1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/hugetlb.h> 39 #include <linux/pagemap.h> 40 #include <linux/smp.h> 41 #include <linux/page-flags.h> 42 #include <linux/backing-dev.h> 43 #include <linux/bit_spinlock.h> 44 #include <linux/rcupdate.h> 45 #include <linux/limits.h> 46 #include <linux/export.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/spinlock.h> 53 #include <linux/eventfd.h> 54 #include <linux/poll.h> 55 #include <linux/sort.h> 56 #include <linux/fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/vmpressure.h> 59 #include <linux/mm_inline.h> 60 #include <linux/swap_cgroup.h> 61 #include <linux/cpu.h> 62 #include <linux/oom.h> 63 #include <linux/lockdep.h> 64 #include <linux/file.h> 65 #include <linux/tracehook.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 71 #include <asm/uaccess.h> 72 73 #include <trace/events/vmscan.h> 74 75 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76 EXPORT_SYMBOL(memory_cgrp_subsys); 77 78 struct mem_cgroup *root_mem_cgroup __read_mostly; 79 80 #define MEM_CGROUP_RECLAIM_RETRIES 5 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 int do_swap_account __read_mostly; 91 #else 92 #define do_swap_account 0 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "rss_huge", 105 "mapped_file", 106 "dirty", 107 "writeback", 108 "swap", 109 }; 110 111 static const char * const mem_cgroup_events_names[] = { 112 "pgpgin", 113 "pgpgout", 114 "pgfault", 115 "pgmajfault", 116 }; 117 118 static const char * const mem_cgroup_lru_names[] = { 119 "inactive_anon", 120 "active_anon", 121 "inactive_file", 122 "active_file", 123 "unevictable", 124 }; 125 126 #define THRESHOLDS_EVENTS_TARGET 128 127 #define SOFTLIMIT_EVENTS_TARGET 1024 128 #define NUMAINFO_EVENTS_TARGET 1024 129 130 /* 131 * Cgroups above their limits are maintained in a RB-Tree, independent of 132 * their hierarchy representation 133 */ 134 135 struct mem_cgroup_tree_per_zone { 136 struct rb_root rb_root; 137 spinlock_t lock; 138 }; 139 140 struct mem_cgroup_tree_per_node { 141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 142 }; 143 144 struct mem_cgroup_tree { 145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 146 }; 147 148 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 149 150 /* for OOM */ 151 struct mem_cgroup_eventfd_list { 152 struct list_head list; 153 struct eventfd_ctx *eventfd; 154 }; 155 156 /* 157 * cgroup_event represents events which userspace want to receive. 158 */ 159 struct mem_cgroup_event { 160 /* 161 * memcg which the event belongs to. 162 */ 163 struct mem_cgroup *memcg; 164 /* 165 * eventfd to signal userspace about the event. 166 */ 167 struct eventfd_ctx *eventfd; 168 /* 169 * Each of these stored in a list by the cgroup. 170 */ 171 struct list_head list; 172 /* 173 * register_event() callback will be used to add new userspace 174 * waiter for changes related to this event. Use eventfd_signal() 175 * on eventfd to send notification to userspace. 176 */ 177 int (*register_event)(struct mem_cgroup *memcg, 178 struct eventfd_ctx *eventfd, const char *args); 179 /* 180 * unregister_event() callback will be called when userspace closes 181 * the eventfd or on cgroup removing. This callback must be set, 182 * if you want provide notification functionality. 183 */ 184 void (*unregister_event)(struct mem_cgroup *memcg, 185 struct eventfd_ctx *eventfd); 186 /* 187 * All fields below needed to unregister event when 188 * userspace closes eventfd. 189 */ 190 poll_table pt; 191 wait_queue_head_t *wqh; 192 wait_queue_t wait; 193 struct work_struct remove; 194 }; 195 196 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 198 199 /* Stuffs for move charges at task migration. */ 200 /* 201 * Types of charges to be moved. 202 */ 203 #define MOVE_ANON 0x1U 204 #define MOVE_FILE 0x2U 205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 206 207 /* "mc" and its members are protected by cgroup_mutex */ 208 static struct move_charge_struct { 209 spinlock_t lock; /* for from, to */ 210 struct mem_cgroup *from; 211 struct mem_cgroup *to; 212 unsigned long flags; 213 unsigned long precharge; 214 unsigned long moved_charge; 215 unsigned long moved_swap; 216 struct task_struct *moving_task; /* a task moving charges */ 217 wait_queue_head_t waitq; /* a waitq for other context */ 218 } mc = { 219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 221 }; 222 223 /* 224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 225 * limit reclaim to prevent infinite loops, if they ever occur. 226 */ 227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 229 230 enum charge_type { 231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 232 MEM_CGROUP_CHARGE_TYPE_ANON, 233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 235 NR_CHARGE_TYPE, 236 }; 237 238 /* for encoding cft->private value on file */ 239 enum res_type { 240 _MEM, 241 _MEMSWAP, 242 _OOM_TYPE, 243 _KMEM, 244 _TCP, 245 }; 246 247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 249 #define MEMFILE_ATTR(val) ((val) & 0xffff) 250 /* Used for OOM nofiier */ 251 #define OOM_CONTROL (0) 252 253 /* Some nice accessors for the vmpressure. */ 254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 255 { 256 if (!memcg) 257 memcg = root_mem_cgroup; 258 return &memcg->vmpressure; 259 } 260 261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 262 { 263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 264 } 265 266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 267 { 268 return (memcg == root_mem_cgroup); 269 } 270 271 #ifndef CONFIG_SLOB 272 /* 273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 274 * The main reason for not using cgroup id for this: 275 * this works better in sparse environments, where we have a lot of memcgs, 276 * but only a few kmem-limited. Or also, if we have, for instance, 200 277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 278 * 200 entry array for that. 279 * 280 * The current size of the caches array is stored in memcg_nr_cache_ids. It 281 * will double each time we have to increase it. 282 */ 283 static DEFINE_IDA(memcg_cache_ida); 284 int memcg_nr_cache_ids; 285 286 /* Protects memcg_nr_cache_ids */ 287 static DECLARE_RWSEM(memcg_cache_ids_sem); 288 289 void memcg_get_cache_ids(void) 290 { 291 down_read(&memcg_cache_ids_sem); 292 } 293 294 void memcg_put_cache_ids(void) 295 { 296 up_read(&memcg_cache_ids_sem); 297 } 298 299 /* 300 * MIN_SIZE is different than 1, because we would like to avoid going through 301 * the alloc/free process all the time. In a small machine, 4 kmem-limited 302 * cgroups is a reasonable guess. In the future, it could be a parameter or 303 * tunable, but that is strictly not necessary. 304 * 305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 306 * this constant directly from cgroup, but it is understandable that this is 307 * better kept as an internal representation in cgroup.c. In any case, the 308 * cgrp_id space is not getting any smaller, and we don't have to necessarily 309 * increase ours as well if it increases. 310 */ 311 #define MEMCG_CACHES_MIN_SIZE 4 312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 313 314 /* 315 * A lot of the calls to the cache allocation functions are expected to be 316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 317 * conditional to this static branch, we'll have to allow modules that does 318 * kmem_cache_alloc and the such to see this symbol as well 319 */ 320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 321 EXPORT_SYMBOL(memcg_kmem_enabled_key); 322 323 #endif /* !CONFIG_SLOB */ 324 325 static struct mem_cgroup_per_zone * 326 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) 327 { 328 int nid = zone_to_nid(zone); 329 int zid = zone_idx(zone); 330 331 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 332 } 333 334 /** 335 * mem_cgroup_css_from_page - css of the memcg associated with a page 336 * @page: page of interest 337 * 338 * If memcg is bound to the default hierarchy, css of the memcg associated 339 * with @page is returned. The returned css remains associated with @page 340 * until it is released. 341 * 342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 343 * is returned. 344 */ 345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 346 { 347 struct mem_cgroup *memcg; 348 349 memcg = page->mem_cgroup; 350 351 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 352 memcg = root_mem_cgroup; 353 354 return &memcg->css; 355 } 356 357 /** 358 * page_cgroup_ino - return inode number of the memcg a page is charged to 359 * @page: the page 360 * 361 * Look up the closest online ancestor of the memory cgroup @page is charged to 362 * and return its inode number or 0 if @page is not charged to any cgroup. It 363 * is safe to call this function without holding a reference to @page. 364 * 365 * Note, this function is inherently racy, because there is nothing to prevent 366 * the cgroup inode from getting torn down and potentially reallocated a moment 367 * after page_cgroup_ino() returns, so it only should be used by callers that 368 * do not care (such as procfs interfaces). 369 */ 370 ino_t page_cgroup_ino(struct page *page) 371 { 372 struct mem_cgroup *memcg; 373 unsigned long ino = 0; 374 375 rcu_read_lock(); 376 memcg = READ_ONCE(page->mem_cgroup); 377 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 378 memcg = parent_mem_cgroup(memcg); 379 if (memcg) 380 ino = cgroup_ino(memcg->css.cgroup); 381 rcu_read_unlock(); 382 return ino; 383 } 384 385 static struct mem_cgroup_per_zone * 386 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) 387 { 388 int nid = page_to_nid(page); 389 int zid = page_zonenum(page); 390 391 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 392 } 393 394 static struct mem_cgroup_tree_per_zone * 395 soft_limit_tree_node_zone(int nid, int zid) 396 { 397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 398 } 399 400 static struct mem_cgroup_tree_per_zone * 401 soft_limit_tree_from_page(struct page *page) 402 { 403 int nid = page_to_nid(page); 404 int zid = page_zonenum(page); 405 406 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 407 } 408 409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, 410 struct mem_cgroup_tree_per_zone *mctz, 411 unsigned long new_usage_in_excess) 412 { 413 struct rb_node **p = &mctz->rb_root.rb_node; 414 struct rb_node *parent = NULL; 415 struct mem_cgroup_per_zone *mz_node; 416 417 if (mz->on_tree) 418 return; 419 420 mz->usage_in_excess = new_usage_in_excess; 421 if (!mz->usage_in_excess) 422 return; 423 while (*p) { 424 parent = *p; 425 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 426 tree_node); 427 if (mz->usage_in_excess < mz_node->usage_in_excess) 428 p = &(*p)->rb_left; 429 /* 430 * We can't avoid mem cgroups that are over their soft 431 * limit by the same amount 432 */ 433 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 434 p = &(*p)->rb_right; 435 } 436 rb_link_node(&mz->tree_node, parent, p); 437 rb_insert_color(&mz->tree_node, &mctz->rb_root); 438 mz->on_tree = true; 439 } 440 441 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 442 struct mem_cgroup_tree_per_zone *mctz) 443 { 444 if (!mz->on_tree) 445 return; 446 rb_erase(&mz->tree_node, &mctz->rb_root); 447 mz->on_tree = false; 448 } 449 450 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 451 struct mem_cgroup_tree_per_zone *mctz) 452 { 453 unsigned long flags; 454 455 spin_lock_irqsave(&mctz->lock, flags); 456 __mem_cgroup_remove_exceeded(mz, mctz); 457 spin_unlock_irqrestore(&mctz->lock, flags); 458 } 459 460 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 461 { 462 unsigned long nr_pages = page_counter_read(&memcg->memory); 463 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 464 unsigned long excess = 0; 465 466 if (nr_pages > soft_limit) 467 excess = nr_pages - soft_limit; 468 469 return excess; 470 } 471 472 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 473 { 474 unsigned long excess; 475 struct mem_cgroup_per_zone *mz; 476 struct mem_cgroup_tree_per_zone *mctz; 477 478 mctz = soft_limit_tree_from_page(page); 479 /* 480 * Necessary to update all ancestors when hierarchy is used. 481 * because their event counter is not touched. 482 */ 483 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 484 mz = mem_cgroup_page_zoneinfo(memcg, page); 485 excess = soft_limit_excess(memcg); 486 /* 487 * We have to update the tree if mz is on RB-tree or 488 * mem is over its softlimit. 489 */ 490 if (excess || mz->on_tree) { 491 unsigned long flags; 492 493 spin_lock_irqsave(&mctz->lock, flags); 494 /* if on-tree, remove it */ 495 if (mz->on_tree) 496 __mem_cgroup_remove_exceeded(mz, mctz); 497 /* 498 * Insert again. mz->usage_in_excess will be updated. 499 * If excess is 0, no tree ops. 500 */ 501 __mem_cgroup_insert_exceeded(mz, mctz, excess); 502 spin_unlock_irqrestore(&mctz->lock, flags); 503 } 504 } 505 } 506 507 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 508 { 509 struct mem_cgroup_tree_per_zone *mctz; 510 struct mem_cgroup_per_zone *mz; 511 int nid, zid; 512 513 for_each_node(nid) { 514 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 515 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 516 mctz = soft_limit_tree_node_zone(nid, zid); 517 mem_cgroup_remove_exceeded(mz, mctz); 518 } 519 } 520 } 521 522 static struct mem_cgroup_per_zone * 523 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 524 { 525 struct rb_node *rightmost = NULL; 526 struct mem_cgroup_per_zone *mz; 527 528 retry: 529 mz = NULL; 530 rightmost = rb_last(&mctz->rb_root); 531 if (!rightmost) 532 goto done; /* Nothing to reclaim from */ 533 534 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 535 /* 536 * Remove the node now but someone else can add it back, 537 * we will to add it back at the end of reclaim to its correct 538 * position in the tree. 539 */ 540 __mem_cgroup_remove_exceeded(mz, mctz); 541 if (!soft_limit_excess(mz->memcg) || 542 !css_tryget_online(&mz->memcg->css)) 543 goto retry; 544 done: 545 return mz; 546 } 547 548 static struct mem_cgroup_per_zone * 549 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 550 { 551 struct mem_cgroup_per_zone *mz; 552 553 spin_lock_irq(&mctz->lock); 554 mz = __mem_cgroup_largest_soft_limit_node(mctz); 555 spin_unlock_irq(&mctz->lock); 556 return mz; 557 } 558 559 /* 560 * Return page count for single (non recursive) @memcg. 561 * 562 * Implementation Note: reading percpu statistics for memcg. 563 * 564 * Both of vmstat[] and percpu_counter has threshold and do periodic 565 * synchronization to implement "quick" read. There are trade-off between 566 * reading cost and precision of value. Then, we may have a chance to implement 567 * a periodic synchronization of counter in memcg's counter. 568 * 569 * But this _read() function is used for user interface now. The user accounts 570 * memory usage by memory cgroup and he _always_ requires exact value because 571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 572 * have to visit all online cpus and make sum. So, for now, unnecessary 573 * synchronization is not implemented. (just implemented for cpu hotplug) 574 * 575 * If there are kernel internal actions which can make use of some not-exact 576 * value, and reading all cpu value can be performance bottleneck in some 577 * common workload, threshold and synchronization as vmstat[] should be 578 * implemented. 579 */ 580 static unsigned long 581 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) 582 { 583 long val = 0; 584 int cpu; 585 586 /* Per-cpu values can be negative, use a signed accumulator */ 587 for_each_possible_cpu(cpu) 588 val += per_cpu(memcg->stat->count[idx], cpu); 589 /* 590 * Summing races with updates, so val may be negative. Avoid exposing 591 * transient negative values. 592 */ 593 if (val < 0) 594 val = 0; 595 return val; 596 } 597 598 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 599 enum mem_cgroup_events_index idx) 600 { 601 unsigned long val = 0; 602 int cpu; 603 604 for_each_possible_cpu(cpu) 605 val += per_cpu(memcg->stat->events[idx], cpu); 606 return val; 607 } 608 609 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 610 struct page *page, 611 bool compound, int nr_pages) 612 { 613 /* 614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 615 * counted as CACHE even if it's on ANON LRU. 616 */ 617 if (PageAnon(page)) 618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 619 nr_pages); 620 else 621 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 622 nr_pages); 623 624 if (compound) { 625 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 626 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 627 nr_pages); 628 } 629 630 /* pagein of a big page is an event. So, ignore page size */ 631 if (nr_pages > 0) 632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 633 else { 634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 635 nr_pages = -nr_pages; /* for event */ 636 } 637 638 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 639 } 640 641 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 642 int nid, unsigned int lru_mask) 643 { 644 unsigned long nr = 0; 645 int zid; 646 647 VM_BUG_ON((unsigned)nid >= nr_node_ids); 648 649 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 650 struct mem_cgroup_per_zone *mz; 651 enum lru_list lru; 652 653 for_each_lru(lru) { 654 if (!(BIT(lru) & lru_mask)) 655 continue; 656 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 657 nr += mz->lru_size[lru]; 658 } 659 } 660 return nr; 661 } 662 663 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 664 unsigned int lru_mask) 665 { 666 unsigned long nr = 0; 667 int nid; 668 669 for_each_node_state(nid, N_MEMORY) 670 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 671 return nr; 672 } 673 674 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 675 enum mem_cgroup_events_target target) 676 { 677 unsigned long val, next; 678 679 val = __this_cpu_read(memcg->stat->nr_page_events); 680 next = __this_cpu_read(memcg->stat->targets[target]); 681 /* from time_after() in jiffies.h */ 682 if ((long)next - (long)val < 0) { 683 switch (target) { 684 case MEM_CGROUP_TARGET_THRESH: 685 next = val + THRESHOLDS_EVENTS_TARGET; 686 break; 687 case MEM_CGROUP_TARGET_SOFTLIMIT: 688 next = val + SOFTLIMIT_EVENTS_TARGET; 689 break; 690 case MEM_CGROUP_TARGET_NUMAINFO: 691 next = val + NUMAINFO_EVENTS_TARGET; 692 break; 693 default: 694 break; 695 } 696 __this_cpu_write(memcg->stat->targets[target], next); 697 return true; 698 } 699 return false; 700 } 701 702 /* 703 * Check events in order. 704 * 705 */ 706 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 707 { 708 /* threshold event is triggered in finer grain than soft limit */ 709 if (unlikely(mem_cgroup_event_ratelimit(memcg, 710 MEM_CGROUP_TARGET_THRESH))) { 711 bool do_softlimit; 712 bool do_numainfo __maybe_unused; 713 714 do_softlimit = mem_cgroup_event_ratelimit(memcg, 715 MEM_CGROUP_TARGET_SOFTLIMIT); 716 #if MAX_NUMNODES > 1 717 do_numainfo = mem_cgroup_event_ratelimit(memcg, 718 MEM_CGROUP_TARGET_NUMAINFO); 719 #endif 720 mem_cgroup_threshold(memcg); 721 if (unlikely(do_softlimit)) 722 mem_cgroup_update_tree(memcg, page); 723 #if MAX_NUMNODES > 1 724 if (unlikely(do_numainfo)) 725 atomic_inc(&memcg->numainfo_events); 726 #endif 727 } 728 } 729 730 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 731 { 732 /* 733 * mm_update_next_owner() may clear mm->owner to NULL 734 * if it races with swapoff, page migration, etc. 735 * So this can be called with p == NULL. 736 */ 737 if (unlikely(!p)) 738 return NULL; 739 740 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 741 } 742 EXPORT_SYMBOL(mem_cgroup_from_task); 743 744 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 745 { 746 struct mem_cgroup *memcg = NULL; 747 748 rcu_read_lock(); 749 do { 750 /* 751 * Page cache insertions can happen withou an 752 * actual mm context, e.g. during disk probing 753 * on boot, loopback IO, acct() writes etc. 754 */ 755 if (unlikely(!mm)) 756 memcg = root_mem_cgroup; 757 else { 758 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 759 if (unlikely(!memcg)) 760 memcg = root_mem_cgroup; 761 } 762 } while (!css_tryget_online(&memcg->css)); 763 rcu_read_unlock(); 764 return memcg; 765 } 766 767 /** 768 * mem_cgroup_iter - iterate over memory cgroup hierarchy 769 * @root: hierarchy root 770 * @prev: previously returned memcg, NULL on first invocation 771 * @reclaim: cookie for shared reclaim walks, NULL for full walks 772 * 773 * Returns references to children of the hierarchy below @root, or 774 * @root itself, or %NULL after a full round-trip. 775 * 776 * Caller must pass the return value in @prev on subsequent 777 * invocations for reference counting, or use mem_cgroup_iter_break() 778 * to cancel a hierarchy walk before the round-trip is complete. 779 * 780 * Reclaimers can specify a zone and a priority level in @reclaim to 781 * divide up the memcgs in the hierarchy among all concurrent 782 * reclaimers operating on the same zone and priority. 