1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/list.h> 46 #include <linux/mutex.h> 47 #include <linux/rbtree.h> 48 #include <linux/slab.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/fs.h> 52 #include <linux/seq_file.h> 53 #include <linux/parser.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #define CREATE_TRACE_POINTS 75 #include <trace/events/memcg.h> 76 #undef CREATE_TRACE_POINTS 77 78 #include <trace/events/vmscan.h> 79 80 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 81 EXPORT_SYMBOL(memory_cgrp_subsys); 82 83 struct mem_cgroup *root_mem_cgroup __read_mostly; 84 85 /* Active memory cgroup to use from an interrupt context */ 86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 88 89 /* Socket memory accounting disabled? */ 90 static bool cgroup_memory_nosocket __ro_after_init; 91 92 /* Kernel memory accounting disabled? */ 93 static bool cgroup_memory_nokmem __ro_after_init; 94 95 /* BPF memory accounting disabled? */ 96 static bool cgroup_memory_nobpf __ro_after_init; 97 98 #ifdef CONFIG_CGROUP_WRITEBACK 99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 100 #endif 101 102 static inline bool task_is_dying(void) 103 { 104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 105 (current->flags & PF_EXITING); 106 } 107 108 /* Some nice accessors for the vmpressure. */ 109 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 110 { 111 if (!memcg) 112 memcg = root_mem_cgroup; 113 return &memcg->vmpressure; 114 } 115 116 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 117 { 118 return container_of(vmpr, struct mem_cgroup, vmpressure); 119 } 120 121 #define SEQ_BUF_SIZE SZ_4K 122 #define CURRENT_OBJCG_UPDATE_BIT 0 123 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 124 125 static DEFINE_SPINLOCK(objcg_lock); 126 127 bool mem_cgroup_kmem_disabled(void) 128 { 129 return cgroup_memory_nokmem; 130 } 131 132 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 133 unsigned int nr_pages); 134 135 static void obj_cgroup_release(struct percpu_ref *ref) 136 { 137 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 138 unsigned int nr_bytes; 139 unsigned int nr_pages; 140 unsigned long flags; 141 142 /* 143 * At this point all allocated objects are freed, and 144 * objcg->nr_charged_bytes can't have an arbitrary byte value. 145 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 146 * 147 * The following sequence can lead to it: 148 * 1) CPU0: objcg == stock->cached_objcg 149 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 150 * PAGE_SIZE bytes are charged 151 * 3) CPU1: a process from another memcg is allocating something, 152 * the stock if flushed, 153 * objcg->nr_charged_bytes = PAGE_SIZE - 92 154 * 5) CPU0: we do release this object, 155 * 92 bytes are added to stock->nr_bytes 156 * 6) CPU0: stock is flushed, 157 * 92 bytes are added to objcg->nr_charged_bytes 158 * 159 * In the result, nr_charged_bytes == PAGE_SIZE. 160 * This page will be uncharged in obj_cgroup_release(). 161 */ 162 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 163 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 164 nr_pages = nr_bytes >> PAGE_SHIFT; 165 166 if (nr_pages) 167 obj_cgroup_uncharge_pages(objcg, nr_pages); 168 169 spin_lock_irqsave(&objcg_lock, flags); 170 list_del(&objcg->list); 171 spin_unlock_irqrestore(&objcg_lock, flags); 172 173 percpu_ref_exit(ref); 174 kfree_rcu(objcg, rcu); 175 } 176 177 static struct obj_cgroup *obj_cgroup_alloc(void) 178 { 179 struct obj_cgroup *objcg; 180 int ret; 181 182 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 183 if (!objcg) 184 return NULL; 185 186 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 187 GFP_KERNEL); 188 if (ret) { 189 kfree(objcg); 190 return NULL; 191 } 192 INIT_LIST_HEAD(&objcg->list); 193 return objcg; 194 } 195 196 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 197 struct mem_cgroup *parent) 198 { 199 struct obj_cgroup *objcg, *iter; 200 201 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 202 203 spin_lock_irq(&objcg_lock); 204 205 /* 1) Ready to reparent active objcg. */ 206 list_add(&objcg->list, &memcg->objcg_list); 207 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 208 list_for_each_entry(iter, &memcg->objcg_list, list) 209 WRITE_ONCE(iter->memcg, parent); 210 /* 3) Move already reparented objcgs to the parent's list */ 211 list_splice(&memcg->objcg_list, &parent->objcg_list); 212 213 spin_unlock_irq(&objcg_lock); 214 215 percpu_ref_kill(&objcg->refcnt); 216 } 217 218 /* 219 * A lot of the calls to the cache allocation functions are expected to be 220 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 221 * conditional to this static branch, we'll have to allow modules that does 222 * kmem_cache_alloc and the such to see this symbol as well 223 */ 224 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 225 EXPORT_SYMBOL(memcg_kmem_online_key); 226 227 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 228 EXPORT_SYMBOL(memcg_bpf_enabled_key); 229 230 /** 231 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 232 * @folio: folio of interest 233 * 234 * If memcg is bound to the default hierarchy, css of the memcg associated 235 * with @folio is returned. The returned css remains associated with @folio 236 * until it is released. 237 * 238 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 239 * is returned. 240 */ 241 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 242 { 243 struct mem_cgroup *memcg = folio_memcg(folio); 244 245 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 246 memcg = root_mem_cgroup; 247 248 return &memcg->css; 249 } 250 251 /** 252 * page_cgroup_ino - return inode number of the memcg a page is charged to 253 * @page: the page 254 * 255 * Look up the closest online ancestor of the memory cgroup @page is charged to 256 * and return its inode number or 0 if @page is not charged to any cgroup. It 257 * is safe to call this function without holding a reference to @page. 258 * 259 * Note, this function is inherently racy, because there is nothing to prevent 260 * the cgroup inode from getting torn down and potentially reallocated a moment 261 * after page_cgroup_ino() returns, so it only should be used by callers that 262 * do not care (such as procfs interfaces). 263 */ 264 ino_t page_cgroup_ino(struct page *page) 265 { 266 struct mem_cgroup *memcg; 267 unsigned long ino = 0; 268 269 rcu_read_lock(); 270 /* page_folio() is racy here, but the entire function is racy anyway */ 271 memcg = folio_memcg_check(page_folio(page)); 272 273 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 274 memcg = parent_mem_cgroup(memcg); 275 if (memcg) 276 ino = cgroup_ino(memcg->css.cgroup); 277 rcu_read_unlock(); 278 return ino; 279 } 280 281 /* Subset of node_stat_item for memcg stats */ 282 static const unsigned int memcg_node_stat_items[] = { 283 NR_INACTIVE_ANON, 284 NR_ACTIVE_ANON, 285 NR_INACTIVE_FILE, 286 NR_ACTIVE_FILE, 287 NR_UNEVICTABLE, 288 NR_SLAB_RECLAIMABLE_B, 289 NR_SLAB_UNRECLAIMABLE_B, 290 WORKINGSET_REFAULT_ANON, 291 WORKINGSET_REFAULT_FILE, 292 WORKINGSET_ACTIVATE_ANON, 293 WORKINGSET_ACTIVATE_FILE, 294 WORKINGSET_RESTORE_ANON, 295 WORKINGSET_RESTORE_FILE, 296 WORKINGSET_NODERECLAIM, 297 NR_ANON_MAPPED, 298 NR_FILE_MAPPED, 299 NR_FILE_PAGES, 300 NR_FILE_DIRTY, 301 NR_WRITEBACK, 302 NR_SHMEM, 303 NR_SHMEM_THPS, 304 NR_FILE_THPS, 305 NR_ANON_THPS, 306 NR_KERNEL_STACK_KB, 307 NR_PAGETABLE, 308 NR_SECONDARY_PAGETABLE, 309 #ifdef CONFIG_SWAP 310 NR_SWAPCACHE, 311 #endif 312 #ifdef CONFIG_NUMA_BALANCING 313 PGPROMOTE_SUCCESS, 314 #endif 315 PGDEMOTE_KSWAPD, 316 PGDEMOTE_DIRECT, 317 PGDEMOTE_KHUGEPAGED, 318 }; 319 320 static const unsigned int memcg_stat_items[] = { 321 MEMCG_SWAP, 322 MEMCG_SOCK, 323 MEMCG_PERCPU_B, 324 MEMCG_VMALLOC, 325 MEMCG_KMEM, 326 MEMCG_ZSWAP_B, 327 MEMCG_ZSWAPPED, 328 }; 329 330 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 331 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 332 ARRAY_SIZE(memcg_stat_items)) 333 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 334 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 335 336 static void init_memcg_stats(void) 337 { 338 u8 i, j = 0; 339 340 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 341 342 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 343 344 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 345 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 346 347 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 348 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 349 } 350 351 static inline int memcg_stats_index(int idx) 352 { 353 return mem_cgroup_stats_index[idx]; 354 } 355 356 struct lruvec_stats_percpu { 357 /* Local (CPU and cgroup) state */ 358 long state[NR_MEMCG_NODE_STAT_ITEMS]; 359 360 /* Delta calculation for lockless upward propagation */ 361 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 362 }; 363 364 struct lruvec_stats { 365 /* Aggregated (CPU and subtree) state */ 366 long state[NR_MEMCG_NODE_STAT_ITEMS]; 367 368 /* Non-hierarchical (CPU aggregated) state */ 369 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 370 371 /* Pending child counts during tree propagation */ 372 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 373 }; 374 375 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 376 { 377 struct mem_cgroup_per_node *pn; 378 long x; 379 int i; 380 381 if (mem_cgroup_disabled()) 382 return node_page_state(lruvec_pgdat(lruvec), idx); 383 384 i = memcg_stats_index(idx); 385 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 386 return 0; 387 388 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 389 x = READ_ONCE(pn->lruvec_stats->state[i]); 390 #ifdef CONFIG_SMP 391 if (x < 0) 392 x = 0; 393 #endif 394 return x; 395 } 396 397 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 398 enum node_stat_item idx) 399 { 400 struct mem_cgroup_per_node *pn; 401 long x; 402 int i; 403 404 if (mem_cgroup_disabled()) 405 return node_page_state(lruvec_pgdat(lruvec), idx); 406 407 i = memcg_stats_index(idx); 408 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 409 return 0; 410 411 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 412 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 413 #ifdef CONFIG_SMP 414 if (x < 0) 415 x = 0; 416 #endif 417 return x; 418 } 419 420 /* Subset of vm_event_item to report for memcg event stats */ 421 static const unsigned int memcg_vm_event_stat[] = { 422 #ifdef CONFIG_MEMCG_V1 423 PGPGIN, 424 PGPGOUT, 425 #endif 426 PSWPIN, 427 PSWPOUT, 428 PGSCAN_KSWAPD, 429 PGSCAN_DIRECT, 430 PGSCAN_KHUGEPAGED, 431 PGSTEAL_KSWAPD, 432 PGSTEAL_DIRECT, 433 PGSTEAL_KHUGEPAGED, 434 PGFAULT, 435 PGMAJFAULT, 436 PGREFILL, 437 PGACTIVATE, 438 PGDEACTIVATE, 439 PGLAZYFREE, 440 PGLAZYFREED, 441 #ifdef CONFIG_ZSWAP 442 ZSWPIN, 443 ZSWPOUT, 444 ZSWPWB, 445 #endif 446 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 447 THP_FAULT_ALLOC, 448 THP_COLLAPSE_ALLOC, 449 THP_SWPOUT, 450 THP_SWPOUT_FALLBACK, 451 #endif 452 #ifdef CONFIG_NUMA_BALANCING 453 NUMA_PAGE_MIGRATE, 454 NUMA_PTE_UPDATES, 455 NUMA_HINT_FAULTS, 456 #endif 457 }; 458 459 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 460 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 461 462 static void init_memcg_events(void) 463 { 464 u8 i; 465 466 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 467 468 memset(mem_cgroup_events_index, U8_MAX, 469 sizeof(mem_cgroup_events_index)); 470 471 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 472 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 473 } 474 475 static inline int memcg_events_index(enum vm_event_item idx) 476 { 477 return mem_cgroup_events_index[idx]; 478 } 479 480 struct memcg_vmstats_percpu { 481 /* Stats updates since the last flush */ 482 unsigned int stats_updates; 483 484 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 485 struct memcg_vmstats_percpu *parent; 486 struct memcg_vmstats *vmstats; 487 488 /* The above should fit a single cacheline for memcg_rstat_updated() */ 489 490 /* Local (CPU and cgroup) page state & events */ 491 long state[MEMCG_VMSTAT_SIZE]; 492 unsigned long events[NR_MEMCG_EVENTS]; 493 494 /* Delta calculation for lockless upward propagation */ 495 long state_prev[MEMCG_VMSTAT_SIZE]; 496 unsigned long events_prev[NR_MEMCG_EVENTS]; 497 } ____cacheline_aligned; 498 499 struct memcg_vmstats { 500 /* Aggregated (CPU and subtree) page state & events */ 501 long state[MEMCG_VMSTAT_SIZE]; 502 unsigned long events[NR_MEMCG_EVENTS]; 503 504 /* Non-hierarchical (CPU aggregated) page state & events */ 505 long state_local[MEMCG_VMSTAT_SIZE]; 506 unsigned long events_local[NR_MEMCG_EVENTS]; 507 508 /* Pending child counts during tree propagation */ 509 long state_pending[MEMCG_VMSTAT_SIZE]; 510 unsigned long events_pending[NR_MEMCG_EVENTS]; 511 512 /* Stats updates since the last flush */ 513 atomic64_t stats_updates; 514 }; 515 516 /* 517 * memcg and lruvec stats flushing 518 * 519 * Many codepaths leading to stats update or read are performance sensitive and 520 * adding stats flushing in such codepaths is not desirable. So, to optimize the 521 * flushing the kernel does: 522 * 523 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 524 * rstat update tree grow unbounded. 525 * 526 * 2) Flush the stats synchronously on reader side only when there are more than 527 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 528 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 529 * only for 2 seconds due to (1). 530 */ 531 static void flush_memcg_stats_dwork(struct work_struct *w); 532 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 533 static u64 flush_last_time; 534 535 #define FLUSH_TIME (2UL*HZ) 536 537 /* 538 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 539 * not rely on this as part of an acquired spinlock_t lock. These functions are 540 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 541 * is sufficient. 542 */ 543 static void memcg_stats_lock(void) 544 { 545 preempt_disable_nested(); 546 VM_WARN_ON_IRQS_ENABLED(); 547 } 548 549 static void __memcg_stats_lock(void) 550 { 551 preempt_disable_nested(); 552 } 553 554 static void memcg_stats_unlock(void) 555 { 556 preempt_enable_nested(); 557 } 558 559 560 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 561 { 562 return atomic64_read(&vmstats->stats_updates) > 563 MEMCG_CHARGE_BATCH * num_online_cpus(); 564 } 565 566 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 567 { 568 struct memcg_vmstats_percpu *statc; 569 int cpu = smp_processor_id(); 570 unsigned int stats_updates; 571 572 if (!val) 573 return; 574 575 cgroup_rstat_updated(memcg->css.cgroup, cpu); 576 statc = this_cpu_ptr(memcg->vmstats_percpu); 577 for (; statc; statc = statc->parent) { 578 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 579 WRITE_ONCE(statc->stats_updates, stats_updates); 580 if (stats_updates < MEMCG_CHARGE_BATCH) 581 continue; 582 583 /* 584 * If @memcg is already flush-able, increasing stats_updates is 585 * redundant. Avoid the overhead of the atomic update. 586 */ 587 if (!memcg_vmstats_needs_flush(statc->vmstats)) 588 atomic64_add(stats_updates, 589 &statc->vmstats->stats_updates); 590 WRITE_ONCE(statc->stats_updates, 0); 591 } 592 } 593 594 static void do_flush_stats(struct mem_cgroup *memcg) 595 { 596 if (mem_cgroup_is_root(memcg)) 597 WRITE_ONCE(flush_last_time, jiffies_64); 598 599 cgroup_rstat_flush(memcg->css.cgroup); 600 } 601 602 /* 603 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 604 * @memcg: root of the subtree to flush 605 * 606 * Flushing is serialized by the underlying global rstat lock. There is also a 607 * minimum amount of work to be done even if there are no stat updates to flush. 608 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 609 * avoids unnecessary work and contention on the underlying lock. 610 */ 611 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 612 { 613 if (mem_cgroup_disabled()) 614 return; 615 616 if (!memcg) 617 memcg = root_mem_cgroup; 618 619 if (memcg_vmstats_needs_flush(memcg->vmstats)) 620 do_flush_stats(memcg); 621 } 622 623 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 624 { 625 /* Only flush if the periodic flusher is one full cycle late */ 626 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 627 mem_cgroup_flush_stats(memcg); 628 } 629 630 static void flush_memcg_stats_dwork(struct work_struct *w) 631 { 632 /* 633 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 634 * in latency-sensitive paths is as cheap as possible. 635 */ 636 do_flush_stats(root_mem_cgroup); 637 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 638 } 639 640 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 641 { 642 long x; 643 int i = memcg_stats_index(idx); 644 645 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 646 return 0; 647 648 x = READ_ONCE(memcg->vmstats->state[i]); 649 #ifdef CONFIG_SMP 650 if (x < 0) 651 x = 0; 652 #endif 653 return x; 654 } 655 656 static int memcg_page_state_unit(int item); 657 658 /* 659 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 660 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 661 */ 662 static int memcg_state_val_in_pages(int idx, int val) 663 { 664 int unit = memcg_page_state_unit(idx); 665 666 if (!val || unit == PAGE_SIZE) 667 return val; 668 else 669 return max(val * unit / PAGE_SIZE, 1UL); 670 } 671 672 /** 673 * __mod_memcg_state - update cgroup memory statistics 674 * @memcg: the memory cgroup 675 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 676 * @val: delta to add to the counter, can be negative 677 */ 678 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 679 int val) 680 { 681 int i = memcg_stats_index(idx); 682 683 if (mem_cgroup_disabled()) 684 return; 685 686 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 687 return; 688 689 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 690 val = memcg_state_val_in_pages(idx, val); 691 memcg_rstat_updated(memcg, val); 692 trace_mod_memcg_state(memcg, idx, val); 693 } 694 695 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 696 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 697 { 698 long x; 699 int i = memcg_stats_index(idx); 700 701 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 702 return 0; 703 704 x = READ_ONCE(memcg->vmstats->state_local[i]); 705 #ifdef CONFIG_SMP 706 if (x < 0) 707 x = 0; 708 #endif 709 return x; 710 } 711 712 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 713 enum node_stat_item idx, 714 int val) 715 { 716 struct mem_cgroup_per_node *pn; 717 struct mem_cgroup *memcg; 718 int i = memcg_stats_index(idx); 719 720 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 721 return; 722 723 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 724 memcg = pn->memcg; 725 726 /* 727 * The caller from rmap relies on disabled preemption because they never 728 * update their counter from in-interrupt context. For these two 729 * counters we check that the update is never performed from an 730 * interrupt context while other caller need to have disabled interrupt. 731 */ 732 __memcg_stats_lock(); 733 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 734 switch (idx) { 735 case NR_ANON_MAPPED: 736 case NR_FILE_MAPPED: 737 case NR_ANON_THPS: 738 WARN_ON_ONCE(!in_task()); 739 break; 740 default: 741 VM_WARN_ON_IRQS_ENABLED(); 742 } 743 } 744 745 /* Update memcg */ 746 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 747 748 /* Update lruvec */ 749 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 750 751 val = memcg_state_val_in_pages(idx, val); 752 memcg_rstat_updated(memcg, val); 753 trace_mod_memcg_lruvec_state(memcg, idx, val); 754 memcg_stats_unlock(); 755 } 756 757 /** 758 * __mod_lruvec_state - update lruvec memory statistics 759 * @lruvec: the lruvec 760 * @idx: the stat item 761 * @val: delta to add to the counter, can be negative 762 * 763 * The lruvec is the intersection of the NUMA node and a cgroup. This 764 * function updates the all three counters that are affected by a 765 * change of state at this level: per-node, per-cgroup, per-lruvec. 