1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/hugetlb.h> 39 #include <linux/pagemap.h> 40 #include <linux/smp.h> 41 #include <linux/page-flags.h> 42 #include <linux/backing-dev.h> 43 #include <linux/bit_spinlock.h> 44 #include <linux/rcupdate.h> 45 #include <linux/limits.h> 46 #include <linux/export.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/spinlock.h> 53 #include <linux/eventfd.h> 54 #include <linux/poll.h> 55 #include <linux/sort.h> 56 #include <linux/fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/vmpressure.h> 59 #include <linux/mm_inline.h> 60 #include <linux/swap_cgroup.h> 61 #include <linux/cpu.h> 62 #include <linux/oom.h> 63 #include <linux/lockdep.h> 64 #include <linux/file.h> 65 #include <linux/tracehook.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 71 #include <asm/uaccess.h> 72 73 #include <trace/events/vmscan.h> 74 75 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76 EXPORT_SYMBOL(memory_cgrp_subsys); 77 78 struct mem_cgroup *root_mem_cgroup __read_mostly; 79 80 #define MEM_CGROUP_RECLAIM_RETRIES 5 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 int do_swap_account __read_mostly; 91 #else 92 #define do_swap_account 0 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "rss_huge", 105 "mapped_file", 106 "dirty", 107 "writeback", 108 "swap", 109 }; 110 111 static const char * const mem_cgroup_events_names[] = { 112 "pgpgin", 113 "pgpgout", 114 "pgfault", 115 "pgmajfault", 116 }; 117 118 static const char * const mem_cgroup_lru_names[] = { 119 "inactive_anon", 120 "active_anon", 121 "inactive_file", 122 "active_file", 123 "unevictable", 124 }; 125 126 #define THRESHOLDS_EVENTS_TARGET 128 127 #define SOFTLIMIT_EVENTS_TARGET 1024 128 #define NUMAINFO_EVENTS_TARGET 1024 129 130 /* 131 * Cgroups above their limits are maintained in a RB-Tree, independent of 132 * their hierarchy representation 133 */ 134 135 struct mem_cgroup_tree_per_zone { 136 struct rb_root rb_root; 137 spinlock_t lock; 138 }; 139 140 struct mem_cgroup_tree_per_node { 141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 142 }; 143 144 struct mem_cgroup_tree { 145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 146 }; 147 148 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 149 150 /* for OOM */ 151 struct mem_cgroup_eventfd_list { 152 struct list_head list; 153 struct eventfd_ctx *eventfd; 154 }; 155 156 /* 157 * cgroup_event represents events which userspace want to receive. 158 */ 159 struct mem_cgroup_event { 160 /* 161 * memcg which the event belongs to. 162 */ 163 struct mem_cgroup *memcg; 164 /* 165 * eventfd to signal userspace about the event. 166 */ 167 struct eventfd_ctx *eventfd; 168 /* 169 * Each of these stored in a list by the cgroup. 170 */ 171 struct list_head list; 172 /* 173 * register_event() callback will be used to add new userspace 174 * waiter for changes related to this event. Use eventfd_signal() 175 * on eventfd to send notification to userspace. 176 */ 177 int (*register_event)(struct mem_cgroup *memcg, 178 struct eventfd_ctx *eventfd, const char *args); 179 /* 180 * unregister_event() callback will be called when userspace closes 181 * the eventfd or on cgroup removing. This callback must be set, 182 * if you want provide notification functionality. 183 */ 184 void (*unregister_event)(struct mem_cgroup *memcg, 185 struct eventfd_ctx *eventfd); 186 /* 187 * All fields below needed to unregister event when 188 * userspace closes eventfd. 189 */ 190 poll_table pt; 191 wait_queue_head_t *wqh; 192 wait_queue_t wait; 193 struct work_struct remove; 194 }; 195 196 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 198 199 /* Stuffs for move charges at task migration. */ 200 /* 201 * Types of charges to be moved. 202 */ 203 #define MOVE_ANON 0x1U 204 #define MOVE_FILE 0x2U 205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 206 207 /* "mc" and its members are protected by cgroup_mutex */ 208 static struct move_charge_struct { 209 spinlock_t lock; /* for from, to */ 210 struct mm_struct *mm; 211 struct mem_cgroup *from; 212 struct mem_cgroup *to; 213 unsigned long flags; 214 unsigned long precharge; 215 unsigned long moved_charge; 216 unsigned long moved_swap; 217 struct task_struct *moving_task; /* a task moving charges */ 218 wait_queue_head_t waitq; /* a waitq for other context */ 219 } mc = { 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 222 }; 223 224 /* 225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 226 * limit reclaim to prevent infinite loops, if they ever occur. 227 */ 228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 230 231 enum charge_type { 232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 233 MEM_CGROUP_CHARGE_TYPE_ANON, 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 236 NR_CHARGE_TYPE, 237 }; 238 239 /* for encoding cft->private value on file */ 240 enum res_type { 241 _MEM, 242 _MEMSWAP, 243 _OOM_TYPE, 244 _KMEM, 245 _TCP, 246 }; 247 248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 250 #define MEMFILE_ATTR(val) ((val) & 0xffff) 251 /* Used for OOM nofiier */ 252 #define OOM_CONTROL (0) 253 254 /* Some nice accessors for the vmpressure. */ 255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 256 { 257 if (!memcg) 258 memcg = root_mem_cgroup; 259 return &memcg->vmpressure; 260 } 261 262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 263 { 264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 265 } 266 267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 268 { 269 return (memcg == root_mem_cgroup); 270 } 271 272 #ifndef CONFIG_SLOB 273 /* 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 275 * The main reason for not using cgroup id for this: 276 * this works better in sparse environments, where we have a lot of memcgs, 277 * but only a few kmem-limited. Or also, if we have, for instance, 200 278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 279 * 200 entry array for that. 280 * 281 * The current size of the caches array is stored in memcg_nr_cache_ids. It 282 * will double each time we have to increase it. 283 */ 284 static DEFINE_IDA(memcg_cache_ida); 285 int memcg_nr_cache_ids; 286 287 /* Protects memcg_nr_cache_ids */ 288 static DECLARE_RWSEM(memcg_cache_ids_sem); 289 290 void memcg_get_cache_ids(void) 291 { 292 down_read(&memcg_cache_ids_sem); 293 } 294 295 void memcg_put_cache_ids(void) 296 { 297 up_read(&memcg_cache_ids_sem); 298 } 299 300 /* 301 * MIN_SIZE is different than 1, because we would like to avoid going through 302 * the alloc/free process all the time. In a small machine, 4 kmem-limited 303 * cgroups is a reasonable guess. In the future, it could be a parameter or 304 * tunable, but that is strictly not necessary. 305 * 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 307 * this constant directly from cgroup, but it is understandable that this is 308 * better kept as an internal representation in cgroup.c. In any case, the 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily 310 * increase ours as well if it increases. 311 */ 312 #define MEMCG_CACHES_MIN_SIZE 4 313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 314 315 /* 316 * A lot of the calls to the cache allocation functions are expected to be 317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 318 * conditional to this static branch, we'll have to allow modules that does 319 * kmem_cache_alloc and the such to see this symbol as well 320 */ 321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 322 EXPORT_SYMBOL(memcg_kmem_enabled_key); 323 324 #endif /* !CONFIG_SLOB */ 325 326 static struct mem_cgroup_per_zone * 327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) 328 { 329 int nid = zone_to_nid(zone); 330 int zid = zone_idx(zone); 331 332 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 333 } 334 335 /** 336 * mem_cgroup_css_from_page - css of the memcg associated with a page 337 * @page: page of interest 338 * 339 * If memcg is bound to the default hierarchy, css of the memcg associated 340 * with @page is returned. The returned css remains associated with @page 341 * until it is released. 342 * 343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 344 * is returned. 345 */ 346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 347 { 348 struct mem_cgroup *memcg; 349 350 memcg = page->mem_cgroup; 351 352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 353 memcg = root_mem_cgroup; 354 355 return &memcg->css; 356 } 357 358 /** 359 * page_cgroup_ino - return inode number of the memcg a page is charged to 360 * @page: the page 361 * 362 * Look up the closest online ancestor of the memory cgroup @page is charged to 363 * and return its inode number or 0 if @page is not charged to any cgroup. It 364 * is safe to call this function without holding a reference to @page. 365 * 366 * Note, this function is inherently racy, because there is nothing to prevent 367 * the cgroup inode from getting torn down and potentially reallocated a moment 368 * after page_cgroup_ino() returns, so it only should be used by callers that 369 * do not care (such as procfs interfaces). 370 */ 371 ino_t page_cgroup_ino(struct page *page) 372 { 373 struct mem_cgroup *memcg; 374 unsigned long ino = 0; 375 376 rcu_read_lock(); 377 memcg = READ_ONCE(page->mem_cgroup); 378 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 379 memcg = parent_mem_cgroup(memcg); 380 if (memcg) 381 ino = cgroup_ino(memcg->css.cgroup); 382 rcu_read_unlock(); 383 return ino; 384 } 385 386 static struct mem_cgroup_per_zone * 387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) 388 { 389 int nid = page_to_nid(page); 390 int zid = page_zonenum(page); 391 392 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 393 } 394 395 static struct mem_cgroup_tree_per_zone * 396 soft_limit_tree_node_zone(int nid, int zid) 397 { 398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 399 } 400 401 static struct mem_cgroup_tree_per_zone * 402 soft_limit_tree_from_page(struct page *page) 403 { 404 int nid = page_to_nid(page); 405 int zid = page_zonenum(page); 406 407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 408 } 409 410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, 411 struct mem_cgroup_tree_per_zone *mctz, 412 unsigned long new_usage_in_excess) 413 { 414 struct rb_node **p = &mctz->rb_root.rb_node; 415 struct rb_node *parent = NULL; 416 struct mem_cgroup_per_zone *mz_node; 417 418 if (mz->on_tree) 419 return; 420 421 mz->usage_in_excess = new_usage_in_excess; 422 if (!mz->usage_in_excess) 423 return; 424 while (*p) { 425 parent = *p; 426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 427 tree_node); 428 if (mz->usage_in_excess < mz_node->usage_in_excess) 429 p = &(*p)->rb_left; 430 /* 431 * We can't avoid mem cgroups that are over their soft 432 * limit by the same amount 433 */ 434 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 435 p = &(*p)->rb_right; 436 } 437 rb_link_node(&mz->tree_node, parent, p); 438 rb_insert_color(&mz->tree_node, &mctz->rb_root); 439 mz->on_tree = true; 440 } 441 442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 443 struct mem_cgroup_tree_per_zone *mctz) 444 { 445 if (!mz->on_tree) 446 return; 447 rb_erase(&mz->tree_node, &mctz->rb_root); 448 mz->on_tree = false; 449 } 450 451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 452 struct mem_cgroup_tree_per_zone *mctz) 453 { 454 unsigned long flags; 455 456 spin_lock_irqsave(&mctz->lock, flags); 457 __mem_cgroup_remove_exceeded(mz, mctz); 458 spin_unlock_irqrestore(&mctz->lock, flags); 459 } 460 461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 462 { 463 unsigned long nr_pages = page_counter_read(&memcg->memory); 464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 465 unsigned long excess = 0; 466 467 if (nr_pages > soft_limit) 468 excess = nr_pages - soft_limit; 469 470 return excess; 471 } 472 473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 474 { 475 unsigned long excess; 476 struct mem_cgroup_per_zone *mz; 477 struct mem_cgroup_tree_per_zone *mctz; 478 479 mctz = soft_limit_tree_from_page(page); 480 /* 481 * Necessary to update all ancestors when hierarchy is used. 482 * because their event counter is not touched. 483 */ 484 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 485 mz = mem_cgroup_page_zoneinfo(memcg, page); 486 excess = soft_limit_excess(memcg); 487 /* 488 * We have to update the tree if mz is on RB-tree or 489 * mem is over its softlimit. 490 */ 491 if (excess || mz->on_tree) { 492 unsigned long flags; 493 494 spin_lock_irqsave(&mctz->lock, flags); 495 /* if on-tree, remove it */ 496 if (mz->on_tree) 497 __mem_cgroup_remove_exceeded(mz, mctz); 498 /* 499 * Insert again. mz->usage_in_excess will be updated. 500 * If excess is 0, no tree ops. 501 */ 502 __mem_cgroup_insert_exceeded(mz, mctz, excess); 503 spin_unlock_irqrestore(&mctz->lock, flags); 504 } 505 } 506 } 507 508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 509 { 510 struct mem_cgroup_tree_per_zone *mctz; 511 struct mem_cgroup_per_zone *mz; 512 int nid, zid; 513 514 for_each_node(nid) { 515 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 517 mctz = soft_limit_tree_node_zone(nid, zid); 518 mem_cgroup_remove_exceeded(mz, mctz); 519 } 520 } 521 } 522 523 static struct mem_cgroup_per_zone * 524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 525 { 526 struct rb_node *rightmost = NULL; 527 struct mem_cgroup_per_zone *mz; 528 529 retry: 530 mz = NULL; 531 rightmost = rb_last(&mctz->rb_root); 532 if (!rightmost) 533 goto done; /* Nothing to reclaim from */ 534 535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 536 /* 537 * Remove the node now but someone else can add it back, 538 * we will to add it back at the end of reclaim to its correct 539 * position in the tree. 540 */ 541 __mem_cgroup_remove_exceeded(mz, mctz); 542 if (!soft_limit_excess(mz->memcg) || 543 !css_tryget_online(&mz->memcg->css)) 544 goto retry; 545 done: 546 return mz; 547 } 548 549 static struct mem_cgroup_per_zone * 550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 551 { 552 struct mem_cgroup_per_zone *mz; 553 554 spin_lock_irq(&mctz->lock); 555 mz = __mem_cgroup_largest_soft_limit_node(mctz); 556 spin_unlock_irq(&mctz->lock); 557 return mz; 558 } 559 560 /* 561 * Return page count for single (non recursive) @memcg. 562 * 563 * Implementation Note: reading percpu statistics for memcg. 564 * 565 * Both of vmstat[] and percpu_counter has threshold and do periodic 566 * synchronization to implement "quick" read. There are trade-off between 567 * reading cost and precision of value. Then, we may have a chance to implement 568 * a periodic synchronization of counter in memcg's counter. 569 * 570 * But this _read() function is used for user interface now. The user accounts 571 * memory usage by memory cgroup and he _always_ requires exact value because 572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 573 * have to visit all online cpus and make sum. So, for now, unnecessary 574 * synchronization is not implemented. (just implemented for cpu hotplug) 575 * 576 * If there are kernel internal actions which can make use of some not-exact 577 * value, and reading all cpu value can be performance bottleneck in some 578 * common workload, threshold and synchronization as vmstat[] should be 579 * implemented. 580 */ 581 static unsigned long 582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) 583 { 584 long val = 0; 585 int cpu; 586 587 /* Per-cpu values can be negative, use a signed accumulator */ 588 for_each_possible_cpu(cpu) 589 val += per_cpu(memcg->stat->count[idx], cpu); 590 /* 591 * Summing races with updates, so val may be negative. Avoid exposing 592 * transient negative values. 593 */ 594 if (val < 0) 595 val = 0; 596 return val; 597 } 598 599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 600 enum mem_cgroup_events_index idx) 601 { 602 unsigned long val = 0; 603 int cpu; 604 605 for_each_possible_cpu(cpu) 606 val += per_cpu(memcg->stat->events[idx], cpu); 607 return val; 608 } 609 610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 611 struct page *page, 612 bool compound, int nr_pages) 613 { 614 /* 615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 616 * counted as CACHE even if it's on ANON LRU. 617 */ 618 if (PageAnon(page)) 619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 620 nr_pages); 621 else 622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 623 nr_pages); 624 625 if (compound) { 626 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 628 nr_pages); 629 } 630 631 /* pagein of a big page is an event. So, ignore page size */ 632 if (nr_pages > 0) 633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 634 else { 635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 636 nr_pages = -nr_pages; /* for event */ 637 } 638 639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 640 } 641 642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 643 int nid, unsigned int lru_mask) 644 { 645 unsigned long nr = 0; 646 int zid; 647 648 VM_BUG_ON((unsigned)nid >= nr_node_ids); 649 650 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 651 struct mem_cgroup_per_zone *mz; 652 enum lru_list lru; 653 654 for_each_lru(lru) { 655 if (!(BIT(lru) & lru_mask)) 656 continue; 657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 658 nr += mz->lru_size[lru]; 659 } 660 } 661 return nr; 662 } 663 664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 665 unsigned int lru_mask) 666 { 667 unsigned long nr = 0; 668 int nid; 669 670 for_each_node_state(nid, N_MEMORY) 671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 672 return nr; 673 } 674 675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 676 enum mem_cgroup_events_target target) 677 { 678 unsigned long val, next; 679 680 val = __this_cpu_read(memcg->stat->nr_page_events); 681 next = __this_cpu_read(memcg->stat->targets[target]); 682 /* from time_after() in jiffies.h */ 683 if ((long)next - (long)val < 0) { 684 switch (target) { 685 case MEM_CGROUP_TARGET_THRESH: 686 next = val + THRESHOLDS_EVENTS_TARGET; 687 break; 688 case MEM_CGROUP_TARGET_SOFTLIMIT: 689 next = val + SOFTLIMIT_EVENTS_TARGET; 690 break; 691 case MEM_CGROUP_TARGET_NUMAINFO: 692 next = val + NUMAINFO_EVENTS_TARGET; 693 break; 694 default: 695 break; 696 } 697 __this_cpu_write(memcg->stat->targets[target], next); 698 return true; 699 } 700 return false; 701 } 702 703 /* 704 * Check events in order. 705 * 706 */ 707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 708 { 709 /* threshold event is triggered in finer grain than soft limit */ 710 if (unlikely(mem_cgroup_event_ratelimit(memcg, 711 MEM_CGROUP_TARGET_THRESH))) { 712 bool do_softlimit; 713 bool do_numainfo __maybe_unused; 714 715 do_softlimit = mem_cgroup_event_ratelimit(memcg, 716 MEM_CGROUP_TARGET_SOFTLIMIT); 717 #if MAX_NUMNODES > 1 718 do_numainfo = mem_cgroup_event_ratelimit(memcg, 719 MEM_CGROUP_TARGET_NUMAINFO); 720 #endif 721 mem_cgroup_threshold(memcg); 722 if (unlikely(do_softlimit)) 723 mem_cgroup_update_tree(memcg, page); 724 #if MAX_NUMNODES > 1 725 if (unlikely(do_numainfo)) 726 atomic_inc(&memcg->numainfo_events); 727 #endif 728 } 729 } 730 731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 732 { 733 /* 734 * mm_update_next_owner() may clear mm->owner to NULL 735 * if it races with swapoff, page migration, etc. 736 * So this can be called with p == NULL. 737 */ 738 if (unlikely(!p)) 739 return NULL; 740 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 742 } 743 EXPORT_SYMBOL(mem_cgroup_from_task); 744 745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 746 { 747 struct mem_cgroup *memcg = NULL; 748 749 rcu_read_lock(); 750 do { 751 /* 752 * Page cache insertions can happen withou an 753 * actual mm context, e.g. during disk probing 754 * on boot, loopback IO, acct() writes etc. 755 */ 756 if (unlikely(!mm)) 757 memcg = root_mem_cgroup; 758 else { 759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 760 if (unlikely(!memcg)) 761 memcg = root_mem_cgroup; 762 } 763 } while (!css_tryget_online(&memcg->css)); 764 rcu_read_unlock(); 765 return memcg; 766 } 767 768 /** 769 * mem_cgroup_iter - iterate over memory cgroup hierarchy 770 * @root: hierarchy root 771 * @prev: previously returned memcg, NULL on first invocation 772 * @reclaim: cookie for shared reclaim walks, NULL for full walks 773 * 774 * Returns references to children of the hierarchy below @root, or 775 * @root itself, or %NULL after a full round-trip. 776 * 777 * Caller must pass the return value in @prev on subsequent 778 * invocations for reference counting, or use mem_cgroup_iter_break() 779 * to cancel a hierarchy walk before the round-trip is complete. 780 * 781 * Reclaimers can specify a zone and a priority level in @reclaim to 782 * divide up the memcgs in the hierarchy among all concurrent 783 * reclaimers operating on the same zone and priority. 