xref: /linux/mm/memcontrol.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_zone {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree_per_node {
141 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143 
144 struct mem_cgroup_tree {
145 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147 
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149 
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 	struct list_head list;
153 	struct eventfd_ctx *eventfd;
154 };
155 
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160 	/*
161 	 * memcg which the event belongs to.
162 	 */
163 	struct mem_cgroup *memcg;
164 	/*
165 	 * eventfd to signal userspace about the event.
166 	 */
167 	struct eventfd_ctx *eventfd;
168 	/*
169 	 * Each of these stored in a list by the cgroup.
170 	 */
171 	struct list_head list;
172 	/*
173 	 * register_event() callback will be used to add new userspace
174 	 * waiter for changes related to this event.  Use eventfd_signal()
175 	 * on eventfd to send notification to userspace.
176 	 */
177 	int (*register_event)(struct mem_cgroup *memcg,
178 			      struct eventfd_ctx *eventfd, const char *args);
179 	/*
180 	 * unregister_event() callback will be called when userspace closes
181 	 * the eventfd or on cgroup removing.  This callback must be set,
182 	 * if you want provide notification functionality.
183 	 */
184 	void (*unregister_event)(struct mem_cgroup *memcg,
185 				 struct eventfd_ctx *eventfd);
186 	/*
187 	 * All fields below needed to unregister event when
188 	 * userspace closes eventfd.
189 	 */
190 	poll_table pt;
191 	wait_queue_head_t *wqh;
192 	wait_queue_t wait;
193 	struct work_struct remove;
194 };
195 
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198 
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON	0x1U
204 #define MOVE_FILE	0x2U
205 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206 
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 	spinlock_t	  lock; /* for from, to */
210 	struct mm_struct  *mm;
211 	struct mem_cgroup *from;
212 	struct mem_cgroup *to;
213 	unsigned long flags;
214 	unsigned long precharge;
215 	unsigned long moved_charge;
216 	unsigned long moved_swap;
217 	struct task_struct *moving_task;	/* a task moving charges */
218 	wait_queue_head_t waitq;		/* a waitq for other context */
219 } mc = {
220 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223 
224 /*
225  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226  * limit reclaim to prevent infinite loops, if they ever occur.
227  */
228 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230 
231 enum charge_type {
232 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 	MEM_CGROUP_CHARGE_TYPE_ANON,
234 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
235 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 	NR_CHARGE_TYPE,
237 };
238 
239 /* for encoding cft->private value on file */
240 enum res_type {
241 	_MEM,
242 	_MEMSWAP,
243 	_OOM_TYPE,
244 	_KMEM,
245 	_TCP,
246 };
247 
248 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
249 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val)	((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL		(0)
253 
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 	if (!memcg)
258 		memcg = root_mem_cgroup;
259 	return &memcg->vmpressure;
260 }
261 
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266 
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269 	return (memcg == root_mem_cgroup);
270 }
271 
272 #ifndef CONFIG_SLOB
273 /*
274  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275  * The main reason for not using cgroup id for this:
276  *  this works better in sparse environments, where we have a lot of memcgs,
277  *  but only a few kmem-limited. Or also, if we have, for instance, 200
278  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
279  *  200 entry array for that.
280  *
281  * The current size of the caches array is stored in memcg_nr_cache_ids. It
282  * will double each time we have to increase it.
283  */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286 
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289 
290 void memcg_get_cache_ids(void)
291 {
292 	down_read(&memcg_cache_ids_sem);
293 }
294 
295 void memcg_put_cache_ids(void)
296 {
297 	up_read(&memcg_cache_ids_sem);
298 }
299 
300 /*
301  * MIN_SIZE is different than 1, because we would like to avoid going through
302  * the alloc/free process all the time. In a small machine, 4 kmem-limited
303  * cgroups is a reasonable guess. In the future, it could be a parameter or
304  * tunable, but that is strictly not necessary.
305  *
306  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307  * this constant directly from cgroup, but it is understandable that this is
308  * better kept as an internal representation in cgroup.c. In any case, the
309  * cgrp_id space is not getting any smaller, and we don't have to necessarily
310  * increase ours as well if it increases.
311  */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314 
315 /*
316  * A lot of the calls to the cache allocation functions are expected to be
317  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318  * conditional to this static branch, we'll have to allow modules that does
319  * kmem_cache_alloc and the such to see this symbol as well
320  */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323 
324 #endif /* !CONFIG_SLOB */
325 
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329 	int nid = zone_to_nid(zone);
330 	int zid = zone_idx(zone);
331 
332 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334 
335 /**
336  * mem_cgroup_css_from_page - css of the memcg associated with a page
337  * @page: page of interest
338  *
339  * If memcg is bound to the default hierarchy, css of the memcg associated
340  * with @page is returned.  The returned css remains associated with @page
341  * until it is released.
342  *
343  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344  * is returned.
345  */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348 	struct mem_cgroup *memcg;
349 
350 	memcg = page->mem_cgroup;
351 
352 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 		memcg = root_mem_cgroup;
354 
355 	return &memcg->css;
356 }
357 
358 /**
359  * page_cgroup_ino - return inode number of the memcg a page is charged to
360  * @page: the page
361  *
362  * Look up the closest online ancestor of the memory cgroup @page is charged to
363  * and return its inode number or 0 if @page is not charged to any cgroup. It
364  * is safe to call this function without holding a reference to @page.
365  *
366  * Note, this function is inherently racy, because there is nothing to prevent
367  * the cgroup inode from getting torn down and potentially reallocated a moment
368  * after page_cgroup_ino() returns, so it only should be used by callers that
369  * do not care (such as procfs interfaces).
370  */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373 	struct mem_cgroup *memcg;
374 	unsigned long ino = 0;
375 
376 	rcu_read_lock();
377 	memcg = READ_ONCE(page->mem_cgroup);
378 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 		memcg = parent_mem_cgroup(memcg);
380 	if (memcg)
381 		ino = cgroup_ino(memcg->css.cgroup);
382 	rcu_read_unlock();
383 	return ino;
384 }
385 
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389 	int nid = page_to_nid(page);
390 	int zid = page_zonenum(page);
391 
392 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394 
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400 
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404 	int nid = page_to_nid(page);
405 	int zid = page_zonenum(page);
406 
407 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409 
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 					 struct mem_cgroup_tree_per_zone *mctz,
412 					 unsigned long new_usage_in_excess)
413 {
414 	struct rb_node **p = &mctz->rb_root.rb_node;
415 	struct rb_node *parent = NULL;
416 	struct mem_cgroup_per_zone *mz_node;
417 
418 	if (mz->on_tree)
419 		return;
420 
421 	mz->usage_in_excess = new_usage_in_excess;
422 	if (!mz->usage_in_excess)
423 		return;
424 	while (*p) {
425 		parent = *p;
426 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 					tree_node);
428 		if (mz->usage_in_excess < mz_node->usage_in_excess)
429 			p = &(*p)->rb_left;
430 		/*
431 		 * We can't avoid mem cgroups that are over their soft
432 		 * limit by the same amount
433 		 */
434 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 			p = &(*p)->rb_right;
436 	}
437 	rb_link_node(&mz->tree_node, parent, p);
438 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 	mz->on_tree = true;
440 }
441 
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 					 struct mem_cgroup_tree_per_zone *mctz)
444 {
445 	if (!mz->on_tree)
446 		return;
447 	rb_erase(&mz->tree_node, &mctz->rb_root);
448 	mz->on_tree = false;
449 }
450 
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 				       struct mem_cgroup_tree_per_zone *mctz)
453 {
454 	unsigned long flags;
455 
456 	spin_lock_irqsave(&mctz->lock, flags);
457 	__mem_cgroup_remove_exceeded(mz, mctz);
458 	spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460 
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463 	unsigned long nr_pages = page_counter_read(&memcg->memory);
464 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 	unsigned long excess = 0;
466 
467 	if (nr_pages > soft_limit)
468 		excess = nr_pages - soft_limit;
469 
470 	return excess;
471 }
472 
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475 	unsigned long excess;
476 	struct mem_cgroup_per_zone *mz;
477 	struct mem_cgroup_tree_per_zone *mctz;
478 
479 	mctz = soft_limit_tree_from_page(page);
480 	/*
481 	 * Necessary to update all ancestors when hierarchy is used.
482 	 * because their event counter is not touched.
483 	 */
484 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 		mz = mem_cgroup_page_zoneinfo(memcg, page);
486 		excess = soft_limit_excess(memcg);
487 		/*
488 		 * We have to update the tree if mz is on RB-tree or
489 		 * mem is over its softlimit.
490 		 */
491 		if (excess || mz->on_tree) {
492 			unsigned long flags;
493 
494 			spin_lock_irqsave(&mctz->lock, flags);
495 			/* if on-tree, remove it */
496 			if (mz->on_tree)
497 				__mem_cgroup_remove_exceeded(mz, mctz);
498 			/*
499 			 * Insert again. mz->usage_in_excess will be updated.
500 			 * If excess is 0, no tree ops.
501 			 */
502 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
503 			spin_unlock_irqrestore(&mctz->lock, flags);
504 		}
505 	}
506 }
507 
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510 	struct mem_cgroup_tree_per_zone *mctz;
511 	struct mem_cgroup_per_zone *mz;
512 	int nid, zid;
513 
514 	for_each_node(nid) {
515 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 			mctz = soft_limit_tree_node_zone(nid, zid);
518 			mem_cgroup_remove_exceeded(mz, mctz);
519 		}
520 	}
521 }
522 
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526 	struct rb_node *rightmost = NULL;
527 	struct mem_cgroup_per_zone *mz;
528 
529 retry:
530 	mz = NULL;
531 	rightmost = rb_last(&mctz->rb_root);
532 	if (!rightmost)
533 		goto done;		/* Nothing to reclaim from */
534 
535 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 	/*
537 	 * Remove the node now but someone else can add it back,
538 	 * we will to add it back at the end of reclaim to its correct
539 	 * position in the tree.
540 	 */
541 	__mem_cgroup_remove_exceeded(mz, mctz);
542 	if (!soft_limit_excess(mz->memcg) ||
543 	    !css_tryget_online(&mz->memcg->css))
544 		goto retry;
545 done:
546 	return mz;
547 }
548 
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552 	struct mem_cgroup_per_zone *mz;
553 
554 	spin_lock_irq(&mctz->lock);
555 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 	spin_unlock_irq(&mctz->lock);
557 	return mz;
558 }
559 
560 /*
561  * Return page count for single (non recursive) @memcg.
562  *
563  * Implementation Note: reading percpu statistics for memcg.
564  *
565  * Both of vmstat[] and percpu_counter has threshold and do periodic
566  * synchronization to implement "quick" read. There are trade-off between
567  * reading cost and precision of value. Then, we may have a chance to implement
568  * a periodic synchronization of counter in memcg's counter.
569  *
570  * But this _read() function is used for user interface now. The user accounts
571  * memory usage by memory cgroup and he _always_ requires exact value because
572  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573  * have to visit all online cpus and make sum. So, for now, unnecessary
574  * synchronization is not implemented. (just implemented for cpu hotplug)
575  *
576  * If there are kernel internal actions which can make use of some not-exact
577  * value, and reading all cpu value can be performance bottleneck in some
578  * common workload, threshold and synchronization as vmstat[] should be
579  * implemented.
580  */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584 	long val = 0;
585 	int cpu;
586 
587 	/* Per-cpu values can be negative, use a signed accumulator */
588 	for_each_possible_cpu(cpu)
589 		val += per_cpu(memcg->stat->count[idx], cpu);
590 	/*
591 	 * Summing races with updates, so val may be negative.  Avoid exposing
592 	 * transient negative values.
593 	 */
594 	if (val < 0)
595 		val = 0;
596 	return val;
597 }
598 
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 					    enum mem_cgroup_events_index idx)
601 {
602 	unsigned long val = 0;
603 	int cpu;
604 
605 	for_each_possible_cpu(cpu)
606 		val += per_cpu(memcg->stat->events[idx], cpu);
607 	return val;
608 }
609 
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 					 struct page *page,
612 					 bool compound, int nr_pages)
613 {
614 	/*
615 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 	 * counted as CACHE even if it's on ANON LRU.
617 	 */
618 	if (PageAnon(page))
619 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 				nr_pages);
621 	else
622 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 				nr_pages);
624 
625 	if (compound) {
626 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 				nr_pages);
629 	}
630 
631 	/* pagein of a big page is an event. So, ignore page size */
632 	if (nr_pages > 0)
633 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 	else {
635 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 		nr_pages = -nr_pages; /* for event */
637 	}
638 
639 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641 
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 					   int nid, unsigned int lru_mask)
644 {
645 	unsigned long nr = 0;
646 	int zid;
647 
648 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649 
650 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 		struct mem_cgroup_per_zone *mz;
652 		enum lru_list lru;
653 
654 		for_each_lru(lru) {
655 			if (!(BIT(lru) & lru_mask))
656 				continue;
657 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 			nr += mz->lru_size[lru];
659 		}
660 	}
661 	return nr;
662 }
663 
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 			unsigned int lru_mask)
666 {
667 	unsigned long nr = 0;
668 	int nid;
669 
670 	for_each_node_state(nid, N_MEMORY)
671 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 	return nr;
673 }
674 
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 				       enum mem_cgroup_events_target target)
677 {
678 	unsigned long val, next;
679 
680 	val = __this_cpu_read(memcg->stat->nr_page_events);
681 	next = __this_cpu_read(memcg->stat->targets[target]);
682 	/* from time_after() in jiffies.h */
683 	if ((long)next - (long)val < 0) {
684 		switch (target) {
685 		case MEM_CGROUP_TARGET_THRESH:
686 			next = val + THRESHOLDS_EVENTS_TARGET;
687 			break;
688 		case MEM_CGROUP_TARGET_SOFTLIMIT:
689 			next = val + SOFTLIMIT_EVENTS_TARGET;
690 			break;
691 		case MEM_CGROUP_TARGET_NUMAINFO:
692 			next = val + NUMAINFO_EVENTS_TARGET;
693 			break;
694 		default:
695 			break;
696 		}
697 		__this_cpu_write(memcg->stat->targets[target], next);
698 		return true;
699 	}
700 	return false;
701 }
702 
703 /*
704  * Check events in order.
705  *
706  */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 	/* threshold event is triggered in finer grain than soft limit */
710 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 						MEM_CGROUP_TARGET_THRESH))) {
712 		bool do_softlimit;
713 		bool do_numainfo __maybe_unused;
714 
715 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 						MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 						MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 		mem_cgroup_threshold(memcg);
722 		if (unlikely(do_softlimit))
723 			mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 		if (unlikely(do_numainfo))
726 			atomic_inc(&memcg->numainfo_events);
727 #endif
728 	}
729 }
730 
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 	/*
734 	 * mm_update_next_owner() may clear mm->owner to NULL
735 	 * if it races with swapoff, page migration, etc.
736 	 * So this can be called with p == NULL.
737 	 */
738 	if (unlikely(!p))
739 		return NULL;
740 
741 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744 
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 	struct mem_cgroup *memcg = NULL;
748 
749 	rcu_read_lock();
750 	do {
751 		/*
752 		 * Page cache insertions can happen withou an
753 		 * actual mm context, e.g. during disk probing
754 		 * on boot, loopback IO, acct() writes etc.
755 		 */
756 		if (unlikely(!mm))
757 			memcg = root_mem_cgroup;
758 		else {
759 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 			if (unlikely(!memcg))
761 				memcg = root_mem_cgroup;
762 		}
763 	} while (!css_tryget_online(&memcg->css));
764 	rcu_read_unlock();
765 	return memcg;
766 }
767 
768 /**
769  * mem_cgroup_iter - iterate over memory cgroup hierarchy
770  * @root: hierarchy root
771  * @prev: previously returned memcg, NULL on first invocation
772  * @reclaim: cookie for shared reclaim walks, NULL for full walks
773  *
774  * Returns references to children of the hierarchy below @root, or
775  * @root itself, or %NULL after a full round-trip.
776  *
777  * Caller must pass the return value in @prev on subsequent
778  * invocations for reference counting, or use mem_cgroup_iter_break()
779  * to cancel a hierarchy walk before the round-trip is complete.
780  *
781  * Reclaimers can specify a zone and a priority level in @reclaim to
782  * divide up the memcgs in the hierarchy among all concurrent
783  * reclaimers operating on the same zone and priority.
784  */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 				   struct mem_cgroup *prev,
787 				   struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 	struct cgroup_subsys_state *css = NULL;
791 	struct mem_cgroup *memcg = NULL;
792 	struct mem_cgroup *pos = NULL;
793 
794 	if (mem_cgroup_disabled())
795 		return NULL;
796 
797 	if (!root)
798 		root = root_mem_cgroup;
799 
800 	if (prev && !reclaim)
801 		pos = prev;
802 
803 	if (!root->use_hierarchy && root != root_mem_cgroup) {
804 		if (prev)
805 			goto out;
806 		return root;
807 	}
808 
809 	rcu_read_lock();
810 
811 	if (reclaim) {
812 		struct mem_cgroup_per_zone *mz;
813 
814 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 		iter = &mz->iter[reclaim->priority];
816 
817 		if (prev && reclaim->generation != iter->generation)
818 			goto out_unlock;
819 
820 		while (1) {
821 			pos = READ_ONCE(iter->position);
822 			if (!pos || css_tryget(&pos->css))
823 				break;
824 			/*
825 			 * css reference reached zero, so iter->position will
826 			 * be cleared by ->css_released. However, we should not
827 			 * rely on this happening soon, because ->css_released
828 			 * is called from a work queue, and by busy-waiting we
829 			 * might block it. So we clear iter->position right
830 			 * away.
831 			 */
832 			(void)cmpxchg(&iter->position, pos, NULL);
833 		}
834 	}
835 
836 	if (pos)
837 		css = &pos->css;
838 
839 	for (;;) {
840 		css = css_next_descendant_pre(css, &root->css);
841 		if (!css) {
842 			/*
843 			 * Reclaimers share the hierarchy walk, and a
844 			 * new one might jump in right at the end of
845 			 * the hierarchy - make sure they see at least
846 			 * one group and restart from the beginning.
847 			 */
848 			if (!prev)
849 				continue;
850 			break;
851 		}
852 
853 		/*
854 		 * Verify the css and acquire a reference.  The root
855 		 * is provided by the caller, so we know it's alive
856 		 * and kicking, and don't take an extra reference.
857 		 */
858 		memcg = mem_cgroup_from_css(css);
859 
860 		if (css == &root->css)
861 			break;
862 
863 		if (css_tryget(css))
864 			break;
865 
866 		memcg = NULL;
867 	}
868 
869 	if (reclaim) {
870 		/*
871 		 * The position could have already been updated by a competing
872 		 * thread, so check that the value hasn't changed since we read
873 		 * it to avoid reclaiming from the same cgroup twice.
874 		 */
875 		(void)cmpxchg(&iter->position, pos, memcg);
876 
877 		if (pos)
878 			css_put(&pos->css);
879 
880 		if (!memcg)
881 			iter->generation++;
882 		else if (!prev)
883 			reclaim->generation = iter->generation;
884 	}
885 
886 out_unlock:
887 	rcu_read_unlock();
888 out:
889 	if (prev && prev != root)
890 		css_put(&prev->css);
891 
892 	return memcg;
893 }
894 
895 /**
896  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897  * @root: hierarchy root
898  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899  */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 			   struct mem_cgroup *prev)
902 {
903 	if (!root)
904 		root = root_mem_cgroup;
905 	if (prev && prev != root)
906 		css_put(&prev->css);
907 }
908 
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 	struct mem_cgroup *memcg = dead_memcg;
912 	struct mem_cgroup_reclaim_iter *iter;
913 	struct mem_cgroup_per_zone *mz;
914 	int nid, zid;
915 	int i;
916 
917 	while ((memcg = parent_mem_cgroup(memcg))) {
918 		for_each_node(nid) {
919 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 				for (i = 0; i <= DEF_PRIORITY; i++) {
922 					iter = &mz->iter[i];
923 					cmpxchg(&iter->position,
924 						dead_memcg, NULL);
925 				}
926 			}
927 		}
928 	}
929 }
930 
931 /*
932  * Iteration constructs for visiting all cgroups (under a tree).  If
933  * loops are exited prematurely (break), mem_cgroup_iter_break() must
934  * be used for reference counting.
935  */
936 #define for_each_mem_cgroup_tree(iter, root)		\
937 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938 	     iter != NULL;				\
939 	     iter = mem_cgroup_iter(root, iter, NULL))
940 
941 #define for_each_mem_cgroup(iter)			\
942 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943 	     iter != NULL;				\
944 	     iter = mem_cgroup_iter(NULL, iter, NULL))
945 
946 /**
947  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948  * @zone: zone of the wanted lruvec
949  * @memcg: memcg of the wanted lruvec
950  *
951  * Returns the lru list vector holding pages for the given @zone and
952  * @mem.  This can be the global zone lruvec, if the memory controller
953  * is disabled.
954  */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 				      struct mem_cgroup *memcg)
957 {
958 	struct mem_cgroup_per_zone *mz;
959 	struct lruvec *lruvec;
960 
961 	if (mem_cgroup_disabled()) {
962 		lruvec = &zone->lruvec;
963 		goto out;
964 	}
965 
966 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 	lruvec = &mz->lruvec;
968 out:
969 	/*
970 	 * Since a node can be onlined after the mem_cgroup was created,
971 	 * we have to be prepared to initialize lruvec->zone here;
972 	 * and if offlined then reonlined, we need to reinitialize it.
973 	 */
974 	if (unlikely(lruvec->zone != zone))
975 		lruvec->zone = zone;
976 	return lruvec;
977 }
978 
979 /**
980  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981  * @page: the page
982  * @zone: zone of the page
983  *
984  * This function is only safe when following the LRU page isolation
985  * and putback protocol: the LRU lock must be held, and the page must
986  * either be PageLRU() or the caller must have isolated/allocated it.
