1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 */ 23 24 #include <linux/res_counter.h> 25 #include <linux/memcontrol.h> 26 #include <linux/cgroup.h> 27 #include <linux/mm.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagemap.h> 30 #include <linux/smp.h> 31 #include <linux/page-flags.h> 32 #include <linux/backing-dev.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/rcupdate.h> 35 #include <linux/limits.h> 36 #include <linux/export.h> 37 #include <linux/mutex.h> 38 #include <linux/rbtree.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swapops.h> 42 #include <linux/spinlock.h> 43 #include <linux/eventfd.h> 44 #include <linux/sort.h> 45 #include <linux/fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/vmalloc.h> 48 #include <linux/mm_inline.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/cpu.h> 51 #include <linux/oom.h> 52 #include "internal.h" 53 #include <net/sock.h> 54 #include <net/tcp_memcontrol.h> 55 56 #include <asm/uaccess.h> 57 58 #include <trace/events/vmscan.h> 59 60 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 61 #define MEM_CGROUP_RECLAIM_RETRIES 5 62 struct mem_cgroup *root_mem_cgroup __read_mostly; 63 64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 66 int do_swap_account __read_mostly; 67 68 /* for remember boot option*/ 69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED 70 static int really_do_swap_account __initdata = 1; 71 #else 72 static int really_do_swap_account __initdata = 0; 73 #endif 74 75 #else 76 #define do_swap_account (0) 77 #endif 78 79 80 /* 81 * Statistics for memory cgroup. 82 */ 83 enum mem_cgroup_stat_index { 84 /* 85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 86 */ 87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */ 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */ 93 MEM_CGROUP_STAT_NSTATS, 94 }; 95 96 enum mem_cgroup_events_index { 97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */ 100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 102 MEM_CGROUP_EVENTS_NSTATS, 103 }; 104 /* 105 * Per memcg event counter is incremented at every pagein/pageout. With THP, 106 * it will be incremated by the number of pages. This counter is used for 107 * for trigger some periodic events. This is straightforward and better 108 * than using jiffies etc. to handle periodic memcg event. 109 */ 110 enum mem_cgroup_events_target { 111 MEM_CGROUP_TARGET_THRESH, 112 MEM_CGROUP_TARGET_SOFTLIMIT, 113 MEM_CGROUP_TARGET_NUMAINFO, 114 MEM_CGROUP_NTARGETS, 115 }; 116 #define THRESHOLDS_EVENTS_TARGET (128) 117 #define SOFTLIMIT_EVENTS_TARGET (1024) 118 #define NUMAINFO_EVENTS_TARGET (1024) 119 120 struct mem_cgroup_stat_cpu { 121 long count[MEM_CGROUP_STAT_NSTATS]; 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 123 unsigned long targets[MEM_CGROUP_NTARGETS]; 124 }; 125 126 struct mem_cgroup_reclaim_iter { 127 /* css_id of the last scanned hierarchy member */ 128 int position; 129 /* scan generation, increased every round-trip */ 130 unsigned int generation; 131 }; 132 133 /* 134 * per-zone information in memory controller. 135 */ 136 struct mem_cgroup_per_zone { 137 struct lruvec lruvec; 138 unsigned long count[NR_LRU_LISTS]; 139 140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 141 142 struct zone_reclaim_stat reclaim_stat; 143 struct rb_node tree_node; /* RB tree node */ 144 unsigned long long usage_in_excess;/* Set to the value by which */ 145 /* the soft limit is exceeded*/ 146 bool on_tree; 147 struct mem_cgroup *mem; /* Back pointer, we cannot */ 148 /* use container_of */ 149 }; 150 /* Macro for accessing counter */ 151 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) 152 153 struct mem_cgroup_per_node { 154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 155 }; 156 157 struct mem_cgroup_lru_info { 158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 159 }; 160 161 /* 162 * Cgroups above their limits are maintained in a RB-Tree, independent of 163 * their hierarchy representation 164 */ 165 166 struct mem_cgroup_tree_per_zone { 167 struct rb_root rb_root; 168 spinlock_t lock; 169 }; 170 171 struct mem_cgroup_tree_per_node { 172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 173 }; 174 175 struct mem_cgroup_tree { 176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 177 }; 178 179 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 180 181 struct mem_cgroup_threshold { 182 struct eventfd_ctx *eventfd; 183 u64 threshold; 184 }; 185 186 /* For threshold */ 187 struct mem_cgroup_threshold_ary { 188 /* An array index points to threshold just below usage. */ 189 int current_threshold; 190 /* Size of entries[] */ 191 unsigned int size; 192 /* Array of thresholds */ 193 struct mem_cgroup_threshold entries[0]; 194 }; 195 196 struct mem_cgroup_thresholds { 197 /* Primary thresholds array */ 198 struct mem_cgroup_threshold_ary *primary; 199 /* 200 * Spare threshold array. 201 * This is needed to make mem_cgroup_unregister_event() "never fail". 202 * It must be able to store at least primary->size - 1 entries. 203 */ 204 struct mem_cgroup_threshold_ary *spare; 205 }; 206 207 /* for OOM */ 208 struct mem_cgroup_eventfd_list { 209 struct list_head list; 210 struct eventfd_ctx *eventfd; 211 }; 212 213 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 215 216 /* 217 * The memory controller data structure. The memory controller controls both 218 * page cache and RSS per cgroup. We would eventually like to provide 219 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 220 * to help the administrator determine what knobs to tune. 221 * 222 * TODO: Add a water mark for the memory controller. Reclaim will begin when 223 * we hit the water mark. May be even add a low water mark, such that 224 * no reclaim occurs from a cgroup at it's low water mark, this is 225 * a feature that will be implemented much later in the future. 226 */ 227 struct mem_cgroup { 228 struct cgroup_subsys_state css; 229 /* 230 * the counter to account for memory usage 231 */ 232 struct res_counter res; 233 /* 234 * the counter to account for mem+swap usage. 235 */ 236 struct res_counter memsw; 237 /* 238 * Per cgroup active and inactive list, similar to the 239 * per zone LRU lists. 240 */ 241 struct mem_cgroup_lru_info info; 242 int last_scanned_node; 243 #if MAX_NUMNODES > 1 244 nodemask_t scan_nodes; 245 atomic_t numainfo_events; 246 atomic_t numainfo_updating; 247 #endif 248 /* 249 * Should the accounting and control be hierarchical, per subtree? 250 */ 251 bool use_hierarchy; 252 253 bool oom_lock; 254 atomic_t under_oom; 255 256 atomic_t refcnt; 257 258 int swappiness; 259 /* OOM-Killer disable */ 260 int oom_kill_disable; 261 262 /* set when res.limit == memsw.limit */ 263 bool memsw_is_minimum; 264 265 /* protect arrays of thresholds */ 266 struct mutex thresholds_lock; 267 268 /* thresholds for memory usage. RCU-protected */ 269 struct mem_cgroup_thresholds thresholds; 270 271 /* thresholds for mem+swap usage. RCU-protected */ 272 struct mem_cgroup_thresholds memsw_thresholds; 273 274 /* For oom notifier event fd */ 275 struct list_head oom_notify; 276 277 /* 278 * Should we move charges of a task when a task is moved into this 279 * mem_cgroup ? And what type of charges should we move ? 280 */ 281 unsigned long move_charge_at_immigrate; 282 /* 283 * percpu counter. 284 */ 285 struct mem_cgroup_stat_cpu *stat; 286 /* 287 * used when a cpu is offlined or other synchronizations 288 * See mem_cgroup_read_stat(). 289 */ 290 struct mem_cgroup_stat_cpu nocpu_base; 291 spinlock_t pcp_counter_lock; 292 293 #ifdef CONFIG_INET 294 struct tcp_memcontrol tcp_mem; 295 #endif 296 }; 297 298 /* Stuffs for move charges at task migration. */ 299 /* 300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 301 * left-shifted bitmap of these types. 302 */ 303 enum move_type { 304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 306 NR_MOVE_TYPE, 307 }; 308 309 /* "mc" and its members are protected by cgroup_mutex */ 310 static struct move_charge_struct { 311 spinlock_t lock; /* for from, to */ 312 struct mem_cgroup *from; 313 struct mem_cgroup *to; 314 unsigned long precharge; 315 unsigned long moved_charge; 316 unsigned long moved_swap; 317 struct task_struct *moving_task; /* a task moving charges */ 318 wait_queue_head_t waitq; /* a waitq for other context */ 319 } mc = { 320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 322 }; 323 324 static bool move_anon(void) 325 { 326 return test_bit(MOVE_CHARGE_TYPE_ANON, 327 &mc.to->move_charge_at_immigrate); 328 } 329 330 static bool move_file(void) 331 { 332 return test_bit(MOVE_CHARGE_TYPE_FILE, 333 &mc.to->move_charge_at_immigrate); 334 } 335 336 /* 337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 338 * limit reclaim to prevent infinite loops, if they ever occur. 339 */ 340 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100) 341 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2) 342 343 enum charge_type { 344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 345 MEM_CGROUP_CHARGE_TYPE_MAPPED, 346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 350 NR_CHARGE_TYPE, 351 }; 352 353 /* for encoding cft->private value on file */ 354 #define _MEM (0) 355 #define _MEMSWAP (1) 356 #define _OOM_TYPE (2) 357 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) 358 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) 359 #define MEMFILE_ATTR(val) ((val) & 0xffff) 360 /* Used for OOM nofiier */ 361 #define OOM_CONTROL (0) 362 363 /* 364 * Reclaim flags for mem_cgroup_hierarchical_reclaim 365 */ 366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 367 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 369 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 370 371 static void mem_cgroup_get(struct mem_cgroup *memcg); 372 static void mem_cgroup_put(struct mem_cgroup *memcg); 373 374 /* Writing them here to avoid exposing memcg's inner layout */ 375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM 376 #include <net/sock.h> 377 #include <net/ip.h> 378 379 static bool mem_cgroup_is_root(struct mem_cgroup *memcg); 380 void sock_update_memcg(struct sock *sk) 381 { 382 if (mem_cgroup_sockets_enabled) { 383 struct mem_cgroup *memcg; 384 385 BUG_ON(!sk->sk_prot->proto_cgroup); 386 387 /* Socket cloning can throw us here with sk_cgrp already 388 * filled. It won't however, necessarily happen from 389 * process context. So the test for root memcg given 390 * the current task's memcg won't help us in this case. 391 * 392 * Respecting the original socket's memcg is a better 393 * decision in this case. 394 */ 395 if (sk->sk_cgrp) { 396 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 397 mem_cgroup_get(sk->sk_cgrp->memcg); 398 return; 399 } 400 401 rcu_read_lock(); 402 memcg = mem_cgroup_from_task(current); 403 if (!mem_cgroup_is_root(memcg)) { 404 mem_cgroup_get(memcg); 405 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg); 406 } 407 rcu_read_unlock(); 408 } 409 } 410 EXPORT_SYMBOL(sock_update_memcg); 411 412 void sock_release_memcg(struct sock *sk) 413 { 414 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 415 struct mem_cgroup *memcg; 416 WARN_ON(!sk->sk_cgrp->memcg); 417 memcg = sk->sk_cgrp->memcg; 418 mem_cgroup_put(memcg); 419 } 420 } 421 422 #ifdef CONFIG_INET 423 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 424 { 425 if (!memcg || mem_cgroup_is_root(memcg)) 426 return NULL; 427 428 return &memcg->tcp_mem.cg_proto; 429 } 430 EXPORT_SYMBOL(tcp_proto_cgroup); 431 #endif /* CONFIG_INET */ 432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */ 433 434 static void drain_all_stock_async(struct mem_cgroup *memcg); 435 436 static struct mem_cgroup_per_zone * 437 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 438 { 439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 440 } 441 442 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 443 { 444 return &memcg->css; 445 } 446 447 static struct mem_cgroup_per_zone * 448 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 449 { 450 int nid = page_to_nid(page); 451 int zid = page_zonenum(page); 452 453 return mem_cgroup_zoneinfo(memcg, nid, zid); 454 } 455 456 static struct mem_cgroup_tree_per_zone * 457 soft_limit_tree_node_zone(int nid, int zid) 458 { 459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 460 } 461 462 static struct mem_cgroup_tree_per_zone * 463 soft_limit_tree_from_page(struct page *page) 464 { 465 int nid = page_to_nid(page); 466 int zid = page_zonenum(page); 467 468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 469 } 470 471 static void 472 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 473 struct mem_cgroup_per_zone *mz, 474 struct mem_cgroup_tree_per_zone *mctz, 475 unsigned long long new_usage_in_excess) 476 { 477 struct rb_node **p = &mctz->rb_root.rb_node; 478 struct rb_node *parent = NULL; 479 struct mem_cgroup_per_zone *mz_node; 480 481 if (mz->on_tree) 482 return; 483 484 mz->usage_in_excess = new_usage_in_excess; 485 if (!mz->usage_in_excess) 486 return; 487 while (*p) { 488 parent = *p; 489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 490 tree_node); 491 if (mz->usage_in_excess < mz_node->usage_in_excess) 492 p = &(*p)->rb_left; 493 /* 494 * We can't avoid mem cgroups that are over their soft 495 * limit by the same amount 496 */ 497 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 498 p = &(*p)->rb_right; 499 } 500 rb_link_node(&mz->tree_node, parent, p); 501 rb_insert_color(&mz->tree_node, &mctz->rb_root); 502 mz->on_tree = true; 503 } 504 505 static void 506 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 507 struct mem_cgroup_per_zone *mz, 508 struct mem_cgroup_tree_per_zone *mctz) 509 { 510 if (!mz->on_tree) 511 return; 512 rb_erase(&mz->tree_node, &mctz->rb_root); 513 mz->on_tree = false; 514 } 515 516 static void 517 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 518 struct mem_cgroup_per_zone *mz, 519 struct mem_cgroup_tree_per_zone *mctz) 520 { 521 spin_lock(&mctz->lock); 522 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 523 spin_unlock(&mctz->lock); 524 } 525 526 527 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 528 { 529 unsigned long long excess; 530 struct mem_cgroup_per_zone *mz; 531 struct mem_cgroup_tree_per_zone *mctz; 532 int nid = page_to_nid(page); 533 int zid = page_zonenum(page); 534 mctz = soft_limit_tree_from_page(page); 535 536 /* 537 * Necessary to update all ancestors when hierarchy is used. 538 * because their event counter is not touched. 539 */ 540 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 541 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 542 excess = res_counter_soft_limit_excess(&memcg->res); 543 /* 544 * We have to update the tree if mz is on RB-tree or 545 * mem is over its softlimit. 546 */ 547 if (excess || mz->on_tree) { 548 spin_lock(&mctz->lock); 549 /* if on-tree, remove it */ 550 if (mz->on_tree) 551 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 552 /* 553 * Insert again. mz->usage_in_excess will be updated. 554 * If excess is 0, no tree ops. 555 */ 556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 557 spin_unlock(&mctz->lock); 558 } 559 } 560 } 561 562 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 563 { 564 int node, zone; 565 struct mem_cgroup_per_zone *mz; 566 struct mem_cgroup_tree_per_zone *mctz; 567 568 for_each_node(node) { 569 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 570 mz = mem_cgroup_zoneinfo(memcg, node, zone); 571 mctz = soft_limit_tree_node_zone(node, zone); 572 mem_cgroup_remove_exceeded(memcg, mz, mctz); 573 } 574 } 575 } 576 577 static struct mem_cgroup_per_zone * 578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 579 { 580 struct rb_node *rightmost = NULL; 581 struct mem_cgroup_per_zone *mz; 582 583 retry: 584 mz = NULL; 585 rightmost = rb_last(&mctz->rb_root); 586 if (!rightmost) 587 goto done; /* Nothing to reclaim from */ 588 589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 590 /* 591 * Remove the node now but someone else can add it back, 592 * we will to add it back at the end of reclaim to its correct 593 * position in the tree. 594 */ 595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 596 if (!res_counter_soft_limit_excess(&mz->mem->res) || 597 !css_tryget(&mz->mem->css)) 598 goto retry; 599 done: 600 return mz; 601 } 602 603 static struct mem_cgroup_per_zone * 604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 605 { 606 struct mem_cgroup_per_zone *mz; 607 608 spin_lock(&mctz->lock); 609 mz = __mem_cgroup_largest_soft_limit_node(mctz); 610 spin_unlock(&mctz->lock); 611 return mz; 612 } 613 614 /* 615 * Implementation Note: reading percpu statistics for memcg. 616 * 617 * Both of vmstat[] and percpu_counter has threshold and do periodic 618 * synchronization to implement "quick" read. There are trade-off between 619 * reading cost and precision of value. Then, we may have a chance to implement 620 * a periodic synchronizion of counter in memcg's counter. 621 * 622 * But this _read() function is used for user interface now. The user accounts 623 * memory usage by memory cgroup and he _always_ requires exact value because 624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 625 * have to visit all online cpus and make sum. So, for now, unnecessary 626 * synchronization is not implemented. (just implemented for cpu hotplug) 627 * 628 * If there are kernel internal actions which can make use of some not-exact 629 * value, and reading all cpu value can be performance bottleneck in some 630 * common workload, threashold and synchonization as vmstat[] should be 631 * implemented. 632 */ 633 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 634 enum mem_cgroup_stat_index idx) 635 { 636 long val = 0; 637 int cpu; 638 639 get_online_cpus(); 640 for_each_online_cpu(cpu) 641 val += per_cpu(memcg->stat->count[idx], cpu); 642 #ifdef CONFIG_HOTPLUG_CPU 643 spin_lock(&memcg->pcp_counter_lock); 644 val += memcg->nocpu_base.count[idx]; 645 spin_unlock(&memcg->pcp_counter_lock); 646 #endif 647 put_online_cpus(); 648 return val; 649 } 650 651 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 652 bool charge) 653 { 654 int val = (charge) ? 1 : -1; 655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); 656 } 657 658 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 659 enum mem_cgroup_events_index idx) 660 { 661 unsigned long val = 0; 662 int cpu; 663 664 for_each_online_cpu(cpu) 665 val += per_cpu(memcg->stat->events[idx], cpu); 666 #ifdef CONFIG_HOTPLUG_CPU 667 spin_lock(&memcg->pcp_counter_lock); 668 val += memcg->nocpu_base.events[idx]; 669 spin_unlock(&memcg->pcp_counter_lock); 670 #endif 671 return val; 672 } 673 674 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 675 bool file, int nr_pages) 676 { 677 preempt_disable(); 678 679 if (file) 680 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 681 nr_pages); 682 else 683 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 684 nr_pages); 685 686 /* pagein of a big page is an event. So, ignore page size */ 687 if (nr_pages > 0) 688 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 689 else { 690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 691 nr_pages = -nr_pages; /* for event */ 692 } 693 694 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages); 695 696 preempt_enable(); 697 } 698 699 unsigned long 700 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 701 unsigned int lru_mask) 702 { 703 struct mem_cgroup_per_zone *mz; 704 enum lru_list l; 705 unsigned long ret = 0; 706 707 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 708 709 for_each_lru(l) { 710 if (BIT(l) & lru_mask) 711 ret += MEM_CGROUP_ZSTAT(mz, l); 712 } 713 return ret; 714 } 715 716 static unsigned long 717 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 718 int nid, unsigned int lru_mask) 719 { 720 u64 total = 0; 721 int zid; 722 723 for (zid = 0; zid < MAX_NR_ZONES; zid++) 724 total += mem_cgroup_zone_nr_lru_pages(memcg, 725 nid, zid, lru_mask); 726 727 return total; 728 } 729 730 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 731 unsigned int lru_mask) 732 { 733 int nid; 734 u64 total = 0; 735 736 for_each_node_state(nid, N_HIGH_MEMORY) 737 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 738 return total; 739 } 740 741 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 742 enum mem_cgroup_events_target target) 743 { 744 unsigned long val, next; 745 746 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]); 747 next = __this_cpu_read(memcg->stat->targets[target]); 748 /* from time_after() in jiffies.h */ 749 if ((long)next - (long)val < 0) { 750 switch (target) { 751 case MEM_CGROUP_TARGET_THRESH: 752 next = val + THRESHOLDS_EVENTS_TARGET; 753 break; 754 case MEM_CGROUP_TARGET_SOFTLIMIT: 755 next = val + SOFTLIMIT_EVENTS_TARGET; 756 break; 757 case MEM_CGROUP_TARGET_NUMAINFO: 758 next = val + NUMAINFO_EVENTS_TARGET; 759 break; 760 default: 761 break; 762 } 763 __this_cpu_write(memcg->stat->targets[target], next); 764 return true; 765 } 766 return false; 767 } 768 769 /* 770 * Check events in order. 