783 */ 784 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 785 struct mem_cgroup *prev, 786 struct mem_cgroup_reclaim_cookie *reclaim) 787 { 788 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 789 struct cgroup_subsys_state *css = NULL; 790 struct mem_cgroup *memcg = NULL; 791 struct mem_cgroup *pos = NULL; 792 793 if (mem_cgroup_disabled()) 794 return NULL; 795 796 if (!root) 797 root = root_mem_cgroup; 798 799 if (prev && !reclaim) 800 pos = prev; 801 802 if (!root->use_hierarchy && root != root_mem_cgroup) { 803 if (prev) 804 goto out; 805 return root; 806 } 807 808 rcu_read_lock(); 809 810 if (reclaim) { 811 struct mem_cgroup_per_zone *mz; 812 813 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); 814 iter = &mz->iter[reclaim->priority]; 815 816 if (prev && reclaim->generation != iter->generation) 817 goto out_unlock; 818 819 while (1) { 820 pos = READ_ONCE(iter->position); 821 if (!pos || css_tryget(&pos->css)) 822 break; 823 /* 824 * css reference reached zero, so iter->position will 825 * be cleared by ->css_released. However, we should not 826 * rely on this happening soon, because ->css_released 827 * is called from a work queue, and by busy-waiting we 828 * might block it. So we clear iter->position right 829 * away. 830 */ 831 (void)cmpxchg(&iter->position, pos, NULL); 832 } 833 } 834 835 if (pos) 836 css = &pos->css; 837 838 for (;;) { 839 css = css_next_descendant_pre(css, &root->css); 840 if (!css) { 841 /* 842 * Reclaimers share the hierarchy walk, and a 843 * new one might jump in right at the end of 844 * the hierarchy - make sure they see at least 845 * one group and restart from the beginning. 846 */ 847 if (!prev) 848 continue; 849 break; 850 } 851 852 /* 853 * Verify the css and acquire a reference. The root 854 * is provided by the caller, so we know it's alive 855 * and kicking, and don't take an extra reference. 856 */ 857 memcg = mem_cgroup_from_css(css); 858 859 if (css == &root->css) 860 break; 861 862 if (css_tryget(css)) 863 break; 864 865 memcg = NULL; 866 } 867 868 if (reclaim) { 869 /* 870 * The position could have already been updated by a competing 871 * thread, so check that the value hasn't changed since we read 872 * it to avoid reclaiming from the same cgroup twice. 873 */ 874 (void)cmpxchg(&iter->position, pos, memcg); 875 876 if (pos) 877 css_put(&pos->css); 878 879 if (!memcg) 880 iter->generation++; 881 else if (!prev) 882 reclaim->generation = iter->generation; 883 } 884 885 out_unlock: 886 rcu_read_unlock(); 887 out: 888 if (prev && prev != root) 889 css_put(&prev->css); 890 891 return memcg; 892 } 893 894 /** 895 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 896 * @root: hierarchy root 897 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 898 */ 899 void mem_cgroup_iter_break(struct mem_cgroup *root, 900 struct mem_cgroup *prev) 901 { 902 if (!root) 903 root = root_mem_cgroup; 904 if (prev && prev != root) 905 css_put(&prev->css); 906 } 907 908 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 909 { 910 struct mem_cgroup *memcg = dead_memcg; 911 struct mem_cgroup_reclaim_iter *iter; 912 struct mem_cgroup_per_zone *mz; 913 int nid, zid; 914 int i; 915 916 while ((memcg = parent_mem_cgroup(memcg))) { 917 for_each_node(nid) { 918 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 919 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 920 for (i = 0; i <= DEF_PRIORITY; i++) { 921 iter = &mz->iter[i]; 922 cmpxchg(&iter->position, 923 dead_memcg, NULL); 924 } 925 } 926 } 927 } 928 } 929 930 /* 931 * Iteration constructs for visiting all cgroups (under a tree). If 932 * loops are exited prematurely (break), mem_cgroup_iter_break() must 933 * be used for reference counting. 934 */ 935 #define for_each_mem_cgroup_tree(iter, root) \ 936 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 937 iter != NULL; \ 938 iter = mem_cgroup_iter(root, iter, NULL)) 939 940 #define for_each_mem_cgroup(iter) \ 941 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 942 iter != NULL; \ 943 iter = mem_cgroup_iter(NULL, iter, NULL)) 944 945 /** 946 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 947 * @zone: zone of the wanted lruvec 948 * @memcg: memcg of the wanted lruvec 949 * 950 * Returns the lru list vector holding pages for the given @zone and 951 * @mem. This can be the global zone lruvec, if the memory controller 952 * is disabled. 953 */ 954 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 955 struct mem_cgroup *memcg) 956 { 957 struct mem_cgroup_per_zone *mz; 958 struct lruvec *lruvec; 959 960 if (mem_cgroup_disabled()) { 961 lruvec = &zone->lruvec; 962 goto out; 963 } 964 965 mz = mem_cgroup_zone_zoneinfo(memcg, zone); 966 lruvec = &mz->lruvec; 967 out: 968 /* 969 * Since a node can be onlined after the mem_cgroup was created, 970 * we have to be prepared to initialize lruvec->zone here; 971 * and if offlined then reonlined, we need to reinitialize it. 972 */ 973 if (unlikely(lruvec->zone != zone)) 974 lruvec->zone = zone; 975 return lruvec; 976 } 977 978 /** 979 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 980 * @page: the page 981 * @zone: zone of the page 982 * 983 * This function is only safe when following the LRU page isolation 984 * and putback protocol: the LRU lock must be held, and the page must 985 * either be PageLRU() or the caller must have isolated/allocated it. 986 */ 987 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 988 { 989 struct mem_cgroup_per_zone *mz; 990 struct mem_cgroup *memcg; 991 struct lruvec *lruvec; 992 993 if (mem_cgroup_disabled()) { 994 lruvec = &zone->lruvec; 995 goto out; 996 } 997 998 memcg = page->mem_cgroup; 999 /* 1000 * Swapcache readahead pages are added to the LRU - and 1001 * possibly migrated - before they are charged. 1002 */ 1003 if (!memcg) 1004 memcg = root_mem_cgroup; 1005 1006 mz = mem_cgroup_page_zoneinfo(memcg, page); 1007 lruvec = &mz->lruvec; 1008 out: 1009 /* 1010 * Since a node can be onlined after the mem_cgroup was created, 1011 * we have to be prepared to initialize lruvec->zone here; 1012 * and if offlined then reonlined, we need to reinitialize it. 1013 */ 1014 if (unlikely(lruvec->zone != zone)) 1015 lruvec->zone = zone; 1016 return lruvec; 1017 } 1018 1019 /** 1020 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1021 * @lruvec: mem_cgroup per zone lru vector 1022 * @lru: index of lru list the page is sitting on 1023 * @nr_pages: positive when adding or negative when removing 1024 * 1025 * This function must be called when a page is added to or removed from an 1026 * lru list. 1027 */ 1028 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1029 int nr_pages) 1030 { 1031 struct mem_cgroup_per_zone *mz; 1032 unsigned long *lru_size; 1033 1034 if (mem_cgroup_disabled()) 1035 return; 1036 1037 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1038 lru_size = mz->lru_size + lru; 1039 *lru_size += nr_pages; 1040 VM_BUG_ON((long)(*lru_size) < 0); 1041 } 1042 1043 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1044 { 1045 struct mem_cgroup *task_memcg; 1046 struct task_struct *p; 1047 bool ret; 1048 1049 p = find_lock_task_mm(task); 1050 if (p) { 1051 task_memcg = get_mem_cgroup_from_mm(p->mm); 1052 task_unlock(p); 1053 } else { 1054 /* 1055 * All threads may have already detached their mm's, but the oom 1056 * killer still needs to detect if they have already been oom 1057 * killed to prevent needlessly killing additional tasks. 1058 */ 1059 rcu_read_lock(); 1060 task_memcg = mem_cgroup_from_task(task); 1061 css_get(&task_memcg->css); 1062 rcu_read_unlock(); 1063 } 1064 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1065 css_put(&task_memcg->css); 1066 return ret; 1067 } 1068 1069 /** 1070 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1071 * @memcg: the memory cgroup 1072 * 1073 * Returns the maximum amount of memory @mem can be charged with, in 1074 * pages. 1075 */ 1076 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1077 { 1078 unsigned long margin = 0; 1079 unsigned long count; 1080 unsigned long limit; 1081 1082 count = page_counter_read(&memcg->memory); 1083 limit = READ_ONCE(memcg->memory.limit); 1084 if (count < limit) 1085 margin = limit - count; 1086 1087 if (do_memsw_account()) { 1088 count = page_counter_read(&memcg->memsw); 1089 limit = READ_ONCE(memcg->memsw.limit); 1090 if (count <= limit) 1091 margin = min(margin, limit - count); 1092 } 1093 1094 return margin; 1095 } 1096 1097 /* 1098 * A routine for checking "mem" is under move_account() or not. 1099 * 1100 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1101 * moving cgroups. This is for waiting at high-memory pressure 1102 * caused by "move". 1103 */ 1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1105 { 1106 struct mem_cgroup *from; 1107 struct mem_cgroup *to; 1108 bool ret = false; 1109 /* 1110 * Unlike task_move routines, we access mc.to, mc.from not under 1111 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1112 */ 1113 spin_lock(&mc.lock); 1114 from = mc.from; 1115 to = mc.to; 1116 if (!from) 1117 goto unlock; 1118 1119 ret = mem_cgroup_is_descendant(from, memcg) || 1120 mem_cgroup_is_descendant(to, memcg); 1121 unlock: 1122 spin_unlock(&mc.lock); 1123 return ret; 1124 } 1125 1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1127 { 1128 if (mc.moving_task && current != mc.moving_task) { 1129 if (mem_cgroup_under_move(memcg)) { 1130 DEFINE_WAIT(wait); 1131 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1132 /* moving charge context might have finished. */ 1133 if (mc.moving_task) 1134 schedule(); 1135 finish_wait(&mc.waitq, &wait); 1136 return true; 1137 } 1138 } 1139 return false; 1140 } 1141 1142 #define K(x) ((x) << (PAGE_SHIFT-10)) 1143 /** 1144 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1145 * @memcg: The memory cgroup that went over limit 1146 * @p: Task that is going to be killed 1147 * 1148 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1149 * enabled 1150 */ 1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1152 { 1153 struct mem_cgroup *iter; 1154 unsigned int i; 1155 1156 rcu_read_lock(); 1157 1158 if (p) { 1159 pr_info("Task in "); 1160 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1161 pr_cont(" killed as a result of limit of "); 1162 } else { 1163 pr_info("Memory limit reached of cgroup "); 1164 } 1165 1166 pr_cont_cgroup_path(memcg->css.cgroup); 1167 pr_cont("\n"); 1168 1169 rcu_read_unlock(); 1170 1171 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1172 K((u64)page_counter_read(&memcg->memory)), 1173 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1174 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1175 K((u64)page_counter_read(&memcg->memsw)), 1176 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1177 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1178 K((u64)page_counter_read(&memcg->kmem)), 1179 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1180 1181 for_each_mem_cgroup_tree(iter, memcg) { 1182 pr_info("Memory cgroup stats for "); 1183 pr_cont_cgroup_path(iter->css.cgroup); 1184 pr_cont(":"); 1185 1186 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1187 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1188 continue; 1189 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], 1190 K(mem_cgroup_read_stat(iter, i))); 1191 } 1192 1193 for (i = 0; i < NR_LRU_LISTS; i++) 1194 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1195 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1196 1197 pr_cont("\n"); 1198 } 1199 } 1200 1201 /* 1202 * This function returns the number of memcg under hierarchy tree. Returns 1203 * 1(self count) if no children. 1204 */ 1205 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1206 { 1207 int num = 0; 1208 struct mem_cgroup *iter; 1209 1210 for_each_mem_cgroup_tree(iter, memcg) 1211 num++; 1212 return num; 1213 } 1214 1215 /* 1216 * Return the memory (and swap, if configured) limit for a memcg. 1217 */ 1218 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1219 { 1220 unsigned long limit; 1221 1222 limit = memcg->memory.limit; 1223 if (mem_cgroup_swappiness(memcg)) { 1224 unsigned long memsw_limit; 1225 unsigned long swap_limit; 1226 1227 memsw_limit = memcg->memsw.limit; 1228 swap_limit = memcg->swap.limit; 1229 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1230 limit = min(limit + swap_limit, memsw_limit); 1231 } 1232 return limit; 1233 } 1234 1235 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1236 int order) 1237 { 1238 struct oom_control oc = { 1239 .zonelist = NULL, 1240 .nodemask = NULL, 1241 .gfp_mask = gfp_mask, 1242 .order = order, 1243 }; 1244 struct mem_cgroup *iter; 1245 unsigned long chosen_points = 0; 1246 unsigned long totalpages; 1247 unsigned int points = 0; 1248 struct task_struct *chosen = NULL; 1249 1250 mutex_lock(&oom_lock); 1251 1252 /* 1253 * If current has a pending SIGKILL or is exiting, then automatically 1254 * select it. The goal is to allow it to allocate so that it may 1255 * quickly exit and free its memory. 1256 */ 1257 if (fatal_signal_pending(current) || task_will_free_mem(current)) { 1258 mark_oom_victim(current); 1259 goto unlock; 1260 } 1261 1262 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg); 1263 totalpages = mem_cgroup_get_limit(memcg) ? : 1; 1264 for_each_mem_cgroup_tree(iter, memcg) { 1265 struct css_task_iter it; 1266 struct task_struct *task; 1267 1268 css_task_iter_start(&iter->css, &it); 1269 while ((task = css_task_iter_next(&it))) { 1270 switch (oom_scan_process_thread(&oc, task, totalpages)) { 1271 case OOM_SCAN_SELECT: 1272 if (chosen) 1273 put_task_struct(chosen); 1274 chosen = task; 1275 chosen_points = ULONG_MAX; 1276 get_task_struct(chosen); 1277 /* fall through */ 1278 case OOM_SCAN_CONTINUE: 1279 continue; 1280 case OOM_SCAN_ABORT: 1281 css_task_iter_end(&it); 1282 mem_cgroup_iter_break(memcg, iter); 1283 if (chosen) 1284 put_task_struct(chosen); 1285 goto unlock; 1286 case OOM_SCAN_OK: 1287 break; 1288 }; 1289 points = oom_badness(task, memcg, NULL, totalpages); 1290 if (!points || points < chosen_points) 1291 continue; 1292 /* Prefer thread group leaders for display purposes */ 1293 if (points == chosen_points && 1294 thread_group_leader(chosen)) 1295 continue; 1296 1297 if (chosen) 1298 put_task_struct(chosen); 1299 chosen = task; 1300 chosen_points = points; 1301 get_task_struct(chosen); 1302 } 1303 css_task_iter_end(&it); 1304 } 1305 1306 if (chosen) { 1307 points = chosen_points * 1000 / totalpages; 1308 oom_kill_process(&oc, chosen, points, totalpages, memcg, 1309 "Memory cgroup out of memory"); 1310 } 1311 unlock: 1312 mutex_unlock(&oom_lock); 1313 return chosen; 1314 } 1315 1316 #if MAX_NUMNODES > 1 1317 1318 /** 1319 * test_mem_cgroup_node_reclaimable 1320 * @memcg: the target memcg 1321 * @nid: the node ID to be checked. 1322 * @noswap : specify true here if the user wants flle only information. 1323 * 1324 * This function returns whether the specified memcg contains any 1325 * reclaimable pages on a node. Returns true if there are any reclaimable 1326 * pages in the node. 1327 */ 1328 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1329 int nid, bool noswap) 1330 { 1331 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1332 return true; 1333 if (noswap || !total_swap_pages) 1334 return false; 1335 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1336 return true; 1337 return false; 1338 1339 } 1340 1341 /* 1342 * Always updating the nodemask is not very good - even if we have an empty 1343 * list or the wrong list here, we can start from some node and traverse all 1344 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1345 * 1346 */ 1347 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1348 { 1349 int nid; 1350 /* 1351 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1352 * pagein/pageout changes since the last update. 1353 */ 1354 if (!atomic_read(&memcg->numainfo_events)) 1355 return; 1356 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1357 return; 1358 1359 /* make a nodemask where this memcg uses memory from */ 1360 memcg->scan_nodes = node_states[N_MEMORY]; 1361 1362 for_each_node_mask(nid, node_states[N_MEMORY]) { 1363 1364 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1365 node_clear(nid, memcg->scan_nodes); 1366 } 1367 1368 atomic_set(&memcg->numainfo_events, 0); 1369 atomic_set(&memcg->numainfo_updating, 0); 1370 } 1371 1372 /* 1373 * Selecting a node where we start reclaim from. Because what we need is just 1374 * reducing usage counter, start from anywhere is O,K. Considering 1375 * memory reclaim from current node, there are pros. and cons. 1376 * 1377 * Freeing memory from current node means freeing memory from a node which 1378 * we'll use or we've used. So, it may make LRU bad. And if several threads 1379 * hit limits, it will see a contention on a node. But freeing from remote 1380 * node means more costs for memory reclaim because of memory latency. 1381 * 1382 * Now, we use round-robin. Better algorithm is welcomed. 1383 */ 1384 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1385 { 1386 int node; 1387 1388 mem_cgroup_may_update_nodemask(memcg); 1389 node = memcg->last_scanned_node; 1390 1391 node = next_node(node, memcg->scan_nodes); 1392 if (node == MAX_NUMNODES) 1393 node = first_node(memcg->scan_nodes); 1394 /* 1395 * We call this when we hit limit, not when pages are added to LRU. 1396 * No LRU may hold pages because all pages are UNEVICTABLE or 1397 * memcg is too small and all pages are not on LRU. In that case, 1398 * we use curret node. 1399 */ 1400 if (unlikely(node == MAX_NUMNODES)) 1401 node = numa_node_id(); 1402 1403 memcg->last_scanned_node = node; 1404 return node; 1405 } 1406 #else 1407 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1408 { 1409 return 0; 1410 } 1411 #endif 1412 1413 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1414 struct zone *zone, 1415 gfp_t gfp_mask, 1416 unsigned long *total_scanned) 1417 { 1418 struct mem_cgroup *victim = NULL; 1419 int total = 0; 1420 int loop = 0; 1421 unsigned long excess; 1422 unsigned long nr_scanned; 1423 struct mem_cgroup_reclaim_cookie reclaim = { 1424 .zone = zone, 1425 .priority = 0, 1426 }; 1427 1428 excess = soft_limit_excess(root_memcg); 1429 1430 while (1) { 1431 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1432 if (!victim) { 1433 loop++; 1434 if (loop >= 2) { 1435 /* 1436 * If we have not been able to reclaim 1437 * anything, it might because there are 1438 * no reclaimable pages under this hierarchy 1439 */ 1440 if (!total) 1441 break; 1442 /* 1443 * We want to do more targeted reclaim. 1444 * excess >> 2 is not to excessive so as to 1445 * reclaim too much, nor too less that we keep 1446 * coming back to reclaim from this cgroup 1447 */ 1448 if (total >= (excess >> 2) || 1449 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1450 break; 1451 } 1452 continue; 1453 } 1454 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1455 zone, &nr_scanned); 1456 *total_scanned += nr_scanned; 1457 if (!soft_limit_excess(root_memcg)) 1458 break; 1459 } 1460 mem_cgroup_iter_break(root_memcg, victim); 1461 return total; 1462 } 1463 1464 #ifdef CONFIG_LOCKDEP 1465 static struct lockdep_map memcg_oom_lock_dep_map = { 1466 .name = "memcg_oom_lock", 1467 }; 1468 #endif 1469 1470 static DEFINE_SPINLOCK(memcg_oom_lock); 1471 1472 /* 1473 * Check OOM-Killer is already running under our hierarchy. 1474 * If someone is running, return false. 1475 */ 1476 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1477 { 1478 struct mem_cgroup *iter, *failed = NULL; 1479 1480 spin_lock(&memcg_oom_lock); 1481 1482 for_each_mem_cgroup_tree(iter, memcg) { 1483 if (iter->oom_lock) { 1484 /* 1485 * this subtree of our hierarchy is already locked 1486 * so we cannot give a lock. 1487 */ 1488 failed = iter; 1489 mem_cgroup_iter_break(memcg, iter); 1490 break; 1491 } else 1492 iter->oom_lock = true; 1493 } 1494 1495 if (failed) { 1496 /* 1497 * OK, we failed to lock the whole subtree so we have 1498 * to clean up what we set up to the failing subtree 1499 */ 1500 for_each_mem_cgroup_tree(iter, memcg) { 1501 if (iter == failed) { 1502 mem_cgroup_iter_break(memcg, iter); 1503 break; 1504 } 1505 iter->oom_lock = false; 1506 } 1507 } else 1508 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1509 1510 spin_unlock(&memcg_oom_lock); 1511 1512 return !failed; 1513 } 1514 1515 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1516 { 1517 struct mem_cgroup *iter; 1518 1519 spin_lock(&memcg_oom_lock); 1520 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1521 for_each_mem_cgroup_tree(iter, memcg) 1522 iter->oom_lock = false; 1523 spin_unlock(&memcg_oom_lock); 1524 } 1525 1526 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1527 { 1528 struct mem_cgroup *iter; 1529 1530 spin_lock(&memcg_oom_lock); 1531 for_each_mem_cgroup_tree(iter, memcg) 1532 iter->under_oom++; 1533 spin_unlock(&memcg_oom_lock); 1534 } 1535 1536 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1537 { 1538 struct mem_cgroup *iter; 1539 1540 /* 1541 * When a new child is created while the hierarchy is under oom, 1542 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1543 */ 1544 spin_lock(&memcg_oom_lock); 1545 for_each_mem_cgroup_tree(iter, memcg) 1546 if (iter->under_oom > 0) 1547 iter->under_oom--; 1548 spin_unlock(&memcg_oom_lock); 1549 } 1550 1551 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1552 1553 struct oom_wait_info { 1554 struct mem_cgroup *memcg; 1555 wait_queue_t wait; 1556 }; 1557 1558 static int memcg_oom_wake_function(wait_queue_t *wait, 1559 unsigned mode, int sync, void *arg) 1560 { 1561 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1562 struct mem_cgroup *oom_wait_memcg; 1563 struct oom_wait_info *oom_wait_info; 1564 1565 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1566 oom_wait_memcg = oom_wait_info->memcg; 1567 1568 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1569 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1570 return 0; 1571 return autoremove_wake_function(wait, mode, sync, arg); 1572 } 1573 1574 static void memcg_oom_recover(struct mem_cgroup *memcg) 1575 { 1576 /* 1577 * For the following lockless ->under_oom test, the only required 1578 * guarantee is that it must see the state asserted by an OOM when 1579 * this function is called as a result of userland actions 1580 * triggered by the notification of the OOM. This is trivially 1581 * achieved by invoking mem_cgroup_mark_under_oom() before 1582 * triggering notification. 