. 2576 */ 2577 2578 rcu_read_lock(); 2579 memcg = mem_cgroup_from_task(current); 2580 objcg = __get_obj_cgroup_from_memcg(memcg); 2581 rcu_read_unlock(); 2582 2583 /* 2584 * Try set up a new objcg pointer atomically. If it 2585 * fails, it means the update flag was set concurrently, so 2586 * the whole procedure should be repeated. 2587 */ 2588 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2589 2590 return objcg; 2591 } 2592 2593 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2594 { 2595 struct mem_cgroup *memcg; 2596 struct obj_cgroup *objcg; 2597 2598 if (in_task()) { 2599 memcg = current->active_memcg; 2600 if (unlikely(memcg)) 2601 goto from_memcg; 2602 2603 objcg = READ_ONCE(current->objcg); 2604 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2605 objcg = current_objcg_update(); 2606 /* 2607 * Objcg reference is kept by the task, so it's safe 2608 * to use the objcg by the current task. 2609 */ 2610 return objcg; 2611 } 2612 2613 memcg = this_cpu_read(int_active_memcg); 2614 if (unlikely(memcg)) 2615 goto from_memcg; 2616 2617 return NULL; 2618 2619 from_memcg: 2620 objcg = NULL; 2621 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2622 /* 2623 * Memcg pointer is protected by scope (see set_active_memcg()) 2624 * and is pinning the corresponding objcg, so objcg can't go 2625 * away and can be used within the scope without any additional 2626 * protection. 2627 */ 2628 objcg = rcu_dereference_check(memcg->objcg, 1); 2629 if (likely(objcg)) 2630 break; 2631 } 2632 2633 return objcg; 2634 } 2635 2636 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2637 { 2638 struct obj_cgroup *objcg; 2639 2640 if (!memcg_kmem_online()) 2641 return NULL; 2642 2643 if (folio_memcg_kmem(folio)) { 2644 objcg = __folio_objcg(folio); 2645 obj_cgroup_get(objcg); 2646 } else { 2647 struct mem_cgroup *memcg; 2648 2649 rcu_read_lock(); 2650 memcg = __folio_memcg(folio); 2651 if (memcg) 2652 objcg = __get_obj_cgroup_from_memcg(memcg); 2653 else 2654 objcg = NULL; 2655 rcu_read_unlock(); 2656 } 2657 return objcg; 2658 } 2659 2660 /* 2661 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2662 * @objcg: object cgroup to uncharge 2663 * @nr_pages: number of pages to uncharge 2664 */ 2665 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2666 unsigned int nr_pages) 2667 { 2668 struct mem_cgroup *memcg; 2669 2670 memcg = get_mem_cgroup_from_objcg(objcg); 2671 2672 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2673 memcg1_account_kmem(memcg, -nr_pages); 2674 if (!mem_cgroup_is_root(memcg)) 2675 refill_stock(memcg, nr_pages); 2676 2677 css_put(&memcg->css); 2678 } 2679 2680 /* 2681 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2682 * @objcg: object cgroup to charge 2683 * @gfp: reclaim mode 2684 * @nr_pages: number of pages to charge 2685 * 2686 * Returns 0 on success, an error code on failure. 2687 */ 2688 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2689 unsigned int nr_pages) 2690 { 2691 struct mem_cgroup *memcg; 2692 int ret; 2693 2694 memcg = get_mem_cgroup_from_objcg(objcg); 2695 2696 ret = try_charge_memcg(memcg, gfp, nr_pages); 2697 if (ret) 2698 goto out; 2699 2700 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2701 memcg1_account_kmem(memcg, nr_pages); 2702 out: 2703 css_put(&memcg->css); 2704 2705 return ret; 2706 } 2707 2708 static struct obj_cgroup *page_objcg(const struct page *page) 2709 { 2710 unsigned long memcg_data = page->memcg_data; 2711 2712 if (mem_cgroup_disabled() || !memcg_data) 2713 return NULL; 2714 2715 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2716 page); 2717 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2718 } 2719 2720 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2721 { 2722 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2723 } 2724 2725 /** 2726 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2727 * @page: page to charge 2728 * @gfp: reclaim mode 2729 * @order: allocation order 2730 * 2731 * Returns 0 on success, an error code on failure. 2732 */ 2733 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2734 { 2735 struct obj_cgroup *objcg; 2736 int ret = 0; 2737 2738 objcg = current_obj_cgroup(); 2739 if (objcg) { 2740 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2741 if (!ret) { 2742 obj_cgroup_get(objcg); 2743 page_set_objcg(page, objcg); 2744 return 0; 2745 } 2746 } 2747 return ret; 2748 } 2749 2750 /** 2751 * __memcg_kmem_uncharge_page: uncharge a kmem page 2752 * @page: page to uncharge 2753 * @order: allocation order 2754 */ 2755 void __memcg_kmem_uncharge_page(struct page *page, int order) 2756 { 2757 struct obj_cgroup *objcg = page_objcg(page); 2758 unsigned int nr_pages = 1 << order; 2759 2760 if (!objcg) 2761 return; 2762 2763 obj_cgroup_uncharge_pages(objcg, nr_pages); 2764 page->memcg_data = 0; 2765 obj_cgroup_put(objcg); 2766 } 2767 2768 static void __account_obj_stock(struct obj_cgroup *objcg, 2769 struct memcg_stock_pcp *stock, int nr, 2770 struct pglist_data *pgdat, enum node_stat_item idx) 2771 { 2772 int *bytes; 2773 2774 /* 2775 * Save vmstat data in stock and skip vmstat array update unless 2776 * accumulating over a page of vmstat data or when pgdat changes. 2777 */ 2778 if (stock->cached_pgdat != pgdat) { 2779 /* Flush the existing cached vmstat data */ 2780 struct pglist_data *oldpg = stock->cached_pgdat; 2781 2782 if (stock->nr_slab_reclaimable_b) { 2783 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2784 stock->nr_slab_reclaimable_b); 2785 stock->nr_slab_reclaimable_b = 0; 2786 } 2787 if (stock->nr_slab_unreclaimable_b) { 2788 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2789 stock->nr_slab_unreclaimable_b); 2790 stock->nr_slab_unreclaimable_b = 0; 2791 } 2792 stock->cached_pgdat = pgdat; 2793 } 2794 2795 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2796 : &stock->nr_slab_unreclaimable_b; 2797 /* 2798 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2799 * cached locally at least once before pushing it out. 2800 */ 2801 if (!*bytes) { 2802 *bytes = nr; 2803 nr = 0; 2804 } else { 2805 *bytes += nr; 2806 if (abs(*bytes) > PAGE_SIZE) { 2807 nr = *bytes; 2808 *bytes = 0; 2809 } else { 2810 nr = 0; 2811 } 2812 } 2813 if (nr) 2814 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2815 } 2816 2817 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2818 struct pglist_data *pgdat, enum node_stat_item idx) 2819 { 2820 struct memcg_stock_pcp *stock; 2821 unsigned long flags; 2822 bool ret = false; 2823 2824 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2825 2826 stock = this_cpu_ptr(&memcg_stock); 2827 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2828 stock->nr_bytes -= nr_bytes; 2829 ret = true; 2830 2831 if (pgdat) 2832 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); 2833 } 2834 2835 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2836 2837 return ret; 2838 } 2839 2840 static void drain_obj_stock(struct memcg_stock_pcp *stock) 2841 { 2842 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2843 2844 if (!old) 2845 return; 2846 2847 if (stock->nr_bytes) { 2848 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2849 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2850 2851 if (nr_pages) { 2852 struct mem_cgroup *memcg; 2853 2854 memcg = get_mem_cgroup_from_objcg(old); 2855 2856 __mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2857 memcg1_account_kmem(memcg, -nr_pages); 2858 if (!mem_cgroup_is_root(memcg)) 2859 memcg_uncharge(memcg, nr_pages); 2860 2861 css_put(&memcg->css); 2862 } 2863 2864 /* 2865 * The leftover is flushed to the centralized per-memcg value. 2866 * On the next attempt to refill obj stock it will be moved 2867 * to a per-cpu stock (probably, on an other CPU), see 2868 * refill_obj_stock(). 2869 * 2870 * How often it's flushed is a trade-off between the memory 2871 * limit enforcement accuracy and potential CPU contention, 2872 * so it might be changed in the future. 2873 */ 2874 atomic_add(nr_bytes, &old->nr_charged_bytes); 2875 stock->nr_bytes = 0; 2876 } 2877 2878 /* 2879 * Flush the vmstat data in current stock 2880 */ 2881 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2882 if (stock->nr_slab_reclaimable_b) { 2883 __mod_objcg_mlstate(old, stock->cached_pgdat, 2884 NR_SLAB_RECLAIMABLE_B, 2885 stock->nr_slab_reclaimable_b); 2886 stock->nr_slab_reclaimable_b = 0; 2887 } 2888 if (stock->nr_slab_unreclaimable_b) { 2889 __mod_objcg_mlstate(old, stock->cached_pgdat, 2890 NR_SLAB_UNRECLAIMABLE_B, 2891 stock->nr_slab_unreclaimable_b); 2892 stock->nr_slab_unreclaimable_b = 0; 2893 } 2894 stock->cached_pgdat = NULL; 2895 } 2896 2897 WRITE_ONCE(stock->cached_objcg, NULL); 2898 obj_cgroup_put(old); 2899 } 2900 2901 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2902 struct mem_cgroup *root_memcg) 2903 { 2904 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2905 struct mem_cgroup *memcg; 2906 2907 if (objcg) { 2908 memcg = obj_cgroup_memcg(objcg); 2909 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2910 return true; 2911 } 2912 2913 return false; 2914 } 2915 2916 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2917 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, 2918 enum node_stat_item idx) 2919 { 2920 struct memcg_stock_pcp *stock; 2921 unsigned long flags; 2922 unsigned int nr_pages = 0; 2923 2924 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2925 2926 stock = this_cpu_ptr(&memcg_stock); 2927 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2928 drain_obj_stock(stock); 2929 obj_cgroup_get(objcg); 2930 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2931 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2932 WRITE_ONCE(stock->cached_objcg, objcg); 2933 2934 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2935 } 2936 stock->nr_bytes += nr_bytes; 2937 2938 if (pgdat) 2939 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); 2940 2941 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 2942 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2943 stock->nr_bytes &= (PAGE_SIZE - 1); 2944 } 2945 2946 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2947 2948 if (nr_pages) 2949 obj_cgroup_uncharge_pages(objcg, nr_pages); 2950 } 2951 2952 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, 2953 struct pglist_data *pgdat, enum node_stat_item idx) 2954 { 2955 unsigned int nr_pages, nr_bytes; 2956 int ret; 2957 2958 if (likely(consume_obj_stock(objcg, size, pgdat, idx))) 2959 return 0; 2960 2961 /* 2962 * In theory, objcg->nr_charged_bytes can have enough 2963 * pre-charged bytes to satisfy the allocation. However, 2964 * flushing objcg->nr_charged_bytes requires two atomic 2965 * operations, and objcg->nr_charged_bytes can't be big. 2966 * The shared objcg->nr_charged_bytes can also become a 2967 * performance bottleneck if all tasks of the same memcg are 2968 * trying to update it. So it's better to ignore it and try 2969 * grab some new pages. The stock's nr_bytes will be flushed to 2970 * objcg->nr_charged_bytes later on when objcg changes. 