987  */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 	struct mem_cgroup_per_zone *mz;
991 	struct mem_cgroup *memcg;
992 	struct lruvec *lruvec;
993 
994 	if (mem_cgroup_disabled()) {
995 		lruvec = &zone->lruvec;
996 		goto out;
997 	}
998 
999 	memcg = page->mem_cgroup;
1000 	/*
1001 	 * Swapcache readahead pages are added to the LRU - and
1002 	 * possibly migrated - before they are charged.
1003 	 */
1004 	if (!memcg)
1005 		memcg = root_mem_cgroup;
1006 
1007 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 	lruvec = &mz->lruvec;
1009 out:
1010 	/*
1011 	 * Since a node can be onlined after the mem_cgroup was created,
1012 	 * we have to be prepared to initialize lruvec->zone here;
1013 	 * and if offlined then reonlined, we need to reinitialize it.
1014 	 */
1015 	if (unlikely(lruvec->zone != zone))
1016 		lruvec->zone = zone;
1017 	return lruvec;
1018 }
1019 
1020 /**
1021  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022  * @lruvec: mem_cgroup per zone lru vector
1023  * @lru: index of lru list the page is sitting on
1024  * @nr_pages: positive when adding or negative when removing
1025  *
1026  * This function must be called under lru_lock, just before a page is added
1027  * to or just after a page is removed from an lru list (that ordering being
1028  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029  */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 				int nr_pages)
1032 {
1033 	struct mem_cgroup_per_zone *mz;
1034 	unsigned long *lru_size;
1035 	long size;
1036 	bool empty;
1037 
1038 	__update_lru_size(lruvec, lru, nr_pages);
1039 
1040 	if (mem_cgroup_disabled())
1041 		return;
1042 
1043 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044 	lru_size = mz->lru_size + lru;
1045 	empty = list_empty(lruvec->lists + lru);
1046 
1047 	if (nr_pages < 0)
1048 		*lru_size += nr_pages;
1049 
1050 	size = *lru_size;
1051 	if (WARN_ONCE(size < 0 || empty != !size,
1052 		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053 		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054 		VM_BUG_ON(1);
1055 		*lru_size = 0;
1056 	}
1057 
1058 	if (nr_pages > 0)
1059 		*lru_size += nr_pages;
1060 }
1061 
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063 {
1064 	struct mem_cgroup *task_memcg;
1065 	struct task_struct *p;
1066 	bool ret;
1067 
1068 	p = find_lock_task_mm(task);
1069 	if (p) {
1070 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1071 		task_unlock(p);
1072 	} else {
1073 		/*
1074 		 * All threads may have already detached their mm's, but the oom
1075 		 * killer still needs to detect if they have already been oom
1076 		 * killed to prevent needlessly killing additional tasks.
1077 		 */
1078 		rcu_read_lock();
1079 		task_memcg = mem_cgroup_from_task(task);
1080 		css_get(&task_memcg->css);
1081 		rcu_read_unlock();
1082 	}
1083 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084 	css_put(&task_memcg->css);
1085 	return ret;
1086 }
1087 
1088 /**
1089  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090  * @memcg: the memory cgroup
1091  *
1092  * Returns the maximum amount of memory @mem can be charged with, in
1093  * pages.
1094  */
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096 {
1097 	unsigned long margin = 0;
1098 	unsigned long count;
1099 	unsigned long limit;
1100 
1101 	count = page_counter_read(&memcg->memory);
1102 	limit = READ_ONCE(memcg->memory.limit);
1103 	if (count < limit)
1104 		margin = limit - count;
1105 
1106 	if (do_memsw_account()) {
1107 		count = page_counter_read(&memcg->memsw);
1108 		limit = READ_ONCE(memcg->memsw.limit);
1109 		if (count <= limit)
1110 			margin = min(margin, limit - count);
1111 	}
1112 
1113 	return margin;
1114 }
1115 
1116 /*
1117  * A routine for checking "mem" is under move_account() or not.
1118  *
1119  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1120  * moving cgroups. This is for waiting at high-memory pressure
1121  * caused by "move".
1122  */
1123 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1124 {
1125 	struct mem_cgroup *from;
1126 	struct mem_cgroup *to;
1127 	bool ret = false;
1128 	/*
1129 	 * Unlike task_move routines, we access mc.to, mc.from not under
1130 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1131 	 */
1132 	spin_lock(&mc.lock);
1133 	from = mc.from;
1134 	to = mc.to;
1135 	if (!from)
1136 		goto unlock;
1137 
1138 	ret = mem_cgroup_is_descendant(from, memcg) ||
1139 		mem_cgroup_is_descendant(to, memcg);
1140 unlock:
1141 	spin_unlock(&mc.lock);
1142 	return ret;
1143 }
1144 
1145 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1146 {
1147 	if (mc.moving_task && current != mc.moving_task) {
1148 		if (mem_cgroup_under_move(memcg)) {
1149 			DEFINE_WAIT(wait);
1150 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1151 			/* moving charge context might have finished. */
1152 			if (mc.moving_task)
1153 				schedule();
1154 			finish_wait(&mc.waitq, &wait);
1155 			return true;
1156 		}
1157 	}
1158 	return false;
1159 }
1160 
1161 #define K(x) ((x) << (PAGE_SHIFT-10))
1162 /**
1163  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1164  * @memcg: The memory cgroup that went over limit
1165  * @p: Task that is going to be killed
1166  *
1167  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1168  * enabled
1169  */
1170 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1171 {
1172 	struct mem_cgroup *iter;
1173 	unsigned int i;
1174 
1175 	rcu_read_lock();
1176 
1177 	if (p) {
1178 		pr_info("Task in ");
1179 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1180 		pr_cont(" killed as a result of limit of ");
1181 	} else {
1182 		pr_info("Memory limit reached of cgroup ");
1183 	}
1184 
1185 	pr_cont_cgroup_path(memcg->css.cgroup);
1186 	pr_cont("\n");
1187 
1188 	rcu_read_unlock();
1189 
1190 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1191 		K((u64)page_counter_read(&memcg->memory)),
1192 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1193 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1194 		K((u64)page_counter_read(&memcg->memsw)),
1195 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1196 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1197 		K((u64)page_counter_read(&memcg->kmem)),
1198 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1199 
1200 	for_each_mem_cgroup_tree(iter, memcg) {
1201 		pr_info("Memory cgroup stats for ");
1202 		pr_cont_cgroup_path(iter->css.cgroup);
1203 		pr_cont(":");
1204 
1205 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1206 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1207 				continue;
1208 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1209 				K(mem_cgroup_read_stat(iter, i)));
1210 		}
1211 
1212 		for (i = 0; i < NR_LRU_LISTS; i++)
1213 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1214 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1215 
1216 		pr_cont("\n");
1217 	}
1218 }
1219 
1220 /*
1221  * This function returns the number of memcg under hierarchy tree. Returns
1222  * 1(self count) if no children.
1223  */
1224 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1225 {
1226 	int num = 0;
1227 	struct mem_cgroup *iter;
1228 
1229 	for_each_mem_cgroup_tree(iter, memcg)
1230 		num++;
1231 	return num;
1232 }
1233 
1234 /*
1235  * Return the memory (and swap, if configured) limit for a memcg.
1236  */
1237 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1238 {
1239 	unsigned long limit;
1240 
1241 	limit = memcg->memory.limit;
1242 	if (mem_cgroup_swappiness(memcg)) {
1243 		unsigned long memsw_limit;
1244 		unsigned long swap_limit;
1245 
1246 		memsw_limit = memcg->memsw.limit;
1247 		swap_limit = memcg->swap.limit;
1248 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1249 		limit = min(limit + swap_limit, memsw_limit);
1250 	}
1251 	return limit;
1252 }
1253 
1254 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1255 				     int order)
1256 {
1257 	struct oom_control oc = {
1258 		.zonelist = NULL,
1259 		.nodemask = NULL,
1260 		.gfp_mask = gfp_mask,
1261 		.order = order,
1262 	};
1263 	struct mem_cgroup *iter;
1264 	unsigned long chosen_points = 0;
1265 	unsigned long totalpages;
1266 	unsigned int points = 0;
1267 	struct task_struct *chosen = NULL;
1268 
1269 	mutex_lock(&oom_lock);
1270 
1271 	/*
1272 	 * If current has a pending SIGKILL or is exiting, then automatically
1273 	 * select it.  The goal is to allow it to allocate so that it may
1274 	 * quickly exit and free its memory.
1275 	 */
1276 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1277 		mark_oom_victim(current);
1278 		try_oom_reaper(current);
1279 		goto unlock;
1280 	}
1281 
1282 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1283 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1284 	for_each_mem_cgroup_tree(iter, memcg) {
1285 		struct css_task_iter it;
1286 		struct task_struct *task;
1287 
1288 		css_task_iter_start(&iter->css, &it);
1289 		while ((task = css_task_iter_next(&it))) {
1290 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1291 			case OOM_SCAN_SELECT:
1292 				if (chosen)
1293 					put_task_struct(chosen);
1294 				chosen = task;
1295 				chosen_points = ULONG_MAX;
1296 				get_task_struct(chosen);
1297 				/* fall through */
1298 			case OOM_SCAN_CONTINUE:
1299 				continue;
1300 			case OOM_SCAN_ABORT:
1301 				css_task_iter_end(&it);
1302 				mem_cgroup_iter_break(memcg, iter);
1303 				if (chosen)
1304 					put_task_struct(chosen);
1305 				goto unlock;
1306 			case OOM_SCAN_OK:
1307 				break;
1308 			};
1309 			points = oom_badness(task, memcg, NULL, totalpages);
1310 			if (!points || points < chosen_points)
1311 				continue;
1312 			/* Prefer thread group leaders for display purposes */
1313 			if (points == chosen_points &&
1314 			    thread_group_leader(chosen))
1315 				continue;
1316 
1317 			if (chosen)
1318 				put_task_struct(chosen);
1319 			chosen = task;
1320 			chosen_points = points;
1321 			get_task_struct(chosen);
1322 		}
1323 		css_task_iter_end(&it);
1324 	}
1325 
1326 	if (chosen) {
1327 		points = chosen_points * 1000 / totalpages;
1328 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1329 				 "Memory cgroup out of memory");
1330 	}
1331 unlock:
1332 	mutex_unlock(&oom_lock);
1333 	return chosen;
1334 }
1335 
1336 #if MAX_NUMNODES > 1
1337 
1338 /**
1339  * test_mem_cgroup_node_reclaimable
1340  * @memcg: the target memcg
1341  * @nid: the node ID to be checked.
1342  * @noswap : specify true here if the user wants flle only information.
1343  *
1344  * This function returns whether the specified memcg contains any
1345  * reclaimable pages on a node. Returns true if there are any reclaimable
1346  * pages in the node.
1347  */
1348 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1349 		int nid, bool noswap)
1350 {
1351 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1352 		return true;
1353 	if (noswap || !total_swap_pages)
1354 		return false;
1355 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1356 		return true;
1357 	return false;
1358 
1359 }
1360 
1361 /*
1362  * Always updating the nodemask is not very good - even if we have an empty
1363  * list or the wrong list here, we can start from some node and traverse all
1364  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1365  *
1366  */
1367 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1368 {
1369 	int nid;
1370 	/*
1371 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1372 	 * pagein/pageout changes since the last update.
1373 	 */
1374 	if (!atomic_read(&memcg->numainfo_events))
1375 		return;
1376 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1377 		return;
1378 
1379 	/* make a nodemask where this memcg uses memory from */
1380 	memcg->scan_nodes = node_states[N_MEMORY];
1381 
1382 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1383 
1384 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1385 			node_clear(nid, memcg->scan_nodes);
1386 	}
1387 
1388 	atomic_set(&memcg->numainfo_events, 0);
1389 	atomic_set(&memcg->numainfo_updating, 0);
1390 }
1391 
1392 /*
1393  * Selecting a node where we start reclaim from. Because what we need is just
1394  * reducing usage counter, start from anywhere is O,K. Considering
1395  * memory reclaim from current node, there are pros. and cons.
1396  *
1397  * Freeing memory from current node means freeing memory from a node which
1398  * we'll use or we've used. So, it may make LRU bad. And if several threads
1399  * hit limits, it will see a contention on a node. But freeing from remote
1400  * node means more costs for memory reclaim because of memory latency.
1401  *
1402  * Now, we use round-robin. Better algorithm is welcomed.
1403  */
1404 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1405 {
1406 	int node;
1407 
1408 	mem_cgroup_may_update_nodemask(memcg);
1409 	node = memcg->last_scanned_node;
1410 
1411 	node = next_node_in(node, memcg->scan_nodes);
1412 	/*
1413 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1414 	 * last time it really checked all the LRUs due to rate limiting.
1415 	 * Fallback to the current node in that case for simplicity.
1416 	 */
1417 	if (unlikely(node == MAX_NUMNODES))
1418 		node = numa_node_id();
1419 
1420 	memcg->last_scanned_node = node;
1421 	return node;
1422 }
1423 #else
1424 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1425 {
1426 	return 0;
1427 }
1428 #endif
1429 
1430 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1431 				   struct zone *zone,
1432 				   gfp_t gfp_mask,
1433 				   unsigned long *total_scanned)
1434 {
1435 	struct mem_cgroup *victim = NULL;
1436 	int total = 0;
1437 	int loop = 0;
1438 	unsigned long excess;
1439 	unsigned long nr_scanned;
1440 	struct mem_cgroup_reclaim_cookie reclaim = {
1441 		.zone = zone,
1442 		.priority = 0,
1443 	};
1444 
1445 	excess = soft_limit_excess(root_memcg);
1446 
1447 	while (1) {
1448 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1449 		if (!victim) {
1450 			loop++;
1451 			if (loop >= 2) {
1452 				/*
1453 				 * If we have not been able to reclaim
1454 				 * anything, it might because there are
1455 				 * no reclaimable pages under this hierarchy
1456 				 */
1457 				if (!total)
1458 					break;
1459 				/*
1460 				 * We want to do more targeted reclaim.
1461 				 * excess >> 2 is not to excessive so as to
1462 				 * reclaim too much, nor too less that we keep
1463 				 * coming back to reclaim from this cgroup
1464 				 */
1465 				if (total >= (excess >> 2) ||
1466 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1467 					break;
1468 			}
1469 			continue;
1470 		}
1471 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1472 						     zone, &nr_scanned);
1473 		*total_scanned += nr_scanned;
1474 		if (!soft_limit_excess(root_memcg))
1475 			break;
1476 	}
1477 	mem_cgroup_iter_break(root_memcg, victim);
1478 	return total;
1479 }
1480 
1481 #ifdef CONFIG_LOCKDEP
1482 static struct lockdep_map memcg_oom_lock_dep_map = {
1483 	.name = "memcg_oom_lock",
1484 };
1485 #endif
1486 
1487 static DEFINE_SPINLOCK(memcg_oom_lock);
1488 
1489 /*
1490  * Check OOM-Killer is already running under our hierarchy.
1491  * If someone is running, return false.
1492  */
1493 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1494 {
1495 	struct mem_cgroup *iter, *failed = NULL;
1496 
1497 	spin_lock(&memcg_oom_lock);
1498 
1499 	for_each_mem_cgroup_tree(iter, memcg) {
1500 		if (iter->oom_lock) {
1501 			/*
1502 			 * this subtree of our hierarchy is already locked
1503 			 * so we cannot give a lock.
1504 			 */
1505 			failed = iter;
1506 			mem_cgroup_iter_break(memcg, iter);
1507 			break;
1508 		} else
1509 			iter->oom_lock = true;
1510 	}
1511 
1512 	if (failed) {
1513 		/*
1514 		 * OK, we failed to lock the whole subtree so we have
1515 		 * to clean up what we set up to the failing subtree
1516 		 */
1517 		for_each_mem_cgroup_tree(iter, memcg) {
1518 			if (iter == failed) {
1519 				mem_cgroup_iter_break(memcg, iter);
1520 				break;
1521 			}
1522 			iter->oom_lock = false;
1523 		}
1524 	} else
1525 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1526 
1527 	spin_unlock(&memcg_oom_lock);
1528 
1529 	return !failed;
1530 }
1531 
1532 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1533 {
1534 	struct mem_cgroup *iter;
1535 
1536 	spin_lock(&memcg_oom_lock);
1537 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1538 	for_each_mem_cgroup_tree(iter, memcg)
1539 		iter->oom_lock = false;
1540 	spin_unlock(&memcg_oom_lock);
1541 }
1542 
1543 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1544 {
1545 	struct mem_cgroup *iter;
1546 
1547 	spin_lock(&memcg_oom_lock);
1548 	for_each_mem_cgroup_tree(iter, memcg)
1549 		iter->under_oom++;
1550 	spin_unlock(&memcg_oom_lock);
1551 }
1552 
1553 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1554 {
1555 	struct mem_cgroup *iter;
1556 
1557 	/*
1558 	 * When a new child is created while the hierarchy is under oom,
1559 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1560 	 */
1561 	spin_lock(&memcg_oom_lock);
1562 	for_each_mem_cgroup_tree(iter, memcg)
1563 		if (iter->under_oom > 0)
1564 			iter->under_oom--;
1565 	spin_unlock(&memcg_oom_lock);
1566 }
1567 
1568 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1569 
1570 struct oom_wait_info {
1571 	struct mem_cgroup *memcg;
1572 	wait_queue_t	wait;
1573 };
1574 
1575 static int memcg_oom_wake_function(wait_queue_t *wait,
1576 	unsigned mode, int sync, void *arg)
1577 {
1578 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1579 	struct mem_cgroup *oom_wait_memcg;
1580 	struct oom_wait_info *oom_wait_info;
1581 
1582 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1583 	oom_wait_memcg = oom_wait_info->memcg;
1584 
1585 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1586 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1587 		return 0;
1588 	return autoremove_wake_function(wait, mode, sync, arg);
1589 }
1590 
1591 static void memcg_oom_recover(struct mem_cgroup *memcg)
1592 {
1593 	/*
1594 	 * For the following lockless ->under_oom test, the only required
1595 	 * guarantee is that it must see the state asserted by an OOM when
1596 	 * this function is called as a result of userland actions
1597 	 * triggered by the notification of the OOM.  This is trivially
1598 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1599 	 * triggering notification.
1600 	 */
1601 	if (memcg && memcg->under_oom)
1602 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1603 }
1604 
1605 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1606 {
1607 	if (!current->memcg_may_oom)
1608 		return;
1609 	/*
1610 	 * We are in the middle of the charge context here, so we
1611 	 * don't want to block when potentially sitting on a callstack
1612 	 * that holds all kinds of filesystem and mm locks.
1613 	 *
1614 	 * Also, the caller may handle a failed allocation gracefully
1615 	 * (like optional page cache readahead) and so an OOM killer
1616 	 * invocation might not even be necessary.
1617 	 *
1618 	 * That's why we don't do anything here except remember the
1619 	 * OOM context and then deal with it at the end of the page
1620 	 * fault when the stack is unwound, the locks are released,
1621 	 * and when we know whether the fault was overall successful.
1622 	 */
1623 	css_get(&memcg->css);
1624 	current->memcg_in_oom = memcg;
1625 	current->memcg_oom_gfp_mask = mask;
1626 	current->memcg_oom_order = order;
1627 }
1628 
1629 /**
1630  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1631  * @handle: actually kill/wait or just clean up the OOM state
1632  *
1633  * This has to be called at the end of a page fault if the memcg OOM
1634  * handler was enabled.
1635  *
1636  * Memcg supports userspace OOM handling where failed allocations must
1637  * sleep on a waitqueue until the userspace task resolves the
1638  * situation.  Sleeping directly in the charge context with all kinds
1639  * of locks held is not a good idea, instead we remember an OOM state
1640  * in the task and mem_cgroup_oom_synchronize() has to be called at
1641  * the end of the page fault to complete the OOM handling.
1642  *
1643  * Returns %true if an ongoing memcg OOM situation was detected and
1644  * completed, %false otherwise.
1645  */
1646 bool mem_cgroup_oom_synchronize(bool handle)
1647 {
1648 	struct mem_cgroup *memcg = current->memcg_in_oom;
1649 	struct oom_wait_info owait;
1650 	bool locked;
1651 
1652 	/* OOM is global, do not handle */
1653 	if (!memcg)
1654 		return false;
1655 
1656 	if (!handle || oom_killer_disabled)
1657 		goto cleanup;
1658 
1659 	owait.memcg = memcg;
1660 	owait.wait.flags = 0;
1661 	owait.wait.func = memcg_oom_wake_function;
1662 	owait.wait.private = current;
1663 	INIT_LIST_HEAD(&owait.wait.task_list);
1664 
1665 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1666 	mem_cgroup_mark_under_oom(memcg);
1667 
1668 	locked = mem_cgroup_oom_trylock(memcg);
1669 
1670 	if (locked)
1671 		mem_cgroup_oom_notify(memcg);
1672 
1673 	if (locked && !memcg->oom_kill_disable) {
1674 		mem_cgroup_unmark_under_oom(memcg);
1675 		finish_wait(&memcg_oom_waitq, &owait.wait);
1676 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1677 					 current->memcg_oom_order);
1678 	} else {
1679 		schedule();
1680 		mem_cgroup_unmark_under_oom(memcg);
1681 		finish_wait(&memcg_oom_waitq, &owait.wait);
1682 	}
1683 
1684 	if (locked) {
1685 		mem_cgroup_oom_unlock(memcg);
1686 		/*
1687 		 * There is no guarantee that an OOM-lock contender
1688 		 * sees the wakeups triggered by the OOM kill
1689 		 * uncharges.  Wake any sleepers explicitely.