1583 */ 1584 if (memcg && memcg->under_oom) 1585 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1586 } 1587 1588 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1589 { 1590 if (!current->memcg_may_oom) 1591 return; 1592 /* 1593 * We are in the middle of the charge context here, so we 1594 * don't want to block when potentially sitting on a callstack 1595 * that holds all kinds of filesystem and mm locks. 1596 * 1597 * Also, the caller may handle a failed allocation gracefully 1598 * (like optional page cache readahead) and so an OOM killer 1599 * invocation might not even be necessary. 1600 * 1601 * That's why we don't do anything here except remember the 1602 * OOM context and then deal with it at the end of the page 1603 * fault when the stack is unwound, the locks are released, 1604 * and when we know whether the fault was overall successful. 1605 */ 1606 css_get(&memcg->css); 1607 current->memcg_in_oom = memcg; 1608 current->memcg_oom_gfp_mask = mask; 1609 current->memcg_oom_order = order; 1610 } 1611 1612 /** 1613 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1614 * @handle: actually kill/wait or just clean up the OOM state 1615 * 1616 * This has to be called at the end of a page fault if the memcg OOM 1617 * handler was enabled. 1618 * 1619 * Memcg supports userspace OOM handling where failed allocations must 1620 * sleep on a waitqueue until the userspace task resolves the 1621 * situation. Sleeping directly in the charge context with all kinds 1622 * of locks held is not a good idea, instead we remember an OOM state 1623 * in the task and mem_cgroup_oom_synchronize() has to be called at 1624 * the end of the page fault to complete the OOM handling. 1625 * 1626 * Returns %true if an ongoing memcg OOM situation was detected and 1627 * completed, %false otherwise. 1628 */ 1629 bool mem_cgroup_oom_synchronize(bool handle) 1630 { 1631 struct mem_cgroup *memcg = current->memcg_in_oom; 1632 struct oom_wait_info owait; 1633 bool locked; 1634 1635 /* OOM is global, do not handle */ 1636 if (!memcg) 1637 return false; 1638 1639 if (!handle || oom_killer_disabled) 1640 goto cleanup; 1641 1642 owait.memcg = memcg; 1643 owait.wait.flags = 0; 1644 owait.wait.func = memcg_oom_wake_function; 1645 owait.wait.private = current; 1646 INIT_LIST_HEAD(&owait.wait.task_list); 1647 1648 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1649 mem_cgroup_mark_under_oom(memcg); 1650 1651 locked = mem_cgroup_oom_trylock(memcg); 1652 1653 if (locked) 1654 mem_cgroup_oom_notify(memcg); 1655 1656 if (locked && !memcg->oom_kill_disable) { 1657 mem_cgroup_unmark_under_oom(memcg); 1658 finish_wait(&memcg_oom_waitq, &owait.wait); 1659 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1660 current->memcg_oom_order); 1661 } else { 1662 schedule(); 1663 mem_cgroup_unmark_under_oom(memcg); 1664 finish_wait(&memcg_oom_waitq, &owait.wait); 1665 } 1666 1667 if (locked) { 1668 mem_cgroup_oom_unlock(memcg); 1669 /* 1670 * There is no guarantee that an OOM-lock contender 1671 * sees the wakeups triggered by the OOM kill 1672 * uncharges. Wake any sleepers explicitely. 1673 */ 1674 memcg_oom_recover(memcg); 1675 } 1676 cleanup: 1677 current->memcg_in_oom = NULL; 1678 css_put(&memcg->css); 1679 return true; 1680 } 1681 1682 /** 1683 * lock_page_memcg - lock a page->mem_cgroup binding 1684 * @page: the page 1685 * 1686 * This function protects unlocked LRU pages from being moved to 1687 * another cgroup and stabilizes their page->mem_cgroup binding. 1688 */ 1689 void lock_page_memcg(struct page *page) 1690 { 1691 struct mem_cgroup *memcg; 1692 unsigned long flags; 1693 1694 /* 1695 * The RCU lock is held throughout the transaction. The fast 1696 * path can get away without acquiring the memcg->move_lock 1697 * because page moving starts with an RCU grace period. 1698 */ 1699 rcu_read_lock(); 1700 1701 if (mem_cgroup_disabled()) 1702 return; 1703 again: 1704 memcg = page->mem_cgroup; 1705 if (unlikely(!memcg)) 1706 return; 1707 1708 if (atomic_read(&memcg->moving_account) <= 0) 1709 return; 1710 1711 spin_lock_irqsave(&memcg->move_lock, flags); 1712 if (memcg != page->mem_cgroup) { 1713 spin_unlock_irqrestore(&memcg->move_lock, flags); 1714 goto again; 1715 } 1716 1717 /* 1718 * When charge migration first begins, we can have locked and 1719 * unlocked page stat updates happening concurrently. Track 1720 * the task who has the lock for unlock_page_memcg(). 1721 */ 1722 memcg->move_lock_task = current; 1723 memcg->move_lock_flags = flags; 1724 1725 return; 1726 } 1727 EXPORT_SYMBOL(lock_page_memcg); 1728 1729 /** 1730 * unlock_page_memcg - unlock a page->mem_cgroup binding 1731 * @page: the page 1732 */ 1733 void unlock_page_memcg(struct page *page) 1734 { 1735 struct mem_cgroup *memcg = page->mem_cgroup; 1736 1737 if (memcg && memcg->move_lock_task == current) { 1738 unsigned long flags = memcg->move_lock_flags; 1739 1740 memcg->move_lock_task = NULL; 1741 memcg->move_lock_flags = 0; 1742 1743 spin_unlock_irqrestore(&memcg->move_lock, flags); 1744 } 1745 1746 rcu_read_unlock(); 1747 } 1748 EXPORT_SYMBOL(unlock_page_memcg); 1749 1750 /* 1751 * size of first charge trial. "32" comes from vmscan.c's magic value. 1752 * TODO: maybe necessary to use big numbers in big irons. 1753 */ 1754 #define CHARGE_BATCH 32U 1755 struct memcg_stock_pcp { 1756 struct mem_cgroup *cached; /* this never be root cgroup */ 1757 unsigned int nr_pages; 1758 struct work_struct work; 1759 unsigned long flags; 1760 #define FLUSHING_CACHED_CHARGE 0 1761 }; 1762 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1763 static DEFINE_MUTEX(percpu_charge_mutex); 1764 1765 /** 1766 * consume_stock: Try to consume stocked charge on this cpu. 1767 * @memcg: memcg to consume from. 1768 * @nr_pages: how many pages to charge. 1769 * 1770 * The charges will only happen if @memcg matches the current cpu's memcg 1771 * stock, and at least @nr_pages are available in that stock. Failure to 1772 * service an allocation will refill the stock. 1773 * 1774 * returns true if successful, false otherwise. 1775 */ 1776 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1777 { 1778 struct memcg_stock_pcp *stock; 1779 bool ret = false; 1780 1781 if (nr_pages > CHARGE_BATCH) 1782 return ret; 1783 1784 stock = &get_cpu_var(memcg_stock); 1785 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1786 stock->nr_pages -= nr_pages; 1787 ret = true; 1788 } 1789 put_cpu_var(memcg_stock); 1790 return ret; 1791 } 1792 1793 /* 1794 * Returns stocks cached in percpu and reset cached information. 1795 */ 1796 static void drain_stock(struct memcg_stock_pcp *stock) 1797 { 1798 struct mem_cgroup *old = stock->cached; 1799 1800 if (stock->nr_pages) { 1801 page_counter_uncharge(&old->memory, stock->nr_pages); 1802 if (do_memsw_account()) 1803 page_counter_uncharge(&old->memsw, stock->nr_pages); 1804 css_put_many(&old->css, stock->nr_pages); 1805 stock->nr_pages = 0; 1806 } 1807 stock->cached = NULL; 1808 } 1809 1810 /* 1811 * This must be called under preempt disabled or must be called by 1812 * a thread which is pinned to local cpu. 1813 */ 1814 static void drain_local_stock(struct work_struct *dummy) 1815 { 1816 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 1817 drain_stock(stock); 1818 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1819 } 1820 1821 /* 1822 * Cache charges(val) to local per_cpu area. 1823 * This will be consumed by consume_stock() function, later. 1824 */ 1825 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1826 { 1827 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1828 1829 if (stock->cached != memcg) { /* reset if necessary */ 1830 drain_stock(stock); 1831 stock->cached = memcg; 1832 } 1833 stock->nr_pages += nr_pages; 1834 put_cpu_var(memcg_stock); 1835 } 1836 1837 /* 1838 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1839 * of the hierarchy under it. 1840 */ 1841 static void drain_all_stock(struct mem_cgroup *root_memcg) 1842 { 1843 int cpu, curcpu; 1844 1845 /* If someone's already draining, avoid adding running more workers. */ 1846 if (!mutex_trylock(&percpu_charge_mutex)) 1847 return; 1848 /* Notify other cpus that system-wide "drain" is running */ 1849 get_online_cpus(); 1850 curcpu = get_cpu(); 1851 for_each_online_cpu(cpu) { 1852 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1853 struct mem_cgroup *memcg; 1854 1855 memcg = stock->cached; 1856 if (!memcg || !stock->nr_pages) 1857 continue; 1858 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1859 continue; 1860 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1861 if (cpu == curcpu) 1862 drain_local_stock(&stock->work); 1863 else 1864 schedule_work_on(cpu, &stock->work); 1865 } 1866 } 1867 put_cpu(); 1868 put_online_cpus(); 1869 mutex_unlock(&percpu_charge_mutex); 1870 } 1871 1872 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 1873 unsigned long action, 1874 void *hcpu) 1875 { 1876 int cpu = (unsigned long)hcpu; 1877 struct memcg_stock_pcp *stock; 1878 1879 if (action == CPU_ONLINE) 1880 return NOTIFY_OK; 1881 1882 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 1883 return NOTIFY_OK; 1884 1885 stock = &per_cpu(memcg_stock, cpu); 1886 drain_stock(stock); 1887 return NOTIFY_OK; 1888 } 1889 1890 static void reclaim_high(struct mem_cgroup *memcg, 1891 unsigned int nr_pages, 1892 gfp_t gfp_mask) 1893 { 1894 do { 1895 if (page_counter_read(&memcg->memory) <= memcg->high) 1896 continue; 1897 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 1898 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1899 } while ((memcg = parent_mem_cgroup(memcg))); 1900 } 1901 1902 static void high_work_func(struct work_struct *work) 1903 { 1904 struct mem_cgroup *memcg; 1905 1906 memcg = container_of(work, struct mem_cgroup, high_work); 1907 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1908 } 1909 1910 /* 1911 * Scheduled by try_charge() to be executed from the userland return path 1912 * and reclaims memory over the high limit. 1913 */ 1914 void mem_cgroup_handle_over_high(void) 1915 { 1916 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1917 struct mem_cgroup *memcg; 1918 1919 if (likely(!nr_pages)) 1920 return; 1921 1922 memcg = get_mem_cgroup_from_mm(current->mm); 1923 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1924 css_put(&memcg->css); 1925 current->memcg_nr_pages_over_high = 0; 1926 } 1927 1928 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1929 unsigned int nr_pages) 1930 { 1931 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1932 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1933 struct mem_cgroup *mem_over_limit; 1934 struct page_counter *counter; 1935 unsigned long nr_reclaimed; 1936 bool may_swap = true; 1937 bool drained = false; 1938 1939 if (mem_cgroup_is_root(memcg)) 1940 return 0; 1941 retry: 1942 if (consume_stock(memcg, nr_pages)) 1943 return 0; 1944 1945 if (!do_memsw_account() || 1946 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1947 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1948 goto done_restock; 1949 if (do_memsw_account()) 1950 page_counter_uncharge(&memcg->memsw, batch); 1951 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1952 } else { 1953 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1954 may_swap = false; 1955 } 1956 1957 if (batch > nr_pages) { 1958 batch = nr_pages; 1959 goto retry; 1960 } 1961 1962 /* 1963 * Unlike in global OOM situations, memcg is not in a physical 1964 * memory shortage. Allow dying and OOM-killed tasks to 1965 * bypass the last charges so that they can exit quickly and 1966 * free their memory. 1967 */ 1968 if (unlikely(test_thread_flag(TIF_MEMDIE) || 1969 fatal_signal_pending(current) || 1970 current->flags & PF_EXITING)) 1971 goto force; 1972 1973 if (unlikely(task_in_memcg_oom(current))) 1974 goto nomem; 1975 1976 if (!gfpflags_allow_blocking(gfp_mask)) 1977 goto nomem; 1978 1979 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 1980 1981 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1982 gfp_mask, may_swap); 1983 1984 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1985 goto retry; 1986 1987 if (!drained) { 1988 drain_all_stock(mem_over_limit); 1989 drained = true; 1990 goto retry; 1991 } 1992 1993 if (gfp_mask & __GFP_NORETRY) 1994 goto nomem; 1995 /* 1996 * Even though the limit is exceeded at this point, reclaim 1997 * may have been able to free some pages. Retry the charge 1998 * before killing the task. 1999 * 2000 * Only for regular pages, though: huge pages are rather 2001 * unlikely to succeed so close to the limit, and we fall back 2002 * to regular pages anyway in case of failure. 2003 */ 2004 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2005 goto retry; 2006 /* 2007 * At task move, charge accounts can be doubly counted. So, it's 2008 * better to wait until the end of task_move if something is going on. 2009 */ 2010 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2011 goto retry; 2012 2013 if (nr_retries--) 2014 goto retry; 2015 2016 if (gfp_mask & __GFP_NOFAIL) 2017 goto force; 2018 2019 if (fatal_signal_pending(current)) 2020 goto force; 2021 2022 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 2023 2024 mem_cgroup_oom(mem_over_limit, gfp_mask, 2025 get_order(nr_pages * PAGE_SIZE)); 2026 nomem: 2027 if (!(gfp_mask & __GFP_NOFAIL)) 2028 return -ENOMEM; 2029 force: 2030 /* 2031 * The allocation either can't fail or will lead to more memory 2032 * being freed very soon. Allow memory usage go over the limit 2033 * temporarily by force charging it. 2034 */ 2035 page_counter_charge(&memcg->memory, nr_pages); 2036 if (do_memsw_account()) 2037 page_counter_charge(&memcg->memsw, nr_pages); 2038 css_get_many(&memcg->css, nr_pages); 2039 2040 return 0; 2041 2042 done_restock: 2043 css_get_many(&memcg->css, batch); 2044 if (batch > nr_pages) 2045 refill_stock(memcg, batch - nr_pages); 2046 2047 /* 2048 * If the hierarchy is above the normal consumption range, schedule 2049 * reclaim on returning to userland. We can perform reclaim here 2050 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2051 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2052 * not recorded as it most likely matches current's and won't 2053 * change in the meantime. As high limit is checked again before 2054 * reclaim, the cost of mismatch is negligible. 2055 */ 2056 do { 2057 if (page_counter_read(&memcg->memory) > memcg->high) { 2058 /* Don't bother a random interrupted task */ 2059 if (in_interrupt()) { 2060 schedule_work(&memcg->high_work); 2061 break; 2062 } 2063 current->memcg_nr_pages_over_high += batch; 2064 set_notify_resume(current); 2065 break; 2066 } 2067 } while ((memcg = parent_mem_cgroup(memcg))); 2068 2069 return 0; 2070 } 2071 2072 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2073 { 2074 if (mem_cgroup_is_root(memcg)) 2075 return; 2076 2077 page_counter_uncharge(&memcg->memory, nr_pages); 2078 if (do_memsw_account()) 2079 page_counter_uncharge(&memcg->memsw, nr_pages); 2080 2081 css_put_many(&memcg->css, nr_pages); 2082 } 2083 2084 static void lock_page_lru(struct page *page, int *isolated) 2085 { 2086 struct zone *zone = page_zone(page); 2087 2088 spin_lock_irq(&zone->lru_lock); 2089 if (PageLRU(page)) { 2090 struct lruvec *lruvec; 2091 2092 lruvec = mem_cgroup_page_lruvec(page, zone); 2093 ClearPageLRU(page); 2094 del_page_from_lru_list(page, lruvec, page_lru(page)); 2095 *isolated = 1; 2096 } else 2097 *isolated = 0; 2098 } 2099 2100 static void unlock_page_lru(struct page *page, int isolated) 2101 { 2102 struct zone *zone = page_zone(page); 2103 2104 if (isolated) { 2105 struct lruvec *lruvec; 2106 2107 lruvec = mem_cgroup_page_lruvec(page, zone); 2108 VM_BUG_ON_PAGE(PageLRU(page), page); 2109 SetPageLRU(page); 2110 add_page_to_lru_list(page, lruvec, page_lru(page)); 2111 } 2112 spin_unlock_irq(&zone->lru_lock); 2113 } 2114 2115 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2116 bool lrucare) 2117 { 2118 int isolated; 2119 2120 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2121 2122 /* 2123 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2124 * may already be on some other mem_cgroup's LRU. Take care of it. 2125 */ 2126 if (lrucare) 2127 lock_page_lru(page, &isolated); 2128 2129 /* 2130 * Nobody should be changing or seriously looking at 2131 * page->mem_cgroup at this point: 2132 * 2133 * - the page is uncharged 2134 * 2135 * - the page is off-LRU 2136 * 2137 * - an anonymous fault has exclusive page access, except for 2138 * a locked page table 2139 * 2140 * - a page cache insertion, a swapin fault, or a migration 2141 * have the page locked 2142 */ 2143 page->mem_cgroup = memcg; 2144 2145 if (lrucare) 2146 unlock_page_lru(page, isolated); 2147 } 2148 2149 #ifndef CONFIG_SLOB 2150 static int memcg_alloc_cache_id(void) 2151 { 2152 int id, size; 2153 int err; 2154 2155 id = ida_simple_get(&memcg_cache_ida, 2156 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2157 if (id < 0) 2158 return id; 2159 2160 if (id < memcg_nr_cache_ids) 2161 return id; 2162 2163 /* 2164 * There's no space for the new id in memcg_caches arrays, 2165 * so we have to grow them. 2166 */ 2167 down_write(&memcg_cache_ids_sem); 2168 2169 size = 2 * (id + 1); 2170 if (size < MEMCG_CACHES_MIN_SIZE) 2171 size = MEMCG_CACHES_MIN_SIZE; 2172 else if (size > MEMCG_CACHES_MAX_SIZE) 2173 size = MEMCG_CACHES_MAX_SIZE; 2174 2175 err = memcg_update_all_caches(size); 2176 if (!err) 2177 err = memcg_update_all_list_lrus(size); 2178 if (!err) 2179 memcg_nr_cache_ids = size; 2180 2181 up_write(&memcg_cache_ids_sem); 2182 2183 if (err) { 2184 ida_simple_remove(&memcg_cache_ida, id); 2185 return err; 2186 } 2187 return id; 2188 } 2189 2190 static void memcg_free_cache_id(int id) 2191 { 2192 ida_simple_remove(&memcg_cache_ida, id); 2193 } 2194 2195 struct memcg_kmem_cache_create_work { 2196 struct mem_cgroup *memcg; 2197 struct kmem_cache *cachep; 2198 struct work_struct work; 2199 }; 2200 2201 static void memcg_kmem_cache_create_func(struct work_struct *w) 2202 { 2203 struct memcg_kmem_cache_create_work *cw = 2204 container_of(w, struct memcg_kmem_cache_create_work, work); 2205 struct mem_cgroup *memcg = cw->memcg; 2206 struct kmem_cache *cachep = cw->cachep; 2207 2208 memcg_create_kmem_cache(memcg, cachep); 2209 2210 css_put(&memcg->css); 2211 kfree(cw); 2212 } 2213 2214 /* 2215 * Enqueue the creation of a per-memcg kmem_cache. 2216 */ 2217 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2218 struct kmem_cache *cachep) 2219 { 2220 struct memcg_kmem_cache_create_work *cw; 2221 2222 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2223 if (!cw) 2224 return; 2225 2226 css_get(&memcg->css); 2227 2228 cw->memcg = memcg; 2229 cw->cachep = cachep; 2230 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2231 2232 schedule_work(&cw->work); 2233 } 2234 2235 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2236 struct kmem_cache *cachep) 2237 { 2238 /* 2239 * We need to stop accounting when we kmalloc, because if the 2240 * corresponding kmalloc cache is not yet created, the first allocation 2241 * in __memcg_schedule_kmem_cache_create will recurse. 2242 * 2243 * However, it is better to enclose the whole function. Depending on 2244 * the debugging options enabled, INIT_WORK(), for instance, can 2245 * trigger an allocation. This too, will make us recurse. Because at 2246 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2247 * the safest choice is to do it like this, wrapping the whole function. 2248 */ 2249 current->memcg_kmem_skip_account = 1; 2250 __memcg_schedule_kmem_cache_create(memcg, cachep); 2251 current->memcg_kmem_skip_account = 0; 2252 } 2253 2254 /* 2255 * Return the kmem_cache we're supposed to use for a slab allocation. 2256 * We try to use the current memcg's version of the cache. 