xref: /linux/mm/memcontrol.c (revision 079c9534a96da9a85a2a2f9715851050fbfbf749)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55 
56 #include <asm/uaccess.h>
57 
58 #include <trace/events/vmscan.h>
59 
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES	5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63 
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67 
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74 
75 #else
76 #define do_swap_account		(0)
77 #endif
78 
79 
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84 	/*
85 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 	 */
87 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 	MEM_CGROUP_STAT_NSTATS,
94 };
95 
96 enum mem_cgroup_events_index {
97 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
98 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99 	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
101 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 	MEM_CGROUP_EVENTS_NSTATS,
103 };
104 /*
105  * Per memcg event counter is incremented at every pagein/pageout. With THP,
106  * it will be incremated by the number of pages. This counter is used for
107  * for trigger some periodic events. This is straightforward and better
108  * than using jiffies etc. to handle periodic memcg event.
109  */
110 enum mem_cgroup_events_target {
111 	MEM_CGROUP_TARGET_THRESH,
112 	MEM_CGROUP_TARGET_SOFTLIMIT,
113 	MEM_CGROUP_TARGET_NUMAINFO,
114 	MEM_CGROUP_NTARGETS,
115 };
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET	(1024)
119 
120 struct mem_cgroup_stat_cpu {
121 	long count[MEM_CGROUP_STAT_NSTATS];
122 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 	unsigned long targets[MEM_CGROUP_NTARGETS];
124 };
125 
126 struct mem_cgroup_reclaim_iter {
127 	/* css_id of the last scanned hierarchy member */
128 	int position;
129 	/* scan generation, increased every round-trip */
130 	unsigned int generation;
131 };
132 
133 /*
134  * per-zone information in memory controller.
135  */
136 struct mem_cgroup_per_zone {
137 	struct lruvec		lruvec;
138 	unsigned long		count[NR_LRU_LISTS];
139 
140 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141 
142 	struct zone_reclaim_stat reclaim_stat;
143 	struct rb_node		tree_node;	/* RB tree node */
144 	unsigned long long	usage_in_excess;/* Set to the value by which */
145 						/* the soft limit is exceeded*/
146 	bool			on_tree;
147 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
148 						/* use container_of	   */
149 };
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
152 
153 struct mem_cgroup_per_node {
154 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155 };
156 
157 struct mem_cgroup_lru_info {
158 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159 };
160 
161 /*
162  * Cgroups above their limits are maintained in a RB-Tree, independent of
163  * their hierarchy representation
164  */
165 
166 struct mem_cgroup_tree_per_zone {
167 	struct rb_root rb_root;
168 	spinlock_t lock;
169 };
170 
171 struct mem_cgroup_tree_per_node {
172 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173 };
174 
175 struct mem_cgroup_tree {
176 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177 };
178 
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180 
181 struct mem_cgroup_threshold {
182 	struct eventfd_ctx *eventfd;
183 	u64 threshold;
184 };
185 
186 /* For threshold */
187 struct mem_cgroup_threshold_ary {
188 	/* An array index points to threshold just below usage. */
189 	int current_threshold;
190 	/* Size of entries[] */
191 	unsigned int size;
192 	/* Array of thresholds */
193 	struct mem_cgroup_threshold entries[0];
194 };
195 
196 struct mem_cgroup_thresholds {
197 	/* Primary thresholds array */
198 	struct mem_cgroup_threshold_ary *primary;
199 	/*
200 	 * Spare threshold array.
201 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 	 * It must be able to store at least primary->size - 1 entries.
203 	 */
204 	struct mem_cgroup_threshold_ary *spare;
205 };
206 
207 /* for OOM */
208 struct mem_cgroup_eventfd_list {
209 	struct list_head list;
210 	struct eventfd_ctx *eventfd;
211 };
212 
213 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215 
216 /*
217  * The memory controller data structure. The memory controller controls both
218  * page cache and RSS per cgroup. We would eventually like to provide
219  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220  * to help the administrator determine what knobs to tune.
221  *
222  * TODO: Add a water mark for the memory controller. Reclaim will begin when
223  * we hit the water mark. May be even add a low water mark, such that
224  * no reclaim occurs from a cgroup at it's low water mark, this is
225  * a feature that will be implemented much later in the future.
226  */
227 struct mem_cgroup {
228 	struct cgroup_subsys_state css;
229 	/*
230 	 * the counter to account for memory usage
231 	 */
232 	struct res_counter res;
233 	/*
234 	 * the counter to account for mem+swap usage.
235 	 */
236 	struct res_counter memsw;
237 	/*
238 	 * Per cgroup active and inactive list, similar to the
239 	 * per zone LRU lists.
240 	 */
241 	struct mem_cgroup_lru_info info;
242 	int last_scanned_node;
243 #if MAX_NUMNODES > 1
244 	nodemask_t	scan_nodes;
245 	atomic_t	numainfo_events;
246 	atomic_t	numainfo_updating;
247 #endif
248 	/*
249 	 * Should the accounting and control be hierarchical, per subtree?
250 	 */
251 	bool use_hierarchy;
252 
253 	bool		oom_lock;
254 	atomic_t	under_oom;
255 
256 	atomic_t	refcnt;
257 
258 	int	swappiness;
259 	/* OOM-Killer disable */
260 	int		oom_kill_disable;
261 
262 	/* set when res.limit == memsw.limit */
263 	bool		memsw_is_minimum;
264 
265 	/* protect arrays of thresholds */
266 	struct mutex thresholds_lock;
267 
268 	/* thresholds for memory usage. RCU-protected */
269 	struct mem_cgroup_thresholds thresholds;
270 
271 	/* thresholds for mem+swap usage. RCU-protected */
272 	struct mem_cgroup_thresholds memsw_thresholds;
273 
274 	/* For oom notifier event fd */
275 	struct list_head oom_notify;
276 
277 	/*
278 	 * Should we move charges of a task when a task is moved into this
279 	 * mem_cgroup ? And what type of charges should we move ?
280 	 */
281 	unsigned long 	move_charge_at_immigrate;
282 	/*
283 	 * percpu counter.
284 	 */
285 	struct mem_cgroup_stat_cpu *stat;
286 	/*
287 	 * used when a cpu is offlined or other synchronizations
288 	 * See mem_cgroup_read_stat().
289 	 */
290 	struct mem_cgroup_stat_cpu nocpu_base;
291 	spinlock_t pcp_counter_lock;
292 
293 #ifdef CONFIG_INET
294 	struct tcp_memcontrol tcp_mem;
295 #endif
296 };
297 
298 /* Stuffs for move charges at task migration. */
299 /*
300  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301  * left-shifted bitmap of these types.
302  */
303 enum move_type {
304 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 	NR_MOVE_TYPE,
307 };
308 
309 /* "mc" and its members are protected by cgroup_mutex */
310 static struct move_charge_struct {
311 	spinlock_t	  lock; /* for from, to */
312 	struct mem_cgroup *from;
313 	struct mem_cgroup *to;
314 	unsigned long precharge;
315 	unsigned long moved_charge;
316 	unsigned long moved_swap;
317 	struct task_struct *moving_task;	/* a task moving charges */
318 	wait_queue_head_t waitq;		/* a waitq for other context */
319 } mc = {
320 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322 };
323 
324 static bool move_anon(void)
325 {
326 	return test_bit(MOVE_CHARGE_TYPE_ANON,
327 					&mc.to->move_charge_at_immigrate);
328 }
329 
330 static bool move_file(void)
331 {
332 	return test_bit(MOVE_CHARGE_TYPE_FILE,
333 					&mc.to->move_charge_at_immigrate);
334 }
335 
336 /*
337  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338  * limit reclaim to prevent infinite loops, if they ever occur.
339  */
340 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
341 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
342 
343 enum charge_type {
344 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
348 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
349 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 	NR_CHARGE_TYPE,
351 };
352 
353 /* for encoding cft->private value on file */
354 #define _MEM			(0)
355 #define _MEMSWAP		(1)
356 #define _OOM_TYPE		(2)
357 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
358 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
359 #define MEMFILE_ATTR(val)	((val) & 0xffff)
360 /* Used for OOM nofiier */
361 #define OOM_CONTROL		(0)
362 
363 /*
364  * Reclaim flags for mem_cgroup_hierarchical_reclaim
365  */
366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
367 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
369 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370 
371 static void mem_cgroup_get(struct mem_cgroup *memcg);
372 static void mem_cgroup_put(struct mem_cgroup *memcg);
373 
374 /* Writing them here to avoid exposing memcg's inner layout */
375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376 #include <net/sock.h>
377 #include <net/ip.h>
378 
379 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
380 void sock_update_memcg(struct sock *sk)
381 {
382 	if (mem_cgroup_sockets_enabled) {
383 		struct mem_cgroup *memcg;
384 
385 		BUG_ON(!sk->sk_prot->proto_cgroup);
386 
387 		/* Socket cloning can throw us here with sk_cgrp already
388 		 * filled. It won't however, necessarily happen from
389 		 * process context. So the test for root memcg given
390 		 * the current task's memcg won't help us in this case.
391 		 *
392 		 * Respecting the original socket's memcg is a better
393 		 * decision in this case.
394 		 */
395 		if (sk->sk_cgrp) {
396 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
397 			mem_cgroup_get(sk->sk_cgrp->memcg);
398 			return;
399 		}
400 
401 		rcu_read_lock();
402 		memcg = mem_cgroup_from_task(current);
403 		if (!mem_cgroup_is_root(memcg)) {
404 			mem_cgroup_get(memcg);
405 			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
406 		}
407 		rcu_read_unlock();
408 	}
409 }
410 EXPORT_SYMBOL(sock_update_memcg);
411 
412 void sock_release_memcg(struct sock *sk)
413 {
414 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
415 		struct mem_cgroup *memcg;
416 		WARN_ON(!sk->sk_cgrp->memcg);
417 		memcg = sk->sk_cgrp->memcg;
418 		mem_cgroup_put(memcg);
419 	}
420 }
421 
422 #ifdef CONFIG_INET
423 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424 {
425 	if (!memcg || mem_cgroup_is_root(memcg))
426 		return NULL;
427 
428 	return &memcg->tcp_mem.cg_proto;
429 }
430 EXPORT_SYMBOL(tcp_proto_cgroup);
431 #endif /* CONFIG_INET */
432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433 
434 static void drain_all_stock_async(struct mem_cgroup *memcg);
435 
436 static struct mem_cgroup_per_zone *
437 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438 {
439 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 }
441 
442 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443 {
444 	return &memcg->css;
445 }
446 
447 static struct mem_cgroup_per_zone *
448 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449 {
450 	int nid = page_to_nid(page);
451 	int zid = page_zonenum(page);
452 
453 	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 }
455 
456 static struct mem_cgroup_tree_per_zone *
457 soft_limit_tree_node_zone(int nid, int zid)
458 {
459 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460 }
461 
462 static struct mem_cgroup_tree_per_zone *
463 soft_limit_tree_from_page(struct page *page)
464 {
465 	int nid = page_to_nid(page);
466 	int zid = page_zonenum(page);
467 
468 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469 }
470 
471 static void
472 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473 				struct mem_cgroup_per_zone *mz,
474 				struct mem_cgroup_tree_per_zone *mctz,
475 				unsigned long long new_usage_in_excess)
476 {
477 	struct rb_node **p = &mctz->rb_root.rb_node;
478 	struct rb_node *parent = NULL;
479 	struct mem_cgroup_per_zone *mz_node;
480 
481 	if (mz->on_tree)
482 		return;
483 
484 	mz->usage_in_excess = new_usage_in_excess;
485 	if (!mz->usage_in_excess)
486 		return;
487 	while (*p) {
488 		parent = *p;
489 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 					tree_node);
491 		if (mz->usage_in_excess < mz_node->usage_in_excess)
492 			p = &(*p)->rb_left;
493 		/*
494 		 * We can't avoid mem cgroups that are over their soft
495 		 * limit by the same amount
496 		 */
497 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 			p = &(*p)->rb_right;
499 	}
500 	rb_link_node(&mz->tree_node, parent, p);
501 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 	mz->on_tree = true;
503 }
504 
505 static void
506 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 				struct mem_cgroup_per_zone *mz,
508 				struct mem_cgroup_tree_per_zone *mctz)
509 {
510 	if (!mz->on_tree)
511 		return;
512 	rb_erase(&mz->tree_node, &mctz->rb_root);
513 	mz->on_tree = false;
514 }
515 
516 static void
517 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 				struct mem_cgroup_per_zone *mz,
519 				struct mem_cgroup_tree_per_zone *mctz)
520 {
521 	spin_lock(&mctz->lock);
522 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 	spin_unlock(&mctz->lock);
524 }
525 
526 
527 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528 {
529 	unsigned long long excess;
530 	struct mem_cgroup_per_zone *mz;
531 	struct mem_cgroup_tree_per_zone *mctz;
532 	int nid = page_to_nid(page);
533 	int zid = page_zonenum(page);
534 	mctz = soft_limit_tree_from_page(page);
535 
536 	/*
537 	 * Necessary to update all ancestors when hierarchy is used.
538 	 * because their event counter is not touched.
539 	 */
540 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 		excess = res_counter_soft_limit_excess(&memcg->res);
543 		/*
544 		 * We have to update the tree if mz is on RB-tree or
545 		 * mem is over its softlimit.
546 		 */
547 		if (excess || mz->on_tree) {
548 			spin_lock(&mctz->lock);
549 			/* if on-tree, remove it */
550 			if (mz->on_tree)
551 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552 			/*
553 			 * Insert again. mz->usage_in_excess will be updated.
554 			 * If excess is 0, no tree ops.
555 			 */
556 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 			spin_unlock(&mctz->lock);
558 		}
559 	}
560 }
561 
562 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 {
564 	int node, zone;
565 	struct mem_cgroup_per_zone *mz;
566 	struct mem_cgroup_tree_per_zone *mctz;
567 
568 	for_each_node(node) {
569 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571 			mctz = soft_limit_tree_node_zone(node, zone);
572 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 		}
574 	}
575 }
576 
577 static struct mem_cgroup_per_zone *
578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579 {
580 	struct rb_node *rightmost = NULL;
581 	struct mem_cgroup_per_zone *mz;
582 
583 retry:
584 	mz = NULL;
585 	rightmost = rb_last(&mctz->rb_root);
586 	if (!rightmost)
587 		goto done;		/* Nothing to reclaim from */
588 
589 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590 	/*
591 	 * Remove the node now but someone else can add it back,
592 	 * we will to add it back at the end of reclaim to its correct
593 	 * position in the tree.
594 	 */
595 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 		!css_tryget(&mz->mem->css))
598 		goto retry;
599 done:
600 	return mz;
601 }
602 
603 static struct mem_cgroup_per_zone *
604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605 {
606 	struct mem_cgroup_per_zone *mz;
607 
608 	spin_lock(&mctz->lock);
609 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 	spin_unlock(&mctz->lock);
611 	return mz;
612 }
613 
614 /*
615  * Implementation Note: reading percpu statistics for memcg.
616  *
617  * Both of vmstat[] and percpu_counter has threshold and do periodic
618  * synchronization to implement "quick" read. There are trade-off between
619  * reading cost and precision of value. Then, we may have a chance to implement
620  * a periodic synchronizion of counter in memcg's counter.
621  *
622  * But this _read() function is used for user interface now. The user accounts
623  * memory usage by memory cgroup and he _always_ requires exact value because
624  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625  * have to visit all online cpus and make sum. So, for now, unnecessary
626  * synchronization is not implemented. (just implemented for cpu hotplug)
627  *
628  * If there are kernel internal actions which can make use of some not-exact
629  * value, and reading all cpu value can be performance bottleneck in some
630  * common workload, threashold and synchonization as vmstat[] should be
631  * implemented.
632  */
633 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634 				 enum mem_cgroup_stat_index idx)
635 {
636 	long val = 0;
637 	int cpu;
638 
639 	get_online_cpus();
640 	for_each_online_cpu(cpu)
641 		val += per_cpu(memcg->stat->count[idx], cpu);
642 #ifdef CONFIG_HOTPLUG_CPU
643 	spin_lock(&memcg->pcp_counter_lock);
644 	val += memcg->nocpu_base.count[idx];
645 	spin_unlock(&memcg->pcp_counter_lock);
646 #endif
647 	put_online_cpus();
648 	return val;
649 }
650 
651 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 					 bool charge)
653 {
654 	int val = (charge) ? 1 : -1;
655 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 }
657 
658 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 					    enum mem_cgroup_events_index idx)
660 {
661 	unsigned long val = 0;
662 	int cpu;
663 
664 	for_each_online_cpu(cpu)
665 		val += per_cpu(memcg->stat->events[idx], cpu);
666 #ifdef CONFIG_HOTPLUG_CPU
667 	spin_lock(&memcg->pcp_counter_lock);
668 	val += memcg->nocpu_base.events[idx];
669 	spin_unlock(&memcg->pcp_counter_lock);
670 #endif
671 	return val;
672 }
673 
674 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675 					 bool file, int nr_pages)
676 {
677 	preempt_disable();
678 
679 	if (file)
680 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681 				nr_pages);
682 	else
683 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684 				nr_pages);
685 
686 	/* pagein of a big page is an event. So, ignore page size */
687 	if (nr_pages > 0)
688 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689 	else {
690 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 		nr_pages = -nr_pages; /* for event */
692 	}
693 
694 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695 
696 	preempt_enable();
697 }
698 
699 unsigned long
700 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701 			unsigned int lru_mask)
702 {
703 	struct mem_cgroup_per_zone *mz;
704 	enum lru_list l;
705 	unsigned long ret = 0;
706 
707 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 
709 	for_each_lru(l) {
710 		if (BIT(l) & lru_mask)
711 			ret += MEM_CGROUP_ZSTAT(mz, l);
712 	}
713 	return ret;
714 }
715 
716 static unsigned long
717 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 			int nid, unsigned int lru_mask)
719 {
720 	u64 total = 0;
721 	int zid;
722 
723 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 		total += mem_cgroup_zone_nr_lru_pages(memcg,
725 						nid, zid, lru_mask);
726 
727 	return total;
728 }
729 
730 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731 			unsigned int lru_mask)
732 {
733 	int nid;
734 	u64 total = 0;
735 
736 	for_each_node_state(nid, N_HIGH_MEMORY)
737 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738 	return total;
739 }
740 
741 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742 				       enum mem_cgroup_events_target target)
743 {
744 	unsigned long val, next;
745 
746 	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747 	next = __this_cpu_read(memcg->stat->targets[target]);
748 	/* from time_after() in jiffies.h */
749 	if ((long)next - (long)val < 0) {
750 		switch (target) {
751 		case MEM_CGROUP_TARGET_THRESH:
752 			next = val + THRESHOLDS_EVENTS_TARGET;
753 			break;
754 		case MEM_CGROUP_TARGET_SOFTLIMIT:
755 			next = val + SOFTLIMIT_EVENTS_TARGET;
756 			break;
757 		case MEM_CGROUP_TARGET_NUMAINFO:
758 			next = val + NUMAINFO_EVENTS_TARGET;
759 			break;
760 		default:
761 			break;
762 		}
763 		__this_cpu_write(memcg->stat->targets[target], next);
764 		return true;
765 	}
766 	return false;
767 }
768 
769 /*
770  * Check events in order.
771  *
772  */
773 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774 {
775 	preempt_disable();
776 	/* threshold event is triggered in finer grain than soft limit */
777 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
778 						MEM_CGROUP_TARGET_THRESH))) {
779 		bool do_softlimit;
780 		bool do_numainfo __maybe_unused;
781 
782 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
783 						MEM_CGROUP_TARGET_SOFTLIMIT);
784 #if MAX_NUMNODES > 1
785 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
786 						MEM_CGROUP_TARGET_NUMAINFO);
787 #endif
788 		preempt_enable();
789 
790 		mem_cgroup_threshold(memcg);
791 		if (unlikely(do_softlimit))
792 			mem_cgroup_update_tree(memcg, page);
793 #if MAX_NUMNODES > 1
794 		if (unlikely(do_numainfo))
795 			atomic_inc(&memcg->numainfo_events);
796 #endif
797 	} else
798 		preempt_enable();
799 }
800 
801 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
802 {
803 	return container_of(cgroup_subsys_state(cont,
804 				mem_cgroup_subsys_id), struct mem_cgroup,
805 				css);
806 }
807 
808 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
809 {
810 	/*
811 	 * mm_update_next_owner() may clear mm->owner to NULL
812 	 * if it races with swapoff, page migration, etc.
813 	 * So this can be called with p == NULL.