1690 		 */
1691 		memcg_oom_recover(memcg);
1692 	}
1693 cleanup:
1694 	current->memcg_in_oom = NULL;
1695 	css_put(&memcg->css);
1696 	return true;
1697 }
1698 
1699 /**
1700  * lock_page_memcg - lock a page->mem_cgroup binding
1701  * @page: the page
1702  *
1703  * This function protects unlocked LRU pages from being moved to
1704  * another cgroup and stabilizes their page->mem_cgroup binding.
1705  */
1706 void lock_page_memcg(struct page *page)
1707 {
1708 	struct mem_cgroup *memcg;
1709 	unsigned long flags;
1710 
1711 	/*
1712 	 * The RCU lock is held throughout the transaction.  The fast
1713 	 * path can get away without acquiring the memcg->move_lock
1714 	 * because page moving starts with an RCU grace period.
1715 	 */
1716 	rcu_read_lock();
1717 
1718 	if (mem_cgroup_disabled())
1719 		return;
1720 again:
1721 	memcg = page->mem_cgroup;
1722 	if (unlikely(!memcg))
1723 		return;
1724 
1725 	if (atomic_read(&memcg->moving_account) <= 0)
1726 		return;
1727 
1728 	spin_lock_irqsave(&memcg->move_lock, flags);
1729 	if (memcg != page->mem_cgroup) {
1730 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1731 		goto again;
1732 	}
1733 
1734 	/*
1735 	 * When charge migration first begins, we can have locked and
1736 	 * unlocked page stat updates happening concurrently.  Track
1737 	 * the task who has the lock for unlock_page_memcg().
1738 	 */
1739 	memcg->move_lock_task = current;
1740 	memcg->move_lock_flags = flags;
1741 
1742 	return;
1743 }
1744 EXPORT_SYMBOL(lock_page_memcg);
1745 
1746 /**
1747  * unlock_page_memcg - unlock a page->mem_cgroup binding
1748  * @page: the page
1749  */
1750 void unlock_page_memcg(struct page *page)
1751 {
1752 	struct mem_cgroup *memcg = page->mem_cgroup;
1753 
1754 	if (memcg && memcg->move_lock_task == current) {
1755 		unsigned long flags = memcg->move_lock_flags;
1756 
1757 		memcg->move_lock_task = NULL;
1758 		memcg->move_lock_flags = 0;
1759 
1760 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1761 	}
1762 
1763 	rcu_read_unlock();
1764 }
1765 EXPORT_SYMBOL(unlock_page_memcg);
1766 
1767 /*
1768  * size of first charge trial. "32" comes from vmscan.c's magic value.
1769  * TODO: maybe necessary to use big numbers in big irons.
1770  */
1771 #define CHARGE_BATCH	32U
1772 struct memcg_stock_pcp {
1773 	struct mem_cgroup *cached; /* this never be root cgroup */
1774 	unsigned int nr_pages;
1775 	struct work_struct work;
1776 	unsigned long flags;
1777 #define FLUSHING_CACHED_CHARGE	0
1778 };
1779 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1780 static DEFINE_MUTEX(percpu_charge_mutex);
1781 
1782 /**
1783  * consume_stock: Try to consume stocked charge on this cpu.
1784  * @memcg: memcg to consume from.
1785  * @nr_pages: how many pages to charge.
1786  *
1787  * The charges will only happen if @memcg matches the current cpu's memcg
1788  * stock, and at least @nr_pages are available in that stock.  Failure to
1789  * service an allocation will refill the stock.
1790  *
1791  * returns true if successful, false otherwise.
1792  */
1793 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1794 {
1795 	struct memcg_stock_pcp *stock;
1796 	bool ret = false;
1797 
1798 	if (nr_pages > CHARGE_BATCH)
1799 		return ret;
1800 
1801 	stock = &get_cpu_var(memcg_stock);
1802 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1803 		stock->nr_pages -= nr_pages;
1804 		ret = true;
1805 	}
1806 	put_cpu_var(memcg_stock);
1807 	return ret;
1808 }
1809 
1810 /*
1811  * Returns stocks cached in percpu and reset cached information.
1812  */
1813 static void drain_stock(struct memcg_stock_pcp *stock)
1814 {
1815 	struct mem_cgroup *old = stock->cached;
1816 
1817 	if (stock->nr_pages) {
1818 		page_counter_uncharge(&old->memory, stock->nr_pages);
1819 		if (do_memsw_account())
1820 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1821 		css_put_many(&old->css, stock->nr_pages);
1822 		stock->nr_pages = 0;
1823 	}
1824 	stock->cached = NULL;
1825 }
1826 
1827 /*
1828  * This must be called under preempt disabled or must be called by
1829  * a thread which is pinned to local cpu.
1830  */
1831 static void drain_local_stock(struct work_struct *dummy)
1832 {
1833 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1834 	drain_stock(stock);
1835 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1836 }
1837 
1838 /*
1839  * Cache charges(val) to local per_cpu area.
1840  * This will be consumed by consume_stock() function, later.
1841  */
1842 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1843 {
1844 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1845 
1846 	if (stock->cached != memcg) { /* reset if necessary */
1847 		drain_stock(stock);
1848 		stock->cached = memcg;
1849 	}
1850 	stock->nr_pages += nr_pages;
1851 	put_cpu_var(memcg_stock);
1852 }
1853 
1854 /*
1855  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1856  * of the hierarchy under it.
1857  */
1858 static void drain_all_stock(struct mem_cgroup *root_memcg)
1859 {
1860 	int cpu, curcpu;
1861 
1862 	/* If someone's already draining, avoid adding running more workers. */
1863 	if (!mutex_trylock(&percpu_charge_mutex))
1864 		return;
1865 	/* Notify other cpus that system-wide "drain" is running */
1866 	get_online_cpus();
1867 	curcpu = get_cpu();
1868 	for_each_online_cpu(cpu) {
1869 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1870 		struct mem_cgroup *memcg;
1871 
1872 		memcg = stock->cached;
1873 		if (!memcg || !stock->nr_pages)
1874 			continue;
1875 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1876 			continue;
1877 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1878 			if (cpu == curcpu)
1879 				drain_local_stock(&stock->work);
1880 			else
1881 				schedule_work_on(cpu, &stock->work);
1882 		}
1883 	}
1884 	put_cpu();
1885 	put_online_cpus();
1886 	mutex_unlock(&percpu_charge_mutex);
1887 }
1888 
1889 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1890 					unsigned long action,
1891 					void *hcpu)
1892 {
1893 	int cpu = (unsigned long)hcpu;
1894 	struct memcg_stock_pcp *stock;
1895 
1896 	if (action == CPU_ONLINE)
1897 		return NOTIFY_OK;
1898 
1899 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1900 		return NOTIFY_OK;
1901 
1902 	stock = &per_cpu(memcg_stock, cpu);
1903 	drain_stock(stock);
1904 	return NOTIFY_OK;
1905 }
1906 
1907 static void reclaim_high(struct mem_cgroup *memcg,
1908 			 unsigned int nr_pages,
1909 			 gfp_t gfp_mask)
1910 {
1911 	do {
1912 		if (page_counter_read(&memcg->memory) <= memcg->high)
1913 			continue;
1914 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1915 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1916 	} while ((memcg = parent_mem_cgroup(memcg)));
1917 }
1918 
1919 static void high_work_func(struct work_struct *work)
1920 {
1921 	struct mem_cgroup *memcg;
1922 
1923 	memcg = container_of(work, struct mem_cgroup, high_work);
1924 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1925 }
1926 
1927 /*
1928  * Scheduled by try_charge() to be executed from the userland return path
1929  * and reclaims memory over the high limit.
1930  */
1931 void mem_cgroup_handle_over_high(void)
1932 {
1933 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1934 	struct mem_cgroup *memcg;
1935 
1936 	if (likely(!nr_pages))
1937 		return;
1938 
1939 	memcg = get_mem_cgroup_from_mm(current->mm);
1940 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1941 	css_put(&memcg->css);
1942 	current->memcg_nr_pages_over_high = 0;
1943 }
1944 
1945 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1946 		      unsigned int nr_pages)
1947 {
1948 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1949 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1950 	struct mem_cgroup *mem_over_limit;
1951 	struct page_counter *counter;
1952 	unsigned long nr_reclaimed;
1953 	bool may_swap = true;
1954 	bool drained = false;
1955 
1956 	if (mem_cgroup_is_root(memcg))
1957 		return 0;
1958 retry:
1959 	if (consume_stock(memcg, nr_pages))
1960 		return 0;
1961 
1962 	if (!do_memsw_account() ||
1963 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1964 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1965 			goto done_restock;
1966 		if (do_memsw_account())
1967 			page_counter_uncharge(&memcg->memsw, batch);
1968 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1969 	} else {
1970 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1971 		may_swap = false;
1972 	}
1973 
1974 	if (batch > nr_pages) {
1975 		batch = nr_pages;
1976 		goto retry;
1977 	}
1978 
1979 	/*
1980 	 * Unlike in global OOM situations, memcg is not in a physical
1981 	 * memory shortage.  Allow dying and OOM-killed tasks to
1982 	 * bypass the last charges so that they can exit quickly and
1983 	 * free their memory.
1984 	 */
1985 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1986 		     fatal_signal_pending(current) ||
1987 		     current->flags & PF_EXITING))
1988 		goto force;
1989 
1990 	if (unlikely(task_in_memcg_oom(current)))
1991 		goto nomem;
1992 
1993 	if (!gfpflags_allow_blocking(gfp_mask))
1994 		goto nomem;
1995 
1996 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1997 
1998 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1999 						    gfp_mask, may_swap);
2000 
2001 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2002 		goto retry;
2003 
2004 	if (!drained) {
2005 		drain_all_stock(mem_over_limit);
2006 		drained = true;
2007 		goto retry;
2008 	}
2009 
2010 	if (gfp_mask & __GFP_NORETRY)
2011 		goto nomem;
2012 	/*
2013 	 * Even though the limit is exceeded at this point, reclaim
2014 	 * may have been able to free some pages.  Retry the charge
2015 	 * before killing the task.
2016 	 *
2017 	 * Only for regular pages, though: huge pages are rather
2018 	 * unlikely to succeed so close to the limit, and we fall back
2019 	 * to regular pages anyway in case of failure.
2020 	 */
2021 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2022 		goto retry;
2023 	/*
2024 	 * At task move, charge accounts can be doubly counted. So, it's
2025 	 * better to wait until the end of task_move if something is going on.
2026 	 */
2027 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2028 		goto retry;
2029 
2030 	if (nr_retries--)
2031 		goto retry;
2032 
2033 	if (gfp_mask & __GFP_NOFAIL)
2034 		goto force;
2035 
2036 	if (fatal_signal_pending(current))
2037 		goto force;
2038 
2039 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2040 
2041 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2042 		       get_order(nr_pages * PAGE_SIZE));
2043 nomem:
2044 	if (!(gfp_mask & __GFP_NOFAIL))
2045 		return -ENOMEM;
2046 force:
2047 	/*
2048 	 * The allocation either can't fail or will lead to more memory
2049 	 * being freed very soon.  Allow memory usage go over the limit
2050 	 * temporarily by force charging it.
2051 	 */
2052 	page_counter_charge(&memcg->memory, nr_pages);
2053 	if (do_memsw_account())
2054 		page_counter_charge(&memcg->memsw, nr_pages);
2055 	css_get_many(&memcg->css, nr_pages);
2056 
2057 	return 0;
2058 
2059 done_restock:
2060 	css_get_many(&memcg->css, batch);
2061 	if (batch > nr_pages)
2062 		refill_stock(memcg, batch - nr_pages);
2063 
2064 	/*
2065 	 * If the hierarchy is above the normal consumption range, schedule
2066 	 * reclaim on returning to userland.  We can perform reclaim here
2067 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2068 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2069 	 * not recorded as it most likely matches current's and won't
2070 	 * change in the meantime.  As high limit is checked again before
2071 	 * reclaim, the cost of mismatch is negligible.
2072 	 */
2073 	do {
2074 		if (page_counter_read(&memcg->memory) > memcg->high) {
2075 			/* Don't bother a random interrupted task */
2076 			if (in_interrupt()) {
2077 				schedule_work(&memcg->high_work);
2078 				break;
2079 			}
2080 			current->memcg_nr_pages_over_high += batch;
2081 			set_notify_resume(current);
2082 			break;
2083 		}
2084 	} while ((memcg = parent_mem_cgroup(memcg)));
2085 
2086 	return 0;
2087 }
2088 
2089 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2090 {
2091 	if (mem_cgroup_is_root(memcg))
2092 		return;
2093 
2094 	page_counter_uncharge(&memcg->memory, nr_pages);
2095 	if (do_memsw_account())
2096 		page_counter_uncharge(&memcg->memsw, nr_pages);
2097 
2098 	css_put_many(&memcg->css, nr_pages);
2099 }
2100 
2101 static void lock_page_lru(struct page *page, int *isolated)
2102 {
2103 	struct zone *zone = page_zone(page);
2104 
2105 	spin_lock_irq(&zone->lru_lock);
2106 	if (PageLRU(page)) {
2107 		struct lruvec *lruvec;
2108 
2109 		lruvec = mem_cgroup_page_lruvec(page, zone);
2110 		ClearPageLRU(page);
2111 		del_page_from_lru_list(page, lruvec, page_lru(page));
2112 		*isolated = 1;
2113 	} else
2114 		*isolated = 0;
2115 }
2116 
2117 static void unlock_page_lru(struct page *page, int isolated)
2118 {
2119 	struct zone *zone = page_zone(page);
2120 
2121 	if (isolated) {
2122 		struct lruvec *lruvec;
2123 
2124 		lruvec = mem_cgroup_page_lruvec(page, zone);
2125 		VM_BUG_ON_PAGE(PageLRU(page), page);
2126 		SetPageLRU(page);
2127 		add_page_to_lru_list(page, lruvec, page_lru(page));
2128 	}
2129 	spin_unlock_irq(&zone->lru_lock);
2130 }
2131 
2132 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2133 			  bool lrucare)
2134 {
2135 	int isolated;
2136 
2137 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2138 
2139 	/*
2140 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2141 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2142 	 */
2143 	if (lrucare)
2144 		lock_page_lru(page, &isolated);
2145 
2146 	/*
2147 	 * Nobody should be changing or seriously looking at
2148 	 * page->mem_cgroup at this point:
2149 	 *
2150 	 * - the page is uncharged
2151 	 *
2152 	 * - the page is off-LRU
2153 	 *
2154 	 * - an anonymous fault has exclusive page access, except for
2155 	 *   a locked page table
2156 	 *
2157 	 * - a page cache insertion, a swapin fault, or a migration
2158 	 *   have the page locked
2159 	 */
2160 	page->mem_cgroup = memcg;
2161 
2162 	if (lrucare)
2163 		unlock_page_lru(page, isolated);
2164 }
2165 
2166 #ifndef CONFIG_SLOB
2167 static int memcg_alloc_cache_id(void)
2168 {
2169 	int id, size;
2170 	int err;
2171 
2172 	id = ida_simple_get(&memcg_cache_ida,
2173 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2174 	if (id < 0)
2175 		return id;
2176 
2177 	if (id < memcg_nr_cache_ids)
2178 		return id;
2179 
2180 	/*
2181 	 * There's no space for the new id in memcg_caches arrays,
2182 	 * so we have to grow them.
2183 	 */
2184 	down_write(&memcg_cache_ids_sem);
2185 
2186 	size = 2 * (id + 1);
2187 	if (size < MEMCG_CACHES_MIN_SIZE)
2188 		size = MEMCG_CACHES_MIN_SIZE;
2189 	else if (size > MEMCG_CACHES_MAX_SIZE)
2190 		size = MEMCG_CACHES_MAX_SIZE;
2191 
2192 	err = memcg_update_all_caches(size);
2193 	if (!err)
2194 		err = memcg_update_all_list_lrus(size);
2195 	if (!err)
2196 		memcg_nr_cache_ids = size;
2197 
2198 	up_write(&memcg_cache_ids_sem);
2199 
2200 	if (err) {
2201 		ida_simple_remove(&memcg_cache_ida, id);
2202 		return err;
2203 	}
2204 	return id;
2205 }
2206 
2207 static void memcg_free_cache_id(int id)
2208 {
2209 	ida_simple_remove(&memcg_cache_ida, id);
2210 }
2211 
2212 struct memcg_kmem_cache_create_work {
2213 	struct mem_cgroup *memcg;
2214 	struct kmem_cache *cachep;
2215 	struct work_struct work;
2216 };
2217 
2218 static void memcg_kmem_cache_create_func(struct work_struct *w)
2219 {
2220 	struct memcg_kmem_cache_create_work *cw =
2221 		container_of(w, struct memcg_kmem_cache_create_work, work);
2222 	struct mem_cgroup *memcg = cw->memcg;
2223 	struct kmem_cache *cachep = cw->cachep;
2224 
2225 	memcg_create_kmem_cache(memcg, cachep);
2226 
2227 	css_put(&memcg->css);
2228 	kfree(cw);
2229 }
2230 
2231 /*
2232  * Enqueue the creation of a per-memcg kmem_cache.
2233  */
2234 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2235 					       struct kmem_cache *cachep)
2236 {
2237 	struct memcg_kmem_cache_create_work *cw;
2238 
2239 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2240 	if (!cw)
2241 		return;
2242 
2243 	css_get(&memcg->css);
2244 
2245 	cw->memcg = memcg;
2246 	cw->cachep = cachep;
2247 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2248 
2249 	schedule_work(&cw->work);
2250 }
2251 
2252 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2253 					     struct kmem_cache *cachep)
2254 {
2255 	/*
2256 	 * We need to stop accounting when we kmalloc, because if the
2257 	 * corresponding kmalloc cache is not yet created, the first allocation
2258 	 * in __memcg_schedule_kmem_cache_create will recurse.
2259 	 *
2260 	 * However, it is better to enclose the whole function. Depending on
2261 	 * the debugging options enabled, INIT_WORK(), for instance, can
2262 	 * trigger an allocation. This too, will make us recurse. Because at
2263 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2264 	 * the safest choice is to do it like this, wrapping the whole function.
2265 	 */
2266 	current->memcg_kmem_skip_account = 1;
2267 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2268 	current->memcg_kmem_skip_account = 0;
2269 }
2270 
2271 /*
2272  * Return the kmem_cache we're supposed to use for a slab allocation.
2273  * We try to use the current memcg's version of the cache.
2274  *
2275  * If the cache does not exist yet, if we are the first user of it,
2276  * we either create it immediately, if possible, or create it asynchronously
2277  * in a workqueue.
2278  * In the latter case, we will let the current allocation go through with
2279  * the original cache.
2280  *
2281  * Can't be called in interrupt context or from kernel threads.
2282  * This function needs to be called with rcu_read_lock() held.
2283  */
2284 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2285 {
2286 	struct mem_cgroup *memcg;
2287 	struct kmem_cache *memcg_cachep;
2288 	int kmemcg_id;
2289 
2290 	VM_BUG_ON(!is_root_cache(cachep));
2291 
2292 	if (cachep->flags & SLAB_ACCOUNT)
2293 		gfp |= __GFP_ACCOUNT;
2294 
2295 	if (!(gfp & __GFP_ACCOUNT))
2296 		return cachep;
2297 
2298 	if (current->memcg_kmem_skip_account)
2299 		return cachep;
2300 
2301 	memcg = get_mem_cgroup_from_mm(current->mm);
2302 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2303 	if (kmemcg_id < 0)
2304 		goto out;
2305 
2306 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2307 	if (likely(memcg_cachep))
2308 		return memcg_cachep;
2309 
2310 	/*
2311 	 * If we are in a safe context (can wait, and not in interrupt
2312 	 * context), we could be be predictable and return right away.
2313 	 * This would guarantee that the allocation being performed
2314 	 * already belongs in the new cache.
2315 	 *
2316 	 * However, there are some clashes that can arrive from locking.
2317 	 * For instance, because we acquire the slab_mutex while doing
2318 	 * memcg_create_kmem_cache, this means no further allocation
2319 	 * could happen with the slab_mutex held. So it's better to
2320 	 * defer everything.
2321 	 */
2322 	memcg_schedule_kmem_cache_create(memcg, cachep);
2323 out:
2324 	css_put(&memcg->css);
2325 	return cachep;
2326 }
2327 
2328 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2329 {
2330 	if (!is_root_cache(cachep))
2331 		css_put(&cachep->memcg_params.memcg->css);
2332 }
2333 
2334 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2335 			      struct mem_cgroup *memcg)
2336 {
2337 	unsigned int nr_pages = 1 << order;
2338 	struct page_counter *counter;
2339 	int ret;
2340 
2341 	ret = try_charge(memcg, gfp, nr_pages);
2342 	if (ret)
2343 		return ret;
2344 
2345 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2346 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2347 		cancel_charge(memcg, nr_pages);
2348 		return -ENOMEM;
2349 	}
2350 
2351 	page->mem_cgroup = memcg;
2352 
2353 	return 0;
2354 }
2355 
2356 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2357 {
2358 	struct mem_cgroup *memcg;
2359 	int ret = 0;
2360 
2361 	memcg = get_mem_cgroup_from_mm(current->mm);
2362 	if (!mem_cgroup_is_root(memcg))
2363 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2364 	css_put(&memcg->css);
2365 	return ret;
2366 }
2367 
2368 void __memcg_kmem_uncharge(struct page *page, int order)
2369 {
2370 	struct mem_cgroup *memcg = page->mem_cgroup;
2371 	unsigned int nr_pages = 1 << order;
2372 
2373 	if (!memcg)
2374 		return;
2375 
2376 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2377 
2378 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2379 		page_counter_uncharge(&memcg->kmem, nr_pages);
2380 
2381 	page_counter_uncharge(&memcg->memory, nr_pages);
2382 	if (do_memsw_account())
2383 		page_counter_uncharge(&memcg->memsw, nr_pages);
2384 
2385 	page->mem_cgroup = NULL;
2386 	css_put_many(&memcg->css, nr_pages);
2387 }
2388 #endif /* !CONFIG_SLOB */
2389 
2390 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2391 
2392 /*
2393  * Because tail pages are not marked as "used", set it. We're under
2394  * zone->lru_lock and migration entries setup in all page mappings.