2257 * 2258 * If the cache does not exist yet, if we are the first user of it, 2259 * we either create it immediately, if possible, or create it asynchronously 2260 * in a workqueue. 2261 * In the latter case, we will let the current allocation go through with 2262 * the original cache. 2263 * 2264 * Can't be called in interrupt context or from kernel threads. 2265 * This function needs to be called with rcu_read_lock() held. 2266 */ 2267 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 2268 { 2269 struct mem_cgroup *memcg; 2270 struct kmem_cache *memcg_cachep; 2271 int kmemcg_id; 2272 2273 VM_BUG_ON(!is_root_cache(cachep)); 2274 2275 if (cachep->flags & SLAB_ACCOUNT) 2276 gfp |= __GFP_ACCOUNT; 2277 2278 if (!(gfp & __GFP_ACCOUNT)) 2279 return cachep; 2280 2281 if (current->memcg_kmem_skip_account) 2282 return cachep; 2283 2284 memcg = get_mem_cgroup_from_mm(current->mm); 2285 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2286 if (kmemcg_id < 0) 2287 goto out; 2288 2289 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2290 if (likely(memcg_cachep)) 2291 return memcg_cachep; 2292 2293 /* 2294 * If we are in a safe context (can wait, and not in interrupt 2295 * context), we could be be predictable and return right away. 2296 * This would guarantee that the allocation being performed 2297 * already belongs in the new cache. 2298 * 2299 * However, there are some clashes that can arrive from locking. 2300 * For instance, because we acquire the slab_mutex while doing 2301 * memcg_create_kmem_cache, this means no further allocation 2302 * could happen with the slab_mutex held. So it's better to 2303 * defer everything. 2304 */ 2305 memcg_schedule_kmem_cache_create(memcg, cachep); 2306 out: 2307 css_put(&memcg->css); 2308 return cachep; 2309 } 2310 2311 void __memcg_kmem_put_cache(struct kmem_cache *cachep) 2312 { 2313 if (!is_root_cache(cachep)) 2314 css_put(&cachep->memcg_params.memcg->css); 2315 } 2316 2317 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2318 struct mem_cgroup *memcg) 2319 { 2320 unsigned int nr_pages = 1 << order; 2321 struct page_counter *counter; 2322 int ret; 2323 2324 ret = try_charge(memcg, gfp, nr_pages); 2325 if (ret) 2326 return ret; 2327 2328 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2329 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2330 cancel_charge(memcg, nr_pages); 2331 return -ENOMEM; 2332 } 2333 2334 page->mem_cgroup = memcg; 2335 2336 return 0; 2337 } 2338 2339 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2340 { 2341 struct mem_cgroup *memcg; 2342 int ret = 0; 2343 2344 memcg = get_mem_cgroup_from_mm(current->mm); 2345 if (!mem_cgroup_is_root(memcg)) 2346 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2347 css_put(&memcg->css); 2348 return ret; 2349 } 2350 2351 void __memcg_kmem_uncharge(struct page *page, int order) 2352 { 2353 struct mem_cgroup *memcg = page->mem_cgroup; 2354 unsigned int nr_pages = 1 << order; 2355 2356 if (!memcg) 2357 return; 2358 2359 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2360 2361 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2362 page_counter_uncharge(&memcg->kmem, nr_pages); 2363 2364 page_counter_uncharge(&memcg->memory, nr_pages); 2365 if (do_memsw_account()) 2366 page_counter_uncharge(&memcg->memsw, nr_pages); 2367 2368 page->mem_cgroup = NULL; 2369 css_put_many(&memcg->css, nr_pages); 2370 } 2371 #endif /* !CONFIG_SLOB */ 2372 2373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2374 2375 /* 2376 * Because tail pages are not marked as "used", set it. We're under 2377 * zone->lru_lock and migration entries setup in all page mappings. 2378 */ 2379 void mem_cgroup_split_huge_fixup(struct page *head) 2380 { 2381 int i; 2382 2383 if (mem_cgroup_disabled()) 2384 return; 2385 2386 for (i = 1; i < HPAGE_PMD_NR; i++) 2387 head[i].mem_cgroup = head->mem_cgroup; 2388 2389 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2390 HPAGE_PMD_NR); 2391 } 2392 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2393 2394 #ifdef CONFIG_MEMCG_SWAP 2395 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2396 bool charge) 2397 { 2398 int val = (charge) ? 1 : -1; 2399 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2400 } 2401 2402 /** 2403 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2404 * @entry: swap entry to be moved 2405 * @from: mem_cgroup which the entry is moved from 2406 * @to: mem_cgroup which the entry is moved to 2407 * 2408 * It succeeds only when the swap_cgroup's record for this entry is the same 2409 * as the mem_cgroup's id of @from. 2410 * 2411 * Returns 0 on success, -EINVAL on failure. 2412 * 2413 * The caller must have charged to @to, IOW, called page_counter_charge() about 2414 * both res and memsw, and called css_get(). 2415 */ 2416 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2417 struct mem_cgroup *from, struct mem_cgroup *to) 2418 { 2419 unsigned short old_id, new_id; 2420 2421 old_id = mem_cgroup_id(from); 2422 new_id = mem_cgroup_id(to); 2423 2424 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2425 mem_cgroup_swap_statistics(from, false); 2426 mem_cgroup_swap_statistics(to, true); 2427 return 0; 2428 } 2429 return -EINVAL; 2430 } 2431 #else 2432 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2433 struct mem_cgroup *from, struct mem_cgroup *to) 2434 { 2435 return -EINVAL; 2436 } 2437 #endif 2438 2439 static DEFINE_MUTEX(memcg_limit_mutex); 2440 2441 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2442 unsigned long limit) 2443 { 2444 unsigned long curusage; 2445 unsigned long oldusage; 2446 bool enlarge = false; 2447 int retry_count; 2448 int ret; 2449 2450 /* 2451 * For keeping hierarchical_reclaim simple, how long we should retry 2452 * is depends on callers. We set our retry-count to be function 2453 * of # of children which we should visit in this loop. 2454 */ 2455 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2456 mem_cgroup_count_children(memcg); 2457 2458 oldusage = page_counter_read(&memcg->memory); 2459 2460 do { 2461 if (signal_pending(current)) { 2462 ret = -EINTR; 2463 break; 2464 } 2465 2466 mutex_lock(&memcg_limit_mutex); 2467 if (limit > memcg->memsw.limit) { 2468 mutex_unlock(&memcg_limit_mutex); 2469 ret = -EINVAL; 2470 break; 2471 } 2472 if (limit > memcg->memory.limit) 2473 enlarge = true; 2474 ret = page_counter_limit(&memcg->memory, limit); 2475 mutex_unlock(&memcg_limit_mutex); 2476 2477 if (!ret) 2478 break; 2479 2480 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2481 2482 curusage = page_counter_read(&memcg->memory); 2483 /* Usage is reduced ? */ 2484 if (curusage >= oldusage) 2485 retry_count--; 2486 else 2487 oldusage = curusage; 2488 } while (retry_count); 2489 2490 if (!ret && enlarge) 2491 memcg_oom_recover(memcg); 2492 2493 return ret; 2494 } 2495 2496 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2497 unsigned long limit) 2498 { 2499 unsigned long curusage; 2500 unsigned long oldusage; 2501 bool enlarge = false; 2502 int retry_count; 2503 int ret; 2504 2505 /* see mem_cgroup_resize_res_limit */ 2506 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2507 mem_cgroup_count_children(memcg); 2508 2509 oldusage = page_counter_read(&memcg->memsw); 2510 2511 do { 2512 if (signal_pending(current)) { 2513 ret = -EINTR; 2514 break; 2515 } 2516 2517 mutex_lock(&memcg_limit_mutex); 2518 if (limit < memcg->memory.limit) { 2519 mutex_unlock(&memcg_limit_mutex); 2520 ret = -EINVAL; 2521 break; 2522 } 2523 if (limit > memcg->memsw.limit) 2524 enlarge = true; 2525 ret = page_counter_limit(&memcg->memsw, limit); 2526 mutex_unlock(&memcg_limit_mutex); 2527 2528 if (!ret) 2529 break; 2530 2531 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2532 2533 curusage = page_counter_read(&memcg->memsw); 2534 /* Usage is reduced ? */ 2535 if (curusage >= oldusage) 2536 retry_count--; 2537 else 2538 oldusage = curusage; 2539 } while (retry_count); 2540 2541 if (!ret && enlarge) 2542 memcg_oom_recover(memcg); 2543 2544 return ret; 2545 } 2546 2547 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 2548 gfp_t gfp_mask, 2549 unsigned long *total_scanned) 2550 { 2551 unsigned long nr_reclaimed = 0; 2552 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 2553 unsigned long reclaimed; 2554 int loop = 0; 2555 struct mem_cgroup_tree_per_zone *mctz; 2556 unsigned long excess; 2557 unsigned long nr_scanned; 2558 2559 if (order > 0) 2560 return 0; 2561 2562 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 2563 /* 2564 * This loop can run a while, specially if mem_cgroup's continuously 2565 * keep exceeding their soft limit and putting the system under 2566 * pressure 2567 */ 2568 do { 2569 if (next_mz) 2570 mz = next_mz; 2571 else 2572 mz = mem_cgroup_largest_soft_limit_node(mctz); 2573 if (!mz) 2574 break; 2575 2576 nr_scanned = 0; 2577 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 2578 gfp_mask, &nr_scanned); 2579 nr_reclaimed += reclaimed; 2580 *total_scanned += nr_scanned; 2581 spin_lock_irq(&mctz->lock); 2582 __mem_cgroup_remove_exceeded(mz, mctz); 2583 2584 /* 2585 * If we failed to reclaim anything from this memory cgroup 2586 * it is time to move on to the next cgroup 2587 */ 2588 next_mz = NULL; 2589 if (!reclaimed) 2590 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2591 2592 excess = soft_limit_excess(mz->memcg); 2593 /* 2594 * One school of thought says that we should not add 2595 * back the node to the tree if reclaim returns 0. 2596 * But our reclaim could return 0, simply because due 2597 * to priority we are exposing a smaller subset of 2598 * memory to reclaim from. Consider this as a longer 2599 * term TODO. 2600 */ 2601 /* If excess == 0, no tree ops */ 2602 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2603 spin_unlock_irq(&mctz->lock); 2604 css_put(&mz->memcg->css); 2605 loop++; 2606 /* 2607 * Could not reclaim anything and there are no more 2608 * mem cgroups to try or we seem to be looping without 2609 * reclaiming anything. 2610 */ 2611 if (!nr_reclaimed && 2612 (next_mz == NULL || 2613 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2614 break; 2615 } while (!nr_reclaimed); 2616 if (next_mz) 2617 css_put(&next_mz->memcg->css); 2618 return nr_reclaimed; 2619 } 2620 2621 /* 2622 * Test whether @memcg has children, dead or alive. Note that this 2623 * function doesn't care whether @memcg has use_hierarchy enabled and 2624 * returns %true if there are child csses according to the cgroup 2625 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2626 */ 2627 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2628 { 2629 bool ret; 2630 2631 rcu_read_lock(); 2632 ret = css_next_child(NULL, &memcg->css); 2633 rcu_read_unlock(); 2634 return ret; 2635 } 2636 2637 /* 2638 * Reclaims as many pages from the given memcg as possible and moves 2639 * the rest to the parent. 2640 * 2641 * Caller is responsible for holding css reference for memcg. 2642 */ 2643 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2644 { 2645 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2646 2647 /* we call try-to-free pages for make this cgroup empty */ 2648 lru_add_drain_all(); 2649 /* try to free all pages in this cgroup */ 2650 while (nr_retries && page_counter_read(&memcg->memory)) { 2651 int progress; 2652 2653 if (signal_pending(current)) 2654 return -EINTR; 2655 2656 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2657 GFP_KERNEL, true); 2658 if (!progress) { 2659 nr_retries--; 2660 /* maybe some writeback is necessary */ 2661 congestion_wait(BLK_RW_ASYNC, HZ/10); 2662 } 2663 2664 } 2665 2666 return 0; 2667 } 2668 2669 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2670 char *buf, size_t nbytes, 2671 loff_t off) 2672 { 2673 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2674 2675 if (mem_cgroup_is_root(memcg)) 2676 return -EINVAL; 2677 return mem_cgroup_force_empty(memcg) ?: nbytes; 2678 } 2679 2680 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2681 struct cftype *cft) 2682 { 2683 return mem_cgroup_from_css(css)->use_hierarchy; 2684 } 2685 2686 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2687 struct cftype *cft, u64 val) 2688 { 2689 int retval = 0; 2690 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2691 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2692 2693 if (memcg->use_hierarchy == val) 2694 return 0; 2695 2696 /* 2697 * If parent's use_hierarchy is set, we can't make any modifications 2698 * in the child subtrees. If it is unset, then the change can 2699 * occur, provided the current cgroup has no children. 2700 * 2701 * For the root cgroup, parent_mem is NULL, we allow value to be 2702 * set if there are no children. 2703 */ 2704 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2705 (val == 1 || val == 0)) { 2706 if (!memcg_has_children(memcg)) 2707 memcg->use_hierarchy = val; 2708 else 2709 retval = -EBUSY; 2710 } else 2711 retval = -EINVAL; 2712 2713 return retval; 2714 } 2715 2716 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2717 { 2718 struct mem_cgroup *iter; 2719 int i; 2720 2721 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2722 2723 for_each_mem_cgroup_tree(iter, memcg) { 2724 for (i = 0; i < MEMCG_NR_STAT; i++) 2725 stat[i] += mem_cgroup_read_stat(iter, i); 2726 } 2727 } 2728 2729 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2730 { 2731 struct mem_cgroup *iter; 2732 int i; 2733 2734 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); 2735 2736 for_each_mem_cgroup_tree(iter, memcg) { 2737 for (i = 0; i < MEMCG_NR_EVENTS; i++) 2738 events[i] += mem_cgroup_read_events(iter, i); 2739 } 2740 } 2741 2742 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2743 { 2744 unsigned long val = 0; 2745 2746 if (mem_cgroup_is_root(memcg)) { 2747 struct mem_cgroup *iter; 2748 2749 for_each_mem_cgroup_tree(iter, memcg) { 2750 val += mem_cgroup_read_stat(iter, 2751 MEM_CGROUP_STAT_CACHE); 2752 val += mem_cgroup_read_stat(iter, 2753 MEM_CGROUP_STAT_RSS); 2754 if (swap) 2755 val += mem_cgroup_read_stat(iter, 2756 MEM_CGROUP_STAT_SWAP); 2757 } 2758 } else { 2759 if (!swap) 2760 val = page_counter_read(&memcg->memory); 2761 else 2762 val = page_counter_read(&memcg->memsw); 2763 } 2764 return val; 2765 } 2766 2767 enum { 2768 RES_USAGE, 2769 RES_LIMIT, 2770 RES_MAX_USAGE, 2771 RES_FAILCNT, 2772 RES_SOFT_LIMIT, 2773 }; 2774 2775 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2776 struct cftype *cft) 2777 { 2778 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2779 struct page_counter *counter; 2780 2781 switch (MEMFILE_TYPE(cft->private)) { 2782 case _MEM: 2783 counter = &memcg->memory; 2784 break; 2785 case _MEMSWAP: 2786 counter = &memcg->memsw; 2787 break; 2788 case _KMEM: 2789 counter = &memcg->kmem; 2790 break; 2791 case _TCP: 2792 counter = &memcg->tcpmem; 2793 break; 2794 default: 2795 BUG(); 2796 } 2797 2798 switch (MEMFILE_ATTR(cft->private)) { 2799 case RES_USAGE: 2800 if (counter == &memcg->memory) 2801 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2802 if (counter == &memcg->memsw) 2803 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2804 return (u64)page_counter_read(counter) * PAGE_SIZE; 2805 case RES_LIMIT: 2806 return (u64)counter->limit * PAGE_SIZE; 2807 case RES_MAX_USAGE: 2808 return (u64)counter->watermark * PAGE_SIZE; 2809 case RES_FAILCNT: 2810 return counter->failcnt; 2811 case RES_SOFT_LIMIT: 2812 return (u64)memcg->soft_limit * PAGE_SIZE; 2813 default: 2814 BUG(); 2815 } 2816 } 2817 2818 #ifndef CONFIG_SLOB 2819 static int memcg_online_kmem(struct mem_cgroup *memcg) 2820 { 2821 int memcg_id; 2822 2823 if (cgroup_memory_nokmem) 2824 return 0; 2825 2826 BUG_ON(memcg->kmemcg_id >= 0); 2827 BUG_ON(memcg->kmem_state); 2828 2829 memcg_id = memcg_alloc_cache_id(); 2830 if (memcg_id < 0) 2831 return memcg_id; 2832 2833 static_branch_inc(&memcg_kmem_enabled_key); 2834 /* 2835 * A memory cgroup is considered kmem-online as soon as it gets 2836 * kmemcg_id. Setting the id after enabling static branching will 2837 * guarantee no one starts accounting before all call sites are 2838 * patched. 2839 */ 2840 memcg->kmemcg_id = memcg_id; 2841 memcg->kmem_state = KMEM_ONLINE; 2842 2843 return 0; 2844 } 2845 2846 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2847 { 2848 struct cgroup_subsys_state *css; 2849 struct mem_cgroup *parent, *child; 2850 int kmemcg_id; 2851 2852 if (memcg->kmem_state != KMEM_ONLINE) 2853 return; 2854 /* 2855 * Clear the online state before clearing memcg_caches array 2856 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2857 * guarantees that no cache will be created for this cgroup 2858 * after we are done (see memcg_create_kmem_cache()). 2859 */ 2860 memcg->kmem_state = KMEM_ALLOCATED; 2861 2862 memcg_deactivate_kmem_caches(memcg); 2863 2864 kmemcg_id = memcg->kmemcg_id; 2865 BUG_ON(kmemcg_id < 0); 2866 2867 parent = parent_mem_cgroup(memcg); 2868 if (!parent) 2869 parent = root_mem_cgroup; 2870 2871 /* 2872 * Change kmemcg_id of this cgroup and all its descendants to the 2873 * parent's id, and then move all entries from this cgroup's list_lrus 2874 * to ones of the parent. After we have finished, all list_lrus 2875 * corresponding to this cgroup are guaranteed to remain empty. The 2876 * ordering is imposed by list_lru_node->lock taken by 2877 * memcg_drain_all_list_lrus(). 2878 */ 2879 css_for_each_descendant_pre(css, &memcg->css) { 2880 child = mem_cgroup_from_css(css); 2881 BUG_ON(child->kmemcg_id != kmemcg_id); 2882 child->kmemcg_id = parent->kmemcg_id; 2883 if (!memcg->use_hierarchy) 2884 break; 2885 } 2886 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2887 2888 memcg_free_cache_id(kmemcg_id); 2889 } 2890 2891 static void memcg_free_kmem(struct mem_cgroup *memcg) 2892 { 2893 /* css_alloc() failed, offlining didn't happen */ 2894 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2895 memcg_offline_kmem(memcg); 2896 2897 if (memcg->kmem_state == KMEM_ALLOCATED) { 2898 memcg_destroy_kmem_caches(memcg); 2899 static_branch_dec(&memcg_kmem_enabled_key); 2900 WARN_ON(page_counter_read(&memcg->kmem)); 2901 } 2902 } 2903 #else 2904 static int memcg_online_kmem(struct mem_cgroup *memcg) 2905 { 2906 return 0; 2907 } 2908 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2909 { 2910 } 2911 static void memcg_free_kmem(struct mem_cgroup *memcg) 2912 { 2913 } 2914 #endif /* !CONFIG_SLOB */ 2915 2916 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2917 unsigned long limit) 2918 { 2919 int ret; 2920 2921 mutex_lock(&memcg_limit_mutex); 2922 ret = page_counter_limit(&memcg->kmem, limit); 2923 mutex_unlock(&memcg_limit_mutex); 2924 return ret; 2925 } 2926 2927 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2928 { 2929 int ret; 2930 2931 mutex_lock(&memcg_limit_mutex); 2932 2933 ret = page_counter_limit(&memcg->tcpmem, limit); 2934 if (ret) 2935 goto out; 2936 2937 if (!memcg->tcpmem_active) { 2938 /* 2939 * The active flag needs to be written after the static_key 2940 * update. This is what guarantees that the socket activation 2941 * function is the last one to run. See sock_update_memcg() for 2942 * details, and note that we don't mark any socket as belonging 2943 * to this memcg until that flag is up. 2944 * 2945 * We need to do this, because static_keys will span multiple 2946 * sites, but we can't control their order. If we mark a socket 2947 * as accounted, but the accounting functions are not patched in 2948 * yet, we'll lose accounting. 2949 * 2950 * We never race with the readers in sock_update_memcg(), 2951 * because when this value change, the code to process it is not 2952 * patched in yet. 2953 */ 2954 static_branch_inc(&memcg_sockets_enabled_key); 2955 memcg->tcpmem_active = true; 2956 } 2957 out: 2958 mutex_unlock(&memcg_limit_mutex); 2959 return ret; 2960 } 2961 2962 /* 2963 * The user of this function is... 2964 * RES_LIMIT. 2965 */ 2966 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2967 char *buf, size_t nbytes, loff_t off) 2968 { 2969 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2970 unsigned long nr_pages; 2971 int ret; 2972 2973 buf = strstrip(buf); 2974 ret = page_counter_memparse(buf, "-1", &nr_pages); 2975 if (ret) 2976 return ret; 2977 2978 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2979 case RES_LIMIT: 2980 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2981 ret = -EINVAL; 2982 break; 2983 } 2984 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2985 case _MEM: 2986 ret = mem_cgroup_resize_limit(memcg, nr_pages); 2987 break; 2988 case _MEMSWAP: 2989 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 2990 break; 2991 case _KMEM: 2992 ret = memcg_update_kmem_limit(memcg, nr_pages); 2993 break; 2994 case _TCP: 2995 ret = memcg_update_tcp_limit(memcg, nr_pages); 2996 break; 2997 } 2998 break; 2999 case RES_SOFT_LIMIT: 3000 memcg->soft_limit = nr_pages; 3001 ret = 0; 3002 break; 3003 } 3004 return ret ?: nbytes; 3005 } 3006 3007 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3008 size_t nbytes, loff_t off) 3009 { 3010 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3011 struct page_counter *counter; 3012 3013 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3014 case _MEM: 3015 counter = &memcg->memory; 3016 break; 3017 case _MEMSWAP: 3018 counter = &memcg->memsw; 3019 break; 3020 case _KMEM: 3021 counter = &memcg->kmem; 3022 break; 3023 case _TCP: 3024 counter = &memcg->tcpmem; 3025 break; 3026 default: 3027 BUG(); 3028 } 3029 3030 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3031 case RES_MAX_USAGE: 3032 page_counter_reset_watermark(counter); 3033 break; 3034 case RES_FAILCNT: 3035 counter->failcnt = 0; 3036 break; 3037 default: 3038 BUG(); 3039 } 3040 3041 return nbytes; 3042 } 3043 3044 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3045 struct cftype *cft) 3046 { 3047 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3048 } 3049 3050 #ifdef CONFIG_MMU 3051 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3052 struct cftype *cft, u64 val) 3053 { 3054 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3055 3056 if (val & ~MOVE_MASK) 3057 return -EINVAL; 3058 3059 /* 3060 * No kind of locking is needed in here, because ->can_attach() will 3061 * check this value once in the beginning of the process, and then carry 3062 * on with stale data. This means that changes to this value will only 3063 * affect task migrations starting after the change. 