1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/hugetlb.h> 39 #include <linux/pagemap.h> 40 #include <linux/smp.h> 41 #include <linux/page-flags.h> 42 #include <linux/backing-dev.h> 43 #include <linux/bit_spinlock.h> 44 #include <linux/rcupdate.h> 45 #include <linux/limits.h> 46 #include <linux/export.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/spinlock.h> 53 #include <linux/eventfd.h> 54 #include <linux/poll.h> 55 #include <linux/sort.h> 56 #include <linux/fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/vmpressure.h> 59 #include <linux/mm_inline.h> 60 #include <linux/swap_cgroup.h> 61 #include <linux/cpu.h> 62 #include <linux/oom.h> 63 #include <linux/lockdep.h> 64 #include <linux/file.h> 65 #include <linux/tracehook.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 71 #include <asm/uaccess.h> 72 73 #include <trace/events/vmscan.h> 74 75 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76 EXPORT_SYMBOL(memory_cgrp_subsys); 77 78 struct mem_cgroup *root_mem_cgroup __read_mostly; 79 80 #define MEM_CGROUP_RECLAIM_RETRIES 5 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 int do_swap_account __read_mostly; 91 #else 92 #define do_swap_account 0 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "rss_huge", 105 "mapped_file", 106 "dirty", 107 "writeback", 108 "swap", 109 }; 110 111 static const char * const mem_cgroup_events_names[] = { 112 "pgpgin", 113 "pgpgout", 114 "pgfault", 115 "pgmajfault", 116 }; 117 118 static const char * const mem_cgroup_lru_names[] = { 119 "inactive_anon", 120 "active_anon", 121 "inactive_file", 122 "active_file", 123 "unevictable", 124 }; 125 126 #define THRESHOLDS_EVENTS_TARGET 128 127 #define SOFTLIMIT_EVENTS_TARGET 1024 128 #define NUMAINFO_EVENTS_TARGET 1024 129 130 /* 131 * Cgroups above their limits are maintained in a RB-Tree, independent of 132 * their hierarchy representation 133 */ 134 135 struct mem_cgroup_tree_per_zone { 136 struct rb_root rb_root; 137 spinlock_t lock; 138 }; 139 140 struct mem_cgroup_tree_per_node { 141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 142 }; 143 144 struct mem_cgroup_tree { 145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 146 }; 147 148 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 149 150 /* for OOM */ 151 struct mem_cgroup_eventfd_list { 152 struct list_head list; 153 struct eventfd_ctx *eventfd; 154 }; 155 156 /* 157 * cgroup_event represents events which userspace want to receive. 158 */ 159 struct mem_cgroup_event { 160 /* 161 * memcg which the event belongs to. 162 */ 163 struct mem_cgroup *memcg; 164 /* 165 * eventfd to signal userspace about the event. 166 */ 167 struct eventfd_ctx *eventfd; 168 /* 169 * Each of these stored in a list by the cgroup. 170 */ 171 struct list_head list; 172 /* 173 * register_event() callback will be used to add new userspace 174 * waiter for changes related to this event. Use eventfd_signal() 175 * on eventfd to send notification to userspace. 176 */ 177 int (*register_event)(struct mem_cgroup *memcg, 178 struct eventfd_ctx *eventfd, const char *args); 179 /* 180 * unregister_event() callback will be called when userspace closes 181 * the eventfd or on cgroup removing. This callback must be set, 182 * if you want provide notification functionality. 183 */ 184 void (*unregister_event)(struct mem_cgroup *memcg, 185 struct eventfd_ctx *eventfd); 186 /* 187 * All fields below needed to unregister event when 188 * userspace closes eventfd. 189 */ 190 poll_table pt; 191 wait_queue_head_t *wqh; 192 wait_queue_t wait; 193 struct work_struct remove; 194 }; 195 196 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 198 199 /* Stuffs for move charges at task migration. */ 200 /* 201 * Types of charges to be moved. 202 */ 203 #define MOVE_ANON 0x1U 204 #define MOVE_FILE 0x2U 205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 206 207 /* "mc" and its members are protected by cgroup_mutex */ 208 static struct move_charge_struct { 209 spinlock_t lock; /* for from, to */ 210 struct mm_struct *mm; 211 struct mem_cgroup *from; 212 struct mem_cgroup *to; 213 unsigned long flags; 214 unsigned long precharge; 215 unsigned long moved_charge; 216 unsigned long moved_swap; 217 struct task_struct *moving_task; /* a task moving charges */ 218 wait_queue_head_t waitq; /* a waitq for other context */ 219 } mc = { 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 222 }; 223 224 /* 225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 226 * limit reclaim to prevent infinite loops, if they ever occur. 227 */ 228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 230 231 enum charge_type { 232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 233 MEM_CGROUP_CHARGE_TYPE_ANON, 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 236 NR_CHARGE_TYPE, 237 }; 238 239 /* for encoding cft->private value on file */ 240 enum res_type { 241 _MEM, 242 _MEMSWAP, 243 _OOM_TYPE, 244 _KMEM, 245 _TCP, 246 }; 247 248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 250 #define MEMFILE_ATTR(val) ((val) & 0xffff) 251 /* Used for OOM nofiier */ 252 #define OOM_CONTROL (0) 253 254 /* Some nice accessors for the vmpressure. */ 255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 256 { 257 if (!memcg) 258 memcg = root_mem_cgroup; 259 return &memcg->vmpressure; 260 } 261 262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 263 { 264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 265 } 266 267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 268 { 269 return (memcg == root_mem_cgroup); 270 } 271 272 #ifndef CONFIG_SLOB 273 /* 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 275 * The main reason for not using cgroup id for this: 276 * this works better in sparse environments, where we have a lot of memcgs, 277 * but only a few kmem-limited. Or also, if we have, for instance, 200 278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 279 * 200 entry array for that. 280 * 281 * The current size of the caches array is stored in memcg_nr_cache_ids. It 282 * will double each time we have to increase it. 283 */ 284 static DEFINE_IDA(memcg_cache_ida); 285 int memcg_nr_cache_ids; 286 287 /* Protects memcg_nr_cache_ids */ 288 static DECLARE_RWSEM(memcg_cache_ids_sem); 289 290 void memcg_get_cache_ids(void) 291 { 292 down_read(&memcg_cache_ids_sem); 293 } 294 295 void memcg_put_cache_ids(void) 296 { 297 up_read(&memcg_cache_ids_sem); 298 } 299 300 /* 301 * MIN_SIZE is different than 1, because we would like to avoid going through 302 * the alloc/free process all the time. In a small machine, 4 kmem-limited 303 * cgroups is a reasonable guess. In the future, it could be a parameter or 304 * tunable, but that is strictly not necessary. 305 * 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 307 * this constant directly from cgroup, but it is understandable that this is 308 * better kept as an internal representation in cgroup.c. In any case, the 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily 310 * increase ours as well if it increases. 311 */ 312 #define MEMCG_CACHES_MIN_SIZE 4 313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 314 315 /* 316 * A lot of the calls to the cache allocation functions are expected to be 317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 318 * conditional to this static branch, we'll have to allow modules that does 319 * kmem_cache_alloc and the such to see this symbol as well 320 */ 321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 322 EXPORT_SYMBOL(memcg_kmem_enabled_key); 323 324 #endif /* !CONFIG_SLOB */ 325 326 static struct mem_cgroup_per_zone * 327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) 328 { 329 int nid = zone_to_nid(zone); 330 int zid = zone_idx(zone); 331 332 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 333 } 334 335 /** 336 * mem_cgroup_css_from_page - css of the memcg associated with a page 337 * @page: page of interest 338 * 339 * If memcg is bound to the default hierarchy, css of the memcg associated 340 * with @page is returned. The returned css remains associated with @page 341 * until it is released. 342 * 343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 344 * is returned. 345 */ 346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 347 { 348 struct mem_cgroup *memcg; 349 350 memcg = page->mem_cgroup; 351 352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 353 memcg = root_mem_cgroup; 354 355 return &memcg->css; 356 } 357 358 /** 359 * page_cgroup_ino - return inode number of the memcg a page is charged to 360 * @page: the page 361 * 362 * Look up the closest online ancestor of the memory cgroup @page is charged to 363 * and return its inode number or 0 if @page is not charged to any cgroup. It 364 * is safe to call this function without holding a reference to @page. 365 * 366 * Note, this function is inherently racy, because there is nothing to prevent 367 * the cgroup inode from getting torn down and potentially reallocated a moment 368 * after page_cgroup_ino() returns, so it only should be used by callers that 369 * do not care (such as procfs interfaces). 370 */ 371 ino_t page_cgroup_ino(struct page *page) 372 { 373 struct mem_cgroup *memcg; 374 unsigned long ino = 0; 375 376 rcu_read_lock(); 377 memcg = READ_ONCE(page->mem_cgroup); 378 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 379 memcg = parent_mem_cgroup(memcg); 380 if (memcg) 381 ino = cgroup_ino(memcg->css.cgroup); 382 rcu_read_unlock(); 383 return ino; 384 } 385 386 static struct mem_cgroup_per_zone * 387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) 388 { 389 int nid = page_to_nid(page); 390 int zid = page_zonenum(page); 391 392 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 393 } 394 395 static struct mem_cgroup_tree_per_zone * 396 soft_limit_tree_node_zone(int nid, int zid) 397 { 398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 399 } 400 401 static struct mem_cgroup_tree_per_zone * 402 soft_limit_tree_from_page(struct page *page) 403 { 404 int nid = page_to_nid(page); 405 int zid = page_zonenum(page); 406 407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 408 } 409 410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, 411 struct mem_cgroup_tree_per_zone *mctz, 412 unsigned long new_usage_in_excess) 413 { 414 struct rb_node **p = &mctz->rb_root.rb_node; 415 struct rb_node *parent = NULL; 416 struct mem_cgroup_per_zone *mz_node; 417 418 if (mz->on_tree) 419 return; 420 421 mz->usage_in_excess = new_usage_in_excess; 422 if (!mz->usage_in_excess) 423 return; 424 while (*p) { 425 parent = *p; 426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 427 tree_node); 428 if (mz->usage_in_excess < mz_node->usage_in_excess) 429 p = &(*p)->rb_left; 430 /* 431 * We can't avoid mem cgroups that are over their soft 432 * limit by the same amount 433 */ 434 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 435 p = &(*p)->rb_right; 436 } 437 rb_link_node(&mz->tree_node, parent, p); 438 rb_insert_color(&mz->tree_node, &mctz->rb_root); 439 mz->on_tree = true; 440 } 441 442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 443 struct mem_cgroup_tree_per_zone *mctz) 444 { 445 if (!mz->on_tree) 446 return; 447 rb_erase(&mz->tree_node, &mctz->rb_root); 448 mz->on_tree = false; 449 } 450 451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 452 struct mem_cgroup_tree_per_zone *mctz) 453 { 454 unsigned long flags; 455 456 spin_lock_irqsave(&mctz->lock, flags); 457 __mem_cgroup_remove_exceeded(mz, mctz); 458 spin_unlock_irqrestore(&mctz->lock, flags); 459 } 460 461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 462 { 463 unsigned long nr_pages = page_counter_read(&memcg->memory); 464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 465 unsigned long excess = 0; 466 467 if (nr_pages > soft_limit) 468 excess = nr_pages - soft_limit; 469 470 return excess; 471 } 472 473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 474 { 475 unsigned long excess; 476 struct mem_cgroup_per_zone *mz; 477 struct mem_cgroup_tree_per_zone *mctz; 478 479 mctz = soft_limit_tree_from_page(page); 480 /* 481 * Necessary to update all ancestors when hierarchy is used. 482 * because their event counter is not touched. 483 */ 484 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 485 mz = mem_cgroup_page_zoneinfo(memcg, page); 486 excess = soft_limit_excess(memcg); 487 /* 488 * We have to update the tree if mz is on RB-tree or 489 * mem is over its softlimit. 490 */ 491 if (excess || mz->on_tree) { 492 unsigned long flags; 493 494 spin_lock_irqsave(&mctz->lock, flags); 495 /* if on-tree, remove it */ 496 if (mz->on_tree) 497 __mem_cgroup_remove_exceeded(mz, mctz); 498 /* 499 * Insert again. mz->usage_in_excess will be updated. 500 * If excess is 0, no tree ops. 501 */ 502 __mem_cgroup_insert_exceeded(mz, mctz, excess); 503 spin_unlock_irqrestore(&mctz->lock, flags); 504 } 505 } 506 } 507 508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 509 { 510 struct mem_cgroup_tree_per_zone *mctz; 511 struct mem_cgroup_per_zone *mz; 512 int nid, zid; 513 514 for_each_node(nid) { 515 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 517 mctz = soft_limit_tree_node_zone(nid, zid); 518 mem_cgroup_remove_exceeded(mz, mctz); 519 } 520 } 521 } 522 523 static struct mem_cgroup_per_zone * 524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 525 { 526 struct rb_node *rightmost = NULL; 527 struct mem_cgroup_per_zone *mz; 528 529 retry: 530 mz = NULL; 531 rightmost = rb_last(&mctz->rb_root); 532 if (!rightmost) 533 goto done; /* Nothing to reclaim from */ 534 535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 536 /* 537 * Remove the node now but someone else can add it back, 538 * we will to add it back at the end of reclaim to its correct 539 * position in the tree. 540 */ 541 __mem_cgroup_remove_exceeded(mz, mctz); 542 if (!soft_limit_excess(mz->memcg) || 543 !css_tryget_online(&mz->memcg->css)) 544 goto retry; 545 done: 546 return mz; 547 } 548 549 static struct mem_cgroup_per_zone * 550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 551 { 552 struct mem_cgroup_per_zone *mz; 553 554 spin_lock_irq(&mctz->lock); 555 mz = __mem_cgroup_largest_soft_limit_node(mctz); 556 spin_unlock_irq(&mctz->lock); 557 return mz; 558 } 559 560 /* 561 * Return page count for single (non recursive) @memcg. 562 * 563 * Implementation Note: reading percpu statistics for memcg. 564 * 565 * Both of vmstat[] and percpu_counter has threshold and do periodic 566 * synchronization to implement "quick" read. There are trade-off between 567 * reading cost and precision of value. Then, we may have a chance to implement 568 * a periodic synchronization of counter in memcg's counter. 569 * 570 * But this _read() function is used for user interface now. The user accounts 571 * memory usage by memory cgroup and he _always_ requires exact value because 572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 573 * have to visit all online cpus and make sum. So, for now, unnecessary 574 * synchronization is not implemented. (just implemented for cpu hotplug) 575 * 576 * If there are kernel internal actions which can make use of some not-exact 577 * value, and reading all cpu value can be performance bottleneck in some 578 * common workload, threshold and synchronization as vmstat[] should be 579 * implemented. 580 */ 581 static unsigned long 582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) 583 { 584 long val = 0; 585 int cpu; 586 587 /* Per-cpu values can be negative, use a signed accumulator */ 588 for_each_possible_cpu(cpu) 589 val += per_cpu(memcg->stat->count[idx], cpu); 590 /* 591 * Summing races with updates, so val may be negative. Avoid exposing 592 * transient negative values. 593 */ 594 if (val < 0) 595 val = 0; 596 return val; 597 } 598 599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 600 enum mem_cgroup_events_index idx) 601 { 602 unsigned long val = 0; 603 int cpu; 604 605 for_each_possible_cpu(cpu) 606 val += per_cpu(memcg->stat->events[idx], cpu); 607 return val; 608 } 609 610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 611 struct page *page, 612 bool compound, int nr_pages) 613 { 614 /* 615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 616 * counted as CACHE even if it's on ANON LRU. 617 */ 618 if (PageAnon(page)) 619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 620 nr_pages); 621 else 622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 623 nr_pages); 624 625 if (compound) { 626 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 628 nr_pages); 629 } 630 631 /* pagein of a big page is an event. So, ignore page size */ 632 if (nr_pages > 0) 633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 634 else { 635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 636 nr_pages = -nr_pages; /* for event */ 637 } 638 639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 640 } 641 642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 643 int nid, unsigned int lru_mask) 644 { 645 unsigned long nr = 0; 646 int zid; 647 648 VM_BUG_ON((unsigned)nid >= nr_node_ids); 649 650 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 651 struct mem_cgroup_per_zone *mz; 652 enum lru_list lru; 653 654 for_each_lru(lru) { 655 if (!(BIT(lru) & lru_mask)) 656 continue; 657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 658 nr += mz->lru_size[lru]; 659 } 660 } 661 return nr; 662 } 663 664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 665 unsigned int lru_mask) 666 { 667 unsigned long nr = 0; 668 int nid; 669 670 for_each_node_state(nid, N_MEMORY) 671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 672 return nr; 673 } 674 675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 676 enum mem_cgroup_events_target target) 677 { 678 unsigned long val, next; 679 680 val = __this_cpu_read(memcg->stat->nr_page_events); 681 next = __this_cpu_read(memcg->stat->targets[target]); 682 /* from time_after() in jiffies.h */ 683 if ((long)next - (long)val < 0) { 684 switch (target) { 685 case MEM_CGROUP_TARGET_THRESH: 686 next = val + THRESHOLDS_EVENTS_TARGET; 687 break; 688 case MEM_CGROUP_TARGET_SOFTLIMIT: 689 next = val + SOFTLIMIT_EVENTS_TARGET; 690 break; 691 case MEM_CGROUP_TARGET_NUMAINFO: 692 next = val + NUMAINFO_EVENTS_TARGET; 693 break; 694 default: 695 break; 696 } 697 __this_cpu_write(memcg->stat->targets[target], next); 698 return true; 699 } 700 return false; 701 } 702 703 /* 704 * Check events in order. 705 * 706 */ 707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 708 { 709 /* threshold event is triggered in finer grain than soft limit */ 710 if (unlikely(mem_cgroup_event_ratelimit(memcg, 711 MEM_CGROUP_TARGET_THRESH))) { 712 bool do_softlimit; 713 bool do_numainfo __maybe_unused; 714 715 do_softlimit = mem_cgroup_event_ratelimit(memcg, 716 MEM_CGROUP_TARGET_SOFTLIMIT); 717 #if MAX_NUMNODES > 1 718 do_numainfo = mem_cgroup_event_ratelimit(memcg, 719 MEM_CGROUP_TARGET_NUMAINFO); 720 #endif 721 mem_cgroup_threshold(memcg); 722 if (unlikely(do_softlimit)) 723 mem_cgroup_update_tree(memcg, page); 724 #if MAX_NUMNODES > 1 725 if (unlikely(do_numainfo)) 726 atomic_inc(&memcg->numainfo_events); 727 #endif 728 } 729 } 730 731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 732 { 733 /* 734 * mm_update_next_owner() may clear mm->owner to NULL 735 * if it races with swapoff, page migration, etc. 736 * So this can be called with p == NULL. 737 */ 738 if (unlikely(!p)) 739 return NULL; 740 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 742 } 743 EXPORT_SYMBOL(mem_cgroup_from_task); 744 745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 746 { 747 struct mem_cgroup *memcg = NULL; 748 749 rcu_read_lock(); 750 do { 751 /* 752 * Page cache insertions can happen withou an 753 * actual mm context, e.g. during disk probing 754 * on boot, loopback IO, acct() writes etc. 755 */ 756 if (unlikely(!mm)) 757 memcg = root_mem_cgroup; 758 else { 759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 760 if (unlikely(!memcg)) 761 memcg = root_mem_cgroup; 762 } 763 } while (!css_tryget_online(&memcg->css)); 764 rcu_read_unlock(); 765 return memcg; 766 } 767 768 /** 769 * mem_cgroup_iter - iterate over memory cgroup hierarchy 770 * @root: hierarchy root 771 * @prev: previously returned memcg, NULL on first invocation 772 * @reclaim: cookie for shared reclaim walks, NULL for full walks 773 * 774 * Returns references to children of the hierarchy below @root, or 775 * @root itself, or %NULL after a full round-trip. 776 * 777 * Caller must pass the return value in @prev on subsequent 778 * invocations for reference counting, or use mem_cgroup_iter_break() 779 * to cancel a hierarchy walk before the round-trip is complete. 780 * 781 * Reclaimers can specify a zone and a priority level in @reclaim to 782 * divide up the memcgs in the hierarchy among all concurrent 783 * reclaimers operating on the same zone and priority. 