766 */ 767 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 768 int val) 769 { 770 /* Update node */ 771 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 772 773 /* Update memcg and lruvec */ 774 if (!mem_cgroup_disabled()) 775 __mod_memcg_lruvec_state(lruvec, idx, val); 776 } 777 778 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 779 int val) 780 { 781 struct mem_cgroup *memcg; 782 pg_data_t *pgdat = folio_pgdat(folio); 783 struct lruvec *lruvec; 784 785 rcu_read_lock(); 786 memcg = folio_memcg(folio); 787 /* Untracked pages have no memcg, no lruvec. Update only the node */ 788 if (!memcg) { 789 rcu_read_unlock(); 790 __mod_node_page_state(pgdat, idx, val); 791 return; 792 } 793 794 lruvec = mem_cgroup_lruvec(memcg, pgdat); 795 __mod_lruvec_state(lruvec, idx, val); 796 rcu_read_unlock(); 797 } 798 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 799 800 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 801 { 802 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 803 struct mem_cgroup *memcg; 804 struct lruvec *lruvec; 805 806 rcu_read_lock(); 807 memcg = mem_cgroup_from_slab_obj(p); 808 809 /* 810 * Untracked pages have no memcg, no lruvec. Update only the 811 * node. If we reparent the slab objects to the root memcg, 812 * when we free the slab object, we need to update the per-memcg 813 * vmstats to keep it correct for the root memcg. 814 */ 815 if (!memcg) { 816 __mod_node_page_state(pgdat, idx, val); 817 } else { 818 lruvec = mem_cgroup_lruvec(memcg, pgdat); 819 __mod_lruvec_state(lruvec, idx, val); 820 } 821 rcu_read_unlock(); 822 } 823 824 /** 825 * __count_memcg_events - account VM events in a cgroup 826 * @memcg: the memory cgroup 827 * @idx: the event item 828 * @count: the number of events that occurred 829 */ 830 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 831 unsigned long count) 832 { 833 int i = memcg_events_index(idx); 834 835 if (mem_cgroup_disabled()) 836 return; 837 838 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 839 return; 840 841 memcg_stats_lock(); 842 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 843 memcg_rstat_updated(memcg, count); 844 trace_count_memcg_events(memcg, idx, count); 845 memcg_stats_unlock(); 846 } 847 848 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 849 { 850 int i = memcg_events_index(event); 851 852 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 853 return 0; 854 855 return READ_ONCE(memcg->vmstats->events[i]); 856 } 857 858 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 859 { 860 int i = memcg_events_index(event); 861 862 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 863 return 0; 864 865 return READ_ONCE(memcg->vmstats->events_local[i]); 866 } 867 868 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 869 { 870 /* 871 * mm_update_next_owner() may clear mm->owner to NULL 872 * if it races with swapoff, page migration, etc. 873 * So this can be called with p == NULL. 874 */ 875 if (unlikely(!p)) 876 return NULL; 877 878 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 879 } 880 EXPORT_SYMBOL(mem_cgroup_from_task); 881 882 static __always_inline struct mem_cgroup *active_memcg(void) 883 { 884 if (!in_task()) 885 return this_cpu_read(int_active_memcg); 886 else 887 return current->active_memcg; 888 } 889 890 /** 891 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 892 * @mm: mm from which memcg should be extracted. It can be NULL. 893 * 894 * Obtain a reference on mm->memcg and returns it if successful. If mm 895 * is NULL, then the memcg is chosen as follows: 896 * 1) The active memcg, if set. 897 * 2) current->mm->memcg, if available 898 * 3) root memcg 899 * If mem_cgroup is disabled, NULL is returned. 900 */ 901 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 902 { 903 struct mem_cgroup *memcg; 904 905 if (mem_cgroup_disabled()) 906 return NULL; 907 908 /* 909 * Page cache insertions can happen without an 910 * actual mm context, e.g. during disk probing 911 * on boot, loopback IO, acct() writes etc. 912 * 913 * No need to css_get on root memcg as the reference 914 * counting is disabled on the root level in the 915 * cgroup core. See CSS_NO_REF. 916 */ 917 if (unlikely(!mm)) { 918 memcg = active_memcg(); 919 if (unlikely(memcg)) { 920 /* remote memcg must hold a ref */ 921 css_get(&memcg->css); 922 return memcg; 923 } 924 mm = current->mm; 925 if (unlikely(!mm)) 926 return root_mem_cgroup; 927 } 928 929 rcu_read_lock(); 930 do { 931 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 932 if (unlikely(!memcg)) 933 memcg = root_mem_cgroup; 934 } while (!css_tryget(&memcg->css)); 935 rcu_read_unlock(); 936 return memcg; 937 } 938 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 939 940 /** 941 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 942 */ 943 struct mem_cgroup *get_mem_cgroup_from_current(void) 944 { 945 struct mem_cgroup *memcg; 946 947 if (mem_cgroup_disabled()) 948 return NULL; 949 950 again: 951 rcu_read_lock(); 952 memcg = mem_cgroup_from_task(current); 953 if (!css_tryget(&memcg->css)) { 954 rcu_read_unlock(); 955 goto again; 956 } 957 rcu_read_unlock(); 958 return memcg; 959 } 960 961 /** 962 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 963 * @folio: folio from which memcg should be extracted. 964 */ 965 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 966 { 967 struct mem_cgroup *memcg = folio_memcg(folio); 968 969 if (mem_cgroup_disabled()) 970 return NULL; 971 972 rcu_read_lock(); 973 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 974 memcg = root_mem_cgroup; 975 rcu_read_unlock(); 976 return memcg; 977 } 978 979 /** 980 * mem_cgroup_iter - iterate over memory cgroup hierarchy 981 * @root: hierarchy root 982 * @prev: previously returned memcg, NULL on first invocation 983 * @reclaim: cookie for shared reclaim walks, NULL for full walks 984 * 985 * Returns references to children of the hierarchy below @root, or 986 * @root itself, or %NULL after a full round-trip. 987 * 988 * Caller must pass the return value in @prev on subsequent 989 * invocations for reference counting, or use mem_cgroup_iter_break() 990 * to cancel a hierarchy walk before the round-trip is complete. 991 * 992 * Reclaimers can specify a node in @reclaim to divide up the memcgs 993 * in the hierarchy among all concurrent reclaimers operating on the 994 * same node. 995 */ 996 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 997 struct mem_cgroup *prev, 998 struct mem_cgroup_reclaim_cookie *reclaim) 999 { 1000 struct mem_cgroup_reclaim_iter *iter; 1001 struct cgroup_subsys_state *css; 1002 struct mem_cgroup *pos; 1003 struct mem_cgroup *next; 1004 1005 if (mem_cgroup_disabled()) 1006 return NULL; 1007 1008 if (!root) 1009 root = root_mem_cgroup; 1010 1011 rcu_read_lock(); 1012 restart: 1013 next = NULL; 1014 1015 if (reclaim) { 1016 int gen; 1017 int nid = reclaim->pgdat->node_id; 1018 1019 iter = &root->nodeinfo[nid]->iter; 1020 gen = atomic_read(&iter->generation); 1021 1022 /* 1023 * On start, join the current reclaim iteration cycle. 1024 * Exit when a concurrent walker completes it. 1025 */ 1026 if (!prev) 1027 reclaim->generation = gen; 1028 else if (reclaim->generation != gen) 1029 goto out_unlock; 1030 1031 pos = READ_ONCE(iter->position); 1032 } else 1033 pos = prev; 1034 1035 css = pos ? &pos->css : NULL; 1036 1037 while ((css = css_next_descendant_pre(css, &root->css))) { 1038 /* 1039 * Verify the css and acquire a reference. The root 1040 * is provided by the caller, so we know it's alive 1041 * and kicking, and don't take an extra reference. 1042 */ 1043 if (css == &root->css || css_tryget(css)) 1044 break; 1045 } 1046 1047 next = mem_cgroup_from_css(css); 1048 1049 if (reclaim) { 1050 /* 1051 * The position could have already been updated by a competing 1052 * thread, so check that the value hasn't changed since we read 1053 * it to avoid reclaiming from the same cgroup twice. 1054 */ 1055 if (cmpxchg(&iter->position, pos, next) != pos) { 1056 if (css && css != &root->css) 1057 css_put(css); 1058 goto restart; 1059 } 1060 1061 if (!next) { 1062 atomic_inc(&iter->generation); 1063 1064 /* 1065 * Reclaimers share the hierarchy walk, and a 1066 * new one might jump in right at the end of 1067 * the hierarchy - make sure they see at least 1068 * one group and restart from the beginning. 1069 */ 1070 if (!prev) 1071 goto restart; 1072 } 1073 } 1074 1075 out_unlock: 1076 rcu_read_unlock(); 1077 if (prev && prev != root) 1078 css_put(&prev->css); 1079 1080 return next; 1081 } 1082 1083 /** 1084 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1085 * @root: hierarchy root 1086 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1087 */ 1088 void mem_cgroup_iter_break(struct mem_cgroup *root, 1089 struct mem_cgroup *prev) 1090 { 1091 if (!root) 1092 root = root_mem_cgroup; 1093 if (prev && prev != root) 1094 css_put(&prev->css); 1095 } 1096 1097 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1098 struct mem_cgroup *dead_memcg) 1099 { 1100 struct mem_cgroup_reclaim_iter *iter; 1101 struct mem_cgroup_per_node *mz; 1102 int nid; 1103 1104 for_each_node(nid) { 1105 mz = from->nodeinfo[nid]; 1106 iter = &mz->iter; 1107 cmpxchg(&iter->position, dead_memcg, NULL); 1108 } 1109 } 1110 1111 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1112 { 1113 struct mem_cgroup *memcg = dead_memcg; 1114 struct mem_cgroup *last; 1115 1116 do { 1117 __invalidate_reclaim_iterators(memcg, dead_memcg); 1118 last = memcg; 1119 } while ((memcg = parent_mem_cgroup(memcg))); 1120 1121 /* 1122 * When cgroup1 non-hierarchy mode is used, 1123 * parent_mem_cgroup() does not walk all the way up to the 1124 * cgroup root (root_mem_cgroup). So we have to handle 1125 * dead_memcg from cgroup root separately. 1126 */ 1127 if (!mem_cgroup_is_root(last)) 1128 __invalidate_reclaim_iterators(root_mem_cgroup, 1129 dead_memcg); 1130 } 1131 1132 /** 1133 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1134 * @memcg: hierarchy root 1135 * @fn: function to call for each task 1136 * @arg: argument passed to @fn 1137 * 1138 * This function iterates over tasks attached to @memcg or to any of its 1139 * descendants and calls @fn for each task. If @fn returns a non-zero 1140 * value, the function breaks the iteration loop. Otherwise, it will iterate 1141 * over all tasks and return 0. 1142 * 1143 * This function must not be called for the root memory cgroup. 1144 */ 1145 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1146 int (*fn)(struct task_struct *, void *), void *arg) 1147 { 1148 struct mem_cgroup *iter; 1149 int ret = 0; 1150 1151 BUG_ON(mem_cgroup_is_root(memcg)); 1152 1153 for_each_mem_cgroup_tree(iter, memcg) { 1154 struct css_task_iter it; 1155 struct task_struct *task; 1156 1157 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1158 while (!ret && (task = css_task_iter_next(&it))) 1159 ret = fn(task, arg); 1160 css_task_iter_end(&it); 1161 if (ret) { 1162 mem_cgroup_iter_break(memcg, iter); 1163 break; 1164 } 1165 } 1166 } 1167 1168 #ifdef CONFIG_DEBUG_VM 1169 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1170 { 1171 struct mem_cgroup *memcg; 1172 1173 if (mem_cgroup_disabled()) 1174 return; 1175 1176 memcg = folio_memcg(folio); 1177 1178 if (!memcg) 1179 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1180 else 1181 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1182 } 1183 #endif 1184 1185 /** 1186 * folio_lruvec_lock - Lock the lruvec for a folio. 1187 * @folio: Pointer to the folio. 1188 * 1189 * These functions are safe to use under any of the following conditions: 1190 * - folio locked 1191 * - folio_test_lru false 1192 * - folio frozen (refcount of 0) 1193 * 1194 * Return: The lruvec this folio is on with its lock held. 1195 */ 1196 struct lruvec *folio_lruvec_lock(struct folio *folio) 1197 { 1198 struct lruvec *lruvec = folio_lruvec(folio); 1199 1200 spin_lock(&lruvec->lru_lock); 1201 lruvec_memcg_debug(lruvec, folio); 1202 1203 return lruvec; 1204 } 1205 1206 /** 1207 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1208 * @folio: Pointer to the folio. 1209 * 1210 * These functions are safe to use under any of the following conditions: 1211 * - folio locked 1212 * - folio_test_lru false 1213 * - folio frozen (refcount of 0) 1214 * 1215 * Return: The lruvec this folio is on with its lock held and interrupts 1216 * disabled. 1217 */ 1218 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1219 { 1220 struct lruvec *lruvec = folio_lruvec(folio); 1221 1222 spin_lock_irq(&lruvec->lru_lock); 1223 lruvec_memcg_debug(lruvec, folio); 1224 1225 return lruvec; 1226 } 1227 1228 /** 1229 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1230 * @folio: Pointer to the folio. 1231 * @flags: Pointer to irqsave flags. 1232 * 1233 * These functions are safe to use under any of the following conditions: 1234 * - folio locked 1235 * - folio_test_lru false 1236 * - folio frozen (refcount of 0) 1237 * 1238 * Return: The lruvec this folio is on with its lock held and interrupts 1239 * disabled. 1240 */ 1241 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1242 unsigned long *flags) 1243 { 1244 struct lruvec *lruvec = folio_lruvec(folio); 1245 1246 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1247 lruvec_memcg_debug(lruvec, folio); 1248 1249 return lruvec; 1250 } 1251 1252 /** 1253 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1254 * @lruvec: mem_cgroup per zone lru vector 1255 * @lru: index of lru list the page is sitting on 1256 * @zid: zone id of the accounted pages 1257 * @nr_pages: positive when adding or negative when removing 1258 * 1259 * This function must be called under lru_lock, just before a page is added 1260 * to or just after a page is removed from an lru list. 1261 */ 1262 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1263 int zid, int nr_pages) 1264 { 1265 struct mem_cgroup_per_node *mz; 1266 unsigned long *lru_size; 1267 long size; 1268 1269 if (mem_cgroup_disabled()) 1270 return; 1271 1272 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1273 lru_size = &mz->lru_zone_size[zid][lru]; 1274 1275 if (nr_pages < 0) 1276 *lru_size += nr_pages; 1277 1278 size = *lru_size; 1279 if (WARN_ONCE(size < 0, 1280 "%s(%p, %d, %d): lru_size %ld\n", 1281 __func__, lruvec, lru, nr_pages, size)) { 1282 VM_BUG_ON(1); 1283 *lru_size = 0; 1284 } 1285 1286 if (nr_pages > 0) 1287 *lru_size += nr_pages; 1288 } 1289 1290 /** 1291 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1292 * @memcg: the memory cgroup 1293 * 1294 * Returns the maximum amount of memory @mem can be charged with, in 1295 * pages. 1296 */ 1297 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1298 { 1299 unsigned long margin = 0; 1300 unsigned long count; 1301 unsigned long limit; 1302 1303 count = page_counter_read(&memcg->memory); 1304 limit = READ_ONCE(memcg->memory.max); 1305 if (count < limit) 1306 margin = limit - count; 1307 1308 if (do_memsw_account()) { 1309 count = page_counter_read(&memcg->memsw); 1310 limit = READ_ONCE(memcg->memsw.max); 1311 if (count < limit) 1312 margin = min(margin, limit - count); 1313 else 1314 margin = 0; 1315 } 1316 1317 return margin; 1318 } 1319 1320 struct memory_stat { 1321 const char *name; 1322 unsigned int idx; 1323 }; 1324 1325 static const struct memory_stat memory_stats[] = { 1326 { "anon", NR_ANON_MAPPED }, 1327 { "file", NR_FILE_PAGES }, 1328 { "kernel", MEMCG_KMEM }, 1329 { "kernel_stack", NR_KERNEL_STACK_KB }, 1330 { "pagetables", NR_PAGETABLE }, 1331 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1332 { "percpu", MEMCG_PERCPU_B }, 1333 { "sock", MEMCG_SOCK }, 1334 { "vmalloc", MEMCG_VMALLOC }, 1335 { "shmem", NR_SHMEM }, 1336 #ifdef CONFIG_ZSWAP 1337 { "zswap", MEMCG_ZSWAP_B }, 1338 { "zswapped", MEMCG_ZSWAPPED }, 1339 #endif 1340 { "file_mapped", NR_FILE_MAPPED }, 1341 { "file_dirty", NR_FILE_DIRTY }, 1342 { "file_writeback", NR_WRITEBACK }, 1343 #ifdef CONFIG_SWAP 1344 { "swapcached", NR_SWAPCACHE }, 1345 #endif 1346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1347 { "anon_thp", NR_ANON_THPS }, 1348 { "file_thp", NR_FILE_THPS }, 1349 { "shmem_thp", NR_SHMEM_THPS }, 1350 #endif 1351 { "inactive_anon", NR_INACTIVE_ANON }, 1352 { "active_anon", NR_ACTIVE_ANON }, 1353 { "inactive_file", NR_INACTIVE_FILE }, 1354 { "active_file", NR_ACTIVE_FILE }, 1355 { "unevictable", NR_UNEVICTABLE }, 1356 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1357 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1358 1359 /* The memory events */ 1360 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1361 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1362 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1363 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1364 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1365 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1366 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1367 1368 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1369 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1370 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1371 #ifdef CONFIG_NUMA_BALANCING 1372 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1373 #endif 1374 }; 1375 1376 /* The actual unit of the state item, not the same as the output unit */ 1377 static int memcg_page_state_unit(int item) 1378 { 1379 switch (item) { 1380 case MEMCG_PERCPU_B: 1381 case MEMCG_ZSWAP_B: 1382 case NR_SLAB_RECLAIMABLE_B: 1383 case NR_SLAB_UNRECLAIMABLE_B: 1384 return 1; 1385 case NR_KERNEL_STACK_KB: 1386 return SZ_1K; 1387 default: 1388 return PAGE_SIZE; 1389 } 1390 } 1391 1392 /* Translate stat items to the correct unit for memory.stat output */ 1393 static int memcg_page_state_output_unit(int item) 1394 { 1395 /* 1396 * Workingset state is actually in pages, but we export it to userspace 1397 * as a scalar count of events, so special case it here. 1398 * 1399 * Demotion and promotion activities are exported in pages, consistent 1400 * with their global counterparts. 1401 */ 1402 switch (item) { 1403 case WORKINGSET_REFAULT_ANON: 1404 case WORKINGSET_REFAULT_FILE: 1405 case WORKINGSET_ACTIVATE_ANON: 1406 case WORKINGSET_ACTIVATE_FILE: 1407 case WORKINGSET_RESTORE_ANON: 1408 case WORKINGSET_RESTORE_FILE: 1409 case WORKINGSET_NODERECLAIM: 1410 case PGDEMOTE_KSWAPD: 1411 case PGDEMOTE_DIRECT: 1412 case PGDEMOTE_KHUGEPAGED: 1413 #ifdef CONFIG_NUMA_BALANCING 1414 case PGPROMOTE_SUCCESS: 1415 #endif 1416 return 1; 1417 default: 1418 return memcg_page_state_unit(item); 1419 } 1420 } 1421 1422 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1423 { 1424 return memcg_page_state(memcg, item) * 1425 memcg_page_state_output_unit(item); 1426 } 1427 1428 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1429 { 1430 return memcg_page_state_local(memcg, item) * 1431 memcg_page_state_output_unit(item); 1432 } 1433 1434 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1435 { 1436 int i; 1437 1438 /* 1439 * Provide statistics on the state of the memory subsystem as 1440 * well as cumulative event counters that show past behavior. 