xref: /linux/mm/memcontrol.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/vmscan.h>
56 
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES	5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60 
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71 
72 #else
73 #define do_swap_account		(0)
74 #endif
75 
76 
77 /*
78  * Statistics for memory cgroup.
79  */
80 enum mem_cgroup_stat_index {
81 	/*
82 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 	 */
84 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90 	MEM_CGROUP_STAT_NSTATS,
91 };
92 
93 enum mem_cgroup_events_index {
94 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
95 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
96 	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
97 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
98 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
99 	MEM_CGROUP_EVENTS_NSTATS,
100 };
101 /*
102  * Per memcg event counter is incremented at every pagein/pageout. With THP,
103  * it will be incremated by the number of pages. This counter is used for
104  * for trigger some periodic events. This is straightforward and better
105  * than using jiffies etc. to handle periodic memcg event.
106  */
107 enum mem_cgroup_events_target {
108 	MEM_CGROUP_TARGET_THRESH,
109 	MEM_CGROUP_TARGET_SOFTLIMIT,
110 	MEM_CGROUP_NTARGETS,
111 };
112 #define THRESHOLDS_EVENTS_TARGET (128)
113 #define SOFTLIMIT_EVENTS_TARGET (1024)
114 
115 struct mem_cgroup_stat_cpu {
116 	long count[MEM_CGROUP_STAT_NSTATS];
117 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
118 	unsigned long targets[MEM_CGROUP_NTARGETS];
119 };
120 
121 /*
122  * per-zone information in memory controller.
123  */
124 struct mem_cgroup_per_zone {
125 	/*
126 	 * spin_lock to protect the per cgroup LRU
127 	 */
128 	struct list_head	lists[NR_LRU_LISTS];
129 	unsigned long		count[NR_LRU_LISTS];
130 
131 	struct zone_reclaim_stat reclaim_stat;
132 	struct rb_node		tree_node;	/* RB tree node */
133 	unsigned long long	usage_in_excess;/* Set to the value by which */
134 						/* the soft limit is exceeded*/
135 	bool			on_tree;
136 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
137 						/* use container_of	   */
138 };
139 /* Macro for accessing counter */
140 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
141 
142 struct mem_cgroup_per_node {
143 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
144 };
145 
146 struct mem_cgroup_lru_info {
147 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
148 };
149 
150 /*
151  * Cgroups above their limits are maintained in a RB-Tree, independent of
152  * their hierarchy representation
153  */
154 
155 struct mem_cgroup_tree_per_zone {
156 	struct rb_root rb_root;
157 	spinlock_t lock;
158 };
159 
160 struct mem_cgroup_tree_per_node {
161 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
162 };
163 
164 struct mem_cgroup_tree {
165 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
166 };
167 
168 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
169 
170 struct mem_cgroup_threshold {
171 	struct eventfd_ctx *eventfd;
172 	u64 threshold;
173 };
174 
175 /* For threshold */
176 struct mem_cgroup_threshold_ary {
177 	/* An array index points to threshold just below usage. */
178 	int current_threshold;
179 	/* Size of entries[] */
180 	unsigned int size;
181 	/* Array of thresholds */
182 	struct mem_cgroup_threshold entries[0];
183 };
184 
185 struct mem_cgroup_thresholds {
186 	/* Primary thresholds array */
187 	struct mem_cgroup_threshold_ary *primary;
188 	/*
189 	 * Spare threshold array.
190 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
191 	 * It must be able to store at least primary->size - 1 entries.
192 	 */
193 	struct mem_cgroup_threshold_ary *spare;
194 };
195 
196 /* for OOM */
197 struct mem_cgroup_eventfd_list {
198 	struct list_head list;
199 	struct eventfd_ctx *eventfd;
200 };
201 
202 static void mem_cgroup_threshold(struct mem_cgroup *mem);
203 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
204 
205 /*
206  * The memory controller data structure. The memory controller controls both
207  * page cache and RSS per cgroup. We would eventually like to provide
208  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
209  * to help the administrator determine what knobs to tune.
210  *
211  * TODO: Add a water mark for the memory controller. Reclaim will begin when
212  * we hit the water mark. May be even add a low water mark, such that
213  * no reclaim occurs from a cgroup at it's low water mark, this is
214  * a feature that will be implemented much later in the future.
215  */
216 struct mem_cgroup {
217 	struct cgroup_subsys_state css;
218 	/*
219 	 * the counter to account for memory usage
220 	 */
221 	struct res_counter res;
222 	/*
223 	 * the counter to account for mem+swap usage.
224 	 */
225 	struct res_counter memsw;
226 	/*
227 	 * Per cgroup active and inactive list, similar to the
228 	 * per zone LRU lists.
229 	 */
230 	struct mem_cgroup_lru_info info;
231 	/*
232 	 * While reclaiming in a hierarchy, we cache the last child we
233 	 * reclaimed from.
234 	 */
235 	int last_scanned_child;
236 	int last_scanned_node;
237 #if MAX_NUMNODES > 1
238 	nodemask_t	scan_nodes;
239 	unsigned long   next_scan_node_update;
240 #endif
241 	/*
242 	 * Should the accounting and control be hierarchical, per subtree?
243 	 */
244 	bool use_hierarchy;
245 	atomic_t	oom_lock;
246 	atomic_t	refcnt;
247 
248 	unsigned int	swappiness;
249 	/* OOM-Killer disable */
250 	int		oom_kill_disable;
251 
252 	/* set when res.limit == memsw.limit */
253 	bool		memsw_is_minimum;
254 
255 	/* protect arrays of thresholds */
256 	struct mutex thresholds_lock;
257 
258 	/* thresholds for memory usage. RCU-protected */
259 	struct mem_cgroup_thresholds thresholds;
260 
261 	/* thresholds for mem+swap usage. RCU-protected */
262 	struct mem_cgroup_thresholds memsw_thresholds;
263 
264 	/* For oom notifier event fd */
265 	struct list_head oom_notify;
266 
267 	/*
268 	 * Should we move charges of a task when a task is moved into this
269 	 * mem_cgroup ? And what type of charges should we move ?
270 	 */
271 	unsigned long 	move_charge_at_immigrate;
272 	/*
273 	 * percpu counter.
274 	 */
275 	struct mem_cgroup_stat_cpu *stat;
276 	/*
277 	 * used when a cpu is offlined or other synchronizations
278 	 * See mem_cgroup_read_stat().
279 	 */
280 	struct mem_cgroup_stat_cpu nocpu_base;
281 	spinlock_t pcp_counter_lock;
282 };
283 
284 /* Stuffs for move charges at task migration. */
285 /*
286  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
287  * left-shifted bitmap of these types.
288  */
289 enum move_type {
290 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
291 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
292 	NR_MOVE_TYPE,
293 };
294 
295 /* "mc" and its members are protected by cgroup_mutex */
296 static struct move_charge_struct {
297 	spinlock_t	  lock; /* for from, to */
298 	struct mem_cgroup *from;
299 	struct mem_cgroup *to;
300 	unsigned long precharge;
301 	unsigned long moved_charge;
302 	unsigned long moved_swap;
303 	struct task_struct *moving_task;	/* a task moving charges */
304 	wait_queue_head_t waitq;		/* a waitq for other context */
305 } mc = {
306 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
307 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
308 };
309 
310 static bool move_anon(void)
311 {
312 	return test_bit(MOVE_CHARGE_TYPE_ANON,
313 					&mc.to->move_charge_at_immigrate);
314 }
315 
316 static bool move_file(void)
317 {
318 	return test_bit(MOVE_CHARGE_TYPE_FILE,
319 					&mc.to->move_charge_at_immigrate);
320 }
321 
322 /*
323  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
324  * limit reclaim to prevent infinite loops, if they ever occur.
325  */
326 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
327 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
328 
329 enum charge_type {
330 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
331 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
332 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
333 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
334 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
335 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
336 	NR_CHARGE_TYPE,
337 };
338 
339 /* for encoding cft->private value on file */
340 #define _MEM			(0)
341 #define _MEMSWAP		(1)
342 #define _OOM_TYPE		(2)
343 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
344 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
345 #define MEMFILE_ATTR(val)	((val) & 0xffff)
346 /* Used for OOM nofiier */
347 #define OOM_CONTROL		(0)
348 
349 /*
350  * Reclaim flags for mem_cgroup_hierarchical_reclaim
351  */
352 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
353 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
354 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
355 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
356 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
357 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
358 
359 static void mem_cgroup_get(struct mem_cgroup *mem);
360 static void mem_cgroup_put(struct mem_cgroup *mem);
361 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
362 static void drain_all_stock_async(void);
363 
364 static struct mem_cgroup_per_zone *
365 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
366 {
367 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
368 }
369 
370 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
371 {
372 	return &mem->css;
373 }
374 
375 static struct mem_cgroup_per_zone *
376 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
377 {
378 	int nid = page_to_nid(page);
379 	int zid = page_zonenum(page);
380 
381 	return mem_cgroup_zoneinfo(mem, nid, zid);
382 }
383 
384 static struct mem_cgroup_tree_per_zone *
385 soft_limit_tree_node_zone(int nid, int zid)
386 {
387 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
388 }
389 
390 static struct mem_cgroup_tree_per_zone *
391 soft_limit_tree_from_page(struct page *page)
392 {
393 	int nid = page_to_nid(page);
394 	int zid = page_zonenum(page);
395 
396 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
397 }
398 
399 static void
400 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
401 				struct mem_cgroup_per_zone *mz,
402 				struct mem_cgroup_tree_per_zone *mctz,
403 				unsigned long long new_usage_in_excess)
404 {
405 	struct rb_node **p = &mctz->rb_root.rb_node;
406 	struct rb_node *parent = NULL;
407 	struct mem_cgroup_per_zone *mz_node;
408 
409 	if (mz->on_tree)
410 		return;
411 
412 	mz->usage_in_excess = new_usage_in_excess;
413 	if (!mz->usage_in_excess)
414 		return;
415 	while (*p) {
416 		parent = *p;
417 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
418 					tree_node);
419 		if (mz->usage_in_excess < mz_node->usage_in_excess)
420 			p = &(*p)->rb_left;
421 		/*
422 		 * We can't avoid mem cgroups that are over their soft
423 		 * limit by the same amount
424 		 */
425 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
426 			p = &(*p)->rb_right;
427 	}
428 	rb_link_node(&mz->tree_node, parent, p);
429 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
430 	mz->on_tree = true;
431 }
432 
433 static void
434 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
435 				struct mem_cgroup_per_zone *mz,
436 				struct mem_cgroup_tree_per_zone *mctz)
437 {
438 	if (!mz->on_tree)
439 		return;
440 	rb_erase(&mz->tree_node, &mctz->rb_root);
441 	mz->on_tree = false;
442 }
443 
444 static void
445 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
446 				struct mem_cgroup_per_zone *mz,
447 				struct mem_cgroup_tree_per_zone *mctz)
448 {
449 	spin_lock(&mctz->lock);
450 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
451 	spin_unlock(&mctz->lock);
452 }
453 
454 
455 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
456 {
457 	unsigned long long excess;
458 	struct mem_cgroup_per_zone *mz;
459 	struct mem_cgroup_tree_per_zone *mctz;
460 	int nid = page_to_nid(page);
461 	int zid = page_zonenum(page);
462 	mctz = soft_limit_tree_from_page(page);
463 
464 	/*
465 	 * Necessary to update all ancestors when hierarchy is used.
466 	 * because their event counter is not touched.
467 	 */
468 	for (; mem; mem = parent_mem_cgroup(mem)) {
469 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
470 		excess = res_counter_soft_limit_excess(&mem->res);
471 		/*
472 		 * We have to update the tree if mz is on RB-tree or
473 		 * mem is over its softlimit.
474 		 */
475 		if (excess || mz->on_tree) {
476 			spin_lock(&mctz->lock);
477 			/* if on-tree, remove it */
478 			if (mz->on_tree)
479 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
480 			/*
481 			 * Insert again. mz->usage_in_excess will be updated.
482 			 * If excess is 0, no tree ops.
483 			 */
484 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
485 			spin_unlock(&mctz->lock);
486 		}
487 	}
488 }
489 
490 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
491 {
492 	int node, zone;
493 	struct mem_cgroup_per_zone *mz;
494 	struct mem_cgroup_tree_per_zone *mctz;
495 
496 	for_each_node_state(node, N_POSSIBLE) {
497 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
498 			mz = mem_cgroup_zoneinfo(mem, node, zone);
499 			mctz = soft_limit_tree_node_zone(node, zone);
500 			mem_cgroup_remove_exceeded(mem, mz, mctz);
501 		}
502 	}
503 }
504 
505 static struct mem_cgroup_per_zone *
506 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
507 {
508 	struct rb_node *rightmost = NULL;
509 	struct mem_cgroup_per_zone *mz;
510 
511 retry:
512 	mz = NULL;
513 	rightmost = rb_last(&mctz->rb_root);
514 	if (!rightmost)
515 		goto done;		/* Nothing to reclaim from */
516 
517 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
518 	/*
519 	 * Remove the node now but someone else can add it back,
520 	 * we will to add it back at the end of reclaim to its correct
521 	 * position in the tree.
522 	 */
523 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
524 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
525 		!css_tryget(&mz->mem->css))
526 		goto retry;
527 done:
528 	return mz;
529 }
530 
531 static struct mem_cgroup_per_zone *
532 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
533 {
534 	struct mem_cgroup_per_zone *mz;
535 
536 	spin_lock(&mctz->lock);
537 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
538 	spin_unlock(&mctz->lock);
539 	return mz;
540 }
541 
542 /*
543  * Implementation Note: reading percpu statistics for memcg.
544  *
545  * Both of vmstat[] and percpu_counter has threshold and do periodic
546  * synchronization to implement "quick" read. There are trade-off between
547  * reading cost and precision of value. Then, we may have a chance to implement
548  * a periodic synchronizion of counter in memcg's counter.
549  *
550  * But this _read() function is used for user interface now. The user accounts
551  * memory usage by memory cgroup and he _always_ requires exact value because
552  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
553  * have to visit all online cpus and make sum. So, for now, unnecessary
554  * synchronization is not implemented. (just implemented for cpu hotplug)
555  *
556  * If there are kernel internal actions which can make use of some not-exact
557  * value, and reading all cpu value can be performance bottleneck in some
558  * common workload, threashold and synchonization as vmstat[] should be
559  * implemented.
560  */
561 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
562 				 enum mem_cgroup_stat_index idx)
563 {
564 	long val = 0;
565 	int cpu;
566 
567 	get_online_cpus();
568 	for_each_online_cpu(cpu)
569 		val += per_cpu(mem->stat->count[idx], cpu);
570 #ifdef CONFIG_HOTPLUG_CPU
571 	spin_lock(&mem->pcp_counter_lock);
572 	val += mem->nocpu_base.count[idx];
573 	spin_unlock(&mem->pcp_counter_lock);
574 #endif
575 	put_online_cpus();
576 	return val;
577 }
578 
579 static long mem_cgroup_local_usage(struct mem_cgroup *mem)
580 {
581 	long ret;
582 
583 	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
584 	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
585 	return ret;
586 }
587 
588 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
589 					 bool charge)
590 {
591 	int val = (charge) ? 1 : -1;
592 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
593 }
594 
595 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
596 {
597 	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
598 }
599 
600 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
601 {
602 	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
603 }
604 
605 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
606 					    enum mem_cgroup_events_index idx)
607 {
608 	unsigned long val = 0;
609 	int cpu;
610 
611 	for_each_online_cpu(cpu)
612 		val += per_cpu(mem->stat->events[idx], cpu);
613 #ifdef CONFIG_HOTPLUG_CPU
614 	spin_lock(&mem->pcp_counter_lock);
615 	val += mem->nocpu_base.events[idx];
616 	spin_unlock(&mem->pcp_counter_lock);
617 #endif
618 	return val;
619 }
620 
621 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
622 					 bool file, int nr_pages)
623 {
624 	preempt_disable();
625 
626 	if (file)
627 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
628 	else
629 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
630 
631 	/* pagein of a big page is an event. So, ignore page size */
632 	if (nr_pages > 0)
633 		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 	else {
635 		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 		nr_pages = -nr_pages; /* for event */
637 	}
638 
639 	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
640 
641 	preempt_enable();
642 }
643 
644 static unsigned long
645 mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
646 {
647 	struct mem_cgroup_per_zone *mz;
648 	u64 total = 0;
649 	int zid;
650 
651 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
652 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
653 		total += MEM_CGROUP_ZSTAT(mz, idx);
654 	}
655 	return total;
656 }
657 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
658 					enum lru_list idx)
659 {
660 	int nid;
661 	u64 total = 0;
662 
663 	for_each_online_node(nid)
664 		total += mem_cgroup_get_zonestat_node(mem, nid, idx);
665 	return total;
666 }
667 
668 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
669 {
670 	unsigned long val, next;
671 
672 	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
673 	next = this_cpu_read(mem->stat->targets[target]);
674 	/* from time_after() in jiffies.h */
675 	return ((long)next - (long)val < 0);
676 }
677 
678 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
679 {
680 	unsigned long val, next;
681 
682 	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
683 
684 	switch (target) {
685 	case MEM_CGROUP_TARGET_THRESH:
686 		next = val + THRESHOLDS_EVENTS_TARGET;
687 		break;
688 	case MEM_CGROUP_TARGET_SOFTLIMIT:
689 		next = val + SOFTLIMIT_EVENTS_TARGET;
690 		break;
691 	default:
692 		return;
693 	}
694 
695 	this_cpu_write(mem->stat->targets[target], next);
696 }
697 
698 /*
699  * Check events in order.
700  *
701  */
702 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
703 {
704 	/* threshold event is triggered in finer grain than soft limit */
705 	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
706 		mem_cgroup_threshold(mem);
707 		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
708 		if (unlikely(__memcg_event_check(mem,
709 			MEM_CGROUP_TARGET_SOFTLIMIT))){
710 			mem_cgroup_update_tree(mem, page);
711 			__mem_cgroup_target_update(mem,
712 				MEM_CGROUP_TARGET_SOFTLIMIT);
713 		}
714 	}
715 }
716 
717 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
718 {
719 	return container_of(cgroup_subsys_state(cont,
720 				mem_cgroup_subsys_id), struct mem_cgroup,
721 				css);
722 }
723 
724 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
725 {
726 	/*
727 	 * mm_update_next_owner() may clear mm->owner to NULL
728 	 * if it races with swapoff, page migration, etc.
729 	 * So this can be called with p == NULL.
730 	 */
731 	if (unlikely(!p))
732 		return NULL;
733 
734 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
735 				struct mem_cgroup, css);
736 }
737 
738 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
739 {
740 	struct mem_cgroup *mem = NULL;
741 
742 	if (!mm)
743 		return NULL;
744 	/*
745 	 * Because we have no locks, mm->owner's may be being moved to other
746 	 * cgroup. We use css_tryget() here even if this looks
747 	 * pessimistic (rather than adding locks here).
748 	 */
749 	rcu_read_lock();
750 	do {
751 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
752 		if (unlikely(!mem))
753 			break;
754 	} while (!css_tryget(&mem->css));
755 	rcu_read_unlock();
756 	return mem;
757 }
758 
759 /* The caller has to guarantee "mem" exists before calling this */
760 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
761 {
762 	struct cgroup_subsys_state *css;
763 	int found;
764 
765 	if (!mem) /* ROOT cgroup has the smallest ID */
766 		return root_mem_cgroup; /*css_put/get against root is ignored*/
767 	if (!mem->use_hierarchy) {
768 		if (css_tryget(&mem->css))
769 			return mem;
770 		return NULL;
771 	}
772 	rcu_read_lock();
773 	/*
774 	 * searching a memory cgroup which has the smallest ID under given
775 	 * ROOT cgroup. (ID >= 1)
776 	 */
777 	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
778 	if (css && css_tryget(css))
779 		mem = container_of(css, struct mem_cgroup, css);
780 	else
781 		mem = NULL;
782 	rcu_read_unlock();
783 	return mem;
784 }
785 
786 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
787 					struct mem_cgroup *root,
788 					bool cond)
789 {
790 	int nextid = css_id(&iter->css) + 1;
791 	int found;
792 	int hierarchy_used;
793 	struct cgroup_subsys_state *css;
794 
795 	hierarchy_used = iter->use_hierarchy;
796 
797 	css_put(&iter->css);
798 	/* If no ROOT, walk all, ignore hierarchy */
799 	if (!cond || (root && !hierarchy_used))
800 		return NULL;
801 
802 	if (!root)
803 		root = root_mem_cgroup;
804 
805 	do {
806 		iter = NULL;
807 		rcu_read_lock();
808 
809 		css = css_get_next(&mem_cgroup_subsys, nextid,
810 				&root->css, &found);
811 		if (css && css_tryget(css))
812 			iter = container_of(css, struct mem_cgroup, css);
813 		rcu_read_unlock();
814 		/* If css is NULL, no more cgroups will be found */
815 		nextid = found + 1;
816 	} while (css && !iter);
817 
818 	return iter;
819 }
820 /*
821  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
822  * be careful that "break" loop is not allowed. We have reference count.