784 */ 785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 786 struct mem_cgroup *prev, 787 struct mem_cgroup_reclaim_cookie *reclaim) 788 { 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 790 struct cgroup_subsys_state *css = NULL; 791 struct mem_cgroup *memcg = NULL; 792 struct mem_cgroup *pos = NULL; 793 794 if (mem_cgroup_disabled()) 795 return NULL; 796 797 if (!root) 798 root = root_mem_cgroup; 799 800 if (prev && !reclaim) 801 pos = prev; 802 803 if (!root->use_hierarchy && root != root_mem_cgroup) { 804 if (prev) 805 goto out; 806 return root; 807 } 808 809 rcu_read_lock(); 810 811 if (reclaim) { 812 struct mem_cgroup_per_zone *mz; 813 814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); 815 iter = &mz->iter[reclaim->priority]; 816 817 if (prev && reclaim->generation != iter->generation) 818 goto out_unlock; 819 820 while (1) { 821 pos = READ_ONCE(iter->position); 822 if (!pos || css_tryget(&pos->css)) 823 break; 824 /* 825 * css reference reached zero, so iter->position will 826 * be cleared by ->css_released. However, we should not 827 * rely on this happening soon, because ->css_released 828 * is called from a work queue, and by busy-waiting we 829 * might block it. So we clear iter->position right 830 * away. 831 */ 832 (void)cmpxchg(&iter->position, pos, NULL); 833 } 834 } 835 836 if (pos) 837 css = &pos->css; 838 839 for (;;) { 840 css = css_next_descendant_pre(css, &root->css); 841 if (!css) { 842 /* 843 * Reclaimers share the hierarchy walk, and a 844 * new one might jump in right at the end of 845 * the hierarchy - make sure they see at least 846 * one group and restart from the beginning. 847 */ 848 if (!prev) 849 continue; 850 break; 851 } 852 853 /* 854 * Verify the css and acquire a reference. The root 855 * is provided by the caller, so we know it's alive 856 * and kicking, and don't take an extra reference. 857 */ 858 memcg = mem_cgroup_from_css(css); 859 860 if (css == &root->css) 861 break; 862 863 if (css_tryget(css)) 864 break; 865 866 memcg = NULL; 867 } 868 869 if (reclaim) { 870 /* 871 * The position could have already been updated by a competing 872 * thread, so check that the value hasn't changed since we read 873 * it to avoid reclaiming from the same cgroup twice. 874 */ 875 (void)cmpxchg(&iter->position, pos, memcg); 876 877 if (pos) 878 css_put(&pos->css); 879 880 if (!memcg) 881 iter->generation++; 882 else if (!prev) 883 reclaim->generation = iter->generation; 884 } 885 886 out_unlock: 887 rcu_read_unlock(); 888 out: 889 if (prev && prev != root) 890 css_put(&prev->css); 891 892 return memcg; 893 } 894 895 /** 896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 897 * @root: hierarchy root 898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 899 */ 900 void mem_cgroup_iter_break(struct mem_cgroup *root, 901 struct mem_cgroup *prev) 902 { 903 if (!root) 904 root = root_mem_cgroup; 905 if (prev && prev != root) 906 css_put(&prev->css); 907 } 908 909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 910 { 911 struct mem_cgroup *memcg = dead_memcg; 912 struct mem_cgroup_reclaim_iter *iter; 913 struct mem_cgroup_per_zone *mz; 914 int nid, zid; 915 int i; 916 917 while ((memcg = parent_mem_cgroup(memcg))) { 918 for_each_node(nid) { 919 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 921 for (i = 0; i <= DEF_PRIORITY; i++) { 922 iter = &mz->iter[i]; 923 cmpxchg(&iter->position, 924 dead_memcg, NULL); 925 } 926 } 927 } 928 } 929 } 930 931 /* 932 * Iteration constructs for visiting all cgroups (under a tree). If 933 * loops are exited prematurely (break), mem_cgroup_iter_break() must 934 * be used for reference counting. 935 */ 936 #define for_each_mem_cgroup_tree(iter, root) \ 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 938 iter != NULL; \ 939 iter = mem_cgroup_iter(root, iter, NULL)) 940 941 #define for_each_mem_cgroup(iter) \ 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 943 iter != NULL; \ 944 iter = mem_cgroup_iter(NULL, iter, NULL)) 945 946 /** 947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 948 * @zone: zone of the wanted lruvec 949 * @memcg: memcg of the wanted lruvec 950 * 951 * Returns the lru list vector holding pages for the given @zone and 952 * @mem. This can be the global zone lruvec, if the memory controller 953 * is disabled. 954 */ 955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 956 struct mem_cgroup *memcg) 957 { 958 struct mem_cgroup_per_zone *mz; 959 struct lruvec *lruvec; 960 961 if (mem_cgroup_disabled()) { 962 lruvec = &zone->lruvec; 963 goto out; 964 } 965 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone); 967 lruvec = &mz->lruvec; 968 out: 969 /* 970 * Since a node can be onlined after the mem_cgroup was created, 971 * we have to be prepared to initialize lruvec->zone here; 972 * and if offlined then reonlined, we need to reinitialize it. 973 */ 974 if (unlikely(lruvec->zone != zone)) 975 lruvec->zone = zone; 976 return lruvec; 977 } 978 979 /** 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 981 * @page: the page 982 * @zone: zone of the page 983 * 984 * This function is only safe when following the LRU page isolation 985 * and putback protocol: the LRU lock must be held, and the page must 986 * either be PageLRU() or the caller must have isolated/allocated it. 987 */ 988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 989 { 990 struct mem_cgroup_per_zone *mz; 991 struct mem_cgroup *memcg; 992 struct lruvec *lruvec; 993 994 if (mem_cgroup_disabled()) { 995 lruvec = &zone->lruvec; 996 goto out; 997 } 998 999 memcg = page->mem_cgroup; 1000 /* 1001 * Swapcache readahead pages are added to the LRU - and 1002 * possibly migrated - before they are charged. 1003 */ 1004 if (!memcg) 1005 memcg = root_mem_cgroup; 1006 1007 mz = mem_cgroup_page_zoneinfo(memcg, page); 1008 lruvec = &mz->lruvec; 1009 out: 1010 /* 1011 * Since a node can be onlined after the mem_cgroup was created, 1012 * we have to be prepared to initialize lruvec->zone here; 1013 * and if offlined then reonlined, we need to reinitialize it. 1014 */ 1015 if (unlikely(lruvec->zone != zone)) 1016 lruvec->zone = zone; 1017 return lruvec; 1018 } 1019 1020 /** 1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1022 * @lruvec: mem_cgroup per zone lru vector 1023 * @lru: index of lru list the page is sitting on 1024 * @nr_pages: positive when adding or negative when removing 1025 * 1026 * This function must be called under lru_lock, just before a page is added 1027 * to or just after a page is removed from an lru list (that ordering being 1028 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1029 */ 1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1031 int nr_pages) 1032 { 1033 struct mem_cgroup_per_zone *mz; 1034 unsigned long *lru_size; 1035 long size; 1036 bool empty; 1037 1038 __update_lru_size(lruvec, lru, nr_pages); 1039 1040 if (mem_cgroup_disabled()) 1041 return; 1042 1043 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1044 lru_size = mz->lru_size + lru; 1045 empty = list_empty(lruvec->lists + lru); 1046 1047 if (nr_pages < 0) 1048 *lru_size += nr_pages; 1049 1050 size = *lru_size; 1051 if (WARN_ONCE(size < 0 || empty != !size, 1052 "%s(%p, %d, %d): lru_size %ld but %sempty\n", 1053 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) { 1054 VM_BUG_ON(1); 1055 *lru_size = 0; 1056 } 1057 1058 if (nr_pages > 0) 1059 *lru_size += nr_pages; 1060 } 1061 1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1063 { 1064 struct mem_cgroup *task_memcg; 1065 struct task_struct *p; 1066 bool ret; 1067 1068 p = find_lock_task_mm(task); 1069 if (p) { 1070 task_memcg = get_mem_cgroup_from_mm(p->mm); 1071 task_unlock(p); 1072 } else { 1073 /* 1074 * All threads may have already detached their mm's, but the oom 1075 * killer still needs to detect if they have already been oom 1076 * killed to prevent needlessly killing additional tasks. 1077 */ 1078 rcu_read_lock(); 1079 task_memcg = mem_cgroup_from_task(task); 1080 css_get(&task_memcg->css); 1081 rcu_read_unlock(); 1082 } 1083 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1084 css_put(&task_memcg->css); 1085 return ret; 1086 } 1087 1088 /** 1089 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1090 * @memcg: the memory cgroup 1091 * 1092 * Returns the maximum amount of memory @mem can be charged with, in 1093 * pages. 1094 */ 1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1096 { 1097 unsigned long margin = 0; 1098 unsigned long count; 1099 unsigned long limit; 1100 1101 count = page_counter_read(&memcg->memory); 1102 limit = READ_ONCE(memcg->memory.limit); 1103 if (count < limit) 1104 margin = limit - count; 1105 1106 if (do_memsw_account()) { 1107 count = page_counter_read(&memcg->memsw); 1108 limit = READ_ONCE(memcg->memsw.limit); 1109 if (count <= limit) 1110 margin = min(margin, limit - count); 1111 else 1112 margin = 0; 1113 } 1114 1115 return margin; 1116 } 1117 1118 /* 1119 * A routine for checking "mem" is under move_account() or not. 1120 * 1121 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1122 * moving cgroups. This is for waiting at high-memory pressure 1123 * caused by "move". 1124 */ 1125 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1126 { 1127 struct mem_cgroup *from; 1128 struct mem_cgroup *to; 1129 bool ret = false; 1130 /* 1131 * Unlike task_move routines, we access mc.to, mc.from not under 1132 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1133 */ 1134 spin_lock(&mc.lock); 1135 from = mc.from; 1136 to = mc.to; 1137 if (!from) 1138 goto unlock; 1139 1140 ret = mem_cgroup_is_descendant(from, memcg) || 1141 mem_cgroup_is_descendant(to, memcg); 1142 unlock: 1143 spin_unlock(&mc.lock); 1144 return ret; 1145 } 1146 1147 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1148 { 1149 if (mc.moving_task && current != mc.moving_task) { 1150 if (mem_cgroup_under_move(memcg)) { 1151 DEFINE_WAIT(wait); 1152 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1153 /* moving charge context might have finished. */ 1154 if (mc.moving_task) 1155 schedule(); 1156 finish_wait(&mc.waitq, &wait); 1157 return true; 1158 } 1159 } 1160 return false; 1161 } 1162 1163 #define K(x) ((x) << (PAGE_SHIFT-10)) 1164 /** 1165 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1166 * @memcg: The memory cgroup that went over limit 1167 * @p: Task that is going to be killed 1168 * 1169 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1170 * enabled 1171 */ 1172 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1173 { 1174 struct mem_cgroup *iter; 1175 unsigned int i; 1176 1177 rcu_read_lock(); 1178 1179 if (p) { 1180 pr_info("Task in "); 1181 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1182 pr_cont(" killed as a result of limit of "); 1183 } else { 1184 pr_info("Memory limit reached of cgroup "); 1185 } 1186 1187 pr_cont_cgroup_path(memcg->css.cgroup); 1188 pr_cont("\n"); 1189 1190 rcu_read_unlock(); 1191 1192 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1193 K((u64)page_counter_read(&memcg->memory)), 1194 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1195 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1196 K((u64)page_counter_read(&memcg->memsw)), 1197 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1198 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1199 K((u64)page_counter_read(&memcg->kmem)), 1200 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1201 1202 for_each_mem_cgroup_tree(iter, memcg) { 1203 pr_info("Memory cgroup stats for "); 1204 pr_cont_cgroup_path(iter->css.cgroup); 1205 pr_cont(":"); 1206 1207 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1208 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1209 continue; 1210 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], 1211 K(mem_cgroup_read_stat(iter, i))); 1212 } 1213 1214 for (i = 0; i < NR_LRU_LISTS; i++) 1215 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1216 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1217 1218 pr_cont("\n"); 1219 } 1220 } 1221 1222 /* 1223 * This function returns the number of memcg under hierarchy tree. Returns 1224 * 1(self count) if no children. 1225 */ 1226 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1227 { 1228 int num = 0; 1229 struct mem_cgroup *iter; 1230 1231 for_each_mem_cgroup_tree(iter, memcg) 1232 num++; 1233 return num; 1234 } 1235 1236 /* 1237 * Return the memory (and swap, if configured) limit for a memcg. 1238 */ 1239 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1240 { 1241 unsigned long limit; 1242 1243 limit = memcg->memory.limit; 1244 if (mem_cgroup_swappiness(memcg)) { 1245 unsigned long memsw_limit; 1246 unsigned long swap_limit; 1247 1248 memsw_limit = memcg->memsw.limit; 1249 swap_limit = memcg->swap.limit; 1250 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1251 limit = min(limit + swap_limit, memsw_limit); 1252 } 1253 return limit; 1254 } 1255 1256 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1257 int order) 1258 { 1259 struct oom_control oc = { 1260 .zonelist = NULL, 1261 .nodemask = NULL, 1262 .gfp_mask = gfp_mask, 1263 .order = order, 1264 }; 1265 struct mem_cgroup *iter; 1266 unsigned long chosen_points = 0; 1267 unsigned long totalpages; 1268 unsigned int points = 0; 1269 struct task_struct *chosen = NULL; 1270 1271 mutex_lock(&oom_lock); 1272 1273 /* 1274 * If current has a pending SIGKILL or is exiting, then automatically 1275 * select it. The goal is to allow it to allocate so that it may 1276 * quickly exit and free its memory. 1277 */ 1278 if (fatal_signal_pending(current) || task_will_free_mem(current)) { 1279 mark_oom_victim(current); 1280 try_oom_reaper(current); 1281 goto unlock; 1282 } 1283 1284 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg); 1285 totalpages = mem_cgroup_get_limit(memcg) ? : 1; 1286 for_each_mem_cgroup_tree(iter, memcg) { 1287 struct css_task_iter it; 1288 struct task_struct *task; 1289 1290 css_task_iter_start(&iter->css, &it); 1291 while ((task = css_task_iter_next(&it))) { 1292 switch (oom_scan_process_thread(&oc, task, totalpages)) { 1293 case OOM_SCAN_SELECT: 1294 if (chosen) 1295 put_task_struct(chosen); 1296 chosen = task; 1297 chosen_points = ULONG_MAX; 1298 get_task_struct(chosen); 1299 /* fall through */ 1300 case OOM_SCAN_CONTINUE: 1301 continue; 1302 case OOM_SCAN_ABORT: 1303 css_task_iter_end(&it); 1304 mem_cgroup_iter_break(memcg, iter); 1305 if (chosen) 1306 put_task_struct(chosen); 1307 /* Set a dummy value to return "true". */ 1308 chosen = (void *) 1; 1309 goto unlock; 1310 case OOM_SCAN_OK: 1311 break; 1312 }; 1313 points = oom_badness(task, memcg, NULL, totalpages); 1314 if (!points || points < chosen_points) 1315 continue; 1316 /* Prefer thread group leaders for display purposes */ 1317 if (points == chosen_points && 1318 thread_group_leader(chosen)) 1319 continue; 1320 1321 if (chosen) 1322 put_task_struct(chosen); 1323 chosen = task; 1324 chosen_points = points; 1325 get_task_struct(chosen); 1326 } 1327 css_task_iter_end(&it); 1328 } 1329 1330 if (chosen) { 1331 points = chosen_points * 1000 / totalpages; 1332 oom_kill_process(&oc, chosen, points, totalpages, memcg, 1333 "Memory cgroup out of memory"); 1334 } 1335 unlock: 1336 mutex_unlock(&oom_lock); 1337 return chosen; 1338 } 1339 1340 #if MAX_NUMNODES > 1 1341 1342 /** 1343 * test_mem_cgroup_node_reclaimable 1344 * @memcg: the target memcg 1345 * @nid: the node ID to be checked. 1346 * @noswap : specify true here if the user wants flle only information. 1347 * 1348 * This function returns whether the specified memcg contains any 1349 * reclaimable pages on a node. Returns true if there are any reclaimable 1350 * pages in the node. 1351 */ 1352 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1353 int nid, bool noswap) 1354 { 1355 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1356 return true; 1357 if (noswap || !total_swap_pages) 1358 return false; 1359 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1360 return true; 1361 return false; 1362 1363 } 1364 1365 /* 1366 * Always updating the nodemask is not very good - even if we have an empty 1367 * list or the wrong list here, we can start from some node and traverse all 1368 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1369 * 1370 */ 1371 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1372 { 1373 int nid; 1374 /* 1375 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1376 * pagein/pageout changes since the last update. 1377 */ 1378 if (!atomic_read(&memcg->numainfo_events)) 1379 return; 1380 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1381 return; 1382 1383 /* make a nodemask where this memcg uses memory from */ 1384 memcg->scan_nodes = node_states[N_MEMORY]; 1385 1386 for_each_node_mask(nid, node_states[N_MEMORY]) { 1387 1388 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1389 node_clear(nid, memcg->scan_nodes); 1390 } 1391 1392 atomic_set(&memcg->numainfo_events, 0); 1393 atomic_set(&memcg->numainfo_updating, 0); 1394 } 1395 1396 /* 1397 * Selecting a node where we start reclaim from. Because what we need is just 1398 * reducing usage counter, start from anywhere is O,K. Considering 1399 * memory reclaim from current node, there are pros. and cons. 1400 * 1401 * Freeing memory from current node means freeing memory from a node which 1402 * we'll use or we've used. So, it may make LRU bad. And if several threads 1403 * hit limits, it will see a contention on a node. But freeing from remote 1404 * node means more costs for memory reclaim because of memory latency. 1405 * 1406 * Now, we use round-robin. Better algorithm is welcomed. 1407 */ 1408 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1409 { 1410 int node; 1411 1412 mem_cgroup_may_update_nodemask(memcg); 1413 node = memcg->last_scanned_node; 1414 1415 node = next_node_in(node, memcg->scan_nodes); 1416 /* 1417 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1418 * last time it really checked all the LRUs due to rate limiting. 1419 * Fallback to the current node in that case for simplicity. 1420 */ 1421 if (unlikely(node == MAX_NUMNODES)) 1422 node = numa_node_id(); 1423 1424 memcg->last_scanned_node = node; 1425 return node; 1426 } 1427 #else 1428 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1429 { 1430 return 0; 1431 } 1432 #endif 1433 1434 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1435 struct zone *zone, 1436 gfp_t gfp_mask, 1437 unsigned long *total_scanned) 1438 { 1439 struct mem_cgroup *victim = NULL; 1440 int total = 0; 1441 int loop = 0; 1442 unsigned long excess; 1443 unsigned long nr_scanned; 1444 struct mem_cgroup_reclaim_cookie reclaim = { 1445 .zone = zone, 1446 .priority = 0, 1447 }; 1448 1449 excess = soft_limit_excess(root_memcg); 1450 1451 while (1) { 1452 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1453 if (!victim) { 1454 loop++; 1455 if (loop >= 2) { 1456 /* 1457 * If we have not been able to reclaim 1458 * anything, it might because there are 1459 * no reclaimable pages under this hierarchy 1460 */ 1461 if (!total) 1462 break; 1463 /* 1464 * We want to do more targeted reclaim. 1465 * excess >> 2 is not to excessive so as to 1466 * reclaim too much, nor too less that we keep 1467 * coming back to reclaim from this cgroup 1468 */ 1469 if (total >= (excess >> 2) || 1470 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1471 break; 1472 } 1473 continue; 1474 } 1475 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1476 zone, &nr_scanned); 1477 *total_scanned += nr_scanned; 1478 if (!soft_limit_excess(root_memcg)) 1479 break; 1480 } 1481 mem_cgroup_iter_break(root_memcg, victim); 1482 return total; 1483 } 1484 1485 #ifdef CONFIG_LOCKDEP 1486 static struct lockdep_map memcg_oom_lock_dep_map = { 1487 .name = "memcg_oom_lock", 1488 }; 1489 #endif 1490 1491 static DEFINE_SPINLOCK(memcg_oom_lock); 1492 1493 /* 1494 * Check OOM-Killer is already running under our hierarchy. 1495 * If someone is running, return false. 