3064 */ 3065 memcg->move_charge_at_immigrate = val; 3066 return 0; 3067 } 3068 #else 3069 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3070 struct cftype *cft, u64 val) 3071 { 3072 return -ENOSYS; 3073 } 3074 #endif 3075 3076 #ifdef CONFIG_NUMA 3077 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3078 { 3079 struct numa_stat { 3080 const char *name; 3081 unsigned int lru_mask; 3082 }; 3083 3084 static const struct numa_stat stats[] = { 3085 { "total", LRU_ALL }, 3086 { "file", LRU_ALL_FILE }, 3087 { "anon", LRU_ALL_ANON }, 3088 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3089 }; 3090 const struct numa_stat *stat; 3091 int nid; 3092 unsigned long nr; 3093 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3094 3095 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3096 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3097 seq_printf(m, "%s=%lu", stat->name, nr); 3098 for_each_node_state(nid, N_MEMORY) { 3099 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3100 stat->lru_mask); 3101 seq_printf(m, " N%d=%lu", nid, nr); 3102 } 3103 seq_putc(m, '\n'); 3104 } 3105 3106 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3107 struct mem_cgroup *iter; 3108 3109 nr = 0; 3110 for_each_mem_cgroup_tree(iter, memcg) 3111 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3112 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3113 for_each_node_state(nid, N_MEMORY) { 3114 nr = 0; 3115 for_each_mem_cgroup_tree(iter, memcg) 3116 nr += mem_cgroup_node_nr_lru_pages( 3117 iter, nid, stat->lru_mask); 3118 seq_printf(m, " N%d=%lu", nid, nr); 3119 } 3120 seq_putc(m, '\n'); 3121 } 3122 3123 return 0; 3124 } 3125 #endif /* CONFIG_NUMA */ 3126 3127 static int memcg_stat_show(struct seq_file *m, void *v) 3128 { 3129 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3130 unsigned long memory, memsw; 3131 struct mem_cgroup *mi; 3132 unsigned int i; 3133 3134 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3135 MEM_CGROUP_STAT_NSTATS); 3136 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3137 MEM_CGROUP_EVENTS_NSTATS); 3138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3139 3140 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3141 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3142 continue; 3143 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], 3144 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3145 } 3146 3147 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3148 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3149 mem_cgroup_read_events(memcg, i)); 3150 3151 for (i = 0; i < NR_LRU_LISTS; i++) 3152 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3153 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3154 3155 /* Hierarchical information */ 3156 memory = memsw = PAGE_COUNTER_MAX; 3157 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3158 memory = min(memory, mi->memory.limit); 3159 memsw = min(memsw, mi->memsw.limit); 3160 } 3161 seq_printf(m, "hierarchical_memory_limit %llu\n", 3162 (u64)memory * PAGE_SIZE); 3163 if (do_memsw_account()) 3164 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3165 (u64)memsw * PAGE_SIZE); 3166 3167 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3168 unsigned long long val = 0; 3169 3170 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3171 continue; 3172 for_each_mem_cgroup_tree(mi, memcg) 3173 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3174 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); 3175 } 3176 3177 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3178 unsigned long long val = 0; 3179 3180 for_each_mem_cgroup_tree(mi, memcg) 3181 val += mem_cgroup_read_events(mi, i); 3182 seq_printf(m, "total_%s %llu\n", 3183 mem_cgroup_events_names[i], val); 3184 } 3185 3186 for (i = 0; i < NR_LRU_LISTS; i++) { 3187 unsigned long long val = 0; 3188 3189 for_each_mem_cgroup_tree(mi, memcg) 3190 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3191 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3192 } 3193 3194 #ifdef CONFIG_DEBUG_VM 3195 { 3196 int nid, zid; 3197 struct mem_cgroup_per_zone *mz; 3198 struct zone_reclaim_stat *rstat; 3199 unsigned long recent_rotated[2] = {0, 0}; 3200 unsigned long recent_scanned[2] = {0, 0}; 3201 3202 for_each_online_node(nid) 3203 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 3204 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 3205 rstat = &mz->lruvec.reclaim_stat; 3206 3207 recent_rotated[0] += rstat->recent_rotated[0]; 3208 recent_rotated[1] += rstat->recent_rotated[1]; 3209 recent_scanned[0] += rstat->recent_scanned[0]; 3210 recent_scanned[1] += rstat->recent_scanned[1]; 3211 } 3212 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3213 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3214 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3215 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3216 } 3217 #endif 3218 3219 return 0; 3220 } 3221 3222 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3223 struct cftype *cft) 3224 { 3225 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3226 3227 return mem_cgroup_swappiness(memcg); 3228 } 3229 3230 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3231 struct cftype *cft, u64 val) 3232 { 3233 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3234 3235 if (val > 100) 3236 return -EINVAL; 3237 3238 if (css->parent) 3239 memcg->swappiness = val; 3240 else 3241 vm_swappiness = val; 3242 3243 return 0; 3244 } 3245 3246 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3247 { 3248 struct mem_cgroup_threshold_ary *t; 3249 unsigned long usage; 3250 int i; 3251 3252 rcu_read_lock(); 3253 if (!swap) 3254 t = rcu_dereference(memcg->thresholds.primary); 3255 else 3256 t = rcu_dereference(memcg->memsw_thresholds.primary); 3257 3258 if (!t) 3259 goto unlock; 3260 3261 usage = mem_cgroup_usage(memcg, swap); 3262 3263 /* 3264 * current_threshold points to threshold just below or equal to usage. 3265 * If it's not true, a threshold was crossed after last 3266 * call of __mem_cgroup_threshold(). 3267 */ 3268 i = t->current_threshold; 3269 3270 /* 3271 * Iterate backward over array of thresholds starting from 3272 * current_threshold and check if a threshold is crossed. 3273 * If none of thresholds below usage is crossed, we read 3274 * only one element of the array here. 3275 */ 3276 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3277 eventfd_signal(t->entries[i].eventfd, 1); 3278 3279 /* i = current_threshold + 1 */ 3280 i++; 3281 3282 /* 3283 * Iterate forward over array of thresholds starting from 3284 * current_threshold+1 and check if a threshold is crossed. 3285 * If none of thresholds above usage is crossed, we read 3286 * only one element of the array here. 3287 */ 3288 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3289 eventfd_signal(t->entries[i].eventfd, 1); 3290 3291 /* Update current_threshold */ 3292 t->current_threshold = i - 1; 3293 unlock: 3294 rcu_read_unlock(); 3295 } 3296 3297 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3298 { 3299 while (memcg) { 3300 __mem_cgroup_threshold(memcg, false); 3301 if (do_memsw_account()) 3302 __mem_cgroup_threshold(memcg, true); 3303 3304 memcg = parent_mem_cgroup(memcg); 3305 } 3306 } 3307 3308 static int compare_thresholds(const void *a, const void *b) 3309 { 3310 const struct mem_cgroup_threshold *_a = a; 3311 const struct mem_cgroup_threshold *_b = b; 3312 3313 if (_a->threshold > _b->threshold) 3314 return 1; 3315 3316 if (_a->threshold < _b->threshold) 3317 return -1; 3318 3319 return 0; 3320 } 3321 3322 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3323 { 3324 struct mem_cgroup_eventfd_list *ev; 3325 3326 spin_lock(&memcg_oom_lock); 3327 3328 list_for_each_entry(ev, &memcg->oom_notify, list) 3329 eventfd_signal(ev->eventfd, 1); 3330 3331 spin_unlock(&memcg_oom_lock); 3332 return 0; 3333 } 3334 3335 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3336 { 3337 struct mem_cgroup *iter; 3338 3339 for_each_mem_cgroup_tree(iter, memcg) 3340 mem_cgroup_oom_notify_cb(iter); 3341 } 3342 3343 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3344 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3345 { 3346 struct mem_cgroup_thresholds *thresholds; 3347 struct mem_cgroup_threshold_ary *new; 3348 unsigned long threshold; 3349 unsigned long usage; 3350 int i, size, ret; 3351 3352 ret = page_counter_memparse(args, "-1", &threshold); 3353 if (ret) 3354 return ret; 3355 3356 mutex_lock(&memcg->thresholds_lock); 3357 3358 if (type == _MEM) { 3359 thresholds = &memcg->thresholds; 3360 usage = mem_cgroup_usage(memcg, false); 3361 } else if (type == _MEMSWAP) { 3362 thresholds = &memcg->memsw_thresholds; 3363 usage = mem_cgroup_usage(memcg, true); 3364 } else 3365 BUG(); 3366 3367 /* Check if a threshold crossed before adding a new one */ 3368 if (thresholds->primary) 3369 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3370 3371 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3372 3373 /* Allocate memory for new array of thresholds */ 3374 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3375 GFP_KERNEL); 3376 if (!new) { 3377 ret = -ENOMEM; 3378 goto unlock; 3379 } 3380 new->size = size; 3381 3382 /* Copy thresholds (if any) to new array */ 3383 if (thresholds->primary) { 3384 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3385 sizeof(struct mem_cgroup_threshold)); 3386 } 3387 3388 /* Add new threshold */ 3389 new->entries[size - 1].eventfd = eventfd; 3390 new->entries[size - 1].threshold = threshold; 3391 3392 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3393 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3394 compare_thresholds, NULL); 3395 3396 /* Find current threshold */ 3397 new->current_threshold = -1; 3398 for (i = 0; i < size; i++) { 3399 if (new->entries[i].threshold <= usage) { 3400 /* 3401 * new->current_threshold will not be used until 3402 * rcu_assign_pointer(), so it's safe to increment 3403 * it here. 3404 */ 3405 ++new->current_threshold; 3406 } else 3407 break; 3408 } 3409 3410 /* Free old spare buffer and save old primary buffer as spare */ 3411 kfree(thresholds->spare); 3412 thresholds->spare = thresholds->primary; 3413 3414 rcu_assign_pointer(thresholds->primary, new); 3415 3416 /* To be sure that nobody uses thresholds */ 3417 synchronize_rcu(); 3418 3419 unlock: 3420 mutex_unlock(&memcg->thresholds_lock); 3421 3422 return ret; 3423 } 3424 3425 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3426 struct eventfd_ctx *eventfd, const char *args) 3427 { 3428 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3429 } 3430 3431 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3432 struct eventfd_ctx *eventfd, const char *args) 3433 { 3434 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3435 } 3436 3437 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3438 struct eventfd_ctx *eventfd, enum res_type type) 3439 { 3440 struct mem_cgroup_thresholds *thresholds; 3441 struct mem_cgroup_threshold_ary *new; 3442 unsigned long usage; 3443 int i, j, size; 3444 3445 mutex_lock(&memcg->thresholds_lock); 3446 3447 if (type == _MEM) { 3448 thresholds = &memcg->thresholds; 3449 usage = mem_cgroup_usage(memcg, false); 3450 } else if (type == _MEMSWAP) { 3451 thresholds = &memcg->memsw_thresholds; 3452 usage = mem_cgroup_usage(memcg, true); 3453 } else 3454 BUG(); 3455 3456 if (!thresholds->primary) 3457 goto unlock; 3458 3459 /* Check if a threshold crossed before removing */ 3460 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3461 3462 /* Calculate new number of threshold */ 3463 size = 0; 3464 for (i = 0; i < thresholds->primary->size; i++) { 3465 if (thresholds->primary->entries[i].eventfd != eventfd) 3466 size++; 3467 } 3468 3469 new = thresholds->spare; 3470 3471 /* Set thresholds array to NULL if we don't have thresholds */ 3472 if (!size) { 3473 kfree(new); 3474 new = NULL; 3475 goto swap_buffers; 3476 } 3477 3478 new->size = size; 3479 3480 /* Copy thresholds and find current threshold */ 3481 new->current_threshold = -1; 3482 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3483 if (thresholds->primary->entries[i].eventfd == eventfd) 3484 continue; 3485 3486 new->entries[j] = thresholds->primary->entries[i]; 3487 if (new->entries[j].threshold <= usage) { 3488 /* 3489 * new->current_threshold will not be used 3490 * until rcu_assign_pointer(), so it's safe to increment 3491 * it here. 3492 */ 3493 ++new->current_threshold; 3494 } 3495 j++; 3496 } 3497 3498 swap_buffers: 3499 /* Swap primary and spare array */ 3500 thresholds->spare = thresholds->primary; 3501 3502 rcu_assign_pointer(thresholds->primary, new); 3503 3504 /* To be sure that nobody uses thresholds */ 3505 synchronize_rcu(); 3506 3507 /* If all events are unregistered, free the spare array */ 3508 if (!new) { 3509 kfree(thresholds->spare); 3510 thresholds->spare = NULL; 3511 } 3512 unlock: 3513 mutex_unlock(&memcg->thresholds_lock); 3514 } 3515 3516 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3517 struct eventfd_ctx *eventfd) 3518 { 3519 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3520 } 3521 3522 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3523 struct eventfd_ctx *eventfd) 3524 { 3525 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3526 } 3527 3528 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3529 struct eventfd_ctx *eventfd, const char *args) 3530 { 3531 struct mem_cgroup_eventfd_list *event; 3532 3533 event = kmalloc(sizeof(*event), GFP_KERNEL); 3534 if (!event) 3535 return -ENOMEM; 3536 3537 spin_lock(&memcg_oom_lock); 3538 3539 event->eventfd = eventfd; 3540 list_add(&event->list, &memcg->oom_notify); 3541 3542 /* already in OOM ? */ 3543 if (memcg->under_oom) 3544 eventfd_signal(eventfd, 1); 3545 spin_unlock(&memcg_oom_lock); 3546 3547 return 0; 3548 } 3549 3550 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3551 struct eventfd_ctx *eventfd) 3552 { 3553 struct mem_cgroup_eventfd_list *ev, *tmp; 3554 3555 spin_lock(&memcg_oom_lock); 3556 3557 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3558 if (ev->eventfd == eventfd) { 3559 list_del(&ev->list); 3560 kfree(ev); 3561 } 3562 } 3563 3564 spin_unlock(&memcg_oom_lock); 3565 } 3566 3567 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3568 { 3569 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3570 3571 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3572 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3573 return 0; 3574 } 3575 3576 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3577 struct cftype *cft, u64 val) 3578 { 3579 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3580 3581 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3582 if (!css->parent || !((val == 0) || (val == 1))) 3583 return -EINVAL; 3584 3585 memcg->oom_kill_disable = val; 3586 if (!val) 3587 memcg_oom_recover(memcg); 3588 3589 return 0; 3590 } 3591 3592 #ifdef CONFIG_CGROUP_WRITEBACK 3593 3594 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3595 { 3596 return &memcg->cgwb_list; 3597 } 3598 3599 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3600 { 3601 return wb_domain_init(&memcg->cgwb_domain, gfp); 3602 } 3603 3604 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3605 { 3606 wb_domain_exit(&memcg->cgwb_domain); 3607 } 3608 3609 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3610 { 3611 wb_domain_size_changed(&memcg->cgwb_domain); 3612 } 3613 3614 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3615 { 3616 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3617 3618 if (!memcg->css.parent) 3619 return NULL; 3620 3621 return &memcg->cgwb_domain; 3622 } 3623 3624 /** 3625 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3626 * @wb: bdi_writeback in question 3627 * @pfilepages: out parameter for number of file pages 3628 * @pheadroom: out parameter for number of allocatable pages according to memcg 3629 * @pdirty: out parameter for number of dirty pages 3630 * @pwriteback: out parameter for number of pages under writeback 3631 * 3632 * Determine the numbers of file, headroom, dirty, and writeback pages in 3633 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3634 * is a bit more involved. 3635 * 3636 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3637 * headroom is calculated as the lowest headroom of itself and the 3638 * ancestors. Note that this doesn't consider the actual amount of 3639 * available memory in the system. The caller should further cap 3640 * *@pheadroom accordingly. 3641 */ 3642 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3643 unsigned long *pheadroom, unsigned long *pdirty, 3644 unsigned long *pwriteback) 3645 { 3646 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3647 struct mem_cgroup *parent; 3648 3649 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); 3650 3651 /* this should eventually include NR_UNSTABLE_NFS */ 3652 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 3653 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3654 (1 << LRU_ACTIVE_FILE)); 3655 *pheadroom = PAGE_COUNTER_MAX; 3656 3657 while ((parent = parent_mem_cgroup(memcg))) { 3658 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3659 unsigned long used = page_counter_read(&memcg->memory); 3660 3661 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3662 memcg = parent; 3663 } 3664 } 3665 3666 #else /* CONFIG_CGROUP_WRITEBACK */ 3667 3668 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3669 { 3670 return 0; 3671 } 3672 3673 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3674 { 3675 } 3676 3677 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3678 { 3679 } 3680 3681 #endif /* CONFIG_CGROUP_WRITEBACK */ 3682 3683 /* 3684 * DO NOT USE IN NEW FILES. 3685 * 3686 * "cgroup.event_control" implementation. 3687 * 3688 * This is way over-engineered. It tries to support fully configurable 3689 * events for each user. Such level of flexibility is completely 3690 * unnecessary especially in the light of the planned unified hierarchy. 3691 * 3692 * Please deprecate this and replace with something simpler if at all 3693 * possible. 3694 */ 3695 3696 /* 3697 * Unregister event and free resources. 3698 * 3699 * Gets called from workqueue. 3700 */ 3701 static void memcg_event_remove(struct work_struct *work) 3702 { 3703 struct mem_cgroup_event *event = 3704 container_of(work, struct mem_cgroup_event, remove); 3705 struct mem_cgroup *memcg = event->memcg; 3706 3707 remove_wait_queue(event->wqh, &event->wait); 3708 3709 event->unregister_event(memcg, event->eventfd); 3710 3711 /* Notify userspace the event is going away. */ 3712 eventfd_signal(event->eventfd, 1); 3713 3714 eventfd_ctx_put(event->eventfd); 3715 kfree(event); 3716 css_put(&memcg->css); 3717 } 3718 3719 /* 3720 * Gets called on POLLHUP on eventfd when user closes it. 3721 * 3722 * Called with wqh->lock held and interrupts disabled. 3723 */ 3724 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 3725 int sync, void *key) 3726 { 3727 struct mem_cgroup_event *event = 3728 container_of(wait, struct mem_cgroup_event, wait); 3729 struct mem_cgroup *memcg = event->memcg; 3730 unsigned long flags = (unsigned long)key; 3731 3732 if (flags & POLLHUP) { 3733 /* 3734 * If the event has been detached at cgroup removal, we 3735 * can simply return knowing the other side will cleanup 3736 * for us. 3737 * 3738 * We can't race against event freeing since the other 3739 * side will require wqh->lock via remove_wait_queue(), 3740 * which we hold. 3741 */ 3742 spin_lock(&memcg->event_list_lock); 3743 if (!list_empty(&event->list)) { 3744 list_del_init(&event->list); 3745 /* 3746 * We are in atomic context, but cgroup_event_remove() 3747 * may sleep, so we have to call it in workqueue. 