784 */ 785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 786 struct mem_cgroup *prev, 787 struct mem_cgroup_reclaim_cookie *reclaim) 788 { 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 790 struct cgroup_subsys_state *css = NULL; 791 struct mem_cgroup *memcg = NULL; 792 struct mem_cgroup *pos = NULL; 793 794 if (mem_cgroup_disabled()) 795 return NULL; 796 797 if (!root) 798 root = root_mem_cgroup; 799 800 if (prev && !reclaim) 801 pos = prev; 802 803 if (!root->use_hierarchy && root != root_mem_cgroup) { 804 if (prev) 805 goto out; 806 return root; 807 } 808 809 rcu_read_lock(); 810 811 if (reclaim) { 812 struct mem_cgroup_per_zone *mz; 813 814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); 815 iter = &mz->iter[reclaim->priority]; 816 817 if (prev && reclaim->generation != iter->generation) 818 goto out_unlock; 819 820 while (1) { 821 pos = READ_ONCE(iter->position); 822 if (!pos || css_tryget(&pos->css)) 823 break; 824 /* 825 * css reference reached zero, so iter->position will 826 * be cleared by ->css_released. However, we should not 827 * rely on this happening soon, because ->css_released 828 * is called from a work queue, and by busy-waiting we 829 * might block it. So we clear iter->position right 830 * away. 831 */ 832 (void)cmpxchg(&iter->position, pos, NULL); 833 } 834 } 835 836 if (pos) 837 css = &pos->css; 838 839 for (;;) { 840 css = css_next_descendant_pre(css, &root->css); 841 if (!css) { 842 /* 843 * Reclaimers share the hierarchy walk, and a 844 * new one might jump in right at the end of 845 * the hierarchy - make sure they see at least 846 * one group and restart from the beginning. 847 */ 848 if (!prev) 849 continue; 850 break; 851 } 852 853 /* 854 * Verify the css and acquire a reference. The root 855 * is provided by the caller, so we know it's alive 856 * and kicking, and don't take an extra reference. 857 */ 858 memcg = mem_cgroup_from_css(css); 859 860 if (css == &root->css) 861 break; 862 863 if (css_tryget(css)) 864 break; 865 866 memcg = NULL; 867 } 868 869 if (reclaim) { 870 /* 871 * The position could have already been updated by a competing 872 * thread, so check that the value hasn't changed since we read 873 * it to avoid reclaiming from the same cgroup twice. 874 */ 875 (void)cmpxchg(&iter->position, pos, memcg); 876 877 if (pos) 878 css_put(&pos->css); 879 880 if (!memcg) 881 iter->generation++; 882 else if (!prev) 883 reclaim->generation = iter->generation; 884 } 885 886 out_unlock: 887 rcu_read_unlock(); 888 out: 889 if (prev && prev != root) 890 css_put(&prev->css); 891 892 return memcg; 893 } 894 895 /** 896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 897 * @root: hierarchy root 898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 899 */ 900 void mem_cgroup_iter_break(struct mem_cgroup *root, 901 struct mem_cgroup *prev) 902 { 903 if (!root) 904 root = root_mem_cgroup; 905 if (prev && prev != root) 906 css_put(&prev->css); 907 } 908 909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 910 { 911 struct mem_cgroup *memcg = dead_memcg; 912 struct mem_cgroup_reclaim_iter *iter; 913 struct mem_cgroup_per_zone *mz; 914 int nid, zid; 915 int i; 916 917 while ((memcg = parent_mem_cgroup(memcg))) { 918 for_each_node(nid) { 919 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 921 for (i = 0; i <= DEF_PRIORITY; i++) { 922 iter = &mz->iter[i]; 923 cmpxchg(&iter->position, 924 dead_memcg, NULL); 925 } 926 } 927 } 928 } 929 } 930 931 /* 932 * Iteration constructs for visiting all cgroups (under a tree). If 933 * loops are exited prematurely (break), mem_cgroup_iter_break() must 934 * be used for reference counting. 935 */ 936 #define for_each_mem_cgroup_tree(iter, root) \ 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 938 iter != NULL; \ 939 iter = mem_cgroup_iter(root, iter, NULL)) 940 941 #define for_each_mem_cgroup(iter) \ 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 943 iter != NULL; \ 944 iter = mem_cgroup_iter(NULL, iter, NULL)) 945 946 /** 947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 948 * @zone: zone of the wanted lruvec 949 * @memcg: memcg of the wanted lruvec 950 * 951 * Returns the lru list vector holding pages for the given @zone and 952 * @mem. This can be the global zone lruvec, if the memory controller 953 * is disabled. 954 */ 955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 956 struct mem_cgroup *memcg) 957 { 958 struct mem_cgroup_per_zone *mz; 959 struct lruvec *lruvec; 960 961 if (mem_cgroup_disabled()) { 962 lruvec = &zone->lruvec; 963 goto out; 964 } 965 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone); 967 lruvec = &mz->lruvec; 968 out: 969 /* 970 * Since a node can be onlined after the mem_cgroup was created, 971 * we have to be prepared to initialize lruvec->zone here; 972 * and if offlined then reonlined, we need to reinitialize it. 973 */ 974 if (unlikely(lruvec->zone != zone)) 975 lruvec->zone = zone; 976 return lruvec; 977 } 978 979 /** 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 981 * @page: the page 982 * @zone: zone of the page 983 * 984 * This function is only safe when following the LRU page isolation 985 * and putback protocol: the LRU lock must be held, and the page must 986 * either be PageLRU() or the caller must have isolated/allocated it. 987 */ 988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 989 { 990 struct mem_cgroup_per_zone *mz; 991 struct mem_cgroup *memcg; 992 struct lruvec *lruvec; 993 994 if (mem_cgroup_disabled()) { 995 lruvec = &zone->lruvec; 996 goto out; 997 } 998 999 memcg = page->mem_cgroup; 1000 /* 1001 * Swapcache readahead pages are added to the LRU - and 1002 * possibly migrated - before they are charged. 1003 */ 1004 if (!memcg) 1005 memcg = root_mem_cgroup; 1006 1007 mz = mem_cgroup_page_zoneinfo(memcg, page); 1008 lruvec = &mz->lruvec; 1009 out: 1010 /* 1011 * Since a node can be onlined after the mem_cgroup was created, 1012 * we have to be prepared to initialize lruvec->zone here; 1013 * and if offlined then reonlined, we need to reinitialize it. 1014 */ 1015 if (unlikely(lruvec->zone != zone)) 1016 lruvec->zone = zone; 1017 return lruvec; 1018 } 1019 1020 /** 1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1022 * @lruvec: mem_cgroup per zone lru vector 1023 * @lru: index of lru list the page is sitting on 1024 * @nr_pages: positive when adding or negative when removing 1025 * 1026 * This function must be called under lru_lock, just before a page is added 1027 * to or just after a page is removed from an lru list (that ordering being 1028 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1029 */ 1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1031 int nr_pages) 1032 { 1033 struct mem_cgroup_per_zone *mz; 1034 unsigned long *lru_size; 1035 long size; 1036 bool empty; 1037 1038 __update_lru_size(lruvec, lru, nr_pages); 1039 1040 if (mem_cgroup_disabled()) 1041 return; 1042 1043 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1044 lru_size = mz->lru_size + lru; 1045 empty = list_empty(lruvec->lists + lru); 1046 1047 if (nr_pages < 0) 1048 *lru_size += nr_pages; 1049 1050 size = *lru_size; 1051 if (WARN_ONCE(size < 0 || empty != !size, 1052 "%s(%p, %d, %d): lru_size %ld but %sempty\n", 1053 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) { 1054 VM_BUG_ON(1); 1055 *lru_size = 0; 1056 } 1057 1058 if (nr_pages > 0) 1059 *lru_size += nr_pages; 1060 } 1061 1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1063 { 1064 struct mem_cgroup *task_memcg; 1065 struct task_struct *p; 1066 bool ret; 1067 1068 p = find_lock_task_mm(task); 1069 if (p) { 1070 task_memcg = get_mem_cgroup_from_mm(p->mm); 1071 task_unlock(p); 1072 } else { 1073 /* 1074 * All threads may have already detached their mm's, but the oom 1075 * killer still needs to detect if they have already been oom 1076 * killed to prevent needlessly killing additional tasks. 1077 */ 1078 rcu_read_lock(); 1079 task_memcg = mem_cgroup_from_task(task); 1080 css_get(&task_memcg->css); 1081 rcu_read_unlock(); 1082 } 1083 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1084 css_put(&task_memcg->css); 1085 return ret; 1086 } 1087 1088 /** 1089 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1090 * @memcg: the memory cgroup 1091 * 1092 * Returns the maximum amount of memory @mem can be charged with, in 1093 * pages. 1094 */ 1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1096 { 1097 unsigned long margin = 0; 1098 unsigned long count; 1099 unsigned long limit; 1100 1101 count = page_counter_read(&memcg->memory); 1102 limit = READ_ONCE(memcg->memory.limit); 1103 if (count < limit) 1104 margin = limit - count; 1105 1106 if (do_memsw_account()) { 1107 count = page_counter_read(&memcg->memsw); 1108 limit = READ_ONCE(memcg->memsw.limit); 1109 if (count <= limit) 1110 margin = min(margin, limit - count); 1111 } 1112 1113 return margin; 1114 } 1115 1116 /* 1117 * A routine for checking "mem" is under move_account() or not. 1118 * 1119 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1120 * moving cgroups. This is for waiting at high-memory pressure 1121 * caused by "move". 1122 */ 1123 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1124 { 1125 struct mem_cgroup *from; 1126 struct mem_cgroup *to; 1127 bool ret = false; 1128 /* 1129 * Unlike task_move routines, we access mc.to, mc.from not under 1130 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1131 */ 1132 spin_lock(&mc.lock); 1133 from = mc.from; 1134 to = mc.to; 1135 if (!from) 1136 goto unlock; 1137 1138 ret = mem_cgroup_is_descendant(from, memcg) || 1139 mem_cgroup_is_descendant(to, memcg); 1140 unlock: 1141 spin_unlock(&mc.lock); 1142 return ret; 1143 } 1144 1145 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1146 { 1147 if (mc.moving_task && current != mc.moving_task) { 1148 if (mem_cgroup_under_move(memcg)) { 1149 DEFINE_WAIT(wait); 1150 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1151 /* moving charge context might have finished. */ 1152 if (mc.moving_task) 1153 schedule(); 1154 finish_wait(&mc.waitq, &wait); 1155 return true; 1156 } 1157 } 1158 return false; 1159 } 1160 1161 #define K(x) ((x) << (PAGE_SHIFT-10)) 1162 /** 1163 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1164 * @memcg: The memory cgroup that went over limit 1165 * @p: Task that is going to be killed 1166 * 1167 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1168 * enabled 1169 */ 1170 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1171 { 1172 struct mem_cgroup *iter; 1173 unsigned int i; 1174 1175 rcu_read_lock(); 1176 1177 if (p) { 1178 pr_info("Task in "); 1179 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1180 pr_cont(" killed as a result of limit of "); 1181 } else { 1182 pr_info("Memory limit reached of cgroup "); 1183 } 1184 1185 pr_cont_cgroup_path(memcg->css.cgroup); 1186 pr_cont("\n"); 1187 1188 rcu_read_unlock(); 1189 1190 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1191 K((u64)page_counter_read(&memcg->memory)), 1192 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1193 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1194 K((u64)page_counter_read(&memcg->memsw)), 1195 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1196 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1197 K((u64)page_counter_read(&memcg->kmem)), 1198 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1199 1200 for_each_mem_cgroup_tree(iter, memcg) { 1201 pr_info("Memory cgroup stats for "); 1202 pr_cont_cgroup_path(iter->css.cgroup); 1203 pr_cont(":"); 1204 1205 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1206 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1207 continue; 1208 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], 1209 K(mem_cgroup_read_stat(iter, i))); 1210 } 1211 1212 for (i = 0; i < NR_LRU_LISTS; i++) 1213 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1214 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1215 1216 pr_cont("\n"); 1217 } 1218 } 1219 1220 /* 1221 * This function returns the number of memcg under hierarchy tree. Returns 1222 * 1(self count) if no children. 1223 */ 1224 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1225 { 1226 int num = 0; 1227 struct mem_cgroup *iter; 1228 1229 for_each_mem_cgroup_tree(iter, memcg) 1230 num++; 1231 return num; 1232 } 1233 1234 /* 1235 * Return the memory (and swap, if configured) limit for a memcg. 1236 */ 1237 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1238 { 1239 unsigned long limit; 1240 1241 limit = memcg->memory.limit; 1242 if (mem_cgroup_swappiness(memcg)) { 1243 unsigned long memsw_limit; 1244 unsigned long swap_limit; 1245 1246 memsw_limit = memcg->memsw.limit; 1247 swap_limit = memcg->swap.limit; 1248 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1249 limit = min(limit + swap_limit, memsw_limit); 1250 } 1251 return limit; 1252 } 1253 1254 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1255 int order) 1256 { 1257 struct oom_control oc = { 1258 .zonelist = NULL, 1259 .nodemask = NULL, 1260 .gfp_mask = gfp_mask, 1261 .order = order, 1262 }; 1263 struct mem_cgroup *iter; 1264 unsigned long chosen_points = 0; 1265 unsigned long totalpages; 1266 unsigned int points = 0; 1267 struct task_struct *chosen = NULL; 1268 1269 mutex_lock(&oom_lock); 1270 1271 /* 1272 * If current has a pending SIGKILL or is exiting, then automatically 1273 * select it. The goal is to allow it to allocate so that it may 1274 * quickly exit and free its memory. 1275 */ 1276 if (fatal_signal_pending(current) || task_will_free_mem(current)) { 1277 mark_oom_victim(current); 1278 try_oom_reaper(current); 1279 goto unlock; 1280 } 1281 1282 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg); 1283 totalpages = mem_cgroup_get_limit(memcg) ? : 1; 1284 for_each_mem_cgroup_tree(iter, memcg) { 1285 struct css_task_iter it; 1286 struct task_struct *task; 1287 1288 css_task_iter_start(&iter->css, &it); 1289 while ((task = css_task_iter_next(&it))) { 1290 switch (oom_scan_process_thread(&oc, task, totalpages)) { 1291 case OOM_SCAN_SELECT: 1292 if (chosen) 1293 put_task_struct(chosen); 1294 chosen = task; 1295 chosen_points = ULONG_MAX; 1296 get_task_struct(chosen); 1297 /* fall through */ 1298 case OOM_SCAN_CONTINUE: 1299 continue; 1300 case OOM_SCAN_ABORT: 1301 css_task_iter_end(&it); 1302 mem_cgroup_iter_break(memcg, iter); 1303 if (chosen) 1304 put_task_struct(chosen); 1305 goto unlock; 1306 case OOM_SCAN_OK: 1307 break; 1308 }; 1309 points = oom_badness(task, memcg, NULL, totalpages); 1310 if (!points || points < chosen_points) 1311 continue; 1312 /* Prefer thread group leaders for display purposes */ 1313 if (points == chosen_points && 1314 thread_group_leader(chosen)) 1315 continue; 1316 1317 if (chosen) 1318 put_task_struct(chosen); 1319 chosen = task; 1320 chosen_points = points; 1321 get_task_struct(chosen); 1322 } 1323 css_task_iter_end(&it); 1324 } 1325 1326 if (chosen) { 1327 points = chosen_points * 1000 / totalpages; 1328 oom_kill_process(&oc, chosen, points, totalpages, memcg, 1329 "Memory cgroup out of memory"); 1330 } 1331 unlock: 1332 mutex_unlock(&oom_lock); 1333 return chosen; 1334 } 1335 1336 #if MAX_NUMNODES > 1 1337 1338 /** 1339 * test_mem_cgroup_node_reclaimable 1340 * @memcg: the target memcg 1341 * @nid: the node ID to be checked. 1342 * @noswap : specify true here if the user wants flle only information. 1343 * 1344 * This function returns whether the specified memcg contains any 1345 * reclaimable pages on a node. Returns true if there are any reclaimable 1346 * pages in the node. 1347 */ 1348 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1349 int nid, bool noswap) 1350 { 1351 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1352 return true; 1353 if (noswap || !total_swap_pages) 1354 return false; 1355 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1356 return true; 1357 return false; 1358 1359 } 1360 1361 /* 1362 * Always updating the nodemask is not very good - even if we have an empty 1363 * list or the wrong list here, we can start from some node and traverse all 1364 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1365 * 1366 */ 1367 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1368 { 1369 int nid; 1370 /* 1371 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1372 * pagein/pageout changes since the last update. 1373 */ 1374 if (!atomic_read(&memcg->numainfo_events)) 1375 return; 1376 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1377 return; 1378 1379 /* make a nodemask where this memcg uses memory from */ 1380 memcg->scan_nodes = node_states[N_MEMORY]; 1381 1382 for_each_node_mask(nid, node_states[N_MEMORY]) { 1383 1384 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1385 node_clear(nid, memcg->scan_nodes); 1386 } 1387 1388 atomic_set(&memcg->numainfo_events, 0); 1389 atomic_set(&memcg->numainfo_updating, 0); 1390 } 1391 1392 /* 1393 * Selecting a node where we start reclaim from. Because what we need is just 1394 * reducing usage counter, start from anywhere is O,K. Considering 1395 * memory reclaim from current node, there are pros. and cons. 1396 * 1397 * Freeing memory from current node means freeing memory from a node which 1398 * we'll use or we've used. So, it may make LRU bad. And if several threads 1399 * hit limits, it will see a contention on a node. But freeing from remote 1400 * node means more costs for memory reclaim because of memory latency. 1401 * 1402 * Now, we use round-robin. Better algorithm is welcomed. 1403 */ 1404 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1405 { 1406 int node; 1407 1408 mem_cgroup_may_update_nodemask(memcg); 1409 node = memcg->last_scanned_node; 1410 1411 node = next_node_in(node, memcg->scan_nodes); 1412 /* 1413 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1414 * last time it really checked all the LRUs due to rate limiting. 1415 * Fallback to the current node in that case for simplicity. 1416 */ 1417 if (unlikely(node == MAX_NUMNODES)) 1418 node = numa_node_id(); 1419 1420 memcg->last_scanned_node = node; 1421 return node; 1422 } 1423 #else 1424 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1425 { 1426 return 0; 1427 } 1428 #endif 1429 1430 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1431 struct zone *zone, 1432 gfp_t gfp_mask, 1433 unsigned long *total_scanned) 1434 { 1435 struct mem_cgroup *victim = NULL; 1436 int total = 0; 1437 int loop = 0; 1438 unsigned long excess; 1439 unsigned long nr_scanned; 1440 struct mem_cgroup_reclaim_cookie reclaim = { 1441 .zone = zone, 1442 .priority = 0, 1443 }; 1444 1445 excess = soft_limit_excess(root_memcg); 1446 1447 while (1) { 1448 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1449 if (!victim) { 1450 loop++; 1451 if (loop >= 2) { 1452 /* 1453 * If we have not been able to reclaim 1454 * anything, it might because there are 1455 * no reclaimable pages under this hierarchy 1456 */ 1457 if (!total) 1458 break; 1459 /* 1460 * We want to do more targeted reclaim. 1461 * excess >> 2 is not to excessive so as to 1462 * reclaim too much, nor too less that we keep 1463 * coming back to reclaim from this cgroup 1464 */ 1465 if (total >= (excess >> 2) || 1466 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1467 break; 1468 } 1469 continue; 1470 } 1471 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1472 zone, &nr_scanned); 1473 *total_scanned += nr_scanned; 1474 if (!soft_limit_excess(root_memcg)) 1475 break; 1476 } 1477 mem_cgroup_iter_break(root_memcg, victim); 1478 return total; 1479 } 1480 1481 #ifdef CONFIG_LOCKDEP 1482 static struct lockdep_map memcg_oom_lock_dep_map = { 1483 .name = "memcg_oom_lock", 1484 }; 1485 #endif 1486 1487 static DEFINE_SPINLOCK(memcg_oom_lock); 1488 1489 /* 1490 * Check OOM-Killer is already running under our hierarchy. 1491 * If someone is running, return false. 1492 */ 1493 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1494 { 1495 struct mem_cgroup *iter, *failed = NULL; 1496 1497 spin_lock(&memcg_oom_lock); 1498 1499 for_each_mem_cgroup_tree(iter, memcg) { 1500 if (iter->oom_lock) { 1501 /* 1502 * this subtree of our hierarchy is already locked 1503 * so we cannot give a lock. 1504 */ 1505 failed = iter; 1506 mem_cgroup_iter_break(memcg, iter); 1507 break; 1508 } else 1509 iter->oom_lock = true; 1510 } 1511 1512 if (failed) { 1513 /* 1514 * OK, we failed to lock the whole subtree so we have 1515 * to clean up what we set up to the failing subtree 1516 */ 1517 for_each_mem_cgroup_tree(iter, memcg) { 1518 if (iter == failed) { 1519 mem_cgroup_iter_break(memcg, iter); 1520 break; 1521 } 1522 iter->oom_lock = false; 1523 } 1524 } else 1525 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1526 1527 spin_unlock(&memcg_oom_lock); 1528 1529 return !failed; 1530 } 1531 1532 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1533 { 1534 struct mem_cgroup *iter; 1535 1536 spin_lock(&memcg_oom_lock); 1537 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1538 for_each_mem_cgroup_tree(iter, memcg) 1539 iter->oom_lock = false; 1540 spin_unlock(&memcg_oom_lock); 1541 } 1542 1543 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1544 { 1545 struct mem_cgroup *iter; 1546 1547 spin_lock(&memcg_oom_lock); 1548 for_each_mem_cgroup_tree(iter, memcg) 1549 iter->under_oom++; 1550 spin_unlock(&memcg_oom_lock); 1551 } 1552 1553 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1554 { 1555 struct mem_cgroup *iter; 1556 1557 /* 1558 * When a new child is created while the hierarchy is under oom, 1559 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1560 */ 1561 spin_lock(&memcg_oom_lock); 1562 for_each_mem_cgroup_tree(iter, memcg) 1563 if (iter->under_oom > 0) 1564 iter->under_oom--; 1565 spin_unlock(&memcg_oom_lock); 1566 } 1567 1568 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1569 1570 struct oom_wait_info { 1571 struct mem_cgroup *memcg; 1572 wait_queue_t wait; 1573 }; 1574 1575 static int memcg_oom_wake_function(wait_queue_t *wait, 1576 unsigned mode, int sync, void *arg) 1577 { 1578 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1579 struct mem_cgroup *oom_wait_memcg; 1580 struct oom_wait_info *oom_wait_info; 1581 1582 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1583 oom_wait_memcg = oom_wait_info->memcg; 1584 1585 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1586 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1587 return 0; 1588 return autoremove_wake_function(wait, mode, sync, arg); 1589 } 1590 1591 static void memcg_oom_recover(struct mem_cgroup *memcg) 1592 { 1593 /* 1594 * For the following lockless ->under_oom test, the only required 1595 * guarantee is that it must see the state asserted by an OOM when 1596 * this function is called as a result of userland actions 1597 * triggered by the notification of the OOM. This is trivially 1598 * achieved by invoking mem_cgroup_mark_under_oom() before 1599 * triggering notification. 