1496 */ 1497 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1498 { 1499 struct mem_cgroup *iter, *failed = NULL; 1500 1501 spin_lock(&memcg_oom_lock); 1502 1503 for_each_mem_cgroup_tree(iter, memcg) { 1504 if (iter->oom_lock) { 1505 /* 1506 * this subtree of our hierarchy is already locked 1507 * so we cannot give a lock. 1508 */ 1509 failed = iter; 1510 mem_cgroup_iter_break(memcg, iter); 1511 break; 1512 } else 1513 iter->oom_lock = true; 1514 } 1515 1516 if (failed) { 1517 /* 1518 * OK, we failed to lock the whole subtree so we have 1519 * to clean up what we set up to the failing subtree 1520 */ 1521 for_each_mem_cgroup_tree(iter, memcg) { 1522 if (iter == failed) { 1523 mem_cgroup_iter_break(memcg, iter); 1524 break; 1525 } 1526 iter->oom_lock = false; 1527 } 1528 } else 1529 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1530 1531 spin_unlock(&memcg_oom_lock); 1532 1533 return !failed; 1534 } 1535 1536 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1537 { 1538 struct mem_cgroup *iter; 1539 1540 spin_lock(&memcg_oom_lock); 1541 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1542 for_each_mem_cgroup_tree(iter, memcg) 1543 iter->oom_lock = false; 1544 spin_unlock(&memcg_oom_lock); 1545 } 1546 1547 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1548 { 1549 struct mem_cgroup *iter; 1550 1551 spin_lock(&memcg_oom_lock); 1552 for_each_mem_cgroup_tree(iter, memcg) 1553 iter->under_oom++; 1554 spin_unlock(&memcg_oom_lock); 1555 } 1556 1557 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1558 { 1559 struct mem_cgroup *iter; 1560 1561 /* 1562 * When a new child is created while the hierarchy is under oom, 1563 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1564 */ 1565 spin_lock(&memcg_oom_lock); 1566 for_each_mem_cgroup_tree(iter, memcg) 1567 if (iter->under_oom > 0) 1568 iter->under_oom--; 1569 spin_unlock(&memcg_oom_lock); 1570 } 1571 1572 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1573 1574 struct oom_wait_info { 1575 struct mem_cgroup *memcg; 1576 wait_queue_t wait; 1577 }; 1578 1579 static int memcg_oom_wake_function(wait_queue_t *wait, 1580 unsigned mode, int sync, void *arg) 1581 { 1582 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1583 struct mem_cgroup *oom_wait_memcg; 1584 struct oom_wait_info *oom_wait_info; 1585 1586 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1587 oom_wait_memcg = oom_wait_info->memcg; 1588 1589 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1590 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1591 return 0; 1592 return autoremove_wake_function(wait, mode, sync, arg); 1593 } 1594 1595 static void memcg_oom_recover(struct mem_cgroup *memcg) 1596 { 1597 /* 1598 * For the following lockless ->under_oom test, the only required 1599 * guarantee is that it must see the state asserted by an OOM when 1600 * this function is called as a result of userland actions 1601 * triggered by the notification of the OOM. This is trivially 1602 * achieved by invoking mem_cgroup_mark_under_oom() before 1603 * triggering notification. 1604 */ 1605 if (memcg && memcg->under_oom) 1606 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1607 } 1608 1609 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1610 { 1611 if (!current->memcg_may_oom) 1612 return; 1613 /* 1614 * We are in the middle of the charge context here, so we 1615 * don't want to block when potentially sitting on a callstack 1616 * that holds all kinds of filesystem and mm locks. 1617 * 1618 * Also, the caller may handle a failed allocation gracefully 1619 * (like optional page cache readahead) and so an OOM killer 1620 * invocation might not even be necessary. 1621 * 1622 * That's why we don't do anything here except remember the 1623 * OOM context and then deal with it at the end of the page 1624 * fault when the stack is unwound, the locks are released, 1625 * and when we know whether the fault was overall successful. 1626 */ 1627 css_get(&memcg->css); 1628 current->memcg_in_oom = memcg; 1629 current->memcg_oom_gfp_mask = mask; 1630 current->memcg_oom_order = order; 1631 } 1632 1633 /** 1634 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1635 * @handle: actually kill/wait or just clean up the OOM state 1636 * 1637 * This has to be called at the end of a page fault if the memcg OOM 1638 * handler was enabled. 1639 * 1640 * Memcg supports userspace OOM handling where failed allocations must 1641 * sleep on a waitqueue until the userspace task resolves the 1642 * situation. Sleeping directly in the charge context with all kinds 1643 * of locks held is not a good idea, instead we remember an OOM state 1644 * in the task and mem_cgroup_oom_synchronize() has to be called at 1645 * the end of the page fault to complete the OOM handling. 1646 * 1647 * Returns %true if an ongoing memcg OOM situation was detected and 1648 * completed, %false otherwise. 1649 */ 1650 bool mem_cgroup_oom_synchronize(bool handle) 1651 { 1652 struct mem_cgroup *memcg = current->memcg_in_oom; 1653 struct oom_wait_info owait; 1654 bool locked; 1655 1656 /* OOM is global, do not handle */ 1657 if (!memcg) 1658 return false; 1659 1660 if (!handle || oom_killer_disabled) 1661 goto cleanup; 1662 1663 owait.memcg = memcg; 1664 owait.wait.flags = 0; 1665 owait.wait.func = memcg_oom_wake_function; 1666 owait.wait.private = current; 1667 INIT_LIST_HEAD(&owait.wait.task_list); 1668 1669 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1670 mem_cgroup_mark_under_oom(memcg); 1671 1672 locked = mem_cgroup_oom_trylock(memcg); 1673 1674 if (locked) 1675 mem_cgroup_oom_notify(memcg); 1676 1677 if (locked && !memcg->oom_kill_disable) { 1678 mem_cgroup_unmark_under_oom(memcg); 1679 finish_wait(&memcg_oom_waitq, &owait.wait); 1680 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1681 current->memcg_oom_order); 1682 } else { 1683 schedule(); 1684 mem_cgroup_unmark_under_oom(memcg); 1685 finish_wait(&memcg_oom_waitq, &owait.wait); 1686 } 1687 1688 if (locked) { 1689 mem_cgroup_oom_unlock(memcg); 1690 /* 1691 * There is no guarantee that an OOM-lock contender 1692 * sees the wakeups triggered by the OOM kill 1693 * uncharges. Wake any sleepers explicitely. 1694 */ 1695 memcg_oom_recover(memcg); 1696 } 1697 cleanup: 1698 current->memcg_in_oom = NULL; 1699 css_put(&memcg->css); 1700 return true; 1701 } 1702 1703 /** 1704 * lock_page_memcg - lock a page->mem_cgroup binding 1705 * @page: the page 1706 * 1707 * This function protects unlocked LRU pages from being moved to 1708 * another cgroup and stabilizes their page->mem_cgroup binding. 1709 */ 1710 void lock_page_memcg(struct page *page) 1711 { 1712 struct mem_cgroup *memcg; 1713 unsigned long flags; 1714 1715 /* 1716 * The RCU lock is held throughout the transaction. The fast 1717 * path can get away without acquiring the memcg->move_lock 1718 * because page moving starts with an RCU grace period. 1719 */ 1720 rcu_read_lock(); 1721 1722 if (mem_cgroup_disabled()) 1723 return; 1724 again: 1725 memcg = page->mem_cgroup; 1726 if (unlikely(!memcg)) 1727 return; 1728 1729 if (atomic_read(&memcg->moving_account) <= 0) 1730 return; 1731 1732 spin_lock_irqsave(&memcg->move_lock, flags); 1733 if (memcg != page->mem_cgroup) { 1734 spin_unlock_irqrestore(&memcg->move_lock, flags); 1735 goto again; 1736 } 1737 1738 /* 1739 * When charge migration first begins, we can have locked and 1740 * unlocked page stat updates happening concurrently. Track 1741 * the task who has the lock for unlock_page_memcg(). 1742 */ 1743 memcg->move_lock_task = current; 1744 memcg->move_lock_flags = flags; 1745 1746 return; 1747 } 1748 EXPORT_SYMBOL(lock_page_memcg); 1749 1750 /** 1751 * unlock_page_memcg - unlock a page->mem_cgroup binding 1752 * @page: the page 1753 */ 1754 void unlock_page_memcg(struct page *page) 1755 { 1756 struct mem_cgroup *memcg = page->mem_cgroup; 1757 1758 if (memcg && memcg->move_lock_task == current) { 1759 unsigned long flags = memcg->move_lock_flags; 1760 1761 memcg->move_lock_task = NULL; 1762 memcg->move_lock_flags = 0; 1763 1764 spin_unlock_irqrestore(&memcg->move_lock, flags); 1765 } 1766 1767 rcu_read_unlock(); 1768 } 1769 EXPORT_SYMBOL(unlock_page_memcg); 1770 1771 /* 1772 * size of first charge trial. "32" comes from vmscan.c's magic value. 1773 * TODO: maybe necessary to use big numbers in big irons. 1774 */ 1775 #define CHARGE_BATCH 32U 1776 struct memcg_stock_pcp { 1777 struct mem_cgroup *cached; /* this never be root cgroup */ 1778 unsigned int nr_pages; 1779 struct work_struct work; 1780 unsigned long flags; 1781 #define FLUSHING_CACHED_CHARGE 0 1782 }; 1783 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1784 static DEFINE_MUTEX(percpu_charge_mutex); 1785 1786 /** 1787 * consume_stock: Try to consume stocked charge on this cpu. 1788 * @memcg: memcg to consume from. 1789 * @nr_pages: how many pages to charge. 1790 * 1791 * The charges will only happen if @memcg matches the current cpu's memcg 1792 * stock, and at least @nr_pages are available in that stock. Failure to 1793 * service an allocation will refill the stock. 1794 * 1795 * returns true if successful, false otherwise. 1796 */ 1797 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1798 { 1799 struct memcg_stock_pcp *stock; 1800 bool ret = false; 1801 1802 if (nr_pages > CHARGE_BATCH) 1803 return ret; 1804 1805 stock = &get_cpu_var(memcg_stock); 1806 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1807 stock->nr_pages -= nr_pages; 1808 ret = true; 1809 } 1810 put_cpu_var(memcg_stock); 1811 return ret; 1812 } 1813 1814 /* 1815 * Returns stocks cached in percpu and reset cached information. 1816 */ 1817 static void drain_stock(struct memcg_stock_pcp *stock) 1818 { 1819 struct mem_cgroup *old = stock->cached; 1820 1821 if (stock->nr_pages) { 1822 page_counter_uncharge(&old->memory, stock->nr_pages); 1823 if (do_memsw_account()) 1824 page_counter_uncharge(&old->memsw, stock->nr_pages); 1825 css_put_many(&old->css, stock->nr_pages); 1826 stock->nr_pages = 0; 1827 } 1828 stock->cached = NULL; 1829 } 1830 1831 /* 1832 * This must be called under preempt disabled or must be called by 1833 * a thread which is pinned to local cpu. 1834 */ 1835 static void drain_local_stock(struct work_struct *dummy) 1836 { 1837 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 1838 drain_stock(stock); 1839 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1840 } 1841 1842 /* 1843 * Cache charges(val) to local per_cpu area. 1844 * This will be consumed by consume_stock() function, later. 1845 */ 1846 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1847 { 1848 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1849 1850 if (stock->cached != memcg) { /* reset if necessary */ 1851 drain_stock(stock); 1852 stock->cached = memcg; 1853 } 1854 stock->nr_pages += nr_pages; 1855 put_cpu_var(memcg_stock); 1856 } 1857 1858 /* 1859 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1860 * of the hierarchy under it. 1861 */ 1862 static void drain_all_stock(struct mem_cgroup *root_memcg) 1863 { 1864 int cpu, curcpu; 1865 1866 /* If someone's already draining, avoid adding running more workers. */ 1867 if (!mutex_trylock(&percpu_charge_mutex)) 1868 return; 1869 /* Notify other cpus that system-wide "drain" is running */ 1870 get_online_cpus(); 1871 curcpu = get_cpu(); 1872 for_each_online_cpu(cpu) { 1873 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1874 struct mem_cgroup *memcg; 1875 1876 memcg = stock->cached; 1877 if (!memcg || !stock->nr_pages) 1878 continue; 1879 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1880 continue; 1881 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1882 if (cpu == curcpu) 1883 drain_local_stock(&stock->work); 1884 else 1885 schedule_work_on(cpu, &stock->work); 1886 } 1887 } 1888 put_cpu(); 1889 put_online_cpus(); 1890 mutex_unlock(&percpu_charge_mutex); 1891 } 1892 1893 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 1894 unsigned long action, 1895 void *hcpu) 1896 { 1897 int cpu = (unsigned long)hcpu; 1898 struct memcg_stock_pcp *stock; 1899 1900 if (action == CPU_ONLINE) 1901 return NOTIFY_OK; 1902 1903 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 1904 return NOTIFY_OK; 1905 1906 stock = &per_cpu(memcg_stock, cpu); 1907 drain_stock(stock); 1908 return NOTIFY_OK; 1909 } 1910 1911 static void reclaim_high(struct mem_cgroup *memcg, 1912 unsigned int nr_pages, 1913 gfp_t gfp_mask) 1914 { 1915 do { 1916 if (page_counter_read(&memcg->memory) <= memcg->high) 1917 continue; 1918 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 1919 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1920 } while ((memcg = parent_mem_cgroup(memcg))); 1921 } 1922 1923 static void high_work_func(struct work_struct *work) 1924 { 1925 struct mem_cgroup *memcg; 1926 1927 memcg = container_of(work, struct mem_cgroup, high_work); 1928 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1929 } 1930 1931 /* 1932 * Scheduled by try_charge() to be executed from the userland return path 1933 * and reclaims memory over the high limit. 1934 */ 1935 void mem_cgroup_handle_over_high(void) 1936 { 1937 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1938 struct mem_cgroup *memcg; 1939 1940 if (likely(!nr_pages)) 1941 return; 1942 1943 memcg = get_mem_cgroup_from_mm(current->mm); 1944 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1945 css_put(&memcg->css); 1946 current->memcg_nr_pages_over_high = 0; 1947 } 1948 1949 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1950 unsigned int nr_pages) 1951 { 1952 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1953 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1954 struct mem_cgroup *mem_over_limit; 1955 struct page_counter *counter; 1956 unsigned long nr_reclaimed; 1957 bool may_swap = true; 1958 bool drained = false; 1959 1960 if (mem_cgroup_is_root(memcg)) 1961 return 0; 1962 retry: 1963 if (consume_stock(memcg, nr_pages)) 1964 return 0; 1965 1966 if (!do_memsw_account() || 1967 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1968 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1969 goto done_restock; 1970 if (do_memsw_account()) 1971 page_counter_uncharge(&memcg->memsw, batch); 1972 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1973 } else { 1974 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1975 may_swap = false; 1976 } 1977 1978 if (batch > nr_pages) { 1979 batch = nr_pages; 1980 goto retry; 1981 } 1982 1983 /* 1984 * Unlike in global OOM situations, memcg is not in a physical 1985 * memory shortage. Allow dying and OOM-killed tasks to 1986 * bypass the last charges so that they can exit quickly and 1987 * free their memory. 1988 */ 1989 if (unlikely(test_thread_flag(TIF_MEMDIE) || 1990 fatal_signal_pending(current) || 1991 current->flags & PF_EXITING)) 1992 goto force; 1993 1994 if (unlikely(task_in_memcg_oom(current))) 1995 goto nomem; 1996 1997 if (!gfpflags_allow_blocking(gfp_mask)) 1998 goto nomem; 1999 2000 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 2001 2002 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2003 gfp_mask, may_swap); 2004 2005 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2006 goto retry; 2007 2008 if (!drained) { 2009 drain_all_stock(mem_over_limit); 2010 drained = true; 2011 goto retry; 2012 } 2013 2014 if (gfp_mask & __GFP_NORETRY) 2015 goto nomem; 2016 /* 2017 * Even though the limit is exceeded at this point, reclaim 2018 * may have been able to free some pages. Retry the charge 2019 * before killing the task. 2020 * 2021 * Only for regular pages, though: huge pages are rather 2022 * unlikely to succeed so close to the limit, and we fall back 2023 * to regular pages anyway in case of failure. 2024 */ 2025 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2026 goto retry; 2027 /* 2028 * At task move, charge accounts can be doubly counted. So, it's 2029 * better to wait until the end of task_move if something is going on. 2030 */ 2031 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2032 goto retry; 2033 2034 if (nr_retries--) 2035 goto retry; 2036 2037 if (gfp_mask & __GFP_NOFAIL) 2038 goto force; 2039 2040 if (fatal_signal_pending(current)) 2041 goto force; 2042 2043 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 2044 2045 mem_cgroup_oom(mem_over_limit, gfp_mask, 2046 get_order(nr_pages * PAGE_SIZE)); 2047 nomem: 2048 if (!(gfp_mask & __GFP_NOFAIL)) 2049 return -ENOMEM; 2050 force: 2051 /* 2052 * The allocation either can't fail or will lead to more memory 2053 * being freed very soon. Allow memory usage go over the limit 2054 * temporarily by force charging it. 2055 */ 2056 page_counter_charge(&memcg->memory, nr_pages); 2057 if (do_memsw_account()) 2058 page_counter_charge(&memcg->memsw, nr_pages); 2059 css_get_many(&memcg->css, nr_pages); 2060 2061 return 0; 2062 2063 done_restock: 2064 css_get_many(&memcg->css, batch); 2065 if (batch > nr_pages) 2066 refill_stock(memcg, batch - nr_pages); 2067 2068 /* 2069 * If the hierarchy is above the normal consumption range, schedule 2070 * reclaim on returning to userland. We can perform reclaim here 2071 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2072 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2073 * not recorded as it most likely matches current's and won't 2074 * change in the meantime. As high limit is checked again before 2075 * reclaim, the cost of mismatch is negligible. 2076 */ 2077 do { 2078 if (page_counter_read(&memcg->memory) > memcg->high) { 2079 /* Don't bother a random interrupted task */ 2080 if (in_interrupt()) { 2081 schedule_work(&memcg->high_work); 2082 break; 2083 } 2084 current->memcg_nr_pages_over_high += batch; 2085 set_notify_resume(current); 2086 break; 2087 } 2088 } while ((memcg = parent_mem_cgroup(memcg))); 2089 2090 return 0; 2091 } 2092 2093 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2094 { 2095 if (mem_cgroup_is_root(memcg)) 2096 return; 2097 2098 page_counter_uncharge(&memcg->memory, nr_pages); 2099 if (do_memsw_account()) 2100 page_counter_uncharge(&memcg->memsw, nr_pages); 2101 2102 css_put_many(&memcg->css, nr_pages); 2103 } 2104 2105 static void lock_page_lru(struct page *page, int *isolated) 2106 { 2107 struct zone *zone = page_zone(page); 2108 2109 spin_lock_irq(&zone->lru_lock); 2110 if (PageLRU(page)) { 2111 struct lruvec *lruvec; 2112 2113 lruvec = mem_cgroup_page_lruvec(page, zone); 2114 ClearPageLRU(page); 2115 del_page_from_lru_list(page, lruvec, page_lru(page)); 2116 *isolated = 1; 2117 } else 2118 *isolated = 0; 2119 } 2120 2121 static void unlock_page_lru(struct page *page, int isolated) 2122 { 2123 struct zone *zone = page_zone(page); 2124 2125 if (isolated) { 2126 struct lruvec *lruvec; 2127 2128 lruvec = mem_cgroup_page_lruvec(page, zone); 2129 VM_BUG_ON_PAGE(PageLRU(page), page); 2130 SetPageLRU(page); 2131 add_page_to_lru_list(page, lruvec, page_lru(page)); 2132 } 2133 spin_unlock_irq(&zone->lru_lock); 2134 } 2135 2136 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2137 bool lrucare) 2138 { 2139 int isolated; 2140 2141 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2142 2143 /* 2144 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2145 * may already be on some other mem_cgroup's LRU. Take care of it. 2146 */ 2147 if (lrucare) 2148 lock_page_lru(page, &isolated); 2149 2150 /* 2151 * Nobody should be changing or seriously looking at 2152 * page->mem_cgroup at this point: 2153 * 2154 * - the page is uncharged 2155 * 2156 * - the page is off-LRU 2157 * 2158 * - an anonymous fault has exclusive page access, except for 2159 * a locked page table 2160 * 2161 * - a page cache insertion, a swapin fault, or a migration 2162 * have the page locked 2163 */ 2164 page->mem_cgroup = memcg; 2165 2166 if (lrucare) 2167 unlock_page_lru(page, isolated); 2168 } 2169 2170 #ifndef CONFIG_SLOB 2171 static int memcg_alloc_cache_id(void) 2172 { 2173 int id, size; 2174 int err; 2175 2176 id = ida_simple_get(&memcg_cache_ida, 2177 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2178 if (id < 0) 2179 return id; 2180 2181 if (id < memcg_nr_cache_ids) 2182 return id; 2183 2184 /* 2185 * There's no space for the new id in memcg_caches arrays, 2186 * so we have to grow them. 2187 */ 2188 down_write(&memcg_cache_ids_sem); 2189 2190 size = 2 * (id + 1); 2191 if (size < MEMCG_CACHES_MIN_SIZE) 2192 size = MEMCG_CACHES_MIN_SIZE; 2193 else if (size > MEMCG_CACHES_MAX_SIZE) 2194 size = MEMCG_CACHES_MAX_SIZE; 2195 2196 err = memcg_update_all_caches(size); 2197 if (!err) 2198 err = memcg_update_all_list_lrus(size); 2199 if (!err) 2200 memcg_nr_cache_ids = size; 2201 2202 up_write(&memcg_cache_ids_sem); 2203 2204 if (err) { 2205 ida_simple_remove(&memcg_cache_ida, id); 2206 return err; 2207 } 2208 return id; 2209 } 2210 2211 static void memcg_free_cache_id(int id) 2212 { 2213 ida_simple_remove(&memcg_cache_ida, id); 2214 } 2215 2216 struct memcg_kmem_cache_create_work { 2217 struct mem_cgroup *memcg; 2218 struct kmem_cache *cachep; 2219 struct work_struct work; 2220 }; 2221 2222 static void memcg_kmem_cache_create_func(struct work_struct *w) 2223 { 2224 struct memcg_kmem_cache_create_work *cw = 2225 container_of(w, struct memcg_kmem_cache_create_work, work); 2226 struct mem_cgroup *memcg = cw->memcg; 2227 struct kmem_cache *cachep = cw->cachep; 2228 2229 memcg_create_kmem_cache(memcg, cachep); 2230 2231 css_put(&memcg->css); 2232 kfree(cw); 2233 } 2234 2235 /* 2236 * Enqueue the creation of a per-memcg kmem_cache. 2237 */ 2238 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2239 struct kmem_cache *cachep) 2240 { 2241 struct memcg_kmem_cache_create_work *cw; 2242 2243 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2244 if (!cw) 2245 return; 2246 2247 css_get(&memcg->css); 2248 2249 cw->memcg = memcg; 2250 cw->cachep = cachep; 2251 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2252 2253 schedule_work(&cw->work); 2254 } 2255 2256 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2257 struct kmem_cache *cachep) 2258 { 2259 /* 2260 * We need to stop accounting when we kmalloc, because if the 2261 * corresponding kmalloc cache is not yet created, the first allocation 2262 * in __memcg_schedule_kmem_cache_create will recurse. 2263 * 2264 * However, it is better to enclose the whole function. Depending on 2265 * the debugging options enabled, INIT_WORK(), for instance, can 2266 * trigger an allocation. This too, will make us recurse. Because at 2267 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2268 * the safest choice is to do it like this, wrapping the whole function. 