771 * 772 */ 773 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 774 { 775 preempt_disable(); 776 /* threshold event is triggered in finer grain than soft limit */ 777 if (unlikely(mem_cgroup_event_ratelimit(memcg, 778 MEM_CGROUP_TARGET_THRESH))) { 779 bool do_softlimit; 780 bool do_numainfo __maybe_unused; 781 782 do_softlimit = mem_cgroup_event_ratelimit(memcg, 783 MEM_CGROUP_TARGET_SOFTLIMIT); 784 #if MAX_NUMNODES > 1 785 do_numainfo = mem_cgroup_event_ratelimit(memcg, 786 MEM_CGROUP_TARGET_NUMAINFO); 787 #endif 788 preempt_enable(); 789 790 mem_cgroup_threshold(memcg); 791 if (unlikely(do_softlimit)) 792 mem_cgroup_update_tree(memcg, page); 793 #if MAX_NUMNODES > 1 794 if (unlikely(do_numainfo)) 795 atomic_inc(&memcg->numainfo_events); 796 #endif 797 } else 798 preempt_enable(); 799 } 800 801 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 802 { 803 return container_of(cgroup_subsys_state(cont, 804 mem_cgroup_subsys_id), struct mem_cgroup, 805 css); 806 } 807 808 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 809 { 810 /* 811 * mm_update_next_owner() may clear mm->owner to NULL 812 * if it races with swapoff, page migration, etc. 813 * So this can be called with p == NULL. 814 */ 815 if (unlikely(!p)) 816 return NULL; 817 818 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 819 struct mem_cgroup, css); 820 } 821 822 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 823 { 824 struct mem_cgroup *memcg = NULL; 825 826 if (!mm) 827 return NULL; 828 /* 829 * Because we have no locks, mm->owner's may be being moved to other 830 * cgroup. We use css_tryget() here even if this looks 831 * pessimistic (rather than adding locks here). 832 */ 833 rcu_read_lock(); 834 do { 835 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 836 if (unlikely(!memcg)) 837 break; 838 } while (!css_tryget(&memcg->css)); 839 rcu_read_unlock(); 840 return memcg; 841 } 842 843 /** 844 * mem_cgroup_iter - iterate over memory cgroup hierarchy 845 * @root: hierarchy root 846 * @prev: previously returned memcg, NULL on first invocation 847 * @reclaim: cookie for shared reclaim walks, NULL for full walks 848 * 849 * Returns references to children of the hierarchy below @root, or 850 * @root itself, or %NULL after a full round-trip. 851 * 852 * Caller must pass the return value in @prev on subsequent 853 * invocations for reference counting, or use mem_cgroup_iter_break() 854 * to cancel a hierarchy walk before the round-trip is complete. 855 * 856 * Reclaimers can specify a zone and a priority level in @reclaim to 857 * divide up the memcgs in the hierarchy among all concurrent 858 * reclaimers operating on the same zone and priority. 859 */ 860 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 861 struct mem_cgroup *prev, 862 struct mem_cgroup_reclaim_cookie *reclaim) 863 { 864 struct mem_cgroup *memcg = NULL; 865 int id = 0; 866 867 if (mem_cgroup_disabled()) 868 return NULL; 869 870 if (!root) 871 root = root_mem_cgroup; 872 873 if (prev && !reclaim) 874 id = css_id(&prev->css); 875 876 if (prev && prev != root) 877 css_put(&prev->css); 878 879 if (!root->use_hierarchy && root != root_mem_cgroup) { 880 if (prev) 881 return NULL; 882 return root; 883 } 884 885 while (!memcg) { 886 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 887 struct cgroup_subsys_state *css; 888 889 if (reclaim) { 890 int nid = zone_to_nid(reclaim->zone); 891 int zid = zone_idx(reclaim->zone); 892 struct mem_cgroup_per_zone *mz; 893 894 mz = mem_cgroup_zoneinfo(root, nid, zid); 895 iter = &mz->reclaim_iter[reclaim->priority]; 896 if (prev && reclaim->generation != iter->generation) 897 return NULL; 898 id = iter->position; 899 } 900 901 rcu_read_lock(); 902 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 903 if (css) { 904 if (css == &root->css || css_tryget(css)) 905 memcg = container_of(css, 906 struct mem_cgroup, css); 907 } else 908 id = 0; 909 rcu_read_unlock(); 910 911 if (reclaim) { 912 iter->position = id; 913 if (!css) 914 iter->generation++; 915 else if (!prev && memcg) 916 reclaim->generation = iter->generation; 917 } 918 919 if (prev && !css) 920 return NULL; 921 } 922 return memcg; 923 } 924 925 /** 926 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 927 * @root: hierarchy root 928 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 929 */ 930 void mem_cgroup_iter_break(struct mem_cgroup *root, 931 struct mem_cgroup *prev) 932 { 933 if (!root) 934 root = root_mem_cgroup; 935 if (prev && prev != root) 936 css_put(&prev->css); 937 } 938 939 /* 940 * Iteration constructs for visiting all cgroups (under a tree). If 941 * loops are exited prematurely (break), mem_cgroup_iter_break() must 942 * be used for reference counting. 943 */ 944 #define for_each_mem_cgroup_tree(iter, root) \ 945 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 946 iter != NULL; \ 947 iter = mem_cgroup_iter(root, iter, NULL)) 948 949 #define for_each_mem_cgroup(iter) \ 950 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 951 iter != NULL; \ 952 iter = mem_cgroup_iter(NULL, iter, NULL)) 953 954 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 955 { 956 return (memcg == root_mem_cgroup); 957 } 958 959 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 960 { 961 struct mem_cgroup *memcg; 962 963 if (!mm) 964 return; 965 966 rcu_read_lock(); 967 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 968 if (unlikely(!memcg)) 969 goto out; 970 971 switch (idx) { 972 case PGFAULT: 973 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 974 break; 975 case PGMAJFAULT: 976 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 977 break; 978 default: 979 BUG(); 980 } 981 out: 982 rcu_read_unlock(); 983 } 984 EXPORT_SYMBOL(mem_cgroup_count_vm_event); 985 986 /** 987 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 988 * @zone: zone of the wanted lruvec 989 * @mem: memcg of the wanted lruvec 990 * 991 * Returns the lru list vector holding pages for the given @zone and 992 * @mem. This can be the global zone lruvec, if the memory controller 993 * is disabled. 994 */ 995 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 996 struct mem_cgroup *memcg) 997 { 998 struct mem_cgroup_per_zone *mz; 999 1000 if (mem_cgroup_disabled()) 1001 return &zone->lruvec; 1002 1003 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1004 return &mz->lruvec; 1005 } 1006 1007 /* 1008 * Following LRU functions are allowed to be used without PCG_LOCK. 1009 * Operations are called by routine of global LRU independently from memcg. 1010 * What we have to take care of here is validness of pc->mem_cgroup. 1011 * 1012 * Changes to pc->mem_cgroup happens when 1013 * 1. charge 1014 * 2. moving account 1015 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1016 * It is added to LRU before charge. 1017 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1018 * When moving account, the page is not on LRU. It's isolated. 1019 */ 1020 1021 /** 1022 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec 1023 * @zone: zone of the page 1024 * @page: the page 1025 * @lru: current lru 1026 * 1027 * This function accounts for @page being added to @lru, and returns 1028 * the lruvec for the given @zone and the memcg @page is charged to. 1029 * 1030 * The callsite is then responsible for physically linking the page to 1031 * the returned lruvec->lists[@lru]. 1032 */ 1033 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page, 1034 enum lru_list lru) 1035 { 1036 struct mem_cgroup_per_zone *mz; 1037 struct mem_cgroup *memcg; 1038 struct page_cgroup *pc; 1039 1040 if (mem_cgroup_disabled()) 1041 return &zone->lruvec; 1042 1043 pc = lookup_page_cgroup(page); 1044 memcg = pc->mem_cgroup; 1045 mz = page_cgroup_zoneinfo(memcg, page); 1046 /* compound_order() is stabilized through lru_lock */ 1047 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page); 1048 return &mz->lruvec; 1049 } 1050 1051 /** 1052 * mem_cgroup_lru_del_list - account for removing an lru page 1053 * @page: the page 1054 * @lru: target lru 1055 * 1056 * This function accounts for @page being removed from @lru. 1057 * 1058 * The callsite is then responsible for physically unlinking 1059 * @page->lru. 1060 */ 1061 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru) 1062 { 1063 struct mem_cgroup_per_zone *mz; 1064 struct mem_cgroup *memcg; 1065 struct page_cgroup *pc; 1066 1067 if (mem_cgroup_disabled()) 1068 return; 1069 1070 pc = lookup_page_cgroup(page); 1071 memcg = pc->mem_cgroup; 1072 VM_BUG_ON(!memcg); 1073 mz = page_cgroup_zoneinfo(memcg, page); 1074 /* huge page split is done under lru_lock. so, we have no races. */ 1075 VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page))); 1076 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page); 1077 } 1078 1079 void mem_cgroup_lru_del(struct page *page) 1080 { 1081 mem_cgroup_lru_del_list(page, page_lru(page)); 1082 } 1083 1084 /** 1085 * mem_cgroup_lru_move_lists - account for moving a page between lrus 1086 * @zone: zone of the page 1087 * @page: the page 1088 * @from: current lru 1089 * @to: target lru 1090 * 1091 * This function accounts for @page being moved between the lrus @from 1092 * and @to, and returns the lruvec for the given @zone and the memcg 1093 * @page is charged to. 1094 * 1095 * The callsite is then responsible for physically relinking 1096 * @page->lru to the returned lruvec->lists[@to]. 1097 */ 1098 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone, 1099 struct page *page, 1100 enum lru_list from, 1101 enum lru_list to) 1102 { 1103 /* XXX: Optimize this, especially for @from == @to */ 1104 mem_cgroup_lru_del_list(page, from); 1105 return mem_cgroup_lru_add_list(zone, page, to); 1106 } 1107 1108 /* 1109 * Checks whether given mem is same or in the root_mem_cgroup's 1110 * hierarchy subtree 1111 */ 1112 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1113 struct mem_cgroup *memcg) 1114 { 1115 if (root_memcg != memcg) { 1116 return (root_memcg->use_hierarchy && 1117 css_is_ancestor(&memcg->css, &root_memcg->css)); 1118 } 1119 1120 return true; 1121 } 1122 1123 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1124 { 1125 int ret; 1126 struct mem_cgroup *curr = NULL; 1127 struct task_struct *p; 1128 1129 p = find_lock_task_mm(task); 1130 if (p) { 1131 curr = try_get_mem_cgroup_from_mm(p->mm); 1132 task_unlock(p); 1133 } else { 1134 /* 1135 * All threads may have already detached their mm's, but the oom 1136 * killer still needs to detect if they have already been oom 1137 * killed to prevent needlessly killing additional tasks. 1138 */ 1139 task_lock(task); 1140 curr = mem_cgroup_from_task(task); 1141 if (curr) 1142 css_get(&curr->css); 1143 task_unlock(task); 1144 } 1145 if (!curr) 1146 return 0; 1147 /* 1148 * We should check use_hierarchy of "memcg" not "curr". Because checking 1149 * use_hierarchy of "curr" here make this function true if hierarchy is 1150 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1151 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1152 */ 1153 ret = mem_cgroup_same_or_subtree(memcg, curr); 1154 css_put(&curr->css); 1155 return ret; 1156 } 1157 1158 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone) 1159 { 1160 unsigned long inactive_ratio; 1161 int nid = zone_to_nid(zone); 1162 int zid = zone_idx(zone); 1163 unsigned long inactive; 1164 unsigned long active; 1165 unsigned long gb; 1166 1167 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, 1168 BIT(LRU_INACTIVE_ANON)); 1169 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, 1170 BIT(LRU_ACTIVE_ANON)); 1171 1172 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1173 if (gb) 1174 inactive_ratio = int_sqrt(10 * gb); 1175 else 1176 inactive_ratio = 1; 1177 1178 return inactive * inactive_ratio < active; 1179 } 1180 1181 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone) 1182 { 1183 unsigned long active; 1184 unsigned long inactive; 1185 int zid = zone_idx(zone); 1186 int nid = zone_to_nid(zone); 1187 1188 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, 1189 BIT(LRU_INACTIVE_FILE)); 1190 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid, 1191 BIT(LRU_ACTIVE_FILE)); 1192 1193 return (active > inactive); 1194 } 1195 1196 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, 1197 struct zone *zone) 1198 { 1199 int nid = zone_to_nid(zone); 1200 int zid = zone_idx(zone); 1201 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 1202 1203 return &mz->reclaim_stat; 1204 } 1205 1206 struct zone_reclaim_stat * 1207 mem_cgroup_get_reclaim_stat_from_page(struct page *page) 1208 { 1209 struct page_cgroup *pc; 1210 struct mem_cgroup_per_zone *mz; 1211 1212 if (mem_cgroup_disabled()) 1213 return NULL; 1214 1215 pc = lookup_page_cgroup(page); 1216 if (!PageCgroupUsed(pc)) 1217 return NULL; 1218 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ 1219 smp_rmb(); 1220 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); 1221 return &mz->reclaim_stat; 1222 } 1223 1224 #define mem_cgroup_from_res_counter(counter, member) \ 1225 container_of(counter, struct mem_cgroup, member) 1226 1227 /** 1228 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1229 * @mem: the memory cgroup 1230 * 1231 * Returns the maximum amount of memory @mem can be charged with, in 1232 * pages. 1233 */ 1234 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1235 { 1236 unsigned long long margin; 1237 1238 margin = res_counter_margin(&memcg->res); 1239 if (do_swap_account) 1240 margin = min(margin, res_counter_margin(&memcg->memsw)); 1241 return margin >> PAGE_SHIFT; 1242 } 1243 1244 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1245 { 1246 struct cgroup *cgrp = memcg->css.cgroup; 1247 1248 /* root ? */ 1249 if (cgrp->parent == NULL) 1250 return vm_swappiness; 1251 1252 return memcg->swappiness; 1253 } 1254 1255 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1256 { 1257 int cpu; 1258 1259 get_online_cpus(); 1260 spin_lock(&memcg->pcp_counter_lock); 1261 for_each_online_cpu(cpu) 1262 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1; 1263 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1; 1264 spin_unlock(&memcg->pcp_counter_lock); 1265 put_online_cpus(); 1266 1267 synchronize_rcu(); 1268 } 1269 1270 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1271 { 1272 int cpu; 1273 1274 if (!memcg) 1275 return; 1276 get_online_cpus(); 1277 spin_lock(&memcg->pcp_counter_lock); 1278 for_each_online_cpu(cpu) 1279 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1; 1280 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1; 1281 spin_unlock(&memcg->pcp_counter_lock); 1282 put_online_cpus(); 1283 } 1284 /* 1285 * 2 routines for checking "mem" is under move_account() or not. 1286 * 1287 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used 1288 * for avoiding race in accounting. If true, 1289 * pc->mem_cgroup may be overwritten. 1290 * 1291 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1292 * under hierarchy of moving cgroups. This is for 1293 * waiting at hith-memory prressure caused by "move". 1294 */ 1295 1296 static bool mem_cgroup_stealed(struct mem_cgroup *memcg) 1297 { 1298 VM_BUG_ON(!rcu_read_lock_held()); 1299 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0; 1300 } 1301 1302 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1303 { 1304 struct mem_cgroup *from; 1305 struct mem_cgroup *to; 1306 bool ret = false; 1307 /* 1308 * Unlike task_move routines, we access mc.to, mc.from not under 1309 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1310 */ 1311 spin_lock(&mc.lock); 1312 from = mc.from; 1313 to = mc.to; 1314 if (!from) 1315 goto unlock; 1316 1317 ret = mem_cgroup_same_or_subtree(memcg, from) 1318 || mem_cgroup_same_or_subtree(memcg, to); 1319 unlock: 1320 spin_unlock(&mc.lock); 1321 return ret; 1322 } 1323 1324 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1325 { 1326 if (mc.moving_task && current != mc.moving_task) { 1327 if (mem_cgroup_under_move(memcg)) { 1328 DEFINE_WAIT(wait); 1329 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1330 /* moving charge context might have finished. */ 1331 if (mc.moving_task) 1332 schedule(); 1333 finish_wait(&mc.waitq, &wait); 1334 return true; 1335 } 1336 } 1337 return false; 1338 } 1339 1340 /** 1341 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1342 * @memcg: The memory cgroup that went over limit 1343 * @p: Task that is going to be killed 1344 * 1345 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1346 * enabled 1347 */ 1348 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1349 { 1350 struct cgroup *task_cgrp; 1351 struct cgroup *mem_cgrp; 1352 /* 1353 * Need a buffer in BSS, can't rely on allocations. The code relies 1354 * on the assumption that OOM is serialized for memory controller. 1355 * If this assumption is broken, revisit this code. 1356 */ 1357 static char memcg_name[PATH_MAX]; 1358 int ret; 1359 1360 if (!memcg || !p) 1361 return; 1362 1363 1364 rcu_read_lock(); 1365 1366 mem_cgrp = memcg->css.cgroup; 1367 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1368 1369 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1370 if (ret < 0) { 1371 /* 1372 * Unfortunately, we are unable to convert to a useful name 1373 * But we'll still print out the usage information 1374 */ 1375 rcu_read_unlock(); 1376 goto done; 1377 } 1378 rcu_read_unlock(); 1379 1380 printk(KERN_INFO "Task in %s killed", memcg_name); 1381 1382 rcu_read_lock(); 1383 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1384 if (ret < 0) { 1385 rcu_read_unlock(); 1386 goto done; 1387 } 1388 rcu_read_unlock(); 1389 1390 /* 1391 * Continues from above, so we don't need an KERN_ level 1392 */ 1393 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1394 done: 1395 1396 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1397 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1398 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1399 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1400 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1401 "failcnt %llu\n", 1402 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1403 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1404 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1405 } 1406 1407 /* 1408 * This function returns the number of memcg under hierarchy tree. Returns 1409 * 1(self count) if no children. 1410 */ 1411 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1412 { 1413 int num = 0; 1414 struct mem_cgroup *iter; 1415 1416 for_each_mem_cgroup_tree(iter, memcg) 1417 num++; 1418 return num; 1419 } 1420 1421 /* 1422 * Return the memory (and swap, if configured) limit for a memcg. 