1441 * 1442 * This list is ordered following a combination of these gradients: 1443 * 1) generic big picture -> specifics and details 1444 * 2) reflecting userspace activity -> reflecting kernel heuristics 1445 * 1446 * Current memory state: 1447 */ 1448 mem_cgroup_flush_stats(memcg); 1449 1450 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1451 u64 size; 1452 1453 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1454 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1455 1456 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1457 size += memcg_page_state_output(memcg, 1458 NR_SLAB_RECLAIMABLE_B); 1459 seq_buf_printf(s, "slab %llu\n", size); 1460 } 1461 } 1462 1463 /* Accumulated memory events */ 1464 seq_buf_printf(s, "pgscan %lu\n", 1465 memcg_events(memcg, PGSCAN_KSWAPD) + 1466 memcg_events(memcg, PGSCAN_DIRECT) + 1467 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1468 seq_buf_printf(s, "pgsteal %lu\n", 1469 memcg_events(memcg, PGSTEAL_KSWAPD) + 1470 memcg_events(memcg, PGSTEAL_DIRECT) + 1471 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1472 1473 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1474 #ifdef CONFIG_MEMCG_V1 1475 if (memcg_vm_event_stat[i] == PGPGIN || 1476 memcg_vm_event_stat[i] == PGPGOUT) 1477 continue; 1478 #endif 1479 seq_buf_printf(s, "%s %lu\n", 1480 vm_event_name(memcg_vm_event_stat[i]), 1481 memcg_events(memcg, memcg_vm_event_stat[i])); 1482 } 1483 } 1484 1485 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1486 { 1487 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1488 memcg_stat_format(memcg, s); 1489 else 1490 memcg1_stat_format(memcg, s); 1491 if (seq_buf_has_overflowed(s)) 1492 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1493 } 1494 1495 /** 1496 * mem_cgroup_print_oom_context: Print OOM information relevant to 1497 * memory controller. 1498 * @memcg: The memory cgroup that went over limit 1499 * @p: Task that is going to be killed 1500 * 1501 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1502 * enabled 1503 */ 1504 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1505 { 1506 rcu_read_lock(); 1507 1508 if (memcg) { 1509 pr_cont(",oom_memcg="); 1510 pr_cont_cgroup_path(memcg->css.cgroup); 1511 } else 1512 pr_cont(",global_oom"); 1513 if (p) { 1514 pr_cont(",task_memcg="); 1515 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1516 } 1517 rcu_read_unlock(); 1518 } 1519 1520 /** 1521 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1522 * memory controller. 1523 * @memcg: The memory cgroup that went over limit 1524 */ 1525 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1526 { 1527 /* Use static buffer, for the caller is holding oom_lock. */ 1528 static char buf[SEQ_BUF_SIZE]; 1529 struct seq_buf s; 1530 1531 lockdep_assert_held(&oom_lock); 1532 1533 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1534 K((u64)page_counter_read(&memcg->memory)), 1535 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1536 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1537 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1538 K((u64)page_counter_read(&memcg->swap)), 1539 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1540 #ifdef CONFIG_MEMCG_V1 1541 else { 1542 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1543 K((u64)page_counter_read(&memcg->memsw)), 1544 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1545 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1546 K((u64)page_counter_read(&memcg->kmem)), 1547 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1548 } 1549 #endif 1550 1551 pr_info("Memory cgroup stats for "); 1552 pr_cont_cgroup_path(memcg->css.cgroup); 1553 pr_cont(":"); 1554 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1555 memory_stat_format(memcg, &s); 1556 seq_buf_do_printk(&s, KERN_INFO); 1557 } 1558 1559 /* 1560 * Return the memory (and swap, if configured) limit for a memcg. 1561 */ 1562 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1563 { 1564 unsigned long max = READ_ONCE(memcg->memory.max); 1565 1566 if (do_memsw_account()) { 1567 if (mem_cgroup_swappiness(memcg)) { 1568 /* Calculate swap excess capacity from memsw limit */ 1569 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1570 1571 max += min(swap, (unsigned long)total_swap_pages); 1572 } 1573 } else { 1574 if (mem_cgroup_swappiness(memcg)) 1575 max += min(READ_ONCE(memcg->swap.max), 1576 (unsigned long)total_swap_pages); 1577 } 1578 return max; 1579 } 1580 1581 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1582 { 1583 return page_counter_read(&memcg->memory); 1584 } 1585 1586 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1587 int order) 1588 { 1589 struct oom_control oc = { 1590 .zonelist = NULL, 1591 .nodemask = NULL, 1592 .memcg = memcg, 1593 .gfp_mask = gfp_mask, 1594 .order = order, 1595 }; 1596 bool ret = true; 1597 1598 if (mutex_lock_killable(&oom_lock)) 1599 return true; 1600 1601 if (mem_cgroup_margin(memcg) >= (1 << order)) 1602 goto unlock; 1603 1604 /* 1605 * A few threads which were not waiting at mutex_lock_killable() can 1606 * fail to bail out. Therefore, check again after holding oom_lock. 1607 */ 1608 ret = task_is_dying() || out_of_memory(&oc); 1609 1610 unlock: 1611 mutex_unlock(&oom_lock); 1612 return ret; 1613 } 1614 1615 /* 1616 * Returns true if successfully killed one or more processes. Though in some 1617 * corner cases it can return true even without killing any process. 1618 */ 1619 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1620 { 1621 bool locked, ret; 1622 1623 if (order > PAGE_ALLOC_COSTLY_ORDER) 1624 return false; 1625 1626 memcg_memory_event(memcg, MEMCG_OOM); 1627 1628 if (!memcg1_oom_prepare(memcg, &locked)) 1629 return false; 1630 1631 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1632 1633 memcg1_oom_finish(memcg, locked); 1634 1635 return ret; 1636 } 1637 1638 /** 1639 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1640 * @victim: task to be killed by the OOM killer 1641 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1642 * 1643 * Returns a pointer to a memory cgroup, which has to be cleaned up 1644 * by killing all belonging OOM-killable tasks. 1645 * 1646 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1647 */ 1648 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1649 struct mem_cgroup *oom_domain) 1650 { 1651 struct mem_cgroup *oom_group = NULL; 1652 struct mem_cgroup *memcg; 1653 1654 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1655 return NULL; 1656 1657 if (!oom_domain) 1658 oom_domain = root_mem_cgroup; 1659 1660 rcu_read_lock(); 1661 1662 memcg = mem_cgroup_from_task(victim); 1663 if (mem_cgroup_is_root(memcg)) 1664 goto out; 1665 1666 /* 1667 * If the victim task has been asynchronously moved to a different 1668 * memory cgroup, we might end up killing tasks outside oom_domain. 1669 * In this case it's better to ignore memory.group.oom. 1670 */ 1671 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1672 goto out; 1673 1674 /* 1675 * Traverse the memory cgroup hierarchy from the victim task's 1676 * cgroup up to the OOMing cgroup (or root) to find the 1677 * highest-level memory cgroup with oom.group set. 1678 */ 1679 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1680 if (READ_ONCE(memcg->oom_group)) 1681 oom_group = memcg; 1682 1683 if (memcg == oom_domain) 1684 break; 1685 } 1686 1687 if (oom_group) 1688 css_get(&oom_group->css); 1689 out: 1690 rcu_read_unlock(); 1691 1692 return oom_group; 1693 } 1694 1695 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1696 { 1697 pr_info("Tasks in "); 1698 pr_cont_cgroup_path(memcg->css.cgroup); 1699 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1700 } 1701 1702 struct memcg_stock_pcp { 1703 local_lock_t stock_lock; 1704 struct mem_cgroup *cached; /* this never be root cgroup */ 1705 unsigned int nr_pages; 1706 1707 struct obj_cgroup *cached_objcg; 1708 struct pglist_data *cached_pgdat; 1709 unsigned int nr_bytes; 1710 int nr_slab_reclaimable_b; 1711 int nr_slab_unreclaimable_b; 1712 1713 struct work_struct work; 1714 unsigned long flags; 1715 #define FLUSHING_CACHED_CHARGE 0 1716 }; 1717 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 1718 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 1719 }; 1720 static DEFINE_MUTEX(percpu_charge_mutex); 1721 1722 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 1723 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1724 struct mem_cgroup *root_memcg); 1725 1726 /** 1727 * consume_stock: Try to consume stocked charge on this cpu. 1728 * @memcg: memcg to consume from. 1729 * @nr_pages: how many pages to charge. 1730 * 1731 * The charges will only happen if @memcg matches the current cpu's memcg 1732 * stock, and at least @nr_pages are available in that stock. Failure to 1733 * service an allocation will refill the stock. 1734 * 1735 * returns true if successful, false otherwise. 1736 */ 1737 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1738 { 1739 struct memcg_stock_pcp *stock; 1740 unsigned int stock_pages; 1741 unsigned long flags; 1742 bool ret = false; 1743 1744 if (nr_pages > MEMCG_CHARGE_BATCH) 1745 return ret; 1746 1747 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1748 1749 stock = this_cpu_ptr(&memcg_stock); 1750 stock_pages = READ_ONCE(stock->nr_pages); 1751 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 1752 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 1753 ret = true; 1754 } 1755 1756 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1757 1758 return ret; 1759 } 1760 1761 /* 1762 * Returns stocks cached in percpu and reset cached information. 1763 */ 1764 static void drain_stock(struct memcg_stock_pcp *stock) 1765 { 1766 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 1767 struct mem_cgroup *old = READ_ONCE(stock->cached); 1768 1769 if (!old) 1770 return; 1771 1772 if (stock_pages) { 1773 page_counter_uncharge(&old->memory, stock_pages); 1774 if (do_memsw_account()) 1775 page_counter_uncharge(&old->memsw, stock_pages); 1776 1777 WRITE_ONCE(stock->nr_pages, 0); 1778 } 1779 1780 css_put(&old->css); 1781 WRITE_ONCE(stock->cached, NULL); 1782 } 1783 1784 static void drain_local_stock(struct work_struct *dummy) 1785 { 1786 struct memcg_stock_pcp *stock; 1787 struct obj_cgroup *old = NULL; 1788 unsigned long flags; 1789 1790 /* 1791 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1792 * drain_stock races is that we always operate on local CPU stock 1793 * here with IRQ disabled 1794 */ 1795 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1796 1797 stock = this_cpu_ptr(&memcg_stock); 1798 old = drain_obj_stock(stock); 1799 drain_stock(stock); 1800 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1801 1802 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1803 obj_cgroup_put(old); 1804 } 1805 1806 /* 1807 * Cache charges(val) to local per_cpu area. 1808 * This will be consumed by consume_stock() function, later. 1809 */ 1810 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1811 { 1812 struct memcg_stock_pcp *stock; 1813 unsigned int stock_pages; 1814 1815 stock = this_cpu_ptr(&memcg_stock); 1816 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 1817 drain_stock(stock); 1818 css_get(&memcg->css); 1819 WRITE_ONCE(stock->cached, memcg); 1820 } 1821 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 1822 WRITE_ONCE(stock->nr_pages, stock_pages); 1823 1824 if (stock_pages > MEMCG_CHARGE_BATCH) 1825 drain_stock(stock); 1826 } 1827 1828 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1829 { 1830 unsigned long flags; 1831 1832 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1833 __refill_stock(memcg, nr_pages); 1834 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1835 } 1836 1837 /* 1838 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1839 * of the hierarchy under it. 1840 */ 1841 void drain_all_stock(struct mem_cgroup *root_memcg) 1842 { 1843 int cpu, curcpu; 1844 1845 /* If someone's already draining, avoid adding running more workers. */ 1846 if (!mutex_trylock(&percpu_charge_mutex)) 1847 return; 1848 /* 1849 * Notify other cpus that system-wide "drain" is running 1850 * We do not care about races with the cpu hotplug because cpu down 1851 * as well as workers from this path always operate on the local 1852 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1853 */ 1854 migrate_disable(); 1855 curcpu = smp_processor_id(); 1856 for_each_online_cpu(cpu) { 1857 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1858 struct mem_cgroup *memcg; 1859 bool flush = false; 1860 1861 rcu_read_lock(); 1862 memcg = READ_ONCE(stock->cached); 1863 if (memcg && READ_ONCE(stock->nr_pages) && 1864 mem_cgroup_is_descendant(memcg, root_memcg)) 1865 flush = true; 1866 else if (obj_stock_flush_required(stock, root_memcg)) 1867 flush = true; 1868 rcu_read_unlock(); 1869 1870 if (flush && 1871 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1872 if (cpu == curcpu) 1873 drain_local_stock(&stock->work); 1874 else if (!cpu_is_isolated(cpu)) 1875 schedule_work_on(cpu, &stock->work); 1876 } 1877 } 1878 migrate_enable(); 1879 mutex_unlock(&percpu_charge_mutex); 1880 } 1881 1882 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1883 { 1884 struct memcg_stock_pcp *stock; 1885 1886 stock = &per_cpu(memcg_stock, cpu); 1887 drain_stock(stock); 1888 1889 return 0; 1890 } 1891 1892 static unsigned long reclaim_high(struct mem_cgroup *memcg, 1893 unsigned int nr_pages, 1894 gfp_t gfp_mask) 1895 { 1896 unsigned long nr_reclaimed = 0; 1897 1898 do { 1899 unsigned long pflags; 1900 1901 if (page_counter_read(&memcg->memory) <= 1902 READ_ONCE(memcg->memory.high)) 1903 continue; 1904 1905 memcg_memory_event(memcg, MEMCG_HIGH); 1906 1907 psi_memstall_enter(&pflags); 1908 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 1909 gfp_mask, 1910 MEMCG_RECLAIM_MAY_SWAP, 1911 NULL); 1912 psi_memstall_leave(&pflags); 1913 } while ((memcg = parent_mem_cgroup(memcg)) && 1914 !mem_cgroup_is_root(memcg)); 1915 1916 return nr_reclaimed; 1917 } 1918 1919 static void high_work_func(struct work_struct *work) 1920 { 1921 struct mem_cgroup *memcg; 1922 1923 memcg = container_of(work, struct mem_cgroup, high_work); 1924 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 1925 } 1926 1927 /* 1928 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 1929 * enough to still cause a significant slowdown in most cases, while still 1930 * allowing diagnostics and tracing to proceed without becoming stuck. 1931 */ 1932 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 1933 1934 /* 1935 * When calculating the delay, we use these either side of the exponentiation to 1936 * maintain precision and scale to a reasonable number of jiffies (see the table 1937 * below. 1938 * 1939 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 1940 * overage ratio to a delay. 1941 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 1942 * proposed penalty in order to reduce to a reasonable number of jiffies, and 1943 * to produce a reasonable delay curve. 1944 * 1945 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 1946 * reasonable delay curve compared to precision-adjusted overage, not 1947 * penalising heavily at first, but still making sure that growth beyond the 1948 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 1949 * example, with a high of 100 megabytes: 1950 * 1951 * +-------+------------------------+ 1952 * | usage | time to allocate in ms | 1953 * +-------+------------------------+ 1954 * | 100M | 0 | 1955 * | 101M | 6 | 1956 * | 102M | 25 | 1957 * | 103M | 57 | 1958 * | 104M | 102 | 1959 * | 105M | 159 | 1960 * | 106M | 230 | 1961 * | 107M | 313 | 1962 * | 108M | 409 | 1963 * | 109M | 518 | 1964 * | 110M | 639 | 1965 * | 111M | 774 | 1966 * | 112M | 921 | 1967 * | 113M | 1081 | 1968 * | 114M | 1254 | 1969 * | 115M | 1439 | 1970 * | 116M | 1638 | 1971 * | 117M | 1849 | 1972 * | 118M | 2000 | 1973 * | 119M | 2000 | 1974 * | 120M | 2000 | 1975 * +-------+------------------------+ 1976 */ 1977 #define MEMCG_DELAY_PRECISION_SHIFT 20 1978 #define MEMCG_DELAY_SCALING_SHIFT 14 1979 1980 static u64 calculate_overage(unsigned long usage, unsigned long high) 1981 { 1982 u64 overage; 1983 1984 if (usage <= high) 1985 return 0; 1986 1987 /* 1988 * Prevent division by 0 in overage calculation by acting as if 1989 * it was a threshold of 1 page 1990 */ 1991 high = max(high, 1UL); 1992 1993 overage = usage - high; 1994 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 1995 return div64_u64(overage, high); 1996 } 1997 1998 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 1999 { 2000 u64 overage, max_overage = 0; 2001 2002 do { 2003 overage = calculate_overage(page_counter_read(&memcg->memory), 2004 READ_ONCE(memcg->memory.high)); 2005 max_overage = max(overage, max_overage); 2006 } while ((memcg = parent_mem_cgroup(memcg)) && 2007 !mem_cgroup_is_root(memcg)); 2008 2009 return max_overage; 2010 } 2011 2012 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2013 { 2014 u64 overage, max_overage = 0; 2015 2016 do { 2017 overage = calculate_overage(page_counter_read(&memcg->swap), 2018 READ_ONCE(memcg->swap.high)); 2019 if (overage) 2020 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2021 max_overage = max(overage, max_overage); 2022 } while ((memcg = parent_mem_cgroup(memcg)) && 2023 !mem_cgroup_is_root(memcg)); 2024 2025 return max_overage; 2026 } 2027 2028 /* 2029 * Get the number of jiffies that we should penalise a mischievous cgroup which 2030 * is exceeding its memory.high by checking both it and its ancestors. 2031 */ 2032 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2033 unsigned int nr_pages, 2034 u64 max_overage) 2035 { 2036 unsigned long penalty_jiffies; 2037 2038 if (!max_overage) 2039 return 0; 2040 2041 /* 2042 * We use overage compared to memory.high to calculate the number of 2043 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2044 * fairly lenient on small overages, and increasingly harsh when the 2045 * memcg in question makes it clear that it has no intention of stopping 2046 * its crazy behaviour, so we exponentially increase the delay based on 2047 * overage amount. 2048 */ 2049 penalty_jiffies = max_overage * max_overage * HZ; 2050 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2051 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2052 2053 /* 2054 * Factor in the task's own contribution to the overage, such that four 2055 * N-sized allocations are throttled approximately the same as one 2056 * 4N-sized allocation. 2057 * 2058 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2059 * larger the current charge patch is than that. 2060 */ 2061 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2062 } 2063 2064 /* 2065 * Reclaims memory over the high limit. Called directly from 2066 * try_charge() (context permitting), as well as from the userland 2067 * return path where reclaim is always able to block. 2068 */ 2069 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2070 { 2071 unsigned long penalty_jiffies; 2072 unsigned long pflags; 2073 unsigned long nr_reclaimed; 2074 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2075 int nr_retries = MAX_RECLAIM_RETRIES; 2076 struct mem_cgroup *memcg; 2077 bool in_retry = false; 2078 2079 if (likely(!nr_pages)) 2080 return; 2081 2082 memcg = get_mem_cgroup_from_mm(current->mm); 2083 current->memcg_nr_pages_over_high = 0; 2084 2085 retry_reclaim: 2086 /* 2087 * Bail if the task is already exiting. Unlike memory.max, 2088 * memory.high enforcement isn't as strict, and there is no 2089 * OOM killer involved, which means the excess could already 2090 * be much bigger (and still growing) than it could for 2091 * memory.max; the dying task could get stuck in fruitless 2092 * reclaim for a long time, which isn't desirable. 