xref: /linux/mm/memcontrol.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_zone {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree_per_node {
141 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143 
144 struct mem_cgroup_tree {
145 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147 
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149 
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 	struct list_head list;
153 	struct eventfd_ctx *eventfd;
154 };
155 
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160 	/*
161 	 * memcg which the event belongs to.
162 	 */
163 	struct mem_cgroup *memcg;
164 	/*
165 	 * eventfd to signal userspace about the event.
166 	 */
167 	struct eventfd_ctx *eventfd;
168 	/*
169 	 * Each of these stored in a list by the cgroup.
170 	 */
171 	struct list_head list;
172 	/*
173 	 * register_event() callback will be used to add new userspace
174 	 * waiter for changes related to this event.  Use eventfd_signal()
175 	 * on eventfd to send notification to userspace.
176 	 */
177 	int (*register_event)(struct mem_cgroup *memcg,
178 			      struct eventfd_ctx *eventfd, const char *args);
179 	/*
180 	 * unregister_event() callback will be called when userspace closes
181 	 * the eventfd or on cgroup removing.  This callback must be set,
182 	 * if you want provide notification functionality.
183 	 */
184 	void (*unregister_event)(struct mem_cgroup *memcg,
185 				 struct eventfd_ctx *eventfd);
186 	/*
187 	 * All fields below needed to unregister event when
188 	 * userspace closes eventfd.
189 	 */
190 	poll_table pt;
191 	wait_queue_head_t *wqh;
192 	wait_queue_t wait;
193 	struct work_struct remove;
194 };
195 
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198 
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON	0x1U
204 #define MOVE_FILE	0x2U
205 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206 
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 	spinlock_t	  lock; /* for from, to */
210 	struct mem_cgroup *from;
211 	struct mem_cgroup *to;
212 	unsigned long flags;
213 	unsigned long precharge;
214 	unsigned long moved_charge;
215 	unsigned long moved_swap;
216 	struct task_struct *moving_task;	/* a task moving charges */
217 	wait_queue_head_t waitq;		/* a waitq for other context */
218 } mc = {
219 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222 
223 /*
224  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225  * limit reclaim to prevent infinite loops, if they ever occur.
226  */
227 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
228 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
229 
230 enum charge_type {
231 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232 	MEM_CGROUP_CHARGE_TYPE_ANON,
233 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
234 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
235 	NR_CHARGE_TYPE,
236 };
237 
238 /* for encoding cft->private value on file */
239 enum res_type {
240 	_MEM,
241 	_MEMSWAP,
242 	_OOM_TYPE,
243 	_KMEM,
244 	_TCP,
245 };
246 
247 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
248 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val)	((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL		(0)
252 
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 {
256 	if (!memcg)
257 		memcg = root_mem_cgroup;
258 	return &memcg->vmpressure;
259 }
260 
261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262 {
263 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 }
265 
266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267 {
268 	return (memcg == root_mem_cgroup);
269 }
270 
271 #ifndef CONFIG_SLOB
272 /*
273  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
274  * The main reason for not using cgroup id for this:
275  *  this works better in sparse environments, where we have a lot of memcgs,
276  *  but only a few kmem-limited. Or also, if we have, for instance, 200
277  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
278  *  200 entry array for that.
279  *
280  * The current size of the caches array is stored in memcg_nr_cache_ids. It
281  * will double each time we have to increase it.
282  */
283 static DEFINE_IDA(memcg_cache_ida);
284 int memcg_nr_cache_ids;
285 
286 /* Protects memcg_nr_cache_ids */
287 static DECLARE_RWSEM(memcg_cache_ids_sem);
288 
289 void memcg_get_cache_ids(void)
290 {
291 	down_read(&memcg_cache_ids_sem);
292 }
293 
294 void memcg_put_cache_ids(void)
295 {
296 	up_read(&memcg_cache_ids_sem);
297 }
298 
299 /*
300  * MIN_SIZE is different than 1, because we would like to avoid going through
301  * the alloc/free process all the time. In a small machine, 4 kmem-limited
302  * cgroups is a reasonable guess. In the future, it could be a parameter or
303  * tunable, but that is strictly not necessary.
304  *
305  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306  * this constant directly from cgroup, but it is understandable that this is
307  * better kept as an internal representation in cgroup.c. In any case, the
308  * cgrp_id space is not getting any smaller, and we don't have to necessarily
309  * increase ours as well if it increases.
310  */
311 #define MEMCG_CACHES_MIN_SIZE 4
312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313 
314 /*
315  * A lot of the calls to the cache allocation functions are expected to be
316  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317  * conditional to this static branch, we'll have to allow modules that does
318  * kmem_cache_alloc and the such to see this symbol as well
319  */
320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321 EXPORT_SYMBOL(memcg_kmem_enabled_key);
322 
323 #endif /* !CONFIG_SLOB */
324 
325 static struct mem_cgroup_per_zone *
326 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327 {
328 	int nid = zone_to_nid(zone);
329 	int zid = zone_idx(zone);
330 
331 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
332 }
333 
334 /**
335  * mem_cgroup_css_from_page - css of the memcg associated with a page
336  * @page: page of interest
337  *
338  * If memcg is bound to the default hierarchy, css of the memcg associated
339  * with @page is returned.  The returned css remains associated with @page
340  * until it is released.
341  *
342  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343  * is returned.
344  */
345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346 {
347 	struct mem_cgroup *memcg;
348 
349 	memcg = page->mem_cgroup;
350 
351 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352 		memcg = root_mem_cgroup;
353 
354 	return &memcg->css;
355 }
356 
357 /**
358  * page_cgroup_ino - return inode number of the memcg a page is charged to
359  * @page: the page
360  *
361  * Look up the closest online ancestor of the memory cgroup @page is charged to
362  * and return its inode number or 0 if @page is not charged to any cgroup. It
363  * is safe to call this function without holding a reference to @page.
364  *
365  * Note, this function is inherently racy, because there is nothing to prevent
366  * the cgroup inode from getting torn down and potentially reallocated a moment
367  * after page_cgroup_ino() returns, so it only should be used by callers that
368  * do not care (such as procfs interfaces).
369  */
370 ino_t page_cgroup_ino(struct page *page)
371 {
372 	struct mem_cgroup *memcg;
373 	unsigned long ino = 0;
374 
375 	rcu_read_lock();
376 	memcg = READ_ONCE(page->mem_cgroup);
377 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
378 		memcg = parent_mem_cgroup(memcg);
379 	if (memcg)
380 		ino = cgroup_ino(memcg->css.cgroup);
381 	rcu_read_unlock();
382 	return ino;
383 }
384 
385 static struct mem_cgroup_per_zone *
386 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387 {
388 	int nid = page_to_nid(page);
389 	int zid = page_zonenum(page);
390 
391 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
392 }
393 
394 static struct mem_cgroup_tree_per_zone *
395 soft_limit_tree_node_zone(int nid, int zid)
396 {
397 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398 }
399 
400 static struct mem_cgroup_tree_per_zone *
401 soft_limit_tree_from_page(struct page *page)
402 {
403 	int nid = page_to_nid(page);
404 	int zid = page_zonenum(page);
405 
406 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407 }
408 
409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410 					 struct mem_cgroup_tree_per_zone *mctz,
411 					 unsigned long new_usage_in_excess)
412 {
413 	struct rb_node **p = &mctz->rb_root.rb_node;
414 	struct rb_node *parent = NULL;
415 	struct mem_cgroup_per_zone *mz_node;
416 
417 	if (mz->on_tree)
418 		return;
419 
420 	mz->usage_in_excess = new_usage_in_excess;
421 	if (!mz->usage_in_excess)
422 		return;
423 	while (*p) {
424 		parent = *p;
425 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426 					tree_node);
427 		if (mz->usage_in_excess < mz_node->usage_in_excess)
428 			p = &(*p)->rb_left;
429 		/*
430 		 * We can't avoid mem cgroups that are over their soft
431 		 * limit by the same amount
432 		 */
433 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434 			p = &(*p)->rb_right;
435 	}
436 	rb_link_node(&mz->tree_node, parent, p);
437 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
438 	mz->on_tree = true;
439 }
440 
441 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442 					 struct mem_cgroup_tree_per_zone *mctz)
443 {
444 	if (!mz->on_tree)
445 		return;
446 	rb_erase(&mz->tree_node, &mctz->rb_root);
447 	mz->on_tree = false;
448 }
449 
450 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451 				       struct mem_cgroup_tree_per_zone *mctz)
452 {
453 	unsigned long flags;
454 
455 	spin_lock_irqsave(&mctz->lock, flags);
456 	__mem_cgroup_remove_exceeded(mz, mctz);
457 	spin_unlock_irqrestore(&mctz->lock, flags);
458 }
459 
460 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461 {
462 	unsigned long nr_pages = page_counter_read(&memcg->memory);
463 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464 	unsigned long excess = 0;
465 
466 	if (nr_pages > soft_limit)
467 		excess = nr_pages - soft_limit;
468 
469 	return excess;
470 }
471 
472 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473 {
474 	unsigned long excess;
475 	struct mem_cgroup_per_zone *mz;
476 	struct mem_cgroup_tree_per_zone *mctz;
477 
478 	mctz = soft_limit_tree_from_page(page);
479 	/*
480 	 * Necessary to update all ancestors when hierarchy is used.
481 	 * because their event counter is not touched.
482 	 */
483 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484 		mz = mem_cgroup_page_zoneinfo(memcg, page);
485 		excess = soft_limit_excess(memcg);
486 		/*
487 		 * We have to update the tree if mz is on RB-tree or
488 		 * mem is over its softlimit.
489 		 */
490 		if (excess || mz->on_tree) {
491 			unsigned long flags;
492 
493 			spin_lock_irqsave(&mctz->lock, flags);
494 			/* if on-tree, remove it */
495 			if (mz->on_tree)
496 				__mem_cgroup_remove_exceeded(mz, mctz);
497 			/*
498 			 * Insert again. mz->usage_in_excess will be updated.
499 			 * If excess is 0, no tree ops.
500 			 */
501 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
502 			spin_unlock_irqrestore(&mctz->lock, flags);
503 		}
504 	}
505 }
506 
507 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508 {
509 	struct mem_cgroup_tree_per_zone *mctz;
510 	struct mem_cgroup_per_zone *mz;
511 	int nid, zid;
512 
513 	for_each_node(nid) {
514 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516 			mctz = soft_limit_tree_node_zone(nid, zid);
517 			mem_cgroup_remove_exceeded(mz, mctz);
518 		}
519 	}
520 }
521 
522 static struct mem_cgroup_per_zone *
523 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524 {
525 	struct rb_node *rightmost = NULL;
526 	struct mem_cgroup_per_zone *mz;
527 
528 retry:
529 	mz = NULL;
530 	rightmost = rb_last(&mctz->rb_root);
531 	if (!rightmost)
532 		goto done;		/* Nothing to reclaim from */
533 
534 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535 	/*
536 	 * Remove the node now but someone else can add it back,
537 	 * we will to add it back at the end of reclaim to its correct
538 	 * position in the tree.
539 	 */
540 	__mem_cgroup_remove_exceeded(mz, mctz);
541 	if (!soft_limit_excess(mz->memcg) ||
542 	    !css_tryget_online(&mz->memcg->css))
543 		goto retry;
544 done:
545 	return mz;
546 }
547 
548 static struct mem_cgroup_per_zone *
549 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550 {
551 	struct mem_cgroup_per_zone *mz;
552 
553 	spin_lock_irq(&mctz->lock);
554 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
555 	spin_unlock_irq(&mctz->lock);
556 	return mz;
557 }
558 
559 /*
560  * Return page count for single (non recursive) @memcg.
561  *
562  * Implementation Note: reading percpu statistics for memcg.
563  *
564  * Both of vmstat[] and percpu_counter has threshold and do periodic
565  * synchronization to implement "quick" read. There are trade-off between
566  * reading cost and precision of value. Then, we may have a chance to implement
567  * a periodic synchronization of counter in memcg's counter.
568  *
569  * But this _read() function is used for user interface now. The user accounts
570  * memory usage by memory cgroup and he _always_ requires exact value because
571  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572  * have to visit all online cpus and make sum. So, for now, unnecessary
573  * synchronization is not implemented. (just implemented for cpu hotplug)
574  *
575  * If there are kernel internal actions which can make use of some not-exact
576  * value, and reading all cpu value can be performance bottleneck in some
577  * common workload, threshold and synchronization as vmstat[] should be
578  * implemented.
579  */
580 static unsigned long
581 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582 {
583 	long val = 0;
584 	int cpu;
585 
586 	/* Per-cpu values can be negative, use a signed accumulator */
587 	for_each_possible_cpu(cpu)
588 		val += per_cpu(memcg->stat->count[idx], cpu);
589 	/*
590 	 * Summing races with updates, so val may be negative.  Avoid exposing
591 	 * transient negative values.
592 	 */
593 	if (val < 0)
594 		val = 0;
595 	return val;
596 }
597 
598 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599 					    enum mem_cgroup_events_index idx)
600 {
601 	unsigned long val = 0;
602 	int cpu;
603 
604 	for_each_possible_cpu(cpu)
605 		val += per_cpu(memcg->stat->events[idx], cpu);
606 	return val;
607 }
608 
609 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610 					 struct page *page,
611 					 bool compound, int nr_pages)
612 {
613 	/*
614 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 	 * counted as CACHE even if it's on ANON LRU.
616 	 */
617 	if (PageAnon(page))
618 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619 				nr_pages);
620 	else
621 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622 				nr_pages);
623 
624 	if (compound) {
625 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627 				nr_pages);
628 	}
629 
630 	/* pagein of a big page is an event. So, ignore page size */
631 	if (nr_pages > 0)
632 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633 	else {
634 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635 		nr_pages = -nr_pages; /* for event */
636 	}
637 
638 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639 }
640 
641 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642 					   int nid, unsigned int lru_mask)
643 {
644 	unsigned long nr = 0;
645 	int zid;
646 
647 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
648 
649 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
650 		struct mem_cgroup_per_zone *mz;
651 		enum lru_list lru;
652 
653 		for_each_lru(lru) {
654 			if (!(BIT(lru) & lru_mask))
655 				continue;
656 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
657 			nr += mz->lru_size[lru];
658 		}
659 	}
660 	return nr;
661 }
662 
663 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
664 			unsigned int lru_mask)
665 {
666 	unsigned long nr = 0;
667 	int nid;
668 
669 	for_each_node_state(nid, N_MEMORY)
670 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
671 	return nr;
672 }
673 
674 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
675 				       enum mem_cgroup_events_target target)
676 {
677 	unsigned long val, next;
678 
679 	val = __this_cpu_read(memcg->stat->nr_page_events);
680 	next = __this_cpu_read(memcg->stat->targets[target]);
681 	/* from time_after() in jiffies.h */
682 	if ((long)next - (long)val < 0) {
683 		switch (target) {
684 		case MEM_CGROUP_TARGET_THRESH:
685 			next = val + THRESHOLDS_EVENTS_TARGET;
686 			break;
687 		case MEM_CGROUP_TARGET_SOFTLIMIT:
688 			next = val + SOFTLIMIT_EVENTS_TARGET;
689 			break;
690 		case MEM_CGROUP_TARGET_NUMAINFO:
691 			next = val + NUMAINFO_EVENTS_TARGET;
692 			break;
693 		default:
694 			break;
695 		}
696 		__this_cpu_write(memcg->stat->targets[target], next);
697 		return true;
698 	}
699 	return false;
700 }
701 
702 /*
703  * Check events in order.
704  *
705  */
706 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
707 {
708 	/* threshold event is triggered in finer grain than soft limit */
709 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
710 						MEM_CGROUP_TARGET_THRESH))) {
711 		bool do_softlimit;
712 		bool do_numainfo __maybe_unused;
713 
714 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
715 						MEM_CGROUP_TARGET_SOFTLIMIT);
716 #if MAX_NUMNODES > 1
717 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
718 						MEM_CGROUP_TARGET_NUMAINFO);
719 #endif
720 		mem_cgroup_threshold(memcg);
721 		if (unlikely(do_softlimit))
722 			mem_cgroup_update_tree(memcg, page);
723 #if MAX_NUMNODES > 1
724 		if (unlikely(do_numainfo))
725 			atomic_inc(&memcg->numainfo_events);
726 #endif
727 	}
728 }
729 
730 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
731 {
732 	/*
733 	 * mm_update_next_owner() may clear mm->owner to NULL
734 	 * if it races with swapoff, page migration, etc.
735 	 * So this can be called with p == NULL.
736 	 */
737 	if (unlikely(!p))
738 		return NULL;
739 
740 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
741 }
742 EXPORT_SYMBOL(mem_cgroup_from_task);
743 
744 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
745 {
746 	struct mem_cgroup *memcg = NULL;
747 
748 	rcu_read_lock();
749 	do {
750 		/*
751 		 * Page cache insertions can happen withou an
752 		 * actual mm context, e.g. during disk probing
753 		 * on boot, loopback IO, acct() writes etc.
754 		 */
755 		if (unlikely(!mm))
756 			memcg = root_mem_cgroup;
757 		else {
758 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
759 			if (unlikely(!memcg))
760 				memcg = root_mem_cgroup;
761 		}
762 	} while (!css_tryget_online(&memcg->css));
763 	rcu_read_unlock();
764 	return memcg;
765 }
766 
767 /**
768  * mem_cgroup_iter - iterate over memory cgroup hierarchy
769  * @root: hierarchy root
770  * @prev: previously returned memcg, NULL on first invocation
771  * @reclaim: cookie for shared reclaim walks, NULL for full walks
772  *
773  * Returns references to children of the hierarchy below @root, or
774  * @root itself, or %NULL after a full round-trip.
775  *
776  * Caller must pass the return value in @prev on subsequent
777  * invocations for reference counting, or use mem_cgroup_iter_break()
778  * to cancel a hierarchy walk before the round-trip is complete.
779  *
780  * Reclaimers can specify a zone and a priority level in @reclaim to
781  * divide up the memcgs in the hierarchy among all concurrent
782  * reclaimers operating on the same zone and priority.
783  */
784 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
785 				   struct mem_cgroup *prev,
786 				   struct mem_cgroup_reclaim_cookie *reclaim)
787 {
788 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
789 	struct cgroup_subsys_state *css = NULL;
790 	struct mem_cgroup *memcg = NULL;
791 	struct mem_cgroup *pos = NULL;
792 
793 	if (mem_cgroup_disabled())
794 		return NULL;
795 
796 	if (!root)
797 		root = root_mem_cgroup;
798 
799 	if (prev && !reclaim)
800 		pos = prev;
801 
802 	if (!root->use_hierarchy && root != root_mem_cgroup) {
803 		if (prev)
804 			goto out;
805 		return root;
806 	}
807 
808 	rcu_read_lock();
809 
810 	if (reclaim) {
811 		struct mem_cgroup_per_zone *mz;
812 
813 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
814 		iter = &mz->iter[reclaim->priority];
815 
816 		if (prev && reclaim->generation != iter->generation)
817 			goto out_unlock;
818 
819 		while (1) {
820 			pos = READ_ONCE(iter->position);
821 			if (!pos || css_tryget(&pos->css))
822 				break;
823 			/*
824 			 * css reference reached zero, so iter->position will
825 			 * be cleared by ->css_released. However, we should not
826 			 * rely on this happening soon, because ->css_released
827 			 * is called from a work queue, and by busy-waiting we
828 			 * might block it. So we clear iter->position right
829 			 * away.
830 			 */
831 			(void)cmpxchg(&iter->position, pos, NULL);
832 		}
833 	}
834 
835 	if (pos)
836 		css = &pos->css;
837 
838 	for (;;) {
839 		css = css_next_descendant_pre(css, &root->css);
840 		if (!css) {
841 			/*
842 			 * Reclaimers share the hierarchy walk, and a
843 			 * new one might jump in right at the end of
844 			 * the hierarchy - make sure they see at least
845 			 * one group and restart from the beginning.
846 			 */
847 			if (!prev)
848 				continue;
849 			break;
850 		}
851 
852 		/*
853 		 * Verify the css and acquire a reference.  The root
854 		 * is provided by the caller, so we know it's alive
855 		 * and kicking, and don't take an extra reference.
856 		 */
857 		memcg = mem_cgroup_from_css(css);
858 
859 		if (css == &root->css)
860 			break;
861 
862 		if (css_tryget(css))
863 			break;
864 
865 		memcg = NULL;
866 	}
867 
868 	if (reclaim) {
869 		/*
870 		 * The position could have already been updated by a competing
871 		 * thread, so check that the value hasn't changed since we read
872 		 * it to avoid reclaiming from the same cgroup twice.
873 		 */
874 		(void)cmpxchg(&iter->position, pos, memcg);
875 
876 		if (pos)
877 			css_put(&pos->css);
878 
879 		if (!memcg)
880 			iter->generation++;
881 		else if (!prev)
882 			reclaim->generation = iter->generation;
883 	}
884 
885 out_unlock:
886 	rcu_read_unlock();
887 out:
888 	if (prev && prev != root)
889 		css_put(&prev->css);
890 
891 	return memcg;
892 }
893 
894 /**
895  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
896  * @root: hierarchy root
897  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
898  */
899 void mem_cgroup_iter_break(struct mem_cgroup *root,
900 			   struct mem_cgroup *prev)
901 {
902 	if (!root)
903 		root = root_mem_cgroup;
904 	if (prev && prev != root)
905 		css_put(&prev->css);
906 }
907 
908 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
909 {
910 	struct mem_cgroup *memcg = dead_memcg;
911 	struct mem_cgroup_reclaim_iter *iter;
912 	struct mem_cgroup_per_zone *mz;
913 	int nid, zid;
914 	int i;
915 
916 	while ((memcg = parent_mem_cgroup(memcg))) {
917 		for_each_node(nid) {
918 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
919 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
920 				for (i = 0; i <= DEF_PRIORITY; i++) {
921 					iter = &mz->iter[i];
922 					cmpxchg(&iter->position,
923 						dead_memcg, NULL);
924 				}
925 			}
926 		}
927 	}
928 }
929 
930 /*
931  * Iteration constructs for visiting all cgroups (under a tree).  If
932  * loops are exited prematurely (break), mem_cgroup_iter_break() must
933  * be used for reference counting.