1423 */ 1424 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1425 { 1426 u64 limit; 1427 u64 memsw; 1428 1429 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1430 limit += total_swap_pages << PAGE_SHIFT; 1431 1432 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1433 /* 1434 * If memsw is finite and limits the amount of swap space available 1435 * to this memcg, return that limit. 1436 */ 1437 return min(limit, memsw); 1438 } 1439 1440 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1441 gfp_t gfp_mask, 1442 unsigned long flags) 1443 { 1444 unsigned long total = 0; 1445 bool noswap = false; 1446 int loop; 1447 1448 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1449 noswap = true; 1450 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1451 noswap = true; 1452 1453 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1454 if (loop) 1455 drain_all_stock_async(memcg); 1456 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1457 /* 1458 * Allow limit shrinkers, which are triggered directly 1459 * by userspace, to catch signals and stop reclaim 1460 * after minimal progress, regardless of the margin. 1461 */ 1462 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1463 break; 1464 if (mem_cgroup_margin(memcg)) 1465 break; 1466 /* 1467 * If nothing was reclaimed after two attempts, there 1468 * may be no reclaimable pages in this hierarchy. 1469 */ 1470 if (loop && !total) 1471 break; 1472 } 1473 return total; 1474 } 1475 1476 /** 1477 * test_mem_cgroup_node_reclaimable 1478 * @mem: the target memcg 1479 * @nid: the node ID to be checked. 1480 * @noswap : specify true here if the user wants flle only information. 1481 * 1482 * This function returns whether the specified memcg contains any 1483 * reclaimable pages on a node. Returns true if there are any reclaimable 1484 * pages in the node. 1485 */ 1486 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1487 int nid, bool noswap) 1488 { 1489 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1490 return true; 1491 if (noswap || !total_swap_pages) 1492 return false; 1493 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1494 return true; 1495 return false; 1496 1497 } 1498 #if MAX_NUMNODES > 1 1499 1500 /* 1501 * Always updating the nodemask is not very good - even if we have an empty 1502 * list or the wrong list here, we can start from some node and traverse all 1503 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1504 * 1505 */ 1506 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1507 { 1508 int nid; 1509 /* 1510 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1511 * pagein/pageout changes since the last update. 1512 */ 1513 if (!atomic_read(&memcg->numainfo_events)) 1514 return; 1515 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1516 return; 1517 1518 /* make a nodemask where this memcg uses memory from */ 1519 memcg->scan_nodes = node_states[N_HIGH_MEMORY]; 1520 1521 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { 1522 1523 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1524 node_clear(nid, memcg->scan_nodes); 1525 } 1526 1527 atomic_set(&memcg->numainfo_events, 0); 1528 atomic_set(&memcg->numainfo_updating, 0); 1529 } 1530 1531 /* 1532 * Selecting a node where we start reclaim from. Because what we need is just 1533 * reducing usage counter, start from anywhere is O,K. Considering 1534 * memory reclaim from current node, there are pros. and cons. 1535 * 1536 * Freeing memory from current node means freeing memory from a node which 1537 * we'll use or we've used. So, it may make LRU bad. And if several threads 1538 * hit limits, it will see a contention on a node. But freeing from remote 1539 * node means more costs for memory reclaim because of memory latency. 1540 * 1541 * Now, we use round-robin. Better algorithm is welcomed. 1542 */ 1543 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1544 { 1545 int node; 1546 1547 mem_cgroup_may_update_nodemask(memcg); 1548 node = memcg->last_scanned_node; 1549 1550 node = next_node(node, memcg->scan_nodes); 1551 if (node == MAX_NUMNODES) 1552 node = first_node(memcg->scan_nodes); 1553 /* 1554 * We call this when we hit limit, not when pages are added to LRU. 1555 * No LRU may hold pages because all pages are UNEVICTABLE or 1556 * memcg is too small and all pages are not on LRU. In that case, 1557 * we use curret node. 1558 */ 1559 if (unlikely(node == MAX_NUMNODES)) 1560 node = numa_node_id(); 1561 1562 memcg->last_scanned_node = node; 1563 return node; 1564 } 1565 1566 /* 1567 * Check all nodes whether it contains reclaimable pages or not. 1568 * For quick scan, we make use of scan_nodes. This will allow us to skip 1569 * unused nodes. But scan_nodes is lazily updated and may not cotain 1570 * enough new information. We need to do double check. 1571 */ 1572 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1573 { 1574 int nid; 1575 1576 /* 1577 * quick check...making use of scan_node. 1578 * We can skip unused nodes. 1579 */ 1580 if (!nodes_empty(memcg->scan_nodes)) { 1581 for (nid = first_node(memcg->scan_nodes); 1582 nid < MAX_NUMNODES; 1583 nid = next_node(nid, memcg->scan_nodes)) { 1584 1585 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1586 return true; 1587 } 1588 } 1589 /* 1590 * Check rest of nodes. 1591 */ 1592 for_each_node_state(nid, N_HIGH_MEMORY) { 1593 if (node_isset(nid, memcg->scan_nodes)) 1594 continue; 1595 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1596 return true; 1597 } 1598 return false; 1599 } 1600 1601 #else 1602 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1603 { 1604 return 0; 1605 } 1606 1607 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1608 { 1609 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1610 } 1611 #endif 1612 1613 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1614 struct zone *zone, 1615 gfp_t gfp_mask, 1616 unsigned long *total_scanned) 1617 { 1618 struct mem_cgroup *victim = NULL; 1619 int total = 0; 1620 int loop = 0; 1621 unsigned long excess; 1622 unsigned long nr_scanned; 1623 struct mem_cgroup_reclaim_cookie reclaim = { 1624 .zone = zone, 1625 .priority = 0, 1626 }; 1627 1628 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1629 1630 while (1) { 1631 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1632 if (!victim) { 1633 loop++; 1634 if (loop >= 2) { 1635 /* 1636 * If we have not been able to reclaim 1637 * anything, it might because there are 1638 * no reclaimable pages under this hierarchy 1639 */ 1640 if (!total) 1641 break; 1642 /* 1643 * We want to do more targeted reclaim. 1644 * excess >> 2 is not to excessive so as to 1645 * reclaim too much, nor too less that we keep 1646 * coming back to reclaim from this cgroup 1647 */ 1648 if (total >= (excess >> 2) || 1649 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1650 break; 1651 } 1652 continue; 1653 } 1654 if (!mem_cgroup_reclaimable(victim, false)) 1655 continue; 1656 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1657 zone, &nr_scanned); 1658 *total_scanned += nr_scanned; 1659 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1660 break; 1661 } 1662 mem_cgroup_iter_break(root_memcg, victim); 1663 return total; 1664 } 1665 1666 /* 1667 * Check OOM-Killer is already running under our hierarchy. 1668 * If someone is running, return false. 1669 * Has to be called with memcg_oom_lock 1670 */ 1671 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1672 { 1673 struct mem_cgroup *iter, *failed = NULL; 1674 1675 for_each_mem_cgroup_tree(iter, memcg) { 1676 if (iter->oom_lock) { 1677 /* 1678 * this subtree of our hierarchy is already locked 1679 * so we cannot give a lock. 1680 */ 1681 failed = iter; 1682 mem_cgroup_iter_break(memcg, iter); 1683 break; 1684 } else 1685 iter->oom_lock = true; 1686 } 1687 1688 if (!failed) 1689 return true; 1690 1691 /* 1692 * OK, we failed to lock the whole subtree so we have to clean up 1693 * what we set up to the failing subtree 1694 */ 1695 for_each_mem_cgroup_tree(iter, memcg) { 1696 if (iter == failed) { 1697 mem_cgroup_iter_break(memcg, iter); 1698 break; 1699 } 1700 iter->oom_lock = false; 1701 } 1702 return false; 1703 } 1704 1705 /* 1706 * Has to be called with memcg_oom_lock 1707 */ 1708 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1709 { 1710 struct mem_cgroup *iter; 1711 1712 for_each_mem_cgroup_tree(iter, memcg) 1713 iter->oom_lock = false; 1714 return 0; 1715 } 1716 1717 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1718 { 1719 struct mem_cgroup *iter; 1720 1721 for_each_mem_cgroup_tree(iter, memcg) 1722 atomic_inc(&iter->under_oom); 1723 } 1724 1725 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1726 { 1727 struct mem_cgroup *iter; 1728 1729 /* 1730 * When a new child is created while the hierarchy is under oom, 1731 * mem_cgroup_oom_lock() may not be called. We have to use 1732 * atomic_add_unless() here. 1733 */ 1734 for_each_mem_cgroup_tree(iter, memcg) 1735 atomic_add_unless(&iter->under_oom, -1, 0); 1736 } 1737 1738 static DEFINE_SPINLOCK(memcg_oom_lock); 1739 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1740 1741 struct oom_wait_info { 1742 struct mem_cgroup *mem; 1743 wait_queue_t wait; 1744 }; 1745 1746 static int memcg_oom_wake_function(wait_queue_t *wait, 1747 unsigned mode, int sync, void *arg) 1748 { 1749 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg, 1750 *oom_wait_memcg; 1751 struct oom_wait_info *oom_wait_info; 1752 1753 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1754 oom_wait_memcg = oom_wait_info->mem; 1755 1756 /* 1757 * Both of oom_wait_info->mem and wake_mem are stable under us. 1758 * Then we can use css_is_ancestor without taking care of RCU. 1759 */ 1760 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 1761 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 1762 return 0; 1763 return autoremove_wake_function(wait, mode, sync, arg); 1764 } 1765 1766 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 1767 { 1768 /* for filtering, pass "memcg" as argument. */ 1769 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1770 } 1771 1772 static void memcg_oom_recover(struct mem_cgroup *memcg) 1773 { 1774 if (memcg && atomic_read(&memcg->under_oom)) 1775 memcg_wakeup_oom(memcg); 1776 } 1777 1778 /* 1779 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1780 */ 1781 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask) 1782 { 1783 struct oom_wait_info owait; 1784 bool locked, need_to_kill; 1785 1786 owait.mem = memcg; 1787 owait.wait.flags = 0; 1788 owait.wait.func = memcg_oom_wake_function; 1789 owait.wait.private = current; 1790 INIT_LIST_HEAD(&owait.wait.task_list); 1791 need_to_kill = true; 1792 mem_cgroup_mark_under_oom(memcg); 1793 1794 /* At first, try to OOM lock hierarchy under memcg.*/ 1795 spin_lock(&memcg_oom_lock); 1796 locked = mem_cgroup_oom_lock(memcg); 1797 /* 1798 * Even if signal_pending(), we can't quit charge() loop without 1799 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1800 * under OOM is always welcomed, use TASK_KILLABLE here. 1801 */ 1802 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1803 if (!locked || memcg->oom_kill_disable) 1804 need_to_kill = false; 1805 if (locked) 1806 mem_cgroup_oom_notify(memcg); 1807 spin_unlock(&memcg_oom_lock); 1808 1809 if (need_to_kill) { 1810 finish_wait(&memcg_oom_waitq, &owait.wait); 1811 mem_cgroup_out_of_memory(memcg, mask); 1812 } else { 1813 schedule(); 1814 finish_wait(&memcg_oom_waitq, &owait.wait); 1815 } 1816 spin_lock(&memcg_oom_lock); 1817 if (locked) 1818 mem_cgroup_oom_unlock(memcg); 1819 memcg_wakeup_oom(memcg); 1820 spin_unlock(&memcg_oom_lock); 1821 1822 mem_cgroup_unmark_under_oom(memcg); 1823 1824 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1825 return false; 1826 /* Give chance to dying process */ 1827 schedule_timeout_uninterruptible(1); 1828 return true; 1829 } 1830 1831 /* 1832 * Currently used to update mapped file statistics, but the routine can be 1833 * generalized to update other statistics as well. 1834 * 1835 * Notes: Race condition 1836 * 1837 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1838 * it tends to be costly. But considering some conditions, we doesn't need 1839 * to do so _always_. 1840 * 1841 * Considering "charge", lock_page_cgroup() is not required because all 1842 * file-stat operations happen after a page is attached to radix-tree. There 1843 * are no race with "charge". 1844 * 1845 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1846 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1847 * if there are race with "uncharge". Statistics itself is properly handled 1848 * by flags. 1849 * 1850 * Considering "move", this is an only case we see a race. To make the race 1851 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are 1852 * possibility of race condition. If there is, we take a lock. 1853 */ 1854 1855 void mem_cgroup_update_page_stat(struct page *page, 1856 enum mem_cgroup_page_stat_item idx, int val) 1857 { 1858 struct mem_cgroup *memcg; 1859 struct page_cgroup *pc = lookup_page_cgroup(page); 1860 bool need_unlock = false; 1861 unsigned long uninitialized_var(flags); 1862 1863 if (mem_cgroup_disabled()) 1864 return; 1865 1866 rcu_read_lock(); 1867 memcg = pc->mem_cgroup; 1868 if (unlikely(!memcg || !PageCgroupUsed(pc))) 1869 goto out; 1870 /* pc->mem_cgroup is unstable ? */ 1871 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) { 1872 /* take a lock against to access pc->mem_cgroup */ 1873 move_lock_page_cgroup(pc, &flags); 1874 need_unlock = true; 1875 memcg = pc->mem_cgroup; 1876 if (!memcg || !PageCgroupUsed(pc)) 1877 goto out; 1878 } 1879 1880 switch (idx) { 1881 case MEMCG_NR_FILE_MAPPED: 1882 if (val > 0) 1883 SetPageCgroupFileMapped(pc); 1884 else if (!page_mapped(page)) 1885 ClearPageCgroupFileMapped(pc); 1886 idx = MEM_CGROUP_STAT_FILE_MAPPED; 1887 break; 1888 default: 1889 BUG(); 1890 } 1891 1892 this_cpu_add(memcg->stat->count[idx], val); 1893 1894 out: 1895 if (unlikely(need_unlock)) 1896 move_unlock_page_cgroup(pc, &flags); 1897 rcu_read_unlock(); 1898 return; 1899 } 1900 EXPORT_SYMBOL(mem_cgroup_update_page_stat); 1901 1902 /* 1903 * size of first charge trial. "32" comes from vmscan.c's magic value. 1904 * TODO: maybe necessary to use big numbers in big irons. 1905 */ 1906 #define CHARGE_BATCH 32U 1907 struct memcg_stock_pcp { 1908 struct mem_cgroup *cached; /* this never be root cgroup */ 1909 unsigned int nr_pages; 1910 struct work_struct work; 1911 unsigned long flags; 1912 #define FLUSHING_CACHED_CHARGE (0) 1913 }; 1914 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1915 static DEFINE_MUTEX(percpu_charge_mutex); 1916 1917 /* 1918 * Try to consume stocked charge on this cpu. If success, one page is consumed 1919 * from local stock and true is returned. If the stock is 0 or charges from a 1920 * cgroup which is not current target, returns false. This stock will be 1921 * refilled. 1922 */ 1923 static bool consume_stock(struct mem_cgroup *memcg) 1924 { 1925 struct memcg_stock_pcp *stock; 1926 bool ret = true; 1927 1928 stock = &get_cpu_var(memcg_stock); 1929 if (memcg == stock->cached && stock->nr_pages) 1930 stock->nr_pages--; 1931 else /* need to call res_counter_charge */ 1932 ret = false; 1933 put_cpu_var(memcg_stock); 1934 return ret; 1935 } 1936 1937 /* 1938 * Returns stocks cached in percpu to res_counter and reset cached information. 1939 */ 1940 static void drain_stock(struct memcg_stock_pcp *stock) 1941 { 1942 struct mem_cgroup *old = stock->cached; 1943 1944 if (stock->nr_pages) { 1945 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 1946 1947 res_counter_uncharge(&old->res, bytes); 1948 if (do_swap_account) 1949 res_counter_uncharge(&old->memsw, bytes); 1950 stock->nr_pages = 0; 1951 } 1952 stock->cached = NULL; 1953 } 1954 1955 /* 1956 * This must be called under preempt disabled or must be called by 1957 * a thread which is pinned to local cpu. 1958 */ 1959 static void drain_local_stock(struct work_struct *dummy) 1960 { 1961 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 1962 drain_stock(stock); 1963 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1964 } 1965 1966 /* 1967 * Cache charges(val) which is from res_counter, to local per_cpu area. 1968 * This will be consumed by consume_stock() function, later. 1969 */ 1970 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1971 { 1972 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1973 1974 if (stock->cached != memcg) { /* reset if necessary */ 1975 drain_stock(stock); 1976 stock->cached = memcg; 1977 } 1978 stock->nr_pages += nr_pages; 1979 put_cpu_var(memcg_stock); 1980 } 1981 1982 /* 1983 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1984 * of the hierarchy under it. sync flag says whether we should block 1985 * until the work is done. 1986 */ 1987 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 1988 { 1989 int cpu, curcpu; 1990 1991 /* Notify other cpus that system-wide "drain" is running */ 1992 get_online_cpus(); 1993 curcpu = get_cpu(); 1994 for_each_online_cpu(cpu) { 1995 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1996 struct mem_cgroup *memcg; 1997 1998 memcg = stock->cached; 1999 if (!memcg || !stock->nr_pages) 2000 continue; 2001 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2002 continue; 2003 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2004 if (cpu == curcpu) 2005 drain_local_stock(&stock->work); 2006 else 2007 schedule_work_on(cpu, &stock->work); 2008 } 2009 } 2010 put_cpu(); 2011 2012 if (!sync) 2013 goto out; 2014 2015 for_each_online_cpu(cpu) { 2016 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2017 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2018 flush_work(&stock->work); 2019 } 2020 out: 2021 put_online_cpus(); 2022 } 2023 2024 /* 2025 * Tries to drain stocked charges in other cpus. This function is asynchronous 2026 * and just put a work per cpu for draining localy on each cpu. Caller can 2027 * expects some charges will be back to res_counter later but cannot wait for 2028 * it. 2029 */ 2030 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2031 { 2032 /* 2033 * If someone calls draining, avoid adding more kworker runs. 2034 */ 2035 if (!mutex_trylock(&percpu_charge_mutex)) 2036 return; 2037 drain_all_stock(root_memcg, false); 2038 mutex_unlock(&percpu_charge_mutex); 2039 } 2040 2041 /* This is a synchronous drain interface. */ 2042 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2043 { 2044 /* called when force_empty is called */ 2045 mutex_lock(&percpu_charge_mutex); 2046 drain_all_stock(root_memcg, true); 2047 mutex_unlock(&percpu_charge_mutex); 2048 } 2049 2050 /* 2051 * This function drains percpu counter value from DEAD cpu and 2052 * move it to local cpu. Note that this function can be preempted. 