3748 */ 3749 schedule_work(&event->remove); 3750 } 3751 spin_unlock(&memcg->event_list_lock); 3752 } 3753 3754 return 0; 3755 } 3756 3757 static void memcg_event_ptable_queue_proc(struct file *file, 3758 wait_queue_head_t *wqh, poll_table *pt) 3759 { 3760 struct mem_cgroup_event *event = 3761 container_of(pt, struct mem_cgroup_event, pt); 3762 3763 event->wqh = wqh; 3764 add_wait_queue(wqh, &event->wait); 3765 } 3766 3767 /* 3768 * DO NOT USE IN NEW FILES. 3769 * 3770 * Parse input and register new cgroup event handler. 3771 * 3772 * Input must be in format '<event_fd> <control_fd> <args>'. 3773 * Interpretation of args is defined by control file implementation. 3774 */ 3775 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3776 char *buf, size_t nbytes, loff_t off) 3777 { 3778 struct cgroup_subsys_state *css = of_css(of); 3779 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3780 struct mem_cgroup_event *event; 3781 struct cgroup_subsys_state *cfile_css; 3782 unsigned int efd, cfd; 3783 struct fd efile; 3784 struct fd cfile; 3785 const char *name; 3786 char *endp; 3787 int ret; 3788 3789 buf = strstrip(buf); 3790 3791 efd = simple_strtoul(buf, &endp, 10); 3792 if (*endp != ' ') 3793 return -EINVAL; 3794 buf = endp + 1; 3795 3796 cfd = simple_strtoul(buf, &endp, 10); 3797 if ((*endp != ' ') && (*endp != '\0')) 3798 return -EINVAL; 3799 buf = endp + 1; 3800 3801 event = kzalloc(sizeof(*event), GFP_KERNEL); 3802 if (!event) 3803 return -ENOMEM; 3804 3805 event->memcg = memcg; 3806 INIT_LIST_HEAD(&event->list); 3807 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3808 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3809 INIT_WORK(&event->remove, memcg_event_remove); 3810 3811 efile = fdget(efd); 3812 if (!efile.file) { 3813 ret = -EBADF; 3814 goto out_kfree; 3815 } 3816 3817 event->eventfd = eventfd_ctx_fileget(efile.file); 3818 if (IS_ERR(event->eventfd)) { 3819 ret = PTR_ERR(event->eventfd); 3820 goto out_put_efile; 3821 } 3822 3823 cfile = fdget(cfd); 3824 if (!cfile.file) { 3825 ret = -EBADF; 3826 goto out_put_eventfd; 3827 } 3828 3829 /* the process need read permission on control file */ 3830 /* AV: shouldn't we check that it's been opened for read instead? */ 3831 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3832 if (ret < 0) 3833 goto out_put_cfile; 3834 3835 /* 3836 * Determine the event callbacks and set them in @event. This used 3837 * to be done via struct cftype but cgroup core no longer knows 3838 * about these events. The following is crude but the whole thing 3839 * is for compatibility anyway. 3840 * 3841 * DO NOT ADD NEW FILES. 3842 */ 3843 name = cfile.file->f_path.dentry->d_name.name; 3844 3845 if (!strcmp(name, "memory.usage_in_bytes")) { 3846 event->register_event = mem_cgroup_usage_register_event; 3847 event->unregister_event = mem_cgroup_usage_unregister_event; 3848 } else if (!strcmp(name, "memory.oom_control")) { 3849 event->register_event = mem_cgroup_oom_register_event; 3850 event->unregister_event = mem_cgroup_oom_unregister_event; 3851 } else if (!strcmp(name, "memory.pressure_level")) { 3852 event->register_event = vmpressure_register_event; 3853 event->unregister_event = vmpressure_unregister_event; 3854 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3855 event->register_event = memsw_cgroup_usage_register_event; 3856 event->unregister_event = memsw_cgroup_usage_unregister_event; 3857 } else { 3858 ret = -EINVAL; 3859 goto out_put_cfile; 3860 } 3861 3862 /* 3863 * Verify @cfile should belong to @css. Also, remaining events are 3864 * automatically removed on cgroup destruction but the removal is 3865 * asynchronous, so take an extra ref on @css. 3866 */ 3867 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3868 &memory_cgrp_subsys); 3869 ret = -EINVAL; 3870 if (IS_ERR(cfile_css)) 3871 goto out_put_cfile; 3872 if (cfile_css != css) { 3873 css_put(cfile_css); 3874 goto out_put_cfile; 3875 } 3876 3877 ret = event->register_event(memcg, event->eventfd, buf); 3878 if (ret) 3879 goto out_put_css; 3880 3881 efile.file->f_op->poll(efile.file, &event->pt); 3882 3883 spin_lock(&memcg->event_list_lock); 3884 list_add(&event->list, &memcg->event_list); 3885 spin_unlock(&memcg->event_list_lock); 3886 3887 fdput(cfile); 3888 fdput(efile); 3889 3890 return nbytes; 3891 3892 out_put_css: 3893 css_put(css); 3894 out_put_cfile: 3895 fdput(cfile); 3896 out_put_eventfd: 3897 eventfd_ctx_put(event->eventfd); 3898 out_put_efile: 3899 fdput(efile); 3900 out_kfree: 3901 kfree(event); 3902 3903 return ret; 3904 } 3905 3906 static struct cftype mem_cgroup_legacy_files[] = { 3907 { 3908 .name = "usage_in_bytes", 3909 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3910 .read_u64 = mem_cgroup_read_u64, 3911 }, 3912 { 3913 .name = "max_usage_in_bytes", 3914 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3915 .write = mem_cgroup_reset, 3916 .read_u64 = mem_cgroup_read_u64, 3917 }, 3918 { 3919 .name = "limit_in_bytes", 3920 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3921 .write = mem_cgroup_write, 3922 .read_u64 = mem_cgroup_read_u64, 3923 }, 3924 { 3925 .name = "soft_limit_in_bytes", 3926 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3927 .write = mem_cgroup_write, 3928 .read_u64 = mem_cgroup_read_u64, 3929 }, 3930 { 3931 .name = "failcnt", 3932 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3933 .write = mem_cgroup_reset, 3934 .read_u64 = mem_cgroup_read_u64, 3935 }, 3936 { 3937 .name = "stat", 3938 .seq_show = memcg_stat_show, 3939 }, 3940 { 3941 .name = "force_empty", 3942 .write = mem_cgroup_force_empty_write, 3943 }, 3944 { 3945 .name = "use_hierarchy", 3946 .write_u64 = mem_cgroup_hierarchy_write, 3947 .read_u64 = mem_cgroup_hierarchy_read, 3948 }, 3949 { 3950 .name = "cgroup.event_control", /* XXX: for compat */ 3951 .write = memcg_write_event_control, 3952 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3953 }, 3954 { 3955 .name = "swappiness", 3956 .read_u64 = mem_cgroup_swappiness_read, 3957 .write_u64 = mem_cgroup_swappiness_write, 3958 }, 3959 { 3960 .name = "move_charge_at_immigrate", 3961 .read_u64 = mem_cgroup_move_charge_read, 3962 .write_u64 = mem_cgroup_move_charge_write, 3963 }, 3964 { 3965 .name = "oom_control", 3966 .seq_show = mem_cgroup_oom_control_read, 3967 .write_u64 = mem_cgroup_oom_control_write, 3968 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3969 }, 3970 { 3971 .name = "pressure_level", 3972 }, 3973 #ifdef CONFIG_NUMA 3974 { 3975 .name = "numa_stat", 3976 .seq_show = memcg_numa_stat_show, 3977 }, 3978 #endif 3979 { 3980 .name = "kmem.limit_in_bytes", 3981 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 3982 .write = mem_cgroup_write, 3983 .read_u64 = mem_cgroup_read_u64, 3984 }, 3985 { 3986 .name = "kmem.usage_in_bytes", 3987 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 3988 .read_u64 = mem_cgroup_read_u64, 3989 }, 3990 { 3991 .name = "kmem.failcnt", 3992 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 3993 .write = mem_cgroup_reset, 3994 .read_u64 = mem_cgroup_read_u64, 3995 }, 3996 { 3997 .name = "kmem.max_usage_in_bytes", 3998 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 3999 .write = mem_cgroup_reset, 4000 .read_u64 = mem_cgroup_read_u64, 4001 }, 4002 #ifdef CONFIG_SLABINFO 4003 { 4004 .name = "kmem.slabinfo", 4005 .seq_start = slab_start, 4006 .seq_next = slab_next, 4007 .seq_stop = slab_stop, 4008 .seq_show = memcg_slab_show, 4009 }, 4010 #endif 4011 { 4012 .name = "kmem.tcp.limit_in_bytes", 4013 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4014 .write = mem_cgroup_write, 4015 .read_u64 = mem_cgroup_read_u64, 4016 }, 4017 { 4018 .name = "kmem.tcp.usage_in_bytes", 4019 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4020 .read_u64 = mem_cgroup_read_u64, 4021 }, 4022 { 4023 .name = "kmem.tcp.failcnt", 4024 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4025 .write = mem_cgroup_reset, 4026 .read_u64 = mem_cgroup_read_u64, 4027 }, 4028 { 4029 .name = "kmem.tcp.max_usage_in_bytes", 4030 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4031 .write = mem_cgroup_reset, 4032 .read_u64 = mem_cgroup_read_u64, 4033 }, 4034 { }, /* terminate */ 4035 }; 4036 4037 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4038 { 4039 struct mem_cgroup_per_node *pn; 4040 struct mem_cgroup_per_zone *mz; 4041 int zone, tmp = node; 4042 /* 4043 * This routine is called against possible nodes. 4044 * But it's BUG to call kmalloc() against offline node. 4045 * 4046 * TODO: this routine can waste much memory for nodes which will 4047 * never be onlined. It's better to use memory hotplug callback 4048 * function. 4049 */ 4050 if (!node_state(node, N_NORMAL_MEMORY)) 4051 tmp = -1; 4052 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4053 if (!pn) 4054 return 1; 4055 4056 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4057 mz = &pn->zoneinfo[zone]; 4058 lruvec_init(&mz->lruvec); 4059 mz->usage_in_excess = 0; 4060 mz->on_tree = false; 4061 mz->memcg = memcg; 4062 } 4063 memcg->nodeinfo[node] = pn; 4064 return 0; 4065 } 4066 4067 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4068 { 4069 kfree(memcg->nodeinfo[node]); 4070 } 4071 4072 static void mem_cgroup_free(struct mem_cgroup *memcg) 4073 { 4074 int node; 4075 4076 memcg_wb_domain_exit(memcg); 4077 for_each_node(node) 4078 free_mem_cgroup_per_zone_info(memcg, node); 4079 free_percpu(memcg->stat); 4080 kfree(memcg); 4081 } 4082 4083 static struct mem_cgroup *mem_cgroup_alloc(void) 4084 { 4085 struct mem_cgroup *memcg; 4086 size_t size; 4087 int node; 4088 4089 size = sizeof(struct mem_cgroup); 4090 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4091 4092 memcg = kzalloc(size, GFP_KERNEL); 4093 if (!memcg) 4094 return NULL; 4095 4096 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4097 if (!memcg->stat) 4098 goto fail; 4099 4100 for_each_node(node) 4101 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4102 goto fail; 4103 4104 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4105 goto fail; 4106 4107 INIT_WORK(&memcg->high_work, high_work_func); 4108 memcg->last_scanned_node = MAX_NUMNODES; 4109 INIT_LIST_HEAD(&memcg->oom_notify); 4110 mutex_init(&memcg->thresholds_lock); 4111 spin_lock_init(&memcg->move_lock); 4112 vmpressure_init(&memcg->vmpressure); 4113 INIT_LIST_HEAD(&memcg->event_list); 4114 spin_lock_init(&memcg->event_list_lock); 4115 memcg->socket_pressure = jiffies; 4116 #ifndef CONFIG_SLOB 4117 memcg->kmemcg_id = -1; 4118 #endif 4119 #ifdef CONFIG_CGROUP_WRITEBACK 4120 INIT_LIST_HEAD(&memcg->cgwb_list); 4121 #endif 4122 return memcg; 4123 fail: 4124 mem_cgroup_free(memcg); 4125 return NULL; 4126 } 4127 4128 static struct cgroup_subsys_state * __ref 4129 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4130 { 4131 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4132 struct mem_cgroup *memcg; 4133 long error = -ENOMEM; 4134 4135 memcg = mem_cgroup_alloc(); 4136 if (!memcg) 4137 return ERR_PTR(error); 4138 4139 memcg->high = PAGE_COUNTER_MAX; 4140 memcg->soft_limit = PAGE_COUNTER_MAX; 4141 if (parent) { 4142 memcg->swappiness = mem_cgroup_swappiness(parent); 4143 memcg->oom_kill_disable = parent->oom_kill_disable; 4144 } 4145 if (parent && parent->use_hierarchy) { 4146 memcg->use_hierarchy = true; 4147 page_counter_init(&memcg->memory, &parent->memory); 4148 page_counter_init(&memcg->swap, &parent->swap); 4149 page_counter_init(&memcg->memsw, &parent->memsw); 4150 page_counter_init(&memcg->kmem, &parent->kmem); 4151 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4152 } else { 4153 page_counter_init(&memcg->memory, NULL); 4154 page_counter_init(&memcg->swap, NULL); 4155 page_counter_init(&memcg->memsw, NULL); 4156 page_counter_init(&memcg->kmem, NULL); 4157 page_counter_init(&memcg->tcpmem, NULL); 4158 /* 4159 * Deeper hierachy with use_hierarchy == false doesn't make 4160 * much sense so let cgroup subsystem know about this 4161 * unfortunate state in our controller. 4162 */ 4163 if (parent != root_mem_cgroup) 4164 memory_cgrp_subsys.broken_hierarchy = true; 4165 } 4166 4167 /* The following stuff does not apply to the root */ 4168 if (!parent) { 4169 root_mem_cgroup = memcg; 4170 return &memcg->css; 4171 } 4172 4173 error = memcg_online_kmem(memcg); 4174 if (error) 4175 goto fail; 4176 4177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4178 static_branch_inc(&memcg_sockets_enabled_key); 4179 4180 return &memcg->css; 4181 fail: 4182 mem_cgroup_free(memcg); 4183 return NULL; 4184 } 4185 4186 static int 4187 mem_cgroup_css_online(struct cgroup_subsys_state *css) 4188 { 4189 if (css->id > MEM_CGROUP_ID_MAX) 4190 return -ENOSPC; 4191 4192 return 0; 4193 } 4194 4195 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4196 { 4197 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4198 struct mem_cgroup_event *event, *tmp; 4199 4200 /* 4201 * Unregister events and notify userspace. 4202 * Notify userspace about cgroup removing only after rmdir of cgroup 4203 * directory to avoid race between userspace and kernelspace. 4204 */ 4205 spin_lock(&memcg->event_list_lock); 4206 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4207 list_del_init(&event->list); 4208 schedule_work(&event->remove); 4209 } 4210 spin_unlock(&memcg->event_list_lock); 4211 4212 memcg_offline_kmem(memcg); 4213 wb_memcg_offline(memcg); 4214 } 4215 4216 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4217 { 4218 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4219 4220 invalidate_reclaim_iterators(memcg); 4221 } 4222 4223 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4224 { 4225 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4226 4227 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4228 static_branch_dec(&memcg_sockets_enabled_key); 4229 4230 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4231 static_branch_dec(&memcg_sockets_enabled_key); 4232 4233 vmpressure_cleanup(&memcg->vmpressure); 4234 cancel_work_sync(&memcg->high_work); 4235 mem_cgroup_remove_from_trees(memcg); 4236 memcg_free_kmem(memcg); 4237 mem_cgroup_free(memcg); 4238 } 4239 4240 /** 4241 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4242 * @css: the target css 4243 * 4244 * Reset the states of the mem_cgroup associated with @css. This is 4245 * invoked when the userland requests disabling on the default hierarchy 4246 * but the memcg is pinned through dependency. The memcg should stop 4247 * applying policies and should revert to the vanilla state as it may be 4248 * made visible again. 4249 * 4250 * The current implementation only resets the essential configurations. 4251 * This needs to be expanded to cover all the visible parts. 4252 */ 4253 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4254 { 4255 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4256 4257 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4258 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4259 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4260 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4261 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4262 memcg->low = 0; 4263 memcg->high = PAGE_COUNTER_MAX; 4264 memcg->soft_limit = PAGE_COUNTER_MAX; 4265 memcg_wb_domain_size_changed(memcg); 4266 } 4267 4268 #ifdef CONFIG_MMU 4269 /* Handlers for move charge at task migration. */ 4270 static int mem_cgroup_do_precharge(unsigned long count) 4271 { 4272 int ret; 4273 4274 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4275 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4276 if (!ret) { 4277 mc.precharge += count; 4278 return ret; 4279 } 4280 4281 /* Try charges one by one with reclaim */ 4282 while (count--) { 4283 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 4284 if (ret) 4285 return ret; 4286 mc.precharge++; 4287 cond_resched(); 4288 } 4289 return 0; 4290 } 4291 4292 /** 4293 * get_mctgt_type - get target type of moving charge 4294 * @vma: the vma the pte to be checked belongs 4295 * @addr: the address corresponding to the pte to be checked 4296 * @ptent: the pte to be checked 4297 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4298 * 4299 * Returns 4300 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4301 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4302 * move charge. if @target is not NULL, the page is stored in target->page 4303 * with extra refcnt got(Callers should handle it). 4304 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4305 * target for charge migration. if @target is not NULL, the entry is stored 4306 * in target->ent. 4307 * 4308 * Called with pte lock held. 4309 */ 4310 union mc_target { 4311 struct page *page; 4312 swp_entry_t ent; 4313 }; 4314 4315 enum mc_target_type { 4316 MC_TARGET_NONE = 0, 4317 MC_TARGET_PAGE, 4318 MC_TARGET_SWAP, 4319 }; 4320 4321 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4322 unsigned long addr, pte_t ptent) 4323 { 4324 struct page *page = vm_normal_page(vma, addr, ptent); 4325 4326 if (!page || !page_mapped(page)) 4327 return NULL; 4328 if (PageAnon(page)) { 4329 if (!(mc.flags & MOVE_ANON)) 4330 return NULL; 4331 } else { 4332 if (!(mc.flags & MOVE_FILE)) 4333 return NULL; 4334 } 4335 if (!get_page_unless_zero(page)) 4336 return NULL; 4337 4338 return page; 4339 } 4340 4341 #ifdef CONFIG_SWAP 4342 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4343 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4344 { 4345 struct page *page = NULL; 4346 swp_entry_t ent = pte_to_swp_entry(ptent); 4347 4348 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4349 return NULL; 4350 /* 4351 * Because lookup_swap_cache() updates some statistics counter, 4352 * we call find_get_page() with swapper_space directly. 4353 */ 4354 page = find_get_page(swap_address_space(ent), ent.val); 4355 if (do_memsw_account()) 4356 entry->val = ent.val; 4357 4358 return page; 4359 } 4360 #else 4361 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4362 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4363 { 4364 return NULL; 4365 } 4366 #endif 4367 4368 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4369 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4370 { 4371 struct page *page = NULL; 4372 struct address_space *mapping; 4373 pgoff_t pgoff; 4374 4375 if (!vma->vm_file) /* anonymous vma */ 4376 return NULL; 4377 if (!(mc.flags & MOVE_FILE)) 4378 return NULL; 4379 4380 mapping = vma->vm_file->f_mapping; 4381 pgoff = linear_page_index(vma, addr); 4382 4383 /* page is moved even if it's not RSS of this task(page-faulted). */ 4384 #ifdef CONFIG_SWAP 4385 /* shmem/tmpfs may report page out on swap: account for that too. */ 4386 if (shmem_mapping(mapping)) { 4387 page = find_get_entry(mapping, pgoff); 4388 if (radix_tree_exceptional_entry(page)) { 4389 swp_entry_t swp = radix_to_swp_entry(page); 4390 if (do_memsw_account()) 4391 *entry = swp; 4392 page = find_get_page(swap_address_space(swp), swp.val); 4393 } 4394 } else 4395 page = find_get_page(mapping, pgoff); 4396 #else 4397 page = find_get_page(mapping, pgoff); 4398 #endif 4399 return page; 4400 } 4401 4402 /** 4403 * mem_cgroup_move_account - move account of the page 4404 * @page: the page 4405 * @nr_pages: number of regular pages (>1 for huge pages) 4406 * @from: mem_cgroup which the page is moved from. 4407 * @to: mem_cgroup which the page is moved to. @from != @to. 4408 * 4409 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4410 * 4411 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4412 * from old cgroup. 4413 */ 4414 static int mem_cgroup_move_account(struct page *page, 4415 bool compound, 4416 struct mem_cgroup *from, 4417 struct mem_cgroup *to) 4418 { 4419 unsigned long flags; 4420 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4421 int ret; 4422 bool anon; 4423 4424 VM_BUG_ON(from == to); 4425 VM_BUG_ON_PAGE(PageLRU(page), page); 4426 VM_BUG_ON(compound && !PageTransHuge(page)); 4427 4428 /* 4429 * Prevent mem_cgroup_migrate() from looking at 4430 * page->mem_cgroup of its source page while we change it. 4431 */ 4432 ret = -EBUSY; 4433 if (!trylock_page(page)) 4434 goto out; 4435 4436 ret = -EINVAL; 4437 if (page->mem_cgroup != from) 4438 goto out_unlock; 4439 4440 anon = PageAnon(page); 4441 4442 spin_lock_irqsave(&from->move_lock, flags); 4443 4444 if (!anon && page_mapped(page)) { 4445 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4446 nr_pages); 4447 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4448 nr_pages); 4449 } 4450 4451 /* 4452 * move_lock grabbed above and caller set from->moving_account, so 4453 * mem_cgroup_update_page_stat() will serialize updates to PageDirty. 4454 * So mapping should be stable for dirty pages. 4455 */ 4456 if (!anon && PageDirty(page)) { 4457 struct address_space *mapping = page_mapping(page); 4458 4459 if (mapping_cap_account_dirty(mapping)) { 4460 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], 4461 nr_pages); 4462 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], 4463 nr_pages); 4464 } 4465 } 4466 4467 if (PageWriteback(page)) { 4468 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4469 nr_pages); 4470 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4471 nr_pages); 4472 } 4473 4474 /* 4475 * It is safe to change page->mem_cgroup here because the page 4476 * is referenced, charged, and isolated - we can't race with 4477 * uncharging, charging, migration, or LRU putback. 