2971 * 2972 * The stock's nr_bytes may contain enough pre-charged bytes 2973 * to allow one less page from being charged, but we can't rely 2974 * on the pre-charged bytes not being changed outside of 2975 * consume_obj_stock() or refill_obj_stock(). So ignore those 2976 * pre-charged bytes as well when charging pages. To avoid a 2977 * page uncharge right after a page charge, we set the 2978 * allow_uncharge flag to false when calling refill_obj_stock() 2979 * to temporarily allow the pre-charged bytes to exceed the page 2980 * size limit. The maximum reachable value of the pre-charged 2981 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 2982 * race. 2983 */ 2984 nr_pages = size >> PAGE_SHIFT; 2985 nr_bytes = size & (PAGE_SIZE - 1); 2986 2987 if (nr_bytes) 2988 nr_pages += 1; 2989 2990 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 2991 if (!ret && (nr_bytes || pgdat)) 2992 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, 2993 false, size, pgdat, idx); 2994 2995 return ret; 2996 } 2997 2998 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 2999 { 3000 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); 3001 } 3002 3003 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3004 { 3005 refill_obj_stock(objcg, size, true, 0, NULL, 0); 3006 } 3007 3008 static inline size_t obj_full_size(struct kmem_cache *s) 3009 { 3010 /* 3011 * For each accounted object there is an extra space which is used 3012 * to store obj_cgroup membership. Charge it too. 3013 */ 3014 return s->size + sizeof(struct obj_cgroup *); 3015 } 3016 3017 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3018 gfp_t flags, size_t size, void **p) 3019 { 3020 struct obj_cgroup *objcg; 3021 struct slab *slab; 3022 unsigned long off; 3023 size_t i; 3024 3025 /* 3026 * The obtained objcg pointer is safe to use within the current scope, 3027 * defined by current task or set_active_memcg() pair. 3028 * obj_cgroup_get() is used to get a permanent reference. 3029 */ 3030 objcg = current_obj_cgroup(); 3031 if (!objcg) 3032 return true; 3033 3034 /* 3035 * slab_alloc_node() avoids the NULL check, so we might be called with a 3036 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3037 * the whole requested size. 3038 * return success as there's nothing to free back 3039 */ 3040 if (unlikely(*p == NULL)) 3041 return true; 3042 3043 flags &= gfp_allowed_mask; 3044 3045 if (lru) { 3046 int ret; 3047 struct mem_cgroup *memcg; 3048 3049 memcg = get_mem_cgroup_from_objcg(objcg); 3050 ret = memcg_list_lru_alloc(memcg, lru, flags); 3051 css_put(&memcg->css); 3052 3053 if (ret) 3054 return false; 3055 } 3056 3057 for (i = 0; i < size; i++) { 3058 slab = virt_to_slab(p[i]); 3059 3060 if (!slab_obj_exts(slab) && 3061 alloc_slab_obj_exts(slab, s, flags, false)) { 3062 continue; 3063 } 3064 3065 /* 3066 * if we fail and size is 1, memcg_alloc_abort_single() will 3067 * just free the object, which is ok as we have not assigned 3068 * objcg to its obj_ext yet 3069 * 3070 * for larger sizes, kmem_cache_free_bulk() will uncharge 3071 * any objects that were already charged and obj_ext assigned 3072 * 3073 * TODO: we could batch this until slab_pgdat(slab) changes 3074 * between iterations, with a more complicated undo 3075 */ 3076 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), 3077 slab_pgdat(slab), cache_vmstat_idx(s))) 3078 return false; 3079 3080 off = obj_to_index(s, slab, p[i]); 3081 obj_cgroup_get(objcg); 3082 slab_obj_exts(slab)[off].objcg = objcg; 3083 } 3084 3085 return true; 3086 } 3087 3088 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3089 void **p, int objects, struct slabobj_ext *obj_exts) 3090 { 3091 size_t obj_size = obj_full_size(s); 3092 3093 for (int i = 0; i < objects; i++) { 3094 struct obj_cgroup *objcg; 3095 unsigned int off; 3096 3097 off = obj_to_index(s, slab, p[i]); 3098 objcg = obj_exts[off].objcg; 3099 if (!objcg) 3100 continue; 3101 3102 obj_exts[off].objcg = NULL; 3103 refill_obj_stock(objcg, obj_size, true, -obj_size, 3104 slab_pgdat(slab), cache_vmstat_idx(s)); 3105 obj_cgroup_put(objcg); 3106 } 3107 } 3108 3109 /* 3110 * The objcg is only set on the first page, so transfer it to all the 3111 * other pages. 3112 */ 3113 void split_page_memcg(struct page *page, unsigned order) 3114 { 3115 struct obj_cgroup *objcg = page_objcg(page); 3116 unsigned int i, nr = 1 << order; 3117 3118 if (!objcg) 3119 return; 3120 3121 for (i = 1; i < nr; i++) 3122 page_set_objcg(&page[i], objcg); 3123 3124 obj_cgroup_get_many(objcg, nr - 1); 3125 } 3126 3127 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3128 unsigned new_order) 3129 { 3130 unsigned new_refs; 3131 3132 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3133 return; 3134 3135 new_refs = (1 << (old_order - new_order)) - 1; 3136 css_get_many(&__folio_memcg(folio)->css, new_refs); 3137 } 3138 3139 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3140 { 3141 unsigned long val; 3142 3143 if (mem_cgroup_is_root(memcg)) { 3144 /* 3145 * Approximate root's usage from global state. This isn't 3146 * perfect, but the root usage was always an approximation. 3147 */ 3148 val = global_node_page_state(NR_FILE_PAGES) + 3149 global_node_page_state(NR_ANON_MAPPED); 3150 if (swap) 3151 val += total_swap_pages - get_nr_swap_pages(); 3152 } else { 3153 if (!swap) 3154 val = page_counter_read(&memcg->memory); 3155 else 3156 val = page_counter_read(&memcg->memsw); 3157 } 3158 return val; 3159 } 3160 3161 static int memcg_online_kmem(struct mem_cgroup *memcg) 3162 { 3163 struct obj_cgroup *objcg; 3164 3165 if (mem_cgroup_kmem_disabled()) 3166 return 0; 3167 3168 if (unlikely(mem_cgroup_is_root(memcg))) 3169 return 0; 3170 3171 objcg = obj_cgroup_alloc(); 3172 if (!objcg) 3173 return -ENOMEM; 3174 3175 objcg->memcg = memcg; 3176 rcu_assign_pointer(memcg->objcg, objcg); 3177 obj_cgroup_get(objcg); 3178 memcg->orig_objcg = objcg; 3179 3180 static_branch_enable(&memcg_kmem_online_key); 3181 3182 memcg->kmemcg_id = memcg->id.id; 3183 3184 return 0; 3185 } 3186 3187 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3188 { 3189 struct mem_cgroup *parent; 3190 3191 if (mem_cgroup_kmem_disabled()) 3192 return; 3193 3194 if (unlikely(mem_cgroup_is_root(memcg))) 3195 return; 3196 3197 parent = parent_mem_cgroup(memcg); 3198 if (!parent) 3199 parent = root_mem_cgroup; 3200 3201 memcg_reparent_list_lrus(memcg, parent); 3202 3203 /* 3204 * Objcg's reparenting must be after list_lru's, make sure list_lru 3205 * helpers won't use parent's list_lru until child is drained. 3206 */ 3207 memcg_reparent_objcgs(memcg, parent); 3208 } 3209 3210 #ifdef CONFIG_CGROUP_WRITEBACK 3211 3212 #include <trace/events/writeback.h> 3213 3214 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3215 { 3216 return wb_domain_init(&memcg->cgwb_domain, gfp); 3217 } 3218 3219 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3220 { 3221 wb_domain_exit(&memcg->cgwb_domain); 3222 } 3223 3224 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3225 { 3226 wb_domain_size_changed(&memcg->cgwb_domain); 3227 } 3228 3229 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3230 { 3231 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3232 3233 if (!memcg->css.parent) 3234 return NULL; 3235 3236 return &memcg->cgwb_domain; 3237 } 3238 3239 /** 3240 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3241 * @wb: bdi_writeback in question 3242 * @pfilepages: out parameter for number of file pages 3243 * @pheadroom: out parameter for number of allocatable pages according to memcg 3244 * @pdirty: out parameter for number of dirty pages 3245 * @pwriteback: out parameter for number of pages under writeback 3246 * 3247 * Determine the numbers of file, headroom, dirty, and writeback pages in 3248 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3249 * is a bit more involved. 3250 * 3251 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3252 * headroom is calculated as the lowest headroom of itself and the 3253 * ancestors. Note that this doesn't consider the actual amount of 3254 * available memory in the system. The caller should further cap 3255 * *@pheadroom accordingly. 3256 */ 3257 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3258 unsigned long *pheadroom, unsigned long *pdirty, 3259 unsigned long *pwriteback) 3260 { 3261 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3262 struct mem_cgroup *parent; 3263 3264 mem_cgroup_flush_stats_ratelimited(memcg); 3265 3266 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3267 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3268 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3269 memcg_page_state(memcg, NR_ACTIVE_FILE); 3270 3271 *pheadroom = PAGE_COUNTER_MAX; 3272 while ((parent = parent_mem_cgroup(memcg))) { 3273 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3274 READ_ONCE(memcg->memory.high)); 3275 unsigned long used = page_counter_read(&memcg->memory); 3276 3277 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3278 memcg = parent; 3279 } 3280 } 3281 3282 /* 3283 * Foreign dirty flushing 3284 * 3285 * There's an inherent mismatch between memcg and writeback. The former 3286 * tracks ownership per-page while the latter per-inode. This was a 3287 * deliberate design decision because honoring per-page ownership in the 3288 * writeback path is complicated, may lead to higher CPU and IO overheads 3289 * and deemed unnecessary given that write-sharing an inode across 3290 * different cgroups isn't a common use-case. 3291 * 3292 * Combined with inode majority-writer ownership switching, this works well 3293 * enough in most cases but there are some pathological cases. For 3294 * example, let's say there are two cgroups A and B which keep writing to 3295 * different but confined parts of the same inode. B owns the inode and 3296 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3297 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3298 * triggering background writeback. A will be slowed down without a way to 3299 * make writeback of the dirty pages happen. 