1600 */ 1601 if (memcg && memcg->under_oom) 1602 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1603 } 1604 1605 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1606 { 1607 if (!current->memcg_may_oom) 1608 return; 1609 /* 1610 * We are in the middle of the charge context here, so we 1611 * don't want to block when potentially sitting on a callstack 1612 * that holds all kinds of filesystem and mm locks. 1613 * 1614 * Also, the caller may handle a failed allocation gracefully 1615 * (like optional page cache readahead) and so an OOM killer 1616 * invocation might not even be necessary. 1617 * 1618 * That's why we don't do anything here except remember the 1619 * OOM context and then deal with it at the end of the page 1620 * fault when the stack is unwound, the locks are released, 1621 * and when we know whether the fault was overall successful. 1622 */ 1623 css_get(&memcg->css); 1624 current->memcg_in_oom = memcg; 1625 current->memcg_oom_gfp_mask = mask; 1626 current->memcg_oom_order = order; 1627 } 1628 1629 /** 1630 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1631 * @handle: actually kill/wait or just clean up the OOM state 1632 * 1633 * This has to be called at the end of a page fault if the memcg OOM 1634 * handler was enabled. 1635 * 1636 * Memcg supports userspace OOM handling where failed allocations must 1637 * sleep on a waitqueue until the userspace task resolves the 1638 * situation. Sleeping directly in the charge context with all kinds 1639 * of locks held is not a good idea, instead we remember an OOM state 1640 * in the task and mem_cgroup_oom_synchronize() has to be called at 1641 * the end of the page fault to complete the OOM handling. 1642 * 1643 * Returns %true if an ongoing memcg OOM situation was detected and 1644 * completed, %false otherwise. 1645 */ 1646 bool mem_cgroup_oom_synchronize(bool handle) 1647 { 1648 struct mem_cgroup *memcg = current->memcg_in_oom; 1649 struct oom_wait_info owait; 1650 bool locked; 1651 1652 /* OOM is global, do not handle */ 1653 if (!memcg) 1654 return false; 1655 1656 if (!handle || oom_killer_disabled) 1657 goto cleanup; 1658 1659 owait.memcg = memcg; 1660 owait.wait.flags = 0; 1661 owait.wait.func = memcg_oom_wake_function; 1662 owait.wait.private = current; 1663 INIT_LIST_HEAD(&owait.wait.task_list); 1664 1665 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1666 mem_cgroup_mark_under_oom(memcg); 1667 1668 locked = mem_cgroup_oom_trylock(memcg); 1669 1670 if (locked) 1671 mem_cgroup_oom_notify(memcg); 1672 1673 if (locked && !memcg->oom_kill_disable) { 1674 mem_cgroup_unmark_under_oom(memcg); 1675 finish_wait(&memcg_oom_waitq, &owait.wait); 1676 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1677 current->memcg_oom_order); 1678 } else { 1679 schedule(); 1680 mem_cgroup_unmark_under_oom(memcg); 1681 finish_wait(&memcg_oom_waitq, &owait.wait); 1682 } 1683 1684 if (locked) { 1685 mem_cgroup_oom_unlock(memcg); 1686 /* 1687 * There is no guarantee that an OOM-lock contender 1688 * sees the wakeups triggered by the OOM kill 1689 * uncharges. Wake any sleepers explicitely. 1690 */ 1691 memcg_oom_recover(memcg); 1692 } 1693 cleanup: 1694 current->memcg_in_oom = NULL; 1695 css_put(&memcg->css); 1696 return true; 1697 } 1698 1699 /** 1700 * lock_page_memcg - lock a page->mem_cgroup binding 1701 * @page: the page 1702 * 1703 * This function protects unlocked LRU pages from being moved to 1704 * another cgroup and stabilizes their page->mem_cgroup binding. 1705 */ 1706 void lock_page_memcg(struct page *page) 1707 { 1708 struct mem_cgroup *memcg; 1709 unsigned long flags; 1710 1711 /* 1712 * The RCU lock is held throughout the transaction. The fast 1713 * path can get away without acquiring the memcg->move_lock 1714 * because page moving starts with an RCU grace period. 1715 */ 1716 rcu_read_lock(); 1717 1718 if (mem_cgroup_disabled()) 1719 return; 1720 again: 1721 memcg = page->mem_cgroup; 1722 if (unlikely(!memcg)) 1723 return; 1724 1725 if (atomic_read(&memcg->moving_account) <= 0) 1726 return; 1727 1728 spin_lock_irqsave(&memcg->move_lock, flags); 1729 if (memcg != page->mem_cgroup) { 1730 spin_unlock_irqrestore(&memcg->move_lock, flags); 1731 goto again; 1732 } 1733 1734 /* 1735 * When charge migration first begins, we can have locked and 1736 * unlocked page stat updates happening concurrently. Track 1737 * the task who has the lock for unlock_page_memcg(). 1738 */ 1739 memcg->move_lock_task = current; 1740 memcg->move_lock_flags = flags; 1741 1742 return; 1743 } 1744 EXPORT_SYMBOL(lock_page_memcg); 1745 1746 /** 1747 * unlock_page_memcg - unlock a page->mem_cgroup binding 1748 * @page: the page 1749 */ 1750 void unlock_page_memcg(struct page *page) 1751 { 1752 struct mem_cgroup *memcg = page->mem_cgroup; 1753 1754 if (memcg && memcg->move_lock_task == current) { 1755 unsigned long flags = memcg->move_lock_flags; 1756 1757 memcg->move_lock_task = NULL; 1758 memcg->move_lock_flags = 0; 1759 1760 spin_unlock_irqrestore(&memcg->move_lock, flags); 1761 } 1762 1763 rcu_read_unlock(); 1764 } 1765 EXPORT_SYMBOL(unlock_page_memcg); 1766 1767 /* 1768 * size of first charge trial. "32" comes from vmscan.c's magic value. 1769 * TODO: maybe necessary to use big numbers in big irons. 1770 */ 1771 #define CHARGE_BATCH 32U 1772 struct memcg_stock_pcp { 1773 struct mem_cgroup *cached; /* this never be root cgroup */ 1774 unsigned int nr_pages; 1775 struct work_struct work; 1776 unsigned long flags; 1777 #define FLUSHING_CACHED_CHARGE 0 1778 }; 1779 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1780 static DEFINE_MUTEX(percpu_charge_mutex); 1781 1782 /** 1783 * consume_stock: Try to consume stocked charge on this cpu. 1784 * @memcg: memcg to consume from. 1785 * @nr_pages: how many pages to charge. 1786 * 1787 * The charges will only happen if @memcg matches the current cpu's memcg 1788 * stock, and at least @nr_pages are available in that stock. Failure to 1789 * service an allocation will refill the stock. 1790 * 1791 * returns true if successful, false otherwise. 1792 */ 1793 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1794 { 1795 struct memcg_stock_pcp *stock; 1796 bool ret = false; 1797 1798 if (nr_pages > CHARGE_BATCH) 1799 return ret; 1800 1801 stock = &get_cpu_var(memcg_stock); 1802 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1803 stock->nr_pages -= nr_pages; 1804 ret = true; 1805 } 1806 put_cpu_var(memcg_stock); 1807 return ret; 1808 } 1809 1810 /* 1811 * Returns stocks cached in percpu and reset cached information. 1812 */ 1813 static void drain_stock(struct memcg_stock_pcp *stock) 1814 { 1815 struct mem_cgroup *old = stock->cached; 1816 1817 if (stock->nr_pages) { 1818 page_counter_uncharge(&old->memory, stock->nr_pages); 1819 if (do_memsw_account()) 1820 page_counter_uncharge(&old->memsw, stock->nr_pages); 1821 css_put_many(&old->css, stock->nr_pages); 1822 stock->nr_pages = 0; 1823 } 1824 stock->cached = NULL; 1825 } 1826 1827 /* 1828 * This must be called under preempt disabled or must be called by 1829 * a thread which is pinned to local cpu. 1830 */ 1831 static void drain_local_stock(struct work_struct *dummy) 1832 { 1833 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 1834 drain_stock(stock); 1835 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1836 } 1837 1838 /* 1839 * Cache charges(val) to local per_cpu area. 1840 * This will be consumed by consume_stock() function, later. 1841 */ 1842 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1843 { 1844 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1845 1846 if (stock->cached != memcg) { /* reset if necessary */ 1847 drain_stock(stock); 1848 stock->cached = memcg; 1849 } 1850 stock->nr_pages += nr_pages; 1851 put_cpu_var(memcg_stock); 1852 } 1853 1854 /* 1855 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1856 * of the hierarchy under it. 1857 */ 1858 static void drain_all_stock(struct mem_cgroup *root_memcg) 1859 { 1860 int cpu, curcpu; 1861 1862 /* If someone's already draining, avoid adding running more workers. */ 1863 if (!mutex_trylock(&percpu_charge_mutex)) 1864 return; 1865 /* Notify other cpus that system-wide "drain" is running */ 1866 get_online_cpus(); 1867 curcpu = get_cpu(); 1868 for_each_online_cpu(cpu) { 1869 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1870 struct mem_cgroup *memcg; 1871 1872 memcg = stock->cached; 1873 if (!memcg || !stock->nr_pages) 1874 continue; 1875 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1876 continue; 1877 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1878 if (cpu == curcpu) 1879 drain_local_stock(&stock->work); 1880 else 1881 schedule_work_on(cpu, &stock->work); 1882 } 1883 } 1884 put_cpu(); 1885 put_online_cpus(); 1886 mutex_unlock(&percpu_charge_mutex); 1887 } 1888 1889 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 1890 unsigned long action, 1891 void *hcpu) 1892 { 1893 int cpu = (unsigned long)hcpu; 1894 struct memcg_stock_pcp *stock; 1895 1896 if (action == CPU_ONLINE) 1897 return NOTIFY_OK; 1898 1899 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 1900 return NOTIFY_OK; 1901 1902 stock = &per_cpu(memcg_stock, cpu); 1903 drain_stock(stock); 1904 return NOTIFY_OK; 1905 } 1906 1907 static void reclaim_high(struct mem_cgroup *memcg, 1908 unsigned int nr_pages, 1909 gfp_t gfp_mask) 1910 { 1911 do { 1912 if (page_counter_read(&memcg->memory) <= memcg->high) 1913 continue; 1914 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 1915 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1916 } while ((memcg = parent_mem_cgroup(memcg))); 1917 } 1918 1919 static void high_work_func(struct work_struct *work) 1920 { 1921 struct mem_cgroup *memcg; 1922 1923 memcg = container_of(work, struct mem_cgroup, high_work); 1924 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1925 } 1926 1927 /* 1928 * Scheduled by try_charge() to be executed from the userland return path 1929 * and reclaims memory over the high limit. 1930 */ 1931 void mem_cgroup_handle_over_high(void) 1932 { 1933 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1934 struct mem_cgroup *memcg; 1935 1936 if (likely(!nr_pages)) 1937 return; 1938 1939 memcg = get_mem_cgroup_from_mm(current->mm); 1940 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1941 css_put(&memcg->css); 1942 current->memcg_nr_pages_over_high = 0; 1943 } 1944 1945 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1946 unsigned int nr_pages) 1947 { 1948 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1949 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1950 struct mem_cgroup *mem_over_limit; 1951 struct page_counter *counter; 1952 unsigned long nr_reclaimed; 1953 bool may_swap = true; 1954 bool drained = false; 1955 1956 if (mem_cgroup_is_root(memcg)) 1957 return 0; 1958 retry: 1959 if (consume_stock(memcg, nr_pages)) 1960 return 0; 1961 1962 if (!do_memsw_account() || 1963 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1964 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1965 goto done_restock; 1966 if (do_memsw_account()) 1967 page_counter_uncharge(&memcg->memsw, batch); 1968 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1969 } else { 1970 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1971 may_swap = false; 1972 } 1973 1974 if (batch > nr_pages) { 1975 batch = nr_pages; 1976 goto retry; 1977 } 1978 1979 /* 1980 * Unlike in global OOM situations, memcg is not in a physical 1981 * memory shortage. Allow dying and OOM-killed tasks to 1982 * bypass the last charges so that they can exit quickly and 1983 * free their memory. 1984 */ 1985 if (unlikely(test_thread_flag(TIF_MEMDIE) || 1986 fatal_signal_pending(current) || 1987 current->flags & PF_EXITING)) 1988 goto force; 1989 1990 if (unlikely(task_in_memcg_oom(current))) 1991 goto nomem; 1992 1993 if (!gfpflags_allow_blocking(gfp_mask)) 1994 goto nomem; 1995 1996 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 1997 1998 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1999 gfp_mask, may_swap); 2000 2001 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2002 goto retry; 2003 2004 if (!drained) { 2005 drain_all_stock(mem_over_limit); 2006 drained = true; 2007 goto retry; 2008 } 2009 2010 if (gfp_mask & __GFP_NORETRY) 2011 goto nomem; 2012 /* 2013 * Even though the limit is exceeded at this point, reclaim 2014 * may have been able to free some pages. Retry the charge 2015 * before killing the task. 2016 * 2017 * Only for regular pages, though: huge pages are rather 2018 * unlikely to succeed so close to the limit, and we fall back 2019 * to regular pages anyway in case of failure. 2020 */ 2021 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2022 goto retry; 2023 /* 2024 * At task move, charge accounts can be doubly counted. So, it's 2025 * better to wait until the end of task_move if something is going on. 2026 */ 2027 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2028 goto retry; 2029 2030 if (nr_retries--) 2031 goto retry; 2032 2033 if (gfp_mask & __GFP_NOFAIL) 2034 goto force; 2035 2036 if (fatal_signal_pending(current)) 2037 goto force; 2038 2039 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 2040 2041 mem_cgroup_oom(mem_over_limit, gfp_mask, 2042 get_order(nr_pages * PAGE_SIZE)); 2043 nomem: 2044 if (!(gfp_mask & __GFP_NOFAIL)) 2045 return -ENOMEM; 2046 force: 2047 /* 2048 * The allocation either can't fail or will lead to more memory 2049 * being freed very soon. Allow memory usage go over the limit 2050 * temporarily by force charging it. 2051 */ 2052 page_counter_charge(&memcg->memory, nr_pages); 2053 if (do_memsw_account()) 2054 page_counter_charge(&memcg->memsw, nr_pages); 2055 css_get_many(&memcg->css, nr_pages); 2056 2057 return 0; 2058 2059 done_restock: 2060 css_get_many(&memcg->css, batch); 2061 if (batch > nr_pages) 2062 refill_stock(memcg, batch - nr_pages); 2063 2064 /* 2065 * If the hierarchy is above the normal consumption range, schedule 2066 * reclaim on returning to userland. We can perform reclaim here 2067 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2068 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2069 * not recorded as it most likely matches current's and won't 2070 * change in the meantime. As high limit is checked again before 2071 * reclaim, the cost of mismatch is negligible. 2072 */ 2073 do { 2074 if (page_counter_read(&memcg->memory) > memcg->high) { 2075 /* Don't bother a random interrupted task */ 2076 if (in_interrupt()) { 2077 schedule_work(&memcg->high_work); 2078 break; 2079 } 2080 current->memcg_nr_pages_over_high += batch; 2081 set_notify_resume(current); 2082 break; 2083 } 2084 } while ((memcg = parent_mem_cgroup(memcg))); 2085 2086 return 0; 2087 } 2088 2089 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2090 { 2091 if (mem_cgroup_is_root(memcg)) 2092 return; 2093 2094 page_counter_uncharge(&memcg->memory, nr_pages); 2095 if (do_memsw_account()) 2096 page_counter_uncharge(&memcg->memsw, nr_pages); 2097 2098 css_put_many(&memcg->css, nr_pages); 2099 } 2100 2101 static void lock_page_lru(struct page *page, int *isolated) 2102 { 2103 struct zone *zone = page_zone(page); 2104 2105 spin_lock_irq(&zone->lru_lock); 2106 if (PageLRU(page)) { 2107 struct lruvec *lruvec; 2108 2109 lruvec = mem_cgroup_page_lruvec(page, zone); 2110 ClearPageLRU(page); 2111 del_page_from_lru_list(page, lruvec, page_lru(page)); 2112 *isolated = 1; 2113 } else 2114 *isolated = 0; 2115 } 2116 2117 static void unlock_page_lru(struct page *page, int isolated) 2118 { 2119 struct zone *zone = page_zone(page); 2120 2121 if (isolated) { 2122 struct lruvec *lruvec; 2123 2124 lruvec = mem_cgroup_page_lruvec(page, zone); 2125 VM_BUG_ON_PAGE(PageLRU(page), page); 2126 SetPageLRU(page); 2127 add_page_to_lru_list(page, lruvec, page_lru(page)); 2128 } 2129 spin_unlock_irq(&zone->lru_lock); 2130 } 2131 2132 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2133 bool lrucare) 2134 { 2135 int isolated; 2136 2137 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2138 2139 /* 2140 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2141 * may already be on some other mem_cgroup's LRU. Take care of it. 2142 */ 2143 if (lrucare) 2144 lock_page_lru(page, &isolated); 2145 2146 /* 2147 * Nobody should be changing or seriously looking at 2148 * page->mem_cgroup at this point: 2149 * 2150 * - the page is uncharged 2151 * 2152 * - the page is off-LRU 2153 * 2154 * - an anonymous fault has exclusive page access, except for 2155 * a locked page table 2156 * 2157 * - a page cache insertion, a swapin fault, or a migration 2158 * have the page locked 2159 */ 2160 page->mem_cgroup = memcg; 2161 2162 if (lrucare) 2163 unlock_page_lru(page, isolated); 2164 } 2165 2166 #ifndef CONFIG_SLOB 2167 static int memcg_alloc_cache_id(void) 2168 { 2169 int id, size; 2170 int err; 2171 2172 id = ida_simple_get(&memcg_cache_ida, 2173 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2174 if (id < 0) 2175 return id; 2176 2177 if (id < memcg_nr_cache_ids) 2178 return id; 2179 2180 /* 2181 * There's no space for the new id in memcg_caches arrays, 2182 * so we have to grow them. 2183 */ 2184 down_write(&memcg_cache_ids_sem); 2185 2186 size = 2 * (id + 1); 2187 if (size < MEMCG_CACHES_MIN_SIZE) 2188 size = MEMCG_CACHES_MIN_SIZE; 2189 else if (size > MEMCG_CACHES_MAX_SIZE) 2190 size = MEMCG_CACHES_MAX_SIZE; 2191 2192 err = memcg_update_all_caches(size); 2193 if (!err) 2194 err = memcg_update_all_list_lrus(size); 2195 if (!err) 2196 memcg_nr_cache_ids = size; 2197 2198 up_write(&memcg_cache_ids_sem); 2199 2200 if (err) { 2201 ida_simple_remove(&memcg_cache_ida, id); 2202 return err; 2203 } 2204 return id; 2205 } 2206 2207 static void memcg_free_cache_id(int id) 2208 { 2209 ida_simple_remove(&memcg_cache_ida, id); 2210 } 2211 2212 struct memcg_kmem_cache_create_work { 2213 struct mem_cgroup *memcg; 2214 struct kmem_cache *cachep; 2215 struct work_struct work; 2216 }; 2217 2218 static void memcg_kmem_cache_create_func(struct work_struct *w) 2219 { 2220 struct memcg_kmem_cache_create_work *cw = 2221 container_of(w, struct memcg_kmem_cache_create_work, work); 2222 struct mem_cgroup *memcg = cw->memcg; 2223 struct kmem_cache *cachep = cw->cachep; 2224 2225 memcg_create_kmem_cache(memcg, cachep); 2226 2227 css_put(&memcg->css); 2228 kfree(cw); 2229 } 2230 2231 /* 2232 * Enqueue the creation of a per-memcg kmem_cache. 2233 */ 2234 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2235 struct kmem_cache *cachep) 2236 { 2237 struct memcg_kmem_cache_create_work *cw; 2238 2239 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2240 if (!cw) 2241 return; 2242 2243 css_get(&memcg->css); 2244 2245 cw->memcg = memcg; 2246 cw->cachep = cachep; 2247 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2248 2249 schedule_work(&cw->work); 2250 } 2251 2252 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2253 struct kmem_cache *cachep) 2254 { 2255 /* 2256 * We need to stop accounting when we kmalloc, because if the 2257 * corresponding kmalloc cache is not yet created, the first allocation 2258 * in __memcg_schedule_kmem_cache_create will recurse. 2259 * 2260 * However, it is better to enclose the whole function. Depending on 2261 * the debugging options enabled, INIT_WORK(), for instance, can 2262 * trigger an allocation. This too, will make us recurse. Because at 2263 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2264 * the safest choice is to do it like this, wrapping the whole function. 2265 */ 2266 current->memcg_kmem_skip_account = 1; 2267 __memcg_schedule_kmem_cache_create(memcg, cachep); 2268 current->memcg_kmem_skip_account = 0; 2269 } 2270 2271 /* 2272 * Return the kmem_cache we're supposed to use for a slab allocation. 