1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 #define MEM_CGROUP_RECLAIM_RETRIES 5 77 78 /* Socket memory accounting disabled? */ 79 static bool cgroup_memory_nosocket; 80 81 /* Kernel memory accounting disabled? */ 82 static bool cgroup_memory_nokmem; 83 84 /* Whether the swap controller is active */ 85 #ifdef CONFIG_MEMCG_SWAP 86 int do_swap_account __read_mostly; 87 #else 88 #define do_swap_account 0 89 #endif 90 91 #ifdef CONFIG_CGROUP_WRITEBACK 92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 #define THRESHOLDS_EVENTS_TARGET 128 102 #define SOFTLIMIT_EVENTS_TARGET 1024 103 104 /* 105 * Cgroups above their limits are maintained in a RB-Tree, independent of 106 * their hierarchy representation 107 */ 108 109 struct mem_cgroup_tree_per_node { 110 struct rb_root rb_root; 111 struct rb_node *rb_rightmost; 112 spinlock_t lock; 113 }; 114 115 struct mem_cgroup_tree { 116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 117 }; 118 119 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 120 121 /* for OOM */ 122 struct mem_cgroup_eventfd_list { 123 struct list_head list; 124 struct eventfd_ctx *eventfd; 125 }; 126 127 /* 128 * cgroup_event represents events which userspace want to receive. 129 */ 130 struct mem_cgroup_event { 131 /* 132 * memcg which the event belongs to. 133 */ 134 struct mem_cgroup *memcg; 135 /* 136 * eventfd to signal userspace about the event. 137 */ 138 struct eventfd_ctx *eventfd; 139 /* 140 * Each of these stored in a list by the cgroup. 141 */ 142 struct list_head list; 143 /* 144 * register_event() callback will be used to add new userspace 145 * waiter for changes related to this event. Use eventfd_signal() 146 * on eventfd to send notification to userspace. 147 */ 148 int (*register_event)(struct mem_cgroup *memcg, 149 struct eventfd_ctx *eventfd, const char *args); 150 /* 151 * unregister_event() callback will be called when userspace closes 152 * the eventfd or on cgroup removing. This callback must be set, 153 * if you want provide notification functionality. 154 */ 155 void (*unregister_event)(struct mem_cgroup *memcg, 156 struct eventfd_ctx *eventfd); 157 /* 158 * All fields below needed to unregister event when 159 * userspace closes eventfd. 160 */ 161 poll_table pt; 162 wait_queue_head_t *wqh; 163 wait_queue_entry_t wait; 164 struct work_struct remove; 165 }; 166 167 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 169 170 /* Stuffs for move charges at task migration. */ 171 /* 172 * Types of charges to be moved. 173 */ 174 #define MOVE_ANON 0x1U 175 #define MOVE_FILE 0x2U 176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 177 178 /* "mc" and its members are protected by cgroup_mutex */ 179 static struct move_charge_struct { 180 spinlock_t lock; /* for from, to */ 181 struct mm_struct *mm; 182 struct mem_cgroup *from; 183 struct mem_cgroup *to; 184 unsigned long flags; 185 unsigned long precharge; 186 unsigned long moved_charge; 187 unsigned long moved_swap; 188 struct task_struct *moving_task; /* a task moving charges */ 189 wait_queue_head_t waitq; /* a waitq for other context */ 190 } mc = { 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 193 }; 194 195 /* 196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 197 * limit reclaim to prevent infinite loops, if they ever occur. 198 */ 199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 201 202 enum charge_type { 203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 204 MEM_CGROUP_CHARGE_TYPE_ANON, 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 207 NR_CHARGE_TYPE, 208 }; 209 210 /* for encoding cft->private value on file */ 211 enum res_type { 212 _MEM, 213 _MEMSWAP, 214 _OOM_TYPE, 215 _KMEM, 216 _TCP, 217 }; 218 219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 221 #define MEMFILE_ATTR(val) ((val) & 0xffff) 222 /* Used for OOM nofiier */ 223 #define OOM_CONTROL (0) 224 225 /* 226 * Iteration constructs for visiting all cgroups (under a tree). If 227 * loops are exited prematurely (break), mem_cgroup_iter_break() must 228 * be used for reference counting. 229 */ 230 #define for_each_mem_cgroup_tree(iter, root) \ 231 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 232 iter != NULL; \ 233 iter = mem_cgroup_iter(root, iter, NULL)) 234 235 #define for_each_mem_cgroup(iter) \ 236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 237 iter != NULL; \ 238 iter = mem_cgroup_iter(NULL, iter, NULL)) 239 240 static inline bool should_force_charge(void) 241 { 242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 243 (current->flags & PF_EXITING); 244 } 245 246 /* Some nice accessors for the vmpressure. */ 247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 248 { 249 if (!memcg) 250 memcg = root_mem_cgroup; 251 return &memcg->vmpressure; 252 } 253 254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 255 { 256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 257 } 258 259 #ifdef CONFIG_MEMCG_KMEM 260 /* 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 262 * The main reason for not using cgroup id for this: 263 * this works better in sparse environments, where we have a lot of memcgs, 264 * but only a few kmem-limited. Or also, if we have, for instance, 200 265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 266 * 200 entry array for that. 267 * 268 * The current size of the caches array is stored in memcg_nr_cache_ids. It 269 * will double each time we have to increase it. 270 */ 271 static DEFINE_IDA(memcg_cache_ida); 272 int memcg_nr_cache_ids; 273 274 /* Protects memcg_nr_cache_ids */ 275 static DECLARE_RWSEM(memcg_cache_ids_sem); 276 277 void memcg_get_cache_ids(void) 278 { 279 down_read(&memcg_cache_ids_sem); 280 } 281 282 void memcg_put_cache_ids(void) 283 { 284 up_read(&memcg_cache_ids_sem); 285 } 286 287 /* 288 * MIN_SIZE is different than 1, because we would like to avoid going through 289 * the alloc/free process all the time. In a small machine, 4 kmem-limited 290 * cgroups is a reasonable guess. In the future, it could be a parameter or 291 * tunable, but that is strictly not necessary. 292 * 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 294 * this constant directly from cgroup, but it is understandable that this is 295 * better kept as an internal representation in cgroup.c. In any case, the 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily 297 * increase ours as well if it increases. 298 */ 299 #define MEMCG_CACHES_MIN_SIZE 4 300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 301 302 /* 303 * A lot of the calls to the cache allocation functions are expected to be 304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 305 * conditional to this static branch, we'll have to allow modules that does 306 * kmem_cache_alloc and the such to see this symbol as well 307 */ 308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 309 EXPORT_SYMBOL(memcg_kmem_enabled_key); 310 311 struct workqueue_struct *memcg_kmem_cache_wq; 312 #endif 313 314 static int memcg_shrinker_map_size; 315 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 316 317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 318 { 319 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 320 } 321 322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 323 int size, int old_size) 324 { 325 struct memcg_shrinker_map *new, *old; 326 int nid; 327 328 lockdep_assert_held(&memcg_shrinker_map_mutex); 329 330 for_each_node(nid) { 331 old = rcu_dereference_protected( 332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 333 /* Not yet online memcg */ 334 if (!old) 335 return 0; 336 337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 338 if (!new) 339 return -ENOMEM; 340 341 /* Set all old bits, clear all new bits */ 342 memset(new->map, (int)0xff, old_size); 343 memset((void *)new->map + old_size, 0, size - old_size); 344 345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 347 } 348 349 return 0; 350 } 351 352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 353 { 354 struct mem_cgroup_per_node *pn; 355 struct memcg_shrinker_map *map; 356 int nid; 357 358 if (mem_cgroup_is_root(memcg)) 359 return; 360 361 for_each_node(nid) { 362 pn = mem_cgroup_nodeinfo(memcg, nid); 363 map = rcu_dereference_protected(pn->shrinker_map, true); 364 if (map) 365 kvfree(map); 366 rcu_assign_pointer(pn->shrinker_map, NULL); 367 } 368 } 369 370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 371 { 372 struct memcg_shrinker_map *map; 373 int nid, size, ret = 0; 374 375 if (mem_cgroup_is_root(memcg)) 376 return 0; 377 378 mutex_lock(&memcg_shrinker_map_mutex); 379 size = memcg_shrinker_map_size; 380 for_each_node(nid) { 381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid); 382 if (!map) { 383 memcg_free_shrinker_maps(memcg); 384 ret = -ENOMEM; 385 break; 386 } 387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 388 } 389 mutex_unlock(&memcg_shrinker_map_mutex); 390 391 return ret; 392 } 393 394 int memcg_expand_shrinker_maps(int new_id) 395 { 396 int size, old_size, ret = 0; 397 struct mem_cgroup *memcg; 398 399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 400 old_size = memcg_shrinker_map_size; 401 if (size <= old_size) 402 return 0; 403 404 mutex_lock(&memcg_shrinker_map_mutex); 405 if (!root_mem_cgroup) 406 goto unlock; 407 408 for_each_mem_cgroup(memcg) { 409 if (mem_cgroup_is_root(memcg)) 410 continue; 411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 412 if (ret) { 413 mem_cgroup_iter_break(NULL, memcg); 414 goto unlock; 415 } 416 } 417 unlock: 418 if (!ret) 419 memcg_shrinker_map_size = size; 420 mutex_unlock(&memcg_shrinker_map_mutex); 421 return ret; 422 } 423 424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 425 { 426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 427 struct memcg_shrinker_map *map; 428 429 rcu_read_lock(); 430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 431 /* Pairs with smp mb in shrink_slab() */ 432 smp_mb__before_atomic(); 433 set_bit(shrinker_id, map->map); 434 rcu_read_unlock(); 435 } 436 } 437 438 /** 439 * mem_cgroup_css_from_page - css of the memcg associated with a page 440 * @page: page of interest 441 * 442 * If memcg is bound to the default hierarchy, css of the memcg associated 443 * with @page is returned. The returned css remains associated with @page 444 * until it is released. 445 * 446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 447 * is returned. 448 */ 449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 450 { 451 struct mem_cgroup *memcg; 452 453 memcg = page->mem_cgroup; 454 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 456 memcg = root_mem_cgroup; 457 458 return &memcg->css; 459 } 460 461 /** 462 * page_cgroup_ino - return inode number of the memcg a page is charged to 463 * @page: the page 464 * 465 * Look up the closest online ancestor of the memory cgroup @page is charged to 466 * and return its inode number or 0 if @page is not charged to any cgroup. It 467 * is safe to call this function without holding a reference to @page. 468 * 469 * Note, this function is inherently racy, because there is nothing to prevent 470 * the cgroup inode from getting torn down and potentially reallocated a moment 471 * after page_cgroup_ino() returns, so it only should be used by callers that 472 * do not care (such as procfs interfaces). 473 */ 474 ino_t page_cgroup_ino(struct page *page) 475 { 476 struct mem_cgroup *memcg; 477 unsigned long ino = 0; 478 479 rcu_read_lock(); 480 if (PageSlab(page) && !PageTail(page)) 481 memcg = memcg_from_slab_page(page); 482 else 483 memcg = READ_ONCE(page->mem_cgroup); 484 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 485 memcg = parent_mem_cgroup(memcg); 486 if (memcg) 487 ino = cgroup_ino(memcg->css.cgroup); 488 rcu_read_unlock(); 489 return ino; 490 } 491 492 static struct mem_cgroup_per_node * 493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 494 { 495 int nid = page_to_nid(page); 496 497 return memcg->nodeinfo[nid]; 498 } 499 500 static struct mem_cgroup_tree_per_node * 501 soft_limit_tree_node(int nid) 502 { 503 return soft_limit_tree.rb_tree_per_node[nid]; 504 } 505 506 static struct mem_cgroup_tree_per_node * 507 soft_limit_tree_from_page(struct page *page) 508 { 509 int nid = page_to_nid(page); 510 511 return soft_limit_tree.rb_tree_per_node[nid]; 512 } 513 514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 515 struct mem_cgroup_tree_per_node *mctz, 516 unsigned long new_usage_in_excess) 517 { 518 struct rb_node **p = &mctz->rb_root.rb_node; 519 struct rb_node *parent = NULL; 520 struct mem_cgroup_per_node *mz_node; 521 bool rightmost = true; 522 523 if (mz->on_tree) 524 return; 525 526 mz->usage_in_excess = new_usage_in_excess; 527 if (!mz->usage_in_excess) 528 return; 529 while (*p) { 530 parent = *p; 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 532 tree_node); 533 if (mz->usage_in_excess < mz_node->usage_in_excess) { 534 p = &(*p)->rb_left; 535 rightmost = false; 536 } 537 538 /* 539 * We can't avoid mem cgroups that are over their soft 540 * limit by the same amount 541 */ 542 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 543 p = &(*p)->rb_right; 544 } 545 546 if (rightmost) 547 mctz->rb_rightmost = &mz->tree_node; 548 549 rb_link_node(&mz->tree_node, parent, p); 550 rb_insert_color(&mz->tree_node, &mctz->rb_root); 551 mz->on_tree = true; 552 } 553 554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 555 struct mem_cgroup_tree_per_node *mctz) 556 { 557 if (!mz->on_tree) 558 return; 559 560 if (&mz->tree_node == mctz->rb_rightmost) 561 mctz->rb_rightmost = rb_prev(&mz->tree_node); 562 563 rb_erase(&mz->tree_node, &mctz->rb_root); 564 mz->on_tree = false; 565 } 566 567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 568 struct mem_cgroup_tree_per_node *mctz) 569 { 570 unsigned long flags; 571 572 spin_lock_irqsave(&mctz->lock, flags); 573 __mem_cgroup_remove_exceeded(mz, mctz); 574 spin_unlock_irqrestore(&mctz->lock, flags); 575 } 576 577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 578 { 579 unsigned long nr_pages = page_counter_read(&memcg->memory); 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 581 unsigned long excess = 0; 582 583 if (nr_pages > soft_limit) 584 excess = nr_pages - soft_limit; 585 586 return excess; 587 } 588 589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 590 { 591 unsigned long excess; 592 struct mem_cgroup_per_node *mz; 593 struct mem_cgroup_tree_per_node *mctz; 594 595 mctz = soft_limit_tree_from_page(page); 596 if (!mctz) 597 return; 598 /* 599 * Necessary to update all ancestors when hierarchy is used. 600 * because their event counter is not touched. 601 */ 602 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 603 mz = mem_cgroup_page_nodeinfo(memcg, page); 604 excess = soft_limit_excess(memcg); 605 /* 606 * We have to update the tree if mz is on RB-tree or 607 * mem is over its softlimit. 608 */ 609 if (excess || mz->on_tree) { 610 unsigned long flags; 611 612 spin_lock_irqsave(&mctz->lock, flags); 613 /* if on-tree, remove it */ 614 if (mz->on_tree) 615 __mem_cgroup_remove_exceeded(mz, mctz); 616 /* 617 * Insert again. mz->usage_in_excess will be updated. 618 * If excess is 0, no tree ops. 619 */ 620 __mem_cgroup_insert_exceeded(mz, mctz, excess); 621 spin_unlock_irqrestore(&mctz->lock, flags); 622 } 623 } 624 } 625 626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 627 { 628 struct mem_cgroup_tree_per_node *mctz; 629 struct mem_cgroup_per_node *mz; 630 int nid; 631 632 for_each_node(nid) { 633 mz = mem_cgroup_nodeinfo(memcg, nid); 634 mctz = soft_limit_tree_node(nid); 635 if (mctz) 636 mem_cgroup_remove_exceeded(mz, mctz); 637 } 638 } 639 640 static struct mem_cgroup_per_node * 641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 642 { 643 struct mem_cgroup_per_node *mz; 644 645 retry: 646 mz = NULL; 647 if (!mctz->rb_rightmost) 648 goto done; /* Nothing to reclaim from */ 649 650 mz = rb_entry(mctz->rb_rightmost, 651 struct mem_cgroup_per_node, tree_node); 652 /* 653 * Remove the node now but someone else can add it back, 654 * we will to add it back at the end of reclaim to its correct 655 * position in the tree. 656 */ 657 __mem_cgroup_remove_exceeded(mz, mctz); 658 if (!soft_limit_excess(mz->memcg) || 659 !css_tryget(&mz->memcg->css)) 660 goto retry; 661 done: 662 return mz; 663 } 664 665 static struct mem_cgroup_per_node * 666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 667 { 668 struct mem_cgroup_per_node *mz; 669 670 spin_lock_irq(&mctz->lock); 671 mz = __mem_cgroup_largest_soft_limit_node(mctz); 672 spin_unlock_irq(&mctz->lock); 673 return mz; 674 } 675 676 /** 677 * __mod_memcg_state - update cgroup memory statistics 678 * @memcg: the memory cgroup 679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 680 * @val: delta to add to the counter, can be negative 681 */ 682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 683 { 684 long x; 685 686 if (mem_cgroup_disabled()) 687 return; 688 689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 691 struct mem_cgroup *mi; 692 693 /* 694 * Batch local counters to keep them in sync with 695 * the hierarchical ones. 696 */ 697 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 699 atomic_long_add(x, &mi->vmstats[idx]); 700 x = 0; 701 } 702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 703 } 704 705 static struct mem_cgroup_per_node * 706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 707 { 708 struct mem_cgroup *parent; 709 710 parent = parent_mem_cgroup(pn->memcg); 711 if (!parent) 712 return NULL; 713 return mem_cgroup_nodeinfo(parent, nid); 714 } 715 716 /** 717 * __mod_lruvec_state - update lruvec memory statistics 718 * @lruvec: the lruvec 719 * @idx: the stat item 720 * @val: delta to add to the counter, can be negative 721 * 722 * The lruvec is the intersection of the NUMA node and a cgroup. This 723 * function updates the all three counters that are affected by a 724 * change of state at this level: per-node, per-cgroup, per-lruvec. 725 */ 726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 727 int val) 728 { 729 pg_data_t *pgdat = lruvec_pgdat(lruvec); 730 struct mem_cgroup_per_node *pn; 731 struct mem_cgroup *memcg; 732 long x; 733 734 /* Update node */ 735 __mod_node_page_state(pgdat, idx, val); 736 737 if (mem_cgroup_disabled()) 738 return; 739 740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 741 memcg = pn->memcg; 742 743 /* Update memcg */ 744 __mod_memcg_state(memcg, idx, val); 745 746 /* Update lruvec */ 747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 748 749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 751 struct mem_cgroup_per_node *pi; 752 753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 754 atomic_long_add(x, &pi->lruvec_stat[idx]); 755 x = 0; 756 } 757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 758 } 759 760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 761 { 762 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 763 struct mem_cgroup *memcg; 764 struct lruvec *lruvec; 765 766 rcu_read_lock(); 767 memcg = mem_cgroup_from_obj(p); 768 769 /* Untracked pages have no memcg, no lruvec. Update only the node */ 770 if (!memcg || memcg == root_mem_cgroup) { 771 __mod_node_page_state(pgdat, idx, val); 772 } else { 773 lruvec = mem_cgroup_lruvec(memcg, pgdat); 774 __mod_lruvec_state(lruvec, idx, val); 775 } 776 rcu_read_unlock(); 777 } 778 779 void mod_memcg_obj_state(void *p, int idx, int val) 780 { 781 struct mem_cgroup *memcg; 782 783 rcu_read_lock(); 784 memcg = mem_cgroup_from_obj(p); 785 if (memcg) 786 mod_memcg_state(memcg, idx, val); 787 rcu_read_unlock(); 788 } 789 790 /** 791 * __count_memcg_events - account VM events in a cgroup 792 * @memcg: the memory cgroup 793 * @idx: the event item 794 * @count: the number of events that occured 795 */ 796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 797 unsigned long count) 798 { 799 unsigned long x; 800 801 if (mem_cgroup_disabled()) 802 return; 803 804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 805 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 806 struct mem_cgroup *mi; 807 808 /* 809 * Batch local counters to keep them in sync with 810 * the hierarchical ones. 811 */ 812 __this_cpu_add(memcg->vmstats_local->events[idx], x); 813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 814 atomic_long_add(x, &mi->vmevents[idx]); 815 x = 0; 816 } 817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 818 } 819 820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 821 { 822 return atomic_long_read(&memcg->vmevents[event]); 823 } 824 825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 826 { 827 long x = 0; 828 int cpu; 829 830 for_each_possible_cpu(cpu) 831 x += per_cpu(memcg->vmstats_local->events[event], cpu); 832 return x; 833 } 834 835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 836 struct page *page, 837 bool compound, int nr_pages) 838 { 839 /* 840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 841 * counted as CACHE even if it's on ANON LRU. 842 */ 843 if (PageAnon(page)) 844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 845 else { 846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 847 if (PageSwapBacked(page)) 848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 849 } 850 851 if (compound) { 852 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 854 } 855 856 /* pagein of a big page is an event. So, ignore page size */ 857 if (nr_pages > 0) 858 __count_memcg_events(memcg, PGPGIN, 1); 859 else { 860 __count_memcg_events(memcg, PGPGOUT, 1); 861 nr_pages = -nr_pages; /* for event */ 862 } 863 864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 865 } 866 867 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 868 enum mem_cgroup_events_target target) 869 { 870 unsigned long val, next; 871 872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 874 /* from time_after() in jiffies.h */ 875 if ((long)(next - val) < 0) { 876 switch (target) { 877 case MEM_CGROUP_TARGET_THRESH: 878 next = val + THRESHOLDS_EVENTS_TARGET; 879 break; 880 case MEM_CGROUP_TARGET_SOFTLIMIT: 881 next = val + SOFTLIMIT_EVENTS_TARGET; 882 break; 883 default: 884 break; 885 } 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 887 return true; 888 } 889 return false; 890 } 891 892 /* 893 * Check events in order. 894 * 895 */ 896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 897 { 898 /* threshold event is triggered in finer grain than soft limit */ 899 if (unlikely(mem_cgroup_event_ratelimit(memcg, 900 MEM_CGROUP_TARGET_THRESH))) { 901 bool do_softlimit; 902 903 do_softlimit = mem_cgroup_event_ratelimit(memcg, 904 MEM_CGROUP_TARGET_SOFTLIMIT); 905 mem_cgroup_threshold(memcg); 906 if (unlikely(do_softlimit)) 907 mem_cgroup_update_tree(memcg, page); 908 } 909 } 910 911 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 912 { 913 /* 914 * mm_update_next_owner() may clear mm->owner to NULL 915 * if it races with swapoff, page migration, etc. 916 * So this can be called with p == NULL. 917 */ 918 if (unlikely(!p)) 919 return NULL; 920 921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 922 } 923 EXPORT_SYMBOL(mem_cgroup_from_task); 924 925 /** 926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 927 * @mm: mm from which memcg should be extracted. It can be NULL. 928 * 929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 931 * returned. 932 */ 933 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 934 { 935 struct mem_cgroup *memcg; 936 937 if (mem_cgroup_disabled()) 938 return NULL; 939 940 rcu_read_lock(); 941 do { 942 /* 943 * Page cache insertions can happen withou an 944 * actual mm context, e.g. during disk probing 945 * on boot, loopback IO, acct() writes etc. 946 */ 947 if (unlikely(!mm)) 948 memcg = root_mem_cgroup; 949 else { 950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 951 if (unlikely(!memcg)) 952 memcg = root_mem_cgroup; 953 } 954 } while (!css_tryget(&memcg->css)); 955 rcu_read_unlock(); 956 return memcg; 957 } 958 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 959 960 /** 961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 962 * @page: page from which memcg should be extracted. 963 * 964 * Obtain a reference on page->memcg and returns it if successful. Otherwise 965 * root_mem_cgroup is returned. 966 */ 967 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 968 { 969 struct mem_cgroup *memcg = page->mem_cgroup; 970 971 if (mem_cgroup_disabled()) 972 return NULL; 973 974 rcu_read_lock(); 975 /* Page should not get uncharged and freed memcg under us. */ 976 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 977 memcg = root_mem_cgroup; 978 rcu_read_unlock(); 979 return memcg; 980 } 981 EXPORT_SYMBOL(get_mem_cgroup_from_page); 982 983 /** 984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 985 */ 986 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 987 { 988 if (unlikely(current->active_memcg)) { 989 struct mem_cgroup *memcg; 990 991 rcu_read_lock(); 992 /* current->active_memcg must hold a ref. */ 993 if (WARN_ON_ONCE(!css_tryget(¤t->active_memcg->css))) 994 memcg = root_mem_cgroup; 995 else 996 memcg = current->active_memcg; 997 rcu_read_unlock(); 998 return memcg; 999 } 1000 return get_mem_cgroup_from_mm(current->mm); 1001 } 1002 1003 /** 1004 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1005 * @root: hierarchy root 1006 * @prev: previously returned memcg, NULL on first invocation 1007 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1008 * 1009 * Returns references to children of the hierarchy below @root, or 1010 * @root itself, or %NULL after a full round-trip. 1011 * 1012 * Caller must pass the return value in @prev on subsequent 1013 * invocations for reference counting, or use mem_cgroup_iter_break() 1014 * to cancel a hierarchy walk before the round-trip is complete. 1015 * 1016 * Reclaimers can specify a node and a priority level in @reclaim to 1017 * divide up the memcgs in the hierarchy among all concurrent 1018 * reclaimers operating on the same node and priority. 