2093 */ 2094 if (task_is_dying()) 2095 goto out; 2096 2097 /* 2098 * The allocating task should reclaim at least the batch size, but for 2099 * subsequent retries we only want to do what's necessary to prevent oom 2100 * or breaching resource isolation. 2101 * 2102 * This is distinct from memory.max or page allocator behaviour because 2103 * memory.high is currently batched, whereas memory.max and the page 2104 * allocator run every time an allocation is made. 2105 */ 2106 nr_reclaimed = reclaim_high(memcg, 2107 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2108 gfp_mask); 2109 2110 /* 2111 * memory.high is breached and reclaim is unable to keep up. Throttle 2112 * allocators proactively to slow down excessive growth. 2113 */ 2114 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2115 mem_find_max_overage(memcg)); 2116 2117 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2118 swap_find_max_overage(memcg)); 2119 2120 /* 2121 * Clamp the max delay per usermode return so as to still keep the 2122 * application moving forwards and also permit diagnostics, albeit 2123 * extremely slowly. 2124 */ 2125 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2126 2127 /* 2128 * Don't sleep if the amount of jiffies this memcg owes us is so low 2129 * that it's not even worth doing, in an attempt to be nice to those who 2130 * go only a small amount over their memory.high value and maybe haven't 2131 * been aggressively reclaimed enough yet. 2132 */ 2133 if (penalty_jiffies <= HZ / 100) 2134 goto out; 2135 2136 /* 2137 * If reclaim is making forward progress but we're still over 2138 * memory.high, we want to encourage that rather than doing allocator 2139 * throttling. 2140 */ 2141 if (nr_reclaimed || nr_retries--) { 2142 in_retry = true; 2143 goto retry_reclaim; 2144 } 2145 2146 /* 2147 * Reclaim didn't manage to push usage below the limit, slow 2148 * this allocating task down. 2149 * 2150 * If we exit early, we're guaranteed to die (since 2151 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2152 * need to account for any ill-begotten jiffies to pay them off later. 2153 */ 2154 psi_memstall_enter(&pflags); 2155 schedule_timeout_killable(penalty_jiffies); 2156 psi_memstall_leave(&pflags); 2157 2158 out: 2159 css_put(&memcg->css); 2160 } 2161 2162 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2163 unsigned int nr_pages) 2164 { 2165 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2166 int nr_retries = MAX_RECLAIM_RETRIES; 2167 struct mem_cgroup *mem_over_limit; 2168 struct page_counter *counter; 2169 unsigned long nr_reclaimed; 2170 bool passed_oom = false; 2171 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2172 bool drained = false; 2173 bool raised_max_event = false; 2174 unsigned long pflags; 2175 2176 retry: 2177 if (consume_stock(memcg, nr_pages)) 2178 return 0; 2179 2180 if (!do_memsw_account() || 2181 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2182 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2183 goto done_restock; 2184 if (do_memsw_account()) 2185 page_counter_uncharge(&memcg->memsw, batch); 2186 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2187 } else { 2188 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2189 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2190 } 2191 2192 if (batch > nr_pages) { 2193 batch = nr_pages; 2194 goto retry; 2195 } 2196 2197 /* 2198 * Prevent unbounded recursion when reclaim operations need to 2199 * allocate memory. This might exceed the limits temporarily, 2200 * but we prefer facilitating memory reclaim and getting back 2201 * under the limit over triggering OOM kills in these cases. 2202 */ 2203 if (unlikely(current->flags & PF_MEMALLOC)) 2204 goto force; 2205 2206 if (unlikely(task_in_memcg_oom(current))) 2207 goto nomem; 2208 2209 if (!gfpflags_allow_blocking(gfp_mask)) 2210 goto nomem; 2211 2212 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2213 raised_max_event = true; 2214 2215 psi_memstall_enter(&pflags); 2216 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2217 gfp_mask, reclaim_options, NULL); 2218 psi_memstall_leave(&pflags); 2219 2220 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2221 goto retry; 2222 2223 if (!drained) { 2224 drain_all_stock(mem_over_limit); 2225 drained = true; 2226 goto retry; 2227 } 2228 2229 if (gfp_mask & __GFP_NORETRY) 2230 goto nomem; 2231 /* 2232 * Even though the limit is exceeded at this point, reclaim 2233 * may have been able to free some pages. Retry the charge 2234 * before killing the task. 2235 * 2236 * Only for regular pages, though: huge pages are rather 2237 * unlikely to succeed so close to the limit, and we fall back 2238 * to regular pages anyway in case of failure. 2239 */ 2240 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2241 goto retry; 2242 2243 if (nr_retries--) 2244 goto retry; 2245 2246 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2247 goto nomem; 2248 2249 /* Avoid endless loop for tasks bypassed by the oom killer */ 2250 if (passed_oom && task_is_dying()) 2251 goto nomem; 2252 2253 /* 2254 * keep retrying as long as the memcg oom killer is able to make 2255 * a forward progress or bypass the charge if the oom killer 2256 * couldn't make any progress. 2257 */ 2258 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2259 get_order(nr_pages * PAGE_SIZE))) { 2260 passed_oom = true; 2261 nr_retries = MAX_RECLAIM_RETRIES; 2262 goto retry; 2263 } 2264 nomem: 2265 /* 2266 * Memcg doesn't have a dedicated reserve for atomic 2267 * allocations. But like the global atomic pool, we need to 2268 * put the burden of reclaim on regular allocation requests 2269 * and let these go through as privileged allocations. 2270 */ 2271 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2272 return -ENOMEM; 2273 force: 2274 /* 2275 * If the allocation has to be enforced, don't forget to raise 2276 * a MEMCG_MAX event. 2277 */ 2278 if (!raised_max_event) 2279 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2280 2281 /* 2282 * The allocation either can't fail or will lead to more memory 2283 * being freed very soon. Allow memory usage go over the limit 2284 * temporarily by force charging it. 2285 */ 2286 page_counter_charge(&memcg->memory, nr_pages); 2287 if (do_memsw_account()) 2288 page_counter_charge(&memcg->memsw, nr_pages); 2289 2290 return 0; 2291 2292 done_restock: 2293 if (batch > nr_pages) 2294 refill_stock(memcg, batch - nr_pages); 2295 2296 /* 2297 * If the hierarchy is above the normal consumption range, schedule 2298 * reclaim on returning to userland. We can perform reclaim here 2299 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2300 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2301 * not recorded as it most likely matches current's and won't 2302 * change in the meantime. As high limit is checked again before 2303 * reclaim, the cost of mismatch is negligible. 2304 */ 2305 do { 2306 bool mem_high, swap_high; 2307 2308 mem_high = page_counter_read(&memcg->memory) > 2309 READ_ONCE(memcg->memory.high); 2310 swap_high = page_counter_read(&memcg->swap) > 2311 READ_ONCE(memcg->swap.high); 2312 2313 /* Don't bother a random interrupted task */ 2314 if (!in_task()) { 2315 if (mem_high) { 2316 schedule_work(&memcg->high_work); 2317 break; 2318 } 2319 continue; 2320 } 2321 2322 if (mem_high || swap_high) { 2323 /* 2324 * The allocating tasks in this cgroup will need to do 2325 * reclaim or be throttled to prevent further growth 2326 * of the memory or swap footprints. 2327 * 2328 * Target some best-effort fairness between the tasks, 2329 * and distribute reclaim work and delay penalties 2330 * based on how much each task is actually allocating. 2331 */ 2332 current->memcg_nr_pages_over_high += batch; 2333 set_notify_resume(current); 2334 break; 2335 } 2336 } while ((memcg = parent_mem_cgroup(memcg))); 2337 2338 /* 2339 * Reclaim is set up above to be called from the userland 2340 * return path. But also attempt synchronous reclaim to avoid 2341 * excessive overrun while the task is still inside the 2342 * kernel. If this is successful, the return path will see it 2343 * when it rechecks the overage and simply bail out. 2344 */ 2345 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2346 !(current->flags & PF_MEMALLOC) && 2347 gfpflags_allow_blocking(gfp_mask)) 2348 mem_cgroup_handle_over_high(gfp_mask); 2349 return 0; 2350 } 2351 2352 /** 2353 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. 2354 * @memcg: memcg previously charged. 2355 * @nr_pages: number of pages previously charged. 2356 */ 2357 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2358 { 2359 if (mem_cgroup_is_root(memcg)) 2360 return; 2361 2362 page_counter_uncharge(&memcg->memory, nr_pages); 2363 if (do_memsw_account()) 2364 page_counter_uncharge(&memcg->memsw, nr_pages); 2365 } 2366 2367 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2368 { 2369 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2370 /* 2371 * Any of the following ensures page's memcg stability: 2372 * 2373 * - the page lock 2374 * - LRU isolation 2375 * - exclusive reference 2376 */ 2377 folio->memcg_data = (unsigned long)memcg; 2378 } 2379 2380 /** 2381 * mem_cgroup_commit_charge - commit a previously successful try_charge(). 2382 * @folio: folio to commit the charge to. 2383 * @memcg: memcg previously charged. 2384 */ 2385 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2386 { 2387 css_get(&memcg->css); 2388 commit_charge(folio, memcg); 2389 memcg1_commit_charge(folio, memcg); 2390 } 2391 2392 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2393 struct pglist_data *pgdat, 2394 enum node_stat_item idx, int nr) 2395 { 2396 struct mem_cgroup *memcg; 2397 struct lruvec *lruvec; 2398 2399 rcu_read_lock(); 2400 memcg = obj_cgroup_memcg(objcg); 2401 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2402 __mod_memcg_lruvec_state(lruvec, idx, nr); 2403 rcu_read_unlock(); 2404 } 2405 2406 static __always_inline 2407 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2408 { 2409 /* 2410 * Slab objects are accounted individually, not per-page. 2411 * Memcg membership data for each individual object is saved in 2412 * slab->obj_exts. 2413 */ 2414 if (folio_test_slab(folio)) { 2415 struct slabobj_ext *obj_exts; 2416 struct slab *slab; 2417 unsigned int off; 2418 2419 slab = folio_slab(folio); 2420 obj_exts = slab_obj_exts(slab); 2421 if (!obj_exts) 2422 return NULL; 2423 2424 off = obj_to_index(slab->slab_cache, slab, p); 2425 if (obj_exts[off].objcg) 2426 return obj_cgroup_memcg(obj_exts[off].objcg); 2427 2428 return NULL; 2429 } 2430 2431 /* 2432 * folio_memcg_check() is used here, because in theory we can encounter 2433 * a folio where the slab flag has been cleared already, but 2434 * slab->obj_exts has not been freed yet 2435 * folio_memcg_check() will guarantee that a proper memory 2436 * cgroup pointer or NULL will be returned. 2437 */ 2438 return folio_memcg_check(folio); 2439 } 2440 2441 /* 2442 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2443 * It is not suitable for objects allocated using vmalloc(). 2444 * 2445 * A passed kernel object must be a slab object or a generic kernel page. 2446 * 2447 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2448 * cgroup_mutex, etc. 2449 */ 2450 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2451 { 2452 if (mem_cgroup_disabled()) 2453 return NULL; 2454 2455 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2456 } 2457 2458 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2459 { 2460 struct obj_cgroup *objcg = NULL; 2461 2462 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2463 objcg = rcu_dereference(memcg->objcg); 2464 if (likely(objcg && obj_cgroup_tryget(objcg))) 2465 break; 2466 objcg = NULL; 2467 } 2468 return objcg; 2469 } 2470 2471 static struct obj_cgroup *current_objcg_update(void) 2472 { 2473 struct mem_cgroup *memcg; 2474 struct obj_cgroup *old, *objcg = NULL; 2475 2476 do { 2477 /* Atomically drop the update bit. */ 2478 old = xchg(¤t->objcg, NULL); 2479 if (old) { 2480 old = (struct obj_cgroup *) 2481 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2482 obj_cgroup_put(old); 2483 2484 old = NULL; 2485 } 2486 2487 /* If new objcg is NULL, no reason for the second atomic update. */ 2488 if (!current->mm || (current->flags & PF_KTHREAD)) 2489 return NULL; 2490 2491 /* 2492 * Release the objcg pointer from the previous iteration, 2493 * if try_cmpxcg() below fails. 2494 */ 2495 if (unlikely(objcg)) { 2496 obj_cgroup_put(objcg); 2497 objcg = NULL; 2498 } 2499 2500 /* 2501 * Obtain the new objcg pointer. The current task can be 2502 * asynchronously moved to another memcg and the previous 2503 * memcg can be offlined. So let's get the memcg pointer 2504 * and try get a reference to objcg under a rcu read lock. 2505 */ 2506 2507 rcu_read_lock(); 2508 memcg = mem_cgroup_from_task(current); 2509 objcg = __get_obj_cgroup_from_memcg(memcg); 2510 rcu_read_unlock(); 2511 2512 /* 2513 * Try set up a new objcg pointer atomically. If it 2514 * fails, it means the update flag was set concurrently, so 2515 * the whole procedure should be repeated. 2516 */ 2517 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2518 2519 return objcg; 2520 } 2521 2522 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2523 { 2524 struct mem_cgroup *memcg; 2525 struct obj_cgroup *objcg; 2526 2527 if (in_task()) { 2528 memcg = current->active_memcg; 2529 if (unlikely(memcg)) 2530 goto from_memcg; 2531 2532 objcg = READ_ONCE(current->objcg); 2533 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2534 objcg = current_objcg_update(); 2535 /* 2536 * Objcg reference is kept by the task, so it's safe 2537 * to use the objcg by the current task. 2538 */ 2539 return objcg; 2540 } 2541 2542 memcg = this_cpu_read(int_active_memcg); 2543 if (unlikely(memcg)) 2544 goto from_memcg; 2545 2546 return NULL; 2547 2548 from_memcg: 2549 objcg = NULL; 2550 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2551 /* 2552 * Memcg pointer is protected by scope (see set_active_memcg()) 2553 * and is pinning the corresponding objcg, so objcg can't go 2554 * away and can be used within the scope without any additional 2555 * protection. 2556 */ 2557 objcg = rcu_dereference_check(memcg->objcg, 1); 2558 if (likely(objcg)) 2559 break; 2560 } 2561 2562 return objcg; 2563 } 2564 2565 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2566 { 2567 struct obj_cgroup *objcg; 2568 2569 if (!memcg_kmem_online()) 2570 return NULL; 2571 2572 if (folio_memcg_kmem(folio)) { 2573 objcg = __folio_objcg(folio); 2574 obj_cgroup_get(objcg); 2575 } else { 2576 struct mem_cgroup *memcg; 2577 2578 rcu_read_lock(); 2579 memcg = __folio_memcg(folio); 2580 if (memcg) 2581 objcg = __get_obj_cgroup_from_memcg(memcg); 2582 else 2583 objcg = NULL; 2584 rcu_read_unlock(); 2585 } 2586 return objcg; 2587 } 2588 2589 /* 2590 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2591 * @objcg: object cgroup to uncharge 2592 * @nr_pages: number of pages to uncharge 2593 */ 2594 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2595 unsigned int nr_pages) 2596 { 2597 struct mem_cgroup *memcg; 2598 2599 memcg = get_mem_cgroup_from_objcg(objcg); 2600 2601 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2602 memcg1_account_kmem(memcg, -nr_pages); 2603 refill_stock(memcg, nr_pages); 2604 2605 css_put(&memcg->css); 2606 } 2607 2608 /* 2609 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2610 * @objcg: object cgroup to charge 2611 * @gfp: reclaim mode 2612 * @nr_pages: number of pages to charge 2613 * 2614 * Returns 0 on success, an error code on failure. 2615 */ 2616 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2617 unsigned int nr_pages) 2618 { 2619 struct mem_cgroup *memcg; 2620 int ret; 2621 2622 memcg = get_mem_cgroup_from_objcg(objcg); 2623 2624 ret = try_charge_memcg(memcg, gfp, nr_pages); 2625 if (ret) 2626 goto out; 2627 2628 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2629 memcg1_account_kmem(memcg, nr_pages); 2630 out: 2631 css_put(&memcg->css); 2632 2633 return ret; 2634 } 2635 2636 /** 2637 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2638 * @page: page to charge 2639 * @gfp: reclaim mode 2640 * @order: allocation order 2641 * 2642 * Returns 0 on success, an error code on failure. 2643 */ 2644 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2645 { 2646 struct obj_cgroup *objcg; 2647 int ret = 0; 2648 2649 objcg = current_obj_cgroup(); 2650 if (objcg) { 2651 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2652 if (!ret) { 2653 obj_cgroup_get(objcg); 2654 page->memcg_data = (unsigned long)objcg | 2655 MEMCG_DATA_KMEM; 2656 return 0; 2657 } 2658 } 2659 return ret; 2660 } 2661 2662 /** 2663 * __memcg_kmem_uncharge_page: uncharge a kmem page 2664 * @page: page to uncharge 2665 * @order: allocation order 2666 */ 2667 void __memcg_kmem_uncharge_page(struct page *page, int order) 2668 { 2669 struct folio *folio = page_folio(page); 2670 struct obj_cgroup *objcg; 2671 unsigned int nr_pages = 1 << order; 2672 2673 if (!folio_memcg_kmem(folio)) 2674 return; 2675 2676 objcg = __folio_objcg(folio); 2677 obj_cgroup_uncharge_pages(objcg, nr_pages); 2678 folio->memcg_data = 0; 2679 obj_cgroup_put(objcg); 2680 } 2681 2682 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 2683 enum node_stat_item idx, int nr) 2684 { 2685 struct memcg_stock_pcp *stock; 2686 struct obj_cgroup *old = NULL; 2687 unsigned long flags; 2688 int *bytes; 2689 2690 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2691 stock = this_cpu_ptr(&memcg_stock); 2692 2693 /* 2694 * Save vmstat data in stock and skip vmstat array update unless 2695 * accumulating over a page of vmstat data or when pgdat or idx 2696 * changes. 2697 */ 2698 if (READ_ONCE(stock->cached_objcg) != objcg) { 2699 old = drain_obj_stock(stock); 2700 obj_cgroup_get(objcg); 2701 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2702 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2703 WRITE_ONCE(stock->cached_objcg, objcg); 2704 stock->cached_pgdat = pgdat; 2705 } else if (stock->cached_pgdat != pgdat) { 2706 /* Flush the existing cached vmstat data */ 2707 struct pglist_data *oldpg = stock->cached_pgdat; 2708 2709 if (stock->nr_slab_reclaimable_b) { 2710 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2711 stock->nr_slab_reclaimable_b); 2712 stock->nr_slab_reclaimable_b = 0; 2713 } 2714 if (stock->nr_slab_unreclaimable_b) { 2715 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2716 stock->nr_slab_unreclaimable_b); 2717 stock->nr_slab_unreclaimable_b = 0; 2718 } 2719 stock->cached_pgdat = pgdat; 2720 } 2721 2722 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2723 : &stock->nr_slab_unreclaimable_b; 2724 /* 2725 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2726 * cached locally at least once before pushing it out. 2727 */ 2728 if (!