1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/list.h> 46 #include <linux/mutex.h> 47 #include <linux/rbtree.h> 48 #include <linux/slab.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/fs.h> 52 #include <linux/seq_file.h> 53 #include <linux/parser.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #define CREATE_TRACE_POINTS 75 #include <trace/events/memcg.h> 76 #undef CREATE_TRACE_POINTS 77 78 #include <trace/events/vmscan.h> 79 80 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 81 EXPORT_SYMBOL(memory_cgrp_subsys); 82 83 struct mem_cgroup *root_mem_cgroup __read_mostly; 84 85 /* Active memory cgroup to use from an interrupt context */ 86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 88 89 /* Socket memory accounting disabled? */ 90 static bool cgroup_memory_nosocket __ro_after_init; 91 92 /* Kernel memory accounting disabled? */ 93 static bool cgroup_memory_nokmem __ro_after_init; 94 95 /* BPF memory accounting disabled? */ 96 static bool cgroup_memory_nobpf __ro_after_init; 97 98 #ifdef CONFIG_CGROUP_WRITEBACK 99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 100 #endif 101 102 static inline bool task_is_dying(void) 103 { 104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 105 (current->flags & PF_EXITING); 106 } 107 108 /* Some nice accessors for the vmpressure. */ 109 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 110 { 111 if (!memcg) 112 memcg = root_mem_cgroup; 113 return &memcg->vmpressure; 114 } 115 116 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 117 { 118 return container_of(vmpr, struct mem_cgroup, vmpressure); 119 } 120 121 #define SEQ_BUF_SIZE SZ_4K 122 #define CURRENT_OBJCG_UPDATE_BIT 0 123 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 124 125 static DEFINE_SPINLOCK(objcg_lock); 126 127 bool mem_cgroup_kmem_disabled(void) 128 { 129 return cgroup_memory_nokmem; 130 } 131 132 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 133 134 static void obj_cgroup_release(struct percpu_ref *ref) 135 { 136 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 137 unsigned int nr_bytes; 138 unsigned int nr_pages; 139 unsigned long flags; 140 141 /* 142 * At this point all allocated objects are freed, and 143 * objcg->nr_charged_bytes can't have an arbitrary byte value. 144 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 145 * 146 * The following sequence can lead to it: 147 * 1) CPU0: objcg == stock->cached_objcg 148 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 149 * PAGE_SIZE bytes are charged 150 * 3) CPU1: a process from another memcg is allocating something, 151 * the stock if flushed, 152 * objcg->nr_charged_bytes = PAGE_SIZE - 92 153 * 5) CPU0: we do release this object, 154 * 92 bytes are added to stock->nr_bytes 155 * 6) CPU0: stock is flushed, 156 * 92 bytes are added to objcg->nr_charged_bytes 157 * 158 * In the result, nr_charged_bytes == PAGE_SIZE. 159 * This page will be uncharged in obj_cgroup_release(). 160 */ 161 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 162 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 163 nr_pages = nr_bytes >> PAGE_SHIFT; 164 165 if (nr_pages) { 166 struct mem_cgroup *memcg; 167 168 memcg = get_mem_cgroup_from_objcg(objcg); 169 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 170 memcg1_account_kmem(memcg, -nr_pages); 171 if (!mem_cgroup_is_root(memcg)) 172 memcg_uncharge(memcg, nr_pages); 173 mem_cgroup_put(memcg); 174 } 175 176 spin_lock_irqsave(&objcg_lock, flags); 177 list_del(&objcg->list); 178 spin_unlock_irqrestore(&objcg_lock, flags); 179 180 percpu_ref_exit(ref); 181 kfree_rcu(objcg, rcu); 182 } 183 184 static struct obj_cgroup *obj_cgroup_alloc(void) 185 { 186 struct obj_cgroup *objcg; 187 int ret; 188 189 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 190 if (!objcg) 191 return NULL; 192 193 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 194 GFP_KERNEL); 195 if (ret) { 196 kfree(objcg); 197 return NULL; 198 } 199 INIT_LIST_HEAD(&objcg->list); 200 return objcg; 201 } 202 203 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 204 struct mem_cgroup *parent) 205 { 206 struct obj_cgroup *objcg, *iter; 207 208 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 209 210 spin_lock_irq(&objcg_lock); 211 212 /* 1) Ready to reparent active objcg. */ 213 list_add(&objcg->list, &memcg->objcg_list); 214 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 215 list_for_each_entry(iter, &memcg->objcg_list, list) 216 WRITE_ONCE(iter->memcg, parent); 217 /* 3) Move already reparented objcgs to the parent's list */ 218 list_splice(&memcg->objcg_list, &parent->objcg_list); 219 220 spin_unlock_irq(&objcg_lock); 221 222 percpu_ref_kill(&objcg->refcnt); 223 } 224 225 /* 226 * A lot of the calls to the cache allocation functions are expected to be 227 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 228 * conditional to this static branch, we'll have to allow modules that does 229 * kmem_cache_alloc and the such to see this symbol as well 230 */ 231 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 232 EXPORT_SYMBOL(memcg_kmem_online_key); 233 234 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 235 EXPORT_SYMBOL(memcg_bpf_enabled_key); 236 237 /** 238 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 239 * @folio: folio of interest 240 * 241 * If memcg is bound to the default hierarchy, css of the memcg associated 242 * with @folio is returned. The returned css remains associated with @folio 243 * until it is released. 244 * 245 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 246 * is returned. 247 */ 248 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 249 { 250 struct mem_cgroup *memcg = folio_memcg(folio); 251 252 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 253 memcg = root_mem_cgroup; 254 255 return &memcg->css; 256 } 257 258 /** 259 * page_cgroup_ino - return inode number of the memcg a page is charged to 260 * @page: the page 261 * 262 * Look up the closest online ancestor of the memory cgroup @page is charged to 263 * and return its inode number or 0 if @page is not charged to any cgroup. It 264 * is safe to call this function without holding a reference to @page. 265 * 266 * Note, this function is inherently racy, because there is nothing to prevent 267 * the cgroup inode from getting torn down and potentially reallocated a moment 268 * after page_cgroup_ino() returns, so it only should be used by callers that 269 * do not care (such as procfs interfaces). 270 */ 271 ino_t page_cgroup_ino(struct page *page) 272 { 273 struct mem_cgroup *memcg; 274 unsigned long ino = 0; 275 276 rcu_read_lock(); 277 /* page_folio() is racy here, but the entire function is racy anyway */ 278 memcg = folio_memcg_check(page_folio(page)); 279 280 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 281 memcg = parent_mem_cgroup(memcg); 282 if (memcg) 283 ino = cgroup_ino(memcg->css.cgroup); 284 rcu_read_unlock(); 285 return ino; 286 } 287 288 /* Subset of node_stat_item for memcg stats */ 289 static const unsigned int memcg_node_stat_items[] = { 290 NR_INACTIVE_ANON, 291 NR_ACTIVE_ANON, 292 NR_INACTIVE_FILE, 293 NR_ACTIVE_FILE, 294 NR_UNEVICTABLE, 295 NR_SLAB_RECLAIMABLE_B, 296 NR_SLAB_UNRECLAIMABLE_B, 297 WORKINGSET_REFAULT_ANON, 298 WORKINGSET_REFAULT_FILE, 299 WORKINGSET_ACTIVATE_ANON, 300 WORKINGSET_ACTIVATE_FILE, 301 WORKINGSET_RESTORE_ANON, 302 WORKINGSET_RESTORE_FILE, 303 WORKINGSET_NODERECLAIM, 304 NR_ANON_MAPPED, 305 NR_FILE_MAPPED, 306 NR_FILE_PAGES, 307 NR_FILE_DIRTY, 308 NR_WRITEBACK, 309 NR_SHMEM, 310 NR_SHMEM_THPS, 311 NR_FILE_THPS, 312 NR_ANON_THPS, 313 NR_KERNEL_STACK_KB, 314 NR_PAGETABLE, 315 NR_SECONDARY_PAGETABLE, 316 #ifdef CONFIG_SWAP 317 NR_SWAPCACHE, 318 #endif 319 #ifdef CONFIG_NUMA_BALANCING 320 PGPROMOTE_SUCCESS, 321 #endif 322 PGDEMOTE_KSWAPD, 323 PGDEMOTE_DIRECT, 324 PGDEMOTE_KHUGEPAGED, 325 PGDEMOTE_PROACTIVE, 326 #ifdef CONFIG_HUGETLB_PAGE 327 NR_HUGETLB, 328 #endif 329 }; 330 331 static const unsigned int memcg_stat_items[] = { 332 MEMCG_SWAP, 333 MEMCG_SOCK, 334 MEMCG_PERCPU_B, 335 MEMCG_VMALLOC, 336 MEMCG_KMEM, 337 MEMCG_ZSWAP_B, 338 MEMCG_ZSWAPPED, 339 }; 340 341 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 342 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 343 ARRAY_SIZE(memcg_stat_items)) 344 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 345 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 346 347 static void init_memcg_stats(void) 348 { 349 u8 i, j = 0; 350 351 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 352 353 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 354 355 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 356 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 357 358 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 359 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 360 } 361 362 static inline int memcg_stats_index(int idx) 363 { 364 return mem_cgroup_stats_index[idx]; 365 } 366 367 struct lruvec_stats_percpu { 368 /* Local (CPU and cgroup) state */ 369 long state[NR_MEMCG_NODE_STAT_ITEMS]; 370 371 /* Delta calculation for lockless upward propagation */ 372 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 373 }; 374 375 struct lruvec_stats { 376 /* Aggregated (CPU and subtree) state */ 377 long state[NR_MEMCG_NODE_STAT_ITEMS]; 378 379 /* Non-hierarchical (CPU aggregated) state */ 380 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 381 382 /* Pending child counts during tree propagation */ 383 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 384 }; 385 386 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 387 { 388 struct mem_cgroup_per_node *pn; 389 long x; 390 int i; 391 392 if (mem_cgroup_disabled()) 393 return node_page_state(lruvec_pgdat(lruvec), idx); 394 395 i = memcg_stats_index(idx); 396 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 397 return 0; 398 399 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 400 x = READ_ONCE(pn->lruvec_stats->state[i]); 401 #ifdef CONFIG_SMP 402 if (x < 0) 403 x = 0; 404 #endif 405 return x; 406 } 407 408 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 409 enum node_stat_item idx) 410 { 411 struct mem_cgroup_per_node *pn; 412 long x; 413 int i; 414 415 if (mem_cgroup_disabled()) 416 return node_page_state(lruvec_pgdat(lruvec), idx); 417 418 i = memcg_stats_index(idx); 419 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 420 return 0; 421 422 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 423 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 424 #ifdef CONFIG_SMP 425 if (x < 0) 426 x = 0; 427 #endif 428 return x; 429 } 430 431 /* Subset of vm_event_item to report for memcg event stats */ 432 static const unsigned int memcg_vm_event_stat[] = { 433 #ifdef CONFIG_MEMCG_V1 434 PGPGIN, 435 PGPGOUT, 436 #endif 437 PSWPIN, 438 PSWPOUT, 439 PGSCAN_KSWAPD, 440 PGSCAN_DIRECT, 441 PGSCAN_KHUGEPAGED, 442 PGSCAN_PROACTIVE, 443 PGSTEAL_KSWAPD, 444 PGSTEAL_DIRECT, 445 PGSTEAL_KHUGEPAGED, 446 PGSTEAL_PROACTIVE, 447 PGFAULT, 448 PGMAJFAULT, 449 PGREFILL, 450 PGACTIVATE, 451 PGDEACTIVATE, 452 PGLAZYFREE, 453 PGLAZYFREED, 454 #ifdef CONFIG_SWAP 455 SWPIN_ZERO, 456 SWPOUT_ZERO, 457 #endif 458 #ifdef CONFIG_ZSWAP 459 ZSWPIN, 460 ZSWPOUT, 461 ZSWPWB, 462 #endif 463 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 464 THP_FAULT_ALLOC, 465 THP_COLLAPSE_ALLOC, 466 THP_SWPOUT, 467 THP_SWPOUT_FALLBACK, 468 #endif 469 #ifdef CONFIG_NUMA_BALANCING 470 NUMA_PAGE_MIGRATE, 471 NUMA_PTE_UPDATES, 472 NUMA_HINT_FAULTS, 473 #endif 474 }; 475 476 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 477 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 478 479 static void init_memcg_events(void) 480 { 481 u8 i; 482 483 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 484 485 memset(mem_cgroup_events_index, U8_MAX, 486 sizeof(mem_cgroup_events_index)); 487 488 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 489 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 490 } 491 492 static inline int memcg_events_index(enum vm_event_item idx) 493 { 494 return mem_cgroup_events_index[idx]; 495 } 496 497 struct memcg_vmstats_percpu { 498 /* Stats updates since the last flush */ 499 unsigned int stats_updates; 500 501 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 502 struct memcg_vmstats_percpu *parent; 503 struct memcg_vmstats *vmstats; 504 505 /* The above should fit a single cacheline for memcg_rstat_updated() */ 506 507 /* Local (CPU and cgroup) page state & events */ 508 long state[MEMCG_VMSTAT_SIZE]; 509 unsigned long events[NR_MEMCG_EVENTS]; 510 511 /* Delta calculation for lockless upward propagation */ 512 long state_prev[MEMCG_VMSTAT_SIZE]; 513 unsigned long events_prev[NR_MEMCG_EVENTS]; 514 } ____cacheline_aligned; 515 516 struct memcg_vmstats { 517 /* Aggregated (CPU and subtree) page state & events */ 518 long state[MEMCG_VMSTAT_SIZE]; 519 unsigned long events[NR_MEMCG_EVENTS]; 520 521 /* Non-hierarchical (CPU aggregated) page state & events */ 522 long state_local[MEMCG_VMSTAT_SIZE]; 523 unsigned long events_local[NR_MEMCG_EVENTS]; 524 525 /* Pending child counts during tree propagation */ 526 long state_pending[MEMCG_VMSTAT_SIZE]; 527 unsigned long events_pending[NR_MEMCG_EVENTS]; 528 529 /* Stats updates since the last flush */ 530 atomic64_t stats_updates; 531 }; 532 533 /* 534 * memcg and lruvec stats flushing 535 * 536 * Many codepaths leading to stats update or read are performance sensitive and 537 * adding stats flushing in such codepaths is not desirable. So, to optimize the 538 * flushing the kernel does: 539 * 540 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 541 * rstat update tree grow unbounded. 542 * 543 * 2) Flush the stats synchronously on reader side only when there are more than 544 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 545 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 546 * only for 2 seconds due to (1). 547 */ 548 static void flush_memcg_stats_dwork(struct work_struct *w); 549 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 550 static u64 flush_last_time; 551 552 #define FLUSH_TIME (2UL*HZ) 553 554 /* 555 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 556 * not rely on this as part of an acquired spinlock_t lock. These functions are 557 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 558 * is sufficient. 559 */ 560 static void memcg_stats_lock(void) 561 { 562 preempt_disable_nested(); 563 VM_WARN_ON_IRQS_ENABLED(); 564 } 565 566 static void __memcg_stats_lock(void) 567 { 568 preempt_disable_nested(); 569 } 570 571 static void memcg_stats_unlock(void) 572 { 573 preempt_enable_nested(); 574 } 575 576 577 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 578 { 579 return atomic64_read(&vmstats->stats_updates) > 580 MEMCG_CHARGE_BATCH * num_online_cpus(); 581 } 582 583 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 584 { 585 struct memcg_vmstats_percpu *statc; 586 int cpu = smp_processor_id(); 587 unsigned int stats_updates; 588 589 if (!val) 590 return; 591 592 cgroup_rstat_updated(memcg->css.cgroup, cpu); 593 statc = this_cpu_ptr(memcg->vmstats_percpu); 594 for (; statc; statc = statc->parent) { 595 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 596 WRITE_ONCE(statc->stats_updates, stats_updates); 597 if (stats_updates < MEMCG_CHARGE_BATCH) 598 continue; 599 600 /* 601 * If @memcg is already flush-able, increasing stats_updates is 602 * redundant. Avoid the overhead of the atomic update. 603 */ 604 if (!memcg_vmstats_needs_flush(statc->vmstats)) 605 atomic64_add(stats_updates, 606 &statc->vmstats->stats_updates); 607 WRITE_ONCE(statc->stats_updates, 0); 608 } 609 } 610 611 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 612 { 613 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 614 615 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates), 616 force, needs_flush); 617 618 if (!force && !needs_flush) 619 return; 620 621 if (mem_cgroup_is_root(memcg)) 622 WRITE_ONCE(flush_last_time, jiffies_64); 623 624 cgroup_rstat_flush(memcg->css.cgroup); 625 } 626 627 /* 628 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 629 * @memcg: root of the subtree to flush 630 * 631 * Flushing is serialized by the underlying global rstat lock. There is also a 632 * minimum amount of work to be done even if there are no stat updates to flush. 633 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 634 * avoids unnecessary work and contention on the underlying lock. 635 */ 636 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 637 { 638 if (mem_cgroup_disabled()) 639 return; 640 641 if (!memcg) 642 memcg = root_mem_cgroup; 643 644 __mem_cgroup_flush_stats(memcg, false); 645 } 646 647 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 648 { 649 /* Only flush if the periodic flusher is one full cycle late */ 650 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 651 mem_cgroup_flush_stats(memcg); 652 } 653 654 static void flush_memcg_stats_dwork(struct work_struct *w) 655 { 656 /* 657 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 658 * in latency-sensitive paths is as cheap as possible. 659 */ 660 __mem_cgroup_flush_stats(root_mem_cgroup, true); 661 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 662 } 663 664 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 665 { 666 long x; 667 int i = memcg_stats_index(idx); 668 669 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 670 return 0; 671 672 x = READ_ONCE(memcg->vmstats->state[i]); 673 #ifdef CONFIG_SMP 674 if (x < 0) 675 x = 0; 676 #endif 677 return x; 678 } 679 680 static int memcg_page_state_unit(int item); 681 682 /* 683 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 684 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 685 */ 686 static int memcg_state_val_in_pages(int idx, int val) 687 { 688 int unit = memcg_page_state_unit(idx); 689 690 if (!val || unit == PAGE_SIZE) 691 return val; 692 else 693 return max(val * unit / PAGE_SIZE, 1UL); 694 } 695 696 /** 697 * __mod_memcg_state - update cgroup memory statistics 698 * @memcg: the memory cgroup 699 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 700 * @val: delta to add to the counter, can be negative 701 */ 702 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 703 int val) 704 { 705 int i = memcg_stats_index(idx); 706 707 if (mem_cgroup_disabled()) 708 return; 709 710 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 711 return; 712 713 memcg_stats_lock(); 714 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 715 val = memcg_state_val_in_pages(idx, val); 716 memcg_rstat_updated(memcg, val); 717 trace_mod_memcg_state(memcg, idx, val); 718 memcg_stats_unlock(); 719 } 720 721 #ifdef CONFIG_MEMCG_V1 722 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 723 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 724 { 725 long x; 726 int i = memcg_stats_index(idx); 727 728 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 729 return 0; 730 731 x = READ_ONCE(memcg->vmstats->state_local[i]); 732 #ifdef CONFIG_SMP 733 if (x < 0) 734 x = 0; 735 #endif 736 return x; 737 } 738 #endif 739 740 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 741 enum node_stat_item idx, 742 int val) 743 { 744 struct mem_cgroup_per_node *pn; 745 struct mem_cgroup *memcg; 746 int i = memcg_stats_index(idx); 747 748 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 749 return; 750 751 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 752 memcg = pn->memcg; 753 754 /* 755 * The caller from rmap relies on disabled preemption because they never 756 * update their counter from in-interrupt context. For these two 757 * counters we check that the update is never performed from an 758 * interrupt context while other caller need to have disabled interrupt. 