3300 * 3301 * Conditions like the above can lead to a cgroup getting repeatedly and 3302 * severely throttled after making some progress after each 3303 * dirty_expire_interval while the underlying IO device is almost 3304 * completely idle. 3305 * 3306 * Solving this problem completely requires matching the ownership tracking 3307 * granularities between memcg and writeback in either direction. However, 3308 * the more egregious behaviors can be avoided by simply remembering the 3309 * most recent foreign dirtying events and initiating remote flushes on 3310 * them when local writeback isn't enough to keep the memory clean enough. 3311 * 3312 * The following two functions implement such mechanism. When a foreign 3313 * page - a page whose memcg and writeback ownerships don't match - is 3314 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3315 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3316 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3317 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3318 * foreign bdi_writebacks which haven't expired. Both the numbers of 3319 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3320 * limited to MEMCG_CGWB_FRN_CNT. 3321 * 3322 * The mechanism only remembers IDs and doesn't hold any object references. 3323 * As being wrong occasionally doesn't matter, updates and accesses to the 3324 * records are lockless and racy. 3325 */ 3326 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3327 struct bdi_writeback *wb) 3328 { 3329 struct mem_cgroup *memcg = folio_memcg(folio); 3330 struct memcg_cgwb_frn *frn; 3331 u64 now = get_jiffies_64(); 3332 u64 oldest_at = now; 3333 int oldest = -1; 3334 int i; 3335 3336 trace_track_foreign_dirty(folio, wb); 3337 3338 /* 3339 * Pick the slot to use. If there is already a slot for @wb, keep 3340 * using it. If not replace the oldest one which isn't being 3341 * written out. 3342 */ 3343 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3344 frn = &memcg->cgwb_frn[i]; 3345 if (frn->bdi_id == wb->bdi->id && 3346 frn->memcg_id == wb->memcg_css->id) 3347 break; 3348 if (time_before64(frn->at, oldest_at) && 3349 atomic_read(&frn->done.cnt) == 1) { 3350 oldest = i; 3351 oldest_at = frn->at; 3352 } 3353 } 3354 3355 if (i < MEMCG_CGWB_FRN_CNT) { 3356 /* 3357 * Re-using an existing one. Update timestamp lazily to 3358 * avoid making the cacheline hot. We want them to be 3359 * reasonably up-to-date and significantly shorter than 3360 * dirty_expire_interval as that's what expires the record. 3361 * Use the shorter of 1s and dirty_expire_interval / 8. 3362 */ 3363 unsigned long update_intv = 3364 min_t(unsigned long, HZ, 3365 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3366 3367 if (time_before64(frn->at, now - update_intv)) 3368 frn->at = now; 3369 } else if (oldest >= 0) { 3370 /* replace the oldest free one */ 3371 frn = &memcg->cgwb_frn[oldest]; 3372 frn->bdi_id = wb->bdi->id; 3373 frn->memcg_id = wb->memcg_css->id; 3374 frn->at = now; 3375 } 3376 } 3377 3378 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3379 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3380 { 3381 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3382 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3383 u64 now = jiffies_64; 3384 int i; 3385 3386 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3387 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3388 3389 /* 3390 * If the record is older than dirty_expire_interval, 3391 * writeback on it has already started. No need to kick it 3392 * off again. Also, don't start a new one if there's 3393 * already one in flight. 3394 */ 3395 if (time_after64(frn->at, now - intv) && 3396 atomic_read(&frn->done.cnt) == 1) { 3397 frn->at = 0; 3398 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3399 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3400 WB_REASON_FOREIGN_FLUSH, 3401 &frn->done); 3402 } 3403 } 3404 } 3405 3406 #else /* CONFIG_CGROUP_WRITEBACK */ 3407 3408 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3409 { 3410 return 0; 3411 } 3412 3413 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3414 { 3415 } 3416 3417 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3418 { 3419 } 3420 3421 #endif /* CONFIG_CGROUP_WRITEBACK */ 3422 3423 /* 3424 * Private memory cgroup IDR 3425 * 3426 * Swap-out records and page cache shadow entries need to store memcg 3427 * references in constrained space, so we maintain an ID space that is 3428 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3429 * memory-controlled cgroups to 64k. 3430 * 3431 * However, there usually are many references to the offline CSS after 3432 * the cgroup has been destroyed, such as page cache or reclaimable 3433 * slab objects, that don't need to hang on to the ID. We want to keep 3434 * those dead CSS from occupying IDs, or we might quickly exhaust the 3435 * relatively small ID space and prevent the creation of new cgroups 3436 * even when there are much fewer than 64k cgroups - possibly none. 3437 * 3438 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3439 * be freed and recycled when it's no longer needed, which is usually 3440 * when the CSS is offlined. 3441 * 3442 * The only exception to that are records of swapped out tmpfs/shmem 3443 * pages that need to be attributed to live ancestors on swapin. But 3444 * those references are manageable from userspace. 3445 */ 3446 3447 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3448 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3449 3450 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3451 { 3452 if (memcg->id.id > 0) { 3453 xa_erase(&mem_cgroup_ids, memcg->id.id); 3454 memcg->id.id = 0; 3455 } 3456 } 3457 3458 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3459 unsigned int n) 3460 { 3461 refcount_add(n, &memcg->id.ref); 3462 } 3463 3464 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3465 { 3466 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3467 mem_cgroup_id_remove(memcg); 3468 3469 /* Memcg ID pins CSS */ 3470 css_put(&memcg->css); 3471 } 3472 } 3473 3474 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3475 { 3476 mem_cgroup_id_put_many(memcg, 1); 3477 } 3478 3479 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 3480 { 3481 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3482 /* 3483 * The root cgroup cannot be destroyed, so it's refcount must 3484 * always be >= 1. 3485 */ 3486 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3487 VM_BUG_ON(1); 3488 break; 3489 } 3490 memcg = parent_mem_cgroup(memcg); 3491 if (!memcg) 3492 memcg = root_mem_cgroup; 3493 } 3494 return memcg; 3495 } 3496 3497 /** 3498 * mem_cgroup_from_id - look up a memcg from a memcg id 3499 * @id: the memcg id to look up 3500 * 3501 * Caller must hold rcu_read_lock(). 3502 */ 3503 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3504 { 3505 WARN_ON_ONCE(!rcu_read_lock_held()); 3506 return xa_load(&mem_cgroup_ids, id); 3507 } 3508 3509 #ifdef CONFIG_SHRINKER_DEBUG 3510 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3511 { 3512 struct cgroup *cgrp; 3513 struct cgroup_subsys_state *css; 3514 struct mem_cgroup *memcg; 3515 3516 cgrp = cgroup_get_from_id(ino); 3517 if (IS_ERR(cgrp)) 3518 return ERR_CAST(cgrp); 3519 3520 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3521 if (css) 3522 memcg = container_of(css, struct mem_cgroup, css); 3523 else 3524 memcg = ERR_PTR(-ENOENT); 3525 3526 cgroup_put(cgrp); 3527 3528 return memcg; 3529 } 3530 #endif 3531 3532 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3533 { 3534 if (!pn) 3535 return; 3536 3537 free_percpu(pn->lruvec_stats_percpu); 3538 kfree(pn->lruvec_stats); 3539 kfree(pn); 3540 } 3541 3542 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3543 { 3544 struct mem_cgroup_per_node *pn; 3545 3546 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3547 if (!pn) 3548 return false; 3549 3550 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3551 GFP_KERNEL_ACCOUNT, node); 3552 if (!pn->lruvec_stats) 3553 goto fail; 3554 3555 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3556 GFP_KERNEL_ACCOUNT); 3557 if (!pn->lruvec_stats_percpu) 3558 goto fail; 3559 3560 lruvec_init(&pn->lruvec); 3561 pn->memcg = memcg; 3562 3563 memcg->nodeinfo[node] = pn; 3564 return true; 3565 fail: 3566 free_mem_cgroup_per_node_info(pn); 3567 return false; 3568 } 3569 3570 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3571 { 3572 int node; 3573 3574 obj_cgroup_put(memcg->orig_objcg); 3575 3576 for_each_node(node) 3577 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3578 memcg1_free_events(memcg); 3579 kfree(memcg->vmstats); 3580 free_percpu(memcg->vmstats_percpu); 3581 kfree(memcg); 3582 } 3583 3584 static void mem_cgroup_free(struct mem_cgroup *memcg) 3585 { 3586 lru_gen_exit_memcg(memcg); 3587 memcg_wb_domain_exit(memcg); 3588 __mem_cgroup_free(memcg); 3589 } 3590 3591 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3592 { 3593 struct memcg_vmstats_percpu *statc, *pstatc; 3594 struct mem_cgroup *memcg; 3595 int node, cpu; 3596 int __maybe_unused i; 3597 long error; 3598 3599 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3600 if (!memcg) 3601 return ERR_PTR(-ENOMEM); 3602 3603 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3604 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3605 if (error) 3606 goto fail; 3607 error = -ENOMEM; 3608 3609 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3610 GFP_KERNEL_ACCOUNT); 3611 if (!memcg->vmstats) 3612 goto fail; 3613 3614 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3615 GFP_KERNEL_ACCOUNT); 3616 if (!memcg->vmstats_percpu) 3617 goto fail; 3618 3619 if (!memcg1_alloc_events(memcg)) 3620 goto fail; 3621 3622 for_each_possible_cpu(cpu) { 3623 if (parent) 3624 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3625 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3626 statc->parent = parent ? pstatc : NULL; 3627 statc->vmstats = memcg->vmstats; 3628 } 3629 3630 for_each_node(node) 3631 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3632 goto fail; 3633 3634 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3635 goto fail; 3636 3637 INIT_WORK(&memcg->high_work, high_work_func); 3638 vmpressure_init(&memcg->vmpressure); 3639 INIT_LIST_HEAD(&memcg->memory_peaks); 3640 INIT_LIST_HEAD(&memcg->swap_peaks); 3641 spin_lock_init(&memcg->peaks_lock); 3642 memcg->socket_pressure = jiffies; 3643 memcg1_memcg_init(memcg); 3644 memcg->kmemcg_id = -1; 3645 INIT_LIST_HEAD(&memcg->objcg_list); 3646 #ifdef CONFIG_CGROUP_WRITEBACK 3647 INIT_LIST_HEAD(&memcg->cgwb_list); 3648 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3649 memcg->cgwb_frn[i].done = 3650 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3651 #endif 3652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3653 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3654 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3655 memcg->deferred_split_queue.split_queue_len = 0; 3656 #endif 3657 lru_gen_init_memcg(memcg); 3658 return memcg; 3659 fail: 3660 mem_cgroup_id_remove(memcg); 3661 __mem_cgroup_free(memcg); 3662 return ERR_PTR(error); 3663 } 3664 3665 static struct cgroup_subsys_state * __ref 3666 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3667 { 3668 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3669 struct mem_cgroup *memcg, *old_memcg; 3670 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3671 3672 old_memcg = set_active_memcg(parent); 3673 memcg = mem_cgroup_alloc(parent); 3674 set_active_memcg(old_memcg); 3675 if (IS_ERR(memcg)) 3676 return ERR_CAST(memcg); 3677 3678 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3679 memcg1_soft_limit_reset(memcg); 3680 #ifdef CONFIG_ZSWAP 3681 memcg->zswap_max = PAGE_COUNTER_MAX; 3682 WRITE_ONCE(memcg->zswap_writeback, true); 3683 #endif 3684 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3685 if (parent) { 3686 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3687 3688 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3689 page_counter_init(&memcg->swap, &parent->swap, false); 3690 #ifdef CONFIG_MEMCG_V1 3691 memcg->memory.track_failcnt = !memcg_on_dfl; 3692 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3693 page_counter_init(&memcg->kmem, &parent->kmem, false); 3694 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3695 #endif 3696 } else { 3697 init_memcg_stats(); 3698 init_memcg_events(); 3699 page_counter_init(&memcg->memory, NULL, true); 3700 page_counter_init(&memcg->swap, NULL, false); 3701 #ifdef CONFIG_MEMCG_V1 3702 page_counter_init(&memcg->kmem, NULL, false); 3703 page_counter_init(&memcg->tcpmem, NULL, false); 3704 #endif 3705 root_mem_cgroup = memcg; 3706 return &memcg->css; 3707 } 3708 3709 if (memcg_on_dfl && !cgroup_memory_nosocket) 3710 static_branch_inc(&memcg_sockets_enabled_key); 3711 3712 if (!cgroup_memory_nobpf) 3713 static_branch_inc(&memcg_bpf_enabled_key); 3714 3715 return &memcg->css; 3716 } 3717 3718 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3719 { 3720 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3721 3722 if (memcg_online_kmem(memcg)) 3723 goto remove_id; 3724 3725 /* 3726 * A memcg must be visible for expand_shrinker_info() 3727 * by the time the maps are allocated. So, we allocate maps 3728 * here, when for_each_mem_cgroup() can't skip it. 3729 */ 3730 if (alloc_shrinker_info(memcg)) 3731 goto offline_kmem; 3732 3733 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3734 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3735 FLUSH_TIME); 3736 lru_gen_online_memcg(memcg); 3737 3738 /* Online state pins memcg ID, memcg ID pins CSS */ 3739 refcount_set(&memcg->id.ref, 1); 3740 css_get(css); 3741 3742 /* 3743 * Ensure mem_cgroup_from_id() works once we're fully online. 3744 * 3745 * We could do this earlier and require callers to filter with 3746 * css_tryget_online(). But right now there are no users that 3747 * need earlier access, and the workingset code relies on the 3748 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3749 * publish it here at the end of onlining. This matches the 3750 * regular ID destruction during offlining. 3751 */ 3752 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3753 3754 return 0; 3755 offline_kmem: 3756 memcg_offline_kmem(memcg); 3757 remove_id: 3758 mem_cgroup_id_remove(memcg); 3759 return -ENOMEM; 3760 } 3761 3762 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3763 { 3764 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3765 3766 memcg1_css_offline(memcg); 3767 3768 page_counter_set_min(&memcg->memory, 0); 3769 page_counter_set_low(&memcg->memory, 0); 3770 3771 zswap_memcg_offline_cleanup(memcg); 3772 3773 memcg_offline_kmem(memcg); 3774 reparent_shrinker_deferred(memcg); 3775 wb_memcg_offline(memcg); 3776 lru_gen_offline_memcg(memcg); 3777 3778 drain_all_stock(memcg); 3779 3780 mem_cgroup_id_put(memcg); 3781 } 3782 3783 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3784 { 3785 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3786 3787 invalidate_reclaim_iterators(memcg); 3788 lru_gen_release_memcg(memcg); 3789 } 3790 3791 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3792 { 3793 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3794 int __maybe_unused i; 3795 3796 #ifdef CONFIG_CGROUP_WRITEBACK 3797 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3798 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3799 #endif 3800 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3801 static_branch_dec(&memcg_sockets_enabled_key); 3802 3803 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3804 static_branch_dec(&memcg_sockets_enabled_key); 3805 3806 if (!cgroup_memory_nobpf) 3807 static_branch_dec(&memcg_bpf_enabled_key); 3808 3809 vmpressure_cleanup(&memcg->vmpressure); 3810 cancel_work_sync(&memcg->high_work); 3811 memcg1_remove_from_trees(memcg); 3812 free_shrinker_info(memcg); 3813 mem_cgroup_free(memcg); 3814 } 3815 3816 /** 3817 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3818 * @css: the target css 3819 * 3820 * Reset the states of the mem_cgroup associated with @css. This is 3821 * invoked when the userland requests disabling on the default hierarchy 3822 * but the memcg is pinned through dependency. The memcg should stop 3823 * applying policies and should revert to the vanilla state as it may be 3824 * made visible again. 3825 * 3826 * The current implementation only resets the essential configurations. 3827 * This needs to be expanded to cover all the visible parts. 3828 */ 3829 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3830 { 3831 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3832 3833 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3834 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3835 #ifdef CONFIG_MEMCG_V1 3836 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3837 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3838 #endif 3839 page_counter_set_min(&memcg->memory, 0); 3840 page_counter_set_low(&memcg->memory, 0); 3841 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3842 memcg1_soft_limit_reset(memcg); 3843 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3844 memcg_wb_domain_size_changed(memcg); 3845 } 3846 3847 struct aggregate_control { 3848 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3849 long *aggregate; 3850 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3851 long *local; 3852 /* pointer to the pending child counters during tree propagation */ 3853 long *pending; 3854 /* pointer to the parent's pending counters, could be NULL */ 3855 long *ppending; 3856 /* pointer to the percpu counters to be aggregated */ 3857 long *cstat; 3858 /* pointer to the percpu counters of the last aggregation*/ 3859 long *cstat_prev; 3860 /* size of the above counters */ 3861 int size; 3862 }; 3863 3864 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3865 { 3866 int i; 3867 long delta, delta_cpu, v; 3868 3869 for (i = 0; i < ac->size; i++) { 3870 /* 3871 * Collect the aggregated propagation counts of groups 3872 * below us. We're in a per-cpu loop here and this is 3873 * a global counter, so the first cycle will get them. 3874 */ 3875 delta = ac->pending[i]; 3876 if (delta) 3877 ac->pending[i] = 0; 3878 3879 /* Add CPU changes on this level since the last flush */ 3880 delta_cpu = 0; 3881 v = READ_ONCE(ac->cstat[i]); 3882 if (v != ac->cstat_prev[i]) { 3883 delta_cpu = v - ac->cstat_prev[i]; 3884 delta += delta_cpu; 3885 ac->cstat_prev[i] = v; 3886 } 3887 3888 /* Aggregate counts on this level and propagate upwards */ 3889 if (delta_cpu) 3890 ac->local[i] += delta_cpu; 3891 3892 if (delta) { 3893 ac->aggregate[i] += delta; 3894 if (ac->ppending) 3895 ac->ppending[i] += delta; 3896 } 3897 } 3898 } 3899 3900 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3901 { 3902 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3903 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3904 struct memcg_vmstats_percpu *statc; 3905 struct aggregate_control ac; 3906 int nid; 3907 3908 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3909 3910 ac = (struct aggregate_control) { 3911 .aggregate = memcg->vmstats->state, 3912 .local = memcg->vmstats->state_local, 3913 .pending = memcg->vmstats->state_pending, 3914 .ppending = parent ? parent->vmstats->state_pending : NULL, 3915 .cstat = statc->state, 3916 .cstat_prev = statc->state_prev, 3917 .size = MEMCG_VMSTAT_SIZE, 3918 }; 3919 mem_cgroup_stat_aggregate(&ac); 3920 3921 ac = (struct aggregate_control) { 3922 .aggregate = memcg->vmstats->events, 3923 .local = memcg->vmstats->events_local, 3924 .pending = memcg->vmstats->events_pending, 3925 .ppending = parent ? parent->vmstats->events_pending : NULL, 3926 .cstat = statc->events, 3927 .cstat_prev = statc->events_prev, 3928 .size = NR_MEMCG_EVENTS, 3929 }; 3930 mem_cgroup_stat_aggregate(&ac); 3931 3932 for_each_node_state(nid, N_MEMORY) { 3933 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3934 struct lruvec_stats *lstats = pn->lruvec_stats; 3935 struct lruvec_stats *plstats = NULL; 3936 struct lruvec_stats_percpu *lstatc; 3937 3938 if (parent) 3939 plstats = parent->nodeinfo[nid]->lruvec_stats; 3940 3941 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 3942 3943 ac = (struct aggregate_control) { 3944 .aggregate = lstats->state, 3945 .local = lstats->state_local, 3946 .pending = lstats->state_pending, 3947 .ppending = plstats ? plstats->state_pending : NULL, 3948 .cstat = lstatc->state, 3949 .cstat_prev = lstatc->state_prev, 3950 .size = NR_MEMCG_NODE_STAT_ITEMS, 3951 }; 3952 mem_cgroup_stat_aggregate(&ac); 3953 3954 } 3955 WRITE_ONCE(statc->stats_updates, 0); 3956 /* We are in a per-cpu loop here, only do the atomic write once */ 3957 if (atomic64_read(&memcg->vmstats->stats_updates)) 3958 atomic64_set(&memcg->vmstats->stats_updates, 0); 3959 } 3960 3961 static void mem_cgroup_fork(struct task_struct *task) 3962 { 3963 /* 3964 * Set the update flag to cause task->objcg to be initialized lazily 3965 * on the first allocation. It can be done without any synchronization 3966 * because it's always performed on the current task, so does 3967 * current_objcg_update(). 