*bytes) { 2729 *bytes = nr; 2730 nr = 0; 2731 } else { 2732 *bytes += nr; 2733 if (abs(*bytes) > PAGE_SIZE) { 2734 nr = *bytes; 2735 *bytes = 0; 2736 } else { 2737 nr = 0; 2738 } 2739 } 2740 if (nr) 2741 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2742 2743 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2744 obj_cgroup_put(old); 2745 } 2746 2747 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 2748 { 2749 struct memcg_stock_pcp *stock; 2750 unsigned long flags; 2751 bool ret = false; 2752 2753 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2754 2755 stock = this_cpu_ptr(&memcg_stock); 2756 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2757 stock->nr_bytes -= nr_bytes; 2758 ret = true; 2759 } 2760 2761 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2762 2763 return ret; 2764 } 2765 2766 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2767 { 2768 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2769 2770 if (!old) 2771 return NULL; 2772 2773 if (stock->nr_bytes) { 2774 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2775 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2776 2777 if (nr_pages) { 2778 struct mem_cgroup *memcg; 2779 2780 memcg = get_mem_cgroup_from_objcg(old); 2781 2782 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2783 memcg1_account_kmem(memcg, -nr_pages); 2784 __refill_stock(memcg, nr_pages); 2785 2786 css_put(&memcg->css); 2787 } 2788 2789 /* 2790 * The leftover is flushed to the centralized per-memcg value. 2791 * On the next attempt to refill obj stock it will be moved 2792 * to a per-cpu stock (probably, on an other CPU), see 2793 * refill_obj_stock(). 2794 * 2795 * How often it's flushed is a trade-off between the memory 2796 * limit enforcement accuracy and potential CPU contention, 2797 * so it might be changed in the future. 2798 */ 2799 atomic_add(nr_bytes, &old->nr_charged_bytes); 2800 stock->nr_bytes = 0; 2801 } 2802 2803 /* 2804 * Flush the vmstat data in current stock 2805 */ 2806 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2807 if (stock->nr_slab_reclaimable_b) { 2808 __mod_objcg_mlstate(old, stock->cached_pgdat, 2809 NR_SLAB_RECLAIMABLE_B, 2810 stock->nr_slab_reclaimable_b); 2811 stock->nr_slab_reclaimable_b = 0; 2812 } 2813 if (stock->nr_slab_unreclaimable_b) { 2814 __mod_objcg_mlstate(old, stock->cached_pgdat, 2815 NR_SLAB_UNRECLAIMABLE_B, 2816 stock->nr_slab_unreclaimable_b); 2817 stock->nr_slab_unreclaimable_b = 0; 2818 } 2819 stock->cached_pgdat = NULL; 2820 } 2821 2822 WRITE_ONCE(stock->cached_objcg, NULL); 2823 /* 2824 * The `old' objects needs to be released by the caller via 2825 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 2826 */ 2827 return old; 2828 } 2829 2830 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2831 struct mem_cgroup *root_memcg) 2832 { 2833 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2834 struct mem_cgroup *memcg; 2835 2836 if (objcg) { 2837 memcg = obj_cgroup_memcg(objcg); 2838 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2839 return true; 2840 } 2841 2842 return false; 2843 } 2844 2845 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2846 bool allow_uncharge) 2847 { 2848 struct memcg_stock_pcp *stock; 2849 struct obj_cgroup *old = NULL; 2850 unsigned long flags; 2851 unsigned int nr_pages = 0; 2852 2853 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2854 2855 stock = this_cpu_ptr(&memcg_stock); 2856 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2857 old = drain_obj_stock(stock); 2858 obj_cgroup_get(objcg); 2859 WRITE_ONCE(stock->cached_objcg, objcg); 2860 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2861 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2862 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2863 } 2864 stock->nr_bytes += nr_bytes; 2865 2866 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 2867 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2868 stock->nr_bytes &= (PAGE_SIZE - 1); 2869 } 2870 2871 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2872 obj_cgroup_put(old); 2873 2874 if (nr_pages) 2875 obj_cgroup_uncharge_pages(objcg, nr_pages); 2876 } 2877 2878 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 2879 { 2880 unsigned int nr_pages, nr_bytes; 2881 int ret; 2882 2883 if (consume_obj_stock(objcg, size)) 2884 return 0; 2885 2886 /* 2887 * In theory, objcg->nr_charged_bytes can have enough 2888 * pre-charged bytes to satisfy the allocation. However, 2889 * flushing objcg->nr_charged_bytes requires two atomic 2890 * operations, and objcg->nr_charged_bytes can't be big. 2891 * The shared objcg->nr_charged_bytes can also become a 2892 * performance bottleneck if all tasks of the same memcg are 2893 * trying to update it. So it's better to ignore it and try 2894 * grab some new pages. The stock's nr_bytes will be flushed to 2895 * objcg->nr_charged_bytes later on when objcg changes. 2896 * 2897 * The stock's nr_bytes may contain enough pre-charged bytes 2898 * to allow one less page from being charged, but we can't rely 2899 * on the pre-charged bytes not being changed outside of 2900 * consume_obj_stock() or refill_obj_stock(). So ignore those 2901 * pre-charged bytes as well when charging pages. To avoid a 2902 * page uncharge right after a page charge, we set the 2903 * allow_uncharge flag to false when calling refill_obj_stock() 2904 * to temporarily allow the pre-charged bytes to exceed the page 2905 * size limit. The maximum reachable value of the pre-charged 2906 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 2907 * race. 2908 */ 2909 nr_pages = size >> PAGE_SHIFT; 2910 nr_bytes = size & (PAGE_SIZE - 1); 2911 2912 if (nr_bytes) 2913 nr_pages += 1; 2914 2915 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 2916 if (!ret && nr_bytes) 2917 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 2918 2919 return ret; 2920 } 2921 2922 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 2923 { 2924 refill_obj_stock(objcg, size, true); 2925 } 2926 2927 static inline size_t obj_full_size(struct kmem_cache *s) 2928 { 2929 /* 2930 * For each accounted object there is an extra space which is used 2931 * to store obj_cgroup membership. Charge it too. 2932 */ 2933 return s->size + sizeof(struct obj_cgroup *); 2934 } 2935 2936 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2937 gfp_t flags, size_t size, void **p) 2938 { 2939 struct obj_cgroup *objcg; 2940 struct slab *slab; 2941 unsigned long off; 2942 size_t i; 2943 2944 /* 2945 * The obtained objcg pointer is safe to use within the current scope, 2946 * defined by current task or set_active_memcg() pair. 2947 * obj_cgroup_get() is used to get a permanent reference. 2948 */ 2949 objcg = current_obj_cgroup(); 2950 if (!objcg) 2951 return true; 2952 2953 /* 2954 * slab_alloc_node() avoids the NULL check, so we might be called with a 2955 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 2956 * the whole requested size. 2957 * return success as there's nothing to free back 2958 */ 2959 if (unlikely(*p == NULL)) 2960 return true; 2961 2962 flags &= gfp_allowed_mask; 2963 2964 if (lru) { 2965 int ret; 2966 struct mem_cgroup *memcg; 2967 2968 memcg = get_mem_cgroup_from_objcg(objcg); 2969 ret = memcg_list_lru_alloc(memcg, lru, flags); 2970 css_put(&memcg->css); 2971 2972 if (ret) 2973 return false; 2974 } 2975 2976 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 2977 return false; 2978 2979 for (i = 0; i < size; i++) { 2980 slab = virt_to_slab(p[i]); 2981 2982 if (!slab_obj_exts(slab) && 2983 alloc_slab_obj_exts(slab, s, flags, false)) { 2984 obj_cgroup_uncharge(objcg, obj_full_size(s)); 2985 continue; 2986 } 2987 2988 off = obj_to_index(s, slab, p[i]); 2989 obj_cgroup_get(objcg); 2990 slab_obj_exts(slab)[off].objcg = objcg; 2991 mod_objcg_state(objcg, slab_pgdat(slab), 2992 cache_vmstat_idx(s), obj_full_size(s)); 2993 } 2994 2995 return true; 2996 } 2997 2998 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2999 void **p, int objects, struct slabobj_ext *obj_exts) 3000 { 3001 for (int i = 0; i < objects; i++) { 3002 struct obj_cgroup *objcg; 3003 unsigned int off; 3004 3005 off = obj_to_index(s, slab, p[i]); 3006 objcg = obj_exts[off].objcg; 3007 if (!objcg) 3008 continue; 3009 3010 obj_exts[off].objcg = NULL; 3011 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3012 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3013 -obj_full_size(s)); 3014 obj_cgroup_put(objcg); 3015 } 3016 } 3017 3018 /* 3019 * Because folio_memcg(head) is not set on tails, set it now. 3020 */ 3021 void split_page_memcg(struct page *head, int old_order, int new_order) 3022 { 3023 struct folio *folio = page_folio(head); 3024 int i; 3025 unsigned int old_nr = 1 << old_order; 3026 unsigned int new_nr = 1 << new_order; 3027 3028 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3029 return; 3030 3031 for (i = new_nr; i < old_nr; i += new_nr) 3032 folio_page(folio, i)->memcg_data = folio->memcg_data; 3033 3034 if (folio_memcg_kmem(folio)) 3035 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1); 3036 else 3037 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1); 3038 } 3039 3040 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3041 { 3042 unsigned long val; 3043 3044 if (mem_cgroup_is_root(memcg)) { 3045 /* 3046 * Approximate root's usage from global state. This isn't 3047 * perfect, but the root usage was always an approximation. 3048 */ 3049 val = global_node_page_state(NR_FILE_PAGES) + 3050 global_node_page_state(NR_ANON_MAPPED); 3051 if (swap) 3052 val += total_swap_pages - get_nr_swap_pages(); 3053 } else { 3054 if (!swap) 3055 val = page_counter_read(&memcg->memory); 3056 else 3057 val = page_counter_read(&memcg->memsw); 3058 } 3059 return val; 3060 } 3061 3062 static int memcg_online_kmem(struct mem_cgroup *memcg) 3063 { 3064 struct obj_cgroup *objcg; 3065 3066 if (mem_cgroup_kmem_disabled()) 3067 return 0; 3068 3069 if (unlikely(mem_cgroup_is_root(memcg))) 3070 return 0; 3071 3072 objcg = obj_cgroup_alloc(); 3073 if (!objcg) 3074 return -ENOMEM; 3075 3076 objcg->memcg = memcg; 3077 rcu_assign_pointer(memcg->objcg, objcg); 3078 obj_cgroup_get(objcg); 3079 memcg->orig_objcg = objcg; 3080 3081 static_branch_enable(&memcg_kmem_online_key); 3082 3083 memcg->kmemcg_id = memcg->id.id; 3084 3085 return 0; 3086 } 3087 3088 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3089 { 3090 struct mem_cgroup *parent; 3091 3092 if (mem_cgroup_kmem_disabled()) 3093 return; 3094 3095 if (unlikely(mem_cgroup_is_root(memcg))) 3096 return; 3097 3098 parent = parent_mem_cgroup(memcg); 3099 if (!parent) 3100 parent = root_mem_cgroup; 3101 3102 memcg_reparent_objcgs(memcg, parent); 3103 3104 /* 3105 * After we have finished memcg_reparent_objcgs(), all list_lrus 3106 * corresponding to this cgroup are guaranteed to remain empty. 3107 * The ordering is imposed by list_lru_node->lock taken by 3108 * memcg_reparent_list_lrus(). 3109 */ 3110 memcg_reparent_list_lrus(memcg, parent); 3111 } 3112 3113 #ifdef CONFIG_CGROUP_WRITEBACK 3114 3115 #include <trace/events/writeback.h> 3116 3117 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3118 { 3119 return wb_domain_init(&memcg->cgwb_domain, gfp); 3120 } 3121 3122 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3123 { 3124 wb_domain_exit(&memcg->cgwb_domain); 3125 } 3126 3127 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3128 { 3129 wb_domain_size_changed(&memcg->cgwb_domain); 3130 } 3131 3132 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3133 { 3134 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3135 3136 if (!memcg->css.parent) 3137 return NULL; 3138 3139 return &memcg->cgwb_domain; 3140 } 3141 3142 /** 3143 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3144 * @wb: bdi_writeback in question 3145 * @pfilepages: out parameter for number of file pages 3146 * @pheadroom: out parameter for number of allocatable pages according to memcg 3147 * @pdirty: out parameter for number of dirty pages 3148 * @pwriteback: out parameter for number of pages under writeback 3149 * 3150 * Determine the numbers of file, headroom, dirty, and writeback pages in 3151 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3152 * is a bit more involved. 3153 * 3154 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3155 * headroom is calculated as the lowest headroom of itself and the 3156 * ancestors. Note that this doesn't consider the actual amount of 3157 * available memory in the system. The caller should further cap 3158 * *@pheadroom accordingly. 3159 */ 3160 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3161 unsigned long *pheadroom, unsigned long *pdirty, 3162 unsigned long *pwriteback) 3163 { 3164 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3165 struct mem_cgroup *parent; 3166 3167 mem_cgroup_flush_stats_ratelimited(memcg); 3168 3169 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3170 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3171 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3172 memcg_page_state(memcg, NR_ACTIVE_FILE); 3173 3174 *pheadroom = PAGE_COUNTER_MAX; 3175 while ((parent = parent_mem_cgroup(memcg))) { 3176 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3177 READ_ONCE(memcg->memory.high)); 3178 unsigned long used = page_counter_read(&memcg->memory); 3179 3180 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3181 memcg = parent; 3182 } 3183 } 3184 3185 /* 3186 * Foreign dirty flushing 3187 * 3188 * There's an inherent mismatch between memcg and writeback. The former 3189 * tracks ownership per-page while the latter per-inode. This was a 3190 * deliberate design decision because honoring per-page ownership in the 3191 * writeback path is complicated, may lead to higher CPU and IO overheads 3192 * and deemed unnecessary given that write-sharing an inode across 3193 * different cgroups isn't a common use-case. 3194 * 3195 * Combined with inode majority-writer ownership switching, this works well 3196 * enough in most cases but there are some pathological cases. For 3197 * example, let's say there are two cgroups A and B which keep writing to 3198 * different but confined parts of the same inode. B owns the inode and 3199 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3200 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3201 * triggering background writeback. A will be slowed down without a way to 3202 * make writeback of the dirty pages happen. 3203 * 3204 * Conditions like the above can lead to a cgroup getting repeatedly and 3205 * severely throttled after making some progress after each 3206 * dirty_expire_interval while the underlying IO device is almost 3207 * completely idle. 3208 * 3209 * Solving this problem completely requires matching the ownership tracking 3210 * granularities between memcg and writeback in either direction. However, 3211 * the more egregious behaviors can be avoided by simply remembering the 3212 * most recent foreign dirtying events and initiating remote flushes on 3213 * them when local writeback isn't enough to keep the memory clean enough. 3214 * 3215 * The following two functions implement such mechanism. When a foreign 3216 * page - a page whose memcg and writeback ownerships don't match - is 3217 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3218 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3219 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3220 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3221 * foreign bdi_writebacks which haven't expired. Both the numbers of 3222 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3223 * limited to MEMCG_CGWB_FRN_CNT. 3224 * 3225 * The mechanism only remembers IDs and doesn't hold any object references. 3226 * As being wrong occasionally doesn't matter, updates and accesses to the 3227 * records are lockless and racy. 3228 */ 3229 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3230 struct bdi_writeback *wb) 3231 { 3232 struct mem_cgroup *memcg = folio_memcg(folio); 3233 struct memcg_cgwb_frn *frn; 3234 u64 now = get_jiffies_64(); 3235 u64 oldest_at = now; 3236 int oldest = -1; 3237 int i; 3238 3239 trace_track_foreign_dirty(folio, wb); 3240 3241 /* 3242 * Pick the slot to use. If there is already a slot for @wb, keep 3243 * using it. If not replace the oldest one which isn't being 3244 * written out. 3245 */ 3246 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3247 frn = &memcg->cgwb_frn[i]; 3248 if (frn->bdi_id == wb->bdi->id && 3249 frn->memcg_id == wb->memcg_css->id) 3250 break; 3251 if (time_before64(frn->at, oldest_at) && 3252 atomic_read(&frn->done.cnt) == 1) { 3253 oldest = i; 3254 oldest_at = frn->at; 3255 } 3256 } 3257 3258 if (i < MEMCG_CGWB_FRN_CNT) { 3259 /* 3260 * Re-using an existing one. Update timestamp lazily to 3261 * avoid making the cacheline hot. We want them to be 3262 * reasonably up-to-date and significantly shorter than 3263 * dirty_expire_interval as that's what expires the record. 3264 * Use the shorter of 1s and dirty_expire_interval / 8. 3265 */ 3266 unsigned long update_intv = 3267 min_t(unsigned long, HZ, 3268 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3269 3270 if (time_before64(frn->at, now - update_intv)) 3271 frn->at = now; 3272 } else if (oldest >= 0) { 3273 /* replace the oldest free one */ 3274 frn = &memcg->cgwb_frn[oldest]; 3275 frn->bdi_id = wb->bdi->id; 3276 frn->memcg_id = wb->memcg_css->id; 3277 frn->at = now; 3278 } 3279 } 3280 3281 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3282 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3283 { 3284 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3285 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3286 u64 now = jiffies_64; 3287 int i; 3288 3289 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3290 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3291 3292 /* 3293 * If the record is older than dirty_expire_interval, 3294 * writeback on it has already started. No need to kick it 3295 * off again. Also, don't start a new one if there's 3296 * already one in flight. 3297 */ 3298 if (time_after64(frn->at, now - intv) && 3299 atomic_read(&frn->done.cnt) == 1) { 3300 frn->at = 0; 3301 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3302 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3303 WB_REASON_FOREIGN_FLUSH, 3304 &frn->done); 3305 } 3306 } 3307 } 3308 3309 #else /* CONFIG_CGROUP_WRITEBACK */ 3310 3311 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3312 { 3313 return 0; 3314 } 3315 3316 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3317 { 3318 } 3319 3320 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3321 { 3322 } 3323 3324 #endif /* CONFIG_CGROUP_WRITEBACK */ 3325 3326 /* 3327 * Private memory cgroup IDR 3328 * 3329 * Swap-out records and page cache shadow entries need to store memcg 3330 * references in constrained space, so we maintain an ID space that is 3331 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3332 * memory-controlled cgroups to 64k. 3333 * 3334 * However, there usually are many references to the offline CSS after 3335 * the cgroup has been destroyed, such as page cache or reclaimable 3336 * slab objects, that don't need to hang on to the ID. We want to keep 3337 * those dead CSS from occupying IDs, or we might quickly exhaust the 3338 * relatively small ID space and prevent the creation of new cgroups 3339 * even when there are much fewer than 64k cgroups - possibly none. 3340 * 3341 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3342 * be freed and recycled when it's no longer needed, which is usually 3343 * when the CSS is offlined. 3344 * 3345 * The only exception to that are records of swapped out tmpfs/shmem 3346 * pages that need to be attributed to live ancestors on swapin. But 3347 * those references are manageable from userspace. 