759 */ 760 __memcg_stats_lock(); 761 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 762 switch (idx) { 763 case NR_ANON_MAPPED: 764 case NR_FILE_MAPPED: 765 case NR_ANON_THPS: 766 WARN_ON_ONCE(!in_task()); 767 break; 768 default: 769 VM_WARN_ON_IRQS_ENABLED(); 770 } 771 } 772 773 /* Update memcg */ 774 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 775 776 /* Update lruvec */ 777 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 778 779 val = memcg_state_val_in_pages(idx, val); 780 memcg_rstat_updated(memcg, val); 781 trace_mod_memcg_lruvec_state(memcg, idx, val); 782 memcg_stats_unlock(); 783 } 784 785 /** 786 * __mod_lruvec_state - update lruvec memory statistics 787 * @lruvec: the lruvec 788 * @idx: the stat item 789 * @val: delta to add to the counter, can be negative 790 * 791 * The lruvec is the intersection of the NUMA node and a cgroup. This 792 * function updates the all three counters that are affected by a 793 * change of state at this level: per-node, per-cgroup, per-lruvec. 794 */ 795 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 796 int val) 797 { 798 /* Update node */ 799 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 800 801 /* Update memcg and lruvec */ 802 if (!mem_cgroup_disabled()) 803 __mod_memcg_lruvec_state(lruvec, idx, val); 804 } 805 806 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 807 int val) 808 { 809 struct mem_cgroup *memcg; 810 pg_data_t *pgdat = folio_pgdat(folio); 811 struct lruvec *lruvec; 812 813 rcu_read_lock(); 814 memcg = folio_memcg(folio); 815 /* Untracked pages have no memcg, no lruvec. Update only the node */ 816 if (!memcg) { 817 rcu_read_unlock(); 818 __mod_node_page_state(pgdat, idx, val); 819 return; 820 } 821 822 lruvec = mem_cgroup_lruvec(memcg, pgdat); 823 __mod_lruvec_state(lruvec, idx, val); 824 rcu_read_unlock(); 825 } 826 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 827 828 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 829 { 830 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 831 struct mem_cgroup *memcg; 832 struct lruvec *lruvec; 833 834 rcu_read_lock(); 835 memcg = mem_cgroup_from_slab_obj(p); 836 837 /* 838 * Untracked pages have no memcg, no lruvec. Update only the 839 * node. If we reparent the slab objects to the root memcg, 840 * when we free the slab object, we need to update the per-memcg 841 * vmstats to keep it correct for the root memcg. 842 */ 843 if (!memcg) { 844 __mod_node_page_state(pgdat, idx, val); 845 } else { 846 lruvec = mem_cgroup_lruvec(memcg, pgdat); 847 __mod_lruvec_state(lruvec, idx, val); 848 } 849 rcu_read_unlock(); 850 } 851 852 /** 853 * __count_memcg_events - account VM events in a cgroup 854 * @memcg: the memory cgroup 855 * @idx: the event item 856 * @count: the number of events that occurred 857 */ 858 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 859 unsigned long count) 860 { 861 int i = memcg_events_index(idx); 862 863 if (mem_cgroup_disabled()) 864 return; 865 866 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 867 return; 868 869 memcg_stats_lock(); 870 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 871 memcg_rstat_updated(memcg, count); 872 trace_count_memcg_events(memcg, idx, count); 873 memcg_stats_unlock(); 874 } 875 876 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 877 { 878 int i = memcg_events_index(event); 879 880 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 881 return 0; 882 883 return READ_ONCE(memcg->vmstats->events[i]); 884 } 885 886 #ifdef CONFIG_MEMCG_V1 887 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 888 { 889 int i = memcg_events_index(event); 890 891 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 892 return 0; 893 894 return READ_ONCE(memcg->vmstats->events_local[i]); 895 } 896 #endif 897 898 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 899 { 900 /* 901 * mm_update_next_owner() may clear mm->owner to NULL 902 * if it races with swapoff, page migration, etc. 903 * So this can be called with p == NULL. 904 */ 905 if (unlikely(!p)) 906 return NULL; 907 908 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 909 } 910 EXPORT_SYMBOL(mem_cgroup_from_task); 911 912 static __always_inline struct mem_cgroup *active_memcg(void) 913 { 914 if (!in_task()) 915 return this_cpu_read(int_active_memcg); 916 else 917 return current->active_memcg; 918 } 919 920 /** 921 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 922 * @mm: mm from which memcg should be extracted. It can be NULL. 923 * 924 * Obtain a reference on mm->memcg and returns it if successful. If mm 925 * is NULL, then the memcg is chosen as follows: 926 * 1) The active memcg, if set. 927 * 2) current->mm->memcg, if available 928 * 3) root memcg 929 * If mem_cgroup is disabled, NULL is returned. 930 */ 931 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 932 { 933 struct mem_cgroup *memcg; 934 935 if (mem_cgroup_disabled()) 936 return NULL; 937 938 /* 939 * Page cache insertions can happen without an 940 * actual mm context, e.g. during disk probing 941 * on boot, loopback IO, acct() writes etc. 942 * 943 * No need to css_get on root memcg as the reference 944 * counting is disabled on the root level in the 945 * cgroup core. See CSS_NO_REF. 946 */ 947 if (unlikely(!mm)) { 948 memcg = active_memcg(); 949 if (unlikely(memcg)) { 950 /* remote memcg must hold a ref */ 951 css_get(&memcg->css); 952 return memcg; 953 } 954 mm = current->mm; 955 if (unlikely(!mm)) 956 return root_mem_cgroup; 957 } 958 959 rcu_read_lock(); 960 do { 961 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 962 if (unlikely(!memcg)) 963 memcg = root_mem_cgroup; 964 } while (!css_tryget(&memcg->css)); 965 rcu_read_unlock(); 966 return memcg; 967 } 968 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 969 970 /** 971 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 972 */ 973 struct mem_cgroup *get_mem_cgroup_from_current(void) 974 { 975 struct mem_cgroup *memcg; 976 977 if (mem_cgroup_disabled()) 978 return NULL; 979 980 again: 981 rcu_read_lock(); 982 memcg = mem_cgroup_from_task(current); 983 if (!css_tryget(&memcg->css)) { 984 rcu_read_unlock(); 985 goto again; 986 } 987 rcu_read_unlock(); 988 return memcg; 989 } 990 991 /** 992 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 993 * @folio: folio from which memcg should be extracted. 994 */ 995 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 996 { 997 struct mem_cgroup *memcg = folio_memcg(folio); 998 999 if (mem_cgroup_disabled()) 1000 return NULL; 1001 1002 rcu_read_lock(); 1003 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 1004 memcg = root_mem_cgroup; 1005 rcu_read_unlock(); 1006 return memcg; 1007 } 1008 1009 /** 1010 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1011 * @root: hierarchy root 1012 * @prev: previously returned memcg, NULL on first invocation 1013 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1014 * 1015 * Returns references to children of the hierarchy below @root, or 1016 * @root itself, or %NULL after a full round-trip. 1017 * 1018 * Caller must pass the return value in @prev on subsequent 1019 * invocations for reference counting, or use mem_cgroup_iter_break() 1020 * to cancel a hierarchy walk before the round-trip is complete. 1021 * 1022 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1023 * in the hierarchy among all concurrent reclaimers operating on the 1024 * same node. 1025 */ 1026 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1027 struct mem_cgroup *prev, 1028 struct mem_cgroup_reclaim_cookie *reclaim) 1029 { 1030 struct mem_cgroup_reclaim_iter *iter; 1031 struct cgroup_subsys_state *css; 1032 struct mem_cgroup *pos; 1033 struct mem_cgroup *next; 1034 1035 if (mem_cgroup_disabled()) 1036 return NULL; 1037 1038 if (!root) 1039 root = root_mem_cgroup; 1040 1041 rcu_read_lock(); 1042 restart: 1043 next = NULL; 1044 1045 if (reclaim) { 1046 int gen; 1047 int nid = reclaim->pgdat->node_id; 1048 1049 iter = &root->nodeinfo[nid]->iter; 1050 gen = atomic_read(&iter->generation); 1051 1052 /* 1053 * On start, join the current reclaim iteration cycle. 1054 * Exit when a concurrent walker completes it. 1055 */ 1056 if (!prev) 1057 reclaim->generation = gen; 1058 else if (reclaim->generation != gen) 1059 goto out_unlock; 1060 1061 pos = READ_ONCE(iter->position); 1062 } else 1063 pos = prev; 1064 1065 css = pos ? &pos->css : NULL; 1066 1067 while ((css = css_next_descendant_pre(css, &root->css))) { 1068 /* 1069 * Verify the css and acquire a reference. The root 1070 * is provided by the caller, so we know it's alive 1071 * and kicking, and don't take an extra reference. 1072 */ 1073 if (css == &root->css || css_tryget(css)) 1074 break; 1075 } 1076 1077 next = mem_cgroup_from_css(css); 1078 1079 if (reclaim) { 1080 /* 1081 * The position could have already been updated by a competing 1082 * thread, so check that the value hasn't changed since we read 1083 * it to avoid reclaiming from the same cgroup twice. 1084 */ 1085 if (cmpxchg(&iter->position, pos, next) != pos) { 1086 if (css && css != &root->css) 1087 css_put(css); 1088 goto restart; 1089 } 1090 1091 if (!next) { 1092 atomic_inc(&iter->generation); 1093 1094 /* 1095 * Reclaimers share the hierarchy walk, and a 1096 * new one might jump in right at the end of 1097 * the hierarchy - make sure they see at least 1098 * one group and restart from the beginning. 1099 */ 1100 if (!prev) 1101 goto restart; 1102 } 1103 } 1104 1105 out_unlock: 1106 rcu_read_unlock(); 1107 if (prev && prev != root) 1108 css_put(&prev->css); 1109 1110 return next; 1111 } 1112 1113 /** 1114 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1115 * @root: hierarchy root 1116 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1117 */ 1118 void mem_cgroup_iter_break(struct mem_cgroup *root, 1119 struct mem_cgroup *prev) 1120 { 1121 if (!root) 1122 root = root_mem_cgroup; 1123 if (prev && prev != root) 1124 css_put(&prev->css); 1125 } 1126 1127 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1128 struct mem_cgroup *dead_memcg) 1129 { 1130 struct mem_cgroup_reclaim_iter *iter; 1131 struct mem_cgroup_per_node *mz; 1132 int nid; 1133 1134 for_each_node(nid) { 1135 mz = from->nodeinfo[nid]; 1136 iter = &mz->iter; 1137 cmpxchg(&iter->position, dead_memcg, NULL); 1138 } 1139 } 1140 1141 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1142 { 1143 struct mem_cgroup *memcg = dead_memcg; 1144 struct mem_cgroup *last; 1145 1146 do { 1147 __invalidate_reclaim_iterators(memcg, dead_memcg); 1148 last = memcg; 1149 } while ((memcg = parent_mem_cgroup(memcg))); 1150 1151 /* 1152 * When cgroup1 non-hierarchy mode is used, 1153 * parent_mem_cgroup() does not walk all the way up to the 1154 * cgroup root (root_mem_cgroup). So we have to handle 1155 * dead_memcg from cgroup root separately. 1156 */ 1157 if (!mem_cgroup_is_root(last)) 1158 __invalidate_reclaim_iterators(root_mem_cgroup, 1159 dead_memcg); 1160 } 1161 1162 /** 1163 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1164 * @memcg: hierarchy root 1165 * @fn: function to call for each task 1166 * @arg: argument passed to @fn 1167 * 1168 * This function iterates over tasks attached to @memcg or to any of its 1169 * descendants and calls @fn for each task. If @fn returns a non-zero 1170 * value, the function breaks the iteration loop. Otherwise, it will iterate 1171 * over all tasks and return 0. 1172 * 1173 * This function must not be called for the root memory cgroup. 1174 */ 1175 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1176 int (*fn)(struct task_struct *, void *), void *arg) 1177 { 1178 struct mem_cgroup *iter; 1179 int ret = 0; 1180 int i = 0; 1181 1182 BUG_ON(mem_cgroup_is_root(memcg)); 1183 1184 for_each_mem_cgroup_tree(iter, memcg) { 1185 struct css_task_iter it; 1186 struct task_struct *task; 1187 1188 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1189 while (!ret && (task = css_task_iter_next(&it))) { 1190 /* Avoid potential softlockup warning */ 1191 if ((++i & 1023) == 0) 1192 cond_resched(); 1193 ret = fn(task, arg); 1194 } 1195 css_task_iter_end(&it); 1196 if (ret) { 1197 mem_cgroup_iter_break(memcg, iter); 1198 break; 1199 } 1200 } 1201 } 1202 1203 #ifdef CONFIG_DEBUG_VM 1204 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1205 { 1206 struct mem_cgroup *memcg; 1207 1208 if (mem_cgroup_disabled()) 1209 return; 1210 1211 memcg = folio_memcg(folio); 1212 1213 if (!memcg) 1214 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1215 else 1216 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1217 } 1218 #endif 1219 1220 /** 1221 * folio_lruvec_lock - Lock the lruvec for a folio. 1222 * @folio: Pointer to the folio. 1223 * 1224 * These functions are safe to use under any of the following conditions: 1225 * - folio locked 1226 * - folio_test_lru false 1227 * - folio frozen (refcount of 0) 1228 * 1229 * Return: The lruvec this folio is on with its lock held. 1230 */ 1231 struct lruvec *folio_lruvec_lock(struct folio *folio) 1232 { 1233 struct lruvec *lruvec = folio_lruvec(folio); 1234 1235 spin_lock(&lruvec->lru_lock); 1236 lruvec_memcg_debug(lruvec, folio); 1237 1238 return lruvec; 1239 } 1240 1241 /** 1242 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1243 * @folio: Pointer to the folio. 1244 * 1245 * These functions are safe to use under any of the following conditions: 1246 * - folio locked 1247 * - folio_test_lru false 1248 * - folio frozen (refcount of 0) 1249 * 1250 * Return: The lruvec this folio is on with its lock held and interrupts 1251 * disabled. 1252 */ 1253 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1254 { 1255 struct lruvec *lruvec = folio_lruvec(folio); 1256 1257 spin_lock_irq(&lruvec->lru_lock); 1258 lruvec_memcg_debug(lruvec, folio); 1259 1260 return lruvec; 1261 } 1262 1263 /** 1264 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1265 * @folio: Pointer to the folio. 1266 * @flags: Pointer to irqsave flags. 1267 * 1268 * These functions are safe to use under any of the following conditions: 1269 * - folio locked 1270 * - folio_test_lru false 1271 * - folio frozen (refcount of 0) 1272 * 1273 * Return: The lruvec this folio is on with its lock held and interrupts 1274 * disabled. 1275 */ 1276 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1277 unsigned long *flags) 1278 { 1279 struct lruvec *lruvec = folio_lruvec(folio); 1280 1281 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1282 lruvec_memcg_debug(lruvec, folio); 1283 1284 return lruvec; 1285 } 1286 1287 /** 1288 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1289 * @lruvec: mem_cgroup per zone lru vector 1290 * @lru: index of lru list the page is sitting on 1291 * @zid: zone id of the accounted pages 1292 * @nr_pages: positive when adding or negative when removing 1293 * 1294 * This function must be called under lru_lock, just before a page is added 1295 * to or just after a page is removed from an lru list. 1296 */ 1297 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1298 int zid, int nr_pages) 1299 { 1300 struct mem_cgroup_per_node *mz; 1301 unsigned long *lru_size; 1302 long size; 1303 1304 if (mem_cgroup_disabled()) 1305 return; 1306 1307 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1308 lru_size = &mz->lru_zone_size[zid][lru]; 1309 1310 if (nr_pages < 0) 1311 *lru_size += nr_pages; 1312 1313 size = *lru_size; 1314 if (WARN_ONCE(size < 0, 1315 "%s(%p, %d, %d): lru_size %ld\n", 1316 __func__, lruvec, lru, nr_pages, size)) { 1317 VM_BUG_ON(1); 1318 *lru_size = 0; 1319 } 1320 1321 if (nr_pages > 0) 1322 *lru_size += nr_pages; 1323 } 1324 1325 /** 1326 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1327 * @memcg: the memory cgroup 1328 * 1329 * Returns the maximum amount of memory @mem can be charged with, in 1330 * pages. 1331 */ 1332 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1333 { 1334 unsigned long margin = 0; 1335 unsigned long count; 1336 unsigned long limit; 1337 1338 count = page_counter_read(&memcg->memory); 1339 limit = READ_ONCE(memcg->memory.max); 1340 if (count < limit) 1341 margin = limit - count; 1342 1343 if (do_memsw_account()) { 1344 count = page_counter_read(&memcg->memsw); 1345 limit = READ_ONCE(memcg->memsw.max); 1346 if (count < limit) 1347 margin = min(margin, limit - count); 1348 else 1349 margin = 0; 1350 } 1351 1352 return margin; 1353 } 1354 1355 struct memory_stat { 1356 const char *name; 1357 unsigned int idx; 1358 }; 1359 1360 static const struct memory_stat memory_stats[] = { 1361 { "anon", NR_ANON_MAPPED }, 1362 { "file", NR_FILE_PAGES }, 1363 { "kernel", MEMCG_KMEM }, 1364 { "kernel_stack", NR_KERNEL_STACK_KB }, 1365 { "pagetables", NR_PAGETABLE }, 1366 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1367 { "percpu", MEMCG_PERCPU_B }, 1368 { "sock", MEMCG_SOCK }, 1369 { "vmalloc", MEMCG_VMALLOC }, 1370 { "shmem", NR_SHMEM }, 1371 #ifdef CONFIG_ZSWAP 1372 { "zswap", MEMCG_ZSWAP_B }, 1373 { "zswapped", MEMCG_ZSWAPPED }, 1374 #endif 1375 { "file_mapped", NR_FILE_MAPPED }, 1376 { "file_dirty", NR_FILE_DIRTY }, 1377 { "file_writeback", NR_WRITEBACK }, 1378 #ifdef CONFIG_SWAP 1379 { "swapcached", NR_SWAPCACHE }, 1380 #endif 1381 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1382 { "anon_thp", NR_ANON_THPS }, 1383 { "file_thp", NR_FILE_THPS }, 1384 { "shmem_thp", NR_SHMEM_THPS }, 1385 #endif 1386 { "inactive_anon", NR_INACTIVE_ANON }, 1387 { "active_anon", NR_ACTIVE_ANON }, 1388 { "inactive_file", NR_INACTIVE_FILE }, 1389 { "active_file", NR_ACTIVE_FILE }, 1390 { "unevictable", NR_UNEVICTABLE }, 1391 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1392 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1393 #ifdef CONFIG_HUGETLB_PAGE 1394 { "hugetlb", NR_HUGETLB }, 1395 #endif 1396 1397 /* The memory events */ 1398 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1399 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1400 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1401 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1402 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1403 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1404 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1405 1406 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1407 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1408 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1409 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1410 #ifdef CONFIG_NUMA_BALANCING 1411 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1412 #endif 1413 }; 1414 1415 /* The actual unit of the state item, not the same as the output unit */ 1416 static int memcg_page_state_unit(int item) 1417 { 1418 switch (item) { 1419 case MEMCG_PERCPU_B: 1420 case MEMCG_ZSWAP_B: 1421 case NR_SLAB_RECLAIMABLE_B: 1422 case NR_SLAB_UNRECLAIMABLE_B: 1423 return 1; 1424 case NR_KERNEL_STACK_KB: 1425 return SZ_1K; 1426 default: 1427 return PAGE_SIZE; 1428 } 1429 } 1430 1431 /* Translate stat items to the correct unit for memory.stat output */ 1432 static int memcg_page_state_output_unit(int item) 1433 { 1434 /* 1435 * Workingset state is actually in pages, but we export it to userspace 1436 * as a scalar count of events, so special case it here. 1437 * 1438 * Demotion and promotion activities are exported in pages, consistent 1439 * with their global counterparts. 