2053 */ 2054 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2055 { 2056 int i; 2057 2058 spin_lock(&memcg->pcp_counter_lock); 2059 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) { 2060 long x = per_cpu(memcg->stat->count[i], cpu); 2061 2062 per_cpu(memcg->stat->count[i], cpu) = 0; 2063 memcg->nocpu_base.count[i] += x; 2064 } 2065 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2066 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2067 2068 per_cpu(memcg->stat->events[i], cpu) = 0; 2069 memcg->nocpu_base.events[i] += x; 2070 } 2071 /* need to clear ON_MOVE value, works as a kind of lock. */ 2072 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0; 2073 spin_unlock(&memcg->pcp_counter_lock); 2074 } 2075 2076 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu) 2077 { 2078 int idx = MEM_CGROUP_ON_MOVE; 2079 2080 spin_lock(&memcg->pcp_counter_lock); 2081 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx]; 2082 spin_unlock(&memcg->pcp_counter_lock); 2083 } 2084 2085 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2086 unsigned long action, 2087 void *hcpu) 2088 { 2089 int cpu = (unsigned long)hcpu; 2090 struct memcg_stock_pcp *stock; 2091 struct mem_cgroup *iter; 2092 2093 if ((action == CPU_ONLINE)) { 2094 for_each_mem_cgroup(iter) 2095 synchronize_mem_cgroup_on_move(iter, cpu); 2096 return NOTIFY_OK; 2097 } 2098 2099 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN) 2100 return NOTIFY_OK; 2101 2102 for_each_mem_cgroup(iter) 2103 mem_cgroup_drain_pcp_counter(iter, cpu); 2104 2105 stock = &per_cpu(memcg_stock, cpu); 2106 drain_stock(stock); 2107 return NOTIFY_OK; 2108 } 2109 2110 2111 /* See __mem_cgroup_try_charge() for details */ 2112 enum { 2113 CHARGE_OK, /* success */ 2114 CHARGE_RETRY, /* need to retry but retry is not bad */ 2115 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2116 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2117 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2118 }; 2119 2120 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2121 unsigned int nr_pages, bool oom_check) 2122 { 2123 unsigned long csize = nr_pages * PAGE_SIZE; 2124 struct mem_cgroup *mem_over_limit; 2125 struct res_counter *fail_res; 2126 unsigned long flags = 0; 2127 int ret; 2128 2129 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2130 2131 if (likely(!ret)) { 2132 if (!do_swap_account) 2133 return CHARGE_OK; 2134 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2135 if (likely(!ret)) 2136 return CHARGE_OK; 2137 2138 res_counter_uncharge(&memcg->res, csize); 2139 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2140 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2141 } else 2142 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2143 /* 2144 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch 2145 * of regular pages (CHARGE_BATCH), or a single regular page (1). 2146 * 2147 * Never reclaim on behalf of optional batching, retry with a 2148 * single page instead. 2149 */ 2150 if (nr_pages == CHARGE_BATCH) 2151 return CHARGE_RETRY; 2152 2153 if (!(gfp_mask & __GFP_WAIT)) 2154 return CHARGE_WOULDBLOCK; 2155 2156 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2157 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2158 return CHARGE_RETRY; 2159 /* 2160 * Even though the limit is exceeded at this point, reclaim 2161 * may have been able to free some pages. Retry the charge 2162 * before killing the task. 2163 * 2164 * Only for regular pages, though: huge pages are rather 2165 * unlikely to succeed so close to the limit, and we fall back 2166 * to regular pages anyway in case of failure. 2167 */ 2168 if (nr_pages == 1 && ret) 2169 return CHARGE_RETRY; 2170 2171 /* 2172 * At task move, charge accounts can be doubly counted. So, it's 2173 * better to wait until the end of task_move if something is going on. 2174 */ 2175 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2176 return CHARGE_RETRY; 2177 2178 /* If we don't need to call oom-killer at el, return immediately */ 2179 if (!oom_check) 2180 return CHARGE_NOMEM; 2181 /* check OOM */ 2182 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) 2183 return CHARGE_OOM_DIE; 2184 2185 return CHARGE_RETRY; 2186 } 2187 2188 /* 2189 * __mem_cgroup_try_charge() does 2190 * 1. detect memcg to be charged against from passed *mm and *ptr, 2191 * 2. update res_counter 2192 * 3. call memory reclaim if necessary. 2193 * 2194 * In some special case, if the task is fatal, fatal_signal_pending() or 2195 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2196 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2197 * as possible without any hazards. 2: all pages should have a valid 2198 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2199 * pointer, that is treated as a charge to root_mem_cgroup. 2200 * 2201 * So __mem_cgroup_try_charge() will return 2202 * 0 ... on success, filling *ptr with a valid memcg pointer. 2203 * -ENOMEM ... charge failure because of resource limits. 2204 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2205 * 2206 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2207 * the oom-killer can be invoked. 2208 */ 2209 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2210 gfp_t gfp_mask, 2211 unsigned int nr_pages, 2212 struct mem_cgroup **ptr, 2213 bool oom) 2214 { 2215 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2216 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2217 struct mem_cgroup *memcg = NULL; 2218 int ret; 2219 2220 /* 2221 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2222 * in system level. So, allow to go ahead dying process in addition to 2223 * MEMDIE process. 2224 */ 2225 if (unlikely(test_thread_flag(TIF_MEMDIE) 2226 || fatal_signal_pending(current))) 2227 goto bypass; 2228 2229 /* 2230 * We always charge the cgroup the mm_struct belongs to. 2231 * The mm_struct's mem_cgroup changes on task migration if the 2232 * thread group leader migrates. It's possible that mm is not 2233 * set, if so charge the init_mm (happens for pagecache usage). 2234 */ 2235 if (!*ptr && !mm) 2236 *ptr = root_mem_cgroup; 2237 again: 2238 if (*ptr) { /* css should be a valid one */ 2239 memcg = *ptr; 2240 VM_BUG_ON(css_is_removed(&memcg->css)); 2241 if (mem_cgroup_is_root(memcg)) 2242 goto done; 2243 if (nr_pages == 1 && consume_stock(memcg)) 2244 goto done; 2245 css_get(&memcg->css); 2246 } else { 2247 struct task_struct *p; 2248 2249 rcu_read_lock(); 2250 p = rcu_dereference(mm->owner); 2251 /* 2252 * Because we don't have task_lock(), "p" can exit. 2253 * In that case, "memcg" can point to root or p can be NULL with 2254 * race with swapoff. Then, we have small risk of mis-accouning. 2255 * But such kind of mis-account by race always happens because 2256 * we don't have cgroup_mutex(). It's overkill and we allo that 2257 * small race, here. 2258 * (*) swapoff at el will charge against mm-struct not against 2259 * task-struct. So, mm->owner can be NULL. 2260 */ 2261 memcg = mem_cgroup_from_task(p); 2262 if (!memcg) 2263 memcg = root_mem_cgroup; 2264 if (mem_cgroup_is_root(memcg)) { 2265 rcu_read_unlock(); 2266 goto done; 2267 } 2268 if (nr_pages == 1 && consume_stock(memcg)) { 2269 /* 2270 * It seems dagerous to access memcg without css_get(). 2271 * But considering how consume_stok works, it's not 2272 * necessary. If consume_stock success, some charges 2273 * from this memcg are cached on this cpu. So, we 2274 * don't need to call css_get()/css_tryget() before 2275 * calling consume_stock(). 2276 */ 2277 rcu_read_unlock(); 2278 goto done; 2279 } 2280 /* after here, we may be blocked. we need to get refcnt */ 2281 if (!css_tryget(&memcg->css)) { 2282 rcu_read_unlock(); 2283 goto again; 2284 } 2285 rcu_read_unlock(); 2286 } 2287 2288 do { 2289 bool oom_check; 2290 2291 /* If killed, bypass charge */ 2292 if (fatal_signal_pending(current)) { 2293 css_put(&memcg->css); 2294 goto bypass; 2295 } 2296 2297 oom_check = false; 2298 if (oom && !nr_oom_retries) { 2299 oom_check = true; 2300 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2301 } 2302 2303 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); 2304 switch (ret) { 2305 case CHARGE_OK: 2306 break; 2307 case CHARGE_RETRY: /* not in OOM situation but retry */ 2308 batch = nr_pages; 2309 css_put(&memcg->css); 2310 memcg = NULL; 2311 goto again; 2312 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2313 css_put(&memcg->css); 2314 goto nomem; 2315 case CHARGE_NOMEM: /* OOM routine works */ 2316 if (!oom) { 2317 css_put(&memcg->css); 2318 goto nomem; 2319 } 2320 /* If oom, we never return -ENOMEM */ 2321 nr_oom_retries--; 2322 break; 2323 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2324 css_put(&memcg->css); 2325 goto bypass; 2326 } 2327 } while (ret != CHARGE_OK); 2328 2329 if (batch > nr_pages) 2330 refill_stock(memcg, batch - nr_pages); 2331 css_put(&memcg->css); 2332 done: 2333 *ptr = memcg; 2334 return 0; 2335 nomem: 2336 *ptr = NULL; 2337 return -ENOMEM; 2338 bypass: 2339 *ptr = root_mem_cgroup; 2340 return -EINTR; 2341 } 2342 2343 /* 2344 * Somemtimes we have to undo a charge we got by try_charge(). 2345 * This function is for that and do uncharge, put css's refcnt. 2346 * gotten by try_charge(). 2347 */ 2348 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2349 unsigned int nr_pages) 2350 { 2351 if (!mem_cgroup_is_root(memcg)) { 2352 unsigned long bytes = nr_pages * PAGE_SIZE; 2353 2354 res_counter_uncharge(&memcg->res, bytes); 2355 if (do_swap_account) 2356 res_counter_uncharge(&memcg->memsw, bytes); 2357 } 2358 } 2359 2360 /* 2361 * A helper function to get mem_cgroup from ID. must be called under 2362 * rcu_read_lock(). The caller must check css_is_removed() or some if 2363 * it's concern. (dropping refcnt from swap can be called against removed 2364 * memcg.) 2365 */ 2366 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2367 { 2368 struct cgroup_subsys_state *css; 2369 2370 /* ID 0 is unused ID */ 2371 if (!id) 2372 return NULL; 2373 css = css_lookup(&mem_cgroup_subsys, id); 2374 if (!css) 2375 return NULL; 2376 return container_of(css, struct mem_cgroup, css); 2377 } 2378 2379 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2380 { 2381 struct mem_cgroup *memcg = NULL; 2382 struct page_cgroup *pc; 2383 unsigned short id; 2384 swp_entry_t ent; 2385 2386 VM_BUG_ON(!PageLocked(page)); 2387 2388 pc = lookup_page_cgroup(page); 2389 lock_page_cgroup(pc); 2390 if (PageCgroupUsed(pc)) { 2391 memcg = pc->mem_cgroup; 2392 if (memcg && !css_tryget(&memcg->css)) 2393 memcg = NULL; 2394 } else if (PageSwapCache(page)) { 2395 ent.val = page_private(page); 2396 id = lookup_swap_cgroup_id(ent); 2397 rcu_read_lock(); 2398 memcg = mem_cgroup_lookup(id); 2399 if (memcg && !css_tryget(&memcg->css)) 2400 memcg = NULL; 2401 rcu_read_unlock(); 2402 } 2403 unlock_page_cgroup(pc); 2404 return memcg; 2405 } 2406 2407 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2408 struct page *page, 2409 unsigned int nr_pages, 2410 struct page_cgroup *pc, 2411 enum charge_type ctype) 2412 { 2413 lock_page_cgroup(pc); 2414 if (unlikely(PageCgroupUsed(pc))) { 2415 unlock_page_cgroup(pc); 2416 __mem_cgroup_cancel_charge(memcg, nr_pages); 2417 return; 2418 } 2419 /* 2420 * we don't need page_cgroup_lock about tail pages, becase they are not 2421 * accessed by any other context at this point. 2422 */ 2423 pc->mem_cgroup = memcg; 2424 /* 2425 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2426 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2427 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2428 * before USED bit, we need memory barrier here. 2429 * See mem_cgroup_add_lru_list(), etc. 2430 */ 2431 smp_wmb(); 2432 switch (ctype) { 2433 case MEM_CGROUP_CHARGE_TYPE_CACHE: 2434 case MEM_CGROUP_CHARGE_TYPE_SHMEM: 2435 SetPageCgroupCache(pc); 2436 SetPageCgroupUsed(pc); 2437 break; 2438 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2439 ClearPageCgroupCache(pc); 2440 SetPageCgroupUsed(pc); 2441 break; 2442 default: 2443 break; 2444 } 2445 2446 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages); 2447 unlock_page_cgroup(pc); 2448 WARN_ON_ONCE(PageLRU(page)); 2449 /* 2450 * "charge_statistics" updated event counter. Then, check it. 2451 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2452 * if they exceeds softlimit. 2453 */ 2454 memcg_check_events(memcg, page); 2455 } 2456 2457 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2458 2459 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\ 2460 (1 << PCG_MIGRATION)) 2461 /* 2462 * Because tail pages are not marked as "used", set it. We're under 2463 * zone->lru_lock, 'splitting on pmd' and compound_lock. 2464 * charge/uncharge will be never happen and move_account() is done under 2465 * compound_lock(), so we don't have to take care of races. 2466 */ 2467 void mem_cgroup_split_huge_fixup(struct page *head) 2468 { 2469 struct page_cgroup *head_pc = lookup_page_cgroup(head); 2470 struct page_cgroup *pc; 2471 int i; 2472 2473 if (mem_cgroup_disabled()) 2474 return; 2475 for (i = 1; i < HPAGE_PMD_NR; i++) { 2476 pc = head_pc + i; 2477 pc->mem_cgroup = head_pc->mem_cgroup; 2478 smp_wmb();/* see __commit_charge() */ 2479 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 2480 } 2481 } 2482 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2483 2484 /** 2485 * mem_cgroup_move_account - move account of the page 2486 * @page: the page 2487 * @nr_pages: number of regular pages (>1 for huge pages) 2488 * @pc: page_cgroup of the page. 2489 * @from: mem_cgroup which the page is moved from. 2490 * @to: mem_cgroup which the page is moved to. @from != @to. 2491 * @uncharge: whether we should call uncharge and css_put against @from. 2492 * 2493 * The caller must confirm following. 2494 * - page is not on LRU (isolate_page() is useful.) 2495 * - compound_lock is held when nr_pages > 1 2496 * 2497 * This function doesn't do "charge" nor css_get to new cgroup. It should be 2498 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is 2499 * true, this function does "uncharge" from old cgroup, but it doesn't if 2500 * @uncharge is false, so a caller should do "uncharge". 2501 */ 2502 static int mem_cgroup_move_account(struct page *page, 2503 unsigned int nr_pages, 2504 struct page_cgroup *pc, 2505 struct mem_cgroup *from, 2506 struct mem_cgroup *to, 2507 bool uncharge) 2508 { 2509 unsigned long flags; 2510 int ret; 2511 2512 VM_BUG_ON(from == to); 2513 VM_BUG_ON(PageLRU(page)); 2514 /* 2515 * The page is isolated from LRU. So, collapse function 2516 * will not handle this page. But page splitting can happen. 2517 * Do this check under compound_page_lock(). The caller should 2518 * hold it. 2519 */ 2520 ret = -EBUSY; 2521 if (nr_pages > 1 && !PageTransHuge(page)) 2522 goto out; 2523 2524 lock_page_cgroup(pc); 2525 2526 ret = -EINVAL; 2527 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 2528 goto unlock; 2529 2530 move_lock_page_cgroup(pc, &flags); 2531 2532 if (PageCgroupFileMapped(pc)) { 2533 /* Update mapped_file data for mem_cgroup */ 2534 preempt_disable(); 2535 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2536 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2537 preempt_enable(); 2538 } 2539 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages); 2540 if (uncharge) 2541 /* This is not "cancel", but cancel_charge does all we need. */ 2542 __mem_cgroup_cancel_charge(from, nr_pages); 2543 2544 /* caller should have done css_get */ 2545 pc->mem_cgroup = to; 2546 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages); 2547 /* 2548 * We charges against "to" which may not have any tasks. Then, "to" 2549 * can be under rmdir(). But in current implementation, caller of 2550 * this function is just force_empty() and move charge, so it's 2551 * guaranteed that "to" is never removed. So, we don't check rmdir 2552 * status here. 2553 */ 2554 move_unlock_page_cgroup(pc, &flags); 2555 ret = 0; 2556 unlock: 2557 unlock_page_cgroup(pc); 2558 /* 2559 * check events 2560 */ 2561 memcg_check_events(to, page); 2562 memcg_check_events(from, page); 2563 out: 2564 return ret; 2565 } 2566 2567 /* 2568 * move charges to its parent. 2569 */ 2570 2571 static int mem_cgroup_move_parent(struct page *page, 2572 struct page_cgroup *pc, 2573 struct mem_cgroup *child, 2574 gfp_t gfp_mask) 2575 { 2576 struct cgroup *cg = child->css.cgroup; 2577 struct cgroup *pcg = cg->parent; 2578 struct mem_cgroup *parent; 2579 unsigned int nr_pages; 2580 unsigned long uninitialized_var(flags); 2581 int ret; 2582 2583 /* Is ROOT ? */ 2584 if (!pcg) 2585 return -EINVAL; 2586 2587 ret = -EBUSY; 2588 if (!get_page_unless_zero(page)) 2589 goto out; 2590 if (isolate_lru_page(page)) 2591 goto put; 2592 2593 nr_pages = hpage_nr_pages(page); 2594 2595 parent = mem_cgroup_from_cont(pcg); 2596 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false); 2597 if (ret) 2598 goto put_back; 2599 2600 if (nr_pages > 1) 2601 flags = compound_lock_irqsave(page); 2602 2603 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true); 2604 if (ret) 2605 __mem_cgroup_cancel_charge(parent, nr_pages); 2606 2607 if (nr_pages > 1) 2608 compound_unlock_irqrestore(page, flags); 2609 put_back: 2610 putback_lru_page(page); 2611 put: 2612 put_page(page); 2613 out: 2614 return ret; 2615 } 2616 2617 /* 2618 * Charge the memory controller for page usage. 2619 * Return 2620 * 0 if the charge was successful 2621 * < 0 if the cgroup is over its limit 2622 */ 2623 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2624 gfp_t gfp_mask, enum charge_type ctype) 2625 { 2626 struct mem_cgroup *memcg = NULL; 2627 unsigned int nr_pages = 1; 2628 struct page_cgroup *pc; 2629 bool oom = true; 2630 int ret; 2631 2632 if (PageTransHuge(page)) { 2633 nr_pages <<= compound_order(page); 2634 VM_BUG_ON(!PageTransHuge(page)); 2635 /* 2636 * Never OOM-kill a process for a huge page. The 2637 * fault handler will fall back to regular pages. 2638 */ 2639 oom = false; 2640 } 2641 2642 pc = lookup_page_cgroup(page); 2643 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 2644 if (ret == -ENOMEM) 2645 return ret; 2646 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype); 2647 return 0; 2648 } 2649 2650 int mem_cgroup_newpage_charge(struct page *page, 2651 struct mm_struct *mm, gfp_t gfp_mask) 2652 { 2653 if (mem_cgroup_disabled()) 2654 return 0; 2655 VM_BUG_ON(page_mapped(page)); 2656 VM_BUG_ON(page->mapping && !PageAnon(page)); 2657 VM_BUG_ON(!mm); 2658 return mem_cgroup_charge_common(page, mm, gfp_mask, 2659 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2660 } 2661 2662 static void 2663 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 2664 enum charge_type ctype); 2665 2666 static void 2667 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg, 2668 enum charge_type ctype) 2669 { 2670 struct page_cgroup *pc = lookup_page_cgroup(page); 2671 struct zone *zone = page_zone(page); 2672 unsigned long flags; 2673 bool removed = false; 2674 2675 /* 2676 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page 2677 * is already on LRU. It means the page may on some other page_cgroup's 2678 * LRU. Take care of it. 2679 */ 2680 spin_lock_irqsave(&zone->lru_lock, flags); 2681 if (PageLRU(page)) { 2682 del_page_from_lru_list(zone, page, page_lru(page)); 2683 ClearPageLRU(page); 2684 removed = true; 2685 } 2686 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype); 2687 if (removed) { 2688 add_page_to_lru_list(zone, page, page_lru(page)); 2689 SetPageLRU(page); 2690 } 2691 spin_unlock_irqrestore(&zone->lru_lock, flags); 2692 return; 2693 } 2694 2695 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2696 gfp_t gfp_mask) 2697 { 2698 struct mem_cgroup *memcg = NULL; 2699 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 2700 int ret; 2701 2702 if (mem_cgroup_disabled()) 2703 return 0; 2704 if (PageCompound(page)) 2705 return 0; 2706 2707 if (unlikely(!mm)) 2708 mm = &init_mm; 2709 if (!page_is_file_cache(page)) 2710 type = MEM_CGROUP_CHARGE_TYPE_SHMEM; 2711 2712 if (!PageSwapCache(page)) 2713 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 2714 else { /* page is swapcache/shmem */ 2715 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg); 2716 if (!ret) 2717 __mem_cgroup_commit_charge_swapin(page, memcg, type); 2718 } 2719 return ret; 2720 } 2721 2722 /* 2723 * While swap-in, try_charge -> commit or cancel, the page is locked. 