3348 */ 3349 3350 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3351 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3352 3353 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3354 { 3355 if (memcg->id.id > 0) { 3356 xa_erase(&mem_cgroup_ids, memcg->id.id); 3357 memcg->id.id = 0; 3358 } 3359 } 3360 3361 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3362 unsigned int n) 3363 { 3364 refcount_add(n, &memcg->id.ref); 3365 } 3366 3367 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3368 { 3369 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3370 mem_cgroup_id_remove(memcg); 3371 3372 /* Memcg ID pins CSS */ 3373 css_put(&memcg->css); 3374 } 3375 } 3376 3377 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3378 { 3379 mem_cgroup_id_put_many(memcg, 1); 3380 } 3381 3382 /** 3383 * mem_cgroup_from_id - look up a memcg from a memcg id 3384 * @id: the memcg id to look up 3385 * 3386 * Caller must hold rcu_read_lock(). 3387 */ 3388 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3389 { 3390 WARN_ON_ONCE(!rcu_read_lock_held()); 3391 return xa_load(&mem_cgroup_ids, id); 3392 } 3393 3394 #ifdef CONFIG_SHRINKER_DEBUG 3395 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3396 { 3397 struct cgroup *cgrp; 3398 struct cgroup_subsys_state *css; 3399 struct mem_cgroup *memcg; 3400 3401 cgrp = cgroup_get_from_id(ino); 3402 if (IS_ERR(cgrp)) 3403 return ERR_CAST(cgrp); 3404 3405 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3406 if (css) 3407 memcg = container_of(css, struct mem_cgroup, css); 3408 else 3409 memcg = ERR_PTR(-ENOENT); 3410 3411 cgroup_put(cgrp); 3412 3413 return memcg; 3414 } 3415 #endif 3416 3417 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3418 { 3419 struct mem_cgroup_per_node *pn; 3420 3421 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3422 if (!pn) 3423 return false; 3424 3425 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3426 GFP_KERNEL_ACCOUNT, node); 3427 if (!pn->lruvec_stats) 3428 goto fail; 3429 3430 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3431 GFP_KERNEL_ACCOUNT); 3432 if (!pn->lruvec_stats_percpu) 3433 goto fail; 3434 3435 lruvec_init(&pn->lruvec); 3436 pn->memcg = memcg; 3437 3438 memcg->nodeinfo[node] = pn; 3439 return true; 3440 fail: 3441 kfree(pn->lruvec_stats); 3442 kfree(pn); 3443 return false; 3444 } 3445 3446 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3447 { 3448 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3449 3450 if (!pn) 3451 return; 3452 3453 free_percpu(pn->lruvec_stats_percpu); 3454 kfree(pn->lruvec_stats); 3455 kfree(pn); 3456 } 3457 3458 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3459 { 3460 int node; 3461 3462 obj_cgroup_put(memcg->orig_objcg); 3463 3464 for_each_node(node) 3465 free_mem_cgroup_per_node_info(memcg, node); 3466 memcg1_free_events(memcg); 3467 kfree(memcg->vmstats); 3468 free_percpu(memcg->vmstats_percpu); 3469 kfree(memcg); 3470 } 3471 3472 static void mem_cgroup_free(struct mem_cgroup *memcg) 3473 { 3474 lru_gen_exit_memcg(memcg); 3475 memcg_wb_domain_exit(memcg); 3476 __mem_cgroup_free(memcg); 3477 } 3478 3479 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3480 { 3481 struct memcg_vmstats_percpu *statc, *pstatc; 3482 struct mem_cgroup *memcg; 3483 int node, cpu; 3484 int __maybe_unused i; 3485 long error; 3486 3487 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3488 if (!memcg) 3489 return ERR_PTR(-ENOMEM); 3490 3491 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3492 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3493 if (error) 3494 goto fail; 3495 error = -ENOMEM; 3496 3497 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3498 GFP_KERNEL_ACCOUNT); 3499 if (!memcg->vmstats) 3500 goto fail; 3501 3502 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3503 GFP_KERNEL_ACCOUNT); 3504 if (!memcg->vmstats_percpu) 3505 goto fail; 3506 3507 if (!memcg1_alloc_events(memcg)) 3508 goto fail; 3509 3510 for_each_possible_cpu(cpu) { 3511 if (parent) 3512 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3513 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3514 statc->parent = parent ? pstatc : NULL; 3515 statc->vmstats = memcg->vmstats; 3516 } 3517 3518 for_each_node(node) 3519 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3520 goto fail; 3521 3522 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3523 goto fail; 3524 3525 INIT_WORK(&memcg->high_work, high_work_func); 3526 vmpressure_init(&memcg->vmpressure); 3527 INIT_LIST_HEAD(&memcg->memory_peaks); 3528 INIT_LIST_HEAD(&memcg->swap_peaks); 3529 spin_lock_init(&memcg->peaks_lock); 3530 memcg->socket_pressure = jiffies; 3531 memcg1_memcg_init(memcg); 3532 memcg->kmemcg_id = -1; 3533 INIT_LIST_HEAD(&memcg->objcg_list); 3534 #ifdef CONFIG_CGROUP_WRITEBACK 3535 INIT_LIST_HEAD(&memcg->cgwb_list); 3536 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3537 memcg->cgwb_frn[i].done = 3538 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3539 #endif 3540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3541 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3542 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3543 memcg->deferred_split_queue.split_queue_len = 0; 3544 #endif 3545 lru_gen_init_memcg(memcg); 3546 return memcg; 3547 fail: 3548 mem_cgroup_id_remove(memcg); 3549 __mem_cgroup_free(memcg); 3550 return ERR_PTR(error); 3551 } 3552 3553 static struct cgroup_subsys_state * __ref 3554 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3555 { 3556 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3557 struct mem_cgroup *memcg, *old_memcg; 3558 3559 old_memcg = set_active_memcg(parent); 3560 memcg = mem_cgroup_alloc(parent); 3561 set_active_memcg(old_memcg); 3562 if (IS_ERR(memcg)) 3563 return ERR_CAST(memcg); 3564 3565 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3566 memcg1_soft_limit_reset(memcg); 3567 #ifdef CONFIG_ZSWAP 3568 memcg->zswap_max = PAGE_COUNTER_MAX; 3569 WRITE_ONCE(memcg->zswap_writeback, true); 3570 #endif 3571 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3572 if (parent) { 3573 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3574 3575 page_counter_init(&memcg->memory, &parent->memory, true); 3576 page_counter_init(&memcg->swap, &parent->swap, false); 3577 #ifdef CONFIG_MEMCG_V1 3578 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3579 page_counter_init(&memcg->kmem, &parent->kmem, false); 3580 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3581 #endif 3582 } else { 3583 init_memcg_stats(); 3584 init_memcg_events(); 3585 page_counter_init(&memcg->memory, NULL, true); 3586 page_counter_init(&memcg->swap, NULL, false); 3587 #ifdef CONFIG_MEMCG_V1 3588 page_counter_init(&memcg->kmem, NULL, false); 3589 page_counter_init(&memcg->tcpmem, NULL, false); 3590 #endif 3591 root_mem_cgroup = memcg; 3592 return &memcg->css; 3593 } 3594 3595 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3596 static_branch_inc(&memcg_sockets_enabled_key); 3597 3598 if (!cgroup_memory_nobpf) 3599 static_branch_inc(&memcg_bpf_enabled_key); 3600 3601 return &memcg->css; 3602 } 3603 3604 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3605 { 3606 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3607 3608 if (memcg_online_kmem(memcg)) 3609 goto remove_id; 3610 3611 /* 3612 * A memcg must be visible for expand_shrinker_info() 3613 * by the time the maps are allocated. So, we allocate maps 3614 * here, when for_each_mem_cgroup() can't skip it. 3615 */ 3616 if (alloc_shrinker_info(memcg)) 3617 goto offline_kmem; 3618 3619 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3620 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3621 FLUSH_TIME); 3622 lru_gen_online_memcg(memcg); 3623 3624 /* Online state pins memcg ID, memcg ID pins CSS */ 3625 refcount_set(&memcg->id.ref, 1); 3626 css_get(css); 3627 3628 /* 3629 * Ensure mem_cgroup_from_id() works once we're fully online. 3630 * 3631 * We could do this earlier and require callers to filter with 3632 * css_tryget_online(). But right now there are no users that 3633 * need earlier access, and the workingset code relies on the 3634 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3635 * publish it here at the end of onlining. This matches the 3636 * regular ID destruction during offlining. 3637 */ 3638 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3639 3640 return 0; 3641 offline_kmem: 3642 memcg_offline_kmem(memcg); 3643 remove_id: 3644 mem_cgroup_id_remove(memcg); 3645 return -ENOMEM; 3646 } 3647 3648 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3649 { 3650 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3651 3652 memcg1_css_offline(memcg); 3653 3654 page_counter_set_min(&memcg->memory, 0); 3655 page_counter_set_low(&memcg->memory, 0); 3656 3657 zswap_memcg_offline_cleanup(memcg); 3658 3659 memcg_offline_kmem(memcg); 3660 reparent_shrinker_deferred(memcg); 3661 wb_memcg_offline(memcg); 3662 lru_gen_offline_memcg(memcg); 3663 3664 drain_all_stock(memcg); 3665 3666 mem_cgroup_id_put(memcg); 3667 } 3668 3669 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3670 { 3671 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3672 3673 invalidate_reclaim_iterators(memcg); 3674 lru_gen_release_memcg(memcg); 3675 } 3676 3677 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3678 { 3679 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3680 int __maybe_unused i; 3681 3682 #ifdef CONFIG_CGROUP_WRITEBACK 3683 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3684 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3685 #endif 3686 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3687 static_branch_dec(&memcg_sockets_enabled_key); 3688 3689 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3690 static_branch_dec(&memcg_sockets_enabled_key); 3691 3692 if (!cgroup_memory_nobpf) 3693 static_branch_dec(&memcg_bpf_enabled_key); 3694 3695 vmpressure_cleanup(&memcg->vmpressure); 3696 cancel_work_sync(&memcg->high_work); 3697 memcg1_remove_from_trees(memcg); 3698 free_shrinker_info(memcg); 3699 mem_cgroup_free(memcg); 3700 } 3701 3702 /** 3703 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3704 * @css: the target css 3705 * 3706 * Reset the states of the mem_cgroup associated with @css. This is 3707 * invoked when the userland requests disabling on the default hierarchy 3708 * but the memcg is pinned through dependency. The memcg should stop 3709 * applying policies and should revert to the vanilla state as it may be 3710 * made visible again. 3711 * 3712 * The current implementation only resets the essential configurations. 3713 * This needs to be expanded to cover all the visible parts. 3714 */ 3715 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3716 { 3717 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3718 3719 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3720 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3721 #ifdef CONFIG_MEMCG_V1 3722 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3723 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3724 #endif 3725 page_counter_set_min(&memcg->memory, 0); 3726 page_counter_set_low(&memcg->memory, 0); 3727 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3728 memcg1_soft_limit_reset(memcg); 3729 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3730 memcg_wb_domain_size_changed(memcg); 3731 } 3732 3733 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3734 { 3735 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3736 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3737 struct memcg_vmstats_percpu *statc; 3738 long delta, delta_cpu, v; 3739 int i, nid; 3740 3741 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3742 3743 for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) { 3744 /* 3745 * Collect the aggregated propagation counts of groups 3746 * below us. We're in a per-cpu loop here and this is 3747 * a global counter, so the first cycle will get them. 3748 */ 3749 delta = memcg->vmstats->state_pending[i]; 3750 if (delta) 3751 memcg->vmstats->state_pending[i] = 0; 3752 3753 /* Add CPU changes on this level since the last flush */ 3754 delta_cpu = 0; 3755 v = READ_ONCE(statc->state[i]); 3756 if (v != statc->state_prev[i]) { 3757 delta_cpu = v - statc->state_prev[i]; 3758 delta += delta_cpu; 3759 statc->state_prev[i] = v; 3760 } 3761 3762 /* Aggregate counts on this level and propagate upwards */ 3763 if (delta_cpu) 3764 memcg->vmstats->state_local[i] += delta_cpu; 3765 3766 if (delta) { 3767 memcg->vmstats->state[i] += delta; 3768 if (parent) 3769 parent->vmstats->state_pending[i] += delta; 3770 } 3771 } 3772 3773 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 3774 delta = memcg->vmstats->events_pending[i]; 3775 if (delta) 3776 memcg->vmstats->events_pending[i] = 0; 3777 3778 delta_cpu = 0; 3779 v = READ_ONCE(statc->events[i]); 3780 if (v != statc->events_prev[i]) { 3781 delta_cpu = v - statc->events_prev[i]; 3782 delta += delta_cpu; 3783 statc->events_prev[i] = v; 3784 } 3785 3786 if (delta_cpu) 3787 memcg->vmstats->events_local[i] += delta_cpu; 3788 3789 if (delta) { 3790 memcg->vmstats->events[i] += delta; 3791 if (parent) 3792 parent->vmstats->events_pending[i] += delta; 3793 } 3794 } 3795 3796 for_each_node_state(nid, N_MEMORY) { 3797 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3798 struct lruvec_stats *lstats = pn->lruvec_stats; 3799 struct lruvec_stats *plstats = NULL; 3800 struct lruvec_stats_percpu *lstatc; 3801 3802 if (parent) 3803 plstats = parent->nodeinfo[nid]->lruvec_stats; 3804 3805 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 3806 3807 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) { 3808 delta = lstats->state_pending[i]; 3809 if (delta) 3810 lstats->state_pending[i] = 0; 3811 3812 delta_cpu = 0; 3813 v = READ_ONCE(lstatc->state[i]); 3814 if (v != lstatc->state_prev[i]) { 3815 delta_cpu = v - lstatc->state_prev[i]; 3816 delta += delta_cpu; 3817 lstatc->state_prev[i] = v; 3818 } 3819 3820 if (delta_cpu) 3821 lstats->state_local[i] += delta_cpu; 3822 3823 if (delta) { 3824 lstats->state[i] += delta; 3825 if (plstats) 3826 plstats->state_pending[i] += delta; 3827 } 3828 } 3829 } 3830 WRITE_ONCE(statc->stats_updates, 0); 3831 /* We are in a per-cpu loop here, only do the atomic write once */ 3832 if (atomic64_read(&memcg->vmstats->stats_updates)) 3833 atomic64_set(&memcg->vmstats->stats_updates, 0); 3834 } 3835 3836 static void mem_cgroup_fork(struct task_struct *task) 3837 { 3838 /* 3839 * Set the update flag to cause task->objcg to be initialized lazily 3840 * on the first allocation. It can be done without any synchronization 3841 * because it's always performed on the current task, so does 3842 * current_objcg_update(). 3843 */ 3844 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 3845 } 3846 3847 static void mem_cgroup_exit(struct task_struct *task) 3848 { 3849 struct obj_cgroup *objcg = task->objcg; 3850 3851 objcg = (struct obj_cgroup *) 3852 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 3853 obj_cgroup_put(objcg); 3854 3855 /* 3856 * Some kernel allocations can happen after this point, 3857 * but let's ignore them. It can be done without any synchronization 3858 * because it's always performed on the current task, so does 3859 * current_objcg_update(). 3860 */ 3861 task->objcg = NULL; 3862 } 3863 3864 #ifdef CONFIG_LRU_GEN 3865 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 3866 { 3867 struct task_struct *task; 3868 struct cgroup_subsys_state *css; 3869 3870 /* find the first leader if there is any */ 3871 cgroup_taskset_for_each_leader(task, css, tset) 3872 break; 3873 3874 if (!task) 3875 return; 3876 3877 task_lock(task); 3878 if (task->mm && READ_ONCE(task->mm->owner) == task) 3879 lru_gen_migrate_mm(task->mm); 3880 task_unlock(task); 3881 } 3882 #else 3883 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 3884 #endif /* CONFIG_LRU_GEN */ 3885 3886 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 3887 { 3888 struct task_struct *task; 3889 struct cgroup_subsys_state *css; 3890 3891 cgroup_taskset_for_each(task, css, tset) { 3892 /* atomically set the update bit */ 3893 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 3894 } 3895 } 3896 3897 static void mem_cgroup_attach(struct cgroup_taskset *tset) 3898 { 3899 mem_cgroup_lru_gen_attach(tset); 3900 mem_cgroup_kmem_attach(tset); 3901 } 3902 3903 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 3904 { 3905 if (value == PAGE_COUNTER_MAX) 3906 seq_puts(m, "max\n"); 3907 else 3908 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 3909 3910 return 0; 3911 } 3912 3913 static u64 memory_current_read(struct cgroup_subsys_state *css, 3914 struct cftype *cft) 3915 { 3916 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3917 3918 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 3919 } 3920 3921 #define OFP_PEAK_UNSET (((-1UL))) 3922 3923 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 3924 { 3925 struct cgroup_of_peak *ofp = of_peak(sf->private); 3926 u64 fd_peak = READ_ONCE(ofp->value), peak; 3927 3928 /* User wants global or local peak? */ 3929 if (fd_peak == OFP_PEAK_UNSET) 3930 peak = pc->watermark; 3931 else 3932 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 3933 3934 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 3935 return 0; 3936 } 3937 3938 static int memory_peak_show(struct seq_file *sf, void *v) 3939 { 3940 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3941 3942 return peak_show(sf, v, &memcg->memory); 3943 } 3944 3945 static int peak_open(struct kernfs_open_file *of) 3946 { 3947 struct cgroup_of_peak *ofp = of_peak(of); 3948 3949 ofp->value = OFP_PEAK_UNSET; 3950 return 0; 3951 } 3952 3953 static void peak_release(struct kernfs_open_file *of) 3954 { 3955 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3956 struct cgroup_of_peak *ofp = of_peak(of); 3957 3958 if (ofp->value == OFP_PEAK_UNSET) { 3959 /* fast path (no writes on this fd) */ 3960 return; 3961 } 3962 spin_lock(&memcg->peaks_lock); 3963 list_del(&ofp->list); 3964 spin_unlock(&memcg->peaks_lock); 3965 } 3966 3967 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 3968 loff_t off, struct page_counter *pc, 3969 struct list_head *watchers) 3970 { 3971 unsigned long usage; 3972 struct cgroup_of_peak *peer_ctx; 3973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3974 struct cgroup_of_peak *ofp = of_peak(of); 3975 3976 spin_lock(&memcg->peaks_lock); 3977 3978 usage = page_counter_read(pc); 3979 WRITE_ONCE(pc->local_watermark, usage); 3980 3981 list_for_each_entry(peer_ctx, watchers, list) 3982 if (usage > peer_ctx->value) 3983 WRITE_ONCE(peer_ctx->value, usage); 3984 3985 /* initial write, register watcher */ 3986 if (ofp->value == -1) 3987 list_add(&ofp->list, watchers); 3988 3989 WRITE_ONCE(ofp->value, usage); 3990 spin_unlock(&memcg->peaks_lock); 3991 3992 return nbytes; 3993 } 3994 3995 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 3996 size_t nbytes, loff_t off) 3997 { 3998 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3999 4000 return peak_write(of, buf, nbytes, off, &memcg->memory, 4001 &memcg->memory_peaks); 4002 } 4003 4004 #undef OFP_PEAK_UNSET 4005 4006 static int memory_min_show(struct seq_file *m, void *v) 4007 { 4008 return seq_puts_memcg_tunable(m, 4009 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4010 } 4011 4012 static ssize_t memory_min_write(struct kernfs_open_file *of, 4013 char *buf, size_t nbytes, loff_t off) 4014 { 4015 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4016 unsigned long min; 4017 int err; 4018 4019 buf = strstrip(buf); 4020 err = page_counter_memparse(buf, "max", &min); 4021 if (err) 4022 return err; 4023 4024 page_counter_set_min(&memcg->memory, min); 4025 4026 return nbytes; 4027 } 4028 4029 static int memory_low_show(struct seq_file *m, void *v) 4030 { 4031 return seq_puts_memcg_tunable(m, 4032 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4033 } 4034 4035 static ssize_t memory_low_write(struct kernfs_open_file *of, 4036 char *buf, size_t nbytes, loff_t off) 4037 { 4038 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4039 unsigned long low; 4040 int err; 4041 4042 buf = strstrip(buf); 4043 err = page_counter_memparse(buf, "max", &low); 4044 if (err) 4045 return err; 4046 4047 page_counter_set_low(&memcg->memory, low); 4048 4049 return nbytes; 4050 } 4051 4052 static int memory_high_show(struct seq_file *m, void *v) 4053 { 4054 return seq_puts_memcg_tunable(m, 4055 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4056 } 4057 4058 static ssize_t memory_high_write(struct kernfs_open_file *of, 4059 char *buf, size_t nbytes, loff_t off) 4060 { 4061 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4062 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4063 bool drained = false; 4064 unsigned long high; 4065 int err; 4066 4067 buf = strstrip(buf); 4068 err = page_counter_memparse(buf, "max", &high); 4069 if (err) 4070 return err; 4071 4072 page_counter_set_high(&memcg->memory, high); 4073 4074 for (;;) { 4075 unsigned long nr_pages = page_counter_read(&memcg->memory); 4076 unsigned long reclaimed; 4077 4078 if (nr_pages <= high) 4079 break; 4080 4081 if (signal_pending(current)) 4082 break; 4083 4084 if (!drained) { 4085 drain_all_stock(memcg); 4086 drained = true; 4087 continue; 4088 } 4089 4090 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4091 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4092 4093 if (!reclaimed && !nr_retries--) 4094 break; 4095 } 4096 4097 memcg_wb_domain_size_changed(memcg); 4098 return nbytes; 4099 } 4100 4101 static int memory_max_show(struct seq_file *m, void *v) 4102 { 4103 return seq_puts_memcg_tunable(m, 4104 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4105 } 4106 4107 static ssize_t memory_max_write(struct kernfs_open_file *of, 4108 char *buf, size_t nbytes, loff_t off) 4109 { 4110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4111 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4112 bool drained = false; 4113 unsigned long max; 4114 int err; 4115 4116 buf = strstrip(buf); 4117 err = page_counter_memparse(buf, "max", &max); 4118 if (err) 4119 return err; 4120 4121 xchg(&memcg->memory.max, max); 4122 4123 for (;;) { 4124 unsigned long nr_pages = page_counter_read(&memcg->memory); 4125 4126 if (nr_pages <= max) 4127 break; 4128 4129 if (signal_pending(current)) 4130 break; 4131 4132 if (!drained) { 4133 drain_all_stock(memcg); 4134 drained = true; 4135 continue; 4136 } 4137 4138 if (nr_reclaims) { 4139 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4140 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4141 nr_reclaims--; 4142 continue; 4143 } 4144 4145 memcg_memory_event(memcg, MEMCG_OOM); 4146 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4147 break; 4148 } 4149 4150 memcg_wb_domain_size_changed(memcg); 4151 return nbytes; 4152 } 4153 4154 /* 4155 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4156 * if any new events become available. 