1440 */ 1441 switch (item) { 1442 case WORKINGSET_REFAULT_ANON: 1443 case WORKINGSET_REFAULT_FILE: 1444 case WORKINGSET_ACTIVATE_ANON: 1445 case WORKINGSET_ACTIVATE_FILE: 1446 case WORKINGSET_RESTORE_ANON: 1447 case WORKINGSET_RESTORE_FILE: 1448 case WORKINGSET_NODERECLAIM: 1449 case PGDEMOTE_KSWAPD: 1450 case PGDEMOTE_DIRECT: 1451 case PGDEMOTE_KHUGEPAGED: 1452 case PGDEMOTE_PROACTIVE: 1453 #ifdef CONFIG_NUMA_BALANCING 1454 case PGPROMOTE_SUCCESS: 1455 #endif 1456 return 1; 1457 default: 1458 return memcg_page_state_unit(item); 1459 } 1460 } 1461 1462 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1463 { 1464 return memcg_page_state(memcg, item) * 1465 memcg_page_state_output_unit(item); 1466 } 1467 1468 #ifdef CONFIG_MEMCG_V1 1469 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1470 { 1471 return memcg_page_state_local(memcg, item) * 1472 memcg_page_state_output_unit(item); 1473 } 1474 #endif 1475 1476 #ifdef CONFIG_HUGETLB_PAGE 1477 static bool memcg_accounts_hugetlb(void) 1478 { 1479 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1480 } 1481 #else /* CONFIG_HUGETLB_PAGE */ 1482 static bool memcg_accounts_hugetlb(void) 1483 { 1484 return false; 1485 } 1486 #endif /* CONFIG_HUGETLB_PAGE */ 1487 1488 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1489 { 1490 int i; 1491 1492 /* 1493 * Provide statistics on the state of the memory subsystem as 1494 * well as cumulative event counters that show past behavior. 1495 * 1496 * This list is ordered following a combination of these gradients: 1497 * 1) generic big picture -> specifics and details 1498 * 2) reflecting userspace activity -> reflecting kernel heuristics 1499 * 1500 * Current memory state: 1501 */ 1502 mem_cgroup_flush_stats(memcg); 1503 1504 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1505 u64 size; 1506 1507 #ifdef CONFIG_HUGETLB_PAGE 1508 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1509 !memcg_accounts_hugetlb()) 1510 continue; 1511 #endif 1512 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1513 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1514 1515 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1516 size += memcg_page_state_output(memcg, 1517 NR_SLAB_RECLAIMABLE_B); 1518 seq_buf_printf(s, "slab %llu\n", size); 1519 } 1520 } 1521 1522 /* Accumulated memory events */ 1523 seq_buf_printf(s, "pgscan %lu\n", 1524 memcg_events(memcg, PGSCAN_KSWAPD) + 1525 memcg_events(memcg, PGSCAN_DIRECT) + 1526 memcg_events(memcg, PGSCAN_PROACTIVE) + 1527 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1528 seq_buf_printf(s, "pgsteal %lu\n", 1529 memcg_events(memcg, PGSTEAL_KSWAPD) + 1530 memcg_events(memcg, PGSTEAL_DIRECT) + 1531 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1532 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1533 1534 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1535 #ifdef CONFIG_MEMCG_V1 1536 if (memcg_vm_event_stat[i] == PGPGIN || 1537 memcg_vm_event_stat[i] == PGPGOUT) 1538 continue; 1539 #endif 1540 seq_buf_printf(s, "%s %lu\n", 1541 vm_event_name(memcg_vm_event_stat[i]), 1542 memcg_events(memcg, memcg_vm_event_stat[i])); 1543 } 1544 } 1545 1546 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1547 { 1548 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1549 memcg_stat_format(memcg, s); 1550 else 1551 memcg1_stat_format(memcg, s); 1552 if (seq_buf_has_overflowed(s)) 1553 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1554 } 1555 1556 /** 1557 * mem_cgroup_print_oom_context: Print OOM information relevant to 1558 * memory controller. 1559 * @memcg: The memory cgroup that went over limit 1560 * @p: Task that is going to be killed 1561 * 1562 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1563 * enabled 1564 */ 1565 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1566 { 1567 rcu_read_lock(); 1568 1569 if (memcg) { 1570 pr_cont(",oom_memcg="); 1571 pr_cont_cgroup_path(memcg->css.cgroup); 1572 } else 1573 pr_cont(",global_oom"); 1574 if (p) { 1575 pr_cont(",task_memcg="); 1576 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1577 } 1578 rcu_read_unlock(); 1579 } 1580 1581 /** 1582 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1583 * memory controller. 1584 * @memcg: The memory cgroup that went over limit 1585 */ 1586 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1587 { 1588 /* Use static buffer, for the caller is holding oom_lock. */ 1589 static char buf[SEQ_BUF_SIZE]; 1590 struct seq_buf s; 1591 unsigned long memory_failcnt; 1592 1593 lockdep_assert_held(&oom_lock); 1594 1595 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1596 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1597 else 1598 memory_failcnt = memcg->memory.failcnt; 1599 1600 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1601 K((u64)page_counter_read(&memcg->memory)), 1602 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1603 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1604 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1605 K((u64)page_counter_read(&memcg->swap)), 1606 K((u64)READ_ONCE(memcg->swap.max)), 1607 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1608 #ifdef CONFIG_MEMCG_V1 1609 else { 1610 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1611 K((u64)page_counter_read(&memcg->memsw)), 1612 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1613 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1614 K((u64)page_counter_read(&memcg->kmem)), 1615 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1616 } 1617 #endif 1618 1619 pr_info("Memory cgroup stats for "); 1620 pr_cont_cgroup_path(memcg->css.cgroup); 1621 pr_cont(":"); 1622 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1623 memory_stat_format(memcg, &s); 1624 seq_buf_do_printk(&s, KERN_INFO); 1625 } 1626 1627 /* 1628 * Return the memory (and swap, if configured) limit for a memcg. 1629 */ 1630 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1631 { 1632 unsigned long max = READ_ONCE(memcg->memory.max); 1633 1634 if (do_memsw_account()) { 1635 if (mem_cgroup_swappiness(memcg)) { 1636 /* Calculate swap excess capacity from memsw limit */ 1637 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1638 1639 max += min(swap, (unsigned long)total_swap_pages); 1640 } 1641 } else { 1642 if (mem_cgroup_swappiness(memcg)) 1643 max += min(READ_ONCE(memcg->swap.max), 1644 (unsigned long)total_swap_pages); 1645 } 1646 return max; 1647 } 1648 1649 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1650 { 1651 return page_counter_read(&memcg->memory); 1652 } 1653 1654 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1655 int order) 1656 { 1657 struct oom_control oc = { 1658 .zonelist = NULL, 1659 .nodemask = NULL, 1660 .memcg = memcg, 1661 .gfp_mask = gfp_mask, 1662 .order = order, 1663 }; 1664 bool ret = true; 1665 1666 if (mutex_lock_killable(&oom_lock)) 1667 return true; 1668 1669 if (mem_cgroup_margin(memcg) >= (1 << order)) 1670 goto unlock; 1671 1672 /* 1673 * A few threads which were not waiting at mutex_lock_killable() can 1674 * fail to bail out. Therefore, check again after holding oom_lock. 1675 */ 1676 ret = out_of_memory(&oc); 1677 1678 unlock: 1679 mutex_unlock(&oom_lock); 1680 return ret; 1681 } 1682 1683 /* 1684 * Returns true if successfully killed one or more processes. Though in some 1685 * corner cases it can return true even without killing any process. 1686 */ 1687 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1688 { 1689 bool locked, ret; 1690 1691 if (order > PAGE_ALLOC_COSTLY_ORDER) 1692 return false; 1693 1694 memcg_memory_event(memcg, MEMCG_OOM); 1695 1696 if (!memcg1_oom_prepare(memcg, &locked)) 1697 return false; 1698 1699 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1700 1701 memcg1_oom_finish(memcg, locked); 1702 1703 return ret; 1704 } 1705 1706 /** 1707 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1708 * @victim: task to be killed by the OOM killer 1709 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1710 * 1711 * Returns a pointer to a memory cgroup, which has to be cleaned up 1712 * by killing all belonging OOM-killable tasks. 1713 * 1714 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1715 */ 1716 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1717 struct mem_cgroup *oom_domain) 1718 { 1719 struct mem_cgroup *oom_group = NULL; 1720 struct mem_cgroup *memcg; 1721 1722 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1723 return NULL; 1724 1725 if (!oom_domain) 1726 oom_domain = root_mem_cgroup; 1727 1728 rcu_read_lock(); 1729 1730 memcg = mem_cgroup_from_task(victim); 1731 if (mem_cgroup_is_root(memcg)) 1732 goto out; 1733 1734 /* 1735 * If the victim task has been asynchronously moved to a different 1736 * memory cgroup, we might end up killing tasks outside oom_domain. 1737 * In this case it's better to ignore memory.group.oom. 1738 */ 1739 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1740 goto out; 1741 1742 /* 1743 * Traverse the memory cgroup hierarchy from the victim task's 1744 * cgroup up to the OOMing cgroup (or root) to find the 1745 * highest-level memory cgroup with oom.group set. 1746 */ 1747 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1748 if (READ_ONCE(memcg->oom_group)) 1749 oom_group = memcg; 1750 1751 if (memcg == oom_domain) 1752 break; 1753 } 1754 1755 if (oom_group) 1756 css_get(&oom_group->css); 1757 out: 1758 rcu_read_unlock(); 1759 1760 return oom_group; 1761 } 1762 1763 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1764 { 1765 pr_info("Tasks in "); 1766 pr_cont_cgroup_path(memcg->css.cgroup); 1767 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1768 } 1769 1770 struct memcg_stock_pcp { 1771 local_trylock_t stock_lock; 1772 struct mem_cgroup *cached; /* this never be root cgroup */ 1773 unsigned int nr_pages; 1774 1775 struct obj_cgroup *cached_objcg; 1776 struct pglist_data *cached_pgdat; 1777 unsigned int nr_bytes; 1778 int nr_slab_reclaimable_b; 1779 int nr_slab_unreclaimable_b; 1780 1781 struct work_struct work; 1782 unsigned long flags; 1783 #define FLUSHING_CACHED_CHARGE 0 1784 }; 1785 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 1786 .stock_lock = INIT_LOCAL_TRYLOCK(stock_lock), 1787 }; 1788 static DEFINE_MUTEX(percpu_charge_mutex); 1789 1790 static void drain_obj_stock(struct memcg_stock_pcp *stock); 1791 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1792 struct mem_cgroup *root_memcg); 1793 1794 /** 1795 * consume_stock: Try to consume stocked charge on this cpu. 1796 * @memcg: memcg to consume from. 1797 * @nr_pages: how many pages to charge. 1798 * @gfp_mask: allocation mask. 1799 * 1800 * The charges will only happen if @memcg matches the current cpu's memcg 1801 * stock, and at least @nr_pages are available in that stock. Failure to 1802 * service an allocation will refill the stock. 1803 * 1804 * returns true if successful, false otherwise. 1805 */ 1806 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages, 1807 gfp_t gfp_mask) 1808 { 1809 struct memcg_stock_pcp *stock; 1810 unsigned int stock_pages; 1811 unsigned long flags; 1812 bool ret = false; 1813 1814 if (nr_pages > MEMCG_CHARGE_BATCH) 1815 return ret; 1816 1817 if (gfpflags_allow_spinning(gfp_mask)) 1818 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1819 else if (!local_trylock_irqsave(&memcg_stock.stock_lock, flags)) 1820 return ret; 1821 1822 stock = this_cpu_ptr(&memcg_stock); 1823 stock_pages = READ_ONCE(stock->nr_pages); 1824 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 1825 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 1826 ret = true; 1827 } 1828 1829 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1830 1831 return ret; 1832 } 1833 1834 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 1835 { 1836 page_counter_uncharge(&memcg->memory, nr_pages); 1837 if (do_memsw_account()) 1838 page_counter_uncharge(&memcg->memsw, nr_pages); 1839 } 1840 1841 /* 1842 * Returns stocks cached in percpu and reset cached information. 1843 */ 1844 static void drain_stock(struct memcg_stock_pcp *stock) 1845 { 1846 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 1847 struct mem_cgroup *old = READ_ONCE(stock->cached); 1848 1849 if (!old) 1850 return; 1851 1852 if (stock_pages) { 1853 memcg_uncharge(old, stock_pages); 1854 WRITE_ONCE(stock->nr_pages, 0); 1855 } 1856 1857 css_put(&old->css); 1858 WRITE_ONCE(stock->cached, NULL); 1859 } 1860 1861 static void drain_local_stock(struct work_struct *dummy) 1862 { 1863 struct memcg_stock_pcp *stock; 1864 unsigned long flags; 1865 1866 /* 1867 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1868 * drain_stock races is that we always operate on local CPU stock 1869 * here with IRQ disabled 1870 */ 1871 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1872 1873 stock = this_cpu_ptr(&memcg_stock); 1874 drain_obj_stock(stock); 1875 drain_stock(stock); 1876 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1877 1878 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1879 } 1880 1881 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1882 { 1883 struct memcg_stock_pcp *stock; 1884 unsigned int stock_pages; 1885 unsigned long flags; 1886 1887 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); 1888 1889 if (!local_trylock_irqsave(&memcg_stock.stock_lock, flags)) { 1890 /* 1891 * In case of unlikely failure to lock percpu stock_lock 1892 * uncharge memcg directly. 1893 */ 1894 memcg_uncharge(memcg, nr_pages); 1895 return; 1896 } 1897 1898 stock = this_cpu_ptr(&memcg_stock); 1899 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 1900 drain_stock(stock); 1901 css_get(&memcg->css); 1902 WRITE_ONCE(stock->cached, memcg); 1903 } 1904 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 1905 WRITE_ONCE(stock->nr_pages, stock_pages); 1906 1907 if (stock_pages > MEMCG_CHARGE_BATCH) 1908 drain_stock(stock); 1909 1910 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1911 } 1912 1913 /* 1914 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1915 * of the hierarchy under it. 1916 */ 1917 void drain_all_stock(struct mem_cgroup *root_memcg) 1918 { 1919 int cpu, curcpu; 1920 1921 /* If someone's already draining, avoid adding running more workers. */ 1922 if (!mutex_trylock(&percpu_charge_mutex)) 1923 return; 1924 /* 1925 * Notify other cpus that system-wide "drain" is running 1926 * We do not care about races with the cpu hotplug because cpu down 1927 * as well as workers from this path always operate on the local 1928 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1929 */ 1930 migrate_disable(); 1931 curcpu = smp_processor_id(); 1932 for_each_online_cpu(cpu) { 1933 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1934 struct mem_cgroup *memcg; 1935 bool flush = false; 1936 1937 rcu_read_lock(); 1938 memcg = READ_ONCE(stock->cached); 1939 if (memcg && READ_ONCE(stock->nr_pages) && 1940 mem_cgroup_is_descendant(memcg, root_memcg)) 1941 flush = true; 1942 else if (obj_stock_flush_required(stock, root_memcg)) 1943 flush = true; 1944 rcu_read_unlock(); 1945 1946 if (flush && 1947 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1948 if (cpu == curcpu) 1949 drain_local_stock(&stock->work); 1950 else if (!cpu_is_isolated(cpu)) 1951 schedule_work_on(cpu, &stock->work); 1952 } 1953 } 1954 migrate_enable(); 1955 mutex_unlock(&percpu_charge_mutex); 1956 } 1957 1958 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1959 { 1960 struct memcg_stock_pcp *stock; 1961 unsigned long flags; 1962 1963 stock = &per_cpu(memcg_stock, cpu); 1964 1965 /* drain_obj_stock requires stock_lock */ 1966 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1967 drain_obj_stock(stock); 1968 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1969 1970 drain_stock(stock); 1971 1972 return 0; 1973 } 1974 1975 static unsigned long reclaim_high(struct mem_cgroup *memcg, 1976 unsigned int nr_pages, 1977 gfp_t gfp_mask) 1978 { 1979 unsigned long nr_reclaimed = 0; 1980 1981 do { 1982 unsigned long pflags; 1983 1984 if (page_counter_read(&memcg->memory) <= 1985 READ_ONCE(memcg->memory.high)) 1986 continue; 1987 1988 memcg_memory_event(memcg, MEMCG_HIGH); 1989 1990 psi_memstall_enter(&pflags); 1991 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 1992 gfp_mask, 1993 MEMCG_RECLAIM_MAY_SWAP, 1994 NULL); 1995 psi_memstall_leave(&pflags); 1996 } while ((memcg = parent_mem_cgroup(memcg)) && 1997 !mem_cgroup_is_root(memcg)); 1998 1999 return nr_reclaimed; 2000 } 2001 2002 static void high_work_func(struct work_struct *work) 2003 { 2004 struct mem_cgroup *memcg; 2005 2006 memcg = container_of(work, struct mem_cgroup, high_work); 2007 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2008 } 2009 2010 /* 2011 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2012 * enough to still cause a significant slowdown in most cases, while still 2013 * allowing diagnostics and tracing to proceed without becoming stuck. 2014 */ 2015 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2016 2017 /* 2018 * When calculating the delay, we use these either side of the exponentiation to 2019 * maintain precision and scale to a reasonable number of jiffies (see the table 2020 * below. 2021 * 2022 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2023 * overage ratio to a delay. 2024 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2025 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2026 * to produce a reasonable delay curve. 2027 * 2028 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2029 * reasonable delay curve compared to precision-adjusted overage, not 2030 * penalising heavily at first, but still making sure that growth beyond the 2031 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2032 * example, with a high of 100 megabytes: 2033 * 2034 * +-------+------------------------+ 2035 * | usage | time to allocate in ms | 2036 * +-------+------------------------+ 2037 * | 100M | 0 | 2038 * | 101M | 6 | 2039 * | 102M | 25 | 2040 * | 103M | 57 | 2041 * | 104M | 102 | 2042 * | 105M | 159 | 2043 * | 106M | 230 | 2044 * | 107M | 313 | 2045 * | 108M | 409 | 2046 * | 109M | 518 | 2047 * | 110M | 639 | 2048 * | 111M | 774 | 2049 * | 112M | 921 | 2050 * | 113M | 1081 | 2051 * | 114M | 1254 | 2052 * | 115M | 1439 | 2053 * | 116M | 1638 | 2054 * | 117M | 1849 | 2055 * | 118M | 2000 | 2056 * | 119M | 2000 | 2057 * | 120M | 2000 | 2058 * +-------+------------------------+ 2059 */ 2060 #define MEMCG_DELAY_PRECISION_SHIFT 20 2061 #define MEMCG_DELAY_SCALING_SHIFT 14 2062 2063 static u64 calculate_overage(unsigned long usage, unsigned long high) 2064 { 2065 u64 overage; 2066 2067 if (usage <= high) 2068 return 0; 2069 2070 /* 2071 * Prevent division by 0 in overage calculation by acting as if 2072 * it was a threshold of 1 page 2073 */ 2074 high = max(high, 1UL); 2075 2076 overage = usage - high; 2077 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2078 return div64_u64(overage, high); 2079 } 2080 2081 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2082 { 2083 u64 overage, max_overage = 0; 2084 2085 do { 2086 overage = calculate_overage(page_counter_read(&memcg->memory), 2087 READ_ONCE(memcg->memory.high)); 2088 max_overage = max(overage, max_overage); 2089 } while ((memcg = parent_mem_cgroup(memcg)) && 2090 !mem_cgroup_is_root(memcg)); 2091 2092 return max_overage; 2093 } 2094 2095 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2096 { 2097 u64 overage, max_overage = 0; 2098 2099 do { 2100 overage = calculate_overage(page_counter_read(&memcg->swap), 2101 READ_ONCE(memcg->swap.high)); 2102 if (overage) 2103 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2104 max_overage = max(overage, max_overage); 2105 } while ((memcg = parent_mem_cgroup(memcg)) && 2106 !mem_cgroup_is_root(memcg)); 2107 2108 return max_overage; 2109 } 2110 2111 /* 2112 * Get the number of jiffies that we should penalise a mischievous cgroup which 2113 * is exceeding its memory.high by checking both it and its ancestors. 