xref: /linux/mm/memcontrol.c (revision 033b5650010652c069494df58424c4b98412fe3b)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/vmscan.h>
56 
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES	5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60 
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71 
72 #else
73 #define do_swap_account		(0)
74 #endif
75 
76 
77 /*
78  * Statistics for memory cgroup.
79  */
80 enum mem_cgroup_stat_index {
81 	/*
82 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 	 */
84 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90 	MEM_CGROUP_STAT_NSTATS,
91 };
92 
93 enum mem_cgroup_events_index {
94 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
95 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
96 	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
97 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
98 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
99 	MEM_CGROUP_EVENTS_NSTATS,
100 };
101 /*
102  * Per memcg event counter is incremented at every pagein/pageout. With THP,
103  * it will be incremated by the number of pages. This counter is used for
104  * for trigger some periodic events. This is straightforward and better
105  * than using jiffies etc. to handle periodic memcg event.
106  */
107 enum mem_cgroup_events_target {
108 	MEM_CGROUP_TARGET_THRESH,
109 	MEM_CGROUP_TARGET_SOFTLIMIT,
110 	MEM_CGROUP_NTARGETS,
111 };
112 #define THRESHOLDS_EVENTS_TARGET (128)
113 #define SOFTLIMIT_EVENTS_TARGET (1024)
114 
115 struct mem_cgroup_stat_cpu {
116 	long count[MEM_CGROUP_STAT_NSTATS];
117 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
118 	unsigned long targets[MEM_CGROUP_NTARGETS];
119 };
120 
121 /*
122  * per-zone information in memory controller.
123  */
124 struct mem_cgroup_per_zone {
125 	/*
126 	 * spin_lock to protect the per cgroup LRU
127 	 */
128 	struct list_head	lists[NR_LRU_LISTS];
129 	unsigned long		count[NR_LRU_LISTS];
130 
131 	struct zone_reclaim_stat reclaim_stat;
132 	struct rb_node		tree_node;	/* RB tree node */
133 	unsigned long long	usage_in_excess;/* Set to the value by which */
134 						/* the soft limit is exceeded*/
135 	bool			on_tree;
136 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
137 						/* use container_of	   */
138 };
139 /* Macro for accessing counter */
140 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
141 
142 struct mem_cgroup_per_node {
143 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
144 };
145 
146 struct mem_cgroup_lru_info {
147 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
148 };
149 
150 /*
151  * Cgroups above their limits are maintained in a RB-Tree, independent of
152  * their hierarchy representation
153  */
154 
155 struct mem_cgroup_tree_per_zone {
156 	struct rb_root rb_root;
157 	spinlock_t lock;
158 };
159 
160 struct mem_cgroup_tree_per_node {
161 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
162 };
163 
164 struct mem_cgroup_tree {
165 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
166 };
167 
168 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
169 
170 struct mem_cgroup_threshold {
171 	struct eventfd_ctx *eventfd;
172 	u64 threshold;
173 };
174 
175 /* For threshold */
176 struct mem_cgroup_threshold_ary {
177 	/* An array index points to threshold just below usage. */
178 	int current_threshold;
179 	/* Size of entries[] */
180 	unsigned int size;
181 	/* Array of thresholds */
182 	struct mem_cgroup_threshold entries[0];
183 };
184 
185 struct mem_cgroup_thresholds {
186 	/* Primary thresholds array */
187 	struct mem_cgroup_threshold_ary *primary;
188 	/*
189 	 * Spare threshold array.
190 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
191 	 * It must be able to store at least primary->size - 1 entries.
192 	 */
193 	struct mem_cgroup_threshold_ary *spare;
194 };
195 
196 /* for OOM */
197 struct mem_cgroup_eventfd_list {
198 	struct list_head list;
199 	struct eventfd_ctx *eventfd;
200 };
201 
202 static void mem_cgroup_threshold(struct mem_cgroup *mem);
203 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
204 
205 /*
206  * The memory controller data structure. The memory controller controls both
207  * page cache and RSS per cgroup. We would eventually like to provide
208  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
209  * to help the administrator determine what knobs to tune.
210  *
211  * TODO: Add a water mark for the memory controller. Reclaim will begin when
212  * we hit the water mark. May be even add a low water mark, such that
213  * no reclaim occurs from a cgroup at it's low water mark, this is
214  * a feature that will be implemented much later in the future.
215  */
216 struct mem_cgroup {
217 	struct cgroup_subsys_state css;
218 	/*
219 	 * the counter to account for memory usage
220 	 */
221 	struct res_counter res;
222 	/*
223 	 * the counter to account for mem+swap usage.
224 	 */
225 	struct res_counter memsw;
226 	/*
227 	 * Per cgroup active and inactive list, similar to the
228 	 * per zone LRU lists.
229 	 */
230 	struct mem_cgroup_lru_info info;
231 	/*
232 	 * While reclaiming in a hierarchy, we cache the last child we
233 	 * reclaimed from.
234 	 */
235 	int last_scanned_child;
236 	int last_scanned_node;
237 #if MAX_NUMNODES > 1
238 	nodemask_t	scan_nodes;
239 	unsigned long   next_scan_node_update;
240 #endif
241 	/*
242 	 * Should the accounting and control be hierarchical, per subtree?
243 	 */
244 	bool use_hierarchy;
245 	atomic_t	oom_lock;
246 	atomic_t	refcnt;
247 
248 	unsigned int	swappiness;
249 	/* OOM-Killer disable */
250 	int		oom_kill_disable;
251 
252 	/* set when res.limit == memsw.limit */
253 	bool		memsw_is_minimum;
254 
255 	/* protect arrays of thresholds */
256 	struct mutex thresholds_lock;
257 
258 	/* thresholds for memory usage. RCU-protected */
259 	struct mem_cgroup_thresholds thresholds;
260 
261 	/* thresholds for mem+swap usage. RCU-protected */
262 	struct mem_cgroup_thresholds memsw_thresholds;
263 
264 	/* For oom notifier event fd */
265 	struct list_head oom_notify;
266 
267 	/*
268 	 * Should we move charges of a task when a task is moved into this
269 	 * mem_cgroup ? And what type of charges should we move ?
270 	 */
271 	unsigned long 	move_charge_at_immigrate;
272 	/*
273 	 * percpu counter.
274 	 */
275 	struct mem_cgroup_stat_cpu *stat;
276 	/*
277 	 * used when a cpu is offlined or other synchronizations
278 	 * See mem_cgroup_read_stat().
279 	 */
280 	struct mem_cgroup_stat_cpu nocpu_base;
281 	spinlock_t pcp_counter_lock;
282 };
283 
284 /* Stuffs for move charges at task migration. */
285 /*
286  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
287  * left-shifted bitmap of these types.
288  */
289 enum move_type {
290 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
291 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
292 	NR_MOVE_TYPE,
293 };
294 
295 /* "mc" and its members are protected by cgroup_mutex */
296 static struct move_charge_struct {
297 	spinlock_t	  lock; /* for from, to */
298 	struct mem_cgroup *from;
299 	struct mem_cgroup *to;
300 	unsigned long precharge;
301 	unsigned long moved_charge;
302 	unsigned long moved_swap;
303 	struct task_struct *moving_task;	/* a task moving charges */
304 	wait_queue_head_t waitq;		/* a waitq for other context */
305 } mc = {
306 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
307 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
308 };
309 
310 static bool move_anon(void)
311 {
312 	return test_bit(MOVE_CHARGE_TYPE_ANON,
313 					&mc.to->move_charge_at_immigrate);
314 }
315 
316 static bool move_file(void)
317 {
318 	return test_bit(MOVE_CHARGE_TYPE_FILE,
319 					&mc.to->move_charge_at_immigrate);
320 }
321 
322 /*
323  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
324  * limit reclaim to prevent infinite loops, if they ever occur.
325  */
326 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
327 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
328 
329 enum charge_type {
330 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
331 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
332 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
333 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
334 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
335 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
336 	NR_CHARGE_TYPE,
337 };
338 
339 /* for encoding cft->private value on file */
340 #define _MEM			(0)
341 #define _MEMSWAP		(1)
342 #define _OOM_TYPE		(2)
343 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
344 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
345 #define MEMFILE_ATTR(val)	((val) & 0xffff)
346 /* Used for OOM nofiier */
347 #define OOM_CONTROL		(0)
348 
349 /*
350  * Reclaim flags for mem_cgroup_hierarchical_reclaim
351  */
352 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
353 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
354 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
355 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
356 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
357 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
358 
359 static void mem_cgroup_get(struct mem_cgroup *mem);
360 static void mem_cgroup_put(struct mem_cgroup *mem);
361 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
362 static void drain_all_stock_async(struct mem_cgroup *mem);
363 
364 static struct mem_cgroup_per_zone *
365 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
366 {
367 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
368 }
369 
370 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
371 {
372 	return &mem->css;
373 }
374 
375 static struct mem_cgroup_per_zone *
376 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
377 {
378 	int nid = page_to_nid(page);
379 	int zid = page_zonenum(page);
380 
381 	return mem_cgroup_zoneinfo(mem, nid, zid);
382 }
383 
384 static struct mem_cgroup_tree_per_zone *
385 soft_limit_tree_node_zone(int nid, int zid)
386 {
387 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
388 }
389 
390 static struct mem_cgroup_tree_per_zone *
391 soft_limit_tree_from_page(struct page *page)
392 {
393 	int nid = page_to_nid(page);
394 	int zid = page_zonenum(page);
395 
396 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
397 }
398 
399 static void
400 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
401 				struct mem_cgroup_per_zone *mz,
402 				struct mem_cgroup_tree_per_zone *mctz,
403 				unsigned long long new_usage_in_excess)
404 {
405 	struct rb_node **p = &mctz->rb_root.rb_node;
406 	struct rb_node *parent = NULL;
407 	struct mem_cgroup_per_zone *mz_node;
408 
409 	if (mz->on_tree)
410 		return;
411 
412 	mz->usage_in_excess = new_usage_in_excess;
413 	if (!mz->usage_in_excess)
414 		return;
415 	while (*p) {
416 		parent = *p;
417 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
418 					tree_node);
419 		if (mz->usage_in_excess < mz_node->usage_in_excess)
420 			p = &(*p)->rb_left;
421 		/*
422 		 * We can't avoid mem cgroups that are over their soft
423 		 * limit by the same amount
424 		 */
425 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
426 			p = &(*p)->rb_right;
427 	}
428 	rb_link_node(&mz->tree_node, parent, p);
429 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
430 	mz->on_tree = true;
431 }
432 
433 static void
434 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
435 				struct mem_cgroup_per_zone *mz,
436 				struct mem_cgroup_tree_per_zone *mctz)
437 {
438 	if (!mz->on_tree)
439 		return;
440 	rb_erase(&mz->tree_node, &mctz->rb_root);
441 	mz->on_tree = false;
442 }
443 
444 static void
445 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
446 				struct mem_cgroup_per_zone *mz,
447 				struct mem_cgroup_tree_per_zone *mctz)
448 {
449 	spin_lock(&mctz->lock);
450 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
451 	spin_unlock(&mctz->lock);
452 }
453 
454 
455 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
456 {
457 	unsigned long long excess;
458 	struct mem_cgroup_per_zone *mz;
459 	struct mem_cgroup_tree_per_zone *mctz;
460 	int nid = page_to_nid(page);
461 	int zid = page_zonenum(page);
462 	mctz = soft_limit_tree_from_page(page);
463 
464 	/*
465 	 * Necessary to update all ancestors when hierarchy is used.
466 	 * because their event counter is not touched.
467 	 */
468 	for (; mem; mem = parent_mem_cgroup(mem)) {
469 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
470 		excess = res_counter_soft_limit_excess(&mem->res);
471 		/*
472 		 * We have to update the tree if mz is on RB-tree or
473 		 * mem is over its softlimit.
474 		 */
475 		if (excess || mz->on_tree) {
476 			spin_lock(&mctz->lock);
477 			/* if on-tree, remove it */
478 			if (mz->on_tree)
479 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
480 			/*
481 			 * Insert again. mz->usage_in_excess will be updated.
482 			 * If excess is 0, no tree ops.
483 			 */
484 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
485 			spin_unlock(&mctz->lock);
486 		}
487 	}
488 }
489 
490 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
491 {
492 	int node, zone;
493 	struct mem_cgroup_per_zone *mz;
494 	struct mem_cgroup_tree_per_zone *mctz;
495 
496 	for_each_node_state(node, N_POSSIBLE) {
497 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
498 			mz = mem_cgroup_zoneinfo(mem, node, zone);
499 			mctz = soft_limit_tree_node_zone(node, zone);
500 			mem_cgroup_remove_exceeded(mem, mz, mctz);
501 		}
502 	}
503 }
504 
505 static struct mem_cgroup_per_zone *
506 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
507 {
508 	struct rb_node *rightmost = NULL;
509 	struct mem_cgroup_per_zone *mz;
510 
511 retry:
512 	mz = NULL;
513 	rightmost = rb_last(&mctz->rb_root);
514 	if (!rightmost)
515 		goto done;		/* Nothing to reclaim from */
516 
517 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
518 	/*
519 	 * Remove the node now but someone else can add it back,
520 	 * we will to add it back at the end of reclaim to its correct
521 	 * position in the tree.
522 	 */
523 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
524 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
525 		!css_tryget(&mz->mem->css))
526 		goto retry;
527 done:
528 	return mz;
529 }
530 
531 static struct mem_cgroup_per_zone *
532 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
533 {
534 	struct mem_cgroup_per_zone *mz;
535 
536 	spin_lock(&mctz->lock);
537 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
538 	spin_unlock(&mctz->lock);
539 	return mz;
540 }
541 
542 /*
543  * Implementation Note: reading percpu statistics for memcg.
544  *
545  * Both of vmstat[] and percpu_counter has threshold and do periodic
546  * synchronization to implement "quick" read. There are trade-off between
547  * reading cost and precision of value. Then, we may have a chance to implement
548  * a periodic synchronizion of counter in memcg's counter.
549  *
550  * But this _read() function is used for user interface now. The user accounts
551  * memory usage by memory cgroup and he _always_ requires exact value because
552  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
553  * have to visit all online cpus and make sum. So, for now, unnecessary
554  * synchronization is not implemented. (just implemented for cpu hotplug)
555  *
556  * If there are kernel internal actions which can make use of some not-exact
557  * value, and reading all cpu value can be performance bottleneck in some
558  * common workload, threashold and synchonization as vmstat[] should be
559  * implemented.
560  */
561 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
562 				 enum mem_cgroup_stat_index idx)
563 {
564 	long val = 0;
565 	int cpu;
566 
567 	get_online_cpus();
568 	for_each_online_cpu(cpu)
569 		val += per_cpu(mem->stat->count[idx], cpu);
570 #ifdef CONFIG_HOTPLUG_CPU
571 	spin_lock(&mem->pcp_counter_lock);
572 	val += mem->nocpu_base.count[idx];
573 	spin_unlock(&mem->pcp_counter_lock);
574 #endif
575 	put_online_cpus();
576 	return val;
577 }
578 
579 static long mem_cgroup_local_usage(struct mem_cgroup *mem)
580 {
581 	long ret;
582 
583 	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
584 	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
585 	return ret;
586 }
587 
588 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
589 					 bool charge)
590 {
591 	int val = (charge) ? 1 : -1;
592 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
593 }
594 
595 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
596 {
597 	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
598 }
599 
600 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
601 {
602 	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
603 }
604 
605 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
606 					    enum mem_cgroup_events_index idx)
607 {
608 	unsigned long val = 0;
609 	int cpu;
610 
611 	for_each_online_cpu(cpu)
612 		val += per_cpu(mem->stat->events[idx], cpu);
613 #ifdef CONFIG_HOTPLUG_CPU
614 	spin_lock(&mem->pcp_counter_lock);
615 	val += mem->nocpu_base.events[idx];
616 	spin_unlock(&mem->pcp_counter_lock);
617 #endif
618 	return val;
619 }
620 
621 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
622 					 bool file, int nr_pages)
623 {
624 	preempt_disable();
625 
626 	if (file)
627 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
628 	else
629 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
630 
631 	/* pagein of a big page is an event. So, ignore page size */
632 	if (nr_pages > 0)
633 		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 	else {
635 		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 		nr_pages = -nr_pages; /* for event */
637 	}
638 
639 	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
640 
641 	preempt_enable();
642 }
643 
644 static unsigned long
645 mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
646 {
647 	struct mem_cgroup_per_zone *mz;
648 	u64 total = 0;
649 	int zid;
650 
651 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
652 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
653 		total += MEM_CGROUP_ZSTAT(mz, idx);
654 	}
655 	return total;
656 }
657 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
658 					enum lru_list idx)
659 {
660 	int nid;
661 	u64 total = 0;
662 
663 	for_each_online_node(nid)
664 		total += mem_cgroup_get_zonestat_node(mem, nid, idx);
665 	return total;
666 }
667 
668 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
669 {
670 	unsigned long val, next;
671 
672 	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
673 	next = this_cpu_read(mem->stat->targets[target]);
674 	/* from time_after() in jiffies.h */
675 	return ((long)next - (long)val < 0);
676 }
677 
678 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
679 {
680 	unsigned long val, next;
681 
682 	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
683 
684 	switch (target) {
685 	case MEM_CGROUP_TARGET_THRESH:
686 		next = val + THRESHOLDS_EVENTS_TARGET;
687 		break;
688 	case MEM_CGROUP_TARGET_SOFTLIMIT:
689 		next = val + SOFTLIMIT_EVENTS_TARGET;
690 		break;
691 	default:
692 		return;
693 	}
694 
695 	this_cpu_write(mem->stat->targets[target], next);
696 }
697 
698 /*
699  * Check events in order.
700  *
701  */
702 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
703 {
704 	/* threshold event is triggered in finer grain than soft limit */
705 	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
706 		mem_cgroup_threshold(mem);
707 		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
708 		if (unlikely(__memcg_event_check(mem,
709 			MEM_CGROUP_TARGET_SOFTLIMIT))){
710 			mem_cgroup_update_tree(mem, page);
711 			__mem_cgroup_target_update(mem,
712 				MEM_CGROUP_TARGET_SOFTLIMIT);
713 		}
714 	}
715 }
716 
717 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
718 {
719 	return container_of(cgroup_subsys_state(cont,
720 				mem_cgroup_subsys_id), struct mem_cgroup,
721 				css);
722 }
723 
724 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
725 {
726 	/*
727 	 * mm_update_next_owner() may clear mm->owner to NULL
728 	 * if it races with swapoff, page migration, etc.
729 	 * So this can be called with p == NULL.
730 	 */
731 	if (unlikely(!p))
732 		return NULL;
733 
734 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
735 				struct mem_cgroup, css);
736 }
737 
738 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
739 {
740 	struct mem_cgroup *mem = NULL;
741 
742 	if (!mm)
743 		return NULL;
744 	/*
745 	 * Because we have no locks, mm->owner's may be being moved to other
746 	 * cgroup. We use css_tryget() here even if this looks
747 	 * pessimistic (rather than adding locks here).
748 	 */
749 	rcu_read_lock();
750 	do {
751 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
752 		if (unlikely(!mem))
753 			break;
754 	} while (!css_tryget(&mem->css));
755 	rcu_read_unlock();
756 	return mem;
757 }
758 
759 /* The caller has to guarantee "mem" exists before calling this */
760 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
761 {
762 	struct cgroup_subsys_state *css;
763 	int found;
764 
765 	if (!mem) /* ROOT cgroup has the smallest ID */
766 		return root_mem_cgroup; /*css_put/get against root is ignored*/
767 	if (!mem->use_hierarchy) {
768 		if (css_tryget(&mem->css))
769 			return mem;
770 		return NULL;
771 	}
772 	rcu_read_lock();
773 	/*
774 	 * searching a memory cgroup which has the smallest ID under given
775 	 * ROOT cgroup. (ID >= 1)
776 	 */
777 	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
778 	if (css && css_tryget(css))
779 		mem = container_of(css, struct mem_cgroup, css);
780 	else
781 		mem = NULL;
782 	rcu_read_unlock();
783 	return mem;
784 }
785 
786 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
787 					struct mem_cgroup *root,
788 					bool cond)
789 {
790 	int nextid = css_id(&iter->css) + 1;
791 	int found;
792 	int hierarchy_used;
793 	struct cgroup_subsys_state *css;
794 
795 	hierarchy_used = iter->use_hierarchy;
796 
797 	css_put(&iter->css);
798 	/* If no ROOT, walk all, ignore hierarchy */
799 	if (!cond || (root && !hierarchy_used))
800 		return NULL;
801 
802 	if (!root)
803 		root = root_mem_cgroup;
804 
805 	do {
806 		iter = NULL;
807 		rcu_read_lock();
808 
809 		css = css_get_next(&mem_cgroup_subsys, nextid,
810 				&root->css, &found);
811 		if (css && css_tryget(css))
812 			iter = container_of(css, struct mem_cgroup, css);
813 		rcu_read_unlock();
814 		/* If css is NULL, no more cgroups will be found */
815 		nextid = found + 1;
816 	} while (css && !iter);
817 
818 	return iter;
819 }
820 /*
821  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
822  * be careful that "break" loop is not allowed. We have reference count.