4157 */ 4158 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4159 { 4160 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4161 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4162 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4163 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4164 seq_printf(m, "oom_kill %lu\n", 4165 atomic_long_read(&events[MEMCG_OOM_KILL])); 4166 seq_printf(m, "oom_group_kill %lu\n", 4167 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4168 } 4169 4170 static int memory_events_show(struct seq_file *m, void *v) 4171 { 4172 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4173 4174 __memory_events_show(m, memcg->memory_events); 4175 return 0; 4176 } 4177 4178 static int memory_events_local_show(struct seq_file *m, void *v) 4179 { 4180 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4181 4182 __memory_events_show(m, memcg->memory_events_local); 4183 return 0; 4184 } 4185 4186 int memory_stat_show(struct seq_file *m, void *v) 4187 { 4188 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4189 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4190 struct seq_buf s; 4191 4192 if (!buf) 4193 return -ENOMEM; 4194 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4195 memory_stat_format(memcg, &s); 4196 seq_puts(m, buf); 4197 kfree(buf); 4198 return 0; 4199 } 4200 4201 #ifdef CONFIG_NUMA 4202 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4203 int item) 4204 { 4205 return lruvec_page_state(lruvec, item) * 4206 memcg_page_state_output_unit(item); 4207 } 4208 4209 static int memory_numa_stat_show(struct seq_file *m, void *v) 4210 { 4211 int i; 4212 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4213 4214 mem_cgroup_flush_stats(memcg); 4215 4216 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4217 int nid; 4218 4219 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4220 continue; 4221 4222 seq_printf(m, "%s", memory_stats[i].name); 4223 for_each_node_state(nid, N_MEMORY) { 4224 u64 size; 4225 struct lruvec *lruvec; 4226 4227 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4228 size = lruvec_page_state_output(lruvec, 4229 memory_stats[i].idx); 4230 seq_printf(m, " N%d=%llu", nid, size); 4231 } 4232 seq_putc(m, '\n'); 4233 } 4234 4235 return 0; 4236 } 4237 #endif 4238 4239 static int memory_oom_group_show(struct seq_file *m, void *v) 4240 { 4241 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4242 4243 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4244 4245 return 0; 4246 } 4247 4248 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4249 char *buf, size_t nbytes, loff_t off) 4250 { 4251 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4252 int ret, oom_group; 4253 4254 buf = strstrip(buf); 4255 if (!buf) 4256 return -EINVAL; 4257 4258 ret = kstrtoint(buf, 0, &oom_group); 4259 if (ret) 4260 return ret; 4261 4262 if (oom_group != 0 && oom_group != 1) 4263 return -EINVAL; 4264 4265 WRITE_ONCE(memcg->oom_group, oom_group); 4266 4267 return nbytes; 4268 } 4269 4270 enum { 4271 MEMORY_RECLAIM_SWAPPINESS = 0, 4272 MEMORY_RECLAIM_NULL, 4273 }; 4274 4275 static const match_table_t tokens = { 4276 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4277 { MEMORY_RECLAIM_NULL, NULL }, 4278 }; 4279 4280 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4281 size_t nbytes, loff_t off) 4282 { 4283 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4284 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4285 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4286 int swappiness = -1; 4287 unsigned int reclaim_options; 4288 char *old_buf, *start; 4289 substring_t args[MAX_OPT_ARGS]; 4290 4291 buf = strstrip(buf); 4292 4293 old_buf = buf; 4294 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4295 if (buf == old_buf) 4296 return -EINVAL; 4297 4298 buf = strstrip(buf); 4299 4300 while ((start = strsep(&buf, " ")) != NULL) { 4301 if (!strlen(start)) 4302 continue; 4303 switch (match_token(start, tokens, args)) { 4304 case MEMORY_RECLAIM_SWAPPINESS: 4305 if (match_int(&args[0], &swappiness)) 4306 return -EINVAL; 4307 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4308 return -EINVAL; 4309 break; 4310 default: 4311 return -EINVAL; 4312 } 4313 } 4314 4315 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4316 while (nr_reclaimed < nr_to_reclaim) { 4317 /* Will converge on zero, but reclaim enforces a minimum */ 4318 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4319 unsigned long reclaimed; 4320 4321 if (signal_pending(current)) 4322 return -EINTR; 4323 4324 /* 4325 * This is the final attempt, drain percpu lru caches in the 4326 * hope of introducing more evictable pages for 4327 * try_to_free_mem_cgroup_pages(). 4328 */ 4329 if (!nr_retries) 4330 lru_add_drain_all(); 4331 4332 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4333 batch_size, GFP_KERNEL, 4334 reclaim_options, 4335 swappiness == -1 ? NULL : &swappiness); 4336 4337 if (!reclaimed && !nr_retries--) 4338 return -EAGAIN; 4339 4340 nr_reclaimed += reclaimed; 4341 } 4342 4343 return nbytes; 4344 } 4345 4346 static struct cftype memory_files[] = { 4347 { 4348 .name = "current", 4349 .flags = CFTYPE_NOT_ON_ROOT, 4350 .read_u64 = memory_current_read, 4351 }, 4352 { 4353 .name = "peak", 4354 .flags = CFTYPE_NOT_ON_ROOT, 4355 .open = peak_open, 4356 .release = peak_release, 4357 .seq_show = memory_peak_show, 4358 .write = memory_peak_write, 4359 }, 4360 { 4361 .name = "min", 4362 .flags = CFTYPE_NOT_ON_ROOT, 4363 .seq_show = memory_min_show, 4364 .write = memory_min_write, 4365 }, 4366 { 4367 .name = "low", 4368 .flags = CFTYPE_NOT_ON_ROOT, 4369 .seq_show = memory_low_show, 4370 .write = memory_low_write, 4371 }, 4372 { 4373 .name = "high", 4374 .flags = CFTYPE_NOT_ON_ROOT, 4375 .seq_show = memory_high_show, 4376 .write = memory_high_write, 4377 }, 4378 { 4379 .name = "max", 4380 .flags = CFTYPE_NOT_ON_ROOT, 4381 .seq_show = memory_max_show, 4382 .write = memory_max_write, 4383 }, 4384 { 4385 .name = "events", 4386 .flags = CFTYPE_NOT_ON_ROOT, 4387 .file_offset = offsetof(struct mem_cgroup, events_file), 4388 .seq_show = memory_events_show, 4389 }, 4390 { 4391 .name = "events.local", 4392 .flags = CFTYPE_NOT_ON_ROOT, 4393 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4394 .seq_show = memory_events_local_show, 4395 }, 4396 { 4397 .name = "stat", 4398 .seq_show = memory_stat_show, 4399 }, 4400 #ifdef CONFIG_NUMA 4401 { 4402 .name = "numa_stat", 4403 .seq_show = memory_numa_stat_show, 4404 }, 4405 #endif 4406 { 4407 .name = "oom.group", 4408 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4409 .seq_show = memory_oom_group_show, 4410 .write = memory_oom_group_write, 4411 }, 4412 { 4413 .name = "reclaim", 4414 .flags = CFTYPE_NS_DELEGATABLE, 4415 .write = memory_reclaim, 4416 }, 4417 { } /* terminate */ 4418 }; 4419 4420 struct cgroup_subsys memory_cgrp_subsys = { 4421 .css_alloc = mem_cgroup_css_alloc, 4422 .css_online = mem_cgroup_css_online, 4423 .css_offline = mem_cgroup_css_offline, 4424 .css_released = mem_cgroup_css_released, 4425 .css_free = mem_cgroup_css_free, 4426 .css_reset = mem_cgroup_css_reset, 4427 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4428 .attach = mem_cgroup_attach, 4429 .fork = mem_cgroup_fork, 4430 .exit = mem_cgroup_exit, 4431 .dfl_cftypes = memory_files, 4432 #ifdef CONFIG_MEMCG_V1 4433 .legacy_cftypes = mem_cgroup_legacy_files, 4434 #endif 4435 .early_init = 0, 4436 }; 4437 4438 /** 4439 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4440 * @root: the top ancestor of the sub-tree being checked 4441 * @memcg: the memory cgroup to check 4442 * 4443 * WARNING: This function is not stateless! It can only be used as part 4444 * of a top-down tree iteration, not for isolated queries. 4445 */ 4446 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4447 struct mem_cgroup *memcg) 4448 { 4449 bool recursive_protection = 4450 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4451 4452 if (mem_cgroup_disabled()) 4453 return; 4454 4455 if (!root) 4456 root = root_mem_cgroup; 4457 4458 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4459 } 4460 4461 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4462 gfp_t gfp) 4463 { 4464 int ret; 4465 4466 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4467 if (ret) 4468 goto out; 4469 4470 mem_cgroup_commit_charge(folio, memcg); 4471 out: 4472 return ret; 4473 } 4474 4475 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4476 { 4477 struct mem_cgroup *memcg; 4478 int ret; 4479 4480 memcg = get_mem_cgroup_from_mm(mm); 4481 ret = charge_memcg(folio, memcg, gfp); 4482 css_put(&memcg->css); 4483 4484 return ret; 4485 } 4486 4487 /** 4488 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio 4489 * @memcg: memcg to charge. 4490 * @gfp: reclaim mode. 4491 * @nr_pages: number of pages to charge. 4492 * 4493 * This function is called when allocating a huge page folio to determine if 4494 * the memcg has the capacity for it. It does not commit the charge yet, 4495 * as the hugetlb folio itself has not been obtained from the hugetlb pool. 4496 * 4497 * Once we have obtained the hugetlb folio, we can call 4498 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the 4499 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect 4500 * of try_charge(). 4501 * 4502 * Returns 0 on success. Otherwise, an error code is returned. 4503 */ 4504 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 4505 long nr_pages) 4506 { 4507 /* 4508 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, 4509 * but do not attempt to commit charge later (or cancel on error) either. 4510 */ 4511 if (mem_cgroup_disabled() || !memcg || 4512 !cgroup_subsys_on_dfl(memory_cgrp_subsys) || 4513 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) 4514 return -EOPNOTSUPP; 4515 4516 if (try_charge(memcg, gfp, nr_pages)) 4517 return -ENOMEM; 4518 4519 return 0; 4520 } 4521 4522 /** 4523 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4524 * @folio: folio to charge. 4525 * @mm: mm context of the victim 4526 * @gfp: reclaim mode 4527 * @entry: swap entry for which the folio is allocated 4528 * 4529 * This function charges a folio allocated for swapin. Please call this before 4530 * adding the folio to the swapcache. 4531 * 4532 * Returns 0 on success. Otherwise, an error code is returned. 4533 */ 4534 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4535 gfp_t gfp, swp_entry_t entry) 4536 { 4537 struct mem_cgroup *memcg; 4538 unsigned short id; 4539 int ret; 4540 4541 if (mem_cgroup_disabled()) 4542 return 0; 4543 4544 id = lookup_swap_cgroup_id(entry); 4545 rcu_read_lock(); 4546 memcg = mem_cgroup_from_id(id); 4547 if (!memcg || !css_tryget_online(&memcg->css)) 4548 memcg = get_mem_cgroup_from_mm(mm); 4549 rcu_read_unlock(); 4550 4551 ret = charge_memcg(folio, memcg, gfp); 4552 4553 css_put(&memcg->css); 4554 return ret; 4555 } 4556 4557 /* 4558 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 4559 * @entry: the first swap entry for which the pages are charged 4560 * @nr_pages: number of pages which will be uncharged 4561 * 4562 * Call this function after successfully adding the charged page to swapcache. 4563 * 4564 * Note: This function assumes the page for which swap slot is being uncharged 4565 * is order 0 page. 4566 */ 4567 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 4568 { 4569 /* 4570 * Cgroup1's unified memory+swap counter has been charged with the 4571 * new swapcache page, finish the transfer by uncharging the swap 4572 * slot. The swap slot would also get uncharged when it dies, but 4573 * it can stick around indefinitely and we'd count the page twice 4574 * the entire time. 4575 * 4576 * Cgroup2 has separate resource counters for memory and swap, 4577 * so this is a non-issue here. Memory and swap charge lifetimes 4578 * correspond 1:1 to page and swap slot lifetimes: we charge the 4579 * page to memory here, and uncharge swap when the slot is freed. 4580 */ 4581 if (!mem_cgroup_disabled() && do_memsw_account()) { 4582 /* 4583 * The swap entry might not get freed for a long time, 4584 * let's not wait for it. The page already received a 4585 * memory+swap charge, drop the swap entry duplicate. 4586 */ 4587 mem_cgroup_uncharge_swap(entry, nr_pages); 4588 } 4589 } 4590 4591 struct uncharge_gather { 4592 struct mem_cgroup *memcg; 4593 unsigned long nr_memory; 4594 unsigned long pgpgout; 4595 unsigned long nr_kmem; 4596 int nid; 4597 }; 4598 4599 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4600 { 4601 memset(ug, 0, sizeof(*ug)); 4602 } 4603 4604 static void uncharge_batch(const struct uncharge_gather *ug) 4605 { 4606 if (ug->nr_memory) { 4607 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 4608 if (do_memsw_account()) 4609 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 4610 if (ug->nr_kmem) { 4611 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4612 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4613 } 4614 memcg1_oom_recover(ug->memcg); 4615 } 4616 4617 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4618 4619 /* drop reference from uncharge_folio */ 4620 css_put(&ug->memcg->css); 4621 } 4622 4623 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4624 { 4625 long nr_pages; 4626 struct mem_cgroup *memcg; 4627 struct obj_cgroup *objcg; 4628 4629 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4630 4631 /* 4632 * Nobody should be changing or seriously looking at 4633 * folio memcg or objcg at this point, we have fully 4634 * exclusive access to the folio. 4635 */ 4636 if (folio_memcg_kmem(folio)) { 4637 objcg = __folio_objcg(folio); 4638 /* 4639 * This get matches the put at the end of the function and 4640 * kmem pages do not hold memcg references anymore. 4641 */ 4642 memcg = get_mem_cgroup_from_objcg(objcg); 4643 } else { 4644 memcg = __folio_memcg(folio); 4645 } 4646 4647 if (!memcg) 4648 return; 4649 4650 if (ug->memcg != memcg) { 4651 if (ug->memcg) { 4652 uncharge_batch(ug); 4653 uncharge_gather_clear(ug); 4654 } 4655 ug->memcg = memcg; 4656 ug->nid = folio_nid(folio); 4657 4658 /* pairs with css_put in uncharge_batch */ 4659 css_get(&memcg->css); 4660 } 4661 4662 nr_pages = folio_nr_pages(folio); 4663 4664 if (folio_memcg_kmem(folio)) { 4665 ug->nr_memory += nr_pages; 4666 ug->nr_kmem += nr_pages; 4667 4668 folio->memcg_data = 0; 4669 obj_cgroup_put(objcg); 4670 } else { 4671 /* LRU pages aren't accounted at the root level */ 4672 if (!mem_cgroup_is_root(memcg)) 4673 ug->nr_memory += nr_pages; 4674 ug->pgpgout++; 4675 4676 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4677 folio->memcg_data = 0; 4678 } 4679 4680 css_put(&memcg->css); 4681 } 4682 4683 void __mem_cgroup_uncharge(struct folio *folio) 4684 { 4685 struct uncharge_gather ug; 4686 4687 /* Don't touch folio->lru of any random page, pre-check: */ 4688 if (!folio_memcg_charged(folio)) 4689 return; 4690 4691 uncharge_gather_clear(&ug); 4692 uncharge_folio(folio, &ug); 4693 uncharge_batch(&ug); 4694 } 4695 4696 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4697 { 4698 struct uncharge_gather ug; 4699 unsigned int i; 4700 4701 uncharge_gather_clear(&ug); 4702 for (i = 0; i < folios->nr; i++) 4703 uncharge_folio(folios->folios[i], &ug); 4704 if (ug.memcg) 4705 uncharge_batch(&ug); 4706 } 4707 4708 /** 4709 * mem_cgroup_replace_folio - Charge a folio's replacement. 4710 * @old: Currently circulating folio. 4711 * @new: Replacement folio. 4712 * 4713 * Charge @new as a replacement folio for @old. @old will 4714 * be uncharged upon free. 4715 * 4716 * Both folios must be locked, @new->mapping must be set up. 4717 */ 4718 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4719 { 4720 struct mem_cgroup *memcg; 4721 long nr_pages = folio_nr_pages(new); 4722 4723 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4724 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4725 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4726 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4727 4728 if (mem_cgroup_disabled()) 4729 return; 4730 4731 /* Page cache replacement: new folio already charged? */ 4732 if (folio_memcg_charged(new)) 4733 return; 4734 4735 memcg = folio_memcg(old); 4736 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4737 if (!memcg) 4738 return; 4739 4740 /* Force-charge the new page. The old one will be freed soon */ 4741 if (!mem_cgroup_is_root(memcg)) { 4742 page_counter_charge(&memcg->memory, nr_pages); 4743 if (do_memsw_account()) 4744 page_counter_charge(&memcg->memsw, nr_pages); 4745 } 4746 4747 css_get(&memcg->css); 4748 commit_charge(new, memcg); 4749 memcg1_commit_charge(new, memcg); 4750 } 4751 4752 /** 4753 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4754 * @old: Currently circulating folio. 4755 * @new: Replacement folio. 