2114 */ 2115 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2116 unsigned int nr_pages, 2117 u64 max_overage) 2118 { 2119 unsigned long penalty_jiffies; 2120 2121 if (!max_overage) 2122 return 0; 2123 2124 /* 2125 * We use overage compared to memory.high to calculate the number of 2126 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2127 * fairly lenient on small overages, and increasingly harsh when the 2128 * memcg in question makes it clear that it has no intention of stopping 2129 * its crazy behaviour, so we exponentially increase the delay based on 2130 * overage amount. 2131 */ 2132 penalty_jiffies = max_overage * max_overage * HZ; 2133 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2134 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2135 2136 /* 2137 * Factor in the task's own contribution to the overage, such that four 2138 * N-sized allocations are throttled approximately the same as one 2139 * 4N-sized allocation. 2140 * 2141 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2142 * larger the current charge patch is than that. 2143 */ 2144 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2145 } 2146 2147 /* 2148 * Reclaims memory over the high limit. Called directly from 2149 * try_charge() (context permitting), as well as from the userland 2150 * return path where reclaim is always able to block. 2151 */ 2152 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2153 { 2154 unsigned long penalty_jiffies; 2155 unsigned long pflags; 2156 unsigned long nr_reclaimed; 2157 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2158 int nr_retries = MAX_RECLAIM_RETRIES; 2159 struct mem_cgroup *memcg; 2160 bool in_retry = false; 2161 2162 if (likely(!nr_pages)) 2163 return; 2164 2165 memcg = get_mem_cgroup_from_mm(current->mm); 2166 current->memcg_nr_pages_over_high = 0; 2167 2168 retry_reclaim: 2169 /* 2170 * Bail if the task is already exiting. Unlike memory.max, 2171 * memory.high enforcement isn't as strict, and there is no 2172 * OOM killer involved, which means the excess could already 2173 * be much bigger (and still growing) than it could for 2174 * memory.max; the dying task could get stuck in fruitless 2175 * reclaim for a long time, which isn't desirable. 2176 */ 2177 if (task_is_dying()) 2178 goto out; 2179 2180 /* 2181 * The allocating task should reclaim at least the batch size, but for 2182 * subsequent retries we only want to do what's necessary to prevent oom 2183 * or breaching resource isolation. 2184 * 2185 * This is distinct from memory.max or page allocator behaviour because 2186 * memory.high is currently batched, whereas memory.max and the page 2187 * allocator run every time an allocation is made. 2188 */ 2189 nr_reclaimed = reclaim_high(memcg, 2190 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2191 gfp_mask); 2192 2193 /* 2194 * memory.high is breached and reclaim is unable to keep up. Throttle 2195 * allocators proactively to slow down excessive growth. 2196 */ 2197 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2198 mem_find_max_overage(memcg)); 2199 2200 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2201 swap_find_max_overage(memcg)); 2202 2203 /* 2204 * Clamp the max delay per usermode return so as to still keep the 2205 * application moving forwards and also permit diagnostics, albeit 2206 * extremely slowly. 2207 */ 2208 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2209 2210 /* 2211 * Don't sleep if the amount of jiffies this memcg owes us is so low 2212 * that it's not even worth doing, in an attempt to be nice to those who 2213 * go only a small amount over their memory.high value and maybe haven't 2214 * been aggressively reclaimed enough yet. 2215 */ 2216 if (penalty_jiffies <= HZ / 100) 2217 goto out; 2218 2219 /* 2220 * If reclaim is making forward progress but we're still over 2221 * memory.high, we want to encourage that rather than doing allocator 2222 * throttling. 2223 */ 2224 if (nr_reclaimed || nr_retries--) { 2225 in_retry = true; 2226 goto retry_reclaim; 2227 } 2228 2229 /* 2230 * Reclaim didn't manage to push usage below the limit, slow 2231 * this allocating task down. 2232 * 2233 * If we exit early, we're guaranteed to die (since 2234 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2235 * need to account for any ill-begotten jiffies to pay them off later. 2236 */ 2237 psi_memstall_enter(&pflags); 2238 schedule_timeout_killable(penalty_jiffies); 2239 psi_memstall_leave(&pflags); 2240 2241 out: 2242 css_put(&memcg->css); 2243 } 2244 2245 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2246 unsigned int nr_pages) 2247 { 2248 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2249 int nr_retries = MAX_RECLAIM_RETRIES; 2250 struct mem_cgroup *mem_over_limit; 2251 struct page_counter *counter; 2252 unsigned long nr_reclaimed; 2253 bool passed_oom = false; 2254 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2255 bool drained = false; 2256 bool raised_max_event = false; 2257 unsigned long pflags; 2258 2259 retry: 2260 if (consume_stock(memcg, nr_pages, gfp_mask)) 2261 return 0; 2262 2263 if (!gfpflags_allow_spinning(gfp_mask)) 2264 /* Avoid the refill and flush of the older stock */ 2265 batch = nr_pages; 2266 2267 if (!do_memsw_account() || 2268 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2269 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2270 goto done_restock; 2271 if (do_memsw_account()) 2272 page_counter_uncharge(&memcg->memsw, batch); 2273 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2274 } else { 2275 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2276 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2277 } 2278 2279 if (batch > nr_pages) { 2280 batch = nr_pages; 2281 goto retry; 2282 } 2283 2284 /* 2285 * Prevent unbounded recursion when reclaim operations need to 2286 * allocate memory. This might exceed the limits temporarily, 2287 * but we prefer facilitating memory reclaim and getting back 2288 * under the limit over triggering OOM kills in these cases. 2289 */ 2290 if (unlikely(current->flags & PF_MEMALLOC)) 2291 goto force; 2292 2293 if (unlikely(task_in_memcg_oom(current))) 2294 goto nomem; 2295 2296 if (!gfpflags_allow_blocking(gfp_mask)) 2297 goto nomem; 2298 2299 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2300 raised_max_event = true; 2301 2302 psi_memstall_enter(&pflags); 2303 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2304 gfp_mask, reclaim_options, NULL); 2305 psi_memstall_leave(&pflags); 2306 2307 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2308 goto retry; 2309 2310 if (!drained) { 2311 drain_all_stock(mem_over_limit); 2312 drained = true; 2313 goto retry; 2314 } 2315 2316 if (gfp_mask & __GFP_NORETRY) 2317 goto nomem; 2318 /* 2319 * Even though the limit is exceeded at this point, reclaim 2320 * may have been able to free some pages. Retry the charge 2321 * before killing the task. 2322 * 2323 * Only for regular pages, though: huge pages are rather 2324 * unlikely to succeed so close to the limit, and we fall back 2325 * to regular pages anyway in case of failure. 2326 */ 2327 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2328 goto retry; 2329 2330 if (nr_retries--) 2331 goto retry; 2332 2333 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2334 goto nomem; 2335 2336 /* Avoid endless loop for tasks bypassed by the oom killer */ 2337 if (passed_oom && task_is_dying()) 2338 goto nomem; 2339 2340 /* 2341 * keep retrying as long as the memcg oom killer is able to make 2342 * a forward progress or bypass the charge if the oom killer 2343 * couldn't make any progress. 2344 */ 2345 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2346 get_order(nr_pages * PAGE_SIZE))) { 2347 passed_oom = true; 2348 nr_retries = MAX_RECLAIM_RETRIES; 2349 goto retry; 2350 } 2351 nomem: 2352 /* 2353 * Memcg doesn't have a dedicated reserve for atomic 2354 * allocations. But like the global atomic pool, we need to 2355 * put the burden of reclaim on regular allocation requests 2356 * and let these go through as privileged allocations. 2357 */ 2358 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2359 return -ENOMEM; 2360 force: 2361 /* 2362 * If the allocation has to be enforced, don't forget to raise 2363 * a MEMCG_MAX event. 2364 */ 2365 if (!raised_max_event) 2366 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2367 2368 /* 2369 * The allocation either can't fail or will lead to more memory 2370 * being freed very soon. Allow memory usage go over the limit 2371 * temporarily by force charging it. 2372 */ 2373 page_counter_charge(&memcg->memory, nr_pages); 2374 if (do_memsw_account()) 2375 page_counter_charge(&memcg->memsw, nr_pages); 2376 2377 return 0; 2378 2379 done_restock: 2380 if (batch > nr_pages) 2381 refill_stock(memcg, batch - nr_pages); 2382 2383 /* 2384 * If the hierarchy is above the normal consumption range, schedule 2385 * reclaim on returning to userland. We can perform reclaim here 2386 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2387 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2388 * not recorded as it most likely matches current's and won't 2389 * change in the meantime. As high limit is checked again before 2390 * reclaim, the cost of mismatch is negligible. 2391 */ 2392 do { 2393 bool mem_high, swap_high; 2394 2395 mem_high = page_counter_read(&memcg->memory) > 2396 READ_ONCE(memcg->memory.high); 2397 swap_high = page_counter_read(&memcg->swap) > 2398 READ_ONCE(memcg->swap.high); 2399 2400 /* Don't bother a random interrupted task */ 2401 if (!in_task()) { 2402 if (mem_high) { 2403 schedule_work(&memcg->high_work); 2404 break; 2405 } 2406 continue; 2407 } 2408 2409 if (mem_high || swap_high) { 2410 /* 2411 * The allocating tasks in this cgroup will need to do 2412 * reclaim or be throttled to prevent further growth 2413 * of the memory or swap footprints. 2414 * 2415 * Target some best-effort fairness between the tasks, 2416 * and distribute reclaim work and delay penalties 2417 * based on how much each task is actually allocating. 2418 */ 2419 current->memcg_nr_pages_over_high += batch; 2420 set_notify_resume(current); 2421 break; 2422 } 2423 } while ((memcg = parent_mem_cgroup(memcg))); 2424 2425 /* 2426 * Reclaim is set up above to be called from the userland 2427 * return path. But also attempt synchronous reclaim to avoid 2428 * excessive overrun while the task is still inside the 2429 * kernel. If this is successful, the return path will see it 2430 * when it rechecks the overage and simply bail out. 2431 */ 2432 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2433 !(current->flags & PF_MEMALLOC) && 2434 gfpflags_allow_blocking(gfp_mask)) 2435 mem_cgroup_handle_over_high(gfp_mask); 2436 return 0; 2437 } 2438 2439 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2440 unsigned int nr_pages) 2441 { 2442 if (mem_cgroup_is_root(memcg)) 2443 return 0; 2444 2445 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2446 } 2447 2448 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2449 { 2450 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2451 /* 2452 * Any of the following ensures page's memcg stability: 2453 * 2454 * - the page lock 2455 * - LRU isolation 2456 * - exclusive reference 2457 */ 2458 folio->memcg_data = (unsigned long)memcg; 2459 } 2460 2461 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2462 struct pglist_data *pgdat, 2463 enum node_stat_item idx, int nr) 2464 { 2465 struct mem_cgroup *memcg; 2466 struct lruvec *lruvec; 2467 2468 rcu_read_lock(); 2469 memcg = obj_cgroup_memcg(objcg); 2470 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2471 __mod_memcg_lruvec_state(lruvec, idx, nr); 2472 rcu_read_unlock(); 2473 } 2474 2475 static __always_inline 2476 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2477 { 2478 /* 2479 * Slab objects are accounted individually, not per-page. 2480 * Memcg membership data for each individual object is saved in 2481 * slab->obj_exts. 2482 */ 2483 if (folio_test_slab(folio)) { 2484 struct slabobj_ext *obj_exts; 2485 struct slab *slab; 2486 unsigned int off; 2487 2488 slab = folio_slab(folio); 2489 obj_exts = slab_obj_exts(slab); 2490 if (!obj_exts) 2491 return NULL; 2492 2493 off = obj_to_index(slab->slab_cache, slab, p); 2494 if (obj_exts[off].objcg) 2495 return obj_cgroup_memcg(obj_exts[off].objcg); 2496 2497 return NULL; 2498 } 2499 2500 /* 2501 * folio_memcg_check() is used here, because in theory we can encounter 2502 * a folio where the slab flag has been cleared already, but 2503 * slab->obj_exts has not been freed yet 2504 * folio_memcg_check() will guarantee that a proper memory 2505 * cgroup pointer or NULL will be returned. 2506 */ 2507 return folio_memcg_check(folio); 2508 } 2509 2510 /* 2511 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2512 * It is not suitable for objects allocated using vmalloc(). 2513 * 2514 * A passed kernel object must be a slab object or a generic kernel page. 2515 * 2516 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2517 * cgroup_mutex, etc. 2518 */ 2519 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2520 { 2521 if (mem_cgroup_disabled()) 2522 return NULL; 2523 2524 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2525 } 2526 2527 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2528 { 2529 struct obj_cgroup *objcg = NULL; 2530 2531 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2532 objcg = rcu_dereference(memcg->objcg); 2533 if (likely(objcg && obj_cgroup_tryget(objcg))) 2534 break; 2535 objcg = NULL; 2536 } 2537 return objcg; 2538 } 2539 2540 static struct obj_cgroup *current_objcg_update(void) 2541 { 2542 struct mem_cgroup *memcg; 2543 struct obj_cgroup *old, *objcg = NULL; 2544 2545 do { 2546 /* Atomically drop the update bit. */ 2547 old = xchg(¤t->objcg, NULL); 2548 if (old) { 2549 old = (struct obj_cgroup *) 2550 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2551 obj_cgroup_put(old); 2552 2553 old = NULL; 2554 } 2555 2556 /* If new objcg is NULL, no reason for the second atomic update. */ 2557 if (!current->mm || (current->flags & PF_KTHREAD)) 2558 return NULL; 2559 2560 /* 2561 * Release the objcg pointer from the previous iteration, 2562 * if try_cmpxcg() below fails. 2563 */ 2564 if (unlikely(objcg)) { 2565 obj_cgroup_put(objcg); 2566 objcg = NULL; 2567 } 2568 2569 /* 2570 * Obtain the new objcg pointer. The current task can be 2571 * asynchronously moved to another memcg and the previous 2572 * memcg can be offlined. So let's get the memcg pointer 2573 * and try get a reference to objcg under a rcu read lock. 2574 */ 2575 2576 rcu_read_lock(); 2577 memcg = mem_cgroup_from_task(current); 2578 objcg = __get_obj_cgroup_from_memcg(memcg); 2579 rcu_read_unlock(); 2580 2581 /* 2582 * Try set up a new objcg pointer atomically. If it 2583 * fails, it means the update flag was set concurrently, so 2584 * the whole procedure should be repeated. 2585 */ 2586 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2587 2588 return objcg; 2589 } 2590 2591 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2592 { 2593 struct mem_cgroup *memcg; 2594 struct obj_cgroup *objcg; 2595 2596 if (in_task()) { 2597 memcg = current->active_memcg; 2598 if (unlikely(memcg)) 2599 goto from_memcg; 2600 2601 objcg = READ_ONCE(current->objcg); 2602 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2603 objcg = current_objcg_update(); 2604 /* 2605 * Objcg reference is kept by the task, so it's safe 2606 * to use the objcg by the current task. 2607 */ 2608 return objcg; 2609 } 2610 2611 memcg = this_cpu_read(int_active_memcg); 2612 if (unlikely(memcg)) 2613 goto from_memcg; 2614 2615 return NULL; 2616 2617 from_memcg: 2618 objcg = NULL; 2619 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2620 /* 2621 * Memcg pointer is protected by scope (see set_active_memcg()) 2622 * and is pinning the corresponding objcg, so objcg can't go 2623 * away and can be used within the scope without any additional 2624 * protection. 2625 */ 2626 objcg = rcu_dereference_check(memcg->objcg, 1); 2627 if (likely(objcg)) 2628 break; 2629 } 2630 2631 return objcg; 2632 } 2633 2634 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2635 { 2636 struct obj_cgroup *objcg; 2637 2638 if (!memcg_kmem_online()) 2639 return NULL; 2640 2641 if (folio_memcg_kmem(folio)) { 2642 objcg = __folio_objcg(folio); 2643 obj_cgroup_get(objcg); 2644 } else { 2645 struct mem_cgroup *memcg; 2646 2647 rcu_read_lock(); 2648 memcg = __folio_memcg(folio); 2649 if (memcg) 2650 objcg = __get_obj_cgroup_from_memcg(memcg); 2651 else 2652 objcg = NULL; 2653 rcu_read_unlock(); 2654 } 2655 return objcg; 2656 } 2657 2658 /* 2659 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2660 * @objcg: object cgroup to uncharge 2661 * @nr_pages: number of pages to uncharge 2662 */ 2663 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2664 unsigned int nr_pages) 2665 { 2666 struct mem_cgroup *memcg; 2667 2668 memcg = get_mem_cgroup_from_objcg(objcg); 2669 2670 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2671 memcg1_account_kmem(memcg, -nr_pages); 2672 if (!mem_cgroup_is_root(memcg)) 2673 refill_stock(memcg, nr_pages); 2674 2675 css_put(&memcg->css); 2676 } 2677 2678 /* 2679 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2680 * @objcg: object cgroup to charge 2681 * @gfp: reclaim mode 2682 * @nr_pages: number of pages to charge 2683 * 2684 * Returns 0 on success, an error code on failure. 2685 */ 2686 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2687 unsigned int nr_pages) 2688 { 2689 struct mem_cgroup *memcg; 2690 int ret; 2691 2692 memcg = get_mem_cgroup_from_objcg(objcg); 2693 2694 ret = try_charge_memcg(memcg, gfp, nr_pages); 2695 if (ret) 2696 goto out; 2697 2698 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2699 memcg1_account_kmem(memcg, nr_pages); 2700 out: 2701 css_put(&memcg->css); 2702 2703 return ret; 2704 } 2705 2706 static struct obj_cgroup *page_objcg(const struct page *page) 2707 { 2708 unsigned long memcg_data = page->memcg_data; 2709 2710 if (mem_cgroup_disabled() || !memcg_data) 2711 return NULL; 2712 2713 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2714 page); 2715 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2716 } 2717 2718 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2719 { 2720 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2721 } 2722 2723 /** 2724 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2725 * @page: page to charge 2726 * @gfp: reclaim mode 2727 * @order: allocation order 2728 * 2729 * Returns 0 on success, an error code on failure. 2730 */ 2731 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2732 { 2733 struct obj_cgroup *objcg; 2734 int ret = 0; 2735 2736 objcg = current_obj_cgroup(); 2737 if (objcg) { 2738 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2739 if (!ret) { 2740 obj_cgroup_get(objcg); 2741 page_set_objcg(page, objcg); 2742 return 0; 2743 } 2744 } 2745 return ret; 2746 } 2747 2748 /** 2749 * __memcg_kmem_uncharge_page: uncharge a kmem page 2750 * @page: page to uncharge 2751 * @order: allocation order 2752 */ 2753 void __memcg_kmem_uncharge_page(struct page *page, int order) 2754 { 2755 struct obj_cgroup *objcg = page_objcg(page); 2756 unsigned int nr_pages = 1 << order; 2757 2758 if (!objcg) 2759 return; 2760 2761 obj_cgroup_uncharge_pages(objcg, nr_pages); 2762 page->memcg_data = 0; 2763 obj_cgroup_put(objcg); 2764 } 2765 2766 static void __account_obj_stock(struct obj_cgroup *objcg, 2767 struct memcg_stock_pcp *stock, int nr, 2768 struct pglist_data *pgdat, enum node_stat_item idx) 2769 { 2770 int *bytes; 2771 2772 /* 2773 * Save vmstat data in stock and skip vmstat array update unless 2774 * accumulating over a page of vmstat data or when pgdat changes. 