823  * Instead of that modify "cond" to be false and "continue" to exit the loop.
824  */
825 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
826 	for (iter = mem_cgroup_start_loop(root);\
827 	     iter != NULL;\
828 	     iter = mem_cgroup_get_next(iter, root, cond))
829 
830 #define for_each_mem_cgroup_tree(iter, root) \
831 	for_each_mem_cgroup_tree_cond(iter, root, true)
832 
833 #define for_each_mem_cgroup_all(iter) \
834 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
835 
836 
837 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
838 {
839 	return (mem == root_mem_cgroup);
840 }
841 
842 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
843 {
844 	struct mem_cgroup *mem;
845 
846 	if (!mm)
847 		return;
848 
849 	rcu_read_lock();
850 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
851 	if (unlikely(!mem))
852 		goto out;
853 
854 	switch (idx) {
855 	case PGMAJFAULT:
856 		mem_cgroup_pgmajfault(mem, 1);
857 		break;
858 	case PGFAULT:
859 		mem_cgroup_pgfault(mem, 1);
860 		break;
861 	default:
862 		BUG();
863 	}
864 out:
865 	rcu_read_unlock();
866 }
867 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
868 
869 /*
870  * Following LRU functions are allowed to be used without PCG_LOCK.
871  * Operations are called by routine of global LRU independently from memcg.
872  * What we have to take care of here is validness of pc->mem_cgroup.
873  *
874  * Changes to pc->mem_cgroup happens when
875  * 1. charge
876  * 2. moving account
877  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
878  * It is added to LRU before charge.
879  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
880  * When moving account, the page is not on LRU. It's isolated.
881  */
882 
883 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
884 {
885 	struct page_cgroup *pc;
886 	struct mem_cgroup_per_zone *mz;
887 
888 	if (mem_cgroup_disabled())
889 		return;
890 	pc = lookup_page_cgroup(page);
891 	/* can happen while we handle swapcache. */
892 	if (!TestClearPageCgroupAcctLRU(pc))
893 		return;
894 	VM_BUG_ON(!pc->mem_cgroup);
895 	/*
896 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
897 	 * removed from global LRU.
898 	 */
899 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
900 	/* huge page split is done under lru_lock. so, we have no races. */
901 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
902 	if (mem_cgroup_is_root(pc->mem_cgroup))
903 		return;
904 	VM_BUG_ON(list_empty(&pc->lru));
905 	list_del_init(&pc->lru);
906 }
907 
908 void mem_cgroup_del_lru(struct page *page)
909 {
910 	mem_cgroup_del_lru_list(page, page_lru(page));
911 }
912 
913 /*
914  * Writeback is about to end against a page which has been marked for immediate
915  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
916  * inactive list.
917  */
918 void mem_cgroup_rotate_reclaimable_page(struct page *page)
919 {
920 	struct mem_cgroup_per_zone *mz;
921 	struct page_cgroup *pc;
922 	enum lru_list lru = page_lru(page);
923 
924 	if (mem_cgroup_disabled())
925 		return;
926 
927 	pc = lookup_page_cgroup(page);
928 	/* unused or root page is not rotated. */
929 	if (!PageCgroupUsed(pc))
930 		return;
931 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
932 	smp_rmb();
933 	if (mem_cgroup_is_root(pc->mem_cgroup))
934 		return;
935 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
936 	list_move_tail(&pc->lru, &mz->lists[lru]);
937 }
938 
939 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
940 {
941 	struct mem_cgroup_per_zone *mz;
942 	struct page_cgroup *pc;
943 
944 	if (mem_cgroup_disabled())
945 		return;
946 
947 	pc = lookup_page_cgroup(page);
948 	/* unused or root page is not rotated. */
949 	if (!PageCgroupUsed(pc))
950 		return;
951 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
952 	smp_rmb();
953 	if (mem_cgroup_is_root(pc->mem_cgroup))
954 		return;
955 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
956 	list_move(&pc->lru, &mz->lists[lru]);
957 }
958 
959 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
960 {
961 	struct page_cgroup *pc;
962 	struct mem_cgroup_per_zone *mz;
963 
964 	if (mem_cgroup_disabled())
965 		return;
966 	pc = lookup_page_cgroup(page);
967 	VM_BUG_ON(PageCgroupAcctLRU(pc));
968 	if (!PageCgroupUsed(pc))
969 		return;
970 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
971 	smp_rmb();
972 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
973 	/* huge page split is done under lru_lock. so, we have no races. */
974 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
975 	SetPageCgroupAcctLRU(pc);
976 	if (mem_cgroup_is_root(pc->mem_cgroup))
977 		return;
978 	list_add(&pc->lru, &mz->lists[lru]);
979 }
980 
981 /*
982  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
983  * while it's linked to lru because the page may be reused after it's fully
984  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
985  * It's done under lock_page and expected that zone->lru_lock isnever held.
986  */
987 static void mem_cgroup_lru_del_before_commit(struct page *page)
988 {
989 	unsigned long flags;
990 	struct zone *zone = page_zone(page);
991 	struct page_cgroup *pc = lookup_page_cgroup(page);
992 
993 	/*
994 	 * Doing this check without taking ->lru_lock seems wrong but this
995 	 * is safe. Because if page_cgroup's USED bit is unset, the page
996 	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
997 	 * set, the commit after this will fail, anyway.
998 	 * This all charge/uncharge is done under some mutual execustion.
999 	 * So, we don't need to taking care of changes in USED bit.
1000 	 */
1001 	if (likely(!PageLRU(page)))
1002 		return;
1003 
1004 	spin_lock_irqsave(&zone->lru_lock, flags);
1005 	/*
1006 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1007 	 * is guarded by lock_page() because the page is SwapCache.
1008 	 */
1009 	if (!PageCgroupUsed(pc))
1010 		mem_cgroup_del_lru_list(page, page_lru(page));
1011 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1012 }
1013 
1014 static void mem_cgroup_lru_add_after_commit(struct page *page)
1015 {
1016 	unsigned long flags;
1017 	struct zone *zone = page_zone(page);
1018 	struct page_cgroup *pc = lookup_page_cgroup(page);
1019 
1020 	/* taking care of that the page is added to LRU while we commit it */
1021 	if (likely(!PageLRU(page)))
1022 		return;
1023 	spin_lock_irqsave(&zone->lru_lock, flags);
1024 	/* link when the page is linked to LRU but page_cgroup isn't */
1025 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1026 		mem_cgroup_add_lru_list(page, page_lru(page));
1027 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1028 }
1029 
1030 
1031 void mem_cgroup_move_lists(struct page *page,
1032 			   enum lru_list from, enum lru_list to)
1033 {
1034 	if (mem_cgroup_disabled())
1035 		return;
1036 	mem_cgroup_del_lru_list(page, from);
1037 	mem_cgroup_add_lru_list(page, to);
1038 }
1039 
1040 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1041 {
1042 	int ret;
1043 	struct mem_cgroup *curr = NULL;
1044 	struct task_struct *p;
1045 
1046 	p = find_lock_task_mm(task);
1047 	if (!p)
1048 		return 0;
1049 	curr = try_get_mem_cgroup_from_mm(p->mm);
1050 	task_unlock(p);
1051 	if (!curr)
1052 		return 0;
1053 	/*
1054 	 * We should check use_hierarchy of "mem" not "curr". Because checking
1055 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1056 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1057 	 * hierarchy(even if use_hierarchy is disabled in "mem").
1058 	 */
1059 	if (mem->use_hierarchy)
1060 		ret = css_is_ancestor(&curr->css, &mem->css);
1061 	else
1062 		ret = (curr == mem);
1063 	css_put(&curr->css);
1064 	return ret;
1065 }
1066 
1067 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1068 {
1069 	unsigned long active;
1070 	unsigned long inactive;
1071 	unsigned long gb;
1072 	unsigned long inactive_ratio;
1073 
1074 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1075 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1076 
1077 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1078 	if (gb)
1079 		inactive_ratio = int_sqrt(10 * gb);
1080 	else
1081 		inactive_ratio = 1;
1082 
1083 	if (present_pages) {
1084 		present_pages[0] = inactive;
1085 		present_pages[1] = active;
1086 	}
1087 
1088 	return inactive_ratio;
1089 }
1090 
1091 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1092 {
1093 	unsigned long active;
1094 	unsigned long inactive;
1095 	unsigned long present_pages[2];
1096 	unsigned long inactive_ratio;
1097 
1098 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1099 
1100 	inactive = present_pages[0];
1101 	active = present_pages[1];
1102 
1103 	if (inactive * inactive_ratio < active)
1104 		return 1;
1105 
1106 	return 0;
1107 }
1108 
1109 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1110 {
1111 	unsigned long active;
1112 	unsigned long inactive;
1113 
1114 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1115 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1116 
1117 	return (active > inactive);
1118 }
1119 
1120 unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
1121 						struct zone *zone,
1122 						enum lru_list lru)
1123 {
1124 	int nid = zone_to_nid(zone);
1125 	int zid = zone_idx(zone);
1126 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1127 
1128 	return MEM_CGROUP_ZSTAT(mz, lru);
1129 }
1130 
1131 #ifdef CONFIG_NUMA
1132 static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup *memcg,
1133 							int nid)
1134 {
1135 	unsigned long ret;
1136 
1137 	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_FILE) +
1138 		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_FILE);
1139 
1140 	return ret;
1141 }
1142 
1143 static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup *memcg)
1144 {
1145 	u64 total = 0;
1146 	int nid;
1147 
1148 	for_each_node_state(nid, N_HIGH_MEMORY)
1149 		total += mem_cgroup_node_nr_file_lru_pages(memcg, nid);
1150 
1151 	return total;
1152 }
1153 
1154 static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup *memcg,
1155 							int nid)
1156 {
1157 	unsigned long ret;
1158 
1159 	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_ANON) +
1160 		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_ANON);
1161 
1162 	return ret;
1163 }
1164 
1165 static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup *memcg)
1166 {
1167 	u64 total = 0;
1168 	int nid;
1169 
1170 	for_each_node_state(nid, N_HIGH_MEMORY)
1171 		total += mem_cgroup_node_nr_anon_lru_pages(memcg, nid);
1172 
1173 	return total;
1174 }
1175 
1176 static unsigned long
1177 mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup *memcg, int nid)
1178 {
1179 	return mem_cgroup_get_zonestat_node(memcg, nid, LRU_UNEVICTABLE);
1180 }
1181 
1182 static unsigned long
1183 mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup *memcg)
1184 {
1185 	u64 total = 0;
1186 	int nid;
1187 
1188 	for_each_node_state(nid, N_HIGH_MEMORY)
1189 		total += mem_cgroup_node_nr_unevictable_lru_pages(memcg, nid);
1190 
1191 	return total;
1192 }
1193 
1194 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1195 							int nid)
1196 {
1197 	enum lru_list l;
1198 	u64 total = 0;
1199 
1200 	for_each_lru(l)
1201 		total += mem_cgroup_get_zonestat_node(memcg, nid, l);
1202 
1203 	return total;
1204 }
1205 
1206 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg)
1207 {
1208 	u64 total = 0;
1209 	int nid;
1210 
1211 	for_each_node_state(nid, N_HIGH_MEMORY)
1212 		total += mem_cgroup_node_nr_lru_pages(memcg, nid);
1213 
1214 	return total;
1215 }
1216 #endif /* CONFIG_NUMA */
1217 
1218 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1219 						      struct zone *zone)
1220 {
1221 	int nid = zone_to_nid(zone);
1222 	int zid = zone_idx(zone);
1223 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1224 
1225 	return &mz->reclaim_stat;
1226 }
1227 
1228 struct zone_reclaim_stat *
1229 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1230 {
1231 	struct page_cgroup *pc;
1232 	struct mem_cgroup_per_zone *mz;
1233 
1234 	if (mem_cgroup_disabled())
1235 		return NULL;
1236 
1237 	pc = lookup_page_cgroup(page);
1238 	if (!PageCgroupUsed(pc))
1239 		return NULL;
1240 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1241 	smp_rmb();
1242 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1243 	return &mz->reclaim_stat;
1244 }
1245 
1246 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1247 					struct list_head *dst,
1248 					unsigned long *scanned, int order,
1249 					int mode, struct zone *z,
1250 					struct mem_cgroup *mem_cont,
1251 					int active, int file)
1252 {
1253 	unsigned long nr_taken = 0;
1254 	struct page *page;
1255 	unsigned long scan;
1256 	LIST_HEAD(pc_list);
1257 	struct list_head *src;
1258 	struct page_cgroup *pc, *tmp;
1259 	int nid = zone_to_nid(z);
1260 	int zid = zone_idx(z);
1261 	struct mem_cgroup_per_zone *mz;
1262 	int lru = LRU_FILE * file + active;
1263 	int ret;
1264 
1265 	BUG_ON(!mem_cont);
1266 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1267 	src = &mz->lists[lru];
1268 
1269 	scan = 0;
1270 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1271 		if (scan >= nr_to_scan)
1272 			break;
1273 
1274 		if (unlikely(!PageCgroupUsed(pc)))
1275 			continue;
1276 
1277 		page = lookup_cgroup_page(pc);
1278 
1279 		if (unlikely(!PageLRU(page)))
1280 			continue;
1281 
1282 		scan++;
1283 		ret = __isolate_lru_page(page, mode, file);
1284 		switch (ret) {
1285 		case 0:
1286 			list_move(&page->lru, dst);
1287 			mem_cgroup_del_lru(page);
1288 			nr_taken += hpage_nr_pages(page);
1289 			break;
1290 		case -EBUSY:
1291 			/* we don't affect global LRU but rotate in our LRU */
1292 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1293 			break;
1294 		default:
1295 			break;
1296 		}
1297 	}
1298 
1299 	*scanned = scan;
1300 
1301 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1302 				      0, 0, 0, mode);
1303 
1304 	return nr_taken;
1305 }
1306 
1307 #define mem_cgroup_from_res_counter(counter, member)	\
1308 	container_of(counter, struct mem_cgroup, member)
1309 
1310 /**
1311  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1312  * @mem: the memory cgroup
1313  *
1314  * Returns the maximum amount of memory @mem can be charged with, in
1315  * pages.
1316  */
1317 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1318 {
1319 	unsigned long long margin;
1320 
1321 	margin = res_counter_margin(&mem->res);
1322 	if (do_swap_account)
1323 		margin = min(margin, res_counter_margin(&mem->memsw));
1324 	return margin >> PAGE_SHIFT;
1325 }
1326 
1327 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1328 {
1329 	struct cgroup *cgrp = memcg->css.cgroup;
1330 
1331 	/* root ? */
1332 	if (cgrp->parent == NULL)
1333 		return vm_swappiness;
1334 
1335 	return memcg->swappiness;
1336 }
1337 
1338 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1339 {
1340 	int cpu;
1341 
1342 	get_online_cpus();
1343 	spin_lock(&mem->pcp_counter_lock);
1344 	for_each_online_cpu(cpu)
1345 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1346 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1347 	spin_unlock(&mem->pcp_counter_lock);
1348 	put_online_cpus();
1349 
1350 	synchronize_rcu();
1351 }
1352 
1353 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1354 {
1355 	int cpu;
1356 
1357 	if (!mem)
1358 		return;
1359 	get_online_cpus();
1360 	spin_lock(&mem->pcp_counter_lock);
1361 	for_each_online_cpu(cpu)
1362 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1363 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1364 	spin_unlock(&mem->pcp_counter_lock);
1365 	put_online_cpus();
1366 }
1367 /*
1368  * 2 routines for checking "mem" is under move_account() or not.
1369  *
1370  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1371  *			  for avoiding race in accounting. If true,
1372  *			  pc->mem_cgroup may be overwritten.
1373  *
1374  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1375  *			  under hierarchy of moving cgroups. This is for
1376  *			  waiting at hith-memory prressure caused by "move".
1377  */
1378 
1379 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1380 {
1381 	VM_BUG_ON(!rcu_read_lock_held());
1382 	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1383 }
1384 
1385 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1386 {
1387 	struct mem_cgroup *from;
1388 	struct mem_cgroup *to;
1389 	bool ret = false;
1390 	/*
1391 	 * Unlike task_move routines, we access mc.to, mc.from not under
1392 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1393 	 */
1394 	spin_lock(&mc.lock);
1395 	from = mc.from;
1396 	to = mc.to;
1397 	if (!from)
1398 		goto unlock;
1399 	if (from == mem || to == mem
1400 	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1401 	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1402 		ret = true;
1403 unlock:
1404 	spin_unlock(&mc.lock);
1405 	return ret;
1406 }
1407 
1408 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1409 {
1410 	if (mc.moving_task && current != mc.moving_task) {
1411 		if (mem_cgroup_under_move(mem)) {
1412 			DEFINE_WAIT(wait);
1413 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1414 			/* moving charge context might have finished. */
1415 			if (mc.moving_task)
1416 				schedule();
1417 			finish_wait(&mc.waitq, &wait);
1418 			return true;
1419 		}
1420 	}
1421 	return false;
1422 }
1423 
1424 /**
1425  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1426  * @memcg: The memory cgroup that went over limit
1427  * @p: Task that is going to be killed
1428  *
1429  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1430  * enabled
1431  */
1432 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1433 {
1434 	struct cgroup *task_cgrp;
1435 	struct cgroup *mem_cgrp;
1436 	/*
1437 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1438 	 * on the assumption that OOM is serialized for memory controller.
1439 	 * If this assumption is broken, revisit this code.
1440 	 */
1441 	static char memcg_name[PATH_MAX];
1442 	int ret;
1443 
1444 	if (!memcg || !p)
1445 		return;
1446 
1447 
1448 	rcu_read_lock();
1449 
1450 	mem_cgrp = memcg->css.cgroup;
1451 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1452 
1453 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1454 	if (ret < 0) {
1455 		/*
1456 		 * Unfortunately, we are unable to convert to a useful name
1457 		 * But we'll still print out the usage information
1458 		 */
1459 		rcu_read_unlock();
1460 		goto done;
1461 	}
1462 	rcu_read_unlock();
1463 
1464 	printk(KERN_INFO "Task in %s killed", memcg_name);
1465 
1466 	rcu_read_lock();
1467 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1468 	if (ret < 0) {
1469 		rcu_read_unlock();
1470 		goto done;
1471 	}
1472 	rcu_read_unlock();
1473 
1474 	/*
1475 	 * Continues from above, so we don't need an KERN_ level
1476 	 */
1477 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1478 done:
1479 
1480 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1481 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1482 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1483 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1484 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1485 		"failcnt %llu\n",
1486 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1487 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1488 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1489 }
1490 
1491 /*
1492  * This function returns the number of memcg under hierarchy tree. Returns
1493  * 1(self count) if no children.
1494  */
1495 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1496 {
1497 	int num = 0;
1498 	struct mem_cgroup *iter;
1499 
1500 	for_each_mem_cgroup_tree(iter, mem)
1501 		num++;
1502 	return num;
1503 }
1504 
1505 /*
1506  * Return the memory (and swap, if configured) limit for a memcg.
1507  */
1508 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1509 {
1510 	u64 limit;
1511 	u64 memsw;
1512 
1513 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1514 	limit += total_swap_pages << PAGE_SHIFT;
1515 
1516 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1517 	/*
1518 	 * If memsw is finite and limits the amount of swap space available
1519 	 * to this memcg, return that limit.
1520 	 */
1521 	return min(limit, memsw);
1522 }
1523 
1524 /*
1525  * Visit the first child (need not be the first child as per the ordering
1526  * of the cgroup list, since we track last_scanned_child) of @mem and use
1527  * that to reclaim free pages from.