823  * Instead of that modify "cond" to be false and "continue" to exit the loop.
824  */
825 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
826 	for (iter = mem_cgroup_start_loop(root);\
827 	     iter != NULL;\
828 	     iter = mem_cgroup_get_next(iter, root, cond))
829 
830 #define for_each_mem_cgroup_tree(iter, root) \
831 	for_each_mem_cgroup_tree_cond(iter, root, true)
832 
833 #define for_each_mem_cgroup_all(iter) \
834 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
835 
836 
837 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
838 {
839 	return (mem == root_mem_cgroup);
840 }
841 
842 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
843 {
844 	struct mem_cgroup *mem;
845 
846 	if (!mm)
847 		return;
848 
849 	rcu_read_lock();
850 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
851 	if (unlikely(!mem))
852 		goto out;
853 
854 	switch (idx) {
855 	case PGMAJFAULT:
856 		mem_cgroup_pgmajfault(mem, 1);
857 		break;
858 	case PGFAULT:
859 		mem_cgroup_pgfault(mem, 1);
860 		break;
861 	default:
862 		BUG();
863 	}
864 out:
865 	rcu_read_unlock();
866 }
867 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
868 
869 /*
870  * Following LRU functions are allowed to be used without PCG_LOCK.
871  * Operations are called by routine of global LRU independently from memcg.
872  * What we have to take care of here is validness of pc->mem_cgroup.
873  *
874  * Changes to pc->mem_cgroup happens when
875  * 1. charge
876  * 2. moving account
877  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
878  * It is added to LRU before charge.
879  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
880  * When moving account, the page is not on LRU. It's isolated.
881  */
882 
883 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
884 {
885 	struct page_cgroup *pc;
886 	struct mem_cgroup_per_zone *mz;
887 
888 	if (mem_cgroup_disabled())
889 		return;
890 	pc = lookup_page_cgroup(page);
891 	/* can happen while we handle swapcache. */
892 	if (!TestClearPageCgroupAcctLRU(pc))
893 		return;
894 	VM_BUG_ON(!pc->mem_cgroup);
895 	/*
896 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
897 	 * removed from global LRU.
898 	 */
899 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
900 	/* huge page split is done under lru_lock. so, we have no races. */
901 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
902 	if (mem_cgroup_is_root(pc->mem_cgroup))
903 		return;
904 	VM_BUG_ON(list_empty(&pc->lru));
905 	list_del_init(&pc->lru);
906 }
907 
908 void mem_cgroup_del_lru(struct page *page)
909 {
910 	mem_cgroup_del_lru_list(page, page_lru(page));
911 }
912 
913 /*
914  * Writeback is about to end against a page which has been marked for immediate
915  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
916  * inactive list.
917  */
918 void mem_cgroup_rotate_reclaimable_page(struct page *page)
919 {
920 	struct mem_cgroup_per_zone *mz;
921 	struct page_cgroup *pc;
922 	enum lru_list lru = page_lru(page);
923 
924 	if (mem_cgroup_disabled())
925 		return;
926 
927 	pc = lookup_page_cgroup(page);
928 	/* unused or root page is not rotated. */
929 	if (!PageCgroupUsed(pc))
930 		return;
931 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
932 	smp_rmb();
933 	if (mem_cgroup_is_root(pc->mem_cgroup))
934 		return;
935 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
936 	list_move_tail(&pc->lru, &mz->lists[lru]);
937 }
938 
939 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
940 {
941 	struct mem_cgroup_per_zone *mz;
942 	struct page_cgroup *pc;
943 
944 	if (mem_cgroup_disabled())
945 		return;
946 
947 	pc = lookup_page_cgroup(page);
948 	/* unused or root page is not rotated. */
949 	if (!PageCgroupUsed(pc))
950 		return;
951 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
952 	smp_rmb();
953 	if (mem_cgroup_is_root(pc->mem_cgroup))
954 		return;
955 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
956 	list_move(&pc->lru, &mz->lists[lru]);
957 }
958 
959 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
960 {
961 	struct page_cgroup *pc;
962 	struct mem_cgroup_per_zone *mz;
963 
964 	if (mem_cgroup_disabled())
965 		return;
966 	pc = lookup_page_cgroup(page);
967 	VM_BUG_ON(PageCgroupAcctLRU(pc));
968 	if (!PageCgroupUsed(pc))
969 		return;
970 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
971 	smp_rmb();
972 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
973 	/* huge page split is done under lru_lock. so, we have no races. */
974 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
975 	SetPageCgroupAcctLRU(pc);
976 	if (mem_cgroup_is_root(pc->mem_cgroup))
977 		return;
978 	list_add(&pc->lru, &mz->lists[lru]);
979 }
980 
981 /*
982  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
983  * while it's linked to lru because the page may be reused after it's fully
984  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
985  * It's done under lock_page and expected that zone->lru_lock isnever held.
986  */
987 static void mem_cgroup_lru_del_before_commit(struct page *page)
988 {
989 	unsigned long flags;
990 	struct zone *zone = page_zone(page);
991 	struct page_cgroup *pc = lookup_page_cgroup(page);
992 
993 	/*
994 	 * Doing this check without taking ->lru_lock seems wrong but this
995 	 * is safe. Because if page_cgroup's USED bit is unset, the page
996 	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
997 	 * set, the commit after this will fail, anyway.
998 	 * This all charge/uncharge is done under some mutual execustion.
999 	 * So, we don't need to taking care of changes in USED bit.
1000 	 */
1001 	if (likely(!PageLRU(page)))
1002 		return;
1003 
1004 	spin_lock_irqsave(&zone->lru_lock, flags);
1005 	/*
1006 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1007 	 * is guarded by lock_page() because the page is SwapCache.
1008 	 */
1009 	if (!PageCgroupUsed(pc))
1010 		mem_cgroup_del_lru_list(page, page_lru(page));
1011 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1012 }
1013 
1014 static void mem_cgroup_lru_add_after_commit(struct page *page)
1015 {
1016 	unsigned long flags;
1017 	struct zone *zone = page_zone(page);
1018 	struct page_cgroup *pc = lookup_page_cgroup(page);
1019 
1020 	/* taking care of that the page is added to LRU while we commit it */
1021 	if (likely(!PageLRU(page)))
1022 		return;
1023 	spin_lock_irqsave(&zone->lru_lock, flags);
1024 	/* link when the page is linked to LRU but page_cgroup isn't */
1025 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1026 		mem_cgroup_add_lru_list(page, page_lru(page));
1027 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1028 }
1029 
1030 
1031 void mem_cgroup_move_lists(struct page *page,
1032 			   enum lru_list from, enum lru_list to)
1033 {
1034 	if (mem_cgroup_disabled())
1035 		return;
1036 	mem_cgroup_del_lru_list(page, from);
1037 	mem_cgroup_add_lru_list(page, to);
1038 }
1039 
1040 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1041 {
1042 	int ret;
1043 	struct mem_cgroup *curr = NULL;
1044 	struct task_struct *p;
1045 
1046 	p = find_lock_task_mm(task);
1047 	if (!p)
1048 		return 0;
1049 	curr = try_get_mem_cgroup_from_mm(p->mm);
1050 	task_unlock(p);
1051 	if (!curr)
1052 		return 0;
1053 	/*
1054 	 * We should check use_hierarchy of "mem" not "curr". Because checking
1055 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1056 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1057 	 * hierarchy(even if use_hierarchy is disabled in "mem").
1058 	 */
1059 	if (mem->use_hierarchy)
1060 		ret = css_is_ancestor(&curr->css, &mem->css);
1061 	else
1062 		ret = (curr == mem);
1063 	css_put(&curr->css);
1064 	return ret;
1065 }
1066 
1067 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1068 {
1069 	unsigned long active;
1070 	unsigned long inactive;
1071 	unsigned long gb;
1072 	unsigned long inactive_ratio;
1073 
1074 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1075 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1076 
1077 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1078 	if (gb)
1079 		inactive_ratio = int_sqrt(10 * gb);
1080 	else
1081 		inactive_ratio = 1;
1082 
1083 	if (present_pages) {
1084 		present_pages[0] = inactive;
1085 		present_pages[1] = active;
1086 	}
1087 
1088 	return inactive_ratio;
1089 }
1090 
1091 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1092 {
1093 	unsigned long active;
1094 	unsigned long inactive;
1095 	unsigned long present_pages[2];
1096 	unsigned long inactive_ratio;
1097 
1098 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1099 
1100 	inactive = present_pages[0];
1101 	active = present_pages[1];
1102 
1103 	if (inactive * inactive_ratio < active)
1104 		return 1;
1105 
1106 	return 0;
1107 }
1108 
1109 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1110 {
1111 	unsigned long active;
1112 	unsigned long inactive;
1113 
1114 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1115 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1116 
1117 	return (active > inactive);
1118 }
1119 
1120 unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
1121 						struct zone *zone,
1122 						enum lru_list lru)
1123 {
1124 	int nid = zone_to_nid(zone);
1125 	int zid = zone_idx(zone);
1126 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1127 
1128 	return MEM_CGROUP_ZSTAT(mz, lru);
1129 }
1130 
1131 #ifdef CONFIG_NUMA
1132 static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup *memcg,
1133 							int nid)
1134 {
1135 	unsigned long ret;
1136 
1137 	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_FILE) +
1138 		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_FILE);
1139 
1140 	return ret;
1141 }
1142 
1143 static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup *memcg)
1144 {
1145 	u64 total = 0;
1146 	int nid;
1147 
1148 	for_each_node_state(nid, N_HIGH_MEMORY)
1149 		total += mem_cgroup_node_nr_file_lru_pages(memcg, nid);
1150 
1151 	return total;
1152 }
1153 
1154 static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup *memcg,
1155 							int nid)
1156 {
1157 	unsigned long ret;
1158 
1159 	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_ANON) +
1160 		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_ANON);
1161 
1162 	return ret;
1163 }
1164 
1165 static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup *memcg)
1166 {
1167 	u64 total = 0;
1168 	int nid;
1169 
1170 	for_each_node_state(nid, N_HIGH_MEMORY)
1171 		total += mem_cgroup_node_nr_anon_lru_pages(memcg, nid);
1172 
1173 	return total;
1174 }
1175 
1176 static unsigned long
1177 mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup *memcg, int nid)
1178 {
1179 	return mem_cgroup_get_zonestat_node(memcg, nid, LRU_UNEVICTABLE);
1180 }
1181 
1182 static unsigned long
1183 mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup *memcg)
1184 {
1185 	u64 total = 0;
1186 	int nid;
1187 
1188 	for_each_node_state(nid, N_HIGH_MEMORY)
1189 		total += mem_cgroup_node_nr_unevictable_lru_pages(memcg, nid);
1190 
1191 	return total;
1192 }
1193 
1194 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1195 							int nid)
1196 {
1197 	enum lru_list l;
1198 	u64 total = 0;
1199 
1200 	for_each_lru(l)
1201 		total += mem_cgroup_get_zonestat_node(memcg, nid, l);
1202 
1203 	return total;
1204 }
1205 
1206 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg)
1207 {
1208 	u64 total = 0;
1209 	int nid;
1210 
1211 	for_each_node_state(nid, N_HIGH_MEMORY)
1212 		total += mem_cgroup_node_nr_lru_pages(memcg, nid);
1213 
1214 	return total;
1215 }
1216 #endif /* CONFIG_NUMA */
1217 
1218 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1219 						      struct zone *zone)
1220 {
1221 	int nid = zone_to_nid(zone);
1222 	int zid = zone_idx(zone);
1223 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1224 
1225 	return &mz->reclaim_stat;
1226 }
1227 
1228 struct zone_reclaim_stat *
1229 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1230 {
1231 	struct page_cgroup *pc;
1232 	struct mem_cgroup_per_zone *mz;
1233 
1234 	if (mem_cgroup_disabled())
1235 		return NULL;
1236 
1237 	pc = lookup_page_cgroup(page);
1238 	if (!PageCgroupUsed(pc))
1239 		return NULL;
1240 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1241 	smp_rmb();
1242 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1243 	return &mz->reclaim_stat;
1244 }
1245 
1246 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1247 					struct list_head *dst,
1248 					unsigned long *scanned, int order,
1249 					int mode, struct zone *z,
1250 					struct mem_cgroup *mem_cont,
1251 					int active, int file)
1252 {
1253 	unsigned long nr_taken = 0;
1254 	struct page *page;
1255 	unsigned long scan;
1256 	LIST_HEAD(pc_list);
1257 	struct list_head *src;
1258 	struct page_cgroup *pc, *tmp;
1259 	int nid = zone_to_nid(z);
1260 	int zid = zone_idx(z);
1261 	struct mem_cgroup_per_zone *mz;
1262 	int lru = LRU_FILE * file + active;
1263 	int ret;
1264 
1265 	BUG_ON(!mem_cont);
1266 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1267 	src = &mz->lists[lru];
1268 
1269 	scan = 0;
1270 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1271 		if (scan >= nr_to_scan)
1272 			break;
1273 
1274 		if (unlikely(!PageCgroupUsed(pc)))
1275 			continue;
1276 
1277 		page = lookup_cgroup_page(pc);
1278 
1279 		if (unlikely(!PageLRU(page)))
1280 			continue;
1281 
1282 		scan++;
1283 		ret = __isolate_lru_page(page, mode, file);
1284 		switch (ret) {
1285 		case 0:
1286 			list_move(&page->lru, dst);
1287 			mem_cgroup_del_lru(page);
1288 			nr_taken += hpage_nr_pages(page);
1289 			break;
1290 		case -EBUSY:
1291 			/* we don't affect global LRU but rotate in our LRU */
1292 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1293 			break;
1294 		default:
1295 			break;
1296 		}
1297 	}
1298 
1299 	*scanned = scan;
1300 
1301 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1302 				      0, 0, 0, mode);
1303 
1304 	return nr_taken;
1305 }
1306 
1307 #define mem_cgroup_from_res_counter(counter, member)	\
1308 	container_of(counter, struct mem_cgroup, member)
1309 
1310 /**
1311  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1312  * @mem: the memory cgroup
1313  *
1314  * Returns the maximum amount of memory @mem can be charged with, in
1315  * pages.
1316  */
1317 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1318 {
1319 	unsigned long long margin;
1320 
1321 	margin = res_counter_margin(&mem->res);
1322 	if (do_swap_account)
1323 		margin = min(margin, res_counter_margin(&mem->memsw));
1324 	return margin >> PAGE_SHIFT;
1325 }
1326 
1327 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1328 {
1329 	struct cgroup *cgrp = memcg->css.cgroup;
1330 
1331 	/* root ? */
1332 	if (cgrp->parent == NULL)
1333 		return vm_swappiness;
1334 
1335 	return memcg->swappiness;
1336 }
1337 
1338 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1339 {
1340 	int cpu;
1341 
1342 	get_online_cpus();
1343 	spin_lock(&mem->pcp_counter_lock);
1344 	for_each_online_cpu(cpu)
1345 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1346 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1347 	spin_unlock(&mem->pcp_counter_lock);
1348 	put_online_cpus();
1349 
1350 	synchronize_rcu();
1351 }
1352 
1353 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1354 {
1355 	int cpu;
1356 
1357 	if (!mem)
1358 		return;
1359 	get_online_cpus();
1360 	spin_lock(&mem->pcp_counter_lock);
1361 	for_each_online_cpu(cpu)
1362 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1363 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1364 	spin_unlock(&mem->pcp_counter_lock);
1365 	put_online_cpus();
1366 }
1367 /*
1368  * 2 routines for checking "mem" is under move_account() or not.
1369  *
1370  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1371  *			  for avoiding race in accounting. If true,
1372  *			  pc->mem_cgroup may be overwritten.
1373  *
1374  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1375  *			  under hierarchy of moving cgroups. This is for
1376  *			  waiting at hith-memory prressure caused by "move".
1377  */
1378 
1379 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1380 {
1381 	VM_BUG_ON(!rcu_read_lock_held());
1382 	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1383 }
1384 
1385 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1386 {
1387 	struct mem_cgroup *from;
1388 	struct mem_cgroup *to;
1389 	bool ret = false;
1390 	/*
1391 	 * Unlike task_move routines, we access mc.to, mc.from not under
1392 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1393 	 */
1394 	spin_lock(&mc.lock);
1395 	from = mc.from;
1396 	to = mc.to;
1397 	if (!from)
1398 		goto unlock;
1399 	if (from == mem || to == mem
1400 	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1401 	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1402 		ret = true;
1403 unlock:
1404 	spin_unlock(&mc.lock);
1405 	return ret;
1406 }
1407 
1408 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1409 {
1410 	if (mc.moving_task && current != mc.moving_task) {
1411 		if (mem_cgroup_under_move(mem)) {
1412 			DEFINE_WAIT(wait);
1413 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1414 			/* moving charge context might have finished. */
1415 			if (mc.moving_task)
1416 				schedule();
1417 			finish_wait(&mc.waitq, &wait);
1418 			return true;
1419 		}
1420 	}
1421 	return false;
1422 }
1423 
1424 /**
1425  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1426  * @memcg: The memory cgroup that went over limit
1427  * @p: Task that is going to be killed
1428  *
1429  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1430  * enabled
1431  */
1432 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1433 {
1434 	struct cgroup *task_cgrp;
1435 	struct cgroup *mem_cgrp;
1436 	/*
1437 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1438 	 * on the assumption that OOM is serialized for memory controller.
1439 	 * If this assumption is broken, revisit this code.
1440 	 */
1441 	static char memcg_name[PATH_MAX];
1442 	int ret;
1443 
1444 	if (!memcg || !p)
1445 		return;
1446 
1447 
1448 	rcu_read_lock();
1449 
1450 	mem_cgrp = memcg->css.cgroup;
1451 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1452 
1453 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1454 	if (ret < 0) {
1455 		/*
1456 		 * Unfortunately, we are unable to convert to a useful name
1457 		 * But we'll still print out the usage information
1458 		 */
1459 		rcu_read_unlock();
1460 		goto done;
1461 	}
1462 	rcu_read_unlock();
1463 
1464 	printk(KERN_INFO "Task in %s killed", memcg_name);
1465 
1466 	rcu_read_lock();
1467 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1468 	if (ret < 0) {
1469 		rcu_read_unlock();
1470 		goto done;
1471 	}
1472 	rcu_read_unlock();
1473 
1474 	/*
1475 	 * Continues from above, so we don't need an KERN_ level
1476 	 */
1477 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1478 done:
1479 
1480 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1481 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1482 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1483 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1484 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1485 		"failcnt %llu\n",
1486 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1487 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1488 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1489 }
1490 
1491 /*
1492  * This function returns the number of memcg under hierarchy tree. Returns
1493  * 1(self count) if no children.
1494  */
1495 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1496 {
1497 	int num = 0;
1498 	struct mem_cgroup *iter;
1499 
1500 	for_each_mem_cgroup_tree(iter, mem)
1501 		num++;
1502 	return num;
1503 }
1504 
1505 /*
1506  * Return the memory (and swap, if configured) limit for a memcg.
1507  */
1508 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1509 {
1510 	u64 limit;
1511 	u64 memsw;
1512 
1513 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1514 	limit += total_swap_pages << PAGE_SHIFT;
1515 
1516 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1517 	/*
1518 	 * If memsw is finite and limits the amount of swap space available
1519 	 * to this memcg, return that limit.
1520 	 */
1521 	return min(limit, memsw);
1522 }
1523 
1524 /*
1525  * Visit the first child (need not be the first child as per the ordering
1526  * of the cgroup list, since we track last_scanned_child) of @mem and use
1527  * that to reclaim free pages from.