934  */
935 #define for_each_mem_cgroup_tree(iter, root)		\
936 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
937 	     iter != NULL;				\
938 	     iter = mem_cgroup_iter(root, iter, NULL))
939 
940 #define for_each_mem_cgroup(iter)			\
941 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
942 	     iter != NULL;				\
943 	     iter = mem_cgroup_iter(NULL, iter, NULL))
944 
945 /**
946  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
947  * @zone: zone of the wanted lruvec
948  * @memcg: memcg of the wanted lruvec
949  *
950  * Returns the lru list vector holding pages for the given @zone and
951  * @mem.  This can be the global zone lruvec, if the memory controller
952  * is disabled.
953  */
954 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
955 				      struct mem_cgroup *memcg)
956 {
957 	struct mem_cgroup_per_zone *mz;
958 	struct lruvec *lruvec;
959 
960 	if (mem_cgroup_disabled()) {
961 		lruvec = &zone->lruvec;
962 		goto out;
963 	}
964 
965 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
966 	lruvec = &mz->lruvec;
967 out:
968 	/*
969 	 * Since a node can be onlined after the mem_cgroup was created,
970 	 * we have to be prepared to initialize lruvec->zone here;
971 	 * and if offlined then reonlined, we need to reinitialize it.
972 	 */
973 	if (unlikely(lruvec->zone != zone))
974 		lruvec->zone = zone;
975 	return lruvec;
976 }
977 
978 /**
979  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
980  * @page: the page
981  * @zone: zone of the page
982  *
983  * This function is only safe when following the LRU page isolation
984  * and putback protocol: the LRU lock must be held, and the page must
985  * either be PageLRU() or the caller must have isolated/allocated it.
986  */
987 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
988 {
989 	struct mem_cgroup_per_zone *mz;
990 	struct mem_cgroup *memcg;
991 	struct lruvec *lruvec;
992 
993 	if (mem_cgroup_disabled()) {
994 		lruvec = &zone->lruvec;
995 		goto out;
996 	}
997 
998 	memcg = page->mem_cgroup;
999 	/*
1000 	 * Swapcache readahead pages are added to the LRU - and
1001 	 * possibly migrated - before they are charged.
1002 	 */
1003 	if (!memcg)
1004 		memcg = root_mem_cgroup;
1005 
1006 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1007 	lruvec = &mz->lruvec;
1008 out:
1009 	/*
1010 	 * Since a node can be onlined after the mem_cgroup was created,
1011 	 * we have to be prepared to initialize lruvec->zone here;
1012 	 * and if offlined then reonlined, we need to reinitialize it.
1013 	 */
1014 	if (unlikely(lruvec->zone != zone))
1015 		lruvec->zone = zone;
1016 	return lruvec;
1017 }
1018 
1019 /**
1020  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1021  * @lruvec: mem_cgroup per zone lru vector
1022  * @lru: index of lru list the page is sitting on
1023  * @nr_pages: positive when adding or negative when removing
1024  *
1025  * This function must be called when a page is added to or removed from an
1026  * lru list.
1027  */
1028 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1029 				int nr_pages)
1030 {
1031 	struct mem_cgroup_per_zone *mz;
1032 	unsigned long *lru_size;
1033 
1034 	if (mem_cgroup_disabled())
1035 		return;
1036 
1037 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1038 	lru_size = mz->lru_size + lru;
1039 	*lru_size += nr_pages;
1040 	VM_BUG_ON((long)(*lru_size) < 0);
1041 }
1042 
1043 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1044 {
1045 	struct mem_cgroup *task_memcg;
1046 	struct task_struct *p;
1047 	bool ret;
1048 
1049 	p = find_lock_task_mm(task);
1050 	if (p) {
1051 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1052 		task_unlock(p);
1053 	} else {
1054 		/*
1055 		 * All threads may have already detached their mm's, but the oom
1056 		 * killer still needs to detect if they have already been oom
1057 		 * killed to prevent needlessly killing additional tasks.
1058 		 */
1059 		rcu_read_lock();
1060 		task_memcg = mem_cgroup_from_task(task);
1061 		css_get(&task_memcg->css);
1062 		rcu_read_unlock();
1063 	}
1064 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1065 	css_put(&task_memcg->css);
1066 	return ret;
1067 }
1068 
1069 /**
1070  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1071  * @memcg: the memory cgroup
1072  *
1073  * Returns the maximum amount of memory @mem can be charged with, in
1074  * pages.
1075  */
1076 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1077 {
1078 	unsigned long margin = 0;
1079 	unsigned long count;
1080 	unsigned long limit;
1081 
1082 	count = page_counter_read(&memcg->memory);
1083 	limit = READ_ONCE(memcg->memory.limit);
1084 	if (count < limit)
1085 		margin = limit - count;
1086 
1087 	if (do_memsw_account()) {
1088 		count = page_counter_read(&memcg->memsw);
1089 		limit = READ_ONCE(memcg->memsw.limit);
1090 		if (count <= limit)
1091 			margin = min(margin, limit - count);
1092 	}
1093 
1094 	return margin;
1095 }
1096 
1097 /*
1098  * A routine for checking "mem" is under move_account() or not.
1099  *
1100  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101  * moving cgroups. This is for waiting at high-memory pressure
1102  * caused by "move".
1103  */
1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105 {
1106 	struct mem_cgroup *from;
1107 	struct mem_cgroup *to;
1108 	bool ret = false;
1109 	/*
1110 	 * Unlike task_move routines, we access mc.to, mc.from not under
1111 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112 	 */
1113 	spin_lock(&mc.lock);
1114 	from = mc.from;
1115 	to = mc.to;
1116 	if (!from)
1117 		goto unlock;
1118 
1119 	ret = mem_cgroup_is_descendant(from, memcg) ||
1120 		mem_cgroup_is_descendant(to, memcg);
1121 unlock:
1122 	spin_unlock(&mc.lock);
1123 	return ret;
1124 }
1125 
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 {
1128 	if (mc.moving_task && current != mc.moving_task) {
1129 		if (mem_cgroup_under_move(memcg)) {
1130 			DEFINE_WAIT(wait);
1131 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132 			/* moving charge context might have finished. */
1133 			if (mc.moving_task)
1134 				schedule();
1135 			finish_wait(&mc.waitq, &wait);
1136 			return true;
1137 		}
1138 	}
1139 	return false;
1140 }
1141 
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1143 /**
1144  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145  * @memcg: The memory cgroup that went over limit
1146  * @p: Task that is going to be killed
1147  *
1148  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149  * enabled
1150  */
1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152 {
1153 	struct mem_cgroup *iter;
1154 	unsigned int i;
1155 
1156 	rcu_read_lock();
1157 
1158 	if (p) {
1159 		pr_info("Task in ");
1160 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1161 		pr_cont(" killed as a result of limit of ");
1162 	} else {
1163 		pr_info("Memory limit reached of cgroup ");
1164 	}
1165 
1166 	pr_cont_cgroup_path(memcg->css.cgroup);
1167 	pr_cont("\n");
1168 
1169 	rcu_read_unlock();
1170 
1171 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172 		K((u64)page_counter_read(&memcg->memory)),
1173 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1174 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175 		K((u64)page_counter_read(&memcg->memsw)),
1176 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1177 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178 		K((u64)page_counter_read(&memcg->kmem)),
1179 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1180 
1181 	for_each_mem_cgroup_tree(iter, memcg) {
1182 		pr_info("Memory cgroup stats for ");
1183 		pr_cont_cgroup_path(iter->css.cgroup);
1184 		pr_cont(":");
1185 
1186 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1187 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1188 				continue;
1189 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1190 				K(mem_cgroup_read_stat(iter, i)));
1191 		}
1192 
1193 		for (i = 0; i < NR_LRU_LISTS; i++)
1194 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1195 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1196 
1197 		pr_cont("\n");
1198 	}
1199 }
1200 
1201 /*
1202  * This function returns the number of memcg under hierarchy tree. Returns
1203  * 1(self count) if no children.
1204  */
1205 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1206 {
1207 	int num = 0;
1208 	struct mem_cgroup *iter;
1209 
1210 	for_each_mem_cgroup_tree(iter, memcg)
1211 		num++;
1212 	return num;
1213 }
1214 
1215 /*
1216  * Return the memory (and swap, if configured) limit for a memcg.
1217  */
1218 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1219 {
1220 	unsigned long limit;
1221 
1222 	limit = memcg->memory.limit;
1223 	if (mem_cgroup_swappiness(memcg)) {
1224 		unsigned long memsw_limit;
1225 		unsigned long swap_limit;
1226 
1227 		memsw_limit = memcg->memsw.limit;
1228 		swap_limit = memcg->swap.limit;
1229 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1230 		limit = min(limit + swap_limit, memsw_limit);
1231 	}
1232 	return limit;
1233 }
1234 
1235 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1236 				     int order)
1237 {
1238 	struct oom_control oc = {
1239 		.zonelist = NULL,
1240 		.nodemask = NULL,
1241 		.gfp_mask = gfp_mask,
1242 		.order = order,
1243 	};
1244 	struct mem_cgroup *iter;
1245 	unsigned long chosen_points = 0;
1246 	unsigned long totalpages;
1247 	unsigned int points = 0;
1248 	struct task_struct *chosen = NULL;
1249 
1250 	mutex_lock(&oom_lock);
1251 
1252 	/*
1253 	 * If current has a pending SIGKILL or is exiting, then automatically
1254 	 * select it.  The goal is to allow it to allocate so that it may
1255 	 * quickly exit and free its memory.
1256 	 */
1257 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1258 		mark_oom_victim(current);
1259 		goto unlock;
1260 	}
1261 
1262 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1263 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1264 	for_each_mem_cgroup_tree(iter, memcg) {
1265 		struct css_task_iter it;
1266 		struct task_struct *task;
1267 
1268 		css_task_iter_start(&iter->css, &it);
1269 		while ((task = css_task_iter_next(&it))) {
1270 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1271 			case OOM_SCAN_SELECT:
1272 				if (chosen)
1273 					put_task_struct(chosen);
1274 				chosen = task;
1275 				chosen_points = ULONG_MAX;
1276 				get_task_struct(chosen);
1277 				/* fall through */
1278 			case OOM_SCAN_CONTINUE:
1279 				continue;
1280 			case OOM_SCAN_ABORT:
1281 				css_task_iter_end(&it);
1282 				mem_cgroup_iter_break(memcg, iter);
1283 				if (chosen)
1284 					put_task_struct(chosen);
1285 				goto unlock;
1286 			case OOM_SCAN_OK:
1287 				break;
1288 			};
1289 			points = oom_badness(task, memcg, NULL, totalpages);
1290 			if (!points || points < chosen_points)
1291 				continue;
1292 			/* Prefer thread group leaders for display purposes */
1293 			if (points == chosen_points &&
1294 			    thread_group_leader(chosen))
1295 				continue;
1296 
1297 			if (chosen)
1298 				put_task_struct(chosen);
1299 			chosen = task;
1300 			chosen_points = points;
1301 			get_task_struct(chosen);
1302 		}
1303 		css_task_iter_end(&it);
1304 	}
1305 
1306 	if (chosen) {
1307 		points = chosen_points * 1000 / totalpages;
1308 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1309 				 "Memory cgroup out of memory");
1310 	}
1311 unlock:
1312 	mutex_unlock(&oom_lock);
1313 	return chosen;
1314 }
1315 
1316 #if MAX_NUMNODES > 1
1317 
1318 /**
1319  * test_mem_cgroup_node_reclaimable
1320  * @memcg: the target memcg
1321  * @nid: the node ID to be checked.
1322  * @noswap : specify true here if the user wants flle only information.
1323  *
1324  * This function returns whether the specified memcg contains any
1325  * reclaimable pages on a node. Returns true if there are any reclaimable
1326  * pages in the node.
1327  */
1328 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1329 		int nid, bool noswap)
1330 {
1331 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1332 		return true;
1333 	if (noswap || !total_swap_pages)
1334 		return false;
1335 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1336 		return true;
1337 	return false;
1338 
1339 }
1340 
1341 /*
1342  * Always updating the nodemask is not very good - even if we have an empty
1343  * list or the wrong list here, we can start from some node and traverse all
1344  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1345  *
1346  */
1347 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1348 {
1349 	int nid;
1350 	/*
1351 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1352 	 * pagein/pageout changes since the last update.
1353 	 */
1354 	if (!atomic_read(&memcg->numainfo_events))
1355 		return;
1356 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1357 		return;
1358 
1359 	/* make a nodemask where this memcg uses memory from */
1360 	memcg->scan_nodes = node_states[N_MEMORY];
1361 
1362 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1363 
1364 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1365 			node_clear(nid, memcg->scan_nodes);
1366 	}
1367 
1368 	atomic_set(&memcg->numainfo_events, 0);
1369 	atomic_set(&memcg->numainfo_updating, 0);
1370 }
1371 
1372 /*
1373  * Selecting a node where we start reclaim from. Because what we need is just
1374  * reducing usage counter, start from anywhere is O,K. Considering
1375  * memory reclaim from current node, there are pros. and cons.
1376  *
1377  * Freeing memory from current node means freeing memory from a node which
1378  * we'll use or we've used. So, it may make LRU bad. And if several threads
1379  * hit limits, it will see a contention on a node. But freeing from remote
1380  * node means more costs for memory reclaim because of memory latency.
1381  *
1382  * Now, we use round-robin. Better algorithm is welcomed.
1383  */
1384 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1385 {
1386 	int node;
1387 
1388 	mem_cgroup_may_update_nodemask(memcg);
1389 	node = memcg->last_scanned_node;
1390 
1391 	node = next_node(node, memcg->scan_nodes);
1392 	if (node == MAX_NUMNODES)
1393 		node = first_node(memcg->scan_nodes);
1394 	/*
1395 	 * We call this when we hit limit, not when pages are added to LRU.
1396 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1397 	 * memcg is too small and all pages are not on LRU. In that case,
1398 	 * we use curret node.
1399 	 */
1400 	if (unlikely(node == MAX_NUMNODES))
1401 		node = numa_node_id();
1402 
1403 	memcg->last_scanned_node = node;
1404 	return node;
1405 }
1406 #else
1407 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1408 {
1409 	return 0;
1410 }
1411 #endif
1412 
1413 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1414 				   struct zone *zone,
1415 				   gfp_t gfp_mask,
1416 				   unsigned long *total_scanned)
1417 {
1418 	struct mem_cgroup *victim = NULL;
1419 	int total = 0;
1420 	int loop = 0;
1421 	unsigned long excess;
1422 	unsigned long nr_scanned;
1423 	struct mem_cgroup_reclaim_cookie reclaim = {
1424 		.zone = zone,
1425 		.priority = 0,
1426 	};
1427 
1428 	excess = soft_limit_excess(root_memcg);
1429 
1430 	while (1) {
1431 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1432 		if (!victim) {
1433 			loop++;
1434 			if (loop >= 2) {
1435 				/*
1436 				 * If we have not been able to reclaim
1437 				 * anything, it might because there are
1438 				 * no reclaimable pages under this hierarchy
1439 				 */
1440 				if (!total)
1441 					break;
1442 				/*
1443 				 * We want to do more targeted reclaim.
1444 				 * excess >> 2 is not to excessive so as to
1445 				 * reclaim too much, nor too less that we keep
1446 				 * coming back to reclaim from this cgroup
1447 				 */
1448 				if (total >= (excess >> 2) ||
1449 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1450 					break;
1451 			}
1452 			continue;
1453 		}
1454 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1455 						     zone, &nr_scanned);
1456 		*total_scanned += nr_scanned;
1457 		if (!soft_limit_excess(root_memcg))
1458 			break;
1459 	}
1460 	mem_cgroup_iter_break(root_memcg, victim);
1461 	return total;
1462 }
1463 
1464 #ifdef CONFIG_LOCKDEP
1465 static struct lockdep_map memcg_oom_lock_dep_map = {
1466 	.name = "memcg_oom_lock",
1467 };
1468 #endif
1469 
1470 static DEFINE_SPINLOCK(memcg_oom_lock);
1471 
1472 /*
1473  * Check OOM-Killer is already running under our hierarchy.
1474  * If someone is running, return false.
1475  */
1476 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1477 {
1478 	struct mem_cgroup *iter, *failed = NULL;
1479 
1480 	spin_lock(&memcg_oom_lock);
1481 
1482 	for_each_mem_cgroup_tree(iter, memcg) {
1483 		if (iter->oom_lock) {
1484 			/*
1485 			 * this subtree of our hierarchy is already locked
1486 			 * so we cannot give a lock.
1487 			 */
1488 			failed = iter;
1489 			mem_cgroup_iter_break(memcg, iter);
1490 			break;
1491 		} else
1492 			iter->oom_lock = true;
1493 	}
1494 
1495 	if (failed) {
1496 		/*
1497 		 * OK, we failed to lock the whole subtree so we have
1498 		 * to clean up what we set up to the failing subtree
1499 		 */
1500 		for_each_mem_cgroup_tree(iter, memcg) {
1501 			if (iter == failed) {
1502 				mem_cgroup_iter_break(memcg, iter);
1503 				break;
1504 			}
1505 			iter->oom_lock = false;
1506 		}
1507 	} else
1508 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1509 
1510 	spin_unlock(&memcg_oom_lock);
1511 
1512 	return !failed;
1513 }
1514 
1515 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1516 {
1517 	struct mem_cgroup *iter;
1518 
1519 	spin_lock(&memcg_oom_lock);
1520 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1521 	for_each_mem_cgroup_tree(iter, memcg)
1522 		iter->oom_lock = false;
1523 	spin_unlock(&memcg_oom_lock);
1524 }
1525 
1526 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1527 {
1528 	struct mem_cgroup *iter;
1529 
1530 	spin_lock(&memcg_oom_lock);
1531 	for_each_mem_cgroup_tree(iter, memcg)
1532 		iter->under_oom++;
1533 	spin_unlock(&memcg_oom_lock);
1534 }
1535 
1536 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1537 {
1538 	struct mem_cgroup *iter;
1539 
1540 	/*
1541 	 * When a new child is created while the hierarchy is under oom,
1542 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1543 	 */
1544 	spin_lock(&memcg_oom_lock);
1545 	for_each_mem_cgroup_tree(iter, memcg)
1546 		if (iter->under_oom > 0)
1547 			iter->under_oom--;
1548 	spin_unlock(&memcg_oom_lock);
1549 }
1550 
1551 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1552 
1553 struct oom_wait_info {
1554 	struct mem_cgroup *memcg;
1555 	wait_queue_t	wait;
1556 };
1557 
1558 static int memcg_oom_wake_function(wait_queue_t *wait,
1559 	unsigned mode, int sync, void *arg)
1560 {
1561 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1562 	struct mem_cgroup *oom_wait_memcg;
1563 	struct oom_wait_info *oom_wait_info;
1564 
1565 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1566 	oom_wait_memcg = oom_wait_info->memcg;
1567 
1568 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1569 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1570 		return 0;
1571 	return autoremove_wake_function(wait, mode, sync, arg);
1572 }
1573 
1574 static void memcg_oom_recover(struct mem_cgroup *memcg)
1575 {
1576 	/*
1577 	 * For the following lockless ->under_oom test, the only required
1578 	 * guarantee is that it must see the state asserted by an OOM when
1579 	 * this function is called as a result of userland actions
1580 	 * triggered by the notification of the OOM.  This is trivially
1581 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1582 	 * triggering notification.
1583 	 */
1584 	if (memcg && memcg->under_oom)
1585 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1586 }
1587 
1588 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1589 {
1590 	if (!current->memcg_may_oom)
1591 		return;
1592 	/*
1593 	 * We are in the middle of the charge context here, so we
1594 	 * don't want to block when potentially sitting on a callstack
1595 	 * that holds all kinds of filesystem and mm locks.
1596 	 *
1597 	 * Also, the caller may handle a failed allocation gracefully
1598 	 * (like optional page cache readahead) and so an OOM killer
1599 	 * invocation might not even be necessary.
1600 	 *
1601 	 * That's why we don't do anything here except remember the
1602 	 * OOM context and then deal with it at the end of the page
1603 	 * fault when the stack is unwound, the locks are released,
1604 	 * and when we know whether the fault was overall successful.
1605 	 */
1606 	css_get(&memcg->css);
1607 	current->memcg_in_oom = memcg;
1608 	current->memcg_oom_gfp_mask = mask;
1609 	current->memcg_oom_order = order;
1610 }
1611 
1612 /**
1613  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1614  * @handle: actually kill/wait or just clean up the OOM state
1615  *
1616  * This has to be called at the end of a page fault if the memcg OOM
1617  * handler was enabled.
1618  *
1619  * Memcg supports userspace OOM handling where failed allocations must
1620  * sleep on a waitqueue until the userspace task resolves the
1621  * situation.  Sleeping directly in the charge context with all kinds
1622  * of locks held is not a good idea, instead we remember an OOM state
1623  * in the task and mem_cgroup_oom_synchronize() has to be called at
1624  * the end of the page fault to complete the OOM handling.
1625  *
1626  * Returns %true if an ongoing memcg OOM situation was detected and
1627  * completed, %false otherwise.