1528  */
1529 static struct mem_cgroup *
1530 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1531 {
1532 	struct mem_cgroup *ret = NULL;
1533 	struct cgroup_subsys_state *css;
1534 	int nextid, found;
1535 
1536 	if (!root_mem->use_hierarchy) {
1537 		css_get(&root_mem->css);
1538 		ret = root_mem;
1539 	}
1540 
1541 	while (!ret) {
1542 		rcu_read_lock();
1543 		nextid = root_mem->last_scanned_child + 1;
1544 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1545 				   &found);
1546 		if (css && css_tryget(css))
1547 			ret = container_of(css, struct mem_cgroup, css);
1548 
1549 		rcu_read_unlock();
1550 		/* Updates scanning parameter */
1551 		if (!css) {
1552 			/* this means start scan from ID:1 */
1553 			root_mem->last_scanned_child = 0;
1554 		} else
1555 			root_mem->last_scanned_child = found;
1556 	}
1557 
1558 	return ret;
1559 }
1560 
1561 #if MAX_NUMNODES > 1
1562 
1563 /*
1564  * Always updating the nodemask is not very good - even if we have an empty
1565  * list or the wrong list here, we can start from some node and traverse all
1566  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1567  *
1568  */
1569 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1570 {
1571 	int nid;
1572 
1573 	if (time_after(mem->next_scan_node_update, jiffies))
1574 		return;
1575 
1576 	mem->next_scan_node_update = jiffies + 10*HZ;
1577 	/* make a nodemask where this memcg uses memory from */
1578 	mem->scan_nodes = node_states[N_HIGH_MEMORY];
1579 
1580 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1581 
1582 		if (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_FILE) ||
1583 		    mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_FILE))
1584 			continue;
1585 
1586 		if (total_swap_pages &&
1587 		    (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_ANON) ||
1588 		     mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_ANON)))
1589 			continue;
1590 		node_clear(nid, mem->scan_nodes);
1591 	}
1592 }
1593 
1594 /*
1595  * Selecting a node where we start reclaim from. Because what we need is just
1596  * reducing usage counter, start from anywhere is O,K. Considering
1597  * memory reclaim from current node, there are pros. and cons.
1598  *
1599  * Freeing memory from current node means freeing memory from a node which
1600  * we'll use or we've used. So, it may make LRU bad. And if several threads
1601  * hit limits, it will see a contention on a node. But freeing from remote
1602  * node means more costs for memory reclaim because of memory latency.
1603  *
1604  * Now, we use round-robin. Better algorithm is welcomed.
1605  */
1606 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1607 {
1608 	int node;
1609 
1610 	mem_cgroup_may_update_nodemask(mem);
1611 	node = mem->last_scanned_node;
1612 
1613 	node = next_node(node, mem->scan_nodes);
1614 	if (node == MAX_NUMNODES)
1615 		node = first_node(mem->scan_nodes);
1616 	/*
1617 	 * We call this when we hit limit, not when pages are added to LRU.
1618 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1619 	 * memcg is too small and all pages are not on LRU. In that case,
1620 	 * we use curret node.
1621 	 */
1622 	if (unlikely(node == MAX_NUMNODES))
1623 		node = numa_node_id();
1624 
1625 	mem->last_scanned_node = node;
1626 	return node;
1627 }
1628 
1629 #else
1630 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1631 {
1632 	return 0;
1633 }
1634 #endif
1635 
1636 /*
1637  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638  * we reclaimed from, so that we don't end up penalizing one child extensively
1639  * based on its position in the children list.
1640  *
1641  * root_mem is the original ancestor that we've been reclaim from.
1642  *
1643  * We give up and return to the caller when we visit root_mem twice.
1644  * (other groups can be removed while we're walking....)
1645  *
1646  * If shrink==true, for avoiding to free too much, this returns immedieately.
1647  */
1648 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1649 						struct zone *zone,
1650 						gfp_t gfp_mask,
1651 						unsigned long reclaim_options,
1652 						unsigned long *total_scanned)
1653 {
1654 	struct mem_cgroup *victim;
1655 	int ret, total = 0;
1656 	int loop = 0;
1657 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1658 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1659 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1660 	unsigned long excess;
1661 	unsigned long nr_scanned;
1662 
1663 	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1664 
1665 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1666 	if (!check_soft && root_mem->memsw_is_minimum)
1667 		noswap = true;
1668 
1669 	while (1) {
1670 		victim = mem_cgroup_select_victim(root_mem);
1671 		if (victim == root_mem) {
1672 			loop++;
1673 			/*
1674 			 * We are not draining per cpu cached charges during
1675 			 * soft limit reclaim  because global reclaim doesn't
1676 			 * care about charges. It tries to free some memory and
1677 			 * charges will not give any.
1678 			 */
1679 			if (!check_soft && loop >= 1)
1680 				drain_all_stock_async(root_mem);
1681 			if (loop >= 2) {
1682 				/*
1683 				 * If we have not been able to reclaim
1684 				 * anything, it might because there are
1685 				 * no reclaimable pages under this hierarchy
1686 				 */
1687 				if (!check_soft || !total) {
1688 					css_put(&victim->css);
1689 					break;
1690 				}
1691 				/*
1692 				 * We want to do more targeted reclaim.
1693 				 * excess >> 2 is not to excessive so as to
1694 				 * reclaim too much, nor too less that we keep
1695 				 * coming back to reclaim from this cgroup
1696 				 */
1697 				if (total >= (excess >> 2) ||
1698 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1699 					css_put(&victim->css);
1700 					break;
1701 				}
1702 			}
1703 		}
1704 		if (!mem_cgroup_local_usage(victim)) {
1705 			/* this cgroup's local usage == 0 */
1706 			css_put(&victim->css);
1707 			continue;
1708 		}
1709 		/* we use swappiness of local cgroup */
1710 		if (check_soft) {
1711 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1712 				noswap, get_swappiness(victim), zone,
1713 				&nr_scanned);
1714 			*total_scanned += nr_scanned;
1715 		} else
1716 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1717 						noswap, get_swappiness(victim));
1718 		css_put(&victim->css);
1719 		/*
1720 		 * At shrinking usage, we can't check we should stop here or
1721 		 * reclaim more. It's depends on callers. last_scanned_child
1722 		 * will work enough for keeping fairness under tree.
1723 		 */
1724 		if (shrink)
1725 			return ret;
1726 		total += ret;
1727 		if (check_soft) {
1728 			if (!res_counter_soft_limit_excess(&root_mem->res))
1729 				return total;
1730 		} else if (mem_cgroup_margin(root_mem))
1731 			return total;
1732 	}
1733 	return total;
1734 }
1735 
1736 /*
1737  * Check OOM-Killer is already running under our hierarchy.
1738  * If someone is running, return false.
1739  */
1740 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1741 {
1742 	int x, lock_count = 0;
1743 	struct mem_cgroup *iter;
1744 
1745 	for_each_mem_cgroup_tree(iter, mem) {
1746 		x = atomic_inc_return(&iter->oom_lock);
1747 		lock_count = max(x, lock_count);
1748 	}
1749 
1750 	if (lock_count == 1)
1751 		return true;
1752 	return false;
1753 }
1754 
1755 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1756 {
1757 	struct mem_cgroup *iter;
1758 
1759 	/*
1760 	 * When a new child is created while the hierarchy is under oom,
1761 	 * mem_cgroup_oom_lock() may not be called. We have to use
1762 	 * atomic_add_unless() here.
1763 	 */
1764 	for_each_mem_cgroup_tree(iter, mem)
1765 		atomic_add_unless(&iter->oom_lock, -1, 0);
1766 	return 0;
1767 }
1768 
1769 
1770 static DEFINE_MUTEX(memcg_oom_mutex);
1771 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1772 
1773 struct oom_wait_info {
1774 	struct mem_cgroup *mem;
1775 	wait_queue_t	wait;
1776 };
1777 
1778 static int memcg_oom_wake_function(wait_queue_t *wait,
1779 	unsigned mode, int sync, void *arg)
1780 {
1781 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1782 	struct oom_wait_info *oom_wait_info;
1783 
1784 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1785 
1786 	if (oom_wait_info->mem == wake_mem)
1787 		goto wakeup;
1788 	/* if no hierarchy, no match */
1789 	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1790 		return 0;
1791 	/*
1792 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1793 	 * Then we can use css_is_ancestor without taking care of RCU.
1794 	 */
1795 	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1796 	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1797 		return 0;
1798 
1799 wakeup:
1800 	return autoremove_wake_function(wait, mode, sync, arg);
1801 }
1802 
1803 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1804 {
1805 	/* for filtering, pass "mem" as argument. */
1806 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1807 }
1808 
1809 static void memcg_oom_recover(struct mem_cgroup *mem)
1810 {
1811 	if (mem && atomic_read(&mem->oom_lock))
1812 		memcg_wakeup_oom(mem);
1813 }
1814 
1815 /*
1816  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1817  */
1818 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1819 {
1820 	struct oom_wait_info owait;
1821 	bool locked, need_to_kill;
1822 
1823 	owait.mem = mem;
1824 	owait.wait.flags = 0;
1825 	owait.wait.func = memcg_oom_wake_function;
1826 	owait.wait.private = current;
1827 	INIT_LIST_HEAD(&owait.wait.task_list);
1828 	need_to_kill = true;
1829 	/* At first, try to OOM lock hierarchy under mem.*/
1830 	mutex_lock(&memcg_oom_mutex);
1831 	locked = mem_cgroup_oom_lock(mem);
1832 	/*
1833 	 * Even if signal_pending(), we can't quit charge() loop without
1834 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1835 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1836 	 */
1837 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1838 	if (!locked || mem->oom_kill_disable)
1839 		need_to_kill = false;
1840 	if (locked)
1841 		mem_cgroup_oom_notify(mem);
1842 	mutex_unlock(&memcg_oom_mutex);
1843 
1844 	if (need_to_kill) {
1845 		finish_wait(&memcg_oom_waitq, &owait.wait);
1846 		mem_cgroup_out_of_memory(mem, mask);
1847 	} else {
1848 		schedule();
1849 		finish_wait(&memcg_oom_waitq, &owait.wait);
1850 	}
1851 	mutex_lock(&memcg_oom_mutex);
1852 	mem_cgroup_oom_unlock(mem);
1853 	memcg_wakeup_oom(mem);
1854 	mutex_unlock(&memcg_oom_mutex);
1855 
1856 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1857 		return false;
1858 	/* Give chance to dying process */
1859 	schedule_timeout(1);
1860 	return true;
1861 }
1862 
1863 /*
1864  * Currently used to update mapped file statistics, but the routine can be
1865  * generalized to update other statistics as well.
1866  *
1867  * Notes: Race condition
1868  *
1869  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1870  * it tends to be costly. But considering some conditions, we doesn't need
1871  * to do so _always_.
1872  *
1873  * Considering "charge", lock_page_cgroup() is not required because all
1874  * file-stat operations happen after a page is attached to radix-tree. There
1875  * are no race with "charge".
1876  *
1877  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1878  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1879  * if there are race with "uncharge". Statistics itself is properly handled
1880  * by flags.
1881  *
1882  * Considering "move", this is an only case we see a race. To make the race
1883  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1884  * possibility of race condition. If there is, we take a lock.
1885  */
1886 
1887 void mem_cgroup_update_page_stat(struct page *page,
1888 				 enum mem_cgroup_page_stat_item idx, int val)
1889 {
1890 	struct mem_cgroup *mem;
1891 	struct page_cgroup *pc = lookup_page_cgroup(page);
1892 	bool need_unlock = false;
1893 	unsigned long uninitialized_var(flags);
1894 
1895 	if (unlikely(!pc))
1896 		return;
1897 
1898 	rcu_read_lock();
1899 	mem = pc->mem_cgroup;
1900 	if (unlikely(!mem || !PageCgroupUsed(pc)))
1901 		goto out;
1902 	/* pc->mem_cgroup is unstable ? */
1903 	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1904 		/* take a lock against to access pc->mem_cgroup */
1905 		move_lock_page_cgroup(pc, &flags);
1906 		need_unlock = true;
1907 		mem = pc->mem_cgroup;
1908 		if (!mem || !PageCgroupUsed(pc))
1909 			goto out;
1910 	}
1911 
1912 	switch (idx) {
1913 	case MEMCG_NR_FILE_MAPPED:
1914 		if (val > 0)
1915 			SetPageCgroupFileMapped(pc);
1916 		else if (!page_mapped(page))
1917 			ClearPageCgroupFileMapped(pc);
1918 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1919 		break;
1920 	default:
1921 		BUG();
1922 	}
1923 
1924 	this_cpu_add(mem->stat->count[idx], val);
1925 
1926 out:
1927 	if (unlikely(need_unlock))
1928 		move_unlock_page_cgroup(pc, &flags);
1929 	rcu_read_unlock();
1930 	return;
1931 }
1932 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1933 
1934 /*
1935  * size of first charge trial. "32" comes from vmscan.c's magic value.
1936  * TODO: maybe necessary to use big numbers in big irons.
1937  */
1938 #define CHARGE_BATCH	32U
1939 struct memcg_stock_pcp {
1940 	struct mem_cgroup *cached; /* this never be root cgroup */
1941 	unsigned int nr_pages;
1942 	struct work_struct work;
1943 	unsigned long flags;
1944 #define FLUSHING_CACHED_CHARGE	(0)
1945 };
1946 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1947 static DEFINE_MUTEX(percpu_charge_mutex);
1948 
1949 /*
1950  * Try to consume stocked charge on this cpu. If success, one page is consumed
1951  * from local stock and true is returned. If the stock is 0 or charges from a
1952  * cgroup which is not current target, returns false. This stock will be
1953  * refilled.
1954  */
1955 static bool consume_stock(struct mem_cgroup *mem)
1956 {
1957 	struct memcg_stock_pcp *stock;
1958 	bool ret = true;
1959 
1960 	stock = &get_cpu_var(memcg_stock);
1961 	if (mem == stock->cached && stock->nr_pages)
1962 		stock->nr_pages--;
1963 	else /* need to call res_counter_charge */
1964 		ret = false;
1965 	put_cpu_var(memcg_stock);
1966 	return ret;
1967 }
1968 
1969 /*
1970  * Returns stocks cached in percpu to res_counter and reset cached information.
1971  */
1972 static void drain_stock(struct memcg_stock_pcp *stock)
1973 {
1974 	struct mem_cgroup *old = stock->cached;
1975 
1976 	if (stock->nr_pages) {
1977 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1978 
1979 		res_counter_uncharge(&old->res, bytes);
1980 		if (do_swap_account)
1981 			res_counter_uncharge(&old->memsw, bytes);
1982 		stock->nr_pages = 0;
1983 	}
1984 	stock->cached = NULL;
1985 }
1986 
1987 /*
1988  * This must be called under preempt disabled or must be called by
1989  * a thread which is pinned to local cpu.
1990  */
1991 static void drain_local_stock(struct work_struct *dummy)
1992 {
1993 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1994 	drain_stock(stock);
1995 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1996 }
1997 
1998 /*
1999  * Cache charges(val) which is from res_counter, to local per_cpu area.
2000  * This will be consumed by consume_stock() function, later.
2001  */
2002 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2003 {
2004 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2005 
2006 	if (stock->cached != mem) { /* reset if necessary */
2007 		drain_stock(stock);
2008 		stock->cached = mem;
2009 	}
2010 	stock->nr_pages += nr_pages;
2011 	put_cpu_var(memcg_stock);
2012 }
2013 
2014 /*
2015  * Tries to drain stocked charges in other cpus. This function is asynchronous
2016  * and just put a work per cpu for draining localy on each cpu. Caller can
2017  * expects some charges will be back to res_counter later but cannot wait for
2018  * it.
2019  */
2020 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2021 {
2022 	int cpu, curcpu;
2023 	/*
2024 	 * If someone calls draining, avoid adding more kworker runs.
2025 	 */
2026 	if (!mutex_trylock(&percpu_charge_mutex))
2027 		return;
2028 	/* Notify other cpus that system-wide "drain" is running */
2029 	get_online_cpus();
2030 	/*
2031 	 * Get a hint for avoiding draining charges on the current cpu,
2032 	 * which must be exhausted by our charging.  It is not required that
2033 	 * this be a precise check, so we use raw_smp_processor_id() instead of
2034 	 * getcpu()/putcpu().
2035 	 */
2036 	curcpu = raw_smp_processor_id();
2037 	for_each_online_cpu(cpu) {
2038 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2039 		struct mem_cgroup *mem;
2040 
2041 		if (cpu == curcpu)
2042 			continue;
2043 
2044 		mem = stock->cached;
2045 		if (!mem)
2046 			continue;
2047 		if (mem != root_mem) {
2048 			if (!root_mem->use_hierarchy)
2049 				continue;
2050 			/* check whether "mem" is under tree of "root_mem" */
2051 			if (!css_is_ancestor(&mem->css, &root_mem->css))
2052 				continue;
2053 		}
2054 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2055 			schedule_work_on(cpu, &stock->work);
2056 	}
2057  	put_online_cpus();
2058 	mutex_unlock(&percpu_charge_mutex);
2059 	/* We don't wait for flush_work */
2060 }
2061 
2062 /* This is a synchronous drain interface. */
2063 static void drain_all_stock_sync(void)
2064 {
2065 	/* called when force_empty is called */
2066 	mutex_lock(&percpu_charge_mutex);
2067 	schedule_on_each_cpu(drain_local_stock);
2068 	mutex_unlock(&percpu_charge_mutex);
2069 }
2070 
2071 /*
2072  * This function drains percpu counter value from DEAD cpu and
2073  * move it to local cpu. Note that this function can be preempted.
2074  */
2075 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2076 {
2077 	int i;
2078 
2079 	spin_lock(&mem->pcp_counter_lock);
2080 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2081 		long x = per_cpu(mem->stat->count[i], cpu);
2082 
2083 		per_cpu(mem->stat->count[i], cpu) = 0;
2084 		mem->nocpu_base.count[i] += x;
2085 	}
2086 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2087 		unsigned long x = per_cpu(mem->stat->events[i], cpu);
2088 
2089 		per_cpu(mem->stat->events[i], cpu) = 0;
2090 		mem->nocpu_base.events[i] += x;
2091 	}
2092 	/* need to clear ON_MOVE value, works as a kind of lock. */
2093 	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2094 	spin_unlock(&mem->pcp_counter_lock);
2095 }
2096 
2097 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2098 {
2099 	int idx = MEM_CGROUP_ON_MOVE;
2100 
2101 	spin_lock(&mem->pcp_counter_lock);
2102 	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2103 	spin_unlock(&mem->pcp_counter_lock);
2104 }
2105 
2106 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2107 					unsigned long action,
2108 					void *hcpu)
2109 {
2110 	int cpu = (unsigned long)hcpu;
2111 	struct memcg_stock_pcp *stock;
2112 	struct mem_cgroup *iter;
2113 
2114 	if ((action == CPU_ONLINE)) {
2115 		for_each_mem_cgroup_all(iter)
2116 			synchronize_mem_cgroup_on_move(iter, cpu);
2117 		return NOTIFY_OK;
2118 	}
2119 
2120 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2121 		return NOTIFY_OK;
2122 
2123 	for_each_mem_cgroup_all(iter)
2124 		mem_cgroup_drain_pcp_counter(iter, cpu);
2125 
2126 	stock = &per_cpu(memcg_stock, cpu);
2127 	drain_stock(stock);
2128 	return NOTIFY_OK;
2129 }
2130 
2131 
2132 /* See __mem_cgroup_try_charge() for details */
2133 enum {
2134 	CHARGE_OK,		/* success */
2135 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2136 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2137 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2138 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2139 };
2140 
2141 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2142 				unsigned int nr_pages, bool oom_check)
2143 {
2144 	unsigned long csize = nr_pages * PAGE_SIZE;
2145 	struct mem_cgroup *mem_over_limit;
2146 	struct res_counter *fail_res;
2147 	unsigned long flags = 0;
2148 	int ret;
2149 
2150 	ret = res_counter_charge(&mem->res, csize, &fail_res);
2151 
2152 	if (likely(!ret)) {
2153 		if (!do_swap_account)
2154 			return CHARGE_OK;
2155 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2156 		if (likely(!ret))
2157 			return CHARGE_OK;
2158 
2159 		res_counter_uncharge(&mem->res, csize);
2160 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2161 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2162 	} else
2163 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2164 	/*
2165 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2166 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2167 	 *
2168 	 * Never reclaim on behalf of optional batching, retry with a
2169 	 * single page instead.
2170 	 */
2171 	if (nr_pages == CHARGE_BATCH)
2172 		return CHARGE_RETRY;
2173 
2174 	if (!(gfp_mask & __GFP_WAIT))
2175 		return CHARGE_WOULDBLOCK;
2176 
2177 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2178 					      gfp_mask, flags, NULL);
2179 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2180 		return CHARGE_RETRY;
2181 	/*
2182 	 * Even though the limit is exceeded at this point, reclaim
2183 	 * may have been able to free some pages.  Retry the charge
2184 	 * before killing the task.
2185 	 *
2186 	 * Only for regular pages, though: huge pages are rather
2187 	 * unlikely to succeed so close to the limit, and we fall back
2188 	 * to regular pages anyway in case of failure.