2273 * We try to use the current memcg's version of the cache. 2274 * 2275 * If the cache does not exist yet, if we are the first user of it, 2276 * we either create it immediately, if possible, or create it asynchronously 2277 * in a workqueue. 2278 * In the latter case, we will let the current allocation go through with 2279 * the original cache. 2280 * 2281 * Can't be called in interrupt context or from kernel threads. 2282 * This function needs to be called with rcu_read_lock() held. 2283 */ 2284 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 2285 { 2286 struct mem_cgroup *memcg; 2287 struct kmem_cache *memcg_cachep; 2288 int kmemcg_id; 2289 2290 VM_BUG_ON(!is_root_cache(cachep)); 2291 2292 if (cachep->flags & SLAB_ACCOUNT) 2293 gfp |= __GFP_ACCOUNT; 2294 2295 if (!(gfp & __GFP_ACCOUNT)) 2296 return cachep; 2297 2298 if (current->memcg_kmem_skip_account) 2299 return cachep; 2300 2301 memcg = get_mem_cgroup_from_mm(current->mm); 2302 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2303 if (kmemcg_id < 0) 2304 goto out; 2305 2306 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2307 if (likely(memcg_cachep)) 2308 return memcg_cachep; 2309 2310 /* 2311 * If we are in a safe context (can wait, and not in interrupt 2312 * context), we could be be predictable and return right away. 2313 * This would guarantee that the allocation being performed 2314 * already belongs in the new cache. 2315 * 2316 * However, there are some clashes that can arrive from locking. 2317 * For instance, because we acquire the slab_mutex while doing 2318 * memcg_create_kmem_cache, this means no further allocation 2319 * could happen with the slab_mutex held. So it's better to 2320 * defer everything. 2321 */ 2322 memcg_schedule_kmem_cache_create(memcg, cachep); 2323 out: 2324 css_put(&memcg->css); 2325 return cachep; 2326 } 2327 2328 void __memcg_kmem_put_cache(struct kmem_cache *cachep) 2329 { 2330 if (!is_root_cache(cachep)) 2331 css_put(&cachep->memcg_params.memcg->css); 2332 } 2333 2334 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2335 struct mem_cgroup *memcg) 2336 { 2337 unsigned int nr_pages = 1 << order; 2338 struct page_counter *counter; 2339 int ret; 2340 2341 ret = try_charge(memcg, gfp, nr_pages); 2342 if (ret) 2343 return ret; 2344 2345 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2346 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2347 cancel_charge(memcg, nr_pages); 2348 return -ENOMEM; 2349 } 2350 2351 page->mem_cgroup = memcg; 2352 2353 return 0; 2354 } 2355 2356 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2357 { 2358 struct mem_cgroup *memcg; 2359 int ret = 0; 2360 2361 memcg = get_mem_cgroup_from_mm(current->mm); 2362 if (!mem_cgroup_is_root(memcg)) 2363 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2364 css_put(&memcg->css); 2365 return ret; 2366 } 2367 2368 void __memcg_kmem_uncharge(struct page *page, int order) 2369 { 2370 struct mem_cgroup *memcg = page->mem_cgroup; 2371 unsigned int nr_pages = 1 << order; 2372 2373 if (!memcg) 2374 return; 2375 2376 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2377 2378 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2379 page_counter_uncharge(&memcg->kmem, nr_pages); 2380 2381 page_counter_uncharge(&memcg->memory, nr_pages); 2382 if (do_memsw_account()) 2383 page_counter_uncharge(&memcg->memsw, nr_pages); 2384 2385 page->mem_cgroup = NULL; 2386 css_put_many(&memcg->css, nr_pages); 2387 } 2388 #endif /* !CONFIG_SLOB */ 2389 2390 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2391 2392 /* 2393 * Because tail pages are not marked as "used", set it. We're under 2394 * zone->lru_lock and migration entries setup in all page mappings. 2395 */ 2396 void mem_cgroup_split_huge_fixup(struct page *head) 2397 { 2398 int i; 2399 2400 if (mem_cgroup_disabled()) 2401 return; 2402 2403 for (i = 1; i < HPAGE_PMD_NR; i++) 2404 head[i].mem_cgroup = head->mem_cgroup; 2405 2406 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2407 HPAGE_PMD_NR); 2408 } 2409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2410 2411 #ifdef CONFIG_MEMCG_SWAP 2412 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2413 bool charge) 2414 { 2415 int val = (charge) ? 1 : -1; 2416 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2417 } 2418 2419 /** 2420 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2421 * @entry: swap entry to be moved 2422 * @from: mem_cgroup which the entry is moved from 2423 * @to: mem_cgroup which the entry is moved to 2424 * 2425 * It succeeds only when the swap_cgroup's record for this entry is the same 2426 * as the mem_cgroup's id of @from. 2427 * 2428 * Returns 0 on success, -EINVAL on failure. 2429 * 2430 * The caller must have charged to @to, IOW, called page_counter_charge() about 2431 * both res and memsw, and called css_get(). 2432 */ 2433 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2434 struct mem_cgroup *from, struct mem_cgroup *to) 2435 { 2436 unsigned short old_id, new_id; 2437 2438 old_id = mem_cgroup_id(from); 2439 new_id = mem_cgroup_id(to); 2440 2441 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2442 mem_cgroup_swap_statistics(from, false); 2443 mem_cgroup_swap_statistics(to, true); 2444 return 0; 2445 } 2446 return -EINVAL; 2447 } 2448 #else 2449 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2450 struct mem_cgroup *from, struct mem_cgroup *to) 2451 { 2452 return -EINVAL; 2453 } 2454 #endif 2455 2456 static DEFINE_MUTEX(memcg_limit_mutex); 2457 2458 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2459 unsigned long limit) 2460 { 2461 unsigned long curusage; 2462 unsigned long oldusage; 2463 bool enlarge = false; 2464 int retry_count; 2465 int ret; 2466 2467 /* 2468 * For keeping hierarchical_reclaim simple, how long we should retry 2469 * is depends on callers. We set our retry-count to be function 2470 * of # of children which we should visit in this loop. 2471 */ 2472 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2473 mem_cgroup_count_children(memcg); 2474 2475 oldusage = page_counter_read(&memcg->memory); 2476 2477 do { 2478 if (signal_pending(current)) { 2479 ret = -EINTR; 2480 break; 2481 } 2482 2483 mutex_lock(&memcg_limit_mutex); 2484 if (limit > memcg->memsw.limit) { 2485 mutex_unlock(&memcg_limit_mutex); 2486 ret = -EINVAL; 2487 break; 2488 } 2489 if (limit > memcg->memory.limit) 2490 enlarge = true; 2491 ret = page_counter_limit(&memcg->memory, limit); 2492 mutex_unlock(&memcg_limit_mutex); 2493 2494 if (!ret) 2495 break; 2496 2497 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2498 2499 curusage = page_counter_read(&memcg->memory); 2500 /* Usage is reduced ? */ 2501 if (curusage >= oldusage) 2502 retry_count--; 2503 else 2504 oldusage = curusage; 2505 } while (retry_count); 2506 2507 if (!ret && enlarge) 2508 memcg_oom_recover(memcg); 2509 2510 return ret; 2511 } 2512 2513 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2514 unsigned long limit) 2515 { 2516 unsigned long curusage; 2517 unsigned long oldusage; 2518 bool enlarge = false; 2519 int retry_count; 2520 int ret; 2521 2522 /* see mem_cgroup_resize_res_limit */ 2523 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2524 mem_cgroup_count_children(memcg); 2525 2526 oldusage = page_counter_read(&memcg->memsw); 2527 2528 do { 2529 if (signal_pending(current)) { 2530 ret = -EINTR; 2531 break; 2532 } 2533 2534 mutex_lock(&memcg_limit_mutex); 2535 if (limit < memcg->memory.limit) { 2536 mutex_unlock(&memcg_limit_mutex); 2537 ret = -EINVAL; 2538 break; 2539 } 2540 if (limit > memcg->memsw.limit) 2541 enlarge = true; 2542 ret = page_counter_limit(&memcg->memsw, limit); 2543 mutex_unlock(&memcg_limit_mutex); 2544 2545 if (!ret) 2546 break; 2547 2548 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2549 2550 curusage = page_counter_read(&memcg->memsw); 2551 /* Usage is reduced ? */ 2552 if (curusage >= oldusage) 2553 retry_count--; 2554 else 2555 oldusage = curusage; 2556 } while (retry_count); 2557 2558 if (!ret && enlarge) 2559 memcg_oom_recover(memcg); 2560 2561 return ret; 2562 } 2563 2564 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 2565 gfp_t gfp_mask, 2566 unsigned long *total_scanned) 2567 { 2568 unsigned long nr_reclaimed = 0; 2569 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 2570 unsigned long reclaimed; 2571 int loop = 0; 2572 struct mem_cgroup_tree_per_zone *mctz; 2573 unsigned long excess; 2574 unsigned long nr_scanned; 2575 2576 if (order > 0) 2577 return 0; 2578 2579 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 2580 /* 2581 * This loop can run a while, specially if mem_cgroup's continuously 2582 * keep exceeding their soft limit and putting the system under 2583 * pressure 2584 */ 2585 do { 2586 if (next_mz) 2587 mz = next_mz; 2588 else 2589 mz = mem_cgroup_largest_soft_limit_node(mctz); 2590 if (!mz) 2591 break; 2592 2593 nr_scanned = 0; 2594 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 2595 gfp_mask, &nr_scanned); 2596 nr_reclaimed += reclaimed; 2597 *total_scanned += nr_scanned; 2598 spin_lock_irq(&mctz->lock); 2599 __mem_cgroup_remove_exceeded(mz, mctz); 2600 2601 /* 2602 * If we failed to reclaim anything from this memory cgroup 2603 * it is time to move on to the next cgroup 2604 */ 2605 next_mz = NULL; 2606 if (!reclaimed) 2607 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2608 2609 excess = soft_limit_excess(mz->memcg); 2610 /* 2611 * One school of thought says that we should not add 2612 * back the node to the tree if reclaim returns 0. 2613 * But our reclaim could return 0, simply because due 2614 * to priority we are exposing a smaller subset of 2615 * memory to reclaim from. Consider this as a longer 2616 * term TODO. 2617 */ 2618 /* If excess == 0, no tree ops */ 2619 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2620 spin_unlock_irq(&mctz->lock); 2621 css_put(&mz->memcg->css); 2622 loop++; 2623 /* 2624 * Could not reclaim anything and there are no more 2625 * mem cgroups to try or we seem to be looping without 2626 * reclaiming anything. 2627 */ 2628 if (!nr_reclaimed && 2629 (next_mz == NULL || 2630 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2631 break; 2632 } while (!nr_reclaimed); 2633 if (next_mz) 2634 css_put(&next_mz->memcg->css); 2635 return nr_reclaimed; 2636 } 2637 2638 /* 2639 * Test whether @memcg has children, dead or alive. Note that this 2640 * function doesn't care whether @memcg has use_hierarchy enabled and 2641 * returns %true if there are child csses according to the cgroup 2642 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2643 */ 2644 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2645 { 2646 bool ret; 2647 2648 rcu_read_lock(); 2649 ret = css_next_child(NULL, &memcg->css); 2650 rcu_read_unlock(); 2651 return ret; 2652 } 2653 2654 /* 2655 * Reclaims as many pages from the given memcg as possible. 2656 * 2657 * Caller is responsible for holding css reference for memcg. 2658 */ 2659 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2660 { 2661 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2662 2663 /* we call try-to-free pages for make this cgroup empty */ 2664 lru_add_drain_all(); 2665 /* try to free all pages in this cgroup */ 2666 while (nr_retries && page_counter_read(&memcg->memory)) { 2667 int progress; 2668 2669 if (signal_pending(current)) 2670 return -EINTR; 2671 2672 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2673 GFP_KERNEL, true); 2674 if (!progress) { 2675 nr_retries--; 2676 /* maybe some writeback is necessary */ 2677 congestion_wait(BLK_RW_ASYNC, HZ/10); 2678 } 2679 2680 } 2681 2682 return 0; 2683 } 2684 2685 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2686 char *buf, size_t nbytes, 2687 loff_t off) 2688 { 2689 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2690 2691 if (mem_cgroup_is_root(memcg)) 2692 return -EINVAL; 2693 return mem_cgroup_force_empty(memcg) ?: nbytes; 2694 } 2695 2696 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2697 struct cftype *cft) 2698 { 2699 return mem_cgroup_from_css(css)->use_hierarchy; 2700 } 2701 2702 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2703 struct cftype *cft, u64 val) 2704 { 2705 int retval = 0; 2706 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2707 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2708 2709 if (memcg->use_hierarchy == val) 2710 return 0; 2711 2712 /* 2713 * If parent's use_hierarchy is set, we can't make any modifications 2714 * in the child subtrees. If it is unset, then the change can 2715 * occur, provided the current cgroup has no children. 2716 * 2717 * For the root cgroup, parent_mem is NULL, we allow value to be 2718 * set if there are no children. 2719 */ 2720 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2721 (val == 1 || val == 0)) { 2722 if (!memcg_has_children(memcg)) 2723 memcg->use_hierarchy = val; 2724 else 2725 retval = -EBUSY; 2726 } else 2727 retval = -EINVAL; 2728 2729 return retval; 2730 } 2731 2732 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2733 { 2734 struct mem_cgroup *iter; 2735 int i; 2736 2737 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2738 2739 for_each_mem_cgroup_tree(iter, memcg) { 2740 for (i = 0; i < MEMCG_NR_STAT; i++) 2741 stat[i] += mem_cgroup_read_stat(iter, i); 2742 } 2743 } 2744 2745 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2746 { 2747 struct mem_cgroup *iter; 2748 int i; 2749 2750 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); 2751 2752 for_each_mem_cgroup_tree(iter, memcg) { 2753 for (i = 0; i < MEMCG_NR_EVENTS; i++) 2754 events[i] += mem_cgroup_read_events(iter, i); 2755 } 2756 } 2757 2758 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2759 { 2760 unsigned long val = 0; 2761 2762 if (mem_cgroup_is_root(memcg)) { 2763 struct mem_cgroup *iter; 2764 2765 for_each_mem_cgroup_tree(iter, memcg) { 2766 val += mem_cgroup_read_stat(iter, 2767 MEM_CGROUP_STAT_CACHE); 2768 val += mem_cgroup_read_stat(iter, 2769 MEM_CGROUP_STAT_RSS); 2770 if (swap) 2771 val += mem_cgroup_read_stat(iter, 2772 MEM_CGROUP_STAT_SWAP); 2773 } 2774 } else { 2775 if (!swap) 2776 val = page_counter_read(&memcg->memory); 2777 else 2778 val = page_counter_read(&memcg->memsw); 2779 } 2780 return val; 2781 } 2782 2783 enum { 2784 RES_USAGE, 2785 RES_LIMIT, 2786 RES_MAX_USAGE, 2787 RES_FAILCNT, 2788 RES_SOFT_LIMIT, 2789 }; 2790 2791 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2792 struct cftype *cft) 2793 { 2794 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2795 struct page_counter *counter; 2796 2797 switch (MEMFILE_TYPE(cft->private)) { 2798 case _MEM: 2799 counter = &memcg->memory; 2800 break; 2801 case _MEMSWAP: 2802 counter = &memcg->memsw; 2803 break; 2804 case _KMEM: 2805 counter = &memcg->kmem; 2806 break; 2807 case _TCP: 2808 counter = &memcg->tcpmem; 2809 break; 2810 default: 2811 BUG(); 2812 } 2813 2814 switch (MEMFILE_ATTR(cft->private)) { 2815 case RES_USAGE: 2816 if (counter == &memcg->memory) 2817 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2818 if (counter == &memcg->memsw) 2819 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2820 return (u64)page_counter_read(counter) * PAGE_SIZE; 2821 case RES_LIMIT: 2822 return (u64)counter->limit * PAGE_SIZE; 2823 case RES_MAX_USAGE: 2824 return (u64)counter->watermark * PAGE_SIZE; 2825 case RES_FAILCNT: 2826 return counter->failcnt; 2827 case RES_SOFT_LIMIT: 2828 return (u64)memcg->soft_limit * PAGE_SIZE; 2829 default: 2830 BUG(); 2831 } 2832 } 2833 2834 #ifndef CONFIG_SLOB 2835 static int memcg_online_kmem(struct mem_cgroup *memcg) 2836 { 2837 int memcg_id; 2838 2839 if (cgroup_memory_nokmem) 2840 return 0; 2841 2842 BUG_ON(memcg->kmemcg_id >= 0); 2843 BUG_ON(memcg->kmem_state); 2844 2845 memcg_id = memcg_alloc_cache_id(); 2846 if (memcg_id < 0) 2847 return memcg_id; 2848 2849 static_branch_inc(&memcg_kmem_enabled_key); 2850 /* 2851 * A memory cgroup is considered kmem-online as soon as it gets 2852 * kmemcg_id. Setting the id after enabling static branching will 2853 * guarantee no one starts accounting before all call sites are 2854 * patched. 2855 */ 2856 memcg->kmemcg_id = memcg_id; 2857 memcg->kmem_state = KMEM_ONLINE; 2858 2859 return 0; 2860 } 2861 2862 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2863 { 2864 struct cgroup_subsys_state *css; 2865 struct mem_cgroup *parent, *child; 2866 int kmemcg_id; 2867 2868 if (memcg->kmem_state != KMEM_ONLINE) 2869 return; 2870 /* 2871 * Clear the online state before clearing memcg_caches array 2872 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2873 * guarantees that no cache will be created for this cgroup 2874 * after we are done (see memcg_create_kmem_cache()). 2875 */ 2876 memcg->kmem_state = KMEM_ALLOCATED; 2877 2878 memcg_deactivate_kmem_caches(memcg); 2879 2880 kmemcg_id = memcg->kmemcg_id; 2881 BUG_ON(kmemcg_id < 0); 2882 2883 parent = parent_mem_cgroup(memcg); 2884 if (!parent) 2885 parent = root_mem_cgroup; 2886 2887 /* 2888 * Change kmemcg_id of this cgroup and all its descendants to the 2889 * parent's id, and then move all entries from this cgroup's list_lrus 2890 * to ones of the parent. After we have finished, all list_lrus 2891 * corresponding to this cgroup are guaranteed to remain empty. The 2892 * ordering is imposed by list_lru_node->lock taken by 2893 * memcg_drain_all_list_lrus(). 2894 */ 2895 css_for_each_descendant_pre(css, &memcg->css) { 2896 child = mem_cgroup_from_css(css); 2897 BUG_ON(child->kmemcg_id != kmemcg_id); 2898 child->kmemcg_id = parent->kmemcg_id; 2899 if (!memcg->use_hierarchy) 2900 break; 2901 } 2902 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2903 2904 memcg_free_cache_id(kmemcg_id); 2905 } 2906 2907 static void memcg_free_kmem(struct mem_cgroup *memcg) 2908 { 2909 /* css_alloc() failed, offlining didn't happen */ 2910 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2911 memcg_offline_kmem(memcg); 2912 2913 if (memcg->kmem_state == KMEM_ALLOCATED) { 2914 memcg_destroy_kmem_caches(memcg); 2915 static_branch_dec(&memcg_kmem_enabled_key); 2916 WARN_ON(page_counter_read(&memcg->kmem)); 2917 } 2918 } 2919 #else 2920 static int memcg_online_kmem(struct mem_cgroup *memcg) 2921 { 2922 return 0; 2923 } 2924 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2925 { 2926 } 2927 static void memcg_free_kmem(struct mem_cgroup *memcg) 2928 { 2929 } 2930 #endif /* !CONFIG_SLOB */ 2931 2932 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2933 unsigned long limit) 2934 { 2935 int ret; 2936 2937 mutex_lock(&memcg_limit_mutex); 2938 ret = page_counter_limit(&memcg->kmem, limit); 2939 mutex_unlock(&memcg_limit_mutex); 2940 return ret; 2941 } 2942 2943 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2944 { 2945 int ret; 2946 2947 mutex_lock(&memcg_limit_mutex); 2948 2949 ret = page_counter_limit(&memcg->tcpmem, limit); 2950 if (ret) 2951 goto out; 2952 2953 if (!memcg->tcpmem_active) { 2954 /* 2955 * The active flag needs to be written after the static_key 2956 * update. This is what guarantees that the socket activation 2957 * function is the last one to run. See sock_update_memcg() for 2958 * details, and note that we don't mark any socket as belonging 2959 * to this memcg until that flag is up. 2960 * 2961 * We need to do this, because static_keys will span multiple 2962 * sites, but we can't control their order. If we mark a socket 2963 * as accounted, but the accounting functions are not patched in 2964 * yet, we'll lose accounting. 2965 * 2966 * We never race with the readers in sock_update_memcg(), 2967 * because when this value change, the code to process it is not 2968 * patched in yet. 2969 */ 2970 static_branch_inc(&memcg_sockets_enabled_key); 2971 memcg->tcpmem_active = true; 2972 } 2973 out: 2974 mutex_unlock(&memcg_limit_mutex); 2975 return ret; 2976 } 2977 2978 /* 2979 * The user of this function is... 2980 * RES_LIMIT. 