1019 */ 1020 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1021 struct mem_cgroup *prev, 1022 struct mem_cgroup_reclaim_cookie *reclaim) 1023 { 1024 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1025 struct cgroup_subsys_state *css = NULL; 1026 struct mem_cgroup *memcg = NULL; 1027 struct mem_cgroup *pos = NULL; 1028 1029 if (mem_cgroup_disabled()) 1030 return NULL; 1031 1032 if (!root) 1033 root = root_mem_cgroup; 1034 1035 if (prev && !reclaim) 1036 pos = prev; 1037 1038 if (!root->use_hierarchy && root != root_mem_cgroup) { 1039 if (prev) 1040 goto out; 1041 return root; 1042 } 1043 1044 rcu_read_lock(); 1045 1046 if (reclaim) { 1047 struct mem_cgroup_per_node *mz; 1048 1049 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1050 iter = &mz->iter; 1051 1052 if (prev && reclaim->generation != iter->generation) 1053 goto out_unlock; 1054 1055 while (1) { 1056 pos = READ_ONCE(iter->position); 1057 if (!pos || css_tryget(&pos->css)) 1058 break; 1059 /* 1060 * css reference reached zero, so iter->position will 1061 * be cleared by ->css_released. However, we should not 1062 * rely on this happening soon, because ->css_released 1063 * is called from a work queue, and by busy-waiting we 1064 * might block it. So we clear iter->position right 1065 * away. 1066 */ 1067 (void)cmpxchg(&iter->position, pos, NULL); 1068 } 1069 } 1070 1071 if (pos) 1072 css = &pos->css; 1073 1074 for (;;) { 1075 css = css_next_descendant_pre(css, &root->css); 1076 if (!css) { 1077 /* 1078 * Reclaimers share the hierarchy walk, and a 1079 * new one might jump in right at the end of 1080 * the hierarchy - make sure they see at least 1081 * one group and restart from the beginning. 1082 */ 1083 if (!prev) 1084 continue; 1085 break; 1086 } 1087 1088 /* 1089 * Verify the css and acquire a reference. The root 1090 * is provided by the caller, so we know it's alive 1091 * and kicking, and don't take an extra reference. 1092 */ 1093 memcg = mem_cgroup_from_css(css); 1094 1095 if (css == &root->css) 1096 break; 1097 1098 if (css_tryget(css)) 1099 break; 1100 1101 memcg = NULL; 1102 } 1103 1104 if (reclaim) { 1105 /* 1106 * The position could have already been updated by a competing 1107 * thread, so check that the value hasn't changed since we read 1108 * it to avoid reclaiming from the same cgroup twice. 1109 */ 1110 (void)cmpxchg(&iter->position, pos, memcg); 1111 1112 if (pos) 1113 css_put(&pos->css); 1114 1115 if (!memcg) 1116 iter->generation++; 1117 else if (!prev) 1118 reclaim->generation = iter->generation; 1119 } 1120 1121 out_unlock: 1122 rcu_read_unlock(); 1123 out: 1124 if (prev && prev != root) 1125 css_put(&prev->css); 1126 1127 return memcg; 1128 } 1129 1130 /** 1131 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1132 * @root: hierarchy root 1133 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1134 */ 1135 void mem_cgroup_iter_break(struct mem_cgroup *root, 1136 struct mem_cgroup *prev) 1137 { 1138 if (!root) 1139 root = root_mem_cgroup; 1140 if (prev && prev != root) 1141 css_put(&prev->css); 1142 } 1143 1144 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1145 struct mem_cgroup *dead_memcg) 1146 { 1147 struct mem_cgroup_reclaim_iter *iter; 1148 struct mem_cgroup_per_node *mz; 1149 int nid; 1150 1151 for_each_node(nid) { 1152 mz = mem_cgroup_nodeinfo(from, nid); 1153 iter = &mz->iter; 1154 cmpxchg(&iter->position, dead_memcg, NULL); 1155 } 1156 } 1157 1158 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1159 { 1160 struct mem_cgroup *memcg = dead_memcg; 1161 struct mem_cgroup *last; 1162 1163 do { 1164 __invalidate_reclaim_iterators(memcg, dead_memcg); 1165 last = memcg; 1166 } while ((memcg = parent_mem_cgroup(memcg))); 1167 1168 /* 1169 * When cgruop1 non-hierarchy mode is used, 1170 * parent_mem_cgroup() does not walk all the way up to the 1171 * cgroup root (root_mem_cgroup). So we have to handle 1172 * dead_memcg from cgroup root separately. 1173 */ 1174 if (last != root_mem_cgroup) 1175 __invalidate_reclaim_iterators(root_mem_cgroup, 1176 dead_memcg); 1177 } 1178 1179 /** 1180 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1181 * @memcg: hierarchy root 1182 * @fn: function to call for each task 1183 * @arg: argument passed to @fn 1184 * 1185 * This function iterates over tasks attached to @memcg or to any of its 1186 * descendants and calls @fn for each task. If @fn returns a non-zero 1187 * value, the function breaks the iteration loop and returns the value. 1188 * Otherwise, it will iterate over all tasks and return 0. 1189 * 1190 * This function must not be called for the root memory cgroup. 1191 */ 1192 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1193 int (*fn)(struct task_struct *, void *), void *arg) 1194 { 1195 struct mem_cgroup *iter; 1196 int ret = 0; 1197 1198 BUG_ON(memcg == root_mem_cgroup); 1199 1200 for_each_mem_cgroup_tree(iter, memcg) { 1201 struct css_task_iter it; 1202 struct task_struct *task; 1203 1204 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1205 while (!ret && (task = css_task_iter_next(&it))) 1206 ret = fn(task, arg); 1207 css_task_iter_end(&it); 1208 if (ret) { 1209 mem_cgroup_iter_break(memcg, iter); 1210 break; 1211 } 1212 } 1213 return ret; 1214 } 1215 1216 /** 1217 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1218 * @page: the page 1219 * @pgdat: pgdat of the page 1220 * 1221 * This function is only safe when following the LRU page isolation 1222 * and putback protocol: the LRU lock must be held, and the page must 1223 * either be PageLRU() or the caller must have isolated/allocated it. 1224 */ 1225 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1226 { 1227 struct mem_cgroup_per_node *mz; 1228 struct mem_cgroup *memcg; 1229 struct lruvec *lruvec; 1230 1231 if (mem_cgroup_disabled()) { 1232 lruvec = &pgdat->__lruvec; 1233 goto out; 1234 } 1235 1236 memcg = page->mem_cgroup; 1237 /* 1238 * Swapcache readahead pages are added to the LRU - and 1239 * possibly migrated - before they are charged. 1240 */ 1241 if (!memcg) 1242 memcg = root_mem_cgroup; 1243 1244 mz = mem_cgroup_page_nodeinfo(memcg, page); 1245 lruvec = &mz->lruvec; 1246 out: 1247 /* 1248 * Since a node can be onlined after the mem_cgroup was created, 1249 * we have to be prepared to initialize lruvec->zone here; 1250 * and if offlined then reonlined, we need to reinitialize it. 1251 */ 1252 if (unlikely(lruvec->pgdat != pgdat)) 1253 lruvec->pgdat = pgdat; 1254 return lruvec; 1255 } 1256 1257 /** 1258 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1259 * @lruvec: mem_cgroup per zone lru vector 1260 * @lru: index of lru list the page is sitting on 1261 * @zid: zone id of the accounted pages 1262 * @nr_pages: positive when adding or negative when removing 1263 * 1264 * This function must be called under lru_lock, just before a page is added 1265 * to or just after a page is removed from an lru list (that ordering being 1266 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1267 */ 1268 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1269 int zid, int nr_pages) 1270 { 1271 struct mem_cgroup_per_node *mz; 1272 unsigned long *lru_size; 1273 long size; 1274 1275 if (mem_cgroup_disabled()) 1276 return; 1277 1278 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1279 lru_size = &mz->lru_zone_size[zid][lru]; 1280 1281 if (nr_pages < 0) 1282 *lru_size += nr_pages; 1283 1284 size = *lru_size; 1285 if (WARN_ONCE(size < 0, 1286 "%s(%p, %d, %d): lru_size %ld\n", 1287 __func__, lruvec, lru, nr_pages, size)) { 1288 VM_BUG_ON(1); 1289 *lru_size = 0; 1290 } 1291 1292 if (nr_pages > 0) 1293 *lru_size += nr_pages; 1294 } 1295 1296 /** 1297 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1298 * @memcg: the memory cgroup 1299 * 1300 * Returns the maximum amount of memory @mem can be charged with, in 1301 * pages. 1302 */ 1303 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1304 { 1305 unsigned long margin = 0; 1306 unsigned long count; 1307 unsigned long limit; 1308 1309 count = page_counter_read(&memcg->memory); 1310 limit = READ_ONCE(memcg->memory.max); 1311 if (count < limit) 1312 margin = limit - count; 1313 1314 if (do_memsw_account()) { 1315 count = page_counter_read(&memcg->memsw); 1316 limit = READ_ONCE(memcg->memsw.max); 1317 if (count <= limit) 1318 margin = min(margin, limit - count); 1319 else 1320 margin = 0; 1321 } 1322 1323 return margin; 1324 } 1325 1326 /* 1327 * A routine for checking "mem" is under move_account() or not. 1328 * 1329 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1330 * moving cgroups. This is for waiting at high-memory pressure 1331 * caused by "move". 1332 */ 1333 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1334 { 1335 struct mem_cgroup *from; 1336 struct mem_cgroup *to; 1337 bool ret = false; 1338 /* 1339 * Unlike task_move routines, we access mc.to, mc.from not under 1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1341 */ 1342 spin_lock(&mc.lock); 1343 from = mc.from; 1344 to = mc.to; 1345 if (!from) 1346 goto unlock; 1347 1348 ret = mem_cgroup_is_descendant(from, memcg) || 1349 mem_cgroup_is_descendant(to, memcg); 1350 unlock: 1351 spin_unlock(&mc.lock); 1352 return ret; 1353 } 1354 1355 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1356 { 1357 if (mc.moving_task && current != mc.moving_task) { 1358 if (mem_cgroup_under_move(memcg)) { 1359 DEFINE_WAIT(wait); 1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1361 /* moving charge context might have finished. */ 1362 if (mc.moving_task) 1363 schedule(); 1364 finish_wait(&mc.waitq, &wait); 1365 return true; 1366 } 1367 } 1368 return false; 1369 } 1370 1371 static char *memory_stat_format(struct mem_cgroup *memcg) 1372 { 1373 struct seq_buf s; 1374 int i; 1375 1376 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1377 if (!s.buffer) 1378 return NULL; 1379 1380 /* 1381 * Provide statistics on the state of the memory subsystem as 1382 * well as cumulative event counters that show past behavior. 1383 * 1384 * This list is ordered following a combination of these gradients: 1385 * 1) generic big picture -> specifics and details 1386 * 2) reflecting userspace activity -> reflecting kernel heuristics 1387 * 1388 * Current memory state: 1389 */ 1390 1391 seq_buf_printf(&s, "anon %llu\n", 1392 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1393 PAGE_SIZE); 1394 seq_buf_printf(&s, "file %llu\n", 1395 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1396 PAGE_SIZE); 1397 seq_buf_printf(&s, "kernel_stack %llu\n", 1398 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1399 1024); 1400 seq_buf_printf(&s, "slab %llu\n", 1401 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1402 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1403 PAGE_SIZE); 1404 seq_buf_printf(&s, "sock %llu\n", 1405 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1406 PAGE_SIZE); 1407 1408 seq_buf_printf(&s, "shmem %llu\n", 1409 (u64)memcg_page_state(memcg, NR_SHMEM) * 1410 PAGE_SIZE); 1411 seq_buf_printf(&s, "file_mapped %llu\n", 1412 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1413 PAGE_SIZE); 1414 seq_buf_printf(&s, "file_dirty %llu\n", 1415 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1416 PAGE_SIZE); 1417 seq_buf_printf(&s, "file_writeback %llu\n", 1418 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1419 PAGE_SIZE); 1420 1421 /* 1422 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1423 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1424 * arse because it requires migrating the work out of rmap to a place 1425 * where the page->mem_cgroup is set up and stable. 1426 */ 1427 seq_buf_printf(&s, "anon_thp %llu\n", 1428 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1429 PAGE_SIZE); 1430 1431 for (i = 0; i < NR_LRU_LISTS; i++) 1432 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i), 1433 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1434 PAGE_SIZE); 1435 1436 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1437 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1438 PAGE_SIZE); 1439 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1440 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1441 PAGE_SIZE); 1442 1443 /* Accumulated memory events */ 1444 1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1446 memcg_events(memcg, PGFAULT)); 1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1448 memcg_events(memcg, PGMAJFAULT)); 1449 1450 seq_buf_printf(&s, "workingset_refault %lu\n", 1451 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1452 seq_buf_printf(&s, "workingset_activate %lu\n", 1453 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1454 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1455 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1456 1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1458 memcg_events(memcg, PGREFILL)); 1459 seq_buf_printf(&s, "pgscan %lu\n", 1460 memcg_events(memcg, PGSCAN_KSWAPD) + 1461 memcg_events(memcg, PGSCAN_DIRECT)); 1462 seq_buf_printf(&s, "pgsteal %lu\n", 1463 memcg_events(memcg, PGSTEAL_KSWAPD) + 1464 memcg_events(memcg, PGSTEAL_DIRECT)); 1465 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1466 memcg_events(memcg, PGACTIVATE)); 1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1468 memcg_events(memcg, PGDEACTIVATE)); 1469 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1470 memcg_events(memcg, PGLAZYFREE)); 1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1472 memcg_events(memcg, PGLAZYFREED)); 1473 1474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1475 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1476 memcg_events(memcg, THP_FAULT_ALLOC)); 1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1478 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1480 1481 /* The above should easily fit into one page */ 1482 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1483 1484 return s.buffer; 1485 } 1486 1487 #define K(x) ((x) << (PAGE_SHIFT-10)) 1488 /** 1489 * mem_cgroup_print_oom_context: Print OOM information relevant to 1490 * memory controller. 1491 * @memcg: The memory cgroup that went over limit 1492 * @p: Task that is going to be killed 1493 * 1494 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1495 * enabled 1496 */ 1497 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1498 { 1499 rcu_read_lock(); 1500 1501 if (memcg) { 1502 pr_cont(",oom_memcg="); 1503 pr_cont_cgroup_path(memcg->css.cgroup); 1504 } else 1505 pr_cont(",global_oom"); 1506 if (p) { 1507 pr_cont(",task_memcg="); 1508 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1509 } 1510 rcu_read_unlock(); 1511 } 1512 1513 /** 1514 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1515 * memory controller. 1516 * @memcg: The memory cgroup that went over limit 1517 */ 1518 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1519 { 1520 char *buf; 1521 1522 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1523 K((u64)page_counter_read(&memcg->memory)), 1524 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1525 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1526 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1527 K((u64)page_counter_read(&memcg->swap)), 1528 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1529 else { 1530 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1531 K((u64)page_counter_read(&memcg->memsw)), 1532 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1533 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1534 K((u64)page_counter_read(&memcg->kmem)), 1535 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1536 } 1537 1538 pr_info("Memory cgroup stats for "); 1539 pr_cont_cgroup_path(memcg->css.cgroup); 1540 pr_cont(":"); 1541 buf = memory_stat_format(memcg); 1542 if (!buf) 1543 return; 1544 pr_info("%s", buf); 1545 kfree(buf); 1546 } 1547 1548 /* 1549 * Return the memory (and swap, if configured) limit for a memcg. 1550 */ 1551 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1552 { 1553 unsigned long max; 1554 1555 max = READ_ONCE(memcg->memory.max); 1556 if (mem_cgroup_swappiness(memcg)) { 1557 unsigned long memsw_max; 1558 unsigned long swap_max; 1559 1560 memsw_max = memcg->memsw.max; 1561 swap_max = READ_ONCE(memcg->swap.max); 1562 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1563 max = min(max + swap_max, memsw_max); 1564 } 1565 return max; 1566 } 1567 1568 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1569 { 1570 return page_counter_read(&memcg->memory); 1571 } 1572 1573 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1574 int order) 1575 { 1576 struct oom_control oc = { 1577 .zonelist = NULL, 1578 .nodemask = NULL, 1579 .memcg = memcg, 1580 .gfp_mask = gfp_mask, 1581 .order = order, 1582 }; 1583 bool ret; 1584 1585 if (mutex_lock_killable(&oom_lock)) 1586 return true; 1587 /* 1588 * A few threads which were not waiting at mutex_lock_killable() can 1589 * fail to bail out. Therefore, check again after holding oom_lock. 1590 */ 1591 ret = should_force_charge() || out_of_memory(&oc); 1592 mutex_unlock(&oom_lock); 1593 return ret; 1594 } 1595 1596 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1597 pg_data_t *pgdat, 1598 gfp_t gfp_mask, 1599 unsigned long *total_scanned) 1600 { 1601 struct mem_cgroup *victim = NULL; 1602 int total = 0; 1603 int loop = 0; 1604 unsigned long excess; 1605 unsigned long nr_scanned; 1606 struct mem_cgroup_reclaim_cookie reclaim = { 1607 .pgdat = pgdat, 1608 }; 1609 1610 excess = soft_limit_excess(root_memcg); 1611 1612 while (1) { 1613 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1614 if (!victim) { 1615 loop++; 1616 if (loop >= 2) { 1617 /* 1618 * If we have not been able to reclaim 1619 * anything, it might because there are 1620 * no reclaimable pages under this hierarchy 1621 */ 1622 if (!total) 1623 break; 1624 /* 1625 * We want to do more targeted reclaim. 1626 * excess >> 2 is not to excessive so as to 1627 * reclaim too much, nor too less that we keep 1628 * coming back to reclaim from this cgroup 1629 */ 1630 if (total >= (excess >> 2) || 1631 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1632 break; 1633 } 1634 continue; 1635 } 1636 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1637 pgdat, &nr_scanned); 1638 *total_scanned += nr_scanned; 1639 if (!soft_limit_excess(root_memcg)) 1640 break; 1641 } 1642 mem_cgroup_iter_break(root_memcg, victim); 1643 return total; 1644 } 1645 1646 #ifdef CONFIG_LOCKDEP 1647 static struct lockdep_map memcg_oom_lock_dep_map = { 1648 .name = "memcg_oom_lock", 1649 }; 1650 #endif 1651 1652 static DEFINE_SPINLOCK(memcg_oom_lock); 1653 1654 /* 1655 * Check OOM-Killer is already running under our hierarchy. 1656 * If someone is running, return false. 1657 */ 1658 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1659 { 1660 struct mem_cgroup *iter, *failed = NULL; 1661 1662 spin_lock(&memcg_oom_lock); 1663 1664 for_each_mem_cgroup_tree(iter, memcg) { 1665 if (iter->oom_lock) { 1666 /* 1667 * this subtree of our hierarchy is already locked 1668 * so we cannot give a lock. 1669 */ 1670 failed = iter; 1671 mem_cgroup_iter_break(memcg, iter); 1672 break; 1673 } else 1674 iter->oom_lock = true; 1675 } 1676 1677 if (failed) { 1678 /* 1679 * OK, we failed to lock the whole subtree so we have 1680 * to clean up what we set up to the failing subtree 1681 */ 1682 for_each_mem_cgroup_tree(iter, memcg) { 1683 if (iter == failed) { 1684 mem_cgroup_iter_break(memcg, iter); 1685 break; 1686 } 1687 iter->oom_lock = false; 1688 } 1689 } else 1690 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1691 1692 spin_unlock(&memcg_oom_lock); 1693 1694 return !failed; 1695 } 1696 1697 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1698 { 1699 struct mem_cgroup *iter; 1700 1701 spin_lock(&memcg_oom_lock); 1702 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1703 for_each_mem_cgroup_tree(iter, memcg) 1704 iter->oom_lock = false; 1705 spin_unlock(&memcg_oom_lock); 1706 } 1707 1708 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1709 { 1710 struct mem_cgroup *iter; 1711 1712 spin_lock(&memcg_oom_lock); 1713 for_each_mem_cgroup_tree(iter, memcg) 1714 iter->under_oom++; 1715 spin_unlock(&memcg_oom_lock); 1716 } 1717 1718 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1719 { 1720 struct mem_cgroup *iter; 1721 1722 /* 1723 * When a new child is created while the hierarchy is under oom, 1724 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1725 */ 1726 spin_lock(&memcg_oom_lock); 1727 for_each_mem_cgroup_tree(iter, memcg) 1728 if (iter->under_oom > 0) 1729 iter->under_oom--; 1730 spin_unlock(&memcg_oom_lock); 1731 } 1732 1733 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1734 1735 struct oom_wait_info { 1736 struct mem_cgroup *memcg; 1737 wait_queue_entry_t wait; 1738 }; 1739 1740 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1741 unsigned mode, int sync, void *arg) 1742 { 1743 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1744 struct mem_cgroup *oom_wait_memcg; 1745 struct oom_wait_info *oom_wait_info; 1746 1747 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1748 oom_wait_memcg = oom_wait_info->memcg; 1749 1750 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1751 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1752 return 0; 1753 return autoremove_wake_function(wait, mode, sync, arg); 1754 } 1755 1756 static void memcg_oom_recover(struct mem_cgroup *memcg) 1757 { 1758 /* 1759 * For the following lockless ->under_oom test, the only required 1760 * guarantee is that it must see the state asserted by an OOM when 1761 * this function is called as a result of userland actions 1762 * triggered by the notification of the OOM. This is trivially 1763 * achieved by invoking mem_cgroup_mark_under_oom() before 1764 * triggering notification. 1765 */ 1766 if (memcg && memcg->under_oom) 1767 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1768 } 1769 1770 enum oom_status { 1771 OOM_SUCCESS, 1772 OOM_FAILED, 1773 OOM_ASYNC, 1774 OOM_SKIPPED 1775 }; 1776 1777 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1778 { 1779 enum oom_status ret; 1780 bool locked; 1781 1782 if (order > PAGE_ALLOC_COSTLY_ORDER) 1783 return OOM_SKIPPED; 1784 1785 memcg_memory_event(memcg, MEMCG_OOM); 1786 1787 /* 1788 * We are in the middle of the charge context here, so we 1789 * don't want to block when potentially sitting on a callstack 1790 * that holds all kinds of filesystem and mm locks. 1791 * 1792 * cgroup1 allows disabling the OOM killer and waiting for outside 1793 * handling until the charge can succeed; remember the context and put 1794 * the task to sleep at the end of the page fault when all locks are 1795 * released. 1796 * 1797 * On the other hand, in-kernel OOM killer allows for an async victim 1798 * memory reclaim (oom_reaper) and that means that we are not solely 1799 * relying on the oom victim to make a forward progress and we can 1800 * invoke the oom killer here. 1801 * 1802 * Please note that mem_cgroup_out_of_memory might fail to find a 1803 * victim and then we have to bail out from the charge path. 1804 */ 1805 if (memcg->oom_kill_disable) { 1806 if (!current->in_user_fault) 1807 return OOM_SKIPPED; 1808 css_get(&memcg->css); 1809 current->memcg_in_oom = memcg; 1810 current->memcg_oom_gfp_mask = mask; 1811 current->memcg_oom_order = order; 1812 1813 return OOM_ASYNC; 1814 } 1815 1816 mem_cgroup_mark_under_oom(memcg); 1817 1818 locked = mem_cgroup_oom_trylock(memcg); 1819 1820 if (locked) 1821 mem_cgroup_oom_notify(memcg); 1822 1823 mem_cgroup_unmark_under_oom(memcg); 1824 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1825 ret = OOM_SUCCESS; 1826 else 1827 ret = OOM_FAILED; 1828 1829 if (locked) 1830 mem_cgroup_oom_unlock(memcg); 1831 1832 return ret; 1833 } 1834 1835 /** 1836 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1837 * @handle: actually kill/wait or just clean up the OOM state 1838 * 1839 * This has to be called at the end of a page fault if the memcg OOM 1840 * handler was enabled. 1841 * 1842 * Memcg supports userspace OOM handling where failed allocations must 1843 * sleep on a waitqueue until the userspace task resolves the 1844 * situation. Sleeping directly in the charge context with all kinds 1845 * of locks held is not a good idea, instead we remember an OOM state 1846 * in the task and mem_cgroup_oom_synchronize() has to be called at 1847 * the end of the page fault to complete the OOM handling. 1848 * 1849 * Returns %true if an ongoing memcg OOM situation was detected and 1850 * completed, %false otherwise. 1851 */ 1852 bool mem_cgroup_oom_synchronize(bool handle) 1853 { 1854 struct mem_cgroup *memcg = current->memcg_in_oom; 1855 struct oom_wait_info owait; 1856 bool locked; 1857 1858 /* OOM is global, do not handle */ 1859 if (!memcg) 1860 return false; 1861 1862 if (!handle) 1863 goto cleanup; 1864 1865 owait.memcg = memcg; 1866 owait.wait.flags = 0; 1867 owait.wait.func = memcg_oom_wake_function; 1868 owait.wait.private = current; 1869 INIT_LIST_HEAD(&owait.wait.entry); 1870 1871 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1872 mem_cgroup_mark_under_oom(memcg); 1873 1874 locked = mem_cgroup_oom_trylock(memcg); 1875 1876 if (locked) 1877 mem_cgroup_oom_notify(memcg); 1878 1879 if (locked && !memcg->oom_kill_disable) { 1880 mem_cgroup_unmark_under_oom(memcg); 1881 finish_wait(&memcg_oom_waitq, &owait.wait); 1882 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1883 current->memcg_oom_order); 1884 } else { 1885 schedule(); 1886 mem_cgroup_unmark_under_oom(memcg); 1887 finish_wait(&memcg_oom_waitq, &owait.wait); 1888 } 1889 1890 if (locked) { 1891 mem_cgroup_oom_unlock(memcg); 1892 /* 1893 * There is no guarantee that an OOM-lock contender 1894 * sees the wakeups triggered by the OOM kill 1895 * uncharges. Wake any sleepers explicitely. 1896 */ 1897 memcg_oom_recover(memcg); 1898 } 1899 cleanup: 1900 current->memcg_in_oom = NULL; 1901 css_put(&memcg->css); 1902 return true; 1903 } 1904 1905 /** 1906 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1907 * @victim: task to be killed by the OOM killer 1908 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1909 * 1910 * Returns a pointer to a memory cgroup, which has to be cleaned up 1911 * by killing all belonging OOM-killable tasks. 