2395  */
2396 void mem_cgroup_split_huge_fixup(struct page *head)
2397 {
2398 	int i;
2399 
2400 	if (mem_cgroup_disabled())
2401 		return;
2402 
2403 	for (i = 1; i < HPAGE_PMD_NR; i++)
2404 		head[i].mem_cgroup = head->mem_cgroup;
2405 
2406 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2407 		       HPAGE_PMD_NR);
2408 }
2409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2410 
2411 #ifdef CONFIG_MEMCG_SWAP
2412 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2413 					 bool charge)
2414 {
2415 	int val = (charge) ? 1 : -1;
2416 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2417 }
2418 
2419 /**
2420  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2421  * @entry: swap entry to be moved
2422  * @from:  mem_cgroup which the entry is moved from
2423  * @to:  mem_cgroup which the entry is moved to
2424  *
2425  * It succeeds only when the swap_cgroup's record for this entry is the same
2426  * as the mem_cgroup's id of @from.
2427  *
2428  * Returns 0 on success, -EINVAL on failure.
2429  *
2430  * The caller must have charged to @to, IOW, called page_counter_charge() about
2431  * both res and memsw, and called css_get().
2432  */
2433 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 				struct mem_cgroup *from, struct mem_cgroup *to)
2435 {
2436 	unsigned short old_id, new_id;
2437 
2438 	old_id = mem_cgroup_id(from);
2439 	new_id = mem_cgroup_id(to);
2440 
2441 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2442 		mem_cgroup_swap_statistics(from, false);
2443 		mem_cgroup_swap_statistics(to, true);
2444 		return 0;
2445 	}
2446 	return -EINVAL;
2447 }
2448 #else
2449 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2450 				struct mem_cgroup *from, struct mem_cgroup *to)
2451 {
2452 	return -EINVAL;
2453 }
2454 #endif
2455 
2456 static DEFINE_MUTEX(memcg_limit_mutex);
2457 
2458 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2459 				   unsigned long limit)
2460 {
2461 	unsigned long curusage;
2462 	unsigned long oldusage;
2463 	bool enlarge = false;
2464 	int retry_count;
2465 	int ret;
2466 
2467 	/*
2468 	 * For keeping hierarchical_reclaim simple, how long we should retry
2469 	 * is depends on callers. We set our retry-count to be function
2470 	 * of # of children which we should visit in this loop.
2471 	 */
2472 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2473 		      mem_cgroup_count_children(memcg);
2474 
2475 	oldusage = page_counter_read(&memcg->memory);
2476 
2477 	do {
2478 		if (signal_pending(current)) {
2479 			ret = -EINTR;
2480 			break;
2481 		}
2482 
2483 		mutex_lock(&memcg_limit_mutex);
2484 		if (limit > memcg->memsw.limit) {
2485 			mutex_unlock(&memcg_limit_mutex);
2486 			ret = -EINVAL;
2487 			break;
2488 		}
2489 		if (limit > memcg->memory.limit)
2490 			enlarge = true;
2491 		ret = page_counter_limit(&memcg->memory, limit);
2492 		mutex_unlock(&memcg_limit_mutex);
2493 
2494 		if (!ret)
2495 			break;
2496 
2497 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2498 
2499 		curusage = page_counter_read(&memcg->memory);
2500 		/* Usage is reduced ? */
2501 		if (curusage >= oldusage)
2502 			retry_count--;
2503 		else
2504 			oldusage = curusage;
2505 	} while (retry_count);
2506 
2507 	if (!ret && enlarge)
2508 		memcg_oom_recover(memcg);
2509 
2510 	return ret;
2511 }
2512 
2513 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2514 					 unsigned long limit)
2515 {
2516 	unsigned long curusage;
2517 	unsigned long oldusage;
2518 	bool enlarge = false;
2519 	int retry_count;
2520 	int ret;
2521 
2522 	/* see mem_cgroup_resize_res_limit */
2523 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2524 		      mem_cgroup_count_children(memcg);
2525 
2526 	oldusage = page_counter_read(&memcg->memsw);
2527 
2528 	do {
2529 		if (signal_pending(current)) {
2530 			ret = -EINTR;
2531 			break;
2532 		}
2533 
2534 		mutex_lock(&memcg_limit_mutex);
2535 		if (limit < memcg->memory.limit) {
2536 			mutex_unlock(&memcg_limit_mutex);
2537 			ret = -EINVAL;
2538 			break;
2539 		}
2540 		if (limit > memcg->memsw.limit)
2541 			enlarge = true;
2542 		ret = page_counter_limit(&memcg->memsw, limit);
2543 		mutex_unlock(&memcg_limit_mutex);
2544 
2545 		if (!ret)
2546 			break;
2547 
2548 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2549 
2550 		curusage = page_counter_read(&memcg->memsw);
2551 		/* Usage is reduced ? */
2552 		if (curusage >= oldusage)
2553 			retry_count--;
2554 		else
2555 			oldusage = curusage;
2556 	} while (retry_count);
2557 
2558 	if (!ret && enlarge)
2559 		memcg_oom_recover(memcg);
2560 
2561 	return ret;
2562 }
2563 
2564 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2565 					    gfp_t gfp_mask,
2566 					    unsigned long *total_scanned)
2567 {
2568 	unsigned long nr_reclaimed = 0;
2569 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2570 	unsigned long reclaimed;
2571 	int loop = 0;
2572 	struct mem_cgroup_tree_per_zone *mctz;
2573 	unsigned long excess;
2574 	unsigned long nr_scanned;
2575 
2576 	if (order > 0)
2577 		return 0;
2578 
2579 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2580 	/*
2581 	 * This loop can run a while, specially if mem_cgroup's continuously
2582 	 * keep exceeding their soft limit and putting the system under
2583 	 * pressure
2584 	 */
2585 	do {
2586 		if (next_mz)
2587 			mz = next_mz;
2588 		else
2589 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2590 		if (!mz)
2591 			break;
2592 
2593 		nr_scanned = 0;
2594 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2595 						    gfp_mask, &nr_scanned);
2596 		nr_reclaimed += reclaimed;
2597 		*total_scanned += nr_scanned;
2598 		spin_lock_irq(&mctz->lock);
2599 		__mem_cgroup_remove_exceeded(mz, mctz);
2600 
2601 		/*
2602 		 * If we failed to reclaim anything from this memory cgroup
2603 		 * it is time to move on to the next cgroup
2604 		 */
2605 		next_mz = NULL;
2606 		if (!reclaimed)
2607 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2608 
2609 		excess = soft_limit_excess(mz->memcg);
2610 		/*
2611 		 * One school of thought says that we should not add
2612 		 * back the node to the tree if reclaim returns 0.
2613 		 * But our reclaim could return 0, simply because due
2614 		 * to priority we are exposing a smaller subset of
2615 		 * memory to reclaim from. Consider this as a longer
2616 		 * term TODO.
2617 		 */
2618 		/* If excess == 0, no tree ops */
2619 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2620 		spin_unlock_irq(&mctz->lock);
2621 		css_put(&mz->memcg->css);
2622 		loop++;
2623 		/*
2624 		 * Could not reclaim anything and there are no more
2625 		 * mem cgroups to try or we seem to be looping without
2626 		 * reclaiming anything.
2627 		 */
2628 		if (!nr_reclaimed &&
2629 			(next_mz == NULL ||
2630 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2631 			break;
2632 	} while (!nr_reclaimed);
2633 	if (next_mz)
2634 		css_put(&next_mz->memcg->css);
2635 	return nr_reclaimed;
2636 }
2637 
2638 /*
2639  * Test whether @memcg has children, dead or alive.  Note that this
2640  * function doesn't care whether @memcg has use_hierarchy enabled and
2641  * returns %true if there are child csses according to the cgroup
2642  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2643  */
2644 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2645 {
2646 	bool ret;
2647 
2648 	rcu_read_lock();
2649 	ret = css_next_child(NULL, &memcg->css);
2650 	rcu_read_unlock();
2651 	return ret;
2652 }
2653 
2654 /*
2655  * Reclaims as many pages from the given memcg as possible.
2656  *
2657  * Caller is responsible for holding css reference for memcg.
2658  */
2659 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2660 {
2661 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2662 
2663 	/* we call try-to-free pages for make this cgroup empty */
2664 	lru_add_drain_all();
2665 	/* try to free all pages in this cgroup */
2666 	while (nr_retries && page_counter_read(&memcg->memory)) {
2667 		int progress;
2668 
2669 		if (signal_pending(current))
2670 			return -EINTR;
2671 
2672 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2673 							GFP_KERNEL, true);
2674 		if (!progress) {
2675 			nr_retries--;
2676 			/* maybe some writeback is necessary */
2677 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2678 		}
2679 
2680 	}
2681 
2682 	return 0;
2683 }
2684 
2685 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2686 					    char *buf, size_t nbytes,
2687 					    loff_t off)
2688 {
2689 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2690 
2691 	if (mem_cgroup_is_root(memcg))
2692 		return -EINVAL;
2693 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2694 }
2695 
2696 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2697 				     struct cftype *cft)
2698 {
2699 	return mem_cgroup_from_css(css)->use_hierarchy;
2700 }
2701 
2702 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2703 				      struct cftype *cft, u64 val)
2704 {
2705 	int retval = 0;
2706 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2707 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2708 
2709 	if (memcg->use_hierarchy == val)
2710 		return 0;
2711 
2712 	/*
2713 	 * If parent's use_hierarchy is set, we can't make any modifications
2714 	 * in the child subtrees. If it is unset, then the change can
2715 	 * occur, provided the current cgroup has no children.
2716 	 *
2717 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2718 	 * set if there are no children.
2719 	 */
2720 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2721 				(val == 1 || val == 0)) {
2722 		if (!memcg_has_children(memcg))
2723 			memcg->use_hierarchy = val;
2724 		else
2725 			retval = -EBUSY;
2726 	} else
2727 		retval = -EINVAL;
2728 
2729 	return retval;
2730 }
2731 
2732 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2733 {
2734 	struct mem_cgroup *iter;
2735 	int i;
2736 
2737 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2738 
2739 	for_each_mem_cgroup_tree(iter, memcg) {
2740 		for (i = 0; i < MEMCG_NR_STAT; i++)
2741 			stat[i] += mem_cgroup_read_stat(iter, i);
2742 	}
2743 }
2744 
2745 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2746 {
2747 	struct mem_cgroup *iter;
2748 	int i;
2749 
2750 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2751 
2752 	for_each_mem_cgroup_tree(iter, memcg) {
2753 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2754 			events[i] += mem_cgroup_read_events(iter, i);
2755 	}
2756 }
2757 
2758 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2759 {
2760 	unsigned long val = 0;
2761 
2762 	if (mem_cgroup_is_root(memcg)) {
2763 		struct mem_cgroup *iter;
2764 
2765 		for_each_mem_cgroup_tree(iter, memcg) {
2766 			val += mem_cgroup_read_stat(iter,
2767 					MEM_CGROUP_STAT_CACHE);
2768 			val += mem_cgroup_read_stat(iter,
2769 					MEM_CGROUP_STAT_RSS);
2770 			if (swap)
2771 				val += mem_cgroup_read_stat(iter,
2772 						MEM_CGROUP_STAT_SWAP);
2773 		}
2774 	} else {
2775 		if (!swap)
2776 			val = page_counter_read(&memcg->memory);
2777 		else
2778 			val = page_counter_read(&memcg->memsw);
2779 	}
2780 	return val;
2781 }
2782 
2783 enum {
2784 	RES_USAGE,
2785 	RES_LIMIT,
2786 	RES_MAX_USAGE,
2787 	RES_FAILCNT,
2788 	RES_SOFT_LIMIT,
2789 };
2790 
2791 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2792 			       struct cftype *cft)
2793 {
2794 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2795 	struct page_counter *counter;
2796 
2797 	switch (MEMFILE_TYPE(cft->private)) {
2798 	case _MEM:
2799 		counter = &memcg->memory;
2800 		break;
2801 	case _MEMSWAP:
2802 		counter = &memcg->memsw;
2803 		break;
2804 	case _KMEM:
2805 		counter = &memcg->kmem;
2806 		break;
2807 	case _TCP:
2808 		counter = &memcg->tcpmem;
2809 		break;
2810 	default:
2811 		BUG();
2812 	}
2813 
2814 	switch (MEMFILE_ATTR(cft->private)) {
2815 	case RES_USAGE:
2816 		if (counter == &memcg->memory)
2817 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2818 		if (counter == &memcg->memsw)
2819 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2820 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2821 	case RES_LIMIT:
2822 		return (u64)counter->limit * PAGE_SIZE;
2823 	case RES_MAX_USAGE:
2824 		return (u64)counter->watermark * PAGE_SIZE;
2825 	case RES_FAILCNT:
2826 		return counter->failcnt;
2827 	case RES_SOFT_LIMIT:
2828 		return (u64)memcg->soft_limit * PAGE_SIZE;
2829 	default:
2830 		BUG();
2831 	}
2832 }
2833 
2834 #ifndef CONFIG_SLOB
2835 static int memcg_online_kmem(struct mem_cgroup *memcg)
2836 {
2837 	int memcg_id;
2838 
2839 	if (cgroup_memory_nokmem)
2840 		return 0;
2841 
2842 	BUG_ON(memcg->kmemcg_id >= 0);
2843 	BUG_ON(memcg->kmem_state);
2844 
2845 	memcg_id = memcg_alloc_cache_id();
2846 	if (memcg_id < 0)
2847 		return memcg_id;
2848 
2849 	static_branch_inc(&memcg_kmem_enabled_key);
2850 	/*
2851 	 * A memory cgroup is considered kmem-online as soon as it gets
2852 	 * kmemcg_id. Setting the id after enabling static branching will
2853 	 * guarantee no one starts accounting before all call sites are
2854 	 * patched.
2855 	 */
2856 	memcg->kmemcg_id = memcg_id;
2857 	memcg->kmem_state = KMEM_ONLINE;
2858 
2859 	return 0;
2860 }
2861 
2862 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2863 {
2864 	struct cgroup_subsys_state *css;
2865 	struct mem_cgroup *parent, *child;
2866 	int kmemcg_id;
2867 
2868 	if (memcg->kmem_state != KMEM_ONLINE)
2869 		return;
2870 	/*
2871 	 * Clear the online state before clearing memcg_caches array
2872 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2873 	 * guarantees that no cache will be created for this cgroup
2874 	 * after we are done (see memcg_create_kmem_cache()).
2875 	 */
2876 	memcg->kmem_state = KMEM_ALLOCATED;
2877 
2878 	memcg_deactivate_kmem_caches(memcg);
2879 
2880 	kmemcg_id = memcg->kmemcg_id;
2881 	BUG_ON(kmemcg_id < 0);
2882 
2883 	parent = parent_mem_cgroup(memcg);
2884 	if (!parent)
2885 		parent = root_mem_cgroup;
2886 
2887 	/*
2888 	 * Change kmemcg_id of this cgroup and all its descendants to the
2889 	 * parent's id, and then move all entries from this cgroup's list_lrus
2890 	 * to ones of the parent. After we have finished, all list_lrus
2891 	 * corresponding to this cgroup are guaranteed to remain empty. The
2892 	 * ordering is imposed by list_lru_node->lock taken by
2893 	 * memcg_drain_all_list_lrus().
2894 	 */
2895 	css_for_each_descendant_pre(css, &memcg->css) {
2896 		child = mem_cgroup_from_css(css);
2897 		BUG_ON(child->kmemcg_id != kmemcg_id);
2898 		child->kmemcg_id = parent->kmemcg_id;
2899 		if (!memcg->use_hierarchy)
2900 			break;
2901 	}
2902 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2903 
2904 	memcg_free_cache_id(kmemcg_id);
2905 }
2906 
2907 static void memcg_free_kmem(struct mem_cgroup *memcg)
2908 {
2909 	/* css_alloc() failed, offlining didn't happen */
2910 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2911 		memcg_offline_kmem(memcg);
2912 
2913 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2914 		memcg_destroy_kmem_caches(memcg);
2915 		static_branch_dec(&memcg_kmem_enabled_key);
2916 		WARN_ON(page_counter_read(&memcg->kmem));
2917 	}
2918 }
2919 #else
2920 static int memcg_online_kmem(struct mem_cgroup *memcg)
2921 {
2922 	return 0;
2923 }
2924 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2925 {
2926 }
2927 static void memcg_free_kmem(struct mem_cgroup *memcg)
2928 {
2929 }
2930 #endif /* !CONFIG_SLOB */
2931 
2932 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2933 				   unsigned long limit)
2934 {
2935 	int ret;
2936 
2937 	mutex_lock(&memcg_limit_mutex);
2938 	ret = page_counter_limit(&memcg->kmem, limit);
2939 	mutex_unlock(&memcg_limit_mutex);
2940 	return ret;
2941 }
2942 
2943 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2944 {
2945 	int ret;
2946 
2947 	mutex_lock(&memcg_limit_mutex);
2948 
2949 	ret = page_counter_limit(&memcg->tcpmem, limit);
2950 	if (ret)
2951 		goto out;
2952 
2953 	if (!memcg->tcpmem_active) {
2954 		/*
2955 		 * The active flag needs to be written after the static_key
2956 		 * update. This is what guarantees that the socket activation
2957 		 * function is the last one to run. See sock_update_memcg() for
2958 		 * details, and note that we don't mark any socket as belonging
2959 		 * to this memcg until that flag is up.
2960 		 *
2961 		 * We need to do this, because static_keys will span multiple
2962 		 * sites, but we can't control their order. If we mark a socket
2963 		 * as accounted, but the accounting functions are not patched in
2964 		 * yet, we'll lose accounting.
2965 		 *
2966 		 * We never race with the readers in sock_update_memcg(),
2967 		 * because when this value change, the code to process it is not
2968 		 * patched in yet.
2969 		 */
2970 		static_branch_inc(&memcg_sockets_enabled_key);
2971 		memcg->tcpmem_active = true;
2972 	}
2973 out:
2974 	mutex_unlock(&memcg_limit_mutex);
2975 	return ret;
2976 }
2977 
2978 /*
2979  * The user of this function is...
2980  * RES_LIMIT.
2981  */
2982 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2983 				char *buf, size_t nbytes, loff_t off)
2984 {
2985 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2986 	unsigned long nr_pages;
2987 	int ret;
2988 
2989 	buf = strstrip(buf);
2990 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2991 	if (ret)
2992 		return ret;
2993 
2994 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2995 	case RES_LIMIT:
2996 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2997 			ret = -EINVAL;
2998 			break;
2999 		}
3000 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3001 		case _MEM:
3002 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3003 			break;
3004 		case _MEMSWAP:
3005 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3006 			break;
3007 		case _KMEM:
3008 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3009 			break;
3010 		case _TCP:
3011 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3012 			break;
3013 		}
3014 		break;
3015 	case RES_SOFT_LIMIT:
3016 		memcg->soft_limit = nr_pages;
3017 		ret = 0;
3018 		break;
3019 	}
3020 	return ret ?: nbytes;
3021 }
3022 
3023 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3024 				size_t nbytes, loff_t off)
3025 {
3026 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3027 	struct page_counter *counter;
3028 
3029 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3030 	case _MEM:
3031 		counter = &memcg->memory;
3032 		break;
3033 	case _MEMSWAP:
3034 		counter = &memcg->memsw;
3035 		break;
3036 	case _KMEM:
3037 		counter = &memcg->kmem;
3038 		break;
3039 	case _TCP:
3040 		counter = &memcg->tcpmem;
3041 		break;
3042 	default:
3043 		BUG();
3044 	}
3045 
3046 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3047 	case RES_MAX_USAGE:
3048 		page_counter_reset_watermark(counter);
3049 		break;
3050 	case RES_FAILCNT:
3051 		counter->failcnt = 0;
3052 		break;
3053 	default:
3054 		BUG();
3055 	}
3056 
3057 	return nbytes;
3058 }
3059 
3060 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3061 					struct cftype *cft)
3062 {
3063 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3064 }
3065 
3066 #ifdef CONFIG_MMU
3067 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3068 					struct cftype *cft, u64 val)
3069 {
3070 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3071 
3072 	if (val & ~MOVE_MASK)
3073 		return -EINVAL;
3074 
3075 	/*
3076 	 * No kind of locking is needed in here, because ->can_attach() will
3077 	 * check this value once in the beginning of the process, and then carry
3078 	 * on with stale data. This means that changes to this value will only
3079 	 * affect task migrations starting after the change.