2189 	 */
2190 	if (nr_pages == 1 && ret)
2191 		return CHARGE_RETRY;
2192 
2193 	/*
2194 	 * At task move, charge accounts can be doubly counted. So, it's
2195 	 * better to wait until the end of task_move if something is going on.
2196 	 */
2197 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2198 		return CHARGE_RETRY;
2199 
2200 	/* If we don't need to call oom-killer at el, return immediately */
2201 	if (!oom_check)
2202 		return CHARGE_NOMEM;
2203 	/* check OOM */
2204 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2205 		return CHARGE_OOM_DIE;
2206 
2207 	return CHARGE_RETRY;
2208 }
2209 
2210 /*
2211  * Unlike exported interface, "oom" parameter is added. if oom==true,
2212  * oom-killer can be invoked.
2213  */
2214 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2215 				   gfp_t gfp_mask,
2216 				   unsigned int nr_pages,
2217 				   struct mem_cgroup **memcg,
2218 				   bool oom)
2219 {
2220 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2221 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2222 	struct mem_cgroup *mem = NULL;
2223 	int ret;
2224 
2225 	/*
2226 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2227 	 * in system level. So, allow to go ahead dying process in addition to
2228 	 * MEMDIE process.
2229 	 */
2230 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2231 		     || fatal_signal_pending(current)))
2232 		goto bypass;
2233 
2234 	/*
2235 	 * We always charge the cgroup the mm_struct belongs to.
2236 	 * The mm_struct's mem_cgroup changes on task migration if the
2237 	 * thread group leader migrates. It's possible that mm is not
2238 	 * set, if so charge the init_mm (happens for pagecache usage).
2239 	 */
2240 	if (!*memcg && !mm)
2241 		goto bypass;
2242 again:
2243 	if (*memcg) { /* css should be a valid one */
2244 		mem = *memcg;
2245 		VM_BUG_ON(css_is_removed(&mem->css));
2246 		if (mem_cgroup_is_root(mem))
2247 			goto done;
2248 		if (nr_pages == 1 && consume_stock(mem))
2249 			goto done;
2250 		css_get(&mem->css);
2251 	} else {
2252 		struct task_struct *p;
2253 
2254 		rcu_read_lock();
2255 		p = rcu_dereference(mm->owner);
2256 		/*
2257 		 * Because we don't have task_lock(), "p" can exit.
2258 		 * In that case, "mem" can point to root or p can be NULL with
2259 		 * race with swapoff. Then, we have small risk of mis-accouning.
2260 		 * But such kind of mis-account by race always happens because
2261 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2262 		 * small race, here.
2263 		 * (*) swapoff at el will charge against mm-struct not against
2264 		 * task-struct. So, mm->owner can be NULL.
2265 		 */
2266 		mem = mem_cgroup_from_task(p);
2267 		if (!mem || mem_cgroup_is_root(mem)) {
2268 			rcu_read_unlock();
2269 			goto done;
2270 		}
2271 		if (nr_pages == 1 && consume_stock(mem)) {
2272 			/*
2273 			 * It seems dagerous to access memcg without css_get().
2274 			 * But considering how consume_stok works, it's not
2275 			 * necessary. If consume_stock success, some charges
2276 			 * from this memcg are cached on this cpu. So, we
2277 			 * don't need to call css_get()/css_tryget() before
2278 			 * calling consume_stock().
2279 			 */
2280 			rcu_read_unlock();
2281 			goto done;
2282 		}
2283 		/* after here, we may be blocked. we need to get refcnt */
2284 		if (!css_tryget(&mem->css)) {
2285 			rcu_read_unlock();
2286 			goto again;
2287 		}
2288 		rcu_read_unlock();
2289 	}
2290 
2291 	do {
2292 		bool oom_check;
2293 
2294 		/* If killed, bypass charge */
2295 		if (fatal_signal_pending(current)) {
2296 			css_put(&mem->css);
2297 			goto bypass;
2298 		}
2299 
2300 		oom_check = false;
2301 		if (oom && !nr_oom_retries) {
2302 			oom_check = true;
2303 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2304 		}
2305 
2306 		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2307 		switch (ret) {
2308 		case CHARGE_OK:
2309 			break;
2310 		case CHARGE_RETRY: /* not in OOM situation but retry */
2311 			batch = nr_pages;
2312 			css_put(&mem->css);
2313 			mem = NULL;
2314 			goto again;
2315 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2316 			css_put(&mem->css);
2317 			goto nomem;
2318 		case CHARGE_NOMEM: /* OOM routine works */
2319 			if (!oom) {
2320 				css_put(&mem->css);
2321 				goto nomem;
2322 			}
2323 			/* If oom, we never return -ENOMEM */
2324 			nr_oom_retries--;
2325 			break;
2326 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2327 			css_put(&mem->css);
2328 			goto bypass;
2329 		}
2330 	} while (ret != CHARGE_OK);
2331 
2332 	if (batch > nr_pages)
2333 		refill_stock(mem, batch - nr_pages);
2334 	css_put(&mem->css);
2335 done:
2336 	*memcg = mem;
2337 	return 0;
2338 nomem:
2339 	*memcg = NULL;
2340 	return -ENOMEM;
2341 bypass:
2342 	*memcg = NULL;
2343 	return 0;
2344 }
2345 
2346 /*
2347  * Somemtimes we have to undo a charge we got by try_charge().
2348  * This function is for that and do uncharge, put css's refcnt.
2349  * gotten by try_charge().
2350  */
2351 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2352 				       unsigned int nr_pages)
2353 {
2354 	if (!mem_cgroup_is_root(mem)) {
2355 		unsigned long bytes = nr_pages * PAGE_SIZE;
2356 
2357 		res_counter_uncharge(&mem->res, bytes);
2358 		if (do_swap_account)
2359 			res_counter_uncharge(&mem->memsw, bytes);
2360 	}
2361 }
2362 
2363 /*
2364  * A helper function to get mem_cgroup from ID. must be called under
2365  * rcu_read_lock(). The caller must check css_is_removed() or some if
2366  * it's concern. (dropping refcnt from swap can be called against removed
2367  * memcg.)
2368  */
2369 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2370 {
2371 	struct cgroup_subsys_state *css;
2372 
2373 	/* ID 0 is unused ID */
2374 	if (!id)
2375 		return NULL;
2376 	css = css_lookup(&mem_cgroup_subsys, id);
2377 	if (!css)
2378 		return NULL;
2379 	return container_of(css, struct mem_cgroup, css);
2380 }
2381 
2382 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2383 {
2384 	struct mem_cgroup *mem = NULL;
2385 	struct page_cgroup *pc;
2386 	unsigned short id;
2387 	swp_entry_t ent;
2388 
2389 	VM_BUG_ON(!PageLocked(page));
2390 
2391 	pc = lookup_page_cgroup(page);
2392 	lock_page_cgroup(pc);
2393 	if (PageCgroupUsed(pc)) {
2394 		mem = pc->mem_cgroup;
2395 		if (mem && !css_tryget(&mem->css))
2396 			mem = NULL;
2397 	} else if (PageSwapCache(page)) {
2398 		ent.val = page_private(page);
2399 		id = lookup_swap_cgroup(ent);
2400 		rcu_read_lock();
2401 		mem = mem_cgroup_lookup(id);
2402 		if (mem && !css_tryget(&mem->css))
2403 			mem = NULL;
2404 		rcu_read_unlock();
2405 	}
2406 	unlock_page_cgroup(pc);
2407 	return mem;
2408 }
2409 
2410 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2411 				       struct page *page,
2412 				       unsigned int nr_pages,
2413 				       struct page_cgroup *pc,
2414 				       enum charge_type ctype)
2415 {
2416 	lock_page_cgroup(pc);
2417 	if (unlikely(PageCgroupUsed(pc))) {
2418 		unlock_page_cgroup(pc);
2419 		__mem_cgroup_cancel_charge(mem, nr_pages);
2420 		return;
2421 	}
2422 	/*
2423 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2424 	 * accessed by any other context at this point.
2425 	 */
2426 	pc->mem_cgroup = mem;
2427 	/*
2428 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2429 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2430 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2431 	 * before USED bit, we need memory barrier here.
2432 	 * See mem_cgroup_add_lru_list(), etc.
2433  	 */
2434 	smp_wmb();
2435 	switch (ctype) {
2436 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2437 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2438 		SetPageCgroupCache(pc);
2439 		SetPageCgroupUsed(pc);
2440 		break;
2441 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2442 		ClearPageCgroupCache(pc);
2443 		SetPageCgroupUsed(pc);
2444 		break;
2445 	default:
2446 		break;
2447 	}
2448 
2449 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2450 	unlock_page_cgroup(pc);
2451 	/*
2452 	 * "charge_statistics" updated event counter. Then, check it.
2453 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2454 	 * if they exceeds softlimit.
2455 	 */
2456 	memcg_check_events(mem, page);
2457 }
2458 
2459 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2460 
2461 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2462 			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2463 /*
2464  * Because tail pages are not marked as "used", set it. We're under
2465  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2466  */
2467 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2468 {
2469 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2470 	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2471 	unsigned long flags;
2472 
2473 	if (mem_cgroup_disabled())
2474 		return;
2475 	/*
2476 	 * We have no races with charge/uncharge but will have races with
2477 	 * page state accounting.
2478 	 */
2479 	move_lock_page_cgroup(head_pc, &flags);
2480 
2481 	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2482 	smp_wmb(); /* see __commit_charge() */
2483 	if (PageCgroupAcctLRU(head_pc)) {
2484 		enum lru_list lru;
2485 		struct mem_cgroup_per_zone *mz;
2486 
2487 		/*
2488 		 * LRU flags cannot be copied because we need to add tail
2489 		 *.page to LRU by generic call and our hook will be called.
2490 		 * We hold lru_lock, then, reduce counter directly.
2491 		 */
2492 		lru = page_lru(head);
2493 		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2494 		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2495 	}
2496 	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2497 	move_unlock_page_cgroup(head_pc, &flags);
2498 }
2499 #endif
2500 
2501 /**
2502  * mem_cgroup_move_account - move account of the page
2503  * @page: the page
2504  * @nr_pages: number of regular pages (>1 for huge pages)
2505  * @pc:	page_cgroup of the page.
2506  * @from: mem_cgroup which the page is moved from.
2507  * @to:	mem_cgroup which the page is moved to. @from != @to.
2508  * @uncharge: whether we should call uncharge and css_put against @from.
2509  *
2510  * The caller must confirm following.
2511  * - page is not on LRU (isolate_page() is useful.)
2512  * - compound_lock is held when nr_pages > 1
2513  *
2514  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2515  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2516  * true, this function does "uncharge" from old cgroup, but it doesn't if
2517  * @uncharge is false, so a caller should do "uncharge".
2518  */
2519 static int mem_cgroup_move_account(struct page *page,
2520 				   unsigned int nr_pages,
2521 				   struct page_cgroup *pc,
2522 				   struct mem_cgroup *from,
2523 				   struct mem_cgroup *to,
2524 				   bool uncharge)
2525 {
2526 	unsigned long flags;
2527 	int ret;
2528 
2529 	VM_BUG_ON(from == to);
2530 	VM_BUG_ON(PageLRU(page));
2531 	/*
2532 	 * The page is isolated from LRU. So, collapse function
2533 	 * will not handle this page. But page splitting can happen.
2534 	 * Do this check under compound_page_lock(). The caller should
2535 	 * hold it.
2536 	 */
2537 	ret = -EBUSY;
2538 	if (nr_pages > 1 && !PageTransHuge(page))
2539 		goto out;
2540 
2541 	lock_page_cgroup(pc);
2542 
2543 	ret = -EINVAL;
2544 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2545 		goto unlock;
2546 
2547 	move_lock_page_cgroup(pc, &flags);
2548 
2549 	if (PageCgroupFileMapped(pc)) {
2550 		/* Update mapped_file data for mem_cgroup */
2551 		preempt_disable();
2552 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2553 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2554 		preempt_enable();
2555 	}
2556 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2557 	if (uncharge)
2558 		/* This is not "cancel", but cancel_charge does all we need. */
2559 		__mem_cgroup_cancel_charge(from, nr_pages);
2560 
2561 	/* caller should have done css_get */
2562 	pc->mem_cgroup = to;
2563 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2564 	/*
2565 	 * We charges against "to" which may not have any tasks. Then, "to"
2566 	 * can be under rmdir(). But in current implementation, caller of
2567 	 * this function is just force_empty() and move charge, so it's
2568 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2569 	 * status here.
2570 	 */
2571 	move_unlock_page_cgroup(pc, &flags);
2572 	ret = 0;
2573 unlock:
2574 	unlock_page_cgroup(pc);
2575 	/*
2576 	 * check events
2577 	 */
2578 	memcg_check_events(to, page);
2579 	memcg_check_events(from, page);
2580 out:
2581 	return ret;
2582 }
2583 
2584 /*
2585  * move charges to its parent.
2586  */
2587 
2588 static int mem_cgroup_move_parent(struct page *page,
2589 				  struct page_cgroup *pc,
2590 				  struct mem_cgroup *child,
2591 				  gfp_t gfp_mask)
2592 {
2593 	struct cgroup *cg = child->css.cgroup;
2594 	struct cgroup *pcg = cg->parent;
2595 	struct mem_cgroup *parent;
2596 	unsigned int nr_pages;
2597 	unsigned long uninitialized_var(flags);
2598 	int ret;
2599 
2600 	/* Is ROOT ? */
2601 	if (!pcg)
2602 		return -EINVAL;
2603 
2604 	ret = -EBUSY;
2605 	if (!get_page_unless_zero(page))
2606 		goto out;
2607 	if (isolate_lru_page(page))
2608 		goto put;
2609 
2610 	nr_pages = hpage_nr_pages(page);
2611 
2612 	parent = mem_cgroup_from_cont(pcg);
2613 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2614 	if (ret || !parent)
2615 		goto put_back;
2616 
2617 	if (nr_pages > 1)
2618 		flags = compound_lock_irqsave(page);
2619 
2620 	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2621 	if (ret)
2622 		__mem_cgroup_cancel_charge(parent, nr_pages);
2623 
2624 	if (nr_pages > 1)
2625 		compound_unlock_irqrestore(page, flags);
2626 put_back:
2627 	putback_lru_page(page);
2628 put:
2629 	put_page(page);
2630 out:
2631 	return ret;
2632 }
2633 
2634 /*
2635  * Charge the memory controller for page usage.
2636  * Return
2637  * 0 if the charge was successful
2638  * < 0 if the cgroup is over its limit
2639  */
2640 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2641 				gfp_t gfp_mask, enum charge_type ctype)
2642 {
2643 	struct mem_cgroup *mem = NULL;
2644 	unsigned int nr_pages = 1;
2645 	struct page_cgroup *pc;
2646 	bool oom = true;
2647 	int ret;
2648 
2649 	if (PageTransHuge(page)) {
2650 		nr_pages <<= compound_order(page);
2651 		VM_BUG_ON(!PageTransHuge(page));
2652 		/*
2653 		 * Never OOM-kill a process for a huge page.  The
2654 		 * fault handler will fall back to regular pages.
2655 		 */
2656 		oom = false;
2657 	}
2658 
2659 	pc = lookup_page_cgroup(page);
2660 	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2661 
2662 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2663 	if (ret || !mem)
2664 		return ret;
2665 
2666 	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2667 	return 0;
2668 }
2669 
2670 int mem_cgroup_newpage_charge(struct page *page,
2671 			      struct mm_struct *mm, gfp_t gfp_mask)
2672 {
2673 	if (mem_cgroup_disabled())
2674 		return 0;
2675 	/*
2676 	 * If already mapped, we don't have to account.
2677 	 * If page cache, page->mapping has address_space.
2678 	 * But page->mapping may have out-of-use anon_vma pointer,
2679 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2680 	 * is NULL.
2681   	 */
2682 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2683 		return 0;
2684 	if (unlikely(!mm))
2685 		mm = &init_mm;
2686 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2687 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2688 }
2689 
2690 static void
2691 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2692 					enum charge_type ctype);
2693 
2694 static void
2695 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2696 					enum charge_type ctype)
2697 {
2698 	struct page_cgroup *pc = lookup_page_cgroup(page);
2699 	/*
2700 	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2701 	 * is already on LRU. It means the page may on some other page_cgroup's
2702 	 * LRU. Take care of it.
2703 	 */
2704 	mem_cgroup_lru_del_before_commit(page);
2705 	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2706 	mem_cgroup_lru_add_after_commit(page);
2707 	return;
2708 }
2709 
2710 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2711 				gfp_t gfp_mask)
2712 {
2713 	struct mem_cgroup *mem = NULL;
2714 	int ret;
2715 
2716 	if (mem_cgroup_disabled())
2717 		return 0;
2718 	if (PageCompound(page))
2719 		return 0;
2720 	/*
2721 	 * Corner case handling. This is called from add_to_page_cache()
2722 	 * in usual. But some FS (shmem) precharges this page before calling it
2723 	 * and call add_to_page_cache() with GFP_NOWAIT.
2724 	 *
2725 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2726 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2727 	 * charge twice. (It works but has to pay a bit larger cost.)
2728 	 * And when the page is SwapCache, it should take swap information
2729 	 * into account. This is under lock_page() now.
2730 	 */
2731 	if (!(gfp_mask & __GFP_WAIT)) {
2732 		struct page_cgroup *pc;
2733 
2734 		pc = lookup_page_cgroup(page);
2735 		if (!pc)
2736 			return 0;
2737 		lock_page_cgroup(pc);
2738 		if (PageCgroupUsed(pc)) {
2739 			unlock_page_cgroup(pc);
2740 			return 0;
2741 		}
2742 		unlock_page_cgroup(pc);
2743 	}
2744 
2745 	if (unlikely(!mm))
2746 		mm = &init_mm;
2747 
2748 	if (page_is_file_cache(page)) {
2749 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2750 		if (ret || !mem)
2751 			return ret;
2752 
2753 		/*
2754 		 * FUSE reuses pages without going through the final
2755 		 * put that would remove them from the LRU list, make
2756 		 * sure that they get relinked properly.
2757 		 */
2758 		__mem_cgroup_commit_charge_lrucare(page, mem,
2759 					MEM_CGROUP_CHARGE_TYPE_CACHE);
2760 		return ret;
2761 	}
2762 	/* shmem */
2763 	if (PageSwapCache(page)) {
2764 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2765 		if (!ret)
2766 			__mem_cgroup_commit_charge_swapin(page, mem,
2767 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2768 	} else
2769 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2770 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2771 
2772 	return ret;
2773 }
2774 
2775 /*
2776  * While swap-in, try_charge -> commit or cancel, the page is locked.
2777  * And when try_charge() successfully returns, one refcnt to memcg without
2778  * struct page_cgroup is acquired. This refcnt will be consumed by
2779  * "commit()" or removed by "cancel()"
2780  */
2781 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2782 				 struct page *page,
2783 				 gfp_t mask, struct mem_cgroup **ptr)
2784 {
2785 	struct mem_cgroup *mem;
2786 	int ret;
2787 
2788 	*ptr = NULL;
2789 
2790 	if (mem_cgroup_disabled())
2791 		return 0;
2792 
2793 	if (!do_swap_account)
2794 		goto charge_cur_mm;
2795 	/*
2796 	 * A racing thread's fault, or swapoff, may have already updated
2797 	 * the pte, and even removed page from swap cache: in those cases
2798 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2799 	 * KSM case which does need to charge the page.
2800 	 */
2801 	if (!PageSwapCache(page))
2802 		goto charge_cur_mm;
2803 	mem = try_get_mem_cgroup_from_page(page);
2804 	if (!mem)
2805 		goto charge_cur_mm;
2806 	*ptr = mem;
2807 	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2808 	css_put(&mem->css);
2809 	return ret;
2810 charge_cur_mm:
2811 	if (unlikely(!mm))
2812 		mm = &init_mm;
2813 	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2814 }
2815 
2816 static void
2817 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2818 					enum charge_type ctype)
2819 {
2820 	if (mem_cgroup_disabled())
2821 		return;
2822 	if (!ptr)
2823 		return;
2824 	cgroup_exclude_rmdir(&ptr->css);
2825 
2826 	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2827 	/*
2828 	 * Now swap is on-memory. This means this page may be
2829 	 * counted both as mem and swap....double count.
2830 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2831 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2832 	 * may call delete_from_swap_cache() before reach here.