1912 * 1913 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1914 */ 1915 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1916 struct mem_cgroup *oom_domain) 1917 { 1918 struct mem_cgroup *oom_group = NULL; 1919 struct mem_cgroup *memcg; 1920 1921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1922 return NULL; 1923 1924 if (!oom_domain) 1925 oom_domain = root_mem_cgroup; 1926 1927 rcu_read_lock(); 1928 1929 memcg = mem_cgroup_from_task(victim); 1930 if (memcg == root_mem_cgroup) 1931 goto out; 1932 1933 /* 1934 * If the victim task has been asynchronously moved to a different 1935 * memory cgroup, we might end up killing tasks outside oom_domain. 1936 * In this case it's better to ignore memory.group.oom. 1937 */ 1938 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1939 goto out; 1940 1941 /* 1942 * Traverse the memory cgroup hierarchy from the victim task's 1943 * cgroup up to the OOMing cgroup (or root) to find the 1944 * highest-level memory cgroup with oom.group set. 1945 */ 1946 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1947 if (memcg->oom_group) 1948 oom_group = memcg; 1949 1950 if (memcg == oom_domain) 1951 break; 1952 } 1953 1954 if (oom_group) 1955 css_get(&oom_group->css); 1956 out: 1957 rcu_read_unlock(); 1958 1959 return oom_group; 1960 } 1961 1962 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1963 { 1964 pr_info("Tasks in "); 1965 pr_cont_cgroup_path(memcg->css.cgroup); 1966 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1967 } 1968 1969 /** 1970 * lock_page_memcg - lock a page->mem_cgroup binding 1971 * @page: the page 1972 * 1973 * This function protects unlocked LRU pages from being moved to 1974 * another cgroup. 1975 * 1976 * It ensures lifetime of the returned memcg. Caller is responsible 1977 * for the lifetime of the page; __unlock_page_memcg() is available 1978 * when @page might get freed inside the locked section. 1979 */ 1980 struct mem_cgroup *lock_page_memcg(struct page *page) 1981 { 1982 struct mem_cgroup *memcg; 1983 unsigned long flags; 1984 1985 /* 1986 * The RCU lock is held throughout the transaction. The fast 1987 * path can get away without acquiring the memcg->move_lock 1988 * because page moving starts with an RCU grace period. 1989 * 1990 * The RCU lock also protects the memcg from being freed when 1991 * the page state that is going to change is the only thing 1992 * preventing the page itself from being freed. E.g. writeback 1993 * doesn't hold a page reference and relies on PG_writeback to 1994 * keep off truncation, migration and so forth. 1995 */ 1996 rcu_read_lock(); 1997 1998 if (mem_cgroup_disabled()) 1999 return NULL; 2000 again: 2001 memcg = page->mem_cgroup; 2002 if (unlikely(!memcg)) 2003 return NULL; 2004 2005 if (atomic_read(&memcg->moving_account) <= 0) 2006 return memcg; 2007 2008 spin_lock_irqsave(&memcg->move_lock, flags); 2009 if (memcg != page->mem_cgroup) { 2010 spin_unlock_irqrestore(&memcg->move_lock, flags); 2011 goto again; 2012 } 2013 2014 /* 2015 * When charge migration first begins, we can have locked and 2016 * unlocked page stat updates happening concurrently. Track 2017 * the task who has the lock for unlock_page_memcg(). 2018 */ 2019 memcg->move_lock_task = current; 2020 memcg->move_lock_flags = flags; 2021 2022 return memcg; 2023 } 2024 EXPORT_SYMBOL(lock_page_memcg); 2025 2026 /** 2027 * __unlock_page_memcg - unlock and unpin a memcg 2028 * @memcg: the memcg 2029 * 2030 * Unlock and unpin a memcg returned by lock_page_memcg(). 2031 */ 2032 void __unlock_page_memcg(struct mem_cgroup *memcg) 2033 { 2034 if (memcg && memcg->move_lock_task == current) { 2035 unsigned long flags = memcg->move_lock_flags; 2036 2037 memcg->move_lock_task = NULL; 2038 memcg->move_lock_flags = 0; 2039 2040 spin_unlock_irqrestore(&memcg->move_lock, flags); 2041 } 2042 2043 rcu_read_unlock(); 2044 } 2045 2046 /** 2047 * unlock_page_memcg - unlock a page->mem_cgroup binding 2048 * @page: the page 2049 */ 2050 void unlock_page_memcg(struct page *page) 2051 { 2052 __unlock_page_memcg(page->mem_cgroup); 2053 } 2054 EXPORT_SYMBOL(unlock_page_memcg); 2055 2056 struct memcg_stock_pcp { 2057 struct mem_cgroup *cached; /* this never be root cgroup */ 2058 unsigned int nr_pages; 2059 struct work_struct work; 2060 unsigned long flags; 2061 #define FLUSHING_CACHED_CHARGE 0 2062 }; 2063 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2064 static DEFINE_MUTEX(percpu_charge_mutex); 2065 2066 /** 2067 * consume_stock: Try to consume stocked charge on this cpu. 2068 * @memcg: memcg to consume from. 2069 * @nr_pages: how many pages to charge. 2070 * 2071 * The charges will only happen if @memcg matches the current cpu's memcg 2072 * stock, and at least @nr_pages are available in that stock. Failure to 2073 * service an allocation will refill the stock. 2074 * 2075 * returns true if successful, false otherwise. 2076 */ 2077 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2078 { 2079 struct memcg_stock_pcp *stock; 2080 unsigned long flags; 2081 bool ret = false; 2082 2083 if (nr_pages > MEMCG_CHARGE_BATCH) 2084 return ret; 2085 2086 local_irq_save(flags); 2087 2088 stock = this_cpu_ptr(&memcg_stock); 2089 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2090 stock->nr_pages -= nr_pages; 2091 ret = true; 2092 } 2093 2094 local_irq_restore(flags); 2095 2096 return ret; 2097 } 2098 2099 /* 2100 * Returns stocks cached in percpu and reset cached information. 2101 */ 2102 static void drain_stock(struct memcg_stock_pcp *stock) 2103 { 2104 struct mem_cgroup *old = stock->cached; 2105 2106 if (stock->nr_pages) { 2107 page_counter_uncharge(&old->memory, stock->nr_pages); 2108 if (do_memsw_account()) 2109 page_counter_uncharge(&old->memsw, stock->nr_pages); 2110 css_put_many(&old->css, stock->nr_pages); 2111 stock->nr_pages = 0; 2112 } 2113 stock->cached = NULL; 2114 } 2115 2116 static void drain_local_stock(struct work_struct *dummy) 2117 { 2118 struct memcg_stock_pcp *stock; 2119 unsigned long flags; 2120 2121 /* 2122 * The only protection from memory hotplug vs. drain_stock races is 2123 * that we always operate on local CPU stock here with IRQ disabled 2124 */ 2125 local_irq_save(flags); 2126 2127 stock = this_cpu_ptr(&memcg_stock); 2128 drain_stock(stock); 2129 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2130 2131 local_irq_restore(flags); 2132 } 2133 2134 /* 2135 * Cache charges(val) to local per_cpu area. 2136 * This will be consumed by consume_stock() function, later. 2137 */ 2138 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2139 { 2140 struct memcg_stock_pcp *stock; 2141 unsigned long flags; 2142 2143 local_irq_save(flags); 2144 2145 stock = this_cpu_ptr(&memcg_stock); 2146 if (stock->cached != memcg) { /* reset if necessary */ 2147 drain_stock(stock); 2148 stock->cached = memcg; 2149 } 2150 stock->nr_pages += nr_pages; 2151 2152 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2153 drain_stock(stock); 2154 2155 local_irq_restore(flags); 2156 } 2157 2158 /* 2159 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2160 * of the hierarchy under it. 2161 */ 2162 static void drain_all_stock(struct mem_cgroup *root_memcg) 2163 { 2164 int cpu, curcpu; 2165 2166 /* If someone's already draining, avoid adding running more workers. */ 2167 if (!mutex_trylock(&percpu_charge_mutex)) 2168 return; 2169 /* 2170 * Notify other cpus that system-wide "drain" is running 2171 * We do not care about races with the cpu hotplug because cpu down 2172 * as well as workers from this path always operate on the local 2173 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2174 */ 2175 curcpu = get_cpu(); 2176 for_each_online_cpu(cpu) { 2177 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2178 struct mem_cgroup *memcg; 2179 bool flush = false; 2180 2181 rcu_read_lock(); 2182 memcg = stock->cached; 2183 if (memcg && stock->nr_pages && 2184 mem_cgroup_is_descendant(memcg, root_memcg)) 2185 flush = true; 2186 rcu_read_unlock(); 2187 2188 if (flush && 2189 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2190 if (cpu == curcpu) 2191 drain_local_stock(&stock->work); 2192 else 2193 schedule_work_on(cpu, &stock->work); 2194 } 2195 } 2196 put_cpu(); 2197 mutex_unlock(&percpu_charge_mutex); 2198 } 2199 2200 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2201 { 2202 struct memcg_stock_pcp *stock; 2203 struct mem_cgroup *memcg, *mi; 2204 2205 stock = &per_cpu(memcg_stock, cpu); 2206 drain_stock(stock); 2207 2208 for_each_mem_cgroup(memcg) { 2209 int i; 2210 2211 for (i = 0; i < MEMCG_NR_STAT; i++) { 2212 int nid; 2213 long x; 2214 2215 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2216 if (x) 2217 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2218 atomic_long_add(x, &memcg->vmstats[i]); 2219 2220 if (i >= NR_VM_NODE_STAT_ITEMS) 2221 continue; 2222 2223 for_each_node(nid) { 2224 struct mem_cgroup_per_node *pn; 2225 2226 pn = mem_cgroup_nodeinfo(memcg, nid); 2227 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2228 if (x) 2229 do { 2230 atomic_long_add(x, &pn->lruvec_stat[i]); 2231 } while ((pn = parent_nodeinfo(pn, nid))); 2232 } 2233 } 2234 2235 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2236 long x; 2237 2238 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2239 if (x) 2240 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2241 atomic_long_add(x, &memcg->vmevents[i]); 2242 } 2243 } 2244 2245 return 0; 2246 } 2247 2248 static void reclaim_high(struct mem_cgroup *memcg, 2249 unsigned int nr_pages, 2250 gfp_t gfp_mask) 2251 { 2252 do { 2253 if (page_counter_read(&memcg->memory) <= READ_ONCE(memcg->high)) 2254 continue; 2255 memcg_memory_event(memcg, MEMCG_HIGH); 2256 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2257 } while ((memcg = parent_mem_cgroup(memcg)) && 2258 !mem_cgroup_is_root(memcg)); 2259 } 2260 2261 static void high_work_func(struct work_struct *work) 2262 { 2263 struct mem_cgroup *memcg; 2264 2265 memcg = container_of(work, struct mem_cgroup, high_work); 2266 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2267 } 2268 2269 /* 2270 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2271 * enough to still cause a significant slowdown in most cases, while still 2272 * allowing diagnostics and tracing to proceed without becoming stuck. 2273 */ 2274 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2275 2276 /* 2277 * When calculating the delay, we use these either side of the exponentiation to 2278 * maintain precision and scale to a reasonable number of jiffies (see the table 2279 * below. 2280 * 2281 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2282 * overage ratio to a delay. 2283 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2284 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2285 * to produce a reasonable delay curve. 2286 * 2287 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2288 * reasonable delay curve compared to precision-adjusted overage, not 2289 * penalising heavily at first, but still making sure that growth beyond the 2290 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2291 * example, with a high of 100 megabytes: 2292 * 2293 * +-------+------------------------+ 2294 * | usage | time to allocate in ms | 2295 * +-------+------------------------+ 2296 * | 100M | 0 | 2297 * | 101M | 6 | 2298 * | 102M | 25 | 2299 * | 103M | 57 | 2300 * | 104M | 102 | 2301 * | 105M | 159 | 2302 * | 106M | 230 | 2303 * | 107M | 313 | 2304 * | 108M | 409 | 2305 * | 109M | 518 | 2306 * | 110M | 639 | 2307 * | 111M | 774 | 2308 * | 112M | 921 | 2309 * | 113M | 1081 | 2310 * | 114M | 1254 | 2311 * | 115M | 1439 | 2312 * | 116M | 1638 | 2313 * | 117M | 1849 | 2314 * | 118M | 2000 | 2315 * | 119M | 2000 | 2316 * | 120M | 2000 | 2317 * +-------+------------------------+ 2318 */ 2319 #define MEMCG_DELAY_PRECISION_SHIFT 20 2320 #define MEMCG_DELAY_SCALING_SHIFT 14 2321 2322 /* 2323 * Get the number of jiffies that we should penalise a mischievous cgroup which 2324 * is exceeding its memory.high by checking both it and its ancestors. 2325 */ 2326 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2327 unsigned int nr_pages) 2328 { 2329 unsigned long penalty_jiffies; 2330 u64 max_overage = 0; 2331 2332 do { 2333 unsigned long usage, high; 2334 u64 overage; 2335 2336 usage = page_counter_read(&memcg->memory); 2337 high = READ_ONCE(memcg->high); 2338 2339 /* 2340 * Prevent division by 0 in overage calculation by acting as if 2341 * it was a threshold of 1 page 2342 */ 2343 high = max(high, 1UL); 2344 2345 overage = usage - high; 2346 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2347 overage = div64_u64(overage, high); 2348 2349 if (overage > max_overage) 2350 max_overage = overage; 2351 } while ((memcg = parent_mem_cgroup(memcg)) && 2352 !mem_cgroup_is_root(memcg)); 2353 2354 if (!max_overage) 2355 return 0; 2356 2357 /* 2358 * We use overage compared to memory.high to calculate the number of 2359 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2360 * fairly lenient on small overages, and increasingly harsh when the 2361 * memcg in question makes it clear that it has no intention of stopping 2362 * its crazy behaviour, so we exponentially increase the delay based on 2363 * overage amount. 2364 */ 2365 penalty_jiffies = max_overage * max_overage * HZ; 2366 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2367 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2368 2369 /* 2370 * Factor in the task's own contribution to the overage, such that four 2371 * N-sized allocations are throttled approximately the same as one 2372 * 4N-sized allocation. 2373 * 2374 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2375 * larger the current charge patch is than that. 2376 */ 2377 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2378 2379 /* 2380 * Clamp the max delay per usermode return so as to still keep the 2381 * application moving forwards and also permit diagnostics, albeit 2382 * extremely slowly. 2383 */ 2384 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2385 } 2386 2387 /* 2388 * Scheduled by try_charge() to be executed from the userland return path 2389 * and reclaims memory over the high limit. 2390 */ 2391 void mem_cgroup_handle_over_high(void) 2392 { 2393 unsigned long penalty_jiffies; 2394 unsigned long pflags; 2395 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2396 struct mem_cgroup *memcg; 2397 2398 if (likely(!nr_pages)) 2399 return; 2400 2401 memcg = get_mem_cgroup_from_mm(current->mm); 2402 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2403 current->memcg_nr_pages_over_high = 0; 2404 2405 /* 2406 * memory.high is breached and reclaim is unable to keep up. Throttle 2407 * allocators proactively to slow down excessive growth. 2408 */ 2409 penalty_jiffies = calculate_high_delay(memcg, nr_pages); 2410 2411 /* 2412 * Don't sleep if the amount of jiffies this memcg owes us is so low 2413 * that it's not even worth doing, in an attempt to be nice to those who 2414 * go only a small amount over their memory.high value and maybe haven't 2415 * been aggressively reclaimed enough yet. 2416 */ 2417 if (penalty_jiffies <= HZ / 100) 2418 goto out; 2419 2420 /* 2421 * If we exit early, we're guaranteed to die (since 2422 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2423 * need to account for any ill-begotten jiffies to pay them off later. 2424 */ 2425 psi_memstall_enter(&pflags); 2426 schedule_timeout_killable(penalty_jiffies); 2427 psi_memstall_leave(&pflags); 2428 2429 out: 2430 css_put(&memcg->css); 2431 } 2432 2433 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2434 unsigned int nr_pages) 2435 { 2436 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2437 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2438 struct mem_cgroup *mem_over_limit; 2439 struct page_counter *counter; 2440 unsigned long nr_reclaimed; 2441 bool may_swap = true; 2442 bool drained = false; 2443 enum oom_status oom_status; 2444 2445 if (mem_cgroup_is_root(memcg)) 2446 return 0; 2447 retry: 2448 if (consume_stock(memcg, nr_pages)) 2449 return 0; 2450 2451 if (!do_memsw_account() || 2452 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2453 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2454 goto done_restock; 2455 if (do_memsw_account()) 2456 page_counter_uncharge(&memcg->memsw, batch); 2457 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2458 } else { 2459 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2460 may_swap = false; 2461 } 2462 2463 if (batch > nr_pages) { 2464 batch = nr_pages; 2465 goto retry; 2466 } 2467 2468 /* 2469 * Memcg doesn't have a dedicated reserve for atomic 2470 * allocations. But like the global atomic pool, we need to 2471 * put the burden of reclaim on regular allocation requests 2472 * and let these go through as privileged allocations. 2473 */ 2474 if (gfp_mask & __GFP_ATOMIC) 2475 goto force; 2476 2477 /* 2478 * Unlike in global OOM situations, memcg is not in a physical 2479 * memory shortage. Allow dying and OOM-killed tasks to 2480 * bypass the last charges so that they can exit quickly and 2481 * free their memory. 2482 */ 2483 if (unlikely(should_force_charge())) 2484 goto force; 2485 2486 /* 2487 * Prevent unbounded recursion when reclaim operations need to 2488 * allocate memory. This might exceed the limits temporarily, 2489 * but we prefer facilitating memory reclaim and getting back 2490 * under the limit over triggering OOM kills in these cases. 2491 */ 2492 if (unlikely(current->flags & PF_MEMALLOC)) 2493 goto force; 2494 2495 if (unlikely(task_in_memcg_oom(current))) 2496 goto nomem; 2497 2498 if (!gfpflags_allow_blocking(gfp_mask)) 2499 goto nomem; 2500 2501 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2502 2503 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2504 gfp_mask, may_swap); 2505 2506 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2507 goto retry; 2508 2509 if (!drained) { 2510 drain_all_stock(mem_over_limit); 2511 drained = true; 2512 goto retry; 2513 } 2514 2515 if (gfp_mask & __GFP_NORETRY) 2516 goto nomem; 2517 /* 2518 * Even though the limit is exceeded at this point, reclaim 2519 * may have been able to free some pages. Retry the charge 2520 * before killing the task. 2521 * 2522 * Only for regular pages, though: huge pages are rather 2523 * unlikely to succeed so close to the limit, and we fall back 2524 * to regular pages anyway in case of failure. 2525 */ 2526 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2527 goto retry; 2528 /* 2529 * At task move, charge accounts can be doubly counted. So, it's 2530 * better to wait until the end of task_move if something is going on. 2531 */ 2532 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2533 goto retry; 2534 2535 if (nr_retries--) 2536 goto retry; 2537 2538 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2539 goto nomem; 2540 2541 if (gfp_mask & __GFP_NOFAIL) 2542 goto force; 2543 2544 if (fatal_signal_pending(current)) 2545 goto force; 2546 2547 /* 2548 * keep retrying as long as the memcg oom killer is able to make 2549 * a forward progress or bypass the charge if the oom killer 2550 * couldn't make any progress. 2551 */ 2552 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2553 get_order(nr_pages * PAGE_SIZE)); 2554 switch (oom_status) { 2555 case OOM_SUCCESS: 2556 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2557 goto retry; 2558 case OOM_FAILED: 2559 goto force; 2560 default: 2561 goto nomem; 2562 } 2563 nomem: 2564 if (!(gfp_mask & __GFP_NOFAIL)) 2565 return -ENOMEM; 2566 force: 2567 /* 2568 * The allocation either can't fail or will lead to more memory 2569 * being freed very soon. Allow memory usage go over the limit 2570 * temporarily by force charging it. 2571 */ 2572 page_counter_charge(&memcg->memory, nr_pages); 2573 if (do_memsw_account()) 2574 page_counter_charge(&memcg->memsw, nr_pages); 2575 css_get_many(&memcg->css, nr_pages); 2576 2577 return 0; 2578 2579 done_restock: 2580 css_get_many(&memcg->css, batch); 2581 if (batch > nr_pages) 2582 refill_stock(memcg, batch - nr_pages); 2583 2584 /* 2585 * If the hierarchy is above the normal consumption range, schedule 2586 * reclaim on returning to userland. We can perform reclaim here 2587 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2588 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2589 * not recorded as it most likely matches current's and won't 2590 * change in the meantime. As high limit is checked again before 2591 * reclaim, the cost of mismatch is negligible. 2592 */ 2593 do { 2594 if (page_counter_read(&memcg->memory) > READ_ONCE(memcg->high)) { 2595 /* Don't bother a random interrupted task */ 2596 if (in_interrupt()) { 2597 schedule_work(&memcg->high_work); 2598 break; 2599 } 2600 current->memcg_nr_pages_over_high += batch; 2601 set_notify_resume(current); 2602 break; 2603 } 2604 } while ((memcg = parent_mem_cgroup(memcg))); 2605 2606 return 0; 2607 } 2608 2609 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2610 { 2611 if (mem_cgroup_is_root(memcg)) 2612 return; 2613 2614 page_counter_uncharge(&memcg->memory, nr_pages); 2615 if (do_memsw_account()) 2616 page_counter_uncharge(&memcg->memsw, nr_pages); 2617 2618 css_put_many(&memcg->css, nr_pages); 2619 } 2620 2621 static void lock_page_lru(struct page *page, int *isolated) 2622 { 2623 pg_data_t *pgdat = page_pgdat(page); 2624 2625 spin_lock_irq(&pgdat->lru_lock); 2626 if (PageLRU(page)) { 2627 struct lruvec *lruvec; 2628 2629 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2630 ClearPageLRU(page); 2631 del_page_from_lru_list(page, lruvec, page_lru(page)); 2632 *isolated = 1; 2633 } else 2634 *isolated = 0; 2635 } 2636 2637 static void unlock_page_lru(struct page *page, int isolated) 2638 { 2639 pg_data_t *pgdat = page_pgdat(page); 2640 2641 if (isolated) { 2642 struct lruvec *lruvec; 2643 2644 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2645 VM_BUG_ON_PAGE(PageLRU(page), page); 2646 SetPageLRU(page); 2647 add_page_to_lru_list(page, lruvec, page_lru(page)); 2648 } 2649 spin_unlock_irq(&pgdat->lru_lock); 2650 } 2651 2652 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2653 bool lrucare) 2654 { 2655 int isolated; 2656 2657 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2658 2659 /* 2660 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2661 * may already be on some other mem_cgroup's LRU. Take care of it. 2662 */ 2663 if (lrucare) 2664 lock_page_lru(page, &isolated); 2665 2666 /* 2667 * Nobody should be changing or seriously looking at 2668 * page->mem_cgroup at this point: 2669 * 2670 * - the page is uncharged 2671 * 2672 * - the page is off-LRU 2673 * 2674 * - an anonymous fault has exclusive page access, except for 2675 * a locked page table 2676 * 2677 * - a page cache insertion, a swapin fault, or a migration 2678 * have the page locked 2679 */ 2680 page->mem_cgroup = memcg; 2681 2682 if (lrucare) 2683 unlock_page_lru(page, isolated); 2684 } 2685 2686 #ifdef CONFIG_MEMCG_KMEM 2687 /* 2688 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2689 * 2690 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2691 * cgroup_mutex, etc. 2692 */ 2693 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2694 { 2695 struct page *page; 2696 2697 if (mem_cgroup_disabled()) 2698 return NULL; 2699 2700 page = virt_to_head_page(p); 2701 2702 /* 2703 * Slab pages don't have page->mem_cgroup set because corresponding 2704 * kmem caches can be reparented during the lifetime. That's why 2705 * memcg_from_slab_page() should be used instead. 2706 */ 2707 if (PageSlab(page)) 2708 return memcg_from_slab_page(page); 2709 2710 /* All other pages use page->mem_cgroup */ 2711 return page->mem_cgroup; 2712 } 2713 2714 static int memcg_alloc_cache_id(void) 2715 { 2716 int id, size; 2717 int err; 2718 2719 id = ida_simple_get(&memcg_cache_ida, 2720 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2721 if (id < 0) 2722 return id; 2723 2724 if (id < memcg_nr_cache_ids) 2725 return id; 2726 2727 /* 2728 * There's no space for the new id in memcg_caches arrays, 2729 * so we have to grow them. 2730 */ 2731 down_write(&memcg_cache_ids_sem); 2732 2733 size = 2 * (id + 1); 2734 if (size < MEMCG_CACHES_MIN_SIZE) 2735 size = MEMCG_CACHES_MIN_SIZE; 2736 else if (size > MEMCG_CACHES_MAX_SIZE) 2737 size = MEMCG_CACHES_MAX_SIZE; 2738 2739 err = memcg_update_all_caches(size); 2740 if (!err) 2741 err = memcg_update_all_list_lrus(size); 2742 if (!err) 2743 memcg_nr_cache_ids = size; 2744 2745 up_write(&memcg_cache_ids_sem); 2746 2747 if (err) { 2748 ida_simple_remove(&memcg_cache_ida, id); 2749 return err; 2750 } 2751 return id; 2752 } 2753 2754 static void memcg_free_cache_id(int id) 2755 { 2756 ida_simple_remove(&memcg_cache_ida, id); 2757 } 2758 2759 struct memcg_kmem_cache_create_work { 2760 struct mem_cgroup *memcg; 2761 struct kmem_cache *cachep; 2762 struct work_struct work; 2763 }; 2764 2765 static void memcg_kmem_cache_create_func(struct work_struct *w) 2766 { 2767 struct memcg_kmem_cache_create_work *cw = 2768 container_of(w, struct memcg_kmem_cache_create_work, work); 2769 struct mem_cgroup *memcg = cw->memcg; 2770 struct kmem_cache *cachep = cw->cachep; 2771 2772 memcg_create_kmem_cache(memcg, cachep); 2773 2774 css_put(&memcg->css); 2775 kfree(cw); 2776 } 2777 2778 /* 2779 * Enqueue the creation of a per-memcg kmem_cache. 2780 */ 2781 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2782 struct kmem_cache *cachep) 2783 { 2784 struct memcg_kmem_cache_create_work *cw; 2785 2786 if (!css_tryget_online(&memcg->css)) 2787 return; 2788 2789 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2790 if (!cw) 2791 return; 2792 2793 cw->memcg = memcg; 2794 cw->cachep = cachep; 2795 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2796 2797 queue_work(memcg_kmem_cache_wq, &cw->work); 2798 } 2799 2800 static inline bool memcg_kmem_bypass(void) 2801 { 2802 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2803 return true; 2804 return false; 2805 } 2806 2807 /** 2808 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2809 * @cachep: the original global kmem cache 2810 * 2811 * Return the kmem_cache we're supposed to use for a slab allocation. 