1528  */
1529 static struct mem_cgroup *
1530 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1531 {
1532 	struct mem_cgroup *ret = NULL;
1533 	struct cgroup_subsys_state *css;
1534 	int nextid, found;
1535 
1536 	if (!root_mem->use_hierarchy) {
1537 		css_get(&root_mem->css);
1538 		ret = root_mem;
1539 	}
1540 
1541 	while (!ret) {
1542 		rcu_read_lock();
1543 		nextid = root_mem->last_scanned_child + 1;
1544 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1545 				   &found);
1546 		if (css && css_tryget(css))
1547 			ret = container_of(css, struct mem_cgroup, css);
1548 
1549 		rcu_read_unlock();
1550 		/* Updates scanning parameter */
1551 		if (!css) {
1552 			/* this means start scan from ID:1 */
1553 			root_mem->last_scanned_child = 0;
1554 		} else
1555 			root_mem->last_scanned_child = found;
1556 	}
1557 
1558 	return ret;
1559 }
1560 
1561 #if MAX_NUMNODES > 1
1562 
1563 /*
1564  * Always updating the nodemask is not very good - even if we have an empty
1565  * list or the wrong list here, we can start from some node and traverse all
1566  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1567  *
1568  */
1569 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1570 {
1571 	int nid;
1572 
1573 	if (time_after(mem->next_scan_node_update, jiffies))
1574 		return;
1575 
1576 	mem->next_scan_node_update = jiffies + 10*HZ;
1577 	/* make a nodemask where this memcg uses memory from */
1578 	mem->scan_nodes = node_states[N_HIGH_MEMORY];
1579 
1580 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1581 
1582 		if (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_FILE) ||
1583 		    mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_FILE))
1584 			continue;
1585 
1586 		if (total_swap_pages &&
1587 		    (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_ANON) ||
1588 		     mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_ANON)))
1589 			continue;
1590 		node_clear(nid, mem->scan_nodes);
1591 	}
1592 }
1593 
1594 /*
1595  * Selecting a node where we start reclaim from. Because what we need is just
1596  * reducing usage counter, start from anywhere is O,K. Considering
1597  * memory reclaim from current node, there are pros. and cons.
1598  *
1599  * Freeing memory from current node means freeing memory from a node which
1600  * we'll use or we've used. So, it may make LRU bad. And if several threads
1601  * hit limits, it will see a contention on a node. But freeing from remote
1602  * node means more costs for memory reclaim because of memory latency.
1603  *
1604  * Now, we use round-robin. Better algorithm is welcomed.
1605  */
1606 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1607 {
1608 	int node;
1609 
1610 	mem_cgroup_may_update_nodemask(mem);
1611 	node = mem->last_scanned_node;
1612 
1613 	node = next_node(node, mem->scan_nodes);
1614 	if (node == MAX_NUMNODES)
1615 		node = first_node(mem->scan_nodes);
1616 	/*
1617 	 * We call this when we hit limit, not when pages are added to LRU.
1618 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1619 	 * memcg is too small and all pages are not on LRU. In that case,
1620 	 * we use curret node.
1621 	 */
1622 	if (unlikely(node == MAX_NUMNODES))
1623 		node = numa_node_id();
1624 
1625 	mem->last_scanned_node = node;
1626 	return node;
1627 }
1628 
1629 #else
1630 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1631 {
1632 	return 0;
1633 }
1634 #endif
1635 
1636 /*
1637  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638  * we reclaimed from, so that we don't end up penalizing one child extensively
1639  * based on its position in the children list.
1640  *
1641  * root_mem is the original ancestor that we've been reclaim from.
1642  *
1643  * We give up and return to the caller when we visit root_mem twice.
1644  * (other groups can be removed while we're walking....)
1645  *
1646  * If shrink==true, for avoiding to free too much, this returns immedieately.
1647  */
1648 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1649 						struct zone *zone,
1650 						gfp_t gfp_mask,
1651 						unsigned long reclaim_options,
1652 						unsigned long *total_scanned)
1653 {
1654 	struct mem_cgroup *victim;
1655 	int ret, total = 0;
1656 	int loop = 0;
1657 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1658 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1659 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1660 	unsigned long excess;
1661 	unsigned long nr_scanned;
1662 
1663 	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1664 
1665 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1666 	if (root_mem->memsw_is_minimum)
1667 		noswap = true;
1668 
1669 	while (1) {
1670 		victim = mem_cgroup_select_victim(root_mem);
1671 		if (victim == root_mem) {
1672 			loop++;
1673 			if (loop >= 1)
1674 				drain_all_stock_async();
1675 			if (loop >= 2) {
1676 				/*
1677 				 * If we have not been able to reclaim
1678 				 * anything, it might because there are
1679 				 * no reclaimable pages under this hierarchy
1680 				 */
1681 				if (!check_soft || !total) {
1682 					css_put(&victim->css);
1683 					break;
1684 				}
1685 				/*
1686 				 * We want to do more targeted reclaim.
1687 				 * excess >> 2 is not to excessive so as to
1688 				 * reclaim too much, nor too less that we keep
1689 				 * coming back to reclaim from this cgroup
1690 				 */
1691 				if (total >= (excess >> 2) ||
1692 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1693 					css_put(&victim->css);
1694 					break;
1695 				}
1696 			}
1697 		}
1698 		if (!mem_cgroup_local_usage(victim)) {
1699 			/* this cgroup's local usage == 0 */
1700 			css_put(&victim->css);
1701 			continue;
1702 		}
1703 		/* we use swappiness of local cgroup */
1704 		if (check_soft) {
1705 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1706 				noswap, get_swappiness(victim), zone,
1707 				&nr_scanned);
1708 			*total_scanned += nr_scanned;
1709 		} else
1710 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1711 						noswap, get_swappiness(victim));
1712 		css_put(&victim->css);
1713 		/*
1714 		 * At shrinking usage, we can't check we should stop here or
1715 		 * reclaim more. It's depends on callers. last_scanned_child
1716 		 * will work enough for keeping fairness under tree.
1717 		 */
1718 		if (shrink)
1719 			return ret;
1720 		total += ret;
1721 		if (check_soft) {
1722 			if (!res_counter_soft_limit_excess(&root_mem->res))
1723 				return total;
1724 		} else if (mem_cgroup_margin(root_mem))
1725 			return total;
1726 	}
1727 	return total;
1728 }
1729 
1730 /*
1731  * Check OOM-Killer is already running under our hierarchy.
1732  * If someone is running, return false.
1733  */
1734 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1735 {
1736 	int x, lock_count = 0;
1737 	struct mem_cgroup *iter;
1738 
1739 	for_each_mem_cgroup_tree(iter, mem) {
1740 		x = atomic_inc_return(&iter->oom_lock);
1741 		lock_count = max(x, lock_count);
1742 	}
1743 
1744 	if (lock_count == 1)
1745 		return true;
1746 	return false;
1747 }
1748 
1749 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1750 {
1751 	struct mem_cgroup *iter;
1752 
1753 	/*
1754 	 * When a new child is created while the hierarchy is under oom,
1755 	 * mem_cgroup_oom_lock() may not be called. We have to use
1756 	 * atomic_add_unless() here.
1757 	 */
1758 	for_each_mem_cgroup_tree(iter, mem)
1759 		atomic_add_unless(&iter->oom_lock, -1, 0);
1760 	return 0;
1761 }
1762 
1763 
1764 static DEFINE_MUTEX(memcg_oom_mutex);
1765 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1766 
1767 struct oom_wait_info {
1768 	struct mem_cgroup *mem;
1769 	wait_queue_t	wait;
1770 };
1771 
1772 static int memcg_oom_wake_function(wait_queue_t *wait,
1773 	unsigned mode, int sync, void *arg)
1774 {
1775 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1776 	struct oom_wait_info *oom_wait_info;
1777 
1778 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1779 
1780 	if (oom_wait_info->mem == wake_mem)
1781 		goto wakeup;
1782 	/* if no hierarchy, no match */
1783 	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1784 		return 0;
1785 	/*
1786 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1787 	 * Then we can use css_is_ancestor without taking care of RCU.
1788 	 */
1789 	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1790 	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1791 		return 0;
1792 
1793 wakeup:
1794 	return autoremove_wake_function(wait, mode, sync, arg);
1795 }
1796 
1797 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1798 {
1799 	/* for filtering, pass "mem" as argument. */
1800 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1801 }
1802 
1803 static void memcg_oom_recover(struct mem_cgroup *mem)
1804 {
1805 	if (mem && atomic_read(&mem->oom_lock))
1806 		memcg_wakeup_oom(mem);
1807 }
1808 
1809 /*
1810  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1811  */
1812 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1813 {
1814 	struct oom_wait_info owait;
1815 	bool locked, need_to_kill;
1816 
1817 	owait.mem = mem;
1818 	owait.wait.flags = 0;
1819 	owait.wait.func = memcg_oom_wake_function;
1820 	owait.wait.private = current;
1821 	INIT_LIST_HEAD(&owait.wait.task_list);
1822 	need_to_kill = true;
1823 	/* At first, try to OOM lock hierarchy under mem.*/
1824 	mutex_lock(&memcg_oom_mutex);
1825 	locked = mem_cgroup_oom_lock(mem);
1826 	/*
1827 	 * Even if signal_pending(), we can't quit charge() loop without
1828 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1829 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1830 	 */
1831 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1832 	if (!locked || mem->oom_kill_disable)
1833 		need_to_kill = false;
1834 	if (locked)
1835 		mem_cgroup_oom_notify(mem);
1836 	mutex_unlock(&memcg_oom_mutex);
1837 
1838 	if (need_to_kill) {
1839 		finish_wait(&memcg_oom_waitq, &owait.wait);
1840 		mem_cgroup_out_of_memory(mem, mask);
1841 	} else {
1842 		schedule();
1843 		finish_wait(&memcg_oom_waitq, &owait.wait);
1844 	}
1845 	mutex_lock(&memcg_oom_mutex);
1846 	mem_cgroup_oom_unlock(mem);
1847 	memcg_wakeup_oom(mem);
1848 	mutex_unlock(&memcg_oom_mutex);
1849 
1850 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1851 		return false;
1852 	/* Give chance to dying process */
1853 	schedule_timeout(1);
1854 	return true;
1855 }
1856 
1857 /*
1858  * Currently used to update mapped file statistics, but the routine can be
1859  * generalized to update other statistics as well.
1860  *
1861  * Notes: Race condition
1862  *
1863  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1864  * it tends to be costly. But considering some conditions, we doesn't need
1865  * to do so _always_.
1866  *
1867  * Considering "charge", lock_page_cgroup() is not required because all
1868  * file-stat operations happen after a page is attached to radix-tree. There
1869  * are no race with "charge".
1870  *
1871  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1872  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1873  * if there are race with "uncharge". Statistics itself is properly handled
1874  * by flags.
1875  *
1876  * Considering "move", this is an only case we see a race. To make the race
1877  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1878  * possibility of race condition. If there is, we take a lock.
1879  */
1880 
1881 void mem_cgroup_update_page_stat(struct page *page,
1882 				 enum mem_cgroup_page_stat_item idx, int val)
1883 {
1884 	struct mem_cgroup *mem;
1885 	struct page_cgroup *pc = lookup_page_cgroup(page);
1886 	bool need_unlock = false;
1887 	unsigned long uninitialized_var(flags);
1888 
1889 	if (unlikely(!pc))
1890 		return;
1891 
1892 	rcu_read_lock();
1893 	mem = pc->mem_cgroup;
1894 	if (unlikely(!mem || !PageCgroupUsed(pc)))
1895 		goto out;
1896 	/* pc->mem_cgroup is unstable ? */
1897 	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1898 		/* take a lock against to access pc->mem_cgroup */
1899 		move_lock_page_cgroup(pc, &flags);
1900 		need_unlock = true;
1901 		mem = pc->mem_cgroup;
1902 		if (!mem || !PageCgroupUsed(pc))
1903 			goto out;
1904 	}
1905 
1906 	switch (idx) {
1907 	case MEMCG_NR_FILE_MAPPED:
1908 		if (val > 0)
1909 			SetPageCgroupFileMapped(pc);
1910 		else if (!page_mapped(page))
1911 			ClearPageCgroupFileMapped(pc);
1912 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1913 		break;
1914 	default:
1915 		BUG();
1916 	}
1917 
1918 	this_cpu_add(mem->stat->count[idx], val);
1919 
1920 out:
1921 	if (unlikely(need_unlock))
1922 		move_unlock_page_cgroup(pc, &flags);
1923 	rcu_read_unlock();
1924 	return;
1925 }
1926 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1927 
1928 /*
1929  * size of first charge trial. "32" comes from vmscan.c's magic value.
1930  * TODO: maybe necessary to use big numbers in big irons.
1931  */
1932 #define CHARGE_BATCH	32U
1933 struct memcg_stock_pcp {
1934 	struct mem_cgroup *cached; /* this never be root cgroup */
1935 	unsigned int nr_pages;
1936 	struct work_struct work;
1937 };
1938 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1939 static atomic_t memcg_drain_count;
1940 
1941 /*
1942  * Try to consume stocked charge on this cpu. If success, one page is consumed
1943  * from local stock and true is returned. If the stock is 0 or charges from a
1944  * cgroup which is not current target, returns false. This stock will be
1945  * refilled.
1946  */
1947 static bool consume_stock(struct mem_cgroup *mem)
1948 {
1949 	struct memcg_stock_pcp *stock;
1950 	bool ret = true;
1951 
1952 	stock = &get_cpu_var(memcg_stock);
1953 	if (mem == stock->cached && stock->nr_pages)
1954 		stock->nr_pages--;
1955 	else /* need to call res_counter_charge */
1956 		ret = false;
1957 	put_cpu_var(memcg_stock);
1958 	return ret;
1959 }
1960 
1961 /*
1962  * Returns stocks cached in percpu to res_counter and reset cached information.
1963  */
1964 static void drain_stock(struct memcg_stock_pcp *stock)
1965 {
1966 	struct mem_cgroup *old = stock->cached;
1967 
1968 	if (stock->nr_pages) {
1969 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1970 
1971 		res_counter_uncharge(&old->res, bytes);
1972 		if (do_swap_account)
1973 			res_counter_uncharge(&old->memsw, bytes);
1974 		stock->nr_pages = 0;
1975 	}
1976 	stock->cached = NULL;
1977 }
1978 
1979 /*
1980  * This must be called under preempt disabled or must be called by
1981  * a thread which is pinned to local cpu.
1982  */
1983 static void drain_local_stock(struct work_struct *dummy)
1984 {
1985 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1986 	drain_stock(stock);
1987 }
1988 
1989 /*
1990  * Cache charges(val) which is from res_counter, to local per_cpu area.
1991  * This will be consumed by consume_stock() function, later.
1992  */
1993 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
1994 {
1995 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1996 
1997 	if (stock->cached != mem) { /* reset if necessary */
1998 		drain_stock(stock);
1999 		stock->cached = mem;
2000 	}
2001 	stock->nr_pages += nr_pages;
2002 	put_cpu_var(memcg_stock);
2003 }
2004 
2005 /*
2006  * Tries to drain stocked charges in other cpus. This function is asynchronous
2007  * and just put a work per cpu for draining localy on each cpu. Caller can
2008  * expects some charges will be back to res_counter later but cannot wait for
2009  * it.
2010  */
2011 static void drain_all_stock_async(void)
2012 {
2013 	int cpu;
2014 	/* This function is for scheduling "drain" in asynchronous way.
2015 	 * The result of "drain" is not directly handled by callers. Then,
2016 	 * if someone is calling drain, we don't have to call drain more.
2017 	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
2018 	 * there is a race. We just do loose check here.
2019 	 */
2020 	if (atomic_read(&memcg_drain_count))
2021 		return;
2022 	/* Notify other cpus that system-wide "drain" is running */
2023 	atomic_inc(&memcg_drain_count);
2024 	get_online_cpus();
2025 	for_each_online_cpu(cpu) {
2026 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2027 		schedule_work_on(cpu, &stock->work);
2028 	}
2029  	put_online_cpus();
2030 	atomic_dec(&memcg_drain_count);
2031 	/* We don't wait for flush_work */
2032 }
2033 
2034 /* This is a synchronous drain interface. */
2035 static void drain_all_stock_sync(void)
2036 {
2037 	/* called when force_empty is called */
2038 	atomic_inc(&memcg_drain_count);
2039 	schedule_on_each_cpu(drain_local_stock);
2040 	atomic_dec(&memcg_drain_count);
2041 }
2042 
2043 /*
2044  * This function drains percpu counter value from DEAD cpu and
2045  * move it to local cpu. Note that this function can be preempted.
2046  */
2047 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2048 {
2049 	int i;
2050 
2051 	spin_lock(&mem->pcp_counter_lock);
2052 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2053 		long x = per_cpu(mem->stat->count[i], cpu);
2054 
2055 		per_cpu(mem->stat->count[i], cpu) = 0;
2056 		mem->nocpu_base.count[i] += x;
2057 	}
2058 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2059 		unsigned long x = per_cpu(mem->stat->events[i], cpu);
2060 
2061 		per_cpu(mem->stat->events[i], cpu) = 0;
2062 		mem->nocpu_base.events[i] += x;
2063 	}
2064 	/* need to clear ON_MOVE value, works as a kind of lock. */
2065 	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2066 	spin_unlock(&mem->pcp_counter_lock);
2067 }
2068 
2069 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2070 {
2071 	int idx = MEM_CGROUP_ON_MOVE;
2072 
2073 	spin_lock(&mem->pcp_counter_lock);
2074 	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2075 	spin_unlock(&mem->pcp_counter_lock);
2076 }
2077 
2078 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2079 					unsigned long action,
2080 					void *hcpu)
2081 {
2082 	int cpu = (unsigned long)hcpu;
2083 	struct memcg_stock_pcp *stock;
2084 	struct mem_cgroup *iter;
2085 
2086 	if ((action == CPU_ONLINE)) {
2087 		for_each_mem_cgroup_all(iter)
2088 			synchronize_mem_cgroup_on_move(iter, cpu);
2089 		return NOTIFY_OK;
2090 	}
2091 
2092 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2093 		return NOTIFY_OK;
2094 
2095 	for_each_mem_cgroup_all(iter)
2096 		mem_cgroup_drain_pcp_counter(iter, cpu);
2097 
2098 	stock = &per_cpu(memcg_stock, cpu);
2099 	drain_stock(stock);
2100 	return NOTIFY_OK;
2101 }
2102 
2103 
2104 /* See __mem_cgroup_try_charge() for details */
2105 enum {
2106 	CHARGE_OK,		/* success */
2107 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2108 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2109 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2110 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2111 };
2112 
2113 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2114 				unsigned int nr_pages, bool oom_check)
2115 {
2116 	unsigned long csize = nr_pages * PAGE_SIZE;
2117 	struct mem_cgroup *mem_over_limit;
2118 	struct res_counter *fail_res;
2119 	unsigned long flags = 0;
2120 	int ret;
2121 
2122 	ret = res_counter_charge(&mem->res, csize, &fail_res);
2123 
2124 	if (likely(!ret)) {
2125 		if (!do_swap_account)
2126 			return CHARGE_OK;
2127 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2128 		if (likely(!ret))
2129 			return CHARGE_OK;
2130 
2131 		res_counter_uncharge(&mem->res, csize);
2132 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2133 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2134 	} else
2135 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2136 	/*
2137 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2138 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2139 	 *
2140 	 * Never reclaim on behalf of optional batching, retry with a
2141 	 * single page instead.
2142 	 */
2143 	if (nr_pages == CHARGE_BATCH)
2144 		return CHARGE_RETRY;
2145 
2146 	if (!(gfp_mask & __GFP_WAIT))
2147 		return CHARGE_WOULDBLOCK;
2148 
2149 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2150 					      gfp_mask, flags, NULL);
2151 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2152 		return CHARGE_RETRY;
2153 	/*
2154 	 * Even though the limit is exceeded at this point, reclaim
2155 	 * may have been able to free some pages.  Retry the charge
2156 	 * before killing the task.
2157 	 *
2158 	 * Only for regular pages, though: huge pages are rather
2159 	 * unlikely to succeed so close to the limit, and we fall back
2160 	 * to regular pages anyway in case of failure.
2161 	 */
2162 	if (nr_pages == 1 && ret)
2163 		return CHARGE_RETRY;
2164 
2165 	/*
2166 	 * At task move, charge accounts can be doubly counted. So, it's
2167 	 * better to wait until the end of task_move if something is going on.
2168 	 */
2169 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2170 		return CHARGE_RETRY;
2171 
2172 	/* If we don't need to call oom-killer at el, return immediately */
2173 	if (!oom_check)
2174 		return CHARGE_NOMEM;
2175 	/* check OOM */
2176 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2177 		return CHARGE_OOM_DIE;
2178 
2179 	return CHARGE_RETRY;
2180 }
2181 
2182 /*
2183  * Unlike exported interface, "oom" parameter is added. if oom==true,
2184  * oom-killer can be invoked.