1628  */
1629 bool mem_cgroup_oom_synchronize(bool handle)
1630 {
1631 	struct mem_cgroup *memcg = current->memcg_in_oom;
1632 	struct oom_wait_info owait;
1633 	bool locked;
1634 
1635 	/* OOM is global, do not handle */
1636 	if (!memcg)
1637 		return false;
1638 
1639 	if (!handle || oom_killer_disabled)
1640 		goto cleanup;
1641 
1642 	owait.memcg = memcg;
1643 	owait.wait.flags = 0;
1644 	owait.wait.func = memcg_oom_wake_function;
1645 	owait.wait.private = current;
1646 	INIT_LIST_HEAD(&owait.wait.task_list);
1647 
1648 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1649 	mem_cgroup_mark_under_oom(memcg);
1650 
1651 	locked = mem_cgroup_oom_trylock(memcg);
1652 
1653 	if (locked)
1654 		mem_cgroup_oom_notify(memcg);
1655 
1656 	if (locked && !memcg->oom_kill_disable) {
1657 		mem_cgroup_unmark_under_oom(memcg);
1658 		finish_wait(&memcg_oom_waitq, &owait.wait);
1659 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1660 					 current->memcg_oom_order);
1661 	} else {
1662 		schedule();
1663 		mem_cgroup_unmark_under_oom(memcg);
1664 		finish_wait(&memcg_oom_waitq, &owait.wait);
1665 	}
1666 
1667 	if (locked) {
1668 		mem_cgroup_oom_unlock(memcg);
1669 		/*
1670 		 * There is no guarantee that an OOM-lock contender
1671 		 * sees the wakeups triggered by the OOM kill
1672 		 * uncharges.  Wake any sleepers explicitely.
1673 		 */
1674 		memcg_oom_recover(memcg);
1675 	}
1676 cleanup:
1677 	current->memcg_in_oom = NULL;
1678 	css_put(&memcg->css);
1679 	return true;
1680 }
1681 
1682 /**
1683  * lock_page_memcg - lock a page->mem_cgroup binding
1684  * @page: the page
1685  *
1686  * This function protects unlocked LRU pages from being moved to
1687  * another cgroup and stabilizes their page->mem_cgroup binding.
1688  */
1689 void lock_page_memcg(struct page *page)
1690 {
1691 	struct mem_cgroup *memcg;
1692 	unsigned long flags;
1693 
1694 	/*
1695 	 * The RCU lock is held throughout the transaction.  The fast
1696 	 * path can get away without acquiring the memcg->move_lock
1697 	 * because page moving starts with an RCU grace period.
1698 	 */
1699 	rcu_read_lock();
1700 
1701 	if (mem_cgroup_disabled())
1702 		return;
1703 again:
1704 	memcg = page->mem_cgroup;
1705 	if (unlikely(!memcg))
1706 		return;
1707 
1708 	if (atomic_read(&memcg->moving_account) <= 0)
1709 		return;
1710 
1711 	spin_lock_irqsave(&memcg->move_lock, flags);
1712 	if (memcg != page->mem_cgroup) {
1713 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1714 		goto again;
1715 	}
1716 
1717 	/*
1718 	 * When charge migration first begins, we can have locked and
1719 	 * unlocked page stat updates happening concurrently.  Track
1720 	 * the task who has the lock for unlock_page_memcg().
1721 	 */
1722 	memcg->move_lock_task = current;
1723 	memcg->move_lock_flags = flags;
1724 
1725 	return;
1726 }
1727 EXPORT_SYMBOL(lock_page_memcg);
1728 
1729 /**
1730  * unlock_page_memcg - unlock a page->mem_cgroup binding
1731  * @page: the page
1732  */
1733 void unlock_page_memcg(struct page *page)
1734 {
1735 	struct mem_cgroup *memcg = page->mem_cgroup;
1736 
1737 	if (memcg && memcg->move_lock_task == current) {
1738 		unsigned long flags = memcg->move_lock_flags;
1739 
1740 		memcg->move_lock_task = NULL;
1741 		memcg->move_lock_flags = 0;
1742 
1743 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1744 	}
1745 
1746 	rcu_read_unlock();
1747 }
1748 EXPORT_SYMBOL(unlock_page_memcg);
1749 
1750 /*
1751  * size of first charge trial. "32" comes from vmscan.c's magic value.
1752  * TODO: maybe necessary to use big numbers in big irons.
1753  */
1754 #define CHARGE_BATCH	32U
1755 struct memcg_stock_pcp {
1756 	struct mem_cgroup *cached; /* this never be root cgroup */
1757 	unsigned int nr_pages;
1758 	struct work_struct work;
1759 	unsigned long flags;
1760 #define FLUSHING_CACHED_CHARGE	0
1761 };
1762 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1763 static DEFINE_MUTEX(percpu_charge_mutex);
1764 
1765 /**
1766  * consume_stock: Try to consume stocked charge on this cpu.
1767  * @memcg: memcg to consume from.
1768  * @nr_pages: how many pages to charge.
1769  *
1770  * The charges will only happen if @memcg matches the current cpu's memcg
1771  * stock, and at least @nr_pages are available in that stock.  Failure to
1772  * service an allocation will refill the stock.
1773  *
1774  * returns true if successful, false otherwise.
1775  */
1776 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1777 {
1778 	struct memcg_stock_pcp *stock;
1779 	bool ret = false;
1780 
1781 	if (nr_pages > CHARGE_BATCH)
1782 		return ret;
1783 
1784 	stock = &get_cpu_var(memcg_stock);
1785 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1786 		stock->nr_pages -= nr_pages;
1787 		ret = true;
1788 	}
1789 	put_cpu_var(memcg_stock);
1790 	return ret;
1791 }
1792 
1793 /*
1794  * Returns stocks cached in percpu and reset cached information.
1795  */
1796 static void drain_stock(struct memcg_stock_pcp *stock)
1797 {
1798 	struct mem_cgroup *old = stock->cached;
1799 
1800 	if (stock->nr_pages) {
1801 		page_counter_uncharge(&old->memory, stock->nr_pages);
1802 		if (do_memsw_account())
1803 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1804 		css_put_many(&old->css, stock->nr_pages);
1805 		stock->nr_pages = 0;
1806 	}
1807 	stock->cached = NULL;
1808 }
1809 
1810 /*
1811  * This must be called under preempt disabled or must be called by
1812  * a thread which is pinned to local cpu.
1813  */
1814 static void drain_local_stock(struct work_struct *dummy)
1815 {
1816 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1817 	drain_stock(stock);
1818 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1819 }
1820 
1821 /*
1822  * Cache charges(val) to local per_cpu area.
1823  * This will be consumed by consume_stock() function, later.
1824  */
1825 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1826 {
1827 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1828 
1829 	if (stock->cached != memcg) { /* reset if necessary */
1830 		drain_stock(stock);
1831 		stock->cached = memcg;
1832 	}
1833 	stock->nr_pages += nr_pages;
1834 	put_cpu_var(memcg_stock);
1835 }
1836 
1837 /*
1838  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1839  * of the hierarchy under it.
1840  */
1841 static void drain_all_stock(struct mem_cgroup *root_memcg)
1842 {
1843 	int cpu, curcpu;
1844 
1845 	/* If someone's already draining, avoid adding running more workers. */
1846 	if (!mutex_trylock(&percpu_charge_mutex))
1847 		return;
1848 	/* Notify other cpus that system-wide "drain" is running */
1849 	get_online_cpus();
1850 	curcpu = get_cpu();
1851 	for_each_online_cpu(cpu) {
1852 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1853 		struct mem_cgroup *memcg;
1854 
1855 		memcg = stock->cached;
1856 		if (!memcg || !stock->nr_pages)
1857 			continue;
1858 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1859 			continue;
1860 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1861 			if (cpu == curcpu)
1862 				drain_local_stock(&stock->work);
1863 			else
1864 				schedule_work_on(cpu, &stock->work);
1865 		}
1866 	}
1867 	put_cpu();
1868 	put_online_cpus();
1869 	mutex_unlock(&percpu_charge_mutex);
1870 }
1871 
1872 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1873 					unsigned long action,
1874 					void *hcpu)
1875 {
1876 	int cpu = (unsigned long)hcpu;
1877 	struct memcg_stock_pcp *stock;
1878 
1879 	if (action == CPU_ONLINE)
1880 		return NOTIFY_OK;
1881 
1882 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1883 		return NOTIFY_OK;
1884 
1885 	stock = &per_cpu(memcg_stock, cpu);
1886 	drain_stock(stock);
1887 	return NOTIFY_OK;
1888 }
1889 
1890 static void reclaim_high(struct mem_cgroup *memcg,
1891 			 unsigned int nr_pages,
1892 			 gfp_t gfp_mask)
1893 {
1894 	do {
1895 		if (page_counter_read(&memcg->memory) <= memcg->high)
1896 			continue;
1897 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1898 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1899 	} while ((memcg = parent_mem_cgroup(memcg)));
1900 }
1901 
1902 static void high_work_func(struct work_struct *work)
1903 {
1904 	struct mem_cgroup *memcg;
1905 
1906 	memcg = container_of(work, struct mem_cgroup, high_work);
1907 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1908 }
1909 
1910 /*
1911  * Scheduled by try_charge() to be executed from the userland return path
1912  * and reclaims memory over the high limit.
1913  */
1914 void mem_cgroup_handle_over_high(void)
1915 {
1916 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1917 	struct mem_cgroup *memcg;
1918 
1919 	if (likely(!nr_pages))
1920 		return;
1921 
1922 	memcg = get_mem_cgroup_from_mm(current->mm);
1923 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1924 	css_put(&memcg->css);
1925 	current->memcg_nr_pages_over_high = 0;
1926 }
1927 
1928 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1929 		      unsigned int nr_pages)
1930 {
1931 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1932 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1933 	struct mem_cgroup *mem_over_limit;
1934 	struct page_counter *counter;
1935 	unsigned long nr_reclaimed;
1936 	bool may_swap = true;
1937 	bool drained = false;
1938 
1939 	if (mem_cgroup_is_root(memcg))
1940 		return 0;
1941 retry:
1942 	if (consume_stock(memcg, nr_pages))
1943 		return 0;
1944 
1945 	if (!do_memsw_account() ||
1946 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1947 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1948 			goto done_restock;
1949 		if (do_memsw_account())
1950 			page_counter_uncharge(&memcg->memsw, batch);
1951 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1952 	} else {
1953 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1954 		may_swap = false;
1955 	}
1956 
1957 	if (batch > nr_pages) {
1958 		batch = nr_pages;
1959 		goto retry;
1960 	}
1961 
1962 	/*
1963 	 * Unlike in global OOM situations, memcg is not in a physical
1964 	 * memory shortage.  Allow dying and OOM-killed tasks to
1965 	 * bypass the last charges so that they can exit quickly and
1966 	 * free their memory.
1967 	 */
1968 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1969 		     fatal_signal_pending(current) ||
1970 		     current->flags & PF_EXITING))
1971 		goto force;
1972 
1973 	if (unlikely(task_in_memcg_oom(current)))
1974 		goto nomem;
1975 
1976 	if (!gfpflags_allow_blocking(gfp_mask))
1977 		goto nomem;
1978 
1979 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1980 
1981 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1982 						    gfp_mask, may_swap);
1983 
1984 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1985 		goto retry;
1986 
1987 	if (!drained) {
1988 		drain_all_stock(mem_over_limit);
1989 		drained = true;
1990 		goto retry;
1991 	}
1992 
1993 	if (gfp_mask & __GFP_NORETRY)
1994 		goto nomem;
1995 	/*
1996 	 * Even though the limit is exceeded at this point, reclaim
1997 	 * may have been able to free some pages.  Retry the charge
1998 	 * before killing the task.
1999 	 *
2000 	 * Only for regular pages, though: huge pages are rather
2001 	 * unlikely to succeed so close to the limit, and we fall back
2002 	 * to regular pages anyway in case of failure.
2003 	 */
2004 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2005 		goto retry;
2006 	/*
2007 	 * At task move, charge accounts can be doubly counted. So, it's
2008 	 * better to wait until the end of task_move if something is going on.
2009 	 */
2010 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2011 		goto retry;
2012 
2013 	if (nr_retries--)
2014 		goto retry;
2015 
2016 	if (gfp_mask & __GFP_NOFAIL)
2017 		goto force;
2018 
2019 	if (fatal_signal_pending(current))
2020 		goto force;
2021 
2022 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2023 
2024 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2025 		       get_order(nr_pages * PAGE_SIZE));
2026 nomem:
2027 	if (!(gfp_mask & __GFP_NOFAIL))
2028 		return -ENOMEM;
2029 force:
2030 	/*
2031 	 * The allocation either can't fail or will lead to more memory
2032 	 * being freed very soon.  Allow memory usage go over the limit
2033 	 * temporarily by force charging it.
2034 	 */
2035 	page_counter_charge(&memcg->memory, nr_pages);
2036 	if (do_memsw_account())
2037 		page_counter_charge(&memcg->memsw, nr_pages);
2038 	css_get_many(&memcg->css, nr_pages);
2039 
2040 	return 0;
2041 
2042 done_restock:
2043 	css_get_many(&memcg->css, batch);
2044 	if (batch > nr_pages)
2045 		refill_stock(memcg, batch - nr_pages);
2046 
2047 	/*
2048 	 * If the hierarchy is above the normal consumption range, schedule
2049 	 * reclaim on returning to userland.  We can perform reclaim here
2050 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2051 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2052 	 * not recorded as it most likely matches current's and won't
2053 	 * change in the meantime.  As high limit is checked again before
2054 	 * reclaim, the cost of mismatch is negligible.
2055 	 */
2056 	do {
2057 		if (page_counter_read(&memcg->memory) > memcg->high) {
2058 			/* Don't bother a random interrupted task */
2059 			if (in_interrupt()) {
2060 				schedule_work(&memcg->high_work);
2061 				break;
2062 			}
2063 			current->memcg_nr_pages_over_high += batch;
2064 			set_notify_resume(current);
2065 			break;
2066 		}
2067 	} while ((memcg = parent_mem_cgroup(memcg)));
2068 
2069 	return 0;
2070 }
2071 
2072 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2073 {
2074 	if (mem_cgroup_is_root(memcg))
2075 		return;
2076 
2077 	page_counter_uncharge(&memcg->memory, nr_pages);
2078 	if (do_memsw_account())
2079 		page_counter_uncharge(&memcg->memsw, nr_pages);
2080 
2081 	css_put_many(&memcg->css, nr_pages);
2082 }
2083 
2084 static void lock_page_lru(struct page *page, int *isolated)
2085 {
2086 	struct zone *zone = page_zone(page);
2087 
2088 	spin_lock_irq(&zone->lru_lock);
2089 	if (PageLRU(page)) {
2090 		struct lruvec *lruvec;
2091 
2092 		lruvec = mem_cgroup_page_lruvec(page, zone);
2093 		ClearPageLRU(page);
2094 		del_page_from_lru_list(page, lruvec, page_lru(page));
2095 		*isolated = 1;
2096 	} else
2097 		*isolated = 0;
2098 }
2099 
2100 static void unlock_page_lru(struct page *page, int isolated)
2101 {
2102 	struct zone *zone = page_zone(page);
2103 
2104 	if (isolated) {
2105 		struct lruvec *lruvec;
2106 
2107 		lruvec = mem_cgroup_page_lruvec(page, zone);
2108 		VM_BUG_ON_PAGE(PageLRU(page), page);
2109 		SetPageLRU(page);
2110 		add_page_to_lru_list(page, lruvec, page_lru(page));
2111 	}
2112 	spin_unlock_irq(&zone->lru_lock);
2113 }
2114 
2115 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2116 			  bool lrucare)
2117 {
2118 	int isolated;
2119 
2120 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2121 
2122 	/*
2123 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2124 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2125 	 */
2126 	if (lrucare)
2127 		lock_page_lru(page, &isolated);
2128 
2129 	/*
2130 	 * Nobody should be changing or seriously looking at
2131 	 * page->mem_cgroup at this point:
2132 	 *
2133 	 * - the page is uncharged
2134 	 *
2135 	 * - the page is off-LRU
2136 	 *
2137 	 * - an anonymous fault has exclusive page access, except for
2138 	 *   a locked page table
2139 	 *
2140 	 * - a page cache insertion, a swapin fault, or a migration
2141 	 *   have the page locked
2142 	 */
2143 	page->mem_cgroup = memcg;
2144 
2145 	if (lrucare)
2146 		unlock_page_lru(page, isolated);
2147 }
2148 
2149 #ifndef CONFIG_SLOB
2150 static int memcg_alloc_cache_id(void)
2151 {
2152 	int id, size;
2153 	int err;
2154 
2155 	id = ida_simple_get(&memcg_cache_ida,
2156 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2157 	if (id < 0)
2158 		return id;
2159 
2160 	if (id < memcg_nr_cache_ids)
2161 		return id;
2162 
2163 	/*
2164 	 * There's no space for the new id in memcg_caches arrays,
2165 	 * so we have to grow them.
2166 	 */
2167 	down_write(&memcg_cache_ids_sem);
2168 
2169 	size = 2 * (id + 1);
2170 	if (size < MEMCG_CACHES_MIN_SIZE)
2171 		size = MEMCG_CACHES_MIN_SIZE;
2172 	else if (size > MEMCG_CACHES_MAX_SIZE)
2173 		size = MEMCG_CACHES_MAX_SIZE;
2174 
2175 	err = memcg_update_all_caches(size);
2176 	if (!err)
2177 		err = memcg_update_all_list_lrus(size);
2178 	if (!err)
2179 		memcg_nr_cache_ids = size;
2180 
2181 	up_write(&memcg_cache_ids_sem);
2182 
2183 	if (err) {
2184 		ida_simple_remove(&memcg_cache_ida, id);
2185 		return err;
2186 	}
2187 	return id;
2188 }
2189 
2190 static void memcg_free_cache_id(int id)
2191 {
2192 	ida_simple_remove(&memcg_cache_ida, id);
2193 }
2194 
2195 struct memcg_kmem_cache_create_work {
2196 	struct mem_cgroup *memcg;
2197 	struct kmem_cache *cachep;
2198 	struct work_struct work;
2199 };
2200 
2201 static void memcg_kmem_cache_create_func(struct work_struct *w)
2202 {
2203 	struct memcg_kmem_cache_create_work *cw =
2204 		container_of(w, struct memcg_kmem_cache_create_work, work);
2205 	struct mem_cgroup *memcg = cw->memcg;
2206 	struct kmem_cache *cachep = cw->cachep;
2207 
2208 	memcg_create_kmem_cache(memcg, cachep);
2209 
2210 	css_put(&memcg->css);
2211 	kfree(cw);
2212 }
2213 
2214 /*
2215  * Enqueue the creation of a per-memcg kmem_cache.
2216  */
2217 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2218 					       struct kmem_cache *cachep)
2219 {
2220 	struct memcg_kmem_cache_create_work *cw;
2221 
2222 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2223 	if (!cw)
2224 		return;
2225 
2226 	css_get(&memcg->css);
2227 
2228 	cw->memcg = memcg;
2229 	cw->cachep = cachep;
2230 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2231 
2232 	schedule_work(&cw->work);
2233 }
2234 
2235 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2236 					     struct kmem_cache *cachep)
2237 {
2238 	/*
2239 	 * We need to stop accounting when we kmalloc, because if the
2240 	 * corresponding kmalloc cache is not yet created, the first allocation
2241 	 * in __memcg_schedule_kmem_cache_create will recurse.
2242 	 *
2243 	 * However, it is better to enclose the whole function. Depending on
2244 	 * the debugging options enabled, INIT_WORK(), for instance, can
2245 	 * trigger an allocation. This too, will make us recurse. Because at
2246 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2247 	 * the safest choice is to do it like this, wrapping the whole function.
2248 	 */
2249 	current->memcg_kmem_skip_account = 1;
2250 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2251 	current->memcg_kmem_skip_account = 0;
2252 }
2253 
2254 /*
2255  * Return the kmem_cache we're supposed to use for a slab allocation.
2256  * We try to use the current memcg's version of the cache.
2257  *
2258  * If the cache does not exist yet, if we are the first user of it,
2259  * we either create it immediately, if possible, or create it asynchronously
2260  * in a workqueue.
2261  * In the latter case, we will let the current allocation go through with
2262  * the original cache.
2263  *
2264  * Can't be called in interrupt context or from kernel threads.
2265  * This function needs to be called with rcu_read_lock() held.
2266  */
2267 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2268 {
2269 	struct mem_cgroup *memcg;
2270 	struct kmem_cache *memcg_cachep;
2271 	int kmemcg_id;
2272 
2273 	VM_BUG_ON(!is_root_cache(cachep));
2274 
2275 	if (cachep->flags & SLAB_ACCOUNT)
2276 		gfp |= __GFP_ACCOUNT;
2277 
2278 	if (!(gfp & __GFP_ACCOUNT))
2279 		return cachep;
2280 
2281 	if (current->memcg_kmem_skip_account)
2282 		return cachep;
2283 
2284 	memcg = get_mem_cgroup_from_mm(current->mm);
2285 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2286 	if (kmemcg_id < 0)
2287 		goto out;
2288 
2289 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2290 	if (likely(memcg_cachep))
2291 		return memcg_cachep;
2292 
2293 	/*
2294 	 * If we are in a safe context (can wait, and not in interrupt
2295 	 * context), we could be be predictable and return right away.
2296 	 * This would guarantee that the allocation being performed
2297 	 * already belongs in the new cache.
2298 	 *
2299 	 * However, there are some clashes that can arrive from locking.
2300 	 * For instance, because we acquire the slab_mutex while doing
2301 	 * memcg_create_kmem_cache, this means no further allocation
2302 	 * could happen with the slab_mutex held. So it's better to
2303 	 * defer everything.