2981 */ 2982 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2983 char *buf, size_t nbytes, loff_t off) 2984 { 2985 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2986 unsigned long nr_pages; 2987 int ret; 2988 2989 buf = strstrip(buf); 2990 ret = page_counter_memparse(buf, "-1", &nr_pages); 2991 if (ret) 2992 return ret; 2993 2994 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2995 case RES_LIMIT: 2996 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2997 ret = -EINVAL; 2998 break; 2999 } 3000 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3001 case _MEM: 3002 ret = mem_cgroup_resize_limit(memcg, nr_pages); 3003 break; 3004 case _MEMSWAP: 3005 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 3006 break; 3007 case _KMEM: 3008 ret = memcg_update_kmem_limit(memcg, nr_pages); 3009 break; 3010 case _TCP: 3011 ret = memcg_update_tcp_limit(memcg, nr_pages); 3012 break; 3013 } 3014 break; 3015 case RES_SOFT_LIMIT: 3016 memcg->soft_limit = nr_pages; 3017 ret = 0; 3018 break; 3019 } 3020 return ret ?: nbytes; 3021 } 3022 3023 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3024 size_t nbytes, loff_t off) 3025 { 3026 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3027 struct page_counter *counter; 3028 3029 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3030 case _MEM: 3031 counter = &memcg->memory; 3032 break; 3033 case _MEMSWAP: 3034 counter = &memcg->memsw; 3035 break; 3036 case _KMEM: 3037 counter = &memcg->kmem; 3038 break; 3039 case _TCP: 3040 counter = &memcg->tcpmem; 3041 break; 3042 default: 3043 BUG(); 3044 } 3045 3046 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3047 case RES_MAX_USAGE: 3048 page_counter_reset_watermark(counter); 3049 break; 3050 case RES_FAILCNT: 3051 counter->failcnt = 0; 3052 break; 3053 default: 3054 BUG(); 3055 } 3056 3057 return nbytes; 3058 } 3059 3060 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3061 struct cftype *cft) 3062 { 3063 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3064 } 3065 3066 #ifdef CONFIG_MMU 3067 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3068 struct cftype *cft, u64 val) 3069 { 3070 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3071 3072 if (val & ~MOVE_MASK) 3073 return -EINVAL; 3074 3075 /* 3076 * No kind of locking is needed in here, because ->can_attach() will 3077 * check this value once in the beginning of the process, and then carry 3078 * on with stale data. This means that changes to this value will only 3079 * affect task migrations starting after the change. 3080 */ 3081 memcg->move_charge_at_immigrate = val; 3082 return 0; 3083 } 3084 #else 3085 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3086 struct cftype *cft, u64 val) 3087 { 3088 return -ENOSYS; 3089 } 3090 #endif 3091 3092 #ifdef CONFIG_NUMA 3093 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3094 { 3095 struct numa_stat { 3096 const char *name; 3097 unsigned int lru_mask; 3098 }; 3099 3100 static const struct numa_stat stats[] = { 3101 { "total", LRU_ALL }, 3102 { "file", LRU_ALL_FILE }, 3103 { "anon", LRU_ALL_ANON }, 3104 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3105 }; 3106 const struct numa_stat *stat; 3107 int nid; 3108 unsigned long nr; 3109 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3110 3111 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3112 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3113 seq_printf(m, "%s=%lu", stat->name, nr); 3114 for_each_node_state(nid, N_MEMORY) { 3115 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3116 stat->lru_mask); 3117 seq_printf(m, " N%d=%lu", nid, nr); 3118 } 3119 seq_putc(m, '\n'); 3120 } 3121 3122 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3123 struct mem_cgroup *iter; 3124 3125 nr = 0; 3126 for_each_mem_cgroup_tree(iter, memcg) 3127 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3128 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3129 for_each_node_state(nid, N_MEMORY) { 3130 nr = 0; 3131 for_each_mem_cgroup_tree(iter, memcg) 3132 nr += mem_cgroup_node_nr_lru_pages( 3133 iter, nid, stat->lru_mask); 3134 seq_printf(m, " N%d=%lu", nid, nr); 3135 } 3136 seq_putc(m, '\n'); 3137 } 3138 3139 return 0; 3140 } 3141 #endif /* CONFIG_NUMA */ 3142 3143 static int memcg_stat_show(struct seq_file *m, void *v) 3144 { 3145 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3146 unsigned long memory, memsw; 3147 struct mem_cgroup *mi; 3148 unsigned int i; 3149 3150 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3151 MEM_CGROUP_STAT_NSTATS); 3152 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3153 MEM_CGROUP_EVENTS_NSTATS); 3154 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3155 3156 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3157 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3158 continue; 3159 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], 3160 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3161 } 3162 3163 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3164 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3165 mem_cgroup_read_events(memcg, i)); 3166 3167 for (i = 0; i < NR_LRU_LISTS; i++) 3168 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3169 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3170 3171 /* Hierarchical information */ 3172 memory = memsw = PAGE_COUNTER_MAX; 3173 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3174 memory = min(memory, mi->memory.limit); 3175 memsw = min(memsw, mi->memsw.limit); 3176 } 3177 seq_printf(m, "hierarchical_memory_limit %llu\n", 3178 (u64)memory * PAGE_SIZE); 3179 if (do_memsw_account()) 3180 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3181 (u64)memsw * PAGE_SIZE); 3182 3183 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3184 unsigned long long val = 0; 3185 3186 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3187 continue; 3188 for_each_mem_cgroup_tree(mi, memcg) 3189 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3190 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); 3191 } 3192 3193 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3194 unsigned long long val = 0; 3195 3196 for_each_mem_cgroup_tree(mi, memcg) 3197 val += mem_cgroup_read_events(mi, i); 3198 seq_printf(m, "total_%s %llu\n", 3199 mem_cgroup_events_names[i], val); 3200 } 3201 3202 for (i = 0; i < NR_LRU_LISTS; i++) { 3203 unsigned long long val = 0; 3204 3205 for_each_mem_cgroup_tree(mi, memcg) 3206 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3207 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3208 } 3209 3210 #ifdef CONFIG_DEBUG_VM 3211 { 3212 int nid, zid; 3213 struct mem_cgroup_per_zone *mz; 3214 struct zone_reclaim_stat *rstat; 3215 unsigned long recent_rotated[2] = {0, 0}; 3216 unsigned long recent_scanned[2] = {0, 0}; 3217 3218 for_each_online_node(nid) 3219 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 3220 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 3221 rstat = &mz->lruvec.reclaim_stat; 3222 3223 recent_rotated[0] += rstat->recent_rotated[0]; 3224 recent_rotated[1] += rstat->recent_rotated[1]; 3225 recent_scanned[0] += rstat->recent_scanned[0]; 3226 recent_scanned[1] += rstat->recent_scanned[1]; 3227 } 3228 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3229 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3230 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3231 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3232 } 3233 #endif 3234 3235 return 0; 3236 } 3237 3238 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3239 struct cftype *cft) 3240 { 3241 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3242 3243 return mem_cgroup_swappiness(memcg); 3244 } 3245 3246 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3247 struct cftype *cft, u64 val) 3248 { 3249 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3250 3251 if (val > 100) 3252 return -EINVAL; 3253 3254 if (css->parent) 3255 memcg->swappiness = val; 3256 else 3257 vm_swappiness = val; 3258 3259 return 0; 3260 } 3261 3262 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3263 { 3264 struct mem_cgroup_threshold_ary *t; 3265 unsigned long usage; 3266 int i; 3267 3268 rcu_read_lock(); 3269 if (!swap) 3270 t = rcu_dereference(memcg->thresholds.primary); 3271 else 3272 t = rcu_dereference(memcg->memsw_thresholds.primary); 3273 3274 if (!t) 3275 goto unlock; 3276 3277 usage = mem_cgroup_usage(memcg, swap); 3278 3279 /* 3280 * current_threshold points to threshold just below or equal to usage. 3281 * If it's not true, a threshold was crossed after last 3282 * call of __mem_cgroup_threshold(). 3283 */ 3284 i = t->current_threshold; 3285 3286 /* 3287 * Iterate backward over array of thresholds starting from 3288 * current_threshold and check if a threshold is crossed. 3289 * If none of thresholds below usage is crossed, we read 3290 * only one element of the array here. 3291 */ 3292 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3293 eventfd_signal(t->entries[i].eventfd, 1); 3294 3295 /* i = current_threshold + 1 */ 3296 i++; 3297 3298 /* 3299 * Iterate forward over array of thresholds starting from 3300 * current_threshold+1 and check if a threshold is crossed. 3301 * If none of thresholds above usage is crossed, we read 3302 * only one element of the array here. 3303 */ 3304 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3305 eventfd_signal(t->entries[i].eventfd, 1); 3306 3307 /* Update current_threshold */ 3308 t->current_threshold = i - 1; 3309 unlock: 3310 rcu_read_unlock(); 3311 } 3312 3313 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3314 { 3315 while (memcg) { 3316 __mem_cgroup_threshold(memcg, false); 3317 if (do_memsw_account()) 3318 __mem_cgroup_threshold(memcg, true); 3319 3320 memcg = parent_mem_cgroup(memcg); 3321 } 3322 } 3323 3324 static int compare_thresholds(const void *a, const void *b) 3325 { 3326 const struct mem_cgroup_threshold *_a = a; 3327 const struct mem_cgroup_threshold *_b = b; 3328 3329 if (_a->threshold > _b->threshold) 3330 return 1; 3331 3332 if (_a->threshold < _b->threshold) 3333 return -1; 3334 3335 return 0; 3336 } 3337 3338 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3339 { 3340 struct mem_cgroup_eventfd_list *ev; 3341 3342 spin_lock(&memcg_oom_lock); 3343 3344 list_for_each_entry(ev, &memcg->oom_notify, list) 3345 eventfd_signal(ev->eventfd, 1); 3346 3347 spin_unlock(&memcg_oom_lock); 3348 return 0; 3349 } 3350 3351 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3352 { 3353 struct mem_cgroup *iter; 3354 3355 for_each_mem_cgroup_tree(iter, memcg) 3356 mem_cgroup_oom_notify_cb(iter); 3357 } 3358 3359 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3360 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3361 { 3362 struct mem_cgroup_thresholds *thresholds; 3363 struct mem_cgroup_threshold_ary *new; 3364 unsigned long threshold; 3365 unsigned long usage; 3366 int i, size, ret; 3367 3368 ret = page_counter_memparse(args, "-1", &threshold); 3369 if (ret) 3370 return ret; 3371 3372 mutex_lock(&memcg->thresholds_lock); 3373 3374 if (type == _MEM) { 3375 thresholds = &memcg->thresholds; 3376 usage = mem_cgroup_usage(memcg, false); 3377 } else if (type == _MEMSWAP) { 3378 thresholds = &memcg->memsw_thresholds; 3379 usage = mem_cgroup_usage(memcg, true); 3380 } else 3381 BUG(); 3382 3383 /* Check if a threshold crossed before adding a new one */ 3384 if (thresholds->primary) 3385 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3386 3387 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3388 3389 /* Allocate memory for new array of thresholds */ 3390 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3391 GFP_KERNEL); 3392 if (!new) { 3393 ret = -ENOMEM; 3394 goto unlock; 3395 } 3396 new->size = size; 3397 3398 /* Copy thresholds (if any) to new array */ 3399 if (thresholds->primary) { 3400 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3401 sizeof(struct mem_cgroup_threshold)); 3402 } 3403 3404 /* Add new threshold */ 3405 new->entries[size - 1].eventfd = eventfd; 3406 new->entries[size - 1].threshold = threshold; 3407 3408 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3409 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3410 compare_thresholds, NULL); 3411 3412 /* Find current threshold */ 3413 new->current_threshold = -1; 3414 for (i = 0; i < size; i++) { 3415 if (new->entries[i].threshold <= usage) { 3416 /* 3417 * new->current_threshold will not be used until 3418 * rcu_assign_pointer(), so it's safe to increment 3419 * it here. 3420 */ 3421 ++new->current_threshold; 3422 } else 3423 break; 3424 } 3425 3426 /* Free old spare buffer and save old primary buffer as spare */ 3427 kfree(thresholds->spare); 3428 thresholds->spare = thresholds->primary; 3429 3430 rcu_assign_pointer(thresholds->primary, new); 3431 3432 /* To be sure that nobody uses thresholds */ 3433 synchronize_rcu(); 3434 3435 unlock: 3436 mutex_unlock(&memcg->thresholds_lock); 3437 3438 return ret; 3439 } 3440 3441 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3442 struct eventfd_ctx *eventfd, const char *args) 3443 { 3444 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3445 } 3446 3447 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3448 struct eventfd_ctx *eventfd, const char *args) 3449 { 3450 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3451 } 3452 3453 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3454 struct eventfd_ctx *eventfd, enum res_type type) 3455 { 3456 struct mem_cgroup_thresholds *thresholds; 3457 struct mem_cgroup_threshold_ary *new; 3458 unsigned long usage; 3459 int i, j, size; 3460 3461 mutex_lock(&memcg->thresholds_lock); 3462 3463 if (type == _MEM) { 3464 thresholds = &memcg->thresholds; 3465 usage = mem_cgroup_usage(memcg, false); 3466 } else if (type == _MEMSWAP) { 3467 thresholds = &memcg->memsw_thresholds; 3468 usage = mem_cgroup_usage(memcg, true); 3469 } else 3470 BUG(); 3471 3472 if (!thresholds->primary) 3473 goto unlock; 3474 3475 /* Check if a threshold crossed before removing */ 3476 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3477 3478 /* Calculate new number of threshold */ 3479 size = 0; 3480 for (i = 0; i < thresholds->primary->size; i++) { 3481 if (thresholds->primary->entries[i].eventfd != eventfd) 3482 size++; 3483 } 3484 3485 new = thresholds->spare; 3486 3487 /* Set thresholds array to NULL if we don't have thresholds */ 3488 if (!size) { 3489 kfree(new); 3490 new = NULL; 3491 goto swap_buffers; 3492 } 3493 3494 new->size = size; 3495 3496 /* Copy thresholds and find current threshold */ 3497 new->current_threshold = -1; 3498 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3499 if (thresholds->primary->entries[i].eventfd == eventfd) 3500 continue; 3501 3502 new->entries[j] = thresholds->primary->entries[i]; 3503 if (new->entries[j].threshold <= usage) { 3504 /* 3505 * new->current_threshold will not be used 3506 * until rcu_assign_pointer(), so it's safe to increment 3507 * it here. 3508 */ 3509 ++new->current_threshold; 3510 } 3511 j++; 3512 } 3513 3514 swap_buffers: 3515 /* Swap primary and spare array */ 3516 thresholds->spare = thresholds->primary; 3517 3518 rcu_assign_pointer(thresholds->primary, new); 3519 3520 /* To be sure that nobody uses thresholds */ 3521 synchronize_rcu(); 3522 3523 /* If all events are unregistered, free the spare array */ 3524 if (!new) { 3525 kfree(thresholds->spare); 3526 thresholds->spare = NULL; 3527 } 3528 unlock: 3529 mutex_unlock(&memcg->thresholds_lock); 3530 } 3531 3532 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3533 struct eventfd_ctx *eventfd) 3534 { 3535 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3536 } 3537 3538 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3539 struct eventfd_ctx *eventfd) 3540 { 3541 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3542 } 3543 3544 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3545 struct eventfd_ctx *eventfd, const char *args) 3546 { 3547 struct mem_cgroup_eventfd_list *event; 3548 3549 event = kmalloc(sizeof(*event), GFP_KERNEL); 3550 if (!event) 3551 return -ENOMEM; 3552 3553 spin_lock(&memcg_oom_lock); 3554 3555 event->eventfd = eventfd; 3556 list_add(&event->list, &memcg->oom_notify); 3557 3558 /* already in OOM ? */ 3559 if (memcg->under_oom) 3560 eventfd_signal(eventfd, 1); 3561 spin_unlock(&memcg_oom_lock); 3562 3563 return 0; 3564 } 3565 3566 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3567 struct eventfd_ctx *eventfd) 3568 { 3569 struct mem_cgroup_eventfd_list *ev, *tmp; 3570 3571 spin_lock(&memcg_oom_lock); 3572 3573 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3574 if (ev->eventfd == eventfd) { 3575 list_del(&ev->list); 3576 kfree(ev); 3577 } 3578 } 3579 3580 spin_unlock(&memcg_oom_lock); 3581 } 3582 3583 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3584 { 3585 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3586 3587 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3588 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3589 return 0; 3590 } 3591 3592 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3593 struct cftype *cft, u64 val) 3594 { 3595 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3596 3597 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3598 if (!css->parent || !((val == 0) || (val == 1))) 3599 return -EINVAL; 3600 3601 memcg->oom_kill_disable = val; 3602 if (!val) 3603 memcg_oom_recover(memcg); 3604 3605 return 0; 3606 } 3607 3608 #ifdef CONFIG_CGROUP_WRITEBACK 3609 3610 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3611 { 3612 return &memcg->cgwb_list; 3613 } 3614 3615 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3616 { 3617 return wb_domain_init(&memcg->cgwb_domain, gfp); 3618 } 3619 3620 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3621 { 3622 wb_domain_exit(&memcg->cgwb_domain); 3623 } 3624 3625 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3626 { 3627 wb_domain_size_changed(&memcg->cgwb_domain); 3628 } 3629 3630 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3631 { 3632 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3633 3634 if (!memcg->css.parent) 3635 return NULL; 3636 3637 return &memcg->cgwb_domain; 3638 } 3639 3640 /** 3641 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3642 * @wb: bdi_writeback in question 3643 * @pfilepages: out parameter for number of file pages 3644 * @pheadroom: out parameter for number of allocatable pages according to memcg 3645 * @pdirty: out parameter for number of dirty pages 3646 * @pwriteback: out parameter for number of pages under writeback 3647 * 3648 * Determine the numbers of file, headroom, dirty, and writeback pages in 3649 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3650 * is a bit more involved. 3651 * 3652 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3653 * headroom is calculated as the lowest headroom of itself and the 3654 * ancestors. Note that this doesn't consider the actual amount of 3655 * available memory in the system. The caller should further cap 3656 * *@pheadroom accordingly. 3657 */ 3658 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3659 unsigned long *pheadroom, unsigned long *pdirty, 3660 unsigned long *pwriteback) 3661 { 3662 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3663 struct mem_cgroup *parent; 3664 3665 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); 3666 3667 /* this should eventually include NR_UNSTABLE_NFS */ 3668 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 3669 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3670 (1 << LRU_ACTIVE_FILE)); 3671 *pheadroom = PAGE_COUNTER_MAX; 3672 3673 while ((parent = parent_mem_cgroup(memcg))) { 3674 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3675 unsigned long used = page_counter_read(&memcg->memory); 3676 3677 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3678 memcg = parent; 3679 } 3680 } 3681 3682 #else /* CONFIG_CGROUP_WRITEBACK */ 3683 3684 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3685 { 3686 return 0; 3687 } 3688 3689 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3690 { 3691 } 3692 3693 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3694 { 3695 } 3696 3697 #endif /* CONFIG_CGROUP_WRITEBACK */ 3698 3699 /* 3700 * DO NOT USE IN NEW FILES. 3701 * 3702 * "cgroup.event_control" implementation. 3703 * 3704 * This is way over-engineered. It tries to support fully configurable 3705 * events for each user. Such level of flexibility is completely 3706 * unnecessary especially in the light of the planned unified hierarchy. 3707 * 3708 * Please deprecate this and replace with something simpler if at all 3709 * possible. 3710 */ 3711 3712 /* 3713 * Unregister event and free resources. 3714 * 3715 * Gets called from workqueue. 3716 */ 3717 static void memcg_event_remove(struct work_struct *work) 3718 { 3719 struct mem_cgroup_event *event = 3720 container_of(work, struct mem_cgroup_event, remove); 3721 struct mem_cgroup *memcg = event->memcg; 3722 3723 remove_wait_queue(event->wqh, &event->wait); 3724 3725 event->unregister_event(memcg, event->eventfd); 3726 3727 /* Notify userspace the event is going away. */ 3728 eventfd_signal(event->eventfd, 1); 3729 3730 eventfd_ctx_put(event->eventfd); 3731 kfree(event); 3732 css_put(&memcg->css); 3733 } 3734 3735 /* 3736 * Gets called on POLLHUP on eventfd when user closes it. 3737 * 3738 * Called with wqh->lock held and interrupts disabled. 3739 */ 3740 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 3741 int sync, void *key) 3742 { 3743 struct mem_cgroup_event *event = 3744 container_of(wait, struct mem_cgroup_event, wait); 3745 struct mem_cgroup *memcg = event->memcg; 3746 unsigned long flags = (unsigned long)key; 3747 3748 if (flags & POLLHUP) { 3749 /* 3750 * If the event has been detached at cgroup removal, we 3751 * can simply return knowing the other side will cleanup 3752 * for us. 3753 * 3754 * We can't race against event freeing since the other 3755 * side will require wqh->lock via remove_wait_queue(), 3756 * which we hold. 3757 */ 3758 spin_lock(&memcg->event_list_lock); 3759 if (!list_empty(&event->list)) { 3760 list_del_init(&event->list); 3761 /* 3762 * We are in atomic context, but cgroup_event_remove() 3763 * may sleep, so we have to call it in workqueue. 