3968 */ 3969 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 3970 } 3971 3972 static void mem_cgroup_exit(struct task_struct *task) 3973 { 3974 struct obj_cgroup *objcg = task->objcg; 3975 3976 objcg = (struct obj_cgroup *) 3977 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 3978 obj_cgroup_put(objcg); 3979 3980 /* 3981 * Some kernel allocations can happen after this point, 3982 * but let's ignore them. It can be done without any synchronization 3983 * because it's always performed on the current task, so does 3984 * current_objcg_update(). 3985 */ 3986 task->objcg = NULL; 3987 } 3988 3989 #ifdef CONFIG_LRU_GEN 3990 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 3991 { 3992 struct task_struct *task; 3993 struct cgroup_subsys_state *css; 3994 3995 /* find the first leader if there is any */ 3996 cgroup_taskset_for_each_leader(task, css, tset) 3997 break; 3998 3999 if (!task) 4000 return; 4001 4002 task_lock(task); 4003 if (task->mm && READ_ONCE(task->mm->owner) == task) 4004 lru_gen_migrate_mm(task->mm); 4005 task_unlock(task); 4006 } 4007 #else 4008 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4009 #endif /* CONFIG_LRU_GEN */ 4010 4011 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4012 { 4013 struct task_struct *task; 4014 struct cgroup_subsys_state *css; 4015 4016 cgroup_taskset_for_each(task, css, tset) { 4017 /* atomically set the update bit */ 4018 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4019 } 4020 } 4021 4022 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4023 { 4024 mem_cgroup_lru_gen_attach(tset); 4025 mem_cgroup_kmem_attach(tset); 4026 } 4027 4028 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4029 { 4030 if (value == PAGE_COUNTER_MAX) 4031 seq_puts(m, "max\n"); 4032 else 4033 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4034 4035 return 0; 4036 } 4037 4038 static u64 memory_current_read(struct cgroup_subsys_state *css, 4039 struct cftype *cft) 4040 { 4041 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4042 4043 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4044 } 4045 4046 #define OFP_PEAK_UNSET (((-1UL))) 4047 4048 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4049 { 4050 struct cgroup_of_peak *ofp = of_peak(sf->private); 4051 u64 fd_peak = READ_ONCE(ofp->value), peak; 4052 4053 /* User wants global or local peak? */ 4054 if (fd_peak == OFP_PEAK_UNSET) 4055 peak = pc->watermark; 4056 else 4057 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4058 4059 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4060 return 0; 4061 } 4062 4063 static int memory_peak_show(struct seq_file *sf, void *v) 4064 { 4065 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4066 4067 return peak_show(sf, v, &memcg->memory); 4068 } 4069 4070 static int peak_open(struct kernfs_open_file *of) 4071 { 4072 struct cgroup_of_peak *ofp = of_peak(of); 4073 4074 ofp->value = OFP_PEAK_UNSET; 4075 return 0; 4076 } 4077 4078 static void peak_release(struct kernfs_open_file *of) 4079 { 4080 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4081 struct cgroup_of_peak *ofp = of_peak(of); 4082 4083 if (ofp->value == OFP_PEAK_UNSET) { 4084 /* fast path (no writes on this fd) */ 4085 return; 4086 } 4087 spin_lock(&memcg->peaks_lock); 4088 list_del(&ofp->list); 4089 spin_unlock(&memcg->peaks_lock); 4090 } 4091 4092 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4093 loff_t off, struct page_counter *pc, 4094 struct list_head *watchers) 4095 { 4096 unsigned long usage; 4097 struct cgroup_of_peak *peer_ctx; 4098 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4099 struct cgroup_of_peak *ofp = of_peak(of); 4100 4101 spin_lock(&memcg->peaks_lock); 4102 4103 usage = page_counter_read(pc); 4104 WRITE_ONCE(pc->local_watermark, usage); 4105 4106 list_for_each_entry(peer_ctx, watchers, list) 4107 if (usage > peer_ctx->value) 4108 WRITE_ONCE(peer_ctx->value, usage); 4109 4110 /* initial write, register watcher */ 4111 if (ofp->value == OFP_PEAK_UNSET) 4112 list_add(&ofp->list, watchers); 4113 4114 WRITE_ONCE(ofp->value, usage); 4115 spin_unlock(&memcg->peaks_lock); 4116 4117 return nbytes; 4118 } 4119 4120 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4121 size_t nbytes, loff_t off) 4122 { 4123 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4124 4125 return peak_write(of, buf, nbytes, off, &memcg->memory, 4126 &memcg->memory_peaks); 4127 } 4128 4129 #undef OFP_PEAK_UNSET 4130 4131 static int memory_min_show(struct seq_file *m, void *v) 4132 { 4133 return seq_puts_memcg_tunable(m, 4134 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4135 } 4136 4137 static ssize_t memory_min_write(struct kernfs_open_file *of, 4138 char *buf, size_t nbytes, loff_t off) 4139 { 4140 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4141 unsigned long min; 4142 int err; 4143 4144 buf = strstrip(buf); 4145 err = page_counter_memparse(buf, "max", &min); 4146 if (err) 4147 return err; 4148 4149 page_counter_set_min(&memcg->memory, min); 4150 4151 return nbytes; 4152 } 4153 4154 static int memory_low_show(struct seq_file *m, void *v) 4155 { 4156 return seq_puts_memcg_tunable(m, 4157 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4158 } 4159 4160 static ssize_t memory_low_write(struct kernfs_open_file *of, 4161 char *buf, size_t nbytes, loff_t off) 4162 { 4163 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4164 unsigned long low; 4165 int err; 4166 4167 buf = strstrip(buf); 4168 err = page_counter_memparse(buf, "max", &low); 4169 if (err) 4170 return err; 4171 4172 page_counter_set_low(&memcg->memory, low); 4173 4174 return nbytes; 4175 } 4176 4177 static int memory_high_show(struct seq_file *m, void *v) 4178 { 4179 return seq_puts_memcg_tunable(m, 4180 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4181 } 4182 4183 static ssize_t memory_high_write(struct kernfs_open_file *of, 4184 char *buf, size_t nbytes, loff_t off) 4185 { 4186 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4187 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4188 bool drained = false; 4189 unsigned long high; 4190 int err; 4191 4192 buf = strstrip(buf); 4193 err = page_counter_memparse(buf, "max", &high); 4194 if (err) 4195 return err; 4196 4197 page_counter_set_high(&memcg->memory, high); 4198 4199 for (;;) { 4200 unsigned long nr_pages = page_counter_read(&memcg->memory); 4201 unsigned long reclaimed; 4202 4203 if (nr_pages <= high) 4204 break; 4205 4206 if (signal_pending(current)) 4207 break; 4208 4209 if (!drained) { 4210 drain_all_stock(memcg); 4211 drained = true; 4212 continue; 4213 } 4214 4215 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4216 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4217 4218 if (!reclaimed && !nr_retries--) 4219 break; 4220 } 4221 4222 memcg_wb_domain_size_changed(memcg); 4223 return nbytes; 4224 } 4225 4226 static int memory_max_show(struct seq_file *m, void *v) 4227 { 4228 return seq_puts_memcg_tunable(m, 4229 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4230 } 4231 4232 static ssize_t memory_max_write(struct kernfs_open_file *of, 4233 char *buf, size_t nbytes, loff_t off) 4234 { 4235 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4236 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4237 bool drained = false; 4238 unsigned long max; 4239 int err; 4240 4241 buf = strstrip(buf); 4242 err = page_counter_memparse(buf, "max", &max); 4243 if (err) 4244 return err; 4245 4246 xchg(&memcg->memory.max, max); 4247 4248 for (;;) { 4249 unsigned long nr_pages = page_counter_read(&memcg->memory); 4250 4251 if (nr_pages <= max) 4252 break; 4253 4254 if (signal_pending(current)) 4255 break; 4256 4257 if (!drained) { 4258 drain_all_stock(memcg); 4259 drained = true; 4260 continue; 4261 } 4262 4263 if (nr_reclaims) { 4264 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4265 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4266 nr_reclaims--; 4267 continue; 4268 } 4269 4270 memcg_memory_event(memcg, MEMCG_OOM); 4271 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4272 break; 4273 cond_resched(); 4274 } 4275 4276 memcg_wb_domain_size_changed(memcg); 4277 return nbytes; 4278 } 4279 4280 /* 4281 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4282 * if any new events become available. 