2269 */ 2270 current->memcg_kmem_skip_account = 1; 2271 __memcg_schedule_kmem_cache_create(memcg, cachep); 2272 current->memcg_kmem_skip_account = 0; 2273 } 2274 2275 /* 2276 * Return the kmem_cache we're supposed to use for a slab allocation. 2277 * We try to use the current memcg's version of the cache. 2278 * 2279 * If the cache does not exist yet, if we are the first user of it, 2280 * we either create it immediately, if possible, or create it asynchronously 2281 * in a workqueue. 2282 * In the latter case, we will let the current allocation go through with 2283 * the original cache. 2284 * 2285 * Can't be called in interrupt context or from kernel threads. 2286 * This function needs to be called with rcu_read_lock() held. 2287 */ 2288 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 2289 { 2290 struct mem_cgroup *memcg; 2291 struct kmem_cache *memcg_cachep; 2292 int kmemcg_id; 2293 2294 VM_BUG_ON(!is_root_cache(cachep)); 2295 2296 if (cachep->flags & SLAB_ACCOUNT) 2297 gfp |= __GFP_ACCOUNT; 2298 2299 if (!(gfp & __GFP_ACCOUNT)) 2300 return cachep; 2301 2302 if (current->memcg_kmem_skip_account) 2303 return cachep; 2304 2305 memcg = get_mem_cgroup_from_mm(current->mm); 2306 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2307 if (kmemcg_id < 0) 2308 goto out; 2309 2310 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2311 if (likely(memcg_cachep)) 2312 return memcg_cachep; 2313 2314 /* 2315 * If we are in a safe context (can wait, and not in interrupt 2316 * context), we could be be predictable and return right away. 2317 * This would guarantee that the allocation being performed 2318 * already belongs in the new cache. 2319 * 2320 * However, there are some clashes that can arrive from locking. 2321 * For instance, because we acquire the slab_mutex while doing 2322 * memcg_create_kmem_cache, this means no further allocation 2323 * could happen with the slab_mutex held. So it's better to 2324 * defer everything. 2325 */ 2326 memcg_schedule_kmem_cache_create(memcg, cachep); 2327 out: 2328 css_put(&memcg->css); 2329 return cachep; 2330 } 2331 2332 void __memcg_kmem_put_cache(struct kmem_cache *cachep) 2333 { 2334 if (!is_root_cache(cachep)) 2335 css_put(&cachep->memcg_params.memcg->css); 2336 } 2337 2338 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2339 struct mem_cgroup *memcg) 2340 { 2341 unsigned int nr_pages = 1 << order; 2342 struct page_counter *counter; 2343 int ret; 2344 2345 ret = try_charge(memcg, gfp, nr_pages); 2346 if (ret) 2347 return ret; 2348 2349 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2350 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2351 cancel_charge(memcg, nr_pages); 2352 return -ENOMEM; 2353 } 2354 2355 page->mem_cgroup = memcg; 2356 2357 return 0; 2358 } 2359 2360 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2361 { 2362 struct mem_cgroup *memcg; 2363 int ret = 0; 2364 2365 memcg = get_mem_cgroup_from_mm(current->mm); 2366 if (!mem_cgroup_is_root(memcg)) 2367 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2368 css_put(&memcg->css); 2369 return ret; 2370 } 2371 2372 void __memcg_kmem_uncharge(struct page *page, int order) 2373 { 2374 struct mem_cgroup *memcg = page->mem_cgroup; 2375 unsigned int nr_pages = 1 << order; 2376 2377 if (!memcg) 2378 return; 2379 2380 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2381 2382 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2383 page_counter_uncharge(&memcg->kmem, nr_pages); 2384 2385 page_counter_uncharge(&memcg->memory, nr_pages); 2386 if (do_memsw_account()) 2387 page_counter_uncharge(&memcg->memsw, nr_pages); 2388 2389 page->mem_cgroup = NULL; 2390 css_put_many(&memcg->css, nr_pages); 2391 } 2392 #endif /* !CONFIG_SLOB */ 2393 2394 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2395 2396 /* 2397 * Because tail pages are not marked as "used", set it. We're under 2398 * zone->lru_lock and migration entries setup in all page mappings. 2399 */ 2400 void mem_cgroup_split_huge_fixup(struct page *head) 2401 { 2402 int i; 2403 2404 if (mem_cgroup_disabled()) 2405 return; 2406 2407 for (i = 1; i < HPAGE_PMD_NR; i++) 2408 head[i].mem_cgroup = head->mem_cgroup; 2409 2410 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2411 HPAGE_PMD_NR); 2412 } 2413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2414 2415 #ifdef CONFIG_MEMCG_SWAP 2416 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2417 bool charge) 2418 { 2419 int val = (charge) ? 1 : -1; 2420 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2421 } 2422 2423 /** 2424 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2425 * @entry: swap entry to be moved 2426 * @from: mem_cgroup which the entry is moved from 2427 * @to: mem_cgroup which the entry is moved to 2428 * 2429 * It succeeds only when the swap_cgroup's record for this entry is the same 2430 * as the mem_cgroup's id of @from. 2431 * 2432 * Returns 0 on success, -EINVAL on failure. 2433 * 2434 * The caller must have charged to @to, IOW, called page_counter_charge() about 2435 * both res and memsw, and called css_get(). 2436 */ 2437 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2438 struct mem_cgroup *from, struct mem_cgroup *to) 2439 { 2440 unsigned short old_id, new_id; 2441 2442 old_id = mem_cgroup_id(from); 2443 new_id = mem_cgroup_id(to); 2444 2445 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2446 mem_cgroup_swap_statistics(from, false); 2447 mem_cgroup_swap_statistics(to, true); 2448 return 0; 2449 } 2450 return -EINVAL; 2451 } 2452 #else 2453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2454 struct mem_cgroup *from, struct mem_cgroup *to) 2455 { 2456 return -EINVAL; 2457 } 2458 #endif 2459 2460 static DEFINE_MUTEX(memcg_limit_mutex); 2461 2462 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2463 unsigned long limit) 2464 { 2465 unsigned long curusage; 2466 unsigned long oldusage; 2467 bool enlarge = false; 2468 int retry_count; 2469 int ret; 2470 2471 /* 2472 * For keeping hierarchical_reclaim simple, how long we should retry 2473 * is depends on callers. We set our retry-count to be function 2474 * of # of children which we should visit in this loop. 2475 */ 2476 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2477 mem_cgroup_count_children(memcg); 2478 2479 oldusage = page_counter_read(&memcg->memory); 2480 2481 do { 2482 if (signal_pending(current)) { 2483 ret = -EINTR; 2484 break; 2485 } 2486 2487 mutex_lock(&memcg_limit_mutex); 2488 if (limit > memcg->memsw.limit) { 2489 mutex_unlock(&memcg_limit_mutex); 2490 ret = -EINVAL; 2491 break; 2492 } 2493 if (limit > memcg->memory.limit) 2494 enlarge = true; 2495 ret = page_counter_limit(&memcg->memory, limit); 2496 mutex_unlock(&memcg_limit_mutex); 2497 2498 if (!ret) 2499 break; 2500 2501 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2502 2503 curusage = page_counter_read(&memcg->memory); 2504 /* Usage is reduced ? */ 2505 if (curusage >= oldusage) 2506 retry_count--; 2507 else 2508 oldusage = curusage; 2509 } while (retry_count); 2510 2511 if (!ret && enlarge) 2512 memcg_oom_recover(memcg); 2513 2514 return ret; 2515 } 2516 2517 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2518 unsigned long limit) 2519 { 2520 unsigned long curusage; 2521 unsigned long oldusage; 2522 bool enlarge = false; 2523 int retry_count; 2524 int ret; 2525 2526 /* see mem_cgroup_resize_res_limit */ 2527 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2528 mem_cgroup_count_children(memcg); 2529 2530 oldusage = page_counter_read(&memcg->memsw); 2531 2532 do { 2533 if (signal_pending(current)) { 2534 ret = -EINTR; 2535 break; 2536 } 2537 2538 mutex_lock(&memcg_limit_mutex); 2539 if (limit < memcg->memory.limit) { 2540 mutex_unlock(&memcg_limit_mutex); 2541 ret = -EINVAL; 2542 break; 2543 } 2544 if (limit > memcg->memsw.limit) 2545 enlarge = true; 2546 ret = page_counter_limit(&memcg->memsw, limit); 2547 mutex_unlock(&memcg_limit_mutex); 2548 2549 if (!ret) 2550 break; 2551 2552 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2553 2554 curusage = page_counter_read(&memcg->memsw); 2555 /* Usage is reduced ? */ 2556 if (curusage >= oldusage) 2557 retry_count--; 2558 else 2559 oldusage = curusage; 2560 } while (retry_count); 2561 2562 if (!ret && enlarge) 2563 memcg_oom_recover(memcg); 2564 2565 return ret; 2566 } 2567 2568 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 2569 gfp_t gfp_mask, 2570 unsigned long *total_scanned) 2571 { 2572 unsigned long nr_reclaimed = 0; 2573 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 2574 unsigned long reclaimed; 2575 int loop = 0; 2576 struct mem_cgroup_tree_per_zone *mctz; 2577 unsigned long excess; 2578 unsigned long nr_scanned; 2579 2580 if (order > 0) 2581 return 0; 2582 2583 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 2584 /* 2585 * This loop can run a while, specially if mem_cgroup's continuously 2586 * keep exceeding their soft limit and putting the system under 2587 * pressure 2588 */ 2589 do { 2590 if (next_mz) 2591 mz = next_mz; 2592 else 2593 mz = mem_cgroup_largest_soft_limit_node(mctz); 2594 if (!mz) 2595 break; 2596 2597 nr_scanned = 0; 2598 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 2599 gfp_mask, &nr_scanned); 2600 nr_reclaimed += reclaimed; 2601 *total_scanned += nr_scanned; 2602 spin_lock_irq(&mctz->lock); 2603 __mem_cgroup_remove_exceeded(mz, mctz); 2604 2605 /* 2606 * If we failed to reclaim anything from this memory cgroup 2607 * it is time to move on to the next cgroup 2608 */ 2609 next_mz = NULL; 2610 if (!reclaimed) 2611 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2612 2613 excess = soft_limit_excess(mz->memcg); 2614 /* 2615 * One school of thought says that we should not add 2616 * back the node to the tree if reclaim returns 0. 2617 * But our reclaim could return 0, simply because due 2618 * to priority we are exposing a smaller subset of 2619 * memory to reclaim from. Consider this as a longer 2620 * term TODO. 2621 */ 2622 /* If excess == 0, no tree ops */ 2623 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2624 spin_unlock_irq(&mctz->lock); 2625 css_put(&mz->memcg->css); 2626 loop++; 2627 /* 2628 * Could not reclaim anything and there are no more 2629 * mem cgroups to try or we seem to be looping without 2630 * reclaiming anything. 2631 */ 2632 if (!nr_reclaimed && 2633 (next_mz == NULL || 2634 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2635 break; 2636 } while (!nr_reclaimed); 2637 if (next_mz) 2638 css_put(&next_mz->memcg->css); 2639 return nr_reclaimed; 2640 } 2641 2642 /* 2643 * Test whether @memcg has children, dead or alive. Note that this 2644 * function doesn't care whether @memcg has use_hierarchy enabled and 2645 * returns %true if there are child csses according to the cgroup 2646 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2647 */ 2648 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2649 { 2650 bool ret; 2651 2652 rcu_read_lock(); 2653 ret = css_next_child(NULL, &memcg->css); 2654 rcu_read_unlock(); 2655 return ret; 2656 } 2657 2658 /* 2659 * Reclaims as many pages from the given memcg as possible. 2660 * 2661 * Caller is responsible for holding css reference for memcg. 2662 */ 2663 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2664 { 2665 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2666 2667 /* we call try-to-free pages for make this cgroup empty */ 2668 lru_add_drain_all(); 2669 /* try to free all pages in this cgroup */ 2670 while (nr_retries && page_counter_read(&memcg->memory)) { 2671 int progress; 2672 2673 if (signal_pending(current)) 2674 return -EINTR; 2675 2676 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2677 GFP_KERNEL, true); 2678 if (!progress) { 2679 nr_retries--; 2680 /* maybe some writeback is necessary */ 2681 congestion_wait(BLK_RW_ASYNC, HZ/10); 2682 } 2683 2684 } 2685 2686 return 0; 2687 } 2688 2689 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2690 char *buf, size_t nbytes, 2691 loff_t off) 2692 { 2693 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2694 2695 if (mem_cgroup_is_root(memcg)) 2696 return -EINVAL; 2697 return mem_cgroup_force_empty(memcg) ?: nbytes; 2698 } 2699 2700 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2701 struct cftype *cft) 2702 { 2703 return mem_cgroup_from_css(css)->use_hierarchy; 2704 } 2705 2706 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2707 struct cftype *cft, u64 val) 2708 { 2709 int retval = 0; 2710 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2711 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2712 2713 if (memcg->use_hierarchy == val) 2714 return 0; 2715 2716 /* 2717 * If parent's use_hierarchy is set, we can't make any modifications 2718 * in the child subtrees. If it is unset, then the change can 2719 * occur, provided the current cgroup has no children. 2720 * 2721 * For the root cgroup, parent_mem is NULL, we allow value to be 2722 * set if there are no children. 2723 */ 2724 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2725 (val == 1 || val == 0)) { 2726 if (!memcg_has_children(memcg)) 2727 memcg->use_hierarchy = val; 2728 else 2729 retval = -EBUSY; 2730 } else 2731 retval = -EINVAL; 2732 2733 return retval; 2734 } 2735 2736 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2737 { 2738 struct mem_cgroup *iter; 2739 int i; 2740 2741 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2742 2743 for_each_mem_cgroup_tree(iter, memcg) { 2744 for (i = 0; i < MEMCG_NR_STAT; i++) 2745 stat[i] += mem_cgroup_read_stat(iter, i); 2746 } 2747 } 2748 2749 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2750 { 2751 struct mem_cgroup *iter; 2752 int i; 2753 2754 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); 2755 2756 for_each_mem_cgroup_tree(iter, memcg) { 2757 for (i = 0; i < MEMCG_NR_EVENTS; i++) 2758 events[i] += mem_cgroup_read_events(iter, i); 2759 } 2760 } 2761 2762 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2763 { 2764 unsigned long val = 0; 2765 2766 if (mem_cgroup_is_root(memcg)) { 2767 struct mem_cgroup *iter; 2768 2769 for_each_mem_cgroup_tree(iter, memcg) { 2770 val += mem_cgroup_read_stat(iter, 2771 MEM_CGROUP_STAT_CACHE); 2772 val += mem_cgroup_read_stat(iter, 2773 MEM_CGROUP_STAT_RSS); 2774 if (swap) 2775 val += mem_cgroup_read_stat(iter, 2776 MEM_CGROUP_STAT_SWAP); 2777 } 2778 } else { 2779 if (!swap) 2780 val = page_counter_read(&memcg->memory); 2781 else 2782 val = page_counter_read(&memcg->memsw); 2783 } 2784 return val; 2785 } 2786 2787 enum { 2788 RES_USAGE, 2789 RES_LIMIT, 2790 RES_MAX_USAGE, 2791 RES_FAILCNT, 2792 RES_SOFT_LIMIT, 2793 }; 2794 2795 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2796 struct cftype *cft) 2797 { 2798 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2799 struct page_counter *counter; 2800 2801 switch (MEMFILE_TYPE(cft->private)) { 2802 case _MEM: 2803 counter = &memcg->memory; 2804 break; 2805 case _MEMSWAP: 2806 counter = &memcg->memsw; 2807 break; 2808 case _KMEM: 2809 counter = &memcg->kmem; 2810 break; 2811 case _TCP: 2812 counter = &memcg->tcpmem; 2813 break; 2814 default: 2815 BUG(); 2816 } 2817 2818 switch (MEMFILE_ATTR(cft->private)) { 2819 case RES_USAGE: 2820 if (counter == &memcg->memory) 2821 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2822 if (counter == &memcg->memsw) 2823 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2824 return (u64)page_counter_read(counter) * PAGE_SIZE; 2825 case RES_LIMIT: 2826 return (u64)counter->limit * PAGE_SIZE; 2827 case RES_MAX_USAGE: 2828 return (u64)counter->watermark * PAGE_SIZE; 2829 case RES_FAILCNT: 2830 return counter->failcnt; 2831 case RES_SOFT_LIMIT: 2832 return (u64)memcg->soft_limit * PAGE_SIZE; 2833 default: 2834 BUG(); 2835 } 2836 } 2837 2838 #ifndef CONFIG_SLOB 2839 static int memcg_online_kmem(struct mem_cgroup *memcg) 2840 { 2841 int memcg_id; 2842 2843 if (cgroup_memory_nokmem) 2844 return 0; 2845 2846 BUG_ON(memcg->kmemcg_id >= 0); 2847 BUG_ON(memcg->kmem_state); 2848 2849 memcg_id = memcg_alloc_cache_id(); 2850 if (memcg_id < 0) 2851 return memcg_id; 2852 2853 static_branch_inc(&memcg_kmem_enabled_key); 2854 /* 2855 * A memory cgroup is considered kmem-online as soon as it gets 2856 * kmemcg_id. Setting the id after enabling static branching will 2857 * guarantee no one starts accounting before all call sites are 2858 * patched. 2859 */ 2860 memcg->kmemcg_id = memcg_id; 2861 memcg->kmem_state = KMEM_ONLINE; 2862 2863 return 0; 2864 } 2865 2866 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2867 { 2868 struct cgroup_subsys_state *css; 2869 struct mem_cgroup *parent, *child; 2870 int kmemcg_id; 2871 2872 if (memcg->kmem_state != KMEM_ONLINE) 2873 return; 2874 /* 2875 * Clear the online state before clearing memcg_caches array 2876 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2877 * guarantees that no cache will be created for this cgroup 2878 * after we are done (see memcg_create_kmem_cache()). 2879 */ 2880 memcg->kmem_state = KMEM_ALLOCATED; 2881 2882 memcg_deactivate_kmem_caches(memcg); 2883 2884 kmemcg_id = memcg->kmemcg_id; 2885 BUG_ON(kmemcg_id < 0); 2886 2887 parent = parent_mem_cgroup(memcg); 2888 if (!parent) 2889 parent = root_mem_cgroup; 2890 2891 /* 2892 * Change kmemcg_id of this cgroup and all its descendants to the 2893 * parent's id, and then move all entries from this cgroup's list_lrus 2894 * to ones of the parent. After we have finished, all list_lrus 2895 * corresponding to this cgroup are guaranteed to remain empty. The 2896 * ordering is imposed by list_lru_node->lock taken by 2897 * memcg_drain_all_list_lrus(). 2898 */ 2899 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 2900 css_for_each_descendant_pre(css, &memcg->css) { 2901 child = mem_cgroup_from_css(css); 2902 BUG_ON(child->kmemcg_id != kmemcg_id); 2903 child->kmemcg_id = parent->kmemcg_id; 2904 if (!memcg->use_hierarchy) 2905 break; 2906 } 2907 rcu_read_unlock(); 2908 2909 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2910 2911 memcg_free_cache_id(kmemcg_id); 2912 } 2913 2914 static void memcg_free_kmem(struct mem_cgroup *memcg) 2915 { 2916 /* css_alloc() failed, offlining didn't happen */ 2917 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2918 memcg_offline_kmem(memcg); 2919 2920 if (memcg->kmem_state == KMEM_ALLOCATED) { 2921 memcg_destroy_kmem_caches(memcg); 2922 static_branch_dec(&memcg_kmem_enabled_key); 2923 WARN_ON(page_counter_read(&memcg->kmem)); 2924 } 2925 } 2926 #else 2927 static int memcg_online_kmem(struct mem_cgroup *memcg) 2928 { 2929 return 0; 2930 } 2931 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2932 { 2933 } 2934 static void memcg_free_kmem(struct mem_cgroup *memcg) 2935 { 2936 } 2937 #endif /* !CONFIG_SLOB */ 2938 2939 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2940 unsigned long limit) 2941 { 2942 int ret; 2943 2944 mutex_lock(&memcg_limit_mutex); 2945 ret = page_counter_limit(&memcg->kmem, limit); 2946 mutex_unlock(&memcg_limit_mutex); 2947 return ret; 2948 } 2949 2950 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2951 { 2952 int ret; 2953 2954 mutex_lock(&memcg_limit_mutex); 2955 2956 ret = page_counter_limit(&memcg->tcpmem, limit); 2957 if (ret) 2958 goto out; 2959 2960 if (!memcg->tcpmem_active) { 2961 /* 2962 * The active flag needs to be written after the static_key 2963 * update. This is what guarantees that the socket activation 2964 * function is the last one to run. See sock_update_memcg() for 2965 * details, and note that we don't mark any socket as belonging 2966 * to this memcg until that flag is up. 2967 * 2968 * We need to do this, because static_keys will span multiple 2969 * sites, but we can't control their order. If we mark a socket 2970 * as accounted, but the accounting functions are not patched in 2971 * yet, we'll lose accounting. 2972 * 2973 * We never race with the readers in sock_update_memcg(), 2974 * because when this value change, the code to process it is not 2975 * patched in yet. 2976 */ 2977 static_branch_inc(&memcg_sockets_enabled_key); 2978 memcg->tcpmem_active = true; 2979 } 2980 out: 2981 mutex_unlock(&memcg_limit_mutex); 2982 return ret; 2983 } 2984 2985 /* 2986 * The user of this function is... 2987 * RES_LIMIT. 