3764 */ 3765 schedule_work(&event->remove); 3766 } 3767 spin_unlock(&memcg->event_list_lock); 3768 } 3769 3770 return 0; 3771 } 3772 3773 static void memcg_event_ptable_queue_proc(struct file *file, 3774 wait_queue_head_t *wqh, poll_table *pt) 3775 { 3776 struct mem_cgroup_event *event = 3777 container_of(pt, struct mem_cgroup_event, pt); 3778 3779 event->wqh = wqh; 3780 add_wait_queue(wqh, &event->wait); 3781 } 3782 3783 /* 3784 * DO NOT USE IN NEW FILES. 3785 * 3786 * Parse input and register new cgroup event handler. 3787 * 3788 * Input must be in format '<event_fd> <control_fd> <args>'. 3789 * Interpretation of args is defined by control file implementation. 3790 */ 3791 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3792 char *buf, size_t nbytes, loff_t off) 3793 { 3794 struct cgroup_subsys_state *css = of_css(of); 3795 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3796 struct mem_cgroup_event *event; 3797 struct cgroup_subsys_state *cfile_css; 3798 unsigned int efd, cfd; 3799 struct fd efile; 3800 struct fd cfile; 3801 const char *name; 3802 char *endp; 3803 int ret; 3804 3805 buf = strstrip(buf); 3806 3807 efd = simple_strtoul(buf, &endp, 10); 3808 if (*endp != ' ') 3809 return -EINVAL; 3810 buf = endp + 1; 3811 3812 cfd = simple_strtoul(buf, &endp, 10); 3813 if ((*endp != ' ') && (*endp != '\0')) 3814 return -EINVAL; 3815 buf = endp + 1; 3816 3817 event = kzalloc(sizeof(*event), GFP_KERNEL); 3818 if (!event) 3819 return -ENOMEM; 3820 3821 event->memcg = memcg; 3822 INIT_LIST_HEAD(&event->list); 3823 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3824 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3825 INIT_WORK(&event->remove, memcg_event_remove); 3826 3827 efile = fdget(efd); 3828 if (!efile.file) { 3829 ret = -EBADF; 3830 goto out_kfree; 3831 } 3832 3833 event->eventfd = eventfd_ctx_fileget(efile.file); 3834 if (IS_ERR(event->eventfd)) { 3835 ret = PTR_ERR(event->eventfd); 3836 goto out_put_efile; 3837 } 3838 3839 cfile = fdget(cfd); 3840 if (!cfile.file) { 3841 ret = -EBADF; 3842 goto out_put_eventfd; 3843 } 3844 3845 /* the process need read permission on control file */ 3846 /* AV: shouldn't we check that it's been opened for read instead? */ 3847 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3848 if (ret < 0) 3849 goto out_put_cfile; 3850 3851 /* 3852 * Determine the event callbacks and set them in @event. This used 3853 * to be done via struct cftype but cgroup core no longer knows 3854 * about these events. The following is crude but the whole thing 3855 * is for compatibility anyway. 3856 * 3857 * DO NOT ADD NEW FILES. 3858 */ 3859 name = cfile.file->f_path.dentry->d_name.name; 3860 3861 if (!strcmp(name, "memory.usage_in_bytes")) { 3862 event->register_event = mem_cgroup_usage_register_event; 3863 event->unregister_event = mem_cgroup_usage_unregister_event; 3864 } else if (!strcmp(name, "memory.oom_control")) { 3865 event->register_event = mem_cgroup_oom_register_event; 3866 event->unregister_event = mem_cgroup_oom_unregister_event; 3867 } else if (!strcmp(name, "memory.pressure_level")) { 3868 event->register_event = vmpressure_register_event; 3869 event->unregister_event = vmpressure_unregister_event; 3870 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3871 event->register_event = memsw_cgroup_usage_register_event; 3872 event->unregister_event = memsw_cgroup_usage_unregister_event; 3873 } else { 3874 ret = -EINVAL; 3875 goto out_put_cfile; 3876 } 3877 3878 /* 3879 * Verify @cfile should belong to @css. Also, remaining events are 3880 * automatically removed on cgroup destruction but the removal is 3881 * asynchronous, so take an extra ref on @css. 3882 */ 3883 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3884 &memory_cgrp_subsys); 3885 ret = -EINVAL; 3886 if (IS_ERR(cfile_css)) 3887 goto out_put_cfile; 3888 if (cfile_css != css) { 3889 css_put(cfile_css); 3890 goto out_put_cfile; 3891 } 3892 3893 ret = event->register_event(memcg, event->eventfd, buf); 3894 if (ret) 3895 goto out_put_css; 3896 3897 efile.file->f_op->poll(efile.file, &event->pt); 3898 3899 spin_lock(&memcg->event_list_lock); 3900 list_add(&event->list, &memcg->event_list); 3901 spin_unlock(&memcg->event_list_lock); 3902 3903 fdput(cfile); 3904 fdput(efile); 3905 3906 return nbytes; 3907 3908 out_put_css: 3909 css_put(css); 3910 out_put_cfile: 3911 fdput(cfile); 3912 out_put_eventfd: 3913 eventfd_ctx_put(event->eventfd); 3914 out_put_efile: 3915 fdput(efile); 3916 out_kfree: 3917 kfree(event); 3918 3919 return ret; 3920 } 3921 3922 static struct cftype mem_cgroup_legacy_files[] = { 3923 { 3924 .name = "usage_in_bytes", 3925 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3926 .read_u64 = mem_cgroup_read_u64, 3927 }, 3928 { 3929 .name = "max_usage_in_bytes", 3930 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3931 .write = mem_cgroup_reset, 3932 .read_u64 = mem_cgroup_read_u64, 3933 }, 3934 { 3935 .name = "limit_in_bytes", 3936 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3937 .write = mem_cgroup_write, 3938 .read_u64 = mem_cgroup_read_u64, 3939 }, 3940 { 3941 .name = "soft_limit_in_bytes", 3942 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3943 .write = mem_cgroup_write, 3944 .read_u64 = mem_cgroup_read_u64, 3945 }, 3946 { 3947 .name = "failcnt", 3948 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3949 .write = mem_cgroup_reset, 3950 .read_u64 = mem_cgroup_read_u64, 3951 }, 3952 { 3953 .name = "stat", 3954 .seq_show = memcg_stat_show, 3955 }, 3956 { 3957 .name = "force_empty", 3958 .write = mem_cgroup_force_empty_write, 3959 }, 3960 { 3961 .name = "use_hierarchy", 3962 .write_u64 = mem_cgroup_hierarchy_write, 3963 .read_u64 = mem_cgroup_hierarchy_read, 3964 }, 3965 { 3966 .name = "cgroup.event_control", /* XXX: for compat */ 3967 .write = memcg_write_event_control, 3968 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3969 }, 3970 { 3971 .name = "swappiness", 3972 .read_u64 = mem_cgroup_swappiness_read, 3973 .write_u64 = mem_cgroup_swappiness_write, 3974 }, 3975 { 3976 .name = "move_charge_at_immigrate", 3977 .read_u64 = mem_cgroup_move_charge_read, 3978 .write_u64 = mem_cgroup_move_charge_write, 3979 }, 3980 { 3981 .name = "oom_control", 3982 .seq_show = mem_cgroup_oom_control_read, 3983 .write_u64 = mem_cgroup_oom_control_write, 3984 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3985 }, 3986 { 3987 .name = "pressure_level", 3988 }, 3989 #ifdef CONFIG_NUMA 3990 { 3991 .name = "numa_stat", 3992 .seq_show = memcg_numa_stat_show, 3993 }, 3994 #endif 3995 { 3996 .name = "kmem.limit_in_bytes", 3997 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 3998 .write = mem_cgroup_write, 3999 .read_u64 = mem_cgroup_read_u64, 4000 }, 4001 { 4002 .name = "kmem.usage_in_bytes", 4003 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4004 .read_u64 = mem_cgroup_read_u64, 4005 }, 4006 { 4007 .name = "kmem.failcnt", 4008 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4009 .write = mem_cgroup_reset, 4010 .read_u64 = mem_cgroup_read_u64, 4011 }, 4012 { 4013 .name = "kmem.max_usage_in_bytes", 4014 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4015 .write = mem_cgroup_reset, 4016 .read_u64 = mem_cgroup_read_u64, 4017 }, 4018 #ifdef CONFIG_SLABINFO 4019 { 4020 .name = "kmem.slabinfo", 4021 .seq_start = slab_start, 4022 .seq_next = slab_next, 4023 .seq_stop = slab_stop, 4024 .seq_show = memcg_slab_show, 4025 }, 4026 #endif 4027 { 4028 .name = "kmem.tcp.limit_in_bytes", 4029 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4030 .write = mem_cgroup_write, 4031 .read_u64 = mem_cgroup_read_u64, 4032 }, 4033 { 4034 .name = "kmem.tcp.usage_in_bytes", 4035 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4036 .read_u64 = mem_cgroup_read_u64, 4037 }, 4038 { 4039 .name = "kmem.tcp.failcnt", 4040 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4041 .write = mem_cgroup_reset, 4042 .read_u64 = mem_cgroup_read_u64, 4043 }, 4044 { 4045 .name = "kmem.tcp.max_usage_in_bytes", 4046 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4047 .write = mem_cgroup_reset, 4048 .read_u64 = mem_cgroup_read_u64, 4049 }, 4050 { }, /* terminate */ 4051 }; 4052 4053 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4054 { 4055 struct mem_cgroup_per_node *pn; 4056 struct mem_cgroup_per_zone *mz; 4057 int zone, tmp = node; 4058 /* 4059 * This routine is called against possible nodes. 4060 * But it's BUG to call kmalloc() against offline node. 4061 * 4062 * TODO: this routine can waste much memory for nodes which will 4063 * never be onlined. It's better to use memory hotplug callback 4064 * function. 4065 */ 4066 if (!node_state(node, N_NORMAL_MEMORY)) 4067 tmp = -1; 4068 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4069 if (!pn) 4070 return 1; 4071 4072 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4073 mz = &pn->zoneinfo[zone]; 4074 lruvec_init(&mz->lruvec); 4075 mz->usage_in_excess = 0; 4076 mz->on_tree = false; 4077 mz->memcg = memcg; 4078 } 4079 memcg->nodeinfo[node] = pn; 4080 return 0; 4081 } 4082 4083 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4084 { 4085 kfree(memcg->nodeinfo[node]); 4086 } 4087 4088 static void mem_cgroup_free(struct mem_cgroup *memcg) 4089 { 4090 int node; 4091 4092 memcg_wb_domain_exit(memcg); 4093 for_each_node(node) 4094 free_mem_cgroup_per_zone_info(memcg, node); 4095 free_percpu(memcg->stat); 4096 kfree(memcg); 4097 } 4098 4099 static struct mem_cgroup *mem_cgroup_alloc(void) 4100 { 4101 struct mem_cgroup *memcg; 4102 size_t size; 4103 int node; 4104 4105 size = sizeof(struct mem_cgroup); 4106 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4107 4108 memcg = kzalloc(size, GFP_KERNEL); 4109 if (!memcg) 4110 return NULL; 4111 4112 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4113 if (!memcg->stat) 4114 goto fail; 4115 4116 for_each_node(node) 4117 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4118 goto fail; 4119 4120 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4121 goto fail; 4122 4123 INIT_WORK(&memcg->high_work, high_work_func); 4124 memcg->last_scanned_node = MAX_NUMNODES; 4125 INIT_LIST_HEAD(&memcg->oom_notify); 4126 mutex_init(&memcg->thresholds_lock); 4127 spin_lock_init(&memcg->move_lock); 4128 vmpressure_init(&memcg->vmpressure); 4129 INIT_LIST_HEAD(&memcg->event_list); 4130 spin_lock_init(&memcg->event_list_lock); 4131 memcg->socket_pressure = jiffies; 4132 #ifndef CONFIG_SLOB 4133 memcg->kmemcg_id = -1; 4134 #endif 4135 #ifdef CONFIG_CGROUP_WRITEBACK 4136 INIT_LIST_HEAD(&memcg->cgwb_list); 4137 #endif 4138 return memcg; 4139 fail: 4140 mem_cgroup_free(memcg); 4141 return NULL; 4142 } 4143 4144 static struct cgroup_subsys_state * __ref 4145 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4146 { 4147 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4148 struct mem_cgroup *memcg; 4149 long error = -ENOMEM; 4150 4151 memcg = mem_cgroup_alloc(); 4152 if (!memcg) 4153 return ERR_PTR(error); 4154 4155 memcg->high = PAGE_COUNTER_MAX; 4156 memcg->soft_limit = PAGE_COUNTER_MAX; 4157 if (parent) { 4158 memcg->swappiness = mem_cgroup_swappiness(parent); 4159 memcg->oom_kill_disable = parent->oom_kill_disable; 4160 } 4161 if (parent && parent->use_hierarchy) { 4162 memcg->use_hierarchy = true; 4163 page_counter_init(&memcg->memory, &parent->memory); 4164 page_counter_init(&memcg->swap, &parent->swap); 4165 page_counter_init(&memcg->memsw, &parent->memsw); 4166 page_counter_init(&memcg->kmem, &parent->kmem); 4167 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4168 } else { 4169 page_counter_init(&memcg->memory, NULL); 4170 page_counter_init(&memcg->swap, NULL); 4171 page_counter_init(&memcg->memsw, NULL); 4172 page_counter_init(&memcg->kmem, NULL); 4173 page_counter_init(&memcg->tcpmem, NULL); 4174 /* 4175 * Deeper hierachy with use_hierarchy == false doesn't make 4176 * much sense so let cgroup subsystem know about this 4177 * unfortunate state in our controller. 4178 */ 4179 if (parent != root_mem_cgroup) 4180 memory_cgrp_subsys.broken_hierarchy = true; 4181 } 4182 4183 /* The following stuff does not apply to the root */ 4184 if (!parent) { 4185 root_mem_cgroup = memcg; 4186 return &memcg->css; 4187 } 4188 4189 error = memcg_online_kmem(memcg); 4190 if (error) 4191 goto fail; 4192 4193 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4194 static_branch_inc(&memcg_sockets_enabled_key); 4195 4196 return &memcg->css; 4197 fail: 4198 mem_cgroup_free(memcg); 4199 return NULL; 4200 } 4201 4202 static int 4203 mem_cgroup_css_online(struct cgroup_subsys_state *css) 4204 { 4205 if (css->id > MEM_CGROUP_ID_MAX) 4206 return -ENOSPC; 4207 4208 return 0; 4209 } 4210 4211 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4212 { 4213 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4214 struct mem_cgroup_event *event, *tmp; 4215 4216 /* 4217 * Unregister events and notify userspace. 4218 * Notify userspace about cgroup removing only after rmdir of cgroup 4219 * directory to avoid race between userspace and kernelspace. 4220 */ 4221 spin_lock(&memcg->event_list_lock); 4222 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4223 list_del_init(&event->list); 4224 schedule_work(&event->remove); 4225 } 4226 spin_unlock(&memcg->event_list_lock); 4227 4228 memcg_offline_kmem(memcg); 4229 wb_memcg_offline(memcg); 4230 } 4231 4232 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4233 { 4234 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4235 4236 invalidate_reclaim_iterators(memcg); 4237 } 4238 4239 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4240 { 4241 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4242 4243 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4244 static_branch_dec(&memcg_sockets_enabled_key); 4245 4246 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4247 static_branch_dec(&memcg_sockets_enabled_key); 4248 4249 vmpressure_cleanup(&memcg->vmpressure); 4250 cancel_work_sync(&memcg->high_work); 4251 mem_cgroup_remove_from_trees(memcg); 4252 memcg_free_kmem(memcg); 4253 mem_cgroup_free(memcg); 4254 } 4255 4256 /** 4257 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4258 * @css: the target css 4259 * 4260 * Reset the states of the mem_cgroup associated with @css. This is 4261 * invoked when the userland requests disabling on the default hierarchy 4262 * but the memcg is pinned through dependency. The memcg should stop 4263 * applying policies and should revert to the vanilla state as it may be 4264 * made visible again. 4265 * 4266 * The current implementation only resets the essential configurations. 4267 * This needs to be expanded to cover all the visible parts. 4268 */ 4269 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4270 { 4271 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4272 4273 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4274 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4275 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4276 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4277 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4278 memcg->low = 0; 4279 memcg->high = PAGE_COUNTER_MAX; 4280 memcg->soft_limit = PAGE_COUNTER_MAX; 4281 memcg_wb_domain_size_changed(memcg); 4282 } 4283 4284 #ifdef CONFIG_MMU 4285 /* Handlers for move charge at task migration. */ 4286 static int mem_cgroup_do_precharge(unsigned long count) 4287 { 4288 int ret; 4289 4290 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4291 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4292 if (!ret) { 4293 mc.precharge += count; 4294 return ret; 4295 } 4296 4297 /* Try charges one by one with reclaim */ 4298 while (count--) { 4299 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 4300 if (ret) 4301 return ret; 4302 mc.precharge++; 4303 cond_resched(); 4304 } 4305 return 0; 4306 } 4307 4308 /** 4309 * get_mctgt_type - get target type of moving charge 4310 * @vma: the vma the pte to be checked belongs 4311 * @addr: the address corresponding to the pte to be checked 4312 * @ptent: the pte to be checked 4313 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4314 * 4315 * Returns 4316 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4317 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4318 * move charge. if @target is not NULL, the page is stored in target->page 4319 * with extra refcnt got(Callers should handle it). 4320 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4321 * target for charge migration. if @target is not NULL, the entry is stored 4322 * in target->ent. 4323 * 4324 * Called with pte lock held. 4325 */ 4326 union mc_target { 4327 struct page *page; 4328 swp_entry_t ent; 4329 }; 4330 4331 enum mc_target_type { 4332 MC_TARGET_NONE = 0, 4333 MC_TARGET_PAGE, 4334 MC_TARGET_SWAP, 4335 }; 4336 4337 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4338 unsigned long addr, pte_t ptent) 4339 { 4340 struct page *page = vm_normal_page(vma, addr, ptent); 4341 4342 if (!page || !page_mapped(page)) 4343 return NULL; 4344 if (PageAnon(page)) { 4345 if (!(mc.flags & MOVE_ANON)) 4346 return NULL; 4347 } else { 4348 if (!(mc.flags & MOVE_FILE)) 4349 return NULL; 4350 } 4351 if (!get_page_unless_zero(page)) 4352 return NULL; 4353 4354 return page; 4355 } 4356 4357 #ifdef CONFIG_SWAP 4358 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4359 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4360 { 4361 struct page *page = NULL; 4362 swp_entry_t ent = pte_to_swp_entry(ptent); 4363 4364 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4365 return NULL; 4366 /* 4367 * Because lookup_swap_cache() updates some statistics counter, 4368 * we call find_get_page() with swapper_space directly. 4369 */ 4370 page = find_get_page(swap_address_space(ent), ent.val); 4371 if (do_memsw_account()) 4372 entry->val = ent.val; 4373 4374 return page; 4375 } 4376 #else 4377 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4378 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4379 { 4380 return NULL; 4381 } 4382 #endif 4383 4384 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4385 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4386 { 4387 struct page *page = NULL; 4388 struct address_space *mapping; 4389 pgoff_t pgoff; 4390 4391 if (!vma->vm_file) /* anonymous vma */ 4392 return NULL; 4393 if (!(mc.flags & MOVE_FILE)) 4394 return NULL; 4395 4396 mapping = vma->vm_file->f_mapping; 4397 pgoff = linear_page_index(vma, addr); 4398 4399 /* page is moved even if it's not RSS of this task(page-faulted). */ 4400 #ifdef CONFIG_SWAP 4401 /* shmem/tmpfs may report page out on swap: account for that too. */ 4402 if (shmem_mapping(mapping)) { 4403 page = find_get_entry(mapping, pgoff); 4404 if (radix_tree_exceptional_entry(page)) { 4405 swp_entry_t swp = radix_to_swp_entry(page); 4406 if (do_memsw_account()) 4407 *entry = swp; 4408 page = find_get_page(swap_address_space(swp), swp.val); 4409 } 4410 } else 4411 page = find_get_page(mapping, pgoff); 4412 #else 4413 page = find_get_page(mapping, pgoff); 4414 #endif 4415 return page; 4416 } 4417 4418 /** 4419 * mem_cgroup_move_account - move account of the page 4420 * @page: the page 4421 * @nr_pages: number of regular pages (>1 for huge pages) 4422 * @from: mem_cgroup which the page is moved from. 4423 * @to: mem_cgroup which the page is moved to. @from != @to. 4424 * 4425 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4426 * 4427 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4428 * from old cgroup. 4429 */ 4430 static int mem_cgroup_move_account(struct page *page, 4431 bool compound, 4432 struct mem_cgroup *from, 4433 struct mem_cgroup *to) 4434 { 4435 unsigned long flags; 4436 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4437 int ret; 4438 bool anon; 4439 4440 VM_BUG_ON(from == to); 4441 VM_BUG_ON_PAGE(PageLRU(page), page); 4442 VM_BUG_ON(compound && !PageTransHuge(page)); 4443 4444 /* 4445 * Prevent mem_cgroup_migrate() from looking at 4446 * page->mem_cgroup of its source page while we change it. 4447 */ 4448 ret = -EBUSY; 4449 if (!trylock_page(page)) 4450 goto out; 4451 4452 ret = -EINVAL; 4453 if (page->mem_cgroup != from) 4454 goto out_unlock; 4455 4456 anon = PageAnon(page); 4457 4458 spin_lock_irqsave(&from->move_lock, flags); 4459 4460 if (!anon && page_mapped(page)) { 4461 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4462 nr_pages); 4463 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4464 nr_pages); 4465 } 4466 4467 /* 4468 * move_lock grabbed above and caller set from->moving_account, so 4469 * mem_cgroup_update_page_stat() will serialize updates to PageDirty. 4470 * So mapping should be stable for dirty pages. 4471 */ 4472 if (!anon && PageDirty(page)) { 4473 struct address_space *mapping = page_mapping(page); 4474 4475 if (mapping_cap_account_dirty(mapping)) { 4476 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], 4477 nr_pages); 4478 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], 4479 nr_pages); 4480 } 4481 } 4482 4483 if (PageWriteback(page)) { 4484 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4485 nr_pages); 4486 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4487 nr_pages); 4488 } 4489 4490 /* 4491 * It is safe to change page->mem_cgroup here because the page 4492 * is referenced, charged, and isolated - we can't race with 4493 * uncharging, charging, migration, or LRU putback. 