2833 	 */
2834 	if (do_swap_account && PageSwapCache(page)) {
2835 		swp_entry_t ent = {.val = page_private(page)};
2836 		unsigned short id;
2837 		struct mem_cgroup *memcg;
2838 
2839 		id = swap_cgroup_record(ent, 0);
2840 		rcu_read_lock();
2841 		memcg = mem_cgroup_lookup(id);
2842 		if (memcg) {
2843 			/*
2844 			 * This recorded memcg can be obsolete one. So, avoid
2845 			 * calling css_tryget
2846 			 */
2847 			if (!mem_cgroup_is_root(memcg))
2848 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2849 			mem_cgroup_swap_statistics(memcg, false);
2850 			mem_cgroup_put(memcg);
2851 		}
2852 		rcu_read_unlock();
2853 	}
2854 	/*
2855 	 * At swapin, we may charge account against cgroup which has no tasks.
2856 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2857 	 * In that case, we need to call pre_destroy() again. check it here.
2858 	 */
2859 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2860 }
2861 
2862 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2863 {
2864 	__mem_cgroup_commit_charge_swapin(page, ptr,
2865 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2866 }
2867 
2868 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2869 {
2870 	if (mem_cgroup_disabled())
2871 		return;
2872 	if (!mem)
2873 		return;
2874 	__mem_cgroup_cancel_charge(mem, 1);
2875 }
2876 
2877 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2878 				   unsigned int nr_pages,
2879 				   const enum charge_type ctype)
2880 {
2881 	struct memcg_batch_info *batch = NULL;
2882 	bool uncharge_memsw = true;
2883 
2884 	/* If swapout, usage of swap doesn't decrease */
2885 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2886 		uncharge_memsw = false;
2887 
2888 	batch = &current->memcg_batch;
2889 	/*
2890 	 * In usual, we do css_get() when we remember memcg pointer.
2891 	 * But in this case, we keep res->usage until end of a series of
2892 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2893 	 */
2894 	if (!batch->memcg)
2895 		batch->memcg = mem;
2896 	/*
2897 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2898 	 * In those cases, all pages freed continuously can be expected to be in
2899 	 * the same cgroup and we have chance to coalesce uncharges.
2900 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2901 	 * because we want to do uncharge as soon as possible.
2902 	 */
2903 
2904 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2905 		goto direct_uncharge;
2906 
2907 	if (nr_pages > 1)
2908 		goto direct_uncharge;
2909 
2910 	/*
2911 	 * In typical case, batch->memcg == mem. This means we can
2912 	 * merge a series of uncharges to an uncharge of res_counter.
2913 	 * If not, we uncharge res_counter ony by one.
2914 	 */
2915 	if (batch->memcg != mem)
2916 		goto direct_uncharge;
2917 	/* remember freed charge and uncharge it later */
2918 	batch->nr_pages++;
2919 	if (uncharge_memsw)
2920 		batch->memsw_nr_pages++;
2921 	return;
2922 direct_uncharge:
2923 	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2924 	if (uncharge_memsw)
2925 		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2926 	if (unlikely(batch->memcg != mem))
2927 		memcg_oom_recover(mem);
2928 	return;
2929 }
2930 
2931 /*
2932  * uncharge if !page_mapped(page)
2933  */
2934 static struct mem_cgroup *
2935 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2936 {
2937 	struct mem_cgroup *mem = NULL;
2938 	unsigned int nr_pages = 1;
2939 	struct page_cgroup *pc;
2940 
2941 	if (mem_cgroup_disabled())
2942 		return NULL;
2943 
2944 	if (PageSwapCache(page))
2945 		return NULL;
2946 
2947 	if (PageTransHuge(page)) {
2948 		nr_pages <<= compound_order(page);
2949 		VM_BUG_ON(!PageTransHuge(page));
2950 	}
2951 	/*
2952 	 * Check if our page_cgroup is valid
2953 	 */
2954 	pc = lookup_page_cgroup(page);
2955 	if (unlikely(!pc || !PageCgroupUsed(pc)))
2956 		return NULL;
2957 
2958 	lock_page_cgroup(pc);
2959 
2960 	mem = pc->mem_cgroup;
2961 
2962 	if (!PageCgroupUsed(pc))
2963 		goto unlock_out;
2964 
2965 	switch (ctype) {
2966 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2967 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2968 		/* See mem_cgroup_prepare_migration() */
2969 		if (page_mapped(page) || PageCgroupMigration(pc))
2970 			goto unlock_out;
2971 		break;
2972 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2973 		if (!PageAnon(page)) {	/* Shared memory */
2974 			if (page->mapping && !page_is_file_cache(page))
2975 				goto unlock_out;
2976 		} else if (page_mapped(page)) /* Anon */
2977 				goto unlock_out;
2978 		break;
2979 	default:
2980 		break;
2981 	}
2982 
2983 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
2984 
2985 	ClearPageCgroupUsed(pc);
2986 	/*
2987 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2988 	 * freed from LRU. This is safe because uncharged page is expected not
2989 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2990 	 * special functions.
2991 	 */
2992 
2993 	unlock_page_cgroup(pc);
2994 	/*
2995 	 * even after unlock, we have mem->res.usage here and this memcg
2996 	 * will never be freed.
2997 	 */
2998 	memcg_check_events(mem, page);
2999 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3000 		mem_cgroup_swap_statistics(mem, true);
3001 		mem_cgroup_get(mem);
3002 	}
3003 	if (!mem_cgroup_is_root(mem))
3004 		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3005 
3006 	return mem;
3007 
3008 unlock_out:
3009 	unlock_page_cgroup(pc);
3010 	return NULL;
3011 }
3012 
3013 void mem_cgroup_uncharge_page(struct page *page)
3014 {
3015 	/* early check. */
3016 	if (page_mapped(page))
3017 		return;
3018 	if (page->mapping && !PageAnon(page))
3019 		return;
3020 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3021 }
3022 
3023 void mem_cgroup_uncharge_cache_page(struct page *page)
3024 {
3025 	VM_BUG_ON(page_mapped(page));
3026 	VM_BUG_ON(page->mapping);
3027 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3028 }
3029 
3030 /*
3031  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3032  * In that cases, pages are freed continuously and we can expect pages
3033  * are in the same memcg. All these calls itself limits the number of
3034  * pages freed at once, then uncharge_start/end() is called properly.
3035  * This may be called prural(2) times in a context,
3036  */
3037 
3038 void mem_cgroup_uncharge_start(void)
3039 {
3040 	current->memcg_batch.do_batch++;
3041 	/* We can do nest. */
3042 	if (current->memcg_batch.do_batch == 1) {
3043 		current->memcg_batch.memcg = NULL;
3044 		current->memcg_batch.nr_pages = 0;
3045 		current->memcg_batch.memsw_nr_pages = 0;
3046 	}
3047 }
3048 
3049 void mem_cgroup_uncharge_end(void)
3050 {
3051 	struct memcg_batch_info *batch = &current->memcg_batch;
3052 
3053 	if (!batch->do_batch)
3054 		return;
3055 
3056 	batch->do_batch--;
3057 	if (batch->do_batch) /* If stacked, do nothing. */
3058 		return;
3059 
3060 	if (!batch->memcg)
3061 		return;
3062 	/*
3063 	 * This "batch->memcg" is valid without any css_get/put etc...
3064 	 * bacause we hide charges behind us.
3065 	 */
3066 	if (batch->nr_pages)
3067 		res_counter_uncharge(&batch->memcg->res,
3068 				     batch->nr_pages * PAGE_SIZE);
3069 	if (batch->memsw_nr_pages)
3070 		res_counter_uncharge(&batch->memcg->memsw,
3071 				     batch->memsw_nr_pages * PAGE_SIZE);
3072 	memcg_oom_recover(batch->memcg);
3073 	/* forget this pointer (for sanity check) */
3074 	batch->memcg = NULL;
3075 }
3076 
3077 #ifdef CONFIG_SWAP
3078 /*
3079  * called after __delete_from_swap_cache() and drop "page" account.
3080  * memcg information is recorded to swap_cgroup of "ent"
3081  */
3082 void
3083 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3084 {
3085 	struct mem_cgroup *memcg;
3086 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3087 
3088 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3089 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3090 
3091 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3092 
3093 	/*
3094 	 * record memcg information,  if swapout && memcg != NULL,
3095 	 * mem_cgroup_get() was called in uncharge().
3096 	 */
3097 	if (do_swap_account && swapout && memcg)
3098 		swap_cgroup_record(ent, css_id(&memcg->css));
3099 }
3100 #endif
3101 
3102 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3103 /*
3104  * called from swap_entry_free(). remove record in swap_cgroup and
3105  * uncharge "memsw" account.
3106  */
3107 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3108 {
3109 	struct mem_cgroup *memcg;
3110 	unsigned short id;
3111 
3112 	if (!do_swap_account)
3113 		return;
3114 
3115 	id = swap_cgroup_record(ent, 0);
3116 	rcu_read_lock();
3117 	memcg = mem_cgroup_lookup(id);
3118 	if (memcg) {
3119 		/*
3120 		 * We uncharge this because swap is freed.
3121 		 * This memcg can be obsolete one. We avoid calling css_tryget
3122 		 */
3123 		if (!mem_cgroup_is_root(memcg))
3124 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3125 		mem_cgroup_swap_statistics(memcg, false);
3126 		mem_cgroup_put(memcg);
3127 	}
3128 	rcu_read_unlock();
3129 }
3130 
3131 /**
3132  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3133  * @entry: swap entry to be moved
3134  * @from:  mem_cgroup which the entry is moved from
3135  * @to:  mem_cgroup which the entry is moved to
3136  * @need_fixup: whether we should fixup res_counters and refcounts.
3137  *
3138  * It succeeds only when the swap_cgroup's record for this entry is the same
3139  * as the mem_cgroup's id of @from.
3140  *
3141  * Returns 0 on success, -EINVAL on failure.
3142  *
3143  * The caller must have charged to @to, IOW, called res_counter_charge() about
3144  * both res and memsw, and called css_get().
3145  */
3146 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3147 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3148 {
3149 	unsigned short old_id, new_id;
3150 
3151 	old_id = css_id(&from->css);
3152 	new_id = css_id(&to->css);
3153 
3154 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3155 		mem_cgroup_swap_statistics(from, false);
3156 		mem_cgroup_swap_statistics(to, true);
3157 		/*
3158 		 * This function is only called from task migration context now.
3159 		 * It postpones res_counter and refcount handling till the end
3160 		 * of task migration(mem_cgroup_clear_mc()) for performance
3161 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3162 		 * because if the process that has been moved to @to does
3163 		 * swap-in, the refcount of @to might be decreased to 0.
3164 		 */
3165 		mem_cgroup_get(to);
3166 		if (need_fixup) {
3167 			if (!mem_cgroup_is_root(from))
3168 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3169 			mem_cgroup_put(from);
3170 			/*
3171 			 * we charged both to->res and to->memsw, so we should
3172 			 * uncharge to->res.
3173 			 */
3174 			if (!mem_cgroup_is_root(to))
3175 				res_counter_uncharge(&to->res, PAGE_SIZE);
3176 		}
3177 		return 0;
3178 	}
3179 	return -EINVAL;
3180 }
3181 #else
3182 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3183 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3184 {
3185 	return -EINVAL;
3186 }
3187 #endif
3188 
3189 /*
3190  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3191  * page belongs to.
3192  */
3193 int mem_cgroup_prepare_migration(struct page *page,
3194 	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3195 {
3196 	struct mem_cgroup *mem = NULL;
3197 	struct page_cgroup *pc;
3198 	enum charge_type ctype;
3199 	int ret = 0;
3200 
3201 	*ptr = NULL;
3202 
3203 	VM_BUG_ON(PageTransHuge(page));
3204 	if (mem_cgroup_disabled())
3205 		return 0;
3206 
3207 	pc = lookup_page_cgroup(page);
3208 	lock_page_cgroup(pc);
3209 	if (PageCgroupUsed(pc)) {
3210 		mem = pc->mem_cgroup;
3211 		css_get(&mem->css);
3212 		/*
3213 		 * At migrating an anonymous page, its mapcount goes down
3214 		 * to 0 and uncharge() will be called. But, even if it's fully
3215 		 * unmapped, migration may fail and this page has to be
3216 		 * charged again. We set MIGRATION flag here and delay uncharge
3217 		 * until end_migration() is called
3218 		 *
3219 		 * Corner Case Thinking
3220 		 * A)
3221 		 * When the old page was mapped as Anon and it's unmap-and-freed
3222 		 * while migration was ongoing.
3223 		 * If unmap finds the old page, uncharge() of it will be delayed
3224 		 * until end_migration(). If unmap finds a new page, it's
3225 		 * uncharged when it make mapcount to be 1->0. If unmap code
3226 		 * finds swap_migration_entry, the new page will not be mapped
3227 		 * and end_migration() will find it(mapcount==0).
3228 		 *
3229 		 * B)
3230 		 * When the old page was mapped but migraion fails, the kernel
3231 		 * remaps it. A charge for it is kept by MIGRATION flag even
3232 		 * if mapcount goes down to 0. We can do remap successfully
3233 		 * without charging it again.
3234 		 *
3235 		 * C)
3236 		 * The "old" page is under lock_page() until the end of
3237 		 * migration, so, the old page itself will not be swapped-out.
3238 		 * If the new page is swapped out before end_migraton, our
3239 		 * hook to usual swap-out path will catch the event.
3240 		 */
3241 		if (PageAnon(page))
3242 			SetPageCgroupMigration(pc);
3243 	}
3244 	unlock_page_cgroup(pc);
3245 	/*
3246 	 * If the page is not charged at this point,
3247 	 * we return here.
3248 	 */
3249 	if (!mem)
3250 		return 0;
3251 
3252 	*ptr = mem;
3253 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3254 	css_put(&mem->css);/* drop extra refcnt */
3255 	if (ret || *ptr == NULL) {
3256 		if (PageAnon(page)) {
3257 			lock_page_cgroup(pc);
3258 			ClearPageCgroupMigration(pc);
3259 			unlock_page_cgroup(pc);
3260 			/*
3261 			 * The old page may be fully unmapped while we kept it.
3262 			 */
3263 			mem_cgroup_uncharge_page(page);
3264 		}
3265 		return -ENOMEM;
3266 	}
3267 	/*
3268 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3269 	 * is called before end_migration, we can catch all events on this new
3270 	 * page. In the case new page is migrated but not remapped, new page's
3271 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3272 	 */
3273 	pc = lookup_page_cgroup(newpage);
3274 	if (PageAnon(page))
3275 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3276 	else if (page_is_file_cache(page))
3277 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3278 	else
3279 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3280 	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3281 	return ret;
3282 }
3283 
3284 /* remove redundant charge if migration failed*/
3285 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3286 	struct page *oldpage, struct page *newpage, bool migration_ok)
3287 {
3288 	struct page *used, *unused;
3289 	struct page_cgroup *pc;
3290 
3291 	if (!mem)
3292 		return;
3293 	/* blocks rmdir() */
3294 	cgroup_exclude_rmdir(&mem->css);
3295 	if (!migration_ok) {
3296 		used = oldpage;
3297 		unused = newpage;
3298 	} else {
3299 		used = newpage;
3300 		unused = oldpage;
3301 	}
3302 	/*
3303 	 * We disallowed uncharge of pages under migration because mapcount
3304 	 * of the page goes down to zero, temporarly.
3305 	 * Clear the flag and check the page should be charged.
3306 	 */
3307 	pc = lookup_page_cgroup(oldpage);
3308 	lock_page_cgroup(pc);
3309 	ClearPageCgroupMigration(pc);
3310 	unlock_page_cgroup(pc);
3311 
3312 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3313 
3314 	/*
3315 	 * If a page is a file cache, radix-tree replacement is very atomic
3316 	 * and we can skip this check. When it was an Anon page, its mapcount
3317 	 * goes down to 0. But because we added MIGRATION flage, it's not
3318 	 * uncharged yet. There are several case but page->mapcount check
3319 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3320 	 * check. (see prepare_charge() also)
3321 	 */
3322 	if (PageAnon(used))
3323 		mem_cgroup_uncharge_page(used);
3324 	/*
3325 	 * At migration, we may charge account against cgroup which has no
3326 	 * tasks.
3327 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3328 	 * In that case, we need to call pre_destroy() again. check it here.
3329 	 */
3330 	cgroup_release_and_wakeup_rmdir(&mem->css);
3331 }
3332 
3333 /*
3334  * A call to try to shrink memory usage on charge failure at shmem's swapin.
3335  * Calling hierarchical_reclaim is not enough because we should update
3336  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3337  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3338  * not from the memcg which this page would be charged to.
3339  * try_charge_swapin does all of these works properly.
3340  */
3341 int mem_cgroup_shmem_charge_fallback(struct page *page,
3342 			    struct mm_struct *mm,
3343 			    gfp_t gfp_mask)
3344 {
3345 	struct mem_cgroup *mem;
3346 	int ret;
3347 
3348 	if (mem_cgroup_disabled())
3349 		return 0;
3350 
3351 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3352 	if (!ret)
3353 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3354 
3355 	return ret;
3356 }
3357 
3358 #ifdef CONFIG_DEBUG_VM
3359 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3360 {
3361 	struct page_cgroup *pc;
3362 
3363 	pc = lookup_page_cgroup(page);
3364 	if (likely(pc) && PageCgroupUsed(pc))
3365 		return pc;
3366 	return NULL;
3367 }
3368 
3369 bool mem_cgroup_bad_page_check(struct page *page)
3370 {
3371 	if (mem_cgroup_disabled())
3372 		return false;
3373 
3374 	return lookup_page_cgroup_used(page) != NULL;
3375 }
3376 
3377 void mem_cgroup_print_bad_page(struct page *page)
3378 {
3379 	struct page_cgroup *pc;
3380 
3381 	pc = lookup_page_cgroup_used(page);
3382 	if (pc) {
3383 		int ret = -1;
3384 		char *path;
3385 
3386 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3387 		       pc, pc->flags, pc->mem_cgroup);
3388 
3389 		path = kmalloc(PATH_MAX, GFP_KERNEL);
3390 		if (path) {
3391 			rcu_read_lock();
3392 			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3393 							path, PATH_MAX);
3394 			rcu_read_unlock();
3395 		}
3396 
3397 		printk(KERN_CONT "(%s)\n",
3398 				(ret < 0) ? "cannot get the path" : path);
3399 		kfree(path);
3400 	}
3401 }
3402 #endif
3403 
3404 static DEFINE_MUTEX(set_limit_mutex);
3405 
3406 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3407 				unsigned long long val)
3408 {
3409 	int retry_count;
3410 	u64 memswlimit, memlimit;
3411 	int ret = 0;
3412 	int children = mem_cgroup_count_children(memcg);
3413 	u64 curusage, oldusage;
3414 	int enlarge;
3415 
3416 	/*
3417 	 * For keeping hierarchical_reclaim simple, how long we should retry
3418 	 * is depends on callers. We set our retry-count to be function
3419 	 * of # of children which we should visit in this loop.
3420 	 */
3421 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3422 
3423 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3424 
3425 	enlarge = 0;
3426 	while (retry_count) {
3427 		if (signal_pending(current)) {
3428 			ret = -EINTR;
3429 			break;
3430 		}
3431 		/*
3432 		 * Rather than hide all in some function, I do this in
3433 		 * open coded manner. You see what this really does.
3434 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3435 		 */
3436 		mutex_lock(&set_limit_mutex);
3437 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3438 		if (memswlimit < val) {
3439 			ret = -EINVAL;
3440 			mutex_unlock(&set_limit_mutex);
3441 			break;
3442 		}
3443 
3444 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3445 		if (memlimit < val)
3446 			enlarge = 1;
3447 
3448 		ret = res_counter_set_limit(&memcg->res, val);
3449 		if (!ret) {
3450 			if (memswlimit == val)
3451 				memcg->memsw_is_minimum = true;
3452 			else
3453 				memcg->memsw_is_minimum = false;
3454 		}
3455 		mutex_unlock(&set_limit_mutex);
3456 
3457 		if (!ret)
3458 			break;
3459 
3460 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3461 						MEM_CGROUP_RECLAIM_SHRINK,
3462 						NULL);
3463 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3464 		/* Usage is reduced ? */
3465   		if (curusage >= oldusage)
3466 			retry_count--;
3467 		else
3468 			oldusage = curusage;
3469 	}
3470 	if (!ret && enlarge)
3471 		memcg_oom_recover(memcg);
3472 
3473 	return ret;
3474 }
3475 
3476 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3477 					unsigned long long val)
3478 {
3479 	int retry_count;
3480 	u64 memlimit, memswlimit, oldusage, curusage;
3481 	int children = mem_cgroup_count_children(memcg);
3482 	int ret = -EBUSY;
3483 	int enlarge = 0;
3484 
3485 	/* see mem_cgroup_resize_res_limit */
3486  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3487 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3488 	while (retry_count) {
3489 		if (signal_pending(current)) {
3490 			ret = -EINTR;
3491 			break;
3492 		}
3493 		/*
3494 		 * Rather than hide all in some function, I do this in
3495 		 * open coded manner. You see what this really does.