2988 */ 2989 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2990 char *buf, size_t nbytes, loff_t off) 2991 { 2992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2993 unsigned long nr_pages; 2994 int ret; 2995 2996 buf = strstrip(buf); 2997 ret = page_counter_memparse(buf, "-1", &nr_pages); 2998 if (ret) 2999 return ret; 3000 3001 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3002 case RES_LIMIT: 3003 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3004 ret = -EINVAL; 3005 break; 3006 } 3007 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3008 case _MEM: 3009 ret = mem_cgroup_resize_limit(memcg, nr_pages); 3010 break; 3011 case _MEMSWAP: 3012 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 3013 break; 3014 case _KMEM: 3015 ret = memcg_update_kmem_limit(memcg, nr_pages); 3016 break; 3017 case _TCP: 3018 ret = memcg_update_tcp_limit(memcg, nr_pages); 3019 break; 3020 } 3021 break; 3022 case RES_SOFT_LIMIT: 3023 memcg->soft_limit = nr_pages; 3024 ret = 0; 3025 break; 3026 } 3027 return ret ?: nbytes; 3028 } 3029 3030 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3031 size_t nbytes, loff_t off) 3032 { 3033 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3034 struct page_counter *counter; 3035 3036 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3037 case _MEM: 3038 counter = &memcg->memory; 3039 break; 3040 case _MEMSWAP: 3041 counter = &memcg->memsw; 3042 break; 3043 case _KMEM: 3044 counter = &memcg->kmem; 3045 break; 3046 case _TCP: 3047 counter = &memcg->tcpmem; 3048 break; 3049 default: 3050 BUG(); 3051 } 3052 3053 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3054 case RES_MAX_USAGE: 3055 page_counter_reset_watermark(counter); 3056 break; 3057 case RES_FAILCNT: 3058 counter->failcnt = 0; 3059 break; 3060 default: 3061 BUG(); 3062 } 3063 3064 return nbytes; 3065 } 3066 3067 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3068 struct cftype *cft) 3069 { 3070 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3071 } 3072 3073 #ifdef CONFIG_MMU 3074 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3075 struct cftype *cft, u64 val) 3076 { 3077 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3078 3079 if (val & ~MOVE_MASK) 3080 return -EINVAL; 3081 3082 /* 3083 * No kind of locking is needed in here, because ->can_attach() will 3084 * check this value once in the beginning of the process, and then carry 3085 * on with stale data. This means that changes to this value will only 3086 * affect task migrations starting after the change. 3087 */ 3088 memcg->move_charge_at_immigrate = val; 3089 return 0; 3090 } 3091 #else 3092 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3093 struct cftype *cft, u64 val) 3094 { 3095 return -ENOSYS; 3096 } 3097 #endif 3098 3099 #ifdef CONFIG_NUMA 3100 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3101 { 3102 struct numa_stat { 3103 const char *name; 3104 unsigned int lru_mask; 3105 }; 3106 3107 static const struct numa_stat stats[] = { 3108 { "total", LRU_ALL }, 3109 { "file", LRU_ALL_FILE }, 3110 { "anon", LRU_ALL_ANON }, 3111 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3112 }; 3113 const struct numa_stat *stat; 3114 int nid; 3115 unsigned long nr; 3116 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3117 3118 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3119 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3120 seq_printf(m, "%s=%lu", stat->name, nr); 3121 for_each_node_state(nid, N_MEMORY) { 3122 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3123 stat->lru_mask); 3124 seq_printf(m, " N%d=%lu", nid, nr); 3125 } 3126 seq_putc(m, '\n'); 3127 } 3128 3129 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3130 struct mem_cgroup *iter; 3131 3132 nr = 0; 3133 for_each_mem_cgroup_tree(iter, memcg) 3134 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3135 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3136 for_each_node_state(nid, N_MEMORY) { 3137 nr = 0; 3138 for_each_mem_cgroup_tree(iter, memcg) 3139 nr += mem_cgroup_node_nr_lru_pages( 3140 iter, nid, stat->lru_mask); 3141 seq_printf(m, " N%d=%lu", nid, nr); 3142 } 3143 seq_putc(m, '\n'); 3144 } 3145 3146 return 0; 3147 } 3148 #endif /* CONFIG_NUMA */ 3149 3150 static int memcg_stat_show(struct seq_file *m, void *v) 3151 { 3152 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3153 unsigned long memory, memsw; 3154 struct mem_cgroup *mi; 3155 unsigned int i; 3156 3157 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3158 MEM_CGROUP_STAT_NSTATS); 3159 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3160 MEM_CGROUP_EVENTS_NSTATS); 3161 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3162 3163 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3164 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3165 continue; 3166 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], 3167 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3168 } 3169 3170 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3171 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3172 mem_cgroup_read_events(memcg, i)); 3173 3174 for (i = 0; i < NR_LRU_LISTS; i++) 3175 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3176 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3177 3178 /* Hierarchical information */ 3179 memory = memsw = PAGE_COUNTER_MAX; 3180 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3181 memory = min(memory, mi->memory.limit); 3182 memsw = min(memsw, mi->memsw.limit); 3183 } 3184 seq_printf(m, "hierarchical_memory_limit %llu\n", 3185 (u64)memory * PAGE_SIZE); 3186 if (do_memsw_account()) 3187 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3188 (u64)memsw * PAGE_SIZE); 3189 3190 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3191 unsigned long long val = 0; 3192 3193 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3194 continue; 3195 for_each_mem_cgroup_tree(mi, memcg) 3196 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3197 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); 3198 } 3199 3200 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3201 unsigned long long val = 0; 3202 3203 for_each_mem_cgroup_tree(mi, memcg) 3204 val += mem_cgroup_read_events(mi, i); 3205 seq_printf(m, "total_%s %llu\n", 3206 mem_cgroup_events_names[i], val); 3207 } 3208 3209 for (i = 0; i < NR_LRU_LISTS; i++) { 3210 unsigned long long val = 0; 3211 3212 for_each_mem_cgroup_tree(mi, memcg) 3213 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3214 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3215 } 3216 3217 #ifdef CONFIG_DEBUG_VM 3218 { 3219 int nid, zid; 3220 struct mem_cgroup_per_zone *mz; 3221 struct zone_reclaim_stat *rstat; 3222 unsigned long recent_rotated[2] = {0, 0}; 3223 unsigned long recent_scanned[2] = {0, 0}; 3224 3225 for_each_online_node(nid) 3226 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 3227 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 3228 rstat = &mz->lruvec.reclaim_stat; 3229 3230 recent_rotated[0] += rstat->recent_rotated[0]; 3231 recent_rotated[1] += rstat->recent_rotated[1]; 3232 recent_scanned[0] += rstat->recent_scanned[0]; 3233 recent_scanned[1] += rstat->recent_scanned[1]; 3234 } 3235 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3236 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3237 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3238 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3239 } 3240 #endif 3241 3242 return 0; 3243 } 3244 3245 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3246 struct cftype *cft) 3247 { 3248 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3249 3250 return mem_cgroup_swappiness(memcg); 3251 } 3252 3253 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3254 struct cftype *cft, u64 val) 3255 { 3256 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3257 3258 if (val > 100) 3259 return -EINVAL; 3260 3261 if (css->parent) 3262 memcg->swappiness = val; 3263 else 3264 vm_swappiness = val; 3265 3266 return 0; 3267 } 3268 3269 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3270 { 3271 struct mem_cgroup_threshold_ary *t; 3272 unsigned long usage; 3273 int i; 3274 3275 rcu_read_lock(); 3276 if (!swap) 3277 t = rcu_dereference(memcg->thresholds.primary); 3278 else 3279 t = rcu_dereference(memcg->memsw_thresholds.primary); 3280 3281 if (!t) 3282 goto unlock; 3283 3284 usage = mem_cgroup_usage(memcg, swap); 3285 3286 /* 3287 * current_threshold points to threshold just below or equal to usage. 3288 * If it's not true, a threshold was crossed after last 3289 * call of __mem_cgroup_threshold(). 3290 */ 3291 i = t->current_threshold; 3292 3293 /* 3294 * Iterate backward over array of thresholds starting from 3295 * current_threshold and check if a threshold is crossed. 3296 * If none of thresholds below usage is crossed, we read 3297 * only one element of the array here. 3298 */ 3299 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3300 eventfd_signal(t->entries[i].eventfd, 1); 3301 3302 /* i = current_threshold + 1 */ 3303 i++; 3304 3305 /* 3306 * Iterate forward over array of thresholds starting from 3307 * current_threshold+1 and check if a threshold is crossed. 3308 * If none of thresholds above usage is crossed, we read 3309 * only one element of the array here. 3310 */ 3311 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3312 eventfd_signal(t->entries[i].eventfd, 1); 3313 3314 /* Update current_threshold */ 3315 t->current_threshold = i - 1; 3316 unlock: 3317 rcu_read_unlock(); 3318 } 3319 3320 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3321 { 3322 while (memcg) { 3323 __mem_cgroup_threshold(memcg, false); 3324 if (do_memsw_account()) 3325 __mem_cgroup_threshold(memcg, true); 3326 3327 memcg = parent_mem_cgroup(memcg); 3328 } 3329 } 3330 3331 static int compare_thresholds(const void *a, const void *b) 3332 { 3333 const struct mem_cgroup_threshold *_a = a; 3334 const struct mem_cgroup_threshold *_b = b; 3335 3336 if (_a->threshold > _b->threshold) 3337 return 1; 3338 3339 if (_a->threshold < _b->threshold) 3340 return -1; 3341 3342 return 0; 3343 } 3344 3345 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3346 { 3347 struct mem_cgroup_eventfd_list *ev; 3348 3349 spin_lock(&memcg_oom_lock); 3350 3351 list_for_each_entry(ev, &memcg->oom_notify, list) 3352 eventfd_signal(ev->eventfd, 1); 3353 3354 spin_unlock(&memcg_oom_lock); 3355 return 0; 3356 } 3357 3358 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3359 { 3360 struct mem_cgroup *iter; 3361 3362 for_each_mem_cgroup_tree(iter, memcg) 3363 mem_cgroup_oom_notify_cb(iter); 3364 } 3365 3366 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3367 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3368 { 3369 struct mem_cgroup_thresholds *thresholds; 3370 struct mem_cgroup_threshold_ary *new; 3371 unsigned long threshold; 3372 unsigned long usage; 3373 int i, size, ret; 3374 3375 ret = page_counter_memparse(args, "-1", &threshold); 3376 if (ret) 3377 return ret; 3378 3379 mutex_lock(&memcg->thresholds_lock); 3380 3381 if (type == _MEM) { 3382 thresholds = &memcg->thresholds; 3383 usage = mem_cgroup_usage(memcg, false); 3384 } else if (type == _MEMSWAP) { 3385 thresholds = &memcg->memsw_thresholds; 3386 usage = mem_cgroup_usage(memcg, true); 3387 } else 3388 BUG(); 3389 3390 /* Check if a threshold crossed before adding a new one */ 3391 if (thresholds->primary) 3392 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3393 3394 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3395 3396 /* Allocate memory for new array of thresholds */ 3397 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3398 GFP_KERNEL); 3399 if (!new) { 3400 ret = -ENOMEM; 3401 goto unlock; 3402 } 3403 new->size = size; 3404 3405 /* Copy thresholds (if any) to new array */ 3406 if (thresholds->primary) { 3407 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3408 sizeof(struct mem_cgroup_threshold)); 3409 } 3410 3411 /* Add new threshold */ 3412 new->entries[size - 1].eventfd = eventfd; 3413 new->entries[size - 1].threshold = threshold; 3414 3415 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3416 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3417 compare_thresholds, NULL); 3418 3419 /* Find current threshold */ 3420 new->current_threshold = -1; 3421 for (i = 0; i < size; i++) { 3422 if (new->entries[i].threshold <= usage) { 3423 /* 3424 * new->current_threshold will not be used until 3425 * rcu_assign_pointer(), so it's safe to increment 3426 * it here. 3427 */ 3428 ++new->current_threshold; 3429 } else 3430 break; 3431 } 3432 3433 /* Free old spare buffer and save old primary buffer as spare */ 3434 kfree(thresholds->spare); 3435 thresholds->spare = thresholds->primary; 3436 3437 rcu_assign_pointer(thresholds->primary, new); 3438 3439 /* To be sure that nobody uses thresholds */ 3440 synchronize_rcu(); 3441 3442 unlock: 3443 mutex_unlock(&memcg->thresholds_lock); 3444 3445 return ret; 3446 } 3447 3448 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3449 struct eventfd_ctx *eventfd, const char *args) 3450 { 3451 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3452 } 3453 3454 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3455 struct eventfd_ctx *eventfd, const char *args) 3456 { 3457 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3458 } 3459 3460 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3461 struct eventfd_ctx *eventfd, enum res_type type) 3462 { 3463 struct mem_cgroup_thresholds *thresholds; 3464 struct mem_cgroup_threshold_ary *new; 3465 unsigned long usage; 3466 int i, j, size; 3467 3468 mutex_lock(&memcg->thresholds_lock); 3469 3470 if (type == _MEM) { 3471 thresholds = &memcg->thresholds; 3472 usage = mem_cgroup_usage(memcg, false); 3473 } else if (type == _MEMSWAP) { 3474 thresholds = &memcg->memsw_thresholds; 3475 usage = mem_cgroup_usage(memcg, true); 3476 } else 3477 BUG(); 3478 3479 if (!thresholds->primary) 3480 goto unlock; 3481 3482 /* Check if a threshold crossed before removing */ 3483 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3484 3485 /* Calculate new number of threshold */ 3486 size = 0; 3487 for (i = 0; i < thresholds->primary->size; i++) { 3488 if (thresholds->primary->entries[i].eventfd != eventfd) 3489 size++; 3490 } 3491 3492 new = thresholds->spare; 3493 3494 /* Set thresholds array to NULL if we don't have thresholds */ 3495 if (!size) { 3496 kfree(new); 3497 new = NULL; 3498 goto swap_buffers; 3499 } 3500 3501 new->size = size; 3502 3503 /* Copy thresholds and find current threshold */ 3504 new->current_threshold = -1; 3505 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3506 if (thresholds->primary->entries[i].eventfd == eventfd) 3507 continue; 3508 3509 new->entries[j] = thresholds->primary->entries[i]; 3510 if (new->entries[j].threshold <= usage) { 3511 /* 3512 * new->current_threshold will not be used 3513 * until rcu_assign_pointer(), so it's safe to increment 3514 * it here. 3515 */ 3516 ++new->current_threshold; 3517 } 3518 j++; 3519 } 3520 3521 swap_buffers: 3522 /* Swap primary and spare array */ 3523 thresholds->spare = thresholds->primary; 3524 3525 rcu_assign_pointer(thresholds->primary, new); 3526 3527 /* To be sure that nobody uses thresholds */ 3528 synchronize_rcu(); 3529 3530 /* If all events are unregistered, free the spare array */ 3531 if (!new) { 3532 kfree(thresholds->spare); 3533 thresholds->spare = NULL; 3534 } 3535 unlock: 3536 mutex_unlock(&memcg->thresholds_lock); 3537 } 3538 3539 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3540 struct eventfd_ctx *eventfd) 3541 { 3542 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3543 } 3544 3545 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3546 struct eventfd_ctx *eventfd) 3547 { 3548 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3549 } 3550 3551 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3552 struct eventfd_ctx *eventfd, const char *args) 3553 { 3554 struct mem_cgroup_eventfd_list *event; 3555 3556 event = kmalloc(sizeof(*event), GFP_KERNEL); 3557 if (!event) 3558 return -ENOMEM; 3559 3560 spin_lock(&memcg_oom_lock); 3561 3562 event->eventfd = eventfd; 3563 list_add(&event->list, &memcg->oom_notify); 3564 3565 /* already in OOM ? */ 3566 if (memcg->under_oom) 3567 eventfd_signal(eventfd, 1); 3568 spin_unlock(&memcg_oom_lock); 3569 3570 return 0; 3571 } 3572 3573 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3574 struct eventfd_ctx *eventfd) 3575 { 3576 struct mem_cgroup_eventfd_list *ev, *tmp; 3577 3578 spin_lock(&memcg_oom_lock); 3579 3580 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3581 if (ev->eventfd == eventfd) { 3582 list_del(&ev->list); 3583 kfree(ev); 3584 } 3585 } 3586 3587 spin_unlock(&memcg_oom_lock); 3588 } 3589 3590 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3591 { 3592 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3593 3594 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3595 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3596 return 0; 3597 } 3598 3599 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3600 struct cftype *cft, u64 val) 3601 { 3602 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3603 3604 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3605 if (!css->parent || !((val == 0) || (val == 1))) 3606 return -EINVAL; 3607 3608 memcg->oom_kill_disable = val; 3609 if (!val) 3610 memcg_oom_recover(memcg); 3611 3612 return 0; 3613 } 3614 3615 #ifdef CONFIG_CGROUP_WRITEBACK 3616 3617 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3618 { 3619 return &memcg->cgwb_list; 3620 } 3621 3622 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3623 { 3624 return wb_domain_init(&memcg->cgwb_domain, gfp); 3625 } 3626 3627 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3628 { 3629 wb_domain_exit(&memcg->cgwb_domain); 3630 } 3631 3632 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3633 { 3634 wb_domain_size_changed(&memcg->cgwb_domain); 3635 } 3636 3637 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3638 { 3639 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3640 3641 if (!memcg->css.parent) 3642 return NULL; 3643 3644 return &memcg->cgwb_domain; 3645 } 3646 3647 /** 3648 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3649 * @wb: bdi_writeback in question 3650 * @pfilepages: out parameter for number of file pages 3651 * @pheadroom: out parameter for number of allocatable pages according to memcg 3652 * @pdirty: out parameter for number of dirty pages 3653 * @pwriteback: out parameter for number of pages under writeback 3654 * 3655 * Determine the numbers of file, headroom, dirty, and writeback pages in 3656 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3657 * is a bit more involved. 3658 * 3659 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3660 * headroom is calculated as the lowest headroom of itself and the 3661 * ancestors. Note that this doesn't consider the actual amount of 3662 * available memory in the system. The caller should further cap 3663 * *@pheadroom accordingly. 3664 */ 3665 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3666 unsigned long *pheadroom, unsigned long *pdirty, 3667 unsigned long *pwriteback) 3668 { 3669 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3670 struct mem_cgroup *parent; 3671 3672 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); 3673 3674 /* this should eventually include NR_UNSTABLE_NFS */ 3675 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 3676 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3677 (1 << LRU_ACTIVE_FILE)); 3678 *pheadroom = PAGE_COUNTER_MAX; 3679 3680 while ((parent = parent_mem_cgroup(memcg))) { 3681 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3682 unsigned long used = page_counter_read(&memcg->memory); 3683 3684 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3685 memcg = parent; 3686 } 3687 } 3688 3689 #else /* CONFIG_CGROUP_WRITEBACK */ 3690 3691 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3692 { 3693 return 0; 3694 } 3695 3696 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3697 { 3698 } 3699 3700 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3701 { 3702 } 3703 3704 #endif /* CONFIG_CGROUP_WRITEBACK */ 3705 3706 /* 3707 * DO NOT USE IN NEW FILES. 3708 * 3709 * "cgroup.event_control" implementation. 3710 * 3711 * This is way over-engineered. It tries to support fully configurable 3712 * events for each user. Such level of flexibility is completely 3713 * unnecessary especially in the light of the planned unified hierarchy. 3714 * 3715 * Please deprecate this and replace with something simpler if at all 3716 * possible. 3717 */ 3718 3719 /* 3720 * Unregister event and free resources. 3721 * 3722 * Gets called from workqueue. 3723 */ 3724 static void memcg_event_remove(struct work_struct *work) 3725 { 3726 struct mem_cgroup_event *event = 3727 container_of(work, struct mem_cgroup_event, remove); 3728 struct mem_cgroup *memcg = event->memcg; 3729 3730 remove_wait_queue(event->wqh, &event->wait); 3731 3732 event->unregister_event(memcg, event->eventfd); 3733 3734 /* Notify userspace the event is going away. */ 3735 eventfd_signal(event->eventfd, 1); 3736 3737 eventfd_ctx_put(event->eventfd); 3738 kfree(event); 3739 css_put(&memcg->css); 3740 } 3741 3742 /* 3743 * Gets called on POLLHUP on eventfd when user closes it. 3744 * 3745 * Called with wqh->lock held and interrupts disabled. 3746 */ 3747 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 3748 int sync, void *key) 3749 { 3750 struct mem_cgroup_event *event = 3751 container_of(wait, struct mem_cgroup_event, wait); 3752 struct mem_cgroup *memcg = event->memcg; 3753 unsigned long flags = (unsigned long)key; 3754 3755 if (flags & POLLHUP) { 3756 /* 3757 * If the event has been detached at cgroup removal, we 3758 * can simply return knowing the other side will cleanup 3759 * for us. 3760 * 3761 * We can't race against event freeing since the other 3762 * side will require wqh->lock via remove_wait_queue(), 3763 * which we hold. 3764 */ 3765 spin_lock(&memcg->event_list_lock); 3766 if (!list_empty(&event->list)) { 3767 list_del_init(&event->list); 3768 /* 3769 * We are in atomic context, but cgroup_event_remove() 3770 * may sleep, so we have to call it in workqueue. 