814 	 */
815 	if (unlikely(!p))
816 		return NULL;
817 
818 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
819 				struct mem_cgroup, css);
820 }
821 
822 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
823 {
824 	struct mem_cgroup *memcg = NULL;
825 
826 	if (!mm)
827 		return NULL;
828 	/*
829 	 * Because we have no locks, mm->owner's may be being moved to other
830 	 * cgroup. We use css_tryget() here even if this looks
831 	 * pessimistic (rather than adding locks here).
832 	 */
833 	rcu_read_lock();
834 	do {
835 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
836 		if (unlikely(!memcg))
837 			break;
838 	} while (!css_tryget(&memcg->css));
839 	rcu_read_unlock();
840 	return memcg;
841 }
842 
843 /**
844  * mem_cgroup_iter - iterate over memory cgroup hierarchy
845  * @root: hierarchy root
846  * @prev: previously returned memcg, NULL on first invocation
847  * @reclaim: cookie for shared reclaim walks, NULL for full walks
848  *
849  * Returns references to children of the hierarchy below @root, or
850  * @root itself, or %NULL after a full round-trip.
851  *
852  * Caller must pass the return value in @prev on subsequent
853  * invocations for reference counting, or use mem_cgroup_iter_break()
854  * to cancel a hierarchy walk before the round-trip is complete.
855  *
856  * Reclaimers can specify a zone and a priority level in @reclaim to
857  * divide up the memcgs in the hierarchy among all concurrent
858  * reclaimers operating on the same zone and priority.
859  */
860 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
861 				   struct mem_cgroup *prev,
862 				   struct mem_cgroup_reclaim_cookie *reclaim)
863 {
864 	struct mem_cgroup *memcg = NULL;
865 	int id = 0;
866 
867 	if (mem_cgroup_disabled())
868 		return NULL;
869 
870 	if (!root)
871 		root = root_mem_cgroup;
872 
873 	if (prev && !reclaim)
874 		id = css_id(&prev->css);
875 
876 	if (prev && prev != root)
877 		css_put(&prev->css);
878 
879 	if (!root->use_hierarchy && root != root_mem_cgroup) {
880 		if (prev)
881 			return NULL;
882 		return root;
883 	}
884 
885 	while (!memcg) {
886 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
887 		struct cgroup_subsys_state *css;
888 
889 		if (reclaim) {
890 			int nid = zone_to_nid(reclaim->zone);
891 			int zid = zone_idx(reclaim->zone);
892 			struct mem_cgroup_per_zone *mz;
893 
894 			mz = mem_cgroup_zoneinfo(root, nid, zid);
895 			iter = &mz->reclaim_iter[reclaim->priority];
896 			if (prev && reclaim->generation != iter->generation)
897 				return NULL;
898 			id = iter->position;
899 		}
900 
901 		rcu_read_lock();
902 		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
903 		if (css) {
904 			if (css == &root->css || css_tryget(css))
905 				memcg = container_of(css,
906 						     struct mem_cgroup, css);
907 		} else
908 			id = 0;
909 		rcu_read_unlock();
910 
911 		if (reclaim) {
912 			iter->position = id;
913 			if (!css)
914 				iter->generation++;
915 			else if (!prev && memcg)
916 				reclaim->generation = iter->generation;
917 		}
918 
919 		if (prev && !css)
920 			return NULL;
921 	}
922 	return memcg;
923 }
924 
925 /**
926  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
927  * @root: hierarchy root
928  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
929  */
930 void mem_cgroup_iter_break(struct mem_cgroup *root,
931 			   struct mem_cgroup *prev)
932 {
933 	if (!root)
934 		root = root_mem_cgroup;
935 	if (prev && prev != root)
936 		css_put(&prev->css);
937 }
938 
939 /*
940  * Iteration constructs for visiting all cgroups (under a tree).  If
941  * loops are exited prematurely (break), mem_cgroup_iter_break() must
942  * be used for reference counting.
943  */
944 #define for_each_mem_cgroup_tree(iter, root)		\
945 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
946 	     iter != NULL;				\
947 	     iter = mem_cgroup_iter(root, iter, NULL))
948 
949 #define for_each_mem_cgroup(iter)			\
950 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
951 	     iter != NULL;				\
952 	     iter = mem_cgroup_iter(NULL, iter, NULL))
953 
954 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
955 {
956 	return (memcg == root_mem_cgroup);
957 }
958 
959 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
960 {
961 	struct mem_cgroup *memcg;
962 
963 	if (!mm)
964 		return;
965 
966 	rcu_read_lock();
967 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
968 	if (unlikely(!memcg))
969 		goto out;
970 
971 	switch (idx) {
972 	case PGFAULT:
973 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
974 		break;
975 	case PGMAJFAULT:
976 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
977 		break;
978 	default:
979 		BUG();
980 	}
981 out:
982 	rcu_read_unlock();
983 }
984 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
985 
986 /**
987  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
988  * @zone: zone of the wanted lruvec
989  * @mem: memcg of the wanted lruvec
990  *
991  * Returns the lru list vector holding pages for the given @zone and
992  * @mem.  This can be the global zone lruvec, if the memory controller
993  * is disabled.
994  */
995 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
996 				      struct mem_cgroup *memcg)
997 {
998 	struct mem_cgroup_per_zone *mz;
999 
1000 	if (mem_cgroup_disabled())
1001 		return &zone->lruvec;
1002 
1003 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1004 	return &mz->lruvec;
1005 }
1006 
1007 /*
1008  * Following LRU functions are allowed to be used without PCG_LOCK.
1009  * Operations are called by routine of global LRU independently from memcg.
1010  * What we have to take care of here is validness of pc->mem_cgroup.
1011  *
1012  * Changes to pc->mem_cgroup happens when
1013  * 1. charge
1014  * 2. moving account
1015  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1016  * It is added to LRU before charge.
1017  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1018  * When moving account, the page is not on LRU. It's isolated.
1019  */
1020 
1021 /**
1022  * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1023  * @zone: zone of the page
1024  * @page: the page
1025  * @lru: current lru
1026  *
1027  * This function accounts for @page being added to @lru, and returns
1028  * the lruvec for the given @zone and the memcg @page is charged to.
1029  *
1030  * The callsite is then responsible for physically linking the page to
1031  * the returned lruvec->lists[@lru].
1032  */
1033 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1034 				       enum lru_list lru)
1035 {
1036 	struct mem_cgroup_per_zone *mz;
1037 	struct mem_cgroup *memcg;
1038 	struct page_cgroup *pc;
1039 
1040 	if (mem_cgroup_disabled())
1041 		return &zone->lruvec;
1042 
1043 	pc = lookup_page_cgroup(page);
1044 	memcg = pc->mem_cgroup;
1045 	mz = page_cgroup_zoneinfo(memcg, page);
1046 	/* compound_order() is stabilized through lru_lock */
1047 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1048 	return &mz->lruvec;
1049 }
1050 
1051 /**
1052  * mem_cgroup_lru_del_list - account for removing an lru page
1053  * @page: the page
1054  * @lru: target lru
1055  *
1056  * This function accounts for @page being removed from @lru.
1057  *
1058  * The callsite is then responsible for physically unlinking
1059  * @page->lru.
1060  */
1061 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1062 {
1063 	struct mem_cgroup_per_zone *mz;
1064 	struct mem_cgroup *memcg;
1065 	struct page_cgroup *pc;
1066 
1067 	if (mem_cgroup_disabled())
1068 		return;
1069 
1070 	pc = lookup_page_cgroup(page);
1071 	memcg = pc->mem_cgroup;
1072 	VM_BUG_ON(!memcg);
1073 	mz = page_cgroup_zoneinfo(memcg, page);
1074 	/* huge page split is done under lru_lock. so, we have no races. */
1075 	VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1076 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1077 }
1078 
1079 void mem_cgroup_lru_del(struct page *page)
1080 {
1081 	mem_cgroup_lru_del_list(page, page_lru(page));
1082 }
1083 
1084 /**
1085  * mem_cgroup_lru_move_lists - account for moving a page between lrus
1086  * @zone: zone of the page
1087  * @page: the page
1088  * @from: current lru
1089  * @to: target lru
1090  *
1091  * This function accounts for @page being moved between the lrus @from
1092  * and @to, and returns the lruvec for the given @zone and the memcg
1093  * @page is charged to.
1094  *
1095  * The callsite is then responsible for physically relinking
1096  * @page->lru to the returned lruvec->lists[@to].
1097  */
1098 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1099 					 struct page *page,
1100 					 enum lru_list from,
1101 					 enum lru_list to)
1102 {
1103 	/* XXX: Optimize this, especially for @from == @to */
1104 	mem_cgroup_lru_del_list(page, from);
1105 	return mem_cgroup_lru_add_list(zone, page, to);
1106 }
1107 
1108 /*
1109  * Checks whether given mem is same or in the root_mem_cgroup's
1110  * hierarchy subtree
1111  */
1112 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1113 		struct mem_cgroup *memcg)
1114 {
1115 	if (root_memcg != memcg) {
1116 		return (root_memcg->use_hierarchy &&
1117 			css_is_ancestor(&memcg->css, &root_memcg->css));
1118 	}
1119 
1120 	return true;
1121 }
1122 
1123 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1124 {
1125 	int ret;
1126 	struct mem_cgroup *curr = NULL;
1127 	struct task_struct *p;
1128 
1129 	p = find_lock_task_mm(task);
1130 	if (p) {
1131 		curr = try_get_mem_cgroup_from_mm(p->mm);
1132 		task_unlock(p);
1133 	} else {
1134 		/*
1135 		 * All threads may have already detached their mm's, but the oom
1136 		 * killer still needs to detect if they have already been oom
1137 		 * killed to prevent needlessly killing additional tasks.
1138 		 */
1139 		task_lock(task);
1140 		curr = mem_cgroup_from_task(task);
1141 		if (curr)
1142 			css_get(&curr->css);
1143 		task_unlock(task);
1144 	}
1145 	if (!curr)
1146 		return 0;
1147 	/*
1148 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1149 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1150 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1151 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1152 	 */
1153 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1154 	css_put(&curr->css);
1155 	return ret;
1156 }
1157 
1158 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1159 {
1160 	unsigned long inactive_ratio;
1161 	int nid = zone_to_nid(zone);
1162 	int zid = zone_idx(zone);
1163 	unsigned long inactive;
1164 	unsigned long active;
1165 	unsigned long gb;
1166 
1167 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1168 						BIT(LRU_INACTIVE_ANON));
1169 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1170 					      BIT(LRU_ACTIVE_ANON));
1171 
1172 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1173 	if (gb)
1174 		inactive_ratio = int_sqrt(10 * gb);
1175 	else
1176 		inactive_ratio = 1;
1177 
1178 	return inactive * inactive_ratio < active;
1179 }
1180 
1181 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1182 {
1183 	unsigned long active;
1184 	unsigned long inactive;
1185 	int zid = zone_idx(zone);
1186 	int nid = zone_to_nid(zone);
1187 
1188 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1189 						BIT(LRU_INACTIVE_FILE));
1190 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1191 					      BIT(LRU_ACTIVE_FILE));
1192 
1193 	return (active > inactive);
1194 }
1195 
1196 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1197 						      struct zone *zone)
1198 {
1199 	int nid = zone_to_nid(zone);
1200 	int zid = zone_idx(zone);
1201 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1202 
1203 	return &mz->reclaim_stat;
1204 }
1205 
1206 struct zone_reclaim_stat *
1207 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1208 {
1209 	struct page_cgroup *pc;
1210 	struct mem_cgroup_per_zone *mz;
1211 
1212 	if (mem_cgroup_disabled())
1213 		return NULL;
1214 
1215 	pc = lookup_page_cgroup(page);
1216 	if (!PageCgroupUsed(pc))
1217 		return NULL;
1218 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1219 	smp_rmb();
1220 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1221 	return &mz->reclaim_stat;
1222 }
1223 
1224 #define mem_cgroup_from_res_counter(counter, member)	\
1225 	container_of(counter, struct mem_cgroup, member)
1226 
1227 /**
1228  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1229  * @mem: the memory cgroup
1230  *
1231  * Returns the maximum amount of memory @mem can be charged with, in
1232  * pages.
1233  */
1234 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1235 {
1236 	unsigned long long margin;
1237 
1238 	margin = res_counter_margin(&memcg->res);
1239 	if (do_swap_account)
1240 		margin = min(margin, res_counter_margin(&memcg->memsw));
1241 	return margin >> PAGE_SHIFT;
1242 }
1243 
1244 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1245 {
1246 	struct cgroup *cgrp = memcg->css.cgroup;
1247 
1248 	/* root ? */
1249 	if (cgrp->parent == NULL)
1250 		return vm_swappiness;
1251 
1252 	return memcg->swappiness;
1253 }
1254 
1255 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1256 {
1257 	int cpu;
1258 
1259 	get_online_cpus();
1260 	spin_lock(&memcg->pcp_counter_lock);
1261 	for_each_online_cpu(cpu)
1262 		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1263 	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1264 	spin_unlock(&memcg->pcp_counter_lock);
1265 	put_online_cpus();
1266 
1267 	synchronize_rcu();
1268 }
1269 
1270 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1271 {
1272 	int cpu;
1273 
1274 	if (!memcg)
1275 		return;
1276 	get_online_cpus();
1277 	spin_lock(&memcg->pcp_counter_lock);
1278 	for_each_online_cpu(cpu)
1279 		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1280 	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1281 	spin_unlock(&memcg->pcp_counter_lock);
1282 	put_online_cpus();
1283 }
1284 /*
1285  * 2 routines for checking "mem" is under move_account() or not.
1286  *
1287  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1288  *			  for avoiding race in accounting. If true,
1289  *			  pc->mem_cgroup may be overwritten.
1290  *
1291  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1292  *			  under hierarchy of moving cgroups. This is for
1293  *			  waiting at hith-memory prressure caused by "move".
1294  */
1295 
1296 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1297 {
1298 	VM_BUG_ON(!rcu_read_lock_held());
1299 	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1300 }
1301 
1302 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1303 {
1304 	struct mem_cgroup *from;
1305 	struct mem_cgroup *to;
1306 	bool ret = false;
1307 	/*
1308 	 * Unlike task_move routines, we access mc.to, mc.from not under
1309 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1310 	 */
1311 	spin_lock(&mc.lock);
1312 	from = mc.from;
1313 	to = mc.to;
1314 	if (!from)
1315 		goto unlock;
1316 
1317 	ret = mem_cgroup_same_or_subtree(memcg, from)
1318 		|| mem_cgroup_same_or_subtree(memcg, to);
1319 unlock:
1320 	spin_unlock(&mc.lock);
1321 	return ret;
1322 }
1323 
1324 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1325 {
1326 	if (mc.moving_task && current != mc.moving_task) {
1327 		if (mem_cgroup_under_move(memcg)) {
1328 			DEFINE_WAIT(wait);
1329 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1330 			/* moving charge context might have finished. */
1331 			if (mc.moving_task)
1332 				schedule();
1333 			finish_wait(&mc.waitq, &wait);
1334 			return true;
1335 		}
1336 	}
1337 	return false;
1338 }
1339 
1340 /**
1341  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1342  * @memcg: The memory cgroup that went over limit
1343  * @p: Task that is going to be killed
1344  *
1345  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1346  * enabled
1347  */
1348 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1349 {
1350 	struct cgroup *task_cgrp;
1351 	struct cgroup *mem_cgrp;
1352 	/*
1353 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1354 	 * on the assumption that OOM is serialized for memory controller.
1355 	 * If this assumption is broken, revisit this code.
1356 	 */
1357 	static char memcg_name[PATH_MAX];
1358 	int ret;
1359 
1360 	if (!memcg || !p)
1361 		return;
1362 
1363 
1364 	rcu_read_lock();
1365 
1366 	mem_cgrp = memcg->css.cgroup;
1367 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1368 
1369 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1370 	if (ret < 0) {
1371 		/*
1372 		 * Unfortunately, we are unable to convert to a useful name
1373 		 * But we'll still print out the usage information
1374 		 */
1375 		rcu_read_unlock();
1376 		goto done;
1377 	}
1378 	rcu_read_unlock();
1379 
1380 	printk(KERN_INFO "Task in %s killed", memcg_name);
1381 
1382 	rcu_read_lock();
1383 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1384 	if (ret < 0) {
1385 		rcu_read_unlock();
1386 		goto done;
1387 	}
1388 	rcu_read_unlock();
1389 
1390 	/*
1391 	 * Continues from above, so we don't need an KERN_ level
1392 	 */
1393 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1394 done:
1395 
1396 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1397 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1398 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1399 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1400 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1401 		"failcnt %llu\n",
1402 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1403 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1404 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1405 }
1406 
1407 /*
1408  * This function returns the number of memcg under hierarchy tree. Returns
1409  * 1(self count) if no children.
1410  */
1411 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1412 {
1413 	int num = 0;
1414 	struct mem_cgroup *iter;
1415 
1416 	for_each_mem_cgroup_tree(iter, memcg)
1417 		num++;
1418 	return num;
1419 }
1420 
1421 /*
1422  * Return the memory (and swap, if configured) limit for a memcg.
1423  */
1424 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1425 {
1426 	u64 limit;
1427 	u64 memsw;
1428 
1429 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1430 	limit += total_swap_pages << PAGE_SHIFT;
1431 
1432 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1433 	/*
1434 	 * If memsw is finite and limits the amount of swap space available
1435 	 * to this memcg, return that limit.
1436 	 */
1437 	return min(limit, memsw);
1438 }
1439 
1440 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1441 					gfp_t gfp_mask,
1442 					unsigned long flags)
1443 {
1444 	unsigned long total = 0;
1445 	bool noswap = false;
1446 	int loop;
1447 
1448 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1449 		noswap = true;
1450 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1451 		noswap = true;
1452 
1453 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1454 		if (loop)
1455 			drain_all_stock_async(memcg);
1456 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1457 		/*
1458 		 * Allow limit shrinkers, which are triggered directly
1459 		 * by userspace, to catch signals and stop reclaim
1460 		 * after minimal progress, regardless of the margin.
1461 		 */
1462 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1463 			break;
1464 		if (mem_cgroup_margin(memcg))
1465 			break;
1466 		/*
1467 		 * If nothing was reclaimed after two attempts, there
1468 		 * may be no reclaimable pages in this hierarchy.
1469 		 */
1470 		if (loop && !total)
1471 			break;
1472 	}
1473 	return total;
1474 }
1475 
1476 /**
1477  * test_mem_cgroup_node_reclaimable
1478  * @mem: the target memcg
1479  * @nid: the node ID to be checked.
1480  * @noswap : specify true here if the user wants flle only information.
1481  *
1482  * This function returns whether the specified memcg contains any
1483  * reclaimable pages on a node. Returns true if there are any reclaimable
1484  * pages in the node.
1485  */
1486 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1487 		int nid, bool noswap)
1488 {
1489 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1490 		return true;
1491 	if (noswap || !total_swap_pages)
1492 		return false;
1493 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1494 		return true;
1495 	return false;
1496 
1497 }
1498 #if MAX_NUMNODES > 1
1499 
1500 /*
1501  * Always updating the nodemask is not very good - even if we have an empty
1502  * list or the wrong list here, we can start from some node and traverse all
1503  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1504  *
1505  */
1506 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1507 {
1508 	int nid;
1509 	/*
1510 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1511 	 * pagein/pageout changes since the last update.
1512 	 */
1513 	if (!atomic_read(&memcg->numainfo_events))
1514 		return;
1515 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1516 		return;
1517 
1518 	/* make a nodemask where this memcg uses memory from */
1519 	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1520 
1521 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1522 
1523 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1524 			node_clear(nid, memcg->scan_nodes);
1525 	}
1526 
1527 	atomic_set(&memcg->numainfo_events, 0);
1528 	atomic_set(&memcg->numainfo_updating, 0);
1529 }
1530 
1531 /*
1532  * Selecting a node where we start reclaim from. Because what we need is just
1533  * reducing usage counter, start from anywhere is O,K. Considering
1534  * memory reclaim from current node, there are pros. and cons.
1535  *
1536  * Freeing memory from current node means freeing memory from a node which
1537  * we'll use or we've used. So, it may make LRU bad. And if several threads
1538  * hit limits, it will see a contention on a node. But freeing from remote
1539  * node means more costs for memory reclaim because of memory latency.
1540  *
1541  * Now, we use round-robin. Better algorithm is welcomed.
1542  */
1543 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1544 {
1545 	int node;
1546 
1547 	mem_cgroup_may_update_nodemask(memcg);
1548 	node = memcg->last_scanned_node;
1549 
1550 	node = next_node(node, memcg->scan_nodes);
1551 	if (node == MAX_NUMNODES)
1552 		node = first_node(memcg->scan_nodes);
1553 	/*
1554 	 * We call this when we hit limit, not when pages are added to LRU.