4756 * 4757 * Transfer the memcg data from the old folio to the new folio for migration. 4758 * The old folio's data info will be cleared. Note that the memory counters 4759 * will remain unchanged throughout the process. 4760 * 4761 * Both folios must be locked, @new->mapping must be set up. 4762 */ 4763 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4764 { 4765 struct mem_cgroup *memcg; 4766 4767 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4768 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4769 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4770 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4771 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4772 4773 if (mem_cgroup_disabled()) 4774 return; 4775 4776 memcg = folio_memcg(old); 4777 /* 4778 * Note that it is normal to see !memcg for a hugetlb folio. 4779 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4780 * was not selected. 4781 */ 4782 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4783 if (!memcg) 4784 return; 4785 4786 /* Transfer the charge and the css ref */ 4787 commit_charge(new, memcg); 4788 4789 /* Warning should never happen, so don't worry about refcount non-0 */ 4790 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4791 old->memcg_data = 0; 4792 } 4793 4794 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4795 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4796 4797 void mem_cgroup_sk_alloc(struct sock *sk) 4798 { 4799 struct mem_cgroup *memcg; 4800 4801 if (!mem_cgroup_sockets_enabled) 4802 return; 4803 4804 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4805 if (!in_task()) 4806 return; 4807 4808 rcu_read_lock(); 4809 memcg = mem_cgroup_from_task(current); 4810 if (mem_cgroup_is_root(memcg)) 4811 goto out; 4812 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4813 goto out; 4814 if (css_tryget(&memcg->css)) 4815 sk->sk_memcg = memcg; 4816 out: 4817 rcu_read_unlock(); 4818 } 4819 4820 void mem_cgroup_sk_free(struct sock *sk) 4821 { 4822 if (sk->sk_memcg) 4823 css_put(&sk->sk_memcg->css); 4824 } 4825 4826 /** 4827 * mem_cgroup_charge_skmem - charge socket memory 4828 * @memcg: memcg to charge 4829 * @nr_pages: number of pages to charge 4830 * @gfp_mask: reclaim mode 4831 * 4832 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4833 * @memcg's configured limit, %false if it doesn't. 4834 */ 4835 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4836 gfp_t gfp_mask) 4837 { 4838 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4839 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4840 4841 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 4842 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 4843 return true; 4844 } 4845 4846 return false; 4847 } 4848 4849 /** 4850 * mem_cgroup_uncharge_skmem - uncharge socket memory 4851 * @memcg: memcg to uncharge 4852 * @nr_pages: number of pages to uncharge 4853 */ 4854 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 4855 { 4856 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 4857 memcg1_uncharge_skmem(memcg, nr_pages); 4858 return; 4859 } 4860 4861 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 4862 4863 refill_stock(memcg, nr_pages); 4864 } 4865 4866 static int __init cgroup_memory(char *s) 4867 { 4868 char *token; 4869 4870 while ((token = strsep(&s, ",")) != NULL) { 4871 if (!*token) 4872 continue; 4873 if (!strcmp(token, "nosocket")) 4874 cgroup_memory_nosocket = true; 4875 if (!strcmp(token, "nokmem")) 4876 cgroup_memory_nokmem = true; 4877 if (!strcmp(token, "nobpf")) 4878 cgroup_memory_nobpf = true; 4879 } 4880 return 1; 4881 } 4882 __setup("cgroup.memory=", cgroup_memory); 4883 4884 /* 4885 * subsys_initcall() for memory controller. 4886 * 4887 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 4888 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 4889 * basically everything that doesn't depend on a specific mem_cgroup structure 4890 * should be initialized from here. 4891 */ 4892 static int __init mem_cgroup_init(void) 4893 { 4894 int cpu; 4895 4896 /* 4897 * Currently s32 type (can refer to struct batched_lruvec_stat) is 4898 * used for per-memcg-per-cpu caching of per-node statistics. In order 4899 * to work fine, we should make sure that the overfill threshold can't 4900 * exceed S32_MAX / PAGE_SIZE. 4901 */ 4902 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 4903 4904 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 4905 memcg_hotplug_cpu_dead); 4906 4907 for_each_possible_cpu(cpu) 4908 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 4909 drain_local_stock); 4910 4911 return 0; 4912 } 4913 subsys_initcall(mem_cgroup_init); 4914 4915 #ifdef CONFIG_SWAP 4916 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 4917 { 4918 while (!refcount_inc_not_zero(&memcg->id.ref)) { 4919 /* 4920 * The root cgroup cannot be destroyed, so it's refcount must 4921 * always be >= 1. 4922 */ 4923 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 4924 VM_BUG_ON(1); 4925 break; 4926 } 4927 memcg = parent_mem_cgroup(memcg); 4928 if (!memcg) 4929 memcg = root_mem_cgroup; 4930 } 4931 return memcg; 4932 } 4933 4934 /** 4935 * mem_cgroup_swapout - transfer a memsw charge to swap 4936 * @folio: folio whose memsw charge to transfer 4937 * @entry: swap entry to move the charge to 4938 * 4939 * Transfer the memsw charge of @folio to @entry. 4940 */ 4941 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 4942 { 4943 struct mem_cgroup *memcg, *swap_memcg; 4944 unsigned int nr_entries; 4945 unsigned short oldid; 4946 4947 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4948 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 4949 4950 if (mem_cgroup_disabled()) 4951 return; 4952 4953 if (!do_memsw_account()) 4954 return; 4955 4956 memcg = folio_memcg(folio); 4957 4958 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 4959 if (!memcg) 4960 return; 4961 4962 /* 4963 * In case the memcg owning these pages has been offlined and doesn't 4964 * have an ID allocated to it anymore, charge the closest online 4965 * ancestor for the swap instead and transfer the memory+swap charge. 4966 */ 4967 swap_memcg = mem_cgroup_id_get_online(memcg); 4968 nr_entries = folio_nr_pages(folio); 4969 /* Get references for the tail pages, too */ 4970 if (nr_entries > 1) 4971 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 4972 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 4973 nr_entries); 4974 VM_BUG_ON_FOLIO(oldid, folio); 4975 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 4976 4977 folio_unqueue_deferred_split(folio); 4978 folio->memcg_data = 0; 4979 4980 if (!mem_cgroup_is_root(memcg)) 4981 page_counter_uncharge(&memcg->memory, nr_entries); 4982 4983 if (memcg != swap_memcg) { 4984 if (!mem_cgroup_is_root(swap_memcg)) 4985 page_counter_charge(&swap_memcg->memsw, nr_entries); 4986 page_counter_uncharge(&memcg->memsw, nr_entries); 4987 } 4988 4989 memcg1_swapout(folio, memcg); 4990 css_put(&memcg->css); 4991 } 4992 4993 /** 4994 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 4995 * @folio: folio being added to swap 4996 * @entry: swap entry to charge 4997 * 4998 * Try to charge @folio's memcg for the swap space at @entry. 4999 * 5000 * Returns 0 on success, -ENOMEM on failure. 5001 */ 5002 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5003 { 5004 unsigned int nr_pages = folio_nr_pages(folio); 5005 struct page_counter *counter; 5006 struct mem_cgroup *memcg; 5007 unsigned short oldid; 5008 5009 if (do_memsw_account()) 5010 return 0; 5011 5012 memcg = folio_memcg(folio); 5013 5014 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5015 if (!memcg) 5016 return 0; 5017 5018 if (!entry.val) { 5019 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5020 return 0; 5021 } 5022 5023 memcg = mem_cgroup_id_get_online(memcg); 5024 5025 if (!mem_cgroup_is_root(memcg) && 5026 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5027 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5028 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5029 mem_cgroup_id_put(memcg); 5030 return -ENOMEM; 5031 } 5032 5033 /* Get references for the tail pages, too */ 5034 if (nr_pages > 1) 5035 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5036 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 5037 VM_BUG_ON_FOLIO(oldid, folio); 5038 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5039 5040 return 0; 5041 } 5042 5043 /** 5044 * __mem_cgroup_uncharge_swap - uncharge swap space 5045 * @entry: swap entry to uncharge 5046 * @nr_pages: the amount of swap space to uncharge 5047 */ 5048 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5049 { 5050 struct mem_cgroup *memcg; 5051 unsigned short id; 5052 5053 id = swap_cgroup_record(entry, 0, nr_pages); 5054 rcu_read_lock(); 5055 memcg = mem_cgroup_from_id(id); 5056 if (memcg) { 5057 if (!mem_cgroup_is_root(memcg)) { 5058 if (do_memsw_account()) 5059 page_counter_uncharge(&memcg->memsw, nr_pages); 5060 else 5061 page_counter_uncharge(&memcg->swap, nr_pages); 5062 } 5063 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5064 mem_cgroup_id_put_many(memcg, nr_pages); 5065 } 5066 rcu_read_unlock(); 5067 } 5068 5069 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5070 { 5071 long nr_swap_pages = get_nr_swap_pages(); 5072 5073 if (mem_cgroup_disabled() || do_memsw_account()) 5074 return nr_swap_pages; 5075 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5076 nr_swap_pages = min_t(long, nr_swap_pages, 5077 READ_ONCE(memcg->swap.max) - 5078 page_counter_read(&memcg->swap)); 5079 return nr_swap_pages; 5080 } 5081 5082 bool mem_cgroup_swap_full(struct folio *folio) 5083 { 5084 struct mem_cgroup *memcg; 5085 5086 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5087 5088 if (vm_swap_full()) 5089 return true; 5090 if (do_memsw_account()) 5091 return false; 5092 5093 memcg = folio_memcg(folio); 5094 if (!memcg) 5095 return false; 5096 5097 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5098 unsigned long usage = page_counter_read(&memcg->swap); 5099 5100 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5101 usage * 2 >= READ_ONCE(memcg->swap.max)) 5102 return true; 5103 } 5104 5105 return false; 5106 } 5107 5108 static int __init setup_swap_account(char *s) 5109 { 5110 bool res; 5111 5112 if (!kstrtobool(s, &res) && !res) 5113 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5114 "in favor of configuring swap control via cgroupfs. " 5115 "Please report your usecase to linux-mm@kvack.org if you " 5116 "depend on this functionality.\n"); 5117 return 1; 5118 } 5119 __setup("swapaccount=", setup_swap_account); 5120 5121 static u64 swap_current_read(struct cgroup_subsys_state *css, 5122 struct cftype *cft) 5123 { 5124 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5125 5126 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5127 } 5128 5129 static int swap_peak_show(struct seq_file *sf, void *v) 5130 { 5131 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5132 5133 return peak_show(sf, v, &memcg->swap); 5134 } 5135 5136 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5137 size_t nbytes, loff_t off) 5138 { 5139 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5140 5141 return peak_write(of, buf, nbytes, off, &memcg->swap, 5142 &memcg->swap_peaks); 5143 } 5144 5145 static int swap_high_show(struct seq_file *m, void *v) 5146 { 5147 return seq_puts_memcg_tunable(m, 5148 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5149 } 5150 5151 static ssize_t swap_high_write(struct kernfs_open_file *of, 5152 char *buf, size_t nbytes, loff_t off) 5153 { 5154 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5155 unsigned long high; 5156 int err; 5157 5158 buf = strstrip(buf); 5159 err = page_counter_memparse(buf, "max", &high); 5160 if (err) 5161 return err; 5162 5163 page_counter_set_high(&memcg->swap, high); 5164 5165 return nbytes; 5166 } 5167 5168 static int swap_max_show(struct seq_file *m, void *v) 5169 { 5170 return seq_puts_memcg_tunable(m, 5171 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5172 } 5173 5174 static ssize_t swap_max_write(struct kernfs_open_file *of, 5175 char *buf, size_t nbytes, loff_t off) 5176 { 5177 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5178 unsigned long max; 5179 int err; 5180 5181 buf = strstrip(buf); 5182 err = page_counter_memparse(buf, "max", &max); 5183 if (err) 5184 return err; 5185 5186 xchg(&memcg->swap.max, max); 5187 5188 return nbytes; 5189 } 5190 5191 static int swap_events_show(struct seq_file *m, void *v) 5192 { 5193 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5194 5195 seq_printf(m, "high %lu\n", 5196 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5197 seq_printf(m, "max %lu\n", 5198 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5199 seq_printf(m, "fail %lu\n", 5200 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5201 5202 return 0; 5203 } 5204 5205 static struct cftype swap_files[] = { 5206 { 5207 .name = "swap.current", 5208 .flags = CFTYPE_NOT_ON_ROOT, 5209 .read_u64 = swap_current_read, 5210 }, 5211 { 5212 .name = "swap.high", 5213 .flags = CFTYPE_NOT_ON_ROOT, 5214 .seq_show = swap_high_show, 5215 .write = swap_high_write, 5216 }, 5217 { 5218 .name = "swap.max", 5219 .flags = CFTYPE_NOT_ON_ROOT, 5220 .seq_show = swap_max_show, 5221 .write = swap_max_write, 5222 }, 5223 { 5224 .name = "swap.peak", 5225 .flags = CFTYPE_NOT_ON_ROOT, 5226 .open = peak_open, 5227 .release = peak_release, 5228 .seq_show = swap_peak_show, 5229 .write = swap_peak_write, 5230 }, 5231 { 5232 .name = "swap.events", 5233 .flags = CFTYPE_NOT_ON_ROOT, 5234 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5235 .seq_show = swap_events_show, 5236 }, 5237 { } /* terminate */ 5238 }; 5239 5240 #ifdef CONFIG_ZSWAP 5241 /** 5242 * obj_cgroup_may_zswap - check if this cgroup can zswap 5243 * @objcg: the object cgroup 5244 * 5245 * Check if the hierarchical zswap limit has been reached. 5246 * 5247 * This doesn't check for specific headroom, and it is not atomic 5248 * either. But with zswap, the size of the allocation is only known 5249 * once compression has occurred, and this optimistic pre-check avoids 5250 * spending cycles on compression when there is already no room left 5251 * or zswap is disabled altogether somewhere in the hierarchy. 5252 */ 5253 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5254 { 5255 struct mem_cgroup *memcg, *original_memcg; 5256 bool ret = true; 5257 5258 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5259 return true; 5260 5261 original_memcg = get_mem_cgroup_from_objcg(objcg); 5262 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5263 memcg = parent_mem_cgroup(memcg)) { 5264 unsigned long max = READ_ONCE(memcg->zswap_max); 5265 unsigned long pages; 5266 5267 if (max == PAGE_COUNTER_MAX) 5268 continue; 5269 if (max == 0) { 5270 ret = false; 5271 break; 5272 } 5273 5274 /* 5275 * mem_cgroup_flush_stats() ignores small changes. Use 5276 * do_flush_stats() directly to get accurate stats for charging. 5277 */ 5278 do_flush_stats(memcg); 5279 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5280 if (pages < max) 5281 continue; 5282 ret = false; 5283 break; 5284 } 5285 mem_cgroup_put(original_memcg); 5286 return ret; 5287 } 5288 5289 /** 5290 * obj_cgroup_charge_zswap - charge compression backend memory 5291 * @objcg: the object cgroup 5292 * @size: size of compressed object 5293 * 5294 * This forces the charge after obj_cgroup_may_zswap() allowed 5295 * compression and storage in zwap for this cgroup to go ahead. 5296 */ 5297 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5298 { 5299 struct mem_cgroup *memcg; 5300 5301 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5302 return; 5303 5304 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5305 5306 /* PF_MEMALLOC context, charging must succeed */ 5307 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5308 VM_WARN_ON_ONCE(1); 5309 5310 rcu_read_lock(); 5311 memcg = obj_cgroup_memcg(objcg); 5312 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5313 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5314 rcu_read_unlock(); 5315 } 5316 5317 /** 5318 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5319 * @objcg: the object cgroup 5320 * @size: size of compressed object 5321 * 5322 * Uncharges zswap memory on page in. 5323 */ 5324 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5325 { 5326 struct mem_cgroup *memcg; 5327 5328 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5329 return; 5330 5331 obj_cgroup_uncharge(objcg, size); 5332 5333 rcu_read_lock(); 5334 memcg = obj_cgroup_memcg(objcg); 5335 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5336 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5337 rcu_read_unlock(); 5338 } 5339 5340 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5341 { 5342 /* if zswap is disabled, do not block pages going to the swapping device */ 5343 if (!zswap_is_enabled()) 5344 return true; 5345 5346 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5347 if (!READ_ONCE(memcg->zswap_writeback)) 5348 return false; 5349 5350 return true; 5351 } 5352 5353 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5354 struct cftype *cft) 5355 { 5356 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5357 5358 mem_cgroup_flush_stats(memcg); 5359 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5360 } 5361 5362 static int zswap_max_show(struct seq_file *m, void *v) 5363 { 5364 return seq_puts_memcg_tunable(m, 5365 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5366 } 5367 5368 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5369 char *buf, size_t nbytes, loff_t off) 5370 { 5371 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5372 unsigned long max; 5373 int err; 5374 5375 buf = strstrip(buf); 5376 err = page_counter_memparse(buf, "max", &max); 5377 if (err) 5378 return err; 5379 5380 xchg(&memcg->zswap_max, max); 5381 5382 return nbytes; 5383 } 5384 5385 static int zswap_writeback_show(struct seq_file *m, void *v) 5386 { 5387 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5388 5389 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5390 return 0; 5391 } 5392 5393 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5394 char *buf, size_t nbytes, loff_t off) 5395 { 5396 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5397 int zswap_writeback; 5398 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5399 5400 if (parse_ret) 5401 return parse_ret; 5402 5403 if (zswap_writeback != 0 && zswap_writeback != 1) 5404 return -EINVAL; 5405 5406 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5407 return nbytes; 5408 } 5409 5410 static struct cftype zswap_files[] = { 5411 { 5412 .name = "zswap.current", 5413 .flags = CFTYPE_NOT_ON_ROOT, 5414 .read_u64 = zswap_current_read, 5415 }, 5416 { 5417 .name = "zswap.max", 5418 .flags = CFTYPE_NOT_ON_ROOT, 5419 .seq_show = zswap_max_show, 5420 .write = zswap_max_write, 5421 }, 5422 { 5423 .name = "zswap.writeback", 5424 .seq_show = zswap_writeback_show, 5425 .write = zswap_writeback_write, 5426 }, 5427 { } /* terminate */ 5428 }; 5429 #endif /* CONFIG_ZSWAP */ 5430 5431 static int __init mem_cgroup_swap_init(void) 5432 { 5433 if (mem_cgroup_disabled()) 5434 return 0; 5435 5436 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5437 #ifdef CONFIG_MEMCG_V1 5438 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5439 #endif 5440 #ifdef CONFIG_ZSWAP 5441 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5442 #endif 5443 return 0; 5444 } 5445 subsys_initcall(mem_cgroup_swap_init); 5446 5447 #endif /* CONFIG_SWAP */ 5448