2724 * And when try_charge() successfully returns, one refcnt to memcg without 2725 * struct page_cgroup is acquired. This refcnt will be consumed by 2726 * "commit()" or removed by "cancel()" 2727 */ 2728 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2729 struct page *page, 2730 gfp_t mask, struct mem_cgroup **memcgp) 2731 { 2732 struct mem_cgroup *memcg; 2733 int ret; 2734 2735 *memcgp = NULL; 2736 2737 if (mem_cgroup_disabled()) 2738 return 0; 2739 2740 if (!do_swap_account) 2741 goto charge_cur_mm; 2742 /* 2743 * A racing thread's fault, or swapoff, may have already updated 2744 * the pte, and even removed page from swap cache: in those cases 2745 * do_swap_page()'s pte_same() test will fail; but there's also a 2746 * KSM case which does need to charge the page. 2747 */ 2748 if (!PageSwapCache(page)) 2749 goto charge_cur_mm; 2750 memcg = try_get_mem_cgroup_from_page(page); 2751 if (!memcg) 2752 goto charge_cur_mm; 2753 *memcgp = memcg; 2754 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 2755 css_put(&memcg->css); 2756 if (ret == -EINTR) 2757 ret = 0; 2758 return ret; 2759 charge_cur_mm: 2760 if (unlikely(!mm)) 2761 mm = &init_mm; 2762 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 2763 if (ret == -EINTR) 2764 ret = 0; 2765 return ret; 2766 } 2767 2768 static void 2769 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 2770 enum charge_type ctype) 2771 { 2772 if (mem_cgroup_disabled()) 2773 return; 2774 if (!memcg) 2775 return; 2776 cgroup_exclude_rmdir(&memcg->css); 2777 2778 __mem_cgroup_commit_charge_lrucare(page, memcg, ctype); 2779 /* 2780 * Now swap is on-memory. This means this page may be 2781 * counted both as mem and swap....double count. 2782 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2783 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2784 * may call delete_from_swap_cache() before reach here. 2785 */ 2786 if (do_swap_account && PageSwapCache(page)) { 2787 swp_entry_t ent = {.val = page_private(page)}; 2788 struct mem_cgroup *swap_memcg; 2789 unsigned short id; 2790 2791 id = swap_cgroup_record(ent, 0); 2792 rcu_read_lock(); 2793 swap_memcg = mem_cgroup_lookup(id); 2794 if (swap_memcg) { 2795 /* 2796 * This recorded memcg can be obsolete one. So, avoid 2797 * calling css_tryget 2798 */ 2799 if (!mem_cgroup_is_root(swap_memcg)) 2800 res_counter_uncharge(&swap_memcg->memsw, 2801 PAGE_SIZE); 2802 mem_cgroup_swap_statistics(swap_memcg, false); 2803 mem_cgroup_put(swap_memcg); 2804 } 2805 rcu_read_unlock(); 2806 } 2807 /* 2808 * At swapin, we may charge account against cgroup which has no tasks. 2809 * So, rmdir()->pre_destroy() can be called while we do this charge. 2810 * In that case, we need to call pre_destroy() again. check it here. 2811 */ 2812 cgroup_release_and_wakeup_rmdir(&memcg->css); 2813 } 2814 2815 void mem_cgroup_commit_charge_swapin(struct page *page, 2816 struct mem_cgroup *memcg) 2817 { 2818 __mem_cgroup_commit_charge_swapin(page, memcg, 2819 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2820 } 2821 2822 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 2823 { 2824 if (mem_cgroup_disabled()) 2825 return; 2826 if (!memcg) 2827 return; 2828 __mem_cgroup_cancel_charge(memcg, 1); 2829 } 2830 2831 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 2832 unsigned int nr_pages, 2833 const enum charge_type ctype) 2834 { 2835 struct memcg_batch_info *batch = NULL; 2836 bool uncharge_memsw = true; 2837 2838 /* If swapout, usage of swap doesn't decrease */ 2839 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2840 uncharge_memsw = false; 2841 2842 batch = ¤t->memcg_batch; 2843 /* 2844 * In usual, we do css_get() when we remember memcg pointer. 2845 * But in this case, we keep res->usage until end of a series of 2846 * uncharges. Then, it's ok to ignore memcg's refcnt. 2847 */ 2848 if (!batch->memcg) 2849 batch->memcg = memcg; 2850 /* 2851 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2852 * In those cases, all pages freed continuously can be expected to be in 2853 * the same cgroup and we have chance to coalesce uncharges. 2854 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2855 * because we want to do uncharge as soon as possible. 2856 */ 2857 2858 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2859 goto direct_uncharge; 2860 2861 if (nr_pages > 1) 2862 goto direct_uncharge; 2863 2864 /* 2865 * In typical case, batch->memcg == mem. This means we can 2866 * merge a series of uncharges to an uncharge of res_counter. 2867 * If not, we uncharge res_counter ony by one. 2868 */ 2869 if (batch->memcg != memcg) 2870 goto direct_uncharge; 2871 /* remember freed charge and uncharge it later */ 2872 batch->nr_pages++; 2873 if (uncharge_memsw) 2874 batch->memsw_nr_pages++; 2875 return; 2876 direct_uncharge: 2877 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 2878 if (uncharge_memsw) 2879 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 2880 if (unlikely(batch->memcg != memcg)) 2881 memcg_oom_recover(memcg); 2882 return; 2883 } 2884 2885 /* 2886 * uncharge if !page_mapped(page) 2887 */ 2888 static struct mem_cgroup * 2889 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 2890 { 2891 struct mem_cgroup *memcg = NULL; 2892 unsigned int nr_pages = 1; 2893 struct page_cgroup *pc; 2894 2895 if (mem_cgroup_disabled()) 2896 return NULL; 2897 2898 if (PageSwapCache(page)) 2899 return NULL; 2900 2901 if (PageTransHuge(page)) { 2902 nr_pages <<= compound_order(page); 2903 VM_BUG_ON(!PageTransHuge(page)); 2904 } 2905 /* 2906 * Check if our page_cgroup is valid 2907 */ 2908 pc = lookup_page_cgroup(page); 2909 if (unlikely(!PageCgroupUsed(pc))) 2910 return NULL; 2911 2912 lock_page_cgroup(pc); 2913 2914 memcg = pc->mem_cgroup; 2915 2916 if (!PageCgroupUsed(pc)) 2917 goto unlock_out; 2918 2919 switch (ctype) { 2920 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2921 case MEM_CGROUP_CHARGE_TYPE_DROP: 2922 /* See mem_cgroup_prepare_migration() */ 2923 if (page_mapped(page) || PageCgroupMigration(pc)) 2924 goto unlock_out; 2925 break; 2926 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 2927 if (!PageAnon(page)) { /* Shared memory */ 2928 if (page->mapping && !page_is_file_cache(page)) 2929 goto unlock_out; 2930 } else if (page_mapped(page)) /* Anon */ 2931 goto unlock_out; 2932 break; 2933 default: 2934 break; 2935 } 2936 2937 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages); 2938 2939 ClearPageCgroupUsed(pc); 2940 /* 2941 * pc->mem_cgroup is not cleared here. It will be accessed when it's 2942 * freed from LRU. This is safe because uncharged page is expected not 2943 * to be reused (freed soon). Exception is SwapCache, it's handled by 2944 * special functions. 2945 */ 2946 2947 unlock_page_cgroup(pc); 2948 /* 2949 * even after unlock, we have memcg->res.usage here and this memcg 2950 * will never be freed. 2951 */ 2952 memcg_check_events(memcg, page); 2953 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 2954 mem_cgroup_swap_statistics(memcg, true); 2955 mem_cgroup_get(memcg); 2956 } 2957 if (!mem_cgroup_is_root(memcg)) 2958 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 2959 2960 return memcg; 2961 2962 unlock_out: 2963 unlock_page_cgroup(pc); 2964 return NULL; 2965 } 2966 2967 void mem_cgroup_uncharge_page(struct page *page) 2968 { 2969 /* early check. */ 2970 if (page_mapped(page)) 2971 return; 2972 VM_BUG_ON(page->mapping && !PageAnon(page)); 2973 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); 2974 } 2975 2976 void mem_cgroup_uncharge_cache_page(struct page *page) 2977 { 2978 VM_BUG_ON(page_mapped(page)); 2979 VM_BUG_ON(page->mapping); 2980 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); 2981 } 2982 2983 /* 2984 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 2985 * In that cases, pages are freed continuously and we can expect pages 2986 * are in the same memcg. All these calls itself limits the number of 2987 * pages freed at once, then uncharge_start/end() is called properly. 2988 * This may be called prural(2) times in a context, 2989 */ 2990 2991 void mem_cgroup_uncharge_start(void) 2992 { 2993 current->memcg_batch.do_batch++; 2994 /* We can do nest. */ 2995 if (current->memcg_batch.do_batch == 1) { 2996 current->memcg_batch.memcg = NULL; 2997 current->memcg_batch.nr_pages = 0; 2998 current->memcg_batch.memsw_nr_pages = 0; 2999 } 3000 } 3001 3002 void mem_cgroup_uncharge_end(void) 3003 { 3004 struct memcg_batch_info *batch = ¤t->memcg_batch; 3005 3006 if (!batch->do_batch) 3007 return; 3008 3009 batch->do_batch--; 3010 if (batch->do_batch) /* If stacked, do nothing. */ 3011 return; 3012 3013 if (!batch->memcg) 3014 return; 3015 /* 3016 * This "batch->memcg" is valid without any css_get/put etc... 3017 * bacause we hide charges behind us. 3018 */ 3019 if (batch->nr_pages) 3020 res_counter_uncharge(&batch->memcg->res, 3021 batch->nr_pages * PAGE_SIZE); 3022 if (batch->memsw_nr_pages) 3023 res_counter_uncharge(&batch->memcg->memsw, 3024 batch->memsw_nr_pages * PAGE_SIZE); 3025 memcg_oom_recover(batch->memcg); 3026 /* forget this pointer (for sanity check) */ 3027 batch->memcg = NULL; 3028 } 3029 3030 /* 3031 * A function for resetting pc->mem_cgroup for newly allocated pages. 3032 * This function should be called if the newpage will be added to LRU 3033 * before start accounting. 3034 */ 3035 void mem_cgroup_reset_owner(struct page *newpage) 3036 { 3037 struct page_cgroup *pc; 3038 3039 if (mem_cgroup_disabled()) 3040 return; 3041 3042 pc = lookup_page_cgroup(newpage); 3043 VM_BUG_ON(PageCgroupUsed(pc)); 3044 pc->mem_cgroup = root_mem_cgroup; 3045 } 3046 3047 #ifdef CONFIG_SWAP 3048 /* 3049 * called after __delete_from_swap_cache() and drop "page" account. 3050 * memcg information is recorded to swap_cgroup of "ent" 3051 */ 3052 void 3053 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 3054 { 3055 struct mem_cgroup *memcg; 3056 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 3057 3058 if (!swapout) /* this was a swap cache but the swap is unused ! */ 3059 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 3060 3061 memcg = __mem_cgroup_uncharge_common(page, ctype); 3062 3063 /* 3064 * record memcg information, if swapout && memcg != NULL, 3065 * mem_cgroup_get() was called in uncharge(). 3066 */ 3067 if (do_swap_account && swapout && memcg) 3068 swap_cgroup_record(ent, css_id(&memcg->css)); 3069 } 3070 #endif 3071 3072 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 3073 /* 3074 * called from swap_entry_free(). remove record in swap_cgroup and 3075 * uncharge "memsw" account. 3076 */ 3077 void mem_cgroup_uncharge_swap(swp_entry_t ent) 3078 { 3079 struct mem_cgroup *memcg; 3080 unsigned short id; 3081 3082 if (!do_swap_account) 3083 return; 3084 3085 id = swap_cgroup_record(ent, 0); 3086 rcu_read_lock(); 3087 memcg = mem_cgroup_lookup(id); 3088 if (memcg) { 3089 /* 3090 * We uncharge this because swap is freed. 3091 * This memcg can be obsolete one. We avoid calling css_tryget 3092 */ 3093 if (!mem_cgroup_is_root(memcg)) 3094 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 3095 mem_cgroup_swap_statistics(memcg, false); 3096 mem_cgroup_put(memcg); 3097 } 3098 rcu_read_unlock(); 3099 } 3100 3101 /** 3102 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3103 * @entry: swap entry to be moved 3104 * @from: mem_cgroup which the entry is moved from 3105 * @to: mem_cgroup which the entry is moved to 3106 * @need_fixup: whether we should fixup res_counters and refcounts. 3107 * 3108 * It succeeds only when the swap_cgroup's record for this entry is the same 3109 * as the mem_cgroup's id of @from. 3110 * 3111 * Returns 0 on success, -EINVAL on failure. 3112 * 3113 * The caller must have charged to @to, IOW, called res_counter_charge() about 3114 * both res and memsw, and called css_get(). 3115 */ 3116 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3117 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) 3118 { 3119 unsigned short old_id, new_id; 3120 3121 old_id = css_id(&from->css); 3122 new_id = css_id(&to->css); 3123 3124 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3125 mem_cgroup_swap_statistics(from, false); 3126 mem_cgroup_swap_statistics(to, true); 3127 /* 3128 * This function is only called from task migration context now. 3129 * It postpones res_counter and refcount handling till the end 3130 * of task migration(mem_cgroup_clear_mc()) for performance 3131 * improvement. But we cannot postpone mem_cgroup_get(to) 3132 * because if the process that has been moved to @to does 3133 * swap-in, the refcount of @to might be decreased to 0. 3134 */ 3135 mem_cgroup_get(to); 3136 if (need_fixup) { 3137 if (!mem_cgroup_is_root(from)) 3138 res_counter_uncharge(&from->memsw, PAGE_SIZE); 3139 mem_cgroup_put(from); 3140 /* 3141 * we charged both to->res and to->memsw, so we should 3142 * uncharge to->res. 3143 */ 3144 if (!mem_cgroup_is_root(to)) 3145 res_counter_uncharge(&to->res, PAGE_SIZE); 3146 } 3147 return 0; 3148 } 3149 return -EINVAL; 3150 } 3151 #else 3152 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3153 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) 3154 { 3155 return -EINVAL; 3156 } 3157 #endif 3158 3159 /* 3160 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 3161 * page belongs to. 3162 */ 3163 int mem_cgroup_prepare_migration(struct page *page, 3164 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask) 3165 { 3166 struct mem_cgroup *memcg = NULL; 3167 struct page_cgroup *pc; 3168 enum charge_type ctype; 3169 int ret = 0; 3170 3171 *memcgp = NULL; 3172 3173 VM_BUG_ON(PageTransHuge(page)); 3174 if (mem_cgroup_disabled()) 3175 return 0; 3176 3177 pc = lookup_page_cgroup(page); 3178 lock_page_cgroup(pc); 3179 if (PageCgroupUsed(pc)) { 3180 memcg = pc->mem_cgroup; 3181 css_get(&memcg->css); 3182 /* 3183 * At migrating an anonymous page, its mapcount goes down 3184 * to 0 and uncharge() will be called. But, even if it's fully 3185 * unmapped, migration may fail and this page has to be 3186 * charged again. We set MIGRATION flag here and delay uncharge 3187 * until end_migration() is called 3188 * 3189 * Corner Case Thinking 3190 * A) 3191 * When the old page was mapped as Anon and it's unmap-and-freed 3192 * while migration was ongoing. 3193 * If unmap finds the old page, uncharge() of it will be delayed 3194 * until end_migration(). If unmap finds a new page, it's 3195 * uncharged when it make mapcount to be 1->0. If unmap code 3196 * finds swap_migration_entry, the new page will not be mapped 3197 * and end_migration() will find it(mapcount==0). 3198 * 3199 * B) 3200 * When the old page was mapped but migraion fails, the kernel 3201 * remaps it. A charge for it is kept by MIGRATION flag even 3202 * if mapcount goes down to 0. We can do remap successfully 3203 * without charging it again. 3204 * 3205 * C) 3206 * The "old" page is under lock_page() until the end of 3207 * migration, so, the old page itself will not be swapped-out. 3208 * If the new page is swapped out before end_migraton, our 3209 * hook to usual swap-out path will catch the event. 3210 */ 3211 if (PageAnon(page)) 3212 SetPageCgroupMigration(pc); 3213 } 3214 unlock_page_cgroup(pc); 3215 /* 3216 * If the page is not charged at this point, 3217 * we return here. 3218 */ 3219 if (!memcg) 3220 return 0; 3221 3222 *memcgp = memcg; 3223 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false); 3224 css_put(&memcg->css);/* drop extra refcnt */ 3225 if (ret) { 3226 if (PageAnon(page)) { 3227 lock_page_cgroup(pc); 3228 ClearPageCgroupMigration(pc); 3229 unlock_page_cgroup(pc); 3230 /* 3231 * The old page may be fully unmapped while we kept it. 3232 */ 3233 mem_cgroup_uncharge_page(page); 3234 } 3235 /* we'll need to revisit this error code (we have -EINTR) */ 3236 return -ENOMEM; 3237 } 3238 /* 3239 * We charge new page before it's used/mapped. So, even if unlock_page() 3240 * is called before end_migration, we can catch all events on this new 3241 * page. In the case new page is migrated but not remapped, new page's 3242 * mapcount will be finally 0 and we call uncharge in end_migration(). 3243 */ 3244 pc = lookup_page_cgroup(newpage); 3245 if (PageAnon(page)) 3246 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; 3247 else if (page_is_file_cache(page)) 3248 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 3249 else 3250 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 3251 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype); 3252 return ret; 3253 } 3254 3255 /* remove redundant charge if migration failed*/ 3256 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 3257 struct page *oldpage, struct page *newpage, bool migration_ok) 3258 { 3259 struct page *used, *unused; 3260 struct page_cgroup *pc; 3261 3262 if (!memcg) 3263 return; 3264 /* blocks rmdir() */ 3265 cgroup_exclude_rmdir(&memcg->css); 3266 if (!migration_ok) { 3267 used = oldpage; 3268 unused = newpage; 3269 } else { 3270 used = newpage; 3271 unused = oldpage; 3272 } 3273 /* 3274 * We disallowed uncharge of pages under migration because mapcount 3275 * of the page goes down to zero, temporarly. 3276 * Clear the flag and check the page should be charged. 3277 */ 3278 pc = lookup_page_cgroup(oldpage); 3279 lock_page_cgroup(pc); 3280 ClearPageCgroupMigration(pc); 3281 unlock_page_cgroup(pc); 3282 3283 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); 3284 3285 /* 3286 * If a page is a file cache, radix-tree replacement is very atomic 3287 * and we can skip this check. When it was an Anon page, its mapcount 3288 * goes down to 0. But because we added MIGRATION flage, it's not 3289 * uncharged yet. There are several case but page->mapcount check 3290 * and USED bit check in mem_cgroup_uncharge_page() will do enough 3291 * check. (see prepare_charge() also) 3292 */ 3293 if (PageAnon(used)) 3294 mem_cgroup_uncharge_page(used); 3295 /* 3296 * At migration, we may charge account against cgroup which has no 3297 * tasks. 3298 * So, rmdir()->pre_destroy() can be called while we do this charge. 3299 * In that case, we need to call pre_destroy() again. check it here. 3300 */ 3301 cgroup_release_and_wakeup_rmdir(&memcg->css); 3302 } 3303 3304 /* 3305 * At replace page cache, newpage is not under any memcg but it's on 3306 * LRU. So, this function doesn't touch res_counter but handles LRU 3307 * in correct way. Both pages are locked so we cannot race with uncharge. 3308 */ 3309 void mem_cgroup_replace_page_cache(struct page *oldpage, 3310 struct page *newpage) 3311 { 3312 struct mem_cgroup *memcg; 3313 struct page_cgroup *pc; 3314 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3315 3316 if (mem_cgroup_disabled()) 3317 return; 3318 3319 pc = lookup_page_cgroup(oldpage); 3320 /* fix accounting on old pages */ 3321 lock_page_cgroup(pc); 3322 memcg = pc->mem_cgroup; 3323 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1); 3324 ClearPageCgroupUsed(pc); 3325 unlock_page_cgroup(pc); 3326 3327 if (PageSwapBacked(oldpage)) 3328 type = MEM_CGROUP_CHARGE_TYPE_SHMEM; 3329 3330 /* 3331 * Even if newpage->mapping was NULL before starting replacement, 3332 * the newpage may be on LRU(or pagevec for LRU) already. We lock 3333 * LRU while we overwrite pc->mem_cgroup. 3334 */ 3335 __mem_cgroup_commit_charge_lrucare(newpage, memcg, type); 3336 } 3337 3338 #ifdef CONFIG_DEBUG_VM 3339 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 3340 { 3341 struct page_cgroup *pc; 3342 3343 pc = lookup_page_cgroup(page); 3344 /* 3345 * Can be NULL while feeding pages into the page allocator for 3346 * the first time, i.e. during boot or memory hotplug; 3347 * or when mem_cgroup_disabled(). 3348 */ 3349 if (likely(pc) && PageCgroupUsed(pc)) 3350 return pc; 3351 return NULL; 3352 } 3353 3354 bool mem_cgroup_bad_page_check(struct page *page) 3355 { 3356 if (mem_cgroup_disabled()) 3357 return false; 3358 3359 return lookup_page_cgroup_used(page) != NULL; 3360 } 3361 3362 void mem_cgroup_print_bad_page(struct page *page) 3363 { 3364 struct page_cgroup *pc; 3365 3366 pc = lookup_page_cgroup_used(page); 3367 if (pc) { 3368 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 3369 pc, pc->flags, pc->mem_cgroup); 3370 } 3371 } 3372 #endif 3373 3374 static DEFINE_MUTEX(set_limit_mutex); 3375 3376 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 3377 unsigned long long val) 3378 { 3379 int retry_count; 3380 u64 memswlimit, memlimit; 3381 int ret = 0; 3382 int children = mem_cgroup_count_children(memcg); 3383 u64 curusage, oldusage; 3384 int enlarge; 3385 3386 /* 3387 * For keeping hierarchical_reclaim simple, how long we should retry 3388 * is depends on callers. We set our retry-count to be function 3389 * of # of children which we should visit in this loop. 3390 */ 3391 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 3392 3393 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3394 3395 enlarge = 0; 3396 while (retry_count) { 3397 if (signal_pending(current)) { 3398 ret = -EINTR; 3399 break; 3400 } 3401 /* 3402 * Rather than hide all in some function, I do this in 3403 * open coded manner. You see what this really does. 3404 * We have to guarantee memcg->res.limit < memcg->memsw.limit. 