2812 * We try to use the current memcg's version of the cache. 2813 * 2814 * If the cache does not exist yet, if we are the first user of it, we 2815 * create it asynchronously in a workqueue and let the current allocation 2816 * go through with the original cache. 2817 * 2818 * This function takes a reference to the cache it returns to assure it 2819 * won't get destroyed while we are working with it. Once the caller is 2820 * done with it, memcg_kmem_put_cache() must be called to release the 2821 * reference. 2822 */ 2823 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2824 { 2825 struct mem_cgroup *memcg; 2826 struct kmem_cache *memcg_cachep; 2827 struct memcg_cache_array *arr; 2828 int kmemcg_id; 2829 2830 VM_BUG_ON(!is_root_cache(cachep)); 2831 2832 if (memcg_kmem_bypass()) 2833 return cachep; 2834 2835 rcu_read_lock(); 2836 2837 if (unlikely(current->active_memcg)) 2838 memcg = current->active_memcg; 2839 else 2840 memcg = mem_cgroup_from_task(current); 2841 2842 if (!memcg || memcg == root_mem_cgroup) 2843 goto out_unlock; 2844 2845 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2846 if (kmemcg_id < 0) 2847 goto out_unlock; 2848 2849 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2850 2851 /* 2852 * Make sure we will access the up-to-date value. The code updating 2853 * memcg_caches issues a write barrier to match the data dependency 2854 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2855 */ 2856 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2857 2858 /* 2859 * If we are in a safe context (can wait, and not in interrupt 2860 * context), we could be be predictable and return right away. 2861 * This would guarantee that the allocation being performed 2862 * already belongs in the new cache. 2863 * 2864 * However, there are some clashes that can arrive from locking. 2865 * For instance, because we acquire the slab_mutex while doing 2866 * memcg_create_kmem_cache, this means no further allocation 2867 * could happen with the slab_mutex held. So it's better to 2868 * defer everything. 2869 * 2870 * If the memcg is dying or memcg_cache is about to be released, 2871 * don't bother creating new kmem_caches. Because memcg_cachep 2872 * is ZEROed as the fist step of kmem offlining, we don't need 2873 * percpu_ref_tryget_live() here. css_tryget_online() check in 2874 * memcg_schedule_kmem_cache_create() will prevent us from 2875 * creation of a new kmem_cache. 2876 */ 2877 if (unlikely(!memcg_cachep)) 2878 memcg_schedule_kmem_cache_create(memcg, cachep); 2879 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2880 cachep = memcg_cachep; 2881 out_unlock: 2882 rcu_read_unlock(); 2883 return cachep; 2884 } 2885 2886 /** 2887 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2888 * @cachep: the cache returned by memcg_kmem_get_cache 2889 */ 2890 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2891 { 2892 if (!is_root_cache(cachep)) 2893 percpu_ref_put(&cachep->memcg_params.refcnt); 2894 } 2895 2896 /** 2897 * __memcg_kmem_charge: charge a number of kernel pages to a memcg 2898 * @memcg: memory cgroup to charge 2899 * @gfp: reclaim mode 2900 * @nr_pages: number of pages to charge 2901 * 2902 * Returns 0 on success, an error code on failure. 2903 */ 2904 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 2905 unsigned int nr_pages) 2906 { 2907 struct page_counter *counter; 2908 int ret; 2909 2910 ret = try_charge(memcg, gfp, nr_pages); 2911 if (ret) 2912 return ret; 2913 2914 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2915 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2916 2917 /* 2918 * Enforce __GFP_NOFAIL allocation because callers are not 2919 * prepared to see failures and likely do not have any failure 2920 * handling code. 2921 */ 2922 if (gfp & __GFP_NOFAIL) { 2923 page_counter_charge(&memcg->kmem, nr_pages); 2924 return 0; 2925 } 2926 cancel_charge(memcg, nr_pages); 2927 return -ENOMEM; 2928 } 2929 return 0; 2930 } 2931 2932 /** 2933 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg 2934 * @memcg: memcg to uncharge 2935 * @nr_pages: number of pages to uncharge 2936 */ 2937 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 2938 { 2939 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2940 page_counter_uncharge(&memcg->kmem, nr_pages); 2941 2942 page_counter_uncharge(&memcg->memory, nr_pages); 2943 if (do_memsw_account()) 2944 page_counter_uncharge(&memcg->memsw, nr_pages); 2945 } 2946 2947 /** 2948 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2949 * @page: page to charge 2950 * @gfp: reclaim mode 2951 * @order: allocation order 2952 * 2953 * Returns 0 on success, an error code on failure. 2954 */ 2955 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2956 { 2957 struct mem_cgroup *memcg; 2958 int ret = 0; 2959 2960 if (memcg_kmem_bypass()) 2961 return 0; 2962 2963 memcg = get_mem_cgroup_from_current(); 2964 if (!mem_cgroup_is_root(memcg)) { 2965 ret = __memcg_kmem_charge(memcg, gfp, 1 << order); 2966 if (!ret) { 2967 page->mem_cgroup = memcg; 2968 __SetPageKmemcg(page); 2969 } 2970 } 2971 css_put(&memcg->css); 2972 return ret; 2973 } 2974 2975 /** 2976 * __memcg_kmem_uncharge_page: uncharge a kmem page 2977 * @page: page to uncharge 2978 * @order: allocation order 2979 */ 2980 void __memcg_kmem_uncharge_page(struct page *page, int order) 2981 { 2982 struct mem_cgroup *memcg = page->mem_cgroup; 2983 unsigned int nr_pages = 1 << order; 2984 2985 if (!memcg) 2986 return; 2987 2988 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2989 __memcg_kmem_uncharge(memcg, nr_pages); 2990 page->mem_cgroup = NULL; 2991 2992 /* slab pages do not have PageKmemcg flag set */ 2993 if (PageKmemcg(page)) 2994 __ClearPageKmemcg(page); 2995 2996 css_put_many(&memcg->css, nr_pages); 2997 } 2998 #endif /* CONFIG_MEMCG_KMEM */ 2999 3000 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3001 3002 /* 3003 * Because tail pages are not marked as "used", set it. We're under 3004 * pgdat->lru_lock and migration entries setup in all page mappings. 3005 */ 3006 void mem_cgroup_split_huge_fixup(struct page *head) 3007 { 3008 int i; 3009 3010 if (mem_cgroup_disabled()) 3011 return; 3012 3013 for (i = 1; i < HPAGE_PMD_NR; i++) 3014 head[i].mem_cgroup = head->mem_cgroup; 3015 3016 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 3017 } 3018 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3019 3020 #ifdef CONFIG_MEMCG_SWAP 3021 /** 3022 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3023 * @entry: swap entry to be moved 3024 * @from: mem_cgroup which the entry is moved from 3025 * @to: mem_cgroup which the entry is moved to 3026 * 3027 * It succeeds only when the swap_cgroup's record for this entry is the same 3028 * as the mem_cgroup's id of @from. 3029 * 3030 * Returns 0 on success, -EINVAL on failure. 3031 * 3032 * The caller must have charged to @to, IOW, called page_counter_charge() about 3033 * both res and memsw, and called css_get(). 3034 */ 3035 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3036 struct mem_cgroup *from, struct mem_cgroup *to) 3037 { 3038 unsigned short old_id, new_id; 3039 3040 old_id = mem_cgroup_id(from); 3041 new_id = mem_cgroup_id(to); 3042 3043 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3044 mod_memcg_state(from, MEMCG_SWAP, -1); 3045 mod_memcg_state(to, MEMCG_SWAP, 1); 3046 return 0; 3047 } 3048 return -EINVAL; 3049 } 3050 #else 3051 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3052 struct mem_cgroup *from, struct mem_cgroup *to) 3053 { 3054 return -EINVAL; 3055 } 3056 #endif 3057 3058 static DEFINE_MUTEX(memcg_max_mutex); 3059 3060 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3061 unsigned long max, bool memsw) 3062 { 3063 bool enlarge = false; 3064 bool drained = false; 3065 int ret; 3066 bool limits_invariant; 3067 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3068 3069 do { 3070 if (signal_pending(current)) { 3071 ret = -EINTR; 3072 break; 3073 } 3074 3075 mutex_lock(&memcg_max_mutex); 3076 /* 3077 * Make sure that the new limit (memsw or memory limit) doesn't 3078 * break our basic invariant rule memory.max <= memsw.max. 3079 */ 3080 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3081 max <= memcg->memsw.max; 3082 if (!limits_invariant) { 3083 mutex_unlock(&memcg_max_mutex); 3084 ret = -EINVAL; 3085 break; 3086 } 3087 if (max > counter->max) 3088 enlarge = true; 3089 ret = page_counter_set_max(counter, max); 3090 mutex_unlock(&memcg_max_mutex); 3091 3092 if (!ret) 3093 break; 3094 3095 if (!drained) { 3096 drain_all_stock(memcg); 3097 drained = true; 3098 continue; 3099 } 3100 3101 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3102 GFP_KERNEL, !memsw)) { 3103 ret = -EBUSY; 3104 break; 3105 } 3106 } while (true); 3107 3108 if (!ret && enlarge) 3109 memcg_oom_recover(memcg); 3110 3111 return ret; 3112 } 3113 3114 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3115 gfp_t gfp_mask, 3116 unsigned long *total_scanned) 3117 { 3118 unsigned long nr_reclaimed = 0; 3119 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3120 unsigned long reclaimed; 3121 int loop = 0; 3122 struct mem_cgroup_tree_per_node *mctz; 3123 unsigned long excess; 3124 unsigned long nr_scanned; 3125 3126 if (order > 0) 3127 return 0; 3128 3129 mctz = soft_limit_tree_node(pgdat->node_id); 3130 3131 /* 3132 * Do not even bother to check the largest node if the root 3133 * is empty. Do it lockless to prevent lock bouncing. Races 3134 * are acceptable as soft limit is best effort anyway. 3135 */ 3136 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3137 return 0; 3138 3139 /* 3140 * This loop can run a while, specially if mem_cgroup's continuously 3141 * keep exceeding their soft limit and putting the system under 3142 * pressure 3143 */ 3144 do { 3145 if (next_mz) 3146 mz = next_mz; 3147 else 3148 mz = mem_cgroup_largest_soft_limit_node(mctz); 3149 if (!mz) 3150 break; 3151 3152 nr_scanned = 0; 3153 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3154 gfp_mask, &nr_scanned); 3155 nr_reclaimed += reclaimed; 3156 *total_scanned += nr_scanned; 3157 spin_lock_irq(&mctz->lock); 3158 __mem_cgroup_remove_exceeded(mz, mctz); 3159 3160 /* 3161 * If we failed to reclaim anything from this memory cgroup 3162 * it is time to move on to the next cgroup 3163 */ 3164 next_mz = NULL; 3165 if (!reclaimed) 3166 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3167 3168 excess = soft_limit_excess(mz->memcg); 3169 /* 3170 * One school of thought says that we should not add 3171 * back the node to the tree if reclaim returns 0. 3172 * But our reclaim could return 0, simply because due 3173 * to priority we are exposing a smaller subset of 3174 * memory to reclaim from. Consider this as a longer 3175 * term TODO. 3176 */ 3177 /* If excess == 0, no tree ops */ 3178 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3179 spin_unlock_irq(&mctz->lock); 3180 css_put(&mz->memcg->css); 3181 loop++; 3182 /* 3183 * Could not reclaim anything and there are no more 3184 * mem cgroups to try or we seem to be looping without 3185 * reclaiming anything. 3186 */ 3187 if (!nr_reclaimed && 3188 (next_mz == NULL || 3189 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3190 break; 3191 } while (!nr_reclaimed); 3192 if (next_mz) 3193 css_put(&next_mz->memcg->css); 3194 return nr_reclaimed; 3195 } 3196 3197 /* 3198 * Test whether @memcg has children, dead or alive. Note that this 3199 * function doesn't care whether @memcg has use_hierarchy enabled and 3200 * returns %true if there are child csses according to the cgroup 3201 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3202 */ 3203 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3204 { 3205 bool ret; 3206 3207 rcu_read_lock(); 3208 ret = css_next_child(NULL, &memcg->css); 3209 rcu_read_unlock(); 3210 return ret; 3211 } 3212 3213 /* 3214 * Reclaims as many pages from the given memcg as possible. 3215 * 3216 * Caller is responsible for holding css reference for memcg. 3217 */ 3218 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3219 { 3220 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3221 3222 /* we call try-to-free pages for make this cgroup empty */ 3223 lru_add_drain_all(); 3224 3225 drain_all_stock(memcg); 3226 3227 /* try to free all pages in this cgroup */ 3228 while (nr_retries && page_counter_read(&memcg->memory)) { 3229 int progress; 3230 3231 if (signal_pending(current)) 3232 return -EINTR; 3233 3234 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3235 GFP_KERNEL, true); 3236 if (!progress) { 3237 nr_retries--; 3238 /* maybe some writeback is necessary */ 3239 congestion_wait(BLK_RW_ASYNC, HZ/10); 3240 } 3241 3242 } 3243 3244 return 0; 3245 } 3246 3247 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3248 char *buf, size_t nbytes, 3249 loff_t off) 3250 { 3251 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3252 3253 if (mem_cgroup_is_root(memcg)) 3254 return -EINVAL; 3255 return mem_cgroup_force_empty(memcg) ?: nbytes; 3256 } 3257 3258 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3259 struct cftype *cft) 3260 { 3261 return mem_cgroup_from_css(css)->use_hierarchy; 3262 } 3263 3264 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3265 struct cftype *cft, u64 val) 3266 { 3267 int retval = 0; 3268 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3269 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3270 3271 if (memcg->use_hierarchy == val) 3272 return 0; 3273 3274 /* 3275 * If parent's use_hierarchy is set, we can't make any modifications 3276 * in the child subtrees. If it is unset, then the change can 3277 * occur, provided the current cgroup has no children. 3278 * 3279 * For the root cgroup, parent_mem is NULL, we allow value to be 3280 * set if there are no children. 3281 */ 3282 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3283 (val == 1 || val == 0)) { 3284 if (!memcg_has_children(memcg)) 3285 memcg->use_hierarchy = val; 3286 else 3287 retval = -EBUSY; 3288 } else 3289 retval = -EINVAL; 3290 3291 return retval; 3292 } 3293 3294 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3295 { 3296 unsigned long val; 3297 3298 if (mem_cgroup_is_root(memcg)) { 3299 val = memcg_page_state(memcg, MEMCG_CACHE) + 3300 memcg_page_state(memcg, MEMCG_RSS); 3301 if (swap) 3302 val += memcg_page_state(memcg, MEMCG_SWAP); 3303 } else { 3304 if (!swap) 3305 val = page_counter_read(&memcg->memory); 3306 else 3307 val = page_counter_read(&memcg->memsw); 3308 } 3309 return val; 3310 } 3311 3312 enum { 3313 RES_USAGE, 3314 RES_LIMIT, 3315 RES_MAX_USAGE, 3316 RES_FAILCNT, 3317 RES_SOFT_LIMIT, 3318 }; 3319 3320 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3321 struct cftype *cft) 3322 { 3323 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3324 struct page_counter *counter; 3325 3326 switch (MEMFILE_TYPE(cft->private)) { 3327 case _MEM: 3328 counter = &memcg->memory; 3329 break; 3330 case _MEMSWAP: 3331 counter = &memcg->memsw; 3332 break; 3333 case _KMEM: 3334 counter = &memcg->kmem; 3335 break; 3336 case _TCP: 3337 counter = &memcg->tcpmem; 3338 break; 3339 default: 3340 BUG(); 3341 } 3342 3343 switch (MEMFILE_ATTR(cft->private)) { 3344 case RES_USAGE: 3345 if (counter == &memcg->memory) 3346 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3347 if (counter == &memcg->memsw) 3348 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3349 return (u64)page_counter_read(counter) * PAGE_SIZE; 3350 case RES_LIMIT: 3351 return (u64)counter->max * PAGE_SIZE; 3352 case RES_MAX_USAGE: 3353 return (u64)counter->watermark * PAGE_SIZE; 3354 case RES_FAILCNT: 3355 return counter->failcnt; 3356 case RES_SOFT_LIMIT: 3357 return (u64)memcg->soft_limit * PAGE_SIZE; 3358 default: 3359 BUG(); 3360 } 3361 } 3362 3363 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3364 { 3365 unsigned long stat[MEMCG_NR_STAT] = {0}; 3366 struct mem_cgroup *mi; 3367 int node, cpu, i; 3368 3369 for_each_online_cpu(cpu) 3370 for (i = 0; i < MEMCG_NR_STAT; i++) 3371 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3372 3373 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3374 for (i = 0; i < MEMCG_NR_STAT; i++) 3375 atomic_long_add(stat[i], &mi->vmstats[i]); 3376 3377 for_each_node(node) { 3378 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3379 struct mem_cgroup_per_node *pi; 3380 3381 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3382 stat[i] = 0; 3383 3384 for_each_online_cpu(cpu) 3385 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3386 stat[i] += per_cpu( 3387 pn->lruvec_stat_cpu->count[i], cpu); 3388 3389 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3390 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3391 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3392 } 3393 } 3394 3395 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3396 { 3397 unsigned long events[NR_VM_EVENT_ITEMS]; 3398 struct mem_cgroup *mi; 3399 int cpu, i; 3400 3401 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3402 events[i] = 0; 3403 3404 for_each_online_cpu(cpu) 3405 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3406 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3407 cpu); 3408 3409 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3410 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3411 atomic_long_add(events[i], &mi->vmevents[i]); 3412 } 3413 3414 #ifdef CONFIG_MEMCG_KMEM 3415 static int memcg_online_kmem(struct mem_cgroup *memcg) 3416 { 3417 int memcg_id; 3418 3419 if (cgroup_memory_nokmem) 3420 return 0; 3421 3422 BUG_ON(memcg->kmemcg_id >= 0); 3423 BUG_ON(memcg->kmem_state); 3424 3425 memcg_id = memcg_alloc_cache_id(); 3426 if (memcg_id < 0) 3427 return memcg_id; 3428 3429 static_branch_inc(&memcg_kmem_enabled_key); 3430 /* 3431 * A memory cgroup is considered kmem-online as soon as it gets 3432 * kmemcg_id. Setting the id after enabling static branching will 3433 * guarantee no one starts accounting before all call sites are 3434 * patched. 3435 */ 3436 memcg->kmemcg_id = memcg_id; 3437 memcg->kmem_state = KMEM_ONLINE; 3438 INIT_LIST_HEAD(&memcg->kmem_caches); 3439 3440 return 0; 3441 } 3442 3443 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3444 { 3445 struct cgroup_subsys_state *css; 3446 struct mem_cgroup *parent, *child; 3447 int kmemcg_id; 3448 3449 if (memcg->kmem_state != KMEM_ONLINE) 3450 return; 3451 /* 3452 * Clear the online state before clearing memcg_caches array 3453 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3454 * guarantees that no cache will be created for this cgroup 3455 * after we are done (see memcg_create_kmem_cache()). 3456 */ 3457 memcg->kmem_state = KMEM_ALLOCATED; 3458 3459 parent = parent_mem_cgroup(memcg); 3460 if (!parent) 3461 parent = root_mem_cgroup; 3462 3463 /* 3464 * Deactivate and reparent kmem_caches. 3465 */ 3466 memcg_deactivate_kmem_caches(memcg, parent); 3467 3468 kmemcg_id = memcg->kmemcg_id; 3469 BUG_ON(kmemcg_id < 0); 3470 3471 /* 3472 * Change kmemcg_id of this cgroup and all its descendants to the 3473 * parent's id, and then move all entries from this cgroup's list_lrus 3474 * to ones of the parent. After we have finished, all list_lrus 3475 * corresponding to this cgroup are guaranteed to remain empty. The 3476 * ordering is imposed by list_lru_node->lock taken by 3477 * memcg_drain_all_list_lrus(). 3478 */ 3479 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3480 css_for_each_descendant_pre(css, &memcg->css) { 3481 child = mem_cgroup_from_css(css); 3482 BUG_ON(child->kmemcg_id != kmemcg_id); 3483 child->kmemcg_id = parent->kmemcg_id; 3484 if (!memcg->use_hierarchy) 3485 break; 3486 } 3487 rcu_read_unlock(); 3488 3489 memcg_drain_all_list_lrus(kmemcg_id, parent); 3490 3491 memcg_free_cache_id(kmemcg_id); 3492 } 3493 3494 static void memcg_free_kmem(struct mem_cgroup *memcg) 3495 { 3496 /* css_alloc() failed, offlining didn't happen */ 3497 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3498 memcg_offline_kmem(memcg); 3499 3500 if (memcg->kmem_state == KMEM_ALLOCATED) { 3501 WARN_ON(!list_empty(&memcg->kmem_caches)); 3502 static_branch_dec(&memcg_kmem_enabled_key); 3503 } 3504 } 3505 #else 3506 static int memcg_online_kmem(struct mem_cgroup *memcg) 3507 { 3508 return 0; 3509 } 3510 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3511 { 3512 } 3513 static void memcg_free_kmem(struct mem_cgroup *memcg) 3514 { 3515 } 3516 #endif /* CONFIG_MEMCG_KMEM */ 3517 3518 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3519 unsigned long max) 3520 { 3521 int ret; 3522 3523 mutex_lock(&memcg_max_mutex); 3524 ret = page_counter_set_max(&memcg->kmem, max); 3525 mutex_unlock(&memcg_max_mutex); 3526 return ret; 3527 } 3528 3529 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3530 { 3531 int ret; 3532 3533 mutex_lock(&memcg_max_mutex); 3534 3535 ret = page_counter_set_max(&memcg->tcpmem, max); 3536 if (ret) 3537 goto out; 3538 3539 if (!memcg->tcpmem_active) { 3540 /* 3541 * The active flag needs to be written after the static_key 3542 * update. This is what guarantees that the socket activation 3543 * function is the last one to run. See mem_cgroup_sk_alloc() 3544 * for details, and note that we don't mark any socket as 3545 * belonging to this memcg until that flag is up. 3546 * 3547 * We need to do this, because static_keys will span multiple 3548 * sites, but we can't control their order. If we mark a socket 3549 * as accounted, but the accounting functions are not patched in 3550 * yet, we'll lose accounting. 3551 * 3552 * We never race with the readers in mem_cgroup_sk_alloc(), 3553 * because when this value change, the code to process it is not 3554 * patched in yet. 3555 */ 3556 static_branch_inc(&memcg_sockets_enabled_key); 3557 memcg->tcpmem_active = true; 3558 } 3559 out: 3560 mutex_unlock(&memcg_max_mutex); 3561 return ret; 3562 } 3563 3564 /* 3565 * The user of this function is... 3566 * RES_LIMIT. 3567 */ 3568 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3569 char *buf, size_t nbytes, loff_t off) 3570 { 3571 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3572 unsigned long nr_pages; 3573 int ret; 3574 3575 buf = strstrip(buf); 3576 ret = page_counter_memparse(buf, "-1", &nr_pages); 3577 if (ret) 3578 return ret; 3579 3580 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3581 case RES_LIMIT: 3582 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3583 ret = -EINVAL; 3584 break; 3585 } 3586 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3587 case _MEM: 3588 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3589 break; 3590 case _MEMSWAP: 3591 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3592 break; 3593 case _KMEM: 3594 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3595 "Please report your usecase to linux-mm@kvack.org if you " 3596 "depend on this functionality.\n"); 3597 ret = memcg_update_kmem_max(memcg, nr_pages); 3598 break; 3599 case _TCP: 3600 ret = memcg_update_tcp_max(memcg, nr_pages); 3601 break; 3602 } 3603 break; 3604 case RES_SOFT_LIMIT: 3605 memcg->soft_limit = nr_pages; 3606 ret = 0; 3607 break; 3608 } 3609 return ret ?: nbytes; 3610 } 3611 3612 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3613 size_t nbytes, loff_t off) 3614 { 3615 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3616 struct page_counter *counter; 3617 3618 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3619 case _MEM: 3620 counter = &memcg->memory; 3621 break; 3622 case _MEMSWAP: 3623 counter = &memcg->memsw; 3624 break; 3625 case _KMEM: 3626 counter = &memcg->kmem; 3627 break; 3628 case _TCP: 3629 counter = &memcg->tcpmem; 3630 break; 3631 default: 3632 BUG(); 3633 } 3634 3635 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3636 case RES_MAX_USAGE: 3637 page_counter_reset_watermark(counter); 3638 break; 3639 case RES_FAILCNT: 3640 counter->failcnt = 0; 3641 break; 3642 default: 3643 BUG(); 3644 } 3645 3646 return nbytes; 3647 } 3648 3649 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3650 struct cftype *cft) 3651 { 3652 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3653 } 3654 3655 #ifdef CONFIG_MMU 3656 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3657 struct cftype *cft, u64 val) 3658 { 3659 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3660 3661 if (val & ~MOVE_MASK) 3662 return -EINVAL; 3663 3664 /* 3665 * No kind of locking is needed in here, because ->can_attach() will 3666 * check this value once in the beginning of the process, and then carry 3667 * on with stale data. This means that changes to this value will only 3668 * affect task migrations starting after the change. 3669 */ 3670 memcg->move_charge_at_immigrate = val; 3671 return 0; 3672 } 3673 #else 3674 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3675 struct cftype *cft, u64 val) 3676 { 3677 return -ENOSYS; 3678 } 3679 #endif 3680 3681 #ifdef CONFIG_NUMA 3682 3683 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3684 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3685 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3686 3687 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3688 int nid, unsigned int lru_mask) 3689 { 3690 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3691 unsigned long nr = 0; 3692 enum lru_list lru; 3693 3694 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3695 3696 for_each_lru(lru) { 3697 if (!(BIT(lru) & lru_mask)) 3698 continue; 3699 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3700 } 3701 return nr; 3702 } 3703 3704 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3705 unsigned int lru_mask) 3706 { 3707 unsigned long nr = 0; 3708 enum lru_list lru; 3709 3710 for_each_lru(lru) { 3711 if (!