1555 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1556 	 * memcg is too small and all pages are not on LRU. In that case,
1557 	 * we use curret node.
1558 	 */
1559 	if (unlikely(node == MAX_NUMNODES))
1560 		node = numa_node_id();
1561 
1562 	memcg->last_scanned_node = node;
1563 	return node;
1564 }
1565 
1566 /*
1567  * Check all nodes whether it contains reclaimable pages or not.
1568  * For quick scan, we make use of scan_nodes. This will allow us to skip
1569  * unused nodes. But scan_nodes is lazily updated and may not cotain
1570  * enough new information. We need to do double check.
1571  */
1572 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1573 {
1574 	int nid;
1575 
1576 	/*
1577 	 * quick check...making use of scan_node.
1578 	 * We can skip unused nodes.
1579 	 */
1580 	if (!nodes_empty(memcg->scan_nodes)) {
1581 		for (nid = first_node(memcg->scan_nodes);
1582 		     nid < MAX_NUMNODES;
1583 		     nid = next_node(nid, memcg->scan_nodes)) {
1584 
1585 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1586 				return true;
1587 		}
1588 	}
1589 	/*
1590 	 * Check rest of nodes.
1591 	 */
1592 	for_each_node_state(nid, N_HIGH_MEMORY) {
1593 		if (node_isset(nid, memcg->scan_nodes))
1594 			continue;
1595 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1596 			return true;
1597 	}
1598 	return false;
1599 }
1600 
1601 #else
1602 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1603 {
1604 	return 0;
1605 }
1606 
1607 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1608 {
1609 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1610 }
1611 #endif
1612 
1613 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1614 				   struct zone *zone,
1615 				   gfp_t gfp_mask,
1616 				   unsigned long *total_scanned)
1617 {
1618 	struct mem_cgroup *victim = NULL;
1619 	int total = 0;
1620 	int loop = 0;
1621 	unsigned long excess;
1622 	unsigned long nr_scanned;
1623 	struct mem_cgroup_reclaim_cookie reclaim = {
1624 		.zone = zone,
1625 		.priority = 0,
1626 	};
1627 
1628 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1629 
1630 	while (1) {
1631 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1632 		if (!victim) {
1633 			loop++;
1634 			if (loop >= 2) {
1635 				/*
1636 				 * If we have not been able to reclaim
1637 				 * anything, it might because there are
1638 				 * no reclaimable pages under this hierarchy
1639 				 */
1640 				if (!total)
1641 					break;
1642 				/*
1643 				 * We want to do more targeted reclaim.
1644 				 * excess >> 2 is not to excessive so as to
1645 				 * reclaim too much, nor too less that we keep
1646 				 * coming back to reclaim from this cgroup
1647 				 */
1648 				if (total >= (excess >> 2) ||
1649 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1650 					break;
1651 			}
1652 			continue;
1653 		}
1654 		if (!mem_cgroup_reclaimable(victim, false))
1655 			continue;
1656 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1657 						     zone, &nr_scanned);
1658 		*total_scanned += nr_scanned;
1659 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1660 			break;
1661 	}
1662 	mem_cgroup_iter_break(root_memcg, victim);
1663 	return total;
1664 }
1665 
1666 /*
1667  * Check OOM-Killer is already running under our hierarchy.
1668  * If someone is running, return false.
1669  * Has to be called with memcg_oom_lock
1670  */
1671 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1672 {
1673 	struct mem_cgroup *iter, *failed = NULL;
1674 
1675 	for_each_mem_cgroup_tree(iter, memcg) {
1676 		if (iter->oom_lock) {
1677 			/*
1678 			 * this subtree of our hierarchy is already locked
1679 			 * so we cannot give a lock.
1680 			 */
1681 			failed = iter;
1682 			mem_cgroup_iter_break(memcg, iter);
1683 			break;
1684 		} else
1685 			iter->oom_lock = true;
1686 	}
1687 
1688 	if (!failed)
1689 		return true;
1690 
1691 	/*
1692 	 * OK, we failed to lock the whole subtree so we have to clean up
1693 	 * what we set up to the failing subtree
1694 	 */
1695 	for_each_mem_cgroup_tree(iter, memcg) {
1696 		if (iter == failed) {
1697 			mem_cgroup_iter_break(memcg, iter);
1698 			break;
1699 		}
1700 		iter->oom_lock = false;
1701 	}
1702 	return false;
1703 }
1704 
1705 /*
1706  * Has to be called with memcg_oom_lock
1707  */
1708 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1709 {
1710 	struct mem_cgroup *iter;
1711 
1712 	for_each_mem_cgroup_tree(iter, memcg)
1713 		iter->oom_lock = false;
1714 	return 0;
1715 }
1716 
1717 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1718 {
1719 	struct mem_cgroup *iter;
1720 
1721 	for_each_mem_cgroup_tree(iter, memcg)
1722 		atomic_inc(&iter->under_oom);
1723 }
1724 
1725 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1726 {
1727 	struct mem_cgroup *iter;
1728 
1729 	/*
1730 	 * When a new child is created while the hierarchy is under oom,
1731 	 * mem_cgroup_oom_lock() may not be called. We have to use
1732 	 * atomic_add_unless() here.
1733 	 */
1734 	for_each_mem_cgroup_tree(iter, memcg)
1735 		atomic_add_unless(&iter->under_oom, -1, 0);
1736 }
1737 
1738 static DEFINE_SPINLOCK(memcg_oom_lock);
1739 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1740 
1741 struct oom_wait_info {
1742 	struct mem_cgroup *mem;
1743 	wait_queue_t	wait;
1744 };
1745 
1746 static int memcg_oom_wake_function(wait_queue_t *wait,
1747 	unsigned mode, int sync, void *arg)
1748 {
1749 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1750 			  *oom_wait_memcg;
1751 	struct oom_wait_info *oom_wait_info;
1752 
1753 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1754 	oom_wait_memcg = oom_wait_info->mem;
1755 
1756 	/*
1757 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1758 	 * Then we can use css_is_ancestor without taking care of RCU.
1759 	 */
1760 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1761 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1762 		return 0;
1763 	return autoremove_wake_function(wait, mode, sync, arg);
1764 }
1765 
1766 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1767 {
1768 	/* for filtering, pass "memcg" as argument. */
1769 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1770 }
1771 
1772 static void memcg_oom_recover(struct mem_cgroup *memcg)
1773 {
1774 	if (memcg && atomic_read(&memcg->under_oom))
1775 		memcg_wakeup_oom(memcg);
1776 }
1777 
1778 /*
1779  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1780  */
1781 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1782 {
1783 	struct oom_wait_info owait;
1784 	bool locked, need_to_kill;
1785 
1786 	owait.mem = memcg;
1787 	owait.wait.flags = 0;
1788 	owait.wait.func = memcg_oom_wake_function;
1789 	owait.wait.private = current;
1790 	INIT_LIST_HEAD(&owait.wait.task_list);
1791 	need_to_kill = true;
1792 	mem_cgroup_mark_under_oom(memcg);
1793 
1794 	/* At first, try to OOM lock hierarchy under memcg.*/
1795 	spin_lock(&memcg_oom_lock);
1796 	locked = mem_cgroup_oom_lock(memcg);
1797 	/*
1798 	 * Even if signal_pending(), we can't quit charge() loop without
1799 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1800 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1801 	 */
1802 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1803 	if (!locked || memcg->oom_kill_disable)
1804 		need_to_kill = false;
1805 	if (locked)
1806 		mem_cgroup_oom_notify(memcg);
1807 	spin_unlock(&memcg_oom_lock);
1808 
1809 	if (need_to_kill) {
1810 		finish_wait(&memcg_oom_waitq, &owait.wait);
1811 		mem_cgroup_out_of_memory(memcg, mask);
1812 	} else {
1813 		schedule();
1814 		finish_wait(&memcg_oom_waitq, &owait.wait);
1815 	}
1816 	spin_lock(&memcg_oom_lock);
1817 	if (locked)
1818 		mem_cgroup_oom_unlock(memcg);
1819 	memcg_wakeup_oom(memcg);
1820 	spin_unlock(&memcg_oom_lock);
1821 
1822 	mem_cgroup_unmark_under_oom(memcg);
1823 
1824 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1825 		return false;
1826 	/* Give chance to dying process */
1827 	schedule_timeout_uninterruptible(1);
1828 	return true;
1829 }
1830 
1831 /*
1832  * Currently used to update mapped file statistics, but the routine can be
1833  * generalized to update other statistics as well.
1834  *
1835  * Notes: Race condition
1836  *
1837  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1838  * it tends to be costly. But considering some conditions, we doesn't need
1839  * to do so _always_.
1840  *
1841  * Considering "charge", lock_page_cgroup() is not required because all
1842  * file-stat operations happen after a page is attached to radix-tree. There
1843  * are no race with "charge".
1844  *
1845  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1846  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1847  * if there are race with "uncharge". Statistics itself is properly handled
1848  * by flags.
1849  *
1850  * Considering "move", this is an only case we see a race. To make the race
1851  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1852  * possibility of race condition. If there is, we take a lock.
1853  */
1854 
1855 void mem_cgroup_update_page_stat(struct page *page,
1856 				 enum mem_cgroup_page_stat_item idx, int val)
1857 {
1858 	struct mem_cgroup *memcg;
1859 	struct page_cgroup *pc = lookup_page_cgroup(page);
1860 	bool need_unlock = false;
1861 	unsigned long uninitialized_var(flags);
1862 
1863 	if (mem_cgroup_disabled())
1864 		return;
1865 
1866 	rcu_read_lock();
1867 	memcg = pc->mem_cgroup;
1868 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1869 		goto out;
1870 	/* pc->mem_cgroup is unstable ? */
1871 	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1872 		/* take a lock against to access pc->mem_cgroup */
1873 		move_lock_page_cgroup(pc, &flags);
1874 		need_unlock = true;
1875 		memcg = pc->mem_cgroup;
1876 		if (!memcg || !PageCgroupUsed(pc))
1877 			goto out;
1878 	}
1879 
1880 	switch (idx) {
1881 	case MEMCG_NR_FILE_MAPPED:
1882 		if (val > 0)
1883 			SetPageCgroupFileMapped(pc);
1884 		else if (!page_mapped(page))
1885 			ClearPageCgroupFileMapped(pc);
1886 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1887 		break;
1888 	default:
1889 		BUG();
1890 	}
1891 
1892 	this_cpu_add(memcg->stat->count[idx], val);
1893 
1894 out:
1895 	if (unlikely(need_unlock))
1896 		move_unlock_page_cgroup(pc, &flags);
1897 	rcu_read_unlock();
1898 	return;
1899 }
1900 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1901 
1902 /*
1903  * size of first charge trial. "32" comes from vmscan.c's magic value.
1904  * TODO: maybe necessary to use big numbers in big irons.
1905  */
1906 #define CHARGE_BATCH	32U
1907 struct memcg_stock_pcp {
1908 	struct mem_cgroup *cached; /* this never be root cgroup */
1909 	unsigned int nr_pages;
1910 	struct work_struct work;
1911 	unsigned long flags;
1912 #define FLUSHING_CACHED_CHARGE	(0)
1913 };
1914 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1915 static DEFINE_MUTEX(percpu_charge_mutex);
1916 
1917 /*
1918  * Try to consume stocked charge on this cpu. If success, one page is consumed
1919  * from local stock and true is returned. If the stock is 0 or charges from a
1920  * cgroup which is not current target, returns false. This stock will be
1921  * refilled.
1922  */
1923 static bool consume_stock(struct mem_cgroup *memcg)
1924 {
1925 	struct memcg_stock_pcp *stock;
1926 	bool ret = true;
1927 
1928 	stock = &get_cpu_var(memcg_stock);
1929 	if (memcg == stock->cached && stock->nr_pages)
1930 		stock->nr_pages--;
1931 	else /* need to call res_counter_charge */
1932 		ret = false;
1933 	put_cpu_var(memcg_stock);
1934 	return ret;
1935 }
1936 
1937 /*
1938  * Returns stocks cached in percpu to res_counter and reset cached information.
1939  */
1940 static void drain_stock(struct memcg_stock_pcp *stock)
1941 {
1942 	struct mem_cgroup *old = stock->cached;
1943 
1944 	if (stock->nr_pages) {
1945 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1946 
1947 		res_counter_uncharge(&old->res, bytes);
1948 		if (do_swap_account)
1949 			res_counter_uncharge(&old->memsw, bytes);
1950 		stock->nr_pages = 0;
1951 	}
1952 	stock->cached = NULL;
1953 }
1954 
1955 /*
1956  * This must be called under preempt disabled or must be called by
1957  * a thread which is pinned to local cpu.
1958  */
1959 static void drain_local_stock(struct work_struct *dummy)
1960 {
1961 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1962 	drain_stock(stock);
1963 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1964 }
1965 
1966 /*
1967  * Cache charges(val) which is from res_counter, to local per_cpu area.
1968  * This will be consumed by consume_stock() function, later.
1969  */
1970 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1971 {
1972 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1973 
1974 	if (stock->cached != memcg) { /* reset if necessary */
1975 		drain_stock(stock);
1976 		stock->cached = memcg;
1977 	}
1978 	stock->nr_pages += nr_pages;
1979 	put_cpu_var(memcg_stock);
1980 }
1981 
1982 /*
1983  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1984  * of the hierarchy under it. sync flag says whether we should block
1985  * until the work is done.
1986  */
1987 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
1988 {
1989 	int cpu, curcpu;
1990 
1991 	/* Notify other cpus that system-wide "drain" is running */
1992 	get_online_cpus();
1993 	curcpu = get_cpu();
1994 	for_each_online_cpu(cpu) {
1995 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1996 		struct mem_cgroup *memcg;
1997 
1998 		memcg = stock->cached;
1999 		if (!memcg || !stock->nr_pages)
2000 			continue;
2001 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2002 			continue;
2003 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2004 			if (cpu == curcpu)
2005 				drain_local_stock(&stock->work);
2006 			else
2007 				schedule_work_on(cpu, &stock->work);
2008 		}
2009 	}
2010 	put_cpu();
2011 
2012 	if (!sync)
2013 		goto out;
2014 
2015 	for_each_online_cpu(cpu) {
2016 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2017 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2018 			flush_work(&stock->work);
2019 	}
2020 out:
2021  	put_online_cpus();
2022 }
2023 
2024 /*
2025  * Tries to drain stocked charges in other cpus. This function is asynchronous
2026  * and just put a work per cpu for draining localy on each cpu. Caller can
2027  * expects some charges will be back to res_counter later but cannot wait for
2028  * it.
2029  */
2030 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2031 {
2032 	/*
2033 	 * If someone calls draining, avoid adding more kworker runs.
2034 	 */
2035 	if (!mutex_trylock(&percpu_charge_mutex))
2036 		return;
2037 	drain_all_stock(root_memcg, false);
2038 	mutex_unlock(&percpu_charge_mutex);
2039 }
2040 
2041 /* This is a synchronous drain interface. */
2042 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2043 {
2044 	/* called when force_empty is called */
2045 	mutex_lock(&percpu_charge_mutex);
2046 	drain_all_stock(root_memcg, true);
2047 	mutex_unlock(&percpu_charge_mutex);
2048 }
2049 
2050 /*
2051  * This function drains percpu counter value from DEAD cpu and
2052  * move it to local cpu. Note that this function can be preempted.
2053  */
2054 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2055 {
2056 	int i;
2057 
2058 	spin_lock(&memcg->pcp_counter_lock);
2059 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2060 		long x = per_cpu(memcg->stat->count[i], cpu);
2061 
2062 		per_cpu(memcg->stat->count[i], cpu) = 0;
2063 		memcg->nocpu_base.count[i] += x;
2064 	}
2065 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2066 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2067 
2068 		per_cpu(memcg->stat->events[i], cpu) = 0;
2069 		memcg->nocpu_base.events[i] += x;
2070 	}
2071 	/* need to clear ON_MOVE value, works as a kind of lock. */
2072 	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2073 	spin_unlock(&memcg->pcp_counter_lock);
2074 }
2075 
2076 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2077 {
2078 	int idx = MEM_CGROUP_ON_MOVE;
2079 
2080 	spin_lock(&memcg->pcp_counter_lock);
2081 	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2082 	spin_unlock(&memcg->pcp_counter_lock);
2083 }
2084 
2085 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2086 					unsigned long action,
2087 					void *hcpu)
2088 {
2089 	int cpu = (unsigned long)hcpu;
2090 	struct memcg_stock_pcp *stock;
2091 	struct mem_cgroup *iter;
2092 
2093 	if ((action == CPU_ONLINE)) {
2094 		for_each_mem_cgroup(iter)
2095 			synchronize_mem_cgroup_on_move(iter, cpu);
2096 		return NOTIFY_OK;
2097 	}
2098 
2099 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2100 		return NOTIFY_OK;
2101 
2102 	for_each_mem_cgroup(iter)
2103 		mem_cgroup_drain_pcp_counter(iter, cpu);
2104 
2105 	stock = &per_cpu(memcg_stock, cpu);
2106 	drain_stock(stock);
2107 	return NOTIFY_OK;
2108 }
2109 
2110 
2111 /* See __mem_cgroup_try_charge() for details */
2112 enum {
2113 	CHARGE_OK,		/* success */
2114 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2115 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2116 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2117 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2118 };
2119 
2120 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2121 				unsigned int nr_pages, bool oom_check)
2122 {
2123 	unsigned long csize = nr_pages * PAGE_SIZE;
2124 	struct mem_cgroup *mem_over_limit;
2125 	struct res_counter *fail_res;
2126 	unsigned long flags = 0;
2127 	int ret;
2128 
2129 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2130 
2131 	if (likely(!ret)) {
2132 		if (!do_swap_account)
2133 			return CHARGE_OK;
2134 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2135 		if (likely(!ret))
2136 			return CHARGE_OK;
2137 
2138 		res_counter_uncharge(&memcg->res, csize);
2139 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2140 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2141 	} else
2142 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2143 	/*
2144 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2145 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2146 	 *
2147 	 * Never reclaim on behalf of optional batching, retry with a
2148 	 * single page instead.
2149 	 */
2150 	if (nr_pages == CHARGE_BATCH)
2151 		return CHARGE_RETRY;
2152 
2153 	if (!(gfp_mask & __GFP_WAIT))
2154 		return CHARGE_WOULDBLOCK;
2155 
2156 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2157 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2158 		return CHARGE_RETRY;
2159 	/*
2160 	 * Even though the limit is exceeded at this point, reclaim
2161 	 * may have been able to free some pages.  Retry the charge
2162 	 * before killing the task.
2163 	 *
2164 	 * Only for regular pages, though: huge pages are rather
2165 	 * unlikely to succeed so close to the limit, and we fall back
2166 	 * to regular pages anyway in case of failure.
2167 	 */
2168 	if (nr_pages == 1 && ret)
2169 		return CHARGE_RETRY;
2170 
2171 	/*
2172 	 * At task move, charge accounts can be doubly counted. So, it's
2173 	 * better to wait until the end of task_move if something is going on.
2174 	 */
2175 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2176 		return CHARGE_RETRY;
2177 
2178 	/* If we don't need to call oom-killer at el, return immediately */
2179 	if (!oom_check)
2180 		return CHARGE_NOMEM;
2181 	/* check OOM */
2182 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2183 		return CHARGE_OOM_DIE;
2184 
2185 	return CHARGE_RETRY;
2186 }
2187 
2188 /*
2189  * __mem_cgroup_try_charge() does
2190  * 1. detect memcg to be charged against from passed *mm and *ptr,
2191  * 2. update res_counter
2192  * 3. call memory reclaim if necessary.
2193  *
2194  * In some special case, if the task is fatal, fatal_signal_pending() or
2195  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2196  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2197  * as possible without any hazards. 2: all pages should have a valid
2198  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2199  * pointer, that is treated as a charge to root_mem_cgroup.
2200  *
2201  * So __mem_cgroup_try_charge() will return
2202  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2203  *  -ENOMEM ...  charge failure because of resource limits.
2204  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2205  *
2206  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2207  * the oom-killer can be invoked.
2208  */
2209 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2210 				   gfp_t gfp_mask,
2211 				   unsigned int nr_pages,
2212 				   struct mem_cgroup **ptr,
2213 				   bool oom)
2214 {
2215 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2216 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2217 	struct mem_cgroup *memcg = NULL;
2218 	int ret;
2219 
2220 	/*
2221 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2222 	 * in system level. So, allow to go ahead dying process in addition to
2223 	 * MEMDIE process.