2304 	 */
2305 	memcg_schedule_kmem_cache_create(memcg, cachep);
2306 out:
2307 	css_put(&memcg->css);
2308 	return cachep;
2309 }
2310 
2311 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2312 {
2313 	if (!is_root_cache(cachep))
2314 		css_put(&cachep->memcg_params.memcg->css);
2315 }
2316 
2317 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2318 			      struct mem_cgroup *memcg)
2319 {
2320 	unsigned int nr_pages = 1 << order;
2321 	struct page_counter *counter;
2322 	int ret;
2323 
2324 	ret = try_charge(memcg, gfp, nr_pages);
2325 	if (ret)
2326 		return ret;
2327 
2328 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2329 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2330 		cancel_charge(memcg, nr_pages);
2331 		return -ENOMEM;
2332 	}
2333 
2334 	page->mem_cgroup = memcg;
2335 
2336 	return 0;
2337 }
2338 
2339 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2340 {
2341 	struct mem_cgroup *memcg;
2342 	int ret = 0;
2343 
2344 	memcg = get_mem_cgroup_from_mm(current->mm);
2345 	if (!mem_cgroup_is_root(memcg))
2346 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2347 	css_put(&memcg->css);
2348 	return ret;
2349 }
2350 
2351 void __memcg_kmem_uncharge(struct page *page, int order)
2352 {
2353 	struct mem_cgroup *memcg = page->mem_cgroup;
2354 	unsigned int nr_pages = 1 << order;
2355 
2356 	if (!memcg)
2357 		return;
2358 
2359 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2360 
2361 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2362 		page_counter_uncharge(&memcg->kmem, nr_pages);
2363 
2364 	page_counter_uncharge(&memcg->memory, nr_pages);
2365 	if (do_memsw_account())
2366 		page_counter_uncharge(&memcg->memsw, nr_pages);
2367 
2368 	page->mem_cgroup = NULL;
2369 	css_put_many(&memcg->css, nr_pages);
2370 }
2371 #endif /* !CONFIG_SLOB */
2372 
2373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2374 
2375 /*
2376  * Because tail pages are not marked as "used", set it. We're under
2377  * zone->lru_lock and migration entries setup in all page mappings.
2378  */
2379 void mem_cgroup_split_huge_fixup(struct page *head)
2380 {
2381 	int i;
2382 
2383 	if (mem_cgroup_disabled())
2384 		return;
2385 
2386 	for (i = 1; i < HPAGE_PMD_NR; i++)
2387 		head[i].mem_cgroup = head->mem_cgroup;
2388 
2389 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2390 		       HPAGE_PMD_NR);
2391 }
2392 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2393 
2394 #ifdef CONFIG_MEMCG_SWAP
2395 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2396 					 bool charge)
2397 {
2398 	int val = (charge) ? 1 : -1;
2399 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2400 }
2401 
2402 /**
2403  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2404  * @entry: swap entry to be moved
2405  * @from:  mem_cgroup which the entry is moved from
2406  * @to:  mem_cgroup which the entry is moved to
2407  *
2408  * It succeeds only when the swap_cgroup's record for this entry is the same
2409  * as the mem_cgroup's id of @from.
2410  *
2411  * Returns 0 on success, -EINVAL on failure.
2412  *
2413  * The caller must have charged to @to, IOW, called page_counter_charge() about
2414  * both res and memsw, and called css_get().
2415  */
2416 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2417 				struct mem_cgroup *from, struct mem_cgroup *to)
2418 {
2419 	unsigned short old_id, new_id;
2420 
2421 	old_id = mem_cgroup_id(from);
2422 	new_id = mem_cgroup_id(to);
2423 
2424 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2425 		mem_cgroup_swap_statistics(from, false);
2426 		mem_cgroup_swap_statistics(to, true);
2427 		return 0;
2428 	}
2429 	return -EINVAL;
2430 }
2431 #else
2432 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2433 				struct mem_cgroup *from, struct mem_cgroup *to)
2434 {
2435 	return -EINVAL;
2436 }
2437 #endif
2438 
2439 static DEFINE_MUTEX(memcg_limit_mutex);
2440 
2441 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2442 				   unsigned long limit)
2443 {
2444 	unsigned long curusage;
2445 	unsigned long oldusage;
2446 	bool enlarge = false;
2447 	int retry_count;
2448 	int ret;
2449 
2450 	/*
2451 	 * For keeping hierarchical_reclaim simple, how long we should retry
2452 	 * is depends on callers. We set our retry-count to be function
2453 	 * of # of children which we should visit in this loop.
2454 	 */
2455 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2456 		      mem_cgroup_count_children(memcg);
2457 
2458 	oldusage = page_counter_read(&memcg->memory);
2459 
2460 	do {
2461 		if (signal_pending(current)) {
2462 			ret = -EINTR;
2463 			break;
2464 		}
2465 
2466 		mutex_lock(&memcg_limit_mutex);
2467 		if (limit > memcg->memsw.limit) {
2468 			mutex_unlock(&memcg_limit_mutex);
2469 			ret = -EINVAL;
2470 			break;
2471 		}
2472 		if (limit > memcg->memory.limit)
2473 			enlarge = true;
2474 		ret = page_counter_limit(&memcg->memory, limit);
2475 		mutex_unlock(&memcg_limit_mutex);
2476 
2477 		if (!ret)
2478 			break;
2479 
2480 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2481 
2482 		curusage = page_counter_read(&memcg->memory);
2483 		/* Usage is reduced ? */
2484 		if (curusage >= oldusage)
2485 			retry_count--;
2486 		else
2487 			oldusage = curusage;
2488 	} while (retry_count);
2489 
2490 	if (!ret && enlarge)
2491 		memcg_oom_recover(memcg);
2492 
2493 	return ret;
2494 }
2495 
2496 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2497 					 unsigned long limit)
2498 {
2499 	unsigned long curusage;
2500 	unsigned long oldusage;
2501 	bool enlarge = false;
2502 	int retry_count;
2503 	int ret;
2504 
2505 	/* see mem_cgroup_resize_res_limit */
2506 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2507 		      mem_cgroup_count_children(memcg);
2508 
2509 	oldusage = page_counter_read(&memcg->memsw);
2510 
2511 	do {
2512 		if (signal_pending(current)) {
2513 			ret = -EINTR;
2514 			break;
2515 		}
2516 
2517 		mutex_lock(&memcg_limit_mutex);
2518 		if (limit < memcg->memory.limit) {
2519 			mutex_unlock(&memcg_limit_mutex);
2520 			ret = -EINVAL;
2521 			break;
2522 		}
2523 		if (limit > memcg->memsw.limit)
2524 			enlarge = true;
2525 		ret = page_counter_limit(&memcg->memsw, limit);
2526 		mutex_unlock(&memcg_limit_mutex);
2527 
2528 		if (!ret)
2529 			break;
2530 
2531 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2532 
2533 		curusage = page_counter_read(&memcg->memsw);
2534 		/* Usage is reduced ? */
2535 		if (curusage >= oldusage)
2536 			retry_count--;
2537 		else
2538 			oldusage = curusage;
2539 	} while (retry_count);
2540 
2541 	if (!ret && enlarge)
2542 		memcg_oom_recover(memcg);
2543 
2544 	return ret;
2545 }
2546 
2547 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2548 					    gfp_t gfp_mask,
2549 					    unsigned long *total_scanned)
2550 {
2551 	unsigned long nr_reclaimed = 0;
2552 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2553 	unsigned long reclaimed;
2554 	int loop = 0;
2555 	struct mem_cgroup_tree_per_zone *mctz;
2556 	unsigned long excess;
2557 	unsigned long nr_scanned;
2558 
2559 	if (order > 0)
2560 		return 0;
2561 
2562 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2563 	/*
2564 	 * This loop can run a while, specially if mem_cgroup's continuously
2565 	 * keep exceeding their soft limit and putting the system under
2566 	 * pressure
2567 	 */
2568 	do {
2569 		if (next_mz)
2570 			mz = next_mz;
2571 		else
2572 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2573 		if (!mz)
2574 			break;
2575 
2576 		nr_scanned = 0;
2577 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2578 						    gfp_mask, &nr_scanned);
2579 		nr_reclaimed += reclaimed;
2580 		*total_scanned += nr_scanned;
2581 		spin_lock_irq(&mctz->lock);
2582 		__mem_cgroup_remove_exceeded(mz, mctz);
2583 
2584 		/*
2585 		 * If we failed to reclaim anything from this memory cgroup
2586 		 * it is time to move on to the next cgroup
2587 		 */
2588 		next_mz = NULL;
2589 		if (!reclaimed)
2590 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2591 
2592 		excess = soft_limit_excess(mz->memcg);
2593 		/*
2594 		 * One school of thought says that we should not add
2595 		 * back the node to the tree if reclaim returns 0.
2596 		 * But our reclaim could return 0, simply because due
2597 		 * to priority we are exposing a smaller subset of
2598 		 * memory to reclaim from. Consider this as a longer
2599 		 * term TODO.
2600 		 */
2601 		/* If excess == 0, no tree ops */
2602 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2603 		spin_unlock_irq(&mctz->lock);
2604 		css_put(&mz->memcg->css);
2605 		loop++;
2606 		/*
2607 		 * Could not reclaim anything and there are no more
2608 		 * mem cgroups to try or we seem to be looping without
2609 		 * reclaiming anything.
2610 		 */
2611 		if (!nr_reclaimed &&
2612 			(next_mz == NULL ||
2613 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2614 			break;
2615 	} while (!nr_reclaimed);
2616 	if (next_mz)
2617 		css_put(&next_mz->memcg->css);
2618 	return nr_reclaimed;
2619 }
2620 
2621 /*
2622  * Test whether @memcg has children, dead or alive.  Note that this
2623  * function doesn't care whether @memcg has use_hierarchy enabled and
2624  * returns %true if there are child csses according to the cgroup
2625  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2626  */
2627 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2628 {
2629 	bool ret;
2630 
2631 	rcu_read_lock();
2632 	ret = css_next_child(NULL, &memcg->css);
2633 	rcu_read_unlock();
2634 	return ret;
2635 }
2636 
2637 /*
2638  * Reclaims as many pages from the given memcg as possible and moves
2639  * the rest to the parent.
2640  *
2641  * Caller is responsible for holding css reference for memcg.
2642  */
2643 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2644 {
2645 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2646 
2647 	/* we call try-to-free pages for make this cgroup empty */
2648 	lru_add_drain_all();
2649 	/* try to free all pages in this cgroup */
2650 	while (nr_retries && page_counter_read(&memcg->memory)) {
2651 		int progress;
2652 
2653 		if (signal_pending(current))
2654 			return -EINTR;
2655 
2656 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2657 							GFP_KERNEL, true);
2658 		if (!progress) {
2659 			nr_retries--;
2660 			/* maybe some writeback is necessary */
2661 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2662 		}
2663 
2664 	}
2665 
2666 	return 0;
2667 }
2668 
2669 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2670 					    char *buf, size_t nbytes,
2671 					    loff_t off)
2672 {
2673 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2674 
2675 	if (mem_cgroup_is_root(memcg))
2676 		return -EINVAL;
2677 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2678 }
2679 
2680 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2681 				     struct cftype *cft)
2682 {
2683 	return mem_cgroup_from_css(css)->use_hierarchy;
2684 }
2685 
2686 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2687 				      struct cftype *cft, u64 val)
2688 {
2689 	int retval = 0;
2690 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2691 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2692 
2693 	if (memcg->use_hierarchy == val)
2694 		return 0;
2695 
2696 	/*
2697 	 * If parent's use_hierarchy is set, we can't make any modifications
2698 	 * in the child subtrees. If it is unset, then the change can
2699 	 * occur, provided the current cgroup has no children.
2700 	 *
2701 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2702 	 * set if there are no children.
2703 	 */
2704 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2705 				(val == 1 || val == 0)) {
2706 		if (!memcg_has_children(memcg))
2707 			memcg->use_hierarchy = val;
2708 		else
2709 			retval = -EBUSY;
2710 	} else
2711 		retval = -EINVAL;
2712 
2713 	return retval;
2714 }
2715 
2716 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2717 {
2718 	struct mem_cgroup *iter;
2719 	int i;
2720 
2721 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2722 
2723 	for_each_mem_cgroup_tree(iter, memcg) {
2724 		for (i = 0; i < MEMCG_NR_STAT; i++)
2725 			stat[i] += mem_cgroup_read_stat(iter, i);
2726 	}
2727 }
2728 
2729 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2730 {
2731 	struct mem_cgroup *iter;
2732 	int i;
2733 
2734 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2735 
2736 	for_each_mem_cgroup_tree(iter, memcg) {
2737 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2738 			events[i] += mem_cgroup_read_events(iter, i);
2739 	}
2740 }
2741 
2742 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2743 {
2744 	unsigned long val = 0;
2745 
2746 	if (mem_cgroup_is_root(memcg)) {
2747 		struct mem_cgroup *iter;
2748 
2749 		for_each_mem_cgroup_tree(iter, memcg) {
2750 			val += mem_cgroup_read_stat(iter,
2751 					MEM_CGROUP_STAT_CACHE);
2752 			val += mem_cgroup_read_stat(iter,
2753 					MEM_CGROUP_STAT_RSS);
2754 			if (swap)
2755 				val += mem_cgroup_read_stat(iter,
2756 						MEM_CGROUP_STAT_SWAP);
2757 		}
2758 	} else {
2759 		if (!swap)
2760 			val = page_counter_read(&memcg->memory);
2761 		else
2762 			val = page_counter_read(&memcg->memsw);
2763 	}
2764 	return val;
2765 }
2766 
2767 enum {
2768 	RES_USAGE,
2769 	RES_LIMIT,
2770 	RES_MAX_USAGE,
2771 	RES_FAILCNT,
2772 	RES_SOFT_LIMIT,
2773 };
2774 
2775 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2776 			       struct cftype *cft)
2777 {
2778 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2779 	struct page_counter *counter;
2780 
2781 	switch (MEMFILE_TYPE(cft->private)) {
2782 	case _MEM:
2783 		counter = &memcg->memory;
2784 		break;
2785 	case _MEMSWAP:
2786 		counter = &memcg->memsw;
2787 		break;
2788 	case _KMEM:
2789 		counter = &memcg->kmem;
2790 		break;
2791 	case _TCP:
2792 		counter = &memcg->tcpmem;
2793 		break;
2794 	default:
2795 		BUG();
2796 	}
2797 
2798 	switch (MEMFILE_ATTR(cft->private)) {
2799 	case RES_USAGE:
2800 		if (counter == &memcg->memory)
2801 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2802 		if (counter == &memcg->memsw)
2803 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2804 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2805 	case RES_LIMIT:
2806 		return (u64)counter->limit * PAGE_SIZE;
2807 	case RES_MAX_USAGE:
2808 		return (u64)counter->watermark * PAGE_SIZE;
2809 	case RES_FAILCNT:
2810 		return counter->failcnt;
2811 	case RES_SOFT_LIMIT:
2812 		return (u64)memcg->soft_limit * PAGE_SIZE;
2813 	default:
2814 		BUG();
2815 	}
2816 }
2817 
2818 #ifndef CONFIG_SLOB
2819 static int memcg_online_kmem(struct mem_cgroup *memcg)
2820 {
2821 	int memcg_id;
2822 
2823 	if (cgroup_memory_nokmem)
2824 		return 0;
2825 
2826 	BUG_ON(memcg->kmemcg_id >= 0);
2827 	BUG_ON(memcg->kmem_state);
2828 
2829 	memcg_id = memcg_alloc_cache_id();
2830 	if (memcg_id < 0)
2831 		return memcg_id;
2832 
2833 	static_branch_inc(&memcg_kmem_enabled_key);
2834 	/*
2835 	 * A memory cgroup is considered kmem-online as soon as it gets
2836 	 * kmemcg_id. Setting the id after enabling static branching will
2837 	 * guarantee no one starts accounting before all call sites are
2838 	 * patched.
2839 	 */
2840 	memcg->kmemcg_id = memcg_id;
2841 	memcg->kmem_state = KMEM_ONLINE;
2842 
2843 	return 0;
2844 }
2845 
2846 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2847 {
2848 	struct cgroup_subsys_state *css;
2849 	struct mem_cgroup *parent, *child;
2850 	int kmemcg_id;
2851 
2852 	if (memcg->kmem_state != KMEM_ONLINE)
2853 		return;
2854 	/*
2855 	 * Clear the online state before clearing memcg_caches array
2856 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2857 	 * guarantees that no cache will be created for this cgroup
2858 	 * after we are done (see memcg_create_kmem_cache()).
2859 	 */
2860 	memcg->kmem_state = KMEM_ALLOCATED;
2861 
2862 	memcg_deactivate_kmem_caches(memcg);
2863 
2864 	kmemcg_id = memcg->kmemcg_id;
2865 	BUG_ON(kmemcg_id < 0);
2866 
2867 	parent = parent_mem_cgroup(memcg);
2868 	if (!parent)
2869 		parent = root_mem_cgroup;
2870 
2871 	/*
2872 	 * Change kmemcg_id of this cgroup and all its descendants to the
2873 	 * parent's id, and then move all entries from this cgroup's list_lrus
2874 	 * to ones of the parent. After we have finished, all list_lrus
2875 	 * corresponding to this cgroup are guaranteed to remain empty. The
2876 	 * ordering is imposed by list_lru_node->lock taken by
2877 	 * memcg_drain_all_list_lrus().
2878 	 */
2879 	css_for_each_descendant_pre(css, &memcg->css) {
2880 		child = mem_cgroup_from_css(css);
2881 		BUG_ON(child->kmemcg_id != kmemcg_id);
2882 		child->kmemcg_id = parent->kmemcg_id;
2883 		if (!memcg->use_hierarchy)
2884 			break;
2885 	}
2886 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2887 
2888 	memcg_free_cache_id(kmemcg_id);
2889 }
2890 
2891 static void memcg_free_kmem(struct mem_cgroup *memcg)
2892 {
2893 	/* css_alloc() failed, offlining didn't happen */
2894 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2895 		memcg_offline_kmem(memcg);
2896 
2897 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2898 		memcg_destroy_kmem_caches(memcg);
2899 		static_branch_dec(&memcg_kmem_enabled_key);
2900 		WARN_ON(page_counter_read(&memcg->kmem));
2901 	}
2902 }
2903 #else
2904 static int memcg_online_kmem(struct mem_cgroup *memcg)
2905 {
2906 	return 0;
2907 }
2908 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2909 {
2910 }
2911 static void memcg_free_kmem(struct mem_cgroup *memcg)
2912 {
2913 }
2914 #endif /* !CONFIG_SLOB */
2915 
2916 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2917 				   unsigned long limit)
2918 {
2919 	int ret;
2920 
2921 	mutex_lock(&memcg_limit_mutex);
2922 	ret = page_counter_limit(&memcg->kmem, limit);
2923 	mutex_unlock(&memcg_limit_mutex);
2924 	return ret;
2925 }
2926 
2927 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2928 {
2929 	int ret;
2930 
2931 	mutex_lock(&memcg_limit_mutex);
2932 
2933 	ret = page_counter_limit(&memcg->tcpmem, limit);
2934 	if (ret)
2935 		goto out;
2936 
2937 	if (!memcg->tcpmem_active) {
2938 		/*
2939 		 * The active flag needs to be written after the static_key
2940 		 * update. This is what guarantees that the socket activation
2941 		 * function is the last one to run. See sock_update_memcg() for
2942 		 * details, and note that we don't mark any socket as belonging
2943 		 * to this memcg until that flag is up.
2944 		 *
2945 		 * We need to do this, because static_keys will span multiple
2946 		 * sites, but we can't control their order. If we mark a socket
2947 		 * as accounted, but the accounting functions are not patched in
2948 		 * yet, we'll lose accounting.
2949 		 *
2950 		 * We never race with the readers in sock_update_memcg(),
2951 		 * because when this value change, the code to process it is not
2952 		 * patched in yet.
2953 		 */
2954 		static_branch_inc(&memcg_sockets_enabled_key);
2955 		memcg->tcpmem_active = true;
2956 	}
2957 out:
2958 	mutex_unlock(&memcg_limit_mutex);
2959 	return ret;
2960 }
2961 
2962 /*
2963  * The user of this function is...
2964  * RES_LIMIT.
2965  */
2966 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2967 				char *buf, size_t nbytes, loff_t off)
2968 {
2969 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2970 	unsigned long nr_pages;
2971 	int ret;
2972 
2973 	buf = strstrip(buf);
2974 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2975 	if (ret)
2976 		return ret;
2977 
2978 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2979 	case RES_LIMIT:
2980 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2981 			ret = -EINVAL;
2982 			break;
2983 		}
2984 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2985 		case _MEM:
2986 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2987 			break;
2988 		case _MEMSWAP:
2989 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2990 			break;
2991 		case _KMEM:
2992 			ret = memcg_update_kmem_limit(memcg, nr_pages);
2993 			break;
2994 		case _TCP:
2995 			ret = memcg_update_tcp_limit(memcg, nr_pages);
2996 			break;
2997 		}
2998 		break;
2999 	case RES_SOFT_LIMIT:
3000 		memcg->soft_limit = nr_pages;
3001 		ret = 0;
3002 		break;
3003 	}
3004 	return ret ?: nbytes;
3005 }
3006 
3007 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3008 				size_t nbytes, loff_t off)
3009 {
3010 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3011 	struct page_counter *counter;
3012 
3013 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3014 	case _MEM:
3015 		counter = &memcg->memory;
3016 		break;
3017 	case _MEMSWAP:
3018 		counter = &memcg->memsw;
3019 		break;
3020 	case _KMEM:
3021 		counter = &memcg->kmem;
3022 		break;
3023 	case _TCP:
3024 		counter = &memcg->tcpmem;
3025 		break;
3026 	default:
3027 		BUG();
3028 	}
3029 
3030 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3031 	case RES_MAX_USAGE:
3032 		page_counter_reset_watermark(counter);
3033 		break;
3034 	case RES_FAILCNT:
3035 		counter->failcnt = 0;
3036 		break;
3037 	default:
3038 		BUG();
3039 	}
3040 
3041 	return nbytes;
3042 }
3043 
3044 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3045 					struct cftype *cft)
3046 {
3047 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3048 }
3049 
3050 #ifdef CONFIG_MMU
3051 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3052 					struct cftype *cft, u64 val)
3053 {
3054 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3055 
3056 	if (val & ~MOVE_MASK)
3057 		return -EINVAL;
3058 
3059 	/*
3060 	 * No kind of locking is needed in here, because ->can_attach() will
3061 	 * check this value once in the beginning of the process, and then carry
3062 	 * on with stale data. This means that changes to this value will only
3063 	 * affect task migrations starting after the change.