3080 	 */
3081 	memcg->move_charge_at_immigrate = val;
3082 	return 0;
3083 }
3084 #else
3085 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3086 					struct cftype *cft, u64 val)
3087 {
3088 	return -ENOSYS;
3089 }
3090 #endif
3091 
3092 #ifdef CONFIG_NUMA
3093 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3094 {
3095 	struct numa_stat {
3096 		const char *name;
3097 		unsigned int lru_mask;
3098 	};
3099 
3100 	static const struct numa_stat stats[] = {
3101 		{ "total", LRU_ALL },
3102 		{ "file", LRU_ALL_FILE },
3103 		{ "anon", LRU_ALL_ANON },
3104 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3105 	};
3106 	const struct numa_stat *stat;
3107 	int nid;
3108 	unsigned long nr;
3109 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3110 
3111 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3112 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3113 		seq_printf(m, "%s=%lu", stat->name, nr);
3114 		for_each_node_state(nid, N_MEMORY) {
3115 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3116 							  stat->lru_mask);
3117 			seq_printf(m, " N%d=%lu", nid, nr);
3118 		}
3119 		seq_putc(m, '\n');
3120 	}
3121 
3122 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3123 		struct mem_cgroup *iter;
3124 
3125 		nr = 0;
3126 		for_each_mem_cgroup_tree(iter, memcg)
3127 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3128 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3129 		for_each_node_state(nid, N_MEMORY) {
3130 			nr = 0;
3131 			for_each_mem_cgroup_tree(iter, memcg)
3132 				nr += mem_cgroup_node_nr_lru_pages(
3133 					iter, nid, stat->lru_mask);
3134 			seq_printf(m, " N%d=%lu", nid, nr);
3135 		}
3136 		seq_putc(m, '\n');
3137 	}
3138 
3139 	return 0;
3140 }
3141 #endif /* CONFIG_NUMA */
3142 
3143 static int memcg_stat_show(struct seq_file *m, void *v)
3144 {
3145 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3146 	unsigned long memory, memsw;
3147 	struct mem_cgroup *mi;
3148 	unsigned int i;
3149 
3150 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3151 		     MEM_CGROUP_STAT_NSTATS);
3152 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3153 		     MEM_CGROUP_EVENTS_NSTATS);
3154 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3155 
3156 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3157 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3158 			continue;
3159 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3160 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3161 	}
3162 
3163 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3164 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3165 			   mem_cgroup_read_events(memcg, i));
3166 
3167 	for (i = 0; i < NR_LRU_LISTS; i++)
3168 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3169 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3170 
3171 	/* Hierarchical information */
3172 	memory = memsw = PAGE_COUNTER_MAX;
3173 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3174 		memory = min(memory, mi->memory.limit);
3175 		memsw = min(memsw, mi->memsw.limit);
3176 	}
3177 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3178 		   (u64)memory * PAGE_SIZE);
3179 	if (do_memsw_account())
3180 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3181 			   (u64)memsw * PAGE_SIZE);
3182 
3183 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3184 		unsigned long long val = 0;
3185 
3186 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3187 			continue;
3188 		for_each_mem_cgroup_tree(mi, memcg)
3189 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3190 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3191 	}
3192 
3193 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3194 		unsigned long long val = 0;
3195 
3196 		for_each_mem_cgroup_tree(mi, memcg)
3197 			val += mem_cgroup_read_events(mi, i);
3198 		seq_printf(m, "total_%s %llu\n",
3199 			   mem_cgroup_events_names[i], val);
3200 	}
3201 
3202 	for (i = 0; i < NR_LRU_LISTS; i++) {
3203 		unsigned long long val = 0;
3204 
3205 		for_each_mem_cgroup_tree(mi, memcg)
3206 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3207 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3208 	}
3209 
3210 #ifdef CONFIG_DEBUG_VM
3211 	{
3212 		int nid, zid;
3213 		struct mem_cgroup_per_zone *mz;
3214 		struct zone_reclaim_stat *rstat;
3215 		unsigned long recent_rotated[2] = {0, 0};
3216 		unsigned long recent_scanned[2] = {0, 0};
3217 
3218 		for_each_online_node(nid)
3219 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3220 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3221 				rstat = &mz->lruvec.reclaim_stat;
3222 
3223 				recent_rotated[0] += rstat->recent_rotated[0];
3224 				recent_rotated[1] += rstat->recent_rotated[1];
3225 				recent_scanned[0] += rstat->recent_scanned[0];
3226 				recent_scanned[1] += rstat->recent_scanned[1];
3227 			}
3228 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3229 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3230 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3231 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3232 	}
3233 #endif
3234 
3235 	return 0;
3236 }
3237 
3238 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3239 				      struct cftype *cft)
3240 {
3241 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3242 
3243 	return mem_cgroup_swappiness(memcg);
3244 }
3245 
3246 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3247 				       struct cftype *cft, u64 val)
3248 {
3249 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3250 
3251 	if (val > 100)
3252 		return -EINVAL;
3253 
3254 	if (css->parent)
3255 		memcg->swappiness = val;
3256 	else
3257 		vm_swappiness = val;
3258 
3259 	return 0;
3260 }
3261 
3262 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3263 {
3264 	struct mem_cgroup_threshold_ary *t;
3265 	unsigned long usage;
3266 	int i;
3267 
3268 	rcu_read_lock();
3269 	if (!swap)
3270 		t = rcu_dereference(memcg->thresholds.primary);
3271 	else
3272 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3273 
3274 	if (!t)
3275 		goto unlock;
3276 
3277 	usage = mem_cgroup_usage(memcg, swap);
3278 
3279 	/*
3280 	 * current_threshold points to threshold just below or equal to usage.
3281 	 * If it's not true, a threshold was crossed after last
3282 	 * call of __mem_cgroup_threshold().
3283 	 */
3284 	i = t->current_threshold;
3285 
3286 	/*
3287 	 * Iterate backward over array of thresholds starting from
3288 	 * current_threshold and check if a threshold is crossed.
3289 	 * If none of thresholds below usage is crossed, we read
3290 	 * only one element of the array here.
3291 	 */
3292 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3293 		eventfd_signal(t->entries[i].eventfd, 1);
3294 
3295 	/* i = current_threshold + 1 */
3296 	i++;
3297 
3298 	/*
3299 	 * Iterate forward over array of thresholds starting from
3300 	 * current_threshold+1 and check if a threshold is crossed.
3301 	 * If none of thresholds above usage is crossed, we read
3302 	 * only one element of the array here.
3303 	 */
3304 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3305 		eventfd_signal(t->entries[i].eventfd, 1);
3306 
3307 	/* Update current_threshold */
3308 	t->current_threshold = i - 1;
3309 unlock:
3310 	rcu_read_unlock();
3311 }
3312 
3313 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3314 {
3315 	while (memcg) {
3316 		__mem_cgroup_threshold(memcg, false);
3317 		if (do_memsw_account())
3318 			__mem_cgroup_threshold(memcg, true);
3319 
3320 		memcg = parent_mem_cgroup(memcg);
3321 	}
3322 }
3323 
3324 static int compare_thresholds(const void *a, const void *b)
3325 {
3326 	const struct mem_cgroup_threshold *_a = a;
3327 	const struct mem_cgroup_threshold *_b = b;
3328 
3329 	if (_a->threshold > _b->threshold)
3330 		return 1;
3331 
3332 	if (_a->threshold < _b->threshold)
3333 		return -1;
3334 
3335 	return 0;
3336 }
3337 
3338 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3339 {
3340 	struct mem_cgroup_eventfd_list *ev;
3341 
3342 	spin_lock(&memcg_oom_lock);
3343 
3344 	list_for_each_entry(ev, &memcg->oom_notify, list)
3345 		eventfd_signal(ev->eventfd, 1);
3346 
3347 	spin_unlock(&memcg_oom_lock);
3348 	return 0;
3349 }
3350 
3351 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3352 {
3353 	struct mem_cgroup *iter;
3354 
3355 	for_each_mem_cgroup_tree(iter, memcg)
3356 		mem_cgroup_oom_notify_cb(iter);
3357 }
3358 
3359 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3360 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3361 {
3362 	struct mem_cgroup_thresholds *thresholds;
3363 	struct mem_cgroup_threshold_ary *new;
3364 	unsigned long threshold;
3365 	unsigned long usage;
3366 	int i, size, ret;
3367 
3368 	ret = page_counter_memparse(args, "-1", &threshold);
3369 	if (ret)
3370 		return ret;
3371 
3372 	mutex_lock(&memcg->thresholds_lock);
3373 
3374 	if (type == _MEM) {
3375 		thresholds = &memcg->thresholds;
3376 		usage = mem_cgroup_usage(memcg, false);
3377 	} else if (type == _MEMSWAP) {
3378 		thresholds = &memcg->memsw_thresholds;
3379 		usage = mem_cgroup_usage(memcg, true);
3380 	} else
3381 		BUG();
3382 
3383 	/* Check if a threshold crossed before adding a new one */
3384 	if (thresholds->primary)
3385 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3386 
3387 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3388 
3389 	/* Allocate memory for new array of thresholds */
3390 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3391 			GFP_KERNEL);
3392 	if (!new) {
3393 		ret = -ENOMEM;
3394 		goto unlock;
3395 	}
3396 	new->size = size;
3397 
3398 	/* Copy thresholds (if any) to new array */
3399 	if (thresholds->primary) {
3400 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3401 				sizeof(struct mem_cgroup_threshold));
3402 	}
3403 
3404 	/* Add new threshold */
3405 	new->entries[size - 1].eventfd = eventfd;
3406 	new->entries[size - 1].threshold = threshold;
3407 
3408 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3409 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3410 			compare_thresholds, NULL);
3411 
3412 	/* Find current threshold */
3413 	new->current_threshold = -1;
3414 	for (i = 0; i < size; i++) {
3415 		if (new->entries[i].threshold <= usage) {
3416 			/*
3417 			 * new->current_threshold will not be used until
3418 			 * rcu_assign_pointer(), so it's safe to increment
3419 			 * it here.
3420 			 */
3421 			++new->current_threshold;
3422 		} else
3423 			break;
3424 	}
3425 
3426 	/* Free old spare buffer and save old primary buffer as spare */
3427 	kfree(thresholds->spare);
3428 	thresholds->spare = thresholds->primary;
3429 
3430 	rcu_assign_pointer(thresholds->primary, new);
3431 
3432 	/* To be sure that nobody uses thresholds */
3433 	synchronize_rcu();
3434 
3435 unlock:
3436 	mutex_unlock(&memcg->thresholds_lock);
3437 
3438 	return ret;
3439 }
3440 
3441 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3442 	struct eventfd_ctx *eventfd, const char *args)
3443 {
3444 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3445 }
3446 
3447 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3448 	struct eventfd_ctx *eventfd, const char *args)
3449 {
3450 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3451 }
3452 
3453 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3454 	struct eventfd_ctx *eventfd, enum res_type type)
3455 {
3456 	struct mem_cgroup_thresholds *thresholds;
3457 	struct mem_cgroup_threshold_ary *new;
3458 	unsigned long usage;
3459 	int i, j, size;
3460 
3461 	mutex_lock(&memcg->thresholds_lock);
3462 
3463 	if (type == _MEM) {
3464 		thresholds = &memcg->thresholds;
3465 		usage = mem_cgroup_usage(memcg, false);
3466 	} else if (type == _MEMSWAP) {
3467 		thresholds = &memcg->memsw_thresholds;
3468 		usage = mem_cgroup_usage(memcg, true);
3469 	} else
3470 		BUG();
3471 
3472 	if (!thresholds->primary)
3473 		goto unlock;
3474 
3475 	/* Check if a threshold crossed before removing */
3476 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3477 
3478 	/* Calculate new number of threshold */
3479 	size = 0;
3480 	for (i = 0; i < thresholds->primary->size; i++) {
3481 		if (thresholds->primary->entries[i].eventfd != eventfd)
3482 			size++;
3483 	}
3484 
3485 	new = thresholds->spare;
3486 
3487 	/* Set thresholds array to NULL if we don't have thresholds */
3488 	if (!size) {
3489 		kfree(new);
3490 		new = NULL;
3491 		goto swap_buffers;
3492 	}
3493 
3494 	new->size = size;
3495 
3496 	/* Copy thresholds and find current threshold */
3497 	new->current_threshold = -1;
3498 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3499 		if (thresholds->primary->entries[i].eventfd == eventfd)
3500 			continue;
3501 
3502 		new->entries[j] = thresholds->primary->entries[i];
3503 		if (new->entries[j].threshold <= usage) {
3504 			/*
3505 			 * new->current_threshold will not be used
3506 			 * until rcu_assign_pointer(), so it's safe to increment
3507 			 * it here.
3508 			 */
3509 			++new->current_threshold;
3510 		}
3511 		j++;
3512 	}
3513 
3514 swap_buffers:
3515 	/* Swap primary and spare array */
3516 	thresholds->spare = thresholds->primary;
3517 
3518 	rcu_assign_pointer(thresholds->primary, new);
3519 
3520 	/* To be sure that nobody uses thresholds */
3521 	synchronize_rcu();
3522 
3523 	/* If all events are unregistered, free the spare array */
3524 	if (!new) {
3525 		kfree(thresholds->spare);
3526 		thresholds->spare = NULL;
3527 	}
3528 unlock:
3529 	mutex_unlock(&memcg->thresholds_lock);
3530 }
3531 
3532 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3533 	struct eventfd_ctx *eventfd)
3534 {
3535 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3536 }
3537 
3538 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3539 	struct eventfd_ctx *eventfd)
3540 {
3541 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3542 }
3543 
3544 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3545 	struct eventfd_ctx *eventfd, const char *args)
3546 {
3547 	struct mem_cgroup_eventfd_list *event;
3548 
3549 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3550 	if (!event)
3551 		return -ENOMEM;
3552 
3553 	spin_lock(&memcg_oom_lock);
3554 
3555 	event->eventfd = eventfd;
3556 	list_add(&event->list, &memcg->oom_notify);
3557 
3558 	/* already in OOM ? */
3559 	if (memcg->under_oom)
3560 		eventfd_signal(eventfd, 1);
3561 	spin_unlock(&memcg_oom_lock);
3562 
3563 	return 0;
3564 }
3565 
3566 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3567 	struct eventfd_ctx *eventfd)
3568 {
3569 	struct mem_cgroup_eventfd_list *ev, *tmp;
3570 
3571 	spin_lock(&memcg_oom_lock);
3572 
3573 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3574 		if (ev->eventfd == eventfd) {
3575 			list_del(&ev->list);
3576 			kfree(ev);
3577 		}
3578 	}
3579 
3580 	spin_unlock(&memcg_oom_lock);
3581 }
3582 
3583 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3584 {
3585 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3586 
3587 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3588 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3589 	return 0;
3590 }
3591 
3592 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3593 	struct cftype *cft, u64 val)
3594 {
3595 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3596 
3597 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3598 	if (!css->parent || !((val == 0) || (val == 1)))
3599 		return -EINVAL;
3600 
3601 	memcg->oom_kill_disable = val;
3602 	if (!val)
3603 		memcg_oom_recover(memcg);
3604 
3605 	return 0;
3606 }
3607 
3608 #ifdef CONFIG_CGROUP_WRITEBACK
3609 
3610 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3611 {
3612 	return &memcg->cgwb_list;
3613 }
3614 
3615 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3616 {
3617 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3618 }
3619 
3620 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3621 {
3622 	wb_domain_exit(&memcg->cgwb_domain);
3623 }
3624 
3625 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3626 {
3627 	wb_domain_size_changed(&memcg->cgwb_domain);
3628 }
3629 
3630 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3631 {
3632 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3633 
3634 	if (!memcg->css.parent)
3635 		return NULL;
3636 
3637 	return &memcg->cgwb_domain;
3638 }
3639 
3640 /**
3641  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3642  * @wb: bdi_writeback in question
3643  * @pfilepages: out parameter for number of file pages
3644  * @pheadroom: out parameter for number of allocatable pages according to memcg
3645  * @pdirty: out parameter for number of dirty pages
3646  * @pwriteback: out parameter for number of pages under writeback
3647  *
3648  * Determine the numbers of file, headroom, dirty, and writeback pages in
3649  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3650  * is a bit more involved.
3651  *
3652  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3653  * headroom is calculated as the lowest headroom of itself and the
3654  * ancestors.  Note that this doesn't consider the actual amount of
3655  * available memory in the system.  The caller should further cap
3656  * *@pheadroom accordingly.
3657  */
3658 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3659 			 unsigned long *pheadroom, unsigned long *pdirty,
3660 			 unsigned long *pwriteback)
3661 {
3662 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3663 	struct mem_cgroup *parent;
3664 
3665 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3666 
3667 	/* this should eventually include NR_UNSTABLE_NFS */
3668 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3669 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3670 						     (1 << LRU_ACTIVE_FILE));
3671 	*pheadroom = PAGE_COUNTER_MAX;
3672 
3673 	while ((parent = parent_mem_cgroup(memcg))) {
3674 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3675 		unsigned long used = page_counter_read(&memcg->memory);
3676 
3677 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3678 		memcg = parent;
3679 	}
3680 }
3681 
3682 #else	/* CONFIG_CGROUP_WRITEBACK */
3683 
3684 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3685 {
3686 	return 0;
3687 }
3688 
3689 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3690 {
3691 }
3692 
3693 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3694 {
3695 }
3696 
3697 #endif	/* CONFIG_CGROUP_WRITEBACK */
3698 
3699 /*
3700  * DO NOT USE IN NEW FILES.
3701  *
3702  * "cgroup.event_control" implementation.
3703  *
3704  * This is way over-engineered.  It tries to support fully configurable
3705  * events for each user.  Such level of flexibility is completely
3706  * unnecessary especially in the light of the planned unified hierarchy.
3707  *
3708  * Please deprecate this and replace with something simpler if at all
3709  * possible.
3710  */
3711 
3712 /*
3713  * Unregister event and free resources.
3714  *
3715  * Gets called from workqueue.
3716  */
3717 static void memcg_event_remove(struct work_struct *work)
3718 {
3719 	struct mem_cgroup_event *event =
3720 		container_of(work, struct mem_cgroup_event, remove);
3721 	struct mem_cgroup *memcg = event->memcg;
3722 
3723 	remove_wait_queue(event->wqh, &event->wait);
3724 
3725 	event->unregister_event(memcg, event->eventfd);
3726 
3727 	/* Notify userspace the event is going away. */
3728 	eventfd_signal(event->eventfd, 1);
3729 
3730 	eventfd_ctx_put(event->eventfd);
3731 	kfree(event);
3732 	css_put(&memcg->css);
3733 }
3734 
3735 /*
3736  * Gets called on POLLHUP on eventfd when user closes it.
3737  *
3738  * Called with wqh->lock held and interrupts disabled.
3739  */
3740 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3741 			    int sync, void *key)
3742 {
3743 	struct mem_cgroup_event *event =
3744 		container_of(wait, struct mem_cgroup_event, wait);
3745 	struct mem_cgroup *memcg = event->memcg;
3746 	unsigned long flags = (unsigned long)key;
3747 
3748 	if (flags & POLLHUP) {
3749 		/*
3750 		 * If the event has been detached at cgroup removal, we
3751 		 * can simply return knowing the other side will cleanup
3752 		 * for us.
3753 		 *
3754 		 * We can't race against event freeing since the other
3755 		 * side will require wqh->lock via remove_wait_queue(),
3756 		 * which we hold.
3757 		 */
3758 		spin_lock(&memcg->event_list_lock);
3759 		if (!list_empty(&event->list)) {
3760 			list_del_init(&event->list);
3761 			/*
3762 			 * We are in atomic context, but cgroup_event_remove()
3763 			 * may sleep, so we have to call it in workqueue.
3764 			 */
3765 			schedule_work(&event->remove);
3766 		}
3767 		spin_unlock(&memcg->event_list_lock);
3768 	}
3769 
3770 	return 0;
3771 }
3772 
3773 static void memcg_event_ptable_queue_proc(struct file *file,
3774 		wait_queue_head_t *wqh, poll_table *pt)
3775 {
3776 	struct mem_cgroup_event *event =
3777 		container_of(pt, struct mem_cgroup_event, pt);
3778 
3779 	event->wqh = wqh;
3780 	add_wait_queue(wqh, &event->wait);
3781 }
3782 
3783 /*
3784  * DO NOT USE IN NEW FILES.
3785  *
3786  * Parse input and register new cgroup event handler.
3787  *
3788  * Input must be in format '<event_fd> <control_fd> <args>'.
3789  * Interpretation of args is defined by control file implementation.
3790  */
3791 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3792 					 char *buf, size_t nbytes, loff_t off)
3793 {
3794 	struct cgroup_subsys_state *css = of_css(of);
3795 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3796 	struct mem_cgroup_event *event;
3797 	struct cgroup_subsys_state *cfile_css;
3798 	unsigned int efd, cfd;
3799 	struct fd efile;
3800 	struct fd cfile;
3801 	const char *name;
3802 	char *endp;
3803 	int ret;
3804 
3805 	buf = strstrip(buf);
3806 
3807 	efd = simple_strtoul(buf, &endp, 10);
3808 	if (*endp != ' ')
3809 		return -EINVAL;
3810 	buf = endp + 1;
3811 
3812 	cfd = simple_strtoul(buf, &endp, 10);
3813 	if ((*endp != ' ') && (*endp != '\0'))
3814 		return -EINVAL;
3815 	buf = endp + 1;
3816 
3817 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3818 	if (!event)
3819 		return -ENOMEM;
3820 
3821 	event->memcg = memcg;
3822 	INIT_LIST_HEAD(&event->list);
3823 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3824 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3825 	INIT_WORK(&event->remove, memcg_event_remove);
3826 
3827 	efile = fdget(efd);
3828 	if (!efile.file) {
3829 		ret = -EBADF;
3830 		goto out_kfree;
3831 	}
3832 
3833 	event->eventfd = eventfd_ctx_fileget(efile.file);
3834 	if (IS_ERR(event->eventfd)) {
3835 		ret = PTR_ERR(event->eventfd);
3836 		goto out_put_efile;
3837 	}
3838 
3839 	cfile = fdget(cfd);
3840 	if (!cfile.file) {
3841 		ret = -EBADF;
3842 		goto out_put_eventfd;
3843 	}
3844 
3845 	/* the process need read permission on control file */
3846 	/* AV: shouldn't we check that it's been opened for read instead? */
3847 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3848 	if (ret < 0)
3849 		goto out_put_cfile;
3850 
3851 	/*
3852 	 * Determine the event callbacks and set them in @event.  This used
3853 	 * to be done via struct cftype but cgroup core no longer knows
3854 	 * about these events.  The following is crude but the whole thing
3855 	 * is for compatibility anyway.
3856 	 *
3857 	 * DO NOT ADD NEW FILES.