3496 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3497 		 */
3498 		mutex_lock(&set_limit_mutex);
3499 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3500 		if (memlimit > val) {
3501 			ret = -EINVAL;
3502 			mutex_unlock(&set_limit_mutex);
3503 			break;
3504 		}
3505 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3506 		if (memswlimit < val)
3507 			enlarge = 1;
3508 		ret = res_counter_set_limit(&memcg->memsw, val);
3509 		if (!ret) {
3510 			if (memlimit == val)
3511 				memcg->memsw_is_minimum = true;
3512 			else
3513 				memcg->memsw_is_minimum = false;
3514 		}
3515 		mutex_unlock(&set_limit_mutex);
3516 
3517 		if (!ret)
3518 			break;
3519 
3520 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3521 						MEM_CGROUP_RECLAIM_NOSWAP |
3522 						MEM_CGROUP_RECLAIM_SHRINK,
3523 						NULL);
3524 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3525 		/* Usage is reduced ? */
3526 		if (curusage >= oldusage)
3527 			retry_count--;
3528 		else
3529 			oldusage = curusage;
3530 	}
3531 	if (!ret && enlarge)
3532 		memcg_oom_recover(memcg);
3533 	return ret;
3534 }
3535 
3536 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3537 					    gfp_t gfp_mask,
3538 					    unsigned long *total_scanned)
3539 {
3540 	unsigned long nr_reclaimed = 0;
3541 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3542 	unsigned long reclaimed;
3543 	int loop = 0;
3544 	struct mem_cgroup_tree_per_zone *mctz;
3545 	unsigned long long excess;
3546 	unsigned long nr_scanned;
3547 
3548 	if (order > 0)
3549 		return 0;
3550 
3551 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3552 	/*
3553 	 * This loop can run a while, specially if mem_cgroup's continuously
3554 	 * keep exceeding their soft limit and putting the system under
3555 	 * pressure
3556 	 */
3557 	do {
3558 		if (next_mz)
3559 			mz = next_mz;
3560 		else
3561 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3562 		if (!mz)
3563 			break;
3564 
3565 		nr_scanned = 0;
3566 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3567 						gfp_mask,
3568 						MEM_CGROUP_RECLAIM_SOFT,
3569 						&nr_scanned);
3570 		nr_reclaimed += reclaimed;
3571 		*total_scanned += nr_scanned;
3572 		spin_lock(&mctz->lock);
3573 
3574 		/*
3575 		 * If we failed to reclaim anything from this memory cgroup
3576 		 * it is time to move on to the next cgroup
3577 		 */
3578 		next_mz = NULL;
3579 		if (!reclaimed) {
3580 			do {
3581 				/*
3582 				 * Loop until we find yet another one.
3583 				 *
3584 				 * By the time we get the soft_limit lock
3585 				 * again, someone might have aded the
3586 				 * group back on the RB tree. Iterate to
3587 				 * make sure we get a different mem.
3588 				 * mem_cgroup_largest_soft_limit_node returns
3589 				 * NULL if no other cgroup is present on
3590 				 * the tree
3591 				 */
3592 				next_mz =
3593 				__mem_cgroup_largest_soft_limit_node(mctz);
3594 				if (next_mz == mz)
3595 					css_put(&next_mz->mem->css);
3596 				else /* next_mz == NULL or other memcg */
3597 					break;
3598 			} while (1);
3599 		}
3600 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3601 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3602 		/*
3603 		 * One school of thought says that we should not add
3604 		 * back the node to the tree if reclaim returns 0.
3605 		 * But our reclaim could return 0, simply because due
3606 		 * to priority we are exposing a smaller subset of
3607 		 * memory to reclaim from. Consider this as a longer
3608 		 * term TODO.
3609 		 */
3610 		/* If excess == 0, no tree ops */
3611 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3612 		spin_unlock(&mctz->lock);
3613 		css_put(&mz->mem->css);
3614 		loop++;
3615 		/*
3616 		 * Could not reclaim anything and there are no more
3617 		 * mem cgroups to try or we seem to be looping without
3618 		 * reclaiming anything.
3619 		 */
3620 		if (!nr_reclaimed &&
3621 			(next_mz == NULL ||
3622 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3623 			break;
3624 	} while (!nr_reclaimed);
3625 	if (next_mz)
3626 		css_put(&next_mz->mem->css);
3627 	return nr_reclaimed;
3628 }
3629 
3630 /*
3631  * This routine traverse page_cgroup in given list and drop them all.
3632  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3633  */
3634 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3635 				int node, int zid, enum lru_list lru)
3636 {
3637 	struct zone *zone;
3638 	struct mem_cgroup_per_zone *mz;
3639 	struct page_cgroup *pc, *busy;
3640 	unsigned long flags, loop;
3641 	struct list_head *list;
3642 	int ret = 0;
3643 
3644 	zone = &NODE_DATA(node)->node_zones[zid];
3645 	mz = mem_cgroup_zoneinfo(mem, node, zid);
3646 	list = &mz->lists[lru];
3647 
3648 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3649 	/* give some margin against EBUSY etc...*/
3650 	loop += 256;
3651 	busy = NULL;
3652 	while (loop--) {
3653 		struct page *page;
3654 
3655 		ret = 0;
3656 		spin_lock_irqsave(&zone->lru_lock, flags);
3657 		if (list_empty(list)) {
3658 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3659 			break;
3660 		}
3661 		pc = list_entry(list->prev, struct page_cgroup, lru);
3662 		if (busy == pc) {
3663 			list_move(&pc->lru, list);
3664 			busy = NULL;
3665 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3666 			continue;
3667 		}
3668 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3669 
3670 		page = lookup_cgroup_page(pc);
3671 
3672 		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3673 		if (ret == -ENOMEM)
3674 			break;
3675 
3676 		if (ret == -EBUSY || ret == -EINVAL) {
3677 			/* found lock contention or "pc" is obsolete. */
3678 			busy = pc;
3679 			cond_resched();
3680 		} else
3681 			busy = NULL;
3682 	}
3683 
3684 	if (!ret && !list_empty(list))
3685 		return -EBUSY;
3686 	return ret;
3687 }
3688 
3689 /*
3690  * make mem_cgroup's charge to be 0 if there is no task.
3691  * This enables deleting this mem_cgroup.
3692  */
3693 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3694 {
3695 	int ret;
3696 	int node, zid, shrink;
3697 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3698 	struct cgroup *cgrp = mem->css.cgroup;
3699 
3700 	css_get(&mem->css);
3701 
3702 	shrink = 0;
3703 	/* should free all ? */
3704 	if (free_all)
3705 		goto try_to_free;
3706 move_account:
3707 	do {
3708 		ret = -EBUSY;
3709 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3710 			goto out;
3711 		ret = -EINTR;
3712 		if (signal_pending(current))
3713 			goto out;
3714 		/* This is for making all *used* pages to be on LRU. */
3715 		lru_add_drain_all();
3716 		drain_all_stock_sync();
3717 		ret = 0;
3718 		mem_cgroup_start_move(mem);
3719 		for_each_node_state(node, N_HIGH_MEMORY) {
3720 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3721 				enum lru_list l;
3722 				for_each_lru(l) {
3723 					ret = mem_cgroup_force_empty_list(mem,
3724 							node, zid, l);
3725 					if (ret)
3726 						break;
3727 				}
3728 			}
3729 			if (ret)
3730 				break;
3731 		}
3732 		mem_cgroup_end_move(mem);
3733 		memcg_oom_recover(mem);
3734 		/* it seems parent cgroup doesn't have enough mem */
3735 		if (ret == -ENOMEM)
3736 			goto try_to_free;
3737 		cond_resched();
3738 	/* "ret" should also be checked to ensure all lists are empty. */
3739 	} while (mem->res.usage > 0 || ret);
3740 out:
3741 	css_put(&mem->css);
3742 	return ret;
3743 
3744 try_to_free:
3745 	/* returns EBUSY if there is a task or if we come here twice. */
3746 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3747 		ret = -EBUSY;
3748 		goto out;
3749 	}
3750 	/* we call try-to-free pages for make this cgroup empty */
3751 	lru_add_drain_all();
3752 	/* try to free all pages in this cgroup */
3753 	shrink = 1;
3754 	while (nr_retries && mem->res.usage > 0) {
3755 		int progress;
3756 
3757 		if (signal_pending(current)) {
3758 			ret = -EINTR;
3759 			goto out;
3760 		}
3761 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3762 						false, get_swappiness(mem));
3763 		if (!progress) {
3764 			nr_retries--;
3765 			/* maybe some writeback is necessary */
3766 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3767 		}
3768 
3769 	}
3770 	lru_add_drain();
3771 	/* try move_account...there may be some *locked* pages. */
3772 	goto move_account;
3773 }
3774 
3775 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3776 {
3777 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3778 }
3779 
3780 
3781 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3782 {
3783 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3784 }
3785 
3786 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3787 					u64 val)
3788 {
3789 	int retval = 0;
3790 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3791 	struct cgroup *parent = cont->parent;
3792 	struct mem_cgroup *parent_mem = NULL;
3793 
3794 	if (parent)
3795 		parent_mem = mem_cgroup_from_cont(parent);
3796 
3797 	cgroup_lock();
3798 	/*
3799 	 * If parent's use_hierarchy is set, we can't make any modifications
3800 	 * in the child subtrees. If it is unset, then the change can
3801 	 * occur, provided the current cgroup has no children.
3802 	 *
3803 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3804 	 * set if there are no children.
3805 	 */
3806 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3807 				(val == 1 || val == 0)) {
3808 		if (list_empty(&cont->children))
3809 			mem->use_hierarchy = val;
3810 		else
3811 			retval = -EBUSY;
3812 	} else
3813 		retval = -EINVAL;
3814 	cgroup_unlock();
3815 
3816 	return retval;
3817 }
3818 
3819 
3820 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3821 					       enum mem_cgroup_stat_index idx)
3822 {
3823 	struct mem_cgroup *iter;
3824 	long val = 0;
3825 
3826 	/* Per-cpu values can be negative, use a signed accumulator */
3827 	for_each_mem_cgroup_tree(iter, mem)
3828 		val += mem_cgroup_read_stat(iter, idx);
3829 
3830 	if (val < 0) /* race ? */
3831 		val = 0;
3832 	return val;
3833 }
3834 
3835 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3836 {
3837 	u64 val;
3838 
3839 	if (!mem_cgroup_is_root(mem)) {
3840 		if (!swap)
3841 			return res_counter_read_u64(&mem->res, RES_USAGE);
3842 		else
3843 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3844 	}
3845 
3846 	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3847 	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3848 
3849 	if (swap)
3850 		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3851 
3852 	return val << PAGE_SHIFT;
3853 }
3854 
3855 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3856 {
3857 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3858 	u64 val;
3859 	int type, name;
3860 
3861 	type = MEMFILE_TYPE(cft->private);
3862 	name = MEMFILE_ATTR(cft->private);
3863 	switch (type) {
3864 	case _MEM:
3865 		if (name == RES_USAGE)
3866 			val = mem_cgroup_usage(mem, false);
3867 		else
3868 			val = res_counter_read_u64(&mem->res, name);
3869 		break;
3870 	case _MEMSWAP:
3871 		if (name == RES_USAGE)
3872 			val = mem_cgroup_usage(mem, true);
3873 		else
3874 			val = res_counter_read_u64(&mem->memsw, name);
3875 		break;
3876 	default:
3877 		BUG();
3878 		break;
3879 	}
3880 	return val;
3881 }
3882 /*
3883  * The user of this function is...
3884  * RES_LIMIT.
3885  */
3886 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3887 			    const char *buffer)
3888 {
3889 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3890 	int type, name;
3891 	unsigned long long val;
3892 	int ret;
3893 
3894 	type = MEMFILE_TYPE(cft->private);
3895 	name = MEMFILE_ATTR(cft->private);
3896 	switch (name) {
3897 	case RES_LIMIT:
3898 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3899 			ret = -EINVAL;
3900 			break;
3901 		}
3902 		/* This function does all necessary parse...reuse it */
3903 		ret = res_counter_memparse_write_strategy(buffer, &val);
3904 		if (ret)
3905 			break;
3906 		if (type == _MEM)
3907 			ret = mem_cgroup_resize_limit(memcg, val);
3908 		else
3909 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3910 		break;
3911 	case RES_SOFT_LIMIT:
3912 		ret = res_counter_memparse_write_strategy(buffer, &val);
3913 		if (ret)
3914 			break;
3915 		/*
3916 		 * For memsw, soft limits are hard to implement in terms
3917 		 * of semantics, for now, we support soft limits for
3918 		 * control without swap
3919 		 */
3920 		if (type == _MEM)
3921 			ret = res_counter_set_soft_limit(&memcg->res, val);
3922 		else
3923 			ret = -EINVAL;
3924 		break;
3925 	default:
3926 		ret = -EINVAL; /* should be BUG() ? */
3927 		break;
3928 	}
3929 	return ret;
3930 }
3931 
3932 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3933 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3934 {
3935 	struct cgroup *cgroup;
3936 	unsigned long long min_limit, min_memsw_limit, tmp;
3937 
3938 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3939 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3940 	cgroup = memcg->css.cgroup;
3941 	if (!memcg->use_hierarchy)
3942 		goto out;
3943 
3944 	while (cgroup->parent) {
3945 		cgroup = cgroup->parent;
3946 		memcg = mem_cgroup_from_cont(cgroup);
3947 		if (!memcg->use_hierarchy)
3948 			break;
3949 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3950 		min_limit = min(min_limit, tmp);
3951 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3952 		min_memsw_limit = min(min_memsw_limit, tmp);
3953 	}
3954 out:
3955 	*mem_limit = min_limit;
3956 	*memsw_limit = min_memsw_limit;
3957 	return;
3958 }
3959 
3960 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3961 {
3962 	struct mem_cgroup *mem;
3963 	int type, name;
3964 
3965 	mem = mem_cgroup_from_cont(cont);
3966 	type = MEMFILE_TYPE(event);
3967 	name = MEMFILE_ATTR(event);
3968 	switch (name) {
3969 	case RES_MAX_USAGE:
3970 		if (type == _MEM)
3971 			res_counter_reset_max(&mem->res);
3972 		else
3973 			res_counter_reset_max(&mem->memsw);
3974 		break;
3975 	case RES_FAILCNT:
3976 		if (type == _MEM)
3977 			res_counter_reset_failcnt(&mem->res);
3978 		else
3979 			res_counter_reset_failcnt(&mem->memsw);
3980 		break;
3981 	}
3982 
3983 	return 0;
3984 }
3985 
3986 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3987 					struct cftype *cft)
3988 {
3989 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3990 }
3991 
3992 #ifdef CONFIG_MMU
3993 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3994 					struct cftype *cft, u64 val)
3995 {
3996 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3997 
3998 	if (val >= (1 << NR_MOVE_TYPE))
3999 		return -EINVAL;
4000 	/*
4001 	 * We check this value several times in both in can_attach() and
4002 	 * attach(), so we need cgroup lock to prevent this value from being
4003 	 * inconsistent.
4004 	 */
4005 	cgroup_lock();
4006 	mem->move_charge_at_immigrate = val;
4007 	cgroup_unlock();
4008 
4009 	return 0;
4010 }
4011 #else
4012 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4013 					struct cftype *cft, u64 val)
4014 {
4015 	return -ENOSYS;
4016 }
4017 #endif
4018 
4019 
4020 /* For read statistics */
4021 enum {
4022 	MCS_CACHE,
4023 	MCS_RSS,
4024 	MCS_FILE_MAPPED,
4025 	MCS_PGPGIN,
4026 	MCS_PGPGOUT,
4027 	MCS_SWAP,
4028 	MCS_PGFAULT,
4029 	MCS_PGMAJFAULT,
4030 	MCS_INACTIVE_ANON,
4031 	MCS_ACTIVE_ANON,
4032 	MCS_INACTIVE_FILE,
4033 	MCS_ACTIVE_FILE,
4034 	MCS_UNEVICTABLE,
4035 	NR_MCS_STAT,
4036 };
4037 
4038 struct mcs_total_stat {
4039 	s64 stat[NR_MCS_STAT];
4040 };
4041 
4042 struct {
4043 	char *local_name;
4044 	char *total_name;
4045 } memcg_stat_strings[NR_MCS_STAT] = {
4046 	{"cache", "total_cache"},
4047 	{"rss", "total_rss"},
4048 	{"mapped_file", "total_mapped_file"},
4049 	{"pgpgin", "total_pgpgin"},
4050 	{"pgpgout", "total_pgpgout"},
4051 	{"swap", "total_swap"},
4052 	{"pgfault", "total_pgfault"},
4053 	{"pgmajfault", "total_pgmajfault"},
4054 	{"inactive_anon", "total_inactive_anon"},
4055 	{"active_anon", "total_active_anon"},
4056 	{"inactive_file", "total_inactive_file"},
4057 	{"active_file", "total_active_file"},
4058 	{"unevictable", "total_unevictable"}
4059 };
4060 
4061 
4062 static void
4063 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4064 {
4065 	s64 val;
4066 
4067 	/* per cpu stat */
4068 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4069 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4070 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4071 	s->stat[MCS_RSS] += val * PAGE_SIZE;
4072 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4073 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4074 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4075 	s->stat[MCS_PGPGIN] += val;
4076 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4077 	s->stat[MCS_PGPGOUT] += val;
4078 	if (do_swap_account) {
4079 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4080 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4081 	}
4082 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4083 	s->stat[MCS_PGFAULT] += val;
4084 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4085 	s->stat[MCS_PGMAJFAULT] += val;
4086 
4087 	/* per zone stat */
4088 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
4089 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4090 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
4091 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4092 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
4093 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4094 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
4095 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4096 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
4097 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4098 }
4099 
4100 static void
4101 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4102 {
4103 	struct mem_cgroup *iter;
4104 
4105 	for_each_mem_cgroup_tree(iter, mem)
4106 		mem_cgroup_get_local_stat(iter, s);
4107 }
4108 
4109 #ifdef CONFIG_NUMA
4110 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4111 {
4112 	int nid;
4113 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4114 	unsigned long node_nr;
4115 	struct cgroup *cont = m->private;
4116 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4117 
4118 	total_nr = mem_cgroup_nr_lru_pages(mem_cont);
4119 	seq_printf(m, "total=%lu", total_nr);
4120 	for_each_node_state(nid, N_HIGH_MEMORY) {
4121 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid);
4122 		seq_printf(m, " N%d=%lu", nid, node_nr);
4123 	}
4124 	seq_putc(m, '\n');
4125 
4126 	file_nr = mem_cgroup_nr_file_lru_pages(mem_cont);
4127 	seq_printf(m, "file=%lu", file_nr);
4128 	for_each_node_state(nid, N_HIGH_MEMORY) {
4129 		node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid);
4130 		seq_printf(m, " N%d=%lu", nid, node_nr);
4131 	}
4132 	seq_putc(m, '\n');
4133 
4134 	anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont);
4135 	seq_printf(m, "anon=%lu", anon_nr);
4136 	for_each_node_state(nid, N_HIGH_MEMORY) {
4137 		node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid);
4138 		seq_printf(m, " N%d=%lu", nid, node_nr);
4139 	}
4140 	seq_putc(m, '\n');
4141 
4142 	unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont);
4143 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4144 	for_each_node_state(nid, N_HIGH_MEMORY) {
4145 		node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont,
4146 									nid);
4147 		seq_printf(m, " N%d=%lu", nid, node_nr);
4148 	}
4149 	seq_putc(m, '\n');
4150 	return 0;
4151 }
4152 #endif /* CONFIG_NUMA */
4153 
4154 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4155 				 struct cgroup_map_cb *cb)
4156 {
4157 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4158 	struct mcs_total_stat mystat;
4159 	int i;
4160 
4161 	memset(&mystat, 0, sizeof(mystat));
4162 	mem_cgroup_get_local_stat(mem_cont, &mystat);
4163 
4164 
4165 	for (i = 0; i < NR_MCS_STAT; i++) {
4166 		if (i == MCS_SWAP && !do_swap_account)
4167 			continue;
4168 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4169 	}
4170 
4171 	/* Hierarchical information */
4172 	{
4173 		unsigned long long limit, memsw_limit;
4174 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4175 		cb->fill(cb, "hierarchical_memory_limit", limit);
4176 		if (do_swap_account)
4177 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4178 	}
4179 
4180 	memset(&mystat, 0, sizeof(mystat));
4181 	mem_cgroup_get_total_stat(mem_cont, &mystat);
4182 	for (i = 0; i < NR_MCS_STAT; i++) {
4183 		if (i == MCS_SWAP && !do_swap_account)
4184 			continue;
4185 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4186 	}
4187 
4188 #ifdef CONFIG_DEBUG_VM
4189 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4190 
4191 	{
4192 		int nid, zid;
4193 		struct mem_cgroup_per_zone *mz;
4194 		unsigned long recent_rotated[2] = {0, 0};
4195 		unsigned long recent_scanned[2] = {0, 0};
4196 
4197 		for_each_online_node(nid)
4198 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4199 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4200 
4201 				recent_rotated[0] +=
4202 					mz->reclaim_stat.recent_rotated[0];
4203 				recent_rotated[1] +=
4204 					mz->reclaim_stat.recent_rotated[1];
4205 				recent_scanned[0] +=
4206 					mz->reclaim_stat.recent_scanned[0];
4207 				recent_scanned[1] +=
4208 					mz->reclaim_stat.recent_scanned[1];
4209 			}
4210 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4211 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4212 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4213 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4214 	}
4215 #endif
4216 
4217 	return 0;
4218 }
4219 
4220 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4221 {
4222 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4223 
4224 	return get_swappiness(memcg);
4225 }
4226 
4227 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4228 				       u64 val)
4229 {
4230 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4231 	struct mem_cgroup *parent;
4232 
4233 	if (val > 100)
4234 		return -EINVAL;
4235 
4236 	if (cgrp->parent == NULL)
4237 		return -EINVAL;
4238 
4239 	parent = mem_cgroup_from_cont(cgrp->parent);
4240 
4241 	cgroup_lock();
4242 
4243 	/* If under hierarchy, only empty-root can set this value */
4244 	if ((parent->use_hierarchy) ||
4245 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4246 		cgroup_unlock();
4247 		return -EINVAL;
4248 	}
4249 
4250 	memcg->swappiness = val;
4251 
4252 	cgroup_unlock();
4253 
4254 	return 0;
4255 }
4256 
4257 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4258 {
4259 	struct mem_cgroup_threshold_ary *t;
4260 	u64 usage;
4261 	int i;
4262 
4263 	rcu_read_lock();
4264 	if (!swap)
4265 		t = rcu_dereference(memcg->thresholds.primary);
4266 	else
4267 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4268 
4269 	if (!t)
4270 		goto unlock;
4271 
4272 	usage = mem_cgroup_usage(memcg, swap);
4273 
4274 	/*
4275 	 * current_threshold points to threshold just below usage.