3064 	 */
3065 	memcg->move_charge_at_immigrate = val;
3066 	return 0;
3067 }
3068 #else
3069 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070 					struct cftype *cft, u64 val)
3071 {
3072 	return -ENOSYS;
3073 }
3074 #endif
3075 
3076 #ifdef CONFIG_NUMA
3077 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3078 {
3079 	struct numa_stat {
3080 		const char *name;
3081 		unsigned int lru_mask;
3082 	};
3083 
3084 	static const struct numa_stat stats[] = {
3085 		{ "total", LRU_ALL },
3086 		{ "file", LRU_ALL_FILE },
3087 		{ "anon", LRU_ALL_ANON },
3088 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3089 	};
3090 	const struct numa_stat *stat;
3091 	int nid;
3092 	unsigned long nr;
3093 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3094 
3095 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3096 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3097 		seq_printf(m, "%s=%lu", stat->name, nr);
3098 		for_each_node_state(nid, N_MEMORY) {
3099 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3100 							  stat->lru_mask);
3101 			seq_printf(m, " N%d=%lu", nid, nr);
3102 		}
3103 		seq_putc(m, '\n');
3104 	}
3105 
3106 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3107 		struct mem_cgroup *iter;
3108 
3109 		nr = 0;
3110 		for_each_mem_cgroup_tree(iter, memcg)
3111 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3112 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3113 		for_each_node_state(nid, N_MEMORY) {
3114 			nr = 0;
3115 			for_each_mem_cgroup_tree(iter, memcg)
3116 				nr += mem_cgroup_node_nr_lru_pages(
3117 					iter, nid, stat->lru_mask);
3118 			seq_printf(m, " N%d=%lu", nid, nr);
3119 		}
3120 		seq_putc(m, '\n');
3121 	}
3122 
3123 	return 0;
3124 }
3125 #endif /* CONFIG_NUMA */
3126 
3127 static int memcg_stat_show(struct seq_file *m, void *v)
3128 {
3129 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3130 	unsigned long memory, memsw;
3131 	struct mem_cgroup *mi;
3132 	unsigned int i;
3133 
3134 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3135 		     MEM_CGROUP_STAT_NSTATS);
3136 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3137 		     MEM_CGROUP_EVENTS_NSTATS);
3138 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3139 
3140 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3141 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3142 			continue;
3143 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3144 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3145 	}
3146 
3147 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3148 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3149 			   mem_cgroup_read_events(memcg, i));
3150 
3151 	for (i = 0; i < NR_LRU_LISTS; i++)
3152 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3153 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3154 
3155 	/* Hierarchical information */
3156 	memory = memsw = PAGE_COUNTER_MAX;
3157 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3158 		memory = min(memory, mi->memory.limit);
3159 		memsw = min(memsw, mi->memsw.limit);
3160 	}
3161 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3162 		   (u64)memory * PAGE_SIZE);
3163 	if (do_memsw_account())
3164 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3165 			   (u64)memsw * PAGE_SIZE);
3166 
3167 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3168 		unsigned long long val = 0;
3169 
3170 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3171 			continue;
3172 		for_each_mem_cgroup_tree(mi, memcg)
3173 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3174 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3175 	}
3176 
3177 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3178 		unsigned long long val = 0;
3179 
3180 		for_each_mem_cgroup_tree(mi, memcg)
3181 			val += mem_cgroup_read_events(mi, i);
3182 		seq_printf(m, "total_%s %llu\n",
3183 			   mem_cgroup_events_names[i], val);
3184 	}
3185 
3186 	for (i = 0; i < NR_LRU_LISTS; i++) {
3187 		unsigned long long val = 0;
3188 
3189 		for_each_mem_cgroup_tree(mi, memcg)
3190 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3191 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3192 	}
3193 
3194 #ifdef CONFIG_DEBUG_VM
3195 	{
3196 		int nid, zid;
3197 		struct mem_cgroup_per_zone *mz;
3198 		struct zone_reclaim_stat *rstat;
3199 		unsigned long recent_rotated[2] = {0, 0};
3200 		unsigned long recent_scanned[2] = {0, 0};
3201 
3202 		for_each_online_node(nid)
3203 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3204 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3205 				rstat = &mz->lruvec.reclaim_stat;
3206 
3207 				recent_rotated[0] += rstat->recent_rotated[0];
3208 				recent_rotated[1] += rstat->recent_rotated[1];
3209 				recent_scanned[0] += rstat->recent_scanned[0];
3210 				recent_scanned[1] += rstat->recent_scanned[1];
3211 			}
3212 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3213 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3214 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3215 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3216 	}
3217 #endif
3218 
3219 	return 0;
3220 }
3221 
3222 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3223 				      struct cftype *cft)
3224 {
3225 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3226 
3227 	return mem_cgroup_swappiness(memcg);
3228 }
3229 
3230 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3231 				       struct cftype *cft, u64 val)
3232 {
3233 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3234 
3235 	if (val > 100)
3236 		return -EINVAL;
3237 
3238 	if (css->parent)
3239 		memcg->swappiness = val;
3240 	else
3241 		vm_swappiness = val;
3242 
3243 	return 0;
3244 }
3245 
3246 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3247 {
3248 	struct mem_cgroup_threshold_ary *t;
3249 	unsigned long usage;
3250 	int i;
3251 
3252 	rcu_read_lock();
3253 	if (!swap)
3254 		t = rcu_dereference(memcg->thresholds.primary);
3255 	else
3256 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3257 
3258 	if (!t)
3259 		goto unlock;
3260 
3261 	usage = mem_cgroup_usage(memcg, swap);
3262 
3263 	/*
3264 	 * current_threshold points to threshold just below or equal to usage.
3265 	 * If it's not true, a threshold was crossed after last
3266 	 * call of __mem_cgroup_threshold().
3267 	 */
3268 	i = t->current_threshold;
3269 
3270 	/*
3271 	 * Iterate backward over array of thresholds starting from
3272 	 * current_threshold and check if a threshold is crossed.
3273 	 * If none of thresholds below usage is crossed, we read
3274 	 * only one element of the array here.
3275 	 */
3276 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3277 		eventfd_signal(t->entries[i].eventfd, 1);
3278 
3279 	/* i = current_threshold + 1 */
3280 	i++;
3281 
3282 	/*
3283 	 * Iterate forward over array of thresholds starting from
3284 	 * current_threshold+1 and check if a threshold is crossed.
3285 	 * If none of thresholds above usage is crossed, we read
3286 	 * only one element of the array here.
3287 	 */
3288 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3289 		eventfd_signal(t->entries[i].eventfd, 1);
3290 
3291 	/* Update current_threshold */
3292 	t->current_threshold = i - 1;
3293 unlock:
3294 	rcu_read_unlock();
3295 }
3296 
3297 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3298 {
3299 	while (memcg) {
3300 		__mem_cgroup_threshold(memcg, false);
3301 		if (do_memsw_account())
3302 			__mem_cgroup_threshold(memcg, true);
3303 
3304 		memcg = parent_mem_cgroup(memcg);
3305 	}
3306 }
3307 
3308 static int compare_thresholds(const void *a, const void *b)
3309 {
3310 	const struct mem_cgroup_threshold *_a = a;
3311 	const struct mem_cgroup_threshold *_b = b;
3312 
3313 	if (_a->threshold > _b->threshold)
3314 		return 1;
3315 
3316 	if (_a->threshold < _b->threshold)
3317 		return -1;
3318 
3319 	return 0;
3320 }
3321 
3322 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3323 {
3324 	struct mem_cgroup_eventfd_list *ev;
3325 
3326 	spin_lock(&memcg_oom_lock);
3327 
3328 	list_for_each_entry(ev, &memcg->oom_notify, list)
3329 		eventfd_signal(ev->eventfd, 1);
3330 
3331 	spin_unlock(&memcg_oom_lock);
3332 	return 0;
3333 }
3334 
3335 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3336 {
3337 	struct mem_cgroup *iter;
3338 
3339 	for_each_mem_cgroup_tree(iter, memcg)
3340 		mem_cgroup_oom_notify_cb(iter);
3341 }
3342 
3343 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3344 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3345 {
3346 	struct mem_cgroup_thresholds *thresholds;
3347 	struct mem_cgroup_threshold_ary *new;
3348 	unsigned long threshold;
3349 	unsigned long usage;
3350 	int i, size, ret;
3351 
3352 	ret = page_counter_memparse(args, "-1", &threshold);
3353 	if (ret)
3354 		return ret;
3355 
3356 	mutex_lock(&memcg->thresholds_lock);
3357 
3358 	if (type == _MEM) {
3359 		thresholds = &memcg->thresholds;
3360 		usage = mem_cgroup_usage(memcg, false);
3361 	} else if (type == _MEMSWAP) {
3362 		thresholds = &memcg->memsw_thresholds;
3363 		usage = mem_cgroup_usage(memcg, true);
3364 	} else
3365 		BUG();
3366 
3367 	/* Check if a threshold crossed before adding a new one */
3368 	if (thresholds->primary)
3369 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3370 
3371 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3372 
3373 	/* Allocate memory for new array of thresholds */
3374 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3375 			GFP_KERNEL);
3376 	if (!new) {
3377 		ret = -ENOMEM;
3378 		goto unlock;
3379 	}
3380 	new->size = size;
3381 
3382 	/* Copy thresholds (if any) to new array */
3383 	if (thresholds->primary) {
3384 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3385 				sizeof(struct mem_cgroup_threshold));
3386 	}
3387 
3388 	/* Add new threshold */
3389 	new->entries[size - 1].eventfd = eventfd;
3390 	new->entries[size - 1].threshold = threshold;
3391 
3392 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3393 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3394 			compare_thresholds, NULL);
3395 
3396 	/* Find current threshold */
3397 	new->current_threshold = -1;
3398 	for (i = 0; i < size; i++) {
3399 		if (new->entries[i].threshold <= usage) {
3400 			/*
3401 			 * new->current_threshold will not be used until
3402 			 * rcu_assign_pointer(), so it's safe to increment
3403 			 * it here.
3404 			 */
3405 			++new->current_threshold;
3406 		} else
3407 			break;
3408 	}
3409 
3410 	/* Free old spare buffer and save old primary buffer as spare */
3411 	kfree(thresholds->spare);
3412 	thresholds->spare = thresholds->primary;
3413 
3414 	rcu_assign_pointer(thresholds->primary, new);
3415 
3416 	/* To be sure that nobody uses thresholds */
3417 	synchronize_rcu();
3418 
3419 unlock:
3420 	mutex_unlock(&memcg->thresholds_lock);
3421 
3422 	return ret;
3423 }
3424 
3425 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3426 	struct eventfd_ctx *eventfd, const char *args)
3427 {
3428 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3429 }
3430 
3431 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3432 	struct eventfd_ctx *eventfd, const char *args)
3433 {
3434 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3435 }
3436 
3437 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3438 	struct eventfd_ctx *eventfd, enum res_type type)
3439 {
3440 	struct mem_cgroup_thresholds *thresholds;
3441 	struct mem_cgroup_threshold_ary *new;
3442 	unsigned long usage;
3443 	int i, j, size;
3444 
3445 	mutex_lock(&memcg->thresholds_lock);
3446 
3447 	if (type == _MEM) {
3448 		thresholds = &memcg->thresholds;
3449 		usage = mem_cgroup_usage(memcg, false);
3450 	} else if (type == _MEMSWAP) {
3451 		thresholds = &memcg->memsw_thresholds;
3452 		usage = mem_cgroup_usage(memcg, true);
3453 	} else
3454 		BUG();
3455 
3456 	if (!thresholds->primary)
3457 		goto unlock;
3458 
3459 	/* Check if a threshold crossed before removing */
3460 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3461 
3462 	/* Calculate new number of threshold */
3463 	size = 0;
3464 	for (i = 0; i < thresholds->primary->size; i++) {
3465 		if (thresholds->primary->entries[i].eventfd != eventfd)
3466 			size++;
3467 	}
3468 
3469 	new = thresholds->spare;
3470 
3471 	/* Set thresholds array to NULL if we don't have thresholds */
3472 	if (!size) {
3473 		kfree(new);
3474 		new = NULL;
3475 		goto swap_buffers;
3476 	}
3477 
3478 	new->size = size;
3479 
3480 	/* Copy thresholds and find current threshold */
3481 	new->current_threshold = -1;
3482 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3483 		if (thresholds->primary->entries[i].eventfd == eventfd)
3484 			continue;
3485 
3486 		new->entries[j] = thresholds->primary->entries[i];
3487 		if (new->entries[j].threshold <= usage) {
3488 			/*
3489 			 * new->current_threshold will not be used
3490 			 * until rcu_assign_pointer(), so it's safe to increment
3491 			 * it here.
3492 			 */
3493 			++new->current_threshold;
3494 		}
3495 		j++;
3496 	}
3497 
3498 swap_buffers:
3499 	/* Swap primary and spare array */
3500 	thresholds->spare = thresholds->primary;
3501 
3502 	rcu_assign_pointer(thresholds->primary, new);
3503 
3504 	/* To be sure that nobody uses thresholds */
3505 	synchronize_rcu();
3506 
3507 	/* If all events are unregistered, free the spare array */
3508 	if (!new) {
3509 		kfree(thresholds->spare);
3510 		thresholds->spare = NULL;
3511 	}
3512 unlock:
3513 	mutex_unlock(&memcg->thresholds_lock);
3514 }
3515 
3516 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3517 	struct eventfd_ctx *eventfd)
3518 {
3519 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3520 }
3521 
3522 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3523 	struct eventfd_ctx *eventfd)
3524 {
3525 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3526 }
3527 
3528 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3529 	struct eventfd_ctx *eventfd, const char *args)
3530 {
3531 	struct mem_cgroup_eventfd_list *event;
3532 
3533 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3534 	if (!event)
3535 		return -ENOMEM;
3536 
3537 	spin_lock(&memcg_oom_lock);
3538 
3539 	event->eventfd = eventfd;
3540 	list_add(&event->list, &memcg->oom_notify);
3541 
3542 	/* already in OOM ? */
3543 	if (memcg->under_oom)
3544 		eventfd_signal(eventfd, 1);
3545 	spin_unlock(&memcg_oom_lock);
3546 
3547 	return 0;
3548 }
3549 
3550 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3551 	struct eventfd_ctx *eventfd)
3552 {
3553 	struct mem_cgroup_eventfd_list *ev, *tmp;
3554 
3555 	spin_lock(&memcg_oom_lock);
3556 
3557 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3558 		if (ev->eventfd == eventfd) {
3559 			list_del(&ev->list);
3560 			kfree(ev);
3561 		}
3562 	}
3563 
3564 	spin_unlock(&memcg_oom_lock);
3565 }
3566 
3567 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3568 {
3569 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3570 
3571 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3572 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3573 	return 0;
3574 }
3575 
3576 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3577 	struct cftype *cft, u64 val)
3578 {
3579 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3580 
3581 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3582 	if (!css->parent || !((val == 0) || (val == 1)))
3583 		return -EINVAL;
3584 
3585 	memcg->oom_kill_disable = val;
3586 	if (!val)
3587 		memcg_oom_recover(memcg);
3588 
3589 	return 0;
3590 }
3591 
3592 #ifdef CONFIG_CGROUP_WRITEBACK
3593 
3594 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3595 {
3596 	return &memcg->cgwb_list;
3597 }
3598 
3599 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3600 {
3601 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3602 }
3603 
3604 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3605 {
3606 	wb_domain_exit(&memcg->cgwb_domain);
3607 }
3608 
3609 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3610 {
3611 	wb_domain_size_changed(&memcg->cgwb_domain);
3612 }
3613 
3614 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3615 {
3616 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3617 
3618 	if (!memcg->css.parent)
3619 		return NULL;
3620 
3621 	return &memcg->cgwb_domain;
3622 }
3623 
3624 /**
3625  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3626  * @wb: bdi_writeback in question
3627  * @pfilepages: out parameter for number of file pages
3628  * @pheadroom: out parameter for number of allocatable pages according to memcg
3629  * @pdirty: out parameter for number of dirty pages
3630  * @pwriteback: out parameter for number of pages under writeback
3631  *
3632  * Determine the numbers of file, headroom, dirty, and writeback pages in
3633  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3634  * is a bit more involved.
3635  *
3636  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3637  * headroom is calculated as the lowest headroom of itself and the
3638  * ancestors.  Note that this doesn't consider the actual amount of
3639  * available memory in the system.  The caller should further cap
3640  * *@pheadroom accordingly.
3641  */
3642 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3643 			 unsigned long *pheadroom, unsigned long *pdirty,
3644 			 unsigned long *pwriteback)
3645 {
3646 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647 	struct mem_cgroup *parent;
3648 
3649 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3650 
3651 	/* this should eventually include NR_UNSTABLE_NFS */
3652 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3653 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3654 						     (1 << LRU_ACTIVE_FILE));
3655 	*pheadroom = PAGE_COUNTER_MAX;
3656 
3657 	while ((parent = parent_mem_cgroup(memcg))) {
3658 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3659 		unsigned long used = page_counter_read(&memcg->memory);
3660 
3661 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3662 		memcg = parent;
3663 	}
3664 }
3665 
3666 #else	/* CONFIG_CGROUP_WRITEBACK */
3667 
3668 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3669 {
3670 	return 0;
3671 }
3672 
3673 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3674 {
3675 }
3676 
3677 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3678 {
3679 }
3680 
3681 #endif	/* CONFIG_CGROUP_WRITEBACK */
3682 
3683 /*
3684  * DO NOT USE IN NEW FILES.
3685  *
3686  * "cgroup.event_control" implementation.
3687  *
3688  * This is way over-engineered.  It tries to support fully configurable
3689  * events for each user.  Such level of flexibility is completely
3690  * unnecessary especially in the light of the planned unified hierarchy.
3691  *
3692  * Please deprecate this and replace with something simpler if at all
3693  * possible.
3694  */
3695 
3696 /*
3697  * Unregister event and free resources.
3698  *
3699  * Gets called from workqueue.
3700  */
3701 static void memcg_event_remove(struct work_struct *work)
3702 {
3703 	struct mem_cgroup_event *event =
3704 		container_of(work, struct mem_cgroup_event, remove);
3705 	struct mem_cgroup *memcg = event->memcg;
3706 
3707 	remove_wait_queue(event->wqh, &event->wait);
3708 
3709 	event->unregister_event(memcg, event->eventfd);
3710 
3711 	/* Notify userspace the event is going away. */
3712 	eventfd_signal(event->eventfd, 1);
3713 
3714 	eventfd_ctx_put(event->eventfd);
3715 	kfree(event);
3716 	css_put(&memcg->css);
3717 }
3718 
3719 /*
3720  * Gets called on POLLHUP on eventfd when user closes it.
3721  *
3722  * Called with wqh->lock held and interrupts disabled.
3723  */
3724 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3725 			    int sync, void *key)
3726 {
3727 	struct mem_cgroup_event *event =
3728 		container_of(wait, struct mem_cgroup_event, wait);
3729 	struct mem_cgroup *memcg = event->memcg;
3730 	unsigned long flags = (unsigned long)key;
3731 
3732 	if (flags & POLLHUP) {
3733 		/*
3734 		 * If the event has been detached at cgroup removal, we
3735 		 * can simply return knowing the other side will cleanup
3736 		 * for us.
3737 		 *
3738 		 * We can't race against event freeing since the other
3739 		 * side will require wqh->lock via remove_wait_queue(),
3740 		 * which we hold.
3741 		 */
3742 		spin_lock(&memcg->event_list_lock);
3743 		if (!list_empty(&event->list)) {
3744 			list_del_init(&event->list);
3745 			/*
3746 			 * We are in atomic context, but cgroup_event_remove()
3747 			 * may sleep, so we have to call it in workqueue.
3748 			 */
3749 			schedule_work(&event->remove);
3750 		}
3751 		spin_unlock(&memcg->event_list_lock);
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 static void memcg_event_ptable_queue_proc(struct file *file,
3758 		wait_queue_head_t *wqh, poll_table *pt)
3759 {
3760 	struct mem_cgroup_event *event =
3761 		container_of(pt, struct mem_cgroup_event, pt);
3762 
3763 	event->wqh = wqh;
3764 	add_wait_queue(wqh, &event->wait);
3765 }
3766 
3767 /*
3768  * DO NOT USE IN NEW FILES.
3769  *
3770  * Parse input and register new cgroup event handler.
3771  *
3772  * Input must be in format '<event_fd> <control_fd> <args>'.
3773  * Interpretation of args is defined by control file implementation.
3774  */
3775 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3776 					 char *buf, size_t nbytes, loff_t off)
3777 {
3778 	struct cgroup_subsys_state *css = of_css(of);
3779 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3780 	struct mem_cgroup_event *event;
3781 	struct cgroup_subsys_state *cfile_css;
3782 	unsigned int efd, cfd;
3783 	struct fd efile;
3784 	struct fd cfile;
3785 	const char *name;
3786 	char *endp;
3787 	int ret;
3788 
3789 	buf = strstrip(buf);
3790 
3791 	efd = simple_strtoul(buf, &endp, 10);
3792 	if (*endp != ' ')
3793 		return -EINVAL;
3794 	buf = endp + 1;
3795 
3796 	cfd = simple_strtoul(buf, &endp, 10);
3797 	if ((*endp != ' ') && (*endp != '\0'))
3798 		return -EINVAL;
3799 	buf = endp + 1;
3800 
3801 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3802 	if (!event)
3803 		return -ENOMEM;
3804 
3805 	event->memcg = memcg;
3806 	INIT_LIST_HEAD(&event->list);
3807 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3808 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3809 	INIT_WORK(&event->remove, memcg_event_remove);
3810 
3811 	efile = fdget(efd);
3812 	if (!efile.file) {
3813 		ret = -EBADF;
3814 		goto out_kfree;
3815 	}
3816 
3817 	event->eventfd = eventfd_ctx_fileget(efile.file);
3818 	if (IS_ERR(event->eventfd)) {
3819 		ret = PTR_ERR(event->eventfd);
3820 		goto out_put_efile;
3821 	}
3822 
3823 	cfile = fdget(cfd);
3824 	if (!cfile.file) {
3825 		ret = -EBADF;
3826 		goto out_put_eventfd;
3827 	}
3828 
3829 	/* the process need read permission on control file */
3830 	/* AV: shouldn't we check that it's been opened for read instead? */
3831 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3832 	if (ret < 0)
3833 		goto out_put_cfile;
3834 
3835 	/*
3836 	 * Determine the event callbacks and set them in @event.  This used
3837 	 * to be done via struct cftype but cgroup core no longer knows
3838 	 * about these events.  The following is crude but the whole thing
3839 	 * is for compatibility anyway.