4283 */ 4284 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4285 { 4286 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4287 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4288 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4289 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4290 seq_printf(m, "oom_kill %lu\n", 4291 atomic_long_read(&events[MEMCG_OOM_KILL])); 4292 seq_printf(m, "oom_group_kill %lu\n", 4293 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4294 } 4295 4296 static int memory_events_show(struct seq_file *m, void *v) 4297 { 4298 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4299 4300 __memory_events_show(m, memcg->memory_events); 4301 return 0; 4302 } 4303 4304 static int memory_events_local_show(struct seq_file *m, void *v) 4305 { 4306 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4307 4308 __memory_events_show(m, memcg->memory_events_local); 4309 return 0; 4310 } 4311 4312 int memory_stat_show(struct seq_file *m, void *v) 4313 { 4314 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4315 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4316 struct seq_buf s; 4317 4318 if (!buf) 4319 return -ENOMEM; 4320 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4321 memory_stat_format(memcg, &s); 4322 seq_puts(m, buf); 4323 kfree(buf); 4324 return 0; 4325 } 4326 4327 #ifdef CONFIG_NUMA 4328 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4329 int item) 4330 { 4331 return lruvec_page_state(lruvec, item) * 4332 memcg_page_state_output_unit(item); 4333 } 4334 4335 static int memory_numa_stat_show(struct seq_file *m, void *v) 4336 { 4337 int i; 4338 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4339 4340 mem_cgroup_flush_stats(memcg); 4341 4342 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4343 int nid; 4344 4345 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4346 continue; 4347 4348 seq_printf(m, "%s", memory_stats[i].name); 4349 for_each_node_state(nid, N_MEMORY) { 4350 u64 size; 4351 struct lruvec *lruvec; 4352 4353 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4354 size = lruvec_page_state_output(lruvec, 4355 memory_stats[i].idx); 4356 seq_printf(m, " N%d=%llu", nid, size); 4357 } 4358 seq_putc(m, '\n'); 4359 } 4360 4361 return 0; 4362 } 4363 #endif 4364 4365 static int memory_oom_group_show(struct seq_file *m, void *v) 4366 { 4367 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4368 4369 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4370 4371 return 0; 4372 } 4373 4374 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4375 char *buf, size_t nbytes, loff_t off) 4376 { 4377 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4378 int ret, oom_group; 4379 4380 buf = strstrip(buf); 4381 if (!buf) 4382 return -EINVAL; 4383 4384 ret = kstrtoint(buf, 0, &oom_group); 4385 if (ret) 4386 return ret; 4387 4388 if (oom_group != 0 && oom_group != 1) 4389 return -EINVAL; 4390 4391 WRITE_ONCE(memcg->oom_group, oom_group); 4392 4393 return nbytes; 4394 } 4395 4396 enum { 4397 MEMORY_RECLAIM_SWAPPINESS = 0, 4398 MEMORY_RECLAIM_NULL, 4399 }; 4400 4401 static const match_table_t tokens = { 4402 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4403 { MEMORY_RECLAIM_NULL, NULL }, 4404 }; 4405 4406 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4407 size_t nbytes, loff_t off) 4408 { 4409 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4410 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4411 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4412 int swappiness = -1; 4413 unsigned int reclaim_options; 4414 char *old_buf, *start; 4415 substring_t args[MAX_OPT_ARGS]; 4416 4417 buf = strstrip(buf); 4418 4419 old_buf = buf; 4420 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4421 if (buf == old_buf) 4422 return -EINVAL; 4423 4424 buf = strstrip(buf); 4425 4426 while ((start = strsep(&buf, " ")) != NULL) { 4427 if (!strlen(start)) 4428 continue; 4429 switch (match_token(start, tokens, args)) { 4430 case MEMORY_RECLAIM_SWAPPINESS: 4431 if (match_int(&args[0], &swappiness)) 4432 return -EINVAL; 4433 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4434 return -EINVAL; 4435 break; 4436 default: 4437 return -EINVAL; 4438 } 4439 } 4440 4441 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4442 while (nr_reclaimed < nr_to_reclaim) { 4443 /* Will converge on zero, but reclaim enforces a minimum */ 4444 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4445 unsigned long reclaimed; 4446 4447 if (signal_pending(current)) 4448 return -EINTR; 4449 4450 /* 4451 * This is the final attempt, drain percpu lru caches in the 4452 * hope of introducing more evictable pages for 4453 * try_to_free_mem_cgroup_pages(). 4454 */ 4455 if (!nr_retries) 4456 lru_add_drain_all(); 4457 4458 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4459 batch_size, GFP_KERNEL, 4460 reclaim_options, 4461 swappiness == -1 ? NULL : &swappiness); 4462 4463 if (!reclaimed && !nr_retries--) 4464 return -EAGAIN; 4465 4466 nr_reclaimed += reclaimed; 4467 } 4468 4469 return nbytes; 4470 } 4471 4472 static struct cftype memory_files[] = { 4473 { 4474 .name = "current", 4475 .flags = CFTYPE_NOT_ON_ROOT, 4476 .read_u64 = memory_current_read, 4477 }, 4478 { 4479 .name = "peak", 4480 .flags = CFTYPE_NOT_ON_ROOT, 4481 .open = peak_open, 4482 .release = peak_release, 4483 .seq_show = memory_peak_show, 4484 .write = memory_peak_write, 4485 }, 4486 { 4487 .name = "min", 4488 .flags = CFTYPE_NOT_ON_ROOT, 4489 .seq_show = memory_min_show, 4490 .write = memory_min_write, 4491 }, 4492 { 4493 .name = "low", 4494 .flags = CFTYPE_NOT_ON_ROOT, 4495 .seq_show = memory_low_show, 4496 .write = memory_low_write, 4497 }, 4498 { 4499 .name = "high", 4500 .flags = CFTYPE_NOT_ON_ROOT, 4501 .seq_show = memory_high_show, 4502 .write = memory_high_write, 4503 }, 4504 { 4505 .name = "max", 4506 .flags = CFTYPE_NOT_ON_ROOT, 4507 .seq_show = memory_max_show, 4508 .write = memory_max_write, 4509 }, 4510 { 4511 .name = "events", 4512 .flags = CFTYPE_NOT_ON_ROOT, 4513 .file_offset = offsetof(struct mem_cgroup, events_file), 4514 .seq_show = memory_events_show, 4515 }, 4516 { 4517 .name = "events.local", 4518 .flags = CFTYPE_NOT_ON_ROOT, 4519 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4520 .seq_show = memory_events_local_show, 4521 }, 4522 { 4523 .name = "stat", 4524 .seq_show = memory_stat_show, 4525 }, 4526 #ifdef CONFIG_NUMA 4527 { 4528 .name = "numa_stat", 4529 .seq_show = memory_numa_stat_show, 4530 }, 4531 #endif 4532 { 4533 .name = "oom.group", 4534 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4535 .seq_show = memory_oom_group_show, 4536 .write = memory_oom_group_write, 4537 }, 4538 { 4539 .name = "reclaim", 4540 .flags = CFTYPE_NS_DELEGATABLE, 4541 .write = memory_reclaim, 4542 }, 4543 { } /* terminate */ 4544 }; 4545 4546 struct cgroup_subsys memory_cgrp_subsys = { 4547 .css_alloc = mem_cgroup_css_alloc, 4548 .css_online = mem_cgroup_css_online, 4549 .css_offline = mem_cgroup_css_offline, 4550 .css_released = mem_cgroup_css_released, 4551 .css_free = mem_cgroup_css_free, 4552 .css_reset = mem_cgroup_css_reset, 4553 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4554 .attach = mem_cgroup_attach, 4555 .fork = mem_cgroup_fork, 4556 .exit = mem_cgroup_exit, 4557 .dfl_cftypes = memory_files, 4558 #ifdef CONFIG_MEMCG_V1 4559 .legacy_cftypes = mem_cgroup_legacy_files, 4560 #endif 4561 .early_init = 0, 4562 }; 4563 4564 /** 4565 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4566 * @root: the top ancestor of the sub-tree being checked 4567 * @memcg: the memory cgroup to check 4568 * 4569 * WARNING: This function is not stateless! It can only be used as part 4570 * of a top-down tree iteration, not for isolated queries. 4571 */ 4572 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4573 struct mem_cgroup *memcg) 4574 { 4575 bool recursive_protection = 4576 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4577 4578 if (mem_cgroup_disabled()) 4579 return; 4580 4581 if (!root) 4582 root = root_mem_cgroup; 4583 4584 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4585 } 4586 4587 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4588 gfp_t gfp) 4589 { 4590 int ret; 4591 4592 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4593 if (ret) 4594 goto out; 4595 4596 css_get(&memcg->css); 4597 commit_charge(folio, memcg); 4598 memcg1_commit_charge(folio, memcg); 4599 out: 4600 return ret; 4601 } 4602 4603 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4604 { 4605 struct mem_cgroup *memcg; 4606 int ret; 4607 4608 memcg = get_mem_cgroup_from_mm(mm); 4609 ret = charge_memcg(folio, memcg, gfp); 4610 css_put(&memcg->css); 4611 4612 return ret; 4613 } 4614 4615 /** 4616 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4617 * @folio: folio being charged 4618 * @gfp: reclaim mode 4619 * 4620 * This function is called when allocating a huge page folio, after the page has 4621 * already been obtained and charged to the appropriate hugetlb cgroup 4622 * controller (if it is enabled). 4623 * 4624 * Returns ENOMEM if the memcg is already full. 4625 * Returns 0 if either the charge was successful, or if we skip the charging. 4626 */ 4627 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4628 { 4629 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4630 int ret = 0; 4631 4632 /* 4633 * Even memcg does not account for hugetlb, we still want to update 4634 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4635 * charging the memcg. 4636 */ 4637 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4638 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4639 goto out; 4640 4641 if (charge_memcg(folio, memcg, gfp)) 4642 ret = -ENOMEM; 4643 4644 out: 4645 mem_cgroup_put(memcg); 4646 return ret; 4647 } 4648 4649 /** 4650 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4651 * @folio: folio to charge. 4652 * @mm: mm context of the victim 4653 * @gfp: reclaim mode 4654 * @entry: swap entry for which the folio is allocated 4655 * 4656 * This function charges a folio allocated for swapin. Please call this before 4657 * adding the folio to the swapcache. 4658 * 4659 * Returns 0 on success. Otherwise, an error code is returned. 4660 */ 4661 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4662 gfp_t gfp, swp_entry_t entry) 4663 { 4664 struct mem_cgroup *memcg; 4665 unsigned short id; 4666 int ret; 4667 4668 if (mem_cgroup_disabled()) 4669 return 0; 4670 4671 id = lookup_swap_cgroup_id(entry); 4672 rcu_read_lock(); 4673 memcg = mem_cgroup_from_id(id); 4674 if (!memcg || !css_tryget_online(&memcg->css)) 4675 memcg = get_mem_cgroup_from_mm(mm); 4676 rcu_read_unlock(); 4677 4678 ret = charge_memcg(folio, memcg, gfp); 4679 4680 css_put(&memcg->css); 4681 return ret; 4682 } 4683 4684 struct uncharge_gather { 4685 struct mem_cgroup *memcg; 4686 unsigned long nr_memory; 4687 unsigned long pgpgout; 4688 unsigned long nr_kmem; 4689 int nid; 4690 }; 4691 4692 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4693 { 4694 memset(ug, 0, sizeof(*ug)); 4695 } 4696 4697 static void uncharge_batch(const struct uncharge_gather *ug) 4698 { 4699 if (ug->nr_memory) { 4700 memcg_uncharge(ug->memcg, ug->nr_memory); 4701 if (ug->nr_kmem) { 4702 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4703 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4704 } 4705 memcg1_oom_recover(ug->memcg); 4706 } 4707 4708 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4709 4710 /* drop reference from uncharge_folio */ 4711 css_put(&ug->memcg->css); 4712 } 4713 4714 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4715 { 4716 long nr_pages; 4717 struct mem_cgroup *memcg; 4718 struct obj_cgroup *objcg; 4719 4720 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4721 4722 /* 4723 * Nobody should be changing or seriously looking at 4724 * folio memcg or objcg at this point, we have fully 4725 * exclusive access to the folio. 