3858 	 */
3859 	name = cfile.file->f_path.dentry->d_name.name;
3860 
3861 	if (!strcmp(name, "memory.usage_in_bytes")) {
3862 		event->register_event = mem_cgroup_usage_register_event;
3863 		event->unregister_event = mem_cgroup_usage_unregister_event;
3864 	} else if (!strcmp(name, "memory.oom_control")) {
3865 		event->register_event = mem_cgroup_oom_register_event;
3866 		event->unregister_event = mem_cgroup_oom_unregister_event;
3867 	} else if (!strcmp(name, "memory.pressure_level")) {
3868 		event->register_event = vmpressure_register_event;
3869 		event->unregister_event = vmpressure_unregister_event;
3870 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3871 		event->register_event = memsw_cgroup_usage_register_event;
3872 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3873 	} else {
3874 		ret = -EINVAL;
3875 		goto out_put_cfile;
3876 	}
3877 
3878 	/*
3879 	 * Verify @cfile should belong to @css.  Also, remaining events are
3880 	 * automatically removed on cgroup destruction but the removal is
3881 	 * asynchronous, so take an extra ref on @css.
3882 	 */
3883 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3884 					       &memory_cgrp_subsys);
3885 	ret = -EINVAL;
3886 	if (IS_ERR(cfile_css))
3887 		goto out_put_cfile;
3888 	if (cfile_css != css) {
3889 		css_put(cfile_css);
3890 		goto out_put_cfile;
3891 	}
3892 
3893 	ret = event->register_event(memcg, event->eventfd, buf);
3894 	if (ret)
3895 		goto out_put_css;
3896 
3897 	efile.file->f_op->poll(efile.file, &event->pt);
3898 
3899 	spin_lock(&memcg->event_list_lock);
3900 	list_add(&event->list, &memcg->event_list);
3901 	spin_unlock(&memcg->event_list_lock);
3902 
3903 	fdput(cfile);
3904 	fdput(efile);
3905 
3906 	return nbytes;
3907 
3908 out_put_css:
3909 	css_put(css);
3910 out_put_cfile:
3911 	fdput(cfile);
3912 out_put_eventfd:
3913 	eventfd_ctx_put(event->eventfd);
3914 out_put_efile:
3915 	fdput(efile);
3916 out_kfree:
3917 	kfree(event);
3918 
3919 	return ret;
3920 }
3921 
3922 static struct cftype mem_cgroup_legacy_files[] = {
3923 	{
3924 		.name = "usage_in_bytes",
3925 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3926 		.read_u64 = mem_cgroup_read_u64,
3927 	},
3928 	{
3929 		.name = "max_usage_in_bytes",
3930 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3931 		.write = mem_cgroup_reset,
3932 		.read_u64 = mem_cgroup_read_u64,
3933 	},
3934 	{
3935 		.name = "limit_in_bytes",
3936 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3937 		.write = mem_cgroup_write,
3938 		.read_u64 = mem_cgroup_read_u64,
3939 	},
3940 	{
3941 		.name = "soft_limit_in_bytes",
3942 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3943 		.write = mem_cgroup_write,
3944 		.read_u64 = mem_cgroup_read_u64,
3945 	},
3946 	{
3947 		.name = "failcnt",
3948 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3949 		.write = mem_cgroup_reset,
3950 		.read_u64 = mem_cgroup_read_u64,
3951 	},
3952 	{
3953 		.name = "stat",
3954 		.seq_show = memcg_stat_show,
3955 	},
3956 	{
3957 		.name = "force_empty",
3958 		.write = mem_cgroup_force_empty_write,
3959 	},
3960 	{
3961 		.name = "use_hierarchy",
3962 		.write_u64 = mem_cgroup_hierarchy_write,
3963 		.read_u64 = mem_cgroup_hierarchy_read,
3964 	},
3965 	{
3966 		.name = "cgroup.event_control",		/* XXX: for compat */
3967 		.write = memcg_write_event_control,
3968 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3969 	},
3970 	{
3971 		.name = "swappiness",
3972 		.read_u64 = mem_cgroup_swappiness_read,
3973 		.write_u64 = mem_cgroup_swappiness_write,
3974 	},
3975 	{
3976 		.name = "move_charge_at_immigrate",
3977 		.read_u64 = mem_cgroup_move_charge_read,
3978 		.write_u64 = mem_cgroup_move_charge_write,
3979 	},
3980 	{
3981 		.name = "oom_control",
3982 		.seq_show = mem_cgroup_oom_control_read,
3983 		.write_u64 = mem_cgroup_oom_control_write,
3984 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3985 	},
3986 	{
3987 		.name = "pressure_level",
3988 	},
3989 #ifdef CONFIG_NUMA
3990 	{
3991 		.name = "numa_stat",
3992 		.seq_show = memcg_numa_stat_show,
3993 	},
3994 #endif
3995 	{
3996 		.name = "kmem.limit_in_bytes",
3997 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3998 		.write = mem_cgroup_write,
3999 		.read_u64 = mem_cgroup_read_u64,
4000 	},
4001 	{
4002 		.name = "kmem.usage_in_bytes",
4003 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4004 		.read_u64 = mem_cgroup_read_u64,
4005 	},
4006 	{
4007 		.name = "kmem.failcnt",
4008 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4009 		.write = mem_cgroup_reset,
4010 		.read_u64 = mem_cgroup_read_u64,
4011 	},
4012 	{
4013 		.name = "kmem.max_usage_in_bytes",
4014 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4015 		.write = mem_cgroup_reset,
4016 		.read_u64 = mem_cgroup_read_u64,
4017 	},
4018 #ifdef CONFIG_SLABINFO
4019 	{
4020 		.name = "kmem.slabinfo",
4021 		.seq_start = slab_start,
4022 		.seq_next = slab_next,
4023 		.seq_stop = slab_stop,
4024 		.seq_show = memcg_slab_show,
4025 	},
4026 #endif
4027 	{
4028 		.name = "kmem.tcp.limit_in_bytes",
4029 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4030 		.write = mem_cgroup_write,
4031 		.read_u64 = mem_cgroup_read_u64,
4032 	},
4033 	{
4034 		.name = "kmem.tcp.usage_in_bytes",
4035 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4036 		.read_u64 = mem_cgroup_read_u64,
4037 	},
4038 	{
4039 		.name = "kmem.tcp.failcnt",
4040 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4041 		.write = mem_cgroup_reset,
4042 		.read_u64 = mem_cgroup_read_u64,
4043 	},
4044 	{
4045 		.name = "kmem.tcp.max_usage_in_bytes",
4046 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4047 		.write = mem_cgroup_reset,
4048 		.read_u64 = mem_cgroup_read_u64,
4049 	},
4050 	{ },	/* terminate */
4051 };
4052 
4053 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4054 {
4055 	struct mem_cgroup_per_node *pn;
4056 	struct mem_cgroup_per_zone *mz;
4057 	int zone, tmp = node;
4058 	/*
4059 	 * This routine is called against possible nodes.
4060 	 * But it's BUG to call kmalloc() against offline node.
4061 	 *
4062 	 * TODO: this routine can waste much memory for nodes which will
4063 	 *       never be onlined. It's better to use memory hotplug callback
4064 	 *       function.
4065 	 */
4066 	if (!node_state(node, N_NORMAL_MEMORY))
4067 		tmp = -1;
4068 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4069 	if (!pn)
4070 		return 1;
4071 
4072 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4073 		mz = &pn->zoneinfo[zone];
4074 		lruvec_init(&mz->lruvec);
4075 		mz->usage_in_excess = 0;
4076 		mz->on_tree = false;
4077 		mz->memcg = memcg;
4078 	}
4079 	memcg->nodeinfo[node] = pn;
4080 	return 0;
4081 }
4082 
4083 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4084 {
4085 	kfree(memcg->nodeinfo[node]);
4086 }
4087 
4088 static void mem_cgroup_free(struct mem_cgroup *memcg)
4089 {
4090 	int node;
4091 
4092 	memcg_wb_domain_exit(memcg);
4093 	for_each_node(node)
4094 		free_mem_cgroup_per_zone_info(memcg, node);
4095 	free_percpu(memcg->stat);
4096 	kfree(memcg);
4097 }
4098 
4099 static struct mem_cgroup *mem_cgroup_alloc(void)
4100 {
4101 	struct mem_cgroup *memcg;
4102 	size_t size;
4103 	int node;
4104 
4105 	size = sizeof(struct mem_cgroup);
4106 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4107 
4108 	memcg = kzalloc(size, GFP_KERNEL);
4109 	if (!memcg)
4110 		return NULL;
4111 
4112 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4113 	if (!memcg->stat)
4114 		goto fail;
4115 
4116 	for_each_node(node)
4117 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4118 			goto fail;
4119 
4120 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4121 		goto fail;
4122 
4123 	INIT_WORK(&memcg->high_work, high_work_func);
4124 	memcg->last_scanned_node = MAX_NUMNODES;
4125 	INIT_LIST_HEAD(&memcg->oom_notify);
4126 	mutex_init(&memcg->thresholds_lock);
4127 	spin_lock_init(&memcg->move_lock);
4128 	vmpressure_init(&memcg->vmpressure);
4129 	INIT_LIST_HEAD(&memcg->event_list);
4130 	spin_lock_init(&memcg->event_list_lock);
4131 	memcg->socket_pressure = jiffies;
4132 #ifndef CONFIG_SLOB
4133 	memcg->kmemcg_id = -1;
4134 #endif
4135 #ifdef CONFIG_CGROUP_WRITEBACK
4136 	INIT_LIST_HEAD(&memcg->cgwb_list);
4137 #endif
4138 	return memcg;
4139 fail:
4140 	mem_cgroup_free(memcg);
4141 	return NULL;
4142 }
4143 
4144 static struct cgroup_subsys_state * __ref
4145 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4146 {
4147 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4148 	struct mem_cgroup *memcg;
4149 	long error = -ENOMEM;
4150 
4151 	memcg = mem_cgroup_alloc();
4152 	if (!memcg)
4153 		return ERR_PTR(error);
4154 
4155 	memcg->high = PAGE_COUNTER_MAX;
4156 	memcg->soft_limit = PAGE_COUNTER_MAX;
4157 	if (parent) {
4158 		memcg->swappiness = mem_cgroup_swappiness(parent);
4159 		memcg->oom_kill_disable = parent->oom_kill_disable;
4160 	}
4161 	if (parent && parent->use_hierarchy) {
4162 		memcg->use_hierarchy = true;
4163 		page_counter_init(&memcg->memory, &parent->memory);
4164 		page_counter_init(&memcg->swap, &parent->swap);
4165 		page_counter_init(&memcg->memsw, &parent->memsw);
4166 		page_counter_init(&memcg->kmem, &parent->kmem);
4167 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4168 	} else {
4169 		page_counter_init(&memcg->memory, NULL);
4170 		page_counter_init(&memcg->swap, NULL);
4171 		page_counter_init(&memcg->memsw, NULL);
4172 		page_counter_init(&memcg->kmem, NULL);
4173 		page_counter_init(&memcg->tcpmem, NULL);
4174 		/*
4175 		 * Deeper hierachy with use_hierarchy == false doesn't make
4176 		 * much sense so let cgroup subsystem know about this
4177 		 * unfortunate state in our controller.
4178 		 */
4179 		if (parent != root_mem_cgroup)
4180 			memory_cgrp_subsys.broken_hierarchy = true;
4181 	}
4182 
4183 	/* The following stuff does not apply to the root */
4184 	if (!parent) {
4185 		root_mem_cgroup = memcg;
4186 		return &memcg->css;
4187 	}
4188 
4189 	error = memcg_online_kmem(memcg);
4190 	if (error)
4191 		goto fail;
4192 
4193 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4194 		static_branch_inc(&memcg_sockets_enabled_key);
4195 
4196 	return &memcg->css;
4197 fail:
4198 	mem_cgroup_free(memcg);
4199 	return NULL;
4200 }
4201 
4202 static int
4203 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4204 {
4205 	if (css->id > MEM_CGROUP_ID_MAX)
4206 		return -ENOSPC;
4207 
4208 	return 0;
4209 }
4210 
4211 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4212 {
4213 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4214 	struct mem_cgroup_event *event, *tmp;
4215 
4216 	/*
4217 	 * Unregister events and notify userspace.
4218 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4219 	 * directory to avoid race between userspace and kernelspace.
4220 	 */
4221 	spin_lock(&memcg->event_list_lock);
4222 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4223 		list_del_init(&event->list);
4224 		schedule_work(&event->remove);
4225 	}
4226 	spin_unlock(&memcg->event_list_lock);
4227 
4228 	memcg_offline_kmem(memcg);
4229 	wb_memcg_offline(memcg);
4230 }
4231 
4232 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4233 {
4234 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4235 
4236 	invalidate_reclaim_iterators(memcg);
4237 }
4238 
4239 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4240 {
4241 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4242 
4243 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4244 		static_branch_dec(&memcg_sockets_enabled_key);
4245 
4246 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4247 		static_branch_dec(&memcg_sockets_enabled_key);
4248 
4249 	vmpressure_cleanup(&memcg->vmpressure);
4250 	cancel_work_sync(&memcg->high_work);
4251 	mem_cgroup_remove_from_trees(memcg);
4252 	memcg_free_kmem(memcg);
4253 	mem_cgroup_free(memcg);
4254 }
4255 
4256 /**
4257  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4258  * @css: the target css
4259  *
4260  * Reset the states of the mem_cgroup associated with @css.  This is
4261  * invoked when the userland requests disabling on the default hierarchy
4262  * but the memcg is pinned through dependency.  The memcg should stop
4263  * applying policies and should revert to the vanilla state as it may be
4264  * made visible again.
4265  *
4266  * The current implementation only resets the essential configurations.
4267  * This needs to be expanded to cover all the visible parts.
4268  */
4269 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4270 {
4271 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4272 
4273 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4274 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4275 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4276 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4277 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4278 	memcg->low = 0;
4279 	memcg->high = PAGE_COUNTER_MAX;
4280 	memcg->soft_limit = PAGE_COUNTER_MAX;
4281 	memcg_wb_domain_size_changed(memcg);
4282 }
4283 
4284 #ifdef CONFIG_MMU
4285 /* Handlers for move charge at task migration. */
4286 static int mem_cgroup_do_precharge(unsigned long count)
4287 {
4288 	int ret;
4289 
4290 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4291 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4292 	if (!ret) {
4293 		mc.precharge += count;
4294 		return ret;
4295 	}
4296 
4297 	/* Try charges one by one with reclaim */
4298 	while (count--) {
4299 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4300 		if (ret)
4301 			return ret;
4302 		mc.precharge++;
4303 		cond_resched();
4304 	}
4305 	return 0;
4306 }
4307 
4308 /**
4309  * get_mctgt_type - get target type of moving charge
4310  * @vma: the vma the pte to be checked belongs
4311  * @addr: the address corresponding to the pte to be checked
4312  * @ptent: the pte to be checked
4313  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4314  *
4315  * Returns
4316  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4317  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4318  *     move charge. if @target is not NULL, the page is stored in target->page
4319  *     with extra refcnt got(Callers should handle it).
4320  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4321  *     target for charge migration. if @target is not NULL, the entry is stored
4322  *     in target->ent.
4323  *
4324  * Called with pte lock held.
4325  */
4326 union mc_target {
4327 	struct page	*page;
4328 	swp_entry_t	ent;
4329 };
4330 
4331 enum mc_target_type {
4332 	MC_TARGET_NONE = 0,
4333 	MC_TARGET_PAGE,
4334 	MC_TARGET_SWAP,
4335 };
4336 
4337 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4338 						unsigned long addr, pte_t ptent)
4339 {
4340 	struct page *page = vm_normal_page(vma, addr, ptent);
4341 
4342 	if (!page || !page_mapped(page))
4343 		return NULL;
4344 	if (PageAnon(page)) {
4345 		if (!(mc.flags & MOVE_ANON))
4346 			return NULL;
4347 	} else {
4348 		if (!(mc.flags & MOVE_FILE))
4349 			return NULL;
4350 	}
4351 	if (!get_page_unless_zero(page))
4352 		return NULL;
4353 
4354 	return page;
4355 }
4356 
4357 #ifdef CONFIG_SWAP
4358 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4359 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4360 {
4361 	struct page *page = NULL;
4362 	swp_entry_t ent = pte_to_swp_entry(ptent);
4363 
4364 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4365 		return NULL;
4366 	/*
4367 	 * Because lookup_swap_cache() updates some statistics counter,
4368 	 * we call find_get_page() with swapper_space directly.
4369 	 */
4370 	page = find_get_page(swap_address_space(ent), ent.val);
4371 	if (do_memsw_account())
4372 		entry->val = ent.val;
4373 
4374 	return page;
4375 }
4376 #else
4377 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4378 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4379 {
4380 	return NULL;
4381 }
4382 #endif
4383 
4384 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4385 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4386 {
4387 	struct page *page = NULL;
4388 	struct address_space *mapping;
4389 	pgoff_t pgoff;
4390 
4391 	if (!vma->vm_file) /* anonymous vma */
4392 		return NULL;
4393 	if (!(mc.flags & MOVE_FILE))
4394 		return NULL;
4395 
4396 	mapping = vma->vm_file->f_mapping;
4397 	pgoff = linear_page_index(vma, addr);
4398 
4399 	/* page is moved even if it's not RSS of this task(page-faulted). */
4400 #ifdef CONFIG_SWAP
4401 	/* shmem/tmpfs may report page out on swap: account for that too. */
4402 	if (shmem_mapping(mapping)) {
4403 		page = find_get_entry(mapping, pgoff);
4404 		if (radix_tree_exceptional_entry(page)) {
4405 			swp_entry_t swp = radix_to_swp_entry(page);
4406 			if (do_memsw_account())
4407 				*entry = swp;
4408 			page = find_get_page(swap_address_space(swp), swp.val);
4409 		}
4410 	} else
4411 		page = find_get_page(mapping, pgoff);
4412 #else
4413 	page = find_get_page(mapping, pgoff);
4414 #endif
4415 	return page;
4416 }
4417 
4418 /**
4419  * mem_cgroup_move_account - move account of the page
4420  * @page: the page
4421  * @nr_pages: number of regular pages (>1 for huge pages)
4422  * @from: mem_cgroup which the page is moved from.
4423  * @to:	mem_cgroup which the page is moved to. @from != @to.
4424  *
4425  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4426  *
4427  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4428  * from old cgroup.
4429  */
4430 static int mem_cgroup_move_account(struct page *page,
4431 				   bool compound,
4432 				   struct mem_cgroup *from,
4433 				   struct mem_cgroup *to)
4434 {
4435 	unsigned long flags;
4436 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4437 	int ret;
4438 	bool anon;
4439 
4440 	VM_BUG_ON(from == to);
4441 	VM_BUG_ON_PAGE(PageLRU(page), page);
4442 	VM_BUG_ON(compound && !PageTransHuge(page));
4443 
4444 	/*
4445 	 * Prevent mem_cgroup_migrate() from looking at
4446 	 * page->mem_cgroup of its source page while we change it.
4447 	 */
4448 	ret = -EBUSY;
4449 	if (!trylock_page(page))
4450 		goto out;
4451 
4452 	ret = -EINVAL;
4453 	if (page->mem_cgroup != from)
4454 		goto out_unlock;
4455 
4456 	anon = PageAnon(page);
4457 
4458 	spin_lock_irqsave(&from->move_lock, flags);
4459 
4460 	if (!anon && page_mapped(page)) {
4461 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4462 			       nr_pages);
4463 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4464 			       nr_pages);
4465 	}
4466 
4467 	/*
4468 	 * move_lock grabbed above and caller set from->moving_account, so
4469 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4470 	 * So mapping should be stable for dirty pages.
4471 	 */
4472 	if (!anon && PageDirty(page)) {
4473 		struct address_space *mapping = page_mapping(page);
4474 
4475 		if (mapping_cap_account_dirty(mapping)) {
4476 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4477 				       nr_pages);
4478 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4479 				       nr_pages);
4480 		}
4481 	}
4482 
4483 	if (PageWriteback(page)) {
4484 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4485 			       nr_pages);
4486 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4487 			       nr_pages);
4488 	}
4489 
4490 	/*
4491 	 * It is safe to change page->mem_cgroup here because the page
4492 	 * is referenced, charged, and isolated - we can't race with
4493 	 * uncharging, charging, migration, or LRU putback.
4494 	 */
4495 
4496 	/* caller should have done css_get */
4497 	page->mem_cgroup = to;
4498 	spin_unlock_irqrestore(&from->move_lock, flags);
4499 
4500 	ret = 0;
4501 
4502 	local_irq_disable();
4503 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4504 	memcg_check_events(to, page);
4505 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4506 	memcg_check_events(from, page);
4507 	local_irq_enable();
4508 out_unlock:
4509 	unlock_page(page);
4510 out:
4511 	return ret;
4512 }
4513 
4514 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4515 		unsigned long addr, pte_t ptent, union mc_target *target)
4516 {
4517 	struct page *page = NULL;
4518 	enum mc_target_type ret = MC_TARGET_NONE;
4519 	swp_entry_t ent = { .val = 0 };
4520 
4521 	if (pte_present(ptent))
4522 		page = mc_handle_present_pte(vma, addr, ptent);
4523 	else if (is_swap_pte(ptent))
4524 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4525 	else if (pte_none(ptent))
4526 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4527 
4528 	if (!page && !ent.val)
4529 		return ret;
4530 	if (page) {
4531 		/*
4532 		 * Do only loose check w/o serialization.
4533 		 * mem_cgroup_move_account() checks the page is valid or
4534 		 * not under LRU exclusion.