3840 	 *
3841 	 * DO NOT ADD NEW FILES.
3842 	 */
3843 	name = cfile.file->f_path.dentry->d_name.name;
3844 
3845 	if (!strcmp(name, "memory.usage_in_bytes")) {
3846 		event->register_event = mem_cgroup_usage_register_event;
3847 		event->unregister_event = mem_cgroup_usage_unregister_event;
3848 	} else if (!strcmp(name, "memory.oom_control")) {
3849 		event->register_event = mem_cgroup_oom_register_event;
3850 		event->unregister_event = mem_cgroup_oom_unregister_event;
3851 	} else if (!strcmp(name, "memory.pressure_level")) {
3852 		event->register_event = vmpressure_register_event;
3853 		event->unregister_event = vmpressure_unregister_event;
3854 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3855 		event->register_event = memsw_cgroup_usage_register_event;
3856 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3857 	} else {
3858 		ret = -EINVAL;
3859 		goto out_put_cfile;
3860 	}
3861 
3862 	/*
3863 	 * Verify @cfile should belong to @css.  Also, remaining events are
3864 	 * automatically removed on cgroup destruction but the removal is
3865 	 * asynchronous, so take an extra ref on @css.
3866 	 */
3867 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3868 					       &memory_cgrp_subsys);
3869 	ret = -EINVAL;
3870 	if (IS_ERR(cfile_css))
3871 		goto out_put_cfile;
3872 	if (cfile_css != css) {
3873 		css_put(cfile_css);
3874 		goto out_put_cfile;
3875 	}
3876 
3877 	ret = event->register_event(memcg, event->eventfd, buf);
3878 	if (ret)
3879 		goto out_put_css;
3880 
3881 	efile.file->f_op->poll(efile.file, &event->pt);
3882 
3883 	spin_lock(&memcg->event_list_lock);
3884 	list_add(&event->list, &memcg->event_list);
3885 	spin_unlock(&memcg->event_list_lock);
3886 
3887 	fdput(cfile);
3888 	fdput(efile);
3889 
3890 	return nbytes;
3891 
3892 out_put_css:
3893 	css_put(css);
3894 out_put_cfile:
3895 	fdput(cfile);
3896 out_put_eventfd:
3897 	eventfd_ctx_put(event->eventfd);
3898 out_put_efile:
3899 	fdput(efile);
3900 out_kfree:
3901 	kfree(event);
3902 
3903 	return ret;
3904 }
3905 
3906 static struct cftype mem_cgroup_legacy_files[] = {
3907 	{
3908 		.name = "usage_in_bytes",
3909 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3910 		.read_u64 = mem_cgroup_read_u64,
3911 	},
3912 	{
3913 		.name = "max_usage_in_bytes",
3914 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3915 		.write = mem_cgroup_reset,
3916 		.read_u64 = mem_cgroup_read_u64,
3917 	},
3918 	{
3919 		.name = "limit_in_bytes",
3920 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3921 		.write = mem_cgroup_write,
3922 		.read_u64 = mem_cgroup_read_u64,
3923 	},
3924 	{
3925 		.name = "soft_limit_in_bytes",
3926 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3927 		.write = mem_cgroup_write,
3928 		.read_u64 = mem_cgroup_read_u64,
3929 	},
3930 	{
3931 		.name = "failcnt",
3932 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3933 		.write = mem_cgroup_reset,
3934 		.read_u64 = mem_cgroup_read_u64,
3935 	},
3936 	{
3937 		.name = "stat",
3938 		.seq_show = memcg_stat_show,
3939 	},
3940 	{
3941 		.name = "force_empty",
3942 		.write = mem_cgroup_force_empty_write,
3943 	},
3944 	{
3945 		.name = "use_hierarchy",
3946 		.write_u64 = mem_cgroup_hierarchy_write,
3947 		.read_u64 = mem_cgroup_hierarchy_read,
3948 	},
3949 	{
3950 		.name = "cgroup.event_control",		/* XXX: for compat */
3951 		.write = memcg_write_event_control,
3952 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3953 	},
3954 	{
3955 		.name = "swappiness",
3956 		.read_u64 = mem_cgroup_swappiness_read,
3957 		.write_u64 = mem_cgroup_swappiness_write,
3958 	},
3959 	{
3960 		.name = "move_charge_at_immigrate",
3961 		.read_u64 = mem_cgroup_move_charge_read,
3962 		.write_u64 = mem_cgroup_move_charge_write,
3963 	},
3964 	{
3965 		.name = "oom_control",
3966 		.seq_show = mem_cgroup_oom_control_read,
3967 		.write_u64 = mem_cgroup_oom_control_write,
3968 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3969 	},
3970 	{
3971 		.name = "pressure_level",
3972 	},
3973 #ifdef CONFIG_NUMA
3974 	{
3975 		.name = "numa_stat",
3976 		.seq_show = memcg_numa_stat_show,
3977 	},
3978 #endif
3979 	{
3980 		.name = "kmem.limit_in_bytes",
3981 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3982 		.write = mem_cgroup_write,
3983 		.read_u64 = mem_cgroup_read_u64,
3984 	},
3985 	{
3986 		.name = "kmem.usage_in_bytes",
3987 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3988 		.read_u64 = mem_cgroup_read_u64,
3989 	},
3990 	{
3991 		.name = "kmem.failcnt",
3992 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3993 		.write = mem_cgroup_reset,
3994 		.read_u64 = mem_cgroup_read_u64,
3995 	},
3996 	{
3997 		.name = "kmem.max_usage_in_bytes",
3998 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3999 		.write = mem_cgroup_reset,
4000 		.read_u64 = mem_cgroup_read_u64,
4001 	},
4002 #ifdef CONFIG_SLABINFO
4003 	{
4004 		.name = "kmem.slabinfo",
4005 		.seq_start = slab_start,
4006 		.seq_next = slab_next,
4007 		.seq_stop = slab_stop,
4008 		.seq_show = memcg_slab_show,
4009 	},
4010 #endif
4011 	{
4012 		.name = "kmem.tcp.limit_in_bytes",
4013 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4014 		.write = mem_cgroup_write,
4015 		.read_u64 = mem_cgroup_read_u64,
4016 	},
4017 	{
4018 		.name = "kmem.tcp.usage_in_bytes",
4019 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4020 		.read_u64 = mem_cgroup_read_u64,
4021 	},
4022 	{
4023 		.name = "kmem.tcp.failcnt",
4024 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4025 		.write = mem_cgroup_reset,
4026 		.read_u64 = mem_cgroup_read_u64,
4027 	},
4028 	{
4029 		.name = "kmem.tcp.max_usage_in_bytes",
4030 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4031 		.write = mem_cgroup_reset,
4032 		.read_u64 = mem_cgroup_read_u64,
4033 	},
4034 	{ },	/* terminate */
4035 };
4036 
4037 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4038 {
4039 	struct mem_cgroup_per_node *pn;
4040 	struct mem_cgroup_per_zone *mz;
4041 	int zone, tmp = node;
4042 	/*
4043 	 * This routine is called against possible nodes.
4044 	 * But it's BUG to call kmalloc() against offline node.
4045 	 *
4046 	 * TODO: this routine can waste much memory for nodes which will
4047 	 *       never be onlined. It's better to use memory hotplug callback
4048 	 *       function.
4049 	 */
4050 	if (!node_state(node, N_NORMAL_MEMORY))
4051 		tmp = -1;
4052 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4053 	if (!pn)
4054 		return 1;
4055 
4056 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4057 		mz = &pn->zoneinfo[zone];
4058 		lruvec_init(&mz->lruvec);
4059 		mz->usage_in_excess = 0;
4060 		mz->on_tree = false;
4061 		mz->memcg = memcg;
4062 	}
4063 	memcg->nodeinfo[node] = pn;
4064 	return 0;
4065 }
4066 
4067 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4068 {
4069 	kfree(memcg->nodeinfo[node]);
4070 }
4071 
4072 static void mem_cgroup_free(struct mem_cgroup *memcg)
4073 {
4074 	int node;
4075 
4076 	memcg_wb_domain_exit(memcg);
4077 	for_each_node(node)
4078 		free_mem_cgroup_per_zone_info(memcg, node);
4079 	free_percpu(memcg->stat);
4080 	kfree(memcg);
4081 }
4082 
4083 static struct mem_cgroup *mem_cgroup_alloc(void)
4084 {
4085 	struct mem_cgroup *memcg;
4086 	size_t size;
4087 	int node;
4088 
4089 	size = sizeof(struct mem_cgroup);
4090 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4091 
4092 	memcg = kzalloc(size, GFP_KERNEL);
4093 	if (!memcg)
4094 		return NULL;
4095 
4096 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4097 	if (!memcg->stat)
4098 		goto fail;
4099 
4100 	for_each_node(node)
4101 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4102 			goto fail;
4103 
4104 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4105 		goto fail;
4106 
4107 	INIT_WORK(&memcg->high_work, high_work_func);
4108 	memcg->last_scanned_node = MAX_NUMNODES;
4109 	INIT_LIST_HEAD(&memcg->oom_notify);
4110 	mutex_init(&memcg->thresholds_lock);
4111 	spin_lock_init(&memcg->move_lock);
4112 	vmpressure_init(&memcg->vmpressure);
4113 	INIT_LIST_HEAD(&memcg->event_list);
4114 	spin_lock_init(&memcg->event_list_lock);
4115 	memcg->socket_pressure = jiffies;
4116 #ifndef CONFIG_SLOB
4117 	memcg->kmemcg_id = -1;
4118 #endif
4119 #ifdef CONFIG_CGROUP_WRITEBACK
4120 	INIT_LIST_HEAD(&memcg->cgwb_list);
4121 #endif
4122 	return memcg;
4123 fail:
4124 	mem_cgroup_free(memcg);
4125 	return NULL;
4126 }
4127 
4128 static struct cgroup_subsys_state * __ref
4129 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4130 {
4131 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4132 	struct mem_cgroup *memcg;
4133 	long error = -ENOMEM;
4134 
4135 	memcg = mem_cgroup_alloc();
4136 	if (!memcg)
4137 		return ERR_PTR(error);
4138 
4139 	memcg->high = PAGE_COUNTER_MAX;
4140 	memcg->soft_limit = PAGE_COUNTER_MAX;
4141 	if (parent) {
4142 		memcg->swappiness = mem_cgroup_swappiness(parent);
4143 		memcg->oom_kill_disable = parent->oom_kill_disable;
4144 	}
4145 	if (parent && parent->use_hierarchy) {
4146 		memcg->use_hierarchy = true;
4147 		page_counter_init(&memcg->memory, &parent->memory);
4148 		page_counter_init(&memcg->swap, &parent->swap);
4149 		page_counter_init(&memcg->memsw, &parent->memsw);
4150 		page_counter_init(&memcg->kmem, &parent->kmem);
4151 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4152 	} else {
4153 		page_counter_init(&memcg->memory, NULL);
4154 		page_counter_init(&memcg->swap, NULL);
4155 		page_counter_init(&memcg->memsw, NULL);
4156 		page_counter_init(&memcg->kmem, NULL);
4157 		page_counter_init(&memcg->tcpmem, NULL);
4158 		/*
4159 		 * Deeper hierachy with use_hierarchy == false doesn't make
4160 		 * much sense so let cgroup subsystem know about this
4161 		 * unfortunate state in our controller.
4162 		 */
4163 		if (parent != root_mem_cgroup)
4164 			memory_cgrp_subsys.broken_hierarchy = true;
4165 	}
4166 
4167 	/* The following stuff does not apply to the root */
4168 	if (!parent) {
4169 		root_mem_cgroup = memcg;
4170 		return &memcg->css;
4171 	}
4172 
4173 	error = memcg_online_kmem(memcg);
4174 	if (error)
4175 		goto fail;
4176 
4177 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4178 		static_branch_inc(&memcg_sockets_enabled_key);
4179 
4180 	return &memcg->css;
4181 fail:
4182 	mem_cgroup_free(memcg);
4183 	return NULL;
4184 }
4185 
4186 static int
4187 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4188 {
4189 	if (css->id > MEM_CGROUP_ID_MAX)
4190 		return -ENOSPC;
4191 
4192 	return 0;
4193 }
4194 
4195 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4196 {
4197 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4198 	struct mem_cgroup_event *event, *tmp;
4199 
4200 	/*
4201 	 * Unregister events and notify userspace.
4202 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4203 	 * directory to avoid race between userspace and kernelspace.
4204 	 */
4205 	spin_lock(&memcg->event_list_lock);
4206 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4207 		list_del_init(&event->list);
4208 		schedule_work(&event->remove);
4209 	}
4210 	spin_unlock(&memcg->event_list_lock);
4211 
4212 	memcg_offline_kmem(memcg);
4213 	wb_memcg_offline(memcg);
4214 }
4215 
4216 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4217 {
4218 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4219 
4220 	invalidate_reclaim_iterators(memcg);
4221 }
4222 
4223 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4224 {
4225 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4226 
4227 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4228 		static_branch_dec(&memcg_sockets_enabled_key);
4229 
4230 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4231 		static_branch_dec(&memcg_sockets_enabled_key);
4232 
4233 	vmpressure_cleanup(&memcg->vmpressure);
4234 	cancel_work_sync(&memcg->high_work);
4235 	mem_cgroup_remove_from_trees(memcg);
4236 	memcg_free_kmem(memcg);
4237 	mem_cgroup_free(memcg);
4238 }
4239 
4240 /**
4241  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4242  * @css: the target css
4243  *
4244  * Reset the states of the mem_cgroup associated with @css.  This is
4245  * invoked when the userland requests disabling on the default hierarchy
4246  * but the memcg is pinned through dependency.  The memcg should stop
4247  * applying policies and should revert to the vanilla state as it may be
4248  * made visible again.
4249  *
4250  * The current implementation only resets the essential configurations.
4251  * This needs to be expanded to cover all the visible parts.
4252  */
4253 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4254 {
4255 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4256 
4257 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4258 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4259 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4260 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4261 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4262 	memcg->low = 0;
4263 	memcg->high = PAGE_COUNTER_MAX;
4264 	memcg->soft_limit = PAGE_COUNTER_MAX;
4265 	memcg_wb_domain_size_changed(memcg);
4266 }
4267 
4268 #ifdef CONFIG_MMU
4269 /* Handlers for move charge at task migration. */
4270 static int mem_cgroup_do_precharge(unsigned long count)
4271 {
4272 	int ret;
4273 
4274 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4275 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4276 	if (!ret) {
4277 		mc.precharge += count;
4278 		return ret;
4279 	}
4280 
4281 	/* Try charges one by one with reclaim */
4282 	while (count--) {
4283 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4284 		if (ret)
4285 			return ret;
4286 		mc.precharge++;
4287 		cond_resched();
4288 	}
4289 	return 0;
4290 }
4291 
4292 /**
4293  * get_mctgt_type - get target type of moving charge
4294  * @vma: the vma the pte to be checked belongs
4295  * @addr: the address corresponding to the pte to be checked
4296  * @ptent: the pte to be checked
4297  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4298  *
4299  * Returns
4300  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4301  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4302  *     move charge. if @target is not NULL, the page is stored in target->page
4303  *     with extra refcnt got(Callers should handle it).
4304  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4305  *     target for charge migration. if @target is not NULL, the entry is stored
4306  *     in target->ent.
4307  *
4308  * Called with pte lock held.
4309  */
4310 union mc_target {
4311 	struct page	*page;
4312 	swp_entry_t	ent;
4313 };
4314 
4315 enum mc_target_type {
4316 	MC_TARGET_NONE = 0,
4317 	MC_TARGET_PAGE,
4318 	MC_TARGET_SWAP,
4319 };
4320 
4321 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4322 						unsigned long addr, pte_t ptent)
4323 {
4324 	struct page *page = vm_normal_page(vma, addr, ptent);
4325 
4326 	if (!page || !page_mapped(page))
4327 		return NULL;
4328 	if (PageAnon(page)) {
4329 		if (!(mc.flags & MOVE_ANON))
4330 			return NULL;
4331 	} else {
4332 		if (!(mc.flags & MOVE_FILE))
4333 			return NULL;
4334 	}
4335 	if (!get_page_unless_zero(page))
4336 		return NULL;
4337 
4338 	return page;
4339 }
4340 
4341 #ifdef CONFIG_SWAP
4342 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4343 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4344 {
4345 	struct page *page = NULL;
4346 	swp_entry_t ent = pte_to_swp_entry(ptent);
4347 
4348 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4349 		return NULL;
4350 	/*
4351 	 * Because lookup_swap_cache() updates some statistics counter,
4352 	 * we call find_get_page() with swapper_space directly.
4353 	 */
4354 	page = find_get_page(swap_address_space(ent), ent.val);
4355 	if (do_memsw_account())
4356 		entry->val = ent.val;
4357 
4358 	return page;
4359 }
4360 #else
4361 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4362 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4363 {
4364 	return NULL;
4365 }
4366 #endif
4367 
4368 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4369 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4370 {
4371 	struct page *page = NULL;
4372 	struct address_space *mapping;
4373 	pgoff_t pgoff;
4374 
4375 	if (!vma->vm_file) /* anonymous vma */
4376 		return NULL;
4377 	if (!(mc.flags & MOVE_FILE))
4378 		return NULL;
4379 
4380 	mapping = vma->vm_file->f_mapping;
4381 	pgoff = linear_page_index(vma, addr);
4382 
4383 	/* page is moved even if it's not RSS of this task(page-faulted). */
4384 #ifdef CONFIG_SWAP
4385 	/* shmem/tmpfs may report page out on swap: account for that too. */
4386 	if (shmem_mapping(mapping)) {
4387 		page = find_get_entry(mapping, pgoff);
4388 		if (radix_tree_exceptional_entry(page)) {
4389 			swp_entry_t swp = radix_to_swp_entry(page);
4390 			if (do_memsw_account())
4391 				*entry = swp;
4392 			page = find_get_page(swap_address_space(swp), swp.val);
4393 		}
4394 	} else
4395 		page = find_get_page(mapping, pgoff);
4396 #else
4397 	page = find_get_page(mapping, pgoff);
4398 #endif
4399 	return page;
4400 }
4401 
4402 /**
4403  * mem_cgroup_move_account - move account of the page
4404  * @page: the page
4405  * @nr_pages: number of regular pages (>1 for huge pages)
4406  * @from: mem_cgroup which the page is moved from.
4407  * @to:	mem_cgroup which the page is moved to. @from != @to.
4408  *
4409  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4410  *
4411  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4412  * from old cgroup.
4413  */
4414 static int mem_cgroup_move_account(struct page *page,
4415 				   bool compound,
4416 				   struct mem_cgroup *from,
4417 				   struct mem_cgroup *to)
4418 {
4419 	unsigned long flags;
4420 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4421 	int ret;
4422 	bool anon;
4423 
4424 	VM_BUG_ON(from == to);
4425 	VM_BUG_ON_PAGE(PageLRU(page), page);
4426 	VM_BUG_ON(compound && !PageTransHuge(page));
4427 
4428 	/*
4429 	 * Prevent mem_cgroup_migrate() from looking at
4430 	 * page->mem_cgroup of its source page while we change it.
4431 	 */
4432 	ret = -EBUSY;
4433 	if (!trylock_page(page))
4434 		goto out;
4435 
4436 	ret = -EINVAL;
4437 	if (page->mem_cgroup != from)
4438 		goto out_unlock;
4439 
4440 	anon = PageAnon(page);
4441 
4442 	spin_lock_irqsave(&from->move_lock, flags);
4443 
4444 	if (!anon && page_mapped(page)) {
4445 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4446 			       nr_pages);
4447 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4448 			       nr_pages);
4449 	}
4450 
4451 	/*
4452 	 * move_lock grabbed above and caller set from->moving_account, so
4453 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4454 	 * So mapping should be stable for dirty pages.
4455 	 */
4456 	if (!anon && PageDirty(page)) {
4457 		struct address_space *mapping = page_mapping(page);
4458 
4459 		if (mapping_cap_account_dirty(mapping)) {
4460 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4461 				       nr_pages);
4462 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4463 				       nr_pages);
4464 		}
4465 	}
4466 
4467 	if (PageWriteback(page)) {
4468 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4469 			       nr_pages);
4470 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4471 			       nr_pages);
4472 	}
4473 
4474 	/*
4475 	 * It is safe to change page->mem_cgroup here because the page
4476 	 * is referenced, charged, and isolated - we can't race with
4477 	 * uncharging, charging, migration, or LRU putback.
4478 	 */
4479 
4480 	/* caller should have done css_get */
4481 	page->mem_cgroup = to;
4482 	spin_unlock_irqrestore(&from->move_lock, flags);
4483 
4484 	ret = 0;
4485 
4486 	local_irq_disable();
4487 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4488 	memcg_check_events(to, page);
4489 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4490 	memcg_check_events(from, page);
4491 	local_irq_enable();
4492 out_unlock:
4493 	unlock_page(page);
4494 out:
4495 	return ret;
4496 }
4497 
4498 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4499 		unsigned long addr, pte_t ptent, union mc_target *target)
4500 {
4501 	struct page *page = NULL;
4502 	enum mc_target_type ret = MC_TARGET_NONE;
4503 	swp_entry_t ent = { .val = 0 };
4504 
4505 	if (pte_present(ptent))
4506 		page = mc_handle_present_pte(vma, addr, ptent);
4507 	else if (is_swap_pte(ptent))
4508 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4509 	else if (pte_none(ptent))
4510 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4511 
4512 	if (!page && !ent.val)
4513 		return ret;
4514 	if (page) {
4515 		/*
4516 		 * Do only loose check w/o serialization.