(BIT(lru) & lru_mask)) 3712 continue; 3713 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3714 } 3715 return nr; 3716 } 3717 3718 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3719 { 3720 struct numa_stat { 3721 const char *name; 3722 unsigned int lru_mask; 3723 }; 3724 3725 static const struct numa_stat stats[] = { 3726 { "total", LRU_ALL }, 3727 { "file", LRU_ALL_FILE }, 3728 { "anon", LRU_ALL_ANON }, 3729 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3730 }; 3731 const struct numa_stat *stat; 3732 int nid; 3733 unsigned long nr; 3734 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3735 3736 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3737 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3738 seq_printf(m, "%s=%lu", stat->name, nr); 3739 for_each_node_state(nid, N_MEMORY) { 3740 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3741 stat->lru_mask); 3742 seq_printf(m, " N%d=%lu", nid, nr); 3743 } 3744 seq_putc(m, '\n'); 3745 } 3746 3747 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3748 struct mem_cgroup *iter; 3749 3750 nr = 0; 3751 for_each_mem_cgroup_tree(iter, memcg) 3752 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3753 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3754 for_each_node_state(nid, N_MEMORY) { 3755 nr = 0; 3756 for_each_mem_cgroup_tree(iter, memcg) 3757 nr += mem_cgroup_node_nr_lru_pages( 3758 iter, nid, stat->lru_mask); 3759 seq_printf(m, " N%d=%lu", nid, nr); 3760 } 3761 seq_putc(m, '\n'); 3762 } 3763 3764 return 0; 3765 } 3766 #endif /* CONFIG_NUMA */ 3767 3768 static const unsigned int memcg1_stats[] = { 3769 MEMCG_CACHE, 3770 MEMCG_RSS, 3771 MEMCG_RSS_HUGE, 3772 NR_SHMEM, 3773 NR_FILE_MAPPED, 3774 NR_FILE_DIRTY, 3775 NR_WRITEBACK, 3776 MEMCG_SWAP, 3777 }; 3778 3779 static const char *const memcg1_stat_names[] = { 3780 "cache", 3781 "rss", 3782 "rss_huge", 3783 "shmem", 3784 "mapped_file", 3785 "dirty", 3786 "writeback", 3787 "swap", 3788 }; 3789 3790 /* Universal VM events cgroup1 shows, original sort order */ 3791 static const unsigned int memcg1_events[] = { 3792 PGPGIN, 3793 PGPGOUT, 3794 PGFAULT, 3795 PGMAJFAULT, 3796 }; 3797 3798 static int memcg_stat_show(struct seq_file *m, void *v) 3799 { 3800 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3801 unsigned long memory, memsw; 3802 struct mem_cgroup *mi; 3803 unsigned int i; 3804 3805 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3806 3807 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3808 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3809 continue; 3810 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3811 memcg_page_state_local(memcg, memcg1_stats[i]) * 3812 PAGE_SIZE); 3813 } 3814 3815 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3816 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3817 memcg_events_local(memcg, memcg1_events[i])); 3818 3819 for (i = 0; i < NR_LRU_LISTS; i++) 3820 seq_printf(m, "%s %lu\n", lru_list_name(i), 3821 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3822 PAGE_SIZE); 3823 3824 /* Hierarchical information */ 3825 memory = memsw = PAGE_COUNTER_MAX; 3826 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3827 memory = min(memory, READ_ONCE(mi->memory.max)); 3828 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 3829 } 3830 seq_printf(m, "hierarchical_memory_limit %llu\n", 3831 (u64)memory * PAGE_SIZE); 3832 if (do_memsw_account()) 3833 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3834 (u64)memsw * PAGE_SIZE); 3835 3836 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3837 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3838 continue; 3839 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3840 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3841 PAGE_SIZE); 3842 } 3843 3844 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3845 seq_printf(m, "total_%s %llu\n", 3846 vm_event_name(memcg1_events[i]), 3847 (u64)memcg_events(memcg, memcg1_events[i])); 3848 3849 for (i = 0; i < NR_LRU_LISTS; i++) 3850 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 3851 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3852 PAGE_SIZE); 3853 3854 #ifdef CONFIG_DEBUG_VM 3855 { 3856 pg_data_t *pgdat; 3857 struct mem_cgroup_per_node *mz; 3858 struct zone_reclaim_stat *rstat; 3859 unsigned long recent_rotated[2] = {0, 0}; 3860 unsigned long recent_scanned[2] = {0, 0}; 3861 3862 for_each_online_pgdat(pgdat) { 3863 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3864 rstat = &mz->lruvec.reclaim_stat; 3865 3866 recent_rotated[0] += rstat->recent_rotated[0]; 3867 recent_rotated[1] += rstat->recent_rotated[1]; 3868 recent_scanned[0] += rstat->recent_scanned[0]; 3869 recent_scanned[1] += rstat->recent_scanned[1]; 3870 } 3871 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3872 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3873 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3874 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3875 } 3876 #endif 3877 3878 return 0; 3879 } 3880 3881 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3882 struct cftype *cft) 3883 { 3884 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3885 3886 return mem_cgroup_swappiness(memcg); 3887 } 3888 3889 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3890 struct cftype *cft, u64 val) 3891 { 3892 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3893 3894 if (val > 100) 3895 return -EINVAL; 3896 3897 if (css->parent) 3898 memcg->swappiness = val; 3899 else 3900 vm_swappiness = val; 3901 3902 return 0; 3903 } 3904 3905 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3906 { 3907 struct mem_cgroup_threshold_ary *t; 3908 unsigned long usage; 3909 int i; 3910 3911 rcu_read_lock(); 3912 if (!swap) 3913 t = rcu_dereference(memcg->thresholds.primary); 3914 else 3915 t = rcu_dereference(memcg->memsw_thresholds.primary); 3916 3917 if (!t) 3918 goto unlock; 3919 3920 usage = mem_cgroup_usage(memcg, swap); 3921 3922 /* 3923 * current_threshold points to threshold just below or equal to usage. 3924 * If it's not true, a threshold was crossed after last 3925 * call of __mem_cgroup_threshold(). 3926 */ 3927 i = t->current_threshold; 3928 3929 /* 3930 * Iterate backward over array of thresholds starting from 3931 * current_threshold and check if a threshold is crossed. 3932 * If none of thresholds below usage is crossed, we read 3933 * only one element of the array here. 3934 */ 3935 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3936 eventfd_signal(t->entries[i].eventfd, 1); 3937 3938 /* i = current_threshold + 1 */ 3939 i++; 3940 3941 /* 3942 * Iterate forward over array of thresholds starting from 3943 * current_threshold+1 and check if a threshold is crossed. 3944 * If none of thresholds above usage is crossed, we read 3945 * only one element of the array here. 3946 */ 3947 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3948 eventfd_signal(t->entries[i].eventfd, 1); 3949 3950 /* Update current_threshold */ 3951 t->current_threshold = i - 1; 3952 unlock: 3953 rcu_read_unlock(); 3954 } 3955 3956 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3957 { 3958 while (memcg) { 3959 __mem_cgroup_threshold(memcg, false); 3960 if (do_memsw_account()) 3961 __mem_cgroup_threshold(memcg, true); 3962 3963 memcg = parent_mem_cgroup(memcg); 3964 } 3965 } 3966 3967 static int compare_thresholds(const void *a, const void *b) 3968 { 3969 const struct mem_cgroup_threshold *_a = a; 3970 const struct mem_cgroup_threshold *_b = b; 3971 3972 if (_a->threshold > _b->threshold) 3973 return 1; 3974 3975 if (_a->threshold < _b->threshold) 3976 return -1; 3977 3978 return 0; 3979 } 3980 3981 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3982 { 3983 struct mem_cgroup_eventfd_list *ev; 3984 3985 spin_lock(&memcg_oom_lock); 3986 3987 list_for_each_entry(ev, &memcg->oom_notify, list) 3988 eventfd_signal(ev->eventfd, 1); 3989 3990 spin_unlock(&memcg_oom_lock); 3991 return 0; 3992 } 3993 3994 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3995 { 3996 struct mem_cgroup *iter; 3997 3998 for_each_mem_cgroup_tree(iter, memcg) 3999 mem_cgroup_oom_notify_cb(iter); 4000 } 4001 4002 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4003 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4004 { 4005 struct mem_cgroup_thresholds *thresholds; 4006 struct mem_cgroup_threshold_ary *new; 4007 unsigned long threshold; 4008 unsigned long usage; 4009 int i, size, ret; 4010 4011 ret = page_counter_memparse(args, "-1", &threshold); 4012 if (ret) 4013 return ret; 4014 4015 mutex_lock(&memcg->thresholds_lock); 4016 4017 if (type == _MEM) { 4018 thresholds = &memcg->thresholds; 4019 usage = mem_cgroup_usage(memcg, false); 4020 } else if (type == _MEMSWAP) { 4021 thresholds = &memcg->memsw_thresholds; 4022 usage = mem_cgroup_usage(memcg, true); 4023 } else 4024 BUG(); 4025 4026 /* Check if a threshold crossed before adding a new one */ 4027 if (thresholds->primary) 4028 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4029 4030 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4031 4032 /* Allocate memory for new array of thresholds */ 4033 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4034 if (!new) { 4035 ret = -ENOMEM; 4036 goto unlock; 4037 } 4038 new->size = size; 4039 4040 /* Copy thresholds (if any) to new array */ 4041 if (thresholds->primary) { 4042 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4043 sizeof(struct mem_cgroup_threshold)); 4044 } 4045 4046 /* Add new threshold */ 4047 new->entries[size - 1].eventfd = eventfd; 4048 new->entries[size - 1].threshold = threshold; 4049 4050 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4051 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4052 compare_thresholds, NULL); 4053 4054 /* Find current threshold */ 4055 new->current_threshold = -1; 4056 for (i = 0; i < size; i++) { 4057 if (new->entries[i].threshold <= usage) { 4058 /* 4059 * new->current_threshold will not be used until 4060 * rcu_assign_pointer(), so it's safe to increment 4061 * it here. 4062 */ 4063 ++new->current_threshold; 4064 } else 4065 break; 4066 } 4067 4068 /* Free old spare buffer and save old primary buffer as spare */ 4069 kfree(thresholds->spare); 4070 thresholds->spare = thresholds->primary; 4071 4072 rcu_assign_pointer(thresholds->primary, new); 4073 4074 /* To be sure that nobody uses thresholds */ 4075 synchronize_rcu(); 4076 4077 unlock: 4078 mutex_unlock(&memcg->thresholds_lock); 4079 4080 return ret; 4081 } 4082 4083 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4084 struct eventfd_ctx *eventfd, const char *args) 4085 { 4086 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4087 } 4088 4089 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4090 struct eventfd_ctx *eventfd, const char *args) 4091 { 4092 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4093 } 4094 4095 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4096 struct eventfd_ctx *eventfd, enum res_type type) 4097 { 4098 struct mem_cgroup_thresholds *thresholds; 4099 struct mem_cgroup_threshold_ary *new; 4100 unsigned long usage; 4101 int i, j, size, entries; 4102 4103 mutex_lock(&memcg->thresholds_lock); 4104 4105 if (type == _MEM) { 4106 thresholds = &memcg->thresholds; 4107 usage = mem_cgroup_usage(memcg, false); 4108 } else if (type == _MEMSWAP) { 4109 thresholds = &memcg->memsw_thresholds; 4110 usage = mem_cgroup_usage(memcg, true); 4111 } else 4112 BUG(); 4113 4114 if (!thresholds->primary) 4115 goto unlock; 4116 4117 /* Check if a threshold crossed before removing */ 4118 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4119 4120 /* Calculate new number of threshold */ 4121 size = entries = 0; 4122 for (i = 0; i < thresholds->primary->size; i++) { 4123 if (thresholds->primary->entries[i].eventfd != eventfd) 4124 size++; 4125 else 4126 entries++; 4127 } 4128 4129 new = thresholds->spare; 4130 4131 /* If no items related to eventfd have been cleared, nothing to do */ 4132 if (!entries) 4133 goto unlock; 4134 4135 /* Set thresholds array to NULL if we don't have thresholds */ 4136 if (!size) { 4137 kfree(new); 4138 new = NULL; 4139 goto swap_buffers; 4140 } 4141 4142 new->size = size; 4143 4144 /* Copy thresholds and find current threshold */ 4145 new->current_threshold = -1; 4146 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4147 if (thresholds->primary->entries[i].eventfd == eventfd) 4148 continue; 4149 4150 new->entries[j] = thresholds->primary->entries[i]; 4151 if (new->entries[j].threshold <= usage) { 4152 /* 4153 * new->current_threshold will not be used 4154 * until rcu_assign_pointer(), so it's safe to increment 4155 * it here. 4156 */ 4157 ++new->current_threshold; 4158 } 4159 j++; 4160 } 4161 4162 swap_buffers: 4163 /* Swap primary and spare array */ 4164 thresholds->spare = thresholds->primary; 4165 4166 rcu_assign_pointer(thresholds->primary, new); 4167 4168 /* To be sure that nobody uses thresholds */ 4169 synchronize_rcu(); 4170 4171 /* If all events are unregistered, free the spare array */ 4172 if (!new) { 4173 kfree(thresholds->spare); 4174 thresholds->spare = NULL; 4175 } 4176 unlock: 4177 mutex_unlock(&memcg->thresholds_lock); 4178 } 4179 4180 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4181 struct eventfd_ctx *eventfd) 4182 { 4183 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4184 } 4185 4186 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4187 struct eventfd_ctx *eventfd) 4188 { 4189 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4190 } 4191 4192 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4193 struct eventfd_ctx *eventfd, const char *args) 4194 { 4195 struct mem_cgroup_eventfd_list *event; 4196 4197 event = kmalloc(sizeof(*event), GFP_KERNEL); 4198 if (!event) 4199 return -ENOMEM; 4200 4201 spin_lock(&memcg_oom_lock); 4202 4203 event->eventfd = eventfd; 4204 list_add(&event->list, &memcg->oom_notify); 4205 4206 /* already in OOM ? */ 4207 if (memcg->under_oom) 4208 eventfd_signal(eventfd, 1); 4209 spin_unlock(&memcg_oom_lock); 4210 4211 return 0; 4212 } 4213 4214 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4215 struct eventfd_ctx *eventfd) 4216 { 4217 struct mem_cgroup_eventfd_list *ev, *tmp; 4218 4219 spin_lock(&memcg_oom_lock); 4220 4221 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4222 if (ev->eventfd == eventfd) { 4223 list_del(&ev->list); 4224 kfree(ev); 4225 } 4226 } 4227 4228 spin_unlock(&memcg_oom_lock); 4229 } 4230 4231 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4232 { 4233 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4234 4235 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4236 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4237 seq_printf(sf, "oom_kill %lu\n", 4238 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4239 return 0; 4240 } 4241 4242 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4243 struct cftype *cft, u64 val) 4244 { 4245 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4246 4247 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4248 if (!css->parent || !((val == 0) || (val == 1))) 4249 return -EINVAL; 4250 4251 memcg->oom_kill_disable = val; 4252 if (!val) 4253 memcg_oom_recover(memcg); 4254 4255 return 0; 4256 } 4257 4258 #ifdef CONFIG_CGROUP_WRITEBACK 4259 4260 #include <trace/events/writeback.h> 4261 4262 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4263 { 4264 return wb_domain_init(&memcg->cgwb_domain, gfp); 4265 } 4266 4267 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4268 { 4269 wb_domain_exit(&memcg->cgwb_domain); 4270 } 4271 4272 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4273 { 4274 wb_domain_size_changed(&memcg->cgwb_domain); 4275 } 4276 4277 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4278 { 4279 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4280 4281 if (!memcg->css.parent) 4282 return NULL; 4283 4284 return &memcg->cgwb_domain; 4285 } 4286 4287 /* 4288 * idx can be of type enum memcg_stat_item or node_stat_item. 4289 * Keep in sync with memcg_exact_page(). 4290 */ 4291 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4292 { 4293 long x = atomic_long_read(&memcg->vmstats[idx]); 4294 int cpu; 4295 4296 for_each_online_cpu(cpu) 4297 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4298 if (x < 0) 4299 x = 0; 4300 return x; 4301 } 4302 4303 /** 4304 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4305 * @wb: bdi_writeback in question 4306 * @pfilepages: out parameter for number of file pages 4307 * @pheadroom: out parameter for number of allocatable pages according to memcg 4308 * @pdirty: out parameter for number of dirty pages 4309 * @pwriteback: out parameter for number of pages under writeback 4310 * 4311 * Determine the numbers of file, headroom, dirty, and writeback pages in 4312 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4313 * is a bit more involved. 4314 * 4315 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4316 * headroom is calculated as the lowest headroom of itself and the 4317 * ancestors. Note that this doesn't consider the actual amount of 4318 * available memory in the system. The caller should further cap 4319 * *@pheadroom accordingly. 4320 */ 4321 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4322 unsigned long *pheadroom, unsigned long *pdirty, 4323 unsigned long *pwriteback) 4324 { 4325 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4326 struct mem_cgroup *parent; 4327 4328 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4329 4330 /* this should eventually include NR_UNSTABLE_NFS */ 4331 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4332 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4333 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4334 *pheadroom = PAGE_COUNTER_MAX; 4335 4336 while ((parent = parent_mem_cgroup(memcg))) { 4337 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4338 READ_ONCE(memcg->high)); 4339 unsigned long used = page_counter_read(&memcg->memory); 4340 4341 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4342 memcg = parent; 4343 } 4344 } 4345 4346 /* 4347 * Foreign dirty flushing 4348 * 4349 * There's an inherent mismatch between memcg and writeback. The former 4350 * trackes ownership per-page while the latter per-inode. This was a 4351 * deliberate design decision because honoring per-page ownership in the 4352 * writeback path is complicated, may lead to higher CPU and IO overheads 4353 * and deemed unnecessary given that write-sharing an inode across 4354 * different cgroups isn't a common use-case. 4355 * 4356 * Combined with inode majority-writer ownership switching, this works well 4357 * enough in most cases but there are some pathological cases. For 4358 * example, let's say there are two cgroups A and B which keep writing to 4359 * different but confined parts of the same inode. B owns the inode and 4360 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4361 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4362 * triggering background writeback. A will be slowed down without a way to 4363 * make writeback of the dirty pages happen. 4364 * 4365 * Conditions like the above can lead to a cgroup getting repatedly and 4366 * severely throttled after making some progress after each 4367 * dirty_expire_interval while the underyling IO device is almost 4368 * completely idle. 4369 * 4370 * Solving this problem completely requires matching the ownership tracking 4371 * granularities between memcg and writeback in either direction. However, 4372 * the more egregious behaviors can be avoided by simply remembering the 4373 * most recent foreign dirtying events and initiating remote flushes on 4374 * them when local writeback isn't enough to keep the memory clean enough. 4375 * 4376 * The following two functions implement such mechanism. When a foreign 4377 * page - a page whose memcg and writeback ownerships don't match - is 4378 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4379 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4380 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4381 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4382 * foreign bdi_writebacks which haven't expired. Both the numbers of 4383 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4384 * limited to MEMCG_CGWB_FRN_CNT. 4385 * 4386 * The mechanism only remembers IDs and doesn't hold any object references. 4387 * As being wrong occasionally doesn't matter, updates and accesses to the 4388 * records are lockless and racy. 4389 */ 4390 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4391 struct bdi_writeback *wb) 4392 { 4393 struct mem_cgroup *memcg = page->mem_cgroup; 4394 struct memcg_cgwb_frn *frn; 4395 u64 now = get_jiffies_64(); 4396 u64 oldest_at = now; 4397 int oldest = -1; 4398 int i; 4399 4400 trace_track_foreign_dirty(page, wb); 4401 4402 /* 4403 * Pick the slot to use. If there is already a slot for @wb, keep 4404 * using it. If not replace the oldest one which isn't being 4405 * written out. 4406 */ 4407 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4408 frn = &memcg->cgwb_frn[i]; 4409 if (frn->bdi_id == wb->bdi->id && 4410 frn->memcg_id == wb->memcg_css->id) 4411 break; 4412 if (time_before64(frn->at, oldest_at) && 4413 atomic_read(&frn->done.cnt) == 1) { 4414 oldest = i; 4415 oldest_at = frn->at; 4416 } 4417 } 4418 4419 if (i < MEMCG_CGWB_FRN_CNT) { 4420 /* 4421 * Re-using an existing one. Update timestamp lazily to 4422 * avoid making the cacheline hot. We want them to be 4423 * reasonably up-to-date and significantly shorter than 4424 * dirty_expire_interval as that's what expires the record. 4425 * Use the shorter of 1s and dirty_expire_interval / 8. 4426 */ 4427 unsigned long update_intv = 4428 min_t(unsigned long, HZ, 4429 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4430 4431 if (time_before64(frn->at, now - update_intv)) 4432 frn->at = now; 4433 } else if (oldest >= 0) { 4434 /* replace the oldest free one */ 4435 frn = &memcg->cgwb_frn[oldest]; 4436 frn->bdi_id = wb->bdi->id; 4437 frn->memcg_id = wb->memcg_css->id; 4438 frn->at = now; 4439 } 4440 } 4441 4442 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4443 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4444 { 4445 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4446 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4447 u64 now = jiffies_64; 4448 int i; 4449 4450 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4451 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4452 4453 /* 4454 * If the record is older than dirty_expire_interval, 4455 * writeback on it has already started. No need to kick it 4456 * off again. Also, don't start a new one if there's 4457 * already one in flight. 4458 */ 4459 if (time_after64(frn->at, now - intv) && 4460 atomic_read(&frn->done.cnt) == 1) { 4461 frn->at = 0; 4462 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4463 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4464 WB_REASON_FOREIGN_FLUSH, 4465 &frn->done); 4466 } 4467 } 4468 } 4469 4470 #else /* CONFIG_CGROUP_WRITEBACK */ 4471 4472 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4473 { 4474 return 0; 4475 } 4476 4477 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4478 { 4479 } 4480 4481 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4482 { 4483 } 4484 4485 #endif /* CONFIG_CGROUP_WRITEBACK */ 4486 4487 /* 4488 * DO NOT USE IN NEW FILES. 4489 * 4490 * "cgroup.event_control" implementation. 4491 * 4492 * This is way over-engineered. It tries to support fully configurable 4493 * events for each user. Such level of flexibility is completely 4494 * unnecessary especially in the light of the planned unified hierarchy. 4495 * 4496 * Please deprecate this and replace with something simpler if at all 4497 * possible. 4498 */ 4499 4500 /* 4501 * Unregister event and free resources. 4502 * 4503 * Gets called from workqueue. 4504 */ 4505 static void memcg_event_remove(struct work_struct *work) 4506 { 4507 struct mem_cgroup_event *event = 4508 container_of(work, struct mem_cgroup_event, remove); 4509 struct mem_cgroup *memcg = event->memcg; 4510 4511 remove_wait_queue(event->wqh, &event->wait); 4512 4513 event->unregister_event(memcg, event->eventfd); 4514 4515 /* Notify userspace the event is going away. */ 4516 eventfd_signal(event->eventfd, 1); 4517 4518 eventfd_ctx_put(event->eventfd); 4519 kfree(event); 4520 css_put(&memcg->css); 4521 } 4522 4523 /* 4524 * Gets called on EPOLLHUP on eventfd when user closes it. 4525 * 4526 * Called with wqh->lock held and interrupts disabled. 4527 */ 4528 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4529 int sync, void *key) 4530 { 4531 struct mem_cgroup_event *event = 4532 container_of(wait, struct mem_cgroup_event, wait); 4533 struct mem_cgroup *memcg = event->memcg; 4534 __poll_t flags = key_to_poll(key); 4535 4536 if (flags & EPOLLHUP) { 4537 /* 4538 * If the event has been detached at cgroup removal, we 4539 * can simply return knowing the other side will cleanup 4540 * for us. 4541 * 4542 * We can't race against event freeing since the other 4543 * side will require wqh->lock via remove_wait_queue(), 4544 * which we hold. 4545 */ 4546 spin_lock(&memcg->event_list_lock); 4547 if (!list_empty(&event->list)) { 4548 list_del_init(&event->list); 4549 /* 4550 * We are in atomic context, but cgroup_event_remove() 4551 * may sleep, so we have to call it in workqueue. 4552 */ 4553 schedule_work(&event->remove); 4554 } 4555 spin_unlock(&memcg->event_list_lock); 4556 } 4557 4558 return 0; 4559 } 4560 4561 static void memcg_event_ptable_queue_proc(struct file *file, 4562 wait_queue_head_t *wqh, poll_table *pt) 4563 { 4564 struct mem_cgroup_event *event = 4565 container_of(pt, struct mem_cgroup_event, pt); 4566 4567 event->wqh = wqh; 4568 add_wait_queue(wqh, &event->wait); 4569 } 4570 4571 /* 4572 * DO NOT USE IN NEW FILES. 4573 * 4574 * Parse input and register new cgroup event handler. 4575 * 4576 * Input must be in format '<event_fd> <control_fd> <args>'. 4577 * Interpretation of args is defined by control file implementation. 