4535 		 */
4536 		if (page->mem_cgroup == mc.from) {
4537 			ret = MC_TARGET_PAGE;
4538 			if (target)
4539 				target->page = page;
4540 		}
4541 		if (!ret || !target)
4542 			put_page(page);
4543 	}
4544 	/* There is a swap entry and a page doesn't exist or isn't charged */
4545 	if (ent.val && !ret &&
4546 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4547 		ret = MC_TARGET_SWAP;
4548 		if (target)
4549 			target->ent = ent;
4550 	}
4551 	return ret;
4552 }
4553 
4554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4555 /*
4556  * We don't consider swapping or file mapped pages because THP does not
4557  * support them for now.
4558  * Caller should make sure that pmd_trans_huge(pmd) is true.
4559  */
4560 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4561 		unsigned long addr, pmd_t pmd, union mc_target *target)
4562 {
4563 	struct page *page = NULL;
4564 	enum mc_target_type ret = MC_TARGET_NONE;
4565 
4566 	page = pmd_page(pmd);
4567 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4568 	if (!(mc.flags & MOVE_ANON))
4569 		return ret;
4570 	if (page->mem_cgroup == mc.from) {
4571 		ret = MC_TARGET_PAGE;
4572 		if (target) {
4573 			get_page(page);
4574 			target->page = page;
4575 		}
4576 	}
4577 	return ret;
4578 }
4579 #else
4580 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4581 		unsigned long addr, pmd_t pmd, union mc_target *target)
4582 {
4583 	return MC_TARGET_NONE;
4584 }
4585 #endif
4586 
4587 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4588 					unsigned long addr, unsigned long end,
4589 					struct mm_walk *walk)
4590 {
4591 	struct vm_area_struct *vma = walk->vma;
4592 	pte_t *pte;
4593 	spinlock_t *ptl;
4594 
4595 	ptl = pmd_trans_huge_lock(pmd, vma);
4596 	if (ptl) {
4597 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4598 			mc.precharge += HPAGE_PMD_NR;
4599 		spin_unlock(ptl);
4600 		return 0;
4601 	}
4602 
4603 	if (pmd_trans_unstable(pmd))
4604 		return 0;
4605 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4606 	for (; addr != end; pte++, addr += PAGE_SIZE)
4607 		if (get_mctgt_type(vma, addr, *pte, NULL))
4608 			mc.precharge++;	/* increment precharge temporarily */
4609 	pte_unmap_unlock(pte - 1, ptl);
4610 	cond_resched();
4611 
4612 	return 0;
4613 }
4614 
4615 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4616 {
4617 	unsigned long precharge;
4618 
4619 	struct mm_walk mem_cgroup_count_precharge_walk = {
4620 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4621 		.mm = mm,
4622 	};
4623 	down_read(&mm->mmap_sem);
4624 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4625 	up_read(&mm->mmap_sem);
4626 
4627 	precharge = mc.precharge;
4628 	mc.precharge = 0;
4629 
4630 	return precharge;
4631 }
4632 
4633 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4634 {
4635 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4636 
4637 	VM_BUG_ON(mc.moving_task);
4638 	mc.moving_task = current;
4639 	return mem_cgroup_do_precharge(precharge);
4640 }
4641 
4642 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4643 static void __mem_cgroup_clear_mc(void)
4644 {
4645 	struct mem_cgroup *from = mc.from;
4646 	struct mem_cgroup *to = mc.to;
4647 
4648 	/* we must uncharge all the leftover precharges from mc.to */
4649 	if (mc.precharge) {
4650 		cancel_charge(mc.to, mc.precharge);
4651 		mc.precharge = 0;
4652 	}
4653 	/*
4654 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4655 	 * we must uncharge here.
4656 	 */
4657 	if (mc.moved_charge) {
4658 		cancel_charge(mc.from, mc.moved_charge);
4659 		mc.moved_charge = 0;
4660 	}
4661 	/* we must fixup refcnts and charges */
4662 	if (mc.moved_swap) {
4663 		/* uncharge swap account from the old cgroup */
4664 		if (!mem_cgroup_is_root(mc.from))
4665 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4666 
4667 		/*
4668 		 * we charged both to->memory and to->memsw, so we
4669 		 * should uncharge to->memory.
4670 		 */
4671 		if (!mem_cgroup_is_root(mc.to))
4672 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4673 
4674 		css_put_many(&mc.from->css, mc.moved_swap);
4675 
4676 		/* we've already done css_get(mc.to) */
4677 		mc.moved_swap = 0;
4678 	}
4679 	memcg_oom_recover(from);
4680 	memcg_oom_recover(to);
4681 	wake_up_all(&mc.waitq);
4682 }
4683 
4684 static void mem_cgroup_clear_mc(void)
4685 {
4686 	struct mm_struct *mm = mc.mm;
4687 
4688 	/*
4689 	 * we must clear moving_task before waking up waiters at the end of
4690 	 * task migration.
4691 	 */
4692 	mc.moving_task = NULL;
4693 	__mem_cgroup_clear_mc();
4694 	spin_lock(&mc.lock);
4695 	mc.from = NULL;
4696 	mc.to = NULL;
4697 	mc.mm = NULL;
4698 	spin_unlock(&mc.lock);
4699 
4700 	mmput(mm);
4701 }
4702 
4703 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4704 {
4705 	struct cgroup_subsys_state *css;
4706 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4707 	struct mem_cgroup *from;
4708 	struct task_struct *leader, *p;
4709 	struct mm_struct *mm;
4710 	unsigned long move_flags;
4711 	int ret = 0;
4712 
4713 	/* charge immigration isn't supported on the default hierarchy */
4714 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4715 		return 0;
4716 
4717 	/*
4718 	 * Multi-process migrations only happen on the default hierarchy
4719 	 * where charge immigration is not used.  Perform charge
4720 	 * immigration if @tset contains a leader and whine if there are
4721 	 * multiple.
4722 	 */
4723 	p = NULL;
4724 	cgroup_taskset_for_each_leader(leader, css, tset) {
4725 		WARN_ON_ONCE(p);
4726 		p = leader;
4727 		memcg = mem_cgroup_from_css(css);
4728 	}
4729 	if (!p)
4730 		return 0;
4731 
4732 	/*
4733 	 * We are now commited to this value whatever it is. Changes in this
4734 	 * tunable will only affect upcoming migrations, not the current one.
4735 	 * So we need to save it, and keep it going.
4736 	 */
4737 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4738 	if (!move_flags)
4739 		return 0;
4740 
4741 	from = mem_cgroup_from_task(p);
4742 
4743 	VM_BUG_ON(from == memcg);
4744 
4745 	mm = get_task_mm(p);
4746 	if (!mm)
4747 		return 0;
4748 	/* We move charges only when we move a owner of the mm */
4749 	if (mm->owner == p) {
4750 		VM_BUG_ON(mc.from);
4751 		VM_BUG_ON(mc.to);
4752 		VM_BUG_ON(mc.precharge);
4753 		VM_BUG_ON(mc.moved_charge);
4754 		VM_BUG_ON(mc.moved_swap);
4755 
4756 		spin_lock(&mc.lock);
4757 		mc.mm = mm;
4758 		mc.from = from;
4759 		mc.to = memcg;
4760 		mc.flags = move_flags;
4761 		spin_unlock(&mc.lock);
4762 		/* We set mc.moving_task later */
4763 
4764 		ret = mem_cgroup_precharge_mc(mm);
4765 		if (ret)
4766 			mem_cgroup_clear_mc();
4767 	} else {
4768 		mmput(mm);
4769 	}
4770 	return ret;
4771 }
4772 
4773 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4774 {
4775 	if (mc.to)
4776 		mem_cgroup_clear_mc();
4777 }
4778 
4779 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4780 				unsigned long addr, unsigned long end,
4781 				struct mm_walk *walk)
4782 {
4783 	int ret = 0;
4784 	struct vm_area_struct *vma = walk->vma;
4785 	pte_t *pte;
4786 	spinlock_t *ptl;
4787 	enum mc_target_type target_type;
4788 	union mc_target target;
4789 	struct page *page;
4790 
4791 	ptl = pmd_trans_huge_lock(pmd, vma);
4792 	if (ptl) {
4793 		if (mc.precharge < HPAGE_PMD_NR) {
4794 			spin_unlock(ptl);
4795 			return 0;
4796 		}
4797 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4798 		if (target_type == MC_TARGET_PAGE) {
4799 			page = target.page;
4800 			if (!isolate_lru_page(page)) {
4801 				if (!mem_cgroup_move_account(page, true,
4802 							     mc.from, mc.to)) {
4803 					mc.precharge -= HPAGE_PMD_NR;
4804 					mc.moved_charge += HPAGE_PMD_NR;
4805 				}
4806 				putback_lru_page(page);
4807 			}
4808 			put_page(page);
4809 		}
4810 		spin_unlock(ptl);
4811 		return 0;
4812 	}
4813 
4814 	if (pmd_trans_unstable(pmd))
4815 		return 0;
4816 retry:
4817 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4818 	for (; addr != end; addr += PAGE_SIZE) {
4819 		pte_t ptent = *(pte++);
4820 		swp_entry_t ent;
4821 
4822 		if (!mc.precharge)
4823 			break;
4824 
4825 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4826 		case MC_TARGET_PAGE:
4827 			page = target.page;
4828 			/*
4829 			 * We can have a part of the split pmd here. Moving it
4830 			 * can be done but it would be too convoluted so simply
4831 			 * ignore such a partial THP and keep it in original
4832 			 * memcg. There should be somebody mapping the head.
4833 			 */
4834 			if (PageTransCompound(page))
4835 				goto put;
4836 			if (isolate_lru_page(page))
4837 				goto put;
4838 			if (!mem_cgroup_move_account(page, false,
4839 						mc.from, mc.to)) {
4840 				mc.precharge--;
4841 				/* we uncharge from mc.from later. */
4842 				mc.moved_charge++;
4843 			}
4844 			putback_lru_page(page);
4845 put:			/* get_mctgt_type() gets the page */
4846 			put_page(page);
4847 			break;
4848 		case MC_TARGET_SWAP:
4849 			ent = target.ent;
4850 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4851 				mc.precharge--;
4852 				/* we fixup refcnts and charges later. */
4853 				mc.moved_swap++;
4854 			}
4855 			break;
4856 		default:
4857 			break;
4858 		}
4859 	}
4860 	pte_unmap_unlock(pte - 1, ptl);
4861 	cond_resched();
4862 
4863 	if (addr != end) {
4864 		/*
4865 		 * We have consumed all precharges we got in can_attach().
4866 		 * We try charge one by one, but don't do any additional
4867 		 * charges to mc.to if we have failed in charge once in attach()
4868 		 * phase.
4869 		 */
4870 		ret = mem_cgroup_do_precharge(1);
4871 		if (!ret)
4872 			goto retry;
4873 	}
4874 
4875 	return ret;
4876 }
4877 
4878 static void mem_cgroup_move_charge(void)
4879 {
4880 	struct mm_walk mem_cgroup_move_charge_walk = {
4881 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4882 		.mm = mc.mm,
4883 	};
4884 
4885 	lru_add_drain_all();
4886 	/*
4887 	 * Signal lock_page_memcg() to take the memcg's move_lock
4888 	 * while we're moving its pages to another memcg. Then wait
4889 	 * for already started RCU-only updates to finish.
4890 	 */
4891 	atomic_inc(&mc.from->moving_account);
4892 	synchronize_rcu();
4893 retry:
4894 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4895 		/*
4896 		 * Someone who are holding the mmap_sem might be waiting in
4897 		 * waitq. So we cancel all extra charges, wake up all waiters,
4898 		 * and retry. Because we cancel precharges, we might not be able
4899 		 * to move enough charges, but moving charge is a best-effort
4900 		 * feature anyway, so it wouldn't be a big problem.
4901 		 */
4902 		__mem_cgroup_clear_mc();
4903 		cond_resched();
4904 		goto retry;
4905 	}
4906 	/*
4907 	 * When we have consumed all precharges and failed in doing
4908 	 * additional charge, the page walk just aborts.
4909 	 */
4910 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4911 	up_read(&mc.mm->mmap_sem);
4912 	atomic_dec(&mc.from->moving_account);
4913 }
4914 
4915 static void mem_cgroup_move_task(void)
4916 {
4917 	if (mc.to) {
4918 		mem_cgroup_move_charge();
4919 		mem_cgroup_clear_mc();
4920 	}
4921 }
4922 #else	/* !CONFIG_MMU */
4923 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4924 {
4925 	return 0;
4926 }
4927 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4928 {
4929 }
4930 static void mem_cgroup_move_task(void)
4931 {
4932 }
4933 #endif
4934 
4935 /*
4936  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4937  * to verify whether we're attached to the default hierarchy on each mount
4938  * attempt.
4939  */
4940 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4941 {
4942 	/*
4943 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4944 	 * guarantees that @root doesn't have any children, so turning it
4945 	 * on for the root memcg is enough.
4946 	 */
4947 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4948 		root_mem_cgroup->use_hierarchy = true;
4949 	else
4950 		root_mem_cgroup->use_hierarchy = false;
4951 }
4952 
4953 static u64 memory_current_read(struct cgroup_subsys_state *css,
4954 			       struct cftype *cft)
4955 {
4956 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4957 
4958 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4959 }
4960 
4961 static int memory_low_show(struct seq_file *m, void *v)
4962 {
4963 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4964 	unsigned long low = READ_ONCE(memcg->low);
4965 
4966 	if (low == PAGE_COUNTER_MAX)
4967 		seq_puts(m, "max\n");
4968 	else
4969 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4970 
4971 	return 0;
4972 }
4973 
4974 static ssize_t memory_low_write(struct kernfs_open_file *of,
4975 				char *buf, size_t nbytes, loff_t off)
4976 {
4977 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4978 	unsigned long low;
4979 	int err;
4980 
4981 	buf = strstrip(buf);
4982 	err = page_counter_memparse(buf, "max", &low);
4983 	if (err)
4984 		return err;
4985 
4986 	memcg->low = low;
4987 
4988 	return nbytes;
4989 }
4990 
4991 static int memory_high_show(struct seq_file *m, void *v)
4992 {
4993 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4994 	unsigned long high = READ_ONCE(memcg->high);
4995 
4996 	if (high == PAGE_COUNTER_MAX)
4997 		seq_puts(m, "max\n");
4998 	else
4999 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5000 
5001 	return 0;
5002 }
5003 
5004 static ssize_t memory_high_write(struct kernfs_open_file *of,
5005 				 char *buf, size_t nbytes, loff_t off)
5006 {
5007 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5008 	unsigned long nr_pages;
5009 	unsigned long high;
5010 	int err;
5011 
5012 	buf = strstrip(buf);
5013 	err = page_counter_memparse(buf, "max", &high);
5014 	if (err)
5015 		return err;
5016 
5017 	memcg->high = high;
5018 
5019 	nr_pages = page_counter_read(&memcg->memory);
5020 	if (nr_pages > high)
5021 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5022 					     GFP_KERNEL, true);
5023 
5024 	memcg_wb_domain_size_changed(memcg);
5025 	return nbytes;
5026 }
5027 
5028 static int memory_max_show(struct seq_file *m, void *v)
5029 {
5030 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031 	unsigned long max = READ_ONCE(memcg->memory.limit);
5032 
5033 	if (max == PAGE_COUNTER_MAX)
5034 		seq_puts(m, "max\n");
5035 	else
5036 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5037 
5038 	return 0;
5039 }
5040 
5041 static ssize_t memory_max_write(struct kernfs_open_file *of,
5042 				char *buf, size_t nbytes, loff_t off)
5043 {
5044 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5045 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5046 	bool drained = false;
5047 	unsigned long max;
5048 	int err;
5049 
5050 	buf = strstrip(buf);
5051 	err = page_counter_memparse(buf, "max", &max);
5052 	if (err)
5053 		return err;
5054 
5055 	xchg(&memcg->memory.limit, max);
5056 
5057 	for (;;) {
5058 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5059 
5060 		if (nr_pages <= max)
5061 			break;
5062 
5063 		if (signal_pending(current)) {
5064 			err = -EINTR;
5065 			break;
5066 		}
5067 
5068 		if (!drained) {
5069 			drain_all_stock(memcg);
5070 			drained = true;
5071 			continue;
5072 		}
5073 
5074 		if (nr_reclaims) {
5075 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5076 							  GFP_KERNEL, true))
5077 				nr_reclaims--;
5078 			continue;
5079 		}
5080 
5081 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5082 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5083 			break;
5084 	}
5085 
5086 	memcg_wb_domain_size_changed(memcg);
5087 	return nbytes;
5088 }
5089 
5090 static int memory_events_show(struct seq_file *m, void *v)
5091 {
5092 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5093 
5094 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5095 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5096 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5097 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5098 
5099 	return 0;
5100 }
5101 
5102 static int memory_stat_show(struct seq_file *m, void *v)
5103 {
5104 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5105 	unsigned long stat[MEMCG_NR_STAT];
5106 	unsigned long events[MEMCG_NR_EVENTS];
5107 	int i;
5108 
5109 	/*
5110 	 * Provide statistics on the state of the memory subsystem as
5111 	 * well as cumulative event counters that show past behavior.
5112 	 *
5113 	 * This list is ordered following a combination of these gradients:
5114 	 * 1) generic big picture -> specifics and details
5115 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5116 	 *
5117 	 * Current memory state:
5118 	 */
5119 
5120 	tree_stat(memcg, stat);
5121 	tree_events(memcg, events);
5122 
5123 	seq_printf(m, "anon %llu\n",
5124 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5125 	seq_printf(m, "file %llu\n",
5126 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5127 	seq_printf(m, "kernel_stack %llu\n",
5128 		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5129 	seq_printf(m, "slab %llu\n",
5130 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5131 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5132 	seq_printf(m, "sock %llu\n",
5133 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5134 
5135 	seq_printf(m, "file_mapped %llu\n",
5136 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5137 	seq_printf(m, "file_dirty %llu\n",
5138 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5139 	seq_printf(m, "file_writeback %llu\n",
5140 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5141 
5142 	for (i = 0; i < NR_LRU_LISTS; i++) {
5143 		struct mem_cgroup *mi;
5144 		unsigned long val = 0;
5145 
5146 		for_each_mem_cgroup_tree(mi, memcg)
5147 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5148 		seq_printf(m, "%s %llu\n",
5149 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5150 	}
5151 
5152 	seq_printf(m, "slab_reclaimable %llu\n",
5153 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5154 	seq_printf(m, "slab_unreclaimable %llu\n",
5155 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5156 
5157 	/* Accumulated memory events */
5158 
5159 	seq_printf(m, "pgfault %lu\n",
5160 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5161 	seq_printf(m, "pgmajfault %lu\n",
5162 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5163 
5164 	return 0;
5165 }
5166 
5167 static struct cftype memory_files[] = {
5168 	{
5169 		.name = "current",
5170 		.flags = CFTYPE_NOT_ON_ROOT,
5171 		.read_u64 = memory_current_read,
5172 	},
5173 	{
5174 		.name = "low",
5175 		.flags = CFTYPE_NOT_ON_ROOT,
5176 		.seq_show = memory_low_show,
5177 		.write = memory_low_write,
5178 	},
5179 	{
5180 		.name = "high",
5181 		.flags = CFTYPE_NOT_ON_ROOT,
5182 		.seq_show = memory_high_show,
5183 		.write = memory_high_write,
5184 	},
5185 	{
5186 		.name = "max",
5187 		.flags = CFTYPE_NOT_ON_ROOT,
5188 		.seq_show = memory_max_show,
5189 		.write = memory_max_write,
5190 	},
5191 	{
5192 		.name = "events",
5193 		.flags = CFTYPE_NOT_ON_ROOT,
5194 		.file_offset = offsetof(struct mem_cgroup, events_file),
5195 		.seq_show = memory_events_show,
5196 	},
5197 	{
5198 		.name = "stat",
5199 		.flags = CFTYPE_NOT_ON_ROOT,
5200 		.seq_show = memory_stat_show,
5201 	},
5202 	{ }	/* terminate */
5203 };
5204 
5205 struct cgroup_subsys memory_cgrp_subsys = {
5206 	.css_alloc = mem_cgroup_css_alloc,
5207 	.css_online = mem_cgroup_css_online,
5208 	.css_offline = mem_cgroup_css_offline,
5209 	.css_released = mem_cgroup_css_released,
5210 	.css_free = mem_cgroup_css_free,
5211 	.css_reset = mem_cgroup_css_reset,
5212 	.can_attach = mem_cgroup_can_attach,
5213 	.cancel_attach = mem_cgroup_cancel_attach,
5214 	.post_attach = mem_cgroup_move_task,
5215 	.bind = mem_cgroup_bind,
5216 	.dfl_cftypes = memory_files,
5217 	.legacy_cftypes = mem_cgroup_legacy_files,
5218 	.early_init = 0,
5219 };
5220 
5221 /**
5222  * mem_cgroup_low - check if memory consumption is below the normal range
5223  * @root: the highest ancestor to consider
5224  * @memcg: the memory cgroup to check
5225  *
5226  * Returns %true if memory consumption of @memcg, and that of all
5227  * configurable ancestors up to @root, is below the normal range.
5228  */
5229 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5230 {
5231 	if (mem_cgroup_disabled())
5232 		return false;
5233 
5234 	/*
5235 	 * The toplevel group doesn't have a configurable range, so
5236 	 * it's never low when looked at directly, and it is not
5237 	 * considered an ancestor when assessing the hierarchy.
5238 	 */
5239 
5240 	if (memcg == root_mem_cgroup)
5241 		return false;
5242 
5243 	if (page_counter_read(&memcg->memory) >= memcg->low)
5244 		return false;
5245 
5246 	while (memcg != root) {
5247 		memcg = parent_mem_cgroup(memcg);
5248 
5249 		if (memcg == root_mem_cgroup)
5250 			break;
5251 
5252 		if (page_counter_read(&memcg->memory) >= memcg->low)
5253 			return false;
5254 	}
5255 	return true;
5256 }
5257 
5258 /**
5259  * mem_cgroup_try_charge - try charging a page
5260  * @page: page to charge
5261  * @mm: mm context of the victim
5262  * @gfp_mask: reclaim mode
5263  * @memcgp: charged memcg return
5264  *
5265  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5266  * pages according to @gfp_mask if necessary.