2185  */
2186 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2187 				   gfp_t gfp_mask,
2188 				   unsigned int nr_pages,
2189 				   struct mem_cgroup **memcg,
2190 				   bool oom)
2191 {
2192 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2193 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2194 	struct mem_cgroup *mem = NULL;
2195 	int ret;
2196 
2197 	/*
2198 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2199 	 * in system level. So, allow to go ahead dying process in addition to
2200 	 * MEMDIE process.
2201 	 */
2202 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2203 		     || fatal_signal_pending(current)))
2204 		goto bypass;
2205 
2206 	/*
2207 	 * We always charge the cgroup the mm_struct belongs to.
2208 	 * The mm_struct's mem_cgroup changes on task migration if the
2209 	 * thread group leader migrates. It's possible that mm is not
2210 	 * set, if so charge the init_mm (happens for pagecache usage).
2211 	 */
2212 	if (!*memcg && !mm)
2213 		goto bypass;
2214 again:
2215 	if (*memcg) { /* css should be a valid one */
2216 		mem = *memcg;
2217 		VM_BUG_ON(css_is_removed(&mem->css));
2218 		if (mem_cgroup_is_root(mem))
2219 			goto done;
2220 		if (nr_pages == 1 && consume_stock(mem))
2221 			goto done;
2222 		css_get(&mem->css);
2223 	} else {
2224 		struct task_struct *p;
2225 
2226 		rcu_read_lock();
2227 		p = rcu_dereference(mm->owner);
2228 		/*
2229 		 * Because we don't have task_lock(), "p" can exit.
2230 		 * In that case, "mem" can point to root or p can be NULL with
2231 		 * race with swapoff. Then, we have small risk of mis-accouning.
2232 		 * But such kind of mis-account by race always happens because
2233 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2234 		 * small race, here.
2235 		 * (*) swapoff at el will charge against mm-struct not against
2236 		 * task-struct. So, mm->owner can be NULL.
2237 		 */
2238 		mem = mem_cgroup_from_task(p);
2239 		if (!mem || mem_cgroup_is_root(mem)) {
2240 			rcu_read_unlock();
2241 			goto done;
2242 		}
2243 		if (nr_pages == 1 && consume_stock(mem)) {
2244 			/*
2245 			 * It seems dagerous to access memcg without css_get().
2246 			 * But considering how consume_stok works, it's not
2247 			 * necessary. If consume_stock success, some charges
2248 			 * from this memcg are cached on this cpu. So, we
2249 			 * don't need to call css_get()/css_tryget() before
2250 			 * calling consume_stock().
2251 			 */
2252 			rcu_read_unlock();
2253 			goto done;
2254 		}
2255 		/* after here, we may be blocked. we need to get refcnt */
2256 		if (!css_tryget(&mem->css)) {
2257 			rcu_read_unlock();
2258 			goto again;
2259 		}
2260 		rcu_read_unlock();
2261 	}
2262 
2263 	do {
2264 		bool oom_check;
2265 
2266 		/* If killed, bypass charge */
2267 		if (fatal_signal_pending(current)) {
2268 			css_put(&mem->css);
2269 			goto bypass;
2270 		}
2271 
2272 		oom_check = false;
2273 		if (oom && !nr_oom_retries) {
2274 			oom_check = true;
2275 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2276 		}
2277 
2278 		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2279 		switch (ret) {
2280 		case CHARGE_OK:
2281 			break;
2282 		case CHARGE_RETRY: /* not in OOM situation but retry */
2283 			batch = nr_pages;
2284 			css_put(&mem->css);
2285 			mem = NULL;
2286 			goto again;
2287 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2288 			css_put(&mem->css);
2289 			goto nomem;
2290 		case CHARGE_NOMEM: /* OOM routine works */
2291 			if (!oom) {
2292 				css_put(&mem->css);
2293 				goto nomem;
2294 			}
2295 			/* If oom, we never return -ENOMEM */
2296 			nr_oom_retries--;
2297 			break;
2298 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2299 			css_put(&mem->css);
2300 			goto bypass;
2301 		}
2302 	} while (ret != CHARGE_OK);
2303 
2304 	if (batch > nr_pages)
2305 		refill_stock(mem, batch - nr_pages);
2306 	css_put(&mem->css);
2307 done:
2308 	*memcg = mem;
2309 	return 0;
2310 nomem:
2311 	*memcg = NULL;
2312 	return -ENOMEM;
2313 bypass:
2314 	*memcg = NULL;
2315 	return 0;
2316 }
2317 
2318 /*
2319  * Somemtimes we have to undo a charge we got by try_charge().
2320  * This function is for that and do uncharge, put css's refcnt.
2321  * gotten by try_charge().
2322  */
2323 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2324 				       unsigned int nr_pages)
2325 {
2326 	if (!mem_cgroup_is_root(mem)) {
2327 		unsigned long bytes = nr_pages * PAGE_SIZE;
2328 
2329 		res_counter_uncharge(&mem->res, bytes);
2330 		if (do_swap_account)
2331 			res_counter_uncharge(&mem->memsw, bytes);
2332 	}
2333 }
2334 
2335 /*
2336  * A helper function to get mem_cgroup from ID. must be called under
2337  * rcu_read_lock(). The caller must check css_is_removed() or some if
2338  * it's concern. (dropping refcnt from swap can be called against removed
2339  * memcg.)
2340  */
2341 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2342 {
2343 	struct cgroup_subsys_state *css;
2344 
2345 	/* ID 0 is unused ID */
2346 	if (!id)
2347 		return NULL;
2348 	css = css_lookup(&mem_cgroup_subsys, id);
2349 	if (!css)
2350 		return NULL;
2351 	return container_of(css, struct mem_cgroup, css);
2352 }
2353 
2354 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2355 {
2356 	struct mem_cgroup *mem = NULL;
2357 	struct page_cgroup *pc;
2358 	unsigned short id;
2359 	swp_entry_t ent;
2360 
2361 	VM_BUG_ON(!PageLocked(page));
2362 
2363 	pc = lookup_page_cgroup(page);
2364 	lock_page_cgroup(pc);
2365 	if (PageCgroupUsed(pc)) {
2366 		mem = pc->mem_cgroup;
2367 		if (mem && !css_tryget(&mem->css))
2368 			mem = NULL;
2369 	} else if (PageSwapCache(page)) {
2370 		ent.val = page_private(page);
2371 		id = lookup_swap_cgroup(ent);
2372 		rcu_read_lock();
2373 		mem = mem_cgroup_lookup(id);
2374 		if (mem && !css_tryget(&mem->css))
2375 			mem = NULL;
2376 		rcu_read_unlock();
2377 	}
2378 	unlock_page_cgroup(pc);
2379 	return mem;
2380 }
2381 
2382 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2383 				       struct page *page,
2384 				       unsigned int nr_pages,
2385 				       struct page_cgroup *pc,
2386 				       enum charge_type ctype)
2387 {
2388 	lock_page_cgroup(pc);
2389 	if (unlikely(PageCgroupUsed(pc))) {
2390 		unlock_page_cgroup(pc);
2391 		__mem_cgroup_cancel_charge(mem, nr_pages);
2392 		return;
2393 	}
2394 	/*
2395 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2396 	 * accessed by any other context at this point.
2397 	 */
2398 	pc->mem_cgroup = mem;
2399 	/*
2400 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2401 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2402 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2403 	 * before USED bit, we need memory barrier here.
2404 	 * See mem_cgroup_add_lru_list(), etc.
2405  	 */
2406 	smp_wmb();
2407 	switch (ctype) {
2408 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2409 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2410 		SetPageCgroupCache(pc);
2411 		SetPageCgroupUsed(pc);
2412 		break;
2413 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2414 		ClearPageCgroupCache(pc);
2415 		SetPageCgroupUsed(pc);
2416 		break;
2417 	default:
2418 		break;
2419 	}
2420 
2421 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2422 	unlock_page_cgroup(pc);
2423 	/*
2424 	 * "charge_statistics" updated event counter. Then, check it.
2425 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2426 	 * if they exceeds softlimit.
2427 	 */
2428 	memcg_check_events(mem, page);
2429 }
2430 
2431 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2432 
2433 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2434 			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2435 /*
2436  * Because tail pages are not marked as "used", set it. We're under
2437  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2438  */
2439 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2440 {
2441 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2442 	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2443 	unsigned long flags;
2444 
2445 	if (mem_cgroup_disabled())
2446 		return;
2447 	/*
2448 	 * We have no races with charge/uncharge but will have races with
2449 	 * page state accounting.
2450 	 */
2451 	move_lock_page_cgroup(head_pc, &flags);
2452 
2453 	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2454 	smp_wmb(); /* see __commit_charge() */
2455 	if (PageCgroupAcctLRU(head_pc)) {
2456 		enum lru_list lru;
2457 		struct mem_cgroup_per_zone *mz;
2458 
2459 		/*
2460 		 * LRU flags cannot be copied because we need to add tail
2461 		 *.page to LRU by generic call and our hook will be called.
2462 		 * We hold lru_lock, then, reduce counter directly.
2463 		 */
2464 		lru = page_lru(head);
2465 		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2466 		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2467 	}
2468 	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2469 	move_unlock_page_cgroup(head_pc, &flags);
2470 }
2471 #endif
2472 
2473 /**
2474  * mem_cgroup_move_account - move account of the page
2475  * @page: the page
2476  * @nr_pages: number of regular pages (>1 for huge pages)
2477  * @pc:	page_cgroup of the page.
2478  * @from: mem_cgroup which the page is moved from.
2479  * @to:	mem_cgroup which the page is moved to. @from != @to.
2480  * @uncharge: whether we should call uncharge and css_put against @from.
2481  *
2482  * The caller must confirm following.
2483  * - page is not on LRU (isolate_page() is useful.)
2484  * - compound_lock is held when nr_pages > 1
2485  *
2486  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2487  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2488  * true, this function does "uncharge" from old cgroup, but it doesn't if
2489  * @uncharge is false, so a caller should do "uncharge".
2490  */
2491 static int mem_cgroup_move_account(struct page *page,
2492 				   unsigned int nr_pages,
2493 				   struct page_cgroup *pc,
2494 				   struct mem_cgroup *from,
2495 				   struct mem_cgroup *to,
2496 				   bool uncharge)
2497 {
2498 	unsigned long flags;
2499 	int ret;
2500 
2501 	VM_BUG_ON(from == to);
2502 	VM_BUG_ON(PageLRU(page));
2503 	/*
2504 	 * The page is isolated from LRU. So, collapse function
2505 	 * will not handle this page. But page splitting can happen.
2506 	 * Do this check under compound_page_lock(). The caller should
2507 	 * hold it.
2508 	 */
2509 	ret = -EBUSY;
2510 	if (nr_pages > 1 && !PageTransHuge(page))
2511 		goto out;
2512 
2513 	lock_page_cgroup(pc);
2514 
2515 	ret = -EINVAL;
2516 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2517 		goto unlock;
2518 
2519 	move_lock_page_cgroup(pc, &flags);
2520 
2521 	if (PageCgroupFileMapped(pc)) {
2522 		/* Update mapped_file data for mem_cgroup */
2523 		preempt_disable();
2524 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2525 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2526 		preempt_enable();
2527 	}
2528 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2529 	if (uncharge)
2530 		/* This is not "cancel", but cancel_charge does all we need. */
2531 		__mem_cgroup_cancel_charge(from, nr_pages);
2532 
2533 	/* caller should have done css_get */
2534 	pc->mem_cgroup = to;
2535 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2536 	/*
2537 	 * We charges against "to" which may not have any tasks. Then, "to"
2538 	 * can be under rmdir(). But in current implementation, caller of
2539 	 * this function is just force_empty() and move charge, so it's
2540 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2541 	 * status here.
2542 	 */
2543 	move_unlock_page_cgroup(pc, &flags);
2544 	ret = 0;
2545 unlock:
2546 	unlock_page_cgroup(pc);
2547 	/*
2548 	 * check events
2549 	 */
2550 	memcg_check_events(to, page);
2551 	memcg_check_events(from, page);
2552 out:
2553 	return ret;
2554 }
2555 
2556 /*
2557  * move charges to its parent.
2558  */
2559 
2560 static int mem_cgroup_move_parent(struct page *page,
2561 				  struct page_cgroup *pc,
2562 				  struct mem_cgroup *child,
2563 				  gfp_t gfp_mask)
2564 {
2565 	struct cgroup *cg = child->css.cgroup;
2566 	struct cgroup *pcg = cg->parent;
2567 	struct mem_cgroup *parent;
2568 	unsigned int nr_pages;
2569 	unsigned long uninitialized_var(flags);
2570 	int ret;
2571 
2572 	/* Is ROOT ? */
2573 	if (!pcg)
2574 		return -EINVAL;
2575 
2576 	ret = -EBUSY;
2577 	if (!get_page_unless_zero(page))
2578 		goto out;
2579 	if (isolate_lru_page(page))
2580 		goto put;
2581 
2582 	nr_pages = hpage_nr_pages(page);
2583 
2584 	parent = mem_cgroup_from_cont(pcg);
2585 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2586 	if (ret || !parent)
2587 		goto put_back;
2588 
2589 	if (nr_pages > 1)
2590 		flags = compound_lock_irqsave(page);
2591 
2592 	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2593 	if (ret)
2594 		__mem_cgroup_cancel_charge(parent, nr_pages);
2595 
2596 	if (nr_pages > 1)
2597 		compound_unlock_irqrestore(page, flags);
2598 put_back:
2599 	putback_lru_page(page);
2600 put:
2601 	put_page(page);
2602 out:
2603 	return ret;
2604 }
2605 
2606 /*
2607  * Charge the memory controller for page usage.
2608  * Return
2609  * 0 if the charge was successful
2610  * < 0 if the cgroup is over its limit
2611  */
2612 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2613 				gfp_t gfp_mask, enum charge_type ctype)
2614 {
2615 	struct mem_cgroup *mem = NULL;
2616 	unsigned int nr_pages = 1;
2617 	struct page_cgroup *pc;
2618 	bool oom = true;
2619 	int ret;
2620 
2621 	if (PageTransHuge(page)) {
2622 		nr_pages <<= compound_order(page);
2623 		VM_BUG_ON(!PageTransHuge(page));
2624 		/*
2625 		 * Never OOM-kill a process for a huge page.  The
2626 		 * fault handler will fall back to regular pages.
2627 		 */
2628 		oom = false;
2629 	}
2630 
2631 	pc = lookup_page_cgroup(page);
2632 	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2633 
2634 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2635 	if (ret || !mem)
2636 		return ret;
2637 
2638 	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2639 	return 0;
2640 }
2641 
2642 int mem_cgroup_newpage_charge(struct page *page,
2643 			      struct mm_struct *mm, gfp_t gfp_mask)
2644 {
2645 	if (mem_cgroup_disabled())
2646 		return 0;
2647 	/*
2648 	 * If already mapped, we don't have to account.
2649 	 * If page cache, page->mapping has address_space.
2650 	 * But page->mapping may have out-of-use anon_vma pointer,
2651 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2652 	 * is NULL.
2653   	 */
2654 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2655 		return 0;
2656 	if (unlikely(!mm))
2657 		mm = &init_mm;
2658 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2659 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2660 }
2661 
2662 static void
2663 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2664 					enum charge_type ctype);
2665 
2666 static void
2667 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2668 					enum charge_type ctype)
2669 {
2670 	struct page_cgroup *pc = lookup_page_cgroup(page);
2671 	/*
2672 	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2673 	 * is already on LRU. It means the page may on some other page_cgroup's
2674 	 * LRU. Take care of it.
2675 	 */
2676 	mem_cgroup_lru_del_before_commit(page);
2677 	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2678 	mem_cgroup_lru_add_after_commit(page);
2679 	return;
2680 }
2681 
2682 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2683 				gfp_t gfp_mask)
2684 {
2685 	struct mem_cgroup *mem = NULL;
2686 	int ret;
2687 
2688 	if (mem_cgroup_disabled())
2689 		return 0;
2690 	if (PageCompound(page))
2691 		return 0;
2692 	/*
2693 	 * Corner case handling. This is called from add_to_page_cache()
2694 	 * in usual. But some FS (shmem) precharges this page before calling it
2695 	 * and call add_to_page_cache() with GFP_NOWAIT.
2696 	 *
2697 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2698 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2699 	 * charge twice. (It works but has to pay a bit larger cost.)
2700 	 * And when the page is SwapCache, it should take swap information
2701 	 * into account. This is under lock_page() now.
2702 	 */
2703 	if (!(gfp_mask & __GFP_WAIT)) {
2704 		struct page_cgroup *pc;
2705 
2706 		pc = lookup_page_cgroup(page);
2707 		if (!pc)
2708 			return 0;
2709 		lock_page_cgroup(pc);
2710 		if (PageCgroupUsed(pc)) {
2711 			unlock_page_cgroup(pc);
2712 			return 0;
2713 		}
2714 		unlock_page_cgroup(pc);
2715 	}
2716 
2717 	if (unlikely(!mm))
2718 		mm = &init_mm;
2719 
2720 	if (page_is_file_cache(page)) {
2721 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2722 		if (ret || !mem)
2723 			return ret;
2724 
2725 		/*
2726 		 * FUSE reuses pages without going through the final
2727 		 * put that would remove them from the LRU list, make
2728 		 * sure that they get relinked properly.
2729 		 */
2730 		__mem_cgroup_commit_charge_lrucare(page, mem,
2731 					MEM_CGROUP_CHARGE_TYPE_CACHE);
2732 		return ret;
2733 	}
2734 	/* shmem */
2735 	if (PageSwapCache(page)) {
2736 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2737 		if (!ret)
2738 			__mem_cgroup_commit_charge_swapin(page, mem,
2739 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2740 	} else
2741 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2742 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2743 
2744 	return ret;
2745 }
2746 
2747 /*
2748  * While swap-in, try_charge -> commit or cancel, the page is locked.
2749  * And when try_charge() successfully returns, one refcnt to memcg without
2750  * struct page_cgroup is acquired. This refcnt will be consumed by
2751  * "commit()" or removed by "cancel()"
2752  */
2753 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2754 				 struct page *page,
2755 				 gfp_t mask, struct mem_cgroup **ptr)
2756 {
2757 	struct mem_cgroup *mem;
2758 	int ret;
2759 
2760 	*ptr = NULL;
2761 
2762 	if (mem_cgroup_disabled())
2763 		return 0;
2764 
2765 	if (!do_swap_account)
2766 		goto charge_cur_mm;
2767 	/*
2768 	 * A racing thread's fault, or swapoff, may have already updated
2769 	 * the pte, and even removed page from swap cache: in those cases
2770 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2771 	 * KSM case which does need to charge the page.
2772 	 */
2773 	if (!PageSwapCache(page))
2774 		goto charge_cur_mm;
2775 	mem = try_get_mem_cgroup_from_page(page);
2776 	if (!mem)
2777 		goto charge_cur_mm;
2778 	*ptr = mem;
2779 	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2780 	css_put(&mem->css);
2781 	return ret;
2782 charge_cur_mm:
2783 	if (unlikely(!mm))
2784 		mm = &init_mm;
2785 	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2786 }
2787 
2788 static void
2789 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2790 					enum charge_type ctype)
2791 {
2792 	if (mem_cgroup_disabled())
2793 		return;
2794 	if (!ptr)
2795 		return;
2796 	cgroup_exclude_rmdir(&ptr->css);
2797 
2798 	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2799 	/*
2800 	 * Now swap is on-memory. This means this page may be
2801 	 * counted both as mem and swap....double count.
2802 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2803 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2804 	 * may call delete_from_swap_cache() before reach here.
2805 	 */
2806 	if (do_swap_account && PageSwapCache(page)) {
2807 		swp_entry_t ent = {.val = page_private(page)};
2808 		unsigned short id;
2809 		struct mem_cgroup *memcg;
2810 
2811 		id = swap_cgroup_record(ent, 0);
2812 		rcu_read_lock();
2813 		memcg = mem_cgroup_lookup(id);
2814 		if (memcg) {
2815 			/*
2816 			 * This recorded memcg can be obsolete one. So, avoid
2817 			 * calling css_tryget
2818 			 */
2819 			if (!mem_cgroup_is_root(memcg))
2820 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2821 			mem_cgroup_swap_statistics(memcg, false);
2822 			mem_cgroup_put(memcg);
2823 		}
2824 		rcu_read_unlock();
2825 	}
2826 	/*
2827 	 * At swapin, we may charge account against cgroup which has no tasks.