4578 */ 4579 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4580 char *buf, size_t nbytes, loff_t off) 4581 { 4582 struct cgroup_subsys_state *css = of_css(of); 4583 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4584 struct mem_cgroup_event *event; 4585 struct cgroup_subsys_state *cfile_css; 4586 unsigned int efd, cfd; 4587 struct fd efile; 4588 struct fd cfile; 4589 const char *name; 4590 char *endp; 4591 int ret; 4592 4593 buf = strstrip(buf); 4594 4595 efd = simple_strtoul(buf, &endp, 10); 4596 if (*endp != ' ') 4597 return -EINVAL; 4598 buf = endp + 1; 4599 4600 cfd = simple_strtoul(buf, &endp, 10); 4601 if ((*endp != ' ') && (*endp != '\0')) 4602 return -EINVAL; 4603 buf = endp + 1; 4604 4605 event = kzalloc(sizeof(*event), GFP_KERNEL); 4606 if (!event) 4607 return -ENOMEM; 4608 4609 event->memcg = memcg; 4610 INIT_LIST_HEAD(&event->list); 4611 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4612 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4613 INIT_WORK(&event->remove, memcg_event_remove); 4614 4615 efile = fdget(efd); 4616 if (!efile.file) { 4617 ret = -EBADF; 4618 goto out_kfree; 4619 } 4620 4621 event->eventfd = eventfd_ctx_fileget(efile.file); 4622 if (IS_ERR(event->eventfd)) { 4623 ret = PTR_ERR(event->eventfd); 4624 goto out_put_efile; 4625 } 4626 4627 cfile = fdget(cfd); 4628 if (!cfile.file) { 4629 ret = -EBADF; 4630 goto out_put_eventfd; 4631 } 4632 4633 /* the process need read permission on control file */ 4634 /* AV: shouldn't we check that it's been opened for read instead? */ 4635 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4636 if (ret < 0) 4637 goto out_put_cfile; 4638 4639 /* 4640 * Determine the event callbacks and set them in @event. This used 4641 * to be done via struct cftype but cgroup core no longer knows 4642 * about these events. The following is crude but the whole thing 4643 * is for compatibility anyway. 4644 * 4645 * DO NOT ADD NEW FILES. 4646 */ 4647 name = cfile.file->f_path.dentry->d_name.name; 4648 4649 if (!strcmp(name, "memory.usage_in_bytes")) { 4650 event->register_event = mem_cgroup_usage_register_event; 4651 event->unregister_event = mem_cgroup_usage_unregister_event; 4652 } else if (!strcmp(name, "memory.oom_control")) { 4653 event->register_event = mem_cgroup_oom_register_event; 4654 event->unregister_event = mem_cgroup_oom_unregister_event; 4655 } else if (!strcmp(name, "memory.pressure_level")) { 4656 event->register_event = vmpressure_register_event; 4657 event->unregister_event = vmpressure_unregister_event; 4658 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4659 event->register_event = memsw_cgroup_usage_register_event; 4660 event->unregister_event = memsw_cgroup_usage_unregister_event; 4661 } else { 4662 ret = -EINVAL; 4663 goto out_put_cfile; 4664 } 4665 4666 /* 4667 * Verify @cfile should belong to @css. Also, remaining events are 4668 * automatically removed on cgroup destruction but the removal is 4669 * asynchronous, so take an extra ref on @css. 4670 */ 4671 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4672 &memory_cgrp_subsys); 4673 ret = -EINVAL; 4674 if (IS_ERR(cfile_css)) 4675 goto out_put_cfile; 4676 if (cfile_css != css) { 4677 css_put(cfile_css); 4678 goto out_put_cfile; 4679 } 4680 4681 ret = event->register_event(memcg, event->eventfd, buf); 4682 if (ret) 4683 goto out_put_css; 4684 4685 vfs_poll(efile.file, &event->pt); 4686 4687 spin_lock(&memcg->event_list_lock); 4688 list_add(&event->list, &memcg->event_list); 4689 spin_unlock(&memcg->event_list_lock); 4690 4691 fdput(cfile); 4692 fdput(efile); 4693 4694 return nbytes; 4695 4696 out_put_css: 4697 css_put(css); 4698 out_put_cfile: 4699 fdput(cfile); 4700 out_put_eventfd: 4701 eventfd_ctx_put(event->eventfd); 4702 out_put_efile: 4703 fdput(efile); 4704 out_kfree: 4705 kfree(event); 4706 4707 return ret; 4708 } 4709 4710 static struct cftype mem_cgroup_legacy_files[] = { 4711 { 4712 .name = "usage_in_bytes", 4713 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4714 .read_u64 = mem_cgroup_read_u64, 4715 }, 4716 { 4717 .name = "max_usage_in_bytes", 4718 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4719 .write = mem_cgroup_reset, 4720 .read_u64 = mem_cgroup_read_u64, 4721 }, 4722 { 4723 .name = "limit_in_bytes", 4724 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4725 .write = mem_cgroup_write, 4726 .read_u64 = mem_cgroup_read_u64, 4727 }, 4728 { 4729 .name = "soft_limit_in_bytes", 4730 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4731 .write = mem_cgroup_write, 4732 .read_u64 = mem_cgroup_read_u64, 4733 }, 4734 { 4735 .name = "failcnt", 4736 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4737 .write = mem_cgroup_reset, 4738 .read_u64 = mem_cgroup_read_u64, 4739 }, 4740 { 4741 .name = "stat", 4742 .seq_show = memcg_stat_show, 4743 }, 4744 { 4745 .name = "force_empty", 4746 .write = mem_cgroup_force_empty_write, 4747 }, 4748 { 4749 .name = "use_hierarchy", 4750 .write_u64 = mem_cgroup_hierarchy_write, 4751 .read_u64 = mem_cgroup_hierarchy_read, 4752 }, 4753 { 4754 .name = "cgroup.event_control", /* XXX: for compat */ 4755 .write = memcg_write_event_control, 4756 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4757 }, 4758 { 4759 .name = "swappiness", 4760 .read_u64 = mem_cgroup_swappiness_read, 4761 .write_u64 = mem_cgroup_swappiness_write, 4762 }, 4763 { 4764 .name = "move_charge_at_immigrate", 4765 .read_u64 = mem_cgroup_move_charge_read, 4766 .write_u64 = mem_cgroup_move_charge_write, 4767 }, 4768 { 4769 .name = "oom_control", 4770 .seq_show = mem_cgroup_oom_control_read, 4771 .write_u64 = mem_cgroup_oom_control_write, 4772 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4773 }, 4774 { 4775 .name = "pressure_level", 4776 }, 4777 #ifdef CONFIG_NUMA 4778 { 4779 .name = "numa_stat", 4780 .seq_show = memcg_numa_stat_show, 4781 }, 4782 #endif 4783 { 4784 .name = "kmem.limit_in_bytes", 4785 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4786 .write = mem_cgroup_write, 4787 .read_u64 = mem_cgroup_read_u64, 4788 }, 4789 { 4790 .name = "kmem.usage_in_bytes", 4791 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4792 .read_u64 = mem_cgroup_read_u64, 4793 }, 4794 { 4795 .name = "kmem.failcnt", 4796 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4797 .write = mem_cgroup_reset, 4798 .read_u64 = mem_cgroup_read_u64, 4799 }, 4800 { 4801 .name = "kmem.max_usage_in_bytes", 4802 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4803 .write = mem_cgroup_reset, 4804 .read_u64 = mem_cgroup_read_u64, 4805 }, 4806 #if defined(CONFIG_MEMCG_KMEM) && \ 4807 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4808 { 4809 .name = "kmem.slabinfo", 4810 .seq_start = memcg_slab_start, 4811 .seq_next = memcg_slab_next, 4812 .seq_stop = memcg_slab_stop, 4813 .seq_show = memcg_slab_show, 4814 }, 4815 #endif 4816 { 4817 .name = "kmem.tcp.limit_in_bytes", 4818 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4819 .write = mem_cgroup_write, 4820 .read_u64 = mem_cgroup_read_u64, 4821 }, 4822 { 4823 .name = "kmem.tcp.usage_in_bytes", 4824 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4825 .read_u64 = mem_cgroup_read_u64, 4826 }, 4827 { 4828 .name = "kmem.tcp.failcnt", 4829 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4830 .write = mem_cgroup_reset, 4831 .read_u64 = mem_cgroup_read_u64, 4832 }, 4833 { 4834 .name = "kmem.tcp.max_usage_in_bytes", 4835 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4836 .write = mem_cgroup_reset, 4837 .read_u64 = mem_cgroup_read_u64, 4838 }, 4839 { }, /* terminate */ 4840 }; 4841 4842 /* 4843 * Private memory cgroup IDR 4844 * 4845 * Swap-out records and page cache shadow entries need to store memcg 4846 * references in constrained space, so we maintain an ID space that is 4847 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4848 * memory-controlled cgroups to 64k. 4849 * 4850 * However, there usually are many references to the oflline CSS after 4851 * the cgroup has been destroyed, such as page cache or reclaimable 4852 * slab objects, that don't need to hang on to the ID. We want to keep 4853 * those dead CSS from occupying IDs, or we might quickly exhaust the 4854 * relatively small ID space and prevent the creation of new cgroups 4855 * even when there are much fewer than 64k cgroups - possibly none. 4856 * 4857 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4858 * be freed and recycled when it's no longer needed, which is usually 4859 * when the CSS is offlined. 4860 * 4861 * The only exception to that are records of swapped out tmpfs/shmem 4862 * pages that need to be attributed to live ancestors on swapin. But 4863 * those references are manageable from userspace. 4864 */ 4865 4866 static DEFINE_IDR(mem_cgroup_idr); 4867 4868 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4869 { 4870 if (memcg->id.id > 0) { 4871 idr_remove(&mem_cgroup_idr, memcg->id.id); 4872 memcg->id.id = 0; 4873 } 4874 } 4875 4876 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 4877 unsigned int n) 4878 { 4879 refcount_add(n, &memcg->id.ref); 4880 } 4881 4882 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4883 { 4884 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4885 mem_cgroup_id_remove(memcg); 4886 4887 /* Memcg ID pins CSS */ 4888 css_put(&memcg->css); 4889 } 4890 } 4891 4892 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4893 { 4894 mem_cgroup_id_put_many(memcg, 1); 4895 } 4896 4897 /** 4898 * mem_cgroup_from_id - look up a memcg from a memcg id 4899 * @id: the memcg id to look up 4900 * 4901 * Caller must hold rcu_read_lock(). 4902 */ 4903 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4904 { 4905 WARN_ON_ONCE(!rcu_read_lock_held()); 4906 return idr_find(&mem_cgroup_idr, id); 4907 } 4908 4909 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4910 { 4911 struct mem_cgroup_per_node *pn; 4912 int tmp = node; 4913 /* 4914 * This routine is called against possible nodes. 4915 * But it's BUG to call kmalloc() against offline node. 4916 * 4917 * TODO: this routine can waste much memory for nodes which will 4918 * never be onlined. It's better to use memory hotplug callback 4919 * function. 4920 */ 4921 if (!node_state(node, N_NORMAL_MEMORY)) 4922 tmp = -1; 4923 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4924 if (!pn) 4925 return 1; 4926 4927 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4928 if (!pn->lruvec_stat_local) { 4929 kfree(pn); 4930 return 1; 4931 } 4932 4933 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4934 if (!pn->lruvec_stat_cpu) { 4935 free_percpu(pn->lruvec_stat_local); 4936 kfree(pn); 4937 return 1; 4938 } 4939 4940 lruvec_init(&pn->lruvec); 4941 pn->usage_in_excess = 0; 4942 pn->on_tree = false; 4943 pn->memcg = memcg; 4944 4945 memcg->nodeinfo[node] = pn; 4946 return 0; 4947 } 4948 4949 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4950 { 4951 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4952 4953 if (!pn) 4954 return; 4955 4956 free_percpu(pn->lruvec_stat_cpu); 4957 free_percpu(pn->lruvec_stat_local); 4958 kfree(pn); 4959 } 4960 4961 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4962 { 4963 int node; 4964 4965 for_each_node(node) 4966 free_mem_cgroup_per_node_info(memcg, node); 4967 free_percpu(memcg->vmstats_percpu); 4968 free_percpu(memcg->vmstats_local); 4969 kfree(memcg); 4970 } 4971 4972 static void mem_cgroup_free(struct mem_cgroup *memcg) 4973 { 4974 memcg_wb_domain_exit(memcg); 4975 /* 4976 * Flush percpu vmstats and vmevents to guarantee the value correctness 4977 * on parent's and all ancestor levels. 4978 */ 4979 memcg_flush_percpu_vmstats(memcg); 4980 memcg_flush_percpu_vmevents(memcg); 4981 __mem_cgroup_free(memcg); 4982 } 4983 4984 static struct mem_cgroup *mem_cgroup_alloc(void) 4985 { 4986 struct mem_cgroup *memcg; 4987 unsigned int size; 4988 int node; 4989 int __maybe_unused i; 4990 4991 size = sizeof(struct mem_cgroup); 4992 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4993 4994 memcg = kzalloc(size, GFP_KERNEL); 4995 if (!memcg) 4996 return NULL; 4997 4998 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4999 1, MEM_CGROUP_ID_MAX, 5000 GFP_KERNEL); 5001 if (memcg->id.id < 0) 5002 goto fail; 5003 5004 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 5005 if (!memcg->vmstats_local) 5006 goto fail; 5007 5008 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 5009 if (!memcg->vmstats_percpu) 5010 goto fail; 5011 5012 for_each_node(node) 5013 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5014 goto fail; 5015 5016 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5017 goto fail; 5018 5019 INIT_WORK(&memcg->high_work, high_work_func); 5020 INIT_LIST_HEAD(&memcg->oom_notify); 5021 mutex_init(&memcg->thresholds_lock); 5022 spin_lock_init(&memcg->move_lock); 5023 vmpressure_init(&memcg->vmpressure); 5024 INIT_LIST_HEAD(&memcg->event_list); 5025 spin_lock_init(&memcg->event_list_lock); 5026 memcg->socket_pressure = jiffies; 5027 #ifdef CONFIG_MEMCG_KMEM 5028 memcg->kmemcg_id = -1; 5029 #endif 5030 #ifdef CONFIG_CGROUP_WRITEBACK 5031 INIT_LIST_HEAD(&memcg->cgwb_list); 5032 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5033 memcg->cgwb_frn[i].done = 5034 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5035 #endif 5036 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5037 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5038 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5039 memcg->deferred_split_queue.split_queue_len = 0; 5040 #endif 5041 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5042 return memcg; 5043 fail: 5044 mem_cgroup_id_remove(memcg); 5045 __mem_cgroup_free(memcg); 5046 return NULL; 5047 } 5048 5049 static struct cgroup_subsys_state * __ref 5050 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5051 { 5052 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5053 struct mem_cgroup *memcg; 5054 long error = -ENOMEM; 5055 5056 memcg = mem_cgroup_alloc(); 5057 if (!memcg) 5058 return ERR_PTR(error); 5059 5060 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX); 5061 memcg->soft_limit = PAGE_COUNTER_MAX; 5062 if (parent) { 5063 memcg->swappiness = mem_cgroup_swappiness(parent); 5064 memcg->oom_kill_disable = parent->oom_kill_disable; 5065 } 5066 if (parent && parent->use_hierarchy) { 5067 memcg->use_hierarchy = true; 5068 page_counter_init(&memcg->memory, &parent->memory); 5069 page_counter_init(&memcg->swap, &parent->swap); 5070 page_counter_init(&memcg->memsw, &parent->memsw); 5071 page_counter_init(&memcg->kmem, &parent->kmem); 5072 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5073 } else { 5074 page_counter_init(&memcg->memory, NULL); 5075 page_counter_init(&memcg->swap, NULL); 5076 page_counter_init(&memcg->memsw, NULL); 5077 page_counter_init(&memcg->kmem, NULL); 5078 page_counter_init(&memcg->tcpmem, NULL); 5079 /* 5080 * Deeper hierachy with use_hierarchy == false doesn't make 5081 * much sense so let cgroup subsystem know about this 5082 * unfortunate state in our controller. 5083 */ 5084 if (parent != root_mem_cgroup) 5085 memory_cgrp_subsys.broken_hierarchy = true; 5086 } 5087 5088 /* The following stuff does not apply to the root */ 5089 if (!parent) { 5090 #ifdef CONFIG_MEMCG_KMEM 5091 INIT_LIST_HEAD(&memcg->kmem_caches); 5092 #endif 5093 root_mem_cgroup = memcg; 5094 return &memcg->css; 5095 } 5096 5097 error = memcg_online_kmem(memcg); 5098 if (error) 5099 goto fail; 5100 5101 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5102 static_branch_inc(&memcg_sockets_enabled_key); 5103 5104 return &memcg->css; 5105 fail: 5106 mem_cgroup_id_remove(memcg); 5107 mem_cgroup_free(memcg); 5108 return ERR_PTR(-ENOMEM); 5109 } 5110 5111 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5112 { 5113 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5114 5115 /* 5116 * A memcg must be visible for memcg_expand_shrinker_maps() 5117 * by the time the maps are allocated. So, we allocate maps 5118 * here, when for_each_mem_cgroup() can't skip it. 5119 */ 5120 if (memcg_alloc_shrinker_maps(memcg)) { 5121 mem_cgroup_id_remove(memcg); 5122 return -ENOMEM; 5123 } 5124 5125 /* Online state pins memcg ID, memcg ID pins CSS */ 5126 refcount_set(&memcg->id.ref, 1); 5127 css_get(css); 5128 return 0; 5129 } 5130 5131 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5132 { 5133 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5134 struct mem_cgroup_event *event, *tmp; 5135 5136 /* 5137 * Unregister events and notify userspace. 5138 * Notify userspace about cgroup removing only after rmdir of cgroup 5139 * directory to avoid race between userspace and kernelspace. 5140 */ 5141 spin_lock(&memcg->event_list_lock); 5142 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5143 list_del_init(&event->list); 5144 schedule_work(&event->remove); 5145 } 5146 spin_unlock(&memcg->event_list_lock); 5147 5148 page_counter_set_min(&memcg->memory, 0); 5149 page_counter_set_low(&memcg->memory, 0); 5150 5151 memcg_offline_kmem(memcg); 5152 wb_memcg_offline(memcg); 5153 5154 drain_all_stock(memcg); 5155 5156 mem_cgroup_id_put(memcg); 5157 } 5158 5159 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5160 { 5161 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5162 5163 invalidate_reclaim_iterators(memcg); 5164 } 5165 5166 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5167 { 5168 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5169 int __maybe_unused i; 5170 5171 #ifdef CONFIG_CGROUP_WRITEBACK 5172 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5173 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5174 #endif 5175 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5176 static_branch_dec(&memcg_sockets_enabled_key); 5177 5178 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5179 static_branch_dec(&memcg_sockets_enabled_key); 5180 5181 vmpressure_cleanup(&memcg->vmpressure); 5182 cancel_work_sync(&memcg->high_work); 5183 mem_cgroup_remove_from_trees(memcg); 5184 memcg_free_shrinker_maps(memcg); 5185 memcg_free_kmem(memcg); 5186 mem_cgroup_free(memcg); 5187 } 5188 5189 /** 5190 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5191 * @css: the target css 5192 * 5193 * Reset the states of the mem_cgroup associated with @css. This is 5194 * invoked when the userland requests disabling on the default hierarchy 5195 * but the memcg is pinned through dependency. The memcg should stop 5196 * applying policies and should revert to the vanilla state as it may be 5197 * made visible again. 5198 * 5199 * The current implementation only resets the essential configurations. 5200 * This needs to be expanded to cover all the visible parts. 5201 */ 5202 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5203 { 5204 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5205 5206 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5207 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5208 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5209 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5210 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5211 page_counter_set_min(&memcg->memory, 0); 5212 page_counter_set_low(&memcg->memory, 0); 5213 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX); 5214 memcg->soft_limit = PAGE_COUNTER_MAX; 5215 memcg_wb_domain_size_changed(memcg); 5216 } 5217 5218 #ifdef CONFIG_MMU 5219 /* Handlers for move charge at task migration. */ 5220 static int mem_cgroup_do_precharge(unsigned long count) 5221 { 5222 int ret; 5223 5224 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5225 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5226 if (!ret) { 5227 mc.precharge += count; 5228 return ret; 5229 } 5230 5231 /* Try charges one by one with reclaim, but do not retry */ 5232 while (count--) { 5233 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5234 if (ret) 5235 return ret; 5236 mc.precharge++; 5237 cond_resched(); 5238 } 5239 return 0; 5240 } 5241 5242 union mc_target { 5243 struct page *page; 5244 swp_entry_t ent; 5245 }; 5246 5247 enum mc_target_type { 5248 MC_TARGET_NONE = 0, 5249 MC_TARGET_PAGE, 5250 MC_TARGET_SWAP, 5251 MC_TARGET_DEVICE, 5252 }; 5253 5254 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5255 unsigned long addr, pte_t ptent) 5256 { 5257 struct page *page = vm_normal_page(vma, addr, ptent); 5258 5259 if (!page || !page_mapped(page)) 5260 return NULL; 5261 if (PageAnon(page)) { 5262 if (!(mc.flags & MOVE_ANON)) 5263 return NULL; 5264 } else { 5265 if (!(mc.flags & MOVE_FILE)) 5266 return NULL; 5267 } 5268 if (!get_page_unless_zero(page)) 5269 return NULL; 5270 5271 return page; 5272 } 5273 5274 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5275 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5276 pte_t ptent, swp_entry_t *entry) 5277 { 5278 struct page *page = NULL; 5279 swp_entry_t ent = pte_to_swp_entry(ptent); 5280 5281 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5282 return NULL; 5283 5284 /* 5285 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5286 * a device and because they are not accessible by CPU they are store 5287 * as special swap entry in the CPU page table. 5288 */ 5289 if (is_device_private_entry(ent)) { 5290 page = device_private_entry_to_page(ent); 5291 /* 5292 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5293 * a refcount of 1 when free (unlike normal page) 5294 */ 5295 if (!page_ref_add_unless(page, 1, 1)) 5296 return NULL; 5297 return page; 5298 } 5299 5300 /* 5301 * Because lookup_swap_cache() updates some statistics counter, 5302 * we call find_get_page() with swapper_space directly. 5303 */ 5304 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5305 if (do_memsw_account()) 5306 entry->val = ent.val; 5307 5308 return page; 5309 } 5310 #else 5311 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5312 pte_t ptent, swp_entry_t *entry) 5313 { 5314 return NULL; 5315 } 5316 #endif 5317 5318 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5319 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5320 { 5321 struct page *page = NULL; 5322 struct address_space *mapping; 5323 pgoff_t pgoff; 5324 5325 if (!vma->vm_file) /* anonymous vma */ 5326 return NULL; 5327 if (!(mc.flags & MOVE_FILE)) 5328 return NULL; 5329 5330 mapping = vma->vm_file->f_mapping; 5331 pgoff = linear_page_index(vma, addr); 5332 5333 /* page is moved even if it's not RSS of this task(page-faulted). */ 5334 #ifdef CONFIG_SWAP 5335 /* shmem/tmpfs may report page out on swap: account for that too. */ 5336 if (shmem_mapping(mapping)) { 5337 page = find_get_entry(mapping, pgoff); 5338 if (xa_is_value(page)) { 5339 swp_entry_t swp = radix_to_swp_entry(page); 5340 if (do_memsw_account()) 5341 *entry = swp; 5342 page = find_get_page(swap_address_space(swp), 5343 swp_offset(swp)); 5344 } 5345 } else 5346 page = find_get_page(mapping, pgoff); 5347 #else 5348 page = find_get_page(mapping, pgoff); 5349 #endif 5350 return page; 5351 } 5352 5353 /** 5354 * mem_cgroup_move_account - move account of the page 5355 * @page: the page 5356 * @compound: charge the page as compound or small page 5357 * @from: mem_cgroup which the page is moved from. 5358 * @to: mem_cgroup which the page is moved to. @from != @to. 5359 * 5360 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5361 * 5362 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5363 * from old cgroup. 5364 */ 5365 static int mem_cgroup_move_account(struct page *page, 5366 bool compound, 5367 struct mem_cgroup *from, 5368 struct mem_cgroup *to) 5369 { 5370 struct lruvec *from_vec, *to_vec; 5371 struct pglist_data *pgdat; 5372 unsigned long flags; 5373 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5374 int ret; 5375 bool anon; 5376 5377 VM_BUG_ON(from == to); 5378 VM_BUG_ON_PAGE(PageLRU(page), page); 5379 VM_BUG_ON(compound && !PageTransHuge(page)); 5380 5381 /* 5382 * Prevent mem_cgroup_migrate() from looking at 5383 * page->mem_cgroup of its source page while we change it. 5384 */ 5385 ret = -EBUSY; 5386 if (!trylock_page(page)) 5387 goto out; 5388 5389 ret = -EINVAL; 5390 if (page->mem_cgroup != from) 5391 goto out_unlock; 5392 5393 anon = PageAnon(page); 5394 5395 pgdat = page_pgdat(page); 5396 from_vec = mem_cgroup_lruvec(from, pgdat); 5397 to_vec = mem_cgroup_lruvec(to, pgdat); 5398 5399 spin_lock_irqsave(&from->move_lock, flags); 5400 5401 if (!anon && page_mapped(page)) { 5402 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5403 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5404 } 5405 5406 /* 5407 * move_lock grabbed above and caller set from->moving_account, so 5408 * mod_memcg_page_state will serialize updates to PageDirty. 5409 * So mapping should be stable for dirty pages. 5410 */ 5411 if (!anon && PageDirty(page)) { 5412 struct address_space *mapping = page_mapping(page); 5413 5414 if (mapping_cap_account_dirty(mapping)) { 5415 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages); 5416 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages); 5417 } 5418 } 5419 5420 if (PageWriteback(page)) { 5421 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5422 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5423 } 5424 5425 /* 5426 * It is safe to change page->mem_cgroup here because the page 5427 * is referenced, charged, and isolated - we can't race with 5428 * uncharging, charging, migration, or LRU putback. 5429 */ 5430 5431 /* caller should have done css_get */ 5432 page->mem_cgroup = to; 5433 5434 spin_unlock_irqrestore(&from->move_lock, flags); 5435 5436 ret = 0; 5437 5438 local_irq_disable(); 5439 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5440 memcg_check_events(to, page); 5441 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5442 memcg_check_events(from, page); 5443 local_irq_enable(); 5444 out_unlock: 5445 unlock_page(page); 5446 out: 5447 return ret; 5448 } 5449 5450 /** 5451 * get_mctgt_type - get target type of moving charge 5452 * @vma: the vma the pte to be checked belongs 5453 * @addr: the address corresponding to the pte to be checked 5454 * @ptent: the pte to be checked 5455 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5456 * 5457 * Returns 5458 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5459 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5460 * move charge. if @target is not NULL, the page is stored in target->page 5461 * with extra refcnt got(Callers should handle it). 