4726 */ 4727 if (folio_memcg_kmem(folio)) { 4728 objcg = __folio_objcg(folio); 4729 /* 4730 * This get matches the put at the end of the function and 4731 * kmem pages do not hold memcg references anymore. 4732 */ 4733 memcg = get_mem_cgroup_from_objcg(objcg); 4734 } else { 4735 memcg = __folio_memcg(folio); 4736 } 4737 4738 if (!memcg) 4739 return; 4740 4741 if (ug->memcg != memcg) { 4742 if (ug->memcg) { 4743 uncharge_batch(ug); 4744 uncharge_gather_clear(ug); 4745 } 4746 ug->memcg = memcg; 4747 ug->nid = folio_nid(folio); 4748 4749 /* pairs with css_put in uncharge_batch */ 4750 css_get(&memcg->css); 4751 } 4752 4753 nr_pages = folio_nr_pages(folio); 4754 4755 if (folio_memcg_kmem(folio)) { 4756 ug->nr_memory += nr_pages; 4757 ug->nr_kmem += nr_pages; 4758 4759 folio->memcg_data = 0; 4760 obj_cgroup_put(objcg); 4761 } else { 4762 /* LRU pages aren't accounted at the root level */ 4763 if (!mem_cgroup_is_root(memcg)) 4764 ug->nr_memory += nr_pages; 4765 ug->pgpgout++; 4766 4767 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4768 folio->memcg_data = 0; 4769 } 4770 4771 css_put(&memcg->css); 4772 } 4773 4774 void __mem_cgroup_uncharge(struct folio *folio) 4775 { 4776 struct uncharge_gather ug; 4777 4778 /* Don't touch folio->lru of any random page, pre-check: */ 4779 if (!folio_memcg_charged(folio)) 4780 return; 4781 4782 uncharge_gather_clear(&ug); 4783 uncharge_folio(folio, &ug); 4784 uncharge_batch(&ug); 4785 } 4786 4787 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4788 { 4789 struct uncharge_gather ug; 4790 unsigned int i; 4791 4792 uncharge_gather_clear(&ug); 4793 for (i = 0; i < folios->nr; i++) 4794 uncharge_folio(folios->folios[i], &ug); 4795 if (ug.memcg) 4796 uncharge_batch(&ug); 4797 } 4798 4799 /** 4800 * mem_cgroup_replace_folio - Charge a folio's replacement. 4801 * @old: Currently circulating folio. 4802 * @new: Replacement folio. 4803 * 4804 * Charge @new as a replacement folio for @old. @old will 4805 * be uncharged upon free. 4806 * 4807 * Both folios must be locked, @new->mapping must be set up. 4808 */ 4809 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4810 { 4811 struct mem_cgroup *memcg; 4812 long nr_pages = folio_nr_pages(new); 4813 4814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4816 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4817 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4818 4819 if (mem_cgroup_disabled()) 4820 return; 4821 4822 /* Page cache replacement: new folio already charged? */ 4823 if (folio_memcg_charged(new)) 4824 return; 4825 4826 memcg = folio_memcg(old); 4827 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4828 if (!memcg) 4829 return; 4830 4831 /* Force-charge the new page. The old one will be freed soon */ 4832 if (!mem_cgroup_is_root(memcg)) { 4833 page_counter_charge(&memcg->memory, nr_pages); 4834 if (do_memsw_account()) 4835 page_counter_charge(&memcg->memsw, nr_pages); 4836 } 4837 4838 css_get(&memcg->css); 4839 commit_charge(new, memcg); 4840 memcg1_commit_charge(new, memcg); 4841 } 4842 4843 /** 4844 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4845 * @old: Currently circulating folio. 4846 * @new: Replacement folio. 4847 * 4848 * Transfer the memcg data from the old folio to the new folio for migration. 4849 * The old folio's data info will be cleared. Note that the memory counters 4850 * will remain unchanged throughout the process. 4851 * 4852 * Both folios must be locked, @new->mapping must be set up. 4853 */ 4854 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4855 { 4856 struct mem_cgroup *memcg; 4857 4858 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4859 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4860 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4861 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4862 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4863 4864 if (mem_cgroup_disabled()) 4865 return; 4866 4867 memcg = folio_memcg(old); 4868 /* 4869 * Note that it is normal to see !memcg for a hugetlb folio. 4870 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4871 * was not selected. 4872 */ 4873 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4874 if (!memcg) 4875 return; 4876 4877 /* Transfer the charge and the css ref */ 4878 commit_charge(new, memcg); 4879 4880 /* Warning should never happen, so don't worry about refcount non-0 */ 4881 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4882 old->memcg_data = 0; 4883 } 4884 4885 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4886 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4887 4888 void mem_cgroup_sk_alloc(struct sock *sk) 4889 { 4890 struct mem_cgroup *memcg; 4891 4892 if (!mem_cgroup_sockets_enabled) 4893 return; 4894 4895 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4896 if (!in_task()) 4897 return; 4898 4899 rcu_read_lock(); 4900 memcg = mem_cgroup_from_task(current); 4901 if (mem_cgroup_is_root(memcg)) 4902 goto out; 4903 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4904 goto out; 4905 if (css_tryget(&memcg->css)) 4906 sk->sk_memcg = memcg; 4907 out: 4908 rcu_read_unlock(); 4909 } 4910 4911 void mem_cgroup_sk_free(struct sock *sk) 4912 { 4913 if (sk->sk_memcg) 4914 css_put(&sk->sk_memcg->css); 4915 } 4916 4917 /** 4918 * mem_cgroup_charge_skmem - charge socket memory 4919 * @memcg: memcg to charge 4920 * @nr_pages: number of pages to charge 4921 * @gfp_mask: reclaim mode 4922 * 4923 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4924 * @memcg's configured limit, %false if it doesn't. 4925 */ 4926 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4927 gfp_t gfp_mask) 4928 { 4929 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4930 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4931 4932 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 4933 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 4934 return true; 4935 } 4936 4937 return false; 4938 } 4939 4940 /** 4941 * mem_cgroup_uncharge_skmem - uncharge socket memory 4942 * @memcg: memcg to uncharge 4943 * @nr_pages: number of pages to uncharge 4944 */ 4945 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 4946 { 4947 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 4948 memcg1_uncharge_skmem(memcg, nr_pages); 4949 return; 4950 } 4951 4952 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 4953 4954 refill_stock(memcg, nr_pages); 4955 } 4956 4957 static int __init cgroup_memory(char *s) 4958 { 4959 char *token; 4960 4961 while ((token = strsep(&s, ",")) != NULL) { 4962 if (!*token) 4963 continue; 4964 if (!strcmp(token, "nosocket")) 4965 cgroup_memory_nosocket = true; 4966 if (!strcmp(token, "nokmem")) 4967 cgroup_memory_nokmem = true; 4968 if (!strcmp(token, "nobpf")) 4969 cgroup_memory_nobpf = true; 4970 } 4971 return 1; 4972 } 4973 __setup("cgroup.memory=", cgroup_memory); 4974 4975 /* 4976 * subsys_initcall() for memory controller. 4977 * 4978 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 4979 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 4980 * basically everything that doesn't depend on a specific mem_cgroup structure 4981 * should be initialized from here. 4982 */ 4983 static int __init mem_cgroup_init(void) 4984 { 4985 int cpu; 4986 4987 /* 4988 * Currently s32 type (can refer to struct batched_lruvec_stat) is 4989 * used for per-memcg-per-cpu caching of per-node statistics. In order 4990 * to work fine, we should make sure that the overfill threshold can't 4991 * exceed S32_MAX / PAGE_SIZE. 4992 */ 4993 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 4994 4995 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 4996 memcg_hotplug_cpu_dead); 4997 4998 for_each_possible_cpu(cpu) 4999 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5000 drain_local_stock); 5001 5002 return 0; 5003 } 5004 subsys_initcall(mem_cgroup_init); 5005 5006 #ifdef CONFIG_SWAP 5007 /** 5008 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5009 * @folio: folio being added to swap 5010 * @entry: swap entry to charge 5011 * 5012 * Try to charge @folio's memcg for the swap space at @entry. 5013 * 5014 * Returns 0 on success, -ENOMEM on failure. 5015 */ 5016 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5017 { 5018 unsigned int nr_pages = folio_nr_pages(folio); 5019 struct page_counter *counter; 5020 struct mem_cgroup *memcg; 5021 5022 if (do_memsw_account()) 5023 return 0; 5024 5025 memcg = folio_memcg(folio); 5026 5027 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5028 if (!memcg) 5029 return 0; 5030 5031 if (!entry.val) { 5032 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5033 return 0; 5034 } 5035 5036 memcg = mem_cgroup_id_get_online(memcg); 5037 5038 if (!mem_cgroup_is_root(memcg) && 5039 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5040 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5041 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5042 mem_cgroup_id_put(memcg); 5043 return -ENOMEM; 5044 } 5045 5046 /* Get references for the tail pages, too */ 5047 if (nr_pages > 1) 5048 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5049 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5050 5051 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5052 5053 return 0; 5054 } 5055 5056 /** 5057 * __mem_cgroup_uncharge_swap - uncharge swap space 5058 * @entry: swap entry to uncharge 5059 * @nr_pages: the amount of swap space to uncharge 5060 */ 5061 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5062 { 5063 struct mem_cgroup *memcg; 5064 unsigned short id; 5065 5066 id = swap_cgroup_clear(entry, nr_pages); 5067 rcu_read_lock(); 5068 memcg = mem_cgroup_from_id(id); 5069 if (memcg) { 5070 if (!mem_cgroup_is_root(memcg)) { 5071 if (do_memsw_account()) 5072 page_counter_uncharge(&memcg->memsw, nr_pages); 5073 else 5074 page_counter_uncharge(&memcg->swap, nr_pages); 5075 } 5076 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5077 mem_cgroup_id_put_many(memcg, nr_pages); 5078 } 5079 rcu_read_unlock(); 5080 } 5081 5082 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5083 { 5084 long nr_swap_pages = get_nr_swap_pages(); 5085 5086 if (mem_cgroup_disabled() || do_memsw_account()) 5087 return nr_swap_pages; 5088 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5089 nr_swap_pages = min_t(long, nr_swap_pages, 5090 READ_ONCE(memcg->swap.max) - 5091 page_counter_read(&memcg->swap)); 5092 return nr_swap_pages; 5093 } 5094 5095 bool mem_cgroup_swap_full(struct folio *folio) 5096 { 5097 struct mem_cgroup *memcg; 5098 5099 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5100 5101 if (vm_swap_full()) 5102 return true; 5103 if (do_memsw_account()) 5104 return false; 5105 5106 memcg = folio_memcg(folio); 5107 if (!memcg) 5108 return false; 5109 5110 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5111 unsigned long usage = page_counter_read(&memcg->swap); 5112 5113 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5114 usage * 2 >= READ_ONCE(memcg->swap.max)) 5115 return true; 5116 } 5117 5118 return false; 5119 } 5120 5121 static int __init setup_swap_account(char *s) 5122 { 5123 bool res; 5124 5125 if (!kstrtobool(s, &res) && !res) 5126 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5127 "in favor of configuring swap control via cgroupfs. " 5128 "Please report your usecase to linux-mm@kvack.org if you " 5129 "depend on this functionality.