4478 */ 4479 4480 /* caller should have done css_get */ 4481 page->mem_cgroup = to; 4482 spin_unlock_irqrestore(&from->move_lock, flags); 4483 4484 ret = 0; 4485 4486 local_irq_disable(); 4487 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4488 memcg_check_events(to, page); 4489 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4490 memcg_check_events(from, page); 4491 local_irq_enable(); 4492 out_unlock: 4493 unlock_page(page); 4494 out: 4495 return ret; 4496 } 4497 4498 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4499 unsigned long addr, pte_t ptent, union mc_target *target) 4500 { 4501 struct page *page = NULL; 4502 enum mc_target_type ret = MC_TARGET_NONE; 4503 swp_entry_t ent = { .val = 0 }; 4504 4505 if (pte_present(ptent)) 4506 page = mc_handle_present_pte(vma, addr, ptent); 4507 else if (is_swap_pte(ptent)) 4508 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 4509 else if (pte_none(ptent)) 4510 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4511 4512 if (!page && !ent.val) 4513 return ret; 4514 if (page) { 4515 /* 4516 * Do only loose check w/o serialization. 4517 * mem_cgroup_move_account() checks the page is valid or 4518 * not under LRU exclusion. 4519 */ 4520 if (page->mem_cgroup == mc.from) { 4521 ret = MC_TARGET_PAGE; 4522 if (target) 4523 target->page = page; 4524 } 4525 if (!ret || !target) 4526 put_page(page); 4527 } 4528 /* There is a swap entry and a page doesn't exist or isn't charged */ 4529 if (ent.val && !ret && 4530 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4531 ret = MC_TARGET_SWAP; 4532 if (target) 4533 target->ent = ent; 4534 } 4535 return ret; 4536 } 4537 4538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4539 /* 4540 * We don't consider swapping or file mapped pages because THP does not 4541 * support them for now. 4542 * Caller should make sure that pmd_trans_huge(pmd) is true. 4543 */ 4544 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4545 unsigned long addr, pmd_t pmd, union mc_target *target) 4546 { 4547 struct page *page = NULL; 4548 enum mc_target_type ret = MC_TARGET_NONE; 4549 4550 page = pmd_page(pmd); 4551 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4552 if (!(mc.flags & MOVE_ANON)) 4553 return ret; 4554 if (page->mem_cgroup == mc.from) { 4555 ret = MC_TARGET_PAGE; 4556 if (target) { 4557 get_page(page); 4558 target->page = page; 4559 } 4560 } 4561 return ret; 4562 } 4563 #else 4564 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4565 unsigned long addr, pmd_t pmd, union mc_target *target) 4566 { 4567 return MC_TARGET_NONE; 4568 } 4569 #endif 4570 4571 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4572 unsigned long addr, unsigned long end, 4573 struct mm_walk *walk) 4574 { 4575 struct vm_area_struct *vma = walk->vma; 4576 pte_t *pte; 4577 spinlock_t *ptl; 4578 4579 ptl = pmd_trans_huge_lock(pmd, vma); 4580 if (ptl) { 4581 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4582 mc.precharge += HPAGE_PMD_NR; 4583 spin_unlock(ptl); 4584 return 0; 4585 } 4586 4587 if (pmd_trans_unstable(pmd)) 4588 return 0; 4589 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4590 for (; addr != end; pte++, addr += PAGE_SIZE) 4591 if (get_mctgt_type(vma, addr, *pte, NULL)) 4592 mc.precharge++; /* increment precharge temporarily */ 4593 pte_unmap_unlock(pte - 1, ptl); 4594 cond_resched(); 4595 4596 return 0; 4597 } 4598 4599 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4600 { 4601 unsigned long precharge; 4602 4603 struct mm_walk mem_cgroup_count_precharge_walk = { 4604 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4605 .mm = mm, 4606 }; 4607 down_read(&mm->mmap_sem); 4608 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); 4609 up_read(&mm->mmap_sem); 4610 4611 precharge = mc.precharge; 4612 mc.precharge = 0; 4613 4614 return precharge; 4615 } 4616 4617 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4618 { 4619 unsigned long precharge = mem_cgroup_count_precharge(mm); 4620 4621 VM_BUG_ON(mc.moving_task); 4622 mc.moving_task = current; 4623 return mem_cgroup_do_precharge(precharge); 4624 } 4625 4626 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4627 static void __mem_cgroup_clear_mc(void) 4628 { 4629 struct mem_cgroup *from = mc.from; 4630 struct mem_cgroup *to = mc.to; 4631 4632 /* we must uncharge all the leftover precharges from mc.to */ 4633 if (mc.precharge) { 4634 cancel_charge(mc.to, mc.precharge); 4635 mc.precharge = 0; 4636 } 4637 /* 4638 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4639 * we must uncharge here. 4640 */ 4641 if (mc.moved_charge) { 4642 cancel_charge(mc.from, mc.moved_charge); 4643 mc.moved_charge = 0; 4644 } 4645 /* we must fixup refcnts and charges */ 4646 if (mc.moved_swap) { 4647 /* uncharge swap account from the old cgroup */ 4648 if (!mem_cgroup_is_root(mc.from)) 4649 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4650 4651 /* 4652 * we charged both to->memory and to->memsw, so we 4653 * should uncharge to->memory. 4654 */ 4655 if (!mem_cgroup_is_root(mc.to)) 4656 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4657 4658 css_put_many(&mc.from->css, mc.moved_swap); 4659 4660 /* we've already done css_get(mc.to) */ 4661 mc.moved_swap = 0; 4662 } 4663 memcg_oom_recover(from); 4664 memcg_oom_recover(to); 4665 wake_up_all(&mc.waitq); 4666 } 4667 4668 static void mem_cgroup_clear_mc(void) 4669 { 4670 /* 4671 * we must clear moving_task before waking up waiters at the end of 4672 * task migration. 4673 */ 4674 mc.moving_task = NULL; 4675 __mem_cgroup_clear_mc(); 4676 spin_lock(&mc.lock); 4677 mc.from = NULL; 4678 mc.to = NULL; 4679 spin_unlock(&mc.lock); 4680 } 4681 4682 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4683 { 4684 struct cgroup_subsys_state *css; 4685 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4686 struct mem_cgroup *from; 4687 struct task_struct *leader, *p; 4688 struct mm_struct *mm; 4689 unsigned long move_flags; 4690 int ret = 0; 4691 4692 /* charge immigration isn't supported on the default hierarchy */ 4693 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4694 return 0; 4695 4696 /* 4697 * Multi-process migrations only happen on the default hierarchy 4698 * where charge immigration is not used. Perform charge 4699 * immigration if @tset contains a leader and whine if there are 4700 * multiple. 4701 */ 4702 p = NULL; 4703 cgroup_taskset_for_each_leader(leader, css, tset) { 4704 WARN_ON_ONCE(p); 4705 p = leader; 4706 memcg = mem_cgroup_from_css(css); 4707 } 4708 if (!p) 4709 return 0; 4710 4711 /* 4712 * We are now commited to this value whatever it is. Changes in this 4713 * tunable will only affect upcoming migrations, not the current one. 4714 * So we need to save it, and keep it going. 4715 */ 4716 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4717 if (!move_flags) 4718 return 0; 4719 4720 from = mem_cgroup_from_task(p); 4721 4722 VM_BUG_ON(from == memcg); 4723 4724 mm = get_task_mm(p); 4725 if (!mm) 4726 return 0; 4727 /* We move charges only when we move a owner of the mm */ 4728 if (mm->owner == p) { 4729 VM_BUG_ON(mc.from); 4730 VM_BUG_ON(mc.to); 4731 VM_BUG_ON(mc.precharge); 4732 VM_BUG_ON(mc.moved_charge); 4733 VM_BUG_ON(mc.moved_swap); 4734 4735 spin_lock(&mc.lock); 4736 mc.from = from; 4737 mc.to = memcg; 4738 mc.flags = move_flags; 4739 spin_unlock(&mc.lock); 4740 /* We set mc.moving_task later */ 4741 4742 ret = mem_cgroup_precharge_mc(mm); 4743 if (ret) 4744 mem_cgroup_clear_mc(); 4745 } 4746 mmput(mm); 4747 return ret; 4748 } 4749 4750 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4751 { 4752 if (mc.to) 4753 mem_cgroup_clear_mc(); 4754 } 4755 4756 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4757 unsigned long addr, unsigned long end, 4758 struct mm_walk *walk) 4759 { 4760 int ret = 0; 4761 struct vm_area_struct *vma = walk->vma; 4762 pte_t *pte; 4763 spinlock_t *ptl; 4764 enum mc_target_type target_type; 4765 union mc_target target; 4766 struct page *page; 4767 4768 ptl = pmd_trans_huge_lock(pmd, vma); 4769 if (ptl) { 4770 if (mc.precharge < HPAGE_PMD_NR) { 4771 spin_unlock(ptl); 4772 return 0; 4773 } 4774 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4775 if (target_type == MC_TARGET_PAGE) { 4776 page = target.page; 4777 if (!isolate_lru_page(page)) { 4778 if (!mem_cgroup_move_account(page, true, 4779 mc.from, mc.to)) { 4780 mc.precharge -= HPAGE_PMD_NR; 4781 mc.moved_charge += HPAGE_PMD_NR; 4782 } 4783 putback_lru_page(page); 4784 } 4785 put_page(page); 4786 } 4787 spin_unlock(ptl); 4788 return 0; 4789 } 4790 4791 if (pmd_trans_unstable(pmd)) 4792 return 0; 4793 retry: 4794 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4795 for (; addr != end; addr += PAGE_SIZE) { 4796 pte_t ptent = *(pte++); 4797 swp_entry_t ent; 4798 4799 if (!mc.precharge) 4800 break; 4801 4802 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4803 case MC_TARGET_PAGE: 4804 page = target.page; 4805 /* 4806 * We can have a part of the split pmd here. Moving it 4807 * can be done but it would be too convoluted so simply 4808 * ignore such a partial THP and keep it in original 4809 * memcg. There should be somebody mapping the head. 4810 */ 4811 if (PageTransCompound(page)) 4812 goto put; 4813 if (isolate_lru_page(page)) 4814 goto put; 4815 if (!mem_cgroup_move_account(page, false, 4816 mc.from, mc.to)) { 4817 mc.precharge--; 4818 /* we uncharge from mc.from later. */ 4819 mc.moved_charge++; 4820 } 4821 putback_lru_page(page); 4822 put: /* get_mctgt_type() gets the page */ 4823 put_page(page); 4824 break; 4825 case MC_TARGET_SWAP: 4826 ent = target.ent; 4827 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4828 mc.precharge--; 4829 /* we fixup refcnts and charges later. */ 4830 mc.moved_swap++; 4831 } 4832 break; 4833 default: 4834 break; 4835 } 4836 } 4837 pte_unmap_unlock(pte - 1, ptl); 4838 cond_resched(); 4839 4840 if (addr != end) { 4841 /* 4842 * We have consumed all precharges we got in can_attach(). 4843 * We try charge one by one, but don't do any additional 4844 * charges to mc.to if we have failed in charge once in attach() 4845 * phase. 4846 */ 4847 ret = mem_cgroup_do_precharge(1); 4848 if (!ret) 4849 goto retry; 4850 } 4851 4852 return ret; 4853 } 4854 4855 static void mem_cgroup_move_charge(struct mm_struct *mm) 4856 { 4857 struct mm_walk mem_cgroup_move_charge_walk = { 4858 .pmd_entry = mem_cgroup_move_charge_pte_range, 4859 .mm = mm, 4860 }; 4861 4862 lru_add_drain_all(); 4863 /* 4864 * Signal lock_page_memcg() to take the memcg's move_lock 4865 * while we're moving its pages to another memcg. Then wait 4866 * for already started RCU-only updates to finish. 4867 */ 4868 atomic_inc(&mc.from->moving_account); 4869 synchronize_rcu(); 4870 retry: 4871 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 4872 /* 4873 * Someone who are holding the mmap_sem might be waiting in 4874 * waitq. So we cancel all extra charges, wake up all waiters, 4875 * and retry. Because we cancel precharges, we might not be able 4876 * to move enough charges, but moving charge is a best-effort 4877 * feature anyway, so it wouldn't be a big problem. 4878 */ 4879 __mem_cgroup_clear_mc(); 4880 cond_resched(); 4881 goto retry; 4882 } 4883 /* 4884 * When we have consumed all precharges and failed in doing 4885 * additional charge, the page walk just aborts. 4886 */ 4887 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); 4888 up_read(&mm->mmap_sem); 4889 atomic_dec(&mc.from->moving_account); 4890 } 4891 4892 static void mem_cgroup_move_task(struct cgroup_taskset *tset) 4893 { 4894 struct cgroup_subsys_state *css; 4895 struct task_struct *p = cgroup_taskset_first(tset, &css); 4896 struct mm_struct *mm = get_task_mm(p); 4897 4898 if (mm) { 4899 if (mc.to) 4900 mem_cgroup_move_charge(mm); 4901 mmput(mm); 4902 } 4903 if (mc.to) 4904 mem_cgroup_clear_mc(); 4905 } 4906 #else /* !CONFIG_MMU */ 4907 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4908 { 4909 return 0; 4910 } 4911 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4912 { 4913 } 4914 static void mem_cgroup_move_task(struct cgroup_taskset *tset) 4915 { 4916 } 4917 #endif 4918 4919 /* 4920 * Cgroup retains root cgroups across [un]mount cycles making it necessary 4921 * to verify whether we're attached to the default hierarchy on each mount 4922 * attempt. 4923 */ 4924 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 4925 { 4926 /* 4927 * use_hierarchy is forced on the default hierarchy. cgroup core 4928 * guarantees that @root doesn't have any children, so turning it 4929 * on for the root memcg is enough. 4930 */ 4931 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4932 root_mem_cgroup->use_hierarchy = true; 4933 else 4934 root_mem_cgroup->use_hierarchy = false; 4935 } 4936 4937 static u64 memory_current_read(struct cgroup_subsys_state *css, 4938 struct cftype *cft) 4939 { 4940 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4941 4942 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4943 } 4944 4945 static int memory_low_show(struct seq_file *m, void *v) 4946 { 4947 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 4948 unsigned long low = READ_ONCE(memcg->low); 4949 4950 if (low == PAGE_COUNTER_MAX) 4951 seq_puts(m, "max\n"); 4952 else 4953 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 4954 4955 return 0; 4956 } 4957 4958 static ssize_t memory_low_write(struct kernfs_open_file *of, 4959 char *buf, size_t nbytes, loff_t off) 4960 { 4961 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4962 unsigned long low; 4963 int err; 4964 4965 buf = strstrip(buf); 4966 err = page_counter_memparse(buf, "max", &low); 4967 if (err) 4968 return err; 4969 4970 memcg->low = low; 4971 4972 return nbytes; 4973 } 4974 4975 static int memory_high_show(struct seq_file *m, void *v) 4976 { 4977 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 4978 unsigned long high = READ_ONCE(memcg->high); 4979 4980 if (high == PAGE_COUNTER_MAX) 4981 seq_puts(m, "max\n"); 4982 else 4983 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 4984 4985 return 0; 4986 } 4987 4988 static ssize_t memory_high_write(struct kernfs_open_file *of, 4989 char *buf, size_t nbytes, loff_t off) 4990 { 4991 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4992 unsigned long nr_pages; 4993 unsigned long high; 4994 int err; 4995 4996 buf = strstrip(buf); 4997 err = page_counter_memparse(buf, "max", &high); 4998 if (err) 4999 return err; 5000 5001 memcg->high = high; 5002 5003 nr_pages = page_counter_read(&memcg->memory); 5004 if (nr_pages > high) 5005 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5006 GFP_KERNEL, true); 5007 5008 memcg_wb_domain_size_changed(memcg); 5009 return nbytes; 5010 } 5011 5012 static int memory_max_show(struct seq_file *m, void *v) 5013 { 5014 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5015 unsigned long max = READ_ONCE(memcg->memory.limit); 5016 5017 if (max == PAGE_COUNTER_MAX) 5018 seq_puts(m, "max\n"); 5019 else 5020 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5021 5022 return 0; 5023 } 5024 5025 static ssize_t memory_max_write(struct kernfs_open_file *of, 5026 char *buf, size_t nbytes, loff_t off) 5027 { 5028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5029 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5030 bool drained = false; 5031 unsigned long max; 5032 int err; 5033 5034 buf = strstrip(buf); 5035 err = page_counter_memparse(buf, "max", &max); 5036 if (err) 5037 return err; 5038 5039 xchg(&memcg->memory.limit, max); 5040 5041 for (;;) { 5042 unsigned long nr_pages = page_counter_read(&memcg->memory); 5043 5044 if (nr_pages <= max) 5045 break; 5046 5047 if (signal_pending(current)) { 5048 err = -EINTR; 5049 break; 5050 } 5051 5052 if (!drained) { 5053 drain_all_stock(memcg); 5054 drained = true; 5055 continue; 5056 } 5057 5058 if (nr_reclaims) { 5059 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5060 GFP_KERNEL, true)) 5061 nr_reclaims--; 5062 continue; 5063 } 5064 5065 mem_cgroup_events(memcg, MEMCG_OOM, 1); 5066 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5067 break; 5068 } 5069 5070 memcg_wb_domain_size_changed(memcg); 5071 return nbytes; 5072 } 5073 5074 static int memory_events_show(struct seq_file *m, void *v) 5075 { 5076 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5077 5078 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5079 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5080 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5081 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5082 5083 return 0; 5084 } 5085 5086 static int memory_stat_show(struct seq_file *m, void *v) 5087 { 5088 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5089 unsigned long stat[MEMCG_NR_STAT]; 5090 unsigned long events[MEMCG_NR_EVENTS]; 5091 int i; 5092 5093 /* 5094 * Provide statistics on the state of the memory subsystem as 5095 * well as cumulative event counters that show past behavior. 5096 * 5097 * This list is ordered following a combination of these gradients: 5098 * 1) generic big picture -> specifics and details 5099 * 2) reflecting userspace activity -> reflecting kernel heuristics 5100 * 5101 * Current memory state: 5102 */ 5103 5104 tree_stat(memcg, stat); 5105 tree_events(memcg, events); 5106 5107 seq_printf(m, "anon %llu\n", 5108 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); 5109 seq_printf(m, "file %llu\n", 5110 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); 5111 seq_printf(m, "kernel_stack %llu\n", 5112 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE); 5113 seq_printf(m, "slab %llu\n", 5114 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + 5115 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5116 seq_printf(m, "sock %llu\n", 5117 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5118 5119 seq_printf(m, "file_mapped %llu\n", 5120 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); 5121 seq_printf(m, "file_dirty %llu\n", 5122 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); 5123 seq_printf(m, "file_writeback %llu\n", 5124 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); 5125 5126 for (i = 0; i < NR_LRU_LISTS; i++) { 5127 struct mem_cgroup *mi; 5128 unsigned long val = 0; 5129 5130 for_each_mem_cgroup_tree(mi, memcg) 5131 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5132 seq_printf(m, "%s %llu\n", 5133 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5134 } 5135 5136 seq_printf(m, "slab_reclaimable %llu\n", 5137 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); 5138 seq_printf(m, "slab_unreclaimable %llu\n", 5139 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5140 5141 /* Accumulated memory events */ 5142 5143 seq_printf(m, "pgfault %lu\n", 5144 events[MEM_CGROUP_EVENTS_PGFAULT]); 5145 seq_printf(m, "pgmajfault %lu\n", 5146 events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 5147 5148 return 0; 5149 } 5150 5151 static struct cftype memory_files[] = { 5152 { 5153 .name = "current", 5154 .flags = CFTYPE_NOT_ON_ROOT, 5155 .read_u64 = memory_current_read, 5156 }, 5157 { 5158 .name = "low", 5159 .flags = CFTYPE_NOT_ON_ROOT, 5160 .seq_show = memory_low_show, 5161 .write = memory_low_write, 5162 }, 5163 { 5164 .name = "high", 5165 .flags = CFTYPE_NOT_ON_ROOT, 5166 .seq_show = memory_high_show, 5167 .write = memory_high_write, 5168 }, 5169 { 5170 .name = "max", 5171 .flags = CFTYPE_NOT_ON_ROOT, 5172 .seq_show = memory_max_show, 5173 .write = memory_max_write, 5174 }, 5175 { 5176 .name = "events", 5177 .flags = CFTYPE_NOT_ON_ROOT, 5178 .file_offset = offsetof(struct mem_cgroup, events_file), 5179 .seq_show = memory_events_show, 5180 }, 5181 { 5182 .name = "stat", 5183 .flags = CFTYPE_NOT_ON_ROOT, 5184 .seq_show = memory_stat_show, 5185 }, 5186 { } /* terminate */ 5187 }; 5188 5189 struct cgroup_subsys memory_cgrp_subsys = { 5190 .css_alloc = mem_cgroup_css_alloc, 5191 .css_online = mem_cgroup_css_online, 5192 .css_offline = mem_cgroup_css_offline, 5193 .css_released = mem_cgroup_css_released, 5194 .css_free = mem_cgroup_css_free, 5195 .css_reset = mem_cgroup_css_reset, 5196 .can_attach = mem_cgroup_can_attach, 5197 .cancel_attach = mem_cgroup_cancel_attach, 5198 .attach = mem_cgroup_move_task, 5199 .bind = mem_cgroup_bind, 5200 .dfl_cftypes = memory_files, 5201 .legacy_cftypes = mem_cgroup_legacy_files, 5202 .early_init = 0, 5203 }; 5204 5205 /** 5206 * mem_cgroup_low - check if memory consumption is below the normal range 5207 * @root: the highest ancestor to consider 5208 * @memcg: the memory cgroup to check 5209 * 5210 * Returns %true if memory consumption of @memcg, and that of all 5211 * configurable ancestors up to @root, is below the normal range. 5212 */ 5213 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5214 { 5215 if (mem_cgroup_disabled()) 5216 return false; 5217 5218 /* 5219 * The toplevel group doesn't have a configurable range, so 5220 * it's never low when looked at directly, and it is not 5221 * considered an ancestor when assessing the hierarchy. 