3771 */ 3772 schedule_work(&event->remove); 3773 } 3774 spin_unlock(&memcg->event_list_lock); 3775 } 3776 3777 return 0; 3778 } 3779 3780 static void memcg_event_ptable_queue_proc(struct file *file, 3781 wait_queue_head_t *wqh, poll_table *pt) 3782 { 3783 struct mem_cgroup_event *event = 3784 container_of(pt, struct mem_cgroup_event, pt); 3785 3786 event->wqh = wqh; 3787 add_wait_queue(wqh, &event->wait); 3788 } 3789 3790 /* 3791 * DO NOT USE IN NEW FILES. 3792 * 3793 * Parse input and register new cgroup event handler. 3794 * 3795 * Input must be in format '<event_fd> <control_fd> <args>'. 3796 * Interpretation of args is defined by control file implementation. 3797 */ 3798 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3799 char *buf, size_t nbytes, loff_t off) 3800 { 3801 struct cgroup_subsys_state *css = of_css(of); 3802 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3803 struct mem_cgroup_event *event; 3804 struct cgroup_subsys_state *cfile_css; 3805 unsigned int efd, cfd; 3806 struct fd efile; 3807 struct fd cfile; 3808 const char *name; 3809 char *endp; 3810 int ret; 3811 3812 buf = strstrip(buf); 3813 3814 efd = simple_strtoul(buf, &endp, 10); 3815 if (*endp != ' ') 3816 return -EINVAL; 3817 buf = endp + 1; 3818 3819 cfd = simple_strtoul(buf, &endp, 10); 3820 if ((*endp != ' ') && (*endp != '\0')) 3821 return -EINVAL; 3822 buf = endp + 1; 3823 3824 event = kzalloc(sizeof(*event), GFP_KERNEL); 3825 if (!event) 3826 return -ENOMEM; 3827 3828 event->memcg = memcg; 3829 INIT_LIST_HEAD(&event->list); 3830 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3831 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3832 INIT_WORK(&event->remove, memcg_event_remove); 3833 3834 efile = fdget(efd); 3835 if (!efile.file) { 3836 ret = -EBADF; 3837 goto out_kfree; 3838 } 3839 3840 event->eventfd = eventfd_ctx_fileget(efile.file); 3841 if (IS_ERR(event->eventfd)) { 3842 ret = PTR_ERR(event->eventfd); 3843 goto out_put_efile; 3844 } 3845 3846 cfile = fdget(cfd); 3847 if (!cfile.file) { 3848 ret = -EBADF; 3849 goto out_put_eventfd; 3850 } 3851 3852 /* the process need read permission on control file */ 3853 /* AV: shouldn't we check that it's been opened for read instead? */ 3854 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3855 if (ret < 0) 3856 goto out_put_cfile; 3857 3858 /* 3859 * Determine the event callbacks and set them in @event. This used 3860 * to be done via struct cftype but cgroup core no longer knows 3861 * about these events. The following is crude but the whole thing 3862 * is for compatibility anyway. 3863 * 3864 * DO NOT ADD NEW FILES. 3865 */ 3866 name = cfile.file->f_path.dentry->d_name.name; 3867 3868 if (!strcmp(name, "memory.usage_in_bytes")) { 3869 event->register_event = mem_cgroup_usage_register_event; 3870 event->unregister_event = mem_cgroup_usage_unregister_event; 3871 } else if (!strcmp(name, "memory.oom_control")) { 3872 event->register_event = mem_cgroup_oom_register_event; 3873 event->unregister_event = mem_cgroup_oom_unregister_event; 3874 } else if (!strcmp(name, "memory.pressure_level")) { 3875 event->register_event = vmpressure_register_event; 3876 event->unregister_event = vmpressure_unregister_event; 3877 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3878 event->register_event = memsw_cgroup_usage_register_event; 3879 event->unregister_event = memsw_cgroup_usage_unregister_event; 3880 } else { 3881 ret = -EINVAL; 3882 goto out_put_cfile; 3883 } 3884 3885 /* 3886 * Verify @cfile should belong to @css. Also, remaining events are 3887 * automatically removed on cgroup destruction but the removal is 3888 * asynchronous, so take an extra ref on @css. 3889 */ 3890 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3891 &memory_cgrp_subsys); 3892 ret = -EINVAL; 3893 if (IS_ERR(cfile_css)) 3894 goto out_put_cfile; 3895 if (cfile_css != css) { 3896 css_put(cfile_css); 3897 goto out_put_cfile; 3898 } 3899 3900 ret = event->register_event(memcg, event->eventfd, buf); 3901 if (ret) 3902 goto out_put_css; 3903 3904 efile.file->f_op->poll(efile.file, &event->pt); 3905 3906 spin_lock(&memcg->event_list_lock); 3907 list_add(&event->list, &memcg->event_list); 3908 spin_unlock(&memcg->event_list_lock); 3909 3910 fdput(cfile); 3911 fdput(efile); 3912 3913 return nbytes; 3914 3915 out_put_css: 3916 css_put(css); 3917 out_put_cfile: 3918 fdput(cfile); 3919 out_put_eventfd: 3920 eventfd_ctx_put(event->eventfd); 3921 out_put_efile: 3922 fdput(efile); 3923 out_kfree: 3924 kfree(event); 3925 3926 return ret; 3927 } 3928 3929 static struct cftype mem_cgroup_legacy_files[] = { 3930 { 3931 .name = "usage_in_bytes", 3932 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3933 .read_u64 = mem_cgroup_read_u64, 3934 }, 3935 { 3936 .name = "max_usage_in_bytes", 3937 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3938 .write = mem_cgroup_reset, 3939 .read_u64 = mem_cgroup_read_u64, 3940 }, 3941 { 3942 .name = "limit_in_bytes", 3943 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3944 .write = mem_cgroup_write, 3945 .read_u64 = mem_cgroup_read_u64, 3946 }, 3947 { 3948 .name = "soft_limit_in_bytes", 3949 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3950 .write = mem_cgroup_write, 3951 .read_u64 = mem_cgroup_read_u64, 3952 }, 3953 { 3954 .name = "failcnt", 3955 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3956 .write = mem_cgroup_reset, 3957 .read_u64 = mem_cgroup_read_u64, 3958 }, 3959 { 3960 .name = "stat", 3961 .seq_show = memcg_stat_show, 3962 }, 3963 { 3964 .name = "force_empty", 3965 .write = mem_cgroup_force_empty_write, 3966 }, 3967 { 3968 .name = "use_hierarchy", 3969 .write_u64 = mem_cgroup_hierarchy_write, 3970 .read_u64 = mem_cgroup_hierarchy_read, 3971 }, 3972 { 3973 .name = "cgroup.event_control", /* XXX: for compat */ 3974 .write = memcg_write_event_control, 3975 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3976 }, 3977 { 3978 .name = "swappiness", 3979 .read_u64 = mem_cgroup_swappiness_read, 3980 .write_u64 = mem_cgroup_swappiness_write, 3981 }, 3982 { 3983 .name = "move_charge_at_immigrate", 3984 .read_u64 = mem_cgroup_move_charge_read, 3985 .write_u64 = mem_cgroup_move_charge_write, 3986 }, 3987 { 3988 .name = "oom_control", 3989 .seq_show = mem_cgroup_oom_control_read, 3990 .write_u64 = mem_cgroup_oom_control_write, 3991 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3992 }, 3993 { 3994 .name = "pressure_level", 3995 }, 3996 #ifdef CONFIG_NUMA 3997 { 3998 .name = "numa_stat", 3999 .seq_show = memcg_numa_stat_show, 4000 }, 4001 #endif 4002 { 4003 .name = "kmem.limit_in_bytes", 4004 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4005 .write = mem_cgroup_write, 4006 .read_u64 = mem_cgroup_read_u64, 4007 }, 4008 { 4009 .name = "kmem.usage_in_bytes", 4010 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4011 .read_u64 = mem_cgroup_read_u64, 4012 }, 4013 { 4014 .name = "kmem.failcnt", 4015 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4016 .write = mem_cgroup_reset, 4017 .read_u64 = mem_cgroup_read_u64, 4018 }, 4019 { 4020 .name = "kmem.max_usage_in_bytes", 4021 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4022 .write = mem_cgroup_reset, 4023 .read_u64 = mem_cgroup_read_u64, 4024 }, 4025 #ifdef CONFIG_SLABINFO 4026 { 4027 .name = "kmem.slabinfo", 4028 .seq_start = slab_start, 4029 .seq_next = slab_next, 4030 .seq_stop = slab_stop, 4031 .seq_show = memcg_slab_show, 4032 }, 4033 #endif 4034 { 4035 .name = "kmem.tcp.limit_in_bytes", 4036 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4037 .write = mem_cgroup_write, 4038 .read_u64 = mem_cgroup_read_u64, 4039 }, 4040 { 4041 .name = "kmem.tcp.usage_in_bytes", 4042 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4043 .read_u64 = mem_cgroup_read_u64, 4044 }, 4045 { 4046 .name = "kmem.tcp.failcnt", 4047 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4048 .write = mem_cgroup_reset, 4049 .read_u64 = mem_cgroup_read_u64, 4050 }, 4051 { 4052 .name = "kmem.tcp.max_usage_in_bytes", 4053 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4054 .write = mem_cgroup_reset, 4055 .read_u64 = mem_cgroup_read_u64, 4056 }, 4057 { }, /* terminate */ 4058 }; 4059 4060 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4061 { 4062 struct mem_cgroup_per_node *pn; 4063 struct mem_cgroup_per_zone *mz; 4064 int zone, tmp = node; 4065 /* 4066 * This routine is called against possible nodes. 4067 * But it's BUG to call kmalloc() against offline node. 4068 * 4069 * TODO: this routine can waste much memory for nodes which will 4070 * never be onlined. It's better to use memory hotplug callback 4071 * function. 4072 */ 4073 if (!node_state(node, N_NORMAL_MEMORY)) 4074 tmp = -1; 4075 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4076 if (!pn) 4077 return 1; 4078 4079 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4080 mz = &pn->zoneinfo[zone]; 4081 lruvec_init(&mz->lruvec); 4082 mz->usage_in_excess = 0; 4083 mz->on_tree = false; 4084 mz->memcg = memcg; 4085 } 4086 memcg->nodeinfo[node] = pn; 4087 return 0; 4088 } 4089 4090 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4091 { 4092 kfree(memcg->nodeinfo[node]); 4093 } 4094 4095 static void mem_cgroup_free(struct mem_cgroup *memcg) 4096 { 4097 int node; 4098 4099 memcg_wb_domain_exit(memcg); 4100 for_each_node(node) 4101 free_mem_cgroup_per_zone_info(memcg, node); 4102 free_percpu(memcg->stat); 4103 kfree(memcg); 4104 } 4105 4106 static struct mem_cgroup *mem_cgroup_alloc(void) 4107 { 4108 struct mem_cgroup *memcg; 4109 size_t size; 4110 int node; 4111 4112 size = sizeof(struct mem_cgroup); 4113 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4114 4115 memcg = kzalloc(size, GFP_KERNEL); 4116 if (!memcg) 4117 return NULL; 4118 4119 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4120 if (!memcg->stat) 4121 goto fail; 4122 4123 for_each_node(node) 4124 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4125 goto fail; 4126 4127 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4128 goto fail; 4129 4130 INIT_WORK(&memcg->high_work, high_work_func); 4131 memcg->last_scanned_node = MAX_NUMNODES; 4132 INIT_LIST_HEAD(&memcg->oom_notify); 4133 mutex_init(&memcg->thresholds_lock); 4134 spin_lock_init(&memcg->move_lock); 4135 vmpressure_init(&memcg->vmpressure); 4136 INIT_LIST_HEAD(&memcg->event_list); 4137 spin_lock_init(&memcg->event_list_lock); 4138 memcg->socket_pressure = jiffies; 4139 #ifndef CONFIG_SLOB 4140 memcg->kmemcg_id = -1; 4141 #endif 4142 #ifdef CONFIG_CGROUP_WRITEBACK 4143 INIT_LIST_HEAD(&memcg->cgwb_list); 4144 #endif 4145 return memcg; 4146 fail: 4147 mem_cgroup_free(memcg); 4148 return NULL; 4149 } 4150 4151 static struct cgroup_subsys_state * __ref 4152 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4153 { 4154 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4155 struct mem_cgroup *memcg; 4156 long error = -ENOMEM; 4157 4158 memcg = mem_cgroup_alloc(); 4159 if (!memcg) 4160 return ERR_PTR(error); 4161 4162 memcg->high = PAGE_COUNTER_MAX; 4163 memcg->soft_limit = PAGE_COUNTER_MAX; 4164 if (parent) { 4165 memcg->swappiness = mem_cgroup_swappiness(parent); 4166 memcg->oom_kill_disable = parent->oom_kill_disable; 4167 } 4168 if (parent && parent->use_hierarchy) { 4169 memcg->use_hierarchy = true; 4170 page_counter_init(&memcg->memory, &parent->memory); 4171 page_counter_init(&memcg->swap, &parent->swap); 4172 page_counter_init(&memcg->memsw, &parent->memsw); 4173 page_counter_init(&memcg->kmem, &parent->kmem); 4174 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4175 } else { 4176 page_counter_init(&memcg->memory, NULL); 4177 page_counter_init(&memcg->swap, NULL); 4178 page_counter_init(&memcg->memsw, NULL); 4179 page_counter_init(&memcg->kmem, NULL); 4180 page_counter_init(&memcg->tcpmem, NULL); 4181 /* 4182 * Deeper hierachy with use_hierarchy == false doesn't make 4183 * much sense so let cgroup subsystem know about this 4184 * unfortunate state in our controller. 4185 */ 4186 if (parent != root_mem_cgroup) 4187 memory_cgrp_subsys.broken_hierarchy = true; 4188 } 4189 4190 /* The following stuff does not apply to the root */ 4191 if (!parent) { 4192 root_mem_cgroup = memcg; 4193 return &memcg->css; 4194 } 4195 4196 error = memcg_online_kmem(memcg); 4197 if (error) 4198 goto fail; 4199 4200 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4201 static_branch_inc(&memcg_sockets_enabled_key); 4202 4203 return &memcg->css; 4204 fail: 4205 mem_cgroup_free(memcg); 4206 return NULL; 4207 } 4208 4209 static int 4210 mem_cgroup_css_online(struct cgroup_subsys_state *css) 4211 { 4212 if (css->id > MEM_CGROUP_ID_MAX) 4213 return -ENOSPC; 4214 4215 return 0; 4216 } 4217 4218 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4219 { 4220 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4221 struct mem_cgroup_event *event, *tmp; 4222 4223 /* 4224 * Unregister events and notify userspace. 4225 * Notify userspace about cgroup removing only after rmdir of cgroup 4226 * directory to avoid race between userspace and kernelspace. 4227 */ 4228 spin_lock(&memcg->event_list_lock); 4229 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4230 list_del_init(&event->list); 4231 schedule_work(&event->remove); 4232 } 4233 spin_unlock(&memcg->event_list_lock); 4234 4235 memcg_offline_kmem(memcg); 4236 wb_memcg_offline(memcg); 4237 } 4238 4239 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4240 { 4241 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4242 4243 invalidate_reclaim_iterators(memcg); 4244 } 4245 4246 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4247 { 4248 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4249 4250 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4251 static_branch_dec(&memcg_sockets_enabled_key); 4252 4253 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4254 static_branch_dec(&memcg_sockets_enabled_key); 4255 4256 vmpressure_cleanup(&memcg->vmpressure); 4257 cancel_work_sync(&memcg->high_work); 4258 mem_cgroup_remove_from_trees(memcg); 4259 memcg_free_kmem(memcg); 4260 mem_cgroup_free(memcg); 4261 } 4262 4263 /** 4264 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4265 * @css: the target css 4266 * 4267 * Reset the states of the mem_cgroup associated with @css. This is 4268 * invoked when the userland requests disabling on the default hierarchy 4269 * but the memcg is pinned through dependency. The memcg should stop 4270 * applying policies and should revert to the vanilla state as it may be 4271 * made visible again. 4272 * 4273 * The current implementation only resets the essential configurations. 4274 * This needs to be expanded to cover all the visible parts. 4275 */ 4276 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4277 { 4278 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4279 4280 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4281 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4282 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4283 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4284 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4285 memcg->low = 0; 4286 memcg->high = PAGE_COUNTER_MAX; 4287 memcg->soft_limit = PAGE_COUNTER_MAX; 4288 memcg_wb_domain_size_changed(memcg); 4289 } 4290 4291 #ifdef CONFIG_MMU 4292 /* Handlers for move charge at task migration. */ 4293 static int mem_cgroup_do_precharge(unsigned long count) 4294 { 4295 int ret; 4296 4297 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4298 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4299 if (!ret) { 4300 mc.precharge += count; 4301 return ret; 4302 } 4303 4304 /* Try charges one by one with reclaim */ 4305 while (count--) { 4306 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 4307 if (ret) 4308 return ret; 4309 mc.precharge++; 4310 cond_resched(); 4311 } 4312 return 0; 4313 } 4314 4315 union mc_target { 4316 struct page *page; 4317 swp_entry_t ent; 4318 }; 4319 4320 enum mc_target_type { 4321 MC_TARGET_NONE = 0, 4322 MC_TARGET_PAGE, 4323 MC_TARGET_SWAP, 4324 }; 4325 4326 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4327 unsigned long addr, pte_t ptent) 4328 { 4329 struct page *page = vm_normal_page(vma, addr, ptent); 4330 4331 if (!page || !page_mapped(page)) 4332 return NULL; 4333 if (PageAnon(page)) { 4334 if (!(mc.flags & MOVE_ANON)) 4335 return NULL; 4336 } else { 4337 if (!(mc.flags & MOVE_FILE)) 4338 return NULL; 4339 } 4340 if (!get_page_unless_zero(page)) 4341 return NULL; 4342 4343 return page; 4344 } 4345 4346 #ifdef CONFIG_SWAP 4347 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4348 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4349 { 4350 struct page *page = NULL; 4351 swp_entry_t ent = pte_to_swp_entry(ptent); 4352 4353 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4354 return NULL; 4355 /* 4356 * Because lookup_swap_cache() updates some statistics counter, 4357 * we call find_get_page() with swapper_space directly. 4358 */ 4359 page = find_get_page(swap_address_space(ent), ent.val); 4360 if (do_memsw_account()) 4361 entry->val = ent.val; 4362 4363 return page; 4364 } 4365 #else 4366 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4367 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4368 { 4369 return NULL; 4370 } 4371 #endif 4372 4373 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4374 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4375 { 4376 struct page *page = NULL; 4377 struct address_space *mapping; 4378 pgoff_t pgoff; 4379 4380 if (!vma->vm_file) /* anonymous vma */ 4381 return NULL; 4382 if (!(mc.flags & MOVE_FILE)) 4383 return NULL; 4384 4385 mapping = vma->vm_file->f_mapping; 4386 pgoff = linear_page_index(vma, addr); 4387 4388 /* page is moved even if it's not RSS of this task(page-faulted). */ 4389 #ifdef CONFIG_SWAP 4390 /* shmem/tmpfs may report page out on swap: account for that too. */ 4391 if (shmem_mapping(mapping)) { 4392 page = find_get_entry(mapping, pgoff); 4393 if (radix_tree_exceptional_entry(page)) { 4394 swp_entry_t swp = radix_to_swp_entry(page); 4395 if (do_memsw_account()) 4396 *entry = swp; 4397 page = find_get_page(swap_address_space(swp), swp.val); 4398 } 4399 } else 4400 page = find_get_page(mapping, pgoff); 4401 #else 4402 page = find_get_page(mapping, pgoff); 4403 #endif 4404 return page; 4405 } 4406 4407 /** 4408 * mem_cgroup_move_account - move account of the page 4409 * @page: the page 4410 * @nr_pages: number of regular pages (>1 for huge pages) 4411 * @from: mem_cgroup which the page is moved from. 4412 * @to: mem_cgroup which the page is moved to. @from != @to. 4413 * 4414 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4415 * 4416 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4417 * from old cgroup. 4418 */ 4419 static int mem_cgroup_move_account(struct page *page, 4420 bool compound, 4421 struct mem_cgroup *from, 4422 struct mem_cgroup *to) 4423 { 4424 unsigned long flags; 4425 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4426 int ret; 4427 bool anon; 4428 4429 VM_BUG_ON(from == to); 4430 VM_BUG_ON_PAGE(PageLRU(page), page); 4431 VM_BUG_ON(compound && !PageTransHuge(page)); 4432 4433 /* 4434 * Prevent mem_cgroup_migrate() from looking at 4435 * page->mem_cgroup of its source page while we change it. 4436 */ 4437 ret = -EBUSY; 4438 if (!trylock_page(page)) 4439 goto out; 4440 4441 ret = -EINVAL; 4442 if (page->mem_cgroup != from) 4443 goto out_unlock; 4444 4445 anon = PageAnon(page); 4446 4447 spin_lock_irqsave(&from->move_lock, flags); 4448 4449 if (!anon && page_mapped(page)) { 4450 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4451 nr_pages); 4452 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4453 nr_pages); 4454 } 4455 4456 /* 4457 * move_lock grabbed above and caller set from->moving_account, so 4458 * mem_cgroup_update_page_stat() will serialize updates to PageDirty. 4459 * So mapping should be stable for dirty pages. 4460 */ 4461 if (!anon && PageDirty(page)) { 4462 struct address_space *mapping = page_mapping(page); 4463 4464 if (mapping_cap_account_dirty(mapping)) { 4465 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], 4466 nr_pages); 4467 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], 4468 nr_pages); 4469 } 4470 } 4471 4472 if (PageWriteback(page)) { 4473 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4474 nr_pages); 4475 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4476 nr_pages); 4477 } 4478 4479 /* 4480 * It is safe to change page->mem_cgroup here because the page 4481 * is referenced, charged, and isolated - we can't race with 4482 * uncharging, charging, migration, or LRU putback. 4483 */ 4484 4485 /* caller should have done css_get */ 4486 page->mem_cgroup = to; 4487 spin_unlock_irqrestore(&from->move_lock, flags); 4488 4489 ret = 0; 4490 4491 local_irq_disable(); 4492 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4493 memcg_check_events(to, page); 4494 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4495 memcg_check_events(from, page); 4496 local_irq_enable(); 4497 out_unlock: 4498 unlock_page(page); 4499 out: 4500 return ret; 4501 } 4502 4503 /** 4504 * get_mctgt_type - get target type of moving charge 4505 * @vma: the vma the pte to be checked belongs 4506 * @addr: the address corresponding to the pte to be checked 4507 * @ptent: the pte to be checked 4508 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4509 * 4510 * Returns 4511 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4512 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4513 * move charge. if @target is not NULL, the page is stored in target->page 4514 * with extra refcnt got(Callers should handle it). 