2828 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2829 	 * In that case, we need to call pre_destroy() again. check it here.
2830 	 */
2831 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2832 }
2833 
2834 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2835 {
2836 	__mem_cgroup_commit_charge_swapin(page, ptr,
2837 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2838 }
2839 
2840 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2841 {
2842 	if (mem_cgroup_disabled())
2843 		return;
2844 	if (!mem)
2845 		return;
2846 	__mem_cgroup_cancel_charge(mem, 1);
2847 }
2848 
2849 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2850 				   unsigned int nr_pages,
2851 				   const enum charge_type ctype)
2852 {
2853 	struct memcg_batch_info *batch = NULL;
2854 	bool uncharge_memsw = true;
2855 
2856 	/* If swapout, usage of swap doesn't decrease */
2857 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2858 		uncharge_memsw = false;
2859 
2860 	batch = &current->memcg_batch;
2861 	/*
2862 	 * In usual, we do css_get() when we remember memcg pointer.
2863 	 * But in this case, we keep res->usage until end of a series of
2864 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2865 	 */
2866 	if (!batch->memcg)
2867 		batch->memcg = mem;
2868 	/*
2869 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2870 	 * In those cases, all pages freed continuously can be expected to be in
2871 	 * the same cgroup and we have chance to coalesce uncharges.
2872 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2873 	 * because we want to do uncharge as soon as possible.
2874 	 */
2875 
2876 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2877 		goto direct_uncharge;
2878 
2879 	if (nr_pages > 1)
2880 		goto direct_uncharge;
2881 
2882 	/*
2883 	 * In typical case, batch->memcg == mem. This means we can
2884 	 * merge a series of uncharges to an uncharge of res_counter.
2885 	 * If not, we uncharge res_counter ony by one.
2886 	 */
2887 	if (batch->memcg != mem)
2888 		goto direct_uncharge;
2889 	/* remember freed charge and uncharge it later */
2890 	batch->nr_pages++;
2891 	if (uncharge_memsw)
2892 		batch->memsw_nr_pages++;
2893 	return;
2894 direct_uncharge:
2895 	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2896 	if (uncharge_memsw)
2897 		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2898 	if (unlikely(batch->memcg != mem))
2899 		memcg_oom_recover(mem);
2900 	return;
2901 }
2902 
2903 /*
2904  * uncharge if !page_mapped(page)
2905  */
2906 static struct mem_cgroup *
2907 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2908 {
2909 	struct mem_cgroup *mem = NULL;
2910 	unsigned int nr_pages = 1;
2911 	struct page_cgroup *pc;
2912 
2913 	if (mem_cgroup_disabled())
2914 		return NULL;
2915 
2916 	if (PageSwapCache(page))
2917 		return NULL;
2918 
2919 	if (PageTransHuge(page)) {
2920 		nr_pages <<= compound_order(page);
2921 		VM_BUG_ON(!PageTransHuge(page));
2922 	}
2923 	/*
2924 	 * Check if our page_cgroup is valid
2925 	 */
2926 	pc = lookup_page_cgroup(page);
2927 	if (unlikely(!pc || !PageCgroupUsed(pc)))
2928 		return NULL;
2929 
2930 	lock_page_cgroup(pc);
2931 
2932 	mem = pc->mem_cgroup;
2933 
2934 	if (!PageCgroupUsed(pc))
2935 		goto unlock_out;
2936 
2937 	switch (ctype) {
2938 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2939 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2940 		/* See mem_cgroup_prepare_migration() */
2941 		if (page_mapped(page) || PageCgroupMigration(pc))
2942 			goto unlock_out;
2943 		break;
2944 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2945 		if (!PageAnon(page)) {	/* Shared memory */
2946 			if (page->mapping && !page_is_file_cache(page))
2947 				goto unlock_out;
2948 		} else if (page_mapped(page)) /* Anon */
2949 				goto unlock_out;
2950 		break;
2951 	default:
2952 		break;
2953 	}
2954 
2955 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
2956 
2957 	ClearPageCgroupUsed(pc);
2958 	/*
2959 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2960 	 * freed from LRU. This is safe because uncharged page is expected not
2961 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2962 	 * special functions.
2963 	 */
2964 
2965 	unlock_page_cgroup(pc);
2966 	/*
2967 	 * even after unlock, we have mem->res.usage here and this memcg
2968 	 * will never be freed.
2969 	 */
2970 	memcg_check_events(mem, page);
2971 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2972 		mem_cgroup_swap_statistics(mem, true);
2973 		mem_cgroup_get(mem);
2974 	}
2975 	if (!mem_cgroup_is_root(mem))
2976 		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
2977 
2978 	return mem;
2979 
2980 unlock_out:
2981 	unlock_page_cgroup(pc);
2982 	return NULL;
2983 }
2984 
2985 void mem_cgroup_uncharge_page(struct page *page)
2986 {
2987 	/* early check. */
2988 	if (page_mapped(page))
2989 		return;
2990 	if (page->mapping && !PageAnon(page))
2991 		return;
2992 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2993 }
2994 
2995 void mem_cgroup_uncharge_cache_page(struct page *page)
2996 {
2997 	VM_BUG_ON(page_mapped(page));
2998 	VM_BUG_ON(page->mapping);
2999 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3000 }
3001 
3002 /*
3003  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3004  * In that cases, pages are freed continuously and we can expect pages
3005  * are in the same memcg. All these calls itself limits the number of
3006  * pages freed at once, then uncharge_start/end() is called properly.
3007  * This may be called prural(2) times in a context,
3008  */
3009 
3010 void mem_cgroup_uncharge_start(void)
3011 {
3012 	current->memcg_batch.do_batch++;
3013 	/* We can do nest. */
3014 	if (current->memcg_batch.do_batch == 1) {
3015 		current->memcg_batch.memcg = NULL;
3016 		current->memcg_batch.nr_pages = 0;
3017 		current->memcg_batch.memsw_nr_pages = 0;
3018 	}
3019 }
3020 
3021 void mem_cgroup_uncharge_end(void)
3022 {
3023 	struct memcg_batch_info *batch = &current->memcg_batch;
3024 
3025 	if (!batch->do_batch)
3026 		return;
3027 
3028 	batch->do_batch--;
3029 	if (batch->do_batch) /* If stacked, do nothing. */
3030 		return;
3031 
3032 	if (!batch->memcg)
3033 		return;
3034 	/*
3035 	 * This "batch->memcg" is valid without any css_get/put etc...
3036 	 * bacause we hide charges behind us.
3037 	 */
3038 	if (batch->nr_pages)
3039 		res_counter_uncharge(&batch->memcg->res,
3040 				     batch->nr_pages * PAGE_SIZE);
3041 	if (batch->memsw_nr_pages)
3042 		res_counter_uncharge(&batch->memcg->memsw,
3043 				     batch->memsw_nr_pages * PAGE_SIZE);
3044 	memcg_oom_recover(batch->memcg);
3045 	/* forget this pointer (for sanity check) */
3046 	batch->memcg = NULL;
3047 }
3048 
3049 #ifdef CONFIG_SWAP
3050 /*
3051  * called after __delete_from_swap_cache() and drop "page" account.
3052  * memcg information is recorded to swap_cgroup of "ent"
3053  */
3054 void
3055 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3056 {
3057 	struct mem_cgroup *memcg;
3058 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3059 
3060 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3061 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3062 
3063 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3064 
3065 	/*
3066 	 * record memcg information,  if swapout && memcg != NULL,
3067 	 * mem_cgroup_get() was called in uncharge().
3068 	 */
3069 	if (do_swap_account && swapout && memcg)
3070 		swap_cgroup_record(ent, css_id(&memcg->css));
3071 }
3072 #endif
3073 
3074 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3075 /*
3076  * called from swap_entry_free(). remove record in swap_cgroup and
3077  * uncharge "memsw" account.
3078  */
3079 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3080 {
3081 	struct mem_cgroup *memcg;
3082 	unsigned short id;
3083 
3084 	if (!do_swap_account)
3085 		return;
3086 
3087 	id = swap_cgroup_record(ent, 0);
3088 	rcu_read_lock();
3089 	memcg = mem_cgroup_lookup(id);
3090 	if (memcg) {
3091 		/*
3092 		 * We uncharge this because swap is freed.
3093 		 * This memcg can be obsolete one. We avoid calling css_tryget
3094 		 */
3095 		if (!mem_cgroup_is_root(memcg))
3096 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3097 		mem_cgroup_swap_statistics(memcg, false);
3098 		mem_cgroup_put(memcg);
3099 	}
3100 	rcu_read_unlock();
3101 }
3102 
3103 /**
3104  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3105  * @entry: swap entry to be moved
3106  * @from:  mem_cgroup which the entry is moved from
3107  * @to:  mem_cgroup which the entry is moved to
3108  * @need_fixup: whether we should fixup res_counters and refcounts.
3109  *
3110  * It succeeds only when the swap_cgroup's record for this entry is the same
3111  * as the mem_cgroup's id of @from.
3112  *
3113  * Returns 0 on success, -EINVAL on failure.
3114  *
3115  * The caller must have charged to @to, IOW, called res_counter_charge() about
3116  * both res and memsw, and called css_get().
3117  */
3118 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3119 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3120 {
3121 	unsigned short old_id, new_id;
3122 
3123 	old_id = css_id(&from->css);
3124 	new_id = css_id(&to->css);
3125 
3126 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3127 		mem_cgroup_swap_statistics(from, false);
3128 		mem_cgroup_swap_statistics(to, true);
3129 		/*
3130 		 * This function is only called from task migration context now.
3131 		 * It postpones res_counter and refcount handling till the end
3132 		 * of task migration(mem_cgroup_clear_mc()) for performance
3133 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3134 		 * because if the process that has been moved to @to does
3135 		 * swap-in, the refcount of @to might be decreased to 0.
3136 		 */
3137 		mem_cgroup_get(to);
3138 		if (need_fixup) {
3139 			if (!mem_cgroup_is_root(from))
3140 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3141 			mem_cgroup_put(from);
3142 			/*
3143 			 * we charged both to->res and to->memsw, so we should
3144 			 * uncharge to->res.
3145 			 */
3146 			if (!mem_cgroup_is_root(to))
3147 				res_counter_uncharge(&to->res, PAGE_SIZE);
3148 		}
3149 		return 0;
3150 	}
3151 	return -EINVAL;
3152 }
3153 #else
3154 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3155 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3156 {
3157 	return -EINVAL;
3158 }
3159 #endif
3160 
3161 /*
3162  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3163  * page belongs to.
3164  */
3165 int mem_cgroup_prepare_migration(struct page *page,
3166 	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3167 {
3168 	struct mem_cgroup *mem = NULL;
3169 	struct page_cgroup *pc;
3170 	enum charge_type ctype;
3171 	int ret = 0;
3172 
3173 	*ptr = NULL;
3174 
3175 	VM_BUG_ON(PageTransHuge(page));
3176 	if (mem_cgroup_disabled())
3177 		return 0;
3178 
3179 	pc = lookup_page_cgroup(page);
3180 	lock_page_cgroup(pc);
3181 	if (PageCgroupUsed(pc)) {
3182 		mem = pc->mem_cgroup;
3183 		css_get(&mem->css);
3184 		/*
3185 		 * At migrating an anonymous page, its mapcount goes down
3186 		 * to 0 and uncharge() will be called. But, even if it's fully
3187 		 * unmapped, migration may fail and this page has to be
3188 		 * charged again. We set MIGRATION flag here and delay uncharge
3189 		 * until end_migration() is called
3190 		 *
3191 		 * Corner Case Thinking
3192 		 * A)
3193 		 * When the old page was mapped as Anon and it's unmap-and-freed
3194 		 * while migration was ongoing.
3195 		 * If unmap finds the old page, uncharge() of it will be delayed
3196 		 * until end_migration(). If unmap finds a new page, it's
3197 		 * uncharged when it make mapcount to be 1->0. If unmap code
3198 		 * finds swap_migration_entry, the new page will not be mapped
3199 		 * and end_migration() will find it(mapcount==0).
3200 		 *
3201 		 * B)
3202 		 * When the old page was mapped but migraion fails, the kernel
3203 		 * remaps it. A charge for it is kept by MIGRATION flag even
3204 		 * if mapcount goes down to 0. We can do remap successfully
3205 		 * without charging it again.
3206 		 *
3207 		 * C)
3208 		 * The "old" page is under lock_page() until the end of
3209 		 * migration, so, the old page itself will not be swapped-out.
3210 		 * If the new page is swapped out before end_migraton, our
3211 		 * hook to usual swap-out path will catch the event.
3212 		 */
3213 		if (PageAnon(page))
3214 			SetPageCgroupMigration(pc);
3215 	}
3216 	unlock_page_cgroup(pc);
3217 	/*
3218 	 * If the page is not charged at this point,
3219 	 * we return here.
3220 	 */
3221 	if (!mem)
3222 		return 0;
3223 
3224 	*ptr = mem;
3225 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3226 	css_put(&mem->css);/* drop extra refcnt */
3227 	if (ret || *ptr == NULL) {
3228 		if (PageAnon(page)) {
3229 			lock_page_cgroup(pc);
3230 			ClearPageCgroupMigration(pc);
3231 			unlock_page_cgroup(pc);
3232 			/*
3233 			 * The old page may be fully unmapped while we kept it.
3234 			 */
3235 			mem_cgroup_uncharge_page(page);
3236 		}
3237 		return -ENOMEM;
3238 	}
3239 	/*
3240 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3241 	 * is called before end_migration, we can catch all events on this new
3242 	 * page. In the case new page is migrated but not remapped, new page's
3243 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3244 	 */
3245 	pc = lookup_page_cgroup(newpage);
3246 	if (PageAnon(page))
3247 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3248 	else if (page_is_file_cache(page))
3249 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3250 	else
3251 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3252 	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3253 	return ret;
3254 }
3255 
3256 /* remove redundant charge if migration failed*/
3257 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3258 	struct page *oldpage, struct page *newpage, bool migration_ok)
3259 {
3260 	struct page *used, *unused;
3261 	struct page_cgroup *pc;
3262 
3263 	if (!mem)
3264 		return;
3265 	/* blocks rmdir() */
3266 	cgroup_exclude_rmdir(&mem->css);
3267 	if (!migration_ok) {
3268 		used = oldpage;
3269 		unused = newpage;
3270 	} else {
3271 		used = newpage;
3272 		unused = oldpage;
3273 	}
3274 	/*
3275 	 * We disallowed uncharge of pages under migration because mapcount
3276 	 * of the page goes down to zero, temporarly.
3277 	 * Clear the flag and check the page should be charged.
3278 	 */
3279 	pc = lookup_page_cgroup(oldpage);
3280 	lock_page_cgroup(pc);
3281 	ClearPageCgroupMigration(pc);
3282 	unlock_page_cgroup(pc);
3283 
3284 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3285 
3286 	/*
3287 	 * If a page is a file cache, radix-tree replacement is very atomic
3288 	 * and we can skip this check. When it was an Anon page, its mapcount
3289 	 * goes down to 0. But because we added MIGRATION flage, it's not
3290 	 * uncharged yet. There are several case but page->mapcount check
3291 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3292 	 * check. (see prepare_charge() also)
3293 	 */
3294 	if (PageAnon(used))
3295 		mem_cgroup_uncharge_page(used);
3296 	/*
3297 	 * At migration, we may charge account against cgroup which has no
3298 	 * tasks.
3299 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3300 	 * In that case, we need to call pre_destroy() again. check it here.
3301 	 */
3302 	cgroup_release_and_wakeup_rmdir(&mem->css);
3303 }
3304 
3305 /*
3306  * A call to try to shrink memory usage on charge failure at shmem's swapin.
3307  * Calling hierarchical_reclaim is not enough because we should update
3308  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3309  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3310  * not from the memcg which this page would be charged to.
3311  * try_charge_swapin does all of these works properly.
3312  */
3313 int mem_cgroup_shmem_charge_fallback(struct page *page,
3314 			    struct mm_struct *mm,
3315 			    gfp_t gfp_mask)
3316 {
3317 	struct mem_cgroup *mem;
3318 	int ret;
3319 
3320 	if (mem_cgroup_disabled())
3321 		return 0;
3322 
3323 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3324 	if (!ret)
3325 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3326 
3327 	return ret;
3328 }
3329 
3330 #ifdef CONFIG_DEBUG_VM
3331 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3332 {
3333 	struct page_cgroup *pc;
3334 
3335 	pc = lookup_page_cgroup(page);
3336 	if (likely(pc) && PageCgroupUsed(pc))
3337 		return pc;
3338 	return NULL;
3339 }
3340 
3341 bool mem_cgroup_bad_page_check(struct page *page)
3342 {
3343 	if (mem_cgroup_disabled())
3344 		return false;
3345 
3346 	return lookup_page_cgroup_used(page) != NULL;
3347 }
3348 
3349 void mem_cgroup_print_bad_page(struct page *page)
3350 {
3351 	struct page_cgroup *pc;
3352 
3353 	pc = lookup_page_cgroup_used(page);
3354 	if (pc) {
3355 		int ret = -1;
3356 		char *path;
3357 
3358 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3359 		       pc, pc->flags, pc->mem_cgroup);
3360 
3361 		path = kmalloc(PATH_MAX, GFP_KERNEL);
3362 		if (path) {
3363 			rcu_read_lock();
3364 			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3365 							path, PATH_MAX);
3366 			rcu_read_unlock();
3367 		}
3368 
3369 		printk(KERN_CONT "(%s)\n",
3370 				(ret < 0) ? "cannot get the path" : path);
3371 		kfree(path);
3372 	}
3373 }
3374 #endif
3375 
3376 static DEFINE_MUTEX(set_limit_mutex);
3377 
3378 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3379 				unsigned long long val)
3380 {
3381 	int retry_count;
3382 	u64 memswlimit, memlimit;
3383 	int ret = 0;
3384 	int children = mem_cgroup_count_children(memcg);
3385 	u64 curusage, oldusage;
3386 	int enlarge;
3387 
3388 	/*
3389 	 * For keeping hierarchical_reclaim simple, how long we should retry
3390 	 * is depends on callers. We set our retry-count to be function
3391 	 * of # of children which we should visit in this loop.
3392 	 */
3393 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3394 
3395 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3396 
3397 	enlarge = 0;
3398 	while (retry_count) {
3399 		if (signal_pending(current)) {
3400 			ret = -EINTR;
3401 			break;
3402 		}
3403 		/*
3404 		 * Rather than hide all in some function, I do this in
3405 		 * open coded manner. You see what this really does.
3406 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3407 		 */
3408 		mutex_lock(&set_limit_mutex);
3409 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3410 		if (memswlimit < val) {
3411 			ret = -EINVAL;
3412 			mutex_unlock(&set_limit_mutex);
3413 			break;
3414 		}
3415 
3416 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3417 		if (memlimit < val)
3418 			enlarge = 1;
3419 
3420 		ret = res_counter_set_limit(&memcg->res, val);
3421 		if (!ret) {
3422 			if (memswlimit == val)
3423 				memcg->memsw_is_minimum = true;
3424 			else
3425 				memcg->memsw_is_minimum = false;
3426 		}
3427 		mutex_unlock(&set_limit_mutex);
3428 
3429 		if (!ret)
3430 			break;
3431 
3432 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3433 						MEM_CGROUP_RECLAIM_SHRINK,
3434 						NULL);
3435 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3436 		/* Usage is reduced ? */
3437   		if (curusage >= oldusage)
3438 			retry_count--;
3439 		else
3440 			oldusage = curusage;
3441 	}
3442 	if (!ret && enlarge)
3443 		memcg_oom_recover(memcg);
3444 
3445 	return ret;
3446 }
3447 
3448 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3449 					unsigned long long val)
3450 {
3451 	int retry_count;
3452 	u64 memlimit, memswlimit, oldusage, curusage;
3453 	int children = mem_cgroup_count_children(memcg);
3454 	int ret = -EBUSY;
3455 	int enlarge = 0;
3456 
3457 	/* see mem_cgroup_resize_res_limit */
3458  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3459 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3460 	while (retry_count) {
3461 		if (signal_pending(current)) {
3462 			ret = -EINTR;
3463 			break;
3464 		}
3465 		/*
3466 		 * Rather than hide all in some function, I do this in
3467 		 * open coded manner. You see what this really does.