4276 	 * If it's not true, a threshold was crossed after last
4277 	 * call of __mem_cgroup_threshold().
4278 	 */
4279 	i = t->current_threshold;
4280 
4281 	/*
4282 	 * Iterate backward over array of thresholds starting from
4283 	 * current_threshold and check if a threshold is crossed.
4284 	 * If none of thresholds below usage is crossed, we read
4285 	 * only one element of the array here.
4286 	 */
4287 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4288 		eventfd_signal(t->entries[i].eventfd, 1);
4289 
4290 	/* i = current_threshold + 1 */
4291 	i++;
4292 
4293 	/*
4294 	 * Iterate forward over array of thresholds starting from
4295 	 * current_threshold+1 and check if a threshold is crossed.
4296 	 * If none of thresholds above usage is crossed, we read
4297 	 * only one element of the array here.
4298 	 */
4299 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4300 		eventfd_signal(t->entries[i].eventfd, 1);
4301 
4302 	/* Update current_threshold */
4303 	t->current_threshold = i - 1;
4304 unlock:
4305 	rcu_read_unlock();
4306 }
4307 
4308 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4309 {
4310 	while (memcg) {
4311 		__mem_cgroup_threshold(memcg, false);
4312 		if (do_swap_account)
4313 			__mem_cgroup_threshold(memcg, true);
4314 
4315 		memcg = parent_mem_cgroup(memcg);
4316 	}
4317 }
4318 
4319 static int compare_thresholds(const void *a, const void *b)
4320 {
4321 	const struct mem_cgroup_threshold *_a = a;
4322 	const struct mem_cgroup_threshold *_b = b;
4323 
4324 	return _a->threshold - _b->threshold;
4325 }
4326 
4327 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4328 {
4329 	struct mem_cgroup_eventfd_list *ev;
4330 
4331 	list_for_each_entry(ev, &mem->oom_notify, list)
4332 		eventfd_signal(ev->eventfd, 1);
4333 	return 0;
4334 }
4335 
4336 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4337 {
4338 	struct mem_cgroup *iter;
4339 
4340 	for_each_mem_cgroup_tree(iter, mem)
4341 		mem_cgroup_oom_notify_cb(iter);
4342 }
4343 
4344 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4345 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4346 {
4347 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4348 	struct mem_cgroup_thresholds *thresholds;
4349 	struct mem_cgroup_threshold_ary *new;
4350 	int type = MEMFILE_TYPE(cft->private);
4351 	u64 threshold, usage;
4352 	int i, size, ret;
4353 
4354 	ret = res_counter_memparse_write_strategy(args, &threshold);
4355 	if (ret)
4356 		return ret;
4357 
4358 	mutex_lock(&memcg->thresholds_lock);
4359 
4360 	if (type == _MEM)
4361 		thresholds = &memcg->thresholds;
4362 	else if (type == _MEMSWAP)
4363 		thresholds = &memcg->memsw_thresholds;
4364 	else
4365 		BUG();
4366 
4367 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4368 
4369 	/* Check if a threshold crossed before adding a new one */
4370 	if (thresholds->primary)
4371 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4372 
4373 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4374 
4375 	/* Allocate memory for new array of thresholds */
4376 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4377 			GFP_KERNEL);
4378 	if (!new) {
4379 		ret = -ENOMEM;
4380 		goto unlock;
4381 	}
4382 	new->size = size;
4383 
4384 	/* Copy thresholds (if any) to new array */
4385 	if (thresholds->primary) {
4386 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4387 				sizeof(struct mem_cgroup_threshold));
4388 	}
4389 
4390 	/* Add new threshold */
4391 	new->entries[size - 1].eventfd = eventfd;
4392 	new->entries[size - 1].threshold = threshold;
4393 
4394 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4395 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4396 			compare_thresholds, NULL);
4397 
4398 	/* Find current threshold */
4399 	new->current_threshold = -1;
4400 	for (i = 0; i < size; i++) {
4401 		if (new->entries[i].threshold < usage) {
4402 			/*
4403 			 * new->current_threshold will not be used until
4404 			 * rcu_assign_pointer(), so it's safe to increment
4405 			 * it here.
4406 			 */
4407 			++new->current_threshold;
4408 		}
4409 	}
4410 
4411 	/* Free old spare buffer and save old primary buffer as spare */
4412 	kfree(thresholds->spare);
4413 	thresholds->spare = thresholds->primary;
4414 
4415 	rcu_assign_pointer(thresholds->primary, new);
4416 
4417 	/* To be sure that nobody uses thresholds */
4418 	synchronize_rcu();
4419 
4420 unlock:
4421 	mutex_unlock(&memcg->thresholds_lock);
4422 
4423 	return ret;
4424 }
4425 
4426 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4427 	struct cftype *cft, struct eventfd_ctx *eventfd)
4428 {
4429 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4430 	struct mem_cgroup_thresholds *thresholds;
4431 	struct mem_cgroup_threshold_ary *new;
4432 	int type = MEMFILE_TYPE(cft->private);
4433 	u64 usage;
4434 	int i, j, size;
4435 
4436 	mutex_lock(&memcg->thresholds_lock);
4437 	if (type == _MEM)
4438 		thresholds = &memcg->thresholds;
4439 	else if (type == _MEMSWAP)
4440 		thresholds = &memcg->memsw_thresholds;
4441 	else
4442 		BUG();
4443 
4444 	/*
4445 	 * Something went wrong if we trying to unregister a threshold
4446 	 * if we don't have thresholds
4447 	 */
4448 	BUG_ON(!thresholds);
4449 
4450 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4451 
4452 	/* Check if a threshold crossed before removing */
4453 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4454 
4455 	/* Calculate new number of threshold */
4456 	size = 0;
4457 	for (i = 0; i < thresholds->primary->size; i++) {
4458 		if (thresholds->primary->entries[i].eventfd != eventfd)
4459 			size++;
4460 	}
4461 
4462 	new = thresholds->spare;
4463 
4464 	/* Set thresholds array to NULL if we don't have thresholds */
4465 	if (!size) {
4466 		kfree(new);
4467 		new = NULL;
4468 		goto swap_buffers;
4469 	}
4470 
4471 	new->size = size;
4472 
4473 	/* Copy thresholds and find current threshold */
4474 	new->current_threshold = -1;
4475 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4476 		if (thresholds->primary->entries[i].eventfd == eventfd)
4477 			continue;
4478 
4479 		new->entries[j] = thresholds->primary->entries[i];
4480 		if (new->entries[j].threshold < usage) {
4481 			/*
4482 			 * new->current_threshold will not be used
4483 			 * until rcu_assign_pointer(), so it's safe to increment
4484 			 * it here.
4485 			 */
4486 			++new->current_threshold;
4487 		}
4488 		j++;
4489 	}
4490 
4491 swap_buffers:
4492 	/* Swap primary and spare array */
4493 	thresholds->spare = thresholds->primary;
4494 	rcu_assign_pointer(thresholds->primary, new);
4495 
4496 	/* To be sure that nobody uses thresholds */
4497 	synchronize_rcu();
4498 
4499 	mutex_unlock(&memcg->thresholds_lock);
4500 }
4501 
4502 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4503 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4504 {
4505 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4506 	struct mem_cgroup_eventfd_list *event;
4507 	int type = MEMFILE_TYPE(cft->private);
4508 
4509 	BUG_ON(type != _OOM_TYPE);
4510 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4511 	if (!event)
4512 		return -ENOMEM;
4513 
4514 	mutex_lock(&memcg_oom_mutex);
4515 
4516 	event->eventfd = eventfd;
4517 	list_add(&event->list, &memcg->oom_notify);
4518 
4519 	/* already in OOM ? */
4520 	if (atomic_read(&memcg->oom_lock))
4521 		eventfd_signal(eventfd, 1);
4522 	mutex_unlock(&memcg_oom_mutex);
4523 
4524 	return 0;
4525 }
4526 
4527 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4528 	struct cftype *cft, struct eventfd_ctx *eventfd)
4529 {
4530 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4531 	struct mem_cgroup_eventfd_list *ev, *tmp;
4532 	int type = MEMFILE_TYPE(cft->private);
4533 
4534 	BUG_ON(type != _OOM_TYPE);
4535 
4536 	mutex_lock(&memcg_oom_mutex);
4537 
4538 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4539 		if (ev->eventfd == eventfd) {
4540 			list_del(&ev->list);
4541 			kfree(ev);
4542 		}
4543 	}
4544 
4545 	mutex_unlock(&memcg_oom_mutex);
4546 }
4547 
4548 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4549 	struct cftype *cft,  struct cgroup_map_cb *cb)
4550 {
4551 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4552 
4553 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4554 
4555 	if (atomic_read(&mem->oom_lock))
4556 		cb->fill(cb, "under_oom", 1);
4557 	else
4558 		cb->fill(cb, "under_oom", 0);
4559 	return 0;
4560 }
4561 
4562 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4563 	struct cftype *cft, u64 val)
4564 {
4565 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4566 	struct mem_cgroup *parent;
4567 
4568 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4569 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4570 		return -EINVAL;
4571 
4572 	parent = mem_cgroup_from_cont(cgrp->parent);
4573 
4574 	cgroup_lock();
4575 	/* oom-kill-disable is a flag for subhierarchy. */
4576 	if ((parent->use_hierarchy) ||
4577 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4578 		cgroup_unlock();
4579 		return -EINVAL;
4580 	}
4581 	mem->oom_kill_disable = val;
4582 	if (!val)
4583 		memcg_oom_recover(mem);
4584 	cgroup_unlock();
4585 	return 0;
4586 }
4587 
4588 #ifdef CONFIG_NUMA
4589 static const struct file_operations mem_control_numa_stat_file_operations = {
4590 	.read = seq_read,
4591 	.llseek = seq_lseek,
4592 	.release = single_release,
4593 };
4594 
4595 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4596 {
4597 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4598 
4599 	file->f_op = &mem_control_numa_stat_file_operations;
4600 	return single_open(file, mem_control_numa_stat_show, cont);
4601 }
4602 #endif /* CONFIG_NUMA */
4603 
4604 static struct cftype mem_cgroup_files[] = {
4605 	{
4606 		.name = "usage_in_bytes",
4607 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4608 		.read_u64 = mem_cgroup_read,
4609 		.register_event = mem_cgroup_usage_register_event,
4610 		.unregister_event = mem_cgroup_usage_unregister_event,
4611 	},
4612 	{
4613 		.name = "max_usage_in_bytes",
4614 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4615 		.trigger = mem_cgroup_reset,
4616 		.read_u64 = mem_cgroup_read,
4617 	},
4618 	{
4619 		.name = "limit_in_bytes",
4620 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4621 		.write_string = mem_cgroup_write,
4622 		.read_u64 = mem_cgroup_read,
4623 	},
4624 	{
4625 		.name = "soft_limit_in_bytes",
4626 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4627 		.write_string = mem_cgroup_write,
4628 		.read_u64 = mem_cgroup_read,
4629 	},
4630 	{
4631 		.name = "failcnt",
4632 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4633 		.trigger = mem_cgroup_reset,
4634 		.read_u64 = mem_cgroup_read,
4635 	},
4636 	{
4637 		.name = "stat",
4638 		.read_map = mem_control_stat_show,
4639 	},
4640 	{
4641 		.name = "force_empty",
4642 		.trigger = mem_cgroup_force_empty_write,
4643 	},
4644 	{
4645 		.name = "use_hierarchy",
4646 		.write_u64 = mem_cgroup_hierarchy_write,
4647 		.read_u64 = mem_cgroup_hierarchy_read,
4648 	},
4649 	{
4650 		.name = "swappiness",
4651 		.read_u64 = mem_cgroup_swappiness_read,
4652 		.write_u64 = mem_cgroup_swappiness_write,
4653 	},
4654 	{
4655 		.name = "move_charge_at_immigrate",
4656 		.read_u64 = mem_cgroup_move_charge_read,
4657 		.write_u64 = mem_cgroup_move_charge_write,
4658 	},
4659 	{
4660 		.name = "oom_control",
4661 		.read_map = mem_cgroup_oom_control_read,
4662 		.write_u64 = mem_cgroup_oom_control_write,
4663 		.register_event = mem_cgroup_oom_register_event,
4664 		.unregister_event = mem_cgroup_oom_unregister_event,
4665 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4666 	},
4667 #ifdef CONFIG_NUMA
4668 	{
4669 		.name = "numa_stat",
4670 		.open = mem_control_numa_stat_open,
4671 		.mode = S_IRUGO,
4672 	},
4673 #endif
4674 };
4675 
4676 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4677 static struct cftype memsw_cgroup_files[] = {
4678 	{
4679 		.name = "memsw.usage_in_bytes",
4680 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4681 		.read_u64 = mem_cgroup_read,
4682 		.register_event = mem_cgroup_usage_register_event,
4683 		.unregister_event = mem_cgroup_usage_unregister_event,
4684 	},
4685 	{
4686 		.name = "memsw.max_usage_in_bytes",
4687 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4688 		.trigger = mem_cgroup_reset,
4689 		.read_u64 = mem_cgroup_read,
4690 	},
4691 	{
4692 		.name = "memsw.limit_in_bytes",
4693 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4694 		.write_string = mem_cgroup_write,
4695 		.read_u64 = mem_cgroup_read,
4696 	},
4697 	{
4698 		.name = "memsw.failcnt",
4699 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4700 		.trigger = mem_cgroup_reset,
4701 		.read_u64 = mem_cgroup_read,
4702 	},
4703 };
4704 
4705 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4706 {
4707 	if (!do_swap_account)
4708 		return 0;
4709 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4710 				ARRAY_SIZE(memsw_cgroup_files));
4711 };
4712 #else
4713 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4714 {
4715 	return 0;
4716 }
4717 #endif
4718 
4719 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4720 {
4721 	struct mem_cgroup_per_node *pn;
4722 	struct mem_cgroup_per_zone *mz;
4723 	enum lru_list l;
4724 	int zone, tmp = node;
4725 	/*
4726 	 * This routine is called against possible nodes.
4727 	 * But it's BUG to call kmalloc() against offline node.
4728 	 *
4729 	 * TODO: this routine can waste much memory for nodes which will
4730 	 *       never be onlined. It's better to use memory hotplug callback
4731 	 *       function.
4732 	 */
4733 	if (!node_state(node, N_NORMAL_MEMORY))
4734 		tmp = -1;
4735 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4736 	if (!pn)
4737 		return 1;
4738 
4739 	mem->info.nodeinfo[node] = pn;
4740 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4741 		mz = &pn->zoneinfo[zone];
4742 		for_each_lru(l)
4743 			INIT_LIST_HEAD(&mz->lists[l]);
4744 		mz->usage_in_excess = 0;
4745 		mz->on_tree = false;
4746 		mz->mem = mem;
4747 	}
4748 	return 0;
4749 }
4750 
4751 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4752 {
4753 	kfree(mem->info.nodeinfo[node]);
4754 }
4755 
4756 static struct mem_cgroup *mem_cgroup_alloc(void)
4757 {
4758 	struct mem_cgroup *mem;
4759 	int size = sizeof(struct mem_cgroup);
4760 
4761 	/* Can be very big if MAX_NUMNODES is very big */
4762 	if (size < PAGE_SIZE)
4763 		mem = kzalloc(size, GFP_KERNEL);
4764 	else
4765 		mem = vzalloc(size);
4766 
4767 	if (!mem)
4768 		return NULL;
4769 
4770 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4771 	if (!mem->stat)
4772 		goto out_free;
4773 	spin_lock_init(&mem->pcp_counter_lock);
4774 	return mem;
4775 
4776 out_free:
4777 	if (size < PAGE_SIZE)
4778 		kfree(mem);
4779 	else
4780 		vfree(mem);
4781 	return NULL;
4782 }
4783 
4784 /*
4785  * At destroying mem_cgroup, references from swap_cgroup can remain.
4786  * (scanning all at force_empty is too costly...)
4787  *
4788  * Instead of clearing all references at force_empty, we remember
4789  * the number of reference from swap_cgroup and free mem_cgroup when
4790  * it goes down to 0.
4791  *
4792  * Removal of cgroup itself succeeds regardless of refs from swap.