5222 */ 5223 5224 if (memcg == root_mem_cgroup) 5225 return false; 5226 5227 if (page_counter_read(&memcg->memory) >= memcg->low) 5228 return false; 5229 5230 while (memcg != root) { 5231 memcg = parent_mem_cgroup(memcg); 5232 5233 if (memcg == root_mem_cgroup) 5234 break; 5235 5236 if (page_counter_read(&memcg->memory) >= memcg->low) 5237 return false; 5238 } 5239 return true; 5240 } 5241 5242 /** 5243 * mem_cgroup_try_charge - try charging a page 5244 * @page: page to charge 5245 * @mm: mm context of the victim 5246 * @gfp_mask: reclaim mode 5247 * @memcgp: charged memcg return 5248 * 5249 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5250 * pages according to @gfp_mask if necessary. 5251 * 5252 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5253 * Otherwise, an error code is returned. 5254 * 5255 * After page->mapping has been set up, the caller must finalize the 5256 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5257 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5258 */ 5259 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5260 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5261 bool compound) 5262 { 5263 struct mem_cgroup *memcg = NULL; 5264 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5265 int ret = 0; 5266 5267 if (mem_cgroup_disabled()) 5268 goto out; 5269 5270 if (PageSwapCache(page)) { 5271 /* 5272 * Every swap fault against a single page tries to charge the 5273 * page, bail as early as possible. shmem_unuse() encounters 5274 * already charged pages, too. The USED bit is protected by 5275 * the page lock, which serializes swap cache removal, which 5276 * in turn serializes uncharging. 5277 */ 5278 VM_BUG_ON_PAGE(!PageLocked(page), page); 5279 if (page->mem_cgroup) 5280 goto out; 5281 5282 if (do_swap_account) { 5283 swp_entry_t ent = { .val = page_private(page), }; 5284 unsigned short id = lookup_swap_cgroup_id(ent); 5285 5286 rcu_read_lock(); 5287 memcg = mem_cgroup_from_id(id); 5288 if (memcg && !css_tryget_online(&memcg->css)) 5289 memcg = NULL; 5290 rcu_read_unlock(); 5291 } 5292 } 5293 5294 if (!memcg) 5295 memcg = get_mem_cgroup_from_mm(mm); 5296 5297 ret = try_charge(memcg, gfp_mask, nr_pages); 5298 5299 css_put(&memcg->css); 5300 out: 5301 *memcgp = memcg; 5302 return ret; 5303 } 5304 5305 /** 5306 * mem_cgroup_commit_charge - commit a page charge 5307 * @page: page to charge 5308 * @memcg: memcg to charge the page to 5309 * @lrucare: page might be on LRU already 5310 * 5311 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5312 * after page->mapping has been set up. This must happen atomically 5313 * as part of the page instantiation, i.e. under the page table lock 5314 * for anonymous pages, under the page lock for page and swap cache. 5315 * 5316 * In addition, the page must not be on the LRU during the commit, to 5317 * prevent racing with task migration. If it might be, use @lrucare. 5318 * 5319 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5320 */ 5321 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5322 bool lrucare, bool compound) 5323 { 5324 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5325 5326 VM_BUG_ON_PAGE(!page->mapping, page); 5327 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5328 5329 if (mem_cgroup_disabled()) 5330 return; 5331 /* 5332 * Swap faults will attempt to charge the same page multiple 5333 * times. But reuse_swap_page() might have removed the page 5334 * from swapcache already, so we can't check PageSwapCache(). 5335 */ 5336 if (!memcg) 5337 return; 5338 5339 commit_charge(page, memcg, lrucare); 5340 5341 local_irq_disable(); 5342 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5343 memcg_check_events(memcg, page); 5344 local_irq_enable(); 5345 5346 if (do_memsw_account() && PageSwapCache(page)) { 5347 swp_entry_t entry = { .val = page_private(page) }; 5348 /* 5349 * The swap entry might not get freed for a long time, 5350 * let's not wait for it. The page already received a 5351 * memory+swap charge, drop the swap entry duplicate. 5352 */ 5353 mem_cgroup_uncharge_swap(entry); 5354 } 5355 } 5356 5357 /** 5358 * mem_cgroup_cancel_charge - cancel a page charge 5359 * @page: page to charge 5360 * @memcg: memcg to charge the page to 5361 * 5362 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5363 */ 5364 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5365 bool compound) 5366 { 5367 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5368 5369 if (mem_cgroup_disabled()) 5370 return; 5371 /* 5372 * Swap faults will attempt to charge the same page multiple 5373 * times. But reuse_swap_page() might have removed the page 5374 * from swapcache already, so we can't check PageSwapCache(). 5375 */ 5376 if (!memcg) 5377 return; 5378 5379 cancel_charge(memcg, nr_pages); 5380 } 5381 5382 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5383 unsigned long nr_anon, unsigned long nr_file, 5384 unsigned long nr_huge, struct page *dummy_page) 5385 { 5386 unsigned long nr_pages = nr_anon + nr_file; 5387 unsigned long flags; 5388 5389 if (!mem_cgroup_is_root(memcg)) { 5390 page_counter_uncharge(&memcg->memory, nr_pages); 5391 if (do_memsw_account()) 5392 page_counter_uncharge(&memcg->memsw, nr_pages); 5393 memcg_oom_recover(memcg); 5394 } 5395 5396 local_irq_save(flags); 5397 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5398 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5399 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5400 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5401 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5402 memcg_check_events(memcg, dummy_page); 5403 local_irq_restore(flags); 5404 5405 if (!mem_cgroup_is_root(memcg)) 5406 css_put_many(&memcg->css, nr_pages); 5407 } 5408 5409 static void uncharge_list(struct list_head *page_list) 5410 { 5411 struct mem_cgroup *memcg = NULL; 5412 unsigned long nr_anon = 0; 5413 unsigned long nr_file = 0; 5414 unsigned long nr_huge = 0; 5415 unsigned long pgpgout = 0; 5416 struct list_head *next; 5417 struct page *page; 5418 5419 /* 5420 * Note that the list can be a single page->lru; hence the 5421 * do-while loop instead of a simple list_for_each_entry(). 5422 */ 5423 next = page_list->next; 5424 do { 5425 unsigned int nr_pages = 1; 5426 5427 page = list_entry(next, struct page, lru); 5428 next = page->lru.next; 5429 5430 VM_BUG_ON_PAGE(PageLRU(page), page); 5431 VM_BUG_ON_PAGE(page_count(page), page); 5432 5433 if (!page->mem_cgroup) 5434 continue; 5435 5436 /* 5437 * Nobody should be changing or seriously looking at 5438 * page->mem_cgroup at this point, we have fully 5439 * exclusive access to the page. 5440 */ 5441 5442 if (memcg != page->mem_cgroup) { 5443 if (memcg) { 5444 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5445 nr_huge, page); 5446 pgpgout = nr_anon = nr_file = nr_huge = 0; 5447 } 5448 memcg = page->mem_cgroup; 5449 } 5450 5451 if (PageTransHuge(page)) { 5452 nr_pages <<= compound_order(page); 5453 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5454 nr_huge += nr_pages; 5455 } 5456 5457 if (PageAnon(page)) 5458 nr_anon += nr_pages; 5459 else 5460 nr_file += nr_pages; 5461 5462 page->mem_cgroup = NULL; 5463 5464 pgpgout++; 5465 } while (next != page_list); 5466 5467 if (memcg) 5468 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5469 nr_huge, page); 5470 } 5471 5472 /** 5473 * mem_cgroup_uncharge - uncharge a page 5474 * @page: page to uncharge 5475 * 5476 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5477 * mem_cgroup_commit_charge(). 5478 */ 5479 void mem_cgroup_uncharge(struct page *page) 5480 { 5481 if (mem_cgroup_disabled()) 5482 return; 5483 5484 /* Don't touch page->lru of any random page, pre-check: */ 5485 if (!page->mem_cgroup) 5486 return; 5487 5488 INIT_LIST_HEAD(&page->lru); 5489 uncharge_list(&page->lru); 5490 } 5491 5492 /** 5493 * mem_cgroup_uncharge_list - uncharge a list of page 5494 * @page_list: list of pages to uncharge 5495 * 5496 * Uncharge a list of pages previously charged with 5497 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5498 */ 5499 void mem_cgroup_uncharge_list(struct list_head *page_list) 5500 { 5501 if (mem_cgroup_disabled()) 5502 return; 5503 5504 if (!list_empty(page_list)) 5505 uncharge_list(page_list); 5506 } 5507 5508 /** 5509 * mem_cgroup_migrate - charge a page's replacement 5510 * @oldpage: currently circulating page 5511 * @newpage: replacement page 5512 * 5513 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5514 * be uncharged upon free. 5515 * 5516 * Both pages must be locked, @newpage->mapping must be set up. 5517 */ 5518 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5519 { 5520 struct mem_cgroup *memcg; 5521 unsigned int nr_pages; 5522 bool compound; 5523 5524 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5525 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5526 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5527 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5528 newpage); 5529 5530 if (mem_cgroup_disabled()) 5531 return; 5532 5533 /* Page cache replacement: new page already charged? */ 5534 if (newpage->mem_cgroup) 5535 return; 5536 5537 /* Swapcache readahead pages can get replaced before being charged */ 5538 memcg = oldpage->mem_cgroup; 5539 if (!memcg) 5540 return; 5541 5542 /* Force-charge the new page. The old one will be freed soon */ 5543 compound = PageTransHuge(newpage); 5544 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5545 5546 page_counter_charge(&memcg->memory, nr_pages); 5547 if (do_memsw_account()) 5548 page_counter_charge(&memcg->memsw, nr_pages); 5549 css_get_many(&memcg->css, nr_pages); 5550 5551 commit_charge(newpage, memcg, false); 5552 5553 local_irq_disable(); 5554 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5555 memcg_check_events(memcg, newpage); 5556 local_irq_enable(); 5557 } 5558 5559 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5560 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5561 5562 void sock_update_memcg(struct sock *sk) 5563 { 5564 struct mem_cgroup *memcg; 5565 5566 /* Socket cloning can throw us here with sk_cgrp already 5567 * filled. It won't however, necessarily happen from 5568 * process context. So the test for root memcg given 5569 * the current task's memcg won't help us in this case. 5570 * 5571 * Respecting the original socket's memcg is a better 5572 * decision in this case. 5573 */ 5574 if (sk->sk_memcg) { 5575 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5576 css_get(&sk->sk_memcg->css); 5577 return; 5578 } 5579 5580 rcu_read_lock(); 5581 memcg = mem_cgroup_from_task(current); 5582 if (memcg == root_mem_cgroup) 5583 goto out; 5584 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5585 goto out; 5586 if (css_tryget_online(&memcg->css)) 5587 sk->sk_memcg = memcg; 5588 out: 5589 rcu_read_unlock(); 5590 } 5591 EXPORT_SYMBOL(sock_update_memcg); 5592 5593 void sock_release_memcg(struct sock *sk) 5594 { 5595 WARN_ON(!sk->sk_memcg); 5596 css_put(&sk->sk_memcg->css); 5597 } 5598 5599 /** 5600 * mem_cgroup_charge_skmem - charge socket memory 5601 * @memcg: memcg to charge 5602 * @nr_pages: number of pages to charge 5603 * 5604 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5605 * @memcg's configured limit, %false if the charge had to be forced. 5606 */ 5607 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5608 { 5609 gfp_t gfp_mask = GFP_KERNEL; 5610 5611 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5612 struct page_counter *fail; 5613 5614 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5615 memcg->tcpmem_pressure = 0; 5616 return true; 5617 } 5618 page_counter_charge(&memcg->tcpmem, nr_pages); 5619 memcg->tcpmem_pressure = 1; 5620 return false; 5621 } 5622 5623 /* Don't block in the packet receive path */ 5624 if (in_softirq()) 5625 gfp_mask = GFP_NOWAIT; 5626 5627 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5628 5629 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5630 return true; 5631 5632 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5633 return false; 5634 } 5635 5636 /** 5637 * mem_cgroup_uncharge_skmem - uncharge socket memory 5638 * @memcg - memcg to uncharge 5639 * @nr_pages - number of pages to uncharge 5640 */ 5641 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5642 { 5643 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5644 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5645 return; 5646 } 5647 5648 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5649 5650 page_counter_uncharge(&memcg->memory, nr_pages); 5651 css_put_many(&memcg->css, nr_pages); 5652 } 5653 5654 static int __init cgroup_memory(char *s) 5655 { 5656 char *token; 5657 5658 while ((token = strsep(&s, ",")) != NULL) { 5659 if (!*token) 5660 continue; 5661 if (!strcmp(token, "nosocket")) 5662 cgroup_memory_nosocket = true; 5663 if (!strcmp(token, "nokmem")) 5664 cgroup_memory_nokmem = true; 5665 } 5666 return 0; 5667 } 5668 __setup("cgroup.memory=", cgroup_memory); 5669 5670 /* 5671 * subsys_initcall() for memory controller. 5672 * 5673 * Some parts like hotcpu_notifier() have to be initialized from this context 5674 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 5675 * everything that doesn't depend on a specific mem_cgroup structure should 5676 * be initialized from here. 5677 */ 5678 static int __init mem_cgroup_init(void) 5679 { 5680 int cpu, node; 5681 5682 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 5683 5684 for_each_possible_cpu(cpu) 5685 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5686 drain_local_stock); 5687 5688 for_each_node(node) { 5689 struct mem_cgroup_tree_per_node *rtpn; 5690 int zone; 5691 5692 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5693 node_online(node) ? node : NUMA_NO_NODE); 5694 5695 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5696 struct mem_cgroup_tree_per_zone *rtpz; 5697 5698 rtpz = &rtpn->rb_tree_per_zone[zone]; 5699 rtpz->rb_root = RB_ROOT; 5700 spin_lock_init(&rtpz->lock); 5701 } 5702 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5703 } 5704 5705 return 0; 5706 } 5707 subsys_initcall(mem_cgroup_init); 5708 5709 #ifdef CONFIG_MEMCG_SWAP 5710 /** 5711 * mem_cgroup_swapout - transfer a memsw charge to swap 5712 * @page: page whose memsw charge to transfer 5713 * @entry: swap entry to move the charge to 5714 * 5715 * Transfer the memsw charge of @page to @entry. 5716 */ 5717 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5718 { 5719 struct mem_cgroup *memcg; 5720 unsigned short oldid; 5721 5722 VM_BUG_ON_PAGE(PageLRU(page), page); 5723 VM_BUG_ON_PAGE(page_count(page), page); 5724 5725 if (!do_memsw_account()) 5726 return; 5727 5728 memcg = page->mem_cgroup; 5729 5730 /* Readahead page, never charged */ 5731 if (!memcg) 5732 return; 5733 5734 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5735 VM_BUG_ON_PAGE(oldid, page); 5736 mem_cgroup_swap_statistics(memcg, true); 5737 5738 page->mem_cgroup = NULL; 5739 5740 if (!mem_cgroup_is_root(memcg)) 5741 page_counter_uncharge(&memcg->memory, 1); 5742 5743 /* 5744 * Interrupts should be disabled here because the caller holds the 5745 * mapping->tree_lock lock which is taken with interrupts-off. It is 5746 * important here to have the interrupts disabled because it is the 5747 * only synchronisation we have for udpating the per-CPU variables. 5748 */ 5749 VM_BUG_ON(!irqs_disabled()); 5750 mem_cgroup_charge_statistics(memcg, page, false, -1); 5751 memcg_check_events(memcg, page); 5752 } 5753 5754 /* 5755 * mem_cgroup_try_charge_swap - try charging a swap entry 5756 * @page: page being added to swap 5757 * @entry: swap entry to charge 5758 * 5759 * Try to charge @entry to the memcg that @page belongs to. 5760 * 5761 * Returns 0 on success, -ENOMEM on failure. 5762 */ 5763 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5764 { 5765 struct mem_cgroup *memcg; 5766 struct page_counter *counter; 5767 unsigned short oldid; 5768 5769 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5770 return 0; 5771 5772 memcg = page->mem_cgroup; 5773 5774 /* Readahead page, never charged */ 5775 if (!memcg) 5776 return 0; 5777 5778 if (!mem_cgroup_is_root(memcg) && 5779 !page_counter_try_charge(&memcg->swap, 1, &counter)) 5780 return -ENOMEM; 5781 5782 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5783 VM_BUG_ON_PAGE(oldid, page); 5784 mem_cgroup_swap_statistics(memcg, true); 5785 5786 css_get(&memcg->css); 5787 return 0; 5788 } 5789 5790 /** 5791 * mem_cgroup_uncharge_swap - uncharge a swap entry 5792 * @entry: swap entry to uncharge 5793 * 5794 * Drop the swap charge associated with @entry. 5795 */ 5796 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5797 { 5798 struct mem_cgroup *memcg; 5799 unsigned short id; 5800 5801 if (!do_swap_account) 5802 return; 5803 5804 id = swap_cgroup_record(entry, 0); 5805 rcu_read_lock(); 5806 memcg = mem_cgroup_from_id(id); 5807 if (memcg) { 5808 if (!mem_cgroup_is_root(memcg)) { 5809 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5810 page_counter_uncharge(&memcg->swap, 1); 5811 else 5812 page_counter_uncharge(&memcg->memsw, 1); 5813 } 5814 mem_cgroup_swap_statistics(memcg, false); 5815 css_put(&memcg->css); 5816 } 5817 rcu_read_unlock(); 5818 } 5819 5820 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5821 { 5822 long nr_swap_pages = get_nr_swap_pages(); 5823 5824 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5825 return nr_swap_pages; 5826 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5827 nr_swap_pages = min_t(long, nr_swap_pages, 5828 READ_ONCE(memcg->swap.limit) - 5829 page_counter_read(&memcg->swap)); 5830 return nr_swap_pages; 5831 } 5832 5833 bool mem_cgroup_swap_full(struct page *page) 5834 { 5835 struct mem_cgroup *memcg; 5836 5837 VM_BUG_ON_PAGE(!PageLocked(page), page); 5838 5839 if (vm_swap_full()) 5840 return true; 5841 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5842 return false; 5843 5844 memcg = page->mem_cgroup; 5845 if (!memcg) 5846 return false; 5847 5848 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5849 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 5850 return true; 5851 5852 return false; 5853 } 5854 5855 /* for remember boot option*/ 5856 #ifdef CONFIG_MEMCG_SWAP_ENABLED 5857 static int really_do_swap_account __initdata = 1; 5858 #else 5859 static int really_do_swap_account __initdata; 5860 #endif 5861 5862 static int __init enable_swap_account(char *s) 5863 { 5864 if (!strcmp(s, "1")) 5865 really_do_swap_account = 1; 5866 else if (!strcmp(s, "0")) 5867 really_do_swap_account = 0; 5868 return 1; 5869 } 5870 __setup("swapaccount=", enable_swap_account); 5871 5872 static u64 swap_current_read(struct cgroup_subsys_state *css, 5873 struct cftype *cft) 5874 { 5875 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5876 5877 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5878 } 5879 5880 static int swap_max_show(struct seq_file *m, void *v) 5881 { 5882 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5883 unsigned long max = READ_ONCE(memcg->swap.limit); 5884 5885 if (max == PAGE_COUNTER_MAX) 5886 seq_puts(m, "max\n"); 5887 else 5888 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5889 5890 return 0; 5891 } 5892 5893 static ssize_t swap_max_write(struct kernfs_open_file *of, 5894 char *buf, size_t nbytes, loff_t off) 5895 { 5896 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5897 unsigned long max; 5898 int err; 5899 5900 buf = strstrip(buf); 5901 err = page_counter_memparse(buf, "max", &max); 5902 if (err) 5903 return err; 5904 5905 mutex_lock(&memcg_limit_mutex); 5906 err = page_counter_limit(&memcg->swap, max); 5907 mutex_unlock(&memcg_limit_mutex); 5908 if (err) 5909 return err; 5910 5911 return nbytes; 5912 } 5913 5914 static struct cftype swap_files[] = { 5915 { 5916 .name = "swap.current", 5917 .flags = CFTYPE_NOT_ON_ROOT, 5918 .read_u64 = swap_current_read, 5919 }, 5920 { 5921 .name = "swap.max", 5922 .flags = CFTYPE_NOT_ON_ROOT, 5923 .seq_show = swap_max_show, 5924 .write = swap_max_write, 5925 }, 5926 { } /* terminate */ 5927 }; 5928 5929 static struct cftype memsw_cgroup_files[] = { 5930 { 5931 .name = "memsw.usage_in_bytes", 5932 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5933 .read_u64 = mem_cgroup_read_u64, 5934 }, 5935 { 5936 .name = "memsw.max_usage_in_bytes", 5937 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5938 .write = mem_cgroup_reset, 5939 .read_u64 = mem_cgroup_read_u64, 5940 }, 5941 { 5942 .name = "memsw.limit_in_bytes", 5943 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5944 .write = mem_cgroup_write, 5945 .read_u64 = mem_cgroup_read_u64, 5946 }, 5947 { 5948 .name = "memsw.failcnt", 5949 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5950 .write = mem_cgroup_reset, 5951 .read_u64 = mem_cgroup_read_u64, 5952 }, 5953 { }, /* terminate */ 5954 }; 5955 5956 static int __init mem_cgroup_swap_init(void) 5957 { 5958 if (!mem_cgroup_disabled() && really_do_swap_account) { 5959 do_swap_account = 1; 5960 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 5961 swap_files)); 5962 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 5963 memsw_cgroup_files)); 5964 } 5965 return 0; 5966 } 5967 subsys_initcall(mem_cgroup_swap_init); 5968 5969 #endif /* CONFIG_MEMCG_SWAP */ 5970