3468 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3469 		 */
3470 		mutex_lock(&set_limit_mutex);
3471 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3472 		if (memlimit > val) {
3473 			ret = -EINVAL;
3474 			mutex_unlock(&set_limit_mutex);
3475 			break;
3476 		}
3477 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3478 		if (memswlimit < val)
3479 			enlarge = 1;
3480 		ret = res_counter_set_limit(&memcg->memsw, val);
3481 		if (!ret) {
3482 			if (memlimit == val)
3483 				memcg->memsw_is_minimum = true;
3484 			else
3485 				memcg->memsw_is_minimum = false;
3486 		}
3487 		mutex_unlock(&set_limit_mutex);
3488 
3489 		if (!ret)
3490 			break;
3491 
3492 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3493 						MEM_CGROUP_RECLAIM_NOSWAP |
3494 						MEM_CGROUP_RECLAIM_SHRINK,
3495 						NULL);
3496 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3497 		/* Usage is reduced ? */
3498 		if (curusage >= oldusage)
3499 			retry_count--;
3500 		else
3501 			oldusage = curusage;
3502 	}
3503 	if (!ret && enlarge)
3504 		memcg_oom_recover(memcg);
3505 	return ret;
3506 }
3507 
3508 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3509 					    gfp_t gfp_mask,
3510 					    unsigned long *total_scanned)
3511 {
3512 	unsigned long nr_reclaimed = 0;
3513 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3514 	unsigned long reclaimed;
3515 	int loop = 0;
3516 	struct mem_cgroup_tree_per_zone *mctz;
3517 	unsigned long long excess;
3518 	unsigned long nr_scanned;
3519 
3520 	if (order > 0)
3521 		return 0;
3522 
3523 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3524 	/*
3525 	 * This loop can run a while, specially if mem_cgroup's continuously
3526 	 * keep exceeding their soft limit and putting the system under
3527 	 * pressure
3528 	 */
3529 	do {
3530 		if (next_mz)
3531 			mz = next_mz;
3532 		else
3533 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3534 		if (!mz)
3535 			break;
3536 
3537 		nr_scanned = 0;
3538 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3539 						gfp_mask,
3540 						MEM_CGROUP_RECLAIM_SOFT,
3541 						&nr_scanned);
3542 		nr_reclaimed += reclaimed;
3543 		*total_scanned += nr_scanned;
3544 		spin_lock(&mctz->lock);
3545 
3546 		/*
3547 		 * If we failed to reclaim anything from this memory cgroup
3548 		 * it is time to move on to the next cgroup
3549 		 */
3550 		next_mz = NULL;
3551 		if (!reclaimed) {
3552 			do {
3553 				/*
3554 				 * Loop until we find yet another one.
3555 				 *
3556 				 * By the time we get the soft_limit lock
3557 				 * again, someone might have aded the
3558 				 * group back on the RB tree. Iterate to
3559 				 * make sure we get a different mem.
3560 				 * mem_cgroup_largest_soft_limit_node returns
3561 				 * NULL if no other cgroup is present on
3562 				 * the tree
3563 				 */
3564 				next_mz =
3565 				__mem_cgroup_largest_soft_limit_node(mctz);
3566 				if (next_mz == mz)
3567 					css_put(&next_mz->mem->css);
3568 				else /* next_mz == NULL or other memcg */
3569 					break;
3570 			} while (1);
3571 		}
3572 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3573 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3574 		/*
3575 		 * One school of thought says that we should not add
3576 		 * back the node to the tree if reclaim returns 0.
3577 		 * But our reclaim could return 0, simply because due
3578 		 * to priority we are exposing a smaller subset of
3579 		 * memory to reclaim from. Consider this as a longer
3580 		 * term TODO.
3581 		 */
3582 		/* If excess == 0, no tree ops */
3583 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3584 		spin_unlock(&mctz->lock);
3585 		css_put(&mz->mem->css);
3586 		loop++;
3587 		/*
3588 		 * Could not reclaim anything and there are no more
3589 		 * mem cgroups to try or we seem to be looping without
3590 		 * reclaiming anything.
3591 		 */
3592 		if (!nr_reclaimed &&
3593 			(next_mz == NULL ||
3594 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3595 			break;
3596 	} while (!nr_reclaimed);
3597 	if (next_mz)
3598 		css_put(&next_mz->mem->css);
3599 	return nr_reclaimed;
3600 }
3601 
3602 /*
3603  * This routine traverse page_cgroup in given list and drop them all.
3604  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3605  */
3606 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3607 				int node, int zid, enum lru_list lru)
3608 {
3609 	struct zone *zone;
3610 	struct mem_cgroup_per_zone *mz;
3611 	struct page_cgroup *pc, *busy;
3612 	unsigned long flags, loop;
3613 	struct list_head *list;
3614 	int ret = 0;
3615 
3616 	zone = &NODE_DATA(node)->node_zones[zid];
3617 	mz = mem_cgroup_zoneinfo(mem, node, zid);
3618 	list = &mz->lists[lru];
3619 
3620 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3621 	/* give some margin against EBUSY etc...*/
3622 	loop += 256;
3623 	busy = NULL;
3624 	while (loop--) {
3625 		struct page *page;
3626 
3627 		ret = 0;
3628 		spin_lock_irqsave(&zone->lru_lock, flags);
3629 		if (list_empty(list)) {
3630 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3631 			break;
3632 		}
3633 		pc = list_entry(list->prev, struct page_cgroup, lru);
3634 		if (busy == pc) {
3635 			list_move(&pc->lru, list);
3636 			busy = NULL;
3637 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3638 			continue;
3639 		}
3640 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3641 
3642 		page = lookup_cgroup_page(pc);
3643 
3644 		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3645 		if (ret == -ENOMEM)
3646 			break;
3647 
3648 		if (ret == -EBUSY || ret == -EINVAL) {
3649 			/* found lock contention or "pc" is obsolete. */
3650 			busy = pc;
3651 			cond_resched();
3652 		} else
3653 			busy = NULL;
3654 	}
3655 
3656 	if (!ret && !list_empty(list))
3657 		return -EBUSY;
3658 	return ret;
3659 }
3660 
3661 /*
3662  * make mem_cgroup's charge to be 0 if there is no task.
3663  * This enables deleting this mem_cgroup.
3664  */
3665 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3666 {
3667 	int ret;
3668 	int node, zid, shrink;
3669 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3670 	struct cgroup *cgrp = mem->css.cgroup;
3671 
3672 	css_get(&mem->css);
3673 
3674 	shrink = 0;
3675 	/* should free all ? */
3676 	if (free_all)
3677 		goto try_to_free;
3678 move_account:
3679 	do {
3680 		ret = -EBUSY;
3681 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3682 			goto out;
3683 		ret = -EINTR;
3684 		if (signal_pending(current))
3685 			goto out;
3686 		/* This is for making all *used* pages to be on LRU. */
3687 		lru_add_drain_all();
3688 		drain_all_stock_sync();
3689 		ret = 0;
3690 		mem_cgroup_start_move(mem);
3691 		for_each_node_state(node, N_HIGH_MEMORY) {
3692 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3693 				enum lru_list l;
3694 				for_each_lru(l) {
3695 					ret = mem_cgroup_force_empty_list(mem,
3696 							node, zid, l);
3697 					if (ret)
3698 						break;
3699 				}
3700 			}
3701 			if (ret)
3702 				break;
3703 		}
3704 		mem_cgroup_end_move(mem);
3705 		memcg_oom_recover(mem);
3706 		/* it seems parent cgroup doesn't have enough mem */
3707 		if (ret == -ENOMEM)
3708 			goto try_to_free;
3709 		cond_resched();
3710 	/* "ret" should also be checked to ensure all lists are empty. */
3711 	} while (mem->res.usage > 0 || ret);
3712 out:
3713 	css_put(&mem->css);
3714 	return ret;
3715 
3716 try_to_free:
3717 	/* returns EBUSY if there is a task or if we come here twice. */
3718 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3719 		ret = -EBUSY;
3720 		goto out;
3721 	}
3722 	/* we call try-to-free pages for make this cgroup empty */
3723 	lru_add_drain_all();
3724 	/* try to free all pages in this cgroup */
3725 	shrink = 1;
3726 	while (nr_retries && mem->res.usage > 0) {
3727 		int progress;
3728 
3729 		if (signal_pending(current)) {
3730 			ret = -EINTR;
3731 			goto out;
3732 		}
3733 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3734 						false, get_swappiness(mem));
3735 		if (!progress) {
3736 			nr_retries--;
3737 			/* maybe some writeback is necessary */
3738 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3739 		}
3740 
3741 	}
3742 	lru_add_drain();
3743 	/* try move_account...there may be some *locked* pages. */
3744 	goto move_account;
3745 }
3746 
3747 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3748 {
3749 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3750 }
3751 
3752 
3753 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3754 {
3755 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3756 }
3757 
3758 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3759 					u64 val)
3760 {
3761 	int retval = 0;
3762 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3763 	struct cgroup *parent = cont->parent;
3764 	struct mem_cgroup *parent_mem = NULL;
3765 
3766 	if (parent)
3767 		parent_mem = mem_cgroup_from_cont(parent);
3768 
3769 	cgroup_lock();
3770 	/*
3771 	 * If parent's use_hierarchy is set, we can't make any modifications
3772 	 * in the child subtrees. If it is unset, then the change can
3773 	 * occur, provided the current cgroup has no children.
3774 	 *
3775 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3776 	 * set if there are no children.
3777 	 */
3778 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3779 				(val == 1 || val == 0)) {
3780 		if (list_empty(&cont->children))
3781 			mem->use_hierarchy = val;
3782 		else
3783 			retval = -EBUSY;
3784 	} else
3785 		retval = -EINVAL;
3786 	cgroup_unlock();
3787 
3788 	return retval;
3789 }
3790 
3791 
3792 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3793 					       enum mem_cgroup_stat_index idx)
3794 {
3795 	struct mem_cgroup *iter;
3796 	long val = 0;
3797 
3798 	/* Per-cpu values can be negative, use a signed accumulator */
3799 	for_each_mem_cgroup_tree(iter, mem)
3800 		val += mem_cgroup_read_stat(iter, idx);
3801 
3802 	if (val < 0) /* race ? */
3803 		val = 0;
3804 	return val;
3805 }
3806 
3807 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3808 {
3809 	u64 val;
3810 
3811 	if (!mem_cgroup_is_root(mem)) {
3812 		if (!swap)
3813 			return res_counter_read_u64(&mem->res, RES_USAGE);
3814 		else
3815 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3816 	}
3817 
3818 	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3819 	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3820 
3821 	if (swap)
3822 		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3823 
3824 	return val << PAGE_SHIFT;
3825 }
3826 
3827 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3828 {
3829 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3830 	u64 val;
3831 	int type, name;
3832 
3833 	type = MEMFILE_TYPE(cft->private);
3834 	name = MEMFILE_ATTR(cft->private);
3835 	switch (type) {
3836 	case _MEM:
3837 		if (name == RES_USAGE)
3838 			val = mem_cgroup_usage(mem, false);
3839 		else
3840 			val = res_counter_read_u64(&mem->res, name);
3841 		break;
3842 	case _MEMSWAP:
3843 		if (name == RES_USAGE)
3844 			val = mem_cgroup_usage(mem, true);
3845 		else
3846 			val = res_counter_read_u64(&mem->memsw, name);
3847 		break;
3848 	default:
3849 		BUG();
3850 		break;
3851 	}
3852 	return val;
3853 }
3854 /*
3855  * The user of this function is...
3856  * RES_LIMIT.
3857  */
3858 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3859 			    const char *buffer)
3860 {
3861 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3862 	int type, name;
3863 	unsigned long long val;
3864 	int ret;
3865 
3866 	type = MEMFILE_TYPE(cft->private);
3867 	name = MEMFILE_ATTR(cft->private);
3868 	switch (name) {
3869 	case RES_LIMIT:
3870 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3871 			ret = -EINVAL;
3872 			break;
3873 		}
3874 		/* This function does all necessary parse...reuse it */
3875 		ret = res_counter_memparse_write_strategy(buffer, &val);
3876 		if (ret)
3877 			break;
3878 		if (type == _MEM)
3879 			ret = mem_cgroup_resize_limit(memcg, val);
3880 		else
3881 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3882 		break;
3883 	case RES_SOFT_LIMIT:
3884 		ret = res_counter_memparse_write_strategy(buffer, &val);
3885 		if (ret)
3886 			break;
3887 		/*
3888 		 * For memsw, soft limits are hard to implement in terms
3889 		 * of semantics, for now, we support soft limits for
3890 		 * control without swap
3891 		 */
3892 		if (type == _MEM)
3893 			ret = res_counter_set_soft_limit(&memcg->res, val);
3894 		else
3895 			ret = -EINVAL;
3896 		break;
3897 	default:
3898 		ret = -EINVAL; /* should be BUG() ? */
3899 		break;
3900 	}
3901 	return ret;
3902 }
3903 
3904 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3905 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3906 {
3907 	struct cgroup *cgroup;
3908 	unsigned long long min_limit, min_memsw_limit, tmp;
3909 
3910 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3911 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3912 	cgroup = memcg->css.cgroup;
3913 	if (!memcg->use_hierarchy)
3914 		goto out;
3915 
3916 	while (cgroup->parent) {
3917 		cgroup = cgroup->parent;
3918 		memcg = mem_cgroup_from_cont(cgroup);
3919 		if (!memcg->use_hierarchy)
3920 			break;
3921 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3922 		min_limit = min(min_limit, tmp);
3923 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3924 		min_memsw_limit = min(min_memsw_limit, tmp);
3925 	}
3926 out:
3927 	*mem_limit = min_limit;
3928 	*memsw_limit = min_memsw_limit;
3929 	return;
3930 }
3931 
3932 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3933 {
3934 	struct mem_cgroup *mem;
3935 	int type, name;
3936 
3937 	mem = mem_cgroup_from_cont(cont);
3938 	type = MEMFILE_TYPE(event);
3939 	name = MEMFILE_ATTR(event);
3940 	switch (name) {
3941 	case RES_MAX_USAGE:
3942 		if (type == _MEM)
3943 			res_counter_reset_max(&mem->res);
3944 		else
3945 			res_counter_reset_max(&mem->memsw);
3946 		break;
3947 	case RES_FAILCNT:
3948 		if (type == _MEM)
3949 			res_counter_reset_failcnt(&mem->res);
3950 		else
3951 			res_counter_reset_failcnt(&mem->memsw);
3952 		break;
3953 	}
3954 
3955 	return 0;
3956 }
3957 
3958 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3959 					struct cftype *cft)
3960 {
3961 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3962 }
3963 
3964 #ifdef CONFIG_MMU
3965 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3966 					struct cftype *cft, u64 val)
3967 {
3968 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3969 
3970 	if (val >= (1 << NR_MOVE_TYPE))
3971 		return -EINVAL;
3972 	/*
3973 	 * We check this value several times in both in can_attach() and
3974 	 * attach(), so we need cgroup lock to prevent this value from being
3975 	 * inconsistent.
3976 	 */
3977 	cgroup_lock();
3978 	mem->move_charge_at_immigrate = val;
3979 	cgroup_unlock();
3980 
3981 	return 0;
3982 }
3983 #else
3984 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3985 					struct cftype *cft, u64 val)
3986 {
3987 	return -ENOSYS;
3988 }
3989 #endif
3990 
3991 
3992 /* For read statistics */
3993 enum {
3994 	MCS_CACHE,
3995 	MCS_RSS,
3996 	MCS_FILE_MAPPED,
3997 	MCS_PGPGIN,
3998 	MCS_PGPGOUT,
3999 	MCS_SWAP,
4000 	MCS_PGFAULT,
4001 	MCS_PGMAJFAULT,
4002 	MCS_INACTIVE_ANON,
4003 	MCS_ACTIVE_ANON,
4004 	MCS_INACTIVE_FILE,
4005 	MCS_ACTIVE_FILE,
4006 	MCS_UNEVICTABLE,
4007 	NR_MCS_STAT,
4008 };
4009 
4010 struct mcs_total_stat {
4011 	s64 stat[NR_MCS_STAT];
4012 };
4013 
4014 struct {
4015 	char *local_name;
4016 	char *total_name;
4017 } memcg_stat_strings[NR_MCS_STAT] = {
4018 	{"cache", "total_cache"},
4019 	{"rss", "total_rss"},
4020 	{"mapped_file", "total_mapped_file"},
4021 	{"pgpgin", "total_pgpgin"},
4022 	{"pgpgout", "total_pgpgout"},
4023 	{"swap", "total_swap"},
4024 	{"pgfault", "total_pgfault"},
4025 	{"pgmajfault", "total_pgmajfault"},
4026 	{"inactive_anon", "total_inactive_anon"},
4027 	{"active_anon", "total_active_anon"},
4028 	{"inactive_file", "total_inactive_file"},
4029 	{"active_file", "total_active_file"},
4030 	{"unevictable", "total_unevictable"}
4031 };
4032 
4033 
4034 static void
4035 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4036 {
4037 	s64 val;
4038 
4039 	/* per cpu stat */
4040 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4041 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4042 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4043 	s->stat[MCS_RSS] += val * PAGE_SIZE;
4044 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4045 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4046 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4047 	s->stat[MCS_PGPGIN] += val;
4048 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4049 	s->stat[MCS_PGPGOUT] += val;
4050 	if (do_swap_account) {
4051 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4052 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4053 	}
4054 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4055 	s->stat[MCS_PGFAULT] += val;
4056 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4057 	s->stat[MCS_PGMAJFAULT] += val;
4058 
4059 	/* per zone stat */
4060 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
4061 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4062 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
4063 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4064 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
4065 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4066 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
4067 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4068 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
4069 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4070 }
4071 
4072 static void
4073 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4074 {
4075 	struct mem_cgroup *iter;
4076 
4077 	for_each_mem_cgroup_tree(iter, mem)
4078 		mem_cgroup_get_local_stat(iter, s);
4079 }
4080 
4081 #ifdef CONFIG_NUMA
4082 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4083 {
4084 	int nid;
4085 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4086 	unsigned long node_nr;
4087 	struct cgroup *cont = m->private;
4088 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4089 
4090 	total_nr = mem_cgroup_nr_lru_pages(mem_cont);
4091 	seq_printf(m, "total=%lu", total_nr);
4092 	for_each_node_state(nid, N_HIGH_MEMORY) {
4093 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid);
4094 		seq_printf(m, " N%d=%lu", nid, node_nr);
4095 	}
4096 	seq_putc(m, '\n');
4097 
4098 	file_nr = mem_cgroup_nr_file_lru_pages(mem_cont);
4099 	seq_printf(m, "file=%lu", file_nr);
4100 	for_each_node_state(nid, N_HIGH_MEMORY) {
4101 		node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid);
4102 		seq_printf(m, " N%d=%lu", nid, node_nr);
4103 	}
4104 	seq_putc(m, '\n');
4105 
4106 	anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont);
4107 	seq_printf(m, "anon=%lu", anon_nr);
4108 	for_each_node_state(nid, N_HIGH_MEMORY) {
4109 		node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid);
4110 		seq_printf(m, " N%d=%lu", nid, node_nr);
4111 	}
4112 	seq_putc(m, '\n');
4113 
4114 	unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont);
4115 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4116 	for_each_node_state(nid, N_HIGH_MEMORY) {
4117 		node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont,
4118 									nid);
4119 		seq_printf(m, " N%d=%lu", nid, node_nr);
4120 	}
4121 	seq_putc(m, '\n');
4122 	return 0;
4123 }
4124 #endif /* CONFIG_NUMA */
4125 
4126 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4127 				 struct cgroup_map_cb *cb)
4128 {
4129 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4130 	struct mcs_total_stat mystat;
4131 	int i;
4132 
4133 	memset(&mystat, 0, sizeof(mystat));
4134 	mem_cgroup_get_local_stat(mem_cont, &mystat);
4135 
4136 
4137 	for (i = 0; i < NR_MCS_STAT; i++) {
4138 		if (i == MCS_SWAP && !do_swap_account)
4139 			continue;
4140 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4141 	}
4142 
4143 	/* Hierarchical information */
4144 	{
4145 		unsigned long long limit, memsw_limit;
4146 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4147 		cb->fill(cb, "hierarchical_memory_limit", limit);
4148 		if (do_swap_account)
4149 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4150 	}
4151 
4152 	memset(&mystat, 0, sizeof(mystat));
4153 	mem_cgroup_get_total_stat(mem_cont, &mystat);
4154 	for (i = 0; i < NR_MCS_STAT; i++) {
4155 		if (i == MCS_SWAP && !do_swap_account)
4156 			continue;
4157 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4158 	}
4159 
4160 #ifdef CONFIG_DEBUG_VM
4161 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4162 
4163 	{
4164 		int nid, zid;
4165 		struct mem_cgroup_per_zone *mz;
4166 		unsigned long recent_rotated[2] = {0, 0};
4167 		unsigned long recent_scanned[2] = {0, 0};
4168 
4169 		for_each_online_node(nid)
4170 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4171 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4172 
4173 				recent_rotated[0] +=
4174 					mz->reclaim_stat.recent_rotated[0];
4175 				recent_rotated[1] +=
4176 					mz->reclaim_stat.recent_rotated[1];
4177 				recent_scanned[0] +=
4178 					mz->reclaim_stat.recent_scanned[0];
4179 				recent_scanned[1] +=
4180 					mz->reclaim_stat.recent_scanned[1];
4181 			}
4182 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4183 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4184 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4185 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4186 	}
4187 #endif
4188 
4189 	return 0;
4190 }
4191 
4192 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4193 {
4194 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4195 
4196 	return get_swappiness(memcg);
4197 }
4198 
4199 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4200 				       u64 val)
4201 {
4202 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4203 	struct mem_cgroup *parent;
4204 
4205 	if (val > 100)
4206 		return -EINVAL;
4207 
4208 	if (cgrp->parent == NULL)
4209 		return -EINVAL;
4210 
4211 	parent = mem_cgroup_from_cont(cgrp->parent);
4212 
4213 	cgroup_lock();
4214 
4215 	/* If under hierarchy, only empty-root can set this value */
4216 	if ((parent->use_hierarchy) ||
4217 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4218 		cgroup_unlock();
4219 		return -EINVAL;
4220 	}
4221 
4222 	memcg->swappiness = val;
4223 
4224 	cgroup_unlock();
4225 
4226 	return 0;
4227 }
4228 
4229 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4230 {
4231 	struct mem_cgroup_threshold_ary *t;
4232 	u64 usage;
4233 	int i;
4234 
4235 	rcu_read_lock();
4236 	if (!swap)
4237 		t = rcu_dereference(memcg->thresholds.primary);
4238 	else
4239 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4240 
4241 	if (!t)
4242 		goto unlock;
4243 
4244 	usage = mem_cgroup_usage(memcg, swap);
4245 
4246 	/*
4247 	 * current_threshold points to threshold just below usage.