4494 */ 4495 4496 /* caller should have done css_get */ 4497 page->mem_cgroup = to; 4498 spin_unlock_irqrestore(&from->move_lock, flags); 4499 4500 ret = 0; 4501 4502 local_irq_disable(); 4503 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4504 memcg_check_events(to, page); 4505 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4506 memcg_check_events(from, page); 4507 local_irq_enable(); 4508 out_unlock: 4509 unlock_page(page); 4510 out: 4511 return ret; 4512 } 4513 4514 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4515 unsigned long addr, pte_t ptent, union mc_target *target) 4516 { 4517 struct page *page = NULL; 4518 enum mc_target_type ret = MC_TARGET_NONE; 4519 swp_entry_t ent = { .val = 0 }; 4520 4521 if (pte_present(ptent)) 4522 page = mc_handle_present_pte(vma, addr, ptent); 4523 else if (is_swap_pte(ptent)) 4524 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 4525 else if (pte_none(ptent)) 4526 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4527 4528 if (!page && !ent.val) 4529 return ret; 4530 if (page) { 4531 /* 4532 * Do only loose check w/o serialization. 4533 * mem_cgroup_move_account() checks the page is valid or 4534 * not under LRU exclusion. 4535 */ 4536 if (page->mem_cgroup == mc.from) { 4537 ret = MC_TARGET_PAGE; 4538 if (target) 4539 target->page = page; 4540 } 4541 if (!ret || !target) 4542 put_page(page); 4543 } 4544 /* There is a swap entry and a page doesn't exist or isn't charged */ 4545 if (ent.val && !ret && 4546 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4547 ret = MC_TARGET_SWAP; 4548 if (target) 4549 target->ent = ent; 4550 } 4551 return ret; 4552 } 4553 4554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4555 /* 4556 * We don't consider swapping or file mapped pages because THP does not 4557 * support them for now. 4558 * Caller should make sure that pmd_trans_huge(pmd) is true. 4559 */ 4560 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4561 unsigned long addr, pmd_t pmd, union mc_target *target) 4562 { 4563 struct page *page = NULL; 4564 enum mc_target_type ret = MC_TARGET_NONE; 4565 4566 page = pmd_page(pmd); 4567 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4568 if (!(mc.flags & MOVE_ANON)) 4569 return ret; 4570 if (page->mem_cgroup == mc.from) { 4571 ret = MC_TARGET_PAGE; 4572 if (target) { 4573 get_page(page); 4574 target->page = page; 4575 } 4576 } 4577 return ret; 4578 } 4579 #else 4580 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4581 unsigned long addr, pmd_t pmd, union mc_target *target) 4582 { 4583 return MC_TARGET_NONE; 4584 } 4585 #endif 4586 4587 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4588 unsigned long addr, unsigned long end, 4589 struct mm_walk *walk) 4590 { 4591 struct vm_area_struct *vma = walk->vma; 4592 pte_t *pte; 4593 spinlock_t *ptl; 4594 4595 ptl = pmd_trans_huge_lock(pmd, vma); 4596 if (ptl) { 4597 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4598 mc.precharge += HPAGE_PMD_NR; 4599 spin_unlock(ptl); 4600 return 0; 4601 } 4602 4603 if (pmd_trans_unstable(pmd)) 4604 return 0; 4605 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4606 for (; addr != end; pte++, addr += PAGE_SIZE) 4607 if (get_mctgt_type(vma, addr, *pte, NULL)) 4608 mc.precharge++; /* increment precharge temporarily */ 4609 pte_unmap_unlock(pte - 1, ptl); 4610 cond_resched(); 4611 4612 return 0; 4613 } 4614 4615 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4616 { 4617 unsigned long precharge; 4618 4619 struct mm_walk mem_cgroup_count_precharge_walk = { 4620 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4621 .mm = mm, 4622 }; 4623 down_read(&mm->mmap_sem); 4624 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); 4625 up_read(&mm->mmap_sem); 4626 4627 precharge = mc.precharge; 4628 mc.precharge = 0; 4629 4630 return precharge; 4631 } 4632 4633 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4634 { 4635 unsigned long precharge = mem_cgroup_count_precharge(mm); 4636 4637 VM_BUG_ON(mc.moving_task); 4638 mc.moving_task = current; 4639 return mem_cgroup_do_precharge(precharge); 4640 } 4641 4642 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4643 static void __mem_cgroup_clear_mc(void) 4644 { 4645 struct mem_cgroup *from = mc.from; 4646 struct mem_cgroup *to = mc.to; 4647 4648 /* we must uncharge all the leftover precharges from mc.to */ 4649 if (mc.precharge) { 4650 cancel_charge(mc.to, mc.precharge); 4651 mc.precharge = 0; 4652 } 4653 /* 4654 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4655 * we must uncharge here. 4656 */ 4657 if (mc.moved_charge) { 4658 cancel_charge(mc.from, mc.moved_charge); 4659 mc.moved_charge = 0; 4660 } 4661 /* we must fixup refcnts and charges */ 4662 if (mc.moved_swap) { 4663 /* uncharge swap account from the old cgroup */ 4664 if (!mem_cgroup_is_root(mc.from)) 4665 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4666 4667 /* 4668 * we charged both to->memory and to->memsw, so we 4669 * should uncharge to->memory. 4670 */ 4671 if (!mem_cgroup_is_root(mc.to)) 4672 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4673 4674 css_put_many(&mc.from->css, mc.moved_swap); 4675 4676 /* we've already done css_get(mc.to) */ 4677 mc.moved_swap = 0; 4678 } 4679 memcg_oom_recover(from); 4680 memcg_oom_recover(to); 4681 wake_up_all(&mc.waitq); 4682 } 4683 4684 static void mem_cgroup_clear_mc(void) 4685 { 4686 struct mm_struct *mm = mc.mm; 4687 4688 /* 4689 * we must clear moving_task before waking up waiters at the end of 4690 * task migration. 4691 */ 4692 mc.moving_task = NULL; 4693 __mem_cgroup_clear_mc(); 4694 spin_lock(&mc.lock); 4695 mc.from = NULL; 4696 mc.to = NULL; 4697 mc.mm = NULL; 4698 spin_unlock(&mc.lock); 4699 4700 mmput(mm); 4701 } 4702 4703 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4704 { 4705 struct cgroup_subsys_state *css; 4706 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4707 struct mem_cgroup *from; 4708 struct task_struct *leader, *p; 4709 struct mm_struct *mm; 4710 unsigned long move_flags; 4711 int ret = 0; 4712 4713 /* charge immigration isn't supported on the default hierarchy */ 4714 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4715 return 0; 4716 4717 /* 4718 * Multi-process migrations only happen on the default hierarchy 4719 * where charge immigration is not used. Perform charge 4720 * immigration if @tset contains a leader and whine if there are 4721 * multiple. 4722 */ 4723 p = NULL; 4724 cgroup_taskset_for_each_leader(leader, css, tset) { 4725 WARN_ON_ONCE(p); 4726 p = leader; 4727 memcg = mem_cgroup_from_css(css); 4728 } 4729 if (!p) 4730 return 0; 4731 4732 /* 4733 * We are now commited to this value whatever it is. Changes in this 4734 * tunable will only affect upcoming migrations, not the current one. 4735 * So we need to save it, and keep it going. 4736 */ 4737 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4738 if (!move_flags) 4739 return 0; 4740 4741 from = mem_cgroup_from_task(p); 4742 4743 VM_BUG_ON(from == memcg); 4744 4745 mm = get_task_mm(p); 4746 if (!mm) 4747 return 0; 4748 /* We move charges only when we move a owner of the mm */ 4749 if (mm->owner == p) { 4750 VM_BUG_ON(mc.from); 4751 VM_BUG_ON(mc.to); 4752 VM_BUG_ON(mc.precharge); 4753 VM_BUG_ON(mc.moved_charge); 4754 VM_BUG_ON(mc.moved_swap); 4755 4756 spin_lock(&mc.lock); 4757 mc.mm = mm; 4758 mc.from = from; 4759 mc.to = memcg; 4760 mc.flags = move_flags; 4761 spin_unlock(&mc.lock); 4762 /* We set mc.moving_task later */ 4763 4764 ret = mem_cgroup_precharge_mc(mm); 4765 if (ret) 4766 mem_cgroup_clear_mc(); 4767 } else { 4768 mmput(mm); 4769 } 4770 return ret; 4771 } 4772 4773 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4774 { 4775 if (mc.to) 4776 mem_cgroup_clear_mc(); 4777 } 4778 4779 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4780 unsigned long addr, unsigned long end, 4781 struct mm_walk *walk) 4782 { 4783 int ret = 0; 4784 struct vm_area_struct *vma = walk->vma; 4785 pte_t *pte; 4786 spinlock_t *ptl; 4787 enum mc_target_type target_type; 4788 union mc_target target; 4789 struct page *page; 4790 4791 ptl = pmd_trans_huge_lock(pmd, vma); 4792 if (ptl) { 4793 if (mc.precharge < HPAGE_PMD_NR) { 4794 spin_unlock(ptl); 4795 return 0; 4796 } 4797 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4798 if (target_type == MC_TARGET_PAGE) { 4799 page = target.page; 4800 if (!isolate_lru_page(page)) { 4801 if (!mem_cgroup_move_account(page, true, 4802 mc.from, mc.to)) { 4803 mc.precharge -= HPAGE_PMD_NR; 4804 mc.moved_charge += HPAGE_PMD_NR; 4805 } 4806 putback_lru_page(page); 4807 } 4808 put_page(page); 4809 } 4810 spin_unlock(ptl); 4811 return 0; 4812 } 4813 4814 if (pmd_trans_unstable(pmd)) 4815 return 0; 4816 retry: 4817 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4818 for (; addr != end; addr += PAGE_SIZE) { 4819 pte_t ptent = *(pte++); 4820 swp_entry_t ent; 4821 4822 if (!mc.precharge) 4823 break; 4824 4825 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4826 case MC_TARGET_PAGE: 4827 page = target.page; 4828 /* 4829 * We can have a part of the split pmd here. Moving it 4830 * can be done but it would be too convoluted so simply 4831 * ignore such a partial THP and keep it in original 4832 * memcg. There should be somebody mapping the head. 4833 */ 4834 if (PageTransCompound(page)) 4835 goto put; 4836 if (isolate_lru_page(page)) 4837 goto put; 4838 if (!mem_cgroup_move_account(page, false, 4839 mc.from, mc.to)) { 4840 mc.precharge--; 4841 /* we uncharge from mc.from later. */ 4842 mc.moved_charge++; 4843 } 4844 putback_lru_page(page); 4845 put: /* get_mctgt_type() gets the page */ 4846 put_page(page); 4847 break; 4848 case MC_TARGET_SWAP: 4849 ent = target.ent; 4850 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4851 mc.precharge--; 4852 /* we fixup refcnts and charges later. */ 4853 mc.moved_swap++; 4854 } 4855 break; 4856 default: 4857 break; 4858 } 4859 } 4860 pte_unmap_unlock(pte - 1, ptl); 4861 cond_resched(); 4862 4863 if (addr != end) { 4864 /* 4865 * We have consumed all precharges we got in can_attach(). 4866 * We try charge one by one, but don't do any additional 4867 * charges to mc.to if we have failed in charge once in attach() 4868 * phase. 4869 */ 4870 ret = mem_cgroup_do_precharge(1); 4871 if (!ret) 4872 goto retry; 4873 } 4874 4875 return ret; 4876 } 4877 4878 static void mem_cgroup_move_charge(void) 4879 { 4880 struct mm_walk mem_cgroup_move_charge_walk = { 4881 .pmd_entry = mem_cgroup_move_charge_pte_range, 4882 .mm = mc.mm, 4883 }; 4884 4885 lru_add_drain_all(); 4886 /* 4887 * Signal lock_page_memcg() to take the memcg's move_lock 4888 * while we're moving its pages to another memcg. Then wait 4889 * for already started RCU-only updates to finish. 4890 */ 4891 atomic_inc(&mc.from->moving_account); 4892 synchronize_rcu(); 4893 retry: 4894 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 4895 /* 4896 * Someone who are holding the mmap_sem might be waiting in 4897 * waitq. So we cancel all extra charges, wake up all waiters, 4898 * and retry. Because we cancel precharges, we might not be able 4899 * to move enough charges, but moving charge is a best-effort 4900 * feature anyway, so it wouldn't be a big problem. 4901 */ 4902 __mem_cgroup_clear_mc(); 4903 cond_resched(); 4904 goto retry; 4905 } 4906 /* 4907 * When we have consumed all precharges and failed in doing 4908 * additional charge, the page walk just aborts. 4909 */ 4910 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); 4911 up_read(&mc.mm->mmap_sem); 4912 atomic_dec(&mc.from->moving_account); 4913 } 4914 4915 static void mem_cgroup_move_task(void) 4916 { 4917 if (mc.to) { 4918 mem_cgroup_move_charge(); 4919 mem_cgroup_clear_mc(); 4920 } 4921 } 4922 #else /* !CONFIG_MMU */ 4923 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4924 { 4925 return 0; 4926 } 4927 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4928 { 4929 } 4930 static void mem_cgroup_move_task(void) 4931 { 4932 } 4933 #endif 4934 4935 /* 4936 * Cgroup retains root cgroups across [un]mount cycles making it necessary 4937 * to verify whether we're attached to the default hierarchy on each mount 4938 * attempt. 4939 */ 4940 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 4941 { 4942 /* 4943 * use_hierarchy is forced on the default hierarchy. cgroup core 4944 * guarantees that @root doesn't have any children, so turning it 4945 * on for the root memcg is enough. 4946 */ 4947 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4948 root_mem_cgroup->use_hierarchy = true; 4949 else 4950 root_mem_cgroup->use_hierarchy = false; 4951 } 4952 4953 static u64 memory_current_read(struct cgroup_subsys_state *css, 4954 struct cftype *cft) 4955 { 4956 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4957 4958 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4959 } 4960 4961 static int memory_low_show(struct seq_file *m, void *v) 4962 { 4963 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 4964 unsigned long low = READ_ONCE(memcg->low); 4965 4966 if (low == PAGE_COUNTER_MAX) 4967 seq_puts(m, "max\n"); 4968 else 4969 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 4970 4971 return 0; 4972 } 4973 4974 static ssize_t memory_low_write(struct kernfs_open_file *of, 4975 char *buf, size_t nbytes, loff_t off) 4976 { 4977 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4978 unsigned long low; 4979 int err; 4980 4981 buf = strstrip(buf); 4982 err = page_counter_memparse(buf, "max", &low); 4983 if (err) 4984 return err; 4985 4986 memcg->low = low; 4987 4988 return nbytes; 4989 } 4990 4991 static int memory_high_show(struct seq_file *m, void *v) 4992 { 4993 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 4994 unsigned long high = READ_ONCE(memcg->high); 4995 4996 if (high == PAGE_COUNTER_MAX) 4997 seq_puts(m, "max\n"); 4998 else 4999 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5000 5001 return 0; 5002 } 5003 5004 static ssize_t memory_high_write(struct kernfs_open_file *of, 5005 char *buf, size_t nbytes, loff_t off) 5006 { 5007 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5008 unsigned long nr_pages; 5009 unsigned long high; 5010 int err; 5011 5012 buf = strstrip(buf); 5013 err = page_counter_memparse(buf, "max", &high); 5014 if (err) 5015 return err; 5016 5017 memcg->high = high; 5018 5019 nr_pages = page_counter_read(&memcg->memory); 5020 if (nr_pages > high) 5021 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5022 GFP_KERNEL, true); 5023 5024 memcg_wb_domain_size_changed(memcg); 5025 return nbytes; 5026 } 5027 5028 static int memory_max_show(struct seq_file *m, void *v) 5029 { 5030 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5031 unsigned long max = READ_ONCE(memcg->memory.limit); 5032 5033 if (max == PAGE_COUNTER_MAX) 5034 seq_puts(m, "max\n"); 5035 else 5036 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5037 5038 return 0; 5039 } 5040 5041 static ssize_t memory_max_write(struct kernfs_open_file *of, 5042 char *buf, size_t nbytes, loff_t off) 5043 { 5044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5045 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5046 bool drained = false; 5047 unsigned long max; 5048 int err; 5049 5050 buf = strstrip(buf); 5051 err = page_counter_memparse(buf, "max", &max); 5052 if (err) 5053 return err; 5054 5055 xchg(&memcg->memory.limit, max); 5056 5057 for (;;) { 5058 unsigned long nr_pages = page_counter_read(&memcg->memory); 5059 5060 if (nr_pages <= max) 5061 break; 5062 5063 if (signal_pending(current)) { 5064 err = -EINTR; 5065 break; 5066 } 5067 5068 if (!drained) { 5069 drain_all_stock(memcg); 5070 drained = true; 5071 continue; 5072 } 5073 5074 if (nr_reclaims) { 5075 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5076 GFP_KERNEL, true)) 5077 nr_reclaims--; 5078 continue; 5079 } 5080 5081 mem_cgroup_events(memcg, MEMCG_OOM, 1); 5082 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5083 break; 5084 } 5085 5086 memcg_wb_domain_size_changed(memcg); 5087 return nbytes; 5088 } 5089 5090 static int memory_events_show(struct seq_file *m, void *v) 5091 { 5092 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5093 5094 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5095 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5096 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5097 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5098 5099 return 0; 5100 } 5101 5102 static int memory_stat_show(struct seq_file *m, void *v) 5103 { 5104 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5105 unsigned long stat[MEMCG_NR_STAT]; 5106 unsigned long events[MEMCG_NR_EVENTS]; 5107 int i; 5108 5109 /* 5110 * Provide statistics on the state of the memory subsystem as 5111 * well as cumulative event counters that show past behavior. 5112 * 5113 * This list is ordered following a combination of these gradients: 5114 * 1) generic big picture -> specifics and details 5115 * 2) reflecting userspace activity -> reflecting kernel heuristics 5116 * 5117 * Current memory state: 5118 */ 5119 5120 tree_stat(memcg, stat); 5121 tree_events(memcg, events); 5122 5123 seq_printf(m, "anon %llu\n", 5124 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); 5125 seq_printf(m, "file %llu\n", 5126 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); 5127 seq_printf(m, "kernel_stack %llu\n", 5128 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE); 5129 seq_printf(m, "slab %llu\n", 5130 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + 5131 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5132 seq_printf(m, "sock %llu\n", 5133 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5134 5135 seq_printf(m, "file_mapped %llu\n", 5136 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); 5137 seq_printf(m, "file_dirty %llu\n", 5138 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); 5139 seq_printf(m, "file_writeback %llu\n", 5140 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); 5141 5142 for (i = 0; i < NR_LRU_LISTS; i++) { 5143 struct mem_cgroup *mi; 5144 unsigned long val = 0; 5145 5146 for_each_mem_cgroup_tree(mi, memcg) 5147 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5148 seq_printf(m, "%s %llu\n", 5149 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5150 } 5151 5152 seq_printf(m, "slab_reclaimable %llu\n", 5153 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); 5154 seq_printf(m, "slab_unreclaimable %llu\n", 5155 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5156 5157 /* Accumulated memory events */ 5158 5159 seq_printf(m, "pgfault %lu\n", 5160 events[MEM_CGROUP_EVENTS_PGFAULT]); 5161 seq_printf(m, "pgmajfault %lu\n", 5162 events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 5163 5164 return 0; 5165 } 5166 5167 static struct cftype memory_files[] = { 5168 { 5169 .name = "current", 5170 .flags = CFTYPE_NOT_ON_ROOT, 5171 .read_u64 = memory_current_read, 5172 }, 5173 { 5174 .name = "low", 5175 .flags = CFTYPE_NOT_ON_ROOT, 5176 .seq_show = memory_low_show, 5177 .write = memory_low_write, 5178 }, 5179 { 5180 .name = "high", 5181 .flags = CFTYPE_NOT_ON_ROOT, 5182 .seq_show = memory_high_show, 5183 .write = memory_high_write, 5184 }, 5185 { 5186 .name = "max", 5187 .flags = CFTYPE_NOT_ON_ROOT, 5188 .seq_show = memory_max_show, 5189 .write = memory_max_write, 5190 }, 5191 { 5192 .name = "events", 5193 .flags = CFTYPE_NOT_ON_ROOT, 5194 .file_offset = offsetof(struct mem_cgroup, events_file), 5195 .seq_show = memory_events_show, 5196 }, 5197 { 5198 .name = "stat", 5199 .flags = CFTYPE_NOT_ON_ROOT, 5200 .seq_show = memory_stat_show, 5201 }, 5202 { } /* terminate */ 5203 }; 5204 5205 struct cgroup_subsys memory_cgrp_subsys = { 5206 .css_alloc = mem_cgroup_css_alloc, 5207 .css_online = mem_cgroup_css_online, 5208 .css_offline = mem_cgroup_css_offline, 5209 .css_released = mem_cgroup_css_released, 5210 .css_free = mem_cgroup_css_free, 5211 .css_reset = mem_cgroup_css_reset, 5212 .can_attach = mem_cgroup_can_attach, 5213 .cancel_attach = mem_cgroup_cancel_attach, 5214 .post_attach = mem_cgroup_move_task, 5215 .bind = mem_cgroup_bind, 5216 .dfl_cftypes = memory_files, 5217 .legacy_cftypes = mem_cgroup_legacy_files, 5218 .early_init = 0, 5219 }; 5220 5221 /** 5222 * mem_cgroup_low - check if memory consumption is below the normal range 5223 * @root: the highest ancestor to consider 5224 * @memcg: the memory cgroup to check 5225 * 5226 * Returns %true if memory consumption of @memcg, and that of all 5227 * configurable ancestors up to @root, is below the normal range. 5228 */ 5229 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5230 { 5231 if (mem_cgroup_disabled()) 5232 return false; 5233 5234 /* 5235 * The toplevel group doesn't have a configurable range, so 5236 * it's never low when looked at directly, and it is not 5237 * considered an ancestor when assessing the hierarchy. 