5462 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5463 * target for charge migration. if @target is not NULL, the entry is stored 5464 * in target->ent. 5465 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5466 * (so ZONE_DEVICE page and thus not on the lru). 5467 * For now we such page is charge like a regular page would be as for all 5468 * intent and purposes it is just special memory taking the place of a 5469 * regular page. 5470 * 5471 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5472 * 5473 * Called with pte lock held. 5474 */ 5475 5476 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5477 unsigned long addr, pte_t ptent, union mc_target *target) 5478 { 5479 struct page *page = NULL; 5480 enum mc_target_type ret = MC_TARGET_NONE; 5481 swp_entry_t ent = { .val = 0 }; 5482 5483 if (pte_present(ptent)) 5484 page = mc_handle_present_pte(vma, addr, ptent); 5485 else if (is_swap_pte(ptent)) 5486 page = mc_handle_swap_pte(vma, ptent, &ent); 5487 else if (pte_none(ptent)) 5488 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5489 5490 if (!page && !ent.val) 5491 return ret; 5492 if (page) { 5493 /* 5494 * Do only loose check w/o serialization. 5495 * mem_cgroup_move_account() checks the page is valid or 5496 * not under LRU exclusion. 5497 */ 5498 if (page->mem_cgroup == mc.from) { 5499 ret = MC_TARGET_PAGE; 5500 if (is_device_private_page(page)) 5501 ret = MC_TARGET_DEVICE; 5502 if (target) 5503 target->page = page; 5504 } 5505 if (!ret || !target) 5506 put_page(page); 5507 } 5508 /* 5509 * There is a swap entry and a page doesn't exist or isn't charged. 5510 * But we cannot move a tail-page in a THP. 5511 */ 5512 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5513 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5514 ret = MC_TARGET_SWAP; 5515 if (target) 5516 target->ent = ent; 5517 } 5518 return ret; 5519 } 5520 5521 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5522 /* 5523 * We don't consider PMD mapped swapping or file mapped pages because THP does 5524 * not support them for now. 5525 * Caller should make sure that pmd_trans_huge(pmd) is true. 5526 */ 5527 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5528 unsigned long addr, pmd_t pmd, union mc_target *target) 5529 { 5530 struct page *page = NULL; 5531 enum mc_target_type ret = MC_TARGET_NONE; 5532 5533 if (unlikely(is_swap_pmd(pmd))) { 5534 VM_BUG_ON(thp_migration_supported() && 5535 !is_pmd_migration_entry(pmd)); 5536 return ret; 5537 } 5538 page = pmd_page(pmd); 5539 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5540 if (!(mc.flags & MOVE_ANON)) 5541 return ret; 5542 if (page->mem_cgroup == mc.from) { 5543 ret = MC_TARGET_PAGE; 5544 if (target) { 5545 get_page(page); 5546 target->page = page; 5547 } 5548 } 5549 return ret; 5550 } 5551 #else 5552 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5553 unsigned long addr, pmd_t pmd, union mc_target *target) 5554 { 5555 return MC_TARGET_NONE; 5556 } 5557 #endif 5558 5559 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5560 unsigned long addr, unsigned long end, 5561 struct mm_walk *walk) 5562 { 5563 struct vm_area_struct *vma = walk->vma; 5564 pte_t *pte; 5565 spinlock_t *ptl; 5566 5567 ptl = pmd_trans_huge_lock(pmd, vma); 5568 if (ptl) { 5569 /* 5570 * Note their can not be MC_TARGET_DEVICE for now as we do not 5571 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5572 * this might change. 5573 */ 5574 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5575 mc.precharge += HPAGE_PMD_NR; 5576 spin_unlock(ptl); 5577 return 0; 5578 } 5579 5580 if (pmd_trans_unstable(pmd)) 5581 return 0; 5582 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5583 for (; addr != end; pte++, addr += PAGE_SIZE) 5584 if (get_mctgt_type(vma, addr, *pte, NULL)) 5585 mc.precharge++; /* increment precharge temporarily */ 5586 pte_unmap_unlock(pte - 1, ptl); 5587 cond_resched(); 5588 5589 return 0; 5590 } 5591 5592 static const struct mm_walk_ops precharge_walk_ops = { 5593 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5594 }; 5595 5596 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5597 { 5598 unsigned long precharge; 5599 5600 down_read(&mm->mmap_sem); 5601 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5602 up_read(&mm->mmap_sem); 5603 5604 precharge = mc.precharge; 5605 mc.precharge = 0; 5606 5607 return precharge; 5608 } 5609 5610 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5611 { 5612 unsigned long precharge = mem_cgroup_count_precharge(mm); 5613 5614 VM_BUG_ON(mc.moving_task); 5615 mc.moving_task = current; 5616 return mem_cgroup_do_precharge(precharge); 5617 } 5618 5619 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5620 static void __mem_cgroup_clear_mc(void) 5621 { 5622 struct mem_cgroup *from = mc.from; 5623 struct mem_cgroup *to = mc.to; 5624 5625 /* we must uncharge all the leftover precharges from mc.to */ 5626 if (mc.precharge) { 5627 cancel_charge(mc.to, mc.precharge); 5628 mc.precharge = 0; 5629 } 5630 /* 5631 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5632 * we must uncharge here. 5633 */ 5634 if (mc.moved_charge) { 5635 cancel_charge(mc.from, mc.moved_charge); 5636 mc.moved_charge = 0; 5637 } 5638 /* we must fixup refcnts and charges */ 5639 if (mc.moved_swap) { 5640 /* uncharge swap account from the old cgroup */ 5641 if (!mem_cgroup_is_root(mc.from)) 5642 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5643 5644 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5645 5646 /* 5647 * we charged both to->memory and to->memsw, so we 5648 * should uncharge to->memory. 5649 */ 5650 if (!mem_cgroup_is_root(mc.to)) 5651 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5652 5653 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5654 css_put_many(&mc.to->css, mc.moved_swap); 5655 5656 mc.moved_swap = 0; 5657 } 5658 memcg_oom_recover(from); 5659 memcg_oom_recover(to); 5660 wake_up_all(&mc.waitq); 5661 } 5662 5663 static void mem_cgroup_clear_mc(void) 5664 { 5665 struct mm_struct *mm = mc.mm; 5666 5667 /* 5668 * we must clear moving_task before waking up waiters at the end of 5669 * task migration. 5670 */ 5671 mc.moving_task = NULL; 5672 __mem_cgroup_clear_mc(); 5673 spin_lock(&mc.lock); 5674 mc.from = NULL; 5675 mc.to = NULL; 5676 mc.mm = NULL; 5677 spin_unlock(&mc.lock); 5678 5679 mmput(mm); 5680 } 5681 5682 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5683 { 5684 struct cgroup_subsys_state *css; 5685 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5686 struct mem_cgroup *from; 5687 struct task_struct *leader, *p; 5688 struct mm_struct *mm; 5689 unsigned long move_flags; 5690 int ret = 0; 5691 5692 /* charge immigration isn't supported on the default hierarchy */ 5693 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5694 return 0; 5695 5696 /* 5697 * Multi-process migrations only happen on the default hierarchy 5698 * where charge immigration is not used. Perform charge 5699 * immigration if @tset contains a leader and whine if there are 5700 * multiple. 5701 */ 5702 p = NULL; 5703 cgroup_taskset_for_each_leader(leader, css, tset) { 5704 WARN_ON_ONCE(p); 5705 p = leader; 5706 memcg = mem_cgroup_from_css(css); 5707 } 5708 if (!p) 5709 return 0; 5710 5711 /* 5712 * We are now commited to this value whatever it is. Changes in this 5713 * tunable will only affect upcoming migrations, not the current one. 5714 * So we need to save it, and keep it going. 5715 */ 5716 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5717 if (!move_flags) 5718 return 0; 5719 5720 from = mem_cgroup_from_task(p); 5721 5722 VM_BUG_ON(from == memcg); 5723 5724 mm = get_task_mm(p); 5725 if (!mm) 5726 return 0; 5727 /* We move charges only when we move a owner of the mm */ 5728 if (mm->owner == p) { 5729 VM_BUG_ON(mc.from); 5730 VM_BUG_ON(mc.to); 5731 VM_BUG_ON(mc.precharge); 5732 VM_BUG_ON(mc.moved_charge); 5733 VM_BUG_ON(mc.moved_swap); 5734 5735 spin_lock(&mc.lock); 5736 mc.mm = mm; 5737 mc.from = from; 5738 mc.to = memcg; 5739 mc.flags = move_flags; 5740 spin_unlock(&mc.lock); 5741 /* We set mc.moving_task later */ 5742 5743 ret = mem_cgroup_precharge_mc(mm); 5744 if (ret) 5745 mem_cgroup_clear_mc(); 5746 } else { 5747 mmput(mm); 5748 } 5749 return ret; 5750 } 5751 5752 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5753 { 5754 if (mc.to) 5755 mem_cgroup_clear_mc(); 5756 } 5757 5758 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5759 unsigned long addr, unsigned long end, 5760 struct mm_walk *walk) 5761 { 5762 int ret = 0; 5763 struct vm_area_struct *vma = walk->vma; 5764 pte_t *pte; 5765 spinlock_t *ptl; 5766 enum mc_target_type target_type; 5767 union mc_target target; 5768 struct page *page; 5769 5770 ptl = pmd_trans_huge_lock(pmd, vma); 5771 if (ptl) { 5772 if (mc.precharge < HPAGE_PMD_NR) { 5773 spin_unlock(ptl); 5774 return 0; 5775 } 5776 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5777 if (target_type == MC_TARGET_PAGE) { 5778 page = target.page; 5779 if (!isolate_lru_page(page)) { 5780 if (!mem_cgroup_move_account(page, true, 5781 mc.from, mc.to)) { 5782 mc.precharge -= HPAGE_PMD_NR; 5783 mc.moved_charge += HPAGE_PMD_NR; 5784 } 5785 putback_lru_page(page); 5786 } 5787 put_page(page); 5788 } else if (target_type == MC_TARGET_DEVICE) { 5789 page = target.page; 5790 if (!mem_cgroup_move_account(page, true, 5791 mc.from, mc.to)) { 5792 mc.precharge -= HPAGE_PMD_NR; 5793 mc.moved_charge += HPAGE_PMD_NR; 5794 } 5795 put_page(page); 5796 } 5797 spin_unlock(ptl); 5798 return 0; 5799 } 5800 5801 if (pmd_trans_unstable(pmd)) 5802 return 0; 5803 retry: 5804 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5805 for (; addr != end; addr += PAGE_SIZE) { 5806 pte_t ptent = *(pte++); 5807 bool device = false; 5808 swp_entry_t ent; 5809 5810 if (!mc.precharge) 5811 break; 5812 5813 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5814 case MC_TARGET_DEVICE: 5815 device = true; 5816 fallthrough; 5817 case MC_TARGET_PAGE: 5818 page = target.page; 5819 /* 5820 * We can have a part of the split pmd here. Moving it 5821 * can be done but it would be too convoluted so simply 5822 * ignore such a partial THP and keep it in original 5823 * memcg. There should be somebody mapping the head. 5824 */ 5825 if (PageTransCompound(page)) 5826 goto put; 5827 if (!device && isolate_lru_page(page)) 5828 goto put; 5829 if (!mem_cgroup_move_account(page, false, 5830 mc.from, mc.to)) { 5831 mc.precharge--; 5832 /* we uncharge from mc.from later. */ 5833 mc.moved_charge++; 5834 } 5835 if (!device) 5836 putback_lru_page(page); 5837 put: /* get_mctgt_type() gets the page */ 5838 put_page(page); 5839 break; 5840 case MC_TARGET_SWAP: 5841 ent = target.ent; 5842 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5843 mc.precharge--; 5844 /* we fixup refcnts and charges later. */ 5845 mc.moved_swap++; 5846 } 5847 break; 5848 default: 5849 break; 5850 } 5851 } 5852 pte_unmap_unlock(pte - 1, ptl); 5853 cond_resched(); 5854 5855 if (addr != end) { 5856 /* 5857 * We have consumed all precharges we got in can_attach(). 5858 * We try charge one by one, but don't do any additional 5859 * charges to mc.to if we have failed in charge once in attach() 5860 * phase. 5861 */ 5862 ret = mem_cgroup_do_precharge(1); 5863 if (!ret) 5864 goto retry; 5865 } 5866 5867 return ret; 5868 } 5869 5870 static const struct mm_walk_ops charge_walk_ops = { 5871 .pmd_entry = mem_cgroup_move_charge_pte_range, 5872 }; 5873 5874 static void mem_cgroup_move_charge(void) 5875 { 5876 lru_add_drain_all(); 5877 /* 5878 * Signal lock_page_memcg() to take the memcg's move_lock 5879 * while we're moving its pages to another memcg. Then wait 5880 * for already started RCU-only updates to finish. 5881 */ 5882 atomic_inc(&mc.from->moving_account); 5883 synchronize_rcu(); 5884 retry: 5885 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5886 /* 5887 * Someone who are holding the mmap_sem might be waiting in 5888 * waitq. So we cancel all extra charges, wake up all waiters, 5889 * and retry. Because we cancel precharges, we might not be able 5890 * to move enough charges, but moving charge is a best-effort 5891 * feature anyway, so it wouldn't be a big problem. 5892 */ 5893 __mem_cgroup_clear_mc(); 5894 cond_resched(); 5895 goto retry; 5896 } 5897 /* 5898 * When we have consumed all precharges and failed in doing 5899 * additional charge, the page walk just aborts. 5900 */ 5901 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 5902 NULL); 5903 5904 up_read(&mc.mm->mmap_sem); 5905 atomic_dec(&mc.from->moving_account); 5906 } 5907 5908 static void mem_cgroup_move_task(void) 5909 { 5910 if (mc.to) { 5911 mem_cgroup_move_charge(); 5912 mem_cgroup_clear_mc(); 5913 } 5914 } 5915 #else /* !CONFIG_MMU */ 5916 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5917 { 5918 return 0; 5919 } 5920 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5921 { 5922 } 5923 static void mem_cgroup_move_task(void) 5924 { 5925 } 5926 #endif 5927 5928 /* 5929 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5930 * to verify whether we're attached to the default hierarchy on each mount 5931 * attempt. 5932 */ 5933 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5934 { 5935 /* 5936 * use_hierarchy is forced on the default hierarchy. cgroup core 5937 * guarantees that @root doesn't have any children, so turning it 5938 * on for the root memcg is enough. 5939 */ 5940 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5941 root_mem_cgroup->use_hierarchy = true; 5942 else 5943 root_mem_cgroup->use_hierarchy = false; 5944 } 5945 5946 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5947 { 5948 if (value == PAGE_COUNTER_MAX) 5949 seq_puts(m, "max\n"); 5950 else 5951 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5952 5953 return 0; 5954 } 5955 5956 static u64 memory_current_read(struct cgroup_subsys_state *css, 5957 struct cftype *cft) 5958 { 5959 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5960 5961 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5962 } 5963 5964 static int memory_min_show(struct seq_file *m, void *v) 5965 { 5966 return seq_puts_memcg_tunable(m, 5967 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5968 } 5969 5970 static ssize_t memory_min_write(struct kernfs_open_file *of, 5971 char *buf, size_t nbytes, loff_t off) 5972 { 5973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5974 unsigned long min; 5975 int err; 5976 5977 buf = strstrip(buf); 5978 err = page_counter_memparse(buf, "max", &min); 5979 if (err) 5980 return err; 5981 5982 page_counter_set_min(&memcg->memory, min); 5983 5984 return nbytes; 5985 } 5986 5987 static int memory_low_show(struct seq_file *m, void *v) 5988 { 5989 return seq_puts_memcg_tunable(m, 5990 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5991 } 5992 5993 static ssize_t memory_low_write(struct kernfs_open_file *of, 5994 char *buf, size_t nbytes, loff_t off) 5995 { 5996 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5997 unsigned long low; 5998 int err; 5999 6000 buf = strstrip(buf); 6001 err = page_counter_memparse(buf, "max", &low); 6002 if (err) 6003 return err; 6004 6005 page_counter_set_low(&memcg->memory, low); 6006 6007 return nbytes; 6008 } 6009 6010 static int memory_high_show(struct seq_file *m, void *v) 6011 { 6012 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 6013 } 6014 6015 static ssize_t memory_high_write(struct kernfs_open_file *of, 6016 char *buf, size_t nbytes, loff_t off) 6017 { 6018 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6019 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 6020 bool drained = false; 6021 unsigned long high; 6022 int err; 6023 6024 buf = strstrip(buf); 6025 err = page_counter_memparse(buf, "max", &high); 6026 if (err) 6027 return err; 6028 6029 WRITE_ONCE(memcg->high, high); 6030 6031 for (;;) { 6032 unsigned long nr_pages = page_counter_read(&memcg->memory); 6033 unsigned long reclaimed; 6034 6035 if (nr_pages <= high) 6036 break; 6037 6038 if (signal_pending(current)) 6039 break; 6040 6041 if (!drained) { 6042 drain_all_stock(memcg); 6043 drained = true; 6044 continue; 6045 } 6046 6047 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6048 GFP_KERNEL, true); 6049 6050 if (!reclaimed && !nr_retries--) 6051 break; 6052 } 6053 6054 return nbytes; 6055 } 6056 6057 static int memory_max_show(struct seq_file *m, void *v) 6058 { 6059 return seq_puts_memcg_tunable(m, 6060 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6061 } 6062 6063 static ssize_t memory_max_write(struct kernfs_open_file *of, 6064 char *buf, size_t nbytes, loff_t off) 6065 { 6066 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6067 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 6068 bool drained = false; 6069 unsigned long max; 6070 int err; 6071 6072 buf = strstrip(buf); 6073 err = page_counter_memparse(buf, "max", &max); 6074 if (err) 6075 return err; 6076 6077 xchg(&memcg->memory.max, max); 6078 6079 for (;;) { 6080 unsigned long nr_pages = page_counter_read(&memcg->memory); 6081 6082 if (nr_pages <= max) 6083 break; 6084 6085 if (signal_pending(current)) 6086 break; 6087 6088 if (!drained) { 6089 drain_all_stock(memcg); 6090 drained = true; 6091 continue; 6092 } 6093 6094 if (nr_reclaims) { 6095 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6096 GFP_KERNEL, true)) 6097 nr_reclaims--; 6098 continue; 6099 } 6100 6101 memcg_memory_event(memcg, MEMCG_OOM); 6102 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6103 break; 6104 } 6105 6106 memcg_wb_domain_size_changed(memcg); 6107 return nbytes; 6108 } 6109 6110 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6111 { 6112 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6113 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6114 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6115 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6116 seq_printf(m, "oom_kill %lu\n", 6117 atomic_long_read(&events[MEMCG_OOM_KILL])); 6118 } 6119 6120 static int memory_events_show(struct seq_file *m, void *v) 6121 { 6122 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6123 6124 __memory_events_show(m, memcg->memory_events); 6125 return 0; 6126 } 6127 6128 static int memory_events_local_show(struct seq_file *m, void *v) 6129 { 6130 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6131 6132 __memory_events_show(m, memcg->memory_events_local); 6133 return 0; 6134 } 6135 6136 static int memory_stat_show(struct seq_file *m, void *v) 6137 { 6138 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6139 char *buf; 6140 6141 buf = memory_stat_format(memcg); 6142 if (!buf) 6143 return -ENOMEM; 6144 seq_puts(m, buf); 6145 kfree(buf); 6146 return 0; 6147 } 6148 6149 static int memory_oom_group_show(struct seq_file *m, void *v) 6150 { 6151 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6152 6153 seq_printf(m, "%d\n", memcg->oom_group); 6154 6155 return 0; 6156 } 6157 6158 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6159 char *buf, size_t nbytes, loff_t off) 6160 { 6161 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6162 int ret, oom_group; 6163 6164 buf = strstrip(buf); 6165 if (!buf) 6166 return -EINVAL; 6167 6168 ret = kstrtoint(buf, 0, &oom_group); 6169 if (ret) 6170 return ret; 6171 6172 if (oom_group != 0 && oom_group != 1) 6173 return -EINVAL; 6174 6175 memcg->oom_group = oom_group; 6176 6177 return nbytes; 6178 } 6179 6180 static struct cftype memory_files[] = { 6181 { 6182 .name = "current", 6183 .flags = CFTYPE_NOT_ON_ROOT, 6184 .read_u64 = memory_current_read, 6185 }, 6186 { 6187 .name = "min", 6188 .flags = CFTYPE_NOT_ON_ROOT, 6189 .seq_show = memory_min_show, 6190 .write = memory_min_write, 6191 }, 6192 { 6193 .name = "low", 6194 .flags = CFTYPE_NOT_ON_ROOT, 6195 .seq_show = memory_low_show, 6196 .write = memory_low_write, 6197 }, 6198 { 6199 .name = "high", 6200 .flags = CFTYPE_NOT_ON_ROOT, 6201 .seq_show = memory_high_show, 6202 .write = memory_high_write, 6203 }, 6204 { 6205 .name = "max", 6206 .flags = CFTYPE_NOT_ON_ROOT, 6207 .seq_show = memory_max_show, 6208 .write = memory_max_write, 6209 }, 6210 { 6211 .name = "events", 6212 .flags = CFTYPE_NOT_ON_ROOT, 6213 .file_offset = offsetof(struct mem_cgroup, events_file), 6214 .seq_show = memory_events_show, 6215 }, 6216 { 6217 .name = "events.local", 6218 .flags = CFTYPE_NOT_ON_ROOT, 6219 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6220 .seq_show = memory_events_local_show, 6221 }, 6222 { 6223 .name = "stat", 6224 .flags = CFTYPE_NOT_ON_ROOT, 6225 .seq_show = memory_stat_show, 6226 }, 6227 { 6228 .name = "oom.group", 6229 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6230 .seq_show = memory_oom_group_show, 6231 .write = memory_oom_group_write, 6232 }, 6233 { } /* terminate */ 6234 }; 6235 6236 struct cgroup_subsys memory_cgrp_subsys = { 6237 .css_alloc = mem_cgroup_css_alloc, 6238 .css_online = mem_cgroup_css_online, 6239 .css_offline = mem_cgroup_css_offline, 6240 .css_released = mem_cgroup_css_released, 6241 .css_free = mem_cgroup_css_free, 6242 .css_reset = mem_cgroup_css_reset, 6243 .can_attach = mem_cgroup_can_attach, 6244 .cancel_attach = mem_cgroup_cancel_attach, 6245 .post_attach = mem_cgroup_move_task, 6246 .bind = mem_cgroup_bind, 6247 .dfl_cftypes = memory_files, 6248 .legacy_cftypes = mem_cgroup_legacy_files, 6249 .early_init = 0, 6250 }; 6251 6252 /* 6253 * This function calculates an individual cgroup's effective 6254 * protection which is derived from its own memory.min/low, its 6255 * parent's and siblings' settings, as well as the actual memory 6256 * distribution in the tree. 6257 * 6258 * The following rules apply to the effective protection values: 6259 * 6260 * 1. At the first level of reclaim, effective protection is equal to 6261 * the declared protection in memory.min and memory.low. 6262 * 6263 * 2. To enable safe delegation of the protection configuration, at 6264 * subsequent levels the effective protection is capped to the 6265 * parent's effective protection. 6266 * 6267 * 3. To make complex and dynamic subtrees easier to configure, the 6268 * user is allowed to overcommit the declared protection at a given 6269 * level. If that is the case, the parent's effective protection is 6270 * distributed to the children in proportion to how much protection 6271 * they have declared and how much of it they are utilizing. 6272 * 6273 * This makes distribution proportional, but also work-conserving: 6274 * if one cgroup claims much more protection than it uses memory, 6275 * the unused remainder is available to its siblings. 6276 * 6277 * 4. Conversely, when the declared protection is undercommitted at a 6278 * given level, the distribution of the larger parental protection 6279 * budget is NOT proportional. A cgroup's protection from a sibling 6280 * is capped to its own memory.min/low setting. 6281 * 6282 * 5. However, to allow protecting recursive subtrees from each other 6283 * without having to declare each individual cgroup's fixed share 6284 * of the ancestor's claim to protection, any unutilized - 6285 * "floating" - protection from up the tree is distributed in 6286 * proportion to each cgroup's *usage*. This makes the protection 6287 * neutral wrt sibling cgroups and lets them compete freely over 6288 * the shared parental protection budget, but it protects the 6289 * subtree as a whole from neighboring subtrees. 6290 * 6291 * Note that 4. and 5. are not in conflict: 4. is about protecting 6292 * against immediate siblings whereas 5. is about protecting against 6293 * neighboring subtrees. 6294 */ 6295 static unsigned long effective_protection(unsigned long usage, 6296 unsigned long parent_usage, 6297 unsigned long setting, 6298 unsigned long parent_effective, 6299 unsigned long siblings_protected) 6300 { 6301 unsigned long protected; 6302 unsigned long ep; 6303 6304 protected = min(usage, setting); 6305 /* 6306 * If all cgroups at this level combined claim and use more 6307 * protection then what the parent affords them, distribute 6308 * shares in proportion to utilization. 6309 * 6310 * We are using actual utilization rather than the statically 6311 * claimed protection in order to be work-conserving: claimed 6312 * but unused protection is available to siblings that would 6313 * otherwise get a smaller chunk than what they claimed. 6314 */ 6315 if (siblings_protected > parent_effective) 6316 return protected * parent_effective / siblings_protected; 6317 6318 /* 6319 * Ok, utilized protection of all children is within what the 6320 * parent affords them, so we know whatever this child claims 6321 * and utilizes is effectively protected. 6322 * 6323 * If there is unprotected usage beyond this value, reclaim 6324 * will apply pressure in proportion to that amount. 6325 * 6326 * If there is unutilized protection, the cgroup will be fully 6327 * shielded from reclaim, but we do return a smaller value for 6328 * protection than what the group could enjoy in theory. This 6329 * is okay. With the overcommit distribution above, effective 6330 * protection is always dependent on how memory is actually 6331 * consumed among the siblings anyway. 6332 */ 6333 ep = protected; 6334 6335 /* 6336 * If the children aren't claiming (all of) the protection 6337 * afforded to them by the parent, distribute the remainder in 6338 * proportion to the (unprotected) memory of each cgroup. That 6339 * way, cgroups that aren't explicitly prioritized wrt each 6340 * other compete freely over the allowance, but they are 6341 * collectively protected from neighboring trees. 6342 * 6343 * We're using unprotected memory for the weight so that if 6344 * some cgroups DO claim explicit protection, we don't protect 6345 * the same bytes twice. 