2224 	 */
2225 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2226 		     || fatal_signal_pending(current)))
2227 		goto bypass;
2228 
2229 	/*
2230 	 * We always charge the cgroup the mm_struct belongs to.
2231 	 * The mm_struct's mem_cgroup changes on task migration if the
2232 	 * thread group leader migrates. It's possible that mm is not
2233 	 * set, if so charge the init_mm (happens for pagecache usage).
2234 	 */
2235 	if (!*ptr && !mm)
2236 		*ptr = root_mem_cgroup;
2237 again:
2238 	if (*ptr) { /* css should be a valid one */
2239 		memcg = *ptr;
2240 		VM_BUG_ON(css_is_removed(&memcg->css));
2241 		if (mem_cgroup_is_root(memcg))
2242 			goto done;
2243 		if (nr_pages == 1 && consume_stock(memcg))
2244 			goto done;
2245 		css_get(&memcg->css);
2246 	} else {
2247 		struct task_struct *p;
2248 
2249 		rcu_read_lock();
2250 		p = rcu_dereference(mm->owner);
2251 		/*
2252 		 * Because we don't have task_lock(), "p" can exit.
2253 		 * In that case, "memcg" can point to root or p can be NULL with
2254 		 * race with swapoff. Then, we have small risk of mis-accouning.
2255 		 * But such kind of mis-account by race always happens because
2256 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2257 		 * small race, here.
2258 		 * (*) swapoff at el will charge against mm-struct not against
2259 		 * task-struct. So, mm->owner can be NULL.
2260 		 */
2261 		memcg = mem_cgroup_from_task(p);
2262 		if (!memcg)
2263 			memcg = root_mem_cgroup;
2264 		if (mem_cgroup_is_root(memcg)) {
2265 			rcu_read_unlock();
2266 			goto done;
2267 		}
2268 		if (nr_pages == 1 && consume_stock(memcg)) {
2269 			/*
2270 			 * It seems dagerous to access memcg without css_get().
2271 			 * But considering how consume_stok works, it's not
2272 			 * necessary. If consume_stock success, some charges
2273 			 * from this memcg are cached on this cpu. So, we
2274 			 * don't need to call css_get()/css_tryget() before
2275 			 * calling consume_stock().
2276 			 */
2277 			rcu_read_unlock();
2278 			goto done;
2279 		}
2280 		/* after here, we may be blocked. we need to get refcnt */
2281 		if (!css_tryget(&memcg->css)) {
2282 			rcu_read_unlock();
2283 			goto again;
2284 		}
2285 		rcu_read_unlock();
2286 	}
2287 
2288 	do {
2289 		bool oom_check;
2290 
2291 		/* If killed, bypass charge */
2292 		if (fatal_signal_pending(current)) {
2293 			css_put(&memcg->css);
2294 			goto bypass;
2295 		}
2296 
2297 		oom_check = false;
2298 		if (oom && !nr_oom_retries) {
2299 			oom_check = true;
2300 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2301 		}
2302 
2303 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2304 		switch (ret) {
2305 		case CHARGE_OK:
2306 			break;
2307 		case CHARGE_RETRY: /* not in OOM situation but retry */
2308 			batch = nr_pages;
2309 			css_put(&memcg->css);
2310 			memcg = NULL;
2311 			goto again;
2312 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2313 			css_put(&memcg->css);
2314 			goto nomem;
2315 		case CHARGE_NOMEM: /* OOM routine works */
2316 			if (!oom) {
2317 				css_put(&memcg->css);
2318 				goto nomem;
2319 			}
2320 			/* If oom, we never return -ENOMEM */
2321 			nr_oom_retries--;
2322 			break;
2323 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2324 			css_put(&memcg->css);
2325 			goto bypass;
2326 		}
2327 	} while (ret != CHARGE_OK);
2328 
2329 	if (batch > nr_pages)
2330 		refill_stock(memcg, batch - nr_pages);
2331 	css_put(&memcg->css);
2332 done:
2333 	*ptr = memcg;
2334 	return 0;
2335 nomem:
2336 	*ptr = NULL;
2337 	return -ENOMEM;
2338 bypass:
2339 	*ptr = root_mem_cgroup;
2340 	return -EINTR;
2341 }
2342 
2343 /*
2344  * Somemtimes we have to undo a charge we got by try_charge().
2345  * This function is for that and do uncharge, put css's refcnt.
2346  * gotten by try_charge().
2347  */
2348 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2349 				       unsigned int nr_pages)
2350 {
2351 	if (!mem_cgroup_is_root(memcg)) {
2352 		unsigned long bytes = nr_pages * PAGE_SIZE;
2353 
2354 		res_counter_uncharge(&memcg->res, bytes);
2355 		if (do_swap_account)
2356 			res_counter_uncharge(&memcg->memsw, bytes);
2357 	}
2358 }
2359 
2360 /*
2361  * A helper function to get mem_cgroup from ID. must be called under
2362  * rcu_read_lock(). The caller must check css_is_removed() or some if
2363  * it's concern. (dropping refcnt from swap can be called against removed
2364  * memcg.)
2365  */
2366 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2367 {
2368 	struct cgroup_subsys_state *css;
2369 
2370 	/* ID 0 is unused ID */
2371 	if (!id)
2372 		return NULL;
2373 	css = css_lookup(&mem_cgroup_subsys, id);
2374 	if (!css)
2375 		return NULL;
2376 	return container_of(css, struct mem_cgroup, css);
2377 }
2378 
2379 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2380 {
2381 	struct mem_cgroup *memcg = NULL;
2382 	struct page_cgroup *pc;
2383 	unsigned short id;
2384 	swp_entry_t ent;
2385 
2386 	VM_BUG_ON(!PageLocked(page));
2387 
2388 	pc = lookup_page_cgroup(page);
2389 	lock_page_cgroup(pc);
2390 	if (PageCgroupUsed(pc)) {
2391 		memcg = pc->mem_cgroup;
2392 		if (memcg && !css_tryget(&memcg->css))
2393 			memcg = NULL;
2394 	} else if (PageSwapCache(page)) {
2395 		ent.val = page_private(page);
2396 		id = lookup_swap_cgroup_id(ent);
2397 		rcu_read_lock();
2398 		memcg = mem_cgroup_lookup(id);
2399 		if (memcg && !css_tryget(&memcg->css))
2400 			memcg = NULL;
2401 		rcu_read_unlock();
2402 	}
2403 	unlock_page_cgroup(pc);
2404 	return memcg;
2405 }
2406 
2407 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2408 				       struct page *page,
2409 				       unsigned int nr_pages,
2410 				       struct page_cgroup *pc,
2411 				       enum charge_type ctype)
2412 {
2413 	lock_page_cgroup(pc);
2414 	if (unlikely(PageCgroupUsed(pc))) {
2415 		unlock_page_cgroup(pc);
2416 		__mem_cgroup_cancel_charge(memcg, nr_pages);
2417 		return;
2418 	}
2419 	/*
2420 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2421 	 * accessed by any other context at this point.
2422 	 */
2423 	pc->mem_cgroup = memcg;
2424 	/*
2425 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2426 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2427 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2428 	 * before USED bit, we need memory barrier here.
2429 	 * See mem_cgroup_add_lru_list(), etc.
2430  	 */
2431 	smp_wmb();
2432 	switch (ctype) {
2433 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2434 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2435 		SetPageCgroupCache(pc);
2436 		SetPageCgroupUsed(pc);
2437 		break;
2438 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2439 		ClearPageCgroupCache(pc);
2440 		SetPageCgroupUsed(pc);
2441 		break;
2442 	default:
2443 		break;
2444 	}
2445 
2446 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2447 	unlock_page_cgroup(pc);
2448 	WARN_ON_ONCE(PageLRU(page));
2449 	/*
2450 	 * "charge_statistics" updated event counter. Then, check it.
2451 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2452 	 * if they exceeds softlimit.
2453 	 */
2454 	memcg_check_events(memcg, page);
2455 }
2456 
2457 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2458 
2459 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2460 			(1 << PCG_MIGRATION))
2461 /*
2462  * Because tail pages are not marked as "used", set it. We're under
2463  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2464  * charge/uncharge will be never happen and move_account() is done under
2465  * compound_lock(), so we don't have to take care of races.
2466  */
2467 void mem_cgroup_split_huge_fixup(struct page *head)
2468 {
2469 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2470 	struct page_cgroup *pc;
2471 	int i;
2472 
2473 	if (mem_cgroup_disabled())
2474 		return;
2475 	for (i = 1; i < HPAGE_PMD_NR; i++) {
2476 		pc = head_pc + i;
2477 		pc->mem_cgroup = head_pc->mem_cgroup;
2478 		smp_wmb();/* see __commit_charge() */
2479 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2480 	}
2481 }
2482 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2483 
2484 /**
2485  * mem_cgroup_move_account - move account of the page
2486  * @page: the page
2487  * @nr_pages: number of regular pages (>1 for huge pages)
2488  * @pc:	page_cgroup of the page.
2489  * @from: mem_cgroup which the page is moved from.
2490  * @to:	mem_cgroup which the page is moved to. @from != @to.
2491  * @uncharge: whether we should call uncharge and css_put against @from.
2492  *
2493  * The caller must confirm following.
2494  * - page is not on LRU (isolate_page() is useful.)
2495  * - compound_lock is held when nr_pages > 1
2496  *
2497  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2498  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2499  * true, this function does "uncharge" from old cgroup, but it doesn't if
2500  * @uncharge is false, so a caller should do "uncharge".
2501  */
2502 static int mem_cgroup_move_account(struct page *page,
2503 				   unsigned int nr_pages,
2504 				   struct page_cgroup *pc,
2505 				   struct mem_cgroup *from,
2506 				   struct mem_cgroup *to,
2507 				   bool uncharge)
2508 {
2509 	unsigned long flags;
2510 	int ret;
2511 
2512 	VM_BUG_ON(from == to);
2513 	VM_BUG_ON(PageLRU(page));
2514 	/*
2515 	 * The page is isolated from LRU. So, collapse function
2516 	 * will not handle this page. But page splitting can happen.
2517 	 * Do this check under compound_page_lock(). The caller should
2518 	 * hold it.
2519 	 */
2520 	ret = -EBUSY;
2521 	if (nr_pages > 1 && !PageTransHuge(page))
2522 		goto out;
2523 
2524 	lock_page_cgroup(pc);
2525 
2526 	ret = -EINVAL;
2527 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2528 		goto unlock;
2529 
2530 	move_lock_page_cgroup(pc, &flags);
2531 
2532 	if (PageCgroupFileMapped(pc)) {
2533 		/* Update mapped_file data for mem_cgroup */
2534 		preempt_disable();
2535 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2536 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2537 		preempt_enable();
2538 	}
2539 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2540 	if (uncharge)
2541 		/* This is not "cancel", but cancel_charge does all we need. */
2542 		__mem_cgroup_cancel_charge(from, nr_pages);
2543 
2544 	/* caller should have done css_get */
2545 	pc->mem_cgroup = to;
2546 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2547 	/*
2548 	 * We charges against "to" which may not have any tasks. Then, "to"
2549 	 * can be under rmdir(). But in current implementation, caller of
2550 	 * this function is just force_empty() and move charge, so it's
2551 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2552 	 * status here.
2553 	 */
2554 	move_unlock_page_cgroup(pc, &flags);
2555 	ret = 0;
2556 unlock:
2557 	unlock_page_cgroup(pc);
2558 	/*
2559 	 * check events
2560 	 */
2561 	memcg_check_events(to, page);
2562 	memcg_check_events(from, page);
2563 out:
2564 	return ret;
2565 }
2566 
2567 /*
2568  * move charges to its parent.
2569  */
2570 
2571 static int mem_cgroup_move_parent(struct page *page,
2572 				  struct page_cgroup *pc,
2573 				  struct mem_cgroup *child,
2574 				  gfp_t gfp_mask)
2575 {
2576 	struct cgroup *cg = child->css.cgroup;
2577 	struct cgroup *pcg = cg->parent;
2578 	struct mem_cgroup *parent;
2579 	unsigned int nr_pages;
2580 	unsigned long uninitialized_var(flags);
2581 	int ret;
2582 
2583 	/* Is ROOT ? */
2584 	if (!pcg)
2585 		return -EINVAL;
2586 
2587 	ret = -EBUSY;
2588 	if (!get_page_unless_zero(page))
2589 		goto out;
2590 	if (isolate_lru_page(page))
2591 		goto put;
2592 
2593 	nr_pages = hpage_nr_pages(page);
2594 
2595 	parent = mem_cgroup_from_cont(pcg);
2596 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2597 	if (ret)
2598 		goto put_back;
2599 
2600 	if (nr_pages > 1)
2601 		flags = compound_lock_irqsave(page);
2602 
2603 	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2604 	if (ret)
2605 		__mem_cgroup_cancel_charge(parent, nr_pages);
2606 
2607 	if (nr_pages > 1)
2608 		compound_unlock_irqrestore(page, flags);
2609 put_back:
2610 	putback_lru_page(page);
2611 put:
2612 	put_page(page);
2613 out:
2614 	return ret;
2615 }
2616 
2617 /*
2618  * Charge the memory controller for page usage.
2619  * Return
2620  * 0 if the charge was successful
2621  * < 0 if the cgroup is over its limit
2622  */
2623 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2624 				gfp_t gfp_mask, enum charge_type ctype)
2625 {
2626 	struct mem_cgroup *memcg = NULL;
2627 	unsigned int nr_pages = 1;
2628 	struct page_cgroup *pc;
2629 	bool oom = true;
2630 	int ret;
2631 
2632 	if (PageTransHuge(page)) {
2633 		nr_pages <<= compound_order(page);
2634 		VM_BUG_ON(!PageTransHuge(page));
2635 		/*
2636 		 * Never OOM-kill a process for a huge page.  The
2637 		 * fault handler will fall back to regular pages.
2638 		 */
2639 		oom = false;
2640 	}
2641 
2642 	pc = lookup_page_cgroup(page);
2643 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2644 	if (ret == -ENOMEM)
2645 		return ret;
2646 	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2647 	return 0;
2648 }
2649 
2650 int mem_cgroup_newpage_charge(struct page *page,
2651 			      struct mm_struct *mm, gfp_t gfp_mask)
2652 {
2653 	if (mem_cgroup_disabled())
2654 		return 0;
2655 	VM_BUG_ON(page_mapped(page));
2656 	VM_BUG_ON(page->mapping && !PageAnon(page));
2657 	VM_BUG_ON(!mm);
2658 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2659 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2660 }
2661 
2662 static void
2663 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2664 					enum charge_type ctype);
2665 
2666 static void
2667 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2668 					enum charge_type ctype)
2669 {
2670 	struct page_cgroup *pc = lookup_page_cgroup(page);
2671 	struct zone *zone = page_zone(page);
2672 	unsigned long flags;
2673 	bool removed = false;
2674 
2675 	/*
2676 	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2677 	 * is already on LRU. It means the page may on some other page_cgroup's
2678 	 * LRU. Take care of it.
2679 	 */
2680 	spin_lock_irqsave(&zone->lru_lock, flags);
2681 	if (PageLRU(page)) {
2682 		del_page_from_lru_list(zone, page, page_lru(page));
2683 		ClearPageLRU(page);
2684 		removed = true;
2685 	}
2686 	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2687 	if (removed) {
2688 		add_page_to_lru_list(zone, page, page_lru(page));
2689 		SetPageLRU(page);
2690 	}
2691 	spin_unlock_irqrestore(&zone->lru_lock, flags);
2692 	return;
2693 }
2694 
2695 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2696 				gfp_t gfp_mask)
2697 {
2698 	struct mem_cgroup *memcg = NULL;
2699 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2700 	int ret;
2701 
2702 	if (mem_cgroup_disabled())
2703 		return 0;
2704 	if (PageCompound(page))
2705 		return 0;
2706 
2707 	if (unlikely(!mm))
2708 		mm = &init_mm;
2709 	if (!page_is_file_cache(page))
2710 		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2711 
2712 	if (!PageSwapCache(page))
2713 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2714 	else { /* page is swapcache/shmem */
2715 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2716 		if (!ret)
2717 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2718 	}
2719 	return ret;
2720 }
2721 
2722 /*
2723  * While swap-in, try_charge -> commit or cancel, the page is locked.
2724  * And when try_charge() successfully returns, one refcnt to memcg without
2725  * struct page_cgroup is acquired. This refcnt will be consumed by
2726  * "commit()" or removed by "cancel()"
2727  */
2728 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2729 				 struct page *page,
2730 				 gfp_t mask, struct mem_cgroup **memcgp)
2731 {
2732 	struct mem_cgroup *memcg;
2733 	int ret;
2734 
2735 	*memcgp = NULL;
2736 
2737 	if (mem_cgroup_disabled())
2738 		return 0;
2739 
2740 	if (!do_swap_account)
2741 		goto charge_cur_mm;
2742 	/*
2743 	 * A racing thread's fault, or swapoff, may have already updated
2744 	 * the pte, and even removed page from swap cache: in those cases
2745 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2746 	 * KSM case which does need to charge the page.
2747 	 */
2748 	if (!PageSwapCache(page))
2749 		goto charge_cur_mm;
2750 	memcg = try_get_mem_cgroup_from_page(page);
2751 	if (!memcg)
2752 		goto charge_cur_mm;
2753 	*memcgp = memcg;
2754 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2755 	css_put(&memcg->css);
2756 	if (ret == -EINTR)
2757 		ret = 0;
2758 	return ret;
2759 charge_cur_mm:
2760 	if (unlikely(!mm))
2761 		mm = &init_mm;
2762 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2763 	if (ret == -EINTR)
2764 		ret = 0;
2765 	return ret;
2766 }
2767 
2768 static void
2769 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2770 					enum charge_type ctype)
2771 {
2772 	if (mem_cgroup_disabled())
2773 		return;
2774 	if (!memcg)
2775 		return;
2776 	cgroup_exclude_rmdir(&memcg->css);
2777 
2778 	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2779 	/*
2780 	 * Now swap is on-memory. This means this page may be
2781 	 * counted both as mem and swap....double count.
2782 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2783 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2784 	 * may call delete_from_swap_cache() before reach here.
2785 	 */
2786 	if (do_swap_account && PageSwapCache(page)) {
2787 		swp_entry_t ent = {.val = page_private(page)};
2788 		struct mem_cgroup *swap_memcg;
2789 		unsigned short id;
2790 
2791 		id = swap_cgroup_record(ent, 0);
2792 		rcu_read_lock();
2793 		swap_memcg = mem_cgroup_lookup(id);
2794 		if (swap_memcg) {
2795 			/*
2796 			 * This recorded memcg can be obsolete one. So, avoid
2797 			 * calling css_tryget
2798 			 */
2799 			if (!mem_cgroup_is_root(swap_memcg))
2800 				res_counter_uncharge(&swap_memcg->memsw,
2801 						     PAGE_SIZE);
2802 			mem_cgroup_swap_statistics(swap_memcg, false);
2803 			mem_cgroup_put(swap_memcg);
2804 		}
2805 		rcu_read_unlock();
2806 	}
2807 	/*
2808 	 * At swapin, we may charge account against cgroup which has no tasks.
2809 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2810 	 * In that case, we need to call pre_destroy() again. check it here.
2811 	 */
2812 	cgroup_release_and_wakeup_rmdir(&memcg->css);
2813 }
2814 
2815 void mem_cgroup_commit_charge_swapin(struct page *page,
2816 				     struct mem_cgroup *memcg)
2817 {
2818 	__mem_cgroup_commit_charge_swapin(page, memcg,
2819 					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
2820 }
2821 
2822 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2823 {
2824 	if (mem_cgroup_disabled())
2825 		return;
2826 	if (!memcg)
2827 		return;
2828 	__mem_cgroup_cancel_charge(memcg, 1);
2829 }
2830 
2831 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2832 				   unsigned int nr_pages,
2833 				   const enum charge_type ctype)
2834 {
2835 	struct memcg_batch_info *batch = NULL;
2836 	bool uncharge_memsw = true;
2837 
2838 	/* If swapout, usage of swap doesn't decrease */
2839 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2840 		uncharge_memsw = false;
2841 
2842 	batch = &current->memcg_batch;
2843 	/*
2844 	 * In usual, we do css_get() when we remember memcg pointer.
2845 	 * But in this case, we keep res->usage until end of a series of
2846 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2847 	 */
2848 	if (!batch->memcg)
2849 		batch->memcg = memcg;
2850 	/*
2851 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2852 	 * In those cases, all pages freed continuously can be expected to be in
2853 	 * the same cgroup and we have chance to coalesce uncharges.