4517 		 * mem_cgroup_move_account() checks the page is valid or
4518 		 * not under LRU exclusion.
4519 		 */
4520 		if (page->mem_cgroup == mc.from) {
4521 			ret = MC_TARGET_PAGE;
4522 			if (target)
4523 				target->page = page;
4524 		}
4525 		if (!ret || !target)
4526 			put_page(page);
4527 	}
4528 	/* There is a swap entry and a page doesn't exist or isn't charged */
4529 	if (ent.val && !ret &&
4530 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4531 		ret = MC_TARGET_SWAP;
4532 		if (target)
4533 			target->ent = ent;
4534 	}
4535 	return ret;
4536 }
4537 
4538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4539 /*
4540  * We don't consider swapping or file mapped pages because THP does not
4541  * support them for now.
4542  * Caller should make sure that pmd_trans_huge(pmd) is true.
4543  */
4544 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4545 		unsigned long addr, pmd_t pmd, union mc_target *target)
4546 {
4547 	struct page *page = NULL;
4548 	enum mc_target_type ret = MC_TARGET_NONE;
4549 
4550 	page = pmd_page(pmd);
4551 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4552 	if (!(mc.flags & MOVE_ANON))
4553 		return ret;
4554 	if (page->mem_cgroup == mc.from) {
4555 		ret = MC_TARGET_PAGE;
4556 		if (target) {
4557 			get_page(page);
4558 			target->page = page;
4559 		}
4560 	}
4561 	return ret;
4562 }
4563 #else
4564 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4565 		unsigned long addr, pmd_t pmd, union mc_target *target)
4566 {
4567 	return MC_TARGET_NONE;
4568 }
4569 #endif
4570 
4571 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4572 					unsigned long addr, unsigned long end,
4573 					struct mm_walk *walk)
4574 {
4575 	struct vm_area_struct *vma = walk->vma;
4576 	pte_t *pte;
4577 	spinlock_t *ptl;
4578 
4579 	ptl = pmd_trans_huge_lock(pmd, vma);
4580 	if (ptl) {
4581 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4582 			mc.precharge += HPAGE_PMD_NR;
4583 		spin_unlock(ptl);
4584 		return 0;
4585 	}
4586 
4587 	if (pmd_trans_unstable(pmd))
4588 		return 0;
4589 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4590 	for (; addr != end; pte++, addr += PAGE_SIZE)
4591 		if (get_mctgt_type(vma, addr, *pte, NULL))
4592 			mc.precharge++;	/* increment precharge temporarily */
4593 	pte_unmap_unlock(pte - 1, ptl);
4594 	cond_resched();
4595 
4596 	return 0;
4597 }
4598 
4599 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4600 {
4601 	unsigned long precharge;
4602 
4603 	struct mm_walk mem_cgroup_count_precharge_walk = {
4604 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4605 		.mm = mm,
4606 	};
4607 	down_read(&mm->mmap_sem);
4608 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4609 	up_read(&mm->mmap_sem);
4610 
4611 	precharge = mc.precharge;
4612 	mc.precharge = 0;
4613 
4614 	return precharge;
4615 }
4616 
4617 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4618 {
4619 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4620 
4621 	VM_BUG_ON(mc.moving_task);
4622 	mc.moving_task = current;
4623 	return mem_cgroup_do_precharge(precharge);
4624 }
4625 
4626 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4627 static void __mem_cgroup_clear_mc(void)
4628 {
4629 	struct mem_cgroup *from = mc.from;
4630 	struct mem_cgroup *to = mc.to;
4631 
4632 	/* we must uncharge all the leftover precharges from mc.to */
4633 	if (mc.precharge) {
4634 		cancel_charge(mc.to, mc.precharge);
4635 		mc.precharge = 0;
4636 	}
4637 	/*
4638 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4639 	 * we must uncharge here.
4640 	 */
4641 	if (mc.moved_charge) {
4642 		cancel_charge(mc.from, mc.moved_charge);
4643 		mc.moved_charge = 0;
4644 	}
4645 	/* we must fixup refcnts and charges */
4646 	if (mc.moved_swap) {
4647 		/* uncharge swap account from the old cgroup */
4648 		if (!mem_cgroup_is_root(mc.from))
4649 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4650 
4651 		/*
4652 		 * we charged both to->memory and to->memsw, so we
4653 		 * should uncharge to->memory.
4654 		 */
4655 		if (!mem_cgroup_is_root(mc.to))
4656 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4657 
4658 		css_put_many(&mc.from->css, mc.moved_swap);
4659 
4660 		/* we've already done css_get(mc.to) */
4661 		mc.moved_swap = 0;
4662 	}
4663 	memcg_oom_recover(from);
4664 	memcg_oom_recover(to);
4665 	wake_up_all(&mc.waitq);
4666 }
4667 
4668 static void mem_cgroup_clear_mc(void)
4669 {
4670 	/*
4671 	 * we must clear moving_task before waking up waiters at the end of
4672 	 * task migration.
4673 	 */
4674 	mc.moving_task = NULL;
4675 	__mem_cgroup_clear_mc();
4676 	spin_lock(&mc.lock);
4677 	mc.from = NULL;
4678 	mc.to = NULL;
4679 	spin_unlock(&mc.lock);
4680 }
4681 
4682 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4683 {
4684 	struct cgroup_subsys_state *css;
4685 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4686 	struct mem_cgroup *from;
4687 	struct task_struct *leader, *p;
4688 	struct mm_struct *mm;
4689 	unsigned long move_flags;
4690 	int ret = 0;
4691 
4692 	/* charge immigration isn't supported on the default hierarchy */
4693 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4694 		return 0;
4695 
4696 	/*
4697 	 * Multi-process migrations only happen on the default hierarchy
4698 	 * where charge immigration is not used.  Perform charge
4699 	 * immigration if @tset contains a leader and whine if there are
4700 	 * multiple.
4701 	 */
4702 	p = NULL;
4703 	cgroup_taskset_for_each_leader(leader, css, tset) {
4704 		WARN_ON_ONCE(p);
4705 		p = leader;
4706 		memcg = mem_cgroup_from_css(css);
4707 	}
4708 	if (!p)
4709 		return 0;
4710 
4711 	/*
4712 	 * We are now commited to this value whatever it is. Changes in this
4713 	 * tunable will only affect upcoming migrations, not the current one.
4714 	 * So we need to save it, and keep it going.
4715 	 */
4716 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4717 	if (!move_flags)
4718 		return 0;
4719 
4720 	from = mem_cgroup_from_task(p);
4721 
4722 	VM_BUG_ON(from == memcg);
4723 
4724 	mm = get_task_mm(p);
4725 	if (!mm)
4726 		return 0;
4727 	/* We move charges only when we move a owner of the mm */
4728 	if (mm->owner == p) {
4729 		VM_BUG_ON(mc.from);
4730 		VM_BUG_ON(mc.to);
4731 		VM_BUG_ON(mc.precharge);
4732 		VM_BUG_ON(mc.moved_charge);
4733 		VM_BUG_ON(mc.moved_swap);
4734 
4735 		spin_lock(&mc.lock);
4736 		mc.from = from;
4737 		mc.to = memcg;
4738 		mc.flags = move_flags;
4739 		spin_unlock(&mc.lock);
4740 		/* We set mc.moving_task later */
4741 
4742 		ret = mem_cgroup_precharge_mc(mm);
4743 		if (ret)
4744 			mem_cgroup_clear_mc();
4745 	}
4746 	mmput(mm);
4747 	return ret;
4748 }
4749 
4750 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4751 {
4752 	if (mc.to)
4753 		mem_cgroup_clear_mc();
4754 }
4755 
4756 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4757 				unsigned long addr, unsigned long end,
4758 				struct mm_walk *walk)
4759 {
4760 	int ret = 0;
4761 	struct vm_area_struct *vma = walk->vma;
4762 	pte_t *pte;
4763 	spinlock_t *ptl;
4764 	enum mc_target_type target_type;
4765 	union mc_target target;
4766 	struct page *page;
4767 
4768 	ptl = pmd_trans_huge_lock(pmd, vma);
4769 	if (ptl) {
4770 		if (mc.precharge < HPAGE_PMD_NR) {
4771 			spin_unlock(ptl);
4772 			return 0;
4773 		}
4774 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4775 		if (target_type == MC_TARGET_PAGE) {
4776 			page = target.page;
4777 			if (!isolate_lru_page(page)) {
4778 				if (!mem_cgroup_move_account(page, true,
4779 							     mc.from, mc.to)) {
4780 					mc.precharge -= HPAGE_PMD_NR;
4781 					mc.moved_charge += HPAGE_PMD_NR;
4782 				}
4783 				putback_lru_page(page);
4784 			}
4785 			put_page(page);
4786 		}
4787 		spin_unlock(ptl);
4788 		return 0;
4789 	}
4790 
4791 	if (pmd_trans_unstable(pmd))
4792 		return 0;
4793 retry:
4794 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4795 	for (; addr != end; addr += PAGE_SIZE) {
4796 		pte_t ptent = *(pte++);
4797 		swp_entry_t ent;
4798 
4799 		if (!mc.precharge)
4800 			break;
4801 
4802 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4803 		case MC_TARGET_PAGE:
4804 			page = target.page;
4805 			/*
4806 			 * We can have a part of the split pmd here. Moving it
4807 			 * can be done but it would be too convoluted so simply
4808 			 * ignore such a partial THP and keep it in original
4809 			 * memcg. There should be somebody mapping the head.
4810 			 */
4811 			if (PageTransCompound(page))
4812 				goto put;
4813 			if (isolate_lru_page(page))
4814 				goto put;
4815 			if (!mem_cgroup_move_account(page, false,
4816 						mc.from, mc.to)) {
4817 				mc.precharge--;
4818 				/* we uncharge from mc.from later. */
4819 				mc.moved_charge++;
4820 			}
4821 			putback_lru_page(page);
4822 put:			/* get_mctgt_type() gets the page */
4823 			put_page(page);
4824 			break;
4825 		case MC_TARGET_SWAP:
4826 			ent = target.ent;
4827 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4828 				mc.precharge--;
4829 				/* we fixup refcnts and charges later. */
4830 				mc.moved_swap++;
4831 			}
4832 			break;
4833 		default:
4834 			break;
4835 		}
4836 	}
4837 	pte_unmap_unlock(pte - 1, ptl);
4838 	cond_resched();
4839 
4840 	if (addr != end) {
4841 		/*
4842 		 * We have consumed all precharges we got in can_attach().
4843 		 * We try charge one by one, but don't do any additional
4844 		 * charges to mc.to if we have failed in charge once in attach()
4845 		 * phase.
4846 		 */
4847 		ret = mem_cgroup_do_precharge(1);
4848 		if (!ret)
4849 			goto retry;
4850 	}
4851 
4852 	return ret;
4853 }
4854 
4855 static void mem_cgroup_move_charge(struct mm_struct *mm)
4856 {
4857 	struct mm_walk mem_cgroup_move_charge_walk = {
4858 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4859 		.mm = mm,
4860 	};
4861 
4862 	lru_add_drain_all();
4863 	/*
4864 	 * Signal lock_page_memcg() to take the memcg's move_lock
4865 	 * while we're moving its pages to another memcg. Then wait
4866 	 * for already started RCU-only updates to finish.
4867 	 */
4868 	atomic_inc(&mc.from->moving_account);
4869 	synchronize_rcu();
4870 retry:
4871 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4872 		/*
4873 		 * Someone who are holding the mmap_sem might be waiting in
4874 		 * waitq. So we cancel all extra charges, wake up all waiters,
4875 		 * and retry. Because we cancel precharges, we might not be able
4876 		 * to move enough charges, but moving charge is a best-effort
4877 		 * feature anyway, so it wouldn't be a big problem.
4878 		 */
4879 		__mem_cgroup_clear_mc();
4880 		cond_resched();
4881 		goto retry;
4882 	}
4883 	/*
4884 	 * When we have consumed all precharges and failed in doing
4885 	 * additional charge, the page walk just aborts.
4886 	 */
4887 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4888 	up_read(&mm->mmap_sem);
4889 	atomic_dec(&mc.from->moving_account);
4890 }
4891 
4892 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4893 {
4894 	struct cgroup_subsys_state *css;
4895 	struct task_struct *p = cgroup_taskset_first(tset, &css);
4896 	struct mm_struct *mm = get_task_mm(p);
4897 
4898 	if (mm) {
4899 		if (mc.to)
4900 			mem_cgroup_move_charge(mm);
4901 		mmput(mm);
4902 	}
4903 	if (mc.to)
4904 		mem_cgroup_clear_mc();
4905 }
4906 #else	/* !CONFIG_MMU */
4907 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4908 {
4909 	return 0;
4910 }
4911 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4912 {
4913 }
4914 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4915 {
4916 }
4917 #endif
4918 
4919 /*
4920  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4921  * to verify whether we're attached to the default hierarchy on each mount
4922  * attempt.
4923  */
4924 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4925 {
4926 	/*
4927 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4928 	 * guarantees that @root doesn't have any children, so turning it
4929 	 * on for the root memcg is enough.
4930 	 */
4931 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4932 		root_mem_cgroup->use_hierarchy = true;
4933 	else
4934 		root_mem_cgroup->use_hierarchy = false;
4935 }
4936 
4937 static u64 memory_current_read(struct cgroup_subsys_state *css,
4938 			       struct cftype *cft)
4939 {
4940 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4941 
4942 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4943 }
4944 
4945 static int memory_low_show(struct seq_file *m, void *v)
4946 {
4947 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4948 	unsigned long low = READ_ONCE(memcg->low);
4949 
4950 	if (low == PAGE_COUNTER_MAX)
4951 		seq_puts(m, "max\n");
4952 	else
4953 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4954 
4955 	return 0;
4956 }
4957 
4958 static ssize_t memory_low_write(struct kernfs_open_file *of,
4959 				char *buf, size_t nbytes, loff_t off)
4960 {
4961 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4962 	unsigned long low;
4963 	int err;
4964 
4965 	buf = strstrip(buf);
4966 	err = page_counter_memparse(buf, "max", &low);
4967 	if (err)
4968 		return err;
4969 
4970 	memcg->low = low;
4971 
4972 	return nbytes;
4973 }
4974 
4975 static int memory_high_show(struct seq_file *m, void *v)
4976 {
4977 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4978 	unsigned long high = READ_ONCE(memcg->high);
4979 
4980 	if (high == PAGE_COUNTER_MAX)
4981 		seq_puts(m, "max\n");
4982 	else
4983 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4984 
4985 	return 0;
4986 }
4987 
4988 static ssize_t memory_high_write(struct kernfs_open_file *of,
4989 				 char *buf, size_t nbytes, loff_t off)
4990 {
4991 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4992 	unsigned long nr_pages;
4993 	unsigned long high;
4994 	int err;
4995 
4996 	buf = strstrip(buf);
4997 	err = page_counter_memparse(buf, "max", &high);
4998 	if (err)
4999 		return err;
5000 
5001 	memcg->high = high;
5002 
5003 	nr_pages = page_counter_read(&memcg->memory);
5004 	if (nr_pages > high)
5005 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5006 					     GFP_KERNEL, true);
5007 
5008 	memcg_wb_domain_size_changed(memcg);
5009 	return nbytes;
5010 }
5011 
5012 static int memory_max_show(struct seq_file *m, void *v)
5013 {
5014 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5015 	unsigned long max = READ_ONCE(memcg->memory.limit);
5016 
5017 	if (max == PAGE_COUNTER_MAX)
5018 		seq_puts(m, "max\n");
5019 	else
5020 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5021 
5022 	return 0;
5023 }
5024 
5025 static ssize_t memory_max_write(struct kernfs_open_file *of,
5026 				char *buf, size_t nbytes, loff_t off)
5027 {
5028 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5029 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5030 	bool drained = false;
5031 	unsigned long max;
5032 	int err;
5033 
5034 	buf = strstrip(buf);
5035 	err = page_counter_memparse(buf, "max", &max);
5036 	if (err)
5037 		return err;
5038 
5039 	xchg(&memcg->memory.limit, max);
5040 
5041 	for (;;) {
5042 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5043 
5044 		if (nr_pages <= max)
5045 			break;
5046 
5047 		if (signal_pending(current)) {
5048 			err = -EINTR;
5049 			break;
5050 		}
5051 
5052 		if (!drained) {
5053 			drain_all_stock(memcg);
5054 			drained = true;
5055 			continue;
5056 		}
5057 
5058 		if (nr_reclaims) {
5059 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5060 							  GFP_KERNEL, true))
5061 				nr_reclaims--;
5062 			continue;
5063 		}
5064 
5065 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5066 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5067 			break;
5068 	}
5069 
5070 	memcg_wb_domain_size_changed(memcg);
5071 	return nbytes;
5072 }
5073 
5074 static int memory_events_show(struct seq_file *m, void *v)
5075 {
5076 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5077 
5078 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5079 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5080 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5081 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5082 
5083 	return 0;
5084 }
5085 
5086 static int memory_stat_show(struct seq_file *m, void *v)
5087 {
5088 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5089 	unsigned long stat[MEMCG_NR_STAT];
5090 	unsigned long events[MEMCG_NR_EVENTS];
5091 	int i;
5092 
5093 	/*
5094 	 * Provide statistics on the state of the memory subsystem as
5095 	 * well as cumulative event counters that show past behavior.
5096 	 *
5097 	 * This list is ordered following a combination of these gradients:
5098 	 * 1) generic big picture -> specifics and details
5099 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5100 	 *
5101 	 * Current memory state:
5102 	 */
5103 
5104 	tree_stat(memcg, stat);
5105 	tree_events(memcg, events);
5106 
5107 	seq_printf(m, "anon %llu\n",
5108 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5109 	seq_printf(m, "file %llu\n",
5110 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5111 	seq_printf(m, "kernel_stack %llu\n",
5112 		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5113 	seq_printf(m, "slab %llu\n",
5114 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5115 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5116 	seq_printf(m, "sock %llu\n",
5117 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5118 
5119 	seq_printf(m, "file_mapped %llu\n",
5120 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5121 	seq_printf(m, "file_dirty %llu\n",
5122 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5123 	seq_printf(m, "file_writeback %llu\n",
5124 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5125 
5126 	for (i = 0; i < NR_LRU_LISTS; i++) {
5127 		struct mem_cgroup *mi;
5128 		unsigned long val = 0;
5129 
5130 		for_each_mem_cgroup_tree(mi, memcg)
5131 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5132 		seq_printf(m, "%s %llu\n",
5133 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5134 	}
5135 
5136 	seq_printf(m, "slab_reclaimable %llu\n",
5137 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5138 	seq_printf(m, "slab_unreclaimable %llu\n",
5139 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5140 
5141 	/* Accumulated memory events */
5142 
5143 	seq_printf(m, "pgfault %lu\n",
5144 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5145 	seq_printf(m, "pgmajfault %lu\n",
5146 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5147 
5148 	return 0;
5149 }
5150 
5151 static struct cftype memory_files[] = {
5152 	{
5153 		.name = "current",
5154 		.flags = CFTYPE_NOT_ON_ROOT,
5155 		.read_u64 = memory_current_read,
5156 	},
5157 	{
5158 		.name = "low",
5159 		.flags = CFTYPE_NOT_ON_ROOT,
5160 		.seq_show = memory_low_show,
5161 		.write = memory_low_write,
5162 	},
5163 	{
5164 		.name = "high",
5165 		.flags = CFTYPE_NOT_ON_ROOT,
5166 		.seq_show = memory_high_show,
5167 		.write = memory_high_write,
5168 	},
5169 	{
5170 		.name = "max",
5171 		.flags = CFTYPE_NOT_ON_ROOT,
5172 		.seq_show = memory_max_show,
5173 		.write = memory_max_write,
5174 	},
5175 	{
5176 		.name = "events",
5177 		.flags = CFTYPE_NOT_ON_ROOT,
5178 		.file_offset = offsetof(struct mem_cgroup, events_file),
5179 		.seq_show = memory_events_show,
5180 	},
5181 	{
5182 		.name = "stat",
5183 		.flags = CFTYPE_NOT_ON_ROOT,
5184 		.seq_show = memory_stat_show,
5185 	},
5186 	{ }	/* terminate */
5187 };
5188 
5189 struct cgroup_subsys memory_cgrp_subsys = {
5190 	.css_alloc = mem_cgroup_css_alloc,
5191 	.css_online = mem_cgroup_css_online,
5192 	.css_offline = mem_cgroup_css_offline,
5193 	.css_released = mem_cgroup_css_released,
5194 	.css_free = mem_cgroup_css_free,
5195 	.css_reset = mem_cgroup_css_reset,
5196 	.can_attach = mem_cgroup_can_attach,
5197 	.cancel_attach = mem_cgroup_cancel_attach,
5198 	.attach = mem_cgroup_move_task,
5199 	.bind = mem_cgroup_bind,
5200 	.dfl_cftypes = memory_files,
5201 	.legacy_cftypes = mem_cgroup_legacy_files,
5202 	.early_init = 0,
5203 };
5204 
5205 /**
5206  * mem_cgroup_low - check if memory consumption is below the normal range
5207  * @root: the highest ancestor to consider
5208  * @memcg: the memory cgroup to check
5209  *
5210  * Returns %true if memory consumption of @memcg, and that of all
5211  * configurable ancestors up to @root, is below the normal range.
5212  */
5213 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5214 {
5215 	if (mem_cgroup_disabled())
5216 		return false;
5217 
5218 	/*
5219 	 * The toplevel group doesn't have a configurable range, so
5220 	 * it's never low when looked at directly, and it is not
5221 	 * considered an ancestor when assessing the hierarchy.