2775 */ 2776 if (stock->cached_pgdat != pgdat) { 2777 /* Flush the existing cached vmstat data */ 2778 struct pglist_data *oldpg = stock->cached_pgdat; 2779 2780 if (stock->nr_slab_reclaimable_b) { 2781 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2782 stock->nr_slab_reclaimable_b); 2783 stock->nr_slab_reclaimable_b = 0; 2784 } 2785 if (stock->nr_slab_unreclaimable_b) { 2786 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2787 stock->nr_slab_unreclaimable_b); 2788 stock->nr_slab_unreclaimable_b = 0; 2789 } 2790 stock->cached_pgdat = pgdat; 2791 } 2792 2793 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2794 : &stock->nr_slab_unreclaimable_b; 2795 /* 2796 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2797 * cached locally at least once before pushing it out. 2798 */ 2799 if (!*bytes) { 2800 *bytes = nr; 2801 nr = 0; 2802 } else { 2803 *bytes += nr; 2804 if (abs(*bytes) > PAGE_SIZE) { 2805 nr = *bytes; 2806 *bytes = 0; 2807 } else { 2808 nr = 0; 2809 } 2810 } 2811 if (nr) 2812 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2813 } 2814 2815 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2816 struct pglist_data *pgdat, enum node_stat_item idx) 2817 { 2818 struct memcg_stock_pcp *stock; 2819 unsigned long flags; 2820 bool ret = false; 2821 2822 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2823 2824 stock = this_cpu_ptr(&memcg_stock); 2825 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2826 stock->nr_bytes -= nr_bytes; 2827 ret = true; 2828 2829 if (pgdat) 2830 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); 2831 } 2832 2833 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2834 2835 return ret; 2836 } 2837 2838 static void drain_obj_stock(struct memcg_stock_pcp *stock) 2839 { 2840 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2841 2842 if (!old) 2843 return; 2844 2845 if (stock->nr_bytes) { 2846 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2847 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2848 2849 if (nr_pages) { 2850 struct mem_cgroup *memcg; 2851 2852 memcg = get_mem_cgroup_from_objcg(old); 2853 2854 __mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2855 memcg1_account_kmem(memcg, -nr_pages); 2856 if (!mem_cgroup_is_root(memcg)) 2857 memcg_uncharge(memcg, nr_pages); 2858 2859 css_put(&memcg->css); 2860 } 2861 2862 /* 2863 * The leftover is flushed to the centralized per-memcg value. 2864 * On the next attempt to refill obj stock it will be moved 2865 * to a per-cpu stock (probably, on an other CPU), see 2866 * refill_obj_stock(). 2867 * 2868 * How often it's flushed is a trade-off between the memory 2869 * limit enforcement accuracy and potential CPU contention, 2870 * so it might be changed in the future. 2871 */ 2872 atomic_add(nr_bytes, &old->nr_charged_bytes); 2873 stock->nr_bytes = 0; 2874 } 2875 2876 /* 2877 * Flush the vmstat data in current stock 2878 */ 2879 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2880 if (stock->nr_slab_reclaimable_b) { 2881 __mod_objcg_mlstate(old, stock->cached_pgdat, 2882 NR_SLAB_RECLAIMABLE_B, 2883 stock->nr_slab_reclaimable_b); 2884 stock->nr_slab_reclaimable_b = 0; 2885 } 2886 if (stock->nr_slab_unreclaimable_b) { 2887 __mod_objcg_mlstate(old, stock->cached_pgdat, 2888 NR_SLAB_UNRECLAIMABLE_B, 2889 stock->nr_slab_unreclaimable_b); 2890 stock->nr_slab_unreclaimable_b = 0; 2891 } 2892 stock->cached_pgdat = NULL; 2893 } 2894 2895 WRITE_ONCE(stock->cached_objcg, NULL); 2896 obj_cgroup_put(old); 2897 } 2898 2899 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2900 struct mem_cgroup *root_memcg) 2901 { 2902 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2903 struct mem_cgroup *memcg; 2904 2905 if (objcg) { 2906 memcg = obj_cgroup_memcg(objcg); 2907 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2908 return true; 2909 } 2910 2911 return false; 2912 } 2913 2914 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2915 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, 2916 enum node_stat_item idx) 2917 { 2918 struct memcg_stock_pcp *stock; 2919 unsigned long flags; 2920 unsigned int nr_pages = 0; 2921 2922 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2923 2924 stock = this_cpu_ptr(&memcg_stock); 2925 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2926 drain_obj_stock(stock); 2927 obj_cgroup_get(objcg); 2928 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2929 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2930 WRITE_ONCE(stock->cached_objcg, objcg); 2931 2932 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2933 } 2934 stock->nr_bytes += nr_bytes; 2935 2936 if (pgdat) 2937 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); 2938 2939 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 2940 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2941 stock->nr_bytes &= (PAGE_SIZE - 1); 2942 } 2943 2944 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2945 2946 if (nr_pages) 2947 obj_cgroup_uncharge_pages(objcg, nr_pages); 2948 } 2949 2950 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, 2951 struct pglist_data *pgdat, enum node_stat_item idx) 2952 { 2953 unsigned int nr_pages, nr_bytes; 2954 int ret; 2955 2956 if (likely(consume_obj_stock(objcg, size, pgdat, idx))) 2957 return 0; 2958 2959 /* 2960 * In theory, objcg->nr_charged_bytes can have enough 2961 * pre-charged bytes to satisfy the allocation. However, 2962 * flushing objcg->nr_charged_bytes requires two atomic 2963 * operations, and objcg->nr_charged_bytes can't be big. 2964 * The shared objcg->nr_charged_bytes can also become a 2965 * performance bottleneck if all tasks of the same memcg are 2966 * trying to update it. So it's better to ignore it and try 2967 * grab some new pages. The stock's nr_bytes will be flushed to 2968 * objcg->nr_charged_bytes later on when objcg changes. 2969 * 2970 * The stock's nr_bytes may contain enough pre-charged bytes 2971 * to allow one less page from being charged, but we can't rely 2972 * on the pre-charged bytes not being changed outside of 2973 * consume_obj_stock() or refill_obj_stock(). So ignore those 2974 * pre-charged bytes as well when charging pages. To avoid a 2975 * page uncharge right after a page charge, we set the 2976 * allow_uncharge flag to false when calling refill_obj_stock() 2977 * to temporarily allow the pre-charged bytes to exceed the page 2978 * size limit. The maximum reachable value of the pre-charged 2979 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 2980 * race. 2981 */ 2982 nr_pages = size >> PAGE_SHIFT; 2983 nr_bytes = size & (PAGE_SIZE - 1); 2984 2985 if (nr_bytes) 2986 nr_pages += 1; 2987 2988 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 2989 if (!ret && (nr_bytes || pgdat)) 2990 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, 2991 false, size, pgdat, idx); 2992 2993 return ret; 2994 } 2995 2996 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 2997 { 2998 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); 2999 } 3000 3001 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3002 { 3003 refill_obj_stock(objcg, size, true, 0, NULL, 0); 3004 } 3005 3006 static inline size_t obj_full_size(struct kmem_cache *s) 3007 { 3008 /* 3009 * For each accounted object there is an extra space which is used 3010 * to store obj_cgroup membership. Charge it too. 3011 */ 3012 return s->size + sizeof(struct obj_cgroup *); 3013 } 3014 3015 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3016 gfp_t flags, size_t size, void **p) 3017 { 3018 struct obj_cgroup *objcg; 3019 struct slab *slab; 3020 unsigned long off; 3021 size_t i; 3022 3023 /* 3024 * The obtained objcg pointer is safe to use within the current scope, 3025 * defined by current task or set_active_memcg() pair. 3026 * obj_cgroup_get() is used to get a permanent reference. 3027 */ 3028 objcg = current_obj_cgroup(); 3029 if (!objcg) 3030 return true; 3031 3032 /* 3033 * slab_alloc_node() avoids the NULL check, so we might be called with a 3034 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3035 * the whole requested size. 3036 * return success as there's nothing to free back 3037 */ 3038 if (unlikely(*p == NULL)) 3039 return true; 3040 3041 flags &= gfp_allowed_mask; 3042 3043 if (lru) { 3044 int ret; 3045 struct mem_cgroup *memcg; 3046 3047 memcg = get_mem_cgroup_from_objcg(objcg); 3048 ret = memcg_list_lru_alloc(memcg, lru, flags); 3049 css_put(&memcg->css); 3050 3051 if (ret) 3052 return false; 3053 } 3054 3055 for (i = 0; i < size; i++) { 3056 slab = virt_to_slab(p[i]); 3057 3058 if (!slab_obj_exts(slab) && 3059 alloc_slab_obj_exts(slab, s, flags, false)) { 3060 continue; 3061 } 3062 3063 /* 3064 * if we fail and size is 1, memcg_alloc_abort_single() will 3065 * just free the object, which is ok as we have not assigned 3066 * objcg to its obj_ext yet 3067 * 3068 * for larger sizes, kmem_cache_free_bulk() will uncharge 3069 * any objects that were already charged and obj_ext assigned 3070 * 3071 * TODO: we could batch this until slab_pgdat(slab) changes 3072 * between iterations, with a more complicated undo 3073 */ 3074 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), 3075 slab_pgdat(slab), cache_vmstat_idx(s))) 3076 return false; 3077 3078 off = obj_to_index(s, slab, p[i]); 3079 obj_cgroup_get(objcg); 3080 slab_obj_exts(slab)[off].objcg = objcg; 3081 } 3082 3083 return true; 3084 } 3085 3086 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3087 void **p, int objects, struct slabobj_ext *obj_exts) 3088 { 3089 size_t obj_size = obj_full_size(s); 3090 3091 for (int i = 0; i < objects; i++) { 3092 struct obj_cgroup *objcg; 3093 unsigned int off; 3094 3095 off = obj_to_index(s, slab, p[i]); 3096 objcg = obj_exts[off].objcg; 3097 if (!objcg) 3098 continue; 3099 3100 obj_exts[off].objcg = NULL; 3101 refill_obj_stock(objcg, obj_size, true, -obj_size, 3102 slab_pgdat(slab), cache_vmstat_idx(s)); 3103 obj_cgroup_put(objcg); 3104 } 3105 } 3106 3107 /* 3108 * The objcg is only set on the first page, so transfer it to all the 3109 * other pages. 3110 */ 3111 void split_page_memcg(struct page *page, unsigned order) 3112 { 3113 struct obj_cgroup *objcg = page_objcg(page); 3114 unsigned int i, nr = 1 << order; 3115 3116 if (!objcg) 3117 return; 3118 3119 for (i = 1; i < nr; i++) 3120 page_set_objcg(&page[i], objcg); 3121 3122 obj_cgroup_get_many(objcg, nr - 1); 3123 } 3124 3125 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3126 unsigned new_order) 3127 { 3128 unsigned new_refs; 3129 3130 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3131 return; 3132 3133 new_refs = (1 << (old_order - new_order)) - 1; 3134 css_get_many(&__folio_memcg(folio)->css, new_refs); 3135 } 3136 3137 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3138 { 3139 unsigned long val; 3140 3141 if (mem_cgroup_is_root(memcg)) { 3142 /* 3143 * Approximate root's usage from global state. This isn't 3144 * perfect, but the root usage was always an approximation. 3145 */ 3146 val = global_node_page_state(NR_FILE_PAGES) + 3147 global_node_page_state(NR_ANON_MAPPED); 3148 if (swap) 3149 val += total_swap_pages - get_nr_swap_pages(); 3150 } else { 3151 if (!swap) 3152 val = page_counter_read(&memcg->memory); 3153 else 3154 val = page_counter_read(&memcg->memsw); 3155 } 3156 return val; 3157 } 3158 3159 static int memcg_online_kmem(struct mem_cgroup *memcg) 3160 { 3161 struct obj_cgroup *objcg; 3162 3163 if (mem_cgroup_kmem_disabled()) 3164 return 0; 3165 3166 if (unlikely(mem_cgroup_is_root(memcg))) 3167 return 0; 3168 3169 objcg = obj_cgroup_alloc(); 3170 if (!objcg) 3171 return -ENOMEM; 3172 3173 objcg->memcg = memcg; 3174 rcu_assign_pointer(memcg->objcg, objcg); 3175 obj_cgroup_get(objcg); 3176 memcg->orig_objcg = objcg; 3177 3178 static_branch_enable(&memcg_kmem_online_key); 3179 3180 memcg->kmemcg_id = memcg->id.id; 3181 3182 return 0; 3183 } 3184 3185 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3186 { 3187 struct mem_cgroup *parent; 3188 3189 if (mem_cgroup_kmem_disabled()) 3190 return; 3191 3192 if (unlikely(mem_cgroup_is_root(memcg))) 3193 return; 3194 3195 parent = parent_mem_cgroup(memcg); 3196 if (!parent) 3197 parent = root_mem_cgroup; 3198 3199 memcg_reparent_list_lrus(memcg, parent); 3200 3201 /* 3202 * Objcg's reparenting must be after list_lru's, make sure list_lru 3203 * helpers won't use parent's list_lru until child is drained. 3204 */ 3205 memcg_reparent_objcgs(memcg, parent); 3206 } 3207 3208 #ifdef CONFIG_CGROUP_WRITEBACK 3209 3210 #include <trace/events/writeback.h> 3211 3212 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3213 { 3214 return wb_domain_init(&memcg->cgwb_domain, gfp); 3215 } 3216 3217 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3218 { 3219 wb_domain_exit(&memcg->cgwb_domain); 3220 } 3221 3222 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3223 { 3224 wb_domain_size_changed(&memcg->cgwb_domain); 3225 } 3226 3227 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3228 { 3229 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3230 3231 if (!memcg->css.parent) 3232 return NULL; 3233 3234 return &memcg->cgwb_domain; 3235 } 3236 3237 /** 3238 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3239 * @wb: bdi_writeback in question 3240 * @pfilepages: out parameter for number of file pages 3241 * @pheadroom: out parameter for number of allocatable pages according to memcg 3242 * @pdirty: out parameter for number of dirty pages 3243 * @pwriteback: out parameter for number of pages under writeback 3244 * 3245 * Determine the numbers of file, headroom, dirty, and writeback pages in 3246 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3247 * is a bit more involved. 3248 * 3249 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3250 * headroom is calculated as the lowest headroom of itself and the 3251 * ancestors. Note that this doesn't consider the actual amount of 3252 * available memory in the system. The caller should further cap 3253 * *@pheadroom accordingly. 3254 */ 3255 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3256 unsigned long *pheadroom, unsigned long *pdirty, 3257 unsigned long *pwriteback) 3258 { 3259 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3260 struct mem_cgroup *parent; 3261 3262 mem_cgroup_flush_stats_ratelimited(memcg); 3263 3264 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3265 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3266 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3267 memcg_page_state(memcg, NR_ACTIVE_FILE); 3268 3269 *pheadroom = PAGE_COUNTER_MAX; 3270 while ((parent = parent_mem_cgroup(memcg))) { 3271 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3272 READ_ONCE(memcg->memory.high)); 3273 unsigned long used = page_counter_read(&memcg->memory); 3274 3275 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3276 memcg = parent; 3277 } 3278 } 3279 3280 /* 3281 * Foreign dirty flushing 3282 * 3283 * There's an inherent mismatch between memcg and writeback. The former 3284 * tracks ownership per-page while the latter per-inode. This was a 3285 * deliberate design decision because honoring per-page ownership in the 3286 * writeback path is complicated, may lead to higher CPU and IO overheads 3287 * and deemed unnecessary given that write-sharing an inode across 3288 * different cgroups isn't a common use-case. 3289 * 3290 * Combined with inode majority-writer ownership switching, this works well 3291 * enough in most cases but there are some pathological cases. For 3292 * example, let's say there are two cgroups A and B which keep writing to 3293 * different but confined parts of the same inode. B owns the inode and 3294 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3295 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3296 * triggering background writeback. A will be slowed down without a way to 3297 * make writeback of the dirty pages happen. 3298 * 3299 * Conditions like the above can lead to a cgroup getting repeatedly and 3300 * severely throttled after making some progress after each 3301 * dirty_expire_interval while the underlying IO device is almost 3302 * completely idle. 3303 * 3304 * Solving this problem completely requires matching the ownership tracking 3305 * granularities between memcg and writeback in either direction. However, 3306 * the more egregious behaviors can be avoided by simply remembering the 3307 * most recent foreign dirtying events and initiating remote flushes on 3308 * them when local writeback isn't enough to keep the memory clean enough. 3309 * 3310 * The following two functions implement such mechanism. When a foreign 3311 * page - a page whose memcg and writeback ownerships don't match - is 3312 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3313 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3314 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3315 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3316 * foreign bdi_writebacks which haven't expired. Both the numbers of 3317 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3318 * limited to MEMCG_CGWB_FRN_CNT. 3319 * 3320 * The mechanism only remembers IDs and doesn't hold any object references. 3321 * As being wrong occasionally doesn't matter, updates and accesses to the 3322 * records are lockless and racy. 3323 */ 3324 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3325 struct bdi_writeback *wb) 3326 { 3327 struct mem_cgroup *memcg = folio_memcg(folio); 3328 struct memcg_cgwb_frn *frn; 3329 u64 now = get_jiffies_64(); 3330 u64 oldest_at = now; 3331 int oldest = -1; 3332 int i; 3333 3334 trace_track_foreign_dirty(folio, wb); 3335 3336 /* 3337 * Pick the slot to use. If there is already a slot for @wb, keep 3338 * using it. If not replace the oldest one which isn't being 3339 * written out. 3340 */ 3341 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3342 frn = &memcg->cgwb_frn[i]; 3343 if (frn->bdi_id == wb->bdi->id && 3344 frn->memcg_id == wb->memcg_css->id) 3345 break; 3346 if (time_before64(frn->at, oldest_at) && 3347 atomic_read(&frn->done.cnt) == 1) { 3348 oldest = i; 3349 oldest_at = frn->at; 3350 } 3351 } 3352 3353 if (i < MEMCG_CGWB_FRN_CNT) { 3354 /* 3355 * Re-using an existing one. Update timestamp lazily to 3356 * avoid making the cacheline hot. We want them to be 3357 * reasonably up-to-date and significantly shorter than 3358 * dirty_expire_interval as that's what expires the record. 3359 * Use the shorter of 1s and dirty_expire_interval / 8. 3360 */ 3361 unsigned long update_intv = 3362 min_t(unsigned long, HZ, 3363 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3364 3365 if (time_before64(frn->at, now - update_intv)) 3366 frn->at = now; 3367 } else if (oldest >= 0) { 3368 /* replace the oldest free one */ 3369 frn = &memcg->cgwb_frn[oldest]; 3370 frn->bdi_id = wb->bdi->id; 3371 frn->memcg_id = wb->memcg_css->id; 3372 frn->at = now; 3373 } 3374 } 3375 3376 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3377 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3378 { 3379 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3380 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3381 u64 now = jiffies_64; 3382 int i; 3383 3384 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3385 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3386 3387 /* 3388 * If the record is older than dirty_expire_interval, 3389 * writeback on it has already started. No need to kick it 3390 * off again. Also, don't start a new one if there's 3391 * already one in flight. 