4248 	 * If it's not true, a threshold was crossed after last
4249 	 * call of __mem_cgroup_threshold().
4250 	 */
4251 	i = t->current_threshold;
4252 
4253 	/*
4254 	 * Iterate backward over array of thresholds starting from
4255 	 * current_threshold and check if a threshold is crossed.
4256 	 * If none of thresholds below usage is crossed, we read
4257 	 * only one element of the array here.
4258 	 */
4259 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4260 		eventfd_signal(t->entries[i].eventfd, 1);
4261 
4262 	/* i = current_threshold + 1 */
4263 	i++;
4264 
4265 	/*
4266 	 * Iterate forward over array of thresholds starting from
4267 	 * current_threshold+1 and check if a threshold is crossed.
4268 	 * If none of thresholds above usage is crossed, we read
4269 	 * only one element of the array here.
4270 	 */
4271 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4272 		eventfd_signal(t->entries[i].eventfd, 1);
4273 
4274 	/* Update current_threshold */
4275 	t->current_threshold = i - 1;
4276 unlock:
4277 	rcu_read_unlock();
4278 }
4279 
4280 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4281 {
4282 	while (memcg) {
4283 		__mem_cgroup_threshold(memcg, false);
4284 		if (do_swap_account)
4285 			__mem_cgroup_threshold(memcg, true);
4286 
4287 		memcg = parent_mem_cgroup(memcg);
4288 	}
4289 }
4290 
4291 static int compare_thresholds(const void *a, const void *b)
4292 {
4293 	const struct mem_cgroup_threshold *_a = a;
4294 	const struct mem_cgroup_threshold *_b = b;
4295 
4296 	return _a->threshold - _b->threshold;
4297 }
4298 
4299 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4300 {
4301 	struct mem_cgroup_eventfd_list *ev;
4302 
4303 	list_for_each_entry(ev, &mem->oom_notify, list)
4304 		eventfd_signal(ev->eventfd, 1);
4305 	return 0;
4306 }
4307 
4308 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4309 {
4310 	struct mem_cgroup *iter;
4311 
4312 	for_each_mem_cgroup_tree(iter, mem)
4313 		mem_cgroup_oom_notify_cb(iter);
4314 }
4315 
4316 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4317 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4318 {
4319 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4320 	struct mem_cgroup_thresholds *thresholds;
4321 	struct mem_cgroup_threshold_ary *new;
4322 	int type = MEMFILE_TYPE(cft->private);
4323 	u64 threshold, usage;
4324 	int i, size, ret;
4325 
4326 	ret = res_counter_memparse_write_strategy(args, &threshold);
4327 	if (ret)
4328 		return ret;
4329 
4330 	mutex_lock(&memcg->thresholds_lock);
4331 
4332 	if (type == _MEM)
4333 		thresholds = &memcg->thresholds;
4334 	else if (type == _MEMSWAP)
4335 		thresholds = &memcg->memsw_thresholds;
4336 	else
4337 		BUG();
4338 
4339 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4340 
4341 	/* Check if a threshold crossed before adding a new one */
4342 	if (thresholds->primary)
4343 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4344 
4345 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4346 
4347 	/* Allocate memory for new array of thresholds */
4348 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4349 			GFP_KERNEL);
4350 	if (!new) {
4351 		ret = -ENOMEM;
4352 		goto unlock;
4353 	}
4354 	new->size = size;
4355 
4356 	/* Copy thresholds (if any) to new array */
4357 	if (thresholds->primary) {
4358 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4359 				sizeof(struct mem_cgroup_threshold));
4360 	}
4361 
4362 	/* Add new threshold */
4363 	new->entries[size - 1].eventfd = eventfd;
4364 	new->entries[size - 1].threshold = threshold;
4365 
4366 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4367 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4368 			compare_thresholds, NULL);
4369 
4370 	/* Find current threshold */
4371 	new->current_threshold = -1;
4372 	for (i = 0; i < size; i++) {
4373 		if (new->entries[i].threshold < usage) {
4374 			/*
4375 			 * new->current_threshold will not be used until
4376 			 * rcu_assign_pointer(), so it's safe to increment
4377 			 * it here.
4378 			 */
4379 			++new->current_threshold;
4380 		}
4381 	}
4382 
4383 	/* Free old spare buffer and save old primary buffer as spare */
4384 	kfree(thresholds->spare);
4385 	thresholds->spare = thresholds->primary;
4386 
4387 	rcu_assign_pointer(thresholds->primary, new);
4388 
4389 	/* To be sure that nobody uses thresholds */
4390 	synchronize_rcu();
4391 
4392 unlock:
4393 	mutex_unlock(&memcg->thresholds_lock);
4394 
4395 	return ret;
4396 }
4397 
4398 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4399 	struct cftype *cft, struct eventfd_ctx *eventfd)
4400 {
4401 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4402 	struct mem_cgroup_thresholds *thresholds;
4403 	struct mem_cgroup_threshold_ary *new;
4404 	int type = MEMFILE_TYPE(cft->private);
4405 	u64 usage;
4406 	int i, j, size;
4407 
4408 	mutex_lock(&memcg->thresholds_lock);
4409 	if (type == _MEM)
4410 		thresholds = &memcg->thresholds;
4411 	else if (type == _MEMSWAP)
4412 		thresholds = &memcg->memsw_thresholds;
4413 	else
4414 		BUG();
4415 
4416 	/*
4417 	 * Something went wrong if we trying to unregister a threshold
4418 	 * if we don't have thresholds
4419 	 */
4420 	BUG_ON(!thresholds);
4421 
4422 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4423 
4424 	/* Check if a threshold crossed before removing */
4425 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4426 
4427 	/* Calculate new number of threshold */
4428 	size = 0;
4429 	for (i = 0; i < thresholds->primary->size; i++) {
4430 		if (thresholds->primary->entries[i].eventfd != eventfd)
4431 			size++;
4432 	}
4433 
4434 	new = thresholds->spare;
4435 
4436 	/* Set thresholds array to NULL if we don't have thresholds */
4437 	if (!size) {
4438 		kfree(new);
4439 		new = NULL;
4440 		goto swap_buffers;
4441 	}
4442 
4443 	new->size = size;
4444 
4445 	/* Copy thresholds and find current threshold */
4446 	new->current_threshold = -1;
4447 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4448 		if (thresholds->primary->entries[i].eventfd == eventfd)
4449 			continue;
4450 
4451 		new->entries[j] = thresholds->primary->entries[i];
4452 		if (new->entries[j].threshold < usage) {
4453 			/*
4454 			 * new->current_threshold will not be used
4455 			 * until rcu_assign_pointer(), so it's safe to increment
4456 			 * it here.
4457 			 */
4458 			++new->current_threshold;
4459 		}
4460 		j++;
4461 	}
4462 
4463 swap_buffers:
4464 	/* Swap primary and spare array */
4465 	thresholds->spare = thresholds->primary;
4466 	rcu_assign_pointer(thresholds->primary, new);
4467 
4468 	/* To be sure that nobody uses thresholds */
4469 	synchronize_rcu();
4470 
4471 	mutex_unlock(&memcg->thresholds_lock);
4472 }
4473 
4474 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4475 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4476 {
4477 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4478 	struct mem_cgroup_eventfd_list *event;
4479 	int type = MEMFILE_TYPE(cft->private);
4480 
4481 	BUG_ON(type != _OOM_TYPE);
4482 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4483 	if (!event)
4484 		return -ENOMEM;
4485 
4486 	mutex_lock(&memcg_oom_mutex);
4487 
4488 	event->eventfd = eventfd;
4489 	list_add(&event->list, &memcg->oom_notify);
4490 
4491 	/* already in OOM ? */
4492 	if (atomic_read(&memcg->oom_lock))
4493 		eventfd_signal(eventfd, 1);
4494 	mutex_unlock(&memcg_oom_mutex);
4495 
4496 	return 0;
4497 }
4498 
4499 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4500 	struct cftype *cft, struct eventfd_ctx *eventfd)
4501 {
4502 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4503 	struct mem_cgroup_eventfd_list *ev, *tmp;
4504 	int type = MEMFILE_TYPE(cft->private);
4505 
4506 	BUG_ON(type != _OOM_TYPE);
4507 
4508 	mutex_lock(&memcg_oom_mutex);
4509 
4510 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4511 		if (ev->eventfd == eventfd) {
4512 			list_del(&ev->list);
4513 			kfree(ev);
4514 		}
4515 	}
4516 
4517 	mutex_unlock(&memcg_oom_mutex);
4518 }
4519 
4520 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4521 	struct cftype *cft,  struct cgroup_map_cb *cb)
4522 {
4523 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4524 
4525 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4526 
4527 	if (atomic_read(&mem->oom_lock))
4528 		cb->fill(cb, "under_oom", 1);
4529 	else
4530 		cb->fill(cb, "under_oom", 0);
4531 	return 0;
4532 }
4533 
4534 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4535 	struct cftype *cft, u64 val)
4536 {
4537 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4538 	struct mem_cgroup *parent;
4539 
4540 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4541 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4542 		return -EINVAL;
4543 
4544 	parent = mem_cgroup_from_cont(cgrp->parent);
4545 
4546 	cgroup_lock();
4547 	/* oom-kill-disable is a flag for subhierarchy. */
4548 	if ((parent->use_hierarchy) ||
4549 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4550 		cgroup_unlock();
4551 		return -EINVAL;
4552 	}
4553 	mem->oom_kill_disable = val;
4554 	if (!val)
4555 		memcg_oom_recover(mem);
4556 	cgroup_unlock();
4557 	return 0;
4558 }
4559 
4560 #ifdef CONFIG_NUMA
4561 static const struct file_operations mem_control_numa_stat_file_operations = {
4562 	.read = seq_read,
4563 	.llseek = seq_lseek,
4564 	.release = single_release,
4565 };
4566 
4567 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4568 {
4569 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4570 
4571 	file->f_op = &mem_control_numa_stat_file_operations;
4572 	return single_open(file, mem_control_numa_stat_show, cont);
4573 }
4574 #endif /* CONFIG_NUMA */
4575 
4576 static struct cftype mem_cgroup_files[] = {
4577 	{
4578 		.name = "usage_in_bytes",
4579 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4580 		.read_u64 = mem_cgroup_read,
4581 		.register_event = mem_cgroup_usage_register_event,
4582 		.unregister_event = mem_cgroup_usage_unregister_event,
4583 	},
4584 	{
4585 		.name = "max_usage_in_bytes",
4586 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4587 		.trigger = mem_cgroup_reset,
4588 		.read_u64 = mem_cgroup_read,
4589 	},
4590 	{
4591 		.name = "limit_in_bytes",
4592 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4593 		.write_string = mem_cgroup_write,
4594 		.read_u64 = mem_cgroup_read,
4595 	},
4596 	{
4597 		.name = "soft_limit_in_bytes",
4598 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4599 		.write_string = mem_cgroup_write,
4600 		.read_u64 = mem_cgroup_read,
4601 	},
4602 	{
4603 		.name = "failcnt",
4604 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4605 		.trigger = mem_cgroup_reset,
4606 		.read_u64 = mem_cgroup_read,
4607 	},
4608 	{
4609 		.name = "stat",
4610 		.read_map = mem_control_stat_show,
4611 	},
4612 	{
4613 		.name = "force_empty",
4614 		.trigger = mem_cgroup_force_empty_write,
4615 	},
4616 	{
4617 		.name = "use_hierarchy",
4618 		.write_u64 = mem_cgroup_hierarchy_write,
4619 		.read_u64 = mem_cgroup_hierarchy_read,
4620 	},
4621 	{
4622 		.name = "swappiness",
4623 		.read_u64 = mem_cgroup_swappiness_read,
4624 		.write_u64 = mem_cgroup_swappiness_write,
4625 	},
4626 	{
4627 		.name = "move_charge_at_immigrate",
4628 		.read_u64 = mem_cgroup_move_charge_read,
4629 		.write_u64 = mem_cgroup_move_charge_write,
4630 	},
4631 	{
4632 		.name = "oom_control",
4633 		.read_map = mem_cgroup_oom_control_read,
4634 		.write_u64 = mem_cgroup_oom_control_write,
4635 		.register_event = mem_cgroup_oom_register_event,
4636 		.unregister_event = mem_cgroup_oom_unregister_event,
4637 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4638 	},
4639 #ifdef CONFIG_NUMA
4640 	{
4641 		.name = "numa_stat",
4642 		.open = mem_control_numa_stat_open,
4643 	},
4644 #endif
4645 };
4646 
4647 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4648 static struct cftype memsw_cgroup_files[] = {
4649 	{
4650 		.name = "memsw.usage_in_bytes",
4651 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4652 		.read_u64 = mem_cgroup_read,
4653 		.register_event = mem_cgroup_usage_register_event,
4654 		.unregister_event = mem_cgroup_usage_unregister_event,
4655 	},
4656 	{
4657 		.name = "memsw.max_usage_in_bytes",
4658 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4659 		.trigger = mem_cgroup_reset,
4660 		.read_u64 = mem_cgroup_read,
4661 	},
4662 	{
4663 		.name = "memsw.limit_in_bytes",
4664 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4665 		.write_string = mem_cgroup_write,
4666 		.read_u64 = mem_cgroup_read,
4667 	},
4668 	{
4669 		.name = "memsw.failcnt",
4670 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4671 		.trigger = mem_cgroup_reset,
4672 		.read_u64 = mem_cgroup_read,
4673 	},
4674 };
4675 
4676 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4677 {
4678 	if (!do_swap_account)
4679 		return 0;
4680 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4681 				ARRAY_SIZE(memsw_cgroup_files));
4682 };
4683 #else
4684 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4685 {
4686 	return 0;
4687 }
4688 #endif
4689 
4690 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4691 {
4692 	struct mem_cgroup_per_node *pn;
4693 	struct mem_cgroup_per_zone *mz;
4694 	enum lru_list l;
4695 	int zone, tmp = node;
4696 	/*
4697 	 * This routine is called against possible nodes.
4698 	 * But it's BUG to call kmalloc() against offline node.
4699 	 *
4700 	 * TODO: this routine can waste much memory for nodes which will
4701 	 *       never be onlined. It's better to use memory hotplug callback
4702 	 *       function.
4703 	 */
4704 	if (!node_state(node, N_NORMAL_MEMORY))
4705 		tmp = -1;
4706 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4707 	if (!pn)
4708 		return 1;
4709 
4710 	mem->info.nodeinfo[node] = pn;
4711 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4712 		mz = &pn->zoneinfo[zone];
4713 		for_each_lru(l)
4714 			INIT_LIST_HEAD(&mz->lists[l]);
4715 		mz->usage_in_excess = 0;
4716 		mz->on_tree = false;
4717 		mz->mem = mem;
4718 	}
4719 	return 0;
4720 }
4721 
4722 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4723 {
4724 	kfree(mem->info.nodeinfo[node]);
4725 }
4726 
4727 static struct mem_cgroup *mem_cgroup_alloc(void)
4728 {
4729 	struct mem_cgroup *mem;
4730 	int size = sizeof(struct mem_cgroup);
4731 
4732 	/* Can be very big if MAX_NUMNODES is very big */
4733 	if (size < PAGE_SIZE)
4734 		mem = kzalloc(size, GFP_KERNEL);
4735 	else
4736 		mem = vzalloc(size);
4737 
4738 	if (!mem)
4739 		return NULL;
4740 
4741 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4742 	if (!mem->stat)
4743 		goto out_free;
4744 	spin_lock_init(&mem->pcp_counter_lock);
4745 	return mem;
4746 
4747 out_free:
4748 	if (size < PAGE_SIZE)
4749 		kfree(mem);
4750 	else
4751 		vfree(mem);
4752 	return NULL;
4753 }
4754 
4755 /*
4756  * At destroying mem_cgroup, references from swap_cgroup can remain.
4757  * (scanning all at force_empty is too costly...)
4758  *
4759  * Instead of clearing all references at force_empty, we remember
4760  * the number of reference from swap_cgroup and free mem_cgroup when
4761  * it goes down to 0.
4762  *
4763  * Removal of cgroup itself succeeds regardless of refs from swap.
4764  */
4765 
4766 static void __mem_cgroup_free(struct mem_cgroup *mem)
4767 {
4768 	int node;
4769 
4770 	mem_cgroup_remove_from_trees(mem);
4771 	free_css_id(&mem_cgroup_subsys, &mem->css);
4772 
4773 	for_each_node_state(node, N_POSSIBLE)
4774 		free_mem_cgroup_per_zone_info(mem, node);
4775 
4776 	free_percpu(mem->stat);
4777 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4778 		kfree(mem);
4779 	else
4780 		vfree(mem);
4781 }
4782 
4783 static void mem_cgroup_get(struct mem_cgroup *mem)
4784 {
4785 	atomic_inc(&mem->refcnt);
4786 }
4787 
4788 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4789 {
4790 	if (atomic_sub_and_test(count, &mem->refcnt)) {
4791 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4792 		__mem_cgroup_free(mem);
4793 		if (parent)
4794 			mem_cgroup_put(parent);
4795 	}
4796 }
4797 
4798 static void mem_cgroup_put(struct mem_cgroup *mem)
4799 {
4800 	__mem_cgroup_put(mem, 1);
4801 }
4802 
4803 /*
4804  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4805  */
4806 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4807 {
4808 	if (!mem->res.parent)
4809 		return NULL;
4810 	return mem_cgroup_from_res_counter(mem->res.parent, res);
4811 }
4812 
4813 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4814 static void __init enable_swap_cgroup(void)
4815 {
4816 	if (!mem_cgroup_disabled() && really_do_swap_account)
4817 		do_swap_account = 1;
4818 }
4819 #else
4820 static void __init enable_swap_cgroup(void)
4821 {
4822 }
4823 #endif
4824 
4825 static int mem_cgroup_soft_limit_tree_init(void)
4826 {
4827 	struct mem_cgroup_tree_per_node *rtpn;
4828 	struct mem_cgroup_tree_per_zone *rtpz;
4829 	int tmp, node, zone;
4830 
4831 	for_each_node_state(node, N_POSSIBLE) {
4832 		tmp = node;
4833 		if (!node_state(node, N_NORMAL_MEMORY))
4834 			tmp = -1;
4835 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4836 		if (!rtpn)
4837 			return 1;
4838 
4839 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4840 
4841 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4842 			rtpz = &rtpn->rb_tree_per_zone[zone];
4843 			rtpz->rb_root = RB_ROOT;
4844 			spin_lock_init(&rtpz->lock);
4845 		}
4846 	}
4847 	return 0;
4848 }
4849 
4850 static struct cgroup_subsys_state * __ref
4851 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4852 {
4853 	struct mem_cgroup *mem, *parent;
4854 	long error = -ENOMEM;
4855 	int node;
4856 
4857 	mem = mem_cgroup_alloc();
4858 	if (!mem)
4859 		return ERR_PTR(error);
4860 
4861 	for_each_node_state(node, N_POSSIBLE)
4862 		if (alloc_mem_cgroup_per_zone_info(mem, node))
4863 			goto free_out;
4864 
4865 	/* root ? */
4866 	if (cont->parent == NULL) {
4867 		int cpu;
4868 		enable_swap_cgroup();
4869 		parent = NULL;
4870 		root_mem_cgroup = mem;
4871 		if (mem_cgroup_soft_limit_tree_init())
4872 			goto free_out;
4873 		for_each_possible_cpu(cpu) {
4874 			struct memcg_stock_pcp *stock =
4875 						&per_cpu(memcg_stock, cpu);
4876 			INIT_WORK(&stock->work, drain_local_stock);
4877 		}
4878 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4879 	} else {
4880 		parent = mem_cgroup_from_cont(cont->parent);
4881 		mem->use_hierarchy = parent->use_hierarchy;
4882 		mem->oom_kill_disable = parent->oom_kill_disable;
4883 	}
4884 
4885 	if (parent && parent->use_hierarchy) {
4886 		res_counter_init(&mem->res, &parent->res);
4887 		res_counter_init(&mem->memsw, &parent->memsw);
4888 		/*
4889 		 * We increment refcnt of the parent to ensure that we can
4890 		 * safely access it on res_counter_charge/uncharge.