\n"); 5130 return 1; 5131 } 5132 __setup("swapaccount=", setup_swap_account); 5133 5134 static u64 swap_current_read(struct cgroup_subsys_state *css, 5135 struct cftype *cft) 5136 { 5137 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5138 5139 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5140 } 5141 5142 static int swap_peak_show(struct seq_file *sf, void *v) 5143 { 5144 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5145 5146 return peak_show(sf, v, &memcg->swap); 5147 } 5148 5149 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5150 size_t nbytes, loff_t off) 5151 { 5152 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5153 5154 return peak_write(of, buf, nbytes, off, &memcg->swap, 5155 &memcg->swap_peaks); 5156 } 5157 5158 static int swap_high_show(struct seq_file *m, void *v) 5159 { 5160 return seq_puts_memcg_tunable(m, 5161 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5162 } 5163 5164 static ssize_t swap_high_write(struct kernfs_open_file *of, 5165 char *buf, size_t nbytes, loff_t off) 5166 { 5167 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5168 unsigned long high; 5169 int err; 5170 5171 buf = strstrip(buf); 5172 err = page_counter_memparse(buf, "max", &high); 5173 if (err) 5174 return err; 5175 5176 page_counter_set_high(&memcg->swap, high); 5177 5178 return nbytes; 5179 } 5180 5181 static int swap_max_show(struct seq_file *m, void *v) 5182 { 5183 return seq_puts_memcg_tunable(m, 5184 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5185 } 5186 5187 static ssize_t swap_max_write(struct kernfs_open_file *of, 5188 char *buf, size_t nbytes, loff_t off) 5189 { 5190 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5191 unsigned long max; 5192 int err; 5193 5194 buf = strstrip(buf); 5195 err = page_counter_memparse(buf, "max", &max); 5196 if (err) 5197 return err; 5198 5199 xchg(&memcg->swap.max, max); 5200 5201 return nbytes; 5202 } 5203 5204 static int swap_events_show(struct seq_file *m, void *v) 5205 { 5206 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5207 5208 seq_printf(m, "high %lu\n", 5209 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5210 seq_printf(m, "max %lu\n", 5211 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5212 seq_printf(m, "fail %lu\n", 5213 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5214 5215 return 0; 5216 } 5217 5218 static struct cftype swap_files[] = { 5219 { 5220 .name = "swap.current", 5221 .flags = CFTYPE_NOT_ON_ROOT, 5222 .read_u64 = swap_current_read, 5223 }, 5224 { 5225 .name = "swap.high", 5226 .flags = CFTYPE_NOT_ON_ROOT, 5227 .seq_show = swap_high_show, 5228 .write = swap_high_write, 5229 }, 5230 { 5231 .name = "swap.max", 5232 .flags = CFTYPE_NOT_ON_ROOT, 5233 .seq_show = swap_max_show, 5234 .write = swap_max_write, 5235 }, 5236 { 5237 .name = "swap.peak", 5238 .flags = CFTYPE_NOT_ON_ROOT, 5239 .open = peak_open, 5240 .release = peak_release, 5241 .seq_show = swap_peak_show, 5242 .write = swap_peak_write, 5243 }, 5244 { 5245 .name = "swap.events", 5246 .flags = CFTYPE_NOT_ON_ROOT, 5247 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5248 .seq_show = swap_events_show, 5249 }, 5250 { } /* terminate */ 5251 }; 5252 5253 #ifdef CONFIG_ZSWAP 5254 /** 5255 * obj_cgroup_may_zswap - check if this cgroup can zswap 5256 * @objcg: the object cgroup 5257 * 5258 * Check if the hierarchical zswap limit has been reached. 5259 * 5260 * This doesn't check for specific headroom, and it is not atomic 5261 * either. But with zswap, the size of the allocation is only known 5262 * once compression has occurred, and this optimistic pre-check avoids 5263 * spending cycles on compression when there is already no room left 5264 * or zswap is disabled altogether somewhere in the hierarchy. 5265 */ 5266 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5267 { 5268 struct mem_cgroup *memcg, *original_memcg; 5269 bool ret = true; 5270 5271 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5272 return true; 5273 5274 original_memcg = get_mem_cgroup_from_objcg(objcg); 5275 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5276 memcg = parent_mem_cgroup(memcg)) { 5277 unsigned long max = READ_ONCE(memcg->zswap_max); 5278 unsigned long pages; 5279 5280 if (max == PAGE_COUNTER_MAX) 5281 continue; 5282 if (max == 0) { 5283 ret = false; 5284 break; 5285 } 5286 5287 /* Force flush to get accurate stats for charging */ 5288 __mem_cgroup_flush_stats(memcg, true); 5289 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5290 if (pages < max) 5291 continue; 5292 ret = false; 5293 break; 5294 } 5295 mem_cgroup_put(original_memcg); 5296 return ret; 5297 } 5298 5299 /** 5300 * obj_cgroup_charge_zswap - charge compression backend memory 5301 * @objcg: the object cgroup 5302 * @size: size of compressed object 5303 * 5304 * This forces the charge after obj_cgroup_may_zswap() allowed 5305 * compression and storage in zwap for this cgroup to go ahead. 5306 */ 5307 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5308 { 5309 struct mem_cgroup *memcg; 5310 5311 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5312 return; 5313 5314 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5315 5316 /* PF_MEMALLOC context, charging must succeed */ 5317 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5318 VM_WARN_ON_ONCE(1); 5319 5320 rcu_read_lock(); 5321 memcg = obj_cgroup_memcg(objcg); 5322 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5323 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5324 rcu_read_unlock(); 5325 } 5326 5327 /** 5328 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5329 * @objcg: the object cgroup 5330 * @size: size of compressed object 5331 * 5332 * Uncharges zswap memory on page in. 5333 */ 5334 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5335 { 5336 struct mem_cgroup *memcg; 5337 5338 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5339 return; 5340 5341 obj_cgroup_uncharge(objcg, size); 5342 5343 rcu_read_lock(); 5344 memcg = obj_cgroup_memcg(objcg); 5345 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5346 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5347 rcu_read_unlock(); 5348 } 5349 5350 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5351 { 5352 /* if zswap is disabled, do not block pages going to the swapping device */ 5353 if (!zswap_is_enabled()) 5354 return true; 5355 5356 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5357 if (!READ_ONCE(memcg->zswap_writeback)) 5358 return false; 5359 5360 return true; 5361 } 5362 5363 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5364 struct cftype *cft) 5365 { 5366 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5367 5368 mem_cgroup_flush_stats(memcg); 5369 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5370 } 5371 5372 static int zswap_max_show(struct seq_file *m, void *v) 5373 { 5374 return seq_puts_memcg_tunable(m, 5375 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5376 } 5377 5378 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5379 char *buf, size_t nbytes, loff_t off) 5380 { 5381 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5382 unsigned long max; 5383 int err; 5384 5385 buf = strstrip(buf); 5386 err = page_counter_memparse(buf, "max", &max); 5387 if (err) 5388 return err; 5389 5390 xchg(&memcg->zswap_max, max); 5391 5392 return nbytes; 5393 } 5394 5395 static int zswap_writeback_show(struct seq_file *m, void *v) 5396 { 5397 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5398 5399 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5400 return 0; 5401 } 5402 5403 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5404 char *buf, size_t nbytes, loff_t off) 5405 { 5406 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5407 int zswap_writeback; 5408 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5409 5410 if (parse_ret) 5411 return parse_ret; 5412 5413 if (zswap_writeback != 0 && zswap_writeback != 1) 5414 return -EINVAL; 5415 5416 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5417 return nbytes; 5418 } 5419 5420 static struct cftype zswap_files[] = { 5421 { 5422 .name = "zswap.current", 5423 .flags = CFTYPE_NOT_ON_ROOT, 5424 .read_u64 = zswap_current_read, 5425 }, 5426 { 5427 .name = "zswap.max", 5428 .flags = CFTYPE_NOT_ON_ROOT, 5429 .seq_show = zswap_max_show, 5430 .write = zswap_max_write, 5431 }, 5432 { 5433 .name = "zswap.writeback", 5434 .seq_show = zswap_writeback_show, 5435 .write = zswap_writeback_write, 5436 }, 5437 { } /* terminate */ 5438 }; 5439 #endif /* CONFIG_ZSWAP */ 5440 5441 static int __init mem_cgroup_swap_init(void) 5442 { 5443 if (mem_cgroup_disabled()) 5444 return 0; 5445 5446 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5447 #ifdef CONFIG_MEMCG_V1 5448 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5449 #endif 5450 #ifdef CONFIG_ZSWAP 5451 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5452 #endif 5453 return 0; 5454 } 5455 subsys_initcall(mem_cgroup_swap_init); 5456 5457 #endif /* CONFIG_SWAP */ 5458