5222 	 */
5223 
5224 	if (memcg == root_mem_cgroup)
5225 		return false;
5226 
5227 	if (page_counter_read(&memcg->memory) >= memcg->low)
5228 		return false;
5229 
5230 	while (memcg != root) {
5231 		memcg = parent_mem_cgroup(memcg);
5232 
5233 		if (memcg == root_mem_cgroup)
5234 			break;
5235 
5236 		if (page_counter_read(&memcg->memory) >= memcg->low)
5237 			return false;
5238 	}
5239 	return true;
5240 }
5241 
5242 /**
5243  * mem_cgroup_try_charge - try charging a page
5244  * @page: page to charge
5245  * @mm: mm context of the victim
5246  * @gfp_mask: reclaim mode
5247  * @memcgp: charged memcg return
5248  *
5249  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5250  * pages according to @gfp_mask if necessary.
5251  *
5252  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5253  * Otherwise, an error code is returned.
5254  *
5255  * After page->mapping has been set up, the caller must finalize the
5256  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5257  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5258  */
5259 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5260 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5261 			  bool compound)
5262 {
5263 	struct mem_cgroup *memcg = NULL;
5264 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5265 	int ret = 0;
5266 
5267 	if (mem_cgroup_disabled())
5268 		goto out;
5269 
5270 	if (PageSwapCache(page)) {
5271 		/*
5272 		 * Every swap fault against a single page tries to charge the
5273 		 * page, bail as early as possible.  shmem_unuse() encounters
5274 		 * already charged pages, too.  The USED bit is protected by
5275 		 * the page lock, which serializes swap cache removal, which
5276 		 * in turn serializes uncharging.
5277 		 */
5278 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5279 		if (page->mem_cgroup)
5280 			goto out;
5281 
5282 		if (do_swap_account) {
5283 			swp_entry_t ent = { .val = page_private(page), };
5284 			unsigned short id = lookup_swap_cgroup_id(ent);
5285 
5286 			rcu_read_lock();
5287 			memcg = mem_cgroup_from_id(id);
5288 			if (memcg && !css_tryget_online(&memcg->css))
5289 				memcg = NULL;
5290 			rcu_read_unlock();
5291 		}
5292 	}
5293 
5294 	if (!memcg)
5295 		memcg = get_mem_cgroup_from_mm(mm);
5296 
5297 	ret = try_charge(memcg, gfp_mask, nr_pages);
5298 
5299 	css_put(&memcg->css);
5300 out:
5301 	*memcgp = memcg;
5302 	return ret;
5303 }
5304 
5305 /**
5306  * mem_cgroup_commit_charge - commit a page charge
5307  * @page: page to charge
5308  * @memcg: memcg to charge the page to
5309  * @lrucare: page might be on LRU already
5310  *
5311  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5312  * after page->mapping has been set up.  This must happen atomically
5313  * as part of the page instantiation, i.e. under the page table lock
5314  * for anonymous pages, under the page lock for page and swap cache.
5315  *
5316  * In addition, the page must not be on the LRU during the commit, to
5317  * prevent racing with task migration.  If it might be, use @lrucare.
5318  *
5319  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5320  */
5321 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5322 			      bool lrucare, bool compound)
5323 {
5324 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5325 
5326 	VM_BUG_ON_PAGE(!page->mapping, page);
5327 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5328 
5329 	if (mem_cgroup_disabled())
5330 		return;
5331 	/*
5332 	 * Swap faults will attempt to charge the same page multiple
5333 	 * times.  But reuse_swap_page() might have removed the page
5334 	 * from swapcache already, so we can't check PageSwapCache().
5335 	 */
5336 	if (!memcg)
5337 		return;
5338 
5339 	commit_charge(page, memcg, lrucare);
5340 
5341 	local_irq_disable();
5342 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5343 	memcg_check_events(memcg, page);
5344 	local_irq_enable();
5345 
5346 	if (do_memsw_account() && PageSwapCache(page)) {
5347 		swp_entry_t entry = { .val = page_private(page) };
5348 		/*
5349 		 * The swap entry might not get freed for a long time,
5350 		 * let's not wait for it.  The page already received a
5351 		 * memory+swap charge, drop the swap entry duplicate.
5352 		 */
5353 		mem_cgroup_uncharge_swap(entry);
5354 	}
5355 }
5356 
5357 /**
5358  * mem_cgroup_cancel_charge - cancel a page charge
5359  * @page: page to charge
5360  * @memcg: memcg to charge the page to
5361  *
5362  * Cancel a charge transaction started by mem_cgroup_try_charge().
5363  */
5364 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5365 		bool compound)
5366 {
5367 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5368 
5369 	if (mem_cgroup_disabled())
5370 		return;
5371 	/*
5372 	 * Swap faults will attempt to charge the same page multiple
5373 	 * times.  But reuse_swap_page() might have removed the page
5374 	 * from swapcache already, so we can't check PageSwapCache().
5375 	 */
5376 	if (!memcg)
5377 		return;
5378 
5379 	cancel_charge(memcg, nr_pages);
5380 }
5381 
5382 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5383 			   unsigned long nr_anon, unsigned long nr_file,
5384 			   unsigned long nr_huge, struct page *dummy_page)
5385 {
5386 	unsigned long nr_pages = nr_anon + nr_file;
5387 	unsigned long flags;
5388 
5389 	if (!mem_cgroup_is_root(memcg)) {
5390 		page_counter_uncharge(&memcg->memory, nr_pages);
5391 		if (do_memsw_account())
5392 			page_counter_uncharge(&memcg->memsw, nr_pages);
5393 		memcg_oom_recover(memcg);
5394 	}
5395 
5396 	local_irq_save(flags);
5397 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5398 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5399 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5400 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5401 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5402 	memcg_check_events(memcg, dummy_page);
5403 	local_irq_restore(flags);
5404 
5405 	if (!mem_cgroup_is_root(memcg))
5406 		css_put_many(&memcg->css, nr_pages);
5407 }
5408 
5409 static void uncharge_list(struct list_head *page_list)
5410 {
5411 	struct mem_cgroup *memcg = NULL;
5412 	unsigned long nr_anon = 0;
5413 	unsigned long nr_file = 0;
5414 	unsigned long nr_huge = 0;
5415 	unsigned long pgpgout = 0;
5416 	struct list_head *next;
5417 	struct page *page;
5418 
5419 	/*
5420 	 * Note that the list can be a single page->lru; hence the
5421 	 * do-while loop instead of a simple list_for_each_entry().
5422 	 */
5423 	next = page_list->next;
5424 	do {
5425 		unsigned int nr_pages = 1;
5426 
5427 		page = list_entry(next, struct page, lru);
5428 		next = page->lru.next;
5429 
5430 		VM_BUG_ON_PAGE(PageLRU(page), page);
5431 		VM_BUG_ON_PAGE(page_count(page), page);
5432 
5433 		if (!page->mem_cgroup)
5434 			continue;
5435 
5436 		/*
5437 		 * Nobody should be changing or seriously looking at
5438 		 * page->mem_cgroup at this point, we have fully
5439 		 * exclusive access to the page.
5440 		 */
5441 
5442 		if (memcg != page->mem_cgroup) {
5443 			if (memcg) {
5444 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5445 					       nr_huge, page);
5446 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5447 			}
5448 			memcg = page->mem_cgroup;
5449 		}
5450 
5451 		if (PageTransHuge(page)) {
5452 			nr_pages <<= compound_order(page);
5453 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5454 			nr_huge += nr_pages;
5455 		}
5456 
5457 		if (PageAnon(page))
5458 			nr_anon += nr_pages;
5459 		else
5460 			nr_file += nr_pages;
5461 
5462 		page->mem_cgroup = NULL;
5463 
5464 		pgpgout++;
5465 	} while (next != page_list);
5466 
5467 	if (memcg)
5468 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5469 			       nr_huge, page);
5470 }
5471 
5472 /**
5473  * mem_cgroup_uncharge - uncharge a page
5474  * @page: page to uncharge
5475  *
5476  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5477  * mem_cgroup_commit_charge().
5478  */
5479 void mem_cgroup_uncharge(struct page *page)
5480 {
5481 	if (mem_cgroup_disabled())
5482 		return;
5483 
5484 	/* Don't touch page->lru of any random page, pre-check: */
5485 	if (!page->mem_cgroup)
5486 		return;
5487 
5488 	INIT_LIST_HEAD(&page->lru);
5489 	uncharge_list(&page->lru);
5490 }
5491 
5492 /**
5493  * mem_cgroup_uncharge_list - uncharge a list of page
5494  * @page_list: list of pages to uncharge
5495  *
5496  * Uncharge a list of pages previously charged with
5497  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5498  */
5499 void mem_cgroup_uncharge_list(struct list_head *page_list)
5500 {
5501 	if (mem_cgroup_disabled())
5502 		return;
5503 
5504 	if (!list_empty(page_list))
5505 		uncharge_list(page_list);
5506 }
5507 
5508 /**
5509  * mem_cgroup_migrate - charge a page's replacement
5510  * @oldpage: currently circulating page
5511  * @newpage: replacement page
5512  *
5513  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5514  * be uncharged upon free.
5515  *
5516  * Both pages must be locked, @newpage->mapping must be set up.
5517  */
5518 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5519 {
5520 	struct mem_cgroup *memcg;
5521 	unsigned int nr_pages;
5522 	bool compound;
5523 
5524 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5525 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5526 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5527 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5528 		       newpage);
5529 
5530 	if (mem_cgroup_disabled())
5531 		return;
5532 
5533 	/* Page cache replacement: new page already charged? */
5534 	if (newpage->mem_cgroup)
5535 		return;
5536 
5537 	/* Swapcache readahead pages can get replaced before being charged */
5538 	memcg = oldpage->mem_cgroup;
5539 	if (!memcg)
5540 		return;
5541 
5542 	/* Force-charge the new page. The old one will be freed soon */
5543 	compound = PageTransHuge(newpage);
5544 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5545 
5546 	page_counter_charge(&memcg->memory, nr_pages);
5547 	if (do_memsw_account())
5548 		page_counter_charge(&memcg->memsw, nr_pages);
5549 	css_get_many(&memcg->css, nr_pages);
5550 
5551 	commit_charge(newpage, memcg, false);
5552 
5553 	local_irq_disable();
5554 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5555 	memcg_check_events(memcg, newpage);
5556 	local_irq_enable();
5557 }
5558 
5559 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5560 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5561 
5562 void sock_update_memcg(struct sock *sk)
5563 {
5564 	struct mem_cgroup *memcg;
5565 
5566 	/* Socket cloning can throw us here with sk_cgrp already
5567 	 * filled. It won't however, necessarily happen from
5568 	 * process context. So the test for root memcg given
5569 	 * the current task's memcg won't help us in this case.
5570 	 *
5571 	 * Respecting the original socket's memcg is a better
5572 	 * decision in this case.
5573 	 */
5574 	if (sk->sk_memcg) {
5575 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5576 		css_get(&sk->sk_memcg->css);
5577 		return;
5578 	}
5579 
5580 	rcu_read_lock();
5581 	memcg = mem_cgroup_from_task(current);
5582 	if (memcg == root_mem_cgroup)
5583 		goto out;
5584 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5585 		goto out;
5586 	if (css_tryget_online(&memcg->css))
5587 		sk->sk_memcg = memcg;
5588 out:
5589 	rcu_read_unlock();
5590 }
5591 EXPORT_SYMBOL(sock_update_memcg);
5592 
5593 void sock_release_memcg(struct sock *sk)
5594 {
5595 	WARN_ON(!sk->sk_memcg);
5596 	css_put(&sk->sk_memcg->css);
5597 }
5598 
5599 /**
5600  * mem_cgroup_charge_skmem - charge socket memory
5601  * @memcg: memcg to charge
5602  * @nr_pages: number of pages to charge
5603  *
5604  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5605  * @memcg's configured limit, %false if the charge had to be forced.
5606  */
5607 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5608 {
5609 	gfp_t gfp_mask = GFP_KERNEL;
5610 
5611 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5612 		struct page_counter *fail;
5613 
5614 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5615 			memcg->tcpmem_pressure = 0;
5616 			return true;
5617 		}
5618 		page_counter_charge(&memcg->tcpmem, nr_pages);
5619 		memcg->tcpmem_pressure = 1;
5620 		return false;
5621 	}
5622 
5623 	/* Don't block in the packet receive path */
5624 	if (in_softirq())
5625 		gfp_mask = GFP_NOWAIT;
5626 
5627 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5628 
5629 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5630 		return true;
5631 
5632 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5633 	return false;
5634 }
5635 
5636 /**
5637  * mem_cgroup_uncharge_skmem - uncharge socket memory
5638  * @memcg - memcg to uncharge
5639  * @nr_pages - number of pages to uncharge
5640  */
5641 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5642 {
5643 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5644 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5645 		return;
5646 	}
5647 
5648 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5649 
5650 	page_counter_uncharge(&memcg->memory, nr_pages);
5651 	css_put_many(&memcg->css, nr_pages);
5652 }
5653 
5654 static int __init cgroup_memory(char *s)
5655 {
5656 	char *token;
5657 
5658 	while ((token = strsep(&s, ",")) != NULL) {
5659 		if (!*token)
5660 			continue;
5661 		if (!strcmp(token, "nosocket"))
5662 			cgroup_memory_nosocket = true;
5663 		if (!strcmp(token, "nokmem"))
5664 			cgroup_memory_nokmem = true;
5665 	}
5666 	return 0;
5667 }
5668 __setup("cgroup.memory=", cgroup_memory);
5669 
5670 /*
5671  * subsys_initcall() for memory controller.
5672  *
5673  * Some parts like hotcpu_notifier() have to be initialized from this context
5674  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5675  * everything that doesn't depend on a specific mem_cgroup structure should
5676  * be initialized from here.
5677  */
5678 static int __init mem_cgroup_init(void)
5679 {
5680 	int cpu, node;
5681 
5682 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5683 
5684 	for_each_possible_cpu(cpu)
5685 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5686 			  drain_local_stock);
5687 
5688 	for_each_node(node) {
5689 		struct mem_cgroup_tree_per_node *rtpn;
5690 		int zone;
5691 
5692 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5693 				    node_online(node) ? node : NUMA_NO_NODE);
5694 
5695 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5696 			struct mem_cgroup_tree_per_zone *rtpz;
5697 
5698 			rtpz = &rtpn->rb_tree_per_zone[zone];
5699 			rtpz->rb_root = RB_ROOT;
5700 			spin_lock_init(&rtpz->lock);
5701 		}
5702 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5703 	}
5704 
5705 	return 0;
5706 }
5707 subsys_initcall(mem_cgroup_init);
5708 
5709 #ifdef CONFIG_MEMCG_SWAP
5710 /**
5711  * mem_cgroup_swapout - transfer a memsw charge to swap
5712  * @page: page whose memsw charge to transfer
5713  * @entry: swap entry to move the charge to
5714  *
5715  * Transfer the memsw charge of @page to @entry.
5716  */
5717 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5718 {
5719 	struct mem_cgroup *memcg;
5720 	unsigned short oldid;
5721 
5722 	VM_BUG_ON_PAGE(PageLRU(page), page);
5723 	VM_BUG_ON_PAGE(page_count(page), page);
5724 
5725 	if (!do_memsw_account())
5726 		return;
5727 
5728 	memcg = page->mem_cgroup;
5729 
5730 	/* Readahead page, never charged */
5731 	if (!memcg)
5732 		return;
5733 
5734 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5735 	VM_BUG_ON_PAGE(oldid, page);
5736 	mem_cgroup_swap_statistics(memcg, true);
5737 
5738 	page->mem_cgroup = NULL;
5739 
5740 	if (!mem_cgroup_is_root(memcg))
5741 		page_counter_uncharge(&memcg->memory, 1);
5742 
5743 	/*
5744 	 * Interrupts should be disabled here because the caller holds the
5745 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5746 	 * important here to have the interrupts disabled because it is the
5747 	 * only synchronisation we have for udpating the per-CPU variables.
5748 	 */
5749 	VM_BUG_ON(!irqs_disabled());
5750 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5751 	memcg_check_events(memcg, page);
5752 }
5753 
5754 /*
5755  * mem_cgroup_try_charge_swap - try charging a swap entry
5756  * @page: page being added to swap
5757  * @entry: swap entry to charge
5758  *
5759  * Try to charge @entry to the memcg that @page belongs to.
5760  *
5761  * Returns 0 on success, -ENOMEM on failure.
5762  */
5763 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5764 {
5765 	struct mem_cgroup *memcg;
5766 	struct page_counter *counter;
5767 	unsigned short oldid;
5768 
5769 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5770 		return 0;
5771 
5772 	memcg = page->mem_cgroup;
5773 
5774 	/* Readahead page, never charged */
5775 	if (!memcg)
5776 		return 0;
5777 
5778 	if (!mem_cgroup_is_root(memcg) &&
5779 	    !page_counter_try_charge(&memcg->swap, 1, &counter))
5780 		return -ENOMEM;
5781 
5782 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5783 	VM_BUG_ON_PAGE(oldid, page);
5784 	mem_cgroup_swap_statistics(memcg, true);
5785 
5786 	css_get(&memcg->css);
5787 	return 0;
5788 }
5789 
5790 /**
5791  * mem_cgroup_uncharge_swap - uncharge a swap entry
5792  * @entry: swap entry to uncharge
5793  *
5794  * Drop the swap charge associated with @entry.
5795  */
5796 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5797 {
5798 	struct mem_cgroup *memcg;
5799 	unsigned short id;
5800 
5801 	if (!do_swap_account)
5802 		return;
5803 
5804 	id = swap_cgroup_record(entry, 0);
5805 	rcu_read_lock();
5806 	memcg = mem_cgroup_from_id(id);
5807 	if (memcg) {
5808 		if (!mem_cgroup_is_root(memcg)) {
5809 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5810 				page_counter_uncharge(&memcg->swap, 1);
5811 			else
5812 				page_counter_uncharge(&memcg->memsw, 1);
5813 		}
5814 		mem_cgroup_swap_statistics(memcg, false);
5815 		css_put(&memcg->css);
5816 	}
5817 	rcu_read_unlock();
5818 }
5819 
5820 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5821 {
5822 	long nr_swap_pages = get_nr_swap_pages();
5823 
5824 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5825 		return nr_swap_pages;
5826 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5827 		nr_swap_pages = min_t(long, nr_swap_pages,
5828 				      READ_ONCE(memcg->swap.limit) -
5829 				      page_counter_read(&memcg->swap));
5830 	return nr_swap_pages;
5831 }
5832 
5833 bool mem_cgroup_swap_full(struct page *page)
5834 {
5835 	struct mem_cgroup *memcg;
5836 
5837 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5838 
5839 	if (vm_swap_full())
5840 		return true;
5841 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5842 		return false;
5843 
5844 	memcg = page->mem_cgroup;
5845 	if (!memcg)
5846 		return false;
5847 
5848 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5849 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5850 			return true;
5851 
5852 	return false;
5853 }
5854 
5855 /* for remember boot option*/
5856 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5857 static int really_do_swap_account __initdata = 1;
5858 #else
5859 static int really_do_swap_account __initdata;
5860 #endif
5861 
5862 static int __init enable_swap_account(char *s)
5863 {
5864 	if (!strcmp(s, "1"))
5865 		really_do_swap_account = 1;
5866 	else if (!strcmp(s, "0"))
5867 		really_do_swap_account = 0;
5868 	return 1;
5869 }
5870 __setup("swapaccount=", enable_swap_account);
5871 
5872 static u64 swap_current_read(struct cgroup_subsys_state *css,
5873 			     struct cftype *cft)
5874 {
5875 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5876 
5877 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5878 }
5879 
5880 static int swap_max_show(struct seq_file *m, void *v)
5881 {
5882 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5883 	unsigned long max = READ_ONCE(memcg->swap.limit);
5884 
5885 	if (max == PAGE_COUNTER_MAX)
5886 		seq_puts(m, "max\n");
5887 	else
5888 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5889 
5890 	return 0;
5891 }
5892 
5893 static ssize_t swap_max_write(struct kernfs_open_file *of,
5894 			      char *buf, size_t nbytes, loff_t off)
5895 {
5896 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5897 	unsigned long max;
5898 	int err;
5899 
5900 	buf = strstrip(buf);
5901 	err = page_counter_memparse(buf, "max", &max);
5902 	if (err)
5903 		return err;
5904 
5905 	mutex_lock(&memcg_limit_mutex);
5906 	err = page_counter_limit(&memcg->swap, max);
5907 	mutex_unlock(&memcg_limit_mutex);
5908 	if (err)
5909 		return err;
5910 
5911 	return nbytes;
5912 }
5913 
5914 static struct cftype swap_files[] = {
5915 	{
5916 		.name = "swap.current",
5917 		.flags = CFTYPE_NOT_ON_ROOT,
5918 		.read_u64 = swap_current_read,
5919 	},
5920 	{
5921 		.name = "swap.max",
5922 		.flags = CFTYPE_NOT_ON_ROOT,
5923 		.seq_show = swap_max_show,
5924 		.write = swap_max_write,
5925 	},
5926 	{ }	/* terminate */
5927 };
5928 
5929 static struct cftype memsw_cgroup_files[] = {
5930 	{
5931 		.name = "memsw.usage_in_bytes",
5932 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5933 		.read_u64 = mem_cgroup_read_u64,
5934 	},
5935 	{
5936 		.name = "memsw.max_usage_in_bytes",
5937 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5938 		.write = mem_cgroup_reset,
5939 		.read_u64 = mem_cgroup_read_u64,
5940 	},
5941 	{
5942 		.name = "memsw.limit_in_bytes",
5943 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5944 		.write = mem_cgroup_write,
5945 		.read_u64 = mem_cgroup_read_u64,
5946 	},
5947 	{
5948 		.name = "memsw.failcnt",
5949 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5950 		.write = mem_cgroup_reset,
5951 		.read_u64 = mem_cgroup_read_u64,
5952 	},
5953 	{ },	/* terminate */
5954 };
5955 
5956 static int __init mem_cgroup_swap_init(void)
5957 {
5958 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5959 		do_swap_account = 1;
5960 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5961 					       swap_files));
5962 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5963 						  memsw_cgroup_files));
5964 	}
5965 	return 0;
5966 }
5967 subsys_initcall(mem_cgroup_swap_init);
5968 
5969 #endif /* CONFIG_MEMCG_SWAP */
5970