4515 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4516 * target for charge migration. if @target is not NULL, the entry is stored 4517 * in target->ent. 4518 * 4519 * Called with pte lock held. 4520 */ 4521 4522 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4523 unsigned long addr, pte_t ptent, union mc_target *target) 4524 { 4525 struct page *page = NULL; 4526 enum mc_target_type ret = MC_TARGET_NONE; 4527 swp_entry_t ent = { .val = 0 }; 4528 4529 if (pte_present(ptent)) 4530 page = mc_handle_present_pte(vma, addr, ptent); 4531 else if (is_swap_pte(ptent)) 4532 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 4533 else if (pte_none(ptent)) 4534 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4535 4536 if (!page && !ent.val) 4537 return ret; 4538 if (page) { 4539 /* 4540 * Do only loose check w/o serialization. 4541 * mem_cgroup_move_account() checks the page is valid or 4542 * not under LRU exclusion. 4543 */ 4544 if (page->mem_cgroup == mc.from) { 4545 ret = MC_TARGET_PAGE; 4546 if (target) 4547 target->page = page; 4548 } 4549 if (!ret || !target) 4550 put_page(page); 4551 } 4552 /* There is a swap entry and a page doesn't exist or isn't charged */ 4553 if (ent.val && !ret && 4554 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4555 ret = MC_TARGET_SWAP; 4556 if (target) 4557 target->ent = ent; 4558 } 4559 return ret; 4560 } 4561 4562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4563 /* 4564 * We don't consider swapping or file mapped pages because THP does not 4565 * support them for now. 4566 * Caller should make sure that pmd_trans_huge(pmd) is true. 4567 */ 4568 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4569 unsigned long addr, pmd_t pmd, union mc_target *target) 4570 { 4571 struct page *page = NULL; 4572 enum mc_target_type ret = MC_TARGET_NONE; 4573 4574 page = pmd_page(pmd); 4575 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4576 if (!(mc.flags & MOVE_ANON)) 4577 return ret; 4578 if (page->mem_cgroup == mc.from) { 4579 ret = MC_TARGET_PAGE; 4580 if (target) { 4581 get_page(page); 4582 target->page = page; 4583 } 4584 } 4585 return ret; 4586 } 4587 #else 4588 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4589 unsigned long addr, pmd_t pmd, union mc_target *target) 4590 { 4591 return MC_TARGET_NONE; 4592 } 4593 #endif 4594 4595 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4596 unsigned long addr, unsigned long end, 4597 struct mm_walk *walk) 4598 { 4599 struct vm_area_struct *vma = walk->vma; 4600 pte_t *pte; 4601 spinlock_t *ptl; 4602 4603 ptl = pmd_trans_huge_lock(pmd, vma); 4604 if (ptl) { 4605 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4606 mc.precharge += HPAGE_PMD_NR; 4607 spin_unlock(ptl); 4608 return 0; 4609 } 4610 4611 if (pmd_trans_unstable(pmd)) 4612 return 0; 4613 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4614 for (; addr != end; pte++, addr += PAGE_SIZE) 4615 if (get_mctgt_type(vma, addr, *pte, NULL)) 4616 mc.precharge++; /* increment precharge temporarily */ 4617 pte_unmap_unlock(pte - 1, ptl); 4618 cond_resched(); 4619 4620 return 0; 4621 } 4622 4623 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4624 { 4625 unsigned long precharge; 4626 4627 struct mm_walk mem_cgroup_count_precharge_walk = { 4628 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4629 .mm = mm, 4630 }; 4631 down_read(&mm->mmap_sem); 4632 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); 4633 up_read(&mm->mmap_sem); 4634 4635 precharge = mc.precharge; 4636 mc.precharge = 0; 4637 4638 return precharge; 4639 } 4640 4641 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4642 { 4643 unsigned long precharge = mem_cgroup_count_precharge(mm); 4644 4645 VM_BUG_ON(mc.moving_task); 4646 mc.moving_task = current; 4647 return mem_cgroup_do_precharge(precharge); 4648 } 4649 4650 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4651 static void __mem_cgroup_clear_mc(void) 4652 { 4653 struct mem_cgroup *from = mc.from; 4654 struct mem_cgroup *to = mc.to; 4655 4656 /* we must uncharge all the leftover precharges from mc.to */ 4657 if (mc.precharge) { 4658 cancel_charge(mc.to, mc.precharge); 4659 mc.precharge = 0; 4660 } 4661 /* 4662 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4663 * we must uncharge here. 4664 */ 4665 if (mc.moved_charge) { 4666 cancel_charge(mc.from, mc.moved_charge); 4667 mc.moved_charge = 0; 4668 } 4669 /* we must fixup refcnts and charges */ 4670 if (mc.moved_swap) { 4671 /* uncharge swap account from the old cgroup */ 4672 if (!mem_cgroup_is_root(mc.from)) 4673 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4674 4675 /* 4676 * we charged both to->memory and to->memsw, so we 4677 * should uncharge to->memory. 4678 */ 4679 if (!mem_cgroup_is_root(mc.to)) 4680 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4681 4682 css_put_many(&mc.from->css, mc.moved_swap); 4683 4684 /* we've already done css_get(mc.to) */ 4685 mc.moved_swap = 0; 4686 } 4687 memcg_oom_recover(from); 4688 memcg_oom_recover(to); 4689 wake_up_all(&mc.waitq); 4690 } 4691 4692 static void mem_cgroup_clear_mc(void) 4693 { 4694 struct mm_struct *mm = mc.mm; 4695 4696 /* 4697 * we must clear moving_task before waking up waiters at the end of 4698 * task migration. 4699 */ 4700 mc.moving_task = NULL; 4701 __mem_cgroup_clear_mc(); 4702 spin_lock(&mc.lock); 4703 mc.from = NULL; 4704 mc.to = NULL; 4705 mc.mm = NULL; 4706 spin_unlock(&mc.lock); 4707 4708 mmput(mm); 4709 } 4710 4711 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4712 { 4713 struct cgroup_subsys_state *css; 4714 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4715 struct mem_cgroup *from; 4716 struct task_struct *leader, *p; 4717 struct mm_struct *mm; 4718 unsigned long move_flags; 4719 int ret = 0; 4720 4721 /* charge immigration isn't supported on the default hierarchy */ 4722 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4723 return 0; 4724 4725 /* 4726 * Multi-process migrations only happen on the default hierarchy 4727 * where charge immigration is not used. Perform charge 4728 * immigration if @tset contains a leader and whine if there are 4729 * multiple. 4730 */ 4731 p = NULL; 4732 cgroup_taskset_for_each_leader(leader, css, tset) { 4733 WARN_ON_ONCE(p); 4734 p = leader; 4735 memcg = mem_cgroup_from_css(css); 4736 } 4737 if (!p) 4738 return 0; 4739 4740 /* 4741 * We are now commited to this value whatever it is. Changes in this 4742 * tunable will only affect upcoming migrations, not the current one. 4743 * So we need to save it, and keep it going. 4744 */ 4745 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4746 if (!move_flags) 4747 return 0; 4748 4749 from = mem_cgroup_from_task(p); 4750 4751 VM_BUG_ON(from == memcg); 4752 4753 mm = get_task_mm(p); 4754 if (!mm) 4755 return 0; 4756 /* We move charges only when we move a owner of the mm */ 4757 if (mm->owner == p) { 4758 VM_BUG_ON(mc.from); 4759 VM_BUG_ON(mc.to); 4760 VM_BUG_ON(mc.precharge); 4761 VM_BUG_ON(mc.moved_charge); 4762 VM_BUG_ON(mc.moved_swap); 4763 4764 spin_lock(&mc.lock); 4765 mc.mm = mm; 4766 mc.from = from; 4767 mc.to = memcg; 4768 mc.flags = move_flags; 4769 spin_unlock(&mc.lock); 4770 /* We set mc.moving_task later */ 4771 4772 ret = mem_cgroup_precharge_mc(mm); 4773 if (ret) 4774 mem_cgroup_clear_mc(); 4775 } else { 4776 mmput(mm); 4777 } 4778 return ret; 4779 } 4780 4781 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4782 { 4783 if (mc.to) 4784 mem_cgroup_clear_mc(); 4785 } 4786 4787 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4788 unsigned long addr, unsigned long end, 4789 struct mm_walk *walk) 4790 { 4791 int ret = 0; 4792 struct vm_area_struct *vma = walk->vma; 4793 pte_t *pte; 4794 spinlock_t *ptl; 4795 enum mc_target_type target_type; 4796 union mc_target target; 4797 struct page *page; 4798 4799 ptl = pmd_trans_huge_lock(pmd, vma); 4800 if (ptl) { 4801 if (mc.precharge < HPAGE_PMD_NR) { 4802 spin_unlock(ptl); 4803 return 0; 4804 } 4805 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4806 if (target_type == MC_TARGET_PAGE) { 4807 page = target.page; 4808 if (!isolate_lru_page(page)) { 4809 if (!mem_cgroup_move_account(page, true, 4810 mc.from, mc.to)) { 4811 mc.precharge -= HPAGE_PMD_NR; 4812 mc.moved_charge += HPAGE_PMD_NR; 4813 } 4814 putback_lru_page(page); 4815 } 4816 put_page(page); 4817 } 4818 spin_unlock(ptl); 4819 return 0; 4820 } 4821 4822 if (pmd_trans_unstable(pmd)) 4823 return 0; 4824 retry: 4825 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4826 for (; addr != end; addr += PAGE_SIZE) { 4827 pte_t ptent = *(pte++); 4828 swp_entry_t ent; 4829 4830 if (!mc.precharge) 4831 break; 4832 4833 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4834 case MC_TARGET_PAGE: 4835 page = target.page; 4836 /* 4837 * We can have a part of the split pmd here. Moving it 4838 * can be done but it would be too convoluted so simply 4839 * ignore such a partial THP and keep it in original 4840 * memcg. There should be somebody mapping the head. 4841 */ 4842 if (PageTransCompound(page)) 4843 goto put; 4844 if (isolate_lru_page(page)) 4845 goto put; 4846 if (!mem_cgroup_move_account(page, false, 4847 mc.from, mc.to)) { 4848 mc.precharge--; 4849 /* we uncharge from mc.from later. */ 4850 mc.moved_charge++; 4851 } 4852 putback_lru_page(page); 4853 put: /* get_mctgt_type() gets the page */ 4854 put_page(page); 4855 break; 4856 case MC_TARGET_SWAP: 4857 ent = target.ent; 4858 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4859 mc.precharge--; 4860 /* we fixup refcnts and charges later. */ 4861 mc.moved_swap++; 4862 } 4863 break; 4864 default: 4865 break; 4866 } 4867 } 4868 pte_unmap_unlock(pte - 1, ptl); 4869 cond_resched(); 4870 4871 if (addr != end) { 4872 /* 4873 * We have consumed all precharges we got in can_attach(). 4874 * We try charge one by one, but don't do any additional 4875 * charges to mc.to if we have failed in charge once in attach() 4876 * phase. 4877 */ 4878 ret = mem_cgroup_do_precharge(1); 4879 if (!ret) 4880 goto retry; 4881 } 4882 4883 return ret; 4884 } 4885 4886 static void mem_cgroup_move_charge(void) 4887 { 4888 struct mm_walk mem_cgroup_move_charge_walk = { 4889 .pmd_entry = mem_cgroup_move_charge_pte_range, 4890 .mm = mc.mm, 4891 }; 4892 4893 lru_add_drain_all(); 4894 /* 4895 * Signal lock_page_memcg() to take the memcg's move_lock 4896 * while we're moving its pages to another memcg. Then wait 4897 * for already started RCU-only updates to finish. 4898 */ 4899 atomic_inc(&mc.from->moving_account); 4900 synchronize_rcu(); 4901 retry: 4902 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 4903 /* 4904 * Someone who are holding the mmap_sem might be waiting in 4905 * waitq. So we cancel all extra charges, wake up all waiters, 4906 * and retry. Because we cancel precharges, we might not be able 4907 * to move enough charges, but moving charge is a best-effort 4908 * feature anyway, so it wouldn't be a big problem. 4909 */ 4910 __mem_cgroup_clear_mc(); 4911 cond_resched(); 4912 goto retry; 4913 } 4914 /* 4915 * When we have consumed all precharges and failed in doing 4916 * additional charge, the page walk just aborts. 4917 */ 4918 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); 4919 up_read(&mc.mm->mmap_sem); 4920 atomic_dec(&mc.from->moving_account); 4921 } 4922 4923 static void mem_cgroup_move_task(void) 4924 { 4925 if (mc.to) { 4926 mem_cgroup_move_charge(); 4927 mem_cgroup_clear_mc(); 4928 } 4929 } 4930 #else /* !CONFIG_MMU */ 4931 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4932 { 4933 return 0; 4934 } 4935 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4936 { 4937 } 4938 static void mem_cgroup_move_task(void) 4939 { 4940 } 4941 #endif 4942 4943 /* 4944 * Cgroup retains root cgroups across [un]mount cycles making it necessary 4945 * to verify whether we're attached to the default hierarchy on each mount 4946 * attempt. 4947 */ 4948 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 4949 { 4950 /* 4951 * use_hierarchy is forced on the default hierarchy. cgroup core 4952 * guarantees that @root doesn't have any children, so turning it 4953 * on for the root memcg is enough. 4954 */ 4955 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4956 root_mem_cgroup->use_hierarchy = true; 4957 else 4958 root_mem_cgroup->use_hierarchy = false; 4959 } 4960 4961 static u64 memory_current_read(struct cgroup_subsys_state *css, 4962 struct cftype *cft) 4963 { 4964 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4965 4966 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4967 } 4968 4969 static int memory_low_show(struct seq_file *m, void *v) 4970 { 4971 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 4972 unsigned long low = READ_ONCE(memcg->low); 4973 4974 if (low == PAGE_COUNTER_MAX) 4975 seq_puts(m, "max\n"); 4976 else 4977 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 4978 4979 return 0; 4980 } 4981 4982 static ssize_t memory_low_write(struct kernfs_open_file *of, 4983 char *buf, size_t nbytes, loff_t off) 4984 { 4985 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4986 unsigned long low; 4987 int err; 4988 4989 buf = strstrip(buf); 4990 err = page_counter_memparse(buf, "max", &low); 4991 if (err) 4992 return err; 4993 4994 memcg->low = low; 4995 4996 return nbytes; 4997 } 4998 4999 static int memory_high_show(struct seq_file *m, void *v) 5000 { 5001 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5002 unsigned long high = READ_ONCE(memcg->high); 5003 5004 if (high == PAGE_COUNTER_MAX) 5005 seq_puts(m, "max\n"); 5006 else 5007 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5008 5009 return 0; 5010 } 5011 5012 static ssize_t memory_high_write(struct kernfs_open_file *of, 5013 char *buf, size_t nbytes, loff_t off) 5014 { 5015 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5016 unsigned long nr_pages; 5017 unsigned long high; 5018 int err; 5019 5020 buf = strstrip(buf); 5021 err = page_counter_memparse(buf, "max", &high); 5022 if (err) 5023 return err; 5024 5025 memcg->high = high; 5026 5027 nr_pages = page_counter_read(&memcg->memory); 5028 if (nr_pages > high) 5029 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5030 GFP_KERNEL, true); 5031 5032 memcg_wb_domain_size_changed(memcg); 5033 return nbytes; 5034 } 5035 5036 static int memory_max_show(struct seq_file *m, void *v) 5037 { 5038 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5039 unsigned long max = READ_ONCE(memcg->memory.limit); 5040 5041 if (max == PAGE_COUNTER_MAX) 5042 seq_puts(m, "max\n"); 5043 else 5044 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5045 5046 return 0; 5047 } 5048 5049 static ssize_t memory_max_write(struct kernfs_open_file *of, 5050 char *buf, size_t nbytes, loff_t off) 5051 { 5052 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5053 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5054 bool drained = false; 5055 unsigned long max; 5056 int err; 5057 5058 buf = strstrip(buf); 5059 err = page_counter_memparse(buf, "max", &max); 5060 if (err) 5061 return err; 5062 5063 xchg(&memcg->memory.limit, max); 5064 5065 for (;;) { 5066 unsigned long nr_pages = page_counter_read(&memcg->memory); 5067 5068 if (nr_pages <= max) 5069 break; 5070 5071 if (signal_pending(current)) { 5072 err = -EINTR; 5073 break; 5074 } 5075 5076 if (!drained) { 5077 drain_all_stock(memcg); 5078 drained = true; 5079 continue; 5080 } 5081 5082 if (nr_reclaims) { 5083 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5084 GFP_KERNEL, true)) 5085 nr_reclaims--; 5086 continue; 5087 } 5088 5089 mem_cgroup_events(memcg, MEMCG_OOM, 1); 5090 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5091 break; 5092 } 5093 5094 memcg_wb_domain_size_changed(memcg); 5095 return nbytes; 5096 } 5097 5098 static int memory_events_show(struct seq_file *m, void *v) 5099 { 5100 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5101 5102 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5103 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5104 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5105 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5106 5107 return 0; 5108 } 5109 5110 static int memory_stat_show(struct seq_file *m, void *v) 5111 { 5112 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5113 unsigned long stat[MEMCG_NR_STAT]; 5114 unsigned long events[MEMCG_NR_EVENTS]; 5115 int i; 5116 5117 /* 5118 * Provide statistics on the state of the memory subsystem as 5119 * well as cumulative event counters that show past behavior. 5120 * 5121 * This list is ordered following a combination of these gradients: 5122 * 1) generic big picture -> specifics and details 5123 * 2) reflecting userspace activity -> reflecting kernel heuristics 5124 * 5125 * Current memory state: 5126 */ 5127 5128 tree_stat(memcg, stat); 5129 tree_events(memcg, events); 5130 5131 seq_printf(m, "anon %llu\n", 5132 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); 5133 seq_printf(m, "file %llu\n", 5134 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); 5135 seq_printf(m, "kernel_stack %llu\n", 5136 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE); 5137 seq_printf(m, "slab %llu\n", 5138 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + 5139 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5140 seq_printf(m, "sock %llu\n", 5141 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5142 5143 seq_printf(m, "file_mapped %llu\n", 5144 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); 5145 seq_printf(m, "file_dirty %llu\n", 5146 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); 5147 seq_printf(m, "file_writeback %llu\n", 5148 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); 5149 5150 for (i = 0; i < NR_LRU_LISTS; i++) { 5151 struct mem_cgroup *mi; 5152 unsigned long val = 0; 5153 5154 for_each_mem_cgroup_tree(mi, memcg) 5155 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5156 seq_printf(m, "%s %llu\n", 5157 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5158 } 5159 5160 seq_printf(m, "slab_reclaimable %llu\n", 5161 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); 5162 seq_printf(m, "slab_unreclaimable %llu\n", 5163 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5164 5165 /* Accumulated memory events */ 5166 5167 seq_printf(m, "pgfault %lu\n", 5168 events[MEM_CGROUP_EVENTS_PGFAULT]); 5169 seq_printf(m, "pgmajfault %lu\n", 5170 events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 5171 5172 return 0; 5173 } 5174 5175 static struct cftype memory_files[] = { 5176 { 5177 .name = "current", 5178 .flags = CFTYPE_NOT_ON_ROOT, 5179 .read_u64 = memory_current_read, 5180 }, 5181 { 5182 .name = "low", 5183 .flags = CFTYPE_NOT_ON_ROOT, 5184 .seq_show = memory_low_show, 5185 .write = memory_low_write, 5186 }, 5187 { 5188 .name = "high", 5189 .flags = CFTYPE_NOT_ON_ROOT, 5190 .seq_show = memory_high_show, 5191 .write = memory_high_write, 5192 }, 5193 { 5194 .name = "max", 5195 .flags = CFTYPE_NOT_ON_ROOT, 5196 .seq_show = memory_max_show, 5197 .write = memory_max_write, 5198 }, 5199 { 5200 .name = "events", 5201 .flags = CFTYPE_NOT_ON_ROOT, 5202 .file_offset = offsetof(struct mem_cgroup, events_file), 5203 .seq_show = memory_events_show, 5204 }, 5205 { 5206 .name = "stat", 5207 .flags = CFTYPE_NOT_ON_ROOT, 5208 .seq_show = memory_stat_show, 5209 }, 5210 { } /* terminate */ 5211 }; 5212 5213 struct cgroup_subsys memory_cgrp_subsys = { 5214 .css_alloc = mem_cgroup_css_alloc, 5215 .css_online = mem_cgroup_css_online, 5216 .css_offline = mem_cgroup_css_offline, 5217 .css_released = mem_cgroup_css_released, 5218 .css_free = mem_cgroup_css_free, 5219 .css_reset = mem_cgroup_css_reset, 5220 .can_attach = mem_cgroup_can_attach, 5221 .cancel_attach = mem_cgroup_cancel_attach, 5222 .post_attach = mem_cgroup_move_task, 5223 .bind = mem_cgroup_bind, 5224 .dfl_cftypes = memory_files, 5225 .legacy_cftypes = mem_cgroup_legacy_files, 5226 .early_init = 0, 5227 }; 5228 5229 /** 5230 * mem_cgroup_low - check if memory consumption is below the normal range 5231 * @root: the highest ancestor to consider 5232 * @memcg: the memory cgroup to check 5233 * 5234 * Returns %true if memory consumption of @memcg, and that of all 5235 * configurable ancestors up to @root, is below the normal range. 5236 */ 5237 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5238 { 5239 if (mem_cgroup_disabled()) 5240 return false; 5241 5242 /* 5243 * The toplevel group doesn't have a configurable range, so 5244 * it's never low when looked at directly, and it is not 5245 * considered an ancestor when assessing the hierarchy. 