4891 		 * This refcnt will be decremented when freeing this
4892 		 * mem_cgroup(see mem_cgroup_put).
4893 		 */
4894 		mem_cgroup_get(parent);
4895 	} else {
4896 		res_counter_init(&mem->res, NULL);
4897 		res_counter_init(&mem->memsw, NULL);
4898 	}
4899 	mem->last_scanned_child = 0;
4900 	mem->last_scanned_node = MAX_NUMNODES;
4901 	INIT_LIST_HEAD(&mem->oom_notify);
4902 
4903 	if (parent)
4904 		mem->swappiness = get_swappiness(parent);
4905 	atomic_set(&mem->refcnt, 1);
4906 	mem->move_charge_at_immigrate = 0;
4907 	mutex_init(&mem->thresholds_lock);
4908 	return &mem->css;
4909 free_out:
4910 	__mem_cgroup_free(mem);
4911 	root_mem_cgroup = NULL;
4912 	return ERR_PTR(error);
4913 }
4914 
4915 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4916 					struct cgroup *cont)
4917 {
4918 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4919 
4920 	return mem_cgroup_force_empty(mem, false);
4921 }
4922 
4923 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4924 				struct cgroup *cont)
4925 {
4926 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4927 
4928 	mem_cgroup_put(mem);
4929 }
4930 
4931 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4932 				struct cgroup *cont)
4933 {
4934 	int ret;
4935 
4936 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4937 				ARRAY_SIZE(mem_cgroup_files));
4938 
4939 	if (!ret)
4940 		ret = register_memsw_files(cont, ss);
4941 	return ret;
4942 }
4943 
4944 #ifdef CONFIG_MMU
4945 /* Handlers for move charge at task migration. */
4946 #define PRECHARGE_COUNT_AT_ONCE	256
4947 static int mem_cgroup_do_precharge(unsigned long count)
4948 {
4949 	int ret = 0;
4950 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4951 	struct mem_cgroup *mem = mc.to;
4952 
4953 	if (mem_cgroup_is_root(mem)) {
4954 		mc.precharge += count;
4955 		/* we don't need css_get for root */
4956 		return ret;
4957 	}
4958 	/* try to charge at once */
4959 	if (count > 1) {
4960 		struct res_counter *dummy;
4961 		/*
4962 		 * "mem" cannot be under rmdir() because we've already checked
4963 		 * by cgroup_lock_live_cgroup() that it is not removed and we
4964 		 * are still under the same cgroup_mutex. So we can postpone
4965 		 * css_get().
4966 		 */
4967 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4968 			goto one_by_one;
4969 		if (do_swap_account && res_counter_charge(&mem->memsw,
4970 						PAGE_SIZE * count, &dummy)) {
4971 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4972 			goto one_by_one;
4973 		}
4974 		mc.precharge += count;
4975 		return ret;
4976 	}
4977 one_by_one:
4978 	/* fall back to one by one charge */
4979 	while (count--) {
4980 		if (signal_pending(current)) {
4981 			ret = -EINTR;
4982 			break;
4983 		}
4984 		if (!batch_count--) {
4985 			batch_count = PRECHARGE_COUNT_AT_ONCE;
4986 			cond_resched();
4987 		}
4988 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
4989 		if (ret || !mem)
4990 			/* mem_cgroup_clear_mc() will do uncharge later */
4991 			return -ENOMEM;
4992 		mc.precharge++;
4993 	}
4994 	return ret;
4995 }
4996 
4997 /**
4998  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4999  * @vma: the vma the pte to be checked belongs
5000  * @addr: the address corresponding to the pte to be checked
5001  * @ptent: the pte to be checked
5002  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5003  *
5004  * Returns
5005  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5006  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5007  *     move charge. if @target is not NULL, the page is stored in target->page
5008  *     with extra refcnt got(Callers should handle it).
5009  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5010  *     target for charge migration. if @target is not NULL, the entry is stored
5011  *     in target->ent.
5012  *
5013  * Called with pte lock held.
5014  */
5015 union mc_target {
5016 	struct page	*page;
5017 	swp_entry_t	ent;
5018 };
5019 
5020 enum mc_target_type {
5021 	MC_TARGET_NONE,	/* not used */
5022 	MC_TARGET_PAGE,
5023 	MC_TARGET_SWAP,
5024 };
5025 
5026 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5027 						unsigned long addr, pte_t ptent)
5028 {
5029 	struct page *page = vm_normal_page(vma, addr, ptent);
5030 
5031 	if (!page || !page_mapped(page))
5032 		return NULL;
5033 	if (PageAnon(page)) {
5034 		/* we don't move shared anon */
5035 		if (!move_anon() || page_mapcount(page) > 2)
5036 			return NULL;
5037 	} else if (!move_file())
5038 		/* we ignore mapcount for file pages */
5039 		return NULL;
5040 	if (!get_page_unless_zero(page))
5041 		return NULL;
5042 
5043 	return page;
5044 }
5045 
5046 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5047 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5048 {
5049 	int usage_count;
5050 	struct page *page = NULL;
5051 	swp_entry_t ent = pte_to_swp_entry(ptent);
5052 
5053 	if (!move_anon() || non_swap_entry(ent))
5054 		return NULL;
5055 	usage_count = mem_cgroup_count_swap_user(ent, &page);
5056 	if (usage_count > 1) { /* we don't move shared anon */
5057 		if (page)
5058 			put_page(page);
5059 		return NULL;
5060 	}
5061 	if (do_swap_account)
5062 		entry->val = ent.val;
5063 
5064 	return page;
5065 }
5066 
5067 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5068 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5069 {
5070 	struct page *page = NULL;
5071 	struct inode *inode;
5072 	struct address_space *mapping;
5073 	pgoff_t pgoff;
5074 
5075 	if (!vma->vm_file) /* anonymous vma */
5076 		return NULL;
5077 	if (!move_file())
5078 		return NULL;
5079 
5080 	inode = vma->vm_file->f_path.dentry->d_inode;
5081 	mapping = vma->vm_file->f_mapping;
5082 	if (pte_none(ptent))
5083 		pgoff = linear_page_index(vma, addr);
5084 	else /* pte_file(ptent) is true */
5085 		pgoff = pte_to_pgoff(ptent);
5086 
5087 	/* page is moved even if it's not RSS of this task(page-faulted). */
5088 	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5089 		page = find_get_page(mapping, pgoff);
5090 	} else { /* shmem/tmpfs file. we should take account of swap too. */
5091 		swp_entry_t ent;
5092 		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5093 		if (do_swap_account)
5094 			entry->val = ent.val;
5095 	}
5096 
5097 	return page;
5098 }
5099 
5100 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5101 		unsigned long addr, pte_t ptent, union mc_target *target)
5102 {
5103 	struct page *page = NULL;
5104 	struct page_cgroup *pc;
5105 	int ret = 0;
5106 	swp_entry_t ent = { .val = 0 };
5107 
5108 	if (pte_present(ptent))
5109 		page = mc_handle_present_pte(vma, addr, ptent);
5110 	else if (is_swap_pte(ptent))
5111 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5112 	else if (pte_none(ptent) || pte_file(ptent))
5113 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5114 
5115 	if (!page && !ent.val)
5116 		return 0;
5117 	if (page) {
5118 		pc = lookup_page_cgroup(page);
5119 		/*
5120 		 * Do only loose check w/o page_cgroup lock.
5121 		 * mem_cgroup_move_account() checks the pc is valid or not under
5122 		 * the lock.
5123 		 */
5124 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5125 			ret = MC_TARGET_PAGE;
5126 			if (target)
5127 				target->page = page;
5128 		}
5129 		if (!ret || !target)
5130 			put_page(page);
5131 	}
5132 	/* There is a swap entry and a page doesn't exist or isn't charged */
5133 	if (ent.val && !ret &&
5134 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5135 		ret = MC_TARGET_SWAP;
5136 		if (target)
5137 			target->ent = ent;
5138 	}
5139 	return ret;
5140 }
5141 
5142 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5143 					unsigned long addr, unsigned long end,
5144 					struct mm_walk *walk)
5145 {
5146 	struct vm_area_struct *vma = walk->private;
5147 	pte_t *pte;
5148 	spinlock_t *ptl;
5149 
5150 	split_huge_page_pmd(walk->mm, pmd);
5151 
5152 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5153 	for (; addr != end; pte++, addr += PAGE_SIZE)
5154 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5155 			mc.precharge++;	/* increment precharge temporarily */
5156 	pte_unmap_unlock(pte - 1, ptl);
5157 	cond_resched();
5158 
5159 	return 0;
5160 }
5161 
5162 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5163 {
5164 	unsigned long precharge;
5165 	struct vm_area_struct *vma;
5166 
5167 	down_read(&mm->mmap_sem);
5168 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5169 		struct mm_walk mem_cgroup_count_precharge_walk = {
5170 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5171 			.mm = mm,
5172 			.private = vma,
5173 		};
5174 		if (is_vm_hugetlb_page(vma))
5175 			continue;
5176 		walk_page_range(vma->vm_start, vma->vm_end,
5177 					&mem_cgroup_count_precharge_walk);
5178 	}
5179 	up_read(&mm->mmap_sem);
5180 
5181 	precharge = mc.precharge;
5182 	mc.precharge = 0;
5183 
5184 	return precharge;
5185 }
5186 
5187 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5188 {
5189 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5190 
5191 	VM_BUG_ON(mc.moving_task);
5192 	mc.moving_task = current;
5193 	return mem_cgroup_do_precharge(precharge);
5194 }
5195 
5196 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5197 static void __mem_cgroup_clear_mc(void)
5198 {
5199 	struct mem_cgroup *from = mc.from;
5200 	struct mem_cgroup *to = mc.to;
5201 
5202 	/* we must uncharge all the leftover precharges from mc.to */
5203 	if (mc.precharge) {
5204 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5205 		mc.precharge = 0;
5206 	}
5207 	/*
5208 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5209 	 * we must uncharge here.
5210 	 */
5211 	if (mc.moved_charge) {
5212 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5213 		mc.moved_charge = 0;
5214 	}
5215 	/* we must fixup refcnts and charges */
5216 	if (mc.moved_swap) {
5217 		/* uncharge swap account from the old cgroup */
5218 		if (!mem_cgroup_is_root(mc.from))
5219 			res_counter_uncharge(&mc.from->memsw,
5220 						PAGE_SIZE * mc.moved_swap);
5221 		__mem_cgroup_put(mc.from, mc.moved_swap);
5222 
5223 		if (!mem_cgroup_is_root(mc.to)) {
5224 			/*
5225 			 * we charged both to->res and to->memsw, so we should
5226 			 * uncharge to->res.
5227 			 */
5228 			res_counter_uncharge(&mc.to->res,
5229 						PAGE_SIZE * mc.moved_swap);
5230 		}
5231 		/* we've already done mem_cgroup_get(mc.to) */
5232 		mc.moved_swap = 0;
5233 	}
5234 	memcg_oom_recover(from);
5235 	memcg_oom_recover(to);
5236 	wake_up_all(&mc.waitq);
5237 }
5238 
5239 static void mem_cgroup_clear_mc(void)
5240 {
5241 	struct mem_cgroup *from = mc.from;
5242 
5243 	/*
5244 	 * we must clear moving_task before waking up waiters at the end of
5245 	 * task migration.
5246 	 */
5247 	mc.moving_task = NULL;
5248 	__mem_cgroup_clear_mc();
5249 	spin_lock(&mc.lock);
5250 	mc.from = NULL;
5251 	mc.to = NULL;
5252 	spin_unlock(&mc.lock);
5253 	mem_cgroup_end_move(from);
5254 }
5255 
5256 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5257 				struct cgroup *cgroup,
5258 				struct task_struct *p)
5259 {
5260 	int ret = 0;
5261 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5262 
5263 	if (mem->move_charge_at_immigrate) {
5264 		struct mm_struct *mm;
5265 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5266 
5267 		VM_BUG_ON(from == mem);
5268 
5269 		mm = get_task_mm(p);
5270 		if (!mm)
5271 			return 0;
5272 		/* We move charges only when we move a owner of the mm */
5273 		if (mm->owner == p) {
5274 			VM_BUG_ON(mc.from);
5275 			VM_BUG_ON(mc.to);
5276 			VM_BUG_ON(mc.precharge);
5277 			VM_BUG_ON(mc.moved_charge);
5278 			VM_BUG_ON(mc.moved_swap);
5279 			mem_cgroup_start_move(from);
5280 			spin_lock(&mc.lock);
5281 			mc.from = from;
5282 			mc.to = mem;
5283 			spin_unlock(&mc.lock);
5284 			/* We set mc.moving_task later */
5285 
5286 			ret = mem_cgroup_precharge_mc(mm);
5287 			if (ret)
5288 				mem_cgroup_clear_mc();
5289 		}
5290 		mmput(mm);
5291 	}
5292 	return ret;
5293 }
5294 
5295 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5296 				struct cgroup *cgroup,
5297 				struct task_struct *p)
5298 {
5299 	mem_cgroup_clear_mc();
5300 }
5301 
5302 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5303 				unsigned long addr, unsigned long end,
5304 				struct mm_walk *walk)
5305 {
5306 	int ret = 0;
5307 	struct vm_area_struct *vma = walk->private;
5308 	pte_t *pte;
5309 	spinlock_t *ptl;
5310 
5311 	split_huge_page_pmd(walk->mm, pmd);
5312 retry:
5313 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5314 	for (; addr != end; addr += PAGE_SIZE) {
5315 		pte_t ptent = *(pte++);
5316 		union mc_target target;
5317 		int type;
5318 		struct page *page;
5319 		struct page_cgroup *pc;
5320 		swp_entry_t ent;
5321 
5322 		if (!mc.precharge)
5323 			break;
5324 
5325 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5326 		switch (type) {
5327 		case MC_TARGET_PAGE:
5328 			page = target.page;
5329 			if (isolate_lru_page(page))
5330 				goto put;
5331 			pc = lookup_page_cgroup(page);
5332 			if (!mem_cgroup_move_account(page, 1, pc,
5333 						     mc.from, mc.to, false)) {
5334 				mc.precharge--;
5335 				/* we uncharge from mc.from later. */
5336 				mc.moved_charge++;
5337 			}
5338 			putback_lru_page(page);
5339 put:			/* is_target_pte_for_mc() gets the page */
5340 			put_page(page);
5341 			break;
5342 		case MC_TARGET_SWAP:
5343 			ent = target.ent;
5344 			if (!mem_cgroup_move_swap_account(ent,
5345 						mc.from, mc.to, false)) {
5346 				mc.precharge--;
5347 				/* we fixup refcnts and charges later. */
5348 				mc.moved_swap++;
5349 			}
5350 			break;
5351 		default:
5352 			break;
5353 		}
5354 	}
5355 	pte_unmap_unlock(pte - 1, ptl);
5356 	cond_resched();
5357 
5358 	if (addr != end) {
5359 		/*
5360 		 * We have consumed all precharges we got in can_attach().
5361 		 * We try charge one by one, but don't do any additional
5362 		 * charges to mc.to if we have failed in charge once in attach()
5363 		 * phase.
5364 		 */
5365 		ret = mem_cgroup_do_precharge(1);
5366 		if (!ret)
5367 			goto retry;
5368 	}
5369 
5370 	return ret;
5371 }
5372 
5373 static void mem_cgroup_move_charge(struct mm_struct *mm)
5374 {
5375 	struct vm_area_struct *vma;
5376 
5377 	lru_add_drain_all();
5378 retry:
5379 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5380 		/*
5381 		 * Someone who are holding the mmap_sem might be waiting in
5382 		 * waitq. So we cancel all extra charges, wake up all waiters,
5383 		 * and retry. Because we cancel precharges, we might not be able
5384 		 * to move enough charges, but moving charge is a best-effort
5385 		 * feature anyway, so it wouldn't be a big problem.
5386 		 */
5387 		__mem_cgroup_clear_mc();
5388 		cond_resched();
5389 		goto retry;
5390 	}
5391 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5392 		int ret;
5393 		struct mm_walk mem_cgroup_move_charge_walk = {
5394 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5395 			.mm = mm,
5396 			.private = vma,
5397 		};
5398 		if (is_vm_hugetlb_page(vma))
5399 			continue;
5400 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5401 						&mem_cgroup_move_charge_walk);
5402 		if (ret)
5403 			/*
5404 			 * means we have consumed all precharges and failed in
5405 			 * doing additional charge. Just abandon here.
5406 			 */
5407 			break;
5408 	}
5409 	up_read(&mm->mmap_sem);
5410 }
5411 
5412 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5413 				struct cgroup *cont,
5414 				struct cgroup *old_cont,
5415 				struct task_struct *p)
5416 {
5417 	struct mm_struct *mm;
5418 
5419 	if (!mc.to)
5420 		/* no need to move charge */
5421 		return;
5422 
5423 	mm = get_task_mm(p);
5424 	if (mm) {
5425 		mem_cgroup_move_charge(mm);
5426 		mmput(mm);
5427 	}
5428 	mem_cgroup_clear_mc();
5429 }
5430 #else	/* !CONFIG_MMU */
5431 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5432 				struct cgroup *cgroup,
5433 				struct task_struct *p)
5434 {
5435 	return 0;
5436 }
5437 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5438 				struct cgroup *cgroup,
5439 				struct task_struct *p)
5440 {
5441 }
5442 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5443 				struct cgroup *cont,
5444 				struct cgroup *old_cont,
5445 				struct task_struct *p)
5446 {
5447 }
5448 #endif
5449 
5450 struct cgroup_subsys mem_cgroup_subsys = {
5451 	.name = "memory",
5452 	.subsys_id = mem_cgroup_subsys_id,
5453 	.create = mem_cgroup_create,
5454 	.pre_destroy = mem_cgroup_pre_destroy,
5455 	.destroy = mem_cgroup_destroy,
5456 	.populate = mem_cgroup_populate,
5457 	.can_attach = mem_cgroup_can_attach,
5458 	.cancel_attach = mem_cgroup_cancel_attach,
5459 	.attach = mem_cgroup_move_task,
5460 	.early_init = 0,
5461 	.use_id = 1,
5462 };
5463 
5464 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5465 static int __init enable_swap_account(char *s)
5466 {
5467 	/* consider enabled if no parameter or 1 is given */
5468 	if (!strcmp(s, "1"))
5469 		really_do_swap_account = 1;
5470 	else if (!strcmp(s, "0"))
5471 		really_do_swap_account = 0;
5472 	return 1;
5473 }
5474 __setup("swapaccount=", enable_swap_account);
5475 
5476 #endif
5477