2854 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2855 	 * because we want to do uncharge as soon as possible.
2856 	 */
2857 
2858 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2859 		goto direct_uncharge;
2860 
2861 	if (nr_pages > 1)
2862 		goto direct_uncharge;
2863 
2864 	/*
2865 	 * In typical case, batch->memcg == mem. This means we can
2866 	 * merge a series of uncharges to an uncharge of res_counter.
2867 	 * If not, we uncharge res_counter ony by one.
2868 	 */
2869 	if (batch->memcg != memcg)
2870 		goto direct_uncharge;
2871 	/* remember freed charge and uncharge it later */
2872 	batch->nr_pages++;
2873 	if (uncharge_memsw)
2874 		batch->memsw_nr_pages++;
2875 	return;
2876 direct_uncharge:
2877 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2878 	if (uncharge_memsw)
2879 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2880 	if (unlikely(batch->memcg != memcg))
2881 		memcg_oom_recover(memcg);
2882 	return;
2883 }
2884 
2885 /*
2886  * uncharge if !page_mapped(page)
2887  */
2888 static struct mem_cgroup *
2889 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2890 {
2891 	struct mem_cgroup *memcg = NULL;
2892 	unsigned int nr_pages = 1;
2893 	struct page_cgroup *pc;
2894 
2895 	if (mem_cgroup_disabled())
2896 		return NULL;
2897 
2898 	if (PageSwapCache(page))
2899 		return NULL;
2900 
2901 	if (PageTransHuge(page)) {
2902 		nr_pages <<= compound_order(page);
2903 		VM_BUG_ON(!PageTransHuge(page));
2904 	}
2905 	/*
2906 	 * Check if our page_cgroup is valid
2907 	 */
2908 	pc = lookup_page_cgroup(page);
2909 	if (unlikely(!PageCgroupUsed(pc)))
2910 		return NULL;
2911 
2912 	lock_page_cgroup(pc);
2913 
2914 	memcg = pc->mem_cgroup;
2915 
2916 	if (!PageCgroupUsed(pc))
2917 		goto unlock_out;
2918 
2919 	switch (ctype) {
2920 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2921 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2922 		/* See mem_cgroup_prepare_migration() */
2923 		if (page_mapped(page) || PageCgroupMigration(pc))
2924 			goto unlock_out;
2925 		break;
2926 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2927 		if (!PageAnon(page)) {	/* Shared memory */
2928 			if (page->mapping && !page_is_file_cache(page))
2929 				goto unlock_out;
2930 		} else if (page_mapped(page)) /* Anon */
2931 				goto unlock_out;
2932 		break;
2933 	default:
2934 		break;
2935 	}
2936 
2937 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
2938 
2939 	ClearPageCgroupUsed(pc);
2940 	/*
2941 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2942 	 * freed from LRU. This is safe because uncharged page is expected not
2943 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2944 	 * special functions.
2945 	 */
2946 
2947 	unlock_page_cgroup(pc);
2948 	/*
2949 	 * even after unlock, we have memcg->res.usage here and this memcg
2950 	 * will never be freed.
2951 	 */
2952 	memcg_check_events(memcg, page);
2953 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2954 		mem_cgroup_swap_statistics(memcg, true);
2955 		mem_cgroup_get(memcg);
2956 	}
2957 	if (!mem_cgroup_is_root(memcg))
2958 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2959 
2960 	return memcg;
2961 
2962 unlock_out:
2963 	unlock_page_cgroup(pc);
2964 	return NULL;
2965 }
2966 
2967 void mem_cgroup_uncharge_page(struct page *page)
2968 {
2969 	/* early check. */
2970 	if (page_mapped(page))
2971 		return;
2972 	VM_BUG_ON(page->mapping && !PageAnon(page));
2973 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2974 }
2975 
2976 void mem_cgroup_uncharge_cache_page(struct page *page)
2977 {
2978 	VM_BUG_ON(page_mapped(page));
2979 	VM_BUG_ON(page->mapping);
2980 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2981 }
2982 
2983 /*
2984  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2985  * In that cases, pages are freed continuously and we can expect pages
2986  * are in the same memcg. All these calls itself limits the number of
2987  * pages freed at once, then uncharge_start/end() is called properly.
2988  * This may be called prural(2) times in a context,
2989  */
2990 
2991 void mem_cgroup_uncharge_start(void)
2992 {
2993 	current->memcg_batch.do_batch++;
2994 	/* We can do nest. */
2995 	if (current->memcg_batch.do_batch == 1) {
2996 		current->memcg_batch.memcg = NULL;
2997 		current->memcg_batch.nr_pages = 0;
2998 		current->memcg_batch.memsw_nr_pages = 0;
2999 	}
3000 }
3001 
3002 void mem_cgroup_uncharge_end(void)
3003 {
3004 	struct memcg_batch_info *batch = &current->memcg_batch;
3005 
3006 	if (!batch->do_batch)
3007 		return;
3008 
3009 	batch->do_batch--;
3010 	if (batch->do_batch) /* If stacked, do nothing. */
3011 		return;
3012 
3013 	if (!batch->memcg)
3014 		return;
3015 	/*
3016 	 * This "batch->memcg" is valid without any css_get/put etc...
3017 	 * bacause we hide charges behind us.
3018 	 */
3019 	if (batch->nr_pages)
3020 		res_counter_uncharge(&batch->memcg->res,
3021 				     batch->nr_pages * PAGE_SIZE);
3022 	if (batch->memsw_nr_pages)
3023 		res_counter_uncharge(&batch->memcg->memsw,
3024 				     batch->memsw_nr_pages * PAGE_SIZE);
3025 	memcg_oom_recover(batch->memcg);
3026 	/* forget this pointer (for sanity check) */
3027 	batch->memcg = NULL;
3028 }
3029 
3030 /*
3031  * A function for resetting pc->mem_cgroup for newly allocated pages.
3032  * This function should be called if the newpage will be added to LRU
3033  * before start accounting.
3034  */
3035 void mem_cgroup_reset_owner(struct page *newpage)
3036 {
3037 	struct page_cgroup *pc;
3038 
3039 	if (mem_cgroup_disabled())
3040 		return;
3041 
3042 	pc = lookup_page_cgroup(newpage);
3043 	VM_BUG_ON(PageCgroupUsed(pc));
3044 	pc->mem_cgroup = root_mem_cgroup;
3045 }
3046 
3047 #ifdef CONFIG_SWAP
3048 /*
3049  * called after __delete_from_swap_cache() and drop "page" account.
3050  * memcg information is recorded to swap_cgroup of "ent"
3051  */
3052 void
3053 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3054 {
3055 	struct mem_cgroup *memcg;
3056 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3057 
3058 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3059 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3060 
3061 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3062 
3063 	/*
3064 	 * record memcg information,  if swapout && memcg != NULL,
3065 	 * mem_cgroup_get() was called in uncharge().
3066 	 */
3067 	if (do_swap_account && swapout && memcg)
3068 		swap_cgroup_record(ent, css_id(&memcg->css));
3069 }
3070 #endif
3071 
3072 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3073 /*
3074  * called from swap_entry_free(). remove record in swap_cgroup and
3075  * uncharge "memsw" account.
3076  */
3077 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3078 {
3079 	struct mem_cgroup *memcg;
3080 	unsigned short id;
3081 
3082 	if (!do_swap_account)
3083 		return;
3084 
3085 	id = swap_cgroup_record(ent, 0);
3086 	rcu_read_lock();
3087 	memcg = mem_cgroup_lookup(id);
3088 	if (memcg) {
3089 		/*
3090 		 * We uncharge this because swap is freed.
3091 		 * This memcg can be obsolete one. We avoid calling css_tryget
3092 		 */
3093 		if (!mem_cgroup_is_root(memcg))
3094 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3095 		mem_cgroup_swap_statistics(memcg, false);
3096 		mem_cgroup_put(memcg);
3097 	}
3098 	rcu_read_unlock();
3099 }
3100 
3101 /**
3102  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3103  * @entry: swap entry to be moved
3104  * @from:  mem_cgroup which the entry is moved from
3105  * @to:  mem_cgroup which the entry is moved to
3106  * @need_fixup: whether we should fixup res_counters and refcounts.
3107  *
3108  * It succeeds only when the swap_cgroup's record for this entry is the same
3109  * as the mem_cgroup's id of @from.
3110  *
3111  * Returns 0 on success, -EINVAL on failure.
3112  *
3113  * The caller must have charged to @to, IOW, called res_counter_charge() about
3114  * both res and memsw, and called css_get().
3115  */
3116 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3117 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3118 {
3119 	unsigned short old_id, new_id;
3120 
3121 	old_id = css_id(&from->css);
3122 	new_id = css_id(&to->css);
3123 
3124 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3125 		mem_cgroup_swap_statistics(from, false);
3126 		mem_cgroup_swap_statistics(to, true);
3127 		/*
3128 		 * This function is only called from task migration context now.
3129 		 * It postpones res_counter and refcount handling till the end
3130 		 * of task migration(mem_cgroup_clear_mc()) for performance
3131 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3132 		 * because if the process that has been moved to @to does
3133 		 * swap-in, the refcount of @to might be decreased to 0.
3134 		 */
3135 		mem_cgroup_get(to);
3136 		if (need_fixup) {
3137 			if (!mem_cgroup_is_root(from))
3138 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3139 			mem_cgroup_put(from);
3140 			/*
3141 			 * we charged both to->res and to->memsw, so we should
3142 			 * uncharge to->res.
3143 			 */
3144 			if (!mem_cgroup_is_root(to))
3145 				res_counter_uncharge(&to->res, PAGE_SIZE);
3146 		}
3147 		return 0;
3148 	}
3149 	return -EINVAL;
3150 }
3151 #else
3152 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3153 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3154 {
3155 	return -EINVAL;
3156 }
3157 #endif
3158 
3159 /*
3160  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3161  * page belongs to.
3162  */
3163 int mem_cgroup_prepare_migration(struct page *page,
3164 	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3165 {
3166 	struct mem_cgroup *memcg = NULL;
3167 	struct page_cgroup *pc;
3168 	enum charge_type ctype;
3169 	int ret = 0;
3170 
3171 	*memcgp = NULL;
3172 
3173 	VM_BUG_ON(PageTransHuge(page));
3174 	if (mem_cgroup_disabled())
3175 		return 0;
3176 
3177 	pc = lookup_page_cgroup(page);
3178 	lock_page_cgroup(pc);
3179 	if (PageCgroupUsed(pc)) {
3180 		memcg = pc->mem_cgroup;
3181 		css_get(&memcg->css);
3182 		/*
3183 		 * At migrating an anonymous page, its mapcount goes down
3184 		 * to 0 and uncharge() will be called. But, even if it's fully
3185 		 * unmapped, migration may fail and this page has to be
3186 		 * charged again. We set MIGRATION flag here and delay uncharge
3187 		 * until end_migration() is called
3188 		 *
3189 		 * Corner Case Thinking
3190 		 * A)
3191 		 * When the old page was mapped as Anon and it's unmap-and-freed
3192 		 * while migration was ongoing.
3193 		 * If unmap finds the old page, uncharge() of it will be delayed
3194 		 * until end_migration(). If unmap finds a new page, it's
3195 		 * uncharged when it make mapcount to be 1->0. If unmap code
3196 		 * finds swap_migration_entry, the new page will not be mapped
3197 		 * and end_migration() will find it(mapcount==0).
3198 		 *
3199 		 * B)
3200 		 * When the old page was mapped but migraion fails, the kernel
3201 		 * remaps it. A charge for it is kept by MIGRATION flag even
3202 		 * if mapcount goes down to 0. We can do remap successfully
3203 		 * without charging it again.
3204 		 *
3205 		 * C)
3206 		 * The "old" page is under lock_page() until the end of
3207 		 * migration, so, the old page itself will not be swapped-out.
3208 		 * If the new page is swapped out before end_migraton, our
3209 		 * hook to usual swap-out path will catch the event.
3210 		 */
3211 		if (PageAnon(page))
3212 			SetPageCgroupMigration(pc);
3213 	}
3214 	unlock_page_cgroup(pc);
3215 	/*
3216 	 * If the page is not charged at this point,
3217 	 * we return here.
3218 	 */
3219 	if (!memcg)
3220 		return 0;
3221 
3222 	*memcgp = memcg;
3223 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3224 	css_put(&memcg->css);/* drop extra refcnt */
3225 	if (ret) {
3226 		if (PageAnon(page)) {
3227 			lock_page_cgroup(pc);
3228 			ClearPageCgroupMigration(pc);
3229 			unlock_page_cgroup(pc);
3230 			/*
3231 			 * The old page may be fully unmapped while we kept it.
3232 			 */
3233 			mem_cgroup_uncharge_page(page);
3234 		}
3235 		/* we'll need to revisit this error code (we have -EINTR) */
3236 		return -ENOMEM;
3237 	}
3238 	/*
3239 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3240 	 * is called before end_migration, we can catch all events on this new
3241 	 * page. In the case new page is migrated but not remapped, new page's
3242 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3243 	 */
3244 	pc = lookup_page_cgroup(newpage);
3245 	if (PageAnon(page))
3246 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3247 	else if (page_is_file_cache(page))
3248 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3249 	else
3250 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3251 	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype);
3252 	return ret;
3253 }
3254 
3255 /* remove redundant charge if migration failed*/
3256 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3257 	struct page *oldpage, struct page *newpage, bool migration_ok)
3258 {
3259 	struct page *used, *unused;
3260 	struct page_cgroup *pc;
3261 
3262 	if (!memcg)
3263 		return;
3264 	/* blocks rmdir() */
3265 	cgroup_exclude_rmdir(&memcg->css);
3266 	if (!migration_ok) {
3267 		used = oldpage;
3268 		unused = newpage;
3269 	} else {
3270 		used = newpage;
3271 		unused = oldpage;
3272 	}
3273 	/*
3274 	 * We disallowed uncharge of pages under migration because mapcount
3275 	 * of the page goes down to zero, temporarly.
3276 	 * Clear the flag and check the page should be charged.
3277 	 */
3278 	pc = lookup_page_cgroup(oldpage);
3279 	lock_page_cgroup(pc);
3280 	ClearPageCgroupMigration(pc);
3281 	unlock_page_cgroup(pc);
3282 
3283 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3284 
3285 	/*
3286 	 * If a page is a file cache, radix-tree replacement is very atomic
3287 	 * and we can skip this check. When it was an Anon page, its mapcount
3288 	 * goes down to 0. But because we added MIGRATION flage, it's not
3289 	 * uncharged yet. There are several case but page->mapcount check
3290 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3291 	 * check. (see prepare_charge() also)
3292 	 */
3293 	if (PageAnon(used))
3294 		mem_cgroup_uncharge_page(used);
3295 	/*
3296 	 * At migration, we may charge account against cgroup which has no
3297 	 * tasks.
3298 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3299 	 * In that case, we need to call pre_destroy() again. check it here.
3300 	 */
3301 	cgroup_release_and_wakeup_rmdir(&memcg->css);
3302 }
3303 
3304 /*
3305  * At replace page cache, newpage is not under any memcg but it's on
3306  * LRU. So, this function doesn't touch res_counter but handles LRU
3307  * in correct way. Both pages are locked so we cannot race with uncharge.
3308  */
3309 void mem_cgroup_replace_page_cache(struct page *oldpage,
3310 				  struct page *newpage)
3311 {
3312 	struct mem_cgroup *memcg;
3313 	struct page_cgroup *pc;
3314 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3315 
3316 	if (mem_cgroup_disabled())
3317 		return;
3318 
3319 	pc = lookup_page_cgroup(oldpage);
3320 	/* fix accounting on old pages */
3321 	lock_page_cgroup(pc);
3322 	memcg = pc->mem_cgroup;
3323 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3324 	ClearPageCgroupUsed(pc);
3325 	unlock_page_cgroup(pc);
3326 
3327 	if (PageSwapBacked(oldpage))
3328 		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3329 
3330 	/*
3331 	 * Even if newpage->mapping was NULL before starting replacement,
3332 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3333 	 * LRU while we overwrite pc->mem_cgroup.
3334 	 */
3335 	__mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
3336 }
3337 
3338 #ifdef CONFIG_DEBUG_VM
3339 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3340 {
3341 	struct page_cgroup *pc;
3342 
3343 	pc = lookup_page_cgroup(page);
3344 	/*
3345 	 * Can be NULL while feeding pages into the page allocator for
3346 	 * the first time, i.e. during boot or memory hotplug;
3347 	 * or when mem_cgroup_disabled().
3348 	 */
3349 	if (likely(pc) && PageCgroupUsed(pc))
3350 		return pc;
3351 	return NULL;
3352 }
3353 
3354 bool mem_cgroup_bad_page_check(struct page *page)
3355 {
3356 	if (mem_cgroup_disabled())
3357 		return false;
3358 
3359 	return lookup_page_cgroup_used(page) != NULL;
3360 }
3361 
3362 void mem_cgroup_print_bad_page(struct page *page)
3363 {
3364 	struct page_cgroup *pc;
3365 
3366 	pc = lookup_page_cgroup_used(page);
3367 	if (pc) {
3368 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3369 		       pc, pc->flags, pc->mem_cgroup);
3370 	}
3371 }
3372 #endif
3373 
3374 static DEFINE_MUTEX(set_limit_mutex);
3375 
3376 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3377 				unsigned long long val)
3378 {
3379 	int retry_count;
3380 	u64 memswlimit, memlimit;
3381 	int ret = 0;
3382 	int children = mem_cgroup_count_children(memcg);
3383 	u64 curusage, oldusage;
3384 	int enlarge;
3385 
3386 	/*
3387 	 * For keeping hierarchical_reclaim simple, how long we should retry
3388 	 * is depends on callers. We set our retry-count to be function
3389 	 * of # of children which we should visit in this loop.
3390 	 */
3391 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3392 
3393 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3394 
3395 	enlarge = 0;
3396 	while (retry_count) {
3397 		if (signal_pending(current)) {
3398 			ret = -EINTR;
3399 			break;
3400 		}
3401 		/*
3402 		 * Rather than hide all in some function, I do this in
3403 		 * open coded manner. You see what this really does.
3404 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3405 		 */
3406 		mutex_lock(&set_limit_mutex);
3407 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3408 		if (memswlimit < val) {
3409 			ret = -EINVAL;
3410 			mutex_unlock(&set_limit_mutex);
3411 			break;
3412 		}
3413 
3414 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3415 		if (memlimit < val)
3416 			enlarge = 1;
3417 
3418 		ret = res_counter_set_limit(&memcg->res, val);
3419 		if (!ret) {
3420 			if (memswlimit == val)
3421 				memcg->memsw_is_minimum = true;
3422 			else
3423 				memcg->memsw_is_minimum = false;
3424 		}
3425 		mutex_unlock(&set_limit_mutex);
3426 
3427 		if (!ret)
3428 			break;
3429 
3430 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3431 				   MEM_CGROUP_RECLAIM_SHRINK);
3432 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3433 		/* Usage is reduced ? */
3434   		if (curusage >= oldusage)
3435 			retry_count--;
3436 		else
3437 			oldusage = curusage;
3438 	}
3439 	if (!ret && enlarge)
3440 		memcg_oom_recover(memcg);
3441 
3442 	return ret;
3443 }
3444 
3445 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3446 					unsigned long long val)
3447 {
3448 	int retry_count;
3449 	u64 memlimit, memswlimit, oldusage, curusage;
3450 	int children = mem_cgroup_count_children(memcg);
3451 	int ret = -EBUSY;
3452 	int enlarge = 0;
3453 
3454 	/* see mem_cgroup_resize_res_limit */
3455  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3456 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3457 	while (retry_count) {
3458 		if (signal_pending(current)) {
3459 			ret = -EINTR;
3460 			break;
3461 		}
3462 		/*
3463 		 * Rather than hide all in some function, I do this in
3464 		 * open coded manner. You see what this really does.