3392 */ 3393 if (time_after64(frn->at, now - intv) && 3394 atomic_read(&frn->done.cnt) == 1) { 3395 frn->at = 0; 3396 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3397 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3398 WB_REASON_FOREIGN_FLUSH, 3399 &frn->done); 3400 } 3401 } 3402 } 3403 3404 #else /* CONFIG_CGROUP_WRITEBACK */ 3405 3406 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3407 { 3408 return 0; 3409 } 3410 3411 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3412 { 3413 } 3414 3415 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3416 { 3417 } 3418 3419 #endif /* CONFIG_CGROUP_WRITEBACK */ 3420 3421 /* 3422 * Private memory cgroup IDR 3423 * 3424 * Swap-out records and page cache shadow entries need to store memcg 3425 * references in constrained space, so we maintain an ID space that is 3426 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3427 * memory-controlled cgroups to 64k. 3428 * 3429 * However, there usually are many references to the offline CSS after 3430 * the cgroup has been destroyed, such as page cache or reclaimable 3431 * slab objects, that don't need to hang on to the ID. We want to keep 3432 * those dead CSS from occupying IDs, or we might quickly exhaust the 3433 * relatively small ID space and prevent the creation of new cgroups 3434 * even when there are much fewer than 64k cgroups - possibly none. 3435 * 3436 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3437 * be freed and recycled when it's no longer needed, which is usually 3438 * when the CSS is offlined. 3439 * 3440 * The only exception to that are records of swapped out tmpfs/shmem 3441 * pages that need to be attributed to live ancestors on swapin. But 3442 * those references are manageable from userspace. 3443 */ 3444 3445 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3446 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3447 3448 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3449 { 3450 if (memcg->id.id > 0) { 3451 xa_erase(&mem_cgroup_ids, memcg->id.id); 3452 memcg->id.id = 0; 3453 } 3454 } 3455 3456 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3457 unsigned int n) 3458 { 3459 refcount_add(n, &memcg->id.ref); 3460 } 3461 3462 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3463 { 3464 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3465 mem_cgroup_id_remove(memcg); 3466 3467 /* Memcg ID pins CSS */ 3468 css_put(&memcg->css); 3469 } 3470 } 3471 3472 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3473 { 3474 mem_cgroup_id_put_many(memcg, 1); 3475 } 3476 3477 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 3478 { 3479 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3480 /* 3481 * The root cgroup cannot be destroyed, so it's refcount must 3482 * always be >= 1. 3483 */ 3484 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3485 VM_BUG_ON(1); 3486 break; 3487 } 3488 memcg = parent_mem_cgroup(memcg); 3489 if (!memcg) 3490 memcg = root_mem_cgroup; 3491 } 3492 return memcg; 3493 } 3494 3495 /** 3496 * mem_cgroup_from_id - look up a memcg from a memcg id 3497 * @id: the memcg id to look up 3498 * 3499 * Caller must hold rcu_read_lock(). 3500 */ 3501 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3502 { 3503 WARN_ON_ONCE(!rcu_read_lock_held()); 3504 return xa_load(&mem_cgroup_ids, id); 3505 } 3506 3507 #ifdef CONFIG_SHRINKER_DEBUG 3508 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3509 { 3510 struct cgroup *cgrp; 3511 struct cgroup_subsys_state *css; 3512 struct mem_cgroup *memcg; 3513 3514 cgrp = cgroup_get_from_id(ino); 3515 if (IS_ERR(cgrp)) 3516 return ERR_CAST(cgrp); 3517 3518 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3519 if (css) 3520 memcg = container_of(css, struct mem_cgroup, css); 3521 else 3522 memcg = ERR_PTR(-ENOENT); 3523 3524 cgroup_put(cgrp); 3525 3526 return memcg; 3527 } 3528 #endif 3529 3530 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3531 { 3532 if (!pn) 3533 return; 3534 3535 free_percpu(pn->lruvec_stats_percpu); 3536 kfree(pn->lruvec_stats); 3537 kfree(pn); 3538 } 3539 3540 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3541 { 3542 struct mem_cgroup_per_node *pn; 3543 3544 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3545 if (!pn) 3546 return false; 3547 3548 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3549 GFP_KERNEL_ACCOUNT, node); 3550 if (!pn->lruvec_stats) 3551 goto fail; 3552 3553 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3554 GFP_KERNEL_ACCOUNT); 3555 if (!pn->lruvec_stats_percpu) 3556 goto fail; 3557 3558 lruvec_init(&pn->lruvec); 3559 pn->memcg = memcg; 3560 3561 memcg->nodeinfo[node] = pn; 3562 return true; 3563 fail: 3564 free_mem_cgroup_per_node_info(pn); 3565 return false; 3566 } 3567 3568 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3569 { 3570 int node; 3571 3572 obj_cgroup_put(memcg->orig_objcg); 3573 3574 for_each_node(node) 3575 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3576 memcg1_free_events(memcg); 3577 kfree(memcg->vmstats); 3578 free_percpu(memcg->vmstats_percpu); 3579 kfree(memcg); 3580 } 3581 3582 static void mem_cgroup_free(struct mem_cgroup *memcg) 3583 { 3584 lru_gen_exit_memcg(memcg); 3585 memcg_wb_domain_exit(memcg); 3586 __mem_cgroup_free(memcg); 3587 } 3588 3589 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3590 { 3591 struct memcg_vmstats_percpu *statc, *pstatc; 3592 struct mem_cgroup *memcg; 3593 int node, cpu; 3594 int __maybe_unused i; 3595 long error; 3596 3597 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3598 if (!memcg) 3599 return ERR_PTR(-ENOMEM); 3600 3601 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3602 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3603 if (error) 3604 goto fail; 3605 error = -ENOMEM; 3606 3607 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3608 GFP_KERNEL_ACCOUNT); 3609 if (!memcg->vmstats) 3610 goto fail; 3611 3612 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3613 GFP_KERNEL_ACCOUNT); 3614 if (!memcg->vmstats_percpu) 3615 goto fail; 3616 3617 if (!memcg1_alloc_events(memcg)) 3618 goto fail; 3619 3620 for_each_possible_cpu(cpu) { 3621 if (parent) 3622 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3623 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3624 statc->parent = parent ? pstatc : NULL; 3625 statc->vmstats = memcg->vmstats; 3626 } 3627 3628 for_each_node(node) 3629 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3630 goto fail; 3631 3632 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3633 goto fail; 3634 3635 INIT_WORK(&memcg->high_work, high_work_func); 3636 vmpressure_init(&memcg->vmpressure); 3637 INIT_LIST_HEAD(&memcg->memory_peaks); 3638 INIT_LIST_HEAD(&memcg->swap_peaks); 3639 spin_lock_init(&memcg->peaks_lock); 3640 memcg->socket_pressure = jiffies; 3641 memcg1_memcg_init(memcg); 3642 memcg->kmemcg_id = -1; 3643 INIT_LIST_HEAD(&memcg->objcg_list); 3644 #ifdef CONFIG_CGROUP_WRITEBACK 3645 INIT_LIST_HEAD(&memcg->cgwb_list); 3646 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3647 memcg->cgwb_frn[i].done = 3648 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3649 #endif 3650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3651 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3652 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3653 memcg->deferred_split_queue.split_queue_len = 0; 3654 #endif 3655 lru_gen_init_memcg(memcg); 3656 return memcg; 3657 fail: 3658 mem_cgroup_id_remove(memcg); 3659 __mem_cgroup_free(memcg); 3660 return ERR_PTR(error); 3661 } 3662 3663 static struct cgroup_subsys_state * __ref 3664 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3665 { 3666 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3667 struct mem_cgroup *memcg, *old_memcg; 3668 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3669 3670 old_memcg = set_active_memcg(parent); 3671 memcg = mem_cgroup_alloc(parent); 3672 set_active_memcg(old_memcg); 3673 if (IS_ERR(memcg)) 3674 return ERR_CAST(memcg); 3675 3676 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3677 memcg1_soft_limit_reset(memcg); 3678 #ifdef CONFIG_ZSWAP 3679 memcg->zswap_max = PAGE_COUNTER_MAX; 3680 WRITE_ONCE(memcg->zswap_writeback, true); 3681 #endif 3682 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3683 if (parent) { 3684 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3685 3686 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3687 page_counter_init(&memcg->swap, &parent->swap, false); 3688 #ifdef CONFIG_MEMCG_V1 3689 memcg->memory.track_failcnt = !memcg_on_dfl; 3690 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3691 page_counter_init(&memcg->kmem, &parent->kmem, false); 3692 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3693 #endif 3694 } else { 3695 init_memcg_stats(); 3696 init_memcg_events(); 3697 page_counter_init(&memcg->memory, NULL, true); 3698 page_counter_init(&memcg->swap, NULL, false); 3699 #ifdef CONFIG_MEMCG_V1 3700 page_counter_init(&memcg->kmem, NULL, false); 3701 page_counter_init(&memcg->tcpmem, NULL, false); 3702 #endif 3703 root_mem_cgroup = memcg; 3704 return &memcg->css; 3705 } 3706 3707 if (memcg_on_dfl && !cgroup_memory_nosocket) 3708 static_branch_inc(&memcg_sockets_enabled_key); 3709 3710 if (!cgroup_memory_nobpf) 3711 static_branch_inc(&memcg_bpf_enabled_key); 3712 3713 return &memcg->css; 3714 } 3715 3716 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3717 { 3718 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3719 3720 if (memcg_online_kmem(memcg)) 3721 goto remove_id; 3722 3723 /* 3724 * A memcg must be visible for expand_shrinker_info() 3725 * by the time the maps are allocated. So, we allocate maps 3726 * here, when for_each_mem_cgroup() can't skip it. 3727 */ 3728 if (alloc_shrinker_info(memcg)) 3729 goto offline_kmem; 3730 3731 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3732 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3733 FLUSH_TIME); 3734 lru_gen_online_memcg(memcg); 3735 3736 /* Online state pins memcg ID, memcg ID pins CSS */ 3737 refcount_set(&memcg->id.ref, 1); 3738 css_get(css); 3739 3740 /* 3741 * Ensure mem_cgroup_from_id() works once we're fully online. 3742 * 3743 * We could do this earlier and require callers to filter with 3744 * css_tryget_online(). But right now there are no users that 3745 * need earlier access, and the workingset code relies on the 3746 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3747 * publish it here at the end of onlining. This matches the 3748 * regular ID destruction during offlining. 3749 */ 3750 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3751 3752 return 0; 3753 offline_kmem: 3754 memcg_offline_kmem(memcg); 3755 remove_id: 3756 mem_cgroup_id_remove(memcg); 3757 return -ENOMEM; 3758 } 3759 3760 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3761 { 3762 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3763 3764 memcg1_css_offline(memcg); 3765 3766 page_counter_set_min(&memcg->memory, 0); 3767 page_counter_set_low(&memcg->memory, 0); 3768 3769 zswap_memcg_offline_cleanup(memcg); 3770 3771 memcg_offline_kmem(memcg); 3772 reparent_shrinker_deferred(memcg); 3773 wb_memcg_offline(memcg); 3774 lru_gen_offline_memcg(memcg); 3775 3776 drain_all_stock(memcg); 3777 3778 mem_cgroup_id_put(memcg); 3779 } 3780 3781 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3782 { 3783 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3784 3785 invalidate_reclaim_iterators(memcg); 3786 lru_gen_release_memcg(memcg); 3787 } 3788 3789 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3790 { 3791 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3792 int __maybe_unused i; 3793 3794 #ifdef CONFIG_CGROUP_WRITEBACK 3795 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3796 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3797 #endif 3798 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3799 static_branch_dec(&memcg_sockets_enabled_key); 3800 3801 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3802 static_branch_dec(&memcg_sockets_enabled_key); 3803 3804 if (!cgroup_memory_nobpf) 3805 static_branch_dec(&memcg_bpf_enabled_key); 3806 3807 vmpressure_cleanup(&memcg->vmpressure); 3808 cancel_work_sync(&memcg->high_work); 3809 memcg1_remove_from_trees(memcg); 3810 free_shrinker_info(memcg); 3811 mem_cgroup_free(memcg); 3812 } 3813 3814 /** 3815 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3816 * @css: the target css 3817 * 3818 * Reset the states of the mem_cgroup associated with @css. This is 3819 * invoked when the userland requests disabling on the default hierarchy 3820 * but the memcg is pinned through dependency. The memcg should stop 3821 * applying policies and should revert to the vanilla state as it may be 3822 * made visible again. 3823 * 3824 * The current implementation only resets the essential configurations. 3825 * This needs to be expanded to cover all the visible parts. 3826 */ 3827 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3828 { 3829 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3830 3831 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3832 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3833 #ifdef CONFIG_MEMCG_V1 3834 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3835 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3836 #endif 3837 page_counter_set_min(&memcg->memory, 0); 3838 page_counter_set_low(&memcg->memory, 0); 3839 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3840 memcg1_soft_limit_reset(memcg); 3841 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3842 memcg_wb_domain_size_changed(memcg); 3843 } 3844 3845 struct aggregate_control { 3846 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3847 long *aggregate; 3848 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3849 long *local; 3850 /* pointer to the pending child counters during tree propagation */ 3851 long *pending; 3852 /* pointer to the parent's pending counters, could be NULL */ 3853 long *ppending; 3854 /* pointer to the percpu counters to be aggregated */ 3855 long *cstat; 3856 /* pointer to the percpu counters of the last aggregation*/ 3857 long *cstat_prev; 3858 /* size of the above counters */ 3859 int size; 3860 }; 3861 3862 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3863 { 3864 int i; 3865 long delta, delta_cpu, v; 3866 3867 for (i = 0; i < ac->size; i++) { 3868 /* 3869 * Collect the aggregated propagation counts of groups 3870 * below us. We're in a per-cpu loop here and this is 3871 * a global counter, so the first cycle will get them. 3872 */ 3873 delta = ac->pending[i]; 3874 if (delta) 3875 ac->pending[i] = 0; 3876 3877 /* Add CPU changes on this level since the last flush */ 3878 delta_cpu = 0; 3879 v = READ_ONCE(ac->cstat[i]); 3880 if (v != ac->cstat_prev[i]) { 3881 delta_cpu = v - ac->cstat_prev[i]; 3882 delta += delta_cpu; 3883 ac->cstat_prev[i] = v; 3884 } 3885 3886 /* Aggregate counts on this level and propagate upwards */ 3887 if (delta_cpu) 3888 ac->local[i] += delta_cpu; 3889 3890 if (delta) { 3891 ac->aggregate[i] += delta; 3892 if (ac->ppending) 3893 ac->ppending[i] += delta; 3894 } 3895 } 3896 } 3897 3898 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3899 { 3900 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3901 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3902 struct memcg_vmstats_percpu *statc; 3903 struct aggregate_control ac; 3904 int nid; 3905 3906 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3907 3908 ac = (struct aggregate_control) { 3909 .aggregate = memcg->vmstats->state, 3910 .local = memcg->vmstats->state_local, 3911 .pending = memcg->vmstats->state_pending, 3912 .ppending = parent ? parent->vmstats->state_pending : NULL, 3913 .cstat = statc->state, 3914 .cstat_prev = statc->state_prev, 3915 .size = MEMCG_VMSTAT_SIZE, 3916 }; 3917 mem_cgroup_stat_aggregate(&ac); 3918 3919 ac = (struct aggregate_control) { 3920 .aggregate = memcg->vmstats->events, 3921 .local = memcg->vmstats->events_local, 3922 .pending = memcg->vmstats->events_pending, 3923 .ppending = parent ? parent->vmstats->events_pending : NULL, 3924 .cstat = statc->events, 3925 .cstat_prev = statc->events_prev, 3926 .size = NR_MEMCG_EVENTS, 3927 }; 3928 mem_cgroup_stat_aggregate(&ac); 3929 3930 for_each_node_state(nid, N_MEMORY) { 3931 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3932 struct lruvec_stats *lstats = pn->lruvec_stats; 3933 struct lruvec_stats *plstats = NULL; 3934 struct lruvec_stats_percpu *lstatc; 3935 3936 if (parent) 3937 plstats = parent->nodeinfo[nid]->lruvec_stats; 3938 3939 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 3940 3941 ac = (struct aggregate_control) { 3942 .aggregate = lstats->state, 3943 .local = lstats->state_local, 3944 .pending = lstats->state_pending, 3945 .ppending = plstats ? plstats->state_pending : NULL, 3946 .cstat = lstatc->state, 3947 .cstat_prev = lstatc->state_prev, 3948 .size = NR_MEMCG_NODE_STAT_ITEMS, 3949 }; 3950 mem_cgroup_stat_aggregate(&ac); 3951 3952 } 3953 WRITE_ONCE(statc->stats_updates, 0); 3954 /* We are in a per-cpu loop here, only do the atomic write once */ 3955 if (atomic64_read(&memcg->vmstats->stats_updates)) 3956 atomic64_set(&memcg->vmstats->stats_updates, 0); 3957 } 3958 3959 static void mem_cgroup_fork(struct task_struct *task) 3960 { 3961 /* 3962 * Set the update flag to cause task->objcg to be initialized lazily 3963 * on the first allocation. It can be done without any synchronization 3964 * because it's always performed on the current task, so does 3965 * current_objcg_update(). 3966 */ 3967 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 3968 } 3969 3970 static void mem_cgroup_exit(struct task_struct *task) 3971 { 3972 struct obj_cgroup *objcg = task->objcg; 3973 3974 objcg = (struct obj_cgroup *) 3975 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 3976 obj_cgroup_put(objcg); 3977 3978 /* 3979 * Some kernel allocations can happen after this point, 3980 * but let's ignore them. It can be done without any synchronization 3981 * because it's always performed on the current task, so does 3982 * current_objcg_update(). 