3405 */ 3406 mutex_lock(&set_limit_mutex); 3407 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3408 if (memswlimit < val) { 3409 ret = -EINVAL; 3410 mutex_unlock(&set_limit_mutex); 3411 break; 3412 } 3413 3414 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3415 if (memlimit < val) 3416 enlarge = 1; 3417 3418 ret = res_counter_set_limit(&memcg->res, val); 3419 if (!ret) { 3420 if (memswlimit == val) 3421 memcg->memsw_is_minimum = true; 3422 else 3423 memcg->memsw_is_minimum = false; 3424 } 3425 mutex_unlock(&set_limit_mutex); 3426 3427 if (!ret) 3428 break; 3429 3430 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3431 MEM_CGROUP_RECLAIM_SHRINK); 3432 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3433 /* Usage is reduced ? */ 3434 if (curusage >= oldusage) 3435 retry_count--; 3436 else 3437 oldusage = curusage; 3438 } 3439 if (!ret && enlarge) 3440 memcg_oom_recover(memcg); 3441 3442 return ret; 3443 } 3444 3445 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3446 unsigned long long val) 3447 { 3448 int retry_count; 3449 u64 memlimit, memswlimit, oldusage, curusage; 3450 int children = mem_cgroup_count_children(memcg); 3451 int ret = -EBUSY; 3452 int enlarge = 0; 3453 3454 /* see mem_cgroup_resize_res_limit */ 3455 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3456 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3457 while (retry_count) { 3458 if (signal_pending(current)) { 3459 ret = -EINTR; 3460 break; 3461 } 3462 /* 3463 * Rather than hide all in some function, I do this in 3464 * open coded manner. You see what this really does. 3465 * We have to guarantee memcg->res.limit < memcg->memsw.limit. 3466 */ 3467 mutex_lock(&set_limit_mutex); 3468 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3469 if (memlimit > val) { 3470 ret = -EINVAL; 3471 mutex_unlock(&set_limit_mutex); 3472 break; 3473 } 3474 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3475 if (memswlimit < val) 3476 enlarge = 1; 3477 ret = res_counter_set_limit(&memcg->memsw, val); 3478 if (!ret) { 3479 if (memlimit == val) 3480 memcg->memsw_is_minimum = true; 3481 else 3482 memcg->memsw_is_minimum = false; 3483 } 3484 mutex_unlock(&set_limit_mutex); 3485 3486 if (!ret) 3487 break; 3488 3489 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3490 MEM_CGROUP_RECLAIM_NOSWAP | 3491 MEM_CGROUP_RECLAIM_SHRINK); 3492 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3493 /* Usage is reduced ? */ 3494 if (curusage >= oldusage) 3495 retry_count--; 3496 else 3497 oldusage = curusage; 3498 } 3499 if (!ret && enlarge) 3500 memcg_oom_recover(memcg); 3501 return ret; 3502 } 3503 3504 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3505 gfp_t gfp_mask, 3506 unsigned long *total_scanned) 3507 { 3508 unsigned long nr_reclaimed = 0; 3509 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3510 unsigned long reclaimed; 3511 int loop = 0; 3512 struct mem_cgroup_tree_per_zone *mctz; 3513 unsigned long long excess; 3514 unsigned long nr_scanned; 3515 3516 if (order > 0) 3517 return 0; 3518 3519 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3520 /* 3521 * This loop can run a while, specially if mem_cgroup's continuously 3522 * keep exceeding their soft limit and putting the system under 3523 * pressure 3524 */ 3525 do { 3526 if (next_mz) 3527 mz = next_mz; 3528 else 3529 mz = mem_cgroup_largest_soft_limit_node(mctz); 3530 if (!mz) 3531 break; 3532 3533 nr_scanned = 0; 3534 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone, 3535 gfp_mask, &nr_scanned); 3536 nr_reclaimed += reclaimed; 3537 *total_scanned += nr_scanned; 3538 spin_lock(&mctz->lock); 3539 3540 /* 3541 * If we failed to reclaim anything from this memory cgroup 3542 * it is time to move on to the next cgroup 3543 */ 3544 next_mz = NULL; 3545 if (!reclaimed) { 3546 do { 3547 /* 3548 * Loop until we find yet another one. 3549 * 3550 * By the time we get the soft_limit lock 3551 * again, someone might have aded the 3552 * group back on the RB tree. Iterate to 3553 * make sure we get a different mem. 3554 * mem_cgroup_largest_soft_limit_node returns 3555 * NULL if no other cgroup is present on 3556 * the tree 3557 */ 3558 next_mz = 3559 __mem_cgroup_largest_soft_limit_node(mctz); 3560 if (next_mz == mz) 3561 css_put(&next_mz->mem->css); 3562 else /* next_mz == NULL or other memcg */ 3563 break; 3564 } while (1); 3565 } 3566 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 3567 excess = res_counter_soft_limit_excess(&mz->mem->res); 3568 /* 3569 * One school of thought says that we should not add 3570 * back the node to the tree if reclaim returns 0. 3571 * But our reclaim could return 0, simply because due 3572 * to priority we are exposing a smaller subset of 3573 * memory to reclaim from. Consider this as a longer 3574 * term TODO. 3575 */ 3576 /* If excess == 0, no tree ops */ 3577 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess); 3578 spin_unlock(&mctz->lock); 3579 css_put(&mz->mem->css); 3580 loop++; 3581 /* 3582 * Could not reclaim anything and there are no more 3583 * mem cgroups to try or we seem to be looping without 3584 * reclaiming anything. 3585 */ 3586 if (!nr_reclaimed && 3587 (next_mz == NULL || 3588 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3589 break; 3590 } while (!nr_reclaimed); 3591 if (next_mz) 3592 css_put(&next_mz->mem->css); 3593 return nr_reclaimed; 3594 } 3595 3596 /* 3597 * This routine traverse page_cgroup in given list and drop them all. 3598 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 3599 */ 3600 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 3601 int node, int zid, enum lru_list lru) 3602 { 3603 struct mem_cgroup_per_zone *mz; 3604 unsigned long flags, loop; 3605 struct list_head *list; 3606 struct page *busy; 3607 struct zone *zone; 3608 int ret = 0; 3609 3610 zone = &NODE_DATA(node)->node_zones[zid]; 3611 mz = mem_cgroup_zoneinfo(memcg, node, zid); 3612 list = &mz->lruvec.lists[lru]; 3613 3614 loop = MEM_CGROUP_ZSTAT(mz, lru); 3615 /* give some margin against EBUSY etc...*/ 3616 loop += 256; 3617 busy = NULL; 3618 while (loop--) { 3619 struct page_cgroup *pc; 3620 struct page *page; 3621 3622 ret = 0; 3623 spin_lock_irqsave(&zone->lru_lock, flags); 3624 if (list_empty(list)) { 3625 spin_unlock_irqrestore(&zone->lru_lock, flags); 3626 break; 3627 } 3628 page = list_entry(list->prev, struct page, lru); 3629 if (busy == page) { 3630 list_move(&page->lru, list); 3631 busy = NULL; 3632 spin_unlock_irqrestore(&zone->lru_lock, flags); 3633 continue; 3634 } 3635 spin_unlock_irqrestore(&zone->lru_lock, flags); 3636 3637 pc = lookup_page_cgroup(page); 3638 3639 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL); 3640 if (ret == -ENOMEM || ret == -EINTR) 3641 break; 3642 3643 if (ret == -EBUSY || ret == -EINVAL) { 3644 /* found lock contention or "pc" is obsolete. */ 3645 busy = page; 3646 cond_resched(); 3647 } else 3648 busy = NULL; 3649 } 3650 3651 if (!ret && !list_empty(list)) 3652 return -EBUSY; 3653 return ret; 3654 } 3655 3656 /* 3657 * make mem_cgroup's charge to be 0 if there is no task. 3658 * This enables deleting this mem_cgroup. 3659 */ 3660 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) 3661 { 3662 int ret; 3663 int node, zid, shrink; 3664 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3665 struct cgroup *cgrp = memcg->css.cgroup; 3666 3667 css_get(&memcg->css); 3668 3669 shrink = 0; 3670 /* should free all ? */ 3671 if (free_all) 3672 goto try_to_free; 3673 move_account: 3674 do { 3675 ret = -EBUSY; 3676 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3677 goto out; 3678 ret = -EINTR; 3679 if (signal_pending(current)) 3680 goto out; 3681 /* This is for making all *used* pages to be on LRU. */ 3682 lru_add_drain_all(); 3683 drain_all_stock_sync(memcg); 3684 ret = 0; 3685 mem_cgroup_start_move(memcg); 3686 for_each_node_state(node, N_HIGH_MEMORY) { 3687 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3688 enum lru_list l; 3689 for_each_lru(l) { 3690 ret = mem_cgroup_force_empty_list(memcg, 3691 node, zid, l); 3692 if (ret) 3693 break; 3694 } 3695 } 3696 if (ret) 3697 break; 3698 } 3699 mem_cgroup_end_move(memcg); 3700 memcg_oom_recover(memcg); 3701 /* it seems parent cgroup doesn't have enough mem */ 3702 if (ret == -ENOMEM) 3703 goto try_to_free; 3704 cond_resched(); 3705 /* "ret" should also be checked to ensure all lists are empty. */ 3706 } while (memcg->res.usage > 0 || ret); 3707 out: 3708 css_put(&memcg->css); 3709 return ret; 3710 3711 try_to_free: 3712 /* returns EBUSY if there is a task or if we come here twice. */ 3713 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3714 ret = -EBUSY; 3715 goto out; 3716 } 3717 /* we call try-to-free pages for make this cgroup empty */ 3718 lru_add_drain_all(); 3719 /* try to free all pages in this cgroup */ 3720 shrink = 1; 3721 while (nr_retries && memcg->res.usage > 0) { 3722 int progress; 3723 3724 if (signal_pending(current)) { 3725 ret = -EINTR; 3726 goto out; 3727 } 3728 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 3729 false); 3730 if (!progress) { 3731 nr_retries--; 3732 /* maybe some writeback is necessary */ 3733 congestion_wait(BLK_RW_ASYNC, HZ/10); 3734 } 3735 3736 } 3737 lru_add_drain(); 3738 /* try move_account...there may be some *locked* pages. */ 3739 goto move_account; 3740 } 3741 3742 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3743 { 3744 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3745 } 3746 3747 3748 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3749 { 3750 return mem_cgroup_from_cont(cont)->use_hierarchy; 3751 } 3752 3753 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3754 u64 val) 3755 { 3756 int retval = 0; 3757 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3758 struct cgroup *parent = cont->parent; 3759 struct mem_cgroup *parent_memcg = NULL; 3760 3761 if (parent) 3762 parent_memcg = mem_cgroup_from_cont(parent); 3763 3764 cgroup_lock(); 3765 /* 3766 * If parent's use_hierarchy is set, we can't make any modifications 3767 * in the child subtrees. If it is unset, then the change can 3768 * occur, provided the current cgroup has no children. 3769 * 3770 * For the root cgroup, parent_mem is NULL, we allow value to be 3771 * set if there are no children. 3772 */ 3773 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3774 (val == 1 || val == 0)) { 3775 if (list_empty(&cont->children)) 3776 memcg->use_hierarchy = val; 3777 else 3778 retval = -EBUSY; 3779 } else 3780 retval = -EINVAL; 3781 cgroup_unlock(); 3782 3783 return retval; 3784 } 3785 3786 3787 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 3788 enum mem_cgroup_stat_index idx) 3789 { 3790 struct mem_cgroup *iter; 3791 long val = 0; 3792 3793 /* Per-cpu values can be negative, use a signed accumulator */ 3794 for_each_mem_cgroup_tree(iter, memcg) 3795 val += mem_cgroup_read_stat(iter, idx); 3796 3797 if (val < 0) /* race ? */ 3798 val = 0; 3799 return val; 3800 } 3801 3802 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3803 { 3804 u64 val; 3805 3806 if (!mem_cgroup_is_root(memcg)) { 3807 if (!swap) 3808 return res_counter_read_u64(&memcg->res, RES_USAGE); 3809 else 3810 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 3811 } 3812 3813 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 3814 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 3815 3816 if (swap) 3817 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT); 3818 3819 return val << PAGE_SHIFT; 3820 } 3821 3822 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 3823 { 3824 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3825 u64 val; 3826 int type, name; 3827 3828 type = MEMFILE_TYPE(cft->private); 3829 name = MEMFILE_ATTR(cft->private); 3830 switch (type) { 3831 case _MEM: 3832 if (name == RES_USAGE) 3833 val = mem_cgroup_usage(memcg, false); 3834 else 3835 val = res_counter_read_u64(&memcg->res, name); 3836 break; 3837 case _MEMSWAP: 3838 if (name == RES_USAGE) 3839 val = mem_cgroup_usage(memcg, true); 3840 else 3841 val = res_counter_read_u64(&memcg->memsw, name); 3842 break; 3843 default: 3844 BUG(); 3845 break; 3846 } 3847 return val; 3848 } 3849 /* 3850 * The user of this function is... 3851 * RES_LIMIT. 3852 */ 3853 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3854 const char *buffer) 3855 { 3856 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3857 int type, name; 3858 unsigned long long val; 3859 int ret; 3860 3861 type = MEMFILE_TYPE(cft->private); 3862 name = MEMFILE_ATTR(cft->private); 3863 switch (name) { 3864 case RES_LIMIT: 3865 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3866 ret = -EINVAL; 3867 break; 3868 } 3869 /* This function does all necessary parse...reuse it */ 3870 ret = res_counter_memparse_write_strategy(buffer, &val); 3871 if (ret) 3872 break; 3873 if (type == _MEM) 3874 ret = mem_cgroup_resize_limit(memcg, val); 3875 else 3876 ret = mem_cgroup_resize_memsw_limit(memcg, val); 3877 break; 3878 case RES_SOFT_LIMIT: 3879 ret = res_counter_memparse_write_strategy(buffer, &val); 3880 if (ret) 3881 break; 3882 /* 3883 * For memsw, soft limits are hard to implement in terms 3884 * of semantics, for now, we support soft limits for 3885 * control without swap 3886 */ 3887 if (type == _MEM) 3888 ret = res_counter_set_soft_limit(&memcg->res, val); 3889 else 3890 ret = -EINVAL; 3891 break; 3892 default: 3893 ret = -EINVAL; /* should be BUG() ? */ 3894 break; 3895 } 3896 return ret; 3897 } 3898 3899 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 3900 unsigned long long *mem_limit, unsigned long long *memsw_limit) 3901 { 3902 struct cgroup *cgroup; 3903 unsigned long long min_limit, min_memsw_limit, tmp; 3904 3905 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3906 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3907 cgroup = memcg->css.cgroup; 3908 if (!memcg->use_hierarchy) 3909 goto out; 3910 3911 while (cgroup->parent) { 3912 cgroup = cgroup->parent; 3913 memcg = mem_cgroup_from_cont(cgroup); 3914 if (!memcg->use_hierarchy) 3915 break; 3916 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 3917 min_limit = min(min_limit, tmp); 3918 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3919 min_memsw_limit = min(min_memsw_limit, tmp); 3920 } 3921 out: 3922 *mem_limit = min_limit; 3923 *memsw_limit = min_memsw_limit; 3924 return; 3925 } 3926 3927 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 3928 { 3929 struct mem_cgroup *memcg; 3930 int type, name; 3931 3932 memcg = mem_cgroup_from_cont(cont); 3933 type = MEMFILE_TYPE(event); 3934 name = MEMFILE_ATTR(event); 3935 switch (name) { 3936 case RES_MAX_USAGE: 3937 if (type == _MEM) 3938 res_counter_reset_max(&memcg->res); 3939 else 3940 res_counter_reset_max(&memcg->memsw); 3941 break; 3942 case RES_FAILCNT: 3943 if (type == _MEM) 3944 res_counter_reset_failcnt(&memcg->res); 3945 else 3946 res_counter_reset_failcnt(&memcg->memsw); 3947 break; 3948 } 3949 3950 return 0; 3951 } 3952 3953 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 3954 struct cftype *cft) 3955 { 3956 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 3957 } 3958 3959 #ifdef CONFIG_MMU 3960 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 3961 struct cftype *cft, u64 val) 3962 { 3963 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3964 3965 if (val >= (1 << NR_MOVE_TYPE)) 3966 return -EINVAL; 3967 /* 3968 * We check this value several times in both in can_attach() and 3969 * attach(), so we need cgroup lock to prevent this value from being 3970 * inconsistent. 3971 */ 3972 cgroup_lock(); 3973 memcg->move_charge_at_immigrate = val; 3974 cgroup_unlock(); 3975 3976 return 0; 3977 } 3978 #else 3979 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 3980 struct cftype *cft, u64 val) 3981 { 3982 return -ENOSYS; 3983 } 3984 #endif 3985 3986 3987 /* For read statistics */ 3988 enum { 3989 MCS_CACHE, 3990 MCS_RSS, 3991 MCS_FILE_MAPPED, 3992 MCS_PGPGIN, 3993 MCS_PGPGOUT, 3994 MCS_SWAP, 3995 MCS_PGFAULT, 3996 MCS_PGMAJFAULT, 3997 MCS_INACTIVE_ANON, 3998 MCS_ACTIVE_ANON, 3999 MCS_INACTIVE_FILE, 4000 MCS_ACTIVE_FILE, 4001 MCS_UNEVICTABLE, 4002 NR_MCS_STAT, 4003 }; 4004 4005 struct mcs_total_stat { 4006 s64 stat[NR_MCS_STAT]; 4007 }; 4008 4009 struct { 4010 char *local_name; 4011 char *total_name; 4012 } memcg_stat_strings[NR_MCS_STAT] = { 4013 {"cache", "total_cache"}, 4014 {"rss", "total_rss"}, 4015 {"mapped_file", "total_mapped_file"}, 4016 {"pgpgin", "total_pgpgin"}, 4017 {"pgpgout", "total_pgpgout"}, 4018 {"swap", "total_swap"}, 4019 {"pgfault", "total_pgfault"}, 4020 {"pgmajfault", "total_pgmajfault"}, 4021 {"inactive_anon", "total_inactive_anon"}, 4022 {"active_anon", "total_active_anon"}, 4023 {"inactive_file", "total_inactive_file"}, 4024 {"active_file", "total_active_file"}, 4025 {"unevictable", "total_unevictable"} 4026 }; 4027 4028 4029 static void 4030 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s) 4031 { 4032 s64 val; 4033 4034 /* per cpu stat */ 4035 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE); 4036 s->stat[MCS_CACHE] += val * PAGE_SIZE; 4037 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS); 4038 s->stat[MCS_RSS] += val * PAGE_SIZE; 4039 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 4040 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; 4041 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN); 4042 s->stat[MCS_PGPGIN] += val; 4043 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT); 4044 s->stat[MCS_PGPGOUT] += val; 4045 if (do_swap_account) { 4046 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT); 4047 s->stat[MCS_SWAP] += val * PAGE_SIZE; 4048 } 4049 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT); 4050 s->stat[MCS_PGFAULT] += val; 4051 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT); 4052 s->stat[MCS_PGMAJFAULT] += val; 4053 4054 /* per zone stat */ 4055 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON)); 4056 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; 4057 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON)); 4058 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; 4059 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE)); 4060 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; 4061 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE)); 4062 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; 4063 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 4064 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; 4065 } 4066 4067 static void 4068 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s) 4069 { 4070 struct mem_cgroup *iter; 4071 4072 for_each_mem_cgroup_tree(iter, memcg) 4073 mem_cgroup_get_local_stat(iter, s); 4074 } 4075 4076 #ifdef CONFIG_NUMA 4077 static int mem_control_numa_stat_show(struct seq_file *m, void *arg) 4078 { 4079 int nid; 4080 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 4081 unsigned long node_nr; 4082 struct cgroup *cont = m->private; 4083 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 4084 4085 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL); 4086 seq_printf(m, "total=%lu", total_nr); 4087 for_each_node_state(nid, N_HIGH_MEMORY) { 4088 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL); 4089 seq_printf(m, " N%d=%lu", nid, node_nr); 4090 } 4091 seq_putc(m, '\n'); 4092 4093 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE); 4094 seq_printf(m, "file=%lu", file_nr); 4095 for_each_node_state(nid, N_HIGH_MEMORY) { 4096 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, 4097 LRU_ALL_FILE); 4098 