5267  *
5268  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5269  * Otherwise, an error code is returned.
5270  *
5271  * After page->mapping has been set up, the caller must finalize the
5272  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5273  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5274  */
5275 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5276 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5277 			  bool compound)
5278 {
5279 	struct mem_cgroup *memcg = NULL;
5280 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5281 	int ret = 0;
5282 
5283 	if (mem_cgroup_disabled())
5284 		goto out;
5285 
5286 	if (PageSwapCache(page)) {
5287 		/*
5288 		 * Every swap fault against a single page tries to charge the
5289 		 * page, bail as early as possible.  shmem_unuse() encounters
5290 		 * already charged pages, too.  The USED bit is protected by
5291 		 * the page lock, which serializes swap cache removal, which
5292 		 * in turn serializes uncharging.
5293 		 */
5294 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5295 		if (page->mem_cgroup)
5296 			goto out;
5297 
5298 		if (do_swap_account) {
5299 			swp_entry_t ent = { .val = page_private(page), };
5300 			unsigned short id = lookup_swap_cgroup_id(ent);
5301 
5302 			rcu_read_lock();
5303 			memcg = mem_cgroup_from_id(id);
5304 			if (memcg && !css_tryget_online(&memcg->css))
5305 				memcg = NULL;
5306 			rcu_read_unlock();
5307 		}
5308 	}
5309 
5310 	if (!memcg)
5311 		memcg = get_mem_cgroup_from_mm(mm);
5312 
5313 	ret = try_charge(memcg, gfp_mask, nr_pages);
5314 
5315 	css_put(&memcg->css);
5316 out:
5317 	*memcgp = memcg;
5318 	return ret;
5319 }
5320 
5321 /**
5322  * mem_cgroup_commit_charge - commit a page charge
5323  * @page: page to charge
5324  * @memcg: memcg to charge the page to
5325  * @lrucare: page might be on LRU already
5326  *
5327  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5328  * after page->mapping has been set up.  This must happen atomically
5329  * as part of the page instantiation, i.e. under the page table lock
5330  * for anonymous pages, under the page lock for page and swap cache.
5331  *
5332  * In addition, the page must not be on the LRU during the commit, to
5333  * prevent racing with task migration.  If it might be, use @lrucare.
5334  *
5335  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5336  */
5337 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5338 			      bool lrucare, bool compound)
5339 {
5340 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5341 
5342 	VM_BUG_ON_PAGE(!page->mapping, page);
5343 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5344 
5345 	if (mem_cgroup_disabled())
5346 		return;
5347 	/*
5348 	 * Swap faults will attempt to charge the same page multiple
5349 	 * times.  But reuse_swap_page() might have removed the page
5350 	 * from swapcache already, so we can't check PageSwapCache().
5351 	 */
5352 	if (!memcg)
5353 		return;
5354 
5355 	commit_charge(page, memcg, lrucare);
5356 
5357 	local_irq_disable();
5358 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5359 	memcg_check_events(memcg, page);
5360 	local_irq_enable();
5361 
5362 	if (do_memsw_account() && PageSwapCache(page)) {
5363 		swp_entry_t entry = { .val = page_private(page) };
5364 		/*
5365 		 * The swap entry might not get freed for a long time,
5366 		 * let's not wait for it.  The page already received a
5367 		 * memory+swap charge, drop the swap entry duplicate.
5368 		 */
5369 		mem_cgroup_uncharge_swap(entry);
5370 	}
5371 }
5372 
5373 /**
5374  * mem_cgroup_cancel_charge - cancel a page charge
5375  * @page: page to charge
5376  * @memcg: memcg to charge the page to
5377  *
5378  * Cancel a charge transaction started by mem_cgroup_try_charge().
5379  */
5380 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5381 		bool compound)
5382 {
5383 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5384 
5385 	if (mem_cgroup_disabled())
5386 		return;
5387 	/*
5388 	 * Swap faults will attempt to charge the same page multiple
5389 	 * times.  But reuse_swap_page() might have removed the page
5390 	 * from swapcache already, so we can't check PageSwapCache().
5391 	 */
5392 	if (!memcg)
5393 		return;
5394 
5395 	cancel_charge(memcg, nr_pages);
5396 }
5397 
5398 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5399 			   unsigned long nr_anon, unsigned long nr_file,
5400 			   unsigned long nr_huge, struct page *dummy_page)
5401 {
5402 	unsigned long nr_pages = nr_anon + nr_file;
5403 	unsigned long flags;
5404 
5405 	if (!mem_cgroup_is_root(memcg)) {
5406 		page_counter_uncharge(&memcg->memory, nr_pages);
5407 		if (do_memsw_account())
5408 			page_counter_uncharge(&memcg->memsw, nr_pages);
5409 		memcg_oom_recover(memcg);
5410 	}
5411 
5412 	local_irq_save(flags);
5413 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5414 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5415 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5416 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5417 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5418 	memcg_check_events(memcg, dummy_page);
5419 	local_irq_restore(flags);
5420 
5421 	if (!mem_cgroup_is_root(memcg))
5422 		css_put_many(&memcg->css, nr_pages);
5423 }
5424 
5425 static void uncharge_list(struct list_head *page_list)
5426 {
5427 	struct mem_cgroup *memcg = NULL;
5428 	unsigned long nr_anon = 0;
5429 	unsigned long nr_file = 0;
5430 	unsigned long nr_huge = 0;
5431 	unsigned long pgpgout = 0;
5432 	struct list_head *next;
5433 	struct page *page;
5434 
5435 	/*
5436 	 * Note that the list can be a single page->lru; hence the
5437 	 * do-while loop instead of a simple list_for_each_entry().
5438 	 */
5439 	next = page_list->next;
5440 	do {
5441 		unsigned int nr_pages = 1;
5442 
5443 		page = list_entry(next, struct page, lru);
5444 		next = page->lru.next;
5445 
5446 		VM_BUG_ON_PAGE(PageLRU(page), page);
5447 		VM_BUG_ON_PAGE(page_count(page), page);
5448 
5449 		if (!page->mem_cgroup)
5450 			continue;
5451 
5452 		/*
5453 		 * Nobody should be changing or seriously looking at
5454 		 * page->mem_cgroup at this point, we have fully
5455 		 * exclusive access to the page.
5456 		 */
5457 
5458 		if (memcg != page->mem_cgroup) {
5459 			if (memcg) {
5460 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5461 					       nr_huge, page);
5462 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5463 			}
5464 			memcg = page->mem_cgroup;
5465 		}
5466 
5467 		if (PageTransHuge(page)) {
5468 			nr_pages <<= compound_order(page);
5469 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5470 			nr_huge += nr_pages;
5471 		}
5472 
5473 		if (PageAnon(page))
5474 			nr_anon += nr_pages;
5475 		else
5476 			nr_file += nr_pages;
5477 
5478 		page->mem_cgroup = NULL;
5479 
5480 		pgpgout++;
5481 	} while (next != page_list);
5482 
5483 	if (memcg)
5484 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5485 			       nr_huge, page);
5486 }
5487 
5488 /**
5489  * mem_cgroup_uncharge - uncharge a page
5490  * @page: page to uncharge
5491  *
5492  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5493  * mem_cgroup_commit_charge().
5494  */
5495 void mem_cgroup_uncharge(struct page *page)
5496 {
5497 	if (mem_cgroup_disabled())
5498 		return;
5499 
5500 	/* Don't touch page->lru of any random page, pre-check: */
5501 	if (!page->mem_cgroup)
5502 		return;
5503 
5504 	INIT_LIST_HEAD(&page->lru);
5505 	uncharge_list(&page->lru);
5506 }
5507 
5508 /**
5509  * mem_cgroup_uncharge_list - uncharge a list of page
5510  * @page_list: list of pages to uncharge
5511  *
5512  * Uncharge a list of pages previously charged with
5513  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5514  */
5515 void mem_cgroup_uncharge_list(struct list_head *page_list)
5516 {
5517 	if (mem_cgroup_disabled())
5518 		return;
5519 
5520 	if (!list_empty(page_list))
5521 		uncharge_list(page_list);
5522 }
5523 
5524 /**
5525  * mem_cgroup_migrate - charge a page's replacement
5526  * @oldpage: currently circulating page
5527  * @newpage: replacement page
5528  *
5529  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5530  * be uncharged upon free.
5531  *
5532  * Both pages must be locked, @newpage->mapping must be set up.
5533  */
5534 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5535 {
5536 	struct mem_cgroup *memcg;
5537 	unsigned int nr_pages;
5538 	bool compound;
5539 
5540 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5541 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5542 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5543 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5544 		       newpage);
5545 
5546 	if (mem_cgroup_disabled())
5547 		return;
5548 
5549 	/* Page cache replacement: new page already charged? */
5550 	if (newpage->mem_cgroup)
5551 		return;
5552 
5553 	/* Swapcache readahead pages can get replaced before being charged */
5554 	memcg = oldpage->mem_cgroup;
5555 	if (!memcg)
5556 		return;
5557 
5558 	/* Force-charge the new page. The old one will be freed soon */
5559 	compound = PageTransHuge(newpage);
5560 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5561 
5562 	page_counter_charge(&memcg->memory, nr_pages);
5563 	if (do_memsw_account())
5564 		page_counter_charge(&memcg->memsw, nr_pages);
5565 	css_get_many(&memcg->css, nr_pages);
5566 
5567 	commit_charge(newpage, memcg, false);
5568 
5569 	local_irq_disable();
5570 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5571 	memcg_check_events(memcg, newpage);
5572 	local_irq_enable();
5573 }
5574 
5575 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5576 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5577 
5578 void sock_update_memcg(struct sock *sk)
5579 {
5580 	struct mem_cgroup *memcg;
5581 
5582 	/* Socket cloning can throw us here with sk_cgrp already
5583 	 * filled. It won't however, necessarily happen from
5584 	 * process context. So the test for root memcg given
5585 	 * the current task's memcg won't help us in this case.
5586 	 *
5587 	 * Respecting the original socket's memcg is a better
5588 	 * decision in this case.
5589 	 */
5590 	if (sk->sk_memcg) {
5591 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5592 		css_get(&sk->sk_memcg->css);
5593 		return;
5594 	}
5595 
5596 	rcu_read_lock();
5597 	memcg = mem_cgroup_from_task(current);
5598 	if (memcg == root_mem_cgroup)
5599 		goto out;
5600 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5601 		goto out;
5602 	if (css_tryget_online(&memcg->css))
5603 		sk->sk_memcg = memcg;
5604 out:
5605 	rcu_read_unlock();
5606 }
5607 EXPORT_SYMBOL(sock_update_memcg);
5608 
5609 void sock_release_memcg(struct sock *sk)
5610 {
5611 	WARN_ON(!sk->sk_memcg);
5612 	css_put(&sk->sk_memcg->css);
5613 }
5614 
5615 /**
5616  * mem_cgroup_charge_skmem - charge socket memory
5617  * @memcg: memcg to charge
5618  * @nr_pages: number of pages to charge
5619  *
5620  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5621  * @memcg's configured limit, %false if the charge had to be forced.
5622  */
5623 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5624 {
5625 	gfp_t gfp_mask = GFP_KERNEL;
5626 
5627 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5628 		struct page_counter *fail;
5629 
5630 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5631 			memcg->tcpmem_pressure = 0;
5632 			return true;
5633 		}
5634 		page_counter_charge(&memcg->tcpmem, nr_pages);
5635 		memcg->tcpmem_pressure = 1;
5636 		return false;
5637 	}
5638 
5639 	/* Don't block in the packet receive path */
5640 	if (in_softirq())
5641 		gfp_mask = GFP_NOWAIT;
5642 
5643 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5644 
5645 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5646 		return true;
5647 
5648 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5649 	return false;
5650 }
5651 
5652 /**
5653  * mem_cgroup_uncharge_skmem - uncharge socket memory
5654  * @memcg - memcg to uncharge
5655  * @nr_pages - number of pages to uncharge
5656  */
5657 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5658 {
5659 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5660 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5661 		return;
5662 	}
5663 
5664 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5665 
5666 	page_counter_uncharge(&memcg->memory, nr_pages);
5667 	css_put_many(&memcg->css, nr_pages);
5668 }
5669 
5670 static int __init cgroup_memory(char *s)
5671 {
5672 	char *token;
5673 
5674 	while ((token = strsep(&s, ",")) != NULL) {
5675 		if (!*token)
5676 			continue;
5677 		if (!strcmp(token, "nosocket"))
5678 			cgroup_memory_nosocket = true;
5679 		if (!strcmp(token, "nokmem"))
5680 			cgroup_memory_nokmem = true;
5681 	}
5682 	return 0;
5683 }
5684 __setup("cgroup.memory=", cgroup_memory);
5685 
5686 /*
5687  * subsys_initcall() for memory controller.
5688  *
5689  * Some parts like hotcpu_notifier() have to be initialized from this context
5690  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5691  * everything that doesn't depend on a specific mem_cgroup structure should
5692  * be initialized from here.
5693  */
5694 static int __init mem_cgroup_init(void)
5695 {
5696 	int cpu, node;
5697 
5698 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5699 
5700 	for_each_possible_cpu(cpu)
5701 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5702 			  drain_local_stock);
5703 
5704 	for_each_node(node) {
5705 		struct mem_cgroup_tree_per_node *rtpn;
5706 		int zone;
5707 
5708 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5709 				    node_online(node) ? node : NUMA_NO_NODE);
5710 
5711 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5712 			struct mem_cgroup_tree_per_zone *rtpz;
5713 
5714 			rtpz = &rtpn->rb_tree_per_zone[zone];
5715 			rtpz->rb_root = RB_ROOT;
5716 			spin_lock_init(&rtpz->lock);
5717 		}
5718 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5719 	}
5720 
5721 	return 0;
5722 }
5723 subsys_initcall(mem_cgroup_init);
5724 
5725 #ifdef CONFIG_MEMCG_SWAP
5726 /**
5727  * mem_cgroup_swapout - transfer a memsw charge to swap
5728  * @page: page whose memsw charge to transfer
5729  * @entry: swap entry to move the charge to
5730  *
5731  * Transfer the memsw charge of @page to @entry.
5732  */
5733 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5734 {
5735 	struct mem_cgroup *memcg;
5736 	unsigned short oldid;
5737 
5738 	VM_BUG_ON_PAGE(PageLRU(page), page);
5739 	VM_BUG_ON_PAGE(page_count(page), page);
5740 
5741 	if (!do_memsw_account())
5742 		return;
5743 
5744 	memcg = page->mem_cgroup;
5745 
5746 	/* Readahead page, never charged */
5747 	if (!memcg)
5748 		return;
5749 
5750 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5751 	VM_BUG_ON_PAGE(oldid, page);
5752 	mem_cgroup_swap_statistics(memcg, true);
5753 
5754 	page->mem_cgroup = NULL;
5755 
5756 	if (!mem_cgroup_is_root(memcg))
5757 		page_counter_uncharge(&memcg->memory, 1);
5758 
5759 	/*
5760 	 * Interrupts should be disabled here because the caller holds the
5761 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5762 	 * important here to have the interrupts disabled because it is the
5763 	 * only synchronisation we have for udpating the per-CPU variables.
5764 	 */
5765 	VM_BUG_ON(!irqs_disabled());
5766 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5767 	memcg_check_events(memcg, page);
5768 }
5769 
5770 /*
5771  * mem_cgroup_try_charge_swap - try charging a swap entry
5772  * @page: page being added to swap
5773  * @entry: swap entry to charge
5774  *
5775  * Try to charge @entry to the memcg that @page belongs to.
5776  *
5777  * Returns 0 on success, -ENOMEM on failure.
5778  */
5779 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5780 {
5781 	struct mem_cgroup *memcg;
5782 	struct page_counter *counter;
5783 	unsigned short oldid;
5784 
5785 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5786 		return 0;
5787 
5788 	memcg = page->mem_cgroup;
5789 
5790 	/* Readahead page, never charged */
5791 	if (!memcg)
5792 		return 0;
5793 
5794 	if (!mem_cgroup_is_root(memcg) &&
5795 	    !page_counter_try_charge(&memcg->swap, 1, &counter))
5796 		return -ENOMEM;
5797 
5798 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5799 	VM_BUG_ON_PAGE(oldid, page);
5800 	mem_cgroup_swap_statistics(memcg, true);
5801 
5802 	css_get(&memcg->css);
5803 	return 0;
5804 }
5805 
5806 /**
5807  * mem_cgroup_uncharge_swap - uncharge a swap entry
5808  * @entry: swap entry to uncharge
5809  *
5810  * Drop the swap charge associated with @entry.
5811  */
5812 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5813 {
5814 	struct mem_cgroup *memcg;
5815 	unsigned short id;
5816 
5817 	if (!do_swap_account)
5818 		return;
5819 
5820 	id = swap_cgroup_record(entry, 0);
5821 	rcu_read_lock();
5822 	memcg = mem_cgroup_from_id(id);
5823 	if (memcg) {
5824 		if (!mem_cgroup_is_root(memcg)) {
5825 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826 				page_counter_uncharge(&memcg->swap, 1);
5827 			else
5828 				page_counter_uncharge(&memcg->memsw, 1);
5829 		}
5830 		mem_cgroup_swap_statistics(memcg, false);
5831 		css_put(&memcg->css);
5832 	}
5833 	rcu_read_unlock();
5834 }
5835 
5836 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5837 {
5838 	long nr_swap_pages = get_nr_swap_pages();
5839 
5840 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5841 		return nr_swap_pages;
5842 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5843 		nr_swap_pages = min_t(long, nr_swap_pages,
5844 				      READ_ONCE(memcg->swap.limit) -
5845 				      page_counter_read(&memcg->swap));
5846 	return nr_swap_pages;
5847 }
5848 
5849 bool mem_cgroup_swap_full(struct page *page)
5850 {
5851 	struct mem_cgroup *memcg;
5852 
5853 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5854 
5855 	if (vm_swap_full())
5856 		return true;
5857 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5858 		return false;
5859 
5860 	memcg = page->mem_cgroup;
5861 	if (!memcg)
5862 		return false;
5863 
5864 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5865 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5866 			return true;
5867 
5868 	return false;
5869 }
5870 
5871 /* for remember boot option*/
5872 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5873 static int really_do_swap_account __initdata = 1;
5874 #else
5875 static int really_do_swap_account __initdata;
5876 #endif
5877 
5878 static int __init enable_swap_account(char *s)
5879 {
5880 	if (!strcmp(s, "1"))
5881 		really_do_swap_account = 1;
5882 	else if (!strcmp(s, "0"))
5883 		really_do_swap_account = 0;
5884 	return 1;
5885 }
5886 __setup("swapaccount=", enable_swap_account);
5887 
5888 static u64 swap_current_read(struct cgroup_subsys_state *css,
5889 			     struct cftype *cft)
5890 {
5891 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5892 
5893 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5894 }
5895 
5896 static int swap_max_show(struct seq_file *m, void *v)
5897 {
5898 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5899 	unsigned long max = READ_ONCE(memcg->swap.limit);
5900 
5901 	if (max == PAGE_COUNTER_MAX)
5902 		seq_puts(m, "max\n");
5903 	else
5904 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5905 
5906 	return 0;
5907 }
5908 
5909 static ssize_t swap_max_write(struct kernfs_open_file *of,
5910 			      char *buf, size_t nbytes, loff_t off)
5911 {
5912 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5913 	unsigned long max;
5914 	int err;
5915 
5916 	buf = strstrip(buf);
5917 	err = page_counter_memparse(buf, "max", &max);
5918 	if (err)
5919 		return err;
5920 
5921 	mutex_lock(&memcg_limit_mutex);
5922 	err = page_counter_limit(&memcg->swap, max);
5923 	mutex_unlock(&memcg_limit_mutex);
5924 	if (err)
5925 		return err;
5926 
5927 	return nbytes;
5928 }
5929 
5930 static struct cftype swap_files[] = {
5931 	{
5932 		.name = "swap.current",
5933 		.flags = CFTYPE_NOT_ON_ROOT,
5934 		.read_u64 = swap_current_read,
5935 	},
5936 	{
5937 		.name = "swap.max",
5938 		.flags = CFTYPE_NOT_ON_ROOT,
5939 		.seq_show = swap_max_show,
5940 		.write = swap_max_write,
5941 	},
5942 	{ }	/* terminate */
5943 };
5944 
5945 static struct cftype memsw_cgroup_files[] = {
5946 	{
5947 		.name = "memsw.usage_in_bytes",
5948 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5949 		.read_u64 = mem_cgroup_read_u64,
5950 	},
5951 	{
5952 		.name = "memsw.max_usage_in_bytes",
5953 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5954 		.write = mem_cgroup_reset,
5955 		.read_u64 = mem_cgroup_read_u64,
5956 	},
5957 	{
5958 		.name = "memsw.limit_in_bytes",
5959 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5960 		.write = mem_cgroup_write,
5961 		.read_u64 = mem_cgroup_read_u64,
5962 	},
5963 	{
5964 		.name = "memsw.failcnt",
5965 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5966 		.write = mem_cgroup_reset,
5967 		.read_u64 = mem_cgroup_read_u64,
5968 	},
5969 	{ },	/* terminate */
5970 };
5971 
5972 static int __init mem_cgroup_swap_init(void)
5973 {
5974 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5975 		do_swap_account = 1;
5976 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5977 					       swap_files));
5978 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5979 						  memsw_cgroup_files));
5980 	}
5981 	return 0;
5982 }
5983 subsys_initcall(mem_cgroup_swap_init);
5984 
5985 #endif /* CONFIG_MEMCG_SWAP */
5986