5246 */ 5247 5248 if (memcg == root_mem_cgroup) 5249 return false; 5250 5251 if (page_counter_read(&memcg->memory) >= memcg->low) 5252 return false; 5253 5254 while (memcg != root) { 5255 memcg = parent_mem_cgroup(memcg); 5256 5257 if (memcg == root_mem_cgroup) 5258 break; 5259 5260 if (page_counter_read(&memcg->memory) >= memcg->low) 5261 return false; 5262 } 5263 return true; 5264 } 5265 5266 /** 5267 * mem_cgroup_try_charge - try charging a page 5268 * @page: page to charge 5269 * @mm: mm context of the victim 5270 * @gfp_mask: reclaim mode 5271 * @memcgp: charged memcg return 5272 * 5273 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5274 * pages according to @gfp_mask if necessary. 5275 * 5276 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5277 * Otherwise, an error code is returned. 5278 * 5279 * After page->mapping has been set up, the caller must finalize the 5280 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5281 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5282 */ 5283 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5284 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5285 bool compound) 5286 { 5287 struct mem_cgroup *memcg = NULL; 5288 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5289 int ret = 0; 5290 5291 if (mem_cgroup_disabled()) 5292 goto out; 5293 5294 if (PageSwapCache(page)) { 5295 /* 5296 * Every swap fault against a single page tries to charge the 5297 * page, bail as early as possible. shmem_unuse() encounters 5298 * already charged pages, too. The USED bit is protected by 5299 * the page lock, which serializes swap cache removal, which 5300 * in turn serializes uncharging. 5301 */ 5302 VM_BUG_ON_PAGE(!PageLocked(page), page); 5303 if (page->mem_cgroup) 5304 goto out; 5305 5306 if (do_swap_account) { 5307 swp_entry_t ent = { .val = page_private(page), }; 5308 unsigned short id = lookup_swap_cgroup_id(ent); 5309 5310 rcu_read_lock(); 5311 memcg = mem_cgroup_from_id(id); 5312 if (memcg && !css_tryget_online(&memcg->css)) 5313 memcg = NULL; 5314 rcu_read_unlock(); 5315 } 5316 } 5317 5318 if (!memcg) 5319 memcg = get_mem_cgroup_from_mm(mm); 5320 5321 ret = try_charge(memcg, gfp_mask, nr_pages); 5322 5323 css_put(&memcg->css); 5324 out: 5325 *memcgp = memcg; 5326 return ret; 5327 } 5328 5329 /** 5330 * mem_cgroup_commit_charge - commit a page charge 5331 * @page: page to charge 5332 * @memcg: memcg to charge the page to 5333 * @lrucare: page might be on LRU already 5334 * 5335 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5336 * after page->mapping has been set up. This must happen atomically 5337 * as part of the page instantiation, i.e. under the page table lock 5338 * for anonymous pages, under the page lock for page and swap cache. 5339 * 5340 * In addition, the page must not be on the LRU during the commit, to 5341 * prevent racing with task migration. If it might be, use @lrucare. 5342 * 5343 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5344 */ 5345 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5346 bool lrucare, bool compound) 5347 { 5348 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5349 5350 VM_BUG_ON_PAGE(!page->mapping, page); 5351 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5352 5353 if (mem_cgroup_disabled()) 5354 return; 5355 /* 5356 * Swap faults will attempt to charge the same page multiple 5357 * times. But reuse_swap_page() might have removed the page 5358 * from swapcache already, so we can't check PageSwapCache(). 5359 */ 5360 if (!memcg) 5361 return; 5362 5363 commit_charge(page, memcg, lrucare); 5364 5365 local_irq_disable(); 5366 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5367 memcg_check_events(memcg, page); 5368 local_irq_enable(); 5369 5370 if (do_memsw_account() && PageSwapCache(page)) { 5371 swp_entry_t entry = { .val = page_private(page) }; 5372 /* 5373 * The swap entry might not get freed for a long time, 5374 * let's not wait for it. The page already received a 5375 * memory+swap charge, drop the swap entry duplicate. 5376 */ 5377 mem_cgroup_uncharge_swap(entry); 5378 } 5379 } 5380 5381 /** 5382 * mem_cgroup_cancel_charge - cancel a page charge 5383 * @page: page to charge 5384 * @memcg: memcg to charge the page to 5385 * 5386 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5387 */ 5388 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5389 bool compound) 5390 { 5391 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5392 5393 if (mem_cgroup_disabled()) 5394 return; 5395 /* 5396 * Swap faults will attempt to charge the same page multiple 5397 * times. But reuse_swap_page() might have removed the page 5398 * from swapcache already, so we can't check PageSwapCache(). 5399 */ 5400 if (!memcg) 5401 return; 5402 5403 cancel_charge(memcg, nr_pages); 5404 } 5405 5406 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5407 unsigned long nr_anon, unsigned long nr_file, 5408 unsigned long nr_huge, struct page *dummy_page) 5409 { 5410 unsigned long nr_pages = nr_anon + nr_file; 5411 unsigned long flags; 5412 5413 if (!mem_cgroup_is_root(memcg)) { 5414 page_counter_uncharge(&memcg->memory, nr_pages); 5415 if (do_memsw_account()) 5416 page_counter_uncharge(&memcg->memsw, nr_pages); 5417 memcg_oom_recover(memcg); 5418 } 5419 5420 local_irq_save(flags); 5421 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5422 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5423 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5424 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5425 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5426 memcg_check_events(memcg, dummy_page); 5427 local_irq_restore(flags); 5428 5429 if (!mem_cgroup_is_root(memcg)) 5430 css_put_many(&memcg->css, nr_pages); 5431 } 5432 5433 static void uncharge_list(struct list_head *page_list) 5434 { 5435 struct mem_cgroup *memcg = NULL; 5436 unsigned long nr_anon = 0; 5437 unsigned long nr_file = 0; 5438 unsigned long nr_huge = 0; 5439 unsigned long pgpgout = 0; 5440 struct list_head *next; 5441 struct page *page; 5442 5443 /* 5444 * Note that the list can be a single page->lru; hence the 5445 * do-while loop instead of a simple list_for_each_entry(). 5446 */ 5447 next = page_list->next; 5448 do { 5449 unsigned int nr_pages = 1; 5450 5451 page = list_entry(next, struct page, lru); 5452 next = page->lru.next; 5453 5454 VM_BUG_ON_PAGE(PageLRU(page), page); 5455 VM_BUG_ON_PAGE(page_count(page), page); 5456 5457 if (!page->mem_cgroup) 5458 continue; 5459 5460 /* 5461 * Nobody should be changing or seriously looking at 5462 * page->mem_cgroup at this point, we have fully 5463 * exclusive access to the page. 5464 */ 5465 5466 if (memcg != page->mem_cgroup) { 5467 if (memcg) { 5468 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5469 nr_huge, page); 5470 pgpgout = nr_anon = nr_file = nr_huge = 0; 5471 } 5472 memcg = page->mem_cgroup; 5473 } 5474 5475 if (PageTransHuge(page)) { 5476 nr_pages <<= compound_order(page); 5477 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5478 nr_huge += nr_pages; 5479 } 5480 5481 if (PageAnon(page)) 5482 nr_anon += nr_pages; 5483 else 5484 nr_file += nr_pages; 5485 5486 page->mem_cgroup = NULL; 5487 5488 pgpgout++; 5489 } while (next != page_list); 5490 5491 if (memcg) 5492 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5493 nr_huge, page); 5494 } 5495 5496 /** 5497 * mem_cgroup_uncharge - uncharge a page 5498 * @page: page to uncharge 5499 * 5500 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5501 * mem_cgroup_commit_charge(). 5502 */ 5503 void mem_cgroup_uncharge(struct page *page) 5504 { 5505 if (mem_cgroup_disabled()) 5506 return; 5507 5508 /* Don't touch page->lru of any random page, pre-check: */ 5509 if (!page->mem_cgroup) 5510 return; 5511 5512 INIT_LIST_HEAD(&page->lru); 5513 uncharge_list(&page->lru); 5514 } 5515 5516 /** 5517 * mem_cgroup_uncharge_list - uncharge a list of page 5518 * @page_list: list of pages to uncharge 5519 * 5520 * Uncharge a list of pages previously charged with 5521 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5522 */ 5523 void mem_cgroup_uncharge_list(struct list_head *page_list) 5524 { 5525 if (mem_cgroup_disabled()) 5526 return; 5527 5528 if (!list_empty(page_list)) 5529 uncharge_list(page_list); 5530 } 5531 5532 /** 5533 * mem_cgroup_migrate - charge a page's replacement 5534 * @oldpage: currently circulating page 5535 * @newpage: replacement page 5536 * 5537 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5538 * be uncharged upon free. 5539 * 5540 * Both pages must be locked, @newpage->mapping must be set up. 5541 */ 5542 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5543 { 5544 struct mem_cgroup *memcg; 5545 unsigned int nr_pages; 5546 bool compound; 5547 5548 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5549 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5550 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5551 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5552 newpage); 5553 5554 if (mem_cgroup_disabled()) 5555 return; 5556 5557 /* Page cache replacement: new page already charged? */ 5558 if (newpage->mem_cgroup) 5559 return; 5560 5561 /* Swapcache readahead pages can get replaced before being charged */ 5562 memcg = oldpage->mem_cgroup; 5563 if (!memcg) 5564 return; 5565 5566 /* Force-charge the new page. The old one will be freed soon */ 5567 compound = PageTransHuge(newpage); 5568 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5569 5570 page_counter_charge(&memcg->memory, nr_pages); 5571 if (do_memsw_account()) 5572 page_counter_charge(&memcg->memsw, nr_pages); 5573 css_get_many(&memcg->css, nr_pages); 5574 5575 commit_charge(newpage, memcg, false); 5576 5577 local_irq_disable(); 5578 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5579 memcg_check_events(memcg, newpage); 5580 local_irq_enable(); 5581 } 5582 5583 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5584 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5585 5586 void sock_update_memcg(struct sock *sk) 5587 { 5588 struct mem_cgroup *memcg; 5589 5590 /* Socket cloning can throw us here with sk_cgrp already 5591 * filled. It won't however, necessarily happen from 5592 * process context. So the test for root memcg given 5593 * the current task's memcg won't help us in this case. 5594 * 5595 * Respecting the original socket's memcg is a better 5596 * decision in this case. 5597 */ 5598 if (sk->sk_memcg) { 5599 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5600 css_get(&sk->sk_memcg->css); 5601 return; 5602 } 5603 5604 rcu_read_lock(); 5605 memcg = mem_cgroup_from_task(current); 5606 if (memcg == root_mem_cgroup) 5607 goto out; 5608 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5609 goto out; 5610 if (css_tryget_online(&memcg->css)) 5611 sk->sk_memcg = memcg; 5612 out: 5613 rcu_read_unlock(); 5614 } 5615 EXPORT_SYMBOL(sock_update_memcg); 5616 5617 void sock_release_memcg(struct sock *sk) 5618 { 5619 WARN_ON(!sk->sk_memcg); 5620 css_put(&sk->sk_memcg->css); 5621 } 5622 5623 /** 5624 * mem_cgroup_charge_skmem - charge socket memory 5625 * @memcg: memcg to charge 5626 * @nr_pages: number of pages to charge 5627 * 5628 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5629 * @memcg's configured limit, %false if the charge had to be forced. 5630 */ 5631 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5632 { 5633 gfp_t gfp_mask = GFP_KERNEL; 5634 5635 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5636 struct page_counter *fail; 5637 5638 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5639 memcg->tcpmem_pressure = 0; 5640 return true; 5641 } 5642 page_counter_charge(&memcg->tcpmem, nr_pages); 5643 memcg->tcpmem_pressure = 1; 5644 return false; 5645 } 5646 5647 /* Don't block in the packet receive path */ 5648 if (in_softirq()) 5649 gfp_mask = GFP_NOWAIT; 5650 5651 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5652 5653 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5654 return true; 5655 5656 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5657 return false; 5658 } 5659 5660 /** 5661 * mem_cgroup_uncharge_skmem - uncharge socket memory 5662 * @memcg - memcg to uncharge 5663 * @nr_pages - number of pages to uncharge 5664 */ 5665 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5666 { 5667 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5668 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5669 return; 5670 } 5671 5672 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5673 5674 page_counter_uncharge(&memcg->memory, nr_pages); 5675 css_put_many(&memcg->css, nr_pages); 5676 } 5677 5678 static int __init cgroup_memory(char *s) 5679 { 5680 char *token; 5681 5682 while ((token = strsep(&s, ",")) != NULL) { 5683 if (!*token) 5684 continue; 5685 if (!strcmp(token, "nosocket")) 5686 cgroup_memory_nosocket = true; 5687 if (!strcmp(token, "nokmem")) 5688 cgroup_memory_nokmem = true; 5689 } 5690 return 0; 5691 } 5692 __setup("cgroup.memory=", cgroup_memory); 5693 5694 /* 5695 * subsys_initcall() for memory controller. 5696 * 5697 * Some parts like hotcpu_notifier() have to be initialized from this context 5698 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 5699 * everything that doesn't depend on a specific mem_cgroup structure should 5700 * be initialized from here. 5701 */ 5702 static int __init mem_cgroup_init(void) 5703 { 5704 int cpu, node; 5705 5706 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 5707 5708 for_each_possible_cpu(cpu) 5709 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5710 drain_local_stock); 5711 5712 for_each_node(node) { 5713 struct mem_cgroup_tree_per_node *rtpn; 5714 int zone; 5715 5716 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5717 node_online(node) ? node : NUMA_NO_NODE); 5718 5719 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5720 struct mem_cgroup_tree_per_zone *rtpz; 5721 5722 rtpz = &rtpn->rb_tree_per_zone[zone]; 5723 rtpz->rb_root = RB_ROOT; 5724 spin_lock_init(&rtpz->lock); 5725 } 5726 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5727 } 5728 5729 return 0; 5730 } 5731 subsys_initcall(mem_cgroup_init); 5732 5733 #ifdef CONFIG_MEMCG_SWAP 5734 /** 5735 * mem_cgroup_swapout - transfer a memsw charge to swap 5736 * @page: page whose memsw charge to transfer 5737 * @entry: swap entry to move the charge to 5738 * 5739 * Transfer the memsw charge of @page to @entry. 5740 */ 5741 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5742 { 5743 struct mem_cgroup *memcg; 5744 unsigned short oldid; 5745 5746 VM_BUG_ON_PAGE(PageLRU(page), page); 5747 VM_BUG_ON_PAGE(page_count(page), page); 5748 5749 if (!do_memsw_account()) 5750 return; 5751 5752 memcg = page->mem_cgroup; 5753 5754 /* Readahead page, never charged */ 5755 if (!memcg) 5756 return; 5757 5758 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5759 VM_BUG_ON_PAGE(oldid, page); 5760 mem_cgroup_swap_statistics(memcg, true); 5761 5762 page->mem_cgroup = NULL; 5763 5764 if (!mem_cgroup_is_root(memcg)) 5765 page_counter_uncharge(&memcg->memory, 1); 5766 5767 /* 5768 * Interrupts should be disabled here because the caller holds the 5769 * mapping->tree_lock lock which is taken with interrupts-off. It is 5770 * important here to have the interrupts disabled because it is the 5771 * only synchronisation we have for udpating the per-CPU variables. 5772 */ 5773 VM_BUG_ON(!irqs_disabled()); 5774 mem_cgroup_charge_statistics(memcg, page, false, -1); 5775 memcg_check_events(memcg, page); 5776 } 5777 5778 /* 5779 * mem_cgroup_try_charge_swap - try charging a swap entry 5780 * @page: page being added to swap 5781 * @entry: swap entry to charge 5782 * 5783 * Try to charge @entry to the memcg that @page belongs to. 5784 * 5785 * Returns 0 on success, -ENOMEM on failure. 5786 */ 5787 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5788 { 5789 struct mem_cgroup *memcg; 5790 struct page_counter *counter; 5791 unsigned short oldid; 5792 5793 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5794 return 0; 5795 5796 memcg = page->mem_cgroup; 5797 5798 /* Readahead page, never charged */ 5799 if (!memcg) 5800 return 0; 5801 5802 if (!mem_cgroup_is_root(memcg) && 5803 !page_counter_try_charge(&memcg->swap, 1, &counter)) 5804 return -ENOMEM; 5805 5806 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5807 VM_BUG_ON_PAGE(oldid, page); 5808 mem_cgroup_swap_statistics(memcg, true); 5809 5810 css_get(&memcg->css); 5811 return 0; 5812 } 5813 5814 /** 5815 * mem_cgroup_uncharge_swap - uncharge a swap entry 5816 * @entry: swap entry to uncharge 5817 * 5818 * Drop the swap charge associated with @entry. 5819 */ 5820 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5821 { 5822 struct mem_cgroup *memcg; 5823 unsigned short id; 5824 5825 if (!do_swap_account) 5826 return; 5827 5828 id = swap_cgroup_record(entry, 0); 5829 rcu_read_lock(); 5830 memcg = mem_cgroup_from_id(id); 5831 if (memcg) { 5832 if (!mem_cgroup_is_root(memcg)) { 5833 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5834 page_counter_uncharge(&memcg->swap, 1); 5835 else 5836 page_counter_uncharge(&memcg->memsw, 1); 5837 } 5838 mem_cgroup_swap_statistics(memcg, false); 5839 css_put(&memcg->css); 5840 } 5841 rcu_read_unlock(); 5842 } 5843 5844 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5845 { 5846 long nr_swap_pages = get_nr_swap_pages(); 5847 5848 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5849 return nr_swap_pages; 5850 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5851 nr_swap_pages = min_t(long, nr_swap_pages, 5852 READ_ONCE(memcg->swap.limit) - 5853 page_counter_read(&memcg->swap)); 5854 return nr_swap_pages; 5855 } 5856 5857 bool mem_cgroup_swap_full(struct page *page) 5858 { 5859 struct mem_cgroup *memcg; 5860 5861 VM_BUG_ON_PAGE(!PageLocked(page), page); 5862 5863 if (vm_swap_full()) 5864 return true; 5865 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5866 return false; 5867 5868 memcg = page->mem_cgroup; 5869 if (!memcg) 5870 return false; 5871 5872 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5873 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 5874 return true; 5875 5876 return false; 5877 } 5878 5879 /* for remember boot option*/ 5880 #ifdef CONFIG_MEMCG_SWAP_ENABLED 5881 static int really_do_swap_account __initdata = 1; 5882 #else 5883 static int really_do_swap_account __initdata; 5884 #endif 5885 5886 static int __init enable_swap_account(char *s) 5887 { 5888 if (!strcmp(s, "1")) 5889 really_do_swap_account = 1; 5890 else if (!strcmp(s, "0")) 5891 really_do_swap_account = 0; 5892 return 1; 5893 } 5894 __setup("swapaccount=", enable_swap_account); 5895 5896 static u64 swap_current_read(struct cgroup_subsys_state *css, 5897 struct cftype *cft) 5898 { 5899 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5900 5901 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5902 } 5903 5904 static int swap_max_show(struct seq_file *m, void *v) 5905 { 5906 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5907 unsigned long max = READ_ONCE(memcg->swap.limit); 5908 5909 if (max == PAGE_COUNTER_MAX) 5910 seq_puts(m, "max\n"); 5911 else 5912 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5913 5914 return 0; 5915 } 5916 5917 static ssize_t swap_max_write(struct kernfs_open_file *of, 5918 char *buf, size_t nbytes, loff_t off) 5919 { 5920 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5921 unsigned long max; 5922 int err; 5923 5924 buf = strstrip(buf); 5925 err = page_counter_memparse(buf, "max", &max); 5926 if (err) 5927 return err; 5928 5929 mutex_lock(&memcg_limit_mutex); 5930 err = page_counter_limit(&memcg->swap, max); 5931 mutex_unlock(&memcg_limit_mutex); 5932 if (err) 5933 return err; 5934 5935 return nbytes; 5936 } 5937 5938 static struct cftype swap_files[] = { 5939 { 5940 .name = "swap.current", 5941 .flags = CFTYPE_NOT_ON_ROOT, 5942 .read_u64 = swap_current_read, 5943 }, 5944 { 5945 .name = "swap.max", 5946 .flags = CFTYPE_NOT_ON_ROOT, 5947 .seq_show = swap_max_show, 5948 .write = swap_max_write, 5949 }, 5950 { } /* terminate */ 5951 }; 5952 5953 static struct cftype memsw_cgroup_files[] = { 5954 { 5955 .name = "memsw.usage_in_bytes", 5956 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5957 .read_u64 = mem_cgroup_read_u64, 5958 }, 5959 { 5960 .name = "memsw.max_usage_in_bytes", 5961 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5962 .write = mem_cgroup_reset, 5963 .read_u64 = mem_cgroup_read_u64, 5964 }, 5965 { 5966 .name = "memsw.limit_in_bytes", 5967 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5968 .write = mem_cgroup_write, 5969 .read_u64 = mem_cgroup_read_u64, 5970 }, 5971 { 5972 .name = "memsw.failcnt", 5973 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5974 .write = mem_cgroup_reset, 5975 .read_u64 = mem_cgroup_read_u64, 5976 }, 5977 { }, /* terminate */ 5978 }; 5979 5980 static int __init mem_cgroup_swap_init(void) 5981 { 5982 if (!mem_cgroup_disabled() && really_do_swap_account) { 5983 do_swap_account = 1; 5984 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 5985 swap_files)); 5986 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 5987 memsw_cgroup_files)); 5988 } 5989 return 0; 5990 } 5991 subsys_initcall(mem_cgroup_swap_init); 5992 5993 #endif /* CONFIG_MEMCG_SWAP */ 5994