3983 */ 3984 task->objcg = NULL; 3985 } 3986 3987 #ifdef CONFIG_LRU_GEN 3988 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 3989 { 3990 struct task_struct *task; 3991 struct cgroup_subsys_state *css; 3992 3993 /* find the first leader if there is any */ 3994 cgroup_taskset_for_each_leader(task, css, tset) 3995 break; 3996 3997 if (!task) 3998 return; 3999 4000 task_lock(task); 4001 if (task->mm && READ_ONCE(task->mm->owner) == task) 4002 lru_gen_migrate_mm(task->mm); 4003 task_unlock(task); 4004 } 4005 #else 4006 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4007 #endif /* CONFIG_LRU_GEN */ 4008 4009 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4010 { 4011 struct task_struct *task; 4012 struct cgroup_subsys_state *css; 4013 4014 cgroup_taskset_for_each(task, css, tset) { 4015 /* atomically set the update bit */ 4016 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4017 } 4018 } 4019 4020 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4021 { 4022 mem_cgroup_lru_gen_attach(tset); 4023 mem_cgroup_kmem_attach(tset); 4024 } 4025 4026 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4027 { 4028 if (value == PAGE_COUNTER_MAX) 4029 seq_puts(m, "max\n"); 4030 else 4031 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4032 4033 return 0; 4034 } 4035 4036 static u64 memory_current_read(struct cgroup_subsys_state *css, 4037 struct cftype *cft) 4038 { 4039 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4040 4041 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4042 } 4043 4044 #define OFP_PEAK_UNSET (((-1UL))) 4045 4046 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4047 { 4048 struct cgroup_of_peak *ofp = of_peak(sf->private); 4049 u64 fd_peak = READ_ONCE(ofp->value), peak; 4050 4051 /* User wants global or local peak? */ 4052 if (fd_peak == OFP_PEAK_UNSET) 4053 peak = pc->watermark; 4054 else 4055 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4056 4057 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4058 return 0; 4059 } 4060 4061 static int memory_peak_show(struct seq_file *sf, void *v) 4062 { 4063 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4064 4065 return peak_show(sf, v, &memcg->memory); 4066 } 4067 4068 static int peak_open(struct kernfs_open_file *of) 4069 { 4070 struct cgroup_of_peak *ofp = of_peak(of); 4071 4072 ofp->value = OFP_PEAK_UNSET; 4073 return 0; 4074 } 4075 4076 static void peak_release(struct kernfs_open_file *of) 4077 { 4078 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4079 struct cgroup_of_peak *ofp = of_peak(of); 4080 4081 if (ofp->value == OFP_PEAK_UNSET) { 4082 /* fast path (no writes on this fd) */ 4083 return; 4084 } 4085 spin_lock(&memcg->peaks_lock); 4086 list_del(&ofp->list); 4087 spin_unlock(&memcg->peaks_lock); 4088 } 4089 4090 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4091 loff_t off, struct page_counter *pc, 4092 struct list_head *watchers) 4093 { 4094 unsigned long usage; 4095 struct cgroup_of_peak *peer_ctx; 4096 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4097 struct cgroup_of_peak *ofp = of_peak(of); 4098 4099 spin_lock(&memcg->peaks_lock); 4100 4101 usage = page_counter_read(pc); 4102 WRITE_ONCE(pc->local_watermark, usage); 4103 4104 list_for_each_entry(peer_ctx, watchers, list) 4105 if (usage > peer_ctx->value) 4106 WRITE_ONCE(peer_ctx->value, usage); 4107 4108 /* initial write, register watcher */ 4109 if (ofp->value == OFP_PEAK_UNSET) 4110 list_add(&ofp->list, watchers); 4111 4112 WRITE_ONCE(ofp->value, usage); 4113 spin_unlock(&memcg->peaks_lock); 4114 4115 return nbytes; 4116 } 4117 4118 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4119 size_t nbytes, loff_t off) 4120 { 4121 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4122 4123 return peak_write(of, buf, nbytes, off, &memcg->memory, 4124 &memcg->memory_peaks); 4125 } 4126 4127 #undef OFP_PEAK_UNSET 4128 4129 static int memory_min_show(struct seq_file *m, void *v) 4130 { 4131 return seq_puts_memcg_tunable(m, 4132 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4133 } 4134 4135 static ssize_t memory_min_write(struct kernfs_open_file *of, 4136 char *buf, size_t nbytes, loff_t off) 4137 { 4138 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4139 unsigned long min; 4140 int err; 4141 4142 buf = strstrip(buf); 4143 err = page_counter_memparse(buf, "max", &min); 4144 if (err) 4145 return err; 4146 4147 page_counter_set_min(&memcg->memory, min); 4148 4149 return nbytes; 4150 } 4151 4152 static int memory_low_show(struct seq_file *m, void *v) 4153 { 4154 return seq_puts_memcg_tunable(m, 4155 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4156 } 4157 4158 static ssize_t memory_low_write(struct kernfs_open_file *of, 4159 char *buf, size_t nbytes, loff_t off) 4160 { 4161 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4162 unsigned long low; 4163 int err; 4164 4165 buf = strstrip(buf); 4166 err = page_counter_memparse(buf, "max", &low); 4167 if (err) 4168 return err; 4169 4170 page_counter_set_low(&memcg->memory, low); 4171 4172 return nbytes; 4173 } 4174 4175 static int memory_high_show(struct seq_file *m, void *v) 4176 { 4177 return seq_puts_memcg_tunable(m, 4178 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4179 } 4180 4181 static ssize_t memory_high_write(struct kernfs_open_file *of, 4182 char *buf, size_t nbytes, loff_t off) 4183 { 4184 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4185 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4186 bool drained = false; 4187 unsigned long high; 4188 int err; 4189 4190 buf = strstrip(buf); 4191 err = page_counter_memparse(buf, "max", &high); 4192 if (err) 4193 return err; 4194 4195 page_counter_set_high(&memcg->memory, high); 4196 4197 for (;;) { 4198 unsigned long nr_pages = page_counter_read(&memcg->memory); 4199 unsigned long reclaimed; 4200 4201 if (nr_pages <= high) 4202 break; 4203 4204 if (signal_pending(current)) 4205 break; 4206 4207 if (!drained) { 4208 drain_all_stock(memcg); 4209 drained = true; 4210 continue; 4211 } 4212 4213 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4214 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4215 4216 if (!reclaimed && !nr_retries--) 4217 break; 4218 } 4219 4220 memcg_wb_domain_size_changed(memcg); 4221 return nbytes; 4222 } 4223 4224 static int memory_max_show(struct seq_file *m, void *v) 4225 { 4226 return seq_puts_memcg_tunable(m, 4227 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4228 } 4229 4230 static ssize_t memory_max_write(struct kernfs_open_file *of, 4231 char *buf, size_t nbytes, loff_t off) 4232 { 4233 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4234 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4235 bool drained = false; 4236 unsigned long max; 4237 int err; 4238 4239 buf = strstrip(buf); 4240 err = page_counter_memparse(buf, "max", &max); 4241 if (err) 4242 return err; 4243 4244 xchg(&memcg->memory.max, max); 4245 4246 for (;;) { 4247 unsigned long nr_pages = page_counter_read(&memcg->memory); 4248 4249 if (nr_pages <= max) 4250 break; 4251 4252 if (signal_pending(current)) 4253 break; 4254 4255 if (!drained) { 4256 drain_all_stock(memcg); 4257 drained = true; 4258 continue; 4259 } 4260 4261 if (nr_reclaims) { 4262 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4263 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4264 nr_reclaims--; 4265 continue; 4266 } 4267 4268 memcg_memory_event(memcg, MEMCG_OOM); 4269 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4270 break; 4271 cond_resched(); 4272 } 4273 4274 memcg_wb_domain_size_changed(memcg); 4275 return nbytes; 4276 } 4277 4278 /* 4279 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4280 * if any new events become available. 4281 */ 4282 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4283 { 4284 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4285 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4286 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4287 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4288 seq_printf(m, "oom_kill %lu\n", 4289 atomic_long_read(&events[MEMCG_OOM_KILL])); 4290 seq_printf(m, "oom_group_kill %lu\n", 4291 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4292 } 4293 4294 static int memory_events_show(struct seq_file *m, void *v) 4295 { 4296 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4297 4298 __memory_events_show(m, memcg->memory_events); 4299 return 0; 4300 } 4301 4302 static int memory_events_local_show(struct seq_file *m, void *v) 4303 { 4304 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4305 4306 __memory_events_show(m, memcg->memory_events_local); 4307 return 0; 4308 } 4309 4310 int memory_stat_show(struct seq_file *m, void *v) 4311 { 4312 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4313 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4314 struct seq_buf s; 4315 4316 if (!buf) 4317 return -ENOMEM; 4318 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4319 memory_stat_format(memcg, &s); 4320 seq_puts(m, buf); 4321 kfree(buf); 4322 return 0; 4323 } 4324 4325 #ifdef CONFIG_NUMA 4326 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4327 int item) 4328 { 4329 return lruvec_page_state(lruvec, item) * 4330 memcg_page_state_output_unit(item); 4331 } 4332 4333 static int memory_numa_stat_show(struct seq_file *m, void *v) 4334 { 4335 int i; 4336 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4337 4338 mem_cgroup_flush_stats(memcg); 4339 4340 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4341 int nid; 4342 4343 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4344 continue; 4345 4346 seq_printf(m, "%s", memory_stats[i].name); 4347 for_each_node_state(nid, N_MEMORY) { 4348 u64 size; 4349 struct lruvec *lruvec; 4350 4351 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4352 size = lruvec_page_state_output(lruvec, 4353 memory_stats[i].idx); 4354 seq_printf(m, " N%d=%llu", nid, size); 4355 } 4356 seq_putc(m, '\n'); 4357 } 4358 4359 return 0; 4360 } 4361 #endif 4362 4363 static int memory_oom_group_show(struct seq_file *m, void *v) 4364 { 4365 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4366 4367 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4368 4369 return 0; 4370 } 4371 4372 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4373 char *buf, size_t nbytes, loff_t off) 4374 { 4375 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4376 int ret, oom_group; 4377 4378 buf = strstrip(buf); 4379 if (!buf) 4380 return -EINVAL; 4381 4382 ret = kstrtoint(buf, 0, &oom_group); 4383 if (ret) 4384 return ret; 4385 4386 if (oom_group != 0 && oom_group != 1) 4387 return -EINVAL; 4388 4389 WRITE_ONCE(memcg->oom_group, oom_group); 4390 4391 return nbytes; 4392 } 4393 4394 enum { 4395 MEMORY_RECLAIM_SWAPPINESS = 0, 4396 MEMORY_RECLAIM_NULL, 4397 }; 4398 4399 static const match_table_t tokens = { 4400 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4401 { MEMORY_RECLAIM_NULL, NULL }, 4402 }; 4403 4404 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4405 size_t nbytes, loff_t off) 4406 { 4407 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4408 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4409 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4410 int swappiness = -1; 4411 unsigned int reclaim_options; 4412 char *old_buf, *start; 4413 substring_t args[MAX_OPT_ARGS]; 4414 4415 buf = strstrip(buf); 4416 4417 old_buf = buf; 4418 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4419 if (buf == old_buf) 4420 return -EINVAL; 4421 4422 buf = strstrip(buf); 4423 4424 while ((start = strsep(&buf, " ")) != NULL) { 4425 if (!strlen(start)) 4426 continue; 4427 switch (match_token(start, tokens, args)) { 4428 case MEMORY_RECLAIM_SWAPPINESS: 4429 if (match_int(&args[0], &swappiness)) 4430 return -EINVAL; 4431 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4432 return -EINVAL; 4433 break; 4434 default: 4435 return -EINVAL; 4436 } 4437 } 4438 4439 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4440 while (nr_reclaimed < nr_to_reclaim) { 4441 /* Will converge on zero, but reclaim enforces a minimum */ 4442 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4443 unsigned long reclaimed; 4444 4445 if (signal_pending(current)) 4446 return -EINTR; 4447 4448 /* 4449 * This is the final attempt, drain percpu lru caches in the 4450 * hope of introducing more evictable pages for 4451 * try_to_free_mem_cgroup_pages(). 4452 */ 4453 if (!nr_retries) 4454 lru_add_drain_all(); 4455 4456 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4457 batch_size, GFP_KERNEL, 4458 reclaim_options, 4459 swappiness == -1 ? NULL : &swappiness); 4460 4461 if (!reclaimed && !nr_retries--) 4462 return -EAGAIN; 4463 4464 nr_reclaimed += reclaimed; 4465 } 4466 4467 return nbytes; 4468 } 4469 4470 static struct cftype memory_files[] = { 4471 { 4472 .name = "current", 4473 .flags = CFTYPE_NOT_ON_ROOT, 4474 .read_u64 = memory_current_read, 4475 }, 4476 { 4477 .name = "peak", 4478 .flags = CFTYPE_NOT_ON_ROOT, 4479 .open = peak_open, 4480 .release = peak_release, 4481 .seq_show = memory_peak_show, 4482 .write = memory_peak_write, 4483 }, 4484 { 4485 .name = "min", 4486 .flags = CFTYPE_NOT_ON_ROOT, 4487 .seq_show = memory_min_show, 4488 .write = memory_min_write, 4489 }, 4490 { 4491 .name = "low", 4492 .flags = CFTYPE_NOT_ON_ROOT, 4493 .seq_show = memory_low_show, 4494 .write = memory_low_write, 4495 }, 4496 { 4497 .name = "high", 4498 .flags = CFTYPE_NOT_ON_ROOT, 4499 .seq_show = memory_high_show, 4500 .write = memory_high_write, 4501 }, 4502 { 4503 .name = "max", 4504 .flags = CFTYPE_NOT_ON_ROOT, 4505 .seq_show = memory_max_show, 4506 .write = memory_max_write, 4507 }, 4508 { 4509 .name = "events", 4510 .flags = CFTYPE_NOT_ON_ROOT, 4511 .file_offset = offsetof(struct mem_cgroup, events_file), 4512 .seq_show = memory_events_show, 4513 }, 4514 { 4515 .name = "events.local", 4516 .flags = CFTYPE_NOT_ON_ROOT, 4517 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4518 .seq_show = memory_events_local_show, 4519 }, 4520 { 4521 .name = "stat", 4522 .seq_show = memory_stat_show, 4523 }, 4524 #ifdef CONFIG_NUMA 4525 { 4526 .name = "numa_stat", 4527 .seq_show = memory_numa_stat_show, 4528 }, 4529 #endif 4530 { 4531 .name = "oom.group", 4532 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4533 .seq_show = memory_oom_group_show, 4534 .write = memory_oom_group_write, 4535 }, 4536 { 4537 .name = "reclaim", 4538 .flags = CFTYPE_NS_DELEGATABLE, 4539 .write = memory_reclaim, 4540 }, 4541 { } /* terminate */ 4542 }; 4543 4544 struct cgroup_subsys memory_cgrp_subsys = { 4545 .css_alloc = mem_cgroup_css_alloc, 4546 .css_online = mem_cgroup_css_online, 4547 .css_offline = mem_cgroup_css_offline, 4548 .css_released = mem_cgroup_css_released, 4549 .css_free = mem_cgroup_css_free, 4550 .css_reset = mem_cgroup_css_reset, 4551 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4552 .attach = mem_cgroup_attach, 4553 .fork = mem_cgroup_fork, 4554 .exit = mem_cgroup_exit, 4555 .dfl_cftypes = memory_files, 4556 #ifdef CONFIG_MEMCG_V1 4557 .legacy_cftypes = mem_cgroup_legacy_files, 4558 #endif 4559 .early_init = 0, 4560 }; 4561 4562 /** 4563 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4564 * @root: the top ancestor of the sub-tree being checked 4565 * @memcg: the memory cgroup to check 4566 * 4567 * WARNING: This function is not stateless! It can only be used as part 4568 * of a top-down tree iteration, not for isolated queries. 4569 */ 4570 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4571 struct mem_cgroup *memcg) 4572 { 4573 bool recursive_protection = 4574 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4575 4576 if (mem_cgroup_disabled()) 4577 return; 4578 4579 if (!root) 4580 root = root_mem_cgroup; 4581 4582 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4583 } 4584 4585 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4586 gfp_t gfp) 4587 { 4588 int ret; 4589 4590 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4591 if (ret) 4592 goto out; 4593 4594 css_get(&memcg->css); 4595 commit_charge(folio, memcg); 4596 memcg1_commit_charge(folio, memcg); 4597 out: 4598 return ret; 4599 } 4600 4601 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4602 { 4603 struct mem_cgroup *memcg; 4604 int ret; 4605 4606 memcg = get_mem_cgroup_from_mm(mm); 4607 ret = charge_memcg(folio, memcg, gfp); 4608 css_put(&memcg->css); 4609 4610 return ret; 4611 } 4612 4613 /** 4614 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4615 * @folio: folio being charged 4616 * @gfp: reclaim mode 4617 * 4618 * This function is called when allocating a huge page folio, after the page has 4619 * already been obtained and charged to the appropriate hugetlb cgroup 4620 * controller (if it is enabled). 4621 * 4622 * Returns ENOMEM if the memcg is already full. 4623 * Returns 0 if either the charge was successful, or if we skip the charging. 4624 */ 4625 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4626 { 4627 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4628 int ret = 0; 4629 4630 /* 4631 * Even memcg does not account for hugetlb, we still want to update 4632 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4633 * charging the memcg. 4634 */ 4635 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4636 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4637 goto out; 4638 4639 if (charge_memcg(folio, memcg, gfp)) 4640 ret = -ENOMEM; 4641 4642 out: 4643 mem_cgroup_put(memcg); 4644 return ret; 4645 } 4646 4647 /** 4648 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4649 * @folio: folio to charge. 4650 * @mm: mm context of the victim 4651 * @gfp: reclaim mode 4652 * @entry: swap entry for which the folio is allocated 4653 * 4654 * This function charges a folio allocated for swapin. Please call this before 4655 * adding the folio to the swapcache. 4656 * 4657 * Returns 0 on success. Otherwise, an error code is returned. 4658 */ 4659 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4660 gfp_t gfp, swp_entry_t entry) 4661 { 4662 struct mem_cgroup *memcg; 4663 unsigned short id; 4664 int ret; 4665 4666 if (mem_cgroup_disabled()) 4667 return 0; 4668 4669 id = lookup_swap_cgroup_id(entry); 4670 rcu_read_lock(); 4671 memcg = mem_cgroup_from_id(id); 4672 if (!memcg || !css_tryget_online(&memcg->css)) 4673 memcg = get_mem_cgroup_from_mm(mm); 4674 rcu_read_unlock(); 4675 4676 ret = charge_memcg(folio, memcg, gfp); 4677 4678 css_put(&memcg->css); 4679 return ret; 4680 } 4681 4682 struct uncharge_gather { 4683 struct mem_cgroup *memcg; 4684 unsigned long nr_memory; 4685 unsigned long pgpgout; 4686 unsigned long nr_kmem; 4687 int nid; 4688 }; 4689 4690 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4691 { 4692 memset(ug, 0, sizeof(*ug)); 4693 } 4694 4695 static void uncharge_batch(const struct uncharge_gather *ug) 4696 { 4697 if (ug->nr_memory) { 4698 memcg_uncharge(ug->memcg, ug->nr_memory); 4699 if (ug->nr_kmem) { 4700 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4701 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4702 } 4703 memcg1_oom_recover(ug->memcg); 4704 } 4705 4706 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4707 4708 /* drop reference from uncharge_folio */ 4709 css_put(&ug->memcg->css); 4710 } 4711 4712 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4713 { 4714 long nr_pages; 4715 struct mem_cgroup *memcg; 4716 struct obj_cgroup *objcg; 4717 4718 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4719 4720 /* 4721 * Nobody should be changing or seriously looking at 4722 * folio memcg or objcg at this point, we have fully 4723 * exclusive access to the folio. 4724 */ 4725 if (folio_memcg_kmem(folio)) { 4726 objcg = __folio_objcg(folio); 4727 /* 4728 * This get matches the put at the end of the function and 4729 * kmem pages do not hold memcg references anymore. 