seq_printf(m, " N%d=%lu", nid, node_nr); 4099 } 4100 seq_putc(m, '\n'); 4101 4102 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON); 4103 seq_printf(m, "anon=%lu", anon_nr); 4104 for_each_node_state(nid, N_HIGH_MEMORY) { 4105 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, 4106 LRU_ALL_ANON); 4107 seq_printf(m, " N%d=%lu", nid, node_nr); 4108 } 4109 seq_putc(m, '\n'); 4110 4111 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE)); 4112 seq_printf(m, "unevictable=%lu", unevictable_nr); 4113 for_each_node_state(nid, N_HIGH_MEMORY) { 4114 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, 4115 BIT(LRU_UNEVICTABLE)); 4116 seq_printf(m, " N%d=%lu", nid, node_nr); 4117 } 4118 seq_putc(m, '\n'); 4119 return 0; 4120 } 4121 #endif /* CONFIG_NUMA */ 4122 4123 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 4124 struct cgroup_map_cb *cb) 4125 { 4126 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 4127 struct mcs_total_stat mystat; 4128 int i; 4129 4130 memset(&mystat, 0, sizeof(mystat)); 4131 mem_cgroup_get_local_stat(mem_cont, &mystat); 4132 4133 4134 for (i = 0; i < NR_MCS_STAT; i++) { 4135 if (i == MCS_SWAP && !do_swap_account) 4136 continue; 4137 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); 4138 } 4139 4140 /* Hierarchical information */ 4141 { 4142 unsigned long long limit, memsw_limit; 4143 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); 4144 cb->fill(cb, "hierarchical_memory_limit", limit); 4145 if (do_swap_account) 4146 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); 4147 } 4148 4149 memset(&mystat, 0, sizeof(mystat)); 4150 mem_cgroup_get_total_stat(mem_cont, &mystat); 4151 for (i = 0; i < NR_MCS_STAT; i++) { 4152 if (i == MCS_SWAP && !do_swap_account) 4153 continue; 4154 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); 4155 } 4156 4157 #ifdef CONFIG_DEBUG_VM 4158 { 4159 int nid, zid; 4160 struct mem_cgroup_per_zone *mz; 4161 unsigned long recent_rotated[2] = {0, 0}; 4162 unsigned long recent_scanned[2] = {0, 0}; 4163 4164 for_each_online_node(nid) 4165 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4166 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 4167 4168 recent_rotated[0] += 4169 mz->reclaim_stat.recent_rotated[0]; 4170 recent_rotated[1] += 4171 mz->reclaim_stat.recent_rotated[1]; 4172 recent_scanned[0] += 4173 mz->reclaim_stat.recent_scanned[0]; 4174 recent_scanned[1] += 4175 mz->reclaim_stat.recent_scanned[1]; 4176 } 4177 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); 4178 cb->fill(cb, "recent_rotated_file", recent_rotated[1]); 4179 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); 4180 cb->fill(cb, "recent_scanned_file", recent_scanned[1]); 4181 } 4182 #endif 4183 4184 return 0; 4185 } 4186 4187 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 4188 { 4189 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4190 4191 return mem_cgroup_swappiness(memcg); 4192 } 4193 4194 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 4195 u64 val) 4196 { 4197 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4198 struct mem_cgroup *parent; 4199 4200 if (val > 100) 4201 return -EINVAL; 4202 4203 if (cgrp->parent == NULL) 4204 return -EINVAL; 4205 4206 parent = mem_cgroup_from_cont(cgrp->parent); 4207 4208 cgroup_lock(); 4209 4210 /* If under hierarchy, only empty-root can set this value */ 4211 if ((parent->use_hierarchy) || 4212 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4213 cgroup_unlock(); 4214 return -EINVAL; 4215 } 4216 4217 memcg->swappiness = val; 4218 4219 cgroup_unlock(); 4220 4221 return 0; 4222 } 4223 4224 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4225 { 4226 struct mem_cgroup_threshold_ary *t; 4227 u64 usage; 4228 int i; 4229 4230 rcu_read_lock(); 4231 if (!swap) 4232 t = rcu_dereference(memcg->thresholds.primary); 4233 else 4234 t = rcu_dereference(memcg->memsw_thresholds.primary); 4235 4236 if (!t) 4237 goto unlock; 4238 4239 usage = mem_cgroup_usage(memcg, swap); 4240 4241 /* 4242 * current_threshold points to threshold just below usage. 4243 * If it's not true, a threshold was crossed after last 4244 * call of __mem_cgroup_threshold(). 4245 */ 4246 i = t->current_threshold; 4247 4248 /* 4249 * Iterate backward over array of thresholds starting from 4250 * current_threshold and check if a threshold is crossed. 4251 * If none of thresholds below usage is crossed, we read 4252 * only one element of the array here. 4253 */ 4254 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4255 eventfd_signal(t->entries[i].eventfd, 1); 4256 4257 /* i = current_threshold + 1 */ 4258 i++; 4259 4260 /* 4261 * Iterate forward over array of thresholds starting from 4262 * current_threshold+1 and check if a threshold is crossed. 4263 * If none of thresholds above usage is crossed, we read 4264 * only one element of the array here. 4265 */ 4266 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4267 eventfd_signal(t->entries[i].eventfd, 1); 4268 4269 /* Update current_threshold */ 4270 t->current_threshold = i - 1; 4271 unlock: 4272 rcu_read_unlock(); 4273 } 4274 4275 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4276 { 4277 while (memcg) { 4278 __mem_cgroup_threshold(memcg, false); 4279 if (do_swap_account) 4280 __mem_cgroup_threshold(memcg, true); 4281 4282 memcg = parent_mem_cgroup(memcg); 4283 } 4284 } 4285 4286 static int compare_thresholds(const void *a, const void *b) 4287 { 4288 const struct mem_cgroup_threshold *_a = a; 4289 const struct mem_cgroup_threshold *_b = b; 4290 4291 return _a->threshold - _b->threshold; 4292 } 4293 4294 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4295 { 4296 struct mem_cgroup_eventfd_list *ev; 4297 4298 list_for_each_entry(ev, &memcg->oom_notify, list) 4299 eventfd_signal(ev->eventfd, 1); 4300 return 0; 4301 } 4302 4303 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4304 { 4305 struct mem_cgroup *iter; 4306 4307 for_each_mem_cgroup_tree(iter, memcg) 4308 mem_cgroup_oom_notify_cb(iter); 4309 } 4310 4311 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 4312 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4313 { 4314 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4315 struct mem_cgroup_thresholds *thresholds; 4316 struct mem_cgroup_threshold_ary *new; 4317 int type = MEMFILE_TYPE(cft->private); 4318 u64 threshold, usage; 4319 int i, size, ret; 4320 4321 ret = res_counter_memparse_write_strategy(args, &threshold); 4322 if (ret) 4323 return ret; 4324 4325 mutex_lock(&memcg->thresholds_lock); 4326 4327 if (type == _MEM) 4328 thresholds = &memcg->thresholds; 4329 else if (type == _MEMSWAP) 4330 thresholds = &memcg->memsw_thresholds; 4331 else 4332 BUG(); 4333 4334 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4335 4336 /* Check if a threshold crossed before adding a new one */ 4337 if (thresholds->primary) 4338 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4339 4340 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4341 4342 /* Allocate memory for new array of thresholds */ 4343 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 4344 GFP_KERNEL); 4345 if (!new) { 4346 ret = -ENOMEM; 4347 goto unlock; 4348 } 4349 new->size = size; 4350 4351 /* Copy thresholds (if any) to new array */ 4352 if (thresholds->primary) { 4353 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4354 sizeof(struct mem_cgroup_threshold)); 4355 } 4356 4357 /* Add new threshold */ 4358 new->entries[size - 1].eventfd = eventfd; 4359 new->entries[size - 1].threshold = threshold; 4360 4361 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4362 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4363 compare_thresholds, NULL); 4364 4365 /* Find current threshold */ 4366 new->current_threshold = -1; 4367 for (i = 0; i < size; i++) { 4368 if (new->entries[i].threshold < usage) { 4369 /* 4370 * new->current_threshold will not be used until 4371 * rcu_assign_pointer(), so it's safe to increment 4372 * it here. 4373 */ 4374 ++new->current_threshold; 4375 } 4376 } 4377 4378 /* Free old spare buffer and save old primary buffer as spare */ 4379 kfree(thresholds->spare); 4380 thresholds->spare = thresholds->primary; 4381 4382 rcu_assign_pointer(thresholds->primary, new); 4383 4384 /* To be sure that nobody uses thresholds */ 4385 synchronize_rcu(); 4386 4387 unlock: 4388 mutex_unlock(&memcg->thresholds_lock); 4389 4390 return ret; 4391 } 4392 4393 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 4394 struct cftype *cft, struct eventfd_ctx *eventfd) 4395 { 4396 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4397 struct mem_cgroup_thresholds *thresholds; 4398 struct mem_cgroup_threshold_ary *new; 4399 int type = MEMFILE_TYPE(cft->private); 4400 u64 usage; 4401 int i, j, size; 4402 4403 mutex_lock(&memcg->thresholds_lock); 4404 if (type == _MEM) 4405 thresholds = &memcg->thresholds; 4406 else if (type == _MEMSWAP) 4407 thresholds = &memcg->memsw_thresholds; 4408 else 4409 BUG(); 4410 4411 /* 4412 * Something went wrong if we trying to unregister a threshold 4413 * if we don't have thresholds 4414 */ 4415 BUG_ON(!thresholds); 4416 4417 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4418 4419 /* Check if a threshold crossed before removing */ 4420 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4421 4422 /* Calculate new number of threshold */ 4423 size = 0; 4424 for (i = 0; i < thresholds->primary->size; i++) { 4425 if (thresholds->primary->entries[i].eventfd != eventfd) 4426 size++; 4427 } 4428 4429 new = thresholds->spare; 4430 4431 /* Set thresholds array to NULL if we don't have thresholds */ 4432 if (!size) { 4433 kfree(new); 4434 new = NULL; 4435 goto swap_buffers; 4436 } 4437 4438 new->size = size; 4439 4440 /* Copy thresholds and find current threshold */ 4441 new->current_threshold = -1; 4442 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4443 if (thresholds->primary->entries[i].eventfd == eventfd) 4444 continue; 4445 4446 new->entries[j] = thresholds->primary->entries[i]; 4447 if (new->entries[j].threshold < usage) { 4448 /* 4449 * new->current_threshold will not be used 4450 * until rcu_assign_pointer(), so it's safe to increment 4451 * it here. 4452 */ 4453 ++new->current_threshold; 4454 } 4455 j++; 4456 } 4457 4458 swap_buffers: 4459 /* Swap primary and spare array */ 4460 thresholds->spare = thresholds->primary; 4461 rcu_assign_pointer(thresholds->primary, new); 4462 4463 /* To be sure that nobody uses thresholds */ 4464 synchronize_rcu(); 4465 4466 mutex_unlock(&memcg->thresholds_lock); 4467 } 4468 4469 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 4470 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4471 { 4472 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4473 struct mem_cgroup_eventfd_list *event; 4474 int type = MEMFILE_TYPE(cft->private); 4475 4476 BUG_ON(type != _OOM_TYPE); 4477 event = kmalloc(sizeof(*event), GFP_KERNEL); 4478 if (!event) 4479 return -ENOMEM; 4480 4481 spin_lock(&memcg_oom_lock); 4482 4483 event->eventfd = eventfd; 4484 list_add(&event->list, &memcg->oom_notify); 4485 4486 /* already in OOM ? */ 4487 if (atomic_read(&memcg->under_oom)) 4488 eventfd_signal(eventfd, 1); 4489 spin_unlock(&memcg_oom_lock); 4490 4491 return 0; 4492 } 4493 4494 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 4495 struct cftype *cft, struct eventfd_ctx *eventfd) 4496 { 4497 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4498 struct mem_cgroup_eventfd_list *ev, *tmp; 4499 int type = MEMFILE_TYPE(cft->private); 4500 4501 BUG_ON(type != _OOM_TYPE); 4502 4503 spin_lock(&memcg_oom_lock); 4504 4505 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4506 if (ev->eventfd == eventfd) { 4507 list_del(&ev->list); 4508 kfree(ev); 4509 } 4510 } 4511 4512 spin_unlock(&memcg_oom_lock); 4513 } 4514 4515 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4516 struct cftype *cft, struct cgroup_map_cb *cb) 4517 { 4518 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4519 4520 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 4521 4522 if (atomic_read(&memcg->under_oom)) 4523 cb->fill(cb, "under_oom", 1); 4524 else 4525 cb->fill(cb, "under_oom", 0); 4526 return 0; 4527 } 4528 4529 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4530 struct cftype *cft, u64 val) 4531 { 4532 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4533 struct mem_cgroup *parent; 4534 4535 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4536 if (!cgrp->parent || !((val == 0) || (val == 1))) 4537 return -EINVAL; 4538 4539 parent = mem_cgroup_from_cont(cgrp->parent); 4540 4541 cgroup_lock(); 4542 /* oom-kill-disable is a flag for subhierarchy. */ 4543 if ((parent->use_hierarchy) || 4544 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4545 cgroup_unlock(); 4546 return -EINVAL; 4547 } 4548 memcg->oom_kill_disable = val; 4549 if (!val) 4550 memcg_oom_recover(memcg); 4551 cgroup_unlock(); 4552 return 0; 4553 } 4554 4555 #ifdef CONFIG_NUMA 4556 static const struct file_operations mem_control_numa_stat_file_operations = { 4557 .read = seq_read, 4558 .llseek = seq_lseek, 4559 .release = single_release, 4560 }; 4561 4562 static int mem_control_numa_stat_open(struct inode *unused, struct file *file) 4563 { 4564 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata; 4565 4566 file->f_op = &mem_control_numa_stat_file_operations; 4567 return single_open(file, mem_control_numa_stat_show, cont); 4568 } 4569 #endif /* CONFIG_NUMA */ 4570 4571 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM 4572 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss) 4573 { 4574 /* 4575 * Part of this would be better living in a separate allocation 4576 * function, leaving us with just the cgroup tree population work. 4577 * We, however, depend on state such as network's proto_list that 4578 * is only initialized after cgroup creation. I found the less 4579 * cumbersome way to deal with it to defer it all to populate time 4580 */ 4581 return mem_cgroup_sockets_init(cont, ss); 4582 }; 4583 4584 static void kmem_cgroup_destroy(struct cgroup_subsys *ss, 4585 struct cgroup *cont) 4586 { 4587 mem_cgroup_sockets_destroy(cont, ss); 4588 } 4589 #else 4590 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss) 4591 { 4592 return 0; 4593 } 4594 4595 static void kmem_cgroup_destroy(struct cgroup_subsys *ss, 4596 struct cgroup *cont) 4597 { 4598 } 4599 #endif 4600 4601 static struct cftype mem_cgroup_files[] = { 4602 { 4603 .name = "usage_in_bytes", 4604 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4605 .read_u64 = mem_cgroup_read, 4606 .register_event = mem_cgroup_usage_register_event, 4607 .unregister_event = mem_cgroup_usage_unregister_event, 4608 }, 4609 { 4610 .name = "max_usage_in_bytes", 4611 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4612 .trigger = mem_cgroup_reset, 4613 .read_u64 = mem_cgroup_read, 4614 }, 4615 { 4616 .name = "limit_in_bytes", 4617 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4618 .write_string = mem_cgroup_write, 4619 .read_u64 = mem_cgroup_read, 4620 }, 4621 { 4622 .name = "soft_limit_in_bytes", 4623 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4624 .write_string = mem_cgroup_write, 4625 .read_u64 = mem_cgroup_read, 4626 }, 4627 { 4628 .name = "failcnt", 4629 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4630 .trigger = mem_cgroup_reset, 4631 .read_u64 = mem_cgroup_read, 4632 }, 4633 { 4634 .name = "stat", 4635 .read_map = mem_control_stat_show, 4636 }, 4637 { 4638 .name = "force_empty", 4639 .trigger = mem_cgroup_force_empty_write, 4640 }, 4641 { 4642 .name = "use_hierarchy", 4643 .write_u64 = mem_cgroup_hierarchy_write, 4644 .read_u64 = mem_cgroup_hierarchy_read, 4645 }, 4646 { 4647 .name = "swappiness", 4648 .read_u64 = mem_cgroup_swappiness_read, 4649 .write_u64 = mem_cgroup_swappiness_write, 4650 }, 4651 { 4652 .name = "move_charge_at_immigrate", 4653 .read_u64 = mem_cgroup_move_charge_read, 4654 .write_u64 = mem_cgroup_move_charge_write, 4655 }, 4656 { 4657 .name = "oom_control", 4658 .read_map = mem_cgroup_oom_control_read, 4659 .write_u64 = mem_cgroup_oom_control_write, 4660 .register_event = mem_cgroup_oom_register_event, 4661 .unregister_event = mem_cgroup_oom_unregister_event, 4662 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4663 }, 4664 #ifdef CONFIG_NUMA 4665 { 4666 .name = "numa_stat", 4667 .open = mem_control_numa_stat_open, 4668 .mode = S_IRUGO, 4669 }, 4670 #endif 4671 }; 4672 4673 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4674 static struct cftype memsw_cgroup_files[] = { 4675 { 4676 .name = "memsw.usage_in_bytes", 4677 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4678 .read_u64 = mem_cgroup_read, 4679 .register_event = mem_cgroup_usage_register_event, 4680 .unregister_event = mem_cgroup_usage_unregister_event, 4681 }, 4682 { 4683 .name = "memsw.max_usage_in_bytes", 4684 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4685 .trigger = mem_cgroup_reset, 4686 .read_u64 = mem_cgroup_read, 4687 }, 4688 { 4689 .name = "memsw.limit_in_bytes", 4690 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4691 .write_string = mem_cgroup_write, 4692 .read_u64 = mem_cgroup_read, 4693 }, 4694 { 4695 .name = "memsw.failcnt", 4696 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4697 .trigger = mem_cgroup_reset, 4698 .read_u64 = mem_cgroup_read, 4699 }, 4700 }; 4701 4702 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 4703 { 4704 if (!do_swap_account) 4705 return 0; 4706 return cgroup_add_files(cont, ss, memsw_cgroup_files, 4707 ARRAY_SIZE(memsw_cgroup_files)); 4708 }; 4709 #else 4710 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 4711 { 4712 return 0; 4713 } 4714 #endif 4715 4716 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4717 { 4718 struct mem_cgroup_per_node *pn; 4719 struct mem_cgroup_per_zone *mz; 4720 enum lru_list l; 4721 int zone, tmp = node; 4722 /* 4723 * This routine is called against possible nodes. 4724 * But it's BUG to call kmalloc() against offline node. 4725 * 4726 * TODO: this routine can waste much memory for nodes which will 4727 * never be onlined. It's better to use memory hotplug callback 4728 * function. 4729 */ 4730 if (!node_state(node, N_NORMAL_MEMORY)) 4731 tmp = -1; 4732 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4733 if (!pn) 4734 return 1; 4735 4736 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4737 mz = &pn->zoneinfo[zone]; 4738 for_each_lru(l) 4739 INIT_LIST_HEAD(&mz->lruvec.lists[l]); 4740 mz->usage_in_excess = 0; 4741 mz->on_tree = false; 4742 mz->mem = memcg; 4743 } 4744 memcg->info.nodeinfo[node] = pn; 4745 return 0; 4746 } 4747 4748 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4749 { 4750 kfree(memcg->info.nodeinfo[node]); 4751 } 4752 4753 static struct mem_cgroup *mem_cgroup_alloc(void) 4754 { 4755 struct mem_cgroup *mem; 4756 int size = sizeof(struct mem_cgroup); 4757 4758 /* Can be very big if MAX_NUMNODES is very big */ 4759 if (size < PAGE_SIZE) 4760 mem = kzalloc(size, GFP_KERNEL); 4761 else 4762 mem = vzalloc(size); 4763 4764 if (!mem) 4765 return NULL; 4766 4767 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4768 if (!mem->stat) 4769 goto out_free; 4770 spin_lock_init(&mem->pcp_counter_lock); 4771 return mem; 4772 4773 out_free: 4774 if (size < PAGE_SIZE) 4775 kfree(mem); 4776 else 4777 vfree(mem); 4778 return NULL; 4779 } 4780 4781 /* 4782 * At destroying mem_cgroup, references from swap_cgroup can remain. 4783 * (scanning all at force_empty is too costly...) 4784 * 4785 * Instead of clearing all references at force_empty, we remember 4786 * the number of reference from swap_cgroup and free mem_cgroup when 4787 * it goes down to 0. 