6346 */ 6347 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6348 return ep; 6349 6350 if (parent_effective > siblings_protected && usage > protected) { 6351 unsigned long unclaimed; 6352 6353 unclaimed = parent_effective - siblings_protected; 6354 unclaimed *= usage - protected; 6355 unclaimed /= parent_usage - siblings_protected; 6356 6357 ep += unclaimed; 6358 } 6359 6360 return ep; 6361 } 6362 6363 /** 6364 * mem_cgroup_protected - check if memory consumption is in the normal range 6365 * @root: the top ancestor of the sub-tree being checked 6366 * @memcg: the memory cgroup to check 6367 * 6368 * WARNING: This function is not stateless! It can only be used as part 6369 * of a top-down tree iteration, not for isolated queries. 6370 * 6371 * Returns one of the following: 6372 * MEMCG_PROT_NONE: cgroup memory is not protected 6373 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6374 * an unprotected supply of reclaimable memory from other cgroups. 6375 * MEMCG_PROT_MIN: cgroup memory is protected 6376 */ 6377 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6378 struct mem_cgroup *memcg) 6379 { 6380 unsigned long usage, parent_usage; 6381 struct mem_cgroup *parent; 6382 6383 if (mem_cgroup_disabled()) 6384 return MEMCG_PROT_NONE; 6385 6386 if (!root) 6387 root = root_mem_cgroup; 6388 if (memcg == root) 6389 return MEMCG_PROT_NONE; 6390 6391 usage = page_counter_read(&memcg->memory); 6392 if (!usage) 6393 return MEMCG_PROT_NONE; 6394 6395 parent = parent_mem_cgroup(memcg); 6396 /* No parent means a non-hierarchical mode on v1 memcg */ 6397 if (!parent) 6398 return MEMCG_PROT_NONE; 6399 6400 if (parent == root) { 6401 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6402 memcg->memory.elow = memcg->memory.low; 6403 goto out; 6404 } 6405 6406 parent_usage = page_counter_read(&parent->memory); 6407 6408 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6409 READ_ONCE(memcg->memory.min), 6410 READ_ONCE(parent->memory.emin), 6411 atomic_long_read(&parent->memory.children_min_usage))); 6412 6413 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6414 memcg->memory.low, READ_ONCE(parent->memory.elow), 6415 atomic_long_read(&parent->memory.children_low_usage))); 6416 6417 out: 6418 if (usage <= memcg->memory.emin) 6419 return MEMCG_PROT_MIN; 6420 else if (usage <= memcg->memory.elow) 6421 return MEMCG_PROT_LOW; 6422 else 6423 return MEMCG_PROT_NONE; 6424 } 6425 6426 /** 6427 * mem_cgroup_try_charge - try charging a page 6428 * @page: page to charge 6429 * @mm: mm context of the victim 6430 * @gfp_mask: reclaim mode 6431 * @memcgp: charged memcg return 6432 * @compound: charge the page as compound or small page 6433 * 6434 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6435 * pages according to @gfp_mask if necessary. 6436 * 6437 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6438 * Otherwise, an error code is returned. 6439 * 6440 * After page->mapping has been set up, the caller must finalize the 6441 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6442 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6443 */ 6444 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6445 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6446 bool compound) 6447 { 6448 struct mem_cgroup *memcg = NULL; 6449 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6450 int ret = 0; 6451 6452 if (mem_cgroup_disabled()) 6453 goto out; 6454 6455 if (PageSwapCache(page)) { 6456 /* 6457 * Every swap fault against a single page tries to charge the 6458 * page, bail as early as possible. shmem_unuse() encounters 6459 * already charged pages, too. The USED bit is protected by 6460 * the page lock, which serializes swap cache removal, which 6461 * in turn serializes uncharging. 6462 */ 6463 VM_BUG_ON_PAGE(!PageLocked(page), page); 6464 if (compound_head(page)->mem_cgroup) 6465 goto out; 6466 6467 if (do_swap_account) { 6468 swp_entry_t ent = { .val = page_private(page), }; 6469 unsigned short id = lookup_swap_cgroup_id(ent); 6470 6471 rcu_read_lock(); 6472 memcg = mem_cgroup_from_id(id); 6473 if (memcg && !css_tryget_online(&memcg->css)) 6474 memcg = NULL; 6475 rcu_read_unlock(); 6476 } 6477 } 6478 6479 if (!memcg) 6480 memcg = get_mem_cgroup_from_mm(mm); 6481 6482 ret = try_charge(memcg, gfp_mask, nr_pages); 6483 6484 css_put(&memcg->css); 6485 out: 6486 *memcgp = memcg; 6487 return ret; 6488 } 6489 6490 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6491 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6492 bool compound) 6493 { 6494 struct mem_cgroup *memcg; 6495 int ret; 6496 6497 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6498 memcg = *memcgp; 6499 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6500 return ret; 6501 } 6502 6503 /** 6504 * mem_cgroup_commit_charge - commit a page charge 6505 * @page: page to charge 6506 * @memcg: memcg to charge the page to 6507 * @lrucare: page might be on LRU already 6508 * @compound: charge the page as compound or small page 6509 * 6510 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6511 * after page->mapping has been set up. This must happen atomically 6512 * as part of the page instantiation, i.e. under the page table lock 6513 * for anonymous pages, under the page lock for page and swap cache. 6514 * 6515 * In addition, the page must not be on the LRU during the commit, to 6516 * prevent racing with task migration. If it might be, use @lrucare. 6517 * 6518 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6519 */ 6520 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6521 bool lrucare, bool compound) 6522 { 6523 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6524 6525 VM_BUG_ON_PAGE(!page->mapping, page); 6526 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6527 6528 if (mem_cgroup_disabled()) 6529 return; 6530 /* 6531 * Swap faults will attempt to charge the same page multiple 6532 * times. But reuse_swap_page() might have removed the page 6533 * from swapcache already, so we can't check PageSwapCache(). 6534 */ 6535 if (!memcg) 6536 return; 6537 6538 commit_charge(page, memcg, lrucare); 6539 6540 local_irq_disable(); 6541 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6542 memcg_check_events(memcg, page); 6543 local_irq_enable(); 6544 6545 if (do_memsw_account() && PageSwapCache(page)) { 6546 swp_entry_t entry = { .val = page_private(page) }; 6547 /* 6548 * The swap entry might not get freed for a long time, 6549 * let's not wait for it. The page already received a 6550 * memory+swap charge, drop the swap entry duplicate. 6551 */ 6552 mem_cgroup_uncharge_swap(entry, nr_pages); 6553 } 6554 } 6555 6556 /** 6557 * mem_cgroup_cancel_charge - cancel a page charge 6558 * @page: page to charge 6559 * @memcg: memcg to charge the page to 6560 * @compound: charge the page as compound or small page 6561 * 6562 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6563 */ 6564 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6565 bool compound) 6566 { 6567 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6568 6569 if (mem_cgroup_disabled()) 6570 return; 6571 /* 6572 * Swap faults will attempt to charge the same page multiple 6573 * times. But reuse_swap_page() might have removed the page 6574 * from swapcache already, so we can't check PageSwapCache(). 6575 */ 6576 if (!memcg) 6577 return; 6578 6579 cancel_charge(memcg, nr_pages); 6580 } 6581 6582 struct uncharge_gather { 6583 struct mem_cgroup *memcg; 6584 unsigned long pgpgout; 6585 unsigned long nr_anon; 6586 unsigned long nr_file; 6587 unsigned long nr_kmem; 6588 unsigned long nr_huge; 6589 unsigned long nr_shmem; 6590 struct page *dummy_page; 6591 }; 6592 6593 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6594 { 6595 memset(ug, 0, sizeof(*ug)); 6596 } 6597 6598 static void uncharge_batch(const struct uncharge_gather *ug) 6599 { 6600 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6601 unsigned long flags; 6602 6603 if (!mem_cgroup_is_root(ug->memcg)) { 6604 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6605 if (do_memsw_account()) 6606 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6607 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6608 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6609 memcg_oom_recover(ug->memcg); 6610 } 6611 6612 local_irq_save(flags); 6613 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6614 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6615 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6616 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6617 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6618 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6619 memcg_check_events(ug->memcg, ug->dummy_page); 6620 local_irq_restore(flags); 6621 6622 if (!mem_cgroup_is_root(ug->memcg)) 6623 css_put_many(&ug->memcg->css, nr_pages); 6624 } 6625 6626 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6627 { 6628 VM_BUG_ON_PAGE(PageLRU(page), page); 6629 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6630 !PageHWPoison(page) , page); 6631 6632 if (!page->mem_cgroup) 6633 return; 6634 6635 /* 6636 * Nobody should be changing or seriously looking at 6637 * page->mem_cgroup at this point, we have fully 6638 * exclusive access to the page. 6639 */ 6640 6641 if (ug->memcg != page->mem_cgroup) { 6642 if (ug->memcg) { 6643 uncharge_batch(ug); 6644 uncharge_gather_clear(ug); 6645 } 6646 ug->memcg = page->mem_cgroup; 6647 } 6648 6649 if (!PageKmemcg(page)) { 6650 unsigned int nr_pages = 1; 6651 6652 if (PageTransHuge(page)) { 6653 nr_pages = compound_nr(page); 6654 ug->nr_huge += nr_pages; 6655 } 6656 if (PageAnon(page)) 6657 ug->nr_anon += nr_pages; 6658 else { 6659 ug->nr_file += nr_pages; 6660 if (PageSwapBacked(page)) 6661 ug->nr_shmem += nr_pages; 6662 } 6663 ug->pgpgout++; 6664 } else { 6665 ug->nr_kmem += compound_nr(page); 6666 __ClearPageKmemcg(page); 6667 } 6668 6669 ug->dummy_page = page; 6670 page->mem_cgroup = NULL; 6671 } 6672 6673 static void uncharge_list(struct list_head *page_list) 6674 { 6675 struct uncharge_gather ug; 6676 struct list_head *next; 6677 6678 uncharge_gather_clear(&ug); 6679 6680 /* 6681 * Note that the list can be a single page->lru; hence the 6682 * do-while loop instead of a simple list_for_each_entry(). 6683 */ 6684 next = page_list->next; 6685 do { 6686 struct page *page; 6687 6688 page = list_entry(next, struct page, lru); 6689 next = page->lru.next; 6690 6691 uncharge_page(page, &ug); 6692 } while (next != page_list); 6693 6694 if (ug.memcg) 6695 uncharge_batch(&ug); 6696 } 6697 6698 /** 6699 * mem_cgroup_uncharge - uncharge a page 6700 * @page: page to uncharge 6701 * 6702 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6703 * mem_cgroup_commit_charge(). 6704 */ 6705 void mem_cgroup_uncharge(struct page *page) 6706 { 6707 struct uncharge_gather ug; 6708 6709 if (mem_cgroup_disabled()) 6710 return; 6711 6712 /* Don't touch page->lru of any random page, pre-check: */ 6713 if (!page->mem_cgroup) 6714 return; 6715 6716 uncharge_gather_clear(&ug); 6717 uncharge_page(page, &ug); 6718 uncharge_batch(&ug); 6719 } 6720 6721 /** 6722 * mem_cgroup_uncharge_list - uncharge a list of page 6723 * @page_list: list of pages to uncharge 6724 * 6725 * Uncharge a list of pages previously charged with 6726 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6727 */ 6728 void mem_cgroup_uncharge_list(struct list_head *page_list) 6729 { 6730 if (mem_cgroup_disabled()) 6731 return; 6732 6733 if (!list_empty(page_list)) 6734 uncharge_list(page_list); 6735 } 6736 6737 /** 6738 * mem_cgroup_migrate - charge a page's replacement 6739 * @oldpage: currently circulating page 6740 * @newpage: replacement page 6741 * 6742 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6743 * be uncharged upon free. 6744 * 6745 * Both pages must be locked, @newpage->mapping must be set up. 6746 */ 6747 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6748 { 6749 struct mem_cgroup *memcg; 6750 unsigned int nr_pages; 6751 unsigned long flags; 6752 6753 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6754 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6755 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6756 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6757 newpage); 6758 6759 if (mem_cgroup_disabled()) 6760 return; 6761 6762 /* Page cache replacement: new page already charged? */ 6763 if (newpage->mem_cgroup) 6764 return; 6765 6766 /* Swapcache readahead pages can get replaced before being charged */ 6767 memcg = oldpage->mem_cgroup; 6768 if (!memcg) 6769 return; 6770 6771 /* Force-charge the new page. The old one will be freed soon */ 6772 nr_pages = hpage_nr_pages(newpage); 6773 6774 page_counter_charge(&memcg->memory, nr_pages); 6775 if (do_memsw_account()) 6776 page_counter_charge(&memcg->memsw, nr_pages); 6777 css_get_many(&memcg->css, nr_pages); 6778 6779 commit_charge(newpage, memcg, false); 6780 6781 local_irq_save(flags); 6782 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage), 6783 nr_pages); 6784 memcg_check_events(memcg, newpage); 6785 local_irq_restore(flags); 6786 } 6787 6788 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6789 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6790 6791 void mem_cgroup_sk_alloc(struct sock *sk) 6792 { 6793 struct mem_cgroup *memcg; 6794 6795 if (!mem_cgroup_sockets_enabled) 6796 return; 6797 6798 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6799 if (in_interrupt()) 6800 return; 6801 6802 rcu_read_lock(); 6803 memcg = mem_cgroup_from_task(current); 6804 if (memcg == root_mem_cgroup) 6805 goto out; 6806 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6807 goto out; 6808 if (css_tryget(&memcg->css)) 6809 sk->sk_memcg = memcg; 6810 out: 6811 rcu_read_unlock(); 6812 } 6813 6814 void mem_cgroup_sk_free(struct sock *sk) 6815 { 6816 if (sk->sk_memcg) 6817 css_put(&sk->sk_memcg->css); 6818 } 6819 6820 /** 6821 * mem_cgroup_charge_skmem - charge socket memory 6822 * @memcg: memcg to charge 6823 * @nr_pages: number of pages to charge 6824 * 6825 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6826 * @memcg's configured limit, %false if the charge had to be forced. 6827 */ 6828 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6829 { 6830 gfp_t gfp_mask = GFP_KERNEL; 6831 6832 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6833 struct page_counter *fail; 6834 6835 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6836 memcg->tcpmem_pressure = 0; 6837 return true; 6838 } 6839 page_counter_charge(&memcg->tcpmem, nr_pages); 6840 memcg->tcpmem_pressure = 1; 6841 return false; 6842 } 6843 6844 /* Don't block in the packet receive path */ 6845 if (in_softirq()) 6846 gfp_mask = GFP_NOWAIT; 6847 6848 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6849 6850 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6851 return true; 6852 6853 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6854 return false; 6855 } 6856 6857 /** 6858 * mem_cgroup_uncharge_skmem - uncharge socket memory 6859 * @memcg: memcg to uncharge 6860 * @nr_pages: number of pages to uncharge 6861 */ 6862 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6863 { 6864 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6865 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6866 return; 6867 } 6868 6869 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6870 6871 refill_stock(memcg, nr_pages); 6872 } 6873 6874 static int __init cgroup_memory(char *s) 6875 { 6876 char *token; 6877 6878 while ((token = strsep(&s, ",")) != NULL) { 6879 if (!*token) 6880 continue; 6881 if (!strcmp(token, "nosocket")) 6882 cgroup_memory_nosocket = true; 6883 if (!strcmp(token, "nokmem")) 6884 cgroup_memory_nokmem = true; 6885 } 6886 return 0; 6887 } 6888 __setup("cgroup.memory=", cgroup_memory); 6889 6890 /* 6891 * subsys_initcall() for memory controller. 6892 * 6893 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6894 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6895 * basically everything that doesn't depend on a specific mem_cgroup structure 6896 * should be initialized from here. 6897 */ 6898 static int __init mem_cgroup_init(void) 6899 { 6900 int cpu, node; 6901 6902 #ifdef CONFIG_MEMCG_KMEM 6903 /* 6904 * Kmem cache creation is mostly done with the slab_mutex held, 6905 * so use a workqueue with limited concurrency to avoid stalling 6906 * all worker threads in case lots of cgroups are created and 6907 * destroyed simultaneously. 6908 */ 6909 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6910 BUG_ON(!memcg_kmem_cache_wq); 6911 #endif 6912 6913 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6914 memcg_hotplug_cpu_dead); 6915 6916 for_each_possible_cpu(cpu) 6917 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6918 drain_local_stock); 6919 6920 for_each_node(node) { 6921 struct mem_cgroup_tree_per_node *rtpn; 6922 6923 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6924 node_online(node) ? node : NUMA_NO_NODE); 6925 6926 rtpn->rb_root = RB_ROOT; 6927 rtpn->rb_rightmost = NULL; 6928 spin_lock_init(&rtpn->lock); 6929 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6930 } 6931 6932 return 0; 6933 } 6934 subsys_initcall(mem_cgroup_init); 6935 6936 #ifdef CONFIG_MEMCG_SWAP 6937 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6938 { 6939 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6940 /* 6941 * The root cgroup cannot be destroyed, so it's refcount must 6942 * always be >= 1. 6943 */ 6944 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6945 VM_BUG_ON(1); 6946 break; 6947 } 6948 memcg = parent_mem_cgroup(memcg); 6949 if (!memcg) 6950 memcg = root_mem_cgroup; 6951 } 6952 return memcg; 6953 } 6954 6955 /** 6956 * mem_cgroup_swapout - transfer a memsw charge to swap 6957 * @page: page whose memsw charge to transfer 6958 * @entry: swap entry to move the charge to 6959 * 6960 * Transfer the memsw charge of @page to @entry. 6961 */ 6962 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6963 { 6964 struct mem_cgroup *memcg, *swap_memcg; 6965 unsigned int nr_entries; 6966 unsigned short oldid; 6967 6968 VM_BUG_ON_PAGE(PageLRU(page), page); 6969 VM_BUG_ON_PAGE(page_count(page), page); 6970 6971 if (!do_memsw_account()) 6972 return; 6973 6974 memcg = page->mem_cgroup; 6975 6976 /* Readahead page, never charged */ 6977 if (!memcg) 6978 return; 6979 6980 /* 6981 * In case the memcg owning these pages has been offlined and doesn't 6982 * have an ID allocated to it anymore, charge the closest online 6983 * ancestor for the swap instead and transfer the memory+swap charge. 6984 */ 6985 swap_memcg = mem_cgroup_id_get_online(memcg); 6986 nr_entries = hpage_nr_pages(page); 6987 /* Get references for the tail pages, too */ 6988 if (nr_entries > 1) 6989 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6990 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6991 nr_entries); 6992 VM_BUG_ON_PAGE(oldid, page); 6993 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6994 6995 page->mem_cgroup = NULL; 6996 6997 if (!mem_cgroup_is_root(memcg)) 6998 page_counter_uncharge(&memcg->memory, nr_entries); 6999 7000 if (memcg != swap_memcg) { 7001 if (!mem_cgroup_is_root(swap_memcg)) 7002 page_counter_charge(&swap_memcg->memsw, nr_entries); 7003 page_counter_uncharge(&memcg->memsw, nr_entries); 7004 } 7005 7006 /* 7007 * Interrupts should be disabled here because the caller holds the 7008 * i_pages lock which is taken with interrupts-off. It is 7009 * important here to have the interrupts disabled because it is the 7010 * only synchronisation we have for updating the per-CPU variables. 7011 */ 7012 VM_BUG_ON(!irqs_disabled()); 7013 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 7014 -nr_entries); 7015 memcg_check_events(memcg, page); 7016 7017 if (!mem_cgroup_is_root(memcg)) 7018 css_put_many(&memcg->css, nr_entries); 7019 } 7020 7021 /** 7022 * mem_cgroup_try_charge_swap - try charging swap space for a page 7023 * @page: page being added to swap 7024 * @entry: swap entry to charge 7025 * 7026 * Try to charge @page's memcg for the swap space at @entry. 7027 * 7028 * Returns 0 on success, -ENOMEM on failure. 7029 */ 7030 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7031 { 7032 unsigned int nr_pages = hpage_nr_pages(page); 7033 struct page_counter *counter; 7034 struct mem_cgroup *memcg; 7035 unsigned short oldid; 7036 7037 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 7038 return 0; 7039 7040 memcg = page->mem_cgroup; 7041 7042 /* Readahead page, never charged */ 7043 if (!memcg) 7044 return 0; 7045 7046 if (!entry.val) { 7047 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7048 return 0; 7049 } 7050 7051 memcg = mem_cgroup_id_get_online(memcg); 7052 7053 if (!mem_cgroup_is_root(memcg) && 7054 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7055 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7056 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7057 mem_cgroup_id_put(memcg); 7058 return -ENOMEM; 7059 } 7060 7061 /* Get references for the tail pages, too */ 7062 if (nr_pages > 1) 7063 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7064 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7065 VM_BUG_ON_PAGE(oldid, page); 7066 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7067 7068 return 0; 7069 } 7070 7071 /** 7072 * mem_cgroup_uncharge_swap - uncharge swap space 7073 * @entry: swap entry to uncharge 7074 * @nr_pages: the amount of swap space to uncharge 7075 */ 7076 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7077 { 7078 struct mem_cgroup *memcg; 7079 unsigned short id; 7080 7081 if (!do_swap_account) 7082 return; 7083 7084 id = swap_cgroup_record(entry, 0, nr_pages); 7085 rcu_read_lock(); 7086 memcg = mem_cgroup_from_id(id); 7087 if (memcg) { 7088 if (!mem_cgroup_is_root(memcg)) { 7089 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7090 page_counter_uncharge(&memcg->swap, nr_pages); 7091 else 7092 page_counter_uncharge(&memcg->memsw, nr_pages); 7093 } 7094 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7095 mem_cgroup_id_put_many(memcg, nr_pages); 7096 } 7097 rcu_read_unlock(); 7098 } 7099 7100 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7101 { 7102 long nr_swap_pages = get_nr_swap_pages(); 7103 7104 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7105 return nr_swap_pages; 7106 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7107 nr_swap_pages = min_t(long, nr_swap_pages, 7108 READ_ONCE(memcg->swap.max) - 7109 page_counter_read(&memcg->swap)); 7110 return nr_swap_pages; 7111 } 7112 7113 bool mem_cgroup_swap_full(struct page *page) 7114 { 7115 struct mem_cgroup *memcg; 7116 7117 VM_BUG_ON_PAGE(!PageLocked(page), page); 7118 7119 if (vm_swap_full()) 7120 return true; 7121 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7122 return false; 7123 7124 memcg = page->mem_cgroup; 7125 if (!memcg) 7126 return false; 7127 7128 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7129 if (page_counter_read(&memcg->swap) * 2 >= 7130 READ_ONCE(memcg->swap.max)) 7131 return true; 7132 7133 return false; 7134 } 7135 7136 /* for remember boot option*/ 7137 #ifdef CONFIG_MEMCG_SWAP_ENABLED 7138 static int really_do_swap_account __initdata = 1; 7139 #else 7140 static int really_do_swap_account __initdata; 7141 #endif 7142 7143 static int __init enable_swap_account(char *s) 7144 { 7145 if (!strcmp(s, "1")) 7146 really_do_swap_account = 1; 7147 else if (!strcmp(s, "0")) 7148 really_do_swap_account = 0; 7149 return 1; 7150 } 7151 __setup("swapaccount=", enable_swap_account); 7152 7153 static u64 swap_current_read(struct cgroup_subsys_state *css, 7154 struct cftype *cft) 7155 { 7156 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7157 7158 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7159 } 7160 7161 static int swap_max_show(struct seq_file *m, void *v) 7162 { 7163 return seq_puts_memcg_tunable(m, 7164 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7165 } 7166 7167 static ssize_t swap_max_write(struct kernfs_open_file *of, 7168 char *buf, size_t nbytes, loff_t off) 7169 { 7170 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7171 unsigned long max; 7172 int err; 7173 7174 buf = strstrip(buf); 7175 err = page_counter_memparse(buf, "max", &max); 7176 if (err) 7177 return err; 7178 7179 xchg(&memcg->swap.max, max); 7180 7181 return nbytes; 7182 } 7183 7184 static int swap_events_show(struct seq_file *m, void *v) 7185 { 7186 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7187 7188 seq_printf(m, "max %lu\n", 7189 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7190 seq_printf(m, "fail %lu\n", 7191 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7192 7193 return 0; 7194 } 7195 7196 static struct cftype swap_files[] = { 7197 { 7198 .name = "swap.current", 7199 .flags = CFTYPE_NOT_ON_ROOT, 7200 .read_u64 = swap_current_read, 7201 }, 7202 { 7203 .name = "swap.max", 7204 .flags = CFTYPE_NOT_ON_ROOT, 7205 .seq_show = swap_max_show, 7206 .write = swap_max_write, 7207 }, 7208 { 7209 .name = "swap.events", 7210 .flags = CFTYPE_NOT_ON_ROOT, 7211 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7212 .seq_show = swap_events_show, 7213 }, 7214 { } /* terminate */ 7215 }; 7216 7217 static struct cftype memsw_cgroup_files[] = { 7218 { 7219 .name = "memsw.usage_in_bytes", 7220 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7221 .read_u64 = mem_cgroup_read_u64, 7222 }, 7223 { 7224 .name = "memsw.max_usage_in_bytes", 7225 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7226 .write = mem_cgroup_reset, 7227 .read_u64 = mem_cgroup_read_u64, 7228 }, 7229 { 7230 .name = "memsw.limit_in_bytes", 7231 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7232 .write = mem_cgroup_write, 7233 .read_u64 = mem_cgroup_read_u64, 7234 }, 7235 { 7236 .name = "memsw.failcnt", 7237 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7238 .write = mem_cgroup_reset, 7239 .read_u64 = mem_cgroup_read_u64, 7240 }, 7241 { }, /* terminate */ 7242 }; 7243 7244 static int __init mem_cgroup_swap_init(void) 7245 { 7246 if (!mem_cgroup_disabled() && really_do_swap_account) { 7247 do_swap_account = 1; 7248 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 7249 swap_files)); 7250 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 7251 memsw_cgroup_files)); 7252 } 7253 return 0; 7254 } 7255 subsys_initcall(mem_cgroup_swap_init); 7256 7257 #endif /* CONFIG_MEMCG_SWAP */ 7258