3465 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3466 		 */
3467 		mutex_lock(&set_limit_mutex);
3468 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3469 		if (memlimit > val) {
3470 			ret = -EINVAL;
3471 			mutex_unlock(&set_limit_mutex);
3472 			break;
3473 		}
3474 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3475 		if (memswlimit < val)
3476 			enlarge = 1;
3477 		ret = res_counter_set_limit(&memcg->memsw, val);
3478 		if (!ret) {
3479 			if (memlimit == val)
3480 				memcg->memsw_is_minimum = true;
3481 			else
3482 				memcg->memsw_is_minimum = false;
3483 		}
3484 		mutex_unlock(&set_limit_mutex);
3485 
3486 		if (!ret)
3487 			break;
3488 
3489 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3490 				   MEM_CGROUP_RECLAIM_NOSWAP |
3491 				   MEM_CGROUP_RECLAIM_SHRINK);
3492 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3493 		/* Usage is reduced ? */
3494 		if (curusage >= oldusage)
3495 			retry_count--;
3496 		else
3497 			oldusage = curusage;
3498 	}
3499 	if (!ret && enlarge)
3500 		memcg_oom_recover(memcg);
3501 	return ret;
3502 }
3503 
3504 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3505 					    gfp_t gfp_mask,
3506 					    unsigned long *total_scanned)
3507 {
3508 	unsigned long nr_reclaimed = 0;
3509 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3510 	unsigned long reclaimed;
3511 	int loop = 0;
3512 	struct mem_cgroup_tree_per_zone *mctz;
3513 	unsigned long long excess;
3514 	unsigned long nr_scanned;
3515 
3516 	if (order > 0)
3517 		return 0;
3518 
3519 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3520 	/*
3521 	 * This loop can run a while, specially if mem_cgroup's continuously
3522 	 * keep exceeding their soft limit and putting the system under
3523 	 * pressure
3524 	 */
3525 	do {
3526 		if (next_mz)
3527 			mz = next_mz;
3528 		else
3529 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3530 		if (!mz)
3531 			break;
3532 
3533 		nr_scanned = 0;
3534 		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3535 						    gfp_mask, &nr_scanned);
3536 		nr_reclaimed += reclaimed;
3537 		*total_scanned += nr_scanned;
3538 		spin_lock(&mctz->lock);
3539 
3540 		/*
3541 		 * If we failed to reclaim anything from this memory cgroup
3542 		 * it is time to move on to the next cgroup
3543 		 */
3544 		next_mz = NULL;
3545 		if (!reclaimed) {
3546 			do {
3547 				/*
3548 				 * Loop until we find yet another one.
3549 				 *
3550 				 * By the time we get the soft_limit lock
3551 				 * again, someone might have aded the
3552 				 * group back on the RB tree. Iterate to
3553 				 * make sure we get a different mem.
3554 				 * mem_cgroup_largest_soft_limit_node returns
3555 				 * NULL if no other cgroup is present on
3556 				 * the tree
3557 				 */
3558 				next_mz =
3559 				__mem_cgroup_largest_soft_limit_node(mctz);
3560 				if (next_mz == mz)
3561 					css_put(&next_mz->mem->css);
3562 				else /* next_mz == NULL or other memcg */
3563 					break;
3564 			} while (1);
3565 		}
3566 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3567 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3568 		/*
3569 		 * One school of thought says that we should not add
3570 		 * back the node to the tree if reclaim returns 0.
3571 		 * But our reclaim could return 0, simply because due
3572 		 * to priority we are exposing a smaller subset of
3573 		 * memory to reclaim from. Consider this as a longer
3574 		 * term TODO.
3575 		 */
3576 		/* If excess == 0, no tree ops */
3577 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3578 		spin_unlock(&mctz->lock);
3579 		css_put(&mz->mem->css);
3580 		loop++;
3581 		/*
3582 		 * Could not reclaim anything and there are no more
3583 		 * mem cgroups to try or we seem to be looping without
3584 		 * reclaiming anything.
3585 		 */
3586 		if (!nr_reclaimed &&
3587 			(next_mz == NULL ||
3588 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3589 			break;
3590 	} while (!nr_reclaimed);
3591 	if (next_mz)
3592 		css_put(&next_mz->mem->css);
3593 	return nr_reclaimed;
3594 }
3595 
3596 /*
3597  * This routine traverse page_cgroup in given list and drop them all.
3598  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3599  */
3600 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3601 				int node, int zid, enum lru_list lru)
3602 {
3603 	struct mem_cgroup_per_zone *mz;
3604 	unsigned long flags, loop;
3605 	struct list_head *list;
3606 	struct page *busy;
3607 	struct zone *zone;
3608 	int ret = 0;
3609 
3610 	zone = &NODE_DATA(node)->node_zones[zid];
3611 	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3612 	list = &mz->lruvec.lists[lru];
3613 
3614 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3615 	/* give some margin against EBUSY etc...*/
3616 	loop += 256;
3617 	busy = NULL;
3618 	while (loop--) {
3619 		struct page_cgroup *pc;
3620 		struct page *page;
3621 
3622 		ret = 0;
3623 		spin_lock_irqsave(&zone->lru_lock, flags);
3624 		if (list_empty(list)) {
3625 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3626 			break;
3627 		}
3628 		page = list_entry(list->prev, struct page, lru);
3629 		if (busy == page) {
3630 			list_move(&page->lru, list);
3631 			busy = NULL;
3632 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3633 			continue;
3634 		}
3635 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3636 
3637 		pc = lookup_page_cgroup(page);
3638 
3639 		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3640 		if (ret == -ENOMEM || ret == -EINTR)
3641 			break;
3642 
3643 		if (ret == -EBUSY || ret == -EINVAL) {
3644 			/* found lock contention or "pc" is obsolete. */
3645 			busy = page;
3646 			cond_resched();
3647 		} else
3648 			busy = NULL;
3649 	}
3650 
3651 	if (!ret && !list_empty(list))
3652 		return -EBUSY;
3653 	return ret;
3654 }
3655 
3656 /*
3657  * make mem_cgroup's charge to be 0 if there is no task.
3658  * This enables deleting this mem_cgroup.
3659  */
3660 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3661 {
3662 	int ret;
3663 	int node, zid, shrink;
3664 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3665 	struct cgroup *cgrp = memcg->css.cgroup;
3666 
3667 	css_get(&memcg->css);
3668 
3669 	shrink = 0;
3670 	/* should free all ? */
3671 	if (free_all)
3672 		goto try_to_free;
3673 move_account:
3674 	do {
3675 		ret = -EBUSY;
3676 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3677 			goto out;
3678 		ret = -EINTR;
3679 		if (signal_pending(current))
3680 			goto out;
3681 		/* This is for making all *used* pages to be on LRU. */
3682 		lru_add_drain_all();
3683 		drain_all_stock_sync(memcg);
3684 		ret = 0;
3685 		mem_cgroup_start_move(memcg);
3686 		for_each_node_state(node, N_HIGH_MEMORY) {
3687 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3688 				enum lru_list l;
3689 				for_each_lru(l) {
3690 					ret = mem_cgroup_force_empty_list(memcg,
3691 							node, zid, l);
3692 					if (ret)
3693 						break;
3694 				}
3695 			}
3696 			if (ret)
3697 				break;
3698 		}
3699 		mem_cgroup_end_move(memcg);
3700 		memcg_oom_recover(memcg);
3701 		/* it seems parent cgroup doesn't have enough mem */
3702 		if (ret == -ENOMEM)
3703 			goto try_to_free;
3704 		cond_resched();
3705 	/* "ret" should also be checked to ensure all lists are empty. */
3706 	} while (memcg->res.usage > 0 || ret);
3707 out:
3708 	css_put(&memcg->css);
3709 	return ret;
3710 
3711 try_to_free:
3712 	/* returns EBUSY if there is a task or if we come here twice. */
3713 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3714 		ret = -EBUSY;
3715 		goto out;
3716 	}
3717 	/* we call try-to-free pages for make this cgroup empty */
3718 	lru_add_drain_all();
3719 	/* try to free all pages in this cgroup */
3720 	shrink = 1;
3721 	while (nr_retries && memcg->res.usage > 0) {
3722 		int progress;
3723 
3724 		if (signal_pending(current)) {
3725 			ret = -EINTR;
3726 			goto out;
3727 		}
3728 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3729 						false);
3730 		if (!progress) {
3731 			nr_retries--;
3732 			/* maybe some writeback is necessary */
3733 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3734 		}
3735 
3736 	}
3737 	lru_add_drain();
3738 	/* try move_account...there may be some *locked* pages. */
3739 	goto move_account;
3740 }
3741 
3742 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3743 {
3744 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3745 }
3746 
3747 
3748 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3749 {
3750 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3751 }
3752 
3753 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3754 					u64 val)
3755 {
3756 	int retval = 0;
3757 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3758 	struct cgroup *parent = cont->parent;
3759 	struct mem_cgroup *parent_memcg = NULL;
3760 
3761 	if (parent)
3762 		parent_memcg = mem_cgroup_from_cont(parent);
3763 
3764 	cgroup_lock();
3765 	/*
3766 	 * If parent's use_hierarchy is set, we can't make any modifications
3767 	 * in the child subtrees. If it is unset, then the change can
3768 	 * occur, provided the current cgroup has no children.
3769 	 *
3770 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3771 	 * set if there are no children.
3772 	 */
3773 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3774 				(val == 1 || val == 0)) {
3775 		if (list_empty(&cont->children))
3776 			memcg->use_hierarchy = val;
3777 		else
3778 			retval = -EBUSY;
3779 	} else
3780 		retval = -EINVAL;
3781 	cgroup_unlock();
3782 
3783 	return retval;
3784 }
3785 
3786 
3787 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3788 					       enum mem_cgroup_stat_index idx)
3789 {
3790 	struct mem_cgroup *iter;
3791 	long val = 0;
3792 
3793 	/* Per-cpu values can be negative, use a signed accumulator */
3794 	for_each_mem_cgroup_tree(iter, memcg)
3795 		val += mem_cgroup_read_stat(iter, idx);
3796 
3797 	if (val < 0) /* race ? */
3798 		val = 0;
3799 	return val;
3800 }
3801 
3802 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3803 {
3804 	u64 val;
3805 
3806 	if (!mem_cgroup_is_root(memcg)) {
3807 		if (!swap)
3808 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3809 		else
3810 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3811 	}
3812 
3813 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3814 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3815 
3816 	if (swap)
3817 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3818 
3819 	return val << PAGE_SHIFT;
3820 }
3821 
3822 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3823 {
3824 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3825 	u64 val;
3826 	int type, name;
3827 
3828 	type = MEMFILE_TYPE(cft->private);
3829 	name = MEMFILE_ATTR(cft->private);
3830 	switch (type) {
3831 	case _MEM:
3832 		if (name == RES_USAGE)
3833 			val = mem_cgroup_usage(memcg, false);
3834 		else
3835 			val = res_counter_read_u64(&memcg->res, name);
3836 		break;
3837 	case _MEMSWAP:
3838 		if (name == RES_USAGE)
3839 			val = mem_cgroup_usage(memcg, true);
3840 		else
3841 			val = res_counter_read_u64(&memcg->memsw, name);
3842 		break;
3843 	default:
3844 		BUG();
3845 		break;
3846 	}
3847 	return val;
3848 }
3849 /*
3850  * The user of this function is...
3851  * RES_LIMIT.
3852  */
3853 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3854 			    const char *buffer)
3855 {
3856 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3857 	int type, name;
3858 	unsigned long long val;
3859 	int ret;
3860 
3861 	type = MEMFILE_TYPE(cft->private);
3862 	name = MEMFILE_ATTR(cft->private);
3863 	switch (name) {
3864 	case RES_LIMIT:
3865 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3866 			ret = -EINVAL;
3867 			break;
3868 		}
3869 		/* This function does all necessary parse...reuse it */
3870 		ret = res_counter_memparse_write_strategy(buffer, &val);
3871 		if (ret)
3872 			break;
3873 		if (type == _MEM)
3874 			ret = mem_cgroup_resize_limit(memcg, val);
3875 		else
3876 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3877 		break;
3878 	case RES_SOFT_LIMIT:
3879 		ret = res_counter_memparse_write_strategy(buffer, &val);
3880 		if (ret)
3881 			break;
3882 		/*
3883 		 * For memsw, soft limits are hard to implement in terms
3884 		 * of semantics, for now, we support soft limits for
3885 		 * control without swap
3886 		 */
3887 		if (type == _MEM)
3888 			ret = res_counter_set_soft_limit(&memcg->res, val);
3889 		else
3890 			ret = -EINVAL;
3891 		break;
3892 	default:
3893 		ret = -EINVAL; /* should be BUG() ? */
3894 		break;
3895 	}
3896 	return ret;
3897 }
3898 
3899 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3900 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3901 {
3902 	struct cgroup *cgroup;
3903 	unsigned long long min_limit, min_memsw_limit, tmp;
3904 
3905 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3906 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3907 	cgroup = memcg->css.cgroup;
3908 	if (!memcg->use_hierarchy)
3909 		goto out;
3910 
3911 	while (cgroup->parent) {
3912 		cgroup = cgroup->parent;
3913 		memcg = mem_cgroup_from_cont(cgroup);
3914 		if (!memcg->use_hierarchy)
3915 			break;
3916 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3917 		min_limit = min(min_limit, tmp);
3918 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3919 		min_memsw_limit = min(min_memsw_limit, tmp);
3920 	}
3921 out:
3922 	*mem_limit = min_limit;
3923 	*memsw_limit = min_memsw_limit;
3924 	return;
3925 }
3926 
3927 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3928 {
3929 	struct mem_cgroup *memcg;
3930 	int type, name;
3931 
3932 	memcg = mem_cgroup_from_cont(cont);
3933 	type = MEMFILE_TYPE(event);
3934 	name = MEMFILE_ATTR(event);
3935 	switch (name) {
3936 	case RES_MAX_USAGE:
3937 		if (type == _MEM)
3938 			res_counter_reset_max(&memcg->res);
3939 		else
3940 			res_counter_reset_max(&memcg->memsw);
3941 		break;
3942 	case RES_FAILCNT:
3943 		if (type == _MEM)
3944 			res_counter_reset_failcnt(&memcg->res);
3945 		else
3946 			res_counter_reset_failcnt(&memcg->memsw);
3947 		break;
3948 	}
3949 
3950 	return 0;
3951 }
3952 
3953 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3954 					struct cftype *cft)
3955 {
3956 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3957 }
3958 
3959 #ifdef CONFIG_MMU
3960 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3961 					struct cftype *cft, u64 val)
3962 {
3963 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3964 
3965 	if (val >= (1 << NR_MOVE_TYPE))
3966 		return -EINVAL;
3967 	/*
3968 	 * We check this value several times in both in can_attach() and
3969 	 * attach(), so we need cgroup lock to prevent this value from being
3970 	 * inconsistent.
3971 	 */
3972 	cgroup_lock();
3973 	memcg->move_charge_at_immigrate = val;
3974 	cgroup_unlock();
3975 
3976 	return 0;
3977 }
3978 #else
3979 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3980 					struct cftype *cft, u64 val)
3981 {
3982 	return -ENOSYS;
3983 }
3984 #endif
3985 
3986 
3987 /* For read statistics */
3988 enum {
3989 	MCS_CACHE,
3990 	MCS_RSS,
3991 	MCS_FILE_MAPPED,
3992 	MCS_PGPGIN,
3993 	MCS_PGPGOUT,
3994 	MCS_SWAP,
3995 	MCS_PGFAULT,
3996 	MCS_PGMAJFAULT,
3997 	MCS_INACTIVE_ANON,
3998 	MCS_ACTIVE_ANON,
3999 	MCS_INACTIVE_FILE,
4000 	MCS_ACTIVE_FILE,
4001 	MCS_UNEVICTABLE,
4002 	NR_MCS_STAT,
4003 };
4004 
4005 struct mcs_total_stat {
4006 	s64 stat[NR_MCS_STAT];
4007 };
4008 
4009 struct {
4010 	char *local_name;
4011 	char *total_name;
4012 } memcg_stat_strings[NR_MCS_STAT] = {
4013 	{"cache", "total_cache"},
4014 	{"rss", "total_rss"},
4015 	{"mapped_file", "total_mapped_file"},
4016 	{"pgpgin", "total_pgpgin"},
4017 	{"pgpgout", "total_pgpgout"},
4018 	{"swap", "total_swap"},
4019 	{"pgfault", "total_pgfault"},
4020 	{"pgmajfault", "total_pgmajfault"},
4021 	{"inactive_anon", "total_inactive_anon"},
4022 	{"active_anon", "total_active_anon"},
4023 	{"inactive_file", "total_inactive_file"},
4024 	{"active_file", "total_active_file"},
4025 	{"unevictable", "total_unevictable"}
4026 };
4027 
4028 
4029 static void
4030 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4031 {
4032 	s64 val;
4033 
4034 	/* per cpu stat */
4035 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4036 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4037 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4038 	s->stat[MCS_RSS] += val * PAGE_SIZE;
4039 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4040 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4041 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4042 	s->stat[MCS_PGPGIN] += val;
4043 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4044 	s->stat[MCS_PGPGOUT] += val;
4045 	if (do_swap_account) {
4046 		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4047 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4048 	}
4049 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4050 	s->stat[MCS_PGFAULT] += val;
4051 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4052 	s->stat[MCS_PGMAJFAULT] += val;
4053 
4054 	/* per zone stat */
4055 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4056 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4057 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4058 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4059 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4060 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4061 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4062 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4063 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4064 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4065 }
4066 
4067 static void
4068 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4069 {
4070 	struct mem_cgroup *iter;
4071 
4072 	for_each_mem_cgroup_tree(iter, memcg)
4073 		mem_cgroup_get_local_stat(iter, s);
4074 }
4075 
4076 #ifdef CONFIG_NUMA
4077 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4078 {
4079 	int nid;
4080 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4081 	unsigned long node_nr;
4082 	struct cgroup *cont = m->private;
4083 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4084 
4085 	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4086 	seq_printf(m, "total=%lu", total_nr);
4087 	for_each_node_state(nid, N_HIGH_MEMORY) {
4088 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4089 		seq_printf(m, " N%d=%lu", nid, node_nr);
4090 	}
4091 	seq_putc(m, '\n');
4092 
4093 	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4094 	seq_printf(m, "file=%lu", file_nr);
4095 	for_each_node_state(nid, N_HIGH_MEMORY) {
4096 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4097 				LRU_ALL_FILE);
4098 		seq_printf(m, " N%d=%lu", nid, node_nr);
4099 	}
4100 	seq_putc(m, '\n');
4101 
4102 	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4103 	seq_printf(m, "anon=%lu", anon_nr);
4104 	for_each_node_state(nid, N_HIGH_MEMORY) {
4105 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4106 				LRU_ALL_ANON);
4107 		seq_printf(m, " N%d=%lu", nid, node_nr);
4108 	}
4109 	seq_putc(m, '\n');
4110 
4111 	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4112 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4113 	for_each_node_state(nid, N_HIGH_MEMORY) {
4114 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4115 				BIT(LRU_UNEVICTABLE));
4116 		seq_printf(m, " N%d=%lu", nid, node_nr);
4117 	}
4118 	seq_putc(m, '\n');
4119 	return 0;
4120 }
4121 #endif /* CONFIG_NUMA */
4122 
4123 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4124 				 struct cgroup_map_cb *cb)
4125 {
4126 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4127 	struct mcs_total_stat mystat;
4128 	int i;
4129 
4130 	memset(&mystat, 0, sizeof(mystat));
4131 	mem_cgroup_get_local_stat(mem_cont, &mystat);
4132 
4133 
4134 	for (i = 0; i < NR_MCS_STAT; i++) {
4135 		if (i == MCS_SWAP && !do_swap_account)
4136 			continue;
4137 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4138 	}
4139 
4140 	/* Hierarchical information */
4141 	{
4142 		unsigned long long limit, memsw_limit;
4143 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4144 		cb->fill(cb, "hierarchical_memory_limit", limit);
4145 		if (do_swap_account)
4146 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4147 	}
4148 
4149 	memset(&mystat, 0, sizeof(mystat));
4150 	mem_cgroup_get_total_stat(mem_cont, &mystat);
4151 	for (i = 0; i < NR_MCS_STAT; i++) {
4152 		if (i == MCS_SWAP && !do_swap_account)
4153 			continue;
4154 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4155 	}
4156 
4157 #ifdef CONFIG_DEBUG_VM
4158 	{
4159 		int nid, zid;
4160 		struct mem_cgroup_per_zone *mz;
4161 		unsigned long recent_rotated[2] = {0, 0};
4162 		unsigned long recent_scanned[2] = {0, 0};
4163 
4164 		for_each_online_node(nid)
4165 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4166 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4167 
4168 				recent_rotated[0] +=
4169 					mz->reclaim_stat.recent_rotated[0];
4170 				recent_rotated[1] +=
4171 					mz->reclaim_stat.recent_rotated[1];
4172 				recent_scanned[0] +=
4173 					mz->reclaim_stat.recent_scanned[0];
4174 				recent_scanned[1] +=
4175 					mz->reclaim_stat.recent_scanned[1];
4176 			}
4177 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4178 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4179 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4180 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4181 	}
4182 #endif
4183 
4184 	return 0;
4185 }
4186 
4187 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4188 {
4189 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4190 
4191 	return mem_cgroup_swappiness(memcg);
4192 }
4193 
4194 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4195 				       u64 val)
4196 {
4197 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4198 	struct mem_cgroup *parent;
4199 
4200 	if (val > 100)
4201 		return -EINVAL;
4202 
4203 	if (cgrp->parent == NULL)
4204 		return -EINVAL;
4205 
4206 	parent = mem_cgroup_from_cont(cgrp->parent);
4207 
4208 	cgroup_lock();
4209 
4210 	/* If under hierarchy, only empty-root can set this value */
4211 	if ((parent->use_hierarchy) ||
4212 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4213 		cgroup_unlock();
4214 		return -EINVAL;
4215 	}
4216 
4217 	memcg->swappiness = val;
4218 
4219 	cgroup_unlock();
4220 
4221 	return 0;
4222 }
4223 
4224 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4225 {
4226 	struct mem_cgroup_threshold_ary *t;
4227 	u64 usage;
4228 	int i;
4229 
4230 	rcu_read_lock();
4231 	if (!swap)
4232 		t = rcu_dereference(memcg->thresholds.primary);
4233 	else
4234 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4235 
4236 	if (!t)
4237 		goto unlock;
4238 
4239 	usage = mem_cgroup_usage(memcg, swap);
4240 
4241 	/*
4242 	 * current_threshold points to threshold just below usage.