4788 * 4789 * Removal of cgroup itself succeeds regardless of refs from swap. 4790 */ 4791 4792 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4793 { 4794 int node; 4795 4796 mem_cgroup_remove_from_trees(memcg); 4797 free_css_id(&mem_cgroup_subsys, &memcg->css); 4798 4799 for_each_node(node) 4800 free_mem_cgroup_per_zone_info(memcg, node); 4801 4802 free_percpu(memcg->stat); 4803 if (sizeof(struct mem_cgroup) < PAGE_SIZE) 4804 kfree(memcg); 4805 else 4806 vfree(memcg); 4807 } 4808 4809 static void mem_cgroup_get(struct mem_cgroup *memcg) 4810 { 4811 atomic_inc(&memcg->refcnt); 4812 } 4813 4814 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 4815 { 4816 if (atomic_sub_and_test(count, &memcg->refcnt)) { 4817 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4818 __mem_cgroup_free(memcg); 4819 if (parent) 4820 mem_cgroup_put(parent); 4821 } 4822 } 4823 4824 static void mem_cgroup_put(struct mem_cgroup *memcg) 4825 { 4826 __mem_cgroup_put(memcg, 1); 4827 } 4828 4829 /* 4830 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4831 */ 4832 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 4833 { 4834 if (!memcg->res.parent) 4835 return NULL; 4836 return mem_cgroup_from_res_counter(memcg->res.parent, res); 4837 } 4838 EXPORT_SYMBOL(parent_mem_cgroup); 4839 4840 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4841 static void __init enable_swap_cgroup(void) 4842 { 4843 if (!mem_cgroup_disabled() && really_do_swap_account) 4844 do_swap_account = 1; 4845 } 4846 #else 4847 static void __init enable_swap_cgroup(void) 4848 { 4849 } 4850 #endif 4851 4852 static int mem_cgroup_soft_limit_tree_init(void) 4853 { 4854 struct mem_cgroup_tree_per_node *rtpn; 4855 struct mem_cgroup_tree_per_zone *rtpz; 4856 int tmp, node, zone; 4857 4858 for_each_node(node) { 4859 tmp = node; 4860 if (!node_state(node, N_NORMAL_MEMORY)) 4861 tmp = -1; 4862 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4863 if (!rtpn) 4864 goto err_cleanup; 4865 4866 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4867 4868 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4869 rtpz = &rtpn->rb_tree_per_zone[zone]; 4870 rtpz->rb_root = RB_ROOT; 4871 spin_lock_init(&rtpz->lock); 4872 } 4873 } 4874 return 0; 4875 4876 err_cleanup: 4877 for_each_node(node) { 4878 if (!soft_limit_tree.rb_tree_per_node[node]) 4879 break; 4880 kfree(soft_limit_tree.rb_tree_per_node[node]); 4881 soft_limit_tree.rb_tree_per_node[node] = NULL; 4882 } 4883 return 1; 4884 4885 } 4886 4887 static struct cgroup_subsys_state * __ref 4888 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 4889 { 4890 struct mem_cgroup *memcg, *parent; 4891 long error = -ENOMEM; 4892 int node; 4893 4894 memcg = mem_cgroup_alloc(); 4895 if (!memcg) 4896 return ERR_PTR(error); 4897 4898 for_each_node(node) 4899 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4900 goto free_out; 4901 4902 /* root ? */ 4903 if (cont->parent == NULL) { 4904 int cpu; 4905 enable_swap_cgroup(); 4906 parent = NULL; 4907 if (mem_cgroup_soft_limit_tree_init()) 4908 goto free_out; 4909 root_mem_cgroup = memcg; 4910 for_each_possible_cpu(cpu) { 4911 struct memcg_stock_pcp *stock = 4912 &per_cpu(memcg_stock, cpu); 4913 INIT_WORK(&stock->work, drain_local_stock); 4914 } 4915 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4916 } else { 4917 parent = mem_cgroup_from_cont(cont->parent); 4918 memcg->use_hierarchy = parent->use_hierarchy; 4919 memcg->oom_kill_disable = parent->oom_kill_disable; 4920 } 4921 4922 if (parent && parent->use_hierarchy) { 4923 res_counter_init(&memcg->res, &parent->res); 4924 res_counter_init(&memcg->memsw, &parent->memsw); 4925 /* 4926 * We increment refcnt of the parent to ensure that we can 4927 * safely access it on res_counter_charge/uncharge. 4928 * This refcnt will be decremented when freeing this 4929 * mem_cgroup(see mem_cgroup_put). 4930 */ 4931 mem_cgroup_get(parent); 4932 } else { 4933 res_counter_init(&memcg->res, NULL); 4934 res_counter_init(&memcg->memsw, NULL); 4935 } 4936 memcg->last_scanned_node = MAX_NUMNODES; 4937 INIT_LIST_HEAD(&memcg->oom_notify); 4938 4939 if (parent) 4940 memcg->swappiness = mem_cgroup_swappiness(parent); 4941 atomic_set(&memcg->refcnt, 1); 4942 memcg->move_charge_at_immigrate = 0; 4943 mutex_init(&memcg->thresholds_lock); 4944 return &memcg->css; 4945 free_out: 4946 __mem_cgroup_free(memcg); 4947 return ERR_PTR(error); 4948 } 4949 4950 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 4951 struct cgroup *cont) 4952 { 4953 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4954 4955 return mem_cgroup_force_empty(memcg, false); 4956 } 4957 4958 static void mem_cgroup_destroy(struct cgroup_subsys *ss, 4959 struct cgroup *cont) 4960 { 4961 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4962 4963 kmem_cgroup_destroy(ss, cont); 4964 4965 mem_cgroup_put(memcg); 4966 } 4967 4968 static int mem_cgroup_populate(struct cgroup_subsys *ss, 4969 struct cgroup *cont) 4970 { 4971 int ret; 4972 4973 ret = cgroup_add_files(cont, ss, mem_cgroup_files, 4974 ARRAY_SIZE(mem_cgroup_files)); 4975 4976 if (!ret) 4977 ret = register_memsw_files(cont, ss); 4978 4979 if (!ret) 4980 ret = register_kmem_files(cont, ss); 4981 4982 return ret; 4983 } 4984 4985 #ifdef CONFIG_MMU 4986 /* Handlers for move charge at task migration. */ 4987 #define PRECHARGE_COUNT_AT_ONCE 256 4988 static int mem_cgroup_do_precharge(unsigned long count) 4989 { 4990 int ret = 0; 4991 int batch_count = PRECHARGE_COUNT_AT_ONCE; 4992 struct mem_cgroup *memcg = mc.to; 4993 4994 if (mem_cgroup_is_root(memcg)) { 4995 mc.precharge += count; 4996 /* we don't need css_get for root */ 4997 return ret; 4998 } 4999 /* try to charge at once */ 5000 if (count > 1) { 5001 struct res_counter *dummy; 5002 /* 5003 * "memcg" cannot be under rmdir() because we've already checked 5004 * by cgroup_lock_live_cgroup() that it is not removed and we 5005 * are still under the same cgroup_mutex. So we can postpone 5006 * css_get(). 5007 */ 5008 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 5009 goto one_by_one; 5010 if (do_swap_account && res_counter_charge(&memcg->memsw, 5011 PAGE_SIZE * count, &dummy)) { 5012 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 5013 goto one_by_one; 5014 } 5015 mc.precharge += count; 5016 return ret; 5017 } 5018 one_by_one: 5019 /* fall back to one by one charge */ 5020 while (count--) { 5021 if (signal_pending(current)) { 5022 ret = -EINTR; 5023 break; 5024 } 5025 if (!batch_count--) { 5026 batch_count = PRECHARGE_COUNT_AT_ONCE; 5027 cond_resched(); 5028 } 5029 ret = __mem_cgroup_try_charge(NULL, 5030 GFP_KERNEL, 1, &memcg, false); 5031 if (ret) 5032 /* mem_cgroup_clear_mc() will do uncharge later */ 5033 return ret; 5034 mc.precharge++; 5035 } 5036 return ret; 5037 } 5038 5039 /** 5040 * is_target_pte_for_mc - check a pte whether it is valid for move charge 5041 * @vma: the vma the pte to be checked belongs 5042 * @addr: the address corresponding to the pte to be checked 5043 * @ptent: the pte to be checked 5044 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5045 * 5046 * Returns 5047 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5048 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5049 * move charge. if @target is not NULL, the page is stored in target->page 5050 * with extra refcnt got(Callers should handle it). 5051 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5052 * target for charge migration. if @target is not NULL, the entry is stored 5053 * in target->ent. 5054 * 5055 * Called with pte lock held. 5056 */ 5057 union mc_target { 5058 struct page *page; 5059 swp_entry_t ent; 5060 }; 5061 5062 enum mc_target_type { 5063 MC_TARGET_NONE, /* not used */ 5064 MC_TARGET_PAGE, 5065 MC_TARGET_SWAP, 5066 }; 5067 5068 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5069 unsigned long addr, pte_t ptent) 5070 { 5071 struct page *page = vm_normal_page(vma, addr, ptent); 5072 5073 if (!page || !page_mapped(page)) 5074 return NULL; 5075 if (PageAnon(page)) { 5076 /* we don't move shared anon */ 5077 if (!move_anon() || page_mapcount(page) > 2) 5078 return NULL; 5079 } else if (!move_file()) 5080 /* we ignore mapcount for file pages */ 5081 return NULL; 5082 if (!get_page_unless_zero(page)) 5083 return NULL; 5084 5085 return page; 5086 } 5087 5088 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5089 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5090 { 5091 int usage_count; 5092 struct page *page = NULL; 5093 swp_entry_t ent = pte_to_swp_entry(ptent); 5094 5095 if (!move_anon() || non_swap_entry(ent)) 5096 return NULL; 5097 usage_count = mem_cgroup_count_swap_user(ent, &page); 5098 if (usage_count > 1) { /* we don't move shared anon */ 5099 if (page) 5100 put_page(page); 5101 return NULL; 5102 } 5103 if (do_swap_account) 5104 entry->val = ent.val; 5105 5106 return page; 5107 } 5108 5109 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5110 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5111 { 5112 struct page *page = NULL; 5113 struct inode *inode; 5114 struct address_space *mapping; 5115 pgoff_t pgoff; 5116 5117 if (!vma->vm_file) /* anonymous vma */ 5118 return NULL; 5119 if (!move_file()) 5120 return NULL; 5121 5122 inode = vma->vm_file->f_path.dentry->d_inode; 5123 mapping = vma->vm_file->f_mapping; 5124 if (pte_none(ptent)) 5125 pgoff = linear_page_index(vma, addr); 5126 else /* pte_file(ptent) is true */ 5127 pgoff = pte_to_pgoff(ptent); 5128 5129 /* page is moved even if it's not RSS of this task(page-faulted). */ 5130 page = find_get_page(mapping, pgoff); 5131 5132 #ifdef CONFIG_SWAP 5133 /* shmem/tmpfs may report page out on swap: account for that too. */ 5134 if (radix_tree_exceptional_entry(page)) { 5135 swp_entry_t swap = radix_to_swp_entry(page); 5136 if (do_swap_account) 5137 *entry = swap; 5138 page = find_get_page(&swapper_space, swap.val); 5139 } 5140 #endif 5141 return page; 5142 } 5143 5144 static int is_target_pte_for_mc(struct vm_area_struct *vma, 5145 unsigned long addr, pte_t ptent, union mc_target *target) 5146 { 5147 struct page *page = NULL; 5148 struct page_cgroup *pc; 5149 int ret = 0; 5150 swp_entry_t ent = { .val = 0 }; 5151 5152 if (pte_present(ptent)) 5153 page = mc_handle_present_pte(vma, addr, ptent); 5154 else if (is_swap_pte(ptent)) 5155 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 5156 else if (pte_none(ptent) || pte_file(ptent)) 5157 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5158 5159 if (!page && !ent.val) 5160 return 0; 5161 if (page) { 5162 pc = lookup_page_cgroup(page); 5163 /* 5164 * Do only loose check w/o page_cgroup lock. 5165 * mem_cgroup_move_account() checks the pc is valid or not under 5166 * the lock. 5167 */ 5168 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5169 ret = MC_TARGET_PAGE; 5170 if (target) 5171 target->page = page; 5172 } 5173 if (!ret || !target) 5174 put_page(page); 5175 } 5176 /* There is a swap entry and a page doesn't exist or isn't charged */ 5177 if (ent.val && !ret && 5178 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 5179 ret = MC_TARGET_SWAP; 5180 if (target) 5181 target->ent = ent; 5182 } 5183 return ret; 5184 } 5185 5186 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5187 unsigned long addr, unsigned long end, 5188 struct mm_walk *walk) 5189 { 5190 struct vm_area_struct *vma = walk->private; 5191 pte_t *pte; 5192 spinlock_t *ptl; 5193 5194 split_huge_page_pmd(walk->mm, pmd); 5195 5196 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5197 for (; addr != end; pte++, addr += PAGE_SIZE) 5198 if (is_target_pte_for_mc(vma, addr, *pte, NULL)) 5199 mc.precharge++; /* increment precharge temporarily */ 5200 pte_unmap_unlock(pte - 1, ptl); 5201 cond_resched(); 5202 5203 return 0; 5204 } 5205 5206 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5207 { 5208 unsigned long precharge; 5209 struct vm_area_struct *vma; 5210 5211 down_read(&mm->mmap_sem); 5212 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5213 struct mm_walk mem_cgroup_count_precharge_walk = { 5214 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5215 .mm = mm, 5216 .private = vma, 5217 }; 5218 if (is_vm_hugetlb_page(vma)) 5219 continue; 5220 walk_page_range(vma->vm_start, vma->vm_end, 5221 &mem_cgroup_count_precharge_walk); 5222 } 5223 up_read(&mm->mmap_sem); 5224 5225 precharge = mc.precharge; 5226 mc.precharge = 0; 5227 5228 return precharge; 5229 } 5230 5231 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5232 { 5233 unsigned long precharge = mem_cgroup_count_precharge(mm); 5234 5235 VM_BUG_ON(mc.moving_task); 5236 mc.moving_task = current; 5237 return mem_cgroup_do_precharge(precharge); 5238 } 5239 5240 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5241 static void __mem_cgroup_clear_mc(void) 5242 { 5243 struct mem_cgroup *from = mc.from; 5244 struct mem_cgroup *to = mc.to; 5245 5246 /* we must uncharge all the leftover precharges from mc.to */ 5247 if (mc.precharge) { 5248 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 5249 mc.precharge = 0; 5250 } 5251 /* 5252 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5253 * we must uncharge here. 5254 */ 5255 if (mc.moved_charge) { 5256 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 5257 mc.moved_charge = 0; 5258 } 5259 /* we must fixup refcnts and charges */ 5260 if (mc.moved_swap) { 5261 /* uncharge swap account from the old cgroup */ 5262 if (!mem_cgroup_is_root(mc.from)) 5263 res_counter_uncharge(&mc.from->memsw, 5264 PAGE_SIZE * mc.moved_swap); 5265 __mem_cgroup_put(mc.from, mc.moved_swap); 5266 5267 if (!mem_cgroup_is_root(mc.to)) { 5268 /* 5269 * we charged both to->res and to->memsw, so we should 5270 * uncharge to->res. 5271 */ 5272 res_counter_uncharge(&mc.to->res, 5273 PAGE_SIZE * mc.moved_swap); 5274 } 5275 /* we've already done mem_cgroup_get(mc.to) */ 5276 mc.moved_swap = 0; 5277 } 5278 memcg_oom_recover(from); 5279 memcg_oom_recover(to); 5280 wake_up_all(&mc.waitq); 5281 } 5282 5283 static void mem_cgroup_clear_mc(void) 5284 { 5285 struct mem_cgroup *from = mc.from; 5286 5287 /* 5288 * we must clear moving_task before waking up waiters at the end of 5289 * task migration. 5290 */ 5291 mc.moving_task = NULL; 5292 __mem_cgroup_clear_mc(); 5293 spin_lock(&mc.lock); 5294 mc.from = NULL; 5295 mc.to = NULL; 5296 spin_unlock(&mc.lock); 5297 mem_cgroup_end_move(from); 5298 } 5299 5300 static int mem_cgroup_can_attach(struct cgroup_subsys *ss, 5301 struct cgroup *cgroup, 5302 struct cgroup_taskset *tset) 5303 { 5304 struct task_struct *p = cgroup_taskset_first(tset); 5305 int ret = 0; 5306 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 5307 5308 if (memcg->move_charge_at_immigrate) { 5309 struct mm_struct *mm; 5310 struct mem_cgroup *from = mem_cgroup_from_task(p); 5311 5312 VM_BUG_ON(from == memcg); 5313 5314 mm = get_task_mm(p); 5315 if (!mm) 5316 return 0; 5317 /* We move charges only when we move a owner of the mm */ 5318 if (mm->owner == p) { 5319 VM_BUG_ON(mc.from); 5320 VM_BUG_ON(mc.to); 5321 VM_BUG_ON(mc.precharge); 5322 VM_BUG_ON(mc.moved_charge); 5323 VM_BUG_ON(mc.moved_swap); 5324 mem_cgroup_start_move(from); 5325 spin_lock(&mc.lock); 5326 mc.from = from; 5327 mc.to = memcg; 5328 spin_unlock(&mc.lock); 5329 /* We set mc.moving_task later */ 5330 5331 ret = mem_cgroup_precharge_mc(mm); 5332 if (ret) 5333 mem_cgroup_clear_mc(); 5334 } 5335 mmput(mm); 5336 } 5337 return ret; 5338 } 5339 5340 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, 5341 struct cgroup *cgroup, 5342 struct cgroup_taskset *tset) 5343 { 5344 mem_cgroup_clear_mc(); 5345 } 5346 5347 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5348 unsigned long addr, unsigned long end, 5349 struct mm_walk *walk) 5350 { 5351 int ret = 0; 5352 struct vm_area_struct *vma = walk->private; 5353 pte_t *pte; 5354 spinlock_t *ptl; 5355 5356 split_huge_page_pmd(walk->mm, pmd); 5357 retry: 5358 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5359 for (; addr != end; addr += PAGE_SIZE) { 5360 pte_t ptent = *(pte++); 5361 union mc_target target; 5362 int type; 5363 struct page *page; 5364 struct page_cgroup *pc; 5365 swp_entry_t ent; 5366 5367 if (!mc.precharge) 5368 break; 5369 5370 type = is_target_pte_for_mc(vma, addr, ptent, &target); 5371 switch (type) { 5372 case MC_TARGET_PAGE: 5373 page = target.page; 5374 if (isolate_lru_page(page)) 5375 goto put; 5376 pc = lookup_page_cgroup(page); 5377 if (!mem_cgroup_move_account(page, 1, pc, 5378 mc.from, mc.to, false)) { 5379 mc.precharge--; 5380 /* we uncharge from mc.from later. */ 5381 mc.moved_charge++; 5382 } 5383 putback_lru_page(page); 5384 put: /* is_target_pte_for_mc() gets the page */ 5385 put_page(page); 5386 break; 5387 case MC_TARGET_SWAP: 5388 ent = target.ent; 5389 if (!mem_cgroup_move_swap_account(ent, 5390 mc.from, mc.to, false)) { 5391 mc.precharge--; 5392 /* we fixup refcnts and charges later. */ 5393 mc.moved_swap++; 5394 } 5395 break; 5396 default: 5397 break; 5398 } 5399 } 5400 pte_unmap_unlock(pte - 1, ptl); 5401 cond_resched(); 5402 5403 if (addr != end) { 5404 /* 5405 * We have consumed all precharges we got in can_attach(). 5406 * We try charge one by one, but don't do any additional 5407 * charges to mc.to if we have failed in charge once in attach() 5408 * phase. 5409 */ 5410 ret = mem_cgroup_do_precharge(1); 5411 if (!ret) 5412 goto retry; 5413 } 5414 5415 return ret; 5416 } 5417 5418 static void mem_cgroup_move_charge(struct mm_struct *mm) 5419 { 5420 struct vm_area_struct *vma; 5421 5422 lru_add_drain_all(); 5423 retry: 5424 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5425 /* 5426 * Someone who are holding the mmap_sem might be waiting in 5427 * waitq. So we cancel all extra charges, wake up all waiters, 5428 * and retry. Because we cancel precharges, we might not be able 5429 * to move enough charges, but moving charge is a best-effort 5430 * feature anyway, so it wouldn't be a big problem. 5431 */ 5432 __mem_cgroup_clear_mc(); 5433 cond_resched(); 5434 goto retry; 5435 } 5436 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5437 int ret; 5438 struct mm_walk mem_cgroup_move_charge_walk = { 5439 .pmd_entry = mem_cgroup_move_charge_pte_range, 5440 .mm = mm, 5441 .private = vma, 5442 }; 5443 if (is_vm_hugetlb_page(vma)) 5444 continue; 5445 ret = walk_page_range(vma->vm_start, vma->vm_end, 5446 &mem_cgroup_move_charge_walk); 5447 if (ret) 5448 /* 5449 * means we have consumed all precharges and failed in 5450 * doing additional charge. Just abandon here. 5451 */ 5452 break; 5453 } 5454 up_read(&mm->mmap_sem); 5455 } 5456 5457 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 5458 struct cgroup *cont, 5459 struct cgroup_taskset *tset) 5460 { 5461 struct task_struct *p = cgroup_taskset_first(tset); 5462 struct mm_struct *mm = get_task_mm(p); 5463 5464 if (mm) { 5465 if (mc.to) 5466 mem_cgroup_move_charge(mm); 5467 put_swap_token(mm); 5468 mmput(mm); 5469 } 5470 if (mc.to) 5471 mem_cgroup_clear_mc(); 5472 } 5473 #else /* !CONFIG_MMU */ 5474 static int mem_cgroup_can_attach(struct cgroup_subsys *ss, 5475 struct cgroup *cgroup, 5476 struct cgroup_taskset *tset) 5477 { 5478 return 0; 5479 } 5480 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, 5481 struct cgroup *cgroup, 5482 struct cgroup_taskset *tset) 5483 { 5484 } 5485 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 5486 struct cgroup *cont, 5487 struct cgroup_taskset *tset) 5488 { 5489 } 5490 #endif 5491 5492 struct cgroup_subsys mem_cgroup_subsys = { 5493 .name = "memory", 5494 .subsys_id = mem_cgroup_subsys_id, 5495 .create = mem_cgroup_create, 5496 .pre_destroy = mem_cgroup_pre_destroy, 5497 .destroy = mem_cgroup_destroy, 5498 .populate = mem_cgroup_populate, 5499 .can_attach = mem_cgroup_can_attach, 5500 .cancel_attach = mem_cgroup_cancel_attach, 5501 .attach = mem_cgroup_move_task, 5502 .early_init = 0, 5503 .use_id = 1, 5504 }; 5505 5506 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 5507 static int __init enable_swap_account(char *s) 5508 { 5509 /* consider enabled if no parameter or 1 is given */ 5510 if (!strcmp(s, "1")) 5511 really_do_swap_account = 1; 5512 else if (!strcmp(s, "0")) 5513 really_do_swap_account = 0; 5514 return 1; 5515 } 5516 __setup("swapaccount=", enable_swap_account); 5517 5518 #endif 5519