4793  */
4794 
4795 static void __mem_cgroup_free(struct mem_cgroup *mem)
4796 {
4797 	int node;
4798 
4799 	mem_cgroup_remove_from_trees(mem);
4800 	free_css_id(&mem_cgroup_subsys, &mem->css);
4801 
4802 	for_each_node_state(node, N_POSSIBLE)
4803 		free_mem_cgroup_per_zone_info(mem, node);
4804 
4805 	free_percpu(mem->stat);
4806 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4807 		kfree(mem);
4808 	else
4809 		vfree(mem);
4810 }
4811 
4812 static void mem_cgroup_get(struct mem_cgroup *mem)
4813 {
4814 	atomic_inc(&mem->refcnt);
4815 }
4816 
4817 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4818 {
4819 	if (atomic_sub_and_test(count, &mem->refcnt)) {
4820 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4821 		__mem_cgroup_free(mem);
4822 		if (parent)
4823 			mem_cgroup_put(parent);
4824 	}
4825 }
4826 
4827 static void mem_cgroup_put(struct mem_cgroup *mem)
4828 {
4829 	__mem_cgroup_put(mem, 1);
4830 }
4831 
4832 /*
4833  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4834  */
4835 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4836 {
4837 	if (!mem->res.parent)
4838 		return NULL;
4839 	return mem_cgroup_from_res_counter(mem->res.parent, res);
4840 }
4841 
4842 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4843 static void __init enable_swap_cgroup(void)
4844 {
4845 	if (!mem_cgroup_disabled() && really_do_swap_account)
4846 		do_swap_account = 1;
4847 }
4848 #else
4849 static void __init enable_swap_cgroup(void)
4850 {
4851 }
4852 #endif
4853 
4854 static int mem_cgroup_soft_limit_tree_init(void)
4855 {
4856 	struct mem_cgroup_tree_per_node *rtpn;
4857 	struct mem_cgroup_tree_per_zone *rtpz;
4858 	int tmp, node, zone;
4859 
4860 	for_each_node_state(node, N_POSSIBLE) {
4861 		tmp = node;
4862 		if (!node_state(node, N_NORMAL_MEMORY))
4863 			tmp = -1;
4864 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4865 		if (!rtpn)
4866 			return 1;
4867 
4868 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4869 
4870 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4871 			rtpz = &rtpn->rb_tree_per_zone[zone];
4872 			rtpz->rb_root = RB_ROOT;
4873 			spin_lock_init(&rtpz->lock);
4874 		}
4875 	}
4876 	return 0;
4877 }
4878 
4879 static struct cgroup_subsys_state * __ref
4880 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4881 {
4882 	struct mem_cgroup *mem, *parent;
4883 	long error = -ENOMEM;
4884 	int node;
4885 
4886 	mem = mem_cgroup_alloc();
4887 	if (!mem)
4888 		return ERR_PTR(error);
4889 
4890 	for_each_node_state(node, N_POSSIBLE)
4891 		if (alloc_mem_cgroup_per_zone_info(mem, node))
4892 			goto free_out;
4893 
4894 	/* root ? */
4895 	if (cont->parent == NULL) {
4896 		int cpu;
4897 		enable_swap_cgroup();
4898 		parent = NULL;
4899 		root_mem_cgroup = mem;
4900 		if (mem_cgroup_soft_limit_tree_init())
4901 			goto free_out;
4902 		for_each_possible_cpu(cpu) {
4903 			struct memcg_stock_pcp *stock =
4904 						&per_cpu(memcg_stock, cpu);
4905 			INIT_WORK(&stock->work, drain_local_stock);
4906 		}
4907 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4908 	} else {
4909 		parent = mem_cgroup_from_cont(cont->parent);
4910 		mem->use_hierarchy = parent->use_hierarchy;
4911 		mem->oom_kill_disable = parent->oom_kill_disable;
4912 	}
4913 
4914 	if (parent && parent->use_hierarchy) {
4915 		res_counter_init(&mem->res, &parent->res);
4916 		res_counter_init(&mem->memsw, &parent->memsw);
4917 		/*
4918 		 * We increment refcnt of the parent to ensure that we can
4919 		 * safely access it on res_counter_charge/uncharge.
4920 		 * This refcnt will be decremented when freeing this
4921 		 * mem_cgroup(see mem_cgroup_put).
4922 		 */
4923 		mem_cgroup_get(parent);
4924 	} else {
4925 		res_counter_init(&mem->res, NULL);
4926 		res_counter_init(&mem->memsw, NULL);
4927 	}
4928 	mem->last_scanned_child = 0;
4929 	mem->last_scanned_node = MAX_NUMNODES;
4930 	INIT_LIST_HEAD(&mem->oom_notify);
4931 
4932 	if (parent)
4933 		mem->swappiness = get_swappiness(parent);
4934 	atomic_set(&mem->refcnt, 1);
4935 	mem->move_charge_at_immigrate = 0;
4936 	mutex_init(&mem->thresholds_lock);
4937 	return &mem->css;
4938 free_out:
4939 	__mem_cgroup_free(mem);
4940 	root_mem_cgroup = NULL;
4941 	return ERR_PTR(error);
4942 }
4943 
4944 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4945 					struct cgroup *cont)
4946 {
4947 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4948 
4949 	return mem_cgroup_force_empty(mem, false);
4950 }
4951 
4952 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4953 				struct cgroup *cont)
4954 {
4955 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4956 
4957 	mem_cgroup_put(mem);
4958 }
4959 
4960 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4961 				struct cgroup *cont)
4962 {
4963 	int ret;
4964 
4965 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4966 				ARRAY_SIZE(mem_cgroup_files));
4967 
4968 	if (!ret)
4969 		ret = register_memsw_files(cont, ss);
4970 	return ret;
4971 }
4972 
4973 #ifdef CONFIG_MMU
4974 /* Handlers for move charge at task migration. */
4975 #define PRECHARGE_COUNT_AT_ONCE	256
4976 static int mem_cgroup_do_precharge(unsigned long count)
4977 {
4978 	int ret = 0;
4979 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4980 	struct mem_cgroup *mem = mc.to;
4981 
4982 	if (mem_cgroup_is_root(mem)) {
4983 		mc.precharge += count;
4984 		/* we don't need css_get for root */
4985 		return ret;
4986 	}
4987 	/* try to charge at once */
4988 	if (count > 1) {
4989 		struct res_counter *dummy;
4990 		/*
4991 		 * "mem" cannot be under rmdir() because we've already checked
4992 		 * by cgroup_lock_live_cgroup() that it is not removed and we
4993 		 * are still under the same cgroup_mutex. So we can postpone
4994 		 * css_get().
4995 		 */
4996 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4997 			goto one_by_one;
4998 		if (do_swap_account && res_counter_charge(&mem->memsw,
4999 						PAGE_SIZE * count, &dummy)) {
5000 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5001 			goto one_by_one;
5002 		}
5003 		mc.precharge += count;
5004 		return ret;
5005 	}
5006 one_by_one:
5007 	/* fall back to one by one charge */
5008 	while (count--) {
5009 		if (signal_pending(current)) {
5010 			ret = -EINTR;
5011 			break;
5012 		}
5013 		if (!batch_count--) {
5014 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5015 			cond_resched();
5016 		}
5017 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5018 		if (ret || !mem)
5019 			/* mem_cgroup_clear_mc() will do uncharge later */
5020 			return -ENOMEM;
5021 		mc.precharge++;
5022 	}
5023 	return ret;
5024 }
5025 
5026 /**
5027  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5028  * @vma: the vma the pte to be checked belongs
5029  * @addr: the address corresponding to the pte to be checked
5030  * @ptent: the pte to be checked
5031  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5032  *
5033  * Returns
5034  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5035  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5036  *     move charge. if @target is not NULL, the page is stored in target->page
5037  *     with extra refcnt got(Callers should handle it).
5038  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5039  *     target for charge migration. if @target is not NULL, the entry is stored
5040  *     in target->ent.
5041  *
5042  * Called with pte lock held.
5043  */
5044 union mc_target {
5045 	struct page	*page;
5046 	swp_entry_t	ent;
5047 };
5048 
5049 enum mc_target_type {
5050 	MC_TARGET_NONE,	/* not used */
5051 	MC_TARGET_PAGE,
5052 	MC_TARGET_SWAP,
5053 };
5054 
5055 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5056 						unsigned long addr, pte_t ptent)
5057 {
5058 	struct page *page = vm_normal_page(vma, addr, ptent);
5059 
5060 	if (!page || !page_mapped(page))
5061 		return NULL;
5062 	if (PageAnon(page)) {
5063 		/* we don't move shared anon */
5064 		if (!move_anon() || page_mapcount(page) > 2)
5065 			return NULL;
5066 	} else if (!move_file())
5067 		/* we ignore mapcount for file pages */
5068 		return NULL;
5069 	if (!get_page_unless_zero(page))
5070 		return NULL;
5071 
5072 	return page;
5073 }
5074 
5075 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5076 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5077 {
5078 	int usage_count;
5079 	struct page *page = NULL;
5080 	swp_entry_t ent = pte_to_swp_entry(ptent);
5081 
5082 	if (!move_anon() || non_swap_entry(ent))
5083 		return NULL;
5084 	usage_count = mem_cgroup_count_swap_user(ent, &page);
5085 	if (usage_count > 1) { /* we don't move shared anon */
5086 		if (page)
5087 			put_page(page);
5088 		return NULL;
5089 	}
5090 	if (do_swap_account)
5091 		entry->val = ent.val;
5092 
5093 	return page;
5094 }
5095 
5096 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5097 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5098 {
5099 	struct page *page = NULL;
5100 	struct inode *inode;
5101 	struct address_space *mapping;
5102 	pgoff_t pgoff;
5103 
5104 	if (!vma->vm_file) /* anonymous vma */
5105 		return NULL;
5106 	if (!move_file())
5107 		return NULL;
5108 
5109 	inode = vma->vm_file->f_path.dentry->d_inode;
5110 	mapping = vma->vm_file->f_mapping;
5111 	if (pte_none(ptent))
5112 		pgoff = linear_page_index(vma, addr);
5113 	else /* pte_file(ptent) is true */
5114 		pgoff = pte_to_pgoff(ptent);
5115 
5116 	/* page is moved even if it's not RSS of this task(page-faulted). */
5117 	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5118 		page = find_get_page(mapping, pgoff);
5119 	} else { /* shmem/tmpfs file. we should take account of swap too. */
5120 		swp_entry_t ent;
5121 		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5122 		if (do_swap_account)
5123 			entry->val = ent.val;
5124 	}
5125 
5126 	return page;
5127 }
5128 
5129 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5130 		unsigned long addr, pte_t ptent, union mc_target *target)
5131 {
5132 	struct page *page = NULL;
5133 	struct page_cgroup *pc;
5134 	int ret = 0;
5135 	swp_entry_t ent = { .val = 0 };
5136 
5137 	if (pte_present(ptent))
5138 		page = mc_handle_present_pte(vma, addr, ptent);
5139 	else if (is_swap_pte(ptent))
5140 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5141 	else if (pte_none(ptent) || pte_file(ptent))
5142 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5143 
5144 	if (!page && !ent.val)
5145 		return 0;
5146 	if (page) {
5147 		pc = lookup_page_cgroup(page);
5148 		/*
5149 		 * Do only loose check w/o page_cgroup lock.
5150 		 * mem_cgroup_move_account() checks the pc is valid or not under
5151 		 * the lock.
5152 		 */
5153 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5154 			ret = MC_TARGET_PAGE;
5155 			if (target)
5156 				target->page = page;
5157 		}
5158 		if (!ret || !target)
5159 			put_page(page);
5160 	}
5161 	/* There is a swap entry and a page doesn't exist or isn't charged */
5162 	if (ent.val && !ret &&
5163 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5164 		ret = MC_TARGET_SWAP;
5165 		if (target)
5166 			target->ent = ent;
5167 	}
5168 	return ret;
5169 }
5170 
5171 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5172 					unsigned long addr, unsigned long end,
5173 					struct mm_walk *walk)
5174 {
5175 	struct vm_area_struct *vma = walk->private;
5176 	pte_t *pte;
5177 	spinlock_t *ptl;
5178 
5179 	split_huge_page_pmd(walk->mm, pmd);
5180 
5181 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5182 	for (; addr != end; pte++, addr += PAGE_SIZE)
5183 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5184 			mc.precharge++;	/* increment precharge temporarily */
5185 	pte_unmap_unlock(pte - 1, ptl);
5186 	cond_resched();
5187 
5188 	return 0;
5189 }
5190 
5191 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5192 {
5193 	unsigned long precharge;
5194 	struct vm_area_struct *vma;
5195 
5196 	down_read(&mm->mmap_sem);
5197 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5198 		struct mm_walk mem_cgroup_count_precharge_walk = {
5199 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5200 			.mm = mm,
5201 			.private = vma,
5202 		};
5203 		if (is_vm_hugetlb_page(vma))
5204 			continue;
5205 		walk_page_range(vma->vm_start, vma->vm_end,
5206 					&mem_cgroup_count_precharge_walk);
5207 	}
5208 	up_read(&mm->mmap_sem);
5209 
5210 	precharge = mc.precharge;
5211 	mc.precharge = 0;
5212 
5213 	return precharge;
5214 }
5215 
5216 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5217 {
5218 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5219 
5220 	VM_BUG_ON(mc.moving_task);
5221 	mc.moving_task = current;
5222 	return mem_cgroup_do_precharge(precharge);
5223 }
5224 
5225 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5226 static void __mem_cgroup_clear_mc(void)
5227 {
5228 	struct mem_cgroup *from = mc.from;
5229 	struct mem_cgroup *to = mc.to;
5230 
5231 	/* we must uncharge all the leftover precharges from mc.to */
5232 	if (mc.precharge) {
5233 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5234 		mc.precharge = 0;
5235 	}
5236 	/*
5237 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5238 	 * we must uncharge here.
5239 	 */
5240 	if (mc.moved_charge) {
5241 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5242 		mc.moved_charge = 0;
5243 	}
5244 	/* we must fixup refcnts and charges */
5245 	if (mc.moved_swap) {
5246 		/* uncharge swap account from the old cgroup */
5247 		if (!mem_cgroup_is_root(mc.from))
5248 			res_counter_uncharge(&mc.from->memsw,
5249 						PAGE_SIZE * mc.moved_swap);
5250 		__mem_cgroup_put(mc.from, mc.moved_swap);
5251 
5252 		if (!mem_cgroup_is_root(mc.to)) {
5253 			/*
5254 			 * we charged both to->res and to->memsw, so we should
5255 			 * uncharge to->res.
5256 			 */
5257 			res_counter_uncharge(&mc.to->res,
5258 						PAGE_SIZE * mc.moved_swap);
5259 		}
5260 		/* we've already done mem_cgroup_get(mc.to) */
5261 		mc.moved_swap = 0;
5262 	}
5263 	memcg_oom_recover(from);
5264 	memcg_oom_recover(to);
5265 	wake_up_all(&mc.waitq);
5266 }
5267 
5268 static void mem_cgroup_clear_mc(void)
5269 {
5270 	struct mem_cgroup *from = mc.from;
5271 
5272 	/*
5273 	 * we must clear moving_task before waking up waiters at the end of
5274 	 * task migration.
5275 	 */
5276 	mc.moving_task = NULL;
5277 	__mem_cgroup_clear_mc();
5278 	spin_lock(&mc.lock);
5279 	mc.from = NULL;
5280 	mc.to = NULL;
5281 	spin_unlock(&mc.lock);
5282 	mem_cgroup_end_move(from);
5283 }
5284 
5285 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5286 				struct cgroup *cgroup,
5287 				struct task_struct *p)
5288 {
5289 	int ret = 0;
5290 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5291 
5292 	if (mem->move_charge_at_immigrate) {
5293 		struct mm_struct *mm;
5294 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5295 
5296 		VM_BUG_ON(from == mem);
5297 
5298 		mm = get_task_mm(p);
5299 		if (!mm)
5300 			return 0;
5301 		/* We move charges only when we move a owner of the mm */
5302 		if (mm->owner == p) {
5303 			VM_BUG_ON(mc.from);
5304 			VM_BUG_ON(mc.to);
5305 			VM_BUG_ON(mc.precharge);
5306 			VM_BUG_ON(mc.moved_charge);
5307 			VM_BUG_ON(mc.moved_swap);
5308 			mem_cgroup_start_move(from);
5309 			spin_lock(&mc.lock);
5310 			mc.from = from;
5311 			mc.to = mem;
5312 			spin_unlock(&mc.lock);
5313 			/* We set mc.moving_task later */
5314 
5315 			ret = mem_cgroup_precharge_mc(mm);
5316 			if (ret)
5317 				mem_cgroup_clear_mc();
5318 		}
5319 		mmput(mm);
5320 	}
5321 	return ret;
5322 }
5323 
5324 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5325 				struct cgroup *cgroup,
5326 				struct task_struct *p)
5327 {
5328 	mem_cgroup_clear_mc();
5329 }
5330 
5331 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5332 				unsigned long addr, unsigned long end,
5333 				struct mm_walk *walk)
5334 {
5335 	int ret = 0;
5336 	struct vm_area_struct *vma = walk->private;
5337 	pte_t *pte;
5338 	spinlock_t *ptl;
5339 
5340 	split_huge_page_pmd(walk->mm, pmd);
5341 retry:
5342 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5343 	for (; addr != end; addr += PAGE_SIZE) {
5344 		pte_t ptent = *(pte++);
5345 		union mc_target target;
5346 		int type;
5347 		struct page *page;
5348 		struct page_cgroup *pc;
5349 		swp_entry_t ent;
5350 
5351 		if (!mc.precharge)
5352 			break;
5353 
5354 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5355 		switch (type) {
5356 		case MC_TARGET_PAGE:
5357 			page = target.page;
5358 			if (isolate_lru_page(page))
5359 				goto put;
5360 			pc = lookup_page_cgroup(page);
5361 			if (!mem_cgroup_move_account(page, 1, pc,
5362 						     mc.from, mc.to, false)) {
5363 				mc.precharge--;
5364 				/* we uncharge from mc.from later. */
5365 				mc.moved_charge++;
5366 			}
5367 			putback_lru_page(page);
5368 put:			/* is_target_pte_for_mc() gets the page */
5369 			put_page(page);
5370 			break;
5371 		case MC_TARGET_SWAP:
5372 			ent = target.ent;
5373 			if (!mem_cgroup_move_swap_account(ent,
5374 						mc.from, mc.to, false)) {
5375 				mc.precharge--;
5376 				/* we fixup refcnts and charges later. */
5377 				mc.moved_swap++;
5378 			}
5379 			break;
5380 		default:
5381 			break;
5382 		}
5383 	}
5384 	pte_unmap_unlock(pte - 1, ptl);
5385 	cond_resched();
5386 
5387 	if (addr != end) {
5388 		/*
5389 		 * We have consumed all precharges we got in can_attach().
5390 		 * We try charge one by one, but don't do any additional
5391 		 * charges to mc.to if we have failed in charge once in attach()
5392 		 * phase.
5393 		 */
5394 		ret = mem_cgroup_do_precharge(1);
5395 		if (!ret)
5396 			goto retry;
5397 	}
5398 
5399 	return ret;
5400 }
5401 
5402 static void mem_cgroup_move_charge(struct mm_struct *mm)
5403 {
5404 	struct vm_area_struct *vma;
5405 
5406 	lru_add_drain_all();
5407 retry:
5408 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5409 		/*
5410 		 * Someone who are holding the mmap_sem might be waiting in
5411 		 * waitq. So we cancel all extra charges, wake up all waiters,
5412 		 * and retry. Because we cancel precharges, we might not be able
5413 		 * to move enough charges, but moving charge is a best-effort
5414 		 * feature anyway, so it wouldn't be a big problem.
5415 		 */
5416 		__mem_cgroup_clear_mc();
5417 		cond_resched();
5418 		goto retry;
5419 	}
5420 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5421 		int ret;
5422 		struct mm_walk mem_cgroup_move_charge_walk = {
5423 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5424 			.mm = mm,
5425 			.private = vma,
5426 		};
5427 		if (is_vm_hugetlb_page(vma))
5428 			continue;
5429 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5430 						&mem_cgroup_move_charge_walk);
5431 		if (ret)
5432 			/*
5433 			 * means we have consumed all precharges and failed in
5434 			 * doing additional charge. Just abandon here.
5435 			 */
5436 			break;
5437 	}
5438 	up_read(&mm->mmap_sem);
5439 }
5440 
5441 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5442 				struct cgroup *cont,
5443 				struct cgroup *old_cont,
5444 				struct task_struct *p)
5445 {
5446 	struct mm_struct *mm = get_task_mm(p);
5447 
5448 	if (mm) {
5449 		if (mc.to)
5450 			mem_cgroup_move_charge(mm);
5451 		put_swap_token(mm);
5452 		mmput(mm);
5453 	}
5454 	if (mc.to)
5455 		mem_cgroup_clear_mc();
5456 }
5457 #else	/* !CONFIG_MMU */
5458 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5459 				struct cgroup *cgroup,
5460 				struct task_struct *p)
5461 {
5462 	return 0;
5463 }
5464 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5465 				struct cgroup *cgroup,
5466 				struct task_struct *p)
5467 {
5468 }
5469 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5470 				struct cgroup *cont,
5471 				struct cgroup *old_cont,
5472 				struct task_struct *p)
5473 {
5474 }
5475 #endif
5476 
5477 struct cgroup_subsys mem_cgroup_subsys = {
5478 	.name = "memory",
5479 	.subsys_id = mem_cgroup_subsys_id,
5480 	.create = mem_cgroup_create,
5481 	.pre_destroy = mem_cgroup_pre_destroy,
5482 	.destroy = mem_cgroup_destroy,
5483 	.populate = mem_cgroup_populate,
5484 	.can_attach = mem_cgroup_can_attach,
5485 	.cancel_attach = mem_cgroup_cancel_attach,
5486 	.attach = mem_cgroup_move_task,
5487 	.early_init = 0,
5488 	.use_id = 1,
5489 };
5490 
5491 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5492 static int __init enable_swap_account(char *s)
5493 {
5494 	/* consider enabled if no parameter or 1 is given */
5495 	if (!strcmp(s, "1"))
5496 		really_do_swap_account = 1;
5497 	else if (!strcmp(s, "0"))
5498 		really_do_swap_account = 0;
5499 	return 1;
5500 }
5501 __setup("swapaccount=", enable_swap_account);
5502 
5503 #endif
5504