5238 */ 5239 5240 if (memcg == root_mem_cgroup) 5241 return false; 5242 5243 if (page_counter_read(&memcg->memory) >= memcg->low) 5244 return false; 5245 5246 while (memcg != root) { 5247 memcg = parent_mem_cgroup(memcg); 5248 5249 if (memcg == root_mem_cgroup) 5250 break; 5251 5252 if (page_counter_read(&memcg->memory) >= memcg->low) 5253 return false; 5254 } 5255 return true; 5256 } 5257 5258 /** 5259 * mem_cgroup_try_charge - try charging a page 5260 * @page: page to charge 5261 * @mm: mm context of the victim 5262 * @gfp_mask: reclaim mode 5263 * @memcgp: charged memcg return 5264 * 5265 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5266 * pages according to @gfp_mask if necessary. 5267 * 5268 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5269 * Otherwise, an error code is returned. 5270 * 5271 * After page->mapping has been set up, the caller must finalize the 5272 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5273 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5274 */ 5275 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5276 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5277 bool compound) 5278 { 5279 struct mem_cgroup *memcg = NULL; 5280 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5281 int ret = 0; 5282 5283 if (mem_cgroup_disabled()) 5284 goto out; 5285 5286 if (PageSwapCache(page)) { 5287 /* 5288 * Every swap fault against a single page tries to charge the 5289 * page, bail as early as possible. shmem_unuse() encounters 5290 * already charged pages, too. The USED bit is protected by 5291 * the page lock, which serializes swap cache removal, which 5292 * in turn serializes uncharging. 5293 */ 5294 VM_BUG_ON_PAGE(!PageLocked(page), page); 5295 if (page->mem_cgroup) 5296 goto out; 5297 5298 if (do_swap_account) { 5299 swp_entry_t ent = { .val = page_private(page), }; 5300 unsigned short id = lookup_swap_cgroup_id(ent); 5301 5302 rcu_read_lock(); 5303 memcg = mem_cgroup_from_id(id); 5304 if (memcg && !css_tryget_online(&memcg->css)) 5305 memcg = NULL; 5306 rcu_read_unlock(); 5307 } 5308 } 5309 5310 if (!memcg) 5311 memcg = get_mem_cgroup_from_mm(mm); 5312 5313 ret = try_charge(memcg, gfp_mask, nr_pages); 5314 5315 css_put(&memcg->css); 5316 out: 5317 *memcgp = memcg; 5318 return ret; 5319 } 5320 5321 /** 5322 * mem_cgroup_commit_charge - commit a page charge 5323 * @page: page to charge 5324 * @memcg: memcg to charge the page to 5325 * @lrucare: page might be on LRU already 5326 * 5327 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5328 * after page->mapping has been set up. This must happen atomically 5329 * as part of the page instantiation, i.e. under the page table lock 5330 * for anonymous pages, under the page lock for page and swap cache. 5331 * 5332 * In addition, the page must not be on the LRU during the commit, to 5333 * prevent racing with task migration. If it might be, use @lrucare. 5334 * 5335 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5336 */ 5337 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5338 bool lrucare, bool compound) 5339 { 5340 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5341 5342 VM_BUG_ON_PAGE(!page->mapping, page); 5343 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5344 5345 if (mem_cgroup_disabled()) 5346 return; 5347 /* 5348 * Swap faults will attempt to charge the same page multiple 5349 * times. But reuse_swap_page() might have removed the page 5350 * from swapcache already, so we can't check PageSwapCache(). 5351 */ 5352 if (!memcg) 5353 return; 5354 5355 commit_charge(page, memcg, lrucare); 5356 5357 local_irq_disable(); 5358 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5359 memcg_check_events(memcg, page); 5360 local_irq_enable(); 5361 5362 if (do_memsw_account() && PageSwapCache(page)) { 5363 swp_entry_t entry = { .val = page_private(page) }; 5364 /* 5365 * The swap entry might not get freed for a long time, 5366 * let's not wait for it. The page already received a 5367 * memory+swap charge, drop the swap entry duplicate. 5368 */ 5369 mem_cgroup_uncharge_swap(entry); 5370 } 5371 } 5372 5373 /** 5374 * mem_cgroup_cancel_charge - cancel a page charge 5375 * @page: page to charge 5376 * @memcg: memcg to charge the page to 5377 * 5378 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5379 */ 5380 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5381 bool compound) 5382 { 5383 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5384 5385 if (mem_cgroup_disabled()) 5386 return; 5387 /* 5388 * Swap faults will attempt to charge the same page multiple 5389 * times. But reuse_swap_page() might have removed the page 5390 * from swapcache already, so we can't check PageSwapCache(). 5391 */ 5392 if (!memcg) 5393 return; 5394 5395 cancel_charge(memcg, nr_pages); 5396 } 5397 5398 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5399 unsigned long nr_anon, unsigned long nr_file, 5400 unsigned long nr_huge, struct page *dummy_page) 5401 { 5402 unsigned long nr_pages = nr_anon + nr_file; 5403 unsigned long flags; 5404 5405 if (!mem_cgroup_is_root(memcg)) { 5406 page_counter_uncharge(&memcg->memory, nr_pages); 5407 if (do_memsw_account()) 5408 page_counter_uncharge(&memcg->memsw, nr_pages); 5409 memcg_oom_recover(memcg); 5410 } 5411 5412 local_irq_save(flags); 5413 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5414 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5415 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5416 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5417 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5418 memcg_check_events(memcg, dummy_page); 5419 local_irq_restore(flags); 5420 5421 if (!mem_cgroup_is_root(memcg)) 5422 css_put_many(&memcg->css, nr_pages); 5423 } 5424 5425 static void uncharge_list(struct list_head *page_list) 5426 { 5427 struct mem_cgroup *memcg = NULL; 5428 unsigned long nr_anon = 0; 5429 unsigned long nr_file = 0; 5430 unsigned long nr_huge = 0; 5431 unsigned long pgpgout = 0; 5432 struct list_head *next; 5433 struct page *page; 5434 5435 /* 5436 * Note that the list can be a single page->lru; hence the 5437 * do-while loop instead of a simple list_for_each_entry(). 5438 */ 5439 next = page_list->next; 5440 do { 5441 unsigned int nr_pages = 1; 5442 5443 page = list_entry(next, struct page, lru); 5444 next = page->lru.next; 5445 5446 VM_BUG_ON_PAGE(PageLRU(page), page); 5447 VM_BUG_ON_PAGE(page_count(page), page); 5448 5449 if (!page->mem_cgroup) 5450 continue; 5451 5452 /* 5453 * Nobody should be changing or seriously looking at 5454 * page->mem_cgroup at this point, we have fully 5455 * exclusive access to the page. 5456 */ 5457 5458 if (memcg != page->mem_cgroup) { 5459 if (memcg) { 5460 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5461 nr_huge, page); 5462 pgpgout = nr_anon = nr_file = nr_huge = 0; 5463 } 5464 memcg = page->mem_cgroup; 5465 } 5466 5467 if (PageTransHuge(page)) { 5468 nr_pages <<= compound_order(page); 5469 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5470 nr_huge += nr_pages; 5471 } 5472 5473 if (PageAnon(page)) 5474 nr_anon += nr_pages; 5475 else 5476 nr_file += nr_pages; 5477 5478 page->mem_cgroup = NULL; 5479 5480 pgpgout++; 5481 } while (next != page_list); 5482 5483 if (memcg) 5484 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5485 nr_huge, page); 5486 } 5487 5488 /** 5489 * mem_cgroup_uncharge - uncharge a page 5490 * @page: page to uncharge 5491 * 5492 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5493 * mem_cgroup_commit_charge(). 5494 */ 5495 void mem_cgroup_uncharge(struct page *page) 5496 { 5497 if (mem_cgroup_disabled()) 5498 return; 5499 5500 /* Don't touch page->lru of any random page, pre-check: */ 5501 if (!page->mem_cgroup) 5502 return; 5503 5504 INIT_LIST_HEAD(&page->lru); 5505 uncharge_list(&page->lru); 5506 } 5507 5508 /** 5509 * mem_cgroup_uncharge_list - uncharge a list of page 5510 * @page_list: list of pages to uncharge 5511 * 5512 * Uncharge a list of pages previously charged with 5513 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5514 */ 5515 void mem_cgroup_uncharge_list(struct list_head *page_list) 5516 { 5517 if (mem_cgroup_disabled()) 5518 return; 5519 5520 if (!list_empty(page_list)) 5521 uncharge_list(page_list); 5522 } 5523 5524 /** 5525 * mem_cgroup_migrate - charge a page's replacement 5526 * @oldpage: currently circulating page 5527 * @newpage: replacement page 5528 * 5529 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5530 * be uncharged upon free. 5531 * 5532 * Both pages must be locked, @newpage->mapping must be set up. 5533 */ 5534 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5535 { 5536 struct mem_cgroup *memcg; 5537 unsigned int nr_pages; 5538 bool compound; 5539 5540 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5541 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5542 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5543 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5544 newpage); 5545 5546 if (mem_cgroup_disabled()) 5547 return; 5548 5549 /* Page cache replacement: new page already charged? */ 5550 if (newpage->mem_cgroup) 5551 return; 5552 5553 /* Swapcache readahead pages can get replaced before being charged */ 5554 memcg = oldpage->mem_cgroup; 5555 if (!memcg) 5556 return; 5557 5558 /* Force-charge the new page. The old one will be freed soon */ 5559 compound = PageTransHuge(newpage); 5560 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5561 5562 page_counter_charge(&memcg->memory, nr_pages); 5563 if (do_memsw_account()) 5564 page_counter_charge(&memcg->memsw, nr_pages); 5565 css_get_many(&memcg->css, nr_pages); 5566 5567 commit_charge(newpage, memcg, false); 5568 5569 local_irq_disable(); 5570 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5571 memcg_check_events(memcg, newpage); 5572 local_irq_enable(); 5573 } 5574 5575 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5576 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5577 5578 void sock_update_memcg(struct sock *sk) 5579 { 5580 struct mem_cgroup *memcg; 5581 5582 /* Socket cloning can throw us here with sk_cgrp already 5583 * filled. It won't however, necessarily happen from 5584 * process context. So the test for root memcg given 5585 * the current task's memcg won't help us in this case. 5586 * 5587 * Respecting the original socket's memcg is a better 5588 * decision in this case. 5589 */ 5590 if (sk->sk_memcg) { 5591 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5592 css_get(&sk->sk_memcg->css); 5593 return; 5594 } 5595 5596 rcu_read_lock(); 5597 memcg = mem_cgroup_from_task(current); 5598 if (memcg == root_mem_cgroup) 5599 goto out; 5600 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5601 goto out; 5602 if (css_tryget_online(&memcg->css)) 5603 sk->sk_memcg = memcg; 5604 out: 5605 rcu_read_unlock(); 5606 } 5607 EXPORT_SYMBOL(sock_update_memcg); 5608 5609 void sock_release_memcg(struct sock *sk) 5610 { 5611 WARN_ON(!sk->sk_memcg); 5612 css_put(&sk->sk_memcg->css); 5613 } 5614 5615 /** 5616 * mem_cgroup_charge_skmem - charge socket memory 5617 * @memcg: memcg to charge 5618 * @nr_pages: number of pages to charge 5619 * 5620 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5621 * @memcg's configured limit, %false if the charge had to be forced. 5622 */ 5623 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5624 { 5625 gfp_t gfp_mask = GFP_KERNEL; 5626 5627 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5628 struct page_counter *fail; 5629 5630 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5631 memcg->tcpmem_pressure = 0; 5632 return true; 5633 } 5634 page_counter_charge(&memcg->tcpmem, nr_pages); 5635 memcg->tcpmem_pressure = 1; 5636 return false; 5637 } 5638 5639 /* Don't block in the packet receive path */ 5640 if (in_softirq()) 5641 gfp_mask = GFP_NOWAIT; 5642 5643 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5644 5645 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5646 return true; 5647 5648 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5649 return false; 5650 } 5651 5652 /** 5653 * mem_cgroup_uncharge_skmem - uncharge socket memory 5654 * @memcg - memcg to uncharge 5655 * @nr_pages - number of pages to uncharge 5656 */ 5657 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5658 { 5659 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5660 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5661 return; 5662 } 5663 5664 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5665 5666 page_counter_uncharge(&memcg->memory, nr_pages); 5667 css_put_many(&memcg->css, nr_pages); 5668 } 5669 5670 static int __init cgroup_memory(char *s) 5671 { 5672 char *token; 5673 5674 while ((token = strsep(&s, ",")) != NULL) { 5675 if (!*token) 5676 continue; 5677 if (!strcmp(token, "nosocket")) 5678 cgroup_memory_nosocket = true; 5679 if (!strcmp(token, "nokmem")) 5680 cgroup_memory_nokmem = true; 5681 } 5682 return 0; 5683 } 5684 __setup("cgroup.memory=", cgroup_memory); 5685 5686 /* 5687 * subsys_initcall() for memory controller. 5688 * 5689 * Some parts like hotcpu_notifier() have to be initialized from this context 5690 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 5691 * everything that doesn't depend on a specific mem_cgroup structure should 5692 * be initialized from here. 5693 */ 5694 static int __init mem_cgroup_init(void) 5695 { 5696 int cpu, node; 5697 5698 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 5699 5700 for_each_possible_cpu(cpu) 5701 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5702 drain_local_stock); 5703 5704 for_each_node(node) { 5705 struct mem_cgroup_tree_per_node *rtpn; 5706 int zone; 5707 5708 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5709 node_online(node) ? node : NUMA_NO_NODE); 5710 5711 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5712 struct mem_cgroup_tree_per_zone *rtpz; 5713 5714 rtpz = &rtpn->rb_tree_per_zone[zone]; 5715 rtpz->rb_root = RB_ROOT; 5716 spin_lock_init(&rtpz->lock); 5717 } 5718 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5719 } 5720 5721 return 0; 5722 } 5723 subsys_initcall(mem_cgroup_init); 5724 5725 #ifdef CONFIG_MEMCG_SWAP 5726 /** 5727 * mem_cgroup_swapout - transfer a memsw charge to swap 5728 * @page: page whose memsw charge to transfer 5729 * @entry: swap entry to move the charge to 5730 * 5731 * Transfer the memsw charge of @page to @entry. 5732 */ 5733 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5734 { 5735 struct mem_cgroup *memcg; 5736 unsigned short oldid; 5737 5738 VM_BUG_ON_PAGE(PageLRU(page), page); 5739 VM_BUG_ON_PAGE(page_count(page), page); 5740 5741 if (!do_memsw_account()) 5742 return; 5743 5744 memcg = page->mem_cgroup; 5745 5746 /* Readahead page, never charged */ 5747 if (!memcg) 5748 return; 5749 5750 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5751 VM_BUG_ON_PAGE(oldid, page); 5752 mem_cgroup_swap_statistics(memcg, true); 5753 5754 page->mem_cgroup = NULL; 5755 5756 if (!mem_cgroup_is_root(memcg)) 5757 page_counter_uncharge(&memcg->memory, 1); 5758 5759 /* 5760 * Interrupts should be disabled here because the caller holds the 5761 * mapping->tree_lock lock which is taken with interrupts-off. It is 5762 * important here to have the interrupts disabled because it is the 5763 * only synchronisation we have for udpating the per-CPU variables. 5764 */ 5765 VM_BUG_ON(!irqs_disabled()); 5766 mem_cgroup_charge_statistics(memcg, page, false, -1); 5767 memcg_check_events(memcg, page); 5768 } 5769 5770 /* 5771 * mem_cgroup_try_charge_swap - try charging a swap entry 5772 * @page: page being added to swap 5773 * @entry: swap entry to charge 5774 * 5775 * Try to charge @entry to the memcg that @page belongs to. 5776 * 5777 * Returns 0 on success, -ENOMEM on failure. 5778 */ 5779 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5780 { 5781 struct mem_cgroup *memcg; 5782 struct page_counter *counter; 5783 unsigned short oldid; 5784 5785 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5786 return 0; 5787 5788 memcg = page->mem_cgroup; 5789 5790 /* Readahead page, never charged */ 5791 if (!memcg) 5792 return 0; 5793 5794 if (!mem_cgroup_is_root(memcg) && 5795 !page_counter_try_charge(&memcg->swap, 1, &counter)) 5796 return -ENOMEM; 5797 5798 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5799 VM_BUG_ON_PAGE(oldid, page); 5800 mem_cgroup_swap_statistics(memcg, true); 5801 5802 css_get(&memcg->css); 5803 return 0; 5804 } 5805 5806 /** 5807 * mem_cgroup_uncharge_swap - uncharge a swap entry 5808 * @entry: swap entry to uncharge 5809 * 5810 * Drop the swap charge associated with @entry. 5811 */ 5812 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5813 { 5814 struct mem_cgroup *memcg; 5815 unsigned short id; 5816 5817 if (!do_swap_account) 5818 return; 5819 5820 id = swap_cgroup_record(entry, 0); 5821 rcu_read_lock(); 5822 memcg = mem_cgroup_from_id(id); 5823 if (memcg) { 5824 if (!mem_cgroup_is_root(memcg)) { 5825 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5826 page_counter_uncharge(&memcg->swap, 1); 5827 else 5828 page_counter_uncharge(&memcg->memsw, 1); 5829 } 5830 mem_cgroup_swap_statistics(memcg, false); 5831 css_put(&memcg->css); 5832 } 5833 rcu_read_unlock(); 5834 } 5835 5836 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5837 { 5838 long nr_swap_pages = get_nr_swap_pages(); 5839 5840 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5841 return nr_swap_pages; 5842 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5843 nr_swap_pages = min_t(long, nr_swap_pages, 5844 READ_ONCE(memcg->swap.limit) - 5845 page_counter_read(&memcg->swap)); 5846 return nr_swap_pages; 5847 } 5848 5849 bool mem_cgroup_swap_full(struct page *page) 5850 { 5851 struct mem_cgroup *memcg; 5852 5853 VM_BUG_ON_PAGE(!PageLocked(page), page); 5854 5855 if (vm_swap_full()) 5856 return true; 5857 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5858 return false; 5859 5860 memcg = page->mem_cgroup; 5861 if (!memcg) 5862 return false; 5863 5864 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5865 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 5866 return true; 5867 5868 return false; 5869 } 5870 5871 /* for remember boot option*/ 5872 #ifdef CONFIG_MEMCG_SWAP_ENABLED 5873 static int really_do_swap_account __initdata = 1; 5874 #else 5875 static int really_do_swap_account __initdata; 5876 #endif 5877 5878 static int __init enable_swap_account(char *s) 5879 { 5880 if (!strcmp(s, "1")) 5881 really_do_swap_account = 1; 5882 else if (!strcmp(s, "0")) 5883 really_do_swap_account = 0; 5884 return 1; 5885 } 5886 __setup("swapaccount=", enable_swap_account); 5887 5888 static u64 swap_current_read(struct cgroup_subsys_state *css, 5889 struct cftype *cft) 5890 { 5891 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5892 5893 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5894 } 5895 5896 static int swap_max_show(struct seq_file *m, void *v) 5897 { 5898 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5899 unsigned long max = READ_ONCE(memcg->swap.limit); 5900 5901 if (max == PAGE_COUNTER_MAX) 5902 seq_puts(m, "max\n"); 5903 else 5904 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5905 5906 return 0; 5907 } 5908 5909 static ssize_t swap_max_write(struct kernfs_open_file *of, 5910 char *buf, size_t nbytes, loff_t off) 5911 { 5912 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5913 unsigned long max; 5914 int err; 5915 5916 buf = strstrip(buf); 5917 err = page_counter_memparse(buf, "max", &max); 5918 if (err) 5919 return err; 5920 5921 mutex_lock(&memcg_limit_mutex); 5922 err = page_counter_limit(&memcg->swap, max); 5923 mutex_unlock(&memcg_limit_mutex); 5924 if (err) 5925 return err; 5926 5927 return nbytes; 5928 } 5929 5930 static struct cftype swap_files[] = { 5931 { 5932 .name = "swap.current", 5933 .flags = CFTYPE_NOT_ON_ROOT, 5934 .read_u64 = swap_current_read, 5935 }, 5936 { 5937 .name = "swap.max", 5938 .flags = CFTYPE_NOT_ON_ROOT, 5939 .seq_show = swap_max_show, 5940 .write = swap_max_write, 5941 }, 5942 { } /* terminate */ 5943 }; 5944 5945 static struct cftype memsw_cgroup_files[] = { 5946 { 5947 .name = "memsw.usage_in_bytes", 5948 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5949 .read_u64 = mem_cgroup_read_u64, 5950 }, 5951 { 5952 .name = "memsw.max_usage_in_bytes", 5953 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5954 .write = mem_cgroup_reset, 5955 .read_u64 = mem_cgroup_read_u64, 5956 }, 5957 { 5958 .name = "memsw.limit_in_bytes", 5959 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5960 .write = mem_cgroup_write, 5961 .read_u64 = mem_cgroup_read_u64, 5962 }, 5963 { 5964 .name = "memsw.failcnt", 5965 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5966 .write = mem_cgroup_reset, 5967 .read_u64 = mem_cgroup_read_u64, 5968 }, 5969 { }, /* terminate */ 5970 }; 5971 5972 static int __init mem_cgroup_swap_init(void) 5973 { 5974 if (!mem_cgroup_disabled() && really_do_swap_account) { 5975 do_swap_account = 1; 5976 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 5977 swap_files)); 5978 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 5979 memsw_cgroup_files)); 5980 } 5981 return 0; 5982 } 5983 subsys_initcall(mem_cgroup_swap_init); 5984 5985 #endif /* CONFIG_MEMCG_SWAP */ 5986