4730 */ 4731 memcg = get_mem_cgroup_from_objcg(objcg); 4732 } else { 4733 memcg = __folio_memcg(folio); 4734 } 4735 4736 if (!memcg) 4737 return; 4738 4739 if (ug->memcg != memcg) { 4740 if (ug->memcg) { 4741 uncharge_batch(ug); 4742 uncharge_gather_clear(ug); 4743 } 4744 ug->memcg = memcg; 4745 ug->nid = folio_nid(folio); 4746 4747 /* pairs with css_put in uncharge_batch */ 4748 css_get(&memcg->css); 4749 } 4750 4751 nr_pages = folio_nr_pages(folio); 4752 4753 if (folio_memcg_kmem(folio)) { 4754 ug->nr_memory += nr_pages; 4755 ug->nr_kmem += nr_pages; 4756 4757 folio->memcg_data = 0; 4758 obj_cgroup_put(objcg); 4759 } else { 4760 /* LRU pages aren't accounted at the root level */ 4761 if (!mem_cgroup_is_root(memcg)) 4762 ug->nr_memory += nr_pages; 4763 ug->pgpgout++; 4764 4765 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4766 folio->memcg_data = 0; 4767 } 4768 4769 css_put(&memcg->css); 4770 } 4771 4772 void __mem_cgroup_uncharge(struct folio *folio) 4773 { 4774 struct uncharge_gather ug; 4775 4776 /* Don't touch folio->lru of any random page, pre-check: */ 4777 if (!folio_memcg_charged(folio)) 4778 return; 4779 4780 uncharge_gather_clear(&ug); 4781 uncharge_folio(folio, &ug); 4782 uncharge_batch(&ug); 4783 } 4784 4785 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4786 { 4787 struct uncharge_gather ug; 4788 unsigned int i; 4789 4790 uncharge_gather_clear(&ug); 4791 for (i = 0; i < folios->nr; i++) 4792 uncharge_folio(folios->folios[i], &ug); 4793 if (ug.memcg) 4794 uncharge_batch(&ug); 4795 } 4796 4797 /** 4798 * mem_cgroup_replace_folio - Charge a folio's replacement. 4799 * @old: Currently circulating folio. 4800 * @new: Replacement folio. 4801 * 4802 * Charge @new as a replacement folio for @old. @old will 4803 * be uncharged upon free. 4804 * 4805 * Both folios must be locked, @new->mapping must be set up. 4806 */ 4807 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4808 { 4809 struct mem_cgroup *memcg; 4810 long nr_pages = folio_nr_pages(new); 4811 4812 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4813 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4814 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4815 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4816 4817 if (mem_cgroup_disabled()) 4818 return; 4819 4820 /* Page cache replacement: new folio already charged? */ 4821 if (folio_memcg_charged(new)) 4822 return; 4823 4824 memcg = folio_memcg(old); 4825 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4826 if (!memcg) 4827 return; 4828 4829 /* Force-charge the new page. The old one will be freed soon */ 4830 if (!mem_cgroup_is_root(memcg)) { 4831 page_counter_charge(&memcg->memory, nr_pages); 4832 if (do_memsw_account()) 4833 page_counter_charge(&memcg->memsw, nr_pages); 4834 } 4835 4836 css_get(&memcg->css); 4837 commit_charge(new, memcg); 4838 memcg1_commit_charge(new, memcg); 4839 } 4840 4841 /** 4842 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4843 * @old: Currently circulating folio. 4844 * @new: Replacement folio. 4845 * 4846 * Transfer the memcg data from the old folio to the new folio for migration. 4847 * The old folio's data info will be cleared. Note that the memory counters 4848 * will remain unchanged throughout the process. 4849 * 4850 * Both folios must be locked, @new->mapping must be set up. 4851 */ 4852 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4853 { 4854 struct mem_cgroup *memcg; 4855 4856 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4857 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4858 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4859 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4860 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4861 4862 if (mem_cgroup_disabled()) 4863 return; 4864 4865 memcg = folio_memcg(old); 4866 /* 4867 * Note that it is normal to see !memcg for a hugetlb folio. 4868 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4869 * was not selected. 4870 */ 4871 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4872 if (!memcg) 4873 return; 4874 4875 /* Transfer the charge and the css ref */ 4876 commit_charge(new, memcg); 4877 4878 /* Warning should never happen, so don't worry about refcount non-0 */ 4879 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4880 old->memcg_data = 0; 4881 } 4882 4883 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4884 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4885 4886 void mem_cgroup_sk_alloc(struct sock *sk) 4887 { 4888 struct mem_cgroup *memcg; 4889 4890 if (!mem_cgroup_sockets_enabled) 4891 return; 4892 4893 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4894 if (!in_task()) 4895 return; 4896 4897 rcu_read_lock(); 4898 memcg = mem_cgroup_from_task(current); 4899 if (mem_cgroup_is_root(memcg)) 4900 goto out; 4901 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4902 goto out; 4903 if (css_tryget(&memcg->css)) 4904 sk->sk_memcg = memcg; 4905 out: 4906 rcu_read_unlock(); 4907 } 4908 4909 void mem_cgroup_sk_free(struct sock *sk) 4910 { 4911 if (sk->sk_memcg) 4912 css_put(&sk->sk_memcg->css); 4913 } 4914 4915 /** 4916 * mem_cgroup_charge_skmem - charge socket memory 4917 * @memcg: memcg to charge 4918 * @nr_pages: number of pages to charge 4919 * @gfp_mask: reclaim mode 4920 * 4921 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4922 * @memcg's configured limit, %false if it doesn't. 4923 */ 4924 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4925 gfp_t gfp_mask) 4926 { 4927 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4928 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4929 4930 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 4931 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 4932 return true; 4933 } 4934 4935 return false; 4936 } 4937 4938 /** 4939 * mem_cgroup_uncharge_skmem - uncharge socket memory 4940 * @memcg: memcg to uncharge 4941 * @nr_pages: number of pages to uncharge 4942 */ 4943 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 4944 { 4945 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 4946 memcg1_uncharge_skmem(memcg, nr_pages); 4947 return; 4948 } 4949 4950 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 4951 4952 refill_stock(memcg, nr_pages); 4953 } 4954 4955 static int __init cgroup_memory(char *s) 4956 { 4957 char *token; 4958 4959 while ((token = strsep(&s, ",")) != NULL) { 4960 if (!*token) 4961 continue; 4962 if (!strcmp(token, "nosocket")) 4963 cgroup_memory_nosocket = true; 4964 if (!strcmp(token, "nokmem")) 4965 cgroup_memory_nokmem = true; 4966 if (!strcmp(token, "nobpf")) 4967 cgroup_memory_nobpf = true; 4968 } 4969 return 1; 4970 } 4971 __setup("cgroup.memory=", cgroup_memory); 4972 4973 /* 4974 * subsys_initcall() for memory controller. 4975 * 4976 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 4977 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 4978 * basically everything that doesn't depend on a specific mem_cgroup structure 4979 * should be initialized from here. 4980 */ 4981 static int __init mem_cgroup_init(void) 4982 { 4983 int cpu; 4984 4985 /* 4986 * Currently s32 type (can refer to struct batched_lruvec_stat) is 4987 * used for per-memcg-per-cpu caching of per-node statistics. In order 4988 * to work fine, we should make sure that the overfill threshold can't 4989 * exceed S32_MAX / PAGE_SIZE. 4990 */ 4991 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 4992 4993 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 4994 memcg_hotplug_cpu_dead); 4995 4996 for_each_possible_cpu(cpu) 4997 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 4998 drain_local_stock); 4999 5000 return 0; 5001 } 5002 subsys_initcall(mem_cgroup_init); 5003 5004 #ifdef CONFIG_SWAP 5005 /** 5006 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5007 * @folio: folio being added to swap 5008 * @entry: swap entry to charge 5009 * 5010 * Try to charge @folio's memcg for the swap space at @entry. 5011 * 5012 * Returns 0 on success, -ENOMEM on failure. 5013 */ 5014 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5015 { 5016 unsigned int nr_pages = folio_nr_pages(folio); 5017 struct page_counter *counter; 5018 struct mem_cgroup *memcg; 5019 5020 if (do_memsw_account()) 5021 return 0; 5022 5023 memcg = folio_memcg(folio); 5024 5025 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5026 if (!memcg) 5027 return 0; 5028 5029 if (!entry.val) { 5030 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5031 return 0; 5032 } 5033 5034 memcg = mem_cgroup_id_get_online(memcg); 5035 5036 if (!mem_cgroup_is_root(memcg) && 5037 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5038 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5039 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5040 mem_cgroup_id_put(memcg); 5041 return -ENOMEM; 5042 } 5043 5044 /* Get references for the tail pages, too */ 5045 if (nr_pages > 1) 5046 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5047 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5048 5049 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5050 5051 return 0; 5052 } 5053 5054 /** 5055 * __mem_cgroup_uncharge_swap - uncharge swap space 5056 * @entry: swap entry to uncharge 5057 * @nr_pages: the amount of swap space to uncharge 5058 */ 5059 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5060 { 5061 struct mem_cgroup *memcg; 5062 unsigned short id; 5063 5064 id = swap_cgroup_clear(entry, nr_pages); 5065 rcu_read_lock(); 5066 memcg = mem_cgroup_from_id(id); 5067 if (memcg) { 5068 if (!mem_cgroup_is_root(memcg)) { 5069 if (do_memsw_account()) 5070 page_counter_uncharge(&memcg->memsw, nr_pages); 5071 else 5072 page_counter_uncharge(&memcg->swap, nr_pages); 5073 } 5074 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5075 mem_cgroup_id_put_many(memcg, nr_pages); 5076 } 5077 rcu_read_unlock(); 5078 } 5079 5080 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5081 { 5082 long nr_swap_pages = get_nr_swap_pages(); 5083 5084 if (mem_cgroup_disabled() || do_memsw_account()) 5085 return nr_swap_pages; 5086 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5087 nr_swap_pages = min_t(long, nr_swap_pages, 5088 READ_ONCE(memcg->swap.max) - 5089 page_counter_read(&memcg->swap)); 5090 return nr_swap_pages; 5091 } 5092 5093 bool mem_cgroup_swap_full(struct folio *folio) 5094 { 5095 struct mem_cgroup *memcg; 5096 5097 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5098 5099 if (vm_swap_full()) 5100 return true; 5101 if (do_memsw_account()) 5102 return false; 5103 5104 memcg = folio_memcg(folio); 5105 if (!memcg) 5106 return false; 5107 5108 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5109 unsigned long usage = page_counter_read(&memcg->swap); 5110 5111 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5112 usage * 2 >= READ_ONCE(memcg->swap.max)) 5113 return true; 5114 } 5115 5116 return false; 5117 } 5118 5119 static int __init setup_swap_account(char *s) 5120 { 5121 bool res; 5122 5123 if (!kstrtobool(s, &res) && !res) 5124 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5125 "in favor of configuring swap control via cgroupfs. " 5126 "Please report your usecase to linux-mm@kvack.org if you " 5127 "depend on this functionality.\n"); 5128 return 1; 5129 } 5130 __setup("swapaccount=", setup_swap_account); 5131 5132 static u64 swap_current_read(struct cgroup_subsys_state *css, 5133 struct cftype *cft) 5134 { 5135 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5136 5137 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5138 } 5139 5140 static int swap_peak_show(struct seq_file *sf, void *v) 5141 { 5142 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5143 5144 return peak_show(sf, v, &memcg->swap); 5145 } 5146 5147 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5148 size_t nbytes, loff_t off) 5149 { 5150 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5151 5152 return peak_write(of, buf, nbytes, off, &memcg->swap, 5153 &memcg->swap_peaks); 5154 } 5155 5156 static int swap_high_show(struct seq_file *m, void *v) 5157 { 5158 return seq_puts_memcg_tunable(m, 5159 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5160 } 5161 5162 static ssize_t swap_high_write(struct kernfs_open_file *of, 5163 char *buf, size_t nbytes, loff_t off) 5164 { 5165 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5166 unsigned long high; 5167 int err; 5168 5169 buf = strstrip(buf); 5170 err = page_counter_memparse(buf, "max", &high); 5171 if (err) 5172 return err; 5173 5174 page_counter_set_high(&memcg->swap, high); 5175 5176 return nbytes; 5177 } 5178 5179 static int swap_max_show(struct seq_file *m, void *v) 5180 { 5181 return seq_puts_memcg_tunable(m, 5182 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5183 } 5184 5185 static ssize_t swap_max_write(struct kernfs_open_file *of, 5186 char *buf, size_t nbytes, loff_t off) 5187 { 5188 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5189 unsigned long max; 5190 int err; 5191 5192 buf = strstrip(buf); 5193 err = page_counter_memparse(buf, "max", &max); 5194 if (err) 5195 return err; 5196 5197 xchg(&memcg->swap.max, max); 5198 5199 return nbytes; 5200 } 5201 5202 static int swap_events_show(struct seq_file *m, void *v) 5203 { 5204 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5205 5206 seq_printf(m, "high %lu\n", 5207 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5208 seq_printf(m, "max %lu\n", 5209 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5210 seq_printf(m, "fail %lu\n", 5211 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5212 5213 return 0; 5214 } 5215 5216 static struct cftype swap_files[] = { 5217 { 5218 .name = "swap.current", 5219 .flags = CFTYPE_NOT_ON_ROOT, 5220 .read_u64 = swap_current_read, 5221 }, 5222 { 5223 .name = "swap.high", 5224 .flags = CFTYPE_NOT_ON_ROOT, 5225 .seq_show = swap_high_show, 5226 .write = swap_high_write, 5227 }, 5228 { 5229 .name = "swap.max", 5230 .flags = CFTYPE_NOT_ON_ROOT, 5231 .seq_show = swap_max_show, 5232 .write = swap_max_write, 5233 }, 5234 { 5235 .name = "swap.peak", 5236 .flags = CFTYPE_NOT_ON_ROOT, 5237 .open = peak_open, 5238 .release = peak_release, 5239 .seq_show = swap_peak_show, 5240 .write = swap_peak_write, 5241 }, 5242 { 5243 .name = "swap.events", 5244 .flags = CFTYPE_NOT_ON_ROOT, 5245 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5246 .seq_show = swap_events_show, 5247 }, 5248 { } /* terminate */ 5249 }; 5250 5251 #ifdef CONFIG_ZSWAP 5252 /** 5253 * obj_cgroup_may_zswap - check if this cgroup can zswap 5254 * @objcg: the object cgroup 5255 * 5256 * Check if the hierarchical zswap limit has been reached. 5257 * 5258 * This doesn't check for specific headroom, and it is not atomic 5259 * either. But with zswap, the size of the allocation is only known 5260 * once compression has occurred, and this optimistic pre-check avoids 5261 * spending cycles on compression when there is already no room left 5262 * or zswap is disabled altogether somewhere in the hierarchy. 5263 */ 5264 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5265 { 5266 struct mem_cgroup *memcg, *original_memcg; 5267 bool ret = true; 5268 5269 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5270 return true; 5271 5272 original_memcg = get_mem_cgroup_from_objcg(objcg); 5273 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5274 memcg = parent_mem_cgroup(memcg)) { 5275 unsigned long max = READ_ONCE(memcg->zswap_max); 5276 unsigned long pages; 5277 5278 if (max == PAGE_COUNTER_MAX) 5279 continue; 5280 if (max == 0) { 5281 ret = false; 5282 break; 5283 } 5284 5285 /* Force flush to get accurate stats for charging */ 5286 __mem_cgroup_flush_stats(memcg, true); 5287 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5288 if (pages < max) 5289 continue; 5290 ret = false; 5291 break; 5292 } 5293 mem_cgroup_put(original_memcg); 5294 return ret; 5295 } 5296 5297 /** 5298 * obj_cgroup_charge_zswap - charge compression backend memory 5299 * @objcg: the object cgroup 5300 * @size: size of compressed object 5301 * 5302 * This forces the charge after obj_cgroup_may_zswap() allowed 5303 * compression and storage in zwap for this cgroup to go ahead. 5304 */ 5305 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5306 { 5307 struct mem_cgroup *memcg; 5308 5309 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5310 return; 5311 5312 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5313 5314 /* PF_MEMALLOC context, charging must succeed */ 5315 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5316 VM_WARN_ON_ONCE(1); 5317 5318 rcu_read_lock(); 5319 memcg = obj_cgroup_memcg(objcg); 5320 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5321 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5322 rcu_read_unlock(); 5323 } 5324 5325 /** 5326 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5327 * @objcg: the object cgroup 5328 * @size: size of compressed object 5329 * 5330 * Uncharges zswap memory on page in. 5331 */ 5332 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5333 { 5334 struct mem_cgroup *memcg; 5335 5336 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5337 return; 5338 5339 obj_cgroup_uncharge(objcg, size); 5340 5341 rcu_read_lock(); 5342 memcg = obj_cgroup_memcg(objcg); 5343 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5344 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5345 rcu_read_unlock(); 5346 } 5347 5348 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5349 { 5350 /* if zswap is disabled, do not block pages going to the swapping device */ 5351 if (!zswap_is_enabled()) 5352 return true; 5353 5354 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5355 if (!READ_ONCE(memcg->zswap_writeback)) 5356 return false; 5357 5358 return true; 5359 } 5360 5361 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5362 struct cftype *cft) 5363 { 5364 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5365 5366 mem_cgroup_flush_stats(memcg); 5367 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5368 } 5369 5370 static int zswap_max_show(struct seq_file *m, void *v) 5371 { 5372 return seq_puts_memcg_tunable(m, 5373 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5374 } 5375 5376 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5377 char *buf, size_t nbytes, loff_t off) 5378 { 5379 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5380 unsigned long max; 5381 int err; 5382 5383 buf = strstrip(buf); 5384 err = page_counter_memparse(buf, "max", &max); 5385 if (err) 5386 return err; 5387 5388 xchg(&memcg->zswap_max, max); 5389 5390 return nbytes; 5391 } 5392 5393 static int zswap_writeback_show(struct seq_file *m, void *v) 5394 { 5395 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5396 5397 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5398 return 0; 5399 } 5400 5401 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5402 char *buf, size_t nbytes, loff_t off) 5403 { 5404 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5405 int zswap_writeback; 5406 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5407 5408 if (parse_ret) 5409 return parse_ret; 5410 5411 if (zswap_writeback != 0 && zswap_writeback != 1) 5412 return -EINVAL; 5413 5414 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5415 return nbytes; 5416 } 5417 5418 static struct cftype zswap_files[] = { 5419 { 5420 .name = "zswap.current", 5421 .flags = CFTYPE_NOT_ON_ROOT, 5422 .read_u64 = zswap_current_read, 5423 }, 5424 { 5425 .name = "zswap.max", 5426 .flags = CFTYPE_NOT_ON_ROOT, 5427 .seq_show = zswap_max_show, 5428 .write = zswap_max_write, 5429 }, 5430 { 5431 .name = "zswap.writeback", 5432 .seq_show = zswap_writeback_show, 5433 .write = zswap_writeback_write, 5434 }, 5435 { } /* terminate */ 5436 }; 5437 #endif /* CONFIG_ZSWAP */ 5438 5439 static int __init mem_cgroup_swap_init(void) 5440 { 5441 if (mem_cgroup_disabled()) 5442 return 0; 5443 5444 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5445 #ifdef CONFIG_MEMCG_V1 5446 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5447 #endif 5448 #ifdef CONFIG_ZSWAP 5449 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5450 #endif 5451 return 0; 5452 } 5453 subsys_initcall(mem_cgroup_swap_init); 5454 5455 #endif /* CONFIG_SWAP */ 5456