4243 	 * If it's not true, a threshold was crossed after last
4244 	 * call of __mem_cgroup_threshold().
4245 	 */
4246 	i = t->current_threshold;
4247 
4248 	/*
4249 	 * Iterate backward over array of thresholds starting from
4250 	 * current_threshold and check if a threshold is crossed.
4251 	 * If none of thresholds below usage is crossed, we read
4252 	 * only one element of the array here.
4253 	 */
4254 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4255 		eventfd_signal(t->entries[i].eventfd, 1);
4256 
4257 	/* i = current_threshold + 1 */
4258 	i++;
4259 
4260 	/*
4261 	 * Iterate forward over array of thresholds starting from
4262 	 * current_threshold+1 and check if a threshold is crossed.
4263 	 * If none of thresholds above usage is crossed, we read
4264 	 * only one element of the array here.
4265 	 */
4266 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4267 		eventfd_signal(t->entries[i].eventfd, 1);
4268 
4269 	/* Update current_threshold */
4270 	t->current_threshold = i - 1;
4271 unlock:
4272 	rcu_read_unlock();
4273 }
4274 
4275 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4276 {
4277 	while (memcg) {
4278 		__mem_cgroup_threshold(memcg, false);
4279 		if (do_swap_account)
4280 			__mem_cgroup_threshold(memcg, true);
4281 
4282 		memcg = parent_mem_cgroup(memcg);
4283 	}
4284 }
4285 
4286 static int compare_thresholds(const void *a, const void *b)
4287 {
4288 	const struct mem_cgroup_threshold *_a = a;
4289 	const struct mem_cgroup_threshold *_b = b;
4290 
4291 	return _a->threshold - _b->threshold;
4292 }
4293 
4294 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4295 {
4296 	struct mem_cgroup_eventfd_list *ev;
4297 
4298 	list_for_each_entry(ev, &memcg->oom_notify, list)
4299 		eventfd_signal(ev->eventfd, 1);
4300 	return 0;
4301 }
4302 
4303 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4304 {
4305 	struct mem_cgroup *iter;
4306 
4307 	for_each_mem_cgroup_tree(iter, memcg)
4308 		mem_cgroup_oom_notify_cb(iter);
4309 }
4310 
4311 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4312 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4313 {
4314 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4315 	struct mem_cgroup_thresholds *thresholds;
4316 	struct mem_cgroup_threshold_ary *new;
4317 	int type = MEMFILE_TYPE(cft->private);
4318 	u64 threshold, usage;
4319 	int i, size, ret;
4320 
4321 	ret = res_counter_memparse_write_strategy(args, &threshold);
4322 	if (ret)
4323 		return ret;
4324 
4325 	mutex_lock(&memcg->thresholds_lock);
4326 
4327 	if (type == _MEM)
4328 		thresholds = &memcg->thresholds;
4329 	else if (type == _MEMSWAP)
4330 		thresholds = &memcg->memsw_thresholds;
4331 	else
4332 		BUG();
4333 
4334 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4335 
4336 	/* Check if a threshold crossed before adding a new one */
4337 	if (thresholds->primary)
4338 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4339 
4340 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4341 
4342 	/* Allocate memory for new array of thresholds */
4343 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4344 			GFP_KERNEL);
4345 	if (!new) {
4346 		ret = -ENOMEM;
4347 		goto unlock;
4348 	}
4349 	new->size = size;
4350 
4351 	/* Copy thresholds (if any) to new array */
4352 	if (thresholds->primary) {
4353 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4354 				sizeof(struct mem_cgroup_threshold));
4355 	}
4356 
4357 	/* Add new threshold */
4358 	new->entries[size - 1].eventfd = eventfd;
4359 	new->entries[size - 1].threshold = threshold;
4360 
4361 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4362 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4363 			compare_thresholds, NULL);
4364 
4365 	/* Find current threshold */
4366 	new->current_threshold = -1;
4367 	for (i = 0; i < size; i++) {
4368 		if (new->entries[i].threshold < usage) {
4369 			/*
4370 			 * new->current_threshold will not be used until
4371 			 * rcu_assign_pointer(), so it's safe to increment
4372 			 * it here.
4373 			 */
4374 			++new->current_threshold;
4375 		}
4376 	}
4377 
4378 	/* Free old spare buffer and save old primary buffer as spare */
4379 	kfree(thresholds->spare);
4380 	thresholds->spare = thresholds->primary;
4381 
4382 	rcu_assign_pointer(thresholds->primary, new);
4383 
4384 	/* To be sure that nobody uses thresholds */
4385 	synchronize_rcu();
4386 
4387 unlock:
4388 	mutex_unlock(&memcg->thresholds_lock);
4389 
4390 	return ret;
4391 }
4392 
4393 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4394 	struct cftype *cft, struct eventfd_ctx *eventfd)
4395 {
4396 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4397 	struct mem_cgroup_thresholds *thresholds;
4398 	struct mem_cgroup_threshold_ary *new;
4399 	int type = MEMFILE_TYPE(cft->private);
4400 	u64 usage;
4401 	int i, j, size;
4402 
4403 	mutex_lock(&memcg->thresholds_lock);
4404 	if (type == _MEM)
4405 		thresholds = &memcg->thresholds;
4406 	else if (type == _MEMSWAP)
4407 		thresholds = &memcg->memsw_thresholds;
4408 	else
4409 		BUG();
4410 
4411 	/*
4412 	 * Something went wrong if we trying to unregister a threshold
4413 	 * if we don't have thresholds
4414 	 */
4415 	BUG_ON(!thresholds);
4416 
4417 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4418 
4419 	/* Check if a threshold crossed before removing */
4420 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4421 
4422 	/* Calculate new number of threshold */
4423 	size = 0;
4424 	for (i = 0; i < thresholds->primary->size; i++) {
4425 		if (thresholds->primary->entries[i].eventfd != eventfd)
4426 			size++;
4427 	}
4428 
4429 	new = thresholds->spare;
4430 
4431 	/* Set thresholds array to NULL if we don't have thresholds */
4432 	if (!size) {
4433 		kfree(new);
4434 		new = NULL;
4435 		goto swap_buffers;
4436 	}
4437 
4438 	new->size = size;
4439 
4440 	/* Copy thresholds and find current threshold */
4441 	new->current_threshold = -1;
4442 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4443 		if (thresholds->primary->entries[i].eventfd == eventfd)
4444 			continue;
4445 
4446 		new->entries[j] = thresholds->primary->entries[i];
4447 		if (new->entries[j].threshold < usage) {
4448 			/*
4449 			 * new->current_threshold will not be used
4450 			 * until rcu_assign_pointer(), so it's safe to increment
4451 			 * it here.
4452 			 */
4453 			++new->current_threshold;
4454 		}
4455 		j++;
4456 	}
4457 
4458 swap_buffers:
4459 	/* Swap primary and spare array */
4460 	thresholds->spare = thresholds->primary;
4461 	rcu_assign_pointer(thresholds->primary, new);
4462 
4463 	/* To be sure that nobody uses thresholds */
4464 	synchronize_rcu();
4465 
4466 	mutex_unlock(&memcg->thresholds_lock);
4467 }
4468 
4469 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4470 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4471 {
4472 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4473 	struct mem_cgroup_eventfd_list *event;
4474 	int type = MEMFILE_TYPE(cft->private);
4475 
4476 	BUG_ON(type != _OOM_TYPE);
4477 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4478 	if (!event)
4479 		return -ENOMEM;
4480 
4481 	spin_lock(&memcg_oom_lock);
4482 
4483 	event->eventfd = eventfd;
4484 	list_add(&event->list, &memcg->oom_notify);
4485 
4486 	/* already in OOM ? */
4487 	if (atomic_read(&memcg->under_oom))
4488 		eventfd_signal(eventfd, 1);
4489 	spin_unlock(&memcg_oom_lock);
4490 
4491 	return 0;
4492 }
4493 
4494 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4495 	struct cftype *cft, struct eventfd_ctx *eventfd)
4496 {
4497 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4498 	struct mem_cgroup_eventfd_list *ev, *tmp;
4499 	int type = MEMFILE_TYPE(cft->private);
4500 
4501 	BUG_ON(type != _OOM_TYPE);
4502 
4503 	spin_lock(&memcg_oom_lock);
4504 
4505 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4506 		if (ev->eventfd == eventfd) {
4507 			list_del(&ev->list);
4508 			kfree(ev);
4509 		}
4510 	}
4511 
4512 	spin_unlock(&memcg_oom_lock);
4513 }
4514 
4515 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4516 	struct cftype *cft,  struct cgroup_map_cb *cb)
4517 {
4518 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4519 
4520 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4521 
4522 	if (atomic_read(&memcg->under_oom))
4523 		cb->fill(cb, "under_oom", 1);
4524 	else
4525 		cb->fill(cb, "under_oom", 0);
4526 	return 0;
4527 }
4528 
4529 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4530 	struct cftype *cft, u64 val)
4531 {
4532 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4533 	struct mem_cgroup *parent;
4534 
4535 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4536 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4537 		return -EINVAL;
4538 
4539 	parent = mem_cgroup_from_cont(cgrp->parent);
4540 
4541 	cgroup_lock();
4542 	/* oom-kill-disable is a flag for subhierarchy. */
4543 	if ((parent->use_hierarchy) ||
4544 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4545 		cgroup_unlock();
4546 		return -EINVAL;
4547 	}
4548 	memcg->oom_kill_disable = val;
4549 	if (!val)
4550 		memcg_oom_recover(memcg);
4551 	cgroup_unlock();
4552 	return 0;
4553 }
4554 
4555 #ifdef CONFIG_NUMA
4556 static const struct file_operations mem_control_numa_stat_file_operations = {
4557 	.read = seq_read,
4558 	.llseek = seq_lseek,
4559 	.release = single_release,
4560 };
4561 
4562 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4563 {
4564 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4565 
4566 	file->f_op = &mem_control_numa_stat_file_operations;
4567 	return single_open(file, mem_control_numa_stat_show, cont);
4568 }
4569 #endif /* CONFIG_NUMA */
4570 
4571 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4572 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4573 {
4574 	/*
4575 	 * Part of this would be better living in a separate allocation
4576 	 * function, leaving us with just the cgroup tree population work.
4577 	 * We, however, depend on state such as network's proto_list that
4578 	 * is only initialized after cgroup creation. I found the less
4579 	 * cumbersome way to deal with it to defer it all to populate time
4580 	 */
4581 	return mem_cgroup_sockets_init(cont, ss);
4582 };
4583 
4584 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4585 				struct cgroup *cont)
4586 {
4587 	mem_cgroup_sockets_destroy(cont, ss);
4588 }
4589 #else
4590 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4591 {
4592 	return 0;
4593 }
4594 
4595 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4596 				struct cgroup *cont)
4597 {
4598 }
4599 #endif
4600 
4601 static struct cftype mem_cgroup_files[] = {
4602 	{
4603 		.name = "usage_in_bytes",
4604 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4605 		.read_u64 = mem_cgroup_read,
4606 		.register_event = mem_cgroup_usage_register_event,
4607 		.unregister_event = mem_cgroup_usage_unregister_event,
4608 	},
4609 	{
4610 		.name = "max_usage_in_bytes",
4611 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4612 		.trigger = mem_cgroup_reset,
4613 		.read_u64 = mem_cgroup_read,
4614 	},
4615 	{
4616 		.name = "limit_in_bytes",
4617 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4618 		.write_string = mem_cgroup_write,
4619 		.read_u64 = mem_cgroup_read,
4620 	},
4621 	{
4622 		.name = "soft_limit_in_bytes",
4623 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4624 		.write_string = mem_cgroup_write,
4625 		.read_u64 = mem_cgroup_read,
4626 	},
4627 	{
4628 		.name = "failcnt",
4629 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4630 		.trigger = mem_cgroup_reset,
4631 		.read_u64 = mem_cgroup_read,
4632 	},
4633 	{
4634 		.name = "stat",
4635 		.read_map = mem_control_stat_show,
4636 	},
4637 	{
4638 		.name = "force_empty",
4639 		.trigger = mem_cgroup_force_empty_write,
4640 	},
4641 	{
4642 		.name = "use_hierarchy",
4643 		.write_u64 = mem_cgroup_hierarchy_write,
4644 		.read_u64 = mem_cgroup_hierarchy_read,
4645 	},
4646 	{
4647 		.name = "swappiness",
4648 		.read_u64 = mem_cgroup_swappiness_read,
4649 		.write_u64 = mem_cgroup_swappiness_write,
4650 	},
4651 	{
4652 		.name = "move_charge_at_immigrate",
4653 		.read_u64 = mem_cgroup_move_charge_read,
4654 		.write_u64 = mem_cgroup_move_charge_write,
4655 	},
4656 	{
4657 		.name = "oom_control",
4658 		.read_map = mem_cgroup_oom_control_read,
4659 		.write_u64 = mem_cgroup_oom_control_write,
4660 		.register_event = mem_cgroup_oom_register_event,
4661 		.unregister_event = mem_cgroup_oom_unregister_event,
4662 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4663 	},
4664 #ifdef CONFIG_NUMA
4665 	{
4666 		.name = "numa_stat",
4667 		.open = mem_control_numa_stat_open,
4668 		.mode = S_IRUGO,
4669 	},
4670 #endif
4671 };
4672 
4673 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4674 static struct cftype memsw_cgroup_files[] = {
4675 	{
4676 		.name = "memsw.usage_in_bytes",
4677 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4678 		.read_u64 = mem_cgroup_read,
4679 		.register_event = mem_cgroup_usage_register_event,
4680 		.unregister_event = mem_cgroup_usage_unregister_event,
4681 	},
4682 	{
4683 		.name = "memsw.max_usage_in_bytes",
4684 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4685 		.trigger = mem_cgroup_reset,
4686 		.read_u64 = mem_cgroup_read,
4687 	},
4688 	{
4689 		.name = "memsw.limit_in_bytes",
4690 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4691 		.write_string = mem_cgroup_write,
4692 		.read_u64 = mem_cgroup_read,
4693 	},
4694 	{
4695 		.name = "memsw.failcnt",
4696 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4697 		.trigger = mem_cgroup_reset,
4698 		.read_u64 = mem_cgroup_read,
4699 	},
4700 };
4701 
4702 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4703 {
4704 	if (!do_swap_account)
4705 		return 0;
4706 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4707 				ARRAY_SIZE(memsw_cgroup_files));
4708 };
4709 #else
4710 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4711 {
4712 	return 0;
4713 }
4714 #endif
4715 
4716 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4717 {
4718 	struct mem_cgroup_per_node *pn;
4719 	struct mem_cgroup_per_zone *mz;
4720 	enum lru_list l;
4721 	int zone, tmp = node;
4722 	/*
4723 	 * This routine is called against possible nodes.
4724 	 * But it's BUG to call kmalloc() against offline node.
4725 	 *
4726 	 * TODO: this routine can waste much memory for nodes which will
4727 	 *       never be onlined. It's better to use memory hotplug callback
4728 	 *       function.
4729 	 */
4730 	if (!node_state(node, N_NORMAL_MEMORY))
4731 		tmp = -1;
4732 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4733 	if (!pn)
4734 		return 1;
4735 
4736 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4737 		mz = &pn->zoneinfo[zone];
4738 		for_each_lru(l)
4739 			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4740 		mz->usage_in_excess = 0;
4741 		mz->on_tree = false;
4742 		mz->mem = memcg;
4743 	}
4744 	memcg->info.nodeinfo[node] = pn;
4745 	return 0;
4746 }
4747 
4748 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4749 {
4750 	kfree(memcg->info.nodeinfo[node]);
4751 }
4752 
4753 static struct mem_cgroup *mem_cgroup_alloc(void)
4754 {
4755 	struct mem_cgroup *mem;
4756 	int size = sizeof(struct mem_cgroup);
4757 
4758 	/* Can be very big if MAX_NUMNODES is very big */
4759 	if (size < PAGE_SIZE)
4760 		mem = kzalloc(size, GFP_KERNEL);
4761 	else
4762 		mem = vzalloc(size);
4763 
4764 	if (!mem)
4765 		return NULL;
4766 
4767 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4768 	if (!mem->stat)
4769 		goto out_free;
4770 	spin_lock_init(&mem->pcp_counter_lock);
4771 	return mem;
4772 
4773 out_free:
4774 	if (size < PAGE_SIZE)
4775 		kfree(mem);
4776 	else
4777 		vfree(mem);
4778 	return NULL;
4779 }
4780 
4781 /*
4782  * At destroying mem_cgroup, references from swap_cgroup can remain.
4783  * (scanning all at force_empty is too costly...)
4784  *
4785  * Instead of clearing all references at force_empty, we remember
4786  * the number of reference from swap_cgroup and free mem_cgroup when
4787  * it goes down to 0.
4788  *
4789  * Removal of cgroup itself succeeds regardless of refs from swap.
4790  */
4791 
4792 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4793 {
4794 	int node;
4795 
4796 	mem_cgroup_remove_from_trees(memcg);
4797 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4798 
4799 	for_each_node(node)
4800 		free_mem_cgroup_per_zone_info(memcg, node);
4801 
4802 	free_percpu(memcg->stat);
4803 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4804 		kfree(memcg);
4805 	else
4806 		vfree(memcg);
4807 }
4808 
4809 static void mem_cgroup_get(struct mem_cgroup *memcg)
4810 {
4811 	atomic_inc(&memcg->refcnt);
4812 }
4813 
4814 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4815 {
4816 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4817 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4818 		__mem_cgroup_free(memcg);
4819 		if (parent)
4820 			mem_cgroup_put(parent);
4821 	}
4822 }
4823 
4824 static void mem_cgroup_put(struct mem_cgroup *memcg)
4825 {
4826 	__mem_cgroup_put(memcg, 1);
4827 }
4828 
4829 /*
4830  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4831  */
4832 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4833 {
4834 	if (!memcg->res.parent)
4835 		return NULL;
4836 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4837 }
4838 EXPORT_SYMBOL(parent_mem_cgroup);
4839 
4840 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4841 static void __init enable_swap_cgroup(void)
4842 {
4843 	if (!mem_cgroup_disabled() && really_do_swap_account)
4844 		do_swap_account = 1;
4845 }
4846 #else
4847 static void __init enable_swap_cgroup(void)
4848 {
4849 }
4850 #endif
4851 
4852 static int mem_cgroup_soft_limit_tree_init(void)
4853 {
4854 	struct mem_cgroup_tree_per_node *rtpn;
4855 	struct mem_cgroup_tree_per_zone *rtpz;
4856 	int tmp, node, zone;
4857 
4858 	for_each_node(node) {
4859 		tmp = node;
4860 		if (!node_state(node, N_NORMAL_MEMORY))
4861 			tmp = -1;
4862 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4863 		if (!rtpn)
4864 			goto err_cleanup;
4865 
4866 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4867 
4868 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4869 			rtpz = &rtpn->rb_tree_per_zone[zone];
4870 			rtpz->rb_root = RB_ROOT;
4871 			spin_lock_init(&rtpz->lock);
4872 		}
4873 	}
4874 	return 0;
4875 
4876 err_cleanup:
4877 	for_each_node(node) {
4878 		if (!soft_limit_tree.rb_tree_per_node[node])
4879 			break;
4880 		kfree(soft_limit_tree.rb_tree_per_node[node]);
4881 		soft_limit_tree.rb_tree_per_node[node] = NULL;
4882 	}
4883 	return 1;
4884 
4885 }
4886 
4887 static struct cgroup_subsys_state * __ref
4888 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4889 {
4890 	struct mem_cgroup *memcg, *parent;
4891 	long error = -ENOMEM;
4892 	int node;
4893 
4894 	memcg = mem_cgroup_alloc();
4895 	if (!memcg)
4896 		return ERR_PTR(error);
4897 
4898 	for_each_node(node)
4899 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4900 			goto free_out;
4901 
4902 	/* root ? */
4903 	if (cont->parent == NULL) {
4904 		int cpu;
4905 		enable_swap_cgroup();
4906 		parent = NULL;
4907 		if (mem_cgroup_soft_limit_tree_init())
4908 			goto free_out;
4909 		root_mem_cgroup = memcg;
4910 		for_each_possible_cpu(cpu) {
4911 			struct memcg_stock_pcp *stock =
4912 						&per_cpu(memcg_stock, cpu);
4913 			INIT_WORK(&stock->work, drain_local_stock);
4914 		}
4915 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4916 	} else {
4917 		parent = mem_cgroup_from_cont(cont->parent);
4918 		memcg->use_hierarchy = parent->use_hierarchy;
4919 		memcg->oom_kill_disable = parent->oom_kill_disable;
4920 	}
4921 
4922 	if (parent && parent->use_hierarchy) {
4923 		res_counter_init(&memcg->res, &parent->res);
4924 		res_counter_init(&memcg->memsw, &parent->memsw);
4925 		/*
4926 		 * We increment refcnt of the parent to ensure that we can
4927 		 * safely access it on res_counter_charge/uncharge.
4928 		 * This refcnt will be decremented when freeing this
4929 		 * mem_cgroup(see mem_cgroup_put).
4930 		 */
4931 		mem_cgroup_get(parent);
4932 	} else {
4933 		res_counter_init(&memcg->res, NULL);
4934 		res_counter_init(&memcg->memsw, NULL);
4935 	}
4936 	memcg->last_scanned_node = MAX_NUMNODES;
4937 	INIT_LIST_HEAD(&memcg->oom_notify);
4938 
4939 	if (parent)
4940 		memcg->swappiness = mem_cgroup_swappiness(parent);
4941 	atomic_set(&memcg->refcnt, 1);
4942 	memcg->move_charge_at_immigrate = 0;
4943 	mutex_init(&memcg->thresholds_lock);
4944 	return &memcg->css;
4945 free_out:
4946 	__mem_cgroup_free(memcg);
4947 	return ERR_PTR(error);
4948 }
4949 
4950 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4951 					struct cgroup *cont)
4952 {
4953 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4954 
4955 	return mem_cgroup_force_empty(memcg, false);
4956 }
4957 
4958 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4959 				struct cgroup *cont)
4960 {
4961 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4962 
4963 	kmem_cgroup_destroy(ss, cont);
4964 
4965 	mem_cgroup_put(memcg);
4966 }
4967 
4968 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4969 				struct cgroup *cont)
4970 {
4971 	int ret;
4972 
4973 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4974 				ARRAY_SIZE(mem_cgroup_files));
4975 
4976 	if (!ret)
4977 		ret = register_memsw_files(cont, ss);
4978 
4979 	if (!ret)
4980 		ret = register_kmem_files(cont, ss);
4981 
4982 	return ret;
4983 }
4984 
4985 #ifdef CONFIG_MMU
4986 /* Handlers for move charge at task migration. */
4987 #define PRECHARGE_COUNT_AT_ONCE	256
4988 static int mem_cgroup_do_precharge(unsigned long count)
4989 {
4990 	int ret = 0;
4991 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4992 	struct mem_cgroup *memcg = mc.to;
4993 
4994 	if (mem_cgroup_is_root(memcg)) {
4995 		mc.precharge += count;
4996 		/* we don't need css_get for root */
4997 		return ret;
4998 	}
4999 	/* try to charge at once */
5000 	if (count > 1) {
5001 		struct res_counter *dummy;
5002 		/*
5003 		 * "memcg" cannot be under rmdir() because we've already checked
5004 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5005 		 * are still under the same cgroup_mutex. So we can postpone
5006 		 * css_get().
5007 		 */
5008 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5009 			goto one_by_one;
5010 		if (do_swap_account && res_counter_charge(&memcg->memsw,
5011 						PAGE_SIZE * count, &dummy)) {
5012 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5013 			goto one_by_one;
5014 		}
5015 		mc.precharge += count;
5016 		return ret;
5017 	}
5018 one_by_one:
5019 	/* fall back to one by one charge */
5020 	while (count--) {
5021 		if (signal_pending(current)) {
5022 			ret = -EINTR;
5023 			break;
5024 		}
5025 		if (!batch_count--) {
5026 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5027 			cond_resched();
5028 		}
5029 		ret = __mem_cgroup_try_charge(NULL,
5030 					GFP_KERNEL, 1, &memcg, false);
5031 		if (ret)
5032 			/* mem_cgroup_clear_mc() will do uncharge later */
5033 			return ret;
5034 		mc.precharge++;
5035 	}
5036 	return ret;
5037 }
5038 
5039 /**
5040  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5041  * @vma: the vma the pte to be checked belongs
5042  * @addr: the address corresponding to the pte to be checked
5043  * @ptent: the pte to be checked
5044  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5045  *
5046  * Returns
5047  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5048  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5049  *     move charge. if @target is not NULL, the page is stored in target->page
5050  *     with extra refcnt got(Callers should handle it).
5051  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5052  *     target for charge migration. if @target is not NULL, the entry is stored
5053  *     in target->ent.
5054  *
5055  * Called with pte lock held.
5056  */
5057 union mc_target {
5058 	struct page	*page;
5059 	swp_entry_t	ent;
5060 };
5061 
5062 enum mc_target_type {
5063 	MC_TARGET_NONE,	/* not used */
5064 	MC_TARGET_PAGE,
5065 	MC_TARGET_SWAP,
5066 };
5067 
5068 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5069 						unsigned long addr, pte_t ptent)
5070 {
5071 	struct page *page = vm_normal_page(vma, addr, ptent);
5072 
5073 	if (!page || !page_mapped(page))
5074 		return NULL;
5075 	if (PageAnon(page)) {
5076 		/* we don't move shared anon */
5077 		if (!move_anon() || page_mapcount(page) > 2)
5078 			return NULL;
5079 	} else if (!move_file())
5080 		/* we ignore mapcount for file pages */
5081 		return NULL;
5082 	if (!get_page_unless_zero(page))
5083 		return NULL;
5084 
5085 	return page;
5086 }
5087 
5088 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5089 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5090 {
5091 	int usage_count;
5092 	struct page *page = NULL;
5093 	swp_entry_t ent = pte_to_swp_entry(ptent);
5094 
5095 	if (!move_anon() || non_swap_entry(ent))
5096 		return NULL;
5097 	usage_count = mem_cgroup_count_swap_user(ent, &page);
5098 	if (usage_count > 1) { /* we don't move shared anon */
5099 		if (page)
5100 			put_page(page);
5101 		return NULL;
5102 	}
5103 	if (do_swap_account)
5104 		entry->val = ent.val;
5105 
5106 	return page;
5107 }
5108 
5109 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5110 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5111 {
5112 	struct page *page = NULL;
5113 	struct inode *inode;
5114 	struct address_space *mapping;
5115 	pgoff_t pgoff;
5116 
5117 	if (!vma->vm_file) /* anonymous vma */
5118 		return NULL;
5119 	if (!move_file())
5120 		return NULL;
5121 
5122 	inode = vma->vm_file->f_path.dentry->d_inode;
5123 	mapping = vma->vm_file->f_mapping;
5124 	if (pte_none(ptent))
5125 		pgoff = linear_page_index(vma, addr);
5126 	else /* pte_file(ptent) is true */
5127 		pgoff = pte_to_pgoff(ptent);
5128 
5129 	/* page is moved even if it's not RSS of this task(page-faulted). */
5130 	page = find_get_page(mapping, pgoff);
5131 
5132 #ifdef CONFIG_SWAP
5133 	/* shmem/tmpfs may report page out on swap: account for that too. */
5134 	if (radix_tree_exceptional_entry(page)) {
5135 		swp_entry_t swap = radix_to_swp_entry(page);
5136 		if (do_swap_account)
5137 			*entry = swap;
5138 		page = find_get_page(&swapper_space, swap.val);
5139 	}
5140 #endif
5141 	return page;
5142 }
5143 
5144 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5145 		unsigned long addr, pte_t ptent, union mc_target *target)
5146 {
5147 	struct page *page = NULL;
5148 	struct page_cgroup *pc;
5149 	int ret = 0;
5150 	swp_entry_t ent = { .val = 0 };
5151 
5152 	if (pte_present(ptent))
5153 		page = mc_handle_present_pte(vma, addr, ptent);
5154 	else if (is_swap_pte(ptent))
5155 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5156 	else if (pte_none(ptent) || pte_file(ptent))
5157 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5158 
5159 	if (!page && !ent.val)
5160 		return 0;
5161 	if (page) {
5162 		pc = lookup_page_cgroup(page);
5163 		/*
5164 		 * Do only loose check w/o page_cgroup lock.
5165 		 * mem_cgroup_move_account() checks the pc is valid or not under
5166 		 * the lock.
5167 		 */
5168 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5169 			ret = MC_TARGET_PAGE;
5170 			if (target)
5171 				target->page = page;
5172 		}
5173 		if (!ret || !target)
5174 			put_page(page);
5175 	}
5176 	/* There is a swap entry and a page doesn't exist or isn't charged */
5177 	if (ent.val && !ret &&
5178 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5179 		ret = MC_TARGET_SWAP;
5180 		if (target)
5181 			target->ent = ent;
5182 	}
5183 	return ret;
5184 }
5185 
5186 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5187 					unsigned long addr, unsigned long end,
5188 					struct mm_walk *walk)
5189 {
5190 	struct vm_area_struct *vma = walk->private;
5191 	pte_t *pte;
5192 	spinlock_t *ptl;
5193 
5194 	split_huge_page_pmd(walk->mm, pmd);
5195 
5196 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5197 	for (; addr != end; pte++, addr += PAGE_SIZE)
5198 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5199 			mc.precharge++;	/* increment precharge temporarily */
5200 	pte_unmap_unlock(pte - 1, ptl);
5201 	cond_resched();
5202 
5203 	return 0;
5204 }
5205 
5206 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5207 {
5208 	unsigned long precharge;
5209 	struct vm_area_struct *vma;
5210 
5211 	down_read(&mm->mmap_sem);
5212 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5213 		struct mm_walk mem_cgroup_count_precharge_walk = {
5214 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5215 			.mm = mm,
5216 			.private = vma,
5217 		};
5218 		if (is_vm_hugetlb_page(vma))
5219 			continue;
5220 		walk_page_range(vma->vm_start, vma->vm_end,
5221 					&mem_cgroup_count_precharge_walk);
5222 	}
5223 	up_read(&mm->mmap_sem);
5224 
5225 	precharge = mc.precharge;
5226 	mc.precharge = 0;
5227 
5228 	return precharge;
5229 }
5230 
5231 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5232 {
5233 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5234 
5235 	VM_BUG_ON(mc.moving_task);
5236 	mc.moving_task = current;
5237 	return mem_cgroup_do_precharge(precharge);
5238 }
5239 
5240 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5241 static void __mem_cgroup_clear_mc(void)
5242 {
5243 	struct mem_cgroup *from = mc.from;
5244 	struct mem_cgroup *to = mc.to;
5245 
5246 	/* we must uncharge all the leftover precharges from mc.to */
5247 	if (mc.precharge) {
5248 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5249 		mc.precharge = 0;
5250 	}
5251 	/*
5252 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5253 	 * we must uncharge here.
5254 	 */
5255 	if (mc.moved_charge) {
5256 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5257 		mc.moved_charge = 0;
5258 	}
5259 	/* we must fixup refcnts and charges */
5260 	if (mc.moved_swap) {
5261 		/* uncharge swap account from the old cgroup */
5262 		if (!mem_cgroup_is_root(mc.from))
5263 			res_counter_uncharge(&mc.from->memsw,
5264 						PAGE_SIZE * mc.moved_swap);
5265 		__mem_cgroup_put(mc.from, mc.moved_swap);
5266 
5267 		if (!mem_cgroup_is_root(mc.to)) {
5268 			/*
5269 			 * we charged both to->res and to->memsw, so we should
5270 			 * uncharge to->res.
5271 			 */
5272 			res_counter_uncharge(&mc.to->res,
5273 						PAGE_SIZE * mc.moved_swap);
5274 		}
5275 		/* we've already done mem_cgroup_get(mc.to) */
5276 		mc.moved_swap = 0;
5277 	}
5278 	memcg_oom_recover(from);
5279 	memcg_oom_recover(to);
5280 	wake_up_all(&mc.waitq);
5281 }
5282 
5283 static void mem_cgroup_clear_mc(void)
5284 {
5285 	struct mem_cgroup *from = mc.from;
5286 
5287 	/*
5288 	 * we must clear moving_task before waking up waiters at the end of
5289 	 * task migration.
5290 	 */
5291 	mc.moving_task = NULL;
5292 	__mem_cgroup_clear_mc();
5293 	spin_lock(&mc.lock);
5294 	mc.from = NULL;
5295 	mc.to = NULL;
5296 	spin_unlock(&mc.lock);
5297 	mem_cgroup_end_move(from);
5298 }
5299 
5300 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5301 				struct cgroup *cgroup,
5302 				struct cgroup_taskset *tset)
5303 {
5304 	struct task_struct *p = cgroup_taskset_first(tset);
5305 	int ret = 0;
5306 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5307 
5308 	if (memcg->move_charge_at_immigrate) {
5309 		struct mm_struct *mm;
5310 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5311 
5312 		VM_BUG_ON(from == memcg);
5313 
5314 		mm = get_task_mm(p);
5315 		if (!mm)
5316 			return 0;
5317 		/* We move charges only when we move a owner of the mm */
5318 		if (mm->owner == p) {
5319 			VM_BUG_ON(mc.from);
5320 			VM_BUG_ON(mc.to);
5321 			VM_BUG_ON(mc.precharge);
5322 			VM_BUG_ON(mc.moved_charge);
5323 			VM_BUG_ON(mc.moved_swap);
5324 			mem_cgroup_start_move(from);
5325 			spin_lock(&mc.lock);
5326 			mc.from = from;
5327 			mc.to = memcg;
5328 			spin_unlock(&mc.lock);
5329 			/* We set mc.moving_task later */
5330 
5331 			ret = mem_cgroup_precharge_mc(mm);
5332 			if (ret)
5333 				mem_cgroup_clear_mc();
5334 		}
5335 		mmput(mm);
5336 	}
5337 	return ret;
5338 }
5339 
5340 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5341 				struct cgroup *cgroup,
5342 				struct cgroup_taskset *tset)
5343 {
5344 	mem_cgroup_clear_mc();
5345 }
5346 
5347 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5348 				unsigned long addr, unsigned long end,
5349 				struct mm_walk *walk)
5350 {
5351 	int ret = 0;
5352 	struct vm_area_struct *vma = walk->private;
5353 	pte_t *pte;
5354 	spinlock_t *ptl;
5355 
5356 	split_huge_page_pmd(walk->mm, pmd);
5357 retry:
5358 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5359 	for (; addr != end; addr += PAGE_SIZE) {
5360 		pte_t ptent = *(pte++);
5361 		union mc_target target;
5362 		int type;
5363 		struct page *page;
5364 		struct page_cgroup *pc;
5365 		swp_entry_t ent;
5366 
5367 		if (!mc.precharge)
5368 			break;
5369 
5370 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5371 		switch (type) {
5372 		case MC_TARGET_PAGE:
5373 			page = target.page;
5374 			if (isolate_lru_page(page))
5375 				goto put;
5376 			pc = lookup_page_cgroup(page);
5377 			if (!mem_cgroup_move_account(page, 1, pc,
5378 						     mc.from, mc.to, false)) {
5379 				mc.precharge--;
5380 				/* we uncharge from mc.from later. */
5381 				mc.moved_charge++;
5382 			}
5383 			putback_lru_page(page);
5384 put:			/* is_target_pte_for_mc() gets the page */
5385 			put_page(page);
5386 			break;
5387 		case MC_TARGET_SWAP:
5388 			ent = target.ent;
5389 			if (!mem_cgroup_move_swap_account(ent,
5390 						mc.from, mc.to, false)) {
5391 				mc.precharge--;
5392 				/* we fixup refcnts and charges later. */
5393 				mc.moved_swap++;
5394 			}
5395 			break;
5396 		default:
5397 			break;
5398 		}
5399 	}
5400 	pte_unmap_unlock(pte - 1, ptl);
5401 	cond_resched();
5402 
5403 	if (addr != end) {
5404 		/*
5405 		 * We have consumed all precharges we got in can_attach().
5406 		 * We try charge one by one, but don't do any additional
5407 		 * charges to mc.to if we have failed in charge once in attach()
5408 		 * phase.
5409 		 */
5410 		ret = mem_cgroup_do_precharge(1);
5411 		if (!ret)
5412 			goto retry;
5413 	}
5414 
5415 	return ret;
5416 }
5417 
5418 static void mem_cgroup_move_charge(struct mm_struct *mm)
5419 {
5420 	struct vm_area_struct *vma;
5421 
5422 	lru_add_drain_all();
5423 retry:
5424 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5425 		/*
5426 		 * Someone who are holding the mmap_sem might be waiting in
5427 		 * waitq. So we cancel all extra charges, wake up all waiters,
5428 		 * and retry. Because we cancel precharges, we might not be able
5429 		 * to move enough charges, but moving charge is a best-effort
5430 		 * feature anyway, so it wouldn't be a big problem.
5431 		 */
5432 		__mem_cgroup_clear_mc();
5433 		cond_resched();
5434 		goto retry;
5435 	}
5436 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5437 		int ret;
5438 		struct mm_walk mem_cgroup_move_charge_walk = {
5439 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5440 			.mm = mm,
5441 			.private = vma,
5442 		};
5443 		if (is_vm_hugetlb_page(vma))
5444 			continue;
5445 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5446 						&mem_cgroup_move_charge_walk);
5447 		if (ret)
5448 			/*
5449 			 * means we have consumed all precharges and failed in
5450 			 * doing additional charge. Just abandon here.
5451 			 */
5452 			break;
5453 	}
5454 	up_read(&mm->mmap_sem);
5455 }
5456 
5457 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5458 				struct cgroup *cont,
5459 				struct cgroup_taskset *tset)
5460 {
5461 	struct task_struct *p = cgroup_taskset_first(tset);
5462 	struct mm_struct *mm = get_task_mm(p);
5463 
5464 	if (mm) {
5465 		if (mc.to)
5466 			mem_cgroup_move_charge(mm);
5467 		put_swap_token(mm);
5468 		mmput(mm);
5469 	}
5470 	if (mc.to)
5471 		mem_cgroup_clear_mc();
5472 }
5473 #else	/* !CONFIG_MMU */
5474 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5475 				struct cgroup *cgroup,
5476 				struct cgroup_taskset *tset)
5477 {
5478 	return 0;
5479 }
5480 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5481 				struct cgroup *cgroup,
5482 				struct cgroup_taskset *tset)
5483 {
5484 }
5485 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5486 				struct cgroup *cont,
5487 				struct cgroup_taskset *tset)
5488 {
5489 }
5490 #endif
5491 
5492 struct cgroup_subsys mem_cgroup_subsys = {
5493 	.name = "memory",
5494 	.subsys_id = mem_cgroup_subsys_id,
5495 	.create = mem_cgroup_create,
5496 	.pre_destroy = mem_cgroup_pre_destroy,
5497 	.destroy = mem_cgroup_destroy,
5498 	.populate = mem_cgroup_populate,
5499 	.can_attach = mem_cgroup_can_attach,
5500 	.cancel_attach = mem_cgroup_cancel_attach,
5501 	.attach = mem_cgroup_move_task,
5502 	.early_init = 0,
5503 	.use_id = 1,
5504 };
5505 
5506 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5507 static int __init enable_swap_account(char *s)
5508 {
5509 	/* consider enabled if no parameter or 1 is given */
5510 	if (!strcmp(s, "1"))
5511 		really_do_swap_account = 1;
5512 	else if (!strcmp(s, "0"))
5513 		really_do_swap_